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ABSTRACT

Baseline Demand Responsiveness Framework for the Conventional Grid through
Appliance Scheduling by Evolutionary Metaheuristics

A major problem of many energy environments nowadays, is an obsolete and highly inefficient electric-
ity supply system, the Conventional Grid (CG), characterized by a high peak to average ratio, out of an
uncontrollable demand, worsened by a native lack of communications infrastructures and resources for
performing a proper automated demand side management, which has resulted in blackouts, harsh user
discomfort, high electricity cost, huge economic losses and a high carbon footprint.

Designed to tackle this problem is the emerging Smart Grid (SG). Most research works are devoted to
providing automation and efficiency to the SG (or the intermediate SG-like) environments. There is a
scarcity of research devoted to providing automated demand responsiveness to the information layer de-
prived CG environments, although as evident, an Automated Demand Response (ADR) is badly required,
since there is still a long way until we get to the SG, all the more when developing world is concerned.

Such context, set our focus towards the CG. So, this research work, developed a framework for provid-
ing a "blind" baseline Demand Responsiveness (bbDR) for CG environments, wherein, a pseudo real
time electricity pricing function, built from a country load profile, is used as a guiding function for
the autonomous scheduling of controllable appliances, which seeks to improve electricity consumption
patterns, while also preserving user satisfaction by complying to their preferences. For performance
evaluation, the optimized energy consumption patterns (peak load, peak to average ratio, load and cost
profiles and mean energy rate) of the controlled use of appliances, are compared to those ones produced
by their uncontrolled use. The controlled usage schedules are produced by an evolutionary metaheuris-
tics, whilst the uncontrolled usage is stochastically generated from appliances’ rate-of-use probabilities
sourced from the literature. The results proved that, such framework is capable of, without DR communi-
cations, delivering meaningful, ADR-like, performances to a communications deprived CG environment.

As part of the work for simulating the above bbDR framework, we developed and demonstrated a Real
Parameter Blackbox Optimization Approach to Appliance Scheduling (RPBBOAS) model, which de-
scribes the household, and provides the logical interface with the optimization algorithms. This real
parameter model, vis-a-vis its discrete parameter counterpart, tackles combinatorial explosion by, in a
novel way, reducing the problem dimension that is traded with the external blackbox optimization algo-
rithms, in such a way that boosts performance and widens the window of applicable algorithms.

While developing the above RPBBOAS model, readily available state-of-the-art metaheuristics showed
a lackluster performance, which propelled us to design a novel hybrid evolutionary metaheuristics (Hy-
PERGDx) that was eventually used in the bbDR simulations. It showed a better all-around performance
and robustness vs the state-of-the-art, when benchmarked on a wide range of non-linear problems.

Overall, such deliveries, demonstrated the potential of the proposed bbDR framework for improving de-
mand patterns and quality of service figures, in a communication free way, which with an appropriate
follow-up development, makes it suitable for application in severely affected, communications deprived
(or communications limited), energy networks such as South Africa or worse energy ecosystems.

Keywords: Appliance, Appliance Scheduling, Household Energy Management, Demand Side Manage-
ment, Demand Response, Conventional Grid, Smart Grid, Smart Load, Smart Appliance, Grid Friendly
Appliance, Swarm Intelligence, Evolutionary Computation, Heuristic optimization, Blackbox Optimiza-
tion, Metaheuristics, Hybrid Algorithms
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Symbol Description

DLPh Daily (24h) load profile for some household.

DLPc Country daily (24h) load profile.

τ Simulation/control horizon unit time step.

ρ The hourly relative resolution; it equates to the number of τ time steps comprised

in 1h; i.e., ρ = 3600/τ .

T Continuous time simulation/control horizon.

D,d Used frequently as the dimension of the given candidate solution, the problem size,

the dimension of the problem space.

X ,x X or x, is frequently used to represent the design space parameter of some dimen-

sion D. X or x is also called solution, candidate solution, particle in population

based metaheuristic (PBM) parlance. Note that X has also been used with other

meaning in (Eq.22), where it is a homogeneous Poisson point process random vari-

able, representing the number of arrival events in a given time interval.

XL The lower bound of the problem space, a scalar or a vector of the problem size.

XU The upper bound of the problem space, a scalar or a vector of the problem size.

Nt Number of discrete time steps comprised in the simulation/control horizon.

T d Discrete time representation of the simulation/control horizon T .

t most frequently used as time index, for pointing to discrete time steps of the sim-

ulation/control horizon T or Td . Then for all such cases, it also equates to discrete

time. t is also used as: continuous time: as in (Eq.22); as iteration counter (implic-

itly continuous time) in (Eqs.25) through (Eqs.27).
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Symbol Description

Na Number of appliances for some household.

α Household’s user centricity coefficient; a greater α prioritizes user comfort over

energy cost reduction.

β Household’s energy centricity coefficient (β = 1−α), a greater β prioritizes en-

ergy cost reduction over user comfort. β is also used as the Lévy distribution index,

used in the generation of Lévy random walks (Lévy flights) in the Cuckoo Search

Algorithm (CSA).

ς Household’s user preference window start-up time (or active timeslot) misplace-

ment penalty coefficient; the greater is ς vs δ , the greater the share of cycle place-

ment vs cycle duration in the user preference window penalty function Πupwd(.).

δ Household’s user preference window duration mismatch penalty coefficient; the

greater is δ vs ς , the grater the share of cycle duration vs cycle placement in the

user preference window penalty function Πupwd(.).

PBi Household’s controlled appliances instant power budget (in KW): the total maxi-

mum allowed instant power demand for schedulable appliances.

EBd Household’s 24h total energy consumption budget (KWh) for schedulable appli-

ances: the maximum allowed total per 24h energy consumption for schedulable

appliances.

Hde f Household’s settings vector. It holds the current values of α,ς ,δ ,τ,T,PBi and EBd .

i Used as a generic index with different meanings in different contexts.

j Used frequently (but not exclusively) to reference the generic appliance, eg. "ap-

pliance j", i.e., the j-th of the household’s appliances.

k Used most frequently to index the generic cycle of certain appliance j; it frequently

comes along with j as indexes for some cycle C, eg.: C jk denotes the cycle k of

appliance j. However, k is not used exclusively with the above meaning; eg.: in

(Eq.22), k is a number of random events.

m m is used frequently (but not exclusively) for the total number of household’s appli-

ances. m is also used to represent the mean of an evolution strategy metaheuristics.
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Symbol Description

K j The total number of cycles for some appliance j in the household.

K Used frequently (but not exclusively) for the collective total number of appliances’

cycles, ie, for all appliances. K is also used in the CSA algorithm, to represent

the component-wise portion of the nest that will effectively mutate as a result of

applying the mutation operation according to pa.

c Used frequently (but not exclusively) as a linear cycle index, a pointer to some cycle

in {Ci} the vector of linear indexes for the union set of all appliances’ duty cycles.

C jk Represents the working cycle number k of the j-th appliance, a vector of length 2,

comprised by a start-up time and an end time.

CO jk Represents the extended working cycle number k of the j-th appliance, a vector

of length 2, comprised by a start-up time and a end time, wherein the end time is

extended to include an inter-cycle time.

COvr Represents the union set of all extended working cycles that a given CO jk cycle

should not be overlapped with, i.e. no contemporaneity is admitted between COvr

and CO jk.

{C jk} The vector containing linear indexes for the union set of all appliances’ working

cycles in the household’s appliance database.

St , sc Represents starting time pertaining to some appliance cycle.

Dt , dc Represents duration time pertaining to some appliance cycle.

NCde f A vector holding the total number of preferred ducty cycles for each one of the

hosehold’s schedulable appliances.

Pn j Nominal power of the j-th appliance.

Psb j Standby power of the appliance j.

Ton j The vector of active (powered on) time steps of the appliance j, out of the simula-

tion/control horizon.

T sb j The vector of standby (= inactive) time steps of the appliance j, out of the simula-

tion/control horizon.
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Symbol Description

ATj Power control type of the appliance j; a boolean variable, determines whether the

appliance is or not controllable. A value ATj = 1, determines that the appliance is

controllable.

Wz j Set of predefined "no-go" zones for appliance j: design space windows not allowed,

for schedules placement for the schedulable appliance j.

Wp j Set of run time adaptive "precedent" zones for appliance j: schedules placement

not allowed before the end of latest Wp j window (which may vary at run time), for

the schedulable appliance j.

Ade f User preferred appliance settings tuple. It holds the current values of

Pn j, Psb j, ATj , Wz j, Wp j for each one of the m household appliances.

WT de f A tuple containing definitions of user preferences or baseline values for appliances’

cycles start times and their boundary constraints.

πT
jk Start-up (or generally: active time slot) misplacement penalty type for appliance j

cycle k.

T L
jk The absolute lower bound start-up time for cycle k of the j-th appliance.

TU
jk The absolute upper bound active time for cycle k of the j-th appliance.

T OL
jk User preferred cycle placement window lower bound start-up time for cycle k of

the j-th appliance.

T OU
jk User preferred cycle placement window upper bound active time for cycle k of the

j-th appliance.

T O
jk User preferred optimal start-up time for cycle k of the j-th appliance.

WDde f A tuple containing definitions of user preferences or baseline values for appliances’

cycles duration times and their boundary constraints.

W T
jk User preferred window interval for cycle k of the j-th appliance, bounded by the

worst case preferred active time placements .

W TO
jk User preferred optimal sub-window (within W T

jk); the user preferred optimal place-

ment for working cycle k of the j-th appliance.

WoEt The end time of the user preferred optimal sub-window (W TO
jk ).
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Symbol Description

W DO
jk User preferred optimal duration sub-window; the user preferred optimal duration

for working cycle k of the j-th appliance.

πD
jk Duration mismatch penalty type for appliance j cycle k.

DL
jk The absolute lower bound duration for cycle k of the j-th appliance.

DU
jk The absolute upper bound duration for cycle k of the j-th appliance.

DOL
jk User preferred lower bound cycle duration for cycle k of the j-th appliance.

DOU
jk User preferred upper bound cycle duration for cycle k of the j-th appliance.

DO
jk User preferred optimal duration for cycle k of the j-th appliance.

DOcnt
jk User defined range of the preferred optimal duration for cycle k of the j-th appli-

ance.

Ict , ICT
jk The minimum inter-cycle time as per user preference or per operational/technical

imperative; ICT
jk is the inter-cycle time for appliance j cycle k: a minimum delay

before staring next cycle, k+1, if any.

Q j(t) Boolean active state of the j-th household appliance at time step t. A value of

Q j(t) = 1 corresponds to "ON" state, whereas the value of Q j(t) = 0, corresponds

to inactive state: "OFF" (or standby for some appliances, and then, consuming a

standby power).

q j(t) The complementary boolean state of Q j(t): i.e., q j(t) = 1−Q j(t).

NC j The total number of cycles of appliance j, computed at simulation/run time.

t j A vector of length NC j holding the starting times of the simulation time computed

cycles of appliance j.

te
j A vector of length NC j holding the end times of the simulation time computed

cycles of appliance j.

d j A vector of length NC j holding the durations of the simulation time computed cycles

of appliance j.

Xτ in (Eqs.4h), represents the linear conversion of some odd dimensional component

of X in number of τ time slots.
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Symbol Description

Pi(t) A vector of size Nt , that serves to hold the instantaneous (per each t) power demand

for all appliances.

Ed A scalar for holding the 24h total power consumption for all appliances.

EC j Total energy consumption of appliance j.

UD j User discomfort for appliance j departure from its user preferred optimal working

times and durations.

UDh Total user discomfort for all schedulable appliances’ departures from their user

preferred optimal working times and durations.

Ps Start-up/active time misplacement penalty, a vector of per time slot misplacement

penalties representing the user discomfort for some cycle jk (per each time slot)

departure from its user preferred working time window and optimal sub-window.

Pd Duration time misplacement penalty, a scalar duration misplacement penalty rep-

resenting the user discomfort for some cycle jk duration departure from its user

preferred working time window and optimal sub-window.

Upwd(t) The penalty for either cycle misplacement or cycle mislength, given the time t;

standing for either the start-up/active time or the duration.

Πupwd Agreggate cycle misplacement/mislength penalty.

βp Represents the exponential penalty value at the boundaries of the user preferred

cycle placement window. βp is approximately equal to 1, at these locations with

just an error ε .

ε in (Eq.14) Represents the distance (should be small) of the exponential penalty

βp to the full penalty (=1) at the boundaries of the user preferred cycle placement

window.

R(t) A vector of length Nt containing the energy rate per each τ time step of the simula-

tion/control horizon T .

Pr j(t) A vector for holding the active power rating (either Pn j or Psb j) according to the

active state of appliance j at time step t, where t ∈ {1, 2, ..., Nt}.
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Symbol Description

S j The α (and ς ,δ ) regulated soft penalty for appliance j departure from its user

preferred optimal working times and durations (user preferences were modelled as

soft constraints).

H j Hard penalty for appliance j violation of these "hard" constraints: some (either

instant or daily) power budget; or some cycles overlapping (which could happen in

the model of (Eqs.4)).

B j The hard penalty for those working cycle placements of appliance j, that in some

way violate the following feasible problem space ("hard") constraints: box con-

straints, "no-go" zones and cycle precedence zones.

EPCh Total penalized energy consumption for the household.

r The number of optimization runs.

rs The number of successful optimization runs, out of r.

Sr Success rate: the ratio of the successful runs to the total number of optimization

runs, Sr =
rs
r .

ERT Expected Running Time [80].

ERTr Expected Running Time for the mean run in number of function evaluations

(Eq.19f). It is the mean number of function evaluations wherein the failed runs

are awarded the budget number of function evaluations per run (Sec.3.5.2).

FEmax The advertised budget number of function evaluations (FEs) per run. The budget

FEs that is given to the metaheuristics as one of the stopping criteria per a single

optimization run.

FEmax2λ The actual budget number of function evaluations per run. The budget FEmax2λ

that is awarded to failed runs and used in other calculations where the maximum

number of function evaluations metric is required, such as, in the calculation of the

ERTr. See (Sec.3.5.2).

FEsuccAvg The average number of function evaluations pertaining to the successful optimiza-

tion runs.

BV The best ever function value out of all optimization runs for a given metaheuristics.
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Symbol Description

µV The mean of the best function values out of all optimization runs.

MedV The median of the best function values out of all optimization runs.

OFs Objective function score. The score given to a metaheuristics at a particular objec-

tive function (Eq.19a).

OFrk Objective function rank. It is the weak order rank for a certain metaheuristics

among the contending metaheuristics, out of their OFs.

BV reward A reward, the lower the better, that is given to the metaheuristics with tied values of

ERTr, based on their values of BV in conjunction with the values of MedV and µV ,

where necessary.

RoPs Rate of problems solved. Represents the proportion of solved (where solved

equates to any non null success rate) by a metaheuristics, out of the total of testbed

problems.

Npb Number of problems composing a certain testbed of benchmarking problems.

Nnon100s Number of non perfectly solved (where a perfectly solved is the one solved with

a 100% success rate), out of the total number of problems, Npb, comprised in a

testbed.

FSs Function set score. It is the aggregate testbed score awarded to a certain meta-

heuristics, obtained by a weighed sum derivation from its: mean of objective func-

tion ranks, proportion of problems solved, mean success rate and the proportion of

non-100% success rates.

WmOF Mean objective function rank weight. A weight that determine the contribution

of the mean of objective function ranks in the aggregate testbed (the function set)

score, FSs, awarded to a certain metaheuristics.

WRoPs The weight for the proportion of problems solved. A weight that determine the

contribution of the rate of problems solved in the aggregate testbed score awarded

to a certain metaheuristics.
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Symbol Description

WmSr The weight for the mean of success rates of a given metaheuristics, out of all testbed

problems. A weight that determine the contribution of the mean success rate in the

aggregate testbed score awarded to the metaheuristics.

Wn100s The weight for the proportion of non perfect (non 100%) success rates. A weight

that determine the amount of the penalty over the proportion of non 100% success

rates in the aggregate testbed score awarded to a certain metaheuristics.

λ , PS λ or PS, are used to represent the population size in population based metaheuris-

tics. λ has been used with another meaning in (Eq.22), where it represents the

constant rate of a homogeneous Poisson point process.

µ Represents the mean of a homogeneous Poisson point process, in (Eq.22).

X j(t) Represents the number of Poisson process events at time t for the appliance j.

λ j(t) Represents the variable rate of a non-homogeneous Poisson point process.

ToUPs j(t) The time of use probability of the appliance j at time slot t were t ∈ {1, 2, ..., Nt}.

minCPD The minimum number of cycles per day for certain appliance.

meanCPD The mean number of cycles per day for certain appliance.

maxCPD The maximum number of cycles per day for certain appliance.

minCT The minimum cycle duration for a given cycle of certain appliance.

meanCT The mean cycle duration for a given cycle of certain appliance.

maxCT The maximum cycle duration for a given cycle of certain appliance.

Vi(t) The velocity of the i-th particle at iteration t in the Particle Swarm Optimization

(PSO) metaheuristics.

Xi(t) The location in the problem space, of the i-th particle at iteration t in the PSO

metaheuristics.

C1 Cognitive component acceleration, a scalar constant, of the particle velocity, in the

PSO metaheuristics.

C2 Social component acceleration, a scalar constant, of the particle velocity, in the

PSO metaheuristics.
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Symbol Description

R1 Uniformly distributed random vector of the size of Xi(t), pertaining to the cognitive

component of the particle velocity in the PSO metaheuristics.

R1 Uniformly distributed random vector of the size of Xi(t), respective to the social

component of the particle velocity in the PSO metaheuristics.

w,w(t) The constant, or the time (t) dependent inertia weight, of the momentum component

of the particle velocity in the PSO metaheuristics. Otherwise, w, as a vector, is

used to represent the recombination weights of the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) optimization metaheuristics.

XPBi The particle’s (personal) best, the fittest, location ever visited, in the PSO meta-

heuristics.

XGBi The population’s (global) best, the fittest, location ever visited by any particle

(equates to the best of the individual XPBi locations), in the PSO metaheuristics.

C The covariance matrix of the particle population of the evolution strategy optimiza-

tion metaheuristics.

σ The step size of the evolution strategy optimization metaheuristics.

ρud , ρnd Uniformly and normaly distributed random numbers in the CSA metaheuristics.

SszG, SszL Global explorarion and local exploitation random walks step sizes in the CSA meta-

heuristics.

α1, α2 Global explorarion and local exploitation random walks scaling factors in the CSA

metaheuristics.

xbest Global best position ever achieved by any nest/particle in the CSA metaheuristics;

the same as the XGBi .

pa Alien eggs discovery rate, a crossover probability determining the amount of

change on the nests that will undergo mutation, component-wise, into new nests, in

the CSA metaheuristics.



Chapter 1

Introduction and Background

1.1 Motivations

The most critical concerns of energy supply and management in any electrical grid, are (i) keep-

ing the Energy Consumption (EC) and energy losses as low as possible, while (ii) meeting the

energy needs of the end-use consumers (households, industry, etc.)(see further discussion on

energy goals and stakeholders under 2.1.1 and 2.1.2). Finding an agreement of these objectives

has been a difficult task in the management/control point of view, since energy production and

distribution is performed and managed in one extreme (the utility side or the "supply side"),

whereas EC is normally controlled by the consumer (at the other extreme, the "consumer side"

or "demand side"). To make things worse, it turns out also that in the general case, consumers

are apparently insensitive and unresponsive to the power saving and Demand Response (DR)

practices (on DR, see 2.1.7), as pointed out in various research works. Just to cite some, ac-

cording to Beaudin and Zareipour [1], "residential consumers do not want to spend time to

analyse consumption decisions and micro-manage household devices to save money"; Adika

and Wang [2], state that "manual participation by customers in demand response will not be

possible" being "one of the impediments to consumer involvement in DR". Multiple works

cited herein are unanimous on that issue, which underlines the importance of an automated DR,

a goal pursued by HEMSs and other types of management and control automata, of the energy

ecosystem.

1
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So, providing an automated functionality to energy efficiency, user satisfaction and demand

response are the first motivations for this research. While demand response is a gridwise feature,

energy efficiency and user satisfaction are universal concerns which apply to off-grid scenarios

as well.

The above problem, allied to other contributors, has been an important driving factor to

the uncontrollability, unpredictability and persistent increasing of the energy demand in CG

based electricity, characterized with high Peak-to-Average Ratios (PARs), making it very diffi-

cult for the utility company to maintain a balance between energy supply and demand, leading

to power blackouts (be they unpredicted, or scheduled load-shedding events) and brown-outs

(under-voltages and other kinds of network electricity signal instabilities), and a big list of other

negative issues. All that, end in driving up the costs for the generation and distribution of elec-

tricity, and thence, high electricity price for the end-use consumer, etc.

All these problems are underlying the CG outdated overall working philosophy, which we

discuss further in section 2. One of the motivations for the present work is helping to address

such problems in the general perspective, and with the end-user at household level as the focus.

The advent of the SG, and other smaller scale initiatives in the same direction, is an intent

to collectively address those shortcomings. It is among the many SG’s goals, tackling said

load profile unpredictability, bringing about an automated Demand Side Management (DSM)

by performing a better control of the consumer’s loads, either by direct load control (DLC)

(similar to that addressed by Neglia et al. [3]) or through autonomous controllers located at

customers’ premises, as the proposed by Adika and Wang [2] and many other works that we

discuss in next sections.

The following problem persists: the referenced works and the majority of research in the

area of energy management, as further investigated in later sections, are flocking around pro-

viding automated DSM and ADR for SG environments, which simply put, are systems based

on "must have" seamless information exchange and coordination between the consumer and

the utility company over advanced distribution and metering infrastructures, as depicted in Fig-

ure 2, which represents a smart home under a smart grid paradigm. In turn, the illustrations

in Figure 1(a) and Figure 1(b) are simplified representations of a standard and a smart grid re-
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(a) Generic Conventional Grid (CG). (b) Generic Smart Grid (SG).

Figure 1 (a) CG and (b) SG representations. Adapted from [4].

spectively. We elaborate further on those concepts in the next sections, however, at this stage,

it should be underlined that aside from new and more advanced power sources of energy and

newer and more advanced distribution and metering infrastructures of the SG, the most im-

portant difference between the CG and the SG representations as far as automated DSM and

automated DR are concerned, is the existence in the SG of permanent and multi-directional

data and information pathflows, otherwise absent in the conventional grid. Without said infor-

mation exchange, automated DSM and ADR are rather impractical under the conventional grid

paradigm, which are one of the base motivations of our work.

Figure 2 Smart Home in SG environment. Adapted from [5].
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Our concern and the main rationale for the present work is that, for most countries like

South Africa and the majority of the developing world, there is still some time before they build

their SGs, and nonetheless, demand responsiveness is badly required in the CG environment;

So, in the mean time, some measures are needed to bridge the gap, and one such measures lies

in designing systems with optimization techniques and control approaches that can tackle the

above problems, without relying on the smart features of the SG and provide proactive demand

response and energy efficiency as well as some degree of fail-safeness; such control approaches

that can still work under the upcoming SG paradigm.

So in summary the motivations of this research are:

(i) the lack of energy efficiency and demand responsiveness in households under the CG

based energy landscape in many countries, especially the developing ones, and also

(ii) the difficulty of trying to provide such energy efficiency and demand responsiveness

under the CG, due to lack of proper infrastructures, and

(iii) the fact that such energy efficiency and demand responsiveness are still badly re-

quired under CG until getting into the SG, and therefore,

(iv) solutions are required, the ones that try to tackle the limitations of the CG aiming at

providing energy efficiency and a degree of demand responsiveness with fair user satis-

faction, even under the CG until getting into the SG.

1.2 Objectives

With these motivations and with the discussed perspectives, the general objectives of this re-

search work are:

a) To make a contribution in the creation of smart Home Energy Management Systems

(HEMSs) and appliances by designing and simulating optimization and control technolo-

gies that leverage their energy saving and efficiency in compromise with consumer’s sat-

isfaction. In tandem with that, it is also a general objective,
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b) to make such HEMSs to contribute in a broader level to energy demand response, by

making them help to reshape the demand profile, and to reduce the total demand and

thereby attaining other goals, such as: the reduction of electricity production cost and

selling price, the reduction of the consumer’s bill, the improvement of power quality, and,

at another and general level, the contribution in fighting climate change.

Complementing this, in light of the motivations, a third general objective is

c) to provide said HEMSs demand response functionality, with a robust fail-safe approach,

wherein the complete absence or temporary failure or uncertainty of smart communica-

tion and coordination features with the supply grid, will not cause the energy efficiency

and demand responsiveness functions of such HEMSs to completely collapse. It is as-

sumed that in conventional grid paradigm, which is our main target, smart DR information

handshake is absent; but it is available (albeit sometimes with some kind of information

uncertainty) in SG environment. So, said fail-safe approach aims at making the proposed

HEMS demand responsive under the conventional grid, and still be readily applicable

to SG environments (without or with little modification), thus helping to bridge the gap

between the two paradigms.

The Specific objectives consist of simulating, for a CG environment, the scheduling function of

a household energy management system, against its uncontrolled workflow, such that:

(i) it performs an autonomous appliance scheduling, i.e. create a schedule, for programmable

appliances, based on a simulated energy Real Time Pricing (RTP) information under a

conventional grid paradigm. Such a simulated pricing information aims at tackling the

absence of automated, gridwise DR in the CG paradigm (this is, as stated, our main

target), and nonetheless look ahead for its use under SG environment. The scheduling

aims at placing the appliance working cycles at optimal times, where such optimality

means a good trade-off, a compromise between user utility (comfort) and energy saving.

(ii) it performs a centralized control of the complete household with all kinds of appliances

(programmable or not), using the above schedule of the controllable appliances plus a

probabilistically generated schedule for the user operated (uncontrollable) appliances.
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1.3 Contributions

1. We propose and demonstrate by simulations, a framework for providing a "blind" base-

line Demand Responsiveness (bbDR) for the communications deprived CG environments,

based on a pseudo real time pricing (pseudo-RTP) function learned from a country or re-

gion daily load profile, wherein such pseudo-RTP serve as a guiding function for the

autonomous scheduling of controllable appliances.

2. We propose and demonstrate a Real Parameter Blackbox Optimization Approach to Ap-

pliance Scheduling (RPBBOAS) model, which tackles combinatorial explosion, and pro-

vides the above bbDR with an heuristic based appliance scheduling meta model, which

describes the household and provides the logical interface with external optimization al-

gorithms.

3. We design and demonstrate a new hybrid metaheuristics (HyPERGDx) that shows a better

or competitive performance against some of the top state of the art population based meta-

heuristics, and shows consistently a better performance in the above appliance scheduling

model, and thus showing the best all-around performance. This metaheuristics provides

the referenced bbDR scheme with a real parameter blackbox capable global optimization

algorithm to perform the appliance scheduling, guided by the above pseudo-RTP function

and mediated by the referenced RPBBOAS model.

1.4 Outline of the dissertation

The rest of dissertation is organized as follows:

(i) In chapter 2 a background on household energy management and demand response is

presented. After seeking to understand the concepts building around that of HEMSs, a

special focus is placed on modelling approaches and optimization concepts, and methods

that are most commonly used in the area of HEMSs, to help us elicit the best method

for our own problem case: The prospective investigation at the beginning of this work,

led us to the strong belief that an heuristic based optimization approach to the house-
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hold appliance scheduling, is the best way to tackle model complexity, non-linearity, and

combinatorial explosion / "curse of dimensionality" (CoD) issues.

(ii) In chapter 3, we discuss a "blind" baseline Demand Responsiveness (bbDR) framework

aimed at providing a degree of demand responsiveness for unconnected CG environ-

ments. As part of such a framework, we also address appliance scheduling, where we

propose a Real Parameter Blackbox Optimization Approach to Appliance Scheduling

(RPBBOAS) household model, which is successfully implemented and tested into a func-

tion the ApplianceSchedule1(.) function. While trying to optimize appliance schedules

via such RPBBOAS model, readily available general purpose state-of-the-art metaheuris-

tics, showed a lackluster performance. To tackle such issue, in the course of this Chapter,

we designed and successfully tested a hybrid metaheuristics (HyPERGDx) that showed a

more robust and better all around performance, vs the state of the art. The pair HyPER-

GDx and the ApplianceSchedule1(.) function, was eventually used to perform the bbDR

simulations of Chapter 4.

(ii) In chapter 4 a number of simulation experiments, featuring both the uncontrolled and

the controlled energy consumption workflows, were performed. The experiments were

designed to demonstrate, and it was eventually proved, that based on a country or re-

gion Daily Load Profile (DLP) generated pseudo-RTP function it is possible to perform

appliance scheduling that deliver DR-like performances to such unconnected scenarios.

(iv) Chapter 5 closes the report starting by looking back at the contributions and finally placing

closing remarks.



Chapter 2

Background on Household Energy

Management and Energy Demand

Response

Our research work was developed around energy management in the broader perspective, and

centred at the management of household electricity consumption in its particular focus.

So it is straightforward that we perform, as starting point, a review of Home Energy Man-

agement Systems (HEMSs), beginning by addressing the most relevant energy concepts around

HEMSs, in the wider landscape of energy production, distribution, consumption and manage-

ment, and the challenges faced in that process, as well as the measures and techniques placed to

address such challenges.

In the later part, a particular focus is given to HEMSs related matters, especially on: the

structural environment where the specific HEMS is applied, the goals pursued, methods and

approaches for how the HEMS is modelled to perform for achieving such goals, in connection

with the higher level, gridwise Demand Response (DR).

Despite choosing to firstly address the energy matters, it is worth noting that a central feature

of a HEMS functionality is the Energy Consumption (EC) optimization process, which to be

precise is the ultimate focus and contribution of this work. So, in our discussions of HEMSs

and DR matters, frequent references to methods and function optimization approaches will be

8
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made.

2.1 Home Energy Management Systems and the Energy En-

vironment

It is pertinent to perform a closer review of a number of critical energy concepts that relate to that

of HEMSs, albeit with bias to the ones that are the most relevant to discuss our problem case

(HEMSs), without a particular order, namely: "energy supply goals", "energy stakeholders",

"consumer and consumer satisfaction", Conventional Grid (CG), Smart Grid (SG), "meter/smart

meter and Advanced Metering Infrastructure (AMI)", Demand Side Management (DSM), DR,

Automated Demand Response (ADR), Daily Load Profile (DLP), Peak-to-Average Ratio (PAR),

"smart appliance", "smart home, Home-Area-Networks (HANs) and HEMS". In the discussion

of these matters, other terms of interest to our universe of discourse, not explicitly listed are

covered.

2.1.1 The Main Goals of the Energy Production and Use

The management of electric loads (household appliances included) has been a matter of huge

investigation and action, aiming at satisfying the main energy goals (eGoals) of the many en-

ergy stakeholders, being chiefly (for conciseness, and seeking to summarize what is found in

the literature):

eGoal1: reduction of the energy costs for the end-use consumer to the best extent, which

should also trade-off with

eGoal2: keeping a fair level of user comfort;

eGoal3: to the best extent: reduction of the EC, as well as the peak load and the peak-to-

average ratio, which enforces eGoal1 but should trade-off with eGoal2;

eGoal4: to the best extent: reduction of energy production and distribution costs; and

eGoal5: reduction of greenhouse gasess (GHGss) emissions and whatever environmental

evils arising from the energy supply chain; and
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eGoal6: maximizing profitability and sustainability (for the utility company), in tandem

with eGoals 1 through 4 and subject to

eGoal7: keeping the necessary level of supply quality, and insuring its protection, safety

and stability, meeting regulatory compliance.

The above list can obviously be represented in many other ways, and should unfold to much

more items as matters are looked at in a closer perspective in each specific field. However, we

are certain that these eGoals encompass generically the goals that are frequently listed in works

studying demand side matters (such as HEMSs and alike, DSM/DR) and supply side matters

(such as, energy production supply chain operations, optimal power flow / economic dispatch,

ancillary services, etc.).

2.1.2 Main Energy Stakeholders, Their Roles and Limitations

The energy landscape (the production and use of energy, the infrastructures and devices, the

problems arising, and the seeking of solutions and new horizons), involves many stakeholders

and they hold complex relationships to symbiotically explore and evolve the energy ecosystem,

a matter of special interest for energy policy makers. It falls out of our scope performing an

in-depth discussions of such complex matters. However, it is important to leave some remarks

on two particular stakeholders, namely: (1) The end-use consumer (the primary stakeholder)

and (2) the utility company. Other stakeholders are the energy industry, government, technical

and regulatory institutions and society as a whole.

The end-use consumer, also frequently referred to as: "the user", "the end-user", "the cus-

tomer" (in utility company’s perspective), "the end-use consumer" or lately "the prosumer"

§2.1.5.3); represents the demand side of the said energy landscape, whilst the utility company

represents the supply side of the matters. Concerning the end-use consumer and the demand

side management, it is worth remarking that:

(1) Although the consumer is the main benefiter and main focus of the energy supply, which

is directly related to achieving the above eGoals, nevertheless, as discussed in section

1.1, one cannot rely on the consumer for performing real-time / on-line monitoring and
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control activities aimed ad achieving any such eGoals and therefore,

(2) DR and customer premises energy management, time and mission critical activities,

should be performed automatically without the critical human involvement, aside from

the choice of parameters, configuration and supervisory.

(3) in trying to achieve any eGoals by implementing any policy, strategy or automated pro-

gram such as the ones in (2), whatever is performed should anyway deserve consumer’s

support. For instance an Energy Management System (EMS) or the utility company, can-

not automatically setup an action to control, whatever the way, a user appliance without

their consent, and that upon this consent is given, it is under the assumption that the

expected performance is delivered.

The above remarks are the rationale for seeking for and implementing automated household

(and generally demand side) energy management including achieving a good demand respon-

siveness, concepts that further discussed in next sections.

Concerning the utility company the other major stakeholder, it is worth remarking that,

(i) Its business position as the supplier of the "energy commodity" and related services, holds

it accountable for dispatching an energy of good quality which also means insuring the

safety, protection and stability of the whole supply system at any instant. The said ac-

countability includes meeting regulatory compliance on the energy supply matters, set

forth by relevant regulatory bodies (one of the other stakeholders).

(ii) The obligation by the utility company to comply with these roles has been a major chal-

lenge for it to adopt new technologies that are installed at the demand side, since by being

hard to control them (especially under the CG paradigm), the utility cannot rely on them

to perform its roles up to the performance requirements.

Adding to technical and economic constraints at geopolitical level in any specific country,

the limitations and challenges discussed above, are especially severe under the conventional

grid, one of the reasons for the introduction of a smart grid, which, with its ADR and Distributed

Energy Resources (DER) capabilities together with the smart home/building and other smart
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features, can bring more controllability and predictability to the demand side EC and thus tackle

the lack of confidence on the demand side in pursuing the seamless achievement of the above

eGoals. However it is also very important seeking to bring some demand responsiveness to the

conventional grid as it is likely to prevail for some time until the smart grid eventually takes

over.

2.1.3 Consumer satisfaction

The consumer satisfaction is translated by many aspects, such as a low electricity bill, comfort

of different types, or in general, well being. We would say that "user comfort" stands for

some kind of benefit the consumer expects from the use of an appliance. Aside from, "well-

being", other terms have been used for describing the said user comfort [6], such as "utility",

"quality of service", etc., or by their antonyms (depending on modelling perspective), such as

"frustration" [7], "discomfort", "desutility".

The concepts that are encompassed in "consumer satisfaction" are some times conflicting, such

as for instance: "room temperature comfort" and "low electricity bill". Both concepts express

consumer satisfaction, however keeping a high level of temperature comfort may translate to a

high electricity bill. So the achieving of user satisfaction in such a situation, should be a trade-

off of the two concepts (objectives). The "fair" term in eGoal2 above, stands for such trade-off;

whereas the terms "subject to" and "necessary" express constraints or performance requirements

(this will be addressed later as it is one of the concerns of the modelling and optimization in

HEMSs).

On the other hand, to avoid confusion concerning "utility", throughout this report, unless

especially noted, we will seek to reserve the term "utility" or "utility company" to refer to the

producer and distributor of electricity. As referenced above, by "utility" we also mean col-

lectively any operator, for instance an Transmission System Operator (TSO) or a Distribution

System Operator (DSO), that, franchising some utility company’s roles, is in charge of distribu-

tion and management of electricity in an specific area, which includes performing DSM.
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2.1.4 The Conventional Grid

The CG which is also know by other names, such as: "legacy grid", "standard grid", "traditional

grid" or just "the grid"; is the current solution, the status quo of energy supply grids in most

countries.

Figure 3 NIST’s Conventional Grid Representation [8]

The illustration in Figure 1(a) is a generalized depiction of a CG. Figure 3 is another view

of the CG. Aside from other structural aspects, the illustrations underline the one way energy

flow from the production to the end-user, and a lack of a proper information handshake between

the supply grid and the end-user.

The CG, starting from being a true solution, turns otherwise, at some stage, as the demand

increases, the root of new problems: its overall working philosophy turns out to be plagued by

serious existential shortcomings, which are driving the change to smart grids. As discussed by

Arnold in [8], the CG is characterized by (our remarks enclosed and unquoted) :

a) "Centralized, bulk generation, mainly coal and natural gas" (fossil fuels that drive climate

change and are supposed to exhaust within the next 100 years: According to Shafiee and

Topal [9] the reserves of oil, coal and gas will be completely depleted in approximately

35, 107 and 37 years. The greater the overall EC, the greater the amount of greenhouse

gases are emitted to environment. Otherwise the reduction of fossil fuel based energy

by reducing consumption along with an incremented use of clean sources - Photo-Voltaic



2.1 Home Energy Management Systems and the Energy Environment 14

(PV), Solar-thermal, Wind - contributes to curb climate change);

b) "Responsible for 40% of human-caused CO2 production" (this means it is one of the main

drivers of global warming and overall climate change);

c) "Controllable generation and predictable loads" (these are rather requirements for fair CG

functionality. Unfortunately for many grids, the loads, or in other words the demand,

have proven to be more and more unpredictable, driven by demographic and economic

growth);

d) "Sized for infrequent peak demand - operates at 50% capacity" (It is a 50% reserve seek-

ing to tackle supply-to-demand imbalances among other disturbance fighting Supply Side

Management (SSM) operations. 50% means inefficient; and nonetheless unable to tackle

sudden, abnormally high demand changes, especially if reserve capacity falls much be-

low the said 50%. This huge reserve capacity requirement, drives high generation costs

and high retail electricity prices);

e) "Lots of customized proprietary systems" (that means non-open systems, which are dif-

ficult to maintain and to evolve. Furthermore, many of the CG infrastructures and tech-

nologies rapidly become obsolete);

f) "Limited automation and situational awareness" (which also translates to limited or no

data collected thereof: cannot properly act pro-actively nor actively react to tackle sudden

higher then expected demand changes. Context-driven and AI/machine-learning capabil-

ities cannot be exploited with lack of stored and contextual data);

g) "Lack of customer-side data to manage and reduce energy use" (The absence of a bidi-

rectional data flow and underlying computer resources and databases is the reason behind

this shortcoming; the shortcomings in f) and g) lead to the impossibility to perform ADR

under the CG environment. This is one of the problems our research is trying to address).

It is important to underline that aside from other infrastructural and logical shortcomings, the

absence of a permanent bidirectional information flow between the utility and the consumer is

the main drawback of a CG, as far as automated demand response is concerned.
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2.1.5 The Smart Grid and the transition from conventional grid

The Smart Grid (SG) is an emerging and evolving paradigm, a complex system, designed to

address the CG problems, see [8] and [10]), for which it tries to encompass and streamline

the above referenced and other concepts. SG is defined as "an electric system that uses infor-

mation, two-way, cyber-secure communication technologies, and computational intelligence in

an integrated fashion across electricity generation, transmission, substations, distribution and

consumption to achieve a system that is clean, safe, secure, reliable, resilient, efficient, and

sustainable" [6].

Figure 1(b) is a generic representation of a smart grid, whose most important characteris-

tic, as far as automated DSM and ADR are concerned, is a permanent bidirectional, multipath

and multilateral information flow between the "utility" grid and the consumer, which ultimately

implies that all the required subsystems should be prepared to produce and handle such infor-

mation and work together as a system.

In turn, Figure 4 and Figure 5 show a formal representations of the SG as per its release

3 specification by National Institute of Standards and Technology (NIST) [10]. These two

diagrams and other found in [10] are a conceptual guidance to the actual implementations, and

underline the complexity of the SG. A number of standards and technical organizations from

different corners of the world (including the IEEE, ISO/IEC1) have been working together in

evolving the conceptual framework as well as in going from the conceptual framework to the

actual standards, and thereby helping to carry out the actual smart grid implementations.

1IEEE (Institute of Electric and Electronic Engineers); ISO (International Standards Organization); IEC (In-

ternational Electrotechnical Commission)
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Figure 4 NIST’s Smart Grid Conceptual Model [10]

Figure 5 NIST’s Smart Grid Information Networks Conceptual Reference Model [10]
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2.1.5.1 Selected Consumer and Grid Devices and Infrastructures

The energy grid (CG or SG) is a whole world of devices and systems. It falls out of the scope of

this work describing all such infrastructures. However there are some that hold special interest

for our treatment of HEMSs and related DSM/DR functionalities, namely:

• Appliance / Load / Smart Appliance / Smart Load:

A device that consumes electric energy is called a "load", a physical system perspective,

a general term which disregards any further specificity. An electrical appliance (treated

here as just an "appliance") is a "load" in the sense that it consumes electricity, and we

will use the term "load" to reference an appliance from that electricity consumption per-

spective. On the other hand, there are obviously many categories of appliances which

in the HEMSs perspective are further discussed in section 4.1. Another term, electrical

device, is used [6] to reference and encompass any type of electricity-consuming or pro-

ducing component in the household. In such a way a TV set, a PV-panel, an Electric

Vehicle (EV) are all treated as simply devices. The energy producing or energy storing

devices (including the EV) are inclusive in the smart grid concept of Distributed Energy

Resources (DER) further discussed in section 2.1.5.3.

Smart load / smart appliance / smart device: refers to a device that has embedded ca-

pabilities to recognize environmental context (which may include detecting some char-

acteristics of the electricity supply signal) or whatever an external information (sent in-

tentionally or not), beyond the basic switch on/off and dimming-level commands. The

smart device, will then use such acquired context information , to (pro)actively modify

its electricity prosumption pattern, aimed at bringing about some advantage pertaining to

the ultimate goals (the above referenced eGoals). The Grid-Friendly Appliances (GFAs)

(see 2.1.10), with the discussed smart features, are smart appliances.

• Home / Smart Home / Home-Area-Network (HAN):

A home, or household or dwelling: describe a single residential unit comprising elec-

trical devices and occupants (frequently a family but not necessarily) which with their

appliance-using activities drive EC. A smart home is the one that possesses a communi-
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cations layer linking together the appliances, driven by occupant activities in a collabo-

rative way as a system, such that, as with a single smart appliance, they can bring about

some advantage pertaining the eGoals referenced above. Such collaborative interaction

may be (frequently is) coordinated by a central controller (a standalone HEMS, a smart

meter hosted HEMS, a remote utility side application running through a communications

gateway) or may be solely or inclusively based on the embedded capabilities of any ex-

isting smart devices.

A HAN is a networking communications framework, including a physical network infras-

tructure (wired or wireless) and logical standardized protocol stacks, which collectively

provide the smart home with connectivity among all devices, as well as connectivity with

the grid, through either the smart meter linked AMI or other communication paths likely

in the Internet domain. In this sense, the term HAN has oftentimes been used as a ref-

erence to a smart home. There are a choice of different standardized HAN frameworks,

based on either wired protocols (Ethernet, powerline-communications, etc.) or wireless

ones (Zigbee, WiFi, Bluetooth, Z-Wave, etc.). In the smart grid communication, upward

the HAN, there are other wider level network infrastructures, that can be seen in Figure 6.

Smart Homes may exist in any grid paradigm (CG, SG). However it is under the SG

paradigm where the smart capabilities can be fully explored by the existence of smart

meters and the appropriate communications layers, which are used to perform DSM/ADR

in connection with the SG.

Al Sumaiti et al. [11] and Chan et al. [12], performed reviews on smart homes, and

aside from presenting their definitions of the smart homes, describe and discuss the home

infrastructure (devices, networks and logical communication layers and types of network

protocol standards), as well as how such smart activities are performed and supervised.

In Figure 2, a smart home is depicted, which features the main of the above devices and

infrastructures.

• The Smart Meter:

While any standard meter is the central feature of the energy billing functionality in any
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grid paradigm (CG or SG), a smart meter with its layer of bidirectional communication

with the utility company is a central feature of a baseline DR in a smart grid environ-

ment, by providing pricing information and demand states to the consumer’s HEMS con-

troller, and sending back to the utility the EC data and the estimates for next hour or next

day consumer’s demand needs among other information, such as estimated prosumer’s

DER surplus contribution, when such DER are present (2.1.5.3). Aside from the baseline

billing functions, and the described baseline DR communication, a smart meter may also

host control functions, taking the role of a HEMS controller itself (as suggested in [2]),

among other features.

• Advanced Metering Infrastructure (AMI):

For communication of the smart meter with the utility side, there is normally an un-

derlying AMI, a physical infrastructure and a logical bidirectional communication layer

between the smart meter and other actors. Other actors may be other smart meters or data

aggregating devices, in a protocol designed to easy-up and fail-safe the exchange of the

above referenced information between the consumer/prosumer and the utility which in

turn runs other computational resources as the system backbone.

It is worth noting however that the SG features many communication layers and infras-

tructures other then the AMI; so, the DR functionalities may be provided through multi-

ple, secure and fail-safe pathways in the SG paradigm (see for instance OpenADR under

section 2.1.7). Figure 6 helps to represent and explain the concepts of smart home, HAN

and other same level or upward communication network frameworks of the SG.

2.1.5.2 SG transition from the conventional grid

The transition from a CG to SG is supposed to be gradual, so it is natural to find at some point

a certain conventional grid already incorporating part of the infrastructures and computational

resources characteristics of a smart grid (we assume, that is the current landscape in many grids,

especially in the developed world, or even in some developing countries in a small scale, such

as in South Africa). That is partly represented in Figure 1(a) where some newer sources of
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Figure 6 Alternative SG representation, highlighting energy and communication sub-
domains (from [13])

electricity (photo-voltaic, and wind, etc.) are featured, albeit not guaranteed in this type of grid.

A smart home incorporating smart devices like an Electric Vehicle (EV) may also likely exist

under a CG, although without benefiting from the full features they could get when operating

under a smart grid. We underline that it is precisely this transitional period and beyond, the

focus and target of our work on HEMS.

2.1.5.3 Distributed Energy Resources and Prosumers

One of the cornerstones of the SG paradigm is the distributed nature of the energy resources,

know as Distributed Energy Resources (DER) or also as Distributed Generation (DG) or ’energy

mix’, wherein the production of electricity is not just located centrally at the traditional supply

side (the utility), but rather distributed either side along the energy ecosystem, a feature that

together with DR enforces the resiliency and stability of the supply system against disturbances

of different types, such as the supply-demand imbalances discussed herein.

Inline with the DER concept, the power flow between the utility grid and the consumers is

not always unidirectional and the concept of producers and consumers of electricity is no longer

crisp, as in the traditional perspective, since some consumers at home, business, industry and

community (microgrid) levels, become distributed producers of electricity through their local

generation (called also micro-generation [14]) and local energy storage, chiefly PV, wind, Com-
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bined Heat and Power (CHP) among others, including very importantly local energy storage:

Distributed Energy Storage (DESto). These facts lead to such new type of consumers being

re-branded prosumers (producers-consumers).

Although such locally produced electricity is primarily intended for prosumers’ use, they

are able to feed in their surplus production to the grid (see more about this in section 2.1.12.1).

So, the energy pathflow from the grid to the prosumers will actually flip or flop its direction

according to the current state of the energy-to-demand differential at prosumer’s side along

with other criteria. That of course is subject to the local EMS, in charge of scheduling and

control of EC, for which it uses DR pricing schemes along with some contextual information

(time of day, temperature, irradiation/cloud cover, state-of-charge of local energy storage, etc.)

which are evaluated in its optimization/control strategy to perform the right decisions and take

control actions. The bidirectional power flow arrows next to the consumer domain in the SG

representations, stand for such flip/flopping electricity flow behaviour which belongs to the

above described DER concept.

Otherwise, concerning the said resiliency and stability promoted by DER, for instance, for

fighting an under-frequency (§"Fighting and under-frequency") or other system disturbances,

when DER is available and to the extent allowed by currently energy resources, a household can

be selectively or completely interrupted or a microgrid (covering a community of consumers)

can be islanded from the grid, without severely affecting the quality of service to the consumers.

2.1.6 Demand Side Management

Demand Side Management (DSM) consists of all the dispositions and actions collectively aimed

at managing the consumer loads by different means, which includes: first, placing a good set

of regulations and educative actions, and then establishing and implementing good DR strate-

gies according to the specific market, which should take into account the level of the installed

production facilities and distribution network and metering infrastructures. DSM is an old con-

cept of the conventional energy grid itself, which is evolving to automated DSM under the SG.

According to Costanzo [15], "DSM, is the planning, implementation, and monitoring of those

utility activities designed to influence customer use of electricity in ways that will produce de-
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sired changes in the utilities load shape".

The concept of demand side management suggests the referencing of the SSM, which encom-

passes all management activities performed at the utility side of the grid, in all the chain of lo-

gistics for production, transmission and distribution, collectively aimed at achieving the eGoals

referenced above, from the utility’s perspective, especially the ones of insuring the safety and

stability of the supply grid from the short to the long term.

2.1.7 Demand Response

Demand Response (DR) is an essential part of DSM. As addressed in various literature ( [6,16–

18]), DR is the change in consumption patterns from the consumer, in response to utility request

signals or in reaction to perceived changes in the current demand, which collectively seek to

positively influence the demand profile (see 2.1.13) and other metrics in pursuing the above

mentioned eGoals. According to Albadi et al. [16], DR, is "defined as the changes in electric

usage by end-use customers from their normal consumption patterns in response to changes

in the price of electricity over time. Further, DR can be also defined as the incentive payments

designed to induce lower electricity use at times of high wholesale market prices or when system

reliability is jeopardized", including "all intentional modifications to consumption patterns of

electricity of end-use customers that are intended to alter the timing, level of instantaneous

demand, or the total electricity consumption."

While the concept of DR applies to any grid paradigm, ADR is supposed to properly work

under a SG or SG-like paradigm, wherein both the infrastructures and logical/control subsys-

tems are present and work together as a system to perform an automated DR.

OpenADR (Open Automated Demand Response) [19] is a computational and communication

framework, and an open programming interface specification, a part of SG specifications. It

defines computational resources and DR-signaling and guides ADR implementations. More

insights and discussion of ADR and OpenADR matters may be found in [20], [21].

Figure 7 shows the energy performance of a ADR driven Building Energy Management

System (BEMS) as discussed by Samad et al. [21]. Our discussions of the DR matters and

as illustrated in the figure are to underline the potential contributions of a demand responsive
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HEMS to energy saving and efficiency, for the profit of the user; a contribution that, at a higher

level, extends to the utility grid.

Figure 7 ADR example (Adapted from [21], [22])

2.1.8 Demand response role in reducing the Peak-to-Average Ratio (PAR)

Demand response is designed to perform these three main actions [13], which collectively in

the end reduce the Peak-to-Average Ratio (PAR):

1. Peak shaving: Reduces peak energy consumption. It is performed, at and around peak

load times, by load shedding actions and/or by load shifting activities (see below). Load

shedding can be done as the following:

(i) by selectively shedding load via DLC, an action that is agreed upon beforehand with

the customer as part of incentive based DR programs (see section 2.1.11); instant

power capping via some customer side controller, which frequently happens at peak

load times, has also a contribution to peak shaving.



2.1 Home Energy Management Systems and the Energy Environment 24

(ii) when the above schemes are likely to be overwhelmed, load shedding is then done

by cutting the supply to entire blocks, neighbourhoods or districts; a harsh and com-

pulsory action aimed at curbing an increasing demand that could otherwise be higher

than the network capacity. This type of load shedding is undesirable since it causes

extreme user discomfort and severely harms the economy.

2. Load shifting: It is the action of displacing shiftable appliances (see appliance classi-

fication, section 4.1.1) from peak load times to off-peak times, which is performed by

automatic appliance scheduling and control via customer side controllers (HEMSs, BE-

MSs or generally EMSs).

3. Valley filling: It happens when the described peak shaving is done by load shifting: then,

peaks are shaved while, synergistically, valleys are filled. It is a practice encouraging

the displacement of energy consumption activities from high pick to off-peak times, thus

filling the load profile valleys that are characteristic of such times. In the other hand,

insofar the likelihood of another peak being formed at such off-peak times is kept very

low, these actions translate into reducing the PAR. If time based pricing is in charge, and

since off-peak times are cheaper than the mid/on-peak ones, then, energy cost reduction

is achieved as well.

The Peak-to-Average Ratio (PAR) is the ratio of the maximum (peak) load, to the average

load during the time horizon of 1 day (other horizons are possible). The PAR tells how high is

the peak load compared to the average load. The lower (the closer to the average) the better,

since a high PAR increases the likelihood of supply-to-demand imbalance and the negative

issues such disturbance carries together.

Such peak and average loads are found or calculated from the utility grid’s aggregated daily

Daily Load Profile (DLP) (a concept described in subsection 2.1.13), which also applies to a

PAR for a household’s DLP (see (Eq.2)).

When the load axis of a DLP is expressed as "per unit" (pu), then, the corresponding PAR is

the maximum (peak) value of such pu profile. See equations: 1a through 2, and DLPs: Fig-

ure 10, Figure 12, where these concepts are illustrated. We point out however that, since the
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aggregate daily load profile is a mean profile over a number of days, the actual instant PARs may

generally be higher than what can be learned from the mean DLP. In turn, the reduction of the

PAR contributes: (i) in general, to improve network stability, (ii) to reduce or eliminate the like-

lihood for under-frequency load-shedding events, (iii) to reduce energy generation costs, (iv) to

improve other power quality indicators, (v) to reduce consumer’s electricity bill; or collectively

to synergistically improve the eGoals.

2.1.9 Demand response and uncertainty

The concept of DR as a reaction to control signals (sent intentionally from the utility) is also

extended to include proactive DR according to self-learned (from statistical records or in some

way forecasted or simulated) demand changes, or electricity pricing information, etc., when for

some reason, the utility borne signals are not available or are in some way inaccurate. All those

instances collectively translate to a capacity from a demand side control system to tackle un-

certainty, in other words, an uncertainty-aware system (UAS). The target system of the present

research is a kind of an UAS.

2.1.10 Demand response and smart devices: grid-friendly appliances

Alternatively or complementarily, self-perceived events (over/under-frequency, over/under-voltage,

phase-imbalance, etc.) in the electricity supply signal (regardless of the presence of utility borne

information), may also be added to the drivers of automated DR reaction from the consumer de-

vices. There is a growing tendency of many smart appliances coming with embedded capabili-

ties of self-detecting demand response needs: GFAs. In GFAs, frequently, the primary network

frequency monitoring is used to detect a potential overload condition (an under-frequency is due

to a load-to-generation imbalance, more load then generation), in which case the GFA will auto-

matically adapt its electricity usage by curtailing (e.g. dimming) or even standby or completely

shut-down. This is a consumer side reaction performed by the consumer.

A work by Kintner-Meyer et al. [23] (followed-up by [24], [25]) in a project under the

Pacific Northwest National Laboratory (PNNL), prototypes a frequency based GFA controller,

and most importantly, discusses the motivations, the goals, and the approaches for the proposed
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device).

The work by Bao and Li [26] also discusses GFAs and their role in DR and proposes a

frequency based GFA controller over a Field-Programmable Gate Array (FPGA) hardware plat-

form.

Another work by Fuller et al. [27] also under the PNNL, addresses a more advanced GFA,

with capabilities to handle DR signals in addition to the basic under-frequency (load-to-generation

imbalance) detection functionality. Otherwise, smart-plugs (as addressed in [28], [29], are DR-

friendly devices designed to control "old/dumb" (although can control any) appliances, confer-

ring them GFA-like capabilities.

It is worth underlining that the utility borne DR management signals, are meant to inform

changes in the current demand profile or pricing (like the ones in [27]) and thereby requesting

the underlying DR actions (according to the current user’s choice of the pre-defined DR strate-

gies), which collectively cause the load to be (i) just curtailed, or (2) shifted (from critical or

high peak, to off-peak or mid-peak zones), resulting, at the end of the day, in either the reduction

of the overall EC or/and the reduction of the PAR.

The GFA features referenced above, are of special interest for HEMSs under the CG paradigm,

since such features can provide a minimal demand responsiveness based on the auto-detection of

an on-going or potentially ensuing supply system condition, considering the absence of utility-

consumer ADR signalling under the CG, which also applies for HEMSs under the SG on com-

munication faulty conditions.

However, the role and effectiveness of GFAs as grid system protection and stability helpers,

can only be achieved as many GFAs are deployed on the energy landscape to serve as the

first line of action, aimed at preventing the on-set of a system imbalance, because as soon as

the imbalance has crossed a determined threshold (meaning that the demand side preventive

capabilities have been overwhelmed), supply side management remedial actions will have to be

triggered:
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2.1.10.1 Fighting an under-frequency

In fact, taking for instance that, a worsening under-frequency (a supply-to-demand imbalance)

has crossed its critical threshold, then the utility company (taking its due role) will/should au-

tomatically trigger its ancillary services (spinning and non-spinning reserve, etc.) to deal with

it (see [24]) so as to insure safety, protection and stability of the supply system, comply with

regulations and fulfil its obligations as the energy supplier stakeholder. The utility will act in

automatic fashion through the appropriate devices, approximately the following way:

(i) activating, i.e., shedding, DLC connected consumer loads, selected, if any, to acting

as instant reserve (IR); or

(ii) activating spinning reserve (SR), another kind of IR, consisting of generators that are

kept on-line, "spinning", ready for any such events; or in extremis, when the use of the

former two combined is not enough to curb the system imbalance condition,

(iii) performing load-shedding events to entire districts, a situation that sometimes became

frequent and severe in South Africa mostly in 2008 and 2015 [30], causing huge economic

losses. Such losses are too high in comparison to setting up reserve capacity and DSM

operations, sized to avoid such extreme load-shedding events [31].

To get to the last stage above, may be due to either (a) not enough instant reserve capacity

has been purchased/established due to economic reasons, or (b) SR generation units suddenly

became severely unavailable for some reason, such as a higher then expected number of break-

downs, or improperly planed or improperly executed maintenance operations.

2.1.11 Demand Response Approaches

There are two main demand response strategies [16], [17], [18]: (i) incentive based and (ii) price

(penalty) based strategies, as depicted in Figure 8 [18]. Other works address DR functionality

from multiple other perspectives, such as in [32] or the above discussed GFAs.

In the incentive based DR strategies, among other options, the utility encourages the user

to let it perform a direct load control (DLC) of their appliances so as to remotely and selec-

tively shut them down under the right circumstances, in exchange for rewards in the form of
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pre-payments or price rebates [16]. Neglia et al. [3] worked on a smart-plug for providing DLC

functionality.

There is a number of other incentive based offers, as discussed in the above referenced [16], [17],

[18]. Although the incentive approach is meant to bring about reciprocal (utility-consumer) re-

wards, the user’s failure to meet the terms and conditions may lead to penalties, which is one of

the challenges to the adoption of the these DR schemes by the end-consumer, and a reason that

supports the use of automated DR-friendly HEMS to reduce error-prone human involvement in

the supervisor control DR activities.

An evolving and important segment of the energy market that may leverage DSM/ADR

adherence and effectiveness, are the above referenced franchising operators, service providers,

working as middlemen between the utility company and the end-use consumer: If equipped

with the appropriate management tools and strategies, supported by an in-depth research (such

as the ones presented by Herath and Venayagamoorthy in [33], [34] and [35]) can, among other

benefits, ease and improve DR operations, enhance the degree of trust of the utility company

towards the end-user/demand-side, and boost the satisfaction of all the parties involved.

2.1.12 Price Schemes

In the price based DR strategies, different price schemes are practiced, most frequently: Time of

Use Tariff (ToUT), Critical Peak Pricing (CPP), Extreme Day Pricing (EDP), Extreme Day CPP

(ED-CPP) and RTP. All these schemes are demand-sensitive, holding some capability of penal-

izing the consumers (demand-wise, through cost) for the use of electricity at the points of higher

demand, and thus coerce them to adapt and thus, respond to the demand reduction/shifting

needs.

The ToUT, seeks to divide the 24h period in frequently 2 or 3-tier pricing zones (established

by the utility according to the DLP and other underlying variables or econometrics), and it is

currently the most used ( [36]) of all above mentioned schemes. Otherwise, CPP, EDP, and

ED-CPP only apply for special (critical load) circumstances.

In turn the RTP, seeks to reflect the real price at the considered time slot of the 24h horizon (a
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(a) DR strategies [18]

(b) A sample Comparison of DR strategies [17]

Figure 8 Sample Demand Response (DR) Strategies

time slot of desired granularity or resolution: hourly, 30-minutely, 10-minutely, minutely, etc.)

[37]. The hourly fashion is the most accounted in the literature, while the higher granularities
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are scarce. In tandem with the selected granularity, RTP data is sent in advance, 1 hourly (the

most frequent), or up to 1 day ahead. In some literature, this 1-day in advance fashion is branded

Day Ahead Pricing (DAP), a pricing scheme by itself, independent of RTP.

There is obviously a challenge on the granularity of the time slot: the greater the granularity,

the more intensive the communications overhead and computational burden to process the whole

scheme by the in-premises controller. Otherwise a low granularity and also, too much time

advance of the RTP data, sways the data from the real-time/actual price patterns. Real-time

control applications, will require fine granularities in the seconds or better scale [6] pp.114.

It is worth noting however that a desired and reasonable time horizon in advance of the RTP

data, is important for allowing pre-scheduling to cover that intended time horizon. A day ahead

RTP data allows for a 1 day pre-schedule. In the unavailability of such advance time horizon,

data built from a forecast or from any other means, will have to be used for the pre-schedule to

cover the intended time horizon.

Concerning said pricing information unavailability, it is worth remarking that one of the

focus of our research work is seeking to preserve cost effectiveness in balance with comfort

for the user and a degree of demand responsiveness, in such instances when RTP (or whatever

the elected pricing scheme) advance information is unavailable (including all such instances

when pricing or DR management signals are either temporarily or completely unavailable); so

an approach is proposed for the replacement of that utility-borne pricing information.

On the other hand, since ToUT, CPP, EDP, and ED-CPP prices are not likely to change

frequently, just one to four times a year [38], RTP offers by far the best option for the real

time control of user appliances and a better approach for DR, since it seeks to reliably influence

the demand patterns in a matched proportion of the real-time on-going imbalance. In fact, as

discussed by Albadi and El-Saadany [16], RTP is believed to be the most direct and efficient of

the DR programs and thus worth endorsing its focus to energy policy makers. It is also worth

noting that, as instanced in [38], RTP has also been used in hybrid synergy with other pricing

schemes for some DSM/DR related comparative advantage.
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2.1.12.1 Other Price Schemes

Aside from the price schemes referenced above, there are many other found in the literature,

like Flat-Price (FLP), Feed-In Tariff (FIT), Inclining Block Rates (IBR), etc., which may be

important for (and not limited to) the exercise of DR. Otherwise the existence and format of any

of the price schemes, mentioned or not, may vary with the utility company or distributor and

market area.

FLP or flat rate, it is normally a default, fixed pricing scheme which is applied when no other

demand sensitive pricing scheme is chosen, and not requiring any kind of special electricity

meter or infrastructure.

FIT It is a price scheme in the incentive based group of DR strategies, designed to accom-

modate the rising adoption of renewable energy (chiefly PV) sources at residential level, which

aside from providing an alternative and cheaper source of energy for the end-consumer, it can

feed in an excess energy to the grid, and thus contribute to relieve the demand in critical situa-

tions in a bi-faceted way, as discussed in section 2.1.5.3. This FIT pricing scheme is featured in

various research works as in Adika and Wang [2], Wang et al. [39], Qayyum et al. [40], and as

discussed in [17]; just to cite some.

Figure 9 A sample representation IBR pricing scheme, from [41]

IBR divides the user’s monthly power consumption in frequently 2 or 3 stair-cased pricing
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zones (a sample in Figure 9 from Eskom [41]). Since it is based in a monthly metric (supposedly

based on the FLP), compared to the other above referenced demand based pricing schemes,

IBR is less attractive in terms of causing a direct impact on DR. However, considering that

one of the DR measures is imposing (either instant or cumulative/monthly) power consumption

limits per consumer or household, we find that IBR plays its role in DR by penalizing the

huge power consumers who climb the IBR stairs (=limits). There are also possibilities that

have been practised to make IBR more DR-friendly by (i) using a 24h metric (or less) for the

definition and evaluation of the stair-case levels, and/or (ii) by synergistically combining it with

other demand sensitive, time based, pricing schemes, like for instance combined RTP-IBR used

by [42] and [38] (as referenced in [17]); or the combined ToUP-IBR (found in [43]).

2.1.13 Daily Load Profile (DLP)

Within a certain geographically limited utility grid, during a 24h time horizon period, the sum-

mation of the power consumptions of all users per a specific time slot of desired granularity

(hourly, 30-minutely, 10-minutely, minutely, etc.), produces a daily demand load profile. Statis-

tics are performed out of several days records, and normally two (Summer and Winter) or three

(Summer, Winter and shoulder) load profiles are established. "Load profiles" are referenced by

other names, such as "load curves", "consumption profiles", just to cite some.

To illustrate a DLP with a simplistic view: let the j-th household with Na appliances, be a

simplistic representative of anyone of the country’s M consumers: The expression in equation

1a defines a household’s DLP, for a resolution of τ , i.e. DLPh(τ). The country daily load

profile DLPc(τ) is the summation of all the households’ DLPs per each time slot τ , as shown in

Equations 1a and 1b.

DLPh(τ) =
Na

∑
i=1

Pi(τ) (1a)

DLPc(τ) =
M

∑
j=1

DLPh j(τ) (1b)

DLP(τ)pu =
DLP(τ)

1
Nt

∑
Nt
τ=1 DLP(τ)

(1c)

PAR =
maxτ(DLP(τ))
1
Nt

∑
Nt
τ=1 DLP(τ)

(2)
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where:

Na ∈ A = {N1,N2, ...,N j, ...,NM}; N j is the number of appliances for the j-th household (con-

sumer), whereas A is a set with M elements, listing the number of appliances for each one of the

M households (consumers);

τ = 1, ...,Nt ; τ is the time slot resolution, which translates to how many samples are taken per day:

if τ is 1h than it spans from 1 to Nt=24; if τ is 10 minutes, then it spans from 1 to Nt=144, and

so on; The sampling horizon can be made to be any other value if the desired load profile is other

than 1 day long. Nt is of course, the number of τs per the sampling horizon of 1 day. Let τ be 1

hour. Then,

Pi(τ) is the power consumption of the i-th of the Na household appliances at the time slot τ , i.e. at

hour τ .

DLPh(τ) is the household’s daily load profile for a hourly resolution (since τ=1h), and

DLPc(τ) the country daily load profile, which is as well for a hourly resolution.

DLP(τ)pu stands for either DLPh or DLPc, with the load expressed "per unit".

PAR is the peak-to-average ratio, a scalar, which may be calculated for either DLPh or DLPc.

Then,

DLP in the PAR expression, stands for either DLPh or DLPc when the respective PAR is sought.

DLPh(τ), DLPc(τ) and DLP(τ)pu are vectors of length Nt , whereas the PAR is a scalar.

We should point out that at utility’s (or country) level, especially under the CG, the per ap-

pliance DLP information is not available and only the aggregated household (consumer) load

information is sent to the utility, which is the billing information it uses to charge the consumers

for their use of electricity. The DLP is learned from the utility own energy metering infrastruc-

ture. However, in the SG or in SG-like (transitional) ecosystems, where there are smart meters

under an AMI, it is possible to gather a "per appliance" consumption, or derive it from the ag-

gregate load through non intrusive load monitoring (NILM) algorithms, which are being amply

researched [44] [45].

The determination of the DLP (as in [46]) is of huge importance since it is the basis for the

determination of various other metrics and dispositions for DSM, DR, and other functionalities.

For instance, the DLP is divided into demand categories: Off-peak, Mid-Peak and On-Peak
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zones, at the core of DR pricing signals. For extreme demand days, which happen only a few

days (1 to 4) during the year, there is a fourth tier, the Critical-Peak zone. These zones along

with other utility econometrics, determine pricing schemes thresholds and are the basis of many

of DR functionalities.

The works by Jenkins et al. [47], Macedo et al. [46], are instances of load profile determi-

nation.

It is worth underlining that although 24 has been the most used time horizon, load profiles

must not span just 24h. The horizon for data sampling or the one for simulation or real time

control purposes may be less or greater than 24h.

Figure 10 show South Africa’s 2014 aggregate DLPs, from [48], and the per unit profiles in

Figure 11 were built from the DLP in Figure 10. In turn, Figure 12, shows the 2001 DLPs for

some European countries (see [49], [50]).

Figure 10 South Africa’s 2014 Aggregate Daily Load Profiles [48]
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Figure 11 South Africa 2014 Aggregate Daily Load Profiles (per unit)

At household level there is also an interest in determining the DLP for each appliance, in

which case, the statistics along a relevant number of days translate to the appliance’s time of use

probability per the considered time slot during the time horizon of 24h. The aggregate household

DLP is the statistical mean of the appliances total DLP per the given time slot resolution.

The great importance of the household load profiles either at appliance or at the entire house-

hold level, is witnessed by many studies, that try to model the residential load profile, such as:

Capasso et al. [51], Paatero et al. [52], Richardson et al. [14], Chuan and Ukil [53], Marszal-

Pomianowska et al. [54]; where the appliances’ and households’ load profiles are not just deter-

mined experimentally (by measurements followed by statistical analysis) but also determined

from models created from such statistics.

These load profiles along with a chosen DR strategy, are harnessed together to perform the

modelling, simulation and implementation of residential energy management systems with DR

capabilities.
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Figure 12 DLPs of some European countries [50]

2.1.14 Review of Literature on Appliance Scheduling and Household En-

ergy Management

As introduced above, the control of user appliances, or in other terms: Home Energy Man-

agement Systems (HEMSs), is central to the pursuit of energy efficiency, energy saving and the

resultant reduction in costs while keeping comfort. Otherwise, it is (along with DLC) at the core

of the whole concepts of DSM and DR as discussed above. By HEMS we are also referencing

any type of Residential Energy Management System (REMS) at single household level, and

furthermore, we are sure that the discussions and learnings from a HEMS can be in some way

extrapolated to any EMS pertaining to consumers of other levels such as for instance a BEMS
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which refers to an entire building (business, institutional) etc.

Our research work is performed around the scheduling and control of user appliances, and it

was important to examine the huge body of research work that has been carried out in the area.

Many of these works were already cited in other instances of the discussion. Although all

works are built around almost the same goals (generally speaking: some of the above referenced

eGoals), each work used different methods and placed a different focus on that multifaceted con-

cepts of HEMS, and directly or indirectly covered DR functionalities in their specific coverage

of the said eGoals.

We should point out that, a central feature of a HEMS functionality is the optimization

process which starts from problem formulation to its solution, that is eventually encoded into

the controller in some format. So, along with and beyond the review of HEMSs matters, we

performed a review of concepts and practices in the field of function optimization (which put

simply is: problem modelling into functions, followed by finding the optimal values that satisfy

such functions).

In our review of the concepts around HEMSs in the researched works, beyond the general

understanding, we sought to investigate and get insights regarding mainly the following aspects:

The EMS target environment (household and grid: CG or SG); the household appliance

types (how the work classify then), the motivations and/or goals of the EMS, the demand re-

sponse approaches, the model and optimization approaches, including how the method copes

with problem complexity and uncertainty. Our remarks are also added throughout or at the end.

So, with those remarks considered, in the following, we present some of the revised works,

which we do without any assumption or special preference about any perspective of merit, and

without a particular order:

(1) Rastegar et al. [36]:

In this work, Rastegar et al. propose a HEMS for a household under a SG paradigm

aiming at minimizing EC, while seeking to keep a fair level of user comfort, as well as

providing a price based DR functionality. The availability of SG type infrastructures and

communication are implied from the HEMS description.

The home appliances are classified into two categories: (i) Uncontrollable (user operated),
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and (ii) Controllable appliances. The last group is in turn further subdivided into (iia)

On/Off controlled (their power consumption is fixed; they can just be switched on or off),

and (iib) regulating appliances (their power consumption can be regulated within certain

range).

In this way, a ToUT or a (24h) IBR pricing are used for said DR functionality, with

an appliance scheduling that seeks to incorporate user specified appliance’s operational

priorities. The scheduling method also used the penalty approach (through VOLL-value

of lost load) to incorporate user comfort constraints into the optimization cost function,

wherein the VOLL translates to a proportional penalty for not operating an appliance at

the time of user’s preference.

(2) Adika and Wang [2]:

propose an "Autonomous Appliance Scheduling for household energy Management", un-

der a SG paradigm, for a smart home, equipped with a smart meter and featuring a PV

type DER for local generation of electricity without storage (although an electrical vehi-

cle can be regarded as a type of part-time Energy Storage (ESto)), along with the main

utility grid supply.

Their design objectives are reducing prosumer’s bill and participate in DR. They use a

simulated RTP and FIT as trading-off pricing schemes to accomplish ADR functional-

ity. Whit those trading schemes along with appliances’ ToUPs and user preferred work-

ing times for schedulable appliances, they perform appliance scheduling, using a heuris-

tic/stochastic approach, aimed at placing the schedulable appliances at optimal times slots

of the day, according to the referenced design optimization goals. User comfort is also

handled through the use of penalties: a frustration coefficient which decreases fitness in

the aggregate single objective function.

(3) Pedrasa et al. [55]:

Pedrasa et al. [55] propose an EMS, designed to perform DLC of interruptible appliances

supposedly placed in multiple households (so, this is not a HEMS problem, in the proper

sense; but it is alike, and is built around the similar or interrelated motivations and goals).
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The goals of the scheduling are "to achieve a system requirement of total hourly cur-

tailments while satisfying the operational constraints of the available interruptible loads,

minimizing the total payment to them and minimizing the frequency of interruptions im-

posed upon them". They used the Binary Particle Swarm Optimization (BPSO) algo-

rithm to perform the schedule, over a single aggregate objective function, wherein the

constraints were expressed as hard and soft penalties. They assert that the Binary Particle

Swarm Optimization (BPSO) algorithm proved capable of achieving near-optimal solu-

tions in manageable computational time-frames for such a relatively complex, non-linear

and non-continuous problem.

(4) Zhao el al. [38] propose a HEMS built over a HAN network infrastructure, with a genetic-

algorithm based scheduling of the automatically operated appliances; and, taking advan-

tage of the availability of an AMI and SG infrastructure and communications, they use a

combined RTP-IBR pricing scheme as the basis to provide DR functionality, aiming with

this combination, at stabilizing possible fluctuations of the PAR, since, they argue, there

is a risk that as everyone shift their loads to cheaper times, new PAR spikings may arise.

(5) Likewise, Herath and Venayagamoorthy (2017) [34] propose a multi-objective PSO based

electricity consumption scheduling for a smart neighbourhood. One interesting feature in

this study, is the use of multi-objective optimization in a multi-household setting: multiple

customers’ objectives and utility’s load profile flatness objective are optimized together,

wherein aside from seeking the best compromise between cost and comfort for the in-

dividual households, it is also sought to produce such household schedules that will not

harm the collective demand profile, i.e., the ones that better satisfy the utility’s load profile

flatness objective function. The scheme is aimed at providing an automated and efficient

management tool for service providers franchising utility roles as discussed earlier.

As it would be difficult to keep simplicity and conciseness, and it would otherwise be exces-

sive, to walk through a very long list of works, we defer the reader to see a further list of related

works, that we reviewed, which are similar in the general picture (the HEMS environment, the

motivations, the goals) and just differ in specifics (such as for instance, the optimization meth-
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ods used): [6, 37, 56–62]. It is worth remarking that these works, for instance the one by Si

et al. [60], using a Radial Base Function Neural Network (RBFNN) for office lighting con-

trol; or the one by Navarro-Caceres et al. [62], using an Artificial Immune System (AIS) for

household energy optimization, etc.; underline the fact that while some methods may, at some

stage, be the more prevalent (such as genetic algorithms or particle swarms), emerging methods

or the innovative application of know methods, have their potential for delivering competitive

solutions.

Aside from the above discussed literature, and to help build the big picture and outline im-

portant and common features and practices of the state of the art, we also examined a number

of survey papers on HEMS and energy DR related matters, whose insights are worth discussing

( [1,7,13,16,17]). These works, have different degrees of merit on the breadth, depth, accuracy,

focus or perspective of their coverage of HEMSs and DR related matters. It became evident

that, of the cited works, the one by Beaudin and Zareipour [1] stands aside in terms of breadth,

depth and focus on the HEMS area, whereas the work by Deng et al [13] also digs deep in the

HEMSs matters from the DR perspective, as compared to the remaining.

2.1.14.1 Summary Take-outs from the Review on Household Energy Management

From the reviewed literature (both the ordinary papers and the surveys), some important insights

and take-outs are as follows:

(i) On The HEMS environment, motivations and goals:

The target environment of the proposed Energy Management Systems (EMSs) is mostly

the single household, frequently a smart home, under the SG paradigm. Some works

target also multiple households. Some other [55] address DLC based DR on multiple

customers (households included) so the proposed control system is not quite a HEMS,

however it shares many similarities with the other works, which is not strange since we

also observed that for all the works, the motivations and goals are generally the same,

instances of the eGoals (2.1.1), which are basically around: lowering energy bill and

keeping comfort for the end-user, and providing demand response functionality, which
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brings the benefits we already discussed (2.1.7).

(ii) On the model approaches and mathematical formulation:

In many works, the problem was multi-objective by nature: two or more conflicting objec-

tives were to be traded-off for an acceptable solution, as well as complying with a number

of constraints. We found that, the most popular method of formulation, especially for the

heuristic based approaches, is the conversion of the multiple objectives into an aggregate

single objective by applying the weighted-sum method. In these "aggregate objective

approach" works, also we found that, to further lessen the complexity of the problem

formulation, it had been a popular practice to include the constraints into the aggregate

objective function through the penalty approach, wherein the constraints are translated to

a component of the aggregate single objective function.

(iii) On tackling uncertainty and the CG:

Some of the works are designed to tolerate uncertainty (UAS), by incorporating the capa-

bility of (re)building missing information, that may be just unavailable or be inaccurate at

time of performing scheduling optimization, such as: pricing information, estimate of the

available renewable energy resources, estimate of next-day household EC, etc. So, such

information is (re)built by forecasting or "learning" from some available statistical data,

and/or using some model previously built from some kind of data.

However, albeit we tried, we were unfortunate to not find works targeted to providing

energy efficiency or demand responsiveness for the CG or for the transitional state from

the CG to the SG. In those scenarios, such kind of works would require the capability to

tackle DR information uncertainty, scarcity or bare unavailability. This was, as discussed

in the introduction, a motivation and perspective in the present research work.

(iv) On the types of optimization approaches commonly used:

We observed that the most frequent optimization methods is the heuristic class, including

the PSO, in particular BPSO for appliance scheduling optimization. This is corroborated

by Beaudin and Zareipour [1] review: the approximate stakes of the most accounted

optimization methods are:
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(a) (Meta)heuristic approaches (PSO, GAs, TS, SA, etc.): 39.7%;

(b) Mixed Integer Linear Programming (MILP): 27.4%;

(c) Linear Programming (LP): 16.4%;

(d) Quadratic Programming (QP): 8.2%;

(e) Convex Programming (CvxP): 2.7%;

(f) Dynamic Programming (DP): 4.1%;

(g) Mixed Integer Non-Linear Programming (MINLP): 1.4%;

The methods in (b)-(e) are in the camp of so called "analytical/mathematical optimization

(AMO)" methods: LP and MILP require linear (or affine) models, whereas CvxP and

QP will require convex and convex-quadratic models. That lends them substantial model

inflexibility pertaining the whole optimization process, in instances when the real life

problem will need to change parameters or function definition, for some reason, such as

in real time optimization applications scenarios, wherein some model parameters would

change on-the-fly. Otherwise, many appliances schedules operation, translate to non-

linear formulations among other model complexity features.

We can conclude that, in the surveyed [1] works, vis-a-vis analytical/mathematical op-

timization (AMO) methods, heuristic based approaches are the ones with the most sub-

stantive stake (near 40%), all the more so as we consider that the other methods, es-

pecially MILP, may probably feature some heuristic/computational intelligence based

helper method as part of their algorithmic framework.

2.1.14.2 Choice of an Optimization Approach

From the above review and discussion, it is apparent that, from the general problem solution

perspective, there is no absolute winner as best method for HEMS (and for any area) as also

discussed in [1]. The choice will depend on further specificities and complexity of objective

function(s) and constraints of the real life problem under analysis.

However, it is a common consensus (as for instance argued by [1, 13, 63–65]) that heuristic

based approaches, are better choices as compared to conventional analytical/mathematical opti-
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mization (AMO) methods, when it comes to tackling non-linear, non-convex or non-continuous

mathematical models, and providing near-optimal solutions with less computational effort, not

being greatly affected with the "CoD" issue, which is the exponential increase in the volume of

the search space with the problem size undermining computational performance.

Also, in a feature that helps the above capability, meta-heuristic methods, especially the

ones in the camp of the population based metaheuristics (PBMs) (GAs, ESs, DE, PSO, etc.),

generally take few or no assumptions about the problem mathematical model, regarding it as

a blackbox function under the usual assumption that such function will timely return a "land-

scape" metric, a scalar, translating to relative fitness for each candidate position it submits to

such blackbox ( [1, 66, 67]).

Meeting the blackbox functionality, gives an optimization method, the capability of han-

dling the instances when there is not a clear mathematical model for the problem, including

unknown or uncertain parameters, that characterizes many real life problems, including in the

area of household energy management, where, for instance informations like these will change

unpredictably: (i) ordinary users will define system parameters in the form of their preferences

for appliances’ operational settings, (ii) next-day energy pricing information, (iii) next-day solar

energy availability, etc. These changes will need to be reflected in the problem mathematical

model, which would require a change in the optimization method if a conventional deterministic

AMO method is used.

Otherwise, regarding the population based metaheuristic approaches among themselves

(GAs, DE, ES, PSO, etc.), a number of research works comparing optimization approaches,

found that the PSO algorithm, outperform other heuristic approaches (among GAs, DE, TS,

SA), in both accuracy and computational effort. The PSO algorithm is also praised regarding

the relative simplicity of its algorithmic framework and less assumptions towards meeting the

blackbox functionality. However, there are many other research works that give superiority to

some of the other parties using different sets of functions and/or algorithmic parameters and

variants. Actually for many years, algorithm versions of evolution strategies (ES/CMAES) and

differential evolution (SHADE family) among other families, have established themselves as

the current state of the art.
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Thence, most likely, no single heuristic based method (or indeed no method) will be the

absolute winner for all kinds of problems (as addressed by the "No-Free-Lunch" (NFL) by

Wolpert and Macready [68], and widely discussed in various literature, as in [67, 69–72]). So,

the use of multiple optimization methods or a single hybrid method, may be better suited to

address blackbox and model changing, real life problems, at least of a particular class, with

determined limits.

In conclusion, the above discussion, deepened our understanding of the common methods

used not just in the area of HEMSs and energy management, but in engineering and science

in general. In this way, the discussion strengthened our prospective choice of using popula-

tion based heuristic optimization methods (such as PSO, Evolution Strategies (ES)), as the best

approach for our work in appliance scheduling, on the basis of their versatility in tackling com-

plexity, uncertainty, non-linearity, which, in a real time control scenario, include unpredictable

changes of objective functions and constraints parameters, driven by changes in the pricing func-

tions, and changes in user’s choice of operating parameters, such as appliance preferred time

and duration of operation, etc. Those changes would likely require profound model changes if

an analytical mathematical optimization method was the choice.



Chapter 3

Pseudo-RTP Guided Appliance Scheduling

for Demand Responsiveness in

Unconnected CG Environments

3.1 A Framework for a bbDR for Communications Deprived

CG environments

Most works that we researched are flocking around providing automated DSM and ADR for SG

environments, which imply default communications capabilities and supposedly an actual real

time exercise and effectiveness of DSM and ADR protocols from all the parties. But the current

energy landscape, characterized by the high prevalence of CG supply networks, all the more

when Developing world is concerned, suggest that something should be done for providing a

baseline automatic demand responsiveness for the CG environment, to tackle an increasingly

uncontrollable high energy demand, which results in frequent blackouts, among other evils.

So, to start with, we are outlining this research as a framework or vision for providing bbDR

for the communication deprived networks (although other results of wider application are also

envisaged). Such framework is depicted in Figure 13, where the main features are:

1. A pseudo-Real Time Pricing (RTP), is created from a country or region Daily Load Pro-

file (DLP) as shown in next section. Such pseudo-RTP gives a rough approximation of the

45
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daily demand evolution and thereby a valid guiding signal for the autonomous schedul-

ing of a controllable appliance with lack of energy rate data. Such pseudo-RTP can be

replaced by other types of pricing realizations deemed appropriate, including existing al-

ternative pricing functions (such as Time of Use Tariff (ToUT)), or could be one specially

crafted by the utility company for this special purpose. The energy rate function can then

be placed as a built-in default inside the HEMS, with possible future update: for this, the

HEMS is supposed to be ready for (a) offline update and/or for (b) a basic online update,

when a communication channel and some DR functionality become available.

2. An appliance scheduling program as part of the HEMS will be guided by such pseudo-

RTP, along with appliance scheduling data and user preferences, to produce optimized

schedules, whereby user Energy Consumption (EC) patterns will be improved to some

meaningful extent.

3. Incentive: the effectiveness of a DR measure, such as proposed bbDR, may need some

kind of incentive from the utility in harmony with other stakeholders (e.g.: the govern-

ment; see section 2.1.2) to boost the adherence by the end-use consumer to such scheme.

3.1.0.0.1 Sample Generation of a Pseudo-RTP Function We have used the following pro-

cedure for generating the pseudo-rtp (which does not exclude other possible ways, when other

type of data are available): (1) digitization of the country load profile; see Figures 11-10; (2)

normalization into "per unit" metrics; (3) fitting to a desired granularity (p/hour, p/10 minutes,

p/minute, etc.) and (4) multiplying the "per units" by an average price, for instance 70c/KWh

(cents of Rands/KWh; could be another currency or another average price).

in Figure 13, the picture in (b), shows the digitized RSA 2014 Winter profile vs. the pseudo-rtp-

hourly graph generated using the above procedure, whilst the picture in (c), depicts the same

SA2014 Winter load profile along with the resulting minutely pseudo-real-time price, also de-

rived using the above procedure. Any of the simulated RTPs is time-step piecewise constant.

The time step is also a unit time. The realization and demonstrations of using such DLP in-

formation to produce a pseudo-rtp and test it as a guiding signal for a bbDR approach, can be

found in next sections/chapters.
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Figure 13 (a) Proposed bbDR Framework; (b-c) SA2014 Winter DLP along with:
(b) pseudo-RTPhourly; (c) pseudo-RTPminutely
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3.2 Pseudo-RTP and Heuristic Based Appliance Scheduling

To tackle appliance scheduling optimization, a process themed Real Parameter Blackbox Opti-

mization Approach to Appliance Scheduling (RPBBOAS) model was developed. Also, a com-

panion algorithm, named "Hybrid, Particle swarm, Evolution strategies, Random walks, Ge-

netic, Differential and miscellaneous Ant-Inspired Cooperative Xplorers (HyPERGDx)", was

developed to address shortcomings that we faced when trying to use readily available state-of-

the-art algorithms to perform appliance scheduling on the ApplianceSchedule1(.) function, the

Matlab implementation of said Real Parameter Blackbox Optimization Approach to Appliance

Scheduling (RPBBOAS) model. Both the proposed works (the RPBBOAS model and the Hy-

PERGDx algorithm), which we present and thoroughly discuss below, were also presented and

discussed as a journal paper, undergoing a publication process.

3.2.1 Blackbox Optimization Approach

As addressed in section 2.1.14.2, blackbox capable algorithms, such as most metaheuristic

methods, especially the ones in the camp of the PBM (GAs, ESs, DE, PSO, ES, etc.), gen-

erally don’t require any specific knowledge of the problem mathematical model, aside from its

dimensionality (problem size) and the boundaries of the problem space (box constraints); no

further assumption is taken aside from expecting that such function will timely return a "land-

scape" metric, a scalar, translating to the relative fitness of the candidate position submitted

( [1, 66, 67]). Figure 14 tries to describe the blackbox optimization concepts, which we are

seeking to reproduce in our RPBBOAS model.
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Figure 14 Blackbox Optimization Framework
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3.3 Real Parameter Blackbox Optimization Approach to Ap-

pliance Scheduling

3.3.1 RPBBOAS Modelling Goals

Starting from the grounds of the above discussion, this work is an attempt to approach the

appliance scheduling problem trying to address the above concerns, specifically aiming at the

following:

1. The use of a real parameter, unconstrained or box constrained blackbox appliance schedul-

ing optimization model, to allow for the use of any blackbox capable global optimization

algorithm; along with such an approach we are also seeking to reduce the effect of the

CoD/combinatorial explosion issue which is more serious if the problem space is mod-

elled and optimized as pure combinatorial one, wherein each discrete time step (hour,

minute, second,...etc., down to the adopted resolution) is a dimensional component of

the problem space, i.e., the variable that is optimized, from the optimization algorithm

perspective, as with BPSO and alike.

2. The use of a simulated (pseudo) real time pricing, rebuilt from a country load profile,

which is a fair representation of a one day evolution of demand in a specific country and

thereby can be used as a rough replacement to the otherwise unavailable RTP information

in a CG environment. Other pricing functions should however remain as interchangeable

options to such simulated real time pricing function;

3. Providing a multi-appliance and multiple working cycles per appliance per day schedul-

ing, and insure non overlapping working cycles for the same appliance; or non over-

lapping between cycles of different appliances where required, and specified by input

parameters; should also insure some appliance A1 working time precedence over another

appliance A2 where specified;

4. Providing instant power budget aiming at the reduction of global PAR and a shorter elec-

tricity bill by promoting power saving or power shifting to cheaper time slots.
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5. Allowing for user defined, preferred appliance working time windows and optimal times,

which paired with a user centricity parameter, regulate the amount of user satisfaction/frustration

for the degree of displacement of the appliance’s candidate schedules relative to such user

specified optimal working times. In tandem with and to streamline the realization of such

feature, establish penalty functions of different types to reflect different appliance based

evolutions of the amount of user frustration vs the amount of schedule misplacement.

3.3.1.0.1 Appliance properties

A partial sample of house appliances, just appropriate for the discussion of the RPBBOAS

model, is presented in Table 2.

Table 2 Appliance Properties and basic operational characteristics

Abrev. Appliance Name/Group Appliance Type Nominal Power (W) Standby Power (W)

WH Water Heater Shiftable, Schedulable 4500 100

CW Clothes Washer Shiftable, Schedulable 610 0

CD Clothes Drier Shiftable, Schedulable 5000 0

CF Ceiling Fan User operated, Non-schedulable 500 0

FG Fridge User operated, Non-schedulable 500 100

ST Stove User operated, Non-schedulable 2100 0

TV Television User operated, Non-schedulable 200 0

IL Lighting User operated, Non-schedulable 120 0

3.3.2 Basic, Combinatorial, Appliance Scheduling Model

Starting from the above grounds, the following equations (Eqs.3), are an introductory combina-

torial appliance scheduling mathematical model, intended to serve as the basis, to support the

motivations and discussion our proposed target RPBBOAS model in (Eqs.4):
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Appliance Schedule Model 1: (Eqs.3)

Hde f = {α, ς , δ , PBi, EBd , T, τ} (3a)

Ade f =
{
{Pn1,Psb1,AT 1,Wz1,Wp1},{Pn2,Psb2,AT 2,Wz2,Wp2}, . . . ,{Pnm,Psbm,ATm ,Wzm,Wpm}

}
(3b)

NCde f = {K1,K2, . . . ,K j , . . . ,Km}; K =
m

∑
j=1

K j (3c)

WT de f =
{
{πT

j1, [T
L
j1,T

U
j1 ], [T

OL
j1 ,T OU

j1 ],T O
j1}, . . . ,{πT

jk, [T
L
jk,T

U
jk ], [T

OL
jk ,T OU

jk ],T O
jk}, ...

}
; ∀ j = 1, ...,m; ∀k = 1, ...K j ; K j ∈ NCde f (3d)

WDde f =
{
{πD

j1, [D
L
j1,D

U
j1], [D

OL
j1 ,DOU

j1 ],DO
j1,D

Ocnt
j1 , ICT

j1 }, . . . ,{πD
jk, [D

L
jk,D

U
jk], [D

OL
jk ,DOU

jk ],DO
jk,D

Ocnt
jk , ICT

jk }, ...
}

;

∀ j = 1, ...,m; ∀k = 1, ...K j ; K j ∈ NCde f (3e)

Q j(t) =


1, if appliance j is swithched ON at time step number t;

0, otherwise;
; (3f)

q j(t) = Q j(t) = 1−Q j(t). (3g)

NC j = Q j(1)+
Nt−1

∑
t=1

q j(t) ··· Q j(t +1); j = 1, ...,m (3h)

t j = {Q j(1) | Q j(1) = 1}∪{t | (q j(t−1)).(Q j(t)) = 1}; t = 2, ...,Nt j = 1, ...,m (3i)

te
j = {t +1 | (Q j(t)).(q j(t +1)) = 1}∪{Q j(Nt) | Q j(Nt) = 1}; t = 1, ...,Nt −1; j = 1, ...,m (3j)

d j = {d jk | d jk = e jk− t jk; t jk ∈ t j ; te
jk ∈ te

j ; ∀k = 1, ...,NC j ; j = 1, ...,m (3k)

{
Pi(t), t = 1, . . . ,Nt

}
=
{ m

∑
j=1

Pr j(t); t = 1, . . . ,Nt
}

; Pr j(t) =


Pn j , Q j(t) = 1;

Psb j , otherwise;
(3l)

Ed =
1
ρ

Nt

∑
t=1

Pi(t); ρ = 3600/τ; (3m)

EC j = Pn j

(
Nt

∑
t=1

R(t) ··· QQQ jjj(t)

)
+ Psb j

(
Nt

∑
t=1

R(t) ···
(

1−QQQ jjj(t)
))

(3n)

ECh =
m

∑
j=1

EC j =
m

∑
j=1

{
Pn j

(
Nt

∑
t=1

R(t) ··· QQQ jjj(t)

)
+ Psb j

(
Nt

∑
t=1

R(t) ···
(

1−QQQ jjj(t)
))}

(3o)

UD j =

NC j

∑
k=1

Upwd(t jk, d jk, WT de f ( j,k), WDde f ( j,k)) (3p)

UDh =
m

∑
j=1

UD j =
m

∑
j=1

{
NC j

∑
k=1

Upwd(t jk, d jk, WT de f ( j,k), WDde f ( j,k))

}
(3q)

Pi(t)≤ PBi; ∀t ∈ {1, . . . ,Nt} (3r)

Ed ≤ EBd (3s)

T L
jk ≤ t jk ∧ t jk ≤ TU

jk ; k = 1, ...,NC j; j = 1, ...,m; t jk ∈ t j (3t)

DL
jk ≤ d jk ∧d jk ≤ DU

jk; k = 1, ...,NC j ; j = 1, ...,m; d jk ∈ d j (3u)

NC j = K j ; j = 1, ...,m; K j ∈ NCde f ;
m

∑
j=1

K j = K (3v)

S j(t) =


0, Q j(t) = 0;

⋃NC j
k=1

(
Πupwd(t jk,d jk,WT de f ( j,k),WDde f ( j,k),α,ς ,δ )

)
, otherwise;;

; ∀t ∈ {1, . . . ,Nt}; t jk ∈ t j ; d jk ∈ d j ; (3w)

H j(t) =


10100 ∀ j ∈ {1, ...,m}, if: (Eq.3r) or (Eq.3s) do not hold; or for some j there is a cycle overlaping violation;;

0, otherwise
(3x)

B j =


∞, for some cycle k of appliance j, any of (Eq.4t - Eq.4v) do not hold;

0, otherwise.
(3y)

min
Q(t)

EEEPCh =
mmm

∑∑∑
j=1

{
PPPnnn jjj

(
Nt

∑
t=1

R(t) ··· QQQ jjj(t) ···
(

111+++ααα ···SSS jjj(((ttt)))
))

+++ PPPsssbbb jjj

(
Nt

∑
t=1

R(t) ···
(

1−QQQ jjj(t)
))

+++HHH jjj +++BBB jjj

}
(3z)
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where:

(A) Settings in (Eqs.3a-3e), represent the appliances’ data definitions, namely:

1. Hde f in (Eq.3a), holds:

(a) the system wide user centricity coefficient (α) which determines the balance

of user satisfaction to energy cost in the schedule optimization penalized cost

function ECh in (Eq.3z). It goes along with;

(b) ς and δ , whose values represent the relative share of cycle start-time misplace-

ment vs the cycle duration mismatch, in the user preference window penalty

function. ς regulates the contribution of the start-up penalty, whereas δ reg-

ulates the contribution of the duration mismatch in the aggregate user prefer-

ence window penalty as calculated and returned by Πupwd(.) penalty function

in (Eq.3w).

(c) PBi and EBd: respectively the instant power demand budget (in KW) and the

daily power consumption budget (in KWh) for schedulable appliances.

(d) T is the simulation/control horizon, in seconds (We used a T = 86400s).

(e) τ is the resolution or time granularity relative to T , i.e., the duration of a dis-

crete time step in seconds (We used a τ = 60s). Whereas Nt is the number of τ’s

comprised in T , such that T = τNt (We herein assume that for convenience, i.e.

no roundings, τ and T are chosen such T/τ produce an integer Nt). In turn ρ , in

(Eq.3m), is the hourly relative resolution; it equates to the number of time steps

comprised in 1h for the intended resolution τ; i.e., ρ = 3600/τ; for instance,

ρ = 1,4,6,60, ..., correspond to 3600s (1h), 900s (15min), 600s (10min), and

60s (1min) τ resolutions. The coefficient ρ offers a means for adjustment of

entities that are expressed in terms of the currently adopted resolution, vs some

entities expressed relative to 1h, such as energy rate; for instance: calculat-

ing the daily energy consumption from the logged instant power demands (one

instant means the discrete time slot τ).
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The power budget settings are the energy limits the user defines and is eager to be

subject to, in exchange for a lower energy price (based on maximum instantaneous

household power demand) and a lower energy bill as a result of capping de daily en-

ergy consumption and shifting the consumption of schedulable appliances to lower

priced time slots (to the best extent, as much as allowed by α , the user-centricity

coefficient).

From the supply side perspective, the instant power cap (a demand side measure)

results in power shifting from higher load to lower load profile time slots (as guided

by the energy pricing function), leading to peak shaving and hence a lower PAR.

2. Ade f in (Eq.3b), holds appliance power ratings (nominal: Pn j and standby: Psb j), as

well as AT j the power control type (the appliance type in Table 17) and definitions

for Wz j the "No-Go" and Wp j "precedent" zones for the appliance j; the terminal

index j =m is the number of appliances; The "No-Go" zones are predefined sections

of the time horizon unallowed for operation for appliance j whereas the "precedent"

zones are cycle precedence definitions (e.g. cycle Y should be placed after cycle K),

in this case the actual compliant placement is done at scheduling time, whilst the

"No-Go" zones are explicitly pre-defined.

3. NCde f in (Eq.3c), holds the definition (user preferences or baseline) for the number

of cycles per appliance, wherein K j is the number of cycles for the appliance j, and

KKK the overall total number of cycles, pertaining to all schedulable appliances.

4. WT de f in (Eq.3d), holds the definition (user preferences or baseline) appliance work-

ing windows (the subsets, enclosed in ’{ }’), comprising:

(a) πT
j1, start-up (or generally: active time slot) misplacement penalty type for ap-

pliance j cycle 1;

(b) T L
j1 is the absolute lower bound start-up time, whereas TU

j1 is the absolute upper

bound active time ; for appliance j cycle 1; and,

(c) T OL
j1 and T OU

j1 : are respectively the user preference cycle placement window

worst case lower and upper bound active time for appliance j cycle 1; and,
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(d) T O
j1 the user preference window optimal cycle start-up time, for appliance j

cycle 1. T O
j1, together with DO

j1 from (Eq.3e), form the optimal sub-window for

cycle 1, as: W TO
j1 = [T O

j1, T O
j1 +DO

j1−1] (the strict user preference window).

The above descriptions, which cited appliance j and cycle 1, apply to any other

combination of appliance m and cycle k.

5. WDde f in (Eq.3e), holds the definition (user preferences or baseline) for the appliance

cycles durations, wherein each subset (enclosed in ’{ }’) pertains to a particular

appliance cycle:

(a) πD
j1, duration mismatch penalty type for appliance j cycle 1;

(b) DL
j1 and DU

j1: respectively the absolute lower and upper bound duration (times)

for appliance j cycle 1; and,

(c) DOL
j1 and DOU

j1 : respectively the user preference duration window worst case

lower and upper bound duration (times) for appliance j cycle 1; and,

(d) DO
j1 the (minimal of equally) optimal duration(s) as per user preference, for

appliance j cycle 1.

(e) DOcnt
j1 the count of adjacent equally optimal durations as per user preference,

for appliance j cycle 1.

(f) ICT
j1 the minimum inter-cycle time as per user preference, for appliance j cycle

1: a minimum delay before staring next cycle.

The above descriptions, which cited appliance j and cycle 1, apply to any other

combination of appliance m and cycle k.

(B) Q j(t) in (Eq.3f) is the switching state, either ON (1) or OFF (0), of the appliance j at the

time step number t; whereas q j(t) in (Eq.3g) is Q j(t)’s complement to 1 at the time step

t.

(C) NC j in (Eq.3h) is the run time number of cycles for the appliance j, calculated from the

current candidate switching states Q j(t); NC j goes in tandem with t j, te
j and d j (their

vector lengths should be equal to NC j):
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(D) t j in (Eq.3i) the set of the respective cycles starting times;

(E) te
j in (Eq.3j) the corresponding end times, and

(F) d j in (Eq.3k) the respective durations;

(G) Pi(t) (a vector of size Nt) and Ed (a scalar) are respectively the instantaneous (per each t)

power demand and daily power consumption for the current candidate solution. These en-

tities are checked for compliance with the constraints established by (Eq.3r) and (Eq.3s)

respectively; i.e., if a candidate schedule violates anyone of these budgets, then it is

awarded a hard penalty via the H j component in (Eq.3z) and (Eq.3x), so as to render it

very unattractive a candidate solution for the fitness based optimization processes, which

will be querying the model function for their fitness.

(H) EC j in (Eq.3n), represents the energy cost pertaining to the appliance j, wherein Pn j and

Psb j are as described in (Eq.3b), the nominal and the standby powers for appliance j,

respectively; t represents, in discrete time, the time step number, which, as discussed, is

of fixed duration τ .

(I) R(t) is the electricity price per unit time at time step t: R(t) is time varying, but it is

piecewise (time step-wise) constant;

(J) ECh in (Eq.3o), is the total household’s cost of energy consumption per the control horizon

T , whereas m remains the number of appliances, and index j = 1,2, ...,m, the appliance

number; ECh is (would be) one of the objectives to minimize, along with the one in

(Eq.3q), both subject to (Eqs.3r - 3v);

(K) UD j in (Eq.3p) is a measure that tries to translate the user discomfort for appliance j

cycles misplacement/mislength; whereas,

(L) UDh in (Eq.3q) is the total per the household (all schedulable appliances), for such mea-

sure of user discomfort, in (Eq.3p). Upwd under both discomfort equations, is the function

that calculates such measure of discomfort (further addressed in section 3.3.4);
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Otherwise, UDh and ECh are the two conflicting objectives for optimization, which how-

ever is eventually done in (Eq.3z) using a penalized unconstrained approach. For specifics

on the mathematical model UDh and the penalties, see section 3.3.4;

(M) Equations (3r - 3v) are collectively the constraints to comply with for the would be min-

imization of conflicting (Eq.3o) and (Eq.3q), as discussed above. Otherwise, for the

minimization of the eventual objective in (Eq.3z), these constraints are enforced via the

penalty components: α ·S j, H j and B j. Such constraints are namely:

1. (Eqs3r-3s) determine compliance to user specified instant and daily power caps,

enforced via the H j component of (Eq.3z);

2. (Eqs.3t-3u) define the box constraints, for whose violation a candidate solution is

awarded infinity fitness (infeasible objective value);

3. (Eq.3v), defines that NC j, the optimization time (evaluated from the current candi-

date solution) number of cycles for any appliance j, be equal to its predefined K j

number of duty cycles per day.

(N) S j in (Eq.3w) and H j in (Eq.3x) are respectively the user-centric soft penalty and the op-

erational hard penalty for the appliance j. The first represents quantitatively the penalty

awarded for the user frustration in proportion to the amount of appliance cycles misplace-

ment and duration mismatch relative to their predefined preference (it is a soft penalty that

does not make a candidate solution roughly an infeasible one); and the hard penalty (H j)

is placed where an unacceptable violation occurs such as: (i) power budgets violations,

(ii) cycle overlapping for appliances that are predefined not to overlap in determined cy-

cles, (iii) cycle placement on prohibited ("no-go") zone. For any single occurrence of

these cases, a very high penalty H j is applied on every time slot for the whole offending

candidate schedule. For specifics on the mathematical model and sample depictions of S j

and H j penalties, see section 3.3.4. In turn,

(U) B j in (Eq.3y) is concerned with the extreme violations, namely box constraints viola-

tion, wherein, candidate solutions place themselves outside the predefined feasible design
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space bounds, in which case they are awarded an infinity (∞, the hardest) penalty, which

likely equates to assigning an infeasible objective value to (Eq.3z), to meet the infeasible

input. This hardest penalty, ∞, may be replaced by the platform’s largest number, which

may be more convenient for feasibility of number comparisons somewhere in the exter-

nal optimization process. This hardest (or generally any very high) penalty, is otherwise

branded as the death penalty [74], underlining what it is meant for over the offending

candidate solution.

(V) EPCh in (Eq.3z), is the objective function of the model. It represents the total penal-

ized cost of schedulable appliances, a function summing up the conflicting components

(EC j and S j) and constraints penalties (H j and B j), in a penalized unconstrained fashion,

wherein, the presence of S j, H j and B j components in (Eq.3z) insures that the mini-

mization is already subject to the constraints handled by such components, turning it

an unconstrained objective. The EPCh function, is a result of merging together multiple

conflicting objectives along with problem constraints into a single aggregate objective

function, so as to help lessen the complexity of both the definition and the ensuing opti-

mization process, a usual technique that we have discussed earlier. For such aggregation,

specifically, the second objective (user discomfort) was treated as a soft constraint (an ε-

constraint type approach [70] [73]) and then converted to a penalty which is aggregated to

the main objective (ECh) using a multiplicative penalty approach [74] [75] in (Eq.3z). In

turn, hard constraints (H j and B j) were aggregated into (Eq.3z) using an additive penalty

approach [74] [75]. In any case, were the penalties are null (i.e, there is no violation

whatsoever), then the pure energy cost prevails. Also, null penalty means full compli-

ance to the entities represented by such penalties, being in particular, user satisfaction to

the extent regulated by α (the user-centricity coefficient, in (Eq.3a)). Here α acts as the

ε-constraint which helps the decision maker (the user, the designer) to a priori articulate

their preference, i.e. to choose, their suitable optimal solution which satisfies both the

energy cost objective and the user satisfaction objective; a solution that in any case is

located over the Pareto front of all possible satisfying solutions for different values of α

(the ε-constraint). Other variables in (Eq.3z), are already defined above.
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Aside from what already discussed, it is assumed that for the feasibility of the optimiza-

tion in (Eq.3z), the feasible solutions space is contiguous enough and its granularity τ

referenced in (Eq.3a) should be as fine as enough to allow the optimal placement of all re-

quired, predefined schedules as per the settings in (Eqs.3a-3e). Also, as discussed earlier,

the finer the granularity defined by ρ the better the placements and thereby the eventual

optimal solution. Furthermore, for the feasibility of the optimization in (Eq.3z), it is also

assumed that other definitions and user preferences are not conflicting or in whatever the

manner ill defined.

3.3.2.1 Considerations about the Appliance Scheduling Basic Combinatorial model

From the above model (Eqs.3) it follows that: The appliance scheduling problem optimization

turns out to be: the determination of the optimal combination of the binary Q j(t) states that

yields the lowest possible penalized cost EPCh in (Eq.3z).

In other words, and very importantly: {Q = Q j(t); j = 1, ...,m, t = 1, ...,Nt} is the design

space variable, sampled for determining its optimal bit pattern, the one that yields the lowest

penalized cost, or the best compromise between cost and user comfort, according to the prefer-

ences and parameters thereof, set forth for the calculation of EPCh, including most importantly

the user centricity (α) parameter. So, for easy interpretation, Q j(t) (or its complement q j(t))

should be regarded as the current candidate sample bit pattern, a candidate solution, a particle

(in PBM jargon).

The first intuitive and straightforward approach to optimize the model in (Eqs.3) is to go

combinatorial, using those Q j(t)’s straight away as the design space variables, and performing

a binary combinatorial optimization of some kind, such as using BPSO, Genetic Algorithms

(GAs). However, a combinatorial optimization, is bound to be affected by the combinatorial

explosion/"curse of dimensionality" (CoD) issue: the number of Q j(t) binary variables and

thereby the volume of the design space increases exponentially with the number of appliances

and their duty cycles, and mostly, with the desired granularity (whether Q j(t) represents hours or

minutes or seconds, etc., time slots). This is the reason behind departing from the introductory

model in (Eqs.3) to the RPBBOAS discussed in next section.
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3.3.3 Proposed Reduced Dimensionality Real Parameter Scheduling Model

The main attempt, of the following model representation in (Eqs.4) is allowing for a reduced

number of design space variables mainly from the optimization algorithm perspective, and also,

allowing that such external variables, or candidate solutions, be real parameters in lieu of the

discrete parameters, discrete Q j(t)’s, of the above introductory model. At same time, the new

model should, to the best extent, reduce the internal problem representation and computational

complexity and encapsulate and "hide" it from the outside blackbox optimization algorithms

querying for fitnesses of candidate solutions. Figure 14 is a reference model.

With such considerations in place, the below mathematical model, in (Eqs.4a-4z), collec-

tively (Eqs.4), of which we underline the last one (Eq.4z); makes a modified representation of

the previous model in (Eqs.3). Aside from some new variables, most equations from previous

model (Eqs.3) make part of the new model (Eqs.4), some of them without change (Eqs.4a-4e),

other with the same logical meaning and changes in their mathematical representation. Except

for (Eqs.4f-4k) and (Eq.4v), every other variables naming and their meaning are the same of the

previous model (and also, they keep the same alphabetical equation sub-index). In any case we

will add due comments for the sake of emphasis or completeness. The following is the meaning

of the variables and equations of the proposed model:

1. Settings in (Eqs.4a-4e), represent the household and appliances’ data definitions, as in

previous model, and, remain unchanged.

2. {C jk} in (Eq.4f): Is a vector comprising the linear sequence of all cycles from all appli-

ances, orderly placed from cycle 1 to last cycle K1 (of appliance 1) and then from cycle 1

to last cycle K2 (for appliance 2), ..., until last cycle of appliance m (cycle Km); then,

3. {Ci} = III((({CCC jk}))) in (Eq.4g) is its index set, a linear index, mapping the i-th element of

such vector {C jk} to i; i ∈ Ci; Ci ⊂ N; Also, very importantly: OwnerJ(Ci) = j and

OwnerJK(Ci) = { j,k} give back the reverse appliance indexes j and { j,k} of the cycle C jk

whose linear index is Ci.

The linear index is used to map bijectively the vector of cycles {C jk} to the vector of

components Xd; d = 1, ..., D, where, Xd is a component of the continuous time external
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design variable X , and, D is the dimension of X ; also, D should comply with (Eq.4v)

which include D ≤ 2K; K keeps being the collective total number of appliances’ cycles,

and the length of vector {C jk}. We underline the index function III((({CCC jk}))) that we use as

the formal representation of such mapping, as well as OOOwnerJ(((CCCiii))) as well as OOOwnerJK(((CCCiii))),

which represent the reverse mapping from the linear index Ci to the owning j or jk (where

j is the owning appliance number and k the appliance cycle number).

4. sc in (Eq.4h), is the starting time of cycle c; c ∈ {Ci}; sc is the discretization of the

(2c− 1)-th dimensional component, of the external variable X ; a discretization done up

to the desired resolution or granularity specified by τ . i.e., the odd index 2c−1 under X

in (Eq.4h), maps the starting time of the c-th cycle, to the design variable component Xd ,

where d = 2c−1. In turn, dc in (Eq.4i), is the duration of cycle c;c ∈ {Ci}; similar to the

above case, dc is the discretization of the (2c)-th dimensional component, of the external

variable X : i.e., the even index 2c under X in (Eq.4i), maps the duration of the c-th cycle,

to the design variable component Xd; where now d = 2c.

Just to underline, it follows that, sc is mapped to some odd indexed Xd , and the corre-

sponding duration dc is mapped to the next (even indexed) Xd+1, dimensional component

of the external variable X ;

5. Ton j in (Eq.4j) is the collection of time slots where appliance j current state is "ON", i.e.,

Ton j is appliance j active time during the simulation horizon Td = {1, ...,Nt}; whereas,

6. T sb j in (Eq.4k), is the standby time, the complement of Ton j relative to the simulation

horizon Td = {1, ...,Nt}; Ton j∪T sb j = Td , the discrete time counterpart of the continu-

ous T horizon;
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Reduced Dimensionality Real Parameter Appliance Scheduling Model (Eqs.4)

Hde f = {α, ς , δ , PBi, EBd , T, τ} (4a)

Ade f =
{
{Pn1,Psb1,AT 1,Wz1,Wp1},{Pn2,Psb2,AT 2,Wz2,Wp2}, . . . ,{Pnm,Psbm,ATm ,Wzm,Wpm}

}
(4b)

NCde f = {K1,K2, . . . ,K j , . . . ,Km}; K =
m

∑
j=1

K j (4c)

WT de f =
{
{πT

j1, [T
L
j1,T

U
j1 ], [T

OL
j1 ,T OU

j1 ],T O
j1}, . . . ,{πT

jk, [T
L
jk,T

U
jk ], [T

OL
jk ,T OU

jk ],T O
jk}, ...

}
; ∀ j = 1, ...,m; ∀k = 1, ...K j ; K j ∈ NCde f (4d)

WDde f =
{
{πD

j1, [D
L
j1,D

U
j1], [D

OL
j1 ,DOU

j1 ],DO
j1,D

Ocnt
j1 , ICT

j1 }, . . . ,{πD
jk, [D

L
jk,D

U
jk], [D

OL
jk ,DOU

jk ],DO
jk,D

Ocnt
jk , ICT

jk }, ...
}

;

∀ j = 1, ...,m; ∀k = 1, ...K j ; K j ∈ NCde f (4e)

{C jk}= {C1.1, C1.2, ..., C1.K1 , C2.1, C2.2, ..., C2.K2 , ..., C j.1, C j.2, ..., C j.K j , ..., Cm.1, Cm.2, ..., Cm.Km} (4f)

{C jk}↔ {Ci}; {Ci}= I({C jk}) = {1, . . . , i, . . . , K}; i = I(C jk); i = 1, ..., K; OwnerJ(Ci) = j; OwnerJK(Ci) = jk; j = 1, ..., m (4g)

sc = QuantX (Xτ ) =
⌈
Xτ

⌉
+1i f ; Xτ =

X2c−1

τ
; 1i f =

1, if Xτ =
⌈
Xτ

⌉
;

0, otherwise
; c ∈ {Ci}; 2c−1 ∈ {1, 3, ..., D−1}; s.t. (4v); (4h)

dc =

⌊
X2c

τ

⌉
= Round(X2c/τ); c ∈ {Ci}; 2c ∈ {2, 4, ..., D}; s.t. (4v) (4i)

Ton j =
⋃⋃⋃

c∈{C j}
[sc, sc +dc−1]; {C j =Ci

∣∣∣ OwnerJ(Ci) = j} (4j)

T sb j =
{

t ∈ {1, . . . ,Nt}
∣∣∣ t /∈ Ton j

}
; {C j =Ci

∣∣∣ OwnerJ(Ci) = j} (4k)

{
Pi(t), t = 1, ...,Nt

}
=
{ m

∑
j=1

Pr j(t); ∀t ∈ {1, . . . ,Nt}
}

; Pr j(t) =

Pn j , t ∈ Ton j ;

Psb j , otherwise; ie, t ∈ T sb j

(4l)

Ed =
1
ρ

Nt

∑
t=1

Pi(t); ρ = 3600/τ; (4m)

EC j = Pn j ∑
c∈{C j}

sc+dc−1

∑
t=sc

R(t) + Psb j ∑
t∈T sb j

R(t); {C j =Ci

∣∣∣ OwnerJ(Ci) = j} (4n)

ECh =
m

∑
j=1

EC j =
m

∑
j=1

{
Pn j ∑

c∈{C j}

sc+dc−1

∑
t=sc

R(t) + Psb j ∑
t∈T sb j

R(t)

}
; {C j =Ci

∣∣∣ OwnerJ(Ci) = j} (4o)

UD j = ∑
c∈{C j}

sc+dc−1

∑
t=sc

Upwd(sc, dc, WT de f ( j,k), WDde f ( j,k)); {C j =Ci

∣∣∣ OwnerJ(Ci) = j}; jk = OwnerJK(c) (4p)

UDh =
m

∑
j=1

UD j =
m

∑
j=1

{
∑

c∈{C j}

sc+dc−1

∑
t=sc

Upwd(sc, dc, WT de f ( j,k), WDde f ( j,k))

}
; {C j =Ci

∣∣∣ OwnerJ(Ci) = j}; jk = OwnerJK(c) (4q)

Pi(t)≤ PBi; ∀t = 1, . . . ,Nt (4r)

Ed ≤ EBd (4s)

T L
jk ≤ sc ∧ sc ≤ TU

jk ; ∀c ∈
{

1, ...,K
}

; jk = OwnerJK(c); k = 1, ...,K j ; K j ∈ NCde f ; K =
m

∑
j=1

K j ; j = 1, ...,m; (4t)

DL
jk ≤ dc ∧dc ≤ DU

jk; ∀c ∈
{

1, ...,K
}

; jk = OwnerJK(c); k = 1, ...,K j ; K j ∈ NCde f ; K =
m

∑
j=1

K j ; j = 1, ...,m; (4u)

{nk = D/2⇔ nk = bD/2c}∧nk ≤ K; K =
m

∑
j=1

K j ; (4v)

S j(t) =

0, t ∈ T sb j ; ∀t ∈ {1, . . . ,Nt};⋃
c∈C j

(
Πupwd(sc,dc,WT de f ( j,k),WDde f ( j,k),α,ς ,δ )

)
, otherwise;

;c ∈ {C j =Ci|OwnerJ(Ci) = j}; jk = OwnerJK(c) (4w)

H j(t) =

10100 ∀ j ∈ {1, ...,m}, if: (Eq.4r) or (Eq.4s) do not hold; or for some j there is a cycle overlaping violation;;

0, otherwise
(4x)

B j(t) =

∞, for some cycle k of appliance j, any of (Eq.4t - Eq.4v) do not hold;

0, otherwise.
; ∀t ∈ {1, . . . ,Nt} (4y)

min
X

EEEPCh ===
mmm

∑∑∑
j=1

{
PPPnnn jjj

(
∑∑∑

c∈{C j}

sc+dc−1

∑∑∑
t=sc

R(t)
(

111+++αααSSS jjj(((ttt)))
))

+++

(
PPPsssbbb jjj ∑∑∑

t∈T sb j

RRR(((ttt)))

)
+++ HHH jjj +++BBB jjj

}
(4z)
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7. Pi(t) (a vector of size Nt) in (Eq.4r) and Ed (a scalar) in (Eq.4s), are respectively the

run-time instantaneous power demand and daily power consumption as discussed earlier;

albeit Pi(t) is now expressed in terms of cycle start times and durations as derived from

(Eqs.4g-4k);

8. EC j in (Eq.4n), represents the energy cost pertaining to the appliance j, wherein Pn j,

Psb j, R(t), Psb j, keep their definitions from model (Eqs.3).

However, EC j time is not expressed in a per time slot Q j(t) design space binary variable,

but rather expressed in cycle start times and durations (sc and dc respectively), themselves

derived from a real, i.e. continuous time parameter X , a derivation made via its discretiza-

tion, following a mapping between the appliance cycles (start times and durations) and

X . The mapping was already discussed above in (Eqs.4f - 4i).

9. ECh in (Eq.4o) represents the daily (i.e. a per the simulation horizon Td) household’s

energy cost, as in (Eq.3o); however, as with EC j it is now expressed in terms of the new

sc and dc derived from the externally submitted candidate solution X ;

10. UD j in (Eq.4p), and UDh in (Eq.4q), keep their meanings of the previous model, as per the

descriptions for (Eq.3p) and (Eq.3q) respectively. However, they are now expressed in

terms of cycle start times and durations (sc and dc respectively) of a new type as derived

from (Eqs.4g-4k) above. For specifics on the mathematical model UDh and the penalties,

see section 3.3.4;

It is worthless repeating that UDh and ECh are the two conflicting objectives for opti-

mization, which however is eventually done in (Eq.4z) using a penalized unconstrained

approach;

11. Equations (4r - 4v) are collectively the constraints to comply with for the optimization in

(Eq.4z): (Eqs.4r-4s) determine compliance to user specified instant power demand and

daily power consumption caps, constraints that are enforced via the H j component of

(Eq.4z), and discussed above; (Eqs.4t-4u) define the box constraints, which are enforced

via the B jcomponent of (Eq.4z); whilst (Eq.4v) determine that the dimension D of the

real valued candidate solution X submitted by external parties querying for its fitness, be
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compliant with expected model properties and relationships as follows: (i) D should be

even (or for generality: D should be multiple of v where for now v = 2, for start time and

duration), and number of cycles thereof, should be nk = D/v = D/2. If the input D is not

compliant with such properties and relationships, than the offending candidate solution

is awarded the hardest penalty via the said B j component of (Eq.4z) as further described

below.

12. S = S(g j) in (Eq.4w) and H = H(h j) in (Eq.4x) are respectively, the user centric, soft

penalty (which translates compliance to user comfort, to the extent regulated by α) and

the hard penalty for the appliance j. Their definitions and meaning remain the same as in

previous model, except for the function signatures that now use the new sc and dc from X

as described above. Also, for specifics on the mathematical model of S j and H j penalties,

as well as some sample depictions, see section 3.3.4;

13. B j in (Eq.4y), is aimed at enforcing compliance to box constraints, whose violation is an

extreme offence, meeting such violations with the hardest penalty. B j keeps its mean-

ing and descriptions of the previous model, albeit worth underlining a small difference:

(Eq.3v) of the previous B j in (Eq.3y), is replaced by (Eq.4v) in the current B j in (Eq.4y).

However, (Eq.3v) and (Eq.4v) have been duly described in their respective sections.

14. EPCh in (Eq.4z), is the objective function of the model. It represents the total penalized

cost of schedulable appliances, as discussed in previous model. However, it is worth not-

ing that, as with some of its components, it is now formulated and optimized by a real

valued parameter X of a reduced dimensionality. We should underline however, that EPCh

in (Eq.4z) keeps the same multi-objective to single-objective transformation and repre-

sentation approaches, as well as the constrained to unconstrained optimization approach,

bringing together the multiplicative (for soft constrains) and additive (for hard constrains)

into the eventual EPCh (Eq.4z) penalized single-objective function. See previous descrip-

tion for EPCh in (Eq.3z) for completeness. However and obviously, the EPCh in (Eq.4z)

and the model in (Eqs.4) are the ones implemented in the subsequent experimental inves-

tigation steps.
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3.3.4 User Discomfort, Constraints and Penalties

This section describes the mathematical model for handling user discomfort (one of the two

conflicting objectives to minimize) and constraints, by way of a penalty approach. We should

point out that, although the approach addresses both the above appliance scheduling mathemat-

ical models (Eqs.3 and Eqs. 4), we will focus the explanation and eventual examples on the

later model, but we will place remarks where there could be any differences deserving mention.

As we discussed in the previous sections, we addressed the multi-objective optimization by:

• (i) setting the energy cost (ECh) as the main objective; and

• (ii) considering the user discomfort (UDh) as a constraint; and then,

• (iii) we modelled UDh as the α-regulated soft constraint S j in (Eq.4z) (which can be

regarded as an ε-constraint type approach [70] [73], an a priori choice of a Pareto optimal

point, from a Pareto optimal set, whose points are found by setting different values of the

ε-constraint, in this case α , the user-centricity coefficient);

With the user discomfort regarded as a constraint, we then represent it as a penalty in the

interval [0,1]. On the other hand, two types of user discomfort were considered: (a) the

discomfort for any arbitrary active time slot (itself part of an appliance C jk cycle) being

placed outside the boundaries of the user preferred optimal C jk placement; and (b) the

discomfort for the C jk duration mismatch relative the user preferred optimal duration. In

this way, these two discomfort objectives, are scaled and added to the eventual S j penalty

using a weighed sum approach as further addressed below in (Eq.10).

Since user discomfort (of the two types) is addressed as a penalty as discussed, we are

going to henceforth mostly just talk about penalties. Now, looking back at both (Eq.3z) or

(Eq.4z), we recall that we have three penalty components, namely: (1) S j, for soft constraints

penalties, modelling user discomfort and described in either (Eq.3w) or (Eq.4w); (2) H j, for

hard constraints penalty, described in either (Eq.3x) or (Eq.4x); and (iii) B j, for the extreme

hard constraints and penalties. From that grounds, the penalty handling is modelled as the

following:
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1. Soft constraints penalties (over user discomfort): Any penalty of this category is calcu-

lated given the appliance cycle C jk to be evaluated, and the respective pair of UPWs. The

cycle C jk is comprised by a number of adjacent time slots the first of which is the cycle

start-up time St ; and a cycle duration Dt which is precisely the number of such time slots.

The indexes j and k represent respectively de appliance number and the cycle number;

The cycle is thus the interval of discrete time slots given as:

C jk = [St , St +Dt−1] (5)

Importantly: St and Dt are assumed to be within their respective absolute box constraints

([T L
jk,T

U
jk ] and [DL

jk,D
U
jk]) defined for C jk in either (Eq.3d) or (Eq.4d); otherwise, a B j

penalty will be applicable. The pair of preference windows and companion settings for

penalty evaluation are:

(a) For cycle time slot misplacement penalty (Ps): a cycle placement UPW (tUPW)

comprising: (i) W T
jk = [T OL

jk ,T OU
jk ], preference window bounds, worst case prefer-

ence window placements for C jk, (ii) T O
jk , the optimal start-up time (as per user

preference) of the optimal sub-window itself inside such W T
jk; (iii) the time slot soft

penalty type (πT
jk); and (iv) DO

jk, the optimal duration (as per user preference) of the

optimal sub-window. The first 3, are drawn from either (Eq.3d) or (Eq.4d), and the

last one drawn from either (Eq.3e) or (Eq.4e); As suggested, T O
jk and DO

jk, determine

an optimal sub-window:

W TO
jk = [T O

jk , T O
jk +DO

jk−1] (6)

where it is assumed any such optimal sub-window is a subset of the preference

window W T
jk, i.e.:

[T O
jk , T O

jk +DO
jk−1]⊆ [T OL

jk ,T OU
jk ] (7)

And, letting the optimal sub-window end time be denoted as WoEt = T O
jk +DO

jk then

(Eq. 7) is rewritten as:

[T O
jk , WoEt−1]⊆ [T OL

jk ,T OU
jk ] (8)
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(b) For cycle duration mismatch penalty (Pd): a cycle duration UPW (dUPW) com-

prising: (i) W D
jk = [DOL

jk ,D
OU
jk ], preference window bounds, worst case preference

duration window for C jk; (ii) DO
jk, the optimal duration (as per user preference) of

cycle C jk; and (iii) the cycle C jk’s duration soft penalty type (πD
jk); all of them drawn

from either (Eq.3e) or (Eq.4e). In turn, duration optimal sub-window is given by

DO
jk and DOcnt

jk , as:

W DO
jk = [DO

jk, DO
jk +DOcnt

jk −1] (9)

As said, numerically, any of these soft penalties (Ps = Upwd(.) or Pd = Upwd(.)) is a

number in the interval [0,1], wherein 0 means no penalty and 1 full (100%) penalty.

Cycle time slot penalties Ps are calculated per each time slot of the cycle C jk, whereas

duration penalty Pd is a scalar, a single penalty for the cycle C jk duration mismatch.

For Ps penalties, if a time slot of cycle C jk is outside the tUPW, than it is awarded the

full penalty; if the time slot is within the optimal portion of the tUPW, (i.e., within W TO
jk ),

then it is awarded a null penalty. Otherwise, when such time slot is within the UPW

but outside the optimal sub-window W TO
jk , then, a penalty is awarded proportional to

its distance to the nearest edge of W TO
jk , a proportionality given by the penalty function

specified by πT
jk. In any of the cases, Ps is calculated by the user discomfort penalty

function as Ps =Upwd(C jk,W T
jk,W

TO
jk ,πT

jk).

For Pd penalties, if the cycle C jk duration, i.e, Dt , is outside the dUPW, than it is awarded

the full penalty; if the duration Dt is within W DO
jk (itself within dUPW), then it is awarded a

null penalty. Otherwise, when the cycle duration Dt is within the dUPW but outside W DO
jk ,

then, a penalty is awarded proportional to its distance to the nearest edge of the W DO
jk

optimal duration sub-window, a proportionality given by the penalty function specified

by πD
jk. In any of the cases, Pd is calculated by the user discomfort penalty function as

Pd =Upwd(Dt ,WD jk,DO
jk,π

D
jk).

Eventually, these soft penalties (Ps and Pd), actually representing the two measures of user

discomfort as discussed earlier, are scaled by ς and δ respectively and added together (i.e.

in a weighted sum approach), converting them into the eventual aggregate penalty, as the
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following:

Πupwd = ς ·Ps +δ ·1(Dt) ·Pd (10)

where 1(Dt) is the all-ones vector of length Dt ; ς and δ are definitions drawn from either

(Eq.3a) or (Eq.4a); ς and δ determine the relative importance of the Ps and Pd penalties in

the aggregate penalty function Πupwd(.), which in turn, is repeatedly calculated/returned

into S j in either (Eq.3w) or (Eq.4w).

We wrote the following penalty types associated with either πT
jk or πD

jk (represented by n

below), therefore applying to both the Ps and Pd penalties on free choice:

(i) Type nnn === 000: A null-inbounds and full-outbounds penalty: null penalty inside

whole preference window UPW bounds, and full penalty otherwise (as suggested

by and used in [36]):

Upwd(t) =


0, t ∈ [T OL

jk ,T OU
jk ); left bound in, right bound out;

1, otherwise
(11)

(ii) Type nnn === 111: linear penalty: full outside preference window bounds, null inside

optimal sub-window bounds, and linear (affine) varying from null at the optimal

sub-window bound to full (=1) at the respective preference window bound:

Upwd(t) =



0, t ∈ [T O
jk , T O

jk +DO
jk);

1, t /∈ [T OL
jk ,T OU

jk );

T O
jk−t

T O
jk−T OL

jk +1
, t ∈ [T OL

jk ,T O
jk );

t−(T O
jk+DO

jk−1)

T OU
jk −(T

O
jk+DO

jk−1)
, t ∈ [T O

jk +DO
jk,T

OU
jk );

(12)

A linear type penalty is a power law penalty of exponent 1 (type n = 1).

(iii) Type nnn === 111,,,222,,, . . . ,,,PPPmmmaaaxxx: power law penalty: full outside preference window

bounds, null inside optimal sub-window bounds, and power law varying with ex-

ponent n (where n is a positive integer penalty type), from null at the optimal sub-

window bound to full (=1) at the respective preference window bound. It is assumed
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[T O
jk , T O

jk +DO
jk]⊆ [T OL

jk ,T OU
jk ]:

Upwd(t) =



0, t ∈ [T O
jk , T O

jk +DO
jk);

1, t /∈ [T OL
jk ,T OU

jk );( T O
jk−t

T O
jk−T OL

jk +1

)n
, t ∈ [T OL

jk ,T O
jk );( t−(T O

jk+DO
jk−1)

T OU
jk −(T

O
jk+DO

jk−1)

)n
, t ∈ [T O

jk +DO
jk,T

OU
jk );

(13)

when nnn increases towards infinity the penalty turns less harsh and tends to the n = 0,

bounded null-in full-out penalty type, above described. That said, there is not an

established Pmax but given the discussed tendency, a Pmax < 10 is reasonable, oth-

erwise type n = 0 could be used instead, since it is less computationally expensive.

(iv) Type nnn ===−−−111,,,−−−222,,, . . . ,,,−−−EEEmmmaaaxxx: exponential penalty: full outside preference win-

dow bounds, null inside optimal sub-window bounds, and exponential law varying

with an exponent derived from n (n is the negative integer penalty type, as above

specified), from null at the optimal sub-window bound to near full (βp = 1− ε) at

the respective preference window bound, where it is assumed [T O
jk , T O

jk +DO
jk] ⊆

[T OL
jk ,T OU

jk ]; Let the optimal sub-window end time be denoted as WoEt = T O
jk +DO

jk;

Also let ε = 5n (these settings can be adjusted to designer’s convenience), then:

Upwd(t) =



0, t ∈ [T O
jk , T O

jk +DO
jk);

1, t /∈ [T OL
jk ,T OU

jk );

1− εe

{
−log(ε)

t−T OL
jk

T O
jk−T OL

jk +1

}
, t ∈ [T OL

jk ,T O
jk );

1− e

{
log(ε) t−WoEt+1

T OU
jk −WoEt+1

}
, t ∈ [WoEt , T OU

jk );

(14)

It is worth remarking that the above penalties are as seen, calculated just at the given

discrete time steps and (the penalties) are thus piecewise (time slot-wise) constant.

Looking at the above soft penalty types, it can be seen that some are less harsh, more

lenient penalty types (type 0, or power law the higher the exponent), and there are harsher

(type 1: linear) and the harshest ones (the exponential, the higher the exponent modulus).

That goes in tandem with the real-life household, where some appliances could be more

(or less) flexible then other, concerning their working cycle misplacement, vis-a-vis user

satisfaction.
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Figures 15 (for cycle placement) and 16 (for duration); depict the main penalty evaluation

entities described above, including a type 0, null-inside UPW bounds penalty, applied do

cycle C jk or to duration Dt respectively, whereas Figure 17 depicts the run-time demo

of the penalty types vs candidate cycle placements of the HyperPopulation Best particle,

at 3 stages of the optimization process by the HyPERGDx, the newly proposed hybrid

metaheuristic. On Figure 17, it is also worth pointing out and witnessing that an optimal

placements of a cycle C jk is the position of best compromise between its UPWs optimal

sub-windows and the lowest costed interval of the energy pricing function (the black dot-

ted line labelled as p-rtpZA2014W), whereby the particle best position is a summation of

such cycle best compromises, which can be found in looking at the 1st and final place-

ment stages on the figure. It goes without saying that the final optimal position depend

on both the pricing function and the preference settings (UPW and penalty types) which

can be adjusted to user’s (or generally, decision maker’s) better convenience.

Figure 15 (a) Time slot penalty evaluation structures. (b) Type 0 penalty.

Figure 16 (a) Duration penalty evaluation structures. (b) Type 0 penalty.
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2. Hard constraints:

As discussed earlier, the following set of circumstances trigger a hard penalty: (i) a power

budget - instant: PBi in either (Eq.3l) or (Eq.4l), or daily: EBd in either (Eq.3m) or (Eq.4m)

- is violated; (ii) a candidate schedule has overlapped a prohibited (’No-Go’) zone (which

is a per appliance zone that is defined through Wz j in either (Eq.3b) or (Eq.4b)); (iii) an

overlap occurs between two cycles, say, C22 and C31, where they are pre-defined to not

overlap. Such is (a) the case when the cycles belong to the same appliance, which could

happen in model 2 (Eqs. 4) but not in model 1; or (b) the case when a precedence of,

for instance, cycle C22 over C31 has been set, wherein these cycles should not overlap (let

alone their order of execution: C22 first and then C31). Cycle precedence is set through

Wp j in either (Eq.3b) or (Eq.4b).

For the evaluation of cycle overlapping, the contending cycles have to be specified:

CO jk and COvr (this one can also be a set of cycles instead), and fed to the overlap-

ping/contemporaneity check function as:

Lvalue = AnyContemporary(CO jk,COvr)

where j and v denote appliance number, whereas k and r denote appliance cycle number.

Also, in particular, so far as overlapping is concerned, it is worth noting that, CO jk or (any

of the) COvr have an inter-cycle time ICT
jk as defined in either (Eq.3e) or (Eq.4e) which

is added to the duration Dt and has thereby an influence on the outcome of (Eq.16).

Inter-cycle time is an inactive (appliance Off ) period which may be needed for any tech-

nical/physical or scheduling reason. So for overlapping check, CO jk (or any of the COvr

contender cycles), vis-a-vis C jk in 5; thus, we call CO jk an extended cycle, and expressed

as:

CO jk = [St , St +Dt + Ict−1] (15)

Given the above modus operandi, mathematically AnyContemporary(.) is computed as:

Lvalue = AnyContemporary(CO jk,COvr) =


0,{CO jk∩COvr}= /0

1, otherwise
(16)
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(a)

(b)

(c)

Figure 17 Run-time depiction of user preferred working windows and penalties vs candidate schedules: (a) at

the initial stage (prior to placements), (b) initial stage with candidate placements; (c) Final stage.
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where COvr should be interpreted as the union set of all cycles that CO jk should not be

overlapped with. Given the above, the definition of H j turns out more specifically to be

(Eq.17), which is equivalent to (Eq.18):

H j =


10100,

{
∃t ∈ {1, 2, . . . ,Nt}

∣∣ Pi(t)> PBi

}
∨{Ed > EBd}∨AnyContemporary(CO jk,COvr);

0, otherwise
(17)

H j =


10100,

{
∃t ∈ {1, 2, . . . ,Nt}

∣∣ Pi(t)> PBi

}
∨{Ed > EBd}∨{CO jk∩COvr 6= /0};

0, otherwise
(18)

In both (Eq.17) and (Eq.18) above, COvr should as in (Eq.16), be regarded as the union

set of all cycles that CO jk should not be overlapped with.

No additional mathematical description is required for the B j "death" penalty component,

beyond either (Eq. 3y) or (Eq. 4y).

In Figure 18, pictures (a) and (b) depict pseudo RTP, energy rate functions simulated from a

country load profile; the one in (b) along with other parameters (α , ς , δ , UPWs, etc.) was used

to generate the graphs in (c-h) by appropriately calling the ApplianceSchedule1(.) function de-

scribed by Algorithm 1. Pictures (c) and (d) show the 3D surface graphs of the ApplianceSched-

ule1(.) function, for user-centricity coefficient α = 0.5 and α = 0 respectively, rendered for just

the first 2 dimensions (i.e., just cycle 1, belonging to the water heater, WH, in Table 17). In turn,

the last two rows of pictures, in (e-h), show the 2D contour plot of the function in (c), where

additionally, in (f-h) 3 stages of an optimization process by the HyPERGDx metaheuristics are

depicted, wherein the coloured circles represent a sub-population of "ants" i.e. the 5 metaheuris-

tics comprising the HyPERGDx. The naive population in (f) is the one before specialization into

these 5 casts, according to Algorithm 2.

3.3.5 Appliance Scheduling Function Algorithmic Framework

Algorithm 1 below is a pseudo-code describing in simplified terms the algorithmic framework

of the implementation of model in (Eqs.4), where it also seeks to implement the discussed Real

Parameter Blackbox Optimization Approach to Appliance Scheduling (RPBBOAS).
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1 // ApplianceSchedule1(.), implements model in (Eqs.4) as well as the BBDOCM and framework assumptions of Figure 14

2 Function {EPCh, ECh, PiH pp, xL, xU , fbko, xbko, α} = ApplianceSchedule1 (x, Apx, τ, β , D, fOptT g)

3 // x-candidate sol., Apx-Appliance data, τ-resolution, α-user centricity, D-x Dim, fOptT g-target optim;
4 // ECh-Energy cost; EPCh-penalized ECh; PiH pp-instant pwr, [xL,xU ]-x bounds, xbko-best known x∗, fbko= f (xbko);
5 static ApplianceDatabase = { Hde f ,Ade f ,NCde f ,WT de f ,WDde f }; // Reference sample appliance data, (Eqs.4a-4e);
6 // BestKnownOptimum { fbko,xbko} is function of:D,τ,α; and also assuming other ApplianceDatabase vars fixed;

7 BestKnownOptim =
{{

D=2,τ=1,{α=0, f ∗x0
,x∗0};{α=0.25, f ∗x0.25

,x∗0.25};{α=0.5,};{α=0.75, ...}; ...
}

;
{
{D=2,τ=60, ...}...

}
;
{
{D=10...}

}}
;

8 if β 6= /0 then α = 1−β ; // α-user centricity coefficient; β-energy centricity coef.

9 if Apx 6= /0 then // Assumed:x passed alone (from Blackbox Optimization Algorithm (BBOA)), upon client passes any

of Apx,τ,β ,D, fOptT g (Figure 14)

10 ApplianceDatabase =U pdateApplianceDatabase(ApplianceDatabase,Apx,τ,α)
11 end
12 {ms,K,Ci}= GetApplianceIn f o(ApplianceDatabase,D); // ms-selctd.appl.; K-cycles; Ci-Lin.indexes, Eqs.4f-4g;
13 EPCh = ∞; ECh = ∞; PiH pp = ∞; // infinity by default, for output energy cost and instant power variables;
14 if D = /0 then D = 2K;
15 {xL,xU}= GetXBounds(ApplianceDatabase,D);
16 fbko = fOptT g; xbko = 0; // set fOptT g to assymptotic optimum: force the BBOAs (Figure 14), into optima discovery;
17 if fOptT g = /0 then { fbko, xbko}= GetBestKnownOptimum(BestKnownOptim,α,τ,D) ;
18 if {x = /0} then return; // with current status of: {EPCh, ECh, PiH pp, xL, xU , fbko, xbko, α}

19 {Np,D}= size(x); // Np-Number of rows; D-number of columns; Np-population size; D-dimension of x;
20 {xL,xU}= GetXBounds(ApplianceDatabase,D); // Update x bounds: D may have changed;
21 {T, τ, α ς , δ}= GetT imeAndCom f ortParameters(ApplianceDatabase,D); // T is herein assumed to be 24h;
22 Nt = T/τ; // Nt, is the number of time slots comprised in the continuous time, control horizon T ;
23 ρ = 3600/τ; // ρ, is the hourly relative time resolution;
24 Td = {1,2, ...,Nt}; // Td, is the discrete time control horizon: T = τ ∑(Td);
25 R(Td) = GetEnergyRate(τ); // e.g. : for τ = 60 (1 min resolution) it returns R(Td) from Rt pMinutely(Td);
26 if {D > 2K}

∨
{Modulus(D,2)> 0} then // nk = D/2; if not complying with (Eq.4v), then return

27 return // with EPCh = ECh = PiH pp = ∞; i.e., B j = ∞; j = 1, ...,m; m−number of appliances;
28 end
29 for j=1 to ms do // Account for each appliance power ratings; ms-curent nr of D selected appliances

30 {Pn( j),Psb}= GetApplxPowerRatings(ApplianceDatabase, j);
31 Pi0( j,T d) = Psb; // set standby power as default to every time slot in Td, of every appliance j;
32 end
33 for p=1 to Np do // For each particle nr p of the population of size Np, do:

34 xp = x(p, 1 : D); // extract the particle nr p from x;
35 if CyclesInbounds(xp,xL,xU ) then
36 Pi = Pi0; PC jt = Pi0; PPC jt = Pi0; // default all time slot powers to Psb;
37 jPrv = 0; COvr = /0; CO jk = /0; // initialize cycle overlap check vars to null;
38 for c=1 to D/2 do // where c ∈Ci, is a linear index

39 i = 2c-1; // i is the odd dim component of x, encoding for τ's;
40 COvr =COvr ∪CO jk ; // put previous cycle CO jk into union COvr that next CO jk should not overlap;
41 St = QuantX (xp(i)/τ); // cycle start time; according to (Eq.4h);
42 Dt = round(xp(i+1)/τ); // cycle duration;
43 Ict = round(GetInterCycleT ime(ApplianceDatabase,c)/τ); // cycle to next cycle delay time;
44 { j,k}= OwnerJK(ApplianceDatabase,Ci,c); // get the indexes of appl.cycle owning linear cycle c;
45 CO jk = {St ,Dt , Ict}; // CO jk-current extended cycle, for overlap check;
46 Zp = GetPrecedentZone(ApplianceDatabase, j); // Get the "precedent" zone for appliance j;
47 Zn = GetNoGoZone(ApplianceDatabase, j); // Get the "no-go" zone for appliance j;
48 if j 6= jPrv then COvr = /0;
49 jPrv = j;
50 COvr =COvr ∪Zp∪Zn; // COvr is the union of cycles that CO jk should not overlap;
51 HasOverlap = AnyContemporary(CO jk ,COvr);// Check whether there is some overlap;
52 if HasOverlap then
53 EPCh(p) = 1e+100; // there is cycle overlapping: Apply hard penaly to particle;
54 break; // out of the current For loop, performancewise;
55 end
56 C jk = [St : St +Dt −1]; // interval of timeslots comprising cycle C jk ;
57 {W T

jk ,W
TO
jk ,πT

jk}= GetT imeslotUserPre f erenceWindowSettings(ApplianceDatabase,c);
58 {W D

jk ,W
DO
jk ,πD

jk}= GetDurationUserPre f erenceWindowSettings(ApplianceDatabase,c);
59 Ps =U pwd(C jk , W T

jk , W TO
jk , πT

jk); // Ps = User discomfort due to cycle misplacement;
60 Pd =U pwd(Dt , W D

jk , W DO
jk , πD

jk); // Pd = User discomfort due to cycle mislength;
61 Pi( j,C jk) = Pn( j);
62 PC jt ( j,C jk) = Pn( j) // appliance j's energy cost;
63 PPC jt ( j,C jk) = Pn( j)�{1+α · [ς ·Ps +δ ·1(Dt ) ·Pd ]}; // appl. j's penalized PC jt; �-elementwise;
64 end
65 if HasOverlap == false then
66 PiH p = ∑

m
j=1 Pi( j) // calculate households' instant power demand for current p;

67 PiH pp(p,Td) = PiH p; // Replace the initial defaut ∞ by the actual PiH p;
68 Ed = ∑

Nt
t=1 PiH p(t)/ρ; // Calculate Ed = daily power consumption;

69 if
{
∃t ∈ Td | PiH p(t)> PBi

}∨
{Ed > EBd} then

70 EPCh(p) = 1e+100; // Some power budget violated: Apply hard penaly H j ;
71 else
72 PCt = ∑

m
j=1 PC jt ; // Sum the power consump. j-wise, leave the t dim. alone, and then ...;

73 ECh(p) = ∑
Nt
t=1(PCt �R(t)); // ... calculate total energy cost. R(t)-energy rate;

74 PPCt = ∑
m
j=1 PPC jt ; // Sum penalized pwr consump. j-wise, and then ... ;

75 EPCh(p) = ∑
Nt
t=1(PPCt �R(t)); // ... calculate total penalized energy cost;

76 end
77 end
78 end
79 end
80 end

Algorithm 1: Appliance Scheduling Framework for Real Parameter Blackbox Optimization
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18 Pricing and Appliance Scheduling Functions and Optimization Stages
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3.3.6 RPBBOAS Model Discussion

3.3.6.0.1 On the Experimental evaluation of the RPBBOAS

The above RPBBOAS model in (Eqs.3.3.3) and Algorithm 1, was written into a Matlab code

equivalent blackbox function called ApplianceSchedule1(.). Experiments were conducted to

find its best known optima for 5 values of the user-centricity parameter α (along with an appli-

ance database and user preferred appliance working settings), which are listed in Table 5 along

with other parameters. Also experiments were conducted to jointly evaluate the performance of

both ApplianceSchedule1(.) and the proposed HyPERGDx (section 3.4). We refer the reader to

sections 3.5 and 3.5.3 to see the experimental setup and the results.

3.3.6.0.2 Discussion

In the above new RPBBOAS model in (Eqs.4) we can find that there are substantive changes

to the mathematical structure and underlying optimization approach vs the basic combinatorial

model in (Eqs.3), with implications to the range of eligible optimization algorithms and their

performance, as follows:

1. From the outside (blackbox) optimization algorithm perspective, the QQQ jjj(((ttt))) binary design

variable whose design space volume grew exponentially with the granularity of the time

axis in conjunction with the number of appliances, was replaced by X whose dimension

is D = v ∗K;v = 2, where K is the total number of appliances’ cycles. This implies that

the problem space (X) now grows polynomially, and regardless of the internal granularity

chosen for the time horizon. In other words, the complexity of the original design space,

from the optimization program perspective (from outside the blackbox), which would be

based on 4320 Q j(t) discrete state variables in 1 minute granularity (a figure that gets

worse for finer granularities), is now one X real variable of D=10, i.e., we go from a com-

binatorial volume of V = 24320 (exponential growth with the number of Q j(t) variables)

to a real state space volume of V = X10 (polynomial growth with number of variables);

Furthermore,

2. the fact that X is a real parameter, allows for a broader range of optimization algorithms
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to be eligible for use, with their unmodified original code versions (except for some pa-

rameter passing compliance minor adaptation);

3. The internal complexity of the model is not visible to the optimization algorithms since

the model function approach is a black box, just trading X with its dimension D and box

constraints (the boundaries of the design space). Also,

4. The internal representation of the design space and treatment does not need to directly

deal with a single bit by itself, as per the new cost function structure, but rather, by

groups of bits in intervals (vectors, matrices), representing the appliance cycles and du-

rations. Such groups are evaluated in a vectorial fashion, which contributes to lessen the

computational burden. Also by encoding the appliance cycle properties into the external

design variables X , exempts the runtime calculation of appliance cycles from the Q(t)

state bits as well as the associated cycle compliance verification . Such lessened internal

computing requirements bring performance advantages at the internal side of the model,

adding to the reduced dimensionality and real parameter that is traded with the outside

blackbox optimization algorithms.

With the described structure and working, we can argue that the proposed model tackles

the concerns laid out in the introductory section 3.3.1, and accomplishes the goals set forth,

namely: Modelling and implementing a continuous parameter blackbox, box constrained global

optimization approach to appliance scheduling, which also successfully addresses the curse of

dimensionality/combinatorial explosion issues, which also brings together another advantage:

the wider area of eligible optimization algorithms that are made possible by a real parameter

approach; and the intrinsic high granularity of time horizon supported internally by the meta-

model, not greatly affecting the size of the traded design space variable X . Such high resolution

enables finer, more optimalistic, schedule placements.
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3.4 HyPERGDx Global Optimization Hybrid Metaheuristics

3.4.1 Design Motivations

The development of a companion general purpose, blackbox compliant, global optimization hy-

brid metaheuristics was spurred by a lackluster performance of a number of readily available

general purpose state-of-the-art algorithms, when we were trying to optimize our ApplianceSchedule1(.)

function, notwithstanding they were fast and/or reliable on general testbed problems. That

brought the idea of a hybrid approach in an intent to build a more robust algorithm.

3.4.2 Hybrid Optimization Approaches

Notwithstanding the merits in tackling non-linearity, non-continuity and blackbox problems, a

metaheuristics, will fail at some problems, where performance dependence on the parametriza-

tion, and the parametrization dependence on the type of problem, are some of the most chal-

lenging issues affecting their robustness. Aimed at tackling such drawbacks, other classes of

methods have emerged: Hybrid metaheuristics, hyperheuristics [76] [77] and also memetic

algorithms [78]. They all bring the idea of associating different pieces of heuristics in an

adaptive and convenient way that leverage their collective performance relative to the one of

the individual pieces, which will not prevent them from failing at some kind of problem as

discussed, but will likely improve the universe and the rate of problems solved.

Figure 19 depicts an example hybrid or hyperheuristic framework (themed after the appli-

ance scheduling, for convenience. See [76] [77] for generic representations and discussions).

Note that, the block B of Figure 19, represents a blackbox problem, such as the ApplianceSchedule1(.),

whilst the block AAA222 in Figure 19, represents the framework of hybrid metaheuristic sought

herein.

3.4.3 The HyPERGDx Algorithmic Framework

The HyPERGDx, which stands for: Hybrid, Particle swarm, Evolution strategies, Random

Lévy walks, Genetic, Differential evolution, and (x)Miscellaneous, ant-inspired cooperative

strategies; is a hybrid heuristics framework which embeds, coordinates and optimizes the in-
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Figure 19 Hybrid or Hyperheuristic Optimization Framework

dividual and overall working behaviour of a number of lower level metaheuristics, themselves

modified versions of state-of-the-art algorithms as discussed next section. However, the basic

frameworks of such state-of-the-art ’mother’ metaheuristics are briefly discussed in the Ap-

pendix B. The HyPERGDx is thus an intent to write a hybrid algorithm that to the best extent,

takes the strengths and reduces the weaknesses of the "mother" algorithms and thereby have a

better all-around performance. The ideal is: to be (a) faster or as fast as the fastest algorithm; (b)

more or as reliable as the most reliable algorithm (where speed is the inverse of the mean func-

tion evaluations needed to solve the problem up to an acceptable tolerance, and high reliability

translates to: high mean success rate and high rate of problems solved). Our realistic expec-

tation is: it can show a good compromise between speed and reliability and have a higher all

around performance as compared to any of the "mother" metaheuristics. The proposed hybrid

metaheuristic, based on the reference model of Figure 19, block A2, is outlined in Algorithm 2

below.

Some details on the structure and working of the above algorithm framework:
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1 Function {xBest, f Bbest, ...} = HyPERGDx (PopStruc, gmax, xL, xU , f (.), fx∗ , fε ,X params, ...)

2 Initialization:

3 Perform naive hyper-population uniformly random initialization, across x-bounds;

4 Do simple landscape reconnaissance: is it strong global structure(IsQcvx)?; meanwhile get closer to

prospective xxx∗ and its basin;

5 Perform further parametrization in accordance to landscape reconnaissance presumptions;

6 Distribute initial population into metaheuristics sub-populations;

7 while stopping criterion not met, and with success and context based probability, adaptatively do

8 With ES pop. and prob pES: do exploitation: if IsQcvx, use longer local loop and smaller σ ; else,

use shorter local loop and larger σ ;

9 With EBO/DE pop. and prob. pDE: do exploration/exploitation;

10 With PSO pop(s) and prob pWP: : do exploration as regulated by varying inertia; do inter-pop

mutation when right conditions arise;

11 With CSA/RW pop and prob. pCS: do exploration with exponential decreasing α scal.factor; do

inter-pop mutation, at right conditions;

12 With GA pop. and prob. pGA: do exploration;

13 end

14 end

Algorithm 2: HyPERGDx Summary Algorithmic Framework

1. The hybrid heuristics loop, metaheuristics selection and switching:

The individual metaheuristics are nested sequentially, but executed adaptively (asymmet-

rically), within the hybrid heuristic loop. Each metaheuristic runs one or more genera-

tions local loop of its own, while other remain idle, in a way that resemble a crowded ants

working field (also, a metaheuristics population may be just prevented from working by

setting their population size to null). Prior to such loop, a (not deterministic) landscape

reconnaissance (and prospective approximation to x∗ and its basin) is done, which deter-

mines that the landscape (i) is likely unimodal with a strong global structure; (ii) is not

unimodal (for sure) but has likely an underlying unimodal global structure; (iii) is not uni-

modal (for sure) and has not been found to have a strong underlying global structure and

it likely has a rugged surface. Such probabilistic perceptions/presumptions, determine the

choice of values for control parameters and thereby influence metaheuristics performance
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and the share of execution time given to the metaheuristics. Otherwise, later, based on

the effective success of the metaheuristics inside the hyperheuristics loop, and in tandem

with their main roles (general explorers or local searchers), such share is adapted along

the optimization process. Such effective success probability is approximately: the ratio of

the number of successful loops (the ones in which the particular metaheuristics improved

the global fitness value) over the number of loops executed so far by the metaheuristic;

and, accordingly the share of the execution time granted is increased or reduced. Fur-

ther contextual corrections are applied, aimed at keeping adaptability to a wide range of

problems which are black-box and non-linear. This way, the hyperheuristics framework

adaptively selects (or grants more time to) the more successful metaheuristics.

2. Inter-population social networking and learning:

The individual metaheuristics, in their local frameworks within the loop, have embedded

heuristics for multi-population social learning, competition and collaboration consisting

of (a) the sharing of the hyper-population global optimum and (b) an inter-population

replacement mutation, wherein the worst performing members/particles of a given meta-

heuristics M are replaced by the best performing or criss-cross selected particles of the

metaheuristics H, an operation that is regulated by a mutation rate coefficient, and only

happening when improvement/solution has not been achieved after a percentage num-

ber of the budget function evaluations have been spent, and also, performed as often

as allowed by a linearly evaporating pheromone, a measure to promote inter-population

competition and to reduce the likelihood of them dragging one-another into local minima.

3. A few specific details on the individual metaheuristics comprising the HyPERGDx:

(i) Two particle swarm components are used, Linearly Increasing Inertia Weight Par-

ticle Swarm Optimization (LIWPSO) and Linearly Decreasing Inertia Weight Par-

ticle Swarm Optimization (LDWPSO) algorithms, written from the basic Inertia

Weight Particle Swarm Optimization (WPSO) laws in (Eqs.25), wherein the inertia

weight parameter w(t) in (Eq.25a) varies linearly (between 0.4 and 0.9, a choice).
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Also, as above referenced, after certain points of the function evaluations time line

are reached before successful convergence, a fitness based replacement mutation

regulated by a specified rate and as often as allowed by a pheromone counter, is

performed with either the DE or CSA components, whichever has the best sub-

population fitness.

(ii) An abridged, modified and adapted CMA-ES from Hansen’s CMAES version 3.62.beta

is used for the ES component. CMA-ES is used essentially as a local searcher/exploiter

and it is the first strategy taken, although such is done with initial control parameters

dependent on the type of landscape identified (presumed) from the early reconnais-

sance optimization stage: for instance, if a unimodal landscape, or a multimodal

one with strong convex/quasiconvex global structure, was presumed, then, a shorter

sigma and a longer local loop are chosen (among other features), all such modifi-

cation aimed at adaptively accelerating convergence, according to context; and/or

for opting out of the algorithm, when it fails to reach/improve solution within the

budget loops granted;

(iii) a modified CSA from [70], wherein the scaling factor α1 from (Eq.27b) is made

exponentially decreasing from 0.5 to 0.0075. Also, similar to the particle swarm

sub-population, a fitness based replacement mutation, is performed with either the

DE or PSO components, whichever has the best sub-population fitness. That step

is taken if solution is not found after a percentage number of function evaluations

are spent; and it is regulated by a specified mutation rate, and performed as often as

allowed by the respective pheromone counter.

(iv) Effective Butterfly Optimizer with CMA Retreat Phase (EBOwithCMAR) (actually

just the main EBO procedure, without the CMAR) is called as the secondary ex-

plorer/exploiter. Also alternatively, for some difficult functions, and as a certain

point of the function evaluations time line is reached, near the end, meaning EBO

has so far apparently failed to help deliver a solution, the standard DE component is

used, albeit with mixed results (it boosts the Rate of Problems Solved (RoPs) per-

formance but seems to harm the mean success rate). Such standard DE component
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is an abridged and modified DEvec3 version from [79]), where only the DE/rand/1

and DE/best/1 strategies are used, in an adaptive fashion.

(v) A GA component, was initially included but eventually set aside in this version of

HyPERGDx.

3.5 RPBBOAS and HyPERGDx Experimental Evaluation

To evaluate the RPBBOAS working as well as the performance of HyPERGDx versus the state-

of-the-art, we selected the list comprising: the HyPERGDx itself, and its "mother" metaheuris-

tics: Matlab’s particleswarm (Mat.PSO), Local Restart Covariance Matrix Adaptation Evolution

Strategy (LR-CMA-ES), CSA, EBOwithCMAR. We actually also tested HyPERGDx against a

longer list of testbeds and algorithms (including: WPSO, Quantum Particle Swarm Optimiza-

tion (QPSO), Standard PSO 2011 (SPSO2011), Storn&Price’s Standard Differential Evolution

(DEvec3), Matlab’s ga (Mat.GA), etc. that performed worse), which we do not include here for

conciseness.

3.5.1 Test beds and experimental setups

3.5.1.0.1 Experiments:

(i) Experiment 1: To investigate the Expected Running Time (ERT), the success rate and

the Rate of Problems Solved (RoPs) and the rank thereof of the 5 contending algorithms,

when benchmarked on testbed DG, under different parameter configurations as defined

and explained further below (see section 3.5.2 for the performance evaluation model).

Results found in Tables 7-12

(ii) Experiment 2: To investigate the ERT, the success rate and the RoPs and the rank thereof

of the 5 contending algorithms, when benchmarked on testbed DAu, under different pa-

rameter configurations as defined and explained further below. Results found in Tables

13 and 14.
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(ii) Experiment 3: To investigate the ERT, the success rate and the RoPs and the objective

function rank thereof (see section ) of the 5 contending algorithms, when benchmarked

on testbed DAk, under different parameter configurations as defined and explained further

below. Results found in Tables 15 and 16.

(iv) Experiment 4: To investigate the mean convergence performance of the 5 contending

algorithms, when benchmarked over selected functions of mixed testbeds, of which we

present 4 namely: (a) On testbed DG: fDG1 , fDG6 , fDG13 , fDG24; and on testbed DAu, the

fDAu1 setup of ApplianceScheduling1(.) function. The resulting convergence graphs are

depicted on Figure 20.

The following experimental parameters and procedures were used across the above experiments:

(i) The problem sizes (dimensions): In testbed DG, benchmarks were done for dimensions

D = {2,10,30,50} whereas for the remaining testbeds (appliance scheduling) bench-

marks were done for dimension D = 10;

(ii) The number of runs per dimension per function were: r = 50 for D = 2; or r = 30

otherwise;

(iii) Tolerance ( fTol): In testbeds DG, a tolerance of 10−8 was used in all benchmarks,

whereas for the remaining testbeds (appliance scheduling) a tolerance of 10−5 was used;

For the Experiment 5 however, tolerance was not used as an early termination criterion.

(iv) Maximum number of function evaluations (maxFEs) per run: The value was set pro-

portional to the problem size, the dimension D as: maxFEs = 10000∗D;

(v) The base population sizes were: PS = {50,60,80,100} for D = {2,10,30,50} respec-

tively.

(vi) Stopping criteria:

For experiments 1-3, when benchmarking a function in a certain dimension, the stopping

criteria were:
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(a) The fitness is not worse than the target value fTarget ; where fTarget ≤ fOptim + fTol;

and fOptim is the global optimum value at the solution x* (or one of them if multiple)

of the benchmarking function;

(b) The maximum number of function evaluations (maxFEs) per run has been reached;

(c) a budget computing execution (clock) time per run has been spent; or,

(d) Other, algorithm specific, non mandatory stopping criteria, including stagnation (of

various types), are met.

For experiment 4, aimed at the mean global fitness convergence behaviour, the stopping

criteria were: the budget number of function evaluations (maxFEs) per run has been

spent; or, the budget computing execution (clock) time per run has been spent.

3.5.1.0.2 Testbeds: Two test beds were used, with the last one split into 2 subcategories:

1. Generic testbed (DG), as described in Table 3, composed by a mix of different types

of the most common benchmark functions found in the literature, with shifted optimizer

values to generally avoid the x∗ = 0. In most cases where the optimizer is normally not

zero, then it was not further shifted. It is described by Table 3.

2. ApplianceSchedule1(.) function (Algorithm 1) testbed, with two categories of test se-

tups (DAu and DAk):

(a) ApplianceSchedule1(.) function, with optimum function values set to unknown

(asymptotic value of fOptim = 0) (DAu). This function is the Matlab code equiv-

alent implementation of the RPBBOAS pseudo-code in Algorithm 1.

This testbed is a setup for the discovery of (if any) new optimal values, better than

the currently best known optima for the current set of appliance parameters. It is also

intended to evaluate the convergence performance of the contender algorithms to the

best possible function values in cases when the optimal values are unknown, which

is the general case of the real life scenario for which the optimal values will change

at every change of the appliance cycle data, input from the user. For the above rea-

sons, the value of fOptim = 0 is actually not attainable, arising from the fact that for
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the current setup a non-null (at every time step) electricity pricing function is used,

and also that the structure of the appliance cycle data is not ill defined and there

will not be a case of null consumption or null cost. Otherwise, if in some scenario a

null consumption or null cost is feasible, then another not attainable value could be a

negative one, including−∞. However, the use of−∞ is not recommended since that

hampers the evaluation and comparison of contenders’ convergence performance to

such target optimum (−∞). Table 4, describes this test setup.

(b) ApplianceSchedule1(.) function, with Best Known Optima Setup (DAk):

Featuring different user comfort levels, regulated by a parameter that we call user

centricity (denoted α in (Eq.4a)) index: 1, 0.75, 0.5, 0.25 and 0 (which respectively

translate to maximum comfort to bare minimum appliance utility levels). In turn,

when user centricity decreases, another complementary parameter, energy centricity

(denoted β ) increases: β = 1−α . These comfort level parameters, determine dif-

ferent function optima (different optimal schedule placements). For these values of

user centricity (α = {1,0.75,0.5,0.25,0}), and applicable only for the given sample

appliance database and set of parameters and pricing function, thorough initial runs

have been performed which determined the current best known function optima,

thereafter used for the benchmarks. Table 5, describes this test setup.
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Table 3 Generic Shifted X∗ (DG) Testbed

fn Name Math.Expression fopt xopt x bounds

fDG1 Sphere ∑
D
i=1 (xi− xo)

2 0 xD
o [−100,100]D

fDG2 Rosenbrock ∑
D−1
i=1

(
{1− (xi− xoT )}2 +100∗{(xi+1− xoT )− (xi− xoT )

2}2
)
; 0 (1+ xoT )

D [−30,30]D

fDG3 Ackley −20exp
(
−0.2

√
1
D ∑

D
i=1(xi− xoA)2

)
− exp

( 1
D ∑

D
i=1 cos(2π(xi− xoA))

)
+20+ e 0 xD

oA [−30,30]D

fDG4 Schwefel 2.26 418.9828872724339D−∑
D
i=1

(
xi sin

(√
|x|
))

0 420.9687460745404D [−500,500]D

fDG5 Elliptic ∑
D
i=1
{
(xi− xo)

2
(
106(i−1)/(D−1)

)}
0 xD

o [−100,100]D

fDG6 Rastrigin ∑
D
i=1
(
(xi−Xo5)

2−10cos(2π(xi−Xo5))+10
)

0 XD
o5 [−6,6]D

fDG7 Schaffer F7 1
D−1 ∑

D
i=1

(√
si
(
1+ sin2(50s0.2

i )
))

; where: si =
√
(xi− xo)2 +(xi+1− xo)2 0 xD

o [−100,100]D

fDG8 Griewank 1
4000 ∑

D
i=1(xi− xoG)

2−∏
D
i=1 cos

(
xi−xoG√

i

)
+1 0 xD

oG [−600,600]D

fDG9 Bent Cigar (x1− xo)
2 +106

∑
D
i=1(xi− xo)

2 0 xD
o [−100,100]D

fDG10 Alpine ∑
D
i=1
∣∣(xi− xoT )sin(xi− xoT )+0.1(xi− xo)

∣∣ 0 xD
oT [−10,10]D

fDG11 Step Ellipsoid ∑
D
i=1bxi− xoc2 0 x = xoS [−100,100]D

fDG12 Hyper Ellipsoid ∑
D
i=1
(
i(xi− xo3)

2
)

0 xD
o3 [−5,5]D

fDG14 Schwefel 2.22 ∑
D
i=1 |xi− xoT |+∏

D
i=1 |xi− xoT | 0 xD

oT [−10,10]D

fDG15 Weierstrass ∑
D
i=1 ∑

m
k=1 0.5kcos

(
2π3k(xi +0.5)

)
−D∑

m
k=1 0.5kcos

(
2π3k

)
; m = 11 0 x = xoW [−2.5,2.5]D

fDG16 Discus 106(x1− xo)
2 +∑

D
i=1(xi− xo)

2 0 xD
o [−100,100]D

fDG17 Wavy F7 1− 1
D ∑

D
i=1
{

exp
(
−0.5(xi− xoH)

2
)
cos
(
k(xi− xoH)

)}
; k = 10 0 xD

oH [−π,π]D

fDG18 Trigonometric2 ∑
D
i=1
{

8sin
(
7(xi− xoG)

2
)2

+6sin
(
14(xi− xoG)

2
)2

+(xi− xoG)
2} 1 xD

oG [−500,500]D

fDG19 Zakharov ∑
D
i=1 i(xi− xoT )

2 +
(
0.5∑

D
i=1 i(xi− xoT )

)2
+
(
0.5∑

D
i=1 i(xi− xoT )

)4 0 xD
oT [−10,10]D

fDG20 Trid ∑
D
i=1(xi−1)2−∑

D
i=2 xixi−1 fopTrid xopTrid [−D2,D2]D

fDG21 Schwefel 2.21 max
(
{|xi− xoT |,∀i = 1, . . . ,D}

)
0 xD

oT [−10,10]D

fDG22 Bohachevsky ∑
D
i=1

(
(xi− xoT )

2 +2(xi+1− xoT )
2−0.3cos(3π(xi− xoT ))−0.4cos(4π(xi− xoT ))+0.7

)
0 xD

oT [−15,15]D

fDG24 Schwefel 1.2 ∑
D
i=1
(

∑
i
j=1(x j− xoT )

)2 0 xD
oT [−10,10]D

fDG24 Katsuuras 10
D2

{
∏

D
i=1

(
1+ i∑

m
j=1
|2 jxi−b2 jxie|

2 j

) 10
D1.2 − 1

}
; m = 32 0 x = {0.5k : k ∈ Z} : #x = D [−5,5]D

Where: D-problem size; #x-cardinality (element count) of x; fopTrid =−D(D+4)(D−1)/6; xopTridi = i(D+1− i); i = 1,2, ...,D;
xo = round(now()/10000,4); now() a Matlab current date/time to date serial number; xo changes slightly at each day, i.e., at an increment of 1e-4 per day;
xoA = round(xo/3−3,1); xo5 = 0.1xo−5; xo3 = 0.1xo−3; xoG = 3xo; xoT = 0.1xo xoH = 0.01xo; xoS = {xi ∈ (xo−1,xo +1), i = 1, ...,D};
xoW = {xi ∈ Z, i = 1, ...,D};
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Table 4 ApplianceSchedule1(.) Function, Unknown (asymptotic) Optimum (= 0) Test Setup (DAu)

WH-Water Heater CW-Clothes Washer CD-Clothes Drier

fnn in-Testbed Descriptive Name α fOptimum xL1 ,xU1 xL2 ,xU2 xL3 ,xU3 xL4 ,xU4 xL5 ,xU5 xL6 ,xU6 xL7 ,xU7 xL8 ,xU8 xL9 ,xU9 xL10 ,xU10

fDAu1 ApplianceSchedule1-uO0 1

fasyOpt 1,86400 1800,3600 1,86400 1800,3600 1,86400 1800,3600 1,86400 3600,7200 1,86400 1800,3600

fDAu2 ApplianceSchedule1-uO0.25 0.75

fDAu3 ApplianceSchedule1-uO0.5 0.5

fDAu4 ApplianceSchedule1-uO0.75 0.25

fDAu5 ApplianceSchedule1-uO1 0

fasyOpt = 0, for all function instances;

Table 5 ApplianceSchedule1(.) Function, Best Known Optima Test Setup (DAk)

WH-Water Heater CW-Clothes Washer CD-Clothes Drier

fnn in-Testbed Descriptive Name α fbko xL1 ,xU1 xL2 ,xU2 xL3 ,xU3 xL4 ,xU4 xL5 ,xU5 xL6 ,xU6 xL7 ,xU7 xL8 ,xU8 xL9 ,xU9 xL10 ,xU10

fDAk1 ApplianceSchedule1-uO0 1 15.143524581

1,86400 1800,3600 1,86400 1800,3600 1,86400 1800,3600 1,86400 3600,7200 1,86400 1800,3600

fDAk2 ApplianceSchedule1-uO0.25 0.75 15.074466564

fDAk3 ApplianceSchedule1-uO0.5 0.5 14.936721774

fDAk4 ApplianceSchedule1-uO0.75 0.25 14.630067130

fDAk5 ApplianceSchedule1-uO1 0 7.303659824

• fbko - best known optimal penalized cost for the given user-centricity coefficient α .

• For both the above tables: xLn ,xUn are respectively the absolute lower and upper problem space bounds in discrete seconds time slots, wherein the indices denote the dimensional
component. Further: odd indices (example: 3) are bounds for appliance cycle start times; and, the immediate even indices (4) are the respective cycle duration bounds.
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3.5.2 Performance Evaluation and Comparison Model

For assessing how the HyPERGDx gauges against the state-of-the-art, we have used two main

performance metrics, the one for comparing performance at the single objective function level,

and the second for comparing the aggregate performance at testbed (multiple functions) level,

as follows:

(A) Performance evaluation at a single objective function level: Objective Function score

(OOOFs) and the companion objective function rank (OOOFrk), are computed from 5 main mea-

sures of performance, namely: the best function value (BV ), the mean function value (µV ),

median function value (MedV ), the success rate (Sr), the number of function evaluations

(FEs) and its close relative the Expected Running Time (ERT). Equations (19) describe

how these 5 measures and additional function level metrics are blended together into OOOFs

and OOOFrk, where:

(1) ERTr (further discussed below) is the Expected Running Time (ERT) for the mean

run; FEmax the budget number of function evaluations (also the running time of

any failed run). Further, in (Eqs.19f-19g), rs is the number of successful runs;

FEsuccTot the sum of the run lengths (in number of function evaluations) of such

rs runs; FEsuccAvg the average successful run length.

(2) BV reward(i), in (Eq.19e), is, for the i-th contending algorithm, an additional, tie-

breaking measure, over the main measure ERTr, representing its comparative con-

vergence quality. BV reward(i) is null for Sr(i) > 0 as long as ERTr(i) is not tied

with another ERTr( j), as per the value isTied from {woRank, tbReason, isTied} =
WoRankMT B(ERTr) function, wherein the (ERTr) argument is the vector of meta-

heuristics’ ERTr’s to be checked for ties; BV rk is the weak order rank (produced by

WoRankMT B(V,{Y,Z, ...})) of the objective function best fitness values ever achieved

by any of the Nm metaheuristics in all runs; in WoRankMT B(V,{Y,Z, ...}), ranking or-

dinals may be duplicated (because same values are given the same rank) but with

no gaps thereof (i.e, there are no suppressed ranking ordinals arising from the du-

plicates. Example weak order rank: "11233345..."). Also, additionally, a total or-

der (or, at least, a better ranking arrangement) is attempted by tie-breaking: the

WoRankMT B(V,{Y,Z, ...}) performs a weak order rank on V vector and; on tie, it then

performs a tie-breaking based upon the companion vector list {Y,Z, ...}, if any; Y
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vector is tried first and then Z vector, ...; and, same rank is awarded if eventually

the tie persists. In (Eq.19d): rank is given based on BV reward vector; for any ties on

BV reward , a tie breaking is attempted on the vector of median values MedV first, and

then on the vector of mean values µV ; same rank is awarded on tie persistence. Nm

is the number of contending algorithms.

Single objective function performance evaluation (19)

OFs =
ERTr

FEmax2λ

; (19a)

FEmax2λ = FEmax +2λ (19b)

OFrk =WoRankMT B(OFs,BV rk); (19c)

BV rk(i) =WoRankMT B(BV reward(i),{MedV ,µV}�BV reward); (19d)

BV reward(i) =



0, Sr(i)> 0∨
{
@ j
∣∣ ERTr(i) = ERTr( j); i 6= j;∀i, j ∈ {1, . . . , Nm}

}
BV (i)

FEmax2λ
, Sr(i)> 0∨

{
∃ j
∣∣ ERTr(i) = ERTr( j); i 6= j;∀i, j ∈ {1, . . . , Nm}

}
BV (i), otherwise; i ∈ {1, . . . , Nm}

(19e)

ERTr = (1−Sr)FEmax2λ +Sr ·FEsuccAvg; (19f)

FEsuccAvg =
FEsucTot

rs
(19g)

The ERTr metric, is a derivation we made from the common Expected Running

Time (ERT), in its SP2 version, from [80], and shown in (Eq.20a) below; It is worth

noting that oftentimes ERT (as in [81]) refers to just the successful parcel of SP2,

which we denoted as ERT(s) in (Eq.20b).

ERT = SP2 =
(1−Sr

Sr

)
FEmax +FEsuccAvg︸ ︷︷ ︸

ERT(s)

; (20a)

ERT(s) = FEsuccAvg =
FEsucTot

rs
(20b)

Our derivation of ERTr from the one in (Eqs.20), arises from the need for a better

handling of the null Sr and null rs issues in (Eqs.20a, 19g=20b), and in respect to

other issues as follows:

(a) On the one hand, one cannot guarantee a non null success rate by any of the

metaheuristics: actually a few null success rates are common, and bound to

happen at some point for some reason, as also guaranteed by the "No-Free-

Lunch" (NFL) theorem [68]. But a null Sr in (Eq.20a) yield a non existent
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metric value (i.e., an infinity ERT ). However null Sr’s shouldn’t render the

ERT useless, but accounted for instead, which is done by the modified ERTr in

(Eq.19f). Also, because there is still different measures of convergence quality

even in a failed run, the accounting for the null Sr’s in ERTr gives way for the

accounting for the quality of such failed runs, which is done by the BV rk metric;

(b) On the other hand, since we cannot control the internal handling of stopping

criteria, restarts, etc., of the arbitrary metaheuristics; then, to insure uniformity,

we have adopted setting the budget function evaluations FEmax per a single

run. That way, exactly r independent runs of FEmax limit each, are performed

per each contending metaheuristics, and data is registered. Any failed run is

awarded FEmax score. Further, there are cases when a successful run will ex-

ceed the FEmax budget: the effective stopping number of function evaluations

(FEmaxi) of an arbitrary run i, may happen to be higher than FEmax by some

additional counts e, i.e., FEmaxi = FEmax + e, where, albeit infrequent, FEmaxi

could be a successful run. The miss-alignment is frequently due to performance

reasons, including parallel function evaluation, wherein stopping criterion can-

not not be enforced at each single function evaluation, and, it has been a practice

granting some fair amount of leniency to this kind of budget violation. That is

the rationale behind the adjustment of FEmax to FEmax2λ in (Eq.19b): trying

to prevent the ERT of a failed run to ever be better or tied with the ERT of a

successful one. The λ in (Eq.19b), is the population size. The adjustment of

2 λ ’s (which can be raised or lowered) means that we are not granting further

leniency to the algorithms that will exceed such scale of violation.

The ERTr in (Eq.19f) is thus a more convenient ERT performance measure, insofar

it yields a non infinity metric for the null Sr’s and also in the way, along with the BV rk

metric, allows the accounting for other measures of quality, namely BV reward, MedV

and µV , where all runs are included, failed or not, which either ERT’s in (Eqs.20a)

are not supporting. It is worth pointing out that other derivations of the SP2 in
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(Eq.20a) aimed at a better handling of null Sr’s are possible, such as, for instance,

replacing the null Sr (which is also the probability of success estimator) by a very

small number (=very small probability), say 1
10r where r is the total number of op-

timization runs per algorithm. Such a derivation (with additional transformations

thereof), along with the use of the BV rk metric, would anyway yield the same OFrk

ranks.

(3) OFrk in (Eq.19c), is the weak order ranking (performed by the WoRankMT B(.) func-

tion) of the OFs objective function scores of the contenders, where the BV rk rank is

a OFs tie-breaking measure.

(B) Performance evaluation at the aggregate testbed level:

The above OFrk ranking evaluation is performed and logged for each one of the Npb prob-

lems of a given benchmarking testbed. These logs are used thereafter for calculating the

aggregate level performance, as follows:

Four (4) measures of performance, derived from the single objective logged data are con-

sidered for the aggregate performance model: (1) the mean of OFrk’s from (Eq.19c); (2)

the Rate of Problems Solved (RoPs), which is the ratio: number of successfully solved

problems (i.e., the ones with non null Sr), to the total of problems Npb; (3) the mean

success rate; and, (4) the ratio of non 100% Sr’s. Further, there are times when the rel-

ative importance of these individual metrics (essentially from the "reliability vs speed"

perspective) in the aggregate performance outcome, would differ according to the sole

criterion of the user or decision maker. Arising from such considerations, FSs in (Eqs.21)

below, is a weighed sum approach, giving the decision maker the right to ’a priori’ define

their preferences on the relative importance of these 4 measures in the aggregate perfor-

mance outcome.

Additionally in Table 6 we define sample schedules of performance weights for 5 choice
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levels of speed-reliability relative importance.

Aggregate, testbed performance evaluation:

(Eqs.21)

FSs =WmOF ·OFrk +WRoPs · (1−RoPs)+WmSr · (1−Sr)+Wn100s ·Non100s/Npb (21a)

FSrk =WoRankMT B(FSs) (21b)

where FSs is the testbed (’function set’) score . WmOF , WRoPs, WmSr, Wn100s, are the weights

that determine the relative contributions to FSs for respectively: the mean OFrk rank, the

Rate of Problems Solved (RoPs), the mean Sr, and, the ratio of non-100% Sr’s. The

weights should be non negative and summing up to 1. In turn, FSrk is the weak order rank

of FSs score and defines which is(are) the winning algorithm(s) for a given schedule of

weights, and that is given for just one problem size D.

Table 6 Performance Evaluation Choice Weights

# Performance Class OFrk RoPs Sr %Non100s

1 Speed Scoring weights 1 0 0 0
2 Moderate Speed Scoring weights 0.75 0.15 0.7 0.03
3 Balanced Speed-Reliability Scoring weights 0.35 0.35 0.25 0.05
4 Moderate Reliability Scoring weights 0.25 0.5 0.17 0.08
5 Reliability Scoring weights 0 0.6 0.3 0.1

3.5.3 Results

The following tables and graphs present the results of the 4 experiment groups, which is fol-

lowed by their discussion. For the "Generic Shifted X∗ Testbed" we have 6 tables (7-12), the

first 5 showing the "Per Function Benchmark Results (4 to 5 functions per table), and the last

one being the summary table (12), the most important one, summing up the performances of all

the "per function" tables. Concerning the Appliance schedule testbeds, there are just 2 tables

per testbed sub-category: the first one with the "per function" results, and the second one being

the summary performance table. In any of the testbeds the evaluation is based on the model dis-

cussed in section 3.5.2, where the characterization of performance variables is done. However

some legend aids are placed on the tables footnotes, aimed at easing interpretation.
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Table 7 Generic Shifted X∗ Testbed - Per Function Benchmark Results (pg.1/6)

Func. Info
Perf.

Measure

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

fDG1fDG1fDG1

fOpt= 0;

fTol= 1e-08

Best(BV rk ) 2.03e-10(4) 2.78e-09(3) 6.25e-09(3) 7.17e-09(3) 2.33e-10(5) 5.15e-09(4) 9.14e-08(5) 1.1e-05(5) 2.99e-13(1) 2.28e-09(2) 5.67e-09(2) 6.37e-09(2) 3.36e-11(2) 5.16e-09(5) 7.41e-09(4) 8.29e-09(4) 8.16e-11(3) 1.36e-10(1) 6.46e-10(1) 6.97e-10(1)

Mean 4.756e-09 7.14e-09 8.725e-09 9.213e-09 4.716e-09 8.568e-09 2.714e-07 2.307e-05 2.577e-09 5.759e-09 22.96 8.735e-09 4.853e-09 8.101e-09 9.096e-09 9.386e-09 2.124e-09 1.199e-09 1.225e-09 1.253e-09

Median 4.79e-09 7.644e-09 8.874e-09 9.477e-09 4.83e-09 8.753e-09 2.582e-07 2.23e-05 2.023e-09 5.888e-09 8.113e-09 8.975e-09 5.102e-09 8.009e-09 9.248e-09 9.449e-09 9.73e-10 1.154e-09 1.148e-09 1.285e-09

Std 3e-09 2.2e-09 1.1e-09 6.9e-10 2.9e-09 1.2e-09 9.4e-08 7e-06 2.4e-09 1.7e-09 1.3e+02 9.4e-10 3e-09 1.4e-09 7.2e-10 5.1e-10 2.5e-09 7.3e-10 3.8e-10 2.4e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00% 96.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 664 3.19e+03 1.23e+04 2.33e+04 1.51e+04 8.65e+04 3e+05 5e+05 1.79e+03 8.6e+03 4.06e+04 6.27e+04 2.35e+03 7.6e+03 2.09e+04 3.72e+04 1.06e+03 6.63e+03 1.82e+04 3.02e+04

OFs(OFrk) 0.03319(1) 0.03193(1) 0.04106(1) 0.04654(1) 0.7565(5) 0.8646(5) 1(5) 1(5) 0.08925(3) 0.08604(4) 0.1353(4) 0.1254(4) 0.1176(4) 0.076(3) 0.06964(3) 0.07439(3) 0.05275(2) 0.06626(2) 0.06058(2) 0.06034(2)

fDG2fDG2fDG2

fOpt= 0;

fTol= 1e-08

Best(BV rk ) 1.03e-10(2) 6.4e-09(3) 6.66e-09(2) 7.5e-09(2) 8.22e-06(5) 0.312(5) 17.1(5) 43.7(5) 3.02e-10(3) 0.00578(4) 0.000338(4) 0.00209(4) 4.74e-10(4) 3.93e-09(2) 8.38e-09(3) 9.2e-09(3) 3.98e-11(1) 3.3e-10(1) 7.36e-10(1) 9.02e-10(1)

Mean 4.015e-09 0.5446 8.93e-09 9.021e-09 0.002619 2.111 23.29 45.13 7.349e-05 1.592 4.941 32.3 5.024e-09 8.236e-09 0.6644 1.196 2.296e-09 1.587e-09 1.284e-09 1.38e-09

Median 3.144e-09 0.00493 9.079e-09 9.14e-09 0.0008581 1.631 23.57 45.25 6.763e-09 0.167 4.224 19.39 5.147e-09 8.582e-09 9.893e-09 9.963e-09 1.844e-09 1.377e-09 1.226e-09 1.34e-09

Std 3e-09 0.91 7.4e-10 5.4e-10 0.0047 1.4 1.6 0.56 0.0004 2.2 4.9 32 2.6e-09 1.7e-09 1.5 1.9 2.1e-09 1.2e-09 3.3e-10 3.5e-10

Succ.Rate 100.00% 36.67% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 66.00% 0.00% 0.00% 0.00% 100.00% 100.00% 83.33% 70.00% 100.00% 100.00% 100.00% 100.00%

ERTr 2.64e+03 7.01e+04 8.17e+04 2.17e+05 2e+04 1e+05 3e+05 5e+05 1.12e+04 1e+05 3e+05 5e+05 6.38e+03 3.27e+04 2.06e+05 4.1e+05 2.01e+03 1.63e+04 9.95e+04 2.65e+05

OFs(OFrk) 0.132(2) 0.701(3) 0.2725(1) 0.4333(1) 1(5) 1(5) 1(5) 1(5) 0.5606(4) 1(4) 1(4) 1(4) 0.319(3) 0.3269(2) 0.6854(3) 0.8198(3) 0.1007(1) 0.1634(1) 0.3316(2) 0.5302(2)

fDG3fDG3fDG3

fOpt= 0;

fTol= 1e-08

Best(BV rk ) 6.21e-10(2) 6.48e-09(3) 7.88e-09(2) 8.87e-09(2) 6.02e-06(5) 0.0341(5) 4.46(5) 20.5(5) 1.36e-09(4) 5.44e-09(2) 8.39e-09(3) 1.27(4) 1.35e-09(3) 6.67e-09(4) 8.96e-09(4) 9.27e-09(3) 2.15e-10(1) 1.87e-09(1) 2.69e-09(1) 3.03e-09(1)

Mean 6.051e-09 8.46e-09 9.292e-09 9.543e-09 0.000128 0.2769 17.02 20.66 4.773e-09 7.932e-09 1.428 5.38 6.935e-09 8.706e-09 9.696e-09 9.751e-09 4.276e-09 3.776e-09 0.1911 3.503

Median 6.463e-09 8.479e-09 9.442e-09 9.576e-09 9.644e-05 0.1361 20.24 20.65 4.689e-09 7.973e-09 0.4657 2.344 7.885e-09 8.936e-09 9.766e-09 9.8e-09 4.051e-09 3.723e-09 3.646e-09 5.193

Std 2.5e-09 1e-09 4.9e-10 3e-10 0.00011 0.36 5.8 0.08 2.3e-09 1.1e-09 3.6 6.7 2.4e-09 8.5e-10 2.7e-10 2.2e-10 2e-09 8.9e-10 0.58 3

Succ.Rate 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 50.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 80.00% 40.00%

ERTr 1.34e+03 7.63e+03 2.98e+04 5.51e+04 2e+04 1e+05 3e+05 5e+05 3.02e+03 1.33e+04 1.74e+05 5e+05 4e+03 1.18e+04 3.75e+04 7.2e+04 1.83e+03 1.1e+04 8.91e+04 3.2e+05

OFs(OFrk) 0.06691(1) 0.0763(1) 0.09919(1) 0.1102(1) 1(5) 1(5) 1(5) 1(5) 0.1509(3) 0.133(4) 0.5805(4) 1(4) 0.1999(4) 0.118(3) 0.1251(2) 0.1441(2) 0.0913(2) 0.11(2) 0.2971(3) 0.6395(3)

fDG4fDG4fDG4

fOpt= 0;

fTol= 1e-08

Best(BV rk ) 1.53e-10(2) 4.32e-09(2) 8.15e-09(2) 9.09e-09(2) 6.46e-08(5) 311(4) 2.92e+03(3) 6.24e+03(4) 1.73e-11(1) 118(3) 2.96e+03(4) 4.77e+03(3) 1.53e-10(3) 1.81e-10(1) 1.27e-11(1) 5.42e-10(1) 7.15e-10(4) 475(5) 3.79e+03(5) 6.96e+03(5)

Mean 5.388e-09 75.46 467.3 1058 0.000483 544.9 3426 6900 11.84 868.8 4162 6798 4.187e-09 7.896 55.27 11.84 150.9 1381 5323 9559

Median 5.592e-09 59.22 118.4 118.4 3.693e-05 540.6 3388 6877 2.41e-09 832.1 4168 6917 3.981e-09 7.526e-09 9.748e-09 7.789e-09 140.9 1390 5340 9720

Std 2.9e-09 91 1.1e+03 2.5e+03 0.0018 1.2e+02 2.6e+02 3.8e+02 36 3.1e+02 8e+02 1e+03 2.8e-09 30 60 36 72 3e+02 7.4e+02 1e+03

Succ.Rate 100.00% 50.00% 36.67% 13.33% 0.00% 0.00% 0.00% 0.00% 90.00% 0.00% 0.00% 0.00% 100.00% 93.33% 53.33% 90.00% 6.00% 0.00% 0.00% 0.00%

ERTr 4.98e+03 8.4e+04 2.83e+05 4.9e+05 2e+04 1e+05 3e+05 5e+05 4.38e+03 1e+05 3e+05 5e+05 4.2e+03 3.39e+04 2.18e+05 2.86e+05 1.89e+04 1e+05 3e+05 5e+05

OFs(OFrk) 0.2489(3) 0.8404(2) 0.9436(2) 0.9798(2) 1(5) 1(4) 1(3) 1(4) 0.219(2) 1(3) 1(4) 1(3) 0.21(1) 0.3385(1) 0.7266(1) 0.5729(1) 0.9472(4) 1(5) 1(5) 1(5)

fDG5fDG5fDG5

fOpt= 0;

fTol= 1e-08

Best(BV rk ) 1.91e-11(3) 3.88e-09(4) 5.6e-09(2) 7.11e-09(3) 3.33e-09(5) 4.07e-07(5) 0.000588(5) 0.209(5) 1.88e-11(2) 2.37e-09(2) 6.22e-09(3) 6.58e-09(2) 3.06e-10(4) 3.35e-09(3) 8.07e-09(4) 8.23e-09(4) 6.26e-12(1) 2.6e-10(1) 5.96e-10(1) 7.79e-10(1)

Mean 3.433e-09 0.001734 8.603e-09 9.137e-09 1.612e-06 3.027e-06 0.001701 0.8131 2.851e-09 6.255e-09 7.939e-09 8.196e+04 4.636e-09 7.942e-09 9.195e-09 9.41e-09 2.992e-09 1.342e-09 1.29e-09 1.333e-09

Median 2.305e-09 8.063e-09 8.771e-09 9.283e-09 5.32e-07 2.169e-06 0.00171 0.7471 2.628e-09 5.695e-09 7.792e-09 8.621e-09 4.296e-09 8.492e-09 9.331e-09 9.484e-09 1.746e-09 1.338e-09 1.287e-09 1.262e-09

Std 3.1e-09 0.0066 1.1e-09 6.9e-10 4.7e-06 2.2e-06 0.00069 0.38 2.2e-09 2.1e-09 1e-09 4.5e+05 2.7e-09 1.8e-09 5.4e-10 4.5e-10 2.7e-09 6e-10 2.9e-10 3.6e-10

Succ.Rate 100.00% 90.00% 100.00% 100.00% 4.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 96.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 1.31e+03 2.21e+04 4.9e+04 1.32e+05 1.99e+04 1e+05 3e+05 5e+05 2.41e+03 1.17e+04 4.14e+04 9.75e+04 3.16e+03 9.98e+03 3.46e+04 6.66e+04 1.39e+03 1.14e+04 6.07e+04 1.61e+05

OFs(OFrk) 0.0654(1) 0.2215(4) 0.1633(3) 0.2639(3) 0.9966(5) 1(5) 1(5) 1(5) 0.1206(3) 0.1167(3) 0.1381(2) 0.1951(2) 0.1581(4) 0.09981(1) 0.1153(1) 0.1333(1) 0.0695(2) 0.1144(2) 0.2023(4) 0.321(4)

Note: See summary table (12) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the performance evaluation and comparison model.
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Table 8 Generic Shifted X∗ Testbed - Per Function Benchmark Results (pg.2/6)

Func. Info
Perf.

Measure

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

fDG6fDG6fDG6

fOpt= 0;

fTol=

1e-08

Best(BV rk) 3.44e-11(3) 2.79e-09(2) 6.91e-09(2) 8.56e-09(2) 3.56e-09(5) 4.19(5) 71.7(5) 159(5) 3.48e-12(1) 2.98(4) 40.8(4) 95.5(4) 2.89e-10(4) 4.53e-09(3) 4.41e-09(1) 4.52e-09(1) 1.43e-11(2) 2.17e-09(1) 4.97(3) 11.9(3)

Mean 4.382e-09 8.151e-09 2.8 41.62 4.561e-06 7.988 89.57 202.1 3.749e-09 7.993 62.89 152.3 4.748e-09 8.412e-09 8.322e-09 8.186e-09 0.02618 2.985 10.28 38.71

Median 4.039e-09 8.961e-09 9.624e-09 9.928e-09 1.201e-06 8.142 88.74 202.6 3.477e-09 7.96 59.2 146.8 4.913e-09 8.955e-09 9.117e-09 8.598e-09 2.479e-09 2.985 9.95 18.41

Std 3e-09 1.9e-09 15 94 9.6e-06 2.1 11 18 2.7e-09 3.1 17 42 2.7e-09 1.3e-09 1.7e-09 1.4e-09 0.14 1.4 3.7 79

Succ.Rate 100.00% 100.00% 90.00% 66.67% 2.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 94.00% 3.33% 0.00% 0.00%

ERTr 1.11e+04 6.42e+04 2.38e+05 4.81e+05 2e+04 1e+05 3e+05 5e+05 2.4e+03 1e+05 3e+05 5e+05 3.37e+03 2.53e+04 1.01e+05 2.08e+05 2.69e+03 9.7e+04 3e+05 5e+05

OFs(OFrk) 0.5535(4) 0.6425(2) 0.7936(2) 0.9623(2) 0.9987(5) 1(5) 1(5) 1(5) 0.1198(1) 1(4) 1(4) 1(4) 0.1683(3) 0.2531(1) 0.3364(1) 0.4169(1) 0.1343(2) 0.9697(3) 1(3) 1(3)

fDG7fDG7fDG7

fOpt= 0;

fTol=

1e-08

Best(BV rk) 0(2) 0(2) 0.000149(3) 0.0114(3) 0.0316(3) 2.04(5) 6.37(5) 7.61(5) 0(1) 0(3) 0.754(4) 1.49(4) 0(1) 0(1) 5.85e-09(1) 8.52e-09(1) 0(1) 1.27e-07(4) 2.39e-07(2) 2.34e-07(2)

Mean 1.588e-05 4.619e-05 0.063 0.4267 0.07408 2.935 7.273 8.616 0 0.09596 1.681 2.682 0 3.974e-05 0.02617 0.04242 0 0.0001194 0.0003408 0.002612

Median 8.538e-07 9.417e-09 0.01747 0.2431 0.07561 2.995 7.227 8.69 0 0.01153 1.548 2.542 0 9.417e-09 0.007117 0.0167 0 1.707e-07 2.874e-07 0.0002284

Std 0.0001 0.00022 0.17 0.67 0.028 0.52 0.45 0.4 1e-308 0.29 0.8 0.65 1e-308 0.00022 0.053 0.071 1e-308 0.00033 0.00047 0.012

Succ.Rate 8.00% 86.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 20.00% 0.00% 0.00% 100.00% 96.67% 6.67% 6.67% 100.00% 0.00% 0.00% 0.00%

ERTr 1.98e+04 8.2e+04 3e+05 5e+05 2e+04 1e+05 3e+05 5e+05 5.31e+03 8.48e+04 3e+05 5e+05 8.84e+03 3.14e+04 2.99e+05 4.97e+05 3.38e+03 1e+05 3e+05 5e+05

OFs(OFrk) 0.9918(4) 0.8197(2) 1(3) 1(3) 1(5) 1(5) 1(5) 1(5) 0.2656(2) 0.8476(3) 1(4) 1(4) 0.4418(3) 0.3137(1) 0.9958(1) 0.9945(1) 0.1692(1) 1(4) 1(2) 1(2)

fDG8fDG8fDG8

fOpt= 0;

fTol=

1e-08

Best(BV rk) 1.06e-11(1) 2.7e-09(3) 6.23e-09(3) 7.79e-09(3) 1.4e-10(5) 1.61e-08(5) 6.99e-09(4) 7.73e-08(5) 1.41e-11(2) 1.47e-09(2) 5.72e-09(2) 7.5e-09(2) 3.49e-11(3) 4.07e-09(4) 7.66e-09(5) 8.66e-09(4) 4.24e-11(4) 3.23e-10(1) 7.12e-10(1) 7.21e-10(1)

Mean 2.656e-07 7.742e-09 8.404e-09 9.243e-09 2.118e-07 8.785e-08 9.21e-09 2.629e-07 3.137e-07 7.058e-09 7.82e-09 8.809e-09 4.498e-09 7.639e-09 9.3e-09 9.429e-09 4.089e-05 1.308e-09 1.302e-09 1.183e-09

Median 4.156e-09 8.29e-09 8.612e-09 9.491e-09 1.241e-07 8.223e-08 9.27e-09 2.186e-07 4.373e-09 7.295e-09 7.928e-09 8.829e-09 3.93e-09 8.168e-09 9.415e-09 9.475e-09 1.492e-09 1.137e-09 1.205e-09 1.182e-09

Std 1.8e-06 1.7e-09 9.8e-10 6.8e-10 2.6e-07 4.8e-08 8.6e-10 1.1e-07 2.2e-06 1.7e-09 9.9e-10 6.2e-10 2.8e-09 1.8e-09 5.1e-10 4.3e-10 0.00022 6.7e-10 3.4e-10 2.4e-10

Succ.Rate 94.00% 100.00% 100.00% 100.00% 10.00% 0.00% 96.67% 0.00% 98.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.00% 100.00% 100.00% 100.00%

ERTr 7.43e+03 3.17e+03 1.07e+04 1.96e+04 1.99e+04 1e+05 2.94e+05 5e+05 4.01e+03 9.84e+03 2.6e+04 5.09e+04 3.14e+03 8.22e+03 1.78e+04 3.12e+04 2.36e+03 6.07e+03 1.57e+04 2.59e+04

OFs(OFrk) 0.3714(4) 0.03165(1) 0.03578(1) 0.03923(1) 0.9936(5) 1(5) 0.979(5) 1(5) 0.2005(3) 0.09844(4) 0.08678(4) 0.1018(4) 0.1571(2) 0.08225(3) 0.05928(3) 0.06233(3) 0.1178(1) 0.06068(2) 0.05222(2) 0.05186(2)

fDG9fDG9fDG9

fOpt= 0;

fTol=

1e-08

Best(BV rk) 7.02e-11(3) 0.182(4) 5.91e-09(3) 7.28e-09(3) 1.81e-09(5) 3.66e+04(5) 1e+10(5) 1e+10(5) 5.42e-12(1) 3.33e-09(2) 5.87e-09(2) 6.66e-09(2) 2.7e-10(4) 4.09e-09(3) 7.31e-09(4) 8.61e-09(4) 3.89e-11(2) 4.11e-10(1) 5.86e-10(1) 8.6e-10(1)

Mean 3.807e-09 2309 8.494e-09 9.056e-09 7.926e-07 1.063e+09 1e+10 1e+10 2.997e-09 6.332e-09 2.296e+07 2.296e+07 4.098e-09 7.454e-09 8.986e-09 9.477e-09 2.179e-09 1.685e-09 1.203e-09 1.217e-09

Median 3.066e-09 780.1 8.919e-09 9.285e-09 2.319e-07 6.888e+06 1e+10 1e+10 1.971e-09 6.638e-09 8.068e-09 8.975e-09 3.824e-09 7.662e-09 8.875e-09 9.532e-09 1.213e-09 1.377e-09 1.162e-09 1.195e-09

Std 2.9e-09 3.4e+03 1.1e-09 6.8e-10 1.5e-06 3e+09 1e-308 1e-308 2.5e-09 1.6e-09 1.3e+08 1.3e+08 2.9e-09 1.6e-09 7.6e-10 3.5e-10 2.5e-09 1.3e-09 3.8e-10 2.4e-10

Succ.Rate 100.00% 0.00% 100.00% 100.00% 2.00% 0.00% 0.00% 0.00% 100.00% 100.00% 96.67% 96.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 1.3e+03 1e+05 5.19e+04 1.26e+05 2e+04 1e+05 3e+05 5e+05 2.51e+03 1.28e+04 5.3e+04 1.06e+05 3.19e+03 1.11e+04 3.64e+04 6.36e+04 1.53e+03 1.23e+04 4.04e+04 7.01e+04

OFs(OFrk) 0.0652(1) 1(4) 0.1731(3) 0.2528(4) 0.9999(5) 1(5) 1(5) 1(5) 0.1253(3) 0.1284(3) 0.1767(4) 0.2121(3) 0.1594(4) 0.1114(1) 0.1215(1) 0.1272(1) 0.0764(2) 0.1226(2) 0.1346(2) 0.1401(2)

fDG10fDG10fDG10

fOpt= 0;

fTol=

1e-08

Best(BV rk) 9.97e-10(4) 5.85e-09(3) 8e-09(3) 8.91e-09(2) 1.8e-07(5) 0.129(5) 6.42(5) 23(5) 2.52e-10(1) 5.17e-09(2) 7.89e-09(2) 9.26e-09(3) 8.89e-10(3) 7.25e-09(4) 8.93e-09(4) 9.31e-09(4) 5.9e-10(2) 2.25e-09(1) 3.09e-09(1) 3.1e-09(1)

Mean 5.738e-09 8.538e-09 9.575e-09 7.065e-07 5.784e-06 0.3953 9.783 28.75 4.425e-09 0.052 2.184 5.252 6.38e-09 8.947e-09 9.624e-09 9.815e-09 3.638e-09 3.824e-09 3.888e-09 0.104

Median 5.807e-09 8.648e-09 9.731e-09 9.882e-09 2.852e-06 0.3204 9.326 28.52 4.224e-09 7.733e-09 1.56 4.68 7.004e-09 9.327e-09 9.692e-09 9.877e-09 3.041e-09 3.753e-09 3.867e-09 3.63e-09

Std 2.5e-09 1.1e-09 5.1e-10 3.8e-06 9.7e-06 0.19 2 3.6 2.5e-09 0.28 2.3 4.4 2.5e-09 9e-10 2.9e-10 1.8e-10 2e-09 1.1e-09 4.9e-10 0.4

Succ.Rate 100.00% 100.00% 100.00% 86.67% 0.00% 0.00% 0.00% 0.00% 100.00% 96.67% 43.33% 10.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 93.33%

ERTr 1.86e+03 2.65e+04 1.4e+05 3.39e+05 2e+04 1e+05 3e+05 5e+05 2.8e+03 1.38e+04 1.86e+05 4.59e+05 6.87e+03 3.59e+04 3.62e+04 6.2e+04 2.01e+03 1.13e+04 3.07e+04 8.07e+04

OFs(OFrk) 0.09284(1) 0.2654(3) 0.4678(3) 0.6782(3) 1(5) 1(5) 1(5) 1(5) 0.14(3) 0.1381(2) 0.6215(4) 0.9181(4) 0.3436(4) 0.3592(4) 0.1208(2) 0.124(1) 0.1005(2) 0.1132(1) 0.1025(1) 0.1613(2)

Note: See summary table (9) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the performance evaluation and comparison model.
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Table 9 Generic Shifted X∗ Testbed - Per Function Benchmark Results (pg.3/6)

Func. Info
Perf.

Measure

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

fDG11fDG11fDG11

fOpt= 0;

fTol=

1e-08

Best(BV rk) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(2) 1(2) 1(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

Mean 0 0 0 0 0 0 0 0 0 0.06667 70.2 386.3 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 3 68.5 0 0 0 0 0 0 0 0

Std 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 0.25 2.7e+02 5.2e+02 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308 1e-308

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 93.33% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 214 1.41e+03 5.54e+03 9.41e+03 2.66e+03 3.38e+04 1.6e+05 3.61e+05 712 9.63e+03 3e+05 5e+05 649 3.1e+03 1.68e+04 4.54e+04 460 2.7e+03 7.44e+03 1.25e+04

OFs(OFrk) 0.0107(1) 0.01406(1) 0.01846(1) 0.01881(1) 0.1329(5) 0.3381(5) 0.5337(4) 0.7216(4) 0.0356(4) 0.09627(4) 1(5) 1(5) 0.03244(3) 0.03101(3) 0.05611(3) 0.09077(3) 0.023(2) 0.02696(2) 0.02481(2) 0.02498(2)

fDG12fDG12fDG12

fOpt= 0;

fTol=

1e-08

Best(BV rk) 2.98e-11(4) 6.66e-09(4) 9.21e-09(4) 6.58e-09(2) 1.94e-11(3) 1e+10(5) 1e+10(5) 1e+10(5) 9.01e-13(1) 7.78e-10(1) 4.76e-09(2) 6.27e-09(1) 9.2e-12(2) 3.9e-09(3) 6.64e-09(3) 7.84e-09(4) 2.89e-10(5) 1.49e-09(2) 4.48e-09(1) 6.71e-09(3)

Mean 3.534e-09 9.267e-09 9.8e-09 9.171e-09 3.353e-09 1e+10 1e+10 1e+10 2.335e-09 5.091e-09 7.416e-09 8.356e-09 3.531e-09 6.989e-09 8.896e-09 9.293e-09 2.959e-09 5.325e-09 8.255e-09 8.698e-09

Median 2.887e-09 9.501e-09 9.842e-09 9.543e-09 2.415e-09 1e+10 1e+10 1e+10 8.111e-10 5.643e-09 7.457e-09 8.49e-09 2.284e-09 6.984e-09 8.982e-09 9.315e-09 2.199e-09 4.987e-09 8.584e-09 8.854e-09

Std 2.9e-09 7.7e-10 1.9e-10 7.7e-10 3e-09 1e-308 1e-308 1e-308 2.7e-09 2.7e-09 1.3e-09 8.6e-10 3.2e-09 2e-09 9.6e-10 5.1e-10 2.7e-09 2.4e-09 1.1e-09 6.2e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 680 8.6e+03 4.16e+04 1.16e+05 1.22e+04 1e+05 3e+05 5e+05 1.51e+03 7.09e+03 3.15e+04 7.25e+04 1.9e+03 6.75e+03 3.05e+04 5.84e+04 931 9.7e+03 5.55e+04 1.29e+05

OFs(OFrk) 0.034(1) 0.08599(3) 0.1387(3) 0.2324(3) 0.6087(5) 1(5) 1(5) 1(5) 0.07545(3) 0.0709(2) 0.1051(2) 0.145(2) 0.09521(4) 0.06753(1) 0.1018(1) 0.1168(1) 0.04655(2) 0.09698(4) 0.185(4) 0.2574(4)

fDG13fDG13fDG13

fOpt= 0;

fTol=

1e-08

Best(BV rk) 6.6e-11(4) 2.95e-09(5) 6.32e-09(4) 7.89e-09(4) 3.52e-11(3) 2.33e-09(2) 4.54e-09(2) 6.09e-07(5) 1.53e-11(2) 2.84e-09(4) 5.76e-09(3) 7.62e-09(3) 7.36e-11(5) 2.51e-09(3) 7.98e-09(5) 7.12e-09(2) 8.94e-12(1) 5.49e-10(1) 7.12e-10(1) 8.76e-10(1)

Mean 3.586e-09 7.072e-09 8.613e-09 9.263e-09 4.4e-09 8.426e-09 9.075e-09 1.082e-06 2.672e-09 0.09236 7.884e-09 8.666e-09 4.509e-09 7.511e-09 9.299e-09 9.352e-09 1.997e-09 1.692e-09 1.287e-09 1.333e-09

Median 3.184e-09 7.33e-09 8.794e-09 9.332e-09 3.888e-09 8.809e-09 9.088e-09 1.013e-06 2.454e-09 5.201e-09 7.702e-09 8.615e-09 4.266e-09 8.06e-09 9.364e-09 9.651e-09 1.196e-09 1.441e-09 1.235e-09 1.291e-09

Std 2.7e-09 1.9e-09 1e-09 4.7e-10 2.9e-09 1.5e-09 1.4e-09 3.7e-07 2.4e-09 0.51 1.1e-09 6.4e-10 2.8e-09 2e-09 4.9e-10 6.9e-10 2.3e-09 1.1e-09 4e-10 3.1e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.67% 0.00% 100.00% 96.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 539 3.14e+03 1.38e+04 2.85e+04 1.01e+04 7.13e+04 2.94e+05 5e+05 1.39e+03 1.03e+04 2.91e+04 6.27e+04 1.82e+03 6.56e+03 1.86e+04 3.43e+04 876 5.83e+03 1.83e+04 3.54e+04

OFs(OFrk) 0.02695(1) 0.03136(1) 0.04605(1) 0.05693(1) 0.5074(5) 0.7126(5) 0.9792(5) 1(5) 0.0693(3) 0.1032(4) 0.09701(4) 0.1254(4) 0.0912(4) 0.06555(3) 0.06211(3) 0.06853(2) 0.0438(2) 0.0583(2) 0.06095(2) 0.07078(3)

fDG14fDG14fDG14

fOpt= 0;

fTol=

1e-08

Best(BV rk) 3.11e-10(2) 7.17e-09(4) 8.05e-09(3) 8.18e-09(3) 1.08e-07(5) 7.75e-05(5) 12.4(5) 1e+10(5) 1.01e-09(4) 5.06e-09(2) 6.67e-09(2) 7.94e-09(2) 7.55e-10(3) 5.41e-09(3) 8.75e-09(4) 8.4e-09(4) 8.78e-11(1) 2.93e-09(1) 2.79e-09(1) 2.77e-09(1)

Mean 5.875e-09 8.952e-09 9.261e-09 9.44e-09 1.21e-06 0.0001685 2.439e+09 1e+10 5.09e-09 7.745e-09 9.151e-09 5.556e-08 6.526e-09 8.46e-09 9.543e-09 9.727e-09 3.572e-09 4.485e-09 3.801e-09 3.67e-09

Median 5.536e-09 8.982e-09 9.378e-09 9.494e-09 1.068e-06 0.0001738 574 1e+10 4.771e-09 7.784e-09 9.221e-09 9.277e-09 6.899e-09 8.555e-09 9.56e-09 9.846e-09 3.008e-09 4.484e-09 3.738e-09 3.683e-09

Std 2.5e-09 7.3e-10 5.9e-10 4.1e-10 9.1e-07 5e-05 4.1e+09 1e-308 2.4e-09 1.3e-09 8.8e-10 1.7e-07 2.5e-09 1.4e-09 3.6e-10 3.3e-10 2.6e-09 1.1e-09 6.2e-10 3.8e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 96.67% 86.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 1.06e+03 7.8e+03 4.06e+04 5.79e+04 2e+04 1e+05 3e+05 5e+05 2.8e+03 1.22e+04 4.94e+04 1.46e+05 3.65e+03 1.25e+04 3.5e+04 6.85e+04 1.63e+03 1.12e+04 3.33e+04 5.83e+04

OFs(OFrk) 0.05298(1) 0.07803(1) 0.1352(3) 0.1157(1) 1(5) 1(5) 1(5) 1(5) 0.1398(3) 0.122(3) 0.1647(4) 0.2917(4) 0.1826(4) 0.1247(4) 0.1167(2) 0.137(3) 0.08155(2) 0.1119(2) 0.1111(1) 0.1166(2)

fDG15fDG15fDG15

fOpt= 0;

fTol=

1e-08

Best(BV rk) 2.81e-11(1) 2.72e-09(3) 6.22e-09(3) 7.02e-09(2) 0.00191(5) 1.17(5) 12.1(5) 29.7(5) 6.27e-11(2) 2.8e-09(4) 0.154(4) 6.51(4) 1.72e-10(4) 2.15e-09(2) 4.51e-09(2) 7.08e-09(3) 7.65e-11(3) 4.63e-10(1) 6.77e-10(1) 7.32e-10(1)

Mean 4.817e-09 7.622e-09 0.07256 0.09365 0.005853 1.459 14.34 33.59 0.008123 0.1284 4.936 15.71 4.31e-09 7.162e-09 8.458e-09 8.973e-09 3.019e-09 0.3714 2.851 7.678

Median 4.727e-09 8.419e-09 9.69e-09 9.647e-09 0.005878 1.468 14.23 32.75 1.998e-09 7.385e-09 4.748 15.94 3.469e-09 7.572e-09 8.789e-09 9.207e-09 1.692e-09 1.408e-09 1.331e-09 1.264e-09

Std 2.9e-09 2.1e-09 0.29 0.31 0.0025 0.2 1.6 3.4 0.057 0.38 3.5 4.9 3e-09 1.9e-09 1.5e-09 8.2e-10 3.1e-09 2 11 23

Succ.Rate 100.00% 100.00% 66.67% 73.33% 0.00% 0.00% 0.00% 0.00% 98.00% 76.67% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.67% 93.33% 90.00%

ERTr 4.45e+03 1.85e+04 1.56e+05 2.01e+05 2e+04 1e+05 3e+05 5e+05 3.54e+03 3.27e+04 3e+05 5e+05 9.16e+03 4.9e+04 1.87e+05 3.66e+05 2.46e+03 1.72e+04 5.74e+04 1.07e+05

OFs(OFrk) 0.2226(3) 0.1847(2) 0.5204(2) 0.4022(2) 1(5) 1(5) 1(5) 1(5) 0.1769(2) 0.3272(3) 1(4) 1(4) 0.458(4) 0.4899(4) 0.6227(3) 0.7314(3) 0.1229(1) 0.1724(1) 0.1914(1) 0.2132(1)

Note: See summary table (10) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the performance evaluation and comparison model.
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Table 10 Generic Shifted X∗ Testbed - Per Function Benchmark Results (pg.4/6)

Func. Info
Perf.

Measure

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

fDG16fDG16fDG16

fOpt= 0;

fTol=

1e-08

Best(BV rk) 1.27e-10(3) 4.15e-09(4) 6.21e-09(2) 8.91e+03(5) 3.58e-08(5) 9.42e-09(5) 2.65e-07(5) 1.41e-05(4) 7.9e-13(1) 2.54e-09(2) 6.71e-09(3) 7.38e-09(2) 1.91e-10(4) 3.79e-09(3) 7.9e-09(4) 8.52e-09(3) 7.6e-11(2) 3.58e-10(1) 6.4e-10(1) 9e-10(1)

Mean 4.174e-09 7.886e-09 8.843e-09 1.233e+04 1.519e-06 2.673e-08 7.993e-07 3.139e-05 3.11e-09 6.646e-09 7.916e-09 8.573e-09 4.306e-09 7.426e-09 9.255e-09 9.432e-09 2.647e-09 1.134e-09 1.144e-09 1.355e-09

Median 3.84e-09 8.191e-09 8.915e-09 1.209e+04 6.852e-07 2.176e-08 7.578e-07 2.927e-05 2.011e-09 6.336e-09 7.735e-09 8.596e-09 4.033e-09 7.532e-09 9.474e-09 9.476e-09 1.479e-09 1.086e-09 1.125e-09 1.414e-09

Std 2.9e-09 1.7e-09 9e-10 2e+03 2.5e-06 1.9e-08 3.6e-07 1.1e-05 2.6e-09 2.2e-09 8e-10 7.3e-10 2.9e-09 1.5e-09 5.4e-10 4.1e-10 2.6e-09 5.6e-10 2.6e-10 2.1e-10

Succ.Rate 100.00% 100.00% 100.00% 0.00% 0.00% 13.33% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 1.46e+03 8.83e+03 4.74e+04 5e+05 2e+04 9.97e+04 3e+05 5e+05 2.47e+03 9.59e+03 3.09e+04 6.54e+04 3.2e+03 8.57e+03 2.31e+04 4.07e+04 1.57e+03 1.05e+04 4.02e+04 8.31e+04

OFs(OFrk) 0.07279(1) 0.08827(2) 0.1579(4) 1(5) 1(5) 0.9974(5) 1(5) 1(4) 0.1236(3) 0.09594(3) 0.1029(2) 0.1307(2) 0.1599(4) 0.08574(1) 0.07685(1) 0.08133(1) 0.07825(2) 0.1047(4) 0.134(3) 0.1661(3)

fDG17fDG17fDG17

fOpt= 0;

fTol=

1e-08

Best(BV rk) 2.56e-11(1) 2.56e-09(1) 8.53e-09(2) 8.19e-09(2) 7.93e-11(3) 0.125(5) 0.309(4) 0.395(4) 3.53e-11(2) 0.0178(3) 0.292(3) 0.304(3) 1.07e-10(4) 4.46e-09(2) 3.31e-09(1) 4.23e-09(1) 1.64e-10(5) 0.071(4) 0.343(5) 0.416(5)

Mean 4.36e-09 7.638e-09 0.002196 3.41e-05 1.447e-07 0.1669 0.3674 0.4337 2.805e-09 0.1931 0.5018 0.5494 4.58e-09 7.438e-09 8.423e-09 8.558e-09 0.007424 0.2982 0.6075 0.7035

Median 3.636e-09 8.262e-09 9.649e-09 9.678e-09 2.555e-08 0.1634 0.3652 0.4271 2.496e-09 0.1531 0.4602 0.4887 4.118e-09 7.547e-09 8.897e-09 8.816e-09 1.643e-09 0.2952 0.6759 0.7516

Std 2.9e-09 2.1e-09 0.0088 0.00019 2.7e-07 0.027 0.026 0.025 2.3e-09 0.13 0.16 0.17 2.8e-09 1.7e-09 1.7e-09 1.4e-09 0.024 0.12 0.13 0.11

Succ.Rate 100.00% 100.00% 90.00% 93.33% 30.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 90.00% 0.00% 0.00% 0.00%

ERTr 3.88e+03 3.88e+04 1.82e+05 3.61e+05 1.95e+04 1e+05 3e+05 5e+05 1.99e+03 1e+05 3e+05 5e+05 3.1e+03 2.25e+04 8.82e+04 1.83e+05 3.44e+03 1e+05 3e+05 5e+05

OFs(OFrk) 0.1939(4) 0.3882(2) 0.6073(2) 0.7217(2) 0.977(5) 1(5) 1(4) 1(4) 0.0994(1) 1(3) 1(3) 1(3) 0.1548(2) 0.2249(1) 0.294(1) 0.3653(1) 0.172(3) 1(4) 1(5) 1(5)

fDG18fDG18fDG18

fOpt= 1;

fTol=

1e-08

Best(BV rk) 1(3) 1(2) 1(3) 1(3) 1(5) 4.44(5) 72.6(5) 191(5) 1(2) 1(4) 22.1(4) 44.1(4) 1(4) 1(3) 1(1) 1(2) 1(1) 1(1) 1(2) 1(1)

Mean 1 1.345 1.419 2.301 1 8.365 86.55 224.5 1 3.346 52.04 166.1 1 1 1.015 1.015 1 1.03 1.12 1.179

Median 1 1 1 2.122 1 8.386 82.9 224.5 1 1.449 46.33 143.5 1 1 1 1 1 1 1 1

Std 2.5e-09 0.53 0.56 1.3 1.5e-06 2.2 13 16 2.6e-09 4.7 27 86 2.9e-09 1.5e-09 0.082 0.082 2.7e-09 0.11 0.26 0.28

Succ.Rate 100.00% 53.33% 53.33% 20.00% 2.00% 0.00% 0.00% 0.00% 100.00% 43.33% 0.00% 0.00% 100.00% 100.00% 96.67% 96.67% 100.00% 93.33% 80.00% 66.67%

ERTr 817 5.1e+04 1.78e+05 4.06e+05 1.99e+04 1e+05 3e+05 5e+05 2.13e+03 6.2e+04 3e+05 5e+05 3.82e+03 1.87e+04 7.87e+04 1.65e+05 1.33e+03 1.45e+04 7.85e+04 1.92e+05

OFs(OFrk) 0.04086(1) 0.5099(3) 0.5927(3) 0.8126(3) 0.9964(5) 1(5) 1(5) 1(5) 0.1065(3) 0.6203(4) 1(4) 1(4) 0.1908(4) 0.1868(2) 0.2622(2) 0.33(1) 0.06655(2) 0.1451(1) 0.2616(1) 0.3846(2)

fDG19fDG19fDG19

fOpt= 0;

fTol=

1e-08

Best(BV rk) 6.46e-11(2) 2.9e-09(2) 5.34e-09(2) 7.88e-09(2) 1.69e-10(5) 4.8e-09(5) 0.43(5) 1e+10(5) 7.99e-11(3) 2.91e-09(3) 6.39e-09(3) 8.53e-09(3) 1.65e-10(4) 4.79e-09(4) 7.94e-09(4) 8.81e-09(4) 1.48e-11(1) 2.82e-10(1) 1.01e-09(1) 7.93e-10(1)

Mean 4.189e-09 7.709e-09 8.805e-09 9.137e-09 5.163e-09 8.517e-09 3e+09 1e+10 3.13e-09 6.789e-09 0.6932 469.4 4.745e-09 7.585e-09 9.396e-09 9.716e-09 1.832e-09 1.376e-09 1.433e-09 1.358e-09

Median 3.296e-09 8.463e-09 8.914e-09 9.188e-09 5.433e-09 8.634e-09 11.46 1e+10 2.13e-09 6.79e-09 9.125e-09 9.742e-09 4.864e-09 7.808e-09 9.485e-09 9.773e-09 6.903e-10 1.266e-09 1.387e-09 1.304e-09

Std 2.9e-09 2e-09 9.4e-10 5.7e-10 2.9e-09 1.2e-09 4.7e+09 1e-308 2.9e-09 1.6e-09 3.8 1.3e+03 2.6e-09 1.6e-09 4.8e-10 2.6e-10 2.3e-09 8.7e-10 3.3e-10 3.2e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 100.00% 100.00% 96.67% 66.67% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 536 3.98e+03 2.58e+04 1.05e+05 1.15e+04 9.52e+04 3e+05 5e+05 1.52e+03 1.01e+04 7.28e+04 2.83e+05 2.02e+03 8.16e+03 3.5e+04 8.81e+04 969 6.54e+03 2.67e+04 6.02e+04

OFs(OFrk) 0.02682(1) 0.03982(1) 0.08597(1) 0.2094(3) 0.5738(5) 0.9516(5) 1(5) 1(5) 0.0759(3) 0.1011(4) 0.2427(4) 0.5651(4) 0.1008(4) 0.08165(3) 0.1167(3) 0.1762(2) 0.04845(2) 0.0654(2) 0.08914(2) 0.1205(1)

fDG20fDG20fDG20

fOpt(D)=

-2, -210,

-4930,

-22050;

fTol=1e-08

Best(BV rk) -2(3) -210(3)
-

4.93e+03(2)
-2.2e+04(2) -2(5) -210(4)

-

4.89e+03(5)

-

1.75e+04(5)
-2(1) -210(5)

-

4.93e+03(4)

-

2.17e+04(4)
-2(4) -210(2)

-

4.93e+03(3)
-2.2e+04(3) -2(2) -210(1)

-

4.93e+03(1)

-

2.21e+04(1)

Mean -2 -210 -4930
-

2.205e+04
-2 -210 -4859

-

1.416e+04
-2 -210 -4846

-

1.529e+04
-2 -210 -4930

-

2.205e+04
-2 -210 -4930

-

2.205e+04

Median -2 -210 -4930
-

2.205e+04
-2 -210 -4870

-

1.401e+04
-2 -210 -4860 -1.76e+04 -2 -210 -4930

-

2.205e+04
-2 -210 -4930

-

2.205e+04

Std 2.8e-09 1.5e-09 9.7e-10 2.3e-09 2.9e-09 5.3e-08 44 1.9e+03 2.7e-09 1.6e-07 84 7.7e+03 2.8e-09 1.7e-09 9.2e-10 8.3e-07 2.2e-09 6.6e-10 4.1e-10 3.3e-09

Succ.Rate 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 26.67% 100.00% 100.00% 100.00% 100.00%

ERTr 484 3.11e+03 1.64e+04 4.22e+04 9.79e+03 1e+05 3e+05 5e+05 1.45e+03 1e+05 3e+05 5e+05 1.85e+03 1.03e+04 1.33e+05 4.68e+05 817 6.78e+03 2.85e+04 6.67e+04

OFs(OFrk) 0.02419(1) 0.03106(1) 0.05458(1) 0.08443(1) 0.4893(5) 1(4) 1(5) 1(5) 0.0724(3) 1(5) 1(4) 1(4) 0.09249(4) 0.1026(3) 0.4439(3) 0.9363(3) 0.04085(2) 0.06784(2) 0.09508(2) 0.1333(2)

Note: See summary table (11) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the performance evaluation and comparison model.
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Table 11 Generic Shifted X∗ Testbed - Per Function Benchmark Results (pg.5/6)

Func. Info
Perf.

Measure

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

fDG21fDG21fDG21

fOpt= 0;

fTol=

1e-08

Best(BV rk) 9.15e-10(4) 6.24e-09(3) 7.08e-09(2) 8.04e-09(2) 1.97e-07(5) 0.000468(5) 0.0347(5) 0.15(4) 1.98e-10(1) 5.51e-09(2) 0.000149(4) 0.261(5) 7.15e-10(3) 6.54e-09(4) 9.57e-09(3) 9.54e-09(3) 7.08e-10(2) 3.01e-09(1) 3.37e-09(1) 4.09e-09(1)

Mean 5.785e-09 8.916e-09 9.286e-09 9.405e-09 1.944e-06 0.0008356 0.04867 0.2466 4.978e-09 0.08748 0.09034 0.724 6.212e-09 8.938e-09 9.879e-09 1.887e-06 4.39e-09 4.751e-09 5.033e-09 5.113e-09

Median 5.32e-09 9.144e-09 9.478e-09 9.589e-09 1.674e-06 0.0007984 0.0477 0.2348 4.026e-09 8.362e-09 0.001015 0.7268 7.131e-09 9.282e-09 9.922e-09 1.36e-08 3.985e-09 4.497e-09 4.926e-09 4.967e-09

Std 2.1e-09 8.4e-10 6.9e-10 5.2e-10 1.3e-06 0.00021 0.0089 0.051 2.6e-09 0.48 0.48 0.25 2.9e-09 9.5e-10 1.3e-10 4.4e-06 2.2e-09 1.5e-09 7.3e-10 6.3e-10

Succ.Rate 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 96.67% 0.00% 0.00% 100.00% 100.00% 100.00% 43.33% 100.00% 100.00% 100.00% 100.00%

ERTr 1.04e+03 5.31e+03 2.3e+04 5.39e+04 2e+04 1e+05 3e+05 5e+05 2.77e+03 2.22e+04 3e+05 5e+05 3.78e+03 1.42e+04 1.41e+05 4.89e+05 1.57e+03 1.08e+04 3.47e+04 6.35e+04

OFs(OFrk) 0.0522(1) 0.05313(1) 0.07672(1) 0.1078(1) 1(5) 1(5) 1(5) 1(4) 0.1387(3) 0.2224(4) 1(4) 1(5) 0.1892(4) 0.1421(3) 0.4716(3) 0.9772(3) 0.0783(2) 0.1077(2) 0.1158(2) 0.127(2)

fDG22fDG22fDG22

fOpt= 0;

fTol=

1e-08

Best(BV rk) 1.81e-10(4) 4.31e-09(4) 6.38e-09(3) 7.28e-09(3) 1.83e-11(2) 5.81e-07(5) 0.562(4) 3.83(4) 5.9e-11(3) 3.46e-09(2) 1.05(5) 4.61(5) 1.86e-10(5) 3.78e-09(3) 3.31e-09(2) 3.79e-10(1) 1.59e-11(1) 3.08e-10(1) 3.97e-10(1) 8.68e-10(2)

Mean 4.133e-09 0.01376 8.658e-09 0.2438 5.103e-09 3.674e-05 1.611 7.029 2.91e-09 0.1187 4.434 10.02 4.798e-09 8.131e-09 0.1388 0.8037 2.482e-09 0.01376 0.04129 0.02753

Median 3.453e-09 8.558e-09 8.938e-09 9.423e-09 4.879e-09 1.766e-05 1.502 7.031 2.481e-09 5.991e-09 4.406 9.448 3.958e-09 8.738e-09 9.225e-09 0.7314 1.612e-09 1.061e-09 1.313e-09 1.225e-09

Std 2.9e-09 0.075 1.1e-09 0.43 3.1e-09 6.1e-05 0.74 1.6 2.2e-09 0.32 1.7 3.5 2.9e-09 1.7e-09 0.34 0.95 2.5e-09 0.075 0.13 0.1

Succ.Rate 100.00% 96.67% 100.00% 70.00% 100.00% 0.00% 0.00% 0.00% 100.00% 86.67% 0.00% 0.00% 100.00% 100.00% 80.00% 46.67% 100.00% 96.67% 90.00% 93.33%

ERTr 658 9.45e+03 3.76e+04 1.67e+05 1.57e+04 1e+05 3e+05 5e+05 1.84e+03 2.07e+04 3e+05 5e+05 2.58e+03 8.16e+03 1e+05 3.31e+05 1.02e+03 9.98e+03 4.72e+04 6.24e+04

OFs(OFrk) 0.03291(1) 0.09453(2) 0.1252(1) 0.3334(2) 0.784(5) 1(5) 1(4) 1(4) 0.09175(3) 0.2073(4) 1(5) 1(5) 0.1292(4) 0.08159(1) 0.3337(3) 0.6618(3) 0.05085(2) 0.09977(3) 0.1572(2) 0.1249(1)

fDG23fDG23fDG23

fOpt= 0;

fTol=

1e-08

Best(BV rk) 3.45e-12(1) 2.99e-09(3) 6.69e-09(2) 51.9(5) 4.68e-10(5) 9.41e-08(5) 0.0862(5) 2.43(4) 4.06e-11(4) 3.25e-09(4) 9.39e-09(4) 4.33e-07(3) 3.98e-11(3) 2.74e-09(2) 9.25e-09(3) 9.2e-09(2) 2.01e-11(2) 5.08e-10(1) 5.54e-10(1) 9.57e-10(1)

Mean 3.185e-09 7.667e-09 8.869e-09 85.92 4.829e-09 3.72e-07 0.1435 3.388 3.22e-09 1.337e-05 0.574 3.029 4.727e-09 7.717e-09 9.808e-09 9.876e-09 2.152e-09 1.321e-09 1.443e-09 1.595e-09

Median 2.466e-09 8.083e-09 9.035e-09 85.55 4.688e-09 3.087e-07 0.1388 3.529 2.725e-09 8.226e-09 2.087e-08 3.444 4.67e-09 7.958e-09 9.87e-09 9.926e-09 1.081e-09 1.185e-09 1.38e-09 1.473e-09

Std 2.7e-09 1.8e-09 9.3e-10 15 2.8e-09 2.6e-07 0.027 0.49 2.6e-09 7.3e-05 1.3 3.6 2.7e-09 1.9e-09 1.9e-10 1.6e-10 2.2e-09 5.7e-10 4.1e-10 4.1e-10

Succ.Rate 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 96.67% 30.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

ERTr 573 4.84e+03 5.53e+04 5e+05 1.22e+04 1e+05 3e+05 5e+05 1.57e+03 2.02e+04 2.7e+05 5e+05 2.09e+03 9.15e+03 9.23e+04 2.89e+05 921 6.23e+03 2.36e+04 5.33e+04

OFs(OFrk) 0.02864(1) 0.04837(1) 0.1844(2) 1(5) 0.6112(5) 1(5) 1(5) 1(4) 0.0786(3) 0.2023(4) 0.8984(4) 1(3) 0.1046(4) 0.0915(3) 0.3078(3) 0.5777(2) 0.04605(2) 0.06234(2) 0.07856(1) 0.1066(1)

fDG24fDG24fDG24

fOpt= 0;

fTol=

1e-08

Best(BV rk) 2.46e-09(4) 6.7e-09(4) 8e-09(1) 2.48e-05(1) 0.00109(5) 0.0866(5) 0.323(5) 0.728(5) 1.46e-09(3) 6.23e-09(3) 0.00344(4) 0.000814(3) 5.14e-10(2) 5.38e-09(2) 8.55e-09(2) 0.00453(4) 3.48e-10(1) 4.46e-09(1) 0.00132(3) 0.000663(2)

Mean 7.004e-09 1.163e-06 0.0004508 0.000483 0.01277 0.1322 0.5402 1.101 0.06121 0.3764 1.151 0.9656 6.872e-09 8.663e-09 1.04e-08 0.006424 0.01435 1.18 3.09 4.066

Median 7.005e-09 9.669e-09 0.0003021 0.0003329 0.01156 0.1276 0.5387 1.106 6.767e-09 0.0156 0.02937 0.008716 7.552e-09 9.034e-09 9.838e-09 0.006199 3.995e-09 1.544 3.337 4.259

Std 2.8e-09 3e-06 0.00066 0.00048 0.0069 0.029 0.095 0.18 0.13 0.58 1.6 1.8 2.4e-09 1.3e-09 1.3e-09 0.0011 0.1 0.79 0.96 0.91

Succ.Rate 98.00% 53.33% 13.33% 0.00% 0.00% 0.00% 0.00% 0.00% 68.00% 40.00% 0.00% 0.00% 100.00% 100.00% 63.33% 0.00% 98.00% 3.33% 0.00% 0.00%

ERTr 9.44e+03 7.22e+04 2.77e+05 5e+05 2e+04 1e+05 3e+05 5e+05 1.11e+04 6.66e+04 3e+05 5e+05 1.26e+04 5.52e+04 2.3e+05 5e+05 4.89e+03 9.74e+04 3e+05 5e+05

OFs(OFrk) 0.4721(2) 0.722(3) 0.9238(2) 1(1) 1(5) 1(5) 1(5) 1(5) 0.5538(3) 0.6655(2) 1(4) 1(3) 0.6308(4) 0.5523(1) 0.7661(1) 1(4) 0.2446(1) 0.9737(4) 1(3) 1(2)

Note: See summary table (12) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the performance evaluation and comparison model.
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Table 12 Generic Shifted X∗ Testbed - Summary Benchmark Performance Results (pg.6/6)

Perf. Measure
HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50 D=2 D=10 D=30 D=50

Testbed,

Aggregate

Performance

1 Ratio of Problems Solved (RoPs): 1 0.96 0.96 0.83 0.58 0.21 0.13 0.042 1 0.79 0.5 0.42 1 1 1 0.96 1 0.88 0.79 0.79

2 (#solved / totalOfProblems): (24 / 24) (23 / 24) (23 / 24) (20 / 24) (14 / 24) (5 / 24) (3 / 24) (1 / 24) (24 / 24) (19 / 24) (12 / 24) (10 / 24) (24 / 24) (24 / 24) (24 / 24) (23 / 24) (24 / 24) (21 / 24) (19 / 24) (19 / 24)

3 RoPs Testbed Rank: 1 2 2 2 2 5 5 5 1 4 4 4 1 1 1 1 1 3 3 3

4 Mean Success Rate (mSR): 95.83% 86.11% 85.42% 71.81% 35.42% 17.22% 12.22% 4.17% 96.67% 68.61% 42.08% 35.69% 100.00% 99.58% 90.97% 82.50% 95.17% 78.89% 76.81% 74.31%

5 mSR Testbed rank: 3 2 2 3 5 5 5 5 2 4 4 4 1 1 1 1 4 3 3 2

6 Ratio of Non-100% SRs (non100s) 0.13 0.33 0.29 0.46 0.67 0.83 0.96 0.96 0.21 0.63 0.79 0.79 0.00 0.08 0.25 0.33 0.21 0.33 0.38 0.42

7 non100s Testbed rank: 2 2 2 3 4 4 5 5 3 3 4 4 1 1 1 1 3 2 3 2

8 Mean OFrk : 1.75 1.95833 1.95833 2.16667 5 4.91667 4.79167 4.70833 2.79167 3.45833 3.79167 3.66667 3.54167 2.20833 2.08333 2.04167 1.91667 2.45833 2.375 2.41667

9 (Nr of OFrk = 1 / Nr of OFrk = 2): (16 / 2) (10 / 7) (10 / 6) (10 / 5) (0 / 0) (0 / 0) (0 / 0) (0 / 0) (2 / 3) (0 / 3) (0 / 3) (0 / 3) (1 / 2) (10 / 2) (9 / 4) (10 / 4) (5 / 17) (4 / 12) (5 / 11) (4 / 12)

10 Max.Speed Testbed rank: 1 1 1 2 5 5 5 5 3 4 4 4 4 2 2 1 2 3 3 3

11 Reliability Score (@weights: 0, 60, 30, 10): 2.50 10.00 9.79 23.04 51.04 80.67 88.42 95.83 3.08 28.17 55.29 62.21 0.00 0.96 5.21 11.08 3.53 17.17 23.21 24.38

12 Max.Reliability.Testbed rank: 2 2 2 2 5 5 5 5 3 4 4 4 1 1 1 1 4 3 3 3

13 Reliability (Moderate) Score (@weights: 25, 50, 17, 8): 10.46 16.90 16.69 27.63 62.15 84.91 90.30 95.42 16.19 38.04 60.14 64.77 17.71 11.78 13.95 17.93 12.07 24.80 29.23 30.20

14 Moderate.Reliability.Testbed rank: 1 2 2 2 5 5 5 5 3 4 4 4 4 1 1 1 2 3 3 3

15 Balanced Speed-Reliability Score (@weights: 50, 30, 15, 5): 18.75 24.58 24.48 33.19 75.52 89.50 92.13 95.00 29.46 48.67 65.56 67.77 35.42 22.56 23.44 25.96 20.93 33.17 35.35 36.35

16 Balanced.Speed/Reliability.Testbed rank: 1 2 2 2 5 5 5 5 3 4 4 4 4 1 1 1 2 3 3 3

17 Speed (Moderate) Score (@weights: 75,15,7,3): 26.92 31.97 31.90 38.35 87.77 93.92 94.02 94.58 42.73 59.07 70.80 70.63 53.13 33.40 32.63 33.48 29.71 41.23 41.50 42.42

18 Moderate.Speed.Testbed rank: 1 1 1 2 5 5 5 5 3 4 4 4 4 2 2 1 2 3 3 3

Notes:

3 Except for lines 1, 2, 4 and 9 (respectively RoPs, "#solved...", mSR, and "#OFrank1s/#OFrank2s"), the greater a measure of performance, the worse it is.

3 In particular, the greater a score or a rank , the worse it is.

3 Where every single contender algorithm totally failed, i.e., got the worse value of some measure of performance, all algorithms were awarded the worst rank.

See section 3.5.2 for the performance evaluation and comparison model.
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Table 13 ApplianceSchedule1(.) Unknown Optima Test Setup - Per Function Benchmark Results
(pg.1/2)

Func. Info Perf. Measure
D = 10

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

fDAu1fDAu1fDAu1

(uC=1)
fOpt= 0;
fTol= 1e-05

Best(BV rk) 15.1435(1) 15.1555(5) 15.1435(2) 15.1435(3) 15.1435(4)

Mean 15.9771 15.2162 20.0014 18.8724 38.5885

Median 15.1435 15.1994 18.85637 19.50257 37.86077

Std 2.2 0.062 5.6 3.7 22

Succ.Rate 0.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.1e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.909091(1) 0.909092(5) 0.909091(2) 0.909091(3) 0.909092(4)

fDAu2fDAu2fDAu2

(uC=0.75)
fOpt=
0;
fTol=
1e-05

Best(BV rk) 15.0745(1) 15.0885(5) 15.0745(3) 15.0745(2) 15.0745(4)

Mean 15.4096 15.1159 19.552 18.2059 31.6528

Median 15.0745 15.1032 18.20597 16.11437 28.60987

Std 1.3 0.041 5.4 4.1 17

Succ.Rate 0.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.1e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.909091(1) 0.909092(5) 0.909091(3) 0.909091(2) 0.909092(4)

fDAu3fDAu3fDAu3

(uC=0.5)
fOpt=
0;
fTol=
1e-05

Best(BV rk) 14.9367(1) 14.9511(5) 14.9367(2) 14.9367(3) 14.9367(4)

Mean 15.699 14.9991 16.5627 16.9983 26.1471

Median 14.9367 14.9789 16.52437 17.63817 24.90267

Std 1.2 0.055 1.9 1.5 11

Succ.Rate 0.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.1e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.909091(1) 0.909092(5) 0.909091(2) 0.909091(3) 0.909092(4)

fDAu4fDAu4fDAu4

(uC=0.25)
fOpt=
0;
fTol=
1e-05

Best(BV rk) 14.6301(1) 14.6388(3) 14.6398(4) 14.6301(2) 14.9998(5)

Mean 14.8879 14.7073 15.7545 15.3526 18.7947

Median 14.9229 14.6934 15.4042 15.43447 18.1226

Std 0.26 0.059 1.3 0.23 5.2

Succ.Rate 0.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.1e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.909091(1) 0.909091(3) 0.909092(4) 0.909091(2) 0.909092(5)

fDAu5fDAu5fDAu5

(uC=0)
fOpt=
0;
fTol=
1e-05

Best(BV rk) 7.30366(1) 7.31134(3) 7.31185(4) 7.30541(2) 7.64336(5)

Mean 7.40164 7.34057 7.4699 7.42488 8.10856

Median 7.41442 7.33335 7.42558 7.41817 8.05242

Std 0.076 0.029 0.14 0.12 0.78

Succ.Rate 0.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.1e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.909091(1) 0.909091(3) 0.909092(4) 0.909091(2) 0.909092(5)

Notes:

3 A pair of type ’V(r)’ is a performance measure’s value ’V ’ with its resulting rank ’(r)’; wherein a boldface
’V(1)’ is a rank 1 performance, noting that the affixed rank is ’(1)’. In turn, a slanted/italics ’V(2)’, means
rank 2 performance, noting in this case the affixed rank ’(2)’.

3 On the Best (rank) pair: an equal rank (BV rk) is awarded to all algorithms that have the same Best
function values, but only after a tie-breaking has been done over their Median function values, and then,
on tie persistence, over their Mean function values; In cases such tie was broken, the winning algorithm
keeps their current ranking, while the other is relegated (newrank = rank+1) and then along with the
Best(newrank) of such relegated contender, a cross (7) is placed aside the underlying tie-breaking
measure (either the Median or the Mean). If a tie persisted through the Median and beyond the Mean
checks, then the tied algorithms keep their current rank and no "7" is affixed. No "7" for no ties as well.

3 The Best(rank) performance measures, are specially useful for telling apart the OFrank performances
of those algorithms with a null success rate or in general: with tied ERTs. Otherwise the OFrank is
determined by the ERTs in first place.

3 See summary table (14) footnotes for additional legend aids or remarks, as well as section 3.5.2 for the
performance evaluation and comparison model.
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Table 14 ApplianceSchedule1(.) Unknown Optima Test Setup - Summary Benchmark Performance Results (pg.2/2)

Perf. Measure
D = 10

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

Testbed,

Aggregate

Performance

1 Ratio of Problems Solved (RoPs): 0 0 0 0 0

2 (#solved / totalOfProblems): (0 / 5) (0 / 5) (0 / 5) (0 / 5) (0 / 5)

3 RoPs Testbed Rank: 5 5 5 5 5

4 Mean Success Rate (mSR): 0.00% 0.00% 0.00% 0.00% 0.00%

5 mSR Testbed rank: 5 5 5 5 5

6 Ratio of Non-100% SRs (non100s) 1.00 1.00 1.00 1.00 1.00

7 non100s Testbed rank: 5 5 5 5 5

8 Mean OFrk: 1 4.2 3 2.4 4.4

9 (Nr of OFrk = 1 / Nr of OFrk = 2): (5 / 0) (0 / 0) (0 / 2) (0 / 3) (0 / 0)

10 Max.Speed Testbed rank: 1 4 3 2 5

11 Reliability Score (@weights: 0, 60, 30, 10): 100.00 100.00 100.00 100.00 100.00

12 Max.Reliability.Testbed rank: 5 5 5 5 5

13 Reliability (Moderate) Score (@weights: 25, 50, 17, 8): 80.00 96.00 90.00 87.00 97.00

14 Moderate.Reliability.Testbed rank: 1 4 3 2 5

15 Balanced Speed-Reliability Score (@weights: 50, 30, 15, 5): 72.00 94.40 86.00 81.80 95.80

16 Balanced.Speed/Reliability.Testbed rank: 1 4 3 2 5

17 Speed (Moderate) Score (@weights: 75,15,7,3): 40.00 88.00 70.00 61.00 91.00

18 Moderate.Speed.Testbed rank: 1 4 3 2 5

Notes:

3 Except for lines 1, 2, 4 and 9 (respectively RoPs, "#solved...", mSR, and "#OFrank1s/#OFrank2s"), the greater a
measure of performance, the worse it is.

3 In particular, the greater a score or a rank , the worse it is.

3 Where every single contender algorithm totally failed, i.e., got the worse value of some measure of performance, all
algorithms were awarded the worst rank.

See section 3.5.2 for the performance evaluation and comparison model.
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Table 15 ApplianceSchedule1(.) Function Test Setup - Per Function Benchmark Results (pg.1/2)

Func. Info Perf. Measure
D = 10

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

fDAk1fDAk1fDAk1

(uC=1)
fOpt=
15.143;
fTol= 1e-05

Best(BV rk) 15.1435(1) 15.1677(4) 15.1436(2) 15.1437(3) 22.3783(5)

Mean 16.3544 15.2166 24.0405 19.4058 32.0137

Median 15.1443 15.2153 22.4021 22.3783 23.1434

Std 2.7 0.037 8 3.7 12

Succ.Rate 73.33% 0.00% 6.67% 26.67% 0.00%

ERTr 5.93e+04 1.1e+05 1.03e+05 8.44e+04 1.1e+05

OFs(OFrk) 0.514701(1) 0.909092(4) 0.85203(3) 0.700247(2) 0.909092(5)

fDAk2fDAk2fDAk2

(uC=0.75)
fOpt=
15.074;
fTol= 1e-05

Best(BV rk) 15.0745(1) 15.0799(3) 15.0879(4) 15.0746(2) 15.0879(5)

Mean 15.8582 15.1393 20.9123 17.19 27.0289

Median 15.0752 15.1284 20.056 15.0879 21.20987

Std 2.4 0.041 5.7 3 8.5

Succ.Rate 63.33% 0.00% 0.00% 33.33% 0.00%

ERTr 6.64e+04 1.1e+05 1.1e+05 7.78e+04 1.1e+05

OFs(OFrk) 0.570358(1) 0.909091(3) 0.909092(4) 0.646322(2) 0.909092(5)

fDAk3fDAk3fDAk3

(uC=0.5)
fOpt=
14.937;
fTol= 1e-05

Best(BV rk) 14.9367(1) 14.9541(4) 14.9367(2) 14.937(3) 17.6381(5)

Mean 15.5788 14.9989 18.0762 16.4029 22.6733

Median 14.9376 14.9826 17.5034 14.956 19.3247

Std 1.1 0.056 2.7 1.7 6

Succ.Rate 70.00% 0.00% 13.33% 40.00% 0.00%

ERTr 6.29e+04 1.1e+05 9.61e+04 7.18e+04 1.1e+05

OFs(OFrk) 0.54498(1) 0.909092(4) 0.794915(3) 0.597842(2) 0.909092(5)

fDAk4fDAk4fDAk4

(uC=0.25)
fOpt=
14.630;
fTol= 1e-05

Best(BV rk) 14.6301(1) 14.6527(3) 14.6802(4) 14.6306(2) 15.0647(5)

Mean 15.0108 14.7447 15.6009 15.2243 17.7646

Median 15.0647 14.7124 15.2806 15.0898 15.7533

Std 0.28 0.1 1.2 0.24 2.9

Succ.Rate 26.67% 0.00% 0.00% 3.33% 0.00%

ERTr 9.38e+04 1.1e+05 1.1e+05 1.07e+05 1.1e+05

OFs(OFrk) 0.786098(1) 0.909091(3) 0.909092(4) 0.882006(2) 0.909092(5)

fDAk5fDAk5fDAk5

(uC=0)
fOpt=
7.304;
fTol= 1e-05

Best(BV rk) 7.30366(1) 7.31378(4) 7.30491(2) 7.30541(3) 7.51884(5)

Mean 7.38279 7.34064 7.46687 7.40388 7.93624

Median 7.41442 7.33232 7.42375 7.41817 8.05259

Std 0.064 0.025 0.14 0.091 0.18

Succ.Rate 10.00% 0.00% 0.00% 0.00% 0.00%

ERTr 1.04e+05 1.1e+05 1.1e+05 1.1e+05 1.1e+05

OFs(OFrk) 0.86737(1) 0.909092(4) 0.909091(2) 0.909091(3) 0.909092(5)

Notes:

3 See tables 14 and 16, footnotes for some legend aids or remarks, as well as section 3.5.2 for the performance
evaluation and comparison model.
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Table 16 ApplianceSchedule1(.) Function Test Setup - Summary Benchmark Performance Results (pg.2/2)

Perf. Measure
D = 10

HyPERGDx CSA Mat.PSO EBOwithCMAR CMAES

Testbed,

Aggregate

Performance

1 Ratio of Problems Solved (RoPs): 1 0 0.4 0.8 0

2 (#solved / totalOfProblems): (5 / 5) (0 / 5) (2 / 5) (4 / 5) (0 / 5)

3 RoPs Testbed Rank: 1 4 3 2 4

4 Mean Success Rate (mSR): 48.67% 0.00% 4.00% 20.67% 0.00%

5 mSR Testbed rank: 1 4 3 2 4

6 Ratio of Non-100% SRs (non100s) 1.00 1.00 1.00 1.00 1.00

7 non100s Testbed rank: 5 5 5 5 5

8 Mean OFrk: 1 3.6 3.2 2.2 5

9 (Nr of OFrk = 1 / Nr of OFrk = 2): (5 / 0) (0 / 0) (0 / 1) (0 / 4) (0 / 0)

10 Max.Speed Testbed rank: 1 4 3 2 5

11 Reliability Score (@weights: 0, 60, 30, 10): 25.40 100.00 74.80 45.80 100.00

12 Max.Reliability.Testbed rank: 1 4 3 2 4

13 Reliability (Moderate) Score (@weights: 25, 50, 17, 8): 21.73 93.00 70.32 42.49 100.00

14 Moderate.Reliability.Testbed rank: 1 4 3 2 5

15 Balanced Speed-Reliability Score (@weights: 35, 35, 25, 5): 24.83 90.20 72.40 47.23 100.00

16 Balanced.Speed/Reliability.Testbed rank: 1 4 3 2 5

17 Speed (Moderate) Score (@weights: 75,15,7,3): 21.59 79.00 66.72 44.55 100.00

18 Moderate.Speed.Testbed rank: 1 4 3 2 5

Notes:

3 Except for lines 1, 2, 4 and 9 (respectively RoPs, "#solved...", mSR, and "#OFrank1s/#OFrank2s"),
the greater a measure of performance, the worse it is.

3 In particular, the greater a score or a rank , the worse it is.

3 Where every single contender algorithm totally failed, i.e., got the worse value of some measure of
performance, all algorithms were awarded the worst rank.

See section 3.5.2 for the performance evaluation and comparison model.
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( fDG1 −Sphere,D = 2) ( fDG1 −Sphere,D = 10)

( fDG6 −Rastrigin,D = 2) ( fDG6 −Rastrigin,D = 30)

( fDG13 −HyperEllipsoid,D = 2) (( fDG13 −HyperEllipsoid,D = 50)

(( fDG24 −Katsuura,D = 2) (( fDAu1 −ApplianceSchedule1,D = 10, α = 1)

Figure 20 Samples of mean convergence performance of selected functions from 2
testbeds
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Figure 20, shows the average global best fitness convergence (in log10 scale), calculated

over all the r (50 for D=2 or 30 otherwise) runs; where the graph touches the NFEs axis before

maxFEs, means the respective algorithm has reached the fTarget .

3.6 Discussion of Metaheuristics Benchmarking Results

Looking at the results tables from 7 to 16, especially the summary performance Tables 12, 14

and 16; and, having in mind the performance evaluation model discussed in section 3.5.2, as

well as the definitions of the testbeds and benchmarking setups, we come up with these findings:

(1) Concerning the generic shifted X∗ testbed benchmarking results, Table 12 shows that

HyPERGDx has a competitive performance relative to EBOwithCMAR: HyPERGDx is

better in speed (rows nr 10 and 18) but EBOwithCMAR is better in reliability (rows nr

12, 14 and 16). Overall, on the second half of the Table (from row 8 to 18, where different

weighed levels of aggregate performance, are presented), HyPERGDx has 8 first places

and 12 second place ranks, vs 12 first places and 4 second places of EBOwithCMAR.

Otherwise HyPERGDx and EBOwithCMAR are better than any other of the remaining

state-of-the-art metaheuristics, namely: CMAES, Matlab’s PSO and CSA, ranked that

same order.

(2) Concerning the ApplianceScheduling1 function, "unknown optima" test setup, bench-

marking results: Table 14 shows that HyPERGDx has the best performance relative to

the remaining metaheuristics (5 first place wins vs nil of any other in any category of

either speed or reliability). Overall, HyPERGDx is the clear winner of this testbed, show-

ing that it is likely to fare better than the other metaheuristics for unknown new optimal

values, that would be spurred by change of parameters or part of, or the whole, appliance

database.

On the other hand, the presence of null success rates, in this case for all metaheuristics

(which is not unexpected, since we used an unattainable, asymptotic optimum of zero),

would hamper the use of the traditional ERT measure in either (Eq.20a) or (Eq.20b).

Arising from the null Sr’s, the RoPs is null as well, for all algorithms, so it is not useful
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either. In this way the performance evaluation defined in section 3.5.2, proves to be useful

for telling apart the performances of the algorithms even as some success rates are null,

by accounting for the quality of the relative level of their mean convergence towards the

target optimum.

(3) Concerning the ApplianceScheduling1 function, with "currently best known optima" test

setup, benchmarking results: Table 16 shows that HyPERGDx has again the best perfor-

mance relative to the remaining metaheuristics (5 first place wins vs nil of any other in

any category of either speed or reliability). Aside from the Rank 1 performance at the all

testbed ranks, another aspect standing out is the 100% RoPs and high mean success rate

as compared to the rest. Otherwise, relatively to the rest of the field, EBOwithCMAR

ranks better than the remaining 3. Overall, HyPERGDx is the clear winner of this other

testbed.

Conclusions:

(i) The facts that the HyPERGDx algorithm has shown a competitive performance includ-

ing that, in the generic testbed of 24 functions, it keeps being comparatively as fast as

the best of its "mother" state-of-the-art metaheuristics and fairly competitive concerning

reliability, it shows it has a balanced performance between speed and reliability. Also,

(ii) The fact that in both the appliance scheduling testbed HyPERGDx is the clear winner; is

of especial importance, all the more if we consider that our motivation for the design of

a new hybrid heuristics was spurred by the lack of consistent performance of the other

metaheuristics when it came to the appliance scheduling problem.

(iii) From the above grounds, we can conclude that HyPERGDx showed the best all around

performance, meaning it has a wider range of successfully solved classes of problems

while being fairly fast as compared to CMA-ES (the fastest of the group, but with higher

failure rate as compared to HyPERGDx and EBOwithCMAR) and in the overall stand

point showed a competitive of better performance also in terms of reliability and robust-

ness. As a caveat, HyPERGDx apparently has sometimes a higher execution time than
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the other contenders, mostly when the problem is not successfully solved by the first sub-

population loop. This is partly due to hybrid heuristics logical overhead, consuming some

extra time, something that cannot be completely avoided, but can for sure be addressed,

which remains to be done. However, as evident, the discussed robustness shown by the

algorithm, out-waits such caveat to a great extent.

(iv) Another good result of importance is the fact that any of the real parameter global opti-

mization metaheuristics were used almost without modification of their original code to

perform a household’s appliance scheduling using a RPBBOAS model ApplianceSchedule1(.)

function as the medium. Thus, in the one side this successfully evaluated the HyPERGDx

performance vs its state-of-the-art "mother" metaheuristics, and in the other side it of-

fered an experimental demonstration of the RPBBOAS model effectiveness, and thereby,

we can argue that we have successfully addressed the motivations and accomplished the

goals laid out in the introductions to these components of the research work and, from

these grounds we henceforth assume that both models (the blackbox function and the al-

gorithm) are right tools to be used in our next chapter, next step of trying to build and

demonstrate a bbDR framework for DR-unconnected CG environments.

Both the HyPERGDx hybrid metaheuristics and the RPBBOAS model, along with its ef-

fective code implementation, the ApplianceSchedule1(.) function, are modest individual

contributions of this research work.



Chapter 4

Household Appliances and Uncontrolled vs

Controlled Energy Consumption

Workflows

4.1 Household Devices and Appliances

In section 2.1.5.1 we made an introductory reference to household devices and appliances, as

regarded in a wider, grid perspective. The appliances structure of a household (how many appli-

ances of which type) depend on various factors related to its energy environment, such as: the

country/geographic region, the status of grid development (SG/CG), the social and economical

stratification and composition of the household occupants, etc. These factors determine appli-

ance saturation (the ratio of the number of households that have the considered appliance to the

total number of households in a chosen region), appliance’s UEC (unit EC, in average number

of KWh/year), the level of appliance controllability or smartness (as discussed in said section

2.1.5.1), among other characteristics. It is important to remark that while there are different

types of appliances, and generally, electric devices, we will refer all them by appliances, except

where needed.

108
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4.1.1 Appliances Classification and Controllability Limitations

Appliances can be classified in different ways. However from the controllability or schedu-

lability perspective we can divide the appliances in roughly 2 categories: (1) the controllable

appliances and (2) the non-controllable ones. The controllable appliances are the ones that can

be scheduled and controlled by the home energy management system, whereas the last category

is composed by those that (to certain extent) cannot or should not be automatically controlled

and the user is in charge of switching it on or off as needed. Otherwise, some special appli-

ances may be placed in the group of the non-controllable appliances, once a dedicated control

is in charge once deemed appropriate to achieve required performance and gains, such as a

thermostat for a fridge.

Aside from alternate namings of identical meaning, beyond the controllable/uncontrollable

classification there are further sub-classifications, namely for the controllable branch: (a) Shiftable

appliances (working time can be shifted to arbitrary times: actually any schedulable appliance

should be shiftable to some extent), (b) on/off controllable vs regulating or dimmable or curtail-

able appliances (the first subcategory can only be controlled by switching either on or off, and

for the second subcategory, aside from switching on or off, the power consumption level can

be adjusted within determined boundaries); (c) Pausable or deferrable appliances vs uninter-

ruptible appliances (the pausables can be interrupted midway without harming their operational

duty, aside from user frustration for the amount of delay or duty cycle displacement; whereas

the uninterruptible, although schedulable, once switched on, cannot be paused to resume later

without harming its normal operational workflow). Other sub-classifications or alternate classi-

fications or namings exist.

A partial sample of house appliances, deemed appropriate for the experiments conducted

herein is presented in Table 17. The sample data in the table is intended for just the demon-

stration of the uncontrolled/controlled workflow models following up next sections. The data

come from different sources, with some limitations in consistency thereof, but still considered

appropriate for the intended demonstration purposes herein.
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4.1.1.0.1 Special Devices

As technology advances, new or enhanced types of electrical devices are born: (1) smart

or intelligent appliances with embedded automatic controllers and with capability of sensing

environment variables of its interests, aside from smart networking communications capabili-

ties with a HEMS/HAN, a Smart meter/AMI, SG; (2) composite or multifunction devices, for

instance, a device taking roles of both an energy consumer and energy storage, allowing it to

facilitate load shifting and other DR operations, as described in section 2.1.8. That is the case

of a water heater or an electric vehicle.

4.1.1.0.2 On the possibility of contextual controllability of user operated appliances

For severely affected energy ecosystems regarding energy demand, it is justifiable to rethink

the concept of uncontrollable appliances, and consider a contextual controllability for some

appliances where appropriate, to allow home energy management systems to control such "un-

controllable" appliances under given extreme conditions, when without such measure a severe

outcome is likely to occur, such as a blackout.

4.2 The Uncontrolled EC Workflow via ToUPs

4.2.1 Time-of-Use Probability

The uncontrolled EC simulation that we perform here, seeks to mimic the load profiles of an

uncontrolled use of household appliances. For that we rely on appliance switched-on status

statistics performed by previous works in the literature, such as in [52], [53]. In such works (or

in their references), appliance usage (switched-on or switched-off states and power consump-

tion) was recorded for each single time slot of a determined resolution (eg. hourly time slots),

and at the end of a time horizon period of data collection (eg. 365 days), statistics were per-

formed to evaluate, among other variables of interest, what is the probability that appliance j is

switched-on at each one of the recorded data points of interest. Such statistics is called the Time

of Use Probability (ToUP), known also by Rate of Use (RoU) of the appliance j. Table 18 shows

the sample ToUPs that we used, which We have built from tables 19 and 21 in the Appendix ??.
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The pictures of Figure 21 show the ToUPs graphically for 4 of the appliances in tables 17

and 18. The time-of-use probability (or rate of use) of the appliance j at each data point (time

slot number) is calculated as the ratio of the number of times that the appliance j is found to be

switched-on at that specific time slot, to the total of recorded days, the more days the better (see

Figure 22). For instance, suppose that the number of time slots (data points) per day is 1440 (1

minute time slots): if at data point 1080 (i.e, at time slot, minute, number 1080) the appliance j

is found to be switched-on 263 times in a 365 days statistics, then, its time-of-use probability at

the minute number 1080 is: 263/365 u 0.72. This quantity can be further divided by the total

number of activations per day so that the daily distribution is a probability mass function and

than the daily cumulative time of use probabilities amount to 1.

Figure 22 depicts 2 samples of the generated events (dots connected for line chart). The

effect of the number of simulation days is shown: The model assume that, and the statistics

hold when, the number of observations is high. The higher the number of simulations, the

closer the the simulated graph to the input reference data graph. See the results section 4.5 for

the complete set of ToUPs simulations.

In this work, we used the above described ToUPs to generate appliance cycle placements

that try to mimic their uncontrolled (non automated) usage by household occupants. It is worth

remarking that, these statistically generated time-of-use probabilities, just as above described,

do not say how to predict or how to determine the ToUPs from other possibly recorded variables,

such as household occupancy, which drive appliance activities. We assume that our model

is agnostic of the occupancy and other systems parameters that can be difficult to measure,

since we are seeking a simple baseline demand responsive behaviour, with reduced information

requirement, characteristic of underdeveloped CG environments.
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Table 17 Appliance Properties and basic operational characteristics

Abrev. Appliance Name/Group Appliance Type Nom.Power Stby.Power UEC minCPD meanCPD maxCPD minCT meanCT maxCT

(W) (W) (KWh/Year) (min) (min) (min)

WH Water Heater Shiftable, Schedulable 4500 100 3169 3 3 3 30 60 60

CW Clothes Washer Shiftable, Schedulable 610 0 121 1 1 1 60 90 120

CD Clothes Drier Shiftable, Schedulable 5000 0 719 1 1 1 30 60 60

CF Ceiling Fan User operated, Non-schedulable 500 0 96 7 7 7 60 60 1440

FG Fridge User operated, Non-schedulable 500 50 827 1 40.5 42 12 18 24

ST Stove User operated, Non-schedulable 2100 0 310 1 1.46 8 6 12 1440

TV Television User operated, Non-schedulable 200 8 738 1 1.95 2 60 60 1440

LG Indoor Lighting (group) User operated, Non-schedulable 120 0 388 18 18 20 30 30 1440

Where:

UEC: Unit Energy Consumption in KWh/Year (UEC) minCPD,meanCPD, and maxCPD are respectively the minimum, the mean and the maximum operating cycles per day;

while minCT,meanCT , and maxCT are respectively the minimum, the mean and the maximum appliance duty cycle time.
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Table 18 Adopted time-of-use probabilities (ToUPs) for the appliances in Table 17

Appl. d↓ h→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

WH
wd 2.32 1.67 1.39 0.93 0.74 0.65 0.56 1.11 1.86 2.23 3.53 3.81 4.64 5.39 6.04 7.24 8.36 9.29 9.10 8.36 6.50 6.13 4.64 3.53
we 2.32 1.67 1.39 0.93 0.74 0.65 0.56 1.11 1.86 2.23 3.53 3.81 4.64 5.39 6.04 7.24 8.36 9.29 9.10 8.36 6.50 6.13 4.64 3.53

CW
wd 0.5 0 0 0 0 0 0 0.7 2 4.61 7.02 7.23 7.23 7.34 7.34 7.34 7.43 7.43 7.74 7.74 7.43 6.12 3.91 0.9
we 1.73 0.96 0.40 0.40 0.40 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.80 8.60 8.16 7.01 5.05 2.03

CD
wd 0.5 0 0 0 0 0 0 0.7 2 4.61 7.02 7.23 7.23 7.34 7.34 7.34 7.43 7.43 7.74 7.74 7.43 6.12 3.91 0.9
we 1.73 0.96 0.40 0.40 0.40 0.96 1.73 2.93 3.75 4.58 4.68 4.68 4.68 4.68 4.68 6.11 6.83 7.16 7.80 8.60 8.16 7.01 5.05 2.03

CF
wd 2.17 2.53 2.90 2.90 2.90 4.20 7.24 6.52 7.24 6.52 6.52 4.49 4.34 3.62 2.90 2.90 3.62 4.34 3.62 3.19 5.07 5.07 3.04 2.17
we 2.17 2.53 2.90 2.90 2.90 4.20 7.24 6.52 7.24 6.52 6.52 4.49 4.34 3.62 2.90 2.90 3.62 4.34 3.62 3.19 5.07 5.07 3.04 2.17

FG
wd 2.17 2.53 2.90 2.90 2.90 4.20 7.24 6.52 7.24 6.52 6.52 4.49 4.34 3.62 2.90 2.90 3.62 4.34 3.62 3.19 5.07 5.07 3.04 2.17
we 2.17 2.53 2.90 2.90 2.90 4.20 7.24 6.52 7.24 6.52 6.52 4.49 4.34 3.62 2.90 2.90 3.62 4.34 3.62 3.19 5.07 5.07 3.04 2.17

ST
wd 0.37 0.05 0 0 0 0.17 1.72 2.65 4.37 5.94 6.97 7.86 7.92 7.15 6.39 5.89 6.78 7.41 7.32 7.23 6.93 4.09 2.30 1.02
we 0.20 0.20 0.40 0.40 1.78 2.59 3.19 3.83 3.70 4.13 4.29 4.15 3.89 4.46 5.79 8.76 10.00 10.30 9.24 8.15 5.82 2.79 1.51 0.36

TV
wd 3.40 1.94 0.87 0.77 0.87 0.97 0.97 1.46 2.43 3.40 3.88 4.85 4.85 5.93 6.13 6.80 6.80 6.80 7.77 8.25 6.80 5.34 4.85 3.88
we 2.40 1.20 0.70 0.60 0.70 1.30 2.10 2.45 3.35 3.20 3.20 3.84 3.84 4.00 4.80 6.39 7.99 7.99 7.99 9.59 7.99 6.39 4.80 3.20

LG
wd 2.55 1.33 1.23 1.23 1.33 1.53 2.13 4.05 5.07 4.99 4.27 3.82 3.57 4.27 4.97 5.50 6.02 6.69 7.34 7.56 6.64 6.17 4.49 3.22
we 1.03 0.33 0.33 0.83 1.78 2.64 3.56 3.74 3.44 3.04 3.04 3.24 3.94 4.14 4.55 4.96 5.79 6.70 8.21 9.11 9.81 8.50 4.32 2.96

Where: wd indicates a row of weekday time-of-use probabilities; whereas, we indicates a row of weekend time-of-use probabilities.
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Figure 21 Weekday ToUPs for a water heater, a cooling fan, a stove/oven, and indoor
lighting group

Figure 22 Sample uncontrolled appliance ToUPs generation by Algorithm 3 logically
equivalent code

4.2.2 The Uncontrolled EC Workflow

We modelled the on-statuses for an uncontrolled usage of the household appliance j as a non-

homogeneous Poisson point process, starting from the grounds of a homogeneous one. Given a

homogeneous Poisson point process [82] [83] with parameter or mean µ and rate λ : µ = λ t,

in the time interval [0, t]; then X is a Poisson random variable, X ∼ Pois(µ), representing the

number of arrival events {0, 1, 2, ...} during the interval [0, t] if for any λ > 0 it holds:

X ∼ Pois(µ)⇒ Pr(X = k) =
µk

k!
e−µ =

(λ t)k

k!
e−(λ t) (22)
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where it is assumed: there is no arrival at time t=0, i.e., X(0) = 0; as well as for non overlapping

intervals the events are independent and have identical Poisson distribution with constant rate λ

(the process is stationary).

When a non-homogeneous Poisson point process is concerned the rate or intensity λ is

not constant, i.e., it turns a time dependent λ (t). A time varying arrival rate of the events, is

a feature that resembles many real life arrival processes, which is the case of the rate of the

appliance usage in a household.

That is the rationale for why we modelled the start-up/on-statuses events for an uncontrolled

usage of the household appliance j as a non-homogeneous Poisson point process, whose rate or

intensity λ (t) is equal to the appliance’s ToUP, as described by (23). Such statistical model

assumes that, the expected number of events for the considered horizon time of observation is

very high. This is the case of statistically observing the on-statuses of appliances of the same

type, say washing machines, that are present in large number in an equally large community,

during a single day or more days. It is, as well, the case of statistically observing the on-status

of one appliance of a single household, say again a washing machine, during a large number of

days.

X j(t)∼ Pois(tλ j(t)); λ j(t) = ToUPs j(t) ∀t ∈ [0,T ]; (23)

where X j(t) are the arrival times, which may be appliance j start-up times or its switched-on

status (if already started before time slot t), j ∈ {1,2, ...,8} denotes the appliance number, and

T is the time horizon under consideration.

With those assumptions, we wrote a simulation procedure based on the ideas and examples

from [82] and [83] pp.72-77, which is presented in the Algorithm 3, a Matlab biased pseudo-

code. The pseudo-code logic seeks to describe in general terms the procedure to generate non-

homogeneous Poisson process arrivals; whose main difference relative to a homogeneous pro-

cess, lies in that its intensity λ (t) varies with time. As a consequence, there is an admission

control for a generated event to be accepted, as set in line number: 21 of said Algorithm 3: A

candidate event X(t1) i.e occurring at time t1 is only accepted with a probability pt (not worse

than the normalized arrival rate at that point, i.e.):

{X j(t1) = t1 | rand()< pt;}; pt =
λ j(t1)

max(λ j(t))
(24)
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where X j(t) are the appliance j arrival times (switch-on times / on-states), and λ j(t1) equates

to the appliance’s ToUP at time t1, i.e., λ j(t1) = ToUPs j(t1), this given in discrete time slots

t = 1,2, ...,Nt ; Nt = 1440, T = Nt · τ; τ = 60s corresponding to 1 day in 1 minute time slots.

Also, the ToUP is constant within a given timeslot. Note that the 1 minute resolution is obtained

by linear interpolation from the 1h resolution input data of Table 18.

Aside from the above basic non-homogeneous events admission control based on the ap-

pliance’s ToUPs j(t), we placed additional restrictions aimed at making the Poisson simulation

results comply with and to the best extent mimic the real life uncontrolled EC scenario, as

described by the referenced Tables 17 and 18. The exercise of adapting a pure Poisson prob-

abilistic model to suit the real life problem is common and likely a hardly avoidable measure.

Many real life stochastic processes follow the Poisson model, as with the area of energy man-

agement [3, 84–86].

The following additional restrictions to the above events admission control were performed:

(a) Events at time t1 that were already registered in X j(t1) were rejected (repetitions could

happen due to the use of discrete time). Also, the discrete time is being used as unit time,

so, contiguous events, for instance X j(t) and X j(t + 1), belong to the same appliance

working cycle; Furthermore,

(b) While the starting (switching-on) times of the appliances are generated as Poisson point

process events, the duty cycles (the switched-on durations) are not modelled by such

events, since generally the inter-event times do not match the duration times (as with the

arrival vs the service times of many Poisson process models). Since the switched-off

events/probabilities of the appliances are also a non homogeneous Poisson point process,

the durations can be thought as being another Poisson process of varying rate λd(t); And,

in the absence of a suitable varying rate model, we have modelled the appliance cycle

durations as homogeneous Poisson processes of some parameter (mean) µd whose esti-

mator is the mean cycle duration drawn from Table 17), which is as well the expected

mean appliance cycle duration that the simulation process should produce. In this way, a

parallel point process produces the durations from such expected mean; and, as a conse-

quence for each accepted event, additional non-overlapping contiguous events are placed
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a posteriori of the current event until the generated cycle duration is reached, or until just

before an overlapping occurs;

(c) Following the above steps, at the end of events X j(t) generation, contiguous events are

grouped into appliance cycles and paired with the corresponding duration times, in num-

ber of discrete time slots; This resulting candidate sequence of cycles start times paired

along with their cycle durations, is only accepted if the number of cycles are within

bounds, namely, lower/upper bounds: a minimum/maximum number of appliance cy-

cles per day, and each cycle with a minimum/maximum duration, as per the data drawn

or generated from Table 17.

The Algorithm 3 below is the base pseudo-code that we have written into a Matlab coded

function, which was further optimized, and is called repeatedly to perform the uncontrolled

usage simulation for a single appliance, featuring the behaviours that we outlined above. In

the algorithm pseudo-code: T is the simulation horizon; lambdaT is the time varying Poisson

process rate (equating to the ToUP(t)); minCPD, meanCPD and maxCPD are respectively the

minimum, the mean and the maximum cycles-per-day constraints, while minCT,meanCT and

maxCT are respectively the minimum, the mean and the maximum appliance duty cycle time

constraints. The meanCPD and meanCT parameters are drawn from Table 17, and minCPD

and maxCPD; as well as minCT and maxCT are derived from meanCPD and meanCT as their

99% confidence interval bounds using the paramci(.) and f itdist(.) built-in Matlab functions,

as for instance: ci = paramci( f itdist(meanCT, ′poisson′), ′Al pha′,0.01) which produces a 2

element vector comprising the 99% confidence interval.

Figure 23 depicts 2 samples of the generated appliance cycles for a single day by using

Algorithm 3.
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1 // Non-Homogeneous Poisson Process of parameter T λ

2 Function [X,ST,DT] = NonHomoPoiss(T, lambdaT, minCPD, meanCPD, maxCPD, minCT, meanCT,
maxCT)

Result: X, ST, DT
3 // X-event times; ST,DT-cycle start times, durations

4 maxLambda = max(lambdaT);
5 meanEvs ∼ Poiss(maxLambda*T); // Matlab's poissrnd(.)

6 CycT = 1; // event time is pontual, unit, discrete time by default;

7 if meanEvs > 0 then
8 repeat// unitil we got a valid sequence:

9 X = [ ]; ST = [ ]; DT = [ ];
10 pointCount = 0; exitCond = False;
11 for i = 1 to meanEvs do
12 t1 = T * rand; // draw a random event;

13 if t > 0 then // exclude arrival at t = 0

14 tz = ceil(t1); // discretize the event time;

15 if meanCT > 0 then
16 CycT ∼ Poiss(meanCT); // draw a random CycTime from meanCT;

17 end
18 pT = lambdaT(tz) / maxLambda; // the probabilty for event tz

19 // accept event tz with probabilty pT; reject duplicates:

20 r ∼ U(0,1);
21 if r < pT AND tz /∈ X then
22 for c=1 to CycT do
23 Y = X;
24 if tz + c /∈ X then
25 pointCount = pointCount + 1;
26 X(pointCount) = tz + c;
27 X = sort(X);
28 end
29 end
30 end
31 end
32 end
33 if pointCount > 0 then // Convert X pontual events to cycle ST's and DT's;

34 X = sort(X);
35 sti = X(1); prevST = sti;
36 j=1; dtx=1;
37 for i = 2:pointCount do
38 if X(i) > prevST+1 then
39 ST(j)=sti;
40 DT(j)=dtx;
41 sti = X(i);
42 dtx = 1;
43 j=j+1;
44 else
45 dtx = dtx+1;
46 end
47 prevST = X(i);
48 end
49 ST(j)=sti;
50 DT(j)=dtx;
51 end
52 until pointCount=numEvs AND {length(ST) ∈ [minCPD,maxCPD] AND All(DT j ∈

[minCT,maxCT])};
53 end
54 end

Algorithm 3: Non-Homogeneous Poisson Process of rate lambdaT = ToUPs j(t)
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4.3 The Controlled EC Workflow

4.3.1 Scenarios of Controlled EC

At household level and beyond, as opposed to the uncontrolled case, controlled EC comprises

a number of possible workflows according to the range of controlled appliances and the type of

real time control actions exerted over the controlled appliances. In general, we could consider

the following (not exhaustive) list of controlled EC scenarios:

(i) Just control the schedulable appliances by performing their switching ON/OFF as per

their optimized-schedules, without real time modification of the schedule, with disregard

to any real-time event that could violate system model assumptions and constraints.

(ii) Control of the optimized-schedule controllable appliances with real time update of the

schedule to account for unpredictable real-time events, aiming at keeping compliance

to system model assumptions/requirements and constraints. For instance: A pausable

appliance could be stopped (to resume later) for complying with instant power budget

(one including the uncontrollable appliances). Other real time events to try to cope with,

could be among others: DR signals (for DR connected systems), power signal stability

issues (under/over-voltage, power factor, under-frequency: eminent blackout).

(iii) Other Control options: stand alone control, distributed control, mixed control types.

We have used the first option, which is the simplest one, since our focus has been placed on

Figure 23 Sample uncontrolled appliance cycle placements generated by Algorithm 3
logically code equivalent
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creating new approaches to appliance scheduling as performed under Chapter 3, and their use

within a bbDR framework. However, the second option or whatever in the third group of op-

tions, may be a subject of follow-up works.

4.4 Household appliances’ EC simulations setups

Starting from the above discussions, we performed the following experimental investigations,

aimed at (1) mimicking the household’s uncontrolled use of appliances, and (2) evaluating how

far a heuristic based appliance scheduling, guided by a pseudo-RTP energy rate function, can

lower pick load, lower the PAR and cut the electricity bill while keeping a fair level of com-

fort, in a framework designed to assess the probable feasibility of a bbDR for communications

deprived CG environments:

4.4.1 Uncontrolled EC simulation setup

1. Exp.U1 - Single day simulation:

Aimed at reproducing samples of uncontrolled appliance activities for the duration of one

day. For this simulation the Matlab logic equivalent of Algorithm 3 was called 1 time

(i.e. a simulation for 1 day horizon) for each appliance j ( j = 1, ...,8) of Table 17 with

the following parameters:

(a) T = 1440, total time (corresponding to 1 day, discrete time, in 1 minute granularity);

(b) ToUPs j(t); t = 1, ...,T , appliance j time-of-use probabilities (generated from Ta-

ble 17), which, as discussed, serve as the intensity function for a non-homogeneous

Poisson arrival process simulation of the appliance switch-on/on-state events: Events

are accepted with the time-of-use probability as set by (24), and with compliance to

additional restrictions as per the parameters in 1.(c)-(d).

(c) minCPD, and meanCPD, and maxCPD set from Table 17. Further to the event

acceptance condition in (b) these parameters place additional acceptance constraints

to insure that the type and number of events to be returned by the Algorithm 3 are
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compliant with the statistical observations interpreted by Tables 18 and 17; and

according to the parameters description of the Algorithm 3, above.

(d) minCT , meanCT and meanCT ; according to the parameters description of the Algo-

rithm 3, above. These parameters in (c) and (d), are used along with others to place

additional admission control measures: accepting/rejecting candidate events or can-

didate appliance cycle sequences, to insure compliance with the reference statistics

from appliance tables 18 and 17.

The recorded simulation data for each appliance are: a number n of cycles per the sin-

gle day; each cycle being a start time (switch-on time) paired with a duration, all them

compliant with the acceptance/rejection splitting constraints as discussed in (b)-(d). For

each appliance, a chart is then drawn pairing the simulated cycle events with the reference

input data ToUPs j for analysis.

2. Exp.U2 - 3650 days simulation, 1 day at a time:

Aimed at investigating whether our event simulation model and the algorithmic code

interpreting it, can reproduce the statistically observed appliance behaviour represented

by its ToUPs; For this simulation the Matlab code logical equivalent of Algorithm 3 was

called 3650 times for each appliance j ( j = 1, ...,8) of Table 17 with the same parameters

defined in Exp.U1.(a)-(d) with meanCT set to 0 equating to unit time cycle durations.

The recorded simulation data for each appliance are: a number n of cycles per each

single day; each cycle being a start time (switch-on time) paired with a duration, all them

compliant with the acceptance/rejection conditions as discussed. From the simulated data,

for each appliance, a chart is drawn pairing the simulated cycle events (30 or 365 days)

with the input data ToUPs j for analysis.

3. Exp.U3 group: Single, and multi-day Simulations, 1 day at a time, namely:

(i) U3i: 1 day;

(ii) U3ii: 30 days; and

(iii) U3iii 365 days.
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Aimed at calculating for analysis and registering for later comparison, the average daily

EC profiles and the average daily energy costs, and the following energy and cost met-

rics/statistics: Total energy vs total energy cost; uncontrolled appliances subtotal energy

vs uncontrolled appliances subtotal energy cost; mean Peak-to-Average Ratio (PAR); av-

erage energy price; and, average monthly bill (this applicable only for 30 and 365 days

simulations).

For cost calculations, we used a simulated price, the RTPminutely() version pseudo real

time price (pseudo-rtp), described in section 3.1 and depicted in Figure 13(c).

For these 3 simulations (U3i, U3ii and U3iii) the Matlab code logical equivalent of Algo-

rithm 3 was called 1 time, 30 and 365 times respectively for each appliance j ( j = 1, ...,8)

of Table 17 with the same parameters defined in Exp.U1.(a)-(d).

The recorded simulation data for each appliance are: a number n of cycles per each single

day; each cycle consisting of a start time (switch-on time) along with duration, all them

compliant with the acceptance/rejection splitting constraints as discussed.

4.4.2 Controlled (Optimized-Schedules) EC Simulation Setup:

Exp.C1 group: Single day, and multi-day simulations, 1 day at a time, namely:

(i) Exp.C1i: 1 day;

(ii) Exp.C1ii: 30 days; and

(iii) Exp.C1iii: 365 days.

(iv) Exp.C1iii-b: 365 days.

These setups are pear simulations relative to the above uncontrolled Exp.U3i (1 day), Exp.U3ii

(30 days) and Exp.U3iii (365 days) respectively, where, alongside each simulation performed in

the Exp.U3 group, its controlled EC version in the Exp.C1 group is performed. Exp.C1 group

is performed just for the controllable appliances ( j = {1,2,3}), wherein their events are pro-

duced by metaheuristics based appliance schedule optimization. Such schedule optimization,

was performed using the HyPERGDx algorithm over the ApplianceSchedule1(.) as the function

to optimize, itself an implementation of the RPBBOAS model, all discussed under Chapter 3.2).
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The full characterization of the experiment parameters used herein is found in such RPBBOAS

model. On the other hand, an additional Exp.C1iii-b to pair with Exp.C1iii, is done aimed at

assessing the influence of the choice of parameters in the outcome of the controlled EC profiles.

The following main parameters are used in calling the pair HyPERGDx algorithm / Apli-

anceSchedule1(.):

(i) User centricity coefficient α: is randomly varied, by normally distributing it around 0.5

with a standard deviation of 0.2. The seldom values falling out of [0,1] are defaulted to

nearest bound of that interval; This procedure gives 0.5 as the mean and median for α

which means a balanced stance towards either user or energy centricity. This choice of α

influences the optimal schedules placements. That is assessed in Exp.C1iii-b by setting

α = 0.251 and, the tUPWs penalty type to zero (the most lenient) and the dUPWs penalty

type to 5 (also very lenient), for cycle misplacement and duration mismatch respectively.

(ii) Stopping criteria: 100000 function evaluations spent or target optimum found within a

tolerance of 10−3.

(iii) time slot resolution and energy rate: τ = 60s, the default value, which corresponds to

energy rate of: pseudoRTPminutely(.) (see Figure 13c for a depiction).

4.5 Results and Discussion

4.5.1 Results for experiments Exp.U1 and Exp.U2

In Figures 24 and 25, we have drawn in chart format the results for experiments Exp.U1 and

Exp.U2. For better clarity and interpretation, charts for experiment Exp.U2 were placed on

the left column, whereas charts for experiment Exp.U1 were placed on right column of either

Figures 24 and 25.

4.5.2 Discussion over Exp.U1 and Exp.U2 Results

Findings: The simulated events time of use statistics for a given appliance j mimic the respec-

tive time-of-use reference data (ToUPs j):
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Results for experiment Exp.U2 Results for experiment Exp.U1

Figure 24 Results of Exp.U1 (simulated ToUPs) and Exp.U2 (appliance cycle genera-
tion) for water heater, clothes washer, clothes drier and cooling fan.
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Results for experiment Exp.U2 Results for experiment Exp.U1

Figure 25 Results of Exp.U1 (simulated ToUPs) and Exp.U2 (appliance cycle genera-
tion) for refrigerator, stove/oven, TV and an indoor lighting group.
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In the charts of left column or both Figures 24 and 25, the results of the simulation, that seeks

to reproduce the uncontrolled use of a household appliance, given its reference behaviour repre-

sented by its ToUPs, a simulation that used a non-homogeneous Poisson point process, we can

see that the simulated events of a given appliance j mimic the respective time-of-use reference

input data (ToUPs j) that served as intensity function for the Poisson point process.

4.5.2.0.1 Caveats or Limitations:

(1) As discussed earlier a pure Poisson mathematical process may differ in many aspects

with a real world problem. Aside from the aspects that were already addressed in the

discussion leading to the experiments, a slight difference is noticeable near 0h at the time

axis: all the simulated graphs tend to zero (both at Exp.U2 and Exp.U3). That can be

attributed to the geometric nature of the Poisson process, wherein there is an increasing

probability of failure when approaching the null time. In other words: there is a number

of failed attempts before the first successful event, when departing the null time, and the

probability of success only increases with time (or whatever the state space), so when

time tends to 0h (the start of point process) the probability of failure increases and that of

success decreases (null time events were rejected). But in the actual real world statistics

the appliance’s rate-of-use probabilities at or towards 0h, are not null or tending to null in

all cases, it depends on the appliance type and underlying occupants behaviour.

(2) At the right side there is also a tendency to zero, more pronounced than the reference

ToUP, when approaching 24h, also not unexpected: candidate cycles placed close to 24h,

the right bound of time axis, are only accepted if they can fit inbounds as per their minCT

specification; So, a number of cycles must be being rejected, the closer their placement

to 24h; but in real life usage, appliances are allowed to traverse into the next day.

(3) On the other hand, where the additional cycle count and cycle duration restrictions were

enforced, aimed at closer compliance with the tabled appliance characteristics (table 17),

imply that the resulting Poisson process variable rate, will be different from the pure

ToUPs j. However, it is evident that the limitations are not substantive, since the graph of

the simulated data show a great statistical resemblance with the one of the reference data,
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the higher the number of observations. There must be however, ways for addressing the

limitations where dimmed imperative.

4.5.2.0.2 Exp.U1 and Exp.U2 Conclusions and Implications:
(1) Based on the close resemblance between the statistics of the simulated chart and the ref-

erence input chart in the left columns (Exp.U2) of both the Figures 25 and 24, we are con-

fident that the simulated EC and cost thereof presented within the ensuing uncontrolled

EC simulations in Figures 26-28, should as well fairly describe the actual uncontrolled

EC scenario of identical ToUPs. Also, from these grounds, we henceforth assume that,

(2) It is appropriate to use the results of the uncontrolled EC simulations in Exp.U3 group

as due references to compare with those of Exp.C1 group, in the final evaluation of the

performance of the controlled EC workflow against its uncontrolled counterpart, given

the same appliances settings (power ratings and ToUPs).

4.5.3 Results for experiments Exp.U3 and Exp.C1

Description and interpretation aids: Note that, it is from the grounds of previous experiments

conclusions and assumptions, that we perform the interpretation and discussion of experiments

Exp.U3 vs Exp.C1 results:

(1) Figures 26 through 28 show the summary results drawn from the simulation of either the

uncontrolled or the controlled (optimized) household appliance usage scenarios, a joint,

pair to pair, results presentation, for the convenience of comparison.

(2) Figure 26 presents results for 1 and 30 days simulations , whereas

(3) Figure 27 presents results for the 365 days version.

(4) Except for Figure 27(e,f), on both Figures 26 and 27, charts at left column depict the

average daily load profile; whereas the ones at the right column depict the corresponding

energy cost profiles, whereas in Figure 27, the left column presents 30 days, while the

right column depicts 365 days statistics. Also, additionally, to ease analysis, the pseudo-

RTPminutely() energy rate function has been placed on all "Costs" (right column) charts

and on any controlled EC simulation charts. In turn, and as closing statistics,

(5) Figure 28(a-d) presents comparison results for 30 and 365 days of peak load evolution;

30 and 365 days PAR evolution; and; 30 and 365 days mean price evolution.
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Results for experiments Exp.U3i,ii and Exp.C1i,ii - Load Results for experiments Exp.U3i,ii and Exp.C1i,ii - Costs

Figure 26 1 and 30 days uncontrolled vs optimized daily load and cost profiles.

The following are additional legend aids for the charts in Figure 26:

1. On Figure 26(a):
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uaDLP1d: Single random day uncontrolled load profile, for just the uncontrollable appliances;
tUhhDLP1d: Single day uncontrolled load profile, for all household appliances;
tUhhDLP1d-peak: Single day uncontrolled peak-load for all household appliances;
tUhhDLP1d-average: Single day uncontrolled average-load for all household appliances;

2. On Figure 26(b):

uaCost1d: Single day uncontrolled energy cost profile, for just the uncontrollable appliances;
tUhhCost1d: Single day uncontrolled energy cost profile, for all household appliances;

3. On Figure 26(c):

uaDLP1d: Single day uncontrolled load profile, for just the uncontrollable appliances; same in (a);
tOhhDLP1d: Single day optimized load profile, for all household appliances;
tOhhDLP1d-peak: Single day optimized peak-load for all household appliances;
tOhhDLP1d-average: Single day optimized average-load for all household appliances;

4. On Figure 26(d):

uaCost1d: Single day uncontrolled energy cost profile, for just the uncontrollable appliances; same in (b);
tOhhCost1d: Single day optimized energy cost profile, for all household appliances;
Statistical info.box:: Single day, household’s total optimized energy cost and its average price.

5. On Figure 26(e):

uaDLP30d: 30 days average daily uncontrolled load profile, for just the uncontrollable appliances;
tUhhDLP30d:30 days average daily uncontrolled load profile, for all household appliances;

6. On Figure 26(f):

uaCost30d: 30 days average daily uncontrolled energy cost profile, for just the uncontrollable appliances;
tUhhCost30d:30 days average daily uncontrolled energy cost profile, for all household appliances;

7. On Figure 26(g):

uaDLP30d: 30 days average daily uncontrolled load, for just the uncontrollable appliances; same in (e);
tOhhDLP30d: 30 days average daily optimized load profile, for all household appliances;

8. On Figure 26(h):

uaCost30d: 30 days average uncontrolled energy cost profile, for just the uncontrollable appliances; same
in (f);
tOhhCost30d: 30 days average daily optimized energy cost profile, for all household appliances;

The following, are additional legend aids for the charts in Figure 27:
1. On Figure 27(a):

uaDLP365d: 365 days average daily uncontrolled load profile, for just the uncontrollable appliances;
tUhhDLP365d:365 days average daily uncontrolled load profile, for all household appliances;

2. On Figure 27(b):

uaCost365d: 365 days average uncontrolled energy cost profile, for just the uncontrollable appliances;
tUhhCost365d:365 days average daily uncontrolled energy cost profile, for all household appliances;

3. On Figure 27(c,e):

uaDLP365d: 365 days average uncontrolled load profile, for just the uncontrollable appliances; as in (a);
tOhhDLP365d: 365 days average daily optimized load profile, for all household appliances;

4. On Figure 27(d,f):

uaCost365d: 365 days average uncontrolled energy cost profile, for just the uncontrollable appliances;
the same in (b);
tOhhCost365d: 365 days average daily optimized energy cost profile, for all household appliances;
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Results for experiments Exp.U3iii and Exp.C1iii - Load Results for experiments Exp.U3iii and Exp.C1iii - Costs

Figure 27 (a-d): 365 days uncontrolled vs optimized load and cost profiles

4.5.4 Discussion of Exp.U3 vs Exp.C1 Results

There are two types of charts: (1) The "per experiment type" charts and (2) the "evolution

statistics" charts:

(1) Discussion on the "Per experiment type" charts, Figures 26 and 27:

Summary findings: Peak load and PAR are substantially better in the controlled EC sim-

ulation vs the uncontrolled one, and mean energy rate improvement is modest, however

consistent.
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Results for experiments Exp.U3ii,iii and Exp.C1iii - Peak
Load/Mean Price Evolution

Results for experiments Exp.U3iii and Exp.C1ii,iii - Peak
Load/Mean Price Evolution

Figure 28 30 and 365 days evolution of uncontrolled vs optimized daily peak load,
PAR, and mean energy rate.

Details:

(i) Comparing the chart pairs: Figure 26(a) vs 26(c) we find that: Both the peak load

and the PAR of the optimized simulation (c) are better than their uncontrolled coun-

terparts. That also, correlates to lower mean energy rates and costs, when looking

at Figure 26(b) charts. The improved figures may not happen every single day but

they are supposed to prevail frequently, when a multi-day statistics is performed.

(ii) Comparing the multi-day charts of Figure 26(e) vs 26(g) as well as Figure 27(a) vs
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27(c), wherein most load is placed after 7AM in the uncontrolled EC, we see that a

huge chunk of load has been moved to the interval [0,7h] in the optimized EC. This

load shift is behind the improvement in the mean energy price and eventually the

energy bill, which can observed in the paired "Costs" charts at the right.

(2) Discussion on the "evolution statistics" charts, Figure 28:

Summary findings: The evolution statistics for (i) peak load and (ii) PAR show a sub-

stantial and consistent improvement of the controlled EC workflow over the uncontrolled

one, and the evolution statistics for (iii) mean energy rate shows a modest but consistent

improvement of the controlled over the uncontrolled workflow.

Details:

(i) Peak-load: the mean peak-load of the optimized EC simulation is substantially bet-

ter, around 37% lower, than the uncontrolled EC workflow, as visible in charts (a)

vs (b) of Figure 28.

(ii) PAR: the mean Peak-to-Average Ratio (PAR), along 30 and 365 days, is also better,

about 10% to 16% lower, than the uncontrolled EC workflow, as visible in charts (c)

and (d) of Figure 28.

(iii) Mean Energy rate: a modest improvement of around 2% is observed. A modest

improvement of the energy bill is also observed.

(3) DR activities identified:

Looking at the observations in (1) and (2) above, despite there is no actual RTP sig-

nal, guiding the scheduling process (we are trying to proof that the one we used, the

pseudo-RTP does work), the following main traditional demand response activities can

be identified as behind the improvements:

(i) Load shifting/valley filling: looking at the p-RTPminutely signal present in the rel-

evant charts of either Figures 26 and 27 we notice a valley in the interval [0h, 6h]

which is the cheapest interval of the day. However coincidentally, [0h, 6h] is also

a valley for all uncontrolled load profiles in both Figure 26(a,e) and Figure 27(a).
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In turn, for all optimized load profiles, in both Figure 26(c,g) and Figure 27(c) load

has been shifted from elsewhere and now it substantially fills the interval [0h, 6h],

previously a valley. This activity is behind the modest but consistent improvement

of the average energy price and monthly bill thereof; And, it is also behind the peak

load and PAR reduction because peak shaving is done in concertation with load

shifting/valley filling actions;

(ii) Peak shaving: All charts in Figure 28, show a substantial and persistent reduction of

per day peak load and PAR which means peak shaving. That is due to the capping

of instant power demand, while forcing/allowing the load to be placed elsewhere. It

is worth noting however that peak reduction may not imply a PAR reduction in the

same figures, since and oftentimes a peak load reduction may be accompanied by a

reduction on the average load on some proportion.

(iii) Energy saving: there is a lower energy consumption as a result of minimizing en-

ergy, via the daily power budget or via the inherent energy minimization in (Eq.4z)

underlying the whole ApplianceSchedule1(.) function, to the extent allowed by pa-

rameters, namely, the user-centricity α , the UPWs settings along with time horizon

parameters.

(4) Caveats or Limitations:

In performing the above controlled EC action, using the described tools and procedures,

there are some caveats or limitations, and precautions thereof to take into account, which

influence the controlled EC results in particular, and the goal of demand responsiveness

in general:

(i) The choice of parameters (mainly: α , user preferred appliance working windows,

and, the granularity, contiguity and length of the time horizon), as well as the shape

of the pseudo-RTP function, collectively influence the optimality of the placements,

in whatever the perspective. In this case, which is the energy centric perspective,

the choice of parameters influence those demand response like improvements. In

effect, looking at the Figure 27(e,f) vis-a-vis (c,d) we notice that in (e,f) the load



4.5 Results and Discussion 134

peaks have been moved further into the centre of the p-RTPminutely valleys which

is allowed by a more energy centric α = 0.251 and more lenient user preference

windows as described in the experiment C1iii-b. Such load shifting to the valleys

as per those parameters, resulted in a much lower monthly bill. This of course may

affect other dimensions of the user comfort concept.

(ii) Up to a substantial extent, per the limitations noted in (i) above, there will be a

consistent peak load shaving, a degree of PAR, mean energy rate, and monthly bill

improvements, as supported by the statistics of Figure 28. However, as a repeated

placement is performed on to a valley or whatever the optimal location determined

by the optimization algorithm, new average peaks are formed, at such locations,

not in the same day / same schedule / single household perspective, but in the

multi-household point of view, or the equivalent to the average monthly or yearly

load profiles in Figures 26(g,h) and 27(c to f). This issue, is something that other

researchers have noticed and successfully addressed as focus of their works, us-

ing actual DR signals under DR-ready connected environments, namely Zhao [38],

Mohsenian-Rad [42], as well as Herath and Venayagamoorthy [34]. However, that is

not just yet our stage and environment and focus: at this point we are trying to show

that the pseudo-RTP based DR under the proposed bbDR framework is theoretically

possible and proofed by those simulations results.

(iii) Since the energy pricing function is not an actual one, the above figures of energy

prices and costs thereof are not actual as well.

(iv) For the sake of a bbDR functionality, notwithstanding the openly positive figures for

peak load and PAR, if the reduction of the electricity bill is not that substantial (e.g.,

for mid to high values of the user-centricity α in conjunction with harsh comfort

penalties), and, the pseudo-RTP generated from country/region DLP has no added

incentive, then, that is a situation when effective direct user satisfaction may not be

guaranteed. So, as suggested in the motivations and introductory discussion of the

bbDR, an incentive from, and involvement of the relevant stakeholders may be a

need, for a successful implementation of such a framework.
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(5) Conclusion:

The above substantial improvements in all these figures (of peak load, PAR, energy rate,

user bill) of an optimized over the uncontrolled household’s energy consumption, are the

eventual outcome of performing appliance scheduling optimization by ApplianceSchedule1(.)

function a RPBBOAS model, which performs optimal placements that better satisfy con-

flicting objectives and comply with constraints of various types.

With the above positive performance of the controlled EC simulation, using a pseudo-rtp

signal, we can argue that:

(i) A RPBBOAS mediated household’s EC optimization via a companion blackbox

compliant metaheuristic (HyPERGDx) developed during this research work, have

shown their effectiveness for delivering a DR-like performance to an unconnected

household using a pseudo-RTP function generated from a country DLP under the

also proposed bbDR framework aimed at providing demand responsiveness for DR-

unconnected CG environments.

(ii) As supported by the above simulations, and taking the precautions and limitations

that were discussed along the way, the proposed bbDR framework, is theoretically

feasible and thus, if taken seriously by the relevant players, it holds the potential of,

to some extent, alleviate the high demand that has been causing blackouts in SA and

elsewhere with similar or worse energy environments.



Chapter 5

Conclusions

This work has addressed the lack of demand responsiveness in DR signalling deprived, uncon-

nected CG environments. The above expositions have presented and discussed what has been

achieved and the limitations.

Before we draw the final conclusion, it is essential to outline the main results which are at the

same time the modest contributions of this research work, namely:

1. We have proposed and demonstrated by simulations, the functionality of a framework

for providing a baseline demand responsiveness for the communications deprived net-

works, based on a pseudo real time pricing function learned from a country or region daily

load profile, wherein such pseudo-RTP, served as a guiding function for the autonomous

scheduling of controllable appliances. With the simulations performed in Chapter 4, we

have demonstrated and proved that, based on such pseudo-RTP function it is possible to

perform appliance scheduling that deliver DR-like performances to the unconnected CG

environments.

2. We have proposed and demonstrated a real parameter blackbox optimization appliance

scheduling model (the RPBBOAS model implemented as the ApplianceSchedule1(.) func-

tion), which tackles the course of dimensionality/combinatorial explosion issues, and pro-

vides the above bbDR with an heuristic based appliance scheduling meta model, which

describes the household and provides the logical interface with optimization algorithms.

3. We have designed and tested a new hybrid metaheuristics (HyPERGDx) that shows a
136
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better or competitive performance against some of the top state of the art population based

metaheuristics, and shows consistently a better performance in the appliance scheduling

function, and thus showing the best all-around performance. This metaheuristics provides

the discussed bbDR scheme with a real parameter blackbox capable global optimization

algorithm to perform the appliance scheduling guided by the pseudo-RTP function and

mediated by the discussed RPBBOAS model.

5.1 Conclusions and outlook of future work

Taking always into account the motivations, and given the results and the contributions that we

discussed above, and taking due note of the limitations that were discussed along with, we can

positively argue that the objectives we outlined for the present research work were achieved.

As an outlook, we see that there are ample avenues for improvement of the work, including,

but not limiting to:

(1) Proposing multi-household optimization approaches aimed at taking further and deeper

view of the bbDR framework and addressing the limitations (as discussed in the contri-

butions section and elsewhere in results discussion sections), is one of the possible ways

forward from the grounds of the results of the present research.

(2) seeking a possible real life implementation of a bbDR framework based energy manage-

ment system for the CG environments and thereby define and plan branches of activities

towards such goal is also a way forward.



References

[1] Marc Beaudin, Hamidreza Zareipour, Home energy management systems: A review

of modelling and complexity, Renewable and Sustainable Energy Reviews, 45 (2015)

318-335; DOI:10.1016/j.rser.2015.01.046.

[2] Christopher O. Adika and Lingfeng Wang, Autonomous Appliance Scheduling for

Household Energy Management, IEEE Transactions on Smart Grid, 1949–3053

(2013).

[3] G. Neglia, G. Di Bella, L. Giarrè and I. Tinnirello, “Unidirectional Direct Load Control

through Smart Plugs," IEEE 53rd Annual Conference on Decision and Control (CDC

2014), Dec 2014, Los Angeles, United States. <hal-01094640>.

[4] Legrand T, "La numérization de l’énergie (4/4): la révolution industrielle des

smart grids", Feb 2018; https://les-smartgrids.fr/numerisation-energie-revolution-

smart-grids.

[5] Hepeng Li, Peng Zeng, Chuanzhi Zang, Haibin Yu and Shuhui Li, "An Integrative

DR Study for Optimal Home Energy Management Based on Approximate Dynamic

Programming", MDPI Sustainability Journal, 2017, 9, 1248; doi:10.3390/su9071248.

[6] Marc Beaudin, “On optimal scheduling of residential energy management systems,"

PhD thesis, University of Calgary, Alberta, May 2014.

[7] Danish Mahmood, Nadeem Javaid, Nabil Alrajeh, Zahoor Ali Khan, Umar Qasim, Im-

ran Ahmed, and Manzoor Ilahi, Realistic Scheduling Mechanism for Smart Homes,

MDPI Energies Journal, 9, 202(2016). DOI:10.3390/en9030202.

138



REFERENCES 139

[8] George Arnold, "NIST Smart Grid Program Overview,"

URL:https://www.nist.gov/sites/default/files/documents/smartgrid/Smart_Grid_-

Program_Review_overview_arnold_draft1.pdf.

[9] Shafiee,S. and Topal,E., “ When will fossil fuel reserves be diminished?," Energy Policy.

January, 2009, Vol. 37, No.1, pp. 181-189.

[10] NIST (National Institute of Standards and Technology), USA, "NIST Framework and

Roadmap for Smart Grid Interoperability Standards, Release 3.0", September 2014.

URL: http://dx.doi.org/10.6028/NIST.SP.1108r3 DOI: 10.6028/NIST.SP.1108r3.

[11] Ameena Saad al-sumaiti , Mohammed Hassan Ahmed, and, Magdy M. A. Salama

(2014) Smart Home Activities: A Literature Review, Electric Power Components and

Systems, 42:3-4, 294-305, DOI: 10.1080/15325008.2013.832439

[12] Marie Chan, Daniel Esteve, Christophe Escriba, and, Eric Camp A review of smart

homes - Present state and future challenges, Elsevier’s Computer Methods and Pro-

grams in Biomedicine 91(2008) 55-81; doi:10.1016/j.cmpb.2008.02.001

[13] Ruilong Deng, Zaiyue Yang, Mo-Yuen Chow, and Jiming Chen, "A Survey on De-

mand Response in Smart Grids: Mathematical Models and Approaches", IEEE

Transactions on Industrial Informatics, Vol. 11, No. 3, June 2015, pp.570-582;

DOI:10.1109/TII.2015.2414719.

[14] Ian Richardson, Murray Thomson, David Infield and Conor Clifford, " Domestic elec-

tricity use: A high resolution energy demand model". In Energy and Buildings, 42(10),

pp.1878-1887.

[15] Giuseppe Tommaso Costanzo, Guchuan Zhu, Miguel F. Anjos, and Gilles Savard, A

System Architecture for Autonomous Demand Side Load Management in Smart Build-

ings, in IEEE Transactions on Smart Grid, Vol.3, No. 4, December 2012, pp.2157-2165.

DOI: 10.1109/TSG.2012.2217358

[16] M. H. Albadi, and E. F. El-Saadany, Demand Response in Electricity Markets: An

Overview, IEEE.

http://dx.doi.org/10.6028/NIST.SP.1108r3


REFERENCES 140

[17] Ijaz Hussain, Sajjad Mohsin, Abdul Basit, Zahoor Ali Khan, Umar Qasim, Nadeem

Javaid, A Review on Demand Response: Pricing, Optimization, and Appliance Schedul-

ing, Elsevier’s Procedia Computer Science 52(2015), pp.843-850, The 5th International

Conference on Sustainable Energy Information Technology (SEIT 2015)

DOI: 10.1016/j.procs.2015.05.141

[18] Mohammad Rastegar, Mahmud Fotuhi-Firuzabad, and Moein Moeini-Aghtaie, Improv-

ing Direct Load Control Implementation by an Inititative Load Control Method.

[19] OpenADR Alliance, "OpenADR 2.0, Demand Response Program Implementation

Guide Revision Number: 1.1"

[20] Abdulsalam Yassine, "Implementation Challenges of Automatic Demand Response for

Households in Smart Grids", 2016 3rd International Conference on Renewable Energies

for Developing Countries (REDEC).

[21] Tariq Samad, Edward Koch, and Petr Stluka, "Automated Demand Response for Smart

Buildings and Microgrids: The State of the Practice and Research Challenges", Pro-

ceedings of the IEEE, Vol. 104, No. 4, April 2016

DOI: 10.1109/JPROC.2016.2520639.

[22] Sila Kiliccote, Mary Ann Piette, Johanna L. Mathieu, and Kristen Parrish, " Find-

ings From Seven Years of Field Performance Data for Automated Demand Response

in Commercial Buildings". Presentation for 2010 ACEEE Summer Study on Energy

Efficiency in Buildings, 2010; http://eta-publications.lbl.gov/sites/default/files/piette-

aceee-494-adr.pdf.

[23] M. Kintner-Meyer, R. Guttromson, D. Oedingen, S. Lang, Modeling of GE Appliances

in GridLAB-D: Peak Demand Reduction., 2003, Pacific Northwest National Laboratory,

PNNL-14342, Project 3.3.

[24] D.J. Hammerstrom et al. (PNNL), Part II. Grid Friendly Appliance Project, PNNL

(Pacific Northwest National Laboratory), October 2007;



REFERENCES 141

[25] N. Lu, D.J. Hammerstromet, and, S. Patrick, (PNNL 18998), Grid FriendlyTM Device

Model Development and Simulation, PNNL (Pacific Northwest National Laboratory),

October 2007;

[26] Yu-Qing Bao and Yang Li, “FPGA-Based Design of Grid Friendly Appliance Con-

troller," IEEE Transactions on Smart Grid, Vol. 5, No. 2, March 2014

[27] JC Fuller, B Vyakaranam, N Prakash Kumar, SM Leistritz, GB Parker, Modeling of

GE Appliances in GridLAB-D: Peak Demand Reduction., PNNL (Pacific Northwest

National Laboratory);

[28] Giovanni Galioto, Natale Galioto, Costantino Giaconia, Laura Giarreé, Giovanni

Neglia, Ilenia Tinnirello, “Smart Plugs: a Low Cost Solution for Programmable Control

of Domestic Loads," IEEE;

[29] Tanuja Ganu, Deva P. Seetharam, Vijay Arya, Jagabondhu Hazra, Deeksha Sinha, Ra-

jesh Kunnath, Liyanage Chandratilake De Silva, Saiful A. Husain, and Shivkumar

Kalyanaraman, nPlug: An Autonomous Peak Load Controller, IEEE Journal on Se-

lected Areas in Communications, Vol. 31, No. 7, July 2013, pp.1205-1218.

[30] Deloitte, "An overview of electricity consumption and pricing in South Africa,"

Report prepared for Eskom Holdings SOC Ltd, February, 2017. URL: http://www.

eskom.co.za/Documents/EcoOverviewElectricitySA-2017.pdf

[31] SASGI (South African Smart Grid Initiative), "Strategic National Smart Grid Vision

for the South African Electricity Supply Industry,"

(Online, may 2018 ); http://www.ee.co.za/wp-content/uploads/2017/12/

Smart-Grid-Vision-Document-2017.pdf

[32] Harjeet Johal, Krishna Anaparthi, Jason Black, Demand Response as a Strat-

egy to Support Grid Operation in Different Time Scales, in Proceedings of IEEE

Energy Conversion Congress and Exposition (ECCE), 2012, (1461-1467). DOI:

10.1109/ECCE.2012.6342642

http://www.eskom.co.za/Documents/EcoOverviewElectricitySA-2017.pdf
http://www.eskom.co.za/Documents/EcoOverviewElectricitySA-2017.pdf
http://www.ee.co.za/wp-content/uploads/2017/12/Smart-Grid-Vision-Document-2017.pdf
http://www.ee.co.za/wp-content/uploads/2017/12/Smart-Grid-Vision-Document-2017.pdf


REFERENCES 142

[33] Herath P, Venayagamoorthy GK, "A Service Provider Model for Demand Response

Management", IEEE Computational Intelligence Applications in Smart Grid, Athens,

Greece, December 6-9, 2016, pp. 1-8.

[34] Herath P, Venayagamoorthy GK, "Multi-Objective PSO for Scheduling Electricity Con-

sumption in a Smart Neighborhood", 2017 IEEE Symposium Series on Computational

Intelligence (SSCI), Honolulu, HI, USA. November 27, 2017 to December 1, 2017, pp.

1-6

[35] Herath P, Venayagamoorthy GK, "A Study on Demand Response Potential of a Res-

idential Area Using Census Data", IEEE Clemson University Power Systems Confer-

ence (PSC 2018), Charleston, SC, USA, September 4-7, 2018.

[36] Mohammad Rastegar, Mahmud Fotuhi-Firuzabad, Hamidreza Zareipour, Home en-

ergy management incorporating operational priority of appliances, Elsevier’s Electri-

cal Power and Energy Systems 74 (2016) 286-292. DOI: 10.1016/j.ijepes.2015.07.035

[37] Xiaodao Chen, Tongquan Wei, and Shiyan Hu Uncertainty-Aware Household Appli-

ance Scheduling Considering Dynamic Electricity Pricing in Smart Home, IEEE Trans-

actions on Smart Grid, pp.932-941.

[38] Zhuang Zhao, Won Cheol Lee, Yoan Shin, and Kyung-Bin SongGrid, An Optimal

Power Scheduling Method for Demand Response in Home Energy Management Sys-

tem, IEEE Transactions on Smart Grid, Vol.4, No. 3(2013), (1391-1400).

[39] Ge Wang, Qi Zhang, Ruijie Tian, Hailong Li, Combined Impacts of RTP and FIT on

Optimal Management for a Residential Micro-Grid, Elsevier’s Energy Procedia 75 (

2015 ) 1666 - 1672. DOI: doi: 10.1016/j.egypro.2015.07.410

[40] F. A. Qayyum, M. Naeem, A. S. Khwaja, A. Anpalagan, L. Guan, and B. Venkatesh,

Appliance Scheduling Optimization in Smart Home Networks, IEEE Access Transac-

tions on Industrial Informatics, DOI: 10.1109/ACCESS.2015.2496117.



REFERENCES 143

[41] Eskom (South Africa), "Incline Block Tariffs (IBT)", Eskom, 2017. URL: http://www.

prepayment.eskom.co.za/IBT.asp

[42] Mohsenian-Rad, A.-H.; Leon-Garcia, A., “Optimal Residential Load Control With

Price Prediction in Real-Time Electricity Pricing Environments,” Smart Grid,

IEEE Transactions on , vol.1, no.2, pp.120,133, Sept. 2010. doi: 10.1109 /

TSG.2010.2055903.

[43] Y. Zhang, Sh. Wang, and G. Ji, A Comprehensive Survey on PSO Algorithm and Its

Applications, Mathematical Problems in Engineering, Hindawi Publishing Corporation,

Article ID 931256(2015). DOI: 10.1504/IJMMNO.2013.055204

[44] Ahmed Zoha, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan Rajasegara,

Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Sur-

vey, MDPI Sensors, 2012 doi: 10.3390/s121216838.

[45] Hsueh-Hsien Chang, Lung-Shu Lin, Nanming Chen, and Wei-Jen Lee, Particle-Swarm-

Optimization-Based Non-intrusive Demand Monitoring and Load Identification in

Smart Meters, IEEE Transactions on Industry Applications, Vol. 49, No. 5, Septem-

ber/October, 2013, pp.2229-2236 DOI: 10.1109/TIA.2013.2258875.

[46] Maria N.Q. Macedo, Joaquim J.M. Galo, Luiz A.L. Almeida, Antonio C.C. Lima,

Typification of load curves for DSM in Brazil for a smart grid environment, Else-

vier’s Journal of Electrical Power and Energy Systems 67 (2015) pp.216-221. DOI:

10.1016/j.ijepes.2014.11.029.

[47] Syntesising electrical demand profiles for UK dwellings, Elsevier’s Journal of Energy

and Buildings, vol. 76, 2014, pp.605-614. DOI:10.1016/j.enbuil.2014.03.012

[48] Eskom (South Africa), "Integrated Report", Eskom, 2014. URL: http:

//integratedreport.eskom.co.za/par-keeping.php

http://www.prepayment.eskom.co.za/IBT.asp
http://www.prepayment.eskom.co.za/IBT.asp
http://integratedreport.eskom.co.za/par-keeping.php
http://integratedreport.eskom.co.za/par-keeping.php


REFERENCES 144

[49] Makoto Tanaka, “ Real-time pricing with ramping costs: A new approach to managing

a steep change in electricity demand," Elseviers’s Energy Policy Journal, 34 (2006),

pp.3634-3643. DOI:10.1016/j.enpol.2005.07.012

[50] EFFLOCOM: Energy efficiency and load curve impacts of commercial development in

competitive markets, Basis for Demand Response.

[51] A. Capasso, W. Grattieri, R. Lamedica, A. Prudenzi, A Bottom-Up Approach to Res-

idential Load Modelling, IEEE Transactions on Power Systems, Vol. 9, No. 2, May

1994.

[52] J. V. Paatero and P. D. Lund, “ A model for generating household electricity load pro-

files," International Journal of Energy Research, 6. (Wiley, New York, 2006)

[53] Luo Chuan and Abhisek Ukil, Modeling and Validation of Electrical Load Profiling in

Residential Buildings in Singapore, IEEE Transactions on Power Systems, Vol. 30, No.

5, September 2015, pp.2800-2809;

[54] Anna Marszal-Pomianowska, Per Heiselberg, and Olena Kalyanova Larsen, "House-

hold electricity demand profiles e A high-resolution load model to facilitate modelling

of energy flexible buildings", Energy 103 (2016) 487-501

DOI: 110.1016/j.energy.2016.02.159.

[55] Michael Pedrasa, Ted Spooner, and Iain Macgill, Scheduling of Demand Side Resources

Using Binary Particle Swarm Optimization, IEEE Transactions on Power Systems,

October 2009, Vol.24, No. 3, pp. 1173-1181

[56] Nikhil Gudi, Lingfeng Wang, Vijay Devabhaktuni, and Soma Shekara Sreenadh Reddy

Depuru, " Demand Response Simulation Implementing Heuristic Optimization for

Home Energy Management". IEEE(2010);

[57] Michael Pedrasa, Ted Spooner, and Iain Macgill, Coordinated Scheduling of Residen-

tial Distributed Energy Resources to Optimize Smart Home Energy Services, IEEE

Transactions on Smart Grid, October 2010, Vol.1, pp. 134-143



REFERENCES 145

[58] Wei Zhang, Siyuan Zhou, and Yan Lu, Distributed Intelligent Load Management and

Control System, IEEE, pp.1-8

[59] Linfeng Wang, Zhu Wang, and Rui Yang, Intelligent Multiagent Control System for

Energy and Comfort Management in Smart and Sustainable Buildings, in IEEE Trans-

actions on Smart Grid, 3, No. 2(2012), (605-617).

[60] Wa Si, Harutoshi Ogai, Tansheng Li, Katsumi Hirai, A Novel Ernergy Saving System

for Office Lighting Control by Using RBFNN and PSO, IEEE Tencon - Spring.

[61] Peizhong Yi, Xihua Dong, Abiodun Iwayemi, Chi Zhou, and Shufang Li, Real-Time

Opportunistic Scheduling for Residential Demand Response, IEEE Transactions on

Smart Grid, VOL. 4, NO. 1, March 2013 pp.227-234.

[62] Navarro M, Herath P, Prieto-Castrillo F, Villarrubia G and Venayagamoorthy GK, "An

Evaluation of a Metaheuristic Artificial Immune System for Household Energy Opti-

mization", Complexity, Volume 2018, https://doi.org/10.1155/2018/9597158, 11 pages,

July 2, 2018.

[63] Yamille del Valle, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, Jean-Carlos

Hernandez, and Ronald G. Harley, "Particle Swarm Optimization: Basic Concepts,

Variants and Applications in Power Systems," IEEE Transactions on Evolutionary Com-

putation, Vol. 12, No. 2, April 2008, pp.171-195.

[64] Amita Mahor, Vishnu Prasad, and Saroj Rangnekar, “ Economic dispatch using parti-

cle swarm optimization: A review," in Elseviers’s Renewable and Sustainable Energy

Reviews, 13 (2009) 2134-2141.

[65] Shubham Tiwari, Ankit Kumar, G.S Chaurasia, and G.S Sirohi, Economic

Load Dispatch Using Particle Swarm Optimization", International Journal of

Application or Innovation in Engineering and Management(IJAIEM), 2,

No. 4(2013), (476-485), ISSN 2319 - 4847.



REFERENCES 146

[66] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj, ”Multidimensional Particle

Swarm Optimization for Machine Learning and Pattern Recognition," Springer, 2014,

ISBN 978-3-642-37845-4. DOI:10.1007/978-3-642-37846-1.

[67] Sreerama (Sarat) Sreepathi, Optimus: A Scalable Parallel Metaheuristic Optimization

Framework With Environmental Engineering Applications. PhD thesis, North Carolina

State University, USA, 2013.

[68] D. H. Wolpert and W. G. Macready. "No Free Lunch Theorems for Optimization."

IEEE Transactions on Evolutionary Computation, (4):67-82, 1997.

[69] Rui Mendes,James Kennedy and José Neves, "The Fully Informed Particle Swarm:

Simpler, Maybe Better," IEEE Transactions on Evolutionary Computation, Vol. 8, No.

3, June 2004, pp.204-210. DOI:10.1109/TEVC.2004.826074.

[70] Xin-She Yang, “Nature-Inspired Optimization Algorithms," Elsevier, 2014, ISBN:

978-0-12-416743-8

[71] Thomas Weise, Global Optimization Algorithms - Theory and Application, 3rd Ed.,

Vers.2011-12-07-15:31, http://www.it-weise.de/projects/book.pdf

[72] Frans van den Bergh, "An Analysis of Particle Swarm Optimizers," PhD thesis, Univer-

sity of Pretoria.

[73] Kenneth Chircop and David Zammit-Mangion, On ε-constraint based methods for the

generation of Pareto frontiers, David Publishing 2012.

[74] O. Yeaniay, “Penalty Function Methods for Constrained Optimization with Genetic

Algorithms,", Mathematical and Computational Applications, Vol. 10, No. 1, pp. 45-

56, 2005.

[75] Loren Shaun Matott, "Application of Heuristic Optimization to Groundwater Manage-

ment," PhD thesis, University of New York at Buffalo, Sep.2006.



REFERENCES 147

[76] David Alejandro Pelta, Natalio Krasnogor, Dan Dumitrescu, Camelia Chira, and Rodica

Lung (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2011),

DOI 10.1007/978-3-642-24094-2

[77] Edmund Burke, Emma Hart, Graham Kendall, Jim Newall, Peter Ross and Sonia Schu-

lenburg, "Hyper-Heuristics: An Emerging Direction in Modern Search Technology",

Chapter, January 2003. DOI: 10.1007/0-306-48056-5_16.

[78] Ferrante Neri and Carlos Cotta, Memetic Algorithms and Memetic Computing Opti-

mization: A Literature Review, Swarm and Evolutionary Computation, Feb.2012, pp.1-

14; DOI: 10.1016/j.sewvo.2011.11.003

[79] R. Storn and K. V. Price, "Differential evolution: A simple and efficient adaptive

scheme for global optimization over continuous spaces, " ICSI, USA, Tech. Rep. TR-

95-012, 1995. Available online: http://icsi.berkeley.edu/~storn/litera.html

[80] Anne Auger, and Nikolaus Hansen, Performance Evaluation of an Advanced Local

Search Evolutionary Algorithm, in Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2005), Vol. 2, pp.1777-1784, 2005

[81] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros, "Real-Parameter

Black-Box Optimization Benchmarking: Experimental Setup", April 2013.

[82] Sheldon M. Ross. Introduction to probability models, 10th Edition, Academic press,

2010. ISBN: 978-0-12-375686-2

[83] Tim Brereton, “Stochastic Simulation of Processes, Fields and Structures," Lecture

Notes, Summer Term 2014, Ulm University, ULM, 2014.

[84] Zhaoyi Kang, Ming Jin, Costas J Spanos “Modeling of End-Use Energy Profile: An

Appliance-Data-Driven Stochastic Approach," IEEE

[85] G. Neglia, G. Di Bella, L. Giarrè and I. Tinnirello, “Unidirectional Probabilistic Direct

Control for Deferrable Loads," In Proceedings of the 2014 IEEE INFOCOM Workshop

on Communications and Control for Smart Energy Systems, pp.676-681.

http://icsi.berkeley.edu/~storn/litera.html


REFERENCES 148

[86] Timothy M. Hansen, Edwin K. P. Chong, Siddharth Suryanarayanan, Anthony A. Ma-

ciejewski, and Howard Jay Siegel, A Partially Observable Markov Decision Process

Approach to Residential Home Energy Management, IEEE Transactions on the Smart

Grid, vol.9, N.2, March 2018. DOI: 10.1109/TSG.2016.2582701.

[87] Shaun McArthur, "Residential Load Simulation and Applied Load Management Strate-

gies", MsC Thesis. pp68-70; Oregonstate University, 2011.

[88] James Kennedy and Russel C. Eberhart, Particle Swarm Optimization, 4, (1942–1948)

(1995), Proceedings of the 1995 IEEE International Conference on Neural Network

(1995), Perth, Australia.

[89] James Kennedy and Russel C. Eberhart, A New Optimizer Using Particle Swarm The-

ory, (39–43) (1995), Proceedings of the IEEE Sixth International Symposium on Micro

Machine and Human Science (1995), Perth, Australia.

[90] Yuhui Shi and Russel C. Eberhart, A New Optimizer Using Particle Swarm Theory, (39–

43) (1995), Proceedings of the IEEE Sixth International Symposium on Micro Machine

and Human Science (1995), Perth, Australia.

[91] Sean Luke, Essentials of Metaheuristics, 2nd Edition, ISBN: 978-1-300-54962-8

Available online at: https://cs.gmu.edu/~sean/book/metaheuristics/.

[92] Ouassim Ait Elhara, “Stochastic Black-Box Optimization and Benchmarking in

Large Dimensions," PhD thesis, Université Paris-Saclay, 2017. URL: https://tel.

archives-ouvertes.fr/tel-01615829.

[93] Nikolaus Hansen and Andreas Ostermeier. Adapting Arbitrary Normal Mutation Dis-

tributions in Evolution Strategies: The Covariance Matrix Adaptation. In: CEC96 Pro-

ceedings, pp.312-317, 1996. DOI: 10.1109/ICEC.1996.542381.

[94] Anne Auger and Nikolaus Hansen, Tutorial CMA-ES - Evolution Strategies and Co-

variance Matrix Adaptation, GECCO2013, July 6, 2013, Amsterdam, Netherlands.

https://cs.gmu.edu/~sean/book/metaheuristics/
https://tel.archives-ouvertes.fr/tel-01615829
https://tel.archives-ouvertes.fr/tel-01615829


REFERENCES 149

[95] Nikolaus Hansen, The CMA Evolution Strategy: A Tutorial, 2005. hal-01297037. Avail-

able online at: https://hal.inria.fr/hal-01297037/file/tutorial.pdf.

[96] Xin-She Yang, and Suash Deb. Cuckoo search via Levy flights. In: Proceedings of

world congress on nature and biologically inspired computing (NaBic 2009), IEEE

Publications, USA, 2009, pp.210-14.

[97] R. N. Mantegna Fast, accurate algorithm for numerical simulation of Levy stable

stochastic processes, Physical Review E, Vol. 49, No. 5, May 1994.

[98] Swagatam Das, and, Ponnuthurai Nagaratnam Suganthan, Differential Evolution: A

Survey of the State-of-the-Art, IEEE Transactions on Evolutionary Computation, Vol.

15, No. 1, February 2011.

[99] A.Kumar, R.K.Misra, and, D.Singh, Improving the local search capability of Effective

Butterfly Optimizer using Covariance Matrix Adapted Retreat phase, IEEE.

[100] Ali W. Mohamed, Anas A. Hadi, Anas M. Fattouh, and, Kamal M. Jambi, "LSHADE

with Semi-Parameter Adaptation Hybrid with CMA-ES for Solving CEC 2017 Bench-

mark Problems", IEEE.

[101] P.N.Suganthan et al. (Organizers), "Special Session & Competitions on Real-

Parameter Single Objective Optimization" [Online]: URL: https://www.ntu.edu.sg/

home/EPNSugan/index_files/CEC2017/CEC2017.htm.

https://hal.inria.fr/hal-01297037/file/tutorial.pdf
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm


Appendix A

Source Data of Sample Household

Appliances’ Properties and Time-of-Use

Probabilities

150



151

Table 19 Sample household appliances’ time-of-use probabilities, from [52]
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Table 20 Sample household appliances’ data, from [52]
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Table 21 Sample Household Appliances’ Time-of-Use Probabilities, built from [87]
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Table 22 Sample Household Appliances’ Properties, from [87]



Appendix B

Summary Introduction of the

state-of-the-art Algorithms taking part in

the HyPERGDx Algorithm

B.1 Particle Swarm Optimization

The PSO is a population based metaheuristic (PBM) algorithm introduced by Kennedy and

Eberhart [88] [89] in 1995, and followed by many variants. As with the other PBM meta-

heuristics addressed below, the PSO is a heuristic based stochastic process where a population

of particles, each one a candidate solution, search, compete and cooperate for the best posi-

tion, i.e. the (best possible) solution, inside a hyperspace of dimension d. This search process

is likened to the competition and collaboration of ants (and other swarms) foraging for food.

Mathematically the standard (inertia weight) PSO is described by:

The Inertia Weight PSO, a standard for the PSO algorithm: (Eqs.25)

Vi(t +1) = w ··· Vi(t)︸ ︷︷ ︸
momentum
component

+ C1 ··· R1�
(
XPBi −Xi(t)

)︸ ︷︷ ︸
cognitive

component

+ C2 ··· R2�
(
XGB−Xi(t)

)︸ ︷︷ ︸
social

component

(25a)

Xi(t +1) = Xi(t)+Vi(t +1) (25b)

where: iii is the particle index; i = {1, . . . , psz}; psz the population size; ttt is the iteration

counter; d is the dimensionality of the search space. The � denotes element-wise matrix multi-
155
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plication, and the following variables, Xi, Vi, R1, R2, XPBi, XGB; are ddd-dimensional vectors.

C1C1C1 and C2C2C2 are scalars, positive constants, both usually set to 2 in the WPSO. C1 is the cognitive

acceleration coefficient and C2 is the social acceleration coefficient. The two affect the balance

of how the particle accepts social contribution over is own (cognitive) experience for its next

velocity (Eq.25a); In turn, R1R1R1 ∼ U (0,1) and R2R2R2 ∼ U (0,1), are uniformly and independently

distributed random numbers in [0,1].

Vi(t)Vi(t)Vi(t) and Vi(t +1)Vi(t +1)Vi(t +1) are the current and next velocity of the i-th particle at the iteration t; while

www (or a varying w(t)w(t)w(t) [90]) is the inertia weight, and wwwv(t) is the momentum component, the

influence of the current velocity, over the next particle movement; whereas Xi(t)Xi(t)Xi(t) and Xi(t +1)Xi(t +1)Xi(t +1)

are the current and next particle’s position. A linearly increasing or decreasing w(t)w(t)w(t) in (Eq.25a)

gives place to the LIWPSO and LDWPSO variants respectively.

XPBiXPBiXPBi is the particle’s personal best experience ever, whilst XGBXGBXGB is the population’s position of

best experience ever.

Algorithm 4 shows an outline of the PSO search process (with global neighbourhood and

synchronous updates).

Algorithm 4: PSO algorithmic framework
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B.2 Covariance Matrix Adaptation Evolution Strategy

Evolution Strategies (ES), are a class of evolutionary algorithms, formerly developed by Rechen-

berg, Schwefel and Fogel [70] [91] [92], wherein the successive stochastic candidate solutions

are sampled from a multivariate normal distribution, along with performing mutation and se-

lection operations. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), as rep-

resented by one of its versions, the (µ/µw, λ )-CMA-ES, outlined in the Algorithm 5, was

developed by Hansen and Ostermeier [93]. CMA-ES optimizes (a function by) a population

(of candidate solutions, particles, offsprings); described by its: offsprings (with: position, di-

mensionality, fitness, rank, weight, ...) xi:λ , of ddd (problem) size, population size λλλ , and the elite

fraction of the population (parent population) µµµ , mean mmm, covariance matrix CCC, step size σσσ , etc.;

Along with these descriptors, there are also a number of learning and control parameters. All

of them, can to some extent, be fine-tuned to circumstance (see (Eqs.26), Algorithm 5, as well

as [94] [95] for detailed explanations and options), aimed at adapting either CCC or σσσ and thereby

guide the iterative optimization process, outlined by Algorithm 5.

The (µ/µw, λ )-CMA-ES main mathematical representation (details/explanations in: [94] [95])

is:

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Eqs.26)

yyy(t+1)
i ∼N (0,CCC(t)), ∀i = 1...λ ; t = 0,1, ...; is the iteration number; any yi = {yi1,yi2, . . . ,yid}; (26a)

xxx(t+1)
i ∼ m(t)+σ

(t)N
(
0,CCC(t))︸ ︷︷ ︸

yyy(t+1)
i

; ∀i = 1...λ ; any xi = {xi1,xi2, . . . ,xid}; (26b)

mmm(t+1) =
µ

∑
i=1

wixxx
(t+1)
i:λ

≡mmm(t+1) = m(t)+σ
(t)yyy(t+1)

w

; since: yyy(t+1)
w =

µ

∑
i=1

wiyyy
(t+1)
i:λ ;

µ

∑
i=1

wi = 1; (26c)

p(t+1)
c = (1− cc)p(t)c +h(t+1)

σ

√
cc(2− cc)µw yyy(t+1)

w ; (26d)

p(t+1)
σ = (1− cσ )p(t)σ +

√
cσ (2− cσ )µw yyy(t+1)

w

(√
CCC(t)

)−1
; (26e)

CCC(t+1) = (1− c1− cµ )CCC(t)+ c1 p(t+1)
c

(
p(t+1)

c
)T

+ cµ

µ

∑
i=1

wiyyy
(t+1)
i:λ

(
yyy(t+1)

i:λ

)T
; (26f)

σσσ
(t+1) = σ

(t) exp

(
cσ

dσ

(
‖p(t)σ ‖

EEE‖N (0, I0, I0, I)‖
−1
))

; (26g)

where: EEE‖N (0, I0, I0, I)‖ ≈
√

d
(

1− 1
4d

+
1

21d2

)
; and: h(t+1)

σ =


1, ‖p(t)σ ‖√

1−(1−cσ )2(t+1) EEE‖N (0,I0,I0,I)‖
< 1.4+ 2

d+1

0, otherwise;

(26h)
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1 Function { fB,xB, ...} = CMAES (m ∈ Rd ,σ ∈ R+, λ ≥ 2, xL, xU , f , fx∗ , fε , ...)
2 //mmm-mean; σσσ -step size; λλλ -popul.size; xxxLLL,,,xxxUUU bounds; fff x∗ optimal f ; fff ε tolerance, whereby:

fTarget = fff x∗ + fff ε .
3 Initialize: C = I; pc = 0; pσ = 0; // CCC,,, III-Covariance, identity matrices; pc, pσ control parameters

for C and σ ;
4 Set: cc ≈ 4/d; cσ ≈ 4/d; c1 ≈ 2/d2; cµ ≈ µw/d2; c1 + cµ ≤ 1; dσ ≈ 1+

√
µw/d; wi, i = 1...λ ;

such that ...
5 the variance effective selection mass: µw = 1

∑
µ

i=1 w2
i
≈ 0.3λ ; Also: ∑

µ

i=1 wi = 1; and

w1 ≥ w2 ≥ ·· · ≥ wµ > 0;
6 while a stopping criterion not met, and applying the elected boundary handling, restarts and other

strategies do
7 Sample λ offsprings from a multivariate normal distribution of 0 mean and covariance

matrix C:
8 xxxi = m+σyyyi; where: yyyi ∼N (0,CCC); ∀i = 1...λ ;
9 Evaluate fff (xxxi), ∀i = 1, ...,λ ; and sort xxxi ascending, on f (xxxi), yielding ranked xxxi:λ and

thereof ranked yyyi:λ :
10 xi:λ ← arg(SortAscending( f (xxxi))), i = 1, ...,λ ; i.e., such that:

f (xxx1:λ )≤ f (xxx2:λ )≤ ·· · ≤ f (xxxλ :λ );
11 Update the mean, by µ truncation selection, and weighed recombination of the µ parent

xi:λ (i = 1...µ) offsprings:
(

m←∑
µ

i=1 wixxxi:λ

)
≡
(

m←m+σyyyw

)
; where: yyyw = ∑

µ

i=1 wiyyyi:λ

12 Determine the current best solution:
13 Set {xB, fB = f (xB)} as the fitter between {m, f (m)} and {x1, f (x1)};
14 Cumulation for C adaptation:
15 pc← (1− cc)pc +hσ

√
cc(2− cc)µw yyyw; where, hσ , is given in (Eqs.26h);

16 Cumulation for σσσ adaptation:
17 pσ ← (1− cσ )pσ +

√
cσ (2− cσ )µw yyywCCC−

1
2 ;

18 Update/adapt the covariance matrix: CCC← (1− c1− cµ)CCC+ c1 pc pT
c + cµ ∑

µ

i=1 wiyyyi:λ yyyT
i:λ ;

19 Update/adapt the step size: σσσ ← σ exp
(

cσ

dσ

( ‖pσ‖
EEE‖N (0,I0,I0,I)‖ −1

))
; where, EEE‖N (0, I0, I0, I)‖ is

given in (Eqs.26h);
20 Evaluate whether some stopping criteria are met:
21 Usually: fB (fitness) meets fTarget (i.e.: fB ≤ fTarget ); a deadline met (e.g.: some of these

budgets is spent: funtion evaluations, iterations, clock time, ...), some type of stagnation occur,
etc.

22 end
23 end

Algorithm 5: The (µ/µw, λ )-CMA-ES algorithm; compiled and adapted from [94] [95]

B.3 Cuckoo Search Algorithm (CSA)

The CSA is a derivative free PBM, developed 2009 by Yang and Deb [96], based on Lévy

flight random walks, inspired by cuckoo’s brood parasitism as well as by the Lévy random

walking foraging behaviour of bacteria, insects, and higher animals (including humans, birds,

flies, etc.) [96] [70]. The standard CSA metaheuristics workings (based mainly on [70]) are

represented in the Algorithm 6 and (Eqs.27) as follows:



B.3 Cuckoo Search Algorithm (CSA) 159

The standard Cuckoo Search Algorithm (CSA) (Eqs.27)

new nests random initialization: xxx(t=0)
i = ρud � (xU − xL)+ xL; ∀i = 1, ...,λ ; ρud ∼U (0,1); xi = {xi1,xi2, ...,xid}T ; (27a)

global exploration random walk: xxx(t+1)
i = xxx(t)i +S(t)szG�ρnd = xxx(t)i +α1(x

(t)
i − x(t)best)� s︸ ︷︷ ︸

SszG=step size

�ρnd ; ρnd ∼N (0,1); s∼L evy(β ); (27b)

from [97]: sss =
u
|v|1/β

; u∼N (0,σ2
u ); σu =

{
Γ(1+β )sin(πβ/2)

Γ
(
(1+β )/2

)
·β 2(β−1)/2

}(1/β )

; 0.3≤ β ≤ 1.99; v∼N (0,σ2
v ); σv = 1; (27c)

local exploitation random walk: xxx(t+1)
i = xxx(t)i +S(t)szL�K = xxx(t)i +α2ρn(x

(t)
j − x(t)k )︸ ︷︷ ︸

SszL=step size

�H(pa− ε)︸ ︷︷ ︸
K

; i, j,k ∈ {1, ...,λ}; (27d)

ρn ∼N (0,1); x(t)j ∼Rp(x(t)); x(t)k ∼Rp(x(t)); K = H(pa− ε) =

1, if pa− ε ≥ 0

0, otherwise
; ε ∼U (0,1); (27e)

where: xi is a d-dimensional candidate solution vector (one of the cuckoo nests); λ is population

size; and xU ,xL are the xi bounds, scalars or d-sized vectors; t is the iteration counter (wherein

t = 0 denotes the initialization stage);

In turn, sss is the random walk step drawn from Lévy distribution via Mantegna’s algorithm [97],

and, α1 is a scaling factor constant tuned to characteristic scale of the problem under consider-

ation (e.g., α1 = 0.01); SszG is the resulting step size which has a contribution of the iteration-

wise difference of (x(t)i − x(t)best) wherein x(t)best is the fittest nest so far.

K, an outcome of H(.) a Heaviside function, represents the component-wise fraction (the eggs)

of the old nests that will mutate, into new nests, with probability pa , the alien egg discovery rate

(or else, a crossover probability, similar to the DE’s Cr parameter). SszL is the step size for this

mutation, which has a uniformly randomized contribution of α2 and the difference (x(t)j − x(t)k )

wherein x(t)j ∼ Rp(x(t)) and x(t)k ∼ Rp(x(t)) are different ( j 6= k) random permutations of the

solutions pool x(t).

The� denotes element-wise matrix multiplication wherein xi,xk,x j,u,v,s,ρud,ρnd,ε,SszG,SszL,K

are d-dimensional vectors.
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1 Function {bestNest,bestFitness, ...} = CSA (λ , pa,α1,α2,β , xL, xU , f , fx∗ , fε , ...)
2 //λ pop.size; pa alien egg discovery rate; α1,α2-step size scaling factors; β LÃl’vy distribution index;
3 //xL, xU x-bounds; f fitness function; fx∗ optimal f; fε tolerance to fx∗ ;
4 Initialization: generate initial nests/solutions/particles:
5 XXXnnneeessstttsss = XXXnnneeewwwNNNeeessstttsss = (λ uniformly distributed random d-sized vectors, within x-bounds); //using (Eq.27a);
6 Evaluate XXXnnneeewwwNNNeeessstttsss fitnesses, find and keep the fittest nest:
7 {bestNest,bestFitness,bestNests,bestFitnesses}= GetBestNest(Xnests,XnewNests,X f itness, f )
8 while stopping criterion not met do
9 Generate new nests (XXXnnneeewwwNNNeeessstttsss) by performing a LÃl’vy flight, using (Eq.27b), as also (Eq.27c);

10 Evaluate XXXnnneeewwwNNNeeessstttsss fitnesses; find and keep the fittest nest
11 Mutate ’doomed’ (alien egg) nests with probability pa, thus generating XXXnnneeewwwNNNeeessstttsss, using (Eq.27d);
12 Evaluate XXXnnneeewwwNNNeeessstttsss fitnesses, find and keep the fittest nest:
13 end
14 end

Algorithm 6: CSA Algorithmic Framework

(a) (b)

Figure 29 Random Walks in 50 consecutive steps (origin marked •): (a) Brownian; (b)
Lévy (in: [70])

B.4 EBO and Differential Evolution (DE)

Differential Evolution (DE) is a derivative free PBM, developed 1995 by Storn and Price [79]

[98]. It evolves a population of candidate solutions by iteratively performing: (i) differen-

tial mutation (mutant vectors are produced), (ii) crossover with rate Cr (which produces trial

vectors ); and then (iii) fitness based selection, which produces evolved (hopefully) target vec-

tors/candidate solutions). The process is outlined in the Algorithm 7.

EBO/EBOwithCMAR is a derivative free PBM, developed 2017 by Kumar et.al [99], in-

spired by the mate-locating behaviour of male butterflies. It evolves 2 populations of candidate

solutions, while also optimizing the control parameter space and featuring new diversity and ex-

ploitation strategies under such butterfly memetics perspective. That said, EBO and EBOwith-

CMAR are a DE cast of algorithms: they generate target, mutant and trial vectors through

an iterative evolution process comprising differential based mutation, crossover and selection,
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1 Function {xBest, f Bbest, ...} = DE (p,F,Cr, xL, xU , f (.), fx∗ , fε , ...)
2 //p pop.size; F scaling factor; Cr crossover rate; xL, xU x-bounds; f (.) fitn. func; fx∗ optim. f; fε gap to fx∗ ;
3 Initialization: generate initial population (target vectors) by drawing uniform random vectors over x-hyperspace:

4 xxx(t=0)
i j ∼U (0,1) · (xU − xL)+ xL; t - iteration counter;

5 while stopping criterion not met, for each target vector xi do
6 Generate mutant vector: F-scaled difference of random target vectors (other mutant strategies available):

7 v(t+1)
i = xxx(t)i +F · (x(t)r1 − x(t)r2 ); i 6= r1 6= r2; r1 and r2 are random indexes of the target population;

8 Generate trial vector u(t+1)
i by (exponential or binomial) crossover with probability Cr:

9 u(t+1)
i = DoCrossover

(
x(t+1)

i , v(t+1)
i , Cr, crossoverType, {OtherCrossOverParameters}

)
;

10 Evaluate u(t+1)
i fitnesses, and, perform fitness based selection:

11 x(t+1)
i = u(t+1)

i ; iif: f
(

u(t+1)
i

)
≤ f
(

x(t)i

)
; or else x(t+1)

i = x(t)i : i.e., in this case, xi remains unchanged;

12 end
13 end

Algorithm 7: Differential Evolution (DE) Algorithmic Framework

and using the same DE’s main control parameters of crossover probability (Cr) and differen-

tial scaling factor (F); wherein most of such parameters and procedures are consistent with the

basic workings of the DE metaheuristics (as seen in [99]). EBOwithCMAR however come

with significant new or modified features over the basic DE paradigm, while also inheriting a

number of features from the Adaptive Differential Evolution (JADE)/Linear (Population Reduc-

tion), Success History (based) Adaptive DE (L-SHADE) [100] lineage of DE variants/hybrids.

EBO/EBOwithCMAR although not as fast as CMA-ES, has shown a high reliability in opti-

mizing a wide range of global optimization test problems, which is supported by it (EBOwith-

CMAR) being the winner of the CEC’2017 competition [101], and corroborated by our own

experiments/results in section (3.5.3).
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