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Abstract 

Introduction 

In the era of rapid modernisation and urbanisation, the global incidence of non-communicable diseases 

such as type 2 diabetes (T2D) has significantly increased. This has been attributed to increased sedentary 

lifestyles and the adaptation of unhealthy diets, particularly in low-to-middle-income countries like 

South Africa. These changes promote the development of obesity, which is one of the major risk factors 

for T2D. Obesity, further plays a pivotal role in the pathoimmunological changes that are associated 

with outwards effects of poor glucose control and insulin resistance. Chronic inflammation and 

increased immune activation are a hallmark of T2D, and both these processes are partially mediated by 

T-cells. Interestingly, these pathological consequences are identified as early as in pre-diabetes before 

the onset of overt T2D. Upon activation, T-cells release cytokines that induce the activation of other 

immune cells and polarises T-cells towards the pro-inflammatory subset. This consequently leads to a 

pro-inflammatory milieu that alters T-cell function and predisposes individuals with pre-diabetes or 

patients with T2D to developing cardiovascular disease (CVD). Although few studies have implicated 

activated T-cells in mediating inflammation and altering myocardial function in poor glucose control, 

the underlying mechanisms and sequence of events remains scarce. Therefore, this study made use of a 

short-term high-fat diet (HFD)-induced mouse model of pre-diabetes to investigate inflammation and 

immune responses mediated by T-cells. Furthermore, it assessed and compared the modulatory effects 

of low-dose aspirin (LDA), metformin and fluvastatin (statin), well-acknowledged anti-inflammatory, 

anti-hyperglycaemic and cholesterol lowering drugs, respectively, on inflammation, T-cell activation, 

and cardiovascular risk.   

Methods 

This study involved the use of a diet-induced pre-diabetes and inflammation mouse model of glucose 

intolerance. Briefly, in phase one of the experiment, a total of 27 six-week-old male C57BL/6 mice were 

randomised into either a high-fat diet (HFD) (n=21) or low-fat diet (LFD) (n=6) groups for a total of 8 

weeks. Phase two of the experiment subsequently initiated at week 9 whereby HFD-fed mice were 

randomised into a short-term treatment with either metformin, LDA or in combination with metformin 

(LDA+Met) or statin over an additional 6-week period (n=6/7group). Changes in body weights were 

monitored on a weekly basis. Glucose profiles, cholesterol levels, complete blood counts, T-cell 

associated cytokines, and the expression on T-cell markers were measured at the end of phase one (week 

8) and phase two (week 14) of the experiments. The Kolmogorov-Smirnov test with Dallal-Wilkinson-

Lillie was performed for normality testing. For parametric data, the mean differences between the LFD- 

and HFD-fed groups were assessed using unpaired student t-test and were reported as mean ± standard 

error. The Man Whitney U test was used for non-parametric data and reported as the median and 

interquartile range [IQR]. Comparisons across the diet and treatments groups were assessed using a 

Two-way analysis of variance (ANOVA). A posthoc Tukey's multiple comparisons test was performed 

if the F-value reached statistical significance (p<0.05). The Kruskal-Wallis test, followed by a Dunn's 
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posthoc test, was used for non-parametric data. A p-value of < 0.05 was considered statistically 

significant. The GraphPad Prism version 6 software (GraphPad Software Inc, CA, USA) was used for 

all statistical analysis. 

Results 

The HFD-fed group had significantly increased weight gain (29.17%) in comparison to the LFD-fed 

group (21.74%) after the 8-week period. Notably, HFD-feeding (HFF) was associated with impaired 

metabolic function marked by poor glucose control and a state of hypercholesterolemia. In particular, 

the HFD-fed group had increased fasting glucose (p<0.0001) and 2-hour postprandial area under curve 

(p=0.0029) when challenged with an oral glucose tolerance test in comparison to the LFD group. In 

addition, total cholesterol (Tc) (p=0.0039) and low-density lipoprotein (LDL)-c (p=0.0447) levels were 

higher in the HFD-group than LFD-group, whilst high-density lipoprotein (HDL)-c levels were 

comparable between the groups (p=0.1749).  HFF was associated with enhanced levels of inflammation 

and generalised immune activation, marked by increased white cell count (WCC) (p=0.008) and 

elevated levels of interleukin (IL)-6 (p<0.0001), IL-2, tumour necrosis factor (TNF)-α (p=0.0312) and 

IL-17A (p<0.0001). Most importantly, HFF upregulated Fas (CD95) and downregulated CD69 

(p=0.0009) expression on T-cells without altering the levels of programmed-cell death 1 (PD-1) 

(p=0.6408). The elevated levels of Fas were directly associated with body weight gain (r=0.93, 

p=0.0333). Short-term treatment with LDA+Met lowered insulin levels (p=0.0475) and fasting blood 

glucose (p<0.0001) when compared the untreated HFD-fed group. Although treatment with LDA 

monotherapy did not affect any cholesterol levels, metformin monotherapy and statin significantly 

lowered Tc and LDL-c when compared to the untreated HFD-fed group (p<0.05). Treatment with 

LDA+Met lowered WCC (p=0.0095), lymphocyte count (p=0.0264), IL-6 (p=0.0002), TNF-α 

(p=0.0465), IL-2 (p=0.0001) and IL-17A (p<0.0001), when compared to the untreated HFD-fed group. 

Lastly, LDA+Met (p=0.0010) but not LDA (p=0.147), upregulated the expression of CD69 on T-cells 

whilst both treatment groups had no impact on PD-1 levels. Treatment with fluvastatin had no effect on 

the levels of inflammation (p>0.05). 

Conclusion  

This study showed that T-cell dysfunction is congruent with a state of inflammation, 

hypercholesterolaemia and poor glucose control in the early stages of obesity. Notably, the altered T-

cell function is partially mediated by the aberrant expression of Fas and CD69. The combinational 

treatment of LDA with metformin was more effective than the use of LDA only in improving glucose 

control, ameliorate inflammation, and moderate T-cell functions. These findings outline the pathological 

link between the development of inflammation, immune activation and altered lipid metabolism in a 

pre-diabetic state. More importantly, it highlights the cardiovascular risk properties of statins and 

enhanced anti-inflammatory efficacy of LDA when combined with metformin in poor glucose control. 

Therefore, alleviating inflammation and lowering glucose levels during the early development of T2D 

may be an effective strategy to attenuate T-cell remodeling in diet-driven metabolic disturbances. 
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CHAPTER 1: Introduction 

1.1 Background  

The global burden of non-communicable diseases such as type 2 diabetes (T2D) has drastically increased 

over the years, particularly in developing countries [1]. This is attributed to an increased sedentary lifestyle 

which is associated with the development of obesity, a major risk factor for T2D [2]. Emerging evidence 

has provided an association between T2D and low-grade inflammation as well as chronic immune 

activation [3–5]. Interestingly, the pre-diabetic state which precedes overt T2D is also congruent with 

persistent immune activation [6,7]. Immune dysfunction in patients with pre-diabetes or T2D is associated 

with increased incidence of consequences of ongoing immune activation, particularly thrombotic 

complications [6–8]. In fact, the involvement of T-cells in mediating abnormal immune responses in these 

patients has been described in recent studies  [9,10]. Whereby, the polarisation of T helper (TH) cells 

towards the pro-inflammatory subsets coupled with a reduction of anti-inflammatory TH cells and 

regulatory T-cells (Tregs) exacerbates inflammation and insulin resistance [11]. Consequently, this 

dysregulation of immune homeostasis leads to the activation of various metabolic and inflammatory 

pathways which include, the aldose reductase pathway [12], the protein kinase C (PKC) pathway [13], 

phosphatidylinositol 3 kinase/ protein kinase B (PI3K/Akt),  mitogen-activated protein kinase (MAPK), the 

nuclear factor-kappa B (NF-kB) and the Janus kinase signal transducer-activator of transcription (JAK-

STAT) signalling pathways [13–16]. The activation of these pathways results in altered T-cell metabolism 

which promotes T-cell dysfunction and the pathogenesis of metabolic disorders. Notably, the continuous 

stimulation of T-cells in T2D induces the aberrant expression of T-cell activation markers which may lead 

to T-cell exhaustion [17], a progressive loss of effector function. These processes are usually mediated by 

increased expression of T-cell markers such as programmed cell death 1 (PD-1), Fas (CD95) and CD69 

[18–21].  

Chronic inflammation and T-cell dysfunction are hallmarks of T2D. Consequently, several 

pharmacological drugs that aim to alleviates inflammation and modulate T-cell responses are being 

investigated. One of these drugs is metformin, an anti-hyperglycaemic drug that downregulates pro-

inflammatory signals mediated by STAT3 and the mechanistic target of rapamycin (mTOR) activity 

[22,23]. Although the anti-inflammatory properties of metformin have been described, there is no strong 

evidence of the drug offering effective cardio-protection in patients with T2D who are increased risk of 

cardiovascular disease [24]. This has led to an increased interest in using metformin in combination with 

well-established anti-inflammatory drugs with cardio-protective properties such as aspirin [25]. Although, 

both metformin and aspirin can ameliorate inflammation [22,23,26–28], their impact on mediating T-cell 

function is not well understood, and therefore remains elusive.  
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1.2 Problem statement  

The prevalence of non-communicable diseases such as T2D has drastically increased in low-to-middle-

income countries (LMICs) over the years [29]. This has led to reduced life-expectancy and increased strain 

on national healthcare budgets, particularly in the sub-Saharan Africa [5]. Despite over two-thirds of the 

cases being undiagnosed in this region, a staggering 15.9 million people were diagnosed with diabetes in 

2017, and this number is expected to exponentially increase to a total of 41.6 million cases by 2045 [5]. Of 

the countries in sub-Saharan Africa, South Africa has the second largest number of people with diabetes, 

where the prevalence is currently estimated to be 12.8% [30]. Notably, over 90% of these cases are T2D 

and a major source of morbidity and mortality in South Africa.  

The rapid modernisation and urbanisation in LMICs results in people eating unhealthy diets and living 

sedentary lifestyles [4]. These changes promote the development of obesity, one of the main risk factors 

for T2D and insulin resistance [31]. Notably, the excessive adipose tissue in obesity is associated with 

exacerbated release of pro-inflammatory cytokines and increased levels of immune activation. Whereby, 

there is polarisation of TH cells towards the pro-inflammatory subsets that promotes the development and 

progression of insulin resistance, and the pathogenesis of thrombotic events [32–34]. Current evidence 

shows close association between increased T-cell activation and the development of cardiovascular disease 

(CVD) such as coronary atherosclerotic heart disease, carotid atherosclerosis and coronary artery disease 

in patients with T2D [34–37]. As a result of this, there is dire need to unravel the pathophysiological 

mechanisms and exact roles played by T-cells since CVD is the leading cause of death in patients with 

diabetes [38]. Therefore, deducing the role of T-cells in the development of CVD in patients with poor 

glucose control will be of great benefit in reducing cardiovascular risk in individuals with pre-diabetes or 

patients with T2D, as well as managing those with CVD.  

It is well-acknowledged that T-cell dysfunction drives the pathogenesis of asthma, a chronic inflammatory 

condition that is characterised by aggravated TH2 inflammation [39,40]. Notably, the poor pulmonary 

function symptoms in this condition are exacerbated by obesity. The association between obesity and 

asthma is strengthened by the presence of insulin resistance [41]. Consequently, patients with T2D are at 

increased risk of developing asthma since over two-thirds of patients are obese [20]. Obesity, however, 

polarises the immune response toward TH1 rather than the classical TH2 in obese-related asthma [39,40]. 

This altered pathophysiology of asthma in these patients negatively impacts the efficacy of therapeutic 

strategies [42], particularly those that targets T-cell modulation. Due to the involvement of T-cells in 

mediating the pathogenesis of various non-communicable diseases, there has been grown interest in 

exploring treatment strategies that modulates T-cell function and ameliorates inflammation. 



Page 3 of 18 
 

The use of immune checkpoint inhibitors in oncology is one of the therapeutic strategies that has made 

great strides in modulating T-cell responses [43]. An outstanding example is the use of drugs that targets 

the programmed cell death 1/programmed death-ligand (PD-1/PD-L) signalling pathway, whose 

transduction is exacerbated due to chronic inflammation in cancer. Notably, the blockage of PD-1 signalling 

resuscitates T-cell function in patients with various forms of cancer [41,44,45]. In consideration of T2D 

being a well-acknowledged chronic inflammatory condition, it remains important to assess the expression 

of T-cell activation and regulatory markers as well as exploring the potential therapeutic benefits of 

targeting their signalling in poor glucose control. Therefore, this study used a diet-induced mouse model of 

pre-diabetes to investigate inflammation and immune responses mediated by T-cells. This mouse model is 

a suitable and well-acknowledged model to explore pathophysiological mechanisms of T2D [46–48]. 

1.3 Aim of the study 

1. To investigate immune responses mediated by T-cells in an inflammatory pre-diabetic state. 

2. To further assess and compare the modulatory effects of anti-inflammatory and anti-

hyperglycaemic drugs on the function of these T-cell.   

 

1.4 Study objectives 

1. To optimise a flow cytometry-based assay to measure the expression of markers associated with T-

cell activation and exhaustion in the pathogenesis of T2D using a diet-induced mouse model of pre-

diabetes.  

2. To assess T-cell responses in a chronic inflammatory state by measuring the levels of cytokines 

associated with TH cell function using a (HFD)-induced mouse model of pre-diabetes.  

3. To evaluate changes in metabolic profiles, inflammation status and the expression of T-cell 

function markers in diet-induced mouse model of pre-diabetes.   

4. To further determine the modulatory effects of treatment with metformin, statin, LDA and its 

combination with metformin on these metabolic parameters and inflammatory profiles. 

5. To determine if there are any associations between metabolic disorders, denoted by abnormal 

metabolic profiles, and the expression of the T-cell function markers in pre-diabetes.   

1.5 Research questions 

1. How does a pre-diabetic state during the development of T2D affects T-cell function?  

2. Is there any link between T2D-associated metabolic complications and impaired immunological 

responses, particularly those that are mediated by T-cells?   

3. What is the role of T-cell activation in the development of CVD-related complications in T2D? 
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4. Does metformin or LDA alter T-cell function during the pathogenesis of T2D? If so, how do these 

drugs modulate immune response mediated by T-cells in normal physiology and a chronic 

inflammatory state?    

5. Are circulating T-cells exhausted in T2D?  

1.6 Study approach  

The overall objectives of this study were to investigate immune metabolism and exhaustion mediated 

by T-cells during the development of T2D, and to assess the modulatory effects of metformin and low-

dose aspirin on T-cell function. This was achieved by conducting a series of systematic reviews and 

meta-analyses involving cohorts of patients with T2D, as well as performing various experimental 

studies using a diet-induced mouse model of pre-diabetes. In this model, the main purpose was to induce 

a chronic inflammatory state which is strongly associated with T2D. In addition, the diet-induced pre-

diabetes model was used to assess the effects of these drugs on the levels of generalised immune 

activation and immune responses, particularly those modulated by T-cells.    
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Prologue 

The following chapter involves a synthesis of literature on T-cell function in diabetes and its related 

metabolic disorders. In order to critically review current literature on this topic of interest, we conducted a 

series 6 of systematic review and meta-analyses which all have been published in accredited journals.  

Section 2.1 constitutes of the systematic review and meta-analysis protocol (published) which outlines the 

rationale behind the subsequent reviews and thoroughly describes the planned methods to be followed in 

conducting them.  

Section 2.2 includes a systematic review on the role of T-cells in obesity-induced inflammation and insulin 

resistance (published). Here, we outline the evolving concepts linking insulin resistance with impaired 

immunological responses mediated by T-cell in obesity. Moreover, we highlight important avenues to be 

explored as therapeutic strategies in ameliorating T-cell mediated inflammation and preventing the 

pathogenies of obesity linked cardiovascular disease.  

Section 2.3 includes a systematic review and meta-analysis on the impact of T-cell activation in T2D and 

the stratification of cardiovascular risk in these patients (published). In this manuscript, we report on 

increased T-cell activation and a skew towards the frequency of pro-inflammatory TH subsets coupled with 

enhanced expression of T-cell negative co-stimulatory molecules.  We also report on cardiovascular risk in 

patients with T2D. These findings highlight the possible benefits of modulating T-cell function as a strategy 

to reduce inflammation and cardiovascular risk in T2D.  

Section 2.4 involves a systematic review and meta-analysis on T-cell exhaustion in T2D (published). Here, 

we report on increased expression of PD-1, a negative co-stimulatory molecule known to promote T-cell 

exhaustion. In this study, we concluded that immune dysfunction in T2D is at least in part due to T-cell 

exhaustion mediated by an upregulation of PD-1 expression. We highlight how the use of immune 

checkpoint inhibitors may be an effective therapeutic strategy in restoring T-cell effector function and at 

the same time how it poses a risk of exacerbating inflammation in patients with T2D.  

Section 2.5 encompasses a systematic and meta-analysis on the impact of obesity on the pathogenesis and 

progression of asthma, a chronic respiratory disease whose incidence is increased in T2D (published). In 

this manuscript, we report on how obesity alters the pathophysiology of asthma by polarising the immune 

response towards TH1 rather than the classical TH2. We further describe the implications of such changes 

on the efficacy of therapy, particularly those that modulates T-cell responses. 

Section 2.6: After establishing the involvement of T-cells in the pathogenesis and progression of T2D and 

its associated complications, we then assessed the effect of aspirin or its combination with metformin on 

T-cell function (published). We report on the anti-inflammatory effects of both drugs on T-cell mediated 

responses and further highlighted an overlap in their mechanism of action. 
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CHAPTER 2: Literature Review  

CHAPTER 2.1: Systematic Review and Meta-analysis Protocol 

T cell activation and cardiovascular risk in type 2 
diabetes mellitus: a protocol for a systematic 
review and meta‐analysis 

Tawanda M. Nyambuya1*, Phiwayinkosi V. Dludla2,3 and Bongani B. Nkambule1 

Abstract 
Introduction: The burden of non-communicable diseases such as type 2 diabetes mellitus (T2DM) and 
cardiovascular diseases (CVDs) has drastically increased in developing countries over the years. Although recent 
evidence points to chronic immune activation to be a significant aspect in the pathogenesis and development of 
T2DM and CVDs, the exact role of T cells is not fully understood. Therefore, we aim to investigate T cell function 
and cardiovascular risk in T2DM. In addition, the therapeutic effect of blood glucose-lowering drugs to reverse 
hyperglycaemia induced T cell dysfunction and myocardial infarction will be reviewed. 

Methods: This will be a systematic review and meta-analysis of published studies assessing T cell activation and 
cardiovascular risk in adults with T2DM. The search strategy will include medical subject headings (MeSH) words 
for PubMed/MEDLINE database. The search terms will also be adapted to grey literature, Embase and Cochrane 
Central Register of Controlled Trials electronic databases. Studies will be independently screened by two 
reviewers using predefined criteria. Relevant eligible full texts will be screened, and data will be extracted. Data 
extraction will be performed using a pre-piloted structured form. To assess the quality and strengths of evidence 
across selected studies, the Grading of Recommendations Assessment Development and Evaluation approach will 
be used. The Cochran’s Q statistic and the I2 statistics will be used to analyse statistical heterogeneity between 
studies. If included studies show substantial level of statistical heterogeneity, a random-effects meta-analysis will 
be performed using R statistical software. 

Discussions: This review will not require ethical approval, and the findings will be disseminated through peer 
reviewed publication and conferences. Although other previous studies have reported deregulated T cell function 
in hyperglycaemia, the underlying mechanisms remain controversial. However, evidence suggests that T cells may 
be a key component in the development of T2DM and CVDs as its complication. Furthermore, they are a potential 
diagnostic and therapeutic target in the management of the disease.                                                            
Systematic review registration: PROSPERO CRD42018099745 
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Background 
In an era of rapid urbanisation and modernisation, the 
burden of non-communicable diseases has drastically 
increased worldwide, especially in developing 
countries [1, 2]. Of particular interest is type 2 diabetes 
mellitus (T2DM), a low-grade chronic inflammatory 
condition that is characterised by hyperglycaemia 
(high blood glucose level), insulin resistance and 
chronic activation of T cells [3–5]. Individuals living 
with T2DM have elevated levels of pro-inflammatory 
cytokines that may lead to immune dysfunction and 
increased risk of cardiovascular diseases (CVDs) [6–
9]. Notably, the risk of morbidity and mortality due to 
CVDs is over fourfold higher in individuals with 
T2DM, compared to normoglycaemics [10]. 

The bidirectional relationship between T2DM and 
inflammation has been well described and involve the 
role of inflammation in causing both insulin resistance 
(IR) and hyperglycemia, which in turn further 
exacerbate inflammation [11–14]. For instance, 
chronic hyperglycaemia triggers activation of several 
metabolic and inflammatory pathways which include 
the aldose reduction pathway [15], advanced glycated 
end products (AGE) pathway [16], reactive oxygen 
intermediate pathway [17] and protein kinase C (PKC) 
pathway [11]. Furthermore, the AGE pathway 
modulates the nuclear factor-kappa B (NF-kB), 
phosphatidylinositol 3 kinase/protein kinase B 
(PI3K/Akt) and mitogen-activated protein kinase 
(MAPK) pathways resulting in further amplification of 
pro-inflammatory signals [11, 12]. This chronic 
exposure to proinflammatory mediators leads to the 
activation of cytokine signalling proteins which 
competes with insulin for binding sites and ultimately 
blocks the insulin signalling receptor resulting in the 
development of IR and hyperglycaemia [18]. 

Obesity-induced inflammation and insulin resistance 
play an important role in the pathogenesis of T2DM. 
The increased release of interleukin-6 (IL-6) and 
tumour necrosis factor alpha (TNFα) in individuals 
with T2DM enhances IR by inhibiting the activity of 
lipoprotein lipase which is responsible for the 
hydrolysis of triglycerides into free fatty acids [19, 20]. 
This reduces the uptake of glucose uptake by 
adipocytes. Furthermore, in obese T2DM individuals, 
the adipose tissue becomes hypertrophic and this 
triggers the production of proinflammatory cytokines 
and chemokines which attract immune cells [13]. This 
process causes the infiltration of innate immune cells 
such as pro-inflammatory macrophages (M1) into 
adipose tissue, moreover the switching of resident anti-
inflammatory macrophages (M2) to M1 subtype [13]. 
These changes then lead to the initiation of an adaptive 
immune response. Infiltration of CD4+ T cells into the 
adipose tissue and their subsequent activation by 

adipocytes expressing major histocompatibility 
complex (MHC) class II has been implicated in the 
early stages of IR in obesity [21]. In addition, during 
the development of obesity, there is infiltration of B 
cells and their subsequent production of pathogenic 
antibodies in adipose tissue which leads to the 
activation of M1 macrophages and T cells and 
ultimately the development of IR [22]. 

It is well documented that chronic hyperglycaemia 
dysregulates T cell function [23, 24]; however, the 
underlying mechanisms remain controversial. In fact, 
contradictory findings of both elevated [13, 25–27] 
and decreased [28] levels of T cell activation have 
been reported in hyperglycaemic individuals. 
Furthermore, previous studies highlight the role of 
hyperglycaemia in activating pro-inflammatory T 
helper (Th) subsets [14, 25, 29]. Decreased expression 
of interleukin 2 receptor (CD25) on activated T cells 
has been reported in individuals with T2DM [30]. This 
may be indicative of a loss of the natural regulatory 
mechanism mediated by T cells in T2DM which 
further exacerbates T cell activation and inflammation. 
In contrast, others suggest that hyperglycaemia 
inhibits T cell activation by disrupting calcium 
transduction signalling [28]. Therefore, evidence on T 
cell function in metabolic diseases remains 
inconclusive. 

The involvement and role of T cells in myocardial 
function and dysfunction has been well described. For 
instance, lymphocyte-deficient (RAG1 KO) mice 
revealed significantly smaller infarct sizes compared 
to the wild-type mice [31]. However, reconstitution of 
RAG1 KO mice by adoptive transfer of CD4+ T cells 
reversed this protection and showed an increase in the 
infarct sizes, therefore suggesting that CD4+ T cells 
promote myocardial ischaemia-reperfusion injury. A 
study on patients with acute coronary syndromes 
(ACS) reported a significant reduction in the number 
of regulatory T cells (Tregs) compared to the group of 
individuals with normal coronary arteries [32]. 
Furthermore, the study reported compromised 
function activity of Tregs in ACS compared to the 
control group. These findings implicate T cell 
activation and inability to suppress T cell function in 
the development of ACS. 

Current T2DM drugs have been proven to be highly 
effective in the management of hyperglycaemia albeit 
offering limited cardio-protection [33, 34]. One of 
these drugs is metformin, a first-line oral anti-diabetic 
drug which lowers blood glucose levels through direct 
suppression of hepatic glucose production and the 
activation of adenosine-monophosphate-activated 
protein kinase (AMPK). Interestingly, AMPK 
regulates cellular energy homeostasis and T cell 
differentiation [35, 36]. However, the exact impact of 
metformin on T cell function and cytokine release is 
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not fully understood. A study by Zarrouk et al. 
reported on a decreased expression of CD25 and 
activation inducer molecule (CD69) in antigen-
activated T cells exposed to metformin when 
compared to the control group [35]. Furthermore, the 
study reported failure of metformin-treated T cells to 
express transferrin receptors and inability to increase 
glucose uptake [35], thus suggesting alterations in T 
cell function during metformin treatment, subsequent 
to the aggravation of a pro-inflammatory response. 

This systematic review will for the first time assess 
available literature on the effect of hyperglycaemia on 
T cell function, including activation and exhaustion. 
Furthermore, it will assess the role of T cells in 
inducing myocardial dysfunction and the therapeutic 
intervention of glucose-lowering drugs to reverse these 
effects. 

Research question 

What is the role of T cell activation in the development 
of cardiovascular diseases in T2DM? Furthermore, 
what is the effect of anti-hyperglycaemic drugs on T 
cell function? 

Objectives 

1. To investigate T cell function in T2DM 
2. To evaluate Th1 and Th2 T cell function in treated 

individuals with T2DM and their association 
with increased risk of CVDs. 

3. To assess whether metformin is effective in 
reversing hyperglycaemia-induced T cell 
activation and protect against myocardial injury. 

Methods 

Protocol and registration 

The systematic review protocol has been prepared 
according to the Preferred Reporting Items for 
Systematic Review and Meta-Analysis Protocols 
(PRISMA-P) 2015 guidelines [37]. 

The protocol has been submitted on PROSPERO for 
registration. A detailed checklist for this review 
protocol is provided as PRISMA-P checklist (see 
Additional file 1 attachment). 

Eligibility criteria 

This study will include both observational and 
interventional studies inclusive of cross-sectional and 
case-control studies with a clearly defined control 
population. In addition, randomised controlled trials 
(RCTs) and retrospective and prospective cohort 

studies with defined time points highlighting data 
points before and after intervention will be included. 
Animal studies, case studies and case reports will be 
excluded from the review. Furthermore, we will also 
include studies that report the exclusion of participants 
using steatogenic medications or drugs that interfere 
with the immune system. Studies that include pregnant 
women and patients with a known history of T cell 
malignancy will be excluded. 

Participants 

Studies on T cell function in adults (> 18 years) with 
both T2DM and CVDs will be included. 

Interventions 

We will consider studies that have clearly defined the 
anti-hyperglycaemic drugs used. 

Comparators 

The primary comparisons will include: 
1. Individuals with T2DM vs the normoglycaemic 

group (control) 
2. Individuals with T2DM on treatment vs control 

group 
3. Individuals with T2DM on treatment vs 

individuals with T2DM not on treatment group 

Outcomes 

Primary outcomes will include: 
1. T-cell activation reported as mean percentage 

expression or mean florescence intensity of 
HLADR, CD38, CD69 and CD95 or Th1/2 

cytokine secretion. 
2. T cell exhaustion reported as mean percentage 

expression or mean florescence intensity of PD-
1. 

3. Cardiovascular events associated with T2DM. 
a. Coronary artery events: fatal myocardial 

infarction, non-fatal myocardial infarction, 
unstable angina and stable angina. 

b. Cerebrovascular events: fatal stroke, non-
fatal stroke (ischaemic or haemorrhagic), 
transient ischaemic attack and vascular 
events. 

Secondary outcomes will include: 
1. For T2DM: insulin resistance, impaired glucose 

tolerance and increased glycated haemoglobin 
(HbA1c). 
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2. For cardiovascular risk (total cholesterol, high-
density lipoprotein cholesterol level, systolic 
blood pressure, dyslipidaemia and smoking). 

3. For T cell activation: increased biomarker levels 
of inflammation (CRP), leucocytosis and high 
erythrocyte sedimentation rate (ESR). 

Search strategy 

The systematic search will be conducted without any 
language restrictions. However, for none-English 
articles, only those google translatable will be 
searched. The search strategy will consist of the 
following major keywords and their respective 
synonyms: type 2 diabetes mellitus, hyperglycaemia, 
inflammation, CVDs, T cell activation and exhaustion. 
For each keyword, multiple synonyms will be 
searched in the title or abstract. In addition, the 
reference lists of selected studies will be scanned to 
identify relevant literature. A search strategy will be 
developed using medical subject headings (MeSH) 
words and their respective synonyms on MEDLINE 
(see Additional file 2). The search strategy will also be 
adapted to grey literature, Embase and Cochrane 
Central Register of Controlled Trials electronic 
databases and will be peer-reviewed by a librarian 
specialist. 

Study selection 

A standard data extraction sheet will be used to extract 
data from the screened and selected studies. The 
appraisal worksheet will enable the extraction of the 
following information: aims and objectives of the 
study, study population, country where the study was 
conducted, funding source, participant demographics, 
year published, study type, treatment drugs used, 
methods and techniques used to assess T cell 
activation and statistical methods used and limitations 
of the study. The study selection process will be 
carried out independently by two reviewers (TMN and 
BBN) to eliminate any discrepancies and 
inconsistencies regarding reviewers’ inclusion and 
exclusion of studies. In case of disagreements, PVD 
will be consulted for arbitration. The appraisal of 
studies will be documented using Microsoft Excel, and 
the V.1.18 Mendeley reference manager (Elsevier, 
Amsterdam, Netherlands) will be used to identify 
duplicates. 

Data collection process 

To ensure effective data collection from the selected 
studies, a pre-piloted structured form will be used to 
collect data items (listed below). The titles, abstracts 
and full texts yielded by the search against the 

inclusion criteria will be used to collect relevant data. 
To minimise data entry errors, selected studies will be 
carefully and independently assessed by two different 
authors (TMN and PVD) to extract relevant data. The 
other author (BBN) will be consulted for arbitration in 
case of any disagreements. 

Data items 

The data items that will be extracted include the name 
of the authors, year of publication, cohort sample size 
and duration of follow-up. In addition, participant 
characteristics such as average age, gender ratio, 
glucose metabolic profile (blood glucose levels, 
glycated haemoglobin and fasting insulin) levels of 
inflammatory biomarkers (C-reactive protein and 
cytokines), levels of T cell activation and exhaustion 
markers and their treatment status will also be 
extracted. In addition, details related to the assays used 
to measure the levels of T cell function (activation 
and/or exhaustion) as well as the techniques used will 
be extracted. Since CVD is a broad category, we will 
extract the type of cardiovascular event reported from 
each respective study. Furthermore, the CVDs will be 
categorised into micro- and macrovascular diseases. 
The surrogate outcomes for T2DM will include insulin 
resistance and impaired glucose tolerance that may be 
reported based on varying outcome measures. In cases 
where there are no reported data amputation 
techniques on priority outcomes and when the effect 
size cannot be calculated, the authors will be contacted 
for additional information. 

Data simplification 

As a data simplification measure, studies that mention 
that participants were on diabetic treatment will be 
grouped as the treatment group irrespective of the 
drugs used and those with diabetes and not on 
treatment as the non-treatment group. Furthermore, the 
levels of T cell activation and exhaustion will be 
reported as a continuous variable and will be compared 
by calculating the standardised mean difference 
(SMD). 

Risk of bias in individual studies 

The Cochrane risk of bias tool will be used to assess 
risk of bias in included randomised controlled trials 
[38]. The Joanna Briggs Institute (JBI) Critical 
Appraisal tools with specific checklists for non-
randomised experimental studies will be used for other 
types of studies [39]. A judgement on the possible risk 
of bias of extracted information will be made based on 
each of the six domains. The judgement will be made 
independently by two reviewers (PVD and BBN) 
based on the criteria defined for judging the risk of 
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bias. In instances where these two reviewers disagree, 
TMN will be consulted for arbitration. Furthermore, 
funnel plot analysis will be used to assess publication 
bias and the Harbord and Peters test will be used to test 
the funnel plot asymmetry. 

Data synthesis 

The Cochran’s Q statistic [40] and the I2 statistics will 
be used to analyse statistical heterogeneity between 
studies [38]. An I2 value of > 25 will be considered as 
moderate or substantial heterogeneity [41]. If an 
efficient number of studies included are homogeneous 
in terms of extracted information, we will conduct a 
meta-analysis using R statistical Software (The R 
foundation for statistical computing, Vienna, Austria). 
The random-effects model will be used should there be 
significant levels of unexplained statistical 
heterogeneity [42]. In order to explore the sources of 
heterogeneity within the included studies, a subgroup 
analysis and meta-regression compare the study 
estimates from different study-level characteristics, 
which will include, age, gender, treatment drugs, 
reported measure of T cell activation (CD38, CD69, 
HLA-DR,CD95) and exhaustion (PD-1). Furthermore, 
data from clinical trials and observational studies will 
be analysed and used separately. 

Cumulative evidence 

To assess the quality and strengths of evidence across 
selected studies, two independent reviewers (PVD and 
BBN) will review the studies using the Grading of 
Recommendations Assessment Development and 
Evaluation (GRADE) approach [43]. The approach 
will be implemented by the downgrading of studies 
based on several factors such as study limitations, 
indirectness of results and publication or reporting 
bias. The scores will only be upgraded in exceptional 
cases where individual judgments (inconsistency, 
indirectness, imprecision and publication bias) are of 
low risk. Ratings for each outcome will be categorised 
as high, moderate or low. This will then be followed 
by the rating of the overall quality. The findings will 
be summarised and presented in the summary of 
findings table. 

Discussion 
Although other previous studies have reported 
immune dysfunction in a diabetic state, the 
involvement of adaptive immune response, 
particularly T cells, still remains limited and 
controversial. However, evidence suggests that T cells 
may be a key component in the development of T2DM 
and CVDs as its complication. Furthermore, they are a 
potential diagnostic and therapeutic target in the 

management of the disease. Therefore, the findings of 
this review will indicate novel avenues to explore at a 
molecular level in finding solutions in the 
management and treatment of diabetics. This in turn 
will help reduce the burden of diabetes and its 
complications on national health budgets. 
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Excessive lipid accumulation in an obese state is linked with activation and release of 
detrimental cytokines and chemokines that promote metabolic dysregulation. In fact, 
emerging experimental evidence shows that abnormal modulation of T-cells in an obese 
state correlates with the development and progression of insulin resistance. Importantly, 
the evolving concept linking insulin resistance with impaired immunological 
mechanisms such as T-cell responses provides new prospects for understanding the role 
of inflammation in moderating metabolic complications. 

     © 2019 The Authors. Published by Elsevier Inc. This is an open access article under 

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
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1. Introduction 
Obesity is an independent risk factor of metabolic 
complications such as insulin resistance (IR) and 
inflammation during the pathogenesis of type 2 diabetes 
mellitus (T2D) [1]. Increased adipose tissue (AT) mass is 
a hallmark of chronic low-grade inflammation that is 
characterised by progressive infiltration of T-cells [2,3]. 
T-cells play an important role in orchestrating the 
adaptive immune response and are the second largest cell 
population in AT followed by macrophages [4]. Briefly, 
findings have shown that CD4+  and CD8+ T-cells can 
infiltrate both visceral and subcutaneous AT, with pro-
inflammatory T helper (Th)-1, Th17, and CD8+ T-cells, 
concomitant to the development of IR in healthy 
overweight or obese human subjects [5]. Hence, T-cells 
are considered to play an important role in obesity-
induced inflammation and IR. 
      Although previous studies have described T-cell 
involvement in AT inflammation [6,7], the exact 
mechanisms and sequence of events in obesity-induced 
inflammation and the development of IR is unknown. 
Moreover, conflicting reports on T-cell activation and 
function in obese AT have been reported. For instance, 
contrary to their well-known co-stimulatory effects, B7, 
CD28 and CD40L molecules have in fact been shown to 
maintain immune homeostasis by regulating the 
development of IR and ameliorating AT inflammation in 
diet-induced obese (DIO) mice [8‐10]. On the other hand, 
recent findings show that OX40, a secondary 
costimulatory molecule could exacerbate AT 
inflammation and IR by promoting T-cell activation in a 
DIO mouse model [11]. This is in agreement with other 
studies showing an increased AT infiltration of both pro-
inflammatory and anti-inflammatory T-cell subsets in an 
obese state [12,13]. Surprisingly, contradictory data 
presented by others have described decreased anti-
inflammatory T-cells, particularly the regulatory T-cells 
(Treg) subset in various experimental models of obesity, 
including human studies [3,14,15]. Therefore, it remains 
essential to establish the precise involvement of T-cells in 
AT inflammation and IR in obesity and T2D. To explore 
such consequence, the current study synthesised and 
critically assessed available literature reporting on the 
role of T-cells in modulating AT inflammation and IR in 
obesity and T2D. 

 

 
 

2. Methods 
This mini-review was prepared in accordance with the 

Preferred Reporting Items for Systematic Review and 
Meta-Analysis Protocols (PRISMA-P) 2015 guidelines 
[16]. Moreover, it forms part of a big project assessing 
published studies on T-cell function in T2D which was 
registered with the international prospective register of a 
systematic review (PROSPERO), registration number: 
CRD42018099745 and has been published [17]. 

2.1. Search strategy 

A comprehensive search was conducted on the 
Cochrane Library, Embase and PubMed electronic 
databases from inception up to 28 March 2019 by two 
investigators (TMN and PVD). Unpublished and ongoing 
studies as well as review articles were screened for 
primary findings. In cases of disagreements, the third 
reviewer (BBN) was consulted for arbitration. The search 
strategy was adapted to each database using keywords 
and medical subjects heading (MeSH) terms such as “T-
cells”, “adipose tissue”, “obesity”, “insulin resistance”, 
“type 2 diabetes mellitus” and their respective synonyms 
and associated words or phrases. No language restrictions 
were applied to the search strategy. 

2.2. Study selection 

This review included both animal and human studies 
reporting on the role or effect of T-cells in obesity-
induced AT inflammation and IR. However, reviews, 
editorials, books, and letters were excluded. Two 
investigators (TMN and PVD) independently reviewed 
all relevant articles and identified eligible studies. Any 
disagreements were resolved by consulting BBN. 

2.3. Data extraction 

The main outcome of this study was to determine the 
role of T-cells in obesity-induced inflammation and IR. 
Briefly, the extracted data items included; names of the 
authors, year of publication, experimental model used, 
interventions used and main findings of each study. The 
Mendeley reference manager version 1.19.4-dev2 
software (Elsevier, Amsterdam, Netherlands) was used to 
manage extracted information including identifying and 
removing study duplicates. 
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2.4. Quality assessment 

Two investigators (TMN and VM) with the assistance of 
a third reviewer (PVD), assessed the quality of individual 
studies included in this review by following Animal 
Research: Reporting In Vivo Experiments (ARRIVE) 
guidelines [18]. The modified Downs and Black checklist 
[19] was used to assess quality of included human studies. 

3. Results 
3.1. Characteristic features of included studies 

An overall number of 125 studies were identified and 
screened for eligibility and a total of 29 articles met the 
inclusion criteria. All included studies were published 
between 2008 and 2017. A total of 31 articles were 
excluded because they were review articles and 59 were 
irrelevant. Few studies (n ¼ 6) were excluded due to study 
design, that is, the T-cells assessed in these studies were 
not AT resident but from peripheral circulation [20,21] 
(Fig. 1). Of the included studies, 24 were animal studies, 
11 were human studies and 6 reported on both animals 
and humans (Tables 1 and 2). All human studies were 
observational studies. 

3.2. Quality assessment and risk of bias 

All included articles were published in peer-reviewed 
journals. For the animal studies, the ARRIVE guidelines 
were used to assess the quality of the included studies 
since it provides a precise method for scoring in vivo 
models. The median score and range of the 24 included 
studies was 16 (13-18) out of a possible score of 20, thus 
all studies met the minimum requirements for publication. 
Overall, all studies scored high in the introduction domain 
with a median of 4 (3-4) out of a possible score of 4 
(overall agreement 92.97%, kappa = 0.96). Furthermore, 
the studies also scored high in the method and discussion 
domains with a median of 7 (5-9) out of the possible score 
of 9 (overall agreement 76.39%, kappa = 0.58) and 3 
(2e3) out of a possible score of 3 (overall agreement 
94.44%, kappa = 0.89), respectively. However, the 
studies scored low in the results section due to the study 
design, for example no baselines results and adverse 
events reported, resulting in a median of 2 (0-2) out of the 
possible score of 4 (overall agreement 69.79%, kappa = 
0.40) (Table 1S).  

 

 

 

For human studies, the Blacks and downs 
checklist     was used to appraise the included studies and 
they all scored poorly (<13 points). The median score 
range of the 11 included studies was 10 (8-13). Overall, 
the included studies had a lower risk of reporting bias 
with a median of 5 (4-7) out of the possible score of 10 
(overall agreement 90.91%, kappa = 0.82). In addition, 
the studies also had a relatively low risk of internal 
validity bias with a median of 3 (3-4) out of the possible 
score of 7 (overall agreement 88.31%, kappa = 0.95). 
However, all studies performed poorly on the external 
validity and selection bias domains (except one study) 
with a median of 0 (0-2) out of the possible score of 3 
(overall agreement 87.88%, kappa = 0.76) and 1 (1-3) out 
of the possible score of 6 (overall agreement 81.82%, 
kappa = 0.64), respectively (Table 2S). 

3.3. Overview of included animal studies on the role of 
T-cells 

The search retrieved 24 studies that reported on the 
role of T-cells in AT inflammation and IR in various 
experimental models of obesity, published between 2008 
and 2017. The sections below briefly discuss the different 
types of T-cells and their role in modulating obesity 
associated complications. 

3.3.1. Infiltration of Th1, CD4+ and CD8+ T-cells in AT 
of obese animals promotes inflammation and IR 
The overall evidence presented in this review clearly 
shows that DIO mice are among the well-recognized 
animal models used to investigate the role of T-cells in 
obesity (Table 1). Generally, these animals are fed a high 
caloric diet, usually rich in fat, which results in the 
development of obesity, mimicking that which is 
observed in humans. After just five weeks of high fat 
diet-feeding, Kintscher and colleagues were the first to 
show that infiltration of proinflammatory T-cells in the 
AT may occur before macrophages as a primary event in 
AT inflammation, concomitant to the development of 
obesity-induced IR [22]. These findings were further 
supported by subsequent studies that reported on an 
increased infiltration of interferon gamma (IFN-g) 
producing Th1, CD8+ T-cells in AT of DIO mice when 
compared to controls [6,12,23-25]. Thus, suggesting that 
T-cells in the AT are likely to play a major role in 
mediating inflammation and IR in DIO mice, including 
humans. In RAG-null (which are mice lacking CD3 or T-
cell receptor) and CD8-null mouse models, it was further 
demonstrated that high fat diet feeding exacerbated AT 
inflammation [12,23]. However, the transfer of CD4+ 
and CD8+ T-cells in these respective models alleviated 
IR and aggravated AT inflammation, respectively. 
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In addition to increased CD4+ and CD8+ AT infiltration 
in DIO mice, the T-cells were reported to release 
increased proinflammatory IFN-g cytokine which 
significantly contributed to AT inflammation [7,26-28]. 
Remarkably, the removal of T-cells from DIO mice 
improved IR in early stages of obesity [7]. Like IFN-g, 
the signal transducer and activator of transcription 3 
(Stat3) is known to be central in modulating cytokine-
dependent inflammation and immunity within an obese 
state [29]. Indeed results summarised in this review 
showed that Stat3 transcriptional factor levels were 
elevated in both AT and AT-resident T-cells, this 
consequence promoted the release of IFN-g in DIO mice 
[26].  

 

This study further demonstrated that Stat3-null mice 
showed improved IR and reduced AT inflammation. 
However, it is clear that other important components such 
as T-cell receptors remain important in regulating an 
inflammatory response within diverse specific disease 
conditions. For example, a sub-analysis of mice lacking 
T-cell a-chain (CD11a-null) showed markedly reduced 
accumulation and activation of T-cells in AT [28]. On the 
other hand, increased infiltration of interleukin (IL)-17 
producing T-cells in AT was reported in DIO mice [30]. 
However, contrary to its well-established pro-
inflammatory effects, IL-17 in fact regulated IR and 
reduced obesity, as well as AT inflammation in these 
mice. Nonetheless, a sub-analysis of IL-17-null DIO 
revealed increased obesity and IR [30], suggesting the 
diverse regulatory effects of Il-17 cytokine on AT 
inflammation in an obese state. 

 

Fig. 1. Flow chart of study selection procedures. 
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3.3.2. The levels of Th2 and Tregs are reduced in AT of 
obese animals 
It is well-established that T-cell anti-inflammatory 
subsets (Th2 and Tregs) decrease whilst the pro-
inflammatory subsets increase as obesity progresses. 
Moreover, an imbalance between the modulation of 
Th1/Th17 and Th2/and Tregs has been associated with an 
exacerbated inflammatory response and the development 
of IR (Fig. 2). Evidence presented in this review shows 
that in addition to increased expression of major 
histocompatibility complex (MHC) class II, frequency of 
pro-inflammatory Th subsets and cytokines in AT were 
inversely proportional to the levels of Th2 subset and IL-
13 cytokine in DIO mice [12,25]. Interestingly, MHC-
null mice developed less AT inflammation and IR when 
compared to wild types, despite developing similar 
obesity associated abnormalities [25]. 

Winer and associates were the first to report on decreased 
Tregs in AT of DIO mice, which was linked with the 
progression of obesity linked complications [12]. These 
findings have also been supported by subsequent mice 
studies presented by others [3,14,15,25,31,32]. Briefly, it 
has been shown that stimulation of Tregs with IL-2 
improves AT inflammation and IR mediated by increased 
IL-10 [14]. Furthermore, administration of visceral AT 
antigens could effectively increase the number of Tregs 
resulting in the inhibition of weight gain and IR in mice 
on high fat diet [15]. Moreover, this study showed that the 
number of Tregs inversely correlated with macrophages 
in the AT. Alternatively, the expression of 
proinflammatory IL-21 and its receptor's (IL-21R) 
mRNA were upregulated in the AT of DIO mice [31]. 
Interestingly in DIO IL-22-null mice, amelioration of AT 
inflammation and reversal of IR was linked to elevated 
number of Tregs. The overall findings are consistent that 
an obese state, illustrating that high fat feeding is 
responsible for reduced AT-resident ST2+ (IL-33R) 
Tregs promote AT inflammation and IR, as demonstrated 
in DIO or ST2-null mice [32,33]. Thus, suggesting that 
some interventions, as seen with administration of IL-33 
in DIO mice [32,33], can be further developed to induce 
the release of Th2 cytokines leading directly or indirectly 
to increased number of ST2+ Tregs. 

 

 

Fig. 2. Effective modulation of Th1/Th17 and Th2/and Tregs 
remains important in the regulation and amelioration of insulin 
resistance. 

3.3.3. Double-edged sword effect of T-cell co-
stimulatory molecules in obese animals 

For the successful activation of T-cells, both T-cell 
receptor and co-stimulatory molecule signals are 
required. Thus in the absence of a co-stimulatory signals, 
a hypo-responsive state of T-cells termed anergy is 
induced despite active TCR signalling and IL-2 
expression [34,35]. Therefore, co-stimulatory signals are 
essential for T-cell activation and function. Inhibition of 
CD40 signalling pathway by administration of anti-
CD40L in DIO mice reduced accumulation of pro-
inflammatory macrophages (M1) and AT inflammation 
and but did not improve IR [36]. However contrary to 
this, CD40-null mice showed exacerbated IR and AT 
inflammation mediated by increased accumulation of 
CD8+ T-cells and M1 macrophages [9,10,37]. 
Conversely, the activation of CD40 signalling improved 
IR and suppressed AT inflammation and the repopulation 
of RAG-null mice with CD40-null T-cells triggered AT 
inflammation and IR [37]. In agreement with findings by 
Montes and colleagues, DIO CD28-null mice showed a 
decrease of both proinflammatory T-cells and Tregs in 
AT without changing macrophages number [38]. 
However contrary to this, B7-null mice exhibited 
enhanced AT inflammation and IR in both DIO and lean 
mice [8]. In addition, it was shown that adoptive transfer 
of Tregs into B7-null mice could reverse AT 
inflammation and IR. Moreover, the same study reported 
on the decreased expression of B7 expression in an obese 
state [8]. The inhibition of another costimulatory 
molecule, CTLA-4, in DIO mice could reduce the number 
of T-cells in AT but not the levels of pro-inflammatory 
cytokines [36,38]. 
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Table 1 (continued ) 
 

 Author and year Experimental model
 Intervention used Role of T-cells/Findings 

Fabrizi et al., 
2014 [31] 

IL-21-null DIO C57BL/6 mice None IL-21 and IL-21R mRNA expression was upregulated in DIO and wild type mice 
in parallel to macrophage and inflammatory markers. Furthermore, DIO IL-21-null 
mice, showed reduced AT inflammation and improved IR due to increased 
infiltration of Tregs in AT. 

Chatzigeorgiou et 
al., 2014 
[10] 

Male DIO CD40-null C57BL/6 mice None DIO CD40-null mice displayed worsened AT inflammation and IR when compared 
to wild-type mice. The worsened IR was associated with excessive AT 
inflammation mediated by increased accumulation of CD8+ T-cells and M1 
macrophages. However, 

CD40L mice ameliorated IR and AT inflammation. 
Poggi et al., 2015 

[38] 
Male DIO CD28-null C57Bl/6 mice Anti-CTLA4 CD28 deficiency decreased pathogenic T-cells and Treg content within AT without 

changing macrophages number. 
CTLA4-Ig injections reduced the number T-cells in AT but not inflammatory 
cytokines levels

Han et al., 2015 
[32] 

DIO C57BL/6 FOXP3 mice IL-33 injections DIO mice exhibited reduced AT-resident ST2+ Tregs thereby promoting 

inflammation and IR. However, this effect was completely reversed by treatment 

with IL-33. 

Furthermore, IL-33 administration also increased the proportion of ST2 expressing 
Tregs in the AT by 3-fold in DIO mice. 

Liu et al., 2017 
[11] 

Male DIO C57BL/6, OX40-KO and B6.Rag2/ None 
Il2rg double knock mice 

Increased expression of OX40 (CD134) on CD4+ T cells, infiltration and 
expression of pro-inflammatory cells and genes respectively, was observed in the 
AT of DIO mice. Furthermore, DIO OX40-null mice exhibited significantly 
reduced weight gain and lower fasting glucose levels than the OX40 knocked in 
mice. 

Chen et al., 2017 
[15] 

Male C57BL/6 J VAT antigens Oral treatment of visceral AT mixture antigens effectively inhibited weight gain, 
and improved IR in HFD mice by increasing the numbers of CD4+Foxp3+ Tregs 
that were depleted in obesity 
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Table 2  
An overview of incl uded human studies (n = 11). 

 

Author and year Experimental model Intervention Role of T-cells                    

Kintscher et al., 
2008 [22] 

Individuals with T2D None Adipose tissue (AT) T-cell infiltration correlated with increased waist circumference in patients with 
type 2 diabetes mellitus (T2D). 

Zeyda et al., 2011 
[39] 

Overweight and obese 
humans 

None Th1 and CD8+ T-cells were significantly upregulated in obese AT and correlated with AT 
inflammation. Surprisingly, Th2 and Tregs were also increased in visceral AT of individuals with 
obesity compared to lean counterparts

Deiuliis et al., 
2011 [3] 

Obese humans None Humans with obesity showed increased CD4+and CD8+ T-cells with a decreased Tregs in visceral 
AT. 

Yang et al., 2010 
[7] 

Obese humans None There was increased infiltration of CD4+ and CD8+ T-cells in visceral AT of obese individuals 
compared to lean

Fabbrini et al., 
2013 [68] 

Obese humans with 
metabolically abnormal 
IR 

None The number of AT resident CD4+T-cells that produce interleukin (IL)-22 and IL-17 were 3e10 fold 
higher in obesity compared to lean subjects. 

Deng et al., 2013 
[25] 

Obese women None Obesity enhanced major histocompatibility complex class II (MHC II) expression in adipocytes. 
Briefly, adipocytes activated AT resident CD4+ T-cells via MHC class II and leptin to induce AT 
inflammation 

Zhong et al., 
2014 [8] 

Obese humans None Reduced B7 expression in obesity impaired regulatory T-cells (Treg) proliferation and function and 
led to exacerbated AT inflammation and IR 

McLaughlin et 
al., 2014 [5] 

Overweight and obese 
humans 

None CD4+ and CD8+ T-cells infiltrated AT with pro-inflammatory T-helper (Th)1, Th17 and CD8+ T-cells 
being significantly more frequent. Levels of Th2 in AT were inversely associated with systemic IR. 

Fabrizi et al., 
2014 [31] 

Obese humans None IL-21 and IL-21R messenger RNA expression was upregulated in stromal vascular fraction from 
human obese subjects in parallel to macrophage and inflammatory markers. 

Dalmas et al., 
2014 [40] 

Obese individuals with 
and without T2D 

None There was increased infiltration of IL-17 and IL-22-producing CD4+ T-cells in individuals with T2D. 
Moreover, CD4+ T-cell derived IL-22 amplified IL-1b driven inflammation in visceral AT and this 
was correlated with deterioration of glucose homeostasis.

Travers et al., 
2015 [13] 

Overweight and obese 
humans 

None Expression of CD4+ T-cells, macrophages and FOXP3 RNA transcripts were elevated in obesity. 
Furthermore, AT CD4+ and CD8+ T-cells expressed increased expression of CD69 and CD25 which 
was associated with increasing degree of obesity. In addition, increased T-cell activation correlated 
with increased expression and secretion of both pro and anti-inflammatory cytokines in AT. 

NB: All studies were observational studies. 
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On the other hand, the expression of another T-cell 
costimulatory marker, OX40, was reported to be 
increased on CD4+ T-cells in the AT of DIO mice [11]. 
Conversely, a sub-analysis of OX40-null mice showed 
significantly less weight gain and improved IR 
compared to the OX40 knocked in mice. 

3.4. The impaired modulation of T-cells in obese 
human subjects promotes inflammation and IR 

The search retrieved eleven human studies that 
reported on the role of T-cells in AT inflammation and 
IR, published between 2008 and 2015. The specific 
focus here was to establish whether the modulatory 
effect of T-cells on obesity associated complications 
compares to that observed in animal models. 

Like the evidence observed in DIO mice (Table 1), 
increased infiltration of T-cells in obese AT of human 
subjects was consistent with exacerbated inflammation 
and it correlated with increased waist circumference 
[22]. An overwhelming number of studies presented in 
Table 2 reported on increased infiltration of Th1, 
CD4+ and CD8+ T-cells in AT of individuals with 
obesity when compared to lean counterparts 
[3,5,7,13,39]. Here, AT infiltrating T-cells were 
triggered in individuals with obesity, and this was 
demonstrated by elevation of activation markers such 
as CD69 and CD25, which are known to indicate 
immune activation and indirectly the degree of obesity 
in this case [13]. This was consistent with enhancement 
of pro-inflammatory cytokines like IL-17, IL-21 and 
IL-22 [31,40]. Elevated CD4+ T-cells in AT of 
individuals with obesity was also attributed to 
enhanced the expression of MHC class II [25], which 
strongly highlighted the consistent modulatory effects 
of T-cells in obesity induced inflammation. 

Furthermore, obese individuals have been shown to 
present with reduced expression of B7 co-stimulatory 
molecule, which directly impairs both the proliferation 
and function of Tregs in AT [8]. In accordance with 
this, individuals with obesity display reduced levels of 
Tregs in AT, inversely correlating with IR [3,5]. 
However, contrary to this, increased AT infiltration by 
Th2 and Tregs was in fact reported in individuals with 
obesity [13,39]. 

4. Discussion 
Obesity and its associated complications is 
persistently linked with impaired immune response 
and an aggravated inflammatory response [41]. 

However, the pathological mechanisms involved in these 
processes are not clearly understood. Therefore, this 
review aimed to synthesise and critically assess available 
literature on the role of T-cell function in AT 
inflammation in obesity or T2D. Most of the included 
studies showed a strong correlation between increased 
infiltration of Th1, CD4+ and CD8+ T-cells with an 
exacerbated pro-inflammatory state, leading to the 
development of IR. Experimental models of obesity and 
T2D persistently showed an enhanced infiltration of IFN-
g secreting Th1 cells concomitant to reduced levels of 
Tregs [3,6,12,40]. Evidence presented in this study clearly 
demonstrated that nutrition plays a major role in the 
development of metabolic complications, since it was 
apparent that high fat feeding promoted spontaneous 
development of obesity that was accompanied by impaired 
T-cell function in both animals and human subjects 
[5,12,13,23]. Although a detailed molecular signature that 
better describes the complex relationship between diet and 
metabolic dysregulation is not completely understood, AT 
function within an obese state remains a major focus of 
ongoing studies [42,43]. 

Nevertheless, as an endocrine organ, the AT can greatly 
modulate an inflammatory response by promoting 
secretion of cytokines and chemokines such as IL-6, IL-8, 
and MCP-1 that are implicated in promoting ectopic lipid 
accumulation [41]. In fact, accumulative data summarised 
in this review showed a strong association between an 
abnormal inflammatory response and impaired glucose 
homeostasis that is characterised by an IR state [5,8,9,22]. 
Anyhow, a vicious circle has been acknowledged between 
IR and ectopic lipid accumulation, together increasing the 
risk for the development of metabolic inflammation 
[1,44,45]. The current study shows that adaptive 
immunity, especially regulation of T-cells is central in the 
development of metabolic inflammation and IR [46]. For 
instance, one study showed that the regulation of AT T-
cell subsets by Stat3 is crucial in the pathogenesis of IR 
[26]. The activity of Stat3 appears to be elevated in both 
obese visceral AT and its resident T-cells. Evidence 
presented in Table 1 indicates that activation of Stat3 
promotes the release of IFN-g and hinders that of Tregs in 
visceral AT of obese mice. Similarly, Stat3 null mice 
showed improved glucose tolerance and suppressed 
visceral AT inflammation. These findings suggest that 
besides vast involvement in other physiological processes 
[47], the STAT pathway plays a major role in modulating 
inflammatory response in obesity. 

Evidence synthesised in this review also highlights 
the impact co-stimulatory molecules could have in 
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modulating inflammatory responses within an obese 
state by inducing T-cell activation [10]. In fact, 
overwhelming evidence presented here suggests that 
their signalling pathways may in actual fact have a 
protective role in obesity and in the pathogenesis of 
T2D [9,37]. This evidence suggests the potential 
exploration of co-stimulatory molecules in 
understanding the role of T-cells in regulating pro-
inflammatory responses and most importantly to 
determine ways to alleviate obesity-induced metabolic 
complications. In the context of obesity, CD40L is of 
particular interest since it has been shown that its 
administration could alleviate AT inflammation and IR 
in an obese state [36]. However, further studies are 
needed to confirm this aspect. 

Furthermore, it is well-established that metabolites 
produced in the AT or other metabolic tissues may play 
an important role in immune response regulation 
[48e51. In fact, it is now well-established that AT is an 
active secretory organ that releases metabolites which 
have the ability to modulate body weight, insulin 
sensitivity and inflammation [48]. In the context of the 
latter, AT releases both pro- and anti-inflammatory 
adipokines which when imbalanced, contribute to the 
pathogenesis of obesity-linked complications [49]. 
One of the most studied AT derived adipokines is 
leptin, a pro-inflammatory metabolite that is 
significantly increased in obesity and has the ability to 
initiate and propagate a pro-inflammatory response 
[49-51]. Briefly, the binding of leptin to its specific 
receptor (Lep-R) expressed on T-cells is associated 
with activation of the Janus tyrosine kinase (JAK) 
pathway, which may results in the phosphorylation and 
activation of Stat3 [52,53]. Activation of Stat3 is 
positively correlated with elevated levels of 
detrimental cytokines such as IL-6 in obese individuals 
[53]. Interestingly, like leptin, IL-6 has the ability to 
activate the JAKStat3 signalling pathway [29]. 
Therefore, consistent with data summarised in this 
review [26], enhanced leptin secretion as a result of 
excess AT storage in an obese state may significantly 
contribute to the activation of the JAK-Stat3 signalling 
pathway in T-cells, thus contribute to aggravation of 
obesity-associated proinflammation. 

On the other hand, AT is also known to secrete 
adipokines that oppose the actions of leptin and inhibit the 
pro-inflammatory stimuli. One of these adipokines is 
adiponectin, an anti-inflammatory metabolite that has 
been shown to increase insulin sensitivity and block lipid 
oxidation by activating the energy sensing, AMP-

activated protein kinase (AMPK) [54,55]. Notably, 
adiponectin levels are significantly decreased in 
conditions of obesity, including individuals with T2D 
[56,57]. Concomitant to this, systematic and vector 
infusion of adiponectin in DIO mice has been shown to 
significantly inhibit the secretion and actions of IL-6 and 
TNF-a [58,59]. The latter has the ability to further activate 
and proliferate T-cells [60]. In addition, adiponectin 
inhibited cytotoxic activities of natural killer cells, the 
secretion of TNF-a and IFN-g as well as the signalling of 
pro-inflammatory nuclear factor kappa-light-chain-
enhancer of activated B-cells (NF-kB) through the 
activation of AMPK [61,62]. Moreover, adiponectin can 
also prevent atherogenesis by inhibiting the expression of 
the chemokine receptor 3 (CXCR3) on activated 
macrophages and thus reduce the infiltration of T-cells 
into the atheroma [63]. These findings are consistent with 
its effect in blocking the differentiation of Th1 and Th17 
cells in rodents [64]. Interestingly, the inhibitory effect of 
adiponectin on T-cell differentiation has been attributed to 
its ability to block the CD40-dependent co-stimulatory 
signalling [64]. Although studies included in the review 
did not particularly describe their role in T-cell regulation, 
in the context of obesity, AT derived metabolites such as 
leptin and adiponectin are skewed towards the pro-
inflammatory subset, which could induce and worsen the 
activation of pro-inflammatory T-cells. 

In summary, and to our knowledge, this is the first 
systematic review to comprehensively describe the role of 
T-cells in obesity, linking an exacerbated inflammatory 
state and IR. In addition, this review highlights the 
potential protective effects that could be established by 
effective regulation of T-cells, leading to the amelioration 
of obesity associated complications such as T2D. 
Therefore, this study paves the way for future studies to 
explore novel avenues in developing new drugs that 
alleviate AT inflammation and IR linked with an obese 
state. Also of note, are the limitations of the current 
review. Firstly, the included number of studies is low 
especially human studies. Furthermore, all human studies 
were observational studies whose evidence is of low 
quality. Lastly, due to unavailability of human 
participants’ characteristics, we were unable to correlate 
any biochemical and immune markers with degree of AT 

inflammation and IR. However, further studies are 
required to address this aspect. 
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5. Concluding remarks 
Lifestyle modification, including over nutrition 

coupled with physical inactivity significantly 
contribute to the development of metabolic 
complications, including obesity and T2D. Diverse 
molecular pathways and biological interactions have 
been explored to understand the impact of these 
complications to human health. In fact, much attention 
has been focused on the role of inflammation and 
immune response in the development of metabolic 
abnormalities. Data summarised in this review 
demonstrates that increased infiltration of Th1, CD4+ 
and CD8+ T-cells in an obese state coupled with 
decreased levels of Th2 and Tregs greatly impacts 
human health by exacerbating inflammation and IR. 
Furthermore, despite the double-edged sword effect of 
T-cell costimulatory molecules, therapeutic 
interventions targeting CD40L signalling may have the 
potential to alleviate inflammation and IR linked with 
obesity. Further studies assessing therapeutic 
interventions aimed at modulating these pathways in 
metabolic disease are needed. 
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Background: Chronic immune activation has been described in the development of cardiovascular
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functional role of T-cells remains controversial. We therefore, assessed T-cell activation and 
cardiovascular risk in T2D. 

Methods: The protocol was registered with PROSPERO [CRD42018099745]. We searched electronic
databases and grey literature for eligible studies. The risk of bias and quality of evidence were
assessed, and the random effects model was used in the meta-analysis. 
Findings: Fifteen studies met the inclusion criteria. We report on increased T-cell activation in T2D 
and nondiabetics with CVD. Comorbidity of T2D and CVD (T2D + CVD) exacerbated T-cell 
activation. In addition, T2D + CVD comorbidity was associated with an increased CVD risk profile.
Conclusion: This meta-analysis suggests increased T-cell activation in T2D and nondiabetics with 
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1. Background 
The burden of non-communicable diseases (NCDs) has 
drastically increased in both developing and developed 
countries [1]. This has led to a significant reduction in 
life expectancy and an increased strain on national 
healthcare budgets worldwide [2]. Globally, NCDs are 
the leading cause of death and account for up to 70% of 
all-cause mortality [1]. The global prevalence of type 2 
diabetes mellitus (T2D), which is one of the major 
contributing factors to NCDs has significantly increased 
in the past three decades [3]. This has been attributed to 
sedentary lifestyle, rapid urbanisation and modernisation 
[3,4]. T2D is a low-grade chronic inflammatory 
condition that is characterised by hyperglycaemia, 
insulin resistance and chronic T-cell activation [5,6]. 
These consequences are consistent with immune 
activation that may lead to immune dysfunction and 
increased risk of cardiovascular diseases (CVDs) [7,8]. 
The latter is known to be the leading cause of death in 
individuals with diabetes [9], hence the need to unravel 
pathophysiological mechanisms such as the role of T-
cell activation in a hyperglycaemic state to better 
understand and prevent NCDs. 
The role of activated T-cells in mediating inflammation 
and altering myocardial function has been previously 
described. Whereby, activated CD4+ T-cells were shown 
to promote myocardial ischaemia-reperfusion injury in 
mice [10]. Increased levels of pro-inflammatory T-
helper (Th) subsets have been implicated in the 
development of coronary atherosclerotic heart disease 
(CHD) [11,12], carotid atherosclerosis (CA) [13] and 
coronary artery disease (CAD) [14] in individuals with 
T2D. Moreover, a significant reduction in the number of 
regulatory T-cells (Tregs) and Treg/Th1 ratios have been 
described in individuals with T2D and CHD [11]. 
Currently, it is hypothesised that chronic 
hyperglycaemia dysregulates T-cell function. However, 
the underlying mechanisms remain controversial, with 
contradictory findings of both elevated [15] and 
decreased [16] levels of T-cell activation reported in 
individuals with obesity and T2D. Others have 
demonstrated reduced frequency of Tregs 
in T2D and thus loss of the natural regulatory 
mechanisms mediated by T-cells [11,17]. This suggests 
that contradictory findings regarding Tcell function in 
T2D exist, and it remains unclear whether they are 
dysfunctional or highly activated in a disease state. 
Although numerous studies reported on T-cell function 
in T2D [6,15,16], to date, available evidence has not 
been systematically reviewed to better inform on both T-
cell activation and cardiovascular risk in T2D. 
Therefore, this systematic review was conducted to 
assess available literature on the impact of T-cell 
activation in T2D and whether their activation state has 
any association with the risk of developing CVD. 
Furthermore, we assessed whether the degree of T-cell 
activation is unique to individuals with both T2D and 

CVDs or independently associated with those without 
T2D but presenting with CVDs. 

2. Methods 
This systematic review was prepared in accordance with 
the Preferred Reporting Items for Systematic reviews 
and Meta-Analysis (PRISMA) guidelines [18]. A 
detailed checklist for this systematic review and meta-
analysis is provided as PRISMA checklist 
(Supplementary file 1). The systematic review protocol 
was registered with the international prospective register 
of a systematic review (PROSPERO), registration 
number: CRD42018099745 and has been published 
[19]. 

2.1 Search strategy 

A comprehensive search was conducted on the 
Cochrane Library, Embase and PubMed electronic 
databases from inception up to 20 October 2019 as 
previously described [19]. Briefly, two independent 
reviewers (TMN and VM) searched for relevant articles 
and a third reviewer (BBN) was consulted in cases of 
disagreements. Two search strategies were 
independently applied to identify relevant studies. The 
primary search strategy was on T-cell activation in 
individuals with T2D and CVDs (concept 1). Whilst the 
secondary search strategy was used to retrieve studies 
reporting on T-cell activation in nondiabetics with 
CVDs (concept 2). The search strategies were adapted 
to each database using keywords and medical subjects 
heading (MeSH) terms such as “Type 2 diabetes 
mellitus”, “hyperglycaemia”, “inflammation”, “CVDs”, 
“T-cell activation and exhaustion” and their respective 
synonyms and associated words/phrases. No language 
restrictions were applied. The study selection process 
was independently carried out by two reviewers (TMN 
and BBN). In cases of disagreements, PVD was 
consulted for arbitration. We used the Mendeley 
reference manager version 1.1.18 (Elsevier, Amsterdam, 
Netherlands) to identify and remove study duplicates. 

2.2 Inclusion criteria 

The systematic review and meta-analysis included 
studies reporting on T-cell function in adults (> 18 
years) with CVDs and T2D. We excluded animal studies 
since we wanted to focus on human subjects. Other 
exclusions included books, letters, case reports, and 
reviews. Furthermore, we excluded studies that included 
participants using steatogenic medications or drugs that 
interfere with the immune system and patients with a 
known history of haematological malignancy. 

2.3 Data Extraction and Quality Assessment 

The data extraction, synthesis and quality assessment of 
included studies were carried out as previously 
described [19]. Briefly, the extracted data items  
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included; names of the authors, publication year, study 
design, study size, age, gender, types of CVD and main 
findings of each study. The risk of bias on the included 
studies was independently assessed by two reviewers 
(TMN and VM) and a third reviewer (PVD), was 
consulted in instances of disagreements using the 
modified Downs and Black checklist, which is suitable 
for both randomised and nonrandomised studies [20]. 
Furthermore, the quality of evidence across the selected 
studies was assessed by two independent reviewers 
(TMN and VM) using the Grading of Recommendations 
Assessment Development and Evaluation (GRADE) 
approach [21]. 

2.4 Statistical analysis 

The mean and standard deviation was extracted or 
calculated using Hozo et al.'s method for each 
continuous effect measure. Pearson's chisquared test 
(Chi2) and Higgin's I2 statistics were used for the test for 
statistical heterogeneity. A random-effects model was 
used to generate pooled effect estimates when 
substantial heterogeneity existed (I2 > 50%). Effect sizes 
were interpreted according to Cohen's d method 
whereby a standardised mean difference of 0.2, 0.5 and 
0.8 was equated to small, medium and large, respectively 
[22]. Moreover, a pvalue < .05 was considered 
statistically significant and interrater reliability was 
assessed for both the included studies and risk of bias 
using Cohen's kappa. A kappa value of < 0.00 was 
interpreted as a poor strength of agreement, 0.00–0.20 as 
slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 
as moderate agreement, 0.61–0.80 as substantial 
agreement and 0.81–1.00 as perfect agreement [23]. 

3. Results 

3.1 Selected studies 

A total of 151 studies were identified and screened for 
eligibility. A total of fifteen studies (n = 15) met the 
inclusion criteria (Fig. 1). Of these, 10 studies reported 
on T-cell activation in individuals with T2D whilst the 
remaining 5 reported on T-cell function in nondiabetics 
with CVD (overall agreement 91.53%, kappa = 0.75). 
The primary search strategy identified a total 76 studies, 
of which 66 studies were excluded due to no full-texts 
availability (n = 13) and presented no clear study design 
(n = 9). The majority of the studies (n = 44) were 
excluded because they were not relevant to the topic of 
interest. There were only 10 studies, published between 
2011 and 2019, that met the inclusion criteria and 9 of 
these were included in the quantitative analysis. On the 
other hand, the secondary CVD search strategy (concept 
2) retrieved 75 studies and a total of 62 studies were 
excluded because they were not relevant to the topic of 
interest, 4 were reviews and the other 4 were due to study 

 design which contained no suitable controls [24,25]. 
Therefore, a total of 5 studies published between 2011 
and 2014 fulfilled the inclusion criteria on T-cell 
activation in CVD and were included in this review. Of 
these studies, only 3 were included in the quantitative 
analysis. 

3.2 Study characteristics 

All included studies were published in peer-reviewed 
journals and characteristics of included participants are 
shown in Tables 1 and 2. Briefly, this study comprised 
of a total of 2744 participants with a mean age of 59.77 
± 13.60 years and a male/female gender ratio of 3.5. The 
included studies comprised of 6 prospective cohort 
studies [13,26–29] and 9 cross-sectional studies 
[11,12,14,30–35]. In total, 1062 individuals had T2D, 
321 were nondiabetics with CVD and 1361 were healthy 
controls. In addition, 118 (11%) with T2D were on 
treatment and 944 (89%) were not specified, while 543 
(51%) had T2D and 519 (49%) had both T2D and CVDs 
(T2D + CVD). The CVDs were all grouped into 
macrovascular complications and included a total of 840 
individuals of which 304 had acute coronary syndrome 
(ACS) [26,29,30,33,34], 48 had atherosclerotic 
macrovascular complication (AS) [30], 30 had CA [13], 
282 had CAD [14,31,34,35], 83 had CHD [12] and 93 
had unspecified CVDs [27,28,32]. 
 

3.3 Risk of bias assessment 

The risk of bias for each study was assessed using the 
modified Downs and Black checklist [20]. The median 
score range of included studies was 12 (8–18) 
(Supplementary file 2). Seven of the studies were scored 
as fair (13–17 points) [14,26–29,32] and the rest poor (< 
13 points) [11–13,30,31,33–35]. All the studies had low 
risk of reporting bias with a median of 6 (5–10) out of 
the possible score of 10 (overall agreement 83.89%, 
kappa = 0.68). The studies also had a relatively low risk 
of internal validity bias with a median of 3 (3–5) out of 
the possible score of 7 (overall agreement 75.08%, 
kappa = 0.50). All studies performed poor on the 
external validity (except 1 study) and selection bias 
domains with each a median of 0 (0–3) out of the 
possible score of 3 (overall agreement 77.04%, kappa = 
0.74) and 1 (0–3) out of the possible score of 6 (overall 
agreement 88.34%, kappa = 0.77), respectively. The 
funnel plots showed perfect symmetry on included 
studies (Fig. 1S). 
 



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 32 of 47 
 

3.4 Data synthesis of included studies 

All included studies showed increased T-cell 
function in T2D, whereby 8 studies reported 
increased T-cell activation in T2D when compared 
to normoglycaemic controls [11,13,14,26,27,30–
32]. Whilst 4 studies reported increased T-cell 
activation in nondiabetics with CVD when 
compared to controls [26,29,33,35]. Moreover, 5 
studies reported increased pro-inflammatory T-
helper subsets in individuals with T2D + CVD 
compared to controls [11,13,28,31,32], while 1 
study reported on a reduced number of  

immunosuppressive Tregs [11]. Interestingly, 2 studies 
reported on a reduced number of anti-inflammatory T-
helper subset and their cytokines [13,31] in both T2D 
and T2D + CVD groups compared to the controls. 

3.4.1 Reported glucose metabolic profiles 

Of the 10 included studies, 6 reported on glucose 
metabolic profiles between different groups 
[11,12,14,26,28,31]. Overall, the lowest mean body 
mass index (BMI) was reported in the control group 
(24.05 ± 3.32) when compared to both T2D (26.60 ± 
4.02) and T2D + CVD (25.93 ± 3.35) groups. 

 

Fig. 1. Flow chart of study selection procedures. 
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A meta-analysis between the T2D and the control group 
showed significant heterogeneity between included 
studies (Chi2 = 12.31, I2 = 76%, P = .06). The included 
studies reported on significantly higher BMI in 
individuals with T2D when compared to the control 
group ([MD = 2.25, 95% CI (1.41; 3.09), p< .00001]) 
(Fig. 2S). Relevant to HbA1c level, which is a measure 
of metabolic state of diabetes for the last three months, 
only 4 studies reported on increased HbA1c levels in the 
T2D compared to the control group ([MD = 2.06, 95% CI 
(1.42; 2.70), p < .00001]) [11,14,28,31]. However, there 
were significant levels of unexplained statistical 
heterogeneity amongst these 4 studies (Chi2 = 113.25, I2 

= 97%, p < .00001) (Fig. 3S). 

3.4.2 Reported effect measure of T-cell activation 

Increased expression of the rare pro-atherogenic 
CD4+CD28− T-cells was reported by 2 studies and was 
shown to be higher in T2D compared to controls, with a 
mean percentage of 7.85 ± 0.88 and 1.82 ± 0.45, 
respectively [26,30]. The pooled effect estimates showed 
a large effect size in percentage expression of 
CD4+CD28− T-cells in individuals with T2D when 
compared to healthy controls ([MD = 4.02, 95% CI 
(−0.62; 8.65), p = .09) (Fig. 2A). Moreover, T2D and 
CVD comorbidity was significantly associated with 
increased circulating CD4+CD28− T-cells, as the mean 
increased to 21.34 ± 12.47 compared to the T2D group 
([MD = 11.44, 95% CI (8.27; 14.62), p < .00001]). 
However, substantial level of heterogeneity was present 
in these studies (Chi2 = 2.03 and I2 = 51%, p < .00001) 
(Fig. 2B). On the other hand, there was increased level of 
CD4+CD28− T-cells in nondiabetic with CVD when 
compared to controls. ([MD = 2.16, 95% CI (0.23; 4.08), 
p = .03], Chi2 = 48.85 and I2 = 96%, p < .00001) (Fig. 2C). 
Interestingly, although this pooled estimate also revealed 
significant difference between the nondiabetics with 
CVD and control group, the overall mean difference (Z = 
2.02) was of small effect size (0.2) when compared to that 
of T2D (Z = 7.06), medium effect size (0.7). 

 

3.4.3 Reported effect measures of cardiovascular 

risks 

3.4.3.1. Overall pooled estimates for cardiovascular 
risk. Pooled standard mean differences showed reduced 
CVD risk in controls compared to individuals with T2D 
([SMD = −0.34, 95% CI (−0.78; 0.10), p = .13], Chi2 = 
466.36, I2 = 96%, p < .00001) (Fig. 3). Notably, one of 
the included studies [11] showed significantly different 
study-level outcome in CVD risk profile. When the data 
from this study were omitted, there was a small effect size 
between T2D group and healthy controls ([SMD = 0.03, 
95% CI (−0.30; 0.35), p = .87], Chi2 = 191.96, I2 = 92%, 
p < .00001). Moreover, pooled estimates showed an 
insignificant increased odds risk of CVD in individuals  
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with T2D when compared to controls ([OR = 0.94, 
95% CI (0.45; 1.97), p = .87], Chi2 = 22.47, I2 = 78%, 
p = .0004) (Fig. 5A).  

As expected, odds risk of CVD was higher in 
nondiabetics with CVD group when compared to 
controls ([OR = 2.33, 95% CI (1.75; 3.09), p < 
.00001)], Chi2 = 43.01, I2 = 88%, p < .00001 (Fig. 5B). 
However, due to substantial level of statistical 
heterogeneity in these pooled estimates in Figs. 3 and 
4, a subgroup analysis based on the reported effect 
measure of cardiovascular risk was conducted. 

3.4.3.2. Body mass index. Overall, data from the 
included 5 studies showed a lower BMI mean in T2D 
+ CVD group (25.93 ± 3.35) when compared to the 

the T2D group (26.60 ± 4.02) [11,12,14,28,31]. 

3.4.3.3. Total cholesterol. Five of the included studies 
[11,13,14,26,31] reported no significant difference in 
total cholesterol levels between the T2D group and 
controls ([SMD = 0.07, 95% CI (−0.74; 0.88), p = 
.87]) (Fig. 3). However, there was substantial level of 
statistical heterogeneity in these studies (Chi2 = 69.28 
and I2 = 94%, p < .00001). In addition, there was no 
difference in total cholesterol .levels in T2D and T2D 
+ CVD groups ([SMD = −0.03, 95% CI (−1.01; 0.96), 
p = .96], Chi2 = 84.16, I2 = 95%, p < .00001) (Fig. 4).

 

 

Fig. 2. T-cell activation measured by the expression of CD4+CD28− T-cells in (A) T2D compared to controls; (B) in individuals with 
T2D + CVD compared to T2D; (C) in nondiabetics with CVD compared to controls 

 
Similarly, there was no significant difference in total 
cholesterol levels between nondiabetics with CVD and 
healthy controls ([SMD = −0.17, 95% CI (−0.50; 0.15), 
p = .30], Chi2 = 3.36, I2 = 41%, p = .19) 
(Fig. 4S). 

3.4.3.4. High-density lipoprotein. Pooled estimates 
from 6 studies [11,13,14,26,28,31] revealed decreased 
high-density lipoprotein (HDL) levels in individuals 
with T2D when compared to controls ([SMD = −0.86, 
95% CI (−1.65; −0.07), p = .03]). However, there were 
substantial levels of statistical heterogeneity in these 
studies (Chi2 = 94.68 and I2 = 95%, p < .00001) (Fig. 3). 
Data from 7 included studies [11–14,26,28,31] showed  

a large effect size difference in HDL levels between 
the T2D (1.22 ± 0.45) and T2D + CVD (1.25 ± 0.51) 
groups ([SMD = −0.90, 95% CI (−1.82; 0.03), p = 
.06] Chi2 = 141.85, I2 = 96%, p < .00001) (Fig. 4). In 
addition, there was a medium effect size difference 
in HDL levels of nondiabetics with CVD and control 
group ([SMD = −0.53, 95% CI (−1.14; 0.07), p = 
.08] Chi2 = 25.77, I2 = 88%, p < .00001) (Fig. 4S). 

 
3.4.3.5. Low-density lipoprotein. A total of 6 studies 
reported on decreased levels of low-density 
lipoprotein (LDL) in T2D when compared to the 
control group ([SMD = −1.18, 95% CI (−2.06;  
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−0.30), p = .009]). The included studies showed 
substantial levels of statistical heterogeneity (Chi2 = 
117.32 and I2 = 96%, p < .00001) (Fig. 3). Notably, T2D 
+ CVD group was significantly associated with 
increased LDL levels compared to T2D group ([SMD = 
0.90, 95% CI (0.30; 1.50), p = .0003] Chi2 = 51.44, I2 = 
90%, p < .00001) (Fig. 4). On the other hand, there was 
no significant difference in LDL levels between 
nondiabetics with CVD and control group ([SMD = 
−0.20, 95% CI (−0.56; 0.17), p = .29] Chi2 = 9.65, I2 = 
69%, p = .02) (Fig. 4S). 
 
3.4.3.6. C-reactive protein levels. A total of 621 
participants from 6 studies were included in this analysis 
[12,26,27,29,34,35] and the results revealed that 
individuals with T2D + CVD had higher CRP mean 
levels (12.38 ± 17.22) when compared to both 
nondiabetics with CVD (5.75 ± 16.30) and controls (1.15 
± 1.14). Notably, pooled estimates showed a significant 
increase in CRP levels of nondiabetics with CVD when 
compared to controls ([SMD = 0.35, 95% CI (0.15; 
0.54), p = .0005] Chi2 = 1.45, I2 = 0%, p = .69) (Fig. 4S). 
3.4.3.7. Hypertension. Three studies reported an 
increased prevalence of hypertension in individuals with 
T2D + CVD (mean ratio 0.75), compared to T2D (mean 
ratio 0.63) and healthy controls (mean ratio 0.55) 
[14,26,28]. Individuals with T2D showed no association 
with the prevalence of hypertension when compared to 
the control group ([OR = 1.34, 95% CI (0.90; 1.99), p = 
.15]). There was no heterogeneity in the included studies 
(Chi2 = 1.62 and I2 = 0%, p = .45) (Fig. 5A). 
Hypertension was associated with the presence of 
known CVD and T2D (OR = 1.90, 95% CI (1.24; 2.91), 
p = .003], Chi2 = 2.09 and I2 = 4%, p = .35) (Fig. 5S). As 
expected, the prevalence of hypertension was associated 
with known cases of CVD when compared to controls 
(OR = 2.74, 95% CI (1.87; 4.02), p < .00001], Chi2 = 
44.34 and I2 = 95%, p < .00001) (Fig. 5B). 

3.4.3.8. Smoking. Three studies reported on smoking as 
a risk factor for CVDs [13,14,26]. There was no 
association between smoking in T2D and controls   ([OR 
= 0.60, 95% CI (0.16; 2.31), p = .46]) (Fig. 5A). 
However, a substantial level of heterogeneity was 
present in these studies (Chi2 = 8.87 and I2 = 77%, p = 
.01). Similarly, there was no association between 
smoking in T2D and T2D + CVD groups ([OR = 1.91, 
95% CI (0.57; 6.42), p = .30], Chi2 = 9.83 and I2 = 80%, 
p = .007) (Fig. 5S). Whereas smoking was associated 
with CVDs in nondiabetics when compared to controls 
(OR = 1.90, 95% CI (1.24; 2.91), p = .003], Chi2 = 1.49 
and I2 = 0%, p = .47) (Fig. 5B). The main findings of this 
meta-analysis are presented in the summary of findings 
table (Table 3). 

 

3.5 A narrative synthesis of included studies 

3.5.1 Expression of Th subsets 

Four of the included studies reported differences in Th 
subsets between T2D and control groups [11–13,32]. Of 
these, 1 study demonstrated no significant differences in 
the Th subsets between the T2D group and the control 
 [32]. However, 2 reported increased expression of pro-
inflammatory Th1 in T2D + CVD group when compared 
to T2D [12,13]. In addition, 2 studies revealed an 
upregulated expression of Th17 in individuals with T2D 
when compared to controls [11,13]. Moreover, 3 of these 
studies associated the presence of CVD in T2D with a 
further increase in Th17 expression [11–13]. 
 
One study reported a decreased expression of anti-
inflammatory Th2 subset in T2D when compared to the 
control group [13]. The presence of a CVD in T2D 
further decreased the expression of Th2 [13]. The same 
study reported a similar pattern with Tregs whereby their 
expression was decreased in T2D when compared to 
controls. Furthermore, the presence of a CVD in T2D 
was associated with a further decrease in Tregs 
expression [13]. On the other hand, increased frequency 
of CD4+CD28− T-cells was reported in individuals with 
CVD compared to controls in 4 of the included studies 
[26,29,33,35]. However, 1 study reported no difference 
in the expression of CD4+CD28− T-cells between the 
CVD and control groups [34]. A meta-analysis could not 
be performed on T-cell subsets due to lack of data for 
statistical analysis. 
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3.5.2 Pro-inflammatory cytokines 

Increased circulating pro-inflammatory cytokines in 
T2D were reported in 5 of the 9 included studies 
[11,13,14,30,31]. Of these studies, 4 reported on 
increased interferon gamma (INF-γ) levels in T2D when 
compared to controls [13,14,30,31]. Interferon-gamma 
(INF-γ) is a proinflammatory signature cytokine for Th1 
[36]. Furthermore, these studies associated the presence 
of CVD in T2D with a further increase in INF-γ levels. 
Although 3 studies reported on differences in interleukin 
(IL)-17 (a signature cytokine for Th17), only 2 reported 
increased expression of IL-17 in T2D when compared to 
controls [11,14]. The other study showed decreased IL-
17 in T2D when compared to controls [13]. 
Nevertheless, all studies associated the presence of CVD 
in T2D with increased IL-17 levels when compared to 
both controls and T2D groups [11,13,14]. Two of the 
included studies reporting on T-cell activation in CVD,  
 

showed increased secretion of pro-inflammatory IFN-γ 
and TNF-α cytokines in individuals with CVD 
compared to controls [33,34]. A meta-analysis could not 
be performed on pro-inflammatory cytokines due to lack 
of data for statistical analysis hence these effect 
measures are reported narratively. 

3.5.3 Anti-inflammatory cytokines 

Two studies reported on Th2 anti-inflammatory 
cytokines [13,31]. Increased levels of IL-4 were 
demonstrated in T2D compared to healthy controls, 
while Wang et al showed no significant difference 
between the 2 groups [13,31]. However, in 1 study, the 
presence of a CVD in T2D further decreased IL-4 levels 
when compared to both T2D and the control group [31]. 
No meta-analysis could be performed due to lack of data 
for statistical analysis. 

 

 

Fig. 3. Pooled estimates of cardiovascular risk in T2D compared to controls. 
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4. Discussion 
This systematic review aimed at assessing available 
literature describing the role of T-cell activation and 
other markers of inflammation in the development of 
CVDs in T2D. Majority of included studies showed 
increased T-cell activation in individuals with T2D 
when compared to the control group. Furthermore, 
synthesised data suggested that individuals with T2D are 
at higher risk of developing CVD albeit the data was 
from observational studies. It was also clear that none of 
the included studies measured T-cell exhaustion. 
Moreover, T-cells activation is increased in nondiabetics 
with CVD when compared to controls.  

 

 
Therefore, these findings suggest that increased T-cell 
activation is not unique to T2D but the degree of 
activation is exacerbated by the presence of T2D.  
Increased Th1 and Th17 subsets and loss of Tregs cells 
have been implicated in the pathogenesis of 
inflammatory disease [37–40]. Our synthesised data 
provides a comprehensive increased level of pro-
inflammatory Th subsets in T2D, thus implicating 
increased inflammation and T-cell activation in the 
development of CVDs. Moreover, elevated pro-
inflammatory cytokines and CRP levels reported in 
individuals with T2D further implicate chronic  

 

Fig. 4. Pooled estimates of cardiovascular risk in T2D compared T2D + CVD. 
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inflammation as a link between T2D and increased risk 
of developing CVD. 
Tregs have been reported to have a protective role 
against the development of CVDs. In that context, low 
levels of circulating Tregs and Th2 have been associated 
with increased risk of acute coronary events [41,42]. 
Data synthesised in this review showed lower levels of 
Th2 anti-inflammatory cytokines and a reduction in the 
number of Tregs in individuals with T2D compared to 
controls. Therefore, exacerbated inflammation with 

T-cell activation and decreased T-cell immune-
suppressive potential may be associated with the 
development of CVDs in T2D. 

 

 

     Fig. 5. The prevalence of cardiovascular risk factors in (A) T2D compared to healthy controls and in (B) nondiabetics with CVD      
compared to healthy controls. 
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The CD4+CD28− T-cells are a long-lived Th1 subset 
that has both proatherogenic and plaque-destabilising 
properties [33]. However, unlike conventional Th1 

cells, these T-cells also express cytotoxic molecules 
(perforin and granzyme B) and are rarely found in 
healthy individuals [43]. Nonetheless, this subset has 
been implicated in the pathogenesis of various 
inflammatory disorders [33,44]. In chronic 
inflammation, the CD4+CD28+ T-cells lose the 
expression of CD28, a co-stimulatory marker and 
therefore making them insensitive to both suppression 
and apoptotic responses [44]. In addition, CD4+CD28− 

T-cells release an abundant amount of pro-
inflammatory cytokines and cytotoxic mediators 
which are responsible for tissue damage in the 
pathogenesis of inflammatory disorders such as CVD 
[33,43]. Data synthesised in this systematic review 
showed a high prevalence of CD4+CD28− T-cells and 
increased pro-inflammatory cytokine release, in 
individuals with T2D as well as nondiabetics with 
CVD. Interestingly, although both these groups 
reported increased T-cell activation when compared to 
their respective control groups, the effect size was 
greater in individuals with T2D compared to those 
without [22]. Nonetheless, it is evident that T-cell 
activation is exacerbated by the presence of T2D and 
is implicated in the development of CVDs in T2D. 
It is well-established that individuals with T2D have a 
higher cardiovascular risk and mortality rate when 
compared to their non-diabetic counterparts and are 
disproportionately affected with CVDs [45]. 
Hypertension is a well-established cardiovascular risk 
factor present in two-thirds of individuals with T2D 
[46]. Moreover, the co-existence of hypertension and 
T2D increases the risk of developing CVDs by almost 
four-fold when compared to controls [47]. Our study 
showed a significant association between hypertension 
and CVDs. Dyslipidaemia, another major risk factor of 
CVDs that is characterised by changes in both quality 
and quantity of lipoproteins plays a significant role in 
the development of atherosclerosis [48]. In that 
context, high and low levels of LDL and HDL were 
demonstrated to be closely associated with T2D 
[48,49]. In accordance with this, data synthesised from 
this review showed dyslipidaemia as a characteristic 
feature of T2D, while the presence of CVD was 
significantly associated with an increased degree of 
dyslipidaemia.  
  



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 41 of 56 
 

These findings support the notation that individuals 
with T2D are at a higher risk of developing CVD. 
Therefore, hypertension and lipid profiles (particularly 
HDL) may be used as good markers for cardiovascular 
risk stratification and potential therapeutic targets in 
CVDs. 
To date, this is the first systematic review and meta-
analysis that comprehensively assessed T-cell function 
in individuals with T2D and their association with 
increased risk of developing CVD. In addition, the 
evidence presented in this review indicates that T-cells 
may be a potential therapeutic target in the 
management of T2D, although these data were 
synthesised from observational studies. These findings 
pave the way for future studies to explore novel 
avenues in developing new drugs for both 
management and treatment of diabetes. 
The limitations of the current systematic review 
include; a restricted number of studies investigating 
the role of T-cells in both T2D + CVDs. In addition, 
none of the included studies were from African 
regions, where there is increased urbanisation and risk 
of CVDs. Secondly, there was a high risk of bias in 8 
of the included studies [11–13,30,31,33–35] and the 
cross-sectional nature of all the included studies was 
also a significant limitation. Thirdly, the included body 
of evidence was from observational studies and thus is 
of low quality. This consequence therefore lowered the 
certainty of associations between T-cell activation and 
cardiovascular risk in T2D. Further, randomised 
controlled trials studies with high-quality evidence and 
reduced risk of bias due to randomisation are needed 
to address this. Lastly, although several studies 
reported on the different anti-hyperglycaemic 
treatments used by individuals with T2D [11,26], there 
were insufficient study-level data to perform any sub-
group analysis. Therefore, we could not ascertain the 
effect of anti-hyperglycaemic drugs on T-cell function 
and cardiovascular risk. 

5. Conclusion 
The evidence from the included studies showed that 
peripheral blood T-cells are activated in individuals 
with T2D or CVD. Moreover, there is increased 
cardiovascular risk in individuals with T2D. Notably, 
the transition from T2D to T2D + CVD co-morbidity 
is associated with exacerbated levels of T-cell 
activation and increased cardiovascular risk. This was 
indicated by increased levels of CD4+CD28− T-cells, 
LDL, CRP and decreased HDL as well as the 
development of hypertension, leading to a poorer 
prognosis. In addition, increased T-cell activation in 
T2D is coupled with a decreased frequency of 
peripheral immunosuppressive Tregs, increased 
frequency of pro-inflammatory T- helper subsets and 
cytokines, including enhanced expression of T-cell 

negative co-stimulatory molecules. Therefore, a 
possible approach to reduce the risk of developing 
CVD in T2D is by modulating T-cell activation, which 
could be effective in alleviating immune suppression 
or inflammation. Furthermore, the use of interventions 
that target and alter CD4+ T-cell subpopulations in 
T2D could be beneficial in reducing the risk of 
developing CVD. 
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Abstract 

Aim: To assess T-cell exhaustion mediated by programmed cell death 1 (PD-1) pathway in patients 

living with type 2 diabetes (T2D).  

Research design and methods: MEDLINE and ProQuest electronic databases were searched for 

eligible studies from inception up to February 2020. The risk of bias and the quality of evidence were 

independently assessed by two independent reviewers using the modified Newcastle-Ottawa Scale 

adapted for cross-sectional studies and the Grading of Recommendations Assessment, Development 

and Evaluation (GRADE) tool, respectively. The random effects model was used to calculate effect 

estimates. 

Results: We identified 5 studies involving 380 participants which met the inclusion criteria. The pooled 

estimates showed elevated T helper cell exhaustion in patients with T2D in comparison to controls 

(MD: 2.57% [95% CI: -3.84, 8.97]; I2 = 100%, p<0.00001). Likewise, T2D patients had increased levels 

of cytotoxic T-cells exhaustion (MD: 3.09% [95% CI: -12.96, 19.14]; I2 = 100%, p<0.00001).  Although 

the upregulation of PD-1 on T-cells did not affect glucose metabolism-related profiles, it was associated 

with inflammation and the development of cardiovascular disease. 

Conclusion: In patients living with T2D, immune dysfunction is at least in part due to T-cell exhaustion 

mediated by the upregulation of PD-1 expression. Therefore, the use of immune checkpoint inhibitors 

as a therapeutic strategy may be of beneficial in restoring immune function in T2D patients.  

Keywords: Chronic inflammation; Immune activation; Programmed cell death 1; T-cell exhaustion; 

Type 2 diabetes mellitus. 
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1. Introduction 

Type 2 diabetes (T2D) is a low-grade inflammatory condition that is characterised by insulin resistance, 

hyperglycaemia and immune dysregulation.1,2 Notably, impaired glucose tolerance and obesity drives 

chronic inflammation in T2D.3,4 This can lead to an exacerbated activation of both the innate and 

adaptive immune systems.5 In fact, immune responses mediated by T-cells play a pivotal role in 

maintaining immune homeostasis.6 In chronic inflammatory conditions, increased expression of 

negative co-stimulatory molecules is known to promote T-cell exhaustion.7   

It is acknowledged that negative co-stimulatory molecules such as cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) and programmed cell death-1 (PD-1) are essential in inducing immune tolerance 

during T-cell maturation, and regulating T-cell effector functions.8 However, persistent immune 

activation in patients with T2D may lead to aberrant expression of these markers and altered T-cell 

effector function.9 Of the various inhibitory molecules, PD-1 has been identified as one of the most 

potent negative regulators of T-cell functions.10 For instance, enhanced PD-1 signalling has been linked 

with cytotoxic (CD8+) T-cell exhaustion in viral infections.11 Recent evidence also suggests that PD-1 

plays a major role in T-helper (CD4+) cell exhaustion during chronic infections.12,13 Notably, since T-

cells are involved in the pathogenesis of T2D14, there has been a great interest in understanding the 

impact of PD-1 in T-cell mediated inflammation and dysfunction in conditions of metabolic syndrome. 

Interestingly, we have progressively explored the detrimental effects linking increased levels of T-cell 

activation and pro-inflammatory T-cell subsets with low-grade inflammation in T2D.15–17 To date, 

available literature on the expression of PD-1 on T-cells of T2D patients is inconclusive, with 

dysregulated expression of PD-1 linked to the progression of low-grade inflammation in conditions of 

impaired glucose tolerance.18,19 Therefore, in this systematic review and meta-analysis, we aimed to 

assess T-cell exhaustion mediated by PD-1 expression in patients living with T2D.  

2. Methods 

This systematic review and meta-analysis was prepared according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) guidelines.20 This study forms part of the registered 

protocol with the International prospective register of systematic reviews (PROSPERO), registration 

number: CRD42018099745. We conducted the qualitative and quantitative synthesis to answer the 

following questions; 

Question 1: Are circulating T-cells exhausted in adult patients living with T2D?  

Question 2: Does PD-1 receptor mediate T-cell exhaustion in T2D? 

2.1 Search strategy 

A comprehensive search was conducted on the MEDLINE electronic database and ProQuest grey 

literature, from inception up until the 20th of February 2020. The search was conducted by two 
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independent reviewers (TMN and BBN), whilst a third reviewer (PVD) was consulted for arbitration in 

cases of disagreements. The search strategy was adapted to MEDLINE databases without any language 

restrictions using medical subjects heading (MeSH) terms and keywords such as “programmed cell 

death-1”, “T-cell exhaustion”, “type 2 diabetes mellitus” and their respective synonyms and associated 

words or phrases. A detailed search strategy is provided as a supplementary file (Table 1S). In addition 

to scanning reference lists of retrieved studies, the ProQuest grey literature database was also searched 

for relevant studies. The Mendeley reference manager software (Elsevier, Amsterdam, Netherlands) 

was used to manage the reference list and to remove study duplicates. 

2.2 Inclusion criteria and study selection 

This systematic review and meta-analysis included studies that reported on the expression of PD-1 on 

T-cells of individuals with T2D. Reviews, books, editorials, letters and studies that reported PD-1 

expression on other immune cells that are not T-cells were excluded. The studies identified by the search 

strategy were independently screened and selected by two reviewers (TMN and PVD) using the 

following pre-defined PECO: Participants: Adults (>18 years old); Exposure: T2D; Comparator: 

Healthy controls (normoglycaemics); Outcome: T-cell exhaustion. In cases of disagreements, a third 

reviewer, BBN was consulted for arbitration.  

2.3 Data extraction 

Two independent investigators (TMN and VM) extracted the data items using a pre-defined data 

extraction sheet. A third reviewer (PVD) was consulted for arbitration in instances of disagreements. 

The extracted data items included the names of the authors, year of publication, study design, age of 

participants, T-cell subsets that PD-1 expression was reported on and the main findings. 

2.4 Risk of bias and quality assessment  

Two reviewers (TMN and VM) independently assessed risk of bias in the included studies using the 

modified Newcastle-Ottawa Scale adapted for cross-sectional studies.21 Briefly, the tool uses three 

domains namely, selection of study groups, comparability of the groups and outcome ascertainment to 

assess study quality. A study is considered unsatisfactory if the total score is < 4, satisfactory (5-6), 

good (7-8) and very good (9-10). In cases of disagreements, a third reviewer (BBN) was consulted for 

arbitration. The same reviewers evaluated the quality of evidence using the Grading of 

Recommendations Assessment Development and Evaluation (GRADE) approach. 22 

2.5 Statistical analysis  

Cohen’s kappa scores were used to measure interrater reliability.23 The mean and standard deviation for 

each continuous effect measure was extracted or calculated using Hozo et al. method.24 In cases where 

standard deviations were not reported, the Cochrane guidelines were followed to estimate the values.25. 

Heterogeneity was quantitatively assessed using Higgin’s I2 index26 and the random-effects model was 
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used27 to calculate the pooled estimates. The effect estimates were reported using mean difference (MD) 

and 95% confidence interval (CI). A p-value < 0.05 was considered statistically significant. To evaluate 

the influence of each study on the overall effect size, a sensitivity analysis was conducted using the 

leave-one-out method. All statistical analysis was performed using REVMAN version 5.3 software 

(Cochrane Collaboration, Oxford, UK) 

3. Results 

3.1 Included studies 

The search strategy identified a total of 12 citations and only 5 studies9,18,19,28,29 met the inclusion criteria 

(overall agreement 95.45%, kappa = 0.88). A total of 5 studies were excluded at the abstract stage 

because 2 were reviews and 3 were not relevant to the topic of interest. Of the remaining 7 studies that 

were assessed for eligibility using full texts, 2 studies were excluded because there were not relevant to 

the topic of interest. As a result, a total of 5 studies were included in this systematic review and meta-

analysis as indicated in Figure 1.  

 

Figure 1: PRISMA diagram showing the study selection process 
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3.2 Study characteristics  

The included studies were published between 2013 and 2019 and their characteristics are presented in 

Table 1. All citations were all cross-sectional studies comprising a total of 380 participants. Of these, 

198 were T2D patients and 182 were healthy controls. The study population had an average age of 

55.64 ± 9.09 and a male to female ratio of 0.75. Overall, the included studies reported on participants 

from China (n=3), Japan (n=1) and South Africa (n=1). 

3.3 Risk of bias assessment and publication bias 

The overall median score range of included studies was 7 (4-8), one study was scored as unsatisfactory 

(4 points)28 and the rest good (7-8 points)9,18,19,29 (Table 2S). Included studies had a selection median of 

3 (2-4) out of possible 5 stars (overall agreement 100%, kappa = 1), comparability median of 2 (0-2) 

out of possible 2 stars (overall agreement 91.4%, kappa = 0.83) and outcome ascertainment median of 

2 (2-3) out of 3 possible stars (overall agreement 93%, kappa = 0.87). We explored potential publication 

bias by visual inspection of funnel plots and they showed that publication bias was not likely amongst 

the included studies (Figure 1S). 
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Table 1: Characteristic features of included studies and the reported on the expression of programmed cell death 1 (PD-1) on T-cells in patients with type 2 diabetes (T2D) 

Study Country Study size Male, n (%) Age (years) T-cell subsets reported Main findings 

 
Shi et al., 
201318 

China 90 participants 
(42 T2D and  
48 controls) 

Not reported 51.46 ± 10.68 CD4+CD28- The expression of PD-1 on CD4+CD28- T-cell subset was 
increased in T2D patients when compared to healthy controls. 
Moreover, the upregulation of PD-1 on these T-cells was 
associated with the development of atherosclerotic macrovascular 
diseases. 
 

Fujisawa et 
al., 201528 

Japan 48 participants 
(19 T2D and  
29 controls) 

 

24 (50) 49 ± 11.82 CD4+ The levels of PD-1 expression on T-helper cells were comparable 
between individuals with T2D versus healthy controls. 

Jia et al., 
20169 

China 130 participants 
(80 T2D and  
50 controls) 

70 (54) 61 ± 4.10 CD4+ and CD8+ The expression of PD-1 on both CD4+ and CD8+ was increased in 
T2D when compared to healthy controls. In addition, the 
upregulation of PD-1 on T-cells positively correlated with the 
levels of C-reactive protein (CRP), an inflammation marker.  
 

Nyambuya et 
al., 201829 

South Africa 69 participants 
(34 T2D and 
 35 controls) 

10 (14) 54.48 ± 4.45 CD4+ There was no difference in the expression of PD-1 on T-cells in 
T2D patients and healthy controls. Moreover, there was no 
correlation between the expression of PD-1 on T-cell and glucose 
metabolic profile. However, T2D patients had increased levels of 
inflammation.  
 

Sun et al., 
201919 

China 43 participants 
(23 T2D and 
 20 controls) 

20 (47) 57.47 ± 9.03 CD4+ and CD8+ CD4+ and CD8+ T-cells from individuals with T2D expressed 
lower levels of PD-1 when compared to healthy controls. 
However, no correlation was found between PD-1 expression and 
glucose metabolic profiles. 
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3.4 Glucose metabolic profiles 

A total of 3 studies reported on glucose metabolism-related profiles of included participants. As expected, 

T2D patients had significantly increased fasting blood glucose levels (MD: 2.81mmol/L [95% CI: 0.28, 

5.34]; I2 = 99%, p<0.00001) and glycated haemoglobin levels (MD: 2.57% [95% CI: -0.08, 5.23]; I2 = 100%, 

p<0.00001) (Figure 2S), thus indicating poor glucose control.   

3.5 T-cell exhaustion mediated by increased PD-1 signalling pathway in t2d 

Two studies 9,18 reported on increased expression of PD-1on CD4+ and CD8+ T-cells in T2D patients when 

compared to healthy controls. In contrast, two of the included studies28,29 reported comparable levels, 

whereas 1 study 19 showed decreased levels of PD-1 expression on T-cells in T2D patients and controls. 

The pooled estimates showed increased PD-1 signalling on T helper cells (MD: 2.57% [95% CI: -3.84, 

8.97]; I2 = 100%, p<0.00001) and cytotoxic T-cells (MD: 3.09% [95% CI: -12.96, 19.14]; I2 = 100%, 

p<0.00001) of T2D patients in comparison to controls (Figure 2). Thus, suggesting PD-1 mediated T-cell 

exhaustion in diabetic state.  

 

Figure 2: A comparison of mean difference of programmed cell death 1 (PD-1) expression on T helper cells (A) and 

cytotoxic T-cells (B) between T2D patients and healthy controls. 

We performed a subgroup analysis based on extracted and computed values of PD-1 expression on T helper 

cells. Pooled estimates of studies where PD-1 expression values were extracted were lower (MD: 1.55% [-

10.88, 13.99]; 100%, p <0.00001) than studies where the values were computed (MD: 4.00% [-1.50, 9.50]; 

I2 = 99%, p <0.00001) (Table 3S). To further investigate the sources of heterogeneity amongst the included 

studies and assess the robustness of the reported estimates, we conducted a sensitivity analysis and it 

revealed that sample type and risk of bias might be further sources of heterogeneity in the estimates of PD-

1 mediated T-cell exhaustion. There was no difference on the levels of T-cell exhaustion between studies 
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reporting on whole blood samples and those on peripheral blood mononuclear cells. Moreover, the level of 

statistical heterogeneity remained substantial (Table 4S). The sensitivity analysis did not change the 

direction of the polled effect estimate, thus suggesting our findings to be robust. A qualitative synthesis of 

included studies in this review revealed that the upregulation of PD-1 expression on T-cells had no 

association with glucose metabolism19,29, but was positively correlated with inflammation and the 

development of cardiovascular diseases (CVDs)9,18. A summary of findings is provided in Table 2. 

Table 2: Summary of findings table 

Type 2 diabetes compared to healthy controls 

Patient or population: Adults (>18 years of age)  
Exposure: Type 2 diabetes mellitus (T2D) 
Comparison: Healthy controls (normoglycaemics) 

Outcomes 

Absolute effects* (95% CI)  
Relative 

effect 
(95% CI)  

№ of 
participants  

(studies)  

Certainty of 
the evidence

(GRADE)  
CommentsRisk 

with 
control 

Risk in T2D patients  

T-cell exhaustion 
Measured by PD-1 expression 

on CD4 T-cells  
- 

The mean level in the exposure 
group was 2.57 higher  

(-3.84 to 8.97)  -  
380 

(5 observational 
studies)  

⨁⨁OO 

LOW 
 

T-cell exhaustion 
Measured by PD-1 expression 

on CD8 T-cells 
- 

The mean level in the exposure 
group was 3.09 higher  

(-12.95 lower to 19.14 higher) 
 

242 
(3 observational 

studies) 
⨁⨁OO 

LOW
 

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect 
of the intervention (and its 95% CI).  
 
CI: Confidence interval; MD: Mean difference; OR: Odds ratio; NE: Not estimable  

GRADE Working Group grades of evidence 
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect 
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is 
a possibility that it is substantially different 
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect 
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of 
effect  

 

4. Discussion 

The aim of this study was to assess T-cell exhaustion mediated by PD-1 expression in patients living with 

T2D. Although T-cell exhaustion is associated with conditions of impaired glucose tolerance 18,19, the 

regulation of PD-1 expression on T-cells of T2D patients remains elusive. In this study, pooled estimates 

showed that in T2D patients, PD-1 expression is upregulated when compared to healthy controls. Such 

findings are congruent with available evidence suggesting that PD-1 expression might promote 



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 53 of 68 
 

inflammation and the development of CVDs.9,18 Taken together, these findings support the notion that T-

cell exhaustion may be mediated by PD-1 signalling pathway in patients living with T2D.  

PD-1 is a receptor belonging to the CD28 family that delivers a negative signal upon interacting with its 

two ligands programmed death ligand 1or 2 (PD-L1 or PD-L2).10,30 Successful T-cell activation requires 

two signals to induce their effector functions, whereby the first primary signal is via the T-cell receptor 

(TCR) and the second is through CD28 co-stimulation.31 The upregulation of PD-1 blocks the co-

stimulatory signalling, resulting in immune suppression.32 Patients living with T2D patients are known to 

present with abnormally increased levels of circulating interferon (IFN)-γ, tumour necrosis factor (TNF)-

α, interleukin (IL)-6 and IL-17.33,34 In fact, these pro-inflammatory cytokines have the ability to induce PD-

1 signalling by upregulating the expression of its ligands in tumour environments, autoimmunity or during 

chronic infections.35 The activation of PD-1 signalling pathway dephosphorylates TCR signalling and zeta-

chain-associated protein kinase (ZAP)70 by recruiting Src homology phosphatase (SHP)-1/2 which results 

in the dysregulation of a number of molecular mechanisms including; the insulin-dependent 

phosphoinositide 3-kinase/protein kinase B (PI3K/AKT); as well as the pro-inflammatory Janus 

kinase/signal transducers and activators of transcription 3 (JAK/STAT3) and nuclear factor kappa B (NF-

κB) elements.36 These pathways are essential for T-cell proliferation, activation and survival.37–39 In 

particular, JAK/STAT and NF-κB pathways are the principal signalling mechanisms for a variety of 

cytokines and growth factors implicated in cell death39,40, whilst the activation of PI3K/AKT is crucial for 

cell survival and proliferation, including improvements in glucose control 37,41. Therefore, a pro-

inflammatory state in T2D patients may induce the activation of PD-1 signalling leading to immune 

suppression and T-cell exhaustion.  

The expression of PD-1 on T-cells and cytokine production is closely regulated in a physiological state. 

However, in a state of impaired glucose metabolism, it is apparent that PD-1 expression is dysregulated. 

For instance, exposure of murine T-cells to galactose or glucose substrates has been shown to enhance the 

expression of PD-1 in addition to increasing oxidative phosphorylation.42 These findings suggest that PD-

1 may play a significant role in regulating cellular metabolism, or could impact energy generating 

mechanisms such as the AMP-activated protein kinase (AMPK) pathway. To support this hypothesis, the 

anti-diabetic drug, metformin (is known  to activate AMPK), has already been shown to enhance T-cell 

function by altering the PD-L1/PD-1 axis.43 In agreement with the findings reported in this study, it seems 

that the levels of PD-1 expression are elevated on T-cells of T2D patients. This is especially true since the 

activation of PD-1 signalling in cultured T-cells from healthy donors altered energy metabolic pathways by 

inhibiting the uptake and utilisation of glucose whilst promoting fatty acid β-oxidation as a source of ATP.44 

Thus, providing further evidence that tight regulation of T-cell function is necessary for optimal glucose 



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 54 of 69 
 

metabolism. Therefore, in addition to the well-described chronic antigen stimulation and inflammation in 

T-cell exhaustion7, increased expression of PD-1 and  loss of effector function is also influenced by cellular 

glucose metabolism. As a result, this evidence highlights the need to target PD-1 signalling pathway as a 

therapeutic mechanism to improve metabolic functions in conditions of metabolic stress.   

Chronic inflammation is implicated in the development of CVD in patients living with T2D.18 In that 

context, T2D patients are at a two- to four-fold risk of developing CVD when compared to healthy 

controls.45 Interestingly, increased levels of CRP, a sensitive systemic marker of inflammation has been 

associated with increased risk of developing CVDs  in T2D patients.46 The evidence synthesised in this 

study demonstrated increased levels of CRP in patients with T2D9,29 which was associated with increased 

expression of PD-1.9 Moreover, the upregulation of PD-1 on T-cells was consistent with the development 

of atherosclerotic macrovascular diseases.18 The use of immune checkpoint inhibitors which block co-

stimulatory signalling pathway are known to be effective in rejuvenating T-cell effector function in chronic 

infections and tumour environments 47. However, this consequence has been correlated with the new-onset 

of impaired glucose homeostasis.48 Therefore, the use of immune checkpoint inhibitors in T2D as a 

treatment strategy may have a double-edged sword effect whereby it improves T-cell mediated immune 

responses but further impairing glucose control, as reported elsewhere.49 This emphasises the need to find 

a fine balance between improving T-cell function whilst enhancing glucose metabolism when targeting PD-

1 signalling as a therapeutic strategy in T2D patients. The overall impact of PD-1 signalling on T-cell 

function is illustrated in Figure 3. 
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Figure 3: An overview of mechanisms that implicates programmed cell death-1 signalling and its modulatory effects 

on T-cell function. In brief, chronic immune activation in type 2 diabetes mellitus is known to increase cardiovascular 

risk and T-cell exhaustion, which is likely to be mediated by the upregulation of programmed cell death-1 (PD-1), a 

negative T-cell regulator. Thus, increased expression of PD-1 can alter glucose metabolism by inhibiting the actions 

of phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signalling. It further appears that PD-1 expression 

promotes T-cell proliferation and survival but inhibit their effector functions by upregulating the detrimental 

mechanisms such Janus kinase/signal transducers and activators of transcription (JAK/STAT) and nuclear factor 

kappa B (NF-κB) signalling pathways.  

Overall, this systematic review and meta-analysis had a few limitations. Firstly, the number of included 

studies was low as well as the quality of evidence due to their cross-sectional nature. Secondly, there was 

substantial amount of unexplained statistical heterogeneity in this study. Lastly, the level of T-cell 

exhaustion is influenced by the duration of exposure to chronic inflammation, of which the majority of 

included studies did not report on disease duration. Nevertheless, our study has a unique strength in that to 

our knowledge, it is the first systematic review and meta-analysis to assess T-cell exhaustion in T2D. 

Moreover, the methodologies employed in this study were robust as indicated by high levels of inter-rater 

agreements. Results from sensitivity analysis indicated that the reported pooled effect sizes were not 

influenced by a single study, thus making the findings reported herein robust. Lastly, the current findings 

are important as they pave way for future therapeutic strategies to explore the use of immune checkpoint 

inhibitors in order to resuscitate immune responses mediated by T-cells. This will thus potentially correct 

the immune dysfunction observed in T2D patients.  
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In conclusion, low-grade inflammation in conditions of impaired glucose tolerance is associated with 

chronic immune activation and dysfunction, which collectively increases the risk of developing diabetes-

associated cardiovascular complications. The evidence synthesised here suggests that immune dysfunction 

observed in T2D is in part due to T-cell exhaustion mediated by increased expression of PD-1. Therefore, 

the use of immune checkpoint inhibitors in rejuvenating the immune response in these patients may be an 

effective therapeutic strategy. 

 

  



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 57 of 72 
 

Acknowledgments 

 The current study is partially funded by the National Research Foundation (NRF) of South Africa (Grant 

Number: 107519 to BB Nkambule). BBN is also a University of KwaZulu-Natal (UKZN) Developing 

Research Innovation, Localisation and Leadership in South Africa (DRILL) fellow. DRILL, is a NIH D43 

grant (D43TW010131) awarded to UKZN in 2015 to support a research training and induction programme 

for early career academics. PV Dludla was partially supported as a Post-Doctoral Fellow by funding from 

Research Capacity Division of the South African Medical Research Council (SAMRC) through its division 

of Research Capacity Development under the Intra-Mural Post Doctorial Fellowship Programme from 

funding received from the South African Treasury. The content hereof is the sole responsibility of the 

authors and do not necessary present the official views of SAMRC or the funders. 

  



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 58 of 73 
 

5. References  

1.  Viardot A, Heilbronn L, Samocha-Bonet D, Mackay F, Campbell L, Samaras K. Obesity is 
associated with activated and insulin resistant immune cells. Diabetes Metab Res Rev. 2012;28(1):1-
18. doi:10.1002/dmrr 

2.  Ip BC, Hogan AE, Nikolajczyk BS. Lymphocyte roles in metabolic dysfunction : of men and mice. 
Trends Endocrinol Metab. 2015;26(2):91-100. doi:10.1016/j.tem.2014.12.001.Lymphocyte 

3.  van Greevenbroek MMJ, Schalkwijk CG, Stehouwer CDA. Obesity-associated low-grade 
inflammation in type 2 diabetes mellitus: Causes and consequences. Neth J Med. 2013;71(4):174-
187. 

4.  Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From 
a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598-612. 
doi:10.4239/wjd.v6.i4.598 

5.  Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. 
Diabetes Care. 2004;27(3):813-823. doi:10.2337/diacare.27.3.813 

6.  Felderhoff-Mueser U, Taylor DL, Greenwood K, et al. Fas/CD95/APO-1 can function as a death 
receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-
ischemic injury to the developing rat brain. Brain Pathol. 2000;10(1):17-29. doi:10.1111/j.1750-
3639.2000.tb00239.x 

7.  Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492-499. doi:10.1038/ni.2035 
8.  Okazaki T, Chikuma S, Iwai Y, Fagarasan S. A rheostat for immune responses- the unique properties 

of PD-1 and their advantage for clinical application. Nat Immunol. 2013;14(12):1212-1218. 
9.  Jia Y, Zhao Y, Li C, Shao R. The Expression of Programmed Death-1 on CD4+ and CD8+ T 

Lymphocytes in Patients with Type 2 Diabetes and Severe Sepsis. PLoS One. 2016;11(7):1-12. 
doi:10.1371/journal.pone.0159383 

10.  Jin H-T, Ahmed R, Okazaki T. Role of PD-1 in Regulating T-Cell Immunity. Curr Top Microbiol 
Immunol. 2011;358(January):17-37. doi:10.1007/82 

11.  Feuth T, Arends JE, Fransen JH, et al. Complementary role of HCV and HIV in T-cell activation 
and exhaustion in HIV/HCV coinfection. PLoS One. 2013;8(3):1-9. 
doi:10.1371/journal.pone.0059302 

12.  Saeidi A, Zandi K, Cheok YY, et al. T-cell exhaustion in chronic infections: Reversing the state of 
exhaustion and reinvigorating optimal protective immune responses. Front Immunol. 
2018;9(NOV):1-12. doi:10.3389/fimmu.2018.02569 

13.  Dong Y, Li X, Zhang L, et al. CD4+ T cell exhaustion revealed by high PD-1 and LAG-3 expression 
and the loss of helper T cell function in chronic hepatitis B. BMC Immunol. 2019;20(1):1-9. 
doi:10.1186/s12865-019-0309-9 

14.  Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated 
Inflammation. J Diabetes Res. 2017;2017:1-6. doi:10.1155/2017/6494795 

15.  Nyambuya TM, Dludla PV, Mxinwa V, Nkambule BB. Obesity-induced inflammation and insulin 
resistance: A mini-review on T-cells. Metab Open. 2019;3(100015):1-9. 
doi:10.1016/j.metop.2019.100015 

16.  Mahlangu T, Dludla P V, Nyambuya TM, et al. A systematic review on the functional role of 
Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine. 
2020;126(September 2019):1-9. doi:10.1016/j.cyto.2019.154892 

17.  Nyambuya TM, Dludla P V., Nkambule BB. T cell activation and cardiovascular risk in type 2 
diabetes mellitus: A systematic review and meta-analysis. Clin Immunol. 2019;210. 
doi:10.1186/s13643-018-0835-1 

18.  Shi B, Du X, Wang Q, Chen Y, Zhang X. Increased PD-1 on CD4+CD28- T cell and soluble PD-1 
ligand-1 in patients with T2DM: Association with atherosclerotic macrovascular diseases. 
Metabolism. 2013;62(6):778-785. doi:10.1016/j.metabol.2012.12.005 

19.  Sun P, Jin Q, Nie S, et al. Unlike PD-L1, PD-1 is downregulated on partial immune cells in type 2 



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 59 of 74 
 

diabetes. J Diabetes Res. 2019;2019(March):1-8. doi:10.1155/2019/5035261 
20.  Shamseer L, Moher D, Ghersi D, et al. Preferred reporting items for systematic review and meta-

analysis protocols (PRISMA-P) 2015: elaboration and explanation. Br Med J. 
2015;7647(January):1-25. doi:10.1136/bmj.g7647 

21.  Newcastle-Ottawa. Quality assessment scale adapted for cross-sectional studies. 
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/13880/ea30a2fb-a15a-44a9-
b35e-5f0914db80b3.docx. Accessed May 9, 2020. 

22.  Balshem H, Helfand M, Sch HJ, et al. GRADE guidelines : 3 . Rating the quality of evidence. J Clin 
Epidemiol. 2011;64:401-406. doi:10.1016/j.jclinepi.2010.07.015 

23.  Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 
1977;33(1):159-174. doi:10.2307/2529310 

24.  Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and 
the size of a sample. BMC Med Res Methodol. 2005;5:1-10. doi:10.1186/1471-2288-5-13 

25.  The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions. Version 
5. (Higgins J, Green S, eds.).; 2011. doi:10.1109/ISIT.2017.8006970 

26.  Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 
2002;21(11):1539-1558. doi:10.1002/sim.1186 

27.  Schroll JB, Moustgaard R, Gøtzsche PC. Dealing with substantial heterogeneity in Cochrane 
reviews. Cross-sectional study. BMC Med Res Methodol. 2011;11(1):22. doi:10.1186/1471-2288-
11-22 

28.  Fujisawa R, Haseda F, Tsutsumi C, et al. Low programmed cell death-1 (PD-1) expression in 
peripheral CD4+ T cells in Japanese patients with autoimmune type 1 diabetes. Clin Exp Immunol. 
2015;180(3):452-457. doi:10.1111/cei.12603 

29.  Nyambuya T, Davison GM, Hon G, Kengne A, Erasmus R, Matsha T. T-cell Activation and 
Dysfunction in Hyperglycaemia. Med Technol South Africa. 2018;32(1):24-27. 

30.  Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its 
ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-245. 
doi:10.1038/ni1443 

31.  Harber M, Sundstedt A, Wraith D. The role of signals 1 and 2 in T-cell activation. Cambridge 
University Press. 
http://journals.cambridge.org/fulltext_content/ERM/ERM2_09/S1462399400002143sup004.htm. 
Published 2000. 

32.  Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients 
with hematological malignancies. J Hematol Oncol. 2013;6(1):1. doi:10.1186/1756-8722-6-74 

33.  Qiao Y, Shen J, He L, et al. Changes of Regulatory T Cells and of Proinflammatory and 
Immunosuppressive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and 
Meta-Analysis. J Diabetes Res. 2016;2016:1-19. doi:10.1155/2016/3694957 

34.  Mahmoud F, Al-Ozairi E. Inflammatory cytokines and the risk of cardiovascular complications in 
type 2 diabetes. Dis Markers. 2013;35(4):235-241. doi:10.1155/2013/931915 

35.  Qin W, Hu L, Zhang X, et al. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front 
Immunol. 2019;10(October):1-16. doi:10.3389/fimmu.2019.02298 

36.  Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated 
tumor immune escape. Mol Cancer. 2019;18(1):1-17. doi:10.1186/s12943-018-0928-4 

37.  Han JM, Patterson SJ, Levings MK. The Role of the PI3K Signaling Pathway in CD4+ T Cell 
Differentiation and Function. Front Immunol. 2012;3(August):1-12. 
doi:10.3389/fimmu.2012.00245 

38.  O’Shea JJ, Plenge R. JAKs and STATs in Immunoregulation and Immune-Mediated Disease. 
Immunity. 2013;36(4):542-550. doi:10.1016/j.immuni.2012.03.014.JAKs 

39.  Oh H, Ghosh S. NF-κB: Roles and Regulation In Different CD4+ T cell subsets. Immunol Rev. 
2013;252(1):41-51. doi:10.1111/imr.12033.NF- 

40.  Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 60 of 75 
 

signaling in obesity. JAKSTAT. 2013;2(2):e238781-e2387817. 
41.  Patsoukis N, Brown J, Petkova V, et al. Selective Effects of PD-1 on Akt and Ras Pathways Regulate 

Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation. Sci Signal. 2012;5(230):1-
14. doi:10.1126/scisignal.2002796 

42.  Chang C, Curtis JD, Maggi LB, et al. Posttranscriptional Control of T Cell Effector Function by 
Aerobic Glycolysis. Cell. 2013;153(6):1239-1251. doi:10.1016/j.cell.2013.05.016 

43.  Cha J, Yang W, Cha J, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-
Associated Degradation of Article Metformin Promotes Antitumor Immunity Degradation of PD-
L1. Mol Cell. 2018;71(4):606-620. doi:10.1016/j.molcel.2018.07.030 

44.  Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by 
inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 
2015;March(6):1-7. doi:10.1038/ncomms7692 

45.  Schöndorf T, Lübben G, Karagiannis E, Erdmann E, Forst T, Pfützner A. Increased prevalence of 
cardiovascular disease and risk biomarkers in patients with unknown type 2 diabetes visiting 
cardiology specialists: Results from the DIASPORA study. Diabetes Vasc Dis Res. 2010;7(2):145-
150. doi:10.1177/1479164109358241 

46.  Kanmani S, Kwon M, Shin MK, Kim MK. Association of C-Reactive Protein with Risk of 
Developing Type 2 Diabetes Mellitus, and Role of Obesity and Hypertension: A Large Population-
Based Korean Cohort Study. Sci Rep. 2019;9(1):1-8. doi:10.1038/s41598-019-40987-8 

47.  Lee J, Ahn E, Kissick HT, Ahmed R. Reinvigorating Exhausted T Cells by Blockade of the PD-1 
Pathway. For Immunopathol Dis Therap. 2015;6(1-2):7-17. 
doi:10.1615/ForumImmunDisTher.2015014188 

48.  Kotwal A, Haddox C, Block M, Kudva YC. Immune checkpoint inhibitors: An emerging cause of 
insulin-dependent diabetes. BMJ Open Diabetes Res Care. 2019;7(1). doi:10.1136/bmjdrc-2018-
000591 

49.  Reiche ME, Toom M Den, Willemsen L, et al. Deficiency of T cell CD40L has minor induced 
beneficial effects on obesity-induced metabolic dysfunction. BMJ Open Diabetes Res Care. 
2019;7(1):1-10. doi:10.1136/bmjdrc-2019-000829 

 
 
Abbreviations 

ATP: Adenosine triphosphate; AMPK: AMP-activated protein kinase; CRP: C-reactive protein; CTLA-

4: cytotoxic T-lymphocyte-associated protein 4; CVDs: Cardiovascular diseases; CD4+: T-helper cells; 

CD8+: Cytotoxic T-cells; IFN-γ: Interferon gamma; IL: Interleukin; JAK/STAT3: Janus kinase/signal 

transducers and activators of transcription 3; PD-1: Programmed cell death-1; PD-L1/2: programmed death 

ligand 1/2; PI3K/AKT: phosphoinositide 3-kinase/protein kinase B;  MD: mean difference; T2D: Type 2 

diabetes mellitus; TCR: T-cell receptor; (TNF-α: Tumour necrosis factor alpha ; NF-κB: nuclear factor 

kappa B  

Ethics approval and consent to participate: Not applicable since data was generated from reported data 

Availability of data and materials: The authors confirm that the data supporting the findings of this study 

are available within the article and its supplementary files. 

Competing interests: We declare no competing interests associated with this manuscript. 

Funding: Not applicable  



T.M. Nyambuya, et al. Clinical Immunology 210 (2020) 108313 

   Page 61 of 76 
 

Authors’ contribution: TMN, PVD and BBN conceptualised, designed and drafted this manuscript. TMN, 

VM - data extraction; TMN, VM, study appraisal; TMN, BBN - statistical analysis, TMN, PVD, VM, BBN 

- editing and final approval of manuscript. TMN is the guarantor of this systematic review and meta-

analysis.



 

Page 62 of 77 
 

CHAPTER 2.5: Systematic Review and Meta-analysis 3 
Ann Allergy Asthma Immunol 125 (2020) 425e432 

 

Obesity-related asthma in children is characterized by T-helper 1
rather than T-helper 2 immune response: A meta-analysis 

Tawanda Maurice Nyambuya, MSc *,y; Phiwayinkosi Vusi Dludla, PhD z,x; 
Vuyolwethu Mxinwa, MSc *; Bongani Brian Nkambule, PhD * 
* School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa 
 y Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia 
 z Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy   
x Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa 

 

 

 
 
 
 
 
 
 
 
 
 

Article history: 

Received for publication March 24, 2020. 

Received in revised form June 2, 2020.  

Accepted for publication June 5, 2020 

Background: Asthma is a chronic inflammatory condition characterized by T-helper (TH) 2 polarization. 
In children, the prevalence of obesity is associated with an increased incidence of asthma. Notably, obesity 
is linked with TH1-mediated inflammation and has been identified as a major risk factor for asthma. 
Objective: To investigate the impact of obesity on TH1 (tumor necrosis factor a, interferon gamma, 
interleukin (IL)-6, IL-8) and TH2 (IL-4, IL-5, IL-10, IL-13) immune responses in children with asthma. 
Methods: We searched the MEDLINE and gray literature electronic databases for eligible studies from
inception up until April 2020. The quality of included studies and evidence was independently assessed by 
2 reviewers. The random-effects model was used in this meta-analysis, and outcomes were reported as
standardized mean difference (SMD) and 95% confidence interval (CI). 
Results: Overall, 5 studies comprising 482 participants met the inclusion criteria. The meta-analysis 
revealed an increased TH2-mediated immune response in lean people with asthma compared with controls
without asthma (SMD: -1.15 [95% CI: -1.93, 0.36]; I2 = 93%; pH < .001). However, in obese people with 
asthma, there was polarization toward TH1 immune response compared with lean people with asthma 
(SMD: -0.43 [95% CI: -0.79, -0.08]; I2 = 88%, pH < .001). 
Conclusion: This meta-analysis reveals that there are differences in immune responses mediated by T-
helper cells in lean and obese children with asthma. Moreover, and not unique to asthma, obesity polarizes
the immune response toward TH1 rather than the classical TH2. This could be an important aspect to
understand to establish effective therapeutic targets for obese children with asthma. 
©2020 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. 
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Introduction 
Chronic respiratory diseases (CRDs) are ranked among 
the top 5 noncommunicable diseases that are currently 
posing the greatest health care burden and contributing 
significantly to increased mortality globally.1 Among 
these CRDs is asthma, a chronic inflammatory disorder 
that is characterized by airway obstruction mediated by 
various inflammatory immune cells, including 
inflammatory leukocytes.2,3 Recently, it was estimated 
that asthma affects 339 million people worldwide, with 
a mortality rate of more than 356,000 deaths annually.4 

This burden may be attributed to increased prevalence of 
childhood obesity, a major risk factor for asthma,5 and 
comorbidities such as type 2 diabetes mellitus and 
cardiovascular diseases.6 Of note, systemic 
inflammation has been identified as a common 
characteristic feature among these comorbidities7,8 and 
has led to renewed interest in understanding the 
pathoimmunologic aspects of asthma. 
Immunoglobulin E (IgE)-mediated asthma is 
categorized as a type 1 hypersensitivity response that is 
broadly classified as either eosinophilic or 
noneosinophilic9 with exacerbated T-helper 2 (TH2) 
immune responses mediated by its cytokines interleukin 
(IL)-4, IL5, and IL-13.10 Hence, TH2 polarization is 
regarded as a hallmark of asthma pathogenesis. 
Interestingly, although TH2-mediated responses in 
people with asthma have been characterized,10-12 the 
clinical relevance of these findings remain controversial. 
This is partly due to the variable immunological 
responses in asthma therapy and the lack of clear 
mechanisms and factors that are independent of 
TH2emediated responses, as described elsewhere,13,14 

particularly, in cases of comorbidity with other disorders 
such as obesity.15 Notably, obesity has been associated 
with disease severity and reduced efficacy of asthma 
treatment, which is further affected by age-dependent 
factors in children.16,17 However, the pathophysiological 
mechanisms of obesity-related asthma remain poorly 
understood. Here, we hypothesize that these detrimental 
phenomena are partially a consequence of altered T-
helper cell responses induced by obesity. This is in 
conjunction with an exacerbated proinflammatory 
response in obesity being driven by TH1 cells, which are 
characterized by increased release of its cytokines, that 
is, interferon gamma (IFN-g), tumor necrosis factor 
(TNF)-a, and IL-6, as reported elsewhere.18,19 Likewise, 
these findings have been confirmed in obesity-related 
asthma,20-22 albeit others still suggested the TH2 
polarization hallmark.23 

Although previous systematic reviews and meta-
analysis have investigated the broad associations 
between obesity and asthma,24-26 none have assessed the 
impact of obesity on immune responses mediated by TH1 
and TH2 in asthma.  

Therefore, in this study, we aimed to investigate and 
establish whether obesity alters TH1 (TNF-a, IFN-g, IL-
6,IL-8)and TH2 (IL-4,IL-5,IL-10,IL-13) immune 
responses in asthma. The selected cytokines are known 
to mediate respiratory inflammation27 and affect asthma 
control in obesity-asthma conundrum.28 

Methods 

This meta-analysis was prepared according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses guidelines and performed to address the 
following questions: 
Question 1: Is the immune system of lean children with 
asthma polarized toward a proinflammatory TH1 or anti-
inflammatory TH2 response? 
Question 2: Does obesity alter these T-helper cell 
responses in obese children with asthma when compared 
with their lean counterparts? 

Search Strategy 

A comprehensive search was conducted from the 
inception of MEDLINE electronic database and 
ProQuest gray literature up until April 2020. The search 
was conducted by 2 independent reviewers (TMN and 
BBN), whereas a third reviewer (PVD) was consulted 
for arbitration in cases of disagreements. The search 
strategy comprised Medical Subject Heading and text 
words, such as obesity, asthma, TH1 and TH2 cells, and 
their respective synonyms. In addition to gray literature 
search, scanning reference lists of retrieved studies was 
also applied to identify relevant studies. No language 
restrictions were applied in the search strategy, and the 
Mendeley reference manager software (Elsevier, 
Amsterdam, Netherlands) was used to manage the 
reference list and remove study duplicates. 

Study Selection 

Studies were independently screened and selected by 2 
reviewers (TMN and B.B.N.) using a predefined 
inclusion and exclusion criteria. Briefly, this meta-
analysis only included studies that reported on both TH1 
and TH2 immune responses in children with asthma 
(aged 18 years). Moreover, the studies were only 
included if participants were categorized as either obese 
or lean. Reviews, books, editorials, letters, and studies 
that included adult participants (>18 years) were 
excluded. In addition, studies that did not compare obese 
and lean people with asthma or lean people with asthma 
vs lean healthy controls were excluded from this study. 
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Data Extraction 

Two independent investigators (TMN and VM) carried 
out the data extraction process using a predefined data 
extraction sheet. In cases of disagreements, BBN was 
consulted for arbitration. The primary aim of the study 
was to assess TH1 and TH2 function in obese children 
with asthma. The extracted data items from each study 
included the names of the authors, year of publication, 
study design, age of participants, effect measures of TH1 
and TH2 function (cytokines), and the main findings. 

Outcomes 

The outcomes of this meta-analysis were TH1 and TH2 
immune responses that were reported as standardized 
mean difference (SMD). 

Quality Assessment 

The quality of evidence was assessed using the Grading 
of Recommendations Assessment Development and 
Evaluation29 approach by 2 independent reviewers, 
TMN and VM. In cases of disagreements, a third 
reviewer, PVD, was consulted for arbitration. 
Furthermore, the quality of included studies was 
assessed using the modified Newcastle-Ottawa Scale 
adapted for cross-sectional studies.30 The tool uses the 
star system to appraise studies based on the following 3 
domains: selection of study groups, comparability of the 
groups, and outcome ascertainment. A score of 0 to 4 is 
rated as unsatisfactory, 5 to 6 as satisfactory, 7 to 8 as 
good, and 9 to 10 as very good. 

Statistical Analysis 

All statistical analyses were performed using REVMAN 
version 5.3 software (Cochrane Collaboration, Oxford, 
United Kingdom). In addition, heterogeneity was 
quantitatively assessed using Higgin’s I2 index.31 In 
cases of substantial heterogeneity (I2 > 50%) in the 
pooled effects estimate, the random-effects model was 
used. The fixed-effects model was used in cases of low 
heterogeneity (I2 < 50%).32 Statistical significance of 
heterogeneity was reported as pH. SMD and 95% 
confidence interval (CI) that account for the differences 
in the reported effect measures were used to measure the 
effect size of an outcome. Moreover, Cohen’s method 
was used to interpret the calculated effect estimate, 
whereby an SMD of 0.2, 0.5, and 0.8 was equated to 
small, medium, and large, respectively.33 A P value less 
than .05 was considered statistically significant. A 
sensitivity analysis was conducted to evaluate the 
influence of each study on the overall effect size using 
the leave-one-out method. The interrater reliability was 
evaluated for both the included studies and risk of bias 
by means of Cohen’s kappa. A kappa value of less than 
0.00 was taken as poor strength of agreement,  

0.00 to 0.20 as slight agreement, 0.21 to 0.40 as fair 
agreement, 0.41 to 0.60 as moderate agreement, 0.61 to 
0.80 as substantial agreement, and 0.81 to 1.00 as perfect 
agreement.34 

 

Results  

Study Selection and Data Synthesis 

Overall, 369 studies were identified and independently 
screened for eligibility by 2 reviewers. A total of 352 
studies were excluded from the screening stage because 
65 were reviews and 287 were not relevant to the topic 
of interest. The full texts of the remaining 17 studies 
were then assessed for eligibility, and a total of 5 studies 
were excluded owing to their study design. In the 
excluded studies, individuals with asthma were not 
grouped as either lean or obese. In addition, 6 studies 
were excluded due to the reported T-helper cells 
subtypes other than TH1 and TH2. One study was also 
excluded owing to limited data values of effect measures 
reported,21 and only 5 studies20,22,23,35,36 met the inclusion 
criteria as shown in Figure 1 (overall agreement 99.73%, 
kappa = 0.89). The interrater agreement in the study 
selection process was perfect. The meta-analysis was 
split into 2 major comparisons, one which compared TH1 
and TH2 functions in lean people with asthma vs 
controls, whereas the other focused on lean vs obese 
people with asthma. 

Characteristics of Included Studies 

All included studies were published in peer-reviewed 
journals between 2012 and 2016, and the detailed study-
level characteristic features are described in Table 1. 
Briefly, all studies were cross-sectional studies 
involving a total of 482 participants with an age range of 
7-18 years from United States and Mexico. Of these, 109 
were controls and 373 had asthma, of which 190 were 
lean and 185 were obese. The reported cases of asthma 
were based on the physician’s diagnosis and medical 
electronic records. Obesity was defined as having a body 
mass index (BMI) greater than the 95th percentile for 
age and sex, whereas lean was defined as having a BMI 
less than the 85th percentile.37 For the participants of this 
study whose average age was approximately 9 years, 
obesity was defined as BMI greater than 21.1 kg/m2 and 
lean as BMI less than 18.6 kg/m2. However, for 15-year-
old participants, obesity was defined as BMI greater than 
26.8 kg/m2 and lean as BMI less than 23.4 kg/m2. 

Quality Assessment 

All included studies were of good quality and had a median 
score range of 7 (6-7) out of a possible score of 10 (eTable 1). 
Four of the studies were rated as good20,22,35,36 and the remainder 
as satisfactory.23 Briefly, included studies had a selection 
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median of 3 (3-4) of possible 5 stars (overall agreement 
100%, kappa = 1), comparability median of 2 (0-2) of 
possible 2 stars (overall agreement 70%, kappa = 0.6), 
and outcome ascertainment median of 2 (2-3) of 3 
possible stars (overall agreement 100%, kappa = 1). 

 

Publication Bias 

Potential publication bias was explored using visual inspection 
of funnel plots. However, owing to lower number of studies 
than recommended, we could not effectively assess 
publication bias (eFig 1). Therefore, there may be potential 
publication bias among the included studies. 

 

 

Figure 1. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram illustrating the 
study selection process. 
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Table 1 
Characteristics of Included Studies on TH1/2 Cell Function in Obesity-Related Asthma in Children (n = 5) 
Study Country Study design Study size Asthma diagnosis BMI (kg/m2) Age (y) TH cell effect measures Main findings

Rastogi et al20 United States Cross-sectional 90 participants (30 lean 
people with asthma; 
30 obese people with 
asthma and 30 
controls) 

Physician diagnosis 
based on the NAEPP 
guidelines 

Obese people with asthma 
(28.4) 

Lean people with asthma 
(17.3) 

9.23  1.3 Serum TH1 cytokines IL-6, TNFa, 

and IFN-g and Serum TH2 
cytokines (IL-4, IL-5, and IL13). 

   Pediatric obesity-associated
asthma is marked by TH1 and not

TH2 polarization. In addition, poor 
pulmonary function is associated 
with increased TH1 cytokines in 
obese people with asthma. 

Youssef et al36 Egypt Cross-sectional 70 participants (25 lean 
people with asthma; 
25 obese people with 
asthma and 20 
controls) 

Physician diagnosis 
based on GINA 
guidelines 

Obese people with asthma 
(25.1) 

Lean people with asthma 
(18.6) 

8.61  2.8 Serum TH1 cytokine (IFN-g) and TH2 
cytokine (IL-4). 

Obesity-associated asthma in 

children is characterized by TH1 

and not TH2 polarization. 
Moreover, elevated levels of IFNg 
in obese people with asthma were 
associated with poor pulmonary 
function and disease severity. 

Sanchez-Zauco et al23 Mexico Cross-sectional 65 estimated participants 
(23 lean people with 
asthma; 19 obese 
people with asthma and 
23 
controls) 

Physician diagnosis Obese people with asthma 
(23.9) 

Lean people with asthma 
(17.6) 

9.17 Serum TH1 cytokines (IL-2, IFNg, 

and TNF-a) 
and 
Serum TH2 cytokines (IL-4 and 

IL-10). 

Obese people with asthma have 
decreased TH1emediated immune 

response when compared with 
lean people with asthma and 
controls. 

   In addition, TH2 cytokines are 
increased in lean people with 
asthma when compared with 
obese people with asthma and 
controls.

Rastogi et al22 United States Cross-sectional 114 participants (39 lean 
people with asthma; 39 
obese people with 
asthma and 36 
controls) 

Physician diagnosis and 
medical records 

Obese people with asthma 
(33.2) 

Lean people with asthma 
(22.2) 

15.9  1.7 Serum TH1 cytokines (IL-2, IL-6, 

TNF-a and IFN-g) and Serum 
TH2 cytokines (IL-4, IL10, and IL-
13). 

   TH1/2 cytokine ratio is higher in 
obese people with asthma when 
compared with lean people with 
asthma. Moreover, the high 

   TH1/2 ratio directly correlated with 
metabolic abnormalities and poor 
pulmonary function.

Lautenbacher et al35 United States Cross-sectional 143 participants (71 lean 
people with asthma 
and 72 obese people 
with asthma) 

Physician diagnosis and 
medical records 

Not reported (7-18) Serum TH1 cytokines (IFN-g,
TNF, IL-6, and IL-8) 

and 
Serum TH2 cytokines (IL-4, IL-5 and 

IL-13). 

  TH1 cytokines are increased in 
obese people with asthma vs lean 
people with asthma. In addition, 
increased TH1 function is 
associated with poor pulmonary 
function. 

   TH2 cytokines are comparable 
across all 3 groups except for 
IL13, which is high among lean 
people with asthma. 

Abbreviations: BMI, body mass index; GINA, Global Initiative for Asthma; IL, interleukin; IFN, interferon; NAEPP, National Asthma Education and Prevention Program; TH, T-helper; TNF, tumor necrosis factor. 
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Figure 2. A comparison of standardized mean difference of TH1- and TH2-mediated responses between lean people with asthma and healthy controls. 95% CI, 95% confidence 
interval; TH1, T-helper 1; TH2, T-helper 2. 

TH1/2 Immune Responses in Lean People With Asthma 

Overall pooled estimates revealed a TH1-weighted 
imbalance in lean people with asthma compared with the 
controls without asthma (SMD: 0.16 [95% CI: 0.41, 
0.72]; I2 = 89%; pH < .001) (Fig 2A). Owing to 
substantial levels of statistical heterogeneity in the 
reported effect estimate, we performed a subgroup 
analysis to explore sources of heterogeneity based on the 
reported effect measures of TH1 response. The test for 
subgroup differences revealed no significant subgroup 
effect (P = 1.00) (eTable 2), suggesting that the observed 

 

differences in TH1 immune response are not modified by 
varying effect measures reported. However, the pooled 
estimates support a TH2 weighted response in lean 
children with asthma compared with controls (SMD: 
1.15 [95% CI: 1.93, 0.36]; I2 = 93%; pH < .001) (Fig 2B). 
Nonetheless, due to high statistical heterogeneity among 
the included studies and differences in the reported 
effect measures of the TH2 responses, we performed a 
subgroup analysis based on the reported effect measures 
of TH2 function. 

 

 

Figure 3. A comparison of standardized mean difference of TH1- and TH2-mediated responses between lean and obese people with asthma. 95% CI, 95% confidence interval; TH1, 
T-helper 1; TH2, T-helper 2. 
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Subgroup analysis of TH2 immune response 
The test for subgroup differences revealed a statistically 
significant subgroup effect (P = .08) (eTable 2). Thus, 
the different cytokines assessed as effect measures 
modified the overall effect of TH2 immune response in 
lean people with asthma in comparison with controls. 
However, there were substantial levels of unexplained 
heterogeneity between included studies (I2 = 60.6%). 
Interestingly, there was a large effect size in IL-4 levels 
between lean people with asthma and controls (SMD: 
2.22 [95% CI: 3.88, 0.55]; I2 = 95%; pH < .001). 
Moreover, IL-13 levels were higher in lean people with 
asthma compared to controls (SMD: 0.28 [95% CI: 0.62, 
0.06]; I2 = 0%; pH = .50), and there was a medium effect 
size in IL-10 levels (SMD: 0.68 [95% CI: 2.59, 1.23]; I2 

= 95%; pH < .001). 

Obesity-Related Asthma Is Characterized by TH1 and 

Not TH2 Polarization 

Interestingly, unlike in the lean counterparts, immune 
responses in obese individuals with asthma are TH1 
weighted. The pooled estimates revealed that TH1 
cytokine levels are increased in obese people with 
asthma compared to lean people with asthma (SMD: 
0.43 [95% CI: 0.79, 0.08], I2 = 88%; pH < .001) (Fig 3A). 
However, pooled estimates of TH2 immune-mediated 
responses were decreased in obese individuals with 
asthma compared to lean people with asthma (SMD: 
0.54 [95% CI: 0.10, 0.98]; I2 = 89%; pH < .001) (Fig 3B). 
Nonetheless, due to substantial statistical heterogeneity, 
we performed a subgroup analysis based on the reported 
effect measures. 

Subgroup analysis of TH2-Mediated immune response 

The test for subgroup differences revealed a statistically 
significant subgroup effect (P < .001) with substantial 
levels of unexplained heterogeneity (I2 = 87.7%) (eTable 
3). Pooled estimates of IL-4 and IL-13 levels were lower 
in obese people with asthma compared with lean people 
with asthma (SMD: 0.83 [95% CI: 0.00, 1.65]; I2 = 
92%%; pH = .44) and (SMD: 0.74 [95% CI: 0.32, 1.17]; 
I2 = 64%; pH = .06), respectively. In contrast, IL-5 levels 
were higher in obese people with asthma vs lean 
counterparts (SMD: 0.28 [95% CI: 0.62, 0.06]; I2 = 27%; 
pH = .24). 

Sensitivity Analysis 
To investigate the levels of high unexplained sources of 
heterogeneity and to ascertain whether our findings were 
influenced by any single study, we performed a 
sensitivity analysis based on the guidelines followed to 
diagnose asthma (eTable 4). Heterogeneity among the 
included studies remained high in both reported 
outcomes involving lean and obese people with asthma. 
We repeated the meta-analysis by leaving out the study 
by Youssef et al36 due to its peculiarly large effect size 

 in the reported outcomes. The findings remained robust 
except for the magnitude of TH2 immune response, 
which changed from a medium (0.54 [0.10, 0.98]) to a 
small (0.29 [0.02, 0.59]) effect size (eTable 4). 

Discussion 

The primary aim of this meta-analysis was to determine 
whether obesity alters TH1 and TH2 immune responses 
in children with asthma. As expected, the pooled effect 
estimates revealed increased TH2-mediated immune 
responses in lean people with asthma. However, in 
obesity-related asthma, there is polarization toward TH1 
immune response, which is associated with poor 
pulmonary function.20,22,35 Therefore, the overall 
findings from this meta-analysis suggest that obesity, 
although not unique to asthma, aggravates TH1-mediated 
immune responses in obesity-related asthma. 
T-helper cells are involved in the initiation and 
mediation of airway inflammation in asthma,11,12 by 
exacerbating cytokine release and action. Notably, 
cytokines play a pivotal role in generating a cytokine 
milieu that promotes the differentiation of naive T-
helper cells into TH2 cells.2 As a consequence, TH2 
effector responses are aggravated coupled with 
increased secretion of cytokines such as IL-4, IL-5, and 
IL-13. Our findings revealed that both IL-4 and IL-13 
levels were increased in lean people with asthma 
compared with both controls and obese people with 
asthma. Interestingly, IL-4 and IL-13 are central in 
mediating TH2 immune responses and also share a 
common receptor that orchestrates B-cell activation and 
IgE antibody secretion.38,39 Moreover, IL-13 is involved 
in airway inflammation and obstruction by activating 
proinflammatory macrophages and increasing mucus 
production.40 Overall, these findings are supporting 
evidence of TH2-mediated immune response in lean 
children with asthma. 
In our previous work, we reported that in the context of 
T-helper cells, obesity-induced inflammation is 
mediated by increased TH1 and TH17 responses coupled 
with decreased TH2 and regulatory T cells.41 These 
findings prompt us to postulate that obesity-related 
asthma may be a different entity of this disease because 
obesity is a low-grade inflammatory state characterized 
by increased adiposity and activation of various 
inflammatory pathways.42,43 As such, increased 
activation and release of proinflammatory cytokines and 
adipokines promotes systemic inflammation, which has 
been linked to hypersensitivity reactions.44,45 The meta-
analysis revealed that obese individuals with asthma 
have increased TH1mediated immune response. 
Furthermore, obesity worsens the severity of asthma in 
children, in part by increasing IL-5 and eosinophil-
mediated inflammation as previously reported.46 IL-5 
signaling can promote IL-4-induced B-cell activation 
and class switch to IgE-synthesizing plasma cells, 
resulting in marked increase in serum IgE levels and 
activation of eosinophils.47,48  
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In fact, elevated levels of IgE promote the activation of 
eosinophils through increased IgE receptor signaling48,49 

on their cell surface subsequent to eosinophilia, thus 
highlighting the direct association between IL-5 and IgE 
levels in asthma50 and their association with poor 
pulmonary function. Interestingly, in this study, the 
levels of IL-5 were higher in obese people with asthma 
than in lean counterparts. Therefore, we postulate that 
therapies targeting IL-5 activity may be less effective if 
the therapeutic doses used in obese people with asthma 
are similar to those prescribed for lean people with 
asthma. Collectively, these findings suggest that, 
although obesity-related asthma is characterized by TH1 
polarization, the levels of IL-5 are still increased. 
Therefore, therapies that inhibit IL-5 activity, such as 
mepolizumab combined with corticosteroids, which 
reduce T-cell activation while promoting the 
differentiation of regulatory T cells,51 maybe of 
therapeutic benefit and improve the response to 
treatment in obese people with asthma. Nevertheless, 
beyond the TH1/TH2 paradigm, other mechanisms 
involving additional T-cell subsets, such as CD8, TH9, 
TH17, TH22, and follicular T-helper cell subsets have to 
be studied in detail for their role in asthma pathogenesis 
in obese children, as reviewed elsewhere.51,52 

In addition, exacerbated inflammation in obese people 
with asthma has also been attributed to increased levels 
of leptin and TNF-a which were directly associated with 
enhanced activation of eosinophils in these patients.53 

Likewise, low levels of vitamin D concomitant to 
increased risk of respiratory infections in obese children 
with asthma have also been described.15 This may in part 
be attributed to impaired immunomodulatory effects of 
vitamin D on TH1/2 and TH17 immune responses.54,55 In 
addition to these factors, asthma outcomes are 
significantly influenced by socio-economic distal 
factors. For instance, poor communities are most likely 
to have unhealthy residential environments,56 which 
together with genetics and wheezing episodes at 
preschool age57 predisposes these children to develop 
asthma. Moreover, these societies are associated with 
high levels of stress, violence, and poor access to 
medical care, which increases morbidities.56 Obesity-
related asthma, however, is more driven by increased 
sedentary lifestyle and unhealthy eating that are most 
prevalent in developed countries.58 Congruent to this, 
60% of the included studies were from those with high 
income,20,22,35 and the remaining studies were from low- 
to middle-income countries.23,36 
The limitations of the current review include lack of 
standardization of asthma diagnosis, which was based on 
physician diagnosis and electronic records. This was a 
challenge because the approaches used potentially 
varied significantly, making it difficult to assess the 
validity of studies and to compare their findings. 
Moreover, people with asthma were generally grouped 
and not categorized based on their immunologic 
phenotypes (eosinophilic or noneosinophilic).  

This was a major limitation because different asthma 
subtypes present with unique immunologic features. 
Together with differences in disease duration among the 
participants, the heterogeneous nature of asthma and 
reported TH2 effect measures, which were pooled 
cytokines with antagonistic effect, may potentially be 
the source of unexplained heterogeneity among the 
included studies, particularly in the analysis between 
lean and obese people with asthma. Finally, critical 
population features, such as social and economic 
demographics, which heavily influence the interaction 
between obesity and asthma in children were not 
reported in the included studies. Ethnicity was reported 
in 3 of the included studies,20,22,35 which involved an 
approximately equal number of Hispanics and African 
American children. The remaining 2 studies23,36 did not 
report on this aspect, and this limits the generalizability 
of our findings. However, our study highlights the 
evidence gap that needs to be explored to better 
understand the disease pathology in white people 
because they may not be represented in these patient 
cohorts. 
Despite these limitations, our study has significant 
strengths. First, and to the best of our knowledge, this is 
the first meta-analysis to explore the effect of obesity on 
TH1 and TH2 immune responses in children with asthma. 
This is of special interest to understand the TH1/TH2 
paradigm in modulating an adaptive immune response, 
especially in relation to the development of metabolic 
complications, as recently reviewed.59 Second, the study 
selection and quality assessment processes employed in 
this study were robust and comprehensive as indicated 
by high levels of interrater reliability. Moreover, the 
reported effect sizes were consistent, and the sensitivity 
analysis demonstrated the robustness of the presented 
findings. Finally, the findings of this study provide 
insights into future asthma therapies to consider the 
impact of obesity on the immune response, which we 
have shown to be completely different when compared 
with the lean counterparts, despite sharing the same 
condition. 
In conclusion, the evidence synthesized in this meta-
analysis reveals that there are differences in immune 
responses mediated by T-helper cells in lean and obese 
children with asthma. In addition, although not unique 
to asthma, obesity polarizes the immune response 
toward TH1 rather than the classical TH2. Therefore, 
asthma therapies that particularly target immune 
responses should consider the underlying obese state of 
these patients for an effective treatment outcome. 

Supplementary Data 

Supplementary data related to this article can be found 
at https://doi.org/10.1016/j.anai.2020.06.020. 
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Supplementary Data 

 

eFigure 1. Funnel plots reporting publication bias. SMD, standardized mean difference. 
432.e2 

eTable 1 
Quality Assessment of Included Studies Using the Modified Newcastle-Ottawa Scale for Cross-Sectional Studies (n = 5) 
Study and year Selection 

 
  Representativeness Selected Sample Diagnose Average 
  of the sample group size 

of users 

Comparability

 
Confounders Score 

Outcome

 
Assessment Statistical Average of 
methods test 

Total 
quality 
score 

Rating

Rastogi, 2012 0 0 0 ***  3 **  2 *  *  2 7 Good

Lautenbacher, 2016 0 0 0 ***  3 **  2 *  *  2 7 Good

Rastogi, 2015 0 0 0 ***  3 **  2 *  *  2 7 Good

Youssef, 2013 0 *  0 ***  4 0 0 **  *  3 7 Good

Sanchez-Zauco, 2014 0 *  0 ***  4 0 0 *  *  2 6 Satisfactory

* represents the number of scores awarded per domain. eTable 2 
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Forest Plot Text Data for TH1/TH2 Immune Responses in Lean Individuals With Asthma 
Outcome Effect measure Study Control Lean individuals with asthma Weight Random effects I2, pH

   Mean SD Total Mean SD Total  SMD [95% CI]  

TH1 immune 
response 

Tumor necrosis 

factor-a 
Rastogi, 2012 1.01 0.33 30 1.21 0.59 30 12.7% 0.41 [0.92, 0.10]  

  Rastogi, 2015 0.65 0.43 36 0.29 0.44 39 12.9% 0.82 [0.35, 1.29]  

  Subtotal  66   69 25.6% 0.21 [L1.00, 1.41] 92%, <.001

 Interferon gamma Rastogi, 2012 
Rastogi, 2015 
Sanchez-Zauco, 2014 

1.1 
0.64 

25.7 

0.66 30
1.01 36 
7.8 23 

0.72
0.27 

13.0 

1.15
0.81 
7.4 

30
39 
16 

12.7% 
13.0% 
11.4% 

0.40 [0.11, 0.91] 
0.40 [0.06, 0.86] 
1.63 [0.89, 2.37] 

 

  Youssef, 2013 
Subtotal 

20.0 9.5 20
109 

40.8 11.3 25
110 

11.5%
48.6% 

1.94 [2.66, 1.22] 
0.13 [L1.06, 1.32] 94%, <.001

 Interleukin 6 Rastogi, 2012 
Rastogi, 2015 
Subtotal 

0.88 
0.03 

1.1 30
0.59 36 

66 

1.03
0.19 

1.11 
0.39 

30 
39 
69 

12.7%
13.0% 
25.7% 

0.13 [0.64, 0.37] 
0.44 [0.02, 0.90] 
0.16 [L0.40, 0.72] 63%, .10

  Total  241   248 100% 0.16 [L0.41, 0.72] 89%, <.001

  Test for subgroup 
differences        (P = 1.00), 0%

TH2 immune 
response 

Interleukin 4 Rastogi, 2012 
Rastogi, 2015 
Youssef, 2013 
Subtotal 

0.27 
1.1 

10.0 

0.82 30 
0.5 36 2.2 
20 

86 

0.48
1.76 

89.0 

1.11
0.5 

20.9 

30
39 
25 
94 

14.8%
14.9% 
11.4% 
41.1% 

0.76 [1.28, 0.23] 
1.31 [1.81, 0.81] 
4.95 [6.17, 3.73] 
L2.22 [L3.88, L0.55] 95%, <.001

 Interleukin 10 

Interleukin 13 

Rastogi, 2015 
Sanchez-Zauco, 2014 
Subtotal 
Rastogi, 2012 
Rastogi, 2015 
Subtotal 

0.21 
0.3 

0.79 
0.34 

0.71 36
0.3 20 

56 
1.08 30 
0.88 36 

66 

0.04
14.9 

0.96 
0.6 

0.49
11.7 

1.12 
0.35 

39 
23 
62 
30 
39 
69 

15.0%
14.0% 
29.1% 
14.8% 
15.0% 
29.9% 

0.28 [0.18, 0.73] 1.67 

[2.38, 0.97] 
0.68 [2.59, 1.23] 
0.15 [0.66, 0.35] 
0.39 [0.85, 0.07] 
L0.28 [L0.62, 0.06] 

95%, <.001 

0%, .50

  Total 
Test for subgroup 

differences 

208 225 100.0% 1.15 [1.93, 0.36] 93%, <.001

(P = .08), I2 = 60.6%

Abbreviations: CI, confidence interval; TH1, T-helper 1; TH2, T-helper 2; SMD, standardized mean difference. 
Bold values are the pooled effect size of the cytokine reported. 

432.e3 

eTable 3 
Forest Plot Text Data for TH1/TH2 Immune Responses in Obese Individuals With Asthma 
Outcome Effect measure Study Lean individuals with asthma Obese individuals with asthma Weight Random effects I2, pH

 Mean SD Total Mean SD Total  SMD [95% CI]  

TH1 immune Tumor necrosis Lautenbacher, 

2016 response factor-a 
0.68 0.69 71 0.92 0.57 72 8.5% 0.38 [0.71, 0.05]  

 

Interferon-g 

Rastogi, 2012 
Rastogi, 2015 
Subtotal 
Lautenbacher, 2016 
Rastogi, 2012 
Rastogi, 2015 
Sanchez-Zauco, 2014 

1.21 
0.29 

0.46 
0.72 
0.27 

13.0 

0.59
0.44 

0.99 
1.15 
0.81 
7.4 

30
39 

140 
71 
30 
39 
16 

1.31 
0.6 

0.56 
0.68 
0.47 
4.2 

0.43
0.46 

0.87 
0.85 
0.89 
1.3 

30
39 

141 
72 
30 
39 
17 

7.8% 
8.0% 

24.3% 
8.6% 
7.8% 
8.1% 
6.3% 

0.19 [0.70, 0.32] 
0.68 [1.14, 0.22] 
0.42 [0.66, 0.17] 
0.11 [0.43, 0.22] 
0.04 [0.47, 0.55] 0.23 

[0.68, 0.21] 
1.64 [0.84, 2.44] 

5%, .35

  Youssef, 2013 
Subtotal 

40.8 11.3 25
181 

203.0 36.0 25
183 

4.0% 
34.7% 

5.98 [7.33, 4.64] 
-0.75 [-1.93, 0.42] 96%, <.001



T.M. Nyambuya et al. / Ann Allergy Asthma Immunol 125 (2020) 425e432 

   Page 74 of 89 
 

 Interleukin 6 

Interleukin 8 

Lautenbacher, 2016 
Rastogi, 2012 
Rastogi, 2015 
Subtotal 
Lautenbacher, 2016 
Rastogi, 2015 
Subtotal 
Total 
Test for subgroup 

differences 

0.32 
1.03 0.19 

0.78 
0.18 

0.98
1.11 
0.39 

1.08 
0.74 

71 
30 
39 

140 
71 
39 

110 
571 

0.58
1.41 
0.05 

1.12 
0.59 

0.98
0.74 
0.6 

0.95 
0.55 

72 
30 
39 

141 
72 
39 

111 
576 

8.6% 
7.8% 
8.0% 

24.4% 
8.5% 
8.0% 

16.6% 
100.0% 

0.26 [0.59, 0.07] 
0.40 [0.91, 0.11] 
0.47 [0.92, 0.02] 0.35 

[0.58, 0.11] 0.33 [0.66, 

0.00] 0.62 [1.08, 0.17] 

0.43 [0.70, 0.16] 
0.43 [0.79, 0.08] 

0%, .75 

2%, <.001 
88%, <.001 
P = .89, I2 = 0%

TH2 immune Interleukin 4 
response 

Lautenbacher, 2016 
Rastogi, 2012 
Rastogi, 2015 

0.51 
0.48 
1.76 

0.77
1.11 
0.5 

71
30 
39 

0.38 
0.06 
1.42 

0.77
0.87 
0.8 

72 
30 
39 

10.9% 
10.0% 
10.3% 

0.17 [0.16, 0.50] 
0.42 [0.10, 0.93] 
0.50 [0.05, 0.96] 

 

 Sanchez-Zauco, 2014 107.7 
Youssef, 2013 89.0 

23.4
20.9 

23
25 

112.4 
30.0 

30.3 
8.2 

19 
25 

9.5% 
7.6% 

0.17 [0.78, 0.44] 
3.66 [2.73, 4.59] 

 

Interleukin 5 

Interleukin 13 

Subtotal 
Lautenbacher, 2016 0.4 
Rastogi, 2012 0.11 
Subtotal 
Lautenbacher, 2016 0.37 

0.68 
1.05 

0.96

188
71 
30 

101 
71 0.29 0.4 

0.03

0.72 
0.87 

0.75

185 
72 
30 

102 
72 

48.3% 
10.9% 
10.0% 
20.8% 
10.8% 

0.83 [0.00, 1.65] 0.16 

[0.48, 0.17] 0.52 [1.04, 

0.01] 
0.28 [0.62, 0.06] 
0.39 [0.06, 0.72] 

92%, <.001

27%, .24 

 Rastogi, 2012 0.96 
Rastogi, 2015 0.6 

1.12
0.35 

30
39 

0.03

0.1 
0.89
0.62 

30
39 

9.9% 
10.2% 

0.97 [0.43, 1.50] 
0.98 [0.51, 1.45]  

 Subtotal  140   141 30.9% 0.74 [0.32, 1.17] 64%, .06

 Total  429   428 100.0% 0.54 [0.10, 0.98] 89%, <.001

 Test for subgroup differences      P < .001, I2 = 87.7%

Abbreviations: CI, confidence interval; TH1, T-helper 1; TH2, T-helper 2; SMD, standardized mean difference. eTable 4 

Sensitivity Analysis of TH1 and TH2 Immune Responses in Obese Individuals With Asthma Based on the Guidelines Followed in Diagnosing Asthma 
Outcomes Asthma diagnosis 

guidelines followed 
Number of studies Omitted studies SMD [95% CI] I2 (%), pH value Overall effect: Z (P value)

TH1 immune 
response 

All 
NAEPP 
GINA 
Unspecified 

51-5 
11 
15 
32,3,5 

None
4 2-5 
4 1-4 
21,5 
After removal of 

Youssef et al, 20135

0.43 [0.79, 0.08] 0.18 

[0.48, 0.11] 5.98 [7.33, 

4.64] 0.25 [0.51, 0.01] 
0.24 [0.45, 0.03] 

88% (pH <.001) Not 

applicable 
Not applicable 
73% (pH <.001) 
65% (pH = .01) 

2.37 (.02)
1.21 (.22) 
8.74 (< .001) 
1.88 (.06) 
2.26 (.02) 

TH2 immune 
response 

All 
NAEPP 
GINA 
Unspecified 

5 1-5 
11 
15 
3 2-4 

None
42-5 
41-4 
21,5 
After removal of 

Youssef et al5

0.54 [0.10, 0.98]
0.28 [0.56, 1.13] 
3.66 [2.73, 4.59] 
0.29 [0.03, 0.61] 
0.29 [0.02, 0.59] 

89% (pH < .001) 
Not applicable 
Not applicable 
74% (pH = .002) 
77% (pH < .001) 

2.42 (.02)
0.66 (.51) 
7.71 (< .001) 
1.75 (.08) 
1.85 (.06) 

Abbreviations: CI, confidence interval; TH1, T-helper 1; TH2, T-helper 2; SMD, standardized mean difference. 
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CHAPTER 2.6: Systematic Review 2 

 

The impact of metformin and aspirin on T-cell mediated inflammation: A 
systematic review of in vitro and in vivo findings 

Tawanda Maurice Nyambuyaa,b, Phiwayinkosi Vusi Dludlac,d, Vuyolwethu Mxinwaa, 
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A R T I C L E I N F O A B S T R A C T 
Keywords: 
Aspirin 
Cardiovascular 

diseases 
Inflammation 
Metformin 
T-cells 
Metabolic diseases 
Type 2 diabetes mellitus 

Chronic inflammation and hyperglycaemia are well-established aspects in the pathogenesis of type 2 diabetes 
mellitus (T2D), including the progression of its associated complications such as cardiovascular diseases (CVDs). 
In fact, emerging evidence shows that dysfunctional immune responses due to dysregulated T-cell function 
aggravates CVD-related complications in T2D. However, there is a lack of specific therapeutic interventions that 
protect patients with diabetes who are at risk of heart failure. Metformin and aspirin are among the leading 
therapies being used to protect or at the very least slow the progression of CVD-related complications. The 
current review made use of major electronic databases to identify and systematically synthesise emerging 
experimental data on the impact of these pharmacological drugs on T-cell responses. The quality and risk of bias 
of include evidence were independently assessed by two reviewers. Overwhelming evidence showed that both 
metformin and aspirin can ameliorate T-cell mediated inflammation by inducing regulatory T-cells (Tregs) 
polarisation, inhibiting T-cell trafficking and activation as well as signal transducer and activator of transcription 
(STAT)3 signalling. As a plausible mechanism to mediate T-cell function, metformin showed enhanced potential 
to regulate mechanistic targets of rapamycin (mTOR), STAT5 and adenosine-monophosphate-activated protein 
kinase (AMPK) signalling pathways. Whilst aspirin modulated nuclear factor kappa-light-chain-enhancer of 
activated B-cells (NF-kB) and co-stimulatory signalling pathways and induced T-cell anergy. Overall, 
synthesised data prompt further investigation into the combinational effect of metformin and aspirin for the 
management of T2D-related cardiovascular complications. 
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Introduction 
Type 2 diabetes (T2D) is a low-grade chronic 
inflammatory condition that is distinguished by 
abnormally elevated blood glucose levels, insulin 
resistance and chronic immune activation [1–3]. 
Immune dysfunction as a consequence of chronic 
inflammation is a well-described feature associated with 
the progression of cardiovascular diseases (CVDs) in 
T2D patients, with substantial evidence implicating 
dysfunctional immune response mediated by T-cell 
activation during the pathogenesis of this process [4,5]. 
In fact, exacerbated activation of T helper (Th)1, CD4+ 

and CD8+ T-cells in T2D, together with reduced levels 
of Th2 and regulatory T-cells (Tregs) has been shown to 
greatly accelerates inflammation and insulin resistance 
[6]. Once activated, T-cells can proliferate and release 
pro- or anti-inflammatory cytokines that either activate 
or inhibit signalling pathways in immune cells [7–9]. 
Therefore, regulation of T-cell signalling is important in 
modulating immune responses, which could be essential 
in attenuating T2Dassociated complications if optimally 
controlled. 
Chronic immune activation is a hallmark of T2D and 
increasing evidence has demonstrated that currently 
used oral glucose lowering and anti-inflammatory drugs 
such as metformin and aspirin can modulate immune 
responses and attenuate inflammation-related 
complications by regulating T-cell function [9–12]. For 
instance, in addition to its anti-hyperglycaemic 
properties, metformin suppresses hepatic 
glucose production through the activation of adenosine-
monophosphate-activated protein kinase (AMPK) 
[13,14]. Metformin attenuates pro-inflammatory 
processes by downregulating the signal transducer and 
activator of transcription (STAT)3 and mechanistic 
target of rapamycin (mTOR) activity [15,16]. However, 
some studies have reported discordant findings on the 
effect of metformin on inflammation or T-cell function 
[11,17]. Therefore, the impact of metformin on T-cell 
mediated inflammation needs further clarity. 
Apart from metformin, aspirin has been another drug 
target increasingly studied for its therapeutic benefits 
against CVDs and T2D-related complications [18–20]. 
Aspirin is a nonsteroidal anti-inflammatory drug that is 
known to act by blocking cyclooxygenase activity, 
leading to the attenuation of T-cell activation [21]. 
Moreover, aspirin inhibits the activation of pro-
inflammatory nuclear factor kappa-light-chain-enhancer 
of activated B-cells (NF-kB) and STAT3 signalling in 
both normal physiology and inflammatory conditions 
[10,22,23]. However, other studies have reported on the 
negative effect of aspirin in regulating T-cell function 
[24,25]. Thus, it is necessary to enhance our 
understanding on the impact of metformin and aspirin on 
T-cell function in T2D. To the best of our knowledge, 
there are no updated reviews available that have 
systematically synthesised and comprehensively 
reported on the impact of metformin or aspirin on T-cell 

 function in connection to metabolic diseases. Therefore, 
such evidence is critically explored in the current 
review, including implicated mechanisms that link T-
cell activation and aggravation of inflammation in T2D 
or related metabolic complications. 

Methods 
This systematic review was prepared using the Preferred 
Reporting Items for Systematic Review and Meta-
analysis (PRISMA) guidelines [26] and it forms part of 
a bigger study investigating T-cell function in T2D 
which is registered with the international prospective 
register of a systematic review (PROSPERO), 
registration number: CRD42018099745. 
This systematic review was performed to address the 
following questions; 
Question 1: Does metformin or aspirin alter T-cell 
function? 
Question 2: How do these drugs modulate immune 
response mediated by T-cells in a physiological state and 
chronic inflammation? To achieve this, we used the 
following PICO process; 

P – T-cells from individuals with or without 

inflammatory diseases and animal models of 

inflammation I – Metformin or aspirin 

C – Treatment naïve participants (In vitro-untreated cells 
and in vivo participants not on aspirin or metformin) O 
– T-cell activation. 

2.1. Search strategy 

A comprehensive search was conducted from inception 
up to the 31st of January 2020, using Cochrane Library, 
Embase and PubMed electronic databases as well as 
grey literature by two independent reviewers (TMN and 
SRN). In cases of disagreements, a third reviewer (PVD) 
was consulted for arbitration. Two search strategies 
were independently applied to identify relevant studies, 
one for metformin and the other for aspirin. The search 
strategies were adapted to the databases without 
language restrictions using medical subjects heading 
(MeSH) terms and keywords such as “aspirin”, 
“inflammation”, “metabolic syndrome”, “metformin”, 
“T-cells”, “type 2 diabetes mellitus” and their respective 
synonyms and associated words or phrases. A detailed 
PubMed search strategy is provided in Table 1S. 

2.2. Study selection 

This review included both human and animal studies that 
reported on the effects of metformin and aspirin on T-
cell function in disease models of T2D or metabolic 
syndrome as well as in normal physiology. However, 
reviews, books, editorials, letters and studies on cancer 
and infectious diseases were excluded from this study. 
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 Two independent reviewers (TMN and SRN) identified 
eligible studies with the help of third reviewer (BBN). 
 
2.3. Data extraction 

The aim of the study was to systematically assess both 
human and animal studies that reported on the effects of 
metformin and aspirin on T-cell function in normal 
physiology and experimental models of T2D and 
metabolic syndrome. Briefly, extracted data items 
included; names of the authors, year of publication, 
study design, experimental model used, interventions 
used and dosage, combinational or comparative therapy, 
and main findings of each study. To manage extracted 
information including identifying and removing study 
duplicates, the Mendeley reference manager version 
1.19.4-dev2 software (Elsevier, Amsterdam, 
Netherlands) was used. 

2.4. Quality assessment and risk of bias 

The quality and risk of bias of included studies were 
assessed by two independent reviews (SRN and KM) 
with the help of a third reviewer (VM) in cases of 
disagreements, as previously described [27]. Briefly, the 
modified Downs and Black checklist [28] and the 
Animal Research: Reporting In Vivo Experiments 
(ARRIVE) guidelines [29] were used for human and 
animal studies, respectively. The Downs and Black 
checklist has 26 questions relating to the four domains 
namely; reporting bias, external validity, internal 
validity and selection bias against which the included 
human studies were appraised against. The overall total 
score of each study was rated as excellent if it was (24–
27 points) good if (19–23 points), fair if (13–18 points) 
and poor if (≤12 points). On the other hand, the ARRIVE 
checklist has 20 questions and four domains namely; 
introduction, methods, results and discussion was used 
in animal studies. A study is considered to have met the 
minimum criteria if it scores a minimum of 10 points and 
contains most elements or aspects required for 
publication. 

Results 
3.1. Study selection and characteristics of included 
studies 

Overall, a total of 250 studies were identified and 
screened for eligibility whereas only 31 met the 
inclusion criteria (overall agreement 91.53%, kappa = 
0.75) (Fig. 1) and these articles were published between 
1975 and 2019. Of those that met the criteria, 14 studies 
reported on the impact of metformin as an intervention. 
Briefly, the metformin search strategy retrieved 63 
studies of which 49 were excluded as 6 were reviews 
whilst the other 43 were not relevant [30–33].  

The included studies reporting on the effect of 
metformin comprised of 4 human and 10 animal studies. 
Moreover, the included human studies consisted of 4 
observational studies and 1 randomized control trial. 
The aspirin search strategy identified a total of 187 
studies of which 156 were excluded due to study design 
models (n = 41) and 101 were not relevant to the topic 
of interest whilst 28 were reviews. As a result, 17 studies 
were included, of which 10 were human studies and 7 
were animal studies reporting on the impact of aspirin 
on T-cell function. The included studies reporting on 
aspirin were in vitro experimental studies, whereby cells 
from humans were collected and cultured in the presence 
of aspirin (n = 9) except for 1 study which was a non-
randomized control trial, where participants were first 
given aspirin and then the cells were collected and 
analysed. 

 
3.2. Quality and risk of bias of included studies 

The modified Downs and Black guidelines checklist 
with 26 questions was used to appraise studies reporting 
on human  
related outcomes by two independent reviewers. All 
included studies were published in peer reviewed 
journals. For included human studies reporting on the 
effect of metformin (n = 4), the median score range was 
13 (11–15) out of a possible score of 27 across all four 
domains. Of these, three studies scored fair (13–15 
points) and one poor (11 points). Overall, all included 
studies had a lower risk of reporting bias with a median 
of 7 (6–8) out of a possible score of 10 (overall 
agreement 81.43%, kappa = 0.63). In addition, the 
studies had a low selection bias with a median of 4 (3–
4) out of a possible score of 6 (overall agreement 
95.24%, kappa = 0.91). However, the studies performed 
poor on internal and external validity bias domain with 
median 3 (1–4) out of a possible score of 7 (overall 
agreement 83.67%, kappa = 0.72) and 0 out of a possible 
score of 3 (overall agreement 95.24%, kappa = 0.91), 
respectively (Table 2S). 
All included animal studies reporting on the impact of 
metformin in this review met the minimum requirements 
for publication using the ARRIVE guidelines checklists 
with 20 questions. Briefly, the median score range of all 
included metformin studies was 16.5 (13–18) out of a 
possible score of 20. Moreover, the included studies 
scored high in all four domains with a median of 4 (4–4) 
out of a possible score of 4 (overall agreement 100%, 
kappa = 1); 7.5 (5–8) out of a possible score of 9 (overall 
agreement 88.89%, kappa = 0.76); 2 (1–3) out of a 
possible score of 3 (overall agreement 87.50%, kappa = 
0.75) and 3 (3–3) out of a possible score of 3 (overall 
agreement 90%, kappa = 0.8) in the introduction, 
methods, results and discussion domains, respectively 
(Table 3S). 
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On the other hand, all human studies reporting on the 
impact of aspirin were scored as poor except for one 
study [25] with a median score of 9.5 (6–13). In addition, 
the studies performed poor in all domains except for  
reporting bias where they showed relatively low risk 
with a median score of 5.5 (4–9) (overall agreement 
84%, kappa = 0.68) (Table 4S). However, animal studies 
assessing the efficacy of aspirin were of relatively good 
quality with a median score of 15 (10–15). These studies 
scored high in all domains with a median of 4 (4–4) out 
of a possible score of 4 in the introduction domain and 6 
(1–7) out of a possible score of 9 in the methods domain. 

 In addition, the included studies had a median range 
score of 2 (1–2) out of a possible score of 3 in the results 
 and 3 (3–3) out of a possible score of 3 in the discussion 
domain. The inter-rater reliability was scored as; perfect 
for introduction (overall agreement 100%, kappa = 1) 
and methods (overall agreement 92.1%, kappa = 0.84) 
domains. Moreover, results agreement (overall 
agreement 75%, kappa = 0.75) and discussion (overall 
agreement 80.95%, kappa = 0.62) domains were scored 
as substantial (Table 5S). All included studies were 
published in peer review journals 

 
 

.
 

 

Fig. 1. PRISMA diagram indicating the study selection process. 
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3.3. In vitro evidence on the impact of metformin on T-
cell function 

In total, only four studies reported on the in vitro effects 
of metformin (Table 1). Briefly, cultured T-cells isolated 
from BALB/c lymph nodes treated with metformin 
suppressed proliferation, reduced viability and induced 
apoptosis of T-cells when compared to the untreated 
group dose dependently [34]. In addition, metformin 
increased the levels of the antioxidant molecule, 
glutathione and diminished lipid peroxidation in 
comparison to the untreated group. In addition, in 
cultured T-cells from mice axillary lymph nodes [35], 
metformin treatment also dose-dependently decreased 
the number of Th17 and downregulated STAT3 
phosphorylation through AMPK pathway. The latter 
plays a major role in energy regulation [35] and remains 
an interesting mechanism explored to assess the 
therapeutic capabilities of metformin [14]. 
Furthermore, in cultured T-cells isolated from OT-I TCR 
transgenic and AMPK-null mice spleens or lymph nodes 
[13], metformin treatment could reduce the expression 
of the activation marker CD25, the adhesion molecule 
CD69 and amino acid transporter CD98 on cultured T-
cells compared to control group. Moreover, metformin 
treated T-cells showed decreased glucose uptake, but 
increased lactate output compared to controls. These 
effects were linked with the inhibition of mechanistic 
target of rapamycin (mTOR) activity on CD8+ T-cells, 
T-cell blastogenesis and proliferation independent of 
AMPK. Consistently, others demonstrated that 
metformin treatment reduced the number of Th17 cells 
and increased Tregs, whilst suppressing that of mTOR 
and STAT3 mediated by 

 activated AMPK [15]. Interestingly, the overall in vitro 
evidence supports the notion that in addition to 
regulating AMPK, metformin inhibits proliferation of T-
cells in general [36] and ameliorates inflammation by 
reducing the number of Th17 whilst promoting the 
proliferation of Tregs [15,37]. 

3.4. In vivo evidence on the impact of metformin on T-
cell mediated function 

The majority of studies assessing the impact of 
metformin on T-cell function were those reporting on in 
vivo experimental models (Table 2). In fact, summarised 
evidence assessed the therapeutic effects of this blood 
glucose lowering drug on T-cell responses through 
various animal models. Notably, these models were 
predominantly mice exposed to various factors to induce 
a pathological state, including exposure to collagen-
induced arthritis in DBA1/J mice, concanavalin A-
induced hepatitis in BALB/c mice, inflammatory bowel 
disease in C57BL/6 mice, autoimmune 
encephalomyelitis in C57BL/6 mice, diet-induced 
obesity in C57BL/6 J mice, and systemic lupus 
erythematosus in Roquinsan/san mice (Table 2). 
Collectively, these experimental models represent a 
chronic inflammatory state which is essential in 
investigating T-cell mediated responses. 
The findings using these experimental models 
demonstrated that metformin treatment at 100 or 150 
mg/kg for 16 days could significantly attenuate 
autoimmune arthritis, concomitant to reducing levels of 
Th17 cells and pro-inflammatory cytokines, including  

Author, year Experimental model Metformin dosage Effect on T-cells/main findings 

Solano et al., 2008 
[36] 

Cultured T-cells were isolated from BALB/c 
mice lymph nodes 

10 or 100 μM for 4 h Metformin treatment dose dependently suppressed proliferation, reduced 
viability and induced apoptosis of T-cells when compared to the untreated 
group. In addition, metformin increased the levels of antioxidant molecule, 
glutathione and diminished lipid peroxidation in comparison to the untreated 
group. 

Kang et al., 2013 
[37] 

Cultured T-cells were drawn from mice axillary 
lymph nodes. 

0.5; 1; 5 and 10 mM 
for 3 days 

Metformin treatment dose dependently decreased the number of Th17 and 
downregulated Signal transducer and activator of transcription (STAT)3 
phosphorylation through adenosine monophosphate-activated protein kinase 
(AMPK) pathway. 

Zarrouk et al., 2014 
[13] 

Cultured T-cells were isolated from OT-I TCR 
transgenic and AMPKnull mice spleens or lymph 
nodes 

10 mM up to 72 h Metformin treatment reduced the expression of activation marker CD25, 
adhesion molecule CD69 and amino acid transporter CD98 on cultured T-cells 
compared to control group. In addition, metformin treated T-cells showed 
decreased glucose uptake, but increased lactate output compared to controls. 
Moreover, metformin inhibited mechanistic target of rapamycin (mTOR) 
activity on CD8+ T-cells and blocked T-cell blastogenesis and proliferation 
independent of AMPK. 

Son et al., 2014 
[15] 

CD4+ T-cells were isolated from mice spleen and 

cultured under Th17 polarizing conditions for 3 

days 

1 mM for 1 h for 

3 days 

Metformin treatment reduced the number of Th17 cells and increased Tregs. 
Furthermore, it suppressed osteoclastogenesis by inhibition of mTOR and 
STAT3 mediated by activated AMPK. 

Table 1 

Ex vivo studies reporting on the role of metformin in modulating T-cell responses (n = 4). 
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tissue necrosis factor (TNF)-α and interleukin (IL)-1 
[35]. At a much lower metformin dose (50 mg/kg daily 
for 13 weeks), others showed [16] that metformin could 
alleviate arthritis in mice by reducing autoantibody 
expression and joint inflammation. These effects were 
concomitant to decreasing Th17, mTOR and STAT3 
signalling, whilst increased the number of Tregs and 
AMPK activity. Although they did not look at AMPK, 
others showed that metformin treatment at 5 mg/mouse 
for 9 weeks attenuated autoimmune arthritis by 
modulating Th17/Tregs ratio, consistent to reducing the 
number of Th17 and CD4+pSTAT3+ T-cells in C57BL/6 
mice [15]. 
In BALB/c mice with hepatitis [17], metformin 
treatment at 200 mg/kg from 24 h could exacerbate 
inflammation-induced liver injury by enhancing 
activation of CD4+ T-cells, dendritic cells and 
macrophages. These results were concomitant to its 
effect in increasing lymphocytes infiltration into the 
liver and the secretion of serum levels of pro-
inflammatory cytokines, tumour necrosis factor (TNF)-
α and interferon (IFN)-γ and IL-17 from CD4+ T-cells. 
Furthermore, it was evident that metformin treatment at 
50 mg/kg daily for 16 days could ameliorate 
inflammatory bowel disease by reducing inflammation 
through inhibiting Th17 proliferation, STAT3 and 
mTOR signalling [46]. Here, metformin also increased 
the number of Tregs, including the expression levels of 
AMPK and STAT5 on CD4+ T-cells. 
In vivo evidence also showed that besides impacting 
arthritis or hepatitis to regulate T-cell function, 
metformin could affect encephalomyelitis and lupus 
erythematosus [39,41], conditions characterised with an 
abnormal T-cell response. For example, Sun and 
colleagues [47] demonstrated that metformin treatment 
at 100 mg/kg/ day for 30 days attenuated 
encephalomyelitis by reducing the number of Th17 and 
increasing that of Tregs. In addition, stimulated 
metformin treated T-cells exhibited reduced IL-17 and 
enhanced IL-10 and transforming growth factor-β 
secretion. Treatment also inhibited mTOR signalling but 
enhanced AMPK activity. Alternatively, Lee and 
coworkers [49] reported that metformin treatment at 5 
mg/d for 3 weeks could ameliorate systemic lupus 
erythematosus, mainly by reducing the number of Th17 
cells and CD4+ ICOS+ follicular Th cells, as well as 
elevating Tregs numbers and AMPK activity. Moreover, 
relevant to the metabolic syndrome, metformin, used at 
10 mg/kg or 50 mg/kg daily for 14 weeks, dose  

dependently reduced body weight and improved both 
lipid and glucose metabolism. In addition, treatment 
reduced the number of Th17, whilst raising the levels of 
Tregs, IL-17 mRNA, and increasing that of Foxp3 in 
diet-induced obese (DIO) mice [48].  
 
3.5. Evidence from clinical studies on the impact of 
metformin on T-cell mediated function 

There are currently a few studies that have assessed the 
effects of metformin in regulating T-cell function in 
human subjects. However, Table 2 lists four clinical 
studies that have reported on the current subject, with 
two findings being cross-sectional, and each of the 
remaining being a randomised control trial and a cohort 
study. The summarised results from cross-sectional 
studies were those done on with T2D or diabetics at risk 
of developing abdominal aortic aneurysm [11,51]. For 
instance, Dworacki and co-workers [51] demonstrated 
that metformin treatment at 500–2550 mg daily for 6 
months improved thymic output by elevating the 
number of recent thymic emigrants T-cells 
(CD45+CD3+RO−RA+) and mature CD4+ T-cells when 
compared to treatment naïve T2D patients. Although the 
therapeutic benefit was observed, others [11] showed the 
use of metformin at a similar dose did not reduce 
inflammation in individuals with or at risk of developing 
abdominal aortic aneurysm. In addition, the same study 
showed that metformin treatment did not affect any 
change in the frequency of Th17 and Tregs in 
individuals with diabetes. Moreover, there was no 
difference in the levels of both pro- and anti-
inflammatory cytokines between individuals with 
diabetes on metformin treatment versus those who were 
untreated. Consistently, evidence from a randomized 
clinical trial making use of metformin at 1500 mg daily 
for 6 months, showed that treatment did not reduce 
cardiovascular risk as the frequency of both 
proatherogenic CD4+CD28null and CD4+ T-cells in 
individuals with hyperinsulinemia and polycystic ovary 
syndrome [50]. However, supporting the beneficial 
effects reported by Dworacki and co-workers [51], the 
cohort study, reporting on the use of metformin at 500 
mg for 3 months, demonstrated that this biguanide could 
alleviate Behcet's disease clinical symptoms and 
significantly reduced inflammation, by increased 
number of Tregs and reduced that of Th17 [12]. 
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3.6. Molecular mechanisms implicated in the regulatory 
effect of metformin on T-cell mediated function 

Currently, it is accepted that immune homeostasis is 
maintained by a delicate balance between anti- and pro-
inflammatory T-cell subsets. In brief, Th17 and Th1 are 
considered to be pro-inflammatory subsets, whilst Tregs 
and Th2 as anti-inflammatory effector cells [44]. It is 
well known that Th17 cells secrete IL-17, IL-21 and IL-
22 whilst Th1 cells can release IFN-γ, interleukin IL-2 
and TNF-α; and Tregs produce IL-10, IL-35 and 
transforming growth factor (TGF)-β as their signature 
cytokines [45–47]. Subsequently, T-cell subset ratio as 
well as the cytokines they release directly modulates 
immune responses. Therefore, the circulating number of 
Th17 and Tregs is important in controlling 
inflammation. However, current evidence shows that in 
metabolic disorders such as T2D, Th ratio is skewed 
towards the pro-inflammatory subset resulting in 
aggravated pro-inflammatory response [48]. Overall, 
evidence synthesised from included in vitro studies that 
reported of the effects of metformin supported its 
inhibitory effects of proliferation of T-cells in general 
[36]. This was consistent with amelioration of 
inflammation by reducing the number of Th17 whilst 
promoting the proliferation of Tregs [15,37]. 
Activated T-cells can upregulate the levels of markers 
such as CD25 (IL-2R) and CD98 including adhesion 
molecules like CD69 that play a role in proliferation and 
trafficking [49,50]. Interestingly, evidence from this 
review showed that metformin can inhibit the expression 
of CD25, CD69 and CD98 on cultured T-cells from T-
cell receptor (TCR) transgenic mice [13]. Overall, these 
findings suggest that metformin can inhibit T-cell 
activation and promotes T-cell unresponsiveness in 
chronic inflammatory conditions. Importantly, it is also 
evident that metformin can modulate T-cell function at 
least in part via AMPK/ STAT/mTOR regulatory 
mechanisms. 
The anti-inflammatory pharmacodynamics of metformin 
are centred on its ability to activate AMPK, a major 
cellular regulator of glucose and lipid metabolism 
[14,35]. In relation to T-cell function, AMPK can 
suppress mTOR signalling and its downstream target 
STAT3 (which is important in Th17 differentiation) 
whilst enhancing Tregs differentiation via STAT5 
signalling [51]. Certainly, the included studies 
demonstrated that the anti-inflammatory effects of 
metformin can be induced via the modulation of mTOR 
and STAT3/5 signalling pathways on T-cells in various 
animal models of chronic inflammation [15,16,37–
39,41]. For example, metformin can inhibit or interfere 
with mTOR and STAT3 signalling, but can also enhance 
STAT5 activity through AMPK activation [15,16,37–
39,41]. This could be the possible explanation for the 
reported inflammation ameliorative effects of metformin 
in Behcet's disease [12]. Further suggesting that there is 
a strong connection between T-cell function and 

 regulation of energy metabolism, especially in 
conditions of metabolic syndrome since AMPK acts as 
an energy sensor and modulator, as reported elsewhere 
[14,35]. 

3.7. In vitro evidence on the impact of aspirin on T-cell 
mediated function 

Aspirin is one of the widely used anti-inflammatory 
agents being investigated for its prophylactic effects 
against diabetes associated complications. A total of 
twelve studies reported on the ex vivo impact of aspirin 
on modulating T-cell mediated function (Table 3). The 
prominent ex vivo models used included isolation of T-
cells from neutrophilic asthma-induced C57BL6 mice or 
orthodontic relapse-induced Sprague-Dawley rats, as 
well as T-cells derived from healthy volunteers, or those 
with phytohaemagglutinin and Sjogren's syndrome 
(Table 3). The major findings from these studies 
demonstrated that apart from inhibiting cyclooxygenase 
activity as its anti-inflammatory mechanism, aspirin 
could block NF-kB signalling by inhibiting the 
activation of IkB kinase (IKK) [52]. Interestingly, 
besides STAT signalling, immunological modulation 
can be induced by transcriptional activation of NF-kB in 
response to stimuli from stressed cells, cytokines, 
infections and free radicals [53]. Transcriptional factor 
NF-κB is known to aggravate inflammation by inducing 
the expression of genes that encode for the production of 
pro-inflammatory cytokines and chemokines [52]. 
Therefore, activated NF-kB signalling remains the 
prime mechanisms to be explored to understand the 
impact of aspirin on T-cell function and its regulation of 
pro-inflammatory markers in conditions of pathology. 
Findings from included ex vivo studies using cultured 
cells showed that aspirin had no cytotoxic effects on T-
cells. The summarised evidence showed that aspirin 
could inhibit the expression of B7, CD40 and MHC class 
II expression whilst up-regulating that of 
immunoglobulin-like transcription-3 and programed cell 
death 1(PD-1) ligand on dendritic cells in a dose-
dependent manner in vitro [54–57]. Interestingly, 
stimulation of T-cells by aspirin treated dendritic cells in 
these studies induced poor Th1 cell proliferation and 
their cytokine release [55,56]. However, aspirin showed 
enhanced potential to induce the production of Tregs 
which expressed the same transcriptional regulator 
Foxp3 levels as those of non-treated dendritic cells 
[55,56]. Therefore, the anti-inflammatory effect of 
aspirin on T-cell function could at least in part be 
mediated by its inhibitory effects on antigen presenting 
cells and co- stimulatory signalling. Nevertheless, 
consistent with metformin, it appears aspirin also 
displays inhibitory effect on T-cell trafficking and 
function. In that context, aspirin dose dependently 
inhibited the expression of integrins and intercellular 
adhesion molecule-1 on endothelial cells as well as L-
selectin on T-cells and their activation and  
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transmigration thereof in ex vivo culture [58–60]. Thus, 
suggesting that aspirin offers cardio-protection at least 
in part, through the inhibition of adhesion molecules 
essential for T-cell trafficking. 

3.8. In vivo evidence on the impact of aspirin on T-cell 
mediated function 

Briefly, only eight studies reported on the impact of 
aspirin on T-cell function, inclusive of two randomized 
controlled trials, as displayed in Table 4. BALB/c mice, 
double transgenic male rats harbouring human renin and 
angiotensinogen genes (dTGR), asthma-induced 
C57BL/6 mice, and neutrophilic asthma induced 
C57BL/6 mice were the predominant animal models 
used to assess the impact of aspirin on T-cell function. 
Through the exploration of these experimental models, 
Muller and colleagues [23] demonstrated that the use of 
aspirin at 25 or 600 mg/kg for 3 weeks could reduce 
infiltration of both CD4+ and CD8+ T-cells into damaged 
heart and kidney vessels. Importantly, the low dose of 
aspirin significantly reduced CD4+ T-cells with a slight 
effect on CD8+ T-cells, whilst blocking the activation of 
NF-κB signalling. Alternatively, Javeed and colleagues 
[64] showed that treatment with 6 mg/kg or 60 
mg/kg/day for 4 weeks could dose-dependently reduce 
the frequency of circulatory CD4+ T-cells including 
thymocytes but enhanced that of functional regulatory 
T-cells (Tregs) in dTGR rats. Moon and coworkers [8] 
demonstrated that 18 mg/kg for 4 days of aspirin could 
significantly increase eosinophil infiltration by 
enhancing the production of Th2 cytokine downstream 
mediator, eotaxin. Moreover, Th17 and the levels of IL-
17 cytokine were decreased in asthma-induced C57BL6 
mice. The same authors [10] also showed that aspirin 
treatment at 18 mg/kg daily for 3 days could consistently 
inhibit Th17 airway inflammation by blocking IL-17 and 
IL-6 positive feedback in neutrophilic asthma-induced 
C57BL6 mice. 
Interestingly, the beneficial effects of aspirin in 
effectively modulating T-cell mediated inflammation 
were also demonstrated by others [62], whereby its use 
at 9 mg/kg/day over 40 days could dose-dependently 
increase the number of Tregs in heart transplanted 
SpragueDawley rats. On the other hand, Liu and 
colleagues [9] showed that aspirin treatment with 300 
mg/kg/day for 10 days could reduce the frequency of 
CD4+ T-cells and inhibit orthodontic relapse of tooth 
movement in Sprague-Dawley rats. To collaborate in 
vivo findings, only two nonrandomised clinical trials 
reporting on the impact of aspirin on T-cell function 
could be retrieved (Table 4). Whereby, Crout and 
coworkers [24] reported that administration of aspirin at 
900 mg/five times daily for 4 days could significantly 
suppress lymphocytes transformation (blastogenesis) 
without any effect on the proportions of T-cells. Another 
study [25] showed that treatment with aspirin at 1500 
mg/daily for two weeks did not induce genetic toxicity  

in T-cells nor did it influence DNA synthesis and repair 
of T-cell lymphocytes in individuals with soft-tissue 
injury. 

3.9. Molecular mechanisms implicated in the 
regulatory effect of aspirin on T-cell mediated function 

Evidence from this review showed that inhibition of NF-
kB signalling by aspirin could block the differentiation 
and function of CD4+ and CD8+ T-cells in normal 
physiology [9,24,56,61], whilst promoting activation 
and differentiation of Tregs. In contrast, only one study 
reported that inhibition of NF-kB signalling by aspirin 
had no effect on the levels of Th1 and Th2 associated 
cytokines (IFN-γ, IL-2 and IL-13) [22]. Overall, these 
findings suggest that the anti-inflammatory effects of 
aspirin are not only limited to NF-kB signalling but may 
involve other mechanisms such as Janus kinase (JAK)-
STATs signalling pathway (Table 3). In fact, further 
synthesis of data showed that like metformin, aspirin 
blocks Th17 polarisation that is induced by IL-6, in a 
dose-dependent manner concomitant to decreased 
STAT3 signalling in lipopolysaccharide-induced mice 
[10]. 
T-cell receptors are important primary signal 
transducers during the activation of T-cells. However, 
this signalling alone is not sufficient to successfully 
activate T-cells, hence secondary co-stimulatory signal 
mediated by co-stimulatory molecules such as CD28 
and CD40L is required [64–66]. Once activated, T-cells 
can now carry out their effector functions in a subtype 
specific manner. In this review, included studies 
demonstrated that aspirin can modulate T-cell mediated 
inflammation through the inhibition of co-stimulatory 
signals and the upregulation of negative regulatory 
molecules which collectively induce T-cell. T-cell 
anergy is a hyporesponsive state of T-cells that occurs 
due to inadequate activation signalling. 
Interestingly, like metformin, aspirin treatment reduced 
the frequency of Th1 and Th17 cells as well as CD8+ T-
cells, including proinflammatory cytokines in response 
to aspirin treatment in animal models of inflammation 
[8,9]. Although aspirin could enhance the differentiation 
of Th2 and Tregs [8,10,23,62,63], the exact mechanisms 
that leads to decreased pro-inflammatory T-cell subsets 
and increased anti-inflammatory subsets remain unclear. 
Therefore, we speculate that it is most likely in part, due 
to the modulatory effects of aspirin on the JAK-STAT 
signalling pathway, as demonstrated elsewhere [67,68]. 
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Table 3 
Ex vivo studies reporting on the role of aspirin in modulating T-cell responses (n = 12). 

Author, year Experimental model Aspirin dosage Effect on T-cells/main findings 

Hackstein et al., 
2001 

[57] 

Male C57BL/6 mice 0.5; 1 or 2.5 mM up 
to 7 days 

Aspirin inhibited the expression of T-cell co-stimulatory molecules 
ligands 
(CD40, B7-1 and B7-2) and major histocompatibility complex 
(MHC) class II on dendritic cells in a dose-depended manner. In 
addition, the dendritic cells poorly stimulated naïve T-cell 
proliferation and reduced the secretion of interleukin 
(IL)-2. 

Moon et al., 2013 
[10] 

Neutrophilic asthma induced C57BL/6 
mice model 

1;10; 100 or 1000 
nM for 3 days 

Th17 polarisation induced by IL-6 was inhibited by aspirin in a dose-
dependent manner. The suppression of Th17 function by aspirin 
correlated with decreased expression of acetyl-signal transducer and 
activator of T-cells (STAT)3 (downstream signalling of IL-6). 

Liu et al., 2017 [9] Orthodontic relapse induced male 
Sprague- 
Dawley rats 

100 μg/mL for 48 h Aspirin treatment significantly suppressed the differentiation of Th1 
and CD4+ T-cells and significantly inhibited the release of Th1 
associated cytokines (tumour necrosis factor (TNF)-α and IFN-γ). 

Crout et al., 1975 
[24] 

T-cells from treated individuals were 
activated with phytohaemagglutinin 

900 mg five times 
daily for 4 days 

Aspirin treatment did not change T-cell proportions nor their viability 
in culture compared to baseline levels. 

Mazzeo et al., 1998 
[61] 

Culture T-cells were isolated from 
healthy volunteers 

1; 5 or 10 mmol/L 
for 1 h 

Treatment with aspirin dose-dependently inhibited IL-12 secretion 
and Th1 differentiation via the inhibition of nuclear factor kappa-
light-chain-enhancer of activated B-cells (NF-kB). 

Gerli et al., 1998 
[58] 

Cultured T-cells were isolated from 
individuals with Sjogren's Syndrome 

30; 300 or 600 
μg/mL for 0.5–2.5 h 

Aspirin and dose-dependably inhibited the adhesion and 
transmigration of T-cells in the same manner by suppressing the 
activation of integrin. In addition, although aspirin increased the 
activation of protein kinase C in T-cells, it did not increase their 
proliferation nor interleukin (IL)-2 synthesis. 

Voisard et al., 2001 
[59] 

Human coronary in vitro model. 
CD4+ T-cells were isolated from healthy 
volunteers 

1; 2; 5 or 10 
mmol/L up to 18 h 

Aspirin (5 and 10 mmol/L doses) reduced the expression of 
intercellular adhesion molecule-1 on human coronary endothelial 
cells, dose dependently. Furthermore, it inhibited the adherence of 
CD4+ T-cells to the activated endothelial cells by half. 

Gerli et al., 2001 
[60] 

Cultured T-cells were isolated from 
individuals with Sjogren's Syndrome 

30; 300 or 600μg/ml 
up to 2 h 

Aspirin treatment significantly reduced T-cell adhesion to activated 
endothelial cells in a dose-dependent manner. Moreover, the 
expression of adhesion molecule L-selectin on T-cells was reduced 
dose dependently. 

Cianferoni et at., 
2001 [22] 

Cultured T-cells were isolated from 
healthy blood donors 

0.001 or 1 mM for 

15 min 

Aspirin significantly reduced IL-4 secretion and RNA expression in 
CD4+ T-cells. However, this was independent of reduced NF-kB 
activation but dependent on reduced IL-4 promoter activity. In 
addition, aspirin did not affect the expression of interferon gamma 
(IFN-γ), IL-2 and IL-13. 

Buckland et al., 
2006 

[55] 

Cultured blood cells were isolated from 
healthy volunteers 

2.5 mM for 5 days Aspirin suppressed NF-κB signalling pathway and the expression of 
B7 costimulatory molecule but upregulated immunoglobulin-like 
transcript-3 and programed cell death 1 ligand (PD1-L) on dendritic 
cells. In addition, aspirin treated dendritic cells induced anergy in 
responder T-cells and reduced their secretion of IFN-γ. Interestingly, 
stimulation with aspirin-treated dendritic cells induced the production 
of regulatory T-cells (Tregs) that are CD25hi and express the 
transcriptional regulator Foxp3. 

Buckland et al., 
2006 

[54] 

Blood cells were isolated from healthy 
volunteers 

2.5 mM for 5 days Aspirin-treated dendritic cells inhibited the expression of T-cell co-
stimulatory molecules ligands, CD40, B7-1 and B7-2 molecules on 
their cell surface. In addition, the dendritic cells dose dependently 
inhibited T-cell response by inducing the upregulation of T-cell 
activation co-inhibitor, immunoglobulin-like transcript-3. Moreover, 
although naïve CD4+ T-cells produced significant levels of IFN-γ 
when exposed to aspirin-treated dendritic cells, they were 
hypoproliferative. 

Hernandez et al., 
2007 [56] 

Cultured blood cells were isolated from 
healthy volunteers 

0.5; 2; 3 or 5 mM 
for 
5 days 

Dendritic cells treated with aspirin decreased the expression of T-cell 
costimulatory molecules ligands (CD40 and B7-1) expect B7-2. 
Moreover, the treated dendritic cells weakly activated T-cells which 
produced reduced IL-2 and IFN-γ compared to untreated controls. 
Interestingly, Tregs generated from the blockage of NF-κB in both 
aspirin-treated and non-treated dendritic cells exhibited similar Foxp3 
mRNA expression. 
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 3.10. The potential benefits of combining metformin and 
aspirin to improve T-cell function 
At present, it is acknowledged that metformin is a drug 
of choice for T2D, a condition that is characterised by 
hyperglycaemia and chronic inflammation. The 
therapeutic properties by which metformin controls 
blood glucose levels have been partially described, with 
its inhibitory effect of hepatic glucose production by 
activating AMPK and blocking fructose-1-6-
bisphosphatase having been some of its prominent 
mechanisms of action [69]. However, although an 
exacerbated immune activation has been identified in 
conditions of T2D [1,70], such information had not been 
precisely scrutinised to inform on the regulatory effect 
of this biguanide on T-cell function. Interestingly, 
beyond blocking hepatic glucose production, emerging 
evidence summarised in the current study supports the 
beneficial effects of metformin in improving immune 
function, in part through effective modulation of T-cell 
function [15,16,71]. However, due to the rapid rise in 
metabolic diseases, including T2D and linked 
cardiovascular complications, there is an increasing 
need to understand whether combining metformin with 
other therapies like aspirin could be even more 
beneficial in alleviating such complications. 
Indeed, due to its established anti-inflammatory effects 
and active use to manage cardiovascular complications 
[18–20], there is an interest to understand whether 
combining metformin and aspirin could be more 
effective in modulating inflammatory conditions like 
T2D. Thus, in addition to synthesising and informing on 
the impact of aspirin on T-cell regulation, including 
associated pathophysiological mechanisms, the current 
study explored the modulatory effects of combining 
metformin and aspirin on T-cell function. Table 5 
summarizes some preliminary studies that have 
examined the combination effects of these drugs against 
metabolic complications. Results from a clinical trial 
showed that combinational use of metformin and aspirin 
was more effective in improving glucose tolerance and 
reducing cardiovascular risk by lowering total 
cholesterol and low density lipoprotein when compared 
to the use of metformin as a monotherapy [72]. In 
addition, the combinational use of these drugs was 
effective as primary prevention strategy in T2D patients 
at risk of developing CVDs [72]. Consistently, in rodent 
models, combination treatment significantly improved 
glucose control but did not reduce CVD risk in 
streptozotoc-induced diabetic mice.  

 

 



 

 

Elsewhere, Ford and co-workers reported that 
combining metformin and aspirin treatment could 
significantly reduce cardiovascular risk by inhibiting 
lipogenesis in DIO mice and human hepatocytes, and 
these results were consistent with activation of AMPK 
activity [73]. Recently, our group demonstrated that 
combining metformin and a low dose aspirin could 
ameliorate elevated inflammation by increasing Th2 
associated cytokines whilst reducing Th1 linked 
cytokines, such as IFN-γ in DIO mice [74]. Such 
information is of interest since effective regulation of 
Th1/Th2 cytokine ration could be a vital aspect to 
manage T2D and its linked abnormalities, as recently 
reviewed [75]. Nevertheless, although preliminary 
studies support the beneficial effects of combining 
metformin and aspirin to mitigate metabolic 
complications (Table 5), information on how this 
therapy impacts T-cell function remains relatively 
unknown. Thus, in addition to establishing the safe use 
of combining both these agents, further studies are 
necessary to improve our understanding on the 
synergistic effects of metformin and aspirin against 
inflammation and linked complications, as other have 
reported no effect on cardiovascular risk [76]. 

3.11. Impact of dose and time on the effects of 
metformin and aspirin on T-cell mediated function 

The impact of metformin on T-cell function, in 
different experimental settings, was shown to be dose-
dependent [37,40]. For instance, ex vivo experimental 
models, which directly assessed the therapeutic effects 
of metformin on T-cell function on cultured cells 
isolated from mice showed that doses between 1 and 
10 mM, from 4 h to 3 days, were predominantly used 
(Table 1). For aspirin, cells isolated from mice or rats, 
tested doses ranged from 0.5 to 2.5 mM, from 48 h up 
to 7 days (Table 3); however human derived primary 
cells were exposed to concentrations reaching a 
maximum of 10 mM, for up to 5 days (Table 3). 
Although ex vivo culture provides the benefits of 
directly assessing the therapeutic effects of metformin 
or aspirin on T-cell function by eliminating other 
interfering factors, primary cultured cells have various 
limitations such as acknowledged difficult in 
maintaining the phenotypic changes during culture, as 
well as short term treatment period, since primary cells 
cannot survive long in culture [77]. However, 
summarised evidence in Tables 1 and 3 remains crucial 
in providing necessary information on dose and time 
section for future studies assessing the impact of these 
drugs in other experimental settings. 
Except for two studies reporting on the use of 
metformin at 5 mg/d for 3 or 9 weeks [15,41], the 
majority of findings assessed its therapeutic dose of  
 

10, 50, 100 or 200 mg/kg daily, for various time points 
(Table 2). However, 200 mg/kg was only used for a 
shorter time interval (24 h), whilst 50 mg/kg was 
predominantly employed in most studies [17,38,40], with 
time points ranging from 16 days to 13 weeks. In any case, 
most experimental models of metabolic syndrome 
predominantly use metformin doses between 100 and 250 
mg/kg in rodents [78,79], whilst the variation in dose-
response observed in the current study could explain the 
different conditions being explored to assess T-cell 
function (Table 2). This further highlights the pleiotropic 
effects of metformin [80], being able to affect T-cell 
function, dose-dependently in various in vivo models. 
Relevant to aspirin, five studies investigated the effects of 
this compound on T-cell function in different 
experimental models using mice, whilst one study was on 
Sprague-Dawley rats (Table 4). In mice, the lowest aspirin 
dose used was 6 mg/kg per day for 4 weeks [63], whilst 
the highest was 600 mg/kg per day for 3 weeks [23]. Like 
metformin, aspirin is shown to positively regulate T-cell 
function at various doses and interventions period, with 
these effects obviously impacted by the disease model 
being used. For example, aspirin dose of 18 mg/kg for 4 
days for example was predominantly used to assess T-cell 
function in asthma-induced C57BL/6 mice [8,10]. 
Whereas in Sprague-Dawley rats, a dose of 300 
mg/kg/day for 10 days post procedure was found to be 
effective at reducing the frequency of CD4+ T-cells [9]. 
The current findings were limited by the relatively few 
studies assessing the direct effect of metformin or aspirin 
on T-cell function in individuals who administered these 
drugs orally. However, most studies focused on ex vivo 
effects, treating isolated T-cells from human subjects with 
various doses of treatment compounds, as described 
above. However, by using effective doses with rodent 
models, formulas for dose extrapolation from animal to 
human could a viable strategy to further confirm the 
activity of metformin and aspirin on human subjects, as 
discussed elsewhere [81]. 

Discussion 
Hyperglycaemia-induced inflammation has been linked 
with chronic immune activation in individuals with T2D 
[82]. Moreover, chronic inflammation mediated by T-cell 
activation has been associated with the development of 
T2D associated complications such as CVDs [83–85]. As 
a result, various pharmacological drugs that aim to 
eliminate these symptoms and to prevent or at the very 
least slow the development of its complications are being 
explored. Metformin, a glucose lowering drug, is 
currently being used as the first-line medication for the 
treatment of T2D. However, this drug offers very limited 
cardio-protection albeit the increased risk of 
cardiovascular complications in these patients [86]. 
Consequently, anti-inflammatory drugs such as aspirin are  
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explored for their beneficial effects if used in 
combination with metformin to offer cardio-protection 
[72]. Although both metformin and aspirin have been 
reported to ameliorate inflammation, their impact on 
T-cell function is not well understood. Therefore, it 
remains important investigate this phenomenon. 
 

Briefly, the modulation of circulating number of Th17 
and Tregs is important in controlling inflammation and 
the balance of the ratio thereof is crucial in regulating 
the immune response [87]. However, in autoimmune 
diseases or metabolic disorders such as T2D, this ratio 
is skewed towards the pro-inflammatory subset 
resulting in exacerbated inflammation [84,88]. 
Interestingly, evidence presented here demonstrated 
that metformin can alleviate T-cell mediated 
inflammation by inhibiting the activation and 
differentiation of Th17, whilst promoting that of 
Tregs. For example, metformin was able to inhibit 
STAT3 activation which is required for the 
differentiation of Th17 whilst promoting STAT5 
signalling, which is required for Treg differentiation 
[15,38]. Therefore, we propose that the mechanism of 
action for metformin on T-cell regulation may be in 
part due to STAT3 competing for the same binding 
locus on pro-inflammatory IL-17 promoter region with 
STAT5, as previously described [51]. In fact, 
overwhelming evidence from included studies support 
the notion that metformin ameliorates inflammation by 
modulating T-cell function via STATs signalling. This 
is supported by some included studies showing 
different modulatory effects of metformin on T-cell 
function in different experimental models of 
inflammation. Whereby, metformin reduced the 
expression of activation and adhesion markers such as 
CD25 and CD69, respectively [11,17], which are all 
essential in T-cell effector function. 

 Overall, the current systematic review supports evidence 
that metformin modulates T-cell function beyond 
conditions of autoimmune disease, in part via 
AMPK/STATs signalling. Interestingly, cytokines can 
activate JAK which in turn phosphorylates and activates 
various members of STAT family [89]. 
 

Activated STATs then translocate to the nucleus where 
they act as transcription factors during gene transcription 
and cell proliferation [90]. Subsequently, T-cell cytokines 
can modulate the JAK-STAT signalling pathway and 
polarise the immune response to either a pro- or anti-
inflammatory state [91]. Similar to metformin, aspirin can 
modulate T-cell function by targeting the STAT pathway. 
For instance, it could inhibit polarisation of Th17 induced 
by IL-6 via the blockage of STAT3 activity in chronically 
inflamed mice [10]. However, data presented in this 
review suggests that the inhibitory effect of aspirin is to a 
larger extent via signalling blockage of NF-kB 
[23,24,56,61]. It is well-established that the activation of 
NF-kB signalling promotes the differentiation of Th1 and 
Th17, in part by modulating TCR signalling and the 
release of cytokines such as IL-12 and IL-6 [92,93]. 
Therefore, synthesised evidence here showed that aspirin 
has the ability to block NF-kB signalling leading to 
inhibition of the proliferation of pro-inflammatory T-cell 
subsets [23,24,56,61], whilst promoting the 
differentiation of Tregs [56]. However, the exact role of 
NF-kB signalling in Treg differentiation and function still 
remains to be further explored. On the other hand, others 
have suggested that the modulatory effect of aspirin on 
inflammation could be its ability to induce T-cell anergy 
via the inhibition of co-stimulatory molecules [54–57]. In 
addition, like metformin, aspirin inhibited the expression 
of adhesion molecules essential for their trafficking [58–
60].  

Fig. 2. An overview of some therapeutic 
mechanisms involved in the regulation of T-cell 
function in response to aspirin and metformin 
treatment. Synthesised evidence from included 
studies showed that both metformin and aspirin can 
ameliorate T-cell mediated inflammation in part by 
inducing regulatory T-cells (Treg) polarisation, 
inhibiting T-cell trafficking and activation as well as 
signal transducer and activator of transcription 
(STAT)3 signalling. As a plausible mechanism to 
mediate T-cell function, metformin showed 
enhanced potential to regulate mechanistic targets of 
rapamycin (mTOR), STAT5 and 
adenosinemonophosphate-activated protein kinase 
(AMPK) signalling pathways. Whilst aspirin 
modulated nuclear factor kappa-light chain-enhancer 
of activated B-cells (NF-kB) and co-stimulatory 
signalling pathways and induced T-cell anergy. 
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Overall, these findings suggest that the anti-
inflammatory effects of aspirin are mainly in part via 
the modulation of NF-kB and STAT3 signalling. Of 
interest, some preliminary findings are already 
supporting the beneficial effects of 
combining metformin and aspirin to ameliorate 
inflammation and improve metabolic function, as 
summarised in Table 5. For instance, results from a 
previous clinical trial support the beneficial effects of 
combination therapy in reducing CVD-risk in those 
with T2D [71]. Whereas, recent findings from our 
group also clearly demonstrated an improved 
modulation of Th1/Th2 cytokine responses with 
combinational treatment in DIO mice [73]. These 
results suggest further exploration of the combined use 
of metformin and aspirin to improve our understanding 
of how such therapy mitigates inflammation in 
conditions of impaired metabolism. 
Overall, this study is not without limitations. For 
instance, included metformin studies reported both 
positive and negative modulatory effects on T-cell 
function. This may be attributed to differences in the 
disease models or experimental dose used by studies 
summarised in the current review. In addition, some of 
the included studies only reported an increase [94] or 
decrease of CD4+ T-cells [23], of which subset analysis 
would have given a better picture that best describes 
the exact modulatory effects. Therefore, analysis of T-
cell subsets, particularly Th17/Tregs in future studies 
may help address this shortcoming. Alternatively, the 
majority of human studies reporting on the therapeutic 
effect of aspirin were on cultured cells from healthy 
individuals, of which findings need further 
confirmation in clinical settings. Therefore, future 
studies need to include T-cells from individuals with 
metabolic diseases or animal models. In addition, there 
was a variation in dose selection for both drugs that 
would bring the best modulatory effect on T-cell 
function and this aspect should be addressed in future 
studies. Lastly, evidence from included human studies 
looking at both metformin and aspirin were of low 
quality, mostly because these were not randomized 
controlled trials. Despite these limitations, our study 
has a unique strength in that, to the best of our 
knowledge, it is the first systematic review to 
comprehensively assess the impact of metformin and 
aspirin on T-cell function. Importantly, albeit both 
drugs induced diverse therapeutic effects in 
modulating T-cell function, our study revealed that 
their mechanism of action may overlap in inhibiting 
STAT3 signalling and the expression of activation and 
adhesion molecules as summarised in Fig. 2. 
Therefore, these findings pave way for future 
therapeutic studies to target these pathways bearing in 
mind the negative effects associated with both these 
drugs [95,96]. 

Concluding remarks 
Chronic inflammation promotes the development of T2D 
and its associated complications such as CVD. Results 
synthesised in this review support the notion that apart 
from improving glucose metabolism, metformin can also 
ameliorate T-cell mediated inflammation by altering 
Th17/Treg ratio and inhibiting mTOR/STAT signalling. 
Alternatively, it appears the cardio-protective effect of 
aspirin is not only limited to its ability to inhibit 
cyclooxygenase activity, but it also modulates T-cell 
function. In that context, it seems aspirin can modulate T-
cell activation and function by downregulating the 
expression of co-stimulatory molecules and inhibiting 
NF-kB and STAT3 signalling. Overall, the current 
evidence supports that the combinational use of 
metformin and aspirin can be an effective therapeutic 
strategy to reduce the progression of patients with T2D. 
However, such a hypothesis needs an in depth exploration 
in both in vitro experiments and clinical settings of T2D. 
Moreover, the safe doses and side effects that may arise 
from using dual-therapy are yet still to be determined. 
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Prologue 

The following chapter (Experimental article 1) aimed at assessing whether T-cell dysfunction in metabolic 

disorders is mediated by Fas (CD95) and/or Programmed cell death-1 (PD-1). Moreover, to determine if 

there is any association between metabolic disorders and T-cell dysfunction. Using a diet-induced obesity 

mouse model of glucose intolerance, we report weight gain following high-fat diet-feeding (HFF) which 

was associated with poor glucose control, hypercholesterolemia, exacerbated inflammation, and immune 

activation. Most importantly, HFF induced an upregulation of Fas expression and had no influence on PD-

1 levels. Thus, highlighting the fact that metabolic dysregulations in the early stages of obesity may drive 

the pathogenesis of metabolic T-cell disorders, a process partially mediated by the aberrant expression of 

Fas. It therefore remains important to explore therapeutic strategies that target Fas-FasL axis in individuals 

that are obese and at risk of developing metabolic disease-related complications such as cardiovascular 

disease and type 2 diabetes. 
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Abstract  

Objective: To assess whether T-cell dysfunction in metabolic disorders is mediated by Fas and 

Programmed cell death-1 (PD-1). In addition, we aimed to determine if there is any association between 

metabolic disorders and T-cell dysfunction. 

Design: We used a diet-induced obesity mouse model of glucose intolerance. A total of 12 male C57BL/6 

mice were randomised into either a high-fat diet (HFD) or low-fat-diet group for 8 weeks (n=6/group). 

Changes in body weights were monitored on a weekly basis. While the lipid, glucose, and haematological 

profiles, as well as FAS (CD95) and PD1 expression on T-cells immunophenotype were measured after 8 

weeks of HFD-feeding.   

Results: The HFD-fed group had a higher percentage weight gain (29.17%) in comparison to the LFD-fed 

group (21.74%) after the 8-week period. In addition, the HFD group had increased fasting glucose and 

glucose excursion following a 2-hour postprandial period. Furthermore, total cholesterol levels were 

elevated in the HFD group when compared to the LFD group (p<0.05). Notably, the absolute white cell 

count was significantly increased in the HFD-fed group which was concomitant with levels of peripheral 

neutrophils (p<0.05). However, the monocytes and basophils counts were comparable between the two 

diets groups (p>0.05). Interestingly, HFD-feeding was associated with reduced percentage of circulating 

lymphocytes (p=0.0116) and an elevated expression of Fas on T-cells (p<0.0001). Moreover, elevated 

levels of Fas were directly associated with body weights (r=0.93, p=0.0333). No associations were found 

between Fas expression and dyslipidaemia or fasting blood glucose levels (p>0.05). Lastly, the expression 

of PD-1 on T-cells was comparable between the two diet groups (p=0.1822) and no associations were found 

with increased Fas expression (p>0.005).    

Conclusion: Immune activation, dyslipidaemia and poor glucose control in the early stages of obesity may 

drive the pathogenesis of metabolic T-cell disorders. Importantly, T-cell dysfunction in obesity is partially 

mediated by an upregulation of Fas which is independent of dyslipidaemia and hyperglycaemia.  

 

Keywords: Diet-induced obesity; Fas; metabolic disorders; programmed cell death-1; T-cell dysfunction 



 

 

1 Introduction 

The prevalence of obesity has rapidly increased over the years [1], with more than two-thirds of individuals 

with obesity at high risk of developing the metabolic syndrome and cardiovascular disease (CVD) [2, 3]. 

Obesity is strongly associated with metabolic dysfunction and chronic T cell activation [4, 5]. This is mainly 

attributed to dysregulated cytokines and adipokines secretions which activate signalling pathways such as 

the Janus kinases (JAK)/ signal transducer activator of transcription (STAT) that modulate insulin 

signalling [6, 7]. For instance, exacerbated levels of interleukin (IL)-6 and leptin in obesity result in the 

downstream activation of STAT3 signalling [8, 9], which is closely associated with insulin resistance [10]. 

The latter has been attributed to blockage of insulin signalling transduction induced by an upregulation of 

suppressor of cytokine signalling 3 expression in obesity [11]. In our group, we previously described the 

involvement of T-cells in obesity-induced immune activation, insulin resistance, and impaired glucose 

control [7] . In fact, the former is strongly associated with T-cell dysfunction [12] mediated by increased 

expression of  regulatory markers such as Fas (CD95) and programmed cell death -1 (PD-1)[13, 14].  

The binding of the Fas ligand (FasL) to its counter-receptor results in downstream activation of caspase 8 

and activation-induced cell death [15]. However, alternative research has also reported anti-apoptotic 

signalling modulated by the Fas/FasL axis [16]. In particular, Fas signalling provides co-stimulatory 

transductions during T-cell activation [17]. Thus, its aberrant expression may drive alterations in regulatory 

mechanisms of T-cell responses as previously reported [16]. An upregulation of Fas expression on CD8+ 

T-cells is directly associated with an increase in body mass index (BMI) in individuals with obesity [13]. 

Although, others observed a downregulation of Fas expression on CD4+ T-cells in obese individuals with 

poor glucose control [18]. Despite these reported inconsistences, it is apparent that there is a close 

relationship between metabolic disorders and aberrant Fas expression on T-cells. However, there is no clear 

understanding on whether the T-cell dysfunction mediated by Fas in metabolic disorders is driven by poor 

glucose control, obesity or dyslipidaemia.  

Likewise and part from its well characterised negative inhibitory effect, PD-1 is also essential in co-

stimulatory signalling that promotes T cell activation upon binding to its ligand (PD-L1 and PD-L2) [19]. 

In particular, chronic T-cell activation can induce T-cell exhaustion, which is characterised by an 

upregulation of PD-1 [20]. The activation of PD-1/PD-L axis results in transduction of negative co-

stimulatory signal that inhibits T-cell activation [21]. Notably, the upregulation of PD-1 is consistent with 

loss of T-cell effector function in a mouse model of diet-induced obesity (DIO) [22]. In contrast, the 

expression of PD-1 on T-cells in individuals with poor glucose control was not associated with any glucose 

profiles [18, 23], with others even reporting its downregulation in individuals with type 2 diabetes mellitus 

[24]. 
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Therefore, using a mouse model of DIO, we aimed at assessing whether T-cell dysfunction in metabolic 

disorders is mediated by increased expression of Fas and PD-1. Moreover, to determine if there are any 

associations between poor glucose control or dyslipidaemia and the expression of the T-cell regulators.   

2. Methods and materials 

2.1 Animal handling 

Male C57BL/6 mice were purchased and housed in a cage at the Biomedical Research Unit at University 

of KwaZulu-Natal (UKZN) in a controlled environment. The animals were exposed to a controlled 12-hour 

light/dark cycle at a temperature range of 23-25 0C and relative humidity of approximately 50%. The mice 

received standard laboratory food and water ad libitum. All animal procedures were carried out in 

accordance with UKZN Animal Research Ethics Committee (AREC) protocol (AREC/086/016). 

2.2 Study design 

In this DIO model, a total of 12 six-week-old male C57BL/6 mice were randomly allocated into two diet 

groups (n=6/group).  These comprised of a low-fat diet (LFD, 10% energy from fat, Research Diets 

#D12450J) and high-fat diet (HFD, 60% energy from fat, Research Diets #D12492). The animals were 

allowed to a 2-week acclimatisation period and the body weights were measured on a weekly basis for 8 

weeks (Figure 1). Haematological parameters, glucose and lipids profiles were measured after 8 weeks of 

HFD or LFD feeding. 

 

Figure 1: Experimental design. A total of 12 six-week-old male C57BL/6 mice were used in this experiment. Briefly, 

the mice were randomly allocated into two diets groups comprising of high-fat diet and low-fat diet for 8 weeks 

(n=6/group). The weights were measured weekly, while the postprandial glucose levels, haematological parameters 

and blood lipid profiles were measured on the 8th-week post diet-feeding.  
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2.3 Measurements of metabolic profiles and haematological parameters   

Glucose plasma concentrations were performed using the OneTouch select glucometer (LifeScan Inc, CA, 

USA) and the 2 hour oral postprandial glucose test was performed as previously described [25]. In order to 

determine the lipid profiles, total cholesterol, high-density lipoprotein (HDL-cholesterol and low-density 

lipoprotein (LDL)-cholesterol were measured using a mouse specific enzyme-linked immunosorbent assay 

kit (Abcam, MA, USA), according to the manufacturer’s instructions. All haematological parameters were 

measured using Beckman Coulter AcT5 Diff (Beckman Coulter, Miami, USA).  

2.4 Measurements of Fas and PD-1 levels on T-cells 

The IMag™ Mouse T Lymphocyte Enrichment Set-DM (BD biosciences, NJ, USA) was used as per 

manufacturer’s instructions to isolate T lymphocytes from whole blood. In order to determine T-cell 

dysfunction in this DIO model, we enumerated the levels of Fas and PD1 expression on CD3+ T-cells.  

Briefly, isolated T lymphocytes were stained using the following monoclonal antibodies (mAbs) were used 

to assess the expression of Fas and PD-1 on T-cells. Anti-mouse CD3-FITC (clone 17A2) and CD95-APC 

(clone J43) mAbs were obtained from BioLegends, CA, USA; whilst PD-1-BV421 (clone J43) mAb was 

acquired from Beckton Dickinson (BD biosciences, NJ, USA). Flow cytometry analysis was performed 

using a BD FASCanto II (BD biosciences, NJ, USA), and data was analysed using the FlowJo version 

10.6.2 analysis software (BD biosciences, NJ, USA).  

2.5 Statistical analysis  

All statistical analyses were performed using GraphPad Prism version 6 software (GraphPad Software Inc, 

CA, USA). The Kolmogorov-Smirnov test with Dallal-Wilkinson-Lilliefor P-value was performed to test 

for normality. An unpaired student t-test was performed for parametric data and reported as mean ± standard 

error. While, non-parametric data were log-transformed to meet the assumptions of normality prior to 

statistical analysis. The Man Whitney U test was used for non-parametric data, and the results were reported 

as median interquartile range [IQR]. Correlations were performed using Pearson (for parametric data) or 

Spearman rank (non-parametric data) coefficients. A p-value of < 0.05 was considered as statistically 

significant. 

3. Results 

3.1 High-fat diet feeding impaired metabolic function in mice  

In order to induce obesity, the mice were fed a HFD for a period of 8 weeks (Figure 2A). As expected, the 

HFD-fed group had increased percentage weight gain (29.17%) in comparison to the LFD-fed group 

(21.74%). Furthermore, the HFD-fed group had significantly elevated levels of fasting blood glucose 

(p=0.007) after the 8-week HFD-feeding period (Figure 2B). Moreover, the HFD-fed group had a larger 
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postprandial area under the curve (AUC) when compared to the LFD-fed group (p=0.0029) (Figure 2C). In 

order to assess dyslipidaemia in our DIO model, the lipid profiles were measured, and the total cholesterol 

levels were significantly increased in the HFD-fed group when compared to the LFD-fed group (p=0.0079) 

(Figure 2D). However, LDL-cholesterol and HDL-cholesterol were comparable between the two diet 

groups (P>0.05) (Table 1).  

                     

Figure 2: Metabolic changes after 8-weeks of diets feeding (n=6/group). Panel A demonstrates changes in animal 

body weights over 8 weeks, whilst panel B, C and D illustrates fasting glucose, area under curve (AUC) in 2-hour 

postprandial glucose test and total cholesterol levels, respectively. Data presented as mean and standard error (SE). 

3.2 Haematological changes following high-fat diet feeding  

HFD-feeding significantly increased white cell count (p=0.0096) and neutrophils (p=0.0177) in comparison 

to the LFD-fed group (Table 1). However, the levels circulating lymphocytes were significantly reduced 

following HFD-feeding when compared to the LFD-fed group (p=0.0116), while all other haematological 

parameters were comparable following 8-weeks of HFD or LFD feeding (Table 1). 
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Table 1: Characteristics of mice after a 8-week feed on low-fat diet versus high-fat diet (n=6/group) 

Parameter  Low-fat diet (n=6) High-fat diet (n=6) p-value 

Body weight (g)* 
Fasting glucose (mg/dL) 
Area under the curve (mmol/L x 120 
min) 
 
Lipid profiles 
Total cholesterol (µg/uL) 
HDL-cholesterol (µg/uL) 
LDL-cholesterol (µg/uL) 
 
White cell indices 
White cell count (103/µL) 

Neutrophils (%) 
Lymphocytes (%) 
Monocytes (%) 
Basophils (%) 
 
Red cell indices  
Red cell count (106/µL) 
Haemoglobin (g/dL) 
Haematocrit (%) 
Mean cell volume (fL) 
 
Platelet indices 
Platelet count 
Mean platelet volume (fL) 
 
T-cell markers 
% expression of Fas on CD3+ T-cells 
% expression of PD-1 on CD3+ T-
cells  

1.38 ± 0.12 
3.08 ± 0.11 

692.70 ± 67.82 
 
 

0.020 [0.014-0.023] 
0.114 ± 0.048 
0.152 ± 0.025 

 
 

4.42 ± 0.47 
7.80 ± 0.47 

89.90 ± 0.46 
1.84 ± 0.09 
0.4 ± 0.11 

 
 

7.03 ± 0.27 
27.13 ± 0.94 
30.24 ± 1.29 

43.00 [43.00-43.50] 
 
 

572.00 ± 124.60 
5.47 ± 0.23 

 
 

40.23 ± 3.92 
0.59 ± 0.20 

1.47 ± 0.01  
6.30 ± 0.39 

1062 ± 35.22 
 
 

0.043 [0.039-0.048] 
0.091 ± 0.004 
0.093 ± 0.003 

 
 

9.26 ± 1.13 
11.04 ± 0.90 
86.06 ± 1.09 
2.6 ± 0.35 
0.2 ± 0.03 

 
 

6.52 ± 0.44 
26.13 ± 1.03 
27.44 ± 2.01 

42.00 [41.00-43.00] 
 
 

888.60 ± 73.80 
5.42 ± 0.13 

 
 

84.88 ± 4.49 
1.23 ± 0.39  

<0.0001 
0.0007 
0.0029 

 
 

0.0079 
0.6611 
0.0803 

 
 

0.0096 
0.0177 
0.0116 
0.0928 
0.1440 

 
 

0.3575 
0.4933 
0.2809 
0.1190 

 
 

0.0680 
0.8553 

 
 

<0.0001 
0.1822 

 

*: log transformed data. Results expressed as mean ± standard error and median interquartile range  

  

3.3 Expression of CD95 and PD-1 on T-cells 

In order to assess T-cell dysfunction in obesity and poor glucose control, we measured the expression Fas 

and PD-1 on T-cells following the 8-weeks of HFD-feeding (Table 1). Notably, there was a significant 

increase in the expression of Fas on T-cells in the HFD-fed group (84.88 ± 4.49) when compared to the 

LFD-fed group (40.23 ± 3.92), p<0.0001(Figure 3A). However, PD-1 expression was comparable between 

the two groups (p=0.1822) (Figure 3H). 
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Figure 3: Fas and programmed cell death 1 (PD-1) expression on CD3+ T-cells after the 8-week of HFD and LFD 

feeding (n=6/group). The high-fat diet (HFD)-fed group had increased levels of Fas expression when compared 

to the low-fat diet (LFD)-fed group (A). The levels of Fas on T-cells were independent of weight (B), fasting 

plasma glucose (D) and total cholesterol (F) in the LFD group, as well as fasting glucose (E) and total cholesterol 

(G) in the HFD group (p>0.05). However, Fas expression was directly associated with body weight in the HFD 

group (r=0.93, p=0.0333) (C) whereas the expression of PD-1 on T-cells was comparable between the LFD-fed 

and HFD-fed groups (p>0.05) (H). Fas and PD-1 expression on T-cells reported as mean ± standard error and the 

correlations are presented as either Pearson r or Spearman r 95% confidence interval. 

3.4 Associations between Fas-mediated T-cell dysfunction and metabolic disorders 

Obesity is strongly characterised by poor glucose control and dyslipidaemia [3, 26]. To assess whether 

there is any association between Fas expression and metabolic disorders, we assessed the relationship 

between Fas expression on T cells and body weight, fasting blood glucose and total cholesterol levels. 

We found a positive correlation between Fas expression and body weights (Spearman r=0.95, 

p<0.0001), fasting plasma glucose (Pearson r=0.92, p<0.0001) and total cholesterol (Pearson r=0.76, 

p=0.0039) (data not shown). We further performed a sub-group analysis based on the different study 

diets (HFD and LFD) and in the HFD group, the levels of Fas expression on T cells increased with 

changes in body weight in the HFD-fed mice only (Spearman r=0.93, p=0.0333) (Figure 3C). No 

significant associations were found with fasting plasma glucose (Figure 3D and E) and total cholesterol 

(Figure 3F and G) in both diets and weight in the LFD-fed group (Figure 3B). Correlation analysis 

between Fas and PD-1 expression also yielded no significant results in both LFD-fed (Pearson r=-0.38, 

p=0.4633) and HFD-fed (Pearson r=-0.15, p=0.7807) groups (Figure 3I).  

4. Discussion 

The aim of this study was to assess the expression Fas and PD-1 on circulating T cells in obesity using 

a DIO mouse model. In this model, 8-week HFD feeding induces long term glucose impairment, 

dyslipidaemia and weight gain [27, 28]. Interestingly, these changes are analogous with characteristic 

features of metabolic syndrome in humans  [29], whereby poor glucose control and increased total 

cholesterol have been reported in obese adults [30]. In our study, both lipid and glucose metabolism 

were altered following HFD-feeding. Notably, when assessing the lipid profiles, only the total 

cholesterol levels were elevated in the HFD-fed group whereas LDL-cholesterol and HDL-cholesterol 

remained comparable between the two diet groups. The discordant cholesterol results may be attributed 

to increased triglyceride levels in obesity which together with aberrant cholesterol levels predisposes 

obese individuals to CVDs [3].  

It is established that leucocytosis is an indicator of immune activation and is closely associated with 

inflammation. In previous studies, obesity was positively associated with increase in white cell count 

[31, 32], whereby an increase in BMI was associated with neutrophilia [31]. Likewise, our results 

showed that HFD-fed mice gained weight and had significantly elevated white cell count, which was 
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indicative of a pro-inflammatory state in obesity. This may suggest that leucocytosis in obesity is mainly 

driven by increased proliferation of neutrophils. Obesity-related leucocytosis is associated with 

dyslipidaemia, which is characterised by increased total cholesterol and LDL-cholesterol and low HDL-

cholesterol [33]. Notably, increased white cell count has been directly associated with aberrant 

cholesterol levels in patients with metabolic syndrome [34]. Overall, our findings seem to suggest that 

increased immune activation and dyslipidaemia may be responsible for the pathogenesis of metabolic 

syndromes in individuals with obesity. 

Fas is one the increasingly explored proteins for its role in immune activation [16]. Apart from 

mediating apoptotic cell death, Fas signalling also induces other non-apoptotic activities regulated by 

members of the tumour necrosis factor receptor superfamily. These include activation and proliferation 

of leucocytes  [35], which is well-described in patients with metabolic disorders and experimental 

models of obesity and non-alcoholic fatty liver disease [13, 26, 36, 37]. Where in obese individuals, 

increased expression of Fas on monocytes, neutrophils and T-cells was associated with the activation 

pro-inflammatory pathways and differentiation of immune cells in conditions of metabolic disease [13, 

26, 36, 38]. Interestingly, blockage of Fas signalling can attenuate obesity-induced adipose tissue 

inflammation by inhibiting IL-6 whilst promoting IL-10 secretion [26]. Subsequently, IL-10 can inhibit 

Fas expression and its signalling through the activation of FLICE-like inhibitory protein (FLIP) [39]. 

In our study, we observed increased Fas expression on T-cells and low lymphocyte count in the HFD-

fed group. Since the dual effect of Fas-FasL axis is depended on cellular context [15], this may suggest 

that FAS-mediated pro-apoptotic signalling could explain the reduction in lymphocytes count in the 

HFD-fed group. Lastly, also as one of the important regulators of immune activation, we report on 

comparable levels of PD-1 expression on T-cells between the HFD-fed and LFD-fed group. However 

this is in contrast to  previous studies  [22, 40, 41], whereby the upregulation of PD-1 was reported in 

patients with obesity. The difference in the findings may be attributed to the immunological responses 

attributed to obesity-induced inflammation, since the upregulation of PD-1 in T-cell exhaustion is 

strongly linked with a chronic inflammatory state [42]. However, to be certain, different experimental 

models must be explored to assess the expression levels of PD-1 on T-cells in conditions of metabolic 

syndrome. 

Our study had a few limitations. We did not assess the expression of Fas and PD-1 on T-cell subsets 

which would have provided insight to the expression of these regulatory markers. However, a previous 

study [13] showed that the expression of Fas on CD4+ T-cells were comparable between obese and lean 

individuals. We therefore opted to assess the expression of these regulatory markers on the major T-

cell lineage. Lastly, we did not determine whether the upregulation of Fas expressions is directly 

associated with increased activation of Fas signalling. Future studies need to investigate both these 

aspects to unveil and understand the mechanisms mediated by Fas in T-cell dysfunction. 
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5. Conclusion  

Obesity is characterised by dyslipidaemia, increased immune activation and T-cell dysfunction. Most 

importantly, altered T cell function is partially mediated by an upregulation of Fas which is independent 

of dyslipidaemia and hyperglycaemia. Therefore, therapeutic strategies that target Fas-FasL axis may 

be of benefit for patients with obesity who are also at risk of developing metabolic disease-related 

complications such as CVD and type 2 diabetes mellitus. 
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Prologue 

The next chapter (Experimental article 2) focuses on the modulatory effects of low-dose aspirin (LDA) 

and its combination with metformin (LDA+Met) on metabolic profiles, inflammation, immune 

activation and the expression of T-cell function markers using a diet-induced inflammation mouse 

model of pre-diabetes. In this manuscript, the model was associated with impaired glucose tolerance, 

hypercholesterolemia, increased levels of pro-inflammatory cytokines and decreased expression of 

regulatory marker (CD69) on T-helper cells. Notably, treatment with LDA+Met and not LDA only, 

exhibited successful modulatory effects in normalising glucose control, ameliorating inflammation and 

most importantly, improving T-cell functions. Thus, suggesting that the alleviation of inflammation, 

together with the lowering of glucose levels in type 2 diabetes mellitus may be an effective strategy to 

improve T-cell function in these patients.    
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Abstract 

Chronic inflammation in patients with type 2 diabetes (T2D) is associated with T-cell dysfunction. We 

evaluated changes in metabolic profiles, inflammation status and the expression of T-cell function 

markers following high-fat diet (HFD)-feeding. In addition, we assessed the modulatory effects of 

treatment with low-dose aspirin (LDA) and its combination with metformin (LDA+Met) on these 

parameters. Notably, HFD-feeding (HFF) induced metabolic disorders and aggravated inflammation. 

Most importantly, it was associated with decreased expression of CD69 on T-helper cells but had no 

effect on the expression of programmed cell death 1 (PD-1). Treatment with LDA monotherapy had no 

effect on the measured parameters. However, its combination with metformin ameliorated the levels of 

inflammation and up-regulated the expression of CD69 although it had no therapeutic effect on the 

levels of PD-1 expression. Therefore, alleviating inflammation and lowering glucose levels in T2D may 

be an effective strategy to improve T-cell function in these patients. 

 

Keywords: CD69; PD-1; T-cell regulation; inflammation; low-dose aspirin; metformin; type 2 diabetes 

mellitus.  
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1. Introduction 

Chronic inflammation and an altered cytokine milieu are associated with T-cell dysfunction and the 

pathogenesis of metabolic disorders [1]. Obesity is a major risk-factor of several metabolic diseases and 

is characterised by low-grade inflammation in non-communicable disease such as type 2 diabetes (T2D) 

[2–4]. Approximately 13% of individuals who are obese develop T2D, and over two-thirds of patients 

with T2D are obese [7]. In addition to T2D, obesity comorbidities include cardiovascular disease (CVD) 

and immune dysfunction [5,6].  

Chronic immune activation induces an aberrant expression of T-cell regulatory markers such as CD69 

and programmed cell death 1 (PD-1), which may result in T-cell dysfunction. For instance, individuals 

with obesity express lower CD69 expression on CD4+ and CD8+ T-cells, which is associated with 

reduced secretion of T-helper (TH) cytokines [6]. In contrast, increased levels of CD69 expression on 

CD4+ and CD8+ T-cells in obesity have been reported [7,8]. Similarly, contradictory findings on the 

levels of PD-1, a negative regulator of T-cell function has been described in patients with T2D, [12, 

13]. Notably, the expression of CD69 on T-cell subsets is directly associated with adiposity [7]. 

However, evidence on the expression of these markers in pre-diabetes or overt T2D remains elusive. 

Despite the inconsistencies in the levels of CD69 and PD-1 expression on T-cells, it is evident that the 

levels of expression of these receptors are altered in obesity and a state of impaired glucose tolerance.  

Hyperglycaemia is a hallmark of T2D which remains a crucial therapeutic drug target in the 

management of patients with T2D. Metformin is the widely used glucose-lowering drug that is well-

characterised for the ability to improve glucose metabolism. In addition, the anti-inflammatory 

properties of metformin have been suggested through indirect mechanisms [9]. We previously described 

how metformin and aspirin, a well-known anti-inflammatory drug ameliorate T-cell mediated 

inflammation [10]. Although these modulatory effects were reported as monotherapy, we explored 

whether combinational use of metformin and low-dose aspirin (LDA) would further ameliorate 

inflammation and improve T-cell function in metabolic disorders. Therefore, using a diet-induced 

inflammation model of impaired glucose tolerance, we evaluated changes in metabolic profiles, 

inflammatory status and T-cell function following a high-fat diet (HFD)-feeding. We further assessed 

the modulatory effects of short-term treatment with LDA or its combination with metformin 

(LDA+Met) on the levels of generalised immune activation and the expression of CD69 and 

programmed cell death-1 (PD-1) on TH cells. 

2. Methods and materials 

2.1 Animal handling 

Eighteen six-week-old male C57BL/6 mice (n=18) were purchased and kept at the Biomedical Research 

Unit at the University of KwaZulu-Natal. The animals were housed in a controlled environment 

whereby they were exposed to a 12-hour light and dark cycle and unlimited water and food supply 
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throughout the experiment. The study was conducted in accordance with the National Society of 

Medical Research & the National Institutes of Animal Care and use of Laboratory Animals of the 

National Academy of Science. The animals were kept separately in cages (n=6/cage) based on their 

respective diets and treatment groups.  The study protocol was approved by the University of KwaZulu-

Natal Animal Research Ethics Committee (AREC), protocol number: AREC/086/016.  

2.2 Study design 

The animals were acclimatised to the environment over 2 weeks. Thereafter, the study experiments 

were carried out in two stages involving 16-week- and 24-week-old mice, respectively (Figure 1).  

Experiment one 

In this phase of the study, we aimed to instigate diet-induced inflammation through HFD-feeding (HFF). 

Briefly, the mice were randomised into either a low-fat diet (LFD) containing 10 Kcal% derived from 

fat (19 g% Protein, 67 g% carbohydrates, 4 g% fat, Research Diets #D12450J) (n=6) or HFD 

constituting 60 Kcal% derived from fat (26 g% Protein, 26 g% carbohydrates, 35 g% fat, Research 

Diets #D12492) (n=12).  The animal body weights were monitored on a weekly basis. After eight weeks 

of diet feeding, venous blood was drawn from the lateral tail vein into serum separator tubes (SST) and 

ethylenediaminetetraacetic acid EDTA microtainer tubes (BD Bioscience, USA). Baseline levels of 

glucose and lipid profiles, haematological indices, cytokine levels and T-cell parameters were then 

measured from the blood samples.    

Experiment two 

The second phase aimed to assess the modulatory effects of LDA and metformin on the parameters 

measured at baseline, particularly inflammation indices and T-cell function markers. Following eight 

weeks of HFD-feeding, the animals were randomised into two treatment groups (n=6/group). These 

comprised of a LDA (3 mg/kg) and a LDA and metformin (150 mg/kg) (LDA+Met) combinational 

group. The treatments were administered daily via oral gavage for a period of 6 weeks. The animal body 

weights were measured weekly, and at the end of treatment period on week 14, blood was drawn, and 

changes in metabolic profiles, inflammation and expression of T-cell markers were determined.  
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Figure 1: Study design involving two experimental stages. Briefly, in experiment 1, a total of 18 six-week-old 

male C57BL/6 mice were acclimatised to the environment for 2 weeks and were thereafter randomised into either 

a high-fat diet (n=12) or low-fat diet (n=6) groups for a total of 14 weeks. Experiment 2 was initiated at week 8, 

whereby high-fat diet-fed mice were randomised into a short-term treatment with either low-dose (LDA) aspirin 

or its combination with metformin (LDA+Met) over 6 weeks (n=6/group).  

2.3 Measurements of metabolic parameters and haematological indices   

The fasting serum insulin levels were measured using an enzyme-linked immunosorbent assay (ELISA) 

kit (Thermo Fisher, Massachusetts, USA) following an 8 hour fasting period. Fasting plasma glucose 

concentrations were determined using the OneTouch select glucometer (LifeScan Inc, CA, USA), and 

the 2-hour postprandial oral glucose tolerance test was performed as previously described [11]. The 

lipid profiles were assessed by measuring the levels of total cholesterol, high-density lipoprotein 

(HDL)-cholesterol and low-density lipoprotein (LDL)-cholesterol using a mouse-specific ELISA kit 

(Abcam, MA, USA), as per manufacturer’s instructions. The haematological parameters were 

determined using Beckman Coulter AcT5 Diff (Beckman Coulter, Miami, USA) whilst TH cell 

associated cytokines (IL-6, TNF-α, IL-2 and IL-17A) were measured using  the BioLegend, 

LEGENDplex™ Mouse Th Cytokine kit (BD Biosciences, San Diego, USA). 

2.4 Measurements of CD69 and PD-1 levels on TH cells 

In order not to interfere with T-cell functionality, we negatively selected T lymphocytes from whole 

blood using the IMag™ Mouse T Lymphocyte Enrichment Set-DM (BD biosciences, NJ, USA), as per 

manufacturer’s instructions. To determine the effect of HFF and the modulatory effects of short-term 

treatment with LDA and metformin on T-cell function, we measured the levels of CD69 and PD-1 

expression on CD4+ T-cells. The following monoclonal antibodies were used to enumerate activated TH 

cells; anti-mouse CD4 PE-Cy7 (clone GK1.5), CD69 APC-Cy7 (clone 812S3) and PD-1 BV421 (clone 



 

Page 115 of 130 
 

MHI4), and were purchased from Beckton Dickinson (BD biosciences, NJ, USA). A detailed gating 

strategy for the measurements of CD69 and PD-1 on CD4+ T-cells is illustrated in Figure 2. The BD 

FACS CANTO II flow cytometer (Becton Dickson, NJ, USA) was used for data acquisition and FlowJo 

version 10.6.2 analysis software (BD biosciences, NJ, USA) for data analysis.  

Figure 2: An overview of the gating strategy used in this current study. Panel (A) illustrates gating of singlets 

using side scatter (SSC) area and height, while panel (B) shows the identification of T-helper cells using CD4+ 

monoclonal antibody. Panel C and D illustrate the measurement of CD69 and programmed cell death-1 (PD-1) 

expression on T-helper cells, respectively. The gates were set using an unstained sample.   

2.5 Statistical analysis  

The Kolmogorov-Smirnov test with Dallal-Wilkinson-Lillie was performed for normality testing. For 

parametric data, the mean differences between the LFD- and HFD-fed groups were assessed using 

unpaired student t-test and were reported as mean ± standard error. The Man Whitney U test was used 

for non-parametric data and reported as the median and interquartile range [IQR]. Comparisons across 

the diet and treatments groups were assessed using a Two-way analysis of variance (ANOVA). A 

posthoc Tukey's multiple comparisons test was performed if the F-value reached statistical significance 

(p<0.05). The Kruskal-Wallis test, followed by a Dunn's posthoc test, was used for non-parametric data. 

All cytokine data were log-transformed to meet the assumptions of normality prior to statistical analysis 

and reported as mean ± standard error. A p-value of < 0.05 was considered statistically significant. The 

GraphPad Prism version 6 software (GraphPad Software Inc, CA, USA) was used for all statistical 

analysis. 

3. Results 

3.1 Baseline metabolic profiles after 8-weeks of feeding  

The weight gain in the HFD-fed group spiked in the first three weeks (range of 8-14%) whist in the 

LFD-fed group it was much lower, ranging from 2-7%. Overall, the HFD-fed group had a slightly 

increased percentage weight gain (15%) when compared to the LFD-fed group (11%) over the 8-week 

period (Figure 3a). In order to determine changes in glucose control, we measured insulin and fasting 

plasma glucose levels. The HFD-fed group had significantly elevated fasting glucose levels (p<0.0001) 

(Table 1) and an increased 2-hour postprandial area under the curve (AUC) (p<0.0001) (Figure 3b). 

Moreover, the levels of insulin in the HFD-fed group were markedly elevated (p=0.0182) in comparison 
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to the LFD-fed group (Figure 3c). To evaluate a state of dyslipidaemia following 8-weeks of diet 

feeding, we measured the lipid profiles. Total cholesterol (TC) levels were significantly elevated in the 

HFD-fed group (p=0.022) (Figure 3d), while the HDL-c levels were comparable between the two 

groups (p=0.4332) (Figure 3e). Interestingly, the LDL-c were significantly lower in the HFD-fed group 

when compared to the LFD-fed group (p=0.0311) (Figure 3f). 

                                        

Figure 3: Changes in metabolic profiles following 8-week diet feeding. Figure (A) illustrates body weight changes 

over the 8 weeks of being on a high-fat diet (HFD), or low-fat diet (LFD) whilst panel (B) and (C) shows 

comparisons of the area under curve (AUC) in a 2-hour oral glucose test and insulin levels, respectively. Figure 

(D), (E) and (F) shows differences in total cholesterol, high-density lipoprotein (HDL)-cholesterol and low-

density lipoprotein (LDL)-cholesterol, respectively. All results are presented as mean ± standard error except for 

total cholesterol levels which are reported as median, interquartile range.    

3.2 Elevated levels of inflammation following 8 weeks of HFD-feeding  

In order to determine the levels of generalised immune activation, we measured complete blood counts 

and inflammatory cytokines. The results demonstrated that HFF was associated with an increased total 

white cell count (WCC) (p=0.008) but had no effect on lymphocyte, red blood cell (RBC) and platelet 

counts (Table 1). In addition, HFF induced an elevation of IL-6 (p<0.0001), TNF-α (p=0.0312) and IL-

17A (p<0.0001) but had no effect on IL-2 (p=0.8124). Moreover, HFD-feeding downregulated the 

expression of CD69 (p=0.0009) on CD4+ T-cells without altering the levels of PD-1 (p=0.6408) (Table 

1).   
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Table 1: Baseline characteristics of mice fed a low-fat diet (LFD) versus high-fat diet (HFD) after 8 weeks 

Parameter  LFD (n=6) HFD (n=6) p-value 

Bodyweight (g) 
Insulin (µU/L) 
Fasting blood glucose (mg/dL) 
Area under the curve (mmol/L x 120 min) 
 
Lipid profiles (µg/uL) 
Total cholesterol  
HDL-cholesterol  
LDL-cholesterol  
 
Haematological parameters  
White cell count (103/µL) 
Lymphocytes (%) 
Red cell count (106/µL) 
Platelet count (103/µL) 
 
Inflammatory cytokines (pg/mL) 
Interleukin-6  
Tumour necrosis factor-α  
Interleukin-2  
Interleukin-17A 
 
Expression of activation markers on CD4+ 
T-cells (MF)I 
CD69  
PD1  

23.83 ± 0.70 
4.52 ± 0.04 
3.23 ± 0.18 
692. ± 55.38 

 
 

0.02 [0.02-0.02] 
0.128 ± 0.042 
0.160 ± 0.022 

 
 

4.88 ± 0.39 
90.53 ± 0.82 
7.15 ± 0.25 

783.5 [626.3-864.0] 
 

 
1.25 ± 0.02 
1.54 ± 0.19 
1.880 ± 0.03 
0.94 ± 0.03 

 
 
 

1270 ± 50.60 
119.90 ± 3.96

26.50 ± 1.38 
4.80 ± 0.09 
6.42 ± 0.34 

1062 ± 28.75 
 
 

0.09 [0.09-0.10] 
0.093 ± 0.004 
0.094 ± 0.003 

 
 

8.31 ± 0.56 
89.55 ± 0.60 
6.64 ± 0.38 

709.5 [515.0-735.3] 
 
 

2.01 ± 0.18 
2.09 ± 0.02 
1.90 ± 0.06 
2.28 ± 0.15 

 
 
 

1019 ± 18.39 
123.80 ± 7.04

0.1272 
0.0182 

< 0.0001 
< 0.0001 

 
 

0.0022 
0.4332 
0.0311 

 
 

0.0008 
0.3567 
0.2904 
0.1797 

 
 

< 0.0001 
0.0312 
0.8124 

< 0.0001 
 
 
 

0.0009 
0.6408

MFI: Mean fluorescence intensity. Results expressed as mean ± standard error and median interquartile range  

3.3 Changes in metabolic profiles post 6-week treatment with LDA or its combination with 

metformin   

To measure the effect of short-term LDA and LDA+Met treatment on metabolic profiles, we assessed 

changes in body weights, insulin, glucose levels and cholesterol levels. The Kruskal-Wallis test showed 

that there were significant changes in the body weights (K (3) = 14.79, p=0.0020) and insulin levels (K 

(3) = 9.43, p=0.0241) across the experimental groups (Table 2). The Dunn's posthoc analysis showed an 

increase in body weight of the HFD-fed group [28.50 (24.75-30.25)] in comparison to the LFD-fed 

group [24.00 (22.75-24.25)], (p=0.0292). However, there were no significant reduction in body weights 

in the LDA- (p>0.9999) or LDA+Met-treated (p>0.9999) groups when compared to the untreated HFD-

fed group. Although HFF did not alter the insulin levels, the LDA+Met-treated group [4.53 (4.50-4.57)] 

had significantly lower levels in comparison to the LDA-treated group [4.76 (4.61-5.26)], (p=0.0475) 

(Table 2). The two-way ANOVA showed that fasting blood glucose levels differed significantly across 

the experimental groups (F (3, 15) = 31.13, p<0.0001). Tukey’s posthoc analysis showed that treatment 

with LDA (3.48 ± 0.35) or LDA+Met (3.22 ± 0.32) significantly lowered the levels of fasting blood 

glucose when compared to the untreated HFD-fed group (6.42 ± 0.34), (p<0.0001) (Table 2).  

Assessment of lipid profiles revealed comparable levels of HDL-c (F (3, 15) = 0.2623, p=0.8515) and 

LDL-c (F (3, 15) = 3.004, p=0.0636) across all experimental groups. Notably, the levels of TC were 

different across the experimental groups (K (3) = 9.13, p=0.0276) and post-hoc analysis showed elevated 

levels in the HFD-fed group [0.09 (0.09-0.10)] when compared to the LFD group [0.02 (0.02-0.02)], 
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(p=0.0479) (Table 2). However, in comparison to the HFD-fed group, treatment with LDA [0.020 (0.01-

0.07)], (p=0.0607) or LDA+Met [0.02 (0.02-0.10)], (p=0.6148) did not alter the TC levels.  

3.4 LDA and metformin ameliorate immune activation and T-cell mediated inflammation  

Analysis of haematological parameters showed significant changes in total WCC (F (3, 15) = 19.71, 

p<0.0001) and lymphocyte counts (F (3, 15) = 9.063, p=0.0011) across the experimental groups (Table 

2). A posthoc analysis showed that HFF markedly increased total WCC (p<0.0001) in comparison to 

the LFD-fed group. Notably, treatment with LDA+Met significantly lowered the WCC when compared 

to the untreated HFD-fed group (p=0.0095). However, LDA treatment did not affect the total WCC 

(p=0.0771) (Table 2). Importantly, although HFF did not alter lymphocyte counts, treatment with 

LDA+Met reduced the lymphocyte count when compared to the untreated HFD-fed group (p=0.0264). 

Lymphocytes count remained comparable after treatment with LDA only. Platelets (F (3, 15) = 1.226, 

p=0.3349) and RBC counts (K (3) = 6.034, p=0.1100) remained comparable across all experimental 

groups (Table 2).  

Analysis of all cytokine profiles showed that there were significant differences in the levels of IL-6 (F 

(3, 15) = 15.19, p<0.0001), TNF-α (F (3, 15) = 4.641, p=0.0173), IL-2 (F (3, 15) = 19.72, p<0.0001) and IL-

17A (F (3, 15) = 28.41, p<0.0001) across all experimental groups. A post-hoc analysis revealed that 

treatment with LDA+Met significantly reduced IL-6 (p=0.0002), TNF-α (p=0.0465), IL-2 (p=0.0001) 

and IL-17A (p<0.0001) in comparison to the untreated HFD-fed group (Table 2, Figure 4a-d). However, 

LDA treatment did not significantly lower the cytokine levels except IL-17A (0.0259) (Figure 4d).  
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Table 2: Modulatory effects of low-dose aspirin and metformin treatment on metabolic profiles, inflammation 
and T-cell function 

Parameter  LFD (n=6) HFD (n=6) LDA (n=6) LDA+Met (n=6) p-value 

Body weight (g) 
Insulin (µU/L) 
Fasting blood glucose (mg/dL) 
 
Lipid profiles (µg/uL) 
Total cholesterol  
HDL-cholesterol  
LDL-cholesterol 
 
Haematological parameters 
White cell count (103/µL) 

Lymphocytes (%) 
Red cell count (106/µL) 
Platelet count 
 
Inflammatory cytokines  
Interleukin-6 (pg/mL) 
TNF-α (pg/mL) 
Interleukin-2 (pg/mL) 
Interleukin-17A (pg/mL) 
 
Expression of activation 
markers on CD4+ T-cells (MFI)  
CD69  
PD1  

24.00 [22.75-24.25] 
4.66 [4.52-4.76] 

3.23 ± 0.18 
 
 

0.02 [0.02-0.02] 
0.128 ± 0.042 
0.160 ± 0.022 

 
 

4.88 ± 0.39 
90.53 ± 0.82 

7.12 [6.80-7.77] 
764.30 ± 48.95 

 
 

1.25 ± 0.02 
1.43 ± 0.16  
1.12 ± 0.02 
0.94 ± 0.03 

 
 
 

1230 [1171-1311] 
127.7 [110.5-135.3] 

28.50 [24.75-30.25] 
4.83 [4.57-8.10] 

6.42 ± 0.34 
 
 

0.09 [0.09-0.10] 
0.093 ± 0.004 
0.094 ± 0.003 

 
 

10.14 ± 0.76 
87.42 ± 1.22 

6.66 [5.35-7.16] 
805.6 ± 85.81 

 
 

2.00 ± 0.07 
2.11 ± 0.06 
2.09 ± 0.09 
2.16 ± 0.03 

 
 
 

1134 [1110-1186] 
116.8 [104.9-131.6] 

27.00 [26.75-27.00] 
4.76 [4.61-5.26] 

3.48 ± 0.35 
 
 

0.02 [0.01-0.07] 
0.112 ± 0.024 
0.157 ± 0.031 

 
 

8.30 ± 0.23 
86.98 ± 0.22 

7.52 [7.09-7.91] 
942.00 ± 36.37 

 
 

1.40 ± 0.17 
1.80 ± 0.18 
1.95 ± 0.20 
1.66 ± 0.21 

 
 
 

1308 [1214-1365] 
110.0 [68.75-111.6] 

29.00 [28.50-29.75] 
4.53 [4.50-4.57] 

3.22 ± 0.32 
 
 

0.02 [0.02-0.10] 
0.120 ± 0.044 
0.084 ±0.017 

 
 

7.54 ± 0.61 
82.26 ± 1.89 

7.55 [7.32-7.74] 
829.60 ± 75.31 

 
 

1.28 ± 0.04 
1.53 ± 0.21 
1.17 ± 0.09 
0.95 ± 0.04 

 
 
 

1399 [1355-1435] 
109.5 [104.9-122.0] 

0.0020 
0.0241 

<0.0001 
 
 

0.0276 
0.8515 
0.0636 

 
 

<0.0001 
0.0011 
0.1100 
0.3349 

 
 

<0.0001 
0.0173 

<0.0001 
<0.0001 

 
 
 

0.0016 
0.1199 

Results expressed as mean, ± standard error or median, interquartile range. LFD: Low-fat diet, HFD: high-fat diet, LDA: 
Low-dose aspirin, LDA+Met: combination of low-dose aspirin and metformin, AUC: Area under the curve, TNF- α: 
Tumour necrosis factor- α. MFI: Mean fluorescence intensity 

 

3.5 Combined LDA and metformin treatment is associated with increased expression of CD69 on 

TH cells  

Metabolic disorders are associated with chronic immune activation mediated by dysregulated T-cell function. To 

evaluate T-cell function in diet-induced inflammation model, we measured the expression of CD69 and PD-1 on 

CD4+ T-cells and the impact of short-term treatment with LDA or LDA+Met on their expression. Notably, there 

were significant changes in the levels of CD69 expression following treatment (K (3) = 15.29, p=0.0016) (Table 

2). The posthoc analysis showed elevated CD69 expression on TH cells in the LDA+Met-treated group [1399 

(1355-1435)] but not LDA [1308 (1214-1365)] (p=0.1487) when compared to the untreated HFD-fed group [1134 

(1110-1186)], (p=0.0010) (Table 2, Figure 4e). There were no differences in the expression of PD-1 on TH cells 

across all experimental groups (K (3) = 5.836, p=0.1199) (Table 2, Figure 4f). 
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Figure 4: Modulatory effect of low-dose aspirin (LDA) or its combination with metformin on inflammation and 

T-cell function.  High-fat diet (HFD)-feeding induced an upregulation of interleukin (IL)-6, tumour necrosis factor 

(TNF)-α, IL-2 and IL-17A. Interestingly, short-term combinational treatment with low-dose aspirin and 

metformin (LDA+Met) reduced all the pro-inflammatory cytokine levels (A-D). Expression of T-cell regulatory 

markers revealed that HFD-feeding downregulated the expression of CD69 on CD4+ T-cells which were 

upregulated post-treatment with LDA+Met but not LDA (E). The expression of programmed cell death 1 (PD-1) 

however, remained comparable across all diets and treatment groups (F). All results are presented as mean ± 

standard error except for the expression of CD69 and PD-1, which are reported as median, interquartile range.    

4. Discussion 

In this study, we used a HFD-induced inflammation model to evaluate metabolic abnormalities 

associated with inflammation and T-cell dysfunction. In addition, we assessed the modulatory effects 

of short-term treatment with LDA or its combination with metformin on inflammation and the 

expression of CD69 and PD-1 on TH cells. Notably, our results demonstrated that HFF induced a state 

of glucose intolerance, hyperinsulinaemia, hypocholesteraemia and inflammation. These pathological 

changes are associated with the early phase of metabolic syndrome, which is characterised by insulin 

resistance, glucose intolerance and inflammation that is independent of body weights gain [12]. 

Interestingly, HFF was associated with decreased CD69 expression on TH cells but had no effect on the 

expression of PD-1 in metabolic disorder.   

Insulin resistance and obesity are closely associated with hypercholesterolemia [13,14]. In fact, 

hyperinsulinaemia in obesity and T2D promotes the synthesis of very-low LDL-c and inhibits its 

removal by blocking lipoprotein lipase activity [15]. In turn, lipid-induced insulin resistance in skeletal 

muscle impairs insulin receptor signalling and glucose transporter type 4 (GLUT4) translocation [16]. 
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In this study, we report on increased TC levels with no changes in HDL-c and LDL-c levels following 

HFF, and no therapeutic benefit of both treatment regimens in normalising cholesterol levels. Therefore, 

we speculate that the hypercholesterolemia observed may be driven by hypertriglyceridemia. 

Consequently, therapies that target to reduce triglyceride levels may be of great benefit in lowering 

cardiovascular risk in patients with T2D as previously described [17]. Notably, both drugs improved 

glucose metabolism and the efficacy of LDA treatment which may be attributed to its ability to alleviate 

inflammation and thereby improving insulin sensitivity in T2D [18]. 

Obesity-related inflammation is characterised by an elevation in leucocyte counts, indicative of 

generalised immune activation [19]. Therefore, reduction in WCC and lymphocytes following treatment 

with LDA+Met highlights the amelioration of generalised immune activation. Obesity-related 

inflammation is associated with the polarisation of TH cells towards the pro-inflammatory TH1 and 

TH17 subsets [20]. In this study, we report an elevation of all TH1 and TH17 associated cytokines that 

we measured (IL-2, IL-6, IL-17 and TNF-α) following HFF. The binding of IL-2 to its receptor (CD25) 

modulates TH cell differentiation and function via the Janus tyrosine kinase/signal transducer and 

activator of transcription (JAK/STAT) signalling pathways [21]. In that context, the elevation of IL-2 

following HFF may promote the differentiation of TH cells into pro-inflammatory effector cell subsets 

which may result in an increase of IL-6, IL-17 and TNF-α cytokines. Interestingly, treatment with 

LDA+Met normalised IL-2 levels which may have induced the differentiation of regulatory T-cells 

(Tregs) through the activation of JAK/STAT5 signalling [21,22]. Tregs via IL-10 inhibit TH1 and TH17 

function, hence the decrease in the associated cytokines.  

The activation of the T-cell receptor induces an immediate upregulation of CD69 on T-cells which 

gradually decline over days [23]. This highlights its essential role as an immuno-regulator receptor that 

modulate inflammatory responses mediated by TH cells [24]. In our study, the downregulation of CD69 

following HFD-feeding was concomitant with increases in TH1and TH17 associated cytokines. 

Whereby, CD69 blocks sphingosine 1 phosphate receptor-1 (S1P1) signalling, which favours the 

differentiation of TH1 and TH17. Briefly, the binding of S1P1 to its receptor activates the mammalian 

target of rapamycin (mTOR) complex and JAK2/STAT3 signalling pathway which promotes 

polarisation of pro-inflammatory TH1 and TH17 subsets whilst inhibiting Tregs [25]. Notably, the 

expression of CD69 on activated T-cells induces degradation of the S1P1 receptor in addition to 

blocking its signalling via the JAK3/STAT5 which favours Tregs polarisation [25,26]. Interestingly, 

treatment with LDA+Met was associated with an increased expression of CD69, and this was congruent 

with reductions in TH1 and TH17 cytokines. This change may be attributed to increased JAK3/STAT5 

signalling, which polarises TH cells towards Tregs. Although LDA is a well-acknowledged anti-

inflammatory drug, it did not affect the expression of CD69 and TH cytokine release, and its efficacy 

was only enhanced when combined with metformin. This may be due to the inhibitory effect of 
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metformin mTOR and STAT3 signalling [27,28]. Although PD-1 is a well characterised negative 

regulator of T-cells, in our study, it remained unchanged in both experiments, and this may be due to 

the immunological responses in the early to intermediate phases of obesity-induced inflammation since 

the upregulation of PD-1 in T-cell exhaustion is strongly linked with a prolonged pro-inflammatory 

state [29].  Collectively, these findings suggest that T-cells dysfunction in metabolic disorders may be 

mediated by aberrant expression of CD69. 

Our study had a few limitations as we did not assess whether the upregulation of CD69 following 

treatment directly enhanced its signalling pathway. Future studies are required to address this aspect. 

Lastly, some of the reported TH cell cytokines were measured in serum and could have been influenced 

by other immune cells other than T-cells which also excrete these cytokines.  

5. Conclusion  

HFD-induced inflammation is associated with impaired glucose tolerance, hypercholesterolemia and 

T-cell dysfunction. Notably, only combined treatment with LDA and metformin normalised glucose 

control, ameliorated inflammation and improved T-cell function. Nevertheless, both treatment regimens 

did not normalise the levels of cholesterol. Therefore, alleviating inflammation and lowering glucose 

levels in T2D may be an effective strategy to improve T-cell function in these patients. 
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Prologue 

The subsequent chapter (Experimental article 3) aimed at assessing the modulatory effect of metformin 

and fluvastatin, a statin on glucose, haemtological and lipid profiles in pre-diabetic state. Here, we 

report the development of a pre-diabetic state flowing high-fat diet feeding. Notably, although treatment 

with metformin or fluvastatin did not exhibit any immune-modulatory effects, they both lowered the 

cholesterol levels and ratios. However, the reduction magnitude was larger in the fluvastatin group 

when compared to the metformin group. Thus, these findings highlight the enhanced cardio-protective 

effects of statins through the inhibition of atherosclerosis. Therefore, its usage in patients with T2D, 

particularly those with dyslipidaemia maybe of great benefit in lowering the risk of developing diabetes-

associated CVD.    
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Abstract 

Objective: To assess the impact of metformin and fluvastatin treatment on glucose, haematological and 

lipid profiles in a pre-diabetic state.  

Design: A total of 21 male six-weeks old C57BL/6 mice were used in this diet-induced mouse model 

of pre-diabetes. In the first phase of the experiment, all mice were high-fat diet (HFD)-fed over an 8-

week period to induce a pre-diabetic state. Thereafter, the animals were randomised into a short-term 

treatment with either metformin or fluvastatin over a 6-week period (n=7/group) in the second phase of 

the experiment. Changes in body weights were monitored on a weekly basis, whilst glucose, 

haematological and lipid profiles were measured following treatment.  

Results: HFD-feeding (HFF) was associated with the development of a pre-diabetic state. Treatment 

with metformin or fluvastatin was associated with a lower body weights and area under curve (AUC) 

in a 2-hour oral glucose test when compared to the untreated HFD-fed group (P<0.05). Notably, both 

treatments had no influence on the measured haematological parameters when compared to the 

untreated HFD-fed group (p>0.05). However, the levels of total cholesterol (TC) (K (2) = 11.66, 

p=0.0004), low-density lipoprotein cholesterol (LDL-c) (F (2, 10) = 42.20, p<0.0001) and high-density 

lipoprotein cholesterol (HDl-c) (F (2, 10) = 4.451, p=0.0415) were different across all groups. The Dunn's 

posthoc analysis showed that treatment with metformin [0.030 (0.017-0.032)], p=0.0093 or fluvastatin 

[0.030 (0.028-0.031)], p=0.0093 significantly lowered TC when compared to the untreated HFD group 

[0.120 (0.107-0.139)]. The Tukey’s posthoc analysis showed a reduction in the levels of LDL-c 

following treatment with metformin (0.049 ± 0.003), p<0.0001 or fluvastatin (0.055 ± 0.009), p<0.0001 

treatment. In addition, short-term treatment with metformin (0.043 ± 0.005) but fluvastatin (0.057 ± 

0.004) lowered HDL-c when compared to the untreated HFD-fed group (0.059 ± 0.003), p=0.0415. The 

calculated cholesterol ratios differed significantly across the groups (F (2, 10) = 25.16, p=0.0001). 

Whereby, treatment with either metformin (0.652 ± 0.114), p=0.0004 or fluvastatin (0.525 ± 0.040), 

p=0.002 was associated with lower cholesterol ratios when compared to the untreated HFD-group 

(2.039 ± 0.232). 

Conclusion: Fluvastatin significantly lowers cardiovascular risk by lowering cholesterol levels in a pre-

diabetic state although it does not render any immune-modulatory effects. Therefore, its combinational 

use with metformin in patients with T2D, particularly those with dyslipidaemia maybe of great benefit 

in lowering the risk of developing diabetes-associated CVD.    

 Keywords: Cardiovascular risk; cholesterol; pre-diabetes; metformin; fluvastatin  
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1. Introduction 

Cardiovascular disease (CVD) are a common co-morbidity in patients living with type 2 diabetes (T2D) 

[1,2]. Diabetes-associated CVD are mediated by obesity, chronic inflammation, insulin resistance and 

altered lipid metabolism [3,4]. Most importantly, the latter process is strongly associated with increased 

risk of developing accelerated atherogenesis in diabetes due to dyslipidaemia [2,5,6]. Consequently, 

drugs such fluvastatin, a statin that lowers cholesterol levels are being used in patients at risk of 

developing CVD [7]. Although, statins have an outstanding efficacy in lowering the levels of low-

density lipoprotein cholesterol (LDL-c) in general [7,8], they seem to be less effective the 

primary/secondary prevention of CVD since their use is closely associated with increased risk of 

developing diabetes [9,10]. Like metformin, the first choice glucose lowering drug used in T2D, 

fluvastatin is also associated with immune suppression [11–14].  

In addition to modulating glucose and inflammation, metformin also influences lipid metabolism, 

particularly the cholesterol pathways [15]. However, the exact pharmacological mechanisms of action 

are still controversial. Despite its effective anti-hyperglycaemic and anti-inflammatory properties, 

patients with T2D on metformin are still at high risk of developing CVD [16]. Consequently, its 

combinational use with statins that offer substantial cardio-protective benefits through the amelioration 

of inflammation and lowering of cholesterol levels are being explored [17,18]. Hence, it is encouraged 

to initiate statin therapy in patients with T2D without any overt CVD [19]. However, data on the efficacy 

of fluvastatin in poor glucose control is very scarce. Although both metformin and fluvastatin modulate 

glucose and lipid metabolism, it remains important to understand the mono-therapeutic impacts of these 

drugs on metabolic and immunological profiles in order to effectively design a combinational treatment 

regimen with high efficacy.   

2. Methods and materials 

2.1 Animal handling 

A total of twenty-eight six-week-old male C57BL/6 mice (n=21) were purchased and housed in a 

controlled environment at the Biomedical Research Unit at the University of KwaZulu-Natal. The mice 

were exposed to a 12-hour light/dark cycle and received food and water ad libitum throughout the 

experiments. All experimental procedures were conducted in accordance with the National Society of 

Medical Research & the National Institutes of Animal Care and use of Laboratory Animals of the 

National Academy of Science and received ethical clearance from the University of KwaZulu-Natal 

Animal Research Ethics Committee (AREC) [protocol number: AREC/081/018D]. 

2.2 Study design 

The animals were subjected to a 2-week acclimatation period and were kept in separate cages (n 

=7/group). The study experiments were carried out in two phases (Figure 1).  
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Experiment phase 1 

The first phase of the study aimed at inducing obesity through high-fat diet (HFD)-feeding using a 60 

Kcal% derived from fat (26 g% Protein, 26 g% carbohydrates, 35 g% fat, Research Diets #D12492) 

(n=28). The animal body weights were measured and monitored on a weekly basis. Following 8-weeks 

of being on HFD, venous blood was drawn from the lateral tail vein into serum separator tubes (SST) 

and ethylenediaminetetraacetic acid EDTA microtainer tubes (BD Bioscience, USA). The blood 

samples were then used to measure glucose and haematological indices as well as lipid profiles.    

Experiment phase 2  

The second phase of the experiment aimed at assessing the modulatory effects of metformin and statin 

on glucose, haematological and lipid profiles measured at baseline (phase 1). After 8-weeks of HFD-

feeding (HFF), the mice were randomised into two treatment groups comprising of metformin (150 

mg/kg) and statin (20 mg/kg) (n=7/group). The drugs were administered daily via oral gavage for a 

period of 6-weeks. Following the completion of short-term treatment, blood was drawn through the 

lateral tail vein.  

 
Figure 1: Study design involving two experimental phases. Experiment phase 1: Twenty-one six-
week-old male C57BL/6 mice were acclimatised to the environment for 2 weeks prior to the initiation 
of high-fat diet feeding. Experiment phase 2: Following the end of week 8, the animals were then 
randomised into a short-term treatment with either metformin or fluvastatin over a 6-week period 
(n=7/group).  

2.3 Measurements of glucose, haematological and lipid indices   

Fasting plasma glucose concentrations were determined using the OneTouch select glucometer 

(LifeScan Inc, CA, USA) whilst the 2-hour postprandial oral glucose tolerance test was performed as 

previously described [20]. The levels of TC, HDL-c and LDL-c were measured using a mouse-specific 

ELISA kit (Abcam, MA, USA) as per manufacturer’s instructions. The haematological parameters were 

determined using Beckman Coulter AcT5 Diff (Beckman Coulter, Miami, USA).   
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2.4 Statistical analysis  

Normality testing was performed using the Kolmogorov-Smirnov test with Dallal-Wilkinson-Lillie. 

The mean differences between the LFD- and HFD-fed groups were assessed using unpaired student t-

test and were reported as mean ± standard error for parametric data. Non-parametric data was analysed 

using the Man Whitney U test and reported as the median and interquartile range [IQR]. The One-way 

analysis of variance (ANOVA) was used compare differences across the diet and treatments groups. A 

posthoc Tukey's multiple comparisons test was performed if the F-value reached statistical significance 

(p<0.05). For non-parametric data, the Kruskal-Wallis test followed by a Dunn's posthoc test was used. 

A p-value of < 0.05 was considered statistically significant. The GraphPad Prism version 8 software 

(GraphPad Software Inc, CA, USA) was used for all statistical analysis. 

3. Results 

3.1 Changes in body weights and glucose profiles following short-term treatment with metformin 

or fluvastatin   

To measure the effect of short-term metformin and fluvastatin treatment on metabolic profiles, we 

assessed changes in body weights and glucose levels. The Kruskal-Wallis test showed that there were 

significant changes in the body weights (K (2) = 13.72, p<0.0001) across the experimental groups (Table 

1). The Dunn's posthoc analysis showed lower body weights in metformin [22.00 (21.00-23.00)], 

p=0.0064 or fluvastatin [22.00 (20.00-23.000)], p=0.0026 treated groups in comparison to the HFD-fed 

group [30.00 (29.00-30.00)].  

The one-way ANOVA showed that fasting blood glucose levels did not statistically differ across the 

experimental groups (F (2, 12) = 3.430, p=0.0663) (Figure 2b, Table 1). However, although not 

statistically significant, metformin lowered the fasting blood glucose levels whilst fluvastatin increased 

the levels when compared to the untreated HFD-fed group. The AUC varied significantly across all 

experimental groups (F (2, 12) = 16.80, p=0.0003) (Table 1). The Tukey's multiple comparisons test 

showed a significant reduction in the AUC following treatment with metformin (803.8 ± 25.81), 

p=0.0007 or fluvastatin (855.9 ± 55.39), p=0.0010 in comparison to the untreated HFD-fed group (959.4 

± 28.47) (Figure 2c).  
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Figure 2: Changes in metabolic profiles following a short-term 6-week treatment. Figure (A) illustrates body 
weight changes over the 14-week period, whilst panel (B) and (C) shows comparisons of fasting blood glucose 
levels and the area under curve (AUC) in a 2-hour oral glucose test, respectively. Figure (D), (E), (F) and (G) 
shows differences in white cell count, lymphocyte differential count, red cell count and platelet count, 
respectively. All results are presented as mean ± standard error. NS: non-significant, *p<0.05 
 
 
Table 1: Modulatory effects of metformin and fluvastatin on inflammation, lipid, and glucose control  

Parameter  High-fat diet (n=7) Metformin (n=7) Fluvastatin (n=7) p-value 

Body weight (g) 
Fasting glucose (mg/dL) 
AUC (mmol/Lx 120 min) 
 
 
Haematological profiles 
White cell count (103/µL) 

Lymphocytes (%) 
Red cell count (106/µL) 
Platelet count 
 
Lipid profiles (µg/µL) 
Total cholesterol  
LDL-cholesterol  
HDL-cholesterol 

Cholesterol ratio  

30.00 [29.00-30.00] 
6.37 ± 0.28 

959.4 ± 28.47 
 
 

 
6.40 ± 0.95 
88.57 ± 0.77 
8.26 ± 0.38 

793.1 ± 78.44 
 

 
0.120 [0.107-0.139] 

0.115 ± 0.003 
0.059 ± 0.003 

 
2.039 ± 0.232 

22.00 [21.00-23.00] 
4.07 ± 0.44 

803.8 ± 25.81 
 
 
 

6.85 ± 0.90 
84.97 ± 2.02 
6.52 ± 0.65 

1022 ± 165.2 
 
 

0.030 [0.017-0.032] 
0.049 ± 0.003 
0.043 ± 0.005 

 
0.652 ± 0.114 

22.00 [20.00-23.00] 
5.05 ± 0.50 

855.9 ± 55.39 
 
 

 
5.24 ± 0.75 
90.41 ± 0.31 
5.38 ± 0.93 

574.3 ± 139.7 
 
 

0.030 [0.028-0.031] 
0.055 ± 0.009 
0.057 ± 0.004 

 
0.525 ± 0.040  

<0.0001 
0.0663 
0.0003 

 
 
 

0.5106 
0.0180 
0.0526 
0.0752 

 
 

0.0004 
<0.0001 
0.0415 

 
0.0001 

Results expressed as mean, ± standard error or median interquartile range. AUC: Area under the curve 
 

3.2 Treatment with fluvastatin or metformin lowers cardiovascular risk in a pre-diabetes  

The haematological parameters showed no significant changes in total WCC (F (2, 12) = 0.7113, p=0.5106), RBC 

counts (F (2, 12) = 3.802, p=0.0526) and platelet counts (F (2, 12) = 3.236, p=0.0752) (Figure 2d/f/g, Table 1). In 
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contrast, lymphocyte (F (2, 12) = 5.716, p=0.0180) differed across the groups (Table 1). A posthoc analysis showed 

that the metformin treated group (84.97 ± 2.02) had a lower lymphocyte count in comparison to the fluvastatin 

treated group (90.41 ± 0.31), p=0.0155 (Figure 2e). In order to determine the cardiovascular risk in a pre-diabetic 

state, we measured the levels of cholesterol in the respective treatment groups. Notably, the levels of TC (K (2) = 

11.66, p=0.0004), LDL-c (F (2, 10) = 42.20, p<0.0001) and HLD-c (F (2, 10) = 4.451, p=0.0415) levels were different 

across all groups (Table 1, Figure 3a-c). The Dunn's posthoc analysis showed that treatment with metformin [0.030 

(0.017-0.032)], p=0.0093 or fluvastatin [0.030 (0.028-0.031)], p=0.0093 significantly lowered TC when compared 

to the untreated HFD group [0.120 (0.107-0.139)] (Figure 3a). The Tukey’s posthoc analysis showed a reduction 

in the levels of LDL-c following treatment with metformin (0.049 ± 0.003), p<0.0001 or fluvastatin (0.055 ± 

0.009), p<0.0001 treatment (Figure 3b). In addition, short-term treatment with metformin (0.043 ± 0.005) but 

fluvastatin (0.057 ± 0.004) lowered HDL-c when compared to the untreated HFD-fed group (0.059 ± 0.003), 

p=0.0415 (Table 1, Figure3c). Cholesterol ratios, calculated by dividing TC with HDL-c, differed significantly 

across the groups (F (2, 10) = 25.16, p=0.0001) (Table 1). The Tukey’s posthoc test showed that treatment with 

either metformin (0.652 ± 0.114), p=0.0004 or fluvastatin (0.525 ± 0.040), p=0.002 was associated with lower 

cholesterol ratios when compared to the untreated HFD-group (2.039 ± 0.232) (Table 1, Figure 3d). 

 

Figure 3: Changes in cholesterol levels following a 6-week short-term treatment. Figure (A) and (B) shows a 

significant reduction in total-cholesterol and low-density-lipoprotein cholesterol levels following treatment with 

metformin or fluvastatin, respectively. Figure (C) shows a reduction in high-density-lipoprotein cholesterol 

following metformin treatment. Figure (D) shows a decrease in cholesterol ratio following treatment with 

metformin or fluvastatin. Results expressed as mean, ± standard error or median interquartile range. ***p<0.0001, 

**p<0.001, *p<0.05. 

4. Discussion 

The aim of this study was to assess the modulatory effects of metformin and fluvastatin on glucose and 

haematological indices as well as lipid profiles using a diet-induced mouse model of pre-diabetes. In 
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this model, HFF is known to induce long term weight gain, impair glucose control and dyslipidaemia 

[21,22]. Notably, these changes are congruent with characteristic features of T2D in humans. As 

expected, treatment with metformin improved glucose control. However, short-term treatment with 

metformin or fluvastatin did not ameliorate inflammation but corrected dyslipidaemia by lowering TC 

and LDL-c levels.  

Abnormal elevation of free fatty acid flux, secondary to insulin resistance in T2D drives the 

pathogenesis of diabetic dyslipidaemia [2]. The altered lipid metabolism in this state is characterised by 

exacerbated levels of triglycerides, Tc, LDL-c coupled with reduced levels of HLD-c [5]. Similarly, our 

pre-diabetes model showed hypercholesterolemia following HFF which was ameliorated by treatment 

with metformin and fluvastatin. Although both drugs lowered the cholesterol levels, the cholesterol 

ratio was lower in the fluvastatin group. This finding further highlights the efficacy of statins in lowering 

cholesterol levels. Fluvastatin is an inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) 

reductase, an enzyme that catalyses the conversion HMG-CoA to mevalonate, in the synthesis of 

cholesterol and other isoprenoids [23]. Due to its inhibitory effects on isoprenoids, statins have the 

potential to regulate host homeostasis through the modulation of a broad range of transduction 

signalling. Most importantly, their modulation of immune responses [24]. For instance, statins inhibit 

the transcription factor NF-kB, the release of pro-inflammatory cytokines and the activation of 

peripheral mononuclear cells, including T-cells [12,25,26].  Our findings however, showed no immune-

modulatory effects of fluvastatin and its no influence on normalising glucose control further highlights 

the need of its combinational use with metformin in a hyperglycaemic state. 

The limitation of this current study was we did not assess the effect of combining metformin and statin 

on the parameters we measured. Nonetheless, pre-clinical studies have shown enhanced anti-

atherosclerotic effects statin and metformin combinational [24]. Future clinical studies are required to 

confirm this promising combination and care must be taken in considering the impact of statins on 

lowering insulin secretion and glucose transporter type 4 (GLUT4) expression [27,28]. The resulting 

impaired glucose uptake and insulin resistant in adipose tissue, muscle and the liver may have attributed 

to fluvastatin group in our diet-induced model of pre-diabetes had the highest fasting glucose levels in 

comparison to the other groups.    

5. Conclusion  

Although fluvastatin did not exhibit any immune-modulatory properties in our model of pre-diabetes, 

it was significant in lowering the cholesterol levels and thus reducing the risk of developing 

atherosclerosis. Therefore, its usage in patients with T2D, particularly those with dyslipidaemia maybe 

of great benefit in lowering the risk of developing diabetes-associated CVD.     
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CHAPTER 6: General discussion  

Chronic inflammation in pre-diabetes and the early development of type 2 diabetes (T2D), drives the 

pathogenesis of  cardiovascular disease (CVD)-related complications [1–3]. Although chronic immune 

activation is closely associated with immune dysfunction in T2D, the exact role played by T-cells in the 

pathogenesis and progression of these diabetes-associated complications is not fully understood. We 

therefore studied the role of activated T-cells in pre-diabetes, an inflammatory state that precedes T2D. 

In addition, we explored the modulatory effects of low-dose aspirin (LDA), a well-known anti-

inflammatory drug, and its combination with metformin, the first line oral glucose lowering drug 

(LDA+Met) on metabolic profiles, inflammation, immune activation, and T-cell function. Firstly, we 

explored published literature reporting on T-cell function in obesity, T2D and diabetes-associated 

complications (CVD and asthma) and performed a number of systematic reviews and meta-analyses. 

We further, critically synthesised evidence on the modulatory effects of aspirin and metformin on T-

cell mediated responses in both physiological and chronic inflammatory state. Thereafter, we conducted 

a series of experiments, assessing T-cell function and inflammation in the early pathogenesis of T2D, 

using a high-fat diet (HFD)-induced mouse model of pre-diabetes. 

6.1 Increased cardiovascular risk in T2D driven by hypercholesterolemia  

Patients with T2D are at two-fold risk of developing CVD when compared to healthy controls [4]. The 

elevated cardiovascular risk is attributed to exacerbated levels of inflammation and immune activation 

in these patients [5,6]. Notably, all these attributes are associated with altered lipid metabolism, 

particularly elevated cholesterol levels, which leads to inflammation-induced atherogenesis [7,8]. 

Whereby, vascular inflammation promotes the accumulation of cholesterol within arterial smooth 

muscle cells and macrophages, resulting in the formation of foam cells [9]. The consequent 

hypercholesterolemia is a risk factor for the development of CVD. Notably, current treatment drugs 

targets the lowering of cholesterol as a therapeutic strategy to reduce cardiovascular risk [10–13]. In 

this study, HFD-feeding of mice for a period of 8-weeks was associated with hypercholesterolemia, 

which was characterised by increased levels of total cholesterol (Tc) and low-density lipoprotein 

(LDL)-c without changes in high-density lipoprotein (HDL)-c levels. Notably, these changes are 

congruent with those seen in patients with T2D [13,14]. In fact, our meta-analysis [15] involving clinical 

studies showed increased Tc with decreased HDL-c in patients with T2D is congruent with increased 

cardiovascular risk. Thus, highlighting the role of aberrant cholesterol levels in increasing the risk of 

developing CVD in patients with T2D. In our study although LDA monotherapy did not render any 

therapeutic benefit in modulating lipid metabolism in our mouse model of pre-diabetes, short-term 

treatment with LDA+Met, metformin or statin significantly lowered Tc and LDL-c levels in comparison 

to the untreated HFD-fed group. Notably, statin had the lowest cholesterol ratio in comparison to other 

drugs, thus highlighting its efficacy in lowering cholesterol levels and reducing cardiovascular risk in 

patients with T2D, as reported in a previous meta-analysis of randomised clinical trials [16].   
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6.2 Implications of low-grade inflammation and chronic immune activation in T2D 

It is now well-established that chronic immune activation drives the pathogenesis and progression of 

diabetes-associated complications [5,6]. Recent studies have shown that these processes are partially 

mediated by T-cells [17,18]. Whereby, there is a polarisation of T-helper (TH) cells into pro-

inflammatory TH1 and TH17 subsets and  a decrease in the levels of immunosuppressive regulatory T-

cells (Tregs) and TH2 subset [19–21]. The binding of cytokines released by the activated T-cell to their 

complementary receptors activates the pro-inflammatory signalling pathways such as Janus tyrosine 

kinase/signal transducer and activator of transcription (JAK/STAT) that are crucial in modulating the 

differentiation of TH cells [22]. In this study, we reported an elevation of interleukin (IL)-2, IL-6, IL-

17, and tumour necrosis factor (TNF)-α following HFD-feeding in mice. Notably, increased IL-2 

signalling can induce the differentiation of TH cells towards the pro-inflammatory subsets, which leads 

to a pro-inflammatory milieu characterised by the elevated levels of TH1 and TH17-associated cytokines 

[22,23]. In our study, the significant reduction in all measured cytokines following short-term treatment 

with LDA+Met may be attributed to the normalised levels of IL-2, which initiates the activation of 

JAK/STAT5 signalling that promotes the differentiation of Tregs [22,23]. Therefore, the subsequent 

secretion of IL-10 by activated Tregs could have inhibited TH1 and TH17 responses, which resulted in the 

decrease of their associated cytokines (TNF-α, IL-6 and IL-17A) that were measured. Obesity a major 

risk factor for T2D that is associated with an elevated exacerbating inflammation and immune activation 

[24,25]. In our study, HFD-feeding was associated with leucocytosis and lymphocytosis which was 

resolved following treatment with LDA+Met. Overall, these findings demonstrate the efficacy of 

LDA+Met in downregulating T-cell mediated inflammation and immune activation. Future studies 

looking at the modulatory effects of LDA+Met on the JAK/STAT signalling are required to confirm 

the proposed hypothesis. 

6.3 The successful modulatory effects of LDA+Met on altered T-cell function during early 
development of T2D 

The qualitative and quantitative synthesis of available evidence showed increased levels of T-cell 

activation that were associated with an increased expression of negative co-stimulatory molecules in 

patients with T2D [15,26,27]. The upregulation of Fas and its subsequent binding to the Fas ligand 

(FasL) initiates the Fas/FasL signalling pathway which modulates both apoptotic and anti-apoptotic 

activities [28,29]. In that context, Fas provides a co-stimulatory signal that is essential for successful 

activation of T-cells [30].  Although contradictory findings have been reported on the expression of Fas, 

it is apparent that there is a close relationship between metabolic disorders and the aberrant Fas 

expression on T-cells [31–33]. Similarly, here we report enhanced Fas expression on T-cells following 

HFD-feeding which increased with body weights and was independent of glucose levels or lipid 

profiles. Taken together, this may suggest that T-cell dysfunction in poor glucose control is partially 

mediated by an upregulation of Fas which is independent of dyslipidaemia and hyperglycaemia. 
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Therefore, therapeutic strategies that modulate the Fas-FasL axis may be of great benefit, particularly 

in obese individuals who are at risk of developing CVD and T2D. 

Furthermore, altered myocardial function in patients with T2D is associated with aggravated activation 

of T-cells [18,19,21,34]. Our meta-analysis showed an increase in the frequency of CD4+CD28- T-cells 

[15], a long-lived TH1 subset that has both pro-atherogenic and plaque-destabilising properties in 

patients with T2D [35]. Unlike the conventional TH1 cells, these T-cells are resistant to both suppressive 

and apoptotic responses due to their loss of CD28 [36]. This highlights the importance of co-stimulatory 

signals in regulating T-cell activation and function. Therefore, the modulated expression of activation 

and inhibitory receptors is important in maintaining immune homeostasis. The activation of the T-cell 

receptor induces an upregulation of CD69 which gradually declines over days [37]. In this study, HFD-

feeding resulted in the downregulation of CD69 expression which was concomitant with increased 

levels of TH1and TH17 associated cytokines. Notably, treatment with LDA+Met was associated with an 

increased expression of CD69, and this was congruent with reductions in TH1 and TH17 cytokines. This 

change may be due to increased JAK3/STAT5 signalling, which polarises TH cells towards Tregs [38]. 

Even though LDA did not modify the expression of CD69 and TH cytokine release, its efficacy was 

only enhanced when combined with metformin. This may be attributed to the inhibitory effect of 

metformin on mTOR and STAT3 signalling [39,40]. Future studies need to investigate and determine 

if there is any association between these signalling pathways and the expression of CD69 on T-cells.  

Chronic T-cell activation can induce T-cell exhaustion, a state characterised by an upregulation of PD-

1 [41]. Upregulated PD-1 signalling transduces a negative co-stimulatory signal that inhibits T-cell 

activation [42]. Notably, the upregulation of PD-1 is closely associated with loss of T-cell effector 

function in a mouse model of diet-induced obesity (DIO) [43]. In patients with T2D, contradictory 

findings on the expression of PD-1 on T-cells have been described [12, 13]. Surprisingly, in our study, 

the levels of PD-1 were comparable between the HFD and LFD group and following treatment. This 

unexpected finding may be attributed to the immunological responses in the early to intermediate phases 

of obesity-induced inflammation. A prolonged pro-inflammatory state is associated with an 

upregulation of PD-1 on the surface of exhausted T-cells [44]. In fact, our meta-analysis showed 

increased levels of PD-1 on T-cells in patients with T2D (Chapter 2.4). Thus, supporting the hypothesis 

that T-cells in patients in T2D are exhausted, and the process is mediated by increased PD-1 

transduction. Therefore, the use of immune checkpoint inhibitors may be an effective therapeutic 

strategy in restoring T-cell effector functions in patients with T2D.  

 

6.4 Conclusions and future perspectives  

This current study described elevated levels of T-cell activation and dysfunction in a pre-diabetic state, 

that is characterised by poor glucose control, altered lipid metabolism, and exacerbated inflammation. 
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Notably, our pre-diabetes mouse model showed that this was in part mediated by the aberrant expression 

of T-cell regulatory markers, particularly Fas and CD69. Moreover, it was associated with increased 

body weight, levels of immune activation, and the release of TH1 and TH17 associated cytokines. We 

also demonstrated altered lipid metabolism marked by hypercholesterolemia. These findings 

highlighted the link between inflammation, immune activation, altered lipid metabolism and poor 

glucose control during early development of T2D. Interestingly, these findings mirrored those found in 

patients with T2D. The systematic reviews and meta-analyses conducted showed that patients with T2D 

have increased levels of T-cell activation and risk of developing CVD. The synthesised data also 

showed there is increased infiltration of pro-inflammatory TH subsets in patients with T2D, which is 

coupled with decreased levels of the anti-inflammatory TH subsets. Lastly, low-grade inflammation and 

persistent activation stimuli was associated with the upregulation of PD-1, thus suggesting that the 

circulating T-cells in patients living with T2D are exhausted. Therefore, continuous exploration of 

therapies that alleviate inflammation and modulate T-cell function are of critical importance in lowering 

the incidence of T2D-associated complications in these patients. 

 

The findings of this study also showed that the combinational use of LDA and metformin can be an 

effective therapeutic strategy in alleviating inflammation and improving T-cell function. In our 

experimental model of pre-diabetes, it was apparent that the combination therapy effectively modulates 

the expression of regulators of T-cell activation and their associated transcription factors. This is in line 

with preliminary results from patients, indicating that combinational use of metformin and aspirin is 

more effective in improving glucose tolerance and reducing cardiovascular risk when compared to the 

use of metformin as a monotherapy [45]. On the other side, the dosage and side effects that may arise 

from using dual therapy are still unclear as reported elsewhere [46]. It is also important to note that 

although rejuvenating T-cell functions in diet-driven metabolic disturbances maybe beneficial in 

restoring T-cell effector functions and reducing the susceptibility risk to infections, such approach might 

exacerbate the level of T-cell mediated inflammation. Therefore, a delicate balance needs to be reached 

when using therapies that modulate T-cell responses in T2D. 
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APPENDICES  

CHAPTER 2.1  

Additional file 1 
PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist: recommended items to address in a systematic review protocol*  

Section and 
topic 

Item 
No 

Checklist item Reported on page (P) 

ADMINISTRATIVE INFORMATION  

Title:   
 
Identification 

1a Identify the report as a protocol of a systematic review P 1 

 Update 1b If the protocol is for an update of a previous systematic review, identify as such N/A
Registration 2 If registered, provide the name of the registry (such as PROSPERO) and registration number P 3
Authors:   

 Contact 3a Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of 
corresponding author 

P 1 

 
Contributions 

3b Describe contributions of protocol authors and identify the guarantor of the review P 11 

Amendments 4 If the protocol represents an amendment of a previously completed or published protocol, identify as such and list 
changes; otherwise, state plan for documenting important protocol amendments

N/A 

Support:   
 Sources 5a Indicate sources of financial or other support for the review P 11
 Sponsor 5b Provide name for the review funder and/or sponsor N/A
 Role of 
sponsor or 
funder 

5c Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol N/A 

INTRODUCTION  
Rationale 6 Describe the rationale for the review in the context of what is already known P 4
Objectives 7 Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, 

comparators, and outcomes (PICO)
P 7 

METHODS  
Eligibility 
criteria 

8 Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such 
as years considered, language, publication status) to be used as criteria for eligibility for the review

P 7 

Information 
sources 

9 Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or 
other grey literature sources) with planned dates of coverage

P 8 
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Search strategy 10 Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it 
could be repeated 

P 8 

Study records:   
 Data 
management 

11a Describe the mechanism(s) that will be used to manage records and data throughout the review P 8 

 Selection 
process 

11b State the process that will be used for selecting studies (such as two independent reviewers) through each phase of 
the review (that is, screening, eligibility and inclusion in meta-analysis)

P 8 

 Data 
collection 
process 

11c Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), 
any processes for obtaining and confirming data from investigators 

P 8 

Data items 12 List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned 
data assumptions and simplifications

P 8 

Outcomes and 
prioritization 

13 List and define all outcomes for which data will be sought, including prioritization of main and additional 
outcomes, with rationale

P 7 

Risk of bias in 
individual 
studies 

14 Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at 
the outcome or study level, or both; state how this information will be used in data synthesis 

P 9 

Data synthesis 15a Describe criteria under which study data will be quantitatively synthesised P 9
15b If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data 

and methods of combining data from studies, including any planned exploration of consistency (such as I2, 
Kendall’s τ) 

P 9 
 

15c Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression) P 10
15d If quantitative synthesis is not appropriate, describe the type of summary planned 

Meta-bias(es) 16 Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within 
studies) 

P 9 

Confidence in 
cumulative 
evidence 

17 Describe how the strength of the body of evidence will be assessed (such as GRADE) P 10 

* It is strongly recommended that this checklist be read in conjunction with the PRISMA-P Explanation and Elaboration (cite when available) for important 
clarification on the items. Amendments to a review protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the 
PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.  

 
From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P Group. Preferred reporting items for systematic review and 
meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.  
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Additional file 2: Search Strategy ran 06 June 2018 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combined Concept 1, 2 and 3 (PubMed hits = 51) 

Concept 1: 
Diabetes mellitus 

Synonyms to be searched (MeSH or Text words) 

 
PubMed (hits=114 230) 
 
“Diabetes mellitus, Type 2”[Mesh] 
 

Diabetes mellitus
Glucose metabolism disorders
Hyperglycaemia
Metabolic diseases
Metabolic syndromes

Concept 2: 
T-lymphocytes 

Synonyms to be searched (MeSH or Text words) 

 
PubMed (hits=114 230) 
 
“T-lymphocytes”[Mesh] 

T-cells
Th1/Th2 cells
CD4+ 

CD8+ 

 

Concept 3: 
Cardiovascular Diseases 

Synonyms to be searched (MeSH 
or Text words) 

 
PubMed (hits=2 191 229) 
 
“Cardiovascular diseases”[Mesh] 

Heart diseases
Vascular diseases
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CHAPTER 2.2 Supplementary files  
Table 1S: Quality assessment of included animal studies in the review using ARRIVE guidelines 
 

 
 

 
Introduction 

 
Methods 

 

 
Results 

 
Discussion 

 

Author (year) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Quality 
Score 

Kintscher et al., 
2008 

+ + + + + + - + + - - + + - - + - + + + 14 

Winer et al., 2009 
 

+ + + + + - + + + + + + + - - + - + + - 15 

Rocha et al., 2009 
 

+ + + + + - + + - - + + + - - - - + + + 13 

Nishimura et al., 
2009 

+ + + + + + + + + + + + + - + + - + + + 18 

Feuerer et al., 
20095 

+ + + + + - + + - - + + + - - + - + + + 14 

Zúñiga et al., 2010 
 

+ + + + + + + + + - - + + - + + - + + + 16 

Yang et al., 2010 
 

+ + + + + + + + + - - + + - + + - + + + 16 

Strissel et al., 
2010 

+ + + + + + - + + - - + + - + + - + + + 15 

Miller et al., 2010 
 

+ + + + - + + + - - - + + - + + - + + + 14 

Deiuliis et al., 
2011 

+ + + + + + + + + - + + + - + + - + + + 17 

Priceman et al., 
2013 

+ + + + + + + + + - - + + - + + - + + + 16 

Morris et al., 2013 
 

+ + + + + + + + - - - + + - + + - + + + 15 

Montes et al., 
2013 

+ + + + + + + + + + - + + - + + - + + + 17 

Jiang et al., 2013 
 

+ + + + + + + + + - + + + - + + - + + + 17 

Deng et al., 2013 
 

+ + + + + + + + + - + + + - + + - + + + 17 

Zhong et al., 2014 
 

+ + + + + + + + - + - + + - + + - + + + 16 

Yi et al., 2014 
 

+ + + + + + + + + + + + + - + + - + + + 18 

Wolf et al., 2014 
 

+ + + + + + + + + - - + + - + + - + + + 16 

Fabrizi et al., 2014 
 

+ + + + - + + + + - - + + - + + - + + + 15 

Chatzigeorgiou et 
al., 2014 

+ + + + + + + + + - - + + - + + - + + + 16 

Poggi et al., 2015 
 

+ + + + + + + + + + + + + - + + - + + + 18 

Han et al., 2015 
 

+ + + + + + + + + - - + + - + + - + + + 16 

Liu et al., 2017 
 

+ + + + + + + + + - - + + - - + - + + + 16 

Chen et al., 2017 
 

+ + + + + + + + + - - + + - + + - + + + 16 

 
Study quality items are: (1) Title (2) Abstract (3) Background (4) Objectives (5) Ethical statement (6) 

Study design (7) Experimental procedures (8) Experimental animals (9) Housing and husbandry (10) 

Sample size (11) Allocating animals to experimental group (12) Experimental outcomes (13) Statistical 

methods (14) Baseline data (15) Numbers analysed (16) Outcomes and estimation (17) Adverse events 

(18) Interpretation/scientific implications (19) Generalizability/translation and (20) Funding.  
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Table 2S: Quality assessment of human studies included in the review using Blacks and Downs 

Author Domain Kintscher Zeyda Yang Fabbrini Deng Zhong McLaughlin Fabrizi Dalmas Deiuliis Travers 
00

R
E

P
O

R
T

IN
G

 B
IA

S 

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0

5 1 0 0 0 1 0 0 0 0 0 1

6 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 1 1 0 0 0 1 1 0 0 1 1

  

Score 7 6 5 4 5 5 5 4 5 6 7 

E
X

T
E

R
N

A
L

 
V

A
L

ID
IT

Y
 11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 1 0 0

Score 0 0 0 0 0 0 2 0 1 0 0 

  

14 0 0 0 0 0 0 0 0 0 0 0

  

15 0 0 0 0 0 0 0 0 0 0 0

IN
T

E
R

N
A

L
 V

A
L

ID
IT

Y
 

16 1 1 1 1 1 1 1 1 1 1 1

17 0 0 0 0 0 0 0 0 1 0 0

18 1 1 1 1 1 1 1 1 1 1 1

19 0 0 0 0 0 0 0 0 0 0 0

20 1 1 1 1 1 1 1 1 1 1 1

Score 3 3 3 3 3 3 3 3 4 3 3 

  

21 1 1 1 1 1 1 1 1 1 1 1

SE
L

E
C

T
IO

N
 B

IA
S 22 0 0 0 0 0 0 1 0 1 1 0

23 0 0 0 0 0 0 1 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0

Score 1 1 1 1 1 1 3 1 2 2 1 

 

 
Overall 
Score 11 10 9 8 9 9 13 8 12 11 11 

 
Study quality items are: (1) Is the hypothesis/aim/objective of the study clearly described? (2) Are the main outcomes to be measured clearly described in the Introduction or Methods 

section? (3) Are the characteristics of the patients included in the study clearly described? (4) Are the interventions of interest clearly described? (5) Are the distributions of principal 

confounders in each group of subjects to be compared clearly described? (6) Are the main findings of the study clearly described? (7) Does the study provide estimates of the random 

variability in the data for the main outcomes? (8) Have all important adverse events that may be a consequence of the intervention been reported? (9) Have the characteristics of patients lost 

to follow-up been described? (10) Have actual probability values been reported? (11) Were the subjects asked to participate in the study representative of the entire population from which 

they were recruited? (12) Were those subjects who were prepared to participate representative of the entire population from which they were recruited? (13) Were the staff, places, and 

facilities where the patients were treated, representative of the treatment the majority of patients receive? (14) Was an attempt made to blind study subjects to the intervention they have 

received? (15) Was an attempt made to blind those measuring the main outcomes of the intervention? (16) If any of the results of the study were based on “data dredging”, was this made 

clear? (17) In trials and cohort studies, do the analyses adjust for different lengths of follow-up of patients, or in case-control studies, is the time period between the intervention and outcome 

the same for cases and controls? (18) Were the statistical tests used to assess the main outcomes appropriate? (19) Was compliance with the intervention/s reliable? (20) Were the main 

outcome measures used accurate (valid and reliable)? (21) Were the patients in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) 

recruited from the same population? (22) Were study subjects in different intervention groups (trials and cohort studies) or were the cases and controls (case-control studies) recruited over 

the same period of time? (23) Were study subjects randomized to intervention groups? (24) Was the randomized intervention assignment concealed from both patients and health care staff 

until recruitment was complete and irrevocable? (25) Was there adequate adjustment for confounding in the analyses from which the main findings were drawn? (26) Were losses of patients 

to follow-up taken into account?
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CHAPTER 2.3 Supplementary files  

 
 
Table 1S: MEDLINE search strategy  
  

 
Metformin - concept 1 
("metformin"[MeSH Terms] AND ("t-lymphocytes"[MeSH Terms] OR "t-lymphocytes"[All Fields] OR "t cells"[All 
Fields]) 
(n=63) 
 
Aspirin – concept 2 
("aspirin"[MeSH Terms] AND ("t-lymphocytes"[MeSH Terms] OR "t-lymphocytes"[All Fields] OR "t cells"[All 
Fields])  
(n=187) 
 
Concept 1 + concept 2 = 250 hits 
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Table 2S: Risk of bias of metformin human studies using the modified Black and Downs checklist (n=4) 

Author    Dworacki 2015 Moro 2013 Wang 2018 Yong 2019 

Reporting bias 

1 1 1 1 1 

2 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 0 

6 1 1 0 1 

7 1 1 1 1 

8 0 1 0 0 

9 0 0 0 0 

10 0 0 1 0 

Total    7 8 7 6 

External validity 
11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

Total    0 0 0 0 

Internal validity 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 1 1 1 0 

18 1 1 1 0 

19 0 1 0 0 

20 1 1 1 1 

Total    3 4 3 1 

Selection bias 

21 1 1 1 1 

22 1 1 1 1 

23 1 1 1 1 

24 0 0 0 0 

25 0 0 0 0 

26 0 0 0 1 

Total    3 3 3 4 

Overall score   13 15 13 11 
 
 
 
 
 
 



 

Page 151 of 166 
 

Table 3S: Risk of bias of included animal studies using metformin using ARRIVE guidelines (n=10) 

 Introduction   
Total 

Methods   
Total 

Results   
Total 

Discussion  
Total 

Overall score Author  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Kang 2013 + + + + 4 + + + + - + + + - 7 - - + - 1 + + + 3 15 

Kim 2016 + + + + 4 + + + + + - + + + 8 + + + - 3 + + + 3 18 

Kim 2018 + + + + 4 + + + + + - + + + 8 + - + - 2 + + + 3 17 

Lee 2015 + + + + 4 + + + + + + - + + 8 + - + - 2 + + + 3 17 

Lee 2017 + + + + 4 + + + + - - - + - 5 - - + 1 + + + 3 13 

Solano 2008 + + + + 4 + + + + + + - + + 8 - + + - 2 + + + 3 17 

Son 2014 + + + + 4 + - + + - - - + + 5 - - + - 1 + + + 3 13 

Sun 2016 + + + + 4 + + + + + + + + - 8 + - + - 2 + + + 3 17 

Volarevic + + + + 4 + - + + + - + + + 7 - + + - 2 + + + 3 16 

Zarrouk 2014 + + + + 4 + + - + + + - + + 7 - + + - 2 + + + 3 16 



 

Page 152 of 167 
 

Table 4S: Risk of bias of human studies reporting on aspirin using the modified Black and Downs checklist 

(n=10) 

Author    
Buckland 

2006 
Buckland 
2006(1) 

Cianferoni 
2001 

Crout 
1975 

Gherli 
1198 

Gherli 
2001 

Hernandez 
2007 

Mazzeo 
1998 

Ozkul 
1996 

Voisard 
2001 

Reporting 
bias 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 

3 0 0 0 1 0 0 1 0 1 0 

4 1 0 1 1 1 1 1 1 1 1 

5 0 0 0 0 1 0 0 0 1 0 

6 1 1 1 1 1 1 0 1 1 1 

7 1 1 1 1 1 1 1 0 1 0 

8 0 0 0 0 0 1 0 0 1 0 

9 0 1 0 0 0 1 0 0 1 0 

10 0 0 0 0 0 0 1 0 0 0 

Total   5 5 5 6 6 7 6 4 9 4 

External 
validity 

11 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 

Total    0 0 0 0 0 0 0 0 0 0 

Internal 
validity 

14 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 

17 1 1 1 1 1 0 0 1 1 0 

18 1 1 1 1 1 1 1 0 0 1 

19 0 1 1 0 1 1 0 0 0 0 

20 1 1 1 1 1 0 1 0 1 1 

Total   3 4 4 3 4 2 2 1 2 2 

Selection 
bias 

21 0 0 0 1 1 0 0 1 1 0 

22 0 0 1 0 0 0 0 0 1 1 

23 0 0 0 0 0 0 0 0 0 1 

24 0 0 0 0 0 0 1 0 0 0 

25 1 0 0 0 0 0 0 0 0 0 

26 1 0 0 0 0 0 0 0 0 0 

Total    2 0 1 1 1 0 1 1 2 2 
Overall 
score 

 10 9 10 10 11 9 9 6 13 8 
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Table 5S: Risk of bias of included animal studies reporting on aspirin using ARRIVE guidelines (n=7) 

 Introduction   
Total 

Methods   
Total 

Results   
Total 

Discussion  

Total Overall score Author  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Hackstein 
2001 + + + + 

4 
- - - + - - - - -

1 
+ - + -

2 
+ + + 3 10 

Javeed 
2009 + + + + 

4 
+ - + + + - - + +

6 
- + + -

2 
+ + + 3 15

Liu 2017 + + + + 4 + + + - - - - + + 5 - - + - 1 + + + 3 13 
Moon 
2010 + + + + 

4 
+ + + + - - - + +

6 
- + + -

2 
+ + + 3 15 

Moon 
2013 + + + + 

4 
+ + + + - - - + +

6 
- + + -

2 
+ + + 3 15

Muller 
2001 + + + + 

4 
+ - + - - + + + +

6 
- - -

1 
+ + + 3 13

Zhu 2015 + + + + 4 + + + - + - + + + 7 - - + - 1 + + + 3 15 
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CHAPTER 2.4 Supplementary files  

Section/topic  # Checklist item  
Reported on 
page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  P1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and 
interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic 
review registration number.  

P2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  P3 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and 
study design (PICOS).  

P3 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration 
information including registration number.  

P4 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication 
status) used as criteria for eligibility, giving rationale.  

P4 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in 
the search and date last searched.  

P4 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.  P4 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the 
meta-analysis).  

P4 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and 
confirming data from investigators.  

P4 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.  P5 

Risk of bias in individual studies  12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or 
outcome level), and how this information is to be used in any data synthesis.  

P5 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  P5 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for each 
meta-analysis.  

P5 
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Section/topic  # Checklist item  
Reported 
on page #  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within 
studies).  

P5 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were 
pre-specified.  

N/A 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, 
ideally with a flow diagram.  

P5 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the 
citations.  

P6 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  P6 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) 
effect estimates and confidence intervals, ideally with a forest plot.  

P6 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  P11 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  P6 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  N/A 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups 
(e.g., healthcare providers, users, and policy makers).  

P19 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified 
research, reporting bias).  

P21 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  P22 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic 
review.  

P22 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): 
e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma‐statement.org. 
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Quality of included T2D studies (n=10)  

Author Domain Gong Wang Mahmoud Zhao Madhumitha Shi Giubilato Olson Eldor Rattik 

R
E

P
O

R
T

IN
G

 B
IA

S
 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 0 0 0 

5 2 0 0 0 0 0 2 0 1 1 

6 1 1 1 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 1 1 1 1 

8 0 0 0 0 0 0 1 0 0 0 

9 0 0 0 0 0 0 1 0 0 0 

10 1 1 0 1 1 0 1 1 1 1 

  Score 8 6 5 6 6 5 10 6 7 7 

E
X

T
E

R
N

A
L

 
V

A
L

ID
IT

Y
 

11 0 0 0 1 0 0 0 1 0 1 

12 0 0 0 0 0 0 0 1 0 0 

13 0 0 0 0 0 0 0 1 0 0 

Score 0 0 0 1 0 0 0 3 0 1 

  14 0 0 0 0 0 0 0 0 0 0 

  15 0 0 0 0 0 0 0 0 0 0 

IN
T

E
R

N
A

L
 

V
A

L
ID

IT
Y

 

16 1 1 1 1 1 1 1 1 1 1 

17 0 0 0 0 0 0 1 0 1 0 

18 1 1 1 1 1 1 1 1 1 1 

19 0 0 0 0 0 0 1 1 1 0 

20 1 1 1 1 1 1 1 1 1 1 

Score 3 3 3 3 3 3 5 4 5 3 

  21 1 0 0 1 1 1 0 1 1 1 

S
E

L
E

C
T

IO
N

 B
IA

S
 

22 1 0 0 1 0 0 0 0 1 1 

23 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 

Score 2 0 0 2 1 1 0 1 2 2 

 

Overall 
score 13 9 8 12 10 9 15 14 14 

 
13 

 
  

Supplementary file 2 
Downs and Black checklist 
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Quality of included CVD studies (n=5)  

Author Domain Giubilato Dumitriu Teo Flego Emoto 
R

E
P

O
R

T
IN

G
 B

IA
S

 

1 1 1 1 1 1

2 1 1 1 1 1 

3 1 1 1 1 1 

4 0 0 1 1 0 

5 2 0 1 1 1 

6 1 1 1 1 1 

7 1 1 1 1 1 

8 1 0 0 1 0 

9 1 0 0 1 0 

10 1 0 1 1 0

  Score 10 5 8 10 6 

E
X

T
E

R
N

A
L

 
V

A
L

ID
IT

Y
 

11 0 0 0 0 0

12 0 0 0 0 0

13 0 0 0 0 0

Score 0 0 0 0 0 

  14 0 0 0 0 0 

  15 0 0 0 0 0 

IN
T

E
R

N
A

L
 

V
A

L
ID

IT
Y

 

16 1 1 1 1 1 

17 1 0 0 1 0 

18 1 1 1 1 1 

19 1 0 0 1 0 

20 1 1 1 1 1 

Score 5 3 3 5 3 

  21 0 0 1 1 1

S
E

L
E

C
T

IO
N

 B
IA

S
 

22 0 0 0 1 0

23 0 0 0 0 0

24 0 0 0 0 0

25 0 0 0 1 0

26 0 0 0 0 0 

Score 0 0 1 3 1 

 

Overall 
score 

 
15 

 
8 12 18 10 

 
  



 

Page 158 of 173 
 

 
Figure 1S: Funnel plot of cardiovascular risk T2D compared to controls showing no publication bias symmetry. 
 

 
Figure 2S: BMI in T2D compared to controls 
 

 
Figure 3S: Hb1Ac in T2D compared to controls 
 

Supplementary file 3 
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Figure 4S: Pooled estimates of cardiovascular risk in CVD compared controls. 
 
 

 
 
Figure 5S: The prevalence of CVD risk factors in T2D compared to T2D+CVD.  
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CHAPTER 2.5 Supplementary files  
Supplementary Figures and Tables 
 

 
Figure 1S: Symmetrical forest plots indicating no publication bias   
 

     

Figure 2S: Pooled estimates of glucose metabolic profiles indicating poor glucose control in T2D patients 

 
Table 1S: PubMed search strategy  

 
"Diabetes Mellitus, Type 2"[Mesh] AND (programmed[All Fields] AND ("death"[MeSH Terms] OR 
"death"[All Fields]) AND 1[All Fields]) AND "humans"[MeSH Terms] 
 
21 hits 
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Table 2S: Quality assessment of included studies using the modified Newcastle-Ottawa Scale for cross-sectional studies (n=5) 

Study and year 
Selection  

Average 

Comparability  Outcome 
Total quality 

score 
Rating  Representativeness of 

the sample 
Selected group 

of users 
Sample size Diagnose Confounders Assessment 

of methods
Statistical 

test 
Average 

Shi 2013 [1] 0 0 0 *** 3 ** *  * 2 7 Good 

Fujisawa 2015 
[2] 

0 0 0 ** 2 0 *  * 2 4 Unsatisfactory 

Jia 2016 [3] 0 * 0 *** 4 ** *  * 2 8 Good 

Nyambuya 2018 
[4] 

0 * 0 *** 4 * * * 3 7 Good 

Sun 2019 [5] 0 * 0 ** 3 ** *  * 2 7 Good 

 

 

Table 3S: A subgroup analysis based on extracted and computed values of PD-1expression on T helper cells 

Risk of bias Number of studies  %MD [95% CI] I2 (%), pH-value
 

All 
 

Extracted values 
 

Computed values 

5 [1–5] 
 
3 [1, 2, 5] 
 
2 [3, 4] 

 

 

2.57 [-3.84, 8.97] 
 

1.55 [-10.88, 13.99] 
 

4.00 [-1.50, 9.50] 
 
 

100% (p <0.00001) 
 

100% (p <0.00001) 
 
 

99%  (p <0.00001) 
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Table 4S: Sensitivity analysis of all included studies that reported on PD-1 expression on T-cells based on sample type and T-cell subset  

 
 

 

Outcomes Parameter Number of studies Omitted studies MD [95%CI] I2 (%), pH-value Overall effect: 
Z, p-value 

PD-1 expression on 
T helper cells  

All  
Sample type 

 
Whole blood 

 
Peripheral blood 

mononuclear cells 
 
 

T helper subtype 
CD4 

 
CD4+CD28- 

 

5 [1–5] 
 
 

2 [3, 4] 
 

3 [1, 2, 5] 
 
 
 
 

4 [2–5] 
 

1 [1] 

None 
 
 

3 [1, 2, 5] 
 

2 [3, 4] 
 
 
  

1 [1] 
 

4 [2–5] 
 

2.57 [-3.84, 8.97] 
 

4.00 [-1.50, 9.50] 
 

1.55 [-10.88, 13.99] 
 
 

0.61 [-5.30, 6.52] 
 

10.24 [9.77, 10.71] 

100% (p <0.00001) 
 
 

99% (p <0.00001) 
 

100% (p <0.00001) 
 
 
 
 

99% (p <0.00001) 
 

Not applicable 

0.78 (p = 0.43) 
 
 

1.43 (p = 0.15) 
 

0.24 (p = 0.81) 
 
 
 
 

0.20 (p = 0.84) 
 

43.11 (p <0.00001) 
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