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THESIS SUMMARY 
Biological control of plant parasitic nematodes, especially rootknot nematodes, has been a 

subject of intense research since the start of the 1900’s. Bionematicides, however, have not 

received much attention because of the dominance of of agrochemical nematicides. Widespread 

de-registration and a complete phase out, in some cases, of major nematicides in the last decade 

has renewed the search for effective alternatives. Natural antagonists of plant parasitic 

nematodes such as bacteria and fungi, especially those resident in the plant root rhizosphere, 

have become candidates for the management of these pests. Though many bacterial and fungal 

strains have been evaluated as possible bionematicides, the development of consistent and cost 

effective formulations has been a challenge in the tropics. Products thus far commercialised for 

management of rootknot nematodes have targeted the egg and adult stage, and hence they have 

not prevented infection of plants by the mobile juvenile stages. This, coupled with the large 

quantities of these products required to successfully reduce plant damage and nematode 

reproduction, is a major limitation, especially for low value crops and for small scale farmers. 

 

This study investigated the use of Bacillus spp. and Trichoderma spp. as seed treatments for the 

management of the rootknot nematode, Meloidogyne javanica Chitwood. The main goals were: 

to review the literature existing on management of rootknot nematodes; to screen and identify 

native Bacillus and Trichoderma strains for their in vitro efficacy against M. javanica; to 

determine the ability of these strains to reduce rootknot damage when applied as seed-

treatments on tomato and soybean crops in the glasshouse; to investigate the ability of seed 

treatments to reduce rootknot damage and to improve yield oftomato and soybean in field trials 

inoculated with rootknot nematodes; and to determine the ability of selected biocontrol seed 

treatments to reduce the damage caused by the M. javanica/Rhizoctoniasolani disease complex 

on soybean. 

 

A total of 111 Trichoderma and 70 Bacillus strains were isolated from the root zone of field 

crops and from animal pastures. They were screened against M. javanica second juvenile stages 

(J2s) in vitro. Out of these, the best five Trichoderma isolates and the best threeBacillus isolates 

were selected for further evaluation in the glasshouse. Eleven Trichoderma strains caused J2 

mortality greater than50% and five Bacillus strains caused J2 mortality greater than 80% after 
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24 hours at 1 × 108 c.f.u. ml-1. In dual culture assays with Rhizoctonia solani, a pathogen often 

associated with rootknot nematodes, four Trichoderma strains inhibited the mycelial growth of 

the pathogen.  

 

Four Trichoderma strains (named C29, C59, C63 and C97), three Bacillus strains (named 

BC27, BC29 and BC31) and a commercial biocontrol agent, Eco-T®, were further evaluated 

against M. javanica in the glasshouse as seed treatments on soybean. All five Trichoderma 

strains, Eco-T®, and two Bacillus strains (BC27 and BC29) reduced root galling on soybeans 

and increased plant growth parameters (P ≤ 0.0001). In field trials all the Trichoderma strains 

and aBacillus strain (BC27) caused a significant increase in tomato yield and also caused a 

reduction in gall severity and nematode counts (P ≤ 0.0001). All the test isolates also caused a 

reduction in gall severity on soybean in the field, although none of them caused a significant 

increase in either shoot and seed weight. In further glasshouse studies, four Trichoderma strains, 

(C29, C59, C63 and Eco-T®), reduced disease severity on soybean plants inoculated with both 

M. javanica and Rhizoctonia solani (P ≤ 0.0001). 

 

The use of bionematicides, especially as seed treatments, is a cost effective, safe and easy way 

to manage plant parasitic nematodes. The fungal and bacterial isolates evaluated in this study 

were able to reduce rootknot nematode damage while increasing yield in crops such as soybeans 

where no nematicides are currently registered and no rootknot resistant cultivars are currently 

available in South Africa. When combined with other integrated management tools, 

bionematicides could be a key component of crop production. 

 

Keywords: Biological control, rootknot, Trichoderma, Bacillus, seed treatment 
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THESIS INTRODUCTION 

 

Global food production must increase by 50% to meet the projected demand for food globally 

by 2050 (Chakraborty and Newton, 2011). An estimated 16% of all crops is lost globally each 

year due to plant diseases (Oerke, 2006). In developing countries, the problem of plant disease 

is worsened by the lack of resources dedicated to their study due in part to the difficulty of 

quantifying plant diseases and the resultant losses (Strange and Scott, 2005). Among the plant 

pests and diseases, nematodes are estimated to cause about 10% loss of global crop production, 

which is one third of the losses attributed to pests and diseases generally (Whitehead, 1998). 

The lack of nematology expertise in most countries, especially in developing countries (Luc et 

al, 1990; De Waele and Elsen, 2007, Jones et al, 2013), and the little attention paid to plant 

parasitic nematodes due to their insidious nature of attack, may imply even higher global yield 

loss estimates(Hassan et al, 2013). Most of the economic damage due to plant parasitic 

nematodes is attributed to two groups, cyst nematodes and rootknot nematodes (Abd-Elgawad 

and Askary, 2015). The latter group attack almost every species of higher plants and are 

responsible for the high yield losses in crops such as potato, soybeans, tomato and tobacco, 

among others (Sasser, 1980). 

 

Fumigant and non-fumigant nematicides are still the most preferred method of controlling plant 

parasitic nematodes, in particular rootknot nematodes (Sikora and Fernández, 2005). However, 

most nematicides are gradually being withdrawn across the world due to the toxicity and their 

negative effects on the environment (Zasada et al, 2010; Onkendi et al, 2014). Host plant 

resistance has also been utilised for management of nematodes with varying success in different 

crops. However, the ability of some rootknot species to break resistance coupled with limited 

germplasm for some crops has restricted the use of this option (Cook and Starr, 2006; Karssen 

and Moens, 2006; Fourie et al, 2015). In recent years, significant attention has been focused on 

the use of microbial agents as possible alternatives to nematicides (Kerry, 1997; Hallman et al, 

2009). In particular, isolates belonging to Trichoderma spp. and Bacillus spp. have been found 

to offer protection to rootknot nematode attack in many crops (Li et al, 2005; Singh and 

Siddiqui, 2010; Radwan et al, 2012, Zhang et al, 2014). The use of bionematicides especially 

if combined with other management options may offer better rootknot management options 

especially in resource poor countries.  
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The objectives of this study were to isolate Trichoderma and Bacillus strains from the root zone 

of plants and to evaluate them for their ability to control the rootknot nematode Meloidogyne 

javanica (Chitwood). The specific objectives were: 

 To review the literature on the use of biological control agents against rootknot 

nematodes; 

 To isolate and screen Bacillus isolates from the root zone of crops and animal pasturein 

vitro; 

 To isolate and screen Trichoderma isolates from the root zone of crops and 

animalpasturein vitro; 

 To select the best Bacillus and Trichoderma strains for use as bionematicides; 

 To evaluate the efficacy of Bacillus isolates as seed treatments against M. javanica on 

soybean; 

 To evaluate the efficacy of Trichoderma isolates as seed treatments against M. javanica 

on soybean; 

 To evaluate the efficacy of selected Bacillus and Trichoderma isolates on tomato yield 

and M. javanica damage; 

 To evaluate the efficacy of selected Bacillus and Trichoderma isolates on soybean 

yield and M. javanica damage; 

 To investigate the effect of Trichoderma seed treatments on the M. javanica-R. solani 

disease complex, on soybean. 

This dissertation is comprised of six discreet chapters: one literature review, followed by five 

research chapters. This is the dominant thesis format adopted by the University of KwaZulu-

Natal because it facilitates the publication of research output more readily than the older 

monograph form of thesis. There is, therefore, some unavoidable repetition of references and 

introductory information between chapters.  
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CHAPTER ONE 

LITERATURE REVIEW 

 

1.0 Introduction 

Annually, plant parasitic nematodes are estimated to cause global crop losses of up to 14.6% of 

total crop production (Whitehead, 1998; Nicol et al, 2011) These crop losses, estimated at 157 

billion USD (Hassan et al, 2013), are further compounded by an estimated 500 million USD 

spent on nematode control annually (Keren-Zur et al, 2000). Global crop losses to plant parasitic 

nematodes may even be higher because data is lacking from most countries which lack 

nematology expertise (Luc et al, 1990; De Waele and Elsen, 2007, Jones et al, 2013). Crop 

production losses in tropical and subtropical countries are estimated at 14,6% as compared to 

8.8% in developed countries (Nicol et al, 2011), which is almost a third of the losses attributed 

to pests and diseases (Whitehead, 1998). Attention is seldom paid to nematodes because they 

are insidious pests with symptoms on attacked plants often resembling other abiotic stress 

factors (Hassan et al, 2013). Currently, about 4100 plant parasitic nematodes have been 

described (Decraemer and Hunt, 2006) and of these, 126 species from 33 genera are currently 

listed as regulated pests in one or more countries worldwide (Singh et al, 2013). Some of these 

plant parasitic nematodes live outside plant roots from where they cause damage and also 

transmit viruses. However, most of the economic damage in crops is attributed to sedentary 

endoparasites in the family Heteroderidae which comprises of two groups, the cyst nematodes 

and the rootknot nematodes (Williamson and Hussey, 1996; Abd-Elgawad and Askary, 2015). 

Sedentary nematodes have been managed using nematicides since the 1950s’ (Moens et al, 

2009). However pressure to reduce the use of nematicides because of health and environmental 

concerns has led to the development of antagonistic micro-organisms as biological control 

agents to these pests (Viaene et al, 2006).  

 

Rootknot nematodes, Meloidogyne spp., which are widely distributed in tropics and subtropics, 

attack almost every species of higher plants and are the most damaging nematode genus 

globally (Sasser, 1980; Onkendi et al, 2014). In South Africa rootknot nematodes are the most 

common and most destructive nematode species and Meloidogyne javanica Chitwood is the 

most economically important species (Fourie et al, 2001a). Rootknot nematodes have been 
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recorded to attack and cause significant damage to most crops in South Africa, resulting in 

significant yield losses and total crop failure in some incidences (Fourie et al, 2001b; Onkendi 

and Moleleki, 2013). The success of rootknot nematodes is attributed to their reproductive 

capacity, endoparasitic nature as well as several physiological and biochemical adaptations 

during their life cycle (Moens et al, 2009). 

 

1.1 Rootknot life cycle and damage 

Rootknot nematodes are obligate sedentary endo-parasites, spending most of their active life 

stages feeding inside plant roots (Karssen and Moens, 2006). The life cycle of rootknot 

nematodes is illustrated in Fig 1. Depending on species and environmental conditions the life 

cycle generally lasts 3 – 6 weeks and comprises of four juvenile stages and the adult stage 

(Castagnone-Sereno et al., 2013). The adult female nematode lays eggs in a gelatinous matrix, 

composed of glycoproteins, which protects the eggs from extreme environmental conditions 

(Moens et al, 2009). This egg batch is normally laid on the surface of galls although it may be 

laid inside them. The life stages of the rootknot nematode are separated by moults and the first 

moult occurs inside the egg, giving rise to a second stage juvenile (J2), which hatches out of 

the egg. The second juvenile stage, which is the motile and infective stage, penetrates the roots 

above the growing tip and migrates to the meristematic tissues near the vascular tissues (Bird 

et al, 2009). Here the juvenile initiates a permanent feeding site by inducing adjacent cells to 

differentiate into specialised nurse cells known as giant cells (Moens et al, 2009). The J2 

undergoes three successive moults into an obese adult female. Rootknot nematodes growth and 

reproduction is dependent on the giant cells for nutrition and hence they do not necessarily kill 

the host plant (Castagnone-Sereno et al., 2013). 
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Fig 1Life cycle of rootknot nematodes 

(www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/RootknotNematodes) 

 

Susceptible host plants respond to nematode feeding by undergoing marked physiological and 

morphological changes, usually forming giant cells at the feeding sites (Moens et al, 2009). 

These giant cells, together with expansion and proliferation of nearby pericycleand cortical 

cells, results in the characteristic root-knot galls (Bird et al, 2009). Nutrient and water uptake is 

impaired due to these physiological changes that damage plant roots, ultimately resulting in 

reduced plant productivity (Castagnone-Sereno et al., 2013). Above ground symptoms of 

infected plants typically resemble those of plants with weakened root systems. These include 

reduced shoot biomass; paleness and yellowing of leaves and foliage; stunting and wilting; and 

reduction in yield (Moens et al, 2009). In some cases, however, infected plants may not exhibit 

symptoms above ground although yield reduction and distortions may occur, e.g., with root and 

tuber crops such as potatoes and carrots.  

 

https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCMW4mZPos8cCFctdGgodEuUDwA&url=http://www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/RootknotNematode.aspx&ei=icPTVYXQFMu7aZLKj4AM&bvm=bv.99804247,d.d2s&psig=AFQjCNGUY99QKePlmZCkRWDJb2CFvR7SPw&ust=1440027857291002
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Management of rootknot nematodes is one of the important costs of production in Africa 

(Onkendi et al, 2014) and in other parts of the world (Wesemael et al, 2011) and hence several 

ways of managing nematodes have been investigated. 

 

1.2 Rootknot Taxonomy 

Rootknot nematodes were originally referred to as Anguillula marioni Cornu, 1879, then 

Heterodera radicicola (Greeff, 1872), Müller, 1884 and after 1932 Heterodera marioni (Cornu, 

1879) Goodey, 1932 until Chitwood (1949) reinstated Meloidogyne (Kleynhans, 1991). The 

genus contains more than 80 nominal species (Subbotin and Moens, 2006). 

Taxonomic Tree 

Domain: Eukaryota 

 Kingdom: Metazoa 

  Phylum: Nematoda 

   Family: Meloidogynidae 

    Genus: Meloidogyne 

Source: cabi.org/isc/datasheet/33246 

 

1.3 Management of rootknot nematodes 

The main aim of managing rootknot nematodes, as with all pests, is to reduce plant infection, 

thereby optimising yield with reduced production costs (Karssen and Moens, 2006). The use of 

chemicals, physical control, plant resistance and biological control have been used singly or 

integrated to manage rootknot nematodes with varying success (Whitehead, 1998). 

Though the methods for the management of rootknot nematodes outlined above have been used 

with varying degrees of success, they also have their shortfalls. A critical evaluation of 

individual tools and the determination of cost-benefit ratios is important in the development of 

nematode integrated programmes for them to be adopted by farmers (Sikora et al, 2005). 

Rootknot nematodes are usually controlled effectively using a combination of methods rather 

than one measure (Whitehead, 1998). The main aim of IPM against nematodes is usually to 
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reduce the density of nematodes to levels below the economic injury level rather than 

eradication. 

 

1.3.1 Physical control 

This involves manipulating the habitat of the organism thereby making it unsuitable for 

survival. Rootknot nematodes are fragile organisms negatively affected by rapid changes in 

abiotic factors such as heat, moisture, oxygen availability and availability of host. 

1.3.1.1 Steaming 

Most soil plant pathogens, including nematodes and weeds are effectively controlled by steam 

sterilising at 80 – 100°C (Messenger and Braun, 2000, Samtani et al, 2012). Various steaming 

methods which include aerated steaming (van Loenen, 2003), negative pressure steaming and 

the Fink and Hood steaming technique (Messenger and Braun, 2000) have been successfully 

used to sterilise seedbed and glasshouse soil in horticulture. Steaming is mainly restricted to 

glasshouse and small fields because it is very expensive and it requires energy sources and 

specialised machinery (Lamberti, 1997). In addition, steaming leaves a biological “vacuum”, 

thereby rendering the soil more prone to infestation by pathogens (Messenger and Braun, 2000). 

For rootknot nematodes steaming often fails to effectively supress the population because they 

can be found in deeper soil layers (Karssen and Moens, 2006). 

1.3.1.2 Soil solarisation 

Temperatures lethal to plant parasitic nematodes may also be attained by soil solarisation with 

a layer of plastic mulch, especially in areas with prolonged solar radiation (Hildalgo-Diaz and 

Kerry, 2007). Significant reduction in nematode infestation has been attained using solarisation 

alone (Nico et al, 2003; Oka et al, 2007) or in combination with organic amendments (Oka et 

al, 2007, Colombo et al, 2012, Marahatta et al, 2012), bio-nematicides (Giannakou et al, 2007) 

and nematicides (Chellemi et al, 1997). However, the cost of plastic mulch, the time required 

for effective solarisation, dependence on weather, soil texture and depth, and disposal methods 

for plastic mulch are significant drawbacks for solarisation methods (Messenger and Braun, 

2000).  

1.3.1.3 Biofumigation 

Biofumigation is defined as a process that occurs when volatilecompounds with pesticidal 

properties are released during decomposition ofplant materials or animal products (Youssef, 

2015). The main active compounds involved in biofumigation are glucosolinates (GSLs) and 

isothiocynates (ITCs), which are mostly produced when tissues of crucifers are hydrolysed 
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(Kruger et al, 2013). Some of these hydrolysis products, particularly the ITCs, are known to 

have broad biocidal activity including insecticidal, nematicidal, fungicidal, antibiotic and 

phytotoxic effects (Salem, 2014). Biofumigation is as an effective method for control of 

rootknot nematodes in various agrosystems (Anita, 2012; Youssef and Lashein, 2013; Edwards 

and Ploeg, 2014; Ismail, 2015). The large amount of organic matter to be transported to the 

field or the cost of cover crops to be incorporated into the soil, however, is the main limitation 

on the practical approach of this method (Hildalgo-Diaz and Kerry, 2007). 

1.3.1.4 Crop rotation 

Cultural control practices for rootknot nematodes emphasize the accurate identification, 

preferred hosts and environmental preferences (Viaene et al, 2006). This information is usually 

lacking in subsistence farming systems, especially in the subtropics where technical expertise 

is often lacking. Global population increases have resulted in less land being devoted to 

agriculture, consequently limiting the availability of land for effective rotations. Economic 

justification of rotations is often difficult due to the lack of cost benefit data.  

 

Crop rotation, which involves alternating crops with non-hosts or poor hosts to the nematode 

species of interest, is one of the most extensively used cultural means of reducing rootknot 

nematode populations (Hildalgo-Diaz and Kerry, 2007). Soil infestation by Meloidogyne spp. 

may be significantly reduced by alternating crops with grasses, cereals, Compositae and other 

non-host plants (Whitehead, 1998).Because populations of the rootknot nematodes composed 

of multiple species are increasingly widespread, effects of crop rotation must be completely 

characterised (Hildalgo-Diaz and Kerry, 2007). Stirling (2013), found the integration of crop 

rotation, organic amendments, mulching and solarisation to be beneficial for vegetable 

production. Alternating resistant and susceptible rootknot cultivars together with sunnhemp 

also significantly reduced galling in tobacco (Nicotiana tabacum LINN.) (Mazarura et al, 

2012). The alternative crop, however has to give substantial income and increase yield in the 

subsequent crop for this method to be successful (Starr et al, 2007). Also, different populations 

of the same Meloidogyne species may react differently to the same host plant, hence caution 

needs to be taken when extrapolating results from one location to another (Karssen and Moens, 

2006). 
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1.3.2 Host plant resistance 
 
Development of nematode resistant crops is ideally the most cost effective and environmentally 

effective method of managing crop losses (Dowler and van Gundy, 1984; Zasada et al, 2010). 

The availability of and access to plant germplasm collections containing genes for resistanceand 

rapid advances in plant science technologies have made host plant resistance (HPR) an 

important tool in management of nematodes (Roberts, 1992). There has been extensive research 

in the development of resistance in different crops targeting different pests in the nematode 

community (Wesemael et al, 2011). To this end, a number of individual plant resistance (R) 

genes have already been evaluated and are being efficiently used in crop improvement research 

programs (Gurunani et al, 2012). In wheat, soybean and potato crops HPR has been successfully 

used to manage various cyst nematode species (Dowler and van Gundy, 1984; Cook and Starr, 

2006; Hildalgo-Diaz and Kerry, 2007). The Mi gene in tomato confers resistance to 

Meloidogyne javanica, Meloidogyne incognita and Meloidogyne arenaria and is extensively 

used in managing these species (Williamson and Hussey, 1996; Wesemael et al, 2011). 

However, Meloidogyne isolates capable of breaking this resistance have been reported from 

various parts of the world (Karssen and Moens, 2006).  

 

The use of resistant cultivars has been relied upon in most crops for management of various 

Meloidogyne species. However, it is difficult to solely rely upon host resistance because 

rootknot nematodes have many species, races, biotypes and populations. Though polygenic 

genes have been utilised in some crops, emerging ‘resistance breaking’ rootknot strains often 

complicate the management of monogenic resistance in crops. Also available resistance is often 

linked to undesirable characteristics that make growing of resistant cultivars unattractive, and 

often the costs of developing resistant cultivars may not be justified by the scale of problem 

(Cook and Starr, 2006).  

 

1.3.3 Chemical control 
 
Nematicides have been relied upon for the control of rootknot nematodes in most cropping 

systems over the last five decades. Nematicides are mainly used to control rootknot nematodes 

in high value crops, and it is usually uneconomic to apply them on low value crops (Karssen 

and Moens, 2006). Cost, environmental concerns and toxicity to users have generally limited 

the use of nematicides in agriculture (Haydock et al, 2006). Frequent use of nematicides often 

leads to reduced efficacy because of accelerated microbial degradation (Whitehead, 1998). 
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Nematicides are chemical compounds that directly kill nematodes and they are applied mainly 

to limit plant damage (Haydock et al, 2006). Nematicide use in crop production can be traced 

back to the work with carbon disulphideby Kuhn in 1871 in efforts to control the sugarbeet 

nematode, Heterodera schachtii (Schmidt 1871)(Taylor, 2003). Since then nematicides have 

been the primary method of control for nematodes in various crops (Hildalgo-Diaz and Kerry, 

2007). The nematode life cycle, which is largely restricted to the soil and plant roots, the relative 

impermeability of the nematode body surface and the limited access to the nematode oral route 

makes it difficult to effectively deliver chemical toxicants. In that respect most nematicides are 

broad spectrum and volatile compounds able to permeate through the soil (Chitwood, 2003). 

Nematicides fall into two main categories, fumigants and non-fumigants and are further 

classified according to their mode of action (Hildalgo-Diaz and Kerry, 2007).  

 

Fumigants, which are compounds based on halogenated hydrocarbons and those that release 

methyl isothiocyanate, are mainly used as pre-plant treatments (Hildalgo-Diaz and Kerry, 

2007). These compounds are usually applied as liquid formulations and turn to the gaseous 

phase in the soil. They are effective upon contact with adults, juveniles and eggs, together with 

other pests and weeds (Sikora et al, 2005). The fumigants include chloropicrin, 1,3-

dichloropropene (1,3-D), methyl bromide, 1,2-dichloropropane (1,2-DBCP), 1,3-

dichloropropene and 1,2-dichloropropane mixtures (DD), formaldehyde, Ethylene di bromide 

(EDB), metam sodium and dazomet. These products were developed in the first half of the 20th 

century (Haydock et al, 2006). 

 

Methyl bromide, because of its broad spectrum of activity,was the dominant soil fumigant for 

managing plant-parasitic nematodes and other soil borne pests (Zasada et al, 2010). Methyl 

bromide was highly effective against rootknot nematodes as a pre-plant treatment in seedbeds 

and in the field. However,it is extremely damaging to the atmospheric ozone layer and, 

according to the 1997 Montreal protocol, its use was scheduled to be stopped in all countries 

by the year 2015 (Haydock et al, 2006; Zasada et al, 2010). Another frequently used fumigant, 

ethylene dibromide, has also been deregistered in the US and in most countries in the world 

(Chitwood, 2003). 

 

Since the phase-out of methyl bromide the use of other fumigants have been explored while 

some have been reregistered for use in some countries, especially for high value crops 
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(Chitwood, 2003, Zasada, 2010). The fumigants, including methyl iodide, 1,3-D, metam 

sodium and dazomet, have been registered as pre-plant treatments for the control of rootknot 

nematodes on tobacco seedbeds and fields. However, possible carcinogenic properties in 

methyl iodide (Bolt and Gansewendt, 1993), 1,3-D (Klaunig et al, 2014) and metam sodium 

(Sugeng et al, 2013), as well as being highly toxic to users and non-target soil organisms, are 

issues of concern among users and consumers. Fumigants are also relatively ineffective in soils 

with a clay content above 15-20%, and with a high organic content (Noling, 2003). 

 

The dominant non-fumigant nematicides are organophosphates and carbamates, which are 

applied to the soil at planting as granular or liquid formulations (Hildalgo-Diaz and Kerry, 

2007). These have either contact or nemastatic properties against nematodes and usually 

immobilize nematodes when applied at higher rates (Sikora et al, 2005; Hildalgo-Diaz and 

Kerry, 2007). Non-fumigant nematicides, however, do not kill eggs at current recommended 

dosages, do not have broad spectrum activity and only provide protection to crops in the early 

phase of growth (Sikora et al, 2005).  

 

Nematode management programs are still reliant on nematicides, whether used singly or in 

integration with other methods (Haydock et al, 2006). The global market of nematicides is about 

250 000 tonnes of active ingredients annually (Haydock et al, 2006; Hildalgo-Diaz and Kerry, 

2007) and is estimated to be worth US $300 million in the USA (Haydock et al, 2006).  

 

Health and environmental risks associated with nematicides have led to significant efforts to 

find alternative nematode management options (Stirling and Stanton, 1997). Application of 

nematicides to the same soil continually also may lead to reduced persistence, a process known 

as accelerated microbial degradation (Haydock et al, 2006). In recent years some nematicides 

have been deregistered and restricted due to issues associated with underground water 

contamination, effects on non-target organisms, human safety and residues in food stuffs 

(Haydock et al, 2006). These developments have invigorated the research for alternative 

nematode management techniques that do not depend on chemical nematicides (Rodriguez-

Kabana et al, 1987). 

 

There has been a marked shift in research on management from nematicides to biological 

control (Sikora et al, 2005). Various studies have shown varying levels of success with the 

integration of biocontrol with crop rotation, soil disinfestation, soil amendments and green 
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manures and nematicides (Al-Rehiayani et al, 1999; Chen et al, 2000; Hildalgo-Diaz and Kerry, 

2008). Biological control may not totally replace nematicides in the future. However, they 

remain an integral part of IPM strategies in developing agriculture (Kerry, 1997) 

 

1.3.4 Biological control 
 
In the context of managing plant parasitic nematodes biological control is defined as “the 

management of plant diseases and pests with the aid of living organisms” (Viaene et al, 2006). 

Microbial pathogens, endophytes and antagonists play a crucial role in the regulation of plant 

parasitic nematodes in various agroecosystems (Hallmann et al, 2009). The use of microbial 

agents for the control of nematodes has been the subject of intense research in recent years as a 

possible alternative to nematicides (Mankau, 1981, Kerry, 1997). Fungi and bacteria are an 

integral part of the soil community and both have shown potential as nematode antagonists 

(Akhtar and Malik, 2000). 

 

1.3.4.1 Bacteria 

Bacteria used in biocontrol of plant parasitic nematodes can be categorised into two groups, 

parasitic bacteria and non-parasitic rhizobacteria (Siddiqui and Mahmood, 1999). These two 

groups differ in their mode of action. 

 

1.3.4.1.1 Parasitic bacteria 

The genus Pasteuria contains the only obligate, endospore forming bacterial parasites of major 

importance to nematode control (Sikora, 1992).Pasteuria are obligate hyperparasites of plant-

parasitic nematodes and have generated intense interest as a promising biocontrol agent (Cho 

et al, 2000; Preston et al, 2003).  

 

Parasites of the genus Pasteuriahave a similar life cycle in different hosts, which begins with 

bacterial spores attaching to nematode juveniles as they move in the soil (Viaene et al, 2006). 

These spores later germinate, form germ tubes that penetrate the developing juvenile and the 

germ tubes form primary colonies in the pseudocoelom (Chen and Dickson, 1998). Many 

daughter colonies that are formed from vegetative microcolonies form sporangia from which 

endospores are latter formed. The parasitised nematode survives but its fecundity will be greatly 

reduced with female adults containing as much as two million spores that are released into the 
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soil (Viaene et al, 2006; Tian et al, 2007). A single spore binding to the body wall of a (J2) may 

be enough to cause infection and propagation of the parasite (Preston et al, 2003). 

 

Pasteuria spp. are host specific and are known to successfully parasitise rootknot species among 

others. The most common and widespread species, Pasteuria penetrans (Thorne 1940), is 

mainly parasitic on Meloidogyne spp., whilst Pasteuria thornei(Sayre and Starr, 1988); and 

Pasteuria nishizawae parasitise lesion and cyst nematodes, respectively (Viaene et al, 2006). 

Pasteuria penetranssignificantly reduced galling caused by Meloidogyne arenaria (Neal) 

Chitwood in tomato (Solanum lycopersicum L.) (Cho et al, 2000). Similar studies on M. 

arenaria Race 1 also resulted in reduction and root galling and overwintering juvenile 

populations over two subsequent seasons (Chen et al, 1996). Pasteuria penetransalso reduced 

galling and egg mass counts in eggplant (Solanum aethiopicum L.) (Ahmad et al, 2007) and in 

soybean (Glycine max (L.) Merr.) (Sharma and Vivaldi, 1999). 

 

Some of the key characteristics that make P. penetransa successful biocontrol candidate are its 

ability to limit nematode reproduction, reduce infectivity of spore-bearing juveniles, persist in 

soil for long periods and its resistance to desiccation and extreme temperatures (Siddiqui and 

Mahmood, 1999). In addition, P. penetrans can be successfully integrated with some non-

fumigant nematicides and other cultural control methods (Sikora et al, 1992; Siddiqui and 

Mahmood, 1999). Following the successful development of mass propagation methods of some 

Pasteuria isolates, a biocontrol product has since been commercialised for the control of 

soybean cyst nematodes (Wilson and Jackson, 2013). However, challenges still remain on the 

management of the broader community of plant parasitic nematodes because Pasteuria spp. 

have narrow host ranges. In addition, the development of low cost, mass production techniques 

remain a challenge, especially in developing countries (Gowen et al, 2008).  

 

1.3.4.1.2 Rhizobacteria  

Bacteria that are rhizosphere competent or that colonise the rhizosphere are commonly referred 

to as rhizobacteria. Kloepper and Schroth (1978) coined the term Plant Growth Promoting 

Rhizobacteria (PGPR) for rhizobacteria capable of enhancing plant growth. Globally, research 

into the use of PGPRs has increased greatly since then as they have gained importance in 

agriculture (Figueiredo et al, 2011). Many of these PGPRs may also supress plant disease 

(Siddiqui et al, 2007).  
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The early phase of root penetration by nematodes is important because it often has an impact 

on the final degree of plant damage (Sikora et al, 2008). Early protection of the rhizosphere of 

plants with rhizobacteria is therefore important because it targets the vulnerable juvenile stage 

of nematodes (Kerry, 2001). Metabolites produced by some bacteria, especially Burkholderia 

spp., Pseudomonas spp. and Bacillus spp. interfere with nematode behaviour, feeding and 

reproduction, thereby reducing penetration and damage in plants (Viaene et al, 2006). 

 

A number of Pseudomonas spp. have potential as biocontrol agents for the management of 

rootknot nematodes. Timper et al (2009) used seed treatments of various crops to supress M. 

incognita populations. In peas (Pisum sativumL.), apart from reducing Meloidogyne incognita 

Chitwood galling and reproduction, Pseudomonas isolates also increased plant growth 

(Siddiqui et al, 2009). Rhizosphere competent Pseudomonas isolates, isolated from suppressive 

soils, also increased tomato plant growth while reducing M. incognita damage and reproduction 

(Singh and Siddiqui, 2010). In vitro studies on the efficacy of Pseudomonas fluorescens UTPF5 

killed M. javanica second stage juvenile after 24 hours (Bagheri et al, 2014). Several 

investigations have also been carried out on the potential of Bacillus spp. as rhizobacterial 

antagonists of rootknot nematodes (Table 1). 

 

Various mechanisms employed by rhizobacteria to reduce nematode damage and reproduction 

in plants have been suggested and include: (1) regulating nematode behaviour; (2) interfering 

with nematode-host recognition; (3) competition for nutrients; (4) plant growth promotion; (5) 

induced systemic resistance (Ongena and Jacques, 2008; Siahpoush et al, 2011; Adam et al, 

2014) and (6) production of by-products that inhibit egg hatching, reduce juvenile survival 

and/or kill nematodes directly (Lian et al, 2007; Peng et al, 2011; Zhang et al, 2012; Oliveira et 

al, 2014).  

 

1.3.4.1.3 Bacteria (Inundative Applicationsversus Seed Treatments) 

The majority of the research on the use of rhizobacteria as biocontrol agents of rootknot 

nematodes have been focused on inundative approaches where bacterial cell suspensions or 

culture filtrates are applied to the root zone in-situ (Sikora, 1992). However, this approach has 

performed poorly in field trials because of the inconsistencies in product distribution as well as 

the costs involved in treating 2500 tons of bulk soil at 25cm deep per hectare (Sikora et al, 
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2008). In addition, this method of application increases production costs, reduces profit margins 

and is uneconomical, especially for low value crops (Sikora and Pocasangre, 2006). 

Economically viable product application methods such as root dips and seed treatments have 

since been found to be more promising, because they reduce the quantity of biocontrol agent 

that needs to be applied (Mahdy, 2002). 

 

1.3.4.2 Nematophagous fungi 

Nematophagous fungi vary in their characteristics which include: obligate parasites which 

survive on nematodes; facultative parasites which sometimes feed on nematodes; and other 

fungithatare intermediate between the two (Viaene et al, 2006). These fungi vary in the 

nematode-life stage they attack and also in mechanisms involved. 
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Table 1 Studies on biocontrol of rootknot nematodes by Bacillus spp.  

Bacillus spp. Meloidogyne spp Effect of bacteria on 

nematode 

Reference 

B. thuringiensis M. hapla Reduced galling on lettuce Chen et al, 2000 

B. cereus M. javanica Reduced penetration and 
development on tomato 

Oka et al, 1993 

B. megaterium M. graminicola Reduced penetration and 
development on rice 

Padgham and 
Sikora, 2007 

B. firmus M. incognita Larval mortality and reduced 
egg hatching in vitro 

Mendoza et al, 
2009 

B. firmus M. incognita Larval mortality and reduced 
egg hatching in vitro. Reduced 
damage in vivo 

Terefe et al, 2009 

B. pumilus M. javanica Larval mortality and reduced 
egg hatching in vitro. Reduced 
damage in vivo 

Siddiqui et al, 2007 

B. subtilis M. javanica Larval mortality and reduced 
egg hatching in vitro. Reduced 
damage on cowpea and mash 
bean 

Dawar et al, 2008 

B. subtilis M. javanica Seed treatment or drench 
reduced damage and larval 
population in rhizosphere.  

Li et al, 2005 

B. subtilis M. incognita Increased shoot weight of 
tomatoes 

Siddiqui and 
Akhtar, 2009 

Bacillus isolates M. incognita Increased shoot weight and 
reduce tomato galling 

Singh and Siddiqui, 
2010 

B. subtilis 

B. thuringiensis 

M. incognita Formulation increased yield and 
reduced tomato damage in the 
field 

Khan and 
Tarannum, 1999 

B. thuringiensis M. incognita Reducing galling in soybean 
when concomitantly applied 
with reduced oxamyl rates 

El-Sherif and 
Isamil, 2009 

B. subtilis 

 

Mixed species Increased shoot weight and 
reduced tomato galling 

Prakob et al, 2009 

B. thuringiensis M. javanica Increased shoot weight and 
reduced soybean galling 

Mahdy et al, 2006 

B. pumilus M. incognita Increased shoot weight and 
reduced soybean galling 

Akhtar and 
Siddiqui, 2008 

B. firmus M. incognita Promoted plant growth while 
reducing damage and 
reproduction 

Xiong et al, 2015 

 

1.3.4.2.1 Nematode trapping fungi 

Among the many organisms studied for biological control of nematodes, nematode trapping 

fungi are the most widely studied (Stirling et al, 1998).  
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Nematode-trapping fungi have been described and classified mostly in Arthrobotrys Corda, 

Dactylaria Sacc, and Dactylella Grove since 1930 (Swe et al, 2011). Nematode trapping fungi 

immobilise nematodes using non-adhesive traps or sticky structures, usually produced on 

mycelia before they infect their host (Fig 2) (Viaene et al, 2006).  

 

Various studies have been carried out to evaluate the suitability of various nematode trapping 

fungi as biocontrol option for rootknot nematodes. Jaffee and Muldoon (1995) found the 

nematode trapping fungi, Monocrosporum ellipsosporum (Preuss) R.C. Cooke and C.H. 

Dickinson to supress M. javanica penetration of roots in field soils. In a study to determine the 

influence of soil management on nematode trapping fungi, Athrobotrys dactyloides Drechsler 

and Nematoctonus leiosporusDrechsler were more frequent in organic than convention soils. 

However, suppression of M. javanica was not influenced by these fungi (Jaffee et al, 1998). 

Similarly, A. dactyloides and N. leiosporus did not reduce the level of damage to tomato roots, 

although they successfully colonised the rhizosphere of the plants (Persson and Jansson, 1999). 

However, formulations of A. dactyloides produced on solid phase media significantly reduced 

galling on tomatoes in glasshouse experiments using field soil, by as much as 57 - 96% (Stirling 

et al, 1998). Bordallo et al (2002) found A. dactyloidesto aggressively colonise barley roots 

without hindering root growth. 

 

Despite many years of relatively intensive research on nematode trapping fungi, progress on 

their commercialisation has been limited mainly because of inconsistent field performances, 

which has been the result of the loss of virulence and insufficient quality control in pre-

application steps (Viaene et al, 2006; Swe et al, 2011). This in part is because little is known 

about their growth and development in the soil, as well as the factors that determine when they 

switch between the saprophytic and the parasitic phase (Viaene et al, 2006). A further problem 

is that they tend to produce relatively few, large conidia, which makes their commercialization 

difficult. 
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Fig 2 Nematode trapping hyphae trapping nematodes 

(Source: http://www.biological-research.com/philip-jacobs%20BRIC/ar-olig.htm) 

 

1.3.4.2.2 Arbuscular Mycorrhizae 

Mycorrhizal fungi form a symbioticassociation with plant roots where the fungus acquires 

carbohydrates while in turn supplying the plant with beneficial products such as minerals and 

hormones (Siddiqui and Mahmood, 1995). Both arbuscular mycorrhizal fungi and plant 

parasitic nematodes share plant roots for resources, hence several studies have been undertaken 

to evaluate the possibility of the former mitigating the negative effects of the latter (Hol and 

Cook, 2005). 

 

Arbuscular mycorrhizal fungi and root nodule bacteria have been found to reduce the severity 

of nematode damage in various legume crops (Siddiqui and Mahmood, 1995). Inoculating 

soybeans with chlamydospores of Glomus macrocarpus Tul. and Tul. significantly increased 

growth parameters while reducing galling by M. incognita (Kellam and Schenk, 1980). Planting 

cereal crops after legumes can increase the levels of arbuscular mycorrhizal fungi and reduce 

nematode densities (Bagayoko et al, 2000). Various Glomus spp. suppress plant parasitic 

nematode densities while increasing growth in peach (Prunus persica L.) rootstocks (Calvet et 
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al, 2001), tomato (Talavera et al, 2001), banana (Musa acuminata L.) (Elsen et al, 2003) and 

cucumber (Cucumis sativus L.) (Zhang et al, 2008). Both native strains and pre-inoculation with 

mycorrhizae also reduced colonisation and reproduction of P. penetrans in pioneer dune grass 

(De La Peña et al, 2006). Hol and Cook (2005) found that plants colonised by arbuscular 

mycorrhizal fungi were damaged more by ectoparasitic nematodes than by endoparasites, and 

of the endoparasites, rootknot nematodes were supressed more than cyst nematodes.  

 

Investigations into the possible mechanism behind plant parasitic nematode suppression in 

pioneer dune grass concluded that a systemic plant response was not involved (De La Pena et 

al, 2006). However, Elsen et al (2008) found that induced systemic resistance was involved in 

reducing infection in banana due to Radopholus similis (Cobb) Thorne and Pratylenchus 

coffeae Zimmermann. Mycorrhizal root exudates in tomato were also implicated as the 

mechanism behind the reduction in penetration by M. incognita (Vos et al, 2012). 

1.3.4.2.3 Pochonia chlamydosporia (synonym Verticillium chlamydosporium) (Goddard) Zare 

and Gams 

Pochonia chlamydosporia is a facultative parasite of nematode eggs that colonises eggs using 

appressoria developed from undifferentiated hyphae on the eggshell (Kerry, 2001). The 

pathogenicity of P. chlamydosporiato nematodes is mediated by the production of proteinases 

(Segers et al, 1996), chitinases, esterases, lipases and serine proteinase VCP1 (Esteves et al, 

2009) and a nematoxin, phomalactone (Viaene et al, 2006). Rootknot juveniles (J2) emerging 

from eggs of M. incognita and M. javanica have also been observed to be parasitised by 

Verticillium leptobactrum Gams (Regaieg et al, 2011). Full strength culture filtrates of 

Verticillium chlamydosporium were found to cause up to 65.5% mortality on M. javanicain 

vitro (Mukhtar and Pervaz, 2003). When applied as soil treatmentsV. chlamydosporium also 

significantly reduced penetration, galling and egg masses of M. hapla in lettuce (Viaene and 

Abawi, 2000), okra (Chaya and Rao, 2013), Phaseolus vulgaris L. (Sharf et al, 2014), cucumber 

(Viggiano et al, 2014) and carrots (Bontempo et al, 2014). In simulated field conditions V. 

chlamydosporium applied as soil treatments alone or in combination with the symbiotic 

bacterium Photorhabdus luminescens(Poinar and Thomas 1979) Boemare et al. 

(1993)significantly reduced gall formation and egg masses on cucumber (Zakaria et al, 2013). 

Bourne and Kerry (1998) found that V. chlamydosporiumeffectively colonised the plant 

rhizosphere thereby parasitizing 90% of exposed M. incognita and M. javanica eggs. However, 

they found that in large galls formed on tomatoes there was a reduction in egg infection because 

the fungus could not access eggs laid deep inside plant tissues. The efficacy of V. 
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chlamydosporium was therefore found to be influenced by host plant species (Bourne et al, 

1996; Bourne and Kerry, 1998; Kerry, 2001). Another challenge with V. chlamydosporium is 

that the method of application using broadcast applications, as used in most studies, is not 

economical in large scale situations (Kerry, 2001). Some of the aspects that have made this egg-

parasite one of the most studied include: its cosmopolitan distribution; its robust rhizosphere 

competency; the accessibility of strains from herbarium collections and that it is easily cultured 

in the laboratory (Manzanilla-Lopez et al, 2013). 

1.3.4.2.4 Purpureocillium lilacinus (formerly Paecilomyces lilacinus) (Thom) Samson 

Purpureocillium lilacinus (PL) is perhaps one of the most studied nematode biocontrol agents 

with studies having been done on Meloidogyne spp, Heterodera avenae (Schmidt) Franklin, R. 

similis and Tylenchulus semipenetrans Cobb and Rotylenchulus reniformis Linford and Oliveira 

(Viaene et al, 2006). Though early studies on PL efficacy indicated no nematicidal properties 

(Hewlett et al, 1988), latter strains yielded more positive results (Cabanillas et al, 1989). Studies 

with Strain PL251 yielded significant nematode suppression leading to the development and 

commercialisation of the product, especially in subtropical and tropical regions (Viaene et al, 

2006). Khan et al (2006) found PL 251 to reduce both damage and densities of M. javanica on 

tomato, H. avenae on barley and R. similis on banana. Sufficient reduction of M. incognita 

galling on tomato was found to be established with a minimum dose of 1 × 106 c.f.u.g-1 of soil 

(Kiewnick et al, 2006). On cotton PL 251 was found to be comparable to aldicarb for the control 

of R. reniformis (Castillo et al, 2013). Mukhtar et al (2012) also established significant 

suppression of rootknot galling on okra using a different strain of P. lilacinus. 

1.3.4.2.5 Fusarium spp. 

Species of the genus Fusarium are cosmopolitan, being found in most soils and plant roots 

(Sikora et al, 2008). Studies on banana found non-pathogenic isolates of endophytic Fusarium 

spp. isolated from the roots to be antagonistic to R. similis (Niere et al, 1999). Dababat and 

Sikora (2007b) found Fusarium oxysporumStrain 162 (Fo 162) to significantly reduce M. 

incognita damage on tomato and attributed this to induced systemic resistance. In another study, 

Paparu et al (2009) combined the application of two non-pathogenic Fusarium strains to 

banana, and this resulted in a reduction in damage by burrowing nematodes and banana weevils. 

Mendoza and Sikora (2009) further demonstrated that the combination of Fo 162, with either 

the egg parasite P. lilacinus or the antagonist Bacillus, significantly reduced R. similis damage 

on banana, and more than when the former was applied alone. Similarly, Fo 162 has also been 

found to reduce damage in cucurbits (Menjivar et al, 2011) and tomato (Martinuz et al, 2013). 
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In field studies, Waweru et al (2014) found single applications of three different F. oxysporum 

isolates to significantly reduced damage on banana caused by Pratylenchus goodeyi Sher and 

Allen and Helicotylenchus multicinctus (Cobb) Golden. In addition to induced systemic 

resistance being the mechanism behind the reduced nematode damage and densities (Dababat 

and Sikora, 2007a; Martinuz et al, 2012), volatile substances produced by Fusarium spp. have 

also been found to be involved (Freire et al, 2012). 

1.3.4.2.6 Trichoderma spp. 

Species of the filamentous ascomycete genus Trichoderma are frequently isolated from diverse 

habitats (Vinale et al, 2008; Druzhinina et al, 2011). Many Trichoderma isolates act as 

biological control agents (Benítez et al, 2004). The ability of Trichoderma isolates to rapidly 

colonise the rhizosphere, produce numerous spores, and release a wide range of enzymes has 

made them prime candidates in the search for nematode antagonists because the bulk of plant 

parasitic nematodes are found in this zone (Harman et al, 2004; Verma et al, 2007; Vinale et al, 

2008). 

 

Trichoderma isolates have been found to inhibit eggs from hatching and to immobilise second 

stage juveniles in a number of in vitro studies (Sharon et al, 2001; Bokhari, 2009; Sharon et al, 

2009; Szabóet al, 2012; Zhang et al, 2015). Daragó et al (2013) also found various Trichoderma 

spp. to reduce populations of Xiphinema indexThorne and Allen in vitro. Multiple modes of 

action have been cited in many studies as being behind the nematicidal abilities of Trichoderma 

isolates (Verma et al, 2007). Zhang et al (2015) reported that Trichoderma longibrachiatum 

Rifai conidia adhered to and parasitised the surface of juveniles, thereby deforming or 

completely dissolving them. They attributed this to proteases. Proteinase-transformed 

Trichoderma isolates displayed enhanced efficacy against both eggs and juveniles when 

compared to wild type strains (Sharon et al, 2001). Sharon et al (2009) also found that 

carbohydrate residues such as fucose, on the surface of the nematode and fungal conidia, are 

involved in antibody and lectin-mediated improved parasitism.  

 

Apart from reducing nematode damage severity, Trichoderma isolates have been reported to 

enhance growth parameters on various crops. On tomato, different isolates have been found to 

increase shoot weight while reducing rootknot galling and reproduction (Sahebani and Hadavi, 

2008; Affokpon et al, 2011; Radwan et al, 2012; Jamshidnejad et al, 2013; Elgorban et al, 2014). 

Trichoderma isolates were also reported to reduce M. graminicola damage on rice (Le et al, 
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2009) and Heterodera avenae infection on wheat (Zhang et al, 2014). Shennawy et al (2012) 

found the combination of T. koningii and Bacillus megaterium to be more effective in reducing 

rootknot-Fusarium disease complex in potato than individual biocontrol agents.  

1.3.4.2.7 Other fungal biocontrol agents 

Some of the emerging fungal biocontrol agents that have also received significant consideration 

include the yeasts (Saccharomyces spp.), Muscodor albusWoropong, Strobell and Heiss, 

Lecanicillium spp, the entomopathogens Beauveria bassiana (Bals.-Criv.) Vuill. and 

Metarhizium spp., and Penicillium spp. Different yeast isolates, especially Saccharomyces 

cerevisiae, have been found to have nematicidal properties often comparable to conventional 

nematicides in field trials (Ismail et al, 2005; Hashem et al, 2008; Karajeh, 2013). Volatiles 

produced by M. albus, a plant endophyte with antibacterial and antifungal properties, have 

shown efficacy on different plant parasitic nematodes (Grimme et al, 2007; Riga et al, 2008; 

Strobel, 2011). The entomopathogenic fungi B. bassiana and Metarhizium spp have also been 

found to have nematicidal effects in several studies (Sun et al, 2006; Liu et al, 2008; Zhao et al, 

2013) 

 

1.3.5 Inundative vs Endophytes 

The majority of studies on the efficacy of various bionematicides have been based on inundative 

applications in both controlled environments and in the field (Oyekanmi et al, 2007; Goswami 

et al, 2008; Abd-El-Khair and El-Nagdi, 2014). Relatively few isolates have, however, been 

tested successfully in the field as seed dressing, with the majority of those tested being 

rhizobacteria (Oostendorp and Sikora, 1989; Wahla et al, 2012; Munif et al, 2013), some fungi 

(Khan et al, 2005; Athman, 2006), and some combinations of bacteria and fungi (Haseeb and 

Khumar, 2012). Although inundative approaches, especially drenches, have been successful in 

greenhouse and field trials, the amount of biocontrol product required to treat large commercial 

fields, and the costs and the technology involved are their major limiting factor (Athman et al, 

2006; Viaene et al, 2006; Sikora et al, 2008). This is especially true for ovicidal products 

because the contact time between the antagonist and nematode pest needs to be prolonged, thus 

they fail to reduce damage. In cases where isolates are larvicidal and rhizosphere competent, 

penetration of infective juveniles is significantly reduced because the rhizosphere becomes the 

first line of defence and parasitism continues inside the root. The success of commercial 

bionematicides has largely depended on effective formulations capable of persisting in the 

rhizosphere to protect plants in the early growth phases. 
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Inundative approaches where cell suspensions or culture filtrates are applied to the root zone 

have largely been used to manage rootknot nematodes. However, this approach has performed 

poorly in field trials because of the inconsistencies in product distribution, as well as the costs 

involved in treating approximately 2500 tons of bulk soil (25-cm deep x 100m x 100m per 

hectare) (Sikora et al, 2008). In addition, this method of application increases production costs, 

reduces profit margins and is uneconomical, especially for low value field crops (Sikora and 

Pocasangre, 2006). Economically viable product application methods such as root dips and seed 

treatments have since been found to be more viable because they reduce the quantity of 

biocontrol agent that needs to be applied without reducing the level of control provided (Mahdy, 

2002).  

 

1.3.6 Global bionematicide developments 

In the last decade the major global pesticide companies have shown significant interest in 

bionematicides and a number of them have since acquired companies producing and marketing 

these products. In 2009 the global pesticide market was estimated at USD 43 billion with 

estimates of 5 – 8% growth p.a. In this market, USD 1.6 billion is estimated to be spent on 

bionematicides (Trainer et al, 2014). Though the major proportion of this amount belongs to 

the major pesticide companies, smaller industries in developing countries have started to 

develop bionematicides.  

 

1.3.6.1 Bionematicides registered for Meloidogyne spp.  

1.3.6.1.1 Bacillus firmus (Wilson and Jackson, 2013) 

This bionematicide was initially developed and marketed by AgroGreen® before it was 

acquired by Bayer CropScience in 1997. Currently, two Bacillus firmus products are being 

marketed as bionematicides by Bayer CropScience as Nortica® and VOTiVO™, with the 

former being applied as a drench and the latter as a seed treatment. VOTiVO is registered for 

applications in combination with PONCHO® (an insecticide), for the control of Meloidogyne 

spp. on soybean. 

1.3.6.1.2 Pasteuria penetrans (Wilson and Jackson, 2013) 

After initial complications in development of mass production technologies, a patent was filed 

in 2004 by a US based company, Pasteuria Biosciences, for the in vitro production of Pasteuria 

spp. Pasteuria Bioscience went ahead to produce and market a product Econema® for the 

control of Belonolaimus spp. on turf. In 2012 Syngenta acquired Pasteuria Bioscience and went 
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on to launch another seed treatment nematicide, CLARIVA™ in 2014, aimed at controlling 

soybean cyst nematodes.  

1.3.6.1.3 Purpureocillium lilacinus (Tranier et al, 2014) 

Originally developed from Isolate PL251 found in the Philippines, BIO-ACT® was marketed 

by Prophyta (Pty) Ltd until the company was acquired by Bayer CropSciences in 2013. It is an 

ovicidal product used for the control of various endoparasitic nematodes: Meloidogyne spp., 

Globodera spp., Heterodera spp., Pratylenchus spp. and Radopholus similis. BIO-ACT is 

formulated as a water dispersible granule and hence can be applied via various irrigation 

systems. In South Africa PL Gold® was produced and sold as a licensed version of PL251 by 

BCP (Pty) Ltd. BCP (Pty) Ltdwas acquired by Becker-Underwood, who were subsequently 

bought by BASF, who subsequently stopped producing this product. 

1.3.6.1.4 Trichoderma spp. (Woo et al, 2014) 

Sales of Trichoderma containing products have been growing exponentially in the last 5 years, 

with more than 250 products available across the world. Of these, nine products are found in 

five African countries, registered as fungicides and growth stimulants. Though a notable few 

Trichoderma products have been registered on other continents for control of nematodes, there 

is currently no nematicidal product of Trichoderma registered in Africa. However, research 

efforts are underway to evaluate various Trichoderma strains as bionematicides, especially as 

seed treatments, due their versatility, rhizosphere competency, ease of production and use for 

other beneficial attributes to plants.  

1.3.6.1.5 Entomopathogens Beauveria bassiana and Metarhizium spp. (Tranier et al, 2014) 

A number of registered entomopathogenic fungal isolates and some isolates under evaluation 

have been found to have nematicidal properties. Beauveria bassiana products 

BOTANICARD® and MYCOTROL®, and Metarhizium anisopliaeStrain F52, all registered 

as bioinsecticides, are also being evaluated for their nematicidal properties. Some of these 

entomopathogens are root endophytes, which makes them ideal candidates for multiple pest 

control. 

 

1.3.7 Limitations of biological control 

Like all microorganisms, biological control agents are affected by environment and edaphic 

factors. Some of these that have been shown to influence the survival, reproduction and activity 

of biocontrol agents include pH, temperature and other antagonistic organisms residing in the 
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rhizosphere (Sayre and Walter, 1991; Barbercheck, 1992; Luambano et al, 2015). Uncertainty 

about the unpredictable effects on non-target organisms is also an issue limiting the release of 

biological control agents (Hoeschle-Zeleden et al, 2013). Mass production faculities and 

formulation technologies for most BCA’s are not readily available, especially in developing 

countries. Adequate and coherent legislature for the production and use of BCA’s is still a 

challenge among African countriesespecially in regards to registration barriers and quality 

control issues because they are poorly understood by both policy makers and regulatory 

agencies (Hoeschle-Zeleden et al, 2013).  
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CHAPTER TWO 

BIOLOGICAL CONTROL OF THE ROOTKNOT 

NEMATODE, MELOIDOGYNE JAVANICA (CHITWOOD) 

USING BACILLUS ISOLATES, ON SOYBEAN 

 

Abstract 

In this study, the biocontrol potential of Bacillus isolates was investigated in laboratory and 

greenhouse experiments. Five out of 70 bacterial isolates from the root-zone of crops and a goat 

pasture caused second stage juvenile (J2) mortality greater than 50% in vitro after 24 

hours.Three of the five selected isolates (BC27, BC29 and BC31) which were isolated from the 

root-zone of a goat pasture caused J2 mortality greater than 80% at 108spores ml-1in vitro after 

24 hours, with BC27 causing100% J2 mortality after 3 hours. Seed treatment of soybean with 

Isolates BC27 and BC29 caused a reduction in rootknot galling and egg mass counts (P≤0.0001) 

and also caused a significant increase in shoot weight (P≤0.0001), when compared to the 

Control.Blast analysis revealed that the two select isolates, BC27 and BC29,hadsimilar 

sequences to Bacillus spp. T2 and Bacillus spp. KT18, as listed on the Gen-Bank, respectively. 

 

2.1 Introduction 

Soybean (Glycine max (L.) Merr.) has a high protein and oil content. It also has a high nitrogen 

fixing potential and hence it may play an important role in rotation systems, especially in Africa 

(Sinclair et al, 2014). Soybean production is affected by plant parasitic nematodes, resulting in 

significant yield losses (Oyekanmi and Fawole, 2010). The sedentary nematodes,   Meloidogyne 

spp. (rootknot nematodes) and Heterodera glycines (Ichinohe) (soybean cyst nematode), are 

some of the most important nematodes affecting soybean production (Sikora et al, 2005; 

Oyekanmi et al, 2007; Doucet et al, 2007). 

 

Sustainable production of soybean in South Africa is threatened by a build-up of various 

rootknot nematode species in all growing regions (Fourie et al, 2015). There are currently no 

registered nematicides on soybeans in South Africa (Croplife, 2015). Development of resistant 

cultivars is currently being pursued but none are currently available (Fourie et al, 2013). 

Furthermore, successful management of rootknot nematodes in soybean cropping systems 
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cannot be done using host plant resistance alone (Fourie et al, 2015). Biological control using 

Bacillus isolates has been successfully used to manage rootknot nematodes in other crops (Li 

et al, 2005; Singh and Siddiqui, 2010; Flor-Peregrin et al, 2014; Ramezani Moghaddam et al, 

2014) and one of these isolates, Bacillus firmus Bredemann and Weder Isolate N1, has already 

been commercialised for use on field-grown vegetable crops (Copping, 2009). 

 

The early phase of root penetration by nematodes is important because it often has an impact 

on the final degree of plant damage (Sikora et al, 2008). Early protection of the rhizosphere of 

plants with rhizobacteria is therefore important because the bacteria target the vulnerable 

juvenile stage of nematodes (Kerry, 2001). Metabolites produced by some bacteria, especially 

Burkholderia spp., Pseudomonas spp. and Bacillus spp., interfere with nematode behaviour, 

feeding and reproduction, thereby reducing penetration and damage in plants (Viaene et al, 

2006). 

 

Bacillus spp. are endospore forming, hence they are able to survive for prolonged periods under 

unfavourable conditions (Singh and Siddiqui, 2010). Various mechanisms employed by 

rhizobacteria to reduce nematode damage and reproduction in plants have been suggested and 

include regulating nematode behaviour, interfering with nematode-host recognition, 

competition for nutrients, plant growth promotion, induced systemic resistance (Ongena and 

Jacques, 2008; Siahpoush et al, 2011; Adam et al, 2014), and production of exudates that inhibit 

egg hatching, reduce juvenile survival and/or kill nematodes directly (Lian et al, 2007; Peng et 

al, 2011; Zhang et al, 2012; Oliveira et al, 2014). 

Inundative approaches where bacterial cell suspensions or culture filtrates are applied to the 

root zone have largely been used to manage rootknot nematodes. However, this approach has 

performed poorly in field trials because of the inconsistencies in product distribution, as well 

as the costs involved in treating approximately 2500 tons of bulk soil (25-cm deep x 100m x 

100m per hectare) (Sikora et al, 2008). In addition, this method of application increases 

production costs, reduces profit margins and is uneconomical, especially for low value field 

crops (Sikora and Pocasangre, 2006). Economically viable product application methods such 

as root dips and seed treatments have since been found to be more viablebecause they reduce 

the quantity of biocontrol agent that needs to be applied without reducing thelevel of control 

provided (Mahdy, 2002). 
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The aim of this study was to isolate, screen and identify nematicidal Bacillus isolates that 

worked as biocontrol agents for M. javanica, using in vitro selection and in vivofield testing of 

their efficacy when applied as seed treatmentson soybean. 

 

2.2 Materials and methods 

2.2.1 Preparation of nematode inoculum 

Meloidogyne javanica inoculum was initially obtained from the Unit for Environmental 

Sciences and Management, North West University, Potchefstroom, South Africa, and 

maintained on tomato (Solanum lycopersicum L.) cv. Moneymaker. Three week old seedlings 

grown on composted bark were inoculated with second stage juveniles (J2) and maintained in 

the glasshouse at 25 ± 2°C. At least four weeks after inoculation, or when inoculum was 

required, tomato roots were uprooted, washed with tap water to remove attached soil and 

chopped into 2-5 cm pieces. Eggs were extracted by shaking the roots in 1% sodium 

hypochlorite in a glass jar for 3 minutes. The resulting suspension was then washed through a 

series of sieves (1000 µm, 330 µm, 190 µm, 100 µm and 38 µm) with eggs being collected 

from the bottom sieve (38 µm). Eggs were thoroughly washed to remove residual sodium 

hypochlorite and then hatched in Baermann trays at 25 ± 2°C in the incubator. Second stage 

juveniles were collected from the trays after 3 – 5 days and used for both in vitro and in vivo 

trials.  

2.2.2 In vitro screening of bacterial isolates for nematicidal activity against M. javanica 

juveniles. 

Soil samples were collected from the root zone of grass plants in sheep and goat pastures (which 

carry a high load of gastrointestinal nematodes), and various field crops at the University of 

KwaZulu-Natal research farm. A 1 g subsample was suspended in sterile distilled water and 

heated at 80°C in a water bath for 15 minutes. Upon cooling, serial dilutions were made up to 

103 before one ml aliquots were plated in triplicate onto Nutrient Agar plates using the spread 

plate technique. Plates were incubated at 28°C for 72 hours before sub-culturing. Distinct 

colonies were streaked onto tryptone soy agar (TSA) (Merck®) and incubated at 28°C for 3 

days. Subsequent bacterial isolates were then stored in 30% glycerol at -80°C. In total 70 

bacterial isolates were subjected to in vitro assays with M. javanica juveniles. 

 

For the first batch of in vitro screening, isolates were cultured on TSA before transferring single 

colonies into flasks with 20 ml of sterile tryptone soy broth (TSB) (Merck). Flasks were 
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incubated at 28°C for 24 hours with agitation in a shaking incubator. The isolates were then 

centrifuged at 10 000 rpm at 4°C, the supernatant discarded and the bacterial spores re-

suspended in sterile ¼ strength Ringer’s solution. Serial dilutions were made up to 103 before 

1 ml of the bacterial isolates and 1 ml of nematode suspension containing 30 – 35 juveniles 

were transferred into 5 cm3 polystyrene wells and incubated at 25°C in triplicate. After 24 hours 

the number of dead juveniles were counted using a stereomicroscope (Olympus BX41). 

Nematodes were considered dead if they did not move on probing with a fine needle.  

 

For the second batch of in vitro screening, isolates were cultured on TSA before transferring 

single colonies into flasks with 20 ml of sterile Tryptone Soy Broth (TSB) (Merck). Flasks were 

incubated at 28°C for 24 hours with agitation in a shaking incubator. The isolates were then 

centrifuged at 10 000 rpm at 4°C, the supernatant discarded and the bacterial spores re-

suspended in sterile ¼ strength Ringer’s solution. The spore suspension was counted using a 

haemocytometer and the concentration was adjusted to 108spores ml-1. One ml of the bacterial 

isolates and one ml of nematode suspension containing 30 – 35 juveniles were transferred into 

5 cm3 polystyrene wells and incubated at 25°C in triplicate. After 24 hours the number of dead 

juveniles were counted.  

 

2.2.3 Effects of bacterial isolates on the control of M. javanica in glasshouse experiments 

Soybean seeds were surface sterilised by rinsing them in 3% sodium hypochlorite for 5 mins, 

then rinsing them in sterile distilled water five times. A bacterial spore-sticker suspension was 

made up by adding 1.0g of carboxymethyl cellulose (CMC) to 50 ml of spore suspension (108 

ml-1) in a 200ml flask. The suspension was shaken (150 rpm) in a rotary shaker (Model GFL 

3005, Labortechnik, Germany). A batch of 120 seeds were added to each flask and allowed to 

soak in the spore-sticker suspension for about an hour with constant swirling. The treated 

soybean seeds were then air-dried in petri dishes under a laminar flow overnight (16 – 18hrs) 

(Yobo et al, 2010).  

 

Soybean seeds were planted in the middle of 12 cm diameter pots filled with composted pine 

bark (Potting Mix, National Plant Foods (Pty) Ltd, Camperdown, South Africa) and maintained 

in the glasshouse with uniform irrigation and fertigation. At first true leaf stage plants were 

inoculated with 1 000 J2 nematodes in three shallow pencil holes around the plant. Each 
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treatment was replicated five times and the trial was repeated twice. The trial was terminated at 

42 days after nematode inoculation. The plants were washed free of adhering soil, fresh root 

and shoot weights as well as galls were assessed. The egg masses were then stained with 

erioglaucine before counting. 

 

2.2.4 Identification of the best bacterial isolates 

Genomic identification of the best bacterial isolates was done using 16S rRNA sequence 

analysis. Characterisation was done at Inqaba Biotechnical Industries (www.inqaba.co.za). 

 

2.2.5 Statistical analysis 

Data was subjected to analysis of variance (ANOVA) using SAS 9.3 and means were separated 

using Duncan’s multiple range test. 

 

2.3 Results 

2.3.1 In vitro screening of bacterial isolates against M. javanica juveniles 

A total of 70 bacterial isolates were screened against M. javanica J2s under in vitro conditions 

after the initial spore suspension was diluted to 103 using serial dilutions. Of these, only five 

isolates caused mortality greater than 50%, constituting 7.1% of all isolates (Table 2.1). Three 

isolates (BC27, BC29 and BC31) from the rhizosphere of grass in goat pastures caused larval 

mortality greater than 80% after 24 hours and were selected for the second screening phase.  

 

In the second in vitro screening the bacterial spore suspension was adjusted to 108 spores ml-1 

using a haemocytometer and tests were conducted in wells. At 3 hours after commencement of 

the experiment Isolate BC27 had caused juvenile mortality of 100% and was significantly better 

than all other treatments (P < 0.001). Larvae did not recover upon either being probed or with 

further dilution of the bacterial suspension.  

 

  

http://www.inqaba.co.za/
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Table 2.1 Percent mortality of M. javanica J2s in a bacterial spore suspension after 24 
hours 

Isolate Source Mortalitya Isolate Source Mortality 

BC1 Tomato 38 BC36 Goat pasture 31 

BC2 Tomato 25 BC37 Goat pasture 0 

BC3 Tomato 3 BC38 Goat pasture 10 

BC4 Tomato 26 BC39 Goat pasture 26 

BC5 Tomato 0 BC40 Goat pasture 43 

BC6 Tomato 28 BC41 Goat pasture 5 

BC7 Tomato 2 BC42 Goat pasture 17 

BC8 Tomato 24 BC43 Goat pasture 30 

BC9 Tomato 30 BC44 Goat pasture 1 

BC10 Tomato 12 BC45 Goat pasture 29 

BC11 Tomato 42 BC46 Goat pasture 38 

BC12 Squash 0 BC47 Goat pasture 2 

BC13 Pepper 2 BC48 Sheep pasture 42 

BC14 Pepper 33 BC49 Sheep pasture 1 

BC15 Pepper 26 BC50 Sheep pasture 25 

BC16 Pepper 1 BC51 Sheep pasture 0 

BC17 Pepper 7 BC52 Sheep pasture 39 

BC18 Pepper 15 BC53 Sheep pasture 17 

BC19 Pepper 18 BC54 Cattle pasture 24 

BC20 Pepper 25 BC55 Cattle pasture 2 

BC21 Tobacco 0 BC56 Cattle pasture 62 

BC22 Tobacco 30 BC57 Cattle pasture 10 

BC23 Soybean 4 BC58 Cattle pasture 0 

BC24 Soybean 26 BC59 Cattle pasture 32 

BC25 Goat pasture 0 BC60 Cattle pasture 1 

BC26 Goat pasture 35 BC61 Cattle pasture 5 

BC27 Goat pasture 100 BC62 Cattle pasture 26 

BC28 Goat pasture 4 BC63 Cattle pasture 0 

BC29 Goat pasture 100 BC64 Cattle pasture 55 

BC30 Goat pasture 0 BC65 Cattle pasture 5 

BC31 Goat pasture 87 BC66 Cattle pasture 0 

BC32 Goat pasture 32 BC67 Cattle pasture 37 

BC33 Goat pasture 0 BC68 Cattle pasture 28 

BC34 Goat pasture 3 BC69 Cattle pasture 0 

BC35 Goat pasture 39 BC70 Cattle pasture 34 

   Control Water 2 
aMean % mortality of three replications. 
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Isolate BC29 caused significantly higher mortality than Isolate BC31, although both caused 

mortality greater than 50% after 3 hours (P ˂ 0.001). At 24 hours both BC27 and BC29 caused 

100% mortality and were significantly more effective than Isolate BC31, although the latter 

caused significantly higher mortality than the Control (Table 2.2). All three isolates were 

consequently selected for further screening in the glasshouse on soybean.  

 

Table 2.2 Second in vitro screening of selected bacterial isolates on M. javanica J2s 

 % Mortality 

Isolate 3hrs 24hrs 

BC27 100.00af 100.00a 

BC29 87.56b 100.00a 

BC31 64.06c 84.18b 

Control 0.50d 1.09c 
fMean of 10 replications followed by the same letters in the same column are not significantly 
different at P < 0.0001 based on Duncan’s multiple range test. 
 

2.3.2 Efficacy of three bacterial isolates against M. javanica in glasshouse experiments 

Two bacterial isolates (BC27 and BC29) significantly reduced the number of galls formed and 

the number of egg masses compared to the Untreated Control (Table 2.3). Treatment of soybean 

seeds with the bacterial isolate BC29 resulted in the highest reduction in galling (83.71%) and 

egg mass formation (86.48%). Isolates BC27 and BC29 had a considerable effect on infection 

and subsequently reproduction of M. javanica on soybeans. Both isolates also significantly 

increased soybean root and shoot weight and both parameters were significantly higher than for 

the Control (Table 2.3). Isolate BC31 was comparable to the Control treatments for both 

nematode inoculated and non-inoculated plants. There was also a significant difference for both 

shoot and root weight between nematode-inoculated and non-inoculated plants for isolates 

BC27 and BC29. However, Isolates BC27 and BC29 had the highest increments for root and 

shoot weight when nematode inoculated or un-inoculated plants were compared alone. Root 

and shoot weight in the Control treatments and in treatments BC31 did not significantly differ 

with nematode inoculation (P=0.001). 
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2.3.3 Blast and identification of selected bacterial isolates 

The analysis of nucleotide sequences of the 16S rRNA gene sequences using BLAST analysis 

revealed that Isolates BC27 and BC29 exhibited sequences similar to Bacillus spp. T2 

(Accession HQ418499.1, E-value 2E51) and Bacillus spp. KT18 (Accession KJ734022.1, E-

value 0E00) listed in the Gen-Bank, respectively.  

 

Table 2.3 Effect of selected bacterial isolates on the biocontrol of M. javanica on soybeans 
in vivo 
 

Treatments Root galling Egg masses Root weight Shoot weight 

BC27 - - 16.89a 23.58a 

BC29 - - 17.59b 27.69b 

BC31 - - 8.93c 17.71c 

Control - - 7.62c 16.23c 

M. javanica + BC27 55.60bg 42.9b 13.36b 20.48b 

M. javanica + BC29 23.0a 21.1a 16.16a 25.71a 

M. javanica + BC31 119.40c 127.3c 6.91c 15.11c 

M. javanica 141.20d 156.1d 6.59c 14.59c 
gMean of 10 replications followed by the same letters in the same column are not significantly 
different at P < 0.0001 based on Duncan’s multiple range test. 

 

2.4 Discussion 

Rootknot nematodes M. incognita (Kofoid and White) Chitwood, M. javanica and M. 

arenaria(Chitwood) are important pests limiting soybean production (Sikora et al, 2005; 

Oyekanmi and Fawole, 2010). The use of nematicides to manage rootknot nematodes in 

soybean cultivation is not economically sustainable (Sikora et al, 2005). Numerous bacterial 

isolates, among them Pseudomonas spp. and Pasteuria spp., have been found to have 

nematicidal properties against rootknot nematodes (Cho et al, 2000; Siddiqui et al, 2009; 

Timper et al, 2009; Singh and Siddiqui, 2010; Bagheri et al, 2014). A number of Bacillus 

isolates have also been screened and found to have nematicidal properties against M. javanica 

in vitro (Ashoub and Amara, 2010; Park et al, 2014) and in vivo (Oliveira et al, 2007; Wei et 

al, 2014; Xiong et al, 2015). 
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In this studybacterial isolates recovered from the rhizosphere of crops did not exhibit desirable 

pathogenicityin vitro and hence they were not selected for further evaluation. Three isolates, 

two of which were identified as Bacillus spp., were found to be the most effective isolates 

against M. javanica juveniles in vitro. These isolates were isolated from the rhizosphere of grass 

of goat pastures.These pastures may therefore have potential to harbour competent biocontrol 

agents against nematodes. The goats on these pastures are frequently infested with 

gastrointestinal nematodes. 

 

Total J2 mortality was observed as a result of the bacterial spore suspensions of one isolate, 

BC27, as early as 3 hours after inoculation, although both BC27 and BC29 caused 100% 

mortality after 24 hours. Isolate BC31 caused significantly lower J2 mortality than the other 

two isolates, although it was significantly higher than the Control. This makes the isolates ideal 

biocontrol agents because they may exhibit nematicidal activity upon application in the 

rhizosphere, thereby protecting host plants in their early growth stages. Bacillus isolates have 

been found to produce proteolytic enzymes, which are responsible for nematode mortality 

(Chantawannakul et al, 2002; Tian et al, 2007; Mohammed et al, 2008). 

 

The biocontrol efficacy of both Bacillus isolates, BC27 and BC29 in glasshouse experiments 

was significantly higher than in the Control plots. Although Isolate BC29 caused significantly 

lower J2 mortality than Isolate BC27 in vitro at 3 hours, in vivo, Isolate BC29 caused a greater 

reduction in galls and egg masses than Isolate BC27. This may be due, in part, to the ability of 

these isolates to colonise the rhizosphere of soybean plants. Similar trends were observed in 

vitro and in vivo for Isolate BC31, with the isolate causing a significant reduction in galls and 

egg masses but less than Isolates BC27 and BC29. The size of galls observed for plants treated 

with Isolate BC31 were also larger and had coalesced, while for the plants treated with Isolates 

BC27 and BC29, the galls were small and discrete.  

 

Isolates BC27 and BC29 significantly increased soybean root and shoot weight for both 

rootknot inoculated and non-inoculated plants when compared to the Control. Similar results 

have been observed with other Bacillus isolates on different crops (Oliveira et al, 2007, Xiong 

et al, 2015). These attributes would enhance the value of these isolates, providing nematode 
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control and enhanced growth. Fourie et al (2013) noted that both nematode suppression and 

yield results need to be considered when making a decision on rootknot management options. 

Based on this notion, Isolate BC31 would therefore not be an ideal biocontrol candidate because 

it resulted in biomass similar to the Controls.  

 

Although the mechanisms involved in reducing gall formation and egg masses were not 

conducted in this study, Adam et al (2014) found that Bacillus subtilis isolates repelled rootknot 

juveniles and also induced systemic resistance in tomato plants, thereby reducing nematode 

reproduction. Padgham and Sikora (2007) also found an isolate of Bacillus megaterium to 

reduce root penetration and migration of M. graminicola to the root zone of rice plants.  

 

Some Bacillus isolates suppress plant diseases in addition to rootknot nematodes and hence 

provide new possibilities for plant disease management (Adam et al, 2014). This, compounded 

with the ability of dry spores to be applied directly to seed as a commercial seed coating, and 

their prolonged shelf-life, makes Bacillus isolates ideal biocontrol agents for rootknot nematode 

management. This is especially so in crops such as soybeans where nematode management 

options are limited by costs. However, the ability of the Bacillus isolates in this study to persist 

in the rhizosphere, their interaction with other soil microbes, their field efficacy and the 

consistency of results in field trials all need to be studied further.  
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CHAPTER THREE 

BIOLOGICAL CONTROL OF THE ROOTKNOT 

NEMATODE, MELOIDOGYNE JAVANICA (CHITWOOD), ON 

SOYBEAN, USING TRICHODERMA ISOLATES 

 

Abstract 

In this study, the biocontrol potential of the filamentous fungus, Trichoderma, was investigated 

in laboratory and greenhouse experiments. In vitro studies of 111 Trichoderma strains showed 

that conidial suspensions of 11 strains isolated from the root zone of field crops and from animal 

pastures caused M. javanica second stage (J2) mortality greater than 50% after 24 hours. Under 

greenhouse conditions seed treatments of soybean with 108 conidia ml-1 significantly increased 

plant biomass and reduced the number of galls and egg masses. The analysis of nucleotide 

sequences of the ITS1 region using BLAST analysis revealed that the effective Trichoderma 

isolates exhibited sequences similar to T. spirale, T. harzianumand T. virens.  

 

3.1 Introduction 

Rootknot nematodes, Meloidogyne spp., are widely distributed in the tropics and subtropics. 

They are the most damaging nematode genus globally and cause crop losses of up to 157 billion 

USD annually (Sasser, 1980; Nicol et al, 2011; Onkendi et al, 2014). Rootknot nematodes have 

been recorded to attack and cause significant damage to most crops in South Africa, resulting 

in significant yield losses and total crop failure in some incidences (Fourie et al, 2001b; Onkendi 

and Moleleki, 2013). Meloidogyne javanica Chitwood is one of the most common and 

economically important nematode species in South Africa (Fourie et al, 2001a; Fourie et al, 

2015).  

 

Management of rootknot nematodes is one of the important costs of production in Africa 

(Onkendi et al, 2014) and in other parts of the world (Wesemael et al, 2011) and hence many 

ways of managing nematodes have been investigated. Sedentary nematodes have been managed 

using nematicides since the 1950s’ (Moens et al, 2009). However pressure to reduce the use of 

nematicides because of health and environmental concerns has led to the development of 

antagonistic micro-organisms as biological control agents to these pests (Viaene et al, 2006). 
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Research efforts have pursued the development of resistance in different crops to plant parasitic 

nematodes (Wesemael et al, 2011). ). In wheat, soybean and potato crops, host plant resistance 

has been used to manage various cyst nematode species (Dowler and van Gundy, 1984; Cook 

and Starr, 2006; Hildalgo-Diaz and Kerry, 2007). However, there are currently no registered 

resistant soybean cultivars in South Africa (Fourie et al, 2015). Microbial pathogens, 

endophytes and antagonists play a crucial role in the regulation of the populations of plant 

parasitic nematodes in various agroecosystems (Hallmann et al, 2009). The use of microbial 

agents for the control of nematodes has been the subject of intense research in recent years as a 

possible alternative to nematicides (Mankau, 1981; Kerry, 1997). Fungi and bacteria are an 

integral part of the soil community and both have shown potential as nematode antagonists 

(Akhtar and Malik, 2000). 

 

Species of the filamentous ascomycete genus Trichoderma are readily isolated from various 

ecological habitats (Vinale et al, 2008; Druzhinina et al, 2011) and many of these isolates have 

been found to be good biological control agents (Benítez et al, 2004). Trichoderma isolates 

have been found to be among the best biocontrol agents for controlling nematodes because of 

their ability to rapidly colonise the rhizosphere, produce numerous spores, and release a wide 

range of enzymes, since the bulk of plant parasitic nematodes are found in the rhizosphere 

(Harman et al, 2004; Verma et al, 2007; Vinale et al, 2008). 

 

In a number of in vitro studies, Trichoderma isolates have been found to prevent nematode eggs 

from hatching, and to immobilise second stage juveniles (J2s) (Sharon et al, 2001; Bokhari et 

al, 2009; Sharon et al, 2009; Szabó et al, 2012; Zhang et al, 2015). Apart from reducing 

nematode damage severity, Trichoderma isolates have been reported to enhance growth 

parameters on various crops. On tomato (Solanum lycopersicum L.), different isolates have 

been found to increase shoot weight while reducing rootknot galling and reproduction 

(Sahebani and Hadavi, 2008; Affokpon et al, 2011; Radwan et al, 2012; Jamshidnejad et al, 

2013; Elgorban et al, 2014). Trichoderma isolates were also reported to reduce Meloidogyne 

graminicola (Golden and Birchfield) damage on rice (Oryza sativa L.) (Le et al, 2009) and 

wheat (Triticum aestivum L.) (Zhang et al, 2014). Shennawy et al (2012) found the combination 

of Trichoderma koningii Oudem and Bacillus megaterium (de Barry) to be more effective in 
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reducing rootknot-Fusarium disease complex in potato (Solanum tuberosum L.) than the 

individual biocontrol agents.  

 

This study was conducted to identify nematicidal Trichoderma isolates with the potential to be 

biocontrol agents against M. javanica through in vitro selection and to determine their in vivo 

efficacy on soybean when applied as seed treatments. 

 

3.2 Materials and methods 

3.2.1 Preparation of nematode inoculum 

Meloidogyne javanica inoculum was initially obtained from the Unit for Environmental 

Sciences and Management, North West University, Potchefstroom, South Africa, and 

maintained on tomato cv. Moneymaker. Three week old seedlings grown on composted bark 

were inoculated with second stage juveniles (J2) and maintained in the glasshouse at 25 ± 2°C. 

At least four weeks after inoculation, or when inoculum was required, tomato roots were 

uprooted, washed with tap water to remove attached soil and chopped into 2-5 cm pieces. Eggs 

were extracted by shaking the roots in 1% sodium hypochlorite in a glass jar for 3 minutes. The 

resulting suspension was then washed through a series of sieves (1000 µm, 330 µm, 190 µm, 

100 µm and 38 µm), with eggs being collected from the bottom sieve (38 µm). Eggs were 

thoroughly washed to remove residual sodium hypochlorite and then hatched in Baermann trays 

at 25 ± 2°C in the incubator. Second stage juveniles were collected from the trays after 3–5 

days and used for both in vitro and in vivo trials.  

 

3.2.2 In vitro screening of Trichoderma isolates for nematicidal activity against M. 

javanica juveniles. 

Soil samples were collected from the root zone of sheep and goat pastures, and various field 

crops at the University of KwaZulu-Natal research farm. A 1 g sub-sample was suspended 100 

ml of sterile distilled water and serial dilutions were made (103) (Yobo et al, 2010). One ml 

(1ml) aliquots of each dilution were plated in triplicate onto a Trichoderma selective media 

(TSM) (Askew and Laing, 1993) using the spread plate technique. The plates were then 

incubated at 28±1°C for 7 days in the dark before colonies resembling Trichoderma were 

subcultured onto Potato Dextrose Agar (PDA) (Merck®). These subcultures were also 

incubated at 28±1°C for 7 days in the dark, each isolate coded, and then stored in 30% glycerol 
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at -80°C. In total 111 Trichoderma isolates were subjected to in vitro assays with M. javanica 

juveniles. 

For the first round of in vitro screening, isolates were cultured on PDA at 28±1°C for 1-2 weeks, 

depending on sporulation. The plates were then flooded with 10 ml of sterile ¼ strength 

Ringer’s solution and the mycelia scraped off the medium. The resultant suspension was filtered 

through cheese cloth into McCartney bottles. Serial dilutions of the conidial suspension were 

made up to 101 before 1 ml of the Trichodermaisolates and 1 ml of nematode suspension, 

containing approximately 40 juveniles, were transferred into 5 cm3 polystyrene wells and 

incubated at 25°C in triplicate. After 24 hours the number of dead J2s were counted using a 

stereomicroscope (Olympus BX41). Nematodes were considered dead if they did not move on 

probing with a fine needle.  

 

For the second round of in vitro screening, isolates were cultured on PDA at 28±1°C for 1-2 

weeks, depending on sporulation. The plates were then flooded with 10 ml of sterile ¼ strength 

Ringer’s solution and the mycelia scraped off the medium. The resultant suspension was filtered 

through cheese cloth into McCartney bottles. The conidia suspension was counted using a 

haemocytometer and the concentration adjusted to 108 conidia ml-1. One ml of the Trichoderma 

isolates and 1 ml of nematode suspension, containing approximately 100 juveniles, were 

transferred into 5 cm3 polystyrene wells and incubated at 25°C in triplicate. After 24 hours the 

number of dead J2s were counted.  

 

3.2.3 Effects of 11 Trichoderma isolates on M. javanica in glasshouse experiments 

The Round-up Ready soybean cultivar, DM5953RSF, used in this study was obtained from 

Pannar Seeds (Pty) Ltd, Greytown. Soybean seeds were surface sterilised by rinsing in 3% 

sodium hypochlorite for 5 mins, then rinsing in sterile distilled water five times. A fungal spore-

sticker suspension was made up by adding 1.0g of carboxymethyl cellulose (CMC) to 50ml of 

conidial suspension (108 ml-1) in a 200ml flask. The suspension was shaken (150 rpm) in a 

rotary shaker (Model GFL 3005, Labortechnik, Germany) for one hour. A batch of 120 seeds 

were added to each flask and allowed to soak in the spore-sticker suspension for about an hour 

with constant swirling. The treated soybean seeds were then air-dried in petri dishes under 

laminar flow overnight (16 – 18 hrs) (Yobo et al, 2010).  
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Soybean seeds were planted in the middle of 12 cm diameter pots filled with composted pine 

bark (Potting Mix, National Plant Foods, Camperdown, South Africa) and maintained in the 

glasshouse with uniform irrigation and fertigation. At the first true leaf stage plants were 

inoculated with 1 000 J2s in three shallow pencil holes around the plant. Each treatment was 

replicated five times and the trial was conducted twice. The trial was terminated at 42 days after 

nematode inoculation. The plants were washed free of adhering soil before assessments were 

made of the fresh root and shoot weights and nematode gall numbers. The egg masses were 

stained with erioglaucine before counting. 

 

3.2.4 Identification of selected Trichoderma isolates 

Identification of the best Trichoderma isolates was done using 16S rRNA sequence analysis. 

Characterisation was done at Inqaba Biotechnical Industries (www.inqaba.co.za). 

 

3.2.5 Statistical analysis 

Data was subjected to analysis of variance (ANOVA) using SAS 9.3 and means were separated 

using Duncan’s multiple range test. 

 

3.3 Results 

3.3.1 In vitro screening of Trichoderma isolates against M. javanica juveniles 

In the first screening phase a total of 111 Trichoderma isolates and one commercial strain, 

EcoT® were screened against M. javanica J2s under in vitro conditions after the conidia 

suspension was diluted to 101 using serial dilutions. Of these, 11 isolates and EcoT® caused J2 

mortality greater than 50% after 24 hours, which amounted to 9.9% of the isolates screened 

(Table 3.1).  

 

In the second in vitro screening the concentration of each of the selected isolates was adjusted 

to 108 conidia ml-1 before evaluation. All Trichoderma isolates evaluated caused mortality 

greater than 50% and were all significantly better than the Control (water) (P < 0001). The 

following isolates caused mortality greater than 70%: C5, C16, C29, C36, C59, C63 and C97 

(Table 3.2). However, only Isolates C29, C59, C63 and C97 were selected for further evaluation 

in the glasshouse because they sporulated better than the other four isolates (C5, C11, C16 and 
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C36). The commercial biocontrol agent EcoT® was included in further studies because it is 

already registered for control of other root pathogens, and was known to have some nematicidal 

properties. 

 

3.3.2 Efficacy of Trichoderma isolates against M. javanica in glasshouse experiments 

The five Trichoderma isolates under evaluation, including the commercial biocontrol agent 

EcoT®, significantly reduced the number of galls and egg masses compared to the Control (P 

≤ 0.0001) (Table 3.3). Amongst the Trichoderma isolates, Isolate C29 caused the greatest 

reduction in nematode damage while Isolate C97 caused the least reduction. However, although 

all isolates caused a significant increase in root and shoot weight compared to the Control, 

Isolates C29 and C97 caused the greatest shoot weight (P ≤ 0.0001) (Table 3.3).  
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Table 3.1 Percent mortality of M. javanica J2s resulting from in vitro treatments with fungal conidial 

suspensions. 

Isolate Source Mortalitya% Isolate Source Mortalitya% Isolate Source Mortalitya% 

C1 F milletb 35 
C40 

Soybean 3 
C79 

Goat past 47 
C2 F millet 13 C41 Soybean 3 C80 Goat past 1 
C3 Peas 7 C42 Tobacco 1 C81 Goat past 3 
C4 Peas 33 C43 Peas 7 C82 Goat past 7 
C5 Peas 64 C44 F millet 2 C83 Goat past 5 
C6 Peas 1 C45 F millet 2 C84 Goat past 0 
C7 Peas 1 C46 F millet 5 C85 Goat past 2 
C8 Peas 8 C47 Tomato 3 C86 Goat past 57 
C9 Peas 12 C48 Pepper 5 C87 Goat past 0 
C10 Peas 27 C49 Pepper 1 C88 Goat past 7 
C11 Peas 70 C50 Pepper 5 C89 Goat past 11 
C12 Pepper 5 C51 Pepper 4 C90 Goat past 9 
C13 Pepper 61 C52 Tomato 2 C91 Goat past 6 
C14 Pepper 4 C53 Tomato 2 C92 Goat past 1 
C15 Tomato 3 C54 F millet 9 C93 Goat past 0 
C16 Tomato 77 C55 F millet 3 C94 Goat past 2 
C17 Tomato 6 C56 Tomato 58 C95 Goat past 3 
C18 Tomato 5 C57 Tomato 3 C96 Goat past 6 
C19 Tomato 3 C58 Tomato 3 C97 Goat past 81 
C20 Squash 24 C59 Pepper 86 C98 Goat past 2 
C21 Squash 3 C60 Pepper 5 C99 Goat past 1 
C22 Squash 8 C61 Pepper 5 C100 Goat past 6 
C23 Soybean 8 C62 Sheep past. 3 C101 Cattle past. 3 
C24 Tobacco 27 C63 Sheep past. 83 C102 Cattle past 3 
C25 Tobacco 9 C64 Sheep past. 2 C103 Cattle past. 1 
C26 Tobacco 35 C65 Sheep past. 4 C104 Cattle past 2 
C27 Bean 13 C66 Sheep past. 3 C105 Cattle past. 35 
C28 Bean 53 C67 Sheep past. 3 C106 Cattle past 1 
C29 Tobacco 95 C68 Sheep past. 4 C107 Cattle past. 3 
C30 Tobacco 1 C69 Sheep past. 5 C108 Cattle past 4 
C31 Peas 2 C70 Sheep past. 4 C109 Cattle past. 6 
C32 Peas 4 C71 Sheep past. 6 C110 Cattle past 3 
C33 Peas 1 C72 Sheep past. 2 C111 Cattle past 1 
C34 Peas 4 C73 Sheep past. 9 EcoT®  64 
C35 Soybean 6 C74 Goat past. 6 Control Water 2 
C36 Soybean 74 C75 Goat past. 6    

C37 Soybean 1 C77 Goat past. 5    
C38 Soybean 2 C78 Goat past. 3    

C39 Soybean 3 C76 Goat past 3    
aMean % mortality of three replications. fFinger millet t Pasture 
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Table 3.2 Second in vitro screening of selected Trichoderma isolates against M. javanica 

J2s 

Isolate % Mortality 

C29 94.7a 

C59 84.7b 

C5 82.7b 

C97 82.2b 

C16 74.3c 

C36 72.0cd 

C63 71.5de 

C11 69.2e 

C13 60.8f 

C28 55.2g 

C56 51.5h 

EcoT® 50.9h 

Control 1.5i 

fMeans of 10 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 
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Table 3.3 Efficacy of selected Trichoderma isolates for the biocontrol of M. javanica on 
soybean plants in vivo 

 
Treatments Galls 

counts 

Egg mass 

counts 

Root weight 

(g) 

Shoot weight 

(g) 

C29 - - 16.46b 28.35a 

C59 - - 14.79cd 25.07c 

C63 - - 14.50d 23.67d 

C97 - - 17.75a 28.65a 

EcoT®   16.16b 27.19b 

Control   8.43g 22.59e 

M. javanica + C29 23.80e 42.10e 15.96b 26.78b 

M. javanica + C59 43.20d 63.0d 13.61e 22.48e 

M. javanica + C63 68.70c 74.8c 12.17f 21.73e 

M. javanica +C97 79.8b 90.30b 18.25a 27.30b 

M. javanica+ EcoT® 70.10c 63.20d 15.25c 24.72c 

M. javanica 140.60a 164.60a 6.07h 17.67f 
gMeans of 10 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 

 

3.3.3 Genomic identification of selected fungal isolates 

An analysis of nucleotide sequences of the ITS1 region using BLAST analysis revealed that 

Isolates C59 and C63 exhibited sequences similar to T. spirale Isolate ATT15 (Accession 

HQ607861.1, E-value 0E00); Isolate C29 resembled T. harzianum Isolate A1S (Accession 

KJ767087.1, E-value 0E00); and Isolate C97 resembled T. virens Isolate FT-333 (Accession 

KJ739790.1, E-value 0E00), listed in Gen-Bank™.  

 

3.4 Discussion 

Several fungal biocontrol agents antagonistic to plant parasitic nematodes have been 

successfully registered and commercialised across the world in the last decade. Isolates of 

Purpureocillium lilacinus (Thom) Samson and the entomopathogens Beauveria bassiana 

(Bals.-Criv.) Vuill. and Metarhizium spp. have been registered for the control of rootknot 

nematodes in some countries (Tranier et al, 2014; Croplife 2015). Although the production and 

sale of biocontrol products containingTrichoderma have also grown exponentially, only one 
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isolate is currently registered for the control of nematodes in Africa (Woo et al, 2014; Croplife, 

2015).  

 

In this study native Trichoderma strains were isolated and evaluated for their nematicidal 

activity against M. javanica. Twelve isolates, including a commercial isolate, were found to 

cause significant mortality to M. javanica J2s in vitro. Of these, four isolates were chosen 

because of their efficacy and sporulation (C29, C59, C63 and C97). The strains were isolated 

from the root zone of tobacco and pepper and from the root zone of kikuyu grass of sheep and 

goat pastures, respectively (Table 3.1). Other strains pathogenic to nematodes were previously 

isolated from the same habitats (Pambuka 2014, unpublished), which indicates that they are 

suitable habits for bionematicidal agents. The commercial Isolate EcoT®, although it caused 

significantly less mortality than the other four isolates (C29, C59, C63 and C97), was also tested 

on the merits of its control of other phytopathogens, which would be an added advantage 

because rootknot nematodes are frequently found in association with other plant pathogens. 

Similar evaluations in vitro have found many Trichoderma isolates to cause mortality of 

rootknot nematodeJ2s (Sharon et al, 2009; Bhokari, 2009; Elgorban et al, 2014).  

 

All the five Trichoderma isolates selected for glasshouse studies as seed treatments 

significantly reduced the galling and egg masses on soybean. Isolate C29 caused a greater 

reduction in galling and egg mass production than the other isolates, while EcoT® caused the 

least reduction. Furthermore, galls observed in plants treated with Isolate C29 were much 

smaller and were discrete, while for all the other treatments, most of the galls were coalesced. 

Several other Trichoderma isolates have been found to cause reductions in galling and egg mass 

production when applied as drenches (Sahebani and Hadavi, 2008; Shennawy et al, 2012; Szabó 

et al, 2012; Jamshidnejad et al, 2013). However, it needs to be noted that inoculating plants 

with nematodes at first true leaf stage does not fully represent field conditions because 

nematodes will already be present in the soil at seeding.  

 

In addition to reducing the number of galls and egg masses, all the test isolates significantly 

increased both root and shoot weight of the soybean plants. Although Isolate C97 caused a 

smaller reduction in gall and egg mass counts, it stimulated plant growth, resulting in the 
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greatest root and shoot weights, resulting in weights similar to those resulting from treatment 

with Isolate C29, the most nematicidal of the isolates. These observations are similar to finding 

in other studies where Trichoderma isolates also enhanced growth parameters (Le et al, 2009; 

Affokpon et al, 2011; Zhang et al, 2014).  

 

Several modes of action have been cited as the basis forthe nematicidal abilities of Trichoderma 

isolates (Verma et al, 2007). Zhang et al (2015) reported that the conidia of an isolate of 

Trichoderma longibrachiatum Rifai adhered to and parasitised the surface of juvenile 

nematodes, thereby deforming or completely dissolving them, and attributed this to proteases. 

Protease-transformed Trichoderma isolates displayed enhanced efficacy against both nematode 

eggs and juveniles when compared to wild type strains (Sharon et al, 2001).  

 

The ability of Trichoderma isolates to rapidly colonise the rhizosphere, produce numerous 

spores, and release a wide range of enzymes has made them prime candidates in the search for 

nematode antagonists because the bulk of plant parasitic nematodes are found in this zone 

(Harman et al, 2004; Verma et al, 2007; Vinale et al, 2008).Prospects for Trichoderma strains 

as bionematicides, especially as seed treatments, are good due their versatility, rhizosphere 

competency, ease of production and their use for other beneficial effects on plants (Woo et al, 

2014). However, reproducibility and consistency of results with Trichoderma isolates, 

especially in field trials, are important factors to be considered for them to be successful 

commercially. 
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CHAPTER FOUR 

USE OF TRICHODERMA AND BACILLUS ISOLATES TO 

PROTECT TOMATO PLANTS GROWN IN SOIL INFESTED 

WITH MELOIDOGYNE JAVANICA (CHITWOOD) 

 

Abstract 

SomeTrichoderma and Bacillus isolates reduce the incidence and severity of rootknot galling 

resulting in improved yields from tomato plants. In this study, five Trichoderma isolates and 

one Bacillus isolate were evaluated for their efficacy against M. javanica in the field. All the 

isolates were applied as seed treatments at 108 spores ml-1 and seedlings were raised in speeding 

trays. The tomato seedlings were transplanted into soils pre-infested with M. javanica. The six 

isolates under evaluation all caused a reduction in galling severity and improved fruit yield 

when compared to the Control. Seed treatments with Isolates C29 and EcoT®+C97 resulted in 

the highest yield increases and caused the greatest reductions in nematode damage in nematode 

infested plots when compared to non-nematode infested plots. The results provide evidence for 

the effectiveness of biocontrol agents in providing protection against M. javanica on tomato.  

 

4.1 Introduction 

Vegetables are high value cash crops and are also a major component of human diets globally 

(Abbasi et al, 2002). Tomatoes are an important source of vitamins and contribute about 24% 

of vegetable production in South Africa (Grandillo and Chetelat, 2011). Plant parasitic 

nematodes, chief among them rootknot nematodes, are a major constraint in tomato production 

especially for field tomatoes where significant resources are needed for their management 

(Sikora and Fernández, 2005). 

 

Fumigant and non-fumigant nematicides are still the most common method of nematode 

management for vegetables especially under intensive cultivation (Sikora and Fernández, 

2005). However, most nematicides are being gradually withdrawn from the market across the 

world (Zasada et al, 2010; Onkendi et al, 2014). Host plant resistance, particularly through the 

use of the Mi gene, has been used globally for rootknot nematode control (Cook and Starr, 

2006). The Mi gene in tomato confers resistance to Meloidogyne javanicaChitwood, 
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Meloidogyne incognita Chitwood and Meloidogyne arenaria Chitwood and is extensively used 

in managing these species (Williamson and Hussey, 1996; Wesemael et al, 2011). However, 

the Mi gene is not effective at temperatures above 28°C (Cook and Starr, 2006) and some 

Meloidogyne biotypes capable of breaking this resistance have been reported to be present 

various regions of the world (Karssen and Moens, 2006).  

 

The use of microbial agents for the control of nematodes has been the subject of intense research 

in recent years as a possible alternative to nematicides (Mankau, 1981; Kerry, 1997). Fungi and 

bacteria are an integral part of the soil community and both have shown potential as nematode 

antagonists (Akhtar and Malik, 2000).Trichoderma and Bacillus isolates have been found to 

reduce rootknot nematode damage on tomato (Goswami et al, 2008; Nzanza et al, 2012; 

Elgorban et al, 2014; Ramezani Moghaddam et al, 2014) and other vegetables (Bhokari, 2009; 

Loganathan et al, 2010; Affokpon et al, 2011; Park et al, 2014). In most of these studies 

inundative applications of biocontrol agents have been used. This study sought to evaluate the 

efficacy of Trichoderma and Bacillus isolates, previously evaluated in the greenhouse, against 

M. javanica as seed treatments to tomato in field trials.  

 

4.2 Materials and methods 

A field experiment was conducted during the December/April 2013/2014 season at Ukulinga 

research farm, a facility of KwaZulu-Natal University, Pietermaritzburg, South Africa 

(29°24´E; 30°24´S). Soils at the site are classified as Westleigh form (Table 4.1).  

 

Table 4.1 Soil physical and chemical properties for field trial. 

pH % Clay Total cations 
cmol.L-1 

% Acid 
saturation 

% Organic 
Carbon 

4.44 37 16.84 1 2.9 
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4.2.1 Nematode inoculum, biocontrol agents and seed source 

Meloidogyne javanica inoculum was initially obtained from the Unit for Environmental 

Sciences and Management, North West University, Potchefstroom, South Africa, and 

maintained on tomato (Solanum lycopersicum L.) cv. Moneymaker. Field infestation was done 

by inoculating the respective plots with freshly chopped, infested tomato roots. The infested 

roots were evenly spread in the planting furrows. The tomato cultivar Moneymaker® was used 

in this study, sourced from Starke Ayres Pty (Ltd), Pietermaritzburg. 

 

Tomato seeds were surface sterilised by rinsing in 3% sodium hypochlorite for 5 mins, then 

rinsing in sterile distilled water five times. A spore-sticker suspension was made up by adding 

1.0g of carboxymethyl cellulose (CMC) to 50ml of either bacterial or fungal spore suspension 

(108 ml-1) in a 200ml flask. The suspension was shaken (150 rpm) in a rotary shaker (Model 

GFL 3005, Labortechnik, Germany) for one hour. A batch of 120 seeds were added to each 

flask and allowed to soak in the spore-sticker suspension for about an hour with constant 

swirling. The treated tomato seeds were then air-dried in petri dishes under laminar flow 

overnight (16 – 18 hrs). Seeds were then sown in 240 cell trays and transplanted into the field 

at four leaf stage. Two Trichoderma isolates Eco-T and C97 were also applied as a combination 

due to their ability to sporulate better than all other isolates in this study. 

 

4.2.2 Nematode assessments 

At 120 days after planting, the roots and rhizosphere of 5 plants per plot were sampled. Roots 

and soil from each treatment were thoroughly combined, a 200 cm3 soil sub-sample and a 50 g 

sub-sample obtained, after which samples were stored at 4°C until nematode extraction. 

Nematodes were extracted from 200g soil samples following the decanting and sieving method 

(Hooper et al, 2005), followed by a modified Baermann tray method (Hooper et al, 2005). 

Nematodes (eggs and J2) were also extracted from 1g root samples following maceration of 1 

cm root pieces in 0.5% NaOCl (Hooper et al, 2005). The resulting suspension was then washed 

through a series of sieves (1000 µm, 330 µm, 190 µm, 100 µm and 38 µm) with eggs and J2s 

being collected from the bottom sieve (38 µm). Galling severity was assessed on a scale of 0 – 

8 (Daulton and Nusbaum, 1969) where: 0 = free of galls; 1 = trace, less than 5; 2 = 6-25 galls; 

3 = 26-100 galls; 4 = moderate, gall numerous, mostly discrete; 5 = moderately heavy, 

numerous, many coalesced; 6 = heavy, galls very numerous, coalesced, root growth slightly 
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retarded; 7 = very heavy, mass invasion, slight root growth; 8 = extremely heavy, mass invasion, 

no root development.  

 

4.2.3 Yield assessments 

Yield assessments were done by picking and weighing of ripe fruit, with a final picking done 

at 120 days after planting.Fruit were picked from 20 plants in the mid two rows in each four 

row plot. Percent yield loss increase/decrease was calculated for each treatment using the 

equation: {(mean yield of treated plots/yield of Control) × 100} – 100. 

 

4.2.4 Trial design, layout and data analysis 

The experimental treatments were in a randomised complete blocks design laid out in a split 

plot arrangement. There were two factors in the main plot, rootknot nematodes and no rootknot 

nematodes. There were 9 subplot factors; Control (no sticker), Control (with sticker), EcoT®, 

Isolate C29, Isolate C59, Isolate C63, Isolate C97, Isolate C97+EcoT® and Isolate BC27. Inter 

row and intra row spacing was 80cm and 40 cm, respectively, and each plot consisted of four 

rows with 10 plants each. There were three replications for each treatment. Data was subjected 

to analysis of variance (ANOVA) using SAS 9.3 and means were separated using Duncan’s 

multiple range test. 

 

4.3 Results 

4.3.1 Nematode assessments 

Seed treatments with both Trichoderma and Bacillus isolates caused a significant decrease in 

both galling severity and nematode counts, when compared with the Control. Treatments with 

Isolates C29 and EcoT®+C97 caused  reductions in gall severity of 45% and 40%, respectively, 

while Isolates C59, C63 and C97 caused reductions in gall severity by between 21 – 23% (Table 

4.2). The biocontrol agent EcoT® on its own reduced gall severity by 34% while the Bacillus 

isolate BC27 reduced galling by 21%. However, only Isolates C29and EcoT®+C97 caused a 

significant reduction in nematode counts in the roots and in the soil. The Bacillus Isolate BC27 

caused a significant reduction in J2 and eggs in the roots but not in the soil. There were 

insignificant rootknot nematode juvenile populations in the un-infested plots. Other plant 

parasitic nematode genera were encountered in the un-infested plots but the populations were 

also insignificant. 
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Table 4.2 Rootknot nematode data for biocontrol agents in both nematode infested and 
non-nematode infested plots 

Treatments Galling index Eggs and J2 
counts in roots 
(1g) 

J2 counts in soil 
(200cm3) 

Control  0.10g 5.0e 1.33d 
Control (Sticker) 0.10g 4.0e 2.00d 
EcoT® 0.00g 0.0e 0.00d 
C29 0.00g 0.0e 0.00d 
C59 0.23g 7.3e 0.00d 
C63 0.03g 0.0e 0.00d 
C97 0.00g 0.0e 0.00d 
C97+EcoT® 0.00g 0.0e 0.00d 
BC27 0.20g 0.0e 0.00d 
Control + M. javanica 5.30a 1521.7ab 558.3a 
Control (Sticker) + M. javanica 4.97b 1580.0a 580.0a 
EcoT® + M. javanica 3.50d 1435.0ab 421.7b 
C29 + M. javanica 2.90f 1105.3d 131.3c 
C59 + M. javanica 4.10c 1431.7ab 461.0ab 
C63 + M. javanica 4.20c 1356.7bc 460.0ab 
C97 + M. javanica 4.13c 1458.3ab 541.0ab 
C97+EcoT®+ M. javanica 3.20e 1146.7d 215.3c 
BC27+ M. javanica 4.20c 1241.7cd 521.7ab 
 F value = 471.6 

P ≤ 0.001 
CV = 8.19 

F value = 153.9 
P≤0.001 
CV = 14.52 

F value = 42.44 
P≤0.001 
CV=30.35 

Means of 3 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 

 

4.3.2 Yield assessments 

Seed treatment of tomato with Trichoderma and Bacillus isolates significantly increased yield 

irrespective of nematode infestation, when compared to the Control. The highest yield increase 

was observed in nematode infested plots planted to C29 treated seed with a yield increase of 

66% while the highest yield reduction was observed in the nematode infested Control plots 

(Table 4.3).  

 

Rootknot nematode infestation caused a reduction in yield in both the Control plants and the 

C59 treated plants. There was, however, no significant difference in yield between nematode 

infested and non-nematode infested plots for plants treated with Isolates C63, C97, BC27 and 

EcoT®. Seed treatments with Isolates C29 and EcoT®+C97 resulted in higher yield increases 

in nematode infested plots than the yields from non-infested plots. 
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Table 4.3 Yield data (kg) for biocontrol agents in both nematode infested and non-nematode 
infested plots 

Treatments Yield (kg) Yield increase (+)/Yield decrease (-1) 
Control  15.4ef  
Control (Sticker) 14.6f -5 
EcoT® 16.7def +8 
C29 18.6cde +21 
C59 22.1b +44 
C63 19.8bcd +29 
C97 19.7bcd +28 
C97+EcoT® 16.4def +6 
BC27 17.8def +16 
Control + M. javanica 9.4g -39 
Control (Sticker) + M. javanica 7.6g -51 
EcoT® + M. javanica 16.4def +7 
C29 + M. javanica 25.5a +66 
C59 + M. javanica 17.4def +13 
C63 + M. javanica 19.6bcd +27 
C97 + M. javanica 21.5bc +40 
C97+EcoT®+ M. javanica 22.5b +46 
BC27+ M. javanica 19.2bcd +25 
 F value = 18.55 

P ≤ 0.001 
CV=9.86 

 

gMeans of 3 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 

 

In C59 a yield decline was observed between inoculated and and no-inoculated plots which 

indicated that this strain was impacted negatively by M. javanica and although nematode 

numbers were lower than the Control this was not sufficient. EcoT® and C63 reduced the 

severity of damage although yield was similar. Isolates BC27 and C97 showed a yield increase 

between inoculated and non-inoculated plots although not significant while C97+EcoT® and 

C29 showed a significant yield increase. 

4.4 Discussion 

Seed treatment of tomato seed with Trichoderma and Bacillus isolates caused a reduction in 

gall severity, rootknot nematode density and an increase in yield in the field. Trichoderma 

Isolate C29 and a combination of Isolate C97 and EcoT® caused the greatest reduction in 

galling severity in this study. These results confirm previous results (Chapter 2 and 3) in in vitro 

and greenhouse studies where the Bacillus and Trichoderma isolates used in this study also 

showed nematicidal properties. In results from another study (Chapter 6), only Trichoderma 
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Isolate C97 was compatible with the biocontrol agent EcoT® and hence it was the only fungal 

combination evaluated in this study. 

 

Similar results using Trichoderma and Bacillus isolates were also found in other studies. 

Dababat and Sikora (2007a) found that drenching of tomato seedlings with selected 

Trichoderma isolates caused reduction in the incidence and severity of the rootknot nematode 

M. incognita. Goswami et al (2008) also found that the application of a powder formulation of 

a Trichoderma isolate reduced M. incognita populations on tomato. Other Trichoderma and 

Bacillus isolates were also found to cause reductions in galling and egg mass production when 

applied as drenches to various crops (Sahebani and Hadavi, 2008; Shennawy et al, 2012; Szabó 

et al, 2012; Jamshidnejad et al, 2013; Abd-El-Khair and El-Nagdi, 2014). Xiong et al (2015) 

found drenching tomatoes with Bacillus strain YBf-10 reduced galling. Oliveira et al (2007) 

found metabolites of Bacillus megaterium Strain 54-06 reduced rootknot damage of coffee 

plants, while Wei et al (2014) also found drenching with another Bacillus Strain Jdm2 provided 

protection for up to 48% three months after planting tomato. Drenching with Bacillus cereus 

Isolate C1-7 was found to cause complete inhibition of root galling and egg mass development 

on carrot and tomato (Park et al, 2014). A commercial biocontrol agent BioNem® (Bacillus 

spp.) was also found to cause a reduction in rootknot galling on tomato by 75 – 84% and also 

to increase shoot weight by 20 – 24% (Terefe et al, 2009).  

 

However, in this study it was also observed that seed treatments with Isolates C29 and 

EcoT®+C97 resulted in yield increase in nematode infested plots when compared to non-

infested plots. It could be possible that the biocontrol agents were parasitic on the nematodes 

thereby deriving nutrition and this could have led to increased multiplication of the biocontrol 

agents. This, in-turn, would result in more benefits to the treated plants with nematodes than 

the un-infested plots. 

Several modes of action have been cited as the basis forthe nematicidal abilities of Trichoderma 

isolates (Verma et al, 2007). Zhang et al (2015) reported that the conidia of an isolate of 

Trichoderma longibrachiatum Rifai adhered to and parasitised the surface of juvenile 

nematodes, thereby deforming or completely dissolving them, and attributed this to proteases. 

Protease-transformed Trichoderma isolates displayed enhanced efficacy against both nematode 

eggs and juveniles when compared to wild type strains (Sharon et al, 2001).  
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The majority of studies on the efficacy of various bionematicides have been based on an 

inundative application in both controlled environments and in the field (Oyekanmi et al, 2007; 

Goswami et al, 2008; Abd-El-Khair and El-Nagdi, 2014). There are limited studies on seed 

treatment of tomato seeds with bionematicidal biocontrol agents in field trials and therefore 

comparison of results obtained in this study with similar work was a challenge. Although 

inundative approaches, especially drenches, have been successful in greenhouse and field trials, 

the amount of biocontrol inoculum required to treat large commercial fields, the costs and the 

technology involved are their major limiting factor (Athman et al, 2006; Viaene et al, 2006; 

Sikora et al, 2008). This is especially so for ovicidal products because the contact time between 

the antagonist and nematode pest needs to be prolonged or they will not reduce damage. In 

cases where the biocontrol agents are larvicidal and rhizosphere competent, penetration of 

infective juveniles is significantly reduced because the rhizosphere becomes the first line of 

defence and parasitism continues inside the root.  

 

The success of commercial bionematicides has largely depended on effective formulations 

capable of persisting in the rhizosphere that operate by protecting plants in the early growth 

phases. Like all microorganisms biological control agents are affected by environmental factors 

and these influence their efficacy, resulting in inconsistent results. Edaphic factors that have 

been found to influence the survival, reproduction and activity of biocontrol agents include pH, 

temperature and other antagonistic organisms residing in the rhizosphere (Sayre and Walter, 

1991; Barbercheck, 1992; Luambano et al, 2015). This study, therefore needs to be repeated 

both spatially and temporally, to gather further data on the efficacy of the isolates being tested. 
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CHAPTER FIVE 

USE OF TRICHODERMA AND BACILLUS ISOLATES AS 

SEED TREATMENTS TO PROTECT SOYBEAN PLANTS 

GROWN IN SOIL INFESTED WITH MELOIDOGYNE 

JAVANICA (CHITWOOD) 

 

Abstract 

Plant parasitic nematodes cause significant yield losses to soybean and options for their 

management are currently limited. Some nematicidal biocontrol agents, which include isolates 

of Trichoderma and Bacillus, reduce the severity and damagecaused by nematodes to crop 

plants, thereby improving yield. In this study, the biological control potential of five 

Trichoderma isolates and one Bacillus isolate was evaluated as seed treatments against M. 

javanica in the field. All of the six isolates under evaluation caused a reduction in galling 

severity and nematode rootknot nematode counts when compared with the Control. Seed 

treatment with EcoT®+C97 caused the highest reduction in galling severity. The test isolates, 

however, did not cause any improvement on soybean shoot biomass and seed weight. The 

results of this study indicate the potential of using biocontrol agents for effective management 

of rootknot nematodes in soybean using seed treatment.  

 

5.1 Introduction 

Plant parasitic nematodes are important plant pests causing significant yield losses globally 

(Whitehead, 1998; Nicol et al, 2011). These losses to plant parasitic nematodes may be higher 

than current estimates because data is lacking from many countries that lack nematology 

expertise (Luc et al, 1990; De Waele and Elsen, 2007; Jones et al, 2013). Most of the economic 

damage in crops is attributed to sedentary endoparasites in the family Heteroderidae, which 

comprises of two groups, the cyst nematodes and the rootknot nematodes (Williamson and 

Hussey, 1996; Abd-Elgawad and Askary, 2015). 

 

The Javanese rootknot nematode (Meloidogyne javanica Chitwood) is the most economically 

important plant parasitic nematode of soybean in South Africa and occurs in most soybean 

(Glycine max (L.) Merr.) producing provinces of South Africa where it poses a threat to the 
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sustainable production of the crop (Fourie et al, 2001; Fourie et al, 2015). Currently where are 

no registered chemical nematicides in South Africa (Croplife, 2015; Fourie et al, 2015). This is 

compounded by the limited availability of host plant resistance among local soybean cultivars 

(Fourie et al, 2013; Fourie et al, 2015). Integrated nematode management remains one of the 

most important tools for rootknot nematode management (Haydock et al, 2006). Biocontrol 

agents are an economically feasible and safe alternative for the management of rootknot 

nematodes. Trichoderma spp. and Bacillus spp., among other biocontrol agents, have been 

found to be effective against plant parasitic nematodes (Haydock et al, 2006; Shennawy et al, 

2012). 

 

Trichoderma spp. have been found to have nematicidal properties as well as the ability to 

antagonise phytopathogenic fungi (Yobo et al, 2010; Affokpon et al, 2011; Elgorban et al, 

2014). Trichoderma isolates are readily isolated from the soil and roots of plants in diverse 

habitats (Druzhinina et al, 2011), produce numerous conidia and readily colonise the root zone 

of most plants (Harman et al, 2004; Verma et al, 2007; Vinale et al, 2008). Several Trichoderma 

isolates are registered as bionematicides across the globe (Woo et al, 2014). However, only one 

isolate is currently registered in South Africa as a bionematicide, on carrot and citrus (Croplife, 

2015). Most of these Trichoderma-based bionematicides are restricted to inundative 

applicationsthat are costly because large quantities of product have to be applied in order to 

treat the entire volume of soil in which crop roots will be found, and nematodes could be 

present. Development of seed treatments of bionematicides is currently being pursued by the 

global agrochemical industry as a more cost effective, targeted approach.  

 

Bacteria that are rhizosphere competent or can colonise the rhizosphere are commonly referred 

to as rhizobacteria (Sikora et al, 1992). Globally, research into the use of plant growth 

promoting rhizobacteria has increased greatly and they have gained importance in agriculture 

(Figueiredo et al, 2011). Many of these rhizobacteria also supress plant diseases (Siddiqui et al, 

2009). Metabolites produced by some Bacillus isolates have been found to be nematicidal and 

to reduce nematode damage to plants. Bacillus isolates survive extended periods of extreme 

environmental conditions by producing endospores. This attribute gives them extended shelf-

livesand makes them ideal for seed treatments. This study sought to evaluate the efficacy of 
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Trichoderma and Bacillus isolates, previously evaluated in the greenhouse, against M. 

javanicawhen applied as seed treatments to soybean in field trials.  

 

5.2 Materials and methods 

A field experiment was conducted during the December/April 2013/2014 season at Ukulinga 

research farm, a facility of KwaZulu-Natal University, Pietermaritzburg, South Africa 

(29°24´E; 30°24´S). Soils at the site are classified as Westleigh form (Table 5.1).  

 

Table 5.1 Soil physical and chemical properties for field trial. 

pH % Clay Total cations 
cmol.L-1 

% Acid saturation %Organic 
Carbon 

4.44 37 16.84 1 2.9 

 

5.2.1 Nematode inoculum, biocontrol agents and seed source 

Inoculum of Meloidogyne javanica was initially obtained from the Unit for Environmental 

Sciences and Management, North West University, Potchefstroom, South Africa, and 

maintained on tomato (Solanum lycopersicum L.) cv. Moneymaker. Afield infestation was 

established by inoculating the respective plots with freshly chopped, infested tomato roots. The 

infested roots were evenly spread in the planting furrows. Soybean seeds were treated with 

biocontrol agents as described in Chapter 3. The Round-up Ready soybean cultivar, 

DM5953RSF, used in this study was obtained from Pannar Seeds (Pty) Ltd, Greytown. 

 

5.2.2 Nematode assessments 

At 110 days after planting the roots and rhizosphere of 5 plants per plot per treatment were 

sampled. Roots and soil from each treatment were thoroughly combined, a 200 cm3 soil sub-

sample and a 50 g plant root sub-sample was obtained, after which the samples were stored at 

4°C until nematode extraction. Nematodes were extracted from the soil following the decanting 

and sieving method (Hooper et al, 2005), followed by a modified Baermann tray method 

(Hooper et al, 2005). Nematodes (eggs and J2) were also extracted from 1g root samples 

following maceration of 1 cm root pieces in 0.5% NaOCl (Hooper et al, 2005). The resulting 

suspension was then washed through a series of sieves (1000 µm, 330 µm, 190 µm, 100 µm 
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and 38 µm) with eggs and J2s being collected from the bottom sieve (38 µm). Galling severity 

was assessed on a scale of 0 – 8 (Daulton and Nusbaum, 1969) where: 0 = free of galls; 1 = 

trace, less than 5; 2 = 6-25 galls; 3 = 26-100 galls; 4 = moderate, gall numerous, mostly discrete; 

5 = moderately heavy, numerous, many coalesced; 6 = heavy, galls very numerous, coalesced, 

root growth slightly retarded; 7 = very heavy, mass invasion, slight root growth; 8 = extremely 

heavy, mass invasion, no root development.  

 

5.2.3 Yield assessments 

Yield assessments were done by weighing of plant shoots at 110 days after planting and seed 

weight at harvest. The shoots from 5 plants per plot per treatment and seed from 10 plants per 

plot per treatment were oven dried at 70°C for 3 days before weighing. Percent yield loss 

increase/decrease was calculated for each treatment using the equation: {(mean yield of treated 

plots/yield of Control) × 100} – 100. 

 

5.2.4 Trial design, layout and data analysis 

The experimental design was a randomised complete blocks design laid out in a split plot 

arrangement. There were two factors in the main plot, rootknot nematode inoculation and no 

rootknot nematode inoculation. There were 9 subplot factors: Control (no sticker), Control 

(with carboxymethyl cellulose CMC sticker), EcoT®, Isolate C29, Isolate C59, Isolate C63, 

Isolate C97, Isolate C97+EcoT® and Isolate BC27. Inter-row and intra-row spacing were 10cm 

and 45 cm, respectively, and each plot consisted of four rows with 10 plants each. There were 

three replications for each treatment. Data was subjected to analysis of variance (ANOVA) 

using SAS 9.3 and means were separated using Duncan’s multiple range test. 

 

5.3 Results 

5.3.1 Nematode assessments 

The overall mean score for the galling in soybean plants was less than 2; on the scale of 0 – 8 

which translates to between 5 and 25 galls. Seed treatments with both Trichoderma and Bacillus 

isolates caused a significant decrease in both galling severity and nematode counts, when 

compared with the Control (Table 5.2). Treatment with a combination of Isolates EcoT®+C97 

caused the greatest reduction in gall severity (56%). The biocontrol agent EcoT® on its own 

reduced gall severity by 44% while the Bacillus isolate BC27 reduced galling by 38%. 
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Table 5.2 Rootknot nematode data for soybean plants treated with biocontrol agents in both 
nematode infested and non-nematode infested plots 

Treatments Galling index Eggs and J2 counts 
in roots 

J2 counts in 
soil 

Control  0.1f 15g 10e 
Control (Sticker) 0.0f 10g 5e 
EcoT® 0.0f 0g 0e 
C29 0.0f 5g 4e 
C59 0.0f 12g 10e 
C63 0.0f 4g 0e 
C97 0.0f 0g 0e 
C97+EcoT® 0.0f 0g 0e 
BC27 0.0f 0g 0e 
Control + M. javanica 1.6ab 740a 221b 
Control (Sticker) + M. javanica 1.8a 646b 269a 
EcoT® + M. javanica 0.9cde 405d 136c 
C29 + M. javanica 0.8de 183f 119c 
C59 + M. javanica 1.0cd 492c 252ab 
C63 + M. javanica 1.1c 430cd 287a 
C97 + M. javanica 1.4b 318e 152c 
C97+EcoT® + M. javanica 0.7e 281e 85d 
BC27 + M. javanica 1.0cd 157f 149c 
 F=48.99 

P≤0.0001 
CV=27.09 
 

F=109.54 
P≤0.0001 
CV=19.87 
 

F=82.50 
P≤0.0001 
CV=21.49 
 

gMeans of 3 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 

 

All treatments caused a significant reduction in the J2 and egg counts in soybean roots when 

compared to the nematode inoculated Control. All other isolates, except Isolates C59 and C63, 

caused significant reductions in the nematode counts in soil. There were insignificant rootknot 

nematode juvenile populations in the un-infested plots. Other plant parasitic nematode genera 

were encountered in the un-infested plots but the populations were also insignificant. 

 

5.3.2 Yield assessments 

Seed treatment of soybean with Trichoderma and Bacillus isolates did not have a significant 

effect on either dry shoot weight or seed weight (Table 5.3). However, seed treatment with the 

Bacillus Isolate BC27caused the greatest increase in shoot weight in plots not inoculated with 

nematodes. On the other hand, the greatest reduction in shoot weight was observed in Control 

plots where the seed was only treated with a carboxymethyl cellulose sticker. 
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Table 5.3 Soybean shoot weight and grain yield for soybean treated biocontrol agents, and 

planted in both nematode infested and non-nematode infested plots 

Treatments Shoot 
weight (g) 

Yield increase (+)/ 
Yield decrease(-1) 

Seed weight 
(g) 

Yield increase (+)/ 
Yield decrease (-1) 

Control  113.3 - 653.9 - 
Control (Sticker) 93.7 -17.3 651.0 -0.4 
EcoT® 124.3 +9.7 780.4 +19.4 
C29 117.8 +4.0 699.1 +6.9 
C59 105.7 -6.7 566.8 -13.3 
C63 83.0 -26.7 587.8 -10.1 
C97 105.6 -6.7 568.3 -13.1 
C97+EcoT® 110.4 -2.6 597.5 -8.6 
BC27 127.2 +12.3 666.9 +2.0 
Control + M. jav 118.7 +4.8 529.3 -19.1 
Control (Sticker) + M. jav 96.9 -14.5 550.2 -15.9 
EcoT® + M. jav 122.0 +7.7 766.8 +17.3 
C29 + M. jav 109.5 -3.4 640.8 -2.0 
C59 + M. jav 106.5 -6.0 700.9 +7.2 
C63 + M. jav 116.5 +2.8 726.7 +11.1 
C97 + M. jav 107.1 -5.5 671.4 +2.7 
C97+EcoT® + M. jav 114.2 +0.8 571.9 -12.5 
BC27 + M. jav 113.3 0 628.0 -4.0 
 P = 0.524 

CV=34.49 
F = 29.54 

 P = 0.84 
CV=21.80 
F = 0.64 

 

gMeans of 3 replications followed by the same letters in the same column are not significantly different at P < 
0.0001 based on Duncan’s multiple range test. 

 

Seed treatments with EcoT® caused an increase in seed weight of 17.3% in nematode infested 

plots and 19.3% in un-infested plots. Overall, small increases in yield parameters were observed 

in this study, even under nematode infestation. 

 

5.4 Discussion 

In this study one Bacillus isolate (BC27), four Trichoderma isolates (C29, C59, C63 and C97), 

a registered Trichoderma-based biocontrol agent (EcoT®) and a combination of EcoT® and 

C97 all caused reductions in galling severity when compared with the Control. Seed treatment 

with EcoT®+C97 caused the greatest reduction in galling severity, followed by Isolate C29. 

All the test isolates caused a reduction in egg and J2 counts in the roots, and J2’s in the soil. 

However, none of the seed treatments with biocontrol agents caused a significant yield increase. 
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The results of the nematode assessments in this study confirmed the results obtained in two 

glasshouse studies using the same isolates (Chapter 2). Oyekanmi et al (2007) found an isolate 

of Trichoderma pseudokoningii Rifai to cause a reduction in galling severity when the isolate 

was applied to soybean seedlings prior to planting in the field. Similarly, Olabiyi et al (2013) 

found field applications of Trichoderma Isolate T22 to reduce rootknot nematode population 

when applied to soybean plots. Seed treatment using Trichoderma isolates has been found to 

cause a significant reduction in root galling severity on chickpea (Cicer arietinum L.) (Haseeb 

and Kumar, 2012), cowpea (Vigna unguiculata [L.] Walp)(Nama et al, 2015), cucumber 

(Cucumis sativus L.) (Yan et al, 2011) and okra (Abelmoschus esculentus (L.) Moench) (Lal 

and Rana, 2013). Multiple modes of action have been cited in various studies as being the basis 

for the nematicidal abilities of Trichoderma isolates (Verma et al, 2007). Zhang et al (2015) 

reported that the conidia of TrichodermalongibrachiatumRifai adhered to and parasitised the 

surface of juveniles, thereby deforming or completely dissolving them, and attributed this to 

excreted proteases. Although there are few studies on seed treatment of soybean with bacterial 

isoaltes other studies have also found other Bacillus isolates to control rootknot nematodes in 

field trial with other crops (Chen et al, 2000; Abd-El-Khair and El-Nagdi, 2014; Flor-Peregrínet 

et al, 2014).  

 

However, seed treatments did not cause any significant yield differences in this study, contrary 

to results obtained in prior glasshouse trials (Chapter 2). Although seed treatments with isolates 

such as EcoT® caused a yield increase of 17.3% in nematode infested plots, the yield increase 

was not significant. Other studies, however, have found the use of Trichoderma and Bacillus 

isolates to cause an increase in yield parameters under nematode infestation (Le et al, 2009; 

Radwan et al, 2012; Shennawy et al, 2012; Jamshidnejad et al, 2013; Elgorban et al, 2014; 

Zhang et al, 2014). The low nematode counts and galling severity observed here may suggest 

that the cultivar used in this study is not highly susceptible to M. javanica, or the environmental 

conditions were not conducive for nematode infection. In addition, there was a large variation 

in yield parameters as evidenced by the low R-square values (R2 = 0.31 for shoot weight and 

R2 = 0.23 for seed weight). Spatial and temporal replication of the trial, especially in sandy soils 

and with a higher initial nematode density, may be required to elucidate more measurable yield 

responses to the treatments. The high clay content in soils used in this experiment are not 

favourable for nematode multiplication and hence could have contributed to the low level of 

damage observed. The sticker used in this study (CMC) resulted in lower yields. This also, may 
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have hindered the efficacy of the bionematicides used in this study. The inoculum level and 

inoculation method in this study may also have contributed to lower damage. This becomes 

apparent when the results obtained in this study are compared to the glasshouse experiments.  

 

Further work on these and other bionematicides, especially as seed treatments, is important as 

evidenced by the interest shown by major pesticide companies, which have been acquiring 

companies marketing these products in the last ten years. In 2009 the global pesticide market 

was estimated at USD 43 billion, with estimates of 5 – 8% growth per annum.Of this market, 

USD 1.6 billion is estimated to be spent on bionematicides (Tranier et al, 2014). Though the 

major proportion of this amount is accounted for by major pesticide companies, smaller 

companies in developing countries have started to develop bionematicides. For crops such as 

soybeans for which the use of nematicides is uneconomical, the use of bionematicides as seed 

treatments, especially when combined with host plant resistance, may offer a cost effective and 

sustainable nematode management option.  
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CHAPTER SIX 

SCREENING OF TRICHODERMA ISOLATES AGAINST 

RHIZOCTONIA SOLANI (KÜHN)-MELOIDOGYNE JAVANICA 

(CHITWOOD) 

ROOT-ROT DISEASE COMPLEX OF SOYBEAN 
 

Abstract 

The biocontrol potential of five Trichoderma strains was evaluated in laboratory and 

greenhouse studies against Rhizoctonia solani and Meloidogyne javanica. Four biocontrol test 

isolates (EcoT®, C29, C59 and C63) were highly inhibitory to R. solani mycelial growth. 

Isolates C29 and C63 completely overgrew the R. solani on solid media. Seed treatment of 

soybean with the four Trichoderma strains (EcoT®, C29, C59 and C63)caused a significant 

increase in seedling survival and shoot mass (P≤0.0001), while reducing the number of galls in 

the glasshouse. Seed treatment with Isolate C97did not causea reduction in galling and seedling 

survival, and shoot mass was comparable with the inoculated Control.  

 

6.1 Introduction 

Soybean is a major crop in many countries (Wrather et al, 2001) and remains one of the most 

valued oilseed crops in the world (Singh and Shivakumar, 2010). Soybean production, however, 

is affected by soil borne pathogens, which include rootknot nematodes (Sikora et al, 2005; 

Oyekanmi et al, 2007; Oyekanmi and Fawole, 2010) and damping off diseases (Wrather et al, 

2001; Singh and Shivakumar, 2010). Soybean infestation with rootknot nematodes may also 

predispose the plant to infection by other plant pathogens such as Rhizoctonia solani (Kühn) 

(Whitehead, 1998). 

 

Management of plant disease complexes is usually difficult, and although chemical control 

options exist, reduction of one pathogen may not necessarily resolve the problem of the disease 

interaction (Back et al, 2002). Nematicide and fungicide use for the control of nematodes and 

soil borne pathogens, especially in soybean, is not ideal because of costs, environmental 

contamination and toxicity (Mahdy et al, 2006; Fourie et al, 2015). Microbial agents, 

endophytes and antagonists offer a more sustainable approach to the management of both plant 
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parasitic nematodes and soil borne pathogens in various crops (Kerry, 2001; Hallman et al, 

2009). Among these, a number of bacterial isolates and fungal isolates have shown potential as 

nematode antagonists (Akhtar and Malik, 2000). 

 

Isolates of species belonging to the filamentous ascomycete genus Trichoderma have been 

found to be effective biocontrol control agents (Benítez et al, 2004; Vinale et al, 2008; 

Druzhinina et al, 2011). Various Trichoderma isolates reduce rootknot nematode damage in 

many crop plants (Sahebani and Hadavi, 2008; Affokpon et al, 2011; Radwan et al, 2012;Yobo 

et al, 2013; Zhang et al, 2014) and some isolates also cause a reduction in Rhizoctonia solani 

incidence and damage to various plants (Montealegre et al, 2014; Singh et al, 2014). Some 

Trichoderma isolates have also been found to control the rootknot-root rot disease in soybeans 

(Mahdy et al, 2006). Trichoderma isolates are suitable as biocontrol agents because of their 

ability to rapidly colonise the rhizosphere, produce numerous spores, and to release wide range 

of enzymes, since the bulk of plant parasitic nematodes are found in this zone (Harman et al, 

2004; Verma et al, 2007; Vinale et al, 2008; Zhang et al, 2014). 

 

This study was aimed at evaluating the efficacy of Trichoderma isolates against the disease 

complex caused by rootknot nematodes, Meloidogyne javanica (Chitwood), and a root-rot 

fungus, Rhizoctonia solaniKühn, on soybean.  

 

6.2 Materials and methods 

6.2.1 Pathogens and inoculum preparation 

Meloidogyne javanica inoculum was initially obtained from the Unit for Environmental 

Sciences and Management, North West University, Potchefstroom, South Africa, and 

maintained on tomato (Solanum lycopersicum L.) cv. Moneymaker. Three week old seedlings 

grown on composted bark were inoculated with second stage juveniles (J2) and maintained in 

the glasshouse at 25 ± 2°C. At least four weeks after inoculation, or when inoculum was 

required, tomato roots were uprooted, washed with tap water to remove attached soil and 

chopped into 2-5 cm pieces.  
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Rhizoctonia solani was obtained from theUKZN Plant Pathology Culture Collection Accession 

code: UKZNPPRS1and maintained on PDA. Fungal inoculum for glasshouse trials was 

obtained by culturing the isolate on barley seeds. Barley seeds (150g) were soaked overnight in 

water in a 1L Erlenmeyer flask before they were sterilised for two consecutive days for 15 

minutes at 121°C. The seeds were then inoculated with R. solani mycelial plugs and incubated 

at 25-28°C for 7 days. The contents of the flasks were then air-dried and kept in sterile bags 

before inoculation.  

 

6.2.3 Source of Trichoderma isolates 

Five Trichoderma isolates, four of them isolated from the root-zone of field plants and animal 

pasture, and one registered for the control of phytopathogens (EcoT®) were used in this study. 

The isolates used in this study were previously identified as T. spirale(Isolates C59 and C63),T. 

harzianum(Eco-T® and Isolate C29) and T. virens(Isolate C97).  

 

6.2.4 Dual culture assay 

The antagonistic potential of the Trichoderma isolates was evaluated by dual culture assay on 

90mm petri dishes with PDA (Yobo et al, 2005). Bioassays were performed by placing 

colonised 4mm agar blocks of a selected Trichoderma isolate and the pathogen on PDA. The 

plugs were placed 4cm apart on opposite sides of a 9cm Petri dish. Three replications were used 

and the bioassay was repeated three times and the plates were incubated in the dark at 28°C for 

5 days. Controls for the Trichoderma isolates and the pathogen were set up on PDA. 

 

After incubation for 5 and 7 days, respectively, the dual culture plates were assessed for 

antibiosis, antagonism and/or invasion potential. The degree of antagonism of each isolate 

towards R. solani was rated according to Bell et al. (1982) on a scale of 1–5; 

1 = Trichoderma completely overgrew R. solani and covered the entire medium surface; 

2 = Trichoderma overgrew at least two thirds of the medium surface; 

3 = Trichoderma and R. solani each colonised at least approximately one-half of the medium 

surface and neither organism appear to dominate each other; 
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4 = R. solani colonised at least two-thirds of the medium surface and appear to withstand 

encroachment by Trichoderma; 

5 = R. solani completely overgrew the Trichoderma and occupied the entire medium surface. 

Trichoderma isolates with a mean score ≤ 2 were considered to be highly antagonistic, 

otherwise not highly antagonistic.  

 

6.2.5 In vivo screening of Trichoderma isolates on R. solani-M. javanica root disease 

complex 

Soybean seeds were surface sterilised by rinsing them in 3% sodium hypochlorite for 5 mins, 

then rinsing them in sterile distilled water five times. A fungal spore-sticker suspension was 

made up by adding 1.0 g of carboxymethyl cellulose (CMC) to 50 ml of a conidial suspension 

(108 ml-1) in a 200 ml flask. The suspension was shaken (150 rpm) in a rotary shaker (Model 

GFL 3005, Labortechnik, Germany). A batch of 120 seeds were added to each flask and allowed 

to soak in the spore-sticker suspension for about an hour with constant swirling. The treated 

soybean seeds were then air-dried in petri dishes under laminar flow overnight (16 – 18 hrs) 

(Yobo et al, 2010).  

Ten soybean seeds were planted in the middle of 12 cm diameter pots filled with composted 

pine bark (Potting Mix, National Plant Foods, Camperdown, South Africa) and maintained in 

the glasshouse with uniform irrigation and fertigation. The media in each pot was pre-inoculated 

and evenly mixed with 5 g of 1-2 cm root pieces infested with nematodes and 10 R. solani 

infested barley seeds. Each treatment was replicated three times. The trial was terminated at 4 

weeks after nematode inoculation. The plants were washed free of adhering soil and shoot 

weights and number of galls assessed.  

 

6.2.6 Statistical analysis 

Data was subjected to analysis of variance (ANOVA) using SAS 9.3 and means were separated 

using Duncan’s multiple range test. 
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6.3 Results 

6.3.1 In vitro assays 

Mycelial growth inhibition varied among the Trichoderma test isolates (Table 6.1). Isolates 

C29 and C63 caused maximum inhibition of R. solani mycelial growth (Fig 6.1). These isolates 

(C29 and C63) caused complete replacement of R. solani mycelia after an initial deadlock. 

EcoT® and Isolate C59 caused partial replacement of R. solani mycelia after an initial deadlock 

while Isolate C97 did not cause replacement after an initial deadlock. 

 

Table 6.1 In vitro antagonism of Trichoderma isolates to R. solani 

 

 

Fig 6.1 Interactions between Trichoderma isolates and Rhizoctonia solani on PDA at 25°C 

 

NB: All Trichoderma isolates growing from left to right and R. solani from opposite direction. 

 

Isolate Bell rating Invasion ability Antibiosis 

EcoT® 3 2 + 

C29 3 1 + 

C59 3 2 + 

C63 2 1 + 

C97 3 3 _ 
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All the five Trichoderma isolates under evaluation, including the commercial biocontrol agent 

EcoT®, caused a significantreduction in the number of galls and caused an increase in  seedling 

survival and shoot weight compared to the Control (P < 0.001) (Table 6.2). Furthermore, 

amongst the Trichoderma isolates, Isolate 63caused the greatest reduction in nematode damage 

while Isolate C97 caused the least reduction.  

 

Table 6.2 Biological control of the rootknot nematode and root-rot disease complex on 

soybean 

Isolate % Survival Fresh weight Number of galls 

Un-inoculated 

Control 

90.0a 11.03a 0e 

Inoculated Control  

(M. jav + R. sol) 

43.3cd 4.76e 115.0a 

EcoT® 56.7bc 6.19d 89.2b 

C29 60.0bc 6.52cd 81.8b 

C59 70.0ab 7.48c 63.3c 

C63 70.0ab 9.61b 49.7d 

C97 40.0d 4.80e 120.0a 

 F=8.16 
P≤0.0006,  
CV=18.75 

F=8.16 

P≤0.0001,  

CV=18.75 

F=8.16 

P≤0.0001,  

CV=18.75 

 

6.4 Discussion 

Plants are exposed to many pathogens, and their roots usually harbour many diverse 

microorganisms whose combined action causes significant damage (Karsen and Moens, 2007). 

Many nematode-fungus disease complexes involve rootknot nematodes, although other 

nematode species maybe involved (Back et al, 2002). Management of nematode-fungal disease 

complexes is complicated because management options are often effective on only one 

pathogen. The rootknot and root-rot disease complex caused by the rootknot nematode,M. 

javanica, and the root-rot fungus,R. solani,hasreceived significant attention in many crops 

including soybean (Agu 2002; Mahdy et al, 2006; Safiuddin and Shahab, 2012; Rizvi et al, 

2015). Management of nematodes and nematode-fungi disease complexes on soybean using 

chemical control options is not feasible because of cost implications. The use of bionematicides 
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and biocontrol agents to manage phytopathogens offers a more cost effective, less toxic and 

more environmentally friendly option, especially for low value crops such as soybeans. 

 

In this study, five Trichoderma strains were evaluated for their in vitro antagonism to R. solani 

as well as their effectiveness in controlling the rootknot and root-rot disease complex on 

soybean. Of these, four strains (C29, C59, C63 and EcoT®) were found to be highly 

antagonistic to R. solaniin vitro. Isolates C29 and C63 also caused maximum inhibition of R. 

solani mycelial growth with complete replacement of R. solani mycelia after an initial deadlock. 

Research elsewhere has also shown the ability of otherTrichoderma strains to inhibit the growth 

of R. solani mycelia in vitro to varying degrees (Parizi et al, 2012; Olabiyi and Ruocco, 2013; 

Montealegre et al, 2014; Kotasthane et al, 2015). Unpublished results also found the four 

Trichoderma strains were also highly antagonistic in vitroto pathogenic strains of two other 

fungal pathogens, Alternaria solani (Ellis and G. Martin) L.R. Jones and Grout and Fusarium 

solani (von Martius)Saccardo.  

 

In the glasshouse, sowing soybean seed into pine bark media pre-inoculated with R. solani and 

M. javanica resulted in poor germination, poor survival, reduced shoot weight and significantly 

higher galling in the inoculated Control. Seed treatment with all the Trichoderma isolates, 

except C97, improved soybean seedling survival, increased shoot weight and caused a reduction 

in galling when compared to the inoculated Control. Isolates C29 and C63 caused the greatest 

reduction in galling, and the greatest shoot weight and seedling survival. Biocontrol agent 

EcoT® combined with Isolate C59 also caused a significant increase in shoot weight and a 

reduction in galling. Mahdy et al (2006) also found seed treatment with a Trichoderma isolate 

caused an increase in seedling survival while reducing galling and disease severity in soybean. 

Trichoderma isolates have also been found to cause a reduction in rootknot and root-rot disease 

severity in other crops (Siddiqui et al, 1999; Bano et al, 2011). However, pine bark media 

favours the growth of saprophytic antagonists and hence may not represent ideal field 

conditions. 

 

This study demonstrated the potential of four test Trichoderma strains to provide protection 

from two soybean pathogens, R. solani and M. javanica. Seed treatment with 
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Trichodermastrains may therefore offer a cost effective means of disease management in 

soybean, especially when used in combination with host plant resistance. The compatibility of 

these strains with commonly used agrochemicals such as fungicides to control soybean rust and 

their efficacy and reproducibility in field trials need to be evaluated further. Full registration 

processes would have to be followed before a nematicidal biocontrol product could be released 

to farmers. 
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A Thesis Overview: 

Major Findings and Their Implications 

 

Introduction 

Plant parasitic nematodes are a major constraint affecting crop production, especially in the 

tropics. Among the various groups of plant parasitic nematodes, rootknot nematodes 

(Meloidogyne spp.) are the most important nematode genera globally affecting most crop plants 

and resulting in significant yield losses. Rootknot nematodes, Meloidogyne spp., which are 

widely distributed in the tropics and subtropics, attack almost every species of higher plants 

and are the most damaging nematode genus globally (Sasser, 1980; Onkendi et al, 

2014).Various approaches are being used for the management of plant parasitic 

nematodes,including chemical, physical, cultural methods and host plant resistance. However, 

pressure to reduce the use of chemical nematicides because of health and environmental 

concerns, and the shortage of nematode resistant germplasm has led to the development of 

antagonistic micro-organisms as biological control agents to these pests. Some of the most 

promising isolates that have been utilised and registered as biocontrol agents against rootknot 

nematodes belong to the genera Trichoderma and Bacillus.  

 

The majority of the research and development of bionematicides havelargely been based on an 

inundative application in both controlled environments and in the field. However, relatively 

few isolates havebeen tested successfully in the field as seed dressing. Although inundative 

approaches, especially drenches, have been successful in greenhouse and field trials, the amount 

of biocontrol inoculum required to treat large commercial fields, the costs and the technology 

involved are their major limiting factor (Athman et al, 2006; Viaene et al, 2006; Sikora et al, 

2007). The success of commercial bionematicides has largely depended on effective 

formulations capable of persisting in the rhizosphere to protect plants in the early growth 

phases. 

 

The present research was therefore undertaken with the overall objective of developing seed 

treatments usingTrichoderma and Bacillus based biocontrol agents for the management of M. 

javanica. Consequently, the research focused on: 1) Isolation, in vitro and in vivo screening of 
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Bacillus isolates against M. javanica; 2) Isolation, in vitro and in vivo screening of 

Trichodermaisolates against M. javanica; 3) The evaluation of the efficacy of soybean seed 

treatments with selected biocontrol agents on M. javanica damage and crop yield; 4) The 

evaluation of the efficacy of tomato seed treatments with selected biocontrol agents to reduce 

M. javanica damage and to increase crop yield; 5) To screen Trichoderma isolates against the 

M. javanica and Rhizoctonia solani disease complex of soybean. This overview presents a 

summary of the major findings and implications thereof.  

 

Chapter 2: Biological control of the rootknot nematode, Meloidogyne javanica 

(Chitwood) using Bacillus isolates, on soybean. 

Major findings 

 Five out of 70 bacterial isolates from the root-zone of crops and goat pasture grasses 

caused second stage juvenile (J2) mortality greater than 50% in vitro after 24 hours. 

 Three of the five selected isolates (BC27, BC29 and BC31), which were isolated from 

the rootzone of grass in a goat pasture, caused J2 mortality greater than 80% at 108 

spores ml-1in vitro after 24 hours, with BC27 causing 100% J2 mortality after 3 hours.  

 Seed treatment of soybean with Isolates BC27 and BC29 caused a reduction in rootknot 

galling and egg mass counts (P≤0.0001) and also caused a significant increase in shoot 

weight (P≤0.0001), when compared to an inoculated Control. 

 Blast analysis revealed that the two selected isolates, BC27 and BC29, exhibited similar 

sequences to Bacillus spp. T2 and Bacillus spp. KT18, listed on the Gen-Bank, 

respectively. 

Implications 

 A small proportion of bacterial isolates associated with the root-zone of plants have 

potential bionematicidal properties. 

 Seed treatment of soybean, as opposed to inundative application of biocontrol agents, 

may offer a more cost effective, farmer and environmental friendly method of 

application of biocontrol agents. 

 Members of the genus Bacillus are potential bionematicides and in the spore form have 

long shelf lives. 
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Chapter 3: Biological control of the rootknot nematode, Meloidogyne javanica 

(Chitwood) using Trichoderma isolates on soybean. 

 

Major findings 

 11 out of 111 Trichoderma strains isolated from the root zone of field crops and animal 

pastures caused J2 mortality greater than 50% after 24 hours. 

 Five Trichoderma isolates, including a commercial Trichoderma strain (EcoT®), 

caused a significant reduction in the number of galls and egg masses when applied as 

seed dressing on soybean (P≤0.0001). All the test isolates also significantly increased 

fresh shoot weights of soybean plants when compared to the inoculated Control  

(P≤0.0001). 

 Isolate C29 caused the greatest reduction of galling and caused the greatest increase in 

shoot weight. 

 Blast analysis revealed that the four selected isolates,C29, C59, C63 and C97, exhibited 

similar sequences to T. harzianum, T. spirale, T. spirale and T. virens,respectively, as 

listed on the Gen-Bank.  

 Isolate C29 was isolated from a tobacco plant root zone, C59 from a sweet pepper plant 

root zone, C63 from a sheep pasture and C97 from a goat pasture.  

Implications 

 Only 10% of test Trichoderma isolates from the root zone of field crops and animal 

pastures were found to sporulate well and cause mortality greater than 50%. 

 The root zone of field plants and animal pastures harbour a reservoir of biocontrol 

agents that can be utilised for the control of plant parasitic nematodes. 

 Seed treatment with Trichoderma isolates offers good prospects for the management 

of plant parasitic nematodes because of their versatility and ease of production.  
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Chapter 4: Use of Trichoderma and Bacillus isolates to protect tomato plants grown in 

soil infested with Meloidogyne javanica (Chitwood) 

 

Major findings 

 Seed treatment of tomato with Trichoderma and Bacillus isolates before transplanting 

into soil infested with rootknot nematode caused a significant decrease in both gall 

severity and nematode counts in the soil and roots when compared to the inoculated 

Control. 

 Seed treatment with Trichoderma strains C29 and EcoT®+C97 caused the greatest 

reductions in gall severity of 45% and 40%, respectively. 

 Seed treatment of tomato with Trichoderma and Bacillus isolates before transplanting 

also caused a significant increase in yield when compared to the inoculated Control. 

 The greatest yield increase was observed in nematode infested plots planted to C29 

treated seed with an increase of 66%. 

Implications 

 Seed treatment of tomato with Trichoderma and Bacillus offers a cost effective 

alternative to nematicide use. 

 Trichoderma isolates C29, EcoT® and EcoT®+C97 can be considered for use as 

bionematicides after evaluation for consistency of results, both spatially and 

temporally.  

 EcoT®is a registered biocontrol agent for the control of other phytopathogens and 

hence its role for the management of a wide range of pathogens is ideal, especially in 

Integrated Pest Management. Given that it is already registered for other biocontrol 

uses, its registration would be relatively quick. 

 The yield increase caused by seed treatments with Trichoderma isolates, when 

combined with tolerant and resistant cultivars, may justify the reduction or 

replacement of nematicides, especially in fields with low initial nematode densities.  
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Chapter 5: Use of Trichoderma and Bacillus isolates as seed treatments to protect 

soybean plants grown in soil infested with Meloidogyne javanica (Chitwood) 

 

Major findings 

 Seed treatment of soybean with fiveTrichoderma and one Bacillus isolate before 

transplanting into soil infested with rootknot nematode caused a significant 

decrease in both gall severity and nematode counts in the soil and roots when 

compared to the inoculated Control. 

 Seed treatment with Trichoderma strains EcoT®+C97 caused the greatest 

reductions in gall severity of 56%. 

 However, seedtreatment of soybean with all test isolatesdid not cause a significant 

increase in yield in soybean when compared to the inoculated Control. 

Implications 

 All the testTrichoderma isolates can be considered as candidates for 

commercialisation as bionematicides on soybeans after evaluation for consistency 

of results both spatially and temporally.  

 EcoT®, a registered biocontrol agent,may give an advantage over the other 

Trichoderma isolates because it has already been found to be compatible with 

soybean Rhizobium spp. and has passed the regulatory hurdles as a biocontrol agent 

of root diseases. 

 The potential of the novel Trichoderma isolatesto enhance crop yields needs to be 

further evaluated in field trials. 

 

Chapter 5: Screening of Trichoderma isolates against Rhizoctonia solani (Kühn)-

Meloidogyne javanica (Chitwood) root-rot disease of soybean. 

 

Major findings 

 Four test isolates (EcoT®, C29, C59 and C63) were found to be highly inhibitory 

to R. solani mycelial growthin vitro. 
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 Seed treatment of soybean with the four Trichoderma strains (EcoT®, C29, C59 

and C63) caused a significant increase in seedling survival and shoot mass 

(P≤0.0001) while reducing the number of galls in the glasshouse when compared 

to the inoculated Control. 

 Seed treatment with Isolate C97, however, did not cause a reduction in galling and 

seedling survival, and shoot mass was comparable to the inoculated Control. 

Implications 

 Four test Trichoderma isolates (EcoT®, C29, C59 and C63) were effective in 

suppressing R. solani mycelial growth and hence could be used for its control. 

 The four test isolates could be used for the management of the R. solani-M. 

javanica disease complex on soybean. 

 Extensive field trials needs to be conducted to confirm their efficacy and the return 

on investment for farmers applying Trichoderma to soybean seed. 
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