
Characterisation of quantum channels in plasmonic

metamaterials and bulk optical systems

by

Solomon Akpore Uriri, BSc(Hons), MSc

School of Chemistry and Physics

University of KwaZulu-Natal

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

November 19, 2018



Abstract

Quantum channels are key to our understanding of how quantum information can be

processed and transmitted. In this respect, over the past decade light has become an

important carrier of quantum information. More recently, metamaterials have opened up

many new exciting ways of controlling and manipulating light in the quantum regime,

and in particular, controlling the polarisation and orbital angular momentum of light.

In this work, we undertake an indepth characterisation of quantum channels made from

plasmonic metamaterials and bulk optical systems by probing them with quantum states

of light. We first experimentally demonstrate the active control of a plasmonic metama-

terial operating in the quantum regime. Using an external laser, we control the temper-

ature of the metamaterial and carry out quantum process tomography on single-photon

polarization-encoded qubits sent through, characterizing the metamaterial as a variable

quantum channel. We find that the overall polarization response can be tuned by up to

33%. Second, we experimentally realise a more complicated type of quantum channel in

the form of a non-Markovian process made from the sum of two Markovian processes,

and a Markovian process from two non-Markovian processes in a comparable bulk optical

system. We perform quantum process tomography, and obtain high process fidelities. We

discuss how these more complex types of quantum channel may be implemented using

metamaterials.
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Chapter 1

Introduction

1.1 Background

Interest in metamaterials and plasmonics has been growing rapidly for the past 15 years

within the scientific community. The increase in publication of scientific papers in this

field in recent years is enormous due to the range of applications of metamaterials in various

fields including optics, physics, remote sensing, aerospace, quantum optics/communication,

electrical engineering, radar systems and many more [1].

The prefix meta is a Greek (µετα) preposition - meaning ′′after′′, or ′′beyond′′, and

in this way, metamaterials mean artificial materials beyond conventional materials found

in nature. However, the exact meaning of metamaterials is still vague, and a unique

and accepted interpretation is yet to be established. For example, the European Union′s

Metamorphose Network, defines metamaterials as ′′an arrangement of artificial structural

elements, designed to achieve advantageous and unusual electromagnetic properties′′ [2].

In their book, Wenshan Cai and Vladimir Shalaev [1] define metamaterials as an artifi-

cially structured material which attains its properties from the unit structure rather than

the constituent materials. Wikipedia [3] describes them as materials engineered to have

properties that have not yet been found in nature. Elsewhere, Cui et al. [4] defines a

1
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metamaterial as a mascroscopic composite of periodic or non-periodic structures whose

function is due to both the cellular architecture and the chemical composition. From the

definitions given above, they all point to a central meaning which is that metamaterials

are artificially made materials consisting of unit cells or meta-atoms, whether periodic

or non-periodic, having special properties that are not found in conventional materials.

Metamaterial properties depend on the constituents and how the unit cells are designed.

Metamaterials are designed to have an electromagnetic response, that is, effective electric

permittivity ε and magnetic permeability µ that can be positive, negative or simultane-

ously negative. These electromagnetic properties make them useful materials that can be

used to control the propagation of electromagnetic waves in matter.

History

Metamaterials research started long before the name ′′metamaterial′′ was suggested by

Rodger M. Walser in 1999, a Professor of Physics at the University of Texas [5]. Before

this, several terminologies were used to describe metamaterials, including left-handed sub-

stance [6], artificial dielectric material [7, 8, 9], and backward-wave media [10, 11]. The

first artificial dielectric materials appear to have been put-forward by Chunder Bose in

1898 in his first microwave experiment in which an artificial chirality effect was observed

[7]. Subsequently, Lindman in 1914 studied artificial chiral materials through which elec-

tromagnetic waves pass by, made by many randomly oriented small wire helices in a host

material [9]. Thereafter, artificial dielectric materials that are arranged periodically in

many numbers of wires, plates or spheres were reported in the literature [8, 12, 13, 14].

For example, Kock in 1948 developed lightweight microwave lenses by arranging conduct-

ing spheres, disks and strips periodically and effectively tailoring the refractive index of

the artificial media [8]. Artificial dielectric materials were later reported with spring-ring-

resonators [15, 16], bianisotropic and chiral elements [17], and arrayed frequency filters

[18].
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The concept of left-handed materials, which are now known as double negative meta-

materials (DNM) [19], was first proposed theoretically by Veselago in 1967 theoretically

[6]. In his work, he showed the possibility of producing plane electromagnetic-wave prop-

agation with negative ε and µ using the Poynting vector (S = E ×H), where S is the

Poynting vector, and E and H are the usual electric field and magnetic field, respectively.

In contrast to materials available in nature where the vector S always forms a right-handed

set with vectors E and H , and vector S and the wave vector K are in the same direction

of propagation, left-handed materials have S and K in the opposite direction. Indeed,

these were remarkable mathematical findings by Veselago, that have now had a significant

impact on the scientific and technological communities.

A significant result was achieved when Pendry et al. in 1996 [20] proposed a mecha-

nism for shifting the plasma frequency into the far infra-red or even GHz band. In their

mechanism, the authors engineered an artificial electric plasma from a periodic structure

made of very thin wires whose ε was negative. Subsequently, Pendry et al. in 1999 [21]

realized a negative µ from an artificial magnetic plasma. A significant contribution to the

field of metamaterials was made in 2000 when Smith et al. [22] experimentally demon-

strated the prediction of Veselago’s seminar paper, and subsequently Pendry’s simulation

work on the realization of a perfect lens [23]. In their seminar paper (see also figure 1.1),

Smith et al. successfully reported an experiment in which a metamaterial that exhibits a

frequency region in the microwave regime with simultaneously negative values of effective

ε and µ. Indeed, it was a remarkable breakthrough because until this achievement, no one

had been able to experimentally realize this novel and exciting type of artificial material

with a simultaneous negative ε and µ, as predicted theoretically by Veselago in 1967. This

breakthrough took three decades of active research on how to experimentally realize a

metamaterial with simultaneous negative ε and µ.
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Figure 1.1: An experimental demonstration showing the resonance curve of a copper split-
ring resonator (inset) with c = 0.8 mm, d = 0.2 mm and r = 1.5 mm. The resonance is
about 4.845 GHz, and measured quality factor Q > 600. Figure taken from Smith et al.
[22]

.

After this remarkable breakthrough, researchers started to show a keen interest in meta-

materials and to understand how they can be applied to their respective research fields.

Other important work in this field was made in 2005, when a gradient refractive index

was engineered to diffract or bend electromagnetic waves [24], and in 2006 where meta-

materials were used to realize an electromagnetic cloak and to control the propagation of

electromagnetic waves [25, 26]. The work of Smith et al. [24] provided an alternative ap-

proach to develop gradient index lenses and similar optics even at high temperature. The

authors described a structured metamaterial, based on a conducting split ring resonator

which had an effective refractive index with a constant spatial gradient. Also, the work of

Pendry et al. in 2006 [25] showed how a volume of space could be cloaked to exclude all

electromagnetic fields. Pendry’s work has a remarkable application to exotic lens design

and the cloaking of objects from electromagnetic fields. The word ′′cloak′′ is simply used

to mean hiding or making an object of a certain volume invisible to sight in an electromag-

netic field. Around the same time, Leonhardt [26] developed a general recipe for the design
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of media that can create perfect invisibility within the accuracy of geometric optics using

a metamaterial. In general, an invisibility cloak is achieved by manipulating the traversal

of light through a metamaterial. A metamaterial, based on transformation optics, directs

and controls the propagation of the light spectrum, and thus shields an object from view by

controlling the electromagnetic wave. Since then, research in metamaterials has taken dif-

ferent directions and several research topics have emerged. Some of these include: optical

magnetism [21, 27, 28, 29], optical negative index materials [30, 31, 32, 33, 34], non-linear

optics with metamaterials [35, 36, 37, 38], electromagnetic cloaking [39, 40, 41, 42, 43, 44],

super-resolution with metamaterials [45, 46, 47, 48, 49], waveguides [50], metamaterial

polarizers [51, 52, 53, 54], and very recently quantum metamaterials [55, 56, 57].

Quantum metamaterials

Recently, quantum applications of metamaterials have attracted researchers, most espe-

cially those in the field of quantum information science. Quantum metamaterials (QM)

control electromagnetic waves by applying the laws of quantum mechanics. Here, the be-

haviour of the unit cells are described by Maxwell’s and Schrödinger’s equations. QM show

coherent quantum dynamics, and this type of artificial material is a spatially extended

controllable quantum object that allows additional ways of controlling the propagation of

electromagnetic waves [55, 56].

Quantum metamaterials are therefore optical media that are made of quantum coher-

ent unit structures with engineered parameters and exhibit controllable quantum states in

these structures [58]. One of the exciting properties of QM is that they can preserve quan-

tum coherence for longer than the transversal time of a significant electromagnetic wave or

signal [59]. However, over the last few years, researchers have been actively studying the

quantum applications of metamaterials using superconducting metamaterials [60], hyper-

bolic metamaterials [61], and plasmonic metamaterials [62, 63, 64]. A detailed review on
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superconducting metamaterials is given by Jung et al [60], whereby photons interact with

quantized energy levels in a meta-atom, with magnetic flux quantization and the Joseph-

son effect, as well as strong diamagnetism present. Also, an enhancement in the photonic

density of states resulting in a broadband purcell effect for single photon sources using

parabolic metamaterials has been demonstrated [65, 66]. On the other hand, research into

the applications of plasmonic metamaterials for quantum information processing have been

very successful and motivating. For example, the demonstration of the distillation of pho-

ton quantum entanglement using a plasmonic metamaterial [62], the coherent absorption

of single photons in a deeply subwavelength absorber [63], and Hong−Ou−Mandel inter-

ference mediated by magnetic plasmon waves in a three-dimensional optical metamaterial

[67]. Some other applications of quantum metamaterials include: the demonstration of a

strong anisotropic quantum vacuum over macroscopic distances enabled by a judiciously

designed array of subwavelength−scale nanoantennas [68] and tuneable negative perme-

ability in a quantum plasmonic metamaterial [64]. Thus, in the quantum regime, encoded

quantum information can be manipulated and controlled using metamaterials.

Quantum information processing

Quantum information processing (QIP) is a research field that deals with the processing

of quantum information. In QIP, information is processed using the laws of quantum

mechanics. Quantum mechanics began to evolve in the early twentieth century after

Einstein’s discovery of the photoelectric effect [69]. Thereafter, major discoveries were

made on the behaviour of physical objects at the microscopic level. These included wave-

particle duality, where light behaves in some respects like a particle and in other respects

like a wave [70, 71], and the uncertainty principle where the momentum and position

of a photon (the basic unit of light) cannot be simultaneously measured with absolute

precision [72]. In 1925, Erwin Schrödinger developed a mathematical model that describes

the behaviour of a quantum mechanical wave [73], which has become central to quantum
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mechanics. The model defines the permitted states of a quantum system, and describes

how the quantum state of a physical system changes in time. More generally, the quantum

state of any physical system is evolved and transmitted via a ’quantum channel’.

In the context of communication, a quantum channel is a channel through which quan-

tum information is transmitted, and includes classical information. In an open quantum

system, the interaction of physical systems with their environment during evolution can

also be described via a quantum channel. A quantum channel, which is also known some-

times as a quantum operation, can be described by the master equation [74]. The equation

approach is a generalised of Schrödinger’s model and describes the system evolution and

quantum noise in continuous time using differential equations. This equation has been

used to describe memoryless and memory quantum channels. These channels are some-

times referred to as Markovian and non-Markovian processes. A Markovian (memoryless)

stochastic process involves a channel whereby the future state of a system is only depen-

dent on the present state and is independent of any prior state. On the other hand, a

non-Markovian (memory) process is a process whereby the future state of the system is

dependent on the present state and prior states. In this thesis, all these types of channel

are probed and characterised in plasmonic metamaterials and bulk optical systems.

1.2 Aim of the study

Quantum channels are key information gateways through which quantum information is

processed and transmitted. However, information transfer via these channels can be lim-

ited due to decoherence (loss of information) due to some physical factor. One of these

factors in an optical context, is the loss of quantum information due to the coupling of

single-photon states with an environment. A promising route to provide a solution to this

problem is to look at the high field confinement in plasmonic metamaterials. Plasmonic

metamaterials are a special type of metamaterial that consist of artificially engineered
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nano-structures made from metallic-nanoparticles, having unusual optical properties that

are not found in conventional materials. There has been tremendous growth in research

into plasmonic metamaterials in the quantum regime, including the creation of entangle-

ment with negative index metamaterials [75], tuneable negative permeability in a quantum

plasmonic metamaterial [64], and other application including entanglement distillation for

quantum state engineering [62], and novel ways of controlling light-matter interactions in

a metasurface-enabled remote interference scenario [68]. However, none of the research

conducted so far has looked at an indepth characterisation of quantum channels made

from plasmonic metamaterials in the quantum regime.

The aim of this study is to find out how to exploit plasmonic metamaterials for realising

different types of useful channels in the quantum regime, and use them in real-world

applications. This is done by probing quantum states of light in plasmonic metamaterials

and characterising the metamaterials as variable quantum channels. This study also looks

at other ways of characterising quantum channels in comparable bulk optical systems in

the quantum regime.

1.3 Synopsis of thesis

The thesis is organised as follows: Chapter 2 presents the basic tools and techniques that

are used in the work. Chapter 3 describes the active control of a plasmonic metamaterial

for quantum state engineering. Chapter 4 focusses on the theoretical and experimental

realisation of Markovian and non-Marovian processes in bulk optics. A summary and

recommendation for further study are given in Chapter 5.



Chapter 2

Basic Tools and Techniques

2.1 Localised Surface Plasmon

Plasmonics is the study of the interaction of the electromagnetic field and excited electrons

at a metal-dielectric interface. The physics of plasmonics enables special ways to confine

light to regions below the diffraction limit [76] for the localisation of light into subwave-

length dimensions enabling strong field enhancement. This special feature has opened up

some exciting applications, such as super-resolution imaging [23, 77, 78], enhanced sensing

[79, 80], nanophotonic lasers and amplifiers [81, 82], optical metamaterials [83], antennas

transmitting and receiving light signals at the nanoscale [84], and quantum information

processing [62].

Plasmonics is divided into two types: Surface Plasmon Polaritons (SPPs) and Localised

Surface Plasmons (LSPs). SPPs are infrared or visible-frequency excited electromagnetic

waves travelling at the interface between a dielectric and a metal. These electromagnetic

surface waves arise through the coupling of the oscillating electromagnetic fields [85]. SPPs

can be excited at a planar interface using different methods including: Excitation upon

charged particle impact, prism coupling, grating coupling, excitation using highly focused

optical beams, and near-field excitations. On the other hand, LSPs are non-propagating

9
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excitations of the free electrons of metallic nanoparticles coupled to the electromagnetic

field. The size of these nanoparticles are usually smaller than the wavelength of the

incident light. In LSPs, the plasmon resonance can be excited by direct light illumi-

nation, unlike propagating SPPs where phase-matching techniques have to be employed

[85]. The strength of the electric fields near the particle′s surface are greatly improved

and the particle′s optical absorption has a maximum at the plasmon resonant frequency.

This resonance enhancement decays quickly with the distance from the surface and, for

noble metal nanoparticles, the resonance occurs at visible wavelengths [86]. For semicon-

ductor nanoparticles, the maximum optical absorption is often in the near-infrared and

mid-infrared regions [87]. The nanoparticle resonance is usually described by the Frölich

criterion [85]. This dipole particle condition is strictly valid only for vanishingly small

particles, however, it represents a good approximation for particles small compared to the

wavelength of interest. As a result of Ohmic loss and electron-core interactions, loss is

inevitable for the plasmon oscillation, which is usually a disadvantage for most plasmonic

devices. Meanwhile, if desired, the absorption of light in the metal can be enhanced greatly

by carefully designing metal nanoparticle patterns in 2D or 3D. In this project, LSPs were

experimentally studied, hence the remaining subsections of this section describe the LSP

in detail. We start by looking at the normal modes of sub-wavelength metal particles.

2.1.1 Sub-wavelength metal particles

The interaction of a particle of size s, with the electromagnetic field can be described

using the quasi-static approximation, provided the size is smaller than the wavelength of

the incident electromagnetic wave [85, 88]. If we consider a homogenous isotropic medium

(a sphere) as shown in Figure 2.1 of radius r in a uniform static electric field, E = E0z,

the potentials and electric field in the electrostatic approximation are given as 52φ = 0

and E = 5φ, respectively.
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Figure 2.1: A diagram of a homogenous sphere placed in an electrostatic field [85].

Taking the dielectric constant ε = ε(ω) for the sphere and the frequency dependent

dielectric function εm for the surrounding isotropic medium, the inside and the outside

potentials are given as [85]

φin = − 3εm
ε+ 2εm

E0rcosθ, (2.1)

φout = −E0rcosθ +
ε− εm
ε+ 2εm

E0s
3 cosθ

r2
, (2.2)

where φout describes the superposition of the applied electromagnetic field and a dipole

located at the center of the particle. φout can be written with the dipole moment p as

φout = −E0rcosθ +
p.r

4πε0εmr3
, (2.3)

p = 4πε0εms
3 ε− εm
ε− 2εm

E0. (2.4)

Here, it can be seen that a dipole moment is induced by the applied field inside the sphere

that is proportional to the magnitude |E0|. The polarizability α of the sphere can be
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defined through the dipole moment: p = ε0εmαE0 [88], where

α = 4πs3
ε− εm
ε+ 2εm

(2.5)

Eq. 2.5 is the polarizibility of a small sphere of subwavelength diameter in the electrostatic

approximation. From this, it can be seen that α is greatly enhanced if the Frölich criterion

|ε+ 2εm| is a minimum. For an ellipsoid with semi-axes s1 ≤ s2 ≤ s3, we have αj

αj = 4πs1s2s3
ε− εm

3εm + 3Lj(ε− εm)
, (2.6)

where Lj is a geometric factor and is given by

Lj =
s1s2s3

2

∫ ∞
0

dq

(s2j + q)f(q)
, (2.7)

where f(q) =
√

(q + s21)(q + s22)(q + s23) and j = 1, 2, 3. Here,
∑
Lj = 1 and for a sphere

L1 = L2 = L3 = 1
3
.

2.1.2 The dielectric function of the free electron gas

The optical properties of metals over a wide frequency range can be described by a plas-

mon model, where a gas of free electrons of number density n propagates against a fixed

background of positive ion cores. The plasmon model was developed in 1927 from the

combination of the classical Drude model with quantum mechanical Fermi-Dirac statistics

by Arnold Sommerfeld [85]. In this model, one assumes that some aspects of the band

structure are incorporated into the effective optical mass m of each electron [85]. The os-

cillation of the free electrons is damped through collisions occurring with a characteristic

collision frequency γ = 1
τ
, where τ is the relaxation time of the free electron gas. τ is of

the order of 10−14 s at room temperature, corresponding to 100 THz [85]. Thus, assuming

a harmonic time-dependence E(t) = E0e−iωt of the driving field, a particular solution
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for the electron motion is given as x(t) = x0e
−iωt, where x0 is the complex amplitude

which creates any phase shift between the driving field and the response through x(t) =

e
m(ω2+iγω)

E(t). The displaced electrons contribute to the macroscopic polarization P =

−nex, which is given explicitly by

P = − ne2

m(ω2 + iγω)
E. (2.8)

Substituting Eq. 2.8 into the usual dielectric displacement D of Maxwell’s equations, ie

D = ε0E + P , we have

D = ε0(1−
ω2
P

ω2 + iγω
)E, (2.9)

where ωP=
√

ne2

ε0m
is the plasma frequency of the free electron gas, n is the number of

density of electrons and m is the effective mass of the electrons. Thus, the dielectric

function of the free electron gas is given as

ε = (1− ω2
P

ω2 + iγω
). (2.10)

The real and imaginary parts of the frequency dependent dielectric function (ε(ω) = εre(ω)

+ iεim(ω)) are given as: εre(ω) = 1− ω2
P τ

2

1+ω2τ2
and εim(ω) =

ω2
P τ

ω(1+ω2τ2)
, respectively. However,

we note that at higher frequencies, where ω is close to ωP , the product ωτ � 1 leading to

negligible damping.

2.1.3 Scattering and absorption by small particles compared with

the wavelength

Scattering is the process whereby electromagnetic waves are caused to radiate or deflect

electromagnetic energy in all directions that are difficult to predict. Scattering
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Figure 2.2: A diagram of light scattering by an obstacle (a particle).

of electromagnetic waves by any system is related to the heterogeneity of that system:

heterogeneity on the molecular scale or on the scale of aggregations of many molecules

[88]. Scattering of electromagnetic waves by any system is about the fields or the wave

amplitude. On the other hand, absorption is the process whereby the excited electromag-

netic wave of the incident electromagnetic field is transformed into other forms of energy

(thermal energy, for example). Figure 2.2 shows the scattering of light in multiple direc-

tions by a particle. The physics of scattering is widely discussed in the literature [88, 89].

However, in this thesis, we will briefly discuss scattering by particles whose size is small

compared to the wavelength of the incident electromagnetic wave. Of particular interest is

the sphere and ellipsoid. The scattering by these type of particles is usually obtained from

the power series expansion of the spherical Bessel functions [88]. In most cases, scattering

of this nature is generally described in terms of Rayleigh scattering. It is important to

note that in these types of small particle, the ratios of the amplitudes of the vibrations of

the scattered and incident light is inversely proportional to the square of the wavelength
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and the intensity of the light as the inverse fourth power. The contribution to the intensity

of the light scattered by these small particles is given by [88]

I‖ =
9|S1|2

4k2r2
cos2 θ, (2.11)

I⊥ =
9|S1|2

4k2r2
, (2.12)

I =
1

2
(I‖ + I⊥), (2.13)

where I‖ and I⊥ are for the incident light that is a plane wave and initially polarized parallel

and perpendicular to the scattering plane, respectively and I is for unpolarized incident

light. S1 is a scattering coefficient, r is for the scattering distance, k is the wave-vector

and θ is the angle in the scattering plane. The scattering plane is the x-z plane, as shown

in Figure 2.1. The above equations assume an incident intensity normalised to 1. From

the above scattering equations, one can see that the angular distribution of the scattered

light depends on the polarization of the incident light (for example laser illumination). As

light made of different polarization states is scattered differently by small particles, the

scattered light will be partially polarized if the incident light is unpolarized, leading to an

expression of the form:

P̄ =
1− cos2 θ

1 + cos2 θ
, (2.14)

where, P̄ is the degree of the polarization of the scattered light.

2.2 Electromagnetic theory of materials

This section mathematically describes the electromagnetic theory of materials, including

metamaterials. In this work, we only consider linear materials. We start by looking at
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the effective parameters and classification of materials. The properties of electromagnetic

materials are normally determined by an electric permittivity ε, and a magnetic perme-

ability µ where ε and µ describe the coupling of a material to the electric E and magnetic

H field components of an electromagnetic wave, respectively. Thus, it is important to

understand the physics of these two parameters and how they affect the properties of

an electromagnetic material, both in wave propagation and coupling efficiency. Fortu-

nately, Maxwell’s equations can effectively describe ε and µ. We start our discussion with

Maxwell’s equations and follow the approach given in Maier [85].

The external charge and current (ρext,J ext) densities are related to the internal charge

and current densities (ρ,J ) by the expression: ρtot = ρext + ρ and Jtot = J ext + J . The

external set drives the system, while the internal set responds to the external stimuli [85].

The Maxwell macroscopic equations are given by

∇ ·D = ρext (2.15a)

∇ ·B = 0 (2.15b)

∇×E = −∂B
∂t

(2.15c)

∇×H = J ext +
∂D

∂t
, (2.15d)

where D is the electric displacement, B is the magnetic inductance or the magnetic

flux density, E is the electric field and H is the magnetic field. The polarization P and

the Magnetization M in a dielectric material are related to the four macroscopic fields

(E , D , H , B) as follows:

D = ε0E + P (2.16a)
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H = µ0B −M , (2.16b)

where ε0 and µ0 are the permitttivity and permeability of free space, respectively. Eqs.

2.15a - 2.15d are written in the time domain, while Eqs. 2.16a and 2.16b are the con-

stitutive relations defined in frequency domain. In a dielectric material, the electric dis-

placement is a vector field that accounts for the effect of free and bound charges within

the material. Here, the electric polarization P describes the electric dipole moment per

unit volume inside the material, and P is linked with the internal charge density of the

material as: ∇ ·P = −ρ. If we substitute Eq. 2.16a into Eq. 2.15a we find

∇ · (ε0E + P) = ρext

ε0∇ ·E +∇ ·P = ρext

but, ∇ ·P = −ρ, then using this in the above, we have

ε0∇ ·E = ρext + ρ

∇ ·E =
ρtot
ε0

(2.17)

Here, Eq. 2.17 is the general form of Maxwell Eq. 2.15a. ρtot represents the total charge

density in the dielectric material. The advantage of this approach is that the macroscopic

electric field in the dielectric material includes all polarization effects: In other words, both

the external and the induced fields are absorbed into it. The polarization effects come

from the dipoles responding to the external electric field and the produced fields are the

induced fields. All the induced fields are combined into the field vector. Hence, we have the

external field and the induced field. The magnetization can also be obtained in a similar

fashion using Eqs. 2.16b and 2.15b. However, for a linear, isotropic and non-magnetic

dielectric material, D and B can be written as:

D = ε0εE (2.18a)
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B = µ0µH , (2.18b)

where ε is the relative permittivity and µ is the relative permeability (magnetic permeabil-

ity) of the medium. In the linear regime, D and E can also be defined using the electric

susceptibility χ, which describes the linear relationship between the polarization and the

electric field

P = ε0χE . (2.19)

Since the response of a dielectric material in an electromagnetic field depends on the

optical angular frequency, ω, and on the wavevector, K , in the frequency domain of the

electromagnetic field, we can rewrite Eq. 2.18a as

D(K, ω) = ε0ε(K, ω)E(K, ω) (2.20a)

J(K, ω) = σ(K, ω)E(K, ω), (2.20b)

where σ is the conductivity of the dielectric material. ε(K, ω) and µ(K, ω) can be written

as ω as ε(K, ω) = ε1(K, ω) + iε2(K, ω) and µ(K, ω) = µ1(K, ω) + iµ2(K, ω), respec-

tively. Here, ε1(K, ω) and µ1(K, ω) is the real permittivity and permeability, and ε2(K, ω)

and µ2(K, ω) is the imaginary permittivity and permeability of the dielectric material,

respectively. The value of ε(K, ω) can be experimentally determined at optical frequency

through the determination of the refractive index of the medium, defined as η =
√
εµ.

Since at optical frequencies, µ = 1, η is expressed explicitly as η =
√
ε. The wavenumber

can be expressed as: |K| = ω
cn
≈ ω
√
εµ, since cn = c

η
and c = 1√

ε0µ0
where c is the speed

of light in a vacuum. If we assume that the charges transit in the same direction as the

electric field, the Lorentz model that describes a temporal response of a component of the
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polarization field of the medium to the same component of the electric field is given as:

d2

dt2
Pi + ΓL

d

dt
Pi + ω2

0Pi = ε0χLEi, (2.21)

where the second-order differential term on the left accounts for the acceleration of the

charges, the first-order differential term accounts for the damping mechanisms of the

system with damping coefficient ΓL, and the ω2
0 accounts for the restoring forces with the

characteristic frequency f0 = ω0/2π. The charges which experience a driving force manifest

a coupling coefficient χL, generally known as the electric susceptibility. In the frequency

domain, assuming a time dependence exp(+jωt), the response of the polarization field

component is

Pi(ω) =
χL

−ω2 + jΓLω + ω2
0

ε0Ei(ω). (2.22)

The polarization and the electric field are linked with the electric susceptibility, using Eqs.

2.19 and 2.22, we have

χe,lorentz =
Pi(ω)

ε0Ei(ω)
=

χL
−ω2 + jΓLω + ω2

0

, (2.23)

where ε is directly obtained from the relation: εlorentz(ω) = ε0[1+χe,lorentz(ω)]. Using Eqs.

2.16a and 2.18a, when the second-order differential acceleration term of Eq. 2.21 is small

or negligible, we have the Debye model which is given by

ΓD
d

dt
Pi + ω2

0Pi = ε0χDEi, (2.24)

with

χe,Debye(ω) =
χD

jΓDω + ω2
0

. (2.25)

When the restoring force is small or negligible, we have the Drude model for the dielectric
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material defined by

d2

dt2
Pi + ΓD

d

dt
Pi = ε0χDEi, (2.26)

with

χe,Drude(ω) =
χD

−ω2 + jΓDω
. (2.27)

In most cases, the coupling efficiency in the Drude model is represented by the plasma

frequency χD = ω2
P , where ω2

P = ne2

ε0m
with n as the number of electrons per unit volume

and m as the mass of the charge. It should be noted that the Drude and Lorentz models

can give negative ε if we assume the coupling efficiency to be positive. For example, in

the case of the Lorentz model, the real part of χL and ε can become negative in a narrow

frequency region immediately above the resonance [19]. Following a similar derivation, the

equations for the magnetic field components of the dielectric material Mi and the magnetic

susceptibility χm are obtained from the P i and χe expressions with the replacements of

E i by H i and P i/ε0 by M i. The dielectric permeability is given as: µ = µ0[1 + χm].

Generally, the Lorentz model for polarization and magnetization of a medium in terms of

the ε and µ is given by

ε(ω) = 1 +
ω2
P

(ω2
0 − ω2 − jΓeω)

, (2.28a)

and

µ(ω) = 1 +
ω2
m,p

(ω2
m,0 − ω2 − jΓmω)

, (2.28b)

respectively, where ωm,p is the magnetic plasma frequency and ωm,0 is the magnetic reso-

nance frequency.

Metamaterials are usually classified based on ε and µ because these two parameters

define the dispersion relation (K = ω
c

= ω
√
εµ) of a medium. In a similar fashion to

conventional materials, the electromagnetic responses of a metamaterial to external fields

can be homogenized and are described using effective parameters including ε and µ. Meta-

materials open up a new frontier to realize all possible material properties by designing
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Figure 2.3: Properties of metamaterials based on ε and µ.

different cellular architectures and using different substrate materials. Figure 2.3 de-

scribes the classification and properties of metamaterials in terms of ε and µ. The first

quadrant (ε < 0 and µ > 0) represents electric plasmas, which support evanescent waves.

The second quadrant (ε > 0 and µ > 0) denotes right-handed materials (RHM), which

support forward propagating waves. This can be seen from Maxwell’s equations where E ,

H , and K form a right-handed system. The third quadrant (ε < 0 and µ < 0) is the

unusual

well-known left-handed materials (LHM), supporting backward propagating waves. In

LHM, the E , H , and K form a left-handed system. The consequence of materials having

ε < 0 and µ < 0 is that the propagation of the electromagnetic wave is in an opposite

direction to the flow of energy. The fourth quadrant (ε > 0 and µ < 0) represents magnetic

plasmas, which support evanescent waves.

2.2.1 Fabrication techniques

The fabrication of metamaterials requires that the size of the unit cells should have a size

that is smaller than the wavelength under consideration, which is of the order a hundred

nanometers for visible light. Theoretical studies, such as the testing and design of meta-
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materials should not be the only research theme, the fabrication of metamaterials should

also be given optimal research attention. If not, the idea of producing a metamaterial in

the real world will always remain a dream. However, due to recent advances in nanofabri-

cation techniques, which were developed over the past 20 years, it has become possible to

fabricate a metamaterial with the size of the unit cells smaller than the wavelength of in-

terest. Hence, undertaking such a task for optical frequencies requires more sophisticated

techniques, such as electron-beam lithography, focused ion beam milling, nanoprint lithog-

raphy, interference optical lithography, direct laser writing, and many more [90]. These

are the commonly used fabrication techniques in producing 2-D and 3-D metamaterials.

Although, Veselago in 1967 [6] mentioned in his paper that it is possible to obtain the

combination of ε < 0 and µ < 0 leading to a negative refractive index, η < 0, his idea

remained unrealized for years because no naturally occurring materials that have simulta-

neous negative ε and µ at optical frequencies exist. While there are natural materials with

ε < 0, such as silver, gold, ferroelectric materials (e.g barium titanate), and other metals

up to the visible part of the electromagnetic spectrum, the case is different with µ < 0,

as there are no naturally existing magnetic materials with µ < 0 at optical frequencies.

However, with an artificial structure where the unit cells are designed to simultaneously

have ε and µ responses, one can overcome the limitations imposed on natural materials

by their unit cells. To create a metamaterial at optical frequencies, one needs to deal

with small periodicities (about 300 nm and less) and tiny feature sizes (about 30 nm)

to ensure an effective-medium-like behavior [90]. Despite the fact that photolithography

is the dominant process used for microfabrication in the integrated circuit industry, the

small periodicities and tiny feature sizes in most optical metamaterials still exceed the

capability of the start-of-the-art, 193 nm photolithographic technology, where deep ultra-

violet light with λ = 193 nm is used for exposure [1]. A brief review on metamaterial

fabrication techniques is now given, a more detailed review can be found elsewhere [1, 90].

The techniques are as follows.
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Electron-beam lithography: Due to the fact that the tiny feature sizes for metama-

terials are smaller than the resolution of state-of-the-art photolithography, most reported

2-D metamaterial layers are usually fabricated using electron-beam lithography (EBL). In

fact, some of the notable metamaterials with distinctive features that have given remark-

able results in this noble field were achieved using EBL. For example, the EBL technique

has been used to fabricate optical metamaterials with a negative refractive index [91],

which to most researchers is considered to be the first experimentally obtained optical

negative metamaterial [90]. Other metamaterials made using EBL include those with a

magnetic response [92] and a giant chirality [93]. EBL is the process whereby electron

beams are scanned serially on a surface covered with an electron-sensitive film to generate

periodic patterns. The EBL technique offers sub-wavelength resolution and flexibility be-

cause the width of the beam is of the order of nanometers, resulting in a high nanoscale

resolution of the technique. Recently fabricated negative-index metamaterials using EBL

showed improved optical performance in terms of low loss. In 2006, the Karlsruhe group

in collaboration with Iowa State University engineered negative-refractive-index metama-

terials (NIMs) in the optical range at a wavelength of about 1.4 µm (telecommunication

wavelength) [94]. In 2007, the negative refractive index was pushed into the visible regime

of the electromagnetic spectrum at a wavelength of 780 nm [95].

Figure 2.4 shows a scanning electron microscope (SEM) image of a NIM sample based

on the fishnet geometry suggested in Ref. [32] using EBL. The structure is made up of

two layers of silver separated by a 10 nm thick layer of aluminium which maintains the

integrity of the structure during a lift-off process. Fabricating optical metamaterials by

EBL is cost intensive and time consuming because of the required tiny feature sizes of the

unit cells or meta atoms. Since only small areas of the order of 100 µm-by-100 µm can

normally be organized within reasonable time and at reasonable cost, EBL is not seen as

a good candidate for large-scale metamaterial fabrication required by applications, where

many square centimeters may have to be nanopatterned [90]. Despite these challenges,
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Figure 2.4: Scanning electron microscope image of a NIM sample based on the fishnet
geometry suggested in [32] fabricated using EBL, followed by electron-beam evaporation
and lift-off. The structure is made up of two layers of silver separated by a 10 nm thick
layer of aluminium which operates at a wavelength of 813 nm. Taken from [30, 31].

EBL is the preferred method for fabricating 2-D optical metamaterials with metal-

dielectric unit structures because of its subwavelength resolution and flexibility, and is

normally referred to as the standard method.

Focused-ion beam lithography and milling: Focused-ion beam (FIB) is a technique

normally used in the semiconductor industry, materials science and biological fields for site-

specific analysis, deposition, and ablation of materials. FIB has also gained wide interest

in the field of metamaterials as an alternative fabrication method for rapid prototype

of metamaterials due to its ability to produce high aspect ratio structures, and quick

processing time. FIB uses a finely focused ion beam (usually Gallium) to sputter atoms

from a sample surface, or uses a focused Galium ion beam to pattern a design. FIB is

often used as a micro-machining tool to machine materials at the micro- and nanoscale

because the accelerated ions in FIB have sufficient energy to sputter the atoms from the

surface or create a pattern of Gallium atoms into the top few nanometers of the surface.

The focused spot size of the ion beam is around 10 nm, which make FIB an alternative

technique for the fabrication of photonic metamaterials [1]. One of the advantages of FIB
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Figure 2.5: SEM image of a 16 µm × 16 µm array of SRRs fabricated using FIB writing,
with the inset showing the magnified image of the magnetic metamaterial. Taken from
[96].

over EBL is the rapid operation time to pattern a design. In FIB lithography the Gal-

lium ion beam directly cuts pre-deposited layers into the desired nanostructures, unlike

EBL that can only scan the layer serially. The FIB lithography technique has been used to

fabricate split-ring resonators (SRRs) to give a metamaterial with negative permeability.

For example, Enkrich at al. [96] used FIB to fabricate a near-infrared magnetic metama-

terial from a split-ring resonator, scaled down to a 1.5 µm resonance wavelength and 35

nm minimum feature size. The authors successfully fabricated the complete structure of

the magnetic metamaterial via FIB writing in times as short as 20 minutes (rapid proto-

typing). Figure 2.5 shows a SEM image of a 16 µm × 16 µm array of SRRs fabricated

using FIB writing [96]. FIB lithography or milling has also been used to fabricate Mie

resonance-based dielectric (MRD) metamaterials where the material was milled by blast-

ing its surface with accelerated Gallium atoms [97]. However, the inherent risk with this

technique is that the removed material may contaminate the finished product, especially

when making high aspect ratio structures [98]. In this sense, the aspect ratio is limited

by re-deposition of the milled material.
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Interference Lithography: One type of optical lithography (OP) is called interfer-

ence lithography (IF). Optical lithography is the method of choice used by the integrated

circuit (IC) industry due to its ability to mass produce samples. IF offers new ways of

increasing its resolution, for example, by using immersion techniques that meet the in-

dustry 45 nm half-pitch-node requirements [99]. Interference lithography is widely used

for the fabrication of arrays of samples for the nanotechnology industry. This technique

is achieved based on the superposition of two or more coherent optical beams forming a

standing wave. The large-scale fabrication, low cost, large area (usually up to cm2) makes

IF a very powerful tool for fabricating metamaterial samples. Other advantages are: a

high structural uniformity combined when its resolution is approaching the 20 nm scale

[99]. Because of it high resolution and simplicity, IF has been used to fabricate differ-

ent metamaterial samples including: one dimensional metallic structures [100], magnetic

metamaterials [100], negative-index metamaterials [101, 102, 103]. It is interesting to note

that IF can be used to fabricate 3D metamaterial structures by pilling up 2D layers to

make 3D layers due to its simplicity and robustness in making 2D metamaterial structures

[90].

Nanoimprint lithography: Nanoimprint lithography (NIL) patterns a design by the

mechanical deformation of the resist or surface of the sample by means of a stamp. Un-

like in most lithography methods where an electron- or photo-induced process is used to

pattern a design, in NIL, a stamp is used. NIL is another promising method for the fab-

rication of production-compatible, large area, high-quality optical metamaterials at low

processing cost and time [104]. One of the greatest strength of NIL is due to the fact

that its resolution is not limited by the wavelength of the light source since the smallest

attainable size of the unit cells are fabricated by the stamp. This technique also offers

parallel processing and high throughput. NIL is well suited for large scale-production of

optical metamaterials, providing wafer-scale processing using standard clean room proce-

dures combined with simplicity and lost cost [90]. It is interesting to note that different
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metamaterial structures have been fabricated successfully using NIL. Such as NIMs based

on fishnet arrays of metallic dielectric metals operating at near infrared frequencies [105]

and at mid-infrared frequencies [106]. Others are chiral and planer metamaterials for the

study and application of novel polarization effects [107], and for creating metallic 2D struc-

tures [108, 109]. However, NIL has some technical challenges in fabricating the stamp, and

cannot be directly applied to the fabrication of optical NIMs due to specific requirements

on geometry and materials [90].

Fabrication of metamaterials in 3D: We briefly mention the fabrication of meta-

materials in 3D. A detailed review on 3D metamaterial fabrication techniques is found

in [90, 98]. For low-loss metamaterials to realize their full potential, new ways of de-

signing 3D structures have to be developed. Recently, some 3D fabrication techniques

have been developed, and researchers are looking into more new ways for fabricating 3D

structures. Techniques used in fabricating 3D structures include making multiple layers,

two-photon-photopolymerization (TPP), direct-electron beam writing (EBW), focused-ion

beam chemical vapour deposition (FIB-CVD) 3D structures by nanoimprint, self assembly,

and many more. Some of these techniques combine two or more of the techniques used

in fabricating 2D materials. Multiple layers of up to three functional layers of structures

were fabricated by the Karlsruhe group [110], and silver-based three dimensional struc-

tures were fabricated using EBL, metal and dielectric deposition and a lift-off procedure

[111, 94]. Another approach is a layer-by-layer technique to realize a stack of optical NIMs

in a four layer SRR structure [112].
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2.3 Quantum mechanics

2.3.1 Vector Spaces

Vector spaces are the basic elements of linear algebra. In quantum mechanics, a vector

space can be represented as Cn, comprised of the complex numbers (x1,x2 ..... xn). The

elements of a vector space are called vectors which can be written in a column form as



x1

x2

.̇

xn


(2.29)

In quantum mechanics the notation of such a vector is |ψ〉 and the way of carrying out

vector addition and multiplication is the same as in normal linear algebra and therefore

will not be treated here.

2.3.2 Linear Operators and Matrices

A linear operator between two vector spaces M and N is defined to be any function L:

M 7→ N given its inputs are linear

L(
∑
i

li |mi〉) =
∑
i

liL(|mi〉). (2.30)

The above equation is often written as L |m〉. An example of a type of linear operator on

a vector space M is the identity operator 1M defined by the expression 1M |m〉 ≡ |m〉.

Note that, in this thesis, the identity operator will be denoted as 1 for simplicity.
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2.3.3 Pauli Matrices

The Pauli matrices are a very important set of matrices in quantum mechanics and infor-

mation science. They are 2 by 2 complex matrices that operate on quantum bits (qubits)

which are states from the vector space C2. The Pauli matrices are Hermitian and unitary.

σ0 ≡ I =

1 0

0 1

 σx ≡ X =

0 1

1 0



σy ≡ Y =

0 −i

i 0

 σz ≡ Z =

1 0

0 −1


(2.31)

Here, the identity matrix 1 is included. The Pauli matrices form a basis for the vector space

of 2 by 2 Hermitian matrices when multiplied by real coefficients. Hermitian operators

denote an observable. Hence, the Pauli matrices span the space of observables of the

2-dimensional complex Hilbert space.

2.3.4 Inner products

An inner product is a function which takes two vectors |m〉 and |n〉 from a vector space

and produces a complex number as an output [74]. In other words, an inner product is

an operator that combines two vectors to produce a scalar. In quantum mechanics, the

notation of an inner product (|m〉, |n〉) is 〈m|n〉, where |m〉 and |n〉 are the vectors, and

the notation 〈m| corresponds to the dual vector for the vector |m〉. For example, if we

take vectors |m〉 = (x1, x2, x3) and |n〉 = (u1, u2, u3) we can obtain an inner product by
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multiplying both vectors as follows

〈m|n〉 =

(
x∗1 x∗2 x∗3

)
u1

u2

u3

 = x∗1u1 + x∗2u2 + x∗3u3 (2.32)

Thus, an inner product gives a scalar. In quantum mechanics, vectors |m〉 and |n〉 are

orthogonal if their inner product is zero. The norm of a vector |m〉 is defined by

|| |m〉 || ≡
√
〈m|m〉. (2.33)

Thus, we call the vector |m〉 a unit vector if || |m〉 || = 1. In this case the vector |m〉 is

normalised.

2.3.5 Eigenvectors and Eigenvalues

An eigenvector of a linear operator L on a vector space is a non-zero vector |m〉 such that

L |m〉 = m |m〉, where m is a complex number known as the eigenvalue of L corresponding

to |m〉 [74]. In linear algebra, eigenvectors and eigenvalues are obtained mathematically

through the characteristic function given as

c(λ) ≡ det |L− λI|, (2.34)

det is the determinant function for matrices. The solutions of Eq. 2.34 for c(λ) = 0 are

the eigenvalues of the operator L [74]. Operator L on a vector space M can be diagonally

represented as

L =
∑
m

λm |m〉 〈m| , (2.35)

where the vectors |m〉 form an orthonormal set of eigenvectors for L, with corresponding

eigenvalues λm.
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2.3.6 Adjoint and Hermitian Operators

An adjoint or Hermitian conjugate operator, L† can be defined as the complex conjugate

transpose of a linear operator, L, acting on a Hilbert space, M , in such a manner that all

vectors ,|m〉, |n〉 ∈ M ,

(|m〉 , L |n〉) = (L† |m〉 , |n〉). (2.36)

For a vector |m〉, its complex conjugate transpose |m〉† is equivalent to 〈m|. Using |m〉†

≡ 〈m|, we have (L|m〉)† = 〈m|L.

2.3.7 Commutator and Anti-commutator

This is another important feature of quantum mechanics. Some operators commute while

others do not. The commutator between two operators L and O is defined by

[L,O] ≡ LO −OL. (2.37)

This simply means if [L,O] = 0, then LO = OL. If the operators satisfy this condition,

then we can say that operator L commutes with operator O. In a similar fashion, the

anti-commutator between operators L and O can be defined by

{L,O} ≡ LO +OL. (2.38)

In this case we say L anti-commutes with O if {L,O} = 0.

2.3.8 Quantum measurements

This section briefly deals with the measurement of a physical quantum system. In quantum

mechanics, there are two different types of quantum systems: closed and open quantum

systems. Closed quantum systems evolve according to the unitary evolution (|ψ′〉 = U |ψ〉),

where U is a unitary operator acting on the closed system |ψ〉. A closed quantum system
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is a system that does not interact with the environment. However, in a real sense, there

is no perfect closed system except when taking the entire universe. Another type of a

quantum system is the open quantum system, whereby a quantum system interacts with its

environment. As a result of the interaction, the system is no longer closed, and therefore,

not necessarily subject to unitary evolution. This process also describes a scenario where

an experimentalist observes the interaction of a physical system with its environment in

the form of a quantum measurement.

Quantum measurements are described by a collection of measurement operators Mm.

These are operators acting on the state space of the system being measured. The subscript

m refers to the measurement outcomes that may occur in the experiment. If the state

of the quantum system immediately before the measurement is |ψ〉, then the probability

outcome is

p(m) = 〈ψ|M †
mMm |ψ〉 , (2.39)

and the post-measurement state of the system is given by [74]

Mm |ψ〉√
〈ψ|M †

mMm |ψ〉
. (2.40)

Eqs. 2.39 and 2.40 ensure that quantum measurements satisfy the completeness condition

∑
M †

mMm = I, (2.41)

and that the probability of measurement outcomes sum to 1. That is

∑
p(m) =

∑
m

〈ψ|M †
mMm |ψ〉 = 1. (2.42)

In quantum mechanics, all real physical systems must satisfy Eq. 2.42. Examples of quan-

tum measurements on a qubit use the computational basis (M0 = |0〉 〈0|, M1 = |1〉 〈1|), and



Chapter 2. Basic Tools and Techniques 33

the polarisation basis (MH = |H〉 〈H|, MV = |V 〉 〈V |), where subscripts H and V repre-

sent horizontal and vertical polarisation states of photons. Both bases represent the same

thing, but with a different notation. The theorist prefers the computational basis while

the experimentalist prefers the polarisation basis. A particular class of quantum measure-

ments that is commonly used in quantum mechanics is the projective measurement. In

this type of measurement, a given quantum state is projected and measured.

2.3.8.1 Projective measurements

Projective measurements are described by an observable, M , a Hermitian operator on the

Hilbert space (state space) of the system being observed [74]. The observable is spectrally

decomposed using

M =
∑
m

mPm (2.43)

where Pm is the projector on the eigenspace with eigenvalue m of the observable. The

probability of obtaining result m is

p(m) = 〈ψm|Pm |ψm〉 , (2.44)

and the post-measurement state of the system is

Pm |ψm〉√
p(m)

. (2.45)

The projectors are self-adjoint operators: P †m ≡ Pm because (|ψm〉 〈ψm|)† = |ψm〉 〈ψm|.

Projective measurements satisfy the completeness relation, and the condition that mea-

surement operatorsMm are Hermitian and orthogonal (M †
mMm = δm,mMm). Thus, M †

mMm

= Mm = Pm. The average value of the observable is given by [74]

〈M〉 = 〈ψ|M |ψ〉 . (2.46)
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From eq. 2.46, we can obtain the standard deviation associated with the observable

∆(M) =
√
〈(M − 〈M〉)2〉 =

√
〈M2〉 − 〈M〉2. (2.47)

2.3.9 Density operator

Another method of describing quantum states other than the state vector approach is by

using the density operator or matrix. The density operator method provides a better way

of describing quantum systems whose states are not well known. For example, if we have

a quantum system in one of the states |ψk〉, where k is an index, with probabilities pk

respectively, then the density operator for the system is given by

ρ =
∑
k

pk |ψk〉 〈ψk| (2.48)

Consider the evolution of a closed system that is described by a unitary operator U that

has an initial state |ψk〉 with probability pk and a final state U |ψk〉 after the evolution has

occurred. The density operator for the system is given by

ρ =
∑
k

pk |ψk〉 〈ψk|
U−→
∑
k

pkU |ψk〉 〈ψk|U † = UρU † (2.49)

Quantum measurements can also be described effectively using the density operator ap-

proach. For example, if we carry out a measurement described by operators Mm on a

system that has an initial state |ψk〉. The probability of obtaining result m is

p(m|k) = 〈ψk|M †
mMm |ψk〉 = tr(M †

mMm |ψk〉 〈ψk|), (2.50)
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Here, tr is the trace of a matrix. Therefore, the probability p(m) of obtaining result m is

p(m) =
∑
k

p(m|k)pk =
∑
k

pktr(M
†
mMm |ψk〉 〈ψk|) = tr(M †

mMm

∑
k

pk |ψk〉 〈ψk|) = tr(M †
mMmρ).

(2.51)

The density operator ρm of the system corresponding to the post-measurement with re-

spective probabilities p(k|m) is given by

ρm =
∑
k

p(k|m) |ψmk 〉 〈ψmk | =
∑
k

p(k|m)
Mm |ψk〉 〈ψk|M †

m

〈ψk|M †
mMm |ψk〉

. (2.52)

Using p(k|m) = p(m, k)/p(m) = p(m|k)pk/p(m) (Baye’s probability theory), we have

ρm =
∑
k

pk
Mm |ψk〉 〈ψk|M †

tr(M †
mMmρ)

=
MmρM

†
m

tr(M †
mMmρ)

, (2.53)

where |ψmk 〉 = M†
m|ψk〉√

〈ψk|M†
mMm|ψk〉

is the state of the system after obtaining result m.

2.3.10 Quantum State Tomography

Quantum state tomography (QST) is the process of reconstructing the quantum state

(density matrix) for a source of a quantum system via direct measurements on identical

copies of the quantum state. In other words, QST can be defined as the process that

characterizes the complete quantum state of a particle through a series of measurements

in different bases [113]. Unlike in classical computing or classical physics where character-

isation of a physical system is done by carrying out a series of measurements on the same

system, in quantum mechanics, measuring a single quantum system disturbs its state,

often making further measurements lack useful information. Hence, quantum tomography

is carried out on a number of identical copies of the same unknown state, and as such

cannot be successfully applied to a single unknown state.
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Before any quantum state can be analysed, it is important to understand the state

representation. The reconstruction of an unknown quantum state is made easier by a

specific state parameterization. A single qubit in a pure state can be represented as: |ψ〉

= α |0〉+ β |1〉 in the computational basis, whereas for a mixed state, it is best described

by a density operator or matrix formulation ρ =
∑

k pk |ψk〉 〈ψk|. This simply means that

mixed states may be described by a probabilistically weighted incoherent sum [113].

In this thesis, we will use QST with single photons encoded into the electric field polar-

ization of photons. For single photons, the quantum system has two levels; for example,

horizontal (|H〉 ≡ |0〉) and vertical (|V 〉 ≡ |1〉). The remaining other pure polariza-

tion states, the diagonal (|+〉 = (|H〉 + |V 〉)/
√

2), antidiagonal (|−〉 = (|H〉 − |V 〉)/
√

2),

left-circular (|L〉 = (|H〉 + i |V 〉)/
√

2), and right-circular (|R〉 = (|H〉 − i |V 〉)/
√

2) are

constructed from a coherent superposition of |H〉 and |V 〉 states.

A single qubit density matrix can then be represented by three Stokes parameters

{S1, S2, S3}:

ρ =
1

2

3∑
k=0

Skσk, (2.54)

where σk corresponds to the usual Pauli matrices (σ0, σ1, σ2, σ3), and the values of Sk can

be obtained by [74]

Sk = tr(σkρ), (2.55)

where for pure states,
∑3

k=1 S
2
k = 1; for mixed states,

∑3
k=1 S

2
k < 1; and for completely

mixed state,
∑3

k=1 S
2
k = 0. As a result of normalization, S0 = 1. These four parameters
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correspond to the outcome of particular pairs of projective measurements [113]

S0 = P|H〉 + P|V 〉

S1 = P|+〉 − P|−〉

S2 = P|L〉 − P|R〉

S3 = P|H〉 − P|V 〉

(2.56)

where P|ψ〉 is the probability to measure state |ψ〉. Thus, the probability of projecting a

given state ρ into the state |ψ〉 is: P|ψ〉 = 〈ψ| ρ |ψ〉 = tr (|ψ〉 〈ψ| ρ). In Eq. 2.56, the Sk

are defined with respect to the three states, |ψk〉:

|ψ1〉 =
1√
2

(|H〉+ |V 〉)

|ψ2〉 =
1√
2

(|H〉+ i |V 〉)

|ψ3〉 = |H〉 ,

(2.57)

and their orthogonal counterpart,
∣∣ψ⊥k 〉.

2.3.11 Quantum Process Tomography

Quantum process tomography is the process of characterising the dynamics of a quantum

system. It can also be defined as a procedure for characterising a quantum process by

probing with known quantum states. In classical computing, this is known as system

identification [74]. For example, if we consider a physical process acting on a quantum

system ρ that is described by a channel ξ

ξ(ρ) =
∑
k

EkρE
†
k,

∑
k

E†kEk = 1 (2.58)

Eq. 2.58 is an example of a Kraus decomposition. In order to know the form of this Kraus

decomposition from observables obtained from an experiment, and thus, find the Ek’s, we
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need to use a fixed set of operators Êk which form a basis for the set of operators [74]

Ek =
∑
m

tr(Ê†mEk)Êm =
∑
m

ekmÊm. (2.59)

Eq. 2.58 then gives

ξ(ρ) =
∑
mn

ÊmρÊ
†
nχmn, (2.60)

where χmn =
∑

k ekme
∗
kn, ekm is a set of complex values and e∗kn is the complex conjugate

of the set of complex values. Eq. 2.60 shows that the channel ξ can be fully described by

a complex number matrix χ and a fixed set of operators {Êm}. To find the entries of χ,

we can consider a set of operators which are fixed and form a linearly independent basis

for the Hilbert-space, ρv. Therefore, the output of the channel ξ acting on these operators

is obtained by preparing the following input states

|n〉 , |m〉 , |+〉 =
1√
2

(|n〉+ |m〉), |+y〉 =
1√
2

(|n〉+ i |m〉), (2.61)

and then forming linear combinations of the outputs ξ(|n〉 〈n|), ξ(|m〉 〈m|), ξ(|+〉 〈+|), and

ξ(|+y〉 〈+y|) as

ξ(|n〉 〈m|) = ξ(|+〉 〈+|) + iξ(|+y〉 〈+y|)−
1 + i

2
ξ(|n〉 〈n|)− 1 + i

2
ξ(|m〉 〈m|). (2.62)

Thus, we can get ξ(ρv) for each ρv by carrying out state tomography on the output states

of the above four input states. The density matrix formulation can be use to denote ξ(ρv)

as

ξ(ρv) =
∑
k

λvkρk, (2.63)

where ρk are basis states (just like ρv but with a different index). Here, ξ(ρv) are exper-

imentally determined, whereas the ρk are fixed in advance and the λvk can be calculated
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once the ξ(ρv) are known. Thus, ξ(ρv) is written

ξ(ρv) =
∑
mn

ÊmρvÊ
†
nχmn =

∑
mnk

βmnvk ρkχmn =
∑
k

λvkρk (2.64)

where ÊmρvÊ
†
n =

∑
k β

mn
vk ρk. Therefore, if

∑
mnk β

mn
vk ρkχmn =

∑
k λvkρk, we then have

λvk =
∑
mn

βmnvk χmn. (2.65)

To obtain βmnvk , we invert Eq. 2.65 and have

χmn =
∑
vk

κmnvk λvk, (2.66)

where κ is the generalised inverse of β, that is, it satisfies the condition

βmnvk =
∑
st xy

βstvkκ
xy
st β

mn
xy . (2.67)

β is known and fixed regardless of the channel, thus so is κ. Therefore once the λvk’s are

obtained from the experiment we can calculate χ from Eq. 2.66. To find the set {Ek} in

Eq. 2.58, the matrix χ is diagonalised (since it is a positive Hermitian matrix)

D = U †χU → χmn =
∑
kv

UmvdvδvkU
∗
nk, (2.68)

where dvδvk = Dk are real and positive. Thus, associating ekm =
∑

m

√
DkU

∗
mk, we have

from Eqs. 2.59 and 2.60

Ek =
∑
m

ekmÊm =
∑
m

√
DkUmkÊm. (2.69)

Here, the fixed set of operators, Êk are the four Pauli matrices (Ê0 = 1, Ê1 = X, Ê2 =

iY , Ê3 = Z ).
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2.4 Quantum Optics

2.4.1 Light in the quantum regime

In 1900, the quantum theory of light came into being when Planck [114] put forward a

theory that the energy radiation in a black body is quantized. After the work of Einstein

[115], in 1905, on the photoelectric effect, the quantum nature of light radiation was

accepted with the name photon given much later, in 1926 [116].

The initial quantization of the electromagnetic field was done by Dirac [117], in 1927,

where he demonstrated that the wave properties of the field could be preserved alongside

the concept of creation and annihilation of photons. It was later shown in Ref [118], how

the photoelectric effect was fully described by semi-classical theory, whereby the atomic

part of the experimental system was described by quantum theory while the radiation

was described by classical theory. In 1960, the laser was invented by Maiman [119], with

quantum theory applied to both the radiation and to the atoms with which it interacts.

The quantum theory of light is an important concept in this thesis and it begins with the

wave equation.

Classically, the electromagnetic field in free space with respect to position r and time t

is described by the wave equation

−∇2A(r, t) +
1

c2
∂2A(r, t)

∂t2
= 0, (2.70)

where the vector potential,∇.A = 0 (Coulomb gauge). From Eq. 2.70, the vector potential

can be written as set of plane waves

A(r, t) =
∑
kv

εkv[Akve
i(k.r−ωkt) + A∗ke

−i(k.r−ωkt)] (2.71)
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Each term in Eq. 2.71 represents a time-dependent oscillating wave propagating in space

in the direction of the wavevector, k, at an angular frequency, ωk, with a spatial period λ

= 2π
k

. Ak is the wave amplitude which is directed along the polarisation unit vector εkv.

Since the vector potential is in the Coulomb gauge, that is, ∇.A = 0, then k.εkv = 0,

or k ⊥ εkv. From the vector potential, the electric field E and magnetic field B can be

written as

E(r, t) = −∂A
∂t

= i
∑
kv

ωkεkv(Akve
i(k.r−ωkt) − A∗kve−i(k.r−ωkt)), (2.72)

and

B(r, t) = ∇×A = i
∑
kv

(k× εkv)Akv[e
i(k.r−ωkt) − A∗kve−i(k.r−ωkt)]. (2.73)

If we assume a unit vector x along the magnetic field polarisation x = (k × εkv)/|k| =

κ×εkv with κ = k
|k| , then the wave vector, and the electric and magnetic field’s polarisation

are mutually orthogonal (κ ⊥ εkv ⊥ x). The electric field and magnetic field can now be

written as

E(r, t) = i
∑
kv

ωkεkv(Akve
i(k.r−ωkt) − A∗kve−i(k.r−ωkt)), (2.74)

and

B(r, t) =
1

c

∑
kv

(κ× εkv)ωkAkv[e
i(k.r−ωkt) − A∗kve−i(k.r−ωkt)]. (2.75)

The energy of the field is given by [120]

H =
1

2

∫
S

(
ε0E.E +

1

µ0

B.B
)
dS (2.76)

where S = L3 and L is the length of a cubic cavity. The periodic boundary condition gives

∫
S

e±i(k - kl).rdS = δkk′S. (2.77)
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The contribution of the electric field to H is

1

2

∫
S

ε0E.EdS = ε0S
∑
kv

ω2
kAkv(t)A

∗
kv(t)−R, (2.78)

where R = 1
2
ε0S

∑
kvv′ ω

2
kεkv.ε−kv′ [Akv(t)A−kv′(t)+A∗kv(t)A

∗
−kv′(t)]. Using the vector iden-

tity (A×B).(C ×D) = (A.C)(B.D)− (A.D)(B.C), we get

(k× εkv).(k× εkv′) = δvv′ (2.79)

and

(k× εkv).(-k× ε−kv′) = −εkv.ε−kv′ . (2.80)

From the above results we have

1

2

∫
1

µ0

B.BdS = ε0S
∑
kv

ω2
kAkv(t)A

∗
kv(t) +R. (2.81)

Therefore by summing Eqs. 2.78 and 2.81 we obtain the field energy

H = 2ε0S
∑
kv

ω2
kAkv(t)A

∗
kv(t) = 2ε0S

∑
ks

ω2
kAkvA

∗
kv (2.82)

To quantize the field, we introduce canonical variables pv and qv and set

Akv =
1

2ωk(ε0S)1/2
[ωkqkv + ipkv] (2.83)

A∗kv =
1

2ωk(ε0S)1/2
[ωkqkv − ipkv], (2.84)

and substituting Eqs. 2.83 and 2.84 into Eq. 2.82 we have

H =
1

2
(p2kv + ω2

kq
2
kv). (2.85)
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Thus, the canonical variables become operators that satisfy the commutation relation

[q̂kv q̂k′v′ ] = 0 = [p̂kv, p̂k′v′ ] (2.86)

[q̂kv, p̂k′v′ ] = i~δkk′δvv′ . (2.87)

where ~ is the Planck constant. For a single mode, the annihilation and creation operators

are given by

âkv =
1

(2~ωk)1/2
[ωkq̂kv + ip̂kv] (2.88)

â†kv =
1

(2~ωk)1/2
[ωkq̂kv − ip̂kv] (2.89)

The energy of the field becomes the Hamiltonian operator

Ĥ =
∑
kv

~ωk(â†kvâkv +
1

2
) =

∑
kv

~ωk(n̂kv +
1

2
), (2.90)

where n̂kv = â†kvâkv is the number operator for the mode kv. For the jth mode, let âkjvj

= âj and the Halmitonian of the field is given by

Ĥ =
∑
j

~ωj(n̂j +
1

2
). (2.91)

Therefore, if we apply the Hamiltonian on |n〉, an energy eigenstate with eigenvalue

En, we then have for each j

Ĥ |n〉 = ~ω(â†â+
1

2
) |n〉 = En |n〉 . (2.92)

If we multiply both sides of Eq. 2.92 by â† and use the commutation relation ([â, â†] =
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ââ† - â†â = 1) on the first term of the result, we have [121]

~ω(â†â+
1

2
)â† |n〉 = Ĥâ† |n〉 = (En + ~ω)â† |n〉 , (2.93)

where En+~ω is a new eigenvalue and â† |n〉 is a new eigenstate of the harmonic oscillator.

Thus, the new eigenstate and eigenvalue are given by [121]

|n+ 1〉 = â† |n〉 , (2.94)

and

En+1 = En + ~ω, (2.95)

respectively. Eq. 2.93 can now be expressed as

Ĥ |n+ 1〉 = En+1 |n+ 1〉 . (2.96)

The above equation is an important result which simply means that there exists another

energy higher than the first energy by an amount ~ω. In a similar fashion, if we multiply

Eq. 2.92 by â and use the same commutation relation as described above, then we have

Ĥâ |n〉 = (En − ~ω)â |n〉 , (2.97)

where the new eigenstate and eigenvalue is given by

|n− 1〉 = â |n〉 , (2.98)

and

En−1 = En − ~ω, (2.99)
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respectively. Thus, Eq. 2.97 becomes

Ĥ |n− 1〉 = En−1 |n− 1〉 . (2.100)

If we assume the state |0〉 to be the ground state with an energy E0, we have

Ĥâ |0〉 = (E0 − ~ω)â |0〉 = 0, (2.101)

and therefore â |0〉 = 0. Then,

Ĥ |0〉 =
1

2
~ω |0〉 = E0 |0〉 , (2.102)

where E0 = 1
2
~ω. The energy of the n-eigenstate is then given by

En = (n+
1

2
)~ω, (2.103)

where n = 0, 1, 2, ... and so on. Eq. 2.103 is the energy of a quantum harmonic

oscillator which represents each mode j of the quantized electromagnetic field. The state

|n〉 represents the population of each mode j with n photons.

2.4.2 Single-Photon Source

2.4.2.1 Introduction

In many quantum optics experiments, single photons are generated using the spontaneous

parametric down-conversion (SPDC) method. SPDC is a non-linear quantum-mechanical

process in which a photon from a pump beam at frequency ωp is converted into two

correlated photons at lower frequency, simultaneously. This thesis used a type-1 SPDC

ωp = ωi + ωs (2.104)



Chapter 2. Basic Tools and Techniques 46

Figure 2.6: SPDC experimental setup. Here, a BBO (β-barium borate) is a nonlinear
crystal, IF is an interference filter, and A and B are avalanche photo-detectors.

method. Usually in SPDC, a non-linear crystal (BBO) is used to generate two pho-

ton pairs called the idler (propagates through arm A) at a frequency ωi and the signal

(propagates through arm B) at a frequency ωs, as shown in figure 2.6. In spontaneous

parametric down-conversion, energy and momentum are conserved and

kp = ki + ks. (2.105)

In experiments, a blue laser at 405 nm is used to pump a non-linear crystal. The optical

axis of the crystal is cut such that the two photons emerge at 30 from the initial pump

direction. The two correlated photons pass through an interference filter (IF) to cut off

unwanted light and improve the spectral purity of the photons. A photon detection in

arm A is used to herald the presence of another photon in arm B. In the next section, we

will discuss the theory of quantum correlation functions which were used to characterise

the single photons generated by SPDC.

2.4.2.2 Theory

In classical physics, the light beam intensity-intensity correlations (i.e the beam correla-

tions between intensities IB and IB′ where the light in arm B has been split into B and

B′ by a 50/50 beamsplitter) is described by the degree of second-order coherence g
(2)
B,B′(τ).
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g
(2)
B,B′(τ) is a function of the time delay τ between the intensity measurements [120] and is

given by

g
(2)
BB′(τ) =

〈IB(t)IB′(t+ τ)〉
〈IB(t)〉〈IB′(t+ τ)〉

, (2.106)

where IB and IB′ are the detected intensities. For intensity measurements at zero time

delay (τ = 0) the incident intensity II(t) gives IB(t) = IB′(t) = 1
2
II(t), then g

(2)
BB′(0) can

be written as

g
(2)
BB′(0) =

〈[II(t)]2〉
〈II(t)〉2

= g(2)(0), (2.107)

where g(2)(0) is the second-order coherence for the field in the incident beam. Thus, it

follows from the Cauchy-Schwartz inequality [121] that

g
(2)
BB′(0) = g(2)(0) ≥ 1 (2.108)

In quantum physics, following a similar fashion, the quantum degree of second-order co-

herence is defined by replacing the I in Eq. 2.106 with a quantum mechanical operator Î.

Thus, the g
(2)
BB′(τ) is given by [121]

g
(2)
BB′(τ) =

〈: ÎB(t1)ÎB′(t+ τ) :〉
〈ÎB(t)〉〈ÎB′(t+ τ)〉

, (2.109)

where the colons represents normally ordered operators with all creation operators to the

left and annihilation operators to the right. The numerators of Eq. 2.109 are expectation

values of products of creation and annihilation operators with their corresponding Hermi-

tian conjugates and this must be positive. At zero time delay and by substituting in the

beamsplitter relations for modes B and B′, ie âB = (âI + âv)/
√

2 and âB′ = (âI − âv)/
√

2

we get

g
(2)
BB′(0) = g(2)(0) =

〈n̂I(n̂I − 1)〉
〈n̂I〉2

= 1− 1

n
, n ≥ 2, and = 0 for n = 0, 1, (2.110)
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where n̂I is the photon-number operator and n is the mean photon number. For single-

photons, n = 1 and g(2)(0) = 0. However, in the case where n = 2, g(2)(0) = 0.5. Thus,

following this simple calculation, we expect a value of g(2) < 0.5 to show we are in the

single-photon regime in an experiment. In the laboratory, single-photon measurements

rely on counting statistics and coincidence measurements. Here, heralded single photons

were generated using spontaneous parametric down conversion. For two detectors B and

B′, g
(2)
BB′(0) can be defined as [122]

g
(2)
BB′(0) =

NBB′

NBNB′
NP , (2.111)

where NP = T/τc is the total possible number of coincidences, T is the total measurement

time and τc is the coincidence window. NBB′ is the coincidence count rate of detector B

and B′, NB is the count rate for detector B and NB′ is the count rate for detector B’. For

three detectors, g
(2)
ABB′(0) is defined by [122]

g(2)(0) = g
(2)
ABB′(0) =

NABB′

NABNAB′
NA, (2.112)

where NABB′ corresponds to coincidence counts between detectors A, B and B′

2.4.2.3 Experimental setup

To carry-out g2(0) measurements in the laboratory, a Hanbury-Brown and Twiss (HBT)

interferometer was constructed. Figure 2.7 shows a diagram of the HBT interferometer.

The associated electronics are placed inside a black box. The photons in arm A of
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Figure 2.7: A diagram of a Hanbury-Brown and Twiss interferometer, with associated
electronics. The output of arm B of the SPDC is connected to the input arms of the
interferometer. Here, SM is a single-mode fibre, MM is a multi-mode fibre, FC is a fibre
coupler, M is a mirror, BS is a beam splitter, and A, B, and B′ are avalanche photo
detectors. SPCM is a single-mode counting module.

figure 2.6 are collected using a single-mode fibre (SM). The SM is then connected to a

multi-mode fibre (MM) through which single photons are decoupled and focussed onto a

single-photon avalanche photo detector (Excelitas SPCM-AQRH-15). In a similar fashion,

the photons in arm B of figure 2.6 are decoupled and focussed onto a HBT interferometer

such that we may measure correlations between photo-detections at detectors B and B′.

The signal from a detected photon is sent through a delay circuit with a delay (τ) that

ranges from 0 to 64.5 ns with a resolution of 0.5 ns. In order to set a negative time delay,

additional BNC cables were used in such a manner that B′ arrives before A and B.

The three detected signals are then sent to a single-photon counting module which then

output the photon count rates at each detector, and the coincidence count rates between

detectors A, B and B′. The outputs from the counting module are then sent to a personal

computer (PC) for recording. On the PC, the count rates were monitored and recorded

using a LABVIEW program. Note that SM fibres can directly couple the photons to the

rest of the experimental setup in Figure 2.7. The reason that MM fibres were used is that

the detectors, and the Hanbury-Brown and Twiss interferometer were set up in the lab for
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Figure 2.8: A plot of the degree of second-order coherence as a function of delay time.
The solid line is for 3 detectors, while the dotted line is for 2 detectors.

common use. Having MM fibres was the most practical configuration due to the

different requirements of the other projects.

2.4.2.4 Results and discussion

The photons from both arms of the SPDC source are filtered using an interference filter

at 800 ± 5 nm. Table 2.1 shows an example of the count rates obtained. Using Eq. 2.112,

a g(2) value for each time delay was then calculated. The average and standard deviation

of the set of g(2)(0) values at τ = 0 is 0.081 ± 0.004 and 1 ± 0.001 for 3 and 2 detectors,

respectively. Each of the runs was for 5 seconds total measurement time. Figure 2.8 shows

a plot of g(2)(τ) as a function of delay time τ . The results violate the classical lower-bound

of 1 for the 3 detectors case (heralded single photon) and is less than the 0.5 predicted for

single photons, therefore confirming the presence of single photon

excitations. The trend of the curve in figure 2.8 could be simulated as a convolution of
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a wide top-hat function with a Gausian shape [123]. The shape of the curve is dominated

by a strong correlation between detections A and B’ [123]. The curve was fitted to an

error function equation of the form: erf(τ - w) + erf(-τ - w), where w is the width. The

width consists of the coincidence window (τc), coherence time, and detector jitter time.

By fitting the curve with a function of the form: f(τ) + f(-τ), where f(τ) = erf(b T + c) +

d, we can extract the base-width parameter c which gives c = 9 ± 0.5 ns. However, using

Eq. 2.111 we have a more accurate value of τc = 8 ± 0.06 ns.

A BBO was used as an example nonlinear crystal early in the project to show how

single-photons could be generated and characterized. However, the nonlinear crystal was

then replaced with a BiBO crystal for the remainder of the work, including the study on

metamaterials and Markovian channels, as it offered a higher generation rate compared

to the BBO. The BiBO crystal has similar properties to the BBO crystal, and so such a

detailed characterization was not carried out - only g2 at zero delay was measured, which

matched closely the value of 0.08 obtained from the BBO crystal, thus confirming single

photons could be generated by the BiBO and used in probing quantum channels. This is

outlined next in Chapters 3 and 4.

Table 2.1: Counts rate at zero time delay

NA (104 cps) NB (104 cps) NB′ (104 cps) NAB (103 cps) NAB′ (103 cps) NBB′ (101 cps) NABB′ (cps)

94 29 36 11 13 185 13



Chapter 3

Active control of a plasmonic

metamaterial for quantum state

engineering

3.1 Introduction

The metallic nanostructures in metamaterials, the ‘unit cells’, are usually arranged peri-

odically in close range to each other, and their material and geometrical properties can be

manipulated in order to change the bulk permittivity ε and permeability µ of the material.

Here, we consider metallic metamaterials. The unusual optical behaviour of metamaterials

is due to the collective oscillations of the nanostructures in resonance with the incident

light, i.e. a localised surface plasmon resonance [124, 76]. This plasmonic resonance gives

metamaterials the ability to control and manipulate many different aspects of light. Con-

trolling the polarisation of light is an important process in many areas of science and

technology, for example in communication [125], imaging [48], and sensing [126]. Over the

years, conventional optical polarisers have been made from birefringent materials [127],

and from crystals or polymers [128]. Recently, the control of the polarisation of light

52
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Figure 3.1: A schematic diagram of the metamaterials investigated in this thesis.

using metamaterials has become possible. Shen et al. [54] have demonstrated an ultra-

high efficiency metamaterial polariser, where light that is perpendicular to the principal

axis is transmitted undisturbed, while light that is parallel is attenuated. Tam and Yan [53]

have designed a plasmonic ultra-broadband polariser based on silver nanowire arrays where

a broadband transmission was realised. Chin et al. [129] have shown that, with designed

metamaterials mimicking anisotropic crystals, it is also possible to change the polarisation

state of the field during the polariser operation. In this chapter we theoretically and

experimentally investigate a plasmonic metamaterial polariser in the quantum regime.

We go further than the previous work and demonstrate the active control of a plasmonic

metamaterial polariser in the quantum regime.
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3.2 Transmission of single-photons through plasmonic

metamaterials: Simulations

In this section we describe the theory of transmission of single-photon states through

through different metamaterial designs. For this we model the metamaterial as a periodic

array of nanoparticles in a rectangular lattice with periods dx and dy, as shown in Figure

3.1. In the dipole approximation, each nanoparticle representing a unit cell of the metama-

terial is modelled by a dipole with polarisability tensor α, which relates the dipole moment

to the local electric field at the particle [130, 88, 131]. The plasmonic nanoparticles in this

work are rod-like in shape and are well described as an ellipsoid with semi-axes a, b and

c. This gives a diagonal polarisability tensor with non-zero elements [88] as given in Eq.

2.6, and re-written here

αii = 4πε0abc
εm − εd

3εd + 3Li(εm − εd)
(3.1)

where ε0 is the free space permittivity, Li (i = x, y, z) is a shape factor, εm = -22.842 +

1.8388i is the relative permittivity of gold and εd = (1.45)2 the relative permittivity of the

surrounding medium (silica) at 810 nm. In our simulation, a = l/2 , b = w/2, and c = t/2,

where l is the length of the nanorod, w is the width and t is the height. As an example

we use dx = dy = 200 nm for the period, l = 110 nm for the length, w = 39 nm for the

width and t = 30 nm for the thickness. The transmission (T ) and reflection (R) of light

through periodic arrays of these kind of nanoparticles are described in detail in Ref. [131]

and for light with normal incidence to the array and polarised in direction k as

Tk = 1 +
iµ0πfc

dxdy

αk
1− βkαk

, (3.2)

where Rk = Tk−1, µ0 is the free space permeability, f is the frequency of the propagating

electromagnetic wave and c is the speed of light in a vacuum. Here we set the interaction
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Figure 3.2: Theoretical transmission spectra for horizontally (orange line) and vertically
(blue line) polarised light sent through a plasmonic metamaterial made of gold nanorods
(w = 39 nm, l = 110 nm, t = 30 nm). The dashed line corresponds to 810 nm.

parameter βk = 0 as we consider a large nanorod spacing. Note that in the special case

of no absorption in the array, the relation |R|2 + |T |2 = 1 is satisfied. However, when βk 6=

0, the transmission gets modified (see Ref. [131] for more details). With these equations

at hand, we are able to model the transmission of single photons of horizontal and vertical

polarisation through different metamaterial designs. Figure 3.2 shows the transmission

spectra that were obtained by simulations via a particular plasmonic metamaterial with

the dimensions given above. The vertical axis of the polarisation is oriented along the

long axis of the nanorods. From the above theory, this means that the probability of

transmitting a photon encoded in the state |V 〉 through a metamaterial should decrease

as the nanorod length in the metamaterial increases and width decreases. This is due

to a stronger plasmonic resonance of the nanorod. On the other hand, the transmission

of a photon encoded in the state |H〉 is constant for all the metamaterial designs as the

plasmonic resonance is weak along the width of the nanorod. The horizontally polarized

light was transmitted at 810nm wavelength ∼ 100 % with no disturbance and ∼ 81 % of

vertically polarized light was transmitted for this particular metamaterial design.



Chapter 3. Active control of a plasmonic metamaterial for quantum state engineering56

3.3 Temperature dependence of single photon trans-

mission via plasmonic metamaterials: Simulations

One of the aims of this work is to study how to actively control the transmission response

of single photons of horizontal and vertical polarisation states via different plasmonic

metamaterials. In order to do this, we need to develop a theoretical model that can be

used to explain our experimental results. At this point, it is important to note that the

plasmonic metamaterials studied are made of gold nanoparticles that are deposited on a

silica substrate. Therefore, for a start, we need to model the temperature dependence of

the permitivities of gold (εau) and the surrounding medium, of which, in our case, is fused-

silica (εd). Thus, we report the temperature dependence of the permitivity of fused-silica

in the next sub-section.

3.3.1 Temperature dependence of the permitivity of fused-silica

To model the temperature dependence of the silica substrate we use the wavelength-

dependent thermo-optic coefficient dη/dT , where η is the refractive index (εd = η2)

and T is the temperature [132, 133]. The refractive index is related to the thermo-optic

coefficient by the relation

η(T) = η(Tr) + (T - Tr)dη/dT, (3.3)

where η(T) is the temperature-dependent refractive index, which is also wavelength de-

pendent, and Tr = 300 K is a reference temperature. It is known that the refractive index

of fused silica at Tr can be well described by the Sellmeier equation

η(Tr, λ) = [1 +
A1λ

2

λ2 − β2
1

+
A2λ

2

λ2 − β2
2

+
A3λ

2

λ2 − β2
3

]1/2, (3.4)

where
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Figure 3.3: Temperature dependence of the permittivity εd of the silica substrate.

the coefficients are A1 = 0.6961663, A2 = 0.4079426, A3 = 0.8974794, B1 = 0.0684043,

B2 = 0.1162414, and B3 = 9.896161 and λ = 0.81 µm is the wavelength of interest. We

then have

dη

dT
=

(GR +HR2)

2η(Tr, λ)
, (3.5)

with R = λ2/(λ2− λ2ig), λig = 0.109 µm is the band-gap wavelength of silica, G = -1.6548

× 10−6 −1, and H = 31.7794×10−6 K−1 [132]. The temperature dependence of εd is shown

in figure 3.3 for T = 300 to 350 K. εd increases as the temperature increases.

3.3.2 Temperature dependence of the permitivity of gold

For the gold nanorods, the temperature dependence is described using a modified Drude

model, valid below the interband transition frequency 2.4 eV (λ ≥ 520 nm) [62 - 64],

εm(T) = ε∞ −
ω2
p(T)

ω[ω + iωc(T)]
, (3.6)

where ω is the angular frequency of the electromagnetic field, ε∞ is the high-frequency

permittivity of the metal, and ωp(T) and ωc(T) represent the temperature-dependent
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Figure 3.4: Temperature dependence of the permittivity εm of the gold used for the
nanorods. (a) Re[εm] and (b) Im[εm]

plasmon frequency and collision frequency of the free electrons, respectively. The

plasmon frequency is given by

ωp(T) =
ωp(Tr)

[1 + 3γ(T - Tr)]1/2
, (3.7)

where ωp(Tr) is the plasmon frequency at the reference temperature and γ = 14.2×10−6

K−1 is the thermal linear expansion coefficient. The collision frequency results from a

combination of electron-electron and electron-phonon scattering, with ωc(T) = ωe−e(T) +

ωe−ph(T), where

ωe−e(T) =
π3Γ∆[(KBT)2 + (~ω/2π)2]

12~EF
, (3.8)

and

ωe−ph(T) = ω0[
2

5
+ 4(

T

θD
)5
∫ θD/T

0

z4(ez − 1)−1dz]. (3.9)

Here kB is the Boltzmann constant, ~ is Planck′s constant, θD is the Debye tempera-

ture, EF is the Fermi-level energy for gold, Γ is the Fermi-surface average of scattering

probability, ∆ is the fractional umklapp scattering coefficient, and ω0 is a constant. The
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following parameters are used for the above equations: θD = 185 K, EF = 5.5 eV, Γ=

0.55, and ∆= 0.77 [64]. Furthermore, the following parameters are obtained by fitting the

experimental data for gold from Ref. [62] at the reference temperature (λ ≥ 600 nm) to

Eq. 3.6: ω0 = 0.346 eV, ε∞ = 8, and ωp(Tr) = 53.41 eV. The temperature dependence of

εm is shown in figure 3.4(a) for Re[εm] and figure 3.4(b) for Im[εm], for T = 300 to 350 K.

The permitivity for the real and imaginary parts increases as the temperature increases.

Thus, we are now ready to model the temperature-dependent response of the plasmonic

metamaterial transmission in the quantum regime.

3.3.3 Temperature dependence of plasmonic metamaterials in

the quantum regime

We now theoretically model the active control of plasmonic metamaterial transmission

in the quantum regime using the temperature response. Using Eqs. 3.3 and 3.6 in Eq.

3.1, and we are able to model the temperature-dependent response. As an example, in

figure 3.5(a) we show the transmission |T |2 for horizontal and vertical polarized light over

the wavelength range 600 - 1000 nm for a metamaterial at two different temperatures

(T = 300 and 340 K). The dimensions used for the simulation are chosen based on the

size of the nanorods available in the experiment and given by dx = dy = 200 nm for the

period, t = 30 nm for the thickness, w = 46 nm for the width, and l = 130 nm for the

length. One can clearly see the change in the transmission for vertically polarized light

as the temperature changes (lower solid and dotted curves), whereas the transmission for

horizontally polarized light is not affected significantly (upper solid line). This contrast is

due to the dependence of the vertical transmission coefficient on the plasmon resonance



Chapter 3. Active control of a plasmonic metamaterial for quantum state engineering60

Figure 3.5: Temperature-dependent transmission response of a plasmonic metamaterial
with nanorod dimensions, width w = 46 nm and length l = 130 nm (theory). The period
is fixed at dx = dy = 200 nm and the thickness is t = 30 nm. In (a) the lower solid
resonance curve is for vertical transmission at T = 300 K and the lower dotted resonance
curve is for vertical transmission at T = 340 K. The horizontal solid line is for horizontal
transmission. (b) Corresponding temperature dependence over a range of 50 K at λ = 810
nm with the nanorod dimensions chosen as those used in (a).

along the length of the nanorod, which is relatively strong and can change significantly

depending on the value of the permittivity of the metal. On the other hand, for horizontally

polarized light, the plasmonic resonance is weak along the width of the rod and so changes

in the permittivity do not have a significant effect. In figures 3.5(a), 3.6(a), 3.7(a) and

3.8, a vertical line marks the wavelength of interest for our experiment (λ = 810 nm). In

figure 3.5(b) we show the temperature dependence of the transmission for λ = 810 nm

over the range 300-350 K. In order to understand further how the transmission changes

depending on the nanorod dimensions, we show two more examples of metamaterials in

figures 3.6(a), 3.6(b), 3.7(a), and 3.7(b). The dimensions used are the same as the previous

example but with w = 47 nm and l = 140 nm for figures 3.6(a) and 3.6(b) and w = 48

nm and l = 144 nm for figures 3.7(a) and 3.7(b). One can see that, depending on the

nanorod dimensions, the value of the transmission for vertically polarized light can vary

significantly as the temperature is modified. In figure 3.8 we show how deviations in the
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Figure 3.6: Temperature-dependent transmission response of a plasmonic metamaterial
with nanorod dimensions: width w = 47 nm and l = 140 nm (theory). The period is fixed
at dx = dy = 200 nm and the thickness is t = 30 nm. In (a) the lower solid resonance
curve is for vertical transmission at T = 300 K and the lower dotted resonance curve is for
vertical transmission at T = 340 K. The horizontal solid line is for horizontal transmission.
(b)Corresponding temperature dependence over a range of 50 K at λ = 810 nm with the
nanorod dimensions chosen as those used in (a).

nanorod dimensions (±2 nm for w, t , and l) affect the transmission of vertically

polarized light through the metamaterial at a fixed temperature of 300 K. One can see

that with only a small deviation of 2 nm the transmission curve plotted as a function

of the wavelength of the incident light is shifted considerably to the left (+2 nm) or to

the right (-2 nm). This provides useful information about how a realistic metamaterial

might respond, as consistency of nanorod dimensions across the array is hard to achieve

during fabrication. Based on the behaviour seen in figure 3.8, the result of this would be

a linewidth broadening and a shift of the wavelength where the transmission becomes a

minimum (the resonance wavelength). We assume ±2 nm fabrication precision.
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Figure 3.7: Temperature-dependent transmission response of a plasmonic metamaterial
with nanorod dimensions: width w = 48 nm and l = 144 nm. (theory). The period is
fixed at dx = dy = 200 nm and the thickness is t = 30 nm. In (a) the lower solid resonance
curve is for vertical transmission at T = 300 K and the lower dotted resonance curve is for
vertical transmission at T = 340 K. The horizontal solid line is for horizontal transmission.
(b) corresponding temperature dependence over a range of 50 K at λ = 810 nm with the
nanorod dimensions chosen as those used in (a).

Figure 3.8: Transmission response of a metamaterial with nanorod dimensions correspond-
ing to figure 3.5(a) in the middle and with ±2 nm added to the length, width and thickness.
A larger variation of the nanorod size leads to even bigger shifts in the response.
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3.4 Transmission of single photons through plasmonic

metamaterials: Experiment

We now present the experimental results of single photons transmitted through plasmonic

metamaterials. We begin by presenting the experimental setup.

3.4.1 Experimental setup

The experimental setup is shown in figure 3.9 (a), where type-1 SPDC is used to generate

pairs of single photons [134, 135]. A pump laser at 405 nm is rotated to vertical polarisation

by a half-wave plate (HWP). The pump beam is then sent through a non-linear crystal,

which produces two ‘twin’ (idler and signal) photons polarised horizontally at a lower

frequency (wavelength 810 nm). One photon is produced in arm A and the other in arm

B. The optical axis of the crystal is cut such that the two photons emerge at ±30 from

the initial pump direction. A single photon in arm A is used to herald the presence of

another single photon in arm B. A qubit is encoded into the single photon in arm B using

a quarter-wave plate (QWP) and HWP. Here, the polarisation states |H〉 and |V 〉 are

used as the orthogonal basis states of the qubit. This qubit is then sent through the

plasmonic metamaterial. Quantum state tomography is performed on the output of six

different polarisation-encoded qubits sent through the metamaterial using a QWP, HWP

and a polarising beamsplitter (PBS). This allows the density matrices to be reconstructed

via projective measurements [113]. The output of our projective measurement is sent

into fibre couplers and coincidence counts between arms A and B are detected by silicon

avalanche photodetectors and a coincidence counting unit. In this initial study we use large

bandwidth interference filters (800 ± 20 nm) is placed in front of each fibre coupler to cut

out photons of higher and lower frequencies corresponding to unwanted down-conversion

processes and the pump beam. Later we narrow this bandwidth to improve the spectral

quality of the photons, although at the expense of the count rate. Figure 3.9 (b) shows
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the telescope system used to focus the single photons onto the metamaterial and Thorlabs

DCC1545M monochrome CCD for imaging. Here, the count rate was ∼ 4000 counts per

second. The interference filter with large bandwidth was used to allow more counts to

be collected. As mentioned above, we narrow this in the next section to improve the

spectral quality of the photons. The metamaterial sample is translated using an X-Y

translation stage. Figure 3.9 (c) shows an image obtained from the CCD displaying the

sample used with different metamaterial designs (each 100×100 µm). An alignment beam

(785 nm) sent from the fibre coupler back through the system can be seen at one of the

metamaterial designs. The telescope system is designed in such a way that the beam

before and after the lenses (plano-convex, f=25mm) is collimated and therefore the beam

diameter of single photons traversing in the opposite direction will be roughly the same

as that of the alignment beam, which is focused to ∼ 100 µm at the metamaterial surface.

When single-photons are used in the setup the beamsplitter and mirror in figure 3.9 (b)

are flipped down.
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Figure 3.9: Overview of the experiment. (a) Experimental setup. Here, L is a convex lens,
HWP and QWP are a half- and quarter-wave plate, BiBO is a nonlinear crystal, PBS is a
polarising beamsplitter, IF is an interference filter (800 nm and ∆λ = 40 nm) and DA and
DB are avalanche photodetectors. (b) Telescope system for imaging the alignment laser
and its position on different metamaterials. FM is a flip mirror. (c) Image of metamaterials
with the alignment beam on a particular design.

3.4.2 Quantum State probing

The input probe states are encoded experimentally by using a QWP and HWP set at a

particular angle (see encode box in figure 3.9 (a)). The unitary operations of the wave
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plates acting on the polarisation qubit of the single photon in arm B are given by

ÛQWP (q) =
1√
2

i− cos(2q) sin(2q)

sin(2q) i+ cos(2q)

 (3.10)

and

ÛHWP (h) =

 cos(2h) − sin(2h)

− sin(2h) − cos(2h)

 . (3.11)

By choosing the angles correctly [18] we obtain six different polarisation-encoded qubits

|H〉 =

1

0

 , |V 〉 =

0

1

 , |+〉 =
1√
2

1

1

 ,

|−〉 =
1√
2

 1

−1

 , |L〉 =
1√
2

1

i

 , |R〉 =
1√
2

 1

−i


(3.12)

where |H〉, |V 〉, |+〉, |−〉, |L〉 and |R〉 correspond to horizontal, vertical, diagonal, anti-

diagonal, left- and right-circularly polarised single photons, respectively. We send these

probe states through the metamaterial and perform quantum process tomography based

on the state tomography, which was done for six input states as described in detail in

chapter 2.

3.4.3 Results and discussion

We now present our experimental results and compare them with results obtained via the

theory outlined in the previous section. Figure 3.10 shows the results from experimental

probing of horizontal and vertical polarised light via several metamaterials in our setup

with different nanorod dimensions (dimension details are given in the figure caption).

The transmission response for |H〉 and |V 〉 polarisation encoded photons were calculated

using TH = THM
THS

and TV = TVM
TV S

, respectively. Here, THS and THM are the transmission
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probabilities of the state |H〉 through the substrate (no metamaterial) and through the

metamaterial, respectively. Similarly, TV S and TVM are the transmission probabilities of

the state |V 〉 through the substrate and metamaterial, respectively. As can be seen in

figure 3.10 the transmission of the state |V 〉 decreases from 85% to 75% as the nanorod

dimensions vary in the metamaterial (length and thickness fixed, width decreases). On

the other hand, the plasmonic metamaterials transmit ≈ 99 % of the state |H〉 compared

to the bare substrate. In the experimental results in figure 3.10, the metamaterial design

‘P10’ has nanorods with the same dimensions as those used in the theory for figure 3.2.

Considering the finite bandwidth of the single photons, the experimental results are in

good agreement with the average transmission obtained from the theory. Also, the trend

of our results generally agrees with the transmissions obtained by Asano et al. in Ref. [62],

which reported transmissions from 11% to 41% for TV by classical FTIR for metamaterials

with similar nanorod structures, but a different range of dimensions (increasing width)

and thus transmission response. The experiment gave a transmission of 1 for horizontally

polarized photons and 0.7 for vertically polarized photons, as shown in Figure 3.10.

In the theory plot of Figure 3.2 there is a transmission of 1 for horizontally polarized

photons and 0.8 for vertically polarized photons. The inconsistency between the theory

and experimental results can be attributed to various factors, including the spot size

and alignment of the single photons, along with geometric considerations, such as the

background permittivity not completely encompassing the nanorods and consistency of

the fabrication of the nanorods across the metamaterial and spectral bandwidth of the

probing light. Nevertheless, the transmission values tend to correspond.
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Figure 3.10: Transmission coefficients of horizontally (black) and vertically (grey) polarised
single photons (at 810 nm) through different plasmonic metamaterials (nanorods with w
= 39 to 47 nm, l = 110 nm, t = 30 nm) obtained via experiment. The nanorod widths
increase from left to right.

In order to further investigate metamaterial P10 in the quantum regime we probe it

with six polarisation-encoded single photon states: |H〉, |V 〉, |+〉, |−〉, |L〉 and |R〉. The

fidelity F = 〈φ| ρexp |φ〉 and purity P = tr(ρ2exp) [74] were then calculated for the output

states ρexp obtained using quantum state tomography [113]. We use maximum likelihood

estimation and Monte Carlo simulation. Here, |φ〉 is the ideal input quantum state and

the fidelity provides a measure of the closeness of the output state to the ideal input state.

The purity provides a measure of how close the output state is to a pure state. In figures

3.11 to 3.14 we show the real and imaginary parts of the density matrices for four different

probe states (|H〉, |V 〉, |+〉 and |L〉) sent through either the substrate or metamaterial

P10. We obtained a fidelity of 0.960 ± 0.002 and a purity of 0.950 ± 0.007 for the probe

state |H〉 transmitted through the substrate, and a fidelity of 0.97 ± 0.003 and a purity

of 0.956 ± 0.007 for the state |H〉 transmitted through the metamaterial. The fidelity

and purity of all six probe states are given in table 3.1. The data used for reconstructing

the density matrices were raw data obtained from the experiment. One can see in figures

3.11 and 3.12 ((a) and (b)) that the |H〉 and |V 〉 states are transmitted through the
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metamaterial in the same way as the substrate, although with fewer photons detected for

|V 〉. One can also see from figures 3.13 and 3.14 that the vertical component of the state

is reduced slightly when the state is sent through the metamaterial, as expected. This will

be studied in more detail next when we include temperature effects also.

Figure 3.11: Quantum state tomography of probe states sent through the substrate and
metamaterial. Real and imaginary parts of the output state ρexp obtained from the state
|H〉 sent through the substrate and metamaterial.
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Figure 3.12: Quantum state tomography of probe states sent through the substrate and
metamaterial. Real and imaginary parts of the output state ρexp obtained from the state
|V 〉 sent through the substrate and metamaterial.
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Figure 3.13: Quantum state tomography of probe states sent through the substrate and
metamaterial. Real and imaginary parts of the output state ρexp obtained from the state
|+〉 sent through the substrate and metamaterial.
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Figure 3.14: Quantum state tomography of probe states sent through the substrate and
metamaterial. Real and imaginary parts of the output state ρexp obtained from the state
|L〉 sent through the substrate and metamaterial.

Table 3.1: Fidelity and purity for the single-photon probe states. The error bars here and
elsewhere are obtained from a 100 run Monte Carlo simulation which uses the collected
data and adds Poissonian noise on the counts, as this is the main source of noise in
down-conversion experiments.

State Fidelity Purity

Substrate Metamaterial Substrate Metamaterial

|H〉 0.960 ± 0.002 0.970 ± 0.003 0.950 ± 0.007 0.956 ± 0.003

|V 〉 0.960 ± 0.002 0.928 ± 0.003 0.954 ± 0.004 0.925 ± 0.007

|+〉 0.940 ± 0.003 0.960 ± 0.002 0.946 ± 0.006 0.968 ± 0.005

|−〉 0.950 ± 0.003 0.910 ± 0.003 0.953 ± 0.006 0.987 ± 0.007

|R〉 0.924 ± 0.003 0.925 ± 0.003 0.912 ± 0.006 0.954 ± 0.006

|L〉 0.938 ± 0.003 0.929 ± 0.003 0.938 ± 0.002 0.934 ± 0.005
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3.5 Temperature dependence of a plasmonic meta-

material in the quantum regime: Experiment

In this section, we present the experimental results of single photon transmission through

plasmonic metamaterials at different temperatures. We begin this section by presenting

the experimental setup.

3.5.1 Experimental setup

A diagram of the scenario for demonstrating the active control of a metamaterial in the

quantum regime is shown in figure 3.15 with the temperature control unit included. Here

a single-photon (red beam) and an external control laser for heating (white beam) are

incident on the metamaterial. The inset shows the geometry of the nanorods in each unit

cell. In figure 3.15(b) the optical setup used is shown. Here, single photons are again

generated using type-1 SPDC. Pairs of single photons at λ = 810 nm are produced at

angles ±30 when a photon from a pump laser at 405 nm is incident on a nonlinear crystal

[135, 134]. The pump laser (200 mW) is rotated to vertical polarization by a half-wave

plate (HWP) and incident on the crystal (0.5 mm thickness). A single photon from the

pump produces two twin (idler and signal) horizontally polarized photons. One photon

is produced in arm A and the other in arm B. The detection of a single photon in arm

A using a single-photon detector (Excelitas SPCM-AQRH-15) heralds the presence of a

single photon in arm B within an 8-ns coincidence window. A qubit is encoded onto the

single photon in arm B using a quarter-wave plate (QWP) and a HWP. The polarization

states |H〉 and |V 〉 are used as the orthogonal basis states of the qubit as before. This

qubit is then sent through the plasmonic metamaterial, after which the state of the qubit

is measured via a projective measurement using a QWP, a HWP, and a single-photon

detector [113]. A broadband external control laser (Fianium WhiteLase micro) is used to

vary the temperature of the metamaterial by heating it with a range of laser powers.
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In order to quantify the performance of the metamaterial as a quantum channel at

different temperatures, quantum state tomography is carried out on the output states

of four different polarization-encoded qubits {|H〉, |V 〉, |+〉, |L〉} sent through, with the

density matrices reconstructed via projective measurements [113]. The output of a given

projective measurement is sent to a single-photon detector and a coincidence between the

detector in the heralding arm A and the detector in arm B is measured. In order to reduce

the impact of the broadband nature of the photons on the transmission response of the

metamaterial (see eg. Figure 3.1) we reduce the bandwidth of the single photons from

40nm to 10nm, without affecting significantly the photon detection rate. Interference fil-

ters (810 ± 5 nm) are placed in front of each detector to cut out photons of higher and

lower frequencies corresponding to unwanted down-conversion processes and the pump

beam, leading to ∼ 1000 coincidences per second (for |H〉 encoded and |H〉 measured).

The more narrow bandwidth also reduces the possible variance in the transmission of the

metamaterial, as seen in Figure 3.1, giving a more consistent result with respect to the

theory. The density matrices obtained from quantum state tomography of the four probe

states are then used to reconstruct the quantum channel of the metamaterial via quantum

process tomography [74, 136], the details of which are discussed later. The data used for

reconstructing the density matrices were raw data obtained from the experiment. Three

different plasmonic metamaterials were used in this study, each with a specific set of di-

mensions for the gold nanorod unit cells. The samples were fabricated by collaborators

in the group of Prof. Martin Wegener at the Karlsruhe Institute of Technology in Ger-

many. The metamaterials were fabricated on an Indium Tin Oxide (ITO) coated fused

silica substrate by electron-beam lithography. A 5-nm thin layer of ITO was deposited

on a 5×5 mm2 silica substrate by electron-beam evaporation and then a 200-nm-thick

film of polymethylmethacrylate photoresist (MicroChem) was spin coated on top of the

ITO. Using electron beam writing (Raith e-line), the photoresist was patterned and then

developed, leaving a mask. Subsequent gold evaporation and lift-off produced the gold
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Figure 3.15: Overview and experimental setup for demonstrating active control of a meta-
material in the quantum regime. (a) Pictorial representation of one of the metamaterials
used with a single photon (red) and an active control laser beam (white) sent through.
The spot size of the control and single-photon beams are the same in the experiment; how-
ever, the control beam is shown smaller for pictorial purposes. The inset shows a three-
dimensional figure of the nanorods in each unit cell (dimensions considered are given in
the main text). (b) Experimental setup, where a nonlinear BiBO crystal is pumped at 405
nm, producing pairs of photons at 810 nm via spontaneous parametric down-conversion.
One photon is detected at detector DA and heralds the presence of a single photon in the
other arm. Here H is a half-wave plate, Q is a quarter-wave plate, L is a plano-convex lens
(f = 25 mm), PBS is a polarizing beam splitter, IF is an interference filter (λ = 810 nm
and ∆λ = 10 nm), and DA and DB are single-photon detectors.

nanorod antenna arrays for the different metamaterials, each with an area of 100×100

µm2. The nanorods have a period of 200 nm, a thickness of 30 nm, a width between

50 and 70 nm, and a length between 100 and 130 nm. Specific dimensions of a given

metamaterial are provided later. The full 5×5 mm2 metamaterial sample consisting of

an array of metamaterials with different nanorod sizes is placed inside a telescope system

(figure 3.9 (b)) designed in such a way that the beam before and after the (plano-convex)

lenses (f = 25 mm) is collimated and the beam between the lenses is focused to a spot size

with diameter . 100 µm.
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3.5.2 Results and discussion

We now analyze our experimental results in light of the theoretical model described previ-

ously. Here, each of the three metamaterials used has different nanorod dimensions for the

unit cells, as shown in the atomic force microscope (AFM) images in figure 3.17 (a), 3.18

(a) and 3.19 (a). The resolution of the AFM is ∼ 5nm. The general trend in dimensions

is the same as that used in the theoretical model, i.e., the length and width increase when

going from figure 3.17 (a) to figure 3.19 (a). Due to the background dielectric material not

completely encompassing the nanorods, as well as the presence of the ITO bonding layer

and differences in the permittivity of gold, it is not possible to obtain an exact fit of our

theoretical model to the experimental transmission data. However, the general trend seen

in the experimental classical transmission results of figures 3.17 (b), 3.18 (b) and 3.19 (b)

matches, as seen in the theoretical model of figures 3.5 (a) to 3.6 (a) and 3.7 (a) at 300 K,

also taking into account broadening due to the fabrication process. A more refined theory

model is needed here, however this is challenging to develop due to the non-symmetric

nature of the ‘nanorod on substrate’ metamaterial samples, ie. the background dielectric

material not completely encompassing the nanorods. However, this would be a fruitful

direction for further work. The dimensions measured by the AFM are w ' 50 nm and l '

100 nm for figure 3.17 (a), w ' 60 nm and l ' 110 nm for figure 3.18 (a), and w ' 70 nm

and l ' 130 nm for figure 3.19 (a). The thickness of the nanorods is 30 nm. Figure 3.16 (a)

shows the transmission results for these exact dimensions. The difference to the measured

values (seen in Figures 3.17, 3.18 and 3.19) highlights how the basic theory model does

not match the experiment so well. As the AFM values have an accuracy of 5nm and the

theory model is highly sensitive to small changes in the dimensions, as seen in Figure 3.8,

the dimensions used in the theory model in the previous section were chosen to be different

to the AFM values, with the corresponding transmissions shown in Figure 3.16 (b). The

main consideration in deviating from the AFM values was to ensure the wavelength of the

resonance peaks roughly matched. To what extent the geometric asymmetry of the unit
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Figure 3.16: Theory and experiment compared.

cells also plays a role in shifting the resonance is an open question requiring a rigorous

finite element simulation.

In figure 3.17 (c) to 3.19 (c) we show the transmission results of probing the meta-

materials with single photons in the state |V 〉 in arm B as the temperature is increased.

Here the transmission is given by the ratio of heralded detection counts (coincidences)

when the state |V 〉 is sent through the metasurface and counts when it is sent through the

substrate only (no metasurface). It represents the relative probability for a photon in the

state |V 〉 to be transmitted through the metamaterial. The data obtained is normalized

by the same amount of time integration. The temperature is changed by increasing the

power of the control laser in four steps, from 0 to 200 mW, which heats up the metama-

terial. The area illuminated by the laser beam is ∼ 2mm in diameter. The time between

the control laser activation and the start of measurements is 480 s for each temperature;

however, a steady-state response is reached within 240 s (the state at which the transmis-

sion was constant over time). For quantum applications such as entanglement distillation

[62, 137], this response time is practical as it is much shorter than the time scale on

which birefringent fluctuations would occur in a realistic optical fiber quantum network

[138]. The response time could be made shorter, if needed for a given application, using

alternative heating methods [139, 140, 141]. The control laser was placed at an angle to

the normal of the metamaterial to avoid any scattered light reaching the detectors. This
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was carefully monitored throughout the experiment. Control via the laser power gives

five different temperature settings: T0 = 295 K, T1 = 303 K, T2 = 319 K, T3 = 331 K,

and T4 = 347 K, consistent with the range used in the theoretical model. The values are

spaced apart by approximately 10 K and are determined by the power set by the control

laser software. They are measured using a point-probe temperature sensor placed close to

the laser beam on the metasurface sample. Measurements are carried out at the steady

state response time and the error in the values is less than 1 K, consistent with ambient

temperature fluctuations. Due to the small size of each metamaterial array (100×100µm)

it was not possible to measure the spatial homogeneity of the temperature, however the

laser beam has an area much larger than the array and so it covers the entire array. Thus

the temperature is expected to be roughly constant over the metamaterial.

At T = T0, one can see in figures 3.17 (c) to 3.19 (c) that the photon transmission slightly

deviates from that of the classical transmission measured using vertically polarized light

at λ = 810 nm, as shown in figures 3.17 (b) to 3.19 (b). This deviation can be attributed

to the spot size of the beam; in the classical case the spot is smaller and easier to align

on the metasurface using a CCD camera, whereas in the single-photon case the spot

size is comparable to the metasurface and alignment is achieved by optimizing single-

photon detection counts. As a result there is some nonideal overlap of the beam and

the metamaterial. Regardless of this, the trend of the single-photon transmission at T0

matches that of the classical case as the nanorod dimensions increase. Moreover, as the

temperature increases one can see the effect on the transmission of |V 〉 states for the three

metamaterials considered. The largest change is seen for the first metamaterial, shown

in figure. 3.17 (c), where the transmission changes from 0.48 to 0.32, corresponding to a

percentage change of 33%. The percentage changes for the other two metamaterials are

14% and 5%. We also measured the transmission of |H〉 states through the metamaterials

as the temperature was changed and found that the transmission remained roughly the

same as when the states were sent through the substrate only. The exact transmission
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values of the |H〉 state, as well as those of the additional probe states |+〉 and |L〉, are

combined with the values obtained for the |V 〉 state to obtain a full characterization of

the metamaterial as a variable single-qubit quantum channel. The transmission values

are part of a larger set of projective measurements which we use for quantum process

tomography [136, 74] at the five different temperatures and discussed in detail next.
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Figure 3.17: Temperature-dependent transmission response of a metamaterial (experi-
ment). (a) Atomic force microscope image. See the main text for dimension details. (b)
Classical transmission spectra of the metamaterial at T0 for horizontal (squares) and ver-
tical (circles) polarized light. The spectra was measured using frustrated total internal
reflection (FTIR). (c) Transmission probabilities in the quantum regime for single qubits
encoded into the vertical polarization of single photons as |V 〉 and sent through the meta-
materials as the temperature is changed. The five different temperature settings are T0 =
295 K, T1 = 303 K, T2 = 319 K, T3 = 331 K, and T4 = 347 K, corresponding to values
consistent with the range used in the theoretical model. The values are determined by the
laser power used and are spaced apart by approximately 10 K
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Figure 3.18: Temperature-dependent transmission response of a metamaterial (experi-
ment). (a) Atomic force microscope image. See the main text for dimension details. (b)
Classical transmission spectra via FTIR of the metamaterial at T0 for horizontal (squares)
and vertical (circles) polarized light. (c) Transmission probabilities in the quantum regime
for single qubits encoded into the vertical polarization of single photons as |V 〉 and sent
through the metamaterials as the temperature is changed. The five different temperature
settings are T0 = 295 K, T1 = 303 K, T2 = 319 K, T3 = 331 K, and T4 = 347 K, corre-
sponding to values consistent with the range used in the theoretical model. The values
are determined by the laser power used and are spaced apart by approximately 10 K
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Figure 3.19: Temperature-dependent transmission response of a metamaterial (experi-
ment). (a) Atomic force microscope image. See the main text for dimension details. (b)
Classical transmission spectra via FTIR of the metamaterial at T0 for horizontal (squares)
and vertical (circles) polarized light. (c) Transmission probabilities in the quantum regime
for single qubits encoded into the vertical polarization of single photons as |V 〉 and sent
through the metamaterials as the temperature is changed. The five different temperature
settings are T0 = 295 K, T1 = 303 K, T2 = 319 K, T3 = 331 K, and T4 = 347 K, corre-
sponding to values consistent with the range used in the theoretical model. The values
are determined by the laser power used and are spaced apart by approximately 10 K

The four probe states sent through the metamaterial in the quantum process tomogra-

phy are |H〉, |V 〉, |+〉, and |L〉. From projective measurements on the outputs of these

states in the bases |H/V 〉, |+/−〉, and |R/L〉 we reconstructed their density matrices using

quantum state tomography [113]. Using the density matrices, we then obtained the quan-

tum process matrices, or χ matrices, for the three different metamaterials in our investiga-
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tion [136] (details are given in chapter 2). The polarization response of the metamaterials

is such that they act as partial polarizers and are well represented by a single Kraus oper-

ator K0 = |H〉 〈H| +
√
TV |V 〉 〈V | corresponding to a non-trace-preserving channel [62],

i.e., ρ → K0ρK
†
0, where ρ is the qubit of the input single-photon state in the polarization

basis. This channel is equivalent to the general quantum channel ρ →
∑

ij χijEiρE
†
j ,

where the single-qubit Pauli operators Ei = I, X, Y , and Z provide a complete basis for

the Hilbert space and the elements of the χ matrix are set to values that allow the general

channel to completely match the action of K0 [62].

The χmatrix obtained for the first metamaterial at T0 is shown in figure 3.20 (a) and 3.20

(c). Figure 3.20 (a) shows the real part and 3.20 (c) shows the imaginary part. The real and

imaginary parts of an ideal partial polarizer matrix χid with TV = 0.476 are shown in 3.20

(b) and 3.20 (d), respectively. The value of TV has been found using the process fidelity FP

(TV ) = tr(
√√

χχid
√
χ)2/tr(χ)tr(χid), which quantifies how close the experimental channel

is to an ideal channel of a partial polarizer. We find a maximum of FP (TV ) = 0.935 ±

0.008 at TV = 0.476 0.008, which shows that the metamaterial represents well a partial

polarizer for single photons with a TV value consistent with the single-photon transmission

measured previously [see figure 3.17 (c)]. The χ matrix for the first metamaterial at T4 is

shown in figures 3.21 (a) and 3.21 (c)). Figure (a) shows the real part and figure (c) shows

the imaginary part. The real and imaginary parts of an ideal partial polarizer matrix with

TV = 0.324 are shown in 3.21 (f) and 3.21 (h). The value of TV has again been found by

maximizing the process fidelity, with a value of FP = 0.897 ± 0.005. The process fidelities

and corresponding TV values extracted for all three metamaterials at all temperatures are

given in Table 3.2. All process fidelities are above 89%, with TV consistent with the values

measured previously [see figures 3.17 (c) to 3.19 (c)], showing that the metamaterials act as

variable partial polarizers in the quantum regime. As a result, they can be used to induce

a temperature-controlled collective polarization-dependent loss at the single-photon level

for quantum information tasks, such as entanglement distillation [62].
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Figure 3.20: Quantum process tomography χ matrices for the first metamaterial at the
reference temperature (T0). (a) and (c) Real and imaginary parts of the experimental χ
matrix at T0. (b) and (d) Real and imaginary parts of an ideal partial polarizer χ matrix
with TV = 0.476.
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Figure 3.21: Quantum process tomography χ matrices for the first metamaterial at the
final temperature (T4). (a) and (c) Real and imaginary parts of the experimental χ matrix
at T4. (b) and (d) Real and imaginary parts of an ideal partial polarizer χ matrix with
TV = 0.476.

Table 3.2: Process fidelities for the three metamaterials investigated as the temperature is
changed, as well as horizontal and vertical transmission probabilities TH and TV extracted
from maximizing the process fidelity, respectively. The error bars here and elsewhere are
obtained from a 100 run Monte Carlo simulation which uses the collected data and adds
Poissonian noise on the counts, as this is the main source of noise in down-conversion
experiments.

M1 M2 M3

Temp FP TH TV FP TH TV FP TH TV

T0 0.935 ± 0.007 1 0.476 ± 0.008 0.909 ± 0.012 1 0.560 ± 0.009 0.895 ± 0.009 1 0.634 ± 0.008

T1 0.899 ± 0.006 1 0.433 ± 0.008 0.935 ± 0.006 1 0.540 ± 0.009 0.922 ± 0.007 1 0.624 ± 0.011

T2 0.899 ± 0.006 1 0.397 ± 0.007 0.934 ± 0.008 1 0.513 ± 0.009 0.942 ± 0.009 1 0.610 ± 0.009

T3 0.922 ± 0.005 1 0.362 ± 0.007 0.948 ± 0.008 1 0.491 ± 0.008 0.970 ± 0.006 1 0.602 ± 0.010

T4 0.897 ± 0.005 1 0.324 ± 0.006 0.912 ± 0.006 1 0.481 ± 0.008 0.939 ± 0.009 1 0.604 ± 0.010



Chapter 4

Markovian and non-Markovian

quantum channels

4.1 Introduction

The study of open quantum systems is key to understanding fundamental issues in quan-

tum physics, as well as for developing technological applications, such as quantum com-

munication and computing. Realistic quantum systems interact and exchange information

with their environment. In most cases, such an interaction results in the loss of informa-

tion from the system due to its weak coupling to the environment. This information loss

is called decoherence. Thus, quantum decoherence is the loss of quantum information (co-

herence). The term decoherence was first coined by German physicist H. D. Zeh, in 1970

[142], and since 1980 the field has grown rapidly with a large interest from researchers

involved in quantum computing and quantum information processing.

A quantum system combined with its environment evolves with a unitary evolution.

The concept of decoherence and the flow of information between a quantum system and

its environment has made it possible to study some important and interesting quantum

dynamics. For example, the control of entanglement and quantum phases in many-body

86
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systems [143, 144], driving quantum computation by dissipation [145], controlling the

transition from Markovian dynamics to a regime with quantum memory effects (non-

Markovian) [146], and to create quantum system simulators [147]. However, the concept

of decoherence has almost always been treated within the framework of Markovianity

(i.e Markov process) and non-Markovianity. A Markovian process is a stochastic process

whereby the conditional probability of the future state depends only on the present state

and is independent of any state that preceded it. A Markovian process is sometimes called

a memoryless quantum channel or process. On the other hand, a non-Markovian process

is a process that does not demonstrate the Markov property. This type of process is

sometimes called a memory process. Markovian and non-Markovian processes are usually

described based on quantum dynamical maps, whereby system-environment interactions

(described by unitary transformations) are properly studied. Figure 4.1 shows a simple

representation of a system-environment interaction. The time-dependent unitary trans-

formation describing such an interaction from initial time t0 to final time t can be written

as

ρS(t) = trE[U(t, t0)(ρS(t0)⊗ ρE(t0))U(t, t0)
†], (4.1)

where U(t, t0) is the unitary operation for the system-environment dynamics and (ρS(t0)⊗

ρE(t0)) is the assumed uncorrelated system and environment initially. The dynamics of

the system alone, excluding the environment can be written using a superoperator Λ(t, t0),

known as a system propagator

Λ(t, t0)(ρS(t0)) = trE[U(t, t0)(ρS(t0)⊗ ρE(t0))U(t, t0)
†] = ρS(t) (4.2)

where Λ(t, t0) acts only on the system ρS(t0) resulting in an open system, ρS(t). For the

evolution of the system to be physical, the system propagator (i.e Λ(t, t0)) must be trace-

preserving and completely positive. The system propagator can also be described using

the Kraus representation
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Figure 4.1: Representation of a system-environment time-dependent unitary transforma-
tion. The entire system is ’closed’, but the dynamics of the system alone can be described
using open quantum system techniques.

Λ(ρS) =
∑
i

AiρSA
†
i =

∑
m,n

χmnEmρSE
†
n, (4.3)

where
∑

iAiA
†
i = 1S and χmn is the normal χ matrix. If Eq. 4.3 is satisfied, then Λ is

a quantum channel. In this chapter we will discuss the theory of Markovian and non-

Markovian processes and how these processes can be realised experimentally. We also

discuss how to construct a non-Markovian process from the summation of two Markovian

processes (that is, two semi-group dynamical maps), and vice-versa. The chapter ends with

the experimental realisation of a Markovian process from the sum of two non-Markovian

processes, and vice-versa.

4.2 Markovian Quantum channels

Markovianity has attracted a lot of attention recently due to its applications in quantum

information processing. In classical stochastic processes, the theory of Markovianity is

fully developed but in quantum evolution, still remains vague and not well understood.

Consider the following open system dynamics having the following system propagators
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of the form

Λ(t2, t0) = Λ(t2, t1)Λ(t1, t0) with Λ(t0, t0) = 1 for all t2 ≥ t1 ≥ t0 (4.4)

If Eq. 4.4 is satisfied by any time parameters, then the corresponding family of opera-

tors/propagators is called an evolution family (EF). Thus an EF of quantum channels is

an EF for which Λ(tf , ti) is a quantum channel for all tf ≥ ti ≥ 0. The family of the system

propagators are called a one-parameter semigroup (OPSG) if the following conditions are

met

Λ(r)Λ(s) = Λ(r + s) for all r, s ≥ 0, (4.5)

where Λ(0) = 1, r and s represent time differences. Thus, a OPSG of quantum channels

is then a OPSG for which Λ(s) is a quantum channel for all s ≥ 0. Under very general

mathematical conditions such a semigroup, if it is uniformly continuous (t → Λ(t) is

continuous), has a generator L which allows us to write

Λ(r) = eLr, (4.6)

where L is a time-independent generator. Eq. 4.6 satisfies the semigroup law

Λ(r)Λ(s) = Λ(r + s) = e(r+s)L. (4.7)

From Eq. 4.6, the system can be reduced to

dρs(t)

dt
= L(ρs(t)). (4.8)

L(ρs(t)) is a generator of a OPSG of quantum channels which obeys the Gorini-Kossakowski-
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Sudarshan-Lindblad (GKSL) master equation of the form

L(ρs(t)) = −i[H, ρs(t)] +
∑
k

γk[Lkρs(t)L
†
k −

1

2
{L†kLk, ρs(t)}+], (4.9)

where H is time-independent and Hermitian, γk is a positive number, and Lk are the

Lindblad operators. The evolution of an open quantum system according to Eq. 4.9 is

known as Markovian semi-group dynamics. The generator L may also be time-dependent

for a more general case for an EF of quantum channels if it is denoted by

L(t)(ρs(t)) = −i[H(t), ρs(t)] +
∑
k

γk(t)[Lk(t)ρs(t)L
†
k(t)−

1

2
{L†k(t)Lk(t), ρs(t)}+], (4.10)

with Λ(t, s) = e
∫ t
s L(t

′)dt′ as a general EF channel and not a OPSG channel. Eq. 4.10 is a

time-dependent master equation and follows from the same Markovian approximations as

the time-independent case, when derived from a microscopic model.

4.2.1 Non-Markovian process from two Markovian processes

We discuss in this section how a non-Markovian process can be obtained from two Marko-

vian processes. Consider the following dynamical map for a single qubit

Λt =
1

2
(Λ

(x)
t + Λ

(y)
t ), (4.11)

where we use a subscript t for time for ease of notation and Λ
(k)
t = eLkt, with Lk(ρ) =

c(σkρσk − ρ), where k = x, y. The parameter c is a rate that describes the time scale on

which the dynamics take place. We then have

Λ
(k)
t (ρ) =

1

2
(1 + e−2ct)ρ+

1

2
(1− e−2ct)σkρσk, (4.12)
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and so,

Λt(ρ) =
1

2
(1 + e−2ct)ρ+

1

4
(1− e−2ct)(σxρσx + σyρσy) (4.13)

Eq. 4.13 is a convex sum of two Markovian semigroup dynamics and because Markovian

and non-Markovian channels do not form a convex set it may no longer be possible to

write Λt = eLt for some time-independent L. In general, we can write Λt as

Λt = e
∫ t
0 Lτdτ , (4.14)

with Lt(ρ) =
∑

j γj(t)Lj(ρ). In this case, we have

Lt(ρ) =
∑

k=x,y,z

γk(t)(σkρσk − ρ), (4.15)

with γx = γy = c
2

and γz = - c
2
tanh(ct). Now, if we consider a single-qubit in the Bloch

sphere denoted by ρ = 1
2
(I+

∑
x,y,z xkσk), we can then have

Λt(ρ) =
1

2
(I+

∑
k=x,y,z

λk(t)xkσk) (4.16a)

Λ
(x)
t (ρ) =

1

2
(I+

∑
k=x,y,z

υk(t)xkσk) (4.16b)

Λ
(y)
t (ρ) =

1

2
(I+

∑
k=x,y,z

µk(t)xkσk) (4.16c)

where λx(t) = 1
2
(1+e−2ct), υx(t) = 1, µx(t) = e−2ct, λy(t) = 1

2
(1+e−2ct), υy(t) = e−2ct, µy(t)

= e−2ct, λz(t) = e−2ct, υz(t) = e−2ct and µz = e−2ct. Figure 4.2 shows the time-dependent

probability p(t) = 1
2
(1 + e−2ct) for applying σx and σy at different times for c = 1

2
.
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Figure 4.2: Time dependent probability for application of σx and σy in Eq. 4.12. The
points at various times represent possible times at which the channels could be realized
for.

4.2.2 Determining Markovianity

While the combined map can be written in the form given in Eq. 4.14, this form includes

both Markovian and non-Markovian dynamics. The evolution of a dynamical map Λt is

Markovian if and only if it can be denoted as

Λt = Vt,sΛs, t ≥ s (4.17)

where Vt,s is a completely positive (CP) operator. The dynamics of Eq. 4.17 is completely

positive divisible and we have Vt,s = ΛtΛ
−1
s . One may decide to check if it is a CP map

directly by calculating Λ−1s for a given Λs and multiplying it by Λt to get Vt,s. In general,

this is challenging. As a result, a method based on a transfer matrix approach is more

helpful [148]. We start by constructing a transfer matrix F that is isomorphic with a

dynamical map Λt

Fα,β(t) = tr(G†αΛt(Gβ)), (4.18)
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where {Gα} is a set of n orthonormal operators with n = 2 for a qubit (for example, the

pauli operators including I). From Eq. 4.18, we then have

Λt(ρ) =
n2∑

α,β=1

Fα,β(t)Gαtr(G
†
βρ). (4.19)

Thus, if we choose unit matrices Gα = |k〉 〈`| with α = (k, `), then we can relate F to the

Choi matrix W as

W (t) =
1

n

n2∑
α,β=1

Fα,β(t)Gβ ⊗Gα, (4.20)

where W (t) = (I ⊗ Λt)P+), with P+ = |ψ+〉 〈ψ+| and |ψ+〉 = 1√
n

∑n−1
i=0 |i〉 ⊗ |i〉. The

dynamical map Λt is completely positive and trace preserving (CPTP) if and only if the

corresponding Choi matrix W (t) is positive and tr(W (t)) = 1. While, one can simply use

Λt to get W (t) for a single map and check CPTP, our interest is in linking two maps Λt

and Λs via the propagator Vt,s and checking if Λt is Markovian or non-Markovian via Eq.

4.17. In light of this, for two maps ΛA and ΛB, the transfer matrices can be multiplied to

get the total transfer matrix so that

F (t) = F (t, s)F (s) → F (t, s) = F (t)F−1(s), (4.21)

where F (t, s) corresponds to ΛA and F (s) corresponds to ΛB. The transfer matrix F (t, s)

is associated with the propagator Vt,s and if it yields a positive Choi matrix W (t, s) for all

t ≥s, then Λt is Markovian (that is, Vt,s is CP and therefore Λt is CP-divisible). To check

for positivity of W (t, s) it is enough to calculate its eigenvalues. Finding F−1(s), F (t) and

therefore F (t, s), then obtaining W (t, s) and checking positivity is easier than finding Λ−1s

and checking Vt,s for CP. If F (s)−1 does not exist, then the map is immediately identified as

indivisible and therefore non-Markovian. The above criteria can be applied to the example

given in the previous section. We will discuss this in more detail in the next section and

shows that the combination of two Markovian channels leads to a non-Markovian channel.



Chapter 4. Markovian and non-Markovian quantum channels 94

4.3 non-Markovian quantum channels

In general, non-Markovianity has been broadly defined if and only if the dynamical map Λt

is indivisible [149], or if there is a form of back-flow of information from the environment

to the system, leading to some form of memory effect [150]. For example, if the evolution

of the quantum system evolves via an EF that is not an EF of quantum channels, then

we can call the EFs indivisible and they may lead to memory effects. An EF of a system

propagator is indivisible if there exist some tf ≥ ti ≥ 0 for which Λ(tf , ti) is not a quantum

channel. It is important to note that, if an indivisible EF is not completely positive then

it is not physical.

4.3.1 Markovian process from two non-Markovian process

In a similar fashion to getting a non-Markovian process from two Markovian processes,

we can also sum up two non-Markovian processes to give a Markovian process.

To get a Markovian process from the sum of two non-Markovian processes, we consider

the following channel

Λt = pΛ1
t + (1− p)Λ2

t (4.22)

where Λ1
t (ρ) = p1(t)ρ + [1 − p1(t)]σxρσx and Λ2

t (ρ) = p2(t)ρ + [1 − p2(t)]σxρσx are non-

Markovian channels with time-dependent probabilities p given by

p1(t) =
3

2
[
1

2
(1 + e−t)− 1

3
cos2(t)] (4.23)

p2(t) = cos2(t). (4.24)

Using the above equations, we can then write Eq. 4.22 as

Λt =
1

2
(1 + e−t)ρ+

1

2
(1− e−t)σxρσx (4.25)
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Figure 4.3: Time-dependent probabilities p1 and p2.

where p = 2
3
. Λt(ρ) is a typical damping channel and Markovian for p=2/3. Figure

4.3 shows the time-dependent probabilities p1 and p2.

4.4 Experimental setup/procedure

Figure 4.4 (a) shows the type-1 SPDC source [134, 135] used in the experiment. A pump

laser at 405 nm is rotated to vertical polarisation by a half-wave plate (HWP). The pump

beam is then sent through a non-linear BiBO crystal, which produces two ‘twin’ (idler

and signal) photons polarised horizontally at a lower frequency (wavelength 810 nm). One

photon is produced in arm A and the other in arm B. The optical axis of the BiBO is cut

such that the two photons emerge at 30 from the initial pump direction. A single photon

in arm A is used to herald the presence of another single photon in arm B.

A Mach-Zehnder interferometer was then constructed and placed in arm B of the SPDC

source, as shown in figure 4.4 (a) in order to create two channels. Here, the top arm of

the interferometer is called the top channel while the bottom arm of the interferometer is

called the bottom channel. A qubit is encoded into the single-photon in arm B using a

quarter-wave plate (QWP) and a half-wave plate (HWP) before the interferometer. Here,

the polarisation states |H〉 and |V 〉 are used as the orthogonal basis states of the qubit.

Note that the interferometer was not set up to interfere the two channels, but simply
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combine them. This means that the two channels are taken together as a probabilistic

summation. Thus, entangled states are not generated. Eq. 4.22 shows the theory of the

summation of the two channels. The p values are implemented by varying the occurrence

of waveplates in the top and bottom channels. The operation 1 or σx (1 or σy) for the top

(bottom) channel is carried out using the waveplates set at the angles shown in Figure 4.4.

Note that here only the half waveplate needs to be rotated to carry out the two different

operations. Thus, the half wave plates are put in automatic wave plate rotators. The

relative occurrence of 1 or σx (1 or σy) over a total of 100 half waveplate settings is fixed

by the value of p. For instance, if p=0.5 then there is an equal chance of 1 or σx being

implemented during the 100 settings. State tomography is carried out during the time

when the waveplate rotators have stopped rotating - which we call the dwell time. For the

case of the joint channel, where both the top and bottom channels are combined, the wave

plate rotators operate independently, but the dwell times are made to coincide so that the

collection of counts is done equally via both channels. The state tomographies for a fixed

value of p for all the probe states are then combined, so that the chi matrix for a given p

can be reconstructed. Probe states |H〉 , |V 〉 , |+〉 and |L〉 are encoded and sent through

the top, bottom and joint channels. For the case of realising a non-Markovian process

from two Markovian process, the relative occurrence (determined by p) of 1 and σx for

the top channel and 1 and σy for the bottom channel (see section 4.2.1) is achieved via

the rotation of waveplates in either channel. For the case of realising a Markovian process

from two non-Markovian process, 1 and σx are used on both the top and bottom channels

(see section 4.3.1). The top channel consists of a QWP, HWP and QWP arranged in

series as shown in figure 4.4 b (i). Figure 4.4 b (ii) shows the waveplates angles used for

the 1 and σx operations. The bottom channel has a QWP, QWP and HWP arranged in

series as shown in figure 4.4 c (i) and their corresponding waveplate rotation angles in

figure 4.4 c (ii). For each probe state sent through, state tomography is carried out at the

measurement stage. The state tomographies are then combined to obtain the χ matrix
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for the top, bottom and joint channels for a given p. The p values were implemented by

automated wave plates placed in both channels. The automated waveplates were rotated

and the p values were taking only during dwell times. The quantum process matrices

for the top, bottom, and joint channels were obtained via process tomography and we

obtained random set of data. The raw data were combined at the interferometer output

before quantum process estimation. A list of 100 χ matrices are obtained for each channel

and each p.

For a given channel, the χ matrices for two different time pairs (p values p(s) and p(t))

are used to obtain the Choi matrices W (t, s) for the channel linking the two times s and

t. All permutations of the χ’s are used, leading to 10000 Choi matrices for a given time

pair. From the Choi matrices, the distribution of the lowest eigenvalue is obtained, and

the mean and standard deviation of these distributions is extracted.
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Figure 4.4: Overview and experimental setup for realising Markovian and non-Markovian
channels. Experimental setup, where a nonlinear BiBO crystal is pumped at 405 nm,
producing pairs of photons at 810 nm via spontaneous parametric down-conversion. One
photon is detected at detector DA and heralds the presence of a single photon in the other
arm. Here H is a half-wave plate, Q is a quarter-wave plate, PBS is a polarizing beam
splitter, BS is a beam splitter, ND is neutral density filter, IF is an interference filter (λ
= 810 nm and ∆λ = 10 nm), and DA and DB are single-photon detectors. (b) shows the
top channel waveplates and angles settings and (c) shows the bottom channel waveplates
and angles settings.

Expected behaviour

Figure 4.5 shows the expected behaviour of the eigenvalues of the Choi matrices for times

s to t, for when t > s for the top and bottom channels. It can be seen from the figure

that the eigenvalues of the Choi matrices with a smaller value of s have a longer tail.
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All eigenvalues are non-negative, indicating Markovian channels. Figure 4.6 shows the

expected behaviour for the joint channels. Here, the maximum negative value becomes

more negative for larger s. As there is a negative eigenvalue, this indicates the channel is

non-Markovian.

Figure 4.5: Expected behaviour of individual channels: top or bottom (Markovian)

Figure 4.6: Expected behaviour of the joint channel (non-Markovian). Similar behaviour
for other starting times s with the maximum negative value becoming more negative for
larger s.

For the case of a Markovian process from two non-Markovian processes, the expected

behaviour of lowest eigenvalues for the example times s = 0.6 and t = 1.2 are -0.14
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and -0.52, respectively for individual channels. Other times give similar results, with the

eigenvalues of the joint channel being non-negative.

4.4.1 Results and discussion

(i) non-Markovian process from two Markovian processes

Quantum process tomography was performed for five different times (0.5, 0.6, 0.75, 2,

2.25). Table 4.1 shows the process fidelity for the top, bottom and joint channels for the

various times. We obtained high process fidelities at all times. Figures 4.7 and 4.8 show

the eigenvalues of the Choi matrices for the top, bottom and joint channels for times s =

0.5 and t = 0.75. Similar to the distribution of the lowest eigenvalue, the distributions of

all the eigenvalues are skewed towards either higher or lower values (not shown) and not

Gaussian for the individual channels (i.e top and bottom channels). For the top channel,

we obtained a lowest mean eigenvalue of -0.011 ± 0.004 from the experiment and a zero

value from theory. For the bottom channel, we obtained a lowest mean eigenvalue of -0.016

± 0.007 from experiment and zero value from theory. For the joint channel we obtained

a lowest mean eigenvalue of -0.024 ± 0.005 from the experiment and -0.014 from theory.

The times 0.5 and 0.75 were chosen because this is near the start of the p(t) curve with a

large gradient.

Table 4.1: Process fidelity of the channels for different times for the top, bottom and joint
channels.

Time Top channel Bottom channel Joint channels
0.5 0.95 ± 0.01 0.91 ± 0.01 0.95 ± 0.01
0.6 0.95 ± 0.01 0.92 ± 0.01 0.95 ± 0.01

0.75 0.94 ± 0.01 0.92 ± 0.01 0.96 ± 0.01
2 0.95 ± 0.01 0.93 ± 0.01 0.98 ± 0.01

2.25 0.95 ± 0.01 0.94 ± 0.01 0.98 ± 0.01

Figures 4.9 and 4.10 show the eigenvalues of the Choi matrices for the top, bottom and

joint channels for times s = 2 and t = 2.25. For the top channel, we obtained a lowest
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mean eigenvalue of -0.042 ± 0.018 from the experiment and a zero value from theory.

For the bottom channel we obtained a lowest mean eigenvalue of -0.024 ± 0.011 from the

experiment and a zero value from theory. For the joint channel we obtained mean a lowest

mean eigenvalue of -0.058 ± 0.020 from the experiment and -0.042 from theory. The times

2 and 2.25 were chosen as this is where the p(t) curve has a smaller gradient and doesn’t

change much.

We note that the lowest eigenvalues obtained here for the individual channels from the

experiment are not zero within the standard deviation as is expected for a Markovian

channel. To further understand this discrepancy, we decided to check the mean eigenval-

ues and standard deviations for ideal photon counts with Poissonian fluctuations (if our

experiment was perfect). The mean eigenvalues obtained agree with the ones we obtained

from the experiment. For example, for s = 0.5 and t = 0.75, we obtained a lowest mean

eigenvalue of -0.009 ± 0.007 for the top and bottom channels, and -0.015 ± 0.007 for the

joint channel as shown in figure 4.11 and figure 4.12. Thus, even if we had an ideal experi-

ment, we would not see a lowest eigenvalue with mean of zero and a Gaussian distribution

for the individual channels. Therefore, from the above observation, if the lowest eigenvalue

distribution is close enough to zero, with a similar shape to the ideal case, it could be taken

as an indication that the individual channels are approximately Markovian. For the joint

channel, the mean eigenvalue was clearly negative, which confirms it is non-Markovian.
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Figure 4.7: Individual channels for times s = 0.5 and t = 0.75

Figure 4.8: Joint channel for times s = 0.5 and t = 0.75

Figure 4.9: Individual channels for times s = 2 and t = 2.25
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Figure 4.10: Joint channel for times s = 2 and t = 2.25

Figure 4.11: Using ideal counts for top and bottom channels for times s = 0.5 and t =
0.75

Figure 4.12: Using ideal counts for the joint channel for times s = 0.5 and t = 0.75
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Figure 4.13: Top and bottom channels for time-distribution for s = 0.6 and t = 1.2

(ii) Markovian process from two non-Markovian processes

In a similar fashion, we performed quantum process tomography for this case at two

different times, s = 0.6 and t = 1.2, and obtained high process fidelities. Table 4.2 shows

the process fidelities for the top, bottom and joint channels for the two times. Figures 4.13

and 4.14 show the eigenvalues of the Choi matrices for the top, bottom and joint channels

for s = 0.6 and t = 1.2. For the top channel, we obtained a lowest mean eigenvalue of

-0.137 ± 0.018 from the experiment and -0.139 from theory. For the bottom channel,

we obtained a lowest mean eigenvalue of -0.487 ± 0.032 from the experiment and -0.517

from theory. For the joint channel we obtained a lowest mean eigenvalue of -0.048 ±

0.009 from the experiment and zero from theory. Clearly, the top and bottom channels

are non-Markovian with negative lowest eigenvalues, but a similar effect to that in the

previous section is seen again, but this time it is the joint channel where the shape of the

distribution is skewed for the lowest eigenvalue. For the joint channel, the eigenvalue is

negative but, very close to zero.
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Figure 4.14: Both channels combined for times s = 0.6 to t = 1.2

Figure 4.15: Using Ideal counts for top and bottom channels for times s = 0.5 to t = 0.75

Just as in the previous section, we checked what eigenvalue distribution ideal photon

counts would give. The ideal photon counts appear to agree with what we obtained from

the experiment, as shown in figures 4.15 and 4.16. Thus, as already noted previously,

even if we had an ideal experiment we would not see a lowest eigenvalue with mean of

zero and a Gaussian distribution for the joint channel. As before, one may also consider

that if the eigenvalue distribution is close enough to zero and has a similar shape to the

ideal case, it could be taken as approximately Markovian. Further work is needed to fine

tune the method of using eigenvalues of the Choi matrices as an indicator of Markovian

or non-Markovian nature.
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Figure 4.16: Using Ideal counts for both channels combined for times s = 0.6 to t = 1.2

Table 4.2: Process fidelity at different time-distribution for top, bottom and joint channels.

Time Top channel Bottom channel Joint channels
0.6 0.95 ± 0.01 0.98 ± 0.01 0.89 ± 0.02
1.2 0.95 ± 0.01 0.99 ± 0.01 0.89 ± 0.01



Chapter 5

Conclusion

This thesis looked at ways to experimentally realise different types of quantum channels

with the possibility of using them for quantum information processing tasks. We did this

by probing and characterising different quantum channels in plasmonic metamaterials

and standard optical materials. The fundamental basic tools and techniques needed in

the quantum regime to probe quantum channels were discussed at the start in chapter

two.

In chapter three, we demonstrated the active control of a plasmonic metamaterial for

quantum state engineering. In this chapter, we investigated the active control of a plas-

monic metamaterial in the quantum regime via its thermal response. Metamaterials with

unit cells made from gold nanorods were probed with polarisation qubits encoded into sin-

gle photons. We experimentally characterised the plasmonic metamaterial in the quantum

regime and showed that the metamaterial behaves like a partial polariser, transmitting

the horizontally polarised component of single photons undisturbed and blocking part of

the vertically polarised component. The experimental results are in agreement with the

theory. The other metamaterials studied showed polarisation dependence for vertically

polarised photons according to the dimensions of the nanorods used as unit cells. The

transmission of horizontally polarised photons was essentially constant for all metamateri-

107
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als. Using an external laser, we controlled the temperature of the nanorods and substrate.

We then carried out quantum process tomography, characterizing the metamaterials as

variable quantum channels. It was found that the overall polarization response of the

metamaterials can be tuned by up to 33% for particular nanorod dimensions. We used a

theoretical model to describe the thermal response of the metamaterials and found that

our experimental results matched the predicted behavior well. Our work goes beyond

previous studies of simple passive plasmonic systems in the quantum regime and shows

that external control of plasmonic elements provides variable metamaterials that can be

used for quantum state engineering tasks.

In chapter four, we experimentally probed quantum channels in bulk optical systems.

We realised a non-Markovian quantum process from the sum of two Markovian quantum

processes and also the reverse of this by obtaining a Markovian process from the sum of two

non-Markovian processes. We reported high process fidelities for all the quantum channels

observed. For the first channel (i.e the obtaining a non-Markovian process from the sum

of two Markovian processes), we reported the eigenvalues of the Choi matrices for different

times (0.5, 0.6, 0.75, 2, 2.25). The distributions of the eigenvalues were skewed towards

either higher or lower values and not Gaussian. For the second channel (i.e obtaining a

Markovian process from the sum of two non-Markovian processes), two different times (0.6

and 1.2) were studied. Again, we found the distributions were skewed and not Gaussian.

However, on inspection of the ideal case, there appeared to be similarities between it and

the experiment. Further work is needed to understand why the lowest eigenvalues are not

at their expected values in the ideal and experimental cases.

Future work and outlook

We are looking at other degrees of freedom of photons for light control using plasmonic

metamaterials. We are currently probing orbital angular momentum of light in the quan-
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tum regime using a metamaterial. This work is important as it will allow unbounded

quantum information transfer, and with the aim of integrating this on-chip device in a

plasmonic waveguide. Second, further work is needed to experimentally investigate the

propagator method for Markovian and non-Markovian processes in order to understand

why the lowest eigenvalues are not at their expected values in the ideal and experimental

cases. For example, in the results reported in this thesis, we saw that if the expected

channel is Markovian with a zero eigenvalue as the lowest, then the propagator method

employed here does not work well. To be more precise, if the expected channel is Marko-

vian and has 2 degenerate eigenvalues that are zero, then one is always made more positive

at the expense of the other, which is made more negative. Thus, it is likely that a Marko-

vian channel with only 1 zero eigenvalue (or all positive eigenvalues) would not have this

problem.
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