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ABSTRACT 

Introduction 

Prediabetes is an abnormal glycaemic state between normoglycaemia and chronic hyperglycaemia 

which is currently prevalent in developing and developed countries due to increased consumption of 

high caloric diet coupled with sedentary lifestyle. Prediabetes is associated with abnormal glucose 

metabolism. Additionally, the risk of developing prediabetes-associated complications such as non-

alcoholic fatty liver disease (NAFLD), cardiovascular and renal diseases is not only present in overt 

diabetes mellitus but also in prediabetes. Management of prediabetes involves the combination of 

dietary and pharmacological interventions, however there is reported low compliance among patients 

as they tend to become overly dependent on the pharmacological interventions. Consequently, the 

pharmacological intervention efficacy is reduced as patients still progress to having overt diabetes. 

Therefore, managing prediabetes with anti-diabetic agents that will remain effective even in the absence 

of dietary intervention is considered necessary. Triterpenes have been found to have potential as anti-

diabetic agents. Bredemolic acid (BA), a pentacyclic triterpene, has been reported to have increased 

biological activity relative to some other triterpenes. In this study, we sought to investigate the effects 

of BA on selected markers of some prediabetes-associated dysfunctions such as abnormal glucose 

homeostasis, hepatic, cardiovascular and renal dysfunctions in a prediabetic rat model in both the 

presence and absence of dietary intervention.  

Materials and Methods 

Thirty six (36) Sprague Dawley male rats that weighed 150 – 180g were divided into two groups: the 

non-prediabetic (n=6) and the prediabetic groups (n=30) which were fed a normal diet (ND) and high 

fat high carbohydrate (HFHC) diet respectively for 20 weeks to induce prediabetes. At 20th week, 

prediabetes was confirmed by assessment of fasting blood glucose (FBG) and oral glucose tolerance 

test (OGTT). The prediabetic rats were further sub-divided into five groups (n=6) and treated with either 

BA (80 mg/kg) or metformin (MET, 500 mg/kg) in the presence and absence of diet intervention for 12 

weeks. Every 4 weeks of treatment, all the animals were placed in metabolic cages to determine caloric 

and fluid intake as well as urine output. Also, the body mass index (BMI), waist circumference (WC), 

blood pressure and heart rate were measured at every 4 weeks of treatment. After the 12 weeks of 

treatment, the animals were sacrificed, blood samples were collected into EDTA sample bottles and 

centrifuged to obtain plasma. Also, the skeletal muscle, liver, heart and kidney were collected, weighed, 

snapped frozen with liquid nitrogen and stored at -80°C before the biochemical analysis of selected 

markers of glucose homeostasis, hepatic, cardiovascular and renal functions. 
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Results 

In the first study, the untreated diet-induced prediabetic rats had a significantly increased body weight, 

increased caloric intake, elevated glycated haemoglobin, increased ghrelin plasma concentration, 

decreased muscle glycogen concentration, insulin resistance and hyperinsulinaemia compared to the 

non-prediabetic rats. However, BA treatment with or without diet intervention ameliorated the body 

weight, caloric intake, glycated haemoglobin, muscle glycogen, glucose tolerance, plasma insulin and 

increased the expression of glucose transporter 4 (GLUT 4) in the skeletal muscle by comparison to the 

untreated prediabetic rats. 

Prediabetic induction in the second study resulted into elevated plasma concentration of liver enzymes, 

increased liver glycogen and triglyceride concentrations, increased oxidative stress in the liver and 

decreased sterol regulatory element binding protein (SREBP1c) by comparison to the non-prediabetic 

animals. Conversely, administration of BA with or without dietary intervention ameliorated liver 

functions by decreased oxidative stress, decreased liver enzymes, decreased liver glycogen and 

triglyceride as well as increased hepatic SREBP1c concentration in comparison to the untreated 

prediabetic animals. 

The results in the third study showed that the untreated prediabetic rats had a significantly increased 

body mass index (BMI), waist circumference (WC), blood pressure, heart rate, lipid profile, oxidative 

stress and inflammatory markers with significantly decreased endothelial nitric oxide synthase (eNOS) 

by comparison to the non-prediabetic control rats. On the other hand, the administration of BA with or 

without diet intervention improved cardiovascular functions by a decrease in BMI, WC, total 

cholesterol concentration, triglyceride concentration, blood pressure, heart rate, oxidative stress and 

inflammation with significant increase in eNOS plasma concentration in comparison to the untreated 

prediabetic rats. 

In the fourth study, the untreated prediabetic rats had a significantly increased fluid intake, urine output, 

sodium retention, potassium loss, aldosterone concentration, albuminuria, proteinuria, kidney injury 

molecule (KIM-1) and urinary podocin mRNA expression in comparison to non-prediabetic control and 

BA treated rats with or without diet intervention. Also, the untreated prediabetic rats presented increased 

albumin, total protein, urea, uric acid, creatinine and oxidative stress markers concentrations with a 

significant decrease in glomerular filtration rate (GFR). However, administration of BA with or without 

diet intervention attenuated oxidative stress, decreased urinary podocin mRNA expression and the 

aforementioned renal dysfunctions parameters. 

Conclusion 

This study showed that long term consumption of high caloric diet-induced prediabetes and resulted in 

abnormal glucose homeostasis, hepatic, cardiovascular and renal dysfunctions. Also, the results of this 

study showed that these dysfunctions are not only present during overt type 2 diabetes mellitus but 
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already present at the prediabetic stage due to insulin resistance or hyperinsulinaemia that triggered 

oxidative stress in the physiological systems that we examined in this study. However, due to 

amelioration of insulin resistance via improved insulin sensitivity and earlier reported antioxidant 

activities that are common to all pentacyclic triterpenes, administration of BA significantly ameliorated 

the prediabetes-associated dysfunctions (abnormal glucose homeostasis, hepatic, cardiovascular and 

renal dysfunctions) with or without diet intervention in the prediabetic stage. 
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CHAPTER 1 

Introduction and Literature Review 

1.0 Introduction 

Type 2 diabetes (T2DM) is a prevalent metabolic disorder in Africa and the death rate due to this disease 

is expected to double between 2016 and 2030 (Bos & Agyemang, 2013, WHO, 2016). Before the onset 

of type 2 diabetes mellitus, an individual may be in a prediabetic state. Prediabetes is a condition where 

fasting blood glucose concentrations are above the homeostatic range but below the threshold for 

diagnosis of T2DM (Tabak et al., 2012, Bansal, 2015). This stage is also characterized by impaired 

glucose tolerance and elevated glycated haemoglobin (Tabak et al., 2012, ADA, 2017, Brannick and 

Dagogo-Jack, 2018). As prediabetes progresses, prediabetic individuals are at risk of developing T2DM 

and predisposed to complications such as renal dysfunction, non-alcoholic fatty liver disease and 

cardiovascular diseases due to increased insulin resistance (Tabak et al., 2012, Edwards and Cusi, 2016, 

Melsom et al., 2016, Brannick et al., 2016). Presently, the combination of dietary and pharmacological 

intervention has been the main approach to prevent the progression of prediabetes to T2DM and the 

associated complications (Edward and Cusi, 2016, Brannick and Dagogo-Jack, 2018). Despite this 

approach, many prediabetic individuals continue to develop T2DM. Consequently, low patient 

compliance in using both dietary and pharmacological interventions as most patients only adhere to the 

pharmacological interventions has been reported (Ramachandran et al., 2006, Gamede et al., 2018, 

Glechner et al., 2018). This in turn leads to the efficacy of pharmacological intervention being reduced 

(Gamede et al., 2018). Therefore, there is a need for anti-diabetic agents with the ability to manage 

prediabetes even in the absence of dietary intervention. 

Currently, research on natural products such as triterpenes has gained recognition due to their anti-

diabetic properties and ameliorative potentials in diabetes associated complications (Nazaruk and 

Borzym-Kluczyk, 2015, Gamede et al., 2018). Pentacyclic triterpenes specifically belong to a vital class 

of natural products that have been reported as anti-diabetic compounds without any side effects 

(Sanchez-Gonzalez et al., 2013, Putta et al., 2016). Maslinic acid is an example of pentacyclic 

triterpenes that has been found to have anti-inflammatory, antioxidant and anti-diabetic properties 

(Mkhwanazi et al., 2014, Putta et al., 2016). A structural isomer of maslinic acid, known as bredemolic 

acid, was reported to have increased biological activity relative to maslinic acid (Wen et al., 2006, 

Cheng et al., 2008). The effects of bredemolic acid on the progression of prediabetes, however, remain 

unknown.  

In our laboratory, we have developed a prediabetic rat model that accurately mimics the prediabetic 

condition in humans (Luvuno et al., 2017, Gamede et al., 2018, Mabuza et al., 2019). We have further 

demonstrated that this prediabetic rat model develops diabetes-associated complications such as 

hepatic, cardiovascular and renal dysfunctions (Mkhwanazi et al., 2014, Gamedeet al., 2018, Mabuza 

et al., 2019, Gamede et al., 2019). In this study, we sought to investigate the effects of bredemolic acid 
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on glucose homeostasis in a diet-induced prediabetic rat model. We further investigated the effects of 

this triterpene on selected markers associated with some diabetic complications, namely, hepatic, 

cardiovascular and renal dysfunctions.  

 

1.1 Literature review 

1.1.1 Prediabetes 

Prediabetes is an intermediary state of glucose metabolism between normoglycaemic and diabetic states 

which has been characterized by impaired glucose tolerance (IGT), impaired fasting blood glucose 

(IFG) and elevated glycated haemoglobin (Edwards and Cusi, 2016, Huang et al., 2016). Prediabetes 

can also be described as a stage that often precedes the onset of overt T2DM (Watson, 2017). Therefore, 

prediabetes is not a disease state but a risk state of developing T2DM and its complications if left 

untreated (Tabák et al., 2012, Brannick et al., 2016). The increased prevalence of this condition is 

directly correlated to the increased consumption of high caloric diets as well as sedentary lifestyles in 

modernized and urbanized cities (Lam and Leroith, 2012, Edward and Cusi, 2016). Apart from chronic 

consumption of high caloric diets and sedentary lifestyles, other risk factors associated with prediabetes 

include age, obesity and other pathological conditions that can result into insulin resistance (Lam and 

LeRoith, 2012, Reinehr, 2013, Watson, 2017). 

Prediabetes is generally observed in developed countries; however, the prevalence of this condition is 

increasing in developing countries as well (Edward and Cusi, 2016). The prevalence of prediabetes is 

expected to increase from 280 million to 398 million in the year 2030 (Aguiree et al., 2013, Edward 

and Cusi, 2016). The greatest increases are expected in Africa, South-East Asia and Western Pacific 

region of the world (IDF, 2011, Tabak et al., 2012). Prediabetes has been identified as a therapeutic 

target to prevent the onset of T2DM as this could potentially reduce the prevalence of T2DM and its 

associated complications (Tabak et al., 2012). However, prediabetes is an asymptomatic condition 

hence a lot of cases go undiagnosed. 

 

1.1.2 Diagnosis of prediabetes 

Early diagnosis of prediabetes is important to prevent the progression of prediabetes to T2DM (Watson, 

2017). According to the American Diabetes Association (ADA), impaired glucose tolerance (IGT) 

remains the most accurate method for diagnosing prediabetes (ADA, 2016, Watson, 2017). A plasma 

glucose concentration of 7.8 – 11.0 mmol/L after a 2h oral glucose tolerance test is diagnosed as being 

prediabetic. However, the cut-off points for impaired fasting blood glucose (IFG) as recommended by 

ADA and WHO seems controversial (Huang et al., 2016). The ADA recommended IFG cut-off point 

of 5.6 – 6.9 mmol/L while WHO defines the cut-off point for prediabetes as fasting blood glucose 

concentration of 6.1– 6.9 mmol/L (WHO, 2006, ADA, 2011, Weiss et al., 2017). The ADA cut-off 

point for IFG has been used in animal and human research and has been shown to predispose individuals 

to increased risk of developing metabolic complications (Huang et al., 2016, Sörensen et al., 2016). 
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Similarly, the ADA recommended a glycated haemoglobin concentration (HbA1c) of 39 – 47 mmol/mol 

(5.7–6.4%) as another potential biomarker for diagnosis of prediabetes while the National Institute for 

Health and Care Excellence (NICE) as well as the International Expert Committee (IEC) recommended 

a higher cut-point of 42 – 47 mmol/mol (6.0 – 6.4%) for prediabetes (IEC, 2009, Chatterton et al., 2012, 

Huang et al., 2016, Weiss et al., 2017). The IFG is more sensitive than the HbA1c but less sensitive 

than the IGT for diagnosis of prediabetes (Watson, 2017). The HbA1c assay revealed the glycaemic 

loads of over two or three months, however, there may be poor agreement among the three biomarkers 

in diagnosing prediabetes (Incani et al., 2015). Consequently, levels of the aforementioned markers 

associated with diagnosis may not all be present during the prediabetic stage, but all the three markers 

are fully present in the diabetic stage (ADA, 2016, Watson, 2017). In this study, the three recommended 

markers by ADA and WHO were used to confirm prediabetes in the diet-induced prediabetic rats. In 

addition, in this study, we also assessed impaired glucose tolerance by oral glucose tolerance test 

(OGTT) and homeostasis model assessment index (HOMA2-IR) as additional parameters associated 

with prediabetes. 

 

1.1.3 Pathophysiology of prediabetes 

Under homeostatic conditions, blood glucose concentrations are strictly regulated within a narrow range 

in fasting and postprandial states (Abdul-Ghani et al., 2006, Tabak et al., 2012). This regulation of 

blood glucose concentration is determined by a variety of factors within the narrow range of hormonal, 

neural, and metabolic activities (Weiss et al., 2017). The pathogenesis of prediabetes is associated with 

insulin resistance in the skeletal muscle and the liver (Kahn, 2003, Tabak et al., 2009, Brannick et al., 

2016). 

Insulin resistance appears to be the first abnormality and is evident in IFG or IGT individuals (Kanat et 

al., 2015). In the British Whitehall study, it was shown that insulin resistance had already occurred and 

increased for 13 years before the diagnosis of overt diabetes (Tabak et al., 2009). In the study, blood 

glucose remained normal due to the compensatory mechanism of increased insulin production by β-cell 

until 2 – 6 years before the time of diagnosis when sustained hyperglycaemia was found (Tabak et al., 

2009, Tabak et al., 2012). Furthermore, the study revealed that insulin resistance begins before the 

development of T2DM, while β-cell dysfunction is already present in the prediabetic stage (Tabak et 

al., 2009). The individuals with isolated IFG or IGT have different fasting blood glucose and 2h post-

load glucose concentrations with different curve patterns of glucose concentration in oral glucose 

tolerance test (Tabak et al., 2012). However, both IFG and IGT individuals have insulin resistance but 

the site of insulin resistance is different (Ferrannini et al., 2011). An individual with IFG has normal 

skeletal muscle insulin sensitivity but the hepatic insulin sensitivity is impaired (Ferrannini et al., 2011, 

Basu et al., 2013, Edward and Cusi, 2016). Conversely, in IGT individuals, the skeletal muscle insulin 

sensitivity is impaired with a modest change in hepatic insulin sensitivity (Ferrannini et al., 2011). In 

addition, in the IFG individuals, early insulin response is impaired during glucose tolerance test, but 



 

4 
 

their second phase of insulin secretion improves while in IGT individuals the early and late phase of 

insulin secretion is impaired (Ferrannini et al., 2011). 

 

1.2 Changes in glucose homeostasis during prediabetes 

Glucose, being the primary substrate for metabolism, energy production and stimuli for insulin release, 

needs to be regulated (Bogan, 2012, Fu et al., 2012). In prediabetes, there is moderate hyperglycaemia 

and impaired glucose tolerance in fasting and postprandial states (Rizza, 2010, Titchenell et al., 2017). 

The hyperglycaemia has been shown to be caused by a variety of factors such as increased hepatic and 

renal glucose release as well as decreased glucose uptake in the skeletal muscle (Wilding, 2014, Samuel 

and Shulman, 2016). On the other hand, the impaired glucose tolerance is said to be due to decreased 

suppression of the hepatic and renal glucose release (Agius, 2010, Wilding, 2014). However, insulin 

resistance is the major cause of the decreased suppression of hepatic and renal glucose release (Wilding, 

2014, Petersen, 2017). Consequently, the insulin resistance leads to increase in blood glucose 

concentration above homeostatic range but lower than the threshold for diagnosis of diabetes (Ciccone 

et al., 2014).  

Chronic consumption of high caloric diets as well as sedentary lifestyles has been shown to induce a 

2.5-fold increase in plasma insulin concentrations (DeFronzo, 2004, Sharabi et al., 2015). At fasting 

blood glucose concentrations of about 7.8 mmol/L, the pancreatic β-cell can no longer sustain the 

elevated insulin release, hence, the plasma concentration of insulin drops slightly and hepatic glucose 

output increases (Sharabi et al., 2015). In this condition, the glucose homeostasis is impaired with 

subsequent increases in fat deposition in insulin-dependent peripheral tissues followed by peripheral 

insulin resistance, decreased glucose uptake, hyperinsulinaemia, visceral adiposity and increased body 

weight (Samuel and Shulman, 2012, Kowalski and Bruce, 2014, Sharabi et al., 2015). 

Furthermore, the increased fat deposition in the skeletal muscle leads to increased intramyocellular lipid 

deposition followed by intramuscular diacylglycerol accumulation and skeletal muscle insulin 

resistance (Szendroedi et al., 2014). Due to skeletal muscle insulin resistance, the insulin signalling 

pathway is impaired leading to activation of protein kinase C (PKCθ) (Samuel and Shulman, 2016). 

Consequently, the activation of PKCθ leads to decreased phosphorylation of insulin receptor (IRS1/2) 

which in turn leads to decreased translocation of GLUT 4 to the plasma membrane and subsequently, 

decreased glucose uptake (Bogan, 2012, Samuel and Shulman, 2016). The decreased glucose uptake is 

associated with decreased glycogenesis in the skeletal muscle (Bogan, 2012). However, the decrease in 

glucose uptake potentiates decreased availability of glucose in the peripheral cells (Hardie et al., 2012, 

Chabot et al., 2014). Therefore, ghrelin hormone is secreted by the oxyntic gland of the stomach as a 

compensatory mechanism to activate the hypothalamic orexigenic signalling pathway of neuropeptide 

Y (NPY) and agouti related protein (AgRP) neurons in the arcuate nucleus (Briggs & Andrews 2011, 

Chabot et al., 2014). Hence, the activation of arcuate nucleus of the hypothalamus stimulates increased 

caloric intake and body weight (Castañeda et al., 2010, Chabot et al., 2014, Luvuno et al., 2016). An 
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inverse relationship exists between ghrelin and insulin secretion under homeostatic conditions but in 

diabetic conditions, ghrelin and insulin plasma concentrations are constantly high (Barazzoni, 2014, 

Alamri et al., 2016, Luvuno et al., 2016). The increased plasma concentration of ghrelin and insulin 

leads to increased hyperphagia and hyperinsulinaemia associated with the diabetic condition (Chabot 

et al., 2014, Samuel and Shulman, 2016). Furthermore, due to hyperinsulinaemia, glucose is diverted 

to the liver with a subsequent increase in de novo lipogenesis and gluconeogenesis (Flannery et al., 

2012, Sharabi et al., 2015). In addition, the increased de novo lipogenesis promotes hepatic lipid 

accumulation which is activated by sterol regulatory element binding protein (SREBP1c) and 

carbohydrate regulatory element binding protein (ChREBP) (Herman and Samuel, 2016, Reccia et al., 

2017).  

Furthermore, bioactive compounds such as maslinic acid and oleanolic acid have been reported to 

ameliorate glucose homeostasis and the associated complications of glucose metabolism in the skeletal 

muscle and the liver in both prediabetic and diabetic states (Mkhwanazi et al., 2014, Gamede et al., 

2018). However, the effects of bredemolic acid on glucose homeostasis in prediabetic state have not 

been shown. Hence, in Chapter 2 of this study, the effects of bredemolic acid are investigated on the 

aforementioned glucose homeostasis biomarkers, as well as expression of GLUT 4 in the skeletal 

muscle in a diet-induced prediabetic rat model. 

 

1.3 Complications of prediabetes 

Although, prediabetes is not a disease, it is associated with some complications due to abnormal 

glycaemia which affects the cells and tissues of various organs in the physiological system (Brannick 

et al., 2016). Prior to its progression to T2DM, prediabetes is associated with increased risk of 

developing cardiovascular diseases, renal diseases, hepatic dysfunction and other complications 

(Brannick et al., 2016, Melsom et al., 2016, Wasserman et al., 2018). 

Apart from abnormal glycaemia and insulin resistance associated with prediabetes, subsequent 

metabolic complications such as increased oxidative stress, inflammation, dyslipidaemia and 

endothelial dysfunction contribute to the onset of the diseases associated with prediabetes (Wasserman, 

2018). Literature has shown that bioactive compounds such as maslinic acid, oleanolic acid ameliorated 

renal, cardiovascular and hepatic dysfunctions in diabetic animal model (Mkhwanazi et al., 2014, 

Gamede et al., 2019). The effects of bredemolic acid, however, have not been established. Hence, in 

Chapter 2 to Chapter 5 of this study, the effects of bredemolic acid were examined on selected markers 

of glucose homeostasis as well as cardiovascular, hepatic and renal functions. The following section 

describes the effects of prediabetes on the functioning of the aforementioned organ systems. 
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1.3.1 Effects of prediabetes on hepatic function 

High carbohydrate and high fat diets coupled with sedentary lifestyles have been reported to be 

associated with prediabetes and hepatic dysfunction (Lozano et al., 2016, Reccia et al., 2017). However, 

the link between prediabetes and hepatic dysfunction is mainly via hepatic insulin resistance which is 

associated with high caloric diets and has been described in various ways (Sung and Kim, 2011, Lozano 

et al., 2016, Hazlehurst et al., 2016). Firstly, high caloric diets cause hepatic insulin resistance through 

the activation of toll-like receptor 4 (TLR4) pathway (Galbo et al., 2013, Reccia et al., 2017). Activation 

of TLR4 induces de novo synthesis of ceramide, ceramide accumulation as well as ceramide-mediated 

activation of protein phosphatase 2A (Galbo et al., 2013). This in turn directly inhibits insulin signalling 

at AKT phosphorylation level, leading to hepatic insulin resistance (Holland et al., 2011, Galbo et al., 

2013). Secondly, high caloric diets induce mitochondrial dysfunction which leads to overproduction of 

reactive oxygen species (ROS) followed by oxidative stress in hepatocytes (Nassir and Ibdah, 2014). 

The mitochondrial dysfunction or oxidative stress causes insulin resistance due to overproduction of 

toxic lipid metabolites (such as ceramides, diacylglycerol) which further impair insulin action in 

hepatocytes resulting in hepatic insulin resistance (Nassir and Ibdah, 2014, Reccia et al., 2017). Thirdly, 

hepatic insulin resistance can also be caused by increased lipolysis in the white adipose tissue due to 

impaired insulin lipogenic action in the adipose tissue (Perry et al., 2015, Samuel and Shulman, 2016). 

The increased lipolysis leads to increased flux of fatty acids to the liver which results in increased 

hepatic acetyl CoA (Perry et al., 2015). Subsequently, the increased hepatic acetyl CoA leads to 

glycogenesis, accumulation of triglyceride and fatty acid metabolites (such as fatty acyl CoA, 

diacylglycerol (DAG), ceramides, glycosphingolipids) which further activates protein kinase Cε 

(PKCε) in the liver (Nagle et al., 2009, Perry et al., 2015, Reccia et al., 2017).  The activation of PKCε 

inhibits phosphorylation of hepatic insulin receptors (IRS1/IRS2) which in turn impairs insulin 

signalling cascades of reactions, thereby leading to hepatic insulin resistance (Samuel et al., 2004, 

Reccia et al., 2017). 

Perhaps more significantly, hepatic insulin resistance alters hepatic glucose metabolism due to reduced 

sensitivity of hepatocytes to insulin action (Wiernsperger et al., 2013, Petersen et al., 2017). Insulin is 

a crucial regulator of hepatic glucose metabolism from glucose production to glucose storage (Samuel 

and Shulman, 2016). Insulin controls hepatic glucose storage (glycogenesis) through AKT by activation 

of glycogen synthase to enhance hepatic glycogenesis (Wan et al., 2013). On the other hand, insulin 

suppresses hepatic glucose production (gluconeogenesis) via inactivation of FOXO1 (Forkhead Box 

O1) to decrease transcription of the gluconeogenic enzyme as well as via inhibition of glycogen 

phosphorylase enzyme to inhibit gluconeogenesis and glycogenolysis respectively (Titchenell et al., 

2017, Petersen et al., 2017). 

Moreover, during insulin-resistant conditions such as T2DM, insulin fails to adequately suppress 

hepatic glucose production at pre-prandial and postprandial states (Rizza, 2010, Titchenell et al., 2017). 

Therefore, the resultant excessive hepatic glucose production due to the insulin failure coupled with 
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impaired hepatic glucose uptake leads to hyperglycaemia in diabetic individuals even during the pre-

prandial state (Rizza et al., 2010, Titchenell et al., 2017). Also, due to impaired suppressive action of 

insulin on hepatic glucose production, the influx of gluconeogenic substrates into the liver is increased 

to promote more gluconeogenesis (Sharabi et al., 2015). The increased hepatic glucose production 

activates increased expression of SREBP1c which caused hepatic de novo lipogenesis that promotes 

increased re-esterification of fat resulting in excessive hepatic fat accumulation known as non-alcoholic 

fatty liver disease (NAFLD) (Lambert et al., 2014). 

Several pieces of literature have established that NAFLD is associated with prediabetes or T2DM (Sung 

and Kim, 2011, Birkenfeld and Shulman, 2014, Hazlehurst et al., 2016). Studies have shown that 70% 

of newly diagnosed diabetic patients have NAFLD while the risk of developing diabetes in NAFLD 

patients is approximately 5-fold (Williamson et al., 2011, Choi et al., 2013). In NAFLD, liver enzymes, 

hepatic lipid and lipoprotein metabolism are severely impaired as a result of insulin resistance (Fon 

Tacer and Rozman, 2011). Therefore, due to insulin resistance and hyperinsulinaemia, hepatic fat 

uptake is increased via increased expression of fatty acid transport proteins (FATP) and fatty acid 

translocase (CD36) as well as increased lipolysis in white adipose tissue (He et al., 2011, Kawano and 

Cohen, 2013). As a result of the increased hepatic fat uptake, the beta-oxidation of fatty acid is impaired 

via increased activity of acetyl-CoA carboxylase 2 which enhances the production of malonyl-CoA 

which in turn inhibits mitochondria beta-oxidation of fatty acid via negative inhibition of carnitine 

palmitoyl transferase 1 (CPT1) enzyme (FonTracer et al., 2011). Impaired beta-oxidation of fatty acid 

in the mitochondria leads to mitochondrial dysfunction which further leads to overproduction of ROS 

that culminates into oxidative stress (Nassir and Ibdah, 2014). However, it has been reported that 

oxidative stress activates the Jun N-terminal kinase (JNK) which subsequently stimulates inflammatory 

reactions that leads to fibrotic hepatic damage known as non-alcoholic steatohepatitis (NASH) (Kodama 

and Brenner, 2009, Gautheron et al., 2014, Reccia et al., 2017). Recently, bioactive compound such as 

maslinic acid has been shown to ameliorate hepatic dysfunction in obesity-induced non-alcoholic fatty 

liver disease via the regulation of Sirt1/AMPK pathway (Liou et al., 2019). The effects of bredemolic 

acid on hepatic function in prediabetic stage have not been shown. Therefore, in Chapter 3 of this study, 

the effects of bredemolic acid, in both the presence and absence of dietary intervention, were 

investigated on liver function in diet-induced prediabetic rat model. However, increased hepatic 

lipogenesis is one of the features of prediabetes which contributes to dyslipidaemia and subsequently 

leads to cardiovascular dysfunction. The cardiovascular dysfunctions that are associated with 

prediabetes are described in the following section. 

 

1.3.2 Effects of prediabetes on cardiovascular function 

Prediabetes is associated with an increased risk for developing arteriosclerosis and other cardiovascular 

diseases (Ford et al., 2010, Huang et al., 2017). Prediabetes is also a risk factor for cerebrovascular 

diseases such as transient ischaemic attack, stroke and recurrent stroke (Roquer et al., 2014). However, 
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a study by Qiao and colleagues demonstrated that a strong predictor of stroke and future cardiovascular 

disease is hyperglycaemia post-load OGTT level (Qiao et al., 2002, Brannick and Dagogo-Jack, 2018). 

Other studies further indicate that individuals with fasting blood glucose above 5.6 mmol/L have a high 

risk of developing coronary heart disease (Sarwar et al., 2010, Huang et al., 2017). According to the 

Heart Outcome Prevention Evaluation (HOPE) study, every 1 mmol/L increase in fasting blood glucose 

concentration increased the risk of cardiovascular diseases by almost 9% in the following 4.5 years 

(Gerstein et al., 2005, Huang et al., 2017). Furthermore, the study showed that with a relative risk of 

1.07, the tendency of developing cardiovascular diseases increased with every 1% increase in HbA1c. 

In addition, the Diabetes Epidemiology Collaborative analysis of Diagnostic criteria in Europe 

(DECODE) revealed that the correlation between fasting blood glucose and cardiovascular disease 

associated mortality is “J-shaped” curve without any threshold effect at elevated glucose concentration 

(DECODE, 2003, Ford et al., 2010). The weight gain and abdominal adiposity have been associated 

with increased body mass index (BMI) and waist circumference (WC) which are additional risk factors 

that promote cardiovascular diseases in prediabetic condition (Abraham et al., 2015). 

However, the relationship between increased fasting blood glucose and the development of 

cardiovascular disease involves some molecular mechanisms and pathways. It has been reported that 

increased plasma glucose concentration activates reactive oxygen species (ROS) which inactivate nitric 

oxide (NO) and subsequently lead to endothelial dysfunction (Paneni et al., 2013). Also, an increase in 

ROS production has been shown to contribute to cardiovascular diseases by stimulating the activation 

of PKC (Huang et al., 2017). The activation of PKC alters vascular homeostasis and causes a 

predisposition to cardiovascular diseases (Huang et al., 2017). The activation of PKC also leads to 

inactivation of NO and induction of vasoconstrictor (endothelin-1) synthesis (Geraldes and King, 2010, 

Huang et al., 2017). Consequently, the combination of decreased NO production and increased 

vasoconstrictor production culminates into vascular changes that result in increased blood pressure, 

heart rate and arteriosclerosis (Huang et al., 2017). Besides the activation of PKC, hyperglycaemia also 

activates the polyol and hexosamine pathways which contribute to cardiovascular system damage 

(Graves and Kayal, 2011, Wasserman et al., 2018). Moreover, insulin resistance has also been reported 

to be one of the major factors associated with endothelial dysfunction in prediabetes (Wasserman et al., 

2018). Insulin is a vasodilator for skeletal muscle and coronary vessels (Laakso et al., 1990, Lautamäki 

et al., 2006, Wasserman et al., 2018). In an insulin-resistant state, the insulin-induced NO-dependent 

vasodilatation in skeletal muscle is impaired, therefore, the cascade of phosphorylation from insulin 

receptors to AKT (protein kinase B) is altered (Montagnani et al., 2002, Artunc et al., 2016). 

Subsequently, the phosphorylation of endothelial nitric oxide synthase (eNOS) is also impaired, and 

this results in vasoconstriction which further leads to increased blood pressure as well as heart rate 

(Artunc et al., 2016, Wasserman et al., 2018). In contrast, insulin stimulates endothelin-1 in an insulin 

resistance state, thereby causing vasoconstriction (Cardillo et al., 1999, Artunc et al., 2016). However, 
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vascular insulin resistance causes down-regulation of insulin receptors, AKT and eNOS but the 

endothelin pathway remains intact (Potenza et al., 2005, Symons et al., 2009, Artunc et al., 2016).  

Glycation of haemoglobin leads to advanced glycation product (AGE) formation and is a contributor to 

the development of cardiovascular disease (Graves and Kayal, 2011, Chilelli et al., 2013, Sörensen et 

al., 2016, Huang et al., 2017). AGEs increase the expression of adhesion molecules on vascular 

endothelial cells to promote migration of monocytes which subsequently form macrophages (Schmidt 

et al., 1995, Huang et al., 2017). AGEs also stimulate the monocytes to release cytokines such as 

interleukin 6 and tumour necrosis factor (TNFα) which are mediators of inflammatory reactions 

associated with cardiovascular diseases (Schmidt et al., 1995, Keane et al., 2015). Furthermore, in obese 

patients with prediabetes, increased plasma concentration of free fatty acid contributes to insulin 

resistance and endothelial dysfunction (Wasserman et al., 2018). High fat diets have been reported to 

induce endothelial dysfunction in mice and decrease brachial artery reactivity in humans (Wasserman 

et al., 2018). Additionally, high fat diets decrease tyrosine phosphorylation of insulin receptor (IRS-

1/2) which leads to inhibition of PI3K-AKT pathway and subsequently decreases the phosphorylation 

of eNOS (Wang et al., 2006, Wasserman et al., 2018). However, apart from vascular endothelial 

dysfunction, the endothelial fibrinolytic function is also impaired in prediabetes (Wasserman et al., 

2018). Vascular fibrinolytic dysfunction contributes to the risk of developing cardiovascular diseases 

in prediabetes (Wasserman et al., 2018). In non-diabetic conditions, the endothelium stores tissue-type 

plasminogen activator (tPA) which protects against vascular thrombosis (Emeis et al., 1997, Fattah et 

al., 2013). The primary inhibitor of tPA in vivo is plasminogen activator inhibitor-1 (PAI-1) (Alessi et 

al., 2007). The increased production or circulation of PAI-1 has been reported to be associated with 

thrombosis, myocardial infarction as well as stroke (Thögersen et al., 1998, Wasserman et al., 2018). 

Studies further indicate that, hyperglycaemia, very low-density lipoprotein (VLDL), insulin, 

angiotensin II, aldosterone and inflammatory cytokines (interleukin 6 and TNFα) stimulate the 

expression of PAI-1 (Wasserman et al., 2018). In the prediabetic state however, the endothelial tPA 

release is decreased thereby leading to thrombotic events that promote endothelial fibrinolytic 

dysfunction (Van Guilder et al., 2008, Wasserman et al., 2018). In addition, one of the functions of 

insulin is to increase fibrinolysis and inhibit thrombosis (Chaudhuri et al., 2004, Huang et al., 2017). 

However, under insulin-resistant conditions, calcium accumulates in platelets and platelet aggregation 

is formed, and this subsequently leads to cardiovascular disease development (Vinik et al., 2001, Huang 

et al., 2017). Pentacyclic triterpenes such as maslic acid and oleanolic acid has been reported to 

ameliorate markers of cardiovascular function in diet-induced prediabetic rats (Mkhwanazi et al., 2014, 

Gamede et al., 2019). The effects of bredemolic acid on cardiovascular function in prediabetic condition 

have not been reported. 

Therefore, in Chapter 4 of this study, the effects of bredemolic acid, in both the presence and absence 

of dietary intervention, were investigated on selected markers of cardiovascular function in a diet-

induced prediabetic rat model. Moreover, literature has established that high caloric diet triggers 
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oxidative stress and results in renal dysfunction in an insulin-resistant condition such as prediabetes 

(Chou & Fang 2010, Odermatt 2011). Hence, the following section described the renal dysfunctions 

that are associated with prediabetic condition.   

 

1.3.3 Effects of prediabetes on renal function 

Intermediate hyperglycaemia and insulin resistance, as common features of prediabetes, are precursors 

for developing renal dysfunction or diabetic kidney disease (DKD) (Tabak et al., 2012, Melsom et al., 

2016). However, decreased insulin sensitivity and β cell dysfunction are associated with glucotoxicity 

which has been reported to be a risk factor for cell and tissue damage in organs such as the kidney (Ritz 

et al., 2011, Echouffo-Tcheugui et al., 2016, De Nicola et al., 2016). The peripheral cells such as 

skeletal muscle cells are not susceptible to damage by glucose toxicity in hyperglycaemic or insulin 

resistance state due to their expression of insulin-dependent glucose transporters (Powell et al., 2013).  

More significantly, glomerular endothelial cells which express insulin-independent glucose transporters 

are not affected by impaired insulin signalling in prediabetic or diabetic conditions (Artunc et al., 2016). 

Therefore, down-regulation of glucose transport in the presence of insulin resistance does not occur in 

the endothelial cells (Powell et al., 2013). Insulin signalling does not stimulate glucose uptake in the 

glomerular endothelial cells or remodel its actin cytoskeletons (Artunc et al., 2016). However, several 

studies have shown that renal cells respond to insulin signalling differently because they express 

different members of the glucose transporter family (Heilig et al., 1995, Powell et al., 2013). In addition, 

the glomerular endothelial and mesangial cells express insulin-independent glucose transporters while 

the podocytes express insulin-dependent glucose transporters (Powell et al., 2013, Artunc et al., 2016). 

Unlike the glomerular endothelial cells, the mesangial cells and podocytes respond to changes in insulin 

plasma concentration (Artunc et al., 2016).  

In the prediabetic state, since mesangial cells are insulin independent, glucose utilization in mesangial 

cells increased with subsequent mesangial matrix production (Powell et al., 2013). Also, due to 

hyperinsulinaemia, formation of homodimeric insulin-like growth factor receptor (IGF-1R) and 

increased signalling of insulin-like growth factor (IGF-1) are enhanced in mesangial cells (Kong et al., 

2016, Artunc et al., 2016). The IGF-1 signalling enhances the synthesis of fibronectin and collagen IV 

which promotes mesangial cell growth, proliferation, hypertrophy, as well as matrix deposition (Yano 

et al., 2012). Podocytes respond to insulin stimulation in a manner similar to that of skeletal muscle 

since it is insulin-dependent (Coward et al., 2005). However, it has been established that insulin 

stimulates expression of nephrin, a transmembrane protein, on the podocyte (Artunc et al., 2016). 

Nephrin constitutes part of the podocyte slit diaphragm and is associated with the podocyte actin 

cytoskeleton (Coward et al., 2007, Chou and Fang, 2010). When insulin signalling is impaired, nephrin 

expression on the podocyte is decreased with subsequent loss of podocyte foot processes and actin 

cytoskeleton (Welsh et al., 2010). The loss of podocyte integrity leads to loss of other transmembrane 

proteins such as neph 1 and podocin in the urine (Nakamura et al., 2000, Camici, 2007, Lioudaki et al., 
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2015). As a result of the loss of podocyte foot processes, the structural arrangement of the glomerular 

filtration barriers is altered, the negatively charged glycosaminoglycans are lost, and hence, albuminuria 

occurs (Nakamura et al., 2000, Powell et al., 2013, Mora-Fernandez et al., 2014).  

In Chapter 5 of this study, we investigated changes in the filtration barrier by determination of albumin 

and gene expression of podocin in the urine of bredemolic acid-treated prediabetic rats.  

Furthermore, another deleterious effect of hyperglycaemia and insulin resistance on the renal system is 

the activation of local renal renin-angiotensin-aldosterone system (RAAS) in the mesangial, podocyte 

and tubular cells (Luther and Brown, 2011, Mora-Fernandez et al., 2014). Hyperglycaemia activates 

RAAS and induces production of angiotensin II (Ang II) as well as angiotensin II type 1 receptors 

(AT1R) expression in podocyte and mesangial cells (Giunti et al., 2006, Jaikumkao et al., 2017). The 

activated Ang II stimulates mesangial cell proliferation and the expression of growth factors (such as 

transforming growth factor β, TGFβ) as well as cytokines (such as TNFα) which contribute to 

inflammation, fibrosis and apoptosis (Chawla et al., 2010, Jaikumkao et al., 2017). However, increased 

Ang II concentration does not only cause increased cell growth or hypertrophy but also a direct 

stimulation of vasoconstriction of the intraglomerular capillaries followed by increased intraglomerular 

capillary pressure and glomerular hyperfiltration (Chawla et al., 2010, Artunc et al., 2016). Moreover, 

glomerular hyperfiltration leads to increased glomerular filtration rate (GFR) (Ruggenenti et al., 2012, 

De Nicola et al., 2016). It is one of the features of the early stages of diabetes mellitus that has been 

associated with impaired fasting blood glucose and insulin resistance (Melsom et al., 2011, Okada et 

al., 2012, Echouffo-Tcheugui et al., 2016). 

The glomerular filtration rate is an important marker to assess renal function, therefore in Chapter 5 of 

this study, we examined the effects of bredemolic acid on selected renal function markers such as GFR, 

creatinine, urea, electrolytes, albumin, total protein and uric acid in a diet-induced prediabetic rat model.  

Moreover, hyperglycaemia-induced activation of RAAS stimulates secretion of aldosterone from 

glomerulosa cells in the adrenal gland through AT1R (Luther and Brown, 2011). In turn, aldosterone 

stimulates up-regulation of serum/glucocorticoid-regulated kinase 1 (SGK1) which increases the 

expression of epithelial sodium channel (ENaC) in the distal tubule cell to increase sodium reabsorption 

and potentiate potassium loss (Artunc et al., 2016). It has been reported that even without the activation 

of RAAS, hyperglycaemia and hyperinsulinaemia also increase SGK1 and ENaC gene expression to 

stimulate sodium reabsorption in the distal tubule (Artunc et al., 2016). 

In the proximal tubule, hyperglycaemia and hyperinsulinaemia upregulate sodium/glucose co-

transporter 2 (SGLT 2) expression which also increases the reabsorption of sodium, and glucose 

(Novikov and Vallon, 2016). A study has shown, however, that the up-regulation of SGLT is not 

affected by insulin resistance in prediabetic or diabetic conditions (Wilding 2014). Therefore, due to 

the increased sodium reabsorption through the ENaC expression and SGLT 2 up-regulation in distal 

and proximal tubule respectively, prediabetic or diabetic individuals are prone to sodium retention as 

well as hypertension (Bakris et al., 2009, Alsahli and Gerich, 2017). In addition, studies have shown 
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that increased proximal tubule reabsorption of sodium leads to a decrease in sodium delivery to the 

macula densa with subsequent deactivation of tubuloglomerular feedback followed by an increase in 

GFR (Cherney et al., 2014, De Nicola et al., 2016). Hence, tubuloglomerular feedback and 

glomerulotubular balance are altered as a result of increased proximal tubule reabsorption of sodium in 

diabetic conditions (De Nicola et al., 2016). 

In Chapter 5 of this study, the effects of bredemolic acid, in both the presence and absence of dietary 

intervention, were investigated on selected markers of renal function in a diet-induced prediabetic rat 

model 

 

1.4 Management of prediabetes 

Upon diagnosis, the combination of lifestyle and pharmacological intervention has been the main 

therapeutic approach recommended in the management of prediabetes (Ramachandran et al., 2009, 

Brannick and Dogogo-Jack, 2018). Therefore, in the subsequent paragraphs, the contributions of each 

intervention on management of prediabetes are elucidated.  

 

1.4.1 Lifestyle intervention 

Lifestyle interventions are modifications that involve recommended guidelines on diet regimen and 

physical activities such as exercise in order to manage prediabetes or prevent its progression to T2DM 

(Gæde et al., 2016). According to ADA, lifestyle modification is the first approach to prevent 

prediabetes or T2DM (ADA, 2017). In Diabetes Prevention Program (DPP) and Finnish Diabetes 

Prevention Study (FDPS) studies, it was demonstrated that the development of T2DM from prediabetes 

decreased by 60% through lifestyle changes and decreased by 31% with the use of metformin 

(Tuomilehto et al., 2001, DPP, 2002, Knowler et al., 2002, Stefan et al., 2015, Hostalek et al., 2015). 

The studies also showed that every 1kg loss in weight resulted in 16% reduction in the risk of developing 

diabetes (Tuomilehto et al., 2001, DPP, 2002). In addition, the Da Qing IGT and diabetes study have 

also revealed that lifestyle changes decreased cardiovascular complications and other causes of 

mortality after 23years follow-up (Li et al., 2008, Li et al., 2014).  

Furthermore, the management of prediabetes through lifestyle intervention involves dietary changes 

and physical activities (Schwarz et al., 2012, Dunkley et al., 2014). A diet rich in vegetables, whole 

grains, fruits, low animal fats or trans fats as well as simple sugar along with maintenance of body 

weight, BMI and active lifestyle has been recommended for prediabetes (Dunkley et al., 2014, Ley et 

al., 2014). However, exercise and physical activity form a significant part of a lifestyle intervention in 

the management of prediabetes (Schwarz et al., 2012). Studies show that moderate exercise for at least 

150 minutes per week has been recommended for obese children and prediabetes susceptible adults to 

decrease glycaemia and improve insulin sensitivity (Roglic, 2014, ADA, 2016, Watson, 2017). 

Additionally, a combination of diet modification and increased physical activity has been reported to 

cause weight loss, improve insulin sensitivity and glycaemic control (Watson, 2017). It has also been 
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shown to improve lipid profile and decrease mean arterial blood pressure (Hansen et al., 2010, Abraham 

et al., 2015). 

However, lifestyle modification has been associated with some shortfalls in the management of 

prediabetes (Li et al., 2009, Li et al., 2014). Firstly, maintenance of diet modification is expensive, and 

due to variation in socio-economy status, the compliance of patients to following recommended diet by 

healthcare providers is low (Govil et al., 2009, DPP 2012, Glechner et al., 2018). Secondly, there is low 

patient compliance in terms of changing to a more active lifestyle (Li et al., 2014, Glechner et al., 2018). 

 

1.4.2 Pharmacological intervention  

Pharmacological intervention is another adjunct treatment for prediabetic patients who are unable to 

lose weight through lifestyle intervention (Watson, 2017). However, the pharmacological approach can 

be an indication in the case of women with a history of gestational diabetes and high-risk individuals 

that are unresponsive to lifestyle modification (ADA, 2017). Evidence has shown that pharmacological 

intervention is efficient in patients who are susceptible to prediabetes, under the age of 60 and have a 

BMI score above 35 (ADA, 2016, Watson, 2017). The pharmacological approach is less effective in 

preventing prediabetes progression to T2DM but may achieve a greater risk reduction when used 

alongside with lifestyle modification (ADA, 2016). 

Metformin, as a recommended anti-diabetic drug for T2DM, has been reported to lower BMI and lipid 

levels (Salpeter et al., 2008, Tabak et al., 2012). Also, it decreases fasting blood glucose by inhibition 

of hepatic glucose output and improvement of insulin sensitivity in peripheral muscle tissue (DeFronzo 

et al., 2014, Abraham et al., 2015). However, several anti-diabetic drugs (metformin, thiazolidinedione, 

alpha-glucosidase etc.) with different mechanisms of action have been examined in different studies 

and reported to have variable efficacy in preventing prediabetes or T2DM (approximately 25% 

reduction vs placebo) but most of them are presented with side effects (Daniele et al., 2014). According 

to trial evidence in prediabetes people, metformin was reported to lower the risk of developing T2DM 

by 45% but gastrointestinal tract disruption was observed as a side effect (Lilly and Godwin, 2009, 

Tabak et al., 2012). Additionally, two thiazolidinedione drugs, troglitazone and rosiglitazone, were 

withdrawn from the European market for hepatotoxicity and increased risk of heart failure as serious 

side effects (Nathan et al., 2009, Tabak et al., 2012). Apart from the adverse side effects, the 

pharmacological intervention as a therapeutic approach to prediabetes is expensive. Consequently, most 

patients fail to comply with their medications, and the progression of prediabetes to T2DM remains 

prevalent. 

According to DPP-2 study in prediabetic people, it was observed that no difference existed in the rate 

of development of T2DM between lifestyle intervention alone and lifestyle supplemented with 

pioglitazone in a 3-year trial (Ramachandran et al., 2009). Currently, the combination of diet and 

pharmacological intervention is the preferred approach to managing prediabetes, however, the 

compliance of patients to the combination of diet and pharmacological intervention is low as most 
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patients merely use pharmacological intervention without any change of lifestyle. Hence, the efficacy 

of the pharmacological intervention is reduced. Also, despite the combination of lifestyle and 

pharmacological intervention as a treatment for prediabetes, some prediabetes patients still progress to 

overt diabetic stage or develop liver, cardiovascular and renal complications. Therefore, since the 

combined therapy has failed in the management of prediabetes with all the shortfalls discussed above, 

the need for alternative medicine without diet modification is necessary. In this study, the effects of 

bredemolic acid with and without diet intervention were examined in diet-induced prediabetic rats.  

 

1.4.3 Alternative therapeutic approach 

Several studies propose that alternative compounds from plant products have therapeutic potentials to 

mitigate diabetes and its complications (Ngubane et al., 2011, Khathi et al., 2013, Mkhwanazi et al., 

2014, Nazaruk and Borzym-Kluczyk, 2015, Putta et al., 2016). However, among the alternative 

compounds from natural origin, the anti-diabetic compounds called triterpenes are of interest in this 

study. Triterpenes are anti-diabetic compounds with high therapeutic potential in terms of amelioration 

of complications associated with diabetes in streptozotocin-induced diabetic rats (Khathi et al., 2013, 

Mkhwanazi et al., 2014, Nazaruk and Borzym-Kluczyk, 2015). 

Triterpenes are secondary metabolites found in leaves, stems, fruits, roots and are widely distributed 

within the plant kingdom (Jager et al., 2009). Pentacyclic triterpenes such as oleanolic acid and maslinic 

acid have been shown in many studies to demonstrate anti-diabetic, antioxidant, anti-inflammatory, 

anti-obesity, antiviral as well as anti-cancerous properties (Baltina et al., 2003, Ramachandran and 

Prasad, 2008, Laszczyk, 2009, Khathi et al., 2013, Mkhwanazi et al., 2014, Gamede et al., 2018). 

However, in contrast to synthetic drugs, pentacyclic triterpenes have been found to exhibit low 

pharmacokinetic activity of three days without any side effects (Sanchez-Gonzalez et al., 2013, Nazaruk 

and Borzym-Kluczyk, 2015). Studies indicate that pentacyclic triterpenes inhibit enzymes associated 

with abnormal glucose metabolism and ameliorate insulin resistance (Nazaruk and Borzym-Kluczyk, 

2015, Putta et al., 2016). Maslinic acid is a pentacyclic triterpene that consists of 30 carbon atoms 

grouped into five cycles which have several substitutes and has two hydroxyl groups bound to C2 and 

C3 atoms as well as one carboxyl group bound to C17 atom (Putta et al., 2016). In addition, maslinic 

acid has been extensively reported to exhibit anti-diabetic property by reducing blood glucose via 

inhibition of glycogen phosphorylase enzyme in the liver and skeletal muscle (Nazaruk and Borzym-

Kluczyk, 2015). It has also been shown that maslinic acid with IC50 (99 µM) is a more potent hepatic 

glycogen phosphorylase inhibitor than caffeine, a positive control with IC50 (648 µM) (Wen et al., 

2008). However, studies have shown that the carboxylic group in maslinic acid structure is the first 

active site which is responsible for the inhibition of glycogen phosphorylase enzyme (Wen et al., 2006, 

Mkhwanazi et al.,2014). In addition, the hydroxyl active site at the C2 and C3 has also been shown to 

cause inhibitory expression of protein tyrosine phosphatase 1 (PTP1) and to exhibit antioxidant 

properties (Li et al., 2004, Mkhwanazi et al., 2014). 
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Bredemolic acid is a 2β, 3α structural isomer of maslinic acid. This compound was first described as 

early as 1960 by Rudolf Tschesche (Tschesche and Sen Gupta, 1960). Bredemolic acid was isolated 

from Bredemeyera floribunda in small amounts, although a lengthy partial synthesis was described by 

the same group in 1963 (Tschesch et al., 1963) and more recently by Cheng Keguang in 2008 (Cheng 

et al., 2008). Few years ago, bredemolic acid was shown to be synthesized from oleanolic acid 

(Sommerwerk et al., 2015). Another study indicated that bredemolic acid is a more potent anti-diabetic 

compound than maslinic acid due to different structural arrangement of its hydroxyl group and its 

inhibitory effect on glycogen phosphorylase enzyme in skeletal muscle (Cheng et al., 2008).  

Based on these observations, it is possible that bredemolic acid is a more potent glycogen phosphorylase 

inhibitor and has more glucoregulatory effects in the skeletal muscle and liver compared to maslinic 

acid.  

In this study, based on the aforementioned anti-diabetic properties of pentacyclic triterpenes, 

bredemolic acid was investigated as our alternative anti-diabetic compound in diet-induced prediabetic 

rats, particularly directing much effort on glucose metabolism, hepatic cardiovascular and renal 

functions. We had envisaged that the outcomes of this study may shed some light on the therapeutic 

value of this triterpene in prediabetes. 

Molecular structure of bredemolic acid and maslinic acid 

 

Figure 1: Chemical structure of bredemolic acid. Adopted from Cheng et al., 2008 
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Figure 2: Chemical structure of maslinic acid. Adopted from Mokhtari et al., 2015 

 

1.5. Animal models associated with diabetes  

Diabetes mellitus is a complex metabolic disorder that may not be fully understood in humans except 

through translational research from animals to human. This translational research involves the use of 

animal models that mimic the two main types of diabetes mellitus, type 1 and type 2 diabetes mellitus. 

The type 1 diabetes mellitus (T1DM) is an autoimmune disease that is most common in children and 

young adults (Hyttinen et al., 2003, Al-awar et al., 2016). However, to fully elucidate the pathogenesis 

of T1DM which is characterized by deficient insulin production, chemically induced and genetically 

induced animal models that mimic human T1DM have been established (Al-awar et al., 2016). 

The chemically induced animal model of diabetes involves the administration of streptozotocin (STZ) 

and alloxan which are diabetogenic chemicals that damage the pancreatic β-cells (Lenzen, 2008). Both 

chemicals are cytotoxic and accumulate in the pancreatic β-cells via GLUT 2 (Lenzen, 2008). STZ 

mode of action is due to the transfer of its methyl-nitrosourea moiety to the β-cell DNA molecule 

resulting in DNA damage and fragmentation (Lenzen, 2008). Intraperitoneal administration of 60 mg/kg 

of STZ induced T1DM in fasted animals after 72 hours. The modes of action of alloxan are in two 

forms, formation of ROS leading to selective necrosis of β-cell, and selective inhibition of β-cell 

glucokinase which in turn leads to inhibition of glucose-induced insulin secretion that mimic the 

pathogenesis of the human T1DM (Lenzen, 2008). Chemically induced T1DM has been shown to occur 

in fasted rats by subcutaneous administration of 125 mg/kg of alloxan (Lenzen, 2008, Al-awar et al., 

2016). Consequently, the chemically induced animal model of T1DM has been associated with 

increased mortality rate in animals and it is a short-term experimental model with limited availability 

of investigating T1DM complications (Al-awar et al., 2016). Therefore, based on this shortfalls, the 

genetically induced animal model of T1DM (such as Biobreeding rats, Lewis-insulin dependent 

diabetes mellitus rats, Akita mice and Nonobese diabetic rats or mice) were developed.  
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T2DM is associated with insulin resistance and relative insulin deficiency. It is the common type of 

diabetes mellitus in the adult (DeFronzo, 2004).  Model of T2DM has been developed by a combination 

of a high caloric diet with a chemically induced model. The combination of high caloric diet with 

chemically induced model involves feeding the animal a high fat or high fructose diet for 10 weeks 

followed by injection of various low dose of STZ (15-30 mg/kg) and the same diet continued for 22 

weeks (Ionut et al., 2009, Islam and Venkatesan, 2016). The high caloric diet/STZ-injected model 

develops mild T2DM coupled with increased body weight, visceral and subcutaneous fat as well as 

reduced insulin sensitivity (Islam and Venkatesan, 2016). Consequently, this model has not been 

evaluated by pharmacological screening via the use of anti-diabetic drugs. Apart from this animal model 

of T2DM, genetically induced animal models of T2DM such as the Zucker Diabetic Fatty (ZDF) rats, 

Goto-Kakizaki (GK) rats have also been established. However, these animal models are expensive and 

not widely available for diabetes research (Islam and Venkatesan, 2016).  

However, with the shortfalls of animal models of T2DM, and to understand the pathogenesis of T2DM 

and its complications, animal models of prediabetes can be the better models compared to T2DM 

models. In addition, since the prediabetic stage precedes overt T2DM, developing animal models of 

prediabetes may prevent the progression of prediabetes to T2DM.     

 

1.6. Diet-induced animal models of prediabetes 

Genetically induced animal models of prediabetes have been developed in various laboratories around 

the world. However, due to non-availability and unevenly distribution of these animal models 

worldwide, an experimentally induced animal model of prediabetes through high caloric diet has been 

developed. Diet-induced animal models of prediabetes have been reported to be developed by feeding 

animals high fat diet, high fructose or sucrose diet, high fat high fructose/sucrose diet (Islam and 

Venkatesan, 2016, Gamede et al.,2018).  

High fat diet-induced animal model of prediabetes was developed in C57BL/6J mice by feeding the 

mice high fat diet for a duration of 16 weeks (Obrosova et al., 2007). This model of prediabetes was 

characterized by obesity, increased plasma concentration of free fatty acids (FFA), hyperinsulinaemia 

and impaired glucose tolerance (Obrosova et al., 2007). Also, high fat diet that contains 24.5% lard and 

2.5% soybean oil was used to induce prediabetes in 4 weeks old C57BL/6J mice (Jin et al., 2013). After 

12 weeks of feeding, non-significantly higher blood glucose, glucose intolerance, high serum 

concentration of triglyceride, total cholesterol and low HDL serum concentration were observed in the 

mice (Jin et al., 2013). However, this model was not evaluated by anti-diabetic drugs except by anti-

diabetic plant extract (Islam and Venkatesan, 2016). 

High fructose diet-induced animal model of prediabetes is another model of prediabetes. However, 

several literatures have shown that a high fructose diet contributes to insulin resistance, obesity, 

prediabetes and T2DM (Basciano et al., 2005, Miller and Adeli, 2008). High fructose diet-induced 

animal model of prediabetes was developed to mimic the occurrence of prediabetes or its complications 
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due to chronic consumption of beverages in developing and developed countries (Lozano et al., 2016). 

The model was developed by feeding rhesus monkeys diet that contained 30% protein, 11% fat and 

59% carbohydrate coupled with 15% fructose drinking water for 12 months (Bremer et al., 2011). The 

prediabetic model was characterized by insulin resistance, central obesity, dyslipidaemia and 

inflammation. However, this model was not evaluated by anti-diabetic drugs and the period of induction 

was long. High fructose diet-induced animal model was also developed by feeding Sprague Dawley 

rats 60% fructose-containing diet along with fibre-free refined wheat flower for a period of 8 weeks 

(Amin and Gilani, 2013). This model was characterized by hyperglycaemia, hyperinsulinaemia and 

reduced HDL concentration at 4th week period (Amin and Gilani, 2013). This animal model of 

prediabetes has a shorter duration period however, prediabetes may be reversed to normal (Amin and 

Gilani, 2013). 

In addition, sucrose-fed animal model of prediabetes has been developed in rodents by feeding Wistar 

rats 35% sucrose ad libitum for a period of 9 weeks (Soares et al., 2013). This model was characterized 

by normoglycaemia, hyperinsulinaemia and hypertriglyceridaemia (Soares et al., 2013). Similarly, in 

another study, the period of induction was extended to 16 weeks, hyperinsulinaemia, 

hypertriglyceridaemia, insulin resistance, glucose intolerance with the absence of hyperglycaemia and 

obesity was observed (Nunes et al., 2013). However, this model has not been evaluated by anti-diabetic 

drugs. 

Furthermore, both high fat and high fructose diets are used for induction of prediabetes model in animals 

but literature has shown that high fat diet can develop a better model of prediabetes (Zaman et al., 

2011). However, it has been reported that the combination of high fat high fructose diet is more suitable 

to induce prediabetes model in rodents than high fat or high fructose diet alone (Charlton et al., 2011). 

High fat high fructose diet-induced prediabetes model was developed by feeding mice high fat diet 

(60% calorie from fat) along with 23.1 g/L of high fructose-containing water for 24 weeks (6 months) 

(Charlton et al., 2011). The prediabetes model was characterized by obesity, insulin resistance, liver 

fibrosis, inflammation and endoplasmic reticulum stress. In this prediabetes model, the percentages of 

diet combination did not actually mimic high caloric diet that predisposes humans to prediabetes in 

developed countries. 

In our laboratory, an animal model of prediabetes was induced by feeding rats high fat high 

carbohydrate diet (55% carbohydrate, 35% fats and 15% protein) that was supplemented with 5% milk 

and 15% fructose drinking water for 20 weeks (Luvuno et al., 2017, Gamede et al., 2018). In addition, 

we have established through research and publications from our laboratory that this prediabetes model 

presented hyperglycaemia, insulin resistance, glucose intolerance, increased glycated haemoglobin, 

increased body weight and increased ghrelin concentration (Luvuno et al., 2017, Gamede et al., 2018, 

Akinnuga et al., 2019).    

Therefore, in this study, this prediabetes model was adopted to mimic the diet combination and long-

term consumption of high caloric diet which exposes individuals to prediabetes in developing and 
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developed countries. Also, this high fat high carbohydrate prediabetic model was adopted to induce 

complications associated with glucose homeostasis, liver, cardiovascular and renal functions during 

prediabetes.   

 

1.7 Justification of the study 

Prediabetes is an asymptomatic and risk state of developing T2DM and its complications unknowingly. 

The prevalence of prediabetes is increasing rapidly in developed and developing countries such as South 

Africa due to high consumption of high caloric diets, urbanization and lifestyle of physical inactivity. 

Several kinds of literature have shown that various metabolic disorders and complications in the liver, 

heart, blood vessels and kidney begin at the prediabetic stage and become aggravated in the overt 

diabetic stage. However, pharmacological and diet interventions are the current therapeutic approaches 

to manage prediabetes. Unfortunately, the combination of pharmacological and diet interventions has 

not yielded adequate results as patients do not comply to their diet modifications due to the cost of the 

diet, inconvenience of change of diet and other shortfalls. Despite the combination of these two 

interventions, prediabetic patients still progress to T2DM as well as other complications in various body 

systems. Hence, the efficacy of pharmacological intervention is reduced. Therefore, a need for an 

alternative anti-diabetic compound that can possibly regulate glucose metabolism and ameliorate liver, 

cardiovascular and renal complications in the prediabetic state regardless of diet intervention is 

necessary. Several pentacyclic triterpenes (such as oleanolic acid, maslinic acid, ursolic acid) have been 

reported to have anti-diabetic properties and low pharmacokinetic activity without any undesirable 

effects. Therefore, due to the anti-diabetic properties and low pharmacokinetic activity of triterpenes, 

triterpenes pharmacological activity may sustainably become active and ameliorate several 

complications of prediabetes despite consumption of high caloric diet by the prediabetic patient. 

Bredemolic acid is an isomer of maslinic acid that has been reported to have more biological activity 

than maslinic acid in terms of regulation of blood glucose via inhibition of glycogen phosphorylase in 

the skeletal muscle. However, the biological effects of bredemolic acid remain unknown on glucose 

homeostasis and other associated complications of prediabetes in the liver, blood vessels, heart and the 

kidney.  

 

1.8 Aim of the study 

This study aims to determine the effects of bredemolic acid on selected markers of some prediabetes-

associated dysfunctions such as dysregulation of glucose homeostasis, hepatic, cardiovascular and renal 

functions in a diet-induced prediabetic rat model. 

 

1.9 Objectives 

The objectives of this study are: 

1. To investigate the effects of bredemolic acid on glucose homeostasis by determination of 
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selected glucose homeostasis parameters (such as caloric intake, fasting blood glucose, glycated 

haemoglobin, glucose tolerance, insulin resistance, insulin concentration, ghrelin concentration 

and expression of GLUT4) in prediabetic rats with or without diet intervention. 

2. To evaluate the effects of bredemolic acid on liver functions in prediabetic rat model  

with or without diet intervention by determination of selected liver function parameters such as 

liver enzymes (AST and ALT), liver triglycerides, SREBP1c concentration, liver glycogen, 

liver oxidative stress and antioxidant system biomarkers (MDA, SOD and GPx) . 

3. To demonstrate the effects of bredemolic acid on cardiovascular functions in prediabetic rats   

  with or without diet intervention by evaluation of cardiovascular function indices such as the    

BMI, waist circumference, lipid profile, blood pressure (systolic and diastolic), heart rate,    

endothelial dysfunction (eNOS), heart oxidative stress markers (MDA, SOD and GPx) and    

proinflammatory cytokines (hs-CRP, IL-6 and TNF-α). 

4. To determine the effects of bredemolic acid on renal function in diet-induced prediabetic rats   

   with or without diet intervention by assessment of fluid intake, urine output and renal function    

markers (such as the GFR, creatinine, urea, total protein, albumin, uric acid and electrolytes   

(Na+ and K+) concentrations in the plasma and urine), oxidative stress and antioxidant system   

markers, and urinary gene expression of podocin mRNA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 
 

References 

Abdul-Ghani, M., Daniele, G., DeFronzo, R., 2014. What are the pharmacotherapy options for 

treating prediabetes? Expert Opin. Pharmacother. 15, 2003–2018. 

Abdul-Ghani, M., Tripathy, D., DeFronzo, R., 2006. Contributions of beta-cell dysfunction and 

insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting 

glucose. Diabetes Care 29, 1130–1139. 

Abraham, A., Chaney, S., Huffman, A., Kremer, K., 2015. Prediabetes and Metabolic Syndrome 

Current Trend. Clin. Rev. 42–50. 

Aguiree, F., Brown, A., Cho, N.H., Dahlquist, G., Dodd, S., Dunning, T., Hirst, M., Hwang, C., 

Magliano, D., Patterson, C., Scott, C., Shaw, J., Soltesz, G., Usher-Smith, J., Whiting, D., 2013. 

IDF Diabetes Atlas : sixth edition. 

Al-awar, A., Kupai, K., Veszelka, M., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., Varga, C., 2016. 

Experimental diabetes mellitus in different animal models. J. Diabetes Res. 2016, Article ID 

9051426 12pages. 

Alamri, B., Shin, K., Chappe, V., Anini, Y., 2016. The role of ghrelin in the regulation of glucose 

homeostasis. Horm. Mol. Biol. Clin. Investig. 26, 3–11. 

Alessi, M., Poggi, M.J., Uhan-Vague, I., 2007. Plasminogen activator inhibitor-1, adipose tissue and 

insulin resistance. Curr. Opin. Lipidol. 18, 240–245. 

Alsahli, M., Gerich, J.E., 2017. Renal glucose metabolism in normal physiological conditions and in 

diabetes. Diabetes Res. Clin. Pract. 133, 1–9. 

American Diabetes Association, 2011. Diagnosis and classification of diabetes mellitus. Diabetes 

Care 34, S62–S69. 

American Diabetes Association, 2016. Standards of medical care in diabetes. Diabetes Care 39, S52–

S59. 

American Diabetes Association, 2017. Standards of medical care in diabetes-2017. Diabetes Care 40, 

S11–S24. 

Amin, F., Gilani, A., 2013. Fiber-free white flour with fructose offers a better model of metabolic 

syndrome. Lipids Health Dis. 12, 44. 

Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N., Häring, H.U., 2016. The impact of 

insulin resistance on the kidney and vasculature. Nat. Rev. Nephrol. 12, 721–737. 

Bakris, G., Fonseca, V., Sharma, K., Wright, E., 2009. Renal sodium-glucose transport: role in 



 

22 
 

diabetes mellitus and potential clinical implications. Kidney Int. 75, 1272–7. 

Baltina, L., Flekhter, O., Nigmatullina, L., Boreko, E., Pavlova, N., Nikolaeva, S., Savinova, O., 

Tolstikov, G., 2003. Lupane triterpenes and derivatives with antiviral activity. Bioorg. Med. 

Chem. Lett. 13, 3549–3552. 

Bansal, N., 2015. Prediabetes diagnosis and treatment: a review. World J. Diabetes 6, 296–303. 

Barazzoni, R., 2014. Ghrelin and insulin secretion in humans : Not a tale of two hormones ? Diabetes 

63, 2213–2215. 

Basciano, H., Federico, L., Adeli, K., 2005. Fructose, insulin resistance, and metabolic dyslipidemia. 

Nutr. Metab. 2, 5. 

Basu, A., Shah, P., Nielsen, M., Basu, R., Rizza, R., 2004. Effects of type 2 diabetes on the regulation 

of hepatic glucose metabolism. J. Investig. Med. 52, 366–374. 

Basu, R., Barosa, C., Jones, J., Dube, S., Carter, R., Basu, A., Rizza, R., 2013. Pathogenesis of 

prediabetes: role of the liver in isolated fasting hyperglycemia and combined fasting and 

postprandial hyperglycemia. J. Clin. Endocrinol. Metab. 98, E409–417. 

Birkenfeld, A.L., Shulman, G.I., 2014. Nonalcoholic fatty liver disease, hepatic insulin resistance, and 

type 2 diabetes. Hepatology 59, 713–723. 

Bogan, J.S., 2012. Regulation of glucose transporter translocation in health and diabetes. Annu. Rev. 

Biochem. 81, 507–532. 

Bos, M., Agyemang, C., 2013. Prevalence and complications of diabetes mellitus in Northern Africa, 

a systematic review. BMC Public Health 13, 387–393. 

Brannick, B., Dagogo-Jack, S., 2018. Prediabetes and cardiovascular disease: Pathophysiology and 

interventions for prevention and risk reduction. Endocrinol. Metab. Clin. North Am. 47, 33–50. 

Brannick, B., Wynn, A., Dagogo-Jack, S., 2016. Prediabetes as a toxic environment for the initiation 

of microvascular and macrovascular complications. Exp. Biol. Med. 241, 1323–1331. 

Bremer, A.A., Stanhope, K.l., Graham, J.l., Cummings, B.P., Wang, W., Saville, B.R.,  et al., 2011. 

Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic 

syndrome, and type 2 diabetes. Clin. Transl. Sci. 4, 243–252. 

Briggs, D.I., Andrews, Z.B., 2011. Metabolic status regulates ghrelin function on energy homeostasis. 

Neuroendocrinology 93, 48–57. 

Camici, M., 2007. Urinary detection of podocyte injury. Biomed. Pharmacother. 61, 245–249. 



 

23 
 

Cardillo, C., Nambi, S., Kilcoyne, C., Choucair, W., Katz, A., Quon, M., Panza, J., 1999. Insulin 

stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 100, 820–

825. 

Chabot, F., Caron, A., Laplante, M., St-pierre, D.H., 2014. Interrelationships between ghrelin , insulin 

and glucose homeostasis : physiological relevance. World J. Diabetes 5, 328–341. 

Charlton, M., Krishnan, A., Viker, K., Sanderson, S., Casanave, S., McConico, A., Masuoko, H., 

Gores, G., 2011. Fast food diet mouse: novel small animal model of NASH with ballooning, 

progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. 

Liver Physiol. 301, G825–G834. 

Chatterton, H., Younger, T., Fischer, A., Khunti, K., 2012. Programme Development Group. Risk 

identification and interventions to prevent type 2 diabetes in adults at high risk: summary of 

NICE guidance. Br. Med. J. 345, e4624. 

Chaudhuri, A., Janicke, D., Wilsonetal, M., 2004. Anti-Inflammatory and profibrinolytic effect of 

insulin in acute ST-segment elevation myocardial infarction. Circulation 109, 849–854. 

Chawla, T., Sharma, D., Singh, A., 2010. Role of the renin angiotensin system in diabetic 

nephropathy. World J. Diabetes 1, 141–145. 

Cheng, K., Zhang, P., Liu, J., Xie, J., Sun, H., 2008. Practical synthesis of bredemolic acid, a natural 

inhibitor of glycogen phosphorylase. J. Nat. Prod. 71, 1877–1880. 

Cherney, D., Perkins, B., Soleymanlou, N., Maione, M., Lai, V., Lee, A., Fagan, N., Woerle, H., 

Johansen, O., Broedl, U., von Eynatten, M., 2014. Renal hemodynamic effect of sodium-glucose 

cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 129, 587–597. 

Chilelli, N., Burlina, S., Lapolla, A., 2013. AGEs, rather than hyperglycemia, are responsible for 

microvascular complications in diabetes: a ‘glycoxidation-centric’ point of view. Nutr. Metab. 

Cardiovasc. Dis. 23, 913–919. 

Choi, J., Rhee, E., Bae, J., Park, S., Park, C., Cho, Y. et al., 2013. Increased risk of type 2 diabetes in 

subjects with both elevated liver enzymes and ultrasonographically diagnosed nonalcoholic fatty 

liver disease: a 4-year longitudinal study. Arch. Med. Res. 44, 115–20. 

Chou, C.L., Fang, T.C., 2010. Incidental chronic kidney disease in metabolic syndrome. Tzu Chi 

Med. J. 22, 11–17. 

Ciccone, M.M., Scicchitano, P., Cameli, M., Cecere, A., Cortese, F., Dentamaro, I., Gentile, F., 2014. 

Endothelial function in pre-diabetes , diabetes and diabetic cardiomyopathy : A review. J. 

Diabetes Metab. 5, 364–373. 



 

24 
 

Coward, R., Welsh, G., Koziell, A., Hussain, S., Lennon, R., Ni, L., Tavaré, J., Mathieson, P., Saleem, 

M., 2007. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes 

56, 1127–1135. 

Coward, R., Welsh, G., Yang, J., Tasman, C., Lennon, R., Koziell, A., Satchell, S., Holman, G., 

Kerjaschki, D., Tavaré, J., Mathieson, P., Saleem, M., 2005. The human glomerular podocyte is 

a novel target for insulin action. Diabetes 54, 3095–3102. 

De Nicola, L., Conte, G., Minutolo, R., 2016. Prediabetes as a precursor to diabetic kidney disease. 

Am. J. Kidney Dis. 67, 817–819. 

DECODE Study Group and European Diabetes Epidemiology Group., 2003. Is the current definition 

for diabetes relevant to mortality risk from all causes and cardiovascular and non-cardiovascular 

diseases? Diabetes Care 26, 688–696. 

DeFronzo, R., Triplitt, C., Abdul-Ghani, M., Cersosimo, E., 2014. Novel agents for the treatment of 

type 2 diabetes. Diabetes Spectr. 27, 100–112. 

DeFronzo, R.A., 2004. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am. 88, 787–835. 

DPP Research Group., 2002. Reduction in the incidence of type 2 diabetes with life- style intervention 

or metformin. N. Engl. J. Med. 346, 393–403. 

Dunkley, A., Bodicoat, D., Greaves, C., Russell, C., Yates, T., Davies, M., Khunti, K., 2014. Diabetes 

prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention 

of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic 

review and meta-analysis. Diabetes Care 37, 922–933. 

Echouffo-Tcheugui, J.B., Narayan, K.M., Weisman, D., Golden, S.H., Jaar, B.G., 2016. Association 

between prediabetes and risk of chronic kidney disease: a systematic review and meta-analysis. 

Diabet. Med. 33, 1615–1624. 

Edwards, C.M., Cusi, K., 2016. Prediabetes: A worldwide epidemic. Endocrinol. Metab. Clin. North 

Am. 45, 751–764. 

Emeis, J., van den Eijnden-Schrauwen, Y., van den Hoogen, C., de Priester, W., Westmuckett, A., 

Lupu, F., 1997. An endothelial storage granule for tissue-type plasminogen activator. J. Cell 

Biol. 139, 245–256. 

Fattah, M.A., Shaheen, M.H., Mahfouz, M.H., 2013. Disturbances of haemostasis in diabetes mellitus. 

Dis. Markers 19, 251–258. 

Ferrannini, E., Gastaldelli, A., Iozzo, P., 2011. Pathophysiology of prediabetes. Med. Clin. North Am. 

95, 327. 



 

25 
 

Fon Tacer, K., Rozman, D., 2011. Nonalcoholic fatty liver disease: focus on lipoprotein and lipid 

deregulation. J. Lipids 2011, Article ID 783976 14pages. 

Ford, E.S., Zhao, G., Li, C., 2010. Pre-diabetes and the risk for cardiovascular disease a systematic 

review of the evidence. J. Am. Coll. Cardiol. 55, 1310–1317. 

Fu, Zhuo, Gilbert, E.R., Liu, D., 2013. Regulation of insulin synthesis and secretion and pancreatic 

beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53. 

Gæde, P., Oellgaard, J., Carstensen, B., Rossing, P., Lund-Andersen, H., Parving, H., Pedersen, O., 

2016. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus 

and microalbuminuria: 21 years follow-up on the Steno-2 randomized trial. Diabetologia 59, 

2298–2307. 

Galbo, T., Perry, R., Jurczak, M., Camporez, J., Alves, T., Kahn, M. et al., 2013. Saturated and 

unsaturated fat induce hepatic insulin resistance independently of TLR-4 signalling and 

ceramide synthesis in vivo. Proceeding Natl. Acad. Sci. USA 110, 12780–5. 

Gamede, M., Mabuza, L., Ngubane, P., Khathi, A., 2018. The effects of plant-derived oleanolic acid 

on selected parameters of glucose homeostasis in a diet-induced pre-diabetic rat model. 

Molecules 23, 794–805. 

Gamede, M., Mabuza, L., Ngubane, P., Khathi, A., 2019. Plant-derived oleanolic acid (OA) 

ameliorates risk factors of cardiovascular diseases in a diet-induced pre-diabetic rat model: 

Effects on selected cardiovascular risk factors. Molecules 24, 340–352. 

Gautheron, J., Vucur, M., Reisinger, F., Cardenas, D., Roderburg, C., Koppe, C. et al., 2014. A 

positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO 

Mol. Med. 6, 1062–74. 

Geraldes, P., King, G., 2010. Activation of protein kinase C isoforms and its impact on diabetic 

complications. Circ. Res. 106, 1319–1331. 

Gerstein, H., Pogue, J., Mann, J., Lonn, E., Dagenais, G., McQueen, M., Yusuf, S., HOPE 

Investigators., 2005. The relationship between dysglycaemia and cardiovascular and renal risk in 

diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological 

analysis. Diabetologia 48, 1749–1755. 

Giunti, S., Barit, D., Cooper, M.E., 2006. Mechanisms of diabetic nephropathy: role of hypertension,. 

Hypertension 48, 519–526. 

Glechner, A., Keuchel, L., Affengruber, L., Titscher, V., Sommer, I., Matyas, N., Wagner, G., Kien, 

C., Klerings, I., Gartlehner, G., 2018. Effects of lifestyle changes on adults with prediabetes: A 



 

26 
 

systematic review and meta-analysis. Prim. Care Diabetes 12, 393–408. 

Govil, S.R., Weidner, G., Merritt-Worden, T., Ornish, D., 2009. Socioeconomic status and 

improvements in lifestyle, coronary risk factors, and quality of life: The multisite cardiac 

lifestyle intervention program. Am. J. Public Health 99, 1263–1270. 

Graves, D.T., Kayal, R.A., 2011. Diabetic complications and dysregulated innate immunity. Front. 

Biosci. 13, 1227–1239. 

Hansen, D., Dendale, P., van Loon, L., Meeusen, R., 2010. The impact of training modalities on the 

clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 

diabetes mellitus. Sport. Med. 40, 921–940. 

Hardie, D., Ross, F., Hawley, S., 2012. AMPK: a nutrient and energy sensor that maintains energy 

homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262. 

Hazlehurst, J.M., Woods, C., Marjot, T., Cobbold, J.F., Tomlinson, J.W., 2016. Non-alcoholic fatty 

liver disease and diabetes. Metabolism 65, 1096–1108. 

He, J., Lee, J., Febbraio, M., Xie, W., 2011. The emerging roles of fatty acid translocase/CD36 and 

the aryl hydrocarbon receptor in fatty liver disease. Exp. Biol. Med. 236, 1116–21. 

Heilig, C., Zaloga, C., Lee, M., Zhao, X., Riser, B., Brosius, F. et al., 1995. Immunogold localization 

of high-affinity glucose transporter isoforms in normal rat kidney. Lab. Investig. 73, 674–84. 

Herman, M.A., Samuel, V.T., 2016. The Sweet Path to Metabolic Demise : Fructose and Lipid 

Synthesis. Trends Endocrinol. Metab. 27, 719–730. 

Holland, W., Bikman, B., Wang, L., Yuguang, G., Sargent, K., Bulchand, S. et al., 2011. Lipid-

induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated 

fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–70. 

Hostalek, U., Gwilt, M., Hildemann, S., 2015. Therapeutic use of metformin in prediabetes and 

diabetes prevention. Drugs 75, 1071–1094. 

Huang, D., Refaat, M., Mohammedi, K., Jayyousi, A., Al Suwaidi, J., Abi Khalil, C., 2017. 

Macrovascular complications in patients with diabetes and prediabetes. Biomed Res. Int. 2017, 

Article ID 7839101 9 pages. 

Huang, Y., Cai, X., Mai, W., Li, M., Hu, Y., 2016. Association between prediabetes and risk of 

cardiovascular disease and all cause mortality : systematic review and. Br. Med. J. 355, i5953. 

Hyttinen, V., Kaprio, J., Kinnunen, L., Koskenvuo, M., Tuomilehto, J., 2003. Genetic liability of type 

1 diabetes and the onset age among 22, 650 young Finnish twin pairs: a nationwide follow-up 



 

27 
 

study. Diabetes 52, 1052–1055. 

Incani, M., Sentinelli, F., Perra, L., Pani, M.G., Porcu, M., Lenzi, A., Cavallo, M.G., Cossu, E., 

Leonetti, F., Baroni, M.G., Baroni, M.G., 2015. Glycated hemoglobin for the diagnosis of 

diabetes and prediabetes : Diagnostic impact on obese and lean subjects , and phenotypic 

characterization. J. Diabetes Investig. 6, 44–50. 

International Diabetes Federation., 2011. IDF Diabetes Atlas. 5. Brussels: International Diabetes 

Federation; 

International Expert Committee., 2009. International Expert Committee report on the role of the A1C 

assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334. 

Ionut, V., Liu, H., Mooradian, V., Castro, A., Kabir, M., Stefanovski, D., Zheng, D., Kirkman, E., 

Bergman, R., 2009. Novel canine models of obese prediabetes and mild type 2 diabetes. Am. J. 

Physiol. Metab. 298, E38. 

Islam, M.S., Venkatesan, V., 2016. Experimentally-induced animal models of prediabetes and insulin 

resistance: A review. Acta Pol. Pharm. 73, 827–834. 

Jager, S., Trojan, H., Kopp, T., Laszczyk, M., Scheffler, A., 2009. Pentacyclic triterpene distribution 

in various plants–rich sources for a new group of multi-potent plant extracts. Molecules 14, 

2016–2031. 

Jaikumkao, K., Pongchaidecha, A., Chatsudthipong, V., 2017. The roles of sodium-glucose 

cotransporter 2 inhibitors in preventing kidney injury in diabetes. Biomed. Pharmacother. 94, 

176–187. 

Jin, H., Cha, Y., Baek, H., Park, T., 2013. Neuroprotective effects of Vitis vinifera extract on 

prediabetic mice induced by a high-fat diet. Korean J. Intern. Med. 28, 579. 

Kahn, S.E., 2003. The relative contributions of insulin resistance and beta-cell dysfunction to the 

pathophysiology of type 2 diabetes. Diabetologia 46, 3–19. 

Kanat, M., DeFronzo, R., Abdul-Ghani, M., 2015. Treatment of prediabetes. World J. Diabetes 6, 

1207–1222. 

Kawano, Y., Cohen, D.E., 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic 

fatty liver disease. J. Gastroenterol. 48, 434–441. 

Keane, K.N., Cruzat, V.F., Carlessi, R., De Bittencourt, P.I.H., Newsholme, P., 2015. Molecular 

events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. 

Oxid. Med. Cell. Longev. 2015, Article ID 181643 15 pages. 



 

28 
 

Khathi, A., Serumula, M.R., Myburg, R.B., Van Heerden, F.R., Musabayane, C.T., 2013. Effects of 

Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-

induced diabetic rats following carbohydrate challenge. PLoS One 8, e81632. 

Knowler, W., Barrett-Connor, E., Fowler, S., Hamman, R., Lachin, J., Walker, E., Nathan, D., 

Diabetes Prevention Program Research Group., 2002. Reduction in the incidence of type 2 

diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403. 

Kodama, Y., Brenner, D.A., 2009. C-Jun N-terminal kinase signalling in the pathogenesis of 

nonalcoholic fatty liver disease: multiple roles in multiple steps. Hepatology 49, 6–8. 

Kong, Y., Shen, Y., Ni, J., Shao, D., Miao, N., Xu, J., Zhou, L., Xue, H., Zhang, W., Wang, X., Lu, 

L., 2016. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-

1/IGF-1R pathway. Acta Pharmacol. Sin. 37, 217–227. 

Kowalski, G., Bruce, C.R., 2014. The regulation of glucose metabolism: implications and 

considerations for the assessment of glucose homeostasis in rodents. Am. J. Physiol. Metab. 307, 

E859–E871. 

Laakso, M., Edelman, S., Brechtel, G., Baron, A., 1990. Decreased effect of insulin to stimulate 

skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J. Clin. 

Invest. 85, 1844–1852. 

Lam, D.W., LeRoith, D., 2012. The worldwide diabetes epidemic. Curr. Opin. Endocrinol. Diabetes 

Obes. 19, 93–96. 

Lambert, J., Ramos-Roman, M., Browning, J., Parks, E., 2014. Increased de novo lipogenesis is a 

distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 

726–735. 

Laszczyk, M.N., 2009. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in 

cancer therapy. Planta Med. 75, 1549–1560. 

Lautamäki, R., Airaksinen, K., Seppänen, M., Toikka, J., Härkönen, R., Luotolahti, M., Borra, R., 

Sundell, J., Knuuti, J., Nuutila, P., 2006. Insulin improves myocardial blood flow in patients 

with type 2 diabetes and coronary artery disease. Diabetes. 55, 511–516. 

Lenzen, S., 2008. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51, 

216–226. 

Ley, S., Hamdy, O., Mohan, V., Hu, F., 2014. Prevention and management of type 2 diabetes: Dietary 

components and nutritional strategies. Lancet 383, 1999–2007. 

Li, A., Bode, C., Sakai, Y., 2004. A novel in vitro system, the integrated discrete multiple organ cell 



 

29 
 

culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of 

tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma 

breast. Chem. Interact. 150, 129–136. 

Li, G., Zhang, P., Wang, J., An, Y., Gong, Q., Gregg, E., Yang, W., Zhang, B., Shuai, Y., Hong, J., 

Engelgau, M., Li, H., Roglic, G., Hu, Y., Bennett, P., 2014. Cardiovascular mortality, all-cause 

mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose 

tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes 

Endocrinol. 2, 474–480. 

Li, G., Zhang, P., Wang, J., Gregg, E., Yang, W., Gong, Q., H, L., Li, H., Jiang, Y., An, Y., Shuai, Y., 

Zhang, B., Zhang, J., Thompson, T., Gerzoff, R., Roglic, G., Hu, Y., Bennett, P., 2008. The 

long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes 

Prevention Study: a 20-year follow-up study. Lancet 371, 1783–1789. 

Lilly, M., Godwin, M., 2009. Treating prediabetes with metformin: systematic review and meta-

analysis. Can. Fam. Physician 55, 363–9. 

Liou, C.J., Dai, Y.W., Wang, C.L., Fang, L.W., Huang, W.C., 2019. Maslinic acid protects against 

obesity-induced nonalcoholic fatty liver disease in mice through regulation of the Sirt1/AMPK 

signalling pathway. FASEB J. 33, 1–13. 

Lioudaki, E., Stylianou, G., Petrakis, I., Kokoogiannakis, G., Passam, A., Mikhailidis, D.P., Daphnis, 

E.K., Ganotakis, E., 2015. Increased urinary excretion of podocyte markers in 

normoalbuminuric patients with diabetes. Nephron 131, 34–42. 

Lozano, I., Van Der Werf, R., Bietiger, W., Seyfritz, E., Peronet, C., Pinget, M., Jeandidier, N., 

Maillard, E., Marchioni, E., Sigrist, S., Dal, S., 2016. High-fructose and high-fat disorders in 

rats : impact on diabetes risk , hepatic and vascular complications. Nutr. Metab. (Lond). 13, 1–

13. 

Luther, J.M., Brown, N.J., 2011. Renin-angiotensin-aldosterone system and glucose homeostasis. 

Trends Pharmacol. Sci. 32, 734–739. 

Luvuno, M., Kathi, A., Mabandla, M.V., 2017. Voluntary ingestion of a high-fat high-carbohydrate 

diet: A model for prediabetes. Master’s Dissertation. 

Luvuno, M., Mbongwa, H., Khathi, A., 2016. The effects of syzygium aromaticum-derived triterpenes 

on gastrointestinal ghrelin expression in streptozotocin-induced diabetic rats. African J. Tradit. 

Complement. Altern. Med. 13, 8–14. 

Mabuza, L.P., Gamede, M.W., Maikoo, S., Booysen, I.N., Ngubane, P.S., Khathi, A., 2019. 



 

30 
 

Cardioprotective effects of a ruthenium (II) Schiff base complex in diet-induced prediabetic rats. 

Diabetes, Metab. Syndr. Obes. Targets Ther. 12, 217–223. 

Melsom, T., Mathisen, U., Ingebretsen, O., Jenssen, T., Njølstad, I., Solbu, M. et al., 2011. Impaired 

fasting glucose is associated with renal hyperfiltration in the general population. Diabetes Care 

34, 1546–1551. 

Melsom, T., Schei, J., Stefansson, V., Solbu, M., Jenssen, T., Mathisen, U., Wilsgaard, T., Eriksen, 

B., 2016. Prediabetes and risk of glomerular hyperfiltration and albuminuria in the general 

nondiabetic population: a prospective cohort study. Am. J. Kidney Dis. 67, 841–850. 

Miller, A., Adeli, K., 2008. Dietary fructose and the metabolic syndrome. Curr. Opin. Gastroenterol. 

24, 204–209. 

Mkhwanazi, B.N., Serumula, M.R., Myburg, R.B., Van Heerden, F.R., Musabayane, C.T., 2014. 

Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced 

diabetic rats : effects on kidney function. Ren. Fail. 36, 419–431. 

Mokhtari, K., Rufino-Palomares, E.E., Pérez-Jiménez, A., Reyes-Zurita, F.J., Figuera, C., García-

Salguero, L., Medina, P.P., Peragón, J., Lupiáñez, J.A., 2015. Maslinic acid, a triterpene from 

olive, affects the antioxidant and mitochondrial status of B16F10 melanoma cells grown under 

stressful conditions. Evidence-based Complement. Altern. Med. 2015, ArticleID 272457 11 

pages. 

Montagnani, M., Ravichandran, L.V., Chen, H., Esposito, D.L., Quon, M.J., 2002. Insulin receptor 

substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated 

production of nitric oxide in endothelial cells. Mol. Endocrinol. 16, 1931–1942. 

Nagle, C., Klett, E., Coleman, R., 2009. Hepatic triacylglycerol accumulation and insulin resistance. J. 

Lipid Res. 50, S74–9. 

Nakamura, T., Ushiyama, C., Suzuki, S., Hara, M., Shimada, N., Ebihara, I. et al., 2000. Urinary 

excretion of podocytes in patients with diabetic nephropathy. Nephrol. Dial. Transplant. 15, 

1379–83. 

Nassir, F., Ibdah, J.A., 2014. Role of mitochondria in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 

15, 8713–42. 

Nathan, D., Buse, J., Davidson, M., Ferrannini, E., Holman, R., Sherwin, R., Zinman, B., American 

Diabetes Association., European Association for the study of Diabetes., 2009. Medical 

management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the 

initiation and adjustment of therapy: a consensus statement from the American Diabetes 



 

31 
 

Association and the European Association for the Study of Diabetes. Diabetologia 52, 17–30. 

Nazaruk, J., Borzym-Kluczyk, M., 2015. The role of triterpenes in the management of diabetes 

mellitus and its complications. Phytochem. Rev. 14, 675–690. 

Ngubane, P.S., Masola, B., Musabayane, C.T., 2011. The effects of syzygium aromaticum-derived 

oleanolic acid on glycogenic enzymes in streptozotocin-induced diabetic rats. Ren. Fail. 33, 

434–439. 

Novikov, A., Vallon, V., 2016. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an 

update. Curr. Opin. Nephrol. Hypertens. 25, 50–58. 

Nunes, S., Soares, E., Fernandes, J., Viana, S., Carvalho, E., Pereira, F., Reis, F., 2013. Early cardiac 

changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the 

best marker. Cardiovasc. Diabetol. 12, 44. 

Obrosova, I., Ilnytska, O., Lyzoqubov, V., Pavlov, I., Mashtalir, N., Nadler, J., Drel, V., 2007. High-

fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose 

reductase inhibition. Diabetes 56, 2598. 

Odermatt, A., 2011. The Western-style diet: a major risk factor for impaired kidney function and 

chronic kidney disease. Am. J. Physiol. Ren. Physiol. 301, F919–F931. 

Okada, R., Yasuda, Y., Tsushita, K., Wakai, K., Hamajima, N., Matsuo, S., 2012. Glomerular 

hyperfiltration in prediabetes and prehypertension. Nephrol. Dial. Transplant. 27, 1821–1825. 

Paneni, F., Beckman, J., Creager, M., Cosentino, F., 2013. Diabetes and vascular disease: 

pathophysiology, clinical consequences, and medical therapy: part I. Eur. Heart J. 34, 2436–

2443. 

Perry, R.J., Camporez, J.P.G., Kursawe, R., Titchenell, P.M., Zhang, D., Perry, C.J., Jurczak, M.J., 

Abudukadier, A., Han, M.S., Zhang, X.M., Ruan, H. Bin, Yang, X., Caprio, S., Kaech, S.M., 

Sul, H.S., Birnbaum, M.J., Davis, R.J., Cline, G.W., Petersen, K.F., Shulman, G.I., 2015. 

Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 

diabetes. Cell 160, 745–758. 

Petersen, K., Flannery, C., Dufour, S., Rabol, R., Shulman, G., 2012. Skeletal muscle insulin 

resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis 

in the elderly. Diabetes 61, 2711–2717. 

Petersen, M.C., Vatner, D.F., Shulman, G.I., 2017. Regulation of hepatic glucose metabolism in 

health and disease. Nat. Rev. Endocrinol. 13, 572–587. 

Potenza, M., Marasciulo, F., Chieppa, D., Brigiani, G., Formoso, G., Quon, M., Montagnani, M., 



 

32 
 

2005. Insulin resistance in spontaneously hyper- tensive rats is associated with endothelial 

dysfunction characterized by imbalance between NO and ET-1 production. Am. J. Physiol. 

Heart. Circ. Physiol. 289, H813–H822. 

Powell, D., Kenagy, D., Zheng, S., Coventry, S., Xu, J., Cai, L., Carlson, E., Epstein, P., 2013. 

Association between structural and functional changes to the kidney in diabetic humans and 

mice. Life Sci. 93, 257–264. 

Putta, S., Yarla, S.N., Kilari, K.E., Surekha, C., Aliev, G., Divakara, M.B., Santosh, S.M., Ramu, R., 

Zameer, F., MN, N.P., Chintala, R., Rao, P.V., Shiralgi, Y., Dhananjaya, B.L., 2016. 

Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top. 

Med. Chem. 16, 2532–2542. 

Qiao, Q., Pyorala, K., Pyorala, M., Nissinen, A., Lindstro, J., Tilvis, R., Tuomilehto, J., 2002. Two 

hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular 

mortality than fasting glucose. Eur. Heart J. 23, 1267–1275. 

Ramachandran, A., Snehalatha, C., Mary, S., Mukesh, B., Bhaskar, A., Vijay, V., 2006. Indian 

Diabetes Prevention Programme (IDPP). The Indian diabetes prevention programme shows that 

lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with 

impaired glucose tolerance (IDPP-1). Diabetologia 49, 289–297. 

Ramachandran, A., Snehalatha, C., Mary, S., Selvam, S., Kumar, C., Seeli, A., Shetty, A., 2009. 

Pioglitazone does not enhance the effectiveness of lifestyle modification in preventing 

conversion of impaired glucose tolerance to diabetes in Asian Indians: results of the Indian 

diabetes prevention programme-2 (IDPP-2). Diabetologia 52, 1019–26. 

Ramachandran, S., Prasad, N., 2008. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B 

radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. 

Chem. Interact. 176, 99–107. 

Reccia, I., Kumar, J., Akladios, C., Virdis, F., Pai, M., Habib, N., Spalding, D., 2017. Non-alcoholic 

fatty liver disease: A sign of systemic disease. Metabolism. 72, 94–108. 

Reinehr, T., 2013. Type 2 diabetes mellitus in children and adolescents. World J. Diabetes 4, 270–

281. 

Ritz, E., Koleganova, N., Piecha, G., 2011. Is there an obesity-metabolic syndrome related 

glomerulopathy? Curr. Opin. Nephrol. Hypertens. 20, 44–49. 

Rizza, R.A., 2010. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: 

implications for therapy. Diabetes 59, 2697–2707. 



 

33 
 

Roglic, G., 2014. Global report on diabetes. World Heal. Organ. 58, 1–88. 

Roquer, J., Rodrı´guez-Campello, A., Cuadrado-Godia, E., Giralt-Steinhauer, E., Jiménez-Conde, J., 

Dégano, I., Ois, A., 2014. Ischemic stroke in prediabetic patients. J. Neurol. 261, 1866–1870. 

Ruggenenti, P., Porrini, E., Gaspari, F., Motterlini, N., Cannata, A., Carrara, F., Cella, C., Ferrari, S., 

Stucchi, N., Parvanova, A., Iliev, I., Dodesini, A., Trevisan, R., Bossi, A., Zaletel, J., Remuzzi, 

G., GFR Study Investigators., 2012. Glomerular hyperfiltration and renal disease progression in 

type 2 diabetes. Diabetes Care. 35, 2061–2068. 

Salpeter, S., Buckley, N., Kahn, J., Salpeter, E., 2008. Meta-analysis: metformin treatment in persons 

at risk for diabetes mellitus. Am. J. Med. 121, 149–57. 

Samuel, V., Liu, Z., Qu, X., Elder, E.B.D., Bilz, S., Befroy, D. et al., 2004. Mechanism of hepatic 

insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345–53. 

Samuel, V.T., Shulman, G.I., 2012. Mechanisms for insulin resistance: common threads and missing 

links. Cell 148, 852–871. 

Samuel, V.T., Shulman, G.I., 2016. The pathogenesis of insulin resistance : integrating signalling 

pathways and substrate flux. J. Clin. Invest. 126, 12–22. 

Sanchez-Gonzalez, M., Lozano-Mena, G., Juan, M., Garcia-Granados, A., Planas, J., 2013. 

Assessment of the safety of maslinic acid, a bioactive compound from Olea europaea L. Mol. 

Nutr. Food Res. 57, 339–346. 

Sarwar, N., Gao, P., Seshasai, S., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, 

D., Selvin, E., Stampfer, M., Stehouwer, C., Lewington, S., Pennells, L., Thompson, A., Sattar, 

N., White, I., Ray, K., Danesh, J., 2010. Emerging Risk Factor Collaboration. Diabetes mellitus, 

fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis 

of 102 prospective studies. Lancet 375, 2215–2222. 

Schmidt, A., Hori, O., Chen, J., Li, J., Crandall, J., Zhang, J., Cao, R., Yan, S., Brett, J., Stern, D., 

1995. Advanced glycation endproducts interacting with their endothelial receptor induce 

expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells 

and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 

96, 1395–1403. 

Schwarz, P., Greaves, C., Lindstrom, J., Yates, T., Davies, M., 2012. Nonpharmacological 

interventions for the prevention of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 363–373. 

Sharabi, K., Tavares, C.D.J., Rines, A.K., Puigserver, P., 2015. Molecular pathophysiology of hepatic 

glucose production. Mol. Aspects Med. 46, 21–33. 



 

34 
 

Soares, E., Prediger, R., Nunes, S., Castro, A., Viana, S., Lemos, C., De Souza, C., Agostinho, P., 

Cunha, R., Carvalho, E., Fontes Ribeiro, C., Reis, F., Pereira, F., 2013. Spatial memory 

impairments in a prediabetic rat model. Neuroscience 250, 565. 

Sörensen, B.M., Houben, A.J.H.M., Berendschot, T.T.J.M., Schouten, J.S.A.G., Kroon, A.A., Van 

Der Kallen, C.J.H., Henry, R.M.A., Koster, A., Sep, S.J.S., Dagnelie, P.C., Schaper, N.C., 

Schram, M.T., Stehouwer, C.D.A., 2016. Prediabetes and type 2 diabetes are associated with 

generalized microvascular dsfunction: The Maastricht study. Circulation 134, 1339–1352. 

Stefan, N., Staiger, H., Wagner, R., Machann, J., Schick, F., Häring, H., Fritsche, A., 2015. A high-

risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention 

in prediabe- tes. Diabetologia 58, 2877–2884. 

Sung, K., Kim, S.H., 2011. Interrelationship between fatty liver and insulin resistance in the 

development of type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 1093–7. 

Symons, J., McMillin, S., Riehle, C., Tanner, J., Palionyte, M., Hillas, E., Jones, D., Cooksey, R., 

Birnbaum, M., McClain, D., Zhang, Q., Gale, D., Wilson, L., Abel, E., 2009. Contribution of 

insulin and Akt1 signalling to endothelial nitric oxide synthase in the regulation of endothelial 

function and blood pressure. Circ. Res. 104, 1085–1094. 

Szendroedi, J., Yoshimura, T., Phielix, E., Koliaki, C., Marcucci, M., Zhang, D., 2014. Role of 

diacylglycerol activation of PKC θ in lipid-induced muscle insulin resistance in humans. 

Proceeding Natl. Acad. Sci. USA 111, 9597–9602. 

Tabak, A., Jokela, M., Akbaraly, T., Brunner, E., Kivimäki, M., Witte, D., 2009. Trajectories of 

glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an 

analysis from the Whitehall II study. Lancet 373, 2215–2221. 

Tabák, A.G., Herder, C., Kivimäki, M., 2012. Prediabetes : A high-risk state for developing diabetes. 

Lancet 379, 2279–2290. 

Thögersen, A., Jansson, J., Boman, K., Nilsson, T., Weinehall, L., Huhtasaari, F., Hallmans, G., 1998. 

High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede 

a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system 

as an independent primary risk factor. Circulation. 98, 2241–2247. 

Titchenell, P.M., Lazar, M.A., Birnbaum, M., 2017. Unraveling the regulation of hepatic metabolism 

by insulin. Trends Endocrinol. Metab. 28, 497–505. 

Tschesch, R., Henckel, E., Snatzke, G., 1963. Über triterpene-X die struktur der bredemolsäure und 

die partial synthese ihresmethylestersausoleanolsäuremethyleste. Tetrahedron Lett. 4, 613-617. 



 

35 
 

Tschesche, R., Sen Gupta, A.K., 1960. Über Triterpene, VI. Über die Sapogenine von Bredemeyera 

floribunda Willd. Chem. Berichte-Recueil 93, 1903-1913. 

Tuomilehto, J., Lindstrom, J., Eriksson, J., Valle, T., Hämäläinen, H., Ilanne-Parikka, P., Keinänen-

Kiukaanniemi, S Laakso, M., Louheranta, A., Rastas, M., Salminen, V., Uusitupa, M., Finnish 

Diabetes Prevention Study Group., 2001. Prevention of type 2 diabetes mellitus by changes in 

lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350. 

van Guilder, G., Hoetzer, G., Greiner, J., Stauffer, B., DeSouza, C., 2008. Metabolic syndrome and 

endothelial fibrinolytic capacity in obese adults. Am. J. Physiol. Regul. Integr. Comp. 294, R39–

R44. 

Vinik, A., Erbas, T., Sun Park, T., Nolan, R., Pittenger, G.L., 2001. Platelet dysfunction in type 2 

diabetes. Diabetes Care 24, 1476–1485. 

Wan, M., Leavens, K., Hunter, R., Koren, S., von Wilamowitz-Moellendorff, A., Lu, M., Satapati, S., 

Chu, Q., Sakamoto, K., Burgess, S., Birnbaum, M., 2013. A noncanonical, GSK3-independent 

pathway controls postprandial hepatic glycogen deposition. Cell Metab. 18, 99–105. 

Wang, X., Zhang, L., Youker, K., Zhang, M., Wang, J., LeMaire, S., Coselli, J., Shen, Y., 2006. Free 

fatty acids inhibit insulin signalling-stimulated endothelial nitric oxide synthase activation 

through upregulating PTEN or inhibiting Akt kinase. Diabetes 55, 2301–2310. 

Wasserman, D.H., Wang, T.J., Brown, N.J., 2018. The vasculature in prediabetes. Circ. Res. 122, 

1135–1150. 

Watson, C.S., 2017. Prediabetes: screening, diagnosis, and intervention. J. Nurse Pract. 13, 216–221. 

Weiss, R., Santoro, N., Giannini, C., Galderisi, A., Umano, G.R., Caprio, S., 2017. Prediabetes in 

youths : mechanisms and biomarkers. Lancet child Adolesc. Heal. 1, 240–248. 

Welsh, G., Hale, L., Eremina, V., Jeansson, M., Maezawa, Y., Lennon, R. et al., 2010. Insulin 

signalling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12, 

329–340. 

Wen, X., Sun, H., Liu, J., Cheng, K., Zhang, P., Zhang, Liying, Hao, J., Zhang, Luyong, Ni, P., 

Zographos, S.E., Leonidas, D.D., Alexacou, K.M., Gimisis, T., Hayes, J.M., Oikonomakos, 

N.G., 2008. Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: 

Synthesis, structure-activity relationships, and X-ray crystallographic studies. J. Med. Chem. 51, 

3540–3554. 

Wen, X., Zhang, P., Liu, J., Zhang, L., Wu, X., Ni, P., Sun, H., 2006. Pentacyclic triterpenes. Part 2: 

Synthesis and biological evaluation of maslinic acid derivatives as glycogen phosphorylase 



 

36 
 

inhibitors. Bioorg. Med. Chem. Lett. 16, 722—726. 

WHO, 2006. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of 

a WHO/IDF Consultation. Geneva: World Heal. Organ. 

Wiernsperger, N., 2013. Hepatic function and the cardiometabolic syndrome. Diabetes, Metab. Syndr. 

Obes. 6, 379–88. 

Wilding, J.P.H., 2014. The role of the kidneys in glucose homeostasis in type 2 diabetes: Clinical 

implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. 

Metabolism. 63, 1228–1237. 

Williamson, R., Price, J., Glancy, S., Perry, E., Nee, L., Hayes, P. et al., 2011. Prevalence of and risk 

factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: 

the Edinburgh Type 2 Diabetes Study. Diabetes Care 34, 1139–44. 

World Health Organization, 2016. WHO Global report on diabetes. Geneva (Switzerland). 

Yano, N., Suzuki, D., Endoh, M., Zhang, W., Xu, Y., Padbury, J., Tseng, Y., 2012. In vitro silencing 

of the insulin receptor attenuates cellular accumulation of fibronectin in renal mesangial cells. 

Cell Commun. Signal. 10, 29–39. 

Zaman, M., Leray, V., Le Blocíh, J., Thorin, C., Ouguerram, K., Nguyen, P., 2011. Lipid profile and 

insulin sensitivity in rats fed with high-fat or high-fructose diets. Br. J. Nutr. 106, S206–S210. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 
 

PROLOGUE 

Studies indicate that chronic consumption of a high caloric diet results in the dysregulation of glucose 

homeostasis and the development of prediabetes. Management of prediabetes involves a combination 

of dietary and pharmacological intervention. However, the efficacy of the pharmacological intervention 

is often compromised due to a lack of compliance from patients when it comes to dietary modifications. 

There is therefore a need to develop effective and alternative treatment strategies in the absence or 

presence of dietary intervention. Pentacyclic triterpenes have been promising alternative agents since 

they have been shown to possess hypoglycaemic effects. In Chapter 2 of this study, we sought to 

investigate the effects of bredemolic acid, a pentacyclic triterpene on markers associated with glucose 

homeostasis in diet-induced prediabetic rats. This was done in both the presence and absence of dietary 

intervention. The authors of this manuscript are Akinnuga AM, Siboto A, Khumalo B, Sibiya NH, 

Ngubane P and Khathi A. This manuscript has been published in the journal: Archives of Physiology 

and Biochemistry. See Appendix III 
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Abstract 

Context: Pentacyclic triterpenes (such as maslinic acid) are natural anti-diabetic agents which 

ameliorate glucose metabolism in diet-induced prediabetes. However, the effects of bredemolic acid 

(BA), maslinic acid isomer, is yet unknown in prediabetic condition. 

Objectives: To investigate the effects of BA on some glucose homeostasis parameters in high-fat high-

carbohydrate (HFHC) diet-induced prediabetic rats.  

Methods: Thirty-six (36) male rats (150 - 180 g) were divided into two groups, the normal diet (ND) 

non-prediabetic (n=6) and the HFHC diet prediabetic groups (n=30). The prediabetic animals were 

further sub-divided into five groups (n=6) where they were treated with BA for 12 weeks while 

monitoring changes in blood glucose, caloric intake and body weight.  

Results: Diet-induced prediabetes resulted in increased body weight, caloric intake, glycated 

haemoglobin and glucose tolerance. BA treatment ameliorated glucose tolerance, lowered plasma 

insulin and increased expression of glucose transporter 4 (GLUT 4) in rats.  

Conclusion: BA administration restored glucose homeostasis in diet-induced prediabetes regardless of 

diet intervention. 

Keywords: bredemolic acid; glucose homeostasis; high-fat diet; high-carbohydrate diet; prediabetes 
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Introduction 

Prediabetes is a state of abnormal glucose homeostasis that is characterized by intermediate 

hyperglycaemia, elevated glycated haemoglobin and impaired glucose tolerance (Huang et al. 2016, 

Brannick and Dagogo-Jack 2018). It is said to be caused by chronic consumption of a diet that consists 

of food rich in carbohydrates and saturated fats coupled with a lifestyle of physical inactivity (Lam and 

LeRoith 2012, Edwards and Cusi 2016). The prevalence of prediabetes is markedly increasing in 

developed and developing countries especially in Africa, and the International Diabetes Federation 

(IDF) has predicted that the number of prediabetic individuals is expected to rise from 280 million to 

about 398 million in 2030 ( Lam and LeRoith 2012, Roglic 2014, Edwards and Cusi 2016). In addition, 

prediabetes is a great precursor for type 2 diabetes mellitus (T2DM) and its complications if left 

untreated (Tabák et al. 2012, Brannick et al. 2016). 

While abnormal glucose metabolism is often associated with overt T2DM, studies have shown that 

these abnormalities begin in the prediabetic state (Brannick et al. 2016, Luvuno et al. 2016). In the 

prediabetic condition, hyperinsulinaemia results as a compensatory mechanism to regulate insulin 

resistance and impaired glucose tolerance (Tabák et al. 2012). Impaired glucose tolerance is associated 

with decreased insulin sensitivity and sustained intermediate hyperglycaemia (Brannick et al. 2016). 

Subsequently, glucose uptake decreases gradually and the insulin-dependent peripheral tissues such as 

skeletal muscles are gradually starved of glucose, thus causing a decrease in glycogen level in the 

muscles (Brannick et al. 2016). Supposedly, due to decreased glucose uptake, the peripheral cells are 

depleted of energy. Therefore, a compensatory mechanism of ghrelin hormone release is initiated to 

stimulate the hypothalamus via the orexigenic signalling pathway and increase food intake 

(hyperphagia) to circumvent hypoglycaemia (Chabot et al. 2014).     

However, the combination of dietary and pharmacological intervention has been explored to 

manage prediabetes and prevent the progression to T2DM (Ley et al. 2014, Salas-Salvadó et al. 2014). 

There is low compliance in the combination of the two interventions as patients only use 

pharmacological intervention without change of diet, hence reduce the efficacy of the drugs (Gamede 

et al. 2018). Therefore, management of prediabetes by natural anti-diabetic agents that can remain 

effective regardless of a change in diet is necessary.  

Maslinic acid, a pentacyclic triterpene and anti-diabetic agent has been reported to improve glucose 

homeostasis in diabetic rodents through inhibition of intestinal carbohydrate hydrolysing enzymes and 

glucose transporters, and also by increasing glycogen synthesis in the liver and skeletal muscle via 

inhibition of glycogen phosphorylase (Mkhwanazi et al. 2014, Nazaruk and Borzym-Kluczyk 2015, 

Luvuno et al. 2016, Liou et al. 2019). An isomer of maslinic acid, bredemolic acid (BA), was discovered 

to have increased biological activity in regulating glucose homeostasis by inhibition of glycogen 

phosphorylase enzyme in rabbit skeletal muscle, however, its effects on glucose homeostasis in 

prediabetes are yet to be determined (Wen et al. 2006, Cheng et al. 2008). Therefore, to establish the 

effects of bredemolic acid on glucose homeostasis in prediabetic condition, we sought to investigate the 
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effects of bredemolic acid administration on selected glucose homeostasis parameters in high-fat high-

carbohydrate diet-induced prediabetic rats.  

Materials and methods 

Animals 

In this study, thirty-six (36) male Sprague Dawley rats that weighed 150 g – 180 g were obtained from 

the Biomedical Research Unit, University of KwaZulu-Natal (UKZN). The animals were kept and 

maintained under laboratory conditions of constant humidity (55±5%), temperature (22±2°C), and 12 

h day: 12 h night cycle. They were acclimatized to their new environment for 2 weeks while consuming 

standard rat chow (Meadow Feeds, South Africa) and water ad libitum before exposure to the 

experimental high-fat high-carbohydrate (HFHC) diet. The HFHC diet was formulated to consist of 

carbohydrate (55% Kcal/g), fats (30% Kcal/g), and proteins (15% Kcal/g). All experimental designs 

and procedures were according to the approved ethics (Ethics number: AREC/024/018D) and guidelines 

of the Animal Research Ethics Committee (AREC) of the UKZN, Durban, South Africa. 

Experimental design 

After the two weeks of acclimatization, the animals were initially divided into two different groups, the 

normal diet (ND) non-prediabetic (n=6) and HFHC diet prediabetic groups (n=30). All the animals in 

the prediabetic group were given an HFHC diet and drinking water that was supplemented with 15% 

fructose for 20 weeks to induce prediabetes. The non-prediabetic control group (NPD, Group 1) was 

fed on ND and water ad libitum for 20 weeks. At the 20th week, prediabetes was confirmed by 

determination of fasting blood glucose (FBG) and oral glucose tolerance test (OGTT) in animals in non-

prediabetic and prediabetic groups.  

Treatment of animals 

The treatment period lasted for 12 weeks, i.e. 21st – 32nd week. After the 20th week, the prediabetic 

animals were either continuously fed on HFHC or changed to ND and treated with either oral 

administration of BA (80 mg/kg) or MET (Metformin, 500 mg/kg) at every third day. The non-

prediabetic control (Group 1) animals continuously fed on ND and received as the vehicle, 3 mL/kg of 

diluted dimethyl sulphoxide, DMSO (2 mL DMSO: 19 mL normal saline, p.o.) for 12 weeks. The 

animals in the prediabetic group were further divided into 5 groups (Group 2 to Group 6) of six animals 

each. The prediabetes control group (PD, Group 2) were fed on the HFHC diet and received 3 mL/kg 

of diluted DMSO orally. Group 3 (ND+MET) changed the diet to ND (from HFHC to ND) and treated 

with MET while Group 4 (HFHC+MET) was continuously given the HFHC diet and treated with MET. 

The Group 5 (ND+BA) animals changed the diet to ND and treated with BA while Group 6 animals 

(HFHC+BA) were continuously given the HFHC diet and treated with BA.  

Caloric intake 

At every 4 weeks of treatment, the caloric intake of all the animals was determined by measuring food 

and water intakes via metabolic cages (Techniplats, Labotec, South Africa). 
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Blood glucose concentration 

The blood glucose concentration was determined by using the tail-prick method and measured via One-

Touch select glucometer (Lifescan, Mosta, Malta, United Kingdom) at every 4 weeks of treatment. 

Oral glucose tolerance (OGT) response 

At the 12th week of the treatment period, the oral glucose tolerance test (OGTT) was conducted 

following glucose loading. The OGTT responses were monitored in all the animal groups through 

established laboratory protocol (Ngubane et al. 2011,  Khathi et al. 2013, Gamede et al. 2018). In brief, 

after a 12-hour fasting period, blood glucose concentrations (FBG) were measured (time, 0 minutes) in 

all the animals. Then, the animals were loaded with glucose (0.86 g/kg, p.o.) via oral gavage (18-gauge 

gavage needle, 38 mm long curved with 21/4mm ball end). The glucose concentrations were measured 

at 30, 60, and 120 minutes following glucose loading. 

Blood collection and tissue harvesting 

All animals were anaesthetised with Isofor (100 mg/kg, Safeline Pharmaceuticals (Pty) Ltd, Roodeport, 

South Africa) in a gas anaesthetic chamber (Biomedical Research Unit, UKZN, Durban, South Africa) 

for 3 minutes. When the animals were unconscious, blood samples were collected from the animals 

through cardiac puncture into different pre-cooled heparinised containers. The blood samples were 

centrifuged (Eppendorf centrifuge 5403, Germany) at 4°C, 503 g for 15 minutes to obtain plasma. Then, 

each of the plasma was aspirated into plain sample bottles and stored at -80°C in a Bio Ultra freezer 

(Snijers Scientific, Tilburg, Holland) until ready for biochemical analysis. Also, the skeletal muscle 

(gastrocnemius) were removed, rinsed with cold normal saline solution and snapped frozen in liquid 

nitrogen before storage in Bio Ultra freezer at -80°C for biochemical analysis of selected metabolic 

parameters. The caloric intake, body weight gain and fasting blood glucose (FBG) were assessed at 20th, 

24th, 28th and 32nd week in all the animals while OGTT was assessed at 20th and 32nd week only. The 

other selected parameters such as HOMA2-IR (Homeostasis model assessment) index, glycated 

haemoglobin, muscle glycogen, insulin and ghrelin concentrations were only determined at 32nd week, 

i.e. 12th week of the treatment period 

Biochemical analysis 

Ghrelin and glycated haemoglobin concentrations were determined by using their respective ELISA 

kits (Elabscience Biotechnology Co., Ltd., Houston, TX, USA) as instructed by the manufacturer. 

Insulin concentration was measured via an ultrasensitive rat insulin ELISA kit (Mercodia AB, 

Sylveniusgatan 8A, SE-754 50, Uppsala, Sweden) as directed in the manufacturer’s instruction manual. 

HOMA2-IR index was calculated from the insulin concentrations and fasting blood glucose. 

Glycogen assay 

Glycogen assay was determined in skeletal muscle by following previously established protocols 

(Gamede et al. 2018, Musabayane et al. 2005, Mukundwa et al. 2016). The harvested tissues were 

weighed (50 mg) and heated with potassium hydroxide (KOH) (30%, 2 mL) for 30 minutes at 100oC. 

Immediately, 0.194 mL of 10% of sodium tetraoxosulphate VI (Na2SO4) was added into the mixture to 



 

43 
 

stop the reaction. When the mixture was allowed to cool, the glycogen precipitate was formed. 200 µL 

of the cooled mixture with the precipitate was aspirated and mixed with ethanol (95%, 200 µL). The 

precipitated glycogen was pelleted, washed and resolubilized in H2O (1 mL). Thereafter, 4 ml of 

anthrone (0.5 g dissolved in 250 mL of 95% sulphuric acid) was added and boiled for 10 minutes. After 

cooling, the absorbance was determined by using the Spectrostar Nano spectrophotometer (BMG 

Labtech, Ortenburg, LGBW Germany) at 620 nm.  

Western blot analysis of GLUT 4 

GLUT 4 was analysed in skeletal muscle (gastrocnemius) as established in the previous protocol 

(Mkhwanazi et al. 2014). The skeletal muscle tissues (0.1 g) were homogenized on ice in isolation 

buffer and centrifuged for 10 min at 400 X g (40C). The protein content was quantified via the Lowry 

method.  All the samples were standardized to one concentration (1 mg/mL), and the proteins were 

denatured by boiling in Laemmli sample buffer for 5 minutes. Then, 25 μL of the denatured proteins 

were loaded on prepared resolving (10%) and stacking (4%) polyacrylamide gels along with 5 μL of 

molecular weight marker. The gel was electrophoresed at 150 V for 1 hour in running buffer. After the 

electrophoresis, the resolved proteins were electro-transferred to a polyvinylidene difluoride (PVDF) 

membrane in transfer buffer for 1 hour. After the transfer, the membrane was blocked with 5% non-fat 

dry milk in Tris-buffered saline with 0.1% Tween 20 (TTBS). The membrane was then immuno-probed 

with GLUT 4 antibodies (1:1000 in 1% BSA, Neogen, USA) for 1 hour at room temperature. The PVDF 

membrane was subjected to 5 washes (10 min each with gentle agitation) with TTBS. The membranes 

were then incubated in horseradish peroxidase (HRP)-conjugated secondary antibody (rabbit anti-

mouse 1:1000; Bio-Rad) for 1 hour at room temperature. After further washing, antigen-antibody 

complexes were detected by chemiluminescence through the Immune-star™ HRP substrate kit (Bio-

Rad, Johannesburg, South Africa). The chemiluminescence signals were determined through the 

Chemi-doc XRS gel documentation system and analysed via the quantity one software (Bio-Rad, 

Johannesburg, South Africa). 

Statistical analysis 

The statistical data were presented in mean ± SEM. The data were analysed by using a two-way Analysis 

of Variance (ANOVA) with the Bonferroni test (post hoc test) via GraphPad Prism 5 software. The 

level of statistical significance was considered from p<0.05 and above. 

Results 

Caloric intake 

The caloric intake of all the experimental groups were determined every fourth week from the start of 

the treatment period (week 0) to the 12th week of treatment (Figure 1). The result showed that PD and 

HFHC+MET groups had significantly higher caloric intake in comparison to the NPD group throughout 

the treatment period except for the 12th week of treatment at p<0.05. However, the administration of 

MET and BA with dietary intervention significantly decrease caloric intake throughout the treatment 

period in comparison to PD and HFHC+MET (p<0.05). On the other hand, the administration of BA 
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without dietary intervention resulted in decreased caloric intake but insignificant when compared to PD 

and HFHC+MET. 

Body weight 

The body weights of the animals were monitored throughout the experiment as shown in Table 1. The 

result showed that the percentage changes in body weight of the PD group increased throughout the 

experimental period when compared to that of the NPD group (p<0.05). The administration of BA with 

or without dietary intervention showed a significant decrease in the percentage changes of body weight 

in comparison to the PD group throughout the treatment periods. 

Oral glucose tolerance test (OGTT) 

As shown in Figure 2, the OGTT and Area under curve (AUC) were measured at the end of the treatment 

period (12th Week) in all the groups. At time 0, the fasting blood glucose concentration increased in PD 

and other prediabetic treated groups but insignificant when compared to the NPD group. At 120 minutes 

post-load of glucose, the blood glucose concentrations of PD were significantly different from the NPD 

group (p<0.05). Conversely, at the same time (120 minutes), the blood glucose concentration of both 

BA treated groups significantly decreased in comparison to the PD group.  

HOMA2-IR index 

The HOMA2-IR index of all the animals was calculated from the product of plasma glucose and insulin 

at the end of the treatment period (12th week). The results showed that the HOMA2-IR index in PD and 

HFHC+MET groups was significantly different when compared to NPD and other experimental groups 

(p<0.05). However, both BA treated groups and ND+MET group had a significantly decreased 

HOMA2-IR index in comparison to PD and HFHC+MET groups at p<0.001 as shown in Table 2. 

Glycated haemoglobin concentration (HbA1c) 

At 12th week, all the experimental groups were analysed for HbA1cconcentration (Figure 3). The HbA1c 

concentration of the PD group was significantly higher when compared to the NPD group. However, 

the HbA1cconcentrations of both BA treated with or without diet intervention (ND+BA or HFHC+BA) 

as well as metformin treated with diet intervention (ND+MET) decreased significantly in comparison 

to PD (p<0.05). Conversely, there was no significant difference between the HbA1cconcentration of 

metformin-treated rats without diet intervention (HFHC+MET) and PD group. 

Ghrelin concentration 

The plasma concentration of ghrelin was measured in all the experimental groups at the end of the 

treatment period. The results showed that the ghrelin concentration of PD, HFHC+MET and ND+MET 

groups were significantly higher in comparison to the NPD group (Figure 4). However, the BA treated 

animals with or without dietary intervention had a significantly lowered ghrelin concentration when 

compared to PD (p<0.05). 

Skeletal muscle glycogen concentration 

The skeletal muscle glycogen concentrations were measured at the end of the treatment period. The 

results showed that the skeletal muscle glycogen concentrations in the PD group and all the treated 
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experimental groups were significantly increased in comparison to the NPD group. Moreover, the 

skeletal muscle glycogen of BA treated animals with or without dietary intervention increased 

significantly when compared to PD groups (p<0.05) as shown in Figure 5. 

Skeletal muscle GLUT 4 expression 

As shown in Figure 6, GLUT 4 expression was increased significantly (p<0.05) in BA treated rats with 

or without dietary intervention when compared to NPD and PD groups. However, the administration of 

metformin with diet intervention (ND+MET) significantly increased GLUT 4 expression when 

compared to non-prediabetic group (NPD). 

Discussion 

In several studies, triterpenes have been reported to have anti-diabetic properties which cause reduction 

of fasting blood glucose and glycated haemoglobin concentrations as well as ameliorating insulin 

sensitivity in diet-induced prediabetes (Musabayane et al. 2005, Jung et al. 2007). Maslinic acid is a 

pentacyclic triterpene that has been reported to regulate glucose metabolism in diabetic rats (Jung et al. 

2007, Mkhwanazi et al. 2014). Bredemolic acid, an isomer of maslinic acid, has been reported to have 

more increased biological activity due to differences in the structural arrangement of their hydroxyl 

groups ( Wen et al. 2006, Cheng et al. 2008). However, the effects of this compound on glucose 

homeostasis in the prediabetic state have not been explored. Therefore, in this study, we sought to 

investigate the effects of bredemolic acid on some glucose homeostasis parameters in prediabetic rats. 

It has been established that excessive consumption of high caloric diets drives animals toward a positive 

energy balance with resultant weight gain (Burchfield et al. 2018). This transition causes a decline in 

insulin sensitivity which ultimately results in compensatory hyperinsulinaemia and a state that 

resembles intermediate hyperglycaemia known as prediabetes (Barclay et al. 2013, Samuel and 

Shulman 2016). Similarly, in this study, chronic consumption of an HFHC diet increased food intake 

which caused an increase in body weight in the untreated prediabetic animals. Ghrelin is a hormone that 

plays a key role in the regulation of caloric intake and energy balance that leads to weight gain 

(Barazzoni 2014, Chabot et al. 2014). Under normal physiological conditions, there exists an inverse 

relationship in the plasma concentrations of ghrelin and insulin (Barazzoni 2014, Chabot et al. 2014). 

In the pre-prandial state, ghrelin plasma level increases and suppresses insulin release from pancreatic 

beta-cells via Ca2+mediated pathway while under postprandial state ghrelin plasma level reduces, thus, 

insulin release is enhanced (Alamri et al. 2016). In the postprandial state, when ghrelin level decreases, 

insulin is released and facilitates the uptake of glucose into the insulin-dependent peripheral cells to 

reduce blood glucose levels (Barazzoni et al. 2014, Alamri et al. 2016). However, when the blood 

glucose level reduces, ghrelin plasma concentration increases to stimulate the hypothalamus to increase 

food intake via the orexigenic signalling pathway (Chabot et al. 2014, Alamri et al. 2016). In contrast, 

under diabetic conditions, the pancreatic beta-cell releases more insulin to compensate for the abnormal 

glucose metabolism and this leads to hyperinsulinaemia and decreased insulin sensitivity. The blood 

glucose level is increased, and the insulin-dependent peripheral cells are starved of glucose. In addition, 
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since the peripheral cells are starved of glucose, ghrelin plasma concentration increases and stimulates 

the hypothalamus to increase food intake (Barazzoni et al. 2014, Alamri et al. 2016). Therefore, in 

diabetic conditions, both the ghrelin and insulin plasma concentrations are sustainably high (Barazzoni 

et al. 2014, Alamri et al. 2016, Luvuno et al. 2016). Similarly, in this study, we observed that the food 

intake, percentage changes in body weight and plasma concentration of ghrelin were higher in untreated 

prediabetic animals compared to other experimental groups from 0 week to 12th week in the treatment 

period. This suggested that the increased plasma ghrelin concentration caused the increased caloric 

intake which resulted in increased percentage changes in body weight in untreated prediabetic rats.  We 

observed that the administration of BA with or without dietary intervention significantly decreased the 

percentage changes in body weight and caloric intake by a decrease in plasma ghrelin concentration. 

We further observed a significant increase in HOMA2-IR index as well as elevated postprandial glucose 

at 120 min in the OGTT of untreated prediabetic (PD) animals. The administration of BA also enhanced 

glucose tolerance, and this was proven in HOMA2-IR index and OGTT results. These results correlated 

with similar studies on other triterpenes such as maslinic and oleanolic acids (Musabayane et al. 2005, 

Mkhwanazi et al. 2014, Luvuno et al. 2016, Gamede et al. 2018). 

Studies have shown that high-fat feeding in rodents led to transient muscle diacylglycerol (DAG) 

accumulation followed by muscle insulin resistance and impaired insulin signalling pathway 

(Szendroedi et al. 2014). Consequently, the muscle protein kinase C (PKCθ) is activated, and limited 

phosphorylation of IRS-1 (insulin receptor substrate) occurred (Samuel and Shulman 2016). Under this 

condition, glucose uptake decreases due to reduced translocation of glucose transporter 4 (GLUT4) 

containing storage vesicles to the plasma membrane and phosphorylation of glycogen synthase enzyme 

(Bogan 2012). Decreased glucose uptake leads to reduced glycogen synthesis in the muscle cell. 

However, the majority of postprandial glucose disposal drives toward muscle glycogen synthesis 

(Bogan 2012, Samuel and Shulman 2016). Therefore, the significant difference in skeletal muscle 

glycogen content in untreated prediabetic rats when compared to BA treated rats is eminent in this 

study. This demonstrated that there might be muscle insulin resistance and reduced glucose uptake as 

well as reduced glycogen synthesis in the untreated prediabetic rats when compared to BA treated rats. 

Hence, we suggest that the administration of BA with or without diet intervention caused the observed 

increased muscle glycogen synthesis in BA treated rats by an increment of the expression of GLUT 4 

via GLUT 4 translocation and probably by inhibition of muscle glycogen phosphorylase or stimulation 

of glycogen synthase enzymes. Indeed, previous studies have shown that other triterpenes (maslinic 

acid, oleanolic acid and ursolic acid) inhibited glycogen phosphorylase and increased expression of 

GLUT 4 in skeletal muscle in prediabetic or diabetic condition, and this present study correlated with 

those studies (Cheng et al. 2008, Mkhwanazi et al. 2014, Pimentel et al. 2017).  

Chronic consumption of high caloric diets leads to ectopic lipid accumulation which has been 

implicated in peripheral insulin resistance (Barclay et al. 2013, Samuel and Shulman 2016). The skeletal 

muscle and the liver are primary organs of glucose homeostasis which store surplus glucose as glycogen 
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and any insulin resistance in these organs alters glucose metabolism with consequent hyperglycaemia 

and impaired glucose tolerance. In this study, there was observed hyperinsulinaemia and impaired 

glucose tolerance in the untreated prediabetic rats. The hyperinsulinaemia depicted peripheral insulin 

resistance and this may be responsible for the impaired glucose tolerance observed in the untreated 

prediabetic rats. However, the administration of BA with or without diet intervention normalized 

impaired glucose tolerance as observed in the OGTT probably due to the decreased insulin resistance 

which was obvious in plasma insulin concentration and HOMA2-IR index results. Importantly, when 

there is a decrease in insulin sensitivity, glucose attaches to the haemoglobin in red blood cells resulting 

in high levels of glycated haemoglobin (Incani et al. 2015). Similarly, the high level of glycated 

haemoglobin was observed in untreated prediabetic rats in this study. However, the glycated 

haemoglobin of BA treated rats was reduced to within range of the non-prediabetic rats possibly due to 

increased skeletal muscle glucose uptake and decreased insulin resistance by BA administration. Also, 

previous studies have reported that reduced glycated haemoglobin is a sign of sustained regulation of 

glucose metabolism and this study is in agreement with those studies (Huang et al. 2016, Watson 2017, 

Weiss et al. 2017).  

Taken together, the administration of bredemolic acid to diet-induced prediabetic rats resulted in 

improved insulin sensitivity leading to improved glucose homeostasis in both the presence and absence 

of dietary intervention. Furthermore, the effects of this triterpene are comparable to those shown by the 

administration of metformin which may suggest that BA may be a good alternative in the management 

of prediabetes. More studies are needed, however, to determine the effects of this compound on other 

physiological parameters.  
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Table 1: Effects of BA on body weight and percentage changes in body weight from week 0 to week32  

          in rats with or without diet intervention. Values are presented as mean±SEM (n=6) 

ap<0.05 in comparison to non-prediabetic (NPD) control, bp<0.05 in comparison to prediabetic (PD) 

control. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, 

MET: metformin, BA: bredemolic acid 

 

 

 

 

 

 

 

 

Body weight (g) 

Groups 

 

 

    Weeks                                                       

NPD  

 

PD 

 

ND + MET  HFHC+MET  ND + BA HFHC + BA  

Week 0 167.00 ±2.35 187.20±5.24 187.17±8.13 172.00 ±2.52 168.17±5.24 166.83±5.40 

Week 20 

 

366.60±5.57 

100% 

429.50±12.50 

100% 

400.33±7.32 

100% 

426.67±14.08 

100% 

404.67±20.48 

100% 

404.20±15.73 

100% 

Week 24 

 

412.33±6.24 

↑11.09% 

498.83±15.45 

↑16.14% a 

459.83±5.22 

↑14.86%a 

479.00±13.15 

↑12.26%a 

435.40±19.37 

↑7.59%a b 

447.83±26.15 

↑10.78%a b 

Week 28 437.83±20.37 

↑16.27% 

523.50±16.00 

↑21.89%a 

481.50±6.27 

↑20.27%a 

506.17±12.51 

↑18.63%a 

446.00±21.35 

↑10.21%a b 

461.00±26.89 

↑14.05%a b 

Week 32 

 

462.50±17.44 

↑20.74% 

540.50±16.05 

↑25.84%a 

481.80±7.83 

↑20.35% 

516.00±14.14 

↑20.94% 

449.80±22.43 

↑11.15%a b 

468.80±30.09 

↑15.98%a b 
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Table 2: Effects of BA on fasting blood glucose, fasting blood insulin and HOMA2-IR Index in rats 

with or without dietary intervention after 12 weeks of treatment period. Values are presented as 

mean±SEM (n=6) 

ap<0.001 in comparison to non-prediabetic (NPD) control, bp<0.05 in comparison to prediabetic  

(PD) control. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate 

diet, MET: metformin, BA: bredemolic acid, HOMA2-IR: Homeostasis model assessment of insulin 

resistance 

 

 

 

 

 

 

 

 

 

 

 

 

Groups                                                            Fasting blood glucose 

(mmol/L) 

Fasting blood Insulin 

(ng/mL) 

HOMA2-IR Index Values 

NPD 4.68±0.19 3.42±0.33 0.71±0.09 

PD 5.15±0.13 12.28±0.18a 2.81±0.05a 

ND+MET 5.28±0.17 3.66±0.12b 0.86±0.04b 

HFHC+MET 5.68±0.44 5.06±0.08a b 1.28±0.06 a b 

ND+BA 4.63±0.46 3.14±0.09b 0.65±0.05b 

HFHC+BA 4.75±0.46 3.91±0.48b 0.83±0.12b 
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Figure 1: Effect of BA on caloric intake in rats with or without dietary intervention. Values are expressed 

as mean±SEM (n=6). ap<0.001 in comparison to non-prediabetic (NPD) control, bp<0.001 in comparison 

to prediabetic (PD) control, cp<0.001 in comparison to HFHC + MET, dp<0.05 in comparison to HFHC + 

BA. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET: 

metformin, BA: bredemolic acid 
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Figure 2: Effect of BA on OGTT (oral glucose tolerance test) and AUC (area under curve) in rats 

with or without dietary intervention. Values are expressed as mean±SEM (n=6). ap<0.001 in 

comparison to non-prediabetic (NPD) control, bp<0.05 in comparison to prediabetic (PD) control. 

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET: 

metformin, BA: bredemolic acid 
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Figure 3: Effect of BA on glycated haemoglobin (HbA1c) in rats with or without dietary intervention. 

Values are expressed as mean±SEM (n=6). ap<0.001 in comparison to non-prediabetic (NPD) control, 

bp<0.001 in comparison to prediabetic (PD) control. NPD: non-prediabetic, PD: prediabetic, ND: normal 

diet, HFHC: high fat high carbohydrate diet, MET: metformin, BA: bredemolic acid 
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Figure 4: Effect of BA on Ghrelin in rats with or without dietary intervention. Values are expressed as 

mean±SEM (n=6). ap<0.001 in comparison to non-prediabetic (NPD) control, bp<0.05 in comparison 

to prediabetic (PD) control. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high 

carbohydrate diet, MET: metformin, BA: bredemolic acid 
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Figure 5: Effect of BA on muscle glycogen in rats with or without diet intervention. Values are 

expressed as mean±SEM (n=6). ap<0.001 in comparison to non-prediabetic (NPD) control, bp<0.05 in 

comparison to prediabetic (PD) control. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: 

high fat high carbohydrate diet, MET: metformin, BA: bredemolic acid 
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Figure 6: Effects of BA on GLUT (glucose transporter) 4 expression in rats with or without diet 

intervention after treatment period of 12 weeks. Values are expressed as mean±SEM (n=6). Values 

were obtained from Western blots for six preparations. ap<0.01 in comparison to non-prediabetic (NPD) 

control, bp<0.05 in comparison to prediabetic (PD) control, cp<0.05 in comparison to HFHC+MET. 

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET: 

metformin, BA: bredemolic acid 
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PROLOGUE 

Studies have shown that chronic consumption of high caloric diets result into hepatic oxidative stress, 

hepatic fat accumulation and elevation of markers associated with NAFLD in prediabetes. Management 

of hepatic complications in prediabetes involves a combination of dietary and pharmacological 

intervention. However, the efficacy of the pharmacological intervention is low due to a lack of 

compliance from patients in following a recommended diet modification. In chapter 2 of this study, we 

observed that consumption of high caloric diet resulted in a significant change in body weight gain, 

hyperinsulinaemia and increased plasma concentration of ghrelin. Moreover, the induction of 

prediabetes resulted in selective muscle insulin resistance which was confirmed by decreased skeletal 

muscle glycogen concentration and decreased expression of GLUT 4 in the skeletal muscle. However, 

the administration of BA improved insulin sensitivity, decreased food intake and body weight due to 

decreased ghrelin plasma concentration and increased the expression of GLUT 4 in the skeletal muscle 

of prediabetic rats. Therefore, in Chapter 3 of this study, we investigated the effects of BA on selected 

markers associated with hepatic functions in prediabetic rats in both the presence and absence of dietary 

intervention. The chapter was written and prepared in manuscript format. The authors of this manuscript 

are Akinnuga AM, Siboto A, Khumalo B, Sibiya NH, Ngubane P and Khathi A. This manuscript has 

been published in the Canadian Journal of Gastroenterology and Hepatology. See Appendix IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 
 

CHAPTER 3 

Bredemolic acid ameliorates selected liver function biomarkers in a diet-induced prediabetic rat 
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Abstract 

Background. Prediabetes is an intermediary hyperglycaemic state that precedes type 2 diabetes mellitus 

(T2DM) in which abnormal metabolism of glucose and lipids occurs in organs such as the liver. 

Evidence has shown that about 70% of T2DM patients develop hepatic dysfunction which is found to 

begin during the prediabetic stage. Bredemolic acid, a pentacyclic triterpene, has been found to improve 

insulin sensitivity in diet-induced prediabetic rats. The effects of this compound on liver function, 

however, are unknown. This study was therefore designed to investigate the effects of BA on liver 

function in high fat high carbohydrate (HFHC) diet-induced prediabetic rats. Methods. Thirty six (36) 

male rats that weigh 150g-180g were divided into two groups, the non-prediabetic (n=6) and the 

prediabetic groups (n=30) that were fed a normal diet (ND) and HFHC diet respectively. The prediabetic 

rats were further sub-divided into five groups (n=6) and treated with either BA (80 mg/kg) or metformin 

(MET, 500mg/kg) every third day for 12 weeks. After 12 weeks, blood samples and the liver were 

collected for biochemical analysis. Results. The induction of prediabetes resulted in increased release 

of liver enzymes (AST and ALT), increased liver glycogen and triglyceride, lipid peroxidation, 

decreased sterol regulatory element binding protein (SREBP1c) and antioxidant enzymes. However, 

the administration of BA decreased liver enzyme concentrations, decreased hepatic oxidative stress, 

and improved antioxidant enzymes such as SOD and GPx. Conclusion.BA administration improved 

liver function in diet-induced prediabetic rats in the presence or absence of dietary intervention. 
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1. Introduction  

Prediabetes is a state of intermediate hyperglycaemia that causes abnormal changes in intracellular 

metabolism of most body tissues including the liver [1]. Presently, the observed increase in the 

prevalence of prediabetes and type 2 diabetes mellitus (T2DM) in developed and developing countries 

is reported to be due to sedentary lifestyles coupled with high caloric diets [1-3]. However, studies have 

shown that excessive intake of high caloric diets induces skeletal muscle insulin resistance which results 

into the shunting of glucose from the skeletal muscle to the liver thereby leading to increased hepatic 

glycogen production and storage [4-6]. Several studies have shown that continuous intake of high 

quantities of fats and carbohydrates alters liver function by accumulation of ectopic fats as a result of 

de novo lipogenesis which is mediated by transcription factors such as sterol regulatory element binding 

protein (SREBP1c) under insulin action [7, 8]. Moreover, excessive hepatic accumulation of free fatty 

acid or triglyceride leads to hepatic insulin resistance, hepatic dysfunction and non-alcoholic fatty liver 

disease (NAFLD) that is characterized by fat infiltration into the hepatocytes [9-14]. Consequently, the 

infiltration of fat into the hepatocytes triggers oxidative stress, reduced antioxidant enzymes production 

and an inflammatory cascade of reactions that produce progressive fibrotic hepatic damage known as 

non-alcoholic steatohepatitis (NASH). Cross-sectional studies have demonstrated that liver function 

markers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are altered due 

to oxidative stress and hepatic dysfunction [15-18]. However, it has been established that approximately 

70% of T2DM patients have liver dysfunction and complications [19-21]. There is also evidence from 

other studies that suggested that liver dysfunction and complications can also begin during the 

prediabetic stage [21, 22, 23].  

Current treatment focuses on a combination of dietary and pharmacological interventions but there have 

been reports of low compliance as patients merely use pharmacological intervention without diet 

modification thus reducing the efficacy of the pharmacological intervention [24-27]. Therefore, novel 

compounds that can ameliorate liver dysfunction in the prediabetic condition even in the absence of 

dietary intervention are necessary. Oleanolic acid and maslinic acid are pentacyclic triterpenes that have 

been found to have anti-diabetic and antioxidant properties [28-30]. In our laboratory, we have shown 

that chronic ingestion of a high fat high carbohydrate diet leads to the development of prediabetes which 

is accompanied by liver complications. We have further shown that bredemolic acid (BA), a structural 

isomer of maslinic acid, is able to restore glucose homeostasis in diet-induced prediabetes by improving 

insulin sensitivity in both the presence and absence of dietary intervention [31]. However, the effects 

of BA on liver function in diet-induced prediabetes have not been established. Hence, the aim of this 

study is to investigate the effects of bredemolic acid on selected biomarkers of liver function in a diet-

induced prediabetic rat model.  

 

 

 



 

62 
 

2. Materials and Methods 

2.1. Animals 

Thirty six (36) male Sprague Dawley rats (150g–180g) obtained from Biomedical Research Unit, 

University of KwaZulu-Natal (UKZN), were kept under standard environmental conditions i.e. constant 

humidity (55±5%), temperature (22±2°C), 12h day:12h night cycle. The animals were acclimatized for 

2 weeks, and consumed standard rat chow (Meadow Feeds, South Africa) and water ad libitum before 

being fed on the experimental high fat–high carbohydrate (HFHC) diet (AVI Products (Pty) Ltd., 

Waterfall, South Africa). The HFHC diet consist of carbohydrate (55% kcal/g), fats (30% kcal/g), and 

proteins (15% kcal/g). All the experimental designs and procedures were carried out according to the 

ethics and guidelines of the Animal Research Ethics Committee (AREC) of the UKZN, Durban, South 

Africa. 

2.2. Experimental Design 

After acclimatization, the animals were divided into two groups, the normal diet (ND) non-prediabetic 

control (n=6) and the HFHC diet prediabetic groups (n=30). All the animals in the prediabetic group 

consumed HFHC diet and drinking water that was supplemented with 15% fructose for 20 weeks to 

induce prediabetes while the non-prediabetic control group (NPD, Group 1) fed on ND and water ad 

libitum for 20 weeks as well. At the 20th week, prediabetes was confirmed by fasting blood glucose and 

oral glucose tolerance test which have been described in the previous research study [31].  

2.3. Treatment of Prediabetic Animals 

After the 20 weeks of prediabetes induction, the non-prediabetic control (NPD, Group 1) animals 

continuously fed on standard rat chow for 12 weeks. The thirty (30) prediabetic animals were randomly 

assigned into 5 different groups (Group 2 to Group 6, n=6). Group 2 (PD) served as the untreated 

prediabetic control group and continuously consumed the HFHC diet for 12 weeks; Group 3 

(ND+MET) were prediabetic animals that switched to standard rat chow and received metformin (MET) 

for 12 weeks; Group 4 (HFHC+MET) were prediabetic animals that continuously consumed HFHC diet 

with MET treatment; Group 5 (ND+BA) were prediabetic animals that switched to standard rat chow 

and received BA  for 12 weeks; Group 6 (HFHC+BA) were prediabetic animals that continuously 

consumed HFHC diet and received BA as treatment for 12 weeks. Treatment with either MET 

(500mg/kg) or BA (80mg/kg) was carried out every third day for 12 weeks.  

2.4. Blood Collection and Tissue Harvesting 

After the 12-week treatment period, the animals were sacrificed. The animals were placed in a gas 

anaesthetic chamber (Biomedical Research Unit, UKZN, Durban, South Africa) and anaesthetised with 

Isofor (100 mg/kg, Safeline Pharmaceuticals, Roodeport, South Africa) for 3 minutes. Blood samples 

were collected from the animals using cardiac puncture and put into different pre-cooled EDTA 

containers. The blood samples were centrifuged (Eppendorf centrifuge 5403, Germany) at 4°C, 503 g 

for 15 minutes to obtain plasma. Each of the plasma was aspirated into plain sample bottles and stored 
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at -80 °C in a Bio Ultra freezer (Snijers Scientific, Tilburg, Holland) until ready for biochemical 

analysis. Also, the liver tissue samples were excised, weighed and rinsed in cold normal saline solution, 

and snapped frozen in liquid nitrogen before storage in the Bio Ultra freezer for biochemical analysis 

of selected metabolic parameters. 

2.5. Relative Liver Weight. The relative liver weights of all the animals in each experimental group were 

determined from the percentage of the ratio of liver weight to the body weight 

i.e. relative liver weight = liver weight / body weight × 100. 

2.6. Biochemical Analysis 

Liver enzymes (AST and ALT) were analysed with IDEXX Catalyst One Chemistry Analyzer (IDEXX 

Laboratories Inc. Westbrook, USA) while SREBP1c was analysed by following specific ELISA kit 

procedures using manufacturer’s instructions (Elabscience Biotechnology Co., Ltd., Houston, TX, 

USA).  

2.7. Liver Triglycerides 

The preparation of liver tissue samples and the homogenate medium used for determination of hepatic 

triglyceride was according to the manufacturer instruction in triglyceride assay kit (Elabscience 

Biotechnology Co., Ltd., Houston, TX, USA). 50mg of liver tissue were homogenized on ice in 500µl 

phosphate buffer saline (PBS) and centrifuged at 8000 rpm for 10 minutes, 4oC. The supernatant was 

then aspirated into eppendorf tubes, and triglycerides were determined using the triglyceride assay kit 

as instructed in the manufacturer’s manual. The absorbance of the samples was measured at 510 nm by 

using Spectrostar Nano spectrophotometer (BMG Labtech, Ortenburg, LGBW Germany). 

2.8. Liver Glycogen Assay 

Glycogen assay was determined in the liver by following a previous established protocol [27, 28, 32]. 

The absorbance was determined by using the Spectrostar Nano spectrophotometer at 620nm.  

2.9. Lipid Peroxidation and Antioxidant Profile 

The concentration of malondialdehyde in the liver was determined to estimate the amount of lipid 

peroxidation, according to a previously described protocol [29, 32]. Furthermore, the antioxidant profile 

of the liver was determined by measuring the concentration of SOD and GPx according to the 

manufacturer’s instructions (Elabscience Biotechnology Co., Ltd., Houston, TX, USA).  

2.10. Statistical Analysis 

The statistical data were presented in mean ± SEM. The data were analysed by two-way Analysis of 

Variance (ANOVA) with Bonferroni test (post hoc test) via GraphPad Prism 5 software. The level of 

statistical significance was determined at p<0.05. 

3. Results 

3.1. Relative Liver Weight 

The effects of BA treatment on relative liver weights in non-prediabetic and prediabetic rats with or 

without diet intervention were determined. The relative liver weights of untreated prediabetic (PD) rats 

was significantly increased by comparison to the non-prediabetic control (NPD) rats (p<0.05). 
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However, the administration of BA with diet intervention (ND+BA) significantly decreased relative 

liver weight when compared to PD (p<0.05). Similarly, the relative liver weight of metformin-treated 

rats with diet intervention (ND+MET) significantly decreased in comparison to PD. See Figure 1. 
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Figure 1: Effects of BA on the relative liver weight in non-prediabetic and prediabetic rats with or 

without diet intervention. *p<0.05 in comparison to NPD, #p<0.001 in comparison to PD. NPD: non-

prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET: metformin, 

BA: bredemolic acid 

 

3.2. Liver Enzymes 

Plasma AST and ALT concentrations in the PD group were significantly increased (p<0.01) compared 

to the NPD group. However, the administration of BA with or without diet intervention significantly 

decreased the plasma AST and ALT concentrations when compared to PD. The plasma ALT levels of 

metformin-treated rats with diet intervention (ND+MET) was significantly decreased when compared 

to PD, while the plasma AST of ND+MET was insignificantly different when compared to PD (p<0.05). 

See Figure 2 
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3.3. SREBP1c 

The SREBP1c concentration was determined in non-prediabetic and prediabetic rats. SREBP1c levels 

were significantly decreased in PD groups when compared to NPD group (p<0.001). The administration 

of BA with or without diet intervention significantly increased the liver SREBP1c concentration in 

comparison to the PD group (p<0.001). Interestingly, the administration of metformin with diet 

intervention (ND+MET) significantly increased the SREBP1c concentration when compared to the PD 

group (p<0.05). The administration of metformin in the absence of dietary intervention did not have 

any significant effects when compared to PD control. See Figure 3  
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Figure 3: Effects of BA on SREBP1c (sterol regulatory element binding protein) in non-prediabetic and 

prediabetic rats with or without diet intervention. *p<0.001 in comparison to NPD, #p<0.001 in 

comparison to PD, ^p<0.01 in comparison to HFHC+MET. NPD: non-prediabetic, PD: prediabetic, ND: 

normal diet, HFHC: high fat high carbohydrate diet, MET: metformin, BA: bredemolic acid 
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Figure 2: Effects of BA on aspartate aminotransferase (AST) and alanine aminotransferase 

(ALT) in non-prediabetic and prediabetic rats with or without diet intervention. *p<0.01 

in comparison to NPD, 
#

p<0.05 in comparison to PD, ^p<0.05 in comparison to HFHC + 

MET. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high 

carbohydrate diet, MET: metformin, BA: bredemolic acid 
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3.4. Liver Triglycerides 

Liver triglyceride concentrations were significantly increased in the PD group by comparison to the 

NPD group (p<0.001). The liver triglyceride concentration of BA treated rats with or without diet 

intervention significantly decreased when compared to the PD group (p<0.001). Similar results were 

observed with the use of metformin. There was no significant difference in the liver triglyceride of 

prediabetic rats that fed on ND or HFHC and received MET or BA treatment. See Figure 4 
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Figure 4: Effects of BA on liver triglyceride in non-prediabetic and prediabetic rats with or without diet 

intervention. *p<0.001 in comparison to NPD, #p<0.001 in comparison to PD. NPD: non-prediabetic, 

PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET: metformin, BA: bredemolic 

acid 

 

3.5. Liver Glycogen 

Liver glycogen concentrations of PD group were significantly increased by comparison to the NPD 

group (p<0.001). The administration of BA with or without diet intervention significantly decreased 

liver glycogen concentrations by comparison to PD (p<0.001). Similarly, the administration of 

metformin-treated with or without diet intervention significantly decreased the liver glycogen 

concentration when compared to PD. See Figure 5 
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Figure 5: Effects of BA on liver glycogen in non-prediabetic and prediabetic rats with or without diet 

intervention. *p<0.001 in comparison to NPD, #p<0.001 in comparison to PD, ^p<0.001in comparison 

to HFHC + MET. NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high 

carbohydrate diet, MET: metformin, BA: bredemolic acid 

 

3.6. Lipid Peroxidation and Antioxidant Enzyme Concentration 

As shown in Table 1, liver MDA concentrations in the untreated PD group were significantly increased 

by comparison to the NPD group (p<0.001). The administration of BA and metformin with or without 

diet intervention significantly decreased the liver MDA concentration when compared to the PD group 

(p<0.05). Liver SOD and GPx concentrations of the untreated PD group were significantly decreased 

when compared to the NPD group (p<0.05). The SOD and GPx concentrations in the liver of BA treated 

rats with or without diet intervention were significantly increased in comparison to that of the PD group 

(p<0.05).  
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      Table 1: Effects of BA on the liver lipid peroxidation and antioxidant enzyme concentrations in non- 

       prediabetic and prediabetic rats with or without diet intervention. Values are presented as mean±SEM  

       (n=6) 

      *p<0.05 in comparison to non-prediabetic (NPD) control, #p<0.05 in comparison to prediabetic (PD)    

        control, ^p<0.05 in comparison to HFHC+MET group.  

ND: normal diet, HFHC: high fat high carbohydrate diet, MET: metformin, BA: bredemolic acid, SOD: 

superoxide dismutase, MDA: malondialdehyde, GPx: glutathione peroxidase 

4. Discussion 

This study examined the effects of BA on selected markers of liver function in diet-induced prediabetic 

rats. Triterpenes such as maslinic acid and oleanolic acid have been reported to ameliorate oxidative 

stress in the liver via the increased release of antioxidant enzymes and improved liver function via 

increased activity of glycogenic enzymes to decrease hepatic glucose production in diabetic rats [29, 

32]. In a previous study, BA was shown to improve insulin sensitivity in skeletal muscle by increasing 

the expression of GLUT 4 however, the effects of this triterpene on liver function in the prediabetic 

state were not determined. Hence, this study sought to evaluate the effects of BA on selected markers 

of liver function in a diet-induced prediabetic rat model [31]. The liver plays a key role in maintaining 

glucose homeostasis as it balances the production of glucose and the conversion of glucose to glycogen 

[33]. In a postprandial state, blood glucose increases and insulin is secreted to enhance glycogenesis 

and inhibit glycogenolysis [34]. However, studies in our laboratory have shown that chronic 

consumption of high fat high carbohydrate diet results in the induction of prediabetes which is 

characterized by hyperinsulinaemia, impaired glucose tolerance, peripheral and hepatic insulin 

resistance as well as liver damage [1, 35, 36]. In the prediabetic state, due to hyperinsulinaemia and 

selective muscle insulin resistance, most ingested glucose is shunted to the liver leading to increased 

hepatic glycogenesis [6, 37]. In addition, since the liver is insulin-independent, excess glucose in the 

blood can diffuse into the hepatic cells through facilitated diffusion which is mediated by glucose 

 Groups                            MDA 

(nmol/g protein) 

SOD 

(nmol min-1mL mg-1protein) 

GPx 

(nmol min-1mL mg-1protein) 

NPD 4.11±0.51 2.99±0.06 1.67±0.09 

PD 12.34±1.31* 1.66±0.22* 1.08±0.06* 

ND+MET 5.00±0.26# 2.14±0.02# 1.79±0.07#^ 

HFHC+MET 6.41±0.27# 1.83±0.13* 1.05±0.05* 

ND+BA 4.89±0.44# 2.47±0.06# 1.87±0.10#^ 

HFHC+BA 6.68±0.65# 2.59±0.02# 1.89±0.04#^ 
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transporter 2 (GLUT 2) [14, 34, 38]. Similarly, the elevated liver glycogen concentration observed in 

untreated prediabetic rats in this study can be attributed to the increased diversion of excess glucose to 

the liver. This showed that the consumption of high fat high carbohydrate diet could result in the 

diversion of glucose to the liver as a compensatory mechanism in the presence of selective muscle 

resistance in a prediabetic state [34]. However, the administration of BA with or without diet 

intervention significantly reduced liver glycogen concentrations. Previous studies have shown that 

administration of BA in the prediabetic state improves insulin sensitivity in skeletal muscle through 

increased GLUT 4 expression [31]. We suggest that this improved insulin sensitivity in the periphery 

led to decreased amounts of glucose being shunted to the liver thus resulting in the observed decrease 

in liver glycogen concentrations.  

In non-diabetic subjects, metabolism of glucose is largely carried out in the skeletal muscle [39, 40]. In 

the prediabetic state, as glucose delivery to the liver increases, de novo lipogenesis and hepatic lipid 

accumulation increase under the influence of transcription factors such as SREBP1c [6, 14, 37, 40]. The 

SREBP1c is a major transcription factor which regulates de novo lipogenesis through direct activation 

from AKT (protein kinase B) in the insulin signalling pathway [8, 41, 42]. In the prediabetic state, when 

insulin signalling is impaired, the direct activation of SREBP1c by AKT is altered, and the SREBP1c 

expression decreases [6-8]. On the contrary, the hepatic de novo lipogenesis is not solely dependent on 

insulin signalling through activation of SREBP1c but the activation of SREBP1c to stimulate de novo 

lipogenesis depends on insulin signalling [6, 43]. However, when the insulin signalling pathway is 

impaired in prediabetes, the de novo lipogenesis is still elevated due to substrate push mechanism in 

which there is increased substrates delivery to the liver followed by increased esterification of fatty 

acids into triglycerides [6]. In this study, we observed that the concentration of SREBP1c in the liver 

was significantly lowered in untreated prediabetic rats by comparison to the non-prediabetic rats. The 

decreased SREBP1c in untreated prediabetic rats may be due to the alteration of insulin signalling in 

the prediabetic state since SREBP1c expression is insulin dependent. This observation is in correlation 

with previous studies which reported that insulin signalling is not totally required for hepatic lipogenesis 

and that availability of substrate can facilitate delivery of substrates into the liver for lipogenesis [6, 

44]. The BA treated rats had a significantly increased SREBP1c, thus suggesting that BA ameliorated 

insulin signalling which may have resulted in the increased SREBP1c concentration in the liver. 

Furthermore, high fructose consumption has been reported to increase hepatic lipogenesis and 

glycogenesis [1]. Fructose, unlike glucose, is solely metabolized in the liver, thereby providing 

additional substrates for de novo lipogenesis and ectopic fat accumulation in the liver, thus leading to 

NAFLD [1, 10]. In this study, we observed that the liver triglyceride in untreated prediabetic rats 

significantly increased when compared to non-prediabetic rats. The increased liver triglyceride in 

untreated prediabetic rats can be attributed to increased substrates delivery to the liver or decreased 

hepatocellular triglyceride disposal as well as decreased fatty acid oxidation [45]. However, the 

administration of BA significantly decreased hepatic triglycerides, and this suggests that BA may 
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decrease substrate delivery to the liver by a divergence of the substrates to other organs for metabolism, 

increased β oxidation of fat or increased triglyceride disposal via very-low-density lipoprotein (VLDL) 

exportation from the liver.   

Moreover, due to the increased hepatic lipogenesis and glycogenesis, the production of free radicals is 

elevated, and this results in oxidative stress [46]. Oxidative stress is due to an imbalance between 

oxidants and antioxidants enzymes [46]. Antioxidants are stable molecules that donate electrons to 

rampaging free radicals in order to neutralise the free radical capacity to damage tissues or organs [48]. 

In this study, we observed that the lipid peroxidation (MDA) in the liver was significantly increased, 

and the antioxidant enzymes (SOD and GPx) production in the liver was significantly decreased in the 

untreated prediabetic rats when compared to non-prediabetic rats. The increased lipid peroxidation was 

due to increased production of free radicals while the decreased antioxidant capacity of the liver was as 

a result of decreased production of antioxidant enzymes (SOD and GPx) in the mitochondria of 

hepatocytes during prediabetes. On the other hand, BA administration with or without diet intervention 

significantly lowered lipid peroxidation and significantly increased the liver antioxidant enzymes. This 

may be due to the fact that BA neutralises the free radicals in the mitochondria of hepatocytes by 

donation of electron through hydroxyl radical scavenging activity which has been reported in other 

triterpenes [49]. This is in line with similar observations made on earlier studies using other triterpenes 

[28, 32, 49].  

Furthermore, studies have shown that elevated liver enzymes (AST and ALT) in the plasma can be due 

to necrosis of the hepatocyte during liver damage [18]. AST and ALT are released into the bloodstream 

whenever hepatocytes are damaged, and this has been reported to occur during prediabetes [18]. In this 

study, these enzymes were significantly elevated in untreated prediabetic rats by comparison to non-

prediabetic rats. The increased liver enzymes in the plasma suggested that liver cells are damaged 

through oxidative stress and increased hepatic lipogenesis or glycogenesis. However, BA 

administration caused a decrease in the concentration of liver enzymes suggesting that BA may improve 

hepatic function via its antioxidant and antilipidemic effects in the liver as observed in this study. 

Triterpenes are non-toxic antioxidants and have low pharmacokinetics of three days; therefore, the 

ameliorative effects of BA in the absence of dietary intervention on liver function markers compared to 

metformin in this study may be attributed to this low pharmacokinetic feature. In conclusion, the 

administration of BA, in both the presence and absence of dietary modification can potentially be one 

of the therapeutic approaches to attenuate hepatic dysfunction or improve hepatic functions in the 

prediabetic state.  
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PROLOGUE 

Literature has indicated that chronic consumption of high caloric diet results in cardiovascular and 

vascular endothelial complications during the prediabetic stage. Management of cardiovascular 

complications during the prediabetic stage involves the combination of dietary and pharmacological 

interventions. However, due to lack of compliance from patients in adhering to the combination of the 

two interventions, the efficacy of the pharmacological intervention is reduced. In chapter 3, we 

demonstrated the effects of BA on hepatic functions; however, the effects of BA on cardiovascular 

functions are yet to be established. In Chapter 4 of this study, we investigated the effects of BA with or 

without diet intervention on markers associated with cardiovascular and endothelial functions in diet-

induced prediabetic rats. The chapter was prepared in manuscript format. The authors of this manuscript 

are Akinnuga AM, Siboto A, Khumalo B, Sibiya NH, Ngubane P and Khathi A. This manuscript has 

been published in the journal: Cardiovascular Therapeutics. See Appendix V. 
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CHAPTER 4 

Bredemolic acid improves cardiovascular function and attenuates endothelial dysfunction in diet-

induced prediabetes: effects on selected markers 
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Abstract 

Prediabetes is an intermediate hyperglycaemic state which has been associated with cardiovascular 

dysfunction. However, cardiovascular dysfunction is not only caused by intermediate hyperglycaemia, 

but also endothelial dysfunction, inflammation and oxidative stress associated with prediabetes. 

Bredemolic acid (BA), an isomer of maslinic acid, has been reported to ameliorate the intermediate 

hyperglycaemia found in prediabetes; however, the effects of this triterpene on cardiovascular function 

have not yet been determined. Therefore, this study investigated the effects of BA on cardiovascular 

function in diet-induced prediabetic rats. Thirty six (36) male rats that weighed 150g-180g were divided 

into two groups, the non-prediabetic (n=6) and the prediabetic groups (n=30) that were fed a normal 

diet (ND) and HFHC diet respectively. The prediabetic rats were further sub-divided into five groups 

(n=6) and treated with either BA (80mg/kg) or metformin (MET, 500mg/kg) every third day for 12 

weeks. After 12 weeks, blood samples and the heart were collected for biochemical analysis. The 

untreated prediabetic rats showed a significant increase in body mass index (BMI), waist circumference 

(WC), blood pressure, heart rate, lipid profile, lipid peroxidation and inflammatory markers with a 

significant decrease in endothelial function and antioxidant biomarkers by comparison to the non-

prediabetic animals. The administration of BA significantly improved cardiovascular functions such as 

blood pressure, heart rate and endothelial function. There was also a significant decrease in BMI, WC, 

lipid profile, lipid peroxidation and inflammation with a concomitant increase in antioxidant capacity. 

BA administration improved cardiovascular function by attenuation of oxidative stress, inflammatory 

and endothelial dysfunction markers.  
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1. Introduction 

Type 2 diabetes mellitus (T2DM) is a heterogeneous metabolic disorder which is associated with 

cardiovascular diseases (CVD), that is often preceded by the onset of prediabetes [1]. One of the 

identified causes of this disorder is chronic consumption of high caloric diets which are rich in 

carbohydrates as well as saturated and polyunsaturated fats coupled with sedentary lifestyles [2,3]. 

Consequently, this leads to inefficient metabolism of carbohydrate and fats, resulting in accumulation 

of intracellular and extracellular glucose and lipids known as glucolipotoxicity [4].  

However, glucolipotoxicity is associated with insulin resistance which subsequently causes high body 

mass index (BMI), high waist circumference, hyperlipidaemia, oxidative stress, the release of 

inflammatory cytokines such as high sensitive C-reactive protein, hs-CRP, interleukin 6, IL-6 and 

tumour necrotic factor, TNFα [3-6]. Glucolipotoxicity is also associated with endothelial dysfunction, 

hypertension, arteriosclerosis, coronary heart disease and stroke [5-8]. In addition, insulin resistance is 

associated with decreased nitric oxide (NO) production due to inhibition of endothelial nitric oxide 

synthase (eNOS) via impaired phosphatidylinositol 3 kinase (PI3K) – AKT (protein kinase B) pathway 

[9]. The decreased NO production causes an imbalance in the vascular endothelial tone which triggers 

vasoconstriction followed by increased heart rate and high blood pressure [9,10]. Prediabetes is an 

asymptomatic and intermediate hyperglycaemic stage that has been reported to precede the onset of 

cardiovascular complications observed in T2DM [8,11,12]. Additionally, previous studies have shown 

that intermediate hyperglycaemia below the level used to define diabetes mellitus is a risk factor for 

CVD development [13,14]. 

The combination of dietary modification with pharmacotherapy is the main approach in preventing the 

development of CVD in prediabetic or diabetic individuals [6,15]. However, there has been reported 

low compliance to this combination therapy as most patients only observe pharmacological intervention 

without changing their diet [16]. This inadvertently reduces the efficacy of the pharmacological 

interventions [17]. Therefore, anti-diabetic agents that could restore glucose homeostasis and prevent 

the risk of CVD development regardless of diet intervention are necessary. 

Pentacyclic triterpenes such as oleanolic acid, maslinic acid are anti-diabetic and antioxidant agents 

with proofs and literature evidence [18,19]. More importantly, bredemolic acid (BA), an isomer of 

maslinic acid, has been shown in previous study to have anti-diabetic effects by reduction of blood 

glucose through increased expression of GLUT 4 in skeletal muscle of prediabetic rats [20]. However, 

the effects of this triterpene on the cardiovascular system in prediabetes have not been established. 

Therefore, the aim of this study was to investigate the effect of BA on selected markers of 

cardiovascular function in a diet-induced prediabetic rat model.  
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2. Materials and Methods 

2.1. Animals 

In this study, thirty six (36) male Sprague Dawley rats with body weight 150–180g were used. The rats 

were obtained and bred at the Biomedical Research Unit (BRU), University of KwaZulu-Natal 

(UKZN). The animals were kept and maintained in a standard experimental condition at room 

temperature (22±2°C), humidity (55±5%) and 12h day:12h night cycle. The animals consumed standard 

rat chow (Meadow Feeds, South Africa) and water ad libitum for 2 weeks to acclimatize before being 

exposed to the experimental diet (high fat high carbohydrate). The high fat high carbohydrate (HFHC) 

diet composed of carbohydrate (55% Kcal/g), fats (30% Kcal/g) and proteins (15% Kcal/g). All 

experimental procedures were according to the ethics and animal care guidelines of the Animal 

Research Ethics Committee (AREC) of the UKZN, Durban, South Africa (AREC/024/018D) 

2.2. Experimental Design 

After 2 weeks of acclimatization, the animals were distributed into two main groups: the non-prediabetic 

control group (n=6) and the prediabetic group (n=30). The non-prediabetic control (NPC) animals 

served as the negative control and were given normal diet (ND) and water ad libitum while the 

prediabetic animals were given HFHC diet and drinking water supplemented with fructose (15%) for 

20 weeks to induce prediabetes. After 20 weeks, prediabetes was confirmed via fasting blood glucose 

and oral glucose tolerance test using criteria of the American Diabetes Association, as described in our 

previous study [20].  

2.3. Treatment of Animals 

After the 20 weeks of prediabetes induction, the non-prediabetic control (Group 1) continuously fed on 

ND for a further 12 weeks while the prediabetic animals (n=30) were divided into 5 groups (Group 2 – 

Group 6, n=6 in each group). Group 2 (PD) served as the untreated prediabetic control group and 

continuously consumed the HFHC diet for 12 weeks; Group 3 (ND+MET) were prediabetic animals 

that switched to standard rat chow and received MET for 12 weeks; Group 4 (HFHC+MET) were 

prediabetic animals that continuously consumed HFHC diet with MET treatment; Group 5 (ND+BA) 

were prediabetic animals that switched to standard rat chow and received BA for 12 weeks; Group 6 

(HFHC+BA) were prediabetic animals that continuously consumed HFHC diet and received BA as 

treatment for 12 weeks. Treatment with either MET (500mg/kg) or BA (80mg/kg) was carried out twice 

every third day for 12 weeks. The body mass index (BMI), waist circumference (WC), blood pressure 

and heart rate were assessed in all animals at week 20 and every 4 weeks (24th, 28th and 32nd week). 

2.4. Blood Collection and Tissue Harvesting 

After the 12 weeks of treatment, the animals were sacrificed. The animals were placed in a gas chamber 

(BRU, UKZN, South Africa) and anaesthetised with 100 mg/kg of Isofor (Safeline Pharmaceuticals 

Ltd, Roodeport, South Africa) for 3 minutes to collect blood samples. In an unconscious state, blood 

samples were collected by cardiac puncture into pre-cooled heparinized containers. The blood samples 
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were centrifuged (Eppendorf centrifuge 5403, Germany) at 4°C, 503 g for 15 minutes for plasma 

collection. The plasma was collected and stored at -80°C in a Bio Ultra freezer (Snijers Scientific, 

Tilburg, Holland). The hearts of all the animals were excised, rinsed with cold normal saline solution, 

weighed and snapped frozen in liquid nitrogen before storage in Bio Ultra freezer at -80°C for 

biochemical analysis. 

2.5. Determination of BMI and WC 

The determination of BMI was measured from the ratio of the weight to the square of the length of the 

animals as described in the established protocol [21]. Also, the waist circumference of the animals was 

determined according to the previous protocol [22]. 

2.6. Determination of Blood Pressure and Heart Rate 

The blood pressure and heart rate were measured as described in the established protocol [19]. Briefly, 

at every 4 weeks of treatment, the non-invasive MRBP IITC Model 31, Life Sciences multichannel tail-

cuff blood pressure system (Life Sciences, Woodland Hills, CA) was used to monitor the blood pressure 

and the heart rate by placing the animals in a restrainer (3” ID (75 mm) - 12” Length) while the tail of 

the animals is attached to the tail-cuff. All the rats in the restrainer were placed in a warming chamber 

(IITC Model 303sc Animal Test Chamber, Life Sciences, Woodland Hills, CA) maintained at 32oC, 

and the blood pressure, as well as the heart rate, was measured by occlusion or deflation of the tail-cuff 

which detect alteration of blood flow in the tail artery. An average of three measured sessions consisting 

of 15 cycles was used for statistical analysis.  

2.7. Biochemical Analysis 

The lipid profile, antioxidant, inflammatory and endothelial markers were measured at 32nd week only. 

2.8. Lipid Profile Analysis 

The plasma total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and triglycerides (TG) 

were analysed via Spectrostar Nano spectrophotometer (BMG Labtech, Ortenburg, LGBW Germany) 

by using specialized commercial kits according to the instruction from the manufacturer (Elabscience 

Biotechnology Co., Ltd., Houston, TX, USA). The other lipid profiles such as very-low-density 

lipoprotein (VLDL) and low-density lipoprotein (LDL) cholesterol were calculated according to 

Friedewald’s formula [23]. VLDL cholesterol = TG x 0.2, and LDL cholesterol = TC – (VLDL 

cholesterol + HDL cholesterol). 

2.9. MDA and Antioxidant Status 

The lipid peroxidation was determined by estimation of the amount of malondialdehyde (MDA) in the 

heart tissue homogenate according to previously described protocols [19,24]. However, the antioxidant 

status of the heart homogenates was determined by using specific ELISA kit to analyse the 

concentration of superoxide dismutase (SOD) and glutathione peroxidase (GPx) according to the 

instruction manual of the manufacturer (Elabscience Biotechnology Co., Ltd., Houston, TX, USA). 

2.10. Determination of Endothelial Function and Inflammatory Markers 
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The endothelial function and inflammation were evaluated from the plasma by determination of the 

endothelial nitric oxide synthase (eNOS) through the commercialized ELISA kit in accordance to the 

manufacturer’s instructions (Elabscience Biotechnology Co., Ltd., Houston, TX, USA). The 

inflammatory markers (TNF-α, IL-6 and hs-CRP) were measured in the plasma via specific ELISA kits 

in accordance to the manufacturer’s instruction (Elabscience Biotechnology Co., Ltd., Houston, TX, 

USA), and the absorbance was measured via the microplate reader, Spectrostar Nano spectrophotometer 

(BMG Labtech, Ortenburg, LGBW, Germany).  

2.11. Statistical Analysis 

The data were presented as mean ± standard error of mean (SEM). Statistical analysis was determined 

by two-way Analysis of Variance (ANOVA) followed by Bonferroni test as post hoc via GraphPad 

Prism 5 software. The level of statistically significant difference was considered from p<0.05 and 

above.   

3. Results 

3.1. Body Mass Index (BMI) and Waist Circumference (WC) 

The effects of BA treatment on BMI and WC in non-prediabetic and prediabetic rats with or without 

diet intervention were determined as indicated in Figure 1 and Figure 2. The BMI and WC of the 

untreated prediabetic (PD) rats were significantly increased by comparison to the non-prediabetic 

(NPD) control rats throughout the treatment period (p<0.001). However, the administration of BA with 

or without diet intervention significantly decreased both BMI and WC when compared to the PD group, 

as shown in Figure 1 and Figure 2, respectively (p<0.01).  
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Figure 1: Effects of BA on BMI in non-prediabetic (NPD) and prediabetic rats

with or without diet intervention

*p<0.001 in comparison to NPD, #p<0.01 in comparison to PD, ^p<0.01 in comparison to HFHC + MET
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Figure 2: Effects of BA on waist circumference in non-prediabetic and prediabetic rats

with or without diet intervention

*p<0.001 in comparison to NPD, #p<0.05 in comparison to PD, ^p<0.05 in comparison to HFHC + MET
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3.2. Blood Pressure and Heart Rate 

As shown in Figure 3, the systolic blood pressure of PD control rats was significantly increased 

throughout the treatment period when compared to the NPD control rats (p<0.001). However, the 

systolic blood pressure of BA treated rats with or without diet intervention significantly decreased when 

compared to that of PD control rats. As demonstrated in Figure 4, the diastolic blood pressure of PD 

control rats was significantly increased when compared to NPD control rats (p<0.001). The 

administration of BA with or without diet intervention significantly decreased the diastolic blood 

pressure when compared to the PD group (p<0.05). The same results were observed with the ND+MET 

group. A significant increase in heart rate was observed in the PD rats throughout the period of treatment 

when compared to the NPD control rats as indicated in Figure 5 (p<0.01). However, the heart rate of 

BA treated rats with or without diet intervention and MET treated rats with diet intervention (ND+MET) 

were significantly lowered by comparison to the PD control rats (p<0.01). 
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Figure 3: Effects of BA on systolic blood pressure in non-prediabetic and prediabetic
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*p<0.001 in comparison to NPD, #p<0.001 in comparison to PD, ^p<0.01 in comparison to HFHC + MET, +p<0.01 in

comparison to ND + MET

S
y
s
to

li
c
 b

lo
o

d
 p

r
e
s
s
u

r
e
 (

m
m

H
g

)

     
     NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:    

     metformin, BA: bredemolic acid 

 

 

 

 



 

84 
 

0 4 8 12
0

50

100

150

NPD

PD

ND+MET

HFHC+MET

ND+BA

HFHC+BA

*
*

* *

*

## #
#

#^^
^

^ ^

+

Weeks

Figure 4: Effects of BA on diastolic blood pressure in non-prediabetic (NPD) and prediabetic

rats with or without diet intervention
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Figure 5: Effects of BA on heart rate in non-prediabetic (NPD) and prediabetic rats

with or without diet intervention
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3.3. Lipid Profile 

As shown in Table 1, the TC, TG, LDL and VLDL of the untreated PD group significantly increased in 

comparison to the NPD group (p<0.001). The TC and LDL of BA-treated rats with or without diet 

intervention were significantly decreased when compared to the PD control rats (p<0.01). Similar 

results were obtained for the ND+MET group. Additionally, only the ND+BA and ND+MET groups 

had significantly lowered TG and VLDL when compared to the PD control rats (p<0.05).  

 

Table 1: The effects of BA on lipid profile in non-prediabetic and prediabetic rats with or without  

diet intervention. Values are presented as mean±SEM (n=6) 

*p<0.05, **p<0.01, ***p<0.001 (vs. NPD), #p<0.05, ##p<0.01, ###p<0.001 (vs. PD).  

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:   

metformin, BA: bredemolic acid, TC: total cholesterol, TG: triglyceride, HDL: high density lipoprotein, 

LDL: low density lipoprotein, VLDL: very low-density lipoprotein 

 

3.4. Endothelial Function Marker 

The plasma concentration of eNOS in PD control rats significantly decreased when compared to NPD 

control rats as indicated in Figure 6 (p<0.001). However, the plasma concentration of eNOS in BA 

treated rats with or without diet intervention significantly increased by comparison to the PD control 

rats (p<0.01).  

 

Groups 

 

            

Parameters 

NPD PD ND+MET HFHC+MET ND+BA HFHC+BA 

TC (mmol/L) 2.00±0.04 2.88±0.03*** 2.06±0.03### 2.43±0.16 2.10±0.09### 2.25±0.13## 

TG (mmol/L) 1.12±0.10 1.75±0.02** 1.13±0.03## 1.58±0.22 1.18±0.02# 1.45±0.02 

HDL (mmol/L) 1.11±0.03 1.04±0.04 1.13±0.04 1.08±0.09 1.16±0.06 1.10±0.05 

LDL (mmol/L) 0.67±0.04 1.49±0.05*** 0.70±0.06### 1.03±0.05*## 0.71±0.07### 0.86±0.12### 

VLDL (mmol/L) 0.22±0.02 0.35±0.01** 0.23±0.01## 0.32±0.05 0.24±0.01# 0.29±0.01 
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     eNOS: endothelial nitric oxide synthase, NPD: non-prediabetic, PD: prediabetic, ND: normal diet,    

     HFHC: high fat high carbohydrate diet, MET: metformin, BA: bredemolic acid 

 

 

3.5. Lipid Peroxidation and Antioxidant Status 

As indicated in Table 2, a significant increase in the heart MDA concentration was observed in the PD 

groups by comparison to the NPD group (p<0.01). Rats treated with BA in the presence and absence of 

diet intervention had a significantly decreased MDA concentration by comparison to untreated PD rats. 

However, there was no significant difference in heart MDA concentrations in the HFHC+MET group 

when compared to PD control rats. The heart SOD and GPx concentration of the PD control rats 

significantly decreased in comparison to NPD control rats (p<0.01). On the other hand, administration 

of BA with or without diet intervention significantly increased both SOD and GPx concentration in the 

heart tissue by comparison to the untreated PD group (p<0.05).  
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Table 2: The effects of BA on oxidative stress and inflammatory biomarkers in non-prediabetic and 

prediabetic rats with or without diet intervention. Values are presented as mean±SEM (n=6) 

Groups 

 

                           

Parameters 

NPD PD ND+MET HFHC+MET ND+BA HFHC+BA 

MDA (nmol/g 

protein) 

4.35±0.16 5.78±0.43 

** 

4.62±0.09 

# 

5.11±0.24 4.14±0.20 

### 

4.53±0.12 

# 

SOD (ng/mL) 7.00±0.90 1.78±0.23 

** 

6.74±0.66 

## 

6.11±0.88 

# 

11.43±1.14 

*### 

10.56±0.90 

*### 

GPx (pg/mL) 847.52±53.56 245.43±12.29

*** 

989.72±129.55

### 

517.99±78.53 

* 

1001.20±62.37

### 

669.51±40.59 

## 

hs-CRP 

(ng/mL) 

1.35±0.06 2.22±0.01 

*** 

1.53±0.16 

### 

1.74±0.15 1.71±0.07 

# 

1.73±0.07 

# 

TNF-α (pg/mL) 948.42±30.79 1296.97±7.98

*** 

1005.49±19.17

## 

1108±96.11 945.63±13.49 

### 

1011.33±17.83

## 

IL-6(pg/mL) 22.20±2.71 37.13±1.14 

*** 

30.02±1.30 33.95±2.10 

** 

23.46±2.50 

## 

24.06±1.71 

## 

   *p<0.05, **p<0.01, ***p<0.001 (vs. NPD), #p<0.05, ##p<0.01, ###p<0.001 (vs. PD). 

 NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:           

 metformin, BA: bredemolic acid, SOD: superoxide dismutase, MDA: malondialdehyde, GPx: glutathione   

 peroxidase, hs-CRP: high sensitive C-reactive protein, TNF-α: tumour necrotic factor alpha, IL-6:   

 interleukin 6 

 

3.6. Inflammatory Markers 

As shown in Table 2, the plasma concentrations of hs-CRP, TNF-α and IL-6 in the untreated PD group 

was significantly increased by comparison to the NPD control group (p<0.001). However, the 

administration of BA with or without diet intervention significantly decreased the concentration of these 

markers by comparison to the PD group. Similar results were obtained for the ND+MET group.  

4. Discussion 

This study was designed to investigate the effects of bredemolic acid on cardiovascular function risk 

factors, endothelial function, oxidative stress and proinflammatory markers in diet-induced prediabetes. 

High caloric diets have been implicated with prediabetes which has been associated with endothelial 

dysfunction, reactive oxygen species (ROS) and inflammatory cytokine production [5, 6]. Studies 

indicate that chronic consumption of high caloric diets promote excess adiposity which results in high 

BMI, high waist circumference and hyperlipidaemia [3, 25]. These have all been identified as risk 

factors for developing insulin resistance, impaired glucose metabolism and cardiovascular diseases 

during the prediabetic stage [26-28]. In addition, previous researchers have also shown that the risk of 
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developing diabetes and its associated cardiovascular diseases rises as body fat, BMI and waist 

circumference increase [25, 27]. Our results showed that induction of prediabetes through chronic 

ingestion of a high fat high carbohydrate diet significantly increased BMI and waist circumference in 

the untreated prediabetic rats. We suggest that the increased BMI and waist circumference can be 

attributed to increased caloric intake as we have reported in our previous study [20]. Conversely, the 

administrations of BA significantly reduced the BMI and waist circumference in BA treated prediabetic 

rats with or without diet intervention. In a previous study, we reported that BA administration 

significantly decreased food intake through reduced plasma ghrelin concentrations and improved 

insulin sensitivity [20]. Therefore, in this study, we suggest that the decreased BMI and waist 

circumference in BA treated prediabetic rats may be due to the decreased food intake and decreased 

body weight gain. 

Moreover, consumption of high caloric diet has been associated with increased delivery of free fatty 

acid (FFA) to the liver [29]. The increased delivery of FFA leads to increased hepatic and plasma TG 

concentrations as well as increased export of TG as VLDL from the liver [29, 30]. The VLDL is, in 

turn, converted into atherogenic LDL with low clearance. Consequently, due to the increased 

conversion of TG to VLDL, HDL clearance increases and results in decreased plasma HDL 

concentration [31, 32].  

Similarly, in this study, consumption of high caloric diet probably caused increased delivery of FFA to 

the liver with a subsequent significant increase in plasma concentrations of TC, TG, LDL and VLDL 

as well as a slight decrease in the HDL concentration in the untreated prediabetic rats. However, we 

suggest that even though the HDL concentration slightly decreased, the clearance of HDL as a result of 

increased VLDL formation remains unaffected in this study. Hence, this abnormal lipid profile showed 

that the risk of developing dyslipidaemia and other cardiovascular complications begins during the 

prediabetic stage [11]. On the other hand, the administration of BA significantly normalized the TC, 

TG, LDL and VLDL levels in BA treated prediabetic rats with or without diet intervention. In our 

previous study, BA was reported to inhibit caloric intake and decrease body weight gain, and this may 

contribute to the observed normal lipid profile in the BA treated rats [20].  

High caloric diets have also been reported to result in glucolipotoxicity which in turn triggers 

mitochondrial overproduction of reactive oxygen species (ROS) due to impairment of mitochondrial 

electron transport chain activity [4, 33]. The mitochondrial overproduction of ROS leads to oxidative 

stress which further leads to an impaired balance between the production of ROS and antioxidant 

enzymes [3, 34]. MDA and antioxidant enzymes (SOD and GPx) are markers for lipid peroxidation and 

antioxidant capacity in the cells or tissues, respectively. Indeed, in this study, MDA concentrations 

significantly increased while SOD and GPx concentrations significantly decreased in the hearts of 

untreated prediabetic rats. These results correlated with research done by Lozano et al. [3] which 

showed a positive correlation between the consumption of high caloric diets and increased lipid 

peroxidation. On the other hand, we observed that the administration of BA significantly reduced the 
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heart lipid peroxidation activity and significantly increased the heart antioxidant capacity of BA treated 

prediabetic rats. This biological effect of BA on the oxidative stress markers correlated with the earlier 

reports that triterpenes are antioxidant agents which neutralize free radicals in the mitochondria by 

donation of electrons due to the presence of hydroxyl radical in their structures [19]. Similarly, we 

speculate that BA attenuated oxidative stress by neutralizing free radicals through electron donation 

capacity of its hydroxyl radicals and improved antioxidant activity by the promotion of antioxidant 

enzymes production. This antioxidant property of BA has also been reported in other triterpenes such 

as maslinic acid, oleanolic acid and ursolic acid [19, 35]. 

Studies indicate that intermediate hyperglycaemia and oxidative stress alter endothelial cell function 

and contribute to cardiovascular diseases during prediabetic stage [33, 36, 37]. Intermediate 

hyperglycaemia has been linked to oxidative stress through the activation of protein kinase C (PKC) 

which in turn enhances nicotinamide adenine dinucleotide phosphate (NADPH) oxidase action [8, 38]. 

Activation of PKC alters vascular homeostasis and decreases nitric oxide (NO) production via inhibition 

of eNOS [1, 12]. As a result of the decreased NO production, vascular changes that result in 

vasoconstriction with subsequent increase in blood pressure, heart rate and arteriosclerotic processes 

occur [1]. In this study, we observed that the eNOS concentration significantly decreased with 

concomitant increases in heart rate, systolic and diastolic blood pressure in the untreated prediabetic 

rats when compared to non-prediabetic control rats. The increased heart rate, systolic and diastolic blood 

pressure can be attributed to vasoconstriction of vascular endothelium due to decreased eNOS activity 

that results in decreased NO production which has been reported in prediabetes [6]. The results of this 

study further showed that the administration of BA significantly increased the eNOS concentration and 

ameliorated heart rate, systolic and diastolic blood pressure in both the presence and absence of diet 

intervention. In accordance with a similar study, we suggest that the administration of BA which 

ameliorated oxidative stress, contributed to the increased eNOS concentration in the BA treated rats 

[39]. Increased eNOS concentration in turn leads to increase in NO production which further leads to 

vasodilation with subsequent significant decrease in heart rate and blood pressure when compared to 

untreated prediabetic rats. 

Furthermore, increased blood glucose has been reported to result in the formation of advanced glycation 

product (AGE) [40]. Formation of AGEs increases the expression of adhesion molecules on vascular 

endothelial cells and subsequently promotes migration of monocytes to form macrophages [1, 41]. 

Stimulation of the monocytes by AGEs leads to low-grade inflammation with increased production of 

cytokines (such as IL-6, TNF-α and hs-CRP) [4, 41]. However, literature has reported that increased 

levels of proinflammatory cytokines are associated with prediabetes [12, 14]. Similarly, in this study, 

the plasma concentration of IL-6, TNF-α and hs-CRP significantly increased in untreated prediabetic 

rats. The elevated proinflammatory cytokines are inflammatory responses that alter vascular 

endothelium and result in endothelial dysfunction during prediabetic stage [12, 42]. The hs-CRP is not 



 

90 
 

just a pro-inflammatory cytokine but a biomarker for injured heart caused by coronary heart disease or 

ischemic heart disease [43]. 

The observed increase in plasma hs-CRP concentrations in untreated prediabetic rats in this study 

indicated the risk of developing cardiovascular diseases during the prediabetic stage. These results 

correlated with other studies which reported that plasma hs-CRP concentration and other pro-

inflammatory cytokines were significantly increased in prediabetic condition [44, 45] Additionally, BA 

administration significantly decreased the pro-inflammatory cytokines such as hs-CRP, IL-6 and TNF-

α in prediabetic rats with or without diet intervention. The decreased in the plasma proinflammatory 

cytokines concentration can be suggested to be due to the anti-inflammatory property that has been 

previously attributed to pentacyclic triterpenes [19, 35]. Pentacyclic triterpenes (such as maslinic acid, 

oleanolic acid) have been reported to have low pharmacokinetic activity of 3 days without any side 

effects [35, 46, 47]. Therefore, as a result of the low pharmacokinetic activity exhibited by the 

pentacyclic triterpenes, the biological effects of BA last longer and sustainably remain active than 

synthetic drugs. However, we suggest that the sustained biological activities of BA probably 

compensated for the ameliorated cardiovascular functions in the prediabetic rats even in the absence of 

diet intervention.  

5. Conclusion 

The findings of this study suggest that the administration of BA in both the presence and absence of 

diet intervention attenuated inflammation and oxidative stress, as well as improved cardiovascular and 

endothelial functions which are impaired in diet-induced prediabetes. More studies are, however, 

required to investigate the molecular mechanisms by which this triterpene exerts its biological effects.  
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PROLOGUE 

It has been demonstrated in several studies that chronic consumption of high caloric diets results in 

renal complications not only in overt diabetes but in the prediabetic stage. Currently, the management 

of renal complications or dysfunctions during the prediabetes stage is via the combination of dietary 

and pharmacological interventions. However, the efficacy of the pharmacological intervention has been 

reported to be reduced due to low compliance from patients in following a recommended diet 

modification. In chapter 4 of this study, we observed dyslipidaemia, increased blood pressure, increased 

heart rate and decreased eNOS plasma concentration which depicted cardiovascular dysfunction in the 

untreated prediabetic rats. Also, the results showed that oxidative stress and plasma concentration of 

inflammatory cytokines are significantly increased in the insulin-resistant state. The administration of 

BA significantly ameliorated the aforementioned markers of cardiovascular dysfunctions, however, the 

effects of BA on renal functions have not been established in a prediabetic state. Therefore, in Chapter 

5 of this study, we investigated the effects of BA on selected markers of renal dysfunction in a 

prediabetic rat model in both the presence and absence of dietary intervention. The chapter was written 

and prepared in manuscript format. The authors of this manuscript are Akinnuga AM, Siboto A, 

Khumalo B, Sibiya NH, Ngubane P and Khathi A. This manuscript is in press in the journal, Oxidative 

Medicine and Cellular Longevity. See Appendix VI. 
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Abstract 

Studies have shown that renal dysfunction does not only occur in overt diabetes but also the preceding 

stage known as prediabetes. Lifestyle and pharmacological interventions are the approaches to 

managing prediabetes but the compliance in combining the two interventions is low. Hence, 

pharmacological intervention efficacy is reduced. In our previous study, bredemolic acid ameliorated 

glucose homeostasis via increased expression of GLUT 4 in the skeletal muscle of prediabetic rats. 

However, bredemolic acid effects on renal dysfunction are unknown. Therefore, this study was aimed 

at investigating the ameliorative effects of bredemolic acid on renal dysfunction in a diet-induced 

prediabetic rat model. Thirty-six (36) Sprague Dawley male rats (150 – 180g) were divided into two 

groups: the non-prediabetic (n=6) and the prediabetic groups (n=30) which were fed a normal diet (ND) 

and high fat high carbohydrate (HFHC) diet respectively for 20 weeks. The prediabetic rats were 

subdivided into five groups (n=6) and treated with either BA (80 mg/kg) or metformin (MET, 500 

mg/kg) for 12 weeks. Blood, urine and kidney samples were collected for biochemical analysis. The 

untreated prediabetic (PD) rats presented albuminuria, proteinuria, sodium retention, potassium loss, 

increased aldosterone concentration, increased kidney injury molecule (KIM-1) and increased urinary 

podocin expression. Also, the PD rats had a significantly increased creatinine, urea and uric acid plasma 

concentrations, fluid intake and urine output. However, BA administration attenuated the 

aforementioned renal dysfunction, oxidative stress and decreased podocin mRNA expression in the 

urine. Conclusively, BA administration regardless of diet modification attenuates renal dysfunction in 

a prediabetic state. 
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Introduction 

Uncontrolled diabetes mellitus leads to diabetic nephropathy which accounts for about 50% of all end-

stage renal disease worldwide (Kowalski et al. 2015). More than 25% of type 1 and type 2 diabetes 

mellitus patients develop diabetic nephropathy (DN) with altered renal function markers such as 

reduced glomerular filtration rate (GFR), increased serum creatinine and urea, albuminuria as well as 

increased excretion of kidney injury molecule (KIM-1) (Powell et al. 2013, Lopez-Giacoman & 

Madero, 2015). Studies have shown that the risk of developing structural and functional changes in 

diabetic nephropathy does not only occur in overt diabetes but in the early stages of impaired glucose 

metabolism (Mac-Moune Lai et al. 2004, Melsom et al. 2016, De Nicola et al. 2016). Moreover, 

previous studies have demonstrated that persistent hyperglycaemia activates oxidative stress and the 

renin-angiotensin-aldosterone system (RAAS) which leads to stimulation of renal cell proliferation, 

expression of growth factors such as transforming growth factor (TGFβ) as well as inflammatory 

cytokines such as tumour necrosis factor (TNFα) and interleukin-6 (IL-6) (Schrijvers et al. 2004, 

Chawla et al. 2010, Chou & Fang, 2010, Luther & Brown, 2011, Jaikumkao et al. 2017). Furthermore, 

the activation of RAAS triggers the release of aldosterone which stimulates serum/glucocorticoid-

regulated kinase 1 (SGK1) that regulate epithelial sodium channel (ENaC) and consequently lead to 

increased sodium retention and potassium loss in type 2 diabetes mellitus (Lang et al. 2009, Artunc et 

al. 2016). Literature evidence showed that about one-third of individuals with newly diagnosed diabetes 

mellitus have varying degrees of renal dysfunction (Echouffo-Tcheugui et al. 2016). This can be 

attributed to the abnormal changes that occur during prediabetes. The prediabetic stage often precedes 

the onset of type 2 diabetes mellitus and it is characterized by fasting blood glucose concentration that 

is higher than normal but below the threshold for diagnosis of diabetes mellitus (Tabák et al. 2012). 

Cross-sectional clinical studies have confirmed that prediabetes is associated with glomerular 

hyperfiltration as well as the onset of chronic kidney disease (CKD) (Okada et al. 2012, De Nicola et 

al. 2016). Therefore, the screening of markers of kidney function during the prediabetic state offers an 

early window of opportunity of preventing and managing CKD (Echouffo-Tcheugui et al. 2016). More 

importantly, lifestyle modification such as diet intervention and increased physical activity as well as a 

pharmacological intervention have been reported as the two major ways of managing prediabetes 

(Ramachandran et al. 2006, Salas-Salvadó et al. 2014, Ley et al. 2014). However, the compliance of 

combining the two interventions is low as several patients only make use of pharmacological 

intervention without diet intervention, and consequently, the efficacy of the pharmacological 

intervention is reduced (Ramachandran et al. 2009, Gamede et al. 2018). Therefore, anti-diabetic agents 

that ameliorate CKD or DN regardless of diet intervention are considered necessary. 

Studies in our laboratory have indicated that pentacyclic triterpenes such as oleanolic acid, maslinic 

acid and ursolic acid ameliorate renal dysfunction in streptozotocin-induced diabetes mellitus (Ngubane 

et al. 2011, Mkhwanazi et al. 2014). Recently, in our study, bredemolic acid, was reported to regulate 

blood glucose concentration in the prediabetic state via increased expression of GLUT 4 in the skeletal 
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muscle (Akinnuga et al. 2019). However, the biological effects of bredemolic acid on renal dysfunction 

associated with prediabetes are yet to be known. Therefore, this study sought to investigate the effects 

of bredemolic acid on selected markers for renal function in a high fat high carbohydrate diet-induced 

prediabetic rat model.  

Materials and Methods 

Animals 

Thirtyـsix (36) male Sprague Dawley rats with body weight 150–180g were used for this study. The rats 

were obtained from the Biomedical Research Unit (BRU), University of KwaZulu-Natal (UKZN). The 

animals were kept and maintained in a standard animal facility under controlled environmental 

conditions at room temperature (22±2°C), humidity (55±5%) and 12h day:12h night cycle. The animals 

consumed standard rat chow (Meadow Feeds, South Africa) and water ad libitum for 2 weeks to 

acclimatize before being exposed to the experimental diet (high–fat high–carbohydrate). The 

components of the high–fat high–carbohydrate (HFHC) diet are carbohydrate (55% Kcal/g), fats (30% 

Kcal/g) and proteins (15% Kcal/g). All experimental procedures in this study were carried out in 

absolute compliance with the ethics and animal care guidelines of the Animal Research Ethics 

Committee (AREC, ethics no: AREC/024/018D) of the UKZN, Durban, South Africa. 

Experimental design 

After acclimatization, the animals were divided into 2 main groups: the non-prediabetic control group 

(n=6) and the prediabetic group (n=30). The non-prediabetic (NPD) control animals (negative control) 

were given normal diet (ND) and water ad libitum for 20 weeks while the prediabetic animals were 

given HFHC diet and drinking water supplemented with fructose (15%) for 20 weeks to induce 

prediabetes. At 20th week, prediabetes was confirmed via assessment of fasting blood glucose and oral 

glucose tolerance test (OGTT) as described in our previous study (Akinnuga et al. 2019).  

Treatment of animals 

The treatment period lasted for 12 weeks (21st – 32nd). After prediabetes induction, the non-prediabetic 

control group (Group 1) continuously fed on ND and received diluted dimethyl sulphoxide, DMSO (2 

ml DMSO: 19 ml normal saline) as a vehicle for 12 weeks while the prediabetic animals (n=30) were 

further divided into 5 groups (n=6). All the prediabetic animals continuously fed on either HFHC or 

ND and were treated with either oral administration of BA (80mg/kg) or metformin (MET, 500mg/kg) 

every third day for 12 weeks. The prediabetes control group, PD (Group 2) rats were continuously fed 

on the HFHC diet and received the diluted DMSO (vehicle) for 12 weeks. The ND+MET (Group 3) 

rats changed the diet to ND and received MET orally, whereas the HFHC+MET (Group 4) rats were 

continuously fed on the HFHC diet and received MET orally. The ND+BA (Group 5) rats changed the 

diet to ND and received BA orally while HFHC+BA (Group 6) rats continuously fed on the HFHC diet 

and were treated with BA. After the 12 weeks of treatment, the animals were sacrificed, blood samples 

and the kidneys were collected from all the animals for biochemical analysis. The fluid intake and urine 

volumes were assessed in all the animals at 20th week and every 4 weeks (24th, 28th and 32nd week). The 
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renal function parameters and other biochemical parameters were measured at the end of the 

experiment. 

Determination of fluid intake and urine output 

At 20th week and every 4 weeks thereafter, all the animals in each group were placed in different 

metabolic cages for 24 hours to measure fluid intake and urine output. The urine samples were 

measured, centrifuged at 13000 rpm for 5 minutes at 4oC, and the supernatants were stored at -80°C in 

a Bio Ultra freezer (Snijders Scientific, Tilburg, Holland) until ready for kidney function parameters 

analysis. 

Blood collection and tissue harvesting 

All the animals were placed in a gas anaesthetic chamber (Biomedical Research Unit, UKZN, Durban, 

South Africa) and anaesthetised with 100 mg/kg of Isofor (Safeline Pharmaceuticals (Pty) Ltd, 

Roodeport, South Africa). In an unconscious state, blood samples were collected from all the animals 

via cardiac puncture into different pre-cooled EDTA containers. The blood samples were centrifuged 

(Eppendorf centrifuge 5403, Germany), 503 g for 15 minutes at 4°C to obtain plasma. Thereafter, the 

plasma samples were aspirated into plain sample bottles and stored in a Bio Ultra freezer (Snijders 

Scientific, Tilburg, Holland) at -80°C until ready for biochemical analysis. Also, the kidneys were 

removed, rinsed with cold normal saline solution, weighed on the weighing balance, snapped frozen in 

liquid nitrogen and stored at -80°C in a Bio Ultra freezer for biochemical analysis of selected 

parameters. 

Relative kidney weight 

The relative kidney weight of all the animals was determined from the ratio of kidney weight to the 

body weight. Relative kidney weight = Kidney weight X 100     

                           Body weight      

Biochemical analysis 

The biochemical analysis of kidney function parameters (such as creatinine, urea, uric acid, albumin 

and total protein) and electrolytes (Na+ and K+) were determined at 32nd week in the plasma and urine 

samples by using their respective assay kits (Elabscience Biotechnology Co., Ltd., Houston, TX, USA) 

as instructed by the manufacturer. However, the kidney injury molecule (KIM-1) and aldosterone 

plasma concentrations were determined from their specific ELISA kits as instructed by the 

manufacturer (Elabscience Biotechnology Co., Ltd., Houston, TX, USA) via the microplate reader, 

Spectrostar Nano spectrophotometer (BMG Labtech, Ortenburg, LGBW, Germany) 

Determination of GFR 

The GFR of all the animals were determined at 32nd week of the experiment from the estimation of 

creatinine in the plasma and urine (creatinine clearance) as follows: 

GFR [mL/min] =   Urine creatinine (mg/dl) × 24 hrs urine volume      

                               Plasma creatinine (mg/dl) × 60 min × 24 hrs  
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Lipid peroxidation and antioxidant status 

The lipid peroxidation was assessed by determination of the concentration of malondialdehyde (MDA) 

in the kidney homogenized tissue according to the previously established protocol (Mkhwanazi et al. 

2014). However, the antioxidant status of the kidney homogenate was assessed by determination of the 

concentration of superoxide dismutase (SOD), glutathione peroxidase (GPx) and total antioxidant 

capacity (TOAC) by using their specific ELISA kits according to the instruction of the manufacturer 

(Elabscience Biotechnology Co., Ltd., Houston, TX, USA). 

Urine RNA isolation 

RNA was isolated from urine (4 ml) by using ZR Urine RNA Isolation KitTM (Zymo Research Corp, 

Irvine, USA) according to the manufacturer’s protocol. The purity of the RNA was confirmed by the 

relative absorbance of ratio 260/280 nm via Nanodrop 1000 spectrophotometer (Thermo Scientific, 

USA). Urine RNA (100 ng) was reverse transcribed to complementary DNA (cDNA) by using iScriptTM 

cDNA Synthesis Kit (Bio Rad, California, USA) through incubation in a thermal cycler (SimpliAmp 

Thermal Cycler, Applied biosystems, Life technologies). 

Urine complementary DNA (cDNA) synthesis 

For cDNA synthesis, urine RNA (2 µL) was mixed with 5X iScript reaction (4 µL), iScript reverse 

transcriptase enzyme (1µL) (Bio Rad, USA) and nuclease-free water to a final volume of 20 µL. The 

mixture was incubated in the thermal cycler (SimpliAmp Thermal Cycler, Applied biosystems, Life 

technologies) at 25oC for 5 minutes, 42oC for 30 minutes and finally at 85oC for 5 minutes. Thereafter, 

the synthesized cDNA was stored at -80°C until use for real-time PCR (Polymerase chain reaction). 

Real-time PCR 

The urinary mRNA level of podocin was quantified by real-time PCR lightcycler (Roche LightCycler 

96, USA). cDNA template (2 µL), SYBR Green PCR master mix (5 µL) (Bio Rad, USA), podocin 

forward primer (1 µL), podocin reverse primer (1 µL) and nuclease-free water were mixed to a final 

volume of 10 µL. Thereafter, the sample mixtures were cycled 40 times at 95oC for 10 seconds, 60oC 

for 20 seconds and 72oC for 20 seconds in the lightcycler (Roche LightCycler 96, USA). All the samples 

were run in duplicate, and β-actin mRNA levels were used as a housekeeping gene to normalize the 

podocin mRNA level. The sequences of the used oligonucleotide primers (Metabion International AG, 

Planegg, Germany) were as followed: podocin forward 5`-TGG AAG CTG AGG CAC AAA GA-3`, 

podocin reverse 5`-AGA ATC TCA GCC GCC ATC CT-3`.  

 

Statistical analysis 

The data were presented in mean ± SEM and analysed via a two-way Analysis of Variance (ANOVA) 

with the Bonferroni test as a post hoc test by using GraphPad Prism 5 software. The results were 

considered to be statistically significant from p<0.05 and above. 
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Results 

Kidney weight 

As indicated in Table 1, the relative kidney weight of untreated prediabetes (PD) rats was significantly 

decreased in comparison to non-prediabetic (NPD) control rats (p<0.001). However, with the 

administration of BA in the presence of diet intervention, there was a significant difference in kidney 

weight when compared to PD rats (p<0.05). 

 

Table 1: The effects of BA on relative kidney weight, lipid peroxidation and antioxidant status in 

non-prediabetic and prediabetic rats with or without diet intervention. Values are presented as 

mean±SEM (n=6) 

Groups 

 

Parameters 

NPD PD ND+MET HFHC+MET ND+BA HFHC+BA 

Relative kidney 

weight (%) 

0.38±0.01 0.25±0. 01 

*** 

0.28±0.01 

 

0.29±0.01 

 

0.31±0.01 
# 

0.28±0.01 

 

MDA (nmol/g 

protein) 

5.10±0.13 7.72±0.41 

*** 

5.69±0.19 
# # 

6.75±0.40 

** 

5.07±0.08 
# # # 

5.63±0.25 
# # # 

SOD (ng/mL) 8.66±0.27 3.14±0.38 

*** 

9.92±0.52 
# # # 

6.62±0.12 
# # # 

11.45±0.63 

*# # # 

8.08±0.81 
# # # 

GPx (pg/mL) 1793.00±42.38 849.27±24.69

*** 

1820.11±25.88
# # # 

1274.50±36.14 

*** 

1914.21±37.18
# # # 

1698.61±33.17 
# # # 

TOAC (U/mL) 44.40±2.57 14.80±1.03 

*** 

31.45±1. 02 

* # # # 

22.14±3. 03 

*** 

41.31±1.65 
# # # 

24.17±3.10 
#*** 

*p<0.05, **p<0.01, ***p<0.001 (vs. NPD), #p<0.05, ##p<0.01, ###p<0.001 (vs. PD).  

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:        

metformin, BA: bredemolic acid, SOD: superoxide dismutase, MDA: malondialdehyde, GPx: glutathione 

peroxidase, TOAC: total antioxidant capacity   

 

Fluid intake and Urine output 

As shown in Figure 1, the effects of BA administration on fluid intake and urine output were determined 

in non-prediabetic and prediabetic rats. The fluid intake and urine output of PD rats were significantly 

increased in comparison to the NPD control rats throughout the treatment period (0 – 12 weeks) 

(p<0.001). However, administration of BA with or without dietary intervention as well as metformin 

with diet intervention (ND+MET) significantly decreased the fluid intake and urine output in 

comparison to the PD rats, especially at 12th week period of treatment as shown in Figure 1 (p<0.05). 
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Creatinine and GFR 

The plasma concentration of creatinine was significantly increased in PD rats and metformin-treated 

rats without diet intervention (HFHC+MET) by comparison to the NPD control rats at p<0.05 (Figure 

2). However, there was no significant difference between the plasma concentrations of BA treated rats 

with or without dietary intervention as well as metformin-treated rats with diet intervention in 

comparison to the NPD control rats. Moreover, the PD rats had significantly decreased urine creatinine 

when compared to the NPD control rats (Figure 2). Conversely, administration of BA in the absence or 

presence of diet intervention and metformin in the presence of diet intervention significantly increased 

the urine creatinine by comparison to the PD rats (p<0.001). The GFR of PD rats, as well as BA and 

metformin, treated rats without diet intervention significantly decreased when compared to the NPD 

control rats. On the other hand, the GFR of BA and metformin-treated rats with diet intervention 

significantly increased by comparison to the PD rats (p<0.05). 
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Figure 1: Effects of BA on fluid intake (A) and urine output (B) in non-prediabetic and 

prediabetic rats with or without diet intervention. *p<0.001 (vs. NPD), 
#
p<0.05 (vs. PD), 

^p<0.05 (vs. HFHC+MET).  
NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:        

metformin, BA: bredemolic acid  
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Urea and Uric acid 

As depicted in Figure 3, the plasma concentration of urea and uric acid significantly increased in PD 

rats when compared to the NPD control rats (p<0.001). Moreover, administration of BA and metformin 

in the presence of diet intervention significantly decreased the plasma concentration of urea and uric 

acid by comparison to the PD rats (p<0.001).  On the other hand, the urine concentration of urea 

decreased significantly while the urine concentration of uric acid increased significantly in PD rats by 

comparison to the NPD control rats as shown in Figure 3. However, there were significant differences 

in the concentration of urea and uric acid in the urine of BA and metformin-treated rats with diet 

intervention when compared to the PD rats. 
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Figure 2: Effects of BA on plasma creatinine (A), urine creatinine (B) and GFR(C) in 

non-prediabetic and prediabetic rats with or without diet intervention.  

*p<0.001 (vs. NPD), 
#
p<0.001 (vs. PD).  ^p<0.01(vs. HFHC+MET).  

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, 

MET: metformin, BA: bredemolic acid  
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Albumin and Total protein 

As indicated in Figure 4, the plasma albumin and plasma total protein concentrations of PD rats were 

significantly decreased by comparison to the NPD control rats (p<0.001). The administration of 

metformin with diet intervention as well as BA with or without dietary intervention significantly 

increased the plasma albumin and the plasma total protein concentrations when compared to the PD 

rats. As shown in Figure 4, the urinary albumin and total protein concentrations were significantly 

increased in PD rats when compared to the NPD control rats (p<0.05).In comparison to the PD rats, the 

BA and metformin-treated rats with diet intervention had a significantly decreased urinary albumin and 

total protein while the BA treated rats without diet intervention only had a significantly decreased 

urinary albumin. 
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Figure 3: Effects of BA on plasma urea (A), urine urea (B), plasma uric acid (C) and 

urine uric acid (D) in non-prediabetic and prediabetic rats with or without diet 

intervention. *p<0.001 (vs. NPD), 
#
p<0.001 (vs. PD), ^p<0.001 (vs. HFHC+MET). 

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate 

diet, MET: metformin, BA: bredemolic acid  
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Electrolytes concentration (Sodium and Potassium) 

The sodium and potassium plasma concentrations of PD rats were significantly different by comparison 

to that of the NPD control rats (Figure 5). However, the administration of BA and metformin with diet 

intervention significantly decreased the plasma sodium concentration and increased the plasma 

potassium concentration when compared to the PD rats (p<0.05). Moreover, the urine sodium and 

potassium concentrations of PD rats were significantly decreased and increased respectively when 

compared to the PD rats as indicated in Figure 5. The BA and metformin-treated rats with diet 

intervention had significantly increased urine sodium and decreased urine potassium by comparison to 

the PD rats. 
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Figure 4: Effects of BA on plasma albumin (A), urine albumin (B), plasma total protein 

(C) and urine total protein (D) in non-prediabetic and prediabetic rats with or without 

diet intervention. *p<0.001 (vs. NPD), 
#
p<0.05 (vs. PD).  

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, 

MET: metformin, BA: bredemolic acid  
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Plasma aldosterone  

The plasma aldosterone concentration of PD rats was significantly increased when compared to the 

NPD rats at p<0.001 (Figure 6). Conversely, the aldosterone concentration of BA and metformin-treated 

rats with or without diet intervention was significantly decreased by comparison to the PD rats 

(p<0.001). 

KIM-1 

The KIM-1 plasma concentrations of the untreated PD rats and metformin-treated rats without diet 

intervention (HFHC+MET) were significantly increased when compared to the NPD control group, as 

shown in Figure 6 (p<0.001). Also, the KIM-1 plasma concentration of BA treated rats with or without 

dietary intervention as well as metformin-treated rats with diet intervention (ND+MET) was 

significantly decreased in comparison to the PD rats. 
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Figure 5: Effects of BA on plasma sodium(A), urine sodium (B), plasma potassium (C) 

and urine potassium (D) in non-prediabetic and prediabetic rats with or without diet 

intervention. *p<0.001 (vs. NPD), 
#
p<0.05 (vs. PD), ^p<0.001 (vs. HFHC+MET). 

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, 
MET: metformin, BA: bredemolic acid  
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Lipid peroxidation 

The kidney MDA concentrations of the PD rats and metformin-treated rats without diet intervention 

were significantly increased in comparison to the NPD control rats as shown in Table 1 

(p<0.001).Conversely, the MDA concentration of BA treated rats with or without dietary intervention 

as well as metformin-treated rats with diet intervention were significantly decreased when compared to 

PD rats. 

Antioxidant status 

The kidney SOD, GPx and TOAC concentrations of the PD rats significantly decreased in comparison 

to NPD control rats as indicated in Table 1 (p<0.001). On the other hand, administration of BA with or 

without diet intervention and metformin with diet intervention significantly increased the SOD, GPx 

and TOAC concentrations in the kidney tissue when compared to the PD rats. Moreover, except for the 

kidney SOD concentration, there was a significant difference in the kidney GPx and TOAC 

concentrations in the HFHC+MET group when compared to PD control rats. 

 

 

Figure 6: Effects of BA on aldosterone (A) and kidney injury molecule, KIM-1 (B) in non-

prediabetic and prediabetic rats with or without diet intervention.  

*p<0.001 (vs. NPD), 
#
p<0.001(vs. PD).  

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:        

metformin, BA: bredemolic acid  
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Urine podocin mRNA 

The podocin mRNA in the urine of PD rats was significantly increased by 12.04-fold when compared 

to the NPD control rats (Figure 7). The podocin mRNA levels in the urine of BA and metformin-treated 

rats in the presence or absence of diet intervention were significantly decreased in comparison to the 

PD rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

This study examined the ameliorative effects of bredemolic acid on parameters associated with renal 

dysfunction in diet-induced prediabetic rats. In our previous study, we have established that bredemolic 

acid, a pentacyclic triterpene and isomer of maslinic acid, ameliorated markers of glucose homeostasis, 

improved insulin sensitivity and increased the expression of GLUT 4 in the skeletal muscle of 

prediabetic rats as a compensatory mechanism to regulate glucose metabolism in the prediabetic state 

(Akinnuga et al. 2019). Furthermore, this study is a continuation of our previous research and the data 

on body weight, food intake, fasting blood glucose, oral glucose tolerance test, fasting insulin 

concentration and insulin resistance were presented in the previous study (Akinnuga et al. 2019). 

In this study, the kidney weight to body weight ratio significantly decreased in untreated prediabetic 

rats. The decrease in the relative kidney weight can be suggested to be due to an increase in the body 

weight without a proportional increase in the visceral kidney weight. However, administration of BA 

caused a significant increase in the relative kidney weight in the BA treated rats. This may be due to 

decreased body weight as a result of diet intervention and BA administration (Akinnuga et al. 2019). 

Figure 7: Effects of BA on urinary podocin mRNA expression in non-prediabetic and 

prediabetic rats with or without diet intervention. *p<0.001 (vs. NPD), 
#
p<0.001(vs. PD). 

NPD: non-prediabetic, PD: prediabetic, ND: normal diet, HFHC: high fat high carbohydrate diet, MET:        

metformin, BA: bredemolic acid  
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High fat or high fructose diets have been associated with non-diabetic range hyperglycaemia and insulin 

resistance which in turn leads to metabolic disturbances with complications that results in renal 

dysfunction (Chou & Fang, 2010, Odermatt, 2011). Literature evidence has established a relationship 

between insulin-resistant states (such as obesity, prediabetes and T2DM) and the occurrence of renal 

dysfunction (Sarafidis & Ruilope, 2006, Wang et al. 2008, Echouffo-Tcheugui, 2016). Insulin 

resistance is one of the physiological linkages between prediabetes and renal dysfunction. It has been 

associated with pathological changes (such as decreased GFR, albuminuria, proteinuria and diffuse 

thickening of glomerular capillary basement membrane) which are similar to those observed in diabetic 

nephropathy (Mac-Moune Lai et al. 2004, Ritz et al. 2011, Echouffo-Tcheugui, 2016). Therefore, 

prediabetes is a risk factor for albuminuria or proteinuria as well as other renal dysfunction independent 

of the occurrence of T2DM (Mac-Moune Lai et al. 2004, Sun et al. 2010, Chou & Fang, 2010, Markus 

et al. 2018). 

Similarly, in this study, we observed a decreased GFR, albuminuria and proteinuria in the prediabetic 

control rats in comparison to the non-prediabetic control rats. The decreased GFR, albuminuria and 

proteinuria observed in the prediabetic control rats are an apparent indication of glomerular damage 

(Sarafidis & Ruilope, 2006, Artunc et al, 2016, Markus et al. 2018). Additionally, KIM-1 is an 

expressed biomarker on the apical membrane of proximal tubular cells, and an established indicator of 

acute kidney injury (Bonventre & Yang, 2010). The increased concentration of KIM-1 in the urine of 

the prediabetic rats indicated kidney injury which further confirmed the observed albuminuria or 

proteinuria (Peralta et al. 2012). Furthermore, the plasma concentrations of albumin and total protein 

are decreased due to the albuminuria and proteinuria respectively, therefore, this suggests that the 

prediabetes might have resulted in impaired filtration barrier with consequent loss of plasma albumin 

and protein (Mac-Moune Lai et al. 2004, Sun et al. 2010, Markus et al. 2018). Therefore, early diagnosis 

of these structural changes during the prediabetic stage and intervention of an anti-diabetic agent may 

prevent the occurrence of overt diabetic kidney disease. 

Moreover, the increased plasma concentrations of creatinine and urea, as well as decreased urine 

concentrations of the same parameters in the prediabetic control rats, were in accordance to the results 

of previous studies (Mkhwanazi et al. 2014, Ngubane, 2014). The observed significant changes in these 

parameters can be suggested to be due to impaired excretory or regulatory function of the kidney to 

maintain constant homeostasis of these parameters in the untreated prediabetic rats by comparison to 

the BA treated prediabetic rats. Additionally, the impaired regulation of the plasma and urine creatinine 

altered the creatinine clearance which further contributed to the decreased GFR in the untreated 

prediabetic rats. However, literature evidence suggests that insulin resistance triggers oxidative stress 

which in turn leads to renal dysfunction or kidney injury (Sarafidis & Ruilope, 2006, Chou & Fang, 

2010, Markus et al. 2018). Therefore, we suggest that the aforementioned renal dysfunction parameters 

may be due to insulin resistance which further triggered oxidative stress which correlated with the 
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observed increase in the lipid peroxidation (MDA) and decrease in the antioxidant status (SOD, GPx 

and TOAC) concentrations in the prediabetic control rats (Mahat et al. 2019).  

On the other hand, administration of BA in the presence or absence of diet intervention normalized the 

GFR and attenuated the albuminuria, proteinuria as well as KIM-1 concentration in the urine. Also, we 

suggest that BA attenuated these renal dysfunctions by the improvement of insulin sensitivity which we 

have earlier reported in our previous study (Akinnuga et al. 2019). Also, like other triterpenes, BA 

ameliorates oxidative stress by donation of an electron through its hydroxyl radical scavenging activity. 

Therefore, our findings suggest that the combination of the improved insulin sensitivity and the 

antioxidant property of BA probably lead to the attenuation of the aforementioned renal dysfunction 

indicators in BA treated rats with or without diet modifications. 

High fructose diet has been reported to result in ATP depletion due to the utilization of two molecules 

of ATP for each fructose molecule metabolized (Abdelmalek et al. 2010, Softic et al. 2016). Therefore, 

the resultant ADP is further degraded to AMP. In insulin-resistant state (prediabetes), xanthine 

dehydrogenase enzyme is activated and triggered the conversion of the AMP to uric acid, hence 

resulting in hyperuricaemia and elevated uric acid excretion (Johnson et al. 2013, Elizalde-Barrera et 

al. 2017, Kawada, 2018). Similarly, in this study, the plasma and urine concentrations of uric acid 

significantly increased in the untreated prediabetic rats. The significant increase may be due to the 

consumption of high amounts of fructose which triggered insulin resistance followed by hyperuricaemia 

and significant urinary excretion of uric acid. However, administration of BA with diet intervention 

significantly ameliorated the hyperuricaemia probably due to improved insulin sensitivity in BA treated 

rats. High fat feeding has been reported to activate the renin-angiotensin-aldosterone system (RAAS) 

via insulin resistance or hyperinsulinaemia (Luther & Brown, 2011). Hyperinsulinaemia induces 

production of aldosterone which in turn triggered sodium retention and potassium loss in the insulin-

resistant state (Brands & Manhiani, 2012). However, hyperinsulinaemia has been reported to activate 

the aldosterone-induced SGK1 signalling pathway which in turn leads to sodium retention (Lang et al. 

2009, Artunc et al. 2016). In our study, a similar elevated plasma concentration of aldosterone was 

observed, and this suggested that the high fat diet probably activated increased production of 

aldosterone in the prediabetic rats. Consequently, due to the elevated aldosterone concentration, a 

significantly increased sodium reabsorption and potassium secretion which subsequently led to sodium 

retention, hypokalaemia, increased fluid intake and increased urine output was observed in the 

prediabetic control rats. Studies have shown that elevated aldosterone concentration induced proteinuria 

and glomerular podocyte injury with decreased gene expression of podocin in the kidney tissues and 

increased gene expression of podocin mRNA in the urine (Shibata et al. 2007, Shrestha et al. 2019). 

Podocin is an exclusive integral membrane protein in the podocytes, localizes to the slit diaphragm and 

directly interact with nephrin and CD2-associated protein (Fan et al. 2006). A previous study by Fan et 

al (2006) showed that knockdown of podocin in podocytes decreased the expression of nephrin. 

Therefore, this showed that the existence of podocin might be very important for anchoring nephrin to 
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the membrane surface of the slit diaphragm and alteration in podocin expression mechanically affect 

nephrin expression (Fan et al. 2006, Markus et al. 2018). However, urinary podocin is a marker of 

podocyte injury which is associated with albuminuria and proteinuria (Shankland, 2006, Lioudaki et al. 

2015). Also, studies have shown that podocytes express mineralocorticoid receptors (MR), hence, 

podocytes are targeted cells for aldosterone (Shibata et al. 2007, Kiyomoto et al. 2008). Therefore, 

when aldosterone concentration is increased, oxidative stress is induced in the podocytes and this 

subsequently promoted apoptosis of the podocytes by increased ROS production in the mitochondria 

(Zhu et al. 2011, Su et al. 2013). Consequently, the aldosterone-induced oxidative stress resulted in 

podocyte injury which confirmed the increased urinary gene expression of podocin mRNA in this study 

(Lioudaki et al. 2015, Shrestha et al. 2019). The increased urinary gene expression of podocin can be 

suggested to be due to the aldosterone-induced podocyte injury or podocyte detachment. Also, it has 

been established that podocytes are insulin-responsive cells that similarly respond to insulin in the same 

manner as the skeletal muscle (Coward et al. 2005). Therefore, podocytes survival is modulated by 

insulin signalling, thus, insulin resistance has been implicated with podocytes loss which in turn leads 

to proteinuria. Hence, administration of BA which increased insulin sensitivity may improve insulin 

signalling in podocytes and further contribute to the observed attenuated proteinuria in BA treated rats.   

Pentacyclic triterpenes have been reported to selectively inhibit 11β-Hydroxysteroid dehydrogenase 

type I enzyme which converts inactive cortisone into active cortisol, thus preventing glucocorticoid 

activation of MR in aldosterone tissue such as the kidney (Lipson et al. 2011, Nazaruk & Borzym-

Kluczyk, 2015). Therefore, administration of BA can be suggested to inhibit 11β-Hydroxysteroid 

dehydrogenase type I enzyme which prevent activation of MR, hence inhibiting the activities of 

aldosterone on MR which in turn ameliorates sodium and potassium regulations as well as the fluid 

intake and urine output in the BA treated rats. Also, we suggest that the same enzymatic inhibition 

prevented aldosterone biological actions on podocyte MR, and this subsequently led to the reduced 

urinary gene expression of podocin mRNA in the BA treated rats with or without diet modification. 

In summary, with the aforementioned renal dysfunction, administration of BA with or without diet 

modification has been shown in this study to ameliorate renal dysfunction by attenuation of oxidative 

stress and renal dysfunction markers in a prediabetic state. However, because prediabetes is an early 

stage of diabetes, early screening for renal dysfunction prevents the occurrence of end-stage renal 

disease.  More studies, however, are still needed to investigate the molecular mechanisms by which BA 

ameliorates renal dysfunction. 
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CHAPTER 6 

Synthesis and Conclusion 

6.0 Synthesis 

Prediabetes is an asymptomatic state which is associated with moderate hyperglycaemia and if left 

untreated can lead to the development of hepatic, cardiovascular, and renal dysfunction (Brannick et 

al., 2016). The prevalence of prediabetes is currently observed in developing and developed countries 

of the world due to urbanization that promotes increased consumption of high caloric diets as well as 

sedentary lifestyles (Hostalek, 2019). The combination of dietary and pharmacological interventions is 

the current therapeutic approach in managing prediabetes but the compliance of patients to combine the 

two interventions is low as patients merely adhere to pharmacological intervention without diet 

modifications (Glechner et al., 2018). This reduces the efficacy of the pharmacological interventions 

with increased risk of progression of prediabetes to T2DM (Ramachandran et al., 2009, Glechner et al., 

2018). Therefore, there is a need for alternative anti-diabetic agents that could ameliorate prediabetes 

and its complications without the use of diet modification. Bredemolic acid is a pentacyclic triterpene 

which has been reported to have enhanced biological activity compared to other triterpenes (Wen et al., 

2006, Cheng et al., 2008). Therefore, in this study, we sought to investigate the effects of bredemolic 

acid on glucose homeostasis in a diet-induced prediabetic rat model in the presence and absence of 

dietary modification. We further investigated the effects of this triterpene on markers associated with 

hepatic, cardiovascular and renal function.  

Impaired glucose tolerance and impaired fasting blood glucose are indicators of prediabetes and have 

been identified as important factors in the development of several complications that are associated with 

prediabetes (Tabák et al., 2012, Edwards & Cusi, 2016). Therefore, attenuation of impaired glucose 

tolerance and impaired fasting blood glucose is of therapeutic importance in not only ameliorating 

glucose homeostasis but also preventing the onset and progression of hepatic, cardiovascular and renal 

complications in prediabetes. Impaired glucose tolerance is due to skeletal muscle insulin resistance 

which is the major onset of the decreased skeletal muscle glycogen concentration in prediabetes 

(Samuel & Shulman, 2016). Indeed, the prediabetic animals in this study had a significantly impaired 

glucose tolerance, decreased skeletal muscle glycogen concentration and GLUT 4 expression. 

However, as one of the novelties of this study, the administration of BA attenuated the impaired glucose 

tolerance, impaired fasting blood glucose and skeletal muscle insulin resistance observed in prediabetes 

in both the presence and absence of dietary intervention. These observations suggest that BA is an anti-

diabetic agent that ameliorates the aforementioned glucose metabolic disturbances, in part, by 

increasing insulin sensitivity and glucose uptake in skeletal muscle via improved GLUT 4 expression. 

Studies have shown that hyperinsulinaemia, increased food intake, increased body weight, increased 

glycated haemoglobin and increased ghrelin plasma concentration are not only associated with T2DM 

but also prediabetes (Briggs & Andrews, 2011, Barclay et al., 2013, Punthakee et al., 2018). 
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Hyperinsulinaema is a product of compensatory secretion of insulin from pancreatic β-cells to 

ameliorate impaired fasting blood glucose in the insulin-resistant state (Samuel & Shulman, 2016). 

Impaired fasting blood glucose is the cause of increased glycated haemoglobin and since red blood cells 

are insulin-independent, excessive plasma glucose becomes glycated with haemoglobin (Punthakee et 

al., 2018). Increased food intake and increased body weight have been associated with consumption of 

high caloric diet due to increased ghrelin secretion in prediabetic condition (Castañeda et al., 2010). 

The prediabetic animals in this study presented increased body weight, increased food intake and 

increased plasma concentration of ghrelin. 

As a contribution to knowledge, we suggest that the attenuation of the aforementioned markers of 

abnormal glucose homeostasis by the administration of BA can be attributed to glycaemic control via 

decreased ghrelin secretion, improved insulin sensitivity and increased expression of GLUT 4 in the 

skeletal muscle. These observations further contribute to the findings of this study which suggest that 

BA administration decreases the risk of developing abnormal glucose metabolism in the prediabetic 

state even in the absence of dietary intervention. 

Apart from abnormal glucose homeostasis in the skeletal muscle, increased diversion of glucose to the 

liver leading to increased hepatic de novo lipogenesis and glycogenesis is another complication 

associated with prediabetes. Hepatic de novo lipogenesis is the main cause of hepatic fat accumulation 

(Lambert et al., 2014). Estimation of hepatic triglyceride is used to indicate hepatic fat accumulation 

(Kawano & Cohen, 2013). Therefore, attenuation of hepatic de novo lipogenesis is a crucial approach 

in preventing liver complications such as non-alcoholic liver disease and non-alcoholic steatohepatitis 

that are prevalent in the prediabetic condition. The prediabetic control animals in this study had 

increased hepatic fat accumulation due to increased concentrations of hepatic triglyceride and hepatic 

de novo lipogenesis.  

As part of the novelties of this study, we observed that the administration of BA attenuated the hepatic 

de novo lipogenesis and hepatic triglyceride concentrations. Besides hepatic lipogenesis, accumulation 

of hepatic glycogen has been associated with prediabetes (Samuel & Shulman, 2018).  Increased hepatic 

glycogenesis leads to accumulation of glycogen in the liver due to increased stimulation of hepatic 

glycogen synthase or increased inhibition of hepatic glycogen phosphorylase enzymes. In addition, the 

previous study has shown that administration of BA inhibited glycogen phosphorylase enzyme in the 

skeletal muscles (Cheng et al., 2008). This observation, therefore, suggests that the administration of 

BA, in both the presence and absence of dietary intervention, may also inhibit glycogen synthase or 

stimulate glycogen phosphorylase in the liver in order to ameliorate hepatic glycogen accumulation in 

the prediabetic condition. Hepatic fat and glycogen accumulations are possibly the cause of lipid 

peroxidation and decreased antioxidant enzyme concentrations in the liver in the insulin-resistant state 

(Takaki et al., 2013). Increased AST and ALT plasma concentrations have been reported to be 

associated with hepatic oxidative stress in prediabetes (Takaki et al., 2013, Huang et al., 2015). Lipid 
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peroxidation, decreased plasma concentration of antioxidant enzymes and increased plasma 

concentration of liver enzymes (ALT and AST) are markers of liver damage (Takaki et al., 2013, Huang 

et al., 2015). As an addition to knowledge, we observed that the administration of BA, in both the 

presence and absence of dietary intervention, attenuated oxidative stress and liver damage enzyme 

marker concentrations via improved hepatic lipogenesis and glycogenesis. Taken together, the results 

of this study suggest that administration of BA improves insulin sensitivity in skeletal muscle, thus 

reducing the amount of glucose shunted towards the liver and thereby significantly reducing the risk of 

developing liver complications in the prediabetic state.   

Studies show that the cardiovascular system is also affected in prediabetes (Wasserman et al., 2018, 

Brannick & Dagogo-Jack, 2018). Cardiovascular dysfunction can be indicated by changes such as 

increased blood pressure, increased heart rate, decreased eNOS plasma concentration and lipid profile 

disturbances (Eringa et al., 2013, Wasserman et al., 2018). Indeed, these changes were observed in the 

untreated prediabetic rats in this study and these observations correlated with other studies on 

prediabetes (Eringa et al., 2013, Brannick & Dagogo-Jack, 2018). Abnormal lipid profile is a common 

anomaly in prediabetes due to high caloric diet consumption which is associated with increased body 

mass index and increased waist circumference (Zaman et al., 2011).  The eNOS is an enzyme that 

catalyses the production of nitric oxide (NO) in the vascular endothelium and depicts the state of 

vascular endothelial function (Huang et al., 2016). Vascular endothelial dysfunction has been reported 

as one of the causes of increased blood pressure and heart rate in prediabetes (Eringa et al., 2013, Huang 

et al., 2016). Apart from vascular endothelial dysfunction due to decreased eNOS activity, intermediate 

hyperglycaemia has also been associated with the aforementioned cardiovascular dysfunction via 

oxidative stress (Tabák et al., 2012). The administration of BA, in both the presence and absence of 

dietary intervention, ameliorated cardiovascular dysfunctions in the prediabetic rats as there was 

observed decreases in intermediate hyperglycaemia, lipid profile and eNOS concentrations. The results 

suggest that BA administration improved cardiovascular function via the attenuation of the intermediate 

hyperglycaemia observed in prediabetes thus leading to amelioration of oxidative stress. Vascular 

endothelial dysfunction, oxidative stress and intermediate hyperglycaemia has been linked with 

increased inflammatory responses that caused increased release of inflammatory cytokines (such as 

TNF-α, IL-6 and hs-CRP) in prediabetes (Huang et al., 2016, Mahat et al., 2019). TNF-α and IL-6 are 

cytokines that mediate cardiac injury by transmigration of white blood cells to cardiac tissue. CRP is a 

low-grade inflammation cytokine which is associated with myocardial infarction, stroke and other 

cardiovascular dysfunctions (Grossmann et al., 2015). The administration of BA, in both the presence 

and absence of dietary intervention, ameliorated the plasma concentration of inflammatory cytokines 

via its anti-inflammatory effect. Taken together, this study, for the first time showed that BA 

administration ameliorated markers of cardiovascular dysfunction and prevents the risk of developing 
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cardiovascular complications via the attenuation of oxidative stress, inflammation and vascular 

endothelial dysfunctions.        

Renal dysfunction is a complication that has been associated with prediabetes (Echouffo-Tcheugui et 

al., 2016). Reduced glomerular filtration rate (GFR), increased urinary KIM-1 concentration, 

albuminuria and proteinuria are apparent indicators of renal dysfunction and glomerular filtration 

barrier damage which has been reported not only in overt diabetes but also prediabetes (Mac-Moune 

Lai et al., 2004, Echouffo-Tcheugui et al., 2016, Nowak et al., 2016). The podocytes are the main 

component of the filtration barrier in which their loss leads to loss of integral membrane protein called 

podocin. However, all these alterations in renal function have been found to sequel hyperinsulinaemia 

and hyperglycaemia in the prediabetic condition (Sarafidis & Ruilope, 2006, Artunc et al., 2016). 

Therefore, attenuation of hyperinsulinaemia and hyperglycaemia is crucial in delaying the onset of renal 

dysfunction in prediabetes. We have shown in this study that the administration of BA restores glucose 

homeostasis when given to prediabetic rats. Indeed, the administration of BA, in both the presence and 

absence of dietary intervention, improved renal function as shown by attenuation of abnormal 

creatinine, albumin, total protein, urea and uric acid plasma concentrations. Hyperinsulinaemia has also 

been reported to activate the renin-angiotensin-aldosterone system (RAAS) in prediabetes (Chou & 

Fang, 2010). Activation of RAAS triggers elevated plasma concentration of aldosterone that promotes 

increased sodium reabsorption and potassium loss which subsequently alters fluid intake and urine 

output (Brands & Manhiani, 2012). Elevated aldosterone concentration has been reported to induce 

oxidative stress in podocytes and promotes apoptosis of podocytes due to increased activity of 

aldosterone on the mineralocorticoid receptors that are present on the podocytes (Shibata et al., 2007, 

Su et al., 2013). Therefore, podocyte injury is, in part, caused by aldosterone-induced oxidative stress 

(Zhu et al.,2011). As one of the novelties of this study, the administration of BA attenuated podocyte 

injury which was assessed by urinary podocin mRNA expression. All these observations suggest that 

BA administration in both the presence and absence of dietary intervention improved glucose 

homeostasis and further prevented the risk of developing renal dysfunction in the prediabetic state.  

 

6.1 Conclusions 

The consumption of high caloric diets coupled with sedentary lifestyles is increasing in developing and 

developed countries due to increased urbanization, therefore, the risk of developing abnormal glucose 

metabolism that will lead to hepatic, cardiovascular and renal complications is increased. From this 

study, we observed that markers of these complications are present during the prediabetic state. The 

overall observations in this study suggest that the administration of BA, in both the presence and 

absence of dietary intervention, improved glucose homeostasis through increased sensitivity to insulin 

in diet-induced prediabetic rats. This further resulted in ameliorated markers of hepatic, cardiovascular 

and renal complications in the prediabetic rats. 
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6.2 Limitations and Future studies 

In this study, some shortfalls that provide opportunities for more future studies have been identified. 

Assessment of the effect of BA on leptin plasma and adipose tissue concentrations as well as adipose 

tissue GLUT 4 expression in relation to the glucose homeostasis in the prediabetic state is a shortfall in 

this study. This shortfall is due to limited funding, and in future studies, the effects of BA on these 

parameters in prediabetic condition will be examined. 

In addition, the effect of BA on immunohistochemistry of the liver, heart and kidney in relation to the 

complications of these organs is another shortfall of this study that was not examined due to limited 

funding. However, in the future studies, the immunohistochemistry of these organs will be examined to 

validate the selected markers of hepatic, cardiovascular and renal dysfunctions in this study. 

Furthermore, electrocardiogram (ECG) is a cardiovascular parameter that further validates 

cardiovascular dysfunction apart from the observed cardiovascular dysfunction parameters but due to 

non-availability of animal electrocardiograph in our laboratory, this parameter was not measured. 

Determination of diastolic function via assessment of left ventricular end-diastolic volume by 

echocardiography, in addition to the observed blood pressure and heart rate, is also parts of the 

limitations of this study. Also, the effects of BA on more markers of vascular endothelial dysfunction 

such as nitric oxide (NO) and endothelin1 (ET1) should have been determined but due to limited 

funding, these parameters were not measured in this study. Therefore, to eliminate all these shortfalls, 

more studies on the effects of BA on these parameters in relations to glucose homeostasis, hepatic, 

cardiovascular and renal dysfunctions are needed. 
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CHAPTER 7 

Appendix 1 

Composition of the high fats high carbohydrates (HFHC) diet 

Ingredient Incl(%) Mix(kg)   

Maize 38.98 390.000   

Palm Oil 20.99 210.000   

Soya Full Fat 14.99 150.000   

Wheat Gluten 6.50 65.000   

Flour 6.00 60.000   

Monodex 5.00 50.000   

Sugar – White 5.00 50.000   

Limestone 1.00 10.000   

Dicalcium Phosphate 0.50 5.000   

Vitamin Premix 0.35 3.500   

Salt – Fine 0.30 3.000   

Amino Acid - DL Methionine 0.30 3.000   

Mineral Premix 0.10 1.000   

  100.01 1000.50   
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