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ABSTRACT 

Two classes of fluorinated derivatives were synthesized in this work to test the effects of the 

fluorinated drugs in antibacterial, antioxidant and anti-platelet activity.  These two classes 

were the 2-styrylchromones and the 2-thioimidazoles.  The 2-styrylchromones were tested for 

their antibacterial activity and the 3-hydroxypentadien-1one intermediates were tested for 

their antioxidant activity.  The 2-thioimidazoles were tested for the ability to inhibit platelet 

aggregation in vitro. 

 

A total of ten 2-styrylchromones together with their intermediates were synthesized of which 

six were new(A5a-A5f).  The two intermediates to each of the six compounds were also new 

and together with the 2-styrylchromones resulted in thirty compounds being synthesised and 

characterised.  The synthesis was based on the Baker-Venkataraman rearrangement using 

substituted cinnamic acids and hydroxyacetophenones.All the 2-styrylchromones were 

screened for their antibacterial activity using Gram-positive bacteria (Staphylococcus 

aureus,scuii and xylosus and Bacillussubtilis) and Gram-negative bacteria (Escherichia coli, 

Pseudomonas aeruginosaand Klebsiella pneumonia).  The compounds were most effective 

against B. subtilis followed by S. aureus and a single strain of E. coli (ATCC 25922).  

Difluorination on the phenyl ring was shown to enhance antibacterial activity and fluorine 

substitution at the 6-position was shown to be far superior to substitution at the 7-position.  In 

comparison to tetracycline, the activity indices of the fluorinated styrylchromones ranged 

from 0.50 to 0.75 against B. subtilis. 

 

The fluoro and methoxy analogues of (2Z, 4E)-3-hydroxy-1-(2-hydroxyphenyl)-5-(phenyl) 

penta-2, 4-dien-1-one, the intermediates to the 2-styrylchromones were tested for their ability 

to act as antioxidants since they contained a 3-hydroxy group in the backbone of their 
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structure.   They were screened by the 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) radical 

scavenging assay and Ferric Reducing Power assay (FRAP).All the methoxylated analogues 

showedbetter activity thanthe fluorinated analogues and comparable to that of ascorbic acid. 

 

Seven fluorinated derivatives of diethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylate (B6a-B6g) as well as a nitro and chloro derivative (B6h-B6i) also known as 2-

thiomidazole derivativeswere prepared in five steps from glycine, ethyl formate, diethyl 

oxalate, potassium thiocyanate and substituted benzyl bromides.  The synthesized compounds 

exhibited concentration dependent anti-platelet aggregation activity on both the thrombin and 

ADP induced platelet aggregation. The 4-nitro and 4-fluoro compounds exhibited the highest 

activity from the compounds tested, with estimatedIC50 values of 1.05 and 0.99 mM for the 

thrombin-induced and ADP-induced platelet aggregation respectively.  Three of the 

compounds, the 3,4-difluoro(B6c), 4-nitro(B6h) and 3-chloro(B6i) derivatives have 

reasonable activity in both of the assays and could have potential as broad spectrum 

antiplatelet inhibitors.  With the exception of B6c, the fluoro derivatives were not as active as 

the nitro and chloro compounds. 

 

All the reactions in this work were monitored by 1H and 13C NMR at each step and all 

compounds were characterized using 1D and 2D NMR as well as MS, IR and UV data.  All 

the synthesised compounds were fully characterised unambiguously and the respective 

carbon and proton resonances were assigned with the aid of HSQC, HMBC and NOESY 

data.  In addition, crystal structures of two 2-styrylchromones and three of its cinnamate ester 

intermediates as well as the 2-thioimidazole provide a full structural analysis of the 

compounds synthesised. 
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STRUCTURES OF COMPOUNDS 
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ABBREVIATIONS 
13C NMR  (C-13) nuclear magnetic resonance spectroscopy 
1H NMR  proton (H-1) nuclear magnetic resonance spectroscopy 
19F NMR         fluorine-19 (F-19) nuclear magnetic resonance spectroscopy 

Ac  acetate 

EtOH  ethanol 

MeOH  methanol 

aq  aqueous 

br  broad  

c  concentration 

cc  column chromatography 

CD3OD deuterated methanol 

CDCl3  deuterated chloroform 

DMSO-d6 deuterated dimethyl sulfoxide 

D2O  deuterated water 

COSY   correlated spectroscopy 

d  doublet 

dd  double of doublets 

DEPT   distortionless enhancement by polarization transfer 

DNA  deoxyribonucleic acid 

DNP  dictionary of natural products 

EIMS   electron impact mass spectroscopy 

HMBC  heteronuclear multiple bond coherence 

HPLC  high pressure liquid chromatography 

HREIMS high resolution electron impact mass spectroscopy 

HSQC   heteronuclear single quantum coherence 

Hz  hertz 

IR  infrared 

m  multiplet 

Me  methyl 

Mp  melting point 

MS  mass spectroscopy 
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NOESY nuclear overhauser effect spectroscopy 

RSA   radical scavenging activity 

s  singlet 

t  triplet 

td             triplet of doublets 

TCA  trichloroacetic acid 

TGI  total growth inhibition 

TLC  thin layer chromatography 

UV  ultraviolet 

MIC  minimum inhibitory concentration 

SC                   styrylchromone 
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Chapter 1. Introduction 

1.1. An introduction to Fluorine pharmaceuticals 

Fluoride is relatively abundant (0.065%) in the earth’s crust and the most abundant of all the 

halogens. It was first isolated in 1886 by the French chemist Henry Moissan, which earned 

him the Nobel Prize in 1906. The importance of fluorinated organic molecules has grown 

over the last 50 years, particularly in the pharmaceutical and agrochemical 

industries(Sandford et al., 2000; Key et al., 1997), highlighting the active nature of research 

in this particular area.  Fluorine has unique properties since it is a very small atom with a high 

electronegativity and low polarisability (Sasaki et al., 2004; 2010).  The presence of one (or 

more) fluorine atom(s) in place of hydrogen in anorganic compound confers upon 

themproperties and reactivity which are significantly different from those of the 

hydrogenated compound because the length of the C-F bond is almost the same as the length 

of the C-H bond (1.39 and 1.09 Årespectively). 

 

The fluorinated analogues have three lone pairs around the fluorine substituent and combined 

with its high electronegativity, makes fluorinated analogues more reactive than the non-

fluorinated compounds.  Biologically important compounds in which the hydrogen or oxygen 

in C–H or C–O bonds have been replaced with fluorine haveresulted in molecules with 

special advantages. For example, fluorination increases the activity and selectivity of 

cortisone and fluorination in pyrimidines like 5-fluorouracil is effective in the treatment of 

cancer (Kirk et al., 2006). 

 

Prior to the synthesis of 5-fluorouracilin1957, which was developed into an anti-tumour drug 

Thalidomide, there were no drugs containing fluorineon the market.  Since then, the situation 

changed dramatically with over 150 fluorinated drugs beingpresent today(Hangmann et 
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al.,2008),representing approximately 20% of all pharmaceuticals(Kirk et al., 2006; Isanbor et 

al., 2006; Muller et al., 2007).  Apart from the pharmaceutical market, fluorine compounds 

have also found application in agrochemicals, where these compounds have an even higher 

proportionthan the pharmaceuticals (Muller et al., 2007).Presently,pharmaceutical research 

involving fluorinated molecules is routine(Park et al., 2001) and some fluorinated drugs are 

among the most popular, for example, the anti-depressant fluoxetine (Prozac), the anti-

cholesterol atorvastatin (Lipitor) or the anti-bacterial ciprofloxacin (Ciprobay) (Figure1-1). 
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Figure1-1Examples of some popular fluorine drugs 
 

1.1.1 Nomenclature 

Organic fluorine compoundsare named according to the rules of theInternational Union for 

Pure and Applied Chemistry (IUPAC).However, for highly fluorinated molecules with 

several carbon atoms, this nomenclature can be confusing.  The term “perfluoro” may be used 

when all hydrogen atoms bonded to the carbon skeleton in a particular substituent have been 

replaced by fluorine. This does not apply to functional groups with hydrogen (e.g., CHO or 
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COOH). Fluorine on aromatic or aliphatic moieties, like other halides are termed fluoro, for 

example 4-fluoronitrobenzene contains a fluorine at C-4 and 2, 2-difluoropentane contains 

two fluorine atoms at C-2 of the pentane chain.  The methyl and methoxy functional groups 

where fluorine has replaced all of the hydrogens is termed trifluoromethyl (-CF3) and 

trifluoromethoxy (-OCF3).  Likewise, an acetate group where fluorine has replaced hydrogen 

is termed trifluoroacetate (CF3COO-). 

 

1.1.2 Electronic effect of fluorine 

The C-F bond is the strongest single bond in organic chemistry, in comparison to C-C, C-H, 

C-O and C-Cl bonds(Table 1-1) (Park et al., 2001;O' Hagan et al., 2008).This can be 

explained by the high electronegativity of the fluorine atom which strongly attracts the 

covalent electron density, rendering the C-F bond highly polarised.  The electron density is 

displaced towards the fluorine. Thus, the high strength of the bond is due to an electrostatic 

attraction between Cδ+ and Fδ- rather than a normal covalent bond with electron sharing (Park 

et al., 2001). 

 
Table 1-1Dissociation energies of various C-X bonds (O' Hagan et al., 2008) 

Bond  Dissociation 
energy  
(kcalmol-1) 

C-F  105.4 

C-O  84.0 

C-C 83.1 

C-Cl 78.5 

C-H 98.8 
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1.1.3 Steric influence of fluorine 

The fluorine atom is smaller than oxygen, nitrogen and chlorine with a Van der Waals radius 

of 1.47 Å (O = 1.52; N = 1.55 and Cl = 1.75 Å) (Bondi et al., 1964) and has been found to be 

a good substituent to replace hydrogen (1.20 Å) in organic molecules (O' Hagan et al., 

2008).The substitution of fluorine for hydrogen does not result in steric hindrance at all 

(Wodzinska et al., 2008) and in crystal structures, hydrogen and fluorine are often 

interchangeable. Thus, despite the difference in size, fluorine is a good hydrogen mimic and 

has been widely used in this regard in medicinal chemistry (O' Hagan et al., 1997). Replacing 

hydrogen with fluorine allows modification of the electronic environment without altering the 

steric environment of the molecule.  There is however some evidence that replacing a 

hydrogen atom with fluorine can induce a change in the geometry of the molecule (Liu et al., 

2008). 

 

An example of the effect that fluorine can have on adjacent functional groups is illustrated by 

the pKa of amines and carboxylic acids. Ethylamine has a pKa of 10.58 but 1-

fluoroethylamine has a pKa of 9.19, 1,1-difluoroethylamine a pKa of 7.45 and 1,1,1-

trifluoroethylamine has a pKa of 5.40.  When hydrogen is replaced with fluorine the molecule 

becomes more acidic.  This is due to its inductive withdrawal effects which weaken the N-H 

bond. The same effect is seen in carboxylic acids (CH3COOH has a pKa of 4.76; 

CH2FCOOH 2.60; CHF2COOH 1.40 and CF3COOH 0.51). 

 

The CF3 group though is not a good CH3 mimic. CF3 is far bigger than CH3 and experimental 

evidence indicates that it is actually closer to an isopropyl group and sometimes acts more 

like tert-butyl in terms of steric impact (Riggi et al., 1995). 
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1.1.4 Hydrogen bonding to fluorine 

Fluorine is highly electronegative and the C-F bond highly polarised with three lone pairs 

being present around the fluoro substituent.  This makes fluorine an ideal hydrogen bond 

acceptor.  However H····F contacts are rare as revealed by structures deposited in the 

Cambridge Structural Database (Dunitz et al., 1997) and fluorine forms hydrogen bonds only 

in the absence of a better acceptor (Abraham et al., 1989).  

 

1.1.5 The chemical properties of fluorinated compounds 

The influence of fluorine is greatest in highly fluorinated and perfluorinated compounds and 

these compounds have a high thermal stability and chemical resistance and are 

physiologically inert (Sandford et al., 2000).  This makes them suitable inmany applications 

for which hydrocarbonsare not. Properties that are exploited commercially include high 

thermal and chemical stability, low surface tension, and good dielectric properties.  This can 

be seen in fluoropolymers, perfluorinated oils and inert fluids (Boday et al., 2012).  These 

differences from hydrocarbon based organic moleculesis due to the very small inter-and intra-

molecular forces for perfluoro-carbon molecules. However, the partially fluorinated 

molecules arequite polar and have appreciable molecular interactions owing to strong 

electrostatic bond dipole interactions. Organic molecules which are fluoro substituted are 

affected by both electron withdrawal by induction and electron donation by resonance since 

fluorine can do both. 
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1.1.6 Fluorine and lipophilicity 

To crosslipid membranes, a drug needs to be sufficiently lipophilic and therefore this 

property is important in medicinal chemistry. However, if a drug is too lipophilic, this would 

reduce its water solubility and its bioavailability and therefore the right proportion of 

lipophilicity is needed in order for a drug to be successful. Selective fluorinationis a good 

way to introduce lipophilicity into a molecule and the introduction of one or more fluorine 

atoms can increase the lipophilicity in an incremental manner.An Increase in lipophilicity 

results in a concurrent increase in hydrophobicity. Aromatic fluorination is known to always 

increase the liphophilicity of molecules (Filler et al., 2009; Boiko et al., 2010). 

 

1.1.7 Effects of fluorine on Biological activity 

In the area of medicinal chemistry, incorporation of fluorine into organic compounds have 

had an exceptional impact.  Fluorinated compounds have been used as antivirals (Filler et al., 

2009), antibacterials (Hardy et al., 1987), in the treatment of HIV (Marquez et al., 1990), 

malaria (Simpson et al., 2000), obesity (Vermes et al., 2000), mental illness (Park et al., 

1994), cancer (Klijn et al., 2001; Feldman et al., 2001), Alzheimer's disease (Zhang et al., 

2005) and as herbicides and insecticides(Key et al., 1997). The incorporation of fluorine into 

a biologically active compound alters the electronic, lipophilic and steric parameters and can 

critically increase the intrinsic activity, the chemical and metabolic stability, and 

bioavailability (Dinoiu et al., 2006).  

 

Fluorinated compounds find pharmaceutical applications as steroids.For example 9α-fluoro-

11-β-hydroxycorticoids exhibited anti-inflammatory activity (Fried et al., 1954); broad 

spectrum antibiotics such as ciprofloxacin and temafloxacin(Filler et al., 2009); antifungal 

agents such asfluconazole and voricon-azole (Kuznetsovaet al., 2008; Sabo et al., 2000), 
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effective in the treatment of dermal and vaginal infections; anticancer agents such as 

tamoxifen, an estrogenantagonist used in the treatment of hormone dependent breast cancer 

(Klijn et al., 2001)., fludarbine, a purine antimetabolite, effective in the treatment of B-

Cellchronic lymphocytic leukemia (Isanbor et al., 2006; Rummel et al., 1999) and flutamide, 

an anti-androgen used in the treatment of prostate cancer (Feldman et al., 2001); antimalarials 

such as mefloquin(Simpson et al., 2000); haloperidol, an antipsychotic drug used in the 

treatment of schizophrenia and acute psychotic states (Park et al., 1994); fluoxetine and 

citalopram, antidepressant drugs (Hiemke et al., 2000); and cardioprotective effects showed 

by the pinacidil-derivative flocalin(Figure 1-2) (Voitychuk et al., 2012). 
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Figure 1-2Examples of fluorinated drugs 

 

Two other fields where fluorine molecules have been widely used are in aneasthesia and 

Positron Emission Tomography (PET).  Inhalation anesthetics are almost entirely dependent 

on fluorine chemistry.  Fluoroxene (CF3CF2OCH=CH2), isoflurane (CF3CClOCHF2), 

sevoflurane ((CF3)2CHOCH2F) and desfluorane (CF3CHFOCHF2) have almost 

revolutionized the field of anesthesiology because of their low blood-gas partition 

coefficients and their minimal levels of metabolism, which minimize side effects and 

shortens the recovery time of patients (Key et al., 1997). 
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Figure 1-2 continued...Examples of fluorinated drugs 

 

Positron Emission Tomography (PET) is non invasive nuclear medical imaging technique 

that makes use of 18F isotope tracers. 18F is used since it has a longer half-life compared to the 

other commonly used radionuclides. PET scans show biological processes, providing 

information on metabolic processes (Persur, 2008).  The fluorinated compound 2-deoxy-2-

[18F] fluoro-D-glucose or [18F] FDG is the most frequently used radiopharmaceutical. 

1.2. Introduction to 2-styrylchromones 

Chromones are one of the most abundant classes of naturally occurring compounds found 

especially in plants. They are oxygen-containing heterocyclic compounds with a 

benzoannelated γ-pyrone ring, the parent compound being chromone (Figure 1-3) (Douglas et 

al., 2003). The 2-styrylchromones (Figure 1-3) are a new class of flavonoids, structurally 
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related to the flavones (2-phenylchromones) and characterized by the attachment of a styryl 

group to the C2-position instead of a phenyl group as in the flavonoids. 

 

Chromone derivatives are relatively non-toxic and some are beneficial in our diets, for 

example the flavonoids, where polyhydroxy flavonoids are known antioxidants contained in a 

wide variety of fruit and vegetables and in red wine.These antioxidants are known to fight off 

damaging free radicals which cause harm to normal cells.  Chromone derivatives also find 

application as drugs on the market such asnedocromil for the treatment of asthma (Barnes et 

al., 2006; Beecher et al., 2003). 

O

O

O

O

O

O  
 

1          2            3 

Chromone                          Flavone                       2-styrylchromones 

 

Figure 1-3 The basic structure of a chromone, flavone and 2-styrylchromone 
 

 

Unlike the flavonoids, 2-styrylchromones are not that common in nature, with 

hormothamnione(4)and 6-desmethoxyhormothamnione(5) (Figure 1-4) being the first and to 

the best of our knowledge the only naturally occurring styrylchromones which were isolated 

from the marine blue green algae, cryptophyte, Chrysophaeumtaylori and which 

demonstrated cytotoxic activity against leukemia cells (Gerwick et al., 1989). 
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Figure 1-4Natural 2-styrylchromones 

 

 

The biological activities of 2-styrylchromones have recently been reviewed by Gomes et al. 

(2010).  The 2-styrylchromones were shown to be A3 adenosine receptor antagonists (Karton 

et al., 1996), have hepatoprotective activity (Fernandes et al., 2003), be potent antioxidants 

(Filipe et al., 2004), have anti allergic properties (Doria, et al., 1979), antiviral activity 

(Desideri, et al., 2000),  anticancer activity (Marinho et al., 2008; Momoi et al., 2005; 

Gerwick et al., 1987) and  to display xanthine oxidase inhibition to treat for example gout, 

hypertension and hepatitis linked to xanthine oxidase actitivity (Fernandes, 2002). 

 

1.2.1 Synthesis 

The synthesis of 2-styrylchromones was reviewed by Silva et al. (2004).  They can be 

synthesised by two basic methods, the aldol condensation and the Baker-

Venkataramanrearrangment.  Both these methods make use of 2'-hydroxyacetophenones, 

with the aldol condensation making use ofcinnamaldehydes (Pinto et al., 1996; 2004; Silva et 

al., 1994; 1996; 1998; 2004) and the Baker-Venkataraman rearrangement using cinnamoyl 

chlorides (Pinto et al., 1996; 1998; 1999; 2000; Reddy et al., 1996; Santos et al., 2003). 
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Both methods result in 2,4-pentadien-1-ones as the intermediate, with the Baker-

Venkataraman rearrangment having a 3-hydroxyl group, which makes these intermediates 

susceptible to cyclisation with acid.  For the cyclisation step, halogens such as I2 and Br2 with 

DMSO are used for both intermediates, whereas acids such as hydrochloric acid and p-

toluenesulphonic acid is used only for the 3-hydroxy intermediate that results from the Baker-

Venkataraman rearrangement.  This makes the Baker-Venkataraman rearrangement a more 

desirable synthetic route as it precludes the use of I2 or Br2 and the cyclisation can be carried 

out using the relatively mild p-toluene sulphonic acid. 

 

1.2.1.1 Aldol condensation / Oxidative cyclisation. 

This method involves the base catalyzed aldol reaction of cinnamaldehydes (6) with 2-

hydroxyacetophenones (7) to produce a 2'-hydroxycinnamylideneacetophenone (8) 

intermediate.This reaction is carried out with a strong base such as sodium hydroxide in 

methanol at room temperature, which is followed by oxidative cyclisation of 8 into (E)-2-

styrylchromones (9) (Silva et al., 1998; Santos et al., 2003).More attention has been devoted 

in the literature to the oxidative reagents for the cyclisation. These reagents are anhydrous 

potassium carbonate (Pinto et al., 1996), DMSO with either I2 or Br2 in catalytic 

amounts(Pinto et al., 1994; 1999; Silva et al., 1994; 1996),ethanolicsulphuric acid (Reddy et 

al., 1996).A catalytic amount of iodine with DMSO was reported as the most successful 

oxidative cyclisation reagent (Silva et al., 2004) and the reaction is normally refluxed for 30 

minutes to 2 hours respectively (Scheme 1-1Error! Reference source not found.)(Silva et 

al., 1998).  This particular reaction also results in halogenation of the most activated position 

of the 2-styrylchromone when a one molar equivalent of halogen is used (Pinto et al., 1994; 

1996) 
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It was also reported that reacting the 6'-benzyloxy-2'-hydroxycinammylideneacetophenone 

intermediate for longer reaction times (2 hours) results in a debenzylation reaction as well 

producing 5'-hydroxy-2-styrylchromones. 
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Scheme 1-1Aldol condensation and oxidative cyclisation leading to the synthesis of 2-
styrylchromones 

1.2.1.2 Baker-Venkataraman rearrangement 

The Baker-Venkataraman rearrangement is one of the most common methods used to 

synthesize flavonoids.  In forming the 2-styrylchromones, it begins with the O-acylation of 2-

hydroxyacetophenones (10) followed by a base catalyzed rearrangement of the formed esters 

(12) into 5-aryl-3-hydroxy-1-(2-hydroxyaryl)-2,4-pentadiene-1-ones (13). The third and last 

step of the synthesis is thecyclodehydration of the -hydroxyketones into the desired 2-

styrylchromones (14)(Scheme 1-2) (Priceet al., 1993). 
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This reaction was reduced to two steps by Reddy et al. (1996)  producing (13) from (10)and 

(11), using potassium carbonate in acetone and refluxing for 12 hours, which probably works 

via the same mechanism as the three step reaction without producing the esterified 

intermediate.  A one step reaction involving the synthesis was reported by the same group 

using the same reagents, but with thiopheneacroyl chlorides instead of cinnamoylchlorides 

and refluxing for 16 hours (Miya et al., 1998; 2012).A second step was necessary to 

hydrolyse the ester from the undesired position, but the styrylchromone was produced in one 

step with a longer reaction time (Scheme 1-3).  

 

Instead of using cinnamoyl chlorides, cinnamic acid anhydrides (20) were also reported to be 

used with a Ba(OH)2 base in a microwave reaction (Scheme 1-4) (Goel et al., 2006). 
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Reagents and Conditions: (i) DCC, 4-Pyrrolidinopyridine, CH2Cl2, rt. X=OH;  (ii) K2CO3, 

acetone, reflux, 12 h, X=Cl;  (iii) a. H2SO4, reflux, 3h; b. p-toluenesulfonic acid or I2, DMSO, 

90-100 °C, 2-3 h;  (iv)NaOH or KOH 

 
Scheme 1-2The Baker-Venkataraman rearrangement for the synthesis of 2-styrylchromones 

(Price et al., 1993; Reddy et al., 1996) 
 

1.2.2 Reactivity. 

Due to the conjugated unsaturated system of the styrylchromone moiety and the 2-ene-4-one 

moiety in the 2-styrylchromone backbone, they have been shown to participate in pericyclic 

reactions as dienes and dienophiles forming xanthones and polyaromatic compounds and in 

reactions with azo compounds forming azoles and with thiourea or diamino imines forming 

pyrimidines.   
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Scheme 1-3One step synthesis of 2-styrylchromones (Miya et al., 1998) 
 

1.2.2.1 Styrylchromones as dienes and dienophiles 

Using daylight with chloroform as the solvent, styrylchromones were converted to xanthones 

by an intramolecular Diels-Alder reaction followed by an oxidative process, with aE to 

Zisomerisation occurring prior to this (Scheme 1-5) (Silva et al., 1996).  Xanthones were also 

reported to be formed with pyrrolidine enamines via a [4+2] cycloaddition reaction (Scheme 

1-6) (Kelkar et al., 2000).  The pyrolidine enamines were formed in situ with the 

corresponding ketones as a solvent and a catalytic amount of pyrrolidine.  The 

styrylchromone 25 was completely converted to the xanthone, probably via the intermediate 

27 since this was isolated in some of the reactions, which gets converted to the xanthone via 
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migration of the exocyclic double bond and subsequent oxidation (Kelkar et al., 2000).  

Somewhat surprisingly, with 2-butanone as the solvent, the expected 1,2-dimethylxanthones 

were not formed directly as was the case with acetone forming 1-methylxanthones.  The 

subsequent migration of the double bond and oxidative aromatisation did not occur.  

However, the 1-methylidene-2-methyltetrahydroxanthones (30) were easily converted to the 

1,2-dimethylxanthones (31) by reaction with a strong acid (Kelkar et al., 2000). 
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Reagents and conditions: (i) Ba(OH)2/ DMSO, hυ,40 °C, 40 sec.;  (ii) PTSA, hυ, 40 °C, 60 

sec. 

 

Scheme 1-4: The synthesis of 2-styrylchromones using microwave reactions with anhydrides 
and acetophenones (Goel et al., 2006) 
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Scheme 1-5IntramolecularDiels Alder reaction of 2-styrylchromones to produce 
xanthones(Silva et al., 1996) 
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Scheme 1-6Diels Alder reaction of 2-styrylchromones with pyrrolidineenamines (Kelkar et 
al., 2000) 
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The reaction of 2-styrylchromones (23) with ortho-benzoquinodimethanes (32) generated in 

situwith 1,3-dihydrobenzo[c]thiophene 2,2-dioxideproducedcycloadducts (33) which could 

be dehydrogenated to 2-[2-(3-arylnaphthyl)] chromones (34). They were also prepared in a 

one pot synthesis with ortho-benzoquinodibromomethane (35) generated in situ from 

α,α,α',α'-tetrabromo-o-xylene (Scheme 1-7) (Silva et al., 1999a).  

 

1.2.2.2 2-Styrylchromone reactions with azo compounds 

2-Styrylchromones react with diazomethane, behaving as dipolarophiles, producing 

pyrazolines (37) via the intermediate 36with 38 occurring as a minor component of the 

reaction (Scheme 1-8) (Pinto et al., 1998).   They can also form 1,2,3-triazoles, either in a one 

pot synthesis with sodium azide or from the brominated compounds 39 and 41 with sodium 

azide (Silva et al., 1999;  2004) (Scheme 1-9). 

 

1.2.2.3 Styrylchromone reactions with hydrazine 

It was shown that the chromones can react with hydrazine hydrate togive 5(3)-(2-

hydroxyphenyl) pyrazoles (Takagi et al., 1986).In the reaction of 2-styrylchromones (44) 

with methyl hydrazine, only the styrylpyrazole (46) was formed but with hydrazine hydrate 

an additional two compounds, 47 and 48 were formed together with the expected 

styrylpyrazole (45) (Pinto et al., 1997) (Scheme 1-10). 

 

1.2.2.4 Styrylchromone reactions with diamino imines and thioureas 

The styrylchromones (49) were shown to react with thiourea and guanidine to produce the 

styrylpyrimidines 50 and 51(Karale et al., 2003) (Scheme 1-11). 
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(i) 1,2,4-Trichlorobenzene; (ii) (a) NBS, benzoylperoxide, CCl4or (b) Et3N;(iii) DMF. 

Scheme 1-7 Diels Alder reactions of 2-styrylchromones with ortho-benzoquinodimethanes 
(Silva et al., 1999a) 
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Scheme 1-8 The reaction of 2-styrylchromones with diazomethane (Pinto et al., 1998) 
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Scheme 1-9 The reaction of 2-styrylchromones with sodium azide (Silva et al., 1999; 2004) 
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Scheme 1-10 Reaction of 2-styrylchromones with hydrazines (Pinto et al., 1997) 
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Scheme 1-11 The reaction of 2-stryrylchromones with thiourea and guanidine (Karale et al., 
2003) 

 

1.2.3 Biological activity of 2-styrylchromones 

The biological activities of 2-styrylchromones have recently been reviewed by Gomes et al. 

(2010).  The 2-styrylchromones were shown to be A3 adenosine receptor antagonists (Karton 

et al., 1996), have hepatoprotective activity (Fernandes et al., 2003), be potent antioxidants 

(Filipe et al., 2004), have anti allergic properties (Doria et al., 1979), antiviral activity 

(Desideri et al., 2000),  anticancer activity (Marinho et al., 2008;Momoi et al., 2005, Gerwick 

et al., 1987 ) and shown to display xanthine oxidase inhibition to treat for example gout, 

hypertension and hepatitis linked to xanthine oxidase activity(Fernandes et al., 2002).   

 

1.2.3.1 Antioxidant activity 

The polyhydroxylated 2-styrylchromones were found to be potent hepatoprotectors against 

pro-oxidant hepatotoxicity exerted by tert butyl hydroperoxide in freshly isolated rat 

hepatocytes, with the best activity being shown withtwo hydroxyl groups present on the 

benzene ring and with one or two hydroxyl groups on the benzopyronering (Fernandes et al., 
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2003).The polyhydroxylated 2-styrylchromones were also shown to be good antioxidants, 

capable of scavenging activity against reactive oxygen and reactive nitrogen species (ROS 

and RNS).The most potent activity was shown by 5,7-dihydroxy and 7-hydroxy substitution 

in the A-ring (Gomes et al., 2007).Polyhdroxylated styrylchromones with two hydroxyl 

groups on the styryl moiety and an additional hydroxyl group at C-5 on the benzopyrone ring 

were shown to have an even betterinhibitory effect on the Cu2+- induced  peroxidation of  

low-density lipoproteins  (LDL) than the flavonoid quercetin (Filipe et al., 2004). 

 

1.2.3.2 Antiviral (rhinovirus and norovirus) activity 

Human rhinoviruses (HRVs) are the most frequent cause of the common cold and responsible 

for several chronic conditions, such as asthma and sinusitis(Wimalasundera et al., 1997), 

whereas Human noroviruses (NoV) are responsible for acute gastroenteritis (Rocha-Pereira et 

al., 2010).The 6-fluoro-2-styrylchromone and its 3-hydroxy and 3-methoxy derivatives were 

shown to be effective against serotype 1Bof the HRV (Desideri et al. 2000; 2003; Conti et al., 

2005) and 5-hydroxy-2-styrylchromone and 4'-methoxy-2-styrylchromonewith an estimated 

IC50 of 7 µM was found to have the best activity against the human NoV (Rocha-Pereira et 

al., 2010). 

 

1.2.3.3 Anticanceractivity 

The highly oxygenated hormothamnione(Figure 1-4) witha methyl group at C-3 and methoxy 

groups at the 6, 7 and 8 positions and hydroxy groups at C-5, C-3' and C-5' showed potent 

cytotoxicity against the P388 lymphocytic leukemia and HL-60 human promyelocytic 

leukemia cells by inhibiting RNA synthesis, while its 6-desmethoxy analogue with a 

hydrogen at C-6 instead of the methoxy group showed good cytotoxicity to 9 KB cells 

(Gerwick et al., 1986; 1989). The 4'-methoxy-2-styrylchromone and the 3',4',5'-trimethoxy-2-
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styrylchromone (Figure 1-5) showed good cytotoxic activity against four human tumor cell 

lines (squamous cell carcinoma HSC-2, HSC-3,submandibular gland carcinoma 

HSGandpromyelocytic leukemia HL-60) (Momoi et al., 2005). 

 

O

O

OCH3
OCH3

OCH3

 

 
Figure 1-53', 4’, 5’-trimethoxy-2-styrylchromone 

 
 

1.2.3.4 Anti-inflammatory activity 

Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostaglandins involved 

in inflammatory responses. The 3',4’-dihydroxy and 4'-hydroxy 2-styrylchromone 

compounds showed COX-1 and COX-2 as well as LTB4 inhibition making them potential 

anti-inflammatory compounds (Gomes et al., 2009). 

 

Several 2-styrylchromone-6-carboxylic acids displayed anti-allergic activity when 

administered orally to rats in the passive cutaneous anaphylaxis test (Doria et al., 1979).  

 

The 2-styrylchromonols and 2-styrylfuranochromones have been described as A3 adenosine 

receptor antagonists which have the potential for the treatment of allergic, inflammatory and 

possibly ischemic disorders with the 2-styryl analogue (52) (Figure 1-6) of the natural 

furanochromone visnagin showing a strong affinity to the A3 receptor (Karton et al., 1996). 
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Figure 1-62-styrylfuranochromone with A3 adenosine receptor antagonist activity 
 

1.2.4 Structural elucidation of 2-styrylchromones 

The 2-styrylchromones are highly conjugated molecules and the ultraviolet (UV) spectrum 

contains characteristic absorption bands in the region 262-345 nm corresponding to an , , 

, - unsaturated conjugated carbonyl system (Rao et al., 2011).  Due to the delocalisation of 

electrons in this unsaturated carbonyl system, the carbonyl stretching frequency in the IR 

spectrum occurs at 1620-1650 cm-1 exhibiting more single bond character.  The CH 

stretching bands of the olefinic bonds are observed between 1580-1620 cm-1 (Desideri et al., 

2003). 

 

The 1H NMR spectra of the 2-styrylchromones contain aromatic and olefinic resonances 

between  6.1 and  7.8.  In many cases, the H-3 resonance can be seen as a singlet between  

6.10 - 6.25 for the benzyloxy 2-styrylchromones and more downfield at between  6.20 - 6.50 

for the hydroxy 2-styrylchromones.  The H and H proton resonances of the styryl moiety 

occur between  6.50 - 7.18 for the H proton resonances and more downfield between  

7.36-7.74 for the H proton resonances.  These resonances occur as doublets with a large 

coupling constant of approximately 16 Hz for the trans olefinic protons and  in many cases 

overlap with the aromatic resonances which resonate between  6.20 to  7.80 (Santos et al., 

2003). 
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The basic 2-styrylchromone nucleus contains seventeen carbon atoms and their resonances in 

the 13C NMR spectrum are mainly concentrated in the region  100-140.   The carbonyl 

resonance is easily detected at δ 176-183 due to the unsaturated carbonyl system.  The C 

resonance is also distinguishable at  136 - 139 as is the C-2 resonances at  160 -163, 

however this overlaps with the oxygenated aromatic resonances.  Other aromatic proton 

resonances can be seen at  100-130 (Santos et al., 2003).    

 

 

1.3. Introduction to imidazole-2-thiones 

Imidazole-2-thiones are planar five membered cyclic compounds consisting of three carbon 

and two nitrogen atoms in the ring and an exocyclic sulphur bond.  They are based on the 

parent compound, imidazole, a basic molecule, which readily forms salts with acids (Turner 

et al., 1949) and found in a number of biological important molecules including purine, 

histamine and histidine.  They are therefore important components of nucleic acids and 

proteins, histidine playing an important role in the structure and binding of hemoglobin 

(Bhatnagar et al., 2011). 

 

Imidazole-2-thiones can exist in two tautomeric forms, a thione (53) and a thiol (54) (Figure 

1-7).  Ionization of the compounds occurs in the thione form in the crystalline state and in 

solution (Jayaram et al., 2008).  The length of the C-N bond is 1.345 Å, very close to the 

length of the C-N partial double bond in nitrogen-containing heterocyclic systems (1.352 Å).  

N
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H
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S
N
H

N

SH

53 54  

Figure 1-7 Tautomeric forms of imidazole-2-thiones. 
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These compounds are weak organic bases, readily protonated when dissolved in acids. 

Having both nitrogen and sulfur atoms in their core structure, they belong to the so-called 

"ambifunctional nucleophilic compounds" and are readily involved in reactions with 

electrophilic agents.  The ambidentate anion of compounds with a thioamide group, generated 

by proton abstraction results in a triatomic functionality with the negative charge being 

unevenly distributed between the nitrogen and sulphur atoms (Figure 1-8)(Cumper et al., 

1972). 
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Figure 1-8 Ambifunctional nucleophilic compounds 
 

The interaction of imidazole-2-thione with electrophilic reagents normally involves the 

readily polarized and highly nucleophilic sulphur atom. In the case of polar electrophiles, 

however, the new bond is formed with the more electronegative nitrogen atom (Svetlik et al., 

1990). 

 

1.3.1 Synthesis 

Recent reviews by Dawood et al. (2010) and Savjani et al. (2011) containthe different 

synthetic procedures and starting materials that have been used to synthesise the imidazole-2-

thiones, which can be substituted at almost all positions on the imidazole-2-thione skeleton.  

They can be formed from -bromoketones with substituted hydrazines and potassium 

thiocyanate (Lagoja et al., 2003), from-hydroxyketones, thiourea and ammonium 
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thiocyanate (Maduskuie et al., 1995), from benzil and thiourea (Muccioli et al., 2006) and 

from phenylglycine methyl ester with phenyl or alkyl isothiocynate (Muccioli et al., 2006) to 

name a few.  The imidazole-2-thiones are extremely reactive and can be alkylated and 

arylated at both sulphur and nitrogen using a variety of reagents (Trzhtsinskayaand 

Abramova, 1991) added to activate double bonds such as 2-cyanoethene (Bagrii et al., 1978; 

Trzhtsinskaya et al., 1992), acetylene (Skvortsova et al., 1974), aliphatic and alicyclic ketones 

and acetophenones (Hozien et al., 2000). 

 

1.3.1.1 Synthesis with -bromoketones, substituted hydrazines and potassium 

thiocyanate  

The N-substituted 1-amino-2,3-dihydro-1H-imidazole-2-thiones (58)were synthesized in 

good yields in a one-step reaction  from easily available starting materials like hydrazines 

(55), R-bromoketones(56), and potassium thiocyanate(57)in the presence of acetic acid at 

30oC (Scheme 1-12) (Lagoja et a., 2003). 
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Scheme 1-12Reaction with-bromoketones, substituted hydrazines and potassium 
thiocyanate (Lagoja et al., 2003) 

 

 

 



29 

1.3.1.2 Synthesis from-hydroxyketones and thiourea, and from diketones and 

ammonium thiocyanate  

 
The 4,5-disubstituted-2-mercaptoimidazole(59)was synthesized by a condensation reaction 

with the α-hydroxy ketone(60)and thioureainthe presence of N,N-dimethylformamide or 

hexanol.  The diketone (61) reacted with ammonium thiocyanate and n-hexanol also gave the 

N-susbstituted thioimidazole (62) (Scheme 1-13) (Maduskuie et al., 1995). 
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Scheme 1-13 Condensation reaction with α-hydroxy ketone and thiourea, and diketones and 
ammonium thiocyanate 

 

1.3.1.3 Synthesis from benzil and thiourea 

A 5-disubstituted-4-keto derivative of 2-thioimidazole (63) was synthesized using microwave 

reactions with benzil (64) and thiourea (65) (Scheme 1-14). The advantages of this reaction 

are that it is rapid and results in moderate to good yields (Muccioli et al., 2006).  
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Reagents and conditions: (a) DMSO/aq KOH, nine microwaves pulses (750 W) 

Scheme 1-14 Microwave assisted reaction of benzil and thiourea (Muccioli et al., 2006) 
 

1.3.1.4 Synthesis from phenylglycine methyl ester with phenyl or alkyl isothiocynate 

The 3-substituted-4-keto-5-phenyl-2-thioimidazoles (66) were synthesized with 

phenylglycinemethyl ester(67) with the desired phenyl or alkyl isothiocyanates(68)in the 

presence of pyridine, leading first to a 3-substituted (thio)urido-phenyl aceticacid which is 

then cyclised by refluxing under acidic conditions (Scheme 1-15)(Muccioli et al., 2006). 

a) 24 h in pyridine at 40 °C

N

NH

O
S

R

H

O

O

H

NH2 R-NCS'+
b) reflux in 2 N HCl

66

68

67  

Scheme 1-15Reaction withphenylglycine methyl ester and phenyl or alkyl isothiocynate 
(Muccioli et al., 2006) 

 

1.3.1.5 Synthesis from methyl or phenyl isothiocyanate and -amino acids via 2-

thiohydantoins  

The 2-thioimidazoles can be formed from methyl or phenyl isothiocyanates and  amino 

acids forming thiohydantoic acid (69) which is cyclized to the 2-thiohydantoins (70) with 

acid.  The 2-thiohydantoins arethen reduced by borohydrides to 4-hydroxyimidazolidine-2-

thiones (71), which form imidazole-2-thiones (72) by the elimination of water with acid 

(Scott et al., 1968) (Scheme 1-16). 
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Scheme 1-16 Synthesis with methyl or phenyl isothiocyanate and α-amino acids via a 2-
thiohydantoin intermediate (Scott et al., 1968) 

 

1.3.1.6 Preparation from imidazolium salts and elemental sulphur 

Imidazolium salts (73) reacted with elemental sulphur, potassium tert butoxide and sodium 

hydride produced the 2-thioimidazoles (74) in good yields (Sauerbrey et al., 2012).  They 

were subsequently phosphanylated with diorganochlorophosphane at C-4 on the 2-

thioimidazole skeleton (75) (Scheme 1-17). 
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Scheme 1-17Preparation of thioimidazole-2-thiones using imidazolium salts and elemental 
sulphur (Sauerbrey et al., 2012) 

 

 

1.3.1.7 Preparation by intramolecular vinylic substitution 

A series of 1, 3, 4-trisubstituted imidazole-2-thiones (76) were prepared by the intramolecular 

vinylic substitution reaction with N, N’-trisubstituted thiones (77) with a vinylic bromide 

moiety and potassium carbonate in dimethyl formamide (DMF) (Shen et al., 2009) (Scheme 

1-18).   
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Scheme 1-18 Preparation by an intramolecular vinylic substitution reaction (Shen et al., 
2009) 

 

1.3.2 Reactions of imidazole-2-thiones 

A literature search on Scifinder Scholar (2012) shows that the imidazole-2-thiones are 

extremely reactive and can be alkylated and arylated at both sulphur and nitrogen using a 

variety of reagents (Trzhtsinskayaand Abramova, 1991), added to activated double bonds 

such as 2-cyanoethene (Bagrii and Vasilenko, 1978; Trzhtsinskaya et al., 1992), acetylene 

(Skvortsova et al., 1974), and aliphatic and alicyclic ketones and acetophenones (Hozien et 

al., 2000).However, apart from the reaction with acetylene, most of the other references were 
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only available as abstracts despite several attempts at obtaining them and the details for these 

are not commented on in this work.   

 

For the reaction with acetylene, 2-mercaptobenzimidazole (78) was reacted with acetylene 

and potassium hydroxide to produce the S-vinyl product (79).  Reaction with acetylene using 

metal catalysts such as cuprous chloride and cadmium acetate produced the divinyl product 

substituted at both the sulphur and the nitrogen (80)(Scheme 1-19)(Skvortsova et al., 1974). 
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Scheme 1-19 Reactions of imidazole-2-thiones with acetylene (Skvortsova et al., 1974) 
 

1.3.3 Biological activity of imidazole-2-thiones 

The imidazole-2-thiones have also shown a wide range of biological activities, having 

antiulcer(Tsuji et al., 1989), anti-inflammatory(Buhler et al., 2011; Selig et al., 2011; Tsuji et 

al., 1989; Makita et al., 2000), antiarthritic, analgesic (Sharpe et al., 1985), antihyperthyroid 

(Doerge et al., 1993), anti-hypercholesterolemic (Billheimer et al., 1990; Maduskuie et al., 

1995), antibacterial, antifungal(Saeed et al., 2007) and anti-HIV activity (Yasser et al., 2003) 

as well asbeing platelet aggregation inhibitors (Hayashi et al., 1989).  The related 4-nitro-5-

thioimidazole derivatives have also showed antitumour activity (Iradyan et al., 1988). 
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1.3.3.1 Antiulcer, anti-inflammatory, antiarthritic and analgesic activity 

The tri- and tetra-substituted imidazole-2-thione derivatives (81) and their corresponding 

sulphoxides (82) (Figure 1-9) were tested for anti-inflammatory activity using the p38 

MAPK assaywhere thesulphides were shown to have a higher affinity for the enzyme than the 

sulphoxides (Buhler et al., 2011).   In a related study, observing the steric effects of the S-

substituted methyl group, it was shown that a loss of steric hindrance increased the inhibitory 

potency of the compounds to the enzyme up to two-fold when compared to the 

dihydrothiazoline compounds (Selig et al., 2011). 
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Figure 1-9Tri- and tetrasubstituted thioimidazole-2-thiones and their sulphoxide derivatives 
 

The 4,5-dipyridyl-S-substituted ether(83)(Figure 1-10)was shown toexhibit activity on human 

cytosolic phospholipase A2, which plays a role in inflammation (Makita et al., 2000). 

NH

N

N

N
S

OH

O

C22H45

83  

Figure 1-10 A 4,5-dipyridyl-S-substituted ether of imidazole-2-thione 
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A series of 4,5-diaryl-2-(alkyloxy substituted thio)imidazole derivatives with chloro, fluoro 

or methoxy substitution on the phenyl groups and alkyl, alkenyl, fluoralkyl and thioethers and 

esters substituted on the sulphur were tested for both their anti-inflammatory and analgesic 

activity.  The best analgesic and anti arthritic activity was seen when sulphur was substituted 

with fluoroalkyl groups and when the phenyl groups at C-4 and C-5 were para 

substituted.The derivative tiflamizole (84) (Figure 1-11) was eight times more potent than 

indomethacinin the rat adjuvant induced arthritis assay and with its high efficacy, could be 

the drug of choice prescribed for inflammation (Sharpe et al., 1985). 
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Figure 1-11 Tiflamizole 
 

The diphenyl thioimidazole (85) (Figure 1-12) with a methylpyridinyl group attached to the 

sulphur has shown excellent antiulcer and anti-inflammatory activities (Tsuji et al., 1989). 
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Figure 1-12Dipehnyl-S-methylpyridinyl thioimidazole-2-thiones 
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1.3.3.2 Antihyperthyroid, antihypertensiveand anti-hypercholesterolemic activity 

N-substituted imidazolylethanols (86)(Figure 1-13)synthesized from their corresponding 

diphenylimidazoles with β-halo alcohols (Cl, Br) were shown to have antihypertensive 

properties (Povstyanoi et al., 1979). 
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Figure 1-13 Imidazolylethanols 
 

A series of N-substituted imidazoline-2-thiones and benzimidazoline-2-thione (87-91) (Figure 

1-14) derivatives were synthesized and tested to treat hyperthyroidism.  The 1,3-disubstituted 

thiourea derivative (90) was the most potent and could represent a new class of potential 

antihyperthyroid drugs (Doerge et al., 1993). 
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Figure 1-14Imidazole-2-thiones and their benzo derivatives tested for antihyperthyroid 
activity 

 

The 4,5-diaryl-2-substituted thioimidazoles(92)where R1 and R2 are H, F, Cl, CF3 or alkyl 

and R3 is H, CH3 or ethyl with A being an alkylene group of 7-20 carbon atoms was 

synthesized along with their sulphoxide derivatives (Figure 1-15).  These compounds were 

shown to inhibit the intestinal absorption of cholesterol thereby having the potential to inhibit 

artherosclerosis (Billheimer et al., 1990). 
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Figure 1-15Anti-hypercholesterolemic imidazole-2-thiones 
 

Kruse et al. (1987) reported the dopamine β-hydroxylase activity of 52 thione analogues, 

identifying compounds which could be used for cardiovascular disorders related to 

hypertension.  Among these, the N-substituted alkyl phenyl groups with hydroxyl, nitro and 

fluoro groups (93-97) (Figure 1-16) were amongst the most potent (Kruse et al., 1987). 
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Figure 1-16N-substituted thioimidazole-2-thione dopamine β-hydroxylase inhibitors 
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The 2-thioimidazoles substituted with an alkyl imidazole at the sulphur atom were seen to 

inhibitdiet-induced elevation of plasma cholesterol in rats.Among the compounds that were 

tested, 98 (Figure 1-17) showedthe best inhibition (Bridge et al., 1992). 
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Figure 1-17Plasma cholesterol inhibiting 2-thioimidazole 
 

1.3.3.3 Antibacterial, antifungal and anti-HIV activity  

The imidazolyl ethanols (86) (Figure 1-13) mentioned for their antihypertensive properties 

above also showed fungicidal and bactericidal activities (Povstyanoi et al., 1979).  The 

N,N,4'-trisubstituted imidazole-2-thiones with chloro, bromo, methyl and methoxy 

substitution at various positions were screened for their antibacterial activity against 

Escherichia coli, Pseudomonas areuginosa, Staphylococcus aureus, and Bacillus subtilis.  

The chloro derivative (99) (Figure 1-18) showed the broadest spectrum of activity being 

active against all of the strains tested (Saeed et al., 2007).   The same set of compounds was 

also tested for antifungal activity against Trichophyton longifusus, Candida albicans, 

Aspergillus flavus, Microsporum canis, Fusariumsolani, and C. glabrata.  The results 

showed that only the chloro and bromo substituted compounds exhibited slight activity 

(Saeed et al., 2007). 
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Figure 1-18Antibacterial N,N,4'-trisubstituted imidazole-2-thiones 
 

The 4,5,N-substituted 2-methylsulfanyl 1H-imidazoles with alkyl or benzyl ethers at the N 

and benzyl, cyclohexamethyl, ethyl and isopropyl groups at C-4 and C-5 (100 and 101) 

(Figure 1-19) were tested for their anti-HIV activity in MT4 cell cultures infected with wild 

type HIV-1 (strain IIIB).  Compounds with an isopropyl group at C-4 (101f-g) showed the 

best activity in this assay comparable to that of nevirapine (Yasser et al., 2003). 
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Figure 1-19 Anti-HIV alkylated imidazole-2-thiones 
 

1.3.3.4 Platelet aggregation inhibition 

A series of 4,5-diphenyl S-benzylated esters were tested for their blood platelet anti 

aggregation activity where compound (102)(Figure 1-20) showed the best activity (Meanwell 

et al., 1991).   



40 

 

O

O

O
Me

S N

HN

Ph

Ph

102  

Figure 1-20 4,5-Diphenyl S-benzylated ester with blood platelet aggregation inhibiting 
activity 

 

Hayashi et al. (1989) synthesized substituted imidazole derivatives (103)(Figure 1-21) with S-

substituted pyridinyl methyl groups which were found to be useful as blood platelet 

agglutination inhibitors. 
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Figure 1-21S-substituted pyridinyl methyl imidazole-2-thiones with blood platelet 
antiagglutination activity 

 

1.3.3.5 Enzyme inhibitors 

The 4,5-diphenylimidazole-2-thione (104)(Figure 1-22)showed -glucosidase and -amylase 

inhibitory activity (Balba et al., 2011).  Glycosidase inhibitors have the potential to be used in 

the treatment of diabetes, HIV and metastatic cancer while amylase inhibitors are used for the 

treatment of diabetes, obesity and hyperlipemia. 
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Figure 1-224,5-Diphenylimidazole-2-thione with -glucosidase and -amylase inhibitory 
activity 

 

1.3.3.6 Antitumour activity of related 5-thio(sulfo)imidazoles 

The S-substituted derivatives of 4-nitro-5-thio(sulfo)imidazole were tested for their antitumor 

activity in a threonine dependent strain of E.coli P-678 and a lysine dependent strain of 

Actinomyces rimosus 222 by testing the frequency of mutations in the test cultures and on the 

mutations induced by UV rays.  Compounds 105-110 (Figure 1-23) showed the best 

antitumour activity of all the tested compounds (Iradyan et al., 1988). 
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Figure 1-235-Thio (sulfo) imidazoles with antitumour activity 
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1.3.4 Structural elucidationof diethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylates 

The 1H-NMR spectra of these compoundsshow characteristic resonances for the benzyl 

proton between δ 4.27-4.62 with the N-H resonance of the imidazole moiety being variably 

observed between δ 5.88-11.32 and the aromatic resonances of the benzyl group being 

observed between  7.00- 7.50. The two ethoxy groups show the typical pattern of triplets 

and quartets for the methyl and methylene groups respectively at δ 1.28-1.37 and δ 4.28-4.37. 

 

The 13C-NMR spectra also has characteristic resonances, especially C-2 of the imidazole ring 

and the benzylic carbon, C-7'', which appears at  144 and  37-38 consistently.  The 

aromatic carbon resonances appear at  115-140 with the C-1'' carbon resonance bonded to 

the benzylic carbon appearing consistently at  138-140.  The carbon resonances for the two 

ethyl ester groups at positions 4 and 5 appear as equivalent resonances at  157-163, 61-62 

and 14-15 for the carbonyl, the methylene and the methyl resonances respectively.  The C-4/5 

resonances are not easily detected in the 13C NMR spectrum, but appear at  127-129 

detectable. 

 

1.4. Aims and objectives 

This project was funded in part by the Fluorine Expansion Initiative (FEI) of South Africa 

and part of FEIs plan and our broad objective was to increase the capacity of the local South 

African fluorine pharmaceutical market.  Our aim was to develop fluorinated 

pharmaceuticals, which can be developed into drugs that could be marketed in South Africa.  

To this end, we chose the 2-styrylchromone and 2-thioimidazole nucleus and aimed to 

investigate the potential of inserting fluorine into these molecules by using fluorine 

precursors in the synthesis. 
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We synthesized the 2-styrylchromones with the specific aim of testing these compounds for 

antibacterial and antioxidant activity since these screens are readily available at UKZN in the 

School of Biological and Conservation Sciences.  The 2-thioimidazoles were synthesized 

with the aim of testing these compounds for antiplatelet activity in conjunction with our 

collaborators in the Department of Biochemistry and Microbiology at the University of 

Zululand in South Africa. 

 

1.4.1 Specific aims and objectives 

The objectives were two fold, (i) to synthesize the two classes of compounds mentioned 

above and (ii) to test these compounds in bioassays aimed at antibacterial and antioxidant 

activity in the case of the 2-styrylchromones and antiplatelet activity in the case of the 2-

thioimidazoles. 

 

To achieve these, we had the following specific objectives: 

1. To synthesize novel target molecules using known procedures modified to suit our 

starting materials. 

2. To characterize the synthesized compounds using spectroscopic and other structure 

determination techniques such as X-ray crystallography. 

3. To test the synthesized compounds in standard known bioassays and compare the 

activity of the synthesized compounds with known drugs. 
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Abstract 

A range of fluorinated 2-styrylchromones (5a-g) of which six are new (5a-f) were prepared in 

three steps using the Baker-Venkataraman rearrangement together with two 

methoxyderivatives (5h-i) and a methylenedioxy derivative (5j), and screened for their 

antibacterial activity using Gram-positive bacteria (Staphylococcus aureus,Scuii and Xylosus 

as well as Bacillussubtilis) and Gram-negative bacteria (Escherichia coli, Pseudomonas 

aeruginosaand Klebsiella pneumonie).The compounds were most effective against B. subtilis 

followed by S. aureus and a single strain of E. coli (ATCC 25922).  Difluorination of the 

phenyl ring was shown to enhance antibacterial activity and fluorine substitution at the 6-

position was shown to be much superior to substitution at the 7-position.  In comparison to 

tetracycline, the activity indices of the fluorinated styrylchromones ranged from 0.50 to 0.75 

against B. subtilis.  The crystal structure of 6-fluorostyrylchromone is also presented and the 

molecule was shown to be planar. 

 

Keywords: antibacterial activity; fluorinated 2-styrylchromones; crystal structure. 
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2.1. Introduction 

Fluorinated compounds have a wide range of medical applications such as anti-inflammatory, 

antiviral, anti-HIV, antibacterial, anticancer, antimalarial, antidepressants, antipsychotics, 

anaesthetics and steroids (Park et al., 2001; Kirk and Filler, 1996).   Introducing fluorine 

atoms into drug molecules can also alter the rate and route of drug metabolism (Park et al., 

2001) and stereoelectronic factors associated with the fluorine atom can lead to changes in 

the biological action of molecules in comparison to its analogues substituted with hydroxy 

groups or hydrogen atoms (O’ Hagan and Rzepa, 1997).  The substitution of fluorine for 

hydrogen or hydroxy groups can lead to changes in the mechanism of the drug as well as 

enzyme inhibition (O’ Hagan and Rzepa, 1997).  The small size of the fluorine atom, the 

enhanced lipophilicity it imparts to the molecules and the electronegativity of the atom often 

results in improved therapeutic drugs (Kirk and Filler, 1996).  As part of an ongoing study on 

fluorinated pharmaceutical compounds, we have chosen to explore the antibacterial effects of 

fluorinated 2-styrylchromones.   

 

The biological activities of 2-styrylchromones have recently been reviewed by Gomes et al. 

(2010).  The 2-styrylchromones were shown to be A3 adenosine receptor antagonists (Karton 

et al., 1996), have hepatoprotective activity (Fernandes et al., 2003), be potent antioxidants 

(Filipe et al., 2004), have anti allergic properties (Doria, et al., 1979), antiviral activity 

(Desideri, et al., 2000),  anticancer activity (Marinho et al., 2008; Momoi et al., 2005; 

Gerwick, 1987) and shown to display xanthine oxidase inhibition to treat for example gout, 

hypertension and hepatitis linked to xanthine oxidase inhibition (Fernandes et al., 2002).   

 

 The synthesis of these compounds has been reviewed by Silva et al. (2004) and involves the 

aldol condensation between cinnammaldehydes and 2-hydroxyacetophenones followed by an 
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oxidative cyclisation (Silva et al., 1998) or the Baker-Venkataraman rearrangement, 

involving the O-acylation of 2’-hydroxyacetophenones with cinnamic acids, followed by 

rearrangement of the ester and then cyclisation into the styrylchromone (Pinto et al., 2000a).  

They can also be made directly from 2’-hydroxyacetophenones with cinnamoyl chlorides 

(Reddy and David, 1996). 

 

The 2-styrylchromones have a structure analogous to the flavonoids, with an extra two carbon 

olefinic bond between the chromone and the phenyl ring.  Thus, instead of a phenyl group 

attached to C-2 of the chromone ring as in the flavonoids, a styryl group is attached in stead 

(see 5 in Scheme 2-1).  Due to the double bond in the backbone of the structure, the 2-

styrylchromones are reactive molecules, acting as dienes in the pericylic reactions of 

xanthones (Pinto et al., 2005), dienophiles forming flavones with ortho benzoquinodimethane 

(Silva et al., 1999a) and are readily transformed into pyrazolines (Pinto et al., 1998; Toth et 

al., 1993), 1,2,3-triazoles (Silva et al., 1999b), pyrazoles (Takagi et al., 1986; Pinto et al., 

1997; Pinto, et al., 2000b) and pyrimidines (Karale, et al., 2003). 

 

To our knowledge, there have only beenonly two studies on fluorinated styrylchromones, 

where the 6-fluoro-2-styrylchromones have shown anti-rhinovirus activity (Conti et al., 2005) 

and the 4’-fluoro-, the 4’-trifluoromethyl- and 4’-trifluoromethoxy-2-styrylchromones were 

shown to have antitumour activity (Shaw, et al., 2009).  We report here on the synthesis and 

antibacterial activity of a series of fluorinated 2-styrylchromones as well as the novel crystal 

structure of the 6-fluoro-2-styrylchromone. 
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2.2. Results and Discussion 

Chemistry 

Seven new fluorinated 2-styrylchromones were prepared in good overall yields of between 60 

and 90% with only one compound (5e) having a yield of 45%.  The synthesis was carried out 

according to the three-step sequence shown in Scheme 2-1 and based on the Baker-

Venkataraman rearrangement (Pinto, et al., 2000a) with modifications.  This involved the 

formation of the desired 2-cinnamoyloxyacetophenone esters from substituted ortho-

hydroxyacetophenones and cinnamic acid derivatives in pyridine using POCl3 as a 

condensing agent.   A strong base such as potassium hydroxid then abstracts a proton from 

the methyl ketone and the resultant carbanion attacks the ester carbonyl groupresulting in the 

conversion of the cinnamoyloxyacetophenones to the ketoenols.  Cyclisation to the chromone 

was achieved with the strong acid catalyst para-toluene sulphonic acid, which protonates the 

-hydroxy group, increasing the electrophilicity of the -carbon, which is attacked by the 2’-

hydroxy group, ultimately resulting in formation of a chromone ring.   The cinnamic acids, 

2a-c and 2h-i were prepared by an aldol condensation and elimination reaction from the 

corresponding benzaldehydes and malonic acid before being reacted with the corresponding 

acetophenones. 

 

The series of 2-styrylchromones synthesized contained a single fluorine atom on the ortho, 

meta and para positions (5a-c) of the phenyl ring, two fluorine atoms at the 3’ and 5’ 

positions on the phenyl ring (5d), fluorine atoms on both of the aromatic rings (at the 7 and 4’ 

positions) (5e), as well as a single fluorine atom on the 7- (5f) and 6- (5g) positions on the 

chromone ring.   These substitution patterns were chosen to observe the effect of fluorine at 

different positions on the phenyl ring as well as the effect of fluorine on the chromone ring.  

The difluorinated compounds would provide information on multiple sites of the molecule as 



60 

well as substitution on both the phenyl and chromone rings simultaneously.   Two 

methoxylated 2-styrylchromones, the 4’-methoxy- and the 3’,4’-dimethoxy-2-

styrylchromones as well as the 3’,4’-methylenedioxy-2-styrylchromone (5h-j) were also 

synthesized to test alongside the fluorinated styrylchromones for comparison. 
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Scheme 2-1The preparation of 2-styrylchromones 5a-j from their corresponding 

acetophenones and cinnamic acids  (i) Pyridine, POCl3, rt. 4-5 h. (ii) DMSO, 

KOH, rt. 2h (iii) DMSO, PTSA, 90-95 °C, 2-3h. 

 

The structures of the prepared compounds were elucidated using 1D and 2D NMR 

spectroscopy along with mass spectrometry and IR spectroscopy.  Compounds 5g-j and their 

intermediates have all been prepared previously (Conti et al., 2005; Momoi et al., 2005), but 

only the NMR data for only 4g and 5g (Conti et al., 2005), 3h and 4h (Pinto, 1998) and 3i 

and 4i (Santos et al., 2009) are available in the literature.  Furthermore, only the 1H NMR 

data is given for 5g (Conti et al., 2005) while only the ethylene resonance is reported for 5h-j 

in Momoi et al. (2005).  The NMR data for 3g, 3j, 4j and 5g-j are therefore also reported here 
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along with the new compounds 5a-f and their intermediates, 3a-f and 4a-fto provide a 

complete set of NMR data for all the synthesized 2-styrylchromones and their intermediates. 

 

Synthesis of the cinnamoyloxyacetophenone (3a) was established by the presence of  and  

unsaturated proton resonances in the 1H NMR spectrum at H 6.76 and 8.00 as two doublets 

with large coupling constants of 16.16 Hz, typical of trans olefinic protons, a methyl singlet 

at H 2.55, an aromatic 8H signal between H 7.11 to 7.85.  The structure of 3a was further 

supported by two carbonyl resonances in the 13C NMR spectrum at C 197.74 for the ketone 

and C 165.10 for the ester carbonyl group.The aromatic carbon to which fluorine was 

attached was detected at C 161.80 (J = 252.60 Hz).The fluorine NMR resonance at  -113.57 

was used to confirm the presence of fluorine on the aromatic ring and the structure confirmed 

by the detection of the molecular ion at m/z 284 in the EIMS.All of the other intermediates 

3b-j had similar NMR data and their structures were elucidated in the same manner as 3a.  

The aromatic oxygenated carbon resonance in 3h was recorded at C 161.91 with similar 

resonances occurring in 3i-j. 

 

Conversion to the ketoenol (4a) was indicated by the disappearance of the methyl singlet 

resonance and the appearance of a singlet proton resonance at H 6.32 for the olefinic  

proton.  This was supported by the enol carbon resonance at C 173.63 and the keto resonance 

at C 196.25.  The fluorinated carbon resonance could be seen at C 164.87 with a coupling 

constant of 247.22 Hz and the olefinic C-O resonance at C 162.68.  The 19F NMR resonance 

at  -112.32 and the molecular ion at m/z 284 in the mass spectrum further confirmed the 

structure. The structures of the other intermediates, 4b-j were elucidated in a similar manner.   
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Cyclisation to the 2-styrylchromones was indicated by a marked shift in the H-6' resonance 

from H 7.69 in 4a to H 8.17 as H-5 in 5a.  Further to this, only a single chromene carbonyl 

resonance could be seen at C 178.37 in the 13C NMR spectrum.   The C-2 resonance was 

evident at C 161.47 and the doublet C-F resonance at 161.17 (J = 253.27), which was 

supported by the 19F NMR resonance at  -115.39.  The structures of 5b-j were confirmed 

similarly.The structures of all intermediates and final products were further confirmed by 2D 

NMR spectroscopy and by the presence of the molecular ion using mass spectrometry. 

 

In addition, the crystal structure of 5g, 6-fluoro-2-styrylchromone, the most active compound, 

was carried out to determine the extent to which the molecule was planar.  As can be seen in 

Figure 2-1 and from the data inTable 2-1, the molecule is almost planar with the bond angles 

between 116 and 124.  The compound crystallizes with four planar molecules in the 

symmetric unit and contains four molecules per unit cell. The molecular conformation is 

stabilized by a C-F distance of 1.363 Å and a C=O distance of 1.239Å (Table 2-1).  It is 

postulated that the planarity of the molecule makes it very suitable to fit into enzyme pockets 

of substrates allowing for greater interaction between the molecule and enzyme. 

 

Antibacterial activity 

The fluorinated derivatives were most effective against Gram-positive bacteria, particularly 

B. subtilis and S. aureus, with that against B. subtilis being more predominant.  The two 

methoxy derivatives were effective only against B. subtilis, with the dimethoxy derivative 

also being active against a strain of S. aureus (ATCC 29212), while the methylenedioxy 5j 

derivative displayed no anti-bacterial activity against both Gram-negative and Gram-positive 

bacteria.  
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Figure 2-1ORTEP diagram of a crystal of 6-fluorostyrylchromone at 50% probability level 
 

Table 2-1Selected bond angles and bond lengths for 6-fluorostyrylchromone 

No. Atom1 Atom2 Atom3 Angle Atoms Length(Ao) 

1 O2 C1 C6 122.2 C1-O2 1.374 

2 O2 C1 C2 116.1 O2-C9 1.372 

3 F1 C4 C5 119.0 C1-C6 1.388 

4 F1 C4 C3 117.8 F1-C4 1.363 

5 C9 O2 C1 118.7 C7-O1 1.239 

6 O1 C7 C8 124.0 C6-C5 1.394 

7 O1 C7 C6 121.5 C10-C11 1.331 
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Thus, in comparing the methoxy and fluoro derivatives, the latter were far superior in their 

activity to the methoxy compounds.  Limited anti-bacterial activity was observed with Gram-

negative bacteria (Table 2-2), with K. pneumoniae and P. aeruginosa being completely 

resistant to all of the tested compounds.  Although the addition of fluorine to the benzene ring 

resulted in anti-bacterial action against E. coli ATCC 25922, it was not effective against the 

E. coli ATCC 25218 strain (Table 2-2) and the activity appeared to be strain-specific.  The 

difluorinated styrylchromones showed a broader spectrum, with only5d and 5ebeing effective 

against both E. coli strains tested (Table 2-2), indicating that multiple fluorinations on the 2-

styrylchromone backbone could lead to enhanced activity against E. coli.  However, 

fluorination on the chromone ring only resulted in no activity against E. coli.  

 

The 3’,5’ derivative (5d) showed the greatest activity of all the compounds substituted on the 

phenyl ring. This compound also showed activity against both E. coli strains tested.  This 

could therefore indicate that the activity of the 2-styrylchromones increases with increased 

fluorine substitution on the phenyl ring. Fluorination at position 7 on the chromone ring 

resulted in the compound being active against B. subtilis alone.  This activity increased 

slightly with additional fluorine substitution at the 4’-position, as activity was now 

experienced with S. scuii and both of the E. coli strains with 5e.  However, both compounds 

with fluorine substitution at the 7-position showed no activity against S. aureus.  In contrast, 

the 5g derivative, with fluorine at position-6 of the chromone ring, was the most effective of 

all the tested compounds, with an observable inhibitory effect against allof the Gram-positive 

bacteria (Table 2-2).  In fact, it was the only compound that showed any activity against E. 

faecium.  This compound however did not show any activity against of the Gram negative 

bacteria.  In another study, the 5g derivative (6-fluorinated) also showed anti-rhinovirus 
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activity by interfering with the replication of HRV serotype 14 and serotype 1B (Conti et al., 

2005). 

 

Table 2-2 In vitro anti-bacterial activity of 200 g/ml of 2-styrylchromone derivatives using 
the disk diffusion method 

Comp. Diameter of inhibition zone (mm) 
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5-a 20 - 14  10 - - 14 - - - 

5-b 22 - 15 16 - - 12 - - - 

5-c 24 - 8 8 - - 12 - - - 

5-d 25 - 19 13 - - 14 10 - - 

5-e 27 - - - 12 - 12 14 - - 

5-f 18 - - - - - - - - - 

5-g 20 10 12 11 8 10 - - - - 

5-h 21 - - - - - - - - - 

5-i 23 - 9 - - - - - - - 

5-j - - - - - - - - - - 

*AMP10 38 24 25 20 34 32 20 0 0 0 

**TE30 36 22 28 32 25 36 27 23 12 14 

*AMP (Concentration: 10ug/ml): Ampicilin control, 

** TE (Concentration: 30ug/ml): Tetracycline control. 

 

Although an activity index of greater than or equal to 1, relative to tetracycline susceptibility 

is ideal, in the present study activity indices ranged from 0 (no activity) to 0.75 (Table 2-3).  

Activity indices ranging from 0.27 – 0.56 were obtained following testing of the 6-F 

derivative (5g) against Gram-positive bacteria.Gram-positive organisms appeared to be more 

susceptible to the fluorine and methoxy derivatives compared to Gram-negative bacteria.  

This may be related to their mode of antimicrobial action, which remains to be elucidated.  
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The low activity indices obtained do not preclude the use of these derivatives as anti-bacterial 

agents.Further studies combined with standard antimicrobial agents is needed to investigate 

the synergistic activity of the 2-styrylchromones such as those carried out by Sweeney and 

Zurenko (2003). 

 

Table 2-3Activity indices of 200 µg/ml 2-styrylchromone derivatives in comparison to 
tetracycline 
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5-a 0.56 0 0.50  0.31 0 0 0.52 0 0 0 

5-b 0.61 0 0.54 0.50 0 0 0.44 0 0 0 

5-c 0.67 0 0.29 0.02 0 0 0.44 0 0 0 

5-d 0.69 0 0.68 0.41 0 0 0.42 0.44 0 0 

5-e 0.75 0 0 0 0.48 0 0.44 0.61 0 0 

5-f 0.50 0 0 0 0 0 0 0 0 0 

5-g 0.56 0.46 0.43 0.34 0.32 0.27 0 0 0 0 

5-h 0.58 0 0 0 0 0 0 0 0 0 

5-i 0.64 0 0.32 0 0 0 0 0 0 0 

5-j 0 0 0 0 0 0 0 0 0 0 

*TE30 1 1 1 1 1 1 1 1 1 1 

* TE (Concentration: 30ug/ml): Tetracycline control 

 

2.3. Experimental 

Chemistry 

General Experimental Procedures 

Reagents and chemicals used in this study were purchased from Sigma Aldrich via Capital 

Lab, South Africa and were reagent grade.  All organic solvents were redistilled and dried 

according to standard procedures.  NMR spectra were recorded using a Bruker AvanceIII 400 

MHz spectrometerat room temperature with chemical shifts (δ) recorded against the internal 
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standard, tetramethylsilane (TMS).  IR spectra were recorded on a Perkin Elmer Spectrum 

100 FT-IR spectrometer with universal ATR sampling accessory. For GC-MS analyses, the 

samples were analysed on an Agilent GC–MSD apparatus equipped with DB-5SIL MS (30 m 

x 0.25 mm i.d., 0.25 µm film thickness) fused-silica capillary column. Helium (at 2 ml/min) 

was used as a carrier gas. The MS was operated in the EI mode at 70 eV.Melting points were 

recorded on an Ernst Leitz Wetziar micro-hot stage melting point apparatus. 

 

Typical procedure for the preparation of cinnamic acids 

For the preparation of the cinnamic acids 2a-c and 2h-i, the procedure in Qian (2010) was 

adopted with slight modifications   The required aromatic aldehydes (3.2 mmol), malonic 

acid (3.87 mmol) and piperidine (0.387 mmol) was dissolved in pyridine and stirred at 80-

90C for 4-5 hours. The pyridine was removed under vacuum and the reaction mixture 

poured into water and washed with HCl.  The precipitate formed was filtered and washed 

thrice with hexane, after which it was dried under vacuum to afford the cinnamic acids2a-c 

and 2h-i (Scheme 2-1). 

 

Typical procedure for the synthesis of substituted 2-(cinnamoyloxy)acetophenones 

Phosphorous oxychloride (15.6 mmol) was added to a solution of the appropriate 2-

hydroxyacetophenone (12.0 mmol) and the appropriate cinnamic acid (15.6 mmol) in dry 

pyridine. The solution was stirred at 60–70 C for 3h, and then poured into ice and water, and 

the reactionmixture acidified with hydrochloric acid (pH3-4). The obtained solid was 

removed by filtration and dissolved inethyl acetate (100 ml) and purified by silica gel column 

chromatography using a 7:3 mixture of ethyl acetate:n-hexane as the eluent. The solvent was 

evaporated to dryness and the residue recrystallized from ethanol, resulting in compounds 3a-

j. 
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Typical procedure for the synthesis of substituted 3-hydroxy-1-(2-hydroxyphenyl)-5-(phenyl)-

2,4-pentadien-1-ones 

Potassium hydroxide powder (0.05 mmol, 2.8 g) was added to a solution of 2-

cinnamoyloxy)acetophenones 3a–j (10 mmol) in dimethyl sulfoxide (15 ml). The solution 

was stirred at room temperature until complete disappearance of the startingmaterial, which 

was monitored by TLC.  A typical reaction time was 2h. The solution was then poured into 

ice water and HCl and the pH adjusted to 5. The obtained solid was removed by filtration, 

dissolved in ethyl acetate (150 ml) and purified by silica gel chromatography using ethyl 

acetate:n-hexane (7:3) as the eluent. The solvent was evaporated to dryness and the residue 

recrystallized from ethanol, resulting in 4a-j. 

 

Typical procedure for the synthesis of substituted 2-styrylchromones 

p-Toluenesulfonic acid (3.42 mmol) was added to a solution of the appropriate 3-hydroxy-1-

(2-hydroxyphenyl)-5-(phenyl)-2,4-pentadien-1-ones 4a–j (6.5 mmol) in dimethyl sulfoxide 

(20 ml). The reaction mixture was heated at 90 C for 2h, and then poured into ice andwater 

andstirred for 10 min. The obtained solid was removed by filtration, dissolved in chloroform 

(100 ml) and washed with a 20% aqueous solution of sodium thiosulphate. The solvent was 

evaporated to dryness and the residue was purified by silica gel chromatography, using 

chloroform: n-hexane (7:3) as the eluent, to produce 5a-j. 

 

2-(2’-Fluorocinnamoyloxy) acetophenone (3a) brownsolid residue (90% yield);mp 68-70o C; 

IR (KBr)max:1682 (br C=O),1627 (C=C),1612 (aromatic C-C),1483,1456,1284 (C-

F),1227cm-1; 1H NMR (CDCl3, 400 MHz)  8.00 (d, J=16.16 Hz, 1H),7.85 (dd , J=7.85, 1.58 

Hz, 1H), 7.59 (td, J=7.92, 1.65  Hz, 1H),7.54 (td, J=7.64, 1.58 Hz, 1H), 7.39 (m), 7.33 (td, 
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J=7.64, 0.84 Hz, 1H),7.19 (dd, J= 8.0, 0.84 Hz, 1H), 7.18 (t,J= 7.50 Hz, 1H), 7.11 (dd, 

J=10.25, 8.80 Hz, 1H), 6.76 (d,J=16.16 Hz, 1H), 2.55 (s, 3H, CH3); 13C NMR (CDCl3, 100 

MHz)  197.74 (C=O), 165.10 (C=O), 161.80 (d, JCF = 252.60 Hz), 149.09, 139.95 (d, J= 

2.72 Hz), 133.36, 132.21 (d, J= 14.23 Hz), 131.29, 130.16, 129.43 (d, J= 2.65 Hz), 126.12, 

124.56 (d, J= 3.62 Hz), 123.77, 122.17 (d, J= 11.56 Hz), 119.42 (d, J= 6.93 Hz), 116.32 (d, 

J= 21.72 Hz), 29.77 (CH3);19F NMR (CDCl3, 376.5 MHz) -113.57; EIMS (probe) 70 eV, 

m/z(rel. int.): 284 M+ (3), 149 (100), 121 (63), 101 (65), 75 (15); calculated molecular mass: 

284.28. 

 

2-(3’-Fluorocinnamoyloxy) acetophenone (3b) brown solid residue (68% yield): mp 55-56 

C;IR(KBr)max: 1733 and 1673 (C=O ),1637 (C=C),1444,1136 (C-F),1073cm-1; 1H NMR 

(CDCl3, 400 MHz)  7.83 (dd, J= 7.56, 1.64 Hz, 1H), 7.82 (d, J= 15.96 Hz, 1H,H),  7.55 

(td, J=7.84, 1.64 Hz, 1H), 7.35 (m, 2H),  7.33 (td, J= 7.66, 0.84, 1H), 7.27 (d, J= 9.64 Hz , 

1H),  7.17 (dd, J= 8.0, 0.68 Hz, 1H), 7.10 (tt, J=8.20, 2.0 Hz, 1H), 6.55 (d, J= 15.96 Hz, 1H, 

H), 2.55 (s, 3H, CH3);  13C NMR (CDCl3, 100 MHz) 197.68 (C=O),164.90 (ester C=O ), 

163.02 (d, JCF = 245.63 Hz), 148.99, 145.83 (d, J= 2.73 Hz), 136.27 (d, J=7.85 Hz), 133.39, 

131.21, 130.56 (d, J= 8.04 Hz), 130.19, 126.17, 124.42 (d, J= 2.87 Hz), 123.76, 118.31, 

117.71 (d, J= 21.25 Hz), 114.63 (d, J= 21.88 Hz),29.97(CH3);19F NMR (CDCl3, 376.5 MHz) 

 -112.27; EIMS (probe) 70 eV, m/z(rel. int.): 284 M+ (3), 149 (100), 121 (60), 101(55), 

75(11);calculated molecular mass: 284.28. 

 

2-(4’-Fluorocinnamoyloxy) acetophenone (3c) cream solid residue (72% yield); mp 80-82C; 

IR(KBr)max:1729 (C=O), 1670 (C=O), 1624 (C=C), 1590, 1446, 1221 (C-F), 1202, 1159, 

1050 cm-1;1H NMR (CDCl3, 400 MHz) 7.84 (d, J= 15.96 Hz, 1H, H),7.81 (dd, J=8.00, 

1.60 Hz, 1H), 7.58 (dd, J= 8.60, 5.42 Hz,2H), 7.53 (dd,J=8.00, 1.52 Hz, 
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1H),7.33(td,J=8.06,0.72 Hz, 1H),7.17(dd, J= 8.06, 0.72 Hz, 1H), 7.09 (t, J=8.60 Hz, 2H),6.58 

(d, J= 15.96 Hz, 1H, H), 2.54(s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) 197.78 (C=O), 

165.14 (C=O), 163.02 (d, JCF = 250.70 Hz), 149.07, 145.99, 133.36, 131.30, 130.43 (d, J= 

8.37 Hz), 130.32 (d, J= 3.55 Hz), 130.15, 126.10, 123.78, 116.58 (d, J= 2.37 Hz), 116.20 (d, 

J= 21.85 Hz),29.71 (CH3);19F NMR (CDCl3, 376.5 MHz)  -108.54; EIMS (probe) 70 eV, 

(m/z, rel. int.) 284 M+(21), 149(100), 121(25), 101(20); calculated molecular mass: 284.28. 

 

2-(3’,5’-Difluorocinnamoyloxy) acetophenone (3d)  brown solid residue (70% yield); mp 58-

59C;IR(KBr)max: 1729 (C=O), 1682 (C=O), 1249 (C-F), 1201, 1122 cm-1;  1H NMR 

(CDCl3, 400 MHz) 7.82 (dd, J=7.92,1.04 Hz,1H), 7.75 (d,J=15.96 Hz, 1H, H), 7.55 

(td,J=7.60, 1.06 Hz, 1H), 7.34 (t, J=7.60 Hz, 1H),7.16 (dd, J = 7.92, 0.80 Hz, 1H), 7.08 (m, 

2H), 6.85 (tt, J=8.68, 2.28 Hz, 1H), 6.64 (d, J=15.96 Hz, 1H, H), 2.54 (s, 3H, CH3); 13C 

NMR (CDCl3, 100 MHz) 197.60 (C=O), 164.58 (C=O), 163.03 (d, JCF = 248.29 Hz, 2C), 

148.86, 144.47,137.27 (d, J= 9.54 Hz), 133.47, 131.00,130.28,126.26, 123.74, 119.72, 111.52 

(d, J= 26.08 Hz, 2C),  105.92 (t, J= 24.44 Hz), 29.51 (CH3);  19F NMR (CDCl3, 376.5 MHz) 

 -108.75; EIMS (probe) 70 eV, (m/z, rel. int.):302 M+(3), 167(100), 139(79), 119(60); 

calculated molecular mass: 302.27. 

 

4-fluoro-2-(4’-Fluorocinnamoyloxy) acetophenone (3e)off white solid residue (68% yield); 

mp 60-62C; IR (KBr)max:1724 (C=O),1679 (C=O),1361 (C-O), 1225 (C-F), 1143 cm-1; 1H 

NMR (CDCl3, 400 MHz) 7.87 (dd,J= 8.75, 6.34 Hz, 1H),7.84 (d, J=15.96 Hz, 1H, H),7.58 

(dd, J = 5.40, 1.98 Hz, 2H), 7.10 (dd, J = 8.70, 2.48 Hz, 2H), 7.03 (td,J=8.75, 2.45 Hz, 1H), 

6.92(dd, J= 8.90,2.45 Hz,1H), 6.56(d, J= 15.96 Hz, 1H, H), 2.53 (s,3H, CH3); 13C NMR 

(CDCl3, 100 MHz)  196.11 (C=O), 165.11 (C=O), 164.99 (d, JCF = 254.07 Hz),164.35 (d, 

JCF = 250.95 Hz), 151.16, 146.55, 132.20 (d, J= 10.14 Hz), 130.47 (d, J= 8.47 Hz, 2C), 
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130.17 (d, J= 3.0 Hz), 127.62 (d, J= 3.51 Hz), 116.26 (d, J= 21.94 Hz, 2C), 116.11 (d, J= 

2.24 Hz), 113.24 (d, J= 21.20 Hz), 111.70 (d, J= 23.99 Hz), 29.73 (CH3); 19F NMR (CDCl3, 

376.5 MHz)  -103.81, -103.17; EIMS (probe) 70 eV (m/z, rel. int.)302 M+ (3), 149(100), 

121(92), 101(75); calculated molecular mass: 302.27. 

 

4-fluoro-2-cinnamoyloxy acetophenone (3f)brownsolid residue (86% yield); mp 98-100 C;  

IR(KBr)max:1730 (C=O),1678 (C=O),1634,1598,1247 (C-F),1100,886cm-1; 1H NMR 

(CDCl3, 400 MHz) 7.88(d, J=15.92 Hz, 1H, H), 7.86 (dd, J= 8.60, 5.40 Hz, 1H),7.58 (dd, 

J= 7.50, 1.90 2H),7.44 (m, 2H), 7.41 (m, 1H), 7.03 (ddd,J=8.60, 7.87, 2.48 Hz, 1H),6.94 (dd, 

J = 8.90, 2.48 Hz, 1H),  6.63(d, J=15.92 Hz, 1H, H), 2.53 (s, 3H, CH3); 13C NMR (CDCl3, 

100 MHz)  196.13 (C=O), 166.44 (d, JCF = 255.80 Hz), 164.75 (C=O), 151.00, 145.40, 

133.86, 132.29 (d, J = 10.15 Hz), 131.08, 129.04 (2C), 128.51 (2C), 127.00, 116.29, 113.43 

(d, J = 21.13 Hz), 111.73 (d, J = 24.07 Hz), 29.83 (CH3);19F NMR (CDCl3, 376.5 MHz) -

103.91; EIMS (probe) 70 eV (m/z, rel. int.) 284 M+ (3), 131(100), 103(71), 77 (39), 

51(11);calculated molecular mass: 284.28.  

 

5-fluoro-2-cinnamoyloxy acetophenone (3g)brownsolid residue(90% yield ); mp 81-83C; IR 

(KBr)max: 1731 (C=O), 1681 (C=O), 1632, 1581, 1131 (C-F), 983 cm-1;1H NMR (CDCl3, 

400 MHz)  7.88(d, J=15.92 Hz, 1H, H),7.58 (m, 2H),  7.49 (dd, J=8.70, 3.04 Hz, 1H),7.40 

(m, 1H), 7.39 (m, 2H), 7.23 (dd, J = 7.80, 3.04 Hz, 1H),7.15(dd,J = 8.70, 4.65 Hz, 1H), 6.64 

(d, J=15.92 Hz, 1H, H), 2.53 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) 196.35 (C=O), 

165.22 (C=O), 159.90 (d, JCF = 245.12 Hz), 147.79, 145.03, 133.90,132.63 (d, J= 6.10 Hz), 

131.04, 129.04 (2C), 128.48 (2C),125.44 (d, J= 7.96 Hz), 120.08 (d, J= 23.26 Hz), 116.51 (d, 

J= 20.48 Hz), 116.61, 29.78 (CH3); 19F NMR (CDCl3, 376.5 MHz) -115.35; EIMS (probe) 
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70 eV (m/z, rel. int.)  284 M+ (30), 266(8), 145(25), 131(100), 103(44), 77 (21); calculated 

molecular mass: 284.28. 

 

2-(4’-methoxycinnamoyloxy) acetophenone (3h)off white solid residue (91% yield); mp 97-

99 C; IR (KBr) max: 1711 (C=O), 1680 (C=O), 1600 (C=C), 1509, 1581, 1246, 1189 cm-

1;1H NMR (CDCl3, 400 MHz) 7.83 (d, J =15.92 Hz, 1H), 7.80 (dd, J = 8.04, 1.55 Hz, 1H), 

7.53 (d, J = 8.72 Hz, 2H), 7.51 (td, J = 7.55, 1.55 Hz, 1H), 7.31 (td, J = 8.04, 0.76 Hz, 1H), 

7.17 (d, J = 8.0 Hz, 1H), 6.91 (dd, J = 8.72, 2.64 Hz, 2H), 6.52 (d, J = 15.92 Hz, 1H), 3.84 (s, 

3H, OCH3),  2.54 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz)  197.90 (C=O), 165.53 (C=O), 

161.91, 149.28, 147.15, 133.26, 131.54, 130.23 (2C), 130.04, 126.78, 125.95, 123.81, 114.45 

(2C), 114.10,  55.43, 29.92;  EIMS (probe) 70 eV (m/z, rel. int.) 296  M+(7), 161 (100), 133 

(49), 118 (16), 90 (15), 77 (16);calculated molecular mass: 296.10. 

 

2-(3’,4’-methoxycinnamoyloxy) acetophenone (3i) off white solid residue(56% yield); mp 99-

101 C; IR (KBr)max: 1728 (C=O), 1683 (C=O), 1633 (C=C), 1515, 1254  cm-1;  1H NMR 

(CDCl3, 400 MHz)7.82 (d, J = 15.88 Hz, 1H),  7.81 (dd, J =7.80, 1.72 Hz, 1H), 7.54 (td, J 

= 7.92, 1.56 Hz, 1H), 7.31 (td, J = 7.55, 0.90 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.16 (dd, J = 

8.24, 1.88 Hz, 1H), 7.10 (d, J= 1.88 Hz, 1H), 6.87 (d, J = 8.24 Hz, 1H), 6.52 (d, J = 15.88 Hz, 

1H), 3.91 (s, 6H, 2 x OCH3),  2.55 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz)  197.90 

(C=O), 165.48 (C=O),  151.67, 149.30, 149.23, 147.36, 133.29, 131.49, 130.06, 127.03, 

125.98, 123.81, 123.31, 114.34, 111.05, 109.82, 55.94, 56.00, 29.86; EIMS (probe) 70 eV 

(m/z, rel. int.) 326 M+(20), 191 (100), 163 (36), 148 (19), 77 (22);calculated molecular mass: 

326.10. 
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2-(3’,4’-methylenedioxycinnamoyloxy) acetophenone (3j)off white solid residue (59% yield), 

mp 99-100 C, IR (KBr) max: 1715 (C=O), 1679 (C=O), 1600 (C=C), 1449, 1202 (C-F), 925 

cm-1; 1H NMR (CDCl3, 400 MHz) 7.80 (dd, J = 7.92, 1.56 Hz, 1H), 7.78 (d, J = 15.88 Hz, 

1H), 7.53 (td, J = 7.92, 1.56 Hz, 1H), 7.31 (td, J = 7.92, 1.56 Hz, 1H), 7.16 (d, J = 7.92 Hz, 

1H), 7.08 (d, J = 1.56 Hz, 1H), 7.05 (dd, J = 7.94, 1.56 Hz, 1H ),  6.82 (d, J = 7.94 Hz, 1H), 

6.47 (d, J = 15.88 Hz, 1H), 6.00 (s, 2H, OCH2O), 2.54 (s, 3H, CH3);13C NMR (CDCl3, 100 

MHz)  197.84 (C=O), 165.39 (C=O), 150.17, 149.21, 148.47, 147.11, 133.28, 131.47, 

130.06, 128.49, 125.99, 125.18, 123.79, 114.60, 108.64, 106.70, 101.70 (OCH2O), 29.86; 

EIMS (probe) 70 eV (m/z, rel. int.)  310 M+(12), 175(100), 145(64), 117(24), 89(40), 63(16); 

calculated molecular mass: 310.30. 

 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(2-fluorophenyl)-2,4-pentadien-1-one (4a)pale yellowsolid 

residue (93% yield); mp 158-160C, IR (KBr)max:1680 (C=O), 1626, 1581, 1483, 1283 (C-

F), 1227 (C-O) cm-1;1H NMR (CDCl3, 400 MHz) 14.55 (s, 3-OH), 12.17(s, 2'-OH), 7.73(d, 

J= 16.00 Hz, 1H Hβ),7.69 (dd, J=8.01, 1.44  Hz, 1H),7.54 (td, J=7.65, 1.48 Hz, 1H), 7.43 

(ddd,J= 8.48, 7.08, 1.44 Hz, 1H),  7.32 (m, 1H), 7.16(t, J=7.56 Hz, 1H),7.09(t, J= 8.20 Hz, 

1H),6.97(dd, J=8.48, 0.68 Hz, 1H),6.88 (td, J = 8.12, 0.84 Hz, 1H), 6.70 (d, J= 16.00 Hz, 1H, 

Hα), 6.32 (s,1H);13C NMR (CDCl3, 100 MHz) 196.47 (C=O), 174.03 (C3),162.63, 161.41 

(d, JCF = 253.82 Hz),136.18, 132.62 (d, J= 2.23 Hz),131.38 (d, J= 8.82 Hz), 129.23 (d, J = 

3.00 Hz),128.56, 124.84 (d, J = 7.77 Hz), 124.52 (d, J = 3.57 Hz),123.11 (d, J = 11.54 Hz), 

119.06,119.04,118.76, 116.29 (d, J = 21.90 Hz), 97.41 (C2);19F NMR (CDCl3, 376.5 MHz)  

-114.18;EIMS (probe) 70 eV (m/z, rel. int.) 284 M+ (26), 264(7), 149(100), 121 (59), 

101(20); calculated molecular mass: 284.28. 

 



74 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(3-fluorophenyl)-2,4-pentadien-1-one (4b)yellow solid 

residue (72% yield), mp 115-117C,IR (KBr)max:1641 (C=O), 1626 (C=C), 1581, 1488, 

1429, 1294 (C-F),1236 cm-1;1H NMR (CDCl3, 400 MHz) 14.55 (s, 3-OH), 12.15(s, 2'-OH), 

7.68(dd, J=8.01, 2.01 Hz, 1H), 7.58(d, J=15.78 Hz, 1H, Hβ), 7.44 (ddd,J=8.53, 7.05, 1.54 

Hz, 1H), 7.34 (dd, J= 7.92, 5.70 Hz, 1H), 7.30 (d, J=7.76 Hz, 1H), 7.24 (m, 1H), 7.06 (m, 

1H), 6.89 (ddd, J=8.01, 7.05, 0.90 Hz, 1H), 6.97 (dd, J= 7.90, 0.90 Hz, 1H),6.56 (d, J=15.78 

Hz, 1H, Hα), 6.32 (s, 1H);  13C NMR (CDCl3,100MHz) 196.25 (C=O), 173.63,164.87 (d, 

JCF = 247.22 Hz),162.68,138.32 (d, J= 2.51 Hz),137.28 (d, J= 7.75 Hz), 136.00, 130.50 (d, J= 

8.23 Hz), 128.53, 124.06 (d, J= 2.75 Hz), 123.51,119.05, 119.01, 118.81, 116.90 (d, J= 21.60 

Hz), 114.05 (d, J= 20.01 Hz), 97.44 (C2);19F NMR (CDCl3, 376.5 MHz) -112.32; EIMS 

(probe) 70 eV (m/z, rel. int.) 284 M+(25), 149 (100), 265 (8), 121 (88), 101 (17); calculated 

molecular mass: 284.28. 

 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(4-fluorophenyl)-2,4-pentadien-1-one (4c) pale yellow 

solid residue (92% yield); mp 130-132 C, IR (KBr) max: 1683 (C=O), 1627 (C=C), 1598, 

1572, 1489, 1156 (C-F) cm-1; 1H NMR (CDCl3, 400 MHz) 14.62 (s, 3-OH ), 12.17(s, 2'-

OH),7.68 (dd,J=8.05,1.44 Hz, 1H), 7.60 (d, J=15.95 Hz, 1H, Hβ),7.52 (dd, J= 8.85, 5.36 Hz, 

2H),7.44 (ddd, J=8.52, 7.10, 1.44 Hz, 1H), 7.08 (t, J=8.85 Hz, 2H),6.97 (dd, J=8.52, 0.85 Hz, 

1H),6.88(ddd, J= 8.05, 7.10, 0.85 Hz, 1H), 6.49(d, J=15.95 Hz, 1H, Hα), 6.29(s,1H); 13C 

NMR (CDCl3, 100 MHz) 196.03 (C=O), 174.25 (C3), 163.78 (d, JCF = 250.26 Hz), 162.64, 

138.53,135.87, 130.23 (d, J = 3.52 Hz), 129.81 (d, J = 8.21 Hz, 2C), 128.47, 121.88, 119.04 

(2C), 118.79, 116.15 (d, J = 21.85 Hz, 2C), 96.98 (C2); 19F NMR (CDCl3, 376.5 MHz)  -

109.55; EIMS (m/z, rel. int.) 284 M+(21), 149 (100), 121 (71), 265 (4),163 (16), 101 (18); 

calculated molecular mass: 284.28. 
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3-Hydroxy-1-(2-hydroxyphenyl)-5-(3,5-difluorophenyl)-2,4-pentadien-1-one (4d) light brown 

solid residue (91% yield), mp 130-132 C, IR (KBr)max: 1698 (C=O),1658 (C=C),1119 (C-

F), 962, 843 cm-1;  1H NMR (CDCl3, 400 MHz)  14.46 (s, 3-OH), 12.10(s, 2'-OH), 7.67 

(dd,J=8.05,1.40 Hz, 1H), 7.51(d, J=15.70 Hz, 1H, Hβ ),7.45 (ddd, J= 8.47, 7.24, 1.62 Hz, 

1H), 7.04 (dd, J=8.22, 2.16 Hz, 2H), 6.98  (dd, J= 8.47, 1.06 Hz, 1H), 6.89 (ddd, J= 8.05, 

7.24, 1.06 Hz, 1H), 6.80(tt, J=8.76, 2.16 Hz, 1H),6.55(d, J= 15.70 Hz, 1H, Hα), 6.32 (s,1H); 

13C NMR (CDCl3, 100 MHz) 196.42 (C=O), 172.84 (C3), 163.29 (dd, JCF= 247.76, 13.10 

Hz, 2C), 162.73, 138.30 (t, J = 9.54 Hz),136.97,136.17,128.56,124.80,119.14,118.94, 118.85, 

110.48 (dd, J= 18.53, 6.83 Hz, 2C),105.07 (d, J = 25.60 Hz),97.89 (C2);19F NMR (CDCl3, 

376.5 MHz) δ -109.10;  EIMS (m/z, rel. int.)302 M+ (28), 167(100), 121(76), 285(10), 

139(29), 121(76); calculated molecular mass: 302.27. 

 

3-Hydroxy-1-(4-fluoro-2-hydroxyphenyl)-5-(4-fluorophenyl)-2,4-pentadien-1-one (4e) yellow 

solid residue (82%yield); mp143-145C; IR (KBr)max:1726 (C=O),1629 (C=C),1234 (C-F), 

1157, 975, 824, 803, 789 cm-1;1H NMR (CDCl3,400MHz) 14.42 (s, 3-OH), 12.47 (s, 2'OH), 

7.60(d,J=15.90 Hz, 1H, Hβ),7.68 (dd,J=8.98, 6.40 Hz,1H),7.52(dd,J=8.72 5.40 Hz, 2H), 7.08 

(t,J=8.58 Hz, 2H),6.65 (dd, J= 10.37, 2.50 Hz, 1H ), 6.60(ddd,J= 8.77, 8.16,2.15 Hz, 1H), 

6.51 (d, J = 15.90 Hz, 1H, Hα),6.20 (s, 1H); 13C NMR (CDCl3, 100 MHz)  194.87 (C=O), 

174.21 (C3),166.40 (d,JCF= 212.10 Hz), 165.16 (d, J = 14.10 Hz), 162.98 (d, JCF=250.55 Hz), 

138.72,130.65 (d, J =11.90 Hz),130.41 (d, J =10.83 Hz),129.85 (d, J=8.55 Hz, 2C), 121.70, 

116.17 (d, J =21.88 Hz, 2C), 115.95, 107.31 (d, J = 22.57 Hz),105.30 (d, J = 23.57 Hz), 

96.76 (C2); 19FNMR (CDCl3, 376.5 MHz)-100.64, -109.57; EIMS (m/z, rel. int.) 302 M+ 

(41), 149 (100), 283 (18), 207 (11), 163 (35), 139 (95), 121 (37), 101 (35); calculated 

molecular mass: 302.27. 
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3-Hydroxy-1-(4-fluoro-2-hydroxyphenyl)-5-(phenyl)-2,4-pentadien-1-one (4f) yellowsolid 

residue (64% yield); mp 143-145C; IR (KBr)max: 1632 (C=O), 1579 (C=C), 1178 (C-F) 

cm-1; 1H NMR (CDCl3, 400 MHz)  14.48 (s, 3-OH ), 12.55 (s, 2'-OH), 7.68 (dd, J= 8.94, 

6.42 Hz, 1H),7.64(d, J= 15.80 Hz, 1H, Hβ), 7.53 (dd, J= 8.06, 2.05 Hz, 2H), 7.38 

(m,3H),6.65 (dd, J=10.30, 2.50 Hz, 1H), 6.60(td, J = 8.0, 2.50 Hz, 1H), 6.57 (d, J= 15.80 Hz, 

1H, Hα),6.21 (s,1H); 13C NMR (CDCl3, 100 MHz) 194.85 (C=O),174.42 (C3), 165.17 

(d,JCF= 209.24 Hz), 165.08 (d, J = 14.07 Hz), 140.14, 134.92, 130.47 (d, J = 11.65 Hz), 

130.18, 128.99 (2C), 128.02 (2C), 122.00, 115.95, 107.29 (d, J = 22.65 Hz), 105.27 (d, J = 

23.41 Hz), 96.78 (C2);19F (CDCl3, 376.5 MHz)  -100.72;EIMS (m/z, rel. int.) 284 M+(33), 

131 (100), 265 (14), 139 (64), 103 (42), 77 (39), 51 (11); calculated molecular mass: 284.28. 

 

3-Hydroxy-1-(5-fluoro-2-hydroxyphenyl)-5-phenyl-2,4-pentadien-1-one (4g) yellow solid 

residue (90% yield); mp 118-120oC; IR (KBr):1632(C=O),1550,1487,1248,1180,960,781,754 

cm-1;1H NMR (CDCl3, 400 MHz) 14.59 (s, 3-OH ), 11.94 (s, 2'-OH), 7.66 (d, J= 15.81 Hz, 

1H Hβ), 7.54(dd , J= 7.88, 2.20 Hz, 2H), 7.40 (m, 3H), 7.34 (dd,J= 9.0, 3.08 Hz, 1H), 7.17 

(ddd, J= 9.16, 7.88, 3.00 Hz, 1H), 6.93 (dd, J= 9.08, 4.68 Hz, 1H),6.58 (d, J= 15.81 Hz, 1H, 

Hα),6.20(s,1H);13C NMR (CDCl3, 100 MHz) 194.82 (d, J = 2.72 Hz, C=O), 175.23 (C3), 

158.72, 155.12 (d,JCF= 236.79 Hz), 140.67, 134.84, 130.42, 129.02 (2C), 128.10 (2C), 123.19 

(d, J = 23.38 Hz), 121.86,  119.95 (d, J = 7.41 Hz), 118.72 (d, J = 6.50 Hz), 113.46 (d, J = 

23.53 Hz), 96.81 (C2);19F (CDCl3, 376.5 MHz)  -124.33;EIMS (probe) 70 eV (m/z, rel. int.) 

284 M+(5), 131 (100), 103 (80), 77 (35); calculated molecular mass: 284.28. 

 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-2,4-pentadien-1-one (4h) yellowsolid 

residue (90% yield); mp 167-169 C; IR (KBr)max:1645 (C=O),1599, 1514, 1462, 1258, 

963, 828, 749 cm-1;1H NMR (CDCl3, 400 MHz) 14.72 (s, 3-OH),12.24 (s, 2'-OH), 7.67 (dd, 
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J=7.95, 1.60 Hz, 1H),7.61 (d, J= 15.76 Hz, 1H),7.49 (d, J = 8.80 Hz, 2H), 7.42 (ddd, J= 8.50, 

7.50, 1.60 Hz, 1H),6.96 (dd,J=8.50, 2.10 Hz, 1H), 6.91 (d, J = 8.80 Hz, 2H), 6.89 (m, 1H), 

6.45 (d, J= 15.76 Hz, 1H),6.26 (s,1H),3.83 (s, 3H, OCH3);13C NMR (CDCl3, 100 MHz) 

195.32 (C=O),174.91 (C3), 162.26, 161.12, 139.49, 135.33, 129.77, 129.44 (2C), 128.83, 

119.41, 118.85, 118.69, 118.44, 114.16 (2C),  96.13, 55.15;EIMS (probe) 70 eV (m/z, rel. 

int.) 296  M+(14), 161(100), 207(18), 133(77), 118(29); calculated molecular mass: 296.10. 

 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(3,4-dimethoxyphenyl)-2,4-pentadien-1-one(4i)yellow 

solid residue (84% yield); mp 130-132oC; IR(KBr): 1685(C=O), 1621, 1564, 1488, 1252, 

1161;1H NMR (CDCl3, 400 MHz) 14.71 (s, 3-OH),12.23 (s, 2'-OH), 7.67 (dd, J= 8.08, 1.45 

Hz,1H),7.59 (d, J = 15.68 Hz, 1H, Hβ),7.42 (ddd, J= 8.52, 8.30, 1.45 Hz, 1H),7.11 (dd, J = 

8.30, 1.90 Hz, 1H), 7.06 (d,J= 1.82 Hz, 1H),6.96 (dd, J= 8.43, 0.68 Hz,1H), 6.87 (d, J = 8.30 

Hz, 1H), 6.85 (td, J = 8.30, 0.68 Hz, 1H), 6.45 (d, J= 15.68 Hz, 1H, Hα),  6.28 (s,1H),3.92 (s, 

3H, OCH3), 3.91 (s, 3H, OCH3); 13C NMR (CDCl3, 100 MHz) 195.62 (C=O),175.00 (C3), 

162.54,151.13, 149.31, 139.98, 135.64, 128.39, 128.02, 122.60, 119.91, 119.12, 118.96, 

118.74, 111.19, 109.67, 96.48 (C2), 56.01, 55.93;EIMS (probe) 70 eV (m/z, rel. int.) 326 

M+(15), 191 (100), 207 (16), 163 (49), 148 (19), 133 (18), 77 (23);calculated molecular mass: 

326.12. 

 

3-Hydroxy-1-(2-hydroxyphenyl)-5-(3,4-methelenedioxyphenyl)-2,4-pentadien-1-one (4j) light 

yellow solid residue (94%yield); mp165-167C; IR (KBr)max:1693 (C=O), 1621, 1602, 

1566, 1484, 1446, 1239 (C-O), 1171, 1035, 925 cm-1; 1H NMR (CDCl3, 400 MHz) 14.68 (s, 

3-OH ), 12.24 (s, 2'-OH), 7.66 (dd, J=8.01, 1.56 Hz, 1H), 7.55 (d, J=15.64 Hz, 1H Hβ), 7.42 

(ddd, J = 8.45, 8.01, 1.56  Hz, 1H), 7.04 (bd, J = 0.35 Hz), 7.02 (dd, J= 8.00, 1.20 Hz,1H), 

6.96 (dd,J=8.45, 0.50  Hz, 1H), 6.87 (td, J = 8.01, 0.50  Hz, 1H), 6.81 (d, J=8.00 Hz, 
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1H),6.39 (d, J= 15.64 Hz, 1H, Hα),6.26 (s,1H),  6.00 (s, 2H, OCH2O); 13C NMR (CDCl3, 100 

MHz) 195.69(C=O), 174.83 (C3), 162.55, 149.57(C4’), 148.47(C3’), 139.73, 135.68, 

129.50, 128.42, 124.56, 120.13, 119.09, 118.99, 118.73, 108.70, 106.31, 101.61 (OCH2O), 

96.61 (C2); EIMS (probe) 70 eV (m/z, rel. int.) 310 M+ (18), 175(100), 207(28), 145(87), 

157(42), 117 (44), 89(52), 43(62); calculated molecular mass: 310.30. 

 

2'-Fluoro-2-styrylchromone (5a)light yellowsolid residue (68% yield); mp 150-152 C; UV 

λmax (CH3OH) nm (log ): 325 (3.37); IR (KBr) max: 1682 (C=O), 1625, 1589 (C-C), 1562, 

1464, 1391 (C-F), 1125, 968 cm-1;1H NMR (CDCl3, 400 MHz) 8.17 (dd,J= 7.94, 1.56 Hz, 

1H),7.72 (d, J=16.24 Hz, 1H, H), 7.66 (ddd,J= 8.56, 7.20, 1.56 Hz,1H),7.59 (td, J= 7.60, 

1.50 Hz, 1H), 7.53 (d,J=8.28 Hz,1H),7.37 (td, J = 7.92, 0.80  Hz, 1H) ,7.32 (m, 1H), 7.17 

(t,J=7.92 Hz,1H), 7.11 (ddd, J = 9.20, 8.20, 2.36 Hz, 1H),  6.87 (d, J=16.24 Hz, 1H, H), 

6.32 (s, 1H);  13C NMR (CDCl3, 100 MHz)  178.46 (C=O), 161.47, 161.17 (d, JCF=253.27 

Hz, C2’), 156.02,133.88,131.25 (d, J= 8.67 Hz), 129.47 (d, J= 3.10 Hz, C), 128.39 (d, J= 

2.72 Hz), 125.69, 125.06, 124.56 (d, J= 3.57 Hz),124.13, 123.09 (d, J = 11.68 Hz), 122.67 (d, 

J = 6.52 Hz, C), 117.93, 116.23 (d, J= 21.81 Hz), 111.21; 19F NMR (CDCl3, 376.5 MHz) 

-115.39; EIMS (m/z, rel. int.) 265 (M+-1)(100), 237(12), 207(20), 146(36), 92(25); HRMS 

(m/z) M+ 266.0733 (calculated for C17H11FO2: 266.0743). 

 

3’-Fluoro-2-styrylchromone (5b) brown solid residue (62% yield), mp 105-108 C; UV λmax 

(CH3OH) nm (log ): 325 (3.34); IR (KBr) max:1694 (C=O), 1622, 1579 (C-C),1465,1389 

(C-F),1247,1122,967,775 cm-1;1H NMR (CDCl3, 400 MHz) 8.18 (dd, J = 7.92, 1.32 Hz, 

1H), 7.68 (dt, J = 8.60, 1.64 Hz, 1H), 7.55 (d, J = 16.00 Hz, 1H), 7.52 (d, J = 8.60 Hz, 1H), 

7.36 (m, 3H), 7.26 (m, 1H), 7.06 (t, J = 8.04 Hz, 1H), 6.77 (d, J = 16.00 Hz, 1H), 6.34 (s, 
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1H);13C NMR (CDCl3, 100 MHz)  178.51 (C=O), 163.15 (d, J = 245.48 Hz, C3'), 161.22, 

156.00, 137.28 (d, J = 7.84 Hz), 135.57 (d, J = 2.77 Hz, C), 133.89, 130.54 (d, J = 8.30 Hz), 

125.76, 125.14, 124.09, 123.61 (d, J = 2.67 Hz), 121.67 (C),  117.87, 116.69 (d, J = 21.60 

Hz), 113.99 (d, J = 21.99 Hz), 111.15; 19F NMR (CDCl3, 376.5 MHz) -112.42; EIMS (m/z, 

rel. int.) 265 (M+-1) (100), 237(6), 209(8), 173(16), 146(40), 121(20), 92(27); HRMS (m/z): 

266.0726 M+ (calculated for C17H11FO2: 266.0743). 

 

4'–Fluoro-2-styrylchromone (5c) off white solid residue (70% yield), mp 158-160C; UV 

λmax (CH3OH) nm (log ): 328 (3.39); IR (KBr):1691 (C=O), 1623, 1594, 1506, 1466, 1391 

(C-F), 1224, 969, 817 cm-1;  1H NMR (DMSO-d6, 400 MHz) 8.01 (dd, J= 7.92, 1.44 Hz, 

1H), 7.82 (m, 1H), 7.79(m, 2H), 7.70 (d, J = 16.16 Hz, 1H, H), 7.69 (d,J= 8.48 Hz,1H),7.47 

(t, J = 7.44 Hz, 1H),  7.28(t,J=8.78 Hz, 2H), 7.16 (d, J=16.16 Hz, 1H, H),  6.46 (s, 1H); 13C 

NMR (DMSO-d6, 100 MHz)  177.42 (C=O), 162.88 (d, JCF =240.60 Hz, C4'),161.64, 

155.43, 135.38 (C), 134.35, 131.60 (d, J = 3.22 Hz), 130.02 (d, J = 8.11 Hz, 2C), 125.31, 

124.76, 123.39, 120.38 (C),118.20, 115.97 (d, J = 24.34 Hz, 2C), 110.06; 19F NMR 

(DMSO-d6, 376.5 MHz) -110.72;EIMS (m/z, rel. int.) 265 (M+-1) (100), 237(8), 207(13), 

173(10), 146(39), 120(18), 92 (20); HRMS (m/z): 266.0721 M+ (calculated for C17H11FO2: 

266.0743). 

 

3’,5'-Difluoro-2-styrylchromone (5d )light brown solid residue (92% yield); mp 114-116 C; 

UV λmax(CH3OH) nm (log )322 (3.49); IR (KBr) max:1701 (C=O), 1615,1586,1465,1390 

(C-F),1309,1272,1117 (C-F),966,847,751 cm-1;1H NMR (CDCl3, 400 MHz) 8.18 (dd, J= 

7.92, 1.56 Hz, 1H),7.72 (ddd,J= 8.55, 7.20, 1.56 Hz,1H),7.55 (d,J=8.30 Hz,1H), 7.53 (d, 

J=15.96 Hz, 1H, H), 7.43 (td, J = 7.92, 0.68 Hz, 1H),7.12 (m, 3H), 6.85 (tt,J=8.70, 2.35 
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Hz,1H),6.80 (d, J=15.96 Hz, 1H, H), 6.34 (s, 1H);  13C NMR (CDCl3, 100 MHz) 178.37 

(C=O), 163.47 (d, JCF=248.84 Hz, C3’), 160.59, 155.97,138.28 (d, J = 9.50 Hz),134.22 (d, J 

= 3.02 Hz, C),133.99,125.79, 125.25, 124.11,122.98(C), 117.87, 111.70, 110.41, 110.20 

(d, J = 11.25 Hz), 110.15 (d, J = 25.90 Hz), 104.96 (d, J = 25.31 Hz);19F NMR (CDCl3, 376.5 

MHz)  -108.99; EIMS (m/z, rel. int.) 284 M+ (100), 267(82), 191(40), 164(63), 121(58), 

92(65),64(21); HRMS (m/z): 284.0633 M+ (calculated for C17H10F2O2: 284.0649). 

 

7,4'-Difluro-2-styrylchromone (5e) pale yellow solid residue(45% yield); mp 182-184C; UV 

λmax (CH3OH) nm (log ) 322 (3.54); IR(KBr): 1659 (C=O),1621 (C=C), 

1598,1511,1438,1377 (C-F),1233,1140,1112, 967 cm-1; 1H NMR (CDCl3, 400 MHz)  8.18 

(dd, J=8.80, 6.35 Hz, 1H), 7.56 (dd,J= 8.60, 5.56, Hz, 2H), 7.53 (d, J= 16.00 Hz, 1H, Hβ), 

7.20 (dd, J= 9.04, 2.40 Hz, 1H), 7.12 (m, 1H ), 7.10 (t, J= 8.60 Hz, 2H), 6.67 (d, J = 16.00 

Hz, 1H, H), 6.28 (s, 1H);13C NMR (CDCl3, 100 MHz) 177.41 (C=O),167.07(d, JCF= 

210.10 Hz),164.97 (d, JCF= 251.55 Hz), 161.82, 156.88, 135.83, 131.15 (d, J= 3.56 Hz), 

129.52 (d, J= 8.19 Hz, 2C), 128.22 (d, J= 10.51 Hz), 120.96, 119.67, 116.21 (d, J= 21.88 Hz, 

2C), 113.73 (d, J= 22.45 Hz), 110.63, 104.60 (d, J= 25.49 Hz); 19F NMR (CDCl3, 376.5 

MHz)  -102.96, -109.89; EIMS (m/z, rel. int.) 283 (M+-1) (100), 267(56), 255(8), 227(13), 

173(13), 146(50), 120(10);HRMS (m/z): 284.0642 (calculated for C17H10F2O2: 284.0649). 

 

7-Fluoro-2-strychromone (5f) off white solid residue (94% yield); mp 116-118 C; UV λmax 

(CH3OH) nm (log ) 312 (3.35); IR (KBr)max:1667 (C=O),1599,1538, 1438, 1382 (C-F 

stretch), 1143, 1012, 960 cm-1; 1H NMR (CDCl3, 400 MHz) 8.19 (dd, J=8.85, 6.35 Hz, 1H), 

7.59 (d, J = 15.96 Hz, 1H, H),7.58 (dd, J = 8.10, 1.48 Hz, 2H),7.41 (m, 3H), 7.21 (dd, 

J=9.13, 2.40 Hz, 1H),  6.76 (d, J= 15.96 Hz, 1H, H), 7.10 (td, J = 8.60, 2.40 Hz, 1H),  6.29 
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(s, 1H); 13C NMR (CDCl3, 100 MHz)  177.48 (C=O),164.48 (d, JCF = 240.00 Hz), 

162.01,157.05 (d, J = 13.20 Hz), 137.19 (C), 134.88, 130.00, 129.05 (2C),128.20 (d, J = 

10.64 Hz),127.72 (2C), 121.00, 119.89 (C),113.69 (d, J = 22.56 Hz),110.62, 104.63 (d, J = 

25.39 Hz);19F NMR (CDCl3, 376.5 MHz) -103.04; EIMS (m/z, rel. int.) 265 (M+-1) (100), 

250(36), 237(5), 209(7), 128(29), 102(8); HRMS (m/z): 266.0730 (calculated for C17H11FO2: 

266.0743). 

 

6-Fluoro-2-styrylchromone (5g) light green solid residue (89% yield); mp 108-110o C; IR 

(KBr): 1710 (C=O), 1628,1567,1478,1445,1378,1284,1172,967,818,751 cm-1;  1H NMR 

(CDCl3, 400 MHz) δ 7.81 (dd, J=8.20, 3.15 Hz, 1H), 7.58 (d, J=16.08 Hz, 1H, Hβ),7.56 (d, 

J= 8.0 Hz, 2H),7.52 (dd, J = 9.10, 4.15 Hz, 1H), 7.40 (m, 3H), 6.77 (d, J=16.08 Hz,1H, Hα), 

6.31 (s, 1H); 13C NMR (CDCl3, 100 MHz)  177.62 (d, J = 2.28 Hz, C=O), 161.99, 159.50 

(d, JCF=245.09 Hz), 152.20, 137.35 (C), 134.88, 130.02, 129.05 (2C), 127.73 (2C), 125.47 

(d, J = 7.10 Hz), 121.76 (d, J = 25.13 Hz), 120.03 (C), 119.89 (d, J = 7.89 Hz), 110.69 (d, J 

= 23.42 Hz), 109.89; 19F NMR (CDCl3, 376.5 MHz)  -115.51; EIMS (m/z, rel. int.) 265 (M+ 

-1) (100), 249(43), 237(9), 209(12), 128(56); calculated molecular mass: 266.67. 

 

4'-Methoxy-2-styrylchromone (5h) yellow solid residue (90% yield); mp 167-169 C; UV 

λmax (CH3OH) nm (log ) 354 (3.33); IR (KBr)max:1645 (C=O), 1599, 1514, 1462, 1258, 

963, 828, 749 cm-1; 1H NMR (CDCl3, 400 MHz) dd, J = 7.95, 1.60 Hz, 1H), 7.65 

(ddd, J = 8.56, 7.12, 1.60 Hz, 1H),  7.55 (d, J = 15.96 Hz, 1H, H), 7.52 (d, J = 8.56 Hz), 

7.48 (d, J = 8.70 Hz, 2H), 7.36 (t, J = 7.95 Hz, 1H),  6.92 (d, J = 8.70 Hz, 2H), 6.64 (d, J = 

15.96 Hz, 1H, H), 6.28 (s, 1H), 3.84 (s, 3H, OCH3); 13C NMR (CDCl3, 100 MHz) 

C=O), 162.25, 161.11, 156.03, 136.65 (C), 133.60, 129.29 (2C), 125.69, 124.91, 
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124.15, 117.85(C), 117.90, 117.85, 114.48 (2C), 109.94, 55.42 (OCH3); EIMS (m/z, rel. 

int.) 277 (M+-1) (100), 247(21), 207(19), 158(38), 115(55); calculated molecular mass: 

278.30.  

 

3’,4’-Dimethoxy-2-styrylchromone (5i) yellow solid residue (55% yield); mp 162-163 C; 

UV λmax (CH3OH) nm (log )367 (3.18); IR (KBr)max: 1682 (C=O), 1617, 1558, 1509, 1464, 

1381, 1261, 1138, 1025, 965, 780, 759 cm-1; 1H NMR (DMSO-d6, 400 MHz) 8.01 (dd,  J = 

7.88, 1.72 Hz, 1H), 7.81(ddd, J = 8.20, 7.16, 1.72 Hz, 1H), 7.70(d, J=8.20 Hz, 1H), 7.65 (d, 

J=16.04 Hz, 1H, H), 7.47 (ddd, J=7.88, 7.16, 0.68 Hz, 1H), 7.36(d,J = 1.72 Hz, 1H),7.27(d, 

J=8.28, 1.72 Hz, 1H), 7.11(d, J=16.04 Hz, 1H, H),  7.02(d,J=8.28 Hz, 1H), 6.40 (s, 1H), 

3.80 (s, 3H, OCH3),3.83 (s, 3H, OCH3); 13C NMR (DMSO-d6, 100 MHz) C=O), 

162.26, 155.44, 150.53, 149.00, 136.87, 134.21, 127.79, 125.22, 124.74, 123.42, 122.31, 

118.11, 118.01, 111.67, 109.92, 109.17, 55.54 (2 x OCH3); EIMS (m/z, rel. int.) 308 (M+) 

(100), 277(22), 250(10), 221(14), 188(70), 121(19);calculated molecular mass: 308.33. 

 

3’,4’-Methylenedioxy-2-styrylchromone (5j) yellow solid residue (92% yield); mp 209-210 

C; UV λmax (CH3OH) nm (log )329 (3.36); IR (KBr)max: 1694 (C=O), 1625, 1461, 1499, 

1447, 1383, 1251, 845 cm-1; 1H NMR (CDCl3, 400 MHz) d, J = 7.62 Hz, 1H), 7.65 

(ddd, J = 8.11, 7.14, 0.98 Hz, 1H), 7.51 (d, J = 7.82 Hz, 1H), 7.50 (d, J = 16.06 Hz, 1H, H), 

7.37 (t, J = 7.53, 1H),  7.08 (s, 1H), 7.05 (d, J = 8.06 Hz, 1H), 6.81 (d, J= 8.06 Hz, 1H), 6.59 

(d, J = 16.06, 1H, H), 6.28 (s, 1H), 6.01 (s, 2H, OCH2O); 13C NMR (CDCl3, 100 MHz) 

C=O), 161.98, 156.01, 149.32 (C4'),148.52 (C3'), 136.67, 133.65, 129.53, 125.70, 

124.95, 123.91, 123.25, 118.35, 117.80, 110.17, 108.69, 106.15, 101.60 (OCH2O);  EIMS 

(m/z, rel. int.) 291 (M+-1) (100), 275(55), 233(18), 205(24), 172(67), 114(29);calculated 

molecular mass: 292.29. 
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X-ray Crystallographic Study 

Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO 

diffractometer using graphite-monochromated Mo-K radiation ( = 0.71073 Å). Data 

collection was carried out at 173(2) K. Temperature was controlled by an Oxford Cryostream 

cooling system (Oxford Cryostat). Cell refinement and data reduction were performed using 

the program SAINT (SAINT, Version 7.60a, 2006). The data were scaled and absorption 

correction performed using SADABS (Sheldrick, 1997). The structure was solved by direct 

methods using SHELXS-97 (Sheldrick, 1997) and refined by full-matrix least-squares 

methods based on F2 using SHELXL-97 (Sheldrick, 1997) and using the graphics interface 

program X-Seed (Barbour, 2001; Atwood and Barbour, 2003). The programs X-Seed and 

POV-Raywere both used to prepare molecular graphic images. All non-hydrogen atoms were 

refined anisotropically andall hydrogen atoms could be found in the difference electron 

density maps but were placed in idealised positions and refined in riding models with Uiso set 

at 1.2 times those of their parent atoms and at a distance(C-H) of 0.95 Å. The structure was 

refined to an R factor of 0.0503.  

 

Antibacterial Assay 

In vitro evaluation of antibacterial activity was carried out on all synthesized fluorinated and 

oxygenated 2-styrylchromones by the disc diffusion method as described by Bauer et al. 

(1966) against the Gram positive bacteria, Bacillus subtilis, Enterococcus faecium and three 

Staphylococcus species, aureus,scuii and xylosus, and the Gram negative bacteria, 

Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa.  The standard 

antibiotics, tetracycline (Te) and ampicillin (Amp) were used for controls and for 

comparison.  Briefly, Mueller Hilton agar was prepared (38 g in 1 L of water) and poured 
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into prelabeled sterile Petri dishes, which was then allowed to set and dry at room 

temperature.  The bacterial organisms were standardized using a turbidity standard and then 

swabbed onto the agar plates. Paper discs with dissolved sample and a control disc was 

placed onto the agar plates and the inoculum spots allowed to  dry at room temperature before 

being inverted and incubated at 35-37 ºC for 18 hours.   The diameter of inhibition zone was 

then measured in mm.  The tests were done in triplicate and the results reported as means of 

at least three determinations.  The results are summarized in Table 2-2 and Table 2-3. 

 

The activity index of the product 2-styrylchromoneswas calculated as follows: Activity index 

(A.I.)   = zone of inhibition of compound / zone of inhibition obtained for standard antibiotic 

drug 

 

2.4. Conclusion 

Several new fluorinated 2-styrylchromones (5a-5f) were synthesized along with a known 

fluorinated compound, two methoxylated compounds and a methylenedioxy derivative.  The 

compounds were characterized and screened for their antibacterial activity.  In general, the 

fluorinated compounds displayed antibacterial activity against Gram-positive bacteria more 

than Gram-negative bacteria, with the fluorinated styrylchromones being most active against 

B. subtilis followed by S. aureus and then a single strain of E. coli (ATCC 25922), but not the 

E.coli (ATCC 25218) strain, indicating that their activity toward E. coli is strain specific.  

However, the styrylchromones with two fluorine substitutions showed activity against both E. 

coli strains, indicating that a broader spectrum could be obtained with multiple fluorinations 

on the styrylchromone backbone.  Furthermore, the 3’,5’-difluorostyrylchromone (5d) 

showed the best activity from all the compounds fluorinated on the phenyl ring, also 

indicating that more fluorine substitutions on the styrylchromone could lead to enhanced 



85 

activity.  Activity of the styrylchromones substituted on the chromone ring was specific to 

fluorination at the 6-position, which showed the best activity amongst all the compounds 

tested.  Fluorination at the 7-position was only active against one bacterial strain, B. subtilis.  

Thus, the position and number of fluorine substituents on either the phenyl or the chromone 

ring has an effect on the antibacterial activity of the 2-styrylchromones.  It is worthwhile 

exploring the effect of hydroxy, methoxy and fluorine substitution on the phenyl ring together 

with fluorine substitution at the 6-position, as these compounds may show enhanced activity. 
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Abstract 

Fluoro- and methoxy-2-styrylchromonederivatives have been synthesised by the Baker–

Venkataraman method in a three step synthesis starting with acetophenones and (E) cinnamic 

acids and proceeding through substituted (E) cinnamoyloxyacetophenone and substituted 3-

hydroxy-2,4-pentadien-1-one intermediates. Full structural elucidation of the substituted (E) 

cinnamoyloxyacetophenones and 3-hydroxy-2,4-pentadienone intermediates and the 2-

styrylchromone derivatives are presented.  The structure elucidation were carried out using 

extensive 1D (1H, 13C) and 2D(COSY, HSQC and HMBC) NMR spectroscopic studies. 

 

Keywords: 1H NMR, 13C NMR, HMBC, 2D NMR, fluoro-2-styrylchromones. 
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3.1. Introduction 

2-Styrylchromones (2-SC) are a chemical family of oxygen heterocyclic compounds, similar 

to the flavonoids (2-phenylchromones), but with a vinyl group bridging the chromone ring to 

the phenyl moiety.  Many derivatives of 2-styrylchromones have been synthesised (Silva et 

al., 2004) and their occurrence in nature has also been reported (Gerwick et al., 1989).   There 

have also been numerous reports on the biological activity of the synthesised derivatives of 2-

styrylchromones, which has recently been reviewed by Gomes et al. (2010) and these 

compounds have been seen to have antioxidant (Filipe et al., 2004), antiviral (Desideri, et al., 

2000), anticancer (Gerwick et al., 1987; Momoi et al., 2005; Marinho et al., 2008), anti-

allergic (Doria, et al., 1979)and hepatoprotective activities (Fernandes, 2003) as well as A3 

adenosine receptor antagonists (Karton, 1996)and xanthine oxidase inhibitors (Fernandes, 

2002). 

 

Although the NMR data for 2-styrylchromones are always reported in the synthetic 

publications that also report the biological activity, they are never assigned to particular 

protons or carbon atoms. We have noticed only one publication on the structural elucidation 

of these compounds in which the nitro derivatives were described (Barros and Silva, 2009).  

To the best of our knowledge there are no publications in which the structural elucidation of 

these compounds has been discussed with substituents on the aromatic rings which donate 

electrons by resonance into the aromatic rings. Furthermore, the structural elucidation of 

fluorinated molecules is more challenging due to the 19F nucleus being NMR active and 

coupling with both the protons and the carbon atoms.  We herein report the structural 

elucidation of seven fluorinated, two methoxylated and a methylenedioxy derivative of 2-

styrylchromone along with their (E) cinnamoyloxyacetophenone and 3-hydroxy-2,4-

pentadien-1-one intermediates.  The structural elucidation and NMR data reported here can 
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help one identify newly isolated or synthesised derivatives of 2-styrylchromones, especially 

fluorinated derivatives. 

 

3.2. Experimental 

Synthesis 

The synthesis of the 2-styrylchromones (5a-j) along with the (E) cinnamoyloxyacetophenone 

(3a-j) and 3-hydroxy-2,4-pentadienone (4a-j) intermediates were carried out using the Baker-

Venkataraman rearrangment in a three step reaction according to Scheme 2-1and is reported 

in Chapter 2.  Essentially, the substituted 2-hydroxyacetophenones (1) were reacted with 

substituted (E) cinnamic acids (2) in pyridine and phosphorus oxychloride (POCl3) at room 

temperature for 4-5 h producing the (E) cinnamoyloxyacetophenone intermediates (3a-j), 

which were then converted to the 3-hydroxy-2,4-pentadienone intermediates (4a-j) with 

potassium hydroxide in dimethyl sulphoxide (DMSO) by being stirred at room temperature 

for 2 h.  Final conversion to the 2-styrylchromone derivatives (5a-j) was carried out using 

para-toluene sulphonic (PTSA) acid in DMSO by reflux at 90-95 °C for 2-3 h.  The 

compounds were named similarly for each of the intermediates and the 2-styrylchromone 

according to their substitution pattern, for example, 2-(2'-fluoro(E)cinnamoyloxy) 

acetophenone (3a), 3-hydroxy-1-(2-hydroxyphenyl)-5-(2-fluorophenyl)-2,4-pentadien-1-one 

(4a) and 2'-fluoro-2-(E)styrylchromone (5a).  

 

NMR spectra 

The 1H and 13C NMR spectra were recorded at 298 K with 5-10 mg samples dissolved in 0.5 

ml of CDCl3 in 5-mm NMR tubes using a Bruker AvanceIII400 MHz NMR spectrometer(9.4 

T; Bruker, Germany) (400.22 MHz for 1H, 100.63 MHz for 13C and 376.58 Hz for 19F. 

Chemical shifts () are reported in ppm and coupling constants (J) in Hz. The 1H and 13C 
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chemical shifts of the deuterated solvent were  7.24 and 77.0 referenced to the internal 

standard, TMS, respectively.  For the 19F NMR spectra, the chemical shift of trifluorotoluene 

(TFT, 0.05% in CDCl3) was referenced at  -62.73.  For the 1H NMR analyses, 16 transients 

were acquired with a 1s relaxation delay using 32K data points.  The 90° pulse duration was 

10.0 s, and the spectral width was 8223.68 Hz.  The 13C NMR spectra were obtained with a 

spectral width of 24038.46 Hz using 64K data points.  The 90° pulse duration was of 8.40 s.  

For the 19F NMR spectra, the spectral width was 89285.71 Hz using 131K data points and the 

90° pulse duration was 12.50s.  For the two dimensional experiments including COSY, 

NOESY, HSQC and HMBC, all data were acquired with 4K × 128 data points (t2 × t1).  The 

mixing time for the NOESY experiment was 0.3s, and the long range coupling time for 

HMBC was 65 ms.  All data were analysed using Bruker Topspin 2.1 (2008) software.   

 

 

3.3. Results and Discussion 

Compounds 3-5 are fully characterised in Table 3-1 to Table 3-7 with their 1H and 13C NMR 

assignments unambiguously assigned using splitting patterns, chemical shifts and 2D NMR 

data from HSQC, HMBC and NOESY spectra.  An extensive discussion on the splitting 

patterns and chemical shifts of the compounds are presented below for the intermediates and 

the 2-styrylchromone molecules.  The discussion is divided into several parts, discussing the 

carbon chain linking the two aromatic units together and discussing the two aromatic rings in 

detail.  This is done in detail for the intermediate 3 and then a comparison to 4 and 5 is done, 

pointing out salient features and resonances that have changed as well as the proton and 

carbon resonances that indicate that the products have been formed. 
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The acetyl group and the ,  unsaturated ester of the intermediate 3 

In 3a, the  and  proton resonances are characteristic and occur at H 6.76 and 8.00 

respectively as two doublets with large coupling constants of 16.16 Hz characteristic of trans 

olefinic protons.  Their corresponding carbon resonances were present at C 119.42 (J = 6.93 

Hz, C-) and 139.95 (J = 2.72 Hz, C-).  The C- resonance is more deshielded than the C- 

resonance because of conjugation between the double bond and the carbonyl group; the 

enolate anion resonance structure showing electron density being removed from C-.  The 

coupling constants experienced in 3a for these two resonances are attributed to that of the 

fluorine atom three and four bonds away from C- and C- respectively.  This small 

coupling in the carbon resonances was also seen in 3b (3''-F) with the C- resonance and 3c 

(4''-F) and 3e (4',4''-diF) with the C- resonance, but not in 3d (3'',5''-diF), 3f (4'-F) and 3g 

(5'-F), the remaining fluorinated acetophenone derivatives. The 1H and 13C chemical shifts of 

these resonances (C- and C-) were similar in all of the other cinnamoyloxy acetophenone 

derivatives (3b-3j).  The acetophenone methyl resonance occurred at H 2.55 as an intense 

singlet, also consistent with all the other derivatives 3b-3jand the acetophenone carbonyl 

resonance (C-1) was present at C 197.74, distinguished from the other ester carbonyl 

resonance (C=O) at C 165.10 because the latter showed HMBC correlations to both the  

and  proton resonances. 

 

The acetophenone aromatic ring 

The proton resonances of 3a-3d (the unsubstituted acetophenone ring) are all similar with H-

3' and H-6' appearing as doublet doublets at H 7.19 (J = 8.00, 0.84 Hz) and H 7.85 (J = 7.85, 

1.58 Hz) respectively.  The H-3' resonance ortho to the oxygenated position is more shielded 

because of electron donation from the oxygen atom by resonance and the H-6' resonance 
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more deshielded since this same electron donation by resonance results in the meta position 

becoming electron deficient.  The H-4' and H-5' proton resonances both appear as triplets of 

doublets at H 7.54 (J = 7.64, 1.58 Hz) and H 7.33 (J = 7.64, 0.84 Hz) since they experience 

the same coupling constant with each of their adjacent protons resulting in the triplet, which 

is split into doublets due to meta coupling, hence the second small coupling constant.  Only in 

3b does H-5' appear as a multiplet because of overlap with other resonances.  The C-3' to C-6' 

carbon resonances for 3a-d are all similar and occur between C 123.77 and 130.16.  The C-1' 

carbon resonance occurs at C 131.29 and was assigned because of HMBC correlations to H-

3' and H-5'.  The oxygenated aromatic resonance C-2' was assigned to C 149.09 because of 

HMBC correlations to H-6' and H-4'. 

 

In 3e and 3f, where a fluorine atom is substituted at the 4'-position, the H-3' resonance also 

occurs as a double doublet as in 3a-d, but now the meta coupling is much larger at 2.45 Hz, 

the first coupling constant of 8.90 Hz occurring because of H-F ortho coupling.  The H-5' 

resonance occurs as a triplet of doublets as for 3a-d since the H-F ortho coupling constant is 

similar to the H-H ortho coupling constant at J = 8.75 Hz, but as for H-3', the meta coupling 

constant is larger than that for 3a-d at J = 2.45 Hz.  The H-6' resonance occurs as a double 

doublet, but distinctly different from the double doublet in 3a-d because of the larger meta H-

F coupling constant of 6.34 Hz in addition to the ortho H-H coupling constant of 8.75 Hz.  

The H-6' resonance also overlaps with the H- resonance as well in these two compounds. 

 

In the 13C NMR spectrum, C-4' occurs as a doublet with J = 254.07 Hz at H 164.99 in 3e.  

The coupling constant is so large that the two resonances which make up the doublet could 

easily be mistaken for two separate resonances.  The carbon resonances however can be 

identified from the HMBC spectrum where both the resonances making up the doublet show 
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HMBC correlations to a nearby proton resonance; in the case of 3e, C-4' to H-6'.  To verify 

this, coupling constants of approximately 220-250 Hz are normally observed.  Two bonds 

away from fluorine, F-C coupling of 23.99 and 21.20 Hz are observed respectively at C 

111.70 and 113.34 for the two doublets assigned to C-3' and C-5'.  Their chemical shifts are 

more shielded than their corresponding carbon resonances in 3a-d due to electron donation 

by resonance from the fluorine, shielding the carbon atoms more than that of hydrogen.  

Three bonds away from fluorine, F-C coupling of 11.22 Hz is observed at C 150.90 for C-2' 

and 10.14 Hz at C 132.20 for C-6'.  F-C coupling four bonds away at C 127.62 for C-1' is 

also observed with a coupling constant of 3.51 Hz in 3e, however this is not seen in 3f.   

 

When the fluoro group moves to the 5' position in 3g, the H-3' resonance is now meta to the 

fluorine atom, which by resonance deshields the meta hydrogen resulting in it appearing at H 

7.49 in 3g as opposed to H 6.92-6.94 in 3e and 3f. The multiplicity is retained as a double 

doublet with J = 8.70 and 3.04 Hz for the H-H and H-F coupling respectively.  The H-4' 

proton resonance coincides with the solvent peak appearing as a triplet of doublets at H 7.23 

with J = 7.80 and 3.04 Hz, the triplet being due to similar coupling between H-4'-F and H-4'-

H-3', similar to the H-5' resonance in 3e.  Due to the fluoro group being placed adjacent to H-

6', shielding this proton through electron donation by resonance, the H-6' proton resonance 

moves from being the most deshielded resonance in 3e at H 7.87, where it was meta to both 

the oxygenated moiety and the fluorine atom, to the most shielded of the aromatic resonances 

at H 7.15 in 3g.  The resonance retains its multiplicity as a double doublet since it couples to 

fluorine with a similar coupling constant to that of hydrogen with J = 8.70 and 4.65 Hz.  In 

the 13C NMR spectrum, all the carbon resonances on the aromatic ring appear as doublets 

except for C-2', which is para to the fluorinated carbon and appears at C 147.79.  The 

fluorinated carbon is present at C 159.90 with J = 245.12 Hz.  The carbon meta to the 
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fluorine C-1' occurs at C 132.63 (J = 6.10 Hz), followed by the other meta carbon C-3', at C 

125.44 (J = 7.96 Hz), both being more deshielded than the two ortho carbon atoms at C 

120.08 (J = 23.26, C-6') and C 116.51 (J = 20.48, C-4'). 

 

In the 1H and 13C NMR spectra of the methoxy and methylenedioxy derivatives 3h-3j, H-3' to 

H-6', H and H and C-1, C-2, C-1' to C-6', C-, C- and the ester C=O were all similar to 

3a-3d. 

 

The cinnamoyl aromatic ring 

In the absence of any substituents on this ring as in 3f and 3g, the H-3''/4''/5'' resonances 

overlap at H 7.44 and appear as a multiplet in 3f and the H-2''/6'' resonance appears as a 

double doublet with J = 7.56 and 3.88 in 3f.  Their carbon resonances apppear between C 

128.48 and C 133.90 with the C-2''/6'' and C-3''/5'' resonances being equivalent.  For the 4''-

methoxy derivative 3h, a characteristic pair of doublets is seen as for other para-substituted 

aromatic compounds at H 7.53 for H-2''/6'' and H 6.91 for H-3''/5'' with a coupling constant 

of 8.72 Hz.  The H-3''/5'' resonance is more shielded than that of H-2''/6'' because of the 

electron donating effects of the methoxy group by resonance to the ortho positions.  The 

carbon resonances of C-2''/6'' and C-3''/5'' occur at C 130.23 and 114.45, the C-3''/5'' 

resonance being more shielded due to the resonance effects explained above.  The 

oxygenated C-4'' resonance appears at C 161.91 and C-1'' appears at C 126.78.   

 

When the phenyl ring is substituted at both C-3'' and C-4'' with oxygenated substituents, as in 

3i and 3j, meta coupling is observed for H-2'' at H 7.10 (J = 1.88 Hz) in 3i and ortho 

coupling is observed for H-5'' at H 6.87 (J = 8.24 Hz) with H-6'' experiencing both ortho and 
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meta coupling at H 7.16 (J = 8.24, 1.88 Hz).  The carbon resonances of the two carbon atoms 

ortho to the methoxy groups, C-2'' and C-5'' occur more upfield at C 109.82 and C 111.05 

while C-6'' meta positioned to the 4''-methoxy substituent appears slighlty more downfield at 

C 123.31.  The two aromatic C-O resonances C-3'' and C-4'' occur at C 149.23 and 149.30 

respectively.  The two methoxy resonances in 3i overlap at H 3.91 with corresponding 

carbon resonances at C 55.94 and 56.00.  The methylenedioxy group proton resonance 

occurs at H 6.01 with a corresponding carbon resonance of C 101.70. 

 

In 3a-e, fluorination occurred at either 2'', 3'', 4'' or was difluorinated at the 3'' and 5'' 

positions.  For the 2''-fluoro derivative 3a, the H-5'' proton only experiences coupling from 

the adjacent protons and appears as a triplet at H 7.18 with J = 7.50 Hz.  This resonance 

overlaps with H-3', which may account for the meta coupling with H-3'' not being 

experienced.  The H-3'' proton resonance at H 7.11 couples with both the fluorine and the 

proton of H-4'' and appears as a double doublet with J = 10.25 Hz (H-F coupling) and 8.80 

Hz (H-H coupling).  The H-4'' proton resonance appears as a multiplet at H 7.39 due to 

coupling with all of H-3'', H-5'', H-6'' and the F.  However, the only coupling constant that 

can be observed in this multiplet is that between H-4'' and H-6'' of 1.65 Hz.  The H-6'' proton 

resonance is the most deshielded of these resonances at H 7.59 appearing as a triplet of 

doublets with J = 7.92 and 1.65 Hz.  The triplet is probably caused by the meta F atom at C-

2'' and the ortho proton of H-5'' having the same coupling constant. 

 

The carbon resonances of the aromatic ring of 3a with fluorine substituted at the 2'' position, 

results in all the carbon resonances of the ring being doublets with the largest coupling 

occurring on the carbon directly bonded to fluorine (C-2'') at C 161.80 (J = 252.60 Hz), 

followed by ortho coupling of 21.72 Hz for C-3'' at C 116.32.  For some unknown reason, C-
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1'', the other ortho carbon has a much smaller coupling constant of 11.56 Hz at C 122.17.  It 

is further noticed that while meta coupling of 14.23 Hz is observed for C-4'' at C 132.21, the 

same is not observed for C-6'' at C 129.43 which only has a coupling constant of 2.65 Hz, 

probably because of interference from the moiety attached to C-1''.  The C-5'' carbon 

resonance, para to the fluourine atom has a small coupling constant of 3.62 Hz as expected at 

C 124.56.   

 

The same trends were observed for the 3''-fluorinated derivative 3b, but now in the 13C NMR 

spectrum all the usual coupling constants were observed for the ortho carbon resonances, C-

2'' and C-4'' at C 114.63 (J = 21.88 Hz) and 117.71 (J = 21.25 Hz), the meta carbon 

resonances, C-1'' and C-5'' at C 136.27 (J = 7.85 Hz) and 130.56 (J = 8.04 Hz) and the para 

carbon resonance of C-6'' at C 124.42 (J = 2.87 Hz). 

 

In the para-fluoro substituted compounds, 3c and 3e, instead of the usual pair of doublets 

with a coupling constant of approximately 8 Hz being observed as for the para methoxy 

compound 3h, the splitting pattern is a bit more complex because of coupling to fluorine.  

The H-3'' and H-5'' protons are equivalent and their resonance appears as a triplet at H 7.09 

(J = 8.60 Hz).  This is due to similar coupling constants between H-2''/6'' and H-3''/5'', and H-

3''/5'' and the fluorine atom.  The H-2'' and H-6'' protons are also equivalent with their 

resonance appearing as a doublet of doublets, due to a smaller meta coupling constant 

between H-2''/6'' and the fluorine atom and occurs at H 7.58 (J = 8.60, 5.42 Hz).  The 13C 

NMR spectrum of 3c shows the fluorinated carbon resonance as a doublet at C 164.25 (J = 

250.70 Hz) and a doublet resonance for C-3''/5'' at C 116.20 (J = 21.85 Hz) and C-2''/6'' at C 

130.43 (J = 8.37 Hz).  The C-1'' resonance, also a doublet, overlaps with the C-2''/6'' 
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resonance at C130.32 with a coupling constant of J = 3.55 Hz.  This resonance can be seen 

more clearly in 3e at C 130.17 (J = 3.44 Hz). 

 

For the 3'',5''-difluorinated compound 3d, the H-4'' resonance was split into a triplet of triplets 

with J = 8.68 and 2.28 Hz.  This was due to H-4'' coupling to F (J = 8.68 Hz) and H-4'' 

coupling to the meta protons H-2''/6'' (J = 2.28 Hz).  The H-2'' and H-6'' protons are 

equivalent and appear as a double doublet at H 7.08 with J = 7.92 Hz for the H-F coupling 

and 1.92 Hz for the meta coupling with H-4''.  The slight variation in J4'',2''/6'' is due to the 

coalescing and broadening of peaks for H-2''/6'', however coupling between these two 

resonances were verified in the COSY spectrum.  In the 13C NMR spectrum, the C-3'' and C-

5'' resonances are equivalent and splits into a double doublet at C 163.24 due to coupling 

between the fluorine attached to (J = 248.29 Hz) and the fluorine meta to it (J = 12.83 Hz).  

The C-2'' and C-6'' resonances are also equivalent and appear as a double doublet at C 

111.02 (J = 18.80, 7.18 Hz) arising from coupling to the fluorine ortho to it and the fluorine 

para to it respectively.  The C-4'', C-1'' and C- resonances appear as triplets at C 105.92 (J 

= 25.36 Hz), C 137.27 (J = 9.44 Hz) and C 144.47 (J = 2.81 Hz) respectively since these 

carbon atoms are in the middle of the two fluorine atoms.   

 

The substituted 3-hydroxy-2,4-pentadien-1-one intermediates (4a-j) 

In these intermediates, there is a noticeable shift from the acetophenone methyl group at H 

2.59 in 3a to an olefinic resonance (H-2) at H 6.32 in 4a.  This is indicative that the 

cinnamoyloxyacetophenones (3) had converted to the 3-hydroxy-2,4-pentadien-1-ones (4).  

With regard to the ,-unsaturated double bond, both the resonances shift more upfield by 

0.27 Hz for the  resonance in 3a to H-5 in 4a and 0.06 Hz for the  resonance in 3a to H-4 

in 4a.  This is because the double bond is now conjugated with the newly formed keto-enol 
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moiety, shielding H-4 and H-5 more than the H- and H- protons in 3.  The trans 

configuration of the double bond is retained as evidenced by the large coupling constant of 

16.00 Hz.  The H-3' to H-6' resonances also move more upfield by 0.22, 0.11, 0.45 and 0.16 

Hz for H-3', H-4', H-5' and H-6', respectively from 3a to 4a.  This is probably due to greater 

electron donation by the hydroxy group as opposed to the ester group in 3a.  A further 

characteristic trait of the 1H NMR spectra of the intermediates 4 are the two hydroxyl 

resonances occurring at H 14.55 (3-OH) and 12.18 (2'-OH).   

 

In the 13C NMR spectrum of 4a, the appearance of the alkene carbon resonance C-2 at C 

97.42 and an enol carbon resonance C-3 at C 174.03 instead of the methyl carbon resonance 

at C 29.78 and the ester carbonyl resonance at C 165.10 in 3ais further evidence that 3a had 

converted to 4a.  Due to the ester group being converted to a hydroxy group from 3a to 4a, 

the ortho and para positions are now some what more shielded by electron donation by 

resonance.  As such, C-1' shifts from  131.29 in 3a to  119.04 in 4a, C-3' from  123.77 to 

 118.76 and C-5' from  126.12 to  119.06.  The C-2' resonance which is bonded to the 

hydroxy group however shifts more upfield to the Ar-OH range at C 162.67 in 4a from the 

Ar-ester resonance at C 149.09 in 3a.  The resonances on the aromatic ring adjacent to the 4 

double bond remain relatively unchanged and the 1H NMR spectra of 4b-4j contain the same 

differences as that pointed out between 3a and 4a. 

 

The substituted 2-styrylchromones 

In the substituted 2-styrylchromones 5, the splitting patterns and chemical shifts of the phenyl 

rings in the 1H and 13C NMR spectra did not change much from those of the intermediates 

3and 4 and therefore a discussion of these will not be repeated.  There was also not much 

change in the C- and C- carbon resonances as well as the H- resonance.   However, in the 
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formation of the chromone ring, the H- proton experiences a slight shift more downfield to 

H6.87 in 5a, approximately 0.17 Hz from the corresponding resonance in 4a.   

 

All the proton resonances in the chromone ring are also deshielded in forming the chromone 

ring from the 3-hydroxy-2,4-pentadien-1-one intermediates4.  The most characteristic and 

noticeable of these resonances is that of H-5 occurring at H 8.17 in 5a from 7.69 in 4a, with 

the H-6, H-7 and H-8 proton resonances having significant downfield shifts between 0.23 and 

0.56, at H 7.37, 7.66 and 7.53 respectively in 5a from H 6.88, 7.43 and 6.97 in 4a.  These 

downfield shifts must occur because of delocalisation of the π electrons within the chromone 

skeleton, thus reducing the electron density at these specific protons.  The difference in 

chemical shift of the H-5 proton is also due to hydrogen bonding with the C-4 carbonyl 

group.  This is now possible since the carbonyl group is locked into position by formation of 

the chromone ring. 

 

With regard to the 13C NMR spectra, there is not much change in both the C- and C- 

resonances or the aromatic resonances on the chromone ring with the exception of C-6, which 

is para to the oxygen substituent forming the chromone ring.  This shift is slightly downfield 

by approximately 7 ppm at C 125.05 in 5a from 119.06 in 4a. The most notable shifts in the 

13C NMR spectrum are that of C-2, C-3 and C-4, the carbon atoms involved in forming the 

chromone ring from the 3-hydroxy-2,4-pentadien-1-one.  In 5a, these carbon resonances 

occur at C 161.47, 111.21 and 178.48 for C-2, C-3 and C-4 as opposed to their 

corresponding resonances in 4a at C 174.03, 97.41 and 196.47 respectively.  These three 

resonances can also be used as evidence that the 2-styrylchromone derivatives had been 

formed from the 3-hydroxy-2,4-pentadienone intermediates. 
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All structures were confirmed and assignments of the resonances of each of the proton and 

carbon atoms were made with aid of HSQC, HMBC and NOESY data.  Selected HMBC 

correlations for 5a are shown in Figure 3-1 below and the 1H NMR spectrum of 5a is shown 

in Figure 3-2 depicting the splitting patterns and chemical shifts of the proton resonances.  

Table 3-1 to Table 3-7 contain the 1H, 13C and 19F NMR data for all the prepared compounds.  

The spectra were acquired in CDCl3 unless otherwise stated. 
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Figure 3-1Selected HMBC correlations for 2'-fluoro-2-styrylchromone (5a) 
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Figure 3-21H NMR spectrum of 2'-fluoro-2-styrylchromone (5a) depicting chemical shifts 
and splitting patterns 
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Table 3-11H NMR chemical shifts (δ in ppm) for compounds 3a–j (J is given in Hz) 

 H-3' H-4' H-5' H-6' H-α H-β H-2'' H-3'' H-4'' H-5'' H-6'' CH3 OCH3/ 
OCH2O 

3a 7.19 dd 
J = 8.00, 

0.84 

7.54 td 
J = 7.64, 

1.58 

7.33 td 
J = 7.64, 

0.84 

7.85 dd 
J = 7.85, 

1.58 

6.76 d 
J = 16.16 

8.00 d 
J = 16.16 

--- 7.11 dd 
J = 10.25, 

8.80 

7.39 m 7.18 t 
J = 7.50 

7.59 td 
J = 7.92, 

1.65 

2.55 s 
 

--- 

3b 7.17 dd 
J = 8.00, 

0.68 

7.55 td 
J = 7.84, 

1.64 

7.35 m 
 

7.83dd 
J = 7.56, 

1.64 

6.55 d 
J = 15.96 

7.82 d 
J = 15.96 

7.27 d  
J = 9.64 

 

--- 7.10 tt 
J = 8.20, 

2.00 

7.33 td 
J = 7.66, 

0.84 

7.35 m 
 

2.55 s --- 

3c 7.17 dd 
J = 8.00, 

0.72 

7.53 td 
J = 8.0, 

1.52 

7.33 td 
J = 8.00, 

0.72 

7.81 dd 
J = 8.00, 

1.60 

6.58 d 
J = 15.96 

7.84 d 
J = 15.96 

7.58 dd 
J= 8.60, 

5.42 

7.09 t 
J = 8.60 

--- 7.09 t 
J = 8.60 

7.58 dd 
J = 8.60, 

5.42 
 

2.54 s 
 

--- 

3d 7.16 dd 
J = 7.92, 

0.80 

7.55 td 
J = 7.60, 

1.00 

7.34 td 
J = 7.60, 

0.76 

7.82 dd 
J = 7.92, 

1.00 

6.64 d 
J = 15.96 

7.75 d 
J = 15.96 

7.08 m 
 

--- 6.85 tt 
J = 8.68, 

2.28 

--- 7.08 m 2.54 s 
 

--- 

3e 6.92 dd 
J = 8.90, 

2.45 

 
--- 

7.03 td 
J = 8.75, 

2.45 

7.87 dd 
J = 8.75, 

6.34 

6.56 d 
J = 15.96 

7.84 d 
J = 15.96 

7.58 dd 
J = 8.72, 

5.40 

7.10 dd 
J = 8.60 

 

 
--- 

7.10 dd 
J = 8.60 

 

7.58 dd 
J = 8.72, 

5.40 

2.53 s --- 

3f 6.94 dd 
J = 8.90, 

2.48 

 
--- 

7.03 td 
J = 8.60, 

2.48 

7.86 dd 
J = 8.60, 

5.40 

6.63 d 
J = 15.92 

7.88 d 
J = 15.92 

7.58 dd 
J = 7.56, 

3.88 

7.44 m 
 

7.44 m 7.44 m 7.58 dd 
J = 7.56 

3.88 

2.53 s --- 

3g 7.49 dd 
J = 8.70, 

3.04 

7.23 dd 
J = 7.80, 

3.04 

--- 7.15 dd 
J = 8.70, 

4.65 

6.64 d 
J = 15.92 

7.88 d 
J = 15.92 

7.58 dd 
J = 7.44, 

3.60 

7.39 m 7.39 m 7.39 m 7.58 dd 
J = 7.44, 

3.60 

2.53 s --- 

3h 7.17 d 
J = 8.00 

 

7.51 td 
J = 7.55, 

1.55 

7.31 td 
J = 8.04, 

0.76 

7.80 dd 
J = 8.04, 

1.55 

6.52 d 
J = 15.92 

7.83 d 
J = 15.92 

7.53d 
J = 8.72 

6.91 dd 
J = 8.72 

--- 6.91 dd 
J = 8.72 

7.53 d 
J = 8.72 

2.54 s 
 

3.84 s 
 

3i 7.17 d 
J = 8.08, 

0.90 
 

7.54 td 
J = 7.80, 

1.72 

7.31 td 
J = 7.55, 

0.90 

7.81 dd 
J = 7.80, 

1.72 

6.52 d 
J = 15.88 

7.82 d 
J = 15.88 

7.10  d 
J = 1.88 

--- --- 6.87 d 
J = 8.24 

7.16 dd 
J = 8.24, 

1.88 
 

2.55 s 
 

3.91 s 
(6H) 

 

3j 7.16 d 
J = 7.92 

7.53 td 
J = 7.92, 

1.56 

7.31 td 
J = 7.92, 

0.76 

7.80 dd 
J = 7.92, 

1.56 

6.47 d 
J = 15.88 

7.78 d 
J = 15.88 

7.05 d 
J = 1.56 

--- --- 6.82 d 
J = 7.94 

7.08 dd 
J = 7.94, 

1.56 

2.54 s 
 

6.01 s 
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Table 3-213C NMR chemical shifts (δ in ppm) for compounds 3a–j (J is given in Hz) 

 

  

  
C-1 

 
C-2 

 
C=O 

 

 
C-α 

 
C-β 

 
C-1' 

 
C-2' 

 
C-3' 

 
C-4' 

 
C-5' 

 
C-6' 

 
C-1'' 

 
C-2'' 

 
C-3'' 

 
C-4'' 

 
C-5'' 

 
C-6'' 

 
CH3/ 

OCH2O 
3a 197.74 29.77 165.10 119.42 d 

J = 6.93 
 

139.95 d 
J = 2.72 

131.29 149.09 123.77 133.36 126.12 130.16 
 

122.17 d 
J = 

11.56 

161.80 d 
J = 

252.60 

116.32 d 
J = 

21.72 

132.21 d 
J = 

14.23 

124.56 d 
J = 3.62 

129.43 d 
J = 2.65 

- 

3b 197.68 29.97 164.90 
 

118.31 145.83 d 
J = 2.73 

131.21 
 

148.99 123.76 133.39 126.17 130.19 136.27 d 
J =7.85 

114.63 d 
J = 

21.88 

163.02 d 
J = 

245.63 

117.71 d 
J = 

21.25 

130.56 d 
J = 8.04 

124.42 d 
J = 2.87 

- 

3c 197.78 29.71 165.14 116.58 d 
J = 2.37 

145.99 131.30 149.07 123.78 133.36 126.10 130.15 130.32 d 
J = 3.55 

130.43 d 
J = 8.37 

116.20 d 
J = 

21.85 

164.25 d 
J=250.7

0 

116.20 d 
J = 

21.85 

130.43 d 
J = 8.37 

- 

3d 197.60 29.51 164.58 119.72 144.47 t 
J = 2.81 

131.00 148.86 123.74 133.47 126.26 130.28 137.27t 
J=9.44 

 

111.02d
dJ=18.8
0,7.18 

163.24 
ddJ=248

.29, 
12.83 

105.92t 
J=25.36 

163.24 
ddJ=248

.29, 
12.83 

111.02d
dJ 

=18.80, 
7.18 

- 

3e 196.11 29.73 165.11 116.11 d 
J = 2.24 

146.55 127.62 d 
J = 3.51 

150.99 d 
J = 

11.22 

111.70 d 
J = 

23.99 

164.99 d 
J=254.0

7 

113.34 d 
J = 

21.20 
 

132.20 d 
J = 

10.14 

130.17 d 
J = 3.44  

130.47 d 
J = 8.47 

116.26 d 
J = 

21.94 

164.35 d 
J=250.9

5 

116.26 d 
J = 

21.94 

130.47d 
J = 8.47 

- 

3f 196.13 29.83 164.75 116.29 145.40 127.00 151.00 d 
J = 

11.43 

113.43 d 
J = 

21.13 

166.44 
J=255.8

0 

111.73 d 
J = 

24.07 

132.29 d 
J = 

10.15 

133.86 129.04 128.51 131.08 128.51 129.04 - 

3g 196.35 29.78 165.22 116.61 145.03 132.63 d 
J = 6.1 

147.79 125.44 d 
J = 7.96 

 

116.51 d 
J = 

20.48 

159.90 d 
J = 

245.12 

120.08 d 
J = 

23.26 

133.90 128.48 129.04 131.04 129.04 128.48 - 

3h 197.90 29.92 165.53 114.10 147.15 131.54 149.28 123.81 133.26 125.95 130.04 126.78 130.23 114.45 161.91 114.45 130.23 55.43 

3i 197.90 29.86 165.48 114.34 147.36 131.49 151.67 123.81 133.29 125.98 130.06 127.03 109.82 149.23 149.30 111.05 123.31 55.94 s, 
56.0 s 

3j 197.84 29.86 165.39 114.60 147.11 131.47 150.17 125.18 133.28 125.99 130.06 128.49 106.70 148.47 149.21 108.64 123.79 101.70 
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Table 3-31H NMR chemical shifts (δ in ppm) for compounds 4a–j(J is given in Hz) 

 2'-OH H-3' H-4' H-5' H-6' H-2 3-OH H-4 H-5 H-2'' H-3'' H-4'' H-5'' H-6'' OCH3/O
CH2O 

4a 12.17 s 6.97 dd 
J=8.48, 

0.68 

7.43ddd 
J = 8.48, 
7.08, 1.44 

6.88 td 
J=8.12, 

0.84 

7.69 dd 
J = 8.01, 

1.44 

6.32 s 14.55 s 6.70 d  
J = 16.00 

7.73 d  
J = 16.00 

 

 
--- 

7.09 t 
J = 8.20 

 

7.32 m  
 

7.16 t 
J = 7.56 

7.54 td 
J = 

7.65,1.48 

--- 

4b 12.15 s 
 

6.97 dd 
J =7.90, 

0.90 
 

7.44 ddd 
J =8.53, 
7.05, 1.54 

6.89 ddd 
J = 8.01, 
7.05, 0.90 

 

7.68 dd 
J = 

8.01,2.01 

6.32 s 14.55 s 6.56 d  
J = 15.78 

7.58 d  
J = 15.78 

7.24 m  
--- 

7.06 m 
 

7.34 dd 
J = 7.92, 

5.70 
 

7.30 d 
J = 7.76 

 

--- 

4c 12.17 s 
 

6.97 dd 
J =  8.52, 

0.85 

7.44ddd 
J = 8.52, 
7.10, 1.44 

6.88 ddd 
J = 8.05, 
7.10, 0.85 

7.68 dd 
J = 

8.05,1.44 

6.29 s 14.62 s  6.49 d  
J = 15.95 

7.60 d  
J = 15.95 

7.52 dd 
J = 8.85, 

5.36 
 

7.08 t 
J =8.85 

 
--- 

7.08 t 
J = 8.85 

 

7.52 dd 
J = 8.85, 

5.36 
 

--- 

4d 12.10 s 
 

6.98 dd 
J =  

8.47,1.06 

7.45 ddd  
J = 8.47, 
7.24,1.62 

6.89 ddd  
J = 

8.05,7.24, 
1.06  

7.67 dd 
J = 8.05, 

1.40 

6.32 s 14.46 s  6.55 d  
J = 15.70 

7.51 d  
J = 15.70 

7.04 dd  
J = 8.22, 

2.16 

 
--- 

6.80 tt 
J = 8.76, 

2.16 

 
--- 

7.04 dd 
J = 8.22, 

2.16 

--- 

4e 12.47 s 
 

6.65dd 
J =10.37, 

2.50 

 
--- 

6.60 ddd 
J = 8.77, 
8.16,2.15 

7.68dd 
J = 8.98, 

6.40 

6.20s 
 

14.42 s  6.51 d  
J = 15.96 

7.60 d  
J = 15.90 

7.52 dd 
J = 8.72, 

5.40 

7.08 t 
J = 8.58 

 
--- 

7.08 t  
J = 8.58 

7.52 dd 
J = 8.72, 

5.40 

--- 

4f 12.55 s 
 

6.65 dd 
J=10.30, 
2.50 

 
--- 

6.60 td 
J=8.0, 
2.50 

7.68 dd 
J = 8.94, 

6.42 

6.21 s 14.48 s  6.57 d  
J = 15.80 

7.64 d  
J = 15.80 

7.53 dd  
J = 8.06, 

2.05 

7.38  m 7.38 m 
 

7.38 m 7.53 dd 
J = 8.06, 

2.05 

--- 

4g 11.94 s 
 

6.93 dd 
J=9.08, 

4.68 

7.17 ddd 
J =9.16, 

7.88, 3.00 

-  7.34 dd 
J =9.00, 

3.00 

6.20 s 14.59 s  6.58 d  
J = 15.81 

7.66 d  
J = 15.81 

7.54 dd 
J=7.88 

2.20 

7.40 m 7.40 m 7.40 m 7.54 dd 
J=7.88 

2.20 

 

4 h 12.24 s 
 

6.96 dd 
J=8.50, 

2.1 
 

7.42 ddd 
J = 8.50, 
7.50,1.60 

6.89 m 7.67 dd 
J = 7.95, 
1.60 

6.26 s 14.72 s  6.45 d  
J = 15.76 

7.61 d  
J = 15.76 

7.49 d 
J=8.80 
 

6.91 d 
J = 8.80 

-- 6.91 d 
J= 8.80 

7.49 d 
J=8.80 

3.83 s 

4i 12.23 s 
 

6.96 dd 
J=8.43, 

0.68 

7.42 ddd  
J = 8.52, 
8.30,1.45 

6.85 td 
J=8.30, 

0.68 

7.67 dd 
J = 8.08, 

1.45 

6.28 s 14.71 s  6.45 d  
J = 15.68 

7.59 d  
J = 15.68 

7.06 d 
J=1.82 

--- --- 6.87d 
J=8.30 

 

7.11 dd 
J = 8.30, 

1.90 

3.91 s, 
3.92s 

4j 12.21 s 
 

6.96 dd 
J =  8.45, 

0.50 

7.42 ddd  
J = 8.45, 
8.01,1.56 

6.87 td 
J = 8.01, 

0.50 

7.66 dd 
J = 8.01, 

1.56 

6.26 s 
 

14.68 s  6.39 d  
J = 15.64 

7.55 d  
J = 15.64 

7.04 d 
(br) 

J=0.35 
 

--- --- 6.81 d  
J = 8.00 

7.02 dd 
J = 8.00, 

1.20 

6.00 s 
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Table 3-413C NMR chemical shifts (δ in ppm) for compounds 4a–j (J is given in Hz) 

 C-1 C-2 C-3 C-4 C-5 C-1' C-2' C-3' 
 

C-4' C-5' C-6' C-1'' C-2'' C-3'' C-4'' C-5'' C-6'' CH3/ 
OCH2O 

4a 196.47 97.41 174.03 124.84d 
J=7.77 

 

132.62d 
J=2.23 

119.04 
 

162.63 118.76 136.18 
 

119.06 128.56 123.11d 
J=11.54 

161.41d 
J = 

253.82 

116.29 d 
J=21.90 

131.38 d 
J=8.82 

 

124.52 d 
J =3.57 

 
 

129.23 d 
J=3.00 

--- 

4b 196.25 97.44 173.63 123.51 138.32 d 
J=2.51 

119.01 162.68 118.81 136.00 119.05 128.53 137.28 d 
J=7.75 

114.05 d 
J=20.01 

164.87 d 
J = 

247.22 

116.90 d 
J=21.61 

130.50 d 
J=8.23 

124.06 d 
J = 2.75 

 

- 

4c 196.03 96.98 174.25 121.88 138.53 119.04 162.64 118.79 135.87 119.04 128.47 130.23 d 
J =3.52 

129.81d 
J=8.21 

116.15 d 
J = 

21.85 

163.78 d 
J= 

250.26 

116.15 d 
J = 

21.85 

129.81d 
J=8.21 

- 

4d 196.42 97.89 172.84 124.80 136.97 118.94 162.73 118.85 136.17 119.14 128.56 138.30 t 
J=9.54 

110.48d
d J= 

18.53, 
6.83 

163.29 
dd J = 

247.76, 
13.10 

105.07 t 
J= 25.60 

163.29 
dd J = 

247.76, 
13.10 

110.48d
d J= 

18.53, 
6.83 

- 

4e 194.87 96.76 174.21 121.70 138.72 115.93 165.16 d 
J = 

14.10 

105.30 d 
J=23.57 

166.40 d 
J = 

212.10 

107.31 d 
J=22.57 

130.41 d 
J=10.83 

130.65d 
J=11.90 

129.85 d 
J=8.55 

116.17 d 
J=21.88 

162.98 d 
J=  

252.55 

116.17 d 
J=21.88 

129.85 d 
J=8.55 

- 

4f 194.85 96.78 174.42 122.00 140.14 115.95 165.08 d 
J = 

14.14 

105.27 d 
J = 

23.41 

165.17 d 
J=209.2

4 

107.29 
J=22.65 

 

130.47 
J=11.65 

134.92 
 

128.02 128.99 130.18 128.99 128.02 - 

4g 194.82 
d 

J=2.72 

96.81 175.23 121.86 140.58 
 

118.72 d 
J=6.50 

158.72 119.95 d 
J=7.41 

123.19 d 
J=23.38 

155.12 d 
J = 

236.79 

113.46 d 
J=23.53 

 

134.84 128.10 129.02 130.42 129.02 128.10 - 

4h 195.32 96.13 174.91 119.41 139.49 118.85 162.26 118.44 135.33 118.69 128.83 129.77 129.44 114.16 161.12 114.16 129.44 55.15 
4i 195.62 96.48 175.00 119.91 139.98 119.12 162.54 118.74 135.64 118.96 128.39 128.02 109.67 151.13 149.31 111.19 122.60 56.01, 

55.93 
4j 195.69 96.61 174.83 120.13 139.73 119.09 162.55 118.73 135.68 118.99 128.42 129.50 106.31 149.57 148.47 108.70 124.56 101.61 
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Table 3-51H NMR chemical shifts (δ in ppm) for compounds 5a–j(J is givenin Hz) 

 
H-3 H-5 H-6 H-7 H-8 H-2' H-3' H-4' H-5' H-6' H-α H-β OCH3/OC

H2O 

5a 6.32 s 
 

8.17 dd 
J = 7.94, 

1.56 

7.37 td 
J=7.92, 

0.80 

7.66 ddd 
J = 8.56, 
7.20, 1.56 

7.53 d 
J = 8.28 --- 

7.11ddd 
J = 9.20, 
8.20, 2.36 

7.32 m 7.17 t 
J = 7.92 

7.59 td 
J = 7.60, 

1.50 
 

6.87 d 
J = 16.24 

7.72 d 
J = 16.24 --- 

5b 6.34 s 
 

8.18 dd 
J = 7.92, 

1.32 

7.36 m 
 

7.68 dt 
J = 8.60, 

1.64 

7.52 d 
J = 8.60 7.26 m --- 7.06 t 

J = 8.04 7.36 m 7.36 m 6.77 d 
J =  16.00 

7.55 d 
J =  16.00 --- 

5c* 6.46 s 
 

8.01 dd 
J = 7.92, 

1.44 

7.47 t 
J = 7.44 7.82 m 7.69 d 

J = 8.48 7.79 m 7.28 t 
J = 8.78 --- 7.28 t 

J = 8.78 7.79 m 7.16 d 
J = 16.16 

7.70 d 
J = 16.16 --- 

5d 6.34 s 
 

8.18 dd 
J = 7.92, 

1.56 

7.39 td 
J = 7.92, 

0.68 

7.72ddd 
J = 8.55, 
7.20,1.56 

7.51 d 
J = 8.30 

7.08 dd  
J = 8.08, 

1.88 
--- 

6.81 tt 
J = 

8.70,2.35 
--- 

7.08 dd 
J = 8.08, 

1.88 

6.76 d 
J = 15.96 

7.49 d 
J = 15.96 --- 

5e 6.28 s 
 

8.18 dd 
J = 8.80, 

6.35 
7.12 m --- 

7.20 dd 
J = 9.04, 

2.40 

7.56 dd 
J=8.60, 

5.56 

7.10  t 
J = 8.60 

 
--- 

7.10 t 
J = 8.60 

 

7.56dd 
J=8.60, 

5.56 

6.67 d 
J = 16.00 

7.53 d 
J = 16.00 --- 

5f 6.29s 
 

8.19 dd 
J = 8.85 

6.35 

7.10 td 
J=8.60, 

2.40 
--- 

7.21dd 
J=9.13, 

2.40 
 

7.58 dd 
J=8.10, 

1.48 
7.41 m 7.39 m 7.41 m 

7.58 dd 
J=8.10 
1.48 

6.76 d 
J = 15.96 

7.59 d 
J = 15.96 --- 

5g 6.31 s 
 

7.85 dd 
J =8.20, 

3.15 
--- 7.40 m 

 

7.52 dd 
J = 

9.10, 4.15 

7.56 d 
J = 8.00 

 

7.40 d 
J = 8.00 

 
7.39 m 

7.40 d 
J = 8.00 

 

7.56 d 
J = 8.00 

 

6.77 d 
J = 16.08 

7.60d 
J = 16.08 --- 

5h 6.28 s 
 

8.18 dd 
J = 7.95, 

1.60 

7.36 t 
J=7.95 

7.65 ddd 
J =8.56, 
7.12,1.60 

7.52 d 
J = 8.56 

7.48 d 
J = 8.70 

 

6.92 d 
J = 8.70 --- 

6.92 d 
J = 8.70 

 

7.48 d 
J = 8.70 

 

6.64 d 
J = 15.96 

7.55 d 
J = 15.96 

 
3.84 s 

 

5i* 6.40 s 
 

8.01 dd 
J = 

7.88,1.72 

7.47 ddd 
J = 

7.88,7.16,  
0.68 

7.81 ddd 
J = 

8.20,7.16, 
1.72 

7.70 d 
J = 8.20 

7.36 d 
J=1.72 --- --- 7.02 d 

J = 8.28 

7.27 dd 
J = 8.28, 

1.72 

7.11 d 
J = 16.04 

7.65 d 
J = 16.04 

3.80 s 
3.83s 

5j 6.28 s 
 

8.17 d 
J = 7.62 

7.37 t 
J=7.53 

7.65ddd 
J = 8.11 
7.14,0.98 

7.51 d 
J = 7.82 7.08 s --- --- 6.81 d 

J = 8.06 

7.05 d 
J = 8.06 

 

6.59  d 
J = 16.06 

7.50 d 
J = 16.06 6.01  

*in DMSO-d6   
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Table 3-613C NMR chemical shifts (δ in ppm) for compounds 5a–j (J is given in Hz) 

 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-α C-β C-1' C-2' 
 

C-3' 
 

C-4' C-5' C-6' OCH3/
OCH2O 

5a 161.47 111.21 178.48 125.69 125.05 133.88 117.93 156.02 124.13 
122.67 
d J = 
6.51 

129.47 
d J= 
3.10 

123.09 
d J = 
11.68 

161.17 
d J = 

253.27 

116.23 
d 

J=21.8
1 

131.25 
dJ=8.6

7 

124.56
dJ 

=3.57 

128.39
d J = 
2.72 

 

5b 161.22 111.15 178.51 125.76 125.14 133.89 117.87 156.00 124.09 121.67 
135.57 
d J = 
2.77 

137.28 
d J = 
7.84 

113.99 
d J = 
21.99 

163.15 
d J = 

245.48 

116.69 
d J = 
21.60 

130.54 
d J = 
8.30 

123.61 
d J = 
2.67 

 

5c* 161.68 110.06 177.13 124.76 125.31 134.35 118.20 155.43 123.39 120.38 135.38 
131.59 

d 
J=3.22 

130.02 
d 

J=8.11 

115.97 
d 

J=24.3
4 

162.88 
d J = 

240.60 

115.97 
d 

J=24.3
4 

130.02 
d J 

=8.11 
 

5d 160.59 111.70 178.37 125.79 125.25 133.99 117.87 155.97 124.11 122.98 
134.22 

t 
J=3.02 

138.28 
t J = 
11.24 

110.28 
dd J = 
18.47, 
7.22 

163.35 
ddJ = 

247.82, 
12.87 

104.96 
tJ = 

25.41 

163.35 
ddJ = 
247.82, 
12.87 

110.28 
dd J = 
18.47, 
7.22 

 

5e 161.82 110.63 177.41 

128.22 
d 

J=10.5
1 

113.73 
d 

J=22.4
5 

167.07 
d 

J=210.
10 

104.60 
d 

J=25.4
9 

156.88 120.96 119.67 135.83 
131.15 

d 
J=3.56 

129.52 
d 

J=8.19 

116.21 
d 

J=21.8
8 

164.97 
d 

J=251.
55 

116.21 
d 

J=21.8
8 

129.52 
d J 

=8.19 
 

5f 162.01 110.62 177.48 

128.20 
d 

J=10.6
4 

113.69 
d 

J=22.5
6 

164.48 
d J = 

252.60 

104.63 
d 

J=25.3
9 

157.05 
d 

J=13.2
0 

121.00 119.89 137.19 134.88 127.72 129.05 130.00 129.05 127.72  

5g 161.99 109.89 
177.62
d J = 
2.28 

110.69 
d 

J=23.4
2 

159.50 
d J = 

245.09 

121.76 
d J 

=25.13 

119.89 
d 

J=7.86 
152.20 

125.47 
d 

J=7.10 
120.03 137.35 134.88 127.73 129.05 130.02 129.05 127.73  

5h 162.25 109.94 178.48 125.69 124.91 133.60 117.85 156.03 124.15 117.90 136.65 130.95 129.29 114.48 161.11 114.48 129.29 55.42 

5i* 162.26 109.17 177.02 124.74 125.22 134.21 118.11 155.44 123.42 118.01 136.87 127.79 109.92 149.00 150.53 111.67 122.31 55.54 

5j 161.98 110.17 178.45 125.70 124.95 133.65 117.80 156.01 123.25 118.35 136.67 129.53 106.15 149.32 148.52 108.69 123.91 101.60 
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* in DMSO-d6
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Table 3-719F NMR  chemical shifts (δ in ppm)of compounds 3a-g , 4a-g and 5a-g 

No. 3  4 5 
a -113.57 -114.18 -115.39 
b -112.27 -112.32 -112.42 
c -108.54 -109.55 -110.72 
d -108.75 109.10 -109.31 
e -103.81, -103.17 -100.64, -109.57 -102.96, -109.89 
f -103.91 -100.72 -103.04 
g -115.35 -124.33 -115.51 

 

 

 

3.4. References 

Barros, A.I.R.N.A.,  Silva, A.M.S.,  Synthesis and structure elucidation of three series of 

nitro-2-styrylchromones using 1D and 2D NMR spectroscopy. Magnetic Resonance in 

Chemistry, 2009, 47, 885-896. 

Desideri, N., Conti, C., Mastromarino, P.,  Mastropaolo, F., Synthesis and anti-rhinovirus 

activity  of 2-styrylchromones. Antiviral Chemistry and Chemotherapy, 2000, 11, 373-381. 

Doria, G., Romeo, C., Forgione, A., Sberze, P., Tibolla, N., Corno, M.L., Cruzzola, G., 

Cadelli, G., Antiallergic agents. III. Substituted trans-2-ethenyl-4-oxo-4H-1-benzopyran-6-

carboxylic acids. European Journal of Medicinal Chemistry, 1979, 14,347–351. 

Fernandes, E.R., Carvalho, F., Silva, A.M.S., Santos, C.M.M., Pinto, D.C.G.A., Cavaleiro, 

J.A.S., Bastos, M.L., 2-Styrylchromonesas novel inhibitors of xanthine oxidase.A structure-

activity study.Journal of Enzyme Inhibition and Medicinal Chemistry, 2002, 17, 45-48. 

Fernandes, E., Carvalho, M., Carvalho, F., Silva, A.M.S., Santos, C.M.M., Pinto, D.C.G.A., 

Cavaleiro, J.A.S., Bastos, M.L., Hepatoprotective activity of polyhydroxylated 2-

styrylchromonesagainst tert-butylhydroperoxide induced toxicity in freshly isolated rat 

hepatocytes.Archives of Toxicology, 2003, 77, 500-505. 

Filipe, P., Silva, A.M.S., Morliere, P., Brito, C.M., Patterson, L.K., Hug, G.L., Silva, J.N., 

Cavaleiro, J.A.S., Maziere, J-C., Freitas, J.P., Santus, R., Polyhydroxylated 2-

styrylchromones as potent antioxidants. Biochemical Pharmacology, 2004, 67, 2207-2218. 



114 

Gerwick, W.H., Cytotoxic substances from the marine cyanophyte Hormothamnion 

enteromorphoides Grunow, 1987, European patent 237166. 

Gerwick, W.H., 6-Desmethoxyhormothamnione, A new cytotoxic styrylchromone from the 

marine cryptophyte Chrysophaeum taylori.Journal of Natural Products, 1989, 52, 252-256. 

Gomes, A., Freitas, M., Fernandes, E., Lima, J.L.F.C., Biological Activity of 2-

Styrylchromones. Mini-Reviews in Medicinal Chemistry, 2010, 10, 1-7. 

Karton, Y., Jiang, J., Ji, X., Melman, N., Olah, M.E., Stiles, G.L. and Jacobson, K.A., Journal 

of Medicinal Chemistry, 1996, 39, 2293–2301. 

Marinho, J., Pedro, M., Pinto, D.C.G.A., Silva, A.M.S., Cavaleiro, J.A.S., Sunkel, C.E. and 

Nascimento, M.S.J., 4'-Methoxy-2-styrylchromone a novel microtubule-stabilising 

antimitotic agent. Biochemical Pharmacology, 2008, 75, 826-835. 

Momoi, K., Sugita, Y., Ishihara, M., Satoh, K., Kikuchi, H., Hashimoto, K., Yokoe, I., 

Nishikawa, H., Fujisawa, S., Sakagami, H., Cytotoxic activity of styrylchromones against 

human tumour cell lines.In vivo, 2005, 19, 157-164. 

Silva, A.M.S., Pinto, D.C.G.A., Cavaleiro, J.A.S., Levai, A.,  Patonay, T., Synthesis and 

reactivity of styrylchromones. Arkivoc, 2004, 7, 106-123. 

  



115 

Chapter 4. Antioxidant activity of 3-hydroxy-1-(2-hydroxyphenyl)-5-

(phenyl)-2, 4-pentadien-1-one analogues 

 

Mehbub Momina, DereshRamjugernathb, ShahidulIslamc and Neil Koorbanallya* 

 

aSchool of Chemistry,  University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, 

South Africa. 

bSchool of Engineering, University of KwaZulu-Natal, Durban, 4041, South Africa. 

cDepartment of Biochemistry, Genetics, and Microbiology,  University of KwaZulu-Natal, 

Private Bag X54001, Durban, 4000, South Africa. 

* corresponding author. Tel.: +27 31 260 1099; Fax: +2731 2603091; E-

mail:Koorbanally@ukzn.ac.za 

 

ABSTRACT 

The fluoro aryl and methoxy aryl analogues of (2Z,4E)-3-hydroxy-1-(2-hydroxyphenyl)-5-

(phenyl)penta-2,4-dien-1-one were synthesised from different combinations of substituted 2-

hydroxacetophenones and (E)-cinnamic acids.  They were then screened for their antioxidant 

activity by the 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging assay and Ferric 

Reducing Power assay (FRAP).All the methoxylated analogues showedbetter activity thanthe 

fluorinated analogues and comparable to that of ascorbic acid. 

 

KEYWORDS: Antioxidant activity, 3-hydroxy-pentadien-1-ones, fluorinated aromatics, 

oxygenated aromatics, DPPH, FRAP 
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4.1. Introduction 

Oxidative stress is caused by an imbalance in the ratio of antioxidants to oxidants present in 

the body (Bhuyan et al., 2011).  Antioxidants are gaining popularity to help fight off a large 

number of life-style diseases such as cancer, diabetes, cardiovascular and other degenerative 

diseases.  Some of these, for example cancer, may be caused by the deleterious effects of 

pollution and overexposure to harmful chemicals (Roopan et al., 2009), while others such as 

diabetes and cardiovascular diseases may be caused by modern lifestyles where diets rich in 

fatty acids and carbohydrates coupled with a lack of exercise and work or family related 

stress is prevalent.  These conditions can cause biochemical changes in the body, causing an 

accumulation of harmful free radicals (Kumar, 2011). 

 

A free radical is a highly reactive chemical species, which contains an unpaired electron 

(Jaslin et al., 2011).  The family of free radicals generated from oxygen is called reactive 

oxygen species (ROS).  These species cause damage to other molecules by extracting 

electrons from them in order to attain stability (Chanda et al., 2010).  While most fruits and 

vegetables are rich in antioxidants such as polyphenolic compounds ( e.q the flavonoids, also 

a major constituent in red wine), most people experiencing the effects of oxidative stress do 

not contain these natural antioxidant supplements in their diet and the human body does not 

synthesize the required antioxidants to compensate with the damaging effects of ROS 

(Halliwell, 1996; Uttara et al., 2009). 

 

Although synthetic antioxidants such as tert butylated hydroxy toluene, tert butylate hydroxy 

anisole, gallic acid esters and tertiary butylated hydroquinones have shown the potential to 

neutralize free radicals, they have been criticized, mainly for having possible toxic effects, 

low solubility and only moderate antioxidant activity.  For decades, vitamin C (ascorbic acid) 
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has been used as an antioxidant supplement, but nowadays even this dietary supplement is 

not enough to ward off the deleterious effects of the free radicals generated in our bodies.  

There is thus a constant need to discover newpotential sources of antioxidants (Kothari et al., 

2010). 

 

The carbonyl group and the phenolic hydroxyl and methoxyl groups in molecules can 

contribute to enhanced antioxidant activity (Wright, 2002., Atmani et al., 2009).  Since the 3-

hydroxy-pentadien-1-ones contain most or all of these functional groups, they were subjected 

to the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and the 

FerricReducing Power assay (FRAP)to determination their potential to act as free radical 

scavengers and hence potential antioxidants. 

 

4.2. Materials and Methods 

 
Chemistry 

In general, different combinations of 2-hydroxyacetophenones (1) and cinnamic acid 

derivatives (2) were reacted with phosphorus oxychloride in pyridine at room temperature for 

4-5 hours to produce substituted (E) cinnamoyloxyacetophenones (3), which were subjected 

to basic conditions in DMSO at room temperature for 2 hours to produce the substituted 

(2Z,4E)-3-hydroxy-1-(2-hydroxyaryl)-5-(aryl)penta-2,4-dien-1-ones (4a-4j) (Scheme 4-1).  

The molecules were named according to their substitution pattern on the aromatic rings: for 

example, 4a was named as (2Z,4E)-3-hydroxy-1-(2-hydroxyphenyl)-5-(2-fluorophenyl)-2,4-

pentadien-1-one. The structures of the molecules were confirmed by 1D and 2D NMR 

spectroscopy and mass spectrometry.  The detailed synthesis is given in Chapter 2 and a full 

structural elucidation of the compounds is given in Chapter 3.  
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DPPH Assay 

The determination of the free radical scavenging activity of 4a-4j was carried using the 1,1-

diphenyl-2-picrylhydrazyl (DPPH) assay as described by Mensor et al. (2001) with a slight 

modification. Various concentrations (10, 25, 50, 125, and 250 µgmL-1) of sample extracts in 

methanol were prepared. A 1.0 mLaliquot of a 0.3 mM DPPH solution in methanol was 

added to a 2.5 mL solution of the product or standard and allowed to stand at room 

temperature in a dark chamber for 30 minutes. The change in colour from deep violet tolight 

yellow was then measured at 518 nm on a UVspectrophotometer (Jenway 6025). The 

decrease in absorbance was then converted to percentage antioxidant activity (% AA) using 

the formula:  

AA%=100 -{[(Abssample-Absblank) x100] / Abscontrol} 

Blank = Methanol (1.0 mL) plus sample solution (2.0 mL), Negativecontrol=DPPH solution 

(1.0 mL, 0.25 mM) plus methanol (2.0 mL), Ascorbic acid and gallic acid were used as 

standards.The scavenging reaction between (DPPH·) and an antioxidant (HA)can be written 

as: 

(DPPH·) + (H-A) DPPH-H + (A·) 

 

Ferric Reducing Power assay 

The FRAP was determined according the method of Oyaizu et al. (1986). The product or 

standard (100µgmL-1) was mixed with phosphate buffer (pH 6.6) and potassium ferricyanide. 

The mixture was incubated at50°C for 20 min. Trichloroacetic acid (10%, 2.5 mL) was added 

to themixture. A portion of the resulting mixture was mixed with FeCl3(0.1%, 0.5mL) and the 
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absorbance was measured at 700 nm in aspectrophotometer (Jenway 6025). A higher 

absorbance of the reaction mixture indicated a greater reductive potential of the sample. 

 

4.3. Results and Discussion 

Seven fluorinated and three methoxylatedanalogues of 3-hydroxy-1-(2-hydroxyphenyl)-5-

(phenyl)-2,4-pentadien-1-oneswere synthesized in a two-step reaction from different 

combinations of (E) cinnamic acids and 2-hydroxyacetophenones according toScheme 4-1.  

The resultant compounds were evaluated for their antioxidant activity using the FRAP and 

DPPH assays since they contained carbonyl, hydroxy, methoxy and fluoro functional groups 

in the molecule.  In particular, we wanted to see whether the fluorinated derivatives had 

comparable activity to the methoxylated derivatives. 
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Scheme 4-1 The preparation of (2Z,4E)-3-hydroxy-1-(2-hydroxyaryl)-5-(aryl)penta-2,4-dien-

1-ones 4a-j from their corresponding acetophenones and (E) cinnamic acids  (i) Pyridine, 

POCl3, rt. 4-5 h. (ii) DMSO, KOH, rt. 2h. 
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The results obtained from the FRAP assay (Table 4-1) showed that the reducing power of all 

compounds increased with increasing concentration, indicating that they all contained 

antioxidant activity and were capable of donating electrons to radicals, quenching them and 

rendering them inactive. The reducing power of the ten compounds tested decreased in the 

following order: 4i>4h>4j>4e>4d>4g>4f>4b>4c>4a.The reducing power of the standard 

ascorbic acid was however better than the tested compounds.Five of the tested compounds, 

three fluorinated, (the 3'',5''-difluoro4d, 4',4''-difluoro 4e and the 4'-fluoro 4f derivatives) and 

two methoxylated (the 4''-methoxy 4h and 3'',4''-methoxy 4i derivatives) were relatively 

comparable to ascorbic acid having antioxidant activity of between 54 and 65% to that of 

ascorbic acid at low concentrations (31.1 g mL-1), with the 4',4'' fluoro derivative 4i having 

the highest activity.  However, with increased concentration, better antioxidant activity was 

seen in the methoxy derivatives 4h and 4i, with 4i showing the best activity from all the 

tested compounds, increasing from 62% to 86% to that of ascorbic acid with a two-fold 

increase in concentration.  At higher concentrations (125 and 250 g mL-1), both methoxy 

derivatives 4h and 4i and the methylenedioxy derivative 4j showed good activity in 

comparison to ascorbic acid, having activity of between 57 and 82% (125 g mL-1) and 

between 70 and 80% (250 g mL-1) of that of ascorbic acid. 

 

With regard to the fluorinated compounds, 4e substituted with fluorine on both the chromone 

ring at C-4' and the phenyl ring at C-4'' showed the best activity, slightly higher than that with 

a fluorine substituted at C-4' alone as in 4f.  The activity of the 3'',5''-difluoro derivative 4d 

also has antioxidant activity comparable to 4e and 4f but 4g with the 5'-fluoro substitution 

and all the derivatives with mono-fluoro substitution on the phenyl ring 4a-4c showed much 

lower antioxidant activity. 
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Table 4-1Antioxidant activity of 4a-j measured by the FRAP method 

 Absorbance at the given concentration 

31.1g mL-1 62.5g mL-1 125g mL-1 250g mL-1 

4a 0.15±0.03 0.41±0.02 0.48±0.02 0.82±0.01 

4b 0.21±0.01 0.30±0.01 0.45±0.01 0.88±0.02 

4c 0.26±0.02 0.28±0.01 0.74±0.01 0.83±0.01 

4d 0.38±0.01 0.46±0.02 0.69±0.01 0.99±0.01 

4e 0.42±0.02 0.53±0.02 0.93±0.02 1.12±0.03 

4f 0.36±0.01 0.38±0.01 0.67±0.01 0.94±0.00 

4g 0.25±0.02 0.28±0.01 0.41±0.01 0.97±0.01 

4h 0.35±0.02 0.58±0.02 1.10±0.02 1.55±0.03 

4i 0.40±0.01 0.85±0.04 1.51±0.02 1.83±0.02 

4j 0.27±0.02 0.44±0.01 1.58±0.02 1.50±0.02 

Ascorbic acid 0.65±0.03 0.99±0.01 1.93±0.02 2.15±0.03 

Data are presented as means ±SD of triplicate. 

 

The reduction of DPPH can be correlated with thenumber of available hydroxyl groups in the 

test samples and their ability to donate these to the DPPH radicals, quenching them and 

showing the probability of rendering other radicals of this type inactive.  The results from this 

assay (Table 4-2) shows that all the fluorinated compounds did not have as good antioxidant 

activity as the methoxylated or the methylenedioxy derivatives.  The activity of the ten 

compounds decreased in the following order 4i>4j>4h>4f>4a>4g>4e>4c>4d >4b.  The 

highest activity was shown by 4i, the 3'',4''-dimethoxy derivative, which also had the highest 

activity in the FRAP assay and had an activity of 76% to that of ascorbic acid at the highest 

concentration (250 g mL-1) and 71% at the lowest concentration (31.1 g mL-1).   The other 
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two oxygenated derivatives, 4h and 4j also had good activity in this assay of between 52 and 

65% at 62.5 g mL-1 and 66 and 73% at 250 g mL-1 to that of ascorbic acid at the same 

concentrations.  It appears that activating electron donating substituents such as the methoxy 

group is much better at allowing the hydroxy group on the alkene to donate its proton to the 

DPPH radical than the deactivating fluoro groups are.  Thus, fluorine substitution at either the 

phenyl or the chromone ring did not make much difference to the antioxidant activity as 

compared to oxygenated substituents such as the methoxy group. 

 

Table 4-2  Antioxidant activity of 4a-j measured by the DPPH method 

 Absorbance of the given concentration. 

31.1g mL-1 62.5g mL-1 125g mL-1 250g mL-1 

4a 12.56±0.65 26.78±0.46 38.12±0.27 48.46±0.56 

4b 9.98±0.29 16.70±0.44 34.96±0.77 42.35±1.41 

4c 16.44±0.47 20.04±1.05 34.31±0.63 45.98±0.60 

4d 10.99±0.28 15.74±0.32 26.54±0.47 44.79±1.06 

4e 19.75±0.58 21.45±0.64 30.17±0.25 47.50±0.28 

4f 11.57±0.70 21.38±0.35 39.00±0.40 52.31±0.53 

4g 16.72±0.15 31.83±1.16 34.96±0.81 46.30±1.10 

4h 18.40±0.23 35.95±0.42 44.44±0.21 61.21±0.47 

4i 34.57±0.81 43.62±0.75 59.20±0.53 70.05±0.77 

4j 23.99±0.99 45.39±0.65 50.99±0.73 67.52±0.40 

Ascorbic acid 48.54±0.70 69.42±0.60 86.42±0.60 92.42±0.72 

Data are presented as means ± SD of triplicate. 
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4.4. Conclusion 

The FRAP assay deals with the electron donating capacity of the molecules and reflects the 

reducing power of active molecules.The presence of reductants with antioxidant property 

causes the reduction of the Fe3+/ferricynide complex to the ferrous (Fe2+) ion.In the DPPH 

assay, DPPH is a stable free radical and accepts an electron or hydrogen radical (like O-H) to 

become a stable diamagnetic molecule. 

 

In comparison to the methoxylated and methylenedioxy derivatives, the fluorinated 

derivatives were not as active as antioxidant agents, however in the FRAP assay, three 

fluorinated derivatives, the 3'',5''-difluoro 4d, the 4',4''-difluoro 4e and the 4'-fluoro 4f 

derivatives showed comparable activity to the oxygenated derivatives 4h-4j.  Amongst the 

three most active fluorinated compounds, 4e showed the best activity.  At higher 

concentrations, the antioxidant activity of the methoxy and methylenedioxy derivatives were 

comparable to that of ascorbic acid in both the FRAP and DPPH assays.  The results show 

that the methoxylated and methylenedioxy derivatives of (2Z,4E)-3-hydroxy-1-(2-

hydroxyphenyl)-5-(phenyl)penta-2,4-dien-1-one could be considered as good alternative 

sources of antioxidants.   
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Abstract 

Objectives 

To synthesise a small library of fluorinated derivatives of imidazole-2-thiones and to screen 

the synthesised compounds in vitro for antiplatelet aggregation activity to identify lead 

compounds which could either be used or developed further into antithrombotic drugs and to 

compare the activity of the fluorinated derivatives with the nitro and chloro derivatives. 

Methods 

Seven fluorinated derivatives of diethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylate (6a-6g) as well as a nitro and chloro derivative (6h-6i) were prepared in five 

steps from glycine, ethyl formate, diethyl oxalate, potassium thiocyanate and substituted 

benzyl bromides.  The structures of the synthesised compounds were elucidated and verified 

using 1H and 13C NMR spectroscopy and, where appropriate, 2D NMR spectroscopy. 

Key Findings 

The synthesized compounds exhibited concentration dependent anti-platelet aggregation 

activity on both the thrombin and ADP induced platelet aggregation. The 4-nitro (6h) and 4-

fluoro (6b) compounds exhibited the highest activity from the compounds tested, with 

estimated IC50 values of 0.40 and 0.35mg/mL for the thrombin-induced and ADP-induced 

platelet aggregation respectively 

Conclusions 

Three of the compounds, the 3,4-difluoro(6c), 4-nitro(6h) and 3-chloro(6i) derivatives have 

reasonable activity in both of the assays and could have potential as broad spectrum 

antiplatelet inhibitors.  With the exception of 6c, however the fluoro derivatives were not as 

active as the nitro and chloro compounds. 

Keywords: flourine, imidazole, antiplatelet activity, thrombin, ADP.  
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5.1. Introduction 

The imidazole moiety is an important constituent of many biological molecules and hence 

has been the focus of many synthetic approaches in the quest for pharmaceutically active 

compounds in a wide range of medical conditions and diseases.  Imidazole drugs themselves 

are well known to have many pharmaceutical applications (Bhatnagar et al., 2011).  The 

imidazole-2-thiones are a subgroup of these molecules that contain a thioamide group and as 

such have an ambidentate anion, either on nitrogen or sulphur after proton abstraction, which 

makes them reactive toward electrophilic agents.  This normally involves the highly polarised 

and nucleophilic sulphur atom, which reacts first with most electrophilic centres (Dawood et 

al., 2010). 

 

Recent reviews by Dawood et al. (2010) and Savjani et al. (2011) include a number of 

synthetic methods that have been employed to synthesise and react these compounds, to 

produce a wide range of imidazole-2-thiones, substituted at almost all positions on the 

imidazole-2-thione skeleton.  They can be formed from -bromoketones with substituted 

hydrazines and potassium thiocyanate (Lagoja et al., 2003), from-hydroxyketones, thiourea 

and ammonium thiocyanate (Maduskuie et al., 1995), from benzil and thiourea (Muccioli et 

al., 2006), from phenylglycine methyl ester with phenyl or alkyl isothiocynate (Muccioli et 

al., 2006) and from diamines and CS2 over a zinc oxide/aluminium oxide catalyst (Ballabeni 

et al., 1999) to name a few.  The imidazole-2-thiones are extremely reactive and can be 

alkylated and arylated at both sulphur and nitrogen using a variety of reagents 

(Trzhtsinskayaand Abramova, 1991) added to activated double bonds such as 2-cyanoethene 

(Bagrii and Vasilenko, 1978; Trzhtsinskaya et al., 1992), acetylene (Skvortsova et al., 1974), 

aliphatic and alicyclic ketones and acetophenones (Hozien et al., 2000). 
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The imidazole-2-thiones have also shown a wide range of biological activities, having 

antitumor (Iradyan et al., 1987), antiulcer (Tsuji et al., 1989), in vitroanti-inflammatory (Selig 

et al., 2011; Tsuji et al., 1989), antiarthritic, analgesic (Sharpe et al., 1985), antihyperthyroid 

(Doerge et al., 1993), tuberculostatic (Trzhtsinskaya et al., 1992), in vitro antibacterial, 

antifungal and insecticidal activity (Saeed et al., 2007).  They were also shown to possess in 

vitro anti-HIV activity, by showing non-nucleoside reverse transcriptase inhibition (Yasser et 

al., 2003) andhuman cytosolic phospholipase A2 activity having a role in preventing 

inflammation (Makita et al., 2000).  They are known to be in vitro Acyl-CoA: Cholesterol 

acyltransferase(ACAT ) inhibitors, limiting the absorption of dietary cholesterol (Maduskuie 

et al., 1995), protein kinase inhibitors responsible for preventing the gene expression of 

proinflammatory cytokines (Buhler et al., 2011), in vitro platelet aggregation inhibitors 

(Hayashi et al., 1989), and known to be in vitro anti-hypercholesteremics (Billheimer et al., 

1990). 

 

Platelets play an important role in hemostasis during tissue injury. Platelet adhesion and its 

activation is a normal physiological response to the accidental rupture of blood vessels. 

Platelets interact with activated plasma clottingfactors at the site of injury in the blood vessel, 

forming a mechanical plug which blocks the defect and terminates blood loss (Aruna et al., 

2010; Jantan et al., 2009).  However, when such activity is uncontrolled, this may cause 

thromboembolic artery occlusion, acute coronary syndrome, and ischemic stroke (Aruna et 

al., 2010). Anti-platelet aggregation (e.g. aspirin, clopidogrel and dipyridamole) are used in 

the treatment of cardiovascular diseases, myocardial infarction and stroke (Hankey, 2003).  

However, some patients are allergic to these drugs, necessitating the need for alternative 

antithrombotic drugs.   
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As part of an ongoing study on the search for fluorinated pharmaceuticals and our interest in 

platelet aggregation inhibitors, we have synthesised a range of fluorinated imidazole-2-

thiones and tested them for their ability to inhibit platelet aggregation in vitro.  We have also 

synthesised a nitro and chloro analogue to compare the activity of the fluorinated derivatives 

against. 

 

5.2. Experimental 

Chemistry 

General Experimental Procedures 

Reagents and chemicals used in this study were purchased from Sigma Aldrich via Capital 

Lab, South Africa and were reagent grade.  All organic solvents were redistilled and dried 

according to standard procedures.  NMR spectra were recorded using a Bruker AvanceIII 600 

MHz spectrometer at room temperature with chemical shifts (δ) recorded against the internal 

standard, tetramethylsilane (TMS).  IR spectra were recorded on a Perkin Elmer Spectrum 

100 FT-IR spectrometer with universal ATR sampling accessory. For GC-MS analyses, the 

samples were analysed on an Agilent GC–MSD apparatus equipped with DB-5SIL MS (30 m 

x 0.25 mm i.d., 0.25 µm film thickness) fused-silica capillary column. Helium (at 2 ml/min) 

was used as a carrier gas. The MS was operated in the EI mode at 70 eV.  Optical rotation 

was recorded using a PerkinElmerTM, Model 341 Polarimeter. Melting points were recorded 

on an Ernst Leitz Wetziar micro-hot stage melting point apparatus. 

 

Preparation of glycine ethyl ester hydrochloride (2). 

A solution of glycine (1)(0.266 mol; 20.0g)in ethanol was added to a 1L three-necked round 

bottomed flask fitted with a reflux condenser carrying a calcium chloride guard tube.  

Thionyl chloride (0.293 mol, 21.3ml) was added slowly using a dropping funnel over a 
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period of 1 h at -5oC. A vigorous reaction takes place. After complete addition, the reaction 

mixture was refluxed for 5 h and then cooled at room temperature.  A white solid separated 

out, which was filtered, dried and recrystallized from ethanol to afford the glycine ethyl ester 

hydrochloride (2), in 94% yield, mp145-146.  The structure was confirmed by1H NMR. 

1H NMR (DMSO-d6, 400 MHz): δ 8.50 (s, 2H, N-H), 4.18 (q, J= 7.38 Hz, 2H), 3.74 (s, 2H), 

1.22 (t, J = 7.38 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz): δ 167.51 (C=O), 61.47 (2C), 

13.92. 

 

Preparation of N-formylglycine ethyl ester (3) 

A mixture of glycine ethyl ester hydrochloride (2) (0.122 mol, 17.0g) and ethyl formate 

(0.792 mol, 120.0 ml) was added to a three-necked round bottomed flask fitted with a reflux 

condenser. The contents of the flask were heated to 50-55oC, after which triethylamine (0.134 

mol, 18.66 ml) was added and the contents refluxed for 24 h. The solution was then cooled 

and filtered with celite. The pure compound was obtained by completely distilling the filtrate 

to obtain N-formylglycine ethyl ester (3) in 93%yield with a bp of206-207oC.  The 

structurewas confirmed by 1H NMR.  1H NMR (CDCl3, 400 MHz): δ 8.19 (s, 1H, CHO), 4.17 

(q, J = 6.72 Hz, 2H), 4.01 (d, J = 5.28 Hz, 2H), 1.23 (t, J = 7.50 Hz, 3H). 

 

Preparation of sodium 1,2-bis-ethoxycarbonyl-2-formylamino-ethenolate (4) and diethyl 2-

mercapto-4,5-imidazoledicarboxylate (5) 

The procedures in Jones (1952) and Anderson et al. (1989) were adapted and modified.  

Inadry 2L three-necked flask provided with a stirrer, dropping funnel and reflux condenser, 

80 mL of anhydrous ether and 3.2 g (1.25 g per piece) of clean sodium was placed.  

Thereafter, absolute ethanol (15 mL) was added followed by the slow addition of diethyl 

oxalate (1.43 moles; 19.4ml) so that the reaction did not become too vigorous.N-
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formylglycineethyl ester (3) (0.114 mol; 15.0 g) was added to the resultant solution from a 

droppingfunnel whilst stirring the contents of the flask. Aprecipitate formed (4) which turned 

to adark red-brown gummy mass upon standing.  The mixture was then left to stand for 24h, 

after which 100 ml of iced water was added, and the mixture agitated until the solid 

dissolved.  The aqueous layer was separated from the organic layer and 19.5g (0.20moles) of 

potassium thiocyanate followed by 25 mL of concentrated hydrochloric acid was added to the 

aqueous layer.The resultant solution was warmed on a water bathfor a few minutes to remove 

any remaining dissolvedetherand then refluxed at 40-60°C for six h during which time a 

heavy yellow crystallineprecipitate of diethyl 2-mercapto-4,5-imidazoledicarboxylate(5) 

separated. The mixture was cooled, filtered and washed with 10 mL of iced water. By 

evaporating the filtrate under reducedpressure to a volume of about 700 mL, an additional 

quantityof the product was obtained. The total yield of the crude productwas 12.75 g(46% 

yield), mp 202-204oC.  The 1H and 13C NMR data of 5 compare well with that in Anderson et 

al., (1989). 

1H NMR (DMSO-d6, 400 MHz): δ 13.20 (s, 2H, N-H), 4.26(q, J=6.92Hz, 4H), 1.27(t, 

J=7.0Hz, 6H); 13C NMR (DMSO-d6, 100 MHz): δ 164.21 (C=S), 157.71 (C=O), 123.37, 

62.04, 14.28. 

 

Preparation of diethyl-2-(benzylsulfanyl)-1H-imidazole-4,5-dicarboxylate derivatives (6a-i) 

Diethyl 2-mercapto-4,5-imidazoledicarboxylate(5) (0.00409 mol, 1.0g) in DMF (10 mL), 

sodium bicarbonate (0.00595 mol, 0.50 g) and substituted benzyl halides (approximately 

0.00500 mol of each) were added together in a 100 mL round bottom flask and stirred for 1.5 

h.  The contents were then diluted with 20 mL ofethyl acetate, followed by water to separate 

out the organic layer, which was further washed with water.  The organic layer was 
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evaporated to yield the products (6a-i), which was recrystallized from ethanol.  The yields 

and melting points are recorded below. 

 

6a) Diethyl 2-(3-fluorobenzylthio)-1H-imidazole-4,5-dicarboxylate: Pale yellow sticky solid 

residue (85% yield); mp 97-98oC, UV λmax (EtOAc) nm (log ) 274 (3.59);IR (KBr)max: 

3387 (N-H), 2983(C-H alkane), 1715 (C=O), 1255 (C-F), 1588 (C=C), 1187 (C-N), 1072, 

1012, 741 cm-1;1H NMR (CDCl3, 600MHz) δ 7.96 (s, N-H), 7.22 (td, J = 7.92, 5.94 Hz, 1H, 

H-5''),7.07(d, J=7.68 Hz, 1H, H-6''), 7.02 (dt, J=9.50, 1.77 Hz, 1H, H-2''), 6.92 (td, J= 8.94, 

2.34 Hz, 1H, H-4''), 4.42(s, 2H, H-7''), 4.31(q, J = 7.14 Hz, 4H, 2H-7/7'), 1.30(t, J=7.14 Hz, 

6H, 3H-8/8'); 13C NMR (CDCl3, 150 MHz) δ 162.69(d,JCF= 246.42 Hz, C-3''),159.44(2C, C-

6/6'), 144.11 (C-2), 138.52 (d, J=7.40 Hz, C-1''), 130.27 (d, J=7.75 Hz, C-5''), 124.69 (d, 

J=3.19 Hz, C-6''), 115.93 (d, J= 22.01 Hz, C-2''), 114.89 (d, J=21.04 Hz, C-4''), 62.09 (2C, C-

7/7'),37.58 (C-7''), 14.09 (2C, C-8/8'); 19FNMR (CDCl3, 376.5 MHz) . -112.22;  EIMS (m/z, 

% rel. int.)   352 [M+] (25), 307 (8), 278 (4), 234 (12), 206 (35), 109 (100);HRMS (m/z): 

353.0961 M+ + H (calculated for C16H17FN2O4S: 352.0893). 

The C-4/5 13C NMR resonances could not be detected in the spectrum. 

 

6b)Diethyl 2-(4-fluorobenzylthio)-1H-imidazole-4,5-dicarboxylate: Pale yellow sticky solid 

residue (85%yield); mp 99-101oC, UV λmax (EtOAc) nm (log ) 280 (3.59); IR (KBr)max: 

3202 (N-H), 2984 (C-H alkane ), 1709 (C=O), 1600 (C=C),  1256 (C-F), 1184 (C-N), 1070, 

1012, 766 cm-1;1H NMR (CDCl3, 600MHz)  7.24 (dd, J = 8.04, 5.58 Hz, 2H, H-2''/6''),6.93 

(t, J= 8.40 Hz, 2H, H-3''/5''),  4.34 (q,J= 7.14 Hz , 4H, 2H-7/7'), 4.32 (s, 2H, 2H-7''), 1.28 (t, 

J= 7.08 Hz, 6H, 3H-8/8');13C NMR (CDCl3, 150 MHz) 163.01(2C, C-6/6') , 162.20 (d,JCF= 

248.20 Hz, C-4''), 144.39 (C-2), 132.36(d, J=3.28 Hz, C-1''), 131.61 (d, J=8.82 Hz, 2C, C-

2''/6''),115.54 (d, J= 20.80 Hz, 2C, C-3''/5''),61.42(2C, C-7/7'), 36.82 (C-7''), 14.10(2C, C-
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8/8') ; 19FNMR (CDCl3, 376.5 MHz)  -115.40;  EIMS (m/z, % rel. int.)   352 (20), 307 (5), 

273 (3), 234 (7), 206 (13), 109 (100); HRMS (m/z): 353.0970 M+ + H (calculated for 

C16H17FN2O4S: 352.0893). 

 

6c)Diethyl2-(3,4-difluorobenzylthio)-1H-imidazole-4,5-dicarboxylate: Pale yellow solid 

residue (89% yield);mp 93-95C;UV λmax (EtOAc) nm (log ) 273 (3.59); IR (KBr)max: 

3534 (N-H), 2985 (C-H alkane ), 1719 (C=O), 1609 (C=C),  1288 (C-F), 1113 (C-N), 1078, 

1008, 953, 778 cm-1;1H NMR (CDCl3, 600MHz) 7.22 (td, J = 7.43, 1.80 Hz, H-6''), 7.09 (m, 

H-2''), 7.02 (dd, J= 18.12, 8.28 Hz, H-5''), 5.86 (s, N-H),4.58 (s, 2H, 2H-7''), 4.35(q,J= 7.14 

Hz, 4H, 2H-7/7'), 1.35 (t, J= 7.08 Hz, 6H, 3H-8/8');13C NMR (CDCl3, 150 MHz) δ 158.13 

(2C, C-6/6'), 150.22(#dd,JCF= 248.31, 12.93 Hz, *C3''),150.05 (#dd,JCF= 248.30, 12.08 Hz, 

*C4''),143.99 (C-2), 132.36 (d, J= 5.39 Hz, C-1''), 129.05 (2C, C-4/5), 125.46 (dd, J=6.51, 

3.31 Hz, C-6''), 118.24 (d, J=17.74 Hz, **C-5''), 117.63 (d, J=17.47 Hz, **C-2''), 62.65 (2C, 

C-7/7'), 37.59 (C-7''), 14.08(2C, C-8/8') ; 19FNMR (CDCl3, 376.5 MHz) � -137.93, -136.53; 

EIMS (m/z, % rel. int.) 370 [M+] (21), 325 (6), 291 (3), 252(7), 224(24), 127 (100), HRMS 

(m/z): 371.0875 M+ + H (calculated for C16H16F2N2O4S: 370.0799). 

*, ** Denote carbon resonances that may be interchangeable. 

# Denotes resonances that appear as a doublet of triplets since the resonances coincide with 

each other. 

 

6d)Diethyl 2-(perfluorobenzylthio)-1H-imidazole-4,5-dicarboxylate: Light green solid 

residue (91% yield); mp 110-112C; UV λmax (EtOAc) nm (log ) 270 (3.70); IR (KBr)max: 

3422 (N-H), 2988 (C-H alkane), 1706 (C=O), 1504 (C=C), 1196 (C-F), 1123 (C-N), 988, 

963, 769 cm-1; 1H NMR (CDCl3, 600MHz) δ 4.50 (s, N-H),  4.41 (s, 2H, 2H-7''), 4.25 (q, J= 

7.10 Hz, 4H, 2H-7/7'), 1.26 (t, J=7.11 Hz, 6H, 3H-8/8');13C NMR (CDCl3, 150 MHz) δ 
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161.88 (2C, C-6/6'), 145.14 (d, J=247.99 Hz, 2C, C-3''/5''),142.14 (C-2), 137.46 (d, J=259.02 

Hz,2C, C-2''/6''), 132.69 (*C-4''), 61.38 (2C, C-7/7'), 24.92 (C-7''), 14.40 (2C, C-8/8'); 

19FNMR (CDCl3, 376.5 MHz) �-161.13 (2F), -153.41, 141.45 (2F); EIMS (m/z, % rel. int.) 

424 (35), 378 (14), 350 (15), 306 (10), 278 (40), 181 (100); HRMS (m/z): 425.0591 M+ + H 

(calculated for C16H13F5N2O4S: 424.0516). 

* The doublet could not be clearly seen in the 13C NMR spectrum. 

 

6e)Diethyl2-(4-(trifluoromethyl)benzylthio)-1H-imidazole-4,5-dicarboxylate: Pale yellow 

solid residue (92% yield); mp 68-70C;UV λmax (EtOAc) nm (log ) 278 (3.67); IR 

(KBr)max: 3420 (N-H), 2985 (C-H alkane), 1722 (C=O), 1617 (C=C), 1321 (C-F), 1118 (C-

N), 1065, 1018, 850, 765 cm-1;1H NMR (CDCl3, 400MHz) 10.78 (s, N-H), 7.49 (d, J= 7.76 

Hz, 2H, H-3''/5''), 7.41 (d, J= 8.0 Hz, 2H, H-2''/6''), 4.46 (s, 2H, 2H-7''), 4.33 (q, J= 7.11, 4H, 

2H-7/7'), 1.33 (t, J=7.11 Hz, 6H, 3H-8/8');13C NMR (CDCl3, 100 MHz) δ 157.92 (2C, C-

6/6'), 144.04 (C-2), 139.37 (C-1''), 129.57 (2C, C-2''/6''), 129.16 (d, J = 53.78 Hz, C-4''), 

125.78 (2C, C-3''/5''), 125.18 (CF3*), 62.74 (2C, 7/7'), 38.07 (C-7''), 14.07 (2C, C-8/8'); 

19FNMR (CDCl3, 376.5 MHz) � -62.64; EIMS (m/z, % rel. int.) 402 [M+] (33), 357 (12), 

328 (8), 284(13), 256 (48), 159 (100), 109 (16);HRMS (m/z): 403.0950 M+ + H (calculated 

for C17H17F3N2O4S: 402.0861). 

* Quartet could not be observed. 

 

6f)Diethyl 2-(2,4-bis(trifluoromethyl)benzylthio)-1H-imidazole-4,5-dicarboxylate: Off white 

solid residue (78% yield);mp 93-95C;UV λmax (EtOAc) nm (log ) 277 (3.68); IR 

(KBr)max: 3229 (N-H), 2990 (C-H alkane), 1734 (C=O), 1280 (C-F), 1561 (C=C),  1110 (C-

N), 1085, 1004, 772 cm-1;1H NMR (CDCl3, 600MHz) δ 10.26 (s, N-H), 7.86 (s, H-3''), 7.72 

(d, J=8.10 Hz, H-5''), 7.68 (d, J= 8.20 Hz, H-6''), 4.62 (s, 2H, 2H-7''), 4.33* (q, J= 7.02 Hz, 
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2H, 2H-7), 4.40* (q, J= 7.02 Hz, 2H, 2H-7'), 1.34** (t, J=7.14 Hz, 3H, 3H-8), 1.39** (t, 

J=7.14 Hz, 3H, 3H-8');13C NMR (CDCl3, 150 MHz) 160.63 (2C, C-6/6'), 143.52 (C-2), 

139.98 (C-1''), 132.61 (C-6''), 130.44 (d, J = 33.42 Hz, C-2'') , 129.25 (d, J = 31.62 Hz, C-4''), 

129.05 (C-5''), 123.54 (C-3''), 123.43 (q, J = 272.55 Hz, 2''-CF3), 123.17 (q, J = 270.67 Hz, 

4''-CF3),  61.88 (2C, C-7/7'), 33.41 (C-7''), 14.17 (2C, C-8/8'); 19FNMR (CDCl3, 376.5 MHz)  

�-63.00, -59.77; EIMS (m/z, % rel. int.) 470 [M+] (45), 425(16), 396 (12), 352(12), 

324(100), 227 (80), 177 (22); HRMS (m/z): 471.0825 M+ + H (calculated for C18H16F6N2O4S: 

470.0735). 

*, ** Denote resonances that may be interchanged. 

 

6g)Diethyl2-(4-(trifluoromethoxy)benzylthio)-1H-imidazole-4,5-dicarboxylate: Off white 

solid residue (91%yield); mp77-80C; UV λmax (EtOAc) nm (log ) 279 (3.62); IR 

(KBr)max: 3464 (N-H), 2981 (C-H alkane), 1737 (C=O), 1596 (C=C),  1255 (C-F), 1150 (C-

N), 1078, 1019, 858 cm-1;1H NMR (CDCl3, 600MHz) δ 7.85 (s, N-H), 7.35 (d, J= 8.46 Hz, 

2H, H-2''/6''), 7.05(d, J=8.40 Hz, 2H, H-3''/5''), 4.55 (s, 2H, 2H-7''), 4.32(q, J= 7.14 Hz, 4H, 

2H-7/7'), 1.31 (t, J=7.44 Hz, 6H, 3H-8/8');13C NMR (CDCl3, 150 MHz) δ 158.56 (2C, C-

6/6'), 148.85 (C-4''), 144.18 (C-2), 134.25 (C-1''), 130.65 (2C, C-2''/6''), 129.38 (2C, C-4/5), 

121.18 (2C, C-3''/5''), 120.23 (q*, J = 255.34 Hz, OCF3),  62.45 (2C, C-7/7'), 37.88 (C-7''), 

14.03 (2C, C-8/8'); 19FNMR (CDCl3, 376.5 MHz) � -57.89;  EIMS (m/z, % rel. int.) 418 

[M+] (22), 373 (8), 339 (3), 300 (7), 272 (17), 175(100), 109(7); HRMS (m/z): 419.0893 M+ 

+ H (calculated for C17H17F3N2O5S: 418.0810). 

*The outer peaks of the quartet cannot be seen due to the reduced intensity of these peaks and 

the resonance overlaps with C-3''/5''. 
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6h)Diethyl 2-(4-nitrobenzylthio)-1H-imidazole-4,5-dicarboxylate: Yellow solid residue (88% 

yield);mp 111-112C;UV λmax (EtOAc) nm (log ) 274 (3.69); IR (KBr)max: 3245 (N-H), 

2984 (C-H alkane ), 1734 (C=O),  1561 (C=C), 1519 (NO2), 1478 (CH2 bend), 1339, 1182, 

1079 (C-N), 1013, 704  cm-1;1H NMR (CDCl3, 600MHz) δ 10.94 (s, N-H), 8.07 (d, J= 8.16 

Hz, 2H, H-3''/5''), 7.44 (d, J= 8.16 Hz, 2H, H-2''/6''), 4.41 (s, 2H, H-7''), 4.33 (q, J = 6.72 Hz, 

4H, 2H-7/7'), 1.32 (t, J=6.72 Hz, 6H, 3H-8/8'); 13C NMR (CDCl3, 150 MHz) 162.61 (2C, C-

6/6'), 147.29 (C-4''), 144.54 (C-2), 143.45 (C-1''),129.88 (2C, C-2''/6''), 127.65 (C-4/5), 

123.82 (2C, C-3''/5''),  61.86(2C, C-7/7'),  36.43 (C-7''), 14.15 (2C, C-8/8'); LCMS* (m/z) 380 

[M+ + 1]; HRMS (m/z): 380.0906 M+ + H (calculated for C16H17N3O6S: 379.0838). 

* An EIMS of the compound could not be obtained.   

 

6i)Diethyl 2-(3-chlorobenzylthio)-1H-imidazole-4,5-dicarboxylate: Off white sticky solid 

residue (70% yield); mp 107-109oC; UV λmax (EtOAc) nm (log ) 279 (3.37); IR (KBr)max: 

3334 (N-H), 2982 (C-H alkane), 1721 (C=O), 1597 (C=C), 1472 (CH2 bend),  1077 (C-N), 

1008, 687 (C-Clstretch) cm-1; 1H NMR (CDCl3, 600MHz) δ 10.13 (s, N-H), 7.31 (s, H-2''), 

7.20 (d, J= 7.26 Hz, 2H, H-4''/6''), 7.17 (t, J= 7.68 Hz, H-5''), 4.33 (s, 2H, H-7''), 4.35 (q, 

J=7.08 Hz, 4H, 2H-7/7'), 1.36 (t, J= 7.08  Hz, 6H, 3H-8/8');13C NMR (CDCl3, 150 MHz) 

161.97 (2C, C-6/6'), 143.71 (C-2), 138.71 (C-1''), 134.48 (C-3''), 129.97 (C-5''), 129.13 (C-

2''), 128.01 (C-4''), 127.13 (C-6''), 61.87(2C, C-7/7'), 37.17 (C-7''), 14.17 (2C, C-8/8'); EIMS 

(m/z, % rel. int.) 368 [M+] (27), 322 (8), 294 (6), 250(14), 222 (39), 125 (100), 89 (17); 

HRMS (m/z): 369.0681 M+ + H (calculated for C16H17ClN2O4S: 368.0598). 

 

2.1.6 X-Ray Crystallography 

Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO 

diffractometer using graphite-monochromated Mo-K radiation ( = 0.71073 Å). Data 
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collection was carried out at 173(2) K. The temperature was controlled by an Oxford 

Cryostream cooling system (Oxford Cryostat). Cell refinement and data reduction were 

performed using the program SAINT.  The data were scaled and an absorption correction 

performed using SADABS.  The structure was solved by direct methods using SHELXS-97 

and refined by full-matrix least-squares methods based on F2 using SHELXL-97 and using 

the graphics interface program X-Seed. All non-hydrogen atoms were refined anisotropically 

and all hydrogen atoms could be found in the difference electron density maps but were 

placed in idealised positions and refined in riding models with Uiso set at 1.2 times those of 

their parent atoms and at a distance (C-H) of 0.95 Å. The structure was refined to a R factor 

of 0.0503. 

 

2.2. In vitro antiplatelet aggregation  assay 

The use of experimental animals in this study was in accordance with the guidelines and care 

stipulated by the University of Zululandresearch animal ethics committee. Adult rats (~200g) 

(Sprague-Dawley) of either sex were collected from the Department of Biochemistry and 

Microbiology, University of Zululand. 

 

The blood platelets were prepared following the method described by Tomita et al., (1983) 

and detailed by Mosa et al.(2011).  A rat (~200g) was killed by a blow to the head. Blood was 

immediately collected from the abdominal aorta of the rat and was put in a centrifuge tube 

containing ADA (acid-dextrose-anticoagulant—0.085M trisodium citrate, 0.065 citric acid, 

2% dextrose; 1 ml ADA: 5 ml blood). The blood was centrifuged (Eppendorf centrifuge 5804 

R) at 1200 rpm for 15 min and at 2200 rpm for 3 min consecutively. Supernatant was 

collected and centrifuged at 3200 rpm for 15 min. The supernatant was discarded and the 

sediment (platelets) obtained was resuspended in 5 ml of washing buffer (pH 6.5—phosphate 
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buffer containing 0.113M NaCl, 5.5M glucose, 1mM EDTA). This was centrifuged at 3000 

rpm for 15 min. The supernatant was discarded and the platelets were suspended in a 

smallvolume of a resuspending buffer (pH 7.4; containing 0.14 M NaCl, 15 mM Tris-HCl, 5 

mM glucose). A 1:10 dilution of the platelets in the resuspending buffer was taken.The 

method previously described by Mekhfi et al., (2004) was adapted with some modifications 

to evaluate the antiplatelet aggregation activity of the compounds. The compounds were 

separately solubilized in dimethyl sulfoxide (DMSO) before being made up to the desired 

volume with 50 mM Tris–HCl buffer (pH 7.4; containing 7.5 mM ethylenediaminetetra-

acetic acid (EDTA) and 175mM NaCl) to a final 1% DMSO concentration. The compounds 

were used at the final concentrations of 1, 3 and 10 mg/ml. The antiplatelet aggregation 

activity of the compounds wasseparately investigated on thrombin (5 U/ml) and ADP (5 mM) 

induced aggregation. The platelets (100 µl) were pre-incubated for 5 min with different 

concentrations of the compounds. The aggregation inducer (20 µl) was introduced to the 

mixture.  

The 96-well microplate was used in the experiment and aggregation of the platelets was 

measured with the Biotek plate reader (ELx 808 UI, Biotek Instrument Supplies) using Gen5 

software by following the change in absorbance at 415 nm.  DMSO (1%) and aspirin were 

used as negative and positive controls, respectively. The experiment was done in triplicate 

and the mean slope (A) ± standard error of mean (SEM) reported.The inhibitory effect of the 

compounds on each parameter was calculated using the formula: 

Inhibition (%) = [(Ao – A1)/Ao x100], where Ao is the mean slope of the control and A1is the 

mean slope of the test compound.Estimated IC50 values were determined using a statistical 

package origin 6.1. 
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5.3. Results and discussion 

In our synthetic design, we have chosen the imidazole-2-thione as the basic backbone of the 

molecules with diesters substituted across the double bond and a benzyl moiety covalently 

bonded to the sulfur atom with fluorine being present on this moiety.  Thus, the molecules 

have fluorine, nitrogen and sulphur atoms incorporated in it, increasing its chances of 

reactivity.  We have chosen benzyl moieties with mono-, di- and penta- fluoro groups as well 

as mono- and di- trifluoromethyl and the monotrifluoromethoxy groups as well as a nitro and 

chlorobenzyl moiety.  The choice of the derivatives were governed by their availability as 

starting materials and our desire to investigate the effect that F, CF3, OCF3, NO2 and Cl 

groups at the 3- and 4- positions have on reactivity.    In the case of the 2,4-CF3 derivative, 

this was chosen since the 3,4-CF3 was not available.  We aimed to explore the effect of the 

position of the different groups as well as the effect of di- and penta- fluoro substitution and 

di-trifluoromethyl substitution.  The chloro group was chosen to compare whether the size 

and electronegativity of the halogen had an influence on reactivity and the nitro group chosen 

to compare the reactivity when a strongly electron withdrawing group was present. 

 

The synthesis started with the esterification of glycine (1) with ethanol and thionyl chloride 

resulting in glycine ethyl ester hydrochloride (2), which was then formylated using ethyl 

formate in the presence of a triethylamine catalyst.  The resultant N-formylglycine ethyl ester 

(3) was further reacted with sodium ethoxide and diethyl oxalate to produce the sodium 1,2-

bis-ethoxycarbonyl-2-formylamino-ethenolate (4), which was directly converted to the 

carbamate with potassium thiocyanate and hydrochloric acid to produce the diethyl 2-

mercapto-4,5-imidazoledicarboxylate (5), which was the intermediate that was reacted with 

the various substituted benzyl bromides with the basic sodium bicarbonate catalyst to form 
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the benzyl sulfanyl derivatives 6a-i, which was studied for their antiplatelet activity.  The 

scheme of the reaction is shown in Scheme 5-1. 

 

The 1H NMR spectra of the synthesised benzylthioimidazoles (6a-i) all showed aromatic 

resonances between H 6.8 and 7.8 for the benzyl protons with the exception of 6d 

(fluorinated at all positions on the aryl ring), a singlet for the benzylic protons at H 4.3 to 4.6 

and a quartet and triplet of the ester ethyl group at approximately H 4.3 and 1.3 respectively 

with J = 7.0 Hz.  The benzylic singlet of H-7'' and the quartet of the methylene group (H-7 

and H-7') appear close together in the 1H NMR spectrum. 
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Scheme 5-1The preparation of diethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylate derivatives in five steps(i) SOCl2, -5oC, EtOH, reflux for 5-6 hrs (ii) ethyl 

formate and triethyl amine in EtOH, refluxed at 50-55oC for 24 hrs (iii)  NaOEt , diethyl 

oxalate, left to stand for 24 hrs (iv) KSCN, HCl (v) NaHCO3 , DMF, substituted benzyl 

bromides, stirred at rt for 1.5 hrs. 
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Where fluorine was present on the aromatic ring, triplets of doublets and doublets of triplets 

were seen in the aromatic region due to coupling with both the fluorine and the hydrogen 

atoms.  For example, 6a shows triplets of doublets at H 7.22 and H 6.92 for H-5'' and H-4'' 

with J = 7.92 and 5.94, and 8.94 and 2.34 Hz respectively.  A doublet of triplets can be seen 

for H-2'' with J = 9.50 and 1.77 Hz.  The H-6'' proton, remotely situated from the fluorine 

atom, showed a doublet resonance with an observed J5''/6''of 7.68 Hz, however the peaks for 

this resonance was not as well resolved as that for H-5'', resulting in the slight deviation in 

coupling constants.  For benzyl rings which were para substituted, for example, 6e, g and h, a 

pair of doublets were observed for these compounds with J being approximately 8.0 Hz.  In 

the case of 6b, the para fluorinated compound, H-2''/6'' appears as a double doublet with J = 

8.04 and 5.58 Hz and H-3''/5'' appears as a triplet due to coupling with both the proton and 

fluorine atom, where the double doublet of H-3''/5'' coalesces to produce a triplet with J = 

8.40 Hz. 

 

In the 13C NMR spectrum, the ester carbonyl resonance (C-6/6') occurs at approximately  

160 and the two equivalent ethyl methylene (C-7/7') and methyl (C-8/8') carbon resonances 

occur at approximately  61 and d 14 respectively.  The benzylic carbon resonance (C-7'') 

occurs at approximately  37.  The imidazole carbon resonance (C-2) occurs at  144, with 

the other two resonances C-4 and C-5 only appearing in some spectra as a single resonance, 

probably because of the symmetry in the molecule at  129.  These resonances were too weak 

to be detected in most of the spectra.  The aromatic carbon resonances occur between  110-

140.  Where fluorine is substituted directly on the ring, the ipso carbon is split into a doublet 

with JC-F = 246 Hz and the ortho and meta carbon resonances are also split into doublets with 

J being approximately 22 and 8 Hz respectively.  In some cases para F-C coupling of J = 3 
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Hz can also be seen.  For 6c, the difluorinated compound, a double doublet for each of the 

ipso protons is seen at  150.22 and  150.05 respectively due to the two fluorine atoms being 

ortho to each other.  This appears as a doublet of triplets due to coalescing of each of the 

double doublets.  The CF3 carbon resonances appear at  125 as a quartet with J being 

approximately 270 Hz.  In some cases the quartet could not be clearly observed as in 6e and 

in others, for example 6g, the outer peaks of the quartet could not be seen due to the reduced 

intensity of these peaks, however, these are clearly seen in 6f.  In the pentafluoro compound 

(6d), the C-7'' benzylic carbon is more shielded than the others at  24.92, probably due to 

electron donation by the fluorine atoms. 

 

In addition, the crystal structure of the parent compound, diethyl 2-mercapto-4,5-

imidazoledicarboxylate(5) was determined and was shown to contain two molecules in the 

unit cell with a triclinic P1 space group.  The molecule was essentially planar with bond 

angles in the imidazole ring being between 122-125°, with only one of the bond angles 

between the ester group and the olefinic carbon and the nitrogen of the imidazole ring being 

116°.  The two ester groups point away from each other and extend out of the imidazole 

moiety like two functional arms.  An ortep diagram of 5 is given in Figure 5-1. 
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Figure 5-1ORTEP diagram of diethyl 2-mercapto-4,5-imidazoledicarboxylate(5) 
 

The synthesised compounds exhibited concentration and substituent dependent inhibitory 

activity of platelet aggregation induced by the two platelet agonists.  Six of the ten 

synthesised compounds, including the carbazole intermediate (5), showed activity better than 

or comparable to aspirin (used as a standard) in the thrombin induced platelet aggregation 

assay (Table 5-1), while eight of the compounds showed either better or comparable activity 

to aspirin in the ADP-induced platelet aggregation (Table 5-2).  

 

Table 5-1Percentage inhibition of platelet aggregation at different concentrations of the 

compound on thrombin-induced platelet aggregation 

No. R 0.5 mg/ml 3.0 mg/ml 10.0 mg/ml Estimated 

IC50 (mM) 

5 Carb  0.00  ± 1.91 58.1  ± 1.06 75.4  ± 0.95 11.18 
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6a 3-F 0.00  ± 0.87 0.00  ± 0.28 0.00  ± 0.25 ND 

6b 4-F 0.00  ± 0.41 0.00  ± 0.98 0.00  ± 0.63 ND 

6c 3,4-F 0.00  ± 0.62 51.8  ± 0.83 66.1  ± 0.64 7.99 

6d Penta-F 13.6 ± 0.85 65.9  ± 0.83 80.0  ± 0.84 5.28 

6e 4-CF3 0.00  ± 1.13 0.00  ± 0.21 0.00  ± 0.96 ND 

6f 2,4-CF3 0.00  ± 0.00 82.9  ± 0.94 84.2  ± 2.29 4.38 

6g 4-OCF3 0.00  ± 0.26 0.00  ± 1.14 27.1  ± 1.15 ND 

6h 4-NO2 57.2  ± 0.27 71.4  ± 0.83 76.8  ± 0.39 1.05 

6i 3-Cl 55.8  ± 0.48 80.2  ± 0.99 84.3  ± 0.87 0.44 

C* Aspirin 30.5  ± 0.48 51.2  ± 0.47 66.3 ± 0.24 7.66 

C* = aspirin; ND = not detected 

 
Thrombin induced platelet aggregation assay 

All the inactive compounds in the thrombin induced platelet aggregation assay were 

monosubsituted (3F (6a), 4F (6b), 4CF3 (6e) and 4-OCF3(6g)).  The carbazole (5), together 

with the di and penta deriviatives (6c-d and 6f) showed no or very little activity in the 0.5 

mg/ml range, but their extrapolated estimatedIC50 values were comparable to that of aspirin 

(Table 5-1).  The best activity was displayed by the compounds with the 4-nitro (6h) and 3-

chloro (6i) groups, which had estimatedIC50 values of 0.40 and 0.44 mg/ml respectively.  

Furthermore, they were the only two compounds that showed appreciable activity at a low 

concentration of 0.5 mg/ml.  Thus, electron withdrawing groups seemed to favour inhibition 

in the thrombin induced platelet aggregation assay.  The fact that the monosubstituted fluoro 

atoms have no inhibitory effect could be due to their small size or the inability of the fluorine 

atom to co-ordinate to biological ligands as compared to chlorine.  This however is overcome 

by phenyl groups with multiple fluorine atoms, as this shows an increase in activity. 

 

Table 5-2Percentage inhibition of platelet aggregation at different concentrations of the 

compound on ADP-induced platelet aggregation 
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No. R 0.5 mg/ml 3.0 mg/ml 10.0 mg/ml Estimated 

IC50 (mM) 

5 Carb  0.00  ± 0.90 0.00  ± 1.23 0.00  ± 0.53 ND 

6a 3-F 0.00  ± 0.39 72.2  ± 0.46 74.8  ± 0.57 6.36 

6b 4-F 68.7  ± 0.94 76.4  ± 0.19 86.6  ± 0.43 0.99 

6c 3,4-F 0.00  ± 0.45 66.0  ± 1.08 82.3  ± 0.50 6.64 

6d Penta-F 0.00  ± 0.62 20.8  ± 0.31 35.8  ± 0.42 ND 

6e 4-CF3 0.00  ± 0.80 38.2  ± 0.51 53.8  ± 0.73 21.09 

6f 2,4-CF3 0.00  ± 0.85 0.00  ± 0.91 0.00  ± 0.69 ND 

6g 4-OCF3 14.1  ± 0.90 47.1  ± 1.19 50.9  ± 0.18 21.67 

6h 4-NO2 0.00  ± 0.33 0.00  ± 0.13 88.3  ± 1.73 18.57 

6i 3-Cl 24.7  ± 1.03 46.6  ± 0.79 61.5  ± 0.53 12.90 

C*  23.7  ± 0.90 45.3  ± 0.18 57.1  ± 1.15 32.86 

C* = aspirin; ND = not detected 

 

ADP-induced platelet aggregation assay 

Compared to the thrombin induced platelet aggregation, the situation in this assay is quite 

different.  Multiple fluorine atoms on the phenyl ring (6d) lead to loss of activity, whereas 

fluorine substitution at both the 3- and 3,4- positions (6a and 6c respectively) lead to better 

activity than aspirin with Estimated IC50 values of 2.24 and 2.46 mg/ml respectively (Table 

5-1).  The best activity is seen by the 4-fluorophenyl derivative (6b) which shows an 

Estimated IC50 value of 0.35.    The 3-chloro derivative (6i) also shows slightly better activity 

than aspirin Estimated IC50 of 4.75 compared to 5.92 mg/ml) with the 4-CF3 (6e), 4-OCF3 

(6g) and 4-NO2 (6h) showing slightly weaker activity than aspirin with Estimated IC50 values 

of 8.48, 9.06 and 7.04 mg/ml.  Substitution of an additional CF3 group at the 2-position as in 

6f results in loss of activity as was the case with the carbazole skeleton without any phenyl 

group attached to it. Thus, in this assay, small electron withdrawing groups such as fluorine 

substituted at the para position on the phenyl moiety results in the best activity.  This activity 
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is reduced with larger electron withdrawing groups and electron donating groups and activity 

is reduced by further fluorinations on the phenyl ring. 

 

Since the two platelet aggregation assays have different compounds showing the best activity 

and also have different compounds being inactive in the assays, there seems to be a different 

mechanism of platelet inhibition in both of these assays.  However, three of the compounds, 

the 3,4-difluoro (6c), the 4-nitro (6h) and the 3-chloro (6i) have reasonable activity in both of 

the assays. 

 

5.4. Conclusion: 

Diethyl-2-(benzylsulfanyl)-1H-imidazole-4,5-dicarboxylate derivatives are easily prepared 

from glycine in a five step reaction involving activating glycine with N-formylation and 

transesterification, and then reacting this intermediate with diethyl oxalate followed by 

potassium cyanate and then the benzyl bromides.  Different derivatives are active in each of 

the assays (thrombin induced and ADP-induced platelet aggregation assays), suggesting that 

different mechanisms are involved in each of the assays.  The most active of the compounds 

in the thrombin induced assay are the 4-nitro (6h) and the 3-chloro (6i) derivatives whereas 

the most active compound in the ADP-induced assay is the 4-fluoro (6b) derivative.   Three 

of the compounds, 6c, 6h and 6i, the 3,4-difluoro, the 4-nitro and the 3-chloro derivatives 

have reasonable activity in both of the assays and could have potential as broad spectrum 

antiplatelet inhibitors.  With the exception of 6c, the fluoro derivatives were not as active as 

the nitro and chloro derivatives. 
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Abstract 

In the title compound, C17H13FO3, the dihedral angle between the aromatic rings is 70.34 (5). 

In the crystal, molecules are linked via pairs of bifurcated C—H…(O,O) hydrogen 

bonds,forming inversion dimers. These dimers are linked via C—H…O and C—H…F 

interactions, forming a three-dimensional structure. 

 

Related literature 

For the preparation, see: Pinto et al. (2000). For relatedstructures, see: Santos et al. (2009); 

Ren et al. (2006); Ren et al. (2006b). For bond-length data, see: Allen et al.(1987). The title 

compound is a core structure in variousnatural and pharmaceutically active compounds, 

displaying abroad spectrum of activity, see: Gomes et al. (2010). 
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Figure 6-1Chemical structure of 2-Acetylphenyl-(2E)-3-(4-fluorophenyl)-acrylate 
 
Table 6-1 Hydrogen-bond geometry (A˚, o). 

Cg1 is the centroid of the C3–C8 ring. 
 

D—H…A D—H H…A D…A D—H…A 

 

C7—H7…F1i 0.95 2.52 3.2402(16) 132 

C11—H11…O3ii 0.95 2.46 3.3369(16) 154 

C13—H13…O3ii 0.95 2.45 3.3191(16) 153 

C16—H16…O1iii 0.95 2.51 3.3590(17) 149 

C6—H6…Cg1iv 0.95 2.99 3.818(1) 146 

Symmetry codes: (i)x, -y+2, z- ଵ
ଶ
 (ii)-x, -y+1, -z (iii)-x+ ଵ

ଶ
, y + ଷ

ଶ
, -z + ଵ

ଶ
 (iv)x,-y + 1, z-ଵ

ଶ
. 

 
Comment 

The title compound (E)-2-acetylphenyl-3-(4-fluorophenyl)-acrylate was obtained as an 

intermediate en route to thesynthesis of 4′-fluoro-2-styrylchromone and easily converts to the 

2-hydroxyphenyl pentadienone with DMSO in thepresence of a strong base (Santos et al., 

2009). It was synthesized according to the procedure by Pinto et al. (2000) withmodification. 

The title compound is a core structure in various natural and pharmaceutically active 

compounds,displaying a broad spectrum of activity (Gomes et al., 2010). 

 

In the molecule of the title compound (Figure 6-1and Figure 6-2), the two aromatic rings 

(ring 1: C3—C4—C5—C6—C7—C8; ring 2:C12—C13—C14—C15—C16—C17 are 

almost perpendicular to each other with a dihedral angle of 70.34 (5)°.The torsion angle C9—
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C10—C11—C12 is -178.8 (1)°, indicating a trans configuration of the double bond. All 

bondlengths and angles are within normal ranges (Allen et al.,1987). In the crytsal packing, 

ring 1 adopts a parallel offsetarrangement with itself of the neighbouring molecule with a 

centroidal distance of 4.125 (1) A. The crystal is furtherstablized by a number of weak 

hydrogen bonds with the type C—H…X (X = O or F) and C—H…π (Table 6-1). 

 

Experimental 

Phosphorous oxychloride (15.6 mmol) was added to a solution of 2-hydroxyacetophenone 

(12.0 mmol) and 4-fluorocinnamic acid (15.6 mmol) in dry pyridine. The solution was stirred 

at 60–70 °C for 3 h, and then poured into ice and waterand the reaction mixture acidified with 

hydrochloric acid (pH 3–4). The obtained solid was removed by filtration anddissolved in 

ethyl acetate (100 ml) and purified by silica gel column chromatography using a 7:3 mixture 

of ethylacetate:n-hexane as the eluent. The solvent was evaporated to dryness and the residue 

recrystallized from ethanol,resulting in the title compound with a 72% yield and am.p of 80–

82°C.IR (KBr) max (cm-1): 1729 (C=O), 1670 (C=O), 1624 (C=C), 1590, 1446, 1221 (C—F), 

1202, 1159, 1050. 1H NMR(CDCl3, 400 MHz): 7.84 (d, J = 15.96 Hz, 1H, H), 7.81 (dd, J 

= 8.00,1.60 Hz, 1H), 7.58 (dd, J = 8.60, 5.42, 2H), 7.53 (td, J = 8.00, 1.52 Hz, 1H), 7.33 (td, J 

= 8.00, 0.72 Hz, 1H), 7.17 (dd, J = 8.00, 0.72 Hz, 1H), 7.09 (t, J = 8.60 Hz,2H), 6.58 (d, J = 

15.96 Hz, 1H, H), 2.54 (s, 3H, CH3). 13C NMR (CDCl3, 100 MHz): 197.78 (C=O), 165.14 

(C=O), 164.25 (d, JCF = 250.70 Hz), 149.07, 145.99, 133.36, 131.30, 130.43 (d, J = 8.37 Hz, 

2C), 130.32 (d, JCF = 3.55 Hz), 130.15, 126.10, 123.78,116.58 (d, J = 2.37 Hz), 116.20 (d, JCF 

= 21.85 Hz, 2C), 29.71 (CH3). 19F NMR (CDCl3, 376.5 MHz): -108.54. EIMS (probe) 70 

eV (m/z, rel.int.) 284 (M+) (21), 149 (100), 121 (25), 101 (20). 
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Refinement 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in 

the difference electrondensity maps but were finally placed in idealized positions refining in 

riding models with Uiso set at 1.2 or 1.5 times Ueqof their parent atoms. 

 

Computing details 

Data collection: COLLECT program (Nonius, 2000); cell refinement: DENZO-SMN 

(Otwinowski& Minor, 1997); datareduction: DENZO-SMN (Otwinowski& Minor, 1997); 

program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine 

structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 

2012);software used to prepare material for publication: WinGX(Farrugia, 2012). 

 

 
Figure 6-2ORTEP diagram showing the molecular structure of the titled compound with 

atomic labelling scheme. Non-H atoms are drawn with 50% probability displacement 

ellipsoids and H atoms are shown as open circles. 
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Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are 

estimated using the fullcovariance matrix. The cell e.s.d.'s are taken into account individually 

in the estimation of e.s.d.'s in distances, angles andtorsion angles; correlations between 

e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.An 

approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. 

planes. 

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wRand 

goodness of fit S are based on F2,conventionalR-factors R are based on F, with F set to zero 

for negative F2. The threshold expression of F2 >σ(F2) is usedonly for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based 

on F2 are statistically about twice as large as those based on F, and R-factors based on ALL 

data will be even larger. 
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6.2. (E)-2-Acetyl-4-fluoro-phenyl 3-(4-fluorophenyl)-acrylate 
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Durban, 4041, South Africa,  and cChemistry Deparment, University of Cape Town,  

Rondebosch, 7701 

 

Correspondence e-mail: Koorbanally@ukzn.ac.za 

 

Abstract 

The title compound, C17H12F2O3, crystallizes with two planar molecules in the asymmetric 

unit.The title molecule has the packing 4 molecules in a unicell.The molecule confirmation is 

stabilized by O—H intra-molecular hydrogen-bond inter-action with a distance of 2.677Å. 

 

Related literature 

For the preparation, see: Pinto et al. (2000). For related structures, see: Santos et al. (2009); 

Ren, et al. (2006a); Renet al. (2006b). For bond-length data, see: Allen et al.(1987). The title 

compound is a core structure in various natural and pharmaceutically active compounds, 

displaying abroad spectrum of activity, see: Gomes et al. (2010). 

 



158 

O

O

O

1 2

2'
3'

1'

4'

5'
6'

4''

3''
2''

1''

5''
6''




F

F

 

Figure 6-3Chemical structure of (E)-2-Acetyl-4-fluorophenyl 3-(4-fluorophenyl)-acrylate 
 

Table 6-2Hydrogen-bond geometry (Å, °) 

D----H…..A D - H H…A D…A D - H…A 

C1A—H1A2B···O1B 0.98 2.51 3.314(3) 139 

C4B—H4B···O1B i i 0.95 2.40 2.734(3) 101 

C10A—H10A···O3B i 0.95 2.46 3.407(2) 172 

C10B—H10B···O3A i 0.95 2.54 3.484(2) 174 

C11A—H11A···O2A 0.95 2.39 2.750(2) 102 

C11B—H11B···O1A i i i 0.95 2.58 3.484(2) 159 

C11B—H11B···O2B 0.95 2.40 2.759(2) 102 

C13A—H13A···O3B i 0.95 2.52 3.455(3) 170 

C13B—H13B···O3A i 0.95 2.55 3.499(3) 177 

 Symmetry codes (i)-x, 1-y, 2-z (ii)-x, 2-y, 1-z (iii)1+x, y, z 

 

Comment 

The title compound (E)-2-acetyl-4-fluorophenyl-3-(4-fluorophenyl)-acrylate was obtained as 

an intermediate en route to the synthesis of the corresponding 2-styrylchromone.It was 

synthesized according to the procedure by Pinto et al. (2000)with modification. The title 

compound is a core structure in various natural and pharmaceutically active compounds, 

displaying a broad spectrum of activity (Gomes et al., 2010). 
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In the molecule of the title compound (Figure 6-3 and Figure 6-4), the two aromatic rings 

(ring 1: C3—C4—C5—C6—C7—C8; ring 2: C12—C13—C14—C15—C16—C17 are 

almost perpendicular to each other with a dihedral angle of 110.24 (16)°. The torsion angle 

C9—C10—C11—C12 is -176.94 (1)°, indicating a trans configuration of the double bond. 

All bond lengths and angles are within normal ranges (Allen et al.,1987). In the crystal 

packing, ring 1 adopts a parallel offset arrangement with itself of the neighbouring molecule 

with centroidal distance of 4.600 (1) Å. The crystal is further stabilized by a number of weak 

hydrogen bonds (Table 6-2) with the type C—H···X (X = O or F). 

 

Experimental 

Phosphorous oxychloride (15.6 mmol) was added to a solution of 4-fluoro-2-

hydroxyacetophenone (12.0 mmol) and 4'-fluoro cinnamic acid (15.6 mmol) in dry pyridine. 

The solution was stirred at 60–70°C for 3 h, and then poured into ice and water and the 

reaction mixture acidified with hydrochloric acid (pH 3–4). The obtained solid was removed 

by filtration and dissolved in ethyl acetate (100 ml) and purified by silica gel column 

chromatography using a 7:3 mixture of ethyl acetate:n-hexane as the eluent. The solvent was 

evaporated to dryness and the residue recrystallized from ethanol, resulting in the title 

compound with a 68% yield and m.p of 60–62°C.IR (KBr) umax: 1724 (C=O), 1679 (C=O), 

1361 (C—O), 1225 (C—F), 1143 cm-1; 1H NMR (CDCl3, 400 MHz)  7.87 (dd, J = 8.75, 

6.34 Hz, 1H), 7.84 (d, J = 15.96 Hz, 1H, H), 7.58 (dd, J = 8.72, 5.40 Hz, 2H), 7.10 (d, J = 

8.60 Hz, 2H), 7.03 (td, J = 8.75, 2.45 Hz, 1H), 6.92 (dd, J = 8.90, 2.45 Hz, 1H), 6.56 (d, J = 

15.96 Hz, 1H, H), 2.53 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz)  196.11 (C=O), 165.11 

(C=O), 164.99 (d, JCF = 254.07 Hz), 164.35 (d, JCF = 250.95 Hz), 150.99, 146.55, 132.20 (d, 

J = 10.14 Hz), 130.47 (d, J = 8.47 Hz, 2C), 130.17 (d, J = 3.0 Hz), 127.62 (d, J = 3.51 Hz), 

116.26 (d, J = 21.94 Hz, 2C), 116.11 (d, J = 2.24 Hz), 113.34 (d, J = 21.20 Hz), 111.70 (d, J= 
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23.99 Hz), 29.73 (CH3); 19F NMR (CDCl3, 376.5 MHz)  -103.81, -103.17; EIMS (probe) 70 

eV (m/z, rel. int.) 302 M+ (3), 149 (100), 121 (92), 101 (75); calculated molecular mass: 

302.27. 

 

Refinement 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in 

the difference electron density maps but were finally placed in idealized positions refining in 

riding models with Uiso set at 1.2 or 1.5 times Ueq of their parent atoms. 

 

Computing details 

Data collection: SAINT (7.60a, Bruker AXS Inc., Madison, WI, USA, 2006); cell refinement: 

SAINT (7.60a, Bruker AXS Inc., Madison, WI, USA, 2006); data reduction: SAINT (7.60a, 

Bruker AXS Inc., Madison, WI, USA, 2006); program(s) used to solve structure: SHELXS97 

(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); 

molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for 

publication: SHELXL97 (Sheldrick, 2001). 
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Figure 6-4 Mercury diagram showing the molecular structure of the titled compound with 
atomic labelling scheme. 

 

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are 

estimated using the full covariance matrix. The cell esds are taken into account individually 

in the estimation of esds in distances, angles and torsion angles; correlations between esds in 

cell parameters are only used when they are defined by crystal symmetry. An approximate 

(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. 

 

Refinement. Refinement of F2 against ALL reflections.  The weighted R-factor wR and   

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero 

for negative F2. The threshold expression of F2>2 sigma (F2) is used only for calculating R-

factors (gt) etc. and is not relevant to the choice of reflections for refinement.  R-factors based   

on F2 are statistically about twice as large as those based on F, and R- factors based on ALL 

data will be even larger. 
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6.3. (E)-2-acetylphenyl-3-(4-methoxyphenyl)-acrylate 
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Abstract 

The structure of (E)-2-acetyl-phenyl- 3-(4-methoxyphenyl)acrylate, C18H16O4, at 173 K has 

orthorhombic (Pbca) symmetry.  In the crystal packing, the title compound has eight 

molecules in one unit cell. 

 

Related literature 

For the preparation, see: Pinto et al. (2000). For related structures, see: Santos et al. (2009); 

Ren et al. (2006a); Ren et al. (2006b). For bond-length data, see: Allen et al.(1987). The title 

compound is a core structure in various natural and pharmaceutically active compounds, 

displaying abroad spectrum of activity, see: Gomes et al. (2010). 
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Figure 6-5Chemical structure of (E)-2-acetylphenyl-3-(4-methoxyphenyl)acrylate. 
 

 

Comment 

The title compound (E)-2-acetylphenyl-3-(4-methoxyphenyl)acrylate was obtained as an 

intermediate en route to the synthesis of the corresponding 2-styrylchromone.It was 

synthesized according to the procedure by Pinto et al. (2000) with modification. The title 

compound is a core structure in various natural and pharmaceutically active compounds, 

displaying a broad spectrum of activity (Gomes et al., 2010). 

 

In the molecule of the title compound (Figure 6-5 and Figure 6-6), the two aromatic rings 

(ring 1: C3—C4—C5—C6—C7—C8; ring 2: C12—C13—C14—C15—C16—C17 are 

almost perpendicular to each other. The torsion angle C9—C10—C11—C12 is -176.84 (1)°, 

indicating a trans configuration of the double bond. All bond lengths and angles are within 

normal ranges (Allen et al., 1987). In the crytsal packing, ring 1 adopts a perpendicular offset 

arrangement with itself of the neighbouring molecule with a centroidal distance of 4.056 (1) 

Å. 

 

Experimental 

Phosphorous oxychloride (15.6 mmol) was added to a solution of 2-hydroxyacetophenone 

(12.0 mmol) and 4'-methoxy cinnamic acid (15.6 mmol) in dry pyridine. The solution was 

stirred at 60–70°C for 3 h, and then poured into ice and water and the reaction mixture 
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acidified with hydrochloric acid (pH 3–4). The obtained solid was removed by filtration and 

dissolved in ethyl acetate (100 ml) and purified by silica gel column chromatography using a 

7:3 mixture of ethyl acetate: n-hexane as the eluent. The solvent was evaporated to dryness 

and the residue recrystallized from ethanol, resulting in the title compound with a 91% yield 

and a m.p of 97–99°C.IR (KBr) max: 1711 (C=O), 1680 (C=O), 1600 (C=C), 1509, 1581, 

1246, 1189 cm-1; 1H NMR (CDCl3, 400 MHz)  7.83 (d, J =15.92 Hz, 1H), 7.80 (dd, J = 

8.04, 1.55 Hz, 1H), 7.53 (d, J = 8.72 Hz, 2H), 7.51 (td, J = 7.55, 1.55 Hz, 1H), 7.31 (td, J = 

8.04, 0.76 Hz, 1H), 7.17 (d, J = 8.00 Hz, 1H), 6.91 (d, J = 8.72, 2H), 6.52 (d, J = 15.92 Hz, 

1H), 3.84 (s, 3H, OCH3), 2.54 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz)  197.90 (C=O), 

165.53 (C=O), 161.91, 149.28, 147.15, 133.26, 131.54, 130.23 (2C), 130.04, 126.78, 125.95, 

123.81, 114.45 (2C), 114.10, 55.43, 29.92; EIMS (probe) 70 eV (m/z, rel. int.) 296 M+ (7), 

161 (100), 133 (49), 118 (16), 90 (15), 77 (16); calculated molecular mass: 296.10. 

 

Refinement 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in 

the difference electron density maps but were finally placed in idealized positions refining in 

riding models with Uiso set at 1.2 or 1.5 times Ueq of their parent atoms. 

 

Computing details 

Data collection: COLLECT program (Nonius et al., 2000); cell refinement: DENZO-

SMN(Otwinowski & Minor et al., 1997); datareduction: DENZO-SMN (Otwinowski & Minor 

et al.,1997); program(s) used to solve structure: SHELXS97 (Sheldrick et al., 

2008);program(s) used to refine structure: SHELXL97 (Sheldrick et al., 2008); molecular 

graphics: ORTEP-3 (Farrugia et al., 2012);software used to prepare material for publication: 

WinGX (Farrugia et al., 2012). 
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Figure 6-6 ORTEP diagram showing the molecular structure of the titled compound with 

atomic labelling scheme. Non-H atoms are drawn with 50% probability 

displacement ellipsoids and H atoms are shown as open circles. 

 
Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are 

estimated using the full covariance matrix.  The cell esds are takeninto account individually 

in the estimation of esds in distances, angles and torsion angles; correlations between esds in 

cell parameters are only used when they are defined by crystal symmetry.  An approximate 

(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. 

 

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and 

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero 

for negative F2. The threshold expression of F2>2 sigma (F2) is used only for calculating R-



167 

factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based 

on F2 are statistically about twice as large as those based on F, and R- factors based on ALL 

data will be even larger. 
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6.4. 2'-Fluoro-2-styrylchromone 

 

Mehbub I.K.Momin a, Neil Koorbanally a*, Deresh Ramjugernathb and Hong Suc 

 

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag, 

X54001, Durban 4000, South Africa,bSchool of Engineering, University of KwaZulu-

Natal,Durban, 4041, South Africa,  cChemistry Department, University of Cape Town, 

Rondebosch, 7701 

 

Correspondence e-mail: Koorbanally@ukzn.ac.za 

 

Abstract 

The title compound, C17H11FO2, has a packing of 4 molecules in a unit cell.  The dihedral 

angle between the benzene rings is 98.04 (5)°.The torsion angle C1—C7—C8—C9 is -

179.67°, indicating a trans configuration of the double bond. All bond lengths and angles are 

within normal ranges (Allen et al.,1987). 

 

Related literature 

For the preparation, see: Pinto et al. (2000). For related structures, see: Santos et al. (2009); 

Conti et al., (2005); Ren et al. (2006a); Renet al. (2006b). For bond-length data, see: Allen et 

al.(1987). The title compound is a core structure in various natural and pharmaceutically 

active compounds, displaying abroad spectrum of activity, see: Gomes et al. (2010). 
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Figure 6-7Chemical structure of 2'-fluoro-2-styrylchromone 
 

Comment 

In the title compound (Figure 6-7 and Figure 6-8), the molecule is almost planar with the 

bond angles between 113 and 124.  The compound crystallizes with four planar molecules in 

the symmetric unit and contains four molecules per unit cell. The molecular conformation is 

stabilized by a C-F distance of 1.366 Å and a C=O distance of 1.237Å.  This planarity of the 

molecule makes it very suitable to fit into enzyme pockets of substrates allowing for greater 

interaction between the molecule and enzyme. 

 

The title compound 2'-fluro-2-styrylchromone was synthesized according to the procedure by 

Pinto et al. (2000) with modification.  It is a core structure in various natural and 

pharmaceutically active compounds and was screened for its anti-bacterial activity using 

Gram-positive bacteria (Staphylococcus aureus, scuii and xylosusandBacillus subtilis) and 

Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsiella 

pneumonia). The compounds were most effective against B. subtilis (ATCC 6633) followed 

by E. coli (ATCC 25922) andS. aureus (ATCC 29212). The compound showed best activity 

from a small library of mono and difluoro 2-styrylchromones, against the B.subtilis strains 

among all tested bacteria.  This could therefore indicate that the activity of the 2-

styrylchromones increase with increased fluorine substitution on the phenyl ring.    
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Experimental 

The title compound was synthesized in a three step reaction in accordance with Silva et al. 

(2000) with modification. 

Step-1: Phosphorous oxychloride (15.6 mmol) was added to a solution of the appropriate 2-

hydroxyacetophenone (12.0 mmol) and the 2-fluoro cinnamic acid (15.6 mmol) in dry 

pyridine. The solution was stirred at 60–70°C for 3h, and then poured into ice and water, and 

the reaction mixture acidified with hydrochloric acid (pH 3-4). The obtained solid was 

removed by filtration and dissolved in ethyl acetate (100 ml) and purified by silica gel 

column chromatography using a 7:3 mixture of ethyl acetate:n-hexane as the eluent.  The 

solvent was evaporated to dryness and the residue recrystallised from ethanol, resulting in 2-

(2’-fluorocinnamoyloxy)acetophenone. 

Step-2: Potassium hydroxide powder (0.05 mmol, 2.8 g) was added to a solution of 2-

cinnamoyloxy)acetophenone (10 mmol) in dimethyl sulfoxide (15 ml). The solution was 

stirred at room temperature until complete disappearance of the starting material, which was 

monitored by TLC.  A typical reaction time was 2h. The solution was then poured into ice 

water and HCl and the pH adjusted to 5. The obtained solid was removed by filtration, 

dissolved in ethyl acetate (150 ml) and purified by silica gel chromatography using ethyl 

acetate :n-hexane (7:3) as the eluent. The solvent was evaporated to dryness and the residue 

recrystallised from ethanol, resulting in 3-hydroxy-1-(2-hydroxyphenyl)-5-(2-fluorophenyl)-

2,4-pentadien-1-one . 

Step-3: p-Toluene-sulfonic acid (3.42 mmol) was added to a solution of the appropriate 3-

hydroxy-1-(2-hydroxyphenyl)-5-(2-fluorophenyl)-2,4-pentadien-1-one (6.5 mmol) in dimethyl 

sulfoxide (20 ml). The reaction mixture was heated at 90°C for 2h, and then poured into ice 

and water and stirred for 10 min. The obtained solid was removed by filtration, dissolved in 

chloroform (100 ml) and washed with a 20% aqueous solution of sodium thiosulphate. The 



171 

solvent was evaporated to dryness and the residue was purified by silica gel chromatography, 

using chloroform:n-hexane (7:3) as the eluent, to produce2'-fluro-2-styrylchromone, a light 

yellow solid residue (68% yield); mp 150-152°C. UV λmax (CH3OH) nm (log ): 325 (3.37); 

IR (KBr) max: 1682 (C=O), 1625, 1589 (C—C), 1562, 1464, 1391 (C—F), 1125, 968 cm-1; 

1H NMR (CDCl3, 400 MHz)  8.17 (dd, J = 7.94, 1.56 Hz, 1H), 7.72 (d, J = 16.24 Hz, 1H, 

), 7.66 (ddd, J = 8.56, 7.20, 1.56 Hz, 1H), 7.59 (td, J = 7.60, 1.50 Hz, 1H), 7.53 (d, J = 

8.28 Hz, 1H), 7.37 (td, J = 7.92, 0.80 Hz, 1H) , 7.32 (m, 1H), 7.17 (t, J = 7.92 Hz, 1H), 7.11 

(ddd, J = 9.20, 8.20, 2.36 Hz, 1H), 6.87 (d, J = 16.24 Hz, 1H, H), 6.32 (s, 1H); 13C NMR 

(CDCl3, 100 MHz)  178.48 (C=O), 161.47, 161.17 (d, JCF = 253.27 Hz, C2’), 156.02, 

133.88, 131.25 (d, J = 8.67 Hz), 129.47 (d, J = 3.10 Hz, Cβ), 128.39 (d, J = 2.72 Hz), 125.69, 

125.05, 124.56 (d, J = 3.57 Hz), 124.13, 123.09 (d, J = 11.68 Hz), 122.67 (d, J  = 6.51 Hz, 

Cα), 117.93, 116.23 (d, J = 21.81 Hz), 111.21; 19F NMR (CDCl3, 376.5 MHz) δ -115.39; 

EIMS (m/z, rel. int.) 265 (M+-1) (100), 237 (12), 207 (20), 146 (36), 92 (25); HRMS (m/z) M+ 

266.0733 (calculated for C17H11FO2: 266.0743). 

 

Refinement 

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in 

the difference electron density maps but were finally placed in idealized positions refining in 

riding models with Uiso set at 1.2 or 1.5 times Ueq of their parent atoms. 

 

Computing details 

Data collection: COLLECT program (Nonius et al., 2000); cell refinement: DENZO-SMN 

(Otwinowski & Minor et al., 1997); data reduction: DENZO-SMN (Otwinowski & Minor et 

al., 1997); program(s) used to solve structure: SHELXS97 (Sheldrick et al., 2008); program(s) 

used to refine structure: SHELXL97 (Sheldrick et al., 2008); molecular graphics: ORTEP-3 
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(Farrugia et al., 2012); software used to prepare material for publication: WinGX  (Farrugia et 

al., 2012). 

 

 

 

Figure 6-8 Mercury diagram showing the molecular structure of the titled compound with 

atomic labelling scheme. 

 

Special details 

Refinement.Refinement of F2 against ALL reflections.  The weighted R-factor wR and 

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero 

for negative F2. The threshold expression of F2>2 sigma (F2) is used only for calculating R-

factors (gt) etc. and is not relevant to the choice of reflections for refinement.  R-factors based 

on F2 are statistically about twice as large as those based on F, and R-factors based on ALL 

data will be even larger. 

 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are 

estimated using the full covariance matrix.  The cell esds are taken into account individually 



173 

in the estimation of esds in distances, angles and torsion angles; correlations between esds in 

cell parameters are only used when they are defined by crystal symmetry.  An approximate 

(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. 
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Chapter 7. Conclusion 

7.1. The 2-styrylchromones 

A series of ten fluorinated and methoxylated 2-styrylchromoneswere prepared in three steps 

based on the Baker-Venkataraman rearrangement and screened for anti-bacterial activity.  Six 

of the ten compounds were novel.  None of thesecompounds were reported to exhibit 

antibacterial activity prior to this study.  Their antibacterial activity was carried out using 

Gram-positive bacteria (three species of Staphylococcus,S. aureus,S.scuii and 

S.xylosusandone Bacillusspecies, B. subtilis) and Gram-negative bacteria (Escherichia coli, 

Pseudomonas aeruginosa and Klebsiella pneumonia).  The compounds were most effective 

against the Gram positive bacteria, B. subtilis followed by S. aureus and a single strain of the 

Gram negative E. coli (ATCC 25922).  Difluorination on the phenyl ring was shown to 

enhance antibacterial activity and fluorine substitution at the 6-position was shown to be best 

for antibacterial activity.  In comparison to tetracycline, the activity indices of the fluorinated 

styrylchromones ranged from 0.50 to 0.75 against B. subtilis.  The compounds may not be 

able to act as antibacterials alone, but may be able to enhance the antibacterial action of other 

antibiotic compounds by acting synergistically with them. 

 

In addition, the 3-hydroxy-2,4-pentadien-1-one intermediates were tested for their antioxidant 

activity by the 2,2-diphenyl-1-pycryl-hydrazyl (DPPH) radical scavenging assay and Ferric 

Reducing Power assay (FRAP) since these compounds contained a free hydroxyl group at the 

3-position.The prepared library of compounds were ideal to assess whether or not the 

deactivating fluorine atoms on the phenyl ring were better at promoting hydrogen or electron 

transfer to free radicals than the activating methoxylated derivatives.  All the methoxylated 

analogues showed better activity thanthe fluorinated analogues and comparable to that of 

ascorbic acid. 
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The crystal structures of two of the 2-styrylchromones, the 2'-fluoro-2-styrylchromone and 

the 6-fluoro-2-styrylchromone show the geometry and absolute structure of the molecules so 

that all the 2-styrylchromone structures could be fashioned around this.  Suitable crystals for 

X-Ray analysis were also obtained for three of the cinnamate esters and their absolute 

structures were also determined by X-Ray crystallography to study the dihedral angles and 

geometry of the different functional groups.  It was found that the two aromatic rings were 

almost perpendicular to each other and during the transformation of the cinnamate ester to the 

2-styrylchromone, the molecule becomes almost planar. 

 

In addition a complete NMR study of all the intermediates and target molecules are also 

presented here to provide a basis for identification of similar derivatives.  The unambiguous 

assignments of the protons and carbon atoms are provided as well as intricate couplings 

between fluorine and hydrogen as well as fluorine and carbon.  NMR assignments were made 

with the aid of HSQC and HMBC data as well as the coupling constants of the different 

proton and carbon resonances. 

 

Limitations and future work 

1) The yields of some of the 2-styrylchromones, in particular A5b (62%), A5e (45%) and A5i 

(55%) were comparatively low compared to the other styrylchromones with yields of 

between 70 and 90%.  The methodology will need to be modified in order to optimize these 

yields. 

2) 2-Styrylchromones with fluorination at multiple sites on the aromatic rings as well as other 

positions on the skeleton such as the 2 double bond and the , double bond linking the 

chromone skeleton to the phenyl ring.  This can be followed by QSAR and computational 

studies to enable further modification and drug design. 
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3) Only a few strains of Gram positive and Gram negative bacteria were tested against.  Other 

strains of bacteria can be used to determine the antibacterial activity of the compounds 

against them and thereby determine whether or not the compounds have a broader spectrum 

of antibiotic activity. 

4) Other biological activities on the new compounds could be investigated, for example 

antirihnovirus, anticancer and anti-HIV activity in which related compounds have shown to 

be active against. 

4)  All synthesized 2-styryl chromone compounds can be transformed into 

1) dienes using Diels-Alder reactions; 

2) pyrazolines with the reaction of diazomethane; 

3) 1,2,3-triazoles by bromination followed by reaction with sodium azide. 

Further computational and biological activity of these analogues can also be carried out to 

determine whether or not these derivatives can provide leads to be developed into drugs 

against pathogenic and other disorders for example, antibacterial, anti-cancer and anti-HIV 

drugs. 

 

7.2. The 2-thioimidazole dicarboxylates 

Seven fluorinated derivatives of diethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylate (a-g) as well as a nitro and chloro derivative (h-i) were prepared in five steps 

from glycine, ethyl formate, diethyl oxalate, potassium thiocyanate and substituted benzyl 

bromides.  The synthesized compounds exhibited concentration dependent anti-platelet 

aggregation activity on both the thrombin and ADP induced platelet aggregation. The 4-nitro 

and 4-fluoro compounds exhibited the highest activity from the compounds tested, with 

estimated IC50 values of 0.40 and 0.35mg/mL for the thrombin-induced and ADP-induced 
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platelet aggregation, respectively, and further modifications to the structures of these 

compounds may lead to better anti-platelet aggregation activity. 

 

In addition, the crystal structure of 2-mercapto-4,5-imidazoledicarboxylate is presented to 

provide an insight into the structural geometry of the molecule. 

 

Limitations and future work 

1) The library of fluorinated analogues synthesised is rather limit and more fluorinated and 

other halides analogues ofdiethyl-2-(benzylthio)-2,3-dihydro-1H-imidazole-4,5-

dicarboxylateswould need to be synthesized to provide a more comprehensive study of the 

anti-platelet activity of these types of compounds.  This can also be followed by QSAR and 

computational studies to enable further modification and drug design. 

2) Other types of antiplatelet aggregation such as epinephrineinduced platelet aggregation can 

also be used to provide a more comprehensive study on the antiplatelet activity. 

4) Other types of biological activities could also be investigated for example antibacterial, 

anti-fungal, anticancer, anti-HIV activity. 

5)  The substitution of benzyl halides in the 2-mercapto-4,5-imidazoledicarboxylate at the 

sulphur and nitrogen atoms with the reaction of 2 moles of  benzyl halides can also be carried 

out.   These synthesized compounds can be screened for biological assays such as 

antibacterial, anti-fungal, anticancer, anti-HIV activity and anti-TB in addition to anti-platelet 

activity. 

 

In general, the work described here provides a platform for structural elucidation and 

biological activity of two classes of compounds, the 2-styrylchromones and 2-thioimidazoles.  

Other projects and ideas can be generated from this work for future studies. 
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Appendix-1 

A1-1  X-ray Crystallographic data of 6-fluoro-2-styrylchromone discussed in Chapter 2 

Crystal data 

  C17H11FO2 F(000) = 1104 

Mr = 266.26 Dx = 1.388 Mg m-3 

Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å 

a = 28.505 (3) Å Cell parameters from 9566 reflections 

b = 5.6688 (6) Å θ = 1.5–28.3° 

c = 16.4254 (16) Å µ = 0.10 mm-1 

β = 106.189 (2)° T = 173 K 

V = 2548.9 (5)  Å3 Plate, yellow 

Z = 8 0.29 × 0.12 × 0.04 mm 

 

Data collection 

  Bruker Kappa Duo Apex II Diffractometer 3158 independent reflections 

Radiation source: fine-focus sealed tube 2023 reflections with I > 2σ(I) 

graphite Rint = 0.042 

0.5° φ scans and ω scans θmax = 28.3°, θmin = 1.5° 

Absorption correction: multi-scan  
SADABS (Sheldrick, 1997) 

h = -38→30 

Tmin = 0.972, Tmax = 0.996 k = -7→7 

9566 measured reflections l = -21→21 

 

Refinement 

  Refinement on F2 Primary atom site location: structure-invariant 
direct methods 

Least-squares matrix: full Secondary atom site location: difference Fourier 
map 

R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from 
neighbouring sites 

wR(F2) = 0.112 H-atom parameters constrained 

S = 1.03 w = 1/[σ2(Fo
2) + (0.0479P)2 + 0.4765P]   

where P = (Fo
2 + 2Fc

2)/3 

3158 reflections (∆/σ)max < 0.001 

181 parameters ∆ρmax = 0.25 e Å-3 

0 restraints ∆ρmin = -0.22 e Å-3 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

F1 0.19366 (4) 0.82319 (19) 0.54681 (7) 0.0519 (3) 

O1 0.06955 (4) 0.18317 (19) 0.55091 (7) 0.0342 (3) 

O2 0.01028 (4) 0.61778 (17) 0.34986 (7) 0.0297 (3) 

C1 0.05660 (5) 0.6599 (3) 0.40109 (10) 0.0265 (3) 

C2 0.08052 (6) 0.8553 (3) 0.38023 (10) 0.0306 (4) 

H2 0.0651 0.9503 0.3326 0.037* 

C3 0.12675 (6) 0.9085 (3) 0.42960 (11) 0.0326 (4) 

H3 0.1438 1.0409 0.4167 0.039* 

C4 0.14798 (6) 0.7659 (3) 0.49835 (11) 0.0329 (4) 

C5 0.12538 (5) 0.5722 (3) 0.51941 (10) 0.0308 (4) 

H5 0.1412 0.4777 0.5669 0.037* 

C6 0.07855 (5) 0.5164 (3) 0.46957 (9) 0.0259 (3) 

C7 0.05199 (5) 0.3101 (3) 0.48845 (10) 0.0269 (3) 

C8 0.00474 (5) 0.2732 (3) 0.42952 (10) 0.0280 (3) 

H8 -0.0135 0.1379 0.4361 0.034* 

C9 -0.01448 (5) 0.4231 (3) 0.36549 (10) 0.0273 (3) 

C10 -0.06285 (6) 0.4126 (3) 0.30549 (10) 0.0302 (4) 

H10 -0.0717 0.5343 0.2643 0.036* 

C11 -0.09557 (6) 0.2443 (3) 0.30442 (10) 0.0304 (4) 

H11 -0.0861 0.1220 0.3453 0.036* 

C12 -0.14486 (5) 0.2297 (3) 0.24620 (10) 0.0275 (3) 

C13 -0.17421 (6) 0.0354 (3) 0.25122 (11) 0.0347 (4) 

H13 -0.1624 -0.0808 0.2937 0.042* 

C14 -0.22019 (6) 0.0106 (3) 0.19511 (11) 0.0405 (4) 

H14 -0.2396 -0.1230 0.1989 0.049* 

C15 -0.23795 (6) 0.1789 (3) 0.13365 (12) 0.0388 (4) 

H15 -0.2694 0.1604 0.0947 0.047* 

C16 -0.20992 (6) 0.3747 (3) 0.12883 (11) 0.0367 (4) 

H16 -0.2224 0.4919 0.0871 0.044* 

C17 -0.16400 (6) 0.4009 (3) 0.18424 (10) 0.0319 (4) 

H17 -0.1451 0.5364 0.1804 0.038* 
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Atomic displacement parameters (Å2) 

 U
11 U

22 U
33 U

12 U
13 U

23 

F1 0.0329 (6) 0.0591 (7) 0.0561 (7) -0.0176 (5) 0.0000 (5) 0.0023 (6) 

O1 0.0361 (7) 0.0309 (6) 0.0326 (6) -0.0006 (5) 0.0047 (5) 0.0067 (5) 

O2 0.0273 (6) 0.0302 (6) 0.0300 (6) -0.0038 (4) 0.0053 (5) 0.0043 (5) 

C1 0.0243 (8) 0.0282 (8) 0.0284 (8) -0.0017 (6) 0.0094 (6) -0.0041 (6) 

C2 0.0341 (9) 0.0274 (8) 0.0323 (9) 0.0000 (7) 0.0128 (7) 0.0006 (7) 

C3 0.0337 (9) 0.0298 (8) 0.0382 (9) -0.0062 (7) 0.0164 (7) -0.0037 (7) 

C4 0.0250 (8) 0.0378 (9) 0.0353 (9) -0.0053 (7) 0.0073 (7) -0.0055 (7) 

C5 0.0271 (8) 0.0340 (8) 0.0306 (9) 0.0006 (7) 0.0070 (7) 0.0010 (7) 

C6 0.0252 (8) 0.0264 (8) 0.0279 (8) 0.0011 (6) 0.0104 (6) -0.0016 (6) 

C7 0.0288 (8) 0.0247 (7) 0.0282 (8) 0.0011 (6) 0.0093 (7) -0.0007 (6) 

C8 0.0284 (8) 0.0244 (7) 0.0312 (8) -0.0039 (6) 0.0083 (7) -0.0001 (6) 

C9 0.0286 (8) 0.0266 (8) 0.0273 (8) -0.0032 (6) 0.0089 (7) -0.0013 (6) 

C10 0.0324 (9) 0.0318 (8) 0.0258 (8) 0.0000 (7) 0.0070 (7) 0.0024 (7) 

C11 0.0328 (9) 0.0288 (8) 0.0277 (8) -0.0002 (7) 0.0055 (7) 0.0005 (7) 

C12 0.0283 (8) 0.0276 (8) 0.0269 (8) -0.0008 (6) 0.0079 (6) -0.0040 (6) 

C13 0.0398 (10) 0.0303 (8) 0.0338 (9) -0.0050 (7) 0.0101 (7) 0.0024 (7) 

C14 0.0372 (10) 0.0379 (10) 0.0464 (11) -0.0131 (8) 0.0115 (8) -0.0064 (8) 

C15 0.0230 (8) 0.0463 (10) 0.0427 (10) -0.0025 (7) 0.0022 (7) -0.0078 (8) 

C16 0.0296 (9) 0.0351 (9) 0.0423 (10) 0.0054 (7) 0.0048 (8) 0.0042 (8) 

C17 0.0271 (8) 0.0272 (8) 0.0397 (10) -0.0004 (6) 0.0066 (7) 0.0012 (7) 

 

Geometric parameters (Å, º) 

F1—C4 1.3626 (18) C9—C10 1.455 (2) 

O1—C7 1.2388 (17) C10—C11 1.331 (2) 

O2—C9 1.3722 (17) C10—H10 0.9500 

O2—C1 1.3742 (18) C11—C12 1.465 (2) 

C1—C6 1.388 (2) C11—H11 0.9500 

C1—C2 1.393 (2) C12—C13 1.399 (2) 

C2—C3 1.375 (2) C12—C17 1.402 (2) 

C2—H2 0.9500 C13—C14 1.383 (2) 

C3—C4 1.383 (2) C13—H13 0.9500 

C3—H3 0.9500 C14—C15 1.379 (2) 

C4—C5 1.366 (2) C14—H14 0.9500 

C5—C6 1.394 (2) C15—C16 1.383 (2) 

C5—H5 0.9500 C15—H15 0.9500 
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C6—C7 1.472 (2) C16—C17 1.378 (2) 

C7—C8 1.438 (2) C16—H16 0.9500 

C8—C9 1.345 (2) C17—H17 0.9500 

C8—H8 0.9500   

C9—O2—C1 118.79 (12) C8—C9—C10 127.32 (14) 

O2—C1—C6 122.25 (13) O2—C9—C10 110.24 (13) 

O2—C1—C2 116.11 (13) C11—C10—C9 124.50 (15) 

C6—C1—C2 121.64 (14) C11—C10—H10 117.8 

C3—C2—C1 118.96 (15) C9—C10—H10 117.8 

C3—C2—H2 120.5 C10—C11—C12 126.16 (15) 

C1—C2—H2 120.5 C10—C11—H11 116.9 

C2—C3—C4 118.84 (15) C12—C11—H11 116.9 

C2—C3—H3 120.6 C13—C12—C17 118.01 (14) 

C4—C3—H3 120.6 C13—C12—C11 119.09 (14) 

F1—C4—C5 119.01 (14) C17—C12—C11 122.89 (14) 

F1—C4—C3 117.83 (14) C14—C13—C12 120.80 (15) 

C5—C4—C3 123.15 (15) C14—C13—H13 119.6 

C4—C5—C6 118.42 (15) C12—C13—H13 119.6 

C4—C5—H5 120.8 C15—C14—C13 120.23 (15) 

C6—C5—H5 120.8 C15—C14—H14 119.9 

C1—C6—C5 118.97 (14) C13—C14—H14 119.9 

C1—C6—C7 119.61 (13) C14—C15—C16 119.83 (15) 

C5—C6—C7 121.41 (14) C14—C15—H15 120.1 

O1—C7—C8 124.01 (14) C16—C15—H15 120.1 

O1—C7—C6 121.54 (14) C17—C16—C15 120.43 (16) 

C8—C7—C6 114.45 (13) C17—C16—H16 119.8 

C9—C8—C7 122.38 (14) C15—C16—H16 119.8 

C9—C8—H8 118.8 C16—C17—C12 120.69 (15) 

C7—C8—H8 118.8 C16—C17—H17 119.7 

C8—C9—O2 122.41 (13) C12—C17—H17 119.7 

C9—O2—C1—C6 -2.0 (2) O1—C7—C8—C9 175.63 (15) 

C9—O2—C1—C2 177.80 (13) C6—C7—C8—C9 -3.6 (2) 

O2—C1—C2—C3 179.27 (14) C7—C8—C9—O2 2.4 (2) 

C6—C1—C2—C3 -0.9 (2) C7—C8—C9—C10 -175.80 (15) 

C1—C2—C3—C4 0.0 (2) C1—O2—C9—C8 0.6 (2) 

C2—C3—C4—F1 -179.45 (14) C1—O2—C9—C10 179.04 (13) 

C2—C3—C4—C5 0.6 (2) C8—C9—C10—C11 -1.6 (3) 

F1—C4—C5—C6 179.65 (14) O2—C9—C10—C11 -179.98 (14) 

C3—C4—C5—C6 -0.4 (2) C9—C10—C11—C12 178.81 (15) 
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O2—C1—C6—C5 -179.09 (14) C10—C11—C12—C13 177.46 (16) 

C2—C1—C6—C5 1.1 (2) C10—C11—C12—C17 -1.5 (3) 

O2—C1—C6—C7 0.5 (2) C17—C12—C13—C14 1.7 (2) 

C2—C1—C6—C7 -179.26 (13) C11—C12—C13—C14 -177.36 (15) 

C4—C5—C6—C1 -0.4 (2) C12—C13—C14—C15 -0.6 (3) 

C4—C5—C6—C7 179.95 (14) C13—C14—C15—C16 -0.8 (3) 

C1—C6—C7—O1 -177.13 (14) C14—C15—C16—C17 1.0 (3) 

C5—C6—C7—O1 2.5 (2) C15—C16—C17—C12 0.2 (3) 

C1—C6—C7—C8 2.2 (2) C13—C12—C17—C16 -1.5 (2) 

C5—C6—C7—C8 -178.21 (14) C11—C12—C17—C16 177.52 (16) 
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A1-2   X-ray crystallographic data of diethyl 2-mercapto-4,5-imidazoledicarboxylate 

discussed in Chapter 3 

Crystal data 

C9H12N2O4S Z = 2 

Mr = 244.27 F(000) = 256 

Triclinic, P¯ 1 Dx = 1.455 Mg m-3 

a = 7.0493 (11) Å Mo Kα radiation, λ = 0.71073 Å 

b = 8.7173 (13) Å Cell parameters from 4511 reflections 

c = 9.6955 (14) Å θ = 2.5–27.6° 

α = 79.246 (3)° µ = 0.29 mm-1 

β = 85.918 (3)° T = 173 K 

γ = 72.348 (3)° Block, yellow 

V = 557.71 (14)  Å3 0.12 × 0.09 × 0.04 mm 
 

Data collection 

  Bruker Kappa Duo Apex II Diffractometer 1804 reflections with I > 2σ(I) 

Radiation source: fine-focus sealed tube Rint = 0.019 

graphite θmax = 27.6°, θmin = 2.5° 

0.5° φ scans and ω scans h = -9→9 

4511 measured reflections k = -10→11 

2536 independent reflections l = -12→6 

 

Refinement 

  Refinement on F2 Primary atom site location: structure-invariant 
direct methods 

Least-squares matrix: full Secondary atom site location: difference Fourier 
map 

R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from 
neighbouring sites 

wR(F2) = 0.095 H atoms treated by a mixture of independent 
and constrained refinement 

S = 1.01 w = 1/[σ2(Fo
2) + (0.0445P)2 + 0.0908P]   

where P = (Fo
2 + 2Fc

2)/3 

2536 reflections (∆/σ)max = 0.001 

155 parameters ∆ρmax = 0.29 e Å-3 

2 restraints ∆ρmin = -0.29 e Å-3 
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Hydrogen-bond geometry (Å, °) 

D—H···A D—H H···A D···A D—H···A 

N1—H1···O2i 0.969(9) 1.861(11) 2.827(2) 175(2) 

N2—H2···S1ii 0.969(16) 2.325(16) 2.863(17) 171.4(14) 

Symmetry codes: (i)1-x, 2-y,1-z (ii)1-x,1-y,2-z 

 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

S1 0.37160 (8) 0.75878 (6) 0.93291 (5) 0.03030 (16) 

O1 0.7302 (2) 0.64790 (16) 0.34320 (13) 0.0290 (3) 

O2 0.6430 (2) 0.89175 (16) 0.41091 (14) 0.0339 (4) 

O3 0.8677 (3) 0.33164 (17) 0.50149 (15) 0.0443 (4) 

O4 0.7538 (2) 0.22686 (15) 0.70863 (14) 0.0309 (3) 

N1 0.5218 (3) 0.76635 (19) 0.66774 (16) 0.0253 (4) 

H1 0.472 (3) 0.8844 (4) 0.644 (3) 0.053 (7)* 

N2 0.5817 (2) 0.52084 (18) 0.78242 (16) 0.0246 (4) 

H2 0.589 (3) 0.4323 (19) 0.8609 (16) 0.047 (7)* 

C1 0.8803 (3) 0.5941 (3) 0.1230 (2) 0.0371 (5) 

H1A 1.0005 0.5267 0.1744 0.056* 

H1B 0.9180 0.6424 0.0295 0.056* 

H1C 0.7957 0.5259 0.1136 0.056* 

C2 0.7690 (3) 0.7267 (2) 0.2012 (2) 0.0326 (5) 

H2A 0.8490 0.8015 0.2052 0.039* 

H2B 0.6421 0.7907 0.1541 0.039* 

C3 0.6693 (3) 0.7456 (2) 0.4355 (2) 0.0251 (4) 

C4 0.6260 (3) 0.6650 (2) 0.57731 (19) 0.0242 (4) 

C5 0.4932 (3) 0.6795 (2) 0.79443 (19) 0.0237 (4) 

C6 0.6649 (3) 0.5081 (2) 0.64964 (19) 0.0235 (4) 

C7 0.7739 (3) 0.3490 (2) 0.6079 (2) 0.0274 (4) 

C8 0.8552 (3) 0.0614 (2) 0.6809 (2) 0.0334 (5) 

H8A 0.9982 0.0485 0.6599 0.040* 

H8B 0.7953 0.0409 0.5995 0.040* 

C9 0.8312 (4) -0.0562 (3) 0.8103 (2) 0.0411 (6) 

H9A 0.8951 -0.0372 0.8894 0.062* 

H9B 0.8935 -0.1685 0.7944 0.062* 

H9C 0.6891 -0.0399 0.8317 0.062* 
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Atomic displacement parameters (Å2) 

 U
11 U

22 U
33 U

12 U
13 U

23 

S1 0.0400 (3) 0.0221 (3) 0.0246 (3) -0.0043 (2) 0.0043 (2) -0.00341 
(19) 

O1 0.0423 (9) 0.0231 (7) 0.0204 (7) -0.0089 (6) 0.0016 (6) -0.0029 (5) 

O2 0.0468 (10) 0.0184 (7) 0.0308 (8) -0.0048 (6) 0.0084 (7) -0.0019 (6) 

O3 0.0597 (12) 0.0273 (8) 0.0348 (9) -0.0010 (7) 0.0154 (8) -0.0039 (7) 

O4 0.0385 (9) 0.0173 (7) 0.0328 (8) -0.0047 (6) 0.0075 (6) -0.0034 (6) 

N1 0.0324 (10) 0.0193 (8) 0.0220 (8) -0.0057 (7) 0.0007 (7) -0.0018 (7) 

N2 0.0299 (10) 0.0175 (8) 0.0234 (8) -0.0043 (7) 0.0010 (7) -0.0009 (7) 

C1 0.0405 (14) 0.0378 (12) 0.0318 (11) -0.0088 (10) 0.0040 (10) -0.0095 (9) 

C2 0.0437 (14) 0.0300 (11) 0.0222 (10) -0.0098 (10) 0.0016 (9) -0.0023 (8) 

C3 0.0254 (11) 0.0214 (10) 0.0259 (10) -0.0045 (8) -0.0010 (8) -0.0021 (8) 

C4 0.0281 (11) 0.0195 (9) 0.0240 (10) -0.0058 (8) 0.0004 (8) -0.0036 (7) 

C5 0.0268 (11) 0.0196 (9) 0.0240 (10) -0.0063 (8) -0.0030 (8) -0.0015 (8) 

C6 0.0256 (11) 0.0204 (9) 0.0235 (9) -0.0059 (8) -0.0005 (8) -0.0027 (8) 

C7 0.0296 (12) 0.0226 (10) 0.0278 (10) -0.0054 (8) -0.0005 (8) -0.0033 (8) 

C8 0.0358 (13) 0.0205 (10) 0.0424 (12) -0.0051 (9) 0.0025 (10) -0.0087 (9) 

C9 0.0481 (15) 0.0223 (11) 0.0489 (14) -0.0072 (10) -0.0032 (11) -0.0007 (10) 

 

Geometric parameters (Å, º) 

S1—C5 1.6846 (19) C1—H1A 0.9800 

O1—C3 1.311 (2) C1—H1B 0.9800 

O1—C2 1.466 (2) C1—H1C 0.9800 

O2—C3 1.210 (2) C2—H2A 0.9900 

O3—C7 1.194 (2) C2—H2B 0.9900 

O4—C7 1.338 (2) C3—C4 1.478 (3) 

O4—C8 1.468 (2) C4—C6 1.371 (2) 

N1—C5 1.354 (2) C6—C7 1.482 (3) 

N1—C4 1.376 (2) C8—C9 1.500 (3) 

N1—H1 0.969 (2) C8—H8A 0.9900 

N2—C5 1.357 (2) C8—H8B 0.9900 

N2—C6 1.386 (2) C9—H9A 0.9800 

N2—H2 0.969 (2) C9—H9B 0.9800 

C1—C2 1.490 (3) C9—H9C 0.9800 

C3—O1—C2 115.53 (15) C6—C4—C3 136.79 (17) 

C7—O4—C8 115.51 (14) N1—C4—C3 116.42 (16) 
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C5—N1—C4 111.18 (16) N1—C5—N2 104.98 (16) 

C5—N1—H1 124.0 (15) N1—C5—S1 125.61 (14) 

C4—N1—H1 124.8 (15) N2—C5—S1 129.41 (14) 

C5—N2—C6 111.05 (15) C4—C6—N2 106.01 (16) 

C5—N2—H2 122.0 (14) C4—C6—C7 131.34 (17) 

C6—N2—H2 126.9 (14) N2—C6—C7 122.64 (16) 

C2—C1—H1A 109.5 O3—C7—O4 124.86 (18) 

C2—C1—H1B 109.5 O3—C7—C6 125.41 (18) 

H1A—C1—H1B 109.5 O4—C7—C6 109.72 (16) 

C2—C1—H1C 109.5 O4—C8—C9 107.26 (16) 

H1A—C1—H1C 109.5 O4—C8—H8A 110.3 

H1B—C1—H1C 109.5 C9—C8—H8A 110.3 

O1—C2—C1 107.03 (16) O4—C8—H8B 110.3 

O1—C2—H2A 110.3 C9—C8—H8B 110.3 

C1—C2—H2A 110.3 H8A—C8—H8B 108.5 

O1—C2—H2B 110.3 C8—C9—H9A 109.5 

C1—C2—H2B 110.3 C8—C9—H9B 109.5 

H2A—C2—H2B 108.6 H9A—C9—H9B 109.5 

O2—C3—O1 124.89 (18) C8—C9—H9C 109.5 

O2—C3—C4 120.18 (18) H9A—C9—H9C 109.5 

O1—C3—C4 114.91 (16) H9B—C9—H9C 109.5 

C6—C4—N1 106.78 (16)   

C3—O1—C2—C1 166.83 (18) N1—C4—C6—N2 0.0 (2) 

C2—O1—C3—O2 0.5 (3) C3—C4—C6—N2 178.9 (2) 

C2—O1—C3—C4 178.54 (17) N1—C4—C6—C7 -178.9 (2) 

C5—N1—C4—C6 -0.1 (2) C3—C4—C6—C7 0.0 (4) 

C5—N1—C4—C3 -179.22 (18) C5—N2—C6—C4 0.0 (2) 

O2—C3—C4—C6 -166.9 (2) C5—N2—C6—C7 179.09 (18) 

O1—C3—C4—C6 14.9 (4) C8—O4—C7—O3 -0.8 (3) 

O2—C3—C4—N1 11.9 (3) C8—O4—C7—C6 -179.90 (17) 

O1—C3—C4—N1 -166.28 (18) C4—C6—C7—O3 8.0 (4) 

C4—N1—C5—N2 0.1 (2) N2—C6—C7—O3 -170.9 (2) 

C4—N1—C5—S1 -179.75 (15) C4—C6—C7—O4 -172.9 (2) 

C6—N2—C5—N1 -0.1 (2) N2—C6—C7—O4 8.3 (3) 

C6—N2—C5—S1 179.76 (16) C7—O4—C8—C9 174.81 (18) 
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A1-3   X Ray crystallographic data of 2-Acetylphenyl-(2E)-3-(4-fluorophenyl)acrylate 

discussed in Chapter 6, subchapter 6.1 

Crystal data 

  C17H13FO3 F(000) = 1184 

Mr = 284.27 Dx = 1.373 Mg m-3 

Monoclinic, C2/c Mo Ka radiation, l = 0.71073 Å 

a = 26.574 (1) Å Cell parameters from 6005 reflections 

b = 6.3883 (3) Å q = 3.1–27.5° 

c = 19.3304 (6) Å m = 0.10 mm-1 

b = 123.037 (2)° T = 173 K 

V = 2751.01 (19)  Å3 Plate, colourless 

Z = 8 0.26 × 0.23 × 0.09 mm 

 

Data collection 

  Nonius Kappa CCD  
diffractometer 

2201 reflections with I > 2σ(I) 

Radiation source: fine-focus sealed tube Rint = 0.021 

graphite θmax = 27.5°, θmin = 3.1° 

1.2° φ scans and ω scans h = -33→34 

6005 measured reflections k = -8→8 

3150 independent reflections l = -25→24 

 

Refinement 

  Refinement on F2 Primary atom site location: structure-invariant 
direct methods 

Least-squares matrix: full Secondary atom site location: difference Fourier 
map 

R[F2 > 2s(F2)] = 0.041 Hydrogen site location: inferred from 
neighbouring sites 

wR(F2) = 0.115 H-atom parameters constrained 

S = 1.05 w = 1/[s2(Fo
2) + (0.0612P)2 + 0.6743P]   

where P = (Fo
2 + 2Fc

2)/3 

3150 reflections (D/s)max < 0.001 

191 parameters Dρmax = 0.18 e Å-3 

0 restraints Dρmin = -0.20 e Å-3 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

F1 0.04188 (4) 1.49324 (13) 0.22111 (6) 0.0580 (3) 

O1 0.26072 (5) -0.02536 (18) 0.16114 (6) 0.0556 (3) 

O2 0.16132 (4) 0.49823 (13) 0.02908 (6) 0.0379 (2) 

O3 0.06857 (4) 0.41188 (17) -0.00442 (7) 0.0522 (3) 

C1 0.25590 (7) 0.3344 (3) 0.18081 (9) 0.0512 (4) 

H1A 0.2225 0.3695 0.1867 0.077* 

H1B 0.2633 0.4515 0.1548 0.077* 

H1C 0.2921 0.3074 0.2354 0.077* 

C2 0.24038 (6) 0.1439 (2) 0.12848 (8) 0.0377 (3) 

C3 0.19990 (5) 0.1519 (2) 0.03588 (7) 0.0315 (3) 

C4 0.19941 (6) -0.0253 (2) -0.00725 (8) 0.0369 (3) 

H4 0.2241 -0.1415 0.0228 0.044* 

C5 0.16398 (6) -0.0351 (2) -0.09234 (9) 0.0430 (4) 

H5 0.1643 -0.1569 -0.1203 0.052* 

C6 0.12814 (7) 0.1330 (2) -0.13652 (8) 0.0447 (4) 

H6 0.1039 0.1274 -0.1951 0.054* 

C7 0.12732 (6) 0.3091 (2) -0.09597 (8) 0.0418 (3) 

H7 0.1026 0.4247 -0.1265 0.050* 

C8 0.16273 (6) 0.3169 (2) -0.01042 (8) 0.0327 (3) 

C9 0.11003 (6) 0.5312 (2) 0.02865 (8) 0.0337 (3) 

C10 0.11450 (6) 0.72268 (19) 0.07306 (8) 0.0339 (3) 

H10 0.1496 0.8069 0.0972 0.041* 

C11 0.06885 (6) 0.7778 (2) 0.07935 (8) 0.0346 (3) 

H11 0.0355 0.6853 0.0548 0.042* 

C12 0.06392 (6) 0.96377 (19) 0.11951 (7) 0.0321 (3) 

C13 0.01102 (6) 0.9974 (2) 0.11673 (8) 0.0379 (3) 

H13 -0.0204 0.8971 0.0906 0.045* 

C14 0.00350 (6) 1.1745 (2) 0.15135 (8) 0.0418 (3) 

H14 -0.0326 1.1971 0.1493 0.050* 

C15 0.04946 (6) 1.3164 (2) 0.18860 (8) 0.0388 (3) 

C16 0.10298 (6) 1.2888 (2) 0.19487 (8) 0.0385 (3) 

H16 0.1344 1.3885 0.2226 0.046* 

C17 0.10980 (6) 1.1118 (2) 0.15972 (8) 0.0360 (3) 

H17 0.1464 1.0903 0.1629 0.043* 

 

Atomic displacement parameters (Å2) 
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 U
11 U

22 U
33 U

12 U
13 U

23 

F1 0.0663 (6) 0.0476 (5) 0.0611 (6) -0.0033 (4) 0.0354 (5) -0.0236 (4) 

O1 0.0560 (7) 0.0582 (7) 0.0411 (6) 0.0116 (5) 0.0191 (5) 0.0104 (5) 

O2 0.0366 (5) 0.0330 (5) 0.0456 (5) -0.0029 (4) 0.0234 (4) -0.0093 (4) 

O3 0.0453 (6) 0.0485 (6) 0.0693 (7) -0.0152 (5) 0.0354 (6) -0.0258 (5) 

C1 0.0492 (9) 0.0627 (10) 0.0346 (8) -0.0076 (7) 0.0183 (7) -0.0089 (7) 

C2 0.0314 (7) 0.0486 (8) 0.0358 (7) -0.0011 (6) 0.0201 (6) -0.0001 (6) 

C3 0.0303 (6) 0.0351 (7) 0.0331 (7) -0.0026 (5) 0.0200 (5) -0.0011 (5) 

C4 0.0397 (7) 0.0348 (7) 0.0413 (8) 0.0037 (6) 0.0254 (6) 0.0013 (6) 

C5 0.0512 (9) 0.0416 (8) 0.0440 (8) -0.0030 (7) 0.0311 (7) -0.0103 (7) 

C6 0.0468 (8) 0.0541 (9) 0.0317 (7) -0.0014 (7) 0.0205 (6) -0.0045 (7) 

C7 0.0437 (8) 0.0426 (8) 0.0361 (7) 0.0060 (6) 0.0199 (6) 0.0037 (6) 

C8 0.0346 (7) 0.0305 (7) 0.0366 (7) -0.0031 (5) 0.0217 (6) -0.0039 (5) 

C9 0.0348 (7) 0.0327 (7) 0.0334 (7) 0.0005 (6) 0.0183 (6) 0.0001 (5) 

C10 0.0355 (7) 0.0296 (7) 0.0341 (7) -0.0025 (5) 0.0174 (6) -0.0019 (5) 

C11 0.0352 (7) 0.0305 (7) 0.0344 (7) -0.0032 (5) 0.0165 (6) -0.0030 (5) 

C12 0.0352 (7) 0.0295 (7) 0.0283 (6) 0.0002 (5) 0.0151 (5) -0.0001 (5) 

C13 0.0340 (7) 0.0377 (7) 0.0372 (7) -0.0044 (6) 0.0164 (6) -0.0086 (6) 

C14 0.0366 (7) 0.0463 (8) 0.0408 (8) 0.0010 (6) 0.0199 (6) -0.0080 (6) 

C15 0.0492 (8) 0.0322 (7) 0.0313 (7) 0.0017 (6) 0.0196 (6) -0.0063 (6) 

C16 0.0424 (8) 0.0332 (7) 0.0343 (7) -0.0080 (6) 0.0172 (6) -0.0048 (6) 

C17 0.0377 (7) 0.0338 (7) 0.0364 (7) -0.0026 (6) 0.0201 (6) -0.0015 (6) 

 

Geometric parameters (Å, º) 

F1—C15 1.3600 (15) C7—C8 1.3878 (18) 

O1—C2 1.2195 (17) C7—H7 0.9500 

O2—C9 1.3748 (16) C9—C10 1.4614 (17) 

O2—C8 1.3993 (15) C10—C11 1.3310 (19) 

O3—C9 1.1982 (16) C10—H10 0.9500 

C1—C2 1.490 (2) C11—C12 1.4636 (17) 

C1—H1A 0.9800 C11—H11 0.9500 

C1—H1B 0.9800 C12—C13 1.3937 (18) 

C1—H1C 0.9800 C12—C17 1.3972 (18) 

C2—C3 1.5048 (19) C13—C14 1.3835 (18) 

C3—C8 1.3869 (18) C13—H13 0.9500 

C3—C4 1.4014 (18) C14—C15 1.369 (2) 

C4—C5 1.381 (2) C14—H14 0.9500 

C4—H4 0.9500 C15—C16 1.371 (2) 
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C5—C6 1.379 (2) C16—C17 1.3814 (19) 

C5—H5 0.9500 C16—H16 0.9500 

C6—C7 1.378 (2) C17—H17 0.9500 

C6—H6 0.9500   

C9—O2—C8 116.42 (9) O3—C9—O2 121.72 (12) 

C2—C1—H1A 109.5 O3—C9—C10 127.06 (12) 

C2—C1—H1B 109.5 O2—C9—C10 111.22 (11) 

H1A—C1—H1B 109.5 C11—C10—C9 119.26 (12) 

C2—C1—H1C 109.5 C11—C10—H10 120.4 

H1A—C1—H1C 109.5 C9—C10—H10 120.4 

H1B—C1—H1C 109.5 C10—C11—C12 127.80 (12) 

O1—C2—C1 119.47 (12) C10—C11—H11 116.1 

O1—C2—C3 118.28 (12) C12—C11—H11 116.1 

C1—C2—C3 122.25 (12) C13—C12—C17 118.24 (12) 

C8—C3—C4 117.21 (11) C13—C12—C11 119.00 (11) 

C8—C3—C2 126.11 (11) C17—C12—C11 122.76 (12) 

C4—C3—C2 116.67 (11) C14—C13—C12 121.07 (12) 

C5—C4—C3 121.63 (13) C14—C13—H13 119.5 

C5—C4—H4 119.2 C12—C13—H13 119.5 

C3—C4—H4 119.2 C15—C14—C13 118.25 (13) 

C6—C5—C4 119.62 (13) C15—C14—H14 120.9 

C6—C5—H5 120.2 C13—C14—H14 120.9 

C4—C5—H5 120.2 F1—C15—C14 118.60 (13) 

C7—C6—C5 120.20 (12) F1—C15—C16 118.28 (12) 

C7—C6—H6 119.9 C14—C15—C16 123.12 (12) 

C5—C6—H6 119.9 C15—C16—C17 118.02 (12) 

C6—C7—C8 119.76 (13) C15—C16—H16 121.0 

C6—C7—H7 120.1 C17—C16—H16 121.0 

C8—C7—H7 120.1 C16—C17—C12 121.26 (12) 

C3—C8—C7 121.56 (12) C16—C17—H17 119.4 

C3—C8—O2 119.91 (11) C12—C17—H17 119.4 

C7—C8—O2 118.51 (11)   

O1—C2—C3—C8 164.97 (13) C8—O2—C9—O3 -0.64 (18) 

C1—C2—C3—C8 -14.7 (2) C8—O2—C9—C10 178.87 (10) 

O1—C2—C3—C4 -14.28 (18) O3—C9—C10—C11 0.0 (2) 

C1—C2—C3—C4 166.04 (12) O2—C9—C10—C11 -179.43 (12) 

C8—C3—C4—C5 0.71 (19) C9—C10—C11—C12 -178.78 (11) 

C2—C3—C4—C5 -179.97 (12) C10—C11—C12—C13 177.62 (13) 

C3—C4—C5—C6 0.1 (2) C10—C11—C12—C17 -1.4 (2) 
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C4—C5—C6—C7 -0.5 (2) C17—C12—C13—C14 1.26 (19) 

C5—C6—C7—C8 0.0 (2) C11—C12—C13—C14 -177.78 (12) 

C4—C3—C8—C7 -1.21 (18) C12—C13—C14—C15 0.0 (2) 

C2—C3—C8—C7 179.54 (12) C13—C14—C15—F1 178.52 (11) 

C4—C3—C8—O2 -179.87 (11) C13—C14—C15—C16 -1.6 (2) 

C2—C3—C8—O2 0.88 (19) F1—C15—C16—C17 -178.23 (11) 

C6—C7—C8—C3 0.9 (2) C14—C15—C16—C17 1.9 (2) 

C6—C7—C8—O2 179.56 (12) C15—C16—C17—C12 -0.56 (19) 

C9—O2—C8—C3 -109.06 (13) C13—C12—C17—C16 -0.95 (19) 

C9—O2—C8—C7 72.24 (15) C11—C12—C17—C16 178.05 (12) 

 

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A 

C1—H1B···O2 0.98 2.48 2.8245 (18) 100 

C7—H7···F1i 0.95 2.52 3.2402 (16) 132 

C11—H11···O3 0.95 2.50 2.8415 (16) 101 

C11—H11···O3ii 0.95 2.46 3.3369 (16) 154 

C13—H13···O3ii 0.95 2.45 3.3191 (16) 153 

C16—H16···O1iii 0.95 2.51 3.3590 (17) 149 

C6—H6···Cg1iv 0.95 2.99 3.818 (1) 146 

 

Symmetry codes:  (i) x, -y+2, z-1/2; (ii) -x, -y+1, -z; (iii) -x+1/2, y+3/2, -z+1/2; (iv) x, -y+1, z-1/2. 
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A1-4   X Ray crystallographic data of (E)-2-Acetyl-4-fluorophenyl-3-(4-

fluorophenyl)acrylate 

Crystal data 

  C17H12F2O3 Z = 4 

Mr = 302.27 F(000) = 624 

Triclinic, P¯ 1 Dx = 1.426 Mg m-3 

a = 7.6510 (9) Å Mo Kα radiation, λ = 0.71073 Å 

b = 12.5610 (14) Å Cell parameters from 7877 reflections 

c = 15.4368 (17) Å θ = 1.7–25.7° 

α = 73.599 (2)° µ = 0.12 mm-1 

β = 81.604 (3)° T = 173 K 

γ = 88.124 (3)° Needle, colourless 

V = 1407.9 (3)  Å3 0.29 × 0.06 × 0.05 mm 

 

Data collection 

  Bruker Kappa Duo Apex II Diffractometer 5294 independent reflections 

Radiation source: fine-focus sealed tube 3362 reflections with I > 2(I) 

graphite Rint = 0.019 

0.5° φ scans and ω scans θmax = 25.7°, θmin = 1.7° 

Absorption correction: multi-scan  
SADABS (Sheldrick, 1997) 

h = -9→9 

Tmin = 0.968, Tmax = 0.994 k = -15→15 

7877 measured reflections l = -18→17 

 

Refinement 

  Refinement on F2 Primary atom site location: structure-invariant 
direct methods 

Least-squares matrix: full Secondary atom site location: difference 
Fourier map 

R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from 
neighbouring sites 

wR(F2) = 0.114 H-atom parameters constrained 

S = 0.96 w = 1/[ σ 2(Fo
2) + (0.0608P)2]   

where P = (Fo
2 + 2Fc

2)/3 

5294 reflections (∆/σ)max = 0.001 

399 parameters ∆ρ max = 0.21 e Å-3 

0 restraints ∆ρmin = -0.24 e Å-3 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

F1A 0.11548 (18) 0.53403 (10) 0.56787 (8) 0.0547 (4) 

F2A -0.01031 (19) 0.83163 (10) 1.30768 (8) 0.0568 (4) 

O1A -0.2165 (2) 0.87709 (12) 0.77866 (9) 0.0465 (4) 

O2A -0.00539 (17) 0.70018 (10) 0.80883 (8) 0.0295 (3) 

O3A -0.20253 (18) 0.55996 (11) 0.86357 (8) 0.0390 (4) 

C1A -0.1978 (3) 0.99574 (17) 0.62857 (14) 0.0464 (6) 

H1A1 -0.2465 1.0502 0.6600 0.070* 

H1A2 -0.2795 0.9851 0.5884 0.070* 

H1A3 -0.0837 1.0227 0.5922 0.070* 

C2A -0.1727 (2) 0.88770 (16) 0.69741 (13) 0.0332 (5) 

C3A -0.0929 (2) 0.79367 (15) 0.66302 (12) 0.0285 (4) 

C4A -0.0905 (3) 0.79529 (17) 0.57163 (12) 0.0354 (5) 

H4A -0.1375 0.8575 0.5311 0.043* 

C5A -0.0214 (3) 0.70862 (18) 0.53913 (13) 0.0394 (5) 

H5A -0.0213 0.7105 0.4772 0.047* 

C6A 0.0471 (3) 0.61982 (17) 0.59839 (13) 0.0369 (5) 

C7A 0.0514 (3) 0.61431 (16) 0.68805 (13) 0.0344 (5) 

H7A 0.1017 0.5525 0.7274 0.041* 

C8A -0.0195 (2) 0.70130 (15) 0.71936 (11) 0.0269 (4) 

C9A -0.1111 (2) 0.62836 (15) 0.87731 (12) 0.0268 (4) 

C10A -0.1016 (2) 0.64472 (15) 0.96679 (12) 0.0289 (4) 

H10A -0.1516 0.5890 1.0195 0.035* 

C11A -0.0273 (2) 0.73287 (15) 0.97889 (12) 0.0281 (4) 

H11A 0.0272 0.7859 0.9256 0.034* 

C12A -0.0211 (2) 0.75625 (15) 1.06615 (12) 0.0278 (4) 

C13A -0.0902 (3) 0.68239 (16) 1.14934 (12) 0.0325 (5) 

H13A -0.1405 0.6139 1.1501 0.039* 

C14A -0.0864 (3) 0.70771 (17) 1.23050 (13) 0.0377 (5) 

H14A -0.1331 0.6574 1.2871 0.045* 

C15A -0.0132 (3) 0.80762 (17) 1.22748 (13) 0.0364 (5) 

C16A 0.0565 (3) 0.88284 (16) 1.14777 (14) 0.0374 (5) 

H16A 0.1056 0.9513 1.1479 0.045* 

C17A 0.0529 (2) 0.85580 (16) 1.06695 (13) 0.0323 (4) 

H17A 0.1020 0.9062 1.0109 0.039* 

F1B 0.63202 (18) 0.51072 (10) 0.57600 (8) 0.0546 (4) 
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F2B 0.50720 (18) 0.83118 (10) 1.29099 (8) 0.0518 (3) 

O1B 0.2986 (2) 0.96987 (12) 0.57913 (10) 0.0550 (4) 

O2B 0.46287 (17) 0.71393 (10) 0.78960 (8) 0.0296 (3) 

O3B 0.32306 (18) 0.54798 (11) 0.85217 (8) 0.0355 (3) 

C1B 0.3017 (3) 0.92016 (17) 0.73712 (13) 0.0394 (5) 

H1B1 0.2488 0.9935 0.7311 0.059* 

H1B2 0.4131 0.9174 0.7619 0.059* 

H1B3 0.2203 0.8632 0.7784 0.059* 

C2B 0.3366 (3) 0.89925 (16) 0.64539 (13) 0.0336 (5) 

C3B 0.4186 (2) 0.79314 (15) 0.63289 (12) 0.0280 (4) 

C4B 0.4413 (3) 0.78131 (17) 0.54416 (13) 0.0361 (5) 

H4B 0.4079 0.8408 0.4962 0.043* 

C5B 0.5097 (3) 0.68733 (17) 0.52390 (13) 0.0398 (5) 

H5B 0.5210 0.6804 0.4636 0.048* 

C6B 0.5611 (3) 0.60369 (16) 0.59420 (13) 0.0367 (5) 

C7B 0.5471 (3) 0.61009 (15) 0.68216 (12) 0.0317 (4) 

H7B 0.5871 0.5515 0.7287 0.038* 

C8B 0.4731 (2) 0.70444 (15) 0.70098 (11) 0.0264 (4) 

C9B 0.3893 (2) 0.62852 (15) 0.86183 (12) 0.0276 (4) 

C10B 0.3977 (2) 0.64876 (15) 0.94982 (12) 0.0295 (4) 

H10B 0.3422 0.5959 1.0029 0.035* 

C11B 0.4767 (2) 0.73519 (15) 0.96133 (12) 0.0288 (4) 

H11B 0.5343 0.7869 0.9081 0.035* 

C12B 0.4830 (2) 0.75797 (15) 1.04916 (12) 0.0283 (4) 

C13B 0.4127 (3) 0.68483 (16) 1.13280 (12) 0.0314 (4) 

H13B 0.3592 0.6172 1.1339 0.038* 

C14B 0.4201 (3) 0.70989 (16) 1.21383 (13) 0.0356 (5) 

H14B 0.3724 0.6602 1.2705 0.043* 

C15B 0.4978 (3) 0.80800 (17) 1.21062 (13) 0.0357 (5) 

C16B 0.5663 (3) 0.88258 (16) 1.13079 (13) 0.0357 (5) 

H16B 0.6172 0.9506 1.1307 0.043* 

C17B 0.5597 (3) 0.85643 (16) 1.04984 (13) 0.0325 (4) 

H17B 0.6086 0.9069 0.9937 0.039* 

 

Atomic displacement parameters (Å2) 

 U
11 U

22 U
33 U

12 U
13 U

23 

F1A 0.0733 (9) 0.0569 (8) 0.0419 (7) 0.0081 (7) -0.0027 (6) -0.0304 (6) 

F2A 0.0896 0.0532 (8) 0.0374 (7) -0.0025 (7) -0.0174 (7) -0.0239 (6) 
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(10) 

O1A 0.0573 
(10) 

0.0445 (9) 0.0327 (8) 0.0062 (7) 0.0052 (7) -0.0094 (7) 

O2A 0.0369 (8) 0.0308 (7) 0.0198 (6) -0.0077 (6) -0.0041 (5) -0.0048 (5) 

O3A 0.0499 (9) 0.0396 (8) 0.0284 (7) -0.0167 (7) 0.0001 (6) -0.0120 (6) 

C1A 0.0616 
(15) 

0.0348 
(12) 

0.0415 
(13) 

0.0020 
(11) 

-0.0122 
(11) 

-0.0062 
(10) 

C2A 0.0291 
(11) 

0.0366 
(12) 

0.0335 
(11) 

-0.0028 (9) -0.0037 (9) -0.0092 (9) 

C3A 0.0277 
(10) 

0.0315 
(10) 

0.0244 
(10) 

-0.0066 (8) -0.0008 (8) -0.0055 (8) 

C4A 0.0352 
(11) 

0.0428 
(12) 

0.0240 
(10) 

-0.0068 (9) -0.0040 (8) -0.0017 (9) 

C5A 0.0446 
(13) 

0.0539 
(14) 

0.0205 
(10) 

-0.0070 
(10) 

-0.0017 (9) -0.0124 
(10) 

C6A 0.0397 
(12) 

0.0429 
(12) 

0.0313 
(11) 

-0.0025 
(10) 

0.0005 (9) -0.0182 
(10) 

C7A 0.0392 
(12) 

0.0355 
(11) 

0.0286 
(10) 

-0.0038 (9) -0.0048 (9) -0.0083 (9) 

C8A 0.0298 
(10) 

0.0322 
(11) 

0.0184 (9) -0.0062 (8) -0.0018 (7) -0.0068 (8) 

C9A 0.0280 
(10) 

0.0253 
(10) 

0.0253 
(10) 

-0.0006 (8) -0.0015 (8) -0.0050 (8) 

C10A 0.0330 
(11) 

0.0302 
(10) 

0.0209 (9) -0.0018 (8) -0.0007 (8) -0.0045 (8) 

C11A 0.0308 
(10) 

0.0279 
(10) 

0.0237 (9) 0.0010 (8) -0.0020 (8) -0.0050 (8) 

C12A 0.0290 
(10) 

0.0269 
(10) 

0.0280 
(10) 

0.0023 (8) -0.0060 (8) -0.0081 (8) 

C13A 0.0426 
(12) 

0.0299 
(11) 

0.0266 
(10) 

-0.0015 (9) -0.0072 (9) -0.0091 (8) 

C14A 0.0505 
(13) 

0.0356 
(12) 

0.0268 
(10) 

-0.0010 
(10) 

-0.0050 (9) -0.0086 (9) 

C15A 0.0489 
(13) 

0.0412 
(12) 

0.0265 
(11) 

0.0064 
(10) 

-0.0127 (9) -0.0180 (9) 

C16A 0.0428 
(13) 

0.0307 
(11) 

0.0438 
(12) 

0.0001 (9) -0.0120 
(10) 

-0.0158 
(10) 

C17A 0.0344 
(11) 

0.0302 
(11) 

0.0325 
(11) 

0.0008 (9) -0.0053 (8) -0.0089 (8) 

F1B 0.0825 
(10) 

0.0453 (8) 0.0404 (7) 0.0142 (7) -0.0021 (7) -0.0239 (6) 

F2B 0.0790 (9) 0.0516 (8) 0.0336 (7) -0.0002 (7) -0.0119 (6) -0.0240 (6) 

O1B 0.0816 
(12) 

0.0420 (9) 0.0398 (9) 0.0172 (8) -0.0173 (8) -0.0064 (7) 

O2B 0.0409 (8) 0.0281 (7) 0.0211 (6) -0.0042 (6) -0.0051 (6) -0.0082 (5) 
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O3B 0.0467 (9) 0.0322 (8) 0.0278 (7) -0.0115 (6) -0.0032 (6) -0.0084 (6) 

C1B 0.0500 
(13) 

0.0316 
(11) 

0.0391 
(12) 

0.0031 
(10) 

-0.0059 
(10) 

-0.0145 (9) 

C2B 0.0343 
(11) 

0.0300 
(11) 

0.0356 
(11) 

-0.0053 (9) -0.0073 (9) -0.0062 (9) 

C3B 0.0302 
(10) 

0.0285 
(10) 

0.0254 
(10) 

-0.0051 (8) -0.0037 (8) -0.0070 (8) 

C4B 0.0406 
(12) 

0.0395 
(12) 

0.0260 
(10) 

-0.0029 
(10) 

-0.0063 (9) -0.0048 (9) 

C5B 0.0531 
(14) 

0.0461 
(13) 

0.0236 
(10) 

-0.0016 
(10) 

-0.0052 (9) -0.0150 (9) 

C6B 0.0450 
(13) 

0.0318 
(11) 

0.0350 
(11) 

0.0013 (9) -0.0013 (9) -0.0147 (9) 

C7B 0.0380 
(11) 

0.0301 
(11) 

0.0267 
(10) 

-0.0019 (9) -0.0052 (8) -0.0067 (8) 

C8B 0.0300 
(10) 

0.0281 
(10) 

0.0225 (9) -0.0065 (8) -0.0018 (8) -0.0096 (8) 

C9B 0.0287 
(10) 

0.0282 
(10) 

0.0240 
(10) 

0.0013 (8) -0.0030 (8) -0.0047 (8) 

C10B 0.0334 
(11) 

0.0313 
(11) 

0.0231 
(10) 

-0.0005 (9) -0.0038 (8) -0.0066 (8) 

C11B 0.0290 
(10) 

0.0297 
(11) 

0.0269 
(10) 

0.0020 (8) -0.0036 (8) -0.0072 (8) 

C12B 0.0301 
(10) 

0.0281 
(10) 

0.0276 
(10) 

0.0039 (8) -0.0056 (8) -0.0093 (8) 

C13B 0.0373 
(11) 

0.0299 
(11) 

0.0305 
(10) 

0.0025 (9) -0.0084 (8) -0.0124 (8) 

C14B 0.0450 
(13) 

0.0324 
(11) 

0.0285 
(11) 

0.0039 (9) -0.0043 (9) -0.0079 (9) 

C15B 0.0474 
(13) 

0.0387 
(12) 

0.0275 
(10) 

0.0080 
(10) 

-0.0101 (9) -0.0183 (9) 

C16B 0.0438 
(13) 

0.0316 
(11) 

0.0372 
(11) 

-0.0001 (9) -0.0097 
(10) 

-0.0163 (9) 

C17B 0.0352 
(11) 

0.0306 
(11) 

0.0318 
(11) 

0.0019 (9) -0.0039 (8) -0.0097 (8) 

 

Geometric parameters (Å, º) 

F1A—C6A 1.355 (2) F1B—C6B 1.355 (2) 

F2A—C15A 1.358 (2) F2B—C15B 1.364 (2) 

O1A—C2A 1.220 (2) O1B—C2B 1.214 (2) 

O2A—C9A 1.358 (2) O2B—C9B 1.375 (2) 

O2A—C8A 1.397 (2) O2B—C8B 1.397 (2) 

O3A—C9A 1.207 (2) O3B—C9B 1.201 (2) 
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C1A—C2A 1.495 (3) C1B—C2B 1.497 (3) 

C1A—H1A1 0.9800 C1B—H1B1 0.9800 

C1A—H1A2 0.9800 C1B—H1B2 0.9800 

C1A—H1A3 0.9800 C1B—H1B3 0.9800 

C2A—C3A 1.504 (3) C2B—C3B 1.504 (3) 

C3A—C8A 1.396 (3) C3B—C8B 1.399 (2) 

C3A—C4A 1.403 (2) C3B—C4B 1.404 (3) 

C4A—C5A 1.382 (3) C4B—C5B 1.373 (3) 

C4A—H4A 0.9500 C4B—H4B 0.9500 

C5A—C6A 1.372 (3) C5B—C6B 1.375 (3) 

C5A—H5A 0.9500 C5B—H5B 0.9500 

C6A—C7A 1.371 (3) C6B—C7B 1.371 (3) 

C7A—C8A 1.380 (3) C7B—C8B 1.383 (3) 

C7A—H7A 0.9500 C7B—H7B 0.9500 

C9A—C10A 1.465 (2) C9B—C10B 1.461 (2) 

C10A—C11A 1.332 (3) C10B—C11B 1.326 (3) 

C10A—H10A 0.9500 C10B—H10B 0.9500 

C11A—C12A 1.465 (2) C11B—C12B 1.470 (2) 

C11A—H11A 0.9500 C11B—H11B 0.9500 

C12A—C17A 1.394 (3) C12B—C17B 1.389 (3) 

C12A—C13A 1.397 (2) C12B—C13B 1.400 (3) 

C13A—C14A 1.381 (3) C13B—C14B 1.383 (3) 

C13A—H13A 0.9500 C13B—H13B 0.9500 

C14A—C15A 1.377 (3) C14B—C15B 1.371 (3) 

C14A—H14A 0.9500 C14B—H14B 0.9500 

C15A—C16A 1.370 (3) C15B—C16B 1.365 (3) 

C16A—C17A 1.387 (3) C16B—C17B 1.387 (3) 

C16A—H16A 0.9500 C16B—H16B 0.9500 

C17A—H17A 0.9500 C17B—H17B 0.9500 

C9A—O2A—C8A 117.63 (14) C9B—O2B—C8B 119.28 (14) 

C2A—C1A—H1A1 109.5 C2B—C1B—H1B1 109.5 

C2A—C1A—H1A2 109.5 C2B—C1B—H1B2 109.5 

H1A1—C1A—H1A2 109.5 H1B1—C1B—H1B2 109.5 

C2A—C1A—H1A3 109.5 C2B—C1B—H1B3 109.5 

H1A1—C1A—H1A3 109.5 H1B1—C1B—H1B3 109.5 

H1A2—C1A—H1A3 109.5 H1B2—C1B—H1B3 109.5 

O1A—C2A—C1A 120.50 (18) O1B—C2B—C1B 119.29 (19) 

O1A—C2A—C3A 121.66 (17) O1B—C2B—C3B 118.99 (18) 

C1A—C2A—C3A 117.84 (17) C1B—C2B—C3B 121.72 (17) 
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C8A—C3A—C4A 116.93 (17) C8B—C3B—C4B 116.63 (17) 

C8A—C3A—C2A 122.40 (16) C8B—C3B—C2B 126.54 (16) 

C4A—C3A—C2A 120.66 (17) C4B—C3B—C2B 116.83 (17) 

C5A—C4A—C3A 121.59 (19) C5B—C4B—C3B 122.72 (18) 

C5A—C4A—H4A 119.2 C5B—C4B—H4B 118.6 

C3A—C4A—H4A 119.2 C3B—C4B—H4B 118.6 

C6A—C5A—C4A 118.47 (18) C4B—C5B—C6B 117.43 (18) 

C6A—C5A—H5A 120.8 C4B—C5B—H5B 121.3 

C4A—C5A—H5A 120.8 C6B—C5B—H5B 121.3 

F1A—C6A—C7A 117.96 (19) F1B—C6B—C7B 117.93 (18) 

F1A—C6A—C5A 119.38 (18) F1B—C6B—C5B 118.78 (17) 

C7A—C6A—C5A 122.65 (19) C7B—C6B—C5B 123.28 (19) 

C6A—C7A—C8A 117.98 (19) C6B—C7B—C8B 117.96 (18) 

C6A—C7A—H7A 121.0 C6B—C7B—H7B 121.0 

C8A—C7A—H7A 121.0 C8B—C7B—H7B 121.0 

C7A—C8A—C3A 122.35 (17) C7B—C8B—O2B 118.74 (16) 

C7A—C8A—O2A 118.51 (16) C7B—C8B—C3B 121.94 (16) 

C3A—C8A—O2A 118.97 (16) O2B—C8B—C3B 119.20 (16) 

O3A—C9A—O2A 122.24 (16) O3B—C9B—O2B 122.89 (16) 

O3A—C9A—C10A 125.13 (17) O3B—C9B—C10B 124.69 (17) 

O2A—C9A—C10A 112.63 (16) O2B—C9B—C10B 112.40 (16) 

C11A—C10A—C9A 124.06 (17) C11B—C10B—C9B 125.09 (17) 

C11A—C10A—H10A 118.0 C11B—C10B—H10B 117.5 

C9A—C10A—H10A 118.0 C9B—C10B—H10B 117.5 

C10A—C11A—C12A 126.50 (17) C10B—C11B—C12B 125.74 (17) 

C10A—C11A—H11A 116.7 C10B—C11B—H11B 117.1 

C12A—C11A—H11A 116.7 C12B—C11B—H11B 117.1 

C17A—C12A—C13A 118.45 (17) C17B—C12B—C13B 118.22 (17) 

C17A—C12A—C11A 119.53 (16) C17B—C12B—C11B 119.13 (17) 

C13A—C12A—C11A 122.01 (17) C13B—C12B—C11B 122.64 (17) 

C14A—C13A—C12A 120.80 (18) C14B—C13B—C12B 120.78 (18) 

C14A—C13A—H13A 119.6 C14B—C13B—H13B 119.6 

C12A—C13A—H13A 119.6 C12B—C13B—H13B 119.6 

C15A—C14A—C13A 118.46 (18) C15B—C14B—C13B 118.60 (18) 

C15A—C14A—H14A 120.8 C15B—C14B—H14B 120.7 

C13A—C14A—H14A 120.8 C13B—C14B—H14B 120.7 

F2A—C15A—C16A 119.04 (18) F2B—C15B—C16B 118.99 (18) 

F2A—C15A—C14A 117.92 (17) F2B—C15B—C14B 118.19 (18) 

C16A—C15A—C14A 123.04 (18) C16B—C15B—C14B 122.82 (18) 
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C15A—C16A—C17A 117.81 (18) C15B—C16B—C17B 118.24 (18) 

C15A—C16A—H16A 121.1 C15B—C16B—H16B 120.9 

C17A—C16A—H16A 121.1 C17B—C16B—H16B 120.9 

C16A—C17A—C12A 121.44 (18) C16B—C17B—C12B 121.33 (18) 

C16A—C17A—H17A 119.3 C16B—C17B—H17B 119.3 

C12A—C17A—H17A 119.3 C12B—C17B—H17B 119.3 

O1A—C2A—C3A—C8A -18.2 (3) O1B—C2B—C3B—C8B 178.79 (18) 

C1A—C2A—C3A—C8A 162.02 (17) C1B—C2B—C3B—C8B -0.8 (3) 

O1A—C2A—C3A—C4A 161.39 (19) O1B—C2B—C3B—C4B -1.9 (3) 

C1A—C2A—C3A—C4A -18.4 (3) C1B—C2B—C3B—C4B 178.46 (18) 

C8A—C3A—C4A—C5A 1.1 (3) C8B—C3B—C4B—C5B 1.3 (3) 

C2A—C3A—C4A—C5A -178.53 (18) C2B—C3B—C4B—C5B -178.04 (18) 

C3A—C4A—C5A—C6A -0.4 (3) C3B—C4B—C5B—C6B -1.6 (3) 

C4A—C5A—C6A—F1A 180.00 (17) C4B—C5B—C6B—F1B -178.85 (18) 

C4A—C5A—C6A—C7A -0.7 (3) C4B—C5B—C6B—C7B 0.0 (3) 

F1A—C6A—C7A—C8A -179.50 (17) F1B—C6B—C7B—C8B -179.33 (17) 

C5A—C6A—C7A—C8A 1.2 (3) C5B—C6B—C7B—C8B 1.8 (3) 

C6A—C7A—C8A—C3A -0.6 (3) C6B—C7B—C8B—O2B -178.01 (17) 

C6A—C7A—C8A—O2A -175.83 (17) C6B—C7B—C8B—C3B -2.1 (3) 

C4A—C3A—C8A—C7A -0.5 (3) C9B—O2B—C8B—C7B -51.3 (2) 

C2A—C3A—C8A—C7A 179.03 (17) C9B—O2B—C8B—C3B 132.62 (17) 

C4A—C3A—C8A—O2A 174.70 (16) C4B—C3B—C8B—C7B 0.6 (3) 

C2A—C3A—C8A—O2A -5.7 (3) C2B—C3B—C8B—C7B 179.89 (18) 

C9A—O2A—C8A—C7A -74.0 (2) C4B—C3B—C8B—O2B 176.51 (16) 

C9A—O2A—C8A—C3A 110.55 (19) C2B—C3B—C8B—O2B -4.2 (3) 

C8A—O2A—C9A—O3A 7.0 (3) C8B—O2B—C9B—O3B -4.6 (3) 

C8A—O2A—C9A—C10A -172.49 (15) C8B—O2B—C9B—C10B 176.77 (15) 

O3A—C9A—C10A—C11A -166.69 (19) O3B—C9B—C10B—C11B 177.12 (19) 

O2A—C9A—C10A—C11A 12.8 (3) O2B—C9B—C10B—C11B -4.2 (3) 

C9A—C10A—C11A—C12A 176.92 (18) C9B—C10B—C11B—C12B 178.60 (18) 

C10A—C11A—C12A—C17A -176.24 (19) C10B—C11B—C12B—C17B -175.23 (18) 

C10A—C11A—C12A—C13A 2.7 (3) C10B—C11B—C12B—C13B 4.0 (3) 

C17A—C12A—C13A—C14A 0.4 (3) C17B—C12B—C13B—C14B -0.3 (3) 

C11A—C12A—C13A—C14A -178.47 (19) C11B—C12B—C13B—C14B -179.46 (18) 

C12A—C13A—C14A—C15A 0.2 (3) C12B—C13B—C14B—C15B 0.0 (3) 

C13A—C14A—C15A—F2A 179.92 (18) C13B—C14B—C15B—F2B -178.91 (18) 

C13A—C14A—C15A—C16A -0.2 (3) C13B—C14B—C15B—C16B 0.8 (3) 

F2A—C15A—C16A—C17A 179.56 (17) F2B—C15B—C16B—C17B 178.38 (17) 

C14A—C15A—C16A—C17A -0.3 (3) C14B—C15B—C16B—C17B -1.3 (3) 
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C15A—C16A—C17A—C12A 0.9 (3) C15B—C16B—C17B—C12B 1.0 (3) 

C13A—C12A—C17A—C16A -1.0 (3) C13B—C12B—C17B—C16B -0.3 (3) 

C11A—C12A—C17A—C16A 177.96 (18) C11B—C12B—C17B—C16B 178.93 (18) 
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A1-5   X Ray crystallographic data of (E)-2-acetylphenyl-3-(4-methoxyphenyl)acrylate 

Crystal data 

  C18H16O4 Dx = 1.328 Mg m-3 

Mr = 296.31 Mo Kρradiation, λ = 0.71073 Å 

Orthorhombic, Pbca Cell parameters from 25075 reflections 

a = 7.7165 (2) Å θ = 3.0–28.3° 

b = 14.2736 (3) Å  µ= 0.09 mm-1 

c = 26.9200 (6) Å T = 173 K 

V = 2965.03 (12)  Å3 Block, colourless 

Z = 8 0.53 × 0.42 × 0.27 mm 

F(000) = 1248  
 

 

Data collection 

  Bruker Kappa Duo Apex II Diffractometer 3677 independent reflections 

Radiation source: fine-focus sealed tube 3217 reflections with I > 2(I) 

graphite Rint = 0.029 

0.5° φ scans and ω scans θmax = 28.3°, θmin = 3.0° 

Absorption correction: multi-scan  
SADABS (Sheldrick, 1997) 

h = -10→10 

Tmin = 0.952, Tmax = 0.975 k = -19→18 

25075 measured reflections l = -35→27 

 
Refinement 

 Refinement on F2 Primary atom site location: structure-invariant 
direct methods 

Least-squares matrix: full Secondary atom site location: difference 
Fourier map 

R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from 
neighbouring sites 

wR(F2) = 0.098 H-atom parameters constrained 

S = 1.02 w = 1/[σ2(Fo
2) + (0.049P)2 + 1.0541P]   

where P = (Fo
2 + 2Fc

2)/3 

3677 reflections (∆/σ)max < 0.001 

201 parameters ∆ρmax = 0.34 e Å-3 

0 restraints ∆ρmin = -0.17 e Å-3 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

O1 0.45244 (11) 0.49905 (6) 0.17391 (3) 0.0320 (2) 

O2 0.31420 (10) 0.36157 (5) 0.11532 (3) 0.02206 (17) 

O3 0.08890 (11) 0.40232 (6) 0.16382 (3) 0.02668 (18) 

O4 0.08027 (12) 0.79216 (6) -0.08812 (3) 0.0316 (2) 

C1 0.70962 (15) 0.45828 (8) 0.21663 (4) 0.0268 (2) 

H1A 0.7392 0.5243 0.2113 0.040* 

H1B 0.8004 0.4185 0.2024 0.040* 

H1C 0.7001 0.4461 0.2523 0.040* 

C2 0.54008 (13) 0.43694 (7) 0.19193 (4) 0.0199 (2) 

C3 0.48195 (13) 0.33652 (7) 0.19053 (4) 0.0182 (2) 

C4 0.53877 (14) 0.27337 (7) 0.22689 (4) 0.0209 (2) 

H4 0.6162 0.2942 0.2520 0.025* 

C5 0.48361 (15) 0.18071 (7) 0.22675 (4) 0.0235 (2) 

H5 0.5215 0.1390 0.2520 0.028* 

C6 0.37317 (15) 0.14911 (7) 0.18966 (4) 0.0244 (2) 

H6 0.3365 0.0856 0.1894 0.029* 

C7 0.31599 (14) 0.21011 (7) 0.15289 (4) 0.0224 (2) 

H7 0.2412 0.1885 0.1273 0.027* 

C8 0.36909 (13) 0.30272 (7) 0.15393 (4) 0.0189 (2) 

C9 0.17167 (14) 0.41441 (7) 0.12636 (4) 0.0201 (2) 

C10 0.13112 (14) 0.48570 (7) 0.08915 (4) 0.0224 (2) 

H10 0.0347 0.5253 0.0956 0.027* 

C11 0.21787 (14) 0.49999 (8) 0.04699 (4) 0.0228 (2) 

H11 0.3106 0.4585 0.0396 0.027* 

C12 0.18128 (14) 0.57483 (7) 0.01116 (4) 0.0219 (2) 

C13 0.26580 (14) 0.57645 (8) -0.03460 (4) 0.0233 (2) 

H13 0.3456 0.5279 -0.0424 0.028* 

C14 0.23633 (14) 0.64739 (8) -0.06925 (4) 0.0234 (2) 

H14 0.2952 0.6471 -0.1002 0.028* 

C15 0.11985 (14) 0.71846 (8) -0.05791 (4) 0.0232 (2) 

C16 0.03313 (16) 0.71780 (8) -0.01233 (4) 0.0284 (2) 

H16 -0.0471 0.7661 -0.0046 0.034* 

C17 0.06367 (16) 0.64736 (8) 0.02136 (4) 0.0273 (2) 

H17 0.0039 0.6478 0.0522 0.033* 

C18 0.16381 (17) 0.79671 (9) -0.13536 (4) 0.0323 (3) 

H18A 0.2895 0.8005 -0.1306 0.048* 
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H18B 0.1236 0.8523 -0.1533 0.048* 

H18C 0.1357 0.7404 -0.1546 0.048* 

 
Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

O1 0.0287 (4) 0.0192 (4) 0.0482 (5) 0.0000 (3) -0.0077 (4) 0.0055 (3) 

O2 0.0245 (4) 0.0243 (4) 0.0173 (3) 0.0045 (3) 0.0001 (3) 0.0035 (3) 

O3 0.0249 (4) 0.0304 (4) 0.0247 (4) 0.0038 (3) 0.0033 (3) 0.0055 (3) 

O4 0.0373 (5) 0.0314 (4) 0.0262 (4) 0.0107 (4) 0.0059 (3) 0.0111 (3) 

C1 0.0255 (5) 0.0235 (5) 0.0313 (5) -0.0027 (4) -0.0040 (4) -0.0026 (4) 

C2 0.0207 (5) 0.0187 (4) 0.0201 (4) -0.0002 (4) 0.0028 (4) -0.0005 (4) 

C3 0.0179 (4) 0.0172 (4) 0.0194 (4) 0.0014 (4) 0.0023 (4) 0.0002 (3) 

C4 0.0218 (5) 0.0214 (5) 0.0195 (5) 0.0023 (4) -0.0010 (4) 0.0001 (4) 

C5 0.0278 (5) 0.0203 (5) 0.0225 (5) 0.0036 (4) 0.0016 (4) 0.0042 (4) 

C6 0.0284 (5) 0.0170 (5) 0.0277 (5) -0.0010 (4) 0.0037 (4) 0.0004 (4) 

C7 0.0228 (5) 0.0223 (5) 0.0220 (5) -0.0011 (4) -0.0003 (4) -0.0028 (4) 

C8 0.0195 (5) 0.0201 (5) 0.0171 (4) 0.0028 (4) 0.0022 (4) 0.0020 (3) 

C9 0.0199 (5) 0.0203 (5) 0.0201 (5) -0.0008 (4) -0.0036 (4) -0.0003 (4) 

C10 0.0224 (5) 0.0224 (5) 0.0223 (5) 0.0028 (4) -0.0038 (4) 0.0017 (4) 

C11 0.0226 (5) 0.0229 (5) 0.0229 (5) 0.0017 (4) -0.0039 (4) 0.0019 (4) 

C12 0.0227 (5) 0.0226 (5) 0.0204 (5) -0.0002 (4) -0.0027 (4) 0.0026 (4) 

C13 0.0217 (5) 0.0243 (5) 0.0240 (5) 0.0026 (4) -0.0003 (4) 0.0012 (4) 

C14 0.0230 (5) 0.0278 (5) 0.0195 (5) 0.0003 (4) 0.0020 (4) 0.0028 (4) 

C15 0.0249 (5) 0.0236 (5) 0.0210 (5) 0.0010 (4) -0.0016 (4) 0.0040 (4) 

C16 0.0332 (6) 0.0273 (5) 0.0246 (5) 0.0094 (5) 0.0045 (4) 0.0026 (4) 

C17 0.0331 (6) 0.0288 (5) 0.0200 (5) 0.0051 (5) 0.0044 (4) 0.0028 (4) 

C18 0.0354 (6) 0.0347 (6) 0.0268 (6) 0.0044 (5) 0.0053 (5) 0.0121 (5) 

 
Geometric parameters (Å, º) 

O1—C2 1.2160 (13) C7—H7 0.9500 

O2—C9 1.3662 (13) C9—C10 1.4618 (14) 

O2—C8 1.4018 (12) C10—C11 1.3334 (15) 

O3—C9 1.2060 (13) C10—H10 0.9500 

O4—C15 1.3644 (13) C11—C12 1.4667 (14) 

O4—C18 1.4271 (14) C11—H11 0.9500 

C1—C2 1.4988 (15) C12—C13 1.3941 (14) 

C1—H1A 0.9800 C12—C17 1.4038 (15) 
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C1—H1B 0.9800 C13—C14 1.3954 (14) 

C1—H1C 0.9800 C13—H13 0.9500 

C2—C3 1.5023 (14) C14—C15 1.3893 (15) 

C3—C8 1.4008 (14) C14—H14 0.9500 

C3—C4 1.4010 (14) C15—C16 1.3976 (15) 

C4—C5 1.3895 (15) C16—C17 1.3744 (15) 

C4—H4 0.9500 C16—H16 0.9500 

C5—C6 1.3880 (16) C17—H17 0.9500 

C5—H5 0.9500 C18—H18A 0.9800 

C6—C7 1.3902 (15) C18—H18B 0.9800 

C6—H6 0.9500 C18—H18C 0.9800 

C7—C8 1.3843 (14)   

C9—O2—C8 114.38 (8) O2—C9—C10 114.05 (9) 

C15—O4—C18 117.72 (9) C11—C10—C9 125.61 (10) 

C2—C1—H1A 109.5 C11—C10—H10 117.2 

C2—C1—H1B 109.5 C9—C10—H10 117.2 

H1A—C1—H1B 109.5 C10—C11—C12 125.07 (10) 

C2—C1—H1C 109.5 C10—C11—H11 117.5 

H1A—C1—H1C 109.5 C12—C11—H11 117.5 

H1B—C1—H1C 109.5 C13—C12—C17 117.58 (10) 

O1—C2—C1 120.95 (10) C13—C12—C11 120.21 (10) 

O1—C2—C3 121.30 (9) C17—C12—C11 122.20 (10) 

C1—C2—C3 117.75 (9) C12—C13—C14 121.77 (10) 

C8—C3—C4 117.67 (9) C12—C13—H13 119.1 

C8—C3—C2 122.13 (9) C14—C13—H13 119.1 

C4—C3—C2 120.19 (9) C15—C14—C13 119.24 (10) 

C5—C4—C3 120.98 (10) C15—C14—H14 120.4 

C5—C4—H4 119.5 C13—C14—H14 120.4 

C3—C4—H4 119.5 O4—C15—C14 125.22 (10) 

C6—C5—C4 119.96 (9) O4—C15—C16 114.92 (10) 

C6—C5—H5 120.0 C14—C15—C16 119.85 (10) 

C4—C5—H5 120.0 C17—C16—C15 120.14 (10) 

C5—C6—C7 120.23 (10) C17—C16—H16 119.9 

C5—C6—H6 119.9 C15—C16—H16 119.9 

C7—C6—H6 119.9 C16—C17—C12 121.42 (10) 

C8—C7—C6 119.33 (10) C16—C17—H17 119.3 
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C8—C7—H7 120.3 C12—C17—H17 119.3 

C6—C7—H7 120.3 O4—C18—H18A 109.5 

C7—C8—C3 121.81 (9) O4—C18—H18B 109.5 

C7—C8—O2 117.89 (9) H18A—C18—H18B 109.5 

C3—C8—O2 120.20 (9) O4—C18—H18C 109.5 

O3—C9—O2 121.95 (9) H18A—C18—H18C 109.5 

O3—C9—C10 124.00 (10) H18B—C18—H18C 109.5 

O1—C2—C3—C8 25.77 (15) C8—O2—C9—C10 171.05 (9) 

C1—C2—C3—C8 -154.62 (10) O3—C9—C10—C11 -178.81 (11) 

O1—C2—C3—C4 -153.44 (11) O2—C9—C10—C11 1.47 (16) 

C1—C2—C3—C4 26.18 (14) C9—C10—C11—C12 -176.73 (10) 

C8—C3—C4—C5 -0.54 (15) C10—C11—C12—C13 -172.04 (11) 

C2—C3—C4—C5 178.70 (9) C10—C11—C12—C17 8.79 (17) 

C3—C4—C5—C6 1.23 (16) C17—C12—C13—C14 0.28 (16) 

C4—C5—C6—C7 -0.67 (16) C11—C12—C13—C14 -178.93 (10) 

C5—C6—C7—C8 -0.57 (16) C12—C13—C14—C15 0.07 (17) 

C6—C7—C8—C3 1.29 (16) C18—O4—C15—C14 0.47 (17) 

C6—C7—C8—O2 177.74 (9) C18—O4—C15—C16 -179.69 (11) 

C4—C3—C8—C7 -0.73 (15) C13—C14—C15—O4 179.43 (11) 

C2—C3—C8—C7 -179.96 (9) C13—C14—C15—C16 -0.41 (17) 

C4—C3—C8—O2 -177.11 (9) O4—C15—C16—C17 -179.46 (11) 

C2—C3—C8—O2 3.67 (14) C14—C15—C16—C17 0.39 (18) 

C9—O2—C8—C7 97.15 (11) C15—C16—C17—C12 -0.02 (19) 

C9—O2—C8—C3 -86.34 (11) C13—C12—C17—C16 -0.31 (17) 

C8—O2—C9—O3 -8.68 (14) C11—C12—C17—C16 178.89 (11) 
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A1-6   X Ray crystallographic data of 2'-Fluro-2-styrylchromone 

Crystal data 

  C17H11FO2 F(000) = 552 

Mr = 266.26 Dx = 1.395 Mg m-3 

Monoclinic, P21/c Mo Kρ radiation, λ= 0.71073 Å 

a = 13.0965 (16) Å Cell parameters from 6596 reflections 

b = 4.9113 (5) Å θ = 1.6–28.4° 

c = 19.736 (2) Å µ = 0.10 mm-1 

β = 93.140 (3)° T = 173 K 

V = 1267.5 (2)  Å3 Needle, colourless 

Z = 4 0.23 × 0.03 × 0.03 mm 

 

Data collection 

  Bruker Kappa Duo Apex II Diffractometer 1657 reflections with I > 2(I) 

Radiation source: fine-focus sealed tube Rint = 0.048 

graphite θmax = 28.4°, θmin = 1.6° 

0.5° φ scans and ῳ scans h = -15→17 

6596 measured reflections k = -6→5 

3169 independent reflections l = -26→23 

 

Refinement 

  Refinement on F2 Secondary atom site location: difference Fourier 
map 

Least-squares matrix: full Hydrogen site location: inferred from 
neighbouring sites 

R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained 

wR(F2) = 0.118 w = 1/[σ2(Fo
2) + (0.0473P)2]   

where P = (Fo
2 + 2Fc

2)/3 

S = 0.98 (∆/λ)max < 0.001 

3169 reflections ∆ρmax = 0.26 e Å-3 

182 parameters ∆ρ min = -0.19 e Å-3 

0 restraints Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2

λ
3/sin(2θ)]-1/4 

Primary atom site location: structure-invariant 
direct methods 

Extinction coefficient: 0.0045 (13) 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq 

F1 0.11364 (9) 1.4331 (3) 0.42702 (7) 0.0456 (4) 

O1 0.20328 (10) 0.8161 (3) 0.25042 (7) 0.0298 (4) 

O2 0.41846 (10) 0.3760 (3) 0.15406 (8) 0.0404 (4) 

C1 0.28604 (14) 1.4138 (4) 0.39919 (10) 0.0258 (5) 

C2 0.21127 (15) 1.5275 (4) 0.43779 (10) 0.0295 (5) 

C3 0.22903 (17) 1.7248 (4) 0.48598 (11) 0.0348 (5) 

H3 0.1748 1.7959 0.5107 0.042* 

C4 0.32823 (17) 1.8178 (4) 0.49767 (11) 0.0357 (5) 

H4 0.3428 1.9548 0.5308 0.043* 

C5 0.40641 (16) 1.7112 (4) 0.46114 (11) 0.0348 (5) 

H5 0.4745 1.7747 0.4694 0.042* 

C6 0.38559 (15) 1.5138 (4) 0.41297 (10) 0.0316 (5) 

H6 0.4400 1.4429 0.3883 0.038* 

C7 0.26046 (15) 1.2081 (4) 0.34762 (10) 0.0278 (5) 

H7 0.1902 1.1793 0.3353 0.033* 

C8 0.32877 (15) 1.0576 (4) 0.31657 (10) 0.0278 (5) 

H8 0.3989 1.0871 0.3294 0.033* 

C9 0.30567 (14) 0.8534 (4) 0.26507 (10) 0.0269 (5) 

C10 0.37750 (15) 0.7116 (4) 0.23420 (10) 0.0286 (5) 

H10 0.4474 0.7473 0.2465 0.034* 

C11 0.35339 (15) 0.5077 (4) 0.18327 (10) 0.0288 (5) 

C12 0.24286 (14) 0.4687 (4) 0.16872 (10) 0.0248 (4) 

C13 0.20474 (15) 0.2754 (4) 0.12143 (10) 0.0300 (5) 

H13 0.2510 0.1640 0.0984 0.036* 

C14 0.10117 (16) 0.2454 (4) 0.10802 (11) 0.0355 (5) 

H14 0.0761 0.1145 0.0758 0.043* 

C15 0.03324 (16) 0.4082 (4) 0.14197 (12) 0.0397 (6) 

H15 -0.0382 0.3884 0.1322 0.048* 

C16 0.06783 (15) 0.5964 (4) 0.18916 (11) 0.0348 (5) 

H16 0.0212 0.7054 0.2125 0.042* 

C17 0.17267 (15) 0.6241 (4) 0.20213 (10) 0.0272 (5) 

 

Atomic displacement parameters (Å2) 

 U
11 U

22 U
33 U

12 U
13 U

23 

F1 0.0289 (7) 0.0480 (8) 0.0602 (9) -0.0013 (6) 0.0042 (6) -0.0085 (7) 
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O1 0.0240 (7) 0.0317 (8) 0.0333 (8) -0.0004 (6) -0.0001 (6) -0.0064 (7) 

O2 0.0283 (8) 0.0500 (10) 0.0431 (9) 0.0038 (7) 0.0031 (7) -0.0126 (8) 

C1 0.0302 (11) 0.0218 (10) 0.0250 (11) 0.0008 (8) -0.0024 (8) 0.0046 (9) 

C2 0.0256 (11) 0.0297 (12) 0.0327 (12) -0.0004 (9) -0.0020 (9) 0.0058 (10) 

C3 0.0432 (13) 0.0293 (12) 0.0327 (13) 0.0030 (10) 0.0086 (10) -0.0017 (10) 

C4 0.0525 (15) 0.0289 (12) 0.0254 (12) -0.0042 (10) -0.0007 (10) -0.0022 (10) 

C5 0.0336 (12) 0.0339 (12) 0.0361 (13) -0.0037 (9) -0.0053 (10) -0.0038 (10) 

C6 0.0287 (12) 0.0336 (12) 0.0324 (12) -0.0003 (9) 0.0012 (9) -0.0004 (10) 

C7 0.0266 (11) 0.0266 (11) 0.0298 (11) -0.0041 (9) -0.0030 (8) 0.0022 (9) 

C8 0.0280 (11) 0.0276 (11) 0.0272 (11) -0.0029 (9) -0.0028 (8) 0.0023 (9) 

C9 0.0232 (10) 0.0276 (11) 0.0296 (11) -0.0029 (8) 0.0000 (8) 0.0036 (9) 

C10 0.0249 (11) 0.0317 (11) 0.0291 (12) -0.0042 (9) -0.0005 (9) 0.0012 (9) 

C11 0.0265 (11) 0.0307 (12) 0.0293 (12) 0.0020 (9) 0.0023 (9) 0.0038 (10) 

C12 0.0249 (10) 0.0253 (10) 0.0243 (11) -0.0004 (8) 0.0020 (8) 0.0037 (9) 

C13 0.0340 (12) 0.0283 (11) 0.0280 (12) -0.0008 (9) 0.0033 (9) -0.0011 (9) 

C14 0.0348 (13) 0.0336 (12) 0.0379 (13) -0.0066 (10) -0.0014 (10) -0.0061 (10) 

C15 0.0260 (11) 0.0416 (14) 0.0510 (15) -0.0018 (10) -0.0023 (10) -0.0088 (12) 

C16 0.0253 (11) 0.0343 (12) 0.0448 (14) 0.0009 (9) 0.0025 (10) -0.0079 (10) 

C17 0.0290 (11) 0.0258 (11) 0.0269 (11) -0.0018 (9) 0.0017 (9) -0.0006 (9) 
 

Geometric parameters (Å, º) 

F1—C2 1.366 (2) C8—C9 1.448 (3) 

O1—C9 1.369 (2) C8—H8 0.9500 

O1—C17 1.384 (2) C9—C10 1.343 (3) 

O2—C11 1.237 (2) C10—C11 1.442 (3) 

C1—C2 1.390 (3) C10—H10 0.9500 

C1—C6 1.406 (3) C11—C12 1.473 (3) 

C1—C7 1.460 (3) C12—C17 1.389 (3) 

C2—C3 1.369 (3) C12—C13 1.404 (3) 

C3—C4 1.385 (3) C13—C14 1.376 (3) 

C3—H3 0.9500 C13—H13 0.9500 

C4—C5 1.387 (3) C14—C15 1.395 (3) 

C4—H4 0.9500 C14—H14 0.9500 

C5—C6 1.375 (3) C15—C16 1.371 (3) 

C5—H5 0.9500 C15—H15 0.9500 

C6—H6 0.9500 C16—C17 1.390 (3) 

C7—C8 1.335 (3) C16—H16 0.9500 

C7—H7 0.9500   
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C9—O1—C17 118.68 (15) C10—C9—C8 123.57 (18) 

C2—C1—C6 115.30 (18) O1—C9—C8 113.93 (17) 

C2—C1—C7 121.23 (18) C9—C10—C11 122.99 (18) 

C6—C1—C7 123.47 (19) C9—C10—H10 118.5 

F1—C2—C3 118.06 (18) C11—C10—H10 118.5 

F1—C2—C1 117.38 (18) O2—C11—C10 123.91 (18) 

C3—C2—C1 124.56 (19) O2—C11—C12 122.41 (18) 

C2—C3—C4 118.1 (2) C10—C11—C12 113.68 (17) 

C2—C3—H3 120.9 C17—C12—C13 117.83 (17) 

C4—C3—H3 120.9 C17—C12—C11 120.34 (18) 

C3—C4—C5 120.1 (2) C13—C12—C11 121.83 (18) 

C3—C4—H4 119.9 C14—C13—C12 120.75 (19) 

C5—C4—H4 119.9 C14—C13—H13 119.6 

C6—C5—C4 120.1 (2) C12—C13—H13 119.6 

C6—C5—H5 119.9 C13—C14—C15 119.6 (2) 

C4—C5—H5 119.9 C13—C14—H14 120.2 

C5—C6—C1 121.8 (2) C15—C14—H14 120.2 

C5—C6—H6 119.1 C16—C15—C14 121.13 (19) 

C1—C6—H6 119.1 C16—C15—H15 119.4 

C8—C7—C1 124.71 (18) C14—C15—H15 119.4 

C8—C7—H7 117.6 C15—C16—C17 118.51 (19) 

C1—C7—H7 117.6 C15—C16—H16 120.7 

C7—C8—C9 125.90 (19) C17—C16—H16 120.7 

C7—C8—H8 117.1 O1—C17—C12 121.81 (17) 

C9—C8—H8 117.1 O1—C17—C16 116.06 (17) 

C10—C9—O1 122.50 (18) C12—C17—C16 122.13 (19) 

C6—C1—C2—F1 -178.85 (16) C9—C10—C11—O2 179.6 (2) 

C7—C1—C2—F1 2.0 (3) C9—C10—C11—C12 -0.4 (3) 

C6—C1—C2—C3 0.5 (3) O2—C11—C12—C17 -179.08 (19) 

C7—C1—C2—C3 -178.62 (18) C10—C11—C12—C17 0.9 (2) 

F1—C2—C3—C4 179.05 (18) O2—C11—C12—C13 1.1 (3) 

C1—C2—C3—C4 -0.3 (3) C10—C11—C12—C13 -178.86 (18) 

C2—C3—C4—C5 -0.1 (3) C17—C12—C13—C14 1.1 (3) 

C3—C4—C5—C6 0.3 (3) C11—C12—C13—C14 -179.08 (18) 

C4—C5—C6—C1 -0.1 (3) C12—C13—C14—C15 -0.2 (3) 

C2—C1—C6—C5 -0.3 (3) C13—C14—C15—C16 -0.7 (3) 

C7—C1—C6—C5 178.82 (19) C14—C15—C16—C17 0.7 (3) 

C2—C1—C7—C8 -168.4 (2) C9—O1—C17—C12 0.3 (3) 

C6—C1—C7—C8 12.5 (3) C9—O1—C17—C16 -179.66 (17) 
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C1—C7—C8—C9 -179.67 (18) C13—C12—C17—O1 178.85 (17) 

C17—O1—C9—C10 0.3 (3) C11—C12—C17—O1 -0.9 (3) 

C17—O1—C9—C8 -179.59 (16) C13—C12—C17—C16 -1.2 (3) 

C7—C8—C9—C10 178.4 (2) C11—C12—C17—C16 179.04 (18) 

C7—C8—C9—O1 -1.8 (3) C15—C16—C17—O1 -179.73 (19) 

O1—C9—C10—C11 -0.2 (3) C15—C16—C17—C12 0.3 (3) 

C8—C9—C10—C11 179.63 (18)   

 

Hydrogen-bond geometry (Å, °) 

D—H···A D—H H···A D···A D—H···A 

C7—H7···O1 0.95 2.46 2.791(2) 100 
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