




Abstract

In this dissertation we reformulate the configurational temperature Nosè-Hoover ther-

mostat proposed by Braga and Travis (C. Braga and K.P. Travis, 2005), using the

antisymmetric matrix formalism found in (A. Sergi, 2003). By exploiting the proper-

ties of this formalism, and utilising the concept behind the Nosè-Hoover chain thermo-

stat, we extend our reformulated thermostat to obtain a hybrid configurational-kinetic

chain thermostat. This is done with a view to achieving an ergodic sampling of phase

space. We derive an integration algorithm, based upon the symmetric Trotter fac-

torisation of the Liouville operator, as well as symplectic position and velocity Verlet

integrations schemes, for purposes of comparison. In the case of systems possessing

non-harmonic and non-linear interaction potentials, a position-dependent harmonic ap-

proximation scheme is presented. The thermostats and integration schemes were tested

on one-dimensional harmonic and quartic oscillators, where it was found that the hy-

brid configurational-kinetic temperature Nosè-Hoover chain thermostat overcame the

ergodicity problem, and the integration scheme based on the Trotter factorisation was

the best performing.
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Chapter 1

Introduction

Theoretical physics uses mathematical models to describe, and predict, natural phe-

nomena, whilst experimental physics uses tools to investigate these natural phenomena.

Computational physics provides a means of comparing, through computer simulation,

theoretical models and experimental results [1, 2], particularly in cases where the mod-

els have no analytical solution. The accuracy of a particular model can be investigated

through its numerical solution. If the model is found to be a valid one, comparisons can

then be drawn between experimental results and results from the computer simulation

of the model. If predictions made using the model are found to agree, to within accept-

able numerical error, with results of experiments, then one can use the results from a

computer simulation of the model to gain new insights into the physical systems [1, 2].

In addition to this, computer simulation has an advantage over physical experiments

in that experimental conditions which lead to a physical experiment being extremely

difficult or impossible (for example very high temperature and pressure), can still be

used in a computer simulation [1].

The field of computer simulation uses two main techniques, namely Monte Carlo

(MC) and molecular dynamics (MD). The Monte Carlo technique makes use of ran-

domly generated numbers, whilst MD is used to obtain dynamical information about

systems, by solving the classical equations of motion [1]. This dissertation will focus

on a method used in MD simulations known as extended systems dynamics, which was

first introduced by Andersen in 1980 [3], specifically thermostats.

Extended systems are a non-Hamiltonian theory, most often used to replicate ther-

modynamical baths (which physically require a very large number of degrees of free-

dom) within computer simulations [4]. Thermostats are a form of extended system

1



2 CHAPTER 1. INTRODUCTION

used to simulate thermodynamic heat baths, or thermal reservoirs. Some commonly

used thermostats include the Gaussian [5], the Langevin [6, 7] and the Nosè-Hoover

(NH) [8, 9] and Nosè-Hoover chain (NHC) thermostats [10], all of which control the

kinetic temperature of the system to which they are attached.

Recently a new type of thermostat, referred to as a configurational thermostat as

it controls the configurational temperature of a system [11, 12], has been derived. The

configurational temperature was first used as a means of checking the codes used in MC

simulations [13], and has been shown to be equivalent to the kinetic temperature at

equilibrium in the microcanonical ensemble [14]. This new configurational thermostat

has advantages over the more traditional kinetic schemes, in non-equilibrium simula-

tions [15]. One such an advantage arises from the need, when using a kinetic thermostat

scheme, to know the form of the local streaming velocity. The local streaming velocity

is necessary in order to calculate the correct thermal contribution. This form however,

is not known in general, leading to the onset of fictitious string phases [16–18]. The

generation of non-zero off-diagonal stresses has also been observed [19], when using ki-

netic thermostat schemes. A configurational thermostat scheme is not subject to these

difficulties, and thus is more appealing than kinetic schemes.

In the work presented in this dissertation, we reformulate the configurational tem-

perature Nosè-Hoover (CTNH) thermostat of Braga and Travis [20] into a phase space

description, following the antisymmetric matrix formalism of [21]. We then proceed

to extend this reformulated thermostat, utilising the same concept behind the NHC

thermostat. This is done in order to overcome the issue of the CTNH thermostat not

achieving an ergodic sampling of phase space, particularly in the case of stiff systems.

We refer to this extended thermostat as a hybrid configurational-kinetic temperature

Nosè-Hoover (CKTNH) chain thermostat. Three integration algorithms are developed

for each of the two thermostats (both the CTNH and hybrid CKTNH chain ther-

mostats), where a position-dependent, harmonic approximation (PDHA) is presented

for systems with non-harmonic and non-linear interaction potentials. The thermostats,

along with the integration schemes, are tested by simulating a one dimensional har-

monic oscillator (single well potential) system as well as a one dimensional quartic

oscillator (double well potential) system.

The work presented in this dissertation, together with an extension provided by

Mr. E. Obaga, whereby the CTNH thermostat was applied to a three-dimensional
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variation of the Lennard-Jones potential (referred to as a Weeks-Chandler-Andersen

(WCA) fluid), has been submitted to the journal Computer Physics Communications,

and is currently in the review process.

In Chap. 2 we introduce and discuss the thermodynamic temperature and its rel-

evance within the field of Thermostatistics. Chapter 3 compares Hamiltonian and

non-Hamiltonian theories. The underlying algebraic bracket of each of these theo-

ries is also discussed, along with constant temperature dynamics. The NH and NHC

thermostats are further discussed within this chapter. In Chap. 4 configurational ther-

mostats are discussed, and our work is introduced. The integration algorithms for our

proposed thermostats are provided in Chap. 5, with the models used and simulation

results being presented in Chap. 6. Finally, conclusions and future research are given

in Chap. 7.



Chapter 2

Temperature in Thermostatistics

Thermodynamics is the theory which links the motion of particles on the microscopic

scale to the measurement of observable quantities on the macroscopic scale [22, 23]. It

is well known that a variety of different microscopic states, or microstates, lead to the

same value for a measured macroscopic observable. Hence it is reasonable to assume

that the fluctuations on the microscopic scale average out over the duration of the

measurement of the macroscopic observable [22, 23]. This averaging is accounted for

through use of the so called ensemble concept. An ensemble consists of all possible,

unique microstates which correspond to a common set of macroscopic observables [22].

Each system within the ensemble evolves under the same microscopic laws of motion,

but starts from a different set of initial conditions. Therefore at any instant in time,

each member of the ensemble will be a unique microstate, distinguishable from all other

members [22].

In order to obtain the value for a particular macroscopic observable, one needs to

take an average over the ensemble [22, 23]. For a given macroscopic observable, A, the

relation to its corresponding microscopic function, a = a(X), which is itself a function

of the phase space vector X, is given by [22]

A = 〈a (X)〉 =
∫

dX f (X, t) a (X) , (2.1)

where f (X, t) is referred to as the phase space distribution function, or the phase space

probability density. The phase space distribution function is defined such that the

quantity f (X, t) dX is equal to the fraction of ensemble members which occupy the

volume element of phase space dX, at time t [22]. The phase space probability density

4
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therefore has the properties

f (X, t) ≥ 0
∫

dXf (X, t) = 1 .

Different ensembles are defined for different sets of macroscopic properties, and are

equivalent within the thermodynamic limit [22]. The thermodynamic limit is defined

as the limit in which N → ∞ and V → ∞ in such a way that N/V = constant [22,

24]. In practice, measurements are only performed on a single system, as opposed to

over an ensemble of systems. The value obtained, however, is still an average, but

it is an average in time as opposed to an average over an ensemble. This leads to

the conclusion that ensemble averages are equivalent to time averages [3, 22]. This

equivalence of ensemble and time averages is known as the ergodic hypothesis [22], and

can be mathematically expressed [22] as

A = 〈a〉 = lim
t→∞

1

t

∫ t

0
dt′a

(
X
(
t′
))

. (2.2)

A system is said to be ergodic if, given an infinite amount of time, all possible system

configurations, which correspond to the constant energy hypersurface in phase space,

are realised [22]. Physically, this implies that the dynamics of the system sample all

possible phase space points.

We consider a general system consisting of N particles in three dimensions, which

we describe in phase space using the 6N -dimensional vector X = (q, p), where q and

p represent the particles’ positions and momenta respectively, and a multi-dimensional

notation has been used. The Hamiltonian of the system is given by

H(X) = K(p) + U(q) , (2.3)

where K(p) and U(q) represent the kinetic and potential energy of the system, respec-

tively. From the theory of thermodynamics, we know that the temperature of the

system is given by the following relation [22, 24]:

1

T
=

(
∂S

∂E

)

V,N

, (2.4)

where T is the temperature, S the entropy, V the volume, N the number of particles

in the system and E is the total energy of the system. Recently, a microcanonical

definition of the temperature of a system has been derived, by Rugh [11, 25], and is
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given by

1

kBT
=

〈
∇X · ∇XH

|∇XH|2
〉
+O

(
1

N

)
, (2.5)

where kB is the Boltzmann constant, H the Hamiltonian of the system and ∇X is the

gradient operator in phase space. This expression, given by Eq. (2.5), has since been

generalised, by Jepps et al. [12], to

kBT ≈ 〈∇XH · Ω(X)〉
〈∇X · Ω(X)〉 , (2.6)

where Ω(X) is an arbitrary vector field which satisfies the following two relations:

0 < 〈|∇XH · Ω(X)|〉 < ∞ ,

0 < 〈|∇X · Ω(X)|〉 < ∞ .

From Eq. (2.6) one is able to obtain two useful expressions for the system temperature,

by choosing Ω(X) = χ (∇XH), where χ is a matrix such that (∇XH)χ(∇XH) 6= 0. The

first expression is acquired by choosing the matrix elements, χij, as δij (the Krönecker

delta) if i and j correspond to momentum variables and zero otherwise. With this

choice for the matrix χ, Eq. (2.6) becomes

kBTkin =

〈
|∇pK(p)|2

〉

〈∣∣∇2
pK(p)

∣∣〉 =

〈
p2/m2

〉

〈D∑i(1/mi)〉
, (2.7)

where it is assumed that the kinetic energy of the system, K(p), can be expressed

in the form K(p) = 1
2

∑
i

(
p2i /mi

)
. In Eq. (2.7), D denotes the dimensionality of

the system, and ∇p represents the momentum gradient. The index i, which runs

over all degrees of freedom, has been introduced to indicate, without ambiguity, a

summation operation. The expression in Eq. (2.7) provides a means of determining

the so called kinetic temperature, Tkin, and in the case where the particles in the

system have identical mass values, Eq. (2.7) reduces to the equipartition theorem:

DNkBTkin =
〈
p2/m

〉
.

The second expression is obtained by choosing the elements of χ as δij if i and j cor-

respond to coordinate variables and zero otherwise. With this choice, a configurational

expression for the temperature is obtained, from Eq. (2.6), as

kBTconf =

〈
|∇qU(q)|2

〉

〈∑
i ∇2

qiU(q)
〉 , (2.8)
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where ∇q denotes the phase space position gradient. Eq. (2.8) differs from the expres-

sion introduced by Rugh in Ref. [11]. The temperature, Tconf , defined in Eq. (2.8),

was used by Braga and Travis to introduce a configurational temperature Nosè-Hoover

(CTNH) thermostat [20]. This is discussed further in Chap. 4.



Chapter 3

Non-Hamiltonian Dynamics

3.1 Hamiltonian Theory

The algebra which underpins Hamiltonian theory belongs to a class of algebra known

as a Lie algebra. In order to define what it means for an algebra to be considered a Lie

algebra, we consider a set of mathematical objects, (a, b, c), belonging to a mathematical

space. We define a generic bracket, denoted by {· · · , · · · }, with the following properties

{a, b} = −{b, a} , (3.1a)

{a+ b, c} = {a, c} + {b, c} , (3.1b)

{ga, b} = g{a, b} , (3.1c)

where g is a complex number. Equation (3.1a) states the antisymmetry of the bracket

while Eqs. (3.1b) and (3.1c) state the bracket’s linearity, both with respect to constants

and to members of the mathematical space. For the algebra to be considered a Lie

algebra, the bracket must also satisfy the so called Jacobi relation [26], given by

J = {a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 0 , (3.2)

which shows that the bracket algebra is not associative [26]. Any algebra which satisfies

the properties given by Eqs. (3.1) and Eq. (3.2) is said to be a Lie algebra. For the

Hamiltonian description in the classical case, this bracket algebra is given by the Poisson

bracket, defined as

{a, b} =
∂a

∂qi

∂b

∂pi
− ∂a

∂pi

∂b

∂qi
, (3.3)

where the Einstein summation convention has been used and qi and pi denote the gen-

eralised coordinate and momentum, respectively, of the ith particle. The requirement

8



3.2. NON-HAMILTONIAN THEORY 9

for a bracket algebra to be considered as Hamiltonian is that it be a Lie algebra [26, 27],

in other words that it satisfies the properties given by Eqs. (3.1) and (3.2).

One can see that if elements of this mathematical space are time independent (they

denote conserved quantities), then a bracket of said elements will also be conserved

(time independent). The total time derivative of an element of the mathematical space,

say a, can be expressed in terms of the Poisson bracket [26, 27] as follows

da

dt
= {a,H}+ ∂a

∂t
, (3.4)

where a = a(q, p, t) is a function of phase space and H is the Hamiltonian of the system.

From Eq. (3.4) one can see that if the quantity a is time independent the corresponding

equation of motion will be given by

da

dt
= {a,H} . (3.5)

If a quantity’s total time derivative is equal to zero, then that quantity is said to be

a constant of motion. From Eq. (3.5), and the antisymmetry property of the Poisson

bracket, one can see that if the Hamiltonian is not explicitly time dependent, it is a

constant of motion [26, 27]. Similarly if two quantities, say a and b, obey a Hamiltonian

bracket algebra and are constants of motion, then a bracket of these two quantities will

also be a constant of motion [26]

{{a, b},H} = 0 , (3.6)

which shows that the algebra underlying Hamiltonian theory is left invariant under

time translations.

3.2 Non-Hamiltonian Theory

Non-Hamiltonian systems are characterised by equations of motion which cannot be

obtained from Lagrangian or Hamiltonian functions [22]. Such systems can be par-

ticularly useful within molecular dynamics (MD) simulations. One can see this by

considering a system in contact with a constant temperature thermal bath. If one were

to simulate such a system using Hamiltonian dynamics, one would need to consider

not only the degrees of freedom of the system, but also the degrees of freedom of the

bath to which the system is coupled. This is not a feasible task as, by definition, a

thermodynamic reservoir has a large number of degrees of freedom; too many for the
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memory constraints of modern computers [4, 22]. A technique within MD, which was

first introduced by Andersen in 1980 [3], and is frequently used, is known as extended

systems [1, 21]. This technique involves the coupling of ad hoc dynamical variables to

the system under study. The desired ensemble is chosen through the way in which the

ad hoc variables are coupled to the system, as this affects the way in which the MD

simulation samples the phase space trajectory [21, 28].

We define an antisymmetric matrix Bij = −Bji, with elements which are general

functions of the phase space point x = (q,p), where, following convention, the gener-

alised coordinates come first [29]. With this, one can introduce the non-Hamiltonian

bracket operation [29], {· · · , · · · }, defined by

{a, b} =

2N∑

i,j=1

∂a

∂xi
Bij

∂b

∂xj
, (3.7)

where the dimension of phase space is equal to 2N . We postulate that the equations

of motion can be expressed in the form

ẋi = {xi,H} =

2N∑

j=1

Bij
∂H
∂xj

, i = 1, . . . , 2N , (3.8)

where H is a given Hamiltonian [21, 29]. In the case where the Hamiltonian is time

independent one can see that it will be a constant of motion, assuming that the algebra

defining the phase space flow is given by the bracket operation [29] in Eq. (3.7)

dH
dt

= {H,H} =

2N∑

i,j=1

∂H
∂xi

Bij
∂H
∂xj

= 0 . (3.9)

With the exception of the requirement of B being antisymmetric, the property stated

by Eq. (3.9) is very general [21, 29].

One can easily verify that the Jacobi relation, stated in Eq. (3.2), is not satisfied

by the bracket algebra of Eq. (3.7)

J 6= 0 . (3.10)

To evaluate the time translation variance of the non-Hamiltonian bracket, we consider

the Jacobi relation between the Hamiltonian, H, and two arbitrary variables of phase

space, a and b

{a, {b,H}} + {b, {H, a}} + {H, {a, b}} = R . (3.11)
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Using the definition of the bracket operation given by Eq. (3.7), one finds [29]

R =
2N∑

i,j,k,n

∂a

∂xi

∂b

∂xk

∂H
∂xn

(
Bij

∂Bkn

∂xj
+ Bnj

∂Bik

∂xj
+ Bkj

∂Bni

∂xj

)
. (3.12)

Equation (3.12) can be rearranged [29] to obtain

{{a, b},H} = {ȧ, b}+ {a, ḃ} +R , (3.13)

⇒ d

dt
{a, b} = {ȧ, b}+ {a, ḃ} +R , (3.14)

where in the last step the postulate of Eq. (3.8) was used. One can see, from Eq. (3.14),

that the bracket algebra defined by Eq. (3.7) is not time translation invariant [29]. From

this one can infer that, unlike in the case of the Hamiltonian bracket algebra, the non-

Hamiltonian bracket of two constants of motion is not itself a constant of motion.

The phase space compressibility, κ, is defined as

κ =
2N∑

i,j=1

∂Bij

∂xi

∂H
∂xj

. (3.15)

In the Hamiltonian case the phase space compressibility is zero, however, in general

this is not so for non-Hamiltonian phase space flows [21, 29], defined by the bracket

of Eq. (3.7). It has been shown [21, 22, 29–31] that the compressibility is used to

describe the statistical mechanical properties of non-Hamiltonian systems, as well as the

ensemble distribution. Thus for a given conserved quantity of an extended system, one

is able to select a desired ensemble by using the definition in Eq. (3.15) and exploiting

the generality of the antisymmetric matrix B.

3.3 Constant Temperature Dynamics

In reality most experiments are conducted under conditions of constant temperature [22].

Thus in order for MD simulations to be compared with experimental results, for check-

ing the accuracy of the numerical approximations or the model used, the simulations

need to be performed within a corresponding ensemble. Such an ensemble is known

as the canonical ensemble and is characterised by the number of particles (N), the

volume of the system (V ) and the system temperature (T ), each being kept constant.

This constant temperature is achieved by placing the system in contact with a thermal

reservoir, or heat bath. By definition a thermal reservoir is a system which is large
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enough such that any finite change in the energy of the system will not affect the over-

all temperature of said system [22, 23]. As has been previously mentioned (section 3.2),

of the multiple ways in which to replicate the effects of a heat bath, a common choice

for MD simulations is that of extended systems. The concept behind extended systems

dynamics is to introduce one or more degrees of freedom into the system, which are

representative of the thermal reservoir. The resulting extended system is then simu-

lated [1]. Two of the most commonly used kinetic schemes, namely the Nosè-Hoover

and the Nosè-Hoover Chain thermostats, are introduced in the following sections. A

configurational scheme is introduced and discussed in Ch. 4.

3.3.1 Nosè-Hoover Thermostat

The Nosè-Hoover thermostat, which was first introduced in Ref. [8], has an extended

system Hamiltonian given by

HNH =
N∑

i=1

p2i
2mi

+ φ (q) +
p2s
2Ms

+ gkBTs , (3.16)

where pi andmi are the generalised momentum and mass of the ith particle respectively,

φ (q) is the potential energy function of the system using a multidimensional notation

for the generalised coordinates. The last two terms in Eq. (3.16) can be thought of as

the kinetic and potential energies of the reservoir respectively, where ps is the conjugate

momentum of the fictitious thermostat variable s, Ms is a parameter which acts as a

mass for the motion of s, kB is Boltzmann’s constant, g is a constant equal to the

number of degrees of freedom of the system and T is the temperature of the heat bath.

Following the postulate of Eq. (3.8), we can express this extended system’s equations

of motion as

ẋ = {x,HNH} =
∑

j,k

∂x

∂xj
BNH
jk

∂HNH

∂xk
, (3.17)

where the phase space point is given by x = (q, s, p, ps). By choosing the antisymmetric

matrix, BNH, as

BNH =




0 0 1 0

0 0 0 1

−1 0 0 −p

0 −1 p 0




, (3.18)
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the equations of motion for the Nosè-Hoover thermostat can be expressed explicitly as

q̇ =
p

m
, (3.19a)

ṡ =
ps
Ms

, (3.19b)

ṗ = −∂φ (q)

∂q
− p

ps
Ms

, (3.19c)

ṗs =
p2

m
− gkBT . (3.19d)

The second term in Eq. (3.19c) can be thought of as a feedback term, allowing for

energy transfer between the reservoir and the physical system. From Eq. (3.15) we see

that the phase space compressibility for this extended system is given by

κNH =
∑

j,k

∂BNH
jk

∂xj

∂HNH

∂xk
= − ps

Ms
= −ṡ . (3.20)

3.3.2 Nosè-Hoover Chain Thermostat

The Nosè-Hoover thermostat has limitations, namely that for small or stiff systems

the dynamics achieved are not ergodic [10]. A solution to this, proposed by Martyna

et al [10], is the so called Nosè-Hoover Chain (NHC) thermostat. The concept of the

NHC thermostat is to attach an additional thermostat to the one which is attached

to the physical system, forming a chain of thermostats. This is so as to increase the

fluctuations in the thermostat variables and, if necessary, the thermostat chain can be

extended [10]. In this section we will only consider the case of a chain of length two,

where thermostat 1 is attached to the physical system and thermostat 2 is attached to

thermostat 1. In this case the phase space point is given by x = (q, s1, s2, p, ps1 , ps2)

and the extended Hamiltonian is

HNHC =

N∑

i=1

p2i
2mi

+ φ (q) +
p2s1
2Ms1

+
p2s2
2Ms2

+ gkBT (s1 + s2) , (3.21)

where the notation used is the same as that for the Nosè-Hoover thermostat and the

subscripts correspond to the thermostat number. Again using the postulate of Eq. (3.8),

the equations of motion are given by

ẋ = {x,HNHC} =
∑

j,k

∂x

∂xj
BNHC
jk

∂HNHC

∂xk
, (3.22)
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with the antisymmetric matrix being given by

BNHC =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −p 0

0 −1 0 p 0 −ps1

0 0 −1 0 ps1 0




. (3.23)

Expressed explicitly, the equations of motion for the NHC thermostat are as follows

q̇ =
p

m
, (3.24a)

ṡ1 =
ps1
Ms1

, (3.24b)

ṡ2 =
ps2
Ms2

, (3.24c)

ṗ = −∂φ (q)

∂q
− p

ps1
Ms1

, (3.24d)

ṗs1 =
p2

m
− gkBT − ps1

ps2
Ms2

, (3.24e)

ṗs2 =
p2s1
Ms1

− gkBT . (3.24f)

Using Eq. (3.15), the phase space compressibility for this extended system is given by

κNHC =
∑

j,k

∂BNHC
jk

∂xj

∂HNHC

∂xk
= − ps1

Ms1

− ps2
Ms2

= − (ṡ1 + ṡ2) . (3.25)



Chapter 4

Configurational Thermostats

A configurational expression for the temperature was first used by Butler et al [13] as

a means of verifying Monte Carlo simulations. A thermostatting scheme based on the

configurational expression for the temperature was first introduced by Delhommelle

and Evans [32], and was applied to liquid chlorine being subjected to shear flow. The

expression for the temperature used in formulating this thermostat [32, 33] was the

same as that derived by Rugh [11, 25], and is given in Eq. (2.5). The temperature

expression is quoted below for the reader’s convenience

1

kBT
=

〈
∇X · ∇XH

|∇XH|2
〉
+O

(
1

N

)
.

The concept of a configurational temperature thermostat was later explored by Braga

and Travis [20] and a new thermostat, which was derived in the same spirit as the

well known Nosè-Hoover (NH) thermostat, was developed. This Braga and Travis

thermostat is further discussed in the following section (Sec. 4.1), and will henceforth

be referred to as the BT thermostat.

4.1 Braga and Travis Formulation

The approach followed by Braga and Travis was similar to that used by Hoover when

formulating the kinetic temperature NH thermostat, namely equations of motion were

proposed with consideration of the Langevin equation [20]. An expression for the rate

of change of a friction coefficient, appearing in the equations of motion, was derived

such that the canonical ensemble distribution was obtained [20]. Assuming that the

15
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Hamiltonian of the physical system can be expressed in the form

H (q, p) =
p2

2m
+ U (q) , (4.1)

where a multidimensional notation has been used and U (q) denotes the potential func-

tion, one can propose the following equations of motion for the BT thermostat [20]

q̇ =
p

m
− η

∂U (q)

∂q
, (4.2a)

ṗ = −∂U (q)

∂q
, (4.2b)

η̇ =? , (4.2c)

where η is the thermostat variable and the second term on the right hand side of

Eq. (4.2a) is the feedback term between the reservoir and the system. The right hand

side of Eq. (4.2c) is to be determined.

We can express the phase space probability density of the extended system, ρ (q, η, p),

as a product of the canonical distribution, ρNVT (q, p), and a density function of the

thermostat variable η, g (η)

ρ (q, η, p) = ρNVT (q, p) g (η) , (4.3)

where ρNVT (q, p) ∝ e−βH(q,p) . (4.4)

This is possible due to q, p and η being independent variables [20]. For such an extended

system, one can express the steady-state Liouville equation as

q̇
∂ρ

∂q
+ ṗ

∂ρ

∂p
+ η̇

∂ρ

∂η
+ ρ

(
∂q̇

∂q
+

∂ṗ

∂p
+

∂η̇

∂η

)
= 0 . (4.5)

Under the assumption that the right hand side of Eq. (4.2c) is a function solely of

variables of the physical system, η̇ = η̇ (q, p), the term ∂η̇/∂η becomes zero. Calculating

the nonzero terms in Eq. (4.5) one obtains

∂ρ

∂q
= −βρ

∂U (q)

∂q
, (4.6a)

∂ρ

∂p
= −βρ

p

m
, (4.6b)

∂ρ

∂η
= ρ

∂ ln (g)

∂η
, (4.6c)

∂q̇

∂q
= −η

∂2U (q)

∂2q
. (4.6d)
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By substituting Eqs. (4.6) and the equations of motion Eqs. (4.2a) and (4.2b) into

Eq. (4.5), we obtain

η̇ρ
∂ ln g

∂η
− ηρ

∂2U (q)

∂q2
+ ηρβ

(
∂U (q)

∂q

)2

= 0 , (4.7)

which leads to the equation for η̇

η̇ =
−βη(
∂ ln(g)
∂η

)
[(

∂U (q)

∂q

)2

− kBT
∂2U (q)

∂q2

]
. (4.8)

Owing to the earlier assumption that η̇ is independent of η, the ratio

(
∂ ln(g)
∂η

)

−βη
= Mη , (4.9)

must be constant, where the quantity Mη can be viewed as the thermostat mass [20].

Thus the equations of motion for the BT thermostat are

q̇ =
p

m
− η

∂U (q)

∂q
, (4.10a)

ṗ = −∂U (q)

∂q
, (4.10b)

η̇ =
1

Mη

[(
∂U (q)

∂q

)2

− kBT
∂2U (q)

∂q2

]
. (4.10c)

These equations of motion have the following conserved quantity

Hη =
p2

2m
+ U (q) +Mη

η2

2
+ kBT

∫ t

0

[
η
(
t′
)(∂2U (q)

∂q2

)]
dt′ . (4.11)

4.2 Phase-Space Formulation of the Configurational Tem-

perature Nosè-Hoover Thermostat

By definition phase space is even-dimensional [26, 27]. Thus the BT thermostat is not

in a phase space description, which would be useful for further generalisations. In order

to cast this thermostat in a phase space description, we introduce the fictitious variable

ζ with associated conjugate momentum pζ = ηMζ . By defining Mζ = Mη one can

introduce the conserved quantity

Hζ =
p2

2m
+ U (q) +

p2ζ
2Mζ

+ kBTζ , (4.12)
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with phase space equations of motion

q̇ =
p

m
− pζ

Mζ

∂U (q)

∂q
, (4.13a)

ζ̇ = G (q)
pζ
Mζ

, (4.13b)

ṗ = −∂U (q)

∂q
, (4.13c)

ṗζ = Fζ (q) , (4.13d)

where

G (q) =
∂2U (q)

∂q2
, (4.14a)

Fζ (q) =

(
∂U (q)

∂q

)2

− kBT

(
∂2U (q)

∂q2

)
. (4.14b)

The equations of motion Eqs. (4.13) can be expressed using the antisymmetric matrix

notation discussed in Chap. 3 by defining the extended phase space point as x =

(q, ζ, p, pζ). Thus the equations of motion, in matrix form, are given as

ẋi =

6N+2∑

j=1

BCTNH
ij

∂Hζ

∂xj
, (i = 1, . . . , 6N + 2) , (4.15)

where the antisymmetric matrix, BCTNH, is given by

BCTNH =




0 0 1 −
(
∂U(q)
∂q

)

0 0 0 G (q)

−1 0 0 0
(
∂U(q)
∂q

)T
−G (q) 0 0




. (4.16)

A compact notation has been used in Eq. (4.16) to represent the column vector (∂U/∂q)

and its transpose (∂U/∂q)T , as well as for the 3N × 3N block diagonal matrices.

Under the assumption of ergodicity, the thermostat described by Eqs. (4.12) and

(4.13) causes the dynamics of the system to canonically sample phase space. Using the

definition, Eq. (3.15), provided in Chap. 3, we find that the phase space compressibility

for this extended system is given by

κCTNH =

6N+2∑

j,k=1

∂BCTNH
jk

∂xj

∂Hζ

∂xk
= −G (q)

pζ
Mζ

= −ζ̇ . (4.17)

This ergodicity assumption however is not valid when concerning stiff systems. A

solution to this problem is provided, and discussed, in the following section, Sec. 4.3.
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4.3 Hybrid Thermostat (Ergodic Phase-Space Sampling)

A solution to the problem of ergodicity when dealing with stiff systems was achieved

by utilising the same concept of the Nosè-Hoover chain (NHC) thermostat, discussed

in Sec. 3.3.2, namely creating a chain of thermostats. We consider a hybrid ther-

mostat chain which consists of a configurational temperature thermostat attached to

the physical system, which is itself thermostatted by a kinetic temperature standard

Nosè-Hoover thermostat. Such a thermostat will henceforth be referred to as a hybrid

Configurational-Kinetic Temperature Nosè-Hoover (CKTNH) chain thermostat.

To introduce the hybrid CKTNH chain thermostat, we define the following con-

served quantity

Hζs =
p2

2m
+ U (q) +

p2ζ
2Mζ

+
p2s
2Ms

+ kBT (ζ + s) , (4.18)

where ζ is the configurational thermostat variable, with associated mass Mζ and mo-

mentum pζ , and s is the kinetic thermostat variable, with associated mass Ms and

momentum ps. The equations of motion are

q̇ =
p

m
− pζ

Mζ

∂U (q)

∂q
, (4.19a)

ζ̇ = G (q)
pζ
Mζ

, (4.19b)

ṡ =
ps
Ms

, (4.19c)

ṗ = −∂U (q)

∂q
, (4.19d)

ṗζ = Fζ (q)− pζ
ps
Ms

, (4.19e)

ṗs =
p2ζ
Mζ

− kBT , (4.19f)

where the functions G (q) and Fζ (q) are defined as in Eqs. (4.14)

G (q) =
∂2U (q)

∂q2
, (4.20a)

Fζ (q) =

(
∂U (q)

∂q

)2

− kBT

(
∂2U (q)

∂q2

)
. (4.20b)

Defining the extended phase space point as x̃ = (q, ζ, s, p, pζ , ps), the equations of

motion are expressed in matrix form as

˙̃xi =
∑

j

BCKTNH
ij

∂Hζs

∂x̃j
, (4.21)
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where the antisymmetric matrix BCKTNH is given by

BCKTNH =




0 0 0 1 −
(
∂U(q)
∂q

)
0

0 0 0 0 G (q) 0

0 0 0 0 0 1

−1 0 0 0 0 0
(
∂U(q)
∂q

)T
−G (q) 0 0 0 −pζ

0 0 −1 0 pζ 0




. (4.22)

Under the assumption of ergodicity the hybrid CKTNH chain thermostat, described

by Eqs. (4.18) and (4.19), causes the dynamics of the physical system to canonically

sample phase space, even in the case of stiff systems. Using the definition, Eq. (3.15),

provided in Chap. 3, we find that the phase space compressibility for this extended

system is given by

κCKTNH =
∑

j,k

∂BCTNH
jk

∂x̃j

∂Hζs

∂x̃k
= −G (q)

pζ
Mζ

− ps
Ms

= −
(
ζ̇ + ṡ

)
. (4.23)

Integration schemes for both the CTNH thermostat and the hybrid CKTNH chain

thermostat are discussed in Chap. 5.



Chapter 5

Algorithms of Integration

The phase space equations of motion of the two thermostats were integrated using

symplectic position and velocity Verlet algorithms. For comparison purposes, we also

present a time-reversible integration scheme, based on the symmetric Trotter expansion

of the Liouville propagator.

The symplectic integrators preserve the volume of the phase space of the system

being investigated. Symplectic integrators are therefore more stable than the proposed

reversible integrator, as more constraints are imposed upon the system by the symplec-

tic integrators than by the reversible integrator.

Although the symplectic integrators are the more stable option, they have with them

their own drawbacks (as will be shown in Sec. 5.1), namely that integrating some of

the associated equations of motion requires iteration. It is for these drawbacks that we

propose the integration scheme based upon the symmetric Trotter decomposition of the

Liouville propagator. The reversible integration scheme also has its drawbacks (shown

in Sec. 5.2) which are overcome through the use of a position-dependent, harmonic

approximation (PDHA) scheme. This PDHA scheme is outlined in Sec 5.2.1.

5.1 Symplectic

If one considers the equations of motion in the following form

q̇ = Hp(q, p) , (5.1a)

ṗ = −Hq(q, p) , (5.1b)

21
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where Hp = ∂H/∂p,Hq = ∂H/∂q, whilst H denotes the Hamiltonian of the system of

interest, and (q, p) can be interpreted as multidimensional coordinates. The symplectic

formulation of the velocity Verlet algorithm is given by

p
(
t+ τ/2

)
= p(t)− τ

2
Hq

(
q(t), p(t+ τ/2)

)
, (5.2a)

q
(
t+ τ

)
= q(t) +

τ

2

[
Hp

(
q(t), p(t+ τ/2)

)
+Hp

(
q(t+ τ), p(t+ τ/2)

)]
, (5.2b)

p
(
t+ τ

)
= p(t+ τ/2)− τ

2
Hq

(
q(t+ τ), p(t+ τ/2)

)
, (5.2c)

while the symplectic formulation of the position Verlet algorithm is given by

q
(
t+ τ/2

)
= q(t) +

τ

2
Hp

(
q(t+ τ/2), p(t)

)
, (5.3a)

p
(
t+ τ

)
= p(t)− τ

2

[
Hq

(
q(t+ τ/2), p(t)

)
+Hq

(
q(t+ τ/2), p(t+ τ)

)]
, (5.3b)

q
(
t+ τ

)
= q(t+ τ/2) +

τ

2
Hp

(
q(t+ τ/2), p(t + τ)

)
. (5.3c)

From equations (5.2a) and (5.2b) one can see that for the symplectic velocity Verlet

algorithm, the momentum at time t + τ/2 and the position at time t + τ are both

dependent upon themselves. The same occurs in the symplectic position Verlet algo-

rithm regarding the position and momentum respectively (refer to equations (5.3a) and

(5.3b)).

This problem of self-dependence was overcome by making two assumptions. The

first assumption which we made was that for a given coordinate, or momentum, value

at a given time t, the next value (at time t + τ or at time t + τ/2) would be within

the region of the given value (at time t). The motivation behind this assumption was

that a small time-step was used for the integration and hence the propagation of the

dynamics would not contain large fluctuations between consecutive points. The second

assumption made was that over several iterations, the variables in equations (5.2a),

(5.2b), (5.3a) and (5.3b) will tend to their true values. The motivation behind this

assumption is that it is reasonable to assume that the value of the variable at the next

time step will be close to its value at the current time. Therefore by using an iterative

procedure the value at the next time step changes on each iteration, whilst the value

at the current time remains the same across all iterations.

This solution was coded such that both an iteration limit and a tolerance limit were

accepted as input into the program. When calculating values that are self-dependent,

the first iteration uses the value at time t in place of the self-dependent quantity to
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estimate the value at the next time step. Each consecutive iteration uses the estimated

value from the previous iteration in place of the self-dependent quantity, in order to

calculate an improved, estimated value. This iteration process is repeated until either

the number of iterations reaches the iteration limit, or the difference between consec-

utive iteration values is less than or equal to the tolerance. Once either condition is

reached, the last value calculated for the variable at the next time step is taken to be

the numerically correct one.

5.1.1 Symplectic Integrator for the CTNH Thermostat

For the configurational temperature Nosè-Hoover (CTNH) thermostat, in a phase space

description, the equations of motion are as follows

q̇ =
p

m
+

pζ
Mζ

F (q) , (5.4a)

ζ̇ =
pζ
Mζ

∂2U(q)
∂q2

, (5.4b)

ṗ = −∂U (q)

∂q
= F (q) , (5.4c)

ṗζ =

(
∂U(q)
∂q

)2

− kBT
∂2U(q)
∂q2

. (5.4d)

Hence, the symplectic velocity Verlet algorithm, for the phase space CTNH thermostat,

is as follows

p(t+ τ/2) = p(t) +
τ

2
F
(
q(t)

)
, (5.5a)

pζ(t+ τ/2) = pζ(t) +
τ

2
Fζ

(
q(t)

)
, (5.5b)

q(t+ τ) = q(t) + τ
p(t+ τ/2)

m
+

τ

2

pζ(t+ τ/2)

Mζ

[
F
(
q(t)

)
+ F

(
q(t+ τ)

)]
, (5.5c)

ζ(t+ τ) = ζ(t) +
τ

2

pζ(t+ τ/2)

Mζ

[
G
(
q(t)

)
+G

(
q(t+ τ)

)]
, (5.5d)

p(t+ τ) = p(t+ τ/2) +
τ

2
F
(
q(t+ τ)

)
, (5.5e)

pζ(t+ τ) = pζ(t+ τ/2) +
τ

2
Fζ

(
q(t+ τ)

)
, (5.5f)
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and the symplectic position Verlet algorithm reads

q(t+ τ/2) = q(t) +
τ

2

p(t)

m
+

τ

2

pζ(t)

Mζ
F
(
q(t+ τ/2)

)
, (5.6a)

ζ(t+ τ/2) = ζ(t) +
τ

2

pζ(t)

Mζ
G
(
q(t+ τ/2)

)
, (5.6b)

p(t+ τ) = p(t) + τF
(
q(t+ τ/2)

)
, (5.6c)

pζ(t+ τ) = pζ(t) + τFζ

(
q(t+ τ/2)

)
, (5.6d)

q(t+ τ) = q(t+ τ/2) +
τ

2

p(t+ τ)

m
+

τ

2

pζ(t+ τ)

Mζ
F
(
q(t+ τ/2)

)
, (5.6e)

ζ(t+ τ) = ζ(t+ τ/2) +
τ

2

pζ(t+ τ)

Mζ
G
(
q(t+ τ/2)

)
, (5.6f)

where Eqs. (5.5c) and (5.6a) need to be iterated.

5.1.2 Symplectic Integrator for the CKTNH Hybrid Thermostat

Following the same reasoning as for the CTNH thermostat, one obtains for the hybrid

configurational-kinetic temperature Nosè-Hoover (CKTNH) thermostat

p(t+ τ/2) = p(t) +
τ

2
F (q(t)) , (5.7a)

pζ(t+ τ/2) = pζ(t)−
τ

2

ps(t+ τ/2)

Ms
pζ(t+ τ/2) +

τ

2
Fζ(q(t)) , (5.7b)

ps(t+ τ/2) = ps(t) +
τ

2

p2ζ(t+ τ/2)

Mζ
− τ

2
kBT , (5.7c)

q(t+ τ) = q(t) + τ
p(t+ τ/2)

m
+

τ

2

pζ(t+ τ/2)

Mζ
[F (q(t)) + F (q(t+ τ))] , (5.7d)

ζ(t+ τ) = ζ(t) +
τ

2

pζ(t+ τ/2)

Mζ
[G(q(t)) +G(q(t+ τ))] , (5.7e)

s(t+ τ) = s(t) + τ
ps(t+ τ/2)

Ms
, (5.7f)

p(t+ τ) = p(t+ τ/2) +
τ

2
F (q(t+ τ)) , (5.7g)

pζ(t+ τ) = pζ(t+ τ/2)− τ

2

ps(t+ τ/2)

Ms
pζ(t+ τ/2) +

τ

2
Fζ(q(t+ τ)) , (5.7h)

ps(t+ τ) = ps(t+ τ/2) +
τ

2

p2ζ(t+ τ/2)

Mζ
− τ

2
kBT , (5.7i)

where Eqs. (5.7b)-(5.7d) must be iterated.

The symplectic position Verlet algorithm for the hybrid CKTNH chain thermostat
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reads

q(t+ τ/2) = q(t) +
τ

2

p(t)

m
+

τ

2

pζ(t)

Mζ
F (q(t+ τ/2)) , (5.8a)

ζ(t+ τ/2) = ζ(t) +
τ

2

pζ(t)

Mζ
G(q(t+ τ/2)) , (5.8b)

s(t+ τ/2) = s(t) +
τ

2

ps(t)

Ms
, (5.8c)

p(t+ τ) = p(t) + τF (q(t+ τ/2)) , (5.8d)

pζ(t+ τ) = pζ(t) + τFζ(q(t+ τ/2)) − τ

2Ms
[ps(t)pζ(t) + ps(t+ τ)pζ(t+ τ)] , (5.8e)

ps(t+ τ) = ps(t) +
τ

2Mζ

[
p2ζ(t) + p2ζ(t+ τ)

]
− τkBT , (5.8f)

q(t+ τ) = q(t+ τ/2) +
τ

2

p(t+ τ)

m
+

τ

2

pζ(t+ τ)

Mζ
F (q(t+ τ/2)) , (5.8g)

ζ(t+ τ) = ζ(t+ τ/2) +
τ

2

pζ(t+ τ)

Mζ
G(q(t+ τ/2)) , (5.8h)

s(t+ τ) = s(t+ τ/2) +
τ

2

ps(t+ τ)

Ms
, (5.8i)

where Eq. (5.8a) and Eqs. (5.8e)-(5.8f) must be iterated.

5.2 Time-Reversible

The time reversible integration scheme was obtained by following the methodology in

[34]. Consider the equations of motion for the CTNH thermostat

q̇ =
p

m
+ F (q)

pζ
Mζ

, (5.9a)

ζ̇ = G(q)
pζ
Mζ

, (5.9b)

ṗ = −∂U

∂q
, (5.9c)

ṗζ = Fζ(q) , (5.9d)

where F (q) is the force acting on the system coordinates q and

G(q) =
∂2U
∂q2

, (5.10a)

Fζ(q) =

(
∂U
∂q

)2

− kBT
∂2U
∂q2

. (5.10b)
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One can define the following Liouville operators

LCTNH
1 =

(
p

m
+ F (q)

pζ
Mζ

)
∂

∂q
, (5.11a)

LCTNH
2 = F (q)

∂

∂p
, (5.11b)

LCTNH
3 = G(q)

pζ
Mζ

∂

∂ζ
, (5.11c)

LCTNH
4 = Fζ(q)

∂

∂pζ
. (5.11d)

The total Liouville operator is therefore given by LCTNH =
∑4

i=1 L
CTNH
i . We introduce

the propagators associated to each of the Liouville operators in Eqs. (5.11)

UCTNH
α (τ) = exp

(
τLCTNH

α

)
, α = 1, . . . , 4 , (5.12)

where τ denotes the time step. The total propagator for the system is therefore given

by

UCTNH(τ) = exp

(
τ
[
LCTNH
1 + LCTNH

2 + LCTNH
3 + LCTNH

4

])

≃ exp

(
τ

4
LCTNH
4

)
exp

(
τ

2
LCTNH
3

)
exp

(
τ

4
LCTNH
4

)

× exp

(
τ

2
LCTNH
2

)
exp

(
τLCTNH

1

)
exp

(
τ

2
LCTNH
2

)

× exp

(
τ

4
LCTNH
4

)
exp

(
τ

2
LCTNH
3

)
exp

(
τ

4
LCTNH
4

)

= UCTNH
4

(τ
4

)
UCTNH
3

(τ
2

)
UCTNH
4

(τ
4

)
UCTNH
2

(τ
2

)
UCTNH
1 (τ)

× UCTNH
2

(τ
2

)
UCTNH
4

(τ
4

)
UCTNH
3

(τ
2

)
UCTNH
4

(τ
4

)
, (5.13)

where a symmetric Trotter factorisation has been used twice, successively. One can

calculate the action of the propagators UCTNH
α for α = 2, 3, 4 by considering the identity

exp
(
c ∂
∂x

)
f(x) ≡ f(x + c) where c is an arbitrary constant and f(x) an arbitrary

function. Thus the action of the propagators is

p → p+ τF (q)
}
: UCTNH

2 (τ) , (5.14a)

ζ → ζ + τG(q)
pζ
Mζ

}
: UCTNH

3 (τ) , (5.14b)

pζ → pζ + τFζ(q)
}
: UCTNH

4 (τ) . (5.14c)

However, one cannot determine the action of the propagator UCTNH
1 (τ) for a general

potential U(q).



5.2. TIME-REVERSIBLE 27

For the case of quadratic potentials U(q) = (1/2)kq2 (i.e.: the force F (q) is linear

in q), one can substitute the Liouville operator LCTNH
1 with another operator LCTNH

1,h ,

given by

LCTNH
1,h =

(
p

m
− kq

pζ
Mζ

)
∂

∂q
. (5.15)

The action of the associated propagator, UCTNH
1,h (τ), can be analytically determined by

solving the differential equation q̇ = LCTNH
1,h q. This is demonstrated in App. A, with

the result found to be

q → q exp

(
−τk

pζ
Mζ

)
+ τ

p

m
exp

(
−τ

k

2

pζ
Mζ

)

sinh

(
τ k
2

pζ
Mζ

)

τ k
2

pζ
Mζ





 : UCTNH

1,h (τ) . (5.16)

It is difficult to use the propagator UCTNH as defined in Eq. (5.13) as one does not

generally know the action of the propagator UCTNH
1 . However, assuming a continuous

and sufficiently smooth potential, it is possible for one to use a linear approximation in

place of the force. Such an approximation is discussed in Sec. 5.2.1.

For the case of the hybrid CKTNH chain thermostat, the equations of motion are

given by Eqs. 4.19

q̇ =
p

m
− pζ

Mζ

∂U (q)

∂q
, (5.17a)

ζ̇ = G (q)
pζ
Mζ

, (5.17b)

ṡ =
ps
Ms

, (5.17c)

ṗ = −∂U (q)

∂q
, (5.17d)

ṗζ = Fζ (q)− pζ
ps
Ms

, (5.17e)

ṗs =
p2ζ
Mζ

− kBT . (5.17f)

Following the same procedure as for the CTNH thermostat, we define the following
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Liouville operators

LCKTNH
1 =

(
p

m
+ F (q)

pζ
Mζ

)
∂

∂q
= LCTNH

1 , (5.18a)

LCKTNH
2 = F (q)

∂

∂p
= LCTNH

2 , (5.18b)

LCKTNH
3 = G (q)

pζ
Mζ

∂

∂ζ
= LCTNH

3 , (5.18c)

LCKTNH
4 =

ps
Ms

∂

∂s
, (5.18d)

LCKTNH
5 = Fζ (q)

∂

∂pζ
= LCTNH

4 , (5.18e)

LCKTNH
6 = −pζ

ps
Ms

∂

∂pζ
, (5.18f)

LCKTNH
7 =

(
p2ζ
Mζ

− kBT

)
∂

∂ps
, (5.18g)

with the total Liouville operator being given by LCKTNH =
∑7

i=1 L
CKTNH
i . Utilising

the same methodology as before, we find that the associated propagators are given by

UCKTNH
1 (τ) = exp

[
τ

(
p

m
+ F (q)

pζ
Mζ

)
∂

∂q

]

= UCTNH
1 (τ) , (5.19a)

UCKTNH
2 (τ) = exp

[
τF (q)

∂

∂p

]

= UCTNH
2 (τ) , (5.19b)

UCKTNH
3 (τ) = exp

[
τ

(
G (q)

pζ
Mζ

∂

∂ζ
+

ps
Ms

∂

∂s

)]
, (5.19c)

UCKTNH
4 (τ) = exp

[
τFζ (q)

∂

∂pζ

]

= UCTNH
4 (τ) , (5.19d)

UCKTNH
5 (τ) = exp

[
−τpζ

ps
Ms

∂

∂pζ

]
, (5.19e)

UCKTNH
6 (τ) = exp

[
τ

(
p2ζ
Mζ

− kBT

)
∂

∂ps

]
. (5.19f)

Hence the total propagator can be approximated as

UCKTNH (τ) =

[
3∏

α=1

UCKTNH
7−α

(τ
4

)]
UCKTNH
3

(τ
2

)[ 3∏

α=1

UCKTNH
7−α

(τ
4

)]

× UCKTNH
2

(τ
2

)
UCKTNH
1 (τ)UCKTNH

2

(τ
2

)

×
[

3∏

α=1

UCKTNH
7−α

(τ
4

)]
UCKTNH
3

(τ
2

)[ 3∏

α=1

UCKTNH
7−α

(τ
4

)]
, (5.20)

where a symmetric Trotter factorisation has been used as before.
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5.2.1 Position-Dependent Harmonically Approximated

In order to obtain a time-reversible integration algorithm for systems where the force is

non-linear in q, one can use a Taylor series expansion, arrested to second order, of the

potential. The Taylor series expansion is taken about the coordinate q at time t and

an approximate expression for the force is calculated. This expression is substituted in

place of the true force in Eq. (5.9a) and a new propagator is obtained, the action of

which is determined in the same manner as before. The result is

q → q exp (−τB) + τA exp

(
−τB

2

)[
sinh

(
τB
2

)

τB
2

]}
: ŨCTNH

1,h (τ) , (5.21)

where

A =
p

m
+

pζ
Mζ

[F (qt) + qtG (qt)] ,

B =
pζ
Mζ

G (qt) ,

and qt is the coordinate q, at time t, about which the Taylor series expansion was taken.

A detailed derivation of Eq. (5.21) is provided in App. B.

At each time step the value which was used for qt was the coordinate value at that

time. This is equivalent to expanding about a different point at each time step, and

has the effect of locally approximating the potential function to an harmonic potential.

The motivation behind this choice is to minimise the error incurred from using an

approximated potential function, as opposed to the true potential function.

5.2.2 Higher Order Integrators

In order to improve the numerical accuracy of the integration algorithms proposed in

Secs. 5.2 and 5.2.1, one can introduce additional schemes to be used in conjunction with

the proposed algorithm. Two such techniques are the Yoshida higher order integration

scheme [35, 36] and a multiple time step procedure [34, 37]. With the implementation

of these two schemes, the propagator for the CTNH thermostat extended system can
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be expressed as

UCTNH(τ) =

[nyosh∏

n=1

mstep∏

m=1

(
UCTNH
4

(
wn

mstep

τ

4

)
UCTNH
3

(
wn

mstep

τ

2

)
UCTNH
4

(
wn

mstep

τ

4

))]

× UCTNH
2

(τ
2

)
UCTNH
1 (τ)UCTNH

2

(τ
2

)

×
[nyosh∏

n=1

mstep∏

m=1

(
UCTNH
4

(
wn

mstep

τ

4

)
UCTNH
3

(
wn

mstep

τ

2

)
UCTNH
4

(
wn

mstep

τ

4

))]
,

(5.22)

where nyosh is the number of Yoshida integration steps and mstep is the number of

iterations in the multiple time step procedure. The Yoshida weights, wn, are defined [35,

36] as

w1 = w3 =
1

(2−21/3)

w2 = 1− 2w1



 : nyosh = 3 , (5.23a)

w1 = w2 = w4 = w5 =
1

(4−41/3)

w3 = 1− 4w1



 : nyosh = 5 . (5.23b)

Using the same notation as before, the system propagator for the hybrid CKTNH

thermostat can be expressed as

UCKTNH(τ) =

[nyosh∏

n=1

mstep∏

m=1

(
3∏

α=1

UCKTNH
7−α

(
wn

mstep

τ

4

))

× UCKTNH
3

(
wn

mstep

τ

2

)( 3∏

α=1

UCKTNH
3+α

(
wn

mstep

τ

4

))]

× UCKTNH
2

(τ
2

)
UCKTNH
1 (τ)UCKTNH

2

(τ
2

)

×
[nyosh∏

n=1

mstep∏

m=1

(
3∏

α=1

UCKTNH
7−α

(
wn

mstep

τ

4

))

× UCKTNH
3

(
wn

mstep

τ

2

)( 3∏

α=1

UCKTNH
3+α

(
wn

mstep

τ

4

))]
. (5.24)

For both the CTNH thermostat and the hybrid CKTNH chain thermostat, the tech-

niques implemented above, for the purpose of improving numerical accuracy, are applied

only to the propagators which act on the thermostat variables, not those which act on

the physical system.



Chapter 6

Models and Results

The configurational temperature Nosè-Hoover (CTNH) and the hybrid configurational-

kinetic temperature Nosè-Hoover (CKTNH) chain thermostats were tested on both

the harmonic oscillator (single well potential) and the quartic oscillator (double well

potential) systems. For each system, a single particle, in one dimension, was simulated.

For each extended system that was considered, three runs were performed, each one

implementing a different one of the integration algorithms (symplectic position Verlet

(SPV), symplectic velocity Verlet (SVV) and symmetric Trotter propagator (STP))

discussed in Chap. 5. For convenience, the particle mass,m, and heat bath temperature,

T , were set to unit values for all simulations. In other words

m = 1 , (6.1a)

kBT = 1 . (6.1b)

For a single, one-dimensional, harmonic oscillator, the potential energy function is given

by

UHO (q) =
1

2
kq2 , (6.2)

where q is the generalised particle coordinate and k is the spring constant. In the case

of a single quartic oscillator, in one dimension, the potential energy function is given

by

UDW (q) =
a

4
q4 +

b

2
q2 , (6.3)

where q is the generalised particle coordinate and the parameters a and b determine

the width and depth, respectively, of the potential wells. The results presented in this

31
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Figure 6.1a: Conserved quantity, Hζ , versus time for an harmonic oscillator attached

to a configurational temperature Nosè-Hoover (CTNH) thermostat, for each of the

integration schemes discussed previously (symplectic position Verlet (SPV), symplectic

velocity Verlet (SVV) and the symmetric Trotter propagator (STP) scheme). The

results shown are each normalised to an initial value of one, with those for the STP

algorithm being incremented by a constant factor of 2 · 10−6, and those for the SVV

algorithm being decremented by the same amount. The figure shows the numerical

conservation of Hζ , for each of the integration schemes implemented. The simulation

results were obtained using a thermostat mass of Mζ = 10 and a time step of τ =

2.5 · 10−3.

chapter were obtained using a spring constant value of k = 1.0, for the case of the

quadratic potential, and parameter values of a = 1.0 and b = −1.0, for the quartic

potential function. A table of the relevant parameter values used for each simulation

is provided in App. C.

Figure 6.1a shows the numerical conservation of the conserved quantity, Hζ , for

an harmonic oscillator attached to a CTNH thermostat, for each of the integration

algorithms discussed in Chap. 5. One can see that Hζ is conserved for each of the in-

tegration schemes implemented, as the fluctuations are of the order of 10−6, which lies

within acceptable numerical error. By using the intrinsic stats function of gnuplot,

it was determined the average value of the extended Hamiltonian, using the symplectic
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Figure 6.1b: Conserved quantity, Hζ , versus time for a double well system attached

to a configurational (CTNH) thermostat, showing numerical conservation of Hζ when

using the symplectic position (SPV) and velocity (SVV) Verlet integration algorithms

as well as for the symmetric Trotter propagator (STP) integration scheme. The results

obtained using the symplectic integrators have been shifted by a constant factor of

3 · 10−5. The simulations were conducted using a thermostat mass of Mζ = 9.6 · 105

and a time step of τ = 2.5 · 10−3 for each of the integration schemes.

integrators (SPV and SVV) was 0.9999999±3.8 ·10−7 and 0.9999997±3.7 ·10−7 respec-

tively, where the error was taken to be the standard deviation. When implementing

the STP integration scheme, the average value for the conserved quantity was found to

be 0.9999997±3.9 ·10−7 , where again the error was taken to be the standard deviation.

These values are as expected, owing to the conserved quantity being normalised to an

initial value of 1. From these results, together with the semi-periodic nature of the fluc-

tuations in Hζ , we can conclude that the extended Hamiltonian is conserved to within

the limits of numerical precision, by all three proposed integration algorithms. Shown

in Fig. 6.1b is the numerical conservation of Hζ for the case of a quartic oscillator

system attached to a CTNH thermostat. The results for each of the three integration

algorithms (SPV, SVV, and STP) previously discussed are reflected in the figure. The

average value of Hζ , for this extended system, was found to be 0.999998 ± 5.0 · 10−6

using the STP integration scheme and 0.999999± 3.3 · 10−6 0.999999± 3.1 · 10−6 when
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Figure 6.2a: Conserved quantity, Hζs, versus time for an harmonic oscillator attached to

a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat,

showing the numerical conservation of the extended Hamiltonian (Hζs). The results

were obtained using thermostat masses of Mζ = 10 and Ms = 1 and a time step of

τ = 2.5 · 10−3. Simulations were conducted using the symplectic position (SPV) and

velocity (SVV) Verlet and the symmetric Trotter propagator (STP) integrators. The

values shown in the figure have each been normalised to an initial value of one.

implementing the symplectic position and velocity Verlet integration algorithms respec-

tively. These values were obtained by employing the stats function of gnuplot, where

the standard deviations were taken to be the errors. With the exception of the occa-

sional larger fluctuation, we can see that the fluctuations in the extended Hamiltonian

are generally very small, for all the integration algorithms implemented. The lack of

any overall drift in the values shows that, for this set of input parameters (as earlier

mentioned, these are provided in App. C), the integration algorithms used are sta-

ble. This, together with the averages reported, lead one to conclude that the extended

Hamiltonian, Hζ , is conserved, to within the limits imposed by numerical precision, for

each of the three integration schemes.

The numerical conservation of the extended Hamiltonian, Hζs, is shown in Figs. 6.2

for each of the three integration schemes (SPV, SVV and STP) and each of the systems

used to investigate the hybrid CKTNH chain thermostat. As is shown in Fig. 6.2a, for
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Figure 6.2b: Conserved quantity, Hζs, versus time for a quartic oscillator system at-

tached to a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain

thermostat. The figure shows numerical conservation of Hζs for each of the three

integration schemes implemented (symplectic position Verlet (SPV), symplectic veloc-

ity Verlet (SVV) and symmetric Trotter propagator (STP)). Thermostat masses of

Mζ = 103 and Ms = 1, and a time step of τ = 2.5 · 10−3 were used.

the case of an harmonic oscillator attached to a hybrid CKTNH chain thermostat,

the symplectic integrators quickly become unstable. This can be seen around the

time t = 2.50 · 103, where the values of the conserved quantity begin, on average,

to drift toward zero, for both symplectic integrators (SPV and SVV). This reflects

the occurrence of an instability in the integrator. The STP integration scheme on

the other hand displays no such drift, and instead fluctuates around the initial value.

These fluctuations are of the order of 10−6, whilst the variations for the symplectic

integrators are of the order of 10−5. Through the use of gnuplot, it was determined

that the average values of the extended Hamiltonian, for each of the integrators used,

were found to be 0.999999±1.5 ·10−6 for the STP scheme and 0.999988±8.6 ·10−6 and

0.999993±7.3 ·10−6 for the SPV and SVV schemes respectively. The errors were taken

to be equivalent to the standard deviations. From these values we can conclude that the

quantityHζs is numerically conserved by the integrators. However, the instability in the

symplectic integrators, which is apparent from the figure, means that one must question
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Figure 6.3a: Configurational temperature versus time for an harmonic oscillator at-

tached to a configurational (CTNH) thermostat for the symplectic position (SPV) and

velocity (SVV) Verlet algorithms as well as the symmetric Trotter propagator (STP)

algorithm. The figure shows the convergence of the system configurational temperature

to the input value, where the dashed line denotes the thermostat (input) temperature.

The results were obtained using a thermostat mass of Mζ = 10 and a time step of

τ = 2.5 · 10−3, for each of the three integration schemes.

the reliability of the results obtained at long time scales when utilising said schemes.

From Fig. 6.2b one can see a similar trend exists for the case of a quartic oscillator being

thermostatted by a hybrid CKTNH chain thermostat. The symplectic position Verlet

integration algorithm destabilizes around time t = 2.5 · 104, as is evident by the overall

drift towards zero. The conserved quantity for the SVV algorithm exhibits a drift

toward two, which begins around the same time as for the SPV algorithm, however,

the drift occurs more gradually than for the case of the harmonic oscillator. The STP

integration scheme results in no discernible drift of the extended Hamiltonian. Both the

STP and SVV schemes have fluctuations of the order of 10−5, whilst the SPV schemes

exhibits fluctuations of the order of 10−4. Through use of the stats function found

in gnuplot, it was determined that the average values for the extended Hamiltonian

were 1.00001 ± 1.1 · 10−5 for the STP integrator, 0.99993 ± 2.6 · 10−5 for the SPV

scheme and 1.000018 ± 9.5 · 10−6 for the SVV scheme, where the errors were taken
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Figure 6.3b: Configurational temperature versus time for a quartic oscillator attached

to a configurational temperature Nosè-Hoover (CTNH) thermostat, showing the conver-

gence of the system configurational temperature to the input thermostat temperature.

The dashed line denotes the temperature of the heat bath. Three separate simulations

were performed, using the symplectic position (SPV) and velocity (SVV) Verlet inte-

grators, as well as the symmetric Trotter propagator (STP) integration scheme. The

results shown were obtained using a thermostat mass of Mζ = 9.6 · 105 and a time step

of τ = 2.5 · 10−3.

to be the standard deviations. From these values we can conclude that the extended

Hamiltonian was conserved, to within the limits imposed by numerical precision. From

Figs. 6.1 one can see that, for the case of the CTNH thermostat, the three integration

algorithms discussed in Chap. 5 numerically conserve the extended Hamiltonian, whilst

being numerically stable. However, in the case of the hybrid CKTNH chain thermostat,

the symplectic integrators become numerically unstable, as is shown in Figs. 6.2. The

STP algorithm remains stable for both thermostats and leads to numerical conservation

of the extended Hamiltonian, as is shown in Figs. 6.1 and 6.2.

When implementing a CTNH thermostatting scheme, the configurational temper-

ature of the physical system, as defined by Eq. (2.8), quickly converges to the value

of the thermostat temperature, as is shown in Figs. 6.3, and subsequently fluctuates

around this value. In Fig. 6.3a, one can see that there exists a minimal difference
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Figure 6.4a: Configurational temperature versus time for an harmonic oscillator system,

simulated using a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH)

chain thermostat, where the dashed line represents the temperature of the heat bath.

The figure shows the configurational temperature of the physical system converging to

the input temperature value. Thermostat masses of Mζ = 10 and Ms = 1 and a time

step of τ = 2.5 · 10−3 were used for each simulation conducted, where a different inte-

gration algorithm (symplectic position Verlet (SPV), symplectic velocity Verlet (SVV)

or symmetric Trotter propagator (STP)) was used for each simulation.

between the results obtained for each of the three integration techniques used in the

case of the harmonic oscillator, thermostatted by a CTNH thermostat. It was found,

through use of the stats function of gnuplot, that the average value for the config-

urational temperature of the physical system was 0.9993 ± 9.4 · 10−4, where the error

was taken to be the standard deviations, for each of the integration schemes used. The

average was calculated after time t = 7.5 · 102. This was done in an attempt to allow

the system to reach thermal equilibrium with the heat bath. For the quartic oscillator,

attached to a CTNH thermostat, there is an evident difference across the integration

schemes (see Fig. 6.3b), however, this difference is small. Under the assumption that

the physical system had reached thermal equilibrium by time t = 7.5 · 104, the aver-

age value for the configurational temperature was determined to be 1.000 ± 3.0 · 10−3

for each of the integrators implemented. For both oscillators tested in the case of the
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Figure 6.4b: Configurational temperature versus time for double well system attached

to a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermo-

stat, showing the convergence of the physical system’s configurational temperature to

the input thermostat temperature. The temperature of the thermostat chain is denoted

by the dashed line. A time step of τ = 2.5 · 10−3, together with thermostat masses

of Mζ = 103 and Ms = 1, were used to obtain the results for each integration scheme

used (symplectic position Verlet (SPV), symplectic velocity Verlet (SVV) or symmetric

Trotter propagator (STP)).

CTNH thermostat, the fluctuations around the input temperature value are small, as is

shown by Figs. 6.3, and the configurational temperature of the physical system is well

regulated by the CTNH thermostat, for the set of simulation input parameter values

(as mentioned previously, these are provided in App. C). The configurational temper-

ature of the systems thermostatted by a hybrid CKTNH chain thermostat has larger

fluctuations around the thermostat temperature than for a CTNH thermostat, but still

maintains the short convergence time. This can be seen in Figs. 6.4, where Fig. 6.4a

shows the configurational temperature as a function of time for the case of an harmonic

oscillator attached to a hybrid CKTNH chain thermostat, for each of the integration

algorithms discussed, and Fig. 6.4b reflects the same information for the case of a quar-

tic oscillator attached to a hybrid CKTNH chain thermostat. Using the same method

as for the CTNH thermostat, it was found that, for the harmonic oscillator case, the
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Figure 6.5a: Radial distribution in phase space (main figure) and occupied phase space

(inset figure) for an harmonic oscillator attached to a configurational (CTNH) thermo-

stat. Shown in the figure is the lack of ergodicity inherent in the CTNH thermostat,

when simulating stiff systems. The equations of motion were integrated using the sym-

plectic position Verlet (SPV) algorithm. The results were obtained using a thermostat

mass of Mζ = 10 and a time step of τ = 2.5 · 10−3.

average configurational temperatures were 1.003 ± 7.9 · 10−3 for the STP integration

scheme and 0.998 ± 4.2 · 10−3 and 1.001 ± 3.1 · 10−3 for the SPV and SVV integration

algorithms respectively. It was assumed that thermal equilibrium had been reached by

the system after time t = 2.0·103 . For the quartic oscillator case, under the assumption

that thermal equilibrium had been reached by time t = 5.0 · 104, the configurational

temperatures were determined to be 1.003 ± 3.3 · 10−3 and 0.996 ± 5.0 · 10−3 for the

symplectic position and velocity Verlet integrators respectively, and 1.005 ± 3.4 · 10−3

for the STP integration scheme. For both thermostats the errors reported were taken

to be equivalent to the standard deviations. One possible explanation for the larger

fluctuations in the temperature when using a hybrid chain thermostat, is the difference

in the temperatures being controlled (kinetic or configurational) by the respective ther-

mostat, because thermostats allow for fluctuations in the temperature which is being

regulated. Hence, the fluctuations from the kinetic temperature thermostat may be

affecting the calculation of the physical system’s configurational temperature. This has
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Figure 6.5b: Phase space radial distribution (main figure) for an harmonic oscillator

attached to a configurational temperature Nosè-Hoover (CTNH) thermostat, with the

occupied phase space shown in the inset figure, showing the non-ergodic property of

the CTNH thermostat. The results shown were obtained using the symplectic velocity

Verlet (SVV) integration scheme with a thermostat mass of Mζ = 10 and a time step

of τ = 2.5 · 10−3.

not been investigated in the current work, and is a topic for future investigation.

Figures 6.5 show the radial distribution in phase space for an harmonic oscillator

system attached to a CTNH thermostat, with the inset figures reflecting the occupied

phase spaces for the simulation run. Enlarged versions of the inset figures are provided

in App. D, Figs. D.1 for the reader’s convenience. Figures 6.5a and 6.5b were obtained

using the symplectic position and velocity Verlet integrators respectively, whilst the

STP integration scheme was used for Fig. 6.5c. One can clearly see from Figs. 6.5

that the radial distribution of phase space for the duration of the simulation differs

significantly from the analytical distribution for the canonical ensemble, in the case of

an harmonic oscillator thermostatted using a CTNH thermostat. By comparing the

radial distributions presented in Figs. 6.5 one finds that each of the three integration

schemes implemented result in the same distribution of phase space, different from that

of the canonical ensemble. For each of the Figs. 6.5, the initial zero value for the radial

distribution (for the range 0 < r < 1) corresponds to the distinct void in the occupied
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Figure 6.5c: Radial distribution of phase space (main figure) with the phase space

occupied for the simulation (inset figure) for an harmonic oscillator attached to a con-

figurational (CTNH) thermostat. The figure shows the loss of ergodicity, which arises

when implementing the CTNH thermostat. The results were obtained using the sym-

metric Trotter propagator (STP) integration scheme and a thermostat mass ofMζ = 10.

The time step used for the simulation was τ = 2.5 · 10−3.

phase space. Figures 6.6 show the occupied phase spaces for a quartic oscillator at-

tached to a CTNH thermostat, using each of the three integration algorithms discussed.

Figures 6.6 (a) and (b) were obtained using the symplectic position and velocity Verlet

integration algorithms respectively, whilst the STP integration scheme was used for

Fig. 6.6 (c). For the reader’s convenience, enlarged versions of Figs. 6.6 are provided in

App. D, Figs. D.2. For each of the Figs. 6.6 one can see a distinct void in the occupied

phase space for a quartic oscillator attached to a CTNH thermostat. Hence, by consid-

ering that the radial distribution of phase space differing from the analytical result is

independent of the integrator used (see Figs. 6.5), and that a distinct void exists in the

occupied phase spaces for both the harmonic and quartic oscillators (see inset Figs. 6.5

and Figs. 6.6), which is again independent of the integration scheme, one can deduce

that the dynamics achieved when implementing a CTNH thermostat, on stiff systems,

do not ergodically sample the phase space.

The radial distribution in phase space for an harmonic oscillator attached to a
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Figure 6.6: Occupied phase space for a quartic oscillator system attached to a config-

urational (CTNH) thermostat. The top left and right figures were obtained using the

symplectic position (SPV) and velocity (SVV) Verlet algorithms, respectively, whilst

the symmetric Trotter propagator (STP) integration scheme was used for the bottom

figure. The figure shows the lack of ergodicity, arising from use of the CTNH thermo-

stat. All three simulations were performed using a time step of τ = 2.5 · 10−3 and a

thermostat mass given by Mζ = 9.6 · 105.

hybrid CKTNH chain thermostat is shown in Figs. 6.7, where Figs. 6.7a and 6.7b

were obtained using the symplectic position and velocity Verlet integration algorithms

respectively. Figure 6.7c was obtained using the STP integration scheme. Figures 6.7a

and 6.7b show that small deviations from the analytical distribution are present when

the symplectic integrators are used (around r = 1 for Fig. 6.7a and around r = 0.75

and r = 1.5 for Fig. 6.7b), however, these differences are within acceptable limits.

Figure 6.7c shows that, when the STP integration scheme is implemented, the phase

space distribution very closely resembles that of an harmonic oscillator in the canonical

ensemble. Comparing the inset Figs. 6.7 with those of Figs. 6.5, we can see that

by utilising a hybrid CKTNH chain thermostat, the occupied phase space no longer

contains a void. For the reader’s convenience, enlarged versions of the inset Figs. 6.7

are provided in App. D, Figs. D.3. Figures 6.8 show that the absence of voids in the

occupied phase spaces also occurs for the case of a quartic oscillator attached to a
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Figure 6.7a: Radial distribution of phase space (main figure) and occupied phase space

(inset figure) for an harmonic oscillator attached to a hybrid configurational-kinetic

temperature Nosè-Hoover (CKTNH) chain thermostat, where the solid line denotes the

analytical distribution, showing that an ergodic sampling of phase space was achieved

during the simulation. The results shown were obtained using the symplectic position

Verlet (SPV) integration scheme, with thermostat masses of Mζ = 10 and Ms = 1 and

a time step of τ = 2.5 · 10−3.

hybrid CKTNH chain thermostat. Enlarged plots of the occupied phase space for each

of the integration algorithms implemented are provided, for the reader’s convenience, in

App. D, Figs. D.4. The symplectic position and velocity Verlet integration algorithms

were used to obtain Figs. 6.8 (a) and (b), respectively, whilst Fig. 6.8 (c) was obtained

using the STP integration scheme. From the close resemblance between the phase space

distribution, for an harmonic oscillator, obtained through simulation and that predicted

by theory (see Figs. 6.7), together with the absence of any voids within the occupied

phase spaces (see inset Figs. 6.7 and Figs. 6.8), we can conclude that the problem of

ergodicity, which arises when using the CTNH thermostat, is rectified through the use

of the hybrid CKTNH chain thermostat.
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Figure 6.7b: Phase space radial distribution (main figure), where the solid line de-

notes the analytical distribution, for an harmonic oscillator attached to a hybrid

configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat. The in-

set figure shows the phase space occupied for the simulation. The figure shows that the

hybrid CKTNH chain thermostat leads the dynamics of the physical system to ergod-

ically sample phase space. The symplectic velocity Verlet (SVV) algorithm, together

with thermostat masses of Mζ = 10 and Ms = 1 and a time step of τ = 2.5 · 10−3, were

used to obtain the results shown.
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Figure 6.7c: Radial distribution (main figure) of phase space and the occupied phase

space (inset figure) for the simulation of an harmonic oscillator attached to a hybrid

configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat, showing

the dynamics of the physical system sampled the phase space in an ergodic manner.

The solid line in the main figure is the analytical radial distribution of phase space.

The results were obtained using a time step of τ = 2.5 · 10−3 with thermostat masses

of Mζ = 10 and Ms = 1. The equations of motion were integrated using the symmetric

Trotter propagator (STP) integration scheme.
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Figure 6.8: Occupied phase space for the simulation of a quartic oscillator attached

to a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermo-

stat, for each of the three integration schemes discussed previously. The top left, (a),

and right, (b), figures show results obtained using the symplectic position (SPV) and

velocity (SVV) Verlet integration algorithms respectively, and the bottom figure was

obtained using the symmetric Trotter propagator (STP) integration scheme. For all

three simulations, thermostat masses of Mζ = 103 and Ms = 1, with a time step of

τ = 2.5 · 10−3, were used.



Chapter 7

Conclusions

This dissertation began by introducing the concept of temperature within the field

of Thermostatistics. A microcanonical expression for the temperature was provided,

through the seminal work of Rugh [11], which was later generalised by Jepps et al [12].

From this generalised expression, it was shown how one can obtain either a so-called

kinetic temperature, which is dependent upon the velocities of the particles, and the

equipartition theorem of the energy, or a so-called configurational temperature, which

is dependent upon the particles’ coordinates.

Next, we introduced the theory of Hamiltonian dynamics, as well as the theory

of non-Hamiltonian dynamics. We discussed the concept of extended systems, first

introduced by Andersen [3], and showed how non-Hamiltonian theory is applicable to

such systems. This led to the introduction of thermostats, and the Nosè-Hoover (NH)

and Nosè-Hoover chain (NHC) thermostats were introduced and discussed. The NH

and NHC thermostats are referred to as kinetic thermostats, as they control the kinetic

temperature of a system.

A configurational temperature thermostat, proposed by Braga and Travis [20], was

introduced and discussed. We proceeded to reformulate the proposed thermostat into a

phase space description, using the methodology outlined in [21] and [29]. It was found

that this configurational temperature Nosè-Hoover (CTNH) thermostat did not achieve

an ergodic sampling of phase space, particularly for stiff systems. This problem was

solved by utilising the concept behind the NHC thermostat, and attaching a kinetic

NH thermostat to the CTNH thermostat which in turn is attached to the physical

system. We refer to such a thermostat as a hybrid configurational-kinetic temperature

Nosè-Hoover (CKTNH) chain thermostat.
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Three different algorithms were derived to integrate the equations of motion for

both the CTNH and the hybrid CKTNH chain thermostats. These algorithms were

referred to as the symplectic position (SPV) and velocity (SVV) Verlet schemes and the

symmetric Trotter propagator (STP) scheme. The procedure outlined in [34] and [37]

was used to derive the STP scheme, where for physical systems possessing a force non-

linear in the generalised coordinate q, a position-dependent, harmonically approximated

(PDHA) scheme was used. This PDHA scheme uses a second order Taylor expansion of

the potential function when advancing the coordinate, of the physical system, in time.

Both the CTNH and hybrid CKTNH chain thermostats were used to simulate an

harmonic oscillator (single well potential) and a quartic oscillator (double well poten-

tial). Each of the three integration algorithms (SPV, SVV and STP) were used for each

case, where it was found that the STP scheme performed the strongest. The simulation

results verified the ergodicity sampling problem of the CTNH thermostat as well as the

hybrid CKTNH chain thermostat being a solution. The simulations also showed that

although for both thermostats the configurational temperature of the physical system

quickly converges to that of the thermostat, in the case of the hybrid CKTNH chain

thermostat, the fluctuations around this value are larger than those for the CTNH

thermostat. It is hypothesised that this is due to the difference in the temperatures

(configurational versus kinetic) which the two thermostats, of which the chain consists,

control. This hypothesis has not been tested in the present work, and is a topic for

future research.

The results obtained from the simulations which were performed, and which verify

the ideas presented in this dissertation, have been combined with those from Mr. E.

Obaga, who implemented a CTNH thermostat to simulate a Weeks-Chandler-Andersen

(WCA) fluid (a variation of the Lennard-Jones potential), and submitted to the Com-

puter Physics Communications journal for publication. At the time of writing this

dissertation, the paper was still in the review process.

In the future we plan to investigate the validity of both the CTNH thermostat and

the hybrid CKTNH chain thermostat in non-equilibrium simulations. Additionally,

we plan to use the Wigner representation of quantum mechanics [38] to reformulate

these thermostats for use in quantum-classical molecular dynamics simulations. This

reformulation will be done using the methodology outlined in [39].



Appendix A

Action of Propagator U1

Applying the Liouville operator LCTNH
1,h defined by (see Eq. (5.15))

LCTNH
1,h =

(
p

m
− kq

pζ
Mζ

)
∂

∂q
, (A.1)

leads to the differential equation

q̇ = LCTNH
1,h q ,

⇒ dq

dt
=

p

m
− kq

pζ
Mζ

. (A.2)

By making the following substitutions

A =
p

m
, (A.3a)

B = k
pζ
Mζ

, (A.3b)

equation (A.2) becomes

dq

dt
= A−Bq (A.4)

∫ q(t+τ)

q(t)

dq

A−Bq
=

∫ t+τ

t
dt′ = t+ τ − t = τ (A.5)

Making a change of variables in the left hand side

z = A−Bq (A.6)

dz = −Bdq (A.7)
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leads to

− 1

B

∫ A−Bq(t+τ)

A−Bq(t)

dz

z
= τ (A.8)

− 1

B
ln

(
A−Bq (t+ τ)

A−Bq (t)

)
= τ (A.9)

ln

(
A−Bq (t+ τ)

A−Bq (t)

)
= −Bτ (A.10)

A−Bq (t+ τ)

A−Bq (t)
= exp (−Bτ) . (A.11)

Making q (t+ τ) the subject of the formula

A−Bq (t+ τ) = [A−Bq (t)] exp (−Bτ) (A.12)

−Bq (t+ τ) = −A+ [A−Bq (t)] exp (−Bτ) (A.13)

q (t+ τ) =
A

B
+

[
q (t)− A

B

]
exp (−Bτ) (A.14)

= q (t) exp (−Bτ) +
A

B
− A

B
exp (−Bτ) (A.15)

= q (t) exp (−Bτ) +
A

B
[1− exp (−Bτ)] (A.16)

= q (t) exp (−Bτ) + 2
A

B
exp

(
−B

τ

2

)[exp
(
B τ

2

)
− exp

(
−B τ

2

)

2

]
.

(A.17)

Using the definition for sinh(x)

q (t+ τ) = q (t) exp (−Bτ) + 2τ
A

B
exp

(
−B

τ

2

) sinh
(
B τ

2

)

τ
(A.18)

= q (t) exp (−Bτ) + τA

[
sinh

(
B τ

2

)

B τ
2

]
. (A.19)

Substituting back in Eqs. (A.3)

q (t+ τ) = q (t) exp

(
−τk

pζ
Mζ

)
+ τ

p

m
exp

(
−τ

k

2

pζ
Mζ

)

sinh

(
τ k
2

pζ
Mζ

)

τ k
2

pζ
Mζ


 . (A.20)

Hence the action of the propagator UCTNH
1,h (τ) is given by

q → q exp

(
−τk

pζ
Mζ

)
+ τ

p

m
exp

(
−τ

k

2

pζ
Mζ

)

sinh

(
τ k
2

pζ
Mζ

)

τ k
2

pζ
Mζ





 : UCTNH

1,h (τ) . (A.21)

For purposes of numerical stability, the term sinh (x) /x where x is given by τ k
2

pζ
Mζ

is

calculated using a series expansion

sinh (x)

x
= 1 +

x2

3!
+

x4

5!
+

x6

7!
+

x8

9!
+O(x10) . (A.22)



Appendix B

Position-Dependent

Harmonically Approximated

(PDHA) Propagator Derivation

Taking a Taylor series expansion of the potential function, about an arbitrary coordi-

nate q′ different to q, and arrested to second order

U (q) ≃ U
(
q′
)
+
(
q − q′

) ∂U (q)

∂q

∣∣∣∣
q′
+

1

2

(
q − q′

)2 ∂2U (q)

∂q2

∣∣∣∣
q′
+O

(
q3
)
. (B.1)

By definition, for the configurational temperature Nosè-Hoover (CTNH) thermostat

G
(
q′
)
=

∂2U (q)

∂q2

∣∣∣∣
q′
. (B.2)

Thus the Taylor series expansion, Eq. (B.1), reduces to

U (q) ≃ U
(
q′
)
−
(
q − q′

)
F
(
q′
)
+

1

2

(
q − q′

)2
G
(
q′
)
+O

(
q3
)
, (B.3)

⇒ −∂U (q)

∂q
≃ F

(
q′
)
+G

(
q′
) (

q′ − q
)

≃ F
(
q′
)
+G

(
q′
)
q′ −G

(
q′
)
q . (B.4)

Substituting Eq. (B.4) into the coordinate equation of motion, Eq. (5.9a), yields

q̇ =
p

m
− pζ

Mζ

∂U (q)

∂q
(B.5)

≃ p

m
+

pζ
Mζ

[
F
(
q′
)
+G

(
q′
)
q′ −G

(
q′
)
q
]

(B.6)

= LCTNH
1,h q . (B.7)
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Solving the differential equation, Eq. (B.7), for q

dq

dt
=

p

m
+

pζ
Mζ

F
(
q′
)
+

pζ
Mζ

G
(
q′
)
q′ − pζ

Mζ
G
(
q′
)
q . (B.8)

We make the following substitutions

A =
p

m
+

pζ
Mζ

F
(
q′
)
+

pζ
Mζ

G
(
q′
)
q′ , (B.9a)

B =
pζ
Mζ

G
(
q′
)
, (B.9b)

so that Eq. (B.8) reduces to

dq

dt
= A−Bq (B.10)

⇒ q (t+ τ) = q (t) exp (−Bτ) + τA

[
sinh

(
B τ

2

)

B τ
2

]
, (B.11)

where the result was taken from the derivation in App. A, Eq. (A.19). Substituting

back in for Eqs. (B.9), one finds

q (t+ τ) = q (t) exp

(
− pζ
Mζ

G
(
q′
)
τ

)

+ τ

[
p

m
+

pζ
Mζ

F
(
q′
)
+

pζ
Mζ

G
(
q′
)
q′
]

sinh

(
pζ
Mζ

G (q′) τ
2

)

pζ
Mζ

G (q′) τ
2


 . (B.12)

Hence, the action of the propagator ŨCTNH
1,h is

q → q (t) exp

(
− pζ
Mζ

G
(
q′
)
τ

)

+ τ

[
p

m
+

pζ
Mζ

F
(
q′
)
+

pζ
Mζ

G
(
q′
)
q′
] 

sinh

(
pζ
Mζ

G (q′) τ
2

)

pζ
Mζ

G (q′) τ
2





 : ŨCTNH

1,h (τ) . (B.13)



Appendix C

Simulation Parameters

Tables C.1 show the relevant parameter values used for the simulations which were conducted.

The top table is for the harmonic oscillator simulations and the bottom table is for the quartic

oscillator simulations. The notation used in tables C.1 is as follows

HO : Harmonic Oscillator (single well)

DW : Quartic Oscillator (double well)

CTNH : configurational temperature Nosè-Hoover thermostat

CKTNH : hybrid configurational-kinetic temperature Nosè-Hoover chain thermostat

STP : Symmetric Trotter Propagator integration scheme

SPV : Symplectic Position Verlet integration algorithm

SVV : Symplectic Velocity Verlet integration algorithm

kB : Boltzmann’s constant

T : thermostat temperature

k : Harmonic Oscillator spring constant

a : Quartic Oscillator well width

b : Quartic Oscillator well depth

m : particle mass

Mζ : configurational thermostat mass

Ms : kinetic thermostat mass

τ : integration time step

nyosh : number of Yoshida integration steps

mstep : maximum number of iterations in the multiple time step scheme

niter : maximum number of iterations when implementing the symplectic integrators

tol : iteration tolerance used when implementing the symplectic integrators
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Table C.1: Tables showing the relevant input parameters for each of the simulations performed. An explanation of the notation used is

provided in App. C.

System Thermostat Integrator k kBT m Mζ Ms τ nyosh mstep niter tol

HO CTNH STP 1.0 1.0 1.0 10.0 — 2.5 · 10−3 — — — —

SPV 1.0 1.0 1.0 10.0 — 2.5 · 10−3 — — 10 10−10

SVV 1.0 1.0 1.0 10.0 — 2.5 · 10−3 — — 10 10−10

CKTNH STP 1.0 1.0 1.0 10.0 1.0 2.5 · 10−3 5 — — —

SPV 1.0 1.0 1.0 10.0 1.0 2.5 · 10−3 — — 15 10−15

SVV 1.0 1.0 1.0 10.0 1.0 2.5 · 10−3 — — 15 10−15

System Thermostat Integrator a b kBT m Mζ Ms τ nyosh mstep niter tol

DW CTNH STP 1.0 −1.0 1.0 1.0 9.6 · 105 — 2.5 · 10−3 5 5 — —

SPV 1.0 −1.0 1.0 1.0 9.6 · 105 — 2.5 · 10−3 — — 20 10−15

SVV 1.0 −1.0 1.0 1.0 9.6 · 105 — 2.5 · 10−3 — — 20 10−15

CKTNH STP 1.0 −1.0 1.0 1.0 103 1.0 2.5 · 10−3 5 — — —

SPV 1.0 −1.0 1.0 1.0 103 1.0 2.5 · 10−3 — — 100 10−50

SVV 1.0 −1.0 1.0 1.0 103 1.0 2.5 · 10−3 — — 100 10−50



Appendix D

Occupied Phase Spaces

In this appendix, enlarged versions of the occupied phase spaces, discussed earlier in

Sec. 6, for each simulation performed, are presented.
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Figure D.1a: Figure showing the occupied phase space for the simulation of an harmonic

oscillator system attached to a configurational temperature Nosè-Hoover (CTNH) ther-

mostat, using a symplectic position Verlet (SPV) integration scheme. The figure shows

the non-ergodicity property which arises when using the CTNH thermostat to simulate

stiff systems. The simulation results were obtained using a thermostat mass of Mζ = 10

and a time step of τ = 2.5 · 10−3.
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Figure D.1b: Occupied phase space for an harmonic oscillator system attached to a

configurational (CTNH) thermostat, showing the lack of an ergodic sampling of phase

space by the dynamics of the physical system. The integration of the equations of

motion was conducted using a symplectic velocity Verlet (SVV) integration scheme,

with a thermostat mass of Mζ = 10 and a time step of τ = 2.5 · 10−3.
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Figure D.1c: Occupied phase space for an harmonic oscillator system attached to a

configurational temperature Nosè-Hoover (CTNH) thermostat, showing the lack of er-

godicity when using the CTNH thermostat for stiff systems. The equations of motion

were integrated using the symmetric Trotter propagator (STP) algorithm. The simu-

lation results were obtained using a thermostat mass of Mζ = 10 and a time step of

τ = 2.5 · 10−3.
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Figure D.2a: Occupied phase space for a double well potential system attached to

a configurational temperature Nosè-Hoover (CTNH) thermostat, using a symplectic

position Verlet (SPV) integration scheme. The figure shows the non-ergodic manner in

which the dynamics of the system sample the phase space. The simulation results were

obtained using a thermostat mass of Mζ = 9.6 · 105 and a time step of τ = 2.5 · 10−3.
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Figure D.2b: Figure showing the occupied phase space for a quartic oscillator attached

to a configurational temperature Nosè-Hoover (CTNH) thermostat. The figure shows

the property of non-ergodicity which arises when simulating stiff systems using a CTNH

thermostat. The equations of motion were integrated using a symplectic velocity Verlet

(SVV) integration algorithm, and a thermostat mass of Mζ = 9.6 ·105 with a time step

of τ = 2.5 · 10−3 was used.
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Figure D.2c: Occupied phase space for a quartic oscillator attached to a configurational

(CTNH) thermostat, showing the non-ergodic sampling of phase space achieved by the

system’s dynamics. The equations of motion were integrated using a symmetric Trotter

propagator (STP) integration algorithm, as well as the Yoshida and multiple time step

procedures. A thermostat mass of Mζ = 9.6 · 105 and a time step of τ = 2.5 · 10−3 was

used.
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Figure D.3a: Occupied phase space during the simulation of an harmonic oscillator

attached to a hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain

thermostat, where a symplectic position Verlet (SPV) integration scheme was imple-

mented. The figure shows the ergodic sampling of phase space achieved by the dynam-

ics of the system. Thermostat masses of Mζ = 10 and Ms = 1, and a time step of

τ = 2.5 · 10−3 were used.
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Figure D.3b: Figure showing the phase space occupied during the simulation of an har-

monic oscillator attached to a hybrid configurational-kinetic temperature Nosè-Hoover

(CKTNH) chain thermostat. Shown in the figure is the ergodic manner in which the

dynamics of the system sample phase space. The equations of motion were integrated

using a symplectic velocity Verlet (SVV) scheme, with thermostat masses of Mζ = 10

and Ms = 1, and a time step of τ = 2.5 · 10−3.
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Figure D.3c: Occupied phase space of an harmonic oscillator system attached to a

hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat,

showing the property of ergodicity. The equations of motion were integrated using a

combination of both the symmetric Trotter propagator (STP) and Yoshida integration

schemes. Thermostat masses of Mζ = 10 and Ms = 1, and a time step of τ = 2.5 · 10−3

were used.
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Figure D.4a: Occupied phase space of a quartic oscillator attached to a hybrid

configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat, using

a symplectic position Verlet (SPV) integration scheme. The figure shows the ergodic

manner in which the dynamics of the system sample the phase space. Thermostat

masses of Mζ = 103 and Ms = 1, and a time step of τ = 2.5 · 10−3, were used to obtain

the results shown.
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Figure D.4b: Figure showing the phase space occupied during the simulation of a

quartic oscillator attached to a hybrid configurational-kinetic temperature Nosè-Hoover

(CKTNH) chain thermostat, demonstrating the ergodic nature of the system. The

equations of motion were integrated using a symplectic velocity Verlet (SVV) scheme,

and the simulation results were obtained using thermostat masses of Mζ = 103 and

Ms = 1, and a time step of τ = 2.5 · 10−3.
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Figure D.4c: Occupied phase space for a double well potential system attached to a

hybrid configurational-kinetic temperature Nosè-Hoover (CKTNH) chain thermostat,

showing the ergodic sampling of phase space achieved by the dynamics of the system.

The equations of motion were integrated using a symmetric Trotter propagator (STP)

integration algorithm together with the Yoshida integration scheme. The simulation

results were obtained using thermostat masses of Mζ = 103 and Ms = 1, and a time

step of τ = 2.5 · 10−3.



Appendix E

Publications

The publication on which the researched presented in this thesis is based has been

reproduced in the following pages. This publication has been submitted to Computer

Physics Communications, and, at the time of submission of this thesis, was still in the

review process.
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On the Configurational Temperature Nosè-Hoover Thermostat1
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Abstract10

In this paper we reformulate the configurational temperature Nosé-Hoover thermostat of
Braga and Travis [J. Chem. Phys. 123, 134101 (2005)] by means of a quasi-Hamiltonian
theory in phase space [Phys. Rev. E 64, 056125 (2001)]. The quasi-Hamiltonian struc-
ture is exploited to introduce a hybrid configurational-kinetic temperature Nosé-Hoover
chain thermostat that can achieve a uniform sampling of phase space (also for stiff har-
monic systems), as illustrated by simulating the dynamics of one-dimensional harmonic
and quartic oscillators. A time-reversible integration algorithm, based on the symmetric
Trotter decomposition of the propagator, is presented and tested against the symplec-
tic velocity and position Verlet algorithms. In order to obtain an explicit form for the
symmetric Trotter propagator algorithm, in the case of non-harmonic and non-linear
interaction potentials, a position-dependent harmonically approximated propagator is
introduced. Such a propagator approximates the dynamics of the configurational de-
grees of freedom as if they were locally moving in a harmonic potential. The resulting
approximated locally harmonic dynamics is tested with good results in the case of a
one-dimensional quartic oscillator and a three-dimensional N-particle system interacting
through a soft Weeks-Chandler-Andersen potential.

Keywords: Non-Hamiltonian thermostat, configurational temperature, time-reversible11

algorithms12
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1. Introduction15

It is known that the control of the temperature in molecular dynamics simulations [6,16

7, 8, 9, 10] can be implemented through the Gaussian [1], the Nosé-Hoover [2, 3] or17

the Langevin [4, 5] thermostats. However, a new generation of so-called configurational18
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thermostats (which control the configurational temperature [11, 12] instead of its kinetic19

counterpart) has been recently derived. The configurational temperature was initially20

used to check the validity of Monte Carlo codes [13]. At equilibrium in the microcanonical21

ensemble, it was found that such a temperature is equivalent to the kinetic one [14].22

Successively, configurational thermostats were applied to non-equilibrium simulations,23

where they were shown to provide certain advantages over traditional kinetic schemes [23].24

One such an advantage stems from the need to know the form of the local streaming25

velocity (starting from which, the correct thermal contribution can be computed) in order26

to correctly control the temperature by using a kinetic thermostat scheme. However, such27

a form is not known in general and, when using kinetic schemes, the onset of fictitious28

string phases [15, 16, 17] or the generation of non-zero off-diagonal stresses [18] in a system29

under shear flow has been observed. It is worth mentioning, however, that an unbiased30

kinetic temperature can be defined from particle velocities by taking into account the31

subtraction of the non-equilibrium velocity field [19]. The interest in the study and use of32

configurational thermostats lies mostly in the possibility of getting rid of the difficulties33

discussed above.34

In this paper we consider the configurational temperature Nosé-Hoover (CTNH) ther-35

mostat of Braga and Travis [22, 23] (which has been also extended to implement an36

isothermal-isobaric ensemble [20] and to study molecular systems [21]). Our first achieve-37

ment is to reformulate such a thermostat in a quasi-symplectic phase space form, along38

the anti-symmetric matrix formalism of Ref. [8]. The phase space form, together with39

its generalized antisymmetric brackets, is a natural mathematical template for the for-40

mulation of both the equilibrium statistical mechanics and the linear response theory of41

so-called non-Hamiltonian systems [24, 25] (but perhaps, contrary to common use, one42

should term such systems quasi-Hamiltonian, as it is done in the rest of this paper) such43

as the CTNH thermostat. One distinctive advantage of the quasi-Hamiltonian phase44

space formalism [8, 24, 25] is that it allows one to easily find more general equations45

of motion without losing the property of having a conserved (quasi-)Hamiltonian. Ex-46

ploiting the quasi-Hamiltonian structure of the CTNH thermostat in phase space, we47

introduce a hybrid configurational kinetic temperature Nosé-Hoover chain thermostat48

(called hybrid CKTNH chain thermostat in the rest of the paper) that is able to sample49

uniformly the equilibrium phase space of stiff systems. This cannot be proven rigorously50

but, as usual, it can be illustrated numerically by studying the relevant case of a stiff51

one-dimensional harmonic oscillator. The hybrid CKTNH chain thermostat couples the52

fictitious momentum of the configurational thermostat to an additional fictitious mo-53

mentum variable that, in turn, controls the kinetic temperature of the configurational54

thermostat. A similar idea is notoriously been used in the Nosé-Hoover chain (NHC)55

thermostat [28].56

In order to integrate the phase space equations of motion of both the CTNH and57

hybrid CKTNH chain thermostats, we use a reversible algorithm based on the symmetric58

Trotter decomposition of the Liouville propagator (which will be called STP algorithm59

in the following). For comparison, we also use symplectic position and velocity Verlet60

algorithm [29]. The STP algorithm can be written in an explicit form only for linear61

and harmonic potential. For more complicated potential (assuming that they can be62

expanded in Taylor series), we derive a position-dependent harmonically approximated63

(PDHA) STP algorithm that is both stable and accurate. We illustrate its validity by64

simulating a one-dimensional quartic oscillator and a three-dimensional Weeks-Chandler-65
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Andersen (WCA) fluid [32].66

This paper is organized as follows. In Sec. 2 we briefly summarize the definition67

of configurational temperature and of the CTNH thermostat, as formulated by Braga68

and Travis. In Sec. 3 we introduce the quasi-Hamiltonian phase space formulation of69

the CTNH thermostat. Its STP integration scheme is provided in Sec. 3.1, while the70

symplectic velocity and position Verlet algorithms are given in Appendix A. The PDHA71

STP algorithm is also explained in Sec. 3.1. The hybrid CKTNH chain thermostat is72

introduced through the quasi-Hamiltonian phase space formalism in Sec. 4. The STP and73

PDHA STP algorithms for the hybrid CKTNH chain thermostat are presented in Sec. 4.1,74

while the symplectic velocity and position Verlet algorithms are given in Appendix B.75

In Sec. 5 we study a stiff one-dimensional oscillator and compare the performance of the76

CTNH and hybrid CKTNH chain thermostats finding that the second can reproduce the77

correct canonical distribution function of the relevant system. In Sec. 6 we study the78

hybrid CKTNH chain thermostatted dynamics of a quartic one-dimensional oscillator in79

a symmetric double well potential by means of the PDHA STP algorithm. The PDHA80

STP integrator of the CTNH thermostat is also studied in Sec. 7 in the case of a three-81

dimensional N-particle system interacting through a WCA potential [32]. It is found82

that the PDHA STP integrator performs well for all practical purposes. Finally, our83

conclusions are given in Sec. 884

2. Configurational Temperature Nosé-Hoover Thermostat85

Let us consider a general system of N atoms in three dimensional space described in86

phase space by the 6N-dimensional vector X = (q, p), where the positions and momenta87

of the particles are represented (using a multi-dimensional notation) by the two 3N88

dimensional coordinates q and p, respectively. The form of the Hamiltonian is given by89

H(X) = K(p) + U(q) , (1)

where K and U denote the kinetic and the potential energy of the system, respectively.90

Various statistical mechanical definitions of temperature can be derived for such a system91

starting from the basic thermodynamic relation92

1
T

=
(
∂S

∂E

)

V

, (2)

where S is the entropy, E the internal energy, and V the volume. Recently, Rugh [11]93

introduced a microcanonical definition of temperature given by94

1
kBT

=
〈
∇X · ∇XH

|∇XH|2
〉

+O
(

1
N

)
, (3)

where ∇X is the phase-space gradient operator and kB is the Boltzmann constant. Jepps95

et al. [12] have later generalized Eq.(3) to96

kBT ≈
⟨∇XH ·Ω(X)⟩
⟨∇X · Ω(X)⟩ , (4)

where Ω is a general vector field obeying the properties that 0 < ⟨|∇XH · Ω(X)|⟩ < ∞97

and 0 < ⟨|∇X · Ω(X)|⟩ <∞.98
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Upon choosing Ω(X) = χ(∇XH), where χ is a matrix satisfying the equation99

(∇XH)χ(∇XH) ! 0, one can obtain two useful expressions for the temperature of the100

system. The first expression comes from choosing the element of the matrix χij as δij if i101

and j refer to the momentum variables and zero otherwise. In this case, Eq.(4) becomes102

kBTkin = ⟨|∇pK(p)|2⟩
⟨|∇2

pK(p)|⟩ = ⟨∑3N
i=1 p

2
i /m

2
i ⟩

⟨∑3N
i=1(3N/mi)⟩

, (5)

where ∇p is the momentum gradient using the multidimensional notation. In Eq.(5)103

K(p) =
∑

i p
2
i /mi and the index i = 1, ..., 3N has been introduced to indicate unambigu-104

ously the operation of summation. Such an index constitutes a momentary departure105

from the otherwise adopted compact multidimensional notation. It will also be used in106

the following when clarity demands it. Equation (5) provides a kinetic expression for107

the temperature, Tkin, and reduces to the equipartition theorem when all the particle’s108

masses m are equal: 3NkBTkin = ⟨∑3N
i=1 p

2
i /mi⟩.109

A configurational expression for the temperature, different from that derived in110

Ref. [11], is obtained by choosing the elements of the matrix χ as δij if i and j refer111

to coordinate variables and zero otherwise. Such an expression reads112

kBTconf = ⟨|∇qU(q)|2⟩
⟨∇2

qU(q)⟩ = ⟨|∑3N
i=1∇qiU(q)|2⟩

⟨∑3N
i=1∇2

qiU(q)⟩
, (6)

where ∇q is the position gradient in phase space.113

Using the temperature Tconf defined in Eq.(6), Braga and Travis introduced a114

configurational temperature Nosé-Hoover (CTNH) thermostat [22] defined by equations115

q̇i = pi
mi

− η
∂U
∂qi

, (7)

ṗi = −∂U
∂qi

, (8)

η̇ = Fη
Mη

, (9)

where i = 1, . . . , 3N , η is the thermostat variable with associated inertial mass Mη116

and117

Fη =
3N∑

i=1

(
∂U
∂qi

)2
− kBT

3N∑

i=1

∂2U
∂q2i

. (10)

The above equations of motion admit the conserved quantity118

Hη = H(X) +Mη
η2

2 + kBT

∫ t

0

[
η(t′)

3N∑

i=1

∂2U
∂q2i

]
dt′ . (11)

Equations (7-9) have been numerically integrated [26] using the algorithm detailed119

below, derived in the spirit of the velocity-Verlet algorithm [27]. Taking into account the120
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distinction between p and mq̇ in Eq.s(7-9), the algorithm can be written explicitly as121

qi(t+ τ) = qi(t) + τ
pi(t)
mi

+ τ

[
η(t) + τ

2mi

]
Fi(t) (12)

pi(t+ τ) = pi(t) + τ

2 [Fi(t) + Fi(t+ τ)] (13)

η(t+ τ) = η(t) + τ

2Mη
[Fη(t) + Fη(t+ τ)] , (14)

where i = 1, . . . , 3N , Fi = −∂U/∂qi and τ is the time step of integration. The122

algorithm has been tested in the equilibrium case with respect to the conservation law of123

Eq.(11) and by comparison with the results in Ref. [22] in the non-equilibrium steady-124

state conditions. It is important to note that in the case of Eq.s(7-9) the integration125

algorithm remains explicit.126

3. Phase Space Formulation of the CTNH thermostat127

The original formulation of the CTNH thermostat has been given by Braga and Travis128

by means of Eq.s(7-9), the conserved quantity in Eq.(11), and the thermostat force in129

Eq.(10). However, for further generalizations, it is useful to reformulate it within a phase130

space approach.131

To this end, one can introduce the fictitious variable ζ and its associated momentum132

pζ = Mζη. Upon changing the notation so that Mζ = Mη and Fζ = Fη, one can introduce133

the conserved quantity134

Hζ =
3N∑

i=1

p2
i

2mi
+ U(q) +

p2
ζ

2Mζ
+ kBTζ (15)

and the phase space equations of motion (q and p being 3N -dimensional vectors)135

q̇ = p

m
− pζ
Mζ

∂U
∂q

, (16)

ζ̇ = G(q) pζ
Mζ

, (17)

ṗ = −∂U
∂q

, (18)

ṗζ = Fζ(q) , (19)

where136

G(q) =
3N∑

i=1

∂2U
∂q2i

. (20)

Defining an extended phase space point as x = (q, ζ, p, pζ), the equations of motion (16-137

19) can be written in matrix form as138

ẋi =
6N+2∑

j=1
BCTNH
ij

∂Hζ

∂xj
(i = 1, ..., 6N + 2) . (21)
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In Eq.(21), the following (6N + 2)× (6N + 2) antisymmetric tensor field has been intro-139

duced140

BCTNH =

⎡
⎢⎢⎢⎣

0 0 1 −∂U
∂q

0 0 0 G(q)
−1 0 0 0
∂U
∂q

T −G(q) 0 0

⎤
⎥⎥⎥⎦ , (22)

where we have used a compact notation for the 3N × 3N block diagonal matrices and141

for the column vector ∂U/∂q and its transpose, the row vector (∂U/∂q)T .142

The Eq.s(16-19), with the conserved quantity (15), are equivalent to the original143

Eq.s(7-9),with the conserved quantity in Eq.(11). It is simple to show that, under144

the assumption of ergodicity, the phase space equation of motions of the Nosé-Hoover145

configurational thermostat sample the canonical distribution. As a matter of fact, at146

equilibrium and if the dynamics is ergodic, Eq.s(7-9) generate the distribution function147

fCTNH
eq = δ

(
Hζ − C

)
exp[−w(x)] , (23)

where w(x) is a phase space function defined by dw/dt = κ, and κ =148

(∂BCTNH
αβ /∂xα))∂Hζ/∂xβ = −ζ̇ is the compressibility of phase space. Upon defining149

Hζ,T = Hζ − kBTζ, one easily finds that κ = (1/kBT )dHζ,T/dt so that averages of150

functions of the type a = a(q, p) with the weight in Eq.(23) provide canonical ensem-151

ble values. However, the assumption of ergodicity regarding the dynamics defined by152

Eq.s(16-19) is not correct, at least as far it regards stiff systems. To this end, the phase153

space formulation and the antisymmetric matrix in Eq.(22) provide a basis for the intro-154

duction of a more general, energy-conserving dynamics that is able to sample ergodically155

the time evolution of stiff systems. This will be dealt with in Sec. 3.1.156

3.1. STP Integrators for phase space CTNH thermostat157

Upon introducing multidimensional phase space coordinates (q, p) for describing the158

system of interest, the dynamics of the phase space CTNH thermostat can be defined in159

terms of the following Liouville operators:160

LCTNH
1 =

(
p

m
+ F (q) pζ

Mζ

)
∂

∂q
(24)

LCTNH
2 = F (q) ∂

∂p
(25)

LCTNH
3 = G(q) pζ

Mζ

∂

∂ζ
(26)

LCTNH
4 = Fζ(q)

∂

∂pζ
(27)

where F (q) is the force acting on the system coordinates q and161

G(q) = ∂2U
∂q2

(28)

Fζ(q) =
(
∂U
∂q

)2
− kBT

∂2U
∂q2

. (29)
6
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The total Liouville operator is obviously defined as LCTNH =
∑4

i=1 L
CTNH
i . Denoting the162

time step with τ , one can introduce the propagators associated to the Liouville operators163

in Eq.s(24-27): UCTNH
α (τ) = exp(τLCTNH

α ), for α = 1, ..., 4.164

A possible symmetric Trotter factorization of the propagator is given as follows:165

UCTNH(τ) = UCTNH
4

(τ
4

)
UCTNH

3

(τ
2

)
UCTNH

4

(τ
4

)

× UCTNH
2

(τ
2

)
UCTNH

1 (τ)UCTNH
2

(τ
2

)

× UCTNH
4

(τ
4

)
UCTNH

3

(τ
2

)
UCTNH

4

(τ
4

)
.

(30)

The action of the propagators UCTNH
α for α = 2, 3, 4 can be easily determined:166

p→ p + τF (q) } : UCTNH
2 (τ) , (31)

ζ → ζ + τG(q) pζ
Mζ

} : UCTNH
3 (τ) , (32)

pζ → pζ + τFζ(q) } : UCTNH
4 (τ) . (33)

However, the action of UCTNH
1 (τ) cannot be determined for a general potential U(q).167

If the potential U(q) = (1/2)kq2 is quadratic (so that the force F (q) is linear in q), the168

Liouville operator LCTNH
1 must be substituted with LCTNH

1,h :169

LCTNH
1,h =

(
p

m
− kq

pζ
Mζ

)
∂

∂q
, (34)

In the case of quadratic potentials, the action of the propagator UCTNH
1,h (τ), associated to170

the Liouville operator LCTNH
1,h can be determined analytically: one has simply to consider171

the differential equation q̇ = LCTNH
1,h q and integrate by parts between 0 and τ . The result172

is173

q → q exp
(
−τk pζ

Mζ

)⎡
⎣

sinh
(
τ k2

pζ
Mζ

)

τ k2
pζ
Mζ

⎤
⎦ } : UCTNH

1,h (τ) . (35)

The use of the STP propagator UCTNH defined in Eq.(30) is difficult because of the174

generally unknown action of the UCTNH
1 (τ) propagator. However, one can expect that175

for a continuous and sufficiently smooth potential, a linear approximation for the force176

could be used177

F (q) ≈ F (qt)− k̃(q − qt) , (36)

where178

k̃ = 1
2
∂2U
∂q2

∣∣∣∣
q=qt

. (37)

position-dependent numerical spring parameters. Equation (36) clearly stems from a179

quadratic expansion of the interaction potential U around the position qt describing the180

system at a given time t.181
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If the approximation of Eq.(36) is performed, the propagator182

q → q exp
(
−τ k̃ pζ

Mζ

)
+ τ

( p
m

+ F (qt) + k̃qt

)
exp

(
−τ k̃2

pζ
Mζ

)⎡
⎣

sinh
(
τ k̃2

pζ
Mζ

)

τ k̃2
pζ
Mζ

⎤
⎦ }

: ŨCTNH
1,h (τ) . (38)

can be substituted in place of UCTNH
1 (τ) in Eq.(30). In such a way, one can obtain a183

position-dependent harmonically-approximated (PDHA) STP integrator for the CTNH184

thermostat in general provided the potential is smooth.185

The position and velocity Verlet symplectic algorithms for integrating the CTNH ther-186

mostat are given in Appendix A.187

4. Hybrid Configurational-Kinetic Temperature Nosé-Hoover Chain Ther-188

mostat189

In order to obtain an ergodic configurational thermostat, one can exploit the idea of cre-190

ating a chain of thermostats. The prototype of such an idea is given by the Nosè-Hoover191

chain thermostat [28]. Here, we will consider a hybrid chain where a configurational ther-192

mostat, which controls the particles’ temperature is chained to a standard Nosé-Hoover193

(kinetic) thermostat, which, in turn, controls the kinetic energy of the configurational194

thermostat. We call such a thermostat hybrid Configurational-Kinetic Temperature195

Nosé-Hoover (CKTNH) chain thermostat. It will be shown, by means of a numerical196

study of the one-dimensional harmonic oscillator, that the hybrid CKTNH chain ther-197

mostat is able to sample correctly the equilibrium canonical distribution, even for stiff198

systems.199

In order to introduce the hybrid CKTNH chain thermostat, one can define the con-200

served quantity as201

Hζs =
∑

i

p2
i

2mi
+ U(q) +

p2
ζ

2Mζ
+ p2

s

2Ms
+ kBT (ζ + s) (39)

and the equations of motion as202

q̇ = p

m
− pζ
Mζ

∂U

∂q
(40)

ζ̇ = G(q) pζ
Mζ

(41)

ṡ = ps
Ms

(42)

ṗ = −∂U

∂q
(43)

ṗζ = Fζ(q)−
ps
Ms

pζ (44)

ṗs =
p2
ζ

Mζ
− kBT (45)

8

76 APPENDIX E: PUBLICATIONS



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where s, ps are the additional thermostat variables (with associated mass Ms) chained203

to ζ, pzeta.204

Upon defining the extended phase space point as x̃ = (q, ζ, s, p, pζ , ps), the equations205

of motion (40-45) can be written in matrix form as206

˙̃xα =
∑

β

BCKTNH
αβ

∂Hζs

∂x̃β
(46)

This can be seen from207

BCKTNH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 −∂U
∂q 0

0 0 0 0 G(q) 0
0 0 0 0 0 1
−1 0 0 0 0 0
∂U
∂q

T −G(q) 0 0 0 −pζ
0 0 −1 0 pζ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(47)

Under the assumption of ergodicity, Eq.s(40-45) generate the equilibrium distribution208

function209

fCKTNH
eq = δ

(
Hζs − C

)
exp[−w̃(x̃)] , (48)

where w̃(x̃) is the space space function defined by dw̃/dt = κ̃ and κ̃ =210

(∂BCKTNH
αβ /∂xα)∂Hζs/∂xβ = −(ζ̇ + ṡ). Upon defining Hζs,T = Hζs − kBT (ζ + s),211

one easily finds that κ̃ = (1/kBT )dHζs,T /dt so that averages of functions of the type212

a = a(q, p) with the weight in Eq.(48) provide canonical ensemble values.213

4.1. STP Integrators for the hybrid CKTNH Chain Thermostat214

The dynamics of the hybrid CKTNH chain thermostat can be defined in terms of the215

following Liouville operators:216

LCKTNH
1 =

(
p

m
+ F (q) pζ

Mζ

)
∂

∂q
= LCTNH

1 , (49)

LCKTNH
2 = F (q) ∂

∂p
= LCTNH

2 , (50)

LCKTNH
3 = G(q) pζ

Mζ

∂

∂ζ
= LCTNH

3 , (51)

LCKTNH
4 = ps

Ms

∂

∂s
, (52)

LCKTNH
5 = Fζ(q)

∂

∂pζ
= LCTNH

4 , (53)

LCKTNH
6 = −pζ

ps
Ms

∂

∂pζ
, (54)

LCKTNH
7 =

(
p2
ζ

Mζ
− kBT

)
∂

∂ps
. (55)

9
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The total Liouville operator is given by LCKTNH =
∑7

i=1 L
CKTNH
i . We can introduce the217

associated propagators as follows218

UCKTNH
1 (τ) = exp

[
τ

(
p

m
+ F (q) pζ

Mζ

)
∂

∂q

]

= UCTNH
1 (τ) , (56)

UCKTNH
2 (τ) = exp

[
τF (q) ∂

∂p

]
= UCTNH

2 (τ) , (57)

UCKTNH
3 (τ) = exp

[
τ

(
G(q) pζ

Mζ

∂

∂ζ
+ ps
Ms

∂

∂s

)]
, (58)

UCKTNH
4 (τ) = exp

[
τFζ(q)

∂

∂pζ

]
= UCTNH

4 (τ) , (59)

UCKTNH
5 (τ) = exp

[
−τpζ

ps
Ms

∂

∂pζ

]
, (60)

UCKTNH
6 (τ) = exp

[
τ

(
p2
ζ

Mζ
− kBT

)
∂

∂ps

]
. (61)

A possible symmetric Trotter factorization of the exact propagator can be given as219

follows:220

UCKTNH(τ) =
[nyosh∏

n=1

ms∏

m=1

( 3∏

α=1
UCKTNH

7−α

(
wn

ms

τ

4

))

× UCKTNH
3

(
wn

ms

τ

2

)( 3∏

α=1
UCKTNH

3+α

(
wn

ms

τ

4

))]

× UCKTNH
2

(τ
2

)
UCKTNH

1 (τ)UCKTNH
2

(τ
2

)

×
[nyosh∏

n=1

ms∏

m=1

( 3∏

α=1
UCKTNH

7−α

(
wn

ms

τ

4

))

× UCKTNH
3

(
wn

ms

τ

2

)( 3∏

α=1
UCKTNH

3+α

(
wn

ms

τ

4

))]
,

(62)

where we have introduced a Yoshida higher order integration scheme [30, 31] and a221

multiple time step procedure [10, 35] (where ms is the maximum number of iterations in222

such a procedure) on the chain of thermostats. If the number of iterations is nyosh = 3,223

the weights wn (n=1,2,3) take the values w1 = w3 = 1/(2 − 21/3) and w2 = 1 − 2w1;224

while if nyosh = 5, the weights take the values w1 = w2 = w4 = w5 = 1/(4 − 41/3) and225

w3 = 1− 4w1.226

From the propagator in Eq.(62), one can set out to devise a STP integrator by noting227

that the action of UCKTNH
2 (τ) is identical to that of UCTNH

2 (τ) in Eq.(31) and the action228

of UCKTNH
4 (τ) is identical to that of UCTNH

4 (τ) in Eq.(33). The action of the other229

10
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propagators is easily found to be230

ζ → ζ + τG(q)pζ/Mζ

s → s+ τps/Ms

}
: UCKTNH

3 (τ) , (63)

pζ → exp (−τps/Ms) } : UCKTNH
5 (τ) , (64)

ps → ps + τ
(
p2
ζ/Mζ − kBT

) }
: UCKTNH

6 (τ) . (65)

However, the action of UCKTNH
1 (τ) is identical to that of UCTNH

1 (τ) so that one does not231

know how to apply in the case of a general potential. In the case of a quadratic potential232

LCKTNK
1 goes to LCKTNH

1,h , which is identical to LCTNH
1,h in Eq.(34). One would then obtain233

an associated propagator UCKTNH
1,h (τ) whose action is identical to that of UCTNH

1,h (τ) in234

Eq.(35). In such a case, the propagator in Eq.(62) would lead to a straightforward STP235

integrator (after the substitution UCKTNH
1 (τ) → UCKTNH

1,h (τ)).236

For sufficiently smooth potentials, the local quadratic approximation of Eq.(36) would237

provide the parameters k̃ that once substituted into UCKTNH
1,h (τ) would give an approx-238

imation, ŨCKTNH
1,h (τ) = ŨCTNH

1,h (τ), where ŨCTNH
1,h (τ) is defined in Eq.(36), to the exact239

but untreatable UCKTNH
1 (τ). In such a way, one can obtain a PDHA STP integrator for240

the hybrid CKTNH chain thermostat.241

The position and velocity Verlet algorithm for integrating the dynamics of the hybrid242

CKTNH chain thermostat (without the PDHA) are given in Appendix B.243

5. Harmonic Oscillator244

The harmonic oscillator is a paradigmatic model to assess the ergodic property of a245

thermostat. In the following we consider one-dimensional phase space coordinates (q, p).246

The potential of the harmonic oscillator is a quadratic function:247

Uh(q) = 1
2kq

2 , (66)

where k is the spring constant. For the harmonic potential in Eq.(66), the quantities248

G(q) and Fζ(q) in Eq.s(28) and (29), respectively, become G(q) → Gh(q) = k and249

Fζ(q) → F h
ζ (q) = k2q2 − kBTk250

A STP integrator for the harmonic oscillator coupled to a CTNH thermostat can251

be implemented by considering the action of the propagators in Eq.s(31-33) and (35),252

together with the total time-reversible approximated propagator UCTNH(τ) in Eq.(30)253

(where one has to perform the substitution U1(τ) → U1,h(τ)). The expression for the254

conserved quantity is given by substituting Uh(q) in place of U(q) in Eq.(15).255

A STP integrator for the harmonic oscillator coupled to a hybrid CKTNH chain ther-256

mostat can be implemented considering the action of the propagator in Eq.(62) and sub-257

stituting Uh, F h
ζ (q) and Gh(q) for their correspondent general quantities where needed.258

Similarly, the expression for the conserved quantity is given by substituting Uh(q) in259

place of Uq(q) in Eq.(39).260

For the sake of comparison, it is also useful to consider the integration of the CTNH261

and hybrid CKTNH chain thermostatted harmonic oscillator by means of symplectic262

algorithms. The general framework for determining a symplectic integrator (once the263

equations of motion are given in terms of multidimensional coordinates) is provided in264
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Appendix A. The same Appendix shows the algorithm for integrating the dynamics of265

the CTNH thermostat.266

We can set m = k = kBT = 1 and study the conservation property, plot the phase267

space (q, p), and check whether p and q are distributed according to exp[−βp2/2m] and268

exp[−βkq2/2], respectively.269
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Figure 1: Figure showing the conserved quantity versus time for the position (squares) and velocity
(triangles) Verlet symplectic algorithms as well as the STP integration algorithm (circles), for the case
of an harmonic oscillator attached to a configurational thermostat. The conserved energies are all
normalized. The above results were obtained using a thermostat mass of 2.0, a spring constant of 1.0
and a time step of 1 · 10−4 for all three calculations.

From Fig. 1. we see that the behavior of the conserved quantity as time evolves270

is similar for each of the integration algorithms implemented. In addition, the three271

algorithms appear to be stable over a long time.272
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Figure 2: Figure showing the phase space radial distribution (main figure) for an harmonic oscillator
attached to a configurational thermostat, using the STP integration algorithm. The solid line is the
analytical distribution. The inset figure shows the occupied phase-space for the simulation. The above
results were obtained using a thermostat mass of 2.0, a spring constant of 1.0 and a time step of 1 ·10−4.

From Figure 2 one can see that the configurational thermostat is unable to preserve the273

ergodicity property of the harmonic oscillator system. In order to overcome this problem274
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we consider a hybrid configurational-kinetic thermostat. This thermostat consists of a275

Nosè-Hoover kinetic thermostat attached to a configurational thermostat, which is in276

turn attached to the system. This hybrid thermostat was implemented for the case of277

the quadratic harmonic potential, as well as the quartic, double-well potential.278
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Figure 3: Figure showing the conserved quantity versus time of an harmonic oscillator attached to a
hybrid configurational-kinetic chain thermostat, using the STP integration algorithm (circles), compared
with results using the configurational thermostat (triangles) and the Nosè-Hoover chain thermostat
(squares). The configrational thermostat mass was 2.0, while the hybrid thermostat result was obtained
using thermostat masses of Mζ = 10 and Ms = 10−1. The Nosè-Hoover chain thermostat masses were
Mζ = Ms = 1.0. A spring constant of 1.0 and a time step of 1 ·10−4 were used for all three calculations.
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Figure 4: Figure showing the phase space radial distribution (main figure) for an harmonic oscillator
attached to a hybrid configurational-kinetic chain thermostat, using the STP integration algorithm.
The solid line is the analytical distribution. The inset figure shows the occupied phase space for the
simulation. The above results were obtained using thermostat masses of Mζ = 10 and Ms = 10−1, a
spring constant of 1.0 and a time step of 1 · 10−4.
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6. Hybrid CKTNH Chain Dynamics in a Quartic Potential279

Let us consider a one-dimensional coordinate q in a quartic potential280

Udw(q) = a

4 q
4 − b

2q
2 . (67)

A proper choice of the numerical value of the parameters a and b (which in this work281

were both taken to be 1) gives to this potential the profile of a symmetric double well.282

In order to provide an example in favor of the effectiveness of the PDHA STP in-283

tegrator, we consider the hybrid CKTNH chain thermostatted dynamics of a particle284

moving in the potential of Eq.(67). For such a system the thermostat quantities become285

G(q) → Gdw(q) = 3aq2 − b and Fζ → F dw
ζ =

(
aq3 − bq

)2 − kBT
(
3aq2 − b

)
. The equa-286

tions of motion and the conserved quantity are obtained by substituting Gdw(q), F dw
ζ287

and Udw(q) into Eq.s(39) and (40-45).288

A PDHA STP integrator of the hybrid CKTNH chain thermostatted dynamics is289

obtained upon approximating Udw(q) with a quadratic form Ũh = (1/2)k̃q2 and using290

this latter expression in the STP propagator in Eq.(62). In order to assess the stability291

of the PDHA STP integrator we have used both position and velocity Verlet symplectic292

algorithms.293

0.999996

0.999998

1.000000

1.000002

1.000004

1.000006

1.000008

1.000010

 0  20000  40000  60000  80000  100000

H
C

on
s

Time

-4

-2

0

2

4

-2 -1  0  1  2

p

q

Figure 5: Figure showing the conserved quantity versus time (main figure) for the position (squares)
and velocity (triangles) Verlet symplectic algorithms as well as the STP integration algorithm (circles),
for the case of a quartic potential function attached to a hybrid configurational-kinetic thermostat. The
conserved energies are all normalized. The inset figure shows the occupied phase space for the simulation
in the case of the STP algorithm. The above results were obtained using thermostat masses of Mζ = 10
and Ms = 10−1, a spring constant of 1.0 and a time step of 1 · 10−4 for all three calculations.

The results for the STP scheme, as well as the symplectic algorithms, were obtained294

using thermostat masses of Mζ = 10 and Ms = 10−1 and a time-step of 0.0001. Yoshida295

weights and a multiple time-step equal to 5 were also used. The simulations were run296

for a total of 109 integration steps.297

From Figures 4 and 5 we can see that when the hybrid configurational-kinetic thermo-298

stat is used, we are able to achieve ergodicity for both the harmonic potential and the299

double-well potential.300
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Figure 6: Figure showing the conserved quantity versus time for the STP integration algorithm (cir-
cles), in the case of a quartic potential function attached to a hybrid configurational-kinetic thermostat,
compared with the result obtained using a Nosè-Hoover chain thermostat. The conserved energies are
all normalized. The above results were obtained using thermostat masses of Mζ = 10 and Ms = 10−1

for the hybrid configurational thermostat, while the NHC thermostats mass was set to Mζ = 1.0 and
Ms = 1.0. A spring constant of 1.0 and a time step of 1 · 10−4 were used for both calculations.

7. CTNH Dynamics in a WCA Potential301

Let us consider a system of N particles in three-dimensional space. The particles302

and momenta phase space coordinates will be denoted by qi and pi, respectively, where303

i = 1, ..., 3N . Let us also assume that the particles interact through a WCA potential304

(which is a Lennard-Jones potential cut and shifted at its minimum):305

UWCA(rij) =

⎧
⎨
⎩

4ϵ
[(

σ
rij

)12
−
(

σ
rij

)6
]

+ ϵ if rij ≤ rmin ≡ σ 6
√

2 ,

0 otherwise ,
(68)

where rij = √
qij · qij and qij = qi − qj . Such a potential is usually called Weeks-306

Chandler-Andersen (WCA) potential [32] since it was used by these researchers to develop307

the perturbative description commonly referred to as the “van der Waals picture of308

simple fluids” [33, 34]. Since we do not expect stiff modes, it is reasonable to assume309

the thermostatting of such a system by means of the CTNH thermostat is ergodic. For310

clarity, we write the CTNH equations of motion for the WCA system. These equations311
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are:312

q̇i = pi
mi

− pζ
Mζ

∂UWCA

∂qi
(69)

ṗi = −∂UWCA

∂qi
= FWCA

i (70)

ζ̇ =
3N∑

i=1

(
∂2UWCA

∂q2i

)
pζ
Mζ

= GWCA(q) pζ
Mζ

(71)

ṗζ = =
[ 3N∑

i=1
(FWCA

i )2 − kBTG
WCA(q)

]
= FWCA

ζ

(72)

The associated Liouville operators are313

LCTNH
1,WCA =

(
p

m
+ FWCA(q) pζ

Mζ

)
∂

∂q
(73)

LCTNH
2,WCA = FWCA(q) ∂

∂p
(74)

LCTNH
3,WCA = GWCA(q) pζ

Mζ

∂

∂ζ
(75)

LCTNH
4,WCA = FWCA

ζ (q) ∂

∂pζ
(76)

The propagators associated to the Liouville operators in Eq.s(73-76) are defined as314

UCTNH
α,WCA(τ) = exp[τLCTNH

α,WCA], for α = 1, ..., 4. In order to devise an explicit algorithm,315

the total exact propagator can be factorized as in Sec. 3.1. For the sake of clarity, we316

rewrite the chosen factorization below:317

UCTNH
WCA (τ) = UCTNH

4,WCA

(τ
4

)
UCTNH

3,WCA

(τ
2

)
UCTNH

4,WCA

(τ
4

)

× UCTNH
2,WCA

(τ
2

)
UCTNH

1,WCA (τ)UCTNH
2,WCA

(τ
2

)

× UCTNH
4,WCA

(τ
4

)
UCTNH

3,WCA

(τ
2

)
UCTNH

4,WCA

(τ
4

)
. (77)

The action of UCTNH
α,WCA(τ) for α = 2, 3, 4 is given in Eq.s(31-33). The propagator318

UCTNH
1,WCA (τ) can be approximated locally with a quadratic potential in order to ob-319

tain a PDHA-STP scheme of integration. This leads to a modified Liouville operator320

LCTNH
1,WCA → L̃CTNH

1,h and modified propagator UCTNH
1,WCA(τ) → ŨCTNH

1,h (τ). The action of321

ŨCTNH
1,h (τ) is known and given by Eq.(38). Upon substituting ŨCTNH

1,h (τ) in place of322

UCTNH
1,WCA(τ) in the propagator in Eq.(77), one obtains a PDHA-STP integrator for the323

WCA potential.324

Simulations were run for a system comprising 1000 particles using both the CTNH and325

NH thermostats. Each calculation was performed using a time step of 2.5 · 10−4 for 106
326

integration steps. The thermostat temperature Text was set to 0.722, and the density of327

the system was 0.8442.328
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Figure 7: Figure showing the conserved quantity versus time for the Lennard-Jones potential using
the configurational thermostat (circles), and the Nosè-Hoover thermostat (triangles). The simulation
included 1000 particles. A thermostat mass of Mζ = 1020 was used for the CTNH thermostat, while
the NH thermostat masses was unity. The time-step size was 2.5 · 10−4, the external temperature
Text = 0.722 and system density 0.8442 for both calculations. The average variance in the conserved
quantity, calculated using the configurational thermostat, was determined to be 1.060 · 10−7, while the
variation in the case of the Nosè-Hoover thermostat was found to be 1.523 · 10−7.

Figure 7 displays the comparison of the conserved quantity for each of the two cal-329

culations. We see that both the NH and CTNH methods conserve the quantity with330

excellent precision, with the CTNH performing slightly better than the NH, thus demon-331

strating that the quadratic approximation used when propagating the particle positions332

is sufficient for producing good dynamics.333

The run times for each calculation were also compared, and it was found that they334

were close together, with the NH calculation approximately 10% faster than that of the335

CTNH.336

8. Conclusion337

We have recasted the configurational temperature Nosé-Hoover thermostat using the338

phase space quasi-Hamiltonian formalism. Within this latter mathematical language, we339

have introduced a hybrid configurational-kinetic temperature Nosé-Hoover chain thermo-340

stat that can achieve a uniform sampling of phase space for stiff harmonic systems. This341

has been illustrated by simulating the dynamics of one-dimensional harmonic and quar-342

tic oscillators. A time-reversible integration algorithm, based on the symmetric Trotter343

decomposition of the propagator, has also been presented and tested against the sym-344

plectic velocity and position Verlet algorithms. In order to obtain an explicit form for345

the symmetric Trotter propagator algorithm, in the case of non-harmonic and non-linear346

interaction potentials, a position-dependent harmonically approximated propagator has347

bee devised. Such a propagator approximates the dynamics of the configurational de-348

grees of freedom as if they were locally moving in a harmonic potential. The resulting349

approximated locally harmonic dynamics was tested with good results in the case of a350

one-dimensional quartic oscillator and a three-dimensional N-particle system interacting351

through a soft Weeks-Chandler-Andersen potential.352
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Appendix A. Symplectic Algorithms353

Consider equations of motion written in the form354

q̇ = Hp(q, p) , (A.1)
ṗ = −Hq(q, p) , (A.2)

where (q, p) can be interpreted as multidimensional coordinates and Hq = ∂H/∂q, Hp =355

∂H/∂p, with H denoting the Hamiltonian function of the system under study. The356

symplectic formulation of the velocity Verlet algorithm is given by357

p(t+ τ/2) = p(t)− τ

2Hq(q(t), p(t + τ/2)) (A.3)

q(t+ τ) = q(t) + τ

2 [Hp(q(t), p(t+ τ/2))

+ Hp(q(t+ τ), p(t+ τ/2))] (A.4)

p(t+ τ) = p(t+ τ/2)− τ

2Hq(q(t+ τ), p(t+ τ/2))

(A.5)

while the symplectic formulation of the position Verlet algorithm is given by358

q(t+ τ/2) = q(t) + τ

2Hp(q(t+ τ/2), p(t)) (A.6)

p(t+ τ) = p(t)− τ

2 [Hq(q(t+ τ/2), p(t))

+ Hq(q(t+ τ/2), p(t+ τ))] (A.7)

q(t+ τ) = q(t+ τ/2) + τ

2Hp(q(t+ τ/2), p(t+ τ))

(A.8)

For the phase space CTNH thermostat, the symplectic velocity Verlet algorithm reads359

p(t+ τ/2) = p(t) + τ

2F (q(t)) (A.9)

pζ(t+ τ/2) = pζ(t) + τ

2Fζ(q(t)) (A.10)

q(t+ τ) = q(t) + τ
p(t+ τ/2)

m
+ τ

2
pζ(t+ τ/2)

Mζ

× [F (q(t)) + F (q(t+ τ))] (A.11)

ζ(t+ τ) = ζ(t) + τ

2
pζ(t+ τ/2)

Mζ

× [G(q(t)) +G(q(t + τ))] (A.12)
p(t+ τ) = p(t+ τ/2) + τ

2F (q(t+ τ)) (A.13)

pζ(t+ τ) = pζ(t+ τ/2) + τ

2Fζ(q(t+ τ)) (A.14)

Because of the dependencies in Eqs (A.11-A.12) the algorithm is implicit and can be360

solved by iterating over (A.11-A.12).361
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The symplectic position Verlet algorithm for the CTNH thermostat is given by362

q(t+ τ/2) = q(t) + τ

2
p(t)
m

+ τ

2
pζ(t)
Mζ

F (q(t+ τ/2))

(A.15)

ζ(t+ τ/2) = ζ(t) + τ

2
pζ(t)
Mζ

G(q(t+ τ/2)) (A.16)

p(t+ τ) = p(t) + τF (q(t + τ/2)) (A.17)
pζ(t+ τ) = pζ(t) + τFζ (q(t+ τ/2)) (A.18)

q(t+ τ) = q(t+ τ/2) + τ

2
p(t+ τ)

m

+ τ

2
pζ(t+ τ)

Mζ
F (q(t+ τ/2)) (A.19)

ζ(t+ τ) = ζ(t + τ/2)

+ τ

2
pζ(t+ τ)

Mζ

(∑

i

∂2U

∂q2i

)

q=q(t+τ/2)

(A.20)

Equations (A.15-A.18) must be iterated.363

19

87



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Appendix B. Symplectic integration algorithm of the hybrid CKTNH chain364

thermostat365

Writing explicitly the symplectic velocity Verlet algorithm for the hybrid CKTNH366

chain thermostat, one obtains367

p(t+ τ/2) = p(t) + τ

2F (q(t)) (B.1)

pζ(t+ τ/2) = pζ(t)−
τ

2
ps(t+ τ/2)

Ms
pζ(t+ τ/2)

+ τ

2Fζ(q(t)) (B.2)

ps(t+ τ/2) = ps(t) + τ

2
p2
ζ(t+ τ/2)

Mζ
− τ

2kBT (B.3)

q(t+ τ) = q(t) + τ
p(t+ τ/2)

m
+ τ

2
pζ(t+ τ/2)

Mζ

× [F (q(t)) + F (q(t+ τ))] (B.4)

ζ(t+ τ) = ζ(t) + τ

2
pζ(t+ τ/2)

Mζ

× [G(q(t)) +G(q(t + τ))] (B.5)

s(t+ τ) = s(t) + τ
ps(t+ τ/2)

Ms
(B.6)

p(t+ τ) = p(t+ τ/2) + τ

2F (q(t+ τ)) (B.7)

pζ(t+ τ) = pζ(t+ τ/2)− τ

2
ps(t+ τ/2)

Ms
pζ(t+ τ/2)

+ τ

2Fζ(q(t+ τ)) (B.8)

ps(t+ τ) = ps(t+ τ/2) + τ

2
p2
ζ(t+ τ/2)

Mζ
− τ

2kBT

(B.9)

Equations (B.2-B.4) must be iterated.368

The symplectic position Verlet algorithm for the hybrid CKTNH chain thermostat369
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reads370

q(t+ τ/2) = q(t) + τ

2
p(t)
m

+ τ

2
pζ(t)
Mζ

F (q(t+ τ/2))

(B.10)

ζ(t+ τ/2) = ζ(t) + τ

2
pζ(t)
Mζ

G(q(t + τ/2)) (B.11)

s(t+ τ/2) = s(t) + τ

2
ps(t)
Ms

(B.12)

p(t+ τ) = p(t) + τF (q(t+ τ/2)) (B.13)
pζ(t+ τ) = pζ(t) + τFζ(q(t+ τ/2))

− τ

2Ms
[ps(t)pζ(t) + ps(t+ τ)pζ(t+ τ)]

(B.14)
ps(t+ τ) = ps(t) + τ

2Mζ

[
p2
ζ(t) + p2

ζ(t+ τ)
]
− τkBT

(B.15)

q(t+ τ) = q(t+ τ/2) + τ

2
p(t+ τ)

m

+ τ

2
pζ(t+ τ)

Mζ
F (q(t+ τ/2)) (B.16)

ζ(t+ τ) = ζ(t+ τ/2) + τ

2
pζ(t+ τ)

Mζ
G(q(t+ τ/2))

(B.17)

s(t+ τ) = s(t+ τ/2) + τ

2
ps(t+ τ)

Ms
(B.18)

Equations (B.10) and (B.14-B.15) must be iterated.371
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[2] S. Nosè, J. Chem. Phys. 81 511 (1984).375

[3] W. G. Hoover, Phys. Rev. A 31 1695 (1985).376

[4] T. Schneider and E. Stoll, Phys. Rev. B 17 1302 (1978).377

[5] G. S. Grest and K. Kremer. Phys. Rev. A 33 3628 (1986).378

[6] R. Hartkamp, S. Bernardi, and B. D. Todd, J. Chem. Phys. 136 064105 (2012).379

[7] A. Sergi, M. Ferrario and D. Costa, Molec. Phys. 97 825 (1999).380

[8] A. Sergi and M. Ferrario, Phys. Rev. E 64 056125 (2001).381

[9] M. Reguzzoni, M. Ferrario, S. Zapperi, and M. C. Righi, Proc. Natl. Acad. Sci. USA 107 1311382

(2010).383

[10] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Molec. Phys. 87 1117 (1996).384

[11] H. H. Rugh, Phys. Rev. Lett. 78, 772 (1997).385

[12] O. G. Jepps, G. Ayton, and D. J. Evans, Phys. Rev. E 62, 4757 (2000).386

[13] B. D. Butler, G. Ayton, O. G. Jepps and D. J. Evans, J. Chem. Phys. 109, 6519 (1998).387

[14] G. Rickayzen and J. G. Powles, J. Chem. Phys. 114, 4333 (2001)388

[15] J. J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).389

21

89



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[16] D. J. Evans and G. P. Morriss, Phys. Rev. Lett. 56, 2172 (1986).390

[17] D. J. Evans, S. T. Cui, H. J. M. Hamley, and G. C. Straty, Phys. Rev. A 46, 6731 (1992).391

[18] K. P. Travis, P. J. Daivis, and D. J. Evans, J. Chem. Phys. 103, 10638 (1995).392

[19] W. Loose and G. Ciccotti, Phys. Rev. A 45, 3859 (1992).393

[20] C. Braga and K. P. Travis, J. Chem. Phys. 124, 104102 (2006).394

[21] K. P. Travis and C. Braga, J. Chem. Phys. 128, 014111 (2008).395

[22] C. Braga and K. P. Travis, J. Chem. Phys. 123, 134101 (2005).396

[23] K. P. Travis and C. Braga, Molec. Phys. 104, 3735 (2006).397

[24] A. Sergi, Phys. Rev. E 67 021101 (2003).398

[25] A. Sergi and P. V. Giaquinta, J. Stat. Mech.: Th. and Exper. 02 P02013 (2007).399

[26] D. Costa, A. Sergi, and M. Ferrario, J. Chem. Phys. 138 184501 (2013).400

[27] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).401

[28] G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97 2635 (1992).402

[29] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Al-403

gorithms for Ordinary Differential Equations Springer Series in Comput. Mathematics, Vol. 31404

(Springer-Verlag, Berlin, 2002).405

[30] H. Yoshida, Phys. Lett. A 150 262 (1990).406

[31] M. Suzuki, J. Math. Phys. 32 400 (1991).407

[32] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54 5237 (1971).408

[33] H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A 4 1597 (1971).409

[34] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic Press, Amsterdam,410

2006).411

[35] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992).412

22

90 APPENDIX E: PUBLICATIONS



Bibliography

1. M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Clarendon Press,

1989.

2. D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to

Applications. Elsevier Science, 2001.

3. H. C. Andersen. Molecular dynamics simulations at constant pressure and/or tem-

perature. J. Chem. Phys., 72, 1980.

4. A. Sergi and P. V. Giaquinta. On Computational Strategies within Molecular

Dynamics Simulation. Phys. Essays, 20, 2007.

5. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd. Nonequi-

librium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev.

A, 28, 1983.

6. T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional one-

component model for distortive phase transitions. Phys. Rev. B, 17, 1978.

7. G. S. Grest and K. Kremer. Molecular dynamics simulation for polymers in the

presence of a heat bath. Phys. Rev. A, 33, 1986.
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