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ABSTRACT

Recalcitrant seeds are those that are shed at high water contents, are actively

metabolic throughout development, when they are, and remain, desiccation­

sensitive, and may also be chilling sensitive. These properties preclude their

conventional storage. Because recalcitrant seeds lose viability rapidly (within a

few days to several months depending on the species) the long-term storage of

their germplasm is achievable only by cryopreservation [i.e. storage at very low

temperatures, generally in or over, liquid nitrogen at -196°C or -150°C,

respectively. Generally the seeds are far too large to be cryostored, thus explants

- most conveniently, excised zygotic embryonic axes - are used. As the axes of

recalcitrant seeds are highly hydrated, specific pre-treatments prior to freezing

have to be applied in order to avoid lethal ice crystal formation.

During the course of this study, cryopreservation protocols were developed for

excised zygotic embryonic axes of two different species (Quercus robur L. and

Ekebergia capensis Sparrm.). Surface-sterilisation regimes were tested for axes

of both species, with the use of a 1% sodium hypochlorite solution containing a

wetting agent, emerging as the best. For both species, the vigour and viability of

axes, assessed by in vitro germination performance, was tested after the

implementation of four different rates of desiccation (achieved by a laminar­

airflow; silica-gel-; f1ash- and fast f1ash-drying). The most rapid dehydration rate

(fast flash-drying) facilitated the best germination rates (vigour) for both Q. robur
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and E. capensis axes after 240 and 20 min, when water contents were reduced

to 0.37 ± 0.04 and 0.39 ±0.06 g g-1 (dmb), respectively.

Consequently, fast flash-drying was used in combination with three different

freezing rates (slow, intermediate and ultra-rapid cooling). While axis viability was

lost after slow or intermediate cooling, good survival was obtained for each

species after ultra-rapid cooling. In addition to the optimisation of culture

conditions, desiccation and freezing rates, the efficacy of different thawing media

(distilled water, mannitol, sucrose, fUll-strength MS medium supplemented with

sucrose and a 1 ~M calcium/1 mM magnesium solution) was also assessed. The

only thawing medium that ensured normal seedling production was the Ca2+Mg2+

solution, in which electrolyte leakage was significantly curtailed.

In addition to vigour and viability assessment the responses of the embryos to

the various manipulations were monitored by light microscopy and/or

transmission electron microscopy. The results of the various manipulations are

discussed in terms of the stresses imposed on the excised axes, by each of the

procedures. For axes of Q. robu" the outcome of the presently developed

successful procedure and two unsuccessful protocols from the published

literature are compared and contrasted.

It is concluded that while in vitro germination media need to be assessed on a

species basis, use of the mildest effective surface-sterilant, in conjunction with
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the most rapid means to achieve dehydration and cooling/freezing, are likely to

underlie generally successful cryopreservation. Additionally, thawing parameters

have emerged as being critically important.
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CHAPTER 1: CONSERVATION AND STORAGE OF PLANT GENETIC
RESOURCES

Plant genetic resources for food and agriculture are the biological basis of world

food security, and directly or indirectly, support every life form on earth. While

plant genetic resources. have been sought after, collected, used and improved for

centuries, it has only been since the 1930s that official concern regarding the

need for their conservation has been voiced. International efforts to promote

conservation, exchange and utilization, initiated through the Food and Agriculture

Organization of the United Nations (FAO), are more recent.

A panel of experts was created specifically for plant genetic resources in 1968

(FAO, 1996), one of which was the 'International Board for Plant Genetic

Resources' (IBPGR) programme with the mission to coordinate an international

plant genetic resources programme. The legal successor to IBPGR is now the

International Plant Genetic Resources Institute (IPGRI). Collecting missions were

accelerated, and genebanks were constructed and expanded at national,

regional and international levels.

1.1/n situ AND ex situ CONSERVATION OF PLANT GENETIC
RESOURCES .

Plant genetic resources can be conserved either in situ or ex situ. In situ

conservation has primarily been used to conserve forests and other sites

containing threatened species, which are in their natural habitats, for example in

natural parks or nature reserves. This allows normal evolution to continue with
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no, or little disturbance. Ex situ conservation on the other hand, involves the

removal of a plant species from its natural habitat (Krogstrup et al., 1992).

Even though in situ conservation is perhaps the best way of preservation, it

cannot work alone, but must operate hand-in-hand with ex situ conservation, not

only because of capital outlay and lack of land availability, but also to allow plant

material to be readily available for research breeding, in vitro- and long-term­

conservation purposes. These ex situ collections ultimately consist of seed

genebanks, field genebanks and in vitro collections.

1.1.1 METHODS OF Ex Situ CONSERVATION

Ex situ germplasm acquisitions are either 'active' or 'base' collections (Hawkes,

1987). Active collections are readily available for distribution as field or

greenhouse collections. An active collection requires methods of storage that

retain the viability of samples for short (a few weeks) to moderate periods

(several years). The regular regeneration and multiplication should maintain

genetic diversity. The disadvantage of maintaining active collections as living

plants in either the greenhouse or field is the expense and labour intensity

involved, pest problems and natural disasters (George, 1993; 1996).

A base collection, however, is for long-term conservation of germplasm by in vitro

stora~e methods and is not intended for extensive distribution, but serves as a

backup for the active collections. In addition, base collections reduce costs of

regeneration and frequent viability testing (George, 1993; 1996).
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1.2/n Vitro STORAGE METHODS

During the last twenty to thirty years in vitro culture techniques have been

extensively developed and applied to more than a thousand different species

(George, 1993; 1996). Culture of plant material in vitro induces morphogenic

responses of meristematic tissue, including organised or differentiated growth via

axillary or adventitious bud induction (directly as shoots and roots) or zygotic

embryo culture. Alternatively, unorganised or undifferentiated cell division may be

induced from tissues whether meristematic or not. This involves callus formation

- the growth of an unorganised mass of plant cells which can be differentiated or

modified into plantlets in the next phase of regeneration. The route of

morphogenesis is dependent on factors such as: the size of the meristem-tips;

the type of culture medium; the kind and concentration of growth hormones; the

environmental conditions (light, temperature and photoperiod) and other factors

such as seasonal fluctuations of donor plants and the type of containers used

(George, 1993; 1996).

Storage of actively growing cultures, minimal growth storage and

cryopreservation are the three basic approaches to in vitro storage of such in

vitro cultures.

1.2.1 STORAGE OF ACTIVELY GROWING CULTURES

Storage of actively growing in vitro cultures requires a monthly transfer of such

cultures to new media, to minimise the loss of material due to contamination or

physiological decay. The benefit of this method is the rapid multiplication of the
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plant tissue by micropropagation once retrieved from storage, thereby

constituting a backup for a field grown active collection, supply to consumer

or/and planting out (Krogstrup et al., 1990; Krogstrup and N0rgaard, 1991).

1.2.2 MINIMAL GROWTH STORAGE

Minimal growth storage includes the exposure of tissue cultures (or young plants)

to: growth limiting chemical and physical factors (growth retardants such as

abscisic acid); reduced temperatures (2-3°C for temperate species and 14-18°C

for tropical species); or reduced oxygen tension (Baucher et al., 1989; Lizarraga

et al., 1989; Engelmann, 1990). Slow growth storage methods have been

extremely successful for shoot cultures of a wide range of species inclUding

several root and tuber crops (potato, cassava, yam and sweet potato); fruits

(banana, apple, pear, strawberry and kiwi fruit) and other horticultural and

agricultural species (Withers, 1987).

Minimal growth may, however, impose definite selection pressures (in vitro

selection) (Scowcroft, 1984) and environmental stresses which can ultimately

cause genetic modifications. Minimal growth storage is therefore not necessarily

the best long-term storage option and additionally, requires considerable space.

This is a major reason for cryopreservation being considered as the best option

for long-term conservation.
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1.2.3 CRYOPRESERVATION

The ultimate base storage method, cryogenic storage, rests on the reduction and

subsequent arrest of metabolic functions by placing the specimens into an ultra­

low temperature (for instance, liquid nitrogen at -196°C). Due to the unavailability

of liquid water, cellular metabolic activities cease, and consequently, genetic

changes should be minimised (see section 1.3.6 for more details).

1.3 SEED STORAGE

Seed storage is the most common way of storing plant germplasm as seed bank

facilities do not require sophisticated technology, and as a result are relatively

cost effective. Unfortunately not all seeds behave in the same way and thus

cannot all be stored using the same protocol. Roberts (1973) introduced the

terms "orthodox" and "recalcitrant" to describe the storage behaviour of seeds,

depending on their physiological response to desiccation and low temperature.

By definition, recalcitrant or desiccation-sensitive seeds have characteristics that

do not conform to those of an orthodox or desiccation-tolerant propagule. For

instance, the majority of orthodox seeds dry down naturally on the parent plant

(maturation drying) to low water contents, and according to Roberts and King

(1980), orthodox seeds can be further dehydrated to water contents of between

1-5% (0.01-0.05 g g-1 dmb) without loss of viability or damage. However, it should

be noted that later work contests the assumption that ultra-dry conditions are

invariably not damaging (Vertucci and Roos, 1993). In addition, orthodox seeds

are able to be stored for long periods at water contents of 5-7% fmb (0.05-0.08 g
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g-1 dmb), as metabolism is minimal and probably non-existent at -18°C or lower

(IBPGR, 1976). Roberts and Ellis (1977) suggested that the lower the storage

temperature, the longer these seeds could be stored.

The truly recalcitrant seeds, however, never dry out on the parent plant (do not

undergo maturation drying) and are therefore shed at relatively high water

contents (Chin, 1988). For example, Avicennia marina (which is highly

recalcitrant) has a water content as high as 67% fmb (2.03 g g-1 dmb) on

shedding (Berjak et al., 1984). Another characteristic of truly recalcitrant seeds is

their active metabolism throughout development to shedding. For example, after

a small decline at the start of reserve accumulation, respiration in the seeds of A.

marina remains relatively constant until abscission (shedding) according to

Farrant et al. (1992b). In fact, relatively high respiration rates have been recorded

for seeds of several recalcitrant species at shedding (Poulsen and Eriksen, 1992;

Espindola et al., 1994; Finch-Savage and Blake, 1994a). Another characteristic

of many recalcitrant seeds particularly those of tropical species, seems to be

their sensitivity to chilling (Chin and Roberts, 1980), although little systematic

work has been done since then on this aspect.

Besides these two seed categories, Ellis et al. (1990; 1991a; b; c) and Hong and

Ellis (1992), defined an "intermediate" category of seeds based also on post­

harvest behaviour. Intermediate seeds were described by those authors to

withstand dehydration to relatively low water contents [12-5% fmb (0.14-0.05 g
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g-1 dmb)], depending on the species, but, in this state, are chilling-sensitive. The

original examples of this behaviour were Coffea spp. reported by Ellis et al.

(1990; 1991a), Carica papaya by Ellis et al. (1991b), and Elaeis guineensis by

Ellis et al. (1991c). It should be noted, however, that Hong and Ellis (1996) have

modified this definition.

Ongoing research, however, indicates that this strict categorisation of seeds may

not be appropriate because of the wide range in the postharvest responses of

seeds. It has been suggested that all seed behaviour will be found to constitute a

continuum from the most orthodox to the most highly recalcitrant (Berjak and

Pammenter, 1994). In fact a continuum across species is apparent already,

within the recalcitrant category (Tompsett, 1987; Farrant et al., 1988; Berjak et

al., 1989; Finch-Savage, 1995).

1.3.1 THE PHENOMENON OF RECALCITRANCE

Since the early definitions, much about the complexities of recalcitrant

propagatory units has been discovered; and modified explanations of seed

behaviour and requirements for storage of seeds, have been proposed. As

evidence accumulated, it became clear that there are different degrees of

desiccation-sensitivity among recalcitrant species at shedding (Farrant et al.,

1988; Berjak and Pammenter, 1994). This led to the suggestion that recalcitrant

seed behaviour should be considered in the context of the natural habitat of or,

extrinsic influences on, individual seed species, in order to better understand the

phenomenon of recalcitrance (Berjak and Pammenter, 1994).
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Hanelt (1977) proposed that recalcitrant seeds might be produced by trees and

shrubs of the temperate and sub-tropical regions, which have been suggested to

be minimally recalcitrant species (Farrant et al., 1988; Berjak et al., 1989), which

might be interpreted as minimally desiccation-sensitive. Tropical rain forest, wet­

land and aquatic plants were suggested to be likely to produce highly recalcitrant

seeds by those authors, which could be interpreted as being highly desiccation­

sensitive in the loose sense. Tropical recalcitrant seeds might be expected to

show little, if any, dormancy, since those parent plants growing in naturally

favourable wet habitats are not expected to dry out. Additionally, perennial plants

produce seeds at regular intervals in relatively humid environments, which

(theoretically) need not have long life-spans.

The intrinsic or inherent characteristics of the seed in its natural environment are

important in the understanding of the recalcitrant seed and its degree of

longevity, especially when compared with the desiccation tolerant or orthodox

type of seed. For instance, according to Leprince et al. (1993), orthodox seeds

acquire desiccation tolerance via three main so-called protective mechanisms:

the accumulation of non-reducing sugars; the accumulation of dehydrins or Late

Embryogenic Accumulating/Abundant (LEA) proteins that are inducible by

abscisic acid (ABA) and; the ability to prevent, tolerate or repair free radical

attack. It is possible that recalcitrant seeds are desiccation-sensitive due to

inadequacies in these aspects. More recently, Pammenter and Berjak (1999)

have extended the list of properties considered vital in the acquisition and
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maintenance of desiccation tolerance. The list includes: "physical characteristics

of cells and intracellular constituents; insoluble reserve accumulation;

intracellular de-differentiation; metabolic 'switching off; presence, and efficient

operation, of anti-oxidant systems (mentioned in more detail later); accumulation

of putatively protective substances including LEAs (Late Embryogenic Abundant

Proteins), sucrose and other oligosaccharides, as well as amphipathic molecules;

the presence and role of oleosins, and the presence and operation of repair

systems during rehydration". Those authors have proposed that the absence or

presence and degree of interaction of the many mechanisms/processes in this

list, will confer widely differing behaviour of seeds across the spectrum of

angiosperm and gymnosperm species.

Whatever the underlying causes, recalcitrant seeds deteriorate readily and

special care needs to be taken with the methods adapted for harvesting,

packaging and distribution and short and longer-term storage. For a storage

method to be of any value for genetic conservation, seed vigor and viability must

be maintained for the required period since loss in Viability will almost certainly be

accompanied by some change in the genetic constitution (Roberts, 1973).

Consequently, any storage regime during which seed viability shows a significant

decline at any stage, must either be changed or abandoned.

The only way recalcitrant seeds can presumably be stored, is in the fully

hydrated condition, and this is only a short-term option. This is because
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recalcitrant seeds are short-lived even under such conditions, with life spans

ranging from a few weeks to a few months, depending on the species. This

phenomenon has been suggested to be the outcome of their ongoing metabolism

becoming deranged under storage conditions that supply no additional water to

support these processes (Farrant et al., 1986; Berjak et al., 1989; Pammenter et

al.,1994).

Those recalcitrant seeds that are more actively metabolic at shedding will

probably tolerate less water loss than those which are not as metabolically

active. When germination ensues in hydrated storage, which occurs sooner or

later depending on the species, metabolic rates become increasingly higher, as

does desiccation sensitivity (Berjak et al., 1993). This is correlated with the

requirement for additional water (see later) which is not provided in storage.

1.3.2 SHORT-TERM WET STORAGE OF SEEDS

Recalcitrant seeds are highly metabolic and lack the ability to shut down this

active state (Berjak, 1984; Pammenter and Berjak, 1999) which is the basis of

their desiccation sensitivity (Pammenter and Berjak, 1999).

Thus, recalcitrant seeds must be stored under conditions that maintain their

water content at, or only marginally below that characterizing the newly-shed

state (King and Roberts, 1980a; Berjak et al., 1989). This approach, termed 'wet­

storage', is apparently useful for short-term storage of seeds of recalcitrant

species in general (Berjak et al., 1989), however, all become increasingly
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desiccation-sensitive with time (Farrant et al., 1986). Ultrastructural and

biochemical investigations of a number of wet-stored recalcitrant species have

shown that organisation and activity within the embryonic cells increases during

wet-storage in line with the onset of germination, and a stage of cell division and

extensive vacuolation is sooner or later reached, after which deterioration sets in

(Berjak et al., 1989; Farrant et al., 1988; 1989). Because, under these wet­

storage conditions, germination metabolism ensues and continues, what are

essentially being stored are developing seedlings as opposed to ungerminated

seeds. The more immediately and rapidly germination takes place after

shedding, the sooner will cell division and vacuolation, followed by the onset of

deterioration, these events being inversely related to the longevity of the seeds in

hydrated storage (Farrant et al., 1989).

Another seemingly inevitable problem associated with the maintenance of

recalcitrant seeds in hydrated storage is microbial proliferation favoured by the

moist, generally warm storage conditions (Berjak, 1996; Berjak et al., 1990;

Mycock and Berjak, 1990). A further limiting factor is that desiccation sensitivity is

invariably found to increase once germination has proceeded to the stage of

extensive vacuolation, as the minimum and lethal water content levels, increase

(Farrant et al., 1986, Berjak et al., 1989; 1992), viability loss proceeds rapidly

from this stage. The storage life-span can therefore vary from less than 2-3

weeks for some tropical species to 2-3 years for the more chilling-tolerant

temperate species stored at lower temperatures (King and Roberts, 1980a;
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Suska and Tylkowski, 1980; Pritchard et al., 1986; Farrant et a/., 1989; Fu et a/.,

1990; Tompsett, 1992), but is always curtailed.

Reference to that literature also shows that there is a wide variation in the water

contents of seeds at which viability is lost and the proportion of water loss that

can be tolerated. The most likely causes for loss of viability emanating from what

is effectively a prolonged, mild water stress (Pammenter et a/., 1998) of wet­

stored seeds recorded include: macromolecular conformational changes and

impaired intracellular transport; changes in pH and changes in ion

concentrations, all of which have the potential to disturb intracellular metabolism,

which may lead to free radical generation (Senaratna and McKersie, 1986).

Where those authors recorded these as likely events consequent upon

dehydration, an internal water stress occurs due to the increased water level

required for ongoing metabolism during hydrated storage of recalcitrant seeds,

which would probably have similar deleterious effects (Pammenter et a/., 1994;

1998).

So, even though wet-storage is storage in a so-called hydrated condition, this

method can only be used as a very short-term storage method, as seeds will not

survive long periods of storage under these stressful conditions, as the vigour

and viability of these seeds decline.
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1.3.3 SHORT- TO MEDIUM-TERM STORAGE

One of the most important limitations to the storage of recalcitrant seeds is

germination (Berjak et al., 1989, Pammenter et al., 1994, Finch-Savage, 1995)

and in acorns it might be assumed that as long as germination is inhibited,

recalcitrant seeds could be successfully stored. However, in practice this has not

been satisfactorily achieved.

With regard to short- and medium-term storage of good quality seeds, the

general and most economically viable ways for the package and distribution of

whole recalcitrant seeds have included the use of a modified atmosphere. For

example, this has been done by using carbon dioxide, to replace (wholly or

partially) oxygen and any ethylene evolved from the seeds (Chin and Roberts,

1980). Although this concept is not new, the effectiveness of such treatments has

not been confirmed. As early as 1914, Kidd prolonged the life of rubber seeds by

sealing them in a 40-45% CO2 atmosphere, and attributed this success to a

narcotic induction of dormancy (Chin and Roberts, 1980). Certain workers have

also investigated the effects of coating recalcitrant seeds with impermeable

material to reduce moisture loss. For example, in 1964, Friend (Chin and

Roberts, 1980) stored cocoa seeds coated with paraffin wax and found that the

storage life of the seeds was doubled to 28 days. Storage was further enhanced

by leaving an unwaxed central band on the seed, which presumably permitted

respiratory exchange with only minimal water loss.
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The most successful and most economical method so far, demonstrated by a

number of workers, for storing recalcitrant seeds appears to be sealed storage

within a thin polyethylene bag. Polyethylene bags appear to reduce water loss

while permitting some gaseous diffusion and, provided microbial growth and

germination in storage are kept to a minimum (both of which are unlikely to be

achieved), lengthy storage may be possible. However, success with this

approach is likely to be achieved only with non-orthodox seeds that are not truly

recalcitrant (e.g. so-called imtermediate seeds) or those that are recalcitrant, but

show dormancy. For example, coffee seeds (intermediate [Ellis et al., 1990])

have been maintained in this manner for two and a half years by storing them at

a 41 % fmb (0.69 g g-1 dmb) water content at 15°C (Vossen, 1978). Pritchard et

al. (1996) also showed that A. hippocastanum seeds which are recalcitrant but

show dormancy have a storage life-span of 2-3 years if maintained hydrated at a

temperature of 16°C.

Increasing the longevity of imbibed Citrus aurantium seeds in storage by way of

decreasing seed respiration was suggested by Edwards and Mumford (1985).

Evidence that this might work for some species was provided by Sowa et al.,

(1991) who treated Utchi chinensis and Dimocarpus longan seeds with nitrous

oxide (an anaesthetic able to reduce the respiration rates in seeds) which

increased the storage life-span or both. Another and apparently very promising

result was reported by Pammenter et al. (1997) and Motete et al. (1997) when a

specially-prepared alginate gel increased the longevity of Avicennia marina by
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curtailing fungal activity and slowing germinative metabolism in storage. The gel,

an extract from the seaweed, Ecklonia maxima - was as effective alone as when

abscisic acid was added to it. Bhargava (1988) used halogen and chlorine

vapour treatments to enhance the storability of Shorea robusta seeds and to

increase their tolerance to lower storage temperatures.

However, it must be stressed that the effects of none of these treatments at the

physiological level of seeds, has been unequivocally demonstrated. Furthermore,

longer-term effects of any such treatment on the ultimate production of normal

plants, remains to be ascertained.

1.3.4 FREE RADICAL PRODUCTION

It has been hypothesised, and there is some evidence to substantiate, that free

radicals are produced under conditions of water stress in desiccation-sensitive

plant tissue. Free radicals (chemical species which have lost an electron) are,

components of intracellular metabolism, but under normal conditions, produced

and strictly controlled (Hendry, 1993). However, free radicals are potentially

destructive in tissues, including those of seeds under stressed conditions, when

control mechanisms may be ineffective, or even fail completely (McKersie et al.,

1988; Leprince et al., 1990; Dhindsa, 1991; Arrigoni et al., 1992; Hendry et al.,

1992; Cakmak et al., 1993). In uncontrolled conditions, free radicals will abstract

electrons from macromolecules, initiating a cascade of potentially lethal reactions

(Smith and Berjak, 1995). Leprince et al. (1990) demonstrated the accumulation
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of an organic radical (formed as a result of deranged electron transport) and the

significant increase in lipid peroxidation in desiccation-sensitive maize seedlings.

Similarly, damage initiated by free radicals occurred in axes/seeds of Quercus

robur when dehydrated below 0.89 g g-1 dmb (47% fmb), and here too the

evidence of free radical activity was obtained by the accumulation of peroxidised

end-products (Hendry et a/., 1992). Free radical activity correlated with loss of

viability during the drying of a number of desiccation-sensitive tree seeds was

recorded by Finch-Savage et al. (1994c) and by Chaitanya and Naithani (1994)

in their study on Shorea robusta seeds.

Protection against any oxidative attack is conferred primarily by the activity of

anti-oxidants, e.g. superoxide dismutase (SOD) and glutathione reductase under

unstressed conditions. However, there is evidence that anti-oxidant mechanisms

may become impaired when desiccation-sensitive recalcitrant seed tissues

become water stressed (Hendry et al., 1992; Finch-Savage et al., 1993).

A spectrum of inherent inadequacies of recalcitrant seeds has been discussed in

the context of their desiccation-sensitivity (Pammenter and Berjak, 1999). Most

of which only pertain indirectly to the present work (mentioned in section 1.3.1)

and will not be fully discussed here. However, the potentially lethal effects of free

radicals, generated as a consequence of deranged metabolism under prolonged

water stress conditions, have been highlighted here, as they are central to the
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argument in favour of very rapid dehydration as a prerequisite for successful

cryopreservation (see later).

1.3.5 LOW TEMPERATURE STORAGE OF SEEDS

As the metabolic status of the seeds underlies their recalcitrance, brief mention

must be made of other attempts to minimise developmental changes. There are

a number of potential advantages associated with the storage of seeds at sub­

ambient temperatures, such as decreased microbial growth and a lower seed

metabolic rate, which should extend the hydrated storage lifespan.

Low temperature storage (chilling) was tried by Ryke as early as 1935 with cocoa

seeds (Theobroma cocoa L.) which were killed at temperatures of 1Doe and

below (Chin and Roberts, 1980). It has subsequently been assumed from largely

subjective observations (Chin and Roberts, 1980), that recalcitrant seeds of

many species are chilling sensitive.

A more recent observation of chilling-sensitivity in recalcitrant seeds was done by

. Berjak et al. (1995) in a study to determine whether chilling (4 ± 2°C for ten days)

had an adverse effect on African Azadirachta indica A. Juss (neem) axis cells.

Those authors showed that a regression of subcellular development

accompanied chilling, as many axis cells showed degenerative changes.

Ezumah (1986) found that storage of dried neem seeds at 6-7°e was also
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deleterious, irrespective of the water content. There therefore seems to be no

doubt that neem seeds are chilling-sensitive

The most important thing to remember at this stage is that chilling (generally

above O°C) injury is not the same thing as freezing (below O°C) injury. Also,

chilling injury is thought to be another induction of unbalanced metabolism and

therefore of uncontrolled free radical production.

1.3.6 LONG-TERM STORAGE - (CRYOPRESERVATION) - OF SEEDS AND SEED
COMPONENTS

Conventional storage methods for chilling- and desiccation-sensitive (recalcitrant)

seeds at sub-ambient temperatures are inappropriate at least for long-term

storage. However, cryogenic techniques (e.g. liqUid nitrogen storage at -196°C)

similar to those found to be successful in the preservation of other biological

materials (e.g. semen, mammalian embryos and plant meristems) had already

(some years ago) been discussed as possibilities, for recalcitrant embryos and

smaller recalcitrant seeds (Chin and Roberts, 1980). Cryogenic storage thus far

appears to offer the only option for long-term conservation of the germplasm of

species producing recalcitrant and intermediate seeds. Cryogenic storage in

liquid nitrogen has the advantages of preventing germination and microbial

growth and obviating physiological deterioration in biological tissues as all cell

metabolic processes are halted. Theoretically, cryostorage (at least at -196°C)

should facilitate storage for thousands of years (Ashwood-Smith and Friedman,

1979; Dumet et al., 1997; Engelmann, 1997).
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However, the potential for cryo-injury is very real. Mazur (1969; 1970; 1977)

proposed that tissues and cells exposed to freezing would be susceptible to two

very damaging factors: the toxic build-up of solutes and intracellular ice

formation, specifically crystalline ice formation, which will inevitably destroy the

tissue. Damage sustained during cryopreservation and inflicted by the necessary

pre-treatments, will influence the capacity of injured plant cells to regain normal

cellular and regenerative functions. In addition, Senson (1990) suggests that free

radical generation still continues despite cryostorage temperatures, as does

Hendry (1993).

The successful cryopreservation of plant cells, tissues and organs is dependent

on a range of factors such as the size and ultrastructure of the tissue; the rates,

conditions and duration of: dehydration (pre-freeze status); cryoprotection;

cooling (freezing); thawing and post-thaw recovery. Indeed each component of a

cryopreservation protocol can be stressful and injurious to the specimen in

question. Ultimately, successful cryopreservation depends on the delicate

balances that will be achieved only by experimentation with rate and extent of

dehydration, and cooling conditions and rates as well as those involved after

survival is achieved from the cryogen. Additionally, success can be claimed only

if vigorously growing normal plants can ultimately be produced from most of the

cryopreserved explants.
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1.3.6.1 RECALCITRANT SEED SIZE AND ULTRASTRUCTURE

It would be ideal if intermediate and recalcitrant seeds could be stored whole, as

this would be less labour-intensive and subject to less complication than the use

of embryonic axes entails. Perusal of the literature suggests that suitably

dehydrated, intact intermediate seeds can be successfully cryostored, for

instance Berjak and Dumet (1996) recorded a 70-75% success of whole neem

(Azadirachta indica) seeds. But this is seldom, if ever, the case for the more

hydrated truly recalcitrant seeds. This is generally because of the relatively large

size of these seeds. Large seeds have a lower surface to volume ratio than small

ones and recalcitrant seeds have high water contents. Such seeds lose water at

a lethally slow rate (Pammenter et al., 1998) and would be dead well before

reaching water contents sufficiently low to prevent lethal freezing injury. Work in

our laboratory has repeatedly indicated that even in the case of smaller

recalcitrant seeds, water is generally lost relatively sloWly, with lethal injUry

occurring at relatively high water contents (which is not surprising considering

that resistance to water loss must have an inherent survival value in the natural

habitat). Thus, smaller sources of germplasm, such as the zygotic embryonic

axes or somatic embryos must be used for cryopreservation.

Results of successful cryopreservation of zygotic embryonic axes, after partial

desiccation, have been recorded for species producing recalcitrant (e.g. coconut)

and intermediate (e.g. coffee, oil palm) seeds (Engelmann et al., 1995) and for

axes from various large-seeded temperate species (Pence, 1990). However, it is

important to note that 'success' is generally reported as survival of cryostorage,
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rather than by plant establishment, making it difficult to gauge true success. In

addition, there has been extensive development of systems for in vitro

propagation for species of economic importance (e.g. oil palm, date palm and

coffee) to produce somatic embryos (Tisserat, 1984; Hatanaka et al., 1991)

which have shown the potential to be cryopreserved, probably because of their

small size (Anandarajah and McKersie, 1990; Dumet et al., 1993a; b) and tissue

homogeneity.

At this point, it is important to realise that many intracellular characteristics are

held to contribute to desiccation-tolerance of plant tissues. These characteristics

have recently been reviewed by Pammenter and Berjak (1999).

Vacuolation and reserve deposition constitute one such mechanism, and

perhaps one of the most important, as removal of water from plant cells is

associated with shrinkage of fluid-filled vacuoles and volume reduction (lIjin,

1957). In desiccation-tolerant material, vacuoles divide into many small ones or

become filled with insoluble reserve material. Neither appears to occur in

recalcitrant seeds, linking the extent of vacuolation and lack or limitation of

insoluble reserve accumulation, to the degree of desiccation-sensitivity (Berjak et

al., 1989; Farrant et al., 1989; Farrant et al., 1997; Pammenter and Berjak,

1999).



CHAPTER 1 INTRODUCTION PAGE 22

Farrant et al. (1997) carried out a study on three species of varying desiccation­

sensitivity. Avicennia marina (highly desiccation-sensitive); Aesculus

hippocastanum (moderately desiccation-sensitive) and Phaseolus vulgaris

(orthodox Le. desiccation-tolerant). It was found that A. marina embryo cells

developed steadily larger vacuoles during development, so that 60 and 90% of

the cell volume of axes and cotyledons, respectively, became occupied by

vacuoles. In addition, little by way of insoluble reserves accumulated in A. marina

tissues with the onset of seed maturity (Farrant et al., 1992b; 1997). Those

authors correlated the undiminishingly high water content, and degree of

desiccation sensitivity of A. marina seeds with these characteristics.

Aesculus hippocastanum, on the other hand, was observed to have undergone a

decrease in the vacuole size as development ensued, resulting in only small

vacuoles at maturity, while P. vulgaris vacuoles per se disappeared with ongoing

development becoming filled with what was described as insoluble, amorphous

(probably protein) material (Farrant et al., 1997). It appears therefore, that the

larger the vacuoles and the less the insoluble reserve deposition, the greater the

degree of desiccation sensitivity.

In terms of the cell (and therefore tissue) characteristics of zygotic embryos,

some (e.g. Trichilia dregeana) have larger fluid-filled vacuoles within the (root)

apical meristematic cells compared with others (e.g. Quercus robur) (Figure 1.1).

This differing feature may be one of the reasons why no successful cryostorage
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protocols have been able to be developed for. T. dregeana axes (Kioko pers.

comm. 1
) while as the present work will show, significant success has been

attained for those of Q. robur.

(a) x 150 (b) x 150
Figure 1.1: Light micrographs of (a) Trichilia dregeana, (compliments of J. Kioko) showing large
vacuoles and (b) Quercus robur, showing less vacuolation in typical component cells of root caps.

The degree of vacuolation in embryonic axis cells must, therefore, be a primary

consideration with regards to development of dehydration and freezing protocols

for the long-term conservation of the germplasm of the species in question.

Farrant et al. (1997) also showed that mitochondria remained highly

differentiated in the desiccation-sensitive species (A. marina and A.

hippocastanum) while in the axes of the orthodox seeds, P. vulgaris, these

organelles became completely de-differentiated prior to maturation drying. Lack

of de-differentiation, which was accompanied by active respiration has been

1KiOko, J. School of Life and Environmental Sciences, University of Natal, Duban.
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suggested to be a major factor contributing to desiccation-sensitivity in

recalcitrant seeds in general (Pammenter and Berjak, 1999). Phaseo/us vulgaris

axes, as for all orthodox seeds, showed a de-differentiation of mitochondria

which was accompanied by a decline in respiratory rate to unmeasurable levels,

prior to maturation drying. This strategy of organelle de-differentiation is

presumably another mechanism involved in the acquisition of desiccation­

tolerance, as not only are the surface areas of vulnerable membranes reduced,

but respiratory metabolism is potentially eliminated. This would significantly

reduce free radical production under conditions of water stress during

dehydration (Senaratna and McKersie, 1986).

The plant cytoskeleton (the major components of which are microtubules and

microfilaments) is a vital component dictating intracellular organisation.

Irreversible destruction of the cytoskeleton must result in death of that cell.

According to Sargent et al. (1981), microtubule assembly may be markedly

sensitive to desiccation stress, its derangement thus providing a further factor

that might contribute to desiccation-sensitivity. It appears that disassembly and

reassembly of the cytoskeleton is reversible in orthodox seeds, but irreversible

for recalcitrant seeds (Mycock et aI., in press).

Thus, there are several categories of damage that may accompany dehydration

of desiccation-sensitive axes from recalcitrant seeds, including: mechanical

rupture or collapse and damage to supporting elements of the cyto- and
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nucleoskeletons; metabolism-associated damage and, related to this, damage to

organelles which includes membranes and macromolecules.

If explants of a suitable size are readily available (e.g. sufficiently small

embryonic axes) or can be identified (e.g. meristems) or developed (e.g. somatic

embryos), then the various parameters necessary for successful cryostorage

used, need to be optimised. By this it is meant that the types of damage

described above must be counteracted by appropriate procedures, before they

can occur. Alternatively, if damage is inevitable then, as long as it is not lethal,

measures to ensure remediation, must be developed. It must be realised,

however, that notwithstanding optimisation of all known parameters, successful

cryopreservation cannot be predicted.

1.3.6.2 WATER IN SEEDS

In order to understand the mechanisms of desiccation-tolerance better, one has

to understand the nature of damage when water is removed from the cells of

plant tissues. Five types of water have been distinguished by authors such as

Rupley et al. (1983); Vertucci and Leopold, (1987); Vertucci (1990; 1993).

Type 1 water is described as very strongly structure-associated, Le. water which

primarily constitutes a mono-layer on proteins and other subcellular structures.

According to Vertucci and Roos (1990), type 1 water occurs at water potentials

less that -150 MPa or water contents less than about 0.08 g g-1 dmb (7% fmb). If

this water is removed, destabilisation of structures such as membranes,
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cytoskeletal elements and macromolecules could occur (Pammenter and Berjak,

1999). This is the reason type 1 water is also often called bound or non-freezable

water (Pammenter et al., 1991; Pritchard, 1991; Berjak et al., 1993; Pritchard and

Manger, 1998),: apparently the presence of this bound or non-freezable water

has been observed in all desiccation-tolerant plant tissues examined by Vertucci

and Leopold (1987), although, using sorption isotherms, those authors could not

ascertain the situation in desiccation-sensitive material at that stage. According

to Meryman and Williams (1985), more than 20% of total cell water may in fact

be termed non-freezable.

Type 2 water is known to be more weakly associated, and has glassy

characteristics. It is believed to interact with polar surfaces of macromolecules or

hydroxyl groups of solutes. Type 2 water is detected at water potentials between

-12 and -150 MPa or water contents of 0.25 and 0.08 g g-1 dmb (20%-7% fmb)

Type 3 water has been suggested to be that water which interacts with

hydrophobic groups. It is detected at water potentials between -4 and -11 MPa or

water contents between 0.45 and 0.25 g g-1 dmb (31 %-20% fmb). Type 4 water

is believed to be a concentrated solution or capillary water and is detected at

water potentials between -2 and -4 MPa, or water contents between 0.7 and 0.45

g g-
1
dmb (41 %-31 % fmb). Type 5 water, on the other hand, is dilute solution

water or 'bulk water' and is detected at water potentials greater than -2 MPa or

water contents ranging from 0.6 to 0.9 g g-1 dmb (38%-47% fmb).
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If dehydration is achieved rapidly, from axes excised from mature desiccation­

sensitive seeds of a variety of species, viability is generally maintained to water

contents in the range 0.45 - 0.28 g g-1 dmb (31 %-22% fmb). However, below this

water content, the water which is all structure-associated, not only becomes

more resistant to removal, but its removal is lethal. Vertucci and Farrant (1995)

have therefore suggested that many recalcitrant seeds can survive drying to

within the third level of hydration, but cannot however survive prolonged periods

at this level. Vertucci (1992) suggested that this is possibly because of the

unregulated catabolic activities that lead to the degradation of macromolecules

as well as the accumulation of toxins. In fact, various authors have suggested

that with the complete removal of type 3 water, associated membrane structural

changes occur (Crowe et al., 1987; 1992; Wolfe, 1987; Bryant and Wolfe, 1989;

1992; Steponkus and Webb, 1992b).

It seems that proportions of water of different types do not actually differ from

recalcitrant seeds to orthodox seeds, as previously suggested by Berjak et al.

(1989) and Vertucci (1990). Desiccation tolerance is rather suggested not to be a

result of the amount of structured water, but rather the ability of that seed type to

lose a considerable proportion of hydration water without damage (Vertucci and

Farrant, 1995).

Pammenter et al. (1991) concluded that while desiccation-tolerant seeds

naturally lose freezable water, desiccation-sensitive seeds can only lose this
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water when it is removed very rapidly. Thus, rapidly dried tissue can survive

when dried to lower water contents because the tissue spends insufficient time at

intermediate water contents (hydration levels 3 and 4) therefore not allowing time

for deleterious reactions to occur (see below).

1.3.6.3 DEHYDRATION (PRE-FREEZE STATUS)

The most critical step needed to achieve survival before freezing can be

implemented, is dehydration. Seven dehydration procedures have been identified

over the years, including encapsulation-dehydration; vitrification; encapsulation­

vitrification; desiccation; pre-growth; pre-growth desiccation and droplet freezing

(Engelmann, 1997). For the purposes of the present investigation, success was

attained using desiccation, thus the other more complex, dehydration regimes,

were not attempted.

Desiccation involves a simple procedure of removing water from the plant

material before freezing. Desiccation has been applied mainly to zygotic

embryonic axes of various species, including numerous tropical forest trees

(Normah and Marzalina, 1995) as well as to somatic embryos of several species

and to shoot tips of mulberry (Engelmann, 1997).

In many cases, zygotic embryos are potentially the easiest and most accessible

means of conserving seed germplasm where whole seeds cannot be used. On

excision from fresh recalcitrant seeds, the excised zygotic axes are highly

hydrated, and have to be desiccated to suitable water contents before freezing
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can be implemented. This is primarily to protect them from the damage caused

by the crystallization of intracellular water to ice (Meryman, 1966; Mazur, 1969;

1970; 1984). It has been stated that recalcitrant seeds undergo serious,

frequently lethal cellular damage when their water content is reduced below a so­

called 'critical' water content suggested to be species-specific pertaining to the

specific seed in question (Chin and Roberts, 1980; Engelmann, 1992; 1997).

However, many characteristics, some of them inherent, (e.g. the developmental

stage of the embryos at the time of harvest [Berjak et al., 1992; 1993]) and

others, experimental - particularly drying rate (see below), as illustrated by Berjak

et al. (1993) and Pammenter et al. (1998). For instance, mature coffee embryos

displayed a higher survival rate than immature ones (Abdelnour-Esquivel et al.,

1992).

Dehydration has frequently been carried out by placing embryonic axes of

recalcitrant and intermediate seeds, or small seeds themselves in a laminar-f1ow

cabinet, for example: for oil palm (Grout et al., 1983); coffee (Abdelnour-Esquivel

et al., 1992); black pepper (Chaudhury and Chandel, 1994); hazelnut (Gonzales­

Senito and Perez, 1994). Pritchard and Prendergast (1986) achieved

unorganised growth within the root meristem of embryos of Araucaria hunsteinii

after laminar airflow desiccation and cryopreservation. Normah et al. (1986)

indicated that 20-69% fmb (0.25-2.23 g g-1 dmb) of the embryonic axes of Hevea

brasiliensis could survive storage in liquid nitrogen after partial desiccation to

water contents of 14-20% fmb (0.16-0.25 g g-1 dmb) and developed into



CHAPTER 1 INTRODUCTION PAGE 30

complete plants. Among other authors who used laminar-airflow for the

dehydration of seed material were Chaudhury et al. (1991) and Chandel et al.

(1994) for Camellia sinensis; Assy-bah and Engelmann (1992) for mature axes of

Cocos nucifera; Gonzales-Benito and Perez-Ruiz (1992) for Quercus faginea;

Poulsen and Eriksen (1992) for Quercus robur and Chandel et al. (1994) for both

Theobroma cocao and Artocarpus heterophyllus. However, success in terms of

normal seedling development was not attained following cryopreservation in

several of these cases.

But, the more rapidly dehydration can be achieved, the greater the water loss

that the embryonic axes can withstand (Berjak et al., 1989; 1993; Pammenter et

al., 1998). Potential for germination after cryopreservation in liquid nitrogen at

-196°C of very rapidly dried axes is theoretically much higher, as long as

desiccation damage sensu stricto (Pammenter et al., 1998) has not occurred. In

the context of manipulation of axes for cryostorage, it must be stressed that the

advantage of very rapid dehydration lies, not in achieving maximum water

contents commensurate with viability retention, but in achieving the devised

water content as quickly as possible. The less time, desiccation-sensitive axes

are maintained in the water-stressed conditions imposed by dehydration prior to

freezing, the shorter the period during which metabolism-related, particularly

lethal, damage can occur (Pammenter et al., 1998) According to those authors

one of the most serious consequences of metabolism-related damage, is free

radical generation, which given adequate time, would be lethal. There is little
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doubt that the type, and the degree, of stress-related damage inflicted on the

specimen before, and during, the actual freezing processes will determine the

ultimate vigour and viability of that specimen: metabolism-related damage during

dehydration is considered to be a major consideration. The present work focuses

on the critical importance of the parameter relating to the desiccation of zygotic

axes in the establishment of freezing protocols (see Chapters 2 and 3).

More rapid drying techniques such as placing axes in airtight containers with

silica-gel (Engelmann, 1997), and another, termed flash-drying, has been

developed (Berjak et al., 1990). Flash-drying involves placing excised axes in a

stream of compressed air. The theory behind flash-drying is that it facilitates

greater retention of viability with minimal trauma, as the time to attain suitable

water contents is curtailed (Berjak et al., 1990; Pammenter et al., 1991 ).

Dehydration has been shown to be reduced to that of the level of structure­

associated, non-freezable water in a matter of approximately 15 min to 3 h,

depending on the species, size and initial water content of the axis and its

developmental status (e.g. Pammenter et al., 1991; Berjak et al., 1992; 1993). It

has been shown that excised embryonic axes of desiccation-sensitive seeds can

withstand considerable dehydration if flash-dried (Berjak et al., 1990; 1992; 1993;

Pammenter et al., 1991; Vertucci et al., 1991) thus making the cryopreservation

of such dried axes a possibility (Wesley-Smith et al., 1992).
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In recent studies on Ekebergia capensis (Pammenter et al., 1998), the data

confirmed that the seeds showed a response to the drying rate itself. In fact, axes

from rapidly dried seeds showed little sign of intracellular damage, unlike the

excessive degradation that took place in the axes of slowly dried seeds.

Wesley-Smith (1999) has improved on the original flash-drying apparatus, thus

achieving increased dehydration rates. This technique, described as fast flash­

drying is described in relation to the relevant experiments in chapters 2 and 3.

Because of the faster dehydration rate, fast-flash drying should go further to

obviate the metabolism-related damaging reactions that result in viability loss at

relatively high water contents when dehydration proceeds sloWly (Pammenter et

a/., 1991; 1998; Berjak and Pammenter, 1997 and Pritchard and Manger, 1998).

It is also important to note that the rate at which desiccation-sensitive seeds/axes

lose water and the proportional amount of water lost before lethal damage

occurs, is species-dependent. No matter how rapidly desiccation-sensitive seed

tissue is dried, the 'critical' or lowest water content to which it will still be viable

will always be higher than the 'critical' water contents of desiccation-tolerant seed

tissue (Pammenter and Berjak, 1999). However, the objective of flash-drying or

fast flash-drying in the context of cryopreservation, is to attain damage-free

dehydration to the highest water content allowing successful cooling/freezing,

and not the lowest.
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1.3.6.4 CRYOPROTECTION

A further consideration in cryostorage studies is whether or not to use

cryoprotectants [e.g. sorbitol, mannitol, proline, glycerol, sucrose, dimethyl

sulphoxide (DMSO), methanol, polyethylene glycol or combinations thereof

(Withers, 1985a; Engelmann, 1997)). Cryoprotectants, which themselves may

effect considerable dehydration, are used as a form of protection for biological

material before drying and eventual immersion into liquid nitrogen. The theory

behind the use of cryoprotectants is basically to increase the concentration of the

cytoplasm and reduce the amount of ice formed at any given temperature

(Meryman and Williams, 1985). The nature and the timing of cryoprotectant

application can be critical to the survival of the biological material in question.

Thus, cryoprotection can be advantageous as it can prevent water from freezing

in the form of crystalline ice. Some non-cytotoxic cryoprotectants may rapidly

penetrate cells, and act as solvents for electrolytes (Meryman, 1966). For

example, pre-treatment with high concentrations of sucrose has been used to

promote desiccation and/or freezing tolerance of some zygotic and somatic

embryos, as reported by Monier and Leddet (1978), Engelmann (1986),

Anandarajah and McKersie (1990), Assay-Bah and Engelmann (1992), Dumet et

al. (1993b), and Thierry et al. (1997). Cryoprotectants are al.so thought to be

beneficial in the stabilisation of membranes and macromolecules through various

mechanisms, for instance free radical scavenging (Benson and Withers, 1987;

Benson, 1988).
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However, use of cryoprotectants may also lead to complications, as the more

parameters involved in a procedure, the more complicated and variable

conservation of seed germplasm will be in terms of stress and injury to the

specimen. Furthermore, cryoprotectant pre-treatment may actually be injurious:

for example. cytotoxicity. dehydration injury and mechanical injury during the

freezing and thawing steps have been ascribed to such procedures (Kartha,

1985; Engelmann, 1991; Steponkus et al., 1992a). There is evidence, for

instance, of DMSO interfering with microfibrils, microtubules and the cell division

process (Withers, 1987).

1.3.6.5 FREEZING

According to Withers (1980; 1982; 1985a), however, cryopreserved material is

presumed to remain genetically stable, thus minimising genotypic changes that

occur during conservation by the use of standard techniques,. including tissue

culture manipulations. This is of vital importance in germplasm storage as the

primary aim is to conserve the pre-existing genotype (Mycock et ai, 1989). A

limited assessment of genetic stability in plants has been done (Engelmann,

1997). While studies indicating maintenance of genetic stability have been

carried out for long-stored in vitro shoot cultures (of Cassava [CATIE-IPGRI,

1997], none appears to date to have been undertaken as cryostored material. It

is a priori requirement that for cryopreservation to be of any value for the long­

term conservation of genetic material, the genetic stability of the regenerating

plants after cryopreservation must be identical to the initial starting material.
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Related studies focussing on this vital aspect of the procedure are ongoing in our

laboratory, although they are not a feature of the present work.

1.3.6.5.1 CLASSICAL CRYOPRESERVATION TECHNIQUES

Cryopreservation is generally understood as storage between -79 and -196°C

(-196°C being the temperature of liquid nitrogen). The rate of cooling (more

usually termed freezing), however, may have significant implications for the

success/failure of survival (Engelmann, 1997). The two rates of freezing

discussed under this heading include the classical slow and rapid cooling. Slow

cooling was thought to be the most effective in preventing ice formation and

cellular injury (Kartha, 1987).

Slow cooling involves regulated cooling at a constant rate of 0.5 to 2°C min-1 to

temperatures between -30 to -40°C, using programmable freezing devices which

achieve precise freezing conditions followed by transfer of the specimens to

liquid nitrogen (Withers, 1985b; Kartha, 1987). However, success has been

reported by several authors who achieved slow cooling using deep-freezers

(Lecouteux et al., 1991; Sakai et al., 1991; Nishizawa et a/., 1992; Engelmann et

al., 1994; Tessereau et al., 1994; Engelmann, 1997). During the slow cooling

process, the plasmalemma/plasma membrane appears to act as a physical

barrier preventing the ice from seeding the cell interior, which as a result,

becomes supercooled, remaining unfrozen.
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As the temperature is further decreased, an increasing amount of cell water is

drawn out to the extracellular ice nucleation centres, resulting in the

concentration of intracellular solutes (Merryman et al., 1977). This process has

been suggested to occur in a variety of plants (Burke et al., 1976). Success with

this slow cooling has been revealed for a number of tropical forest tree species

(Chai et al., 1994; Normah and Marzalina, 1995). However, according to

Krishnapillay (1989), major damage is likely to occur on slow cooling as a result

of osmotic cell dehydration causing cell shrinkage and toxic concentrations of

intracellular solutes.

Rapid cooling (also known as classical cooling), on the other hand, is

accomplished when axis material enclosed in cryotubes, is plunged directly into

liquid nitrogen, at cooling rates of several hundred degrees per minute (Kartha,

1987). It has been assumed that the intracellular fluids do not have time to

equilibriate with the external ice, and lethal intracellular ice formation occurs. It

has also been suggested by Kartha (1987) and Grout (1990) that the rapidity with

which the cells go through the temperature zone in which lethal ice formation

occurs may in fact prevent intracellular ice crystal development both during

cooling and thawing, as long as this is carried out sufficiently rapidly. According

to Steponkus et al. (1992a) and Sakai (1995), rapid cooling, which they suggest

involves vitrification-based procedures, offers more practical advantages than

classical slow cooling, since a programmable freezer is not required.
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Vitrification is defined as the formation of a glassy, non-crystalline, highly viscous

metastable state: for this to be achieved, direct plunging into liquid nitrogen

would be better than slow cooling. It is suggested that such vitrification

technology would be advantageous for more complex organs such as

apices/embryos which contain a variety of cell types (Withers and Engelmann,

1997). This rapid cooling regime was also demonstrated by Kartha in 1981 to be

successful for cryopreservation of shoot-tips of a few species. Langis et al.

(1989) successfully vitrified cell suspension cultures of Brassica, while in 1990,

Langis and Steponkus reported success with rye protoplasts. Mycock et al.

(1991) managed to conserve hydrated embryonic axes of Pisum sativum again

using this rapid cooling technique.

In terms of relative success, the type of rapid cooling, described above is not

necessarily the optimal or most rapid approach to freezing axis material. The

cryotube can impede efficient heat transfer, and liquid nitrogen itself is not the

best of cryogens for rapid cooling (Wesley-Smith et al., 1999).

1.3.6.5.2 ULTRA-RAPID COOLING

Wesley-Smith et al. (1992) investigated the possibility that the principles used in

cryo-electron microscopy might be used to minimize freeze-related damage and

enhance viability retention in cryostored embryonic axes of Camellia sinensis.

These principles embody the theory that only at sufficiently high rates of freezing,

can the formation of crystalline ice be avoided, allowing the intracellular solution

to become vitrified. Under such conditions, if any ice crystals formed, they should
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be sufficiently small to preclude physical intracellular damage. If vitrification can

be achieved, this should be the optimal situation favouring survival.

Extension of the 1992 investigations of Wesley-Smith et al. resulted in the design

of the cryopreservation of embryonic axes at ultra-rapid cooling rates, equipment,

and use of alternate cryogens, Wesley-Smith et al. (1999). For optimal ultra-rapid

cooling, it is essential to reduce the latent heat and thermal mass of the material

to achieve higher cooling rates. Ultra-rapid cooling widens the range of water

contents for successful cryopreservation, such that axes no longer need to be

dehydrated to levels near the limit of desiccation tolerance (Wesley-Smith et al.,

1999).

It was suggested by Wesley-Smith et al. (1995; 1999), that even though liquid

nitrogen is a good cryogen, it is a poor acceptor of heat, thus a secondary

cryogen was needed. The safest, easiest and most non-toxic secondary cryogen

currently used for ultra-rapid cooling of embryonic axes is iso-pentane (Wesley­

Smith et al" 1999).

This ultra-rapid cooling, freezing or rapid entry of the axes into iso-pentane

contained within a reservoir of liquid nitrogen itself, should therefore aid in the

heat exchange process. In addition, sub-cooling the secondary cryogen (iso­

pentane) prevents the formation of a gaseous envelope around the specimen
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that would otherwise reduce the freezing rate (Wesley-Smith et al., 1995). This

will be fully discussed in Chapters 3 and 4.

1.3.6.6 THAWING AND POST-THAW RECOVERY

In all cases, thawing must be carried out rapidly to avoid ice re-crystallisation

damage. Ice re-crystallisation could occur on slowly warming the intracellular

water above the re-crystallisation point where minute crystals start to melt and re­

freeze, resulting in larger ice-crystal formation. Depending on the size of the ice­

crystals, lethal damage could result (Farrant, 1980). Therefore, according to that

author, rapid warming of cells and tissues affords better survival potential than

slow warming. A number of rapid warming protocols have been used. For

instance, Meryman and Williams (1985) suggested that cells could be rapidly

thawed by microwave heating, Wesley-Smith (1999) suggested warming ultra­

rapid cooled specimens in distilled water at 35-40°C. Whatever the thawing

procedure, once newly thawed, the specimen is very vulnerable.

According to Benson (1995), the storage in, and recovery of plant cells and

tissues from, ultra-Iow temperatures could potentially lead to: loss of structural

integrity; cell wall damage; organelle damage; membrane damage; disruptions in

metabolism; disruptions in cellular communications (signalling); loss of

regenerative capability and disruption of genetic processes. Unfortunately, all

these different levels of injury are interrelated. For instance, structural damage

can lead to disruptions in membrane/cell wall-dependent communications, which

in turn would impair the cell signalling events that regulate genome expression.
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For these reasons, studies on the structural/metabolic situation and genetic

integrity are very important in evaluating cryopreservation and its use as a tool to

conserve plant genetic resources.

1.3.6,6.1 In Vitro RECOVERY

The formulation of germination media for the successful recovery of any

cryopreserved material via in vitro culture procedures is a major consideration. In

order for isolated plant tissues to grow successfully in vitro, the explant must be

provided with all the essential macro- and micronutrients, a carbohydrate source,

amino acids, vitamins and growth regulators. However, success is often elusive.

In some cases, composition of the recovery media have encouraged abnormal

development patterns, such as the non-development of the haustorium in the

case of Howea and Veitchia (Chin et al., 1988); or callusing and/or incomplete

development with Hevea (Normah et al., 1986), Castanea and Quercus (Pence,

1990), and oil palm (Engelmann et al., 1995). All parameters vary considerably

on a species-basis and the outcome of their combined usage is unpredictable.

In summary, freezing may involve damage from either dehydration or ice

formation or both. Thawing and recovery will ultimately reveal either the

achievement of producing organised plant structures such as roots and shoots or

damage such as deplasmolysis (Le. expansion-induced injury to cells on

thawing) (Withers, 1987). Another point is that the cellular heterogeneity in plant

tissues and organs, hinders the optimisation of a specific cryopreservation

strategy for all explant types and species.
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Some cryopreservation procedures have been successful. Procedures have

been developed for explants of about 100 different species cultured in various

different ways, including: cell suspensions, calluses, apices, zygotic and somatic

embryos (Withers, 1982; Kartha and Engelmann, 1994; Engelmann et al., 1995;

Withers and Engelmann, 1997). Ideally, routine application should be

implemented for all of these, as has been done for oil palm, where 80 clones of

somatic embryos are stored in liquid nitrogen and samples thawed upon request

for plant production (Dumet, 1997).

1.4 THE PRESENT INVESTIGATION

The present investigation therefore aims at: optimising on culture media for the

growth of Q. robur and E. capensis zygotic axes; manipulating drying and

freezing/cooling rates; as well as optimising recovery on different thawing media

with the objective of minimising structural damage as much as possible. The

main idea was therefore to gain success in the long-term storage (cryostorage) of

these two recalcitrant-type species.



CHAPTER 2: MATERIALS AND METHODS

2.1 ESTABLISHMENT OF GERMINATION AND CULTURE PROTOCOLS FOR
Quercus rabur AND Ekebergia capensis WHOLE SEEDS AND ZYGOTIC
AXES

The way a plant grows and develops, whether from a whole seed or a zygotic

embryo (in this case), results from complicated interactions among three levels of

control - the intracellular level, the intercellular level and the environmentalleve!.

Control over growth and development of the organism occurs at the intracellular

level by the production of hormones and other substances that are transported

between plant tissues (Le. intercellular level). The environmental level involves

the control and development of that organism by factors such as direction or

intensity of light, amount of moisture, acidity of rain, extremes in temperature,

availability of minerals from the soil, etc. Basically the environment plays a critical

role in moulding plant growth and development (Brum and McKane, 1989).

The outcome of cryopreservation depends on factors at three levels of control of

growth and development. These include the habitat of the parent plant; the time

of seed harvest relative to full pre-shedding development (physiological age); the

initial water content; initial germination rate and totality (Le. vigour and viability);

as well as the size and ultrastructural characteristics of the structure(s) to be

cryopreserved.
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Other critical factors contributing to ultimate success include harvesting and

transport of the seeds, and equally importantly, seed health. Once recalcitrant

seeds have been hand-harvested (preferably off the parent plant or at least very

soon after shedding), preparation of the material for eventual cryopreservation

should be immediate to prevent dehydration, fungal infection and proliferation,

and to obviate the deteriorative changes which inevitably accompany hydrated

storage (Pammenter et al., 1994; Smith and Berjak, 1995). These ideals may not

always be achievable, however, as was the case for Q. robur in the present

study. Those Q. robur seeds transported from overseas (see below), were not

only consigned in large batches, but were also immature upon receipt; they were

germinable, but did not, however, develop into seedlings (see Chapter 3). To

achieve post-harvest maturation, these seeds were cold-stored (6 ± 2°C)

hydrated and intact. Ultimately, it is preferable to hand-harvest (more) mature

seeds, but this is not always possible partly because of reliance on other

collectors, and as problems are posed by birds, mammals and insects making

early harvesting desirable. Fruits of Ekebergia capensis, the other species used

for the present study, could be harvested once mature, as trees grow in close

proximity to the University of Natal, in Durban, and therefore could be monitored

frequently.

2.1.1 PROVENANCES AND INITIAL TREATMENT OF MATERIAL

2.1.1.1 Quercus rabur

Acorns were translocated under moisture retaining conditions from a number of

provenances, namely: the United Kingdom1
; Humlebaek, Denmark as well as
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locations in South Africa: Stellenbosch2
; Grahamstown3

; and in KwaZulu Natal

from Underberg and Himeville. After transportation by air (under controlled

temperature and pressure conditions from abroad) or road, acorns were kept

intact for varying periods at 6 ± 2°C in open mesh bags, raised on a grid, (Finch­

Savage, pers. comm. 1). The acorns were periodically sprayed with a liquid form

of the fungicide, Previcur N® (propamocarb - HCI - 722 g r1) [AgrEvo S. A. (Pty)

Ltd]. Axis water contents were determined gravimetrically to constant mass after

drying at 90°C (17-24 h). All water contents were expressed on a dry mass basis

[gram of water per gram of dry mass (g g-1)].

Fresh seeds or those seeds sampled from storage were set out in moistened

vermiculite under greenhouse conditions. Twenty seeds were used per

germination trial. Before planting out, the pericarp and testa was removed from

each seed, after which the seeds were soaked in tap water overnight. The next

day all the seeds were cut transversely, the distal halves of the cotyledons were

planted out into moistened vermiculite with distal ends facing upwards and cut

ends facing downwards (Finch-Savage, pers comm1.). Germination was

monitored daily.

1 W. E. Finch Savage, Horticulture Research Wellesborne, Warwick CV35 9 EF U. K.

2 Vorster, Department of Botany, Stellenbosch University, Stellenbosch, S. A.

3 B. Ripley, Department of Botany, Rhodes University, Grahamstown, S. A.
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2.1.1.2 Ekebergia capensis

Deep-red, ripe fruits were hand-harvested from local trees. Upon arrival to the

laboratory, a batch of twenty seeds (per germination trial) was removed from the

fruits, and after the testa was removed from each seed to expose the cotyledons,

they were soaked overnight in tap water. The next day, these seeds were set out

on filter paper moistened with a 1 g 1'1 (m/v) MS solution. Germination was

assessed daily.

2.1.2 SEED GERMINATION PERFORMANCE AND INITIAL WATER CONTENTS

Prior to experimentation, seed germination performance and initial water

contents of Q. robur and E. capensis embryonic axes were assessed to ascertain

the maturity status of several surface-sterilant treatments and media on which to

grow Q. robur and E. capensis embryonic axes, were then tested. Percentage

survival and growth rates (the rate of root elongation and rate of shoot

production) were measured at constant intervals.

2.1.3 GERMINATION ASSESSMENT

Radicle protrusion and intensified shoot greening leading to the production of

leaves were used as the criteria for germination and the ability for seedling

production in the case of both whole seeds and embryonic axes, of both Q. robur

and E. capensis.
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2.1.4 MANIPULATION OF EMBRYONIC AXES

Prior to any manipulation, embryonic axes of Q. robur and E. capensis

(approximately 3 and 2 mm, respectively) were excised, placed onto moist filter

paper within Petri dishes and covered to prevent drying, until the required

number had been excised.

2.1.5 ESTABLISHMENT OF THE MOST SUITABLE SURFACE-STERILANT

Different surface-sterilants were tested to ascertain the most effective and least

injurious procedure to remove fungal propagules from the embryonic axes.

The surface-sterilants used were 1% (v/v) sodium hypochlorite containing a

wetting agent, 1 g r1 (m/v) mercuric chloride (Chmielarz, 1997) and a step-wise

combination of 70% (vlv) alcohol, 6% (v/v) calcium hypochlorite, 5% (v/v) sodium

hypochlorite (Poulsen, 1992).

2.1.5.1 SODIUM HYPOCHLORITE, 1%

Embryonic axes were submerged in a 1% (v/v) sodium hypochlorite solution

containing Tween-20 (1 drop) for 10 min, atter which the axes were briefly rinsed

three times in sterile distilled water under sterile laminar-f1ow conditions.

2.1.5.2 MERCURIC CHLORIDE, 0.1 % (Chmielarz, 1997)

Embryonic axes were surface-sterilised using 1 g r1 (m/v) mercuric chloride for

2.5 min, and then rinsed four times in sterile distilled water under sterile laminar­

flow conditions.
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2.1.5.3 COMBINATION SURFACE-STERILISATION - (used only for Q. robut) (Poulsen,
1992)

For this method, acorns were briefly soaked in 70% (v/v) alcohol, after which the

pericarps were removed. Whole acorns (minus the pericarps) were then

swabbed with 70% (v/v) alcohol, and then, under a laminar airflow, soaked in 6%

(v/v) calcium hypochlorite for 15 min followed by three washes in sterile distilled

water. Embryonic axes were then excised, and immediately plunged into a filter­

sterilised solution of anti-oxidant [10 mg r1 (m/v) ascorbic acid and 5 mg r1 (m/v)

citric acid]. Axes were then sterilised in 5% (v/v) sodium hypochlorite for 3 min,

and washed three times in sterile distilled water and finally soaked for

approximately 30 min in the ascorbic acid/citric acid anti-oxidant solution.

2.1.6 ESTABLISHMENT OF THE OPTIMAL in vitro CULTURE MEDIA FOR Q. robur

To determine the optimal medium for Q. robur embryonic axes, a number of

media were tried. We have found from embryonic axis propagation, different

strengths of Murashige and Skoog (1962) medium (MS) produce good, but

varying results depending on the species. Thus, initially, embryonic axes were

plated out horizontally on full-, half- and quarter-strength MS media. All media

were supplemented with 30 g r1 (m/v) sucrose and solidified 10 g r1 (m/v) agar.

In addition, a half-strength MS medium supplemented with 0.1 mg r1 (m/v) NAA

and 2 mg r1
(m/v) BA and containing 30 g r1 (m/v) sucrose and 10 g r1 (m/v) agar

has been previously successful for a number of species in our laboratory, and

was therefore considered for Q. robur. Furthermore, a medium employed by

Chmielarz (1997) specifically for Q. robur was also used. This consisted of the
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macronutrient formulation of Quoirin and Lepoivre (1977), MS micronutrients and

vitamins (Murashige and Skoog, 1962) and 1 mg r1 (m/v) BA, 0.25 mg r1 (m/v)

zeatin, 30 9 r1 (m/v) sucrose and 6 9 r1 (m/v) agar. Propagation of Q. robufaxes

was also carried out on Woody Plant Medium (WPM) (Smith and McCown,

1982/83) supplemented with the hormones NAA (0.01 mg r1
) and BA (0.3 mg r\

and containing 5 9 r1 (m/v) polyvinylpyrrolidone (PVP), to reduce tissue browning

(Poulsen, 1992). The seventh medium assessed, again because it had

previously been used for Q. robUf, was that described by Vieitez and Vieitez

(1983) consisting of 6 9 r1 (m/v) agar, 30 9 r1 (m/v) sucrose and 1 mg r1 (m/v)

BA.

The pH of all media was adjusted to 5.6-5.8 prior to autoclaving for 30 min in a

TOMY autoclave (temperature =120-125 °C, pressure =1.0-1.5 kg cm-2).

Four hundred and twenty axes were excised: 140 of which were surface­

sterilised with 1% (v/v) sodium hypochlorite, a further 140 with 1 9 r1 mercuric

chloride (Chmielarz, 1997), and the remaining 140 with the 'combination surface­

sterilisation' procedure of Poulsen (1992). Twenty axes from each different

surface-sterilisation procedure were plated out on each of the seven media

described above. All cultures were then incubated at 26 ± 2°C in 16/8 hour

lighUdark photoperiod (200 J.lE· m-2 S-1).
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2.1.7 ESTABLISHMENT OF THE OPTIMAL in vitro CULTURE MEDIA FOR E. capensls

After surface-sterilisation, E. capensis embryonic axes were cultured horizontally

on full-, half- and quarter-strength MS (Murashige and Skoog, 1962) media, as

well as on half-strength MS medium supplemented with 0.1 mg 1"1 (m/v) NAA and

2 mg 1"1 (m/v) BA and containing 30 g 1"1 (m/v) sucrose and 10 g 1"1 (m/v) agar.

Parameters such as pH and culture conditions were as described for Q. robur.

2.1.8 HARDENING-CFF AND ACCLIMATISATION OF ALL PLANTLETS

After 30 d for Q. robur and 15 d for E. capensis axes in vitro, all plantlets were

transferred to hydrated Peat Moss (Jiffy-7 peat pellet, Hummert International

Catalogue, 1997) that had been sterilised in closed, Magenta™ boxes (Sigma);

and watered at weekly intervals with sterile distilled water using a sterile Pasteur

pipette.

These Jiffy-7 peat pellets (approximately 7 mm in height when dry) are encased

with a thin netting. The pellets consist of compressed peat with N, P and K plus

minor nutrients such as B, Cu, Fe, Mn, Mo, Mg, S, Ca and Zn. After hydrating in

sterile distilled water for approximately 10 min, each pellet swells to 35 mm in

height. The pH averages from 5.5 to 5.8. Seedlings planted directly into these

hydrated pellets were incubated at 26 ± 2°C in 16/8 hour IighUdark photoperiod

(200 /lE m-2 S-1).
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After seedlings reached the full height of the Magenta™ boxes (Sigma)1, the

entire Jiffy 'pot' was transferred to a small conventional plastic plant pot

containing sterile soil. Once planted, a polyethylene bag was placed over

individual seedlings and taped to the base of the pot. The covered pots were

placed in the greenhouse for 7 d, after which, the polyethylene bags were

pierced (using a lighted cigarette) to start the process of equilibriation of the

atmosphere in the bag, with the ambient atmosphere. Bags were increasingly

perforated until their removal after three months.

2.2 THE EFFECTS OF DIFFERENTIAL DRYING RATES ON THE VIABILITY
OF Quercus rabur AND Ekebergia capensis EMBRYONIC AXES

The long-term storage of desiccation-sensitive seed germplasm is not

straightforward and cryostorage offers the only means of conservation. However,

because of their high water contents, the embryonic axes of recalcitrant seeds

must be subjected to certain pre-treatments such as dehydration to prevent any

ice-crystal formation during cryostorage (see Chapter 1). In this study, embryonic

axes of both species were subjected to rigorous desiccation pre-treatments to

prepare them for the ultimate stress of cryostorage.

The aim of these trials was to determine an optimal drying rate that would reduce

the water contents of embryonic axes of Q. robur and E. capensis without

1 As the hydrated 'pots' swelled to an almost similar diammeter as the culture vessels, their
removal for subsequent planting was very difficult. Consequently, smaller pellets (Jiffy-g) have
been used.
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microbes (Ketchum, 1988).

affecting the vigour and viability of these specimens. All drying experiments took

place at ambient temperature.

2.2.1 DRYING METHODS USED

2.2.1.1 LAMINAR AIRFLOW DRYING

This drying method is considered a relatively slow procedure which is

implemented by placing embryonic axes onto sterilised aluminium foil trays and

allowing the laminar (sterile) air to flow over the specimens, which are turned

frequently to promote uniform drying (this has the disadvantage that the axes

may well be bruised or even perforated during turning). The laminar-flow hood is

designed so that a curtain of filter-sterilised air continually covers the front

opening, which should prevent contaminants from entering. The air in the curtain

is re-circulated through filters, which remove particulate material, including

I

2.2.1.2 SILICA-GEL DRYING

This method is considered faster than laminar airflow drying, and is implemented

by placing a mono-layer of 30 embryonic axes onto sterile filter paper supported

on 100 g of sterilised activated silica-gel within 100 g flint ointment jars (Lasec)

enclosed with polycarbonate lids (National Botanic Gardens, Kirstenbosch).

2.2.1.3 FLASH-DRYING

This method was developed by Berjak et al. (1989), and is considered faster than

silica-gel drying. This technique involves the enclosure within a small plastic



CHAPTER 2 MATERIALS AND METHODS PAGE 52

container (120 mm x 95 mm), of embryonic axes upon a mesh under which a

rapidly-flowing air stream (± 9-10 I min-1
) is introduced from a compressed air

source. The air-stream is diffused from below the axes and vented from the

container through small holes in the lid. The principle of flash-drying is to reduce

axis hydration to any level down to that of the structure associated, non-freezable

water in a matter of 15 min to 3 h, depending on the species, and developmental

status, size and initial water content of the axes.

2.2.1.4 FAST FLASH-DRYING

This method is essentially a combination of the silica-gel method and the flash-

drying technique of Berjak et al. (1989), and affords the most rapid method of

dehydration (Wesley-Smith et a/., 1999). The apparatus utilises a 12V PC fan

fitted to the inside of the lid of a closed 1800 ml container, in which the axes are

elevated on a grid above a measured quantity of activated silica-gel (Wesley­

Smith et a/., 1999). The principle is that the fan removes water from the

specimens, and is absorbed by the silica-gel. Batches of 60 axes were subjected

to fast flash-drying for varying periods.

2.3 CRYOPRESERVATION AND POST-THAW RECOVERY OF Q. roburAND
E. capensis EMBRYONIC AXES

Cryopreservation has been shown to be the most effective method of conserving

germplasm (Haskins and Kartha, 1980) and is probably the only way to preserve

recalcitrant seed germplasm viz. zygotic embryonic axes, or other explants. One
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has to be circumspect, however, after all, cryopreservation of axes is literally in

its earlier phase of development.

Liquid nitrogen is most commonly used to achieve cryopreservation, the major

advantage being the extremely low temperature (-196Q C) which should halt all

metabolic processes and retard metabolism-related deterioration to

immeasurably low levels. However, to achieve successful cryopreservation

involves further optimisation of variables, including cooling (freezing) rate.

Although it is an over-simplification, rates can be broadly described as slow,

intermediate, rapid or ultra-rapid.

Thus, in this phase of the investigation, freshly excised embryonic axes of Q.

robur and E. capensis, fast flash-dried to various water contents, were used to

determine the effects of different freezing rates on viability.

2.3.1 PREPARATION OF EMBRYOS FOR COOLING/FREEZING

After surface-sterilisation in 1% (v/v) sodium hypochlorite for 10 min and rinsing

in distilled water, fast flash-drying was implemented for various time intervals to

dehydrate the specimens to various water contents.

2.3.1.1 CONVENTIONAL COOLING

Quercus robur axes were dried and slow cooled by reducing temperatures at a

constant rate of 1QC min-1 to -3aQC, using the subambient head of a Perkin-
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Elmer 7 differential scanning calorimeter (DSC), and placed in this state in liquid

nitrogen (Poulsen, 1992) or cooled at 2°C min-1 to DOC, then at 1°C min-1 to

-2DoC, using the DSC and introduced into liquid nitrogen (in 1.8 ml sterile plastic

cryovials) (Chmielarz, 1997).

In addition, a more rapid method of cooling (intermediate rate) was used. This

involved placing already dried batches of 5 axes into 1.8 ml cryovials which were

then plunged directly into liquid nitrogen achieving cooling rates of several

hundred degrees per minute (Kartha, 1987). The specimens were kept in liquid

nitrogen for 48 h.

The cryovials containing frozen specimens were ultimately rapidly transferred to

a water bath at 4DoC where they were maintained for 2 min to effect thawing of

the embryonic axes. Success was scored by onwards growth of axes to the

seedling stage, in vitro (see 2.1.6 and 2.1.7).

2.3.1.2 ULTRA-RAPID COOLING

The principle behind this approach to cryopreservation is to maximise the rate of

heat loss from the specimen to a cryogen (in this case isopentane) in order to

minimise ice-crystal growth. Fast flash-drying (see 2.2.1.4) was first implemented

to lower axis water content and in so doing, reducing the thermal mass of the

material, which consequently facilitates faster' cooling rates (Wesley-Smith et al.,

1999). Specimens were then individually plunged into the cryogen, isopentane,
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which was cooled in liquid nitrogen, to just above its freezing point (-160°C),

which maximises the thermal gradient between axis and cryogen. This optimally

cooled isopentane bath was raised to the mouth of the liquid nitrogen flask to

prevent harmful pre-chilling of the axes while travelling through cold gas layers.

The wooden rod bearing an individual axis terminally, was poised approximately

10 mm above the cryogen and the specimen was immediately plunged into the

isopent~ne to an average plunging distance of 145 mm. Axes were then retrieved

directly from a stainless steel mesh basket held in liquid nitrogen for ± 1 h to

standardise the final storage temperature of all treatments at -196°C prior to

thawing. Warming was performed by rapidly plunging the specimens to a depth

of 150 mm in a deep beaker of sterile distilled water at 35-40°C (Wesley-Smith et

al. 1 1999). Axes were retrieved immediately, placed onto filter paper to remove

the surface water, and then plated onto the appropriate germination medium (see

2.1.6 and 2.1.7).

2.3.2 OTHER THAWING MEDIA

Other th~gmedia used were: a 50:50 solution of 1JlM CaCb. 2 H20 and 1 mM

MgCI2. 6 H20 (Mycock, 1999); full-strength MS medium, supplemented with

4 g r1
sucrose at 37°C for 30 min on a rotary shaker at 120 rpm; sucrose ('I' -2

Mpa) and mannitol ('I' -2 Mpa).

2.3.3 ELECTROLYTE LEAKAGE

A study was undertaken to compare the effect of distilled water and the Ca2+Mg2+

solution after axes were dried, frozen and thawed in the two media.
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Measurements of conductivity of the leachate, were done to indicate the quality

of each embryonic axis, and was performed on 20 individual axes for each

treatment (distilled water and Ca2+Mg2+ solution, respectively), each in 1 ml

distilled water, using a CM 100 conductivity meter (Reid and Associates, Durban,

S. A.) Electrolyte leakage was recorded over 6 h at 5 min intervals.

2.3.4 SPECIMEN PREPARATION FOR TRANSMISSION ELECTRON MICROSCOPY (TEM)

Specimens (root and shoot apices separately) were trimmed to ± 1 x 1 x 1 mm

and placed into 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer (pH 7.2)

overnight. Specimens were then washed in a 0.1 M phosphate buffer (pH 7.2) (3

x 5 min), post-fixed in 0.5% (m/v) osmium tetroxide for 1 h, and washed again in

phosphate buffer (3 x 5 min). SUbsequent dehydration of the specimens was

carried out in a graded series of acetone [30%, 50%, 75% and 100% (v/v)]. The

100% (v/v) acetone was then replaced with a 1:1 mixture of epoxy resin:acetone

and left for 4 h in a turn-table at room temperature, after which the material was

immersed in full resin overnight at room temperature for infiltration.

Polymerisation of individual specimens in fresh resin in silicone wells was carried

out in a 70D C oven for 10 h.

2.3.5 MICROTOMY AND MICROSCOPY

Embedded specimens were sectioned using a Reichert-Jung Ultracut E

microtome, post-stained with lead (for TEM) or toludine blue solution (pH 9.6)

and viewed using both the Jeol JEM 1010 transmission electron microscope and
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the Nikon Biophot light microscope. Images were recorded photographically on

Kodak TEM film or Pan-F 35 mm film for light microscopy.

2.3.6 DATA ANALYSIS

Data were analysed using a number of techniques. Where appropriate,

Univariate Multifactorial Analysis of Variance (ANOVA) (SPSS, version 9, 1998)

and Scheffe's test at 95% confidence test interval and multiple range test

(Statsgraphics Plus version 7) as well as descriptive statistics in Microsoft Excel

(1997) were used.



CHAPTER 3: RESULTS AND DISCUSSION, Quercus robur

Quercus robur L. (Fagaceae), is commonly known as the English Oak, even

though its natural habitat includes not only Europe but also northern and western

Africa and western Asia. Quercus robur, also called the pedunculate oak, is one

of the most economically important deciduous forest-tree species producing

recalcitrant seeds. The seeds called acorns, are borne singly or in clusters on a

20 to 50 mm peduncle. These ± 65 x 35 mm brown propagules are actually

simple fruits, each developed from an individual ovary. The outer brown layer of

the structure is the dry pericarp, the inner brown layer is the testa and the cup­

shaped involucre covers the basal third of each acorn. The two massive

cotyledons (about 98-99% of the seed consists of the cotyledons) enclose the

small embryonic axis, which, in the average-sized acorn, is about 3 mm x 1.5 mm

(Pence, 1990 and Gracan, 1998).

It has been recorded that Q. robur seeds can be cold-stored for up to 2-3 years

(Chin and Roberts, 1980). However, our observations (unpublished) are that the

quality declines more or less rapidly depending on the initial condition,

particularly as the seeds appear invariably to harbour an active, internal

mycoflora. It is therefore necessary to conserve the germplasm of this

economically-important species by means other than seed storage. The most

obvious way to achieve this, is by cryopreservation of the zygotic embryonic

axes. Until recently, Q. robur axis cryopreservation, with the outcome of

successful seedling production, has been seemingly impossible (Pence, 1990;
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Poulsen, 1992; Chmielarz, 1997). The objectives of the present study were to

employ improved techniques of drying and freezing (Wesley-Smith et al., 1999)

as well as the rationalisation of the thawing regime, to attain successful

cryostorage in terms of the ultimate production of vigorous, hardened-off young

plants.

The results presented here detail the development of a successful protocol,

which considers the issues of: the physiological age and water content of the

seeds; the importance of optimal culture conditions; drying- and freezing-rates;

and thawing parameters. Axis survival correlated with ultrastructure monitored at

key points during the procedures used by Poulsen (1992) and Chmielarz (1997)

is compared with that obtained following very rapid dehydration and cooling as

rationalised by Wesley-Smith et al. (1999) and detailed by ourselves for Q. robur

(Berjak et al., 1999).

3.1 WATER CONTENTS BEFORE AND AFTER SHORT-TERM STORAGE

Batches of ten Q. robur axes from each of four South African and two European

provenances (Stellenbosch, Grahamstown, Himeville, Underberg [So A] and the

United Kingdom and Denmark) were taken for water content analysis

immediately on arrival as well as after ten weeks in cold storage. Figure 3.1

shows that there was marked variability in axis water content among the various

seed batches, both from single provenances, but different seasons, and from the

different provences before (shaded bars) and after 10 weeks cold storage (clear

bars). Water contents were taken after 10 weeks in storage to ascertain the
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trend(s) in water loss over time. It was observed that embryonic axes from all the

seed batches, lost a considerable amount of water during storage, irrespective of

the provenance, with the apparent exception of those from Grahamstown (1998).

However, even in this case, the mean axis water content was lower after storage

than before.

The water contents were not consistent for individual provenances over 1998 and

1999 (Figure 3.1). For instance axes from those fresh acorns from the United

Kingdom from the 1998 batch had a mean axis water content of 1.44 g g-1 and

those from the 1999 batch had a significantly different mean water content of

1.02 g g-1 (P < 0.05, ANOVA), despite being collected from the same tree.

Similarly, mean water contents of the axes from fresh 1998 Stellenbosch acorns

were significantly different from those of the fresh 1999 batch from the same

provenance (1.21 g g-1 ± 0.08 and 0.79 g g-1 ± 0.02 respectively). Published data

by Finch-Savage and Slake (1994) concerning fruit and seed development in Q.

robur from a single tree over five consecutive seasons reflects similar significant

variations in water content among seasons. Additionally, those authors observed

a seasonal difference in the growth patterns in both the cotyledons and

embryonic axes, which differed among years and resulted in seeds of different

sizes.

The variability in the axis water contents of the acorns (Figure 3.1) was probably

due, in part, to differences in habitat, geography, soil conditions, temperature and
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seasonal cycles in the different provenances. Furthermore, it is possible that

seeds from the various harvests were collected at different physiological ages

and/or from different trees after being naturally shed. In this regard, Serjak et al.

(1992; 1993) have shown water content differences to characterise the

developmental progression of axes of recalcitrant seeds of other species, but in

the present case, nothing accurate can be said because of the non-standardised

collection.

Furthermore, it was observed that the seed quality differed amongst the

provenances. The differences in mean water content are thought to be related

not only to initial, but also to ultimate quality. In the case of the material from

Grahamstown, indiscriminate collecting could have accelerated seed

deterioration already before, and during, storage, as indicated by the lower mean

water contents (before 0.58 ± 0.06 and after 0.47 ± 0.19 storage) of the fresh

seeds and poor germination (80% before and 60% after storage).

In general, those acorns harvested from the northern hemisphere, had higher

mean water contents than those from the southern hemisphere, which may be

related to climatic and soil conditions. Additionally, while Finch-Savage and Slake

(1994) had personally harvested their material, there is no guarantee that acorns

harvested by others for the present study, would have been collected with

meticulous attention to their newly-shed state.
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3.2 WHOLE SEED VIABILITY

All fresh Q. robur seeds (except those from Grahamstown), irrespective of water

content variation, achieved 100% germination after 4 weeks in vermiculite at

± 23-25°C. The same germination procedure was carried out with all seeds after

10 weeks in cold storage (6 ± 2°C), when it was observed that they germinated

more rapidly, with seedling production occuring in approximately 2 weeks

compared with 4-5 weeks for the fresh seeds. Similar results which have been

shown for a variety of recalcitrant seed species, were first discussed for

Avicennia marina (Pammenter et al., 1984; Farrant et al. 1986; Berjak et al.,

1989).

Those observations, coupled with ultrastructural and biochemical analyses, led to

the conclusion by those authors that, in the case of the highly recalcitrant seeds

of A. marina, there was ongoing germinative metabolism during hydrated

storage. Thus, when planted out, the stored seeds were further along the

germination pathway than were those newly-harvested, therefore showed an

ostensibly more rapid rate of germination. The difference was, however, obviated

if the first day in storage (equivalent to the day of harvest, for A. marina) was

taken as the datum point for all the seeds (Pammenter et al., 1984). In a fine­

tuning of the model developed by Farrant et al. (1986), Berjak et al. (1989)

considered the situation of recalcitrant seed types that are shed prior to full

embryo development (i. e. before physiological maturity). Such seeds were
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described as having to complete development in the post-harvest condition,

before germination could be initiated.

It was also interesting to note in the present study that even when it was known

that all seeds of the same batch were simultaneously hand-harvested, some

germinated and established seedlings considerably more rapidly than others,

indicating a variability in the developmental status of the seeds at harvest. This

variability may be correlated with different stress tolerance among the seeds to

treatments such as dehydration and/or freezing even within a single harvest of

seemingly similarly mature seeds.

3,3 Quercus robur EMBRYO CULTURES FROM SEEDS STORED FOR TEN
WEEKS

For all experiments, the most visibly unblemished embryonic axes of standard

size and appearance were excised and divided into three batches. Each batch

was surface-sterilised with one of three surface-sterilants (sodium hypochlorite,

mercuric chloride and Poulsen's combination surface-sterilant), and plated out

onto seven different media (Figure 3.2 - see key). The embryonic axes chosen,

not only appeared vigorous at excision, but proved to be 100% viable in culture,

regardless of surface sterilant or medium used. However, the best possible

combination of surface-sterilant and medium had to be selected to maximise the

chances of survival after the imposition of the dehydration and freezing stresses

(see later).
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Figure 3.2a: Root length of Q. robur axes germinated on various media (see key) after sodium
hypochlorite surface sterilisation (n = 20). Bar = mean ±SE.
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Figure 3.2b: Shoot length of Q. robur axes germinated on various media (see key) after
sodium hypochlorite surface sterilisation (n = 20). Bar = mean ±SE.



CHAPTER 3 RESULTS AND DISCUSSION, Q. robur PAGE 66

30

25

-E 20
.§.
~-Cl 15c
.!!-0 100
c::

5

0
0 6 12 18

Time (days)

24 30

-+-MS
_1/2 MS

-IJr-1/2 MS+H

"",,*-1/4 MS

""'"*- Poulsen

-+-Chmielarz

-+-Vietez

Figure 3.2c: Root length of Q. robur axes germinated on various media (see key) after
mercuric chloride surface sterilisation (n =20). Bar =mean ±SE.
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Figure 3.2d: Shoot length of Q. robur axes germinated on various media (see key) after
mercuric chloride surface sterilisation (n = 20). Bar = mean ±SE.
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Figure 3.2e: Root length of Q. robur axes germinated on various media (see key) after
Poulsen's combination surface-sterilisation (n = 20). Bar = mean ±SE.

30

25

-E
E 20-.c-g' 15
.!!-0 100.c
Cl)

5

0

0 6 12 18 24 30

~Ms

-1/2 MS

-,\-1/2 Ms+H

~1/4MS

-w-Poulsen

~Chmielarz

-+-Vietez

Time (days)

Figure 3.2f: Shoot length of Q. robur axes germinated on various media (see key) after
Poulsen's combination surface-sterilisation (n =20). Bar =mean ±SE.
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It is important for the in vitro culture protocol to be optimised before

cryopreservation is attempted in order to optimise the germination rate of the

seeds and to ensure recovery after the stress of any cryopreservation procedure,

as the in vitro generation of seedlings from embryos is crucial. The in vitro

medium must therefore provide what the plant tissue is lacking, which, in the

case of zygotic axes, is what would have been available from cotyledonary or

endosperm reserves. The formulation of the medium is thus pivotal to survival

success.

The data displayed in Figure 3.2 show the rate of germination measured in terms

of root length (Figure 3.2a, c and e) and shoot length of Q. robur zygotic axes

(Fig. 3.2b, d and f) on seven different media (see keys) using sodium

hypochlorite (Figure 3.2a and b), mercuric chloride (Chmielarz, 1997: Figure 3.2c

and"d) and Poulsen's (1992) combination surface-sterilant (Figure 3.2e and f).

After 30 d in culture on half-strength MS medium plus hormones (% MS + H;

Figure 3.3) following surface-sterilisation with sodium hypochlorite, mean root

and shoot lengths of 22.64 mm and 6.55 mm, respectively, were achieved. Lower

mean root and shoot lengths (18.24 mm and 4.84 mm, respectively) were

recorded at day 30 after mercuric chloride was used on axes then grown on the

same medium. After axes were exposed to Poulsen's combination surface­

sterilant, the mean root and shoot lengths were 14.25 mm and 3.22 mm,

respectively.
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The half-strength MS medium (% MS) was observed to produce the next best

root and shoot growth in all cases, irrespective of the surface-sterilant used, but

the values were not significantly different to those obtained on the other five

media (Figure 3.2, see key). Thus, the medium chosen for later work was the

half-strength MS medium supplemented with the hormones, BA (2 mg r1
) and

NAA (0.1 mg 1"1) which, in all cases, facilitated the best growth rate of both roots

and shoots regardless of the surface-sterilant used.

A major extraneous problem with in vitro plant cultures is that of contamination.

There is little doubt that all recalcitrant seeds (and in general, all seeds) harbour

a microflora, generally dominated by fungi (Mycock and Berjak, 1990; Berjak,

1996). Microflora flourishes under in vitro conditions, rapidly out-competing and

over-growing axes in culture. Hence, elimination of the propagules of all the

microflora associated with the seed tissue, is absolutely essential. This is

achieved by means of surface-sterilisation. However, although the range of

surface-sterilants commonly used is restricted, all are not invariably suitable for

zygotic axes (or indeed, any type of explant) of an individual species. Thus,

experimentation on a tissue-specific basis, and a species basis, is generally

recognised as a pre-requisite to optimise surface-sterilisation.

It was observed that sodium hypochlorite was the best of the three surface­

sterilants presently used. This is clearly shown by both root and shoot lengths

(Figure 3.3a and b respectively). Figure 3.3 also shows that both the mean root
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And shoot lengths after surface sterilisation with sodium hypochlorite are

. significantly different to those achieved after use with the other two surface­

sterilants, whereas there is no significant difference in the mean lengths (root and

shoot) achieved after use of mercuric chloride or Poulsen's combination surface­

sterilants.

Furthermore, 100% geotropic curvature was established by day 12 when sodium

hypochlorite was used, by day 18, when mercuric chloride was used and only by

day 24 when Poulsen's (1992) combination surface-sterilant was used. These

observations argue for more deleterious effects of inappropriate surface sterilants

on the columella cells of the root cap which are primarily involved in gravitropism

(Brum and McKane, 1989). Resultant damage was, however, able to be

overcome, as graviperception ultimately occurred irrespective of the surface­

sterilant used.

Thus, for excised axes of Q. robur, the surface sterilant, sodium hypochlorite,

inhibited fungal contamination adequately and facilitated survival of embryonic

axes into the seedling stage of development. Mercuric chloride (Chmielarz, 1997)

and the combination surface-sterilant (Poulsen, 1992) appeared injurious to Q.

robur embryonic axes, the growth and gravitropic response of which was

somewhat slower than when sodium hypochlorite was used. Thus, from this point

onwards, all experimental procedures utilised sodium hypochlorite and % MS + H

medium, to allow for the best growth rates.
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3,3,1 MICROSCOPICAL EXAMINATION AFTER SURFACE-STERIUSATION

Roots and shoots of Q. robur embryonic axes from those seeds cold-stored for

ten weeks, were examined microscopically following surface-sterilisation. The

light and transmission electron micrographs that follow show control material

from 6 d germinated seeds and embryonic axes cultured for 6 d on % MS + H

medium using one of three surface-sterilants [NaOCI, HgCb (Chmielarz, 1997),

Poulsen's (1992) combination surface-sterilant).
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KEY FOR ALL MICROGRAPHS

Co = columella
Me =root meristematic region

S =statolith
C = corpus
T =tunica
M = mitochondrion
G = Golgi body
V= vacuole
N =nucleus

Nu = nucleolus
ER =Rough endoplasmic reticulum
St = starch grain
P =plastid profiles
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(b) x 10400
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(c) x 130 (d) x 15 700

Figure 3.4: Fresh (controll Q. robur embryonic axes excised from seeds set out to germinate for
6d. Fig. 3.4a: Root cap (arrow) and root apical meristem (me). Fig. 3.4b: An example of a root
cap columella cell containing a statolith, mitochondria, profiles of ER and prominent Golgi bodies.
Fig: 3.4c: A typical shoot apical meristem, showing tunica and corpus cells. Fig 3.4d: Shoot apical
meristem showing evidence of metabolic activity in the presence of Golgi bodies, mitochondria
and concentric profiles of ER. An abundance of polysomes (arrow-heads) can be seen in both
root cap and shoot apex cells.
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(a) x 150 (b) x 10 500

(c) x 130 (d) x 7500

Figure 3.5: NaOCI surface-sterilised Q. robur embryonic axes, prepared for microscopy following
a 6 d in vitro recovery period. Fig. 3.5a: No necrosis was observed, indicating no gross damage
to the root cap. Fig. 3.5b: Portion of a typically metabolic root cap cell showing profiles of fER
polysomes and mitochondria. Fig. 3.5c: The general state of organisation typical of metabolic
activity within the shoot apex cells. Fig. 3.5d: Showing the prominent nucleus, nucleolus,
mitochondria, plastids, small vacuoles, as well as profiles of rER.
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(a) x 130 (b) x 6 500

Figure 3.6: HgCb surface-sterilised Q. robur embryonic axes. Fig 3.6a: Tunica and corpus of
shoot apical meristem. Fig. 3.6b: An example of corpus cells, appearing relatively metabolically
active, showing no obvious damage.
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(a) x 130

(c) x 16 000

(b) x 7 200

Figure 3.7: Quercus robur embryonic axes after Poulsen's combination surface-sterilisation. Fig
3.7a: Necrosis was observed in several ranks of the outer root cap cells. Fig. 3.7b: Relatively
large vacuoles On root cap cells) were observed, as well as typical organelle deterioration and
nuclear abnormality. Fig. 3.7c: Cell wall deterioration (in shoot apical meristem cells) indicated by
the sinuous buckling and a marked localised inwards withdrawal of the plasmalemma is shown,
as is the somewhat irregular nuclear profile. There is little evidence of polysomes.
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The root apical meristem (Figure 3.4a) is protected by the substantial root cap.

The latter is a stratified tissue, the cells of which are continuously regenerated

distally from the apical meristem, and sloughed at the surface. As a result, the

cap protects the root apical meristem from peripheral abrasion by soil particles.

In Q. fobuf, the cap cells are relatively unvacuolated (Figure 3.4a), with many cell

layers providing a considerable barrier between the apical meristem and the

external environment. The central region of the cap, termed the columella, is

critical to graviperception. Columella cells (Figure 3.4b) typically, had large

amyloplasts containing many spherical starch granules; these specialised

organelles are the statoliths (Figure 3.4 b) and are implicated in graviperception

(Brum and McKane, 1989). The columella cells in the control material could be

seen to be highly active, from the well developed rER, frequent Golgi bodies,

many mitochondria with prominent cristae and incidence of polysomes (Figure

3.4b).

Shoot apical meristems, consisting typically of the tunica and corpus regions, are

entirely superficial (Figure 3.4c) and, although loosely surrounded by leaf bases,

are essentially unprotected, unlike cells of the root cap and apex. Those of the

shoot tip showed an Ultrastructure characteristic of considerable metabolic

activity (Figure 3.4d). This is illustrated by the many polysomes that are evidence

of protein synthesis, ranks of long parallel, or concentric, rER profiles and

frequent Golgi bodies, which attest to endomembrane activity, and well­

developed mitochondria typified by relatively short cristae and dense matrices
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(Figure 3.4d). The subcellular situation was similar in tunica and corpus cells. It

should be noted that the control axes of Q. robur, used presently, were excised

from seeds that had been set to germinate for 6 d, to achieve a developmental

state comparable to experimental material, that was afforded a 6 d in vitro

recovery period after each manipulation. Because of the fungal contamination,

axes of Q. robur that had not been surface-sterilised could not be cultivated in

vitro.

Surface-sterilisation is an essential procedure used to eliminate any surface

fungal spores present on the specimen to be cultured, so that fungi do not

contaminate and eventually dominate the culture. In this study, three different

surface-sterilisation procedures were used (see Chapter 2). Root and shoot

apices were then examined microscopically to determine whether or not these

various surface-sterilants had damaging (or other) effects on the specimens

exposed.

The situation shown in both the shoot and root apex cells (cap and meristem) in

material that had been surface-sterilised with sodium hypochlorite (NaOCI)

(Figures 3.5a-d) was essentially similar to that shown in the control axes (Figures

3.4a-d). There was no obvious damage to be seen in root cap cells at the light

microscope level (Figure 3.5a), a situation borne out by their organised

ultrastructure (Figure 3.5b).
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It was found that when NaOCI was used, only the most peripheral root cap cells

(already poised to slough off naturally) were adversely affected. Figure 3.5a

shows the bulk of the root cap which was essentially no different from that of the

fresh control material (Figure 3.5a). Root apex cells (cap or meristem) appeared

essentially unchanged both ultrastructurally and, by implication, in their apparent

activity, as evidenced by the many mitochondria, profiles of rER and plastids

containing starch grains (Fig. 3.5a).

The shoot apical meristem also did not show any obvious damage after surface­

sterilisation with NaOCI (Figure 3.5c). Figure 3.5d presents a typical appearance

of a highly active cell containing well-:<teveloped mitochondria, rER, Golgi bodies,

polysomes and a prominent nucleus showing a dense nucleolus which is

indicative of active ribosome subunit assembly.

Mercuric chloride (Chmielarz, 1997) did not seem to impose any obvious damage

on Q. robur axes either, and it was effective in removing contaminants. The shoot

apical meristem (Figure 3.6a) appeared undamaged at the light microscope level,

which was borne out by the ultrastructure (Figure 3.6b) showing a prominent

nucleus with nucleolus and well developed mitochondria, and often essentially

normal features.

In contrast to the situation after the use of either NaOCI or HgCb, those axes

exposed to Poulsen's surface sterilisation protocol, showed damage to several
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layers of the root cap (Figure 3.7a), indicating that over-rigorous surface­

sterilisation, while removing surface contaminants can be markedly deleterious.

The damage was not confined only to the peripheral ranks of root cells, as many

of the columella cells retained damage even after the 6d in vitro recovery period.

This can be seen particularly from the buckled walls (Figure 3.7c). Damage

retention and the relatively slow growth (Figures 3.2e and f and 3.3) indicated

that although all the axes would Ultimately germinate, they had been severely set

back by the harsh surface-sterilisation.

The shoot apical meristematic cells had abnormally thin, buckled walls (Figure

3.7c) and a localised withdrawal of the plasmalemma from the cell wall. Some

nuclei in the shoot apex were somewhat irregular (Figure 3.7c) suggesting

perhaps impaired nucleo- or cytoskeletal formations, but organelle disposition

appeared essentially normal.

The surface sterilant, sodium hypochlorite ultimately inhibited fungal

contamination adequately and allowed the survival of embryonic axes well into

the seedling stage of development on % MS + H medium. This treatment also did

not cause tissue/cell abnormality. Its use was also preferable to that of HgCb

when germination parameters were monitored. The harsh combination of

conditions inherent in the method of Poulsen (1992) was presently shown to

cause a significant amount of damage. Hence surface-sterilisation with a 1%

(v/v) concentration of sodium hypochlorite was adopted as the best of those
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treatments presently tested. Pre-treatments, such as differential drying rates, for

the eventual cryopreservation of these axes, were then evaluated.

3,4 EXPERIMENTATION WITH DRYING: Q. robur

In this comparative phase of the study, excised, surface-sterilised (NaOCI) axes

were dehydrated by one of each the four methods desaibed in Chapter 2. They

were laminar airflow [L-F (Poulsen, 1992)], silica-gel [S-G (Chmielarz, 1997)] and

the two developed in Durban, viz. flash-drying [F-D (Berjak et al., 1990) and fast

flash-drying (Wesley-Smith et al., 1999)]. Quercus robur root and shoot growth in

vitro was assessed after axes were subjected to one of the four different drying

methods, as shown in Table 3.1. In all cases, embryonic axes were exposed to

the experimental conditions for a total of 360 min and sampled at zero time and

then at 8 intervals for water content and in vitro germination performance.

Table 3.1: Percentage root (R) and shoot (S) survival of Q. robur embryonic axes
at 30 d, after exposure to four different drying rates and nine different time
intervals, respectively (n = 20).

DESICCATION DRYING METHOD USED VS % SURVIVAL

TIME (mins) L-F S-G F-D FF-D

%R %S %R %S %R %5 %R %5

0 100 100 100 100 100 100 100 100

30 100 100 100 100 100 100 100 100

60 100 100 100 100 100 100 100 100

90 100 100 100 100 100 100 100 100

120 100 100 100 100 100 100 100 100

180 100 100 100 100 100 100 100 100

240 100 80 100 100 100 100 100 100

330 100 35 100 70 100 100 100 100

360 100 30 100 40 100 100 100 100
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Data shown in Table 3.1 indicate that, regardless of the drying technique used

and of the time taken, 100% root survival was achieved after 30 d in culture on

the selected medium (112 MS + H). However, shoot survival from axes dried for

240 min (0.54 ± 0.09 g g-1) under laminar airflow conditions, had declined to 80%.

The trend of decreased shoot survival continued over time to 35% after 330 min

(0.50 ± 0.07 g g-1) and 30% after 360 min (0.47 ± 0.09 g g-1) of drying. Similarly,

a 330 min (0.44 ± 0.08 g g-1) exposure to silica gel affected the shoot apices

resulting in 70% survival of shoots, and, after 360 min (0.41 ± 0.14 g g-1) in the

same desiccant, only 40% of the shoots survived.

This trend did not, however, occur with those axes exposed to the two faster

methods of drying [flash drying (F-D) and fast flash-drying (FF-D)]. Water

contents as low as 0.37 ± 0.11 g g-1 and 0.28 ± 0.09 g g-1 were achieved with

flash-dried and fast flash-dried axes, respectively, after 360 min (Figure 3.8).

Rates of root growth after laminar airflow and silica-gel drying, declined after

peaking at water contents> 0.7 - 0.8 g g-1. In contrast, root growth rate continued

to accelerate following dehydration down to c. 0.4 g g-1, by flash drying and fast

flash-drying.

Adverse effects on shoot growth with the two slower drying rates were noted at

water contents from < 1.0 g g-1 and 0.8 g g-1 for laminar airflow and silica-gel

dehydration, respectively (Figure 3.8b). Furthermore, some shoots were lethally

affected (0.46 ± 0.09 g g-1 and 0.41 ± 0.14 g g-1, Table 3.1; Figure 3.8) after
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laminar airflow and silica-gel drying, respectively. In contrast, for axes

dehydrated by flash-drying or fast flash-drying, as the objective in the present

study was to achieve water contents that would maintain full axis potential as well

as, facilitating cryopreservation, no further degrees of dehydration were imposed

(see section 3.5).

The efficiency of the dehydration methods emerged as laminar airflow < silica gel

< flash-drying < fast f1ash-drying. However, there was no significant difference

between the two slowest methods of drying (S-G and L-F), nor between the two

most rapid methods (F-D and FF-D). There were, however, significant

differences in growth parameters between the slowest (L-F) and the most rapid

(FF-D) modes of drying, particularly at, 0.6 g g-1.

It is important to note that all Q. robur embryonic axes, irrespective of their mode

of drying and the time taken between 30 min and 360 min, maintained 100% root

formation. However, even though 100% root growth occurred subsequent to

laminar airflow and silica-gel drying, a gradual and relatively uniform decrease in

the rate of root growth was observed after 30 min of dehydration (to 1.04 ± 0.06 g

g-1 and 0.88 ± 0.14 g g-1, respectively; Figure 3.8a. At every time interval, there

was no significant difference in root length achieved after 30 d between these

slow drying procedures.
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Figure 3.8a: Water content after exposure to differential drying rates (see key) versus root
growth of Q. robur axes after 30 d. Bars = mean ±SE.
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Figure 3.8b: Water content after exposure to differential drying rates (see key) versus shoot
growth of Q. robur axes after 30 d. Bars =mean ±SE.
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Those axes that were f1ash-dried, showed a similar trend to those that had been

fast flash-dried, where a stimulation in root growth was demonstrated as the

desiccation time increased from 30 to 240 min (0.8 ± 0.09 9 g-1; 0.74 ± 0.13 9 g-1

to 0.4 ± 0.1 9 g-1; 0.37 ± 0.04 9 g-1, respectively). The significance of this

stimulatory effect of rapid drying should be noted, but its exploration is beyond

the scope of the present work. From the data on Q. robur, it can be seen that if

dehydration occurs more rapidly, viability (in terms of root survival) will be

retained to lower water contents, as has been demonstrated previously for other

species (Berjak et al. 1990). It has been suggested by Berjak et al. (1990) and

Pritchard (1991) that it is likely that very rapid drying of excised axes precludes

not only germination-associated metabolism, but curtails other metabolic, and

also deteriorative, reactions. Beyond dehydration by F-D or FF-D for 240 min (0.4

± 0.1 9 g-1 and 0.37 ± 0.04 9 g-1, respectively) the root growth rate declined, but

not significantly. After 300 min (0.32 ±0.08 9 g-1) and 360 min (0.28 ± 0.09 9 g-\

of drying, a decline in root length occurred, but again not significant.

The variability in the growth rate of shoots (Figure 3.8b) was observed to be as

equally variable as for the roots (Figure 3.8a). As desiccation time increased, so

the shoot length decreased in a relatively uniform and consistent rate after

exposure to laminar airflow. Those axes exposed to silica-gel showed a

decreasing, but erratic shoot growth rate.
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After flash and fast flash-drying, however, the same trend as seen for the roots

was observed, viz. an increasingly stimulatory effect of dehydration up to 240 min

(0.37 ± 0.04 g g-1; Figure 3.8b. It should be noted that although this was not

statistically significant between flash and fast flash-drying, the effect was clearly

demonstrated. After 300 min (0.32 ± 0.08 g g-1) and 360 min (0.28 ± 0.09 g g-\

of drying, a decline in shoot length occurred, even though this was not significant,

this trend is similar as that described for the roots.

Those shoots that lost water more rapidly via the fast-flash drying method

therefore withstood dehydration to lower water contents better than those

exposed to slower rates of drying. However, in terms of the slower dehydration

regimes, the shoots were more sensitive to water loss than were the roots (Table

3.1 and Figure 3.8a). This could be because shoot apices are not protected as

are the roots (by the root caps) and are consequently more vulnerable to

potentially injurious stress, such as that imposed by prolonged slow dehydration.

The more rapid the rate of water removal therefore, the more efficiently is the

time factor reduced and thereby the injurious effects of stress imposed upon the

axes. Furthermore, up to a point, this stress actually promoted the growth rate of

roots and shoots (Figure 3.8).

In an attempt to explain the better seedling formation of those more rapidly dried

axes as opposed to that of those slower dried axes, Pammenter et al. (1991)

indicted that under natural (Le. slow dehydration) conditions, desiccation-
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sensitive seeds lose their viability when solution (freezable) water is decreased

below a relatively high water content. The results of the present study show a

similar trend, whereby the slow dehydration or loss of solution water below a

relatively high level disrupts some vital aspect(s) of the cellular metabolism within

the shoot apical meristem.

3,4.1 MICROSCOPICAL EXAMINATIONS AFTER IMPLEMENTATION OF DIFFERENTIAL
DRYING RATES

The following microscopical examinations were undertaken after exposure of

axes from the 10 week cold-stored seed batch to three different drying

procedures, followed by 6d in vitro recovery both roots and shoots were

examined microscopically (LM and TEM). The 3 different drying procedures

were: the dehydration of Q. robUf embryonic axes by fast flash-drying for 240 min

(Le. the optimal drying regime, even though not statistically significant, taken

from results previously obtained - Figure 3.8); after 8 h of laminar airflow drying

(the apparent optimal drying rate and time for Q. robufaxes given by Poulsen,

1992 and after Chmielarz's (1997) apparent optimal drying rate(s) and time for Q.

rabur axes (Le. use of cryoprotection, laminar airflow and silica-gel).
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Figure 3.9: Dehydration of Q. robur embryonic axes by fast flash-drying for 240 min. After the 6 d
recovery period, root apex (Fig. 3.9a; illustrating the meristem) and cap cells showed evidence of
enhanced activity compared with undried material, as did the cells of the shoot apical meristem
(3.9b). Cells were dominated by large, spherical nuclei with well-defined nucleoli; the essentially
spherical mitochondria were plentiful, and rER profiles and Golgi bodies were common features.
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(a) x 150
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Figure 3.10: After 8 h of laminar airflow drying (Poulsen. 1992) of Q. robur axes, and despite the
6-d recovery period, there was evidence of persisting damage, especially in the root cap (3.10a),
where mUltiple cell ranks were necrotic. Fig. 3.10b: Although cells deep within the cap retained
signs of damage (e.g. highly abnormal nuclear shape and buckled walls) evidence of activity was
provided by the many, well-developed mitochondria and ER proliferation. Fig. 3.10c: The typical
appearance of the shoot apex included a scattering of darkly-stained degenerated cells. Fig.
3.10d: There was a marked degree of vacuolation in shoot apical meristem cells, the
intravacuolar contents, including membranous materia', indicated autophagic activity. Cell walls
retained a slightly irregular appearance.
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(a) x 150

(c) x 150

(b) x 10 700

Figure 3.11: Dehydration of Q. robur embrvonic axes using Chmielarz's (199D method
(cryoprotectants, laminar airflow and silica-gel). Fig. 3.11 a: Extensive degeneration of the root
cap was observed after this dehydration protocol was implemented. Essentially, the whole cap
became necrotic - a persisting symptom, even after the recovery period. Fig. 3.11 b: In the root
apical meristem, cells retained some signs of ultrastructural abnonnality, e. g. dilated rER
cisternae, some irregUlarity of the nuclear envelope, and frequent, small plasmalemma
vesiculations. Fig. 3.11 c: Extensive vacuolation was a feature of the shoot apex. Fig. 3.11 d: While
many of the shoot apical meristem cells appeared necrotic (e.g. upper left) or degenerating (top)
there was evidence of marked starch accumulation and periodic cell wall hypertrophy (arrows).
Both these features are abnormal and could be correlated with the sugar provided during the
cryoprotectant treatment.
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Following fast flash-drying for 4 h, and a recovery period of 6 d in culture, no

damage seemed. evident. Apical meristem cells (Figure 3.9a) and those of the

root cap were dominated by spherical nuclei, each with a prominent nucleolus.

Other organelles such as active mitochondria, small vacuoles and profiles of rER

were present. In addition, the cell wall· to which the plasmalemma was closely

applied, had remained regular.

In the shoot apex, the tunica and corpus cells of those fast flash-dried Q. robur

axes (Figure 3.9b) were dominated by their prominent nuclei. These cells were

also highly active, indicated by the frequent occurrence of Golgi bodies and the

appearance of the mitochondria, presumably associated with preparation for cell

division.

Those roots dried using Poulsen's (1992) technique (8 h laminar airflow), showed

detrimental effects from the exterior to the deep-lying cells of the cap (see

arrows) (Figure 3.10a). In theSe cells, this drying technique was associated with

detrimental changes - e.g. to some nuclei, where the shape (form) had become

markedly abnormal (Figure 3.10b). Additionally, cell walls showed some

irregularity. Some similarly affected cells also occurred in the apex of the root

proper (not illustrated). These abnormalities, although obviously not lethal in

themselves (as all axes were capable of root growth) had persisted despite the 6

d recovery period after dehydration.
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The shoots, after exposure to laminar airflow, showed scattered necrotic cells or

patches of such cells. The typical ultrastructure of shoot apical meristem cells is

shown in Figure 3.10d. Nuclear profiles were slightly distorted which could

indicate some irregularity of the nuclear lamina of the nucleoskeleton. Intensive

vacuolation had occurred in many tunica and corpus cells associated with the

slow-drying regime imposed on these axes. The large vacuole illustrated (Figure

3.10d) shows evidence of removal and lysis of presumably damaged intracellular

structures.

Chmielarz's (1997) dehydration protocol was more complex than the other two

regimes and involved not only 23 h of cryoprotection, followed by encapsulation

in calcium alginate, but also vigorous dehydration procedures comprising 1 h of

laminar airflow and 20 h of drying in silica-gel. In this experiment, axes reached a

very low water content (0.19 g g-1) which was nevertheless higher than the 0.15 g

g-1 achieved by Chmielarz (1997). This treatment resulted in extensive

degeneration of the root cap (Figure 3.11 a). Ultrastructurally, root apical

meristem cells retained signs of damage even after the 6 d recovery period.

Persistent abnormalities included dilation of the rER cisternae, some nuclear

envelope irregularity and plasmalemma separation from the cell wall (Figure

3.11b).

All peripheral tunica and some corpus cell layers were also considerably

damaged after Chmielarz's (1997) dehydration procedure was implemented
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(Figure 3.11 c), in fact the tunica cells could be seen to be highly vacuolated,

even at the LM level. Figure 3.11 d shows vacuolation in three contiguous cells.

Additionally, apparent cell wall hypertrophy had occurred and large starch grains

had formed within the plastids. This probably resulted from the high sucrose pre­

treatment, the effects of which had persisted despite the 6 d recovery period,

indicating that the rate of recovery-associated metabolism might have been very

slow.

This study on differential drying rates therefore indicated that the more rapid the

drying rate, the less the cell and tissue damage. From this point onwards

therefore, fast flash-drying was used as the drying pre-treatment before freezing.

3.5 CRYOPRESERVATION OF Q. roburEMBRYONIC AXES

It was interesting that all those 'physiologically younger' Q. robur axes (Le. those

flash-dried or fast flash-dried and frozen, regardless of the method of freezing

used, immediately on arrival) were not all killed, but never reached the full

seedling stage of development, despite the use of the Ca2
+ Mg2

+ solution after

freezing, used as a thawing agent. Many of those Q. robur axes sampled from

the seeds stored for 10 weeks or longer, however, survived preliminary

cryopreservation trials, after freezing and thawing in the Ca2+ Mg2+ solution. For

this study, therefore, only those 'physiologically older' (Le. those axes stored for

10 weeks or longer) acorns were used.
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Table 3.2: Percentage survival, after 30d in culture, of Q. robur axes which had
been subjected to fast flash-drying to various water contents and frozen at two
rates, intermediate and ultra-rapid cooling, for cryopreservation (n=20).

COOLING RATE

DRYING TIME (h) WATER CONTENT (g g.') INTERMEDIATE ULTRA-RAPID

<3 1.44 ± 0.05 - 0.53 ± 0.06 0 0

3 0.37 ±0.04 0 0

6 0.32 ±0.08 0 36

9 0.21 ± 0.05 0 40

12 0.18 ± 0.07 0 50

15 0.12 ± 0.09 60 50

Results of the preliminary work reported in Table 3.2 show the range of water

contents [1.44 ± 0.05 g g-1 to 0.12 ± 0.09 g g-1] achieved over 15 h using the fast

flash-drying protocol. It was found that using the conventional (intermediate)

method of freezing (i.e. direct plunging into liquid nitrogen), root growth was

observed for 60% of the Q. robur axes only at very low water contents (0.12 ±

0.09 g g-1). When ultra-rapid cooling was implemented it was found that 36% of

the embryonic axes survived freezing at the considerably higher water content of

0.32 ± 0.08g g-1. Although, only a 50% survival was achieved at 0.12 ± 0.09 g g-1

after ultra-rapid freezing, and was lower than that obtained by the conventional

'intermediate-freezing' method. The former showed far more potential, facilitating

axis survival over a range of water contents from 0.32 ± 0.08 g g-1. As the

primary objective is not to dehydrate the axes more than is absolutely necessary

for them to survive freezing, ultra-rapid cooling emerged as the method of choice.
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In this preliminary investigation, where material retrieved from liquid nitrogen was

thawed by direct immersion in distilled water (40°C), survival was scored by root

growth only (Table 3.2). The main objective of this study, however, was to

achieve seedling establishment, but after 30, 60 and 90 days of observation, and

despite periodic transfer of the specimen onto fresh medium, no shoots

developed.

The following investigation involved the use of the three drying regimes detailed

above [Poulsen (1992), Chmielarz (1997) and fast flash-drying] and the ultra-

rapid cooling of all the specimens. The results are shown in Table 3.3.

Table 3.3: Percentage survival after three different methods of drying, and ultra­
rapid cooling. (n = 20).

REFERENCE PERCENTAGE SURVIVAL
Roots shoots

Poulsen (1992)

Chmielarz (1997)

Fast flash drying

o

o

66

o

o

o

Results indicated that the only acceptable dehydration regime was fast f1ash-

drying, achieving 66% axis survival, although no shoot development occurred.

For both the Poulsen (1992) and Chmielarz (1997) techniques, no axis survival

occurred. These data were further substantiated when specimens were

examined microscopically.
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3.5.1 MICROSCOPICAL EXAMINATION AFTER DRYING AND ULTRA-RAPID COOLING

Roots and shoots, from those axes excised from seeds cold-stored for 10 weeks,

were examined microscopically following ultra-rapid cooling after dehydration by

fast flash-drying and Poulsen's (1992) and Chmielarz's (1997) methods.
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(c) x 150 (d) x 16 000

Figure 3.12: Quercus robur embryonic axes after fast flash-drying! ultra-rapid cooling and thawing
in distilled water. Fig. 3.12a: Deterioration was confined to peripheral root cap cells and only the
occasional internal cell appeared adversely affected Fig. 3.12b: Cap cells were generally well
organised and showed all the signs of considerable metabolic activity. Note particular1y, the
elongated plastid profiles and absence of starch (cf. Fig. 3.15a). Fig 3.12c: Shoot apical
meristems, did not appear to be adversly affected, although hypertrophied, presumably necrotic
cells were scattered throughout the under1ying parenchyma. Fig. 3.12d: Cells of the shoot apical
meristem were not disrupted: many mitochondria, plastids occurred and Golgi bodies were
evident. However, note the peri-nuclear orientation of organelles and the featurelessness of the
nucleus and lack of definition of the nuclear envelope.
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(a) x 150 (b) x 3300

(c) x 150

Figure 3.13: Quercus robur embryonic axes exposed to Poulsen's (1992) dehydration procedure.
but then subjected to ultra-rapid cooling and thawing in distilled water. Fig. 3.13a: Extensive
deterioration had occurred and persisted from the exterior to the deep-lying cells in the columella
of the root cap. Fig 3.13b: Illustrates the extensive intracellular deterioration characteristic of most
inner cap cells and the root apical meristem. Fig 3.13c: The shoot apical meristems were
extensively damaged, as is obvious even at the light microscope level. Fig. 3.13d: Absolute
disarray had occurred in the shoot apical meristems of axes exposed to these treatments.
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(a) x 120

(c) x 130 (d) x 8 600

Figure 3.14: Quercus robur embryonic axes after exposure to Chmielarz's (1997) dehydration
protocol, but followed by ultra-rapid cooling and thawing in distilled water. The root cap and shoot
apices of these treated axes were disorganised and necrotic, as could be seen even at the light
microscope level. (Fig. 3.14a and c). Examination with the TEM revealed that all the cells of both
the root and shoot apex were extensively degraded (Fig. 3.14b and d).
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Figure 3.15: I!uercus robur embryonic axes after fast flash-drying, ultra-rapid cooling and thawing
in a Ca2+Mg + solution. Fig. 3.15a: A highly metabolically active root cap cell showing plastids,
many developed mitochondria, a Golgi body and profiles of ER. Fig. 3.15b: Showing statoliths in
a columella cell. Fig. 3.15c: Apical shoot cells well characterised by well-developed organelles,
rER development and polysomes, normally disposed in the cytomatrix; the nuclear envelope is
sharply defined, and the nucleus is spherical. Fig 3.15d: Mitotic activity was characteristic of
shoot apical meristems after the 6 d in vitro recovery period.
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Following fast f1ash-drying, ultra-rapid cooling and thawing in distilled water, only

peripheral necrosis was observed in the root cap (Figure 3.12a), with most of this

protective tissue not deleteriously affected. While the necrotic outermost cells

could reflect damage that occurred during the manipulations, these cells are

known to autolyse normally shortly before they are sloughed. From the

ultrastructure, it could be seen that nuclear morphology was normal (not

illustrated) and many well-developed mitochondria were observed, indicating that

a high level of metabolic activity was occurring, polysomes and rER were also

features of these cells (Figure 3.12b). Figure 3.12b shows the typical

ultrastructure of the columella cells: although there were many plastids, no

statoliths were present in any of these cells (see later).

After this same procedure, however, cells of the shoot apical meristem did not

maintain the same high level of organisation as the root cells. Figure 3.12c

shows a shoot apex in which a scattering of hypertrophied (swollen) necrotic

cells, although not in the meristem. At the TEM level (Figure 3.12d) although the

nuclear envelope sometimes appeared ill-defined, the cells showed evidence of

metabolic activity follOWing the 6 d recovery period. There were many polysomes

and mitochondria, as well as Golgi bodies and some rER. In many cases,

however, organelles of the shoot apical meristem cells were not evenly

distributed, tending instead to a perinuclear orientation. Shoot cells remained

static in culture, no shoot growth occurred, and the shoot apices became

necrotic.
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After exposure to Poulsen's (1992) pre-treatments, severe necrosis, from the

exterior to the deep-lying cells in the columella of the root cap occurred (Figure

3.13a). Proximal to the obviously necrotic zone, cells were markedly and

abnormally vacuolated. This phenomenon, in virtually all the columella cells, was

associated with tonoplast dissolution and intracellular lysis (Figure 3.13b),

indicating that even those cells not appearing necrotic at the LM level, were in

fact, dead. Similarly in the shoot apical meristem, increased vacuolation was

observed and some cells were obviously necrotic (Figure 3.13c). Figure 3.13d,

which is representative of many of the shoot apical meristem cells, shows the

extensive intracellular lysis that had occurred, with few components remaining

identifiable.

The most severely degradative response, however, was after Chmielarz's (1997)

pre-treatment despite ultra-rapid cooling, as shown in Figures 3.14a and c, where

even at the LM level, both the root and shoot apex cells could be seen to be

extensively damaged. The Ultrastructure (Figures 3.14b and d) revealed

complete intracellular degradation and collapse. It is concluded that the severe

pre-freeze treatments both here and that embodied in the Poulsen (1992)

approach, had pre-disposed the axes to lethal damage during cooling (freezing)

and/or thawing.

Among surviving axes that had been fast f1ash-dried and cryostored, vigorous

root growth occurred, but the roots remained horizontal. As gravitropism occurred
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in control and dried axes, the freezing andlor thawing steps were identified as

being imperfect. Gravitropism in roots causes growth towards the earth's

gravitational field, while stems grow away from it. This root curvature results from

differential growth on upper and lower sides. In roots, the cap detects the

stimulus of gravity, whereas actual bending occurs in the elongation zone behind

the root cap. Detection of gravity appears to involve the sedimentation of

specialised amyloplasts, the statoliths (Chen et al., 1999).

Thus, in order to achieve the ultimate objective, that of the normal seedling

production after cryostorage of Q. robur embryonic axes, the thawing step in

distilled water was examined. The thawing procedure was modified using media

that included sucrose, or mannitol and an MS medium (see Chapter 2). However,

despite the use of these thawing agents, the integrity of the embryonic roots was

maintained, but still no gravitropic curvature occurred. Initially shoot apices

remained static, but soon became necrotic.

Two observations prompted the use of a solution containing calcium and

magnesium in concentrations known to promote cytoskeleton assembly (Wolfe,

1995). These were the disorientation of organelles seen in some shoot apical

meristem cells (e. g. Figure 3.12d) and the lack of the gravitropic response.

Mycock (1999) had used a 50:50 solution of 1JlM CaCb. 2 H20 and 1 mM MgCI2.

6 H20 both as a pre-treatment and a thawing medium, with very beneficial effects

on cryopreserved somatic embryos.
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Thawing in the Ca2+Mg2+solution at 40°C facilitated both the gravitropic response

and shoot production in a significant proportion of axes retrieved from

cryostorage. Comparative results are presented in Table 3.4. All freezing

experiments were done in triplicate (n =20), for a total of 60 axes per treatment.

Table 3.4: The effect of two different thawing regimes (distilled water and the
Ca2+Mg2+solution) on percentage Q. robur root and shoot survival assessed after
30 d in culture. All experiments were done in triplicate (n = 20).

THAWING AGENTS

Distilled water Ca2+Mg2+

% Roots G/r % Shoots % Roots G/r % Shoots

1st TRIAL 35 0 100 + 70

.2ridfRIAL 66 0 60 + 40

3rd TRIAL 40 0 80 + 50

G/r = Gravitropic response

Comparison of shoot apical meristem cells after thawing in distilled water (Figure

3.12d) and the Ca2+Mg2+ solution (Figure 3.15c) shows that use of the cation

solution promoted the orderly orientation of highly differentiated organelles, and

that many of the cells were actively mitotic (Figure 3.15d). These observations

support the idea that the availability of calcium and magnesium promoted normal

cyto- and nucleoskeleton assembly after cryopreservation. The cytoskeleton, a

sub-cellular proteinaceous filament system, is responsible for the position and

movements of organelles. The principle components of the plant cytoskeleton are

the microfilaments and microtubules (McNulty and Sanders, 1992; Wolfe, 1993).

The major difference in root cap columella cells after thawing in the divalent

cation solution, was the promotion of statolith formation (Figure 3.15b). Because
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of the use of TEM alone, there could be no direct evidence implicating the

cytoskeleton in the absence or presence of the gravitropic response.

The disassembly or re-assembly of the plant cytoskeleton is regulated by

numerous signalling agents, including calcium and magnesium, which are

considered to be key controlling elements (Hepler and Hush, 1996). Calcium

promotes microtubule assembly at low concentrations, and at high

concentrations causes disassembly of microtubules (Wolfe, 1995).

Magnesium, on the other hand, binds to actin before assembly into

microfilaments. According to Wolfe (1995), between 0.1 and 10 mM MgCb

promotes rapid and stable microfilament assembly. The use in this present study,

of the Ca2+Mg2+ solution was on the basis that the cations might promote re-

assembly of the cytoskeletal components, not only within the shoots, but also to

induce root gravitropism after cryostorage, and thereby normal seedlings. The

results presented in Table 3.4 show that this was the case, although presently

there is little (or no) information that explains the effect of the cations on statolith

formation.

3,6 THE EFFECT OF THAWING AGENTS ON MEMBRANE ELECTROLYTE
LEAKAGE

The rates and levels of electrolyte leakage indicate the degree of tissue damage

that has occurred and have been found to correlate well with the viability of

seeds (Vertucci and Leopold, 1987; Vertucci, 1989; Pammenter et al., 1991). The
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increase in leakage in orthodox seeds was originally attributed to a loss of cell

membrane integrity by Ching and Schoolcroft (1968) and Matthews (1971) and

has remained a favoured theory.

According to McKersie and Stinson (1980), water uptake by desiccation-tolerant

seeds reinstates the original structure of the cellular membranes, whereas the

membranes of desiccation-sensitive seeds that have been dehydrated are

unable to reform completely.

Table 3.5 shows the difference in electrolyte leakage rates after submerging Q.

robur axes either into the Ca2+Mg2+solution or distilled water, respectively for 180

min after fast flash-drying and ultra-rapid cooling.

Table 3.5: The difference between the leachate conductivity after Q. robur axes
were exposed to distilled water or the Ca2+Mg2+solution, for 3 h.

ELECTROLYTE CONDUCTIVITY (J.L S cm-1
)

SOLUTION SOLUTION PLUS DIFFERENCE
ALONE AXES

WATER 2 304 302

246 309 63

The data in Table 3.5 indicate a far higher electrolyte leakage after thawing in

distilled water than those axes exposed to the Ca2+Mg2+ solution, clearly

indicating that the better thawing agent is the cation solution.
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After fast f1ash-drying and ultra-rapid cooling (using the Ca2+Mg2+ solution as the

thawing agent), an acceptable proportion of axes did survive cryostorage and

developed into seedlings (Table 3.4). However, not all survived, which was

puzzling, as all axes were from the same batch of seeds as well as having been

subjected to exactly the same treatments. It is, however, well-established that

there is marked seed-to-seed variability at anyone harvest (e.g. Berjak et al.,

1996) although presently there is no information on this aspect for the Q. robur

seeds used in these experiments. However, Kioko et al. (1999) have indicated

that the state of axis development in Warburgia salutaris, may well be critical to

survival of cryostorage.

From these thawing trials, use of the Ca2+Mg2+ solution seems to offer a means

to alleviate injury that occurs after cryopreservation. Use of this divalent cation

solution is therefore recommended as a post-freezing (and perhaps also a pre­

freezing) treatment for axes of other species, as Chapter 4 will show for

Ekebergia capensis.



CHAPTER 4: RESULTS AND DISCUSSION, Ekebergia capensis

Ekebergia capensis Sparrm. (Meliaceae) is a semi-deciduous to evergreen tree

of eastern tropical and subtropical Africa. When ripe, just before shedding, the

fruit turns deep red. These fruits have a fleshy mesocarp and a hard, fairly

impermeable endocarp. The ex-endospermous seeds are 6-8 mm x 4 mm, and

the embryonic axes are approximately 2 x 1 mm. Ekebergia capensis is used in

traditional medicine as an emetic and to treat diarrhoea and dysentery (Pooley,

1993). Thus, because of its medicinal use and availability locally, it was chosen

as one of the two species for this study. Ekebergia capensis was treated in a

similar manner to Q. robur (Chapter 2), based on the promising protocol

developed for that species (Chapter 3).

The results presented here emphasise the issues of: the importance of optimal

culture conditions; drying- and freezing-rates; thawing and post-thaw recovery.

4.1 WHOLE SEED VIABILITY

Ekebergia capensis (Cape Ash) fruits were hand-harvested when red/burgundy

(mature) from one provenance, a group of Durban trees planted by the Parks

Department in the city. After removal of pericarp and testa, all seeds were set out

to germinate on filter paper (moistened with 1% MS salts). After 2-3 weeks,

100% viability was recorded. Embryonic axes were from newly-harvested seeds

taken for water content determination, which emerged as 1.13 ± 0.16g g-1.
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It was observed that even though all seeds set out for germination were from

simultaneously collected fruits of similar size and colour, some germinated and

established seedlings much more rapidly than others, indicating a range in the

developmental status of the seeds at harvest. This variability may ultimately, as

suggested for Q. robur, be correlated with the different stress tolerance among

the embryonic axes of these seeds to treatments such as dehydration and/or

freezing, even within a single harvest of seemingly similar mature seeds.

4.2 Ekebergia capensis EMBRYO CULTURES

In the laboratory, E. capensis seeds were extracted and the endocarps removed.

The axes immediately excised, were maintained on barely moist filter paper

within Petri dishes until a sufficient number had been accumulated and then

surface-sterilised in either sodium hypochlorite (containing a drop of Tween-20)

or mercuric chloride and plated out onto four different sucrose-containing media

(MS, 112 MS, 112 MS + H, 1f4 MS, Chapter 2). Embryonic axes of similar size were

carefully selected for in vitro culture, with any appearing in less than optimal

condition being discarded. The results (Table 4.1) show that while 100%

germination was achieved on all media after 15 d when embryonic axes were

cultured on 1/4 MS after surface sterilising with sodium hypochlorite, this was not

the case for axes treated with mercuric chloride where all axes germinated only

on 1f4 MS medium. This suggested that 1;" MS was the best medium of the four,

and that sodium hypochlorite was the best surface sterilant to use for all

subsequent experimental procedures as the combination of mercuric chloride
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surface sterilisation with the non osmotically-challenging media appeared toxic

for the E. capensis axes.

Table 4.1: Percentage survival, after 15 d, of E. capensis zygotic axes on four
different media after surface-sterilisation with 1% (v/v) sodium hypochlorite and
0.1 % (m/v) mercuric chloride, respectively (n = 20).

MEDIUM PERCENTAGE SEEDLING
SURVIVAL

1 % NaOCI 0.1 % HgCI2

MS 100 60

1hMS 100 70

1hMS + H 100 90

v.. MS 100 100

However, the growth rate of both roots (Figures 4.1a and c) and shoots (Figures

4.1 b and d) was slowest on % MS medium. When root lengths achieved after

NaOCI surface-sterilisation on % MS medium were compared with those on the

other media at day 15, results showed, 112 MS (26.53 mm) > MS (24.49 mm) >

112 MS + H (20.79 mm) > % MS (20.59 mm). Even though these results were not

significantly different from one another (P < 0.05, ANOVA) for either of the

surface-sterilisation procedures, general growth rate on % MS medium was the

slowest, as was the case for the shoots. Root growth rates were however,

significantly lower after HgCb surface sterilisation when compared with NaOCI

surface sterilisation (Figures 4.1a and c).
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Figure 4.1 a: Root length of E. capensis axes genninated on various media (see key) after
sodium hypochlorite surface-sterilisation (n =20). Bar =mean ±SE.

12

10-E
E 8-.=.-en 6 -+-MSc:
.!!- --1/2 MS
0 40 -*'"" 1/2 MS+H.=.
tn

-.-1/4 MS
2

0

3 6 9 12 15

Time (days)

Figure 4.1 b: Shoot length of E. capensis axes genninated on various media (see key) after
sodium hypochlorite surface-sterilisation (n =20). Bar =mean ±SE.



CHAPTER 4 RESULTS AND DISCUSSION, E. capensis PAGE 113

30

25

-
~ 20-.=..
Cl 15c
.9!..
0 100

0:::

5

0

3 6 9 12

Time (days)

15

.......MS

--1/2 MS

--*""" 1/2 MS+H

---1/4 MS

Figure 4.1 c: Root length of E. capensis axes germinated on various media (see key) after
mercuric chloride surface sterilisation (n = 20). Bar = mean ±SE.
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Figure 4.1 d: Shoot length of E. capensis axes germinated on the various media (see key)
after mercuric chloride surface-sterilisation (n =20). Bar =mean ±SE.
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However, from the trials with HgCb surface sterilisation, the more concentrated

the media, the lower the survival. In view of the fact that use of NaOCI eliminated

all fungal contaminants and that growth rates on 114 MS maintained 100%

viability, despite the surface-sterilant used, this combination was chosen for all

subsequent investigations with E. capensis axes.

4.3 EXPERIMENTATION WITH DRYING: E. capensis

Desiccation trials were implemented to assess the viability retention of E.

capensis axes after exposure to four different methods of drying (Iaminar airflow-,

silica-gel-, f1ash- and fast flash-drying). Samples of 30 axes were taken at 5 min

intervals over 30 min of each drying regime. Ten axes were used for water

content determination, and 20 for in vitro culture. Thus, 750 E. capensis axes

were used for this preliminary desiccation trial. Before any drying was

implemented, all axes were surface-sterilised in a solution of sodium hypochlorite

containing Tween-20, rinsed 3 times in sterile distilled water (see Chapter 2) and

then dried. Those axes taken for assessment of survival were plated out in vitro

onto 114 MS medium supplemented with 30 g r1sucrose and solidified with 10 g r1

agar.

The water contents achieved for E. capensis axes atter 30 min dehydration were

laminar airflow> silica-gel > flash-dried > fast flash-dried (Figure 4.2). It should

be noted that the water contents achieved with the use of laminar airflow were

significantly higher for the first 20 min (0.74 ± 0.04 g g-1) than those axes
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Figure 4.2a: Water contents and root growth of E. capensis axes after exposure to differential
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Figure 4.2b: Water contents and shoot growth of E. capensis axes after exposure to
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exposed to fast flash-drying (0.39 ± 0.06 g g-1) for all embryonic axes.

Furthermore, after 30 min, those axes exposed to the most rapid form of drying

(FF-D) (0.29 ± 0.04 g g-1) had significantly lower water contents than laminar-f1ow

(L-F) (0.6 ± 0.05 g g-1) dried for both roots and shoots (Figure 4.2).

Ekebergia capensis embryonic axes, irrespective of the mode of drying and the

time taken (5 min - 30 min), maintained the ability for 100% root development.

However, in terms of root, and especially shoot growth, E. capensis axes did not

tolerate a slow removal of water (L-F) as well as those exposed to fast-flash

drying. Figure 4.2a indicates that even though 100% root development occurred

subsequent to laminar airflow (L-F) drying, a gradual and relatively uniform

decrease in the rate of root growth was observed. Silica-gel (S-G) dried axes,

also showed a slight decrease in root growth rate over the desiccation period.

This supports the contention of Pammenter et al. (1998) that if embryonic axes of

a recalcitrant species are dehydrated slowly, time is afforded for damaging

processes to occur while the water content is relatively high.

In terms of root development, those axes that were flash-dried, showed an

essentially similar response to the fast flash-dried axes. The latter, particularly,

showed a stimulation of root growth after water contents had been reduced to

less than c. 0.4 g g-1 and this response was particularly marked for the shoots,

even though not shown as statistically significant, (Figure 4.2b). This suggests

firstly that a certain degree of rapid dehydration of desiccation-sensitive material
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is stimulatory (Pammenter et al., 1998) and that there is no loss of viability until

structure-associated water is perturbed (Pammenter et al., 1991). It has been

suggested by Berjak et al. (1990), Pritchard (1991) and Pammenter et al. (1998)

that it is more likely that very rapid drying of excised axes rapidly precludes not

only germination-associated metabolism, but most metabolism, which implies a

stasis on deteriorative reactions as well. Presently, a gradual but not significant,

decrease in growth rate of both roots and shoots occurred below 0.3 g g-1

(possibly by the lower limit of freezable water) suggesting that a measure of

desiccation damage sensu stricto, as opposed to metabolism-related

deteriorative events (Pammenter et al., 1998) had occurred.

A further interesting, although subjective observation, was that after fast f1ash­

drying, the developing roots showed the most acute gravitropic response,

compared with developing seedlings from axes dehydrated by the other

methods.

The root responses were mirrored by the shoots (Figure 4.2b) subjected to the

various drying regimes. After exposure to flash-drying, shoot length increased

although showing no significant difference from one interval in time to the next. A

gradual increase was observed after drying to c. 0.6 g g-1, after which time, shoot

length decreased, but again not significantly (P < 0.05, ANQVA).
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Fast flash-drying resulted in a marked enhancement of this trend, with a

significant increase in shoot growth from axes dehydrated below c. 0.5 g g-1 (20

min). This trend was maintained in axes dehydrated to c. 0.4 g g-1, after which

growth rate declined slightly, but not significantly (P < 0.05, ANOVA).

The effects of differential drying rates on the viability retention of recalcitrant

seeds of E. capensis were also investigated by Pammenter et al. (1998). The

difference between the study of those authors and the present one was the

drying of whole seeds as opposed to the drying of embryonic axes. The results of

both studies, however, show similar trends. The implementation of short-term

rapid drying by those authors was associated with an enhanced germination rate,

until a stationary phase, associated with degree of dehydration, was recorded. In

the current investigation, where individual roots and shoots were measured,

these did decrease, albeit not significantly, after 20 min of drying to water

contents a little below 0.4 g g-1, although a stationary phase, per se, was not

presently recorded.

Other factors such as the effect of time course on variability of water content

could not, however, be strictly compared between these two studies, as the

whole seeds were dried for hours, and naked axes for minutes. Whatever the

case, responses of both whole seeds and axes to different drying rates implied

that it is not possible to determine a 'critical water content' for the loss of viability

(Pammenter et al. 1998). Ultimately, however, it can be deduced that the more
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rapid the drying rate, the higher the survival rate and the lower the water content

which can be achieved over a shorter time. From this point, fast flash-drying was

used as the drying pre-treatment before freezing. It should be noted, however,

that the variability within this particular batch of axes was vast, and more

intensive studies at different physiological ages should be carried out to

determine optimal drying rates and times.

4.4 FREEZING OF E. capensis AXES

Ekebergia capensis axes were frozen at two different rates (Chapter 2):

intermediate (direct plunging of cryovials containing axes, into liquid nitrogen)

and ultra-rapid cooling (naked axes, individually plunged into isopentane and

then immediately into liquid nitrogen). All axes died when contained in the

cryovials that were plunged directly into liquid nitrogen. After ultra-rapid cooling,

although some axis survival was achieved when distilled water was used as the

thawing agent, only roots developed in vitro. When the Ca2+Mg2+ solution was

used, not only did up to two-thirds of the axes survive, but almost all produced

shoots (Table 4.2).
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Table 4.2: The effects of thawing in distilled water or the Ca2+Mg2+ solution on
percentage root and shoot survival, assessed after 15 d in culture. All
experiments were done in triplicate (n = 30).

THAWING AGENTS

DISTILLED WATER

% ROOTS % SHOOTS % ROOTS % SHOOTS

1st TRIAL 33 0 60 57

2nd TRIAL 20 0 40 40

3rd TRIAL 30 0 65 60

The results obtained here for E. capensis substantiate those for Q. robur, in

demonstrating that liquid nitrogen plunging of axes within cryovials is likely to be

lethal, but that isopentane held just above its freezing point (-150°C) is a far

superior cryogen. Secondly, and most importantly, these results strengthen the

contention that thawing is also a critical step, and that when rapid axes are

immersed in distilled water, survival rates are low and shoot development does

not occur. Finally, the survival obtained when the E. capensis axes were thawed

in the divalent cation solution was not only acceptable, but provision of Ca2+and

Mg
2
+ in the medium promoted shoot development. Composition of the cation

solution was based on the rationale of Mycock (1999), in terms of promoting

cyto-and nucleoskeleton re-assembly during manipulation for cryostorage, and

after retrieval from the cryogen. Calcium and magnesium are the key controlling

ions in the dynamics of the skeletal elements (Hepler and Hush, 1996) and

although there is no direct evidence in the present study, it is highly likely that

their efficacy in the thawing step is based on this role.
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4.5 MICROSCOPICAL EXAMINATION OF E. capensis AXES

When observing root and shoot cells which had been surface-sterilised in sodium

hypochlorite, it was clear that those cells were metabolically active as in both the

root and shoot, cells contained large central spherical nuclei, small mitochondria,

and vacuoles as well as Golgi bodies and many profiles of rER. The presence of

the compounds of the endomembrane, particularly of the Golgi bodies, indicated

the metabolically-active status of the cells. Furthermore, the cell wall was regular,

with the plasmalemma closely associated. In addition, Figure 4.3b shows a few

of the many statoliths (gravity-perceptors) in the root cap columella cells that

developed in the surface-sterilised material after 6 d in vitro, the role of which

was indicated by the pronounced geotropic curvature.
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(b) x 25300
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Figure 4.3a: Ultrastructural aspects of typical E. caoensis axis cells. The ultrastructure is
consistent with cells that are hydrated, show some metabolic activity and have not suffered any
obvious adverse effects from the surface sterilisation procedure. Fig 4.3b: Details of a cluster of
statoliths, which were prominent features of the root cap columella cells, in material after 6 d in
vitro following surface-sterilisation.

Both shoot and root apex cells of axes that had been subjected to fast f1ash-

drying, appeared normal (Figure 4.4). Cells of both axis apices contained large

spherical nuclei as were seen in the control material. Mitochondria (not as

spherical as those in the control axes, in fact the mitochondria appeared

relatively undifferentiated compared with control shoots), small Golgi bodies and

regular cell walls with closely adpressed plasmalemmas were characteristic.

However, there seemed to be an increase in the degree of vacuolation in the

shoot apical cells (Figure 4.4a). The vacuoles contained degraded remains of

material that appeared to have been internalised from the cytomatrix. The
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columella root cap cells (Figure 4.4b) exhibited well-developed statoliths

correlating with the gravitropic response shown by the axes in culture.

(a) x 5000 (b) x 23 400

Figure 4.4: Ultrastructural aspects of E. capensis axes after fast flash-drying. Fig. 4.4a: Even
though the mitochondria were less differentiated than in the control, fast flash-drying appeared to
have no adverse effect on the shoot apical meristem cells, judging from plastid development. The
degree of vacuolation did, however, increase after drying, this might have been stress-related. Fig
4.4b: The occurrence and structure of cap columella statoliths seemed unchanged by
dehydration.

After fast flash-drying, ultra-rapid cooling and thawing in distilled water (Wesley­

Smith et al. 1999), most shoot apex cells (Figure 4.5a). showed advanced

degradation, with extensive internal lysis. The ultrastructure of these cells

indicated that the shoot apices had rapidly become necrotic. Shoot apices

generally, have no external protective structures, and, in fact, constitute the

apical meristems. Their degeneration is basic to the lack of any shoot

development following water thawing. Figure 4.5b illustrates the typical
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ultrastructure of the root cap columella cells. These cells were obviously active,

showing mitochondria and Golgi bodies, but no statoliths had developed,

indicating the basis for the lack of the gravitropic response.

(a) x 19 000 (b) x 18 500

Figure 4.5: Ekebergia capensis embryonic axes after fast flash-drying, ultra-rapid cooling and
thawing in distilled water. Fig. 4.5a: Many of the shoot apex cells of these treated axes were in
disarray, where organelles were difficult to identify among the intracellular debris Fig. 4.5b: Root
cap columella cells showed signs of greatly enhanced activity, in the production of many
polysomes, short rER profiles, Golgi bodies and active mitochondria. However, no statoliths were
present.

Those root cells that were fast f1ash-dried, ultra-rapidly cooled and thawed in the

Ca2+Mg2+ solution, on the other hand, showed a high level of ultrastructural

organisation. The shoot cells were typified by small vacuoles, mitochondria, Golgi

bodies and profiles of ER. Additionally the integrity of the plasmamembrane

seemed to have been retained. Significantly, statolith formation had been
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promoted after thawing in the cation solution, this correlated with gravitropic

curvature displayed with the 6 d in vitro growth period.

(b) x 23200

Figure 4.6: Ultrastructural aspects of E. caoensis embryonic axes after fast-flash drying. ultra­
rapid cooling and thawing in Ca2+Mg2+ solution. Fig. 4.6a: Cells of the shoot apex were in good
condition, although relatively more vacuolated than in the control material. Organelle disposition
appeared normal, as did the nuclei, which contained prominent nucleoli. Fig. 4.6b: Statoliths,
containing the deeply-stained starch grains typical of this species, occurred in root cap columella
cells.

Figure 4.7 shows the difference in general appearance of the typical E. capensis

axes exposed to fast f1ash-drying only and fast flash-drying, ultra-rapid cooling

and thawing in distilled water or the Ca2+Mg2+solution, respectively. Axes had

been maintained in vitro for 15 d.
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Figure 4.7: Actual size.

The'typical appearance of E. capensis axes after thawing in either distilled water or the Ca2+Mg2+
solution, respectively, after exposure to fast flash-drying and ultra-rapid cooling. The dried axis on
the left of the photograph indicates a typical example of an axis fast flash-dried only.

Those axes fast flash-dried, ultra-rapid cooled (frozen) and thawed in distilled

water, showed greening, indicating that some cells had survived, but with only

minimal root growth and no shoot formation. The shoot apices became necrotic

relatively rapidly, as borne out by the ultrastructural studies. Those axes dried

and frozen in the same way, but thawed in the Ca2+Mg2+ solution, however, did

maintain good seedling formation for some axes, and even though not as

vigorous as those dried only axes, appeared somewhat normal.

Figure 4.8 shows a typical E. capensis seedling after removal from Jiffy-7 pots

(peat moss) (see Chapter 2), and then into potting soil.



CHAPTER 4 RESULTS AND DISCUSSION, E. capensis PAGE 127

Figure 4.8: Actual size.

Ekeberqia capensis 3 month old plant. in potting soil. grown from an axis after fast flash-drying.
ultra-rapid cooling. and thawing in the Ca2+Mg2+solution.

The results obtained for axes and seedlings of E. capensis, like those for Q.

robu" indicate that besides optimisation of dehydration and cooling (freezing),

the parameters of the thawing step are vitally important in facilitating successful

seedling development.
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From the outcome of the investigations described in preceding chapters, it is

clear that embryonic axes of Q. robur and E. capensis are desiccation-sensitive.

Not only are they shed at high water contents, but are actively metabolic

throughout development and in the case of E. capensis, may be chilling

sensitive, but they are also prone to microbial contamination (Berjak, 1996;

Berjak et aI., 1990; Mycock and Berjak, 1990). These features, in combination,

demand that the axes of both species be taken through the procedures of

surface-sterilisation, controlled dehydration and cooling (freezing) in order for

them to be successfully cryopreserved.

The different surface-sterilants tested, showed that the best, most effective and

least injurious procedure to remove the propagules of contaminating

microorganisms from the embryonic axes of both Q. robur and E. capensis was

1% (v/v) sodium hypochlorite, containing a wetting agent (Tween-20). The

present investigation on axes of Q. robur clearly demonstrated that tissue injury

can be caused by over-rigorous, prolonged surface-sterilisation. It was

concluded that the damage caused to the root cap and shoot apical meristem at

this initial stage of axis manipulation, predisposed the tissues to fatal injury when

the axes were frozen and/or thawed. In this regard, the surface-sterilisation

procedure of Poulsen (1992) was apparently a major factor in the lack of

successful cryopreservation of Q. robur embryonic axes.
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With respect to optimal culture conditions, Q. robur axes germinated, best judged

by their performance after 30 d, on a half-strength MS medium supplemented

with 0.1 mg 1"1 (mlv) NAA, 2 mg 1"1 (m/v) BA and 30 g 1"1 (m/v) sucrose and

solidified with 10 g 1"1 (m/v) agar. The results for E. capensis suggested that

quarter-strength MS medium supplemented with 30 g 1"1 (m/v) sucrose but not

containing any hormones and solidified with 10 g 1"1 (m/v) agar was preferable for

the culture of embryonic axes of this species. Comparison of the culture

conditions best favouring axis germination for the two species presently

investigated, indicates a fundamentally important principle in in vitro embryo

culture. That is, the axes of different species may be expected to differ markedly

in their requirements for good germination in culture. In the present investigation,

a 50% reduction of MS salts from the original formulation (Murashige and Skoog,

1962) promoted Q. robur axis development, while a further halving of the MS

salts was best for those of E. capensis. The fact that inclusion of plant growth

regulators in the case of Q. robur and the exclusion for E. capensis afforded a

better performance for the two species, respectively, further emphasises the

need for a matrix of parameters to be tested for each species being considered

for axis cryopreservation.

It was shown that for both of the desiccation-sensitive species, Q. robur and E.

capensis, axis viability was best conserved if water was removed rapidly. The

retention of viability to relatively low water contents upon flash and fast f1ash­

drying of axes from both species reinforces observations~ made for other
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recalcitrant or desiccation-sensitive species (Berjak et al., 1990; 1992; 1993;

Pammenter et al., 1991; Vertucci et al., 1991; Wesley-Smith et al., 1999).

Viability was, however, lost after slower dehydration (via laminar airflow and

silica-gel drying) to similar water contents as has been reported by other authors

(Berjak et al., 1993; Pammenter et al., 1998).

Additionally, when flash or fast flash-dried, axes from both Q. robur and E.

capensis could tolerate a greater amount of water loss and thus survive to lower

water contents than those axes dried using slower drying regimes (Iaminar

airflow and silica-gel). This supports the contention (Pammenter et al., 1998) that

flash and fast flash-drying imposes a stasis on the deteriorative biochemical

reactions in the cells, enabling axes to maintain viability to relatively low water

contents. Pammenter et al. (1998) showed that marked intracellular damage

occurred at relatively high water contents in axes of E. capensis when whole

seeds were relatively slowly dehydrated, and that those seeds lost vigour and

viability at correspondingly high water contents. Those authors showed, in

contrast, that when the whole seeds were rapidly dehydrated, far lower water

contents, commisurate with vigour and viability retention, were achieved. That

work indicates that irrespective of the presence of the cotyledons, rapid water

removal facilitates dehydration to significanty lower axis water contents without

serious damage, as in the case for the excised axes presently used. It is not that

rapidly-dried axes have become desiccation-tolerant but, as emphasised by

Pammenter et al., (1998) and Pammenter and Berjak (1999), that during slow
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dehydration, there is adequate time for damage to occur and accumulate as a

result of deranged metabolism under conditions of prolonged and increasing

water stress.

It is apparently impossible to remove all the water from desiccation-sensitive

plant tissues, including those of recalcitrant seeds, or in this case, embryonic

axes even when this material is equilibrated to very low relative humidities

(Leopold and Vertucci, 1986; Vertucci and Leopold, 1987, Berjak et al., 1990).

Be~ak et al. (1990) contended that there is a fraction of persistent water that is

very strongly membrane bound and which cannot be removed by conventional

dehydration. Those authors suggested that this water fraction might stabilise

membranes and macromolecules transiently when axes from recalcitrant seeds

are very rapidly dehydrated, by flash or fast flash-drying. In fact, Pammenter et

al. (1990) went further in contending that a major difference between orthodox

(desiccation-telerant) and recalcitrant seeds is that the former are able to lose a

considerable proporton of this strongly-bound water without damage, whereas

desiccation-sensitive seeds cannot.

Metabolic activity was maintained throughout a 10 week cold-storage of Q. robur

seeds, as these acorns were observed to germinate more vigorously and rapidly

than fresh, newly-harvested seeds. Ultrastructural studies of the embryonic axes

of 10 week cold-stored seeds revealed that in fast flash-dried axes, cellular

integrity was well maintained after drying to water contents of 0.37 ± 0.04 g g-1 for
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Q. robur, as opposed to the situation in slow dried axes from the same stored

population where there had been extensive loss of membrane integrity and

cellular organisation (Poulsen, 1992; Chmielarz, 1997). It is interesting that axes

from the 10 week cold-stored, relatively more mature seeds, provided better

starting material for cryopreservation than did those from fresh seeds. This

emphasises that comparative developmental status is a further critical parameter

for successful cryostorage.

When fast f1ash-dried axes of both Q. robur and E. capensis were cooled/frozen

at different rates, it was noted that irrespective of optimised pre-treatments, those

axes frozen at slower rates died. Survival occurred only after ultra-rapid cooling!

freezing (Wesley-Smith et al. 1 1999) was implemented. Ultra-rapid

cooling/freezing facilitates passage of the axes extremely rapidly through the

temperature range at which vitrelline ice forms. In this regard, should there have

been freezable water remaining after fast flash-drying (to 0.37 ± 0.04 g g-1 and

0.39 ± 0.06 g g-1) for Q. robur and E. capensis, respectively) then either only

minute (non-injurious) ice crystals or vitrelline ice, should have resulted (Wesley­

Smith et al., 1999). It can be deduced that this was the case, judging from

viability retention of axes of both species, after cryopreservation. It seems

possible that, for both Q. robur and E. capensis axes, some freezable water must

have remained within the cells after fast f1ash-drying. This is suggested to be the

basis of viability loss ofter slower cooling/freezing, as a consequence of lethal ice

crystal damage, in the present studies.
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It is common practice to rapidly warm embryonic axes in distilled water (40°C for

a few min) after retrieval from cryostorage (e.g. Wesley-Smith et al., 1999). While

rapid warming is held to obviate ice crystal formation, only some root survival

was presently achieved, and in all cases, shoots were adversely affected. After

rapid warming was carried out in a cation solution (Ca2+Mg2+), based on the

rationale of Mycock (1999) in terms of promoting cyto- and nucleoskeleton re­

assembly after cryostorage, the roots and some shoots of a significant proportion

of axes survived, facilitating production in both species. Another important

deficiency of thawing in distilled water was that root geoperception did not occur.

This too, was successfully overcome by thawing in the divalent cation solution.

Shoot apices of water-thawed axes became necrotic within 30 d in vitro.

Ultrastructural analysis of shoot apical meristems of Q. robur 6 d after water­

thawing, showed symptoms suggestive of spatial disorganisation of both the

cytomatrix and the interior of the nucleus. In contrast, after a similar in vitro

recovery period, shoot apical meristem cells of axes had been thawed in the

cation solution were actively mitotic and highly organised. These observations

support the contention made that water-thawing results in irreversible

disorganisation, whereas provision of Ca2+Mg2+ in appropriate concentrations

rapidly restores intra-cellular homeostasis. The brief stUdy on leakage thawing

indicates that a massive solute efflux from axes in distilled water, whereas those

thawed in Ca
2
+Mg

2
+ leaked far less. While it is tempting to adduce plasmalemma

damage (e. g. Simon, 1974) having been counteracted by thawing in the cation
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solution. The present study did not reveal ultrastructurally-visibe defects of this

vital cell boundary. Presently, therefore, the beneficial effects of the cations are

conjectural.

In terms of the promotion of graviperception by Ca2+Mg2+ thawing, it is relevant

that these conditions facilitated statolith formation in root cap columella cells of

axes of both species, while after water thawing, statolith formation was

conspicuously absent. It is concluded that calcium (or its loss) is the central issue

here: loss of cell homeostasis as a consequence of calcium loss during water­

thawing is conjectured to have been counteracted by provision of this cation.

Calcium is known to be normally sequestered in amyloplasts (Chandra et al.,

1982) and may well be involved in activation of certain enzymes of the starch

synthesis pathway (Sturm and Tang, 1999). Absence of this cation by its loss

during thawing could have prevented the synthesis of starch grains that are

essential features of these specialised amyloplasts called statoliths, in the root

cap columella cells of both species. As a consequence, water-thawed axes could

not show any graviperception.

As yet, achievement of successful cryopreservation for desiccation-sensitive

germplasm is in the experimental stages. The preservation of viability to low

water contents by flash or fast f1ash-drying offers possibilities for the crystorage

of such axes, as does careful control of cooling/freezing and warming

parameters.



OVERVIEW PAGE 135

Rapid or ultra-rapid coolinglfreezing (theoretically at thousands of degrees sec-1
)

at relatively high water contents combines the possibility of cryopreservation with

the advantage of only moderate dehydration to water contents well above those

at which intracellular damage and the necessity of extensive repair, occur. This

practice would minimise the in vitro germination lag during which recovery

occurs. Thus a rapid rate of freezing of embryonic axes of recalcitrant seed

species, following partial flash or fast flash-drying of these axes, appears to offer

a favourable approach for the long-term storage of such desiccation-sensitive

species, by cryopreservation.
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