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Abstract

The character table of any finite group provides a considerable amount of information about a

group and the use of character tables is of great importance in Mathematics and Physical Sciences.

Most of the maximal subgroups of finite simple groups and their automorphisms are extensions

of elementary abelian groups. Various techniques have been used to compute character tables,

however Bernd Fischer came up with the most powerful and informative technique of calculating

character tables of group extensions. This method is known as the Fischer-Clifford Theory and uses

Fischer-Clifford matrices, as one of the tools, to compute character tables. This is derived from

the Clifford theory. Here G is an extension of a group N by a finite group G, that is G = N.G.

We then construct a non-singular matrix for each conjugacy class of G/N ∼= G. These matrices,

together with partial character tables of certain subgroups of G, known as the inertia groups, are

used to compute the full character table of G.

In this dissertation, we discuss Fischer-Clifford theory and apply it to both split and non-split

extensions. We first, under the guidance of Dr Mpono, studied the group 27:S8 as a maximal

subgroup of 27:SP (6, 2), to familiarize ourselves to Fischer-Clifford theory. We then looked at

26:A8 and 28:O+
8 (2) as maximal subgroups of 28:O+

8 (2) and O+
10(2) respectively and these were both

split extensions. Split extensions have also been discussed quite extensively, for various groups, by

different researchers in the past. We then turned our attention to non-split extensions. We started

with 24.S6 and 25.S6 which were maximal subgroups of HS and HS:2 respectively. Except for some

negative signs in the first column of the Fischer-Clifford matrices we used the Fisher-Clifford theory

as it is. The Fischer-Clifford theory, is also applied to 53.L(3, 5), which is a maximal subgroup of

the Lyon’s group Ly. To be able to use the Fisher-Clifford theory we had to consider projective

representations and characters of inertia factor groups. This is not a simple method and quite some

smart computations were needed but we were able to determine the character table of 53.L(3, 5).

All character tables computed in this dissertation will be sent to GAP for incorporation.
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Notation and conventions

Throughout this thesis all groups will be assumed to be finite, unless otherwise stated. We will use

the notation and terminology from the ATLAS [23] and ATLAS V3 [124].

N natural numbers

Z integers

Q rational numbers

|R real numbers

C complex numbers

G, N , H, K groups

1G the identity element of G

H ≤ G H is a subgroup of G

H ∼= G H is isomorphic to G

F a field

F∗ F− {0}

〈x, y〉 the subgroup generated by x and y

N.G an extension of N by G

N :G a split extension of N by G

N ·G a non-split extension of N by G

hg conjugation of h by g

nX a general conjugacy class of G with representatives of order n

g1 ∼ g2 g1 is conjugate to g2

o(g) order of g ∈ G

v



CG(g) the centralizer of g in G

[g] a conjugacy class of G with representative g

NG(H) the normalizer of a subgroup H in G

Hg the right coset of H in G

gH the left coset of H in G

X, Y , Ω sets

|Ω| the cardinality of the set Ω

1α2β3γ . . . cycle structure of a permutation

Irr(G) the set of ordinary irreducible characters of G

IG the identity character of G

χ(G|H) the permutation character of G on H

χH the restriction of the character χ of G to the subgroup H

ψG the induction of the character ψ of subgroup H to G

na, nb, . . . irreducible characters of G of degree n

〈χi, χj〉 the inner product of the characters χi and χj

dim(V ) the dimension of a vector space V

An the alternating group on n symbols

Sn the symmetric group on n symbols

GF (q) the Galois field of q elements

V (n, q) a vector space of dimension n over GF (q)

Sp2n(q) symplectic group of dimension 2n over GF (q)

O+
2n(q) the orthogonal group consistent with the form f+ on V = V (2n, q)

invariant

O+
8 (2) the simple orthogonal group of dimension 8 over GF (2),

|O+
8 (2)| = 212 × 35 × 52 × 7

O+
10(2) the simple orthogonal group of dimension 10 over GF (2),

|O+
10(2)| = 220 × 35 × 52 × 7× 17× 31

L(n, q) the projective special linear group (PSL(n, q)) on V = V (n, q)

L(3, 5) the projective special linear group of dimension 3 over GF (5),

L(3, 5) = 25 × 3× 53 × 31

HS the Higman-Sims group

Ly the Lyons group

pn an elementary abelian group of order pn
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1

Introduction

The classification of finite simple groups theorem states that every finite simple group is isomorphic

to exactly one of the following :

• cyclic groups of prime order,

• alternating groups An, where n ≥ 5,

• groups of Lie type and

• the 26 sporadic groups.

Groups of Lie type can also be divided into two types namely the classical groups and exceptional

groups that include twisted groups. Classical groups are the projective special linear groups, the

sympletic groups, the unitary groups and the orthogonal groups. Groups of exceptional type are

groups of the form Gn(q), Fn(q), En(q) and the Tits group 2F4(2)′. The sporadic groups are the

five Mathieu groups, seven Leech lattice groups, three Fischer groups, five Monster groups and the

six pariahs.

The completion of the classification of all simple groups might have led to some naive thought of

the death of group theory. On the contrary this has led to very serious studies on the classification

of maximal subgroups of simple groups. One way of classifying finite groups was by character

theory. Isaacs provides an extensive study of character theory in [60]. In the classification of

maximal subgroups of simple groups, calculating character tables of these groups, has been one of

the methods used a lot. Quite a large number of maximal subgroups of simple groups are extensions

of elementary abelian groups. In this dissertation all groups studied are extensions of elementary

abelian groups. In the past most of these character tables were calculated using methods that did

not provide a lot of insight about the structure of the group concerned. In this dissertation we

use the Fischer-Clifford theory, for computing character tables, which is a method used by Bernd

Fischer. In this dissertation we apply the Fischer-Clifford method to both split and, with some

amendments if needed, to non-split extensions. We follow from Ali [1] also Ali and Moori [2] who
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CHAPTER 1. INTRODUCTION

not only applied it to split extensions but also to non-split extensions. This follows on the tracks of

a large number of researchers who applied this method to split extensions. For further reading, on

Fischer-Clfford theory, one can go to Ali and Moori [3], Almestady [4], Darafsheh and Iranmanesh

([26], [27]), Fischer ([34], [36], [37]), List [75], List and Mohammed [76], Moori and Mpono ([90],

[91], [92]), Mpono [99], Pahlings [103], Saleh [112], Schiffer [113] and Whitely [120].

In Chapter 2 we give some preliminary results on group extensions and group characters which will

be used in later chapters. In section 2.2 we define group extensions and discuss some basic results.

In section 2.3 we discuss the conjugacy classes of group extensions. We briefly discuss the technique

of coset analysis for computing conjugacy classes of a group extension G of N by G where N is an

elementary abelian normal subgroup of G. The technique of coset analysis was developed by Moori

[81] which he also used in [82] and this has been widely used for computing conjugacy classes of

group extensions. Analogous to the programmes developed in MAGMA by Ali [1] and in Cayley

by Mpono [99] we developed Programmes A and B in GAP [41] which we used to compute the

conjugacy classes of the groups 27:S8, 26:A8 and 28:O+
8 (2) that we studied in this dissertation in

Chapters 6, 7 and 8 respectively. In section 2.4 we studied preliminary results on representation

and characters which is used in later chapters. In section 2.5 we look at induced characters, section

2.6 deals with permutation characters and in section 2.7 we develop Programme C in GAP [41]

that we use to compute orbit lengths of orbits of conjugacy classes and irreducible characters. For

further reading on group extensions, representations and character of groups readers can also look

at the following [5], [7], [10], [11], [14], [20], [21], [30], [48], [56], [60], [61], [62], [63], [71], [74], [100],

[105], [110], [116] and [117].

In Chapter 3 we discuss projective representations and projective characters. The first step in

obtaining the projective representations of a group G is to compute its Schur multiplier. In section

3.2 we discuss the Schur multiplier of a group and methods of computing the Schur multiplier. In

section 3.3 we discuss the projective representations of G. We prove that for a projective represen-

tation P with factor set α of degree n, then o([α]) | n. We show how a projective representation of

G can be obtained from an ordinary representation of a ”representation group” of G. We also look

at three different methods of constructing a projective representation of a group G. We then study

the projective characters of G in section 3.4. For further reading on projective representations and

projective characters one can read [11], [47], [51], [55], [58], [60], [95], [96], [97], [98], [100], [107],

[108] and [109].

In Chapter 4 we study the Clifford theory for ordinary and projective representations of a group

G = N.G, where N E G. Here we discuss how the groups N and G are related to G and the

consequences thereof. In section 4.2 we study Clifford Theory and normal subgroups. In section

4.3 we discuss Clifford Theory and projective representations. In Section 4.4 we look at group

action and how to use GAP in our computations where the dimension of N is not the same as the

permutation degree of G. Last in Section 4.5 we look at irreducible constituents and conjugacy

classes. This is all required for the construction of Fischer-Clifford matrices which we discuss

2



CHAPTER 1. INTRODUCTION

in Chapter 5. For further reading on Clifford Theory, one can go to [11], [40], [58], [60], [66],

[67] and [100].

Chapter 5 is devoted to one of the most important tools used in this dissertation namely the

Fischer-Clifford matrices. If G = N.G is an extension of N by G where N , which is normal in

G, is an elementary abelian group. We compute a non-singular matrix for each conjugacy class of

G/N ∼= G. Then we use these matrices, fusion maps and the partial character tables of inertia factor

subgroups to compute the full character table of G. In this dissertation we apply this technique

to both split and non-split extensions. This technique has been used mostly in split extensions by

Almestady [4], Darafsheh and Iranmanesh ([26], [27]), Fischer ([34], [35], [36]), [37], List [75], List

and Mohammed [76], Moori and Mpono ([90], [91], [92]), Mpono [99], Pahlings [103], Saleh [112],

Schiffer [113] and Whitely [120]. With, the necessary adjustments, Ali [1] used this method for

both split and non-split extensions. Ali and Moori [2, 3] also used it for non-split extensions.

In Chapter 6 we look at the group 27:S8 as a maximal subgroup of 27:SP (6, 2) which in turn is

a maximal subgroup of Fi22, the full automorphism group of the smallest Fischer sporadic simple

group Fi22. In section 6.1 we compute the generators of Sp(6, 2) which we use in section 6.2 to

compute the generators of S8. In section 6.3 we compute and discuss the conjugacy classes of 27:S8

and then in section 6.5 we look at the power maps of 27:S8 which we use in computing the fusion

of 27:S8 into 27:SP (6, 2). We conclude this chapter by determining the character table of 27:S8.

Chapter 7 is based on a group of the form 26:A8 as an inertia factor group of 28:O+
8 (2). Here we

use two methods to compute A8 with 6× 6 matrix generators. In section 7.2 we use combinotorics

to compute these generators. In section 7.3 we use GAP to compute the generators of A8 inside

O+
8 (2). In section 7.4 we compute and discuss the conjugacy classes of 26:A8. In 7.5 we compute and

discuss the Fischer-Clifford matrices of 27:A8. In section 7.6 we finish off the chapter by calculating

the character table of 26:A8.

Chapter 8 is concerned with a group of the form 28:O+
8 (2) as a maximal subgroup of O+

10(2). The

group 210+16.O+
10(2) in turn is a maximal subgroup of F1 = M , the monster. In section 8.1 we

define the bilinear forms from which we use to define orthogonal forms which are in turn used

to define orthogonal groups in section 8.2. In section 8.3 we look at the action of O+
8 (2) on the

elementary abelian group 28. We then compute the inertia factor groups of 28:O+
8 (2) and their

fusion into O+
8 (2) in section 8.4.1. In section 8.4.2 we compute the Fischer-Clifford matrices while

section 8.4.3 deals the power maps and the character table of 28:O+
8 (2).

Chapter 9 is focused on groups of the form 24.S6 and 25.S6 which are both non-split extensions,

with 24.S6 and 25.S6 maximal subgroups of the Higman-Sims HS, and its full automorphism group

HS:2 respectively. In order to be able to use the Fischer-Clifford theory on these extensions, we use

the methods that are used by Ali [1]. In section 9.2 we discuss the Higman Sims group in relation

to the Conway groups. We use the ATLAS V3 to construct HS in section 9.1.2. In section 9.1.3

again using programmes from the ATLAS V3 we construct the subgroups 24.S6 and 25.S6 of HS

3



CHAPTER 1. INTRODUCTION

and HS:2 respectively. In the group 25.S6 we constructed, we found that there were three distinct

groups of order 11 520. One of them was 24.S6, the second was the split extension 24:S6 and the

third we determined as 25:A6. In section 9.2.1, inside HS:2, we constructed 24.S6 isomorphic to

the one which was a maximal subgroup of HS. We then used the GAP method used in Chapter

7 to construct the generators of S6 as 4 × 4 matrices. In section 9.2.2 and we let S6 act on 24

and we then computed the conjugacy classes and inertia factor groups of 24.S6. In section 9.2.3 we

compute the Fischer-Clifford matrices and full character table of 24.S6. In section 9.3 we look at

the group 25.S6, constructed as an automorphism group of 24.S6 . In section 9.3.1, similar to the

methods in section 9.2.1, we construct the generators of S6 as 5×5 generators in GF (2). In section

9.3.2 we let S6 act on 25 and we then compute the conjugacy classes and inertia factor groups of

25.S6. We finished off the chapter in section 9.3.3 by computing the Fischer-Clifford matrices and

character table of 25.S6.

The main focus of Chapter 10 is on a group of the form 53.L(3, 5) as a maximal subgroup of the

Lyons group Ly. Again as in Chapter 9, using the ATLAS V3 we construct the group 53.L(3, 5)

inside the group Ly. This was done in section 10.2. In section 10.3 we use the methods of Chapter

6, which were used again in Chapter 9, to construct the group L(3, 5). In 10.6 we let L(3, 5) act on

53 and then we compute the inertia factor groups of 53.L(3, 5). To be able to adopt the Fischer-

Clifford method we compute the Schur multiplier and to do this we need the projective character

table of 52:2.A5. In section 10.6 we compute the Fischer matrices, in section 10.7 we deal with the

power maps of 53.L(3, 5). The computation of the character table of 53.L(3, 5) is done in section

10.8. A programme from GAP, I developed with the help of F. Ali, was used to check the accuracy

and consistency of the character tables computed.
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2

Coset Analysis

2.1. Prologue

In this chapter we give preliminary results on group extensions and group characters that will be

required in later chapters. In section 2.2 we present definitions and some basic results on group

extensions. In section 2.3 we discuss the conjugacy classes of elements of group extensions. We

describe the technique of coset analysis for computing the conjugacy classes of group extension Ḡ

of N by G where N is an abelian normal subgroup of Ḡ. This technique was developed and first

used by Moori in [81, 82] and has since been widely used for computing the conjugacy classes of

group extensions in all cases where it is applicable. For example, it has been used in Ali [1], Mpono

[99], Saleh [112] and Whitely [120]. We also develop two GAP Programmes A and B analogous to

the programmes developed by Mpono [99] for CAYLEY and Ali [1] for MAGMA to compute the

conjugacy classes and the orders of the class representatives for the split extensions Ḡ = N :G where

N is an elementary abelian p-group. We use these programmes to compute the conjugacy classes

of the group extensions 27:S8, 26:A8 and 28:O+
8 (2) which will be studied in Chapters 6, 7 and 8

respectively. In Section 2.4 we present some theory on representations and characters of groups

by concentrating on those results which would be useful in later chapters. Section 2.5 deals with

the relationship between the characters of a group G and the characters of a subgroup H of G. In

this section we will first study restriction of characters and then go on to study induced characters.

Finally in Section 2.6 we give some results on permutation characters. For further information

and readings on group extensions, group representations and characters readers are encouraged to

consult [5, 7, 10, 11, 14, 56, 60, 61, 62, 63, 71, 74, 100, 105, 110, 116, 117] and many other relevant

sources.

2.2. Group Extensions

Definition 2.2.1. Let N and G be groups. An extension of N by G is a group Ḡ that satisfies

the following properties

5
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(i) N E Ḡ,

(ii) Ḡ/N ∼= G.

We say that Ḡ is a split extension of N by G if Ḡ contains subgroups N and G1 with G1
∼= G

such that

(i) N E Ḡ,

(ii) NG1 = Ḡ,

(iii) N ∩G1 = {1Ḡ}.

In this case Ḡ is also called a semi-direct product of N and G, and identify G1 and G.

Following ATLAS [23], we denote an arbitrary extension of N by G by N.G. A split extension of

N by G is denoted by N :G and a non-split extension is denoted by N .G.

Definition 2.2.2. The automorphism group of a group G, denoted by Aut(G), is the set of all

automorphisms of G under the binary operation of composition.

For Ḡ, a semidirect product of N by G, every element in Ḡ can be uniquely expressed in the form

ng, where n ∈ N and g ∈ G and the multiplication of elements of Ḡ is given by

(n1g1)(n2g2) = n1n
g1
2 g1g2 ,

where ng = gng−1. Also there is a homomorphism θ : G −→ Aut(N) given by θ(g) = θg, where

g ∈ G, θg : N −→ N is defined by θg(n) = gng−1 and θg is an automorphism of N . Hence G acts

on N .

Definition 2.2.3. Let Ḡ, N and G be as defined above and θ : G −→ Aut(N). The semidirect

product Ḡ of N by G is said to realize θ if θg(n) = ng ∀ n ∈ N, g ∈ G.

Remark 2.2.4. For Ḡ a semidirect product of N by G, then Ḡ is isomorphic to a semidirect

product of N by G that realizes θ for some θ : G −→ Aut(N).

If Ḡ is a split extension of N by G, then Ḡ = NG =
⋃
g∈GNg. So G may be regarded as a

right transversal for N in Ḡ (that is, a complete set of right coset representatives of N in Ḡ).

Now suppose Ḡ is any extension of N by G, not necessarily split, then since Ḡ/N ∼= G, there is

a homomorphism λ : Ḡ −→ G that is onto, with kernel N . For g ∈ G define a lifting of g as an

element ḡ ∈ Ḡ such that λ(ḡ) = g. By choosing a lifting of each element of G, we get the set

{ḡ : g ∈ G} that is a transversal for N in Ḡ.

We now show that even for a non-split extension of N by G, if N is abelian , G acts on N .

6
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Lemma 2.2.5. ([1, 99, 111, 120]) Let Ḡ be an extension of N by G where N is abelian. Then

there is a homomorphism θ : G −→ Aut(N) such that θg(n) = ḡn(ḡ)−1, n ∈ N and θ is independent

of the choice of liftings {ḡ : g ∈ G}.

PROOF. Let a ∈ Ḡ and γa denote conjugation by a. Since N is a normal subgroup of Ḡ, (γa)N ∈
Aut(N) and the function µ : Ḡ −→ Aut(N) defined by µ(a) = (γa)N is a homomorphism. If a ∈ N ,

then since N is abelian we have µ(a) = IN . Thus there is a homomorphism µ∗ : Ḡ/N −→ Aut(N)

which is given by µ∗(Na) = µ(a). However G ∼= Ḡ/N and for any lifting {ḡ : g ∈ G}, the function

φ : G −→ Ḡ/N defined by φ(g) = Nḡ is an isomorphism. If {ḡ1 : g ∈ G} is another choice of

liftings, then ḡ ḡ−1
1 ∈ N for every g ∈ G and thus Nḡ = Nḡ1. Therefore the isomorphism φ is

independent of the choice of liftings. Let θ : G −→ Aut(N) be the composition µ∗ ◦ φ. For g ∈ G
and ḡ a lifting of g, then θ(g) = µ∗(φ(g)) = µ∗(Nḡ) = µ(ḡ) ∈ Aut(N) and thus for n ∈ N , we have

θg(n) = µ(ḡ)(n) = ḡn(ḡ)−1. Hence the result. �

Remark 2.2.6. [120] Let Ḡ be an extension of N by G where N is abelian and for each g ∈ G let

ḡ be a lifting of g. We identify G with Ḡ/N under the isomorphism g 7−→ Nḡ. Thus {ḡ | g ∈ G}
is a right transversal for N in Ḡ and thus every x ∈ Ḡ has a unique expression of the form x = nḡ

where n ∈ N and g ∈ G.

2.3. Conjugacy Classes of Group Extensions

In this section we discuss the technique of coset analysis, which was initially introduced by Moori

[81], to determine the conjugacy classes of group extensions but first we state the following two

results.

Theorem 2.3.1. Let G be a finite group

(i) Suppose that C1 and C2 are two conjugacy classes of G such that C1 6= [1G] and Cn1 = C2 for

some integer n ≥ 2, where

Cn1 = {x1x2 · · ·xn | xi ∈ C1, 1 ≤ i ≤ n} .

Then there exists some normal subgroup N of G and g ∈ G−N such that C1 is the coset Ng

and the map x 7→ xn is a bijection from C1 onto C2.

(ii) If G has a normal subgroup N and g ∈ G −N such that the coset Ng is a single conjugacy

class of G, and such that for some n ∈ Z the map x 7−→ xn for x ∈ Ng is a monomorphism,

then Ngn is a conjugacy class of G and (Ng)n = Ngn.

PROOF. See [12]. �

Proposition 2.3.2. Let Ḡ = N.G, ḡ ∈ Ḡ a lifting of g ∈ G, C be the centralizer of Nḡ in G and

C̄ be the complete pre-image in Ḡ of C. Then
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(i) the union of the cosets Nx̄ which are conjugate in G to Nḡ, is the union of the conjugacy

classes L1, L2, . . . , Lr of Ḡ,

(ii) C̄ acts on the coset Nḡ by conjugation,

(iii) C̄ has r orbits in its action on Nḡ and the orbit representatives ḡ1, ḡ2, . . . , ḡr are representa-

tives of the conjugacy classes L1, L2, . . . , Lr of Ḡ,

(iv) the centralizer CḠ(ḡi) for 1 ≤ i ≤ r is the stabilizer of ḡi in C̄ in its action on Nḡ.

PROOF. See [16]. �

We now briefly discuss the technique of coset analysis to determine the conjugacy classes of elements

of group extensions Ḡ = N.G where N is an abelian normal subgroup of Ḡ. For detailed information

about this technique we encourage readers to consult F Ali [1], Moori [81, 82] and Mpono [99].

For each conjugacy class [g] in G with representative g ∈ G, we analyze the coset Nḡ, where ḡ is a

lifting of g in Ḡ and

Ḡ =
⋃
g∈G

Nḡ .

To each class representative g ∈ G with lifting ḡ ∈ Ḡ, we define

Cḡ = {x ∈ Ḡ : x(Nḡ) = (Nḡ)x} .

Then Cḡ is the stabilizer of Nḡ in Ḡ under the action by conjugation of Ḡ on Nḡ, and hence Cḡ is

a subgroup of Ḡ.

Remark 2.3.3. It is not difficult to see that N is a normal subgroup of Cḡ.

Lemma 2.3.4. [120] Cḡ/N = CḠ/N (Nḡ).

PROOF. Consider Nk, where k ∈ Ḡ. Then

Nk ∈ CḠ/N (Nḡ) ⇔ Nk(Nḡ)(Nk)−1 = Nḡ

⇔ NkNḡNk−1 = Nḡ

⇔ NkNḡk−1 = Nḡ

⇔ NkNnḡk−1 = Nḡ ∀n ∈ N

⇔ Nknḡk−1 = Nḡ , ∀n ∈ N

⇔ knḡk−1 ∈ Nḡ , ∀n ∈ N

⇔ k ∈ Cḡ
⇔ Nk ∈ Cḡ/N .

Thus we obtain that Cḡ/N = CḠ/N (Nḡ). �
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Remark 2.3.5. Using Remark 2.3.4 and Lemma 2.3.5 we deduce that Cḡ = N.CḠ/N (Nḡ). For ḡ

a lifting of g ∈ G in Ḡ, we can identify CḠ/N (Nḡ) with CG(g) and write Cḡ = N.CG(g) in general.

If Ḡ = N :G then we can identify Cḡ with Cg = {x ∈ Ḡ : x(Ng) = (Ng)x}, where the lifting of g

in Ḡ is g itself since G ≤ Ḡ in the case of a split extension.

Corollary 2.3.6. If Ḡ = N :G, then Cg = N :CG(g).

PROOF. We have that N is a normal subgroup of Cg. Now we show that CG(g) ≤ Cg and that

N∩CG(g) = {1}. Let x ∈ CG(g). Then we obtain (Ng)x = x(Ng)x−1 = xNgx−1 = Nxgx−1 = Ng.

Thus x ∈ Cg and hence CG(g) ≤ Cg. Since N ∩ CG(g) ≤ N ∩ G = {1G}, then we have that

N ∩ CG(g) = {1G}. Hence the result. �

The conjugacy classes of Ḡ (where N is abelian) will be determined by the action by conjugation

of Cḡ, for each conjugacy class [g] of G, on the elements of Nḡ. To act Cḡ on the elements of Nḡ,

we first act N and then act {h̄ : h ∈ CG(g)}, where h̄ is a lifting of h in G. We outline this action

in two steps as follows:

STEP 1: The action of N on Nḡ: Let CN (ḡ) be the stabilizer of ḡ in N . Then for any n ∈ N we

have x ∈ CN (nḡ) ⇔ x ∈ CN (ḡ). Thus CN (g) fixes every element of Nḡ. Now let |CN (ḡ)| = k.

Then under the action of N , Nḡ splits into k orbits Q1, Q2, . . . , Qk, where

|Qi| = [N : CN (ḡ)] =
|N |
k

,

for i ∈ {1, 2, . . . , k}.

STEP 2: The action of {h̄ | h ∈ CG(g)} on Nḡ: Since the elements of Nḡ are now in the orbits

Q1, Q2, . . . , Qk from Step 1 above, we need only act {h̄ | h ∈ CG(g)} on these k orbits. Suppose

that under this action fj of these orbits Q1, Q2, . . . , Qk fuse together to form one orbit ∆j , then

the fj ’s obtained this way must satisfy ∑
j

fj = k

and we have

|∆j | = fj ×
|N |
k

.

Thus for x = djg ∈ ∆j , we obtain that

|[x]Ḡ| = |∆j | × |[g]G| = fj ×
|G|

k|CG(g)|

and thus we obtain that

|CḠ(x)| = |Ḡ|
|[x]Ḡ|

= |Ḡ| × k|CG(g)|
fj |Ḡ|

=
k|CG(g)|

fj
.

Thus to calculate the conjugacy classes of G = N.G, we need to find the values of k and the fj ’s

for each class representative g ∈ G.
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Remark 2.3.7. However in the case of Ḡ = N :G a split extension, we analyze the coset Ng instead

of Nḡ since in this case G ≤ Ḡ. Under the action of N on Ng, we always assume that g ∈ Q1.

Also instead of acting {h̄ : h ∈ CG(g)} on the k orbits Q1, Q2, . . . , Qk we just act CG(g) on these

orbits. Since g ∈ Q1, then CG(g) always fixes Q1 and thus we will always have f1 = 1. Hence

k =
∑
j

fj = 1 +
∑
m

fm ,

where the sum is taken over all m such that g 6∈ Qm.

We now prove and discuss techniques that are useful in the determination of the orders of the

elements of Ḡ = N :G.

Theorem 2.3.8. Let Ḡ = N :G and dg ∈ Ḡ where d ∈ N and g ∈ G such that o(g) = m and

o(dg) = k. Then m divides k.

PROOF. We have that

1Ḡ = (dg)k = ddgdg
2
dg

3
. . . dg

k−1
gk .

Since G acts on N and d ∈ N , we have d, dg, dg
2
, . . . , dg

k−1 ∈ N . Hence ddgdg
2
. . . dg

k−1 ∈ N . Thus

we must have that ddgdg
2
. . . dg

k−1
= 1N and gk = 1G. Hence m divides k. �

Theorem 2.3.9. Let Ḡ = N :G such that N is an elementary abelian p-group, where p is prime.

Let dg ∈ G where d ∈ N and g ∈ G such that o(g) = m and o(dg) = k. Then either k = m or

k = pm.

PROOF. See ([1],[99]). �

Remark 2.3.10. Let Ḡ = N :G, where N is an elementary abelian p-group. Let dg ∈ Ḡ with

d ∈ N , g ∈ G such that o(g) = m and o(dg) = k, then we observe that

(dg)m = d.dg.dg
2
. . . . .dg

m−1
gm .

Since gm = 1G, we obtain that (dg)m = w, where w ∈ N and it is given by

w = d.dg. . . . .dg
m−1

.

By Theorem 2.3.9 above, we have that if w = 1N then k = m and if w 6= 1N then k = pm.

We use the method of coset analysis discussed above (outlined in Steps 1 and 2) together with

Theorems 2.3.8 and 2.3.9 and Remark 2.3.10 in developing Programmes A and B in GAP [41]

(analogous to the programmes developed by Ali [1] for MAGMA and Mpono [99] for CAYLEY )

which are applied for the computation of conjugacy classes and the orders of the class representatives

of the extension Ḡ = N :G where N is an elementary abelian p-group for prime p on which a linear

group G acts.
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Programme A

V:=FullRowSpace(GF (q), n);

gr[1]:=(OneGF(q))*[n× n matrix group generators];

gr[2]:=(OneGF(q))*[n× n matrix group generators];

...

gr[k]:=(OneGF(q))*[n× n matrix group generators];

grp:=Group(gr[1], gr[2], · · · , gr[k]);

Ccl:=ConjugacyClasses(m);

O:=Union(Orbits(grp,V));

for i in [1..n(Ccl)] do

Print(Representative(Ccl[i]));

w:=One(GF(q))*[0, 0, · · · , 0];

e:=[ ];

while Difference(O,e) <> [ ] do

d:=[ ];

for x in O do;

y:=[x+w+(x*(Representative(Ccl)[i]))];

d:=Union(d,y);

od;

Print(d);

e:=Union(d,e);

if Difference(O,e) <> [ ] then

w:=Representative(Difference(O,e));

fi;

od;

r:=[ ];

u:=One(GF(q))*[0, 0, · · · , 0];

while Difference(O,e) <> [ ] do

m:=[ ];

for g in Centralizer(grp,Representative(Ccl)[i]) do

l:=[u*g];

m:=Union(m,l);

od;

Print(”A block for the vectors under the action of a centralizer”);

Print(m);

r:=Union(m,r);

if Difference(O,r) <> [ ] then

u:=Representative(Difference(O,r));

fi;

od;

Print(”**********************************”);

od;

Programme B

V:=FullRowSpace(GF (q), n);

m[1]:=(OneGF(q))*[n× n matrix group generators];

m[2]:=(OneGF(q))*[n× n matrix group generators];

...

m[k]:=(OneGF(q))*[n× n matrix group generators];

11
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m:=Group(m[1],m[2], · · · ,m[k]);

c:=ConjugacyClasses(m);

g:=Representative(c[i]);

d:=One(GF(q))*[α1, α2, · · · , αn];

w:=d+ d ∗ g + d ∗ g2 + · · ·+ d ∗ gm−1;

Print(w);

In Programme B we have o(g) = m and g ∈ S is a class representative, for 1 ≤ j ≤ n, αj ∈ GF (q),

d ∗ g = dg, and + signifies the operation in V and dg ∈ G is a class representative from the coset

Ng.

2.4. Representations and Characters

In this section we give some preliminary results on representations and characters of groups which

will be needed in later chapters. For further reading one can go to [1, 99].

Definition 2.4.1. Let G be a group, F a field and GL(n,F) the general linear group which is

the multiplicative group of all nonsingular n × n matrices over F for some integer n. Then a

homomorphism ρ : G −→ GL(n,F) is called a representation of G over F or simply an F-

representation. The representation ρ is said to have degree n. The function χ : G −→ F given by

χ(g) = trace(ρ(g)) is called the F-character of G afforded by the F -representation ρ. The degree of

χ is the same as that of ρ.

Two F-representations ρ1 and ρ2 of G are said to be equivalent if there exists P ∈ GL(n,F) such

that ρ1(g) = Pρ2(g)P−1 for all g ∈ G. An F-representation ρ of G is said to be reducible if it is

equivalent to a representation α which is given by

α(g) =

(
β(g) γ(g)

0 δ(g)

)
for all g ∈ G, where β, γ, δ are F-representations of G. If ρ is not reducible, then it is said

to be irreducible. Since similar matrices have the same trace, then it follows that equivalent

representations afford the same character. The character afforded by an irreducible representation

is called an irreducible character. Sums and products of characters are themselves characters.

We now give a famous result of Schur [114] which provides an assessable approach to group char-

acters.

Theorem 2.4.2. (Schur’s Lemma) Let ρ1 : G −→ GL(n,F) and ρ2 : G −→ GL(m,F) be two

irreducible representations of a group G over a field F. Assume that there exists a matrix P such

that Pρ1(g) = ρ2(g)P for all g ∈ G. Then either P is the zero matrix or P is nonsingular so that

ρ1(g) = P−1ρ2(g)P .

PROOF. See Theorem 1.8 of [89]. �
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Corollary 2.4.3. [89] If ρ : G −→ GL(n,F) is an irreducible representation of a group G over an

algebraically closed field F, then the only matrices which commute with all matrices ρ(g), g ∈ G are

scalar matrices aIn, where a ∈ F and In is the n× n identity matrix.

PROOF. Let P be an n × n matrix such that Pρ(g) = ρ(g)P for all g ∈ G. Then for any a ∈ F we

have that

(aIn − P )·ρ(g) = ρ(g)·(aIn − P ), ∀g ∈ G . (1)

Let m(x) = det(xIn − P ) be the characteristic polynomial of P . Since m(x) is a polynomial

over F and F is algebraically closed, then there exists a1 ∈ F such that m(a1) = 0F . Hence

det(a1In − P ) = 0F and thus a1In − P is singular. Then from relation (1) above and Schur’s

Lemma, we obtain that a1In − P = 0 and hence a1In = P . �

Definition 2.4.4. Let G be a group, F a field and φ : G −→ F be a function which is constant on

conjugacy classes of G. Then φ is called a class function of G.

From the above definition, we observe that every character is a class function. From now on, we will

consider representations and characters of a finite group G over the complex field C. We shall use

the notation Irr(G) to denote the set of all irreducible characters of the group G. These irreducible

characters are presented in a table, called the character table of G. In this table, the columns

correspond to the conjugacy classes of G and the rows to the irreducible characters, with entry aij
being the value of the i-th irreducible character on an element of the j-th conjugacy class.

We can show that every class function φ ofG can be uniquely expressed in the form φ =
∑

χ∈Irr(G) bχχ,

where bχ ∈ C. Moreover φ is a character if and only if all bχ ∈ N ∪ {0} and φ 6= 0. We can also

show that the following properties hold:

(i) Two representations of G have the same character if and only if they are equivalent.

(ii) The number of irreducible characters of G is equal to the number of conjugacy classes of

elements of G.

(iii) Any character of G can be written as a sum of irreducible characters.

Definition 2.4.5. Let G be a group, χ a character of G and Irr(G) = {χ1, χ2, . . . , χr} such that

χ =
∑r

i=1 niχi, where ni ∈ N ∪ {0}. Then those χi for which ni > 0 are called the irreducible

constituents of χ. In general, if ψ is a character of G such that χ− ψ is a character or is zero,

then ψ is a constituent of χ.

Orthogonality relations for characters are the cornerstone of character theory. Among other appli-

cations, they allow us to express an arbitrary class function in terms of irreducible characters and

to determine instantaneously whether or not any given character is irreducible.
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Theorem 2.4.6. (Generalized Orthogonality Relation) Let G be a group and Irr(G) =

{χ1, χ2, . . . , χr}. Then the following holds for every h ∈ G:

1
|G|

∑
g∈G

χi(gh)χj(g−1) = δij
χi(h)
χi(1G)

.

PROOF. See Theorem 2.13 of [60]. �

Theorem 2.4.7. Let χ be a character of G afforded by a representation ρ of degree n. Then for

g ∈ G, ρ(g) is similar to a diagonal matrix diag(ε1, ε2, . . . , εr) where each εi is a complex root of

unity. Then χ(g) =
∑r

i εi and χ(g−1) = χ(g), where χ(g) is the complex conjugation of χ(g).

PROOF. This is the Lemma 2.15 in [60]. �

Definition 2.4.8. Let χ and ψ be class functions of a group G. Then the inner product of χ

and ψ is defined by

〈χ, ψ〉 =
1
|G|

∑
g∈G

χ(g)ψ(g) .

The following theorems are derived from the generalized orthogonality relation and are called the

first and second orthogonality relations respectively.

Theorem 2.4.9. [60](First Orthogonality Relation) Let G be a group and Irr(G) = {χ1, χ2, . . . , χr}.
Then

1
|G|

∑
g∈G

χi(g)χj(g) = δij = 〈χi, χj〉 .

PROOF. Using the generalized orthogonality relation and taking h = 1G, then the result follows

immediately. �

Theorem 2.4.10. [60](Second Orthogonality Relation) Let G be a group and Irr(G) =

{χ1, χ2, . . . , χr} and {g1, g2, . . . , gr} be a set of representatives of the conjugacy classes of elements

of G. Then ∑
χ∈Irr(G)

χ(gi)χ(gj) = δij |CG(gi)| .

PROOF. Let X be the character table of G. Then viewed as a matrix, X is an r × r matrix whose

(i, j)-th entry is given by χi(gj). Let Ci be the conjugacy class which contains gi and D be the

diagonal matrix with entries δij |Ci|. Then by the first orthogonality relation, we obtain that

|G|δij =
∑
g∈G

χi(g)χj(g) =
r∑
t=1

|Ct|χi(gt)χj(gt) .

Then we obtain a system of r2 equations which can be written as a single matrix equation as follows

|G|I = XDX
T

,
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where I is the identity r×r matrix and XT is the transpose of X. Since X is a nonsingular matrix,

then we obtain that

|G|I = DX
T
X .

Rewriting the above matrix system as a system of equations yields

|G|δij =
r∑
t=1

|Ci|χt(gi)χt(gj) .

Hence we obtain that ∑
χ∈Irr(G)

χ(gj)χ(gi) = |CG(gi)|δij .

�

Let G be a group and χ be a character of G afforded by a representation ρ. Then we define

ker(χ) = {g ∈ G | χ(g) = χ(1G)} .

It can be shown that ker(χ) = ker(ρ) and hence ker(χ) is a normal subgroup of G. If Irr(G) =

{χ1, χ2, . . . , χr}, then every normal subgroup of G is the intersection of some of the ker(χi).

Theorem 2.4.11. Let G be a group and N be a normal subgroup of G. Then

(a) If χ is a character of G and N ⊆ ker(χ), then χ is constant on the cosets of N in G and the

function χ̂ defined on G/N by χ̂(Ng) = χ(g) is a character of G/N .

(b) If χ̂ is a character of G/N , then the function χ defined by χ(g) = χ̂(Ng) is a character of G.

(c) In both (a) and (b) above, χ ∈ Irr(G) if and only if χ̂ ∈ Irr(G/N).

PROOF. See Theorem 2.2.2. of [120]. �

If N is a normal subgroup of G and ρ is a representation of G such that N ⊆ ker(ρ), then there

exists a unique representation ρ̂ of G/N defined by ρ̂(Ng) = ρ(g). Thus knowing ρ, we can obtain

ρ̂ and vice versa. We also obtain that ρ is irreducible if and only if ρ̂ is irreducible. Hence ρ and ρ̂

can be identified. If ρ affords a character χ of G, then ρ̂ affords a character χ̂ of G/N and also χ

and χ̂ can be identified. Under this identification, we obtain that

Irr(G/N) = {χ ∈ Irr(G) | N ⊆ ker(χ)} .

Thus the irreducible characters of G/N are precisely those irreducible characters of G which contain

N in their kernels.

Definition 2.4.12. Let G be a group, N a normal subgroup of G and χ̂ be a character of G/N .

Then the character χ of G defined by

χ(g) = χ̂(Ng)

is called a lifting of χ̂ to G.
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Thus given characters of G/N , we can obtain some characters of G by the lifting process. The

character χ̂ and its lifting χ have the same degree.

2.5. Induced Characters

In this section we look at the ways of relating the representations of a group to the representations

of its subgroups.

Definition 2.5.1. Let G be a finite group and H ≤ G. If ρ is a representation of G, then the

restriction of ρ to H is a representation of H. This representation is denoted by ρH . If χ is a

character of G afforded by ρ, then the restriction of χ to H is denoted by χH and is a character of

H afforded by the representation ρH such that

χH =
∑

ψ∈Irr(H)

kψψ ,

where kψ ∈ N ∪ {0}.

The characters χH and χ take on the same values on the elements of H. If χH is irreducible, then

χ is irreducible in G but the converse is not true in general.

Karpilovsky in [67] proves a theorem (Theorem 23.1.4) due to Gallagher that if H ≤ G, χ ∈ Irr(G)

such that χ(g) 6= 0 ∀ g ∈ G − H, then χH is irreducible, and for any g ∈ G − H, χ(g) is a root

of unity. We also observe that (see [63]) every irreducible character of H is a constituent of some

irreducible character of G restricted to H.

Theorem 2.5.2. [63] Let G be a group, H ≤ G, χ ∈ Irr(G) and Irr(H) = {ψ1, ψ2, . . . , ψr}. Then

χH =
r∑
i=1

kiψi ,

where ki ∈ N ∪ {0} satisfy the following relation

r∑
i=1

k2
i ≤ [G : H] .

Moreover, equality in the above relation holds if and only if χ(g) = 0 for all g ∈ G−H.

PROOF. See [99] �

Theorem 2.5.3. Let G be a group, H be a normal subgroup of G and χ ∈ Irr(G). Then all the

constituents of χH have the same degree.

PROOF. See Proposition 20.7 of [63]. �
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Let G be a group and H ≤ G such that the set {x1, x2, . . . , xr} is a transversal for H in G. Let φ

be a representation of H of degree n. Then we define φ∗ on G as follows:

φ∗(g) =


φ(x1gx

−1
1 ), φ(x1gx

−1
2 ), . . . , φ(x1gx

−1
r )

φ(x2gx
−1
1 ), φ(x2gx

−1
2 ), . . . , φ(x2gx

−1
r )

...

φ(xngx−1
1 ), φ(xngx−1

2 ), . . . , φ(xngx−1
r )


where φ(xigx−1

j ) are n× n sub-matrices of φ∗(g) satisfying the property that

φ(xigx−1
j ) = 0n×n ∀ xigx−1

j 6∈ H .

Then we can show that φ∗ is a representation of G of degree nr.

Definition 2.5.4. Let G, H, φ and φ∗ be as above. Then the representation φ∗ is called the

representation of G induced from the representation φ of H and we denote this by writing φ∗ = φG.

If ψ is a representation of H which is equivalent to φ, then it can be shown that ψG is equivalent

to φG. Thus the induction process preserves equivalence between representations.

Definition 2.5.5. Let G be a group and H ≤ G. Let χ be a class function of H. Then we define

χG as follows:

χG(g) =
1
|H|

∑
x∈G

χ◦(xgx−1) ,

where

χ◦(h) =

{
χ(h) if h ∈ H
0 otherwise

.

Then χG is a class function of G, called the induced class function of G induced from χ. Also

we have that deg(χG) = [G : H]deg(χ).

Theorem 2.5.6. [60](Frobenius Reciprocity Theorem) Let G be a group, H ≤ G and suppose

that χ is a class function of H and φ is a class function of G. Then

〈χ, φH〉 = 〈χG, φ〉.

PROOF. We obtain that

〈χG, φ〉 =
1
|G|

∑
g∈G

χG(g)φ(g) =
1
|G|

1
|H|

∑
g∈G

∑
x∈G

χ◦(xgx−1)φ(g) .

Putting y = xgx−1 and since φ is a class function, then we obtain that φ(y) = φ(g). Hence we have

〈χG, φ〉 =
1
|G|

1
|H|

∑
g∈G

∑
x∈G

χ◦(xgx−1)φ(g) =
1
|G|

1
|H|

∑
y∈G

∑
x∈G

χ◦(y)φ(y)

=
1
|H|

∑
y∈H

χ(y)φ(y) = 〈χ, φH〉.

17
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Hence the result. �

Let H ≤ G and φ be a representation of H that affords a character χ of H. Then χG is a character

of G afforded by the induced representation φG of G. The character χG is called the induced

character of G. The induction and restriction processes do not necessarily preserve irreducibility

of characters. For further reading on induced characters, readers are encouraged to consult [8], [9],

[62], [101] and many other relevant sources.

Theorem 2.5.7. Let G be a group and H ≤ G. Let χ be a character of H, g ∈ G and

{x1, x2, . . . , xm} be a set of representatives of the conjugacy classes of elements of H which fuse

into [g] in G. Then we obtain that

χG(g) = |CG(g)|
m∑
i=1

χ(xi)
|CH(xi)|

,

where we have that χG(g) = 0 whenever H ∩ [g] = ∅.

PROOF. We have that

χG(g) =
1
|H|

∑
x∈G

χ◦(xgx−1) .

If H ∩ [g] = ∅, then xgx−1 6∈ H and thus χ◦(xgx−1) = 0 ∀ x ∈ G and hence χG(g) = 0. Now

if H ∩ [g] 6= ∅, then let h ∈ H ∩ [g]. Then as x runs over elements of G, we have xgx−1 = h for

exactly |CG(g)| values of x. Hence we obtain that

χG(g) =
1
|H|

∑
x∈G

χ(xgx−1) =
|CG(g)|
|H|

∑
h∈H∩[g]

χ(h) = |CG(g)|
m∑
i=1

χ(xi)
|CH(xi)|

.

Hence the result. �

2.6. Permutation Characters

Knowledge of the permutation characters of a group leads to information about the subgroup

structure of the group. In this section we discuss permutation characters.

We say that a group G acts on a set X if there is a homomorphism φ : G −→ SX , where SX is

the symmetric group on X. We say that G acts faithfully on X if φ is a monomorphism. In this

case G can be identified with a subgroup of SX and G becomes a permutation group on X. In this

section we assume that X is a finite set.

Definition 2.6.1. Let G be a group acting on a set X such that for any two k-tuples (x1, x2, . . . , xk)

and (y1, y2, . . . , yk) of k distinct elements of X, there exists g ∈ G for which xgi = yi for i =

1, 2, . . . , k. Then we say that G is k-transitive on X.
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If G is 1-transitive on X, then we say that G is transitive. In this case G has only one orbit on X.

If G acts on X, we define a representation π : G −→ GL(n,C), where n = |X|. Let X =

{x1, x2, . . . , xn}. For each g ∈ G we define πg = (aij) by

aij =

{
1 if xgi = xj

0 otherwise
.

Then πg is a permutation matrix of the action of g. The representation π defined above is called

the permutation representation of G obtained from the action of G on X.

Definition 2.6.2. Let G be a group and X be a set such that G acts on X. Then we denote the

character afforded by the permutation representation π by χ(G|X). This character is called the

permutation character of G associated with the action of G on X. It is not difficult to show

that for g ∈ G we have

χ(G|X)(g) = |{x ∈ X | xg = x}| = the number of points of X fixed by g.

Suppose that G acts transitively on X and Gx is the stabilizer of x ∈ X. Then the action of G on

X is the same as the action of G on the cosets of H = Gx. Hence ∀ g ∈ G, χ(G|X)(g) also gives

the number of cosets of H = Gx that are fixed by g ∈ G and in this case we denote this number by

χ(G|H)(g). Due to the fact that the action of G on X is the same as the action of G on the cosets

of H, then we can write χ(G|H) = χ(G|X).

Theorem 2.6.3. Let G be a group acting transitively on a set X. Let α ∈ X, H = Gα and

χ(G|H) be the permutation character of this action. If IH is the identity character of H, then

χ(G|H) = (IH)G .

PROOF. We have that

(IH)G(g) =
1
|H|

∑
x∈G,xgx−1∈H

IH(xgx−1) =
1
|H|

∑
x∈G,xgx−1∈H

1 .

Now if xgx−1 ∈ H, then xg ∈ Hx. Thus Hxg = Hx and hence Hx is fixed by g ∈ G. However the

summation is taken over all x ∈ G such that xgx−1 ∈ H. Hence the summation is taken over all

x ∈ G for which the coset Hx is fixed by g ∈ G. But ∀ y ∈ Hx, Hx = Hy and thus we obtain that∑
x∈G,xgx−1∈H

1 = |H||{Hx | Hxg = Hx}|

so that

(IH)G(g) =
1
|H|
|H||{Hx | Hxg = Hx}| = |{Hx | Hxg = Hx}| = χ(G|H)(g).

Hence the result. �
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Theorem 2.6.4. [60] Let G be a group acting on a set X with χ(G|X) as the permutation character

of the action. If X splits into k orbits under the action of G, then

〈χ(G|X), IG〉 = k.

PROOF. Suppose that the k orbits of X under the action of G are {X1, . . . , Xk}. Then we obtain

that

X =
k⋃
i=1

Xi.

Let xi ∈ Xi and Hi be the stabilizer of xi ∈ Xi. Also let χi(G|Hi) be the permutation character of

G on the cosets of Hi. Then we obtain that

χ(G|X) =
k∑
i=1

χi(G|Hi) where χi(G|Hi) = (IHi)
G.

By the Frobenius reciprocity theorem, we obtain that

〈χi(G|Hi), IG〉 = 〈(IHi)G, IG〉 = 〈IHi , IHi〉 = 1 .

Hence we obtain that

〈χ(G|X), IG〉 =
k∑
i=1

〈χi(G|Hi), IG〉 =
k∑
i=1

1 = k.

Hence the result. �

The following result will be used in later calculations to determine the conjugacy class fusions of

subgroups of G.

Corollary 2.6.5. Let H ≤ G. Let g ∈ G and let x1, x2, . . . , xm be representatives of the conjugacy

classes of H that fuse to [g]. Then

χ(G|H)(g) =
m∑
i=1

|CG(g)|
|CH(xi)|

.

PROOF. This follows from Theorem 2.4.7. �

In the following we present some properties of the permutation characters.

Theorem 2.6.6. Let G be a group, H ≤ G and χ = χ(G|H).

(i) deg(χ) divides |G|.

(ii) 〈χ, ψ〉 ≤ deg(ψ) for all ψ ∈ Irr(G).

(iii) 〈χ, IG〉 = 1.
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(iv) χ(g) ∈ N ∪ {0} for all g ∈ G.

(v) χ(g) ≤ χ(gm) for all g ∈ G and m ∈ N ∪ {0}.

(vi) χ(g) = 0 if o(g) does not divide |G|/deg(χ).

(vii) χ(g) |[g]|deg(χ) is an integer for all g ∈ G.

PROOF. This is Theorem 2.5.6 in [120].

Let φ be a representation of G and α an automorphism of G. Then φα is a representation of G

given by

φα(x) = φ(xα) and φα(xy) = φα(x)φα(y)

for x, y ∈ G. If the representation φ affords a character χ of G, then the representation φα affords

a character χα of G which is given by χα(x) = χ(xα) for x ∈ G. Then the representation φα

and the character χα are called the algebraic conjugates of φ and χ respectively induced by the

automorphism α. Let X = (χi(xj)) be the character table of G, where χi ∈ Irr(G), 1 ≤ i ≤ n and

xj , 1 ≤ j ≤ n are representatives of the conjugacy classes of elements of G. Then the automorphism

α of G induces a permutation on the conjugacy classes of G and thus induces a permutation on the

columns of X. For each χi ∈ Irr(G), we deduce that χαi ∈ Irr(G). Hence α induces a permutation

on the irreducible characters χi of G and thus induces a permutation on the rows of X. Moreover

since χαi (xj) = χi(xαj ), then the matrices obtained from X by these two operations are identical.

Hence we obtain the following theorem known as Brauer’s Theorem.

Theorem 2.6.7. [43](Brauer’s Theorem) Let N be a group and G ≤ Aut(N). Then the number

of orbits of G as a group of permutations acting on the irreducible characters of N is the same as

the number of orbits of G as a group of permutations acting on the conjugacy classes of N .

PROOF. Let X be the character table of N . Then as a matrix, X is square and nonsingular. Let

α be an automorphism of N such that α ∈ G. Then α induces a permutation on the conjugacy

classes of N and thus induces a permutation on the columns of X. Hence G acts on the conjugacy

classes of N . Since α ∈ G, then to each character χ of N , we obtain a character χα of N such that

χα ∈ Irr(N) whenever χ ∈ Irr(N). For y ∈ N , we obtain that χα(y) = χ(yα). Thus α induces a

permutation on the rows of X. Hence G acts on the irreducible characters of N . Let Xα denote

the image of X under α. Then we obtain that

P (α)X = Xα = XQ(α),

where P (α), Q(α) are appropriate permutation matrices which are uniquely determined by α ∈ G.

Suppose that α, β ∈ G. Then we obtain that Xαβ = (Xα)β. Also we have that

P (αβ)X = Xαβ = (Xα)β = (P (α)X)β = P (β)P (α)X
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and hence P (αβ) = P (β)P (α), since X is non-singular. We also have that Xαβ = XQ(αβ) and

(Xα)β = (XQ(α))β = XQ(α)Q(β). Since Xαβ = (Xα)β, we obtain that XQ(αβ) = XQ(α)Q(β).

Again the non-singularity of X implies that Q(αβ) = Q(α)Q(β). Define mappings π1 and π2 on

N by π1(α) = (P (α))t and π2(α) = Q(α), where t denotes the transpose operation on matrices.

Then π1 and π2 are permutation representations of N . Let θ1 and θ2 be the permutation characters

afforded by π1 and π2 respectively. Since X−1P (α)X = Q(α), P (α) and Q(α) are similar and thus

have the same trace. Since trace(P (α))t = trace(P (α)), we have that trace(P (α))t = trace(Q(α)).

Hence θ1 = θ2 and π1 and π2 are equivalent. Let d1, d2 be the number of orbits of G on the

irreducible characters and on the conjugacy classes of N respectively. Thus we observe that d1 is

the number of orbits of π1(G) in its action as a group of permutations. Also d2 is the number of

orbits of π2(G) in its action as a group of permutations. Since θ1 is the permutation character of G

acting on the irreducible characters of N , we obtain that 〈θ1, IG〉 = d1. Also for θ2, we obtain that

〈θ2, IG〉 = d2. However θ1 = θ2 and thus 〈θ1, IG〉 = 〈θ2, IG〉 and hence d1 = d2. Hence the result.
�

2.7. Orbit Lengths

Brauer’s theorem states that when G acts on an automorphism group N in our case an elementary

abelian group, then the number of orbits of G as a group of permutations on the conjugacy classes

of N is equal to the number of orbits on the irreducible characters of N . However Brauer’s theorem

does not apply to orbit lengths, as orbit lengths of permutations on conjugacy classes may not be

the same as orbit lengths of permutation on irreducible classes. To get the orbit lengths of the

irreducible character and the conjugacy classes of N , we use Programme C which we developed in

GAP.

Programme C

V:=FullRowSpace(GF (q), n);

gen[1]:=(OneGF(q))*[n× n matrix group generators];

gen[2]:=(OneGF(q))*[n× n matrix group generators];

...

gen[k]:=(OneGF(q))*[n× n matrix group generators];

G:=Group(gen[1], gen[2], · · · , gen[k]);

O:=Orbits(G,V);;

k:=OrbitLengths(G,V);

l:= OrbitLengths(Group(List(G,TransposedMat)),V);

Print(k);

Print(l);

We use Programme C to compute the orbit lengths of both the conjugacy classes and the irreducible

characters. If G is an n × n matrix group, we would wish to let G act on our elementary abelian
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group N . To be able to do this we rewrite N as an n-dimensional row vector space V over GF (q).

The action of G on V is multiplication of V from the right by G. This gives us the orbits of G

as a group of permutations on the conjugacy classes of N . The action of Gt, the transpose of G,

on V , is multiplication on the right of V by Gt. This is equivalent to the multiplication of the

column vectors of V from the left by G. This multiplication gives us the orbits of G as a group

of permutations on the irreducible characters of N . We give an example that shows that the orbit

lengths of the conjugacy classes need not be equal to the orbit lengths of irreducible classes.

Example 2.7.1. Let G = 25:S6 and V = FullRowSpace(GF (2), 5) where

G = S6 =< matrix group with 2 generators > .

Using Programme C above, we get

OrbitLengthsOfConjugacyClasses = [1,6,15,10]

OrbitLengthsOfIrreducibleCharacters = [1,15,15,1].

We have four orbits for both the irreducible characters and the conjugacy classes but the orbit

lengths differ.
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Projective Representation

3.1. Prologue

In this chapter we study the projective representations and characters which will be required in

the subsequent chapters. We follow very closely the work of Ali [1]. We refer to the group rep-

resentations and group characters that we defined in Chapter 2 as ordinary representations and

ordinary characters respectively. The Schur multiplier of a group G plays an important role in

the study of projective representations of G. We have therefore devoted Section 3.2 to the study

of Schur multiplier of G. In Section 3.3 we are dealing with projective representations of G. We

study the relationship of projective representations with the ordinary representations. We discuss

that how projective representations of G can be constructed using three different approaches. We

also show that how projective representations of G can be determined from the ordinary repre-

sentations of a so-called representation group of G. Finally in Section 3.4 we discuss projective

characters and study the orthogonality relations analogous to the ones for ordinary characters.

For further readings on projective representations and projective characters readers are referred to

[11, 47, 51, 55, 58, 29, 60, 95, 96, 97, 98, 100, 107, 108, 109].

3.2. Schur Multiplier

The first step in obtaining the projective representations of a group G is to compute its Schur

multiplier. In this section we discuss results useful in finding the Schur multiplier of a group.

Definition 3.2.1. A function α : G×G −→ C∗ is called a factor set of G if

α(xy, z)α(x, y) = α(x, yz)α(y, z) for all x, y, z ∈ G.

Two factor sets α and α′ are said to be equivalent if there exists a function ρ : G −→ C∗ such

that α′(x, y) = ρ(x)ρ(y)
ρ(xy) α(x, y) for all x, y ∈ G. This is an equivalence relation and we denote the

equivalence class of the factor set α by [α]. For factor sets α and α′, let (αα′)(x, y) = α(x, y)α′(x, y)

for all x, y ∈ G. Then αα′ is a factor set, as is α−1 defined by α−1(x, y) = (α(x, y))−1.
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Definition 3.2.2. The set of all equivalence classes of factor sets forms a group by defining [α][α′] =

[αα′]. The identity of this group is [1] where 1 is the factor set 1(x, y) = 1 for all x, y ∈ G, and

[α]−1 = [α−1]. This group is called the Schur multiplier of G and we denote it by M(G).

Theorem 3.2.3. (i) M(G) is a finite abelian group.

(ii) If G is a cyclic group, then M(G) = 1.

PROOF. See [100]. �

Lemma 3.2.4. Suppose that N is a normal subgroup of a finite group G. If M(G) = 1, then

M(G/N) ∼= (N ∩G′)/[N,G]. In general, |(N ∩G′)/[N,G]| divides |M(G/N)|.

PROOF. See [66]. �

Theorem 3.2.5. Let G be a finite group and H be a subgroup of index n. Then the group (M(G))n

of all n-th powers of M(G) is isomorphic to a subgroup of M(H).

PROOF. See [66]. �

Schur [114] reduced the problem of finding M(G) to obtaining the Schur multiplier of the Sylow p-

subgroups of G. The following theorem describes the Schur multiplier of G in terms of the subgroup

structure of G.

Theorem 3.2.6. [114] Let S be a Sylow p-subgroup of G. Then the Sylow p-subgroup of M(G) is

isomorphic to a subgroup of M(S).

PROOF. See [66]. �

Theorem 3.2.7. A group G has trivial Schur multiplier if and only if it has a set of subgroups

with trivial Schur multipliers and relatively prime indices.

PROOF. See [66]

Schur investigated the group G = SL(2, q). He discovered that M(G) is trivial unless q = 4 or

q = 9. In Chapter 10 we look at the case 52:2.A5. Noting that 2.A5
∼= SL(2, 5), the Schur multiplier

for 2.A5 is trivial but for 52:2.A5 we have that M(G) is a cyclic group of order 5.

For any group G we follow the methods of Ali [1] to test if we need an ordinary representation

or we need a projective representation. In chapter 10 we need a projective representation for

52:2.A5 which is a split extension. To get the Schur multiplier for this group we use MAGMA for

Programme J .
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Programme J

> G:=Group;

> M:=GModule(G);

> X:=CohomologyModule(G,M);

> E:=SplitExtension(X);

> Eperm:=DegreeReduction(CosetImage(E,sub<E|>));

> pMultiplicator(Eperm,$p_i$);

> exit;

However the group 52:2.A5 is a unique perfect group, recall a group is said to be perfect if it is

equal to its derived group, that is G′ = G. We use the following Programme J ′ in GAP.

Programme J′

gap> gg:=PerfectGroup(|G|,1);

gap> AbelianInvariantsMultiplier(gg);

3.3. Projective Representations

The notion of projective representation, due to Schur, was suggested by the study of relations

between linear representations of a group and its factor groups over a central subgroup.

Definition 3.3.1. Let G be a group and F be a field. Consider the map P : G −→ GL(n,F) such

that

(i) P (1G) = In, where In is the identity n× n matrix.

(ii) For all x, y ∈ G, there exists a map α : G×G −→ F∗ such that

P (x)P (y) = α(x, y)P (xy) where α(x, y) ∈ F∗ .

Then P is called a projective representation of G over F of degree n. The map α is called the

factor set associated with P .

From the above definition, we observe that

α(x, y) = P (x)P (y)(P (xy))−1 .

Thus for the factor set α associated with P , if α(x, y) = 1F for all x, y ∈ G, then we obtain that

P (xy) = P (x)P (y) and hence P becomes an ordinary representation of G. Sometimes a pair (P, α)

is used to indicate a projective representation P and its associated factor set α.

There is another way of looking at projective representations. The group PGLn(F) = GLn(F)/Z(GLn(F))

is called the projective general linear group where Z(GLn(F)) is the center of GLn(F) which consists
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of all non-zero scalar matrices. If P is a projective F-representation of G then the composition of P

with the natural homomorphism G −→ PGLn(F) is a homomorphism G −→ PGLn(F). Conversely,

if π : G −→ PGLn(F) is any homomorphism, a projective representation P of G can be defined by

setting P (g) equal to any element of the coset π(g) of Z(GLn(F)) in GLn(F). Thus the projective

F-representations of G can be identified with the homomorphisms of G into the projective general

linear group.

We now consider the associated factor sets of the projective representations.

Lemma 3.3.2. Let α be the associated factor set of a projective representation P of G. Then α

satisfies α(xy, z)α(x, y) = α(x, yz)α(y, z) for all x, y, z ∈ G.

PROOF. By associativity we have

P (x)P (y)P (z) = α(x, y)P (xy)P (z) = α(x, y)α(xy, z)P (xyz)

and

P (x)P (y)P (z) = α(y, z)P (x)P (yz) = α(y, z)α(x, yz)P (xyz).

Now the result follows since P (xyz) is invertible. �

As with ordinary representations, we now define equivalence and irreducibility of projective repre-

sentations. We will consider projective representations over the complex field C from now on.

Definition 3.3.3. Two projective representations P1 and P2 of G are equivalent if there is a

non-singular matrix T such that for all g ∈ G, P1(g) = c(g)TP2(g)T−1 for some c(g) ∈ C∗. If

c(g) = 1 for all g ∈ G then P1 and P2 are linearly equivalent. A projective representation P is

irreducible if it is not linearly equivalent to a projective representation of the form(
∗ ∗
0 ∗

)
.

Lemma 3.3.4. If two projective representations are equivalent then they have equivalent factor

sets; if they are linearly equivalent they have equal factor sets.

PROOF. Let P1 and P2 be equivalent projective representations with factor sets α1 and α2 respec-

tively. Suppose T is a non-singular matrix and c : G −→ C∗ such that P1(g) = c(g)TP2(g)T−1 for

all g ∈ G. Now for g, h ∈ G,

α1(g, h) = P1(g)P1(h)(P1(gh))−1

= c(g)TP2(g)T−1c(h)TP2(h)T−1(c(gh))−1T (P2(gh))−1T−1

= c(g)c(h)(c(gh))−1TP2(g)P2(h)(P2(gh))−1T−1

= c(g)c(h)(c(gh))−1α2(g, h),
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so α1 and α2 are equivalent. If P1 and P2 are linearly equivalent, then c(g) = 1 for all g ∈ G in the

above expressions, so α1 = α2. �

Let F [G,C] be the set of all functions λ : G −→ C. If P is a projective representation of G with

factor set α and λ ∈ F [G,C], then P ′ = λP , where P ′(g) = λ(g)P (g) for all g ∈ G, is a projective

representation of G with factor set α′, and

α′(x, y) = λ(x)λ(y)(λ(xy))−1α(x, y) (3.1)

for all x, y ∈ G.

Remark 3.3.5. It follows from (3.1) that α ∼ 1 if and only if there exists λ ∈ F [G,C] such that

for all x, y ∈ G
α(x, y) = λ(x)λ(y)(λ(xy))−1.

The following result provides a close connection between the degrees of the irreducible projective

characters with factor set α and the o([α]).

Lemma 3.3.6. [11] Let P be a projective representation of G with factor set α and deg(P ) = n.

If o([α]) = m then m divides n.

PROOF. We know that

P (x)P (y) = α(x, y)P (xy).

Taking determinant we obtain

det(P (x))det(P (y)) = det(α(x, y)P (xy))

= α(x, y)ndet(P (xy))

which implies

α(x, y)n = det(P (x))det(P (y))(det(P (xy))−1.

By Remark 3.3.5 we obtain [α]n = 1. Hence m divides n. �

Projective representations of a group G can be obtained by three different ways. Firstly, we may

obtain the projective representations of a group G by considering a central extension of G. Now we

show that how the projective representations of a group G can be constructed from the ordinary

representations of a so-called representation group of G.

Definition 3.3.7. A central extension of G is a group H together with a homomorphism π of

H onto G such that ker(π) lies in the center of H.

Lemma 3.3.8. Let (H,π) be a central extension of G with A = ker(π). Let X be a set of coset

representatives for A in H, and write X = {xg : g ∈ G}, where π(xg) = g. Define α : G×G −→ A

by xgxh = α(g, h)xgh. Then α is an A-factor set of G and the equivalence class of α is independent

of the choice of X.
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PROOF. See Isaacs [60]. �

Corollary 3.3.9. Let H be a central extension of G with A, X and α as in the previous lemma.

Let T be an ordinary representation of H such that the restriction TA is the scalar representation

λI for some λ ∈ Hom(A,C∗), that is

T (a) =


λ(a)

λ(a)
. . .

λ(a)


n×n

∀a ∈ A,

where n = deg(T ). Define P (g) = T (xg) for g ∈ G. Then P is a projective representation of G

with factor set λ(α), where λ(α)(g, h) = λ(α(g, h)). Furthermore, P is irreducible if and only if T

is and the equivalence class of P is independent of the choice of coset representatives X.

PROOF. See [60].

Remark 3.3.10. Note that if T is an ordinary irreducible representation of H then the condition

that TA be scalar representation is satisfied by the Schur’s lemma (Theorem 3.3.2), since A lies in

the center of H.

Definition 3.3.11. A projective representation of G that can be constructed from an ordinary

representation of a central extension H of G as in Corollary 3.3.8 is said to be lifted to H. A

representation group of G is a central extension H of G such that every projective representation

of G can be lifted to H.

Every group has a representation group by the following result which is due to Schur [114].

Theorem 3.3.12. Let G be a finite group of order n. Then G has at least one representation

group H of order mn where m = |M(G)| and the kernel of the extension is isomorphic to the Schur

multiplier M(G) of G.

PROOF. See, for example, [60]. �

Secondly, projective representations of G can also be obtained by the generalization of Clifford’s

method of constructing representations of G using representations of a normal subgroup N of G.

Finally, third approach to obtain projective representations involve a natural generalization of the

group algebra which plays such an important role in ordinary representation theory. Interested

readers are encouraged to consult Morris [95] and other relevant sources.

The projective representations of a group are often constructed by using a combination of the

above mentioned three techniques. Interested readers are referred to a series of articles by Morris

[96, 97, 98] and Read [107, 108, 109].
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3.4. Projective Characters

Definition 3.4.1. Let P be a projective representation of G with factor set α. Define ξ(g) =

Trace(P (g)) for all g ∈ G. Then ξ is called a projective character of G. We say that ξ is

irreducible if P is, and ξ has factor set α, where α is the factor set of P .

Definition 3.4.2. Given a factor set α of G, an element g ∈ G is said to be α-regular if α(g, x) =

α(x, g) for all x ∈ CG(g).

If g is α-regular, so is every conjugate of g, and an element g is α-regular if and only if g is α′-regular

for every factor set α′ equivalent to α. So we can define a conjugacy class of G to be α-regular if

each of its elements is α-regular.

An important feature of ordinary characters is that they are class functions. However, this no

longer true for projective characters. For projective characters we have

Proposition 3.4.3. Let ξ be the projective character of G with factor set α. If for any α-regular

element x in G and for any y in G, α(x, y) = α(y, y−1xy) then ξ is a class function.

PROOF. This is Proposition 2.2(iii) in [66]. �

Theorem 3.4.4. Two projective representations P1 and P2 with factor set α are linearly equivalent

if and only if they have the same projective character.

PROOF. See Theorem 4.4 in [95]. �

The projective characters of G can be determined from the ordinary characters of a representation

group (H,π) of G. Let π : H −→ G be defined by the extension H of G, and let {xg : g ∈ G} be a

set of coset representatives for ker(π) in H. If P is a projective representation of G with projective

character ξ then there is an ordinary representation T of H such that P (g) = T (xg) for g ∈ G. Let

χ be the character of H afforded by T , then ξ(g) = χ(xg) for all g ∈ G.

Projective characters also satisfy the usual orthogonality relations. We have analogues to ordinary

characters.

Theorem 3.4.5. (i) The number of irreducible projective characters of G with factor set α is

equal to the number of α-regular conjugacy classes of G.

(ii) Let ξ1, ξ2, . . . , ξt be the projective characters of G with factor set α, and let C1, C2, . . . , Ct be

the α-regular conjugacy classes of G with gi a representative of Ci for i = 1, 2, . . . , t. Then

t∑
i=1

ξi(gj)ξi(gk) = δjk|CG(gj)| for j, k ∈ {1, 2, . . . t}.
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(iii) An element g of G is α-regular if and only if there is an irreducible projective character ξ of

G with factor set α such that ξ(g) 6= 0.

PROOF. See [47]. �

Let G0 be the set of all α-regular elements of the group G. Then we have the following.

Theorem 3.4.6. Let Let ξ1, ξ2, . . . , ξt be the projective characters of G with factor set α, and

let C1, C2, . . . , Ct be the α-regular conjugacy classes of G with gi a representative of Ci for i =

1, 2, . . . , t. Then ∑
g∈G0

ξi(g)(ξj(g) = |G|δij .

PROOF. See [66] �

Haggarty and Humphreys [47] showed that it is possible to determine the projective characters

of G with a given factor set without the full representation group G. Suppose α is a factor set

of G, with [α] having order e in the Schur multiplier M(G). Let ω be an eth root of unity and

let α′ be a representative of [α] whose values are powers of ω. For g, h ∈ G define α′(g, h) by

α′(g, h) = ωa(g,h). Let L be the group generated by an element x of order e and elements xg (g ∈ G)

with multiplication xixgxjxh = xi+jxa(g,h)xgh. Then L is a quotient of the representation group H

and any projective representation of G with factor set α can be lifted to an ordinary representation

of L. Thus the projective characters of G with factor set α can be determined from the ordinary

character table of L.
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Clifford Theory

4.1. Prologue

An important method for constructing irreducible representations of groups consists in the appli-

cation of three basic operations:

(i) Restriction to a subgroup,

(ii) Extension from a subgroup,

(iii) Induction from a subgroup.

The theory attains particular richness when the underlying subgroup is a normal subgroup of its

extension. This is the content of the Clifford theory, originally developed by Clifford in 1937 [20]

for ordinary representations and extended by Mackey in 1958 [79] to projective representations.

In this chapter, we study the Clifford theory and its related consequences which are required to

describe the Fischer-Clifford matrices in the next chapter. In Section 4.2, we study the relation

between the characters of a group Ḡ and its normal subgroup N . We will give various sufficient

conditions for the extendibility of an irreducible character θ of N to Ḡ. In Section 4.3, we engage

the Clifford theory of projective representations. We will study, how it is always possible to extend

an irreducible character of a normal subgroup N to a projective character of its inertia group H̄.

Finally in Section 4.4, we will study the problem which asserts that if χ is a Ḡ-invariant irreducible

character of a normal subgroup N of a finite group Ḡ, then the number of distinct irreducible

constituents of χḠ is equal to the number of χ-regular conjugacy classes of Ḡ/N . We also show

that the number of irreducible constituents of χḠ is equal to the number of conjugacy classes of

Ḡ/N if and only if χ extends to a character of each subgroup N<x, y> of Ḡ with [x, y] ∈ N.
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4.2. Clifford Theory and Normal Subgroups

In this section we study the important connection between characters of group Ḡ and a normal

subgroup N of Ḡ.

Definition 4.2.1. Let Ḡ be a group, N ≤ Ḡ and θ be a character of N . Then for ḡ ∈ Ḡ, we define

θḡ : ḡ−1Nḡ −→ C by θḡ(t) = θ(ḡtḡ−1) for all t ∈ ḡ−1Nḡ. Then θḡ is said to be a Ḡ-conjugate of

θ. If N is a normal subgroup of Ḡ and θḡ = θ for all ḡ ∈ Ḡ, then θ is said to be Ḡ-invariant.

Theorem 4.2.2. Let G be a group, K,H ≤ G such that K ≤ H ≤ G and χ be a character of K.

Then for all g ∈ G we have

(i) (χH)g = (χg)g
−1Hg

(ii) (χg)G = χG.

PROOF. See [67] �

Remark 4.2.3. If N ≤ Ḡ and ḡ ∈ Ḡ, then θḡ is a character of ḡ−1Nḡ. However if N is normal

in Ḡ, θḡ becomes a character of N .

Let Ḡ be a group, N a normal subgroup of Ḡ and θ ∈ Irr(N) then we define

Irr(Ḡ, θ) = {χ | χ ∈ Irr(Ḡ), 〈χN , θ〉 > 0} .

Observe that 〈χN , θ〉N = 〈χ, θḠ〉Ḡ.

Definition 4.2.4. Let Ḡ be a group, N a normal subgroup of Ḡ and θ ∈ Irr(N). Then

IḠ(θ) = {ḡ ∈ Ḡ | θḡ = θ}

is the inertia group of θ in Ḡ.

Since IG(θ) is the stabilizer of θ in the action of Ḡ on Irr(N), it follows that it is a subgroup and

that IG(θ) ⊇ N.

Lemma 4.2.5. [58] Let Ḡ be a group, N a normal subgroup of Ḡ and θ ∈ Irr(N). Then

(a) For ḡ1, ḡ2 ∈ Ḡ we have θḡ1ḡ2 = (θḡ1)ḡ2. In particular N ≤ IḠ(θ) ≤ Ḡ. If

Ḡ =
m⋃
i=1

IḠ(θ)ḡi

with [Ḡ : IḠ(θ)] = m, then {θḡ|ḡ ∈ Ḡ} = {θḡ1 , θḡ2 , . . . , θḡm}, and θḡ1 , θḡ2 , . . . , θḡm are

pairwise distinct.
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(b) If ψ1, ψ2 are any characters of N and ḡ ∈ Ḡ, then 〈ψḡ1 , ψ
ḡ
2〉N = 〈ψ1, ψ2〉N . In particular

θḡ ∈ Irr(N) if θ ∈ Irr(N).

(c) If ψ is a character of Ḡ and θ of N , then 〈ψN , θ〉N = 〈ψN , θḡ〉N for all ḡ ∈ Ḡ.

PROOF. See [58]. �

We now state a fundamental theorem, which is due to Clifford [20] but we give a proof from Huppert

[58].

Theorem 4.2.6. [58] (Clifford Theorem) Suppose Ḡ is a group, N a normal subgroup of Ḡ,

θ ∈ Irr(N) and χ ∈ Irr(Ḡ, θ). Let 〈χN , θ〉 = e > 0. Assume also that

Ḡ =
m⋃
i=1

IḠ(θ)ḡi and m = [Ḡ : IḠ(θ)].

Then we have

(a) (θḠ)N = |IḠ(θ)/N |
∑m

i=1 θ
ḡi .

(b) 〈θḠ, θḠ〉Ḡ = |IḠ(θ)/N |. In particular θḠ ∈ Irr(Ḡ) if and only if IḠ(θ) = N.

(c) χN = e
∑m

i=1 θ
ḡi. In particular,

χ(1) = emθ(1) and 〈χN , χN 〉N = e2m.

Also

e2 ≤ |IḠ(θ)/N | and e2m ≤ |Ḡ/N |.

PROOF. (a) For x ∈ N we have by the previous lemma

θḠ(x) =
1
|N |

∑
ḡ∈Ḡ

θ(xḡ
−1

) =
1
|N |

∑
ḡ∈Ḡ

θḡ(x) =
|IḠ(θ)|
|N |

m∑
i=1

θḡi(x).

(b) By Frobenius reciprocity (Theorem 2.5.6) and part (a) we obtain

〈θḠ, θḠ〉Ḡ = 〈(θḠ)N , θ〉N = |IḠ(θ)/N |.

(c) For all ḡ ∈ Ḡ, we have by Lemma 4.2.4(c)

〈χN , θḡ〉N = 〈χN , θ〉N = e.

Hence

χN = e

m∑
i=1

θḡi + ψ,
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where ψ is a character of N or zero. As

〈θḠ, χ〉Ḡ = 〈θ, χN 〉N = e,

we obtain

θḠ = eχ+ . . . .

Restriction to N shows by part (a)

eχN + . . . = (θḠ)N = |IḠ(θ)/N |
m∑
i=1

θḡi .

Hence in χN there does not appear any irreducible character of N different from the θḡj .

Therefore

χN = e
m∑
i=1

θḡi ,

which implies immediately

χ(1) = emθ(1) and 〈χN , χN 〉N = e2m.

By part (b) we have

|IḠ(θ)/N | = 〈θḠ, θḠ〉Ḡ = 〈eχ+ . . . , eχ+ . . .〉Ḡ ≥ e2

and hence

|Ḡ/N | = |Ḡ : IḠ(θ)||IḠ(θ)/N | ≥ me2.

�

Remark 4.2.7. It can be shown that the number e in the above theorem is the degree of an irre-

ducible projective representation of Ḡ/N , hence it divides |Ḡ/N |. See Huppert [58].

As a consequence of Clifford theorem we have the following result, which is of fundamental impor-

tance in the character theory of normal subgroups.

Theorem 4.2.8. [60] Let Ḡ be a group, N a normal subgroup of Ḡ, θ ∈ Irr(N) and T = IḠ(θ).

Let

A = {ψ ∈ Irr(T ) | 〈ψN , θ〉 6= 0},

B = {χ ∈ Irr(Ḡ) | 〈χN , θ〉 6= 0}.

Then

(a) If ψ ∈ A, then ψḠ ∈ Irr(Ḡ).

(b) If ψḠ = χ and ψ ∈ A, then 〈ψN , θ〉 = 〈χN , θ〉.
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(c) If ψḠ = χ and ψ ∈ A, then ψ is the unique irreducible constituent of χT which sits in A.

(d) The map ψ 7−→ ψḠ is a bijection of A to B.

PROOF. See Isaacs [60]. �

Remark 4.2.9. From the previous theorem we deduce that induction to Ḡ maps the irreducible

characters of T that contain θ in their restriction to N faithfully onto the irreducible characters of

Ḡ that contain θ in their restriction to N .

An important task of the Clifford theory is to examine when irreducible characters of normal

subgroups are extendible to their respective inertia groups.

Definition 4.2.10. Let Ḡ be a group, H a subgroup of Ḡ, θ ∈ Irr(H) and χ ∈ Irr(Ḡ) such that

χH = θ. Then θ is said to be extendible to an irreducible character of Ḡ.

If θ is extendible to an irreducible character of Ḡ, we will simply say that θ is extendible to Ḡ.

There are various conditions which have to be satisfied in order that θ can be extended to Ḡ.

Readers can also consult [11, 38, 39, 60, 65, 58] for further reading and information on extendibility

of characters.

Theorem 4.2.11. [67] Let N a normal subgroup of Ḡ, χ ∈ Irr(N), where χ is Ḡ- invariant and

let Γ be a matrix representation of N which affords χ. Then

(i) there exists a projective representation ρ of Ḡ such that Γ(n) = ρ(n) and (ρ(ḡ))o(ḡ) = I, for

all n ∈ N, ḡ ∈ Ḡ where I is the identity matrix,

(ii) if Ḡ = NH for some H ≤ Ḡ and if ρH is an ordinary representation of H, then χ can be

extended to Ḡ.

PROOF. (i) Let ḡ ∈ Ḡ. Since χ is Ḡ-invariant, then the representations Γ and Γḡ of N are equivalent.

Hence there is an invertible matrix θ(ḡ) such that (θ(ḡ))−1Γ(n)θ(ḡ) = Γḡ(n), for all n ∈ N . We

may assume that θ(n) = Γ(n) for all n ∈ N . We have that θ : Ḡ −→ GL(k,F), where k = deg(Γ),

and that θN = Γ. Now let ḡ1, ḡ2 ∈ Ḡ. Then we obtain that

(θ(ḡ1ḡ2))−1Γ(n)θ(ḡ1ḡ2) = Γḡ1ḡ2(n) = (Γḡ1)ḡ2(n) = (θ(ḡ2))−1Γḡ1(n)θ(ḡ2)

= (θ(ḡ2))−1(θ(ḡ1))−1Γ(n)θ(ḡ1)θ(ḡ2).

So that

θ(ḡ1)θ(ḡ2)(θ(ḡ1ḡ2))−1Γ(n) = Γ(n)θ(ḡ1)θ(ḡ2)(θ(ḡ1ḡ2))−1 .

Thus for all n ∈ N , θ(ḡ1)θ(ḡ2)(θ(ḡ1ḡ2))−1 commutes with Γ(n) and thus by the Corollary 2.3.3,

we can define a function α : Ḡ × Ḡ −→ C∗ such that θ(ḡ1)θ(ḡ2) = α(ḡ1, ḡ2)θ(ḡ1ḡ2). Since Γ
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is a representation of N , then we obtain that θ(1N ) = Γ(1N ) = I. Hence θ is a projective

representation of Ḡ with associated factor set α. Let o(ḡ) = m and if ḡ ∈ N , then we obtain

that (θ(ḡ))m = I. However if ḡ ∈ Ḡ − N , then since θ(ḡm) = θ(1Ḡ) = I, there exists λ(ḡ) ∈ C∗

such that (θ(ḡ))m = λ(ḡ)I. Now let µ(ḡ) ∈ C∗ such that (µ(ḡ))m = (λ(ḡ))−1 and let µ(n) = 1

for all n ∈ N . Then the projective representation ρ of Ḡ given by ρ(ḡ) = µ(ḡ)θ(ḡ) is such that

ρ(n) = µ(n)θ(n) = θ(n) = Γ(n) for all n ∈ N . Also we have that

(ρ(ḡ))m = (µ(ḡ)θ(ḡ))m = (µ(ḡ))m(θ(ḡ))m = (λ(ḡ))−1λ(ḡ)I = I .

Hence property (i) is established.

(ii) Let T be a transversal for N ∩H in H containing 1H . Then every ḡ ∈ Ḡ has a unique expression

of the form ḡ = tn, where t ∈ T, n ∈ N . Now let ḡ1 ∈ Ḡ, ḡ1 6= ḡ be given by ḡ1 = t1n1, where

t1 ∈ T, n1 ∈ N . Since t, t1 ∈ T , then t, t1 ∈ H and hence tt1 ∈ H. Now let tt1 = t2n2, where t2 ∈ T
and n2 ∈ N ∩H. Define ψ on Ḡ by ψ(ḡ) = ρ(t)ρ(n). Since n2t

−1
1 nt1n1 ∈ N , we obtain that

ψ(ḡḡ1) = ψ(tnt1n1) = ψ(tt1t−1
1 nt1n1) = ψ(t2n2t

−1
1 nt1n1) = ρ(t2)ρ(n2t

−1
1 nt1n1) .

Also we have

ψ(ḡ)ψ(ḡ1) = ρ(t)ρ(n)ρ(t1)ρ(n1) = ρ(t)ρ(t1)(ρ(t1))−1ρ(n)ρ(t1)ρ(n1)

= ρ(t)ρ(t1)[(ρ(t1))−1ρ(n)ρ(t1)]ρ(n1).

However from the proof of part(i) above we have that (ρ(ḡ))−1Γ(n)ρ(ḡ) = Γḡ(n) and ρ(n) = Γ(n)

for all n ∈ N, ḡ ∈ Ḡ. Since t−1
1 nt1 ∈ N , then we obtain that

ρ(t−1
1 nt1) = Γ(t−1

1 nt1) = Γt1(n) = (ρ(t1))−1Γ(n)ρ(t1) = (ρ(t1))−1ρ(n)ρ(t1).

Since by the assumption ρ is an ordinary representation on H we have ρ(tt1) = ρ(t)ρ(t1) since

tt1 ∈ H. We deduce that

ψ(ḡ)ψ(ḡ1) = ρ(t)ρ(t1)ρ(t−1
1 nt1)ρ(n1) = ρ(tt1)ρ(t−1

1 nt1)ρ(n1)

= ρ(t2n2)ρ(t−1
1 nt1)ρ(n1) = ρ(t2)ρ(n2t

−1
1 nt1n1).

Hence we obtain that ψ(ḡḡ1) = ψ(ḡ)ψ(ḡ1). Therefore ψ is an ordinary representation of Ḡ. However

∀ n ∈ N , we obtain that ψ(n) = ρ(n) = Γ(n) and thus the character afforded by the representation

ψ of Ḡ, extends χ to Ḡ. Hence the result. �

Theorem 4.2.12. [67] Let Ḡ = NG where N is a normal subgroup of Ḡ, and G ≤ Ḡ such that

N ∩G ⊆ N ′. If θ is an irreducible Ḡ-invariant character of N such that (deg(θ), |G|) = 1, then θ

can be extended to Ḡ.

PROOF. For a detailed proof which uses the previous theorem, see Corollary 27.1.2 of [67] �
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Theorem 4.2.13. [24, 120, 99] (Mackey’s Theorem) Let N be a normal subgroup of Ḡ and θ

be a Ḡ-invariant irreducible character of N . If N is abelian and Ḡ splits over N , then θ can be

extended to Ḡ.

PROOF. Let Ḡ = N :G. Since Ḡ is a semidirect product of N by G, then any x ∈ Ḡ can be expressed

uniquely as x = ng, where n ∈ N, g ∈ G. Define χ on Ḡ by χ(ng) = θ(n). Since N is abelian, θ has

degree 1 and thus is linear. The invariance of θ in Ḡ implies that θ(n) = θ(xnx−1) for all x ∈ Ḡ.

Now let x1 = n1g1, x2 = n2g2 be elements of Ḡ. Then we obtain that

χ(x1x2) = χ(n1g1n2g2) = χ(n1n
g1
2 g1g2) = θ(n1n

g1
2 )

= θ(n1)θ(ng12 ) = θ(n1)θ(n2) = χ(x1)χ(x2).

Therefore χ is a linear character of Ḡ such that χN = θ. �

Remark 4.2.14. Mackey’s theorem has been proved differently in Ali [1] and Mpono [99] by ap-

plying Theorem 4.2.11.

Theorem 4.2.15. Let N be a normal subgroup of a finite group Ḡ and θ be an irreducible character

of N which is invariant in Ḡ, then θ is extendible to a character of Ḡ if ([Ḡ : N ], |N |deg(θ)) = 1.

PROOF. See [38]. �

Theorem 4.2.16. Suppose Ḡ is a splitting extension of a normal subgroup N , then any linear

character θ ∈ Irr(N) can be extended to its inertia group IḠ(θ).

PROOF. See [1, 99]. �

Note that Mackey’s theorem is reinforced by the Theorem 4.2.15 since for N abelian, all its irre-

ducible characters are linear and hence are extendible to their respective inertia groups.

Theorem 4.2.17. [39, 59, 120](Gallagher’s Theorem) Let N a normal subgroup of Ḡ, θ ∈
Irr(N) and H̄ = IḠ(θ). If θ can be extended to ψ ∈ Irr(H̄) then as β ranges over all the irreducible

characters of H̄ which contain N in their kernels, βψ ranges over all the irreducible characters of

H̄ which contain θ in their restriction to N .

PROOF. Since H̄ = IḠ(θ), then θ is self-conjugate in H̄ and thus by Clifford’s theorem we obtain

that (θH̄)N = fθ for some positive integer f . Comparing degrees we have (θH̄)N = [H̄ : N ]θ and

so 〈θH̄ , θH̄〉 = 〈θ, (θH̄)N 〉 = [H̄ : N ]. Now we claim that θH̄ =
∑

β β(1Ḡ)βψ, where β ranges over

all the irreducible characters of H̄ that contain N in their kernels. Both θH̄ and
∑

β β(1Ḡ)βψ are

zero off N since for g 6∈ N, xgx−1 6∈ N for all x ∈ Ḡ and thus θH̄(g) = 0. Also for g 6∈ N , by

the orthogonality of the columns of the character table of H̄/N we have that
∑

β β(1Ḡ)(βψ)(g) =

[
∑

β β(1Ḡ)β(g)]ψ(g) = 0. We also have that (θH̄)N = [H̄ : N ]θ = (
∑

β β(1Ḡ)βψ)N since for g ∈ N ,
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∑
β β(1Ḡ)β(g)ψ(g) =

∑
β(β(1Ḡ))2ψ(g) = [H̄ : N ]ψ(g) = [H̄ : N ]θ(g). Hence we obtain that

θH̄ =
∑

β β(1Ḡ)βψ. So we have

[H̄ : N ] = 〈θH̄ , θH̄〉 = 〈
∑
β

β(1Ḡ)βψ,
∑
τ

τ(1Ḡ)τψ〉 =
∑
β,τ

β(1Ḡ)τ(1Ḡ)〈βψ, τψ〉 .

The diagonal terms contribute at least
∑

(β(1Ḡ))2 = [H̄ : N ], so the βψ are irreducible and

distinct, and are all the irreducible constituents of θH̄ and so are all the irreducible characters of

H̄ that contain θ in their restriction to N . For φ ∈ Irr(H̄) such that 〈φN , θ〉 6= 0, we obtain that

〈φN , θ〉 = 〈φ, θH̄〉 which implies that φ is an irreducible constituent of θH̄ and hence is of the form

βψ. �

Remark 4.2.18. Let Ḡ be an extension of N by G. If every irreducible character of N can be

extended to its inertia group in Ḡ, then by application of Theorem 4.2.7 and Remark 4.2.8, the

characters of Ḡ can be obtained as follows:

Let θ1, θ2, . . . , θt be representatives of the orbits of Ḡ on Irr(N). For each i, let H̄i = IḠ(θi) and

let ψi ∈ Irr(H̄i) with (ψi)N = θi. Now each irreducible character of Ḡ contains some θi in its

restriction to N by Clifford’s theorem. So by Theorem 4.2.7 and Remark 4.2.8 we have

Irr(Ḡ) =
t⋃
i=1

{(βψi)Ḡ : β ∈ Irr(H̄i), N ⊂ ker(β)}.

Hence the characters of Ḡ fall into t blocks, with each block corresponding to an inertia group.

Finally in this section, we give a result due to Isaacs about the value of an extension χ of θ to G.

For N E G, θ ∈ Irr(N) has an extension χ to G if IG(θ) = G. We prove that the values of χ are

equally distributed over the cosets of N .

Theorem 4.2.19. Suppose N EG, χ ∈ Irr(G) with χN ∈ Irr(N). Then

1
|N |

∑
y∈Ng

|χ(y)|2 = 1

for all g ∈ G.

PROOF. See Theorem 21.5 of [58]. �

4.3. Clifford Theory and Projective Representations

The projective representations of a group are closely related to Clifford theory. In this section we

study the Clifford theory for projective representations.

Definition 4.3.1. Let NEḠ. If Y is an irreducible (ordinary) representation of N then for ḡ ∈ Ḡ,

Y ḡ defined by Y ḡ(n) = Y (ḡnḡ−1), n ∈ N , is a representation of N , called a conjugate of Y . The

inertia group of Y , T (Y ), is the set of all ḡ ∈ Ḡ such that Y is equivalent to Y ḡ. Note that

T (Y ) = IḠ(θ) where θ is the character of N afforded by Y .
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Now let Y be an irreducible representation of N , where N E Ḡ and let H̄ = T (Y ), so Y is

equivalent to all its conjugates in H̄. The following theorem shows that Y can always be extended

to a projective representation of H̄ and gives a necessary and sufficient condition for Y to be

extendible to an ordinary representation of H̄.

Theorem 4.3.2. Let N E Ḡ, Y an irreducible representation of N and H̄ be as above. Then Y

extends to a projective representation X of H̄ with factor set ᾱ such that ᾱ is constant on cosets

of N in H̄. Therefore ᾱ can be regarded as a factor set α of H = H̄/N defined by α(Nh,Nk) =

ᾱ(h, k). Also, α satisfies αd|N | ∼ 1 where d is the degree of Y . Furthermore, Y extends to a linear

representation of H̄ if and only if α ∼ 1. In particular, if H2(Ḡ,C∗) = 1, then Y always extends to

a linear representation of G.

PROOF. See Nagao and Tsushima [100]. �

Theorem 4.3.3. Let N E Ḡ, Y be an irreducible representation of N with H̄ = T (Y ) and H =

H̄/N . Extend Y to a projective representation X of H̄ as in Theorem 4.3.2 with factor set ᾱ. Then

1. If W is an irreducible representation of H that has Y as one of its irreducible constituents

in its restriction to N then there exists an irreducible projective representation Z of H with

factor set α−1 such that W is equivalent to the representation Z̄ ⊗ X of H̄, where α is the

factor set of H obtained from ᾱ, and Z̄ is the representation of H̄ obtained naturally from Z.

2. If, conversely, Z is any irreducible projective representation of H with factor set α−1, then

Z̄ ⊗X is an irreducible representation of H̄ which is equivalent to some representation that

contains Y in its restriction to N .

PROOF. See Nagao and Tsushima [100]. �

Theorem 4.3.4. [113] Let N C H̄, ϕ ∈ Irr(N) be invariant under H̄ and let ϕ̄ be a projective

extension of ϕ to H̄ with factor set α. Then

Irr(H̄, ϕ) = {ϕ̄ψ | ψ is an irreducible α−1−projective character of H̄/N}.

In particular, the number of irreducible α−1- projective characters of H̄/N is equal to the number

of α- regular classes of H̄.

PROOF. See [113]. �

Now we restate the results from Theorems 4.3.2 and 4.3.3 in the form in which we will be using

them, in terms of projective and ordinary characters.

Corollary 4.3.5. [82] Let Ḡ = N ·G, where N E Ḡ and Ḡ/N ∼= G. Let θ ∈ Irr(N) and H̄ = IḠ(θ).

(i) There exists a projective character ϕ of H̄ with factor set ᾱ such that ϕN = θ and ᾱ is

constant on cosets of N , so ᾱ can be regarded as a factor set α of H = H̄/N .
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(ii) If θ(1N ) = d, then αd|N | ∼ 1.

(iii) If η runs over all the irreducible projective characters of H with factor set α−1, then ϕη̄ runs

over all irreducible characters of H̄ that contains θ in their restrictions to N where η̄ is the

projective character of H̄ obtained naturally from η.

PROOF. See [82]. �

Remark 4.3.6. In the above theorem, if θ extends to an ordinary character of H̄, then we show

that α ∼ 1. In this case η’s are the ordinary irreducible characters of H. Hence Theorem 4.2.16 is

a special case of the above corollary.

Remark 4.3.7. Now by Remark 4.2.8 and Corollary 4.3.5, the characters of Ḡ = N ·G can be

obtained as follows:

Let θ1, θ2, . . . , θt be the representatives of the orbits of Ḡ on the set Irr(N). Let H̄i = IḠ(θi), ϕi be

a projective character of H̄i with factor set ᾱi such that θi = ϕN . Then

Irr(Ḡ) =
t⋃
i=1

{(ηϕi)Ḡ | η ∈ IrrProj(H̄i), with factor set α−1
i },

where αi is obtained from ᾱi as in Corollary 4.3.5.

Hence the characters table of Ḡ is partitioned into t blocks 41,42, . . . ,4t where 4i is produced

from the inertia subgroup H̄i.

4.4. Irreducible Constituents and Conjugacy Classes

This section treats two topics. The first concerns the number of irreducible constituents of induced

characters, and the second the number of conjugacy classes. Using some properties of extensions of

characters, we will study the problem which asserts that if χ is a Ḡ-invariant irreducible character

of a normal subgroup N of a finite group Ḡ, then the number of distinct irreducible constituents of

χḠ is equal to the number of χ-regular conjugacy classes of Ḡ/N . We also show that the number

of irreducible constituents of χḠ is equal to the number of conjugacy classes of Ḡ/N if and only if

χ extends to a character of each subgroup N<x, y> of Ḡ with [x, y] ∈ N.

Most of the results in this section are from Gallagher [40] but we give proofs from [67].

Lemma 4.4.1. Let N be a normal subgroup of Ḡ such that Ḡ/N is cyclic of order n. If χ is

Ḡ-invariant irreducible characters of N , then there exists precisely n irreducible characters of Ḡ

extending χ and their sum is χḠ.

PROOF. See Lemma 23.3.2 of [67]. �
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Let N be a normal subgroup of a group Ḡ and, for each ḡ ∈ Ḡ, let the group Cḡ containing N be

as defined in section 2.3, where

Cḡ/N = CḠ/N (Nḡ).

Let χ be a Ḡ-invariant irreducible character of N . From the proof of Lemma 4.3.1, χ extends to a

character χḡ of the subgroup N<ḡ> with ḡ ∈ Ḡ. We say that ḡ is χ-regular if (χḡ)x = χḡ for all

x ∈ Cḡ. Note that Gallagher [40] uses the term goodness instead of χ-regular.

Remark 4.4.2. In [67] it was proved that the notion of χ -regularity is independent of the choice

of χḡ and depends only on χ and the conjugacy class of Nḡ in Ḡ/N .

We say that the conjugacy class of Nḡ in Ḡ/N is χ-regular if ḡ is χ-regular. By the above Remark,

this notion is well defined.

Theorem 4.4.3. [40]. Let N be a normal subgroup of a group Ḡ and let χ be a Ḡ-invariant

irreducible character of N . Then the number of distinct irreducible constituents of χḠ is equal the

number of χ-regular conjugacy classes of Ḡ/N .

PROOF. See [67]. �

Corollary 4.4.4. [40] Let N be a normal subgroup of a group Ḡ and let χ be a Ḡ-invariant

irreducible character of N . Then the number of distinct irreducible constituents of χḠ is at most

the number of conjugacy classes of Ḡ/N with equality if and only if χ extends to a character of

each subgroup N<x, y> with [x, y] ∈ N.

PROOF. See [67]. �

Now we provide some information on the number of conjugacy classes of G by using certain

character-theoretic facts. In what follows r(G) denotes the number of conjugacy classes of G.

Then r(G) is also the number of irreducible complex characters of G.

Lemma 4.4.5. [67] The following formula holds:

r(G) =
1
|G|

∑
g∈G
|CG(g)|.

PROOF. The group G acts on itself by conjugation. If χ is the corresponding permutation character,

then

χ(g) = |CG(g)| for all g ∈ G

and the G-orbits are precisely the conjugacy classes of G. Hence,

r(G) = 〈χ, 1G〉 =
1
|G|

∑
g∈G

χ(g) =
1
|G|

∑
g∈G
|CG(g)|,

as desired. �
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Theorem 4.4.6. [40]. Let N be a normal subgroup of Ḡ. Then

(i) r(Ḡ) ≤ r(Ḡ/N)r(N);

(ii) The following conditions are equivalent:

(a) r(Ḡ) = r(Ḡ/N)r(N),

(b) Cḡ = CḠ(ḡ)N for all ḡ ∈ Ḡ,

(c) each irreducible character of N extends to a character of each subgroup

N<x, y> with [x, y] ∈ Ḡ.

PROOF. See Theorem 28.2.3 of [67]. �
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Fischer - Clifford Matrices

5.1. Prologue

The character table of a group provides considerable information about the group, and hence it is

of importance in the physical sciences as well as in pure mathematics. Character tables of finite

groups can be constructed using various techniques. For example, the Schreier-Sims algorithm,

Todd-Coxeter coset enumeration method, the Burnside-Dixion algorithm and various other tech-

niques. However Bernd Fischer studied a technique for constructing the character tables of group

extensions. This technique, which is known as the technique of Fischer-Clifford Matrices, derives

its fundamentals from the Clifford theory and provides very powerful information for constructing

character tables. If Ḡ = N.G is an appropriate extension of N by G, the method involves the

construction of a nonsingular matrix for each conjugacy class of Ḡ/N . In this dissertation we apply

this technique to both split and non-split extensions. This technique has also been discussed and

used (mainly to split extensions) in Almestady [4], Darafsheh and Iranmanesh [26, 27], Fischer

[34, 35, 36, 37], List [75], List and Mohammed [76], Lux and Pahlings [77], Moori and F. Ali [2],

Moori and Mpono [90, 91, 92], Mpono [99], Pahlings [103], Saleh [112], Schiffer [113] and Whitely

[120]. For the Fischer-Clifford matrices and their properties, although we shall note the work of

Mpono [99], Schiffer [113] and Whitely [120], we follow the work of F. Ali [1] closely as he discussed

both split and non-split extensions.

In Section 5.2 we define Fischer-Clifford matrices in general. In Subsection 5.2.1 we shall discuss the

properties of the Fischer-Clifford matrices which are helpful in their computation. In Subsection

5.2.2 we study a special case of Fischer-Clifford matrices of a Ḡ = N.G with the property that

every irreducible character of N can be extended to an irreducible character of its inertia group in

Ḡ. Sections 5.3 and 5.4 deal with the Fischer-Clifford matrices for the split cosets and non-split

extensions respectively.
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5.2. Definition and General Theory

Let Ḡ = N ·G be an extension of N by G, where N is normal subgroup of Ḡ and Ḡ/N ∼= G. Let

ḡ ∈ Ḡ be a lifting of g ∈ G under the natural homomorphism Ḡ −→ G and [g] be a conjugacy class

of elements of G with representative g. Let X(g) = {x1, x2, . . . , xc(g)} be a set of representatives

of the conjugacy classes of Ḡ from the coset Nḡ whose images under the natural homomorphism

Ḡ −→ G are in [g] and we take x1 = ḡ. Let {θ1, θ2, . . . , θt} be a set of representatives of the orbits

of Ḡ on Irr(N) such that for 1 ≤ i ≤ t, we have H̄i = IḠ(θi) with the corresponding inertia factors

Hi and let ψi be a projective character of H̄i with factor set ᾱi such that (ψi)N = θi. By Remark

4.3.7 we have

Irr(Ḡ) =
t⋃
i=1

{(ψiβ̄)Ḡ | β ∈ IrrProj(Hi), with factor set α−1
i },

where αi is obtained from ᾱi and β̄ from β as in Remark 4.3.6. Without loss of generality suppose

that θ1 = 1N is the identity character of N . Then H̄1 = Ḡ and H1 = G. Now choose y1, y2, . . . , yr

to be the representatives of the α−1
i -conjugacy classes of elements of Hi that fuse to [g] in G. Since

yk ∈ Hi for 1 ≤ k ≤ r, then we define ylk ∈ H̄i such that ylk ranges over all representatives of the

conjugacy classes of elements of H̄i which map to yk under the homomorphism H̄i −→ Hi whose

kernel is N . Now by using the formula for induced characters given in Theorem 2.5.7, we have

(ψiβ̄)Ḡ(xj) =
∑

1≤k≤r

∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψiβ̄(y`k)

=
∑

1≤k≤r

∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψi(y`k)β̄(y`k)

=
∑

1≤k≤r
(
∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψi(y`k))β(yk)

where
∑

`
′ is the summation over all ` for which y`k ∼ xj in G. Now we define a matrix Mi(g) by

Mi(g) = (auv), where 1 ≤ u ≤ r and 1 ≤ v ≤ c(g), and

auv =
∑
`

′ |CG(xj)|
|CHi

(y`k)|
ψi(y`k) .

Then we obtain that

(ψiβ)G(xj) =
∑

1≤k≤r
auvβ̂(yk) .

By doing so for all 1 ≤ i ≤ t such that Hi contains an element in [g] we obtain the matrix M(g)
given by

M(g) =


M1(g)

M2(g)
...

Mt(g)

 ,
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where Mi(g) is the submatrix corresponding to the inertia group H̄i and its inertia factor Hi. If

Hi ∩ [g] = ∅, then Mi(g) will not exist and M(g) does not contain Mi(g). The size of the matrix

M(g) is l × c(g) where l is the number of α−1
i -regular conjugacy classes of elements of the inertia

factors Hi’s for 1 ≤ i ≤ t which fuse into [g] in G and c(g) is the number of conjugacy classes of

elements of Ḡ which correspond to the coset ḡN . Then M(g) is the Fischer-Clifford matrix of Ḡ

corresponding to the coset ḡN . We will see later that M(g) is a c(g) × c(g) nonsingular matrix.

Let

R(g) = {(i, yk) | 1 ≤ i ≤ t , Hi ∩ [g] 6= ∅ , 1 ≤ k ≤ r}

and we note that yk runs over representatives of the α−1
i -conjugacy classes of elements of Hi which

fuse into [g] in G. Following the notation used in Fischer [33], Mpono [99] and Whitely [120] we

denote M(g) by writing M(g) = Cl(Nḡ) = (a(i,yk)
j ), where

a
(i,yk)
j =

∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψi(y`k) ,

with columns indexed by X(g) and rows indexed by R(g). Then the partial character table of Ḡ
on the classes {x1, x2, . . . , xc(g)} is given by

C1(g)M1(g)

C2(g)M2(g)
...

Ct(g)Mt(g)


where the Fischer-Clifford matrix M(g) is divided into blocks with each block corresponding to

an inertia group H̄i and Ci(g) is the partial projective character table of Hi with factor set α−1
i

consisting of the columns corresponding to the α−1
i -regular classes that fuse into [g] in G. We obtain

the characters of Ḡ by multiplying the relevant columns of the projective characters of Hi with

factor set α−1
i by the rows of M(g). We can also observe that the number of irreducible characters

of Ḡ is the sum of numbers of projective characters of the inertia factors Hi’s with factor set α−1
i ,

for all i, 1 ≤ i ≤ t.

5.2.1 Properties of Fischer-Clifford Matrices

In this section we shall discuss some properties of the Fischer-Clifford matrices which are useful in

their computation. These properties have been discussed in [1, 26, 27, 35, 36, 75, 76, 90, 91, 92,

99, 112, 120].

Let K be a group and A ≤ Aut(K). Then by Brauer’s theorem (Theorem 2.6.7) A acts on the

conjugacy classes of elements of K and on the irreducible characters of K resulting in the same

number of orbits.
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Lemma 5.2.1. Suppose we have the following matrix describing the above actions:



1 = l1 l2 · · · lj · · · lt

s1 1 1 · · · 1 · · · 1

s2 a21 a22 · · · a2j · · · a2t

...
...

...
...

...

si ai1 ai2 · · · aij · · · ait
...

...
...

...
...

st at1 at2 · · · atj · · · att


where a1j = 1 for j ∈ {1, 2, . . . , t}, lj’s are lengths of orbits of A on the conjugacy classes of K,

si’s are lengths of orbits of A on Irr(K) and aij is the sum of si irreducible characters of K on

the element xj, where xj is an element of the orbit of length lj. Then the following relation holds

for i, i′ ∈ {1, 2, . . . , t}:∑t
j=1 aijai′jlj = |K|siδii′.

PROOF. This result has been proved as Lemma 2.3.2 in [112] and as Lemma 4.3.2 in [120]. �

For arithmetical properties weights are important. We present M(g) with corresponding weights.

Let xj ∈ X(g). For a fixed coset X = ḡN ∈ Ḡ/N , we define mj = [NḠ(X) : CḠ(xj)].

The Fischer-Clifford matrix M(g) is partitioned row-wise into blocks, where each block corresponds

to an inertia group. The columns of M(g) are indexed by X(g) and for each xj ∈ X(g), at the top

of the columns of M(g), we write |CḠ(xj)| and at the bottom we write mj . The rows of M(g) are

indexed by R(g) and on the left of each row we write |CHi(yk)|, where yk fuses into [g] in G. Then

in general we can write M(g) with corresponding weights for rows and columns as follows, where

blocks corresponding to the inertia groups are separated by horizontal lines.
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Table 5.1



|CG(x1)| |CG(x2)| · · · |CG(xc(g))|

|CG(g)| a
(1,g)
1 a

(1,g)
2 . . . a

(1,g)

c(g)

|CH2(y1)| a
(2,y1)
1 a

(2,y1)
2 . . . a

(2,y1)

c(g)

|CH2(y2)| a
(2,y2)
1 a

(2,y2)
2 . . . a

(2,y2)

c(g)

...
...

...
...

...

|CHi(y1)| a
(i,y1)
1 a

(i,y1)
2 . . . a

(i,y1)

c(g)

|CHi(y2)| a
(i,y2)
1 a

(i,y2)
2 . . . a

(i,y2)

c(g)

...
...

...
...

...

|CHt(y1)| a
(t,y1)
1 a

(t,y1)
2 . . . a

(t,y1)

c(g)

|CHt(y2)| a
(t,y2)
1 a

(t,y2)
2 . . . a

(t,y2)

c(g)

...
...

...
...

...


m1 m2 . . . mc(g)

Remark 5.2.2. Fischer [36] has shown that the Fischer-Clifford matrix M(g) satisfies complex

conjugation.

The following result gives the orthogonality relation for M(g). Its proof was obtained from Whitley

[120], Proposition 4.3.3.

Proposition 5.2.3. [1, 99, 120](Column orthogonality) Let G = N ·G, then∑
(i,yk)∈R(g)

|CHi(yk)|a
(i,yk)
j a

(i,yk)
j′ = δjj′ |CG(xj)| .

PROOF. The partial character table of G at classes x1, . . . , xc(g) is given by
C1(g)M1(g)

C2(g)M2(g)
...

Ct(g)Mt(g)

 .
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By column orthogonality of the character table of G, we have

|CG(xj)|δjj′ =
t∑
i=1

∑
βi∈IrrProj(Hi)

(
∑

yk:(i,yk)∈R(g)

a
(i,yk)
j βi(yk))(

∑
y′k:(i,y′k)∈R(g)

a
(i,y′k)

j′ βi(y′k))

=
t∑
i=1

∑
βi∈IrrProj(Hi)

(
∑
yk

a
(i,yk)
j a

(i,y′k)

j′ βi(yk)βi(yk) +

∑
yk

∑
y′k 6=yk

a
(i,yk)
j a

(i,y′k)

j′ βi(yk)βi(y′k))

=
t∑
i=1

(
∑
yk

a
(i,yk)
j a

(i,yk)
j′

∑
βi∈IrrProj(Hi)

βi(yk)βi(yk) +

∑
yk

∑
y′k 6=yk

a
(i,yk)
j a

(i,y′k)

j′

∑
βi∈IrrProj(Hi)

βi(yk)βi(y′k))

=
t∑
i=1

(
∑
yk

a
(i,yk)
j a

(i,yk)
j′ |CHi(yk)| + 0)

=
∑

(i,yk)∈R(g)

a
(i,yk)
j a

(i,yk)
j′ |CHi(yk)|.

�

Theorem 5.2.4. a(1,g)
j = 1 for all j ∈ {1, 2, . . . , c(g)}.

PROOF. For y`k ∼ xj in G, we have |CG(xj)| = |CH1
(y`k)|. Thus we obtain that

a
(1,g)
j =

∑
`

′ |CG(xj)|
|CH1

(y`k)|
ψ1(y`k) =

∑
`

′
1 = 1 .

Hence the result. �

Proposition 5.2.5. [75, 120] The matrix M(1G) is the matrix with rows equal to the orbit sums

of the action of G on Irr(N) with duplicate columns discarded. For this matrix we have a(i,1G)
j =

[G : Hi], and an orthogonality relation for rows:

t∑
j=1

1
|CG(xj)|

a
(i,1G)
j a

(i′,1G)
j =

1
|CHi(1G)|

δii′ =
1
|Hi|

δii′ .

PROOF. See [99]. �

As a consequence of Lemma 5.3.1, Proposition 5.3.3 and from Fischer [36], we have the following

properties:

(a) |X(g)| = |R(g)| ,
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(b)
∑c(g)

j=1mja
(i,yk)
j a

(i′,y′k)
j = δ(i,yk),(i′,y′k)

|CG(g)|
|CHi (yk)| |N | ,

(c)
∑

(i,yk)∈R(g) a
(i,yk)
j a

(i,yk)
j′ |CHi(yk)| = δjj′ |CG(xj)| ,

(d) M(g) is square and nonsingular.

5.2.2 Fischer-Clifford Matrices (Special Case)

Let Ḡ = N.G be an extension of N by G such that every irreducible character θ of N can be

extended to its inertia group H̄ = IḠ(θ). Now we define the Fischer-Clifford matrices in the same

way as the general case. Let ḡ ∈ Ḡ be a lifting of g ∈ G under the natural homomorphism Ḡ −→ G

and [g] be a conjugacy class of elements of G with representative g. Let X(g) = {x1, x2, . . . , xc(g)}
be a set of representatives of the conjugacy classes of Ḡ from the coset Nḡ whose images under

the natural homomorphism Ḡ −→ G are in [g] and we take x1 = ḡ. Let {θ1, θ2, . . . , θt} be a set

of representatives of the orbits of Ḡ on Irr(N) such that for 1 ≤ i ≤ t, we have Hi = IḠ(θi)

with Hi = H̄i/N ≤ G and that ψi ∈ Irr(H̄i) is an extension of θi to H̄i. Then without loss

of generality suppose that θ1 = IN is the identity character of N . Then H̄1 = Ḡ and H1 = G.

Now choose y1, y2, . . . , yr to be the representatives of the conjugacy classes of elements of Hi which

fuse into [g] in G. Since yk ∈ Hi for 1 ≤ k ≤ r, then we define y`k ∈ H̄i such that y`k ranges

over all the representatives of the conjugacy classes of elements of H̄i which map to yk under the

homomorphism H̄i −→ Hi whose kernel is N . Let β ∈ Irr(H̄i) such that N ⊆ ker(β). Then β is a

lifting of β̂ ∈ Irr(Hi) such that β(y`k) = β̂(yk) for any lifting y`k ∈ H̄i of yk ∈ Hi. Now by using

Theorem 2.4.7, as in the general case, we obtain that

(ψiβ)Ḡ(xj) =
∑

1≤k≤r
(
∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψi(y`k))β̂(yk)

where
∑

`
′ is the summation over all ` for which y`k ∼ xj in G. We define a matrix Mi(g) by

Mi(g) = (auv), where 1 ≤ u ≤ r and 1 ≤ v ≤ c(g), and

auv =
∑
`

′ |CG(xj)|
|CHi(y`k)|

ψi(y`k).

Then we obtain that

(ψiβ)G(xj) =
∑

1≤k≤r
auvβ̂(yk).

By doing so for all 1 ≤ i ≤ t such that Hi contains an element in [g] we obtain the matrix M(g)
given by

M(g) =


M1(g)

M2(g)
...

Mt(g)

 ,
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where Mi(g) is the submatrix corresponding to the inertia group H̄i and its inertia factor Hi. Then

as in the previous section, M(g) is the Fischer-Clifford matrix of G corresponding to the coset ḡN .

Let

R(g) = {(i, yk) | 1 ≤ i ≤ t , Hi ∩ [g] 6= ∅ , 1 ≤ k ≤ r}

and we note that yk runs over representatives of the conjugacy classes of elements of Hi which fuse

into [g] in G. Again we denote M(g) by writing M(g) = (a(i,yk)
j ), where

a
(i,yk)
j =

∑
`

′ |CḠ(xj)|
|CH̄i(y`k)|

ψi(y`k) ,

with columns indexed by X(g) and rows indexed by R(g). Then we obtain the irreducible characters

of Ḡ by multiplying the relevant columns of the irreducibles characters of Hi by the rows M(g).

Remark 5.2.6. All our results of Section 5.2.1 are applicable with irreducible projective characters

are replaced by ordinary irreducible characters.

5.3. Split Cosets

From now on suppose that N is an elementary abelian normal p-subgroup of Ḡ and ḡN = X is a

fixed coset of Ḡ/N ∼= G. Let M = Cḡ = NḠ(X). We define

Nḡ := < [ḡ, n], n ∈ N > .

With these notations we have the following lemma.

Lemma 5.3.1. (i) Nx = Nḡ for all x ∈ X and

[ḡ, u1].[ḡ, u2] = [ḡ, u1u2] for all u1, u2 ∈ N.

(ii) Nḡ CM and Nḡ ≤ N .

(iii) If ϕ ∈ Irr(N), then Nḡ ≤ ker(ϕ) or IḠ(ϕ) ∩ ḡN = ∅.

PROOF.

(i) Let x = ḡn ∈ ḡN and u ∈ N , then

[x, u] = [ḡn, u] = n−1(u−1)ḡnu

= (u−1)ḡu since N is abelian

= ḡ−1u−1ḡu = [ḡ, u]

which implies that

Nx = Nḡ for all x ∈ ḡN.
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Also since N is abelian, we obtain for all u1, u2 ∈ N

[ḡ, u1].[ḡ, u2] = (u−1
1 )ḡu1(u−1

2 )ḡu2

= (u−1
1 u−1

2 )ḡu1u2

= [ḡ, u1u2] .

Hence

[ḡ, u1].[ḡ, u2] = [ḡ, u1u2] for u1, u2 ∈ N.

(ii) Since [ḡ, u] = (u−1)ḡu ∈ N , we obtain Nḡ ≤ N ≤M. Conversely, let m ∈M then

[ḡ, u]m = m−1[ḡ, u]m

= (ḡ−1)m(u−1)mḡmum

= (ḡm)−1(um)−1ḡmum

= [ḡm, um] ∈ Nḡ .

Hence Nḡ CM .

(iii) Let ϕ ∈ Irr(N) be fixed. Then

Nḡ ≤ Ker(ϕ) ⇔ ϕ([ḡ, u]) = ϕ(1) = 1 for all u ∈ N

⇔ ϕ(ḡ−1u−1ḡu) = ϕ((u−1)ḡu) = 1

⇔ ϕ((u−1)ḡ) = (ϕ(u))−1 = ϕ(u−1)

⇔ ϕḡ(u−1) = ϕ(u−1)

⇔ ϕḡ = ϕ

⇔ ḡN ⊆ IḠ(ϕ)

⇔ ḡN ∪ IḠ(ϕ) 6= ∅ .

�

Remark 5.3.2. We can easily show that <X>/Nḡ is abelian and X/Nḡ is a coset of <X>/Nḡ.

Lemma 5.3.3. [36] The rows of the Fischer-Clifford matrix Cl(X) can be identified with restric-

tions of M -invariant characters of <X>/Nḡ to X/Nḡ.

PROOF. This is Lemma 5.3 in [36]. �

Remark 5.3.4. In the above lemma, the rows of Cl(X) will be an independent set of orbit sums,

under the action of M on <X>/Nḡ. This observation was first given in Fischer [34].

Definition 5.3.5. A coset X is said to be a split coset if it contains an element x such that

M = N.CḠ(x).
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Note that we do not require <x> ∩ N = <1> in the above definition.

Lemma 5.3.6. [113] If the extension split, then every coset is a split coset.

PROOF. Let X = ḡN and h ∈ CḠ(ḡ) then h(ḡn)h−1 = (hḡh−1)(hnh−1) = ḡhnh−1 = ḡnh ∈ ḡN .

Now since N ≤M and CḠ(ḡ) ≤M then M ≥ N.CḠ(ḡ). Let C be the complement of N in Ḡ such

that ḡ ∈ C. Let m ∈M then m = n.k, for some k ∈ C. Since M = NḠ(ḡN), (ḡN)m = ḡN . Hence

ḡN = (ḡN)m = m(ḡN)m−1

= n(kḡNk−1)n−1 = n(kḡNk−1)n−1 = n(ḡN)kn−1.

So that n−1(ḡN)n = (ḡN)k and n−1ḡN = (ḡN)k. Hence ḡN = (ḡN)k. It follows that ḡN =

(ḡN)k = ḡkN , which implies that ḡk ∈ ḡN. Hence ḡk ∈ C ∩ ḡN = {ḡ} and so k ∈ CḠ(ḡ), which

implies that m = n.k ∈ N.CḠ(ḡ) and so M ≤ N.CḠ(ḡ). Thus M = N.CḠ(ḡ). �

The following result is of fundamental importance and very helpful to fill the entries of Fischer-

Clifford matrices.

Lemma 5.3.7. [36] Let X be a split coset then the rows of Cl(X) can be identified with M -invariant

characters of N/Nḡ multiplied by a p-th root of unity.

PROOF. See [36] and [113]. �

Lemma 5.3.8. Let X = ḡN be a split coset and NḠ(X) = NCḠ(x) for x ∈ X(g). Then we have

the following:

(i) a
(i,yk)
1 = |CG(g)|

|CHi (yk)| ,

(ii) |a(i,yk)
j | ≤ |a(i,yk)

1 | for all 1 ≤ j ≤ r ,

(iii) If |N | = pw, then a
(i,yk)
j ≡ a(i,yk)

1 (mod p) .

PROOF. See [113].

5.4. Non-Split Extensions

Let Ḡ = N ·G be a non-split extension, where N is an elementary abelian normal p-subgroup of Ḡ.

Let ḡN be a conjugacy class representative of Ḡ/N and ϕ be a representative of Ḡ-orbit irreducible

characters of N with the projective extension ϕ̄ to Ḡ. We consider the groups <ḡ>N ≤ Ḡ and

<ḡN> ≤ Ḡ/N.
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Lemma 5.4.1.

<ḡ>N/N = <ḡN> .

PROOF. Let x ∈ <ḡ>N/N, then x = ḡmnN = ḡmN for some m ∈ Z. So that x = (ḡN)m ∈ <ḡN>.

Hence <ḡ>N/N ≤ <ḡN>. Conversely, let x ∈ <ḡN>. Then x = (ḡN)m = ḡmN for some m ∈ Z.
Hence x = (ḡmN) ∈ <ḡ>N/N. Thus <ḡN> ≤ <ḡ>N/N. Therefore <ḡ>N/N = <ḡN>. �

Lemma 5.4.2. With the above notations, we have the following:

(a) <ḡ>N ≤M.

(b) (<ḡ>N)
′

= Nḡ where (<ḡ>N)
′

denotes the commutator subgroup of <ḡ>N.

(c) <ḡ>N ≤ IM (ϕ) where ϕ ∈ Irr(N).

(d) Given ϕ ∈ Irr(N) there exists an extension ηβ to <ḡ>N where η = (ϕ̄)<ḡ>N and β is a

projective character of <ḡN>.

PROOF.

(a) Let x ∈ <ḡ>N then x = ḡmN for some m ∈ Z. Now

x(ḡN) = ḡmn(ḡN) = ḡmnḡN = ḡmnNḡ (since N E Ḡ)

= ḡmNḡ = Nḡm+1.

Similarly, (ḡN)x = Nḡm+1. Hence x ∈M = NḠ(ḡN) and so <ḡ>N ≤M.

(b) First suppose that [ḡ, n] ∈ Nḡ then [ḡ, n] ∈ (<ḡ>N)
′

and thus Nḡ ≤ (<ḡ>N)
′
. Also, for

n ∈ N , by the definition of Nḡ, we have

(ḡNḡ)(nNḡ) = (nNḡ)(ḡNḡ).

Therefore (<ḡ>N/Nḡ) is abelian, and hence (<ḡ>N)
′ ≤ Nḡ and we deduce that (<ḡ>N)

′
=

Nḡ.

(c) Let ϕ ∈ Irr(N) then Nḡ ≤ Ker(ϕ). Now by Lemma 5.3.1, we have ḡN∩IM (ϕ) 6= ∅. Therefore

ḡ lies in IM (ϕ) and so <ḡ> ≤ IM (ϕ). Hence <ḡ>N ≤ IM (ϕ).

(d) Notice that by part (c), W = <ḡ>N is a subgroup of IM (ϕ). Hence ϕ is invariant under

W . So we can apply the Theorem 4.3.3 to ϕ and W (see Theorem 5.8 in [100]). Let χ ∈
Irr(<ḡ>N,ϕ) then by the Clifford theorem (Theorem 4.3.3) we obtain χ = ((ϕ̄)<ḡ>N )β = ηβ

where β is an ᾱ−1-projective character of <ḡ>N/N = <ḡN> and ᾱ is the factor set of

<ḡ>N × <ḡ>N obtained from α. If N is abelian, then χ is linear since χN = ϕ is linear

(because deg(χ) = deg(ϕ) = 1).
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�

Theorem 5.4.3. [35] Let ḡ ∈ Ḡ so that <ḡ>N is abelian. Then <ḡN> ≤ Z(Ḡ/N) and the rows

of Fischer-Clifford matrix of ḡN for regular classes of the inertia group of ϕ in Ḡ can be regarded

as restrictions to ḡN of the Ḡ-orbit sums of the (projective) extension ηβ to <ḡ>N of ϕ.

PROOF. See [35] and [113]. �

5.5. Character Table and GAP

Using Fischer-Clifford matrices and partial character tables, we are able to compute the full char-

acter table of G. Since the character tables have been computed manually, in order to detect errors

we tested their validity using GAP. For doing so we developed and used Programme E to rewrite

the character tables in GAP format.

Programme E

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[n Centralizer Orders];

>ct.OrdersClassRepresentatives:=[n Class Representatives Orders];

>ct.Irr:=[[n× n irreducibles]];

>ct.UnderlyingCharacteristic:=0;ct.Id:=G;

>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();

gap>SetInfoLevel(InfoCharacterTable,2);

gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).

I would like to acknowledge F. Ali who helped me to develop Programme E. The Programme E

also computes the power maps.
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6

A group 27:S8 in Fi22

Prologue

The group S8
∼= O+

6 (2) is a maximal subgroup of SP6(2) of order 40320 and index 36. It can be

generated by two elements of orders 2 and 7 respectively inside of SP6(2). The group 27:S8 is a

maximal subgroup of 27:SP6(2) of index 36. However 27:SP6(2) is itself a maximal subgroup of

the full automorphism group Fi22 of the smallest Fischer sporadic simple group Fi22, of index

694980. The object of this chapter is to compute the Fischer-Clifford matrices of 27:S8 which can

then be used together with the ordinary character tables of the inertia factors of S8 to compute its

full ordinary character table. One can look at [1, 18, 84, 85, 90, 91, 99] for further reading. The

notation used is taken from the ATLAS of finite groups [23] which we denoted ATLAS and ATLAS
of finite group representation [124] denoted ATLAS V3.

6.1. Introduction

The group Fi22 = Fi22.2 is the full automorphism group of the smallest Fischer sporadic simple

group Fi22. It has a maximal subgroup 27:SP6(2) of order 185794560 and index 694980 which has

been discussed in [91]. More details about this maximal subgroup can be obtained from [99]. This

maximal subgroup contains a group of the form 27:S8 as a subgroup of order 5160960 and index

36. The group S8 is a maximal subgroup of SP6(2) of order 40320 and index 36. There are two

orthogonal groups sitting maximally in SP6(2) viz. O+
6 (2) ∼= S8 and O−6 (2) ∼= U4(2):2 of orders

40320 and 51840 and indices 36 and 28 respectively.

We used the computer algebra system of GAP [41] running on a SUN GX2 computer at the

University of KwaZulu-Natal in Pietermaritzburg. The naming of the conjugacy classes of elements

will be consistent with that used in the ATLAS [23].

We generate SP6(2) as a matrix group by two 7× 7 matrices α and β over GF (2), where α and β
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are given by

α =



0 1 0 1 1 1 0

0 1 1 1 0 1 0

0 1 1 1 0 0 0

1 0 1 0 0 0 0

1 1 1 0 1 0 0

0 1 1 0 1 0 0

0 0 0 0 0 0 1

 , β =



0 0 1 1 0 0 0

1 1 1 1 0 0 0

1 1 0 0 1 1 0

0 1 0 0 1 1 0

0 1 1 1 1 0 0

1 0 0 1 1 0 0

1 0 0 1 1 1 1

 ,

with o(α) = 5 and o(β) = 2.

6.2. The action of S8 on 27

We generate S8 as a matrix group inside of SP6(2) by two 7× 7 matrices α1 and β1 of orders 2 and

7 respectively as follows:

α1 =



0 1 0 1 1 1 0

1 0 0 1 1 1 0

1 1 1 1 1 1 0

0 0 0 1 0 0 0

1 1 0 1 0 1 0

1 1 0 1 1 0 0

0 0 0 0 0 0 1

 , β1 =



0 0 1 1 1 0 0

0 1 1 0 0 0 0

0 1 1 0 0 1 0

1 0 1 1 1 1 0

1 1 1 0 1 1 0

0 1 0 0 0 1 0

0 0 1 1 0 1 1


When S8 acts on 27, we obtain six orbits of lengths 1, 1, 28, 28, 35, 35 with corresponding point

stabilizers S8, S8, S6 × 2, S6 × 2, (S4 × S4):2, (S4 × S4):2 of orders 40320, 40320, 1440, 1440, 1152,

1152 respectively. These point stabilizers can be generated inside of S8 as groups of 7× 7 matrices

over GF (2) as follows:

S6 × 2 = 〈α2, β2〉 , (S4 × S4):2 = 〈α3, β3〉

where

α2 =



1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 1 0 0 1 0 1

 , β2 =



1 1 0 1 1 0 0

1 1 1 0 1 1 0

0 0 1 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 0 1 1 0 0 0

0 1 0 0 0 0 1



α3 =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 1 1 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 , β3 =



1 1 1 0 1 1 0

1 1 0 0 0 0 0

1 1 0 0 1 1 0

0 1 0 1 0 0 0

1 0 1 0 1 0 0

0 0 1 1 1 1 0

1 0 1 0 1 1 1


We have that o(α2) = 2, o(β2) = 6, o(α3) = 2, o(β3) = 12. The six orbits resulting from the action of

S8 on 27 have the following representatives (0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 1), (1, 0, 1, 0, 1, 0, 1), (0, 0, 0, 1, 0, 0, 0),

(1, 1, 1, 1, 1, 1, 1), (1, 0, 0, 0, 0, 0, 0) respectively.
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6.3. The conjugacy classes of 27:S8

The action of S8 on 27 produces six orbits of lengths 1, 1, 28, 28, 35, 35 with corresponding point

stabilizers S8, S8, S6 × 2, S6 × 2, (S4 × S4):2, (S4 × S4):2 of orders 40320, 40320, 1440, 1440, 1152,

1152 respectively. Let χ(S8 | 27) be the permutation character of S8 acting on 27. Then, from

methods that were developed in [99] and also used in [1], we obtain that

χ(S8 | 27) = 1 + 1 + 2IS8
S6×2 + 2IS8

(S4×S4):2

= 1a+ 1a+ 2(1a+ 7a+ 20a) + 2(1a+ 14a+ 20a)

= 6× 1a+ 2× 7a+ 2× 14a+ 4× 20a

where IS8
S6×2, I

S8

(S4×S4):2 are the identity characters of S6×2 and (S4×S4):2 induced to S8 respectively.

Thus χ(S8 | 27) will give the number k of points of 27 fixed by each g ∈ S8 such that k = 2m, where

m ∈ N satisfies 1 ≤ m ≤ 7. These are given in Table 6.1 below.

Table 6.1:

[g]S8 1a 2a 2b 2c 2d 3a 3b 4a 4b 4c 4d

k 128 64 32 32 16 32 8 16 16 8 8

[g]S8 5a 6a 6b 6c 6d 6e 7a 8a 10a 12a 15a

k 8 16 4 4 8 4 2 4 4 4 2

We used GAP for programmes A and B (see Appendix A), which can also be found in [1] and [99],

written in MAGMA and CAYLEY. We also used coset analysis, which is also discussed in chapter

2, to compute the conjugacy classes of elements of 27:S8. These conjugacy classes are given in

Table 6.2 and the descriptions of the parameters used can also be found in [1, 99, 120]. We give

programmes A and B and the table for conjugacy classes:

PROGRAMME A for 27:S8

gap>V:=FullRowSpace(GF (2), 7);

gap>gr1:=(OneGF(2))*[7× 7 matrix group generators];

gap>gr2:=(OneGF(2))*[7× 7 matrix group generators];

gap>grp:=Group(gr1,gr2);

gap>Ccl:=ConjugacyClasses(grp);

gap>O:=Union(Orbits(grp,V));

gap>for i in [1..22] do

>Print(Representative(Ccl[i]));

>w:=One(GF(q))*[0, 0, · · · , 0];

>e:=[ ];

>while Difference(O,e) <> [ ] do

>d:=[ ];

>for x in O do;

>y:=[x+w+(x*(Representative((Ccl)[i]))];
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>d:=Union(d,y);

>od;

>Print(d);

>e:=Union(d,e);

>if Difference(O,e) <> [ ] then

>w:=Representative(Difference(O,e));

>fi;

>od;

>r:=[ ];

>u:=One(GF(2))*[0, 0, · · · , 0];

>while Difference(O,e) <> [ ] do

>m:=[ ];

>for g in Centralizer(grp,Representative(Ccl[i])) do

>l:=[u*g];

>m:=Union(m,l);

>od;

>Print(”A block for the vectors under the action of a centralizer”);

>Print(m);

>r:=Union(m,r);

>if Difference(O,r) <> [ ] then

>u:=Representative(Difference(O,r));

>fi;

>od;

>Print(”**********************************”);

>od;

PROGRAMME B for 27:S8

gap>V:=FullRowSpace(GF (2), 7);

gap>m1:=(OneGF(2))*[7× 7 matrix group generators];

gap>m2:=(OneGF(q))*[7× 7 matrix group generators];

gap>m:=Group(m1,m2);

gap>c:=ConjugacyClasses(m);

gap>g:=Representative(c[i]);

gap>d:=One(GF(2))*[α1, α2, · · · , α7];

gap>w:=d+ d ∗ g + d ∗ g2 + · · ·+ d ∗ gk−1;

gap>Print(w);

Table 6.2: Conjugacy Classes of 27:S8

g ∈ S8 k fj dj w [x]27:S8
|C27:S8

(x)|
1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 1A 5 160 960

1 (1, 1, 0, 1, 0, 0, 1) (1, 1, 0, 1, 0, 0, 1) 2A 5 160 960

1A 27 28 (1, 0, 1, 0, 1, 0, 1) (1, 0, 1, 0, 1, 0, 1) 2B 184 320

28 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0) 2C 184 320

35 (1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1) 2D 147 456

35 (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) 2E 147 456

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2F 92 160

1 (1, 0, 0, 1, 1, 0, 1) (1, 1, 0, 0, 1, 1, 0) 4A 92 160

6 (1, 0, 0, 0, 0, 1, 1) (0, 1, 0, 0, 0, 0, 0) 4B 15 360

2A 26 6 (1, 0, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 2G 15 360

10 (1, 1, 1, 1, 1, 1, 1) (0, 0, 1, 0, 0, 0, 0) 4C 9 216

10 (0, 0, 1, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2H 9 216

15 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 2I 6 144

continued on next page
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Table 6.2 (continued from previous page)

g ∈ S8 k fj dj w [x]27:S8
(x)|

15 (0, 0, 0, 1, 0, 0, 0) (0, 1, 0, 1, 1, 0, 0) 4D 6 144

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2J 12 288

1 (0, 1, 1, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 2K 12 288

1 (1, 1, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0) 2L 12 288

2B 25 1 (1, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2M 12 288

2 (0, 0, 1, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0) 2N 6 144

2 (1, 1, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2O 6 144

12 (1, 0, 1, 0, 1, 0, 1) (0, 1, 1, 0, 1, 1, 0) 4E 1 024

12 (0, 0, 0, 1, 0, 0, 0) (0, 1, 1, 0, 1, 1, 0) 4F 1 024

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2P 6 144

1 (1, 1, 0, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0) 4G 6 144

1 (1, 0, 0, 0, 0, 1, 1) (1, 0, 0, 0, 0, 1, 0) 4H 6 144

1 (0, 1, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 2Q 6 144

2C 25 3 (1, 0, 1, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0) 4I 2 048

3 (1, 0, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 2R 2 048

3 (0, 1, 0, 1, 0, 0, 1) (1, 1, 0, 1, 1, 0, 0) 4J 2 048

3 (1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2S 2 048

8 (0, 1, 1, 1, 0, 1, 1) (1, 1, 0, 1, 1, 0, 0) 4K 768

8 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 1, 0) 4L 768

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2T 1 536

1 (1, 0, 0, 0, 0, 0, 1) (0, 1, 0, 0, 0, 0, 0) 4M 1 536

1 (0, 0, 0, 1, 1, 1, 1) ((0, 0, 1, 1, 0, 0, 0) 4N 1 536

2D 24 1 (0, 1, 0, 1, 1, 1, 0) (0, 1, 1, 1, 1, 1, 0) 4O 1 536

3 (1, 0, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 0, 0) 4P 512

3 (0, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 0, 0) 4Q 512

3 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 2U 512

3 (0, 1, 0, 0, 1, 0, 0) (1, 1, 0, 0, 1, 1, 0) 4R 512

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 3A 11 520

1 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 0, 1, 0, 1) 6A 11 520

3A 25 5 (0, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 0, 0, 0) 6B 2 304

5 (0, 0, 0, 1, 0, 0, 0) (0, 1, 1, 1, 0, 1, 0) 6C 2 304

10 (1, 0, 0, 0, 0, 1, 1) (0, 1, 1, 0, 0, 0, 1) 6D 1 152

10 (0, 1, 0, 0, 1, 1, 0) (0, 1, 1, 0, 1, 0, 0) 6E 1 152

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 3B 288

1 (1, 0, 1, 0, 1, 0, 1) (1, 0, 1, 0, 1, 0, 1) 6F 288

3B 23 1 (0, 1, 1, 1, 0, 1, 1) (0, 1, 1, 1, 0, 1, 1) 6G 288

1 (0, 0, 0, 1, 0, 0, 0) (1, 0, 0, 1, 0, 1, 0) 6H 288

2 (1, 0, 0, 0, 0, 1, 1) (0, 1, 1, 0, 0, 0, 1) 6I 144

2 (1, 0, 1, 1, 1, 1, 0) (1, 0, 1, 1, 1, 1, 0) 6J 144

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4S 1 536

1 (1, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 4T 1 536

4A 24 3 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 4U 512

3 (1, 0, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 4V 512

4 (0, 1, 1, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1, 0) 8A 384

4 (0, 0, 0, 1, 0, 0, 0) (1, 1, 0, 1, 1, 1, 0) 8B 384

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4W 512

1 (1, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 4X 512

1 (1, 1, 0, 0, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0) 4Y 512

4B 24 1 (0, 1, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4Z 512

2 (1, 0, 1, 1, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 4AA 256

2 (1, 1, 0, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 4AB 256

4 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 1, 1, 1, 0) 8C 128
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Table 6.2 (continued from previous page)

g ∈ S8 k fj dj w [x]27:S8
(x)|

4 (0, 0, 0, 1, 0, 0, 0) (1, 0, 1, 0, 0, 1, 0) 8D 128

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4AC 256

1 (0, 1, 1, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 4AD 256

4C 23 1 (1, 1, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 4AE 256

1 (1, 0, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 4AF 256

2 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 4AG 128

2 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4AH 128

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 4AI 128

1 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 1, 0, 0, 1) 8E 128

1 (0, 1, 1, 1, 0, 1, 1) (0, 1, 0, 1, 0, 0, 0) 8F 128

4D 23 1 (0, 1, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 4AJ 128

1 (0, 1, 1, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 4AK 128

1 (0, 0, 0, 1, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0) 8G 128

1 (1, 0, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 4AL 128

1 (1, 0, 0, 0, 0, 1, 0) (0, 0, 1, 0, 1, 1, 0) 8H 128

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 5A 240

5A 23 1 (0, 1, 0, 0, 1, 0, 1) (0, 0, 0, 1, 1, 0, 0) 10A 240

3 (1, 0, 1, 0, 1, 0, 1) (1, 0, 1, 1, 1, 0, 0) 10B 80

3 (0, 0, 0, 1, 0, 0, 0) (1, 0, 0, 0, 1, 1, 0) 10C 80

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6K 576

1 (1, 0, 1, 1, 1, 0, 1) (1, 0, 0, 0, 0, 1, 0) 12A 576

1 (0, 0, 0, 0, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0) 6L 576

6A 24 1 (1, 0, 0, 1, 0, 0, 0) (1, 1, 1, 1, 1, 0, 0) 12B 576

3 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 6M 192

3 (1, 0, 0, 0, 0, 1, 1) (1, 1, 1, 0, 0, 0, 0) 12C 192

3 (0, 0, 0, 1, 0, 0, 0) (1, 0, 0, 0, 0, 1, 0) 12D 192

3 (1, 0, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 6N 192

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6O 192

1 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 6P 192

6B 23 1 (1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 0, 0) 12E 192

1 (0, 1, 0, 0, 1, 1, 0) (1, 1, 1, 1, 1, 1, 0) 12F 192

2 (0, 1, 1, 1, 0, 1, 1) (1, 0, 1, 0, 0, 1, 0) 12G 96

2 (0, 0, 0, 1, 0, 0, 0) (1, 1, 1, 1, 1, 0, 0) 12H 96

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6Q 144

6C 22 1 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 0, 1, 1, 0) 12I 144

1 (1, 0, 0, 0, 0, 1, 1) (1, 1, 1, 0, 0, 0, 0) 12J 144

1 (1, 0, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 6R 144

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6S 96

1 (0, 1, 1, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 6T 96

6D 23 1 (1, 1, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 6U 96

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6V 96

2 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 6W 48

2 (1, 0, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0) 6X 48

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 6Y 48

6E 22 1 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 0, 0, 1, 0) 12K 48

1 (0, 1, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 6Z 48

1 (0, 0, 0, 1, 0, 0, 0) (0, 0, 1, 0, 0, 1, 0) 12L 48

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 7A 14

7A 2 1 (1, 1, 1, 1, 1, 1, 1) (1, 1, 0, 1, 0, 0, 1) 14A 14

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 8I 32

8A 22 1 (1, 0, 1, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0) 8J 32

1 (0, 1, 1, 1, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0) 8K 32
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Table 6.2 (continued from previous page)

g ∈ S8 k fj dj w [x]27:S8
(x)|

1 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 8L 32

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 10D 40

10A 22 1 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 1, 0, 0, 1) 20A 40

1 (0, 1, 0, 0, 1, 0, 1) (0, 0, 1, 0, 0, 1, 0 20B 40

1 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 10E 40

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 12M 48

12A 22 1 (1, 0, 1, 0, 1, 0, 1) (1, 1, 0, 0, 1, 0, 1) 24A 48

1 (0, 1, 1, 1, 0, 1, 1) (1, 1, 0, 1, 0, 0, 1) 24B 48

1 (0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 12N 48

1 (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0) 15A 30

15A 2 1 (1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 0, 0) 30A 30

We obtain that 27:S8 has altogether 128 conjugacy classes of elements.

6.4. The Fischer-Clifford matrices of 27:S8

From the above section, we obtained 128 conjugacy classes of elements of 27:S8. From [89] since we

have 128 conjugacy classes of elements, we have 128 irreducible characters of 27:S8. By [14] when

S8 acts on Irr(27) we get six orbits and we use programme C (see Appendix A) to show that these

orbits are of lengths 1, 1, 28, 28, 35 and 35 respectively. The inertia factor groups Hi, i = 1, · · · , 6
are subgroups of S8 of index 1, 1, 28, 28, 35 and 35 respectively and from the ATLAS [23] we get

that H1 = S8, H2 = S8, H3 = S6 × 2, H4 = S6 × 2, H5 = (S4 × S4):2 and H6 = (S4 × S4):2. The

fusions of the inertia factor groups S6 × 2 and (S4 × S4):2 into S8 are given in Table 6.3 below

Table 6.3: The fusion of S6 × 2 and (S4 × S4):2 into S8

[g]S6×2 −→ [y]S8 [g](S4×S4):2 −→ [y]S8

1A 1A 1A 1A

2A 2A 2A 2B

2B 2A 2B 2D

2C 2B 2C 2A

2D 2B 2D 2C

2E 2C 2E 2B

2F 2C 2F 2D

2G 2D 3A 3A

3A 3A 3B 3B

3B 3B 4A 4A

4A 4A 4B 4C

4B 4B 4C 4B

4C 4B 4D 4D

4D 4C 4E 4D

5A 5A 4F 4C

6A 6A 6A 6B

continued on next page
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Table 6.3 (continued from previous page)

[g]S6×2 −→ [y]S8 [g](S4×S4):2 −→ [y]S8

6B 6A 6B 6A

6C 6B 6C 6E

6D 6C 8A 8A

6E 6D 10A 10A

6F 6E 12A 12A

From the above fusions, we are now able to obtain the Fischer-Clifford matrices of 27:S8. According

to [99], all these Fischer-Clifford matrices will have integer entries. These Fischer-Clifford matrices

are thus given in Table 6.4 below

Table 6.4: The Fischer-Clifford Matrices of 27:S8

M(g) M(g)

M(1A) =



1 1 1 1 1 1

1 −1 1 −1 1 −1

28 −28 4 −4 −4 4

28 28 4 4 −4 −4

35 35 −5 −5 3 3

35 −35 −5 5 3 −3


M(4A) =



1 1 1 1 1 1

1 −1 1 −1 1 −1

6 −6 −2 2 0 0

6 6 −2 −2 0 0

1 1 1 1 −1 −1

1 −1 1 −1 −1 1



M(2A) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 −1 1

1 1 −1 −1 −1 −1 1 1

15 −15 5 −5 −3 3 1 −1

1 −1 −1 1 −1 1 −1 1

15 15 5 5 −3 −3 −1 −1

15 −15 −5 5 3 −3 1 −1

15 15 −5 −5 3 3 −1 −1


M(3A) =



1 1 1 1 1 1

1 −1 −1 1 −1 1

5 −5 3 −3 −1 1

5 5 −3 −3 1 1

10 −10 −2 2 2 −2

10 10 2 2 −2 −2



M(2B) =



1 1 1 1 1 1 1 1

1 −1 −1 1 −1 1 −1 1

4 4 4 4 −4 −4 0 0

4 −4 −4 4 4 −4 0 0

3 −3 −3 3 −3 3 1 −1

8 −8 8 −8 0 0 0 0

3 3 3 3 3 3 −1 −1

8 8 −8 −8 0 0 0 0


M(4C) =



1 1 1 1 1 1

1 1 −1 −1 1 −1

1 1 1 1 −1 −1

2 −2 2 −2 0 0

1 1 −1 −1 −1 1

2 −2 −2 2 0 0



M(2C) =



1 1 1 1 1 1 1 1 1 1

1 −1 −1 1 −1 1 −1 1 1 −1

2 2 −2 −2 2 2 −2 −2 0 0

6 −6 6 −6 2 −2 −2 2 0 0

2 −2 2 −2 −2 2 2 −2 0 0

6 6 −6 −6 −2 −2 2 2 0 0

1 1 1 1 1 1 1 1 −1 −1

6 −6 −6 6 2 −2 2 −2 0 0

1 −1 −1 1 −1 1 −1 1 −1 1

6 6 6 6 −2 −2 −2 −2 0 0



M(3B) =



1 1 1 1 1 1

1 −1 −1 1 −1 1

1 −1 −1 1 1 −1

1 1 1 1 −1 −1

2 −2 2 −2 0 0

2 2 −2 −2 0 0
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M(g) M(g)

M(2D) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 1 −1 −1

3 3 3 3 −1 −1 −1 −1

1 −1 −1 1 −1 1 1 −1

3 −3 −3 3 1 −1 −1 1

1 1 −1 −1 −1 1 −1 1

3 −3 3 −3 −1 −1 1 1

3 3 −3 −3 1 −1 1 −1


M(5A) =


1 1 1 1

1 −1 −1 1

3 −3 1 −1

3 3 −1 −1



M(4B) =



1 1 1 1 1 1 1 1

1 −1 −1 1 −1 1 −1 1

2 −2 −2 2 2 −2 0 0

2 2 2 2 −2 −2 0 0

1 1 1 1 1 1 −1 −1

4 −4 4 −4 0 0 0 0

1 −1 −1 1 −1 1 1 −1

4 4 −4 −4 0 0 0 0


M(6C) =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1



M(4D) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


M(6B) =



1 1 1 1 1 1

1 −1 −1 1 −1 1

2 −2 2 −2 0 0

2 2 −2 −2 0 0

1 −1 −1 1 1 −1

1 1 1 1 −1 −1



M(6A) =



1 1 1 1 1 1 1 1

1 −1 −1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 1

3 −3 3 −3 1 1 −1 −1

1 1 −1 −1 −1 1 1 −1

3 3 −3 −3 1 −1 −1 1

3 −3 −3 3 −1 1 −1 1

3 3 3 3 −1 −1 −1 −1


M(6D) =



1 1 1 1 1 1

1 −1 −1 1 −1 1

1 −1 −1 1 1 −1

1 1 1 1 −1 −1

2 −2 2 −2 0 0

2 2 −2 −2 0 0



M(6E) =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 M(7A) =

[
1 1

1 −1

]

M(8A) =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 M(10A) =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1



M(12A) =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 M(15A) =

[
1 1

1 −1

]
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6.5. The power maps of 27:S8

The power maps of 27:S8 are given in Table 6.5 below

Table 6.5: The Power Maps of elements of 27 : S8

[g]S8 [x]27:S8
2 3 5 7 [g]S8 [x]27:S8

2 3 5 7

1A 2F 1A

2A 1A 4A 2C

2B 1A 4B 2C

1A 2C 1A 2A 2G 1A

2D 1A 4C 2C

2E 1A 2H 1A

2I 1A

4D 2C

2J 1A 2P 1A

2K 1A 4G 2C

2L 1A 4H 2C

2M 1A 2Q 1A

2B 2N 1A 2C 4I 2C

2O 1A 2R 1A

4E 2C 4J 2C

4F 2C 2S 1A

4K 2C

4L 2C

2T 1A 3A 1A

4M 2C 6A 3A 2A

4N 2C 6B 3A 2A

2D 4O 2C 3A 6C 3A 2C

4P 2C 6D 3A 2B

4Q 2C 6E 3A 2C

2U 1A

4R 2C

4S 2P 3B 1A

4T 2P 6F 3B 2B

4A 4U 2P 3B 6G 3B 2C

4V 2P 6H 3B 2A

8A 4J 6I 3B 2C

8B 4J 6J 3B 2A

4W 2P 4AC 2J

4X 2P 4AD 2L

4Y 2P 4AE 2J

4B 4Z 2P 4C 4AF 2L

4AA 2P 4AG 2L

4AB 2P 4AH 2L

8C 4J

8D 4J

4AI 2P 6K 3A 2F

8E 4J 12A 6C 4C

8F 4J 6L 3A 2H

4D 4AJ 2R 6A 12B 6C 4A

4AK 2R 6M 3A 2I

continued on next page
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Table 6.5 (continued from previous page)

[g]S8 [x]27:S8
2 3 5 7 [g]S8 [x]27:S8

2 3 5 7

8G 4J 12C 6C 4B

4AL 2P 12D 6C 4A

8H 4J 6N 3A 2G

5A 1A 6O 3A 2P

10A 5A 2A 6P 3A 2Q

5A 10C 5A 2C 6B 12E 6C 4H

10C 5A 2C 12F 6C 4G

12G 6C 4K

12H 6C 4L

6Q 3B 2F 6S 3B 2J

12I 6I 4D 6T 3B 2K

6C 12J 6I 4C 6D 6U 3B 2L

6R 3B 2H 6V 3B 2M

6W 3B 2L

6X 3B 2M

6Y 3B 2T 7A 1A

6E 12K 6G 4L 7A 14A 7A 2A

6Z 3B 2U

12L 6G 4M

8I 4AD 10D 5A 2F

8A 8J 4AE 10A 20A 10B 4D

8K 4AE 20B 10B 4B

8L 4AD 10E 5A 2H

12M 6Q 4S 15A 5A 3A

12A 24A 12E 8A 15A 30A 15A 10A 6A

24B 12E 8B

12N 6O 4S

6.6. The fusion of 27:S8 into 27:SP6(2)

The group 27:SP6(2) is a maximal subgroup of Fi22 containing a maximal subgroup of the form

27:S8. To determine the fusion of 27:S8 into 27:SP6(2), we shall use the fusion of S8 into SP (6, 2),

Theorem 7.5.1 from [99] and the power maps of both groups, listed in Table 6.1 above and in [41]

respectively. The fusion of S8 into SP (6, 2) is given in Table 6.6.
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Table 6.6: The Fusion of S8 into SP (6, 2)
[g]S8 −→ [y]SP (6,2) [g]S8 −→ [y]SP (6,2)

1A 1A 2A 2A

2B 2C 2C 2D

2D 2B 3A 3A

3B 3C 4A 4C

4B 4E 4C 4D

4D 4B 5A 5A

6A 6A 6B 6D

6C 6E 6D 6F

6E 6G 7A 7A

8A 8B 10A 10A

12A 12B 15A 15A

Thus the fusion of 27:S8 into 27:SP6(2) is given in Table 6.7 below.

Table 6.7: The fusion of 27:S8 into 27:SP (6, 2)

[g]S8 [x]27:S8
−→ [y]27:SP (6,2) [g]S8 [x]27:S8

−→ [y]27:SP (6,2)

1A 1A 2F 2D

2A 2B 4A 4C

2B 2A 4B 4A

1A 2C 2C 2A 2G 2F

2D 2B 4C 4B

2E 2C 2H 2F

2I 2E

4D 4C

2J 2G 2P 2K

2K 2H 4G 4F

2L 2I 4H 4H

2M 2J 2Q 2M

2B 2N 2I 2C 4I 4G

2O 2J 2R 2L

4E 4D 4J 4H

4F 4E 2S 2M

4K 4I

4L 4J

2T 2N 3A 3A

4M 4K 6A 6A

4N 4L 6B 6A

2D 4O 4O 3A 6C 6C

4P 4M 6D 6B

4Q 4N 6E 6C

2U 2O

4R 4P

3B 3C 4S 4Y

6F 6E 4T 4Z

3B 6G 6F 4A 4U 4AA

6H 6G 4V 4AB

continued on next page
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Table 6.7 (continued from previous page)

[g]S8 [x]27:S8
−→ [y]27:SP (6,2) [g]S8 [x]27:S8

−→ [y]27:SP (6,2)

6I 6F 8A 8C

6J 6G 8B 8D

4W 4U 4AC 4AC

4X 4V 4AD 4AD

4Y 4W 4AE 4AE

4B 4Z 4X 4C 4AE 4AF

4AA 4W 4AG 4AG

4AB 4X 4AH 4AH

8C 8A

8D 8B

4AI 4AI 5A 5A

8E 8E 10A 10A

8F 8F 10B 10B

4D 4AJ 4AJ 5A 10C 10C

4AK 4AK

8G 8G

4AL 4AL

8H 8H

6K 6H 6O 6O

12A 12A 6P 6P

6L 6J 12E 12F

6A 12B 12C 6B 12F 12G

6M 6I 12G 12H

12C 12B 12H 12I

12D 12C

6N 6J

6Q 6U 6R 6Q

12I 12J 6S 6R

6C 12J 12K 6D 6T 6S

6R 6V 6U 6T

6V 6S

6W 6T

6X 6W 7A 7A

6E 12K 12L 7A 14A 14A

6Y 6X

12M 12M

8I 8I 10D 10D

8A 8J 8J 10A 20A 20A

8K 8K 20B 20B

8L 8L 10E 10E

12N 12P 15A 15A

12A 24A 24C 15A 30A 30A

24B 24D

12O 12Q

We use Fisher-Clifford matrices and partial character tables of inertia factor groups to compile

the character table. We rewrite the character table in the GAP format and we then use pro-

gramme E (see Appendix A) to check its validity and its consistency concerning the character table
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orthogonalities. This character table is given in Table 6.8

PROGRAMME E for 27:S8

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[128 Centralizer Orders];

>ct.OrdersClassRepresentatives:=[128 Class Representatives Orders];

>ct.Irr:=[[128× 128 irreducibles]];

>ct.UnderlyingCharacteristic:=0;ct.Id:=G;

>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();

gap>SetInfoLevel(InfoCharacterTable,2);

gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).

Note: Although this was a good exercise to begin with, on closer inspection, we found out that

the group 27:S8 was actually the group (26:S8)× 2 which is a direct product.
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Table 6.8: Character table of 27:S8

1A 2A

1A 2A 2B 2C 2D 2E 2F 4A 4B 2G 4C 2H 2I 4D

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

χ3 7 7 7 7 7 7 -5 -5 -5 -5 -5 -5 -5 -5

χ4 7 7 7 7 7 7 5 5 5 5 5 5 5 5

χ5 14 14 14 14 14 14 -4 -4 -4 -4 -4 -4 -4 -4

χ6 14 14 14 14 14 14 4 4 4 4 4 4 4 4

χ7 20 20 20 20 20 20 -10 -10 -10 -10 -10 -10 -10 -10

χ8 20 20 20 20 20 20 10 10 10 10 10 10 10 10

χ9 21 21 21 21 21 21 -9 -9 -9 -9 -9 -9 -9 -9

χ10 21 21 21 21 21 21 9 9 9 9 9 9 9 9

χ11 28 28 28 28 28 28 -10 -10 -10 -10 -10 -10 -10 -10

χ12 28 28 28 28 28 28 10 10 10 10 10 10 10 10

χ13 35 35 35 35 35 35 -5 -5 -5 -5 -5 -5 -5 -5

χ14 35 35 35 35 35 35 5 5 5 5 5 5 5 5

χ15 42 42 42 42 42 42 0 0 0 0 0 0 0 0

χ16 56 56 56 56 56 56 -4 -4 -4 -4 -4 -4 -4 -4

χ17 56 56 56 56 56 56 4 4 4 4 4 4 4 4

χ18 64 64 64 64 64 64 -16 -16 -16 -16 -16 -16 -16 -16

χ19 64 64 64 64 64 64 16 16 16 16 16 16 16 16

χ20 70 70 70 70 70 70 -10 -10 -10 -10 -10 -10 -10 -10

χ21 70 70 70 70 70 70 10 10 10 10 10 10 10 10

χ22 90 90 90 90 90 90 0 0 0 0 0 0 0 0

χ23 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1

χ24 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

χ25 7 -7 7 -7 7 -7 -5 5 -5 5 -5 5 5 -5

χ26 7 -7 7 -7 7 -7 5 -5 5 -5 5 -5 -5 5

χ27 14 -14 14 -14 14 -14 -4 4 -4 4 -4 4 4 -4

χ28 14 -14 14 -14 14 -14 4 -4 4 -4 4 -4 -4 4

χ29 20 -20 20 -20 20 -20 -10 10 -10 10 -10 10 10 -10

χ30 20 -20 20 -20 20 -20 10 -10 10 -10 10 -10 -10 10

χ31 21 -21 21 -21 21 -21 -9 9 -9 9 -9 9 9 -9

χ32 21 -21 21 -21 21 -21 9 -9 9 -9 9 -9 -9 9

χ33 28 -28 28 -28 28 -28 -10 10 -10 10 -10 10 10 -10

χ34 28 -28 28 -28 28 -28 10 -10 10 -10 10 -10 -10 10

χ35 35 -35 35 -35 35 -35 -5 5 -5 5 -5 5 5 -5

χ36 35 -35 35 -35 35 -35 5 -5 5 -5 5 -5 -5 5

χ37 42 -42 42 -42 42 -42 0 0 0 0 0 0 0 0

χ38 56 -56 56 -56 56 -56 -4 4 -4 4 -4 4 4 -4

χ39 56 -56 56 -56 56 -56 4 -4 4 -4 4 -4 -4 4

χ40 64 -64 64 -64 64 -64 -16 16 -16 16 -16 16 16 -16

χ41 64 -64 64 -64 64 -64 16 -16 16 -16 16 -16 -16 16

χ42 70 -70 70 -70 70 -70 -10 10 -10 10 -10 10 10 -10

χ43 70 -70 70 -70 70 -70 10 -10 10 -10 10 -10 -10 10

χ44 90 -90 90 -90 90 -90 0 0 0 0 0 0 0 0
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The character table of 27:S8(continued)

2B 2C

2J 2K 2L 2M 2N 20 4E 4F 2P 4G 4H 2Q 4I 2R 4J 2S 4K 4L

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ3 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3 3 3 3 3

χ4 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 3 3 3 3 3 3

χ5 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2

χ6 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2

χ7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

χ8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

χ9 -3 -3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1 1 1 1 1

χ10 -3 -3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1 1 1 1 1

χ11 -4 -4 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 4 4 4 4

χ12 -4 -4 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 4 4 4 4

χ13 3 3 3 3 3 3 3 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

χ14 3 3 3 3 3 3 3 3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

χ15 -6 -6 -6 -6 -6 -6 -6 -6 2 2 2 2 2 2 2 2 2 2

χ16 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0

χ17 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0

χ18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ20 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 2 2 2 2

χ21 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 2 2 2 2

χ22 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6

χ23 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1

χ24 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1

χ25 -1 1 1 -1 1 -1 1 -1 3 -3 -3 3 -3 3 -3 3 3 -3

χ26 -1 1 1 -1 1 -1 1 -1 3 -3 -3 3 -3 3 -3 3 3 -3

χ27 6 -6 -6 6 -6 6 -6 6 2 -2 -2 2 -2 2 -2 2 2 -2

χ28 6 -6 -6 6 -6 6 -6 6 2 -2 -2 2 -2 2 -2 2 2 -2

χ29 4 -4 -4 4 -4 4 -4 4 4 -4 -4 4 -4 4 -4 4 4 -4

χ30 4 -4 -4 4 -4 4 -4 4 4 -4 -4 4 -4 4 -4 4 4 -4

χ31 -3 3 3 -3 3 -3 3 -3 1 -1 -1 1 -1 1 -1 1 1 -1

χ32 -3 3 3 -3 3 -3 3 -3 1 -1 -1 1 -1 1 -1 1 1 -1

χ33 -4 4 4 -4 4 -4 4 -4 4 -4 -4 4 -4 4 -4 4 4 -4

χ34 -4 4 4 -4 4 -4 4 -4 4 -4 -4 4 -4 4 -4 4 4 -4

χ35 3 -3 -3 3 -3 3 -3 3 -5 5 5 -5 5 -5 5 -5 -5 5

χ36 3 -3 -3 3 -3 3 -3 3 -5 5 5 -5 5 -5 5 -5 -5 5

χ37 -6 6 6 -6 6 -6 6 -6 2 -2 -2 2 -2 2 -2 2 2 -2

χ38 8 -8 -8 8 -8 8 -8 8 0 0 0 0 0 0 0 0 0 0

χ39 8 -8 -8 8 -8 8 -8 8 0 0 0 0 0 0 0 0 0 0

χ40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ42 -2 2 2 -2 2 -2 2 -2 2 -2 -2 2 -2 2 -2 2 2 -2

χ43 -2 2 2 -2 2 -2 2 -2 2 -2 -2 2 -2 2 -2 2 2 -2

χ44 -6 6 6 -6 6 -6 6 -6 -6 6 6 -6 6 -6 6 -6 -6 6
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The character table of 27:S8(continued)

2D 3A 3B

2T 4M 4N 4O 4P 4Q 2U 4R 3A 6A 6B 6C 6D 6E 3B 6F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

χ3 -1 -1 -1 -1 -1 -1 -1 -1 4 4 4 4 4 4 1 1

χ4 1 1 1 1 1 1 1 1 4 4 4 4 4 4 1 1

χ5 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 2 2

χ6 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 2 2

χ7 -2 -2 -2 -2 -2 -2 -2 -2 5 5 5 5 5 5 -1 -1

χ8 2 2 2 2 2 2 2 2 5 5 5 5 5 5 -1 -1

χ9 3 3 3 3 3 3 3 3 6 6 6 6 6 6 0 0

χ10 -3 -3 -3 -3 -3 -3 -3 -3 6 6 6 6 6 6 0 0

χ11 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1

χ12 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

χ13 3 3 3 3 3 3 3 3 5 5 5 5 5 5 2 2

χ14 -3 -3 -3 -3 -3 -3 -3 -3 5 5 5 5 5 5 2 2

χ15 0 0 0 0 0 0 0 0 -6 -6 -6 -6 -6 -6 0 0

χ16 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -1 -1

χ17 4 4 4 4 4 4 4 4 -4 -4 -4 -4 -4 -4 -1 -1

χ18 0 0 0 0 0 0 0 0 4 4 4 4 4 4 -2 -2

χ19 0 0 0 0 0 0 0 0 4 4 4 4 4 4 -2 -2

χ20 2 2 2 2 2 2 2 2 -5 -5 -5 -5 -5 -5 1 1

χ21 -2 -2 -2 -2 -2 -2 -2 -2 -5 -5 -5 -5 -5 -5 1 1

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1

χ24 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1

χ25 -1 1 -1 1 -1 -1 1 1 4 -4 -4 4 -4 4 1 -1

χ26 1 -1 1 -1 1 1 -1 -1 4 -4 -4 4 -4 4 1 -1

χ27 0 0 0 0 0 0 0 0 -1 1 1 -1 1 -1 2 -2

χ28 0 0 0 0 0 0 0 0 -1 1 1 -1 1 -1 2 -2

χ29 -2 2 -2 2 -2 -2 2 2 5 -5 -5 5 -5 5 -1 1

χ30 2 -2 2 -2 2 2 -2 -2 5 -5 -5 5 -5 5 -1 1

χ31 3 -3 3 -3 3 3 -3 -3 6 -6 -6 6 -6 6 0 0

χ32 -3 3 -3 3 -3 -3 3 3 6 -6 -6 6 -6 6 0 0

χ33 -2 2 -2 2 -2 -2 2 2 1 -1 -1 1 -1 1 1 -1

χ34 2 -2 2 -2 2 2 -2 -2 1 -1 -1 1 -1 1 1 -1

χ35 3 -3 3 -3 3 3 -3 -3 5 -5 -5 5 -5 5 2 -2

χ36 -3 3 -3 3 -3 -3 3 3 5 -5 -5 5 -5 5 2 -2

χ37 0 0 0 0 0 0 0 0 -6 6 6 -6 6 -6 0 0

χ38 -4 4 -4 4 -4 -4 4 4 -4 4 4 -4 4 -4 -1 1

χ39 4 -4 4 -4 4 4 -4 -4 -4 4 4 -4 4 -4 -1 1

χ40 0 0 0 0 0 0 0 0 4 -4 -4 4 -4 4 -2 2

χ41 0 0 0 0 0 0 0 0 4 -4 -4 4 -4 4 -2 2

χ42 2 -2 2 -2 2 2 -2 -2 -5 5 5 -5 5 -5 1 -1

χ43 -2 2 -2 2 -2 -2 2 2 -5 5 5 -5 5 -5 1 -1

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 27:S8(continued)

3B 4A 4B

6G 6H 6I 6J 4S 4T 4U V 8A 8B 4W 4X 4Y 4Z 4AA 4AB

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ3 1 1 1 1 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1

χ4 1 1 1 1 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1

χ5 2 2 2 2 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2

χ6 2 2 2 2 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2

χ7 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

χ8 -1 -1 -1 -1 2 2 2 2 2 2 2 2 2 2 2 2

χ9 0 0 0 0 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1

χ10 0 0 0 0 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1

χ11 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

χ12 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

χ13 2 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ14 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

χ15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ16 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ17 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ18 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0

χ19 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0

χ20 1 1 1 1 4 4 4 4 4 4 0 0 0 0 0 0

χ21 1 1 1 1 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1

χ24 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

χ25 -1 1 -1 1 -3 3 -3 3 -3 3 1 -1 -1 1 -1 1

χ26 -1 1 -1 1 3 -3 3 -3 3 -3 -1 1 1 -1 1 -1

χ27 -2 2 -2 2 2 -2 2 -2 2 -2 -2 2 2 -2 2 -2

χ28 -2 2 -2 2 -2 2 -2 2 -2 2 2 -2 -2 2 -2 2

χ29 1 -1 1 -1 -2 2 -2 2 -2 2 -2 2 2 -2 2 -2

χ30 1 -1 1 -1 2 -2 2 -2 2 -2 2 -2 -2 2 -2 2

χ31 0 0 0 0 -3 3 -3 3 -3 3 1 -1 -1 1 -1 1

χ32 0 0 0 0 3 -3 3 -3 3 -3 -1 1 1 -1 1 -1

χ33 -1 1 -1 1 2 -2 2 -2 2 -2 2 -2 -2 2 -2 2

χ34 -1 1 -1 1 -2 2 -2 2 -2 2 -2 2 2 -2 2 -2

χ35 -2 2 -2 2 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

χ36 -2 2 -2 2 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1

χ37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ38 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ39 1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ40 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0

χ41 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0

χ42 -1 1 -1 1 4 -4 4 -4 4 -4 0 0 0 0 0 0

χ43 -1 1 -1 1 -4 4 -4 4 -4 4 0 0 0 0 0 0

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 27:S8(continued)

4B 4C 4D

8C 8D 4AC 4AD 4AE 4AF 4AG 4AH 4AI 8E 8MF 4AJ 4AK 8G 4AL 8H

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ3 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

χ4 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

χ5 -2 -2 2 2 2 2 2 2 0 0 0 0 0 0 0 0

χ6 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0

χ7 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ8 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ9 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

χ10 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

χ11 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ12 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ14 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ15 0 0 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2

χ16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ20 0 0 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0

χ21 0 0 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0

χ22 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2

χ23 -1 1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

χ24 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

χ25 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1

χ26 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1

χ27 2 -2 2 2 -2 -2 2 -2 0 0 0 0 0 0 0 0

χ28 -2 2 2 2 -2 -2 2 -2 0 0 0 0 0 0 0 0

χ29 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ30 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ31 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

χ32 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

χ33 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ34 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ35 1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1

χ36 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1

χ37 0 0 2 2 -2 -2 2 -2 -2 2 -2 2 -2 2 -2 2

χ38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ42 0 0 -2 -2 2 2 -2 2 0 0 0 0 0 0 0 0

χ43 0 0 -2 -2 2 2 -2 2 0 0 0 0 0 0 0 0

χ44 0 0 2 2 -2 -2 2 -2 2 -2 2 -2 2 -2 2 -2
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

5A 6A 6B

5A 10A 10B 10C 6K 12A 6L 12B 6M 12C 12D 6N 6O 6P 12E 12F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ3 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0

χ4 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0

χ5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ6 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

χ7 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ8 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ9 1 1 1 1 0 0 0 0 0 0 0 0 -2 -2 -2 -2

χ10 1 1 1 1 0 0 0 0 0 0 0 0 -2 -2 -2 -2

χ11 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ12 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1

χ13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

χ14 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ15 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2

χ16 1 1 1 1 2 2 2 2 2 2 2 2 0 0 0 0

χ17 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0

χ18 -1 -1 -1 -1 2 2 2 2 2 2 2 2 0 0 0 0

χ19 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0

χ20 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ21 0 0 0 0 1 1 1 1 1 1 1 1 -1 -1 -1 -1

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1

χ24 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1

χ25 2 -2 -2 2 -2 2 2 -2 -2 2 -2 2 0 0 0 0

χ26 2 -2 -2 2 2 -2 -2 2 2 -2 2 -2 0 0 0 0

χ27 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1

χ28 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

χ29 0 0 0 0 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1

χ30 0 0 0 0 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1

χ31 1 -1 -1 1 0 0 0 0 0 0 0 0 -2 2 2 -2

χ32 1 -1 -1 1 0 0 0 0 0 0 0 0 -2 2 2 -2

χ33 -2 2 2 -2 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1

χ34 -2 2 2 -2 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1

χ35 0 0 0 0 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1

χ36 0 0 0 0 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1

χ37 2 -2 -2 2 0 0 0 0 0 0 0 0 2 -2 -2 2

χ38 1 -1 -1 1 2 -2 -2 2 2 -2 2 -2 0 0 0 0

χ39 1 -1 -1 1 -2 2 2 -2 -2 2 -2 2 0 0 0 0

χ40 -1 1 1 -1 2 -2 -2 2 2 -2 2 -2 0 0 0 0

χ41 -1 1 1 -1 -2 2 2 -2 -2 2 -2 2 0 0 0 0

χ42 0 0 0 0 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1

χ43 0 0 0 0 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

6B 6C 6D 6E

12G 12H 6Q 12I 12J 6R 6S 6T 6U 6V 6W 6X 6Y 12K 6Z 12L

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ3 0 0 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ4 0 0 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1

χ5 -1 -1 2 2 2 2 0 0 0 0 0 0 0 0 0 0

χ6 -1 -1 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ7 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1

χ8 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ9 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ10 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ11 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1

χ12 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ13 1 1 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ14 1 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0

χ15 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ16 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ17 0 0 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

χ18 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0

χ19 0 0 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ21 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1

χ24 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1 -1 -1

χ25 0 0 1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 1

χ26 0 0 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 1

χ27 1 -1 2 2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ28 1 -1 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0

χ29 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 1 -1 -1

χ30 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 -1

χ31 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ32 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ33 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 1

χ34 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 1

χ35 -1 1 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0

χ36 -1 1 2 2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ37 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ38 0 0 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1

χ39 0 0 1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1

χ40 0 0 2 2 -2 -2 0 0 0 0 0 0 0 0 0 0

χ41 0 0 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0

χ42 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1 -1 -1

χ43 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76



CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

7A 8A 10A 12A 15A

7A 14A 8I 8J 8K 8L 10D 20A 20B 10E 12M 24A 24B 12SN 15A 30A

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1

χ3 0 0 1 1 1 1 0 0 0 0 0 0 0 0 -1 -1

χ4 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0 -1 -1

χ5 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1 -1 -1

χ6 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1 -1 -1

χ7 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 0 0

χ8 -1 -1 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0

χ9 0 0 -1 -1 -1 -1 1 1 1 1 0 0 0 0 1 1

χ10 0 0 1 1 1 1 -1 -1 -1 -1 0 0 0 0 1 1

χ11 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1

χ12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

χ13 0 0 1 1 1 1 0 0 0 0 -1 -1 -1 -1 0 0

χ14 0 0 -1 -1 -1 -1 0 0 0 0 1 1 1 1 0 0

χ15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1

χ16 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1

χ17 0 0 0 0 0 0 -1 -1 -1 -1 0 0 0 0 1 1

χ18 1 1 0 0 0 0 -1 -1 -1 -1 0 0 0 0 -1 -1

χ19 1 1 0 0 0 0 1 1 1 1 0 0 0 0 -1 -1

χ20 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

χ21 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 0 0

χ22 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1

χ24 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1

χ25 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 -1 1

χ26 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0 -1 1

χ27 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1 -1 1

χ28 0 0 0 0 0 0 -1 -1 1 1 1 1 -1 -1 -1 1

χ29 -1 1 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0

χ30 -1 1 0 0 0 0 0 0 0 0 -1 -1 1 1 0 0

χ31 0 0 -1 -1 1 1 1 1 -1 -1 0 0 0 0 1 -1

χ32 0 0 1 1 -1 -1 -1 -1 1 1 0 0 0 0 1 -1

χ33 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 1 -1

χ34 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 1 -1

χ35 0 0 1 1 -1 -1 0 0 0 0 -1 -1 1 1 0 0

χ36 0 0 -1 -1 1 1 0 0 0 0 1 1 -1 -1 0 0

χ37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1

χ38 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 1 -1

χ39 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0 1 -1

χ40 1 -1 0 0 0 0 -1 -1 1 1 0 0 0 0 -1 1

χ41 1 -1 0 0 0 0 1 1 -1 -1 0 0 0 0 -1 1

χ42 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0

χ43 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 0 0

χ44 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

1A 2A

1A 2A 2B 2C 2D 2E 2F 4A 4B 4C 4D 4E 4F 4G

χ45 28 -28 4 -4 -4 4 16 -14 4 -6 -4 2 2 0

χ46 28 -28 4 -4 -4 4 -16 14 -4 6 4 -2 -2 0

χ47 28 -28 4 -4 -4 4 14 -16 6 -4 -2 4 0 -2

χ48 28 -28 4 -4 -4 4 -14 16 -6 4 2 -4 0 2

χ49 140 -140 20 -20 -20 20 -40 50 -20 10 4 -14 2 8

χ50 140 -140 20 -20 -20 20 50 -40 10 -20 -14 4 8 2

χ51 140 -140 20 -20 -20 20 -50 40 -10 20 14 -4 -8 -2

χ52 140 -140 20 -20 -20 20 40 -50 20 -10 -4 14 -2 -8

χ53 140 -140 20 -20 -20 20 -20 10 0 10 8 2 -6 -4

χ54 140 -140 20 -20 -20 20 10 -20 10 0 2 8 -4 -6

χ55 140 -140 20 -20 -20 20 -10 20 -10 0 -2 -8 4 6

χ56 140 -140 20 -20 -20 20 20 -10 0 -10 -8 -2 6 4

χ57 252 -252 36 -36 -36 36 -36 54 -24 6 0 -18 6 12

χ58 252 -252 36 -36 -36 36 54 -36 6 -24 -18 0 12 6

χ59 252 -252 36 -36 -36 36 -54 36 -6 24 18 0 -12 -6

χ60 252 -252 36 -36 -36 36 36 -54 24 -6 0 18 -6 -12

χ61 280 -280 40 -40 -40 40 -40 20 0 20 16 4 -12 -8

χ62 280 -280 40 -40 -40 40 20 -40 20 0 4 16 -8 -12

χ63 280 -280 40 -40 -40 40 -20 40 -20 0 -4 -16 8 12

χ64 280 -280 40 -40 -40 40 40 -20 0 -20 -16 -4 12 8

χ65 448 -448 64 -64 -64 64 16 16 -16 -16 -16 -16 16 16

χ66 448 -448 64 -64 -64 64 -16 -16 16 16 16 16 -16 -16

χ67 28 28 4 4 -4 -4 16 14 4 6 -4 -2 -2 0

χ68 28 28 4 4 -4 -4 -16 -14 -4 -6 4 2 2 0

χ69 28 28 4 4 -4 -4 14 16 6 4 -2 -4 0 -2

χ70 28 28 4 4 -4 -4 -14 -16 -6 -4 2 4 0 2

χ71 140 140 20 20 -20 -20 -40 -50 -20 -10 4 14 -2 8

χ72 140 140 20 20 -20 -20 50 40 10 20 -14 -4 -8 2

χ73 140 140 20 20 -20 -20 -50 -40 -10 -20 14 4 8 -2

χ74 140 140 20 20 -20 -20 40 50 20 10 -4 -14 2 -8

χ75 140 140 20 20 -20 -20 -20 -10 0 -10 8 -2 6 -4

χ76 140 140 20 20 -20 -20 10 20 10 0 2 -8 4 -6

χ77 140 140 20 20 -20 -20 -10 -20 -10 0 -2 8 -4 6

χ78 140 140 20 20 -20 -20 20 10 0 10 -8 2 -6 4

χ79 252 252 36 36 -36 -36 -36 -54 -24 -6 0 18 -6 12

χ80 252 252 36 36 -36 -36 54 36 6 24 -18 0 -12 6

χ81 252 252 36 36 -36 -36 -54 -36 -6 -24 18 0 12 -6

χ82 252 252 36 36 -36 -36 36 54 24 6 0 -18 6 -12

χ83 280 280 40 40 -40 -40 -40 -20 0 -20 16 -4 12 -8

χ84 280 280 40 40 -40 -40 20 40 20 0 4 -16 8 -12

χ85 280 280 40 40 -40 -40 -20 -40 -20 0 -4 16 -8 12

χ86 280 280 40 40 -40 -40 40 20 0 20 -16 4 -12 8

χ87 448 448 64 64 -64 -64 16 -16 -16 16 -16 16 -16 16

χ88 448 448 64 64 -64 -64 -16 16 16 -16 16 -16 16 -16
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

2B 2C

2J 2K 2L 2M 2N 20 4E 4F 2P 4G 4H 2Q 4I 2R 4J 2S 4K 4L

χ45 4 4 4 4 -4 -4 0 0 8 -4 4 -8 4 0 -4 0 0 0

χ46 4 4 4 4 -4 -4 0 0 8 -4 4 -8 4 0 -4 0 0 0

χ47 -4 -4 -4 -4 4 4 0 0 4 -8 8 -4 0 -4 0 4 0 0

χ48 -4 -4 -4 -4 4 4 0 0 4 -8 8 -4 0 -4 0 4 0 0

χ49 4 4 4 4 -4 -4 0 0 0 -12 12 0 -4 -8 4 8 0 0

χ50 -4 -4 -4 -4 4 4 0 0 12 0 0 -12 8 4 -8 -4 0 0

χ51 -4 -4 -4 -4 4 4 0 0 12 0 0 -12 8 4 -8 -4 0 0

χ52 4 4 4 4 -4 -4 0 0 0 -12 12 0 -4 -8 4 8 0 0

χ53 -12 -12 -12 -12 12 12 0 0 8 -4 4 -8 4 0 -4 0 0 0

χ54 12 12 12 12 -12 -12 0 0 4 -8 8 -4 0 -4 0 4 0 0

χ55 12 12 12 12 -12 -12 0 0 4 -8 8 -4 0 -4 0 4 0 0

χ56 -12 -12 -12 -12 12 12 0 0 8 -4 4 -8 4 0 -4 0 0 0

χ57 -12 -12 -12 -12 12 12 0 0 0 -12 12 0 -4 -8 4 8 0 0

χ58 12 12 12 12 -12 -12 0 0 12 0 0 -12 8 4 -8 -4 0 0

χ59 12 12 12 12 -12 -12 0 0 12 0 0 -12 8 4 -8 -4 0 0

χ60 -12 -12 -12 -12 12 12 0 0 0 -12 12 0 -4 -8 4 8 0 0

χ61 -8 -8 -8 -8 8 8 0 0 -8 16 -16 8 0 8 0 -8 0 0

χ62 8 8 8 8 -8 -8 0 0 -16 8 -8 16 -8 0 8 0 0 0

χ63 8 8 8 8 -8 -8 0 0 -16 8 -8 16 -8 0 8 0 0 0

χ64 -8 -8 -8 -8 8 8 0 0 -8 16 -16 8 0 8 0 -8 0 0

χ65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ67 4 -4 -4 4 4 -4 0 0 8 4 -4 -8 -4 0 4 0 0 0

χ68 4 -4 -4 4 4 -4 0 0 8 4 -4 -8 -4 0 4 0 0 0

χ69 -4 4 4 -4 -4 4 0 0 4 8 -8 -4 0 -4 0 4 0 0

χ70 -4 4 4 -4 -4 4 0 0 4 8 -8 -4 0 -4 0 4 0 0

χ71 4 -4 -4 4 4 -4 0 0 0 12 -12 0 4 -8 -4 8 0 0

χ72 -4 4 4 -4 -4 4 0 0 12 0 0 -12 -8 4 8 -4 0 0

χ73 -4 4 4 -4 -4 4 0 0 12 0 0 -12 -8 4 8 -4 0 0

χ74 4 -4 -4 4 4 -4 0 0 0 12 -12 0 4 -8 -4 8 0 0

χ75 -12 12 12 -12 -12 12 0 0 8 4 -4 -8 -4 0 4 0 0 0

χ76 12 -12 -12 12 12 -12 0 0 4 8 -8 -4 0 -4 0 4 0 0

χ77 12 -12 -12 12 12 -12 0 0 4 8 -8 -4 0 -4 0 4 0 0

χ78 -12 12 12 -12 -12 12 0 0 8 4 -4 -8 -4 0 4 0 0 0

χ79 -12 12 12 -12 -12 12 0 0 0 12 -12 0 4 -8 -4 8 0 0

χ80 12 -12 -12 12 12 -12 0 0 12 0 0 -12 -8 4 8 -4 0 0

χ81 12 -12 -12 12 12 -12 0 0 12 0 0 -12 -8 4 8 -4 0 0

χ82 -12 12 12 -12 -12 12 0 0 0 12 -12 0 4 -4 -4 8 0 0

χ83 -8 8 8 -8 -8 8 0 0 -8 -16 16 8 0 8 0 -8 0 0

χ84 8 -8 -8 8 8 -8 0 0 -16 -8 8 16 8 0 -8 0 0 0

χ85 8 -8 -8 8 8 -8 0 0 -16 -8 8 16 8 0 -8 0 0 0

χ86 -8 8 8 -8 -8 8 0 0 -8 -16 16 8 0 8 0 -8 0 0

χ87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

2D 3A 3B

2T 4M 4N 4O 4P 4Q 2U 4R 3A 6A 6B 6C 6D 6E 3B 6F

χ45 4 2 2 4 -2 0 0 -2 10 -10 -2 2 2 -2 1 -1

χ46 -4 -2 -2 -4 2 0 0 2 10 -10 -2 2 2 -2 1 -1

χ47 -2 -4 -4 -2 0 2 2 0 10 -10 -2 2 2 -2 1 -1

χ48 2 4 4 2 0 -2 -2 0 10 -10 -2 2 2 -2 1 -1

χ49 4 2 2 4 -2 0 0 -2 20 -20 -4 4 4 -4 -1 1

χ50 2 4 4 2 0 -2 -2 0 20 -20 -4 4 4 -4 -1 1

χ51 -2 -4 -4 -2 0 2 2 0 20 -20 -4 4 4 -4 -1 1

χ52 -4 -2 -2 -4 2 0 0 2 20 -20 -4 4 4 -4 -1 1

χ53 0 -6 -6 0 -2 4 4 -2 -10 10 2 -2 -2 2 2 -2

χ54 -6 0 0 -6 4 -2 -2 4 -10 10 2 -2 -2 2 2 -2

χ55 6 0 0 6 -4 2 2 -4 -10 10 2 -2 -2 2 2 -2

χ56 0 6 6 0 2 -4 -4 2 -10 10 2 -2 -2 2 2 -2

χ57 0 6 6 0 2 -4 -4 2 0 0 0 0 0 0 0 0

χ58 6 0 0 6 -4 2 2 -4 0 0 0 0 0 0 0 0

χ59 -6 0 0 -6 4 -2 -2 4 0 0 0 0 0 0 0 0

χ60 0 -6 -6 0 -2 4 4 -2 0 0 0 0 0 0 0 0

χ61 8 4 4 8 -4 0 0 -4 10 -10 -2 2 2 -2 1 -1

χ62 4 8 8 4 0 -4 -4 0 10 -10 -2 2 2 -2 1 -1

χ63 -4 -8 -8 -4 0 4 4 0 10 -10 -2 2 2 -2 1 -1

χ64 -8 -4 -4 -8 4 0 0 4 10 -10 -2 2 2 -2 1 -1

χ65 0 0 0 0 0 0 0 0 -20 20 4 -4 -4 4 -2 2

χ66 0 0 0 0 0 0 0 0 -20 20 4 -4 -4 4 -2 2

χ67 4 -2 -4 2 0 0 -2 2 10 10 2 2 -2 -2 1 1

χ68 -4 2 4 -2 0 0 2 -2 10 10 2 2 -2 -2 1 1

χ69 -2 4 2 -4 -2 2 0 0 10 10 2 2 -2 -2 1 1

χ70 2 -4 -2 4 2 -2 0 0 10 10 2 2 -2 -2 1 1

χ71 4 -2 -4 2 0 0 -2 2 20 20 4 4 -4 -4 -1 -1

χ72 2 -4 -2 4 2 -2 0 0 20 20 4 4 -4 -4 -1 -1

χ73 -2 4 2 -4 -2 2 0 0 20 20 4 4 -4 -4 -1 -1

χ74 -4 2 4 -2 0 0 2 -2 20 20 4 4 -4 -4 -1 -1

χ75 0 6 0 -6 -4 4 -2 2 -10 -10 -2 -2 2 2 2 2

χ76 -6 0 6 0 2 -2 4 -4 -10 -10 -2 -2 2 2 2 2

χ77 6 0 -6 0 -2 2 -4 4 -10 -10 -2 -2 2 2 2 2

χ78 0 -6 0 6 4 -4 2 -2 -10 -10 -2 -2 2 2 2 2

χ79 0 -6 0 6 4 -4 2 -2 0 0 0 0 0 0 0 0

χ80 6 0 -6 0 -2 2 -4 4 0 0 0 0 0 0 0 0

χ81 -6 0 6 0 2 -2 4 -4 0 0 0 0 0 0 0 0

χ82 0 6 0 -6 -4 4 -2 2 0 0 0 0 0 0 0 0

χ83 8 -4 -8 4 0 0 -4 4 10 10 2 2 -2 -2 1 1

χ84 4 -8 -4 8 4 -4 0 0 10 10 2 2 -2 -2 1 1

χ85 -4 8 4 -8 -4 4 0 0 10 10 2 2 -2 -2 1 1

χ86 -8 4 8 -4 0 0 4 -4 10 10 2 2 -2 -2 1 1

χ87 0 0 0 0 0 0 0 0 -20 -20 -4 -4 4 4 -2 -2

χ88 0 0 0 0 0 0 0 0 -20 -20 -4 -4 4 4 -2 -2
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CHAPTER 6. A GROUP 27:S8 IN FI22

The character table of 27:S8(continued)

3B 4A 4B

6G 6H 6I 6J 4AA 4AB 8A 8B 8C 8D 4AC 4AD 8E 8F 8G 8H

χ45 -1 1 1 -1 6 -6 -2 2 0 0 2 -2 -2 2 2 -2

χ46 -1 1 1 -1 -6 6 2 -2 0 0 -2 2 2 -2 -2 2

χ47 -1 1 1 -1 6 -6 -2 2 0 0 -2 2 2 -2 -2 2

χ48 -1 1 1 -1 -6 6 2 -2 0 0 2 -2 -2 2 2 -2

χ49 1 -1 -1 1 -6 6 2 -2 0 0 -2 2 2 -2 -2 2

χ50 1 -1 -1 1 6 -6 -2 2 0 0 -2 2 2 -2 -2 2

χ51 1 -1 -1 1 -6 6 2 -2 0 0 2 -2 -2 2 2 -2

χ52 1 -1 -1 1 6 -6 -2 2 0 0 2 -2 -2 2 2 -2

χ53 -2 2 2 -2 6 -6 -2 2 0 0 2 -2 -2 2 2 -2

χ54 -2 2 2 -2 -6 6 2 -2 0 0 2 -2 -2 2 2 -2

χ55 -2 2 2 -2 6 -6 -2 2 0 0 -2 2 2 -2 -2 2

χ56 -2 2 2 -2 -6 6 2 -2 0 0 -2 2 2 -2 -2 2

χ57 0 0 0 0 6 -6 -2 2 0 0 2 -2 -2 2 2 -2

χ58 0 0 0 0 -6 6 2 -2 0 0 2 -2 -2 2 2 -2

χ59 0 0 0 0 6 -6 -2 2 0 0 -2 2 2 -2 -2 2

χ60 0 0 0 0 -6 6 2 -2 0 0 -2 2 2 -2 -2 2

χ61 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ62 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ63 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ64 -1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ65 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ66 2 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ67 1 1 -1 -1 6 6 -2 -2 0 0 2 2 2 2 -2 -2

χ68 1 1 -1 -1 -6 -6 2 2 0 0 -2 -2 -2 -2 2 2

χ69 1 1 -1 -1 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2

χ70 1 1 -1 -1 -6 -6 2 2 0 0 2 2 2 2 -2 -2

χ71 -1 -1 1 1 -6 -6 2 2 0 0 -2 -2 -2 -2 2 2

χ72 -1 -1 1 1 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2

χ73 -1 -1 1 1 -6 -6 2 2 0 0 2 2 2 2 -2 -2

χ74 -1 -1 1 1 6 6 -2 -2 0 0 2 2 2 2 -2 -2

χ75 2 2 -2 -2 6 6 -2 -2 0 0 2 2 2 2 -2 -2

χ76 2 2 -2 -2 -6 -6 2 2 0 0 2 2 2 2 -2 -2

χ77 2 2 -2 -2 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2

χ78 2 2 -2 -2 -6 -6 2 2 0 0 -2 -2 -2 -2 2 2

χ79 0 0 0 0 6 6 -2 -2 0 0 2 2 2 2 -2 -2

χ80 0 0 0 0 -6 -6 2 2 0 0 2 2 2 2 -2 -2

χ81 0 0 0 0 6 6 -2 -2 0 0 -2 -2 -2 -2 2 2

χ82 0 0 0 0 -6 -6 2 2 0 0 -2 -2 -2 -2 2 2

χ83 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ84 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ85 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ86 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ87 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ88 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 27:S8(continued)

4B 4C 4D

8I 8J 4AE 4AF 4AG 4AH 8K 8L 4AL 8L 8M 8N 8O 8P 8Q 8R

χ45 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2 0

χ46 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2 0

χ47 0 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2

χ48 0 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2

χ49 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2 0

χ50 0 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2

χ51 0 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2

χ52 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2 0

χ53 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2 0

χ54 0 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2

χ55 0 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2

χ56 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2 2

χ57 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2 0

χ58 0 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2

χ59 0 0 0 0 0 0 0 0 0 -2 0 2 0 -2 0 2

χ60 0 0 0 0 0 0 0 0 2 0 -2 0 2 0 -2 0

χ61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ67 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2 -2

χ68 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2 0

χ69 0 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2

χ70 0 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2

χ71 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2 0

χ72 0 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2

χ73 0 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2

χ74 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2 0

χ75 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2 0

χ76 0 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2

χ77 0 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2

χ78 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2 0

χ79 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2 0

χ80 0 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2

χ81 0 0 0 0 0 0 0 0 0 -2 0 -2 0 2 0 2

χ82 0 0 0 0 0 0 0 0 2 0 2 0 -2 0 -2 0

χ83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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7

A group of the form 26:A8 as an inertia factor

group of 28:O+
8 (2)

Prologue

The group G = 26:A8 is an inertia factor group of 28:O+
8 (2). This group is also a maximal subgroup

of O+
8 (2) of index 135 and order 1290240. As an inertia factor group, our group G plays an

essential role in the construction of the character table of 28:O+
8 (2) as there is a block of irreducible

characters in the character table of 28:O+
8 (2) corresponding to G. In this chapter we look at two

ways of constructing G. In the first method, we use combinatorics and the natural action of A8 on

26. In the second method, we use GAP and we construct G inside O+
8 (2). We then compute the

Fischer-Clifford matrices of G which can then be used together with the ordinary character tables

of the inertia factors of A8 to compute its full ordinary character table. For more reading, on the

methods used, one can also go to [1, 2, 3, 26, 37, 81, 82, 99, 120, 126, 94].

7.1. Introduction

The group G = 26:A8 is a maximal subgroup of O+
8 (2) of index 135 and order 1290240. It is

also an inertia factor of O+
8 (2). As an inertia factor it plays an essential role in the construction

of the character table of 28:O+
8 (2) as there is a block of irreducible characters in this table that

corresponds to G. In the construction of G, A8 acts on the elementary abelian group 26. The

action on 26 is multiplication on the right of the six dimensional row vector space N = 26. This

requires A8 to be represented by 6× 6 matrices. It then becomes necessary to reconstruct A8 from

a 8× 8 representation to a 6× 6 representation. Here we look at two ways to do this.

Although it is much simpler and natural to consider the embedding of 26:A8 into O+
8 (2) (see Section

7.3), but it is interesting to construct this group combinatorially and this is our main reason for

discussing the first method. In our first method, we first take an 8-dimensional module V on which

S8 acts naturally by permuting its basis elements. We then obtain two submodules of V , namely
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M1 and M2 of dimensions 1 and 7 respectively. Let W = M2/M1, then dim(W ) = 6 and W is a G-

invariant where G = S6 or A8 (see Theorem 7.2.2). Let α and β be two permutation cycles of orders

7 and 3 respectively where A8 =< α, β >. We then, by the action of α and β on the generators of

W , get a matrix representation of both α and β. These are 6 × 6 matrix representations. We are

then able to represent A8 by 6 × 6 matrices. Letting this A8 act on W , we obtain three orbits of

lengths 1, 28 and 35 respectively. These have corresponding point stabilizers which we obtain from

the ATLAS [23] . We are then able to construct G.

For the second method we use GAP . We first construct O+
8 (2) from the general orthogonal group

GO+
8 (2). We then construct, G = 26:A8, inside O+

8 (2). This has only one proper normal subgroup,

namely 26, which we can always obtain from G. We then obtain the 6 generators of 26 which are

8 × 8 matrices. From the generators of G, we are able to get two, 8 × 8 matrix generators of A8

namely, a and b each of order 4. We then let a and b act on the generators of 26 by conjugation.

Since 26 E G the result of these actions are elements of 26. We get a 6 × 6 matrix representation

of both. This leads us to a 6× 6 representation of A8. We then let this A8, using GAP, to act on

26. Using the representatives of resulting orbits, we obtain corresponding point stabilizers of A8.

These turn out to be the same as those obtained by combinatorics above.

The two groups constructed have the same character table, and through GAP, one can confirm

that they are in deed isomorphic. We compute the Fischer-Clifford matrices which together with

the character tables of the inertia factor groups of A8 we use to compute the full character table

of 26:A8. Note that there might be other easier methods to achieve this but our aim is to use the

Fischer-Clifford theory to compute the character table.

7.2. The Combinatorics Method

The combinatorics method can also be found in [1] and [99] and is used extensively in [94] and

[126]. The group S8 acts naturally on a module of dimension 8 by permuting the basis elements

which generate the module. Let V be the 8-dimensional natural module of S8 over GF (2), where

V =< e1, e2, e3, e4, e5, e6, e7, e8 >, and e2
i = 1 for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We regard V as a

multiplicative elementary abelian 2-group of order 28.

Theorem 7.2.1. Let V be the natural module of S8 over GF (2). Then there exist S8 submodules

M1 and M2 of V such that V ⊃M2 ⊃M1 ⊃ 0 and that

dim(M2) = 7 and dim(M1) = 1.

PROOF. Let V =< e1, e2, e3, e4, e5, e6, e7, e8 >, and e2
i = 1 for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Then S8 acts

naturally on V and this natural action results in the following orbits :

1. O0 = {1V } and |O0| = 1.
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2. O1 = {ei|1 ≤ i ≤ 8} and |O1| = 8.

3. O2 = {eiej |1 ≤ i, j ≤ 8, i 6= j} and |O2| =

(
8

2

)
= 28.

4. O3 = {eiejek|1 ≤ i, j, k ≤ 8, distinct i, j, k} and |O3| =

(
8

3

)
= 56.

5. O4 = {eiejekel|1 ≤ i, j, k, l ≤ 8, distinct i, j, k, l} and |O4| =

(
8

4

)
= 70.

6. O5 = {eiejekelem|1 ≤ i, j, k, l,m ≤ 8, distinct i, j, k, l,m} and |O5| =

(
8

5

)
= 56.

7. O6 = {eiejekelemen|1 ≤ i, j, k, l,m, n ≤ 8, distinct i, j, k, l,m, n} and |O6| =

(
8

6

)
= 28.

8. O7 = {eiejekelemeneo|1 ≤ i, j, k, l,m, n, o ≤ 8, distinct i, j, k, l,m, n, o} and |O7| =

(
8

7

)
=

8.

9. O8 = {eiejekelemeneoep|1 ≤ i, j, k, l,m, n, o, p ≤ 8, distinct i, j, k, l,m, n, o, p} and |O8| =(
8

8

)
= 1.

Thus S8 produces 9 orbits on V . Set M1 =< e1e2e3e4e5e6e7e8 >. Then M1 is an S8 - invariant

submodule of V with dim(M1) = 1. Now set M2 = O0 ∪O2 ∪O4 ∪O6 ∪O8 . Then |M2| = 128, so

we have dim(M2) = 7. Since M1 = O0 ∪O8, we obtain that V ⊃M2 ⊃M1 ⊃ 0. This implies that

M2 is a reducible S8 - invariant submodule of V . �

Since S8 is 8-transitive, A8 is 6-transitive on {e1, e2, e3, e4, e5, e6, e7, e8}. It is clear thatO0, O1, O2, O4, O5, O6

are also orbits under the action of A8. Now since A8 does not have a proper subgroup of index less

than 8, O7 remains as an orbit of length 8. Obviously O8 also remains as an orbit of length 1.

Theorem 7.2.2. Let W = M2/M1, then dim(W ) = 6. Also W is a G - invariant module where

G = S8 or A8.

PROOF. It is clear that dim(W ) = 6, since dim(M1) = 1 and dim(M2) = 7. If g ∈ G and α ∈ M2,

then since M2 is G invariant, g(αM1) = g(α)M1 ∈M2/M1 ∀ g ∈ G and α ∈M2. So W is S8 (A8)

invariant. �

LetW =< e1e2M1, e1e3M1, e1e4M1, e1e5M1, e1e6M1, e1e7M1 >. The setB = {e1e2, e1e3, e1e4, e1e5, e1e6, e1e7}
is a linearly independent set. Let

γ1 = e1e2M1, γ2 = e1e3M1, γ3 = e1e4M1, γ4 = e1e5M1, γ5 = e1e6M1, γ6 = e1e7M1.
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Also, if α = (1 2 3 4 5 6 7) and β = (6 7 8) then A8 =< α, β >.

We obtain

α : γ1 → γ1γ2, γ2 → γ1γ3, γ3 → γ1γ4, γ4 → γ1γ5, γ5 → γ1γ6, and γ6 → γ1.

We give two examples for the action of α. Under the action of α we have

γ2 = e1e3M1 → e2e4M1 = e1e2e1e4M1 = γ1γ3

That is α(γ2) = γ1γ3. Also

γ6 = e1e7M1 → e2e1M1 = γ1.

That is α(γ6) = γ1. Hence α can be represented by the following matrix

α =



1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0


,

with o(α) = 7.

Similarly for β we have

β : γ1 → γ1, γ2 → γ2, γ3 → γ3, γ4 → γ4, γ5 → γ6, γ6 → γ1γ2γ3γ4γ5γ6

As an example we see that

γ6 = e1e7M1 → e1e8M1 = e2e3e4e5e6e7M1 = γ1γ2γ3γ4γ5γ6.

That is β(γ6) = γ1γ2γ3γ4γ5γ6 . Here we obtain

β =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1 1 1 1 1 1


,

with o(β) = 3. We are now able to write all the elements of A8 as 6 × 6 matrices. By acting A8

directly on W , using the orbits of A8 on M2 and the fact that M1 = {1, e1e2e3e4e5e6e7e8}, we can

see that A8 has 3 orbits namely

∆0 = {O0M1} = {O8M1} = {M1},
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∆1 = {O2M1} = {O6M1} = {eiejM1|distinct ei, ej},

∆2 = {O4M1} = {eiejekelM1|distinct ei, ej , ek, el}.

Clearly |∆0| = 1, |∆1| = 28, |∆2| = 70
2 = 35 and W = ∆0 ∪∆1 ∪∆2.

Theorem 7.2.3. A8 acts irreducibly on W .

PROOF. Let U ≤ W be such that U 6= 0 and U is A8 invariant. Since U 6= 0 ∃ x ∈ U such that

x 6= 0. Since x 6= 0 and U ≤W we have two cases.

Case 1 : Suppose x ∈ ∆1, x = eiejM1 for distinct i, j. Hence g(x) ∈ U ∀ g ∈ A8. However

{g(x)|g ∈ A8} = ∆1 ⇒ ∆1 ⊆ U ⇒ eiejM1 ∈ U ∀ i, j.

Hence we have γ1, γ2, γ3, γ4, γ5, γ6 ∈ U.

Case 2: Suppose x ∈ ∆2, then x = eiejekelM1 for some distinct ei, ej , ek, el. Hence g(x) ∈ U ∀ g ∈
A8. Now

{g(x)|g ∈ A8} = ∆2 ⇒ ∆2 ⊆ U.

Since ∆2 ⊆ U, ekelemerM1 and ekelemeiM1 are in U for distinct k, l,m, r, i. Since U is closed we

get

(ekelemerM1)(ekelemeiM1) = eier ∈ U ∀ distinct k, l,m, r, i.

This shows that U ⊆W. So similar to case 1, we have U = W.

Hence W is a unique 6-dimensional GF (2) module that A8 acts irreducibly on. �

By methods of coset analysis that can be found in chapter 2, when G = A8 acts on W we obtain

three orbits of lengths 1, 28 and 35 respectively. These have corresponding point stabilizers K1,K2

and K3 of indices 1, 28 and 35 respectively. One can immediately see that K1 = G and K2,K3

must each sit in a maximal subgroup of G. However any maximal subgroup of G which contains Ki

must have an order divisible by |Ki| and its index in G must divide 28 and 35 respectively. From

the ATLAS [23], we get that up to isomorphism and conjugacy there is only one maximal subgroup

of G, in each case, that would contain K2 and the other K3 and these are the symmetric group S6

and the group 24:(S3 × S3) respectively. However since |K2| = |S6| we have K2
∼= S6. Similarly

we have K3
∼= 24:(S3 × S3). For each g ∈ G, the number of fixed points g ∈ G in N is equal to

k = |CN (g)|. Since the zero vector of N is fixed by every g ∈ G we have

k = 1 + χ(G|K2)(g) + χ(G|K3)(g) = 1 + (χ(G|K2) + χ(G|K3))(g).

From this we determine, χ = χ(A8|26), the permutation character of A8 on 26. We have

χ = 1a+ IA8
S6

+ IA8

24:(S3×S3)
= 3× 1a+ 7a+ 14a+ 2× 20a,

where IA8
S6

= 1a+ 7a+ 20a and IA8

24:(S3×S3)
= 1a+ 14a+ 20a, are the characters of A8 induced from

the identity characters of S6 and 24:(S3×S3) respectively. Since CN (g) ≤ N , we must have k = 2n

where n ∈ {1, 2, 3, 4, 5, 6}. Hence we obtain the values of the k′s in Table 7.1 .
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Table 7.1:

[g]A8 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 7a 7b 15a 15b

χ(A8|S6) 28 4 8 10 1 0 2 3 1 2 0 0 0 0

χ(A8|24 : (S3 × S3)) 35 11 7 5 2 3 1 0 2 1 0 0 0 0

k 64 16 16 16 4 4 4 4 4 4 1 1 1 1

7.3. The GAP Method

In this section for all our computations we use GAP [41]. We first construct O+
8 (2) inside the

general orthogonal group GO+
8 (2). This we do by getting the maximal normal subgroup of GO+

8 (2)

and this is a group of 8× 8 matrices of size 174182400 over GF (2). We then construct G = 26:A8

inside O+
8 (2) by first constructing an 8-dimensional row vector space U , over GF (2). We then let

O+
8 (2) to act on U and we get three orbits of lengths 1, 120 and 135. Using the ATLAS [23] and

Programme C (see Appendix A), given below, the maximal subgroup of index 135 is 26:A8 which

corresponds to the third orbit. We then get the stabilizer of a representative of this orbit in O+
8 (2),

which gives us a group of 8× 8 matrices of size 1290240 which is our 26:A8. We are now ready to

construct 26 and A8 inside our G. Note that we use ATLAS [23] for character tables of A8 and S6.

The character table of 24:(S3×S3) is given in the GAP Library [41], but it is also presented in the

table below.
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Character Table of 24:(S3 × S3)

1A 2A 2B 2C 4A 4B 3A 6A 3B 3C 2D 2E 4C 4D 6B 6C

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

χ3 1 1 1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1

χ4 1 1 1 -1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1

χ5 2 2 2 0 0 0 -1 -1 -1 2 0 2 0 2 -1 0

χ6 2 2 2 0 0 0 -1 -1 -1 2 0 -2 0 -2 1 0

χ7 2 2 2 0 0 0 -1 -1 2 -1 -2 0 -2 0 0 1

χ8 2 2 2 0 0 0 -1 -1 2 -1 2 0 2 0 0 -1

χ9 4 4 4 0 0 0 1 1 -2 -2 0 0 0 0 0 0

χ10 6 2 -2 2 -2 0 3 -1 0 0 0 0 0 0 0 0

χ11 6 2 -2 2 -2 0 3 -1 0 0 0 0 0 0 0 0

χ12 9 -3 1 1 1 -1 0 0 0 0 3 3 -1 -1 0 0

χ13 9 -3 1 1 1 -1 0 0 0 0 -3 -3 1 1 0 0

χ14 9 -3 1 -1 -1 1 0 0 0 0 3 -3 -1 1 0 0

χ15 9 -3 1 -1 -1 1 0 0 0 0 -3 3 1 -1 0 0

χ16 12 4 -4 0 0 0 -3 1 0 0 0 0 0 0 0 0

We first pay our attention to A8. We first obtain the generators of G. We get four of these and

from the four we pick two, call them a and b that generate A8 . We give a, b and their inverses

below. Note that o(a) = o(b) = 4.

a =



1 0 0 0 0 1 0 0

0 1 0 1 0 1 0 1

1 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0

1 1 0 0 1 1 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1


, b =



0 0 0 0 0 1 0 0

0 0 1 1 1 1 1 0

1 0 0 1 0 0 0 1

1 0 1 0 0 0 0 1

1 1 0 0 0 1 1 1

1 1 1 1 0 1 0 1

0 1 0 0 0 0 1 0

1 1 1 1 0 0 0 0



a−1 =



1 0 0 0 0 1 0 0

0 1 0 1 0 1 0 1

1 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 1 0 1 1 1 0 1

0 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, b−1 =



0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 0

1 0 0 1 1 0 1 0

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

1 0 0 0 0 1 0 1


.

The group N = 26 is the only proper normal subgroup of G and we use GAP [41] to obtain this

normal subgroup. We then obtain its generators, which are given below.
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γ1 =



1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, γ2 =



1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 1


,

γ3 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1

1 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1


, γ4 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

1 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1


,

γ5 =



1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 1


, γ6 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 1


.

Noting that the generators of 26 and A8 are both 8×8 matrices . Computing the conjugate of each

γi with respect to a, that is aγia−1 and noting that 26 is normal in 26:A8 we get that aγia−1 =

γj1γj2 · · · γjk , where γjr = γj or 1 for some jr = 1, · · · , 6. We denote this as γi → γj1γj2 · · · γjk .

We then get

γ1 → γ1, γ2 → γ2γ5, γ3 → γ2γ4γ5γ6, γ4 → γ4, γ5 → γ1γ4γ5, γ6 → γ1γ2γ3γ4.

Similarly with b we get

γ1 → γ1γ2γ3γ4γ6, γ2 → γ2γ3γ4γ5γ6, γ3 → γ1γ2γ3γ5γ6, γ4 → γ1γ3γ4,

γ5 → γ4, γ6 → γ2γ3γ4.

Representing this information in matrix form, where the i-th row will correspond to the i-th con-

jugate, we get a 6× 6 matrix representation of G = A8. Hence we have A8 =< a′, b′ >, where
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a′ =



1 0 0 0 0 0

0 1 0 0 1 0

0 1 0 1 1 1

0 0 0 1 0 0

1 0 0 1 1 0

1 1 1 1 0 0


, b′ =



1 1 1 1 0 1

0 1 1 1 1 1

1 1 1 0 1 1

1 0 1 1 0 0

0 0 0 1 0 0

0 1 1 1 0 0


.

We now turn our attention to the inertia factor groups of 26:A8. Here we use Programme C below,

to act G on Irr(N), N = 26. To be able to do this we need to rewrite N as a row vector space V

of dimension 6 over GF (2), that is V:= FullRowSpace(GF(2),6). We have two procedures at our

disposal. First we can act G on V from right and this action gives us the orbits of G acting as a

permutation group on the conjugacy classes of N . Secondly we act Gt, that is the set consists of

transpose of elements of G, on V from right. This action is equivalent to multiplying the column

vectors of V on the left by G. This action gives the orbits of G acting as a permutation group on

the irreducible characters of N .

PROGRAMME C for 26:A8

gap>V:=FullRowSpace(GF (2), 6);

gap>m1:=(OneGF(2))*[6× 6 matrix group generators];

gap>m2:=(OneGF(2))*[6× 6 matrix group generators];

gap>m:=Group(m1,m2);

gap>k:=OrbitLengths(m,V);

gap>l:= OrbitLengths(Group(List(m,TransposedMat)),N);

From the above, the action of G on Irr(N) produces three orbits of lengths 1, 28 and 35 respectively.

We then take representatives of the orbits of lengths 28 and 35. For each of the orbit representative

we find its stabilizer in G. For the representative of the orbit of length 28, the corresponding

stabilizer is a group of 6 × 6 matrices of size 720 isomorphic to S6. For the orbit of length 35 the

corresponding stabilizer is a group of 6×6 matrices of size 576 isomorphic to 24 : (S3×S3). This is

the same result which we got in Section 2. We use GAP to check our calculations for the number

of fixed points using Programme F (see Appendix A) and we list the values of the k’s in Table 7.2.

Table 7.2:

[g]A8 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 7a 7b 15a 15b

k 64 16 16 16 4 4 4 4 4 4 1 1 1 1

Since the two 26:A8 constructed are isomorphic we use one of them to compute the Fisher-Clifford

matrices and its character table.
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7.4. The Conjugacy Classes of 26:A8

We first give the representatives of the conjugacy classes of A8 in Table 7.3.

Table 7.3: Conjugacy classes of A8

[g]G 6× 6 matrix |[g]G| [g]G 6× 6 matrix |[g]G|

1A



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


1 2A



0 0 0 1 0 0

1 0 1 0 0 1

0 1 0 1 0 1

1 0 0 0 0 0

0 1 1 1 1 1

0 0 0 0 0 1


105

2B



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1 0 1 0 1 0


210 3A



0 1 1 1 1 0

0 1 0 0 0 0

1 1 0 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 0 1 1 1


112

3B



1 1 1 0 0 0

1 0 1 1 0 1

1 0 1 0 0 1

0 1 1 1 0 0

0 1 0 0 0 0

0 0 1 1 1 1


1 120 4B



0 0 1 1 1 1

0 0 1 1 0 0

0 0 0 0 1 0

1 0 1 0 1 1

0 1 0 1 0 1

1 1 1 0 0 0


1 260

4A



0 0 1 1 1 0

0 0 1 1 0 0

0 0 0 1 0 0

1 0 1 1 0 1

0 1 0 1 0 1

1 1 1 1 1 1


2 520 5a



0 1 0 1 0 1

1 0 1 0 0 1

0 0 0 1 0 0

0 0 0 1 1 1

0 0 0 0 0 1

0 1 1 1 1 0


1 344

6A



0 0 0 1 0 0

1 0 1 0 0 1

1 0 1 0 1 1

0 1 1 1 1 0

1 0 0 0 0 0

1 1 1 1 1 1


1 680 6B



0 0 1 1 1 1

0 0 1 0 0 0

1 0 1 1 0 1

1 0 1 0 1 1

0 1 1 1 1 0

1 0 0 0 0 0


3 360

7A



0 0 0 0 1 0

0 0 1 1 0 0

1 0 0 1 0 1

1 0 1 1 0 1

0 1 1 0 0 0

1 0 0 0 0 0


2 880 7B



1 0 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 0

1 1 1 1 1 1

0 0 0 1 1 1

0 1 1 0 0 0


2 880

15A



1 0 1 0 1 1

1 0 1 0 0 1

1 1 1 1 0 0

1 1 1 1 1 1

0 0 0 1 1 1

0 1 1 0 0 0


1 344 15B



0 0 1 1 1 0

0 0 1 1 1 1

1 1 1 1 1 1

1 0 0 0 0 0

0 1 1 0 0 0

1 0 1 1 0 1


1 344

From the methods of coset analysis, which can also be found in chapter 2 and by Programmes A

and B (see Appendix A), we are able to compute the conjugacy classes of 26:A8 which are given
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in Table 7.4. We give a very brief summary of coset analysis. We look at the action of G on Ng,

for the split extension it is suffices to look at the coset Ng, g ∈ G. First N acts on Ng and we

get k orbits. Then we act CG(g) on these orbits and fj of these orbits, fuse to form one orbit

with
∑
fj = k, and dj a representative of these fused orbits. For this we use Programme A (see

Appendix A).

PROGRAMME A for 26:A8

gap>V:=FullRowSpace(GF (2), 6);

gap>gr1:=(OneGF(2))*[6× 6 matrix group generators];

gap>gr2:=(OneGF(2))*[6× 6 matrix group generators];

gap>grp:=Group(gr1,gr2);

gap>Ccl:=ConjugacyClasses(grp);

gap>O:=Union(Orbits(grp,V));

gap>for i in [1..14] do

>Print(Representative(Ccl[i]));

>w:=One(GF(q))*[0, 0, · · · , 0];

>e:=[ ];

>while Difference(O,e) <> [ ] do

>d:=[ ];

>for x in O do;

>y:=[x+w+(x*(Representative((Ccl)[i]))];

>d:=Union(d,y);

>od;

>Print(d);

>e:=Union(d,e);

>if Difference(O,e) <> [ ] then

>w:=Representative(Difference(O,e));

>fi;

>od;

>r:=[ ];

>u:=One(GF(2))*[0, 0, · · · , 0];

>while Difference(O,e) <> [ ] do

>m:=[ ];

>for g in Centralizer(grp,Representative(Ccl[i])) do

>l:=[u*g];

>m:=Union(m,l);

>od;

>Print(”A block for the vectors under the action of a centralizer”);

>Print(m);

>r:=Union(m,r);

>if Difference(O,r) <> [ ] then

>u:=Representative(Difference(O,r));

>fi;

>od;

>Print(”**********************************”);

>od;

Let o(dg) = k and o(g) = m. If w = (dg)m, then if w = (0, 0, 0, 0, 0, 0), k = m. On the other hand

if w 6= (0, 0, 0, 0, 0, 0), then k = 2m. To get w we use Programme B (see Appendix A).
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PROGRAMME B for 26:A8

gap>V:=FullRowSpace(GF (2), 6);

gap>m1:=(OneGF(2))*[6× 6 matrix group generators];

gap>m2:=(OneGF(q))*[6× 6 matrix group generators];

gap>m:=Group(m1,m2);

gap>c:=ConjugacyClasses(m);

gap>g:=Representative(c[i]);

gap>d:=One(GF(2))*[α1, α2, · · · , α6];

gap>w:=d+ d ∗ g + d ∗ g2 + · · ·+ d ∗ gk−1;

gap>Print(w);

We obtain that 26:A8 has altogether 41 conjugacy classes which are given in Table 7.4 below.

Table 7.4: Conjugacy Classes of 26:A8

g ∈ A8 k fj dj w [x]26:A8
|C26:A8

(x)|
1A 26 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 1A 1 290 240

28 (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 1) 2A 46 080

35 (0, 0, 0, 1, 0, 1) (0, 0, 0, 1, 0, 1) 2B 36 864

2A 24 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2C 3 072

1 (0, 0, 1, 0, 0, 1) (0, 0, 0, 0, 0, 0) 2D 3 072

1 (0, 0, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0) 2E 3 072

1 (0, 0, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0) 2F 3 072

12 (0, 0, 0, 0, 0, 1) (1, 1, 1, 0, 0, 1) 4A 256

2B 24 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 2G 1 536

1 (0, 0, 1, 1, 1, 1) (0, 0, 1, 0, 0, 0) 4B 1 536

3 (1, 0, 1, 0, 1, 0) (0, 0, 0, 0, 0, 0) 2H 512

3 (0, 0, 1, 1, 0, 1) (0, 0, 1, 0, 1, 0) 4C 512

8 (0, 0, 0, 0, 0, 1) (0, 0, 0, 1, 1, 0) 4D 192

3A 24 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 3A 2 880

5 (1, 1, 0, 0, 1, 0) (0, 0, 1, 1, 1, 1) 6A 576

10 (0, 1, 0, 0, 1, 1) (0, 0, 1, 1, 0, 0) 6B 288

3B 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 3B 72

1 (1, 1, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1) 6B 72

1 (1, 0, 1, 0, 1, 0) (1, 0, 1, 0, 1, 0) 6C 72

1 (0, 0, 0, 1, 0, 0) (1, 1, 1, 1, 1, 1) 6D 72

4A 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4E 64

1 (1, 1, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0) 4F 64

1 (1, 0, 1, 0, 1, 0) (0, 0, 0, 0, 0, 0) 4G 64

1 (0, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0) 4H 64

4B 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 4I 32

1 (1, 1, 0, 1, 0, 0) (0, 0, 1, 1, 1, 1) 8A 32

1 (1, 0, 1, 0, 1, 0) (0, 0, 0, 0, 0, 0) 4J 32

1 (0, 0, 0, 1, 0, 0) (1, 1, 1, 0, 1, 0) 8B 32

5A 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 5A 60

3 (0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 1) 10A 20

6A 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6F 48

1 (1, 0, 1, 0, 1, 0) (0, 1, 1, 0, 1, 0) 12A 48

2 (1, 0, 1, 0, 1, 0) (1, 0, 1, 0, 1, 0) 12B 24

6B 22 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6G 24

1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1) 6H 24

continued on next page
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g ∈ AS8 k fj dj w [x]27:A8
(x)|

1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6I 24

1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 6J 24

7A 1 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 7A 7

7B 1 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 7B 7

15A 1 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 15A 15

15B 1 1 (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) 15B 15

7.5. The Fischer-Clifford matrices of 26:A8

The inertia factor groups are H1 = A8, H2 = S6 and H3 = 24:(S3×S3), as we discuss in section 7.3.

We construct H2 and H3 inside A8 in terms of 6 × 6 matrices. Their conjugacy classes are given

in Table 7.5 and Table 7.6 respectively. The fusions of the inertia factor groups into A8, which can

also be done using Programme D (see Appendix A), are given in Table 7.7.

PROGRAMME D for 26:A8

gap>g:=Group(H1);

gap>T1:=CharacterTable(g);

gap>h:=Group(H2);

gap>T2:=CharacterTable(h);

gap>k:=Group(H3);

gap>T3:=CharacterTable(k);

gap>FusionConjugacyClasses(h,g);

gap>FusionConjugacyClasses(k,g);

Using these fusions, and properties of Fischer-Clifford matrices which can be found in chapter 5.2.1,

we are now able to obtain the Fischer-Clifford matrices of 26:A8. For each class representative

g ∈ A8, we construct a Fischer-Clifford matrix M(g) which are given in the Table 7.8.
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Table 7.5: Conjugacy classes of S6

[g]S6 6× 6 matrix |[g]S6 | [g]S6 6× 6 matrix |[g]S6 |

1A



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


1 2A



1 0 1 0 1 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1


45

2B



1 0 0 0 0 0

1 1 0 1 1 0

0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


15 2C



1 0 0 1 1 0

0 1 1 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


15

3A



1 0 1 1 0 0

0 0 1 1 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


40 3B



1 0 0 1 1 0

0 0 1 1 0 0

1 1 1 1 1 0

1 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1


40

4A



1 0 1 1 0 0

1 1 0 1 1 0

0 0 1 1 1 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1


90 4B



1 0 1 1 0 0

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 1 0 1

0 0 0 1 0 0

0 0 0 0 0 1


90

6A



1 0 1 1 0 0

1 1 0 1 1 0

0 1 1 1 1 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


120 6B



1 0 0 1 1 0

0 0 1 1 0 0

0 0 1 0 0 1

0 1 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1


120

5A



1 0 1 1 0 0

1 1 0 0 0 1

0 1 1 1 1 1

0 1 0 1 0 1

0 0 0 1 0 0

0 0 0 0 0 1


144

7.6. The Character Table of 26:A8

We use the Fischer-Clifford matrices (Table 7.8) and the character tables of the inertia factors

groups A8, S6, 24:(S3 × S3) together with the fusions of these inertia factors into A8 which are

given in Table 7.7 to obtain the full character table of 26:A8. The Fischer-Clifford matrix M(g)

will be partitioned row-wise into blocks, where each block corresponds to an inertia group H i.

Then given the character table of the inertia factor group Hi of H i, we therefore take the columns

of this character table which correspond to the classes of Hi which fuse to class [g] in A8 and

multiply these columns by the rows of the Fischer-Clifford matrix M(g) which correspond to H i
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Table 7.6: Conjugacy classes of 24 : (S3 × S3)

[g]24:(S3×S3) 6× 6 matrix |[g]24:(S3×S3)| [g]24:(S3×S3) 6× 6 matrix |[g]24:(S3×S3)|

1A



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


1 2A



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 0 1 0

1 1 1 1 1 1


6

2B



1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 0 1 0

1 1 1 0 1 1


9 2C



1 0 0 1 0 0

0 1 1 1 1 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 0 1 0

1 1 1 0 1 1


36

2D



1 0 0 0 0 0

1 1 0 1 1 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 1 0

1 1 1 0 1 1


12 2E



1 0 0 1 1 0

1 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


12

3A



0 1 0 1 1 0

0 1 0 0 1 0

1 1 0 1 0 0

1 1 1 0 0 0

0 0 0 0 1 0

1 1 1 0 1 1


16 3B



1 1 1 0 1 0

0 1 1 1 0 0

1 1 1 1 1 0

1 0 1 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1


32

3C



1 1 0 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

0 1 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


32 4A



0 1 0 1 1 0

0 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


36

4B



1 0 0 1 1 0

0 0 1 1 0 0

0 0 1 0 0 1

0 1 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1


72 4C



1 0 0 1 0 0

0 1 1 1 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 1 1 0 1


36

4D



1 0 0 1 0 0

1 1 1 1 1 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 1 0

1 1 1 0 1 1


36 6A



1 0 0 1 1 0

0 0 1 1 0 0

1 1 1 1 1 0

1 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1


48

6B



1 0 0 1 1 0

0 1 1 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


96 6C



0 1 0 1 1 0

1 1 0 1 1 0

0 1 0 0 1 0

1 0 1 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1


96
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Table 7.7: Fusion of S6 and 24:(S3 × S3) into A8

[x]S6 −→ [g1]A8 [x]24:(S3×S3) −→ [g1]A8

1A 1A 1A 1A

2A 2B 2A 2B

2B 2B 2B 2A

2C 2A 2C 2B

3A 3A 2D 2A

3B 3B 2E 2A

4A 4B 3A 3A

4B 4B 3B 3B

5A 5A 3C 3B

6A 6A 4A 4A

6B 6B 4B 4B

4C 4A

4D 4A

6A 6A

6B 6B

6C 6B

and then fill the portion of the character table of 26:A8 which is in the block corresponding to

H i for the classes of 26:A8 which come from the coset Ng. The set of irreducibles characters of

26:A8 will be partitioned into three blocks B1, B2, and B3 corresponding to the inertia factors A8,

S6 and 24:(S3 × S3) respectively. In fact B1 = {χi| 1 ≤ i ≤ 14}, B2 = {χi| 15 ≤ i ≤ 25} and

B3 = {χi| 25 ≤ i ≤ 41}. Note that the centralizers of elements of 26:A8 were listed in the last

column of Table 7.4. We use Fischer-Clifford matrices and partial character tables of inertia factor

groups and computed the character table of G. This character table is given in Table 7.10. We

then convert the character table to the GAP format and used Programme E (see Appendix A) to

test its validity and to compute the possible power maps. We list the power maps of 26:A8 in Table

7.9 .

Table 7.9: Power maps of elements of 26:A8

[g]A8 [x]26:A8
2 3 5 7 [g]A8 [x]26:A8

2 3 5 7

1A 1A 2A 2F 1A

2A 1A 2C 1A

2B 1A 2D 1A

2E 1A

2F 1A

4A 2A

2B 2G 1A 3B 3A 1A

4B 2B 6C 3B 2B

2H 1A 6D 3B 2B

4C 2B 6E 3B 2A

4D 2B

3A 3B 1A 4A 4E 2C

6A 3B 2B 4F 2D

continued on next page
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Table 7.9 (continued from previous page)

[g]A8 [x]26:A8
2 3 5 7 [g]A8 [x]26:A8

2 3 5 7

6B 3B 2A 4G 2E

4H 2F

4B 4I 2G 5A 5A 1A

8A 4B 10A 5A 2A

4J 2H

8B 4C

6B 6H 3A 2C 6A 6G 3A 2G

6I 3B 2D 12A 6A 4B

6J 3B 2E 12B 6A 4C

6K 3B 2F

7A 7A 1A 7B 7B 1A

15A 15A 5A 3B 15B 15B 5A 3B
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Table 7.8: Fischer-Clifford matrices of 26:A8

M(1A) =


1 1 1

28 4 −4

35 −5 3

 M(4A) =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1



M(2A) =



1 1 1 1 1

4 −4 −4 4 0

3 3 3 3 −1

4 −4 4 −4 0

4 4 −4 −4 0


M(4B) =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1



M(2B) =



1 1 1 1 1

2 −2 2 −2 0

6 6 −2 −2 0

1 1 1 1 −1

6 −6 −2 2 0


M(6B) =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1



M(6A) =


1 1 1

2 −2 0

1 1 −1

 M(3B) =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1


M(3A) =


1 1 1

10 2 −2

5 −3 1

 M(5A) =

[
1 1

3 −1

]

M(7A) =
[

1
]

M(15A) =
[

1
]

M(7B) =
[

1
]

M(15B) =
[

1
]
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Table 7.10: Character table of 26:A8
1A 2A 2B

1A 2A 2B 2C 2D 2E 2F 4A 2G 4B 2H 4C 4D

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 7 7 7 -1 -1 -1 -1 -1 3 3 3 3 3

χ3 14 14 14 6 6 6 6 6 2 2 2 2 2

χ4 20 20 20 4 4 4 4 4 4 4 4 4 4

χ5 21 21 21 -3 -3 -3 -3 -3 1 1 1 1 1

χ6 21 21 21 -3 -3 -3 -3 -3 1 1 1 1 1

χ7 21 21 21 -3 -3 -3 -3 -3 1 1 1 1 1

χ8 28 28 28 -4 -4 -4 -4 -4 4 4 4 4 4

χ9 35 35 35 3 3 3 3 3 -5 -5 -5 -5 -5

χ10 45 45 45 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

χ11 45 45 45 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

χ12 56 56 56 8 8 8 8 8 0 0 0 0 0

χ13 64 64 64 0 0 0 0 0 0 0 0 0 0

χ14 70 70 70 -2 -2 -2 -2 -2 2 2 2 2 2

χ15 28 4 -4 4 -4 -4 4 0 8 4 0 -4 0

χ16 28 4 -4 -4 4 4 -4 0 4 8 -4 0 0

χ17 140 20 -20 -4 4 4 -4 0 12 0 4 -8 0

χ18 140 20 -20 4 -4 -4 4 0 0 12 -8 4 0

χ19 140 20 -20 12 -12 -12 12 0 4 8 -4 0 0

χ20 140 20 -20 -12 12 12 -12 0 8 4 0 -4 0

χ21 252 36 -36 -12 12 12 -12 0 0 12 -8 4 0

χ22 252 36 -36 12 -12 -12 12 0 12 0 4 -8 0

χ23 280 40 -40 8 -8 -8 8 0 -16 -8 0 8 0

χ24 280 40 -40 -8 8 8 -8 0 -8 -16 8 0 0

χ25 448 64 -64 0 0 0 0 0 0 0 0 0 0

χ26 35 -5 3 11 3 3 -5 -1 7 -5 -1 3 -1

χ27 35 -5 3 3 11 -5 3 -1 -5 7 3 -1 -1

χ28 35 -5 3 -5 3 3 11 -1 7 -5 -1 3 -1

χ29 35 -5 3 3 -5 11 3 -1 -5 7 3 -1 -1

χ30 70 -10 6 14 -2 14 -2 -2 2 2 2 2 -2

χ31 70 -10 6 -2 14 -2 14 -2 2 2 2 2 -2

χ32 70 -10 6 14 14 -2 -2 -2 2 2 2 2 -2

χ33 70 -10 6 -2 -2 14 14 -2 2 2 2 2 -2

χ34 140 -20 12 12 12 12 12 -4 4 4 4 4 -4

χ35 210 -30 18 -6 -6 -6 -6 2 -10 14 6 -2 -2

χ36 210 -30 18 -6 -6 -6 -6 2 14 -10 -2 6 -2

χ37 315 -45 27 3 27 -21 3 -1 -9 3 -1 -5 3

χ38 315 -45 27 -21 3 3 27 -1 3 -9 -5 -1 3

χ39 315 -45 27 3 -21 27 3 -1 -9 3 -1 -5 3

χ40 315 -45 27 27 3 3 -21 -1 3 -9 -5 -1 3

χ41 420 -60 36 -12 -12 -12 -12 4 4 4 4 4 -4
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Character table of 26:A8(continued)

3A 3B 4A 4B

3A 6A 6B 3B 6C 6D 6E 4E 4F 4G 4H 4I 8A 4J 8B

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 4 4 4 1 1 1 1 -1 -1 -1 -1 1 1 1 1

χ3 -1 -1 -1 2 2 2 2 2 2 2 2 0 0 0 0

χ4 5 5 5 -1 -1 -1 -1 0 0 0 0 0 0 0 0

χ5 6 6 6 0 0 0 0 1 1 1 1 -1 -1 -1 -1

χ6 -3 -3 -3 0 0 0 0 1 1 1 1 -1 -1 -1 -1

χ7 -3 -3 -3 0 0 0 0 1 1 1 1 -1 -1 -1 -1

χ8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

χ9 5 5 5 2 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1

χ10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

χ11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

χ12 -4 -4 -4 -1 -1 -1 -1 0 0 0 0 0 0 0 0

χ13 4 4 4 -2 -2 -2 -2 0 0 0 0 0 0 0 0

χ14 -5 -5 -5 1 1 1 1 -2 -2 -2 -2 0 0 0 0

χ15 10 2 -2 1 -1 -1 1 0 0 0 0 2 -2 0 0

χ16 10 2 -2 1 -1 -1 1 0 0 0 0 0 0 2 -2

χ17 20 4 -4 -1 1 1 -1 0 0 0 0 0 0 -2 2

χ18 20 4 -4 -1 1 1 -1 0 0 0 0 -2 2 0 0

χ19 -10 -2 2 2 -2 -2 2 0 0 0 0 0 0 -2 2

χ20 -10 -2 2 2 -2 -2 2 0 0 0 0 -2 2 0 0

χ21 0 0 0 0 0 0 0 0 0 0 0 2 -2 0 0

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -2

χ23 10 2 -2 1 -1 -1 1 0 0 0 0 0 0 0 0

χ24 10 2 -2 1 -1 -1 1 0 0 0 0 0 0 0 0

χ25 -20 -4 4 -2 2 2 -2 0 0 0 0 0 0 0 0

χ26 5 -3 1 2 0 0 -2 3 -1 -1 -1 1 1 -1 -1

χ27 5 -3 1 2 0 0 -2 -1 3 -1 -1 -1 -1 1 1

χ28 5 -3 1 2 0 0 -2 -1 -1 3 -1 1 1 -1 -1

χ29 5 -3 1 2 0 0 -2 -1 -1 -1 3 -1 -1 1 1

χ30 -5 3 -1 1 3 -3 -1 2 -2 -2 2 0 0 0 0

χ31 -5 3 -1 1 3 -3 -1 -2 2 2 -2 0 0 0 0

χ32 -5 3 -1 1 -3 3 -1 2 2 -2 -2 0 0 0 0

χ33 -5 3 -1 1 -3 3 -1 -2 -2 2 2 0 0 0 0

χ34 5 -3 1 -4 0 0 4 0 0 0 0 0 0 0 0

χ35 15 -9 3 0 0 0 0 2 -2 2 -2 0 0 0 0

χ36 15 -9 3 0 0 0 0 -2 2 -2 2 0 0 0 0

χ37 0 0 0 0 0 0 0 -1 -1 -1 3 1 1 -1 -1

χ38 0 0 0 0 0 0 0 3 -1 -1 -1 -1 -1 1 1

χ39 0 0 0 0 0 0 0 -1 3 -1 -1 1 1 -1 -1

χ40 0 0 0 0 0 0 0 -1 -1 3 -1 -1 -1 1 1

χ41 -15 9 -3 0 0 0 0 0 0 0 0 0 0 0 0
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Character table of 26:A8(continued)

5A 6A 6B 7A 7B 15A 15B

5A 10A 6F 12A 12B 6G 6H 6I 6J 7A 7B 15A 15B

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 2 2 0 0 0 -1 -1 -1 -1 0 0 -1 -1

χ3 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1 -1

χ4 0 0 1 1 1 1 1 1 1 -1 -1 0 0

χ5 1 1 -2 -2 -2 0 0 0 0 0 0 1 1

χ6 1 1 1 1 1 0 0 0 0 0 0 A /A

χ7 1 1 1 1 1 0 0 0 0 0 0 /A A

χ8 -2 -2 1 1 1 -1 -1 -1 -1 0 0 1 1

χ9 0 0 1 1 1 0 0 0 0 0 0 0 0

χ10 0 0 0 0 0 0 0 0 0 B /B 0 0

χ11 0 0 0 0 0 0 0 0 0 /B B 0 0

χ12 1 1 0 0 0 -1 -1 -1 -1 0 0 1 1

χ13 -1 -1 0 0 0 0 0 0 0 1 1 -1 -1

χ14 0 0 -1 -1 -1 1 1 1 1 0 0 0 0

χ15 3 -1 2 -2 0 1 -1 -1 1 0 0 0 0

χ16 3 -1 -2 2 0 -1 1 1 -1 0 0 0 0

χ17 0 0 0 0 0 -1 1 1 -1 0 0 0 0

χ18 0 0 0 0 0 1 -1 -1 1 0 0 0 0

χ19 0 0 -2 2 0 0 0 0 0 0 0 0 0

χ20 0 0 2 -2 0 0 0 0 0 0 0 0 0

χ21 -3 1 0 0 0 0 0 0 0 0 0 0 0

χ22 -3 1 0 0 0 0 0 0 0 0 0 0 0

χ23 0 0 2 -2 0 -1 1 1 -1 0 0 0 0

χ24 0 0 -2 2 0 1 -1 -1 1 0 0 0 0

χ25 3 -1 0 0 0 0 0 0 0 0 0 0 0

χ26 0 0 1 1 -1 2 0 0 -2 0 0 0 0

χ27 0 0 1 1 -1 0 2 -2 0 0 0 0 0

χ28 0 0 1 1 -1 -2 0 0 2 0 0 0 0

χ29 0 0 1 1 -1 0 -2 2 0 0 0 0 0

χ30 0 0 -1 -1 1 -1 1 -1 1 0 0 0 0

χ31 0 0 -1 -1 1 1 -1 1 -1 0 0 0 0

χ32 0 0 -1 -1 1 -1 -1 1 1 0 0 0 0

χ33 0 0 -1 -1 1 1 1 -1 -1 0 0 0 0

χ34 0 0 1 1 -1 0 0 0 0 0 0 0 0

χ35 0 0 -1 -1 1 0 0 0 0 0 0 0 0

χ36 0 0 -1 -1 1 0 0 0 0 0 0 0 0

χ37 0 0 0 0 0 0 0 0 0 0 0 0 0

χ38 0 0 0 0 0 0 0 0 0 0 0 0 0

χ39 0 0 0 0 0 0 0 0 0 0 0 0 0

χ40 0 0 0 0 0 0 0 0 0 0 0 0 0

χ41 0 0 1 1 -1 0 0 0 0 0 0 0 0

A = −E(15)7 − E(15)11 − E(15)13 − E(15)14

B = E(7) + E(7)2 + E(7)4
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8

A Group of the Form 28:O+
8 (2) as a maximal

subgroup of O+
10(2)

Prologue

The group G = 28:O+
8 (2) is a group of order 44590694400. It is also a maximal subgroup of index

527 of O+
10(2). In turn 210+16.O+

10(2) is a maximal subgroup of the monster M = F1. The group

G has three inertia factor groups namely, O+
8 (2), SP (6, 2) and 26:A8 of index 1, 120, and 135

respectively in O+
8 (2). We first give a detailed definition of O+

8 (2) and we then compute the Fischer-

Clifford matrices of G which together with the partial character tables of inertia factor groups are

used to compute the full character table of G.

8.1. Bilinear Forms

Definition 8.1.1. A symmetric bilinear form f is a function f : V × V → Fq which first satisfies

linearity in x that is

f(λ1x1 + λ2x2, y) = λ1f(x1, y) + λ2f(x2, y).

If linearity is also satisfied in y, then we say f is bilinear. We say f is symmetric if f(x, y) = f(y, x).

If f is bilinear and symmetric we say f is in symmetric bilinear form.

Definition 8.1.2. We define the quadratic form Q : V → Fq to be a function satisfying

Q(λx+ µy) = λ2Q(x) + λµf(x, y) + µ2Q(y),

for some symmetric bilinear form f , called the associated bilinear form.

Definition 8.1.3. The kernel of f is the subspace of all x such that f(x, y) = 0 ∀ y. Also the

kernel of the quadratic form Q, is the set of all x ∈ ker(f) such that Q(x) = 0.

We can now define nullity, rank, singular and isotropic subspaces.
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Definition 8.1.4. The nullity and rank of f is the dimension and codimension of its kernel re-

spectively. We say f is non-singular if the nullity of f is zero.

A subspace W of V is said to be totally isotropic for f if f(x, y) = 0 ∀ x, y ∈W .

We also define the Witt index of a quadratic form Q as the greatest dimension of any totally

isotropic subspace for Q.

Note that if any two non-singular quadratic forms Q1 and Q2 over Fq have the same Witt index,

then they are equivalent to a scalar multiple of each other. We now define the general orthogonal

group.

8.2. Orthogonal Groups

Definition 8.2.1. The general orthogonal group GO(V, f), where f is a bilinear form, is defined

as the group of linear maps g satisfying f(ug, vg) = f(u, v) ∀ u, v ∈ V . We write it as GO(n, q) or

GOn(q), where V is an n-dimensional vector space over GF (q).

The elements of a general orthogonal group GO(V, f) have determinants ±1. This is since for if M

is the matrix of the form and g ∈ G(V, f), then gMGt = M and so det(g) = det(M(Gt)−1M−1) =

det(g)−1. Hence we have [det(g)]2 = 1 thus det(g) = ±1. The elements of the group that have

determinant 1 is a subgroup of index 2 called the special orthogonal group SO(n, q). The projective

special orthogonal group PSO(n, q) is the group obtained from SO(n, q) by factoring it by the

group of scalar matrices they contain. When n = 2m + 1, that is when n is odd, all non-singular

quadratic forms on a space of dimension n over Fq have Witt index m and are equivalent up to

scalar forms. If n = 2m, then n is even and we, up to equivalence, get two types of quadratic form

namely, the plus type with Witt index m and the minus type with Witt index m− 1. Hence if n is

odd we get GO(n, q) and when n is even GOε(n, q) with ε = + or ε = −. We are more interested

in n = 2m and in particular ε = +.

For an orthogonal group we define a reflection rv, for each vector v ∈ V for which f(v, v) 6= 0 as

elements of GO(n, q) defined by

rv : x→ x− 2
f(x, v)
f(v, v)

v.

In characteristic 2 if we let 1
2f(v, v) = Q(v) in the equation above, then for each vector v of norm

1 we define the orthogonal transvection tv by

tv : w → w + f(w, v)v.

This is a linear map and preserves the quadratic form since
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Q(w + f(w, v)v) =
1
2
f(w + f(w, v)v, w + f(w, v)v)

=
1
2

[f(w,w) + f(w, f(w, v)v) + f(f(w, v)v, w) + f(f(w, v)v, f(w, v)v)]

=
1
2

[f(w,w) + f(w, f(w, v)v) + f(w, f(w, v)v) + f(f(w, v)v, f(w, v)v)]

=
1
2

[f(w,w) + 2f(w, f(w, v)v) + f(f(w, v)v, f(w, v)v)]

=
1
2
f(w,w) + 0 +

1
2
f(f(w, v)v, f(w, v)v)

= Q(w) +Q(f(w, v)v).

Orthogonal groups of dimension ≥ 6 can be generated by these transvections. The quasi-

determinant of an element x is defined to be +1 or −1 depending on whether x can be written as

a product of even or odd number of of orthogonal transvections.

Thus the quasi-determinant of an element of GO+
2m(q) is the sign of the permutation describing its

action on this set. The kernel of the quasi-determinant map is a subgroup of index 2 in GO+
2m(q)

which we denote Ω+
2m(q). These are simple for all m ≥ 3 and all q. We define Ωε

2m(q) as a subgroup

of index 1 or 2 in SOε2m(q). The image of PΩε
2m(q) in PSOε2m(q) is denoted Oε2m(q) and is the

commutator subgroup of SOε2m(q). Also the group Sp2m−2(q) is a maximal subgroup of both

groups Oε2m(q). Looking at the orders of orthogonal groups in particular those of even dimension

and ε = +, we have that

|GO+
2m(q)| = Πm

i=1(qi−1)(qi−1 + 1)q2i−2

= 2qm(m−1)(qm − 1)Πm−1
i=1 (q2i − 1).

For further reading one can also go to [19, 23, 64, 52, 60, 74, 103, 106, 125].

In our case we have O+
8 (2) is of index 2 in GO+

8 (2) and hence PΩ+
8 (2) = O+

8 (2) ∼= PSO+
8 (2). Also

for the order O+
8 (2) since it is of index 2 in GO+

8 (2) we have

|O+
8 (2)| = 212(24 − 1)Π3

i=1(22i − 1).

We are interested in the group 28:O+
8 (2) which is a maximal subgroup of O+

10(2). The group

O+
10(2) has nine conjugacy classes of maximal subgroups. It has exactly four conjugacy classes of

involutions presented in the ATLAS [23] by 2A, 2B, 2C and 2D respectively. In O+
10(2), we have

NO+
10(2)(2

8) = 28:O+
8 (2) and using the list of maximal subgroups of O+

10(2) given in the ATLAS
[23], we can see that 28:O+

8 (2) is a maximal subgroup of O+
10(2). There are three non-equivalent

8-dimensional 2-modular representations of the group O+
8 (2), with corresponding vector spaces

V1, V2 and V3. Here we have

dimGF (2)(V1) = 8, dimGF (4)(V2) = dimGF (4)(V3) = 8.
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We also have that V1 = 28 is irreducible over GF (2) and here we are concerned with the group

V1:O+
8 (2). We also note that V2 and V3 are irreducible over GF (4). Hence O+

10(2) has only one

class for the maximal subgroups representatives of type 28:O+
8 (2)

Let G = N :G, where N = 28 is the vector space of dimension 8 over GF (2) and G = O+
8 (2)

acts irreducibly on N . We use the method of coset analysis, which was discussed in chapter 2 ,

to determine the conjugacy classes of G. We then construct the complete character table using

Fischer-Clifford matrices and partial character tables of inertia factor groups. The complete fusion

of 28:O+
8 (2) into O+

10(2) will also be fully determined. Our computations were done using GAP [41]

.

8.3. The action of O+
8 (2) on 28

We generate O+
8 (2) as a matrix group as the only proper normal subgroup of GO+

8 (2) by three

8× 8 matrices α, β and γ of orders 15, 15 and 4 as follows.

α =



1 1 1 0 0 1 1 1

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 1

0 0 0 1 1 0 0 0

0 1 1 0 0 1 0 1

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 0 1 0 0 1 0


,

β =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 0


,

107



CHAPTER 8. A GROUP OF THE FORM 28:O+
8 (2) AS A MAXIMAL SUBGROUP OF O+

10(2)

γ =



1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 1


.

We give the class representatives for each g ∈ O+
8 (2) in terms of 8×8 matrices over GF (2) in Table

8.1 where [g]G is the class containing g and M is the matrix that represents that particular class.

This is written in GAP format [41].

Table 8.1: Conjugacy Classes of O+
8 (2)

[g]G M |[g]G| [g]G M |[g]G|

1a



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


1 2a



1 0 0 1 1 1 1 1

0 1 1 1 1 0 1 1

0 0 1 0 0 0 1 0

0 0 0 1 1 0 1 0

1 1 0 1 1 1 0 1

0 1 1 1 0 0 1 1

0 1 0 0 1 0 0 0

1 1 1 1 1 0 0 1


3780

2b



0 1 0 1 0 1 1 0

0 0 1 0 0 1 0 0

0 0 0 0 0 1 1 0

0 0 1 0 0 1 0 1

0 1 0 1 1 0 0 1

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0


1575 2c



1 0 1 0 0 1 1 0

0 0 0 1 0 1 1 0

0 1 0 1 1 1 1 1

1 0 1 1 1 1 1 0

0 1 0 1 1 0 0 1

0 0 1 1 1 1 1 0

1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 1


3780

2d



0 0 1 0 1 0 0 0

0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1 0 1 0 1 0 1 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0


3780 2e



0 0 1 0 0 0 0 0

1 1 0 1 1 1 0 0

1 1 0 0 1 1 0 1

1 0 1 0 0 0 0 0

1 0 0 0 0 1 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1


56700

3a



1 0 0 0 0 1 0 1

0 0 1 0 1 0 0 0

1 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1

1 0 0 0 0 0 0 1

1 0 1 1 1 1 1 0

1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0


89600 3b



1 1 1 1 1 0 0 0

1 0 0 0 1 0 0 1

1 1 0 1 1 1 0 1

1 1 1 0 1 1 0 1

0 1 0 0 0 1 0 0

1 1 1 1 0 0 1 0

0 1 0 0 0 1 0 1

1 0 0 0 1 1 1 1


2240

continued on next page
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Table 8.1 (continued from previous page)

[g]G M |[g]G| [g]G M |[g]G|

3c



0 0 0 1 0 0 0 0

0 0 1 1 0 1 1 1

1 1 0 0 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

1 0 0 1 0 1 1 0

1 0 0 1 0 0 0 1


268800 3d



1 0 0 1 1 1 1 1

1 1 1 0 1 1 1 0

0 0 0 1 1 1 1 1

0 1 0 0 0 0 0 1

1 0 0 0 0 1 1 0

1 0 0 0 1 0 1 0

0 0 1 1 1 1 0 1

1 0 0 0 1 1 1 1


2240

3e



1 1 1 1 1 0 0 1

0 1 0 0 0 0 0 1

1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1

1 1 0 0 1 1 1 0

0 1 1 0 0 0 0 0

1 0 1 1 0 0 1 1

0 1 0 0 0 1 0 0


2240 4a



0 0 0 0 0 0 0 1

0 0 0 1 1 0 1 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 1

0 0 0 1 0 0 0 0

0 1 1 1 1 1 0 0

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0


37800

4b



1 1 1 1 1 0 0 0

1 1 1 0 0 0 1 1

0 1 1 0 0 0 1 0

0 1 1 0 0 0 0 1

1 1 1 0 0 1 1 1

1 1 0 0 1 0 1 1

1 1 0 0 0 0 1 1

0 1 1 1 0 1 1 1


907200 4c



1 0 0 0 0 1 1 0

0 0 0 1 0 0 0 1

0 1 1 1 0 1 1 1

1 0 1 0 0 1 1 0

0 0 1 0 0 1 1 0

1 1 1 0 1 1 1 0

0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 1


340200

4d



0 0 1 0 0 1 0 1

0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0

1 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

1 0 1 0 0 0 0 1

0 0 1 0 0 0 0 0

1 0 1 1 0 0 1 1


907200 4e



0 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 0

0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 1 0 1 0


907200

4f



1 1 0 1 1 1 1 0

1 0 1 0 1 0 0 0

1 0 1 0 0 0 1 0

1 0 1 0 1 0 0 1

0 1 1 0 0 1 0 1

0 0 0 1 0 1 0 1

1 1 1 0 1 1 0 1

0 0 1 1 1 1 0 1


2721600 5a



1 0 0 1 0 1 0 1

1 1 1 1 0 1 1 0

0 0 0 1 0 1 0 1

0 1 0 1 0 1 1 0

1 0 1 0 1 0 0 1

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1

1 0 1 0 0 1 1 0


580608

5b



1 0 0 1 0 1 0 1

1 0 0 1 1 0 0 0

0 1 0 0 0 1 1 0

0 0 0 0 1 0 1 0

1 1 1 1 1 0 1 0

1 1 0 1 0 1 1 1

0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1


580608 5c



0 1 1 0 1 0 0 1

0 0 1 0 0 1 0 0

0 0 0 0 0 1 1 0

0 0 0 1 1 0 1 0

1 0 0 0 0 0 1 0

0 1 1 0 0 1 1 0

0 0 1 0 0 1 1 0

1 1 1 1 1 0 0 1


580608

continued on next page
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Table 8.1 (continued from previous page)

[g]G M |[g]G| [g]G M |[g]G|

6a



0 0 0 0 0 1 0 1

0 0 1 1 0 0 1 1

1 0 1 0 0 1 0 1

1 0 0 1 0 1 0 1

0 1 1 1 1 0 1 1

0 0 0 0 0 1 0 0

1 1 1 1 0 1 0 0

1 0 0 0 0 1 0 0


2419200 6b



1 0 0 1 1 0 1 0

0 0 1 0 1 1 1 1

0 1 1 0 1 0 1 0

1 0 0 0 1 1 1 1

1 0 1 0 1 0 0 1

1 1 1 1 0 0 1 0

1 0 1 0 0 1 1 0

1 1 1 1 1 0 0 0


806400

6c



1 0 1 1 1 1 0 1

1 0 1 0 1 0 1 0

1 0 1 1 1 1 0 0

0 0 0 0 1 0 1 0

1 1 1 1 1 0 0 0

1 1 1 1 0 1 0 1

1 1 0 1 1 1 0 1

0 1 0 1 0 0 0 0


2419200 6d



0 0 1 0 0 0 0 1

1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0

0 1 1 1 1 0 1 1

0 0 0 0 1 0 0 0

0 0 1 1 1 1 1 0

0 1 1 0 0 0 0 1

1 0 1 0 1 0 0 0


806400

6e



1 1 1 1 0 1 0 1

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

1 0 1 1 0 0 1 1

0 1 0 1 1 1 1 1

1 0 0 1 0 1 0 1

1 0 0 1 0 0 0 1

1 1 1 1 1 0 1 0


806400 6f



0 1 0 0 0 1 0 1

0 0 0 1 0 1 1 0

1 0 0 0 0 1 1 0

0 1 0 0 1 1 1 1

1 0 0 0 0 0 1 0

1 1 1 1 1 0 0 0

1 1 1 0 0 1 1 1

1 0 0 1 0 0 1 0


100800

6g



1 1 1 1 1 0 0 0

0 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1

0 1 1 1 1 1 1 0

1 0 0 1 0 0 0 0

0 1 0 1 1 0 1 0

0 1 1 1 1 1 0 0

1 0 0 1 1 0 0 1


100800 6h



0 1 0 0 0 1 1 0

1 0 0 0 0 1 1 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 1

1 1 0 0 0 1 1 1

1 1 1 0 1 1 0 0

1 1 1 0 0 0 1 1

1 1 0 0 1 1 1 0


806400

6i



1 0 0 1 0 0 0 0

1 1 0 0 1 0 1 1

1 1 1 1 0 1 0 1

0 0 0 0 1 0 0 0

1 1 1 0 0 0 1 1

0 0 0 1 1 0 0 0

1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 1


604800 6j



0 0 0 1 0 1 1 0

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 1 1 1 1 1

0 0 0 0 0 1 1 0

1 0 1 0 0 0 0 1

0 1 0 0 0 1 1 0

1 0 0 1 1 1 1 1


100800

6k



0 1 0 0 1 0 0 1

0 0 1 1 0 0 1 1

1 0 1 0 0 0 1 0

1 0 0 1 0 0 1 0

0 0 1 1 0 1 1 1

0 1 0 0 1 1 1 1

1 1 1 1 0 1 0 0

1 0 0 0 0 1 0 0


2419200 6l



1 0 1 1 1 1 0 1

1 1 0 0 1 1 0 0

1 0 0 0 0 1 1 0

0 1 0 1 0 1 1 0

1 0 1 0 0 1 0 0

1 0 1 0 1 0 0 1

1 0 1 1 1 0 1 1

0 1 1 0 1 0 1 0


604800

continued on next page
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[g]G M |[g]G| [g]G M |[g]G|

6m



0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 0

1 1 0 0 1 1 0 0

1 0 0 0 0 1 1 0

1 0 1 0 1 0 1 0

1 1 1 0 1 1 0 0

1 0 0 1 0 1 1 0


604800 6n



1 1 0 0 1 0 1 1

0 0 1 1 1 1 0 0

1 0 0 0 1 1 1 1

0 0 0 1 1 0 0 0

0 1 0 0 0 0 1 0

0 1 0 0 0 0 0 1

1 1 0 1 1 0 1 1

0 1 1 0 0 1 0 0


7257600

8a



0 0 0 1 0 1 1 0

1 1 0 1 1 1 1 0

0 0 1 0 1 0 0 0

1 1 1 1 1 0 1 0

0 1 0 1 1 1 1 1

1 0 0 1 1 1 1 1

1 1 1 0 0 0 1 1

0 0 1 0 0 0 0 1


5443200 8b



1 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0

1 0 0 1 0 0 1 0

1 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 1

1 0 1 1 0 0 1 1

1 1 0 0 1 0 1 1


5443200

9a



0 0 0 1 0 0 0 0

1 1 1 0 1 1 0 1

1 0 0 0 1 0 0 1

1 0 0 0 0 1 0 1

1 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 1

0 0 0 1 1 1 1 1


89600 9b



0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1

0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0

1 1 1 0 0 1 1 1

1 0 0 1 1 0 1 0

1 0 1 1 1 1 0 1


6451200

9c



1 1 0 0 1 1 0 0

0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1

1 0 1 0 1 0 1 0

1 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 1 0 1 0 0 0

1 1 0 1 1 1 0 1


6451200 10a



0 1 1 0 0 0 0 1

1 0 1 0 0 1 0 1

1 1 1 1 0 1 0 0

0 0 1 0 0 1 0 1

1 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0

0 0 1 1 0 0 1 1

0 0 0 0 0 1 0 1


8709120

10b



0 1 0 0 0 1 0 1

0 1 1 0 1 0 0 0

0 1 0 0 1 0 1 0

0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 1 1 0 1 1 0 0

1 0 0 0 0 1 1 0

0 1 0 1 1 1 1 1


8709120 10c



1 0 1 0 0 0 1 0

1 1 0 1 1 1 0 1

0 1 0 0 1 1 1 1

1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0

1 0 0 0 0 1 0 0

1 1 1 1 1 0 0 0

1 0 0 0 0 0 1 0


8709120

12a



0 1 0 1 0 1 1 0

1 0 1 1 0 1 1 1

1 0 1 0 1 1 1 1

0 0 0 1 1 1 1 1

0 1 0 1 1 0 0 1

0 0 1 1 1 1 1 0

1 1 0 1 0 0 1 1

0 0 0 0 1 0 0 1


4838400 12b



0 0 0 1 0 1 0 0

1 1 1 1 0 1 1 0

1 1 1 0 1 1 0 0

1 0 0 1 0 1 1 0

1 1 1 1 1 0 0 1

1 1 0 1 0 1 1 1

0 1 0 0 0 1 0 1

0 1 1 0 1 0 0 1


907200
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[g]G M |[g]G| [g]G M |[g]G|

12c



0 1 1 0 0 1 1 0

0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1

1 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 1 0 0 1 1

1 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1


1209600 12d



1 1 0 0 1 1 0 0

0 0 0 0 0 1 0 1

1 0 1 0 0 1 0 0

1 1 1 1 1 1 1 1

1 0 1 0 0 1 0 1

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 0

0 0 1 0 0 0 0 1


7257600

12e



0 1 1 1 1 0 1 1

0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0

1 1 1 1 1 0 1 0

1 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 0


7257600 12f



1 0 0 1 1 0 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 0 0 0

1 1 0 1 1 1 0 0

0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 1 1 1 1 0 0 0


1209600

12g



0 0 1 1 0 1 1 1

1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1

0 1 1 1 1 1 0 1

0 1 0 1 1 0 0 0

1 0 1 0 0 1 1 0

0 0 1 0 1 1 1 1

1 1 1 1 1 0 0 1


7257600 15a



0 1 1 0 0 1 0 0

1 0 0 1 1 0 1 0

1 0 0 0 1 0 0 0

1 1 0 0 1 0 1 1

1 1 1 0 1 1 0 1

1 0 0 0 1 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 1 0 0 0


11612160

15b



0 1 0 1 1 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 1 1 0 1

1 1 0 0 1 1 0 1

0 0 1 1 0 1 1 1

0 1 0 1 1 0 0 1

0 0 1 1 1 1 0 1

1 1 0 1 1 0 1 1


11612160 15c



0 0 0 1 1 1 1 1

0 1 1 0 0 1 0 1

0 0 0 0 1 1 1 1

0 1 1 0 0 0 0 1

1 1 0 0 0 0 1 1

0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 1

0 1 0 1 0 1 1 0


11612160

7a



1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1

1 0 0 1 0 0 1 0

1 0 1 1 1 1 1 0

1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 1

1 1 0 1 1 0 1 1

0 0 1 1 1 0 1 1


24883200

We obtain that O+
8 (2) has 53 conjugacy classes. The action of O+

8 (2) on 28 gives rise to three

orbits of lengths 1, 120 and 135 with corresponding point stabilizers that we get from the ATLAS
[23] namely, O+

8 (2), Sp6(2) and 26:A8. Let ρ1 and ρ2 be permutation characters of O+
8 (2) of degrees

120 and 135. Then from ATLAS [23], we deduce that χρ1 = 1a+35a+84a and χρ2 = 1a+50a+84a.

Suppose χ = χ(O+
8 (2)|28) is the permutation character of O+

8 (2) on 28. Then we get

χ = 1a+ I
O+

8 (2)

Sp6(2) + I
O+

8 (2)

26:A8
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= 3× 1a+ 35a+ 50a+ 2× 84a,

where IO
+
8 (2)

Sp6(2) and IO
+
8 (2)

26:A8
are the characters of O+

8 (2) induced from the identity characters of Sp6(2)

and 26:A8 respectively.

For each class representative g ∈ O+
8 (2),we calculate the values of χ(Sp6(2)|28), χ(26:A8|28) on g

and k = χ(g) on 28, the number of fixed points of g on 28. These are given in Table 8.2.

Table 8.2:

[g]
O+

8 (2)
1a 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 4a 4b 4c

χ(Sp6(2)|28) 120 32 24 8 0 0 36 0 0 3 6 12 4 8

χ(26:A8|28) 135 31 39 7 15 15 27 0 0 0 9 3 11 7

k 256 64 64 16 16 16 64 1 1 4 16 16 16 16

[g]
O+

8 (2)
4d 4e 4f 5a 5b 5c 6a 6b 6c 6d 6e 6f 6g 6h

χ(Sp6(2)|28) 0 0 1 10 0 0 12 0 0 8 0 0 0 6

χ(26:A8|28) 3 3 2 5 0 0 3 0 0 7 0 0 3 9

k 4 4 4 16 1 1 16 1 1 16 1 1 4 16

[g]
O+

8 (2)
6i 6j 6k 6l 6m 6n 7a 8a 8b 9a 9b 9c 10a

χ(Sp6(2)|28) 0 0 2 0 0 2 1 2 2 3 0 0 2

χ(26:A8|28) 3 3 1 3 3 1 2 1 1 0 0 0 1

k 4 4 4 4 4 4 4 4 4 4 1 1 4

[g]
O+

8 (2)
10b 10c 12a 12b 12c 12d 12e 12f 12g 15a 15b 15c

χ(Sp6(2)|28) 0 0 3 0 0 3 2 0 0 1 0 0

χ(26:A8|28) 0 0 0 0 0 0 1 0 0 2 0 0

k 1 1 4 1 1 4 4 1 1 4 1 1

We can also check our calculations for the values of k using Programme F (see appendix). Let

k1 = χ(Sp6(2)|28)(g), k2 = χ(26:A8|28)(g) then k = k1 + k2 + 1, where k1 := cut[1] + cut[3] +

cut[7], k2 := cut[1] + cut[6] + cut[7], then k := 3 ∗ cut[1] + cut[3] + cut[6] + 2 ∗ cut[7]. Here cut[i] is

the i-th row of the character table of O+
8 (2) as shown in the ATLAS [23].

Having obtained the values of the k′s for the various classes of G, then we need to calculate the

f ′js corresponding to the various k′s. For this purpose we use Programme A (see appendix) For a

class representative dg ∈ G, where d ∈ 28 and g ∈ O+
8 (2) and o(g) = m, by Theorem 3.3.10 [99] we

have

o(dg) =

{
m if w = 1N
2m otherwise

To calculate the orders of the class representatives dg ∈ G, we use Programme B (see appendix)

Here if o(g) = m and w = 1N then o(dg) = m otherwise if w 6= 1N , then o(dg) = 2m. Table 8.3

gives detailed information about the conjugacy classes of G
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Table 8.3: Conjugacy Classes of 28:O+
8 (2)

g ∈ O+
8 (2) k fj dj w [x]

28:O+
8 (2)

|C
28:O+

8 (2)
(x)|

1A 28 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 1A 44 590 694 400

120 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 0) 2A 371 589 120

135 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 0, 1, 0, 0, 0, 1) 2B 330 301 440

2A 26 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2C 7 077 888

6 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2D 1 179 648

9 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 2E 786 432

48 (0, 0, 0, 1, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1, 1, 1) 4A 147 456

2B 26 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2F 2 949 120

6 (0, 0, 0, 0, 0, 0, 1, 0) (0, 1, 0, 1, 0, 0, 1, 0) 4B 491 520

10 (0, 0, 0, 0, 0, 0, 0, 1) (0, 1, 0, 0, 0, 0, 0, 0) 4C 294 912

15 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2G 196 608

32 (0, 0, 1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1, 1, 1) 4D 92 160

2C 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2H 737 280

15 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 1, 1, 1, 1, 0, 0) 4E 49 152

2D 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2I 737 280

15 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 1, 0, 0, 1, 0) 4F 49 152

2E 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 2J 49 152

8 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0, 0) 4G 6 144

1 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 1, 0, 0, 1, 0) 4H 49 152

6 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 1, 0, 1, 0, 1, 0) 4I 8 192

3A 26 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 3A 4 976 640

36 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 1, 0, 0, 1, 0, 1) 6A 138 240

27 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 1, 1, 1) 6B 184 320

3B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 3B 77 760

3C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 3C 77 760

3D 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 3D 7 776

3 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 1, 0, 0, 0, 0) 6C 2 592

3E 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 3E 10 368

6 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 1, 0, 0, 1, 0) 6D 1 728

9 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 1, 0, 0, 0, 0) 6E 1 152

4A 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4J 73 728

12 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 4K 6 144

3 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4L 24 576

4B 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4M 8 192

4 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4N 2 048

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4O 8 192

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 4P 4 096

8 (0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 4Q 1 024

4C 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4R 3 072

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4S 3 072

3 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 4T 1 024

3 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4U 1 024

4 (0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 0, 0, 1, 1, 1) 8A 768

4 (0, 0, 1, 1, 0, 0, 0, 0) (1, 1, 1, 1, 1, 0, 0, 0) 8B 768

4D 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4V 768

3 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 1, 0, 0, 1, 0) 8C 256

4E 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4W 768

3 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 0, 1, 0, 0, 1, 0) 8D 256

4F 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 4X 256

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 0) 8E 256

continued on next page
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g ∈ O+
8 (2) k fj dj w [x]

28:O+
8 (2)

|C
28:O+

8 (2)
(x)|

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 1, 1, 1) 8F 128

5A 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 5A 4 800

5 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 1, 1, 1) 10A 960

10 (0, 0, 0, 0, 0, 0, 0, 1) (0, 1, 0, 1, 0, 0, 1, 1) 10B 480

5B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 5B 300

5C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 5C 300

6A 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6F 27 648

12 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 1, 1, 0, 0, 0) 12A 2 304

3 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 6G 9 216

6B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6H 1 728

6C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6I 1 728

6D 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6J 4 608

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 1, 1, 1) 12B 4 608

3 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6K 1 536

3 (0, 0, 0, 1, 0, 0, 0, 1) (0, 0, 0, 1, 1, 0, 1, 1) 12C 1 536

8 (0, 0, 1, 1, 0, 0, 0, 0) (, 0, 1, 0, 0, 1, 0, 1) 12D 576

6E 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6L 288

6F 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6M 288

6G 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6N 864

3 (0, 0, 0, 0, 0, 0, 1, 0) 0, 0, 0, 0, 0, 0, 0, 0) 6O 288

6H 24 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6P 3 456

6 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6Q 576

9 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 6R 384

6I 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6S 864

3 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 0, 0, 1, 0, 0) 12E 288

6J 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6T 864

3 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 1, 1, 0, 0, 0) 12F 288

6K 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6U 288

1 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 0) 12G 288

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 1, 0, 1, 0, 1, 0, 1) 12H 144

6L 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6V 288

3 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 1, 1) 12I 96

6M 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6W 288

3 (0, 0, 0, 0, 0, 0, 1, 0) (, 0, 1, 0, 0, 1, 0, 1) 12J 96

6N 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 6X 96

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 0, 0) 12K 96

2 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 1, 1, 1, 0, 0, 0) 12L 48

7A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 7A 28

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) 14A 28

1 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 1, 0, 1, 0, 1, 0) 14B 28

1 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 1, 1) 14C 28

8A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 8G 128

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 8H 128

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 8I 64

8B 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 8J 128

1 (0, 0, 0, 0, 0, 0, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0) 8K 128

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0) 8L 64

9A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 9A 108

3 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 0, 0, 1, 0, 0) 18A 36

9B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 9B 27

9C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 9C 27

10A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 10C 80

continued on next page
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Table 8.3 (continued from previous page)

g ∈ O+
8 (2) k fj dj w [x]

28:O+
8 (2)

|C
28:O+

8 (2)
(x)|

1 (0, 0, 0, 0, 0, 0, 1, 0) (1, 1, 1, 1, 1, 1, 0, 0) 20A 80

2 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 1, 1, 1, 0, 0) 20B 40

10B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 10D 20

10C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 10E 20

12A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12M 576

3 (0, 0, 1, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12N 192

12B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12O 144

12C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12P 144

12D 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12Q 144

3 (0, 0, 1, 0, 0, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12R 48

12E 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12S 96

1 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 1, 0, 0, 0, 1) 24A 96

1 (0, 0, 0, 0, 0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 1, 0) 24B 96

1 (0, 0, 0, 0, 1, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12T 96

12F 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12U 24

12G 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 12V 24

15A 22 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 15A 60

1 (0, 0, 0, 0, 0, 0, 0, 1) (1, 0, 1, 0, 1, 1, 1, 1) 30A 60

1 (0, 0, 0, 0, 0, 0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 0) 30B 60

1 (0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1) 30C 60

15B 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 15B 15

15C 1 1 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) 15C 15

8.4. The Character Table of 28:O+
8 (2)

8.4.1 Inertia factor groups Sp(6, 2) and 26:A8 and their fusion into O+
8 (2)

When O+
8 (2) acts on 28 we get three orbits of conjugacy classes so that by Brauer [14] when O+

8 (2)

acts on Irr(28) we also get three orbits of irreducible characters. In this case the orbit lengths

of the irreducible characters are also 1, 120 and 135. These have corresponding point stabilizers

H1, H2 and H3 of indices 1, 120 and 135 respectively. From the ATLAS [23] the corresponding

inertia factor groups are H1 = O+
8 (2), H2 = Sp6(2) and H3 = 26:A8. We have seen from Table 8.3

that 28:O+
8 (2) has 124 conjugacy classes and hence it has 124 irreducible characters.

We give the fusion of the conjugacy classes of 26:A8 and Sp6(2) into O+
8 (2) respectively in two

tables, namely Tables 8.5 and 8.6.

The work required for the fusions of 26:A8 into O+
8 (2) are listed in Table 8.4. We use programme

D (see appendix) to compute the fusion of SP (6, 2) into O+
8 (2) .
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Table 8.4:
Class of O+

8 (2) 1a 2a 2b 2c 2d 2e 3a 3e 4a 4b 4c 4d 4e 4f

Class of 26:A8

1a 135

2a 1

2b 3

2c 36

2d 15

2e 15

2f 1

2g 30

2h 6

3a 27

3b 9

4a 1

4b 3

4c 2

4d 1

4e 8

4f 1

4g 3

4h 3

4i 6

4j 2

χ(O+
8 (2)|26:A8) 135 39 31 15 15 7 27 9 3 11 7 3 3 3

Class of O+
8 (2) 5a 5b 5c 6a 6b 6c 6d 6e 6f 6g 6h 6i 6j 6k 6l 6m 6n

Class of 26:A8

5a 5

6a 3

6b 1

6c 3

6d 3

6e 1

6f 6

6g 9

6h

6i 3

6j 1

χ(O+
8 (2)|26:A8) 5 0 0 3 0 0 7 0 0 0 9 3 3 1 3 0 1

Class of O+
8 (2) 7a 8a 8b 10a 12a 12b 12c 12d 12e 12f 12g 15a 15b

Class of 26:A8

7a 1

7b 1

8a 1

8b 1

10a 1

12a 3

12b 3

15a 1

15b 1

χ(O+
8 (2)|26:A8) 2 1 1 1 3 0 0 0 3 0 0 2 0
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Table 8.5: The fusion of 26:A8 into O8
+(2)

[x]26:A8
−→ [g1]

O+
8 (2)

[x]26:A8
−→ [g1]

O+
8 (2)

1A 1A 2A 2B

2B 2A 2C 2A

2D 2C 2E 2D

2F 2E 2G 2B

2H 2E 3A 3A

3B 3E 4A 4B

4B 4A 4C 4B

4D 4C 4E 4B

4F 4F 4G 4D

4H 4E 4I 4C

4J 4F 5A 5A

6A 6A 6B 6D

6C 6J 6D 6I

6E 6K 6F 6D

6G 6H 6H 6M

6I 6L 6J 6N

7A 7A 7B 7A

8A 8A 8B 8B

10A 10A 12A 12A

12B 12E 15A 15A

15B 15A

Table 8.6: The fusion of SP (6, 2) into O+
8 (2)

[x]SP (6,2) −→ [g1]
O+

8 (2)
[x]SP (6,2) −→ [g1]

O+
8 (2)

1A 1A 2A 2B

2B 2A 2C 2B

2D 2E 3A 3A

3B 3D 3C 3E

4A 4A 4B 4C

4C 4C 4D 4B

4E 4C 6A 6D

5A 5A 6B 6A

6C 6G 6D 6D

6E 6K 6F 6H

6G 6N 7A 7A

8A 8A 8B 8B

9A 9A 10A 10A

12A 12E 12B 12E

12C 12D 15A 15A
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8.4.2 The Fischer-Clifford Matrices of G

By using the the fusions of the inertia factor groups and the properties of the Fischer-Clifford

matrix from chapter 5, we computed the Fischer-Clifford matrices. These are given in Table 8.7.

Table 8.7: The Fischer-Clifford Matrices of 28:O+
8 (2)

M(g) M(g)

M(1A) =

 1 1 1

120 8 −8

135 −9 7

 M(2C) =

[
1 1

15 −1

]

M(2A) =


1 1 1 1

24 8 −8 0

3 3 3 −1

36 −12 4 0

 M(2D) =

[
1 1

15 −1

]

M(2B) =


1 1 1 1 1

2 −2 −2 2 0

30 10 −6 −2 0

1 1 1 1 −1

30 −10 6 −2 0

 M(3D) =

[
1 1

3 −1

]

M(2E) =


1 1 1 1

8 0 −8 0

1 −1 1 1

6 0 6 −2

 M(4D) =

[
1 1

3 −1

]

M(3A) =

 1 1 1

36 −4 4

27 3 −5

 M(4E) =

[
1 1

3 −1

]

M(3E) =

 1 1 1

6 2 −2

9 −3 1

 M(6G) =

[
1 1

3 −1

]

M(4A) =

 1 1 1

12 0 −4

3 −1 3

 M(6I) =

[
1 1

3 −1

]

M(4B) =


1 1 1 1 1

4 0 4 −4 0

1 1 1 1 −1

2 −2 2 2 0

8 0 −8 0 0

 M(6J) =

[
1 1

3 −1

]

M(4C) =



1 1 1 1 1 1

1 −1 1 −1 1 −1

1 1 1 1 −1 −1

6 −6 −2 2 0 0

1 −1 1 −1 −1 1

6 6 −2 −2 0 0


M(6L) =

[
1 1

3 −1

]

M(4F ) =

 1 1 1

1 1 −1

2 −2 0

 M(7A) =


1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1


M(5A) =

 1 1 1

10 2 −2

5 −3 1

 M(6M) =

[
1 1

3 −1

]

continued on next page
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Table 8.7 (continued from previous page)

M(g) M(g)

M(6A) =

 1 1 1

12 0 −4

3 −1 3

 M(9A) =

[
1 1

3 −1

]

M(6D) =


1 1 1 1 1

2 −2 2 −2 0

6 6 −2 −2 0

1 1 1 1 −1

6 −6 −2 2 0

 M(12A) =

[
1 1

3 −1

]

M(6H) =

 1 1 1

6 2 −2

9 −3 1

 M(12D) =

[
1 1

3 −1

]

M(6K) =

 1 1 1

2 −2 0

1 1 −1

 M(3B) = M(3C) =
[

1
]

M(6N) =

 1 1 1

2 −2 0

1 1 −1

 M(5A) = M(5B) =
[

1
]

M(8A) =

 1 1 1

2 −2 0

1 1 −1

 M(6B) = M(6C) = M(6E) = M(6F ) =
[

1
]

M(8B) =

 1 1 1

2 −2 0

1 1 −1

 M(9B) = M(9C) =
[

1
]

M(10A) =

 1 1 1

2 −2 0

1 1 −1

 M(10B) = M(10C) =
[

1
]

M(12E) =


1 1 1 1

1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

 M(12B) = M(12C) = M(12F ) = M(12G) =
[

1
]

M(15A) =


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

 M(15B) = M(15C) =
[

1
]

We use programme D (see appendix) to give the fusion of 28:O+
8 (2) into O+

10(2) in Table 8.8.

Table 8.8: The fusion of 28:O+
8 (2) into O+

10(2)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

1A 1A 2A 2B

2B 2A 2C 2A

2D 2D 2E 2C

2F 2B 2G 2D

2H 2C 2I 2C

2J 2D 3A 3A

3B 3C 3C 3C

continued on next page
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Table 8.8 (continued from previous page)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

3D 3D 3E 3B

4A 4B 4B 4A

4C 4B 4D 4C

4E 4D 4F 4D

4G 4F 4H 4D

4I 4E 4J 4A

4K 4G 4L 4E

4M 4B 4N 4I

4O 4E 4P 4D

4Q 4H 4R 4C

4S 4G 4T 4I

4U 4F 4V 4H

4W 4H 4X 4I

5A 5A 5B 5B

5C 5B 6A 6B

6B 6A 6C 6G

6D 6I 6F 6A

6E 6F 6G 6D

6H 6H 6I 6H

6J 6B 6K 6D

6L 6L 6M 6L

6N 6E 6O 6M

6P 6C 6Q 6K

6R 6J 6S 6I

6T 6F 6U 6I

6V 6J 6W 6J

6X 6K 7A 7A

8A 8B 8B 8A

8C 8C 8D 8C

8E 8C 8F 8D

8G 8A 8H 8D

8G 8D 8H 8A

8I 8E 8J 8B

8K 8D 8L 8F

9A 9A 9B 9B

9C 9B 10A 10A

10B 10B 10C 10B

10D 10C 10E 10C

12A 12B 12B 12B

12C 12A 12D 12D

12E 12E 12F 12E

12G 12E 12H 12G

12I 12I 12J 12I

12K 12I 12L 12K

12M 12A 12N 12F

12O 12H 12P 12H

12Q 12C 12R 12J

12S 12D 12T 12F

12U 12L 12V 12L

14A 14A 14B 14B

14C 14C 15A 15C

15B 15E 15C 15E

continued on next page
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Table 8.8 (continued from previous page)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

[g]
28:O+

8 (2)
−→ [y]

O+
10(2)

18A 18A 20A 20A

20B 20B 24A 24A

24B 24B 30A 30C

30B 30F 30C 30D

We use programme E (see appendix) to give the power maps of elements of 28:O+
8 (2) in Table 8.9.

Table 8.9: The Power Maps of elements of 28:O+
8 (2)

[g]S8 [x]
28:O+

8 (2)
2 3 5 7 [g]S8 [x]

28:O+
8 (2)

2 3 5 7

1A 1A 1A 2A 2C 1A

2A 1A 2D 1A

2B 1A 2D 1A

2E 1A

4A 2A

2B 2F 1A 2E 2J 1A

4B 2B 4G 2A

4C 2B 4H 2B

2G 1A 4I 2B

4D 2A

2C 2H 1A 2D 2I 1A

4E 2B 4F 2B

3A 3A 3A 1A 3D 3D 3D 1A

6A 3A 2A 6C 3D 2B

6B 3A 2B

3B 3B 3B 1A 3C 3C 3C 1A

3E 3E 3E 1A 4A 4J 2C

6D 3E 2A 4K 2D

6E 3E 2B 4L 2C

4B 4M 2C 4C 4R 2F

4N 2D 4S 2G

4O 2C 4T 2G

4P 2C 4U 2F

4Q 2E 8A 4C

8B 4B

4D 4V 2H 4E 4W 2I

8C 4E 8D 4F

4F 4X 2E 5A 5A 5A 5A 1A

8E 4H 10A 5A 5A 2B

8F 4G 10B 5A 5A 2A

5B 5B 5B 5B 1A 5C 5C 5C 5C 1A

6A 6F 3A 2C 6D 6J 3A 2F

12A 6B 4A 12B 6A 4C

6G 3A 2D 6K 3A 2G

12C 6A 4B

12D 6B 4D

continued on next page
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Table 8.9 (continued from previous page)

[g]S8 [x]
28:O+

8 (2)
2 3 5 7 [g]S8 [x]

28:O+
8 (2)

2 3 5 7

6B 6H 3B 2C 6C 6I 3C 2C

6E 6L 3B 2H 6F 6M 3C 2I

6H 6P 3E 2C 6G 6N 3D 2C

6Q 3E 2D 6O 3D 2D

6R 3E 2E

6I 6S 3E 2C 6J 6T 3E 2C

12E 6E 4A 12F 6E 4A

6K 6U 3E 2F 6L 6V 3E 2H

12G 6E 4C 12I 6E 4E

12H 6D 4D

6N 6X 3E 2J 6M 6W 3E 2I

12K 6D 4G 12J 6E 4F

12L 6E 4H

7A 7A 7A 7A 7A 1A 9A 9A 9A 3D

14A 7A 14A 14A 2A 18A 9A 6C

14B 7A 14B 14B 2B

14C 7A 14C 14C 2B

9B 9B 9B 3D 9C 9C 9C 3D

8A 8G 4J 8B 8J 4M

8H 4K 8K 4N

8I 4L 8L 4P

10A 10C 5A 10C 2F 12A 12M 6F 4J

20A 10A 20A 4B 12N 6G 4L

20B 10B 20B 4D

10B 10D 5B 10D 2H 10C 10E 5C 10E 2I

12B 12O 6H 4J 12C 12P 6I 4J

12D 12Q 6N 4J 12E 12S 6J 4R

12R 6N 4L 24A 12B 8A

24B 12C 8B

12T 6K 4S

12F 12U 6L 4V 12G 12V 6M 4W

15A 15A 15A 5A 3A 15B 15B 15B 5B 3B

30A 15A 10B 6B

30B 15A 10A 6A 15C 15C 15C 5C 3C

30C 15A 10A 6A

To compute the character table of 28:O+
8 (2), as an example consider the following. Let C1(2B), C2(2B), C3(2B)

be the partial character tables of the inertia factors for the classes that fuse to 2B ∈ O+
8 (2). The

portions of the character table of G = 28:O+
8 (2) corresponding to the coset 2B are :
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C1(2B)M1(2B) =



1

4

11

−5

−5

10

20

4

4

15

26

10

10

20

−10

5

39

−9

−9

20

60

−20

−20

24

−40

−40

36

50

−30

−30

64

0

0

40

15

15

15

−60

20

20

64

0

0

12

−36

−36

51

−45

−45

0

0

40

−45



[
1 1 1 1 1

]
=



1 1 1 1 1

4 4 4 4 4

11 11 11 11 11

−5 −5 −5 −5 −5

−5 −5 −5 −5 −5

10 10 10 10 10

20 20 20 20 20

4 4 4 4 4

4 4 4 4 4

15 15 15 15 15

26 26 26 26 26

10 10 10 10 10

10 10 10 10 10

20 20 20 20 20

−10 −10 −10 −10 −10

5 5 5 5 5

39 39 39 39 39

−9 −9 −9 −9 −9

−9 −9 −9 −9 −9

20 20 20 20 20

60 60 60 60 60

−20 −20 −20 −20 −20

−20 −20 −20 −20 −20

24 24 24 24 24

−40 −40 −40 −40 −40

−40 −40 −40 −40 −40

36 36 36 36 36

50 50 50 50 50

−30 −30 −30 −30 −30

−30 −30 −30 −30 −30

64 64 64 64 64

0 0 0 0 0

0 0 0 0 0

40 40 40 40 40

15 15 15 15 15

15 15 15 15 15

15 15 15 15 15

−60 −60 −60 −60 −60

20 20 20 20 20

20 20 20 20 20

64 64 64 64 64

0 0 0 0 0

0 0 0 0 0

12 12 12 12 12

−36 −36 −36 −36 −36

−36 −36 −36 −36 −36

51 51 51 51 51

−45 −45 −45 −45 −45

−45 −45 −45 −45 −45

0 0 0 0 0

0 0 0 0 0

40 40 40 40 40

−45 −45 −45 −45 −45
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C2(2B)M2(2B) =



1 1

−5 3

−5 3

9 1

−11 5

15 7

−5 −5

15 7

−24 8

−10 6

4 4

−35 5

25 9

5 −3

40 8

40 8

21 −11

−51 13

−39 1

50 2

10 10

−24 8

−40 −8

40 8

−45 3

−16 −16

−30 2

45 −3

20 −12

0 0



[
2 −2 −2 2 0

30 10 −6 −2 0

]
=



32 8 −8 0 0

80 40 −8 −16 0

80 40 −8 −16 0

48 −8 −24 16 0

128 72 −8 −32 0

240 40 −72 16 0

−160 −40 40 0 0

240 40 −72 16 0

192 128 0 −64 0

160 80 −16 −32 0

128 32 −32 0 0

80 120 40 −80 0

320 40 −104 32 0

−80 −40 8 16 0

320 0 −128 64 0

320 0 −128 64 0

−288 −152 24 64 0

288 232 24 −128 0

−48 88 72 −80 0

160 −80 −112 96 0

320 80 −80 0 0

192 128 0 −64 0

−320 0 128 −64 0

320 0 −128 64 0

0 120 72 −96 0

−512 −128 128 0 0

0 80 48 −64 0

0 −120 −72 96 0

−320 −160 32 64 0

0 0 0 0 0



C3(2B)M3(2B) =



1 1

7 3

14 2

20 4

21 1

21 1

21 1

28 4

35 −5

45 −3

45 −3

56 0

64 0

70 2

4 8

4 4

−5 7

−5 7

−5 −5

−5 −5

−10 2

−10 2

−10 2

−10 2

20 0

20 12

−20 4

20 8

20 4

−30 14

−30 −10

36 0

36 12

40 −16

40 −8

−45 3

−45 3

−45 −9

−45 −9

−60 4

64 0



[
1 1 1 1 −1

30 −10 6 −2 0

]
=



31 −9 7 −1 −1

97 −23 25 1 −7

74 −6 26 10 −14

140 −20 44 12 −20

51 11 27 19 −21

51 11 27 19 −21

51 11 27 19 −21

148 −12 52 20 −28

−115 85 5 45 −35

−45 75 27 51 −45

−45 75 27 51 −45

56 56 56 56 −56

64 64 64 64 −64

130 50 82 66 −70

244 −76 52 −12 −4

124 −36 28 −4 −4

205 −75 37 −19 5

205 −75 37 −19 5

−155 45 −35 5 5

−155 45 −35 5 5

50 −30 2 −14 10

50 −30 2 −14 10

50 −30 2 −14 10

50 −30 2 −14 10

20 20 20 20 −20

380 −100 92 −4 −20

100 −60 4 −28 20

260 −60 68 4 −20

140 −20 44 12 −20

390 −170 54 −58 30

−330 70 −90 −10 30

36 36 36 36 −36

396 −84 108 12 −36

−440 200 −56 72 −40

−200 120 −8 56 −40

45 −75 −27 −51 45

45 −75 −27 −51 45

−315 45 −99 −27 45

−315 45 −99 −27 45

60 −100 −36 −68 60

64 64 64 64 −64
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We used the Fischer-Clifford matrices and partial character tables of inertia factor groups and

computed the character table of G. This character table is given in Table 8.10. We converted this

character table to the GAP format and used Programme E (see appendix) to test its validity and

to compute the power maps.
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10(2)

8.4.3 The Character Table of G

Table 8.10: The Character Table of 28:O+
8 (2)

1A 2A 2B 2C 2D

1A 2A 2B 2C 2D 2E 4A 2F 4B 4C 2G 4D 2H 4E 2I 4F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 28 28 28 -4 -4 -4 -4 4 4 4 4 4 4 4 4 4

χ3 35 35 35 3 3 3 3 11 11 11 11 11 -5 -5 -5 -5

χ4 35 35 35 3 3 3 3 -5 -5 -5 -5 -5 11 11 -5 -5

χ5 35 35 35 3 3 3 3 -5 -5 -5 -5 -5 -5 -5 11 11

χ6 50 50 50 18 18 18 18 10 10 10 10 10 10 10 10 10

χ7 84 84 84 20 20 20 20 20 20 20 20 20 4 4 4 4

χ8 84 84 84 20 20 20 20 4 4 4 4 4 20 20 4 4

χ9 84 84 84 20 20 20 20 4 4 4 4 4 4 4 20 20

χ10 175 175 175 -17 -17 -17 -17 15 15 15 15 15 15 15 15 15

χ11 210 210 210 -14 -14 -14 -14 26 26 26 26 26 10 10 10 10

χ12 210 210 210 -14 -14 -14 -14 10 10 10 10 10 26 26 10 10

χ13 210 210 210 -14 -14 -14 -14 10 10 10 10 10 10 10 26 26

χ14 300 300 300 12 12 12 12 20 20 20 20 20 20 20 20 20

χ15 350 350 350 -2 -2 -2 -2 -10 -10 -10 -10 -10 -10 -10 -10 -10

χ16 525 525 525 45 45 45 45 5 5 5 5 5 5 5 5 5

χ17 567 567 567 -9 -9 -9 -9 39 39 39 39 39 -9 -9 -9 -9

χ18 567 567 567 -9 -9 -9 -9 -9 -9 -9 -9 -9 39 39 -9 -9

χ19 567 567 567 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 39 39

χ20 700 700 700 92 92 92 92 20 20 20 20 20 20 20 20 20

χ21 700 700 700 -4 -4 -4 -4 60 60 60 60 60 -20 -20 -20 -20

χ22 700 700 700 -4 -4 -4 -4 -20 -20 -20 -20 -20 60 60 -20 -20

χ23 700 700 700 -4 -4 -4 -4 -20 -20 -20 -20 -20 -20 -20 60 60

χ24 840 840 840 8 8 8 8 24 24 24 24 24 -40 -40 -40 -40

χ25 840 840 840 8 8 8 8 -40 -40 -40 -40 -40 24 24 -40 -40

χ26 840 840 840 8 8 8 8 -40 -40 -40 -40 -40 -40 -40 24 24

χ27 972 972 972 108 108 108 108 36 36 36 36 36 36 36 36 36

χ28 1050 1050 1050 58 58 58 58 50 50 50 50 50 -30 -30 -30 -30

χ29 1050 1050 1050 58 58 58 58 -30 -30 -30 -30 -30 50 50 -30 -30

χ30 1050 1050 1050 58 58 58 58 -30 -30 -30 -30 -30 -30 -30 50 50

χ31 1344 1344 1344 64 64 64 64 64 64 64 64 64 0 0 0 0

χ32 1344 1344 1344 64 64 64 64 0 0 0 0 0 64 64 0 0

χ33 1344 1344 1344 64 64 64 64 0 0 0 0 0 0 0 64 64

χ34 1400 1400 1400 -72 -72 -72 -72 40 40 40 40 40 40 40 40 40

χ35 1575 1575 1575 -57 -57 -57 -57 15 15 15 15 15 15 15 15 15

χ36 1575 1575 1575 -57 -57 -57 -57 15 15 15 15 15 15 15 15 15

χ37 1575 1575 1575 -57 -57 -57 -57 15 15 15 15 15 15 15 15 15

χ38 2100 2100 2100 52 52 52 52 -60 -60 -60 -60 -60 20 20 20 20

χ39 2100 2100 2100 52 52 52 52 20 20 20 20 20 -60 -60 20 20

χ40 2100 2100 2100 52 52 52 52 20 20 20 20 20 20 20 -60 -60

χ41 2240 2240 2240 -64 -64 -64 -64 64 64 64 64 64 0 0 0 0

χ42 2240 2240 2240 -64 -64 -64 -64 0 0 0 0 0 64 64 0 0

χ43 2240 2240 2240 -64 -64 -64 -64 0 0 0 0 0 0 0 64 64

χ44 2268 2268 2268 -36 -36 -36 -36 12 12 12 12 12 -36 -36 -36 -36
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The character table of 28:O+
8 (2)(continued)

1A 2A 2B 2C 2D

1A 2A 2B 2C 2D 2E 4A 2F 4B 4C 2G 4D 2H 4E 2I 4F

χ45 2268 2268 2268 -36 -36 -36 -36 -36 -36 -36 -36 -36 12 12 -36 -36

χ46 2268 2268 2268 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36 12 12

χ47 2835 2835 2835 -45 -45 -45 -45 51 51 51 51 51 -45 -45 -45 -45

χ48 2835 2835 2835 -45 -45 -45 -45 -45 -45 -45 -45 -45 51 51 -45 -45

χ49 2835 2835 2835 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 51 51

χ50 3200 3200 3200 128 128 128 128 0 0 0 0 0 0 0 0 0

χ51 4096 4096 4096 0 0 0 0 0 0 0 0 0 0 0 0 0

χ52 4200 4200 4200 -24 -24 -24 -24 40 40 40 40 40 40 40 40 40

χ53 6075 6075 6075 27 27 27 27 -45 -45 -45 -45 -45 -45 -45 -45 -45

χ54 120 8 -8 24 8 -8 0 32 8 -8 0 0 0 0 0 0

χ55 840 56 -56 -24 -8 8 0 80 40 -8 -16 0 0 0 0 0

χ56 1800 120 -120 168 56 -56 0 80 40 -8 -16 0 0 0 0 0

χ57 2520 168 -168 -72 -24 24 0 48 -8 -24 16 0 0 0 0 0

χ58 2520 168 -168 120 40 -40 0 128 72 -8 -32 0 0 0 0 0

χ59 3240 216 -216 72 24 -24 0 240 40 -72 16 0 0 0 0 0

χ60 4200 280 -280 72 24 -24 0 -160 -40 40 0 0 0 0 0 0

χ61 4200 280 -280 264 88 -88 0 240 40 -72 16 0 0 0 0 0

χ62 6720 448 -448 -192 -64 64 0 192 128 0 -64 0 0 0 0 0

χ63 8400 560 -560 -240 -80 80 0 160 80 -16 -32 0 0 0 0 0

χ64 10080 672 -672 480 160 -160 0 128 32 -32 0 0 0 0 0 0

χ65 12600 840 -840 24 8 -8 0 80 120 40 -80 0 0 0 0 0

χ66 12600 840 -840 -168 -56 56 0 320 40 -104 32 0 0 0 0 0

χ67 12600 840 -840 408 136 -136 0 -80 -40 8 16 0 0 0 0 0

χ68 14400 960 -960 -192 -64 64 0 320 0 -128 64 0 0 0 0 0

χ69 20160 1344 -1344 192 64 -64 0 320 0 -128 64 0 0 0 0 0

χ70 22680 1512 -1512 -72 -24 24 0 -288 -152 24 64 0 0 0 0 0

χ71 22680 1512 -1512 -72 -24 24 0 288 232 24 -128 0 0 0 0 0

χ72 22680 1512 -1512 504 168 -168 0 -48 88 72 -80 0 0 0 0 0

χ73 25200 1680 -1680 48 16 -16 0 160 -80 -112 96 0 0 0 0 0

χ74 25200 1680 -1680 -336 -112 112 0 320 80 -80 0 0 0 0 0 0

χ75 25920 1728 -1728 576 192 -192 0 192 128 0 -64 0 0 0 0 0

χ76 33600 2240 -2240 -192 -64 64 0 -320 0 128 -64 0 0 0 0 0

χ77 33600 2240 -2240 576 192 -192 0 320 0 -128 64 0 0 0 0 0

χ78 37800 2520 -2520 -504 -168 168 0 0 120 72 -96 0 0 0 0 0

χ79 40320 2688 -2688 384 128 -128 0 -512 -128 128 0 0 0 0 0 0

χ80 45360 3024 -3024 -144 -48 48 0 0 80 48 -64 0 0 0 0 0

χ81 48600 3240 -3240 -648 -216 216 0 0 -120 -72 96 0 0 0 0 0

χ82 50400 3360 -3360 96 32 -32 0 -320 -160 32 64 0 0 0 0 0

χ83 61440 4096 -4096 0 0 0 0 0 0 0 0 0 0 0 0 0

χ84 135 -9 7 39 -9 7 -1 31 -9 7 -1 -1 15 -1 15 -1

χ85 945 -63 49 -15 33 17 -7 97 -23 25 1 -7 -15 1 -15 1

χ86 1890 -126 98 258 -30 66 -14 74 -6 26 10 -14 90 -6 90 -6

χ87 2700 -180 140 204 12 76 -20 140 -20 44 12 -20 60 -4 60 -4

χ88 2835 -189 147 -45 99 51 -21 51 11 27 19 -21 -45 3 -45 3
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The character table of 28:O+
8 (2)(continued)

1A 2A 2B 2C 2D

1A 2A 2B 2C 2D 2E 4A 2F 4B 4C 2G 4D 2H 4E 2I 4F

χ89 2835 -189 147 -45 99 51 -21 51 11 27 19 -21 -45 3 -45 3

χ90 2835 -189 147 -45 99 51 -21 51 11 27 19 -21 -45 3 -45 3

χ91 3780 -252 196 -60 132 68 -28 148 -12 52 20 -28 -60 4 -60 4

χ92 4725 -315 245 213 69 117 -35 -115 85 5 45 -35 45 -3 45 -3

χ93 6075 -405 315 27 171 123 -45 -45 75 27 51 -45 -45 3 -45 3

χ94 6075 -405 315 27 171 123 -45 -45 75 27 51 -45 -45 3 -45 3

χ95 7560 -504 392 456 72 200 -56 56 56 56 56 -56 120 -8 120 -8

χ96 8640 -576 448 192 192 192 -64 64 64 64 64 -64 0 0 0 0

χ97 9450 -630 490 138 234 202 -70 130 50 82 66 -70 -30 2 -30 2

χ98 3780 -252 196 132 -60 4 4 244 -76 52 -12 -4 -60 4 -60 4

χ99 3780 -252 196 -156 36 -28 4 124 -36 28 -4 -4 60 -4 60 -4

χ100 4725 -315 245 405 -123 53 -3 205 -75 37 -19 5 45 -3 45 -3

χ101 4725 -315 245 -171 69 -11 -3 205 -75 37 -19 5 45 -3 45 -3

χ102 4725 -315 245 117 -27 21 -3 -155 45 -35 5 5 -75 5 165 -11

χ103 4725 -315 245 117 -27 21 -3 -155 45 -35 5 5 165 -11 -75 5

χ104 9450 -630 490 -54 42 10 -6 50 -30 2 -14 10 -30 2 210 -14

χ105 9450 -630 490 -54 42 10 -6 50 -30 2 -14 10 210 -14 -30 2

χ106 9450 -630 490 522 -150 74 -6 50 -30 2 -14 10 -30 2 210 -14

χ107 9450 -630 490 522 -150 74 -6 50 -30 2 -14 10 210 -14 -30 2

χ108 18900 -1260 980 84 -108 -44 20 20 20 20 20 -20 -60 4 -60 4

χ109 18900 -1260 980 -204 -12 -76 20 380 -100 92 -4 -20 60 -4 60 -4

χ110 18900 -1260 980 468 -108 84 -12 100 -60 4 -28 20 180 -12 180 -12

χ111 18900 -1260 980 -492 84 -108 20 260 -60 68 4 -20 180 -12 180 -12

χ112 18900 -1260 980 372 -204 -12 20 140 -20 44 12 -20 -180 12 -180 12

χ113 28350 -1890 1470 -162 126 30 -18 390 -170 54 -58 30 -90 6 -90 6

χ114 28350 -1890 1470 -162 126 30 -18 -330 70 -90 -10 30 -90 6 -90 6

χ115 34020 -2268 1764 -540 36 -156 36 36 36 36 36 -36 180 -12 180 -12

χ116 34020 -2268 1764 324 -252 -60 36 396 -84 108 12 -36 -180 12 -180 12

χ117 37800 -2520 1960 168 -216 -88 40 -440 200 -56 72 -40 -120 8 -120 8

χ118 37800 -2520 1960 -408 -24 -152 40 -200 120 -8 56 -40 120 -8 120 -8

χ119 42525 -2835 2205 -675 333 -3 -27 45 -75 -27 -51 45 45 -3 45 -3

χ120 42525 -2835 2205 1053 -243 189 -27 45 -75 -27 -51 45 45 -3 45 -3

χ121 42525 -2835 2205 189 45 93 -27 -315 45 -99 -27 45 405 -27 -315 21

χ122 42525 -2835 2205 189 45 93 -27 -315 45 -99 -27 45 -315 21 405 -27

χ123 56700 -3780 2940 -324 252 60 -36 60 -100 -36 -68 60 -180 12 -180 12

χ124 60480 -4032 3136 -192 -192 -192 64 64 64 64 64 -64 0 0 0 0
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The character table of 28:O+
8 (2)(continued)

2E 3A 3B 3C 3D 3E 4A

2J 4G 4H 4I 3A 6A 6B 3B 3C 3D 6C 3E 6D 6E 4J 4K 4L

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -4 -4 -4 -4 10 10 10 10 10 1 1 1 1 1 8 8 8

χ3 3 3 3 3 14 14 14 5 5 -1 -1 2 2 2 7 7 7

χ4 3 3 3 3 5 5 5 14 5 -1 -1 2 2 2 7 7 7

χ5 3 3 3 3 5 5 5 5 14 -1 -1 2 2 2 7 7 7

χ6 2 2 2 2 5 5 5 5 5 -4 -4 5 5 5 -2 -2 -2

χ7 4 4 4 4 21 21 21 -6 -6 3 3 3 3 3 4 4 4

χ8 4 4 4 4 -6 -6 -6 21 -6 3 3 3 3 3 4 4 4

χ9 4 4 4 4 -6 -6 -6 -6 21 3 3 3 3 3 4 4 4

χ10 -1 -1 -1 -1 -5 -5 -5 -5 -5 13 13 4 4 4 -1 -1 -1

χ11 2 2 2 2 39 39 39 -15 -15 -6 -6 3 3 3 6 6 6

χ12 2 2 2 2 -15 -15 -15 39 -15 -6 -6 3 3 3 6 6 6

χ13 2 2 2 2 -15 -15 -15 -15 39 -6 -6 3 3 3 6 6 6

χ14 12 12 12 12 30 30 30 30 30 3 3 -6 -6 -6 8 8 8

χ15 -2 -2 -2 -2 35 35 35 35 35 -1 -1 -1 -1 -1 26 26 26

χ16 -19 -19 -19 -19 30 30 30 30 30 12 12 3 3 3 -7 -7 -7

χ17 -9 -9 -9 -9 81 81 81 0 0 0 0 0 0 0 15 15 15

χ18 -9 -9 -9 -9 0 0 0 81 0 0 0 0 0 0 15 15 15

χ19 -9 -9 -9 -9 0 0 0 0 81 0 0 0 0 0 15 15 15

χ20 -4 -4 -4 -4 -20 -20 -20 -20 -20 -2 -2 7 7 7 0 0 0

χ21 12 12 12 12 55 55 55 10 10 7 7 4 4 4 -4 -4 -4

χ22 12 12 12 12 10 10 10 55 10 7 7 4 4 4 -4 -4 -4

χ23 12 12 12 12 10 10 10 10 55 7 7 4 4 4 -4 -4 -4

χ24 8 8 8 8 -24 -24 -24 30 30 3 3 3 3 3 16 16 16

χ25 8 8 8 8 30 30 30 -24 30 3 3 3 3 3 16 16 16

χ26 8 8 8 8 30 30 30 30 -24 3 3 3 3 3 16 16 16

χ27 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0

χ28 -6 -6 -6 -6 15 15 15 15 15 -3 -3 6 6 6 -10 -10 -10

χ29 -6 -6 -6 -6 15 15 15 15 15 -3 -3 6 6 6 -10 -10 -10

χ30 -6 -6 -6 -6 15 15 15 15 15 -3 -3 6 6 6 -10 -10 -10

χ31 0 0 0 0 84 84 84 -24 -24 -6 -6 -6 -6 -6 0 0 0

χ32 0 0 0 0 -24 -24 -24 84 -24 -6 -6 -6 -6 -6 0 0 0

χ33 0 0 0 0 -24 -24 -24 -24 84 -6 -6 -6 -6 -6 0 0 0

χ34 -8 -8 -8 -8 50 50 50 50 50 -4 -4 5 5 5 -16 -16 -16

χ35 -9 -9 -9 -9 90 90 90 -45 -45 9 9 0 0 0 11 11 11

χ36 -9 -9 -9 -9 -45 -45 -45 90 -45 9 9 0 0 0 11 11 11

χ37 -9 -9 -9 -9 -45 -45 -45 -45 90 9 9 0 0 0 11 11 11

χ38 4 4 4 4 75 75 75 -60 -60 -6 -6 3 3 3 12 12 12

χ39 4 4 4 4 -60 -60 -60 75 -60 -6 -6 3 3 3 12 12 12

χ40 4 4 4 4 -60 -60 -60 -60 75 -6 -6 3 3 3 12 12 12

χ41 0 0 0 0 -4 -4 -4 -40 -40 -10 -10 2 2 2 0 0 0

χ42 0 0 0 0 -40 -40 -40 -4 -40 -10 -10 2 2 2 0 0 0

χ43 0 0 0 0 -40 -40 -40 -40 -4 -10 -10 2 2 2 0 0 0

χ44 12 12 12 12 81 81 81 0 0 0 0 0 0 0 -12 -12 -12

130



CHAPTER 8. A GROUP OF THE FORM 28:O+
8 (2) AS A MAXIMAL SUBGROUP OF O+

10(2)

The character table of 28:O+
8 (2)(continued)

2E 3A 3B 3C 3D 3E 4A

2J 4G 4H 4I 3A 6A 6B 3B 3C 3D 6C 3E 6D 6E 4J 4K 4L

χ45 12 12 12 12 0 0 0 81 0 0 0 0 0 0 -12 -12 -12

χ46 12 12 12 12 0 0 0 0 81 0 0 0 0 0 -12 -12 -12

χ47 3 3 3 3 -81 -81 -81 0 0 0 0 0 0 0 3 3 3

χ48 3 3 3 3 0 0 0 -81 0 0 0 0 0 0 3 3 3

χ49 3 3 3 3 0 0 0 0 -81 0 0 0 0 0 3 3 3

χ50 0 0 0 0 -40 -40 -40 -40 -40 14 14 -4 -4 -4 0 0 0

χ51 0 0 0 0 64 64 64 64 64 -8 -8 -8 -8 -8 0 0 0

χ52 8 8 8 8 -30 -30 -30 -30 -30 15 15 -3 -3 -3 -8 -8 -8

χ53 -21 -21 -21 -21 0 0 0 0 0 0 0 0 0 0 -9 -9 -9

χ54 8 0 -8 0 36 -4 4 0 0 3 -1 6 2 -2 12 0 -4

χ55 -8 0 8 0 144 -16 16 0 0 -6 2 6 2 -2 36 0 -12

χ56 -8 0 8 0 0 0 0 0 0 -9 3 18 6 -6 -12 0 4

χ57 -24 0 24 0 216 -24 24 0 0 9 -3 0 0 0 60 0 -20

χ58 -24 0 24 0 216 -24 24 0 0 9 -3 0 0 0 12 0 -4

χ59 24 0 -24 0 324 -36 36 0 0 0 0 0 0 0 36 0 -12

χ60 24 0 -24 0 180 -20 20 0 0 -3 1 12 4 -4 84 0 -28

χ61 24 0 -24 0 180 -20 20 0 0 -3 1 12 4 -4 -12 0 4

χ62 0 0 0 0 396 -44 44 0 0 6 -2 12 4 -4 0 0 0

χ63 -16 0 16 0 -180 20 -20 0 0 21 -7 6 2 -2 24 0 -8

χ64 32 0 -32 0 -216 24 -24 0 0 9 -3 18 6 -6 48 0 -16

χ65 8 0 -8 0 540 -60 60 0 0 -9 3 -18 -6 6 60 0 -20

χ66 8 0 -8 0 0 0 0 0 0 18 -6 18 6 -6 -36 0 12

χ67 -56 0 56 0 0 0 0 0 0 18 -6 18 6 -6 -36 0 12

χ68 0 0 0 0 540 -60 60 0 0 -18 6 0 0 0 0 0 0

χ69 64 0 -64 0 216 -24 24 0 0 18 -6 -18 -6 6 0 0 0

χ70 -24 0 24 0 324 -36 36 0 0 0 0 0 0 0 108 0 -36

χ71 -24 0 24 0 324 -36 36 0 0 0 0 0 0 0 -36 0 12

χ72 -24 0 24 0 324 -36 36 0 0 0 0 0 0 0 -36 0 12

χ73 -48 0 48 0 540 -60 60 0 0 9 -3 0 0 0 -24 0 8

χ74 16 0 -16 0 -540 60 -60 0 0 -18 6 18 6 -6 72 0 -24

χ75 0 0 0 0 -324 36 -36 0 0 0 0 0 0 0 0 0 0

χ76 64 0 -64 0 360 -40 40 0 0 30 -10 6 2 -2 0 0 0

χ77 0 0 0 0 -180 20 -20 0 0 -24 8 -12 -4 4 0 0 0

χ78 24 0 -24 0 0 0 0 0 0 -27 9 0 0 0 -60 0 20

χ79 0 0 0 0 216 -24 24 0 0 -18 6 0 0 0 0 0 0

χ80 -48 0 48 0 -324 36 -36 0 0 0 0 0 0 0 72 0 -24

χ81 -24 0 24 0 0 0 0 0 0 0 0 0 0 0 -36 0 12

χ82 32 0 -32 0 0 0 0 0 0 -9 3 18 6 -6 -48 0 16

χ83 0 0 0 0 -576 64 -64 0 0 24 -8 -24 -8 8 0 0 0

χ84 7 -1 7 -1 27 3 -5 0 0 0 0 9 -3 1 3 -1 3

χ85 17 1 17 -7 108 12 -20 0 0 0 0 9 -3 1 9 -3 9

χ86 18 -6 18 2 -27 -3 5 0 0 0 0 18 -6 2 6 -2 6

χ87 28 -4 28 -4 135 15 -25 0 0 0 0 -9 3 -1 12 -4 12

χ88 3 3 3 -5 162 18 -30 0 0 0 0 0 0 0 3 -1 3
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The character table of 28:O+
8 (2)(continued)

2E 3A 3B 3C 3D 3E 4A

2J 4G 4H 4I 3A 6A 6B 3B 3C 3D 6C 3E 6D 6E 4J 4K 4L

χ89 3 3 3 -5 -81 -9 15 0 0 0 0 0 0 0 3 -1 3

χ90 3 3 3 -5 -81 -9 15 0 0 0 0 0 0 0 3 -1 3

χ91 20 4 20 -12 27 3 -5 0 0 0 0 9 -3 1 12 -4 12

χ92 -27 -3 -27 13 135 15 -25 0 0 0 0 18 -6 2 -15 5 -15

χ93 -21 3 -21 3 0 0 0 0 0 0 0 0 0 0 -9 3 -9

χ94 -21 3 -21 3 0 0 0 0 0 0 0 0 0 0 -9 3 -9

χ95 8 -8 8 8 -108 -12 20 0 0 0 0 -9 3 -1 0 0 0

χ96 0 0 0 0 108 12 -20 0 0 0 0 -18 6 -2 0 0 0

χ97 10 2 10 -6 -135 -15 25 0 0 0 0 9 -3 1 6 -2 6

χ98 4 -4 4 4 270 30 -50 0 0 0 0 9 -3 1 12 -4 12

χ99 -28 4 -28 4 270 30 -50 0 0 0 0 9 -3 1 24 -8 24

χ100 -11 5 -11 -3 135 15 -25 0 0 0 0 18 -6 2 -15 5 -15

χ101 5 -11 5 13 135 15 -25 0 0 0 0 18 -6 2 -15 5 -15

χ102 21 -3 21 -3 135 15 -25 0 0 0 0 18 -6 2 21 -7 21

χ103 21 -3 21 -3 135 15 -25 0 0 0 0 18 -6 2 21 -7 21

χ104 26 -14 26 10 -135 -15 25 0 0 0 0 9 -3 1 6 -2 6

χ105 10 2 10 -6 -135 -15 25 0 0 0 0 9 -3 1 6 -2 6

χ106 10 2 10 -6 -135 -15 25 0 0 0 0 9 -3 1 6 -2 6

χ107 -44 -4 -44 20 540 60 -100 0 0 0 0 -9 3 -1 36 -12 36

χ108 20 4 20 -12 540 60 -100 0 0 0 0 -9 3 -1 0 0 0

χ109 36 -12 36 4 135 15 -25 0 0 0 0 -36 12 -4 12 -4 12

χ110 -12 12 -12 -12 -270 -30 50 0 0 0 0 18 -6 2 12 -4 12

χ111 -12 -12 -12 20 -270 -30 50 0 0 0 0 18 -6 2 24 -8 24

χ112 -18 6 -18 -2 405 45 -75 0 0 0 0 0 0 0 -30 10 -30

χ113 30 6 30 -18 405 45 -75 0 0 0 0 0 0 0 42 -14 42

χ114 -60 12 -60 4 0 0 0 0 0 0 0 0 0 0 36 -12 36

χ115 36 -12 36 4 0 0 0 0 0 0 0 0 0 0 0 0 0

χ116 8 -8 8 8 270 30 -50 0 0 0 0 9 -3 1 -24 8 -24

χ117 40 8 40 -24 270 30 -50 0 0 0 0 9 -3 1 -48 16 -48

χ118 -3 -27 -3 37 0 0 0 0 0 0 0 0 0 0 -27 9 -27

χ119 -51 21 -51 -11 0 0 0 0 0 0 0 0 0 0 -27 9 -27

χ120 -27 21 -27 -19 0 0 0 0 0 0 0 0 0 0 -3 1

χ121 -3 -3 -3 5 0 0 0 0 0 0 0 0 0 0 9 -3 9

χ122 -3 -3 -3 5 0 0 0 0 0 0 0 0 0 0 9 -3 9

χ123 12 12 12 -20 -405 -45 75 0 0 0 0 0 0 0 12 -4 12

χ124 0 0 0 0 -540 -60 100 0 0 0 0 -18 6 -2 0 0 0
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4B 4C 4D 4E 4F

4M 4N 4O 4P 4Q 4R 4S 4T 4U 8A 8B 4V 8C 4W 8D 4X 8E 8F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ3 -1 -1 -1 -1 -1 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1

χ4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 -1 -1 -1 -1 -1

χ5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 -1 -1 -1

χ6 6 6 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2

χ7 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0

χ8 4 4 4 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0

χ9 4 4 4 4 4 0 0 0 0 0 0 0 0 4 4 0 0 0

χ10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3

χ11 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2 -2 -2 2 2 2

χ12 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 -2 -2 2 2 2

χ13 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 2

χ14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ15 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2

χ16 1 1 1 1 1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 1 1 1

χ17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 -1 -1 -1

χ18 -1 -1 -1 -1 -1 3 3 3 3 3 3 -1 -1 3 3 -1 -1 -1

χ19 -1 -1 -1 -1 -1 3 3 3 3 3 3 3 3 -1 -1 -1 -1 -1

χ20 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ21 -4 -4 -4 -4 -4 4 4 4 4 4 4 0 0 0 0 0 0 0

χ22 -4 -4 -4 -4 -4 0 0 0 0 0 0 4 4 0 0 0 0 0

χ23 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0 4 4 0 0 0

χ24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ27 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ28 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2

χ29 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 -2 -2 -2 -2 -2

χ30 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 -2 -2 -2

χ31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ35 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ36 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ37 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ38 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0

χ39 -4 -4 -4 -4 -4 0 0 0 0 0 0 -4 -4 0 0 0 0 0

χ40 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0 -4 -4 0 0 0

χ41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ44 4 4 4 4 4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0
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4B 4C 4D 4E 4F

4M 4N 4O 4P 4Q 4R 4S 4T 4U 8A 8B 4V 8C 4W 8D 4X 8E 8F

χ45 4 4 4 4 4 0 0 0 0 0 0 -4 -4 0 0 0 0 0

χ46 4 4 4 4 4 0 0 0 0 0 0 0 0 -4 -4 0 0 0

χ47 3 3 3 3 3 -5 -5 -5 -5 -5 -5 3 3 3 3 -1 -1 -1

χ48 3 3 3 3 3 3 3 3 3 3 3 -5 -5 3 3 -1 -1 -1

χ49 3 3 3 3 3 3 3 3 3 3 3 3 3 -5 -5 -1 -1 -1

χ50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ52 -8 -8 -8 -8 -8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ53 -1 -1 -1 -1 -1 3 3 3 3 3 3 3 3 3 3 3 3 3

χ54 4 0 4 -4 0 8 -6 0 2 0 -2 0 0 0 0 0 0 0

χ55 -4 0 -4 4 0 4 -10 -4 -2 4 2 0 0 0 0 0 0 0

χ56 12 0 12 -12 0 4 -2 -4 6 -4 2 0 0 0 0 0 0 0

χ57 4 0 4 -4 0 -4 10 4 2 -4 -2 0 0 0 0 0 0 0

χ58 4 0 4 -4 0 0 -6 -8 2 0 6 0 0 0 0 0 0 0

χ59 -4 0 -4 4 0 12 -2 4 6 -4 -6 0 0 0 0 0 0 0

χ60 -4 0 -4 4 0 -8 6 0 -2 0 2 0 0 0 0 0 0 0

χ61 12 0 12 -12 0 12 -10 4 -2 4 -6 0 0 0 0 0 0 0

χ62 0 0 0 0 0 0 -8 0 -8 8 0 0 0 0 0 0 0 0

χ63 8 0 8 -8 0 -8 12 8 -4 0 -4 0 0 0 0 0 0 0

χ64 16 0 16 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ65 4 0 4 -4 0 -12 2 -4 -6 4 6 0 0 0 0 0 0 0

χ66 -12 0 -12 12 0 0 -6 -8 2 0 6 0 0 0 0 0 0 0

χ67 4 0 4 -4 0 -4 2 4 -6 4 -2 0 0 0 0 0 0 0

χ68 0 0 0 0 0 0 8 0 8 -8 0 0 0 0 0 0 0 0

χ69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ70 4 0 4 -4 0 8 -6 0 2 0 -2 0 0 0 0 0 0 0

χ71 -12 0 -12 12 0 8 -6 0 2 0 -2 0 0 0 0 0 0 0

χ72 4 0 4 -4 0 -12 10 -4 2 -4 6 0 0 0 0 0 0 0

χ73 -8 0 -8 8 0 -8 12 8 -4 0 -4 0 0 0 0 0 0 0

χ74 -8 0 -8 8 0 -16 12 0 -4 0 4 0 0 0 0 0 0 0

χ75 0 0 0 0 0 0 8 0 8 -8 0 0 0 0 0 0 0 0

χ76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ77 0 0 0 0 0 0 -8 0 -8 8 0 0 0 0 0 0 0 0

χ78 12 0 12 -12 0 0 6 8 -2 0 -6 0 0 0 0 0 0 0

χ79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ80 -8 0 -8 8 0 16 -12 0 4 0 -4 0 0 0 0 0 0 0

χ81 20 0 20 -20 0 0 -6 -8 2 0 6 0 0 0 0 0 0 0

χ82 -16 0 -16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ84 11 -1 -5 3 -1 7 5 -1 -3 -1 1 3 -1 3 -1 3 -1 -1

χ85 -7 5 9 1 -3 9 3 1 -5 -3 3 -3 1 -3 1 1 -3 1

χ86 30 -10 -2 14 -2 2 -2 2 -2 -2 2 6 -2 6 -2 2 2 -2

χ87 12 -4 12 12 -4 4 -4 4 -4 -4 4 0 0 0 0 0 0 0

χ88 3 7 -13 -5 -1 -5 -7 3 1 -1 1 3 -1 3 -1 -1 3 -1
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4B 4C 4D 4E 4F

4M 4N 4O 4P 4Q 4R 4S 4T 4U 8A 8B 4V 8C 4W 8D 4X 8E 8F

χ89 3 7 -13 -5 -1 -5 -7 3 1 -1 1 3 -1 3 -1 -1 3 -1

χ90 3 7 -13 -5 -1 -5 -7 3 1 -1 1 3 -1 3 -1 -1 3 -1

χ91 -4 12 -4 -4 -4 4 -4 4 -4 -4 4 0 0 0 0 0 0 0

χ92 -7 -11 9 1 5 -11 -1 -3 7 5 -5 -3 1 -3 1 -3 1 1

χ93 -1 3 -17 -9 3 3 9 -5 1 3 -3 3 -1 3 -1 3 -1 -1

χ94 -1 3 -17 -9 3 3 9 -5 1 3 -3 3 -1 3 -1 3 -1 -1

χ95 16 -16 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ97 -18 6 14 -2 -2 2 -2 2 -2 -2 2 -6 2 -6 2 -2 -2 2

χ98 -4 -4 -4 -4 4 12 12 -4 -4 0 0 0 0 0 0 -4 4 0

χ99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ100 25 5 -23 1 -3 5 7 -3 -1 1 -1 -3 1 -3 1 1 -3 1

χ101 -7 5 9 1 -3 5 7 -3 -1 1 -1 -3 1 -3 1 5 1 -3

χ102 -11 1 5 -3 1 -7 -5 1 3 1 -1 -3 1 9 -3 -3 1 1

χ103 -11 1 5 -3 1 -7 -5 1 3 1 -1 9 -3 -3 1 -3 1 1

χ104 -18 6 14 -2 -2 -2 2 -2 2 2 -2 -6 2 6 -2 2 2 -2

χ105 -18 6 14 -2 -2 -2 2 -2 2 2 -2 6 -2 -6 2 2 2 -2

χ106 14 6 -18 -2 -2 -2 2 -2 2 2 -2 -6 2 6 -2 -2 -2 2

χ107 14 6 -18 -2 -2 -2 2 -2 2 2 -2 6 -2 -6 2 -2 -2 2

χ108 4 4 4 4 -4 -12 -12 4 4 0 0 0 0 0 0 4 -4 0

χ109 -8 -8 -8 -8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ110 -4 12 -4 -4 -4 -4 4 -4 4 4 -4 0 0 0 0 0 0 0

χ111 -4 -4 -4 -4 4 -12 -12 4 4 0 0 0 0 0 0 4 -4 0

χ112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ113 -6 2 26 10 -6 -2 2 -2 2 2 -2 6 -2 6 -2 -2 -2 2

χ114 18 -6 -14 2 2 -2 2 -2 2 2 -2 -6 2 -6 2 2 2 -2

χ115 4 4 4 4 -4 12 12 -4 -4 0 0 0 0 0 0 -4 4 0

χ116 -8 -8 -8 -8 8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ117 8 8 8 8 -8 0 0 0 0 0 0 0 0 0 0 0 0 0

χ118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ119 21 1 -27 -3 1 -3 -9 5 -1 -3 3 -3 1 -3 1 -3 1 1

χ120 -11 1 5 -3 1 -3 -9 5 -1 -3 3 -3 1 -3 1 1 5 -3

χ121 -15 -3 1 -7 5 9 3 1 -5 -3 3 -3 1 9 -3 1 -3 1

χ122 -15 -3 1 -7 5 9 3 1 -5 -3 3 9 -3 -3 1 1 -3 1

χ123 12 -4 12 12 -4 -4 4 -4 4 4 -4 0 0 0 0 0 0 0

χ124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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5A 5B 5C 6A 6B 6C 6D 6E 6F

5A 10A 10B 5B 5C 6F 12A 6G 12B 12C 6H 6I 6J 12D 6K 12E 12F

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 3 3 3 3 3 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2

χ3 5 5 5 0 0 6 6 6 -3 -3 2 2 2 2 2 1 1

χ4 0 0 0 5 0 -3 -3 -3 6 -3 1 1 1 1 1 2 1

χ5 0 0 0 0 5 -3 -3 -3 -3 6 1 1 1 1 1 1 2

χ6 0 0 0 0 0 -3 -3 -3 -3 -3 1 1 1 1 1 1 1

χ7 4 4 4 -1 -1 5 5 5 2 2 5 5 5 5 5 -2 -2

χ8 -1 -1 -1 4 -1 2 2 2 5 2 -2 -2 -2 -2 -2 5 -2

χ9 -1 -1 -1 -1 4 2 2 2 2 5 -2 -2 -2 -2 -2 -2 5

χ10 0 0 0 0 0 -5 -5 -5 -5 -5 3 3 3 3 3 3 3

χ11 5 5 5 0 0 7 7 7 1 1 -1 -1 -1 -1 -1 1 1

χ12 0 0 0 5 0 1 1 1 7 1 1 1 1 1 1 -1 1

χ13 0 0 0 0 5 1 1 1 1 7 1 1 1 1 1 1 -1

χ14 0 0 0 0 0 6 6 6 6 6 2 2 2 2 2 2 2

χ15 0 0 0 0 0 -5 -5 -5 -5 -5 -1 -1 -1 -1 -1 -1 -1

χ16 0 0 0 0 0 6 6 6 6 6 2 2 2 2 2 2 2

χ17 7 7 7 -3 -3 9 9 9 0 0 -3 -3 -3 -3 -3 0 0

χ18 -3 -3 -3 7 -3 0 0 0 9 0 0 0 0 0 0 -3 0

χ19 -3 -3 -3 -3 7 0 0 0 0 9 0 0 0 0 0 0 -3

χ20 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4

χ21 0 0 0 0 0 -1 -1 -1 2 2 3 3 3 3 3 -2 -2

χ22 0 0 0 0 0 2 2 2 -1 2 -2 -2 -2 -2 -2 3 -2

χ23 0 0 0 0 0 2 2 2 2 -1 -2 -2 -2 -2 -2 -2 3

χ24 -5 -5 -5 0 0 8 8 8 -10 -10 0 0 0 0 0 2 2

χ25 0 0 0 -5 0 -10 -10 -10 8 -10 2 2 2 2 2 0 2

χ26 0 0 0 0 -5 -10 -10 -10 -10 8 2 2 2 2 2 2 0

χ27 -3 -3 -3 -3 -3 0 0 0 0 0 0 0 0 0 0 0 0

χ28 0 0 0 0 0 -17 -17 -17 7 7 -1 -1 -1 -1 -1 3 3

χ29 0 0 0 0 0 7 7 7 -17 7 3 3 3 3 3 -1 3

χ30 0 0 0 0 0 7 7 7 7 -17 3 3 3 3 3 3 -1

χ31 -1 -1 -1 4 4 4 4 4 -8 -8 4 4 4 4 4 0 0

χ32 4 4 4 -1 4 -8 -8 -8 4 -8 0 0 0 0 0 4 0

χ33 4 4 4 4 -1 -8 -8 -8 -8 4 0 0 0 0 0 0 4

χ34 0 0 0 0 0 -6 -6 -6 -6 -6 -2 -2 -2 -2 -2 -2 -2

χ35 0 0 0 0 0 -6 -6 -6 3 3 -6 -6 -6 -6 -6 3 3

χ36 0 0 0 0 0 3 3 3 -6 3 3 3 3 3 3 -6 3

χ37 0 0 0 0 0 3 3 3 3 -6 3 3 3 3 3 3 -6

χ38 0 0 0 0 0 -5 -5 -5 4 4 3 3 3 3 3 -4 -4

χ39 0 0 0 0 0 4 4 4 -5 4 -4 -4 -4 -4 -4 3 -4

χ40 0 0 0 0 0 4 4 4 4 -5 -4 -4 -4 -4 -4 -4 3

χ41 -5 -5 -5 0 0 -4 -4 -4 8 8 4 4 4 4 4 0 0

χ42 0 0 0 -5 0 8 8 8 -4 8 0 0 0 0 0 4 0

χ43 0 0 0 0 -5 8 8 8 8 -4 0 0 0 0 0 0 4

χ44 -2 -2 -2 3 3 9 9 9 0 0 -3 -3 -3 -3 -3 0 0
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5A 5B 5C 6A 6B 6C 6D 6E 6F

5A 10A 10B 5B 5C 6F 12A 6G 12B 12C 6H 6I 6J 12D 6K 12E 12F

χ45 3 3 3 -2 3 0 0 0 9 0 0 0 0 0 0 -3 0

χ46 3 3 3 3 -2 0 0 0 0 9 0 0 0 0 0 0 -3

χ47 5 5 5 0 0 -9 -9 -9 0 0 3 3 3 3 3 0 0

χ48 0 0 0 5 0 0 0 0 -9 0 0 0 0 0 0 3 0

χ49 0 0 0 0 5 0 0 0 0 -9 0 0 0 0 0 0 3

χ50 0 0 0 0 0 8 8 8 8 8 0 0 0 0 0 0 0

χ51 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0 0 0 0 0

χ52 0 0 0 0 0 -6 -6 -6 -6 -6 -2 -2 -2 -2 -2 -2 -2

χ53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ54 10 2 -2 0 0 12 0 -4 0 0 8 4 0 -4 0 0 0

χ55 20 4 -4 0 0 24 0 -8 0 0 -4 4 -4 4 0 0 0

χ56 0 0 0 0 0 -24 0 8 0 0 -4 4 -4 4 0 0 0

χ57 10 2 -2 0 0 0 0 0 0 0 -12 -12 4 4 0 0 0

χ58 10 2 -2 0 0 24 0 -8 0 0 8 16 -8 0 0 0 0

χ59 20 4 -4 0 0 36 0 -12 0 0 12 0 4 -8 0 0 0

χ60 0 0 0 0 0 -36 0 12 0 0 8 4 0 -4 0 0 0

χ61 0 0 0 0 0 -12 0 4 0 0 12 0 4 -8 0 0 0

χ62 10 2 -2 0 0 12 0 -4 0 0 -12 0 -4 8 0 0 0

χ63 0 0 0 0 0 -12 0 4 0 0 16 20 -8 -4 0 0 0

χ64 -10 -2 2 0 0 24 0 -8 0 0 -16 -8 0 8 0 0 0

χ65 0 0 0 0 0 12 0 -4 0 0 -4 -8 4 0 0 0 0

χ66 0 0 0 0 0 -48 0 16 0 0 8 -8 8 -8 0 0 0

χ67 0 0 0 0 0 24 0 -8 0 0 4 -4 4 -4 0 0 0

χ68 0 0 0 0 0 12 0 -4 0 0 -4 -8 4 0 0 0 0

χ69 -20 -4 4 0 0 24 0 -8 0 0 8 16 -8 0 0 0 0

χ70 -10 -2 2 0 0 -36 0 12 0 0 0 12 -8 4 0 0 0

χ71 -10 -2 2 0 0 -36 0 12 0 0 0 12 -8 4 0 0 0

χ72 -10 -2 2 0 0 36 0 -12 0 0 12 0 4 -8 0 0 0

χ73 0 0 0 0 0 -12 0 4 0 0 -8 -4 0 4 0 0 0

χ74 0 0 0 0 0 12 0 -4 0 0 8 4 0 -4 0 0 0

χ75 10 2 -2 0 0 -36 0 12 0 0 -12 0 -4 8 0 0 0

χ76 0 0 0 0 0 -24 0 8 0 0 -8 -16 8 0 0 0 0

χ77 0 0 0 0 0 -36 0 12 0 0 -4 -8 4 0 0 0 0

χ78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ79 10 2 -2 0 0 -24 0 8 0 0 16 8 0 -8 0 0 0

χ80 -20 -4 4 0 0 36 0 -12 0 0 0 -12 8 -4 0 0 0

χ81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ82 0 0 0 0 0 48 0 -16 0 0 -8 8 -8 8 0 0 0

χ83 20 4 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ84 5 -3 1 0 0 3 -1 3 0 0 7 -5 -1 3 -1 0 0

χ85 10 -6 2 0 0 12 -4 12 0 0 4 4 4 4 -4 0 0

χ86 -5 3 -1 0 0 -3 1 -3 0 0 -7 5 1 -3 1 0 0

χ87 0 0 0 0 0 15 -5 15 0 0 11 -1 3 7 -5 0 0

χ88 5 -3 1 0 0 18 -6 18 0 0 -6 18 10 2 -6 0 0
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5A 5B 5C 6A 6B 6C 6D 6E 6F

5A 10A 10B 5B 5C 6F 12A 6G 6H 6I 6J 12B 6K 12C 12D 6L 6M

χ89 5 -3 1 0 0 -9 3 -9 0 0 3 -9 -5 -1 3 0 0

χ90 5 -3 1 0 0 -9 3 -9 0 0 3 -9 -5 -1 3 0 0

χ91 -10 6 -2 0 0 3 -1 3 0 0 7 -5 -1 3 -1 0 0

χ92 0 0 0 0 0 15 -5 15 0 0 11 -1 3 7 -5 0 0

χ93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ95 5 -3 1 0 0 -12 4 -12 0 0 -4 -4 -4 -4 4 0 0

χ96 -5 3 -1 0 0 12 -4 12 0 0 4 4 4 4 -4 0 0

χ97 0 0 0 0 0 -15 5 -15 0 0 -11 1 -3 -7 5 0 0

χ98 15 -9 3 0 0 6 -2 6 0 0 10 -14 -6 2 2 0 0

χ99 15 -9 3 0 0 6 -2 6 0 0 -14 10 2 -6 2 0 0

χ100 0 0 0 0 0 -9 3 -9 0 0 7 -5 -1 3 -1 0 0

χ101 0 0 0 0 0 -9 3 -9 0 0 7 -5 -1 3 -1 0 0

χ102 0 0 0 0 0 -9 3 -9 0 0 7 -5 -1 3 -1 0 0

χ103 0 0 0 0 0 -9 3 -9 0 0 7 -5 -1 3 -1 0 0

χ104 0 0 0 0 0 9 -3 9 0 0 -7 5 1 -3 1 0 0

χ105 0 0 0 0 0 9 -3 9 0 0 -7 5 1 -3 1 0 0

χ106 0 0 0 0 0 9 -3 9 0 0 -7 5 1 -3 1 0 0

χ107 0 0 0 0 0 9 -3 9 0 0 -7 5 1 -3 1 0 0

χ108 0 0 0 0 0 12 -4 12 0 0 -4 -4 -4 -4 4 0 0

χ109 0 0 0 0 0 12 -4 12 0 0 -4 -4 -4 -4 4 0 0

χ110 0 0 0 0 0 -9 3 -9 0 0 7 -5 -1 3 -1 0 0

χ111 0 0 0 0 0 -6 2 -6 0 0 14 -10 -2 6 -2 0 0

χ112 0 0 0 0 0 -6 2 -6 0 0 -10 14 6 -2 -2 0 0

χ113 0 0 0 0 0 -27 9 -27 0 0 -3 9 5 1 -3 0 0

χ114 0 0 0 0 0 -27 9 -27 0 0 -3 9 5 1 -3 0 0

χ115 -15 9 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ116 -15 9 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ117 0 0 0 0 0 6 -2 6 0 0 10 -14 -6 2 2 0 0

χ118 0 0 0 0 0 6 -2 6 0 0 -14 10 2 -6 2 0 0

χ119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ123 0 0 0 0 0 27 -9 27 0 0 3 -9 -5 -1 3 0 0

χ124 15 -9 3 0 0 -12 4 -12 0 0 4 4 4 4 -4 0 0
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6G 6H 6I 6J 6K 6L 6M

6N 6O 6P 6Q 6R 6S 12E 6T 12F 6U 12G 12H 6V 12I 6W 12J

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 5 5 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1

χ3 3 3 0 0 0 0 0 0 0 2 2 2 -2 -2 -2 -2

χ4 3 3 0 0 0 0 0 0 0 -2 -2 -2 2 2 -2 -2

χ5 3 3 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 2 2

χ6 0 0 3 3 3 3 3 3 3 1 1 1 1 1 1 1

χ7 -1 -1 5 5 5 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

χ8 -1 -1 -1 -1 -1 5 5 -1 -1 1 1 1 -1 -1 1 1

χ9 -1 -1 -1 -1 -1 -1 -1 5 5 1 1 1 1 1 -1 -1

χ10 1 1 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0

χ11 -2 -2 -5 -5 -5 1 1 1 1 -1 -1 -1 1 1 1 1

χ12 -2 -2 1 1 1 -5 -5 1 1 1 1 1 -1 -1 1 1

χ13 -2 -2 1 1 1 1 1 -5 -5 1 1 1 1 1 -1 -1

χ14 3 3 0 0 0 0 0 0 0 2 2 2 2 2 2 2

χ15 7 7 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

χ16 0 0 3 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1

χ17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ20 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ21 -1 -1 -4 -4 -4 2 2 2 2 0 0 0 -2 -2 -2 -2

χ22 -1 -1 2 2 2 -4 -4 2 2 -2 -2 -2 0 0 -2 -2

χ23 -1 -1 2 2 2 2 2 -4 -4 -2 -2 -2 -2 -2 0 0

χ24 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 -1 -1 -1 -1

χ25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3 -1 -1

χ26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 3

χ27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ28 1 1 4 4 4 -2 -2 -2 -2 2 2 2 0 0 0 0

χ29 1 1 -2 -2 -2 4 4 -2 -2 0 0 0 2 2 0 0

χ30 1 1 -2 -2 -2 -2 -2 4 4 0 0 0 0 0 2 2

χ31 -2 -2 4 4 4 -2 -2 -2 -2 -2 -2 -2 0 0 0 0

χ32 -2 -2 -2 -2 -2 4 4 -2 -2 0 0 0 -2 -2 0 0

χ33 -2 -2 -2 -2 -2 -2 -2 4 4 0 0 0 0 0 -2 -2

χ34 0 0 -3 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1 1

χ35 -3 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ36 -3 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ37 -3 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ38 -2 -2 1 1 1 1 1 1 1 3 3 3 -1 -1 -1 -1

χ39 -2 -2 1 1 1 1 1 1 1 -1 -1 -1 3 3 -1 -1

χ40 -2 -2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 3 3

χ41 2 2 -4 -4 -4 2 2 2 2 -2 -2 -2 0 0 0 0

χ42 2 2 2 2 2 -4 -4 2 2 0 0 0 -2 -2 0 0

χ43 2 2 2 2 2 2 2 -4 -4 0 0 0 0 0 -2 -2

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 28:O+
8 (2)(continued)

6G 6H 6I 6J 6K 6L 6M

6N 6O 6P 6Q 6R 6S 12E 6T 12F 6U 12G 12H 6V 12I 6W 12J

χ45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ50 2 2 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0

χ51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ52 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

χ53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ54 3 -1 6 2 -2 0 0 0 0 2 -2 0 0 0 0 0

χ55 6 -2 -6 -2 2 0 0 0 0 2 -2 0 0 0 0 0

χ56 3 -1 6 2 -2 0 0 0 0 2 -2 0 0 0 0 0

χ57 9 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ58 -3 1 12 4 -4 0 0 0 0 -4 4 0 0 0 0 0

χ59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ60 9 -3 0 0 0 0 0 0 0 -4 4 0 0 0 0 0

χ61 -3 1 12 4 -4 0 0 0 0 0 0 0 0 0 0 0

χ62 -6 2 -12 -4 4 0 0 0 0 0 0 0 0 0 0 0

χ63 -3 1 -6 -2 2 0 0 0 0 -2 2 0 0 0 0 0

χ64 -3 1 -6 -2 2 0 0 0 0 2 -2 0 0 0 0 0

χ65 3 -1 6 2 -2 0 0 0 0 2 -2 0 0 0 0 0

χ66 6 -2 -6 -2 2 0 0 0 0 2 -2 0 0 0 0 0

χ67 6 -2 -6 -2 2 0 0 0 0 -2 2 0 0 0 0 0

χ68 -6 2 -12 -4 4 0 0 0 0 -4 4 0 0 0 0 0

χ69 6 -2 -6 -2 2 0 0 0 0 2 -2 0 0 0 0 0

χ70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ73 -3 1 12 4 -4 0 0 0 0 4 -4 0 0 0 0 0

χ74 -6 2 6 2 -2 0 0 0 0 2 -2 0 0 0 0 0

χ75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ76 -6 2 6 2 -2 0 0 0 0 -2 2 0 0 0 0 0

χ77 0 0 0 0 0 0 0 0 0 -4 4 0 0 0 0 0

χ78 9 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ79 -6 2 -12 -4 4 0 0 0 0 4 -4 0 0 0 0 0

χ80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ82 3 -1 6 2 -2 0 0 0 0 -2 2 0 0 0 0 0

χ83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ84 0 0 9 -3 1 3 -1 3 -1 1 1 -1 3 -1 3 -1

χ85 0 0 -9 3 -1 3 -1 3 -1 1 1 -1 -3 1 -3 1

χ86 0 0 0 0 0 6 -2 6 -2 2 2 -2 0 0 0 0

χ87 0 0 9 -3 1 -3 1 -3 1 -1 -1 1 3 -1 3 -1

χ88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 28:O+
8 (2)(continued)

6G 6H 6I 6J 6K 6L 6M

6N 6O 6P 6Q 6R 6S 12E 6T 12F 6U 12G 12H 6V 12I 6W 12J

χ89 0 0 0 0 0 63 21 63 -21 0 0 0 63 -21 63 -21

χ90 0 0 9 -3 1 84 -28 84 -28 1 1 -1 84 -28 84 -28

χ92 0 0 18 -6 2 105 -35 105 -35 2 2 -2 105 -35 105 -35

χ93 0 0 0 0 0 135 -45 135 -45 0 0 0 135 -45 135 -45

χ94 0 0 0 0 0 135 -45 135 -45 0 0 0 135 -45 135 -45

χ95 0 0 -9 3 -1 168 -56 168 -56 -1 -1 1 168 -56 168 -56

χ96 0 0 -18 6 -2 192 -64 192 -64 -2 -2 2 192 -64 192 -64

χ97 0 0 9 -3 1 210 -70 210 -70 1 1 -1 210 -70 210 -70

χ98 0 0 9 -3 1 84 -28 84 -28 -1 -1 1 84 -28 84 -28

χ99 0 0 9 -3 1 84 -28 84 -28 -1 -1 1 84 -28 84 -28

χ100 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35

χ101 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35

χ102 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35

χ103 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35

χ104 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70

χ105 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70

χ106 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70

χ107 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70

χ108 0 0 -9 3 -1 420 -140 420 -140 1 1 -1 420 -140 420 -140

χ109 0 0 -9 3 -1 420 -140 420 -140 1 1 -1 420 -140 420 -140

χ110 0 0 -9 3 -1 420 -140 420 -140 1 1 -1 420 -140 420 -140

χ111 0 0 -9 3 -1 420 -140 420 -140 1 1 -1 420 -140 420 -140

χ112 0 0 -9 3 -1 420 -140 420 -140 1 1 -1 420 -140 420 -140

χ113 0 0 0 0 0 630 -210 630 -210 0 0 0 630 -210 630 -210

χ114 0 0 0 0 0 630 -210 630 -210 0 0 0 630 -210 630 -210

χ115 0 0 0 0 0 756 -252 756 -252 0 0 0 756 -252 756 -252

χ116 0 0 0 0 0 756 -252 756 -252 0 0 0 756 -252 756 -252

χ117 0 0 9 -3 1 840 -280 840 -280 -1 -1 1 840 -280 840 -280

χ118 0 0 9 -3 1 840 -280 840 -280 -1 -1 1 840 -280 840 -280

χ119 0 0 945 -315 945 -315 0 0 0 945 -315 945 -315 -1 -1 1

χ120 0 0 945 -315 945 -315 0 0 0 945 -315 945 -315 -1 -1 1

χ121 0 0 945 -315 945 -315 0 0 0 945 -315 945 -315 -1 -1 1

χ1220 0 945 -315 945 -315 0 0 0 945 -315 945 -315 -1 -1 1

χ1230 0 0 0 0 1260 -420 1260 -420 0 0 0 1260 -420 1260 -420

χ1240 0 -18 6 -2 1344 -448 1344 -448 2 2 -2 1344 -448 1344 -448
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The character table of 28:O+
8 (2)(continued)

6N 7A 8A 8B

6X 12K 12L 7A 14A 14B 14C 8G 8H 8I 8J 8K 8L

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 -1 0 0 0 0 -2 -2 -2 2 2 2

χ3 0 0 0 0 0 0 0 1 1 1 1 1 1

χ4 0 0 0 0 0 0 0 1 1 1 1 1 1

χ5 0 0 0 0 0 0 0 1 1 1 1 1 1

χ6 -1 -1 -1 1 1 1 1 0 0 0 0 0 0

χ7 1 1 1 0 0 0 0 0 0 0 0 0 0

χ8 1 1 1 0 0 0 0 0 0 0 0 0 0

χ9 1 1 1 0 0 0 0 0 0 0 0 0 0

χ10 2 2 2 0 0 0 0 -1 -1 -1 -1 -1 -1

χ11 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ12 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ13 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ14 0 0 0 -1 -1 -1 -1 2 2 2 -2 -2 -2

χ15 1 1 1 0 0 0 0 0 0 0 0 0 0

χ16 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1

χ17 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ18 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ19 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ20 -1 -1 -1 0 0 0 0 2 2 2 -2 -2 -2

χ21 0 0 0 0 0 0 0 0 0 0 0 0 0

χ22 0 0 0 0 0 0 0 0 0 0 0 0 0

χ23 0 0 0 0 0 0 0 0 0 0 0 0 0

χ24 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ25 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ26 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ27 0 0 0 -1 -1 -1 -1 -2 -2 -2 2 2 2

χ28 0 0 0 0 0 0 0 0 0 0 0 0 0

χ29 0 0 0 0 0 0 0 0 0 0 0 0 0

χ30 0 0 0 0 0 0 0 0 0 0 0 0 0

χ31 0 0 0 0 0 0 0 0 0 0 0 0 0

χ32 0 0 0 0 0 0 0 0 0 0 0 0 0

χ33 0 0 0 0 0 0 0 0 0 0 0 0 0

χ34 1 1 1 0 0 0 0 0 0 0 0 0 0

χ35 0 0 0 0 0 0 0 1 1 1 1 1 1

χ36 0 0 0 0 0 0 0 1 1 1 1 1 1

χ37 0 0 0 0 0 0 0 1 1 1 1 1 1

χ38 1 1 1 0 0 0 0 0 0 0 0 0 0

χ39 1 1 1 0 0 0 0 0 0 0 0 0 0

χ40 1 1 1 0 0 0 0 0 0 0 0 0 0

χ41 0 0 0 0 0 0 0 0 0 0 0 0 0

χ42 0 0 0 0 0 0 0 0 0 0 0 0 0

χ43 0 0 0 0 0 0 0 0 0 0 0 0 0

χ44 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 28:O+
8 (2)(continued)

6N 7A 8A 8B

6X 12K 12L 7A 14A 14B 14C 8G 8H 8I 8J 8K 8L

χ45 0 0 0 0 0 0 0 0 0 0 0 0 0

χ46 0 0 0 0 0 0 0 0 0 0 0 0 0

χ47 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ48 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ49 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ50 0 0 0 1 1 1 1 0 0 0 0 0 0

χ51 0 0 0 1 1 1 1 0 0 0 0 0 0

χ52 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

χ53 0 0 0 -1 -1 -1 -1 1 1 1 1 1 1

χ54 2 -2 0 1 -1 1 -1 2 -2 0 2 -2 -2

χ55 -2 2 0 0 0 0 0 -2 2 0 2 -2 -2

χ56 -2 2 0 1 -1 1 -1 2 -2 0 -2 2 2

χ57 0 0 0 0 0 0 0 -2 2 0 2 -2 -2

χ58 0 0 0 0 0 0 0 -2 2 0 -2 2 2

χ59 0 0 0 -1 1 -1 1 2 -2 0 -2 2 2

χ60 0 0 0 0 0 0 0 2 -2 0 2 -2 -2

χ61 0 0 0 0 0 0 0 -2 2 0 2 -2 -2

χ62 0 0 0 0 0 0 0 0 0 0 0 0 0

χ63 2 -2 0 0 0 0 0 0 0 0 0 0 0

χ64 2 -2 0 0 0 0 0 0 0 0 0 0 0

χ65 2 -2 0 0 0 0 0 2 -2 0 -2 2 2

χ66 2 -2 0 0 0 0 0 -2 2 0 -2 2 2

χ67 -2 2 0 0 0 0 0 2 -2 0 -2 2 2

χ68 0 0 0 1 -1 1 -1 0 0 0 0 0 0

χ69 -2 2 0 0 0 0 0 0 0 0 0 0 0

χ70 0 0 0 0 0 0 0 -2 2 0 -2 2 2

χ71 0 0 0 0 0 0 0 2 -2 0 2 -2 -2

χ72 0 0 0 0 0 0 0 -2 2 0 2 -2 -2

χ73 0 0 0 0 0 0 0 0 0 0 0 0 0

χ74 -2 2 0 0 0 0 0 0 0 0 0 0 0

χ75 0 0 0 -1 1 -1 1 0 0 0 0 0 0

χ76 -2 2 0 0 0 0 0 0 0 0 0 0 0

χ77 0 0 0 0 0 0 0 0 0 0 0 0 0

χ78 0 0 0 0 0 0 0 -2 2 0 -2 2 2

χ79 0 0 0 0 0 0 0 0 0 0 0 0 0

χ80 0 0 0 0 0 0 0 0 0 0 0 0 0

χ81 0 0 0 -1 1 -1 1 2 -2 0 2 -2 -2

χ82 2 -2 0 0 0 0 0 0 0 0 0 0 0

χ83 0 0 0 1 -1 1 -1 0 0 0 0 0 0

χ84 1 1 -1 2 0 -2 0 1 1 -1 1 1 1

χ85 -1 -1 1 0 0 0 0 1 1 -1 1 1 1

χ86 0 0 0 0 0 0 0 0 0 0 0 0 0

χ87 1 1 -1 -2 0 2 0 0 0 0 0 0 0

χ88 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1
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6N 7A 8A 8B

6X 12K 12L 7A 14A 14B 14C 8G 8H 8I 8J 8K 8L

χ89 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1

χ90 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1

χ91 -1 -1 1 0 0 0 0 0 0 0 0 0 0

χ92 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1

χ93 0 0 0 -1 −A+A 1 A−A 1 1 -1 1 1 1

χ94 0 0 0 -1 A−A 1 −A+A 1 1 -1 1 1 1

χ95 -1 -1 1 0 0 0 0 0 0 0 0 0 0

χ96 0 0 0 2 0 -2 0 0 0 0 0 0 0

χ97 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ98 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ99 -1 -1 1 0 0 0 0 -2 -2 2 2 2 2

χ100 -2 -2 2 0 0 0 0 -1 -1 1 -1 -1 -1

χ101 2 2 -2 0 0 0 0 -1 -1 1 -1 -1 -1

χ102 0 0 0 0 0 0 0 1 1 -1 1 1 1

χ103 0 0 0 0 0 0 0 1 1 -1 1 1 1

χ104 -1 -1 1 0 0 0 0 0 0 0 0 0 0

χ105 -1 -1 1 0 0 0 0 0 0 0 0 0 0

χ106 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ107 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ108 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ109 -1 -1 1 0 0 0 0 2 2 -2 -2 -2 -2

χ110 0 0 0 0 0 0 0 0 0 0 0 0 0

χ111 0 0 0 0 0 0 0 0 0 0 0 0 0

χ112 0 0 0 0 0 0 0 2 2 -2 -2 -2 -2

χ113 0 0 0 0 0 0 0 0 0 0 0 0 0

χ114 0 0 0 0 0 0 0 0 0 0 0 0 0

χ115 0 0 0 0 0 0 0 0 0 0 0 0 0

χ116 0 0 0 0 0 0 0 -2 -2 2 2 2 2

χ117 -1 -1 1 0 0 0 0 0 0 0 0 0 0

χ118 1 1 -1 0 0 0 0 0 0 0 0 0 0

χ119 0 0 0 0 0 0 0 1 1 -1 1 1 1

χ120 0 0 0 0 0 0 0 1 1 -1 1 1 1

χ121 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1

χ122 0 0 0 0 0 0 0 -1 -1 1 -1 -1 -1

χ123 0 0 0 0 0 0 0 0 0 0 0 0 0

χ124 0 0 0 0 0 0 0 0 0 0 0 0 0
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9A 9B 9C 10A 10B 10C 12A 12B 12C

9A 18A 9B 9C 10C 20A 20B 10D 10E 12M 12N 12O 12P

χ1 9450 3780 3780 4725 4725 4725 4725 9450 9450 9450 9450 18900 18900

χ2 -630 -252 -252 -315 -315 -315 -315 -630 -630 -630 -630 -1260 -1260

χ3 490 196 196 245 245 245 245 490 490 490 490 980 980

χ4 138 132 -156 405 -171 117 117 -54 -54 522 522 84 -204

χ5 234 -60 36 -123 69 -27 -27 42 42 -150 -150 -108 -12

χ6 202 4 -28 53 -11 21 21 10 10 74 74 -44 -108

χ7 -70 4 4 -3 -3 -3 -3 -6 -6 -6 -6 20 20

χ8 130 244 124 205 205 -155 -155 50 50 50 50 20 380

χ9 50 -76 -36 -75 -75 45 45 -30 -30 -30 -30 20 -100

χ10 82 52 28 37 37 -35 -35 2 2 2 2 20 92

χ11 66 -12 -4 -19 -19 5 5 -14 -14 -14 -14 20 -4

χ12 -70 -4 -4 5 5 5 5 10 10 10 10 -20 -20

χ13 -30 -60 60 45 45 -75 165 -30 210 -30 210 -60 60

χ14 2 4 -4 -3 -3 5 -11 2 -14 2 -14 4 -4

χ15 -30 -60 60 45 45 165 -75 210 -30 210 -30 -60 60

χ16 2 4 -4 -3 -3 -11 5 -14 2 -14 2 4 -4

χ17 10 4 -28 -11 5 21 21 26 26 10 10 -44 20

χ18 2 -4 4 5 -11 -3 -3 -14 -14 2 2 -4 4

χ19 10 4 -28 -11 5 21 21 26 26 10 10 -44 20

χ20 -6 4 4 -3 13 -3 -3 10 10 -6 -6 20 -12

χ21 -135 270 270 135 135 135 135 -135 -135 -135 -135 540 540

χ22 -15 30 30 15 15 15 15 -15 -15 -15 -15 60 60

χ23 25 -50 -50 -25 -25 -25 -25 25 25 25 25 -100 -100

χ24 0 0 0 0 0 0 0 0 0 0 0 0 0

χ25 0 0 0 0 0 0 0 0 0 0 0 0 0

χ26 0 0 0 0 0 0 0 0 0 0 0 0 0

χ27 0 0 0 0 0 0 0 0 0 0 0 0 0

χ28 9 9 9 18 18 18 18 9 9 9 9 -9 -9

χ29 -3 -3 -3 -6 -6 -6 -6 -3 -3 -3 -3 3 3

χ30 1 1 1 2 2 2 2 1 1 1 1 -1 -1

χ31 6 12 24 -15 -15 21 21 6 6 6 6 36 0

χ32 -2 -4 -8 5 5 -7 -7 -2 -2 -2 -2 -12 0

χ33 6 12 24 -15 -15 21 21 6 6 6 6 36 0

χ34 -18 -4 0 25 -7 -11 -11 -18 -18 14 14 4 -8

χ35 6 -4 0 5 5 1 1 6 6 6 6 4 -8

χ36 14 -4 0 -23 9 5 5 14 14 -18 -18 4 -8

χ37 -2 -4 0 1 1 -3 -3 -2 -2 -2 -2 4 -8

χ38 -2 4 0 -3 -3 1 1 -2 -2 -2 -2 -4 8

χ39 2 12 0 5 5 -7 -7 -2 -2 -2 -2 -12 0

χ40 -2 12 0 7 7 -5 -5 2 2 2 2 -12 0

χ41 2 -4 0 -3 -3 1 1 -2 -2 -2 -2 4 0

χ42 -2 -4 0 -1 -1 3 3 2 2 2 2 4 0

χ43 -2 0 0 1 1 1 1 2 2 2 2 0 0

χ44 2 0 0 -1 -1 -1 -1 -2 -2 -2 -2 0 0
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9A 9B 9C 10A 10B 10C 12A 12B 12C

9A 18A 9B 9C 10C 20A 20B 10D 10E 12M 12N 12O 12P

χ45 -6 0 0 -3 -3 -3 9 -6 6 -6 6 0 0

χ46 2 0 0 1 1 1 -3 2 -2 2 -2 0 0

χ47 -6 0 0 -3 -3 9 -3 6 -6 6 -6 0 0

χ48 2 0 0 1 1 -3 1 -2 2 -2 2 0 0

χ49 -2 -4 0 1 5 -3 -3 2 2 -2 -2 4 0

χ50 -2 4 0 -3 1 1 1 2 2 -2 -2 -4 0

χ51 2 0 0 1 -3 1 1 -2 -2 2 2 0 0

χ52 0 15 15 0 0 0 0 0 0 0 0 0 0

χ53 0 -9 -9 0 0 0 0 0 0 0 0 0 0

χ54 0 3 3 0 0 0 0 0 0 0 0 0 0

χ55 0 0 0 0 0 0 0 0 0 0 0 0 0

χ56 0 0 0 0 0 0 0 0 0 0 0 0 0

χ57 -15 6 6 -9 -9 -9 -9 9 9 9 9 12 12

χ58 5 -2 -2 3 3 3 3 -3 -3 -3 -3 -4 -4

χ59 -15 6 6 -9 -9 -9 -9 9 9 9 9 12 12

χ60 0 0 0 0 0 0 0 0 0 0 0 0 0

χ61 0 0 0 0 0 0 0 0 0 0 0 0 0

χ62 -11 10 -14 7 7 7 7 -7 -7 -7 -7 -4 -4

χ63 1 -14 10 -5 -5 -5 -5 5 5 5 5 -4 -4

χ64 -3 -6 2 -1 -1 -1 -1 1 1 1 1 -4 -4

χ65 -7 2 -6 3 3 3 3 -3 -3 -3 -3 -4 -4

χ66 5 2 2 -1 -1 -1 -1 1 1 1 1 4 4

χ67 0 0 0 0 0 0 0 0 0 0 0 0 0

χ68 0 0 0 0 0 0 0 0 0 0 0 0 0

χ69 0 0 0 0 0 0 0 0 0 0 0 0 0

χ70 0 0 0 0 0 0 0 0 0 0 0 0 0

χ71 9 9 -9 18 -18 0 0 9 9 -9 -9 9 -9

χ72 -3 -3 3 -6 6 0 0 -3 -3 3 3 -3 3

χ73 1 1 -1 2 -2 0 0 1 1 -1 -1 1 -1

χ74 3 -3 -3 0 0 0 0 9 -9 -9 9 3 3

χ75 -1 1 1 0 0 0 0 -3 3 3 -3 -1 -1

χ76 3 -3 -3 0 0 0 0 -9 9 9 -9 3 3

χ77 -1 1 1 0 0 0 0 3 -3 -3 3 -1 -1

χ78 1 1 1 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

χ79 1 1 1 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1

χ80 -1 -1 -1 2 2 2 2 1 1 1 1 1 1

χ81 3 -3 3 0 0 -6 6 3 -3 3 -3 -3 3

χ82 -1 1 -1 0 0 2 -2 -1 1 -1 1 1 -1

χ83 3 -3 3 0 0 6 -6 -3 3 -3 3 -3 3

χ84 -1 1 -1 0 0 -2 2 1 -1 1 -1 1 -1

χ85 1 1 -1 -2 2 0 0 -1 -1 1 1 1 -1

χ86 1 1 -1 -2 2 0 0 -1 -1 1 1 1 -1

χ87 -1 -1 1 2 -2 0 0 1 1 -1 -1 -1 1

χ88 0 0 0 0 0 0 0 0 0 0 0 0 0
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9A 9B 9C 10A 10B 10C 12A 12B 12C

9A 18A 9B 9C 10C 20A 20B 10D 10E 12M 12N 12O 12P

χ89 0 0 0 0 0 0 0 0 0 0 0 0 0

χ90 0 0 0 0 0 0 0 0 0 0 0 0 0

χ91 0 0 0 0 0 0 0 0 0 0 0 0 0

χ92 0 0 -2 -1 -1 1 1 0 0 0 0 0 2

χ93 0 0 -2 -1 -1 1 1 0 0 0 0 0 2

χ94 0 0 2 1 1 -1 -1 0 0 0 0 0 -2

χ95 0 0 2 -1 -1 1 1 0 0 0 0 0 -2

χ96 0 0 2 -1 -1 1 1 0 0 0 0 0 -2

χ97 0 0 -2 1 1 -1 -1 0 0 0 0 0 2

χ98 0 0 0 0 0 0 0 0 0 0 0 0 0

χ99 0 0 0 0 0 0 0 0 0 0 0 0 0

χ100 0 0 0 0 0 0 0 0 0 0 0 0 0

χ101 0 0 0 0 0 0 0 0 0 0 0 0 0

χ102 0 -1 -1 0 0 0 0 0 0 0 0 0 0

χ103 0 -1 -1 0 0 0 0 0 0 0 0 0 0

χ104 0 1 1 0 0 0 0 0 0 0 0 0 0

χ105 0 0 0 0 0 0 0 0 0 0 0 0 0

χ106 0 0 0 0 0 0 0 0 0 0 0 0 0

χ107 -3 -6 6 3 3 3 3 -3 -3 -3 -3 0 0

χ108 1 2 -2 -1 -1 -1 -1 1 1 1 1 0 0

χ109 0 0 0 0 0 0 0 0 0 0 0 0 0

χ110 0 0 0 0 0 0 0 0 0 0 0 0 0

χ111 0 0 0 0 0 0 0 0 0 0 0 0 0

χ112 0 0 0 0 0 0 0 0 0 0 0 0 0

χ113 -1 0 0 -1 -1 -1 -1 1 1 1 1 0 0

χ114 -1 0 0 -1 -1 -1 -1 1 1 1 1 0 0

χ115 1 0 0 1 1 1 1 -1 -1 -1 -1 0 0

χ116 1 0 0 1 1 1 1 -1 -1 -1 -1 0 0

χ117 0 0 0 0 0 0 0 0 0 0 0 0 0

χ118 0 0 0 0 0 0 0 0 0 0 0 0 0

χ119 0 0 0 0 0 0 0 0 0 0 0 0 0

χ120 0 0 0 0 0 0 0 0 0 0 0 0 0

χ121 0 0 0 0 0 0 0 0 0 0 0 0 0

χ122 0 0 0 0 0 0 0 0 0 0 0 0 0

χ123 0 0 0 0 0 0 0 0 0 0 0 0 0

χ124 0 0 0 0 0 0 0 0 0 0 0 0 0
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The character table of 28:O+
8 (2)(continued)

12D 12E 12F 12G 15A 15B 15C

12Q 12R 12S 24A 24B 12T 12U 12V 15A 30A 30B 30C 15B 15C

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ3 1 1 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0

χ4 1 1 -1 -1 -1 -1 0 -1 0 0 0 0 -1 0

χ5 1 1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1

χ6 -2 -2 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0

χ7 1 1 1 1 1 1 0 0 1 1 1 1 -1 -1

χ8 1 1 0 0 0 0 1 0 -1 -1 -1 -1 1 -1

χ9 1 1 0 0 0 0 0 1 -1 -1 -1 -1 -1 1

χ10 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0

χ11 0 0 -1 -1 -1 -1 1 1 -1 -1 -1 -1 0 0

χ12 0 0 1 1 1 1 -1 1 0 0 0 0 -1 0

χ13 0 0 1 1 1 1 1 -1 0 0 0 0 0 -1

χ14 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ15 -1 -1 1 1 1 1 1 1 0 0 0 0 0 0

χ16 2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ17 0 0 -1 -1 -1 -1 0 0 1 1 1 1 0 0

χ18 0 0 0 0 0 0 -1 0 0 0 0 0 1 0

χ29 0 0 0 0 0 0 0 -1 0 0 0 0 0 1

χ20 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ21 -1 -1 1 1 1 1 0 0 0 0 0 0 0 0

χ22 -1 -1 0 0 0 0 1 0 0 0 0 0 0 0

χ23 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0

χ24 1 1 0 0 0 0 0 0 1 1 1 1 0 0

χ25 1 1 0 0 0 0 0 0 0 0 0 0 1 0

χ26 1 1 0 0 0 0 0 0 0 0 0 0 0 1

χ27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ28 -1 -1 -1 -1 -1 -1 1 1 0 0 0 0 0 0

χ29 -1 -1 1 1 1 1 -1 1 0 0 0 0 0 0

χ30 -1 -1 1 1 1 1 1 -1 0 0 0 0 0 0

χ31 0 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1

χ32 0 0 0 0 0 0 0 0 1 1 1 1 -1 1

χ33 0 0 0 0 0 0 0 0 1 1 1 1 1 -1

χ34 2 2 0 0 0 0 0 0 0 0 0 0 0 0

χ35 -1 -1 2 2 2 2 -1 -1 0 0 0 0 0 0

χ36 -1 -1 -1 -1 -1 -1 2 -1 0 0 0 0 0 0

χ37 -1 -1 -1 -1 -1 -1 -1 2 0 0 0 0 0 0

χ38 0 0 -1 -1 -1 -1 0 0 0 0 0 0 0 0

χ39 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

χ40 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

χ41 0 0 0 0 0 0 0 0 1 1 1 1 0 0

χ42 0 0 0 0 0 0 0 0 0 0 0 0 1 0

χ43 0 0 0 0 0 0 0 0 0 0 0 0 0 1

χ44 0 0 -1 -1 -1 -1 0 0 1 1 1 1 0 0
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The character table of 28:O+
8 (2)(continued)

12D 12E 12F 12G 15A 15B 15C

12Q 12R 12S 24A 24B 12T 12U 12V 15A 30A 30B 30C 15B 15C

χ45 0 0 0 0 0 0 -1 0 0 0 0 0 1 0

χ46 0 0 0 0 0 0 0 -1 0 0 0 0 0 1

χ47 0 0 1 1 1 1 0 0 -1 -1 -1 -1 0 0

χ48 0 0 0 0 0 0 1 0 0 0 0 0 -1 0

χ49 0 0 0 0 0 0 0 1 0 0 0 0 0 -1

χ50 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ51 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

χ52 1 1 0 0 0 0 0 0 0 0 0 0 0 0

χ53 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ54 3 -1 2 -2 0 0 0 0 1 -1 1 -1 0 0

χ55 0 0 -2 2 -2 2 0 0 -1 1 -1 1 0 0

χ56 -3 1 -2 2 2 -2 0 0 0 0 0 0 0 0

χ57 -3 1 2 -2 2 -2 0 0 1 -1 1 -1 0 0

χ58 3 -1 0 0 0 0 0 0 1 -1 1 -1 0 0

χ59 0 0 0 0 2 -2 0 0 -1 1 -1 1 0 0

χ60 3 -1 -2 2 0 0 0 0 0 0 0 0 0 0

χ61 -3 1 0 0 -2 2 0 0 0 0 0 0 0 0

χ62 0 0 0 0 2 -2 0 0 1 -1 1 -1 0 0

χ63 -3 1 -2 2 0 0 0 0 0 0 0 0 0 0

χ64 3 -1 0 0 0 0 0 0 -1 1 -1 1 0 0

χ65 -3 1 0 0 -2 2 0 0 0 0 0 0 0 0

χ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ67 0 0 2 -2 -2 2 0 0 0 0 0 0 0 0

χ68 0 0 0 0 -2 2 0 0 0 0 0 0 0 0

χ69 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0

χ70 0 0 2 -2 0 0 0 0 -1 1 -1 1 0 0

χ71 0 0 2 -2 0 0 0 0 -1 1 -1 1 0 0

χ72 0 0 0 0 2 -2 0 0 -1 1 -1 1 0 0

χ73 3 -1 -2 2 0 0 0 0 0 0 0 0 0 0

χ74 0 0 2 -2 0 0 0 0 0 0 0 0 0 0

χ75 0 0 0 0 -2 2 0 0 1 -1 1 -1 0 0

χ76 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ77 0 0 0 0 2 -2 0 0 0 0 0 0 0 0

χ78 3 -1 0 0 0 0 0 0 0 0 0 0 0 0

χ79 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0

χ80 0 0 -2 2 0 0 0 0 1 -1 1 -1 0 0

χ81 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ82 -3 1 0 0 0 0 0 0 0 0 0 0 0 0

χ83 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0

χ84 0 0 1 1 -1 -1 0 0 2 0 0 -2 0 0

χ85 0 0 0 0 0 0 0 0 -2 0 0 2 0 0

χ86 0 0 -1 -1 1 1 0 0 -2 0 0 2 0 0

χ87 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ88 0 0 -2 -2 2 2 0 0 2 0 0 -2 0 0
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The character table of 28:O+
8 (2)(continued)

12D 12E 12F 12G 15A 15B 15C

12Q 12R 12S 24A 24B 12T 12U 12V 15A 30A 30B 30C 15B 15C

χ89 0 0 1 1 -1 -1 0 0 -1 B −B −B +B 1 0 0

χ90 0 0 1 1 -1 -1 0 0 -1 −B +B B −B 1 0 0

χ91 0 0 1 1 -1 -1 0 0 2 0 0 -2 0 0

χ92 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ93 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ94 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ95 0 0 0 0 0 0 0 0 2 0 0 -2 0 0

χ96 0 0 0 0 0 0 0 0 -2 0 0 2 0 0

χ97 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ98 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ99 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ100 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ101 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ102 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ103 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ104 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ105 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ106 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ107 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ108 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ109 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ110 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ111 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ113 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ114 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

χ115 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ116 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ117 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ118 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ119 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ120 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ121 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ122 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ123 0 0 -1 -1 1 1 0 0 0 0 0 0 0 0

χ124 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A = E(7) + E(7)2 + E(7)4

B = −E(15)7 − E(15)11 − E(15)13 − E(15)14
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9

24.S6 and 25.S6 as maximal subgroups of HS and

HS:2 respectively

Prologue

The group HS:2 is a full automorphism group of the Higman-Sims group HS. The groups 24.S6

and 25.S6 are maximal subgroups of HS and HS:2 respectively. The group 24.S6 is of order 11520

and 25.S6 is of order 23040 and each of them is of index 3850 in HS and HS:2 respectively. The

aim of this chapter is to compute G = 25.S6 as a group of the form 24.S6.2, that is G = G1.2.

We then compute the Fischer-Clifford matrices of G1 and G respectively. These together with the

partial character tables of the inertia factors of G1 and G are used to compute the full character

tables of G1 and G respectively. We then fuse G1 into G.

9.1. Introduction

The Higman-Sims group, HS is a sporadic simple group of order 29.32.53.7.11 = 44352000. This

is a group that was discovered in 1967 by Higman and Sims [49]. This is a simple group of index

two in the group of automorphisms of the Higman-Sims graph. Higman and Sims were attending

a presentation by Marshall Hall on the Hall-Janko group J2, which is a permutation group on a

hundred points with the stabilizer of a point a subgroup with the other two orbits of length 36

and 63. They then thought of a group of permutations on a 100 points containing the Mathieu

group M22, which has a permutation representation on 22 and 77 points . From these two ideas

they found HS, with one-point stabilizer isomorphic to M22. Higman, in 1969 [50], independently

discovered this group as a doubly transitive group acting on a certain ”geometry” on 176 points.

In his classical paper Conway [22] showed that HS is a subgroup of each of the Conway groups

Co1, Co2 and Co3. This group is also one of the seven sporadic groups found in Co1 but not in the

Mathieu groups and this set of groups is also known as second generation of sporadic groups. The

group HS:2 is of order 88704000 = 210.32.53.7.11 and it is the full automorphism group of HS.
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The aim of this chapter is to compute the Fischer-Clifford matrices of G1 and G. We use these

matrices and the partial character tables of each inertia factor group to compute the full character

table of each group. The notation and method used is taken from F. Ali [1]. For more information

on Fischer-Clifford theory and projective characters of non-split extensions one is encouraged to

read [1, 2, 55, 66, 107, 108, 109].

We follow the work of Conway leading up to the computations of the groups HS and HS:2 in the

subsections below.

9.1.1 The Conway Groups

Leech created a lattice that gives the tightest lattice packing of spheres in 24 dimension [72].

Conway analyzed the symmetry of this lattice in detail in [22] and discovered three previously

unknown sporadic groups namely the Co1, Co2 and Co3. Let us give the definition of a Leech

lattice which is given as Theorem 5.1 in [125].

Definition 9.1.1. A Leech lattice Λ is a 24 dimensional even integral lattice containing no vectors

of norm 2, 196560 vectors of norm 4, 16773120 vectors of norm 6 and 398034000 vectors of norm

8.

We first construct the biggest Conway group Aut(Λ) = .O = 2.Co1 as a group of 24× 24 matrices

and simultaneously we construct a Leech lattice . All the vectors of norm 8 in the Leech lattice fall

into congruence classes of 48 pairs of mutually perpendicular vectors called the crosses and we get

8292375 such crosses. When .O acts on crosses, the stabilizer of a cross is a group 212:M24, which

is a maximal in .O. So .O is a group of order 8292375.212.|M24|. The group .O is a perfect group

with Z(.O) = 2 . The quotient of this group by the center is a group denoted by .1 = Co1 and is

of order

|Co1| = 4157776806543360000 = 221.39.54.72.11.13.23.

Note that the action of .O on crosses is transitive and Co1 is a simple group.

Also .O acts transitively on vectors of norm 4 having the products ±4 or 0. These three orbits of

212:M24 on vectors of norm 4 are fused into a single orbit under 2.Co1. The stabilizer of a vector

of norm 4 is denoted by Co2, where

|Co2| = 42305421312000 = 218.36.53.7.11.23.

Lastly .O is transitive on vectors of norm 6. The stabilizer of a vector of norm 6 is denoted by Co3

and is of order

|Co3| = 423054213122000 = 210.37.53.7.11.23.

From the ATLAS [23] we see that Co3 ≤ Co2 ≤ Co1 with Co2 and Co3 both maximal subgroup of

Co1 and Co3 a maximal subgroup of Co2.

152



CHAPTER 9. 24.S6 AND 25.S6 AS MAXIMAL SUBGROUPS OF HS AND HS:2
RESPECTIVELY

9.1.2 The Higman-Sims Group

We get the Higman-Sims group HS by showing that Co3 acts transitively on the set S of 11178

vectors of norm 4 which have inner product −2 with vector v, when v = (−212, 012). The monomial

group 2 ×M12 fixes v and has six orbits on S. When u = (−5,−123), the group M23 fixes u and

has five orbits on S . The only way for both these sets of orbits to fuse into orbits for Co3 is a

single orbit of length 11178. Thus the stabilizer in Co3 of such a vector in S, is a subgroup of index

11178. This is the Higman-Sims group HS of order

|HS| = 44352000 = 29.32.53.7.11 .

Moreover if we let w = (5, 1, 122) and x = (−1,−5,−122) the stabilizer of the set {w, x} is the

monomial group M22:2 and we get an involution of the group which interchanges the two vectors.

This results in HS extending to HS:2 which is a full automorphism group of HS. A complete list

of maximal subgroups of the Conway groups is provided in Table 5.3 of [125]. For further reading

one can also go into [22, 72, 89, 125].

We use [124] to find two 20 × 20 matrices a and b with a from class 2A, b from class 5A and

HS =< a, b >. Again using [124] we find two 20×20 matrices c, d from classes 2C and 5C of HS:2

respectively, with HS:2 =< c, d >. From the HS computed, HS:2 is an automorphism group of

an isomorphic copy of it.

9.1.3 The Groups 24.S6 and 25.S6

The group 24.S6, is a group of order 11520, and a maximal subgroup of HS.. There is a group

24:S6 which is maximal in M22 and hence sits inside HS:2. Our group 24.S6 is a subgroup of HS

and hence is also a subgroup of HS:2. For further reading on 24:S6 as a maximal subgroup of M22

one can read [81] and [120]. The group 25.S6 is a group of order 23040 and is a maximal subgroup

of the automorphism group of the Higman-Sims HS:2. The groups 24.S6 and 25.S6 are unique

maximal subgroups of their form in HS and HS:2 respectively. Using generators a and b of HS

and Programme G (see Appendix A) we obtain elements a′1 and b′1 with o(a′1) = 2, o(b′1) = 5 and

G′1 =< a′1, b
′
1 >= 24.S6 . Similarly using generators c and d from HS:2 and Programme H (see

Appendix A) we obtain two elements c′ and d′ with o(c′) = 2, o(d′) = 5 and G′ =< c′, d′ >= 25.S6.

Both Programme G and Programme H are obtained from [124]. Our aim is to compute G = 25.S6

as G1.2, where G1 = 24.S6 and we compute these inside HS:2. Since G′1 is in HS we seek for its

isomorphic copy G1 in HS:2 . The extension of G1 is G1.2 = G and G ∼= G′.

Having obtained G′, using GAP [41], we get three of its subgroups of order 11520. By methods

of coset analysis (see Chapter 2), we determine that each of these three subgroups is of the form

24.S6. From these three subgroups only one, G1, is isomorphic to G′1 in HS. The group G1 has

seven generators of which five are of order two, one of order 5 and one of order 6. To this list of
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seven generators we add one of the generator of HS:2 of order two namely c. The group generated

by these eight elements is G = 24.S6.2 = 25.S6.

The groups 24.S6 and 25.S6 will be discussed fully in Sections 9.2 and 9.3 respectively.

9.2. The Group G1 = 24.S6

9.2.1 Construction of G1
∼= S6

From [124] we get two 20 × 20 matrices a and b over GF (2) with o(a) = 2, o(b) = 5, o(ab) = 11

and HS =< a, b >. Again from [124] we get Programme G (see Appendix A).

Let a′1 = output[1] and b′1 = output[2]. Then we have o(a′1) = 2, o(b′1) = 5, o(a′1b
′
1) = 6 and

G′1 =< a′1, b
′
1 >= 24.S6. Up to isomorphism, there is only one group of the type 24.S6 that is a

maximal subgroup of HS and this has 21 conjugacy classes of which two are classes of involutions.

Going back to [124], we get two 20×20 matrices c and d with o(c) = 2, o(d) = 5 andHS:2 =< c, d >.

Again from [124] we get Programme H (see Appendix A).

Let c′1 = output[1] and d′1 = output[2]. We get that o(c′1) = 2, o(d′1) = 10, o(c′1d
′
1) = 6 and

G′ =< c′1, d
′
1 >= 25.S6. Using GAP [41], we get eight normal subgroups of G′. Three of these

groups (we call them S1, S2, S3) are of order 11520 and for each group the conjugacy class 2A has

15 elements and when S6 acts on 24 we get two orbits of length 1 and 15 hence all these groups

are of the form 24.S6. One of them (S2 = 24:S6), however has 24 conjugacy classes and is thus not

a maximal subgroup of HS. The other one (S3, a split extension of 25 by A6) has five classes of

involutions and again is not a maximal subgroup of HS, this group from [81] and [120] is actually

a maximal subgroup of M22. This leaves us with the group S1 = G1
∼= G′1. See Remark 9.2.1

for more details on groups S1, S2 and S3. The group G1 has seven generators a1, a2, a3, a4, a5, a6

and a7 with a1 of order 2, a2 of order 5 and a3 of order 6 and the rest of order 2. We use GAP

to compute normal subgroups of G1 and it has only one proper normal subgroup, the elementary

abelian group N1 = 24. Our aim is to act G1 on N1 and to do this we use Programme C (see

Appendix A) and this requires us to consider N1 as a full row space V1 of dimension four over

GF (2). The action of G1 on V1 is multiplication of V1 from the right . This then requires us to

rewrite G1, from a 20× 20 representation to a 4× 4 one. To do this we act G1 on N1 by acting the

seven generators ai, i = 1, · · · , 7 of G1 on the four generators λi, i = 1, · · · , 4 of N1.

Writing this action as maps we get.

a1 : λ1 → λ2, λ2 → λ1, λ3 → λ1λ3λ4, λ4 → λ1λ2λ4;

a2 : λ1 → λ2, λ2 → λ4, λ3 → λ1λ2, λ4 → λ2λ3λ4;

a3 : λ1 → λ2λ3λ4, λ2 → λ4, λ3 → λ1λ2λ3, λ4 → λ2;
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For the rest that is a4 to a7 we get

ai : λ1 → λ1, λ2 → λ2, λ3 → λ3, λ4 → λ4.

Writing this in matrix form we get :

α1 :=


0 1 0 0

1 0 0 0

1 0 1 1

1 1 0 1

; α2 :=


0 1 0 0

0 0 0 1

1 1 0 0

0 1 1 1

;α3 :=


0 1 1 1

0 0 0 1

1 1 1 0

0 1 0 0

.
For the rest α4 to α7 we get

αi :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

Let G1 =< α1, α2, α3 >∼= S6, that is the action of G1 on N1 is isomorphic to S6.

Remark 9.2.1. Note that N1 = 24 is generated by 4 commuting involutions from the class 2A

of HS. From ATLAS we can see that S1 = G1 = NHS(N1), S2 = NM22
(N1), and NHS:2(N1) =

25.S6 = G. As observed, S1, S2, S3 are non-isomorphic maximal subgroups of G and that S2 and

S3 do not sit inside HS. Our computations show that

S1 = 24.S6 = G ∩HS ≤max HS ≤max HS:2

S2 = 24:S6 = G ∩M22 ≤max M22 ≤max HS: 2;

S3 = 24.(A6 × 2) ∼= 25:A6 ≤max G ≤max HS: 2;

S1 ∩ S2 = S2 ∩ S3 = S1 ∩ S3 = NM22(N1) = 24:A6 ≤max M22 ≤max HS.

In addition to the character table of S1 = G1 we also give the character tables of S2 and S3, in

Table 1 and Table 2 of Appendix B respectively. It is also interesting to note that except for the

conjugacy classes, the character tables of S1 and S2 are the same. A pictorial view of Remark 9.2.1

is given in Figure 9.1, where A = 24.A6.

We compute the permutation characters of HS:2 when acting on S1, S2 and S3. For interest sake

we also include χ(HS|S1) and χ(25.S6|Si), i = 1, 2, 3. We use GAP[41] for our computations.

χ(HS|S1) = 1a+ 22a+ 77aa+ 154a+ 175a+ 693a+ 770a+ 825a+ 1056a = χ(HS:2|25.S6)

χ(25.S6|S1) = 1a+ 1b,

χ(25.S6|S2) = 1a+ 1c,

χ(25.S6|S3) = 1a+ 1d.

155



CHAPTER 9. 24.S6 AND 25.S6 AS MAXIMAL SUBGROUPS OF HS AND HS:2
RESPECTIVELY

Figure 9.1: S1,S2 and S3

χ(HS:2|S1) = 1a+ 1b+ 22a+ 22b+ 77aa+ 77bb+ 154a+ 154b+ 175a+ 175b+ 693a+ 693b+ 770a+

770b+ 825a+ 825b+ 1056a+ 1056b,

χ(HS:2|S2) = 1a+ 22aa+ 77aaa+ 154a+ 175a+ 231a+ 693a+ 770aa+ 825aa+ 1056a+ 1925a,

χ(HS:2|S3) = 1a + 22a + 22b + 77aa + 77b + 154a + 175a + 231a + 693a + 770a + 770b + 825a +

825b+ 1056a+ 1925b.

Lemma 9.2.2. G = S1 ∪ S2 ∪ S3.

Proof: First we see that G ⊇ S1 ∪ S2 ∪ S3. But we also have S1 ∪ S2 ∪ S3 = (S1 − A) ∪ (S2 −
A) ∪ (S3−A) ∪A. Hence

S1 ∪ S2 ∪ S3 = S1−A + S2−A + S3−A + A

= (16× 6!− 16× 6!
2

) + (16× 6!− 16× 6!
2

) + (16× 6!− 16× 6!
2

) + (16× 6!
2

)

= 3(16× 6!− 16× 6!
2

) + (16× 6!
2

)

= 3× 16× 6!− 2× 16× 6!
2

= 2× 16× 6!

= 25.S6.

Thus 25.S6 = S1 ∪ S2 ∪ S3.�
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Theorem 9.2.3. HS:2 has only three conjugacy classes of subgroups of type 24.A6.2. In particular

S1 and S2 are of type 24.A6.21 and S3 is of type 24.(A6 × 2).

Proof: From the ATLAS we can see that if H ≤ HS:2 is of type 24.A6.2, then H must sit in one of

the maximal subgroups of HS:2 of type HS,M22 or 25.S6. Also since NHS:2(S1) ⊇ NG(S1) = G

and G is maximal but not normal in HS:2, we have NHS:2(S1) = G. Hence [HS:2 : NHS:2(S1)] =

[HS:2 : G] = 3850. Similarly since NHS:2(S2) = NHS:2(S3) = G, we have [HS:2 : NHS:2(S2)] =

[HS:2 : NHS:2(S3)] = 3850. Hence we have 3 conjugacy classes for the subgroups of type 24.A6.2

in HS:2. Thus the total number of subgroups of type 24.A6.2 in HS:2 is 3× 3850 = 11550.�

9.2.2 Conjugacy Classes and Inertia Factors of G1

Using GAP [41], we compute the conjugacy classes of 24.S6. The action of G1 on N1 is viewed as

the action of of G1 on V1. If G1 acts on N1, we get two orbits of length 1 and 15. From the ATLAS
[23], by checking on the indices of maximal subgroups of S6, we can see that there are two inertia

factor groups namely S6 and S4 × 2. The full inertia groups are of the form Hi = 24.Hi of indices

1 and 15 in 24.S6 respectively. We note that H1
∼= S6 and H2

∼= S4 × 2. The character tables of

H1 and H2 are easy to compute. The fusion of S4 × 2 into S6 is given in Table 9.1.

Table 9.1: The fusion of S4 × 2 into S6

[x]S4×2 −→ [g1]S6

1A 1A

2A 2C

2B 2B

2C 2B

2D 2A

2E 2A

3A 3A

4A 4A

4B 4B

6A 6A

We computed the conjugacy classes of 24.S6 by using GAP [41] and then fused them into HS.

Having the length of each coset, we use the fusion map to convert the conjugacy classes of 24.S6

into the form that is required for the computation of Fischer-Clifford matrices (that is into a form

normally obtained by coset-analysis). We give the conjugacy classes of 24.S6 in Table 9.2.

9.2.3 Fischer-Clifford Matrices of G1

Again from the inertia factors and fusions we compute the Fischer-Clifford matrices.
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Table 9.2: Conjugacy Classes Of 24.S6

[g]S6 [x]24.S6
C24.S6

(x) −→ HS

1A 1A 11520 1A

2A 768 2A

2B 96 2B

2A 4A 384 4A

4B 128 4B

2C 64 2A

2B 4C 64 4B

4D 32 4B

2C 2D 192 2A

4E 64 4B

3A 3A 192 3A

6A 24 6B

3B 3B 18 3A

4A 4F 16 4B

8A 16 8A

4B 4G 16 4C

8B 16 8A

5A 5A 5 5C

6A 6B 12 6A

12A 12 12A

6B 6C 6 6B

From the fusions we get M(1A) =

[
1 1

15 −1

]
.

Let Irr(HS) = {ψi : 1 ≤ i ≤ 24} as given in the ATLAS. We get :

[x]HS 1A 2A

ψ2 22 6

ψ3 77 13

Let r and s be the rows of the Fischer-Clifford matrix M(1A). Since < (ψ2)N , 1N >= 7 we get

the following decomposition, 22 = 7 + 15s. Thus s = 1 and this shows that the partial character

table of H2 comes from the ordinary table of H2. Hence we use the ordinary character table of

S4 × 2. We use the properties of the Fischer - Clifford matrices and the fusion of S4 × 2 into S6,

the centralizer orders of 24.S6, the fusion of G into HS, together with restriction of HS to G that

forces the signs of the Fischer-Clifford matrices. We give these in Table 9.3

Note the change of sign in M(2A). For example we calculate the partial character table corre-

sponding to coset 2A ∈ S6. From M(2A) we get M1(2A) = [1 1 1], M2(2A) =
[
−1 1 1

0 −6 2

]
Let C1(2A), C2(2A) be the partial character tables of the inertia factors for the classes that fuse to

2A ∈ S6. Then the portions of the character table of G = 24.S6 corresponding to the coset 2A are :
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Table 9.3: The Fischer-Clifford matrices of 24.S6

M(1A) =

[
1 1

15 −1

]
M(2A) =

 1 1 1

−1 1 1

0 −6 2


M(2B) =

 1 1 1

1 1 −1

2 −2 0

 M(2C) =

[
1 1

3 −1

]

M(3A) =

[
1 1

3 −1

]
M(3B) =

[
1
]

M(4A) =

[
1 1

1 −1

]
M(4B) =

[
1 1

1 −1

]

M(6A) =

[
1 1

1 −1

]
M(5A) = M(6B) =

[
1
]

C1(2A)M1(2A) =



1

−1

−3

3

−1

1

−3

3

−2

2

0


[1 1 1] =



1 1 1

−1 −1 −1

−3 −3 −3

3 3 3

−1 −1 −1

1 1 1

−3 −3 −3

3 3 3

−2 −2 −2

2 2 2

0 0 0



C2(2A)M2(2A) =



1 1

−1 −1

1 −1

−1 1

−2 0

2 0

−3 −1

3 −1

−3 1

3 1



[
−1 1 1

0 −6 2

]
=



−1 −5 3

1 5 −3

−1 7 −1

1 −7 1

2 −2 −2

−2 2 2

3 3 −5

−3 9 1

3 −9 −1

−3 −3 5


.

We get the character table of 24.S6 in Table 9.4 which can be compared to the one in GAP.
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Table 9.4: The character table of 24.S6

1A 2A 2B 2C 3A 3B 4A

1a 2a 2b 4a 4b 2c 4c 4d 2d 4e 3a 6a 3b 4f 8a

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1

χ3 5 5 -3 -3 -3 1 1 1 1 1 2 2 -1 -1 -1

χ4 5 5 3 3 3 1 1 1 -1 -1 2 2 -1 1 1

χ5 5 5 -1 -1 -1 1 1 1 3 3 -1 -1 2 1 1

χ6 5 5 1 1 1 1 1 1 -3 -3 -1 -1 2 -1 -1

χ7 9 9 -3 -3 -3 1 1 1 -3 -3 0 0 0 1 1

χ8 9 9 3 3 3 1 1 1 3 3 0 0 0 -1 -1

χ9 10 10 -2 -2 -2 -2 -2 -2 2 2 1 1 1 0 0

χ10 10 10 2 2 2 -2 -2 -2 -2 -2 1 1 1 0 0

χ11 16 16 0 0 0 0 0 0 0 0 -2 -2 -2 0 0

χ12 15 -1 -1 -5 3 3 -1 -1 3 -1 3 -1 0 1 -1

χ13 15 -1 1 5 -3 3 -1 -1 -3 1 3 -1 0 -1 1

χ14 15 -1 -1 7 -1 -1 3 -1 3 -1 3 -1 0 -1 1

χ15 15 -1 1 -7 1 -1 3 -1 -3 1 3 -1 0 1 -1

χ16 30 -2 2 -2 -2 2 2 -2 -6 2 -3 1 0 0 0

χ17 30 -2 -2 2 2 2 2 -2 6 -2 -3 1 0 0 0

χ18 45 -3 3 3 -5 1 -3 1 3 -1 0 0 0 1 -1

χ19 45 -3 -3 9 1 -3 1 1 -3 1 0 0 0 1 -1

χ20 45 -3 3 -9 -1 -3 1 1 3 -1 0 0 0 -1 1

χ21 45 -3 -3 -3 5 1 -3 1 -3 1 0 0 0 -1 1

The character table of 24.S6 (continued)

4B 5a 6A 6B

4g 8b 5a 6b 12a 6c

χ1 1 1 1 1 1 1

χ2 1 1 1 -1 -1 -1

χ3 -1 -1 0 0 0 1

χ4 -1 -1 0 0 0 -1

χ5 -1 -1 0 -1 -1 0

χ6 -1 -1 0 1 1 0

χ7 1 1 -1 0 0 0

χ8 1 1 -1 0 0 0

χ9 0 0 0 1 1 -1

χ10 0 0 0 -1 -1 1

χ11 0 0 1 0 0 0

χ12 1 -1 0 1 -1 0

χ13 1 -1 0 -1 1 0

χ14 -1 1 0 1 -1 0

χ15 -1 1 0 -1 1 0

χ16 0 0 0 1 -1 0

χ17 0 0 0 -1 1 0

χ18 -1 1 0 0 0 0

χ19 1 -1 0 0 0 0

χ20 1 -1 0 0 0 0

χ21 -1 1 0 0 0 0
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9.3. The Group G = 25.S6

Having completed the computation of the full character table of 24.S6, we now turn our attention

to 25.S6. We compute 25.S6 = 24.S6.2, this we do by adding the generator c of HS:2, that is from

G1 we get G =< a1, a2, a3, a4, a5, a6, a7, c >. Since 25.S6 is the only group of its type that is a

maximal subgroup of HS:2, we have G ∼= G′, where G′ was computed using Programme H. Our

aim is to compute the full character table of 25.S6. We first want to let G act on the elementary

abelian group N = 25. We use GAP [41] to compute N = 25 as a normal subgroup of G.

9.3.1 Construction of G ∼= S6

For the action of G we use Programme C (see Appendix A). We consider N as a full row vector

space V of dimension 5 over GF (2). For us to be able to act on a five dimensional vector space V

it becomes necessary to rewrite G from 20× 20 to a 5× 5 representation. To do this we first take

the eight generators of G namely a1 to a7 and c. We let these act on generators γi, 1 = 1, · · · , 5 of

our elementary abelian group N = 25.

Writing these as maps we get :

a1 : γ1 → γ1, γ2 → γ3γ4, γ3 → γ1γ3, γ4 → γ1γ2γ3, γ5 → γ1γ2γ3γ4γ5;

a2 : γ1 → γ2γ3γ4, γ2 → γ3, γ3 → γ1γ3, γ4 → γ2, γ5 → γ2γ5;

a3 : γ1 → γ1γ2, γ2 → γ1γ2γ3γ4, γ3 → γ4, γ4 → γ1γ4, γ5 → γ1γ2γ3γ4γ5;

c : γ1 → γ3, γ2 → γ2, γ3 → γ1, γ4 → γ4, γ5 → γ5;

For the rest a4 to a7 we get

ai : γ1 → γ1, γ2 → γ2, γ3 → γ3, γ4 → γ4, γ5 → γ5.

Writing this in matrix form we get :

β1 =



1 0 0 0 0

0 0 1 1 0

1 0 1 0 0

1 1 1 0 0

1 1 1 1 1


, β2 =



0 1 1 1 0

0 0 1 0 0

1 0 1 0 0

0 1 0 0 0

0 1 0 0 1


,
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β3 =



1 1 0 0 0

1 1 1 1 0

0 0 0 1 0

1 0 0 1 0

1 1 1 1 1


, β4 =



0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


.

For the rest β5 to β8 we get that βi = I5.

Let G =< β1, β2, β3, β4 >, then G ∼= S6 which means that the action of G on N is isomorphic to

S6.

9.3.2 Conjugacy Classes and Inertia Factors of G

The action of G on N is reflected by the action of G on V . We use Programme C (see Appendix A).

When G acts on V we get four orbits of conjugacy classes of lengths 1, 6, 10 and 15. Let Gt be the

set of all transpose of elements of G. The group Gt can also be generated by transpose matrices of

each generator of G. When Gt acts on V , which is the equivalent of G acting on Irr(N), by Brauer’s

Theorem [14] we get four orbits but these are of lengths 1, 1, 15 and 15. These have corresponding

point stabilizers H1, H2, H3 and H4. Let the full inertia groups be Hi = 25.Hi, i = 1, 2, 3, 4. From

the ATLAS [23], the corresponding inertia factor groups are S6, S6, S4 × 2 and S4 × 2. Where

we get H1
∼= H2

∼= S6 and H3
∼= H4

∼= S4 × 2. The character tables of S6 and that of HS:2 are

obtained from the ATLAS [23] . We give also, the fusion of S4 × 2 into S6 in Table 9.5.

Table 9.5: The fusion of S4 × 2 into S6

[x]S4×2 −→ [g1]S6

1A 1A

2A 2C

2B 2B

2C 2B

2D 2A

2E 2A

3A 3A

4A 4A

4B 4B

6A 6A

We computed the conjugacy classes of 25.S6 by using GAP [41] and then fused them into HS:2.

Having the length of each coset, we use the fusion map to convert the conjugacy classes of 25.S6

into the form that is required for the computation of Fischer-Clifford matrices (that is into a form

normally obtained by coset-analysis). We give the conjugacy classes of 25.S6 in Table 9.6
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Table 9.6: Conjugacy Classes Of 25.S6

[g]S6 [x]25.S6
C25.S6

(x) −→ HS:2

1A 23040 1A

1A 2A 3840 2D

2B 2304 2C

2C 1536 2A

2D 768 2C

4A 768 4A

2A 2E 256 2D

4B 256 4B

4C 192 4A

2F 192 2B

2G 128 2A

2H 128 2D

2B 4D 128 4D

4E 128 4B

4F 64 4C

4G 64 4A

2I 384 2A

2C 2J 384 2C

4H 64 4B

4I 64 4D

3A 144 3A

3A 6A 144 6C

6B 48 6E

6C 48 6B

3B 3B 36 3A

6D 36 6A

4J 32 4A

4A 8A 32 8C

4K 32 4B

8B 32 8A

4L 32 4C

4B 8C 32 8A

4M 32 4D

8D 32 8D

5A 5A 10 5C

10A 5 10D

6E 24 6D

6A 6F 24 6A

12A 24 12A

12B 24 12B

6B 6G 12 6E

6H 12 6A

9.3.3 Fischer Clifford Matrices of G

From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix

M(1A).
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M(1A) =


1 1 1 1

1 −1 −1 1

15 5 −3 −1

15 −5 3 −1


Having computed M(1A) we want to determine the type of partial character tables we are going

to use for our computations. We follow the methods used by F.Ali [1]. We use the character table

of HS:2 =< a, b > . Let Irr(HS : 2) = {Ψi : 1 ≤ i ≤ 39}, the notation is the same at the one used

in the ATLAS [23].

CG(x) 23040 3840 2304 1536

[x]HS:2 1A 2A 2B 2C

Ψ2 1 -1 -1 1

Ψ3 22 0 8 6

Ψ4 22 0 -8 6

Ψ5 77 5 21 13

Ψ6 77 -5 -21 13

Let γ1, γ2, γ3, γ4 be the rows of the Fischer - Cliford matrix M(1A). First we get

< (Ψ2)N , 1N >=
1
32

(1− 6− 10 + 15) = 0,

< (Ψ3)N , 1N >=
1
32

(22× 1 + 6× 0 + 10× 8 + 15× 6) =
1
32

(22 + 80 + 90) = 6,

< (Ψ4)N , 1N >=
1
32

(22× 1 + 6× 0 + 10× (−8) + 15× 6) =
1
32

(22− 80 + 90) = 1,

< (Ψ5)N , 1N >=
1
32

(77× 1 + 6× 5 + 10× 21 + 15× 13) =
1
32

(77 + 30 + 210 + 195) = 16.

Restricting the character Ψ3 to N , since < (Ψ3)N , 1N >= 6, we get the following equations, where

a, b, c represent coefficients of γ2, γ3, γ4 respectively.

22 = 6 + a+ 15b+ 15c,

0 = 6− a+ 5b− 5c,

8 = 6− a− 3b+ 3c,

6 = 6 + a− b− c.

Solving we get : a = 1, b = 0 and c = 1. So we have the following decomposition.

(Ψ3)N = 6γ1 + γ2 + γ4.

Considering the coefficients of γ2 and γ4 we deduce that we have irreducible characters χ2 and

χ4 ∈ Irr(G) with deg(χ2) = 1 and deg(χ4) = 15. Since deg(χ2) = 1, we only need to use the
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Table 9.7: The Fischer-Clifford matrices of 25.S6

M(1A) =


1 1 1 1

1 −1 −1 1

15 5 −3 −1

15 −5 3 −1

 M(2A) =



1 1 1 1 1 1

−1 1 −1 1 −1 1

−6 6 2 −2 0 0

1 1 1 1 −1 −1

−6 −6 2 2 0 0

1 −1 1 −1 −1 1



M(2B) =



1 1 1 1 1 1

1 −1 1 −1 1 −1

−2 2 2 −2 0 0

1 1 1 1 −1 −1

−2 −2 2 2 0 0

1 −1 1 −1 −1 1


M(2C) =


1 1 1 1

1 −1 1 −1

3 3 −1 −1

−3 3 1 −1



M(3A) =


1 1 1 1

1 −1 1 −1

3 −3 1 −1

3 3 −1 −1

 M(3B) = M(5A) =

[
1 1

1 −1

]

M(4A) =


1 1 1 1

−1 −1 1 1

−1 1 −1 1

1 −1 −1 1

 M(4B) =


1 1 1 1

1 1 −1 1

−1 1 −1 1

1 −1 −1 1



M(6A) =


1 1 1 1

1 −1 1 −1

−1 1 −1 1

1 1 −1 −1

 M(6B) =

[
1 1

−1 1

]

ordinary character table of H2. For deg(χ4) = 15, if [x1, x2, · · · , xt] is the transpose of the partial

entries for the projective characters of H4 on 1A, then C4(1A)M4(1A) is a t × 4 matrix with first

set entry 15x1 = 15, hence x1 = 1. This shows that the partial character table of H4 that we used

contains a character of degree 1. Thus the partial character table is an ordinary character table

of H4. Similarly, one can show that < (Ψ3)N , γ2 >= 6. This gives us (Ψ3)N = γ1 + 6γ2 + γ3. So

again H1 and H3 have partial character tables that each contains a character of degree 1. Thus the

partial character tables of H1 and H3 are ordinary character tables of S6 and S4 × 2 respectively.

Using fusions, centralizer orders of G and properties of Fischer-Clifford matrices that can also be

found in [1], [99] and [120] , we complete Table 9.8 of Fischer - Clifford matrices.

To compute the character table of G, as an example consider the following. Let C1(2A), C2(2A),

C3(2A), C4(2A) be the partial character tables of the inertia factors for the classes that fuse to

2A ∈ S6. Then the portions of the character table of G = 25.S6 corresponding to the coset 2A are :

C1(2A)M1(2A) =



1

−1

−3

3

−1

1

−3

3

−2

2

0



[1 1 1 1 1 1] =



1 1 1 1 1 1

−1 −1 −1 −1 −1 −1

−3 −3 −3 −3 −3 −3

3 3 3 3 3 3

−1 −1 −1 −1 −1 −1

1 1 1 1 1 1

−3 −3 −3 −3 −3 −3

3 3 3 3 3 3

−2 −2 −2 −2 −2 −2

2 2 2 2 2 2

0 0 0 0 0 0
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C2(2A)M2(2A) =



1

−1

−3

3

−1

1

−3

3

−2

2

0



[−1 1 − 1 1 − 1 1] =



−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

3 −3 3 −3 3 −3

−3 3 −3 3 −3 3

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

3 −3 3 −3 3 −3

−3 3 −3 3 −3 3

2 −2 2 −2 2 −2

−2 2 −2 2 −2 2

0 0 0 0 0 0



C3(2A)M3(2A) =



1 1

−1 −1

1 −1

−1 1

−2 0

2 0

−3 −1

3 −1

−3 1

3 1



[
−6 6 2 −2 0 0

1 1 1 1 −1 −1

]
=



−5 7 3 −1 −1 −1

5 −7 −3 1 1 1

7 −5 −1 3 −1 −1

−7 5 1 −3 1 1

−2 −2 −2 −2 2 2

−2 −2 −2 −2 2 2

3 −9 −5 −1 3 3

9 −3 1 5 −3 −3

−9 3 −1 −5 3 −3

−3 9 5 1 −3 −3



.

C4(2A)M4(2A) =



1 1

−1 −1

1 −1

−1 1

−2 0

2 0

−3 −1

3 −1

−3 1

3 1



[
−6 −6 2 2 0 0

1 −1 1 −1 −1 1

]
=



−5 −7 3 −1 1 −1

5 7 −3 −1 1 −1

7 5 −1 −3 −1 1

−7 −5 1 3 1 −1

−2 2 −2 2 2 2

2 −2 2 −2 −2 2

3 9 −5 1 3 −3

9 3 1 −5 −3 3

−9 −3 −1 5 3 −3

−3 −9 5 −1 −3 3



.

The fusion of G into HS:2 together with the restriction of characters of HS:2 to G forces the signs

of the Fischer-Clifford matrices and the order of the elements of the conjugacy classes of G. Hence

we give the character table in Table 9.8.
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Table 9.8: The character table of 25.S6
1A 2A 2B

1a 2a 2b 2c 2d 4a 2e 4b 4c 2f 2g 2h 4d 4e 4f 4g

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

χ3 5 5 5 5 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1

χ4 5 5 5 5 3 3 3 3 3 3 1 1 1 1 1 1

χ5 5 5 5 5 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1

χ6 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1

χ7 9 9 9 9 -3 -3 -3 -3 -3 -3 1 1 1 1 1 1

χ8 9 9 9 9 3 3 3 3 3 3 1 1 1 1 1 1

χ9 10 10 10 10 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

χ10 10 10 10 10 2 2 2 2 2 2 -2 -2 -2 -2 -2 -2

χ11 16 16 16 16 0 0 0 0 0 0 0 0 0 0 0 0

χ12 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1

χ13 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

χ14 5 -5 -5 5 3 -3 3 -3 3 -3 1 -1 1 -1 1 -1

χ15 5 -5 -5 5 -3 3 -3 3 -3 3 1 -1 1 -1 1 -1

χ16 5 -5 -5 5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

χ17 5 -5 -5 5 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1

χ18 9 -9 -9 9 3 -3 3 -3 3 -3 1 -1 1 -1 1 -1

χ19 9 -9 -9 9 -3 3 -3 3 -3 3 1 -1 1 -1 1 -1

χ20 10 -10 -10 10 2 -2 2 -2 2 -2 -2 2 -2 2 -2 2

χ21 10 -10 -10 10 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2

χ22 16 -16 -16 16 0 0 0 0 0 0 0 0 0 0 0 0

χ23 15 5 -3 -1 -5 7 3 -1 -1 -1 -1 3 3 -1 -1 -1

χ24 15 5 -3 -1 5 -7 -3 1 1 1 -1 3 3 -1 -1 -1

χ25 15 5 -3 -1 7 -5 -1 3 -1 -1 3 -1 -1 3 -1 -1

χ26 15 5 -3 -1 -7 5 1 -3 1 1 3 -1 -1 3 -1 -1

χ27 30 10 -6 -2 -2 -2 -2 -2 2 2 2 2 2 2 -2 -2

χ28 30 10 -6 -2 2 2 2 2 -2 -2 2 2 2 2 -2 -2

χ29 45 15 -9 -3 3 -9 -5 -1 3 3 -3 1 1 -3 1 1

χ30 45 15 -9 -3 9 -3 1 5 -3 -3 1 -3 -3 1 1 1

χ31 45 15 -9 -3 -9 3 -1 -5 3 3 1 -3 -3 1 1 1

χ32 45 15 -9 -3 -3 9 5 1 -3 -3 -3 1 1 -3 1 1

χ33 15 -5 3 -1 -5 -7 3 1 -1 1 -1 -3 3 1 1 1

χ34 15 -5 3 -1 5 7 -3 -1 1 -1 1 3 3 1 -1 1

χ35 15 -5 3 -1 7 5 -1 -3 -1 1 3 1 -1 -3 -1 1

χ36 15 -5 3 -1 -7 -5 1 3 1 -1 3 1 -1 -3 -1 1

χ37 30 -10 6 -2 -2 2 -2 2 2 -2 2 -2 2 -2 -2 0

χ38 30 -10 6 -2 2 -2 2 -2 -2 2 2 -2 2 -2 -2 2

χ39 45 -15 9 -3 3 9 -5 1 3 -3 -3 -1 1 3 1 -1

χ40 45 -15 9 -3 9 3 1 -5 -3 3 1 3 -3 -1 1 -1

χ41 45 -15 9 -3 -9 -3 -1 5 3 -3 1 3 -3 -1 1 -1

χ42 45 -15 9 -3 -3 -9 5 -1 -3 3 -3 -1 1 3 1 -1
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The character table of 25:S6(continued)

2C 3A 3B 4A

2i 2j 4h 4i 3a 6a 6b 6c 3b 6d 4j 8a 4k 8b

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1

χ3 1 1 1 1 2 2 2 2 -1 -1 -1 -1 -1 -1

χ4 -1 -1 -1 -1 2 2 2 2 -1 -1 1 1 1 1

χ5 3 3 3 3 -1 -1 -1 -1 2 2 1 1 1 1

χ6 -3 -3 -3 -3 -1 -1 -1 -1 2 2 -1 -1 -1 -1

χ7 -3 -3 -3 -3 0 0 0 0 0 0 1 1 1 1

χ8 3 3 3 3 0 0 0 0 0 0 -1 -1 -1 -1

χ9 2 2 2 2 1 1 1 1 1 1 0 0 0 0

χ10 -2 -2 -2 -2 1 1 1 1 1 1 0 0 0 0

χ11 0 0 0 0 -2 -2 -2 -2 -2 -2 0 0 0 0

χ12 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1

χ13 -1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1

χ14 1 -1 1 -1 2 -2 2 -2 -1 1 1 1 -1 -1

χ15 -1 1 -1 1 2 2 2 -2 -1 1 -1 -1 1 1

χ16 3 -3 3 -3 -1 1 -1 1 2 -2 -1 -1 1 1

χ17 -3 3 -3 3 -1 1 -1 1 2 -2 1 1 -1 -1

χ18 -3 3 -3 3 0 0 0 0 0 0 -1 -1 1 1

χ19 3 -3 3 -3 0 0 0 0 0 0 1 -1 -1 1

χ20 2 -2 2 -2 1 -1 1 -1 1 -1 0 0 0 0

χ21 -2 2 -2 2 1 -1 1 -1 1 -1 0 0 0 0

χ22 0 0 0 0 -2 2 -2 2 -2 2 0 0 0 0

χ23 3 3 -1 -1 3 -3 -1 1 0 0 -1 1 -1 1

χ24 -3 -3 1 1 3 -3 -1 1 0 0 1 -1 1 -1

χ25 3 3 -1 -1 3 -3 -1 1 0 0 1 -1 1 -1

χ26 -3 -3 1 1 3 -3 -1 1 0 0 -1 1 -1 1

χ27 -6 -6 2 2 -3 3 1 -1 0 0 0 0 0 0

χ28 6 6 -2 -2 -3 3 1 -1 0 0 0 0 0 0

χ29 3 3 -1 -1 0 0 0 0 0 0 -1 1 -1 1

χ30 -3 -3 1 1 0 0 0 0 0 0 -1 1 -1 1

χ31 3 3 -1 -1 0 0 0 0 0 0 1 -1 1 -1

χ32 -3 -3 1 1 0 0 0 0 0 0 1 -1 1 -1

χ33 -3 3 1 -1 3 3 -1 -1 0 0 1 -1 -1 1

χ34 3 -3 -1 1 3 3 -1 -1 0 0 -1 1 1 -1

χ35 -3 3 1 -1 3 3 -1 -1 0 0 -1 1 1 -1

χ36 3 -3 -1 1 3 3 -1 -1 0 0 1 -1 -1 1

χ37 6 -6 -2 2 -3 -3 1 1 0 0 0 0 0 0

χ38 -6 6 2 -2 -3 -3 1 1 0 0 0 0 0 0

χ39 -3 3 1 -1 0 0 0 0 0 0 1 -1 -1 1

χ40 3 -3 -1 1 0 0 0 0 0 0 1 -1 -1 1

χ41 -3 3 1 -1 0 0 0 0 0 0 -1 1 1 -1

χ42 3 -3 -1 1 0 0 0 0 0 0 -1 1 1 -1
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The character table of 25:S6(continued)

4B 5A 6A 6B

4l 8c 4m 8d 5a 10a 6e 6f 12a 12b 6g 6h

χ1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

χ3 -1 -1 -1 -1 0 0 0 0 0 0 1 1

χ4 -1 -1 -1 -1 0 0 0 0 0 0 -1 -1

χ5 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0

χ6 -1 -1 -1 -1 0 0 1 1 1 1 0 0

χ7 1 1 1 1 -1 -1 0 0 0 0 0 0

χ8 1 1 1 1 -1 -1 0 0 0 0 0 0

χ9 0 0 0 0 0 0 1 1 1 1 -1 -1

χ10 0 0 0 0 0 0 -1 -1 -1 -1 1 1

χ11 0 0 0 0 1 1 0 0 0 0 0 0

χ12 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1

χ13 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1

χ14 -1 -1 1 1 0 0 0 0 0 0 -1 1

χ15 -1 -1 1 1 0 0 0 0 0 0 1 -1

χ16 -1 -1 1 1 0 0 -1 1 -1 1 0 0

χ17 -1 -1 1 1 0 0 1 -1 1 -1 0 0

χ18 1 1 -1 -1 -1 1 0 0 0 0 0 0

χ19 1 1 -1 -1 -1 1 0 0 0 0 0 0

χ20 0 0 0 0 0 0 1 -1 1 -1 1 -1

χ21 0 0 0 0 0 0 -1 1 -1 1 -1 1

χ22 0 0 0 0 1 -1 0 0 0 0 0 0

χ23 -1 1 -1 1 0 0 -1 1 1 -1 0 0

χ24 -1 1 -1 1 0 0 1 -1 -1 1 0 0

χ25 1 -1 1 -1 0 0 -1 1 1 -1 0 0

χ26 1 -1 1 -1 0 0 1 -1 -1 1 0 0

χ27 0 0 0 0 0 0 -1 1 1 -1 0 0

χ28 0 0 0 0 0 0 1 -1 -1 1 0 0

χ29 1 -1 1 -1 0 0 0 0 0 0 0 0

χ30 -1 1 -1 1 0 0 0 0 0 0 0 0

χ31 -1 1 -1 1 0 0 0 0 0 0 0 0

χ32 1 -1 1 -1 0 0 0 0 0 0 0 0

χ33 1 -1 -1 1 0 0 1 1 -1 -1 0 0

χ34 1 -1 -1 1 0 0 -1 -1 1 1 0 0

χ35 -1 1 1 -1 0 0 1 1 -1 -1 0 0

χ36 -1 1 1 -1 0 0 -1 -1 1 1 0 0

χ37 0 0 0 0 0 0 1 1 -1 -1 0 0

χ38 0 0 0 0 0 0 -1 -1 1 1 0 0

χ39 -1 1 1 -1 0 0 0 0 0 0 0 0

χ40 1 -1 -1 1 0 0 0 0 0 0 0 0

χ41 1 -1 -1 1 0 0 0 0 0 0 0 0

χ42 -1 1 1 -1 0 0 0 0 0 0 0 0
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9.4. Fusion of 24.S6 into 25.S6

We give the fusion of G1 into G in Table 9.9

Table 9.9: The fusion of 24.S6 into 25.S6

[x]24.S6
−→ [g1]25.S6

[x]24.S6
−→ [g1]25.S6

1A 1A 4E 4H

2A 2C 4F 4K

2B 2F 4G 4L

2C 2G 5A 5A

2D 2I 6A 6B

3A 3A 6B 6F

3B 3B 6C 6G

4A 4A 8A 8C

4B 4B 8B 8B

4C 4E 12A 12A

4D 4F

170



10

A group of the form 53.L(3, 5) as a maximal

subgroup of the Lyons Group Ly

Prologue

The group G = 53.L(3, 5) is a subgroup of order 46500000 and of index 1113229656 in Ly. The

group G in turn has L(3, 5) and 52:2.A5 as inertia factors. The group 52:2.A5 is of order 3000 and

is of index 124 in L(3, 5). The aim of this chapter is to compute the Fischer-Clifford matrices of

G, which together with associated partial character tables of the inertia factor groups, are used

to compute a full character table of G. We will obtain that the partial projective character table

corresponding to 52:2A5 is required, hence we have to compute the Schur multiplier and projective

character table of 52:2A5.

10.1. Introduction

The Lyons group was discovered in 1970 by Richard Lyons [78], using the concept of classifying

simple groups with an involution centralizer 2.An. The smallest value of n for which 2.An has non-

central involutions is n = 8, for which the McLaughlin group M cL, has an involution centralizer

2.A8. The only other case that arises is n = 11 which is in the Lyons group Ly that is the Lyons

group has an involution centralizer 2A11. Moreover, a 3-cycle in 2.A11 centralizes 2.A8 and the full

centralizer of this 3-cycle in Ly is the triple cover 3.M cL of the McLaughlin group. The Lyons

group Ly, is a sporadic simple group of order 28.37.56.7.11.31.37.67 = 51765179004000000.

The existence of this group and its uniqueness up to isomorphism was shown by C C Sims [118, 119],

using coset enumeration and it is often referred to as the ”Lyons-Sims” group. The group Ly

has elements of order 37 and 67 which cannot be found in the monster and is one of the six

sporadic simple groups called the ”pariahs” which are not subgroups of the monster. The other

five ”pariahs” being J1, J3, J4, O
′N and Ru, the last to be determined in [122] being J1. The group

53.L(3, 5) is also maximal in the baby monster B. The group Ly has nine conjugacy classes of
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maximal subgroups. One of the maximal subgroups of the form, G = N.G is a group of order

46500000 = 26.3.56.31, where N ∼= 53 and G ∼= L(3, 5). The aim of this chapter is to compute the

Fischer-Clifford matrices which together with partial character tables will be used to compute a

character table for G. The notation used is consistent with that of the ATLAS [23] and method

used is taken from [1, 2]. One can read more on Fischer-Clifford theory and projective characters

from [99, 120] and [55, 66, 107, 108, 109] respectively. For the theory of characters one can also

read Character Theory of Finite Groups [60].

10.2. Construction of G ∼= 53.L(3, 5)

From the ATLAS of group representation [124] we get two 111 × 111 matrices a, b, with o(a) =

2, o(b) = 5, o(ab) = 14 and Ly =< a, b > . Again from [124] we get Programme I (see Appendix

A), where if we use a = input[1] and b = input[2] and we get x̄ = output[1] and ȳ = output[2],

where o(x̄) = 2, o(ȳ) = 3, o(x̄ȳ) = 31 and G =< x̄, ȳ > . From [124] we see that o(x̄ȳx̄ȳ2) = 25

and if we let gen[1] = (x̄ȳx̄ȳ2)5, then o(gen[1]) = 5, we also get that gen[2] = ȳgen[1]ȳ−1, gen[3]

= x̄gen[2]x̄−1 and N = 53 =< gen[1], gen[2], gen[3] > . Let λi = gen[i], i = 1, 2, 3. We use GAP to

compute the conjugacy classes of 53.L(3, 5) and also the fusion of 53.L(3, 5) into Ly and these are

given in Table 10.1.

Table 10.1: Conjugacy Classes Of 53.L(3, 5)

[g]L(3,5) [x]53.L(3,5) C53.L(3,5)(x) −→ Ly

1A 1A 46500000 1A

5A 375000 5A

2A 2A 2400 2A

10A 600 10A

3A 3A 120 3A

15A 30 15B

4A 4A 480 4A

4B 4B 480 4A

4C 4C 80 4A

20A 20 20A

5B 2500 5A

5A 5C 1250 5B

5D 1250 5B

5B 25A 25 25A

6A 6A 120 6B

30A 30 30B

8A 8A 24 8B

8B 8B 24 8B

10B 100 10A

10A 10C 50 10B

10D 50 10B

12A 12A 24 12B

12B 12B 24 12B

continued on next page
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Table 10.1 (continued from previous page)

[g]L(3,5) [x]53.L(3,5) C53.L(3,.5)(x) −→ Ly

20A 20B 20 20A

20B 20C 20 20A

24A 24A 24 24C

24B 24B 24 24B

24C 24C 24 24B

24D 24D 24 24C

31A 31A 1 31B

31B 31B 31 31A

31C 31C 31 31E

31D 31D 31 31D

31E 31E 31 31C

31F 31F 31 31B

31G 31G 31 31A

31H 31H 31 31E

31I 31I 31 31D

31J 31J 31 31C

10.3. Construction of G ∼= L(3, 5)

Our aim in this section is to let G act on the elementary abelian group N . We use the method

discussed in chapters 8 and 9. In this method N is considered as a vector space V , of dimension 3

over GF (5). For us to be able to act on a three dimensional vector space V it becomes necessary

to rewrite G from 111× 111 to a 3× 3 representation. To do this we have to act G on N by letting

the two generators of G, x̄ and ȳ to act, on the generators of N , λi, i = 1, 2, 3 by conjugation,

using GAP [41]. Writing these as maps we get :

x̄ : λ1 → λ4
1

λ2 → λ3

λ3 → λ2;

ȳ : λ1 → λ2

λ2 → λ1λ2λ
4
3

λ3 → λ2
2λ

4
3.

Writing these in 3× 3 matrix form, over GF (5) we get

x =


4 0 0

0 0 1

0 1 0

 , y =


0 1 0

1 1 4

0 2 4


and G =< x, y >. Then G ∼= L(3, 5) which means that the action of G on N is isomorphic to
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L(3, 5).

10.4. Inertia Factors of Ḡ

We use GAP [41] to compute the permutation character of Ly acting on 53.L(3, 5). That is

χ(Ly|53.L(3, 5)) = 1a + 45694a + 381766a + 1534500aa + 3028266a + 4226695aa + 11834746a +

18395586abc+19212250a+21312500ab+22609664abc+27252720aabbcd+28787220aa+29586865a+

33813560aa + 38734375a + 43110144abcde + 45648306b + 45694000ab + 56022921a + 64906250a +

71008476a

We then use Programme C (see Appendix A) to compute the orbit lengths of the action on the

orbits on N and on Irr(N). We let G act on a full row vector space V of dimension 3 over GF (5).

We get two orbits of conjugacy classes of lengths 1 and 124. By Brauer’s Theorem [14] when G

acts on Irr(N), we get two inertia groups of index 1 and 124. Using the ATLAS [23], we see

that 52:GL(2, 5) is of index 31 in L(3, 5) and |GL(2, 5)| = 480. Since we are looking for the

maximal subgroup of index 124 in L(3, 5), we have to get a group of index 4 in GL(2, 5) and the

group should be of order 120. So with the help of the ATLAS [23] this can only be the group 2.A5.

Thus the group of index 4 in 52:GL(2, 5) is 52:2.A5. The full inertia groups are H̄i = 53.Hi, i = 1, 2,

where H1 = L(3, 5) and H2 = 52:2.A5. We used GAP [41] to calculate the character table of H2.

We give the fusion of H2 into L(3, 5) in Table 10.2.

Table 10.2: The fusion of 52:2.A5 into L(3, 5)

[x]52:2.A5
−→ [g1]L(3,5)

1A 1A

2A 2A

3A 3A

4A 4C

5A 5A

5B 5B

5C 5B

5D 5A

5E 5B

5F 5B

5G 5A

6A 6A

10A 10A

10B 10A
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10.5. Projective Character Table of 52:2.A5

From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix

M(1A) of Ḡ.

M(1A) =

[
1 1

124 −1

]

Having computed M(1A) we want to determine the type of partial character tables we are going

to use for our computations. We will show that the partial projective character table of H2 is

required. We follow the methods used in [1, 2] and we use the character table of Ly =< a, b > .

Let Irr(Ly) = {Ψi : 1 ≤ i ≤ 53}, where the notation is the same at the one used in the ATLAS
[23]. From the list we take the values of Ψ2, Ψ3, Ψ4 on 1A and 5A .

CG(x) 46500000 375000

[x]Ly 1A 5A

Ψ2 2480 -20

Ψ3 2480 -20

Ψ4 45694 69

Let γ1, γ2 be the rows of the Fischer-Cliford matrix M(1A). Then

< (Ψ2)N , 1N >=
1

125
(2480− 20.124) = 0.

Since < (Ψ2)N , 1N >= 0, we get that 2480 = 0 + 20.124, so that (Ψ2)N = 0.γ1 + 20.γ2. Let

[x1, · · · , xt] be the transpose of the partial entries for the ordinary characters of H2 = 52:2.A5 on

1A ∈ L(3, 5). Then C2(1A)M(1A) is a t× 2 matrix with entries on the first column 124x1 = 2480.

Hence x1 = 20. From the ordinary character table of H2 = 52:2.A5, there is no character of degree

20. Similarly

< (Ψ4)N , 1N >=
1

125
(45694− 69.124) = 434,

which gives us x1 = 365 and this is a very large character degree which is not possible for H2 =

52:2.A5, and this holds for the remaining characters. Hence we have to use the projective character

table of H2. There are three primes dividing the order of H2 namely 2, 3 and 5. Using MAGMA

Programme K , or GAP Programme K ′ (see Appendix A), we determine the Schur multiplier of

H2. The p - Sylow subgroups corresponding to p = 2 and 3 are cyclic , using methods from [1, 2]

the Schur multipliers of both p-Sylow subgroups are trivial. Hence the Schur multiplier of H2 is

the cyclic group of order 5. The projective characters of H2 with factor set α−1 where α5 ∼ 1 is

given in Table 10.3. Note that from the table we can see that 5a, 5b, 5c, 5e, 5f are all not α regular

classes and we have a total of 9 α regular classes.
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Let A = −E(5)− E(5)4, and A∗ = 1− A = −E(5)2 − E(5)3. Then A+ A∗ = 1, A∗A = A(A∗) =

−1, A2+(A∗)2 = 3, A3+(A∗)3 = 4. In fact we get a Fibonacci sequence, with fi+1 = fi+fi−1, i ≥ 2,

where fi = Ai + (A∗)i. This helps us to compute the Fischer-Clifford matrices and character table

of G = 53.L(3, 5).

Table 10.3: The projective character table of 52:2.A5 with factor set α−1

1a 5a 2a 4a 3a 6a 5b 5c 5d 10a 5e 5f 5g 10b

χ1 5 0 1 1 1 1 0 0 1 1 0 0 1 1

χ2 15 0 3 -1 0 0 0 0 A A 0 0 A∗ A∗

χ3 15 0 3 -1 0 0 0 0 A∗ A∗ 0 0 A A

χ4 20 0 4 0 1 1 0 0 -1 -1 0 0 -1 -1

χ5 20 0 4 0 1 -1 0 0 -1 1 0 0 -1 1

χ6 25 0 5 1 -1 -1 0 0 0 0 0 0 0 0

χ7 10 0 2 0 -1 1 0 0 -A A 0 0 -A∗ A∗

χ8 10 0 2 0 -1 1 0 0 -A∗ A∗ 0 0 -A A

χ9 30 0 6 0 0 0 0 0 1 -1 0 0 1 -1

10.6. Fischer-Clifford Matrices of G

Having computed the projective character table of H2, Table 10.3, we get the α-regular conjugacy

classes. These together with the fusions of 52:2.A5 into L(3, 5) in Table 10.2 help us to compute

the sizes of the Fischer-Clifford matrices of G. We use these the projective characters, the fusions,

the centralizer orders of G and properties of Fisher-Clifford matrices discussed in section 5.12.1, to

compute Table 10.4 of Fischer - Clifford matrices.

To compute the character table of 53.L(3, 5), as an example consider the following. Let C1(5A) and

C2(5A) be the partial character tables of the inertia factors for the classes that fuse to 5A ∈ L(3, 5).

The the portions of the character table of G = 53.L(3, 5) corresponding to the coset 5A are :
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Table 10.4: The Fischer-Clifford matrices of 53.L(3, 5)

M(1A) =

[
1 1

124 −1

]
M(2A) =

[
1 1

4 −1

]

M(3A) =

[
1 1

−4 1

]
M(4C) =

[
1 1

4 −1

]

M(5A) =


1 1 1

10 −5A∗ −5A

10 −5A −5A∗

 M(10A) =


1 1 1

2 −A −A∗

2 −A∗ −A


M(6A) =

[
1 1

−4 1

]
All Others =

[
1
]

C1(5A)M1(5A) =



1

5

6

6

6

−4

−4

−4

−4

−4

−4

−4

−4

−4

−4

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

5

5

5

11



[1 1 1] =



1 1 1

5 5 5

6 6 6

6 6 6

6 6 6

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−4 −4 −4

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

−1 −1 −1

0 0 0

5 5 5

5 5 5

5 5 5

11 11 11



C2(5A)M2(5A) =



1 1

A A∗

A∗ A

−1 −1

0 0

−A −A∗

−A∗ −A
−1 −1

1 1



[
10 −5A∗ −5A

10 −5A −5A∗

]
=



20 −5 −5

10 10 −15

10 −15 10

−20 5 5

0 0 0

−10 −10 15

−10 15 −10

−20 5 5

20 −5 −5



The fusion of G to Ly together with the restriction of characters of Ly to G forces the signs of the

Fischer-Clifford matrices and the orders of the elements of the conjugacy classes of G.
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10.7. PowerMaps of G

We then give the power maps of elements of 53.L(3, 5) in Table 10.5.

Table 10.5: The Power Maps of elements of 53.L(3, 5)

[g]L(3,5) [x]53.L(3,5) 2 3 5 31 [g]L(3,5) [x]53.L(3,5) 2 3 5 31

1A 1A 1A 1A 1A 1A 2A 2A 1A 2A 2A 2A

5A 5A 5A 1A 5A 10A 5A 10A 2A 10A

3A 3A 3A 1A 3A 3A 4A 4A 2A 4A 4A 4A

15A 15A 5A 1A 15A 4B 4B 2A 4A 4A 4A

4C 4C 2A 4C 4C 4C

5A 5B 5B 5B 1A 5B 5B 25A 25A 25A 5A 25A

5C 5C 5C 1A 5C

5D 5D 5D 1A 5D

6A 6A 3A 2A 6A 6A 10A 10B 5A 10B 2A 10B

30A 15A 5A 6A 30A 10C 5A 10C 2A 10C

10D 5A 10D 2A 10D

8A 8A 4A 8A 8A 8A 8B 8B 4B 8B 8B 8B

12A 12A 6A 4A 12A 12A 12B 12B 6A 4B 12B 12B

20A 20A 10A 20A 4A 20A 20B 20B 10A 20B 4B 20B

24A 24A 12A 8A 24A 24A 24B 24B 12B 8B 24B 24B

24C 24C 12A 8A 24C 24C 24D 24D 12B 8B 24D 24D

31A 31A 31A 31A 31A 1A 31B 31B 31B 31B 31B 1A

31C 31C 31C 31C 31C 1A 31D 31D 31D 31D 31D 1A

31E 31E 31E 31E 31EA 1A 31F 31B 31F 31F 31F 1A

31G 31G 31G 31G 31G 1A 31H 31H 31H 31H 31H 1A

31I 31I 31I 31I 31I 1A 31J 31J 31J 31J 31J 1A

The character table of 53.L(3, 5) is given in Table 10.6.
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10.8. Character Table of G

Table 10.6: The character table of 53.L(3, 5)
1A 2A 3A 4A 4B 4C 5A 5B

1a 5a 2a 10a 3a 15a 4a 4b 4c 20a 5b 5c 5d 25a

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 30 30 6 6 0 0 6 6 2 2 5 5 5 0

χ3 31 31 7 7 1 1 -5 -5 -1 -1 6 6 6 1

χ4 31 31 -5 -5 1 1 A /A 1 1 6 6 6 1

χ5 31 31 -5 -5 1 1 /A A 1 1 6 6 6 1

χ6 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ7 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ8 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ9 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ10 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ11 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ12 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ13 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ14 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ15 96 96 0 0 0 0 0 0 0 0 -4 -4 -4 1

χ16 124 124 4 4 1 1 4 4 0 0 -1 -1 -1 -1

χ17 124 124 4 4 1 1 4 4 0 0 -1 -1 -1 -1

χ18 124 124 4 4 1 1 -4 -4 0 0 -1 -1 -1 -1

χ19 124 124 4 4 1 1 -4 -4 0 0 -1 -1 -1 -1

χ20 124 124 -4 -4 -2 -2 B -B 0 0 -1 -1 -1 -1

χ21 124 124 -4 -4 -2 -2 -B B 0 0 -1 -1 -1 -1

χ22 124 124 -4 -4 1 1 -B B 0 0 -1 -1 -1 -1

χ23 124 124 -4 -4 1 1 B -B 0 0 -1 -1 -1 -1

χ24 124 124 -4 -4 1 1 -B B 0 0 -1 -1 -1 -1

χ25 124 124 -4 -4 1 1 B -B 0 0 -1 -1 -1 -1

χ26 125 125 5 5 -1 -1 5 5 1 1 0 0 0 0

χ27 155 155 11 11 -1 -1 -1 -1 -1 -1 5 5 5 0

χ28 155 155 -1 -1 -1 -1 C /C 1 1 5 5 5 0

χ29 155 155 -1 -1 -1 -1 /C C 1 1 5 5 5 0

χ30 186 186 -6 -6 0 0 6 6 -2 -2 11 11 11 1

χ31 620 -5 4 -1 -4 1 0 0 -4 1 20 -5 -5 0

χ32 1860 -15 12 -3 0 0 0 0 4 -1 10 10 -15 0

χ33 1860 -15 12 -3 0 0 0 0 4 -1 10 -15 10 0

χ34 2480 -20 16 -4 -4 1 0 0 0 0 -20 5 5 0

χ35 3100 -25 20 -5 4 -1 0 0 -4 1 0 0 0 0

χ36 1240 -10 -8 2 4 -1 0 0 0 0 -10 -10 15 0

χ37 1240 -10 -8 2 4 -1 0 0 0 0 -10 15 -10 0

χ38 2480 -20 -16 4 -4 1 0 0 0 0 -20 5 5 0

χ39 3720 -30 -24 6 0 0 0 0 0 0 20 -5 -5 0
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The character table of 53L(3, 5)(continued)

6A 8A 8B 10A 12A 12B 20B 20C 24A 24B 24C 24D

6a 30a 8a 8b 10b 10c 10d 12a 12b 20b 20c 24a 24b 24c 24d

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0

χ3 1 1 -1 -1 2 2 2 1 1 0 0 -1 -1 -1 -1

χ4 1 1 D -D 0 0 0 -1 -1 F /F D -D D -D

χ5 1 1 -D D 0 0 0 -1 -1 /F F -D D -D D

χ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

χ16 1 1 2 2 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1

χ17 1 1 -2 -2 -1 -1 -1 1 1 -1 -1 1 1 1 1

χ18 1 1 E -E -1 -1 -1 -1 -1 1 1 -D D -D D

χ19 1 1 -E E -1 -1 -1 -1 -1 1 1 D -D D -D

χ20 2 2 0 0 1 1 1 -E E -D D 0 0 0 0

χ21 2 2 0 0 1 1 1 E -E D -D 0 0 0 0

χ22 -1 -1 0 0 1 1 1 -D D D -D G /G -G -/G

χ23 -1 -1 0 0 1 1 1 D -D -D D /G G -/G -G

χ24 -1 -1 0 0 1 1 1 -D D D -D -G -/G G /G

χ25 -1 -1 0 0 1 1 1 D -D -D D -/G -G /G G

χ26 -1 -1 -1 -1 0 0 0 -1 -1 0 0 -1 -1 -1 -1

χ27 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1

χ28 -1 -1 -D D -1 -1 -1 1 1 D -D -D D -D D

χ29 -1 -1 D -D -1 -1 -1 1 1 -D D D -D D -D

χ30 0 0 0 0 -1 -1 -1 0 0 1 1 0 0 0 0

χ31 4 -1 0 0 4 -1 -1 0 0 0 0 0 0 0 0

χ32 0 0 0 0 2 -3 2 0 0 0 0 0 0 0 0

χ33 0 0 0 0 2 2 -3 0 0 0 0 0 0 0 0

χ34 4 -1 0 0 -4 1 1 0 0 0 0 0 0 0 0

χ35 -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0

χ36 4 -1 0 0 2 -3 2 0 0 0 0 0 0 0 0

χ37 4 -1 0 0 2 2 -3 0 0 0 0 0 0 0 0

χ38 -4 1 0 0 4 -1 -1 0 0 0 0 0 0 0 0

χ39 0 0 0 0 -4 1 1 0 0 0 0 0 0 0 0
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The character table of 53.L(3, 5)(continued)

31A 31B 31C 31D 31E 31F 31G 31H 31I 31J

31a 31b 31c 31d 31e 31f 31g 31h 31i 31j

χ1 1 1 1 1 1 1 1 1 1 1

χ2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

χ3 0 0 0 0 0 0 0 0 0 0

χ4 0 0 0 0 0 0 0 0 0 0

χ5 0 0 0 0 0 0 0 0 0 0

χ6 H /H L /L K /K J /J I /I

χ7 /H H /L L K /L /K /K /I I

χ8 I /I H /H L /L K /K J /J

χ9 /I I /H H /L L /K K /J J

χ10 J /J I /I H /H L /L K /K

χ11 /J J /I I /H H /L L /K K

χ12 K /K J /J I /I H /H /L L

χ13 /K K /J J /I I /H H /L L

χ14 L /L K /K J /J I /I H /H

χ15 /L L /K K /J J /I I /H H

χ16 0 0 0 0 0 0 0 0 0 0

χ17 0 0 0 0 0 0 0 0 0 0

χ18 0 0 0 0 0 0 0 0 0 0

χ19 0 0 0 0 0 0 0 0 0 0

χ20 0 0 0 0 0 0 0 0 0 0

χ21 0 0 0 0 0 0 0 0 0 0

χ22 0 0 0 0 0 0 0 0 0 0

χ23 0 0 0 0 0 0 0 0 0 0

χ24 0 0 0 0 0 0 0 0 0 0

χ25 0 0 0 0 0 0 0 0 0 0

χ26 1 1 1 1 1 1 1 1 1 1

χ27 0 0 0 0 0 0 0 0 0 0

χ28 0 0 0 0 0 0 0 0 0 0

χ29 0 0 0 0 0 0 0 0 0 0

χ30 0 0 0 0 0 0 0 0 0 0

χ31 0 0 0 0 0 0 0 0 0 0

χ32 0 0 0 0 0 0 0 0 0 0

χ33 0 0 0 0 0 0 0 0 0 0

χ34 0 0 0 0 0 0 0 0 0 0

χ35 0 0 0 0 0 0 0 0 0 0

χ36 0 0 0 0 0 0 0 0 0 0

χ37 0 0 0 0 0 0 0 0 0 0

χ38 0 0 0 0 0 0 0 0 0 0

χ39 0 0 0 0 0 0 0 0 0 0

A = -1+6*E(4) = -1+6*ER(-1) = -1+6i

B = 4*E(4) = 4*ER(-1) = 4i

C = -5+6*E(4) = -5+6*ER(-1) = -5+6i

D = E(4) = ER(-1) = i

E = 2*E(4) = 2*ER(-1) = 2i

F = -1+E(4) = -1+ER(-1) = -1+i

G = −E(24)11 + E(24)19

H = E(31) + E(31)5 + E(31)25

I = E(31)3 + E(31)13 + E(31)15

J = E(31)8 + E(31)9 + E(31)14

K = E(31)11 + E(31)24 + E(31)27

L = E(31)2 + E(31)10 + E(31)19
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Programmes

Programme A

V:=FullRowSpace(GF (q), n);

gr[1]:=(OneGF(q))*[n× n matrix group generators];

gr[2]:=(OneGF(q))*[n× n matrix group generators];

...

gr[k]:=(OneGF(q))*[n× n matrix group generators];

grp:=Group(gr[1], gr[2], · · · , gr[k]);

Ccl:=ConjugacyClasses(grp);

O:=Union(Orbits(grp,V));

for i in [1..n(Ccl)] do

Print(Representative(Ccl)[i]);

w:=One(GF(q))*[0, 0, · · · , 0];

e:=[ ];

while Difference(O,e) <> [ ] do

d:=[ ];

for x in O do;

y:=[x+w+(x*(Representative(Ccl)[i]))];

d:=Union(d,y);

od;

Print(d);

e:=Union(d,e);

if Difference(O,e) <> [ ] then

w:=Representative(Difference(O,e));

fi;

od;

r:=[ ];

u:=One(GF(q))*[0, 0, · · · , 0];

while Difference(O,e) <> [ ] do

m:=[ ];

for g in Centralizer(grp,Representative(Ccl)[i]) do

l:=[u*g];

m:=Union(m,l);

od;

Print(”A block for the vectors under the action of a centralizer”);

Print(m);

r:=Union(m,r);
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if Difference(O,r) <> [ ] then

u:=Representative(Difference(O,r));

fi;

od;

Print(”**********************************”);

od;

Programme B

V:=FullRowSpace(GF (q), n);

m[1]:=(OneGF(q))*[n× n matrix group generators];

m[2]:=(OneGF(q))*[n× n matrix group generators];

...

m[k]:=(OneGF(q))*[n× n matrix group generators];

m:=Group(m[1],m[2], · · · ,m[k]);

c:=ConjugacyClasses(m);

g:=Representative(c[i]);

d:=One(GF(q))*[α1, α2, · · · , αn];

w:=d+ d ∗ g + d ∗ g2 + · · ·+ d ∗ gm−1;

Print(w);

PROGRAMME C

gap>V:=FullRowSpace(GF (q), n);

gap>m[1]:=(OneGF(2))*[n× n matrix group generators];

gap>m[2]:=(OneGF(2))*[n× n matrix group generators];

...

m[k]:=(OneGF(q))*[n× n matrix group generators];

gap>m:=Group(m[1],m[2], · · · ,m[k]);

gap>k:=OrbitLengths(m,V);

gap>l:= OrbitLengths(Group(List(m,TransposedMat)),N);

PROGRAMME D

gap>g:=Group(Main Group);

gap>T1:=CharacterTable(g);

gap>h:=Group(Inertia Group 1);

gap>T2:=CharacterTable(h);

gap>k:=Group(Inertia Group 2);

gap>T3:=CharacterTable(k);

gap>FusionConjugacyClasses(h,g);

gap>FusionConjugacyClasses(k,g);

PROGRAMME E

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[n Centralizer Orders];

>ct.OrdersClassRepresentatives:=[n Class Representatives Orders];

>ct.Irr:=[[n× n irreducibles]];

>ct.UnderlyingCharacteristic:=0;ct.Id:=G;

>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();

gap>SetInfoLevel(InfoCharacterTable,2);

gap>IsInternallyConsistent(ct);
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gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).

PROGRAMME F

gap>ct:=CharacterTable(G);

gap>SetInfoLevel(InfoCharacterTable,2);

gap>ct;

gap>cut:=Irr(ct){[i..j]};;
gap> k := k1 ∗ cut[i1] + k2 ∗ cut[i2] + ...+ kr ∗ cut[ir];

Programme G

work := [ ];;

output := [ ];;

work[1] := a;;

work[2] := b;;

work[3] := work[1] * work[2];;

work[4] := work[3] * work[2];;

work[5] := work[3] * work[4];;

work[6] := work[3] * work[5];;

work[7] := work[6] * work[3];;

work[8] := work[7] * work[4];;

work[9] := work[3] * work[8];;

work[2] := work[1] * work[9];;

work[4] := work[3] * work[3];;

work[5] := work[3] * work[4];;

work[4] := work[5]−1;;

work[3] := work[4] * work[2];;

work[2] := work[3] * work[5];;

work[6] := work[7] * work[7];;

work[5] := work[7] * work[6];;

work[4] := work[6] * work[5];;

work[3] := work[4]−1;;

work[5] := work[3] * work[1];;

work[1] := work[5] * work[4];;

output[1] := work[1];;

output[2] := work[2];;
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Programme H

work := [ ];;

output := [ ];;

work[1] := c;;

work[2] := d;;

work[3]:= work[1] * work[2];;

work[4] := work[3] * work[2];;

work[5] := work[4] * work[3];;

work[6] := work[2] * work[2];;

work[7] := work[4] * work[6];;

work[4] := work[5] * work[7];;

work[6] := work[2] * work[5];;

work[5] := work[6] * work[3];;

work[2] := work[5]−1;;

work[3] := work[2] * work[4];;

work[2] := work[3] * work[5];;

output[1] := work[1];;

output[2] := work[2];;

Programme I

work := [ ];;

output := [ ];;

work[1] := a;;

work[2] := b;;

work[3] := work[1] * work[2];;

work[4] := work[3] * work[2];;

work[5] := work[3] * work[4];;

work[6] := work[3] * work[5];;

work[7] := work[6] * work[3];;

work[5] := work[3]−1;;

work[9] := work[5] * work[1];;

work[1] := work[9] * work[3];;

work[2] := work[7]3;;

work[6] := work[4]12;;

work[5] := work[6]−1;;

work[3] := work[5]* work[2];;
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work[2] := work[3] * work[6];;

output[1] := work[1];;

output[2] := work[2];;

G := Group(output[1],output[2]);

Programme J

> G:=SL(2,5);

> M:=GModule(G);

> X:=CohomologyModule(G,M);

> E:=SplitExtension(X);

> Eperm:=DegreeReduction(CosetImage(E,sub<E|>));

> pMultiplicator(Eperm,2);

[ 1 ]

> pMultiplicator(Eperm,3);

[ 1 ]

> pMultiplicator(Eperm,5);

[ 5 ]

> exit;

Programme J′

gap> gg:=PerfectGroup(3000,1);

A5 2^1 5^2

gap> AbelianInvariantsMultiplier(gg);

[ 5 ]
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Character Tables of S2 and S3

Table 1

2 8 8 5 7 7 3 3 6 6 5 4 4 2 2 6 6 4 4 . 1 1

3 2 1 1 . 1 2 1 . . . . . 1 1 1 . . . . 1 2

5 1 . . . . . . . . . . . . . . . . . 1 . .

1a 2a 4a 2b 2c 3a 6a 4b 2d 4c 4d 8a 6b 12a 2e 4e 4f 8b 5a 6c 3b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1

X.3 5 5 3 3 3 2 2 1 1 1 1 1 . . -1 -1 -1 -1 . -1 -1

X.4 5 5 -3 -3 -3 2 2 1 1 1 -1 -1 . . 1 1 -1 -1 . 1 -1

X.5 5 5 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 3 3 -1 -1 . . 2

X.6 5 5 1 1 1 -1 -1 1 1 1 -1 -1 1 1 -3 -3 -1 -1 . . 2

X.7 9 9 -3 -3 -3 . . 1 1 1 1 1 . . -3 -3 1 1 -1 . .

X.8 9 9 3 3 3 . . 1 1 1 -1 -1 . . 3 3 1 1 -1 . .

X.9 10 10 -2 -2 -2 1 1 -2 -2 -2 . . 1 1 2 2 . . . -1 1

X.10 10 10 2 2 2 1 1 -2 -2 -2 . . -1 -1 -2 -2 . . . 1 1

X.11 15 -1 -1 3 -5 3 -1 3 -1 -1 -1 1 1 -1 3 -1 -1 1 . . .

X.12 15 -1 1 1 -7 3 -1 -1 3 -1 -1 1 -1 1 -3 1 1 -1 . . .

X.13 15 -1 1 -3 5 3 -1 3 -1 -1 1 -1 -1 1 -3 1 -1 1 . . .

X.14 15 -1 -1 -1 7 3 -1 -1 3 -1 1 -1 1 -1 3 -1 1 -1 . . .

X.15 16 16 . . . -2 -2 . . . . . . . . . . . 1 . -2

X.16 30 -2 -2 2 2 -3 1 2 2 -2 . . -1 1 6 -2 . . . . .

X.17 30 -2 2 -2 -2 -3 1 2 2 -2 . . 1 -1 -6 2 . . . . .

X.18 45 -3 -3 1 9 . . -3 1 1 -1 1 . . -3 1 -1 1 . . .

X.19 45 -3 3 -1 -9 . . -3 1 1 1 -1 . . 3 -1 -1 1 . . .

X.20 45 -3 -3 5 -3 . . 1 -3 1 1 -1 . . -3 1 1 -1 . . .

X.21 45 -3 3 -5 3 . . 1 -3 1 -1 1 . . 3 -1 1 -1 . . .
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Table 2

2 8 8 7 7 3 3 3 3 5 6 6 6 6 5 4 4 4 4 1 1 1 1

3 2 1 1 2 2 1 1 2 . . . . . . . . . . . . . .

5 1 . 1 . . . . . . . . . . . . . . . 1 1 1 1

1a 2a 2b 2c 3a 6a 6b 6c 4a 4b 2d 4c 2e 4d 8a 4e 8b 4f 5a 10a 5b 10b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1

X.3 5 5 5 5 2 2 2 2 1 1 1 1 1 1 -1 -1 -1 -1 . . . .

X.4 5 5 5 5 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 . . . .

X.5 5 5 -5 -5 2 2 -2 -2 -1 -1 -1 1 1 1 1 1 -1 -1 . . . .

X.6 5 5 -5 -5 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 . . . .

X.7 8 8-8 -8 -1 -1 1 1 . . . . . . . . . . A -A*A -*A

X.8 8 8 -8 -8 -1 -1 1 1 . . . . . . . . . . *A -*A A -A

X.9 8 8 8 8 -1 -1 -1 -1 . . . . . . . . . . A A*A *A

X.10 8 8 8 8 -1 -1 -1 -1 . . . . . . . . . . *A*A A A

X.11 9 9 9 9 . . . . 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

X.12 9 9 -9 -9 . . . . -1 -1 -1 1 1 1 -1 -1 1 1 -1 1 -1 1

X.13 10 10 10 10 1 1 1 1 -2 -2 -2 -2 -2 -2 . . . . . . ..

X.14 10 10 -10 -10 1 1 -1 -1 2 2 2 -2 -2 -2 . . . . . . . .

X.15 15 -1 -5 3 3 -1 1 -3 -1 -1 3 3 -1 -1 1 -1 1 -1 . . . .

X.16 15 -1 -5 3 3 -1 1 -3 -1 3 -1 -1 3 -1 -1 1 -1 1 . . . .

X.17 15 -1 5 -3 3 -1 -1 3 1 -3 1 -1 3 -1 1 -1 -1 1 . . ..

X.18 15 -1 5 -3 3 -1 -1 3 1 1 -3 3 -1 -1 -1 1 1 -1 . . . .

X.19 30 -2 -10 6 -3 1 -1 3 -2 2 2 2 2 -2 . . . . . . . .

X.20 30 -2 10 -6 -3 1 1 -3 2 -2 -2 2 2 -2 . . . . . . . .

X.21 45 -3 -15 9 . . . . 1 -3 1 1 -3 1 -1 1 -1 1 . . . .

X.22 45 -3 -15 9 . . . . 1 1 -3 -3 1 1 1 -1 1 -1 . . . .

X.23 45 -3 15 -9 . . . . -1 -1 3 -3 1 1 -1 1 1 -1 . . . .

X.24 45 -3 15 -9 . . . . -1 3 -1 1 -3 1 1 -1 -1 1 . . . .

2 1 1

3 2 2

5 . .

6d 3b

X.1 1 1

X.2 -1 1

X.3 -1 -1

X.4 2 2

X.5 1 -1

X.6 -2 2
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X.7 1 -1

X.8 1 -1

X.9 -1 -1

X.10 -1 -1

X.11 . .

X.12 . .

X.13 1 1

X.14 -1 1

X.15 . .

X.16 . .

X.17 . .

X.18 . .

X.19 . .

X.20 . .

X.21 . .

X.22 . .

X.23 . .

X.24 . .

A = -E(5)-E(5)^4

= (1-ER(5))/2 = -b5

***********************************
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