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Abstract

The character table of any finite group provides a considerable amount of information about a
group and the use of character tables is of great importance in Mathematics and Physical Sciences.
Most of the maximal subgroups of finite simple groups and their automorphisms are extensions
of elementary abelian groups. Various techniques have been used to compute character tables,
however Bernd Fischer came up with the most powerful and informative technique of calculating
character tables of group extensions. This method is known as the Fischer-Clifford Theory and uses
Fischer-Clifford matrices, as one of the tools, to compute character tables. This is derived from
the Clifford theory. Here G is an extension of a group N by a finite group G, that is G = N.G.
We then construct a non-singular matrix for each conjugacy class of G/N = G. These matrices,
together with partial character tables of certain subgroups of G, known as the inertia groups, are

used to compute the full character table of G.

In this dissertation, we discuss Fischer-Clifford theory and apply it to both split and non-split
extensions. We first, under the guidance of Dr Mpono, studied the group 27:Sg as a maximal
subgroup of 27:SP(6,2), to familiarize ourselves to Fischer-Clifford theory. We then looked at
26: Ag and 28:07 (2) as maximal subgroups of 28:07 (2) and O7(2) respectively and these were both
split extensions. Split extensions have also been discussed quite extensively, for various groups, by
different researchers in the past. We then turned our attention to non-split extensions. We started
with 24 Sg and 2% Sg which were maximal subgroups of HS and HS:2 respectively. Except for some
negative signs in the first column of the Fischer-Clifford matrices we used the Fisher-Clifford theory
as it is. The Fischer-Clifford theory, is also applied to 5% L(3,5), which is a maximal subgroup of
the Lyon’s group Ly. To be able to use the Fisher-Clifford theory we had to consider projective
representations and characters of inertia factor groups. This is not a simple method and quite some
smart computations were needed but we were able to determine the character table of 53 L(3,5).

All character tables computed in this dissertation will be sent to GAP for incorporation.
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Notation and conventions

Throughout this thesis all groups will be assumed to be finite, unless otherwise stated. We will use
the notation and terminology from the ATLAS [23] and ATLAS V3 [124].

N natural numbers
7 integers

Q rational numbers
R real numbers

C complex numbers

G, N, H, K groups
la the identity element of G
HLG H is a subgroup of G

H is isomorphic to G

F a field

F* F— {0}

(x,y) the subgroup generated by z and y

N.G an extension of N by G

N:G a split extension of N by G

NG a non-split extension of N by G

h9 conjugation of h by ¢

nX a general conjugacy class of G with representatives of order n
g1 ~ g2 g1 is conjugate to g

o(g) order of g € G




Ca(9) the centralizer of g in G

9] a conjugacy class of G with representative g
Na(H) the normalizer of a subgroup H in G

Hg the right coset of H in G

gH the left coset of H in GG

X, Y, Q sets

|9 the cardinality of the set €2

122637 ... cycle structure of a permutation

Irr(G) the set of ordinary irreducible characters of G
Ia the identity character of G

x(G|H) the permutation character of G on H

XH the restriction of the character y of G to the subgroup H
A the induction of the character ¢ of subgroup H to G

na, nb, ... irreducible characters of G of degree n

(Xi> Xj) the inner product of the characters x; and x;

dim(V') the dimension of a vector space V

A, the alternating group on n symbols

Sn the symmetric group on n symbols

GF(q) the Galois field of g elements

V(n,q) a vector space of dimension n over GF'(q)

Span(q) symplectic group of dimension 2n over GF(q)

03 (q) the orthogonal group consistent with the form f* on V = V(2n,q)
invariant

O (2) the simple orthogonal group of dimension 8 over GF'(2),
03 (2)] =22 x 35 x 52 x 7

071,(2) the simple orthogonal group of dimension 10 over GF'(2),
1075(2)] =220 x 3> x 52 x 7 x 17 x 31

L(n,q) the projective special linear group (PSL(n,q)) on V = V(n,q)

L(3,5) the projective special linear group of dimension 3 over GF(5),
L(3,5) = 2° x 3 x 5% x 31

HS the Higman-Sims group

Ly the Lyons group

an elementary abelian group of order p"

vi
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1

Introduction

The classification of finite simple groups theorem states that every finite simple group is isomorphic

to exactly one of the following :

cyclic groups of prime order,

alternating groups A,,, where n > 5,

groups of Lie type and

the 26 sporadic groups.

Groups of Lie type can also be divided into two types namely the classical groups and exceptional
groups that include twisted groups. Classical groups are the projective special linear groups, the
sympletic groups, the unitary groups and the orthogonal groups. Groups of exceptional type are
groups of the form G, (q), F,.(¢q), En(q) and the Tits group 2F4(2)’. The sporadic groups are the
five Mathieu groups, seven Leech lattice groups, three Fischer groups, five Monster groups and the

six pariahs.

The completion of the classification of all simple groups might have led to some naive thought of
the death of group theory. On the contrary this has led to very serious studies on the classification
of maximal subgroups of simple groups. One way of classifying finite groups was by character
theory. Isaacs provides an extensive study of character theory in [60]. In the classification of
maximal subgroups of simple groups, calculating character tables of these groups, has been one of
the methods used a lot. Quite a large number of maximal subgroups of simple groups are extensions
of elementary abelian groups. In this dissertation all groups studied are extensions of elementary
abelian groups. In the past most of these character tables were calculated using methods that did
not provide a lot of insight about the structure of the group concerned. In this dissertation we
use the Fischer-Clifford theory, for computing character tables, which is a method used by Bernd
Fischer. In this dissertation we apply the Fischer-Clifford method to both split and, with some

amendments if needed, to non-split extensions. We follow from Ali [1] also Ali and Moori [2] who



CHAPTER 1. INTRODUCTION

not only applied it to split extensions but also to non-split extensions. This follows on the tracks of
a large number of researchers who applied this method to split extensions. For further reading, on
Fischer-Clfford theory, one can go to Ali and Moori [3]|, Almestady [4], Darafsheh and Iranmanesh
([26], [27]), Fischer ([34], [36], [37]), List [75], List and Mohammed [76], Moori and Mpono ([90],
[91], [92]), Mpono [99], Pahlings [103], Saleh [112], Schiffer [113] and Whitely [120].

In Chapter 2 we give some preliminary results on group extensions and group characters which will
be used in later chapters. In section 2.2 we define group extensions and discuss some basic results.
In section 2.3 we discuss the conjugacy classes of group extensions. We briefly discuss the technique
of coset analysis for computing conjugacy classes of a group extension G of N by G where N is an
elementary abelian normal subgroup of G. The technique of coset analysis was developed by Moori
[81] which he also used in [82] and this has been widely used for computing conjugacy classes of
group extensions. Analogous to the programmes developed in MAGMA by Ali [1] and in Cayley
by Mpono [99] we developed Programmes A and B in GAP [41] which we used to compute the
conjugacy classes of the groups 27:Sg, 20:A4g and 28:O§ (2) that we studied in this dissertation in
Chapters 6, 7 and 8 respectively. In section 2.4 we studied preliminary results on representation
and characters which is used in later chapters. In section 2.5 we look at induced characters, section
2.6 deals with permutation characters and in section 2.7 we develop Programme C in GAP [41]
that we use to compute orbit lengths of orbits of conjugacy classes and irreducible characters. For
further reading on group extensions, representations and character of groups readers can also look
at the following [5], [7], [10], [11], [14], [20], [21], [30], [48], [56], [60], [61], [62], [63], [71], [74], [100],
[105], [110], [116] and [117].

In Chapter 3 we discuss projective representations and projective characters. The first step in
obtaining the projective representations of a group G is to compute its Schur multiplier. In section
3.2 we discuss the Schur multiplier of a group and methods of computing the Schur multiplier. In
section 3.3 we discuss the projective representations of G. We prove that for a projective represen-
tation P with factor set « of degree n, then o([a]) | n. We show how a projective representation of
G can be obtained from an ordinary representation of a ”representation group” of G. We also look
at three different methods of constructing a projective representation of a group G. We then study
the projective characters of G in section 3.4. For further reading on projective representations and
projective characters one can read [11], [47], [51], [55], [58], [60], [95], [96], [97], [98], [100], [107],
[108] and [109].

In Chapter 4 we study the Clifford theory for ordinary and projective representations of a group
G = N.G, where N < G. Here we discuss how the groups N and G are related to G and the
consequences thereof. In section 4.2 we study Clifford Theory and normal subgroups. In section
4.3 we discuss Clifford Theory and projective representations. In Section 4.4 we look at group
action and how to use GAP in our computations where the dimension of N is not the same as the
permutation degree of (G. Last in Section 4.5 we look at irreducible constituents and conjugacy

classes. This is all required for the construction of Fischer-Clifford matrices which we discuss
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in Chapter 5. For further reading on Clifford Theory, one can go to [11], [40], [58], [60], [66],
[67] and [100].

Chapter 5 is devoted to one of the most important tools used in this dissertation namely the
Fischer-Clifford matrices. If G = N.G is an extension of N by G where N, which is normal in
G, is an elementary abelian group. We compute a non-singular matrix for each conjugacy class of
G/N = G. Then we use these matrices, fusion maps and the partial character tables of inertia factor
subgroups to compute the full character table of G. In this dissertation we apply this technique
to both split and non-split extensions. This technique has been used mostly in split extensions by
Almestady [4], Darafsheh and Iranmanesh ([26], [27]), Fischer ([34], [35], [36]), [37], List [75], List
and Mohammed [76], Moori and Mpono ([90], [91], [92]), Mpono [99], Pahlings [103], Saleh [112],
Schiffer [113] and Whitely [120]. With, the necessary adjustments, Ali [1] used this method for

both split and non-split extensions. Ali and Moori [2, 3] also used it for non-split extensions.

In Chapter 6 we look at the group 27:Sg as a maximal subgroup of 27:SP(6,2) which in turn is
a maximal subgroup of Fisy, the full automorphism group of the smallest Fischer sporadic simple
group Flige. In section 6.1 we compute the generators of Sp(6,2) which we use in section 6.2 to
compute the generators of Sg. In section 6.3 we compute and discuss the conjugacy classes of 27:Sg
and then in section 6.5 we look at the power maps of 27:Sg which we use in computing the fusion
of 27:Sg into 27:SP(6,2). We conclude this chapter by determining the character table of 27:Sg.

Chapter 7 is based on a group of the form 2%:Ag as an inertia factor group of 28:O§ (2). Here we
use two methods to compute Ag with 6 x 6 matrix generators. In section 7.2 we use combinotorics
to compute these generators. In section 7.3 we use GAP to compute the generators of Ag inside
Og (2). In section 7.4 we compute and discuss the conjugacy classes of 26:4g. In 7.5 we compute and
discuss the Fischer-Clifford matrices of 27:Ag. In section 7.6 we finish off the chapter by calculating
the character table of 25:A4g.

Chapter 8 is concerned with a group of the form 2%:0 (2) as a maximal subgroup of Ofy(2). The
group 219716-0F (2) in turn is a maximal subgroup of F; = M, the monster. In section 8.1 we
define the bilinear forms from which we use to define orthogonal forms which are in turn used
to define orthogonal groups in section 8.2. In section 8.3 we look at the action of Og (2) on the
elementary abelian group 2%. We then compute the inertia factor groups of 28:0;(2) and their
fusion into Og (2) in section 8.4.1. In section 8.4.2 we compute the Fischer-Clifford matrices while

section 8.4.3 deals the power maps and the character table of 25:05 (2).

Chapter 9 is focused on groups of the form 2% Ss and 25 Sg which are both non-split extensions,
with 24 Sg and 2°°Sg maximal subgroups of the Higman-Sims H .S, and its full automorphism group
H S:2 respectively. In order to be able to use the Fischer-Clifford theory on these extensions, we use
the methods that are used by Ali [1]. In section 9.2 we discuss the Higman Sims group in relation
to the Conway groups. We use the ATILAS V3 to construct HS in section 9.1.2. In section 9.1.3
again using programmes from the ATLAS V3 we construct the subgroups 2% Sg and 25 Sg of HS
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and HS:2 respectively. In the group 2% Sg we constructed, we found that there were three distinct
groups of order 11 520. One of them was 2% Sg, the second was the split extension 24:S5 and the
third we determined as 2°:Ag. In section 9.2.1, inside HS:2, we constructed 2% Sg isomorphic to
the one which was a maximal subgroup of HS. We then used the GAP method used in Chapter
7 to construct the generators of Sg as 4 x 4 matrices. In section 9.2.2 and we let Sg act on 24
and we then computed the conjugacy classes and inertia factor groups of 24'Sg. In section 9.2.3 we
compute the Fischer-Clifford matrices and full character table of 2% Ss. In section 9.3 we look at
the group 2°.Sg, constructed as an automorphism group of 2*'Sg . In section 9.3.1, similar to the
methods in section 9.2.1, we construct the generators of Sg as 5 x 5 generators in GF'(2). In section
9.3.2 we let Sg act on 2° and we then compute the conjugacy classes and inertia factor groups of
25-Sg. We finished off the chapter in section 9.3.3 by computing the Fischer-Clifford matrices and
character table of 25 Sg.

The main focus of Chapter 10 is on a group of the form 5% L(3,5) as a maximal subgroup of the
Lyons group Ly. Again as in Chapter 9, using the ATLAS V3 we construct the group 5% L(3,5)
inside the group Ly. This was done in section 10.2. In section 10.3 we use the methods of Chapter
6, which were used again in Chapter 9, to construct the group L(3,5). In 10.6 we let L(3,5) act on
53 and then we compute the inertia factor groups of 5% L(3,5). To be able to adopt the Fischer-
Clifford method we compute the Schur multiplier and to do this we need the projective character
table of 52:2.A45. In section 10.6 we compute the Fischer matrices, in section 10.7 we deal with the
power maps of 53 L(3,5). The computation of the character table of 53.L(3,5) is done in section
10.8. A programme from GAP, I developed with the help of F. Ali, was used to check the accuracy

and consistency of the character tables computed.




2

Coset Analysis

2.1. Prologue

In this chapter we give preliminary results on group extensions and group characters that will be
required in later chapters. In section 2.2 we present definitions and some basic results on group
extensions. In section 2.3 we discuss the conjugacy classes of elements of group extensions. We
describe the technique of coset analysis for computing the conjugacy classes of group extension G
of N by G where N is an abelian normal subgroup of G. This technique was developed and first
used by Moori in [81, 82| and has since been widely used for computing the conjugacy classes of
group extensions in all cases where it is applicable. For example, it has been used in Ali [1], Mpono
[99], Saleh [112] and Whitely [120]. We also develop two GAP Programmes A and B analogous to
the programmes developed by Mpono [99] for CAYLEY and Ali [1] for MAGMA to compute the
conjugacy classes and the orders of the class representatives for the split extensions G = N:G where
N is an elementary abelian p-group. We use these programmes to compute the conjugacy classes
of the group extensions 27:Ss, 25:Ag and 2%:07 (2) which will be studied in Chapters 6, 7 and 8
respectively. In Section 2.4 we present some theory on representations and characters of groups
by concentrating on those results which would be useful in later chapters. Section 2.5 deals with
the relationship between the characters of a group G and the characters of a subgroup H of G. In
this section we will first study restriction of characters and then go on to study induced characters.
Finally in Section 2.6 we give some results on permutation characters. For further information
and readings on group extensions, group representations and characters readers are encouraged to
consult [5, 7, 10, 11, 14, 56, 60, 61, 62, 63, 71, 74, 100, 105, 110, 116, 117] and many other relevant

sources.

2.2. Group Extensions

Definition 2.2.1. Let N and G be groups. An extension of N by G is a group G that satisfies

the following properties
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(i) N <G,
(ii) G/N = G.

We say that G is a split extension of N by G if G contains subgroups N and G1 with G1 = G
such that

(i) N <G,

(ii) NGi = G,

(i1i)) NNGy ={1a}.
In this case G is also called a semi-direct product of N and G, and identify G and G.

Following ATLAS [23], we denote an arbitrary extension of N by G by N.G. A split extension of
N by G is denoted by N:G and a non-split extension is denoted by N'G.

Definition 2.2.2. The automorphism group of a group G, denoted by Aut(G), is the set of all

automorphisms of G under the binary operation of composition.

For G, a semidirect product of N by G, every element in G can be uniquely expressed in the form

ng, where n € N and g € G and the multiplication of elements of G is given by

(n1g1)(n2g2) = ming'gig2

where n9 = gng~!. Also there is a homomorphism 6§ : G — Aut(N) given by 0(g) = 6,, where
g€ G,0,: N — N is defined by 0,(n) = gng~! and 6, is an automorphism of N. Hence G acts
on N.

Definition 2.2.3. Let G, N and G be as defined above and 0 : G — Aut(N). The semidirect
product G of N by G is said to realize 0 if 0,(n) =n9Vn e N,g€G.

Remark 2.2.4. For G a semidirect product of N by G, then G is isomorphic to a semidirect
product of N by G that realizes 6 for some 0 : G — Aut(N).

If G is a split extension of N by G, then G = NG = Ugea Ng. So G may be regarded as a
right transversal for N in G (that is, a complete set of right coset representatives of N in G).
Now suppose G is any extension of N by G, not necessarily split, then since G/N = G, there is
a homomorphism X : G — G that is onto, with kernel N. For g € G define a lifting of ¢ as an
element g € G such that A\(§g) = g. By choosing a lifting of each element of G, we get the set
{g : g € G} that is a transversal for N in G.

We now show that even for a non-split extension of N by G, if NV is abelian , G acts on V.
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Lemma 2.2.5. ([1, 99, 111, 120]) Let G be an extension of N by G where N is abelian. Then
there is a homomorphism 0 : G — Aut(N) such that 0,(n) = gn(g)~',n € N and 0 is independent
of the choice of liftings {g : g € G}.

PROOF. Let a € G and ~, denote conjugation by a. Since N is a normal subgroup of G, (v,)nv €
Aut(N) and the function y : G — Aut(N) defined by u(a) = (7,)n is @ homomorphism. If a € N,
then since N is abelian we have u(a) = Iy. Thus there is a homomorphism p* : G/N — Aut(N)
which is given by pu*(Na) = p(a). However G = G/N and for any lifting {g : g € G}, the function
¢ : G — G/N defined by ¢(g) = Ng is an isomorphism. If {g; : g € G} is another choice of
liftings, then g g; '€ N for every ¢ € G and thus Ng = Ng;. Therefore the isomorphism ¢ is
independent of the choice of liftings. Let 6 : G — Aut(NN) be the composition p* o ¢. For g € G
and g a lifting of g, then 0(g) = p*(¢(g9)) = p*(Ng) = u(g) € Aut(N) and thus for n € N, we have
0y(n) = p(g)(n) = gn(g)~'. Hence the result. u

Remark 2.2.6. [120] Let G be an extension of N by G where N is abelian and for each g € G let
g be a lifting of g. We identify G with G/N under the isomorphism g — Ng. Thus {g | g € G}
is a right transversal for N in G and thus every x € G has a unique expression of the form z = ng

where n € N and g € G.

2.3. Conjugacy Classes of Group Extensions

In this section we discuss the technique of coset analysis, which was initially introduced by Moori
[81], to determine the conjugacy classes of group extensions but first we state the following two

results.
Theorem 2.3.1. Let G be a finite group

(1) Suppose that Cy and Cy are two conjugacy classes of G such that Cy # [1g| and CT = Csy for

some integer n > 2, where
Cl ={mxg---ap |2, €Cy, 1 <i<n} .

Then there exists some normal subgroup N of G and g € G — N such that Cy is the coset Ng

and the map x — ™ is a bijection from Cq onto Cs.

(ii) If G has a normal subgroup N and g € G — N such that the coset Ng is a single conjugacy
class of G, and such that for some n € Z the map x —— z" for x € Ng is a monomorphism,

then Ng"™ is a conjugacy class of G and (Ng)™ = Ng™.

PROOF. See [12]. |

Proposition 2.3.2. Let G = N.G, g € G a lifting of g € G, C be the centralizer of Ng in G and
C be the complete pre-image in G of C. Then
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(i) the union of the cosets N which are conjugate in G to Ng, is the union of the conjugacy

classes L1, Lo, ..., L, of G,
(ii) C acts on the coset Ng by conjugation,

(iii) C has r orbits in its action on NG and the orbit representatives g1, ga, . . ., are representa-

tives of the conjugacy classes L1, Lo, ..., L, of G,

(iv) the centralizer C(g;) for 1 <i <1 is the stabilizer of g; in C in its action on N.

PROCF. See [16]. u

We now briefly discuss the technique of coset analysis to determine the conjugacy classes of elements
of group extensions G = N.G where N is an abelian normal subgroup of G. For detailed information

about this technique we encourage readers to consult F Ali [1], Moori [81, 82] and Mpono [99].

For each conjugacy class [g] in G with representative g € G, we analyze the coset Ng, where g is a
lifting of g in G and
G=|JNg
geG

To each class representative g € G with lifting § € G, we define
Cg={reCG : z(Ng)=(Ng)z}

Then Cj is the stabilizer of Ng in G under the action by conjugation of G on Ng, and hence Cj is
a subgroup of G.

Remark 2.3.3. It is not difficult to see that IV is a normal subgroup of Cj.

Lemma 2.3.4. [120] C3/N = Cg/n(Ng).

PROOF. Consider Nk, where k € G. Then

Nk € Cgn(Ng) < NE(NG)(Nk)™' = Ng
& NENGNE™' =Ng
& NENgk™' = Ng
& NEkNngk™'=Ng Vne N
& Nkngk™'=Ng,VneN
& kngk e Ng,Vne N
& ke
& Nke(Cy/N.
Thus we obtain that C5/N = Cg/n(N). u
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Remark 2.3.5. Using Remark 2.3.4 and Lemma 2.3.5 we deduce that C; = N.C@/N(Ng). For g
a lifting of g € G in G, we can identify Ce/n(Ng) with Cg(g) and write C5 = N.C(g) in general.
If G = N:G then we can identify Cj with C; = {z € G : z(Ng) = (Ng)z}, where the lifting of g

in G is g itself since G < G in the case of a split extension.

Corollary 2.3.6. If G = N:G, then Cy = N:Ci(g).

PROOF. We have that N is a normal subgroup of Cy. Now we show that Cg(g) < C, and that
NNCg(g) = {1}. Let z € Cg(g). Then we obtain (Ng)* = z(Ng)z~! = 2Ngx~! = Nzgz~! = Ng.
Thus « € C, and hence Cg(g) < C,. Since N N Cg(g9) < NNG = {1g}, then we have that
NN Cq(g) ={1g}. Hence the result. u

The conjugacy classes of G (where N is abelian) will be determined by the action by conjugation
of Cj, for each conjugacy class [g] of G, on the elements of Ng. To act Cj on the elements of Ng,
we first act N and then act {h : h € Cg(g)}, where h is a lifting of h in G. We outline this action

in two steps as follows:

STEP 1: The action of N on Ng: Let Cn(g) be the stabilizer of g in N. Then for any n € N we
have z € Cy(ng) < = € Cn(g). Thus Cn(g) fixes every element of Ng. Now let |Cn(g)| = k.
Then under the action of N, Ng splits into k£ orbits @1, Q2, ..., Qr, where

N
@l =V on@) = 2
forie {1,2,...,k}.

STEP 2: The action of {h | h € C5(g9)} on Ng: Since the elements of Ng are now in the orbits
Q1,Q2,...,Qy from Step 1 above, we need only act {h | h € Cg(g)} on these k orbits. Suppose
that under this action f; of these orbits Q1,Q2, ..., Qs fuse together to form one orbit Aj;, then
the f;’s obtained this way must satisfy
> fi=k
J

and we have ]
|Aj| = f; x e

Thus for x = d;g € Aj;, we obtain that

L 6
llzlal = 18,1 < llolel = £ < e

and thus we obtain that

Cala) = 4L =@ x
el

k[Ca(g)l _ kICa(g)l
e fi

Thus to calculate the conjugacy classes of G = N.G, we need to find the values of k and the f;’s

for each class representative g € G.
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Remark 2.3.7. However in the case of G = N:G a split extension, we analyze the coset Ng instead
of Ng since in this case G < G. Under the action of N on Ng, we always assume that g € Q.
Also instead of acting {h : h € Cg(g)} on the k orbits Q1,Q2, ..., Q) we just act Cg(g) on these
orbits. Since g € @1, then C(g) always fixes Q1 and thus we will always have f; = 1. Hence

k=2 fi=1+2 fn .
J m
where the sum is taken over all m such that g € Q.

We now prove and discuss techniques that are useful in the determination of the orders of the
elements of G = N:G.

Theorem 2.3.8. Let G = N:G and dg € G where d € N and g € G such that o(g) = m and
o(dg) = k. Then m divides k.

PROOF. We have that
15 = (dg)F = dasds*as” ...da9" " g* .

k— k—

' € N. Hence dd9d?* ...d%" " € N. Thus
= 1y and ¢* = 1. Hence m divides k. u

Since G acts on N and d € N, we have d,dg,dgz,...,dg

we must have that dd9d9” ...d9" "

Theorem 2.3.9. Let G = N:G such that N is an elementary abelian p-group, where p is prime.
Let dg € G where d € N and g € G such that o(g) = m and o(dg) = k. Then either k = m or
k =pm.

PROCF. See ([1],[99]). u

Remark 2.3.10. Let G = N:G, where N is an elementary abelian p-group. Let dg € G with
d € N, g € G such that o(g) = m and o(dg) = k, then we observe that

By Theorem 2.3.9 above, we have that if w = 1 then k = m and if w # 15 then k = pm.

We use the method of coset analysis discussed above (outlined in Steps 1 and 2) together with
Theorems 2.3.8 and 2.3.9 and Remark 2.3.10 in developing Programmes A and B in GAP [41]
(analogous to the programmes developed by Ali [1] for MAGMA and Mpono [99] for CAYLEY )
which are applied for the computation of conjugacy classes and the orders of the class representatives
of the extension G = N:G where N is an elementary abelian p-group for prime p on which a linear

group G acts.

10
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PROGRAMME A

V:=FullRowSpace(GF(q),n);
[

1]:=(OneGF(q))*[n x n matrix group generators|;
[2]:=(OneGF(q))*[n x n matrix group generators|;

gr
gr

gr[k]:=(OneGF(q))*[n X n matrix group generatorsl;
grp:=Group(gr(1], gr[2],--- , gr[k]);
Ccl:=ConjugacyClasses(m);
O:=Union(Orbits(grp,V));
for i in [1..n(Ckcl)] do
Print(Representative(Ccl[i]));
w:=0ne(GF(q))*[0,0,---,0];
e=[ ]
while Difference(O,e) <> [ | do
di=[ ]
for x in O do;
y:=[x+w+(x*(Representative(Ccl)[i]))];
d:=Union(d,y);
od;
Print(d);
e:=Union(d,e);
if Difference(O,e) <> [ ] then
w:=Representative(Difference(O,e));
fi;
od;
ri=[ ];
u:=0One(GF(q))*[0,0,- - ,0];
while Difference(O,e) <> [ ] do
m:=[ ;
for g in Centralizer(grp,Representative(Ccl)[i]) do
L=[u*g];
m:=Union(m,l);
od;
Print(” A block for the vectors under the action of a centralizer”);
Print(m);
r:=Union(m,r);
if Difference(O,r) <> [ ] then
u:=Representative(Difference(O,r));
fi;
od;
Print(”**********************************”);

od;
PROGRAMME B

V:=FullRowSpace(GF(q),n);
[

1]:=(OneGF(q))*[n X n matrix group generators|;
[2]:=(0OneGF(q))*[n x n matrix group generators];

m
m

m[k]:=(OneGF(q))*[n X n matrix group generators|;

11
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m:=Group(m[1],m[2], -, m[k]);
c¢:=ConjugacyClasses(m);
g:=Representative(c[i]);
d:=One(GF(q))*[a1, a2, -, an];
wi=d+dxg+dxg?>+ - +dxg™

Print(w);

In Programme B we have o(g) = m and g € S is a class representative, for 1 < j <n,a; € GF(q),
d* g = d? and + signifies the operation in V and dg € G is a class representative from the coset
Ng.

2.4. Representations and Characters

In this section we give some preliminary results on representations and characters of groups which

will be needed in later chapters. For further reading one can go to [1, 99].

Definition 2.4.1. Let G be a group, F a field and GL(n,F) the general linear group which is
the multiplicative group of all nonsingular n X n matrices over F for some integer n. Then a
homomorphism p : G — GL(n,F) is called a representation of G over F or simply an F-
representation. The representation p is said to have degree n. The function x : G — F given by
x(g) = trace(p(g)) is called the F-character of G afforded by the F-representation p. The degree of
X 1s the same as that of p.

Two F-representations p; and py of G are said to be equivalent if there exists P € GL(n,F) such
that p1(g) = Pp2(g)P~! for all g € G. An F-representation p of G is said to be reducible if it is

equivalent to a representation « which is given by

alg) = ( Blg) (9) )
0 4(9)

for all ¢ € G, where (3,7, are F-representations of G. If p is not reducible, then it is said
to be irreducible. Since similar matrices have the same trace, then it follows that equivalent
representations afford the same character. The character afforded by an irreducible representation

is called an irreducible character. Sums and products of characters are themselves characters.

We now give a famous result of Schur [114] which provides an assessable approach to group char-

acters.

Theorem 2.4.2. (Schur’s Lemma) Let p1 : G — GL(n,F) and p2 : G — GL(m,F) be two
irreducible representations of a group G over a field F. Assume that there exists a matriz P such

that Pp1(g) = p2(g)P for all g € G. Then either P is the zero matriz or P is nonsingular so that
pi(g) = P~ 'p2(g)P.

PROOF. See Theorem 1.8 of [89]. u

12
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Corollary 2.4.3. [89] If p: G — GL(n,F) is an irreducible representation of a group G over an
algebraically closed field F, then the only matrices which commute with all matrices p(g), g € G are

scalar matrices aly,, where a € F and I,, is the n X n identity matriz.

PROOF. Let P be an n x n matrix such that Pp(g) = p(g)P for all g € G. Then for any a € F we
have that

(al, — P)-p(g) = p(g)-(al, — P), Vg€ G . (1)

Let m(z) = det(xl, — P) be the characteristic polynomial of P. Since m(z) is a polynomial
over F' and F is algebraically closed, then there exists a; € F such that m(a;) = Op. Hence
det(a1I, — P) = Op and thus a1l, — P is singular. Then from relation (1) above and Schur’s

Lemma, we obtain that a1, — P = 0 and hence a;I, = P. u

Definition 2.4.4. Let G be a group, F a field and ¢ : G — T be a function which is constant on

conjugacy classes of G. Then ¢ is called a class function of G.

From the above definition, we observe that every character is a class function. From now on, we will
consider representations and characters of a finite group G over the complex field C. We shall use
the notation Irr(G) to denote the set of all irreducible characters of the group G. These irreducible
characters are presented in a table, called the character table of G. In this table, the columns
correspond to the conjugacy classes of G and the rows to the irreducible characters, with entry a;;

being the value of the i-th irreducible character on an element of the j-th conjugacy class.

We can show that every class function ¢ of G can be uniquely expressed in the form ¢ = er Irr(G) by X,
where b, € C. Moreover ¢ is a character if and only if all b, € NU {0} and ¢ # 0. We can also
show that the following properties hold:

(i) Two representations of G have the same character if and only if they are equivalent.

(ii) The number of irreducible characters of G is equal to the number of conjugacy classes of

elements of G.
(iii) Any character of G can be written as a sum of irreducible characters.

Definition 2.4.5. Let G be a group, x a character of G and Irr(G) = {x1,Xx2,--.,Xr} Such that
X = Yoi_yniXi, where n; € NU{0}. Then those x; for which n; > 0 are called the irreducible
constituents of x. In general, if Y is a character of G such that x — 1 is a character or is zero,

then v is a constituent of x.

Orthogonality relations for characters are the cornerstone of character theory. Among other appli-
cations, they allow us to express an arbitrary class function in terms of irreducible characters and

to determine instantaneously whether or not any given character is irreducible.

13



CHAPTER 2. COSET ANALYSIS

Theorem 2.4.6. (Generalized Orthogonality Relation) Let G be a group and Irr(G) =
{x1,Xx2s---,Xr}- Then the following holds for every h € G:

(R
szghxg ):5in<1>
pre: xi(lg)

|Gl

PROOF. See Theorem 2.13 of [60]. u

Theorem 2.4.7. Let x be a character of G afforded by a representation p of degree n. Then for
g € G, p(g) is similar to a diagonal matriz diag(e1, 9, ...,e,) where each ; is a complex root of

unity. Then x(g9) = Y_; &; and x(g~*) = x(g), where x(g) is the complex conjugation of x(g).

PROQF. This is the Lemma 2.15 in [60]. u

Definition 2.4.8. Let x and v be class functions of a group G. Then the inner product of x
and 1 is defined by
) = e LS\

geG

The following theorems are derived from the generalized orthogonality relation and are called the

first and second orthogonality relations respectively.

Theorem 2.4.9. [60/(First Orthogonality Relation) Let G be a group and Irr(G) = {x1,X2,---, Xr}-
Then

|G| le X]( )_51]_<XlaX]>
geG

PROOF. Using the generalized orthogonality relation and taking h = 1g, then the result follows

immediately. u

Theorem 2.4.10. [60/(Second Orthogonality Relation) Let G be a group and Irr(G) =
{x1,x2s-- - Xr} and {g1,92,-..,9r} be a set of representatives of the conjugacy classes of elements
of G. Then

> x(g)x(g) = 6:|Cc(9i)]

xE€Irr(G)

PROOF. Let X be the character table of G. Then viewed as a matrix, X is an r X r matrix whose
(4,7)-th entry is given by xi(g;). Let C; be the conjugacy class which contains g; and D be the
diagonal matrix with entries d;;|C;|. Then by the first orthogonality relation, we obtain that

r

G165 = xi(9)xi(9) = > |Celxi(ge)x; (g¢)

geG t=1

Then we obtain a system of r? equations which can be written as a single matrix equation as follows

G|l = XDX ",

14
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where [ is the identity r X r matrix and X~ is the transpose of X. Since X is a nonsingular matrix,
then we obtain that

Gl = DX X
Rewriting the above matrix system as a system of equations yields

G165 =Y [Cilxe(g:) xe(95)

t=1
Hence we obtain that

> xg)x(9) = Ca(9:)16i;

x€lrr(G)

Let G be a group and x be a character of G afforded by a representation p. Then we define

ker(x) = {9 € G| x(9) = x(16)}

It can be shown that ker(x) = ker(p) and hence ker(x) is a normal subgroup of G. If Irr(G) =

{x1,x2y---,Xr}, then every normal subgroup of G is the intersection of some of the ker(x;).
Theorem 2.4.11. Let G be a group and N be a normal subgroup of G. Then
(a) If x is a character of G and N C ker(x), then x is constant on the cosets of N in G and the
function x defined on G/N by xX(Ng) = x(g) is a character of G/N.
(b) If X is a character of G/N, then the function x defined by x(g) = xX(Ng) is a character of G.

(¢) In both (a) and (b) above, x € Irr(G) if and only if x € Irr(G/N).

PROOF. See Theorem 2.2.2. of [120]. n

If N is a normal subgroup of G and p is a representation of G such that N C ker(p), then there
exists a unique representation p of G/N defined by p(Ng) = p(g). Thus knowing p, we can obtain
p and vice versa. We also obtain that p is irreducible if and only if p is irreducible. Hence p and p
can be identified. If p affords a character y of G, then p affords a character x of G/N and also x
and x can be identified. Under this identification, we obtain that

Irr(G/N) ={x € Irr(G) | N C ker(x)}

Thus the irreducible characters of G/N are precisely those irreducible characters of G which contain

N in their kernels.

Definition 2.4.12. Let G be a group, N a normal subgroup of G and x be a character of G/N.
Then the character x of G defined by
x(g9) = X(Ng)

is called a lifting of X to G.
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Thus given characters of G/N, we can obtain some characters of G by the lifting process. The

character x and its lifting y have the same degree.

2.5. Induced Characters

In this section we look at the ways of relating the representations of a group to the representations

of its subgroups.

Definition 2.5.1. Let G be a finite group and H < G. If p is a representation of G, then the
restriction of p to H is a representation of H. This representation is denoted by pr. If x is a
character of G afforded by p, then the restriction of x to H is denoted by xr and is a character of
H afforded by the representation py such that

xu= Y, kgt

yelrr(H)

where ky, € NU {0}.

The characters x g and x take on the same values on the elements of H. If x is irreducible, then

x is irreducible in G but the converse is not true in general.

Karpilovsky in [67] proves a theorem (Theorem 23.1.4) due to Gallagher that if H < G, x € Irr(G)
such that x(g9) # 0V g € G — H, then xp is irreducible, and for any g € G — H, x(g) is a root
of unity. We also observe that (see [63]) every irreducible character of H is a constituent of some

irreducible character of GG restricted to H.

Theorem 2.5.2. [63] Let G be a group, H < G, x € Irr(G) and Irr(H) = {¢1,%2,...,¢%r}. Then
X =Y ki
i=1
where k; € NU {0} satisfy the following relation
» Kk <[G:H]
i=1
Moreover, equality in the above relation holds if and only if x(g) =0 for all g € G — H.

PROOF. See [99] u

Theorem 2.5.3. Let G be a group, H be a normal subgroup of G and x € Irr(G). Then all the

constituents of xg have the same degree.

PROOF. See Proposition 20.7 of [63]. u

16
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Let G be a group and H < G such that the set {x1,x2,...,2,} is a transversal for H in G. Let ¢

be a representation of H of degree n. Then we define ¢* on G as follows:

p(z1g7 "), d(v1gryt), ..., plzrga,t)

% Cb(ngxl_l)a ¢($29$2_1), cet 7¢($29$;1)
¢*(9) = .

O(wngz7"), 6(wng23 "), .. S(wngay )
where gb(acing_l) are n X n sub-matrices of ¢*(g) satisfying the property that
qﬁ(a:igacj_l) = 0pxn V a:ig:cj_l ¢ H
Then we can show that ¢* is a representation of G of degree nr.

Definition 2.5.4. Let G, H, ¢ and ¢* be as above. Then the representation ¢* is called the

representation of G induced from the representation ¢ of H and we denote this by writing ¢* = ¢©.

If ¢ is a representation of H which is equivalent to ¢, then it can be shown that 1 is equivalent

to . Thus the induction process preserves equivalence between representations.

Definition 2.5.5. Let G be a group and H < G. Let x be a class function of H. Then we define

X& as follows:

1
() |H‘Zx zgr ')
zelG

where
P(h) = { x(h) ifheH

0 otherwise

Then x€ is a class function of G, called the induced class function of G induced from x. Also
we have that deg(x®) = [G : H]deg(x).

Theorem 2.5.6. [60/(Frobenius Reciprocity Theorem) Let G be a group, H < G and suppose
that x is a class function of H and ¢ is a class function of G. Then

(x.¢m) = (X%, 9).

PROOF. We obtain that

X%, 6) = X X°(zg2™")o(g)
Ici - Z - i 22
Putting y = gz~ ! and since ¢ is a class function, then we obtain that ¢(y) = ¢(g). Hence we have

X% ) = IGH ZZX (zgz")p(g) = !GH ZZX

gGG zeG yGG zeG

yEH

17
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Hence the result. u

Let H < G and ¢ be a representation of H that affords a character y of H. Then x© is a character
of G afforded by the induced representation ¢¢ of G. The character x© is called the induced
character of G. The induction and restriction processes do not necessarily preserve irreducibility
of characters. For further reading on induced characters, readers are encouraged to consult [8], [9],

[62], [101] and many other relevant sources.

Theorem 2.5.7. Let G be a group and H < G. Let x be a character of H, g € G and
{x1,22,...,2m} be a set of representatives of the conjugacy classes of elements of H which fuse

into [g] in G. Then we obtain that
Clo) = el 3 2
im1 |HA
where we have that x%(g) = 0 whenever H N [g] = 0.

PROOF. We have that
X%(g) = |[§| > X°(zgz)
el
If HN[g] = 0, then zgz~' ¢ H and thus x°(zgz™') = 0 V 2 € G and hence x“(g) = 0. Now
if HN[g] # 0, then let h € H N [g]. Then as x runs over elements of G, we have xgr~! = h for
exactly |Ca(g)| values of x. Hence we obtain that

Vo) = iy S xtear ™) = G 3w = 10601 Y 0

zeG he HN[g]

Hence the result. u

2.6. Permutation Characters

Knowledge of the permutation characters of a group leads to information about the subgroup

structure of the group. In this section we discuss permutation characters.

We say that a group G acts on a set X if there is a homomorphism ¢ : G — Sx, where Sy is
the symmetric group on X. We say that G acts faithfully on X if ¢ is a monomorphism. In this
case G can be identified with a subgroup of Sx and G becomes a permutation group on X. In this

section we assume that X is a finite set.

Definition 2.6.1. Let G be a group acting on a set X such that for any two k-tuples (z1,z2,...,T))
and (y1,Y2,.-.,yk) of k distinct elements of X, there exists g € G for which x¢ = y; for i =
1,2,...,k. Then we say that G is k-transitive on X.

18
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If G is 1-transitive on X, then we say that G is transitive. In this case G has only one orbit on X.

If G acts on X, we define a representation 7 : G — GL(n,C), where n = |X|. Let X =
{x1,29,...,2,}. For each g € G we define 7, = (a;5) by

1 if :Ef =T,
P
" 0 otherwise

Then 7, is a permutation matrix of the action of g. The representation 7 defined above is called

the permutation representation of G obtained from the action of G on X.

Definition 2.6.2. Let G be a group and X be a set such that G acts on X. Then we denote the
character afforded by the permutation representation m by x(G|X). This character is called the
permutation character of G associated with the action of G on X. It is not difficult to show

that for g € G we have

X(G|X)(g9) = {x € X | 29 = z}| = the number of points of X fized by g.

Suppose that G acts transitively on X and G, is the stabilizer of x € X. Then the action of G on
X is the same as the action of G on the cosets of H = G,. Hence V g € G, x(G|X)(g) also gives
the number of cosets of H = G, that are fixed by g € G and in this case we denote this number by
X(G|H)(g). Due to the fact that the action of G on X is the same as the action of G on the cosets
of H, then we can write x(G|H) = x(G|X).

Theorem 2.6.3. Let G be a group acting transitively on a set X. Let « € X, H = G, and
X(G|H) be the permutation character of this action. If Iy is the identity character of H, then
X(GIH) = (In)°

PROOF. We have that

(In)%(g) = |1il| > IglagaTh) = ylHy oo

G xgx—1cH z€G,xgr—1cH

Now if zgx~! € H, then xg € Hx. Thus Hxg = Hx and hence Hz is fixed by g € G. However the
summation is taken over all z € G such that zgz~' € H. Hence the summation is taken over all
x € G for which the coset Hx is fixed by g € G. But Vy € Hx, Hx = Hy and thus we obtain that

S U= |H|[{Hz| Hrg = Ha)]
zeG,xgr—1ecH
so that
1
(In)%(9) = W\HH{HUC | Hrg = Ha}| = [{Hw | Hzg = Ha}| = x(G|H)(g).

Hence the result. u
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Theorem 2.6.4. [60] Let G be a group acting on a set X with x(G|X) as the permutation character
of the action. If X splits into k orbits under the action of G, then

X(G[X), Ia) = k.

PROOF. Suppose that the k orbits of X under the action of G are {X1,...,X;}. Then we obtain
that

k
X =|]JX.
i=1
Let z; € X; and H; be the stabilizer of z; € X;. Also let x;(G|H;) be the permutation character of
G on the cosets of H;. Then we obtain that

k
N(GIX) = S i(GIH:) where i(GIH;) = (In,)°
=1

By the Frobenius reciprocity theorem, we obtain that
<Xi(G|Hi)7IG> = <(IHZ‘)G7IG> = <IHi7IHi> =1

Hence we obtain that

k
(X(GIX). Ie) = Y (a(GlH) Ie) =y 1 =F.
=1 i=1

Hence the result. u

The following result will be used in later calculations to determine the conjugacy class fusions of

subgroups of G.

Corollary 2.6.5. Let H < G. Let g € G and let x1,x2, ...,Ty be representatives of the conjugacy
classes of H that fuse to [g]. Then

Y(G|H)(g th

PROOF. This follows from Theorem 2.4.7. u

In the following we present some properties of the permutation characters.

Theorem 2.6.6. Let G be a group, H < G and x = x(G|H).

(i) deg(x) divides |G].
(ii) (x,v) < deg(¥) for all Y € Irr(G).

(iii) (x, I = 1.
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(iv) x(g) € NU{0} forall g € G.
(v) x(g9) < x(g™) for all g € G and m € NU{0}.

(vi) x(g) =0 if o(g) does not divide |G|/deg(x)-

(vii) X(g)dl[gg&) is an integer for all g € G.

PROOF. This is Theorem 2.5.6 in [120].

Let ¢ be a representation of G and « an automorphism of G. Then ¢ is a representation of G
given by
¢%(x) = ¢(z*) and ¢*(zy) = ¢%(x)¢"(y)

for x,y € G. If the representation ¢ affords a character y of G, then the representation ¢ affords
a character x® of G which is given by x%*(x) = x(z%) for z € G. Then the representation ¢
and the character x® are called the algebraic conjugates of ¢ and x respectively induced by the
automorphism a. Let X = (x;(x;)) be the character table of G, where x; € Irr(G), 1 <i <n and
zj, 1 < j < n are representatives of the conjugacy classes of elements of G. Then the automorphism
« of G induces a permutation on the conjugacy classes of G and thus induces a permutation on the
columns of X. For each x; € Irr(G), we deduce that x§ € Irr(G). Hence o induces a permutation
on the irreducible characters y; of G and thus induces a permutation on the rows of X. Moreover
since x§'(2;) = xi(z}), then the matrices obtained from X by these two operations are identical.

Hence we obtain the following theorem known as Brauer’s Theorem.

Theorem 2.6.7. [/3/(Brauer’s Theorem) Let N be a group and G < Aut(N). Then the number
of orbits of G as a group of permutations acting on the irreducible characters of N is the same as

the number of orbits of G as a group of permutations acting on the conjugacy classes of N.

PROOF. Let X be the character table of N. Then as a matrix, X is square and nonsingular. Let
« be an automorphism of N such that @ € G. Then « induces a permutation on the conjugacy
classes of N and thus induces a permutation on the columns of X. Hence G acts on the conjugacy
classes of N. Since a € G, then to each character y of N, we obtain a character x® of IV such that
X® € Irr(N) whenever x € Irr(N). For y € N, we obtain that x“(y) = x(y*). Thus a induces a
permutation on the rows of X. Hence G acts on the irreducible characters of N. Let X“ denote

the image of X under «. Then we obtain that
Pla)X = X = XQ(a),

where P(a), Q(«) are appropriate permutation matrices which are uniquely determined by o € G.
Suppose that a, 8 € G. Then we obtain that X% = (X*)5. Also we have that

P(aB)X = X0 = (X*)° = (P(a)X)” = P(B)P(a)X
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and hence P(af) = P(3)P(a), since X is non-singular. We also have that X*’ = XQ(a3) and
(X8 = (XQ())P = XQ(a)Q(B). Since X = (X*)F we obtain that XQ(aB) = XQ(a)Q(3).
Again the non-singularity of X implies that Q(af) = Q(«a)Q(3). Define mappings 7; and 7o on
N by m1(a) = (P(a))t and m(a) = Q(a), where t denotes the transpose operation on matrices.
Then 7 and 7o are permutation representations of N. Let 7 and 6 be the permutation characters
afforded by 71 and 72 respectively. Since X "'P(a)X = Q(a), P(a) and Q(«) are similar and thus
have the same trace. Since trace(P(a))! = trace(P(a)), we have that trace(P(a))t = trace(Q(a)).
Hence 6 = 6> and m; and my are equivalent. Let dy,ds be the number of orbits of G on the
irreducible characters and on the conjugacy classes of N respectively. Thus we observe that dy is
the number of orbits of 71(G) in its action as a group of permutations. Also ds is the number of
orbits of m3(G) in its action as a group of permutations. Since 6; is the permutation character of G
acting on the irreducible characters of N, we obtain that (61, I) = dy. Also for 65, we obtain that

(02, 1) = do. However 0; = 09 and thus (01, 1) = (02, Ig) and hence d; = dy. Hence the result.
|

2.7. Orbit Lengths

Brauer’s theorem states that when G acts on an automorphism group N in our case an elementary
abelian group, then the number of orbits of G as a group of permutations on the conjugacy classes
of N is equal to the number of orbits on the irreducible characters of N. However Brauer’s theorem
does not apply to orbit lengths, as orbit lengths of permutations on conjugacy classes may not be
the same as orbit lengths of permutation on irreducible classes. To get the orbit lengths of the
irreducible character and the conjugacy classes of N, we use Programme C which we developed in
GAP.

PROGRAMME C

V:=FullRowSpace(GF(q),n);
gen[1]:=(OneGF(q))*[n x n matrix group generators|;
gen[2]:=(OneGF(q))*[n x n matrix group generators|;

gen[k]:=(OneGF(q))*[n X n matrix group generators|;
G:=Group(genl[l], gen[2],- - - , gen[k]);
0O:=Orbits(G,V);;
k:=OrbitLengths(G,V);
l:= OrbitLengths(Group(List(G,TransposedMat)),V);
Print(k);

Print(1);

We use Programme C to compute the orbit lengths of both the conjugacy classes and the irreducible

characters. If G is an n x n matrix group, we would wish to let G act on our elementary abelian
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group N. To be able to do this we rewrite N as an n-dimensional row vector space V over GF(q).
The action of G on V is multiplication of V' from the right by G. This gives us the orbits of G
as a group of permutations on the conjugacy classes of N. The action of G?, the transpose of G,
on V, is multiplication on the right of V by G*. This is equivalent to the multiplication of the
column vectors of V' from the left by G. This multiplication gives us the orbits of G as a group
of permutations on the irreducible characters of N. We give an example that shows that the orbit

lengths of the conjugacy classes need not be equal to the orbit lengths of irreducible classes.
Example 2.7.1. Let G = 2°:S5 and V = FullRowSpace(GF(2),5) where

G = S¢ =< matrix group with 2 generators > .

Using Programme C above, we get

OrbitLengthsOfConjugacyClasses = [1,6,15,10]

OrbitLengthsOfIrreducibleCharacters = [1,15,15,1].

We have four orbits for both the irreducible characters and the conjugacy classes but the orbit
lengths differ.
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Projective Representation

3.1. Prologue

In this chapter we study the projective representations and characters which will be required in
the subsequent chapters. We follow very closely the work of Ali [1]. We refer to the group rep-
resentations and group characters that we defined in Chapter 2 as ordinary representations and
ordinary characters respectively. The Schur multiplier of a group G plays an important role in
the study of projective representations of G. We have therefore devoted Section 3.2 to the study
of Schur multiplier of G. In Section 3.3 we are dealing with projective representations of G. We
study the relationship of projective representations with the ordinary representations. We discuss
that how projective representations of G can be constructed using three different approaches. We
also show that how projective representations of G can be determined from the ordinary repre-
sentations of a so-called representation group of G. Finally in Section 3.4 we discuss projective
characters and study the orthogonality relations analogous to the ones for ordinary characters.
For further readings on projective representations and projective characters readers are referred to
[11, 47, 51, 55, 58, 29, 60, 95, 96, 97, 98, 100, 107, 108, 109].

3.2. Schur Multiplier

The first step in obtaining the projective representations of a group G is to compute its Schur

multiplier. In this section we discuss results useful in finding the Schur multiplier of a group.

Definition 3.2.1. A function o : G x G — C* is called a factor set of G if

a(zry, 2)a(z,y) = a(z,yz)aly, z)  for all x,y,z € G.

Two factor sets a and o are said to be equivalent if there exists a function p : G — C* such

that o/ (z,y) = £ %ﬂpﬁ)a(a:,y) for all z,y € G. This is an equivalence relation and we denote the
equivalence class of the factor set « by [a]. For factor sets a and ¢/, let (ad)(z,y) = a(z,y)d/ (z,y)

for all z,y € G. Then aa’ is a factor set, as is a~! defined by a~!(x,y) = (a(z,y)) L.
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Definition 3.2.2. The set of all equivalence classes of factor sets forms a group by defining [a][a'] =
[ac/]. The identity of this group is [1] where 1 is the factor set 1(x,y) = 1 for all z,y € G, and
[a]™' = [a~1]. This group is called the Schur multiplier of G and we denote it by M(G).

Theorem 3.2.3. (i) M(G) is a finite abelian group.

(ii) If G is a cyclic group, then M(G) = 1.

PROOF. See [100]. u

Lemma 3.2.4. Suppose that N is a normal subgroup of a finite group G. If M(G) = 1, then
M(G/N) = (NNG")/[N,G]. In general, |(N NG")/[N,G|| divides |M(G/N)|.

PROOF. See [66]. u

Theorem 3.2.5. Let G be a finite group and H be a subgroup of index n. Then the group (M(G))™
of all n-th powers of M(QG) is isomorphic to a subgroup of M (H).

PROOF. See [66]. u

Schur [114] reduced the problem of finding M (G) to obtaining the Schur multiplier of the Sylow p-
subgroups of G. The following theorem describes the Schur multiplier of GG in terms of the subgroup

structure of G.

Theorem 3.2.6. [11}] Let S be a Sylow p-subgroup of G. Then the Sylow p-subgroup of M(G) is
isomorphic to a subgroup of M(S).

PROOF. See [66]. u

Theorem 3.2.7. A group G has trivial Schur multiplier if and only if it has a set of subgroups

with trivial Schur multipliers and relatively prime indices.

PROQF. See [66]

Schur investigated the group G = SL(2,q). He discovered that M(G) is trivial unless ¢ = 4 or
q = 9. In Chapter 10 we look at the case 52:2.A5. Noting that 2.45 = SL(2,5), the Schur multiplier
for 2. A5 is trivial but for 5%:2.45 we have that M(G) is a cyclic group of order 5.

For any group G we follow the methods of Ali [1] to test if we need an ordinary representation
or we need a projective representation. In chapter 10 we need a projective representation for
52:2. A5 which is a split extension. To get the Schur multiplier for this group we use MAGMA for

Programme J .

25



CHAPTER 3. PROJECTIVE REPRESENTATION

PROGRAMME J

G:=Group;

M:=GModule(G) ;

X:=CohomologyModule (G,M) ;
E:=SplitExtension(X);
Eperm:=DegreeReduction(CosetImage (E,sub<E|>));
pMultiplicator (Eperm,$p_i$);

V V. V V VvV VvV V

exit;

However the group 5%:2.4s is a unique perfect group, recall a group is said to be perfect if it is

equal to its derived group, that is G’ = G. We use the following Programme J' in GAP.

PROGRAMME J/

gap> gg:=PerfectGroup(|Gl,1);

gap> AbelianInvariantsMultiplier(gg);

3.3. Projective Representations

The notion of projective representation, due to Schur, was suggested by the study of relations

between linear representations of a group and its factor groups over a central subgroup.
Definition 3.3.1. Let G be a group and F be a field. Consider the map P : G — GL(n,F) such
that

(i) P(1g) = I, where I, is the identity n X n matriz.

(ii) For all z,y € G, there exists a map o : G x G — F* such that

P(z)P(y) = a(z,y)P(zy) where o(z,y) € F*

Then P is called a projective representation of G over F of degree n. The map « is called the

factor set associated with P.

From the above definition, we observe that

a(z,y) = P(z)P(y)(P(xy)) ™

Thus for the factor set « associated with P, if a(z,y) = 1 for all z,y € G, then we obtain that
P(zy) = P(x)P(y) and hence P becomes an ordinary representation of G. Sometimes a pair (P, «)

is used to indicate a projective representation P and its associated factor set .

There is another way of looking at projective representations. The group PGL,(F) = GL,(F)/Z(GL,(F))
is called the projective general linear group where Z(GL,(F)) is the center of GL,,(F) which consists
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of all non-zero scalar matrices. If P is a projective F-representation of G then the composition of P
with the natural homomorphism G — PGL,(F) is a homomorphism G — PGL,(F). Conversely,
if 7: G — PGL,(FF) is any homomorphism, a projective representation P of G can be defined by
setting P(g) equal to any element of the coset w(g) of Z(GLy(F)) in GL,(F). Thus the projective
F-representations of GG can be identified with the homomorphisms of G into the projective general

linear group.
We now consider the associated factor sets of the projective representations.

Lemma 3.3.2. Let o be the associated factor set of a projective representation P of G. Then «

satisfies a(xy, z)a(z,y) = a(x,yz)a(y, z) for all z,y,z € G.

PROOF. By associativity we have

P(z)P(y)P(z) = a(z,y)P(zy)P(z) = alz,y)a(zy, 2) P(zyz)

and
P(x)P(y)P(2) = aly, 2) P(x) P(yz) = aly, 2)a(z, yz) P(ryz).
Now the result follows since P(xyz) is invertible. u

As with ordinary representations, we now define equivalence and irreducibility of projective repre-

sentations. We will consider projective representations over the complex field C from now on.

Definition 3.3.3. Two projective representations P and Py of G are equivalent if there is a
non-singular matriz T such that for all g € G, Pi(g) = c(9)TPx(g)T~" for some c(g) € C*. If
c(g) =1 for all g € G then Py and P» are linearly equivalent. A projective representation P is

irreducible if it is not linearly equivalent to a projective representation of the form

()

Lemma 3.3.4. If two projective representations are equivalent then they have equivalent factor

sets; if they are linearly equivalent they have equal factor sets.

PROCOF. Let P; and P, be equivalent projective representations with factor sets a1 and ao respec-
tively. Suppose T is a non-singular matrix and ¢ : G — C* such that Pi(g) = c(g)TPy(g)T~" for
all g € G. Now for g,h € G,

ai(g,h) = Pi(g)Pu(h)(Pi(gh)~"
= (9)TP(9)T ' e(h)TPy(R)T~ (c(gh)) ' T(Pa(gh)) ' T~
= c(g)c(h)(c(gh)) ' TPy(g)Pa(h)(Pa(gh)) ' T7!
= c(g)e(h)(c(gh)) ' az(g, h)
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so a1 and «ay are equivalent. If P; and P, are linearly equivalent, then ¢(g) = 1 for all g € G in the

above expressions, so a; = Qso. u

Let F[G,C] be the set of all functions A : G — C. If P is a projective representation of G with
factor set o and A € F[G, C], then P’ = AP, where P'(g) = A(g)P(g) for all g € G, is a projective

representation of G' with factor set o/, and

o (z,y) = M2)Ay)(Mzy)) " alz,y) (3.1)
for all z,y € G.

Remark 3.3.5. It follows from (3.1) that o ~ 1 if and only if there exists A € F[G,C] such that
foralz,ye G

a(z,y) = A@)A(y)(Mzy)) .

The following result provides a close connection between the degrees of the irreducible projective

characters with factor set a and the o([a]).

Lemma 3.3.6. [11] Let P be a projective representation of G with factor set o and deg(P) = n.

If o([a]) = m then m divides n.

PROOF. We know that
P(x)P(y) = a(z,y) P(xy).

Taking determinant we obtain

det(P(x))det(P(y)) = det(a(z,y)P(xy))
= a(x,y)"det(P(xy))

which implies
a(z,y)" = det(P(x))det(P(y))(det(P(zy)) .

By Remark 3.3.5 we obtain [a]™ = 1. Hence m divides n. u

Projective representations of a group G can be obtained by three different ways. Firstly, we may
obtain the projective representations of a group G by considering a central extension of G. Now we
show that how the projective representations of a group G can be constructed from the ordinary

representations of a so-called representation group of G.

Definition 3.3.7. A central extension of G is a group H together with a homomorphism w of
H onto G such that ker(r) lies in the center of H.

Lemma 3.3.8. Let (H,7) be a central extension of G with A = ker(w). Let X be a set of coset
representatives for A in H, and write X = {zg4 : g € G}, where m(x4) = g. Definea: G x G — A

by xgxp = a(g, h)zgn. Then o is an A-factor set of G and the equivalence class of « is independent
of the choice of X.
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PROOF. See Isaacs [60]. u

Corollary 3.3.9. Let H be a central extension of G with A, X and « as in the previous lemma.
Let T be an ordinary representation of H such that the restriction Ta is the scalar representation

A for some A € Hom(A,C*), that is

T(a) = . Va € A,
Aa)

where n = deg(T'). Define P(g) = T(x4) for g € G. Then P is a projective representation of G
with factor set A\(«), where A(a)(g, h) = M a(g, h)). Furthermore, P is irreducible if and only if T

18 and the equivalence class of P is independent of the choice of coset representatives X .

PROOF. See [60].

Remark 3.3.10. Note that if T is an ordinary irreducible representation of H then the condition
that Ty be scalar representation is satisfied by the Schur’s lemma (Theorem 3.5.2), since A lies in
the center of H.

Definition 3.3.11. A projective representation of G that can be constructed from an ordinary
representation of a central extension H of G as in Corollary 3.3.8 is said to be lifted to H. A

representation group of G is a central extension H of G such that every projective representation
of G can be lifted to H.

Every group has a representation group by the following result which is due to Schur [114].

Theorem 3.3.12. Let G be a finite group of order n. Then G has at least one representation
group H of order mn where m = |M(G)| and the kernel of the extension is isomorphic to the Schur
multiplier M(G) of G.

PROQOF. See, for example, [60]. u

Secondly, projective representations of G can also be obtained by the generalization of Clifford’s

method of constructing representations of G using representations of a normal subgroup N of G.

Finally, third approach to obtain projective representations involve a natural generalization of the
group algebra which plays such an important role in ordinary representation theory. Interested

readers are encouraged to consult Morris [95] and other relevant sources.

The projective representations of a group are often constructed by using a combination of the
above mentioned three techniques. Interested readers are referred to a series of articles by Morris
[96, 97, 98] and Read [107, 108, 109].
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3.4. Projective Characters

Definition 3.4.1. Let P be a projective representation of G with factor set . Define £(g) =
Trace(P(g)) for all ¢ € G. Then £ is called a projective character of G. We say that £ is

irreducible if P is, and £ has factor set o, where « is the factor set of P.

Definition 3.4.2. Given a factor set a of G, an element g € G is said to be a-regular if a(g,z) =

a(x,g) for all z € Cq(g).

If g is a-regular, so is every conjugate of g, and an element g is a-regular if and only if g is o/-regular
for every factor set o/ equivalent to . So we can define a conjugacy class of G to be a-regular if

each of its elements is a-regular.

An important feature of ordinary characters is that they are class functions. However, this no

longer true for projective characters. For projective characters we have

Proposition 3.4.3. Let & be the projective character of G with factor set «. If for any a-reqular

1

element x in G and for any y in G, a(z,y) = a(y,y  xy) then £ is a class function.

PROOF. This is Proposition 2.2(iii) in [66]. u

Theorem 3.4.4. Two projective representations Py and Ps with factor set o are linearly equivalent

if and only if they have the same projective character.

PROOF. See Theorem 4.4 in [95]. n

The projective characters of G can be determined from the ordinary characters of a representation
group (H,7) of G. Let 7 : H — G be defined by the extension H of G, and let {z,: g € G} be a
set of coset representatives for ker(w) in H. If P is a projective representation of G with projective
character £ then there is an ordinary representation 7" of H such that P(g) = T'(z,) for g € G. Let
x be the character of H afforded by T', then £(g) = x(z,4) for all g € G.

Projective characters also satisfy the usual orthogonality relations. We have analogues to ordinary

characters.

Theorem 3.4.5. (i) The number of irreducible projective characters of G with factor set « is

equal to the number of a-reqular conjugacy classes of G.

(ii) Let &1,&s,...,& be the projective characters of G with factor set a, and let Cq,Co, ..., Cy be

the a-reqular conjugacy classes of G with g; a representative of C; fori=1,2,...,t. Then

t
> €ilg)Elgr) = 6iilCalgy)l for gk € {1,2,...1}.

i=1
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(iii) An element g of G is a-regular if and only if there is an irreducible projective character & of
G with factor set o such that £(g) # 0.

PROCF. See [47]. u

Let G be the set of all a-regular elements of the group G. Then we have the following.

Theorem 3.4.6. Let Let &1,&,...,& be the projective characters of G with factor set «, and
let C1,Cy,...,Cy be the a-regular conjugacy classes of G with g; a representative of C; for i =
1,2,...,t. Then

> &9)E9) = 615y

geGO

PROOF. See [66] u

Haggarty and Humphreys [47] showed that it is possible to determine the projective characters
of G with a given factor set without the full representation group G. Suppose « is a factor set
of G, with [a] having order e in the Schur multiplier M(G). Let w be an e root of unity and
let o be a representative of [a] whose values are powers of w. For g,h € G define o/(g,h) by
o’(g, h) = w9 Let L be the group generated by an element x of order e and elements z, (g € G)
with multiplication mia:ng xp = 't x“(gvh)mgh. Then L is a quotient of the representation group H
and any projective representation of G with factor set o can be lifted to an ordinary representation
of L. Thus the projective characters of G with factor set a can be determined from the ordinary
character table of L.
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Clifford Theory

4.1. Prologue

An important method for constructing irreducible representations of groups consists in the appli-

cation of three basic operations:

(i) Restriction to a subgroup,
(ii) Extension from a subgroup,

(iii) Induction from a subgroup.

The theory attains particular richness when the underlying subgroup is a normal subgroup of its
extension. This is the content of the Clifford theory, originally developed by Clifford in 1937 [20]
for ordinary representations and extended by Mackey in 1958 [79] to projective representations.
In this chapter, we study the Clifford theory and its related consequences which are required to
describe the Fischer-Clifford matrices in the next chapter. In Section 4.2, we study the relation
between the characters of a group G and its normal subgroup N. We will give various sufficient
conditions for the extendibility of an irreducible character # of N to G. In Section 4.3, we engage
the Clifford theory of projective representations. We will study, how it is always possible to extend
an irreducible character of a normal subgroup N to a projective character of its inertia group H.
Finally in Section 4.4, we will study the problem which asserts that if y is a G-invariant irreducible
character of a normal subgroup N of a finite group G, then the number of distinct irreducible
constituents of Xé is equal to the number of y-regular conjugacy classes of G/N. We also show
that the number of irreducible constituents of Xé is equal to the number of conjugacy classes of

G/N if and only if x extends to a character of each subgroup N<z,y> of G with [z,y] € N.
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4.2. Clifford Theory and Normal Subgroups

In this section we study the important connection between characters of group G and a normal

subgroup N of G.

Definition 4.2.1. Let G be a group, N < G and 0 be a character of N. Then for g € G, we define
99 : g 'Ng— C by 09(t) = 0(gtg ') for allt € g~ 'Ng. Then 69 is said to be a G-conjugate of
. If N is a normal subgroup of G and 09 = 0 for all § € G, then 0 is said to be G-invariant.

Theorem 4.2.2. Let G be a group, K, H < G such that K < H < G and x be a character of K.
Then for all g € G we have

(i) (x")9 = (x9) 19
(i) (x?)% = x°.
PROOF. See [67] u

Remark 4.2.3. If N < G and g € G, then 09 is a character of g~'Ng. However if N is normal

in G, 09 becomes a character of N.

Let G be a group, N a normal subgroup of G and 6 € Irr(N) then we define
Irr(G,0) = {x | x € Irr(G), (xn,0) > 0} .
Observe that (xn,0)n = (X,HC_;}@.

Definition 4.2.4. Let G be a group, N a normal subgroup of G and 0 € Irr(N). Then
Io(0) ={ge G |67 =0}

is the inertia group of 6 in G.

Since I () is the stabilizer of 6 in the action of G on Irr(N), it follows that it is a subgroup and
that I5(6) 2 N.

Lemma 4.2.5. [58] Let G be a group, N a normal subgroup of G and 6 € Irr(N). Then
(a) For gi, g2 € G we have 69192 = (091)92. In particular N < Iz(0) < G. If
G = U 15(0)g:
i=1

with [G : I5(0)] = m, then {09 € G} = {69,60%,...,09}, and 69,09, ..., 09" are

pairwise distinct.
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(b) If Y1, 1o are any characters of N and g € G, then <¢%,¢5>N = (Y1, ¥2)N. In particular
69 € Irr(N) if 6 € Irr(N).

(c) If 1 is a character of G and 0 of N, then (¥n,0)n = (N, 09) N for all g € G.

PROOF. See [58]. u

We now state a fundamental theorem, which is due to Clifford [20] but we give a proof from Huppert
[58].

Theorem 4.2.6. /58] (Clifford Theorem) Suppose G is a group, N a normal subgroup of G,
6 € Irr(N) and x € Irr(G,0). Let (xn,0) = e > 0. Assume also that

G:

=

Il
—

I6(0)g; and m =[G : 15(0)].

2

Then we have
(a) (0%)x = |I5(0)/N| L, 0%
(b) <t9@,9@) 5= |I5(0)/N|. In particular 0% Irr(G) if and only if 15(0) = N.
(c) xn =ed v, 09. In particular,

x(1) =emf(1) and (xn,XN)N = e m.

Also
e <|I5(0)/N| and e*m < |G/N].

PROOF. (a) For x € N we have by the previous lemma

Sl LN = LS g = Ha®l = o,
o) = I 2067 = g 20 = T 20

(b) By Frobenius reciprocity (Theorem 2.5.6) and part (a) we obtain

(69,609 = ((69)n, O)n = |1a(8) /N .
(c) For all g € G, we have by Lemma 4.2.4(c)

(xn, 09N = (xn,0) N = e.

Hence

Xy =ey 0%+,

i=1
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where v is a character of N or zero. As

<0G7X>G‘ = <9aXN>N =e€,

we obtain

0% =ex +....

Restriction to N shows by part (a)
exn + ... = (0%) N =15(0)/N| Y 6%
i=1

Hence in yn there does not appear any irreducible character of N different from the 69%.

m
XN = ¢ Z 9571"
=1

Therefore

which implies immediately

x(1) =emf(1) and (xn,xN)N = e2m.

By part (b) we have

[I5(0)/N| = (6%,0%)c = (ex +...,ex +...)g > €
and hence
|G/N| = |G : 15(0)||15(0)/N| = me®.
[ ]

Remark 4.2.7. It can be shown that the number e in the above theorem is the degree of an irre-
ducible projective representation of G/N, hence it divides |G/N|. See Huppert [58].

As a consequence of Clifford theorem we have the following result, which is of fundamental impor-

tance in the character theory of normal subgroups.

Theorem 4.2.8. [60] Let G be a group, N a normal subgroup of G, 6 € Irr(N) and T = I5(0).
Let

A=A{y e Irr(T) | (Yn,0) # 0},
B ={x € Irr(G) | {xn.0) # 0}.
Then
(a) If1p € A, then ¢G c Irr(G).

(b) If v =x and v € A, then (¥n,0) = (xn,0).
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(c) If wé =x and Y € A, then 1 is the unique irreducible constituent of x which sits in A.

(d) The map ¢ — VG is a bijection of A to B.

PROOF. See Isaacs [60]. u

Remark 4.2.9. From the previous theorem we deduce that induction to G maps the irreducible
characters of T that contain 6 in their restriction to N faithfully onto the irreducible characters of

G that contain 0 in their restriction to N.

An important task of the Clifford theory is to examine when irreducible characters of normal

subgroups are extendible to their respective inertia groups.

Definition 4.2.10. Let G be a group, H a subgroup of G, 0 € Irr(H) and x € Irr(G) such that

xu = 0. Then 0 is said to be extendible to an irreducible character of G.

If 0 is extendible to an irreducible character of G, we will simply say that 6 is extendible to G.
There are various conditions which have to be satisfied in order that § can be extended to G.
Readers can also consult [11, 38, 39, 60, 65, 58] for further reading and information on extendibility

of characters.

Theorem 4.2.11. [67] Let N a normal subgroup of G, x € Irr(N), where x is G- invariant and
let ' be a matriz representation of N which affords x. Then

(i) there exists a projective representation p of G such that T'(n) = p(n) and (p(3))°@ = I, for
allm € N, g € G where I is the identity matriz,

(ii) if G = NH for some H < G and if py is an ordinary representation of H, then x can be
extended to G.

PROCF. (i) Let g € G. Since x is G-invariant, then the representations I" and I'9 of IV are equivalent.
Hence there is an invertible matrix 6(g) such that (6(g))~'T'(n)8(g) = T'9(n), for all n € N. We
may assume that §(n) = I'(n) for all n € N. We have that 6 : G — GL(k,F), where k = deg(T),
and that Oy =I'. Now let g1, g> € G. Then we obtain that

(0(512)) ' T(n)0(giga) = T9%(n) = (I9)%(n) = (0(g2))” 'T9 (n)0(g2)
= (0(g2)) " (6(g1)) " 'T(n)8(41)0(g2)-

So that
0(g1)0(g2)(0(g1g2)) ' T'(n) = T'(n)0(g1)0(g2)(0(g1g2)) "

Thus for all n € N, 0(g1)0(g2)(0(g1g2)) ' commutes with I'(n) and thus by the Corollary 2.3.3,
we can define a function o : G x G — C* such that 0(g1)0(g2) = a(di,g2)0(d1g2). Since T
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is a representation of N, then we obtain that 6(1y) = I'(1y) = I. Hence 6 is a projective
representation of GG with associated factor set a. Let o(g) = m and if § € N, then we obtain
that (6(g))™ = I. However if § € G — N, then since 6(g™) = 0(15) = I, there exists A\(g) € C*
such that (6(g))™ = A(g)I. Now let u(g) € C* such that (u(g))™ = (A(g))~! and let u(n) = 1
for all n € N. Then the projective representation p of G given by p(§) = u(g)0(g) is such that
p(n) = p(n)f(n) =0(n) =I'(n) for all n € N. Also we have that

(p(@)™ = (u(9)0(@)™ = (1()™(0(g)™ = (\(@)) "M =1
Hence property (i) is established.

(ii) Let T be a transversal for NN H in H containing 1. Then every g € G has a unique expression
of the form g = tn, where t € T,n € N. Now let g1 € G, g1 # g be given by g1 = tin1, where
tp € T,n1 € N. Since t,t1 € T, then t,t1 € H and hence tt1 € H. Now let tt; = tong, where to € T
and ny € N N H. Define 1) on G by ¢(g) = p(t)p(n). Since nat; 'ntiny € N, we obtain that

W(gg1) = Y(tnting) = Y(ttrt] 'nting) = w(tanat; 'nting) = p(te)p(naty 'nting)

Also we have

b(@)(g1) = pt)p(n)p(t)p(n1) = p(t)p(tr)(p(t)) " p(n)p(tr)p(n)
= p()pt)[(p(t)) " p(n)p(t1)]p(nr).

However from the proof of part(i) above we have that (p(g))'I'(n)p(g) = I'Y(n) and p(n) = I'(n)
for all m € N,g € G. Since tl_lntl € N, then we obtain that

p(tytnty) =Tty 'ntr) =T (n) = (p(t1)) "' T(n)p(t1) = (p(t1)) " p(n)p(t1).

Since by the assumption p is an ordinary representation on H we have p(tt1) = p(t)p(t1) since
tt1 € H. We deduce that

b@v(g) = p(t)p(tr)p(ty 'ntr)p(n1) = ptt)p(ty 'nt1)p(na)
= p(tana)p(t; 'nt1)p(n1) = p(t2)p(naty 'nting).

Hence we obtain that 1/(gg1) = ¥(g)1(g1). Therefore 1 is an ordinary representation of G. However
V' n € N, we obtain that ¢)(n) = p(n) = I'(n) and thus the character afforded by the representation
1 of G, extends x to G. Hence the result. u

Theorem 4.2.12. [67] Let G = NG where N is a normal subgroup of G, and G < G such that
NNG C N'. If 0 is an irreducible G-invariant character of N such that (deg(0),|G|) = 1, then 0

can be extended to G.

PROOF. For a detailed proof which uses the previous theorem, see Corollary 27.1.2 of [67] n
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Theorem 4.2.13. [2/, 120, 99] (Mackey’s Theorem) Let N be a normal subgroup of G and
be a G-invariant irreducible character of N. If N is abelian and G splits over N, then 0 can be
extended to G.

PROOF. Let G = N:G. Since G is a semidirect product of N by G, then any x € G can be expressed
uniquely as x = ng, where n € N, g € G. Define x on G by x(ng) = 6(n). Since N is abelian, § has
degree 1 and thus is linear. The invariance of § in G implies that (n) = §(xnz~!) for all x € G.

Now let &1 = n1g1, T2 = nags be elements of G. Then we obtain that

x(1z2) = x(miginegz) = x(nind' gig2) = 0(ning")

= 0(n1)0(n3'") = 0(n1)0(n2) = x(z1)x(z2).
Therefore x is a linear character of G such that xx = 6. u

Remark 4.2.14. Mackey’s theorem has been proved differently in Ali [1] and Mpono [99] by ap-
plying Theorem 4.2.11.

Theorem 4.2.15. Let N be a normal subgroup of a finite group G and 0 be an irreducible character

of N which is invariant in G, then 0 is extendible to a character of G if (|G : N], dlgi(g)) =1.

PROCF. See [38]. u

Theorem 4.2.16. Suppose G is a splitting extension of a normal subgroup N, then any linear

character § € Irr(N) can be extended to its inertia group I15(6).

PROOF. See [1, 99]. u

Note that Mackey’s theorem is reinforced by the Theorem 4.2.15 since for N abelian, all its irre-

ducible characters are linear and hence are extendible to their respective inertia groups.

Theorem 4.2.17. [39, 59, 120](Gallagher’s Theorem) Let N a normal subgroup of G, § €
Irr(N) and H = 15(0). If 6 can be extended to 1) € Irr(H) then as 3 ranges over all the irreducible
characters of H which contain N in their kernels, B ranges over all the irreducible characters of

H which contain 0 in their restriction to N.

PROOF. Since H = I5(6), then 6 is self-conjugate in H and thus by Clifford’s theorem we obtain
that (GH)N = f0 for some positive integer f. Comparing degrees we have (GH)N = [H : N]§ and
so (05,67 = (9, (67)n) = [H : N]. Now we claim that 67 = >3 B(1g)BY, where 8 ranges over
all the irreducible characters of H that contain N in their kernels. Both # and 3 5 B(1g)By are
zero off N since for g ¢ N,zgz™' ¢ N for all z € G and thus 67 (g) = 0. Also for g € N, by
the orthogonality of the columns of the character table of H/N we have that 25 BLe)(BY)(g) =

[>_58(1a)B(9)](g) = 0. We also have that (0H)N = [H : N]§ = (>_58(1g)BY) N since for g € N,
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Zﬂ (1a)8(9)¢(g) = Zﬂ(ﬁ(lé))zw(g) = [H : NJ3(g) = [H : N]0(g). Hence we obtain that
=>_5B8(1g)BY. So we have

[ : N] = (0", 0") = Zﬁ )8, > (1 Zﬁ &) (B, )

T

The diagonal terms contribute at least Y (8(15))? = [H : N], so the (¢ are irreducible and
distinct, and are all the irreducible constituents of 8 and so are all the irreducible characters of
H that contain @ in their restriction to N. For ¢ € Irr(H) such that (¢y,6) # 0, we obtain that
(¢n,0) = (¢,07) which implies that ¢ is an irreducible constituent of ## and hence is of the form

Bip. u

Remark 4.2.18. Let G be an extension of N by G. If every irreducible character of N can be
extended to its inertia group in G, then by application of Theorem 4.2.7 and Remark 4.2.8, the

characters of G can be obtained as follows:

Let 01,0o,...,0; be representatives of the orbits of G on Irr(N). For each i, let H; = I5(0;) and
let ; € Irr(H;) with (Y;)ny = 0;. Now each irreducible character of G contains some 0; in its
restriction to N by Clifford’s theorem. So by Theorem 4.2.7 and Remark 4.2.8 we have

t

Irr(G) = U{(ﬁwz)é : B € Irr(H;), N C ker(B)}.

i=1

Hence the characters of G fall into t blocks, with each block corresponding to an inertia group.

Finally in this section, we give a result due to Isaacs about the value of an extension x of 6 to G.
For N 9G, 0 € Irr(N) has an extension y to G if I(0) = G. We prove that the values of x are
equally distributed over the cosets of N.

Theorem 4.2.19. Suppose N I G, x € IT‘T(G) with xy € Irr(N). Then

’Z|X

yeNg
forall g € G.

PROOF. See Theorem 21.5 of [58]. u

4.3. Clifford Theory and Projective Representations

The projective representations of a group are closely related to Clifford theory. In this section we

study the Clifford theory for projective representations.

Definition 4.3.1. Let N<G. IfY is an irreducible (ordinary) representation of N then for g € G,
Y9 defined by Y9(n) =Y (gng~ '), n € N, is a representation of N, called a conjugate of Y. The
inertia group of Y, T(Y), is the set of all § € G such that Y is equivalent to Y9. Note that
T(Y) = I5(0) where 0 is the character of N afforded by Y.
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Now let Y be an irreducible representation of N, where N < G and let H = T(Y), so Y is
equivalent to all its conjugates in H. The following theorem shows that Y can always be extended
to a projective representation of H and gives a necessary and sufficient condition for Y to be

extendible to an ordinary representation of H.

Theorem 4.3.2. Let N <G, Y an irreducible representation of N and H be as above. ThenY
extends to a projective representation X of H with factor set & such that & is constant on cosets
of N in H. Therefore & can be regarded as a factor set o of H = H/N defined by a(Nh, Nk) =
a(h, k). Also, « satisfies @NT 1 where d is the degree of Y. Furthermore, Y extends to a linear
representation of H if and only if a ~ 1. In particular, if H*(G,C*) = 1, then Y always extends to

a linear representation of G.
PROOF. See Nagao and Tsushima [100]. u
Theorem 4.3.3. Let N < G, Y be an irreducible representation of N with H = T(Y) and H =

H/N. EztendY to a projective representation X of H as in Theorem 4.3.2 with factor set a. Then

1. If W is an irreducible representation of H that has Y as one of its irreducible constituents
in its restriction to N then there exists an irreducible projective representation Z of H with
factor set a~ such that W is equivalent to the representation Z @ X of H, where o is the

factor set of H obtained from &, and Z is the representation of H obtained naturally from Z.

2. If, conversely, Z is any irreducible projective representation of H with factor set a™', then
Z ® X is an irreducible representation of H which is equivalent to some representation that
contains Y in its restriction to N.

PROOF. See Nagao and Tsushima [100]. u

Theorem 4.3.4. [113] Let N < H, p € Irr(N) be invariant under H and let ¢ be a projective

extension of ¢ to H with factor set o.. Then
Irr(H, ) = {@Y | ¥ is an irreducible o —projective character of H/NY}.

In particular, the number of irreducible a~!- projective characters of H/N is equal to the number

of a- reqular classes of H.

PROOF. See [113]. u

Now we restate the results from Theorems 4.3.2 and 4.3.3 in the form in which we will be using

them, in terms of projective and ordinary characters.

Corollary 4.3.5. [82] Let G = N-G, where N G and G/N = G. Let § € Irr(N) and H = 15(6).

(i) There exists a projective character ¢ of H with factor set a such that pn = 0 and & is

constant on cosets of N, so & can be regarded as a factor set o of H = H/N.
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(ii) If 6(1xn) = d, then a9N! ~ 1.

(iii) If n runs over all the irreducible projective characters of H with factor set ™!, then ©f runs
over all irreducible characters of H that contains 6 in their restrictions to N where 7 is the

projective character of H obtained naturally from 7.

PROOF. See [82]. u

Remark 4.3.6. In the above theorem, if  extends to an ordinary character of H, then we show
that o ~ 1. In this case n’s are the ordinary irreducible characters of H. Hence Theorem 4.2.16 is

a special case of the above corollary.

Remark 4.3.7. Now by Remark 4.2.8 and Corollary 4.3.5, the characters of G = N-G can be

obtained as follows:
Let 01,0a,...,0; be the representatives of the orbits of G on the set Irr(N). Let H; = I(0;), ; be
a projective character of H; with factor set &; such that 0; = px. Then

t
Irr(G) = U{(n%‘)G | n € IrrProj(H;), with factor set a; '},
i=1

where «; 1s obtained from &; as in Corollary 4.3.5.

Hence the characters table of G is partitioned into t blocks /\1, N, ..., \; where /\; is produced

from the inertia subgroup H;.

4.4. Irreducible Constituents and Conjugacy Classes

This section treats two topics. The first concerns the number of irreducible constituents of induced
characters, and the second the number of conjugacy classes. Using some properties of extensions of
characters, we will study the problem which asserts that if x is a G-invariant irreducible character

of a normal subgroup N of a finite group G, then the number of distinct irreducible constituents of

x© is equal to the number of y-regular conjugacy classes of G/N. We also show that the number

of irreducible constituents of Xé is equal to the number of conjugacy classes of G/N if and only if

X extends to a character of each subgroup N<z,y> of G with [z,y] € N.

Most of the results in this section are from Gallagher [40] but we give proofs from [67].

Lemma 4.4.1. Let N be a normal subgroup of G such that G/N is cyclic of order n. If x is
G-invariant irreducible characters of N, then there exists precisely n irreducible characters of G

extending x and their sum is Xé.

PROOF. See Lemma 23.3.2 of [67]. u
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Let N be a normal subgroup of a group G and, for each g € G, let the group (5 containing N be

as defined in section 2.3, where

C3/N = Cg/n(Ng).
Let x be a G-invariant irreducible character of N. From the proof of Lemma 4.3.1, x extends to a
character xg of the subgroup N<g> with g € G. We say that g is x-regular if (xg)" = xg for all
x € Cy. Note that Gallagher [40] uses the term goodness instead of x-regular.

Remark 4.4.2. In [67] it was proved that the notion of x -regularity is independent of the choice
of xg and depends only on x and the conjugacy class of Ng in G/N.

We say that the conjugacy class of Ng in G/N is x-regular if g is y-regular. By the above Remark,

this notion is well defined.

Theorem 4.4.3. [/0]. Let N be a normal subgroup of a group G and let x be a G-invariant
wrreducible character of N. Then the number of distinct irreducible constituents of xé s equal the

number of x-regular conjugacy classes of G/N.

PROOF. See [67]. |

Corollary 4.4.4. [40] Let N be a normal subgroup of a group G and let x be a G-invariant
wrreducible character of N. Then the number of distinct irreducible constituents of Xé s at most
the number of conjugacy classes of G/N with equality if and only if x extends to a character of
each subgroup N<x,y> with [z,y] € N.

PROOF. See [67]. u

Now we provide some information on the number of conjugacy classes of G by using certain
character-theoretic facts. In what follows r(G) denotes the number of conjugacy classes of G.

Then r(G) is also the number of irreducible complex characters of G.

Lemma 4.4.5. [67] The following formula holds:

7 2 [Cola)

gEG

PROOF. The group G acts on itself by conjugation. If x is the corresponding permutation character,
then
x(g9) =[Calg)| forall geG

and the G-orbits are precisely the conjugacy classes of G. Hence,
r(G) = (x.1¢) = x(g |Ca(9)
‘G, 2 (g P Z

as desired. u
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Theorem 4.4.6. [/0]. Let N be a normal subgroup of G. Then

(i) 7(G) < r(G/N)r(N);

(ii) The following conditions are equivalent:
(a) 7(G) = r(G/N)r(N),

(b) Cy=Ca(g)N forallge G,

(c¢) each irreducible character of N extends to a character of each subgroup
N<z,y> with [z,y] € G.

PROOF. See Theorem 28.2.3 of [67].
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Fischer - Clifford Matrices

5.1. Prologue

The character table of a group provides considerable information about the group, and hence it is
of importance in the physical sciences as well as in pure mathematics. Character tables of finite
groups can be constructed using various techniques. For example, the Schreier-Sims algorithm,
Todd-Coxeter coset enumeration method, the Burnside-Dixion algorithm and various other tech-
niques. However Bernd Fischer studied a technique for constructing the character tables of group
extensions. This technique, which is known as the technique of Fischer-Clifford Matrices, derives
its fundamentals from the Clifford theory and provides very powerful information for constructing
character tables. If G = N.G is an appropriate extension of N by G, the method involves the
construction of a nonsingular matrix for each conjugacy class of G/N. In this dissertation we apply
this technique to both split and non-split extensions. This technique has also been discussed and
used (mainly to split extensions) in Almestady [4], Darafsheh and Iranmanesh [26, 27], Fischer
[34, 35, 36, 37|, List [75], List and Mohammed [76], Lux and Pahlings [77], Moori and F. Ali [2],
Moori and Mpono [90, 91, 92], Mpono [99], Pahlings [103], Saleh [112], Schiffer [113] and Whitely
[120]. For the Fischer-Clifford matrices and their properties, although we shall note the work of
Mpono [99], Schiffer [113] and Whitely [120], we follow the work of F. Ali [1] closely as he discussed

both split and non-split extensions.

In Section 5.2 we define Fischer-Clifford matrices in general. In Subsection 5.2.1 we shall discuss the
properties of the Fischer-Clifford matrices which are helpful in their computation. In Subsection
5.2.2 we study a special case of Fischer-Clifford matrices of a G = N.G with the property that
every irreducible character of N can be extended to an irreducible character of its inertia group in
G. Sections 5.3 and 5.4 deal with the Fischer-Clifford matrices for the split cosets and non-split

extensions respectively.
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5.2. Definition and General Theory

Let G = N-G be an extension of N by G, where N is normal subgroup of G and G/N = G. Let
g € G be a lifting of g € G under the natural homomorphism G' — G and [g] be a conjugacy class
of elements of G with representative g. Let X(g) = {z1,22,...,%.)} be a set of representatives
of the conjugacy classes of G from the coset Ng whose images under the natural homomorphism
G — G are in [g] and we take x1 = g. Let {01,04,...,0;} be a set of representatives of the orbits
of G on Irr(N) such that for 1 < i < t, we have H; = I5(6;) with the corresponding inertia factors
H; and let 9; be a projective character of H; with factor set &; such that (i;)y = 6;. By Remark
4.3.7 we have

t
Irr(G) = U{(%B)G | B € IrrProj(H;), with factor set a; '},
i=1
where «; is obtained from @; and § from 8 as in Remark 4.3.6. Without loss of generality suppose
that 1 = 1y is the identity character of N. Then H, = G and H; = G. Now choose YL, Y2,y - - Y

to be the representatives of the 042-_1

-conjugacy classes of elements of H; that fuse to [¢g] in G. Since
yr € H; for 1 < k < r, then we define y;;, € H; such that g, ranges over all representatives of the
conjugacy classes of elements of H; which map to y; under the homomorphism H; — H; whose

kernel is N. Now by using the formula for induced characters given in Theorem 2.5.7, we have

WAl = % "CGE%) biB(e,)
1<k<r ¢ Hi\Yt |
_ Cg ()] 7
- l;KT; | (y@k |1/)Z yfk)ﬁ(yﬁk)
_ ‘CG x]

where Z/ is the summation over all ¢ for which y;, ~ z; in G. Now we define a matrix M;(g) by
M;(g) = (ayy), where 1 <u <rand 1 <v < ¢(g), and

Z ||C w 'yek)

Ek

Then we obtain that
(%ﬁ)G(fBg) = Z auvﬁ(yk:)
1<k<r

By doing so for all 1 < i <t such that H; contains an element in [g] we obtain the matrix M(g)
given by
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where M;(g) is the submatrix corresponding to the inertia group Hi and its inertia factor H;. If
H;N[g] = 0, then M;(g) will not exist and M(g) does not contain M;(g). The size of the matrix
M(g) is I x c¢(g) where [ is the number of a; '-regular conjugacy classes of elements of the inertia
factors H;’s for 1 < ¢ < t which fuse into [g] in G and ¢(g) is the number of conjugacy classes of
elements of G which correspond to the coset gN. Then M(g) is the Fischer-Clifford matriz of G
corresponding to the coset gN. We will see later that M (g) is a ¢(g) x ¢(g) nonsingular matrix.
Let
R(g) = {(oy) | 1<i<t, Hin[g)#0, 1<k <7}

and we note that y; runs over representatives of the ai_l—conjugacy classes of elements of H; which
fuse into [g] in G. Following the notation used in Fischer [33], Mpono [99] and Whitely [120] we
denote M(g) by writing M (g) = Cl(Ng) = (agi’y"’)), where

(i) ' |Cq(;)]
a; " =) A ilve,)
= Gt )

7 1Y

with columns indexed by X (g) and rows indexed by R(g). Then the partial character table of G
on the classes {z1,72,...,T.4)} is given by

Ci(g)Mi(g)
Ca(g)M2(g)

Ci(g9) M (g)

where the Fischer-Clifford matrix M (g) is divided into blocks with each block corresponding to
an inertia group H; and C;(g) is the partial projective character table of H; with factor set a; '
consisting of the columns corresponding to the a;" Lregular classes that fuse into [g] in G. We obtain
the characters of G by multiplying the relevant columns of the projective characters of H; with
factor set oz;l by the rows of M(g). We can also observe that the number of irreducible characters
of G is the sum of numbers of projective characters of the inertia factors H;’s with factor set ai_l,

foralli, 1 <i<t.

5.2.1 Properties of Fischer-Clifford Matrices

In this section we shall discuss some properties of the Fischer-Clifford matrices which are useful in
their computation. These properties have been discussed in [1, 26, 27, 35, 36, 75, 76, 90, 91, 92,
99, 112, 120].

Let K be a group and A < Aut(K). Then by Brauer’s theorem (Theorem 2.6.7) A acts on the
conjugacy classes of elements of K and on the irreducible characters of K resulting in the same

number of orbits.
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Lemma 5.2.1. Suppose we have the following matrixz describing the above actions:

S1 1 1 1 1

52 a21 a22 az; a2t
S; a;1 a;2 Qij it
St a1 Atz Qi v Gyt

where a1; =1 for j € {1,2,...,t}, l;’s are lengths of orbits of A on the conjugacy classes of K,
si’s are lengths of orbits of A on Irr(K) and a;j is the sum of s; irreducible characters of K on
the element x;, where x; is an element of the orbit of length l;. Then the following relation holds
fori, i’ € {1,2,... t}:

Sy aiaigly = | K|sid.

PROOF. This result has been proved as Lemma 2.3.2 in [112] and as Lemma 4.3.2 in [120]. u

For arithmetical properties weights are important. We present M (g) with corresponding weights.
Let ; € X(g). For a fixed coset X = gN € G/N, we define m; = [Ng(X) : Ca(z;)].

The Fischer-Clifford matrix M (g) is partitioned row-wise into blocks, where each block corresponds
to an inertia group. The columns of M (g) are indexed by X(g) and for each x; € X(g), at the top
of the columns of M(g), we write |Cz(x;)| and at the bottom we write m;. The rows of M(g) are
indexed by R(g) and on the left of each row we write |Cy, (yx)|, where y;, fuses into [¢g] in G. Then
in general we can write M (g) with corresponding weights for rows and columns as follows, where

blocks corresponding to the inertia groups are separated by horizontal lines.
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Table 5.1
Catanl [Cate] - [Calae)

1, 1, 1,
|Ca(g)l B

2, 2, 2,
T I
Cosl | a0 o
|CH, (y1)] a<11:7y1> a(;yyl) o agzj)l)
|CH; (y2)| a(ll’yZ) agz,w) o agl(j)2)

t, ‘, .
Gl | ol oo gt
|CH, (y2)] agt,yQ) a(2t,y2) . ait(,;,f)

ML M2 ()

Remark 5.2.2. Fischer [36] has shown that the Fischer-Clifford matrix M (g) satisfies complex

conjugation.

The following result gives the orthogonality relation for M (g). Its proof was obtained from Whitley
[120], Proposition 4.3.3.

Proposition 5.2.3. [1, 99, 120](Column orthogonality) Let G = N-G, then

> !CHi(yk)lag-i’yk)agf’yk) = 0;5|Ce(;)|
(ivyk)eR(g)

PROOF. The partial character table of G at classes 1, ... ; Te(g) 18 given by

C1(g9)Mi(g)
Ca(g)Ma(g)

Ci(9)M:(9)
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By column orthogonality of the character table of G, we have

Coalsy = S S (% d"aenc S disw)

i=1 g;elrrProj(H;) yx:(i,yx)ER(g) Yy, (4,95, ) ER(9)

t
=YY s B +

i=1 B;€IrrProj(H;) Yk

S % 6 g Bl

Yk Yy, FYk
t

= 2o Y BB +
=1 Yk Bi€IrrProj(H;)
SO el S Biy)Bi)
Yk Y, # Yk Bi€lrrProj(H;)

- S ol + 0
=1 Yk

= > a™apiCn )l
(i.yx)€R(g)

|
Theorem 5.2.4. agl’g) =1 forallje{1,2,...,¢(9)}.
PROOF. For y;, ~ z; in G, we have |Cq(z;)| = ’Cﬁ1 (ye,)|. Thus we obtain that
= Z %yek Zl—l
\CHI
Hence the result. u

Proposition 5.2.5. [75, 120] The matriz M (1¢q) is the matriz with rows equal to the orbit sums

of the action of G on Irr(N) with duplicate columns discarded. For this matriz we have ag-i’lc) =

[G : H;], and an orthogonality relation for rows:

a{i16) gli"16) _ 1 o
2w = o™ = T

PROOF. See [99]. u

As a consequence of Lemma 5.3.1, Proposition 5.3.3 and from Fischer [36], we have the following

properties:

(a) [X(9)| = |R(9)| ,
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c(g) (tye)  (@y) _ &
(b) Zj:gl m;a; " a; V= 5(i,yk),(i’,y§€) ||CHC,¥((Z!/JI)J)||N| ’

(©) Y woerta o al ™ |C, ()| = 8,1 |

(d) M(g) is square and nonsingular.

5.2.2 Fischer-Clifford Matrices (Special Case)

Let G = N.G be an extension of N by G such that every irreducible character # of N can be
extended to its inertia group H = I5(6). Now we define the Fischer-Clifford matrices in the same
way as the general case. Let § € G be a lifting of g € G under the natural homomorphism G — G
and [g] be a conjugacy class of elements of G with representative g. Let X(g) = {z1,72,...,%q)}
be a set of representatives of the conjugacy classes of G from the coset Ng whose images under
the natural homomorphism G — G are in [g] and we take 71 = g. Let {61,09,...,0;} be a set
of representatives of the orbits of G on Irr(N) such that for 1 < i < ¢, we have H; = I5(6;)
with H; = H;/N < G and that v¢; € Irr(H;) is an extension of 6; to H;. Then without loss
of generality suppose that §; = Iy is the identity character of N. Then H; = G and H; = G.
Now choose 1,42, - ..,y to be the representatives of the conjugacy classes of elements of H; which
fuse into [g] in G. Since y, € H; for 1 < k < r, then we define y,, € H; such that y,, ranges
over all the representatives of the conjugacy classes of elements of H; which map to v under the
homomorphism H; — H; whose kernel is N. Let 8 € Irr(H;) such that N C ker(3). Then 3 is a
lifting of 3 € Irr(H;) such that B(ye,) = B(yy) for any lifting Yo, € H; of y, € H;. Now by using
Theorem 2.4.7, as in the general case, we obtain that
W) ) = 3 (i E i)
1<k<r 1 H; yék)|

where >°,’ is the summation over all ¢ for which y;, ~ z; in G. We define a matrix M;(g) by
M;(g9) = (auy), where 1 <u <r and 1 <wv < ¢(g), and

oG]
B = 2 o] V)
Then we obtain that
@iB) () = > auwblu)-

1<k<r

By doing so for all 1 < i <t such that H; contains an element in [g] we obtain the matrix M(g)
given by
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where M;(g) is the submatrix corresponding to the inertia group H; and its inertia factor H;. Then
as in the previous section, M(g) is the Fischer-Clifford matriz of G corresponding to the coset gN.
Let

R(g) ={(,ur) [1<i<t, Hin[g] #0, 1<k <r}

and we note that y; runs over representatives of the conjugacy classes of elements of H; which fuse
into [g] in G. Again we denote M (g) by writing M (g) = (agl’yk)), where

(Zvyk Z |CG x] Yo )
| S

CH@ fk

with columns indexed by X (¢) and rows indexed by R(g). Then we obtain the irreducible characters

of G' by multiplying the relevant columns of the irreducibles characters of H; by the rows M (g).

Remark 5.2.6. All our results of Section 5.2.1 are applicable with irreducible projective characters

are replaced by ordinary irreducible characters.

5.3. Split Cosets

From now on suppose that N is an elementary abelian normal p-subgroup of G and gN = X is a
fixed coset of G/N =2 G. Let M = C; = N5(X). We define

Ng:=<|g,n], ne N >.
With these notations we have the following lemma.

Lemma 5.3.1. (i) N, = Ny for all x € X and
(9, u1].[g, u2] = [g,urug] for all uy,uz € N.

(i) Ng << M and Ng < N.

(iii) If p € Irr(N), then Ny < ker(p) or Ia(p)NgN = 0.
PROOF.

(i) Let x = gn € gN and u € N, then

@] = [gnou] = ntw)onu
= (u” )g since N is abelian
= g lulgu=g,u
which implies that
Ny =Nz forall =€ gN\.
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Also since N is abelian, we obtain for all ui,us € N

[§7u1]'[§>u2] = (ul_l)gul(ugl)gUQ

= (uy'uz")ugus

[g7 UIUQ] .

Hence

9, u1].[g, u2] = [g,u1ua] for wui,uz € N.
ii) Since [g,u] = (u=')%u € N, we obtain N; < N < M. Conversely, let m € M then
g

(g, u]™ m” (g, ulm
@ "

= @
9

u)mmm

mlmm

(
(u™)
™ u™ e Nj .
Hence Nz <1 M .

(iii) Let ¢ € Irr(IN) be fixed. Then

Ny < Ker(p) & o¢([g,u]) =¢(1)=1 foral uweN
& (g gu) = o((u)Iu) =1
& p((u™)9) = (p(u) " = p(u)
& @u ) =p™)
s =9
& gN Cls()
& gNUIa(p) #0

Remark 5.3.2. We can easily show that <X> /Ny is abelian and X /N is a coset of <X>/Ng.

Lemma 5.3.3. [36] The rows of the Fischer-Clifford matriz Cl1(X) can be identified with restric-
tions of M-invariant characters of <X>/Ng to X/Nj.

PROQF. This is Lemma 5.3 in [36]. u

Remark 5.3.4. In the above lemma, the rows of Cl1(X) will be an independent set of orbit sums,

under the action of M on <X>/Ng. This observation was first given in Fischer [34].

Definition 5.3.5. A coset X is said to be a split coset if it contains an element x such that
M = N.Ca(z).
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Note that we do not require <x>MN N = <1> in the above definition.

Lemma 5.3.6. [113] If the extension split, then every coset is a split coset.

PROCOF. Let X = gN and h € Cg(g) then h(gn)h~! = (hgh™")(hnh™') = ghnh™' = gn" € gN.
Now since N < M and Cg(g) < M then M > N.Cg(g). Let C be the complement of N in G such
that g € C. Let m € M then m = n.k, for some k € C. Since M = Ngz(gN), (gN)™ = gN. Hence

gN = (gN)" =m(gN)m™!
= n(kgNEk™Y)n™! = n(kgNE™)n™! = n(gN)*n=L.
So that n~Y(gN)n = (gN)* and n~'gN = (gN)*. Hence gN = (gN)*. Tt follows that gN =

(gN)* = g*N, which implies that g&¥ € gN. Hence g* € C N gN = {g} and so k € Cg(g), which
implies that m = n.k € N.C5(g) and so M < N.Cx(g). Thus M = N.Cx(g). u

The following result is of fundamental importance and very helpful to fill the entries of Fischer-

Clifford matrices.

Lemma 5.3.7. [36] Let X be a split coset then the rows of CI(X) can be identified with M -invariant
characters of N/Ng multiplied by a p-th root of unity.

PROCF. See [36] and [113]. u

Lemma 5.3.8. Let X = gN be a split coset and Nz(X) = NCgx(x) for x € X(g). Then we have
the following:

(i) a§i7yk) _ Ca(9)|

(1) |a§-i’yk)\ < ]agi’yk” foralll1<j<r,

(iii) If |[N| = p*, then ag.i’y’“) = agi’yk)(mod p) .

PROOF. See [113].

5.4. Non-Split Extensions

Let G = N'G be a non-split extension, where NN is an elementary abelian normal p-subgroup of G.
Let gN be a conjugacy class representative of G /N and ¢ be a representative of G-orbit irreducible
characters of N with the projective extension @ to G. We consider the groups <g>N < G and
<gN> < G/N.
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Lemma 5.4.1.
<g>N/N = <gN> .

PROOF. Let « € <g>N/N, then z = g"™nN = g™ N for some m € Z. So that z = (gN)"™ € <gN>.
Hence <g>N/N < <gN>. Conversely, let x € <gN>. Then z = (gN)™ = g™ N for some m € Z.
Hence z = (g™ N) € <g>N/N. Thus <gN> < <g>N/N. Therefore <g>N/N = <gN>. B

Lemma 5.4.2. With the above notations, we have the following:

(a) <g>N < M.
(b) (<g>N)" = N where (<g>N)" denotes the commutator subgroup of <g>N.
(¢) <g>N < In(p) where p € Irr(N).

(d) Given ¢ € Irr(N) there exists an extension nB to <g>N where n = (¢)<g>n and [ is a
projective character of <gN>.

PROOF.

(a) Let € <g>N then x = g"N for some m € Z. Now

z(gN) = g™n(gN)=g"ngN = g"nNg (since N <G)

Similarly, (gN)x = Ng™*!. Hence € M = Ng(gN) and so <g>N < M.

(b) First suppose that [g,n] € Nj then [g,n] € (<g>N)" and thus N; < (<g>N)'. Also, for
n € N, by the definition of Nz, we have

(gN3)(nNg) = (nNg)(gNg).

Therefore (<g>N/Nj) is abelian, and hence (<g>N) < N; and we deduce that (<g>N) =
N,.

(c) Let ¢ € Irr(N) then N; < Ker(p). Now by Lemma 5.3.1, we have gN NIy (¢) # 0. Therefore
g lies in Ip;(p) and so <g> < Ips(¢). Hence <g>N < Ip(¢p).

(d) Notice that by part (c), W = <g>N is a subgroup of Ip/(¢). Hence ¢ is invariant under
W. So we can apply the Theorem 4.3.3 to ¢ and W (see Theorem 5.8 in [100]). Let x €
Irr(<g>N, p) then by the Clifford theorem (Theorem 4.3.3) we obtain x = ((95)<§>N)ﬁ =np
where 3 is an @~ !-projective character of <g>N/N = <gN> and a is the factor set of
<g>N x <g>N obtained from «. If N is abelian, then x is linear since xyy = ¢ is linear

(because deg(x) = deg(p) = 1).
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Theorem 5.4.3. [35] Let g € G so that <g>N is abelian. Then <gN> < Z(G/N) and the rows
of Fischer-Clifford matriz of gN for regqular classes of the inertia group of ¢ in G can be regarded
as restrictions to gN of the G-orbit sums of the (projective) extension n3 to <g>N of .

PROOF. See [35] and [113]. u

5.5. Character Table and GAP

Using Fischer-Clifford matrices and partial character tables, we are able to compute the full char-
acter table of G. Since the character tables have been computed manually, in order to detect errors
we tested their validity using GAP. For doing so we developed and used Programme E to rewrite
the character tables in GAP format.

Programme E

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[n Centralizer Orders];
>ct.OrdersClassRepresentatives:=[n Class Representatives Orders];
>ct.Irr:=[[n x n irreducibles]];
>ct.UnderlyingCharacteristic:=0;ct.Id: =G}
>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();
gap>SetInfoLevel(InfoCharacterTable,2);
gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).

I would like to acknowledge F. Ali who helped me to develop Programme E. The Programme E

also computes the power maps.
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6
A group 2":S5 in Flis

Prologue

The group Ss & Of (2) is a maximal subgroup of SPs(2) of order 40320 and index 36. It can be
generated by two elements of orders 2 and 7 respectively inside of SPs(2). The group 27:Sg is a
maximal subgroup of 27:SPs(2) of index 36. However 27:SPs(2) is itself a maximal subgroup of
the full automorphism group Figs of the smallest Fischer sporadic simple group Fiss, of index
694980. The object of this chapter is to compute the Fischer-Clifford matrices of 27:Sg which can
then be used together with the ordinary character tables of the inertia factors of Sg to compute its
full ordinary character table. One can look at [1, 18, 84, 85, 90, 91, 99] for further reading. The
notation used is taken from the ATLAS of finite groups [23] which we denoted ATLAS and ATLAS
of finite group representation [124] denoted ATLAS V3.

6.1. Introduction

The group Fisy = Fig.2 is the full automorphism group of the smallest Fischer sporadic simple
group Figs. It has a maximal subgroup 27:5Pg(2) of order 185794560 and index 694980 which has
been discussed in [91]. More details about this maximal subgroup can be obtained from [99]. This
maximal subgroup contains a group of the form 27:Sg as a subgroup of order 5160960 and index
36. The group Sg is a maximal subgroup of SPs(2) of order 40320 and index 36. There are two
orthogonal groups sitting maximally in SPs(2) viz. Of (2) & Ss and Og (2) = Uy(2):2 of orders
40320 and 51840 and indices 36 and 28 respectively.

We used the computer algebra system of GAP [41] running on a SUN GX2 computer at the
University of KwaZulu-Natal in Pietermaritzburg. The naming of the conjugacy classes of elements
will be consistent with that used in the ATLAS [23].

We generate SPs(2) as a matrix group by two 7 x 7 matrices a and 3 over GF(2), where « and 3
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are given by

O = B O R =
O = B R R = O
O O O O = = =
O = = O O O =
SO O O O O = =
_H O O O O O O
D
Il
_ —_ O O = R O
OO R B R = O
O O = O O = =
= o= = O O
H R B R RO O
= O O = = O O
_H O O O O O O

Q
Il
c o~~~ o oo

with o(a) = 5 and o(f) = 2.

6.2. The action of S; on 27

We generate Sg as a matrix group inside of SPg(2) by two 7 x 7 matrices a; and /31 of orders 2 and

7 respectively as follows:

01 0 1 1 1 0 00 1 1 1 0 0
1 0 01 1 1 0 001 100 0 0
111 11 1 0 001 1 00 1 0
ar=|10 0 0 1 0 0 O , fp=|1 01 1 1 1 0
1 101 0 10 1110 1 1 0
1101 1 0 0 01000 1 0
Lo 0 0 0 0 0 1 | Lo o 1 1 0 1 1]

When Sg acts on 27, we obtain six orbits of lengths 1, 1, 28, 28, 35, 35 with corresponding point
stabilizers Sg, Sg, S¢ X 2,56 x 2, (54 x S4):2,(Sy x S4):2 of orders 40320, 40320, 1440, 1440, 1152,
1152 respectively. These point stabilizers can be generated inside of Sg as groups of 7 X 7 matrices
over GF'(2) as follows:

Se X 2= (g, [2) , (S4x854):2= as,Fs)

where
1 0 0 0 0 0 07 r1 1 0 1 1 0 07
00 00 1 0 0 1 1 1 0 1 1 0
00 1 0 0 0 O 00 1 1 1 0 0
as=1]10 0 0 1 0 0 0 , Bo=1]1 0 1 0 0 1 0
01 00 0 0 O 101 1 1 0 0
00 00 0 1 0 101 1 0 0 0
Ll o1 0 0 1 0 1 Lo 1 0 0 0 0 1
1 1 0 0 0 0 07 r1 1 1 0 1 1 07
01 00 0 0 O 1 1.0 0 0 0 0
01 1 0 0 0 O 11 0 0 1 1 0
ag=1]10 1 0 1 0 0 0 , B3=|0 1 0 1 0 0 0
00 1 1 1 1 0 101 0 1 0 0
0000 0 1 0 0000 1 1 1 1 0
L0 00 0 0 0 1 L1 0 1 0 1 1 1 |

We have that o(ag) = 2,0(82) = 6,0(a3) = 2,0(083) = 12. The six orbits resulting from the action of
Sg on 27 have the following representatives (0, 0,0, 0,0,0,0), (1,1,0,1,0,0,1),(1,0,1,0,1,0,1), (0,0,0,1,0,0,0),
(1,1,1,1,1,1,1),(1,0,0,0,0,0,0) respectively.
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6.3. The conjugacy classes of 27:5g

The action of Sg on 27 produces six orbits of lengths 1, 1, 28, 28, 35, 35 with corresponding point
stabilizers Sg, Ss, S¢ X 2,56 x 2,(Sy x S4):2,(Sy x S4):2 of orders 40320, 40320, 1440, 1440, 1152,
1152 respectively. Let x(Sg | 27) be the permutation character of Sg acting on 27. Then, from

methods that were developed in [99] and also used in [1], we obtain that

x(Ss | 27) L4 142058, + 2178

(S4><S4):2
= la+ la+2(la+ 7a+ 20a) 4 2(1la + 14a + 20a)

= 6xla+2xT7a+2x14a + 4 x 20a

Ss Ss
where ISGXQ, I(S4xs4):2

Thus x(Ss | 27) will give the number & of points of 27 fixed by each g € Sg such that k = 2™, where
m € N satisfies 1 < m < 7. These are given in Table 6.1 below.

are the identity characters of Sgx 2 and (S4x.S4):2 induced to Sg respectively.

Table 6.1:

[9lss | la 2a 2b 2c 2d 3a 3b 4a 4b 4c 4d
k|128 64 32 32 16 32 8 16 16 8 8
[g]ss | ba 6a 6b 6c 6d 6e 7a 8a 10a 12a 15a
k|8 16 4 4 8 4 2 4 4 4 2

We used GAP for programmes A and B (see Appendix A), which can also be found in [1] and [99],
written in MAGMA and CAYLEY. We also used coset analysis, which is also discussed in chapter
2, to compute the conjugacy classes of elements of 27:Sg. These conjugacy classes are given in
Table 6.2 and the descriptions of the parameters used can also be found in [1, 99, 120]. We give

programmes A and B and the table for conjugacy classes:

PROGRAMME A for 27:Sg

gap>V:=FullRowSpace(GF(2),7);
gap>grl:=(OneGF(2))*(7 x 7 matrix group generators];
gap>gr2:=(OneGF(2))*(7 x 7 matrix group generators];
gap>grp:=Group(grl,gr2);
gap>Ccl:=ConjugacyClasses(grp);
gap>0O:=Union(Orbits(grp,V));
gap>for i in [1..22] do
>Print(Representative(Cclli]));
>w:=0ne(GF(q))*[0,0,---,0];
>e:=[];
>while Difference(O,e) <> [ ] do
>d:=[];
>for x in O do;
>y:=[x+w+(x*(Representative((Ccl)[i]))];
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>d:=Union(d,y);
>od;
>Print(d);
>e:=Union(d,e);
>if Difference(O,e) <> [] then
>w:=Representative(Difference(O,e));
>fi;
>od;
>ri=[];
>u:=0ne(GF(2))*[0,0,---,0];
>while Difference(O,e) <> [ ] do
>m:=[ ;
>for g in Centralizer(grp,Representative(Ccli])) do
>l:=[u*gl;
>m:=Union(m,l);
>od;
>Print(” A block for the vectors under the action of a centralizer”);
>Print(m);
>r:=Union(m,r);
>if Difference(O,r) <> [ ] then
>u:=Representative(Difference(O,r));
>fi;
>od;

> Prin (7 FRRRR R oo R R R )

>od;

PROGRAMME B for 27:Ss

gap>V:=FullRowSpace(GF(2),7);
gap>ml:=(OneGF(2))*[7 x 7 matrix group generators|;
gap>m2:=(OneGF(q))*[7 X 7 matrix group generators|;
gap>m:=Group(m1l,m2);
gap>c:=ConjugacyClasses(m);
gap>g:=Representative(c[i]);
gap>d:=One(GF(2))*[a1, a2, - - - , arl;
gap>wi=d+dxg+dxg?+---+dxgh1;

gap>Print(w);

Table 6.2: Conjugacy Classes of 27:Sg

geSs | k| fj dj w [lo7.5 |Co7. 54 ()]
1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) 1A 5 160 960
1 (1,1,0,1,0,0,1) (1,1,0,1,0,0,1) | 24 5 160 960
1A 27 | 28 | (1,0,1,0,1,0,1) (1,0,1,0,1,0,1) | 2B 184 320
28 | (0,0,0,1,0,0,0) (0,0,0,1,0,0,0) | 2C 184 320
35 | (1,1,1,1,1,1,1) (1,1,1,1,1,1,1) | 2D 147 456
35 | (1,0,0,0,0,0,0) (1,0,0,0,0,0,0) | 2F 147 456
1 (0,0,0,0,0,0,0) (0,0,0,0,0,0,0) | 2F 92 160
1 (1,0,0,1,1,0,1) (1,1,0,0,1,1,0) | 4A 92 160
6 (1,0,0,0,0,1,1) (0,1,0,0,0,0,0) | 4B 15 360
2A 26 6 (1,0,1,1,1,1,0) (0,0,0,0,0,0,0) | 2G 15 360
10 | (1,1,1,1,1,1,1) (0,0,1,0,0,0,0) | 4C 9 216
10 | (0,0,1,1,1,0,0) (0,0,0,0,0,0,0) | 2H 9 216
15 | (1,0,1,0,1,0,1) (0,0,0,0,0,0,0) | 21 6 144
continued on next page

59




CHAPTER 6. A GROUP 27:Sg IN F1Is

Table 6.2 (continued from previous page)

geSs | k| fj dj w [z]57. 5, ()]

15 | (0,0,0,1,0,0,0) | (0,1,0,1,1,0,0) | 4D 6 144

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 2J 12 288

1 | (0,1,1,1,0,1,1) | (0,0,0,0,0,0,0) | 2K 12 288

1 | (1,1,0,1,0,0,1) | (0,0,0,0,0,0,0) | 2L 12 288
2B 25 | 1 | (1,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 2M 12 288

2 | (0,0,1,1,0,0,1) | (0,0,0,0,0,0,0) | 2N 6 144

2 | (1,1,1,0,0,0,0) | (0,0,0,0,0,0,0) | 20 6 144

12 | (1,0,1,0,1,0,1) | (0,1,1,0,1,1,0) | 4F 1 024

12 | (0,0,0,1,0,0,0) | (0,1,1,0,1,1,0) | 4F 1024

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 2P 6 144

1 | (1,1,0,0,1,0,1) | (1,1,1,1,1,1,0) | 4G 6 144

1 | (1,0,0,0,0,1,1) | (1,0,0,0,0,1,0) | 4H 6 144

1 | (0,1,0,0,1,1,0) | (0,0,0,0,0,0,0) | 2Q 6 144
2C 25 | 3 | (1,0,1,0,1,0,1) | (1,1,1,1,1,1,0) | 4I 2 048

3 | (1,0,0,0,1,1,0) | (0,0,0,0,0,0,0) | 2R 2 048

3 | (0,1,0,1,0,0,1) | (1,1,0,1,1,0,0) | 4J 2 048

3 | (1,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 28 2 048

8 | (0,1,1,1,0,1,1) | (1,1,0,1,1,0,0) | 4K 768

8 | (0,0,0,1,0,0,0) | (0,0,0,0,0,1,0) | 4L 768

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 2T 1536

1 | (1,0,0,0,0,0,1) | (0,1,0,0,0,0,0) | 4M 1536

1 | (0,0,0,1,1,1,1) | ((0,0,1,1,0,0,0) | 4N 1536
2D 24 | 1 | (0,1,0,1,1,1,0) | (0,1,1,1,1,1,0) | 40 1 536

3 | (1,0,1,0,1,0,1) | (0,1,1,0,0,0,0) | 4P 512

3 | (0,1,0,0,1,0,1) | (0,1,1,1,0,0,0) | 4Q 512

3 | (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 2U 512

3 | (0,1,0,0,1,0,0) | (1,1,0,0,1,1,0) | 4R 512

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 34 11 520

1 | (1,0,1,0,1,0,1) | (1,1,0,0,1,0,1) | 64 11 520
34 25 | 5 | (0,1,1,1,0,1,1) | (1,1,1,1,0,0,0) | 6B 2 304

5 | (0,0,0,1,0,0,0) | (0,1,1,1,0,1,0) | 6C 2 304

10 | (1,0,0,0,0,1,1) | (0,1,1,0,0,0,1) | 6D 1152

10 | (0,1,0,0,1,1,0) | (0,1,1,0,1,0,0) | 6E 1152

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 3B 288

1 | (1,0,1,0,1,0,1) | (1,0,1,0,1,0,1) | 6F 288
3B 28 | 1| (0,1,1,1,0,1,1) | (0,1,1,1,0,1,1) | 6G 288

1 | (0,0,0,1,0,0,0) | (1,0,0,1,0,1,0) | 6H 288

2 | (1,0,0,0,0,1,1) | (0,1,1,0,0,0,1) | 6I 144

2 | (1,0,1,1,1,1,0) | (1,0,1,1,1,1,0) | 6J 144

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 48 1 536

1 | (1,0,0,0,0,1,1) | (0,0,0,0,0,0,0) | 4T 1536
4A 24 | 3 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 4U 512

3 | (1,0,0,0,1,1,0) | (0,0,0,0,0,0,0) | 4V 512

4 | (0,1,1,1,0,1,1) | (1,0,1,0,0,1,0) | 8A 384

4 | (0,0,0,1,0,0,0) | (1,1,0,1,1,1,0) | 8B 384

1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 4W 512

1 | (1,0,0,0,0,1,1) | (0,0,0,0,0,0,0) | 4X 512

1 | (1,1,0,0,1,1,1) | (0,0,0,0,0,0,0) | 4Y 512
4B 24 | 1 | (0,1,0,0,1,0,0) | (0,0,0,0,0,0,0) | 42 512

2 | (1,0,1,1,1,0,1) | (0,0,0,0,0,0,0) | 4AA 256

2 | (1,1,0,1,1,1,0) | (0,0,0,0,0,0,0) | 4AB 256

4 | (1,0,1,0,1,0,1) | (1,1,0,1,1,1,0) | 8C 128
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Table 6.2 (continued from previous page)

gesSs | k| f; d; w [e]57.5, ()]
4 | (0,0,0,1,0,0,0) | (1,0,1,0,0,1,0) | 8D 128
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 4AC 256
1| (0,1,1,1,0,1,1) | (0,0,0,0,0,0,0) | 4AD 256
4C 23| 1 | (1,1,0,0,1,0,1) | (0,0,0,0,0,0,0) | 4AE 256
1 | (1,0,1,1,1,1,0) | (0,0,0,0,0,0,0) | 4AF 256
2 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 4AG 128
2 | (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 4AH 128
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 4AI 128
1 | (1,0,1,0,1,0,1) | (0,0,0,1,0,0,1) | 8E 128
1| (0,1,1,1,0,1,1) | (0,1,0,1,0,0,0) | 8F 128
4D 23 1 1 | (0,1,0,0,1,0,1) | (0,0,0,0,0,0,0) | 4AJ 128
1 | (0,1,1,0,0,1,1) | (0,0,0,0,0,0,0) | 4AK 128
1 | (0,0,0,1,0,0,0) | (0,1,0,0,0,0,0) | 8G 128
1| (1,0,1,1,1,1,0) | (0,0,0,0,0,0,0) | 4AL 128
1 | (1,0,0,0,0,1,0) | (0,0,1,0,1,1,0) | 8H 128
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 54 240
5A 23| 1 | (0,1,0,0,1,0,1) | (0,0,0,1,1,0,0) | 10A 240
3 | (1,0,1,0,1,0,1) | (1,0,1,1,1,0,0) | 10B 80
3 | (0,0,0,1,0,0,0) | (1,0,0,0,1,1,0) | 10C 80
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 6K 576
1 | (1,0,1,1,1,0,1) | (1,0,0,0,0,1,0) | 124 576
1 | (0,0,0,0,1,1,1) | (0,0,0,0,0,0,0) | 6L 576
6A 24 | 1 | (1,0,0,1,0,0,0) | (1,1,1,1,1,0,0) | 12B 576
3 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 6M 192
3 | (1,0,0,0,0,1,1) | (1,1,1,0,0,0,0) | 12C 192
3 | (0,0,0,1,0,0,0) | (1,0,0,0,0,1,0) | 12D 192
3 | (1,0,0,0,1,1,0) | (0,0,0,0,0,0,0) | 6N 192
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 60 192
1 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 6P 192
6B 28 | 1 | (1,1,1,1,1,1,1) | (1,1,1,1,1,0,0) | 12E 192
1 | (0,1,0,0,1,1,0) | (1,1,1,1,1,1,0) | 12F 192
2 | (0,1,1,1,0,1,1) | (1,0,1,0,0,1,0) | 12G 96
2 | (0,0,0,1,0,0,0) | (1,1,1,1,1,0,0) | 12H 96
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 6Q 144
6C 22 | 1 | (1,0,1,0,1,0,1) | (1,1,0,0,1,1,0) | 12I 144
1 | (1,0,0,0,0,1,1) | (1,1,1,0,0,0,0) | 12J 144
1 | (1,0,1,1,1,1,0) | (0,0,0,0,0,0,0) | 6R 144
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 6S 96
1 | (0,1,1,1,0,1,1) | (0,0,0,0,0,0,0) | 6T 96
6D 23 | 1 | (1,1,0,0,1,0,1) | (0,0,0,0,0,0,0) | 6U 96
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 6V 96
2 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 6W 48
2 | (1,0,0,0,1,1,0) | (0,0,0,0,0,0,0) | 6X 48
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 6Y 48
6F 22 | 1 | (1,0,1,0,1,0,1) | (1,1,0,0,0,1,0) | 12K 48
1 | (0,1,0,0,1,0,1) | (0,0,0,0,0,0,0) | 62 48
1 | (0,0,0,1,0,0,0) | (0,0,1,0,0,1,0) | 12L 48
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 7A 14
TA 2 1| (1,1,1,1,1,1,1) | (1,1,0,1,0,0,1) | 14A 14
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 8I 32
8A 22 | 1 | (1,0,1,0,1,0,1) | (0,0,0,0,0,0,0) | 8J 32
1 | (0,1,1,1,0,1,1) | (0,0,0,0,0,0,0) | 8K 32
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Table 6.2 (continued from previous page)

geSs | k| f; dj w [2]57.5, (%))
1 | (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 8L 32
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 10D 40
104 22 | 1 | (1,0,1,0,1,0,1) | (1,1,0,1,0,0,1) | 20A 40
1 | (0,1,0,0,1,0,1) | (0,0,1,0,0,1,0 | 20B 40
1 | (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 10E 40
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 12M 48
124 22 | 1 | (1,0,1,0,1,0,1) | (1,1,0,0,1,0,1) | 244 48
1 | (0,1,1,1,0,1,1) | (1,1,0,1,0,0,1) | 24B 48
1 | (0,0,0,1,0,0,0) | (0,0,0,0,0,0,0) | 12N 48
1 | (0,0,0,0,0,0,0) | (0,0,0,0,0,0,0) | 154 30
15A 2 | 1| @1,1,1,1,1,1) | (1,1,1,1,1,0,0) | 304 30

We obtain that 27:Sg has altogether 128 conjugacy classes of elements.

6.4. The Fischer-Clifford matrices of 27: S5

From the above section, we obtained 128 conjugacy classes of elements of 27:Sg. From [89] since we
have 128 conjugacy classes of elements, we have 128 irreducible characters of 27:Sg. By [14] when
Sg acts on Irr(27) we get six orbits and we use programme C (see Appendix A) to show that these
orbits are of lengths 1,1,28,28,35 and 35 respectively. The inertia factor groups H;, i =1,---,6
are subgroups of Sg of index 1,1,28,28,35 and 35 respectively and from the ATLAS [23] we get
that Hy = Ss, Hy = Sg, H3 = Sg X 2, Hy = Sg x 2, H5 = (S x S4):2 and Hg = (S4 x S4):2. The

fusions of the inertia factor groups Sg x 2 and (S4 x S4):2 into Sg are given in Table 6.3 below

Table 6.3: The fusion of Sg x 2 and (S4 x S4):2 into Sg

Glsexz | — | Wse | lsixspe | — | s
1A 1A 1A 1A
2A 2A 2A 2B
2B 2A 2B 2D
2C 2B 2C 2A
2D 2B 2D 2C
2F 2C 2E 2B
2F 2C 2F 2D
2G 2D 3A 3A
3A 3A 3B 3B
3B 3B 4A 4A
4A 4A 4B 4Cc
4B 4B 4C 4B
4C 4B 4D 4D
4D 4Cc 4F 4D
5A 5A 4F 4C
6A 6A 6A 6B
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Table 6.3 (continued from previous page)

[9)(saxsi2 | — | Wlse

6A
6E
8A
10A

6B
6C
8A
10A

12A

12A

[g]sgx2 | — | [y]sg

6A
6B
6C
6D
6E

6B
6C
6D
6F
6F

From the above fusions, we are now able to obtain the Fischer-Clifford matrices of 27:Sg. According
to [99], all these Fischer-Clifford matrices will have integer entries. These Fischer-Clifford matrices

are thus given in Table 6.4 below

Table 6.4: The Fischer-Clifford Matrices of 27:Sg

-6 =2
6 2

6
6

—-10 -2

10
10

10

M(4A) =

—4
—4

—4
4

—28
28
35

-35

28
28
35
35

-5

-3 -1

-3

15
—15

15
15
15

4 -4 —4

4

-4 —4
-3 =3

4
3

8 -8 -8

8

-6 -2 =2

—6

-6 -6

6

M(1A) =

M(2B) =
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Table 6.4 (continued from previous page)
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6.5. The power maps of 27:Ss

The power maps of 27:Sg are given in Table 6.5 below

Table 6.5: The Power Maps of elements of 27 : Sg

glss [ [@lorse | 2 [ 3 [ 5 [ 7] lglsy [lalorse | 2 ] 8 [ 5] 7
1A 2F 1A
2A 1A 4A 2C
2B 1A 4B 2C
1A 2C 1A 2A 2G 1A
2D 1A 4Cc 2C
2F 1A 2H 1A
21 1A
4D 2C
2J 1A 2P 1A
2K 1A 4G 2C
2L 1A 4H 2C
2M 1A 2Q 1A
2B 2N 1A 2C 41 2C
20 1A 2R 1A
4E 2C 4J 2C
4F 2C 25 1A
4K 2C
4L 2C
2T 1A 3A 1A
4M 2C 6A 3A 2A
4N 2C 6B 3A 2A
2D 40 2C 3A 6C 3A 2C
4P 2C 6D 3A 2B
4Q 2C 6F 3A 2C
2U 1A
4R 2C
45 2P 3B 1A
4T 2P 6F 3B 2B
4A 4U 2P 3B 6G 3B 2C
4V 2P 6H 3B 2A
8A 4J 61 3B 2C
8B 4J 6J 3B 2A
4W 2P 4AC 2J
44X 2P 4AD 2L
4Y 2P 4AFE 2J
4B 4Z 2P 4C 4AF 2L
4AA 2P 4AG 2L
4AB 2P 4AH 2L
8C 4J
8D 4J
4A1 2P 6K 3A 2F
8E 4J 12A 6C 4Cc
8F 4J 6L 3A 2H
4D 4AJ 2R 6A 12B 6C 4A
4AK 2R 6M 3A 21
continued on next page
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Table 6.5 (continued from previous page)

olss [ lalors, | 2 | 3 [ 5 [ 7] lolsy [lalorg, | 2] 8 [ 5] 7
8G 4J 12C 6C 4B
4AL 2P 12D 6C 4A
8H 4J 6N 3A 2G
5A 1A 60 3A 2P
10A 5A 2A 6P 3A 2Q
5A 10C 5A 2C 6B 12F 6C 4H
10C 5A 2C 12F 6C 4G

12G 6C 4K
12H 6C 4L

6Q 3B 2F 65 3B 2J
121 61 4D 6T 3B 2K
6C 12J 61 4C 6D 6U 3B 2L
6R 3B 2H 6V 3B 2M
6W 3B 2L
6X 3B 2M
6Y 3B 2T TA 1A
6F 12K 6G 4L TA 14A TA 2A
672 3B 2U
12L 6G 4M
81 4AD 10D 5A 2F
8A 8J 4AE 10A 20A 10B 4D
8K 4AFE 20B 10B 4B
8L 4AD 10E 5A 2H
12M 6Q 45 15A 5A 3A
12A 24A 12FE 8A 15A 30A 154 10A 6A

24B 12E 8B
12N 60 45

6.6. The fusion of 27:Sg into 27:5F(2)

The group 27:SP5(2) is a maximal subgroup of Fisy containing a maximal subgroup of the form
27:Sg. To determine the fusion of 27:Sg into 27:5Ps(2), we shall use the fusion of Sg into SP(6,2),
Theorem 7.5.1 from [99] and the power maps of both groups, listed in Table 6.1 above and in [41]
respectively. The fusion of Sg into SP(6,2) is given in Table 6.6.
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Thus the fusion

Table 6.6: The Fusion of Sg into SP(6,2)

9lss — [lspe2 || l9lss —  [Ylspe,2)
1A 1A 2A 2A
2B 2C 2C 2D
2D 2B 3A 3A
3B 3C 4A 4C
4B 4F 4C 4D
4D 4B 5A 5A
6A 6A 6B 6D
6C 6F 6D 6F
6F 6G TA TA
8A 8B 10A 10A
12A 12B 15A 15A

of 27:Sg into 27:SPs(2) is given in Table 6.7 below.

Table 6.7: The fusion of 27:Sg into 27:SP(6,2)

l9lss | [=la7.s, | —_ | Wlor.spee.2) | [9lss | [zlar.s | —_ | [Ylo7.5P(6.2)
1A 1A 2F 2D
2A 2B 4A 4C
2B 2A 4B 4A
1A 2C 2C 2A 2G 2F
2D 2B 4C 4B
2F 2C 2H 2F
21 2F
4D 4C
2J 2G 2P 2K
2K 2H 4G 4F
2L 27 4H 4H
2M 2J 2Q 2M
2B 2N 21 2C 41 4G
20 2J 2R 2L
4F 4D 4J 4H
4F 4FE 28 2M
4K 41
4L 4J
2T 2N 3A 3A
AM 41K 6A 6A
4N 4L 6B 6A
2D 40 40 3A 6C 6C
4P 4M 6D 6B
4Q 4N 6E 6C
2U 20
4R 4P
3B 3C 45 4Y
6F 6E 4T 47
3B 6G 6F 4A 4U 4AA
6H 6G 4V 4AB
continued on next page
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Table 6.7 (continued from previous page)

[9ss | [#lar.sy | — | Wlarispeny | [9ss | [#larisy | — | Wlarispisn

61 6F 8A 8C
6.J 6G 8B 8D
AW U 4AC 4AC
4X 4v 4AD 4AD
4y AW 4AE 4AE
4B 4z 4X 4C 4AE 4AF
4AA AW 4AG 4AG
4AB 4x 4AH 4AH
8C 8A
8D 8B
4AT 4AT 54 54
8E 8E 104 104
8F 8F 10B 10B
4D 4AT 4AJT 54 10C 10C
4AK 1AK
3G 8G
4AL 4AL
8H 8H
6K 6H 60 60
124 124 6P 6P
6L 6J 12E 12F
64 12B 12C 6B 12F 12G
6M 61 12G 12H
12C 12B 12H 121
12D 12C
6N 6.J
6Q 6U 6R 6Q
121 12J 65 6R
6C 127 12K 6D 6T 69
6R 6V 6U 6T
6V 65
6W 6T
6X 6W 7A 7A
6F 12K 121 7A 144 144
6Y 6X
12M 12M
8T 81 10D 10D
8A 8J 8J 104 20A 20A
8K 8K 208 20B
8L 8L 10E 10E
12N 12P 154 154
124 24A 24C 154 30A 30A
24B 24D
120 12Q

We use Fisher-Clifford matrices and partial character tables of inertia factor groups to compile
the character table. We rewrite the character table in the GAP format and we then use pro-

gramme E (see Appendix A) to check its validity and its consistency concerning the character table
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orthogonalities. This character table is given in Table 6.8

PROGRAMME E for 27:55

gap>ct:=fuction()local ct;ct:=rec();
>ct.SizesCentralizers:=[128 Centralizer Orders];
>ct.OrdersClassRepresentatives:=[128 Class Representatives Orders];

>ct.Irr:=[[128 x 128 irreducibles]];

>ct.UnderlyingCharacteristic:=0;ct.Id:=G}
>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();
gap>SetInfoLevel(InfoCharacterTable,2);
gap>IsInternallyConsistent(ct);

gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).

Note: Although this was a good exercise to begin with, on closer inspection, we found out that

the group 27:Sg was actually the group (2°:Sg) x 2 which is a direct product.
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Table 6.8: Character table of 27:Sg
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The character table of 27:Sg(continued)

2C

41

4J 258 4K AL

2R

4G 4H 2Q

2P

-5

-5

-5

-5

-5

-5

-2

-2

-2

-4

-4

-4

-4

-4

-4

-4

-6

-6

-6

-6

2B
2M

20 4FE 4F

2N

2K 2L

2J

-3

-3

-6

-3

4

-4

-4

4

-8

-6

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X13

X14

X16

X17

X18

X19

X20

X22

X23

X24

X25

X26

X27

X28

X29

X30
X31

X32

X33

X34
X35

X36

X37
X38

X39

X40
X41

X42

X43
X44
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The character table of 27:Sg(continued)

3B
3B

6F

-2

-2

3A
6B

6D 6F

6C

6A

3A

-4

-4

-4

-4

-4

-4

-5

-5

-4

-4

-4

-6

-6

-6

-5

-5

-4

4

-4

2D
40

4Q 2U 4R

4P

4M AN

2T

-2

-2

-2

-2

-2

-3

-3

-3

-3

-3

-3

-3

4

-4

-4

-4

-2

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X217

X28

X29

X30
X31

X32

X33

X34
X35

X36

X37
X38

X39

X40

X41

X42

X43

X44
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The character table of 27:Sg(continued)

4B
4Y

4AA 4AB

4z

4X

4w

4A

8B

4T 4U 'V  8A

48

-2

-2

-3

-3

-3

-3

-3

-3

2

3B
6H

6J

61

6G

-2

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X16

X17

X18

X19
X20
X21

X22
X23
X24
X25

X26
x27
X28
X29
X30
X31

X32

X33
X34
X35

X37
X38
X39
X40
X41

X42

X43
X44
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The character table of 27:Sg(continued)

4D
4AJ

8G 4AL 8H

4AK

8E 8MF

4AT1

2

4C
4AE

4AG 4AH

4AF

4AD

4AC

-2

-2

-2

-2

4B
8C

8D

0

-2

X1

X2

X3

X6

X7

X8

X9

X10

X11

X13

X16

X17

X18

X19
X20

X21

X22

X23
X24

X25

X27

X28

X29

X30
X31

X32

X33

X34
X35

X37
X38
X39
X40
X41

X42

X43
X44
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The character table of 27:Sg(continued)

6B
6P

12F

12F

60

-2

6A
6L

6M 12C 12D 6N

12B

12A

6K

-2

-2

5A
10A

10C

10B

5A

-1

2

X1

X2

X3

X4

X6

X7

X8

X9

X10

X12

X13

X14

X16

X17

X18

X19

X20

X21

X22

X23
X24
X25

X26
X27
X28

X29

X30
X31

X32

X33
X34
X35

X36

X37
X38

X39

X40
X41

X42

X43
X44
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The character table of 27:Sg(continued)

6E
12K

12L

672

6Y

6D
6U

6W  6X

6V

6T

65

6C

121

6R

12J

6Q

6B
12G

12H

-2

X1

X2

X3

X4

X6

X7

X8

X9
X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26
X27
X28

X29

X30

X31

X32

X33
X34
X35

X36

X37
X38

X39

X40
X41

X42
X43
X44
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The character table of 27:Sg(continued)

15A

30A

15A

12A

24B 125N

24A

12M

10A

20A 20B 10FE

10D

8A
8J

8L

8K

81

TA
TA

14A

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22
X23

X24

X25

X26
X27

X28

X29

X30
X31

X32

X33
X34

X35

X36
X37

X38

X39

X40
X41

X42
X43
X44
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The character table of 27:Sg(continued)

1A 2A

1A 2A 2B 2C 2D 2FE | 2F 4A 4B 4C 4D 4E 4F 4G

X45 28 -28 4 -4 -4 4 16 -14 4 -6 -4 2 2 0
X46 28 -28 4 -4 -4 4 -16 14 -4 6 4 -2 -2 0
X47 28 -28 4 -4 -4 4 14  -16 6 -4 -2 4 0 -2
X48 28 -28 4 -4 -4 4 -14 16 -6 4 2 -4

X49 | 140 -140 20 -20 -20 20 | -40 50 -20 10 4 -14 2 8
x50 | 140 -140 20 -20 -20 20 50 -40 10 -20 -14 4

xs51 | 140 -140 20 -20 -20 20 | -50 40 -10 20 14 -4 -8 -2
X52 | 140 -140 20 -20 -20 20 40 -50 20 -10 -4 14 -2 -8
x53 | 140 -140 20 -20 -20 20 | -20 10 0 10 8 2 -6 -4
x54 | 140 -140 20 -20 -20 20 10 -20 10 0 2 8 -4 -6
Xx55 | 140 -140 20 -20 -20 20 | -10 20 -10 0 -2 -8 4 6
Xx56 | 140 -140 20 -20 -20 20 20 -10 0 -10 -8 -2 6 4
x57 | 262 -252 36 -36 -36 36 | -36 54 -24 6 0 -18 6 12
Xx58 | 262 -252 36 -36 -36 36 54  -36 6 -24 -18 0 12 6
X59 | 262 -252 36 -36 -36 36 | -54 36 -6 24 18 0 -12 -6
Xxe0 | 2562 -252 36 -36 -36 36 36 -54 24 -6 0 18 -6 -12
Xxe1 | 280 -280 40 -40 -40 40 | -40 20 0 20 16 4 12 -8
xe62 | 280 -280 40 -40 -40 40 20 -40 20 0 4 16 -8 -12
x63 | 280 -280 40 -40 -40 40 | -20 40 -20 0 -4 -16 8 12
Xx64 | 280 -280 40 -40 -40 40 40  -20 0 -20 -16 -4 12 8
x65 | 448 -448 64 -64 -64 64 16 6 -16 -16 -16 -16 16 16
Xxe66 | 448 -448 64 -64 -64 64 | -16 -16 16 16 16 16 -16 -16

X67 28 28 4 4 -4 -4 16 14 4 6 -4 -2 -2 0
X68 28 28 4 4 -4 -4 | -16 -14 -4 -6 4 2 2 0
X69 28 28 4 4 -4 -4 14 16 6 4 -2 -4 0 -2
X70 28 28 4 4 -4 -4 | -14 -16 -6 -4 2 4 0

x71 | 140 140 20 20 -20 -20 | -40 -50 -20 -10 4 14 -2

x72 | 140 140 20 20 -20 -20 | 50 40 10 20 -14 4 -8

x73 | 140 140 20 20 -20 -20 | -50 -40 -10 -20 14 4 8 -2
Xx74 | 140 140 20 20 -20 -20 | 40 50 20 10 -4 -14 2 -8
x7s | 140 140 20 20 -20 -20 | -20 -10 0 -10 8 -2 6 -4
Xx7e | 140 140 20 20 -20 -20 10 20 10 0 2 -8 4 -6
x77 | 140 140 20 20 -20 -20 | -10 -20 -10 0 -2 8 -4 6
x7s | 140 140 20 20 -20 -20 | 20 10 0 10 -8 2 -6 4
Xx79 | 252 252 36 36 -36 -36 | -36 -54 -24 -6 0 18 -6 12
X80 | 2562 252 36 36 -36 -36 | 54 36 6 24 -18 0 -12 6
Xxs81 | 252 252 36 36 -36 -36 | -54 -36 -6 -24 18 0 12 -6
Xxs2 | 252 252 36 36 -36 -36 | 36 54 24 6 0 -18 6 -12
Xxs83 | 280 280 40 40 -40 -40 | -40 -20 0 -20 16 -4 12 -8
X84 | 280 280 40 40 -40 -40 | 20 40 20 0 4 -16 8 -12
xs5 | 280 280 40 40 -40 -40 | -20 -40 -20 0 -4 16 -8 12
Xxs6 | 280 280 40 40 -40 -40 | 40 20 0 20 -16 4 -12 8
Xx87 | 448 448 64 64 -64 -64 6 -16 -16 16 -16 16 -16 16
Xx8s | 448 448 64 64 -64 -64 | -16 16 6 -16 16 -16 16 -16
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The character table of 27:Sg(continued)

M00000000000000000000000000000000000000000000
M00000000000000000000000000000000000000000000
mm00448448044084488008000044844804408448800800
M44004884400448840880004400488440044884088000
m00448448044084468008000044%44804408444800800
%M44004884400448840880004400488440044884088000
NN N ™ NN N N
m884401100.0440.001108%%80080@4401108440@01108%%800
LI L. LI L
© © N N ™ ™
M4488H00H4884HOOHIR_VR_UIOO4488100148841001%88%00
i i ] i i ]
N N ™ ™ © ©
Mu440@8100148841001w88w004488H00H4884H00H1%o@100
i i ] ] i i
© © © ©
ﬁ88440HH084480HH081_1..80088440HH084480HU081.4.800
M00000000000000000000000000000000000000000000
M00000000000000000000000000000000000000000000
o [ IR IO e\ T O O A A XN
ST T T s+ T2 A28 7700 Roco|TT T+ TS5 2080~ 35 0% %R 0o o0
AN NN XA N NN NA g N
m444444441441l‘I_A_I_AlooR_uo_oOoOO4444444441144114%88800
N a ™ ™ ™ ™ ™
MW444444441HU1lmmlR_vooooR_uOO444444441HE11HB1888800
} [ ] ] v ]
Ny NN N NN AN N Ay
M444444441_.11J41l‘l_.on_vooooR_vOO44444444144114418@0@800
N a ™ ™ NN NN
M444444441HU1lumlR_VSSR_VOO44444444H11HU11H8R_UO_0800
1 LI 1 L. L.
~ AN AN A AN
QYT T T T 8828 R0 Rood T T T T D855 00 X oo
0 © - 0w O O = a4 M F M © - 0 O O =4 4 M F 1 Ol W O O —H N M F H © M~ 0 O O -4 A M F 0 O I~ 00
& & & & S oo o0 1m0 0 0 n n n . n 9 © VW Y © YW YWY © © N~ N~ M~ M~ M~ M~ M~ I~ N~ B~ 00 00 00 00 00 00 W W ©
XXX R R XX R R XXX XXX XXX XXX XXX XXXXXXXXXXXXXXXXX XXX
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The character table of 27:Sg(continued)

T T T T A Y0000 T TR TANA A A AT T T ANNNNO OO0 A A A
GleaaayyYYoaaacoooddddsxdadaayyYTaaaaoooodqqad
aDu22224444222200002222442222444422220000222244
m.w222244442229_.0000222244222244442&220000222244
%nnw2422444422220000224244222244449_.9_.240000222244
3522285552222 00-2222882222888893%% 000222257
Sl222288882822323200°223228§/2222388882323282 000202322287
Wm9_~20020022442244Q4004002200200224422442400400
w0022022042.2442&40440002200400224422449_.400400
wv0022022042_24429_‘4044000002&09_.2049_.244224044000
M?_.2002002444224424004000022022042&44&24044000
ww44@242&40660066084480029_.44244260066006480_0400
W2&4424426006600648840044224&2406600660844800
W2&4424426006600648%4004244344260066006488400
H4A_1QQ429..40£6006£0844$00449_.2429_.406600660844800

2852232383885 823838882 888 REERTREEREREE8x 882858

X R XXX XXX XXX XXXXXXXXXXXXRXXXXXXRXXXXXXXXXXXXX
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The character table of 27:Sg(continued)

4B
8E

8G 8H

8F

4AD

4AC

-2

2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

4A
8A

8C 8D

8B

4AB

4AA

-6

-6

-6

-6

-6

-6

-6

-6

-6

6

-6

-6

3B
6H

6J

61

6G

2

2

X45
X46
Xa7

X48
X49
X50
X51

X52

X53
X54
X55

X56
X57

X60
X61

X62

X63
X64

X65

X66
X67
X68
X69
X70
X711

X72

X74
X75

X76
X717

X78
X79
X80
X81

X82

X83
X84
X85

X86

X88
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The character table of 27:Sg(continued)

4D
8N

8P 8Q S8R

80

8M

8L

4AL

4Cc
4AG

8L

8K

4AH

4AF

4AE

4B

81

8J

X45
X46
Xa7

X48

X49
X50

X51

X53

X54

X55

X56

X57

X58

X59

X60
X61

X62

X63
X64
X65

X66
X67
X68
X69

X70

X71

X172

X73

X74
X715

X76

X7
X78

X179

X80
X81

X82

X83

X84
X85

X86

X87
X88
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7

A group of the form 2°: A5 as an inertia factor
group of 2°:07 (2)

Prologue

The group G = 29:Ag is an inertia factor group of 28:Oé|r (2). This group is also a maximal subgroup
of Og (2) of index 135 and order 1290240. As an inertia factor group, our group G plays an
essential role in the construction of the character table of 28:04 (2) as there is a block of irreducible
characters in the character table of 28:0; (2) corresponding to G. In this chapter we look at two
ways of constructing G. In the first method, we use combinatorics and the natural action of Ag on
26, In the second method, we use GAP and we construct G inside Og (2). We then compute the
Fischer-Clifford matrices of G which can then be used together with the ordinary character tables
of the inertia factors of Ag to compute its full ordinary character table. For more reading, on the
methods used, one can also go to [1, 2, 3, 26, 37, 81, 82, 99, 120, 126, 94].

7.1. Introduction

The group G = 2%:Ag is a maximal subgroup of OgF (2) of index 135 and order 1290240. It is
also an inertia factor of Og (2). As an inertia factor it plays an essential role in the construction
of the character table of 2%:04 (2) as there is a block of irreducible characters in this table that
corresponds to G. In the construction of G, Ag acts on the elementary abelian group 2°. The
action on 2% is multiplication on the right of the six dimensional row vector space N = 26. This
requires Ag to be represented by 6 x 6 matrices. It then becomes necessary to reconstruct Ag from

a 8 x 8 representation to a 6 x 6 representation. Here we look at two ways to do this.

Although it is much simpler and natural to consider the embedding of 26:4g into Og (2) (see Section
7.3), but it is interesting to construct this group combinatorially and this is our main reason for
discussing the first method. In our first method, we first take an 8-dimensional module V' on which

Sg acts naturally by permuting its basis elements. We then obtain two submodules of V', namely
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M; and M of dimensions 1 and 7 respectively. Let W = My/Mj, then dim(W) = 6 and W is a G-
invariant where G = Sg or Ag (see Theorem 7.2.2). Let o and 3 be two permutation cycles of orders
7 and 3 respectively where Ag =< a, # >. We then, by the action of a and /3 on the generators of
W, get a matrix representation of both o and 3. These are 6 x 6 matrix representations. We are
then able to represent Ag by 6 x 6 matrices. Letting this Ag act on W, we obtain three orbits of
lengths 1,28 and 35 respectively. These have corresponding point stabilizers which we obtain from
the ATLLAS [23] . We are then able to construct G.

For the second method we use GAP . We first construct O; (2) from the general orthogonal group
GOZ (2). We then construct, G = 2%:4g, inside Og (2). This has only one proper normal subgroup,
namely 25, which we can always obtain from G. We then obtain the 6 generators of 26 which are
8 x 8 matrices. From the generators of G, we are able to get two, 8 x 8 matrix generators of Ag
namely, a and b each of order 4. We then let @ and b act on the generators of 26 by conjugation.
Since 26 < G the result of these actions are elements of 2. We get a 6 x 6 matrix representation
of both. This leads us to a 6 x 6 representation of Ag. We then let this Ag, using GAP, to act on
26, Using the representatives of resulting orbits, we obtain corresponding point stabilizers of Ag.

These turn out to be the same as those obtained by combinatorics above.

The two groups constructed have the same character table, and through GAP, one can confirm
that they are in deed isomorphic. We compute the Fischer-Clifford matrices which together with
the character tables of the inertia factor groups of Ag we use to compute the full character table
of 26:Ag. Note that there might be other easier methods to achieve this but our aim is to use the

Fischer-Clifford theory to compute the character table.

7.2. The Combinatorics Method

The combinatorics method can also be found in [1] and [99] and is used extensively in [94] and
[126]. The group Sg acts naturally on a module of dimension 8 by permuting the basis elements
which generate the module. Let V' be the 8-dimensional natural module of Sg over GF(2), where
V =< ej,e9,e3,¢e4,€5,€5,e7,€8 >, and 612 =1 for i € {1,2,3,4,5,6,7,8}. We regard V as a

multiplicative elementary abelian 2-group of order 2°8.

Theorem 7.2.1. Let V' be the natural module of Sg over GF'(2). Then there exist Sg submodules
My and My of V such that VO My D M7 D 0 and that

dim(Ma) =7 and dim (M) = 1.

PROQF. Let V =< ey, e, €3, ¢4, €5, €6, €7,65 >, and e = 1 for i € {1,2,3,4,5,6,7,8}. Then Sg acts

naturally on V' and this natural action results in the following orbits :

1. Oo == {1v} and |Oo| =1.
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2. 01 == {67,|1 < ) < 8} and |Ol| = 8.

8
3. 02 = {€i€j|1 < ’i,j < 8,i 75]} and |02| = ( 9 ) = 28.
. . . 8
4. O3 = {ejejer|l <i,j,k <8, distinct 4, j, k} and |O3| = ( X ) = 56.
. - . 8

5. O4 = {ejejere|l < i,j,k, 1 <8, distinct 4, j, k, [} and |O4] = ( A ) = T70.

. - . 8
6. O5 = {eiejereien|l <i,5,k,1,m <8, distinct 4, j, k,l,m} and |Os| = < . ) = 56.

. - . 8

7. O¢ = {eiejereremen|l <, j, k,l,m,n <8, distinct 4, j,k,l,m,n} and |Og| = 6 = 28.

8
8. O7 = {ejejepeiemeneo|l < 4,7, k,1,m,n,o <8, distinct 4, j, k,1,m,n, o0} and |O7| = ( - ) =
8.

9. Og = {eiejepeiemeneoep|l < i,j,k,l,m,n,0,p < 8, distinct ¢,35,k,l,m,n,o,p} and |Og| =

)"

Thus Sg produces 9 orbits on V. Set M =< ejeseseqesegeres >. Then My is an Sg - invariant
submodule of V' with dim(M;) = 1. Now set My = Og U O3 U O4 U Og U Og . Then | M| = 128, so
we have dim(Msy) = 7. Since M; = Oy U Og, we obtain that V O My D M; D 0. This implies that

M, is a reducible Sg - invariant submodule of V. u

Since Ss is 8-transitive, Ag is 6-transitive on {e1, es, 3, €4, €5, €5, €7, es}. It is clear that Og, O1, O2, 04, O5, Og
are also orbits under the action of Ag. Now since Ag does not have a proper subgroup of index less

than 8, O7 remains as an orbit of length 8. Obviously Og also remains as an orbit of length 1.

Theorem 7.2.2. Let W = My/Mj, then dim(W) = 6. Also W is a G - invariant module where
G = Sg or Ag.

PROOF. It is clear that dim(W) = 6, since dim(M;) = 1 and dim(My) = 7. If g € G and o € My,
then since My is G invariant, g(aM;) = g(a)M; € Ma/M; ¥V g € G and o« € My. So W is Sy (As)

invariant. u

Let W =< ejea My, e1esMy, eyeq My, eres My, ereg My, e1es My >. The set B = {ejeq, e1e3,e1€e4, €165, €1€6, €167}

is a linearly independent set. Let

y1 = ereaMy,y2 = erez My, v3 = eres My, v4 = eres My, v5 = ereg My, v6 = erer M.

85



CHAPTER 7. A GROUP OF THE FORM 2%:Ag AS AN INERTIA FACTOR GROUP OF
28:04 (2)

Also,if @ =(1234567) and f= (6 7 8) then Az =< o, F >.
We obtain
QiYL YIY2s Y2 T V1Y3s V3 T V1V, Y4 = Y1Y5, Vs — Y1%6, and Y6 — 7.
We give two examples for the action of a. Under the action of o we have
V2 = eregMy — ezeq My = erezeres My = 7173

That is a(y2) = 7173. Also
Y6 = e1er My — eger My = 1.

That is a(ys) = 1. Hence a can be represented by the following matrix

e e e
S O = O O O
o = O O O O

o O O o o =
o O O o = O
o O O = O O

with o(a) = 7.

Similarly for 8 we have

Bimr— 7, Y272 V3 Y3 Y4 V4, Vs V6 V6 — V17273747576

As an example we see that
Y6 = ere7 My — ereg My = esezeseseser M1 = y172737V47Y576-

That is B(v6) = 717273747576 - Here we obtain

@
Il
_ o O O O =
_ O R O O O
_ o O O o O
e e = es R o B e

_ o O O = O
= o O = O O

with o(3) = 3. We are now able to write all the elements of Ag as 6 x 6 matrices. By acting Ag
directly on W, using the orbits of Ag on My and the fact that M; = {1, ejesesesesegeres}, we can
see that Ag has 3 orbits namely

Ao = {OoM1} = {OsM} = {M},
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Al = {OQMl} = {O6M1} = {eiejM1|distinct ei,ej},
Ay = {O4M,} = {ejejepe M |distinct e;,ej,ex, e}
Clearly ‘Ao‘ =1, ’A1| = 28, ‘AQ‘ = % =35 and W = AgUA; U As.

Theorem 7.2.3. Ag acts irreducibly on W.

PROOF. Let U < W be such that U # 0 and U is Ag invariant. Since U # 0 3 x € U such that
x # 0. Since ¢ # 0 and U < W we have two cases.

Case 1 : Suppose z € Ay, x = e;ejM; for distinct 4, j. Hence g(z) e U V g € Ag. However
{9(z)lg e As} =A1 = A1 CU =eie;My €U Vi,j.
Hence we have v1,72,73,71,75,7 € U.

Case 2: Suppose x € Ao, then x = e;ejere M for some distinct e;, e, e, ¢;. Hence g(z) e U V g €
AS. Now
{9(z)lg € As} = A2 = A CU.

Since Ay C U, erejeme-Mq and epejene; My are in U for distinct k, 1, m,r,i. Since U is closed we
get
(exeremer M) (exereme; My) = eje, € U YV distinet k, I, m,r,i.

This shows that U C W. So similar to case 1, we have U = W.
Hence W is a unique 6-dimensional GF'(2) module that Ag acts irreducibly on. u

By methods of coset analysis that can be found in chapter 2, when G = Ag acts on W we obtain
three orbits of lengths 1,28 and 35 respectively. These have corresponding point stabilizers K1, Ko
and K3 of indices 1,28 and 35 respectively. One can immediately see that K1 = G and K», K3
must each sit in a maximal subgroup of G. However any maximal subgroup of G which contains K;
must have an order divisible by |K;| and its index in G must divide 28 and 35 respectively. From
the ATILAS [23], we get that up to isomorphism and conjugacy there is only one maximal subgroup
of G, in each case, that would contain Ks and the other K3 and these are the symmetric group Sg
and the group 2%:(S3 x S3) respectively. However since |K3| = |Sg| we have Ky = Sg. Similarly
we have K3 = 2%:(S3 x S3). For each g € G, the number of fixed points g € G in N is equal to
k = |Cn(g)|. Since the zero vector of N is fixed by every g € G we have

k=14 x(G|K2)(9) + x(G]K3)(9) = 1+ (x(G|K2) + x(G|K3))(9)-
From this we determine, y = x(Ag|2%), the permutation character of Ag on 2°. We have

X =la+ I8 + I8 g g = 3% la+ Ta+ 1da + 2 x 20a,

where [g? = la+ 7a+ 20a and I;‘S:(S;aXSB)

the identity characters of S and 24:(S3 x S3) respectively. Since Cx(g) < N, we must have k = 2"
where n € {1,2,3,4,5,6}. Hence we obtain the values of the &’s in Table 7.1 .

= la + 14a + 20a, are the characters of Ag induced from
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Table 7.1:

[9]as | 1a 2a 2b 3a 3b 4a 4b b5a 6a 6b 7a T7b 15a 15b
x(As|S¢) [28 4 8 10 1 0 2 3 1 2 0 0 0 O
x(Agl2t: (S3xS3)) (35 11 7 5 2 3 1 0 2 1 0 0 0 0
k|64 16 16 16 4 4 4 4 4 4 1 1 1 1

7.3. The GAP Method

In this section for all our computations we use GAP [41]. We first construct O (2) inside the
general orthogonal group GOy (2). This we do by getting the maximal normal subgroup of GOy (2)
and this is a group of 8 x 8 matrices of size 174182400 over GF(2). We then construct G = 26:Ag
inside Og (2) by first constructing an 8-dimensional row vector space U, over GF(2). We then let
Of (2) to act on U and we get three orbits of lengths 1,120 and 135. Using the ATLAS [23] and
Programme C (see Appendix A), given below, the maximal subgroup of index 135 is 26:Ag which
corresponds to the third orbit. We then get the stabilizer of a representative of this orbit in Og (2),
which gives us a group of 8 x 8 matrices of size 1290240 which is our 2°:4g. We are now ready to
construct 2° and Ag inside our G. Note that we use ATILAS [23] for character tables of Ag and Sg.
The character table of 24:(S3 x S3) is given in the GAP Library [41], but it is also presented in the
table below.
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2D 2E 4C 4D 6B 6C

3C

Character Table of 2*:(S3 x S3)
2A 2B 2C 4A 4B 3A 6A

1A
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X1
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X3
X4
X5
X6
X7
X8

CHAPTER 7. A GROUP OF THE FORM 25:Ag AS AN INERTIA FACTOR GROUP OF

We first pay our attention to Ag. We first obtain the generators of G. We get four of these and
We give a,b and their inverses

00 0O0O0O1QO00O0
00111110
10010001
10100001
11000111
11110101
01 00O0O0T1@0
11110000
00001111
00111110
10011010
10101010
11001100
100 00O0O0O
00111100
10000101

b
89

)

10000100
01010101
10100100
0001 0O0O0O
11001100
00 0O0O0O1O00O0
10000110
000 O0O0O0OTCO0T1
10000100
01 010101
101 00O0O0O0
0001 0O0O0O0
11011101
00 0O0O0O1QO0O0
1000 0O0T1O0
000 O0O0O0GO0OT1

The group N = 2% is the only proper normal subgroup of G and we use GAP [41] to obtain this

from the four we pick two, call them a and b that generate Ag .
normal subgroup. We then obtain its generators, which are given below.

below. Note that o(a) = o(b) = 4.
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(100 0 00 0 1] (1.0 00 00 0 1]
0100000 0 01000001
0010000 0 00100000
00010000 0001000 0
"“loooo1000|" " loooo100 1]
0000010 0 00000101
01000010 11001110
(0000000 1| (0000000 1|
1.0 000000 1 00000O0TO 0 O]
01000001 01000001
00100000 00100001
00010000 00010000
B0 0001000 ™ |oooo0o100 1]
00000101 00000100
10001010 10010110
(00000001 0000000 1|
(1.0 0 000 0 1] (1.0 0 0 00 0 0]
0100000 0 0100000 0
00100001 00100001
00010000 00010001
100001001 ®loooo1001
00000100 00000101
01010110 001111710
0000000 1] 000000 O0 1]

Noting that the generators of 26 and Ag are both 8 x 8 matrices . Computing the conjugate of each

7; with respect to a, that is ay;a~! and noting that 2% is normal in 2°:Ag we get that avy;a™

Vi Viz - Vin» Where 7y = ; or 1 for some j. = 1,---,6. We denote this as v; — 7v;,7j, -

We then get

1

“ Yok

Y1 = Y1, Y2 = V275, V3 — V24576, VY4 — V4, V5 — Y17V475, V6 — V17273 7V4-

Similarly with b we get

Y1 V17273746, V2 — V273747576, V3 T V172737576, Y4 — V17374,

V5 — V4, Y6 — V27374

Representing this information in matrix form, where the i-th row will correspond to the i-th con-

jugate, we get a 6 x 6 matrix representation of G = Ag. Hence we have Ag =< a/, b’ >, where
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(1.0 0 0 0 0] 11110 1]
010010 011111
0,20101117b,:111011
000100 101100
100110 000100
(11110 0] (001110 0]

We now turn our attention to the inertia factor groups of 26:Ag. Here we use Programme C below,
to act G on Irr(N), N = 2%, To be able to do this we need to rewrite N as a row vector space V
of dimension 6 over GF'(2), that is V:= FullRowSpace(GF(2),6). We have two procedures at our
disposal. First we can act G on V from right and this action gives us the orbits of G acting as a
permutation group on the conjugacy classes of N. Secondly we act G, that is the set consists of
transpose of elements of GG, on V from right. This action is equivalent to multiplying the column
vectors of V' on the left by G. This action gives the orbits of G acting as a permutation group on

the irreducible characters of V.

PROGRAMME C for 25:4g

gap>V:=FullRowSpace(GF(2),6);
gap>ml:=(OneGF(2))*[6 x 6 matrix group generators|;
gap>m2:=(OneGF(2))*[6 x 6 matrix group generators|;
gap>m:=Group(m1l,m2);
gap>k:=OrbitLengths(m,V);

gap>l:= OrbitLengths(Group(List(m,TransposedMat)),N);

From the above, the action of G on Irr(N) produces three orbits of lengths 1, 28 and 35 respectively.
We then take representatives of the orbits of lengths 28 and 35. For each of the orbit representative
we find its stabilizer in G. For the representative of the orbit of length 28, the corresponding
stabilizer is a group of 6 x 6 matrices of size 720 isomorphic to Sg. For the orbit of length 35 the
corresponding stabilizer is a group of 6 x 6 matrices of size 576 isomorphic to 2* : (S5 x S3). This is
the same result which we got in Section 2. We use GAP to check our calculations for the number

of fixed points using Programme F (see Appendix A) and we list the values of the k’s in Table 7.2.

Table 7.2:

[glac | 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 7a 7b 15a 15b
k\6416161644444411 11

Since the two 26:Ag constructed are isomorphic we use one of them to compute the Fisher-Clifford

matrices and its character table.
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7.4. The Conjugacy Classes of 2°:Ag

We first give the representatives of the conjugacy classes of Ag in Table 7.3.

Table 7.3: Conjugacy classes of Ag

- 0 [a\] [ <t [ o <#
O =) — %) < %) 0 o
=) — — [a\] [2r] [a2) 0 N
== — — 2] (o] —

SO = = O = - O O O O O — ~ o — O — O —~H — oo - 4 O A —~ O — - O O
m0000101000011 — o O o O —+H O =) — O O O O — —= O — - O O O
-
=
m1010101001111 [e=] — O S~ = O — — O O = O —~= = O — = O O -
Clo—H 00 40 00 - O O — o [l — O O O — — O 4 O O —H O - — = O o~
X
OCIoco oo 4 0 4 4 A 4 O O O o — o O O O ) — O O O A = O — o —+H O = O

o - O 4 O O O O - - O O O o [l — O O O — S 4 4 4 4 4 O O O - = O
O < < s 8 o s s
=y [a\} o < © ~ m
‘ — (en) (o) (o) o) [ <
&} — 3] N 0 0 <
.m [a\] — 0 =) 0 2]

— — N — N —

o O O O o 4 O o o o - O O — S o~ o O —H - — o - O O 4 4 O O O = = O
Xl © o o 4 O O o o O A —H O o o - o O O O — o - 4 O O O O O S O —=H - O
B
-
ey
m0001000001000 o (=l — = = o O —-H O = — 4 O O SO = = = O
oo 4 00 o0 o0 o H O O A ~ — [ - O — o — O —+H O 4 O A —H O . = = O
X
Ol H O O oo o 4 O o o o o — O S O© O [e=) o - O O O © —H O S A A O -

— O O O O O H O O o o —H — o O o O +H O — — — O O A - O - . - - O O
O << as) as) < < < <
= — o 2] < e} D~ w

From the methods of coset analysis, which can also be found in chapter 2 and by Programmes A

and B (see Appendix A), we are able to compute the conjugacy classes of 20:Ag which are given
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in Table 7.4. We give a very brief summary of coset analysis. We look at the action of G on Ng,
for the split extension it is suffices to look at the coset Ng,g € G. First N acts on Ng and we
get k orbits. Then we act C(g) on these orbits and f; of these orbits, fuse to form one orbit
with )" f; = k, and d; a representative of these fused orbits. For this we use Programme A (see

Appendix A).

PROGRAMME A for 26:A4g

gap>V:=FullRowSpace(GF(2), 6);
gap>grl:=(OneGF(2))*[6 x 6 matrix group generators];
gap>gr2:=(OneGF(2))*[6 x 6 matrix group generators];

gap>grp:=Group(grl,gr2);
gap>Ccl:=ConjugacyClasses(grp);
gap>0:=Union(Orbits(grp,V));
gap>for i in [1..14] do
>Print(Representative(Cclli]));
>w:=0ne(GF(q))*[0,0,---,0];
>e:=[];
>while Difference(O,e) <> [] do
>d:=[];
>for x in O do;
>y:=[x+w+(x*(Representative((Ccl)[i]))];
>d:=Union(d,y);
>od;
>Print(d);
>e:=Union(d,e);
>if Difference(O,e) <> [] then
>w:=Representative(Difference(O,e));
>fi;
>od;
>ri=[ ;
>u:=0ne(GF(2))*[0,0,---,0];
>while Difference(O,e) <> [] do
>m:=]|;
>for g in Centralizer(grp,Representative(Ccl[i])) do
Sli=[u*g;
>m:=Union(m,l);
>od;
>Print(” A block for the vectors under the action of a centralizer”);
>Print(m);
>r:=Union(m,r);
>if Difference(O,r) <> [] then
>u:=Representative(Difference(O,r));
>fi;
>od;
B S N

>od;

Let o(dg) = k and o(g) = m. If w = (dg)™, then if w = (0,0,0,0,0,0), & = m. On the other hand
if w# (0,0,0,0,0,0), then k = 2m. To get w we use Programme B (see Appendix A).
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PROGRAMME B for 26:4g

gap>V:=FullRowSpace(GF'(2),6);
gap>ml:=(OneGF(2))*[6 x 6 matrix group generators|;
gap>m2:=(OneGF(q))*[6 X 6 matrix group generators|;
gap>m:=Group(m1l,m2);
gap>c:=ConjugacyClasses(m);
gap>g:=Representative(cli]);
gap>d:=One(GF(2))*[a1, a2, - - - , agl;
gap>wi=d+dxg+dxg?+---+dx gkl

gap>Print(w);

We obtain that 26:Ag has altogether 41 conjugacy classes which are given in Table 7.4 below.

Table 7.4: Conjugacy Classes of 26:Ag

g€ As k{5 d; w [Z]26. 44 |C6. 4, ()]
1A 26 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 1A 1290 240
28 | (0,0,0,0,0,1) | (0,0,0,0,0,1) | 24 46 080
35 | (0,0,0,1,0,1) | (0,0,0,1,0,1) | 2B 36 864
2A 24 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2C 3072
1 (0,0,1,0,0,1) | (0,0,0,0,0,0) | 2D 3 072
1 (0,0,1,1,1,1) | (0,0,0,0,0,0) | 2E 3072
1 (0,0,1,1,1,1) | (0,0,0,0,0,0) | 2F 3072
12 | (0,0,0,0,0,1) | (1,1,1,0,0,1) | 4A 256
2B 24 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 2G 1536
1 (0,0,1,1,1,1) | (0,0,1,0,0,0) | 4B 1536
3 (1,0,1,0,1,0) | (0,0,0,0,0,0) | 2H 512
3 (0,0,1,1,0,1) | (0,0,1,0,1,0) | 4C 512
8 (0,0,0,0,0,1) | (0,0,0,1,1,0) | 4D 192
3A 24 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3A 2 880
5 (1,1,0,0,1,0) | (0,0,1,1,1,1) | 6A 576
10 | (o,1,0,0,1,1) | (0,0,1,1,0,0) | 6B 288
3B 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 3B 72
1 (1,1,0,1,0,0) | (1,0,0,0,0,1) | 6B 72
1 (1,0,1,0,1,0) | (1,0,1,0,1,0) | 6C 72
1 (0,0,0,1,0,0) | (1,1,1,1,1,1) | 6D 72
4A 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4E 64
1 (1,1,0,1,0,0) | (0,0,0,0,0,0) | 4F 64
1 (1,0,1,0,1,0) | (0,0,0,0,0,0) | 4G 64
1 (0,0,0,1,0,0) | (0,0,0,0,0,0) | 4H 64
4B 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 4I 32
1 (1,1,0,1,0,0) | (0,0,1,1,1,1) | 8A 32
1 (1,0,1,0,1,0) | (0,0,0,0,0,0) | 4J 32
1 (0,0,0,1,0,0) | (1,1,1,0,1,0) | 8B 32
5A 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 5A 60
3 (0,1,0,1,0,0) | (0,0,0,1,0,1) | 10A 20
6A 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6F 48
1 (1,0,1,0,1,0) | (0,1,1,0,1,0) | 12A 48
2 (1,0,1,0,1,0) | (1,0,1,0,1,0) | 12B 24
6B 22 1 (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6G 24
1 (0,0,0,0,0,0) | (0,0,0,0,0,1) | 6H 24
continued on next page
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Table 7.4 (continued from previous page)

geASs | k| J; d; w [2]37. 4,4 ()]
1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6I 24
1 | (0,0,0,0,0,0) | (0,0,0,0,0,0) | 6J 24
7A 1 | 1 ](0,00,000) | (000,000 | 74
7B 1| 1 ](0,00,000) | (0,0,0,00,0) | 7B
15A 1 | 1](0,00,000) | (0,0,0,00,0) | 154 15
15B 1 | 1 ](0,00,000) | (0,0,000,0) | 15B 15

7.5. The Fischer-Clifford matrices of 2°: A

The inertia factor groups are H; = Ag, Hy = Sg and Hz = 2*:(S3 x S3), as we discuss in section 7.3.
We construct Hs and Hj inside Ag in terms of 6 x 6 matrices. Their conjugacy classes are given
in Table 7.5 and Table 7.6 respectively. The fusions of the inertia factor groups into Ag, which can

also be done using Programme D (see Appendix A), are given in Table 7.7.

PROGRAMME D for 26:Ag

gap>g:=Group(H1);
gap>T1:=CharacterTable(g);
gap>h:=Group(H2);
gap>T2:=CharacterTable(h);
gap>k:=Group(H3);
gap>T3:=CharacterTable(k);
gap>FusionConjugacyClasses(h,g);

gap>FusionConjugacyClasses(k,g);

Using these fusions, and properties of Fischer-Clifford matrices which can be found in chapter 5.2.1,
we are now able to obtain the Fischer-Clifford matrices of 26:4g. For each class representative

g € Ag, we construct a Fischer-Clifford matrix M (g) which are given in the Table 7.8.
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Table 7.5: Conjugacy classes of Sg

[9]s6 6 x 6 matrix llg]ssl || [9lse 6 x 6 matrix Ilg] s
1 0 0 0 0 O 1 0 1 0 1 O
0O 1 0 0 0 O 0O 1 0 0 0 O
1A o 0 1 0 0 O 1 9A 0O 0 1 0 0 1 15
0O 0 0 1 0 O 0O 0 0 1 0 1
0O 0 0 0 1 0 0O 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 O 1 0 0 1 1 O
1 1 0 1 1 O 0 1 1 1 0 O
9B 0O 0o 1 1 1 0 15 920 0O 0 1 0 0 O 15
o 0 0 1 0 O o 0 0 1 0 O
0O 0 0 0 1 0 0O 0 0 0 1 O
0O 0 0 0 0 1 0O 0 0 0 0 1
1 0 1 1 0 O 1 0 0 1 1 O
0O 0 1 1 0 O 0O 0o 1 1 0 O
3A 0O 0 1 0 0 O 40 3B 1 1 1 1 1 0 40
0O 1 0 1 0 O 1 0 0 0 1 O
0O 0 0 0 1 0 0O 0 0 0 1 0
0O 0 0 0 0 1 0O 0 0 0 0 1
1 0 1 1 0 O 1 0 1 1 0 O
1 1 0 1 1 O o 0 1 1 0 O
JA o 0 1 1 1 1 90 iB o 0 1 1 1 0 90
0O 0 0 1 0 1 0 1 0 1 0 1
0O 0 0 0 1 1 0O 0 0 1 0 O
0O 0 0 0 0 1 0O 0 0 0 0 1
1 0 1 1 0 O 1 0 0 1 1 O
1 1. 0 1 1 0 0O 0 1 1 0 O
6A o 1 1 1 1 0 120 6B 0O 0 1 0 0 1 120
01 0 1 0 O 0 1 0 1 0 1
0O 0 0 0 1 0 0O 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1
1 0 1.1 0 O
1 1 0 0 0 1
5A o 1 1 1 1 1 144
0o 1 0 1 0 1
0O 0 0 1 0 O
0O 0 0 0 0 1

7.6. The Character Table of 2°: A

We use the Fischer-Clifford matrices (Table 7.8) and the character tables of the inertia factors
groups Ag, Sg, 2%:(S3 x S3) together with the fusions of these inertia factors into Ag which are
given in Table 7.7 to obtain the full character table of 26:Ag. The Fischer-Clifford matrix M (g)
will be partitioned row-wise into blocks, where each block corresponds to an inertia group H;.
Then given the character table of the inertia factor group H; of H;, we therefore take the columns
of this character table which correspond to the classes of H; which fuse to class [g] in Ag and

multiply these columns by the rows of the Fischer-Clifford matrix M (g) which correspond to H;
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Table 7.6: Conjugacy classes of 2% : (S3 x S3)
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Table 7.7: Fusion of Sg and 2:(S3 x S3) into Ag

[[zlss  — lo)as | [Elotiisgnsy  —  lonlag |
1A 1A 1A 1A
2A 2B 2A 2B
2B 2B 2B 2A
2C 2A 2C 2B
3A 3A 2D 2A
3B 3B 2F 2A
4A 4B 3A 3A
4B 4B 3B 3B
5A 5A 3C 3B
6A 6A 4A 4A
6B 6B 4B 4B

4C 4A
4D 4A
6A 6A
6B 6B
6C 6B

and then fill the portion of the character table of 26:4g which is in the block corresponding to
H; for the classes of 26:Ag which come from the coset Ng. The set of irreducibles characters of
26: Ag will be partitioned into three blocks By, Ba, and Bs corresponding to the inertia factors Ag,
Sg and 2%:(S3 x S3) respectively. In fact By = {x;| 1 < i < 14}, By = {xi| 15 < i < 25} and
Bs = {xi| 25 < i < 41}. Note that the centralizers of elements of 26:4g were listed in the last
column of Table 7.4. We use Fischer-Clifford matrices and partial character tables of inertia factor
groups and computed the character table of G. This character table is given in Table 7.10. We
then convert the character table to the GAP format and used Programme E (see Appendix A) to
test its validity and to compute the possible power maps. We list the power maps of 2°:Ag in Table
7.9.

Table 7.9: Power maps of elements of 26: Ag

glag [ [laocag | 213 [ 5] 7 [lolag [[olaoen, | 2] 3 ] 5] 7
1A 1A 2A 2F 1A
2A 1A 2C 1A
2B 1A 2D 1A
2E 1A
2F 1A
4A 2A
2B 2G 1A 3B 3A 1A
4B 2B 6C 3B 2B
2H 1A 6D 3B 2B
4C 2B 6E 3B 2A
4D 2B
3A 3B 1A 4A 4E 2C
6A 3B 2B 4F 2D
continued on next page
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Table 7.9 (continued from previous page)

lag [ooas [ 213 [ 5[ 7 [lolag [laloon, [ 2] 3 [5] 7
6B 3B 2A 4G 2E
4H 2F
4B 41 2G 5A 5A 1A
8A 4B 10A 5A 2A
4J 2H
8B 4C
6B 6H 3A  2C 6A 6G 3A  2G
61 3B 2D 12A 6A 4B
6J 3B 2E 12B 6A 4C
6K 3B 2F
TA TA 1A 7B 7B 1A
15A 15A 5A 3B 15B 15B 5A 3B
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Table 7.8: Fischer-Clifford matrices of 26:A4g
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Table 7.10: Character table of 26: 4y
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Character table of 26: Ag(continued)

4B
8A

8B

4J

41

-2

4A
4F

4H

4G

4F

3B
6C

6E

6D

3B

-2

-2

-3

3A
6A

6B

3A

-3

10
10
20
20
-10
-10

-4

10
10
-20

15
15

-15

X1

X2

X3

X4

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

x27
X28

X29

X30

X31

X32

X33

X34
X35

X36

X37

X38
X39

X40

X41
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Character table of 26: Ag(continued)
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B=E(7)+ E(7)?+ E(7)*
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8

A Group of the Form 2°:05(2) as a maximal

subgroup of O};(2)

Prologue

The group G = 28:05 (2) is a group of order 44590694400. It is also a maximal subgroup of index
527 of Of;(2). In turn 2!19716-07 (2) is a maximal subgroup of the monster M = Fy. The group
G has three inertia factor groups namely, Og (2), SP(6,2) and 2%:4g of index 1, 120, and 135
respectively in OF (2). We first give a detailed definition of O (2) and we then compute the Fischer-
Clifford matrices of G which together with the partial character tables of inertia factor groups are

used to compute the full character table of G.

8.1. Bilinear Forms

Definition 8.1.1. A symmetric bilinear form f is a function f : V x V — F, which first satisfies

linearity in x that is
Fam1 + Aaxa, y) = M f(21,y) + Ao f (22, 9).

If linearity is also satisfied in y, then we say f is bilinear. We say f is symmetric if f(x,y) = f(y,x).

If f is bilinear and symmetric we say f is in symmetric bilinear form.

Definition 8.1.2. We define the quadratic form @ : V — F4 to be a function satisfying

Q\z + ny) = N’Q(z) + Auf(z,y) + 1°Q(y),

for some symmetric bilinear form f, called the associated bilinear form.

Definition 8.1.3. The kernel of f is the subspace of all x such that f(z,y

) =0 Vy. Also the
kernel of the quadratic form @, is the set of all x € ker(f) such that Q(z) = 0.

We can now define nullity, rank, singular and isotropic subspaces.
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Definition 8.1.4. The nullity and rank of f is the dimension and codimension of its kernel re-

spectively. We say f is non-singular if the nullity of f is zero.
A subspace W of V is said to be totally isotropic for f if f(z,y) =0V x,y € W.

We also define the Witt index of a quadratic form ) as the greatest dimension of any totally

isotropic subspace for Q.

Note that if any two non-singular quadratic forms ()1 and @2 over F,; have the same Witt index,

then they are equivalent to a scalar multiple of each other. We now define the general orthogonal

group.

8.2. Orthogonal Groups

Definition 8.2.1. The general orthogonal group GO(V, f), where f is a bilinear form, is defined
as the group of linear maps g satisfying f(u9,v9) = f(u,v) V u,v € V. We write it as GO(n, q) or

GOy (q), where V is an n-dimensional vector space over GF(q).

The elements of a general orthogonal group GO(V, f) have determinants +1. This is since for if M
is the matrix of the form and g € G(V, f), then gMG! = M and so det(g) = det(M (G)~1M~1) =
det(g)~!. Hence we have [det(g)]?> = 1 thus det(g) = £1. The elements of the group that have
determinant 1 is a subgroup of index 2 called the special orthogonal group SO(n,q). The projective
special orthogonal group PSO(n,q) is the group obtained from SO(n,q) by factoring it by the
group of scalar matrices they contain. When n = 2m + 1, that is when n is odd, all non-singular
quadratic forms on a space of dimension n over F, have Witt index m and are equivalent up to
scalar forms. If n = 2m, then n is even and we, up to equivalence, get two types of quadratic form
namely, the plus type with Witt index m and the minus type with Witt index m — 1. Hence if n is
odd we get GO(n,q) and when n is even GO®(n, q) with e = + or e = —. We are more interested

in n = 2m and in particular € = +.

For an orthogonal group we define a reflection r,, for each vector v € V for which f(v,v) # 0 as
elements of GO(n, q) defined by

flz.0),

flo,0)

In characteristic 2 if we let 3 f(v,v) = Q(v) in the equation above, then for each vector v of norm

Ty : X — T —2

1 we define the orthogonal transvection t, by
ty :w — w+ f(w,v)v.

This is a linear map and preserves the quadratic form since
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Qo+ f(w,0)e) = 5w+ [, e)o,w+ f(w,0)0)
= Sl w)+ Flw, fw,0)0) + F(Fw,v)o,w) + (S w,0)0, fw,0)0)]

= Sl ww) + fw, fw,0)0) + fw, fw,0)0) + F(Fw,0)0, fw, 0)0)]

= %[f(w, w) + 2f (w, f(w,v)v) + f(f(w, v)v, f(w,v)v)]

= %f(w,w)—k()—i—%f(f(wW)va(va)U)
= Qw)+Q(f(w,v)v).

Orthogonal groups of dimension > 6 can be generated by these transvections. The quasi-
determinant of an element x is defined to be +1 or —1 depending on whether x can be written as

a product of even or odd number of of orthogonal transvections.

Thus the quasi-determinant of an element of GO3 (q) is the sign of the permutation describing its
action on this set. The kernel of the quasi-determinant map is a subgroup of index 2 in GO;m (q)
which we denote Q;m(q) These are simple for all m > 3 and all ¢. We define Q5,,(q) as a subgroup
of index 1 or 2 in SO5,,(¢). The image of PQ5,, (q) in PSOS,,(q) is denoted O5,,(q) and is the
commutator subgroup of SOS, (¢). Also the group Spam,—2(¢) is a maximal subgroup of both
groups 05, (q). Looking at the orders of orthogonal groups in particular those of even dimension

and € = 4, we have that

IGOS, (@) = T2 )¢ +1)g*?
= 2D (g I (g% - 1),

For further reading one can also go to [19, 23, 64, 52, 60, 74, 103, 106, 125].

In our case we have Of (2) is of index 2 in GOZ (2) and hence PQJ (2) = Of (2) = PSOF (2). Also
for the order O (2) since it is of index 2 in GOZ (2) we have

03 (2)] = 222" - DI, (2 - 1).

We are interested in the group 2%:04 (2) which is a maximal subgroup of Ofy(2). The group
OI“O(Q) has nine conjugacy classes of maximal subgroups. It has exactly four conjugacy classes of
involutions presented in the ATLAS [23] by 2A4,2B,2C and 2D respectively. In OfO(Q), we have
NO%(Q)@S) = 28:07(2) and using the list of maximal subgroups of O},(2) given in the ATLAS
[23], we can see that 28:07 (2) is a maximal subgroup of Ofy(2). There are three non-equivalent
8-dimensional 2-modular representations of the group O; (2), with corresponding vector spaces
Vi, Vo and V3. Here we have

dimgpo) (V1) =8, dimgpu(V2) = dimgpgy (Vs) = 8.
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We also have that V; = 28 is irreducible over GF(2) and here we are concerned with the group
V1:04 (2). We also note that Vz and V3 are irreducible over GF(4). Hence O7,(2) has only one

class for the maximal subgroups representatives of type 28:07 (2)

Let G = N:G, where N = 2% is the vector space of dimension 8 over GF(2) and G = Og (2)
acts irreducibly on N. We use the method of coset analysis, which was discussed in chapter 2 ,
to determine the conjugacy classes of G. We then construct the complete character table using
Fischer-Clifford matrices and partial character tables of inertia factor groups. The complete fusion
of 28:05 (2) into Of(2) will also be fully determined. Our computations were done using GAP [41]

8.3. The action of OF (2) on 28

We generate Of (2) as a matrix group as the only proper normal subgroup of GOg (2) by three

8 X 8 matrices o, 8 and y of orders 15,15 and 4 as follows.

11100111
01000000
01100001

looo11000

““loi1100101])
01001000
01000001
000100710
10000000
01000000
00100001

looo11000

b= 00100710 1]
00001000
00000O0GO0 1
000100710
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10001000

01000010
001 0O0O0O00QO0
0001 0O0O00O0

000 O01O0O0TO

01 0001O00O0
000O0O0OO0OT1O0

10001001

We give the class representatives for each g € Of (2) in terms of 8 x 8 matrices over GF(2) in Table

8.1 where [g]¢ is the class containing g and M is the matrix that represents that particular class.

This is written in GAP format [41].

Table 8.1: Conjugacy Classes of Og (2)

llglal

3780

3780

56700

2240

0 0 0 1

1

1 0 0 O

0 0

1
0 0

0 0 0 O

0 0 1
0 0 0 0 O

0

1

0 0 0 0 O

1
0 0 O

0

1

0 01 0 0 O
0 0 O

0

1

1
0 0 0 0 O

1 0 0 O
1 0 0

0 0

0

0

1

0 0 O

0 0

0

9l

2a

2c

2e

3b

llglal

1575

3780

89600

0 0 0 0 0 0 O

1
0
0
0 0 0 O

1

0 0 0 0 0 O

1
0

0 0 0 0 O

1

0 0 O

1

0 0 0 O
0 0 0 0 0 O

1

0 0 0 0 O

0
1

0 0 0 0 0 0 O

0 0 0 0 O

0

0

1

0 0 0 0 O

0 0 0 0 0 O

1

0 0 0 0 O

1 0 0 O
0 0 O

1
0 0 0 0 O

1
0 0 0 0 0 O

1

1

0 0 O

0 0 0 0 1

1

0 0 O

1
0 0 0 0 0 0 O

1

0 0 0 0 0 O

1

1

0 0 O

l9la

la

2b

2d

3a

continued on next page
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Table 8.1 (continued from previous page)
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Table 8.1 (continued from previous page)
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We obtain that Og (2) has 53 conjugacy classes. The action of Og (2) on 2% gives rise to three

orbits of lengths 1,120 and 135 with corresponding point stabilizers that we get from the ATLAS
(23] namely, Og (2), Sps(2) and 26:Ag. Let py and p2 be permutation characters of Of (2) of degrees

120 and 135. Then from ATLAS [23], we deduce that x,, = la+35a+84a and x,, = la+50a+84a.

x(Og (2)|28) is the permutation character of Og (2) on 28. Then we get

Suppose x

oF(2) OoF (2)
IS;G(Q) + IZGS:AS

la +

X:
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=3 x la+ 35a + 50a + 2 x 84a,

+ +
where Ig;ﬁ% and I 2068 g) are

and 26:Ag respectively.

the characters of Og (2) induced from the identity characters of Spg(2)

For each class representative g € Of (2),we calculate the values of x(Spg(2)|2%), x(2°:45]2%) on g
and k = x(g) on 28, the number of fixed points of g on 2. These are given in Table 8.2.

Table 8.2:

[g]o+(2) la. 2a 2b 2c 2d 2 3a 3b 3c 3d 3e 4a 4b 4c
x(Sps(2)[28) [120 32 24 8 o0 o0 3 0 0 3 6 12 4 8
x(26:4g[28) | 135 31 39 7 15 15 2 0O O O 9 3 11 7
k|26 64 64 16 16 16 64 1 1 4 16 16 16 16

[g}o+(2) 4d 4e 4 5a SB5b 5¢c 6a 6b 6¢c 6d 6e 6f 6g 6h

s
xSps@25) 0 0o 1 10 o o0 12 0 0 8 0 0 0 6
x(20:4s128) | 3 3 2 5 0 0 3 0
k 4 4 4 16 1 1 16 1 1 16 1 1 4 16

=]
N
o
=]
w
©

[Q]O;(2>
x(Sps(2)28) | 0 0 2 0 0 2 1 2 2 3 0 0 2
x(2%:4828) | 3 3 1 3 3 1 2 1 1 0 0 0

[Q]O; (2)
x(Sps(2)[28) | 0 0 3 0 0 3 2 0 0 1 0 0
x(25:A45/2%) 0 0 0 0 0 0 1 0 0 2 0 0
k| 1 1 4 1 1 4 4 1 1 4 1 1

We can also check our calculations for the values of k using Programme F (see appendix). Let
k1 = x(Sps(2)[2%)(9), k2 = x(2%:45|2%)(g) then k = ki + ko + 1, where ki = cut[l] + cut[3] +
cut[7], ko := cut[1l] + cut[6] 4+ cut[7], then k := 3 x cut[1] + cut[3] + cut[6] + 2 * cut[7]. Here cut[i] is
the i-th row of the character table of Of (2) as shown in the ATLAS [23].

Having obtained the values of the k’s for the various classes of G, then we need to calculate the
f]{s corresponding to the various k’s. For this purpose we use Programme A (see appendix) For a
class representative dg € G, where d € 28 and g € OF (2) and o(g) = m, by Theorem 3.3.10 [99] we

have

m if wle
O(dg)z{

2m  otherwise

To calculate the orders of the class representatives dg € G, we use Programme B (see appendix)

Here if 0o(g) = m and w = 1y then o(dg) = m otherwise if w # 1y, then o(dg) = 2m. Table 8.3

gives detailed information about the conjugacy classes of G
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Table 8.3: Conjugacy Classes of 25:07 (2)

Ge0i@) | k| 1 a; w “anot ) | 10 2@
14 22 | 1 | (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 1A 44 590 694 400
120 | (0,0,0,0,0,0,1,0) | (1,0,1,0,1,0,1,0) | 24 371 589 120
135 | (0,0,0,0,0,0,0,1) | (1,0,0,1,0,0,0,1) | 2B 330 301 440
2A 26 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2C 7 077 888
6 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 2D 1179 648
9 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 2E 786 432
48 (0,0,0,1,0,0,0,0) | (1,0,0,0,0,1,1,1) | 4A 147 456
2B 26 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2F 2949 120
6 (0,0,0,0,0,0,1,0) | (0,1,0,1,0,0,1,0) | 4B 491 520
10 | (0,0,0,0,0,0,0,1) | (0,1,0,0,0,0,0,0) | 4C 294 912
15 (0,0,0,1,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2G 196 608
32 (0,0,1,0,0,0,0,0) | (1,0,0,0,0,1,1,1) | 4D 92 160
2C 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2H 737 280
15 (0,0,0,0,0,0,1,0) | (1,1,1,1,1,1,0,0) | 4E 49 152
2D 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2I 737 280
15 (0,0,0,0,0,0,1,0) | (1,1,0,1,0,0,1,0) | 4F 49 152
2F 24 | 1 | (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 2J 49 152
8 (0,0,0,1,0,0,0,0) | (0,0,0,1,0,0,0,0) | 4G 6 144
1 (0,0,0,0,0,0,1,0) | (1,1,0,1,0,0,1,0) | 4H 49 152
6 (0,0,0,0,0,0,0,1) | (1,0,1,0,1,0,1,0) | 4I 8 192
3A 26 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 3A 4 976 640
36 (0,0,0,0,0,0,0,1) | (1,0,1,0,0,1,0,1) | 6A 138 240
27 (0,0,0,0,0,0,1,0) | (0,0,0,1,0,1,1,1) | 6B 184 320
3B 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 3B 77 760
3C 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 3C 77 760
3D 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 3D 7776
3 (0,0,0,0,0,0,0,1) | (0,0,0,1,0,0,0,0) | 6C 2 592
3E 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 3E 10 368
6 (0,0,0,0,0,0,1,0) | (1,1,0,1,0,0,1,0) | 6D 1728
9 (0,0,0,0,0,0,0,1) | (0,0,0,1,0,0,0,0) | 6E 1152
4A 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4J 73 728
12 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 4K 6 144
3 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 4L 24 576
4B 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4M 8 192
4 | (0,0,0,1,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4N 2 048
1 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 40 8 192
2 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 4P 4 096
8 (0,0,0,1,0,0,0,1) | (0,0,0,0,0,0,0,0) | 4Q 1024
4C 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4R 3072
1 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 4S 3072
3 | (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 4T 1024
3 (0,0,0,1,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4U 1024
4 (0,0,0,1,0,0,0,1) | (0,0,0,0,0,1,1,1) | 8A 768
4 (0,0,1,1,0,0,0,0) | (1,1,1,1,1,0,0,0) | 8B 768
4D 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4V 768
3 (0,0,0,0,0,0,1,0) | (1,1,0,1,0,0,1,0) | 8C 256
4F 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4W 768
3 (0,0,0,0,0,0,1,0) | (1,0,0,1,0,0,1,0) | 8D 256
4F 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 4X 256
1 (0,0,0,0,0,0,1,0) | (0,0,0,1,0,0,0,0) | 8E 256
continued on next page
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Table 8.3 (continued from previous page)

GeOi [k | 5 4 w Wlasor @ | 1Camod 2) @)
2 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,1,1,1) | 8F 128
5A 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 5A 4 800
5 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,1,1,1) | 10A 960
10 (0,0,0,0,0,0,0,1) | (0,1,0,1,0,0,1,1) | 10B 480
5B 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 5B 300
5C 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 5C 300
6A 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6F 27 648
12 (0,0,0,0,0,0,1,0) | (1,0,1,1,1,0,0,0) | 12A 2 304
3 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 6G 9 216
6B 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6H 1728
6C 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 61 1728
6D 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6J 4 608
1 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,1,1,1) | 12B 4 608
3 (0,0,0,1,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6K 1536
3 (0,0,0,1,0,0,0,1) | (0,0,0,1,1,0,1,1) | 12C 1 536
8 (0,0,1,1,0,0,0,0) (,0,1,0,0,1,0,1) 12D 576
6E 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6L 288
6F 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6M 288
6G 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6N 864
3 (0,0,0,0,0,0,1,0) 0,0,0,0,0,0,0,0) 60 288
6H 24 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6P 3 456
6 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 6Q 576
9 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 6R 384
61 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6S 864
3 (0,0,0,0,0,0,1,0) | (1,0,1,0,0,1,0,0) | 12E 288
6J 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6T 864
3 (0,0,0,0,0,0,1,0) | (1,0,1,1,1,0,0,0) | 12F 288
6K 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6U 288
1 (0,0,0,0,0,0,1,0) | (1,0,1,0,1,0,1,0) | 12G 288
2 (0,0,0,0,0,0,0,1) | (0,1,0,1,0,1,0,1) | 12H 144
6L 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6V 288
3 (0,0,0,0,0,0,1,0) | (0,0,0,1,1,0,1,1) | 12I 96
6M 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6W 288
3 (0,0,0,0,0,0,1,0) (,0,1,0,0,1,0,1) 12J 96
6N 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 6X 96
1 (0,0,0,0,0,0,1,0) | (0,0,0,1,1,0,0,0) | 12K 96
2 (0,0,0,0,0,0,0,1) | (1,0,1,1,1,0,0,0) | 12L 48
TA 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | TA 28
1 (0,0,0,0,0,0,1,0) | (0,0,0,1,0,0,0,1) | 14A 28
1 (0,0,0,0,0,0,0,1) | (1,0,1,0,1,0,1,0) | 14B 28
1 (0,0,0,1,0,0,0,0) | (0,0,0,0,0,1,1,1) | 14C 28
8A 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 8G 128
1 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 8H 128
2 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 8I 64
8B 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 8J 128
1 (0,0,0,0,0,0,1,0) | (0,0,0,0,0,0,0,0) | 8K 128
2 (0,0,0,0,0,0,0,1) | (0,0,0,0,0,0,0,0) | 8L 64
9A 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 9A 108
3 (0,0,0,0,0,0,1,0) | (1,0,1,0,0,1,0,0) | 18A 36
9B 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 9B 27
9C 1 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 9C 27
10A 22 1 (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 10C 80
continued on next page
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Table 8.3 (continued from previous page)

9e05(2) | k| fj d; w [#]58.0+ 2y | 1Cas.0%(2) @
1 | (0,0,0,0,0,0,1,0) | (1,1,1,1,1,1,0,0) | 20A 80
2 | (0,0,0,0,0,0,0,1) | (0,0,0,1,1,1,0,0) | 20B 40
10B 1] 1 ] (0,0,00,0,00,0 | (0,00,0,0,0,0,0) | 10D 20
10C 1] 1 | (0,0,000,00,0) | (0,00,0,0,0,0,0) | 10E 20
124 22 | 1 | (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 12M 576
3 | (0,0,1,0,0,1,0,0) | (0,0,0,0,0,0,0,0) | 12N 192
12B 1| 1 ](0,0000000) | (0,0,0,0,0,0,0,0) | 120 144
12C 1| 1 ](0,0000000) | (0,0,0,0,0,0,0,0) | 12P 144
12D 22 | 1 | (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 12Q 144
3 | (0,0,1,0,0,1,0,0) | (0,0,0,0,0,0,0,0) | 12R 48
12E 22 | 1 ] (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 128 96
1 | (0,0,0,0,0,0,1,0) | (1,0,1,1,0,0,0,1) | 24A 96
1 | (0,0,0,0,0,1,0,0) | (1,0,1,0,1,0,1,0) | 24B 96
1 | (0,0,0,0,1,0,0,0) | (0,0,0,0,0,0,0,0) | 12T 96
12F 1| 1 ](0,0000000) | (0,0,0,0,0,0,0,0) | 12U 24
12G 1| 1 ](0,0000000) | (0,0,0,0,0,0,0,0) | 12V 24
154 22 | 1 ] (0,0,0,0,0,0,0,0) | (0,0,0,0,0,0,0,0) | 15A 60
1 | (0,0,0,0,0,0,0,1) | (1,0,1,0,1,1,1,1) | 30A 60
1 | (0,0,0,0,0,0,1,0) | (1,0,1,0,1,0,1,0) | 30B 60
1 | (0,0,0,1,0,0,0,0) | (0,0,0,0,1,1,1,1) | 30C 60
15B 1] 1 ] (0,00,0,0,0,00) | (0,00,0,0,000) | 15B 15
15C 1| 1 |(0,0,0,000,00) | (0,0,0,0,0,0,0,0) | 15C 15

8.4. The Character Table of 25:04 (2)

8.4.1 Inertia factor groups Sp(6,2) and 2°:43 and their fusion into OgF (2)

When OF (2) acts on 2% we get three orbits of conjugacy classes so that by Brauer [14] when O (2)
acts on Irr(2%) we also get three orbits of irreducible characters. In this case the orbit lengths
of the irreducible characters are also 1,120 and 135. These have corresponding point stabilizers
Hy, H, and Hj of indices 1,120 and 135 respectively. From the ATLAS [23] the corresponding
inertia factor groups are Hy = Of (2), Ha = Sps(2) and Hz = 26:A5. We have seen from Table 8.3
that 28:07 (2) has 124 conjugacy classes and hence it has 124 irreducible characters.

We give the fusion of the conjugacy classes of 25:Ag and Spg(2) into Of (2) respectively in two
tables, namely Tables 8.5 and 8.6.

The work required for the fusions of 26:Ag into O (2) are listed in Table 8.4. We use programme
D (see appendix) to compute the fusion of SP(6,2) into OF (2) .
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Table 8.4:
Class of O:{ (2) la 2a 2b 2c 2d 2e 3a 3e 4a  4b  4c  4d  4e 4f
Class of 26:A4g
la 135

2a

2b

2c

2d

2e

of

2g

2h [6]

3a

3b [9]

4a,

4b

4c

4d

4e

4f
4g

4h

4i [6]

43

x(OF (2)]2%:4s) | 135 39 31 15 15 7 27T 9 3 11 7 3 3 3

Class of O;(Z) 52 5b 5¢ 6a 6b 6¢c 6d 6e 6f 6g 6h @ 6i 6j 6k 61 6m 6n
Class of 26:A4g

ba

6a

6b

6¢c

6d

6e
6f [6]

6g @

6h
6i

6j

x(O0F(2)2%:4s) | 5 o o 3 o o 7 o0 0 O 9 3 3 1 3 0 1

Class of O;F(Q) 7a 8 8 10a 12a 12b 12¢ 12d 12¢ 12f 12g 15a 15b
Class of 26:A4g
Ta m
7b
8a
8b
10a
12a
12b
15a
1
2

15b
x(OF (2)|26:45) | 2 1 1 1 3 0 0 0 3 0 0
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Table 8.5: The fusion of 2°:Ag into Og™(2)

flvne — oz | Foas — biloge |

1A 1A 2A 2B
2B 2A 2C 2A
2D 2C 2F 2D
2F 2F 2G 2B
2H 2F 3A 3A
3B 3E 4A 4B
4B 4A 4C 4B
4D 4C 4F 4B
4F 4F 4G 4D
4H 4E 41 4C
4J 4F 5A 5A
6A 6A 6B 6D
6C 6J 6D 61
6F 6K 6F 6D
6G 6H 6H 6M
61 6L 6J 6N
TA TA 7B TA
8A 8A 8B 8B
10A 10A 12A 12A
12B 12FE 15A 15A
15B 15A

Table 8.6: The fusion of SP(6,2) into OF (2)

[zlspe2  —  l91lo+ (e ‘ [z]sp2)  —  l91lo+ (g ‘
14 14 24 2B
2B 2A 2C 2B
2D 2F 3A 3A
3B 3D 3C 3E
4A 4A 4B 4C
4C 4C 4D 4B
4FE 4C 6A 6D
5A 5A 6B 6A
6C 6G 6D 6D
6F 6K 6F 6H
6G 6N TA TA
8A 8A 8B 8B
9A 9A 10A 10A
124 12E 12B 12F
12C 12D 15A 15A
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8.4.2 The Fischer-Clifford Matrices of G

By using the the fusions of the inertia factor groups and the properties of the Fischer-Clifford

matrix from chapter 5, we computed the Fischer-Clifford matrices. These are given in Table 8.7.

Table 8.7: The Fischer-Clifford Matrices of 28:07 (2)

M(g) M(g)
1 1 1] Ty L
M@1A)=]| 120 8 -8 M(20) = 5 _1}
135 -9 7 |
1 1 1 1
M(24) = 24 8 -8 0 M(2D) = 1 1]
3 3 3 -1 15 —1
36 —12 4 0
1 1 1
2 -2 —2 2 0
M@B)=| 3 10 -6 -2 0 M(3D) = ?1) _”
1 11 1 -1 L
30 =10 6 -2 0
11 1 1
M(2E) = 8 0 =8 0 M(4D) = Lot
1 -1 1 1 3 -1
L6 0 6 -2
1 11 1
M@BA) =| 36 -4 4 M(4E) = ; 71
27 3 -5 .
11 1 L
MBE)=|6 2 -2 MEE) = |
9 -3 1 L
1 11
M@A) = | 12 0 -4 M(GI)_[ ”
| 3 -1 3|
1 1 1 1
4 0 4 -4 0
11
MAB)=|1 1 1 1 -1 M(GJ)_{3 1]
2 -2 2 0
|8 0 -8 0 |
r1 1 1 11
1 -1 1 -1 1 -1
M(4C) = 1 1 1 1 -1 -1 M(GL){1 1}
6 -6 -2 2 0 O 3 -1
1 -1 1 -1 -1
L6 6 -2 —2 0 0
L1 11 1 1
M@AF)=|1 1 -1 M(7A) = L=t -l
5 9 0 1 -1 -1 1
1 1 -1 -1
1 1
MGA) = | 10 2 _2] M(GM):{; 1]
5 -3 1
continued on next page
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Table 8.7 (continued from previous page)

M(g) M(g)
1 1 1
M@©EA) = | 12 0 -4 M(94) = ! ]
3 -1 3| !
1 1 1 1
2 —2 2 -2 0 L
M@BD)=|6 6 -2 -2 0 M(24)=| }
111 -1
6 -6 -2 2 0|
1 1 1]
M@GH)=| 6 2 -2 M(12D) = { ; _1 ]
9 -3 1
1 1 1
M@K)=| 2 -2 0 M(3B)=M@3C) = | 1 |
1 1 -1
1 1 1]
M@EN)=| 2 —2 0 M(54) = M(5B) = | 1 |
11 41
1 1 1]
M@BA)=|2 —2 o0 M(6B) = M(6C) = M(6E) = M(6F) = [ 1 ]
11 1|
1 1 1]
M@B)=| 2 -2 0 M(9B) = M(9C) :[ 1 ]
1 1 -1 |
1 1 1
M@104)=| 2 —2 o M(10B) = M(10C) = { 1 ]
11 -1
r1 1 1 1
1 -1 1 -1
M@2E)=| T M(12B) = M(12C) = M(12F) = M(12G) = { 1 }
L1 1 -1 -1
T1 1 1 1
1 -1 -1 1
MasA) = | T M(15B) = M(15C) = { 1 ]
L1 -1 1 -1

We use programme D (see appendix) to give the fusion of 25:05 (2) into Of,(2) in Table 8.8.

Table 8.8: The fusion of 28:07 (2) into O7(2)

Wasor@ | — | Bote | Wasore | — | Wot e
1A 1A 2A 2B
2B 2A 2C 2A
2D 2D 2F 2C
2F 2B 2G 2D
2H 2C 21 2C
2J 2D 3A 3A
3B 3C 3C 3C

continued on next page
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Table 8.8 (continued from previous page)

Wasior ey | — | Mot | Wasope | — | Blote
3D 3D 3E 3B
4A 4B 4B 4A
4C 4B 4D 4C
4F 4D 4F 4D
4G 4F 4H 4D
41 4F 4J 4A
4K 4G 4L 4F
4M 4B 4N 41
40 4F 4P 4D
4Q 4H 4R 4C
48 4G 4T 41
4U 4F 4V 4H
4w 4H 4X 41
5A 5A 5B 5B
5C 5B 6A 6B
6B 6A 6C 6G
6D 61 6F 6A
6F 6F 6G 6D
6H 6H 61 6H
6J 6B 6K 6D
6L 6L 6M 6L
6N 6F 60 6M
6P 6C 6Q 6K
6R 6J 6S 61
6T 6F 6U 61
6V 6J 6w 6J
6X 6K TA TA
8A 8B 8B 8A
8C 8C 8D 8C
8E 8C 8F 8D
8G 8A 8H 8D
8G 8D 8H 8A
81 8E 8J 8B
8K 8D 8L 8F
9A 9A 9B 9B
9C 9B 10A 10A
10B 10B 10C 10B
10D 10C 10E 10C
12A 12B 12B 12B
12C 12A 12D 12D
12FE 12FE 12F 12E
12G 12E 12H 12G
121 121 12J 121
12K 121 12L 12K
12M 12A 12N 12F
120 12H 12P 12H
12Q 12C 12R 12J
128 12D 12T 12F
12U 12L 12V 12L
14A 14A 14B 14B
14C 14C 15A 15C
15B 15E 15C 15E

continued on next page
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Table 8.8 (continued from previous page)

[9}28:0+(2) ‘ - ‘ [y}ofn(z) [9]28103’(2) | - | [y]Ofro@)
18A 18A 20A 20A
20B 20B 24A 24A
24B 24B 30A 30C
30B 30F 30C 30D

We use programme E (see appendix) to give the power maps of elements of 28102;|r (2) in Table 8.9.

Table 8.9: The Power Maps of elements of 25:07 (2)

Glse | Wosore | 2| 3 | 5 | 7 |lse | llsory | 2] 357
1A 1A 1A 2A 2C 1A
2A 1A 2D 1A
2B 1A 2D 1A
2E 1A
4A 2A
2B 2F 1A 2E 2J 1A
4B 2B 4G 2A
4C 2B 4H 2B
2G 1A 41 2B
4D 2A
2C 2H 1A 2D 21 1A
4B 2B 4F 2B
3A 3A 3A 1A 3D 3D 3D 1A
6A 3A 2A 6C 3D 2B
6B 3A 2B
3B 3B 3B 1A 3C 3C 3C 1A
3E 3E 3E 1A 4A 4J 2C
6D 3E 2A 4K 2D
6E 3E 2B 4L 2C
4B 4M 2C 4C 4R 2F
4N 2D 4S8 2G
40 2C 4T 2G
4P 2C 4U 2F
4Q 2E 8A 4C
8B 4B
4D 4V 2H 4E 4W 21
8C 4B 8D 4F
4F 4X 2E 5A 5A 5A 5A 1A
8E 4H 10A 5A 5A 2B
8F 4G 10B 5A 5A 2A
5B 5B 5B 5B 1A 5C 5C 5C 5C 1A
6A 6F 3A 2C 6D 6J 3A 2F
12A 6B 4A 12B 6A 4C
6G 3A 2D 6K 3A 2G
12C 6A 4B
12D 6B 4D
continued on next page
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Table 8.9 (continued from previous page)

Wlss | Wosore | 2| 3 | 5 | 7 |Wse | [asory | 2|3 5] 7

6B 6H 3B 2C 6C 61 3C 2C

6E 6L 3B 2H 6F 6M 3C 21

6H 6P 3E 2C 6G 6N 3D 2C
6Q 3E 2D 60 3D 2D
6R 3E 2E

61 6S 3E 2C 6J 6T 3E 2C
12E 6E 4A 12F 6E 4A

6K 6U 3E 2F 6L 6V 3E 2H
12G 6E 4C 121 6E 4E
12H 6D 4D

6N 6X 3E 2J 6M 6W 3E 21
12K 6D 4G 12J 6E 4F
12L 6E 4H

TA TA TA TA TA 1A 9A 9A 9A 3D
14A TA 14A  14A  2A 18A 9A 6C
14B TA 14B 14B 2B
14C TA 14C  14C 2B

9B 9B 9B 3D 9C 9C 9C 3D

8A 8G 4J 8B 8J 4M
8H 4K 8K 4N
81 4L 8L 4P

10A 10C 5A 10C 2F 12A 12M 6F 4]
20A 10A  20A 4B 12N 6G 4L
20B 10B  20B 4D

10B 10D 5B 10D 2H 10C 10E 5C 10E 21

12B 120 6H 4J 12C 12P 61 4]

12D 12Q 6N 4J 12E 128 6J 4R
12R 6N 4L 24A 12B  8A

24B 12C 8B
12T 6K 48

12F 12U 6L 4V 12G 12V 6M 4W

15A 15A 15A 5A 3A 15B 15B 15B 5B 3B
30A 15A 10B 6B
30B 15A 10A 6A 15C 15C 15C 5C 3C
30C 15A  10A  6A

To compute the character table of 28:05 (2), as an example consider the following. Let Cy(2B), C2(2B), C5(2B)
be the partial character tables of the inertia factors for the classes that fuse to 2B € OF (2). The
portions of the character table of G = 28:08+ (2) corresponding to the coset 2B are :
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C1(2B)M;(2B) =

11
-5
-5
10
20

15
26
10
10
20
—10

39

-9
20
60
—20
—20
24
—40
—40
36
50
—-30
—30
64

40
15
15
15
—60
20
20
64

12
—36
—36

51
—45
—45

40
—45

11
-5
-5
10
20

15
26
10
10
20
—10

39
-9
-9
20
60
—20
—-20
24
—40
—40
36
50
—-30
—30
64

40
15
15
15
—60

—36
51
—45
—45

40
—45

—36

51
—45
—45

40
—45

1

4
11
-5
—5
10
20

15
26
10
10
20
—10

39

-9
20
60

—20
—-20
24
—40
—40
36
50
—-30
—30
64

40
15
15
15
—60
20
20
64

0

0

12
—36
—36
51
—45
—45
0

0

40
—45

1

4
11
-5
-5
10
20

15
26
10
10
20
—10

39

-9
20
60

—20
—-20
24
—40
—40
36
50
—-30
—-30
64

40
15
15
15
—60
20
20
64

0

0

12
—36
—36
51
—45
—45
0

0

40
—45

1

4
11
-5

10
20

15
26
10
10
20
—10

39
-9
-9
20
60
—20
—20
24
—40
—40
36
50
—-30
—30

64

40
15
15
15
—60
20
20
64

12
—36
—36

51
—45
—45

0
0

40

—45
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Co(2B)M3(2B) =

C3(2B)M3(2B) =

—5
-5

—11
15

15
—24
—10

—35
25

40
40
21
—51
—39
50
10
—24
—40
40
—45
—16
—30

20

—10

—-30

—60

|
© UL D 0N G N U E W W e

|
e |
[ R T S )

10

-
00 R N O NN NN GO N R 0NN O

|
=
o O =

12

32
80
80
48
128
240
—160
240
192
160
128
80
320
—80
320
320
—288
288
—48
160
320
192
—320
320

—512

—320

31
97
74
140
51
51
51
148
—115
—45
—45
56
64
130
244
124
205
205
—155
—155
50
50
50
50
20
380
100
260
140
390
—330
36
396
—440
—200
45
45
—315
—315
60

40
40

72
40
—40
40
128
80
32
120
40
—40

—152
232
88
—80
80
128

120
—128
80
—120
—160

—23
—6
—-20
11
11
11
—12
85
75
75
56
64
50
—76
—36
—75
—75
45
45
—30
—-30
—-30
—-30
20
—100
—60
—60
—-20
—170

—8
—8
—8
—24
—8
—72
40
—72

—16
—32

—104

—128
—128
24

72
—112
—80

128
—128
72
128
48
—72

—90
36
108
—56

—27
—27
—99
—99
—36

64

0
—16
—16

16
—32
16

16
—64
—32

—80
32

64

64

64
—128
—80
96

—64

—14
—14
—14

20

—28

12
—58
—10

36

12

72

56
—51
—51
—27
—27
—68

[=l=l=lolelol - -R=-R-l=iiolelolelelolelol = R-R-leiolollo e =)

—56
—64

[SAENC I

10
10
10
10
—20
—20
20
—20
—20
30
30
—36
—36
—40
—40
45
45
45
45
60
—64
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We used the Fischer-Clifford matrices and partial character tables of inertia factor groups and
computed the character table of G. This character table is given in Table 8.10. We converted this

character table to the GAP format and used Programme E (see appendix) to test its validity and
to compute the power maps.
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8.4.3 The Character Table of G

Table 8.10: The Character Table of 28:04 (2)

1A 2A 2B 2C 2D

1A 2A 2B 2C 2D 2F 4A | 2F 4B 4C 2G 4D | 2H 4FE 2] 4F
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 28 28 28 -4 -4 -4 -4 4 4 4 4 4 4 4 4 4
X3 35 35 35 3 3 3 3 11 11 11 11 11 -5 -5 -5 -5
X4 35 35 35 3 3 3 3 -5 -5 -5 -5 -5 11 11 -5 -5
X5 35 35 35 3 3 3 3 -5 -5 -5 -5 -5 -5 -5 11 11
X6 50 50 50 18 18 18 18 10 10 10 10 10 10 10 10 10
X7 84 84 84 20 20 20 20 20 20 20 20 20 4 4 4 4
X8 84 84 84 20 20 20 20 4 4 4 4 4 20 20 4 4
X9 84 84 84 20 20 20 20 4 4 4 4 4 4 4 20 20

X10 175 175 175 | -17  -17  -17  -17 15 15 15 15 15 15 15 15 15
X11 210 210 210 | -14 -14 -14 -14 26 26 26 26 26 10 10 10 10
X12 210 210 210 | -14 -14 -14 -14 10 10 10 10 10 26 26 10 10
X13 210 210 210 | -14 -14 -14 -14 10 10 10 10 10 10 10 26 26
X14 300 300 300 12 12 12 12 20 20 20 20 20 20 20 20 20
X15 350 350 350 -2 -2 -2 -2|-10 -10 -10 -10 -10| -10 -10 | -10 -10
X16 525 525 525 45 45 45 45 5 5 5 5 5 5 5 5 5
X17 567 567 567 -9 -9 -9 -9 39 39 39 39 39 -9 -9 -9 -9
X18 567 567 567 -9 -9 -9 -9 -9 -9 -9 -9 -9 39 39 -9 -9
X19 567 567 567 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 39 39
X20 700 700 700 92 92 92 92 20 20 20 20 20 20 20 20 20
X21 700 700 700 -4 -4 -4 -4 60 60 60 60 60 | -20 -20 | -20 -20
X22 700 700 700 -4 -4 -4 -4 | -20 -20 -20 -20 -20 60 60 | -20 -20
X23 700 700 700 -4 -4 -4 -4 | -20 -20 -20 -20 -20 | -20 -20 60 60
X24 840 840 840 8 8 8 8 24 24 24 24 24 | -40 -40 | 40 -40
X25 340 840 840 8 8 8 8 | -40 -40 -40 -40 -40 24 24 | -40 -40
X26 340 840 840 8 8 8 8| -40 -40 -40 -40 -40 | -40 -40 24 24
Xx27 972 972 972 | 108 108 108 108 36 36 36 36 36 36 36 36 36
x28 | 1050 1050 1050 58 58 58 58 50 50 50 50 50 | -30 -30 | -30 -30
Xx29 | 1050 1050 1050 58 58 58 58 | -30 -30 -30 -30 -30 50 50 | -30  -30
Xx30 | 1050 1050 1050 58 58 58 58 | -30 -30 -30 -30 -30 | -30 -30 50 50
x31 | 1344 1344 1344 64 64 64 64 64 64 64 64 64 0 0 0 0
Xx32 | 1344 1344 1344 64 64 64 64 0 0 0 0 0 64 64 0 0
X33 | 1344 1344 1344 64 64 64 64 0 0 0 0 0 0 0 64 64
X34 | 1400 1400 1400 | -72 -T2 -72 -T2 40 40 40 40 40 40 40 40 40
x35 | 1575 1575 1575 | -57  -57 -57  -57 15 15 15 15 15 15 15 15 15
x36 | 1575 1575 1575 | -57  -57 -7  -B7 15 15 15 15 15 15 15 15 15
x37 | 1575 1575 1575 | -57  -57 -7  -57 15 15 15 15 15 15 15 15 15
Xx3s | 2100 2100 2100 52 52 52 52 | -60 -60 -60 -60 -60 20 20 20 20
Xx39 | 2100 2100 2100 52 52 52 52 20 20 20 20 20 | -60 -60 20 20
x40 | 2100 2100 2100 52 52 52 52 20 20 20 20 20 20 20 | -60 -60
X41 | 2240 2240 2240 | -64 -64 -64 -64 64 64 64 64 64 0 0 0 0
X42 | 2240 2240 2240 | -64 -64 -64 -64 0 0 0 0 0 64 64 0 0
X43 | 2240 2240 2240 | -64 -64 -64 -64 0 0 0 0 0 0 0 64 64
X44 | 2268 2268 2268 | -36 -36 -36 -36 12 12 12 12 12 | -36 -36 | -36 -36
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)

1A 2A 2B
1A 2A 2B 2C 2D 2FE 4A 2F 4B 4C 2G 4D

X45 2268 2268 2268 -36 -36 -36  -36 -36 -36 -36 -36  -36
X46 2268 2268 2268 -36 -36 -36  -36 -36 -36 -36 -36  -36
X47 2835 2835 2835 -45 -45 -45  -45 51 51 51 51 51
X48 2835 2835 2835 -45 -45 -45  -45 -45 -45 -45 -45  -45
X49 2835 2835 2835 -45 -45 -45  -45 -45 -45 -45 -45  -45

0o
Q
N
o

N
T
S
&)
o
~
.
B

1 |
S N
Tl = Ot O N
1 |
S S N
Ol = Ot O N
o )
3 T O S
e S ST TR
o )
3 T N S
= Ot Ot DN D

X50 3200 3200 3200 128 128 128 128 0 0 0 0 0 0 0 0 0
X51 4096 4096 4096 0 0 0 0 0 0 0 0 0 0 0 0 0
X52 4200 4200 4200 -24 -24 -24 -24 40 40 40 40 40 40 40 40 40
X53 6075 6075 6075 27 27 27 27 -45 -45 -45 -45 45 | -45 -45 | -45 -45

X54 120 8 -8 24 8 -8 32 8 -8 0
X55 840 56 -56 -24 -8 8 80 40 -8 -16
X56 1800 120 -120 168 56 -56 80 40 -8 -16
X57 2520 168 -168 -72 -24 24 48 -8 -24 16
X58 2520 168 -168 120 40 -40 128 72 -8 -32
X59 3240 216 -216 72 24 -24 240 40 -72 16
X60 4200 280 -280 72 24 -24 -160 -40 40 0
X61 4200 280 -280 264 88 -88 240 40 -72 16
X62 6720 448 -448 | -192 -64 64 192 128 0 -64
X63 8400 560 -560 | -240 -80 80 160 80 -16 -32
Xxe64 | 10080 672 -672 480 160  -160 128 32 -32 0

Xxe65 | 12600 840 -840 24 8 -8
Xx66 | 12600 840 -840 | -168 -56 56

80 120 40 -80
320 40 -104 32

xe67 | 12600 840 -840 408 136  -136 -80 -40 8 16
Xxe6s | 14400 960 -960 | -192 -64 64 320 0 -128 64
x69 | 20160 1344 -1344 192 64 -64 320 0 -128 64

X70 | 22680 1512 -1512 =72 -24 24
X71 | 22680 1512  -1512 =72 -24 24
x72 | 22680 1512 -1512 504 168 -168
Xx73 | 25200 1680 -1680 48 16 -16

-288  -152 24 64
288 232 24 -128
-48 88 72 -80
160 -80 -112 96

X74 | 25200 1680 -1680 | -336 -112 112 320 80 -80 0
X75 | 25920 1728  -1728 576 192 -192 192 128 0 -64
Xx76 | 33600 2240 -2240 | -192 -64 64 -320 0 128 -64
x77 | 33600 2240 -2240 576 192 -192 320 0 -128 64
x78 | 37800 2520 -2520 | -504 -168 168 0 120 72 -96
x79 | 40320 2688 -2688 384 128 -128 =512 -128 128 0

xso | 45360 3024 -3024 | -144 -48 48
xs81 | 48600 3240 -3240 | -648 -216 216

Xxs2 | 50400 3360 -3360 96 32 -32 -320 -160 32 64

O O O O O O O OO O O O O O OO 0O OO0 o oo oo o oo oo oo
O O O O O O O OO O O O OO0 OO 0O OO0 o oo oo o oo oo oo
O O O O O O O O O O O O O O OO0 o0 oo o oo oo o oo o oo
© O O O O O O O O O O O O O O O o0 oo o oo oo o oo o oo
O O O O O O O OO O O O OO0 OO0 0O oo o oo oo o oo oo oo
O O O O O O O OO O O O O 0O OO o0 oo o oo oo o oo oo oo

Xxs3 | 61440 4096  -4096 0 0 0 0 0 0 0

X84 135 -9 7 39 -9 7 -1 31 -9 7 -1 -1 15 -1 15 -1
X85 945 -63 49 -15 33 17 -7 97 -23 25 1 -7 | -15 1| -15 1
X86 1890  -126 98 258 -30 66 -14 74 -6 26 10 -14 90 -6 90 -6
X87 2700  -180 140 204 12 76 -20 140 -20 44 12 -20 60 -4 60 -4
X88 2835  -189 147 -45 99 51  -21 51 11 27 19 -21 | -45 3| -45 3
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)

1A 2A 2B 2C 2D
1A 2A 2B 2C 2D 2E  4A 2F 4B 4C 2G 4D 2H 4F 21 4F

X89 2835 -189 147 -45 99 51 -21 51 11 27 19 -21 -45 3 -45 3
X90 2835 -189 147 -45 99 51  -21 51 11 27 19 -21 -45 3 -45

X91 3780 -252 196 -60 132 68 -28 148 -12 52 20 -28 -60 4 -60 4
X92 4725 -315 245 213 69 117 -35 | -115 85 5 45 -35 45 -3 45 -3
X93 6075 -405 315 27 171 123 -45 -45 75 27 51 -45 -45 3 -45 3
X94 6075 -405 315 27 171 123 -45 -45 75 27 51  -45 -45 3 -45 3
X95 7560 -504 392 456 72 200 -56 56 56 56 56  -56 120 -8 120 -8

X96 8640 -576 448 192 192 192 -64 64 64 64 64 -64 0 0 0 0
X97 9450 -630 490 138 234 202 -70 130 50 82 66 -70 -30 2 -30 2
X98 3780 -252 196 132 -60 4 4 244 -76 52 -12 -4 -60 4 -60

X99 3780 -252 196 | -156 36 -28 4 124 -36 28 -4 -4 60 -4 60 -4
X100 4725 -315 245 405 -123 53 -3 205 -75 37 -19 5 45 -3 45 -3
X101 4725 -315 245 | -171 69 -11 -3 205 -75 37 -19 5 45 -3 45 -3
X102 4725 -315 245 117 -27 21 -3 | -155 45  -35 5 5 -75 5 165 -11
X103 4725 -315 245 117 -27 21 -3 | -155 45  -35 5 5 165 -11 -75 5
X104 9450 -630 490 -54 42 10 -6 50 -30 2 -14 10 -30 2 210 -14
X105 9450 -630 490 -54 42 10 -6 50 -30 2 -14 10 210 -14 -30 2
X106 9450 -630 490 522 -150 74 -6 50 -30 2 -14 10 -30 2 210 -14
X107 9450 -630 490 522 -150 74 -6 50 -30 2 -14 10 210 -14 -30 2
X108 | 18900  -1260 980 84  -108 -44 20 20 20 20 20 -20 -60 4 -60 4
X109 | 18900 -1260 980 | -204 -12 -76 20 380 -100 92 -4 -20 60 -4 60 -4
X110 | 18900  -1260 980 468  -108 84  -12 100 -60 4 -28 20 180 -12 180 -12
x111 | 18900  -1260 980 | -492 84  -108 20 260 -60 68 4 -20 180 -12 180 -12
x112 | 18900  -1260 980 372 -204 -12 20 140 -20 44 12 -20 | -180 12 | -180 12
X113 | 28350 -1890 1470 | -162 126 30 -18 390 -170 54 -58 30 -90 6 -90 6
X114 | 28350 -1890 1470 | -162 126 30 -18 | -330 70 -90 -10 30 -90 6 -90 6
X115 | 34020 -2268 1764 | -540 36 -156 36 36 36 36 36 -36 180 -12 180 -12
X116 | 34020 -2268 1764 324 -252 -60 36 396 -84 108 12 -36 | -180 12 | -180 12
x117 | 37800 -2520 1960 168 -216 -88 40 | -440 200 -56 72 -40 | -120 8 | -120 8
x118 | 37800  -2520 1960 | -408 -24  -152 40 | -200 120 -8 56 -40 120 -8 120 -8
X119 | 42525 -2835 2205 | -675 333 -3 =27 45 =75 27 51 45 45 -3 45 -3
X120 | 42525 -2835 2205 | 1053 -243 189  -27 45 =75 27 -51 45 45 -3 45 -3
X121 | 42525 -2835 2205 189 45 93 -27 | -315 45 99  -27 45 405  -27 | -315 21
X122 | 42525 -2835 2205 189 45 93 -27 | -315 45 99 -27 45 | -315 21 405  -27
X123 | 56700 -3780 2940 | -324 252 60 -36 60 -100 -36 -68 60 | -180 12 | -180 12
X124 | 60480 -4032 3136 | -192 -192 -192 64 64 64 64 64 -64 0 0 0 0
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 28:0{ (2) AS A MAXIMAL SUBGROUP OF Of,(2)

The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)

AN 0 N 0 10— - A AN [\ (2]
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 28:0{ (2) AS A MAXIMAL SUBGROUP OF Of,(2)

The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)

4F
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8F

4X
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8D
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CHAPTER 8. A GROUP OF THE FORM 28:0{ (2) AS A MAXIMAL SUBGROUP OF Of,(2)

The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 28:0{ (2) AS A MAXIMAL SUBGROUP OF Of,(2)

The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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CHAPTER 8. A GROUP OF THE FORM 2%:0{ (2) AS A MAXIMAL SUBGROUP OF O7,(2)

The character table of 28:04 (2)(continued)

6G 6H 61 6J 6K 6L 6M

6N 60 6P 6Q 6R 6S 12F 6T 12F 6U 12G  12H 6V 121 6w 12J
X89 0 0 0 0 0 63 21 63 -21 0 0 0 63 -21 63 -21
X90 0 0 9 -3 1 84 -28 84 -28 1 1 -1 84 -28 84 -28
X92 0 0 18 -6 2 105 -35 105 -35 2 2 -2 105 -35 105 -35
X93 0 0 0 0 0 135 -45 135 -45 0 0 0 135 -45 135 -45
X94 0 0 0 0 0 135 -45 135 -45 0 0 0 135 -45 135 -45
X95 0 0 -9 3 -1 168 -56 168 -56 -1 -1 1 168 -56 168 -56
X96 0 0 -18 6 -2 192 -64 192 -64 -2 -2 2 192 -64 192 -64
X97 0 0 9 -3 1 210 -70 210 -70 1 1 -1 210 -70 210 -70
X98 0 0 9 -3 1 84 -28 84 -28 -1 -1 1 84 -28 84 -28
X99 0 0 9 -3 1 84 -28 84 -28 -1 -1 1 84 -28 84 -28
X100 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35
X101 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35
X102 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35
X103 0 0 -18 6 -2 105 -35 105 -35 0 0 0 105 -35 105 -35
X104 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70
X105 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70
X106 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70
X107 0 0 -9 3 -1 210 -70 210 -70 3 3 -3 210 -70 210 -70
X108 0 0 -9 3 -1 420  -140 420  -140 1 1 -1 420  -140 420 -140
X109 0 0 -9 3 -1 420  -140 420  -140 1 1 -1 420  -140 420  -140
X110 0 0 -9 3 -1 420  -140 420  -140 1 1 -1 420  -140 420 -140
X111 0 0 -9 3 -1 420  -140 420  -140 1 1 -1 420  -140 420 -140
X112 0 0 -9 3 -1 420  -140 420 -140 1 1 -1 420  -140 420  -140
X113 0 0 0 0 0 630 -210 630 -210 0 0 0 630  -210 630 -210
X114 0 0 0 0 0 630 -210 630 -210 0 0 0 630 -210 630 -210
X115 0 0 0 0 0 756  -252 756  -252 0 0 0 756  -252 756  -252
X116 0 0 0 0 0 756 -252 756  -252 0 0 0 756  -252 756  -252
X117 0 0 9 -3 1 840  -280 840  -280 -1 -1 1 840  -280 840  -280
X118 0 0 9 -3 1 840  -280 840  -280 -1 -1 1 840  -280 840  -280
X119 0 0 945 -315 945 | -315 0 0 0 945 -315 945 | -315 -1 -1 1
X120 0 0 945 -315 945 | -315 0 0 0 945 -315 945 | -315 -1 -1 1
X121 0 0 945  -315 945 | -315 0 0 0 945 -315 945 | -315 -1 -1 1
X1220 0 945 | -315 945  -315 0 0 0 945 | -315 945  -315 -1 -1 1
X1230 0 0 0 0 1260 | -420 1260 | -420 0 0 0 1260 | -420 1260 | -420
X1240 0 -18 6 -2 1344 | -448 1344 | -448 2 2 -2 1344 | -448 1344 | -448
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)

8B
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8H

81
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X60
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X72

X73

X74
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)

9A 9B 9C 10A 10B | 10C | 12A 12B 12C

94 18A | 9B | 9C | 10Cc 204 20B | 10D | 10E | 12M 12N | 120 12P
x1 | 9450 3780 | 3780 | 4725 | 4725 4725 4725 | 9450 | 9450 | 9450 9450 | 18900 | 18900
x2 | -630 -252 | -252 | -315 | -315 -315 -315 | -630 | -630 | -630 -630 | -1260 | -1260
X3 490 196 | 196 | 245 | 245 245 245 | 490 | 490 | 490 490 980 980
X4 138 132 | -156 | 405 | -171 117 117 | -54 | -54 | 522 522 84 | -204
X5 234 -60 36 | -123 69 27 27 42 42 | -150 -150 | -108 -12
X6 202 4| -28 53 | -11 21 21 10 10 74 74 44 | -108
X7 -70 4 4 -3 -3 -3 -3 -6 -6 -6 -6 20 20
X8 130 244 | 124 | 205 | 205 -155 -155 50 50 50 50 20 380
X0 50 -76 | -36 | -75 | -75 45 45 | 30| -30| -30 -30 20 | -100
X10 82 52 28 37 37 -35  -35 2 2 2 2 20 92
X11 66  -12 4| 19| -19 5 5| 14| -14| -14  -14 20 4
xiz | -70 -4 4 5 5 5 5 10 10 10 10 -20 -20
x13 | -30  -60 60 45 45 75 165 | -30 | 210 | -30 210 -60 60
X14 2 4 -4 -3 -3 5 11 2| -14 2 -14 4 -4
Xxi5 | -30  -60 60 45 45 165  -75 | 210 | -30 | 210  -30 -60 60
X16 2 4 -4 -3 -3 -1 5| -14 2| -14 2 4 -4
x17 10 4] 28| -11 5 21 21 26 26 10 10 44 20
X1s 2 -4 4 5| -11 -3 3| -14| -14 2 2 -4 4
X19 10 4| 28| -11 5 21 21 26 26 10 10 44 20
X20 -6 4 4 -3 13 -3 -3 10 10 -6 -6 20 -12
xo1 | <135 270 | 270 | 135 | 135 135 135 | -135 | -135 | -135 -135 540 540
Xx22 | -15 30 30 15 15 15 5| -15| -15| -15  -15 60 60
x23 25 50 | -50 | -25 | -25 25  -25 25 25 25 25 | -100 | -100
X24 0 0 0 0 0 0 0 0 0 0 0 0
X25 0 0 0 0 0 0 0 0 0 0 0 0 0
X26 0 0 0 0 0 0 0 0 0 0 0 0
x27 0 0 0 0 0 0 0 0 0 0 0 0 0
X28 9 9 9 18 18 18 18 9 9 9 9 9 -9
X29 -3 -3 -3 -6 -6 -6 -6 -3 -3 -3 -3 3 3
X30 1 1 1 2 2 2 2 1 1 1 1 -1 1
X31 12 24 | -15 | -15 21 21 6 6 36 0
X32 -2 -4 -8 5 5 -7 -7 -2 -2 -2 -2 -12 0
X33 6 12 24 | -15 | -15 21 21 6 6 6 6 36 0
X34 | -18 -4 0 25 7 11 11| 18 | -18 14 14 4 -8
X35 6 -4 0 5 5 1 1 6 6 6 6 4 -8
X36 14 -4 0| -23 9 5 5 14 14| -18  -18 4 -8
X37 -2 -4 0 1 1 -3 -3 -2 -2 -2 -2 4 -8
X38 -2 4 0 -3 -3 1 1 -2 -2 -2 -2 4 8
X39 2 12 0 5 5 -7 -7 -2 -2 -2 -2 -12 0
X40 -2 12 0 -5 -5 2 2 2 2 -12 0
X41 2 -4 0 -3 -3 1 1 -2 -2 -2 -2 4 0
X42 -2 -4 0 -1 -1 3 3 2 2 4 0
X43 -2 0 0 1 1 1 1 2 2 0 0
X44 2 0 0 -1 -1 -1 -1 -2 -2 -2 -2 0 0

145
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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The character table of 28:04 (2)(continued)
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9

2+Ss and 2°-S; as maximal subgroups of 7S and

HS:2 respectively

Prologue

The group HS:2 is a full automorphism group of the Higman-Sims group HS. The groups 2% Sg
and 2% Sg are maximal subgroups of HS and HS:2 respectively. The group 24.Sg is of order 11520
and 25 Sg is of order 23040 and each of them is of index 3850 in HS and HS:2 respectively. The
aim of this chapter is to compute G = 2°.Sg as a group of the form 2%S4.2, that is G = G1.2.
We then compute the Fischer-Clifford matrices of G; and G respectively. These together with the
partial character tables of the inertia factors of G; and G are used to compute the full character
tables of G1 and G respectively. We then fuse G into G.

9.1. Introduction

The Higman-Sims group, HS is a sporadic simple group of order 2°.32.53.7.11 = 44352000. This
is a group that was discovered in 1967 by Higman and Sims [49]. This is a simple group of index
two in the group of automorphisms of the Higman-Sims graph. Higman and Sims were attending
a presentation by Marshall Hall on the Hall-Janko group J»2, which is a permutation group on a
hundred points with the stabilizer of a point a subgroup with the other two orbits of length 36
and 63. They then thought of a group of permutations on a 100 points containing the Mathieu
group Mao, which has a permutation representation on 22 and 77 points . From these two ideas
they found HS, with one-point stabilizer isomorphic to Mas. Higman, in 1969 [50], independently

)

discovered this group as a doubly transitive group acting on a certain ”geometry” on 176 points.
In his classical paper Conway [22] showed that HS is a subgroup of each of the Conway groups
Co1,Coo and Coz. This group is also one of the seven sporadic groups found in Co; but not in the
Mathieu groups and this set of groups is also known as second generation of sporadic groups. The

group HS:2 is of order 88704000 = 2'9.32.53.7.11 and it is the full automorphism group of HS.
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CHAPTER 9. 2*Sg AND 25 S5 AS MAXIMAL SUBGROUPS OF HS AND HS:2
RESPECTIVELY

The aim of this chapter is to compute the Fischer-Clifford matrices of G; and G. We use these
matrices and the partial character tables of each inertia factor group to compute the full character
table of each group. The notation and method used is taken from F. Ali [1]. For more information
on Fischer-Clifford theory and projective characters of non-split extensions one is encouraged to
read [1, 2, 55, 66, 107, 108, 109].

We follow the work of Conway leading up to the computations of the groups HS and HS:2 in the

subsections below.

9.1.1 The Conway Groups

Leech created a lattice that gives the tightest lattice packing of spheres in 24 dimension [72].
Conway analyzed the symmetry of this lattice in detail in [22] and discovered three previously
unknown sporadic groups namely the Co1,Cos and Cos. Let us give the definition of a Leech

lattice which is given as Theorem 5.1 in [125].

Definition 9.1.1. A Leech lattice A is a 24 dimensional even integral lattice containing no vectors
of norm 2, 196560 vectors of norm 4, 16773120 vectors of norm 6 and 398034000 vectors of norm
8.

We first construct the biggest Conway group Aut(A) = .0 = 2.Co; as a group of 24 x 24 matrices
and simultaneously we construct a Leech lattice . All the vectors of norm 8 in the Leech lattice fall
into congruence classes of 48 pairs of mutually perpendicular vectors called the crosses and we get
8292375 such crosses. When .O acts on crosses, the stabilizer of a cross is a group 2'2:My,, which
is a maximal in .O. So .O is a group of order 8292375.2'2.|Ma4|. The group .O is a perfect group
with Z(.0) = 2 . The quotient of this group by the center is a group denoted by .1 = Co; and is
of order
|Coy| = 4157776806543360000 = 2%1.39.5%.72.11.13.23.

Note that the action of .O on crosses is transitive and Co; is a simple group.

Also .O acts transitively on vectors of norm 4 having the products +4 or 0. These three orbits of
212: My, on vectors of norm 4 are fused into a single orbit under 2.Co;. The stabilizer of a vector

of norm 4 is denoted by Cos, where
|Cog| = 42305421312000 = 2'.3%.53.7.11.23.
Lastly .O is transitive on vectors of norm 6. The stabilizer of a vector of norm 6 is denoted by Cos

and is of order
|Coz| = 423054213122000 = 219.37.53.7.11.23.

From the ATLAS [23] we see that Coz < Coy < Co; with Cos and Cos both maximal subgroup of

Co; and Cog a maximal subgroup of Cos.
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CHAPTER 9. 2*Sg AND 25 S5 AS MAXIMAL SUBGROUPS OF HS AND HS:2
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9.1.2 The Higman-Sims Group

We get the Higman-Sims group HS by showing that C'og acts transitively on the set S of 11178
vectors of norm 4 which have inner product —2 with vector v, when v = (—2!2,0'2). The monomial
group 2 x Mo fixes v and has six orbits on S. When u = (-5, —1%3), the group Mo3 fixes u and
has five orbits on S . The only way for both these sets of orbits to fuse into orbits for Cos is a
single orbit of length 11178. Thus the stabilizer in C'oz of such a vector in S, is a subgroup of index
11178. This is the Higman-Sims group H S of order

|HS| = 44352000 = 2°.3%.5%.7.11 .

Moreover if we let w = (5,1,1%2) and z = (—1,—5,—1?2) the stabilizer of the set {w,z} is the
monomial group Ms9:2 and we get an involution of the group which interchanges the two vectors.
This results in HS extending to HS:2 which is a full automorphism group of HS. A complete list
of maximal subgroups of the Conway groups is provided in Table 5.3 of [125]. For further reading
one can also go into [22, 72, 89, 125].

We use [124] to find two 20 x 20 matrices a and b with a from class 24, b from class 54 and
HS =< a,b>. Again using [124] we find two 20 x 20 matrices ¢, d from classes 2C and 5C of HS:2
respectively, with HS:2 =< ¢,d >. From the HS computed, HS:2 is an automorphism group of

an isomorphic copy of it.

9.1.3 The Groups 2*Ss and 2° S

The group 2% S, is a group of order 11520, and a maximal subgroup of HS.. There is a group
24:S6 which is maximal in Mas and hence sits inside HS:2. Our group 2* S is a subgroup of HS
and hence is also a subgroup of HS:2. For further reading on 2%:S5 as a maximal subgroup of May
one can read [81] and [120]. The group 2°-Sg is a group of order 23040 and is a maximal subgroup
of the automorphism group of the Higman-Sims HS:2. The groups 2*Ss and 2% Sg are unique
maximal subgroups of their form in HS and HS':2 respectively. Using generators a and b of HS
and Programme G (see Appendix A) we obtain elements a} and b} with o(a}) =2, o(b}) =5 and
CT’1 =< aj, by >= 2*Ss . Similarly using generators ¢ and d from HS:2 and Programme H (see
Appendix A) we obtain two elements ¢’ and d’ with o(c) = 2, o(d') = 5 and G’ =< ¢/, d’ >= 25.5;.
Both Programme G and Programme H are obtained from [124]. Our aim is to compute G = 2°.5
as G1.2, where G| = 2*Ss and we compute these inside HS:2. Since Gi’l is in HS we seek for its
isomorphic copy G in HS:2 . The extension of G; is G1.2 =G and G = G.

Having obtained G/, using GAP [41], we get three of its subgroups of order 11520. By methods
of coset analysis (see Chapter 2), we determine that each of these three subgroups is of the form
24-Ss. From these three subgroups only one, G, is isomorphic to CT’1 in HS. The group G; has

seven generators of which five are of order two, one of order 5 and one of order 6. To this list of
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seven generators we add one of the generator of HS':2 of order two namely c. The group generated
by these eight elements is G = 2%'55.2 = 25.55.

The groups 2% Ss and 2°-Sg will be discussed fully in Sections 9.2 and 9.3 respectively.

9.2. The Group G; = 2*S;

9.2.1 Construction of G; & S;

From [124] we get two 20 x 20 matrices a and b over GF(2) with o(a) = 2, o(b) = 5, o(ab) = 11
and HS =< a,b >. Again from [124] we get Programme G (see Appendix A).

Let a} = output[1] and b} = output[2]. Then we have o(a}) = 2, o(b}) = 5, o(a}b}) = 6 and
Gi'l =< aj, by} >= 2*Ss. Up to isomorphism, there is only one group of the type 2% Sg that is a
maximal subgroup of HS and this has 21 conjugacy classes of which two are classes of involutions.
Going back to [124], we get two 20x 20 matrices ¢ and d with o(c) = 2, o(d) = 5and HS:2 =< ¢,d >.
Again from [124] we get Programme H (see Appendix A).

Let ¢} = output[l] and d} = output[2]. We get that o(c)) = 2, o(d}) = 10, o(c}d}) = 6 and
G’ =< ¢},d} >= 2°.S5. Using GAP [41], we get eight normal subgroups of G’. Three of these
groups (we call them S1,52,53) are of order 11520 and for each group the conjugacy class 2A has
15 elements and when Sg acts on 2* we get two orbits of length 1 and 15 hence all these groups
are of the form 2% Sg. One of them (52 = 2%:55), however has 24 conjugacy classes and is thus not
a maximal subgroup of HS. The other one (S3, a split extension of 2° by Ag) has five classes of
involutions and again is not a maximal subgroup of H.S, this group from [81] and [120] is actually
a maximal subgroup of Mas. This leaves us with the group S1 = G = Gi’l See Remark 9.2.1
for more details on groups S1, S2 and S3. The group G has seven generators ai, az, a3, a4, as, ag
and a7 with ay of order 2, as of order 5 and ag of order 6 and the rest of order 2. We use GAP
to compute normal subgroups of G and it has only one proper normal subgroup, the elementary
abelian group N} = 24, Our aim is to act G; on N; and to do this we use Programme C (see
Appendix A) and this requires us to consider Ny as a full row space V; of dimension four over
GF(2). The action of G1 on V; is multiplication of Vi from the right . This then requires us to
rewrite G, from a 20 x 20 representation to a 4 x 4 one. To do this we act G; on N; by acting the

seven generators a;, i = 1,---,7 of G; on the four generators \;, i = 1,---,4 of Nj.

Writing this action as maps we get.
ap: A1 — A2, A2 — A1, Az = AtAsAg, A — A dedy;

ag : A1 — A2, A2 — Ag, A3 — Ao, Ap — AoAsAy;

asz : A1 = A2A3da, Ao — Mg, Az — A1dAs, A — Ag;
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For the rest that is a4 to a7y we get
a; : A1 — A1, A2 — A2, Az — Az, Ay — Mg
Writing this in matrix form we get :
01 00 01 00 0111
1 0 00 0 0 01 0 0 01
ap = ;o Qo= O
1 0 11 1100 1 110
11 01 01 11 0100
For the rest a4 to ay we get
1 0 00
01 00
oy =
0010
0 0 01

Let G1 =< aq, a9, a3 > Sg, that is the action of G; on Nj is isomorphic to S.
Remark 9.2.1. Note that N; = 2% is generated by 4 commuting involutions from the class 24
of HS. From ATLAS we can see that S1 = G1 = Nyg(Ny), S2 = NMQQ(Nl)a and Npgg.o(Ny) =
25-Sg = G. As observed, S1,52,53 are non-isomorphic maximal subgroups of G and that S2 and
S3 do not sit inside HS. Our computations show that

S1 = 2485 =GNHS <paz HS <paz HS:2

S2 = 24:S6 = émM22 <imaz MZQ <imaz HS: 2;

S3 = 2% (A x 2) =2 2%: 46 <mazr G <maz HS: 2;

S1NS2 = S2N83=2S51N83= N, (N1) = 2446 <paw Mao <max HS.

In addition to the character table of S1 = G we also give the character tables of S2 and S3, in
Table 1 and Table 2 of Appendix B respectively. It is also interesting to note that except for the
conjugacy classes, the character tables of S1 and S2 are the same. A pictorial view of Remark 9.2.1

is given in Figure 9.1, where A = 2. Ag.

We compute the permutation characters of HS:2 when acting on S1,S52 and S3. For interest sake
we also include x(HS|S1) and x(2°.5]S7), i = 1,2,3. We use GAP[41] for our computations.

x(HS|S1) = la+22a+ 77aa + 154a + 175a + 693a + 770a + 825a + 1056a = x(H S:2(2°.Sg)
x(2°.56|S1) = 1la+ 1b,
x(2°.56|52) = la+ lc,
x(2°.5]93) = la+1d.
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HS:2
HS 1 M22
G
S 53 )
A

Figure 9.1: S1,52 and S3
X(HS:2|51) = la+1b+22a+22b+ TTaa + 77bb+ 154a+ 154b+ 175a + 175b + 693a + 693b + 770a +
7700 4 825a + 825b + 1056a + 10560,
X(HS:2|52) = la + 22aa + T7aaa + 154a + 175a + 231a + 693a + 770aa + 825aa + 1056a + 1925a,

X(HS:2|S3) = la + 22a + 22b + T7aa + 77b + 154a + 175a + 231a + 693a + 770a + 770b + 825a +
825b 4 1056a + 1925b.

Lemma 9.2.2. G = S1U S2U S3.

Proof: First we see that G O S1U S2 U S3. But we also have S1US2U S3 = (S1 — A) U (52 —
A)U (83— A)U A. Hence

ISTUS2US3 = IST—-A+HS2—-AHS3 - AHA

6! 6! 6! 6!
= (16><6!—16><§)+(16><6!—16><§)+(16><6!—16><5)+(16><5)
6! 6!
= 3(16><6!—16><§)+(16><§)

6!
= 3><16><6!—2><16><§
= 2x 16 x 6!
= [2°.5.

Thus 2°.5¢ = S1U S2U S3.0
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Theorem 9.2.3. HS:2 has only three conjugacy classes of subgroups of type 2*.4¢4.2. In particular
S1 and S2 are of type 2*.44.21 and S3 is of type 2%.(A4g x 2).

Proof: From the ATLAS we can see that if H < HS:2 is of type 2*.44.2, then H must sit in one of
the maximal subgroups of HS:2 of type HS, Moy or 25.55. Also since Npg.2(S1) D Ng(S1) = G
and G is maximal but not normal in HS:2, we have Nyg.0(S1) = G. Hence [HS:2 : Nyg.2(S1)] =
[HS:2 : G] = 3850. Similarly since Nyg.2(S2) = Npus.2(S3) = G, we have [HS:2 : Nyg.2(52)] =
[HS:2 : Nys.2(S3)] = 3850. Hence we have 3 conjugacy classes for the subgroups of type 2%.44.2
in HS:2. Thus the total number of subgroups of type 2*.4¢.2 in HS:2 is 3 x 3850 = 11550.00

9.2.2 Conjugacy Classes and Inertia Factors of G,

Using GAP [41], we compute the conjugacy classes of 2% Ss. The action of G1 on Ny is viewed as
the action of of G1 on Vi. If G acts on Ny, we get two orbits of length 1 and 15. From the ATILAS
[23], by checking on the indices of maximal subgroups of Sg, we can see that there are two inertia
factor groups namely Sg and Sy x 2. The full inertia groups are of the form H; = 2* H; of indices
1 and 15 in 2% Sg respectively. We note that H; = Sg and Hy = S; x 2. The character tables of

Hy and Hs are easy to compute. The fusion of Sy x 2 into Sg is given in Table 9.1.

Table 9.1: The fusion of S4 X 2 into Sg

[[#sixz — loilsg |

1A 1A
2A 2C
2B 2B
2C 2B
2D 2A
2F 2A
3A 3A
4A 4A
4B 4B
6A 6A

We computed the conjugacy classes of 24 Sg by using GAP [41] and then fused them into HS.
Having the length of each coset, we use the fusion map to convert the conjugacy classes of 2% S
into the form that is required for the computation of Fischer-Clifford matrices (that is into a form

normally obtained by coset-analysis). We give the conjugacy classes of 24 Sg in Table 9.2.

9.2.3 Fischer-Clifford Matrices of G;

Again from the inertia factors and fusions we compute the Fischer-Clifford matrices.

157



CHAPTER 9. 2*Sg AND 25 S5 AS MAXIMAL SUBGROUPS OF HS AND HS:2
RESPECTIVELY

Table 9.2: Conjugacy Classes Of 24 Sg

[9se | [#l2a.s5, | [Cors @] |  — HS
1A 1A 11520 1A
2A 768 2A
2B 96 2B
2A 4A 384 4A
4B 128 4B
2C 64 2A
2B 4C 64 4B
4D 32 4B
2C 2D 192 2A
4E 64 4B
3A 3A 192 3A
6A 24 6B
3B 3B 18 3A
4A 4F 16 4B
8A 16 8A
4B 4G 16 4C
8B 16 8A
5A 5A 5 5C
6A 6B 12 6A
12A 12 12A
6B 6C 6 6B
. 1 1
From the fusions we get M(1A) = 5 1 ] .

Let Irr(HS) = {¢; : 1 <i < 24} as given in the ATLAS. We get :

[z]gs | 1A 2A
o 22 6
(U 7T 13

Let r and s be the rows of the Fischer-Clifford matrix M(1A). Since < (¢2)n, 1y >= 7 we get
the following decomposition, 22 = 7 4 15s. Thus s = 1 and this shows that the partial character
table of Hs comes from the ordinary table of Hs. Hence we use the ordinary character table of
Sy X 2. We use the properties of the Fischer - Clifford matrices and the fusion of Sy x 2 into S,
the centralizer orders of 2% Sg, the fusion of G into HS, together with restriction of HS to G that
forces the signs of the Fischer-Clifford matrices. We give these in Table 9.3

Note the change of sign in M (2A). For example we calculate the partial character table corre-

sponding to coset 24 € Sg. From M (2A) we get M1(2A4) =[111], My(24) = [ _é _é ; ]

Let C1(24),C2(2A) be the partial character tables of the inertia factors for the classes that fuse to
24 € Sg. Then the portions of the character table of G = 2% Sg corresponding to the coset 24 are :
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C1(24)M,(24) =

Co(24) Ms(24) =

Table 9.3: The Fischer-Clifford matrices of 2% Sg
. 1} 111
M(1A) = M@RA) =] -1 1
15 -1
0 —6 2
1 1 1 -
wem=|1 1 ] wocy=| 11
2 -2 0
11
M@EA)=| M(3B):[ 1}
11 11
M@A) = | M@B)=| | |
M(6A) = 1 1 M(54) = M(6B) = | 1 |
1 1 1]
-1 -1 -1
-3 -3 -3
3 3 3
-1 -1 -1
111 = 111
-3 -3 -3
3 3 3
-2 -2 -2
2 2 2
L 0 O_
1] [ -1 -5 3]
-1 1 5 -3
—1 -1 7 -1
1 1 -7 1
0 -1 11| 2 -2 -2
0 o -6 2| | -2 2 2
-1 3 -5
-1 -3 9 1
1 3 -9 -1
1 | -3 -3 5 |

We get the character table of 24 Sg in Table 9.4 which can be compared to the one in GAP.
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Table 9.4: The character table of 2% Sg

4A

8a

4f

3B
3b

3A
3a

6a

-3

2C
2d

4de

-3

-6

2B
4c

4d

2c

2A

4a  4b

2b

1A

la

2a

10
10
16

10
10
16
15
15
15

30
30
45

45

45

45

X1

X2

X3

X4

X5

X6

X7

X8

X9
X10

X11

X12

X13

X14

X16

X17

X18

X19

X20

X21

The character table of 24 Sg (continued)

6B
6¢c

6A
6b

12a

ba

ba

4B
1g

8b

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20
X21
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9.3. The Group G = 2% S

Having completed the computation of the full character table of 24 Sg, we now turn our attention
to 2°°Ss. We compute 2% Sg = 2%'55.2, this we do by adding the generator ¢ of HS:2, that is from
G we get G =< ay,a9,as,as,as,ag, az,c >. Since 2S¢ is the only group of its type that is a
maximal subgroup of HS:2, we have G = G’, where G/ was computed using Programme H. Our
aim is to compute the full character table of 2°'Ss. We first want to let G act on the elementary

abelian group N = 2°. We use GAP [41] to compute N = 2° as a normal subgroup of G.

9.3.1 Construction of G = S;

For the action of G we use Programme C (see Appendix A). We consider N as a full row vector
space V' of dimension 5 over GF'(2). For us to be able to act on a five dimensional vector space V'
it becomes necessary to rewrite G from 20 x 20 to a 5 x 5 representation. To do this we first take
the eight generators of G namely a; to a7 and c¢. We let these act on generators v;, 1 =1,---,5 of

our elementary abelian group N = 2°,

Writing these as maps we get :

ar Y1 = Y1, Y2 7 Y374, Y3 T Y13, Y4 T V17273, V5 > V172737475,

a2 Y1 Y234, Y2 — V3, V3 — V173, V4 — 72, V5 — 72755
a3z Y1 = Y172, Y2 T Y17Y27Y3V4, V3 T V4, Y4 — V174, V5 — V1727374755

CiY1 — 73, Y2 772, V3 71, V4 V4, V5 — V55

For the rest a4 to a7y we get

Qi 21— Y1 Y2 T Y25 Y3 Y3, V4 7 Y4, V5 7 5.

Writing this in matrix form we get :

B Bo =

Il
—_ = = O
= = O O O
—= == = O
— o o = O
- o o o o
S O = O O
== O O =
S O ===
o O o O
— o O O O
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11000 00100
11110 01000
Bs=100 010 |,Bs=|1 00 00
1 0010 00010
11111 00001

For the rest 05 to Bg we get that §; = I5.

Let G =< 1, 32, 33, B4 >, then G = Sg which means that the action of G on N is isomorphic to
Se-

9.3.2 Conjugacy Classes and Inertia Factors of

The action of G on N is reflected by the action of G on V. We use Programme C (see Appendix A).
When G acts on V we get four orbits of conjugacy classes of lengths 1,6, 10 and 15. Let G* be the
set of all transpose of elements of G. The group G can also be generated by transpose matrices of
each generator of G. When G! acts on V', which is the equivalent of G acting on Irr(NN), by Brauer’s
Theorem [14] we get four orbits but these are of lengths 1,1, 15 and 15. These have corresponding
point stabilizers Hy, Hy, H3 and Hy. Let the full inertia groups be H; = 2°.H;, i = 1,2,3,4. From
the ATLAS [23], the corresponding inertia factor groups are Sg, S, Sy x 2 and Sy x 2. Where
we get Hi & Hy =2 Sg and Hs = Hy =2 Sy x 2. The character tables of Sg and that of HS:2 are
obtained from the ATILAS [23] . We give also, the fusion of S4 x 2 into Sg in Table 9.5.

Table 9.5: The fusion of S4 X 2 into Sg

[[#sixz —  loilsg |

1A 1A
2A 2C
2B 2B
2C 2B
2D 2A
2F 2A
3A 3A
4A 4A
4B 4B
6A 6A

We computed the conjugacy classes of 2°'Sg by using GAP [41] and then fused them into HS:2.
Having the length of each coset, we use the fusion map to convert the conjugacy classes of 2% Sg
into the form that is required for the computation of Fischer-Clifford matrices (that is into a form

normally obtained by coset-analysis). We give the conjugacy classes of 2°-Sg in Table 9.6
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9.3.3 Fischer Clifford Matrices of G

Table 9.6: Conjugacy Classes Of 25 S

[9]s6 [z]55. 54 [Cosgp (@) | — [ HS:2
1A 23040 1A
1A 2A 3840 2D
2B 2304 20
2C 1536 2A
2D 768 2C
4A 768 4A
2A 2B 256 2D
4B 256 4B
4ac 192 4A
2F 192 2B
2G 128 2A
2H 128 2D
2B 4D 128 4D
41E 128 4B
4F 64 4C
4G 64 4A
21 384 2A
2C 2J 384 2C
4H 64 4B
a1 64 4D
3A 144 3A
3A 6A 144 6C
6B 48 6E
6C 48 6B
3B 3B 36 3A
6D 36 6A
4J 32 4A
4A 8A 32 8C
4K 32 4B
8B 32 8A
4L 32 4C
4B 8C 32 8A
AM 32 4D
8D 32 8D
5A 5A 10 5C
10A 5 10D
6E 24 6D
6A 6F 24 6A
12A 24 12A
12B 24 12B
6B 6G 12 6E
6H 12 6A

From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix

M(1A).
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1 1 1 1
1 -1 -1 1
15 5 =3 -1
15 -5 3 -1

M(1A) =

Having computed M (1A) we want to determine the type of partial character tables we are going
to use for our computations. We follow the methods used by F.Ali [1]. We use the character table
of HS:2 =< a,b> . Let Irr(HS : 2) = {¥; : 1 <i < 39}, the notation is the same at the one used
in the ATLAS [23].

Co(a)] | 23040 3840 2304 1536

[zlms2 | 1A 2A 2B 2C
Wy 1 -1 -1 1
Uy 22 0 8 6
Ty 22 0 -8 6
s 7 5 21 13
g 7 5 21 13

Let v1, 792,73, 74 be the rows of the Fischer - Cliford matrix M(1A4). First we get

1
< (P2)n, Iy >= oo (1-6-10+15) =0,

1 1
< (Ta)n, Iy >= 55 (22X 146 % 0410 x 8+ 15 x 6) = 75 (22+ 80+ 90) = 6,

1 1
< (Ta)n, Iy >= g5 (22 X 146 % 0410 x (=8) + 15 x 6) = (22— 80 +90) = 1,
1 1
< (Us)n, Ly >= g5 (77 x 146 % 5410 x 21+ 15 x 13) = o (77 + 30 + 210 + 195) = 16.

Restricting the character ¥3 to N, since < (¥3)n, 1y >= 6, we get the following equations, where

a, b, c represent coefficients of s, 3, 74 respectively.

22 = 6+4a+ 150+ 15c,
0 = 6—a+5b—bc,
8 = 6—a—3b+ 3c,
6 = 64+a—b—c.

Solving we get : a =1,b =0 and ¢ = 1. So we have the following decomposition.
(U3)n = 671 + 72 + 4.

Considering the coefficients of 72 and -4 we deduce that we have irreducible characters xs and

x4 € Irr(G) with deg(x2) = 1 and deg(x4) = 15. Since deg(x2) = 1, we only need to use the
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Table 9.7: The Fischer-Clifford matrices of 2°-Sg

T 1 1 1 1 1
11 11 -1 1 -1 1 -1
1 -1 -1 1 - 2 -2
M(1A) = mMeay=| 5 o 0
15 5 -3 -1 111 1 -1 -
5 -5 3 -1 -6 -6 2 2 0 0
1 -1 1 -1 -1
111 1 1 1
1 -1 1 -1 1 -1 11 11
2 22 -2 0 0 1 -1 1 -1
M(2B) = M(20C) =
111 -1 -1 33 -1 -1
-2 -2 2 2 0 0 -3 1 -1
[ 1 -1 1 -1 -1
r1 1 1 1]
1 -1 1 -1 11
M(34) = M(3B) = M(5A) =
3 -3 1 -1 1 -1
|3 3 -1 -1 |
11 1 1] 11 11
-1 -1 1 1 11 -1 1
M(4A) = M@4B) =
-1 1 -1 1 -1 1 -1 1
1 -1 -1 1] 1 -1 -1 1
11 1 1
1 -1 1 -1 11
M(6A) = M(6B) =
-1 1 -1 1 -1 1
11 -1 -1
ordinary character table of Hy. For deg(x4) = 15, if [x1,x9, -+ , x| is the transpose of the partial

entries for the projective characters of Hy on 1A, then Cy(1A)M4(1A) is a ¢ x 4 matrix with first
set entry 1521 = 15, hence z1 = 1. This shows that the partial character table of H; that we used
contains a character of degree 1. Thus the partial character table is an ordinary character table
of Hy. Similarly, one can show that < (¥3)xn,v2 >= 6. This gives us (¥3)y = 71 + 672 + 73. So
again H; and Hj3 have partial character tables that each contains a character of degree 1. Thus the
partial character tables of H; and Hs are ordinary character tables of Sg and Sy X 2 respectively.
Using fusions, centralizer orders of G and properties of Fischer-Clifford matrices that can also be
found in [1], [99] and [120] , we complete Table 9.8 of Fischer - Clifford matrices.

To compute the character table of G, as an example consider the following. Let C;(24), Co(2A4),
C3(2A),C4(2A) be the partial character tables of the inertia factors for the classes that fuse to
2A € Sg. Then the portions of the character table of G = 2°'Sg corresponding to the coset 24 are :

C1(24) M7 (24) =

1

—1
-3
3
—1
1
-3

11111 =

1
—1
-3

3
—1

1
-3

3
-2

2

0

1
—1
-3

3
—1

1
-3

3
-2

2

0

1
—1
-3

3
—1

1
-3

3
-2

2

0

1
—1
-3

3
—1

1
-3

3
-2

2

0

1
—1
-3

3
—1

1
-3

3
-2

2

0

1

—1
-3
3
—1
1
-3
3
-2
2

0]
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Ca(2A) M2 (24) =

C3(2A)M3(24) =

C4(2A) M4 (24) =

[F11 —11 —11] =

1
-1
—1
1
0 -6 6 2
0 1 1 1
—1
-1
1
1
1
—1
-1
1
0 —6 -6 2
0 1 -1 1
—1
—1
1
1

-1 1
1 —1
3 -3

-3 3
1 —1

-1 1
3 -3

-3 3
2 -2

—2 2
0 0

—2 0

1 —1
2 0

-1 -1

-1
-3
-1

1
-3

-2

WO O WN NSO

-3
-9

-5
5
-1

-2
3
-3
3
-3

The fusion of G into HS:2 together with the restriction of characters of HS:2 to G forces the signs

of the Fischer-Clifford matrices and the order of the elements of the conjugacy classes of G. Hence

we give the character table in Table 9.8.

166



CHAPTER 9. 2*Sg AND 25 S5 AS MAXIMAL SUBGROUPS OF HS AND HS:2

RESPECTIVELY

Table 9.8: The character table of 2% Sg

m’c111111119_.?_~OJJ1..4J1..4422044332231131133233443
wwﬂ111111119_~9_~011llllllnx_ﬂ2033442213313344221331
S 7o 2R ao -7 R 4P JNwo P A QPP DT
S 7o T Ao N T AN AT 0PN To A AT Rn R A AN Do P
R T B e e R - B B T R I I B B - I e R B IR R T
M%11_331_1332201_13311_33220331_122511_.530_01_122511_.5
I I B R I I R e T T - T - T S Y= R B - BRI ST - B - B
Jlm 7 P07 o oo 7 ~mR T oo wel Jamo R0~ Jamoe PR
Blrr w0 rreo228-rwnoroe223 8777 FANRRRR T T A D DR
Bl 20002322779 IRRR8RRPRCLRIRRronomn0c0nnn e
SErm w2287 79SS 2wnnn 22338 R Yy 338 S1S
L] R I K- I IR R PR R I IR R R R N

R 35333335BBB588BBBBBRRRRRRRRERRR S
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The character table of 25:Sg(continued)

4A
8a

8b

4k

4

3B
3b

6d

3A

6a

6¢

6b

3a

-3

-3

2C

2j

4i

4h

2i

-3

-3

-3

-3

-2

-2

-2

-2

-3

-3

-2

2

-6

-6

-3

-3

-3

-2

-6

X1

X3

X4

X5

X7

X8

X9

X10

X11

X13

X14

X16

X17

X18

X19

X20

X21

X22

X23

X25

X26
X27

X28
X29

X30
X31

X32

X33
X34

X35

X36
X37
X38
X39
X40
X41

X42
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The character table of 25:Sg(continued)

6B

6h

6g

6A

6f

12b

12a

Ge

5A

Ha

10a

4B

8c

8d

4m

41

X1

X3

X4

X5

X7

X8

X9

X10

X11

X12

X13

X14

X17

X18

X19

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X30

X31

X32

X33

X34

X35

X36

X37
X38

X39
X40
X41

X42
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9.4. Fusion of 2* S into 2°S;

We give the fusion of G7 into G in Table 9.9

Table 9.9: The fusion of 24 S into 25 S

[ [zlyts, — lotlososy | [@lotgy, —  l91)ss.5, |

1A 1A 4FE 4H
2A 2C 4F 4K
2B 2F 4G 4L
2C 2G 5A 5A
2D 21 6A 6B
3A 3A 6B 6F
3B 3B 6C 6G
4A 4A 8A 8C
4B 4B 8B 8B
4Cc 4F 12A 12A
4D 4F
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10

A group of the form 5% L(3,5) as a maximal
subgroup of the Lyons Group Ly

Prologue

The group G = 5% L(3,5) is a subgroup of order 46500000 and of index 1113229656 in Ly. The
group G in turn has L(3,5) and 5%:2.A5 as inertia factors. The group 5%:2.45 is of order 3000 and
is of index 124 in L(3,5). The aim of this chapter is to compute the Fischer-Clifford matrices of
G, which together with associated partial character tables of the inertia factor groups, are used
to compute a full character table of G. We will obtain that the partial projective character table
corresponding to 52:2A5 is required, hence we have to compute the Schur multiplier and projective
character table of 5%:2A45.

10.1. Introduction

The Lyons group was discovered in 1970 by Richard Lyons [78], using the concept of classifying
simple groups with an involution centralizer 2.A4,,. The smallest value of n for which 2.A4,, has non-
central involutions is n = 8, for which the McLaughlin group M¢L, has an involution centralizer
2.Ag. The only other case that arises is n = 11 which is in the Lyons group Ly that is the Lyons
group has an involution centralizer 2A11. Moreover, a 3-cycle in 2. A1 centralizes 2. Ag and the full
centralizer of this 3-cycle in Ly is the triple cover 3.M€¢L of the McLaughlin group. The Lyons
group Ly, is a sporadic simple group of order 28.37.56.7.11.31.37.67 = 51765179004000000.

The existence of this group and its uniqueness up to isomorphism was shown by C C Sims [118, 119],
using coset enumeration and it is often referred to as the ”Lyons-Sims” group. The group Ly
has elements of order 37 and 67 which cannot be found in the monster and is one of the six
sporadic simple groups called the ”pariahs” which are not subgroups of the monster. The other
five "pariahs” being Jy, J3, Jy, O'N and Ru, the last to be determined in [122] being J;. The group

53'L(3,5) is also maximal in the baby monster B. The group Ly has nine conjugacy classes of
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maximal subgroups. One of the maximal subgroups of the form, G = N.G is a group of order
46500000 = 26.3.56.31, where N = 5% and G =2 L(3,5). The aim of this chapter is to compute the
Fischer-Clifford matrices which together with partial character tables will be used to compute a
character table for G. The notation used is consistent with that of the ATLAS [23] and method
used is taken from [1, 2]. One can read more on Fischer-Clifford theory and projective characters
from [99, 120] and [55, 66, 107, 108, 109] respectively. For the theory of characters one can also
read Character Theory of Finite Groups [60].

10.2. Construction of G = 53 L(3,5)

From the ATLAS of group representation [124] we get two 111 x 111 matrices a,b, with o(a) =
2, o(b) =5, o(ab) = 14 and Ly =< a,b > . Again from [124] we get Programme I (see Appendix
A), where if we use a = input[l] and b = input[2] and we get T = output[l] and ¥ = output[2],
where o(z) = 2, o(j) = 3, o(Zy) = 31 and G =< Z,7 > . From [124] we see that o(Zyzy?) = 25
and if we let gen[l] = (Zyzy?)®, then o(gen[1]) = 5, we also get that gen[2] = ygen[1]y~!, gen|[3]
= Zgen[2]z! and N = 53 =< gen][1], gen[2], gen[3] > . Let \; = genli], i = 1,2,3. We use GAP to
compute the conjugacy classes of 53 L(3,5) and also the fusion of 5% L(3,5) into Ly and these are
given in Table 10.1.

Table 10.1: Conjugacy Classes Of 5% L(3,5)

9lrs) | [2ls3. 13,5 ‘0531(3,5)(96)‘ | — ‘ Ly
1A 1A 46500000 1A
5A 375000 5A

2A 2A 2400 2A
10A 600 10A

3A 3A 120 3A
15A 30 15B

4A 4A 480 4A
4B 4B 480 4A
4C 4C 80 4A
20A 20 20A

5B 2500 5A

5A 5C 1250 5B
5D 1250 5B

5B 25A 25 25A
6A 6A 120 6B
30A 30 30B

8A 8A 24 8B
8B 8B 24 8B
10B 100 10A

10A 10C 50 10B
10D 50 10B

12A 12A 24 12B
12B 12B 24 12B

continued on next page
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Table 10.1 (continued from previous page)

9eis | olseres) | Csies@)] | — | Ly
20A 20B 20 20A
20B 20C 20 20A
24A 24A 24 24C
24B 24B 24 24B
24C 24C 24 24B
24D 24D 24 24C
31A 31A 1 31B
31B 31B 31 31A
31C 31C 31 31E
31D 31D 31 31D
31E 31E 31 31C
31F 31F 31 31B
31G 31G 31 31A
31H 31H 31 31E
311 311 31 31D
31J 31J 31 31C

10.3. Construction of G = L(3,5)

Our aim in this section is to let G act on the elementary abelian group N. We use the method
discussed in chapters 8 and 9. In this method N is considered as a vector space V', of dimension 3
over GF'(5). For us to be able to act on a three dimensional vector space V' it becomes necessary
to rewrite G from 111 x 111 to a 3 x 3 representation. To do this we have to act G on N by letting
the two generators of G,  and ¥ to act, on the generators of N, \;, i = 1,2,3 by conjugation,

using GAP [41]. Writing these as maps we get :
T — A

Ao — A3

)\3 — )\2;

YA — A2

A2 — A1 dai

Az — A3\

Writing these in 3 x 3 matrix form, over GF'(5) we get

= o O
o = O
<
Il
oS = O
N = =
= s O

and G =< z,y >. Then G = L(3,5) which means that the action of G on N is isomorphic to
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L(3,5).

10.4. Inertia Factors of G

We use GAP [41] to compute the permutation character of Ly acting on 53 L(3,5). That is

X(Ly|5%L(3,5)) = la + 45694a + 381766a + 1534500aa + 3028266a + 4226695aa + 118347464 +
18395586abc—+19212250a+21312500ab-+22609664abe-+27252720aabbed+ 28787220aa+ 29586865 +
33813560aa + 38734375a + 43110144abede + 45648306b + 45694000ab + 56022921a + 64906250a +
710084764

We then use Programme C (see Appendix A) to compute the orbit lengths of the action on the
orbits on N and on Irr(N). We let G act on a full row vector space V' of dimension 3 over GF'(5).
We get two orbits of conjugacy classes of lengths 1 and 124. By Brauer’s Theorem [14] when G
acts on Irr(N), we get two inertia groups of index 1 and 124. Using the ATLAS [23], we see
that  5%GL(2,5) is of index 31 in L(3,5) and |GL(2,5)| = 480. Since we are looking for the
maximal subgroup of index 124 in L(3,5), we have to get a group of index 4 in GL(2,5) and the
group should be of order 120. So with the help of the ATLAS [23] this can only be the group 2 A4s.
Thus the group of index 4 in 52:GL(2,5) is 52:2.A5. The full inertia groups are H; = 53.H;, i = 1,2,
where Hy = L(3,5) and Hy = 5%:2.45. We used GAP [41] to calculate the character table of Hy.
We give the fusion of Hy into L(3,5) in Table 10.2.

Table 10.2: The fusion of 5%:2.45 into L(3,5)

[ [#ls204, — l9lies) |

1A 1A
2A 2A
3A 3A
4A 4C
5A 5A
5B 5B
5C 5B
5D 5A
5E 5B
5F 5B
5G 5A
6A 6A
10A 10A
10B 10A
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10.5. Projective Character Table of 52:2.A4;

From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix
M(1A) of G.

M(14) =

1 1
124 -1

Having computed M (1A) we want to determine the type of partial character tables we are going
to use for our computations. We will show that the partial projective character table of Hs is
required. We follow the methods used in [1, 2] and we use the character table of Ly =< a,b > .
Let Irr(Ly) = {¥; : 1 <4 < 53}, where the notation is the same at the one used in the ATLAS
[23]. From the list we take the values of W9, W3, ¥4 on 1A and 54 .

C(x)] | 46500000 375000
(2] 1y 1A 5A
U, 2480 -20
Uy 2480 -20
U, | 45694 69

Let 71,72 be the rows of the Fischer-Cliford matrix M (1A). Then

1

U 1 =
< (V2)n, 1N > 98

(2480 — 20.124) = 0.

Since < (V¥9)n, 1y >= 0, we get that 2480 = 0 + 20.124, so that (V9)ny = 0.1 + 20.y2. Let
[x1,--- , 2] be the transpose of the partial entries for the ordinary characters of Hy = 52:2.A5 on
1A € L(3,5). Then Co(1A)M(1A) is a t x 2 matrix with entries on the first column 124x; = 2480.
Hence z; = 20. From the ordinary character table of Hy = 52:2.A45, there is no character of degree
20. Similarly

1
< (Yy)N, 1y >= 5(45694 —69.124) = 434,

which gives us x1 = 365 and this is a very large character degree which is not possible for Hy =
52:2.A5, and this holds for the remaining characters. Hence we have to use the projective character
table of Hs. There are three primes dividing the order of Hy namely 2,3 and 5. Using MAGMA
Programme K , or GAP Programme K’ (see Appendix A), we determine the Schur multiplier of
Hjy. The p - Sylow subgroups corresponding to p = 2 and 3 are cyclic , using methods from [1, 2]
the Schur multipliers of both p-Sylow subgroups are trivial. Hence the Schur multiplier of Hy is
the cyclic group of order 5. The projective characters of Hy with factor set a~! where o® ~ 1 is
given in Table 10.3. Note that from the table we can see that 5a, 5b, 5¢, 5e, 5 f are all not a regular

classes and we have a total of 9 « regular classes.
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Let A= —E(5) — E(5)% and A* =1— A= —F(5)?%— E(5)%. Then A+ A* =1, A*A = A(A*) =
—1, A2+ (A*)%? =3, A3+(A*)3 = 4. In fact we get a Fibonacci sequence, with fi11 = fi+fi_1, i > 2,
where f; = A + (A*)". This helps us to compute the Fischer-Clifford matrices and character table
of G = 5%L(3,5).

Table 10.3: The projective character table of 5%:2.45 with factor set ™!

la 5a 2a 4a 3a 6a 5b b5¢ 5d  10a 5e 5f 5g 10b
X1 5 0 1 1 1 1 0 0 1 1 0 0 1 1
x2 | 15 0 3 -1 0 0 0 0 A A 0 0 A* A*
x3 | 15 0 3 -1 0 0 0 0 A* A* 0 0 A A
x4 | 20 0 4 0 1 0 0 -1 -1 0 0 -1 -1
x5 | 20 0 4 0 1 -1 0 0 -1 0 0 -1
X6 | 25 0 5 1 -1 -1 0 0 0 0 0 0 0 0
x7 | 10 0 2 0 -1 1 0 0 -A A 0 0 A* A*
x8 | 10 0 2 0 -1 0 0 A* A* 0 0 -A A
x9 | 30 0 6 0 0 0 0 0 1 -1 0 0 1 -1

10.6. Fischer-Clifford Matrices of G

Having computed the projective character table of Hy, Table 10.3, we get the a-regular conjugacy
classes. These together with the fusions of 52:2.45 into L(3,5) in Table 10.2 help us to compute
the sizes of the Fischer-Clifford matrices of G. We use these the projective characters, the fusions,
the centralizer orders of G and properties of Fisher-Clifford matrices discussed in section 5.12.1, to

compute Table 10.4 of Fischer - Clifford matrices.

To compute the character table of 53 L(3,5), as an example consider the following. Let C;(5A) and
C3(5A) be the partial character tables of the inertia factors for the classes that fuse to 54 € L(3,5).
The the portions of the character table of G = 53-L(3,5) corresponding to the coset 54 are :
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Table 10.4: The Fischer-Clifford matrices of 53 L(3, 5)

1 1 1 1
M(1A) = M(24) =
124 -1 4 -1
1 1 1 1
M(34) = M(40) =
4 1 4 -1
1 1 1 1 1 1
M(BA)=| 10 —b5A* —5A M(10A) =] 2 —-A —A*
10 —-5A —-5HA* 2 —A* —-A
1 1
M(6A) = All Others = | 1 |
—4 1
1 1 1 1
5 5 5 5
6 6 6 6
6 6 6 6
6 6 6 6
—4 —4 —4 —4
—4 —4 —4 —4
-4 —4 -4 —4
—4 —4 —4 —4
—4 —4 —4 —4
—4 —4 —4 —4
—4 —4 —4 —4
—4 —4 —4 —4
-4 —4 —4 —4
C1(5A)M; (54) = :‘11 111 = :‘11 :‘11 :‘11
-1 -1 -1 -1
—1 —1 —1 —1
—1 —1 —1 —1
-1 -1 -1 -1
—1 —1 —1 —1
—1 —1 —1 —1
—1 —1 —1 —1
—1 —1 —1 —1
—1 —1 —1 —1
0 0 0 0
5 5 5 5
5 5 5 5
5 5 5 5
11 11 11 11
1 1 r 20 -5 -5
A A* 10 10 —15
A* A 10 —15 10
-t -t 10 —5A4* —5A —20 K K
Co(5A) My (5A) = 0 0 L= 0 0 0
—A  —A* 10 54 —54 —-10 —10 15
—A*  —aA ~10 15 10
—1 -1 —20 5 5
1 1] |l 20 -5 -5 |

The fusion of G to Ly together with the restriction of characters of Ly to G forces the signs of the

Fischer-Clifford matrices and the orders of the elements of the conjugacy classes of G.
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10.7. PowerMaps of G

We then give the power maps of elements of 53-L(3,5) in Table 10.5.

Table 10.5: The Power Maps of elements of 53 L(3,5)

H 9lri,s  [®lss L5 2 3 5 31 H Wlras (25 ness) 2 3 5 31 H
1A 1A 1A 1A 1A 1A 2A 2A 1A 2A 2A 2A
5A 5A 5A 1A 5A 10A 5A 10A 2A 10A
3A 3A 3A 1A 3A 3A 4A 4A 2A 4A 4A 4A
15A 15A 5A 1A 15A 4B 4B 2A 4A 4A 4A
4C 4C 2A 4C 4C 4C
5A 5B 5B 5B 1A 5B 5B 25A 25A 25A 5A 25A
5C 5C 5C 1A 5C
5D 5D 5D 1A 5D
6A 6A 3A 2A 6A 6A 10A 10B 5A 10B 2A 10B
30A 15A 5A 6A 30A 10C 5A 10C 2A 10C
10D 5A 10D 2A 10D
8A 8A 4A 8A 8A 8A 8B 8B 4B 8B 8B 8B
12A 12A 6A 4A 12A 12A 12B 12B 6A 4B 12B 12B
20A 20A 10A  20A 4A 20A 20B 20B 10A  20B 4B 20B
24A 24A 12A 8A 24A 24A 24B 24B 12B 8B 24B 24B
24C 24C 12A 8A 24C 24C 24D 24D 12B 8B 24D 24D
31A 31A 31A  31A 31A 1A 31B 31B 31B 31B 31B 1A
31C 31C 31C 31C 31C 1A 31D 31D 31D 31D 31D 1A
31E 31E 31E  31E 31EA 1A 31F 31B 31F 31F 31F 1A
31G 31G 31G  31G 31G 1A 31H 31H 31H 31H 31H 1A
311 311 311 311 311 1A 31J 31J 31J 31J 31J 1A

The character table of 5% L(3,5) is given in Table 10.6.
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10.8. Character Table of (G

Table 10.6: The character table of 53 L(3,5)

@
[a\]
0
Blmrwooo T I I I T I T I I I AT TTTToOmMw O A2 wo 2w
i )
%) — o 0 o 1o
S8mwoeoo T T T I I I I I I I A AT TTITTTTToOLmw IR S5 wo 8w
Q R IR IR T T I i B I R R | — o o o L e e Qo
515666____________________055512119_‘01_‘1_‘9_‘2
3
%124110000000000000000000014112141..010000
MN%124110000000000000000000014112444040000
Qlmr oM T <ocoocococococoocococows YT YAmMmAmAnwrP0oooococoooo
MAﬁm16ﬁAMOOOOOOOOOO4444BBBBBB5JCMGOOOOOOOOO
@
m1011100000000001111Jn/_.111144440100144410
MQﬁm101110000000000111122111144440400444440
< .
w167u_ux_uO00000000044444444445H41_6433462246
© <
SJ|&lrervroccoccccc ey TTITIT TS 773320 % ST
. ¥ Y YT Y YT LT T OO0 000 T I Y I e I = I e i o
S|y 924 =4 = © oo oo JIJIJJ3JI3IIIIILBBBRRI
. o 0o o9 2 2 90
SE-82RS8888888888 33338333 IFBBEBB8IEEIS5ISR
— 111111111111111611231123
gL eL 2 a2 22838838833833338838383333
R R XXX R XXX XXX XX XXX XXXXXXXXX XXX
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The character table of 53L(3,5)(continued)

=
wMIOJ.D_DOOOOOOOOOOJlDDOOMGMGJAlDD_OOOOOOOOOO
N )
Ik ~ QA ~ = A CHCRON O e
4MIO_D_0000000000_1_DOO_/G/_l_DOOOOOOOOOO
[a\] 1
4%10__DOOOOOOOOOO_lD_OO/G/__1D_0000000000
[a\] 1
<|s —_ A — fa) U9~ )
4%10_D_0000000000_1_DOOG/_/_l_DOOOOOOOOOO
[a\] |
QL o3
0%11O/FOOOOOOOOOO_d411DD.D.DD.DOJD.D100000OOOO
x
95 B - =) AAAR o ~=nA
0%110F/0000000000__11_DD_D_O_D_1000000000
xQ
s — — 3] )] a o~ —
g~ FT Foocococoococo~=F T @EmAARART I A o000 o0ooo oo
—
Aa — —
2H101440000000000114_EED_DD_D_4110000000000
—
M112000000000000444411111101444423102341
i
<{| o
0w112000000000000444411111101441_.432108241
—
e}
Sl " Noocoooococoocoococoococo T YT YT AAAANA A0 ~FF Y HaaToaa w
i
%mwIOJ.D_DOOOOOOOOOOZQEE0000001_1DD_0000000000
M“oow101_.DD_000000000022_EE_OOOOOOJlD_DOOOOOOOOOO
]
%101110000000000111122444444440400414410
Mnm10111000000000011112241_.4444440400444440
s 8eseeL2ga a2 28a3883883388383883885 33
XX XXX XX XXX XX XXX XX XXX XXX XX XXX XX
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The character table of 53 L(3, 5)(continued)

314 | 31B | 31C | 31D | 31F | 31F | 31G | 31H | 311 | 31J
3la 31b 3lc 31d 3le 31f 31lg 31h 31i | 315

X1 1 1 1 1 1 1 1 1 1 1
X2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X3 0 0 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 0 0 0 0
X5 0 0 0 0 0 0 0 0 0 0
X6 H /H L /L K /K J /J /1
X7 /H H /L L K /L /K /K /1 1
X8 1 /1 H /H L /L K /K J /J
X9 /1 I /H H /L L /K K /J J
X10 J /J 1 /1 H /H L /L K /K
X11 /J J /1 I /H H /L L /K K
xi2 | K /K J /J I /1 H /JH | /L | L
X13 /K K /J J /1 I /H H /L L
X14 L /L K /K J /J I /1 H /H
X15 /L L /K K /J J /1 I /H H
X16 0 0 0 0 0 0 0 0 0 0
X17 0 0 0 0 0 0 0 0 0 0
X18 0 0 0 0 0 0 0 0 0 0
X19 0 0 0 0 0 0 0 0 0 0
X20 0 0 0 0 0 0 0 0 0 0
X21 0 0 0 0 0 0 0 0 0 0
X22 0 0 0 0 0 0 0 0 0 0
X23 0 0 0 0 0 0 0 0 0 0
X24 0 0 0 0 0 0 0 0 0 0
X25 0 0 0 0 0 0 0 0 0 0
X26 1 1 1 1 1 1 1 1 1 1
X27 0 0 0 0 0 0 0 0 0 0
X28 0 0 0 0 0 0 0 0 0 0
X29 0 0 0 0 0 0 0 0 0 0
X30 0 0 0 0 0 0 0 0 0 0
X31 0 0 0 0 0 0 0 0 0 0
X32 0 0 0 0 0 0 0 0 0 0
X33 0 0 0 0 0 0 0 0 0 0
X34 0 0 0 0 0 0 0 0 0 0
X35 0 0 0 0 0 0 0 0 0 0
X36 0 0 0 0 0 0 0 0 0 0
X37 0 0 0 0 0 0 0 0 0 0
X38 0 0 0 0 0 0 0 0 0 0
X39 0 0 0 0 0 0 0 0 0 0

A = -146*E(4) = -14+6*ER(-1) = -1+6i G = —E(24)!! + E(24)'°

B = 4*E(4) = 4*ER(-1) = 4i H = E(31) + E(31)° 4+ E(31)%°

C = -546*E(4) = -54+6*ER(-1) = -5+6i 1= EB1)% + EGBDS + B31)°

D = E(4) = ER(-1) =i J=E@B1)3 4+ EB1)? + EB1)M

E = 2*E(4) = 2*ER(-1) = 2i K = EBD + E31)?* + E(31)%7

F = -14+E(4) = -1+ER(-1) = -1+i
L = E(31)2 4+ EB1)'° + EBN?
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Programmes

Programme A

V:=FullRowSpace(GF(q),n);
gr[1]:=(OneGF(q))*[n X n matrix group generators|;
gr[2]:=(OneGF(q))*[n X n matrix group generators];

gr[k]:=(OneGF(q))*[n x n matrix group generators];
grp:=Group(gr(1], gr(2],-- -, gr[k]);
Ccl:=ConjugacyClasses(grp);
O:=Union(Orbits(grp,V));

for i in [1..n(Ccl)] do
Print(Representative(Ccl)[i]);
w:=0ne(GF(q))*[0,0,---,0];

e=[ |

while Difference(O,e) <> [ ] do

d:=[ |;

for x in O do;
y:=[x+w+(x*(Representative(Ccl)[i]))];
d:=Union(d,y);

od;

Print(d);

e:=Union(d,e);

if Difference(O,e) <> [ | then
w:=Representative(Difference(O,e));

fi;

od;

r=[];

w:=0ne(GF(q))*[0,0,---,0];

while Difference(O,e) <> [ ] do

m:=[ J;

for g in Centralizer(grp,Representative(Ccl)[i]) do
L=[u*g];

m:=Union(m,l);

od;

Print(” A block for the vectors under the action of a centralizer”);
Print(m);

r:=Union(m,r);
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if Difference(O,r) <> [ ] then

u:=Representative(Difference(O,r));
fi;
od;

Print (7 ##kitiotioptctiooo oo )

od;

)

Programme B

V:=FullRowSpace(GF(g),n);
m[1]:=(OneGF(q))*[n X n matrix group generators|;
m[2]:=(OneGF(q))*[n X n matrix group generators];

m[k]:=(OneGF(q))*[n X n matrix group generators];
m:=Group(m[1],m[2], - ,m[k]);
c:=ConjugacyClasses(m);

g:=Representative(c[i]);

d:=One(GF(q))*[a1, a2, - ,anl;
wi=d+dxg+dxg>+---Fdxgm 1

Print(w);

PROGRAMME C

gap>V:=FullRowSpace(GF(q),n);
gap>m[1]:=(OneGF(2))*[n X n matrix group generators];
gap>m[2]:=(OneGF(2))*[n X n matrix group generators|;

m[k]:=(OneGF(q))*[n X n matrix group generators];
gap>m:=Group(m/[1],m[2],--- ,m[k]);
gap>k:=OrbitLengths(m,V);

gap>l:= OrbitLengths(Group(List(m,TransposedMat)),N);

PROGRAMME D

gap>g:=Group(Main Group);
gap>T1:=CharacterTable(g);
gap>h:=Group(Inertia Group 1);
gap>T2:=CharacterTable(h);
gap>k:=Group(Inertia Group 2);
gap>T3:=CharacterTable(k);
gap>FusionConjugacyClasses(h,g);
gap>FusionConjugacyClasses(k,g);

PROGRAMME E

gap>ct:=fuction()local ct;ct:=rec();

>ct.SizesCentralizers:=[n Centralizer Orders];
>ct.OrdersClassRepresentatives:=[n Class Representatives Orders|;
>ct.Irr:=[[n X n irreducibles]];
>ct.UnderlyingCharacteristic:=0;ct.Id: =G}
>ConvertToLibraryCharacterTable NC(ct);return ct;end;ct:=ct();
gap>SetInfoLevel(InfoCharacterTable,2);
gap>IsInternallyConsistent(ct);
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gap>PossiblePowerMaps(ct,p); (p-prime divisor of G).
PROGRAMME F

gap>ct:=CharacterTable(G);
gap>SetInfoLevel(InfoCharacterTable,2);

gap>ct;

gap>cut:=Irr(ct){[i..j]};;

gap> k := ki * cut[i1] + ko * cut[ia] + ... + kr * cut[ir];

Programme G

work = [ ];;

output := [ ;;

work[1] := a;;

work[2] := b;;

work([3] := work[1] * work[2];;
work[4] := work[3] * work[2];;
work[5] := work[3] * work[4];;
work[6] := work[3] * work[5];;
work([7] := work[6] * work][3];;
work[8] := work[7] * work[4];;
work[9] := work[3] * work][8];;
work[2] := work[1] * work[9];;
work[4] := work[3] * work][3];;
work[5] := work[3] * work[4];;

work[4] := work[5] " 1;;

work[3] := work[4] * work[2];;
work[2] := work[3] * work[5];;
work[6] := work[7] * work|[7];;
work[5] := work[7] * work][6];;
work[4] := work[6] * work[5];;

work([3] := work[4] T 1;;
work[5] := work[3] * work][1];;
work[1] := work[5] * work[4];;
output[1] := work[1];;

output[2] := work[2];;
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Programme H

work i= [J5
output := [ ];;
work[1] := ¢;;
work[2] := d;;

work[3]:= work[1] * work[2];;

work[4] := work[3] * work[2];;
work[5] := work[4] * work][3];;
work[6] := work[2] * work[2];;
work[7] := work[4] * work][6];;
work[4] := work[5] * work][7];;
work[6] := work[2] * work][5];;
work[5] := work[6] * work[3];;

work[2] := work[5] ™ 1;;

work([3] :

work|[2] * work[4];;
work[2] := work[3] * work[5];;
output[1] := work[1];;
output[2] := work[2];;

Programme I

work := [];
output := [ ;;

work[1] := a;;

work[2] := b;;

work[3] := work[1] * work[2];;
work[4] := work[3] * work][2];;
work[5] := work[3] * work[4];;
work[6] := work[3] * work][5];;
work([7] := work[6] * work[3];;
work[5] := work[3]~1;;
work[9] := work[5] * work][1];;
work[1] := work[9] * work][3];;
work[2] := work[7]3;;

work[6] := work[4]12;;
work[5] := work[6] ~1;;
work[3] := work[5]* work][2];;
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work[2] := work[3] * work][6];;
output[1l] := work[1];;

output[2] := work[2];;

G := Group(output[1],output[2]);

Programme J

G:=SL(2,5);
M:=GModule(G) ;
X:=CohomologyModule (G,M) ;
E:=SplitExtension(X);
Eperm:=DegreeReduction(CosetImage (E,sub<E|>));
pMultiplicator(Eperm,2);
11
pMultiplicator(Eperm,3);
1]
pMultiplicator(Eperm,5) ;
5 1]

exit;

vV —m V m V m V V V V V VvV

Programme J’

gap> gg:=PerfectGroup(3000,1);
A5 271 572
gap> AbelianInvariantsMultiplier(gg);

[51]
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Character Tables

of S2 and S3

>

Table 1
2 8 85 7 7 3 3 6 6 5 4 4 2 266 44 . 11
3 2 1 1 T 21 . . . . .1 e T )
5 1 1
la 2a 4a 2b 2c 3a 6a 4b 2d 4c 4d 8a 6b 12a 2e 4e 4f 8b 5a 6¢c 3b
1 +1 111111111111 111111 11
2 1 1-1-1-111111-1-1-1 -1-1-1 1 1 1-11
3 55 3332211111 -1-1-1-1.-1-1
4 5§ 56-3-3-3 2 2 1 1 1-1-1 1 1-1-1.1-1
5 5 66-1-1-1-1-1 1111 1-1 -1 3 3-1-1. 2
6 5511 1-1-1 11 1-1-1 1 1-3-3-1-1..2
9 9-3-3-3 111 1 1 -3-311-1
8 9 9 3 3 3 11 1-1-1 3311-1
91010 -2-2-2 1 1-2-2-2 1122 . -1 1
10101022 2 1 1 -2-2-2 .-1-1-2-2 .. .11
.11156-1-13-53-1 3-1-1-1 11-13-1-11.
1216-11 1-7 3-1-1 3-1-11-11-3 11-1
.1316-11-35 3-13-1-11-1-11-3 1-11.
.14156-1-1-1 73-1-13-11-1 1-1 3-1 1-1.
.15 16 16 . -2 -2 1. -2
.16 30 -2 -2 22 -3122 -2 .-11 6 -2
1730 -22-2-2-3122-2 1-1-62
.1845-3-319 . .-311-1 1 .-31-1 1.
.19 45 -3 3 -1 -9 .-3111-1 3-1-1 1.
.20 45 -3 -3 5 -3 . 1-3 11-1 .-311 -1
.21 45 -3 3 -5 3 . 1-31-11 3-11-1.
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Table 2

8 7 7 3 3 3 35 6 6 6 6 5 4 4 4 41 1 11
11 2 2 1 1 2

oW N
=N o

la 2a 2b 2c 3a 6a 6b 6¢c 4a 4b 2d 4c 2e 4d 8a 4e 8b 4f 5a 10a 5b 10b

+i 1 1111111111111 11 1111

i -1 -111-1-1-1-1-11 1 1-1-11 11-11-1

5§ 5 5 2 2 2 21111 11-1-1-1-1

5 5 5-1-1-1-11 11 111-1-1-1-1.

5 6 -6 2 2-2-2-1-1-11 1111-1-1

5 6 65-1-111-1-1-111111-1-1

8-8-8-1-11 1 . .. . ... . . . A-AxA-xA

8 8-8-1-1 1 1. . . . ... . . .*%A-xAA -A
888 -1-1-1-1. . . . ... .. . AAxA A

8 88 8-1-1-1-1 . . .. ... . . .xAxAA A

99 9 9. .. . 1111 1111 1 1-1 -1-1 -1

9 9-9 9. . ..-1-1-111 1-1-1 1 1-11-11

1010 10101 1 1 1-2-2-2-2-2-2

10 10 -10 -10 11 -1-1222 -2 -2 -2

16-1 .63 3-1 1-3-1-1 3 3-1-11-11-1

5-1 5 33-1 1-3-13-1-13-1-11-11

15 -1 5§-3 3-1-1 31-31-1 3-1 1-1-1 1

15-165 -3 3-1-131 1-3 3-1-1-1 11-1.

30-2-10 6-31-1 3-2 222 2-2

30 -2 10-6-3 11-3 2-2-2 22-2.

45-3-15 9. ... 1-3 11-3 1-1 1-1 1

45 -3-159. . . . 1 1-3-3 1 1 1-1 1-1.

45 -316-9. . . .-1-13-3 1 1-1 1 1-1.

45 -316-9 . . ..-1 3-1 1-3 1 1-1-11

6d 3b
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X.11

X.12

X.13

X.14

X.15

X.16

X.17

X.18

X.19

X.20

X.21

X.22

X.23

X.24

=
I

-1 -1

-1 -1

-E(5)-E(5)"4
(1-ER(5))/2 = -b5

sokosk sk stk ok sk ofok ok sk sk ok ok sk sk okofok sk sk skofok sk sk ook ok ok ok
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