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Abstract

The general relativistic (GR) e↵ects of a neutron star play a substantial role on the physics

at the stellar surface. These neutron stars also host a very strong magnetic field and spin

with periods of a few seconds to as high as milliseconds. In order to account for the

motion of charged particles in the magnetosphere immediately outside the stellar surface,

it is essential to include the GR e↵ects in the Maxwell’s equations. To account for the

frame dragging e↵ects due to the stellar spin, we have, in this dissertation, considered a

3+1 decomposition of the spacetime and applied them to find the solutions to Maxwell’s

equations of an isolated neutron star in a vacuum, for di↵erent cases. In order to derive our

solutions we made use of the vector spherical harmonics in a curved spacetime. We first

considered an aligned dipole magnetic field from which we formed a general formalism for

the magnetic and electric fields for higher orders. We then considered an orthogonal dipole

magnetic field for which we solved only for the non-rotating case. In a realistic scenario

for a radio pulsar, the radio beams which originate from the pole caps of the magnetic

field, have a finite angle with the spin axis and hence it is necessary to find a model for

an oblique rotator. This study will be helpful in the future for the understanding of the

charged particle interaction at the pulsar pole caps and hence for the emission mechanism

of a radio pulsar.
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Chapter 1

Introduction

The theory of the existence of radio pulsars first came about in the early 1930s[1, 2] long

before the first observation was made in 1967 by Jocelyn Bell and Antony Hewish[3].

Over 90% of neutron stars are observed as radio pulsars, which are isolated neutron stars

emitting beams of electromagnetic radiation in the radio frequency from the magnetic

poles. The remaining observed neutron stars are observed as X-ray pulsars. These neutron

stars occur in binary systems, with the partner usually being a main sequence star. The

neutron star in the binary system accretes matter from its partner star and emits X-rays

(stronger than it emits radio waves) and hence we observe them as X-ray pulsars. The

pulses from both the radio and X-ray pulsars have an optical depth of only a few kpc

( 3� 5 kpc) and hence we can observe only a small fraction of them found in our galaxy.

Neutron stars are extremely dense objects with masses ranging between 1.4�2.16 M� [4]

with an average estimated radius of 10 � 15 km thus giving a mean density of around

1015g.cm�3. The stars have rotation periods of a few seconds to as high as milliseconds

which primarily occur due to conservation of angular momentum during core collapse.

Isolated radio pulsars are often younger stars with slower spins than the binary system

pulsars, with their spin being thought to be close to their birth spin[5, 6]. These young

pulsars have a high spin-down rate due to their electromagnetic wave radiation and outflow

of relativistic particles which decreases their rotational kinetic energy. Similarly, the stars

have superstrong magnetic fields of order 1012 G or more which are thought to occur

from the conservation of magnetic flux[7]. Neutron stars with magnetic field strengths

of 1013 � 1015 G are known as magnetars[8]. The compactness of the star also gives rise

to a strong gravitational field close to the star surface. Because of this, it is important,

1



Introduction 2

when studying the physics near the stellar surface, to take general relativistic (GR) e↵ects

into consideration. It is not fully understood how the radio beams from the pulsars are

created, however, it is thought that the superstrong magnetic field of the neutron star

funnels jets of particles out along the two magnetic poles. These accelerated particles

then create the intense beams which rotate with the magnetic field around the rotation

axis of the star, provided the magnetic poles do not coincide with the rotational axis.

There are many theories which exist on the di↵erent possible emission mechanisms of

the radio pulsars. A comprehensive review on the emission mechanisms can be found

in Ginzburg and Zheleznyakov (1975)[9] and Melrose and Yuen (2016)[10]. A widely

accepted theory is that primary particles near the neutron star surface are accelerated

along the curved magnetic field lines (e.g. Goldreich and Julian (1969)[11]) which then

emit gamma rays. These photons propagate in the curved magnetic field and reach

the particle generation threshold where they create electron-positron pairs. Secondary

particles then emit synchrotron photons which are accelerated and emit new gamma

rays and so the process is repeated[12–14]. This model was then improved upon by

Ruderman and Sutherland (1975)[15] who introduced discharge and drifting subpulses to

the model, which requires that the polar caps be a source of relativistic particles. There

also exists alternative models with an electrosphere[16] as apposed to a polar-cap model,

and an ion proton plasma[17] instead of a pair plasma. The reason for such variation

in opinion of the emission mechanisms of pulsars is that we are only able to observe the

period P and its rate of increase Ṗ . Things like the source region of the radio emission,

plasma parameters and properties of the radio-emitting particles thus cannot be clearly

identified from observations. Hence, no agreement has been reached on the most plausible

mechanism. It is also required that the radio pulsar emission have a ‘coherent’ emission

mechanism which again brings about di↵erence in opinion on how this occurs.

When a radio pulsar is observed, it is due to the magnetic axis being at an angle with the

rotation axis. It is highly unlikely that one finds a neutron star whose magnetic axis is

either aligned or perpendicular with its rotation axis. As a matter of fact, a magnetic axis

aligned with the rotation axis will not be observed as it will not create any pulse. It is,

therefore, useful to consider an oblique rotator model when solving for the electromagnetic

equations on the surface of a neutron star. The first general solution in a flat spacetime

for an oblique rotator of a magnetised star in a vacuum was found by Deutsch (1955)[18].

Deutsch found that stars, in this model, with high rotation periods and strong magnetic
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fields induce electric fields so strong that they can accelerate particles to relativistic speeds.

He thus hypothesised that this could be the source of cosmic rays. This theory is still

valid in today’s research. Pacini (1967, 1968)[19, 20] then proposed the first model for

an electromagnetically active neutron star and applied the vacuum dipole model to the

neutron star contemporary to the observations of the radio pulsars[3]. Goldreich and

Julian (1969)[11] investigated the case of the aligned rotating dipole in a flat spacetime

and identified some key characteristics regarding the properties of the region surrounding

rotating neutron stars including the Goldreich-Julian charge density ⇢GJ . They argued

that it is impossible to have a practical scenario of a neutron star in a vacuum and hence

it needs to be surrounded by a plasma of electrons and positrons. The arguments in

Goldreich and Julian (1969), however, were not generally accepted to correspond directly

to the oblique rotator where the electromagnetic field around the neutron star changed

considerably. This was studied and discussed in detail by Mestel (1971)[21].

We know that the physics of the magnetospheres of neutron stars are su�ciently influenced

by GR e↵ects at the stellar surface and this is particularly true at the polar caps. An

exact analytical solution for the static magnetic dipole in the Schwarzschild spacetime is

given by Ginzburg and Ozernoy (1964)[22]. Muslimov and Tsygan (1992)[23] confirmed

the importance of the GR e↵ects at the polar caps as they found some interesting e↵ects

on the electric field of an isolated, rotating, magnetic neutron star due to the GR e↵ects,

particularly at the polar caps. This can be further seen by Sakai and Shibata (2013)[24]

who studied the motion of charged particles in a pulsar magnetosphere at the polar caps

and found the GR e↵ects to be particularly significant. The GR e↵ects also influence

frame-dragging e↵ects on the star and the generation of particles in the vicinity of the

radio pulsars, especially in the free particle escape models.[7].

While studying the electromagnetic field of a neutron star under GR considerations, one

cannot use the standard Maxwell’s equations in a flat spacetime. The Maxwell’s equations

have to thus be altered according to the curved spacetime with the relevant spacetime

metric and coordinate system. Rezzolla, Ahmedov and Miller (2001)[25] gave analytical

solutions of Maxwell’s equations in a curved spacetime for both the internal and external

fields of a slowly rotating, isolated neutron star in a vacuum with dipole magnetic field

not aligned with the rotation axis.

There are many di↵erent approaches which can be used when solving equations in a curved
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spacetime. One very useful approach which will be used in this paper is the 3+1 splitting

of spacetime, developed by Ehlers (1961)[26] and Ellis (1971)[27], where the spacetime

is foliated such that the spacetime metric is split into three parts space and one part

time. This will be explained in detail in chapter (2). The electrodynamic equations of

curved spacetime were first expressed using a 3+ 1 formalism by Thorne and MacDonald

(1982)[28] and has been greatly studied and developed over the years. For example, we

follow the methods outlined by Alcubierre (2006)[29] and Komissarov (2011)[30] for our

derivation of the 3 + 1 equations. See also Yu (2007)[31] who uses the 3 + 1 approach to

describe general relativistic force-free electrodynamics of a stationary, axisymmetric black

hole magnetosphere, re-deriving the Grad-Shafranov equations and defining the Maxwell

equations in the same way as seen in Petri (2013)[32].

In several articles Petri has explored the physics of pulsars and their di↵erent features, such

as their electromagnetic field solutions, striped winds and emission mechanisms. Petri

(2012)[33] attempts to find accurate solutions to the almost stationary force-free pulsar

magnetosphere and determine its link to the pulsar striped wind for di↵erent spin periods

and arbitrary inclination angle. He solves for the time-dependent force-free Maxwell’s

equations using a vector spherical harmonic (VSH) expansion of the electromagnetic field

in spherical coordinates. The general relativistic e↵ects are found to be of importance

particularly at the polar caps. Petri (2013)[32] again uses a VSH expansion of the fields

along with a 3 + 1 split of the spacetime metric to solve for the fields of an aligned and

orthogonal rotator and find a general formalism of the fields in vacuum space. His hope

was that his analysis could be used to test numerical codes of magnetospheres. He extends

this work in Petri (2014)[34] for the time-dependent Maxwell’s equations. The e↵ects of

multipoles are explored in Petri (2015, 2017)[35, 36] and the pulsar emissions are discusses

in depth in Petri (2018)[37].

In this study we began by looking into the radio pulsar magnetosphere, with the intent

of finding a plausible model for the emission mechanism of the pulse beams of radio

pulsars. It became apparent that this topic was too broad to tackle without studying, more

thoroughly, the physical foundations behind the neutron star. After further study, it was

decided that the electrodynamics of the magnetosphere needed to be better understood

and solving for Maxwell’s equations in a strong magnetic field would be a good foundation.

We follow closely the work of Petri (2013)[32], who uses the 3+ 1 formalism and a vector

spherical harmonics expansion of the electromagnetic field to solve Maxwell’s equations
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for both an aligned and orthogonal dipole, with the help of other similar works, such as

Rezzolla (2001)[25]. In chapter (2), we lay the foundations of what is needed to solve for

the electromagnetic field equations in a curved spacetime using a 3 + 1 splitting. The

relevant spacetime metric and coordinate system is set out and the Maxwell’s equations

are adjusted according to the the 3 + 1 formalism. We also give the force-free conditions

and explain the VSH in a curved spacetime with some useful identities which will be used

to aid in solving the Maxwell’s equations. Chapter (3) sets out to solve for the dipole

magnetic field of an aligned non-rotating neutron star in a vacuum where we also confirm

whether the far field limit matches the aligned flat spacetime dipole magnetic field. In

chapter (4) we introduce rotation to the system and solve for the electric field of the

aligned rotating dipole. We solve for the electric field in two steps, first by neglecting the

e↵ects of frame-dragging to simplify the equations and once that electric field solution

is obtained, we introduce frame-dragging to the equations and find the final solution for

the electric field. We go on, in chapter (5), to derive a general formalism of the fields

for the aligned rotating dipole such that the electromagnetic fields can be determined up

to any order in the spin for ones desired degree of accuracy. Chapter (6) introduces the

extreme case of the orthogonal dipole magnetic field in a vacuum where we solve only for

the magnetic field without rotation and again confirm whether the far field limit matches

the orthogonal flat spacetime dipole magnetic field. In chapter (7) we review the results

and provide a summary of the work.



Chapter 2

Electromagnetic Equations in

Strong Gravity

In this chapter we shall lay the foundations of what is needed to solve for the electro-

magnetic field equations for our system. We will first explain the 3+1 formalism used in

this work. We will then show Maxwell’s equations and how they change in the curved

spacetime with the 3+1 formalism followed by the force-free conditions. We will then

briefly derive and explain the VSH in a curved spacetime which will aid in solving the

field equations.

2.1 The 3 + 1 Decomposition

In order to predict the evolution in time of a system, one must formulate an initial value

problem, or Cauchy problem, with adequate boundary conditions. The problem, when

working with the Einstein Field Equations (EFE), is that they are covariant and written

in such a way that there is no clear distinction between space and time. It is, therefore,

di�cult to predict the evolution of the gravitational field in time. Hence, in order to

rewrite the EFE as a Cauchy problem, we must first split the space and time components

so that they are no longer dependent on each other and can be analysed separately. To do

this, we use a 3+1 formalism[38] where we split the spacetime metric into three parts space

and one part time. The idea behind this is that the spacetime is foliated, or ‘sliced’ into

three-dimensional pieces, so that each ‘slice’ is spacelike, assuming that the spacetime

6



Electromagnetic Equations in Strong Gravity 7

is globally hyperbolic (i.e. the spacetime has no closed timelike curves and, therefore,

does not allow time travel to the past). We can then parametrise the foliation with the

parameter t which can be considered as the universal time. These spacelike hypersurfaces

are then regarded as “absolute space” at di↵erent instances of time t. Now consider a

specific foliation, such as that in figure (2.2). Consider two hypersurfaces adjacent to each

other, ⌃1 and ⌃2 or rather ⌃t and ⌃t+dt, where we now wish to determine the geometry

of the region between these two hypersurfaces.

Figure 2.1: The spacetime foliation for a 3+1 formalism. (Alcubierre, 2006)[29]

Figure 2.2: Two adjacent hypersurfaces showing the definitions of the lapse function
and shift vector. (Alcubierre, 2006)[29]

To do this, we will need three new variables. In our notation, we use latin letters to

represent the vector indices. Letters running from a to h are used to represent the 3-

vectors in absolute space, which run in {1, 2, 3}, and letters running from i to z are used
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to represent 4-vectors and tensors, which run in {0, 1, 2, 3}. Now, the first is the three-

dimensional space metric �ab which measures the proper distances within the hypersurface

such that

dl2 = �abdx
adxb. (2.1)

Second is the lapse of the proper time between both hypersurfaces, which is measured

from the observer moving along the normal to the hypersurfaces (Eulerian observer), given

by

d⌧ = ↵(t, xa)dt (2.2)

where ⌧ is the proper time and ↵ is known as the lapse function.

The third variable we need to define is the relative velocity �a between the normal line

(Eulerian observers) and the coordinate line, which corresponds to constant spatial coor-

dinates. We have, for Eulerian observers

xat+dt = xat + �a(t, xb)cdt. (2.3)

The relative velocity �a is known as the shift vector.

It is clear that both the way in which the spacetime is foliated and the way in which the

spatial coordinates propagate between the hypersurfaces are not unique. Hence both ↵

and �a can be freely specified and these functions govern our choice of coordinate system

and are known as gauge functions. We choose to use the metric signature (+,�,�,�).

Taking �a = �ab�b and �2 = �a�a, we determine the spacetime metric to be
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ds2 = gijdx
idxj = c2d⌧2 � dl2

= ↵2c2dt2 � �abdx
adxb

= ↵2c2dt2 � �ab (dx
a + �acdt)

⇣
dxb + �bcdt

⌘

= ↵2c2dt2 � �ab
h
dxadxb + �acdtdxb + �bcdtdxa�a�bc2dt2

i

=
�
↵2 � �2

�
c2dt2 � 2�acdtdx

a � �abdx
adxb

(2.4)

where xi = (ct, xa). We can see that gij can be written in matrix form as

gij =

0

@↵2 � �2 ��b

��a ��ab

1

A =

0

BBBBBB@

↵2 � �2 ��1 ��2 ��3

��1 ��11 ��12 ��13

��2 ��21 ��22 ��23

��3 ��31 ��32 ��33

1

CCCCCCA
(2.5)

with its inverse being

gij =

0

@ 1/↵2 ��b/↵2

��a/↵2 ��ab + �a�b/↵2

1

A (2.6)

=

0

BBBBBB@

1/↵2 ��1/↵2 ��2/↵2 ��3/↵2

��1/↵2 ��11 + �1�1/↵2 ��12 + �1�2/↵2 ��13 + �1�3/↵2

��2/↵2 ��21 + �2�1/↵2 ��22 + �2�2/↵2 ��23 + �2�3/↵2

��3/↵2 ��31 + �3�1/↵2 ��32 + �3�2/↵2 ��33 + �3�3/↵2

1

CCCCCCA
(2.7)

.

We write �ab in matrix form as

�ab =

0

BBB@

↵�2 0 0

0 r2 0

0 0 r2 sin2 ✓

1

CCCA
(2.8)

.
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We then have a relationship between the determinants of the spacetime metric, g, and

spatial metric, �, as

p
�g = ↵

p
�. (2.9)

It is also easy to show that the components of the normal vector to the spatial hypersur-

faces, or the 4-velocity of the Fiducial Observer (FIDO), ni are

ni =
dxi

d⌧
=

c

↵
(1,�~�) (2.10a)

ni = (↵c,~0). (2.10b)

Following the Schwarzschild solution, we define ↵, for a slowly rotating neutron star, as

↵ =

r
1� Rs

r
(2.11)

where Rs = 2GM/c2 is the Schwarzschild radius and G is the gravitational constant and

M the mass of the star. The shift vector ~� is defined by

c~� = �!r sin ✓�̂. (2.12)

Note: for our calculations we use a spherical coordinate system (r, ✓,�) with the orthonor-

mal spatial basis (r̂, ✓̂, �̂). Here the angular frequency ! is defined as

! =
Rsac

r3
(2.13)

where the spin, a, is

a

Rs
=

2

5

R

Rs

R

rL
(2.14)

and R is the radius of the neutron star. The light cylinder radius rL is defined by



Electromagnetic Equations in Strong Gravity 11

rL =
c

⌦
(2.15)

and ⌦ is the rotation rate of the neutron star. The light cylinder is the distance from the

pulsar where the linear velocity of the rotating pulse beam reaches the speed of light. We

can relate the spin a to the angular momentum J by

J = Mac. (2.16)

We can see that a has units of length and should satisfy a  Rs/2. We can also write the

angular momentum in terms of the moment of inertia I as

J = I⌦ (2.17)

where, when we have the special case of a homogeneous and uniform neutron star with

spherical symmetry, the moment of inertia is

I =
2

5
MR2. (2.18)

It is useful to introduce the relative rotation of the neutron star as

!̃ = ⌦� !. (2.19)

2.2 Maxwell’s Equations in the 3+1 formalism

We know the standard Maxwell’s equations in a flat spacetime to be
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~r · ~B = 0 (2.20a)

~r⇥ ~E = � @

@t
~B (2.20b)

~r · ~D = ⇢ (2.20c)

~r⇥ ~H =
@

@t
~D + ~J. (2.20d)

where ⇢ is the electric charge density and ~J the electric current density. These equations

are no longer su�cient in a curved spacetime and we now use the electromagnetic field

tensors to describe the fields and subsequently make corrections to the Maxwell equations

(Landau and Lifshitz, 1987)[39].

The contravariant form of the electromagnetic field tensor, known as the Maxwell tensor,

is expressed as

F ij =
1p
�g

0

BBBBBB@

0 �p
�D1/"0c �p

�D2/"0c �p
�D3/"0c

p
�D1/"0c 0 �µ0H3 µ0H2

p
�D2/"0c µ0H3 0 �µ0H1

p
�D3/"0c �µ0H2 µ0H1 0

1

CCCCCCA
(2.21)

where we have used the ~D and ~H vector fields. The dual of equation (2.21), known as

the Faraday tensor, using the ~E and ~B vector fields, is

⇤F ij =
1p
�g

0

BBBBBB@

0 �p
�B1 �p

�B2 �p
�B3

p
�B1 0 E3/c �E2/c

p
�B2 �E3/c 0 E1/c

p
�B3 E2/c �E1/c 0

1

CCCCCCA
(2.22)

The electromagnetic field tensor expressed in its covariant form, using the vector fields ~E

and ~B, is
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Fij =

0

BBBBBB@

0 E1/c E2/c E3/c

�E1/c 0 �p
�B3 p

�B2

�E2/c
p
�B3 0 �p

�B1

�E3/c �p
�B2 p

�B1 0

1

CCCCCCA
(2.23)

and its dual is

⇤F ij =

0

BBBBBB@

0 µ0H1 µ0H2 µ0H3

�µ0H1 0
p
�D3/"0c �p

�D2/"0c

�µ0H2 �p
�D3/"0c 0

p
�D1/"0c

�µ0H3
p
�D2/"0c �p

�D1/"0c 0

1

CCCCCCA
(2.24)

expressed using the ~D and ~H vector fields. The covariant Maxwell equations are [40]

rj
⇤F ij = 0 (2.25a)

rjF ij = Ii (2.25b)

where Ii is the 4-current density defined by the charge density ⇢ and the current density

~J as

⇢c ⌘ ↵I0 (2.26a)

Ja ⌘ ↵Ia. (2.26b)

In order to 3+1 split the covariant Maxwell equations, we can write them in components

and, introducing the spatial vector fields, ~B, ~E, ~D and ~H, we can write them in a form

similar that in equation (2.20). For example, equation (2.25a) can be split into two parts,

one time and the other space, such that the time part reads

1
p
�

@

@xa

⇣
↵
p
�⇤F0a

⌘
= 0 (2.27)
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and the space part reads

1
p
�

@

@t

⇣
↵
p
�⇤Fb0

⌘
+

1
p
�

@

@xa

⇣
↵
p
�⇤Fba

⌘
= 0. (2.28)

Now, from the contravariant field tensors, we can express the spatial vector fields, ~B, ~E,

~D and ~H as

Ba = ↵⇤Fa0 (2.29a)

Ea =
↵

2
eabcc

⇤Fbc (2.29b)

Da = "0c↵Fa0 (2.29c)

Ha = � ↵

2µ0
eabcFbc (2.29d)

where "0 is the permittivity of free space, µ0 is the permeability of free space and

eabc =
p
�"abc (2.30a)

eabc =
"abc
p
�

(2.30b)

is the Levi-Civita tensor of absolute space with "abc being the three-dimensional Levi-

Civita symbol. Equations (2.29a) to (2.29d) can be inverted such that the field tensor is

the subject of the equation as follows

⇤Fa0 =
Ba

↵
(2.31a)

⇤Fab =
1

c↵
eabcEc =

1

c
p
�g

"abcEc (2.31b)

Fa0 =
Da

"0c↵
(2.31c)

Fab = �µ0

↵
eabcHc = � µ0p

�g
"abcHc. (2.31d)

The spatial field vectors can also be written using the covariant field tensors such that
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Ba = �1

2
eabcFbc (2.32a)

Ea = cF0a (2.32b)

Da =
"0c

2
eabc⇤Fbc (2.32c)

Ha =
⇤F0a

µ0
(2.32d)

and again inverting them so that the field tensor is the subject of the equation, we have

Fab = �eabcB
c = �p

�"abcB
c (2.33a)

F0a =
Ea

c
(2.33b)

⇤Fab =
eabc
"0c

Dc =

p
�

"0c
(2.33c)

⇤F0a = µ0Ha"abcD
c. (2.33d)

Now in a curved three-dimensional spacetime, the covariant Maxwell equations become

~r · ~B = 0 (2.34a)

~r⇥ ~E = � 1
p
�

@

@t
(
p
� ~B) (2.34b)

~r · ~D = ⇢ (2.34c)

~r⇥ ~H = ~J +
1
p
�

@

@t
(
p
� ~D). (2.34d)

When we have @
@t� = 0 we obtain the classical form of Maxwell’s equations[30] as in

equation (2.20). The vector fields are now not independent of each other as they would

be in a flat spacetime. They are connected by the constitutive relations given below as
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"0 ~E = ↵~D + "0c~� ⇥ ~B (2.35a)

µ0
~H = ↵~B �

~� ⇥ ~D

"0c
. (2.35b)

These constitutive relations take into account the curvature of the absolute space by the

lapse function ↵, which occurs in the first term on the RHS of the two relations. The

frame-dragging e↵ect is taken into account by the cross product of ~� in the second term

on the RHS of the two relations. In a flat spacetime, we would have ↵ = 1 and ~� = 0 and

hence we can retrieve the known form of "0 ~E = ~D and µ0
~H = ~B.

We note that we are able to express each of the spatial vector fields using a spacetime

vector where the time component vanishes and the spatial component is that of the spatial

vector field. We can thus write the ~B and ~D fields as

cBa = ⇤Fajnj (2.36a)

Da

"0
= Fajnj . (2.36b)

Hence ~B and ~D are the magnetic and electric fields respectively measured by the FIDO.

We can also then write that

⇢c2 = Ijnj (2.37)

and hence ⇢ is the electric charge density as measured by the FIDO. However, ~J is not the

electric current density measured by the FIDO. If we denote the electric current density

as measured by the FIDO as ~j, then this is the component of the 4-current density Ii

that is normal to ni. We use the projection tensor

pji = �ji �
ninj

c2
(2.38)

and find the electric current density ~j to be
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↵~j = ~J + ⇢c~�. (2.39)

2.3 Force Free Conditions

We wish to express the current in the limit of a force-free plasma as we are considering

a pulsar magnetosphere, where we neglect inertia and pressure since the electromagnetic

field is so strong. The force-free condition enables us to write the electric current in terms

of the electromagnetic field and its spatial derivatives in an alternative form of Ohm’s

law. The derivation to follow is similar to that of Gruzinov (1999)[41] except we shall

consider the e↵ects of general relativity. The force-free condition in covariant form is

FijI
j = 0. (2.40)

where, in the 3 + 1 formulation, it can be split into

~J · ~E = 0 (2.41)

and

⇢ ~E + ~J ⇥ ~B = ~0. (2.42)

Equation (2.42) implies that

~E · ~B = 0 (2.43)

which, combined with the constitutive relation equation (2.35a), implies that

~D · ~B = 0. (2.44)

We find the component of the electric current density that is normal to the magnetic field

by cross-multiplying equation (2.42) by ~B and find
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~J? = ⇢
~E ⇥ ~B

B2
. (2.45)

For the parallel component of the electric current density, we first note that equation

(2.44) also implies that

@

@t

⇣p
� ~D · ~B

⌘
= 0 (2.46)

which we use with equations (2.34b), (2.34d) and (2.44) to obtain

⇣
~r⇥ ~H � ~J

⌘
· ~B �

⇣
~r⇥ ~E

⌘
· ~D = 0. (2.47)

This now has no time derivative of � and solving for the parallel component of ~J we have

~Jk =
~B ·
⇣
~r⇥ ~H

⌘
� ~D ·

⇣
~r⇥ ~E

⌘

B2
~B. (2.48)

Combining the perpendicular and parallel components of the electric current density, we

find it to be the same as that in the special relativistic case such that

~J = ⇢
~E ⇥ ~B

B2
+

~B · ~r⇥ ~H � ~D · ~r⇥ ~E

B2
~B. (2.49)

We now have the background system needed to solve any prescribed metric using Maxwell’s

equations ((2.34a) to (2.34d)), the constitutive relations (equations (2.35a) and (2.35b))

and the prescription for the source terms. Next we will introduce and define the VSH in

a curved spacetime, which will be used to help solve this system of equations, where we

will focus only on the vacuum solutions.

2.4 Vector Spherical Harmonics

We make use of VSH to help solve for the electric and magnetic fields. Below is a brief

derivation for the VSH in a flat spacetime which are easily converted to the curved space-

time as the only di↵erence is that d/dr = ↵d/dr. The VSH are just an extension of the
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scalar spherical harmonics (SSH) which are special functions defined on the surface of a

sphere and are found by solving Laplace’s equation in spherical coordinates, denoted as

Yl,m(✓,�) where ✓ is the polar coordinate and � the azimuthal coordinate.

The Laplacian can be written in spherical coordinates as

~r2 =
1

r2
@

@r
(r2

@

@r
) +

1

r2 sin2 ✓

@

@✓
(sin ✓

@

@✓
) +

1

r2 sin2 ✓
@2
�. (2.50)

Laplace’s equation can then be solved using separation of variables

~r2A(r, ✓,�) = 0 (2.51)

where

A(r, ✓,�) = R(r)⇥(✓)�(�). (2.52)

We shall skip over the full derivation which can be found at [42]. The spherical harmonics

Yl,m(✓,�) are found to be

Yl,m(✓,�) = (�1)m

s
2l + 1

4⇡

(l �m)!

(l +m)!
Pm
l (cos ✓)eim�, (2.53)

Now, in order to construct the VSH, we will need the orthogonality condition and the

closure relation as given in Barrera et al., 1985 [43]. The completeness or closure condition

is a vital property of the SSH, which states that any arbitrary function of ✓,�, say g(✓,�),

can be expanded onto the SSH such that

g(✓,�) =
1X

l=0

lX

m=�1

Gl,mYl,m(✓,�). (2.54)

If the function, g, is a function of other variables along with ✓ and �, such as r, then the

expansion coe�cients, Gl,m, are also functions of the additional variables, such that
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g(r, ✓,�) =
1X

l=0

lX

m=�1

Gl,m(r)Yl,m(✓,�). (2.55)

In order to determine the expansion coe�cients, one will now need the orthogonality

condition

I
d⌦Y ⇤

l,m(✓,�)Yl0,m0(✓,�) = �l,l · �m,m0 (2.56)

where d⌦ ⌘ sin ✓d✓d�. The coe�cients are then given by

Gl,m =

Z
d⌦Y ⇤

l,m(✓,�)g(✓,�). (2.57)

We will now go on to define the VSH. We use equation (2.55) as our scalar field and take

the gradient to attain a vector field

~rg =
1X

l=0

lX

m=�1

(Yl,m~rGl,m + Gl,m
~rYl,m)

=
1X

l=0

lX

m=�1

✓
d

dr
Gl,m(r)Yl,mr̂ + Gl,m

~rYl,m

◆ (2.58)

which in the curved spacetime would be

~rg =
1X

l=0

lX

m=�1

✓
↵
d

dr
Gl,m(r)Yl,mr̂ + Gl,m

~rYl,m

◆
, (2.59)

For simplicity, it is required that the gradient of a spherical harmonic expansion also be

a spherical harmonic expansion. Thus equation (2.58) can be considered as a generalised

expansion of the VSH. Here it can be seen that the radial part of the vector ~rg is simply

expanded with Yl,m, while the angular parts, ✓̂ and �̂, are expanded in terms of ~rYl,m.

This encourages us to introduce the following vector

~ l,m(✓,�) ⌘ r~rYl,m(✓,�) (2.60)
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where the r factor helps in making equation (2.60) dimensionless, like Yl,m. We now

consider another vector equation

~C = r̂ ⇥ ~ l,m. (2.61)

This vector can neither be expanded in terms of Yl,mr̂, nor can it be expanded in terms

of ~ l,m, since ~C is orthogonal to r̂. We thus conclude that r̂⇥ ~ l,m is a new type of vector

which we will need in the expansion and define it as

~�l,m ⌘ r̂ ⇥ ~ l,m = ~r ⇥ ~rYl,m. (2.62)

We shall also define another symbol for the radial part seen in equation (2.58) such that

~Yl,m ⌘ Yl,mr̂. (2.63)

Thus we have our three vector spherical harmonics (~Yl,m, ~ l,m, ~�l,m).

There have been other definitions of the VSH, such as Hill (1954)[44]. In Hill’s definition

of the VSH, there are a set of vectors (~Vl,m, ~Wl,m, ~Xl,m) which are related to the vectors

(~Yl,m, ~ l,m, ~�l,m) as follows

~Vl,m =

r
l + 1

2l + 1
~Yl,m +

1p
(l + 1)(2l + 1)

~ l,m (2.64a)

~Wl,m =

r
l

2l + 1
~Yl,m +

1p
l(2l + 1)

~ l,m (2.64b)

~Xl,m =
�ip

l(l + 1)
~�l,m. (2.64c)

For the purposes of this work, the VSH in a curved spacetime are defined by

~Yl,m = Yl,mr̂ (2.65)

where Yl,m is given by equation (2.53), and
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~ l,m =
rp

l(l + 1)
~rYl,m, (2.66)

~�l,m =
~rp

l(l + 1)
⇥ ~rYl,m. (2.67)

In this case, we can relate our VSH to that of Hill’s by

~Xl,m =
�ip

l(l + 1)
~r ⇥ ~rYl,m = �i~�l,m. (2.68)

We can take note of some useful properties in a curved space that will be used to solve

for our vector fields.

The gradient and Laplacian of any scalar field, f(r, ✓,�), are, respectively

~rf = ↵
@

@r
f r̂ +

1

r

@

@✓
f ✓̂ +

1

r sin ✓

@

@�
f �̂ (2.69)

and

~�f =
↵

r2
@

@r
(↵r2

@

@r
f) +

1

r2 sin ✓

@

@✓
(sin ✓

@

@✓
f) +

1

r2 sin2 ✓
@2
�f. (2.70)

The divergence and the curl for any vector field, ~V (r, ✓,�), are, respectively

~r · ~V =
↵

r2
@

@r
(r2V r̂) +

1

r sin ✓

@

@✓
(sin ✓V ✓̂) +

1

r sin ✓

@

@�
V �̂ (2.71)

and

(~r⇥ ~V )r̂ =
1

r sin ✓


@

@✓
(sin ✓V �̂)� @

@�
V ✓̂

�
(2.72a)

(~r⇥ ~V )✓̂ =
1

r sin ✓

@

@�
V r̂ � ↵

r

@

@r
(rV �̂) (2.72b)

(~r⇥ ~V )�̂ =
↵

r

@

@r
(rV ✓̂)� 1

r

@

@✓
V r̂ (2.72c)
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where the physical components of the vector fields are represented by hatted indices. The

only di↵erence between equations (2.71) and (2.72) and the divergence and curl equations

for a flat space is that here we have ↵ @
@r instead of just @

@r .

It is also useful that we have the divergence and curl of our scalar f as a function only of

r with each of the VSH. For the divergence we have

~r ·
⇣
f(r)~Yl,m

⌘
=

↵

r2
@

@r

�
r2f
�
Yl,m (2.73a)

~r ·
⇣
f(r)~ l,m

⌘
= �

p
l(l + 1)

r
fYl,m (2.73b)

~r ·
⇣
f(r)~�l,m

⌘
= 0 (2.73c)

and for the curl

~r⇥
⇣
f(r)~Yl,m

⌘
= �

p
l(l + 1)

r
f~�l,m (2.74a)

~r⇥
⇣
f(r)~ l,m

⌘
=

↵

r

@

@r
(rf)~�l,m (2.74b)

~r⇥
⇣
f(r)~�l,m

⌘
= �

p
l(l + 1)

r
f ~Yl,m � ↵

r

@

@r
(rf)~ l,m. (2.74c)

It can then be shown, using these properties, that

~r⇥
⇣
↵~r⇥

⇣
f(r)~�l,m

⌘⌘
= �↵


1

r

@

@r

✓
↵2 @

@r
(rf)

◆
� l(l + 1)

r2
f

�
~�l,m. (2.75)

We now introduce some useful properties for frame dragging. The frame-dragging e↵ects

are included in the constitutive relations in equations (2.35a) and (2.35b) from the cross

product of two divergenceless vector fields, ~� with ~B and ~� with ~D respectively. From

our definition of the VSH and the shift vector ~� we find

~� ⇥ (f~�l,m) = �i
mp

l(l + 1)

!r

c
f ~Yl,m (2.76)

and hence the curl of equation (2.76) is
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~r⇥ (~� ⇥ (f~�l,m)) = im
!

c
f~�l,m. (2.77)

Another useful property which we find from equations (2.12) and (2.74c) is

~� ⇥ ~r⇥ (f~�l,m) =
!

c
sin ✓

"
p

l(l + 1)fYl,m✓̂ � ↵p
l(l + 1)

@

@r
(rf)

@

@✓
Yl,mr̂

#
. (2.78)

The curl of equation (2.78), using the VSH definitions and the SSH eigenfunction prop-

erties and applying straightforward algebra[32], is then

~r⇥ (~� ⇥ ~r⇥ (f~�l,m)) = im
!r3

c
~r⇥

✓
f

r3
~�l,m

◆

+ 3↵
!

cr
f
hp

l(l + 2)Jl+1,m
~�l+1,m �

p
(l + 1)(l � 1)Jl,m~�l�1,m

i
(2.79)

where

Jl,m =

r
l2 �m2

4 l2 � 1
. (2.80)

We have now laid out all the foundations needed to solve for our field equations and shall

put them to use in the following chapters.



Chapter 3

Electromagnetic field of an aligned

dipole without rotation

We begin with a very simple case of an aligned dipole magnetic field in a vacuum without

rotation. Here we are only solving for the magnetic field as, without rotation, there will

be no induced electric field. Following this we will introduce rotation to the aligned dipole

and solve for the electric field, from which we will be able to determine a general formalism

for higher order fields. We will then solve separately for the perpendicular magnetic field.

Starting with our aligned magnetic dipole without any rotation, we set the spin to zero

(a = 0), which in turn sets the shift vector to zero, ~� = 0, and simplifies the constitutive

relations. The electric field is zero, ~E = ~D = 0, and for the magnetic field we have

µ0
~H = ↵~B. The static part @/@t = 0 is thus satisfied and Maxwell’s equations simplify

as:

~r · ~B = 0 (3.1a)

~r⇥
⇣
↵~B
⌘
= 0 (3.1b)

Far from the neutron star, as limr!1, we expect that the magnetic field should be the

same as the aligned dipole flat spacetime magnetic field[45]. This is given by

25
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~B =
µ0

4⇡r3


3(~µ · ~r)~r

r2
� ~µ

�
=

µ0

4⇡r3
[3(~µ · r̂)r̂ � ~µ]

=
µ0µ

4⇡r3

⇣
2 cos ✓r̂ + sin ✓✓̂

⌘ (3.2)

where the vector ~µ can be rewritten as

~µ = µ(cos ✓r̂ � sin ✓✓̂). (3.3)

Now, we define our aligned dipole magnetic field in a curved spacetime as being expressed

only with the first vector spherical harmonics ~�1,0 which corresponds to (l,m) = (1, 0)

since l = 1 corresponds to a dipole field and m = 0 corresponds to symmetry around the

z-axis in accordance with our field being aligned. We can thus express the magnetic field

according to its divergenceless state and write ~B as

~B = Re
h
~r⇥ (fB

1,0(r)~�1,0)
i
, (3.4)

since the divergence of the curl of a vector is zero. Here we have the scalar function fB
1,0(r)

which is dependent only on r and is the unique unknown in the equation. Now in order

to satisfy the far field limit in equation (3.2) we take limr!1 of equation (3.4) and equate

it to equation (3.2) to solve for limr!1 fB
1,0(r). First we calculate the value of ~�1,0. From

equation (2.65) we have

~Y1,0 =

r
3

4⇡
cos ✓r̂. (3.5)

Using equation (2.69) to take the gradient of equation (3.5) we get

~r~Y1,0 = �1

r

r
3

4⇡
sin ✓✓̂. (3.6)

Thus from equation (2.67) we obtain



Electromagnetic field of an aligned dipole without rotation 27

~�1,0 =
rr̂p
2
⇥�1

r

r
3

4⇡
sin ✓✓̂

= �
r

3

8⇡
sin ✓�̂.

(3.7)

Now taking the limit of equation (3.4) and substituting in equation (3.7)

~B = �
r

3

8⇡
~r⇥ ( lim

r!1
fB
1,0(r) sin ✓�̂)

= �
r

3

8⇡


2

r
lim
r!1

fB
1,0(r) cos ✓r̂ �

1

r

@

@r

⇣
r lim
r!1

fB
1,0(r)

⌘
sin ✓✓̂

� (3.8)

Equating the r̂ components of equations (3.2) and (3.8) we find limr!1 fB
1,0(r) to be

�
r

3

8⇡

2

r
lim
r!1

fB
1,0(r) cos ✓ =

µ0µ

4⇡r3
2 cos ✓

) lim
r!1

fB
1,0(r) = �

r
8⇡

3

µ0µ

4⇡r2

(3.9)

and hence

~B =
µ0

4⇡r3


3(~µ · ~r)~r

r2
� ~µ

�
= �

r
8⇡

3

µ0µ

4⇡
Re

"
~r⇥

~�1,0

r2

#
(3.10)

We now wish to find a separable solution for equation (3.4) using the boundary condi-

tion in equation (3.9). We know that equation (3.1a) is automatically satisfied by our

construction of ~B in equation (3.4). Now, in order to satisfy equation (3.1b), we insert

equation (3.4) into equation (3.1b) as follows

~r⇥
⇣
↵~B
⌘
= ~r⇥

⇣
↵Re

h
~r⇥ (fB

1,0(r)~�1,0)
i⌘

= 0 (3.11)

From equation (3.7) and using equation (2.72) we obtain the curl of fB
1,0(r)~�1,0 as
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~B = ~r⇥ (fB
1,0(r)~�1,0)

= �1

r

r
3

2⇡
fB
1,0(r) cos ✓r̂ +

↵

r

r
3

8⇡

@

@r
(rfB

1,0(r)) sin ✓✓̂
(3.12)

which can also be obtained from equation (2.74c). Now solving for equation (3.11) we

find

"
↵

r

@

@r
(r
↵2

r

r
3

8⇡

@

@r
(rfB

1,0(r)) sin ✓) +
1

r

@

@✓
(
↵

r

r
3

2⇡
fB
1,0(r) cos ✓)

#
�̂ = 0

)sin ✓

2

@

@r
(↵2 @

@r
(rfB

1,0(r)))�
1

r
sin ✓fB

1,0(r) = 0

) @

@r
(↵2 @

@r
(rfB

1,0(r)))�
2

r
fB
1,0(r) = 0

(3.13)

and hence we have a second-order linear ordinary di↵erential equation for the scalar fB
1,0(r)

as

@

@r

✓
↵2 @

@r
(rfB

1,0(r))

◆
� 2

r
fB
1,0(r) = 0. (3.14)

Now we need only solve for the scalar fB
1,0(r). This is done as follows:

First we substitute fB
1,0(r)/r = q1(r) into equation (3.14) and substituting for ↵, we can

rewrite equation (3.14) as

d

dr

✓
1� Rs

r

◆
d

dr
(r2q1)

�
� 2q1 = 0. (3.15)

Now let x = 1� 2r/Rs. We then have

d

dx

⇢✓
1 + x

1� x

◆
d

dx

⇥
(1� x)2q1

⇤�
+ 2q1 = 0 (3.16)

Let us rewrite this as
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d

dx

⇢✓
1 + x

1� x

◆
d

dx

⇥
(1� x)2ql

⇤�
+ l(l + 1)ql = 0 (3.17)

where we are now looking for the solution to the equation (3.17) for the function ql. Note,

equation (3.17) reduces to equation (3.16) when l = 1. We can rewrite equation (3.17) as

follows

d

dx

⇢✓
1 + x

1� x

◆
d

dx

⇥
(1� x)2ql

⇤�
+ l(l + 1)ql = 0

) d

dx

⇢
�2(1 + x)ql + (1� x2)

d

dx
ql

�
+ l(l + 1)ql = 0

) � 2ql � 2(1 + x)
d

dx
ql � 2x

d

dx
ql + (1� x2)

d2

dx2
ql + l(l + 1)ql = 0

) (1� x2)
d2

dx2
ql � 2(1 + 2x)

d

dx
ql + [l(l + 1)� 2]ql = 0.

(3.18)

We then have a solution of the form

ql =
d

dx


(1 + x)

d

dx
Ql

�
(3.19)

where Ql is the associated Legendre function of second kind. As proof that our solution is

of the form of the associated Legendre function, we can show that equation (3.18) reduces

to the associated Legendre di↵erential equation. The first two derivatives of equation

(3.19) are

ql =
d2

dx2
Ql + x

d2

dx2
Ql +

d

dx
Ql (3.20a)

d

dx
ql =

d3

dx3
Ql + x

d3

dx3
Ql + 2

d2

dx2
Ql (3.20b)

d2

dx2
ql =

d4

dx4
Ql + x

d4

dx4
Ql + 3

d3

dx3
Ql (3.20c)

We substitute equation (3.20) into equation (3.18) as follows
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(1� x2)
d2

dx2
ql � 2(1 + 2x)

d

dx
ql + [l(l + 1)� 2]ql = 0

) (1� x2)

✓
d4

dx4
Ql + x

d4

dx4
Ql + 3

d3

dx3
Ql

◆

� 2(1 + 2x)

✓
d3

dx3
Ql + x

d3

dx3
Ql + 2

d2

dx2
Ql

◆

+ [l(l + 1)� 2]

✓
d2

dx2
Ql + x

d2

dx2
Ql +

d

dx
Ql

◆
= 0

) (1� x2)(1 + x)
d4

dx4
Ql +

⇥
3(1� x2)� 2(1 + 2x)(1 + x)

⇤ d3

dx3
Ql

+ (1 + x)[l(l + 1)� 2]
d2

dx2
Ql

� 4(1 + 2x)
d2

dx2
Ql + [l(l + 1)� 2]

d

dx
Ql = 0

) (1 + x)


(1� x2)

d4

dx4
Ql + (1� 7x)

d3

dx3
Ql + [l(l + 1)� 2]

d2

dx2
Ql

�

� 4(1 + 2x)
d2

dx2
Ql + [l(l + 1)� 2]

d

dx
Ql = 0. (3.21)

We can rewrite equation (3.21) as

(1 + x)


(1� x2)

d4

dx4
Ql + (1� x)

d3

dx3
Ql

�6x
d3

dx3
Ql + [l(l + 1)� 6]

d2

dx2
Ql + 4

d2

dx2
Ql

�

� 4(1 + 2x)
d2

dx2
Ql + [l(l + 1)� 2]

d

dx
Ql = 0

) (1 + x)


(1� x2)

d4

dx4
Ql � 6x

d3

dx3
Ql + [l(l + 1)� 6]

d2

dx2
Ql

�

+ (1� x2)
d3

dx3
Ql � 4x

d2

dx2
Ql + [l(l + 1)� 2]

d

dx
Ql = 0. (3.22)

Now, we know the Legendre di↵erential equation with m = 0 is

(1� x2)
d2

dx2
Ql � 2x

d

dx
Ql + l(l + 1)Ql = 0. (3.23)

Taking the first two derivatives of Legendre’s equation, we get
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(1� x2)
d3

dx3
Ql � 4x

d2

dx2
Ql + [l(l + 1)� 2]

d

dx
Ql = 0 (3.24)

and

(1� x2)
d4

dx4
Ql � 6x

d3

dx3
Ql + [l(l + 1)� 6]

d2

dx2
Ql = 0. (3.25)

We can now see that the content in the first square bracket of equation (3.22) is just the

second derivative of the Legendre equation, and the remaining terms outside the bracket

make up the first derivative of the Legendre equation. Thus equation (3.22) is identically

satisfied.

Now, for l = 1, the associated Legendre function of second kind is

Q1 =
x

2
ln

����
1 + x

1� x

����� 1. (3.26)

Substituting in equation (3.26) into equation (3.19) and finding the first two derivatives

we obtain

q1 =
1

2
ln

����
1 + x

1� x

����+
1

1� x
+

1

(1� x)2
(3.27a)

d

dx
q1 =

1

1� x2
+

1

(1� x)2
+

2

(1� x)3
(3.27b)

d2

dx2
q1 =

2x

(1� x2)2
+

2

(1� x)3
+

6

(1� x)4
. (3.27c)

Substituting equation (3.27) into equation (3.18) we verify the solution to be zero. Thus

equation (3.27a) is a solution of equation (3.16). Now in order to solve for fB
1,0(r) we have

fl,m = Flrql (3.28)

where Fl is a constant obtained from the boundary conditions. Thus, substituting for x,

we have



Electromagnetic field of an aligned dipole without rotation 32

fB
1,0(r) = F1r

2

64
1

2
ln

�����
1 + 1� 2r

Rs

1� 1 + 2r
Rs

�����+
1

1� 1 + 2r
Rs

+
1

⇣
1� 1 + 2r

Rs

⌘2

3

75

= F1r


1

2
ln

����
Rs

r
� 1

����+
Rs

2r
+

R2
s

4r2

�

= F1
r

2


ln
���↵2

��+ Rs

r
+

R2
s

2r2

�

= F1
r

2


ln↵2 +

Rs

r
+

R2
s

2r2

�

= F 0
1r


ln↵2 +

Rs

r
+

R2
s

2r2

�

(3.29)

where F 0
1 = F1/2. Note that r > Rs for the exterior of the star and hence 0 < 1�Rs/R <

↵2 < 1 and thus �1 < ↵2 < Rs/R� 1 < 0, where R is the radius of the star. Solving for

F 0
1 using the boundary condition in equation (3.9) and using the limit

lim
r!1

ln

✓
1� Rs

r

◆
= �Rs

r
� R2

s

2r2
� R3

s

3r3
� h.o. (3.30)

we have

lim
r!1

fB
1,0(r) = lim

r!1
F 0
1rq1

) � µ0µ

4⇡r2

r
8⇡

3
= lim

r!1
F 0
1r


�Rs

r
� R2

s

2r2
� R3

s

3r3
� R4

s

4r4
� h.o.+

Rs

r
+

R2
s

2r2

�

= lim
r!1

�F 0
1r


R3

s

3r3
+

R4
s

4r4
+ h.o.

�

= lim
r!1

�F 0
1r

R3
s

3r3


1 +

3Rs

4r
+

3R2
s

5r2
+ h.o.

�

= �F 0
1
R3

s

3r2
.

(3.31)

Therefore

F 0
1 =

µ0µ

4⇡

r
8⇡

3

3

R3
s

(3.32)

and
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fB(dip)
1,0 =

µ0µ

4⇡

r
8⇡

3

3r

R3
s


ln↵2 +

Rs

r
+

R2
s

2r2

�
. (3.33)

In order to solve for the magnetic field components, we now substitute equation (3.33)

into equation (3.12). We will need @
@r (rf

B(dip)
1,0 (r)) which is

@

@r
(rfB(dip)

1,0 (r)) =
@

@r

 
µ0µ

4⇡

r
8⇡

3

3

R3
s


r2 ln↵2 + rRs +

R2
s

2

�!

=
µ0µ

4⇡

r
8⇡

3

3

R3
s


2r ln↵2 +

Rs

↵2
+Rs

�

=
µ0µ

4⇡

r
8⇡

3

3r

↵R3
s


2↵ ln↵2 +

Rs

↵r
+

↵Rs

r

�

=
µ0µ

4⇡

r
8⇡

3

3r

↵R3
s


2↵ ln↵2 +

Rs

r

2r �Rs

↵r

�

=
µ0µ

4⇡

r
8⇡

3

3r

↵R3
s

"
2

r
1� Rs

r
ln

✓
1� Rs

r

◆
+

Rs

r

2r �Rsp
r(r �Rs)

#

(3.34)

We now find the magnetic field components from equation (3.12) to be

Br̂ = �1

r

r
3

2⇡
fB
1,0(r) cos ✓

= �6
µ0µ

4⇡R3
s


ln

✓
1� Rs

r

◆
+

Rs

r
+

R2
s

2r2

�
cos ✓ (3.35a)

B✓̂ =
↵

r

r
3

8⇡

@

@r
(rfB

1,0(r)) sin ✓

= 3
µ0µ

4⇡R3
s

"
2

r
1� Rs

r
ln

✓
1� Rs

r

◆
+

Rs

r

2r �Rsp
r(r �Rs)

#
sin ✓ (3.35b)

B�̂ = 0. (3.35c)

Using equation (3.30) and the following limits

lim
r!1

r
1� Rs

r
= 1� Rs

2r
� R2

s

8r2
� R3

s

16r3
� h.o. (3.36a)

lim
r!1

✓
1� Rs

r

◆�1

= 1 +
Rs

r
+

R2
s

r2
+

R3
s

r3
+ h.o. (3.36b)
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we take limr!1 on the set of equations (3.35a) to (3.35c) to compare to the flat spacetime

magnetic field in equation (3.2) and find

lim
r!1

Br̂ = lim
r!1

�6
µ0µ

4⇡R3
s


�Rs

r
� R2

s

2r2
� R3

s

3r3
� R4

s

4r4
� h.o.+

Rs

r
+

R2
s

2r2

�
cos ✓

= lim
r!1

�6
µ0µ

4⇡R3
s


�R3

s

3r3
� R4

s

4r4
� h.o.

�
cos ✓

= lim
r!1

µ0µ

4⇡r3
2 cos ✓


1 +

3

4

Rs

r
+ h.o.

�

=
µ0µ

4⇡r3
2 cos ✓ (3.37a)

lim
r!1

B✓̂ = lim
r!1

3
µ0µ

4⇡R3
s

"
2

r
1� Rs

r
ln

✓
1� Rs

r

◆
+

Rs

r

2r �Rsp
r(r �Rs)

#
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s

"r
1� Rs

r

✓
2 ln

✓
1� Rs

r

◆
+

Rs

r

2r �Rs

r �Rs

◆#
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s

"r
1� Rs

r

✓
2 ln

✓
1� Rs

r

◆
+

Rs

r
+

Rs

r �Rs

◆#
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s

"r
1� Rs

r

✓
2 ln

✓
1� Rs

r

◆

+
Rs

r

"
1 +

✓
1� Rs

r

◆�1
#!#

sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s

✓
1� Rs

2r
� R2

s

8r2
� R3

s

16r3
� h.o.

◆

⇥
✓
2

✓
�Rs

r
� R2

s

2r2
� R3

s

3r3
� R4

s

4r4
� h.o.

◆

+
Rs

r


1 +

✓
1 +

Rs

r
+

R2
s

r2
+

R3
s

r3
+ h.o.

◆�◆�
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s

✓
1� Rs

2r
� R2

s

8r2
� R3

s

16r3
� h.o.

◆✓
�2Rs

r
� R2

s

r2
� 2R3

s

3r3

�R4
s

2r4
� h.o.+

2Rs

r
+

R2
s

r2
+

R3
s

r3
+

R4
s

r4
+ h.o.

◆�
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s


�2R3

s

3r3
� R4

s

2r4
+

R3
s

r3
+

R4
s

r4
+

R4
s

3r4
� R4

s

2r4
+ h.o.

�
sin ✓

= lim
r!1

3
µ0µ

4⇡R3
s


R3

s

3r3
+

R4
s

3r4
+ h.o.

�
sin ✓

= lim
r!1

µ0µ

4⇡r3


1 +

Rs

r
+ h.o.

�
sin ✓

=
µ0µ

4⇡r3
sin ✓ (3.37b)

B�̂ = 0 (3.37c)
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as expected.

In this chapter we have solved for the magnetic field of an aligned dipole without rotation

in a curved space. We have taken the far field limit as r ! 1 and proven that it is equal

to the flat spacetime magnetic field, as it should be. We will now go on to introduce

rotation to the system and solve for the electric field also.



Chapter 4

Electromagnetic field of an aligned

dipole with rotation

We shall now take our aligned dipole magnetic field and introduce rotation to the system

which will induce an electric field. We know through the constitutive relations, equations

(2.35a) and (2.35b), that the the electric and magnetic fields mix from frame-dragging

e↵ects. To make things simpler, we will first exclude the frame-dragging e↵ects by setting

� = 0, as we did in chapter (3), and find the electric field without any frame-dragging

and then we will go on to include the frame-dragging e↵ects.

4.1 Without frame-dragging (~� = 0)

We are now introducing rotation to our system, however, we are still setting the shift

vector to zero, ~� = 0, as with the previous chapter, so as to neglect the frame-dragging

e↵ects at this stage. This situation can arise when we consider the case of very slow

rotation. Maxwell’s equations then become

36
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~r · ~D = 0 (4.1a)

~r⇥ (↵~D) = 0 (4.1b)

~r · ~B = 0 (4.1c)

~r⇥ (↵~B) = 0 (4.1d)

The electric field is taken to be quadrupolar (from the flat spacetime solution), hence

l = 2. The fields are then written as

~D = Re
h
~r⇥ (fD

2,0
~�2,0)

i
(4.2a)

~B = Re
h
~r⇥ (fB

1,0
~�1,0)

i
. (4.2b)

Both fields are automatically divergenceless. The magnetic field remains the same as

before and we use similar methods to solve for the electric field where we now have the

unique unknown scalar function fD
2,0(r). We now insert equation (4.2a) into equation

(4.1b) as follows

~r⇥
⇣
↵~D
⌘
= ~r⇥

⇣
↵Re

h
~r⇥ (fD

2,0(r)~�2,0)
i⌘

= 0 (4.3)

First we need to find ~�2,0 from equation (2.67). From equation (2.65) we have

~Y2,0 =
1

2

r
5

4⇡
(3 cos2 ✓ � 1)r̂. (4.4)

Using equation (2.69) to take the gradient of equation (4.4) we get

~r~Y2,0 = �3

r

r
5

4⇡
cos ✓ sin ✓✓̂. (4.5)

Thus we have
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~�2,0 =
rr̂p
6
⇥�3

r

r
5

4⇡
cos ✓ sin ✓✓̂

= �
r

15

8⇡
cos ✓ sin ✓�̂.

(4.6)

Equation (4.2a) then becomes

~D = ~r⇥ (fD
2,0(r)~�2,0)

= �1

r

r
15

8⇡
fD
2,0(r)(3 cos

2 ✓ � 1)r̂ +
↵

r

r
15

8⇡

@

@r
(rfD

2,0(r)) cos ✓ sin ✓✓̂
(4.7)

which can also be obtained from equation (2.74c). Now solving for equation (4.3) we find

"
↵

r

@

@r
(r
↵2

r

r
15

8⇡

@

@r
(rfD

2,0(r)) cos ✓ sin ✓) +
1

r

@

@✓
(
↵

r

r
15

8⇡
fD
2,0(r)(3 cos

2 ✓ � 1))

#
�̂ = 0

) cos ✓ sin ✓
@

@r
(↵2 @

@r
(rfD

2,0(r)))�
1

r
6 cos ✓ sin ✓fD

2,0(r) = 0

) @

@r
(↵2 @

@r
(rfD

2,0(r)))�
6

r
fD
2,0(r) = 0. (4.8)

and hence we have another second-order linear ordinary di↵erential equation, now for our

scalar fD
2,0(r) as

@

@r
(↵2 @

@r
(rfD

2,0(r)))�
6

r
fD
2,0(r) = 0. (4.9)

Now we wish to solve for the scalar fD
2,0(r) using similar methods as were used in chapter

(3) to solve for fB
1,0(r). First we substitute l = 2 into equation (3.17) to obtain

d

dx

⇢✓
1 + x

1� x

◆
d

dx

⇥
(1� x)2q2

⇤�
+ 6q2 = 0 (4.10)

For l = 2 the associated Legendre function of second kind is
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Q2 =
3x2 � 1

4
ln

����
1 + x

1� x

�����
3x

2
(4.11)

and thus, after substituting equation (4.11) into equation (3.19) and finding the first two

derivatives, we find

q2 =
3

2
(2x+ 1) ln

����
1 + x

1� x

�����
6x2 � 9x+ 2

(x� 1)2
(4.12a)

d

dx
q2 = 3 ln

����
1 + x

1� x

�����
2(3x3 � 6x2 + x+ 4)

(x� 1)3(x+ 1)
(4.12b)

d2

dx2
q2 =

24

(x� 1)4(x+ 1)2
. (4.12c)

We substitute equation (4.12) into equation (3.18) and verify it to be zero. Hence equation

(4.12a) is a solution to equation (4.10). Now, substituting for x, we can solve for fD
2,0(r)

as

fD
2,0(r) = F2rq2

= F2r

2

43
2

✓
2

✓
1� 2r

Rs

◆
+ 1

◆
ln

������

1 +
⇣
1� 2r

Rs

⌘

1�
⇣
1� 2r

Rs

⌘

������

�
6
⇣
1� 2r

Rs

⌘2
� 9

⇣
1� 2r

Rs

⌘
+ 2

⇣⇣
1� 2r

Rs

⌘
� 1
⌘2

3

75

= F2r


3

2

✓
3� 4

r

Rs

◆
ln↵2 � R2

s

4r2

✓
6� 24r

Rs
+

24r2

R2
s

� 9 +
18r

Rs
+ 2

◆�

= F2r


3

2

✓
3� 4

r

Rs

◆
ln↵2 � 6 +

3Rs

2r
+

R2
s

4r2

�

= F2
R2

s

4r


6
r2

R2
s

✓
3� 4

r

Rs

◆
ln↵2 + 1 + 6

r

Rs

✓
1� 4

r

Rs

◆�

(4.13)

and taking limr!1
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lim
r!1

fD
2,0(r) = lim

r!1
F2

R2
s

4r


6
r2

R2
s

✓
3� 4

r

Rs

◆
ln↵2 + 1 + 6

r

Rs

✓
1� 4

r

Rs

◆�

= lim
r!1

F2
R2

s

4r


6
r2

R2
s

✓
3� 4

r

Rs

◆✓
�Rs

r
� R2

s

2r2
� R3

s

3r3
� h.o.

◆

+1 + 6
r

Rs
� 24

r2

R2
s

�

= lim
r!1

F2

4

✓
18r � 24

r2

Rs

◆✓
�Rs

r
� R2

s

2r2
� R3

s

3r3
� h.o.

◆

+
R2

s

r
+ 6Rs � 24r

�

= lim
r!1

F2

4


�18

✓
Rs +

R2
s

2r
+

R3
s

3r2
+ h.o.

◆

+24

✓
r +

Rs

2
+

R2
s

3r
+

R3
s

4r2
+ h.o.

◆
+

R2
s

r
+ 6Rs � 24r

�

=
F2

4
[�18Rs + 12Rs + 6Rs]

= 0,

(4.14)

we see that the solution does indeed vanish at infinity. We now need to solve for F2

using the boundary conditions at the surface of the neutron star. For the inner boundary

condition, we know that inside a perfectly conducting star the Lorentz force is zero and

hence

~E + r⌦ sin ✓�̂⇥ ~B = 0 (4.15)

where ⌦ is the rotation rate of the neutron star, as mentioned in chapter (2). Using

equations (2.12), (2.19) and (2.35a) we find the electric field measured by a FIDO to be

~D =
"

↵
( ~E � c~� ⇥ ~B)

=
"

↵
(�r⌦ sin ✓�̂⇥ ~B + r(⌦� !̃) sin ✓�̂⇥ ~B)

= �"0
!̃

↵
r sin ✓�̂⇥ ~B = "0c

!̃

↵

~�

!
⇥ ~B

(4.16)

where we have used the relative rotation !̃, defined in chapter (2). We have to satisfy the

jump conditions at the surface of the star, meaning that the magnetic field component
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normal to the surface (Br̂) and the electric field components which lies in the plane of the

surface(D✓̂ and D�̂) have to be continuous across the stellar surface. The Br̂ component

is continuous as was confirmed in chapter (3). From equation (4.16) we find the D�̂

component to be zero both inside and outside the star, making it continuous. Hence, we

only need to satisfy the continuity of the D✓̂ component. Using equation (4.16) we have

the condition that the inner D✓̂ must satisfy

D✓̂ = �"0
!̃

↵
r sin ✓Br̂. (4.17)

Equation (4.17) has to be compared to the outer D✓̂ component of equation (4.2a) (see

equation (4.7)) which is

D✓̂ =
↵

r

r
15

8⇡

@

@r
(rfD

2,0(r)) cos ✓ sin ✓. (4.18)

We use equation (3.35a) for Br̂ and let equation (4.17) equal to equation (4.18), setting

the radius to r = R (at the stellar surface) in order to determine our constant, F2 in

equation (4.13). First we determine @
@r (rf

D
2,0(r)) from equation (4.13) as

@

@r
(rfD

2,0(r))

����
r=R

= F2
R2

s

4

✓
36

R

R2
s
� 72

R2

R3
s

◆
ln↵2

R + 18
1

↵2
RRs

� 24
R

↵2
RR

2
s

+6
1

Rs
� 48

R

R2
s

�

) = 36F2
R

4

✓
1� 2

R

Rs

◆
ln↵2

R +
Rs

2↵2
RR

� 2

3↵2
R

+
Rs

6R
� 4

3

�

) = 36F2
R

4

✓
1� 2

R

Rs

◆
ln↵2

R +
�4R2 + 4RRs �R2

s

6↵2
RR

2
� 4

3

�

) = 36F2
R

4

✓
1� 2

R

Rs

◆
ln↵2

R � 4R2(1�Rs/R)

6↵2
RR

2
� 4

3
� R2

s

6↵2
RR

2

�

) = 36F2
R

4

✓
1� 2

R

Rs

◆
ln↵2

R � 2� R2
s

6↵2
RR

2

�

(4.19)

where

↵R =

r
1� Rs

R
. (4.20)
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Now equating equations (4.17) and (4.18), substituting in for Br̂(R) and @
@r (rf

D
2,0(r))

��
r=R

,

we have

� "0
!̃R

↵R
R sin ✓


�6

µ0µ

4⇡R3
s


ln↵2

R +
Rs

R
+

R2
s

2R2

�
cos ✓

�

=
↵R

R

r
15

8⇡
36F2

R

4

✓
1� 2

R

Rs

◆
ln↵2

R � 2� R2
s

6↵2
RR

2

�
cos ✓ sin ✓

) "0
!̃R

↵R

µ0µ

4⇡

R

R3
s


ln↵2

R +
Rs

R
+

R2
s

2R2

�

=

r
15

8⇡
F2

3↵R

2

✓
1� 2

R

Rs

◆
ln↵2

R � 2� R2
s

6↵2
RR

2

�

(4.21)

where

!̃R = ⌦� !R (4.22a)

!R =
aRsc

R3
(4.22b)

are the values taken at the stellar surface R. To make things simpler, let us introduce

two constants

Z1 = ln↵2
R +

Rs

R
+

R2
s

2R2
(4.23a)

Z2 =

✓
1� 2

R

Rs

◆
ln↵2

R � 2� R2
s

6R2↵2
R

��1

. (4.23b)

Now solving for F2 we have

F2 =
"0µ0µ

⇡

1

9

r
6⇡

5

R

R3
s

!̃R

↵2
R

Z1Z2 (4.24)

and substituting back into equations (4.13) and (4.26)
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fD
2,0(r) =

"0µ0µ

4⇡r

1

9

r
6⇡

5

R

Rs

!̃R

↵2
R

Z1Z2


6
r2

R2
s

✓
3� 4

r

Rs

◆
ln↵2

+1 + 6
r

Rs

✓
1� 4

r

Rs

◆� (4.25)

and

@

@r
(rfD

2,0(r)) =
"0µ0µr

⇡

r
6⇡

5

R

R3
s

!̃R

↵2
R

Z1Z2

✓
1� 2

r

Rs

◆
ln↵2 � 2� R2

s

6↵2r2

�
. (4.26)

Then from equation (4.7) we find the electric field to be

Dr̂ = �"0µ0µ

4⇡r2
1

6

R

Rs

!̃R

↵2
R

Z1Z2


6
r2

R2
s

✓
3� 4

r

Rs

◆
ln↵2 + 1 + 6

r

Rs

✓
1� 4

r

Rs

◆�

⇥ (3 cos2 ✓ � 1)

= �"0µ0µ

4⇡

R

R3
s

!̃R

↵2
R

Z1Z2

✓
3� 4

r

Rs

◆
ln↵2 +

R2
s

6r2
+

Rs

r
� 4

�
(3 cos2 ✓ � 1) (4.27a)

D✓̂ = 6
"0µ0µ

4⇡

R

R3
s

!̃R

↵2
R

↵Z1Z2

✓
1� 2

r

Rs

◆
ln↵2 � 2� R2

s

6↵2r2

�
cos ✓ sin ✓ (4.27b)

D�̂ = 0 (4.27c)

and the magnetic field remains the same as in the static dipole case.

4.2 With frame-dragging (~� 6= 0)

Let us now introduce the frame-dragging e↵ects. As previously mentioned, these e↵ects

come in with the cross product of ~� in the constitutive relations, where previously we

had set ~� = 0. We shall now go on to include these e↵ects so that ~� 6= 0. First we will

rewrite the vector fields expanding them in a power series for when the vector fields are of

a higher order. It is possible to do this because Maxwell’s equations and the constitutive

relations are linear. The vector fields are thus expanded as follows
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~V =
X

k�0

✏k~Vk = ~V0 +
X

k�1

✏k~Vk (4.28)

where ~V is any vector field, ~V0 is the static vector field and ✏ is a small dimensionless

parameter which is related to the spin by ✏ = O(⌦). The electric field only occurs in the

rotating case and hence is at least of first order in ⌦. Thus we have ~D0 = ~E0 = 0. The

shift vector is of first order only (see equation (2.12)) and can be written as ~� = ✏~�1. We

now find the kth order of the auxiliary electric field from the constitutive relation equation

(2.35a) for k � 1 as

"0 ~Ek = ↵~Dk + "0c~�1 ⇥ ~Bk�1. (4.29)

Proof:

"0 ~E = ↵~D + "0c~� ⇥ ~B

)"0

0

@ ~E0 +
X

k�1

✏k ~Ek

1

A = ↵

0

@ ~D0 +
X

k�1

✏k ~Dk

1

A+ "0c
⇣
✏~�1
⌘
⇥

0

@ ~B0 +
X

k�1

✏k ~Bk

1

A

)"0
⇣
✏ ~E1 + ✏2 ~E2 + ✏3 ~E3 + h.o.

⌘
= ↵

⇣
✏ ~D1 + ✏2 ~D2 + ✏3 ~D3 + h.o.

⌘

+ "0c
⇣
✏~�1
⌘
⇥
⇣
~B0 + ✏ ~B1 + ✏2 ~B2 + h.o.

⌘

)✏("0 ~E1) + ✏2("0 ~E2) + ✏3("0 ~E3) + h.o. = ✏(↵~D1) + ✏2(↵~D2) + ✏3(↵~D3) + h.o.

+ ✏("0c~�1 ⇥ ~B0) + ✏2("0c~�1 ⇥ ~B1) + ✏3("0c~�1 ⇥ ~B3) + h.o.

)"0 ~Ek = ↵~Dk + "0c~�1 ⇥ ~Bk�1.

(4.30)

The kth order of the auxiliary magnetic field for k � 1 is found to be

µ0
~Hk = ↵~Bk �

~�1 ⇥ ~Dk�1

"0c
. (4.31)

Proof:
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µ0
~H = ↵~B �

~� ⇥ ~D

"0c

)µ0

0

@ ~H0 +
X

k�1

✏k ~Hk

1

A = ↵

0

@ ~B0 +
X

k�1

✏k ~Bk

1

A�
✏~�1 ⇥

⇣
~D0 +

P
k�1 ✏

k ~Dk

⌘

"0c

)µ0

⇣
~H0 + ✏ ~H1 + ✏2 ~H2 + h.o.

⌘
= ↵

⇣
~B0 + ✏ ~B1 + ✏2 ~B2 + h.o.

⌘

�
✏~�1 ⇥

⇣
✏ ~D1 + ✏2 ~D2 + ✏3 ~D3 + h.o.

⌘

"0c

)µ0
~H0 + ✏(µ0

~H1) + ✏2(µ0
~H2) + h.o. = ↵~B0 + ✏(↵~B1) + ✏2(↵~B2) + h.o.

� ✏2
~�1 ⇥ ~D1

"0c
� ✏3

~�1 ⇥ ~D2

"0c
� h.o.

)µ0
~Hk = ↵~Bk �

~�1 ⇥ ~Dk�1

"0c
.

(4.32)

From Maxwell’s equations in a vacuum, and the fact that we have used a 3 + 1 splitting

and are only looking at one particular time slice hence @/@t = 0, we have the conditions

~r · ~Bk = ~r · ~Dk = 0 (4.33a)

~r⇥ ~Hk = ~r⇥ ~Ek = 0 (4.33b)

Then using equations (4.33a) and (4.33b) and equations (4.29) and (4.31) we find

~r⇥ (↵~Dk) = �"0c~r⇥ (~�1 ⇥ ~Bk�1) (4.34a)

~r⇥ (↵~Bk) =
1

"0c
~r⇥ (~�1 ⇥ ~Dk�1) (4.34b)

which is a hierarchical set of partial di↵erential equations for fields ~Bk and ~Dk for k � 1.

For k = 0, we have the static dipole case ( ~B0). We find from equation (4.34b) that ~B1 = 0

since ~D0 = 0 and the first perturbation in the magnetic field only occurs in the second

order, ~B2. We now wish to find the first perturbation in the electric field which is of first

order, ~D1, corresponding to an electric quadrupole of (l,m) = (2, 0) such that
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~D1 = Re
h
~r⇥ (fD

2,0
~�2,0)

i
. (4.35)

We now insert equation (4.35) into equation (4.34a) with k = 1 and inserting equation

(3.4) for ~B0 we get

~r⇥
⇣
↵~r⇥

⇣
fD
2,0(r)~�2,0

⌘⌘
= �"0c~r⇥

⇣
~� ⇥ ~r⇥

⇣
fB(dip)
1,0 (r)~�1,0

⌘⌘
(4.36)

Simplifying the LHS using equation (2.75) and equation (4.6) for ~�2,0 we find

~r⇥
⇣
↵~r⇥

⇣
fD
2,0(r)~�2,0

⌘⌘

= �↵


1

r

@

@r

✓
↵2 @

@r

�
rfD

2,0(r)
�◆

� 6

r2
fD
2,0(r)

�
~�2,0

=

r
15

8⇡

↵

r


@

@r

✓
↵2 @

@r

�
rfD

2,0(r)
�◆

� 6

r
fD
2,0(r)

�
cos ✓ sin ✓�̂.

(4.37)

To simplify the RHS we use equation (2.79), and again using equation (4.6) for ~�2,0 we

find

� "0c~r⇥
⇣
~� ⇥ ~r⇥

⇣
fB(dip)
1,0 (r)~�1,0

⌘⌘
= 6

r
3

8⇡

"0↵!

r
fB(dip)
1,0 (r) cos ✓ sin ✓�̂. (4.38)

Now equating the LHS to RHS and substituting in for fB(dip)
1,0 (r) from equation (3.33) we

obtain

r
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r


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✓
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�
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�◆

� 6

r
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3r
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
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r
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R2
s

2r2

�
cos ✓ sin ✓�̂
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✓
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� 6

r
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2,0(r)
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5

"0µ0µ
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R2
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2


ln↵2 +

Rs

r
+

R2
s

2r2

�
(4.39)
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where we have substituted in equation (2.13) for !. Hence we now have a second-order

inhomogeneous linear ordinary di↵erential equation

@

@r
(↵2 @

@r
(rfD

2,0(r)))�
6

r
fD
2,0(r) = 12

r
6⇡

5

"0µ0µ

4⇡

ac

R2
sr

2


ln↵2 +

Rs

r
+

R2
s

2r2

�
(4.40)

which will have a new solution for fD
2,0(r). Now in order to solve equation (4.40) we first

solve for the homogeneous solution obtained previously in equation (4.13) which we shall

now refer to as fD(h)
2,0 (r) as follows

fD(h)
2,0 (r) = F 0

2
R2

s

4r


6
r2

R2
s

✓
3� 4

r

Rs

◆
ln↵2 + 1 + 6

r

Rs

✓
1� 4

r

Rs

◆�
. (4.41)

Here we have relabelled the constant F 0
2 as it will have a new value in the final solution of

equation (4.40). We then solve for the particular solution of the inhomogeneous equation

(4.40) vanishing at infinity. We use the method of undetermined coe�cients to solve for

the particular solution, which is essentially a “guess and check” method. We want the

LHS of equation (4.40) to look like the RHS after it has been di↵erentiated and summed

up. We take our educated guess to be

fD(p)
2,0 = P 1

r


ln↵2 +

Rs

r

�
(4.42)

where P is our undetermined coe�cient. This guess makes sense, as we can see on the

LHS of equation (4.40), the
⇥
(6/r)fD

2,0(r)
⇤
would provide us with the 1/r2 out in front,

and the derivative of
⇥
rfD

2,0(r)
⇤
would provide us with the extra term needed in the square

brackets on the RHS. First finding the derivative of
h
rfD(p)

2,0 (r)
i
we have

@

@r

✓
rP 1

r


ln↵2 +

Rs

r

�◆
= P


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↵2r2
� Rs

r2

�

= P R2
s

↵2r3

(4.43)

Now substituting into the LHS of equation (4.40) we find
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@
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� 6P 1

r2


ln↵2 +

Rs

r

�

= �6P 1

r2


ln↵2 +

Rs

r
+

R2
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which has the same form as the RHS of equation (4.40). Now comparing the RHS of

equation (4.44) with the RHS of equation (4.40) we find P as:

� 6P 1

r2


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Rs

r
+

R2
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2r2

�
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"0µ0µ
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5
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s
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(4.45)

Hence, substituting equation (4.45) back into equation (4.42), we find the peculiar solution

to be

fD(p)
2,0 = �2

"0µ0µ

4⇡

r
6⇡

5
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sr


ln↵2 +

Rs

r

�
. (4.46)

Now, the total solution to equation (4.40) is the sum of the homogeneous solution equation

(4.41) and the particular solution equation (4.46) such that

fD
2,0(r) = fD(h)

2,0 (r) + fD(p)
2,0 (r). (4.47)

As before, in the case excluding frame-dragging, we need to satisfy the boundary con-

ditions in order to solve for the constant F 0
2. For equation (4.18), we need to know

@
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���

r=R
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hence
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Now equating equations (4.17) and (4.18) we have

6
!̃R

↵R

"0µ0µ

4⇡

R

R3
s
Z1 cos ✓ sin ✓ =

r
15

8⇡

↵R

R

"
36F 0

2
R

4
Z�1
2 � 2

"0µ0µ

4⇡

r
6⇡

5

ac

↵2
RR

3

#
cos ✓ sin ✓

) 36F 0
2
R

4
Z�1
2 = 6

r
8⇡

15

!̃R

↵2
R

"0µ0µ

4⇡

R2

R3
s
Z1 + 2

"0µ0µ

4⇡

r
6⇡

5

ac

↵2
RR

3

) 36F 0
2
R

4
Z�1
2 =

4

↵2
RR

4
s

r
6⇡

5

"0µ0µ

4⇡


RsR

2!̃RZ1 +
acR4

s

2r3

�

) F 0
2 =

4Z2

9↵2
RR

4
s

r
6⇡

5

"0µ0µ

4⇡


RsR!̃RZ1 +

!RR3
s

2R

�
.

(4.50)

Putting it all together we obtain the electric quadrupole function solution as
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We now separate the frame-dragging e↵ect ! of the electric quadrupole function from the

pure rotation ⌦ as follows
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Now to obtain the electric field components, we again use equation (4.7) and find that
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D�̂ = 0 (4.53d)
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where we have used the Legendre polynomial P2(x) = (3x2 � 1)/2 for the Dr̂ component.

The radial derivative is given by
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(4.54)

We now have solutions for the magnetic and electric fields in a curved space up to the

first order of expansion in the spin parameter. The order of expansion shall be explained

in the next chapter where we shall derive a general formalism for the fields relating their

expansion coe�cients.



Chapter 5

General formalism of an aligned

dipole with rotation

In this chapter we will derive a general relation between the expansion coe�cients of

the magnetic and electric fields, ~Bk and ~Dk, for any order of expansion k. Neither the

magnetic field nor the electric field contain any toroidal components in our problem as the

fields are axisymmetric, hence any coe�cient with m > 0 is zero. We, therefore, expand

the fields as

~Dk =
X
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~Bk =
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~�l,0). (5.1b)

The expansion in fD(k)
l,0 is in turn an expansion in the spin parameter and is thus related to

the frame-dragging e↵ect. Substituting equations (5.1a) and (5.1b) into equations (4.34a)

and (4.34b) for (l, k) � 1 we find
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We obtain equation (5.2a) using equations (2.75) and (2.79), as follows
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(5.3)

Similarly, we obtain equation (5.2b) as
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(5.4)

For (l,m) = (0, 0) we take the expansion coe�cients to be zero, ie fD(k)
0,0 = fB(k)

0,0 = 0,

as, in this case, we have no electric or magnetic field. It is clear that the coe�cients

fD(k)
l,0 and fB(k)

l,0 are related by the coe�cients one order below themselves, ie fD(k)
l,0 and

fB(k)
l,0 are related to fB(k�1)

l,0 and fD(k�1)
l,0 respectively. It is important to note, from this,

that fD(k)
l,0 and fB(k)

l,0 are uncoupled in nature. We are thus able to solve for any order

expansion coe�cient provided we solve for the coe�cients preceding the one we want.

The approximate solutions to third order are shown below as examples of the recurrence

nature of the solutions. These solutions are useful if ever higher degrees of accuracy are

needed, as will be seen.

As before, the electric field only occurs in the first order as it requires the rotation of

the star, hence for the zeroth order we have fD(0)
l,0 = 0. For the zeroth order of the

magnetic field we have fB(0)
1,0 = fB(dip)

1,0 from equation (3.33). For l � 2 the magnetic field

coe�cients in the zeroth order are zero, ie fB(0)
l�2,0 = 0. We do not have any corrections

in the first order to the magnetic field. This is because fD(0)
l,0 = 0 implying that the
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RHS of equation (5.2b) is zero for fB(1)
l,0 . We then have a linear homogeneous second-

order partial di↵erential equation with the boundary conditions vanishing at infinity,

hence the solution also vanishes meaning fB(1)
l,0 = 0. We then have our first correction

from the coe�cient fD(1)
l,0 which is solved using equation (5.2a). For this case, the only

inhomogeneous equation occurs for l = 2, since for fB(0)
l,0 we can only have l = 1, and we

obtain equation (4.40) in the following form
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with solution equation (4.52). We next evaluate fB(2)
l,0 using equation (5.2b) where the

RHS can only use the coe�cient fD(1)
2,0 and the boundary conditions again vanish at

infinity. We obtain two inhomogeneous equations, one for l = 1 and one for l = 3,
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Lastly, the second order magnetic field coe�cients are used to solve for the third order

electric field coe�cients where we again obtain two inhomogeneous equations, now for

l = 2 and l = 4, with the boundary conditions at the stellar surface as prescribed by

equation (4.16). We obtain the equations
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We can now see, from equations (5.5) to (5.7b), the hierarchical nature used to increase the

accuracy of the solutions of the fields step by step by increasing the number of multipoles

of order l corresponding to the required degree of approximation in the spin parameter.
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Solving for these equations is beyond the scope of this work. Only the first few coe�cients

can be solved analytically, thereafter, the equations become too complicated. It is possible,

however, to solve the equations numerically using spectral methods by expanding the

solutions into rational Chebyshev functions[32, 46]. The initial outline on how to do this

will be given below.

To begin with, the fields of ~D and ~B are expanded using a finite number of multipolar

coe�cients, ND and NB respectively, and we drop the order k, such that

~D =
NDX

l=1

~r⇥ (fD
l,0
~�l,0) (5.8a)

~B =
NBX

l=1

~r⇥ (fB
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~�l,0). (5.8b)

The coe�cients fD
l,0 and fB

l,0 now have to satisfy
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Once again, we have the boundary conditions at infinity enforcing vanishing coe�cients

and we now need to enforce the boundary conditions at the neutron star surface as we

did in chapter (4). We insert equations (5.8a) and (5.8b) into equation (4.16), make use

of equations (2.74c) and (2.78) and equate the ✓̂ components to obtain the relationship

between the ~D and ~B coe�cients as follows:

Substituting in equations (5.8a) and (5.8b) into equation (4.16):
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Making use of equations (2.74c), (2.66), (2.69) and (2.78):
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(5.11)

Equating the ✓̂ components and multiplying both sides by sin ✓:
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We now make use of the following recurrence relations

sin ✓
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Yl,m = lJl+1,mYl+1,m � (l + 1)Jl,mYl�1,m (5.13a)

cos ✓Yl,m = Jl+1,mYl+1,m + Jl,mYl�1,m (5.13b)
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l,m)Yl,m + Jl,mJl�1,mYl�2,m. (5.13c)

Note that sin2 ✓Yl,0 can be rewritten as Yl,0 � cos2 ✓Yl,0. Thus we have
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(5.14)

Multiplying out all variables containing l and reducing or increasing the value of l for each

component to obtain only Yl,0 which will be subsequently cancelled o↵, we finally have

the relationship between the ~D and ~B coe�cients as

� ↵2

"r
l

l + 1
Jl+1,0

@

@r
(rfD

l,0)Yl+1,0 �
r

l + 1

l
Jl,0

@

@r
(rfD

l,0)Yl�1,0

#

= "0r!̃
hp

l(l + 1)fB
l,0Yl,0 �

p
l(l + 1)Jl+1,0Jl+2,0f

B
l,0Yl+2,0

�
p
l(l + 1)(J2

l+1,0 + J2
l,0)f

B
l,0Yl,0 �

p
l(l + 1)Jl,0Jl�1,0f

B
l,0Yl�2,0

i

) ↵2

"r
l + 2

l + 1
Jl+1,0

@

@r
(rfD

l+1,0)�
r

l � 1

l
Jl,0

@

@r
(rfD

l�1,0)

#

= "0r!̃
hp

l(l + 1)(1� J2
l,0 � J2

l+1,0)f
B
l,0 �

p
(l � 2)(l � 1)Jl,0Jl�1,0f

B
l�2,0

�
p
(l + 2)(l + 3)Jl+1,0Jl+2,0f

B
l+2,0

i
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which has to be evaluated at the star’s surface r = R. Below we shall show the system

of partial di↵erential equations of the first three coe�cients for each the magnetic and

electric field obtained from equations (5.9a) and (5.9b) and their associated boundary

conditions which are obtained from equation (5.15). The partial di↵erential equations for
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the field coe�cients read as follows
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The associated boundary conditions evaluated at r = R read as
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Note that for l = 1, the magnetic field at the surface of the star is equal to the general-

relativistic static dipole equation (3.33) and for all other multipoles, fB
l 6=1,0 vanishes at

r = R.

From here, one is able to use spectral methods, preferably choosing to use rational Cheby-

shev functions, to solve numerically for the fields. We have thus found a general relation

for the aligned fields which can be solved numerically to the desired degree of accuracy.



Chapter 6

Magnetic field of an orthogonal

dipole without rotation

After studying the aligned dipole magnetic field, we shall now look at the extreme case

of an orthogonal dipole magnetic field in a vacuum without rotation and confirm that we

obtain the orthogonal dipole magnetic field in a flat spacetime. For the orthogonal dipole

without rotation, we use the same methods as before with the aligned dipole magnetic

field. We again expect the magnetic field far from the neutron star to be the same as the

flat spacetime magnetic field, which, for the orthogonal case, is

~B =
µ0µ

4⇡r3

⇣
2 sin ✓ cos�r̂ � cos ✓ cos�✓̂ + sin��̂

⌘
. (6.1)

The full derivation of equation (6.1) can be found in appendix A. We take the definition

of the orthogonal dipole magnetic field in a curved spacetime as being expressed with

only the spherical harmonic ~�1,1 corresponding to (l,m) = (1, 1) since, again, l = 1

corresponds to the dipole field and now m = 1 corresponds to the orthogonal alignment.

We thus expand the magnetic field as

~B = Re
h
~r⇥ (fB

1,1(r)~�1,1)
i
. (6.2)
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In order to find the flat spacetime magnetic field of equation (6.2) and satisfy equation

(6.1), we take the limit of equation (6.2) as r ! 1 and equate it to equation (6.1) to

solve for limr!1 fB
1,1(r). First we calculate the value of ~�1,1. From equation (2.65) we

have

~Y1,1 = �
r

3

8⇡
sin ✓ei�r̂. (6.3)

Taking the gradient of ~Y1,1 we find
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r

r
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i
. (6.4)

Hence, from equation (2.67), we obtain
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i
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(6.5)

Now taking the limit of equation (6.2), substituting in equation (6.5) and taking the real

solution we have
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Equating the r̂ components of equations (6.1) and (6.6) we find limr!1 fB
1,0(r) to be
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and hence, in the far field limit, equation (6.2) becomes

~B = Re
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µ0µ
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16⇡

3
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r2
)

#
. (6.8)

As before, we wish to find a separable solution for equation (6.2) using the boundary

condition in equation (6.7). Again, we wish to satisfy (3.1b) and so we insert equation

(6.2) into equation (3.1b) and solve, as before, to obtain the second-order linear ordinary

di↵erential equation for the scalar fB
1,1(r) as

@
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(↵2 @
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r
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1,1 = 0. (6.9)

Solving equation (6.9) is exactly the same as how we solved for equation (3.14). We find

that

fB
1,1(r) = F3r
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Using equation (6.7) to solve for F3 we have
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and hence

F3 = �µ0µ
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16⇡

3

3
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The solution to equation (6.9) is thus
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which is related to the aligned dipole magnetic field, equation (3.33), by

fB(dip)
1,1 = �

p
2fB(dip)

1,0 . (6.14)

We find the magnetic field components by solving equation (6.2). First we find @
@r (rf
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The magnetic field is found to be
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and hence the magnetic field components are
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As with equations (3.37a) and (3.37b), we take the limits on equations (6.17a) to (6.17c)

as r ! 1 to compare to the flat spacetime magnetic field of an orthogonal dipole in

equation (6.1) and find

Br̂ =
µ0µ

4⇡r3
2 sin ✓ cos� (6.18a)

B✓̂ =� µ0µ

4⇡r3
cos ✓ cos� (6.18b)

B�̂ =
µ0µ

4⇡r3
sin� (6.18c)

as expected.

In this chapter we have solved for the magnetic field of an orthogonal dipole without

rotation in a curved space. We have taken the far field limit as r ! 1, as we did for

the aligned dipole, and proven that it is equal to the orthogonal flat spacetime magnetic

field, as it should be. We shall omit the solutions to the orthogonal electric field for now

as they are solved using spectral methods which will not be covered in this work.



Chapter 7

Conclusion

It is clear that general relativistic e↵ects cannot be ignored when considering a neutron

star’s magnetosphere, particularly near the surface. We used the approach of a 3 + 1

split of the spacetime metric in order to solve for the Maxwell’s equations of an isolated

neutron star in a vacuum. A concise breakdown of the equations and formalisms used

was given in chapter (2). Our formalism di↵ered slightly from most in that we used a

(+,�,�,�) metric signature instead of the (�,+,+,+) metric signature.

We began, in chapter (3), by solving for the magnetic field of an aligned dipole without

rotation. Solving for equation (3.14) proved to be a di�cult task and many di↵erent

methods of solving second-order linear ordinary di↵erential equations were employed be-

fore finding the correct method, aided greatly by Rezzolla, Ahmedov and Miller (2001)[25].

The solution was obtained using Legendre’s functions and the boundary condition at in-

finity in equation (3.9). Once the solution to equation (3.14) was obtained, the magnetic

field solution equation (3.35) was found fairly smoothly with the far field limit equation

(3.37) matching the standard aligned flat spacetime dipole magnetic field solution, hence

confirming our solution to be mathematically sound.

Chapter (4) introduced rotation to the system in order to solve for the quadrupole electric

field. We knew, from the constitutive relations, equations (2.35a) and (2.35b), that the

electric and magnetic field would mix from the frame-dragging e↵ects. We thus simplified

the method of solving for the electric field and initially excluded the frame-dragging

e↵ects by setting � = 0. Once the electric field was found without any frame-dragging

e↵ects, we then went on to include the frame-dragging e↵ects and adapted the electric
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field solution. The electric field without frame-dragging e↵ects was found again using the

Legendre functions, this time with the boundary condition at the surface of the neutron

star, with its solution being equation (4.25) with the electric field solution equation (4.27).

We then introduce the frame-dragging e↵ects by expanding the fields in a power series and

solving for the first order electric field (with the magnetic field remaining the same as our

solution in chapter (3) which is of zeroth order as the first order magnetic field is zero).

We obtain a second-order inhomogeneous linear ordinary di↵erential equation (4.40) with

the homogeneous solution being equation (4.41). We tried many di↵erent methods, such

as Green’s function, to solve for the particular solutions before settling on the method of

undetermined coe�cients and found the solution to be equation (4.46). The final solution

for the electric quadrupole function, using the boundary condition at the surface of the

neutron star, was found to be equation (4.51) and separating the frame-dragging e↵ect !

from the pure rotation ⌦ we found it to be equation (4.52) with the electric field solution

equation (4.53).

In chapter (5) we provided a general relationship between the fields of an aligned dipole

for any order in the spin such that one can evaluate the fields to any desired degree of

accuracy. In chapters (3) and (4) we solved for the zeroth order magnetic field and first

order electric field respectively. With the relationship between the magnetic and electric

field coe�cients obtained in chapter (5), equation (5.15), one can thus determine the

field solutions of higher order multipoles as can be see in equations (5.16a) to (5.16f)

where an increase in l indicates an increase in the multipole order. Solving for these

equations requires the use of spectral methods, such as rational Chebyshev functions, to

solve numerically for the fields, which is beyond the scope of this dissertation.

Chapter (6) began looking at the case of the orthogonal dipole where we solved for the

non-rotating magnetic field. The orthogonal flat spacetime dipole magnetic field had to

be calculated from scratch as the standard flat spacetime dipole magnetic field solution

is given for an aligned dipole. The orthogonal magnetic field was found using the same

methods as for the aligned magnetic field with orthogonal magnetic dipole function being

equation (6.13) and magnetic field solution equation (6.17). The far field limit of equa-

tion (6.17) matched the orthogonal flat spacetime dipole magnetic field solution, again

confirming our solution to be mathematically sound.

This work provides us with a great foundation and understanding of the concepts involved
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in solving for the fields under general relativistic considerations. It can be applied to

future work when solving for an oblique rotator and subsequently apply this knowledge to

particle motion and generation, particularly at the polar caps and hence pulsar emission

mechanisms.



Appendix A

Orthogonal Flat Spacetime Dipole

Magnetic Field Derivation

The derivation of the aligned dipole magnetic field in a flat spacetime can be found in

[45]. This derivation can be altered to find the orthogonal dipole magnetic field in a flat

spacetime.

We align the dipole along the x-axis which consists of two charges, +b and �b, separated

by an infinitesimal distance l. This dipole produces the same field as would an infinitesimal

current loop dipole would such that bl = IA = µ, where µ = k~µk and ~µ is the magnetic

dipole moment, A is the loop area and I is the current in the loop. We now wish to find

the field of the dipole at point P which is shown in figure (A.1) and lies in the xz-plane.

From figure (A.1), we can define r, r1 and r2 as

r =
p
z2 + x2 (A.1a)

r1 =

s

z2 +

✓
x+

l

2

◆2

(A.1b)

r2 =

s

z2 +

✓
x� l

2

◆2

. (A.1c)
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Figure A.1: Distance to point P from a magnetic dipole aligned along the x-axis in a
flat spacetime.

We want our final answer to be in spherical coordinates, hence we note the relationship

between the cartesian coordinates and the spherical coordinates as

x = r sin ✓ cos� (A.2a)

y = r sin ✓ sin� (A.2b)

z = r cos ✓ (A.2c)



Orthogonal Flat Spacetime Dipole Magnetic Field Derivation 71

with the relationship between the unit vectors being

x̂ = sin ✓ cos�r̂ + cos ✓ cos�✓̂ � sin��̂ (A.3a)

ŷ = sin ✓ sin�r̂ + cos ✓ sin�✓̂ + cos��̂ (A.3b)

ẑ = cos ✓r̂ � sin ✓✓̂. (A.3c)

To determine the field at point P for each field component, we sum the fields due to each

of the charges +b and �b in the component direction. For the Bz component, we thus

have

Bz = Bz(�b) +Bz(+b)

=
�bz

r31
+

bz

r32

= �bz


1

r31
� 1

r32

�
.

(A.4)

We are interested only in the limit of small l, hence all higher orders in l vanish. For 1/r31

we have
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l!0

1

r31
= lim

l!0
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2
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(A.5)

and for 1/r32 we have



Orthogonal Flat Spacetime Dipole Magnetic Field Derivation 72
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(A.6)

Substituting equations (A.5) and (A.6) into equation (A.4) and using equation (A.2a) we

find Bz in the limit of small l to be

lim
l!0
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(A.7)

For Bx component, summing the fields of the two point charges in the x direction and

using equations (A.5), (A.6) and (A.2a) we find Bx in the limit of small l to be

lim
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If we now place our point P in the xy-plane such that the configuration looks exactly

the same as that in figure (A.1) except now, instead of z, we have y, we can find the y

component of the magnetic field which looks exactly the same as the z component. Hence

for By in the limit of small l we find

lim
l!0

By = 3
bl

r3
yx

r2

= 3
µ

r3
sin2 ✓ cos� sin�.

(A.9)

The total magnetic field is now found by summing all three magnetic field components.

Hence using equations (A.7), (A.8), (A.9) and (A.3a) we find the total field as

~B = Bxx̂+Byŷ +Bz ẑ
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(A.10)

For our expression of the orthogonal flat spacetime dipole magnetic field, we thus have

~B =
µ0µ

4⇡r3

⇣
2 sin ✓ cos�r̂ � cos ✓ cos�✓̂ + sin��̂

⌘
. (A.11)
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