
Some Amenability Properties on Segal

Algebras

By

Peter Olamide Olanipekun

Dissertation submitted in fulfilment of the requirements for the
degree of

Master of Science
in the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

March, 2017



Some Amenability Properties on Segal Algebras

By

Peter Olamide Olanipekun

As the candidate’s supervisor I have approved this dissertation for submission.

Dr. O. T. Mewomo

..........................................................................................................................

ii



Dedication

This work is dedicated to God Almighty and to my beloved family.

iii



Abstract

It has been realized that the definition of amenability given by B. E. Johnson in
his Classical Memoir of American Mathematical Society in 1972 is too restrictive
and does not allow for the development of a rich general theory. For this reason,
by relaxing some of the constraints in the definition of amenability via restricting
the class of bimodules in question or by relaxing the structure of the derivations,
various notions of amenability have been introduced after the pioneering work
of Johnson on amenability in Banach algebras. This dissertation is focused on
six of these notions of amenability in Banach algebras, namely: contractibility,
amenability, weak amenability, generalized amenability, character amenability and
character contractibility. The first five of these notions are studied on arbitrary
Banach algebras and the last two are studied on some classes of Segal algebras.
In particular, results on hereditary properties and several characterizations of
these notions are reviewed and discussed. Indeed, we discussed the equivalent
of these notions with the existence of a bounded approximate diagonal, virtual
diagonal, splitting of exact sequences of Banach bimodules and the existence of a
certain Hahn-Banach extension property. Also, some relations that exist between
these notions of amenability are also established. We show that approximate con-
tractibility and approximate amenability are equivalent. Some conditions under
which the amenability of the underlying group of a Segal algebra implies the char-
acter amenability of the Segal algebras are also given. Finally, some new results
are obtained which serves as our contribution to knowledge.
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Chapter 1

Introduction

1.1 Background

The theory of Banach algebras is an active area of mathematical research which
blends mathematical analysis and abstract algebra. Banach algebras are Banach
spaces on which a binary operation of multiplication can be defined. These al-
gebras were named after Stefan Banach (1892 - 1945) since the underlying topo-
logical structure of such algebras is a Banach space even though much of the
foundation of Banach algebras was laid since 1940 by I. M. Gelfand (1913 - 2009).
The name ”Banach algebra” was first used by Warren Ambrose (1914 - 1995) in
1945 even though Mitio Nagumo seem to have first considered such algebras in
1936 in a paper where he considered the analytic aspect and ignored the algebraic
part. Since then, the theory of Banach algebras has attracted much attention
from several researchers for obvious reasons: Banach algebras are known to pro-
vide many examples and answers to questions of interest in abstract Harmonic
analysis, approximation theory, topology and other related areas. For example,
the Banach algebra of continuous linear operators generalizes the concept of a
matrix which acts on a Euclidean space. There are many areas of research in
Banach algebras. One of such is the notion of amenability, which is main focus
and at the center of this dissertation.

Amenability can be traced to 1904 when Lebesgue considered the monotone
convergence theorem for his integral. Lebesgue posed the following question: Does
monotone convergence theorem follow from existing integral axioms? Also, in [23],
Hausdorff considered a similar question: Does there exist a finitely additive set
function which is invariant under certain group actions? The answer to these two
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questions led to the Banach-Tarski paradox in 1924. There are many versions of
this paradox but the strongest form is: For any two bounded sets A and B in
three-dimensional space with non-empty interior, there is a partition of A into
finitely many sets which can be reassembled to obtain B. This paradox seem to
raise many questions and so in an attempt to explain the paradox, the class of
amenable groups was introduced by von Neumann in [48]. A locally compact
group is said to be amenable if it has a left invariant mean. Since 1940, attention
was then shifted from finitely additive measures to means. Let µ be an Haar
measure and m be a mean on a set X, then the connection between µ and m is
given by µ(X) = m(χX) and µ induces a left translation invariant linear functional
on the space of µ integrable functions. Most of spaces of bounded functions
on locally compact group G lack this translation invariant linear functional in
L∞(G). Thus, the groups possessing such positive invariant mean were first termed
amenable by Day in [13]. Consequently, a locally compact group G for which
there exists a linear functional µ : L∞(G) → C satisfying µ(1) = ‖µ‖ = 1 and
µ(δx∗f ) = µ(f), (x ∈ G, f ∈ L∞(G)) is called amenable. Since then, the study
of amenability shifted to locally compact groups (see [39], [40] and [44] for further
details).

We remark that there is a distinction between group amenability and Banach
algebras amenability. Amenability was first studied for Banach algebras by John-
son in his Classical Memoir of American Mathematical Society in 1972, see [24].
Johnson show that the Banach algebra L1(G) is amenable if and only if the locally
compact group G is amenable as a group. This is equivalent to the statement that
the first Hochschild cohomology group with coefficient in the dual group algebra
vanishes. This then motivated his definition for the amenability of Banach alge-
bras. According to him, Banach algebras satisfying this cohomological triviality
conditions are amenable. It has been realized that the definition of amenability
given by Johnson [24] is too restrictive and so does not allow for the development
of a rich general theory and also too weak enough to include a variety of interest-
ing examples. For this reason, by relaxing some of the constraints in the definition
of amenability via

(i) restricting the class of bimodules in question,

(ii) relaxing the structure of the derivations,

(iii) the combination of (i) and (ii) above,

various notions of amenability have been recently introduced after the pioneering
work of Johnson in 1972. In this dissertation, we consider six of these notions of
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amenability, namely: contractibility, amenability, weak amenability, generalized
amenability, character amenability and character contractibility. The first five are
studied for general Banach algebras while the last two are studied for a class of
Banach algebra, called Segal algebras.

1.2 Research Motivation

Many notions of amenability on Banach algebras have been introduced in the lit-
erature by different authors and studied over different classes of Banach algebras.
Johnson in [24], Dales in [9] and Runde in [44] proved many of the hereditary prop-
erties and characterizations of amenable Banach algebras and since then, other
authors have shown that similar hereditary properties and characterizations hold
for weaker notions of amenability. Thus it will be of interest to critically review
and survey most of these results and see how they can be extended to other classes
of Banach algebras where the philosophy have not been fully explored.

In [19], Ghahramani and Loy introduced the generalized notion of amenability
with the aim of getting a Banach algebra without bounded approximate identity
which still have this generalized notion. Samea [45] studied essential amenability
and approximate essential amenability for Segal algebras. Also, in [38], Nasr-
Isfahani and Nemati introduced and studied the essential character amenability
of Banach algebras. Motivated by these works, we relate the amenability of a
symmetric abstract Segal algebra with the amenability of the underlying Banach
algebra and also study some notions of amenability on the Segal algebra S1(G) in
relation to some properties of the locally compact group G.

1.3 Objectives

The main objectives of this research work are to:

1. review some known and relevant results on some notions of amenability in
Banach algebras in literature,

2. investigate these notions of amenability for general Banach algebras,

3. characterize some of these notions of amenability for Segal algebras,

4. investigate some of these notions for a class of Banach algebra, called the
Segal algebras in relation to the structure of the underlying groups.
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Chapter 2

Preliminaries on Banach Algebras

In this chapter, we introduce and define some terms and concepts that are relevant
to this work. Some basic and general results are also presented. Our standard
references are [6], [9] and [12].

2.1 Basic Definitions

The following definitions are well known concepts in the theory of Banach spaces.

Definition 2.1.1. Let A be a vector space over the scalar field F = C or R. A is
called an algebra if there is a map

A×A → A, (a, b) 7→ ab

called the product or multiplication such that for a, b, c ∈ A and α ∈ F :

(ab)c = a(bc), a(b+ c) = ab+ ac, (a+ b)c = ac+ bc, (αa)b = α(ab) = a(αb).

A has the structure of both a vector space and a ring and is called a complex
(real) algebra if F = C (F = R). Unless otherwise stated, all algebras in this
dissertation are over the complex field.

Definition 2.1.2. Let A be an algebra.

(i) An element e ∈ A is called a left (right) identity in A if ea = a (ae = a) for
all a ∈ A.

(ii) An element a−1 ∈ A is said to be the left (right) inverse of a ∈ A if a−1a =
e (aa−1 = e).
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(iii) A has an identity if a = ea = ae, that is, the left and right identities coincide.
An element in A is said to be invertible if it has an inverse.

Definition 2.1.3. An algebra norm is a map ||.|| : A → C satisfying

(i) ||a|| ≥ 0

(ii) ||a|| = 0 ⇐⇒ a = 0

(iii) ||αa|| = |α| ||a||

(iv) ||a+ b|| ≤ ||a||+ ||b||

(v) ||ab|| ≤ ||a|| ||b||, for all a, b ∈ A and α ∈ C.

A normed algebra is the pair (A, ||.||).

Remark 2.1.4. A Banach algebra is a complete normed algebra. We shall sim-
ply write A for (A, ||.||) whenever there would be no confusion. If a · b = b · a
for all a, b ∈ A, then A is called a commutative Banach algebra. Observe that
if e is the identity for A, then by Property (v), ‖e‖ = ‖e · e‖ ≤ ‖e‖ ‖e‖. That
is, ‖e‖ ≥ 1. A is said to be a unital Banach algebra if it has the identity e such
that ‖e‖ = 1. Although, some Banach algebras possess identity and as such the
definition of a spectrum in terms of inverses of elements of the Banach algebra
comes more naturally leading to elegant concepts in spectral analysis. Yet, certain
Banach algebras A which lack an identity can be isometrically embedded into an-
other Banach algebra of the direct sum A⊕C in a process often referred to as the
unitization of A.

Remark 2.1.5. 1. It is easy to see that multiplication is jointly continuous in
a Banach algebra A. Let (xn), (yn) ⊂ A with x, y ∈ A, such that xn → x,
yn → y, as n→∞ then

‖xnyn − xy‖ = ‖xnyn − xny + xny − xy‖ = ‖xn(yn − y) + (xn − x)y‖
≤ ‖xn(yn − y)‖+ ‖(xn − x)y‖ ≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖
→ 0.

2. Let (A, ‖.‖1) be a Banach algebra. Then there exists a norm ‖.‖2 which is
equivalent to ‖.‖1 for which (A, ‖.‖2) is also a Banach algebra. Moreover,
if (A, ‖.‖1) is unital with the identity e, then (A, ‖.‖2) is also unital and
‖e‖2 = 1.
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2.2 Constructing New Banach Algebras from

Old Ones

2.2.1 Direct sum of algebras

Let A and B be Banach algebras, the sum A + B of A and B, is the set {a + b :
a ∈ A, b ∈ B}. Suppose that A∩B = {0}, then A+B is denoted by A⊕B and
called the internal direct sum of A and B. The algebra A ⊕ B is defined as the
Cartesian product A×B with the algebra multiplication (a, b) · (a′, b′) = (aa′, bb′)
where a, a′ ∈ A, b, b′ ∈ B and norm ||(a, b)||⊕ := ||a||A + ||b||B. It is easy to see
that A⊕ B is a Banach algebra since

‖(a, b)(a′, b′)‖⊕ = ‖(aa′, bb′)‖⊕
= ‖aa′‖A + ‖bb′‖B
≤ ‖a‖A‖a′‖A + ‖b‖B‖b′‖B
≤ ‖a‖A‖a′‖A + ‖a‖A‖b′‖B + ‖b‖B‖a′‖A + ‖b‖B‖b′‖B
= (‖a‖A + ‖b‖B)(‖a′‖A + ‖b′‖B)

= ‖(a, b)‖⊕ ‖(a
′, b′)‖⊕ .

The algebra A⊕B is unital if and only if A and B are unital. Suppose that e and
e′ are the identities of A and B respectively, then (e, e′) is the identity for A⊕B.

2.2.2 Unitization

Consider the direct sum A# = A ⊕ C where A is a non-unital Banach algebra.
For (a, α), (b, β) ∈ A#, define the product by (a, α) · (b, β) = (ab + βa + αb, αβ)
and the norm ‖.‖# by ‖(a, α)‖# = ‖a‖A + |α|, then A# is a Banach algebra with
identity (0, 1). The sub-multiplicative property is satisfied as follows:

‖(a, α)(b, β)‖# = ‖(ab+ aβ + αb, αβ)‖# = ‖(ab+ aβ + αb)‖+ |αβ|
≤ ‖a‖‖b‖+ ‖a‖|β|+ |α|‖b‖+ |α||β|
= ‖a‖‖b‖+ |α|‖b‖+ ‖a‖|β|+ |α||β|
= (‖a‖+ |α|)‖b‖+ (‖a‖+ |α|)|β|
= (‖a‖+ |α|)(‖b‖+ β|) = ‖(a, α)‖‖(b, β)‖.

A# is called the unitization of A and is commutative if and only if A is commu-
tative. If A has an identity then A# ' A.
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2.2.3 Quotient and opposite algebras

Let A be a Banach algebra. We recall that a subset I of A is a two sided ideal of
A if I is a subspace of A and

aI, Ia ⊂ I,

for all a ∈ A. For an ideal I in A,

A/I = {a+ I : a ∈ A}

is the quotient algebra. A/I has a natural algebraic structure well defined by

(a+ I)(b+ I) = ab+ I, (a, b ∈ A).

If A is a Banach algebra and I is a closed ideal in A, then A/I is a Baanch
algebrawith the quotient norm. The map ϕ : A → A/I defined by ϕ(a) = a + I
is a surjective homomorphism with ker(ϕ) = I.

Theorem 2.2.1. Let I be a proper closed two sided ideal of a Banach algebra A.
Let [x] in A/I denote the equivalence class of x. Define product by [x][y] = [xy]
and the quotient norm by ‖[x]‖ = infr∈I ‖x+ r‖. Then

(i) A/I is a Banach algebra.

(ii) A/I is unital if A is unital.

(iii) The identity [e] in A/I is such that ‖[e]‖ = 1.

Proof. It is well known that A/I is a Banach space.
(i) Let s, t ∈ I and x, y ∈ A, then xs, ty, ts ∈ I and so there exists r ∈ I such
that r = xs+ ty + ts. Now, it follows that

‖[x][y]‖ = ‖[xy]‖ = inf
r∈I
‖xy + r‖

= inf
s,t∈I
‖xy + xs+ ty + ts‖

= inf
s,t∈I
‖x(y + s) + t(y + s)‖

= inf
s,t∈I
‖(x+ t)(y + s)‖

≤ inf
s,t∈I

(‖x+ t‖‖y + s‖)

= inf
t∈I
‖x+ t‖. inf

s∈I
‖y + s‖

= ‖[x]‖‖[y]‖.
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(ii) Let e be the identity for A then for all a ∈ A, it follows that

[a] = [ae] = [a][e]

and
[a] = [ea] = [e][a].

Thus [e] is the identity for A/I.
(iii) Let ‖e‖ = 1, then

‖[e]‖ = inf
r∈I
‖e+ r‖ ≤ ‖e‖ = 1.

But ‖[e]‖ ≮ 1. So ‖[e]‖ = 1.

Let A be a Banach algebra. The Banach algebra Aop formed by reversing the
product in A is called the opposite algebra of A. Both A and Aop have the same
algebraic structure and in the case that A is commutative, then A = Aop. Also,
if A is unital then Aop is unital.

2.3 Examples in Different Classes

2.3.1 Algebras over locally compact groups

A topological group G is a group which also has the Hausdorff topological space
structure for which the maps

(x, y) 7→ xy : G×G→ G

and
x 7→ x−1 : G→ G (x, y ∈ G)

relating the two structures are continuous. A locally compact group G is a topo-
logical group for which the topology on G is locally compact.

We recall that every locally compact group G has a left Haar measure. A left Haar
measure on G is a positive Borel measure µ on G such that for every measurable
subset U of G

H1 µ(xU) = µ(U) for each x ∈ G.

H2 µ(U) = inf{µ(V ) : V ⊂ U,V is open} and µ(V ) > 0 for every non empty
open set V .
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H3 µ(U) = sup{µ(W ) : W ⊂ U,W is compact}.

Property H1 implies that µ is left translation invariant while Properties H2 and
H3 imply that µ is a regular Borel measure.

Example 2.3.1 (Group algebra). Let G be a locally compact group and µ be a left
Haar measure on G. The space L1(G) of all measurable functions on G satisfying∫

G

|f |dµ <∞

equipped with the norm

‖f‖1 =

(∫
G

|f |dµ
)

is a Banach space and with the product defined by the convolution

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dµ(y),

where f, g ∈ L1(G), x ∈ G, it becomes a Banach algebra.

Indeed, let x, y ∈ G, then y−1 ∈ G. Set y−1x = z ∈ G, so that

‖f ∗ g‖1 =

∫
G

|(f ∗ g)(x)|dµ

=

∫
G

∣∣∣∣∫
G

(f(y)g(y−1x)

∣∣∣∣ dµ(y)dµ

≤
∫
G

∫
G

∣∣(f(y)g(y−1x)
∣∣ dµ(y)dµ

≤
∫
G

|(f(y)|dµ(y)

∫
G

∣∣g(y−1x)
∣∣ dµ

≤
∫
G

|(f(y)|dµ(y)

∫
G

|g(z)|dµ(z)

= ‖f‖1‖g‖1.

Thus ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

It was shown in [47] that L1(G) is commutative as a Banach algebra if and
only if G is an abelian group.
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Example 2.3.2 (Measure algebra). Let G be a locally compact group. The space
M(G), of all bounded regular complex Borel measures on G equipped with the total
variation norm ‖µ‖ = |µ|(G) for all µ ∈ M(G) is a Banach space. By defining
the convolution product

(µ ∗ ν)(f) =

∫
G

∫
G

f(xy)dµ(x)dν(y) (f ∈ C0(G), µ, ν ∈M(G), x, y ∈ G),

(M(G), ‖.‖) becomes a Banach algebra. M(G) can be identified with the dual space
of C0(G) which is the set of all continuous functions from G to C vanishing at
infinity with duality given by µ(f) =

∫
G
f(x)dµ(x) (f ∈ C0(G), µ ∈M(G)).

Recall that a function f vanishes at infinity if for any ε > 0, there is a compact
subset W of a locally compact Hausdorff space X such that |f(x)| < ε for each
x ∈ X\W.

Example 2.3.3 (Fourier algebra). Let G be a locally compact group and let 1 <
p, q <∞ such that 1

p
+ 1

q
= 1. The space Ap(G) of all functions f ∈ C0(G) defined

by

x 7→
∞∑
n=1

(gn ∗ hn(x−1)) G→ C

such that
∑∞

n=1 ‖gn‖p‖hn‖q < ∞, where (gn)n∈N ∈ Lp(G), (hn)n∈N ∈ Lq(G) and
equipped with the norm

‖f‖A = inf

{ ∞∑
n=1

‖gn‖p‖hn‖q : f =
∞∑
n=1

(gn ∗ hn)

}
is a Banach space. The Banach space (Ap(G), ‖.‖A) with pointwise product is a
Banach algebra commonly referred to as the Figa-Talamanca Herz algebra. The
Fourier algebra is a Figa-Talamanca Herz algebra when p = 2 and it is denoted
by A(G).

2.3.2 Semigroup algebras

A semigroup is a non empty set with an associative binary operation given by

(s1, s2) 7→ s1s2 S × S → S.

10



Let S be a semigroup. The space `1(S) of all functions from S to C defined
by

`1(S) = {f : S → C :
∑
x∈S

|f(x)| <∞},

with the norm ‖.‖1 given by

‖f‖1 =
∑
x∈S

|f(x)| (f ∈ `1)

is a Banach space. (`1(S), ‖.‖1) becomes a Banach algebra under the convolution
product defined by

(f ∗ g)(x) =
∑{

f(y)g(z) : y, z ∈ S, yz = x
}

(x ∈ S).

The sub-multiplicative property can easily be verified as follows: Let f, g ∈ `1(S)
then

‖f ∗ g‖ =
∑
x∈S

|(f ∗ g)(x)|

=
∑
x∈S

∣∣∣∣∣∑
yz=x

f(y)g(z)

∣∣∣∣∣
≤
∑
x∈S

∑
yz=x

|f(y)‖g(z)|

≤
∑

(y,z)∈S×S

|f(y)‖g(z)|

=
∑
y∈S

∑
z∈S

|f(y)‖g(z)|

=
∑
y∈S

|f(y)|
∑
z∈S

|g(z)|

= ‖f‖|g‖.

Every f ∈ `1(S) can be represented as

f =
∑
y∈S

f(y)δy,

where δy is the characteristic function of S by

δy(x) =

{
1 , if x = y

0 , if x 6= y.

11



`1(S) is a commutative Banach algebra if and only if S is commutative. Also,
`1(S#) = `1(S)#. Suppose that S has an identity eS, then δeS is the identity of
`1(S) and ‖δeS‖ = 1. It is still possible for `1(S) to possess an identity in the case
where S is non-unital.

2.3.3 Operator algebras

Let X be a Banach space, the space B(X) denotes the set of all bounded linear
operators on X. Then B(X) is a Banach space with the operator norm

‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

It becomes a Banach algebra with the product specified by the following compo-
sition

(ST )(x) = (S ◦ T )(x) = S(Tx), (x ∈ X,S, T ∈ B(X)).

Indeed,
‖TS(x)‖ ≤ ‖T‖‖S(x)‖ ≤ ‖T‖‖S‖‖x‖

which implies ‖TS‖ ≤ ‖T‖‖S‖. Thus, the Banach space B(X) is a non-
commutative, unital Banach algebra with identity operator as the unit.

Closed ideals of B(X) such as ideals A(X) of approximable operators, ideal
K(X) of compact operator and ideal N(X) of nuclear operators are also Banach
algebras.

2.3.4 Function algebras

There are several examples of Banach algebra whose element are functions on
some specified set.

1. Let W be a compact Hausdorff space. The space C(W ) of all continuous
functions on W , equipped with the norm

‖f‖∞ := sup
x∈W
|f(x)|

is a Banach space. (C(W )‖.‖∞) becomes a commutative Banach algebra
with pointwise product.

12



2. (Disc algebra). Let D := {z ∈ C : |z| < 1} be an open unit disk and let
D = C(D). Then the space

A(D) := {f ∈ D : f is analytic onD}

is a closed subalgebra of D consisting of all continuous functions on the clo-
sure D. A(D) is a commutative unital Banach algebra under the supremum
norm and pointwise product.

3. Let D be an open unit disk. The space H∞(D) of all bounded and ana-
lytic functions from D to C is a commutative unital Banach algebra under
pointwise product and supremum norm.

4. Let (X, τ) be a topological space. The space C(X) of all continuous complex
valued functions on X equipped with the norm

‖f‖ = sup
x∈X
|f(x)|, f ∈ C(X), x ∈ X

is a Banach space and a Banach algebra with the pointwise product. Indeed,

‖fg‖ = sup
x∈X
|fg(x)| = sup

x∈X
|f(x)g(x)| = sup

x∈X
|f(x)‖g(x)|

≤ sup
x∈X
|f(x)| sup

x∈X
|g(x)| = ‖f‖‖g‖.

(C(X), ‖.‖) is a unital commutative Banach algebra, where the constant
function is the identity.

2.4 Some Basic Concepts and General Results

2.4.1 Approximate identity

Definition 2.4.1. Let A be a unital Banach algebra with identity e. An element
a ∈ A is said to be invertible if there exists a−1 ∈ A such that aa−1 = a−1a = e.
The element a−1 is referred to as the inverse of a and is unique for every invertible
element in A.

Remark 2.4.2. The set of all invertible elements of A is denoted by InvA. It
can easily be shown that InvA forms a group with multiplication defined by the
group operation. Indeed, let a, b ∈ InvA. Since (ab)−1 = b−1a−1 and (a−1)−1 = a
then it follows that ab ∈ InvA and a−1 ∈ InvA.

13



Theorem 2.4.3. Let A be a unital Banach algebra with identity e. If a ∈ A and
‖a‖ < 1 then (e− a) ∈ Inv(A). Moreover,

(e− a)−1 =
∞∑
n=0

an. (2.1)

Proof. Since A is a Banach algebra, then by the sub-multiplicative property of
A, it follows that ‖an‖ ≤ ‖a‖n. Since ‖a‖ ≤ 1, then

∑∞
n=0 ‖a‖n converges and

consequently,
∑∞

n=0 ‖an‖ converges. Now,

(e− α)
∞∑
n=0

an = (e− a) lim
N→∞

N∑
n=0

an = lim
N→∞

(e− a)
∞∑
n=0

an

= lim
N→∞

(
N∑
n=0

ean −
N∑
n=0

an+1

)
= lim

N→∞

(
e− a+ a− a2 + a2 − a3 + · · ·+ aN−1 − aN + aN − aN+1

)
= lim

N→∞

(
e− aN+1

)
= e

Similarly, (
∞∑
n=0

an

)
(e− a) = e.

Whence
∑∞

n=0 a
n = (e− a)−1.

Corollary 2.4.4. Let a ∈ InvA and b ∈ A such that ‖a−1‖ = 1
α

with ‖b‖ = β < α.
Then a− b ∈ InvA. Moreover,

‖(a− b)−1 − a−1 + a−1ba−1‖ ≤ β2

α2(β − α)
.

Proof. Let ‖a−1b‖ ≤ ‖a−1‖‖b‖ ≤ β
α
< 1. By Theorem 2.4.3, (e−a−1b) ∈ InvA and

since a− b = a (e− a−1b) , then a− b ∈ InvA. Also, (a− b)−1 = (e− a−1b)
−1
a−1.
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Thus,

‖ (a− b)−1 − a−1 + a−1ba−1‖ = ‖
(
e− a−1b

)−1
a−1 − a−1 + a−1ba−1‖

=
∥∥∥((e− a−1b

)−1 − e+ a−1b
)
a−1
∥∥∥

≤
(∥∥a−1b− e

∥∥+
∥∥∥(e− a−1b

)−1
∥∥∥)∥∥a−1

∥∥
≤
(∥∥a−1

∥∥ ‖b‖+ ‖e‖+
∥∥(e− a−1b

)∥∥)∥∥a−1
∥∥

≤

(
β

α
+ 1 +

1

1− β
α

)
1

α
=

β2

α2(β − α)
.

Corollary 2.4.5. InvA is an open subset of A.

Many natural examples of Banach algebras are non-unital, but rather possess
what is called an approximate identity which is a net that behaves like a multi-
plicative identity in the limit. Banach algbras which are known to have bounded
approximate identity posses the factorization property. This is a theorem proved
by Cohen in 1959 and was later extended to module form in 1970 by Hewitt and
Ross (see [14] for a more detailed historical account). A unital algebra A factors
trivially since for all a ∈ A, a = ae = ea. The existence of bounded approximate
identity in a Banach algebra A also accounts for the identity of the second dual
A′′ with respect to the Arens product.

Definition 2.4.6. Let ∆ be a partially ordered set. The set ∆ is called a directed
set if for α1, α2 ∈ ∆ there exists α ∈ ∆ such that αk ≤ α for k = 1, 2. Let X be
a set. Then the map

x : α 7→ x(α), x : ∆→ X

is called a net in X.

Lemma 2.4.7 (Zorn’s Lemma). Let X be a partially ordered non empty set such
that every totally ordered subset of X has an upper bound, then X has a maximal
element.

Definition 2.4.8. Let (A, ‖.‖) be a normed algebra. Then

(i) a left approximate identity for A is a net (eα) ⊂ A such that eαa converges
in the norm to a ∈ A, that is

lim
α
eαa = a or ‖eαa− a‖ → 0 (a ∈ A);
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(ii) a right approximate identity for A is a net (eα) ⊂ A such that aeα converges
in the norm to a ∈ A, that is

lim
α
aeα = a or ‖aeα − a‖ → 0 (a ∈ A);

(iii) an approximate identity for A is a net (eα) ⊂ A which is both left and right
approximate identity for A;

(iv) K > 0 is called a bound for a left or right approximate identity (eα) ⊂ A if
supα ‖eα‖ ≤ K;

(v) A left or right approximate identity (eα) ⊂ A is bounded if there exists some
K > 0 satisfying the condition in (iv) above;

(vi) A is said to have a bounded approximate identity if it has a left and a right
bounded approximate identity;

(vii) A is approximately unital if it has a bounded approximate identity;

(viii) A has a left approximate unit if for all a ∈ A and ε > 0 there exists u ∈ A
(depending on a and ε) such that ‖ua− a‖ < ε;

(ix) A has a right approximate unit if for all a ∈ A and ε > 0 there exists u ∈ A
(depending on a and ε) such that ‖au− a‖ < ε;

(x) A has a left or right approximate unit bounded by K > 0, if the element
u ∈ A is such that ‖u‖ ≤ K.

Remark 2.4.9. If the net is a sequence, the approximate identity is said to be
sequential.

Proposition 2.4.10. Let A be a Banach algebra.

(i) Let (eα)α∈∆ be a left approximate identity for A and suppose that (fβ)β∈Λ is
a bounded net in A, then (f ◦ e)(α,β)∈∆×Λ is a left approximate identity for
A and is bounded if (eα) is bounded.

(ii) Suppose that A has a left approximate identity of bound m and right approx-
imate identity of bound n. Then A has an approximate identity of bound
m+ n+mn.

(iii) Let (e)α∈∆ and (f)β∈Λ be bounded left and right approximate identity for
A respectively. Then (f ◦ e)(α,β)∈∆×Λ is a bounded two-sided approximate
identity for A.
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2.4.2 Spectrum of a Banach algebra

Definition 2.4.11. Let A be a unital Banach algebra with identity e. The spec-
trum of an element a ∈ A is defined as

σA(a) = {λ ∈ C : λe− a /∈ Inv A}.

We denote the spectrum of a ∈ A by σ(a), and we shall write λ for λe ∈ C when
no confusion can arise.

Example 2.4.12. (i) Consider the Banach algebra C. The spectrum of λ ∈ C
is given by σ(λ) = {λ}.

(ii) Let X be a finite dimensional Banach space and T ∈ B(X). It was shown in
Section 2.3.3 that B(X) is a Banach algebra. Now the spectrum of B(X) is
precisely the set of all eigenvalues of T .

Proof. Recall that a linear map is bijective if and only if it is invertible. Let
I be the identity map, then it follows that

InvB(X) = {T ∈ B(X) : kerT = {0}}
σ(T ) = {λI ∈ C : λ− T /∈ InvB(X)}
σ(T ) = {λ ∈ C : ker(λI − T ) 6= {0}}
σ(T ) = {λ ∈ C : (λI − T )(x) = 0} for some x 6= 0

σ(T ) = {λ ∈ C : λx− Tx = 0}
σ(T ) = {λ ∈ C : λx = Tx}.

Definition 2.4.13. Let A be a unital Banach algebra.

(i) The resolvent set ρA(a) of a ∈ A is defined by

ρA(a) = {λ ∈ C : λ− a ∈ InvA}.

That is ρA(a) = C\σA(a).

(ii) The resolvent function of a ∈ A is the map % : ρA(a) → A defined by
%(λ) = (λ− a)−1.

We recall that a division algebra is an algebra A such that every non-zero
element a ∈ A is invertible. That is, InvA = A\{0}.
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Theorem 2.4.14. Let A be a unital Banach algebra. If a ∈ A, then the spectrum
σA(a) is non-empty and compact.

Proof. Suppose for contradiction that σA(a) = ∅, then ρ(a) = C and so for λ ∈ C,
the resolvent function % : C→ A is given by %(λ) = (λ− a)−1.

For λ0 ∈ ρ(a), let f ∈ A′, λ ∈ ρ(a)\{λ0} and set g = f ◦ %. Then

%(λ)− %(λ0) =
1

λ− a
− 1

λ0 − a
=

λ0 − a− λ+ a

(λ− a)(λ0 − a)
=

λ0 − λ
(λ− a)(λ0 − a)

= (λ0 − λ)(λ− a)−1(λ0 − a)−1 = (λ0 − λ)%(λ)%(λ0).

Now,

lim
λ→λ0

f(%(λ))− f(%(λ0))

λ− λ0

= lim
λ→λ0

f

(
%(λ)− %(λ0)

λ− λ0

)
= − lim

λ→λ0
f
(
(λ− a)−1(λ0 − a)−1

)
= −f

(
(λ0 − a)−2

)
= −f(%(λ))2.

Thus g is analytic. But

lim
|λ|→∞

%(λ) = lim
|λ|→∞

(λ− a)−1 = lim
|λ|→∞

1

λ− a
= 0.

Thus %(λ) converges and hence bounded. It then follows by Louville’s theorem
that gf ◦% = 0. In particular, f(%(0)) = 0 for each f ∈ A′. Thus by Hahn-Banach
Theorem %(0) = 0 implying that %(λ) is not invertible. This contradicts the fact
that %(λ) is invertible and so we conclude that σA(a) is non-empty.

Next we show that σ(a) is compact. It suffices to show that σ(a) is closed
and bounded. That σ(a) is bounded is clear since σ(a) ⊂ {λ ∈ C : |λ| ≤ ‖a‖}.
It remains to show that σ(a) is closed or equivalently that the resolvent set ρ(a)
is open. This follows from the fact that the map ϕ : λ 7→ λe − a, C → A is
continuous and InvA is open. Whence the set ρ(a) = ϕ−1(InvA) is open in C.

Theorem 2.4.15 (Gelfand - Mazur). Let A be a division unital Banach algebra
with an identity e, then there exists a unique isometric isomorphism of A onto C.
That is, A = Ce.

Proof. Let a ∈ A. Then by Theorem 2.4.14, σA(a) 6= ∅. This implies that there
exists λ ∈ σA(a) such that λe − a /∈ InvA. Since A is a division algebra, then
λe− a /∈ A and so λe− a = 0. Thus λe = a.
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We now define a map

ϕ : A → Ce, a 7→ λe.

That ϕ is bijective is clear. Also, for a, b ∈ A, ϕ(ab) = ϕ(a)ϕ(b) and so ϕ is an
isomorphism. Finally, we show that ‖φ(a)‖ = ‖a‖. This follows clearly from

‖a‖ = ‖λe‖ = ‖φ(a)‖.

Theorem 2.4.16 (Spectral Mapping Property for Polynomials). Let A be a com-
plex algebra with an identity and let a ∈ A. If p is a complex polynomial. Then

σ(p(a)) = {p(λ) : λ ∈ σ(a)}.

Definition 2.4.17 (Spectral radius). Let A be a unital Banach algebra and let
a ∈ A. The spectral radius rA(a) of a is defined by the set

rA(a) = sup{|λ| : λ ∈ σA(a)}.

Theorem 2.4.18. Let A be a unital Banach algebra and let a ∈ A. Then

(i) ρ(a) is an open subset of C.

(ii) rA(a) = limn→∞ ‖an‖1/n = infn∈N ‖an‖1/n.

(iii) For each n ∈ N and r0 > rA(a),

an =
1

2πi

∫
|ζ|=r0

ζn (ζe− a)−1 dζ.

Remark 2.4.19. Theorem 2.4.18(ii) is known as the Spectral radius formula.

Proposition 2.4.20. Let A be a commutative unital Banach algebra and let a, b ∈
A. Then

(i). rA(λa) = |λ|rA(a).

(ii). rA(ab) ≤ rA(a)rA(b).

Proof. (i). It follows easily that

rA(λa) = inf
n∈N
‖(λa)n‖

1
n = inf

n∈N
‖λnan‖

1
n = inf

n∈N
|λn|

1
n‖a‖

1
n

= |λ| inf
n∈N
‖a‖

1
n = |λ|rA(a).
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(ii). It is known that (ab)n = anbn and ‖an‖ ≤ ‖a‖n for all n ∈ N.
Now,

rA(ab) = inf
n∈N
‖(ab)n‖1/n = inf

n∈N
‖anbn‖1/n

≤ inf
n∈N
‖an‖1/n inf

n∈N
‖bn‖1/n = rA(a)rA(b).

2.4.3 Ideals, quotient and homomorphism

Definition 2.4.21. Let A be a Banach algebra.

1. A left ideal of A is a subset I of A such that

(a) A is a vector subspace of A,

(b) ab ∈ I for all a ∈ A, b ∈ I.

2. A right ideal of A is a subset I of A such that

(a) A is a vector subspace of A,

(b) ba ∈ I for all a ∈ A, b ∈ I.

3. A two-sided ideal I of A is a subset of A which is both a left and right ideal
of A. That is,

(a) I is a vector subspace of A,
(b) both AI ⊆ I and IA ⊆ I.

Example 2.4.22. (i) Let A be a Banach algebra and A# be the unitization of
A. Then A is a closed ideal of A#.

(ii) Let Λ be a closed subset of a compact space Ω. The sets I(Λ) and K(Λ)
defined by

I(Λ) = {f ∈ C(Ω) : f |Λ = 0}
K(Λ) = {f ∈ C(Ω) : f = 0 on a neighbourhood of Λ}

are ideals in C(Ω). In fact, I(Λ) is closed and K(Λ) is dense in I(Λ).

Definition 2.4.23. Let A be a Banach algebra.
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1. An ideal I in A is called a proper ideal if I is not equal to A. That is I ( A.

2. An ideal I is called a maximal ideal of A if I is a proper ideal such that
there is no proper ideal that contains I. That is, there is no proper ideal K
of A such that I ( K ( A.

Lemma 2.4.24. Let A be a unital Banach algebra and let I be an ideal of A.
Then I is a proper ideal if and only if I ∩ InvA = ∅.

Theorem 2.4.25. Let A be a unital Banach algebra.

(i). The closure I of I is also a proper ideal of A if I is a proper ideal of A.

(ii). Any maximal ideal of A is closed.

Definition 2.4.26. Let A be a Banach algebra and I be a closed ideal in A. The
set A/I = {a + I : a ∈ A} is called the quotient Banach algebra. The natural
algebraic structure of A is defined by the product

(a+ I)(b+ I) = (ab+ I), (a, b ∈ A).

Proposition 2.4.27. Let A be a Banach algebra and I be a closed ideal in A.
Then A/I is a Banach algebra with the quotient norm.

Definition 2.4.28. Let A and B be Banach algebras.

(i) A linear map ϕ : A → B is an algebra homomorphism if

ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ A).

(ii) The kernel of ϕ is the set kerϕ = {a ∈ A : ϕ(a) = 0}.

(iii) Let ϕ : A → B be a homomorphism. If ϕ is injective then ϕ is called a
monomorphism.

(iv) An epimorphism of A onto B is a surjective homomorphism.

(v) An algebra isomorphism of A onto B is a bijective homomorphism of A into
B.

Remark 2.4.29. (i) Suppose that A and B are both unital Banach algebras
with identity eA and eB respectively. Then the homomorphism ϕ maps the
identity eA to eB, that is, ϕ(eA) = eB. This easily follows from the fact that
for any a ∈ A,

ϕ(a) = ϕ(aeA) = ϕ(eAa) = ϕ(a)ϕ(eA) ⇒ ϕ(eA) = ϕ(a) (ϕ(a))−1 = eB.
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(ii) For a ∈ A and for all b ∈ InvA, ϕ(a) 6= 0.

(iii) kerϕ is a proper ideal of A provided it is non-zero.

(iv) The quotient map ϕ : a 7→ a+ I, A → A/I is a surjective homomorphism
with kerϕ = I.

Example 2.4.30. (i) Let A be a Banach algebra. Then the map ϕ : A → A
defined by

ϕ(b) = b (b ∈ A)

is an homomorphism of A into A.

(ii) Let ϕ : A → B and φ : B → C be algebra homomorphisms. Then φ ◦ ϕ :
A → C is also an algebra homomorphism.

2.4.4 Gelfand theory

Definition 2.4.31. Let A be an algebra over the scalar field C. Then a character
on A is a homomorphism ϕ : A → C; that is, a non-zero linear functional ϕ :
A → C which satisfies ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A. We denote by σ(A) the
set of all characters on A.

Example 2.4.32. Let X be a compact topological space. Suppose that A = C(X).
For some x ∈ X, define the map

ϕx : A → C, ϕx(f) = f(x) (f ∈ A).

Then ϕx is a character on A.

Lemma 2.4.33. Let A be a commutative unital Banach algebra and let I be a
maximal ideal of A.

(i) If ϕ ∈ σ(A), then kerϕ = I.

(ii) The map φ : λ+ I 7→ λ, A/I → C is an isometric isomorphism.

Proof. (i) Since ϕ ∈ σ(A), then ϕ is a non-zero homomorphism. We know that
kerϕ is a proper ideal of A (since for any a ∈ A, b ∈ kerϕ it follows that
ϕ(ab) = ϕ(a)ϕ(b) = ϕ(a) · 0 = 0 so that ab ∈ kerϕ). Suppose that J is
another ideal of A such that kerϕ ( J . Let a ∈ J\ kerϕ such that ϕ(a) 6= 0,
then b = ϕ(a)−1a ∈ J and ϕ(b) = 1. Since ϕ(e) = 1, then it follows that
e − b ∈ kerϕ and so e = b + e − b ∈ J. By Lemma 2.4.24, J = A. Thus, it
must be that kerϕ is a maximal ideal and so kerϕ = I.
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(ii) Since I is a maximal ideal of A then I is closed by Theorem 2.4.25. We know
that A/I is a commutative unital Banach algebra. To prove the result, it
suffices to show that every non-zero element of A/I is invertible and this
easily follows from Theorem 2.4.15. For a ∈ A, define the set J = {ab+ x :
x ∈ I, b ∈ A}. Since I is a maximal ideal of A and A\I is a commutative
Banach algebra, then J is an ideal and I ( J. It follows that J = A. Thus,
it holds that e ∈ J and ab+ x = e, for some b ∈ A, x ∈ I. Now observe that
for some x ∈ I,

(a+ I)(b+ I) = ab+ I = ab+ x+ I = e+ I.

Hence (a+I) is invertible. Since every non-zero elements of A/I is invertible,
then by applying Theorem 2.4.15, the result follows.

Theorem 2.4.34. Let A be a unital Banach algebra. Then every maximal ideal
of A is closed.

Proof. Let I be a maximal ideal of A and I be the closure of I. Since I 6= A then
I does not contain invertible elements and so I ⊆ A\(InvA). By Corollary 2.4.5,
InvA is open and so the complement (InvA)C = A\(InvA) is closed. Since I is
contained in I, then the inclusion I ⊆ I ⊆ A\InvA holds. Since I is maximal,
then either I = I or I = A\InvA. But the latter is not the case and so I is
closed.

Theorem 2.4.35. Let A be a Banach algebra, then the homomorphism ϕ : A → C
is continuous.

Corollary 2.4.36. Let A be a Banach algebra and let ϕ ∈ σ(A). Then ϕ is
continuous.

It should be noted that not all Banach algebra have characters on them but many
examples of Banach algebra satisfying commutative property are known to have
characters defined on them. The following theorem therefore guarantees that the
character space of commutative Banach algebra is non empty.

Theorem 2.4.37. Let A be a commutative Banach algebra then there exists some
character for A.

Proof. Suppose that every element a ∈ A is invertible, then A and C are isomor-
phic and the isomorphism ϕ : A → C is a character. Suppose that there are some
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elements of A which are not invertible. Let I be a maximal ideal of A and let
a ∈ A be such that a ∈ A\InvA. Then by Zorn’s Lemma aA is a proper ideal
of A and aA ⊂ I. But by Lemma 2.4.33(i), it holds that I = kerϕ for some
ϕ ∈ σ(A). Thus σ(A) 6= ∅ and so A has at least one character.

Example 2.4.38. For n > 1, let A =Mn(C) and let (eij) be the n× n identity
matrix, that is, every (i, j) entry is 1 for i = j and 0 otherwise. It is clear that A
is non-commutative. Moreover, Mn(C) possesses no character.

Theorem 2.4.39. Let A be a commutative unital Banach. Then the mapping
ϕ 7→ kerϕ is a bijection from σ(A) onto the set of maximal ideals of A.

Corollary 2.4.40. Let A be a commutative unital Banach algebra. Then for
a ∈ A,

(i) a ∈ InvA if and only if ϕ(a) 6= 0 for all ϕ ∈ σ(A),

(ii) σA(a) = {ϕ(a) : ϕ ∈ σ(A)},

(iii) rA(a) = supϕ∈σ(A) |ϕ(a)|.

Definition 2.4.41. Let A be a commutative unital Banach algebra. Let a ∈ A
and ϕ ∈ σ(A). Define the map

â : ϕ 7→ ϕ(a), σ(A)→ C.

The map G : a 7→ â, A → C(σ(A)) is an homomorphism and

‖â‖∞ ≤ ‖a‖ (a ∈ A).

The map G is called the Gelfand transform of A and â is called the Gelfand
transform of a.

Theorem 2.4.42 (Gelfand representation theorem). Let A be a commutative
unital Banach algebra. Then

(i) σA(a) = â(σ(A)).

(ii) rA(a) = |â|A.

(iii) a ∈ InvA if and only if â ∈ InvC(σ(A)).
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2.4.5 Tensor product

There are different ways of defining the product on Banach algebras some of which
was considered in Section 2.2. One of such ways is the tensor product which we
now consider in this section. For more details on this section see [26].

Definition 2.4.43. Let A1,A2 and A3 be vector spaces. An algebraic tensor
product of A1 and A2 is a pair (θ,A3), where θ is a bilinear map from A1 × A2

into A3, called the tensor map such that if A4 is any vector space and if f :
A1 × A2 → A4 is any bilinear map, then there exists a unique g : A3 → A4

satisfying f = g ◦ θ.

For a1 ∈ A1 and a2 ∈ A2, we write a1 ⊗ a2 for θ(a1, a2). Also the tensor
product of A1 and A2 is written as A1 ⊗A2. A tensor is an element t ∈ A1 ⊗A2

which is given by

t =
n∑
i=1

ai ⊗ bi n ∈ N, ai ∈ A1, bi ∈ A2.

Although there are different kinds of norm that can be defined on the tensor
product of Banach algebras, but we shall consider what is called the projective
tensor product norm.

Definition 2.4.44. Let A1 and A2 be Banach algebras and let t ∈ A1 ⊗A2, the
projective tensor norm is defined as

‖t‖π = inf

{
n∑
i=1

‖ai‖‖bi‖ <∞ : t =
n∑
i=1

ai ⊗ bi, ai ∈ A1, bi ∈ A2

}
.

Proposition 2.4.45. Let A1 and A2 be Banach algebras. Then the vector space

A1⊗̂A2 = {a⊗ b : a ∈ A1, b ∈ A2}

with the projective tensor norm and multiplication defined by (a ⊗ b)(a′ ⊗ b′) =
aa′ ⊗ bb′ (a, a′ ∈ A1, b, b

′ ∈ A2) is a Banach algebra.

Remark 2.4.46. (i) A1⊗̂A2 is called the completion of A1 ⊗ A2 under the
projective tensor norm.

(ii) The product (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ is uniquely determined.

(iii) A1⊗̂A2 is commutative if and only if both A and B are commutative.
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(iv) A1⊗̂A2 is unital if and only if both A1 and A2 are unital. Suppose that e1

and e2 are identities for A1 and A2 respectively, then e1 ⊗ e2 is the identity
for A1⊗̂A2.

Theorem 2.4.47. Let A1 and A2 be Banach algebras. Let φ : A1 × A2 → B be
a bilinear map, then there exists a unique linear map ψ : A1 ⊗A2 → B such that
ψ(a⊗ b) = φ(a, b) (a ∈ A1, b ∈ A2).

Definition 2.4.48. Let A be a Banach algebra. The linear map π : a ⊗ b 7→
ab, A⊗̂A → A is called the projective map. The dual projective map π′ : A′ →
(A⊗̂A)′ is defined by 〈a⊗ b, π′(f)〉 = 〈ab, f〉 (f ∈ A′, a, b ∈ A). Moreso, we can
identify ((A1⊗̂A2)′, ‖.‖π) with B(A1,A′2) for the Banach algebras A1 and A2.

2.4.6 Modules

In this section, we give a brief introduction to the concept of bimodule (see [3] for
details). The following definitions are taken from [32].

Definition 2.4.49. Let A be an algebra. A right A-module X is an additive group
X together with a map · : X ×A → X which satisfies the following conditions:

(i) (x+ y) · a = x · a+ y · a,

(ii) x · (a+ b) = x · a+ x · b,

(iii) x · (ab) = (x · a) · b, (x ∈ X, a, b ∈ A).

Definition 2.4.50. Let A be an algebra, a left A-module X is an additive group
X together with a map · : A×X → X which satisfies the following conditions:

(i) a · (x+ y) = a · x+ a · y,

(ii) (a+ b) · x = a · x+ b · x,

(iii) a · (b · x) = (ab) · x, (x ∈ X, a, b ∈ A).

Definition 2.4.51. Let A be an algebra and let X be an additive commuta-
tive group, X is called an A-bimodule, if X is both a left A-module and a right
A-module, and also satisfies (a · x) · b = a · (x · b) (a, b ∈ A, x ∈ X).

Definition 2.4.52. Let A be a Banach algebra. A Banach space which is also
a right A-module is called a right Banach A-module if there is a constant k > 0
such that ‖x · a‖ ≤ k‖a‖‖x‖ (x ∈ X, a ∈ A).
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Definition 2.4.53. Let A be a Banach algebra. A Banach space X which is also
a left A-module is called a left Banach A-module if there exists a constant k > 0
such that ‖a · x‖ ≤ k‖a‖‖x‖ (x ∈ X, a ∈ A).

Definition 2.4.54. Let A be a Banach algebra and let X be an additive com-
mutative group. If X is both left and right Banach A-module, then X is called a
Banach A-bimodule.

Remark 2.4.55. By renorming X, we may take k = 1.

Definition 2.4.56. Let A be a unital Banach algebra with identity e.

(i) The left A-module X is called unital if e · x = x (x ∈ X).

(ii) The right A-module X is called unital if x · e = x (x ∈ X).

(iii) A unital Banach A bimodule is a left and right Banach A-bimodule if e ·x =
x = x · e (x ∈ X).

Definition 2.4.57. (i) Let A be a Banach algebra. The Banach A-bimodule X
is called commutative or symmetric if a · x = x · a, (a ∈ A, x ∈ X).

(ii) For a commutative Banach algebra A, a Banach A-bimodule is a commuta-
tive A-bimodule.

Example 2.4.58. (i) Let A be a Banach algebra, then we can consider A as a
Banach A-bimodule. The left and right module actions are specified by

a · x = ax, x · a = xa (a, x ∈ A).

Thus the product in A defines the module operation.

(ii) Let A and B be Banach algebras. Suppose that X and Y are Banach A-
bimodule and Banach B-bimodule respectively. Then the projective tensor
product X⊗̂Y of X and Y is an A-bimodule with module operation specified
by

a · (x⊗ y) = a · x⊗ y, (x⊗ y) · a = x⊗ y · a (a ∈ A, x ∈ X, y ∈ Y ).

(iii) Let A be a Banach algebra.

(i) Suppose that X is a right Banach A-bimodule, then X ′ is a left Banach
A-bimodule. The module action is specified by

〈x, a · f〉 = 〈x · a, f〉 (a ∈ A, x ∈ X, f ∈ X ′).
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(ii) Suppose that X is a left Banach A-bimodule, then X ′ is a right Banach
A-bimodule. The module action is specified by

〈x, f · a〉 = 〈a · x, f〉 (a ∈ A, x ∈ X, f ∈ X ′).

(iii) The dual space X ′ of the Banach A-bimodule X is also a Banach A-
bimodule with module action specified in (i) and (ii) above. X ′ is called
the dual Banach A-bimodule.

(iv) Let A and B be Banach algebras, and let ϕ : A → B be a continuous homo-
morphism. Then B is a Banach A-bimodule with operation specified by

a · b = ϕ(a)b, b · a = bϕ(a) (a ∈ A, b ∈ B).

2.4.7 Second dual of a Banach algebra and Arens products

Let A be a Banach algebra, the second dual space of A denoted by A′′ is a Banach
space. Recall that for Φ ∈ A′′ and φ ∈ A′, the canonical image of a ∈ A in A′′
is given by 〈φ,Φ〉 = 〈a, φ〉 (a ∈ A). The dual Banach space A′′ can be made
into a Banach algebra by defining certain products on it. These products were
defined by Arens in [3] and are denoted by � and �. They are called the first and
second Arens product on the second dual of Banach algebras respectively. We
now define Arens products on the second dual A′′ of A and establish that A′′ is
a Banach algebra with respect to both first and second Arens products (see also
[2], [5], [12], [15] and [16] for more details).

Definition 2.4.59. (Arens products). Let A be a Banach algebra. Then

1. for φ ∈ A′,

〈ba, φ〉 = 〈b, a · φ〉, 〈b, φ · a〉 = 〈ab, φ〉 (a, b ∈ A),

2. for Φ ∈ A′′, and φ ∈ A′ define φ · Φ and Φ · φ in A′ by

〈Φ, a · φ〉 = 〈a, φ · Φ〉, 〈a,Φ · φ〉 = 〈Φ, φ · a〉 (a ∈ A).

3. for Φ,Ψ ∈ A′′,

〈Φ�Ψ, φ〉 = 〈Φ,Ψ · φ〉, 〈Φ �Ψ, φ〉 = 〈Ψ, φ · Φ〉 (φ ∈ A′).
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Equivalently, Arens products can also be defined in terms of some convergent
nets in A as follows:
Let (aα) and (bβ) be convergent nets in A such that Φ = limα aα and Ψ = limβ bβ.
Then

Φ�Ψ = lim
α

lim
β
aαbβ, Φ �Ψ = lim

β
lim
α
aαbβ

where all the limits are taken in the σ(A′′,A′)-topology on A′′.
In the case that the first and second Arens products are equal, then A is said

to be Arens regular.

Theorem 2.4.60. Let A be a Banach algebra, then both (A′′,�) and (A′′, �) are
Banach algebras containing A as a closed subalgebra.

Remark 2.4.61. 1. For a commutative Banach algebra A, it is easy to see
that φ · Φ = Φ · φ (φ ∈ A′,Φ ∈ A′′) and Φ�Ψ = Ψ � Φ (Φ,Ψ ∈ A′′) and
so (A′′, �) = (A′′,�)op.

2. The map RΦ : Ψ 7→ Ψ�Φ is continuous on (A′′, σ(A′′,A)) for each Φ ∈ A′′.
Also, the map La : Ψ 7→ a�Ψ is continuous on (A′′, σ(A′′,A)) for each
a ∈ A. Thus the first Arens product is continuous.

3. Suppose that A has no identity element, then it is possible to identify
(A#′′ ,�) with (A′′,�)#.

4. The first and second Arens product � and � respectively are both associative
on A′′.

2.4.8 Topological centers

. Recall that the center of Banach algebra A is the collection of all element of
A that commutes with every other elements in A. For the second dual A′′ of A,
we talk about the left and right topological center which we now define as follows
(for more details on this section, see [11] and [17]).

Definition 2.4.62. The left and right topological center of A′′ denoted by Zl(A′′)
and Zr(A′′) respectively are

Zl(A′′) := {Φ ∈ A′′ : Φ�Ψ = Φ �Ψ (Ψ ∈ A′′)}

Zr(A′′) := {Φ ∈ A′′ : Ψ�Φ = Ψ � Φ (Ψ ∈ A′′)} .
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Remark 2.4.63. 1. It can be shown that Z(A′′,�) ⊂ Zr(A′′). Let Φ ∈
Z(A′′,�) then φ · Φ = Φ · φ (φ ∈ A′). Thus, for Ψ ∈ A′′ and φ ∈ A′,
it follows that

〈Ψ�Φ, φ〉 = 〈Φ�Ψ, φ〉 = 〈Φ,Ψ · φ〉 = 〈Φ, φ ·Ψ〉 = 〈Ψ � Φ, φ〉,

which gives Ψ�Φ = Ψ � Φ. Thus Φ ∈ Zr(A′′). Similarly, by interchanging
the position of Φ and Ψ, we can show that Z(A′′,�) ⊂ Zl(A′′).

2. The left and right topological centers are both norm-closed subalgebra of A′′
endowed with the Arens products.

3. The following inclusions easily hold

A ⊂ Zl(A′′) ⊂ A′′, A ⊂ Zr(A′′) ⊂ A′′.

4. The Banach algebra A is Arens regular if Zl(A′′) = A′′ = Zr(A′′), whence it
follows that the two Arens product coincide.

5. If the Banach algebra A is commutative then the centers of both (A′′,�) and
(A′′, �) coincide. Indeed,

Zl(A′′) = Zr(A′′) = Z(A′′,�).

Theorem 2.4.64. Let A be a Banach algebra and let Φ ∈ A′′. Then the following
statements are equivalent.

1. Φ ∈ Zl(A′′).

2. LΦ : Φ 7→ Φ�Ψ is continuous on (A′′, σ(A′′,A′)).

3. Φ · aα → Φ�Ψ whenever (aα) is a net in A such that limα aα = Ψ.

Remark 2.4.65. Statement 2 in Theorem 2.4.64 holds if and only if A is Arens
regular.

We conclude this chapter by introducing some important definitions and re-
sults on Banach spaces which are relevant to this work.

Definition 2.4.66. Let X be a Banach space. The weak topology on X is the
smallest topology that makes every map f ∈ X ′ continuous. Similarly, the weak∗

topology is the smallest topology on X that makes every map

Λx : f 7→ 〈x, f〉, Λx : X ′ → C

to be continuous.
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The following important properties of weak∗ topology are useful in this work.

Lemma 2.4.67 (Goldstine). Let X be a Banach space and i : (X, ‖.‖)→ (X ′′, ‖.‖)
be a linear isometry. Then for each Λ in X ′′, there is a bounded net (xα) in X such
that ‖xα‖ ≤ ‖Λ‖ and i(xα) → Λ in σ(X ′′, X ′) with the limit taken in σ(X ′′, X ′)
on X ′′. That is, x̂α → Λ in the weak∗ topology on X ′′.

Theorem 2.4.68 (Mazur). Let (X, ‖.‖) be a Banach space, then for every convex
set U ⊂ X, the closures of U in (X, ‖.‖) and (X, σ(X,X ′′)) are the same.

Theorem 2.4.69. Let X be a Banach space, then the set BX′ = {f ∈ X ′ : ‖f‖ ≤
1} is compact in the weak∗ topology.

Theorem 2.4.70 (Open Mapping Theorem). Let X and Y be Banach spaces and
let T : X → Y be a continuous linear homomorphism. Then,

(i) T is open if T is a surjection.

(ii) T is a linear homeomorphism if T is an injection.
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Chapter 3

Notions of Amenability in
Banach Algebras

In this chapter, four notions of amenability on an arbitrary Banach algebra are
studied. Some nice hereditary properties and characterizations of these amenabil-
ity notions are discussed and reviewed.

3.1 Definitions with Examples

Definition 3.1.1. Let A be a Banach algebra and let X be a Banach A-bimodule.
A linear map D : A → X is called a derivation if for a, b ∈ A,

D(ab) = D(a) · b+ a ·D(b).

Example 3.1.2. Let A be a Banach algebra and X be a Banach A-bimodule. For
x ∈ X, define the linear map

δx : a 7→ a · x− x · a, A → X.

Then for a, b ∈ A and x ∈ X,

δx(ab) = (ab) · x− x · (ab) = (ab) · x− a · (x · b) + a · (x · b)− x · (ab)
= a · (b · x− x · b) + (a · x− x · a) · b = δx(a) · b+ a · δx(b).

Thus the linear map δx : A → X is a derivation. Derivations of this form are
called inner derivations.
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Definition 3.1.3. Let A be a Banach algebra and let X be a Banach A-bimodule.
Then

(i) A is contractible if every continuous derivation D : A → X is inner for
every Banach A-bimodule X.

(ii) A is amenable if every continuous derivation D : A → X ′ is inner for every
Banach A-bimodule X.

(iii) A is weakly amenable if every continuous derivation D : A → A′ is inner.

The above notions of amenability can also be defined in terms of the triviality
of the first Hochschild cohomology group. Let A be a Banach algebra and let
X be a Banach A-bimodule. Denote by Z1(A, X) the space of all continuous
derivations from A into X and N1(A, X) the space of all inner derivations from
A into X. The first Hochschild cohomology group of A with coefficients in X is
the quotient space H1(A, X) given by

H1(A, X) = Z1(A, X)/N1(A, X).

Clearly, Z1(A, X ′) = N1(A, X ′) ⇐⇒ H1(A, X ′) = {0}.

Definition 3.1.4. (i) A is contractible if H1(A, X) = {0} for every Banach
A-bimodule X.

(ii) A is amenable if H1(A, X ′) = {0} for every Banach A-bimodule X.

(iii) A is weakly amenable if H1(A,A′) = {0}.

Example 3.1.5. (i) The group algebra L1(G) is amenable if and only if the
locally compact group G is amenable.

(ii) L1(G) is weakly amenable for any group G.

(iii) A C∗-algebra is amenable if and only if it is nuclear.

(iv) Every C∗-algebra is weakly amenable.

(v) The measure algebra M(G) on a locally compact group G is amenable if and
only if G is discrete.

(vi) For a locally compact group G, the Fourier algebra A(G) is amenable if and
only if G admits an abelian subgroup of finite index.
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(vii) The Banach algebra B(lp) of bounded linear operators on the Banach space
lp is not amenable for 1 ≤ p ≤ ∞.

For details on the above examples, see [30].

3.2 Contractible Banach Algebras

3.2.1 Characterizations

We shall need the following in the proof of the next theorem.

Proposition 3.2.1. Let A be a Banach algebra, then the following are equivalent:

(i) H1(A, X) = {0} for each Banach A-bimodule X.

(ii) H1(A, X) = {0} for each neo-unital Banach A-bimodule X.

Theorem 3.2.2. Let A be a Banach algebra. Then the following statements are
equivalent:

(i) A is contractible.

(ii) A is unital and has a projective diagonal.

Proof. Assume that A is contractible. We first show that A is unital. Let X =
A × A be a Banach A-bimodule with left and right operations defined by a ·
(b, c) = (ab, 0) and (b, c) · a = (0, ca) respectively for a, b, c ∈ A. The linear map
D : A → X defined by D(b) = (b, b) is a derivation. Since for any a, b ∈ A,

D(ab) = (ab, ab) = (0, ab) + (ab, 0) = (a, a)b+ a(b, b) = D(a)b+ aD(b).

By assumption, A is contractible and so D must be inner, that is, there exists
(x,−x) ∈ X such that for all b ∈ A,

(b, b) = D(b) = b · (x,−x)− (x,−x) · b = (bx, 0)− (0,−xb) = (bx, xb).

Thus (b, b) = (bx, xb) which implies that bx = b = xb and so x is both left and
right identity for A. Hence A is unital.

We now show that A possess a projective diagonal. Let X = kerπ, since
A itself is a Banach A-bimodule and ker π is a closed subalgebra of A, then
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kerπ is also a Banach A-bimodule. Define a linear map D : A → kerπ by
D(a) = a⊗ e− e⊗ a. It is easy to see that

a⊗ e− a · x = e⊗ a− x · a

a · (e⊗ e− e · x) = (e⊗ e− x · e) · a.
Now set u = e⊗e−x, since x ∈ kerπ and π is linear, then a·π(u) = a·π(e⊗e−x) =
a · (π(e⊗ e)− π(x)) = a · (e · e− 0) = a · e = a. That is, a · π(u) = a. Hence u is
a projective diagonal for A.

Conversely, we assume a unit and a projective diagonal for A and then show
that every derivation D : A → X is inner for every Banach A-bimodule X. Let
u =

∑n
i=1 ai ⊗ bi be a projective diagonal for A. Let e be an identity for A, since

a · π(u) = a = π(u) · a, then π(u) = e. By Proposition 3.2.1, we shall show that
the derivation D : A → X is inner for every neo-unital Banach A-bimodule X.
We recall from [9] that for a projective diagonal u =

∑n
i=1 ai⊗ bi, there is a linear

map A⊗̂A → X given by a⊗ b 7→ a · T (b) (where T ∈ C(A, X)) which satisfies

n∑
i=1

aai · T (bi) =
n∑
i=1

aiT (bia) (a ∈ A).

Now, set T = D and let x =
∑n

i=1 ai ·D(bi), then

a · x− x · a =
n∑
i=1

aai ·D(bi)−
n∑
i=1

ai ·D(bi) · a

=
n∑
i=1

aai ·D(bi)− ai ·D(bi) · a

=
n∑
i=1

aiD(bi · a)− ai ·D(bi) · a

=
n∑
i=1

ai(D(bi) · a+ bi ·D(a))− ai ·D(bi) · a

=
n∑
i=1

ai ·D(bi) · a− ai ·D(bi) · a+ ai · bi ·D(a)

=
n∑
i=1

aibi ·D(a) = π(u) ·D(a) = e ·D(a) = D(a).

The last equality holds since X is neo-unital. Thus D(a) = a · x− x · a and A is
contractible.
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Corollary 3.2.3. Let A be Banach algebra and I be a closed ideal of A. Then
the following are equivalent.

(i) I is contractible.

(ii) I has an identity.

(iii) I is complemented in A.

3.2.2 Hereditary properties

We give the following nice hereditary properties whose proofs are much similar
to those of amenable Banach algebra to be considered in Section 3.3. However,
we give a proof for Proposition 3.2.4(iv) via the existence of a projective diago-
nal which is different from the proof given for its analogue on amenable Banach
algebra.

Proposition 3.2.4. Let A be a Banach algebra,

(i) If A is contractible, B is another Banach algebra and ϕ : A → B is contin-
uous homomorphism with dense range, then B is contractible.

(ii) If I is a closed ideal of A such that both I and A/I are contractible, then A
is contractible.

(iii) A is contractible if and only if A# is contractible.

(iv) If A is contractible and B is also a contractible Banach algebra, then A⊗̂B
is contractible.

Proof. The proofs of (i), (ii) and (iii) are similar to the proofs of their corre-
sponding amenability analogues in Section 3.3. We prove (iv). By Theorem 3.2.2,
A and B both possess projective diagonal since they are contractible. It suffices
by Theorem 3.2.2 to show that A⊗̂B has a projective diagonal and is unital. Let
u =

∑n
i=1 ri ⊗ si and v =

∑m
k=1 xk ⊗ yk be projective diagonals for A and B

respectively. Also, let πA and πB be the projective maps on A and B respectively,
then it is clear that for all a ∈ A, b ∈ B, a · πA(u) = a, b · πB(v) = b and
a ·u = u ·a, b ·v = v · b. It is well known that (A⊗̂A)⊗̂(B⊗̂B) ∼= (A⊗̂B)⊗̂(A⊗̂B).
Now u⊗ v ∈ (A⊗̂A)⊗̂(B⊗̂B) and for a ∈ A, b ∈ B,

(a⊗ b) · (u⊗ v) = au⊗ bv = ua⊗ vb = (u⊗ v) · (a⊗ b)
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and

(a⊗ b) · πA⊗̂B(u⊗ v) = (a⊗ b) πA⊗̂B

(
n∑
i=1

ri ⊗ si ⊗
m∑
k=1

xk ⊗ yk

)

= (a⊗ b) πA⊗̂B

(
n∑
i=1

m∑
k=1

(ri ⊗ xk)⊗ (si ⊗ yk)

)

= (a⊗ b)

(
n∑
i=1

m∑
k=1

(ri ⊗ xk) · (si ⊗ yk)

)

= (a⊗ b)

(
n∑
i=1

m∑
k=1

risi ⊗ xkyk

)

=

(
n∑
i=1

arisi ⊗
m∑
k=1

bxkyk

)

= aπA

(
n∑
i=1

ri ⊗ si

)
⊗ bπB

(
m∑
k=1

xk ⊗ yk

)
= aπA(u)⊗ bπB(v) = a⊗ b

Thus u⊗ v is a projective diagonal for A⊗̂B.
It is clear that A and B are unital since they are both contractible. Let eA and

eB be identities for A and B respectively, then eA ⊗ eB is the identity for A⊗̂B.
Clearly, for a⊗ b ∈ A⊗̂B,

(a⊗ b) · (eA ⊗ eB) = a · eA ⊗ b · eB = a⊗ b.

3.3 Amenable Banach Algebras

3.3.1 Characterizations

There are several characterizations of amenability in the literature. We gave some
of these characterizations in this subsection.

We recall that a virtual diagonal for a Banach algebra A is an element M ∈
(A⊗̂A)′′ such that

a ·M = M · a, a · π′′(M) = a, (a ∈ A).
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Also, a net (mα) ∈ A⊗̂A is called an approximate diadonal for if

a ·mα −mα · a→ 0, a · π(mα)→ a (a ∈ A),

where π : A⊗̂A → A is the diagonal operator. The approximate diagonal (mα) ∈
A⊗̂A is called a bounded approximate diadonal if it is bounded.

Theorem 3.3.1. Let A be a Banach algebra. The following are equivalent:

(i) A is amenable.

(ii) A has an approximate diagonal.

(iii) A has a virtual diagonal.

Proof. (ii) =⇒ (iii). Let (mα) be an approximate diagonal for A and (m̂α) be a
bounded net in (A⊗̂A)′′. Then by Alaoglu theorem (m̂α) has a weak∗ limit point.
Let M ∈ (A⊗̂A)′′ be a weak∗ limit point for (m̂α), that is, M = weak∗-limα m̂α,
then for all a ∈ A,

M · a− a ·M = weak∗- lim
α
m̂α · a− a · m̂α = weak- lim

α
mα · a− a ·mα = 0

and
π′′A(M) · a = weak∗- lim

α
π′′(m̂α) · a = weak- lim

α
π(mα) · a = a.

Thus M ∈ (A⊗̂A)′′ is a virtual diagonal for A.

Conversely, let M be a virtual diagonal for A. Let (mα) ∈ A⊗̂A be a bounded
net. By Goldstine’s theorem, the image of (mα) under the canonical map con-
verges to M in the weak∗ topology on (A⊗̂A)′′. That is, M = weak∗- limα m̂α.
Then it holds that for all a ∈ A,

weak- lim
α

(mα · a− a ·mα) = weak∗- lim
α

(m̂α · a− a · m̂α) = M · a− a ·M = 0

and
weak- lim

α
π(mα) · a = weak∗- lim

α
π′′(m̂α) · a = π′′(M) · a = a.

We now construct an approximate diagonal for A. For each K =
{a1, a2, · · · , an} ⊂ A and ε > 0, the bounded net

((mα · a1 − a1 ·mα, π(mα)a1 − a1) , · · · , (mα · an − an ·mα, π(mα) · an − an))

38



in the space
(
(A⊗̂A)×A

)n
converges to 0 in the weak topology. Let H be the

convex hull of {mα : α ∈ ∆}, then

0 ∈
(
Hweak · ai − ai · H

weak
)⋂(

π(Hweak
) · ai − ai

)
(i ∈ N).

By Mazur’s theorem, Hweak
= H and there exists vK,ε ∈ H such that ‖vK,ε ·a−a ·

vK,ε‖ < ε and ‖πA(vK,ε) · a− a‖ < ε for a ∈ K. Finally, K × R+ is a directed set
for which the partial order is given by (K1, ε1) � (K2, ε2) if and only if K1 ⊂ K2

and ε1 ≥ ε2. Thus the net (vK,ε) is an approximate diagonal for A.

(iii) =⇒ (i). Suppose that M is a virtual diagonal for A. Then it is clear
that A has an approximate diagonal. Let (mα) be an approximate diagonal for
A and X be a neo-unital Banach A-bimodule and let D ∈ Z1(A, X ′). By Propo-
sition 3.3.9, it suffices to show that H1(A, X ′) = {0}. For x ∈ X, let µx be the
continuous linear functional on A⊗̂A given by

µx(a⊗ b) = (a ·Db)(x) (a, b ∈ A)

which we shall write as µx(a ⊗ b) = 〈x, a · Db〉. Now, set f(x) = M(µx), then
f ∈ X ′. Let a ∈ A, x ∈ X then for b, c ∈ A, it follows that

µx·a−a·x(b⊗ c) = 〈x · a− a · x, b ·Dc〉 = 〈x · a, b ·Dc〉 − 〈a · x, b ·Dc〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉 = 〈x, a · b ·Dc− b ·Dc · a〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉

and

(µx · a− a · µx)(b⊗ c) = 〈b⊗ c, µx · a− a · µx〉 = 〈b⊗ c, µx · a〉 − 〈b⊗ c, a · µx〉
= 〈a · (b⊗ c), µx〉 − 〈(b⊗ c) · a, µx〉
= 〈ab⊗ c, µx〉 − 〈b⊗ ca, µx〉
= 〈x, ab ·Dc〉 − 〈x, b ·Dca〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a+ b · c · da〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉 − 〈x, b · c ·Da〉

and so

µx·a−a·x(b⊗ c) = (µx · a− a · µx)(b⊗ c) + (bcDa)(x)

= (µx · a− a · µx)(b⊗ c) + (π(b⊗ c)Da)(x).
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Thus, for m ∈ A⊗̂A,

µx·a−a·x(m) = (µx · a− a · µx)(m) + (π(m)Da)(x).

Thus, for (mα) converging weak∗ to M such that M(µx) = limα µx(mα),

(a · f − f · a)(x) = 〈x, a · f − f · a〉 = 〈x, a · f〉 − 〈x, f · a〉
= 〈x · a, f〉 − 〈a · x, f〉 = 〈x · a− a · x, f〉
= f(x · a− a · x) = M(µx·a−a·x) = lim

α
(µx·a−a·x)(m)

= lim
α

(µx · a− a · µx)(mα) + (lim
α
π(mα)Da)(x)

= M(µx · a− a · µx) + (lim
α
π(mα)Da)(x)

= (a ·M −M · a)(µx) + (π′′(M)Da)(x).

Observe that
‖µx(a⊗ b)‖ ≤ ‖µx‖‖a⊗ b‖ = ‖µx‖‖a‖‖b‖ (3.1)

‖µx(a⊗ b)‖ ≤ ‖(aDb)(x)‖ = ‖a‖‖D‖‖b‖‖x‖. (3.2)

It follows from (3.1) and (3.2) that ‖µx‖ ≤ ‖D‖‖x‖. Now,

‖(a · f − f · a)− (Da)(x)‖
= ‖(a ·M −M · a)(µx) + (π′′(M)Da)(x)− (Da)(x)‖
≤ ‖(a ·M −M · a)(µx)‖+ ‖(π′′(M)Da)(x)− (Da)(x)‖
= ‖(a ·M −M · a)‖ ‖(µx)‖+ ‖(π′′(M)Da)(x)− (Da)(x)‖
= ‖(a ·M −M · a)‖ ‖D‖‖x‖+ ‖(π′′(M)Da−Da)(x)‖
= ‖(a ·M −M · a)‖ ‖D‖‖x‖+ ‖[(π′′(M)− e) · (Da)](x)‖
≤ ‖(a ·M −M · a)‖ ‖D‖‖x‖+ ‖(π′′(M)− e)‖ ‖Da‖‖(x)‖
→ 0.

Whence (Da)(x) = (a · f − f · a)(x) and D = δf or H1(A, X ′) = {0}. Hence A is
amenable.

Conversely, let A be amenable then by Proposition 3.3.10, A has a bounded
approximate identity. Suppose that (eα) is a bounded approximate identity for
A, and let (eα⊗ eα)′′ be a bounded net in (A⊗̂A)′′. Let N be a weak∗ limit point
of (eα ⊗ eα)′′, then without loss of generality, we may suppose that N = weak∗-
limα(eα ⊗ eα)′′. The map δN : A → (A⊗̂A)′′ given by δN(a) = N · a − a ·N is a
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derivation into (A⊗̂A)′′. To see this, let a, b ∈ A, then

δN(ab) = N · (ab)− (ab) ·N = N · (ab)− a · (N · b) + a · (N · b)− (ab) ·N
= (N · a− a ·N) · b+ a · (N · b− b ·N) = δN(a) · b+ a · δN(b).

Then,

π′′(δN(a)) = weak∗- lim
α
π′′((eα ⊗ eα)′′ · a− a · (eα ⊗ eα)′′)

= weak- lim
α
π((eα ⊗ eα) · a− a · (eα ⊗ eα))

= weak- lim
α
π(eα ⊗ eαa− aeα ⊗ eα)

= weak- lim
α
π(eα ⊗ eαa)− π(aeα ⊗ eα)

= weak- lim
α

(e2
αa− ae2

α) = 0.

The last equality is due to the fact that e2
αa→ a and ae2

α → a, that is,

‖e2
αa−a‖ = ‖e2

αa−eαa+eαa−a‖ = ‖(eα+1)(eαa−a)‖ ≤ ‖eα+1‖‖eαa−a‖ → 0

and

‖ae2
α−a‖ = ‖ae2

α+aeα−aeα−a‖ = ‖(eα+1)(aeα−a)‖ ≤ ‖eα+1‖‖aeα−a‖ → 0.

Since A has a bounded approximate identity then by Cohen’s factorization the-
orem, A factors, that is, A = A · A. This implies that π(A⊗̂A) = A · A = A
and so π is surjective. Hence kerπ′′ ∼= (kerπ)′′. Furthermore, since π is a bounded
bimodule homomorphism then kerπ is a closed submodule of A⊗̂A and so ker π′′

is a closed submodule of (A⊗̂A)′′. In fact, ker π′′ is a Banach A-bimodule. Thus
A is amenable implies that there exists M ∈ kerπ′′ such that δN(a) = δM(a). Set
K = N −M , then

a ·K −K · a = a · (N −M)− (N −M) · a = a ·N −N · a− a ·M +M · a
= (M · a− a ·M)− (N · a− a ·N) = δM(a)− δN(a) = 0

and for a ∈ A,

π′′(K) · a = π′′(N −M) · a = (π′′(N)− π′′(M)) · a = π′′(N) · a
= weak∗- lim

α
π′′(eα ⊗ eα)′′ · a = weak- lim

α
π(eα ⊗ eα) · a

= weak- lim
α
eαeα · a = a.

Thus K is a virtual diagonal for A.

41



We next give the characterization of amenability in terms of the splitting of
short exact sequences.

Let A be a Banach algebra and let X1, X2, X3, · · · be a left, right or two sided
A-module. Suppose that f1 : X1 → X2, f2 : X2 → X3, f3 : X3 → X4, · · · are
Banach A-module homomorphisms. The sequence of Banach A-module given by

X1 → X2 → X3 · · · → Xn → Xn+1 → · · ·

is called exact at Xn if Imfn−1 = ker fn. In particular, the following short se-
quence of Banach A-module∑

: 0→ X2 → X3 → X4 → 0

is called short exact sequence at X3 if Imf2 = ker f3. The short sequence
∑

(i) is exact if f2 is one-to-one, Imf3 = f4 and Imf2 = ker f3

(ii) is admissible if it is exact and f3 : X3 → X4 has a bounded right inverse

(iii) splits if it is admissible and the bounded right inverse in (ii) is a Banach
A-module homomorphism.

The next result is a characterization of amenability in terms of the splitting
of admissible short exact sequences of Banach A-modules (see [8]).

Theorem 3.3.2. Let A be a Banach algebra. Consider the following short exact
sequences of A-bimodules

Π : 0→ K
i−→ A⊗̂A π−→ A → 0

and its dual
Π′ : 0→ A′ π

′
−→ (A⊗̂A)′

i′−→ K → 0

where π is given by π(a ⊗ b) = ab and i is the natural injection of its kernel K.
Then the following are equivalent:

1. A is amenable

2. A has a bounded approximate identity and for each essential A-bimodule X,
any admissble short exact sequence Π′ of A-bimodules splits.
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Proof. Let A be amenable, then by Propositions 3.3.1 and 3.3.10, A has a virtual
diagonal and bounded approximate identity respectively. Let M be a virtual
diagonal for A. For a ∈ A, f ∈ (A⊗̂A)′, we define 〈a, θf〉 = 〈f · a,M〉. Let I be
the identity map on A′. We claim that θπ′ = I. Let λ ∈ A′, then

〈a, θπ′λ〉 = 〈(π′λ) · a,M〉 = 〈π′(λ · a),M〉
= 〈λ · a, π′′M〉 = 〈λ, a · π′′M〉 = 〈λ, a〉.

Next is to show that θ is an A-bimodule homomorphism, let b ∈ A then

〈a, θ(b · f)〉 = 〈(b · f) · a,M〉 = 〈f · a,M · b〉
= 〈f · a, b ·M〉 = 〈f · (ab),M〉
= 〈ab, θf〉 = 〈a, b · θf〉

and therefore θ(b · f) = b · θ(f). Similarly θ(f · b) = θ(f) · b, since

〈a, θ(f · b)〉 = 〈(f · b) · a,M〉 = 〈f · (ba),M〉
= 〈ba, θf〉 = 〈a, θf · b〉.

Conversely, suppose that A has a bounded approximate identity (eα) and θ is an
A-bimodule homomorphism with θπ′ = I. By passing to a subnet, let u ∈ (A⊗̂A)′′

be the weak∗ limit point of (eα⊗eα). Set M = θ′π′′u. Then M is a virtual diagonal
for A. To see this, let a ∈ A, f ∈ (A⊗̂A)′, then

〈f, a ·M〉 = 〈f, aθ′π′′u〉
= 〈π′θ(f · a), u〉 = lim

α
〈π′θ(f · a), eα ⊗ eα〉

= lim
α
〈θf, ae2

α〉 = 〈θf, a〉

= lim
α
〈θf, e2

αa〉 = lim
α
〈π′θ(a · f), eα ⊗ eα〉

= 〈π′θ(a · f), u〉 = 〈a · f, θ′π′′u〉 = 〈f,M · a〉.

Also, we have
π′′(M)a = π′′θ′π′′ua = π′′ua = a.

Thus A has a virtual diagonal and by Proposition 3.3.1, A is amenable.

Another interesting way of characterizing amenable Banach algebras is to show
that they have certain Hahn-Banach extension property. It was observed by Lau
in [28] that a Banach algebra A is amenable if and only if any of the following
holds:
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(i) Whenever X is a Banach A-bimodule and Y is an A-submodule of X, then
for each f ∈ Y ′ such that a · f = f · a a ∈ A, there exists f ∈ X ′ which
extends f and a · f = f · a for all a ∈ A.

(ii) Whenever X is a Banach A-bimodule, there exists a bounded projection P
from X ′ onto {f ∈ X ′ : a · f = f ·a ∀ a ∈ A} such that T ·P = P ·T for any
weak*-continuous bounded linear operator T from X ′ into X ′ commuting
with the action of A on X ′.

Let X be a Banach A-bimodule and denote by

Z(A, X ′) =
⋂
a∈A

{f ∈ X ′ : a · f = f · a},

the closed linear subspace of X ′, which is invariant under each bounded linear
operator from X ′ into X ′ commuting with the action of A. The next result is
another nice characterization of the amenability of A.

Theorem 3.3.3. Let A be a Banach algebra. The following are equivalent:

1. A is amenable.

2. For any Banach A-bimodule X and any Banach A-submodule Y of X, each
linear functional in Z(A, Y ′) has an extension to a linear functional in
Z(A, X ′).

3. For any Banach A − bimodule, there exists a bounded projection from X ′

onto Z(A, X ′) which commutes with any weak*-continuous bounded linear
operator from X ′ into X ′ commuting with the action of A on X ′.

Proof. See [28].

3.3.2 Hereditary properties

Proposition 3.3.4. Let A and B be Banach algebras and ϕ : A → B be a
continuous homomorphism with dense range in B. If A is amenable, then B is
amenable.

Proof. It suffices to show that every continuous derivation D : B → X ′ for every
Banach B-bimodule X is inner. We make X into a Banach A-bimodule by the
multiplication

ax = ϕ(a)x, xa = xϕ(a), a ∈ A, x ∈ X.
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Consider the map (D◦ϕ) : A → X ′. We claim that this is a continuous derivation
since the composition of continuous maps is continuous and for any a, b ∈ A,

(D ◦ ϕ)(ab) = D(ϕ(ab))

= D(ϕ(a)ϕ(b))

= D(ϕ(a))ϕ(b) + ϕ(a)D(ϕ(b))

= (D ◦ ϕ)(a)b+ a(D ◦ ϕ)(b).

Since A is amenable then the continuous derivation (D ◦ ϕ) : A → X ′ is inner.
That is, there exist f ∈ X ′ satisfying

D(ϕ(a)) = (D ◦ ϕ)(a) = af − fa = ϕ(a)f − fϕ(a), a ∈ A.

Also since ϕ has a dense range in B. That is, ϕ(A) = B, then for (sα)α∈∆ ⊂ ϕ(A)
such that sα → s ∈ B, it follows that

Df (s) = Df (lim
α
sα) = lim

α
Df (sα)

= lim
α

(sαf − fsα) = lim
α

(sαf)− lim
α

(fsα)

= sf − fs.

Thus, D : B → X ′ is inner and B is amenable.

Let A be an amenable Banach algebra and I a closed ideal of A. Let X be
a Banach A-bimodule and a Banach A/I-bimodule. Define D ∈ H1(A, X ′) by
D(a) = (d ◦ ϕ)(a), where d : A/I → X ′ and ϕ is the natural canonical map from
A onto the quotient space A/I, this map is a surjective homomorphism. Then by
following the proof of Proposition 3.3.4, it becomes clear that d ∈ H1(A/I,X ′).
Indeed, the following Corollary holds.

Corollary 3.3.5. Let I be a closed two sided ideal of an amenable Banach algebra
A. Then the quotient Banach algebra A/I is amenable.

Proposition 3.3.6. Let A be a Banach algebra and I an amenable closed ideal
of A. If A/I is amenable, then A is amenable.

Proof. Let X be a Banach A-bimodule then X is also a Banach I-bimodule.
For D ∈ Z1(A, X ′), the restriction map D|I is a derivation into X ′, that is,
D|I ∈ Z1(I,X ′). Let φ0 ∈ X ′, define a continuous derivation D : A → X ′ by
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D = D− δφ0 . Since I is amenable, there exist φ0 ∈ X ′ such that D|I = δφ0 . Thus
D = 0 and in particular D|I = 0. Let

Y = cl{a · x+ y · b | a, b ∈ I, x, y ∈ X}

and
Y 0 = {ϕ ∈ X ′ | a · ϕ = ϕ · a = 0 ∀ a ∈ I}.

Then Y is a closed submodule of X and X/Y is a Banach A/I-bimodule. Y 0 is
a dual Banach A/I-bimodule, that is, Y 0 ∼= (X/Y )′. Let a ∈ A, b ∈ I then

0 = D(ab) = D(a)b+ aD(b) = D(a)b+ 0 = D(a)b.

Thus for every x ∈ X,

〈xb,D(a)〉 = 〈xb, (D − δφ0)(a)〉 = 〈x, b · (D − δφ0)(a)〉 = 0

〈bx,D(a)〉 = 〈bx, (D − δφ0)(a)〉 = 〈x, (D − δφ0)(a) · b〉 = 0.

That is, 〈xb,D(a)〉 = 〈bx,D(a)〉 = 0 and so there exist ϕ ∈ X ′ such that

0 = D(a)(xb) = ϕ(xb)

and
0 = D(a)(bx) = ϕ(bx).

Thus D : A → Y 0, that is, D(A) ⊂ Y 0.
Now, define D1 : A/I → Y 0 by D1 : a + I 7→ D(a), that is, D1(a + I) =
(D − δφ0)(a). Since A/I is amenable then there exist ϕ ∈ Y 0 such that D1 = δϕ.
Thus δϕ = D − δφ0 or D = δϕ+φ0 . Hence A is amenable.

Lemma 3.3.7. Let A be an amenable Banach algebra. A closed ideal I of A is
amenable if I has a finite codimension.

Proposition 3.3.8. A Banach algebra A is amenable if and only if A# is
amenable.

Proof. Let A# be amenable and X be a Banach A#-bimodule. Then X is also a
Banach A-bimodule. The right and left module action of A# on X is specified by

x(a, α) = x · a (a, α)x = a · x, x ∈ X, (a, α) ∈ A#.
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Let D ∈ Z1(A#, X ′). Define the map D : (a, α) 7→ D(a), then for (a, α), (b, β) ∈
A#,

D(ab) = D(ab, αβ) = D((a, α)(b, β)) = D(a, α)(b, β) + (a, α)D(b, β)

= D(a, α) · b+ a ·D(b, β) = D(a) · b+ a ·D(b).

Thus the restriction D : A → X ′ of D ∈ Z1(A#, X ′) is a derivation. Next is to
show that D ∈ Z1(A, X ′) is inner. Since A# is amenable then there exists λ ∈ X ′
such that for (a, α) ∈ A#,

D(a, α) = (a, α) · λ− λ(a, α) = (aλ, αλ)− (λa, λα) = (aλ− λa, αλ− λα)

= (aλ− λa, 0).

Thus D(a) = aλ− λa, that is, D is inner and A is amenable.
Alternatively, by identifying A with the ideal {(a, 0) | a ∈ A} in A# via the

isometric isomorphism a 7→ (a, 0), it becomes clear that A is a (maximal) closed
ideal of A# with codimension of one. By applying Lemma 3.3.7, the result follows.

Conversely, let A be amenable, it suffices to show that H1(A#, X ′) = {0}
for a neo-unital Banach A#-bimodule which is also a neo-unital Banach
A-bimodule. Let D : A# → X ′ be a derivation then D(e) = D(e · e) =
e · D(e) + D(e) · e = D(e) + D(e) = 2D(e). This implies that D(e) = 0. Thus
we can consider D as a derivation from A into X ′ and since A is amenable, then
D is inner on A. This coincides with D being inner on A# since D(e) is trivial.
Thus A# is amenable.

Proposition 3.3.9. Let A be a Banach algebra with a bounded approximate iden-
tity, the following are equivalent:

(i). H1(A, X ′) = {0} for each Banach A-bimodule X.

(ii). H1(A, X ′) = {0} for each neo-unital Banach A-bimodule X.

Proposition 3.3.10. Let A be a Banach algebra. If A is amenable then it has a
bounded approximate identity.

Theorem 3.3.11. Let A be a Banach algebra with a bounded approximate identity
which is contained as closed ideal in a Banach algebra B. Let X be a neo-unital
Banach A-bimodule and let D ∈ Z1(A,X ′). Then X is a Banach B-bimodule in
a canonical fashion and there exist a unique extension D ∈ Z1(B,X ′) such that
(i) D|A = D.
(ii) D is continuous with respect to the strict topology on B.
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Proof. See [44].

Proposition 3.3.12. Let A be an amenable Banach algebra and let I be a closed
ideal of A. I is amenable if and only if it has a bounded approximate identity.

Proof. Assume that I is amenable, then by Proposition 3.3.10, I has a bounded
approximate identity. Conversely, suppose that I has a bounded approximate
identity, then it suffices to show by Proposition 3.3.9 that every derivation from
I into a neo-unital Banach I-bimodule is inner. Let X be a neo-unital Banach
I-bimodule and D ∈ Z1(I,X ′), then by Theorem 3.3.11, X is Banach A-bimodule
in a canonical fashion and there is an extension D ∈ Z1(A, X ′) such that D|I = D.
Since A is amenable, then there exists φ ∈ X ′ such that D = D|I(a) = aφ− φa,
a ∈ I. Thus I is amenable.

Proposition 3.3.13. Let A and B be amenable Banach algebras. Then A⊗̂B is
amenable.

Proof. By Theorem 3.3.1, it suffices to show that the Banach algebra A⊗̂B has
a bounded approximate diagonal. Since A and B are amenable, then they both
possess bounded approximate diagonal. Let uα :=

∑n
i=1 r

(α)
i ⊗ s

(α)
i and vβ :=∑m

k=1 x
(β)
k ⊗y

(β)
k such that (uα) ⊂ A⊗̂A and (vβ) ⊂ B⊗̂B are bounded approximate

diagonal for A and B respectively with

lim
α

(uα · a− a · uα) = 0, lim
α
πA(uα)a = a

and
lim
β

(vβ · b− b · vβ) = 0, lim
β
πB(vβ)b = b

respectively. It is known that (A⊗̂A)⊗̂(B⊗̂B) ∼= (A⊗̂B)⊗̂(A⊗̂B) and so, (uα ⊗
vβ) ⊂ (A⊗̂B)⊗̂(A⊗̂B) is a bounded approximate diagonal for A⊗̂B. To see this,
let a ∈ A and b ∈ B, then
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limα limβ πA⊗̂B(uα ⊗ vβ) · (a⊗ b)

= lim
α

lim
β
πA⊗̂B

(
n∑
i=1

r
(α)
i ⊗ s

(α)
i ⊗

m∑
k=1

x
(β)
k ⊗ y

(β)
k

)
· (a⊗ b)

= lim
α

lim
β

m∑
k=1

n∑
i=1

πA⊗̂B

(
r

(α)
i ⊗ x

(β)
k

)
⊗
(
s

(α)
i ⊗ y

(β)
k

)
· (a⊗ b)

= lim
α

lim
β

m∑
k=1

n∑
i=1

(
r

(α)
i s

(α)
i ⊗ x

(β)
k y

(β)
k

)
· (a⊗ b)

=
m∑
k=1

n∑
i=1

lim
α

lim
β
r

(α)
i s

(α)
i a⊗ x(β)

k y
(β)
k b

=
m∑
k=1

n∑
i=1

lim
α

lim
β

(
πA

(
r

(α)
i ⊗ s

(α)
i

)
· a ⊗ πB

(
x

(β)
k ⊗ y

(β)
k

)
· b
)

= lim
α
πA

(
n∑
i=1

r
(α)
i ⊗ s

(α)
i

)
· a⊗ lim

β
πB

(
m∑
k=1

x
(β)
k ⊗ y

(β)
k

)
· b

= lim
α
πA (uα) · a⊗ lim

β
πB (vβ) · b = a⊗ b.

Also,

lim
α

lim
β

((uα ⊗ vβ) · (a⊗ b)− (a⊗ b) · (uα ⊗ vβ)) = lim
α

lim
β

(uαa⊗ vβb− auα ⊗ bvβ)

= lim
α

lim
β
uαa⊗ vβb− lim

α
lim
β
auα ⊗ bvβ = lim

α
lim
β
auα ⊗ bvβ − lim

α
lim
β
auα ⊗ bvβ = 0.

Finally, the boundedness of (uα ⊗ vβ) follows from the boundedness of (uα) and
(vβ).

Corollary 3.3.14. Let A and B be unital Banach algebras. If A and B are
amenable, then A#⊗̂B# is amenable.

Proof. Since A and B are amenable, then by Proposition 3.3.13 A⊗̂B is amenable.
This implies by Proposition 3.3.8 that (A⊗̂B)# = A#⊗̂B# is amenable.

We conclude this section by showing that the first Hochschild cohomology group
of A is trivial for Banach A-bimodules with trivial left module action. First,
we note the following for the dual Banach A-bimodule X. Let A be a Banach
algebra.
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(i) If X is a left Banach A-module, then X ′ becomes a right Banach A-module
through

〈x, φ · a〉 = 〈a · x, φ〉 a ∈ A, x ∈ X,φ ∈ X ′.

(ii) If X is a right Banach A-module, then X ′ becomes a left Banach A-module
through

〈x, a · φ〉 = 〈x · a, φ〉 a ∈ A, x ∈ X ′, φ ∈ X ′.

(iii) If X is a Banach A-bimodule, then X ′ equipped with the left and right
modules actions from (ii) and (i) respectively is a Banach A-bimodule.

Proposition 3.3.15. Let A be a Banach algebra with a bounded right approximate
identity and X be a Banach A-bimodule such that A·X = {0}. Then H1(A, X ′) =
{0}.

Proof. It is clear that X ′ is a right Banach A-module. Since the left action A on
X is trivial, then the right action X ′ · A is also trivial. That is, φ · a = 0 for all
φ ∈ X ′ and a ∈ A. Thus for a continuous derivation D : A → X ′, it follows that

D(ab) = D(a)b+ aD(b) = aD(b) + 0 = aD(b).

Let (eα)α∈∆ be a bounded approximate identity for A and let φ ∈ X ′ be a weak*-
accumulation point of (Deα)α∈∆. Without loss of generality, we may suppose that
φ = weak*- limαD(eα). Then,

D(a) = weak*- lim
α
D(aeα) = weak*- lim

α
(D(a)eα + aD(eα))

= weak*-a lim
α
D(eα) + weak*- lim

α
D(a)eα

= a weak*- lim
α
D(eα) + 0

= a · φ.

That is,
D(a) = a · φ = a · φ− 0 = a · φ− φ · a

Thus D = adφ.
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3.4 Weak Amenability of Banach Algebras

3.4.1 Definition and some general results

The notion of weak amenability was introduced by Bade et al. in [4] for commu-
tative Banach algebras with the aim of studying classes of Banach algebra which
satisfy H1(A, A′) = {0} but not amenable. Such Banach algebras are referred to
as weakly amenable. For example, L1(G) is amenable if and only if G is amenable
as a locally compact group but L1(G) is weakly amenable irrespective of whether
G is amenable or not. Thus the class of weakly amenable Banach algebras is
larger then the class of amenable Banach algebras. Clearly, all amenable Banach
algebra are weakly amenable but the converse is not true. A counter example
is the Banach algebra lp (1 ≤ p < ∞) with pointwise multiplication which lacks
a bounded approximate identity. A commutative Banach algebra A is weakly
amenable if the first Hochschild cohomology H1(A, X) with coefficients in sym-
metric modules vanishes. That is every bounded inner derivation D : A → X is
zero for every commutative Banach A-bimodule X. Since this definition makes no
sense for non-commutative Banach algebra, Johnson in [25] gave a definition for
general Banach algebra. We recall from [25] that a Banach algebra A is weakly
amenable if every continuous derivation D : A → A′ is inner.

Let X be a Banach A-bimodule. Then we can make X into a Banach A#-
bimodule by defining e ·x = x ·e = x for all x ∈ X. Now, consider the following
short exact sequence of linear maps

Π : 0→ X → B(A#, X)→ B(A#, X)/ ImD1 → 0,

where B(A#, X) is the set of all bounded linear operators from A# into
X, D1 : X → B(A#, X) is defined by D1(x) : a 7→ x · a, a ∈ A# and
D2 : B(A#, X)→ B(A#, X)/ ImD1.

For all a ∈ A and D ∈ B(A#, X), if we define the left action by

a ·D : b→ a ·D(b), A# → X

and the right action by

D · a : b→ D(ab), A# → X,

then
(i) B(A#, X) is a Banach A-bimodule,
(ii) D1 and D2 are Banach A-bimodule homomorphisms.
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This follows from the fact that D1(x) ∈ B(A#, X) and hence satisfies D1(xy) =
D1(x)D1(y) for all x, y ∈ X. Also, from the definition of D2, it follows that

D2(D1(xy)) = D1(xy) + ImD1 = D1(x)D1(y) + ImD1

= (D1(x) + ImD1)(D1(y) + ImD1)

= D2(D1(x))D2(D1(y)).

Let D ∈ B(A, X) and e be the identity element in A#, then the bounded linear
map D : A# → X is an extension of D : A → X whenever D(e) = 0. With this
in mind, we recapture the definition of continuous derivations from A into X in
the following proposition.

Proposition 3.4.1. Let A be a Banach algebra, D : A → X be a bounded
linear map and let Π be the short exact sequence defined above. Suppose D1 and
D2 are Banach A-bimodule homomorphisms defined above . Then the following
statements are equivalent:

(i) D is a derivation;

(ii) D1 ◦D = δD;

(iii) D2 ◦ δD = 0.

Proof. We shall first show that (ii) ⇐⇒ (i) and then (ii) ⇐⇒ (iii).

Assume that (ii) holds. Since D1(x) : a 7→ x · a for a ∈ A# and x ∈ X, then

(D1 ◦D) · a(b) = D1((D · a)(b)) = (D · a)(b).

Also,
δD = D · a(b)− a ·D(b) = D(ab)− a ·D(b).

Thus statement (ii) implies that (D · a)(b) = D(ab)− a ·D(b). That is D(ab) =
(D · a)(b) + a ·D(b).
Case 1. Suppose that b = e ∈ A#, then by using the right module operation

D(a) = D(ab) = D(a · e) = (D · a)(e) + a ·D(e) = (D · a)(e) + a · 0
= (D · a)(e) + 0 = D(ae) = D(a).

Whence D = D and so (i) holds.
Case 2. If b 6= e ∈ A#, then D is necessarily the restriction of D on A. Thus
(i) holds.
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Conversely, assume that D : A → X is a derivation. Since D(a) =
D(a) for a ∈ A, and D(e) = 0 for e ∈ A#, then D is also a derivation from A#

to X. Thus for all a ∈ A, b ∈ A#, it then follows that D(ab) = D(a)b + aD(b).
By using the left and right action of A on the Banach A-bimodule B(A, X), then
for a, b ∈ A#,

D · a(b)− a ·D(b) = D(ab)− a ·D(b) = D(a) · b+ a ·D(b)− a ·D(b)

= D(a) · b = D1(D(a))(b) = (D1 ◦D)(a)(b).

Whence D · a− a ·D = (D1 ◦D)(a) which gives δD = D1 ◦D and so (ii) holds.

(ii) =⇒ (iii). Let D1 ◦D = δD. Then for D2(D1 ◦D) = D2(δD) = D2(D · b−
b ·D), (b ∈ A#). Since the sequence Π is exact, then

(E1) D2 is onto and D1 is one-to-one,

(E2) ImD1 = kerD2.

By the definition of D, we can assume that D · b− b ·D is in the image of D1 and
then show that it is also in the kernel of D2. Let D · b − b · D ∈ ImD1, then by
(E2),

D · b− b ·D = D2(D · b− b ·D) = 0.

Thus D2 ◦ δD = 0.
Conversely, assume that (iii) holds. Then by exactness of Π, it follows that

for each a ∈ A, there is a unique xa ∈ X such that xa · b = D(ab) − a ·D(b) for
all b ∈ A#. Applying this to b = e, we obtain xa = D(a), so that (ii) holds.

3.4.2 Hereditary properties

The following important propositions are from [9].

Proposition 3.4.2. Let A be a weakly amenable Banach algebra. Then

(i) A is essential,

(ii) there are no non-zero continuous point derivations on A,

(iii) suppose that A is commutative, then Z1(A, X) = {0} for every symmetric
Banach A -bimodule X.

Proposition 3.4.3. Let A be a weakly amenable, commutative Banach algebra,
let I be a closed ideal in A, and let X be a Banach I-module. Then D|I4 = 0 for
each D ∈ Z1(I,X).
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The following characterization of weakly amenable commutative Banach alge-
bra from [4] is important for the remaining part of this section:
Let A be a commutative Banach algebra. Let D ∈ Z1(A,A′). Then A is weakly
amenable if and only if D = 0.

Proposition 3.4.4. Let A be a Banach algebra.

(i) Suppose that A is commutative and B is another commutative Banach alge-
bra such that ϕ : A → B is a continuous homomorphism with dense range.
Then B is weakly amenable if A is weakly amenable.

(ii) Let I be a closed ideal of A. If I and A/I are both weakly amenable, then
A is weakly amenable.

(iii) The closed ideal I of a commutative weakly amenable Banach algebra A is

weakly amenable if and only if I
2

= I.

(iv) A is weakly amenable if and only if A# is weakly amenable.

(v) Let A and B be weakly amenable commutative Banach algebras. Then A⊗̂B
is weakly amenable.

Proof. (i) We make B into a Banach A-bimodule with module operation spec-
ified by

a · b = ϕ(a)b, b · a = b · ϕ(a), (a ∈ A, b ∈ B).

We shall show that every continuous derivation D : B → B′ is inner. The
linear map D ◦ ϕ : A → B′ is a derivation, since for a, a′ ∈ A,

(D ◦ ϕ)(aa′) = D(ϕ(aa′)) = D(ϕ(a)ϕ(a′)) = D(ϕ(a))ϕ(a′) + ϕ(a)D(ϕ(a′))

= (D ◦ ϕ)(a)a′ + a(D ◦ ϕ)(a′).

Since A is commutative and weakly amenable, then by Proposition 3.4.2(iii),
D ◦ ϕ = 0. Now, B is commutative also implies that b · f = f · b for b ∈ B,
f ∈ B′. Since ϕ(A) = B, then for (bα)α∈∆ ⊂ ϕ(A) such that bα → b ∈ B, it
follows that

0 = b · f − f · b = lim
α

(bαf)− lim
α

(fbα) = lim
α

(bαf − fbα)

= lim
α
δf (bα) = δf (lim

α
bα) = δf (b).

So necessarily D = b · f − f · b = 0. Whence H1(B,B′) = {0}. Thus, B is
weakly amenable.
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(ii) We run the standard argument of the proof of Proposition 3.3.6 with modi-
fications where necessary. Let D ∈ Z1(A,A′), then the restriction map D|I
is a derivation into A′, that is, D|I ∈ Z1(I,A′). Let λ1 ∈ A′, define a con-
tinuous derivation D̃ : A → A′ by D̃ = D − δλ1 . Indeed, D̃ is a derivation
since the sum or difference of any two derivation is a derivation. Since I is
weakly amenable, there exists λ1 ∈ A′ such that D|I = δλ1 . Thus D̃ = 0
when restricted to I. Next, we define

F := cl{a · a′ + b · b| a, b ∈ I, a′, b′ ∈ A}

and
F 0 := {λ ∈ A′| a · λ = λ · a = 0∀a ∈ I}.

Clearly, F is closed ideal of the Banach algebra A and also a closed sub-
module of the Banach A-bimodule A (that is, A is considered a Banach
bimodule over itself) and so A/F is a Banach A/I bimodule. F 0 is a dual
Banach A/I bimodule and so F 0 ∼= (A/I)′. Let a ∈ A, b ∈ I then

0 = D̃|I(ab) = D̃(ab) = D̃(a)b+ aD̃(b) = D̃(a)b+ 0 = D̃(a)b.

Thus for every a′ in the Banach A-bimodule A, a in the Banach algebra A
and b ∈ I, we have

〈a′ · b, D̃(a)〉 = 〈a′ · b, (D − δλ1)(a)〉 = 〈a′, b · (D − δλ1)(a)〉 = 0,

〈b · a′, D̃(a)〉 = 〈b · a′, (D − δλ1)(a)〉 = 〈a′, (D − δλ1)(a) · b〉 = 0.

That is 〈a′ · b, D̃(a)〉 = 〈b · a′, D̃(a)〉 = 0 and so there exists λ ∈ A′ such
that 0 = D̃(a)(a′ · b) = λ(a′ · b) and 0 = D̃(a)(b · a′) = λ(b · a′), that is,
D̃(a)(a′ · b) = D̃(a)(b · a′) = 0. Thus D̃ : A → F 0, that is D̃(A) ⊂ F 0. Now,
define D1 : A/I → F 0 by D1 : a+I 7→ D̃(a), that is, D1(a+I) = (D−δλ)(a).
Since A/I is weakly amenable, then there exists λ ∈ F 0 such that D1 = δλ.
Thus δλ = D − δλ1 which implies D = δλ + δλ1 = δλ+λ1 where λ + λ1 ∈ A′.
Thus A is weakly amenable

(iii) Assume that I is weakly amenable, then by Proposition 3.4.2(i), I is essen-
tial, that is, I2 = I.

Conversely, assume that I2 = I, then I4 = I2 = I. Let D ∈ Z1(I, I ′), then
D|I4 = 0 by Proposition 3.4.3. Thus D|I = 0, that is D is the zero derivation
when restricted to I. Since A is commutative, then I is also commutative.
Now, I is commutative also implies that a · λ = λ · a for a ∈ I and λ ∈ I ′.
So, D(a) = a · λ − λ · a = 0 (a ∈ I). Thus D is inner and I is weakly
amenable.
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(iv) The proof is much similar to that of Proposition 3.3.8. Let A# be weakly
amenable and A be a Banach A#-bimodule. Clearly, A is also a Banach
A-bimodule. The right and left module action of A# on A is specified by

x · (a, α) = xa (a, α) · x = ax, x ∈ A, (a, α) ∈ A#.

Let D̃ ∈ Z1(A#,A′). Define the map D̃ : (a, α) 7→ D(a), then for
(a, α), (b, β) ∈ A#, it follows that

D(ab) = D̃(ab, αβ) = D̃((a, α)(b, β)) = D̃(a, α)(b, β) + (a, α)D̃(b, β)

= D(a)(b, β) + (a, α)D(b) = D(a)b+ aD(b).

Thus the restriction D : A → A′ of D̃ ∈ Z1(A#,A′) is a derivation. Next
is to show that D ∈ Z1(A,A′) is inner. Since A# is weakly amenable then
there exists λ ∈ A′ such that (a, α) ∈ A#,

D(a, α) = (a, α) · λ− λ(a, α) = (aλ, αλ)− (λa, λα) = (aλ− λa, αλ− λα)

= (aλ− λa, 0).

Thus D(a) = aλ− λa, that is, D is inner and A is weakly amenable.

Conversely, let A be weakly amenable and let D ∈ Z1(A#,A′). Since A is
unital, then for λ ∈ A′, λ · e = e · λ = λ. Now, for D ∈ Z1(A#,A′),

D(e) = D(e.e) = D(e)e+ eD(e) = D(e) +D(e) = 2D(e).

Thus D(e) = 0 and so D can be considered as a derivation from A into A′
and since A is weakly amenable, then D is inner on A. This coincides with
D being inner on A# since D(e) is trivial and so A# is weakly amenable.

(v) We adopt the proof in [10]. Let X be a Banach (A#⊗̂B#)-bimodule. Let
D ∈ Z1(A#⊗̂B#, X), then we can make X into a Banach A-bimodule. The
module operation is specified by

a · x = (a⊗ eB)x, x · a = x(a⊗ eB).

Define D(a ⊗ eB) = D(a), then for (a ⊗ eB), (a′ ⊗ eB) ∈ A#⊗̂B#, it holds
that

D(aa′) = D((a⊗ eB)(a′ ⊗ eB)) = D(a⊗ eB)(a′ ⊗ eB) + (a⊗ eB)D(a′ ⊗ eB)

= D(a)(a′ ⊗ eB) + (a⊗ eB)D(a′) = D(a)a′ + aD(a′).
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Thus D ∈ Z1(A#, X) and so the restriction D|A#⊗eB is in Z1(A#, X). By
(iv) above, A# is weakly amenable and commutative, and so D|A#⊗̂eB = 0.
Similarly, D|eA⊗B# = 0. Thus D = 0 and A#⊗̂B# is weakly amenable. Since

A and B are weakly amenable, then by Proposition 3.4.2(i), A2 = A and
B2 = B. Set I = A⊗̂B. Then I is closed ideal in A#⊗̂B#, and I2 = I and
so I is weakly amenable by (iii) above.

Corollary 3.4.5. Let A be a commutative Banach algebra. If A is weakly
amenable then A⊗̂A is weakly amenable.

Proof. The result follows easily by setting B = A in Proposition 3.4.4(v).

Corollary 3.4.6. Let A and B be commutative Banach algebras.

(i) If A# and B# are wealy amenable, then A#⊗̂B# is weakly amenable.

(ii) If A# and B# are weakly amenable, then A⊗̂B is weakly amenble.

(iii) If A and B are weakly amenable, then A#⊗̂B# is weakly amenable.

Proof. (i) Follows directly from the proof of Proposition 3.4.4(v).

(ii) Since A# and B# are weakly amenable, then A and B are weakly amenable
by Proposition 3.4.4(iv), and so the result holds by 3.4.4(v).

(iii) Since A and B are weakly amenable, then A# and B# are weakly amenable
by 3.4.4(iv), and so the result holds by Corollary 3.4.6(i).

Corollary 3.4.7. Let A and B be commutative Banach algebras. Suppose that I
and K are closed two sided ideals of A and B respectively. If A and B are both
weakly amenable. Then

(i) The Banach algebra A/I is commutative and weakly amenable.

(ii) The Banach algebra B/K is commutative and weakly amenable.

(iii) The Banach algebra A/I ⊗̂ B/K is weakly amenable.
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Proof. (i) There is a natural canonical map ϕ from A onto A/I given by

ϕ : a 7→ a+ I : A → A/I.

This map is surjective, has a dense range in A/I, continuous and an homo-
morphism. Indeed, for a ∈ A,

ϕ(ab) = ab+ I = (a+ I)(b+ I) = ϕ(a)ϕ(b).

Now, since A is weakly amenable, then A/I is also weakly amenable by
Proposition 3.4.4(i).

That A/I is commutative follows easily from the assumption that A is com-
mutative. To see this, let a1, a2 ∈ A then a1 · a2 = a2 · a2 implies that
(a1 + I)(a2 + I) = a1a2 + I = a2a1 + I = (a2 + I)(a1 + I).

(ii) Proof is similar to the argument of the proof of Corollary 3.4.7(i). Set B = A
and K = I in (i) above and then the result follows.

(iii) By (i) and (ii) above, A/I and B/K are both weakly amenable and com-
mutative. The remaining part of the proof then follows from Proposition
3.4.4(iv).

3.5 Character Amenability of Banach Algebras

3.5.1 Definitions

As earlier discussed, several modifications of the original notion of amenability
in Banach algebras are introduced after the pioneering work of Johnson [24].
One of such modification was initiated by Lau for a class of F -algebras in [29]
and was later generalized by Kaniuth, Lau and Pym in [27]. Monfared in [37]
extended these notions and initiated the notion of character amenability. This
is stronger than left amenability and also relaxes the constraint in the definition
of amenability given by Johnson in [24]. This is because the class of Banach A-
bimodules that are required in the definition of character amenability are those
in which either the left or right module actions are defined by the characters on
A. Thus character amenability is weaker than amenability introduced in [24].
For a Banach algebra A, we recall that a character on A is an algebra homomor-
phism ϕ : A → C. The space of all characters on A, called the character space of
A is denoted by σ(A)).
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Denote by MA
ϕl the collection of all Banach A-bimodule X whose right module

action is defined by x · a = ϕ(a)x (a ∈ A, x ∈ X,ϕ ∈ σ(A)) and let MA
ϕr be the

collection of all Banach A-bimodule X for which the left module action is given
by a · x = ϕ(a)x (a ∈ A, x ∈ X,ϕ ∈ σ(A)).

Let A be a Banach algebra and let the right module action of A on X be as given
above. Then for f ∈ X ′, a ∈ A, ϕ ∈ σ(A),

〈x, a · f〉 = 〈x · a, f〉 = 〈ϕ(a)x, f〉 = 〈x, ϕ(a)f〉.

The last equality follows from the linearity of f . Thus a · f = ϕ(a)f which gives
the left module action of A on X ′. Similarly, from the left module action of A on
X, we can obtain the right module action of A on X ′ to be f · a = ϕ(a)x. The
following definition are taken from [36] and [37].

Definition 3.5.1. Let A be a Banach algebra and ϕ ∈ σ(A).

(i) A is left ϕ-amenable if every continuous derivtion D : A → X ′ is inner for
every X ∈MA

ϕr.

(ii) A is right ϕ-amenable if every continuous derivation D : A → X ′ is inner
for every X ∈MA

ϕl.

(iii) A is left character amenable if it is left ϕ-amenable for every ϕ ∈ σ(A).

(iv) A is right character amenable if it is right ϕ-amenable for every ϕ ∈ σ(A).

(v) A is character amenable if it is both left and right character amenable.

3.5.2 Some general results

We now give explicit proofs of some important general results on character
amenability in [34], [33], [35] and [37]. We begin with the following much needed
characterization whose proof will be appropriate for the next section.

Proposition 3.5.2. Let I be a closed two sided ideal of a character amenable
Banach algebra A . Then I is character amenable if and only if I has a bounded
approximate identity.

An immediate implication of Proposition 3.5.2 is that if A is character
amenable then it has a bounded approximate identity and hence factors. Thus,
the much desired factorization property is extended from the class of amenable
Banach algebra to the class of character amenable ones. The following lemma is
an analogue of Poposition 3.3.9 for character amenable Banach algebras.
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Lemma 3.5.3. Let A be a Banach algebra with a bounded approximate identity
and ϕ be a character on A, then the following statements are equivalent:

(i) H1(A, X ′) = {0} for each Banach A-bimodule X ∈MA
ϕr.

(ii) H1(A, X ′) = {0} for each left neo-unital Banach A-bimodule X ∈MA
ϕr.

Proposition 3.5.4. Let A be a character amenable Banach algebra and I a closed
two sided ideal of codimension one in A.

1. Then

(i) A has a bounded approximate identity and hence factors;

(ii) the unitization algebra A# is character amenable;

(iii) I has a bounded approximate identity;

(iv) I is character amenable.

2. Suppose B is another Banach algebra and φ : A → B is a continuous ho-
morphism with dense range, then

(i) then B is character amenable;

(ii) if I is a closed ideal of A, then A/I is character amenable;

(iii) if both I and A/I are character amenable then A is also character
amenable ;

(iv) A×B is character amenable if and only if both A and B are character
amenable.

Proof. (i) Without loss of generality, let ϕ ∈ σ(A) and X be a Banach A-
bimodule with the left and right actions given by a · x = ϕ(a)x and x · a = 0
respectively for all x ∈ X. Since A is character amenable, then in particular,
A is ϕ-amenable and by (Theorem 1.1 of [27]), H1(A, X ′) = {0} for every X.
Moreover, by (Propositions 1.5 and 1.6 of [24]), the statement that H1(A, X ′) =
{0} for every X for which the right module action is trivial is equivalent to the
existence of a bounded left approximate identity for A. Similar argument also
holds for the existence of a right bounded approximate identity for A. That A
factors is clear.

(ii) Let A be character amenable, then by Lemma 3.5.3, it suffices to show that
H1(A#, X ′) = {0} for X ∈ MA#

ϕr , where X is neo-unital. Let D̃ ∈ Z1(A#, X ′)
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then D̃(e) = D̃(e·e) = D̃(e)·e+e·D̃(e) = D̃(e)+D̃(e) = 2D̃(e). This implies that
D̃(e) = 0. For X ∈MA#

ϕr , it is clear that X ∈MA
ϕr and so we can consider D̃ as a

derivation fromA into X ′ and sinceA is character amenable, then D̃ is inner. This
coincides with D̃ being inner on A# since D̃(e) is trivial. Thus, H1(A#, X ′) = {0}
for each neo-unital X ∈ MA#

ϕr and by Lemma 3.5.3, H1(A#, X ′) = {0} for each

X ∈ MA#

ϕr . Thus A# is left character amenable. Similar argument holds for
the right character amenability of A# and so the character amenability of A
immediately follows.

Conversely, assume that A# is right character amenable. For ϕ ∈ σ(A), let
X ∈ MA

ϕl. We shall show that H1(A, X ′) = {0} for every X ∈ MA
ϕl. Define

ϕ̃ : A# → C by

ϕ̃(a, z) = ϕ(a) + z (z ∈ C, ϕ̃ ∈ σ(A#)).

Indeed ϕ̃ ∈ σ(A#) and is linear. Since for any (a, z), (a′, z′) ∈ A#,

ϕ̃((a, z)(a′, z′)) = ϕ̃(aa′ + az′ + za′, zz′) = ϕ(aa′ + az′ + za′) + zz′

= ϕ(aa′) + ϕ(az′) + ϕ(za′) + zz′

= ϕ(a)ϕ(a′) + ϕ(a)z′ + zϕ(a′) + zz′

= (ϕ(a) + z)(ϕ(a′) + z′) = ϕ̃(a, z)ϕ̃(a′, z′).

Also,

ϕ̃((a, z) + (a′, z′)) = ϕ̃(a+ a′, z + z′) = ϕ(a+ a′) + z + z′

= ϕ(a) + z + ϕ(a′) + z′ = ϕ̃(a, z) + ϕ̃(a′, z′)

and for any α ∈ C,

ϕ̃(α(a, z)) = ϕ̃(αa, αz) = ϕ(αa) + αz = α(ϕ(a) + z) = αϕ̃(a, z).

Moreover, X is also a Banach A#-bimodule, in fact X ∈MA#

ϕ̃l . The left and right

module action of A# on X are given by

(a, z)·x = a·x+zx = ϕ̃(a, z)x, x·(a, z) = x·a+zx = ϕ̃(a, z)x ((a, z) ∈ A#, x ∈ X).

Let D̃ ∈ Z1(A#, X ′). Define the map D̃ : (a, z) 7→ D(a). Then we show that D
is an inner derivation from A into X ′. For a, b ∈ A, z, z′ ∈ C,

D(ab) = D̃(ab, zz′) = D̃((a, z)(b, z′)) = D̃(a, z) · (b, z′) + (a, z) · D̃(b, z′)

= D̃(a, z) · b+ a · D̃(b, z′) = D(a) · b+ a ·D(b).
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Hence the restriction D : A → X ′ of D̃ is a derivation. Now, since A# is character
amenable by assumption, then there exists λ ∈ X ′ ∈ MA

ϕ̃l such that D̃(a, z) =

(a, z)·λ−λ·(a, z) = a·λ−λ·a (a, z) ∈ A#. Whence D(a) = D̃(a, z) = a·λ−λ·a
and D is inner.

Thus A is right character amenable. Similar argument holds for the left char-
acter amenability of A. Hence A is character amenable.

(iii) From (i) above, A has a bounded approximate identity, say (eα). Also,
since I is a closed ideal of codimension one in A, then we can write I = kerϕ
for some ϕ ∈ σ(A). By adjoining a unit e to A, we can write the unitization
A# = A⊕ Ce. Now, for ϕ ∈ σ(A), we define the extension ϕ̂ ∈ σ(A) by

ϕ̂(â) = ϕ̂(a+ ze) = ϕ(a) + z (â ∈ A#, a ∈ A, z ∈ C).

Thus, J = {â ∈ A# : z = −ϕ(a)} = ker ϕ̂ has codimension one as a subspace of
A# so that A# = A ⊕ Ce = J ⊕ Ce ∼= J#. Since A# is character amenable by
(ii) above, then it follows that J# is character amenable. Thus J is also character
amenable and so has a bounded approximate identity (sα) by (i). For each β, set

sβ = aβ + cβe

for some aβ ∈ A and cβ ∈ C such that cβ = −ϕ(aβ), that is, sβ ∈ ker ϕ̂. We now
construct a bounded approximate identity for I. Observe that fα = ϕ(eα)−1eα is
a bounded approximate identity for A and ϕ(eα)→ 1. Indeed,

ϕ(a) = ϕ(eα · a) = ϕ(a · eα) = ϕ(eα)ϕ(a).

Thus ϕ(eα) → 1. Also, fα · a = ϕ(eα)−1eα · a = ϕ(eα)−1 · a → a and a · fα =
a ·ϕ(eα)−1eα = a ·ϕ(eα)−1 → a. Moreover, ϕ(fα)→ 1 since (fα) is also a bounded
approximate identity for A. Set

iβ,α = aβ + cβfα,

then (iβ,α) ⊂ kerϕ = I since ϕ(iβ,α) = ϕ(aβ) + ϕ(cβfα) = ϕ(aβ) + cβϕ(fα) =
ϕ(aβ) + cβ · 1 = ϕ(aβ) − ϕ(aβ) = 0. So (iβ,α) is a bounded net in I. Also, since
(sβ) is a bounded approximate identity for J , then for all b ∈ I ⊂ J , sβb→ b and
bsβ → b. Finally,

iβ,αb = aβb+ cβfαb = sβb− cβe.b+ cβfαb = sβb+ cβ(fαb− b)→ b+ cβ(b− b) = b

and

b · iβ,α = baβ + bcβfα = bsβ − bcβe+ bcβfα = bsβ + cβ(bfα− b)→ b+ cβ(b− b) = b.
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Thus (iβ,α) is a bounded approximate identity for I.

(iv) Since I has a bounded approximate identity by (i), then it is charac-
ter amenable by Proposition 3.5.2.

3.5.3 Characterizations

In this subsection, we characterize character amenability in terms of ϕ-
approximate diagonal and ϕ-virtual diagonal. The following definitions would
be useful in the sequel. For more details, see [27], [36] and [37]. Definition 3.5.6
is due to Hu et al. in [36].

Definition 3.5.5. Let ϕ be a character on a Banach algebra A and π : A⊗̂A → A
be the diagonal operator. An element M in the projective tensor product A⊗̂A
satisfying the following conditions

ϕ(π(M)) = 1 and a ·M = ϕ(a)M = M · a

is called a ϕ-diagonal for A.

Definition 3.5.6. Let A be a Banach algebra and let ϕ be in the character space
of A. Let π : A⊗̂A → A be the diagonal operator and let π′′ : (A⊗̂A)′′ → A′′ be
the second dual of π. Then

(i) a net (mα) ⊂ A⊗̂A is called a ϕ-approximate diagonal for A if

(i) ‖mα · a− ϕ(a)mα‖ → 0, ‖a ·mα − ϕ(a)mα‖ → 0, (a ∈ A)

(ii) 〈mα, ϕ⊗ ϕ〉 = ϕ(π(mα))→ 1.

(ii) an element M ∈ (A⊗̂A)′′ satisfying

(i) M · a = ϕ(a)M, a ·M = ϕ(a)M, (a ∈ A)

(ii) 〈ϕ⊗ ϕ,M〉 = π′′(M)ϕ = 1

is called a ϕ-virtual diagonal for A.

The next result characterizes ϕ-amenability in terms of ϕ-approximate di-
agonal and ϕ-virtual diagonal and so it is an analogue of characterization of
amenability in terms of bounded approximate diagonal and virtual diagonal.

Theorem 3.5.7. Let A be a Banach algebra and ϕ ∈ σ(A). The following state-
ments are equivalent:
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(i) A is ϕ-amenable.

(ii) A has a bounded ϕ-approximate diagonal.

(iii) A has a ϕ-virtual diagonal.

(iv) There exists f ∈ A′′ such that f(ϕ) = 1 and a · f = ϕ(a)f (a ∈ A).

(v) There exists a bounded net (aα) in A such that ϕ(aα) = 1 for all α and

‖aaα − ϕ(a)aα‖ → 0 (a ∈ A).

Remark 3.5.8. We remark that ϕ-amenability can also be characterized in terms
of the existence a of certain Hahn-Banach extension property as shown in [27].
The proof is a variant of the proof given in [28].

Theorem 3.5.9. Let ϕ be in the character space of the Banach algebra A, then
the following statements are equivalent:

(i) A is ϕ-amenable.

(ii) For any Banach A-bimodule X ∈MA
ϕl and any Banach submodule Y of X,

each linear function in Z(A, Y ′) extends to some element of Z(A, X).

(iii) For any Banach A-bimodule X ∈ MA
ϕl, there exists a continuous projection

from X ′ onto Z(A, X ′) which commutes with every other weak*continuous
bounded linear operator from X ′ into X ′ commuting with the action of A on
X ′.

.
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Chapter 4

Generalized Notions of
Amenability

In this chapter, the approximate versions of the notions of amenability studied in
the previous chapter are considered. These approximate versions have been found
to contain larger classes of Banach algebras than their corresponding original
notions. For instance, amenable Banach algebra are approximately amenable but
the converse is not generally true. A counter example is found in ([19], Example
8.2). The generalized notions of amenability was initiated in [19] with the hope of
finding a Banach algebra without bounded approximate identity but satisfy any
of these generalized notions. The reason for this is that bounded approximate
identity is a necessary condition for amenability and so Banach algebras without
bounded approximate identity can not be amenable. In this chapter, we studied
some of these generalized notions of amenability, discussed some important general
results, hereditary properties and characterization on them.

4.1 Definitions with Examples

Definition 4.1.1. Let A be a Banach algebra and let X be a Banach A-bimodule.

(i) A derivation D : A → X is said to be approximately inner if there exists a
net (xα) in X such that

D(a) = lim
α

(a · xα − xα · a), (a ∈ A).

(ii) A is said to be approximately amenable if every continuous derivation D :
A → X ′ is approximately inner for every Banach A-bimodule X.
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(iii) A is said to be approximately contractible if every continuous derivation
D : A → X is approximately inner for every Banach A-bimodule X.

(iv) A is said to be approximately weakly amenable if every continuous derivation
D : A → A′ is approximately inner.

Example 4.1.2. (i) The group algebra L1(G) is approximately amenable if and
only if the locally compact group G is amenable.

(ii) The measure algebra M(G) on a locally compact group G is approximately
amenable if and only if G is amenable.

(iii) If the group G has an open abelian subgroup, then the Fourier algebra A(G)
is approximately amenable if G is amenable.

(iv) The Fourier algebra A(G) is not approximately amenable for G = F2, where
F2 is the free group on two generators.

(v) The second dual algebra L1(G)′′ is approximately amenable if and only if G
is a finite group.

For details on the above example see [30].

4.1.1 Some general results

Proposition 4.1.3. Let A and B be Banach algebras. Suppose that ϕ : A → B
is a continuous epimorphism. If A is approximately amenable, then so is B.

Proof. We shall show that every continuous derivation D : B → Y ′ is approxi-
mately inner for every Banach B-bimodule Y with the module action given by

a · y = ϕ(a)y, y · a = yϕ(a), a ∈ A, y ∈ Y.

The map D ◦ ϕ : A → Y is a continuous derivation since for a, b ∈ A,

(D ◦ ϕ)(ab) = D(ϕ(ab)) = D(ϕ(a)ϕ(b))

= D(ϕ(a))ϕ(b) + ϕ(a)D(ϕ(b))

= D(ϕ(a))b+ aD(ϕ(b))

= (D ◦ ϕ)(a)b+ a(D ◦ ϕ)(b).

Since D and ϕ are both continuous, then their composition D ◦ϕ is a continuous.
Next is to show that this derivation is approximately inner. In fact, this follows
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easily from the hypothesis that A is approximately amenable. Thus, there exist
a net (sν) ⊂ X ′ satisfying

D(ϕ(a)) = (D ◦ ϕ)(a) = lim
ν

(ϕ(a) · sν − sν · ϕ(a)), a ∈ A.

Thus D is approximately inner and so B is approximately amenable.

Remark 4.1.4. If I is a closed ideal of the Banach algebra A, we know that
there is a natural epimorphism between A and A/I. Thus, by Proposition 4.1.3,
we expect that the approximate amenability of A can be transferred to A/I. The
following Corollary immediately follows.

Corollary 4.1.5. Let I be a closed two-sided ideal of a Banach algebra A. Then

(i) A/I is approximately amenable if A is approximately amenable

(ii) A is approximately amenable if I is amenable and A/I is approximately
amenable.

We omit the proof of the following Proposition which is a slight variation of
standard argument which hold for amenable Banach algebras considered in Section
3.3.

Proposition 4.1.6. Let A be an approximately amenable Banach algebra with a
bounded approximate identity and B an amenable Banach algebra. Then A⊗̂B is
approximately amenable.

Lemma 4.1.7. Let A be a unital Banach algebra with identity e, X an A-
bimodule, D : A → X ′ a derivation. Then

1. there is a derivation D1 : A → e ·X ′ · e and η ∈ X ′ such that
(i) ‖η‖ ≤ 2CX‖D‖,
(ii) D = D1 + δη,

2. there is a net (sν) ⊂ e ·X ′ · e and η ∈ X ′ such that
(i) ‖η‖ ≤ 2CX‖D‖
(ii) D = δη + lim δsν .

Proof. See Lemmas 2.3 and 2.4 of [19].

Proposition 4.1.8. A is approximately amenable if and only if A# is approxi-
mately amenable.
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Proof. Let A# be approximately amenable and D : A# → X ′ be a derivation
where X is an A-bimodule. By Lemma 4.1.7, D = D1 + δη. Now, for the identity
e ∈ A#, it follows that D1(e) = 0. Indeed, since D1 : A# → e · X ′ · e, then
there exists φ ∈ X ′ such that D1(a) = e · φ · e for all a ∈ A#. In particular,
D1(e) = e · φ · e and

D1(e) = D1(e·e) = D1(e)·e+e·D1(e) = (e·φ·e)·e+e·(e·φ·e) = e·φ·e+e·φ·e = 2D1(e)

which gives 2D1(e)−D1(e) = 0. That is, D1(e) = 0. Thus, the restriction of D1

on A is approximately inner and so A is approximately amenable.

Conversely, assume that A is approximately amenable. Let D : A → X ′

be a derivation which we extend to A# by setting D(e) = 0. This extension is
approximately inner on A# and so A# is approximately amenable.

Let A and B be approximately amenable Banach algebras. We ask if the direct
sum A⊕B will also be approximately amenable and if so, under what condition?
A few results have been obtained about this in the literature. In fact, it was shown
in [19] that if A and B each has a bounded approximate identity then A⊕B would
also be approximately amenable. The result was then extended to a more general
case of A# ⊕ B# from where the approximate amenablility of the closed ideal
A ⊕ B can be obtained from Corollary 4.1.14 which we shall prove in the next
section. An improvement on this result was given in [20]. Indeed the authors
in [20] proved the sufficiency of the existence of bounded approximate identity
for only one of A or B. By observing a close relationship between the existence
of a two sided approximate identity in approximately amenable Banach algebras
and the approximate amenability of the direct sum of approximately amenable
Banach algebras, they obtained the following result in [20].

Proposition 4.1.9. Let A and B be approximately amenable Banach algebras.
Suppose that one of A or B has a bounded approximate identity, then A ⊕ B is
approximately amenable.

The result proved by Ghahramani and Read in [21] shows that the condition
of the existence of bounded approximate identity for either A or B cannot be
removed. The authors in [21] constructed a Banach algebraA that has no bounded
approximate identity and then showed that the direct sum A⊕Aop (where Aop is
the opposite algebra) is not approximately amenable.

Let A be an approximately amenable Banach algebra, a problem of interest is
to determine whether or not a closed ideal of A can inherit the approximate
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amenability property of A. A major result proved in the following section would
be needed to establish this. Hence, we deal with this interesting problem in the
later part of the next section.

4.1.2 Characterizations

The following propositions are important for this section.

Proposition 4.1.10. The Banach algebra A has a bounded approximate identity
if and only if A′′ has a right identity.

Proof. See Proposition 28.7 of [6].

Proposition 4.1.11. Let A be a Banach algebra with a bounded approximate
identity. A is approximately amenable if and only if every derivation into the
dual of any neo-unital bimodule is approximately inner.

Proof. See Proposition 2.5 of [19].

Let π : A⊗̂A → A be the diagonal operator, we recall that an approximate
diagonal for A is a net (mα) in A⊗̂A such that for a ∈ A, a ·mα −mα · a → 0
and aπ(mα)→ a. In the same way, (A⊗̂A)′′ ∼= A′′⊗̂A′′ and so π′′ : (A⊗̂A)′′ →
A′′. Thus (Mν) ⊂ (A⊗̂A)′′ can be considered an approximate diagonal for A′′
if a · Mν − Mν · a → 0 and π′′(Mν) → e. We now characterize approximately
amenable Banach algebras in terms of the existence of this net (Mν) behaving
like an approximate diagonal for A′′.

Theorem 4.1.12. Let A be a Banach algebra. The following statements are
equivalent:

(i) A is approximately amenable.

(ii) There exists a net (Mν) in (A#⊗̂A#)′′ such that a ·Mν −Mν · a→ 0 and
π′′(Mν)→ e for each a ∈ A#.

(iii) There exists a net (M ′
ν) in (A#⊗̂A#)′′ such that a ·Mν −Mν · a→ 0 and

π′′(Mν)→ e for each a ∈ A# and every ν.

Proof. (i) =⇒ (iii). Let A be approximately amenable, then A# is approxi-
mately amenable by Proposition 4.1.8. First is to note that (A#⊗̂A#) is a Banach
A#-bimodule with the module operation defined by

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A#).
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Also, the second dual (A#⊗̂A#)′′ is a Banach A-bimodule and in particular
kerπ′′ ⊂ (A#⊗̂A#) is a Banach A# bimodule. The linear map Du : A# → kerπ′′

defined by Du(a) = a · u− u · a is a derivation since for a, b ∈ A#,

Du(ab) = (ab) · u− u · (ab) = a · (b · u)− a · (u · b) + (a · u) · b− (u · a) · b
= a · (b · u− u · b) + (a · u− u · a) · b = a ·Du(b) +Du(a) · b (a, b ∈ A#).

Since A# is approximately amenable, then there exists (eα) ⊂ kerπ′′ satisfying

Du(a) = lim
α

(a · eα − eα · a) (a ∈ A#).

Now, write M ′
ν = u− eα so that for a ∈ A#,

a ·M ′
ν −M ′

ν · a = a · (u− eα)− (u− eα · a) = a · u− a · eα − u · a+ eα · a
= (a · u− u · a)− (a · eα − eα · a) = Du(a)− (a · eα − eα · a)→ 0.

Also, since eα is in ker π′′, then for every α,

π′′(M ′
ν) = π′′(u− eα) = π′′(u)− π′′(eα) = π′′(u)− 0 = π′′(e⊗ e) = e · e = e.

Thus a ·Mν −Mν · a→ 0 and π′′(Mν)→ e for every ν which gives (iii).

(ii) =⇒ (i). Assume that (ii) holds. Let D : A# → X ′, then by Proposition
4.1.11, we may suppose that X is neo-unital. For x ∈ X, let µx be the continuous
linear function on A#⊗̂A# defined by

µx(a⊗ b) = (a ·Db)(x) (a, b ∈ A#)

which we shall write in the form

µx(a⊗ b) = 〈x, a ·Db〉.

Now, set fν(x) = Mν(µx) for all ν. To show approximate amenability, it suffices
to prove that D(a) = limν(a·fν−fν ·a). Given a ∈ A#, x ∈ X, then for b, c ∈ A#,

µx·a−a·x(b⊗ c) = 〈x · a− a · x, b ·Dc〉 = 〈x · a, b ·Dc〉 − 〈a · x, b ·Dc〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉 = 〈x, a · b ·Dc− b ·Dc · a〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉

70



and

(µx · a− a · µx)(b⊗ c) = 〈b⊗ c, µx · a− a · µx〉 = 〈b⊗ c, µx · a〉 − 〈b⊗ c, a · µx〉
= 〈a · (b⊗ c), µx〉 − 〈(b⊗ c) · a, µx〉
= 〈ab⊗ c, µx〉 − 〈b⊗ ca, µx〉 = 〈x, ab ·Dc〉 − 〈x, b ·Dca〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a+ b · c ·Da〉
= 〈x, a · b ·Dc〉 − 〈x, b ·Dc · a〉 − 〈x, b · c ·Da〉.

And so,
µx·a−a·x(b⊗ c) = (µx · a− a · µx)(b⊗ c) + (bcDa)(x).

Thus for (mα
ν ) ⊂ A#⊗̂A# converging weak* to Mν and for m ∈ A#⊗A#, we can

write
µx·a−a·x(m) = (µx · a− a · µx)(m) + (π(m)Da)(x).

We recall that for a ∈ A, f ∈ A′, the mapping â ∈ A′′ is given by â(f) = f(a)
and so Mν(µx) = limα(µx)(mν). Thus,

(a · fν − fν · a)(x) = 〈x, a · fν − fν · a〉 = 〈x, a · fν〉 − 〈x, fν · a〉
= 〈x · a, fν〉 − 〈a · x, fν〉 = 〈x · a− a · x, fν〉
= fν(x · a− a · x) = Mν(µx·a−a·x) = lim

α
(µx·a−a·x)(mν)

= lim
α

(µx · a− a · µx)(mα
ν ) + lim

α
(π(mα

ν )Da)(x)

= Mν(µx · a− a · µx) + lim
α

(π(mα
ν )Da)(x)

= (a ·Mν −Mν · a)(µx) + (π′′(Mν)Da)(x).

Observe that
‖µx(a⊗ b)‖ = ‖µx‖‖a⊗ b‖ = ‖µx‖‖a‖‖b‖ (4.1)

and
‖µx(a⊗ b)‖ = ‖(aDb)(x)‖ = ‖a‖‖D‖‖b‖‖x‖. (4.2)

From (4.1) and (4.2), we obtain that ‖µx‖ = ‖D‖‖x‖. Now,

‖a · fν − fν · a− (Da)(x)‖ = ‖(a ·Mν −Mν · a)(µx) + (π′′(Mν)Da)(x)− (Da)(x)‖
≤ ‖(a ·Mν −Mν · a)(µx)‖+ ‖(π′′(Mν)Da)(x)− (Da)(x)‖
= ‖(a ·Mν −Mν · a)‖ ‖(µx)‖+ ‖(π′′(Mν)Da)(x)− (Da)(x)‖
= ‖(a ·Mν −Mν · a)‖ ‖D‖‖x‖+ ‖(π′′(Mν)Da−Da)(x)‖
= ‖(a ·Mν −Mν · a)‖ ‖D‖‖x‖+ ‖[(π′′(Mν)− e) · (Da)](x)‖
≤ ‖(a ·Mν −Mν · a)‖ ‖D‖‖x‖+ ‖(π′′(Mν)− e)‖ ‖Da‖‖(x)‖
→ 0.
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Thus D = limν(a · fν − fν · a). Thus A# is approximately amenable and by
Proposition 4.1.8, A is approximately amenable.

It is clear that (iii) implies (ii).

We now show that direct consequences of Theorem 4.1.12 can be obtained to
avoid the use of an adjoined identity e ∈ A# or by introducing two nets from A′′
which behave like a one-sided approximate identity for A. Indeed, the following
Corollary holds.

Corollary 4.1.13. The Banach algebra A is approximately amenable if and only
if there exists nets (M ′′

ν ) ⊂ (A⊗̂A)′′, (Fν), (Gν) ⊂ A′′ which satisfy the condition
that for each a ∈ A

(i) a ·M ′′
ν −M ′′

ν · a+ Fν ⊗ a− a⊗Gν → 0,

(ii) a · Fν → a, Gν · a→ a and

(iii) π′′(M ′′
ν ) · a− Fν · a−Gν · a→ 0.

Proof. Let (M ′′
ν ) ⊂ (A⊗̂A)′′, (Fν), (Gν) ⊂ A′′ and (cν) ⊂ C be nets such that

Mν = M ′′
ν − Fν ⊗ e− e⊗Gν + cνe⊗ e (4.3)

where (Mν) is the same net in Theorem 4.1.12. Since π′′(Mν) → e by Theorem
4.1.12, then applying π′′ to Equation (4.3), it follows that

π′′(Mν) = π′′(M ′′
ν − Fν ⊗ e− e⊗Gν + cνe⊗ e)

= π′′(M ′′
ν )− π′′(Fν ⊗ e)− π′′(e⊗Gν) + π′′(cνe⊗ e)

= π′′(M ′′
ν )− Fν · e− e ·Gν + cνe · e = π′′(M ′′

ν )− Fν −Gν + cν .

Thus π′′(M ′′
ν )− Fν −Gν + cνe→ e from where cν → 1 and

π′′(M ′′
ν ) · a− Fν · a−Gν · a→ 0.

Also, from Theorem 4.1.12, it follows that for a ∈ A,

a ·Mν −Mν · a = a · (M ′′
ν − Fν ⊗ e− e⊗Gν + cνe⊗ e)

− (M ′′
ν − Fν ⊗ e− e⊗Gν + cνe⊗ e) · a

= a ·M ′′
ν − a · Fν ⊗ e− a⊗Gν + a · cνe⊗ e

− M ′′
ν · a+ Fν ⊗ a+ e⊗Gν · a− cνe⊗ a

= a ·M ′′
ν −M ′′

ν · a+ Fν ⊗ a− a⊗Gν

− a · Fν ⊗ e+ e⊗Gν · a+ a · cνe⊗ e− cνe⊗ a
→ 0
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whence cν → 1,
a ·M ′′

ν −M ′′
ν · a+ Fν ⊗ a− a⊗Gν → 0,

and
a · Fν → a, Gν · a→ a.

Conversely, assume that (i), (ii) and (iii) hold, then we prove that A is ap-
proximately amenable. Define Mν = M ′′

ν − Fν ⊗ e − e ⊗ Gν + cνe ⊗ e where
(M ′′

ν ) ⊂ (A⊗̂A)′′, (Fν), (Gν) ⊂ A′′ and (cν) ⊂ C with cν → 1. It suffices by
Theorem 4.1.12 to show that there exists a net (Mν) ⊂ (A⊗̂A)′′ such that for
each a ∈ A, a ·Mν −Mν · a → 0 and π′′(Mν) → e. Now, by using (i) and (ii)
and the fact that cν → 1, it follows that

a ·Mν −Mν · a = a ·M ′′
ν − a · Fν ⊗ e− a · e⊗Gν + a · cνe⊗ e

−(M ′′
ν · a− Fν ⊗ e · a− e⊗Gν · a+ cνe⊗ e · a)

= a ·M ′′
ν − a · Fν ⊗ e− a⊗Gν + a · cν ⊗ e

−M ′′
ν · a+ Fν ⊗ a+ e⊗Gν · a− cνe⊗ a

= a ·M ′′
ν −M ′′

ν · a+ Fν ⊗ a− a⊗Gν

−a · Fν ⊗ e+ e⊗Gν · a− cνe⊗ a+ a · cν ⊗ e
→ 0− a⊗ e+ e⊗ a− e⊗ a+ a⊗ e = 0.

Moreso, applying π′′ on Mν and cν → 1 gives

π′′(Mν) = π′′(M ′′
ν − Fν ⊗ e− e⊗Gν + cνe⊗ e)

= π′′(M ′′
ν )− π′′(Fν ⊗ e)− π′′(e⊗Gν) + π′′(cνe⊗ e)

= π′′(M ′′
ν )− Fν · e− e ·Gν + cνe · e

= π′′(M ′′
ν )− Fν −Gν + e.

That is, π′′(Mν) − e = π′′(M ′′
ν ) − Fν − Gν . Multiplying by a from the right and

using (iii), it follows that

π′′(Mν) · a− e · a = π′′(M ′′
ν ) · a− Fν · a−Gν · a→ 0.

Thus, π′′(Mν) · a→ e · a = a or π′′(Mν)→ e.

Observe that we have shown π′′(Mν)→ e and not that a = π′′(Mν)·a for all a ∈ A
which would have implied by the continuity of the first Arens product that it holds
for all a ∈ A′′, so that A′′ would then have a right identity and necessarily by
Proposition 4.1.10, A would have a bounded left approximate identity. Analogous
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argument would have been made for a bounded right approximate identity for A
and then we would have concluded that every approximately amenable Banach
algebra has a bounded approximate identity. But this may not be true. In fact
many authors have given this as open problems and conjectures, for example see
[19] and [21]. We now turn to our question of interest: Can a closed ideal of
an approximately amenable Banach algebra be approximately amenable? The
following Corollary gives an affirmative answer for closed ideals with bounded
approximate identity.

Corollary 4.1.14. Let A be an approximately amenable Banach algebra and let
I be a closed two-sided ideal with a bounded approximate identity. Then I is
approximately amenable.

Proof. By our hypothesis, there is a bounded approximate identity for I. So by
Proposition 4.1.10, I ′′ has a right identity E such that a · E = E · a = a for
all a ∈ I. We only need to show that there exists nets (M ′

ν), (F ′ν), (G′ν) which
satisfies the conditions (i) to (iii) in Corollary 4.1.13. Define M ′

ν = E ·Mν · E ∈
(I⊗̂I)′′, F ′ν = E · Fν ∈ I ′′, G′ν = Gν · E ∈ I ′′ where the nets (Mν), (Fν) and (Gν)
are as given in Corollary 4.1.13 for A. That is for all a ∈ A,

(i) a ·Mν −Mν · a+ Fν ⊗ a− a⊗Gν → 0,

(ii) a · Fν → a, Gν · a→ a and

(iii) π′′(Mν) · a− Fν · a−Gν · a→ 0.

Indeed, for a ∈ I,

a ·M ′
ν −M ′

ν · a+ a · F ′ν ⊗ a− a⊗G′ν = a · E ·Mν · E − E ·Mν · E · a
+E · Fν ⊗ a− a⊗Gν · E

= E · (a ·Mν −Mν · a+ Fν ⊗ a− a⊗Gν) · E
→ 0.

Also,

a · F ′ν = a · E · Fν = a · Fν → a, G′ν = Gν · E · a = Gν · a→ a
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and

π′′(M ′
ν) · a− E · Fν · a−Gν · E · a = π′′(E ·Mν · E) · a− E · Fν · a−Gν · E · a

= E · π′′(Mν) · E · a− E · Fν · a−Gν · E · a
= E · π′′(Mν) · a− E · Fν · a−Gν · E · a
= E · π′′(Mν) · a− E · Fν · a− E ·Gν · a

+E ·Gν · a−Gν · E · a
= E · (π′′(Mν) · a− Fν · a−Gν · a)

+(E − 1)Gν · a
→ 0.

4.2 Relationship between some Notions of

Amenability

The following theorem due to Gourdeau [22] shows that every amenable Banach
algebra is approximately contractible and conversely.

Theorem 4.2.1. Let A be a Banach algebra and let X be a Banach A-bimodule.
Then the following statements are equivalent:

(i) A is amenable.

(ii) H1(A, X ′′) = {0} for every X.

(iii) Every derivation from A into X is the limit of a net of inner derivation such
that the implementing nets are bounded. That is, there exists a bounded net
(xα) ⊂ X such that

D(a) = lim
α

(a · xα − xα · a), (a ∈ A).

Proof. See [9].

Theorem 4.2.2. Let A be a commutative Banach algebra. If A is approximately
amenable then A is weakly amenable.
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Proof. Let D be a continuous derivation on A and let X be a Banach A-bimodule.
Since A is approximately amenable then there exists a net (sα) ⊂ X ′ such that
D(a) = limα(a · sα − sα · a). Since A is commutative, then by Proposition 3.4.2,
it follows that D = 0. This happens for every Banach A-bimodule and so by
setting X = A, we obtain that A is approximately weakly amenable. But an
approximately weakly Banach algebra is weakly amenable. Hence, A is weakly
amenable.

The following theorem and proof are due to [20].

Theorem 4.2.3. Let A be a Banach algebra, then the following are equivalent:

(i) A is approximately contractible.

(ii) A is approximately amenable.

(iii) A approximately weakly amenable.

(iv) A is weak*-approximately amenable.

Proof. It suffices to show that (iv) =⇒ (i).
Suppose that (iv) holds, that is, A# is weak*-approximately amenable. By fol-

lowing the classical argument of Theorem 4.1.12, there is a net (Mν) ⊂ (A#⊗̂A#)′′

such that for each a ∈ A, a ·Mν −Mν · a → 0 and π′′(Mν) → e in the weak*-
toplogy of (A#⊗̂A#)′′ and A′′ respectively.

Now take ε > 0, and finite sets F ⊂ A#, Φ ⊂ (A#)′, and N ⊂ (A#⊗̂A#)′.
Then there is ν such that

|〈a · f − f · a,Mν〉| = |〈f, a ·Mν −Mν · a〉| < ε

and
|〈φ, π′′(Mν)− e〉| < ε

for all a ∈ F, φ ∈ Φ and f ∈ N .
By Goldstine’s theorem, and the weak*-continuity of π′′, there is m ∈ A#⊗̂A#

such that

|〈f, a ·m−m · a〉| = |〈a · f − f · a,m〉| < ε and |〈φ, π(m)− e〉| < ε

for all a ∈ F, φ ∈ Φ and f ∈ N.
Thus there is a net (mλ) ⊂ A#⊗̂A# such that for every a ∈ A, a·mλ−mλ.a→

0 and π(mλ) → e, weakly in A#⊗̂A# and A# respectively.

76



Finally, for each finite set F ⊂ A#, say F = {a1, · · · , an},

(a1 ·mλ −mλ · a1, · · · , an ·mλ −mλ · an, π(mλ))→ (0, · · · , 0, e)

weakly in (A#⊗̂A#). Thus

(0, · · · , 0, e) ∈ coweak {(a1 ·mλ −mλ · a1, · · · , an ·mλ −mλ · an, π(mλ))} .

The Hahn-Banach theorem now gives that for each ε > 0, there is uε,F ∈ co{mλ},
such that

‖a · uε,F − uε,F · a‖ < ε and ‖π(uε,F )− e‖ < ε

for a ∈ F. Thus, (i) holds.
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Chapter 5

Some Notions of Amenability on
Segal Algebras

The notions of amenability discussed in the previous two chapters are for gen-
eral Banach algebras. Several authors have studied these notions of amenability
for different classes of Banach algebras. For examples, group algebra, measure
algebra, Fourier algebra, semigroup algebra, Banach algebra of bounded linear
operators on Banach space and some of its closed ideals which are also Banach
algebras and Segal algebras. There are relationship between the structures of
these algebras and these notions of amenability. In this chapter, we consider a
class of Banach algebra called the Segal algebras and study some of these notions
of amenability on them and also give some relationship that exist between these
notions of amenability and the structures of this class of Banach algebras.

5.1 Segal Algebras

Segal algebras which are subalgebras of the group algebra L1(G) were first intro-
duced and extensively studied by Reiter in [41], [42] and [43]. Although notable
examples of what is now called Segal algebras were first introduced by Wierner in
1932 but it was in 1947 that Segal observed their intrinsic abstract structure.

Definition 5.1.1. Let A be a Banach algebra and B a subalgebra of A such that

(S1) B is a left dense ideal in A;

(S2) (B, ‖.‖B) is a Banach algebra;

(S3) there exists K > 0 such that ‖b‖A ≤ K‖b‖B for each b ∈ B;
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(S4) there exists C > 0 such that ‖ab‖B ≤ C‖a‖A‖b‖B for each a ∈ A, b ∈ B.

Then B is called an abstract segal algebra on A or with respect to A. Let G be a
locally compact group. Suppose that A = L1(G) then the subspace S(G) of L1(G)
is called a Segal algebra if the following conditions are satisfied:

(s1) S(G) is dense in L1(G);

(s2) (S(G), ‖.‖S(G)) is a Banach space and there exists K > 0 such that
‖f‖L1(G) ≤ K‖f‖S(G) for all f ∈ S(G);

(s3) S(G) is left translation invariant (f ∈ S(G) =⇒ Lx ∗ f ∈ S(G) ∀x ∈ G)
and the map x 7→ Lx ∗ f from G into S(G) is continuous for all f ∈ S(G)
where Lx ∗ f(y) = f(x−1y), y ∈ G;

(s4) the Segal algebra norm is left invariant, that is, ‖Lx ∗ f‖S(G) = ‖f‖S(G) for
all f ∈ S(G) and x ∈ G.

Remark 5.1.2. The following can be deduced from the above definition.

(i) Every Segal algebra is an abstract Segal algebra with respect to L1(G) but the
converse is not true. Thus the class of abstract Segal algebras generalizes the
class of classical Segal algebras. Consequently, most results which are proved
for abstract Segal algebras can be applied to the classical class. We give an
example of an abstract Segal algebra which is not a classical Segal algebra in
Example 5.1.4(v).

(ii) S(G) is called a proper Segal algebra on G if it is a proper subalgebra of
L1(G).

(iii) In the case that G is discrete, then the only Segal algebra S(G) is L1(G)
itself.

(iv) S(G) has an essentially unique norm, that is, if ‖.‖ is any other norm on
S(G) satisfying (s2) and (s4) above, then there exists a constant M > 0 such
that M−1‖f‖S(G) ≤ ‖f‖ ≤M‖f‖S(G)∀f ∈ S(G).

(v) Suppose that S1(G) and S2(G) are Segal algebras such that S1(G) ⊂ S2(G),
then by using (s2), there exists k > 0 such that ‖f‖S2(G) ≤ k‖f‖S1(G). In
general, let Si(G), (i = 1, 2, · · · , n) be Segal algebras on a locally compact
group G such that

S1(G) ⊂ S2(G) ⊂ S3(G) ⊂ · · · ⊂ Sn(G) ⊂ L1(G)
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then there exists, by induction, ki > 0, (i = 1, 2, · · · , n) such that

‖f‖L1(G) ≤ k1‖f‖Sn(G) ≤ k2‖f‖Sn−1(G) ≤ · · · ≤ kn‖f‖S1(G).

(vi) A symmetric Segal algebra is a Segal algebra which satisfies the following
additional properties:

(s3′) S(G) is right translation invariant, that is, for all x ∈ G and each
f ∈ S(G), f ∈ S(G) =⇒ Rx ∗ f ∈ S(G) and the map x 7→ Rx ∗ f of
G into S(G) is continuous

(s4′) the Segal algebra norm is right translation invariant, that is, ‖Rx ∗
f‖S(G) = ‖f‖S(G) for all f ∈ S(G) and y ∈ G.

By changing Lx to Rx and the order of convolution in the proof of a result which
holds for a symmetric Segal algebra, we can obtain corresponding results for a
(not necessarily symmetric) Segal algebra as the following proposition from [41]
shows.

Proposition 5.1.3. (i) Segal algebras S(G) are left ideals of L1(G) and

‖g ∗ f‖S(G) ≤ ‖g‖L1(G).‖f‖S(G), (g ∈ L1(G), f ∈ S(G)).

(ii) (S(G), ‖.‖S(G)) is a Banach algebra.

(iii) A symmetric segal algebra is both left and right ideal of L1(G) and

‖f ∗ g‖S(G) ≤ ‖g‖L1(G).‖f‖S(G), (g ∈ L1(G), f ∈ S(G)).

Example 5.1.4. Let G be a locally compact group.

(i) L1(G) is a trivial Segal algebra.

(ii) For 1 ≤ p <∞, the Banach space (L1(G) ∩ Lp(G), ‖.‖L1(G) + ‖.‖Lp(G)) is a
Segal algebra.

(iii) Let f ∈ L1(R). Denote by f̂ (for 1 ≤ p < ∞) the Fourier transform of
f . Then, the space Ap consisting of all f ∈ L1(R) such that f̂∈ Lp(R)
equipped with the norm ‖f‖L1(R) + ‖f ‖̂Lp(R) is a Segal algebra.
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(iv) Suppose that G is an abelian group and H is a discrete subgroup of G such
that the quotient G/H is compact, that is, G = KH for some compact set
K ⊂ G. Then the space S0 of all continuous functions on G defined by

S0 = {f ∈ L1(G) : f(u) =
∑
h∈H

max
x∈K
|f(uxy)|, u ∈ G and f is bounded}

and equipped with the norm

‖f‖S0 = sup
u∈G

∑
h∈H

max
x∈K
|f(uxy)|

is a Segal algebra.

(v) Let A be the algebra of all completely continuous operators on L2(R) with
the usual operator norm and let B be the algebra of all operators of Hilbert-
Schmidt type. That is, T ∈ B if there exists K(x, y) ∈ L2(R× R) such that
K(x, y) = K(y, x) and

Tf(x) =

∫
R
K(x, y)f(y) dy, almost everywhere.

For T ∈ B let ‖T‖2
B =

∫
R

∫
R |K(x, y)|2dx dy. Then B is an abstract Segal

algebra but not a (classical) segal algebra. For details, see [7]([46],p. 34).

It is important to note that Segal algebras are not amenable except for the trivial
case when the S(G) = L1(G) where G is amenable (see [30]).

5.2 Some Results on Segal Algebras

In this section, we discuss the character amenability and character contractibility
on some Segal algebras.

We have defined abstract Segal algebras in Section 5.1. We give detailed proofs
of the following results from [1].

Theorem 5.2.1. Let A be a Banach algebra and let B be an abstract Segal algebra
with respect to A. Then the following statements are equivalent:

(i) B is character amenable.

(ii) A = B and A is character amenable.
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(iii) A is Banach algebra isomorphic to B and A is character amenable.

Proof. (i) =⇒ (ii). Since B is character amenable, then by Proposition 3.5.41(i),
B has a bounded approximate identity (eα). Since B is an abstract Segal algebra
then by definition 5.1.1, then for each b ∈ B, there exists K > 0 such that

‖b‖A ≤ K‖b‖B (5.1)

and for each a ∈ A, b ∈ B, there exists C > 0 such that

‖ab‖B ≤ C‖a‖A‖b‖B.

Thus, for each a ∈ B,

‖a‖B = lim
α
‖aeα‖B ≤ C‖a‖A lim inf

α
‖eα‖B ≤ C

(
sup
α
‖eα‖B

)
‖a‖A. (5.2)

It then follows from (5.1) and (5.2) that the two norms ‖.‖A and ‖.‖B are equivalent
on B. And since B is dense in A, then A = B. Since B is character amenable,
then A is also character amenable.

(ii) =⇒ (iii). Since B is an abstract Segal algebra with respect to A implies
that there exists K > 0 such that ‖a‖A ≤ K‖a‖B for each a ∈ A. Then by the
open mapping theorem, the map Φ : A → B is an isomorphism.

(iii) =⇒ (i). The isomorphism ϕ : A → B is a continuous homomorphism
with dense range and since A is character amenable then by Proposition 3.5.42(i),
B is also character amenable.

Let A be a Banach algebra and B be an abstract Segal algebra on A. Since B is
a left ideal of A by definition, then the set σ(B) of all non-zero characters on B is
a subset of σ(A). In fact, the characters on B are precisely the restriction of the
characters on A to B. Indeed, the following holds.

Lemma 5.2.2. [1] Let A be a Banach algebra and let B be an abstract Segal
algebra with respect to A. Then σ(B) = {ϕ|B : ϕ ∈ σ(A)}.

Proof. B is dense in A implies B = A, that is ϕ(B) = ϕ(A) 6= 0. Consequently,
ϕ|B 6= 0, that is, ϕ|B ∈ σ(B). It remains to show that for any φ ∈ σ(B), there is a
unique extension ϕ ∈ A. Let φ ∈ σ(B), then for each b ∈ B there is a b′ ∈ B such
that φ(b′) = 1 and φ(b) = φ(bb′). Since B is a Segal algebra, there exists C > 0
such that ‖bb′‖B ≤ C‖b‖A‖b′‖B for each b ∈ B and consequently

|φ(b)| = |φ(b)φ(b′)| = |φ(bb′)| ≤ ‖φ‖‖bb′‖ ≤ C‖b‖A‖b′‖B.
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Thus φ is continuous on (B, ‖.‖A). Since B is a dense subspace of A, then the
extension of φ to ϕ ∈ σ(A) is unique.

Remark 5.2.3. Lemma 5.2.2 shows that every character on B is also a character
on A, that is σ(B) ⊂ σ(A). Thus, for each ϕ ∈ B, if A is ϕ-amenable, then
necessarily B is ϕ-amenable. The following Proposition 5.2.5 gives a characteri-
zation of the character amenability of B in terms of the character amenability of
A. We shall need the following Lemma.

Lemma 5.2.4. [27] Let A be a Banach algebra and ϕ ∈ σ(A). Then A is ϕ-
amenable if and only if there exists a bounded net (uα) ⊂ A such that ‖auα −
ϕ(a)uα‖ → 0 for all a ∈ A and ϕ(uα) = 1 for all α.

Proposition 5.2.5. Let A be a Banach algebra and let B be an abstract Segal
algebra with respect to A. Then A is ϕ-amenable if and only if B is ϕ|B-amenable
for each ϕ ∈ σ(A).

Proof. Let A be ϕ-amenable. Then by Lemma 5.2.4 there exists a bounded net
(aα) in A such that for all a ∈ A and α,

‖aaα − ϕ(a)aα‖ → 0, ϕ(aα) = 1. (5.3)

Fix b0 ∈ B such that ϕ(b0) = 1 and set

bα := aαb
2
0 ∈ B

for all α. Since B is an abstract Segal algebra with respect toA, then (b−ϕ(b))aα ∈
A and there exists C > 0 and K > 0 such that for each b ∈ B,

‖b0b0‖B ≤ C‖b0‖A‖b0‖B (5.4)

and
‖b0‖A ≤ K‖b0‖B. (5.5)

Consequently, using (5.4), (5.5) and Lemma 5.2.4, we have

‖bbα − ϕ(b)bα‖B = ‖baαb2
0 − ϕ(b)aαb

2
0‖B = ‖(b− ϕ(b))aαb

2
0‖B

≤ ‖(b− ϕ(b))aα‖A‖b0b0‖B ≤ C‖(b− ϕ(b))aα‖A‖b0‖A‖b0‖B
≤ CK‖(b− ϕ(b))aα‖A‖b0‖B‖b0‖B → 0.
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and

ϕ(bα) = ϕ(aαb
2
0) = ϕ(aα)ϕ(b0b0) = ϕ(aα)ϕ(b0)ϕ(b0) = ϕ(aα)→ 1

Since (aα) is ‖.‖A-bounded, it follows that (bα) is ‖.‖B-bounded. Thus, there exists
a bounded net (bα) such that for all a ∈ A, ‖bbα − ϕ(b)bα‖B → 0 and ϕ(bα) → 1
and by Lemma 5.2.4, it follows that B is ϕB-amenable.

Conversely, similarly we assume that B is ϕ|B-amenable and then show that
there exists a bounded net satisfying the conditions in Lemma 5.2.4. Let B be ϕ|B-
amenable, then there is a bounded net (bα) in B. Fix b0 ∈ B such that ϕ(b0) = 1
and set

aα := b0bα

for all α. Since B is a Segal algebra, there exists K > 0 such that for each a ∈ A,

‖aaα − ϕ(a)aα‖ = ‖ab0bα − ϕ(a)b0bα‖
= ‖ab0bα − ϕ(a)ϕ|B(b0)bα + ϕ(a)ϕ|B(b0)bα − ϕ(a)b0bα‖A
≤ ‖ab0bα − ϕ(a)ϕ|B(b0)bα‖A + ‖ϕ(a)ϕ|B(b0)bα − ϕ(a)b0bα‖A
= ‖ab0bα − ϕ(a)ϕ|B(b0)bα‖A + |ϕ(a)|‖ϕ|B(b0)bα − b0bα‖A
= ‖ab0bα − ϕ|B(ab0)bα‖A + |ϕ(a)|‖ϕ|B(b0)bα − b0bα‖A
≤ K(‖ab0bα − ϕ|B(ab0)bα‖B) + |ϕ(a)|‖ϕ|B(b0)bα − b0bα‖A
≤ K2(‖ab0bα − ϕ|B(ab0)bα‖B) + |ϕ(a)|‖b0bα − ϕ|B(b0)bα‖B
→ 0.

Also,
ϕ(aα) = ϕ(b0bα) = ϕ|B(b0)ϕ|B(bα) = ϕ|B(bα)→ 1.

Since B is a Segal algebra over A, then ‖.‖A ≤ K‖.‖B so that (aα) ∈ A is bounded
net in the norm ‖.‖A. The result then follows from Lemma 5.2.4.

Corollary 5.2.6. Let A be a character amenable Banach algebra and B a Segal
algebra with respect to A. Then

(i) B is character amenable if and only if A = B.

(ii) for every ϕ ∈ σ(B), B is ϕ-amenable.

(iii) ‖ϕ‖ ≤ ‖φ‖ for all ϕ ∈ σ(B) and φ ∈ σ(A).

We now establish an analogue of Proposition 5.2.5 for the character con-
tractible Banach algebras with a different method of proof. We begin with the
following basic definition.
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Definition 5.2.7. Let A be a Banach algebra and ϕ be in the character space of
A. We say that A is ϕ-contractible if A has a ϕ-diagonal.

Proposition 5.2.8. Let A be a Banach algebra and B be a Segal algebra with
respect to A. For each ϕ ∈ σ(A), A is ϕ-contractible if and only if B is ϕ|B-
contractible.

Proof. Let A be a ϕ-contractible Banach algebra. Then A has a ϕ-diagonal. Let
M ∈ A⊗̂A be a ϕ-diagonal for A, then for all a ∈ A,

ϕ(π(M)) = 1 and aπ(M) = ϕ(a)π(M) (5.6)

where π : A⊗̂A → A is the diagonal operator. B is a Segal algebra implies that
B is a left dense ideal in A. Thus there exists b0 in B ⊂ A satisfying ϕ(b0) = 1.
Define

b1 := b0π(M) ∈ B. (5.7)

Then, by using (5.6) and (5.7), we can write

bb1 = bb0π(M) = ϕ(b)b0π(M) = ϕ(b)b1.

Also,
ϕ(b1) = ϕ(b0π(M)) = ϕ(b0)ϕ(π(M)) = ϕ(π(M)) = 1.

Clearly, ϕ(π(b1 ⊗ b1)) = ϕ(b1b1) = ϕ(b1)ϕ(b1) = 1 and b · (b1 ⊗ b1) = b · b1 ⊗ b1 =
ϕ(b)b1 ⊗ b1 = ϕ(b1 ⊗ b1). Thus, (b1 ⊗ b1) ∈ B⊗̂B is a ϕ|B-diagonal for B and so B
is ϕ|B contractible.

Conversely, we assume that B is ϕ|B-contractible. Let m ∈ B⊗̂B be a ϕ|B-
diagonal for B, then π(m) ·m = m and ϕ(π(m)) = 1. Since B is a left ideal of A
then aπ(m) ∈ B for all a ∈ A. Now,

a ·m = a · (π(m) ·m) = aπ(m) ·m = ϕ(a)m

for all a ∈ A. Thus m is a ϕ-diagonal for A.

Proposition 5.2.9. Let G be an amenable locally comapct group and S(G) be an
(abstract) Segal algebra with respect to L1(G). Then

1. S(G) is character amenable if and only if S(G) = L1(G).

2. S(G) is ϕ-amenable for all ϕ ∈ σ(S(G)).
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Proof. G is amenable implies that L1(G) is amenable ([24] Theorem 2·5, p. 32).
Since every amenable Banach algebra is character amenable, then L1(G) is char-
acter amenable. The result then follows from Corollary 5.2.6 since every Segal
algebra is an abstract Segal algebra.

Theorem 5.2.10. Let G′ the dual of a locally compact group G. Then the fol-
lowing are equivalent statements:

(i) G is compact.

(ii) Every abstract Segal algebra on G is ϕρ-contractible, ρ ∈ G′.

(iii) There exists an abstract Segal algebra on G which is ϕρ-contractible, ρ ∈ G′.

Let G be a locally compact group and let G′ be the dual of G. For 1 ≤ p <∞,
the space Sp(G) of all functions f ∈ L1(G) defined by

Sp(G) := {f ∈ L1(G) : f̂ ∈ Lp(G′)}

and equipped with the norm

‖f‖p = ‖f‖1 + ‖f̂‖p, (f ∈ Sp(G))

where f̂ denotes the Fourier transform of f on G′ is a Segal algebra.

Proposition 5.2.11. Let G and H be locally compact abelian groups, and let
1 ≤ p < ∞. Assume that the Segal algebras Sp(G) and Sp(H) are both character
amenable. Then Sp(G×H) is character amenable.
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Chapter 6

Collection of Results

In this chapter, we give a collection of results on some of the notions of amenabil-
ity discussed in third and fourth chapters of this dissertation for general Banach
algebras and for Segal algebras. These results serve as our contribution to knowl-
edge.

6.1 Results on General Banach Algebras

The following lemma and theorems which are due to Curtis and Loy [8] are im-
portant in the sequel.

Lemma 6.1.1. Let A be a unital Banach algebra. Then the short exact sequence∏
: 0→ kerπ

i−→ A⊗̂A π−→ A → 0

is admissible. Suppose A has a bounded left or right approximate identity, then∏ ′
is admissible.

Theorem 6.1.2. Let A be an amenable Banach algebra, and let

Σ : 0→ X ′
f−→ Y

g−→ Z → 0

be an admissible short exact sequence of left or right A-modules with X ′ a dual
A-module. Then Σ splits.

Proposition 6.1.3. Let A be a Banach algebra with bounded approximate iden-
tity, X a left (or right) Banach A-module, f a left (or right) A-module homomor-
phism of A onto X with kernel J . Then the exact sequence

Σ : 0→ X ′
f ′−→ A′ i

′
−→ J ′ → 0
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splits as a sequence of left (or right) A-modules if and only if the left (or right)
ideal J has a bounded right (or left) approximate identity.

Theorem 6.1.4. Let A be a Banach algebra and π : A⊗̂Aop → A be the diagonal
operator. Then A is amenable if and only if

(i) A posseses a bounded approximate identity and

(ii) the closed left ideal kerπ posseses a bounded right approximate identity.

We now establish the main theorems of this section.

Theorem 6.1.5. The Banach algebras A and B are amenable if their direct sum
A⊕ B is amenable.

Proof. Fix b ∈ B and define a canonical projection mapping φ : A ⊕ B → A by
φ(a, b) = a. Then φ is a continuous homomorphism with dense range. To see
this, let (aα), α ∈ ∆ be a net in A such that there exists an a ∈ A for which
‖aα − a‖ → 0. Then

‖φ(aα, b)− φ(a, b)‖ = ‖aα − a‖ → 0.

Thus φb(aα, b)→ a and so φb is continuous. By the definition of φb, φ(A⊕ B) =
A. Also, for (a, b), (c, d) ∈ A⊕ B,

φ((a, b)(c, d)) = φ(ac, bd) = ac = φ(a, b)φ(c, d)

so that φ is an homomorphism. It then follows that A is amenable by Proposition
3.2.4. The proof of the amenability of B is similar if one considers an homomor-
phism φ : (a, b) 7→ b.

Remark 6.1.6. Let ⊕Ani=1 be the direct sum of the Banach algebras Ai (i =
1, 2, · · · , n). If ⊕Ani=1 is amenable, then for each i = 1, 2, · · · , n, Ai is amenable.
This follows easily by induction.

Theorem 6.1.7. Let I be an amenable closed subalgebra of a Banach algebra A.
Then for any Banach A-bimodule X, there exists a derivation D : A → X ′ such
that D(I) = {0}.

Proof. Let D : A → X ′ be a derivation. Since I is amenable, then there exists
ζ ∈ X ′ such that the restriction D|I = δIζ . Define D = D − δAζ , where δAζ : a 7→
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a · ζ − ζ · a. Then δAζ is a derivation and so for a, b ∈ A, it holds that

D(ab) = (D − δAζ )(ab) = D(ab)− δAζ (ab)

= (D(a)b+ aD(b))− (δAζ (a)b+ aδAζ (b))

= (D(a)− δAζ (a))b+ a(D(b)− δAζ (b))

= (D − δAζ )(a)b+ a(D − δAζ )(b)

= D(a)b+ aD(b).

Thus D is a derivation on A. Finally, we show that D(I) = 0. Since I is amenable,
it follows that

D(I) = (D − δAζ )(I) = D(I)− δAζ (I)

= δIζ (I)− δIζ (I) = {0}.

6.2 Results on Segal Algebras

The following results from [45] are useful in establishing our main result in this
section. We shall denote by A‖.‖A a Banach algebra A with respect to norm ‖.‖A
and write A2 for A · A, where A · A = {bb : b ∈ A}.

Lemma 6.2.1. Let A be a Banach algebra such that A · A = A and B be an

abstract Segal algebra with respect to A. Then the closure B2
‖.‖B is an abstract

Segal algebra with respect to A.

Theorem 6.2.2. Let A be a Banach algebra with a bounded approximate identity

and let B be a symmetric abstract Segal algebra with respect to A . Then B2
‖.‖B is

a symmetric Segal algebra with respect to A such that there exists an approximate

identity for B2
‖.‖B which is also a bounded approximate identity for A.

Theorem 6.2.3. Let A be an amenable Banach algebra and B a symmetric ab-

stract Segal algebra on A. Then B2
‖.‖B is a symmetric abstract Segal algebra on A

and is amenable.
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Proof. By Theorem 6.2.2, B2
‖.‖B has a bounded approximate identity and hence

factors by Cohen factorization theorem. Also since A is amenable, it has a

bounded approximate identity, and so A = A · A. Then by Lemma 6.2.1, B2
‖.‖B

is an abstract Segal algebra which is symmetric since B is symmetric. Now, B2 is

dense in A since A = A ·A = B‖.‖AB‖.‖A = B2
‖.‖A . Thus B2

‖.‖B is a dense ideal in
A. The result then follows from Proposition 3.3.12.

We recall that a Banach algebra A is pseudo-amenable if has an approximate
diagonal.

Theorem 6.2.4. Every amenable SIN group is compact.

Proof. It suffices to show that every amenable SIN group is compact. Let G be an
amenable SIN group, then from standard results in [30], the Segal algebra S1(G)
is pseudo-amenable if and only if G is compact. Also, S1(G) is pseudo-amenable
if G is a SIN group. Hence the result.

6.3 Concluding Remarks

Generally, this dissertation presents a comprehensive study on the following ma-
jor areas: the general theory of Banach algebras, some notions of amenability in
Banach algebras, some characterizations and hereditary properties of these no-
tions for arbitrary Banach algebras and for Segal algebras. Chapter 2 contains
adequate background material on Banach algebra theory. Chapter 3 contains a
discussion on some notions of amenability for an arbitrary Banach algebra. In
particular, various characterizations and hereditary properties of amenable Ba-
nach algebras, contractible Banach algebras, weakly amenable Banach algebras,
character amenable Banach algebras and character contractible Banach algebras
are studied. Theorems 3.3.1 and 3.3.2 characterize the notion of amenability in
terms of the existence of bounded approximate diagonal, virtual diagonal and
splitting of a short exact sequence. In Chapter 4, important characterizations of
generalized notions of amenability for general Banach algebras via the existence
of certain nets satisfying some special conditions are considered. Some relation-
ships between the following notions: approximate weak amenability, approximate
contractibility, approximate amenability and weak amenability are also estab-
lished. The conditions under which some weaker notions of amenability imply the
stronger ones are also presented in this chapter. Chapter 5 contains an elegant
discussion on Segal algebras. We studied some notions of amenability for a class of
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Banach algebras called Segal algebras. In Chapter 6, some new results for general
Banach algebras and Segal algebras are obtained and discussed. The results in
this chapter serve as our contribution to knowledge.
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