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Abstract

In recent years the demand for a more accurate description of real life processes and advances in experimental
techniques have resulted in construction of very complex mathematical models, consisting of tens, hundreds,
if not thousands, of highly coupled differential equations. The sheer size and complexity of such models
often preclude any robust, theoretical or numerical, analysis of them. Fortunately, often such models describe
phenomena occurring on vastly different time or size scales. We focused on complex processes with two time/size
scales described by systems of ordinary differential equations. In such a case, there is a small parameter that
multiplies one or more derivatives. Using the Tikhonov Theorem, we have been able to understand the asymptotic
behaviour of the solution to some complex epidemiological models. Furthermore, we present analysis based on
the Butuzov theorem, which, for the purpose of the discussed models, was generalized to two dimensional
non-autonomous problems. We applied the developed theory on an ecological model with interactions given by
the mass action law.
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1 Introduction and Background

1.1 Introduction

In recent years the increasing demand for a more accurate description of real life processes

and advances in experimental techniques have resulted in construction of very complex

mathematical models, consisting of tens, hundreds, if not thousands of highly coupled

differential equations. The sheer size and complexity of such models often precludes any

robust, theoretical or numerical analysis of them. Fortunately, often such models describe

phenomena occurring on vastly different time or size scales. Examples include ecological

processes with vital dynamics of individuals coupled with much faster (or much slower)

migratory processes, or epidemiological processes in which a quick disease may influence

much slower demographic or evolutionary processes in the population. Such a structure

of the model offers hope that it can be simplified by focusing at one chosen scale and

averaging over the others without affecting too much the salient features of its dynamics.

It is often the case that the existence of, say, different time scales in a model is reflected

by a scale parameter given by the ratio of the typical scales of different process driving the

model. Then the model operates close to the slow or the fast regime if the scale parameter

is, respectively, small or large. Sometimes it is possible to obtain a good approximation of

the model in the slow regime by simply putting the scale parameter equal to zero (and in

the fast regime by letting its reciprocal to be infinity). Equations describing such models

commonly are referred to as regularly perturbed. Often, however, simply replacing in the

model the relevant parameter by its critical value results in a dramatic change of the

properties of the model, rendering this approach useless. In such a case to understand

the behaviour of the model close to the boundaries between different regimes one has to

carefully analyse the limits of the solutions as the scale parameter tends to the critical

value and to construct an approximation of a different type which would describe this limit.

In other words, in most cases complex models cannot be viewed as simple compositions

of basic models such that, if we are interested in one of them, it can be obtained by

switching off the unwanted ones. Rather, a complex model is a network of interrelated

models describing different regimes and the passage between these regimes can only be

achieved by a careful application of appropriate limit relations. In such a case, the limit

model still is linked to the other regimes, though rather through appropriate aggregated

quantities constructed in the limit process and not through explicit couplings.
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1.2 Problem Statement

In this thesis we mainly focus on complex processes described by systems of ordinary

differential equations. Particularly, we look at the phenomena occurring at two time

scales and modelled by equations in the so-called Tikhonov’s formdx
dt = f(x, z, ε),

εdzdt = g(x, z, ε),
(1.2.1)

with initial condition (x(0), z(0)) = (x0, z0), t ∈ [0, T ], T ∈ (0,∞), and where f and g

are sufficiently regular functions from a subset X̄ × Z × (0, ε0) ⊂ Rn × Rm × [0,∞), ε0

is a small parameter, to, respectively, Rn and Rm, for some n,m ∈ N. The presence of

the small parameter multiplying the derivative makes the problem singular in the sense

that setting ε = 0 makes the model much simpler but, at the same time, completely

changes the system structure and therefore does not always preserve the salient features

of the phenomenon that is being described by the original model. A good question will

be: under which assumptions can the solution of the original system be approximated by

the solution of the system obtained using ε = 0? To answer this question, Tikhonov’s

theory provides conditions under which one can safely approximate the solution to (1.2.1)

by the solution to the modelẋ = f(x, z, 0), x(t0) = x0,

0 = g(x, z, 0), z(t0) = z0,
(1.2.2)

also called the degenerate or reduced system. In this thesis, we will refer to the equation

g(x, z, 0) = 0 as the degenerate or the reduced equation.

It is of interest to determine the behaviour of the solutions to (1.2.1) as ε tends to zero

and, in particular, to show that they converge to the solutions of the degenerate system.

There are several reasons for this. First, taking such a limit in some sense “incorporates”

fast processes into the slow dynamics. Hence, it links models acting at different time scales

and often leads to new descriptions of natural processes, see e.g. [7]. Second, letting

formally ε = 0 in (1.2.1) yields a lower order system, whose solutions in many cases offer

an approximation to the solution of (1.2.1) that retains the main dynamical features of

the latter but can be obtained with less computational effort. In other words, often the

qualitative properties of the solutions of the degenerate system can be “lifted” to ε > 0

to provide a good description of dynamics of (1.2.1). There have been many approaches
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developed in order to understand the behaviour of solutions of (1.2.1) as compared to

that of the degenerate system. There are, for instance, the non-standard methods [12, 21]

and the standard approaches [4, 5, 31, 38, 42, 71, 28]. In the Chapter 2, we will give an

overview of some of them.

One of the first asymptotic theories is the Tikhonov Theory. Apart from some technical

conditions, one of the most important assumptions of the Tikhonov theorem is that

the degenerate equation has an isolated solution, z = φ(x), on a closed domain, X̄ .
Furthermore, it is required of the equilibrium solution ẑ = φ(x) of the auxiliary equation

(2.3.1) to be uniformly asymptotically stable on X̄ . In such a case, the solution of (1.2.1),

(x(t, ε), z(t, ε)), converges to the solution (x(t), z(t)) of the reduced system (1.2.2) as

ε tends to zero for t ∈ (0, T ]. In many cases, these assumptions are not satisfied. For

example, consider a SIS model with vital dynamics, given by the following set of equations:dS
dt = βN − µ1S − 1

ε (λIS − γI),

dI
dt = −µ2I + 1

ε (λIS − γI),
(1.2.3)

where S is the number of susceptibles, I is the number of infectives, β, µ1, µ2 are, re-

spectively, the birth rate and the death rates for susceptible and infective populations,

and λ, γ are, respectively, the transmission rate of the disease and the recovery rate

from the disease. The parameter ε is the ratio of the time scale of the disease and that

of the demographic processes (the birth and the death) of the population, and can be

considered small for “quick” diseases such as flu or cold. In this case, considering µ1 = µ2

and assuming that β − µ > 0 and γ
λ > N0, we get two quasi steady states, I1 = 0 and

I2 = N − γ
λ which intersect each other and switch stability at the point of intersection,

N = γ
λ . That is, I1 is attractive for N < γ

λ and becomes repelling for N > γ
λ , while I2

is repelling for N < γ
λ and attractive for N > γ

λ . A simple expectation could be that, as

ε tends to zero, the solution tends to the attractive branch of the closest quasi steady

state and immediately switches to the other attractive branch after passing close to the

intersection point. Indeed, such a behaviour is often observed, [19, 48, 49, 57]. However,

in many cases the system behaves in a different way; that is, having passed by the in-

tersection of the quasi steady states, the solution follows the now repelling branch of the

first quasi steady state and only after a finite time, say t∗, which is independent on ε, it

suddenly jumps to the attractive branch of the other quasi steady state.

Furthermore, we notice that numerical simulations of the solution to such a problem can

give a wrong approximation of the dynamics. For instance, we plotted the dynamics of
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Figure 1.1: This figure shows the graph of the solution to the one dimensional SIS model obtained from (1.2.3)
by setting µ1 = µ2. The solution plotted is that of the infective population for different value of ε. We use the
standard numerical method in Python. It can be observed that the solution tends to the second quasi steady
state, φ2, before t∗ = 81.7 years.

the infective population of (1.2.3) using standard packages in Python. Figure 1.1 and

Figure 1.2 show the results for the one dimensional problem in the case of a growing

population N , obtained by setting µ1 = µ2. On Figure 1.1 we have the plot obtained by

using the standard numerical approach and on Figure 1.2, we have the result obtained by

using the analytical solution studied in Chapter 5. The difference between both figures

is that the standard approach suggests that the jump occurs much earlier than in reality,

that is, at t∗. Figure 1.2 presents the correct behaviour of the solution as predicted by

the theory. Thus it is important to provide a more accurate description of the behaviour

of the solution as the small parameter tends to its critical value.

1.3 Outline of the Thesis

Presenting conditions under which a delay occurs in two dimensional non-autonomous

problems is the main focus of this thesis. However, we will start by studying in detail the

application of the theory for some particular epidemiological problems before launching

into the generalisation of the method for two dimensional non-autonomous case. So, in

Chapter 2 we give a comprehensive literature review of what has been done so far in

the field of perturbation theory; in Chapter 3 we provide some mathematical background
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Figure 1.2: This figure shows the graph of the solution to the one dimensional SIS model obtained from (1.2.3)
by setting µ1 = µ2. The solution plotted is that of the infective population for different value of ε. We used
the analytical expression of the solution studied in Chapter 5. It can be observed that the solution leaves the
first quasi steady state, φ1, and tends to the second quasi steady state, φ2, after t∗ = 81.7. years.

necessary to understand the remaining chapters; in Chapter 4 we apply Tikhonov’s theory

to some epidemiological problems; in Chapter 5 we study the exchange of stability for a one

dimensional model (case of a quick disease); in Chapter 6 we use the result developed in

Chapter 5 and the method of upper and lower solutions [19] to analyse the two dimensional

epidemiological model (1.2.3); in Chapter 7 we generalise the result found in Chapter

5 for non-autonomous one dimensional models; in Chapter 8 we generalise the result

found in Chapter 6 for non-autonomous planar systems with QSS exhibiting a transcritical

bifurcation; in Chapter 9 we apply the theory developed in chapter 8 to study a two

dimensional ecological model with interactions given by the mass action law; Finally,

Chapter 10 is the conclusion of the thesis.
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2 Literature Review

2.1 Introduction

By multiple scale models we understand models of interlinked processes that occur at

vastly different rates. As already mentioned earlier, in many cases the coexistence of

such processes in the model is manifested by the presence of a small parameter ε that

expresses the ratio of their characteristic times. The branch of mathematics that is

devoted to studying multiple scale problems is called the perturbation theory. It focuses

essentially on the study of the behaviour of the solutions of multi-scale systems when the

small parameter ε tends to its critical value. It can be divided into two main parts: the

regular and the singular perturbation theories. The regular perturbation theory studies

the multiple scale problems where the solution of the original system converges uniformly

to the solution of the degenerate system obtained by setting ε = 0 in the original system.

Conversely, the singular perturbation theory is devoted to the study of multiple scale

problems, where the solution of the limit system, obtained by setting ε = 0 in the original

problem, is very different from that of the original system, [57]. The pertubation theory

is found in the part of applied mathematics called asymptotic analysis whose purpose is

primarily, for a given phenomenon, to approximate the solution to the original problem that

described the phenomenon by the solution to another simpler problem without loosing the

accuracy of the main description of the phenomenon; that is, it provides more effective

computational methods, [7]. The second purpose of the asymptotic analysis is to help

to validate phenomenological equations by rigorously showing links between solutions in

various regimes, [7].

As already mentioned earlier, many works have been done in this domain of mathematics,

leading to the development of different approaches to the analysis of singularly perturbed

problems. There are for instance the geometric and the analytic approaches. The analyt-

ical asymptotic aproaches include the work of A.N. Tikhonov, [69], the work of Vasil’eva

[73], the works of F. Hoppenstead, [39], the work of A.I. Neishtadt, [53, 54], the work of

Butuzov et al. [19] and so on. The geometric techniques are used in the series of works

by Fenichel, [31, 38], the exchange lemma [42, 71], the blow up technique [28], etc.

In order to give an overview of some of these methods, let us consider a singularly perturbed
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problem of the form (1.2.1). The model (1.2.1) can be reformulated asdx
dτ = εf(x, z, ε), x(0, ε) = x0,

dz
dτ = g(x, z, ε), z(0, ε) = z0,

(2.1.1)

by considering the time scale τ = t
ε . The time t ∈ [0, T ], 0 < T <∞, is called the slow

time, while τ is called the fast time. Thus, the system (1.2.1) is said to be the slow system

and (2.1.1) is the fast system. Both systems are equivalent except for ε = 0. Letting ε

tends to zero, we obtain, respectively, the degenerate system (1.2.2) and the limit systemdx
dτ = 0, x(0) = x0,

dz
dτ = g(x, z, 0), z(0) = z0.

(2.1.2)

The degenerate system is defined on the critical manifold, M0 = {(x, z) ∈ Rn ×
Rm, g(x, z, 0) = 0}. The critical manifold can also be viewed as a manifold of equilibria

to the fast system. The critical manifold is said to by normally hyperbolic when all the

eigenvalues of the Jacobian ∂g
∂x(x, z, 0)

∣∣
M0

have non-zero real part. Furthermore, if they

all have positive (respectively, negative) real part,M0 is said to be repelling (respectively,

attractive), [38].

2.2 Review of Some Geometric Approaches

The geometric singular perturbation approach was initiated by F. Fenichel [31] at the end

of the 1970s. He developed a theory based on the center manifold theory. Fenichel’s

theory is concerned with the analysis of hyperbolic fast dynamics and focuses on the

perturbation of the normally hyperbolic critical manifold. It states, for instance, that for

a given compact subset M0 ⊂M0 and having the eigenvalues of the Jacobian ∂g
∂x(x, z, 0)

with negative real part at M0, for any ε > 0, there exists a manifold Mε, O(ε)−close to

M0 and locally invariant under the flow of (1.2.1). In order words, the trajectories can

enter or leave the perturbed manifold Mε (also called slow manifold) only through its

boundary. Many other results have also been developed in this theory which can be found

in [13, 31, 38].

The next geometric approach that we will review is the Exchange Lemma. Let us consider

the standard set-up of singular perturbation as described previously. For arbitrary positive

integer k1 and k2, let us consider a normally hyperbolic invariant manifold of dimension k1,
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and an unstable slow manifold of dimension k1+k2. The aim of this approach is to track a

(locally) invariant manifold during its passage near the slow manifold, [24, 41]. Providing

a precise estimate of the position of both manifolds and that of their tangent planes is

one of the way to achieve such a task. This theory states that the tracked manifold

will be C1 exponentially close to a certain submanifold of the local unstable manifold on

exit from its neighborhood if it transversely intersects the local stable manifold of the

normally hyperbolic locally invariant manifold, [24, 41]. At first, the Exchange Lemma

theory was developed for singularly perturbed systems with strictly slow dynamics on the

normally hyperbolic and locally invariant manifold, [43, 44, 45]. It led to the analysis

of the singularly perturbed Fitzhugh-Nagumo model, where the unstable manifold of the

critical point was tracked and the homoclinic orbit to it was described, [44]. The most

general version of the Exchange Lemma was presented by Tin, [71]. The advantages of

the Tin’s Exchange Lemma is that firstly, it helps to track manifolds whose dimensions are

any integer in [k1 + 1, k1 + k2], secondly, it can be applied to systems in which there are

both fast and slow dynamics on the normally hyperbolic locally invariant manifold, and

thirdly, it significantly weakened the assumption imposed in [43, 44, 45] which states that

orbits spend asymptotically long times (O(1
ε )) on the tracked manifold around the slow

manifold, [24]. The Exchange Lemma has found applications in multiple scale problem in

many areas, [16, 22, 27, 36].

2.3 Review of Some Analytical Approaches

The analytical asymptotic methods consist in describing the qualitative behaviour of the

solution of (1.2.1) on some interval of the value of the independent variable, [69], by

determining the solution of (1.2.1) as a series expansion in term of the small parameter ε.

The first systematic analysis for finite diminsional models using an analytical asymptotic

method was presented by A.N. Tikhonov in the 40s. As already mentioned, according

to the Tikhonov theorem, the solution to the slow system (1.2.1) tends to that of the

degenerate system as ε tends to zero provided the solution to the degenerate equation,

also called the quasi steady state (QSS), is isolated in a closed domain, say X̄ , and, when

considering the auxiliary equation

d ẑ

d τ
= g(x, ẑ, 0), (2.3.1)
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the QSS is uniformly asymptotically stable with respect to x on X̄ . We will fully describe

this result in the next chapter. It is important to emphasize that the Tikhonov theorem

focuses its analysis on a finite interval of time and it proves the uniform convergence in

time of the solution of the x− component only. An extension of this result to be global

in time was proposed by F. Hoppenstead [39] and the asymptotic expansions uniformly

approximating the solution of the problem in the y− component was added by A.B.

Vasil’eva using the concept of the initial layer [7, 74, 75]. This theory found its application

in many fields including population modelling, neurophysiology, biochemistry...,[19, 7, 57].

One of our result in this thesis demonstrates how this theory facilitates the analysis of

some complex epidemiological models evolving in two time scales.

In applications, however, we often encounter the situation where either the quasi steady

state ceases to be hyperbolic along some submanifold (a fold singularity), or two (or

more) quasi steady states intersect. The latter typically involves the so called “exchange

of stabilities” as in the transcritical bifurcation; that is, when the branches of the quasi

steady states change from being attractive to being repelling (or vice versa) across the

intersection. The assumptions of the Tikhonov theorem fail to hold in the neighbourhood

of the intersection. It is natural to expect that any solution that passes close to it follows

the attractive branches of the quasi steady states on either side of the intersection. Such

a behaviour is, indeed, often observed, see e.g. [19, 48, 49, 50]. However, in many cases,

an unexpected behaviour of the solution is observed — it follows the attracting part of

the quasi steady state and, having passed the intersection, it continues along the now

repelling branch of the former quasi steady state for some prescribed time and only then

jumps to the attracting part of the other quasi steady state. Such a behaviour, called

the delayed switch of stability, [19], was first observed in [64] (and explained in [53]) in

the case of a pitchfork bifurcation, where an attracting quasi steady state produces two

new attracting branches, while continuing as a repelling one itself. The delayed switch

of stabilities in the case of a fold singularity was observed in the van der Pol equation

and have received explanations based on methods ranging from nonstandard analysis

[12] to classical asymptotic analysis [29]. Solutions displaying such a behaviour were

named canard solutions. In this thesis we shall mainly focus on the so called transcritical

bifurcation. The delayed switch of stability in such a situation possibly was first observed

in [35] and analysed in [62].

The interest in such problems stems from numerous applications in which the existence
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of the so-called slow-fast oscillations [29, 38, 41, 52, 58] is deduced on the basis of the

existence of intersecting quasi steady states interchanging their stabilities. Another field

of applications is in the dynamical bifurcation theory, where the bifurcation parameter is

driven by another, slowly varying, equation coupled to the original system [17, 18]. In

both cases failure to take into account the possibility of the stability switch delay may

result in erroneous conclusions about the behaviour of the solutions, see e.g. [17, 18, 58].

2.4 Our Contributions

As we pointed earlier, there is a rich literature concerning these topics and, in particular,

one of our problems is similar to that considered in [48]. We mainly focus on the case,

where there is a delayed stability switch that is just briefly mentioned in [48] and we allow

the system to be non-autonomous. One of the main contribution of this work is to offer a

new approach to the analysis of the stability switch. By employing a monotonic structure

of the equations and combining it with the method of upper and lower solutions of [19],

we have managed to give a constructive and relatively elementary proof of the existence

of a delayed stability switch for a large class of planar systems including the predator-prey

models and some epidemiological models. Also, in contrast to the papers based on phase

plane analysis, e.g. [58], we are able to give the precise time at which the stability switch

occurs. Here we can also mention the recent paper [63], where the results of [19] have

been employed to general predator-prey models to prove the existence of canard orbits,

but in a different way that requires the system to be autonomous.

As a by-product of the method, we also provide some results on an immediate stability

switch. Our results pertain to a slightly different class of problems than that considered

in e.g. [48, 49, 50] but, when applied to the predator-prey and epidemiological systems,

they give an analogous outcome.
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3 Mathematical Preliminaries

In this chapter we provide some background important to the understanding of the sub-

sequent chapters. We first present some basic results on systems of differential equations

and follow with some important results in perturbation theory.

3.1 Notation

Unless stated otherwise, we denote by

• Rn
+ the set of the n dimensional vectors with non- negative entries.

• T ∈ (0,+∞) an arbitrary chosen real number.

• Iα = (0, α) and Īα = [0, α], where α > 0.

• B(a, r) a ball centered at a ∈ Rn with a radius r ∈ R+.

• ′ = d
dt .

• |x| the norm of the vector x ∈ Rn.

3.2 System of Differential Equations

Let us consider the following system of differential equations

dz

dt
= g(t, z) (3.2.1)

with initial condition z(t0) = z0 ∈ Rn, and g a regular function acting from a subset of

R+ × Rn to Rn.
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3.2.1 Existence and Uniqueness of the Solution to a System of
Differential Equations

3.2.1.1 Theorem (The Picard theorem). If g is continuous with respect to (t, z) ∈ U =

{(t, z), |t0 − t| ≤ r1, |z0 − z| ≤ r2}, with r1, r2 ∈ R+, and Lipschitz continuous with

respect to z, then there is a unique solution to the problem (3.2.1) for the given initial

condition at least on [t0−`, t0 +`] with ` = min{r1, r2/M} and M = max(t,z)∈U |g(t, z)|,
[6, 32].

3.2.1.2 Definition. The interval [t1, t2) is the maximal forward interval of existence of

(3.2.1) if the solutions of (3.2.1) exist on [t1, t2) and no solution exists on [t1, t2 + ε) for

any ε > 0, [6].

3.2.1.3 Theorem. Let us denote z = (zi)i=1,..,n and consider the function g : R+ ×
Rn

+ → Rn continuous with respect to (t, z) and Lipschitz continuous with respect to z. If

gi(t, z) ≥ 0 for (t, z) ∈ R+×Rn, with zi = 0 then for every z0 ∈ Rn
+ there exists T > 0

such that the solution to (3.2.1) exists on some interval [0, T ), is unique and positive. If

T <∞, then

lim sup
t→T

n∑
i=1

zi = +∞,

[57, 67].

3.2.1.4 Remark. Theorem 3.2.1.3 also means that if the right hand side of a differ-

ential equation is sufficiently regular, then its solution either exists for all time or blows

up/becomes infinite in a finite time, [6]. Furthermore, the solution z(t) to (3.2.1) with

z0 > 0 exists on R+ if for all T̃ > 0,

lim sup
t→T̃

n∑
i=1

zi ∈ R,

[6].

3.2.2 Stability Results for Systems of Differential Equations

3.2.2.1 Definition. A solution z(t) of (3.2.1) is stable if any other solution y(t) with

initial condition y(0) = y0 sufficiently close to z(t) will remain close to it for all times.
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In other words, if for any ε1 > 0 there exists ε2 > 0 such that for any solution y(t) of

(3.2.1) we have

|z0 − y0| < ε2 ⇒ |z(t)− y(t)| < ε1,

then z(t) is said to be stable. Additionally, if

|z0 − y0| < ε2 ⇒ lim
t→∞
|z(t)− y(t)| = 0,

then z(t) is said to be locally asymptotically stable.

3.2.2.2 Definition. The flow of (3.2.1) is the map

φ : R+ × Rn 3 (t, z0) 7→ φ(t, z0) = z(t) ∈ Rn,

where z(t) is the solution to (3.2.1).

3.2.2.3 Definition. Let Z be an asymptotically stable equilibrium point of (3.2.1). The

basin of attraction of Z is the set BZ = {z; limt→∞ φ(t, z) = Z}, where φ is the flow

generated by (3.2.1). The equilibrium point Z is said to be globally asymptotically stable,

if BZ = Rn.

3.2.2.4 Definition. The invariant domain under the flow (t, z) 7→ φ(t, z) generated by

the system (3.2.1) is a set S ⊂ Rn such that φ(t, z) ∈ S for all z ∈ S and t ∈ R+.

3.2.2.5 Definition. Let us consider a function g = (gi)i=1,..,n : R × Rn → Rn, and let

S ⊂ Rn be open. The function g is said to be of type K in S if for each component i and

for all t ∈ IT , gi(t, x) ≤ gi(t, y) for any two points x, y ∈ S such as x ≤ y and xi = yi,

where x = (xi)i=1,..,n, and y = (yi)i=1,..,n, [65].

3.2.2.6 Theorem (Comparison theorem). Let us consider the system of differential equa-

tions (3.2.1), and assume that g is a continuous function of type K and z(t) is a solution

of (3.2.1) defined on [t0, t3], with t0, t3 ∈ R. If u is a function satisfying for all t ∈ [t0, t3]

du

dt
≥ g(t, u), u(0) ≥ z0,

then u(t) ≥ z(t) for t ∈ [t0, t3]. If v(t) is a function satisfying on [t0, t3]

dv

dt
≤ g(t, v), v(0) ≤ z0,

then v(t) ≤ z(t), t ∈ [t0, t3], [65].
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3.2.3 Implicit Function Theorem

3.2.3.1 Theorem. Let us consider three Banach spaces S1,S2,S3, an open subset S ⊂
S1 × S2 and a function G : S → S3 continuously differentiable in S. Let us assume that

there exists a root (x0, z0) ∈ S of the function G such that the map

∂G

∂z
(x0, z0) : S2 → S3

is a (continuous) linear and invertible and let its inverse be likewise continuous. Then,

there exist open sets: S1 containing x0 and S2 containing z0 such that S1× S2 ⊂ S, and

a differentiable function g : S1 → S2 such that

G(x, g(x)) = 0, (3.2.2)

and

dg(x)

dx
= −

(∂G(x, g(x))

∂z

)−1

◦ dG
dx

(x, g(x))

for all x ∈ S1. Furthermore, for every x ∈ S1, g(x) is the only solution of (3.2.2) in S2,

[46].

3.3 Perturbation Theories for Systems of Differential
Equations

These theories can be divided into two groups: the regular perturbation theories and the

singular perturbation theories. However, we will only present the ones we will need later.

3.3.1 Regular Perturbation Theory

Let us consider the following system of ordinary differential equations

dz

dt
= g(t, z, ε), z(0) = z0, (3.3.1)

where g : M × [−ε0, ε0] 7→ Rn is a continuous function,

M = [0, α]× Z̄ = [0, α]× {z ∈ Rn; |z − z0| ≤ b},

and the parameters α, b, ε0 are positive.
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3.3.1.1 Theorem. Let us assume that

1. the function g is a globally Lipschitz continuous function with respect to z, uniformly

in Z̄,

2. the equation

dz

dt
= g(t, z, 0), z(0) = z0,

with (t, z) ∈M, has a solution, z̄, on M ;

3. t0(ε) and `(ε) are continuous functions satisfying

t0(ε) ∈ [0, α], t0(0) = 0, `(0) = 0,

for ε ∈ [−ε̃, ε̃].

Then there exists 0 ≤ ε0 ≤ ε̃ such that for ε ∈ [−ε0, ε0], the differential equation

dz

dt
= g(t, z, ε), z(t0(ε)) = z0 + `(ε), t ∈ [0, α]

has a solution z(t, ε) satisfying

lim
ε→0

z(t, ε) = z̄(t),

uniformly on [0, α], [7].

3.3.2 Singular Perturbation Theories: The Tikhonov Theorem

Let us consider the following singularly perturbed problemdx
dt = f(t, x, z, ε),

εdzdt = g(t, x, z, ε),
(3.3.2)

with initial condition (x(0), z(0)) = (x0, z0), t ∈ ĪT , x ∈ M̄x ⊂ Rn, z ∈ Mz ⊂ Rm, and

ε ∈ [0, ε0], where ε0 > 0 is a small parameter.

3.3.2.1 Theorem (The Tikhonov theorem). Let us consider the following list of assump-

tions.
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T1− The functions f and g are defined on a subset ĪT × M̄x × Mz × [0, ε0] with

values, respectively, in Rn and Rm. They are continuous with respect t, x, z and Lipschitz

continuous with respect to x and z in the subset ĪT × M̄x ×Mz, where M̄x is compact

and Mz is open.

T2− Let z̄ = φ(t, x) ∈Mz be the solution to the degenerate equation in (3.3.2). Then,

z̄ is continuous and isolated for (t, x) ∈ ĪT × M̄x; that is, there exists β > 0 such that

g(t, x, z, 0) 6= 0 for |z − φ(t, x)| < β, (t, x) ∈ ĪT × M̄x.

T3− For the auxiliary equation associated to (3.3.2), defined by

dẑ

dτ
= g(t, x, ẑ, 0), ẑ(0) = z0,

where t, x are treated as parameters, the equilibrium solution ẑ = φ(t, x) is uniformly

asymptotically stable on ĪT × M̄x. That is, for all ε4 > 0 there exists ε5 > 0 such that for

all (t, x) ∈ ĪT × M̄x, if

|ẑ(0)− φ(t, x)| < ε5,

then, for all τ > 0, |ẑ(t, x, τ)− φ(t, x)| < ε4 and

lim
τ→∞

ẑ(t, x, τ) = φ(t, x),

uniformly on ĪT × M̄x.

T4− The function (t, x) 7→ f(t, x, φ(t, x), 0) is Lipschitz continuous with respect to x in

ĪT × M̄x, and the solution x̄(t) of

dx̄

dt
= f(t, x̄, φ(t, x̄), 0), x̄(0) = x0,

satisfies x̄ ∈ IntM̄x for all t ∈ IT .

T5− The solution ẑ = ẑ(τ) of

dẑ

dτ
= g(0, x0, ẑ, 0), ẑ(0) = z0,

exists in Mz for τ ≥ 0 and satisfies

lim
τ→∞

ẑ(τ) = φ(0, x0).



Section 3.3. Perturbation Theories for Systems of Differential Equations Page 17

Then, there exists ε̂ > 0 such that for any ε ∈ (0, ε̂] there is a unique solution of (3.3.2)

on IT such that

lim
ε→0

x(t, ε) = x̄(t), t ∈ [0, T ],

lim
ε→0

z(t, ε) = z̄(t), t ∈ (0, T ],

where (x̄, z̄) is the solution of the degenerate system of (3.3.2), [7, 69].

3.3.2.2 Remark. It is important to notice that if ∂g(t,x,ẑ,0)
∂ẑ

∣∣∣
ẑ=φ(t,x)

< 0 on ĪT × M̄x, then

ẑ = φ(t, x) is uniformly asymptotically stable on ĪT × M̄x, see [69].

3.3.3 Singular Perturbation Theories: Method of Upper and
Lower Solutions

3.3.3.1 Definition. Let us consider the pair of continuous functions (x(t, ε), z(t, ε)) and

(x̄(t, ε), z̄(t, ε)) that are continuous and piecewise continuously differentiable with respect

to t ∈ ĪT . They are called ordered lower and upper solutions to the problem (3.3.2) for

ε ∈ Iε0, ε0 > 0, if they satisfy

1. x(t, ε) ≤ x̄(t, ε) and z(t, ε) ≤ z̄(t, ε),

2. dx
dt − f(t, x, z, ε) ≤ 0 ≤ dx̄

dt − f(t, x̄, z, ε) for z ∈ [z, z̄] and,

εdzdt − g(t, x, z, ε) ≤ 0 ≤ εdz̄dt − g(t, x, z̄, ε) for x ∈ [x, x̄],

3. x(t0, ε) ≤ x0 ≤ x̄(t0, ε) and z(t0, ε) ≤ z0 ≤ z̄(t0, ε),

on ĪT and for ε ∈ Iε0, [19].

3.3.3.2 Theorem. Let us consider the problem (3.3.2) with the functions f and g suf-

ficiently regular. If there exist ordered lower and upper solutions to (3.3.2), then the

solution to (3.3.2) exists, is unique and satisfies

x(t, ε) ≤ x(t, ε) ≤ x̄(t, ε), (3.3.3)

z(t, ε) ≤ z(t, ε) ≤ z̄(t, ε), (3.3.4)
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for t ∈ ĪT and ε ∈ Iε0, [19, 65]. Furthermore, if the lower and the upper solutions have

the same limit as ε tends to zero, then

lim
ε→0

x(t, ε) = lim
ε→0

x(t, ε) = lim
ε→0

x̄(t, ε),

lim
ε→0

z(t, ε) = lim
ε→0

z(t, ε) = lim
ε→0

z̄(t, ε),

for t ∈ ĪT and ε ∈ Iε0, [19].

3.3.4 Singular Perturbation Theories: Butuzov Theorem for
Transcritical Bifurcations

The original Butuzov theorems in [19] refer to two types of intersections of the quasi steady

states: the transcritical and the pitchfork bifurcations. We will present the assumptions

and the result for the case of the transcritical bifurcation and later we will recall the

assumptions and the result for the case of the pitchfork bifurcation.

Let us consider the singularly perturbed scalar differential equationεdxdt = g(t, x, ε), t ∈ IT := {t : t0 < t ≤ T},

x(t0, ε) = x0,
(3.3.5)

with x ∈ Mx being an open bounded interval containing the origin, and Iε0 = {ε : 0 <

ε < ε0 << 1}.

3.3.4.1 Theorem (The Butuzov theorem). Let us consider the singularly perturbed prob-

lem (3.3.5) with the initial value x(t0, ε) = x0 > 0 and let us denote D = Mx× IT × Iε0.
Consider the following assumptions:

(I) g ∈ C2(D̄,R).

(II) The solution of the degenerate equation g(t, x, 0) = 0 consists of two roots x ≡ 0 and

x = φ(t), also called quasi steady states (QSS), which intersect at t = tc ∈ (t0, T )

such that

φ(t) < 0 for t0 ≤ t < tc,

φ(t) > 0 for tc < t ≤ T.
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(III) The roots of the degenerate equation switch stability at their intersection in the

following sense

gx(t, 0, 0) < 0, gx(t, φ(t), 0) > 0 for t ∈ [t0, tc),

gx(t, 0, 0) > 0, gx(t, φ(t), 0) < 0 for t ∈ (tc, T ].

(IV ) The solution x ≡ 0 satisfies g(t, 0, ε) ≡ 0 for (t, ε) ∈ ĪT × Īε0.

(V ) The function G, defined by

G(t, ε) =

∫ t

0

gx(s, 0, ε)ds, (t, ε) ∈ ĪT × Īε0, (3.3.6)

has a root t∗ ∈ (t0, T ) for ε = 0.

(V I) The inequality g(t, x, ε) ≤ gx(t, 0, ε)x for t ∈ [t0, t
∗], ε ∈ Īε0, 0 ≤ x ≤ c0, is satisfied

for some c0 ∈Mx.

Then, for sufficiently small ε, there exists a unique solution x(t, ε) of (3.3.5) with

lim
ε→0

x(t, ε) = 0 for t ∈ (t0, t
∗), (3.3.7)

lim
ε→0

x(t, ε) = φ(t) for t ∈ (t∗, T ], (3.3.8)

see [19].
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4 Some Applications of the Tikhonov The-
orem in Epidemiology

In this chapter, we study the dynamics of some diseases that involve two different time

scales. This is the case, of instance, for some vector-borne diseases such as the dengue

fever and malaria, where the life cycle of the vector is faster than that of the host [60].

The mosquito life cycle is of order of days, while the host life cycle is of order of decades.

The recovery period of the host is similar in range to that of the mosquito life span [60].

Another example is that of the influenza (flu), where the demographic processes are much

slower than that of the infection and recovery process of the disease [9]. Using singular

perturbation theory, we aim to understand to what extent the dynamics of the disease

can be analysed by a simplified model. By doing so, we illustrate the advantage that

the Tikhonov theorem can bring into the analysis of such problems. We will start with

analysing a problem model in one dimension and latter we will consider problems in higher

dimensions.

4.1 One Dimensional Case: Case of a Quick Disease
(Influenza)

The influenza is a contagious respiratory illness, also known as flu. It is caused by the

flu viruses and can progress from mild to severe illness and even lead to death, [47]. The

recovery process usually lasts several days. However, complications due to flu are likely to

be observed in people with certain chronic medical conditions such as children, pregnant

women and old people [47]. Actually, in South Africa there has been an outbreak of a

pandemic of influenza in 2009 that caused a lot of deaths [3].

Let us start by considering an SIS model with vital dynamics and assume that the mor-

tality rate is the same for both infective and susceptible individuals. It follows that the

mathematical model is, [9, 57],dS
dt = βN − µS − λ̃IS + γ̃I,

dI
dt = −µI + λ̃IS − γ̃I,

(4.1.1)
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where the initial condition is (S(0), I(0)) = (S0, I0), N = S + I is the size of the

population, S is the number of susceptible individuals and I is the number of infective

individuals in the population. The parameters β, µ, λ̃, γ̃ are positive parameters and stand,

respectively, for the birth rate, the death rate, the transmission rate and the recovery rate.

Since typically the disease lasts a few days, it is natural to take 1 day as the unit of time

for the disease related parameters. However, the demographic processes occur at the scale

of years, [9]. So, rescaling (4.1.1) using 1 year as the time unit, givesdS
dt = βN − µS − 365(λSI − γI),

dI
dt = −µI + 365(λSI − γI),

(4.1.2)

where the initial condition is (S(0), I(0)) = (S0, I0), and we denoted λ̃ = 365λ, γ̃ = 365γ.

We introduce a small parameter ε representing the ratio of time scales and consider the

following class of equationsdS
dt = βN − µS − 1

ε (λSI − γI), S(0) = S0,

dI
dt = −µI + 1

ε (λSI − γI), I(0) = I0,
(4.1.3)

where (4.1.2) corresponds to the case ε = 1
365 .

It follows from (4.1.3) that the dynamics of the total population satisfies

dN

dt
= (β − µ)N, (4.1.4)

with N(0) = N0 = I0 + S0. Hence, since S = N − I, system (4.1.3) becomesN(t) = N0e
(β−µ)t,

εdIdt = −µεI + I(λ(N − I)− γ),
(4.1.5)

with the initial condition I(0) = I0.

4.1.0.1 Theorem. Let us denote ν = γ
λ and r = β − µ.

1. If N0 = ν and r = 0, then the solution to (4.1.3) satisfies

lim
ε→0

I(t, ε) = 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = ν, t ∈ (0, T ].
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2. If N0 < ν and r ≤ 0, then the solution to (4.1.3) satisfies

lim
ε→0

I(t, ε) = 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = N0e
rt, t ∈ (0, T ].

3. If N0 > ν and r ≥ 0, then the solution to (4.1.3) satisfies

lim
ε→0

I(t, ε) = N0e
rt − ν, t ∈ (0, T ],

lim
ε→0

S(t, ε) = ν, t ∈ (0, T ].

Proof. Let us denote g(N, I, ε) = −µεI+ I(λ(N − I)−γ). If N0 = ν and r = β−µ = 0

then, from the first equation of (4.1.5) and for all t ∈ [0, T ], N(t) = ν. The second

equation of (4.1.5) becomes

ε
dI

dt
= −εµI − λI2, (4.1.6)

with the initial condition I(0) = I0. From (4.1.6) it follows that

1

µ

dI

I
− λ

εµ

dI

µ+ λ
ε I

= −dt.

Thus,

ln
( I

µ+ λ
ε I

)
= −µt+ c with c ∈ R.

Therefore, for ε > 0 and t ∈ [0, T ],

I(t, ε) =
µke−µt

1− λ
εke
−µt

,

where k = I0
µ+λ

ε I0
. It follows that, since S = ν − I,

lim
ε→0

I(t, ε) = lim
ε→0

µI0e
−µt

(µ+ λ
ε I0)(1− λI0e−µt

εµ+λI0
)

= 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = ν, t ∈ (0, T ].

Now, let us assume that N0 6= ν and consider the equation Ī(λ(N̄− Ī)−γ) = 0. We have

two solutions Ī1 = 0 and Ī2 = N̄ −ν. It is important to notice that the solutions intersect

at N̄ = ν and therefore stop being isolated at that point. Thus it is important to find

an invariant domain of (4.1.4) containing one isolated quasi steady state. Therefore, we

need to restrict ourselves to one of these two cases:
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1. Ī1 = 0 and Ψ− = {N,N < ν},

2. Ī2 = N̄ − ν and Ψ+ = {N,N > ν}.

Considering the first case, we have for N0 < ν and r ≤ 0,

N0e
rt < ν, t ∈ [0, T ].

Thus,

N(t) ∈ Ψ−, t ∈ [0, T ].

Therefore Ψ− is invariant under the flow defined by (4.1.4) and this case corresponds to

that of a stable population. Similarly, considering the second case, we have for N0 > ν,

and r ≥ 0,

N0e
rt > ν, t ∈ [0, T ].

Thus,

N(t) ∈ Ψ+, t ∈ [0, T ].

Therefore Ψ+ is invariant under the flow defined by (4.1.4) and this case corresponds to

that of an unstable population.

Let us consider the auxiliary equation

dÎ

dτ
= Î(λ(N − Î)− γ),

where τ = t
ε and N is a parameter. It is easy to see that Î = Ī1 and Î = Ī2 are equilibrium

solutions to the auxiliary equation. Let us denote ĝ(N, Î, 0) = Î(λ(N − Î)−γ). We have

ĝÎ(N, Î, 0) = λN − 2λÎ − γ.

Thus, ĝÎ(N, Ī1, 0) = λN−γ and ĝÎ(N, Ī2, 0) = −λN+γ. It follows that ĝÎ(N, Ī1, 0) < 0

for N < ν. This means that Ī1 is asymptotically stable for N < ν. Conversely, for N > ν,

we have ĝÎ(N, Ī2, 0) < 0, meaning Ī2 is asymptotically stable.

Hence, according to the Tikhonov theorem, for N0 < ν and r ≤ 0,

lim
ε→0

I(t, ε) = 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = N0e
rt, t ∈ (0, T ],
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and, for N0 > ν and r ≥ 0,

lim
ε→0

I(t, ε) = Ī2 = N0e
rt − ν, t ∈ (0, T ],

lim
ε→0

S(t, ε) = N(t)− Ī2(t) = ν, t ∈ (0, T ].

4.1.1 Numerical Simulations

In order to illustrate the results obtained from the Tikhonov theorem, we used numerical

simulations. We used the following values of the parameters, [9, 57], λ = 0.0018, γ =

0.14, β = 0.001, µ = 1/70.0, I0 = 5, N0 = 50 for the stable case and µ = 0.029, β =

0.057, γ = 0.14, λ = 0.0018, I0 = 5, N0 = 100 for the unstable case. Figure 4.1

presents the dynamics of the infected population in both cases: the unstable and stable

populations. The first figure shows the case of a stable population, while the second

figure shows the case of an unstable population. Figure 4.2 shows the dynamics of the

infective population for the case N0 = ν and r = 0. The parameters used are the same as

previously; that is γ = 0.14, λ = 0.0018, I0 = 5, N0 = 100. In either cases we observe

that the solution of the original system (4.1.3) tends to the quasi steady state as epsilon

tends to zero. These simulation results illustrate the Tikhonov theorem.

4.2 Two Dimensional Case: Case of a Quick Disease
(Influenza)

Let us consider again the previous model but this time with a non-zero disease induced

death rate. The mathematical model becomesdS
dt = βN − µS − 1

ε (λSI − γI),

dI
dt = −(µ+ µ∗)I + 1

ε (λSI − γI),
(4.2.1)

where the initial condition is (S(0), I(0)) = (S0, I0), the variables S and I are, respectively,

the numbers of the susceptible and infected individuals in the population. The total

population is N = S+I, the transmission rate from an infected individual to a susceptible

individual is λ, the parameters µ and µ∗ are, respectively, the natural death rate and the
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Figure 4.1: Dynamics of the infected population, solution to (4.1.1). The first figure presents the case of a
stable population, while the second figure shows the case of an unstable population. In both cases, we observe
that as ε tends to zero the solutions tend the QSS represented by the graph ε = 0.
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Figure 4.2: Dynamics of the infected population, solution to (4.1.1) for N0 = ν and r = 0. We observe that
the solution tends to the quasi steady state (Ī) as ε tends to zero.

disease induced death rate, and the recovery rate from the disease is γ. The parameter

ε > 0 is a small parameter.

4.2.0.1 Theorem. For (S0, I0) ∈ R2
+, the solution to (4.1.3) exists, is unique and non-

negative on R+.

Proof. Let us consider the function f = (f1, f2) such that

f1(S, I) = βN − µS − 1

ε
(λSI − γI),

f2(S, I) = −(µ+ µ∗)I +
1

ε
(λSI − γI).

It is easy to see that f is continuous and Lipschitz continuous with respect to S and I.

Therefore, according to the Picard theorem, Theorem 3.2.1.1, there exists T ∈ R+ such

that the solution to (4.2.1) exists and is unique on [0, T ]. Further, for (S, I) ∈ R2
+,

f1(0, I) = βI +
γI

ε
≥ 0,

f2(S, 0) = 0.

It follows, according to Theorem 3.2.1.3, that S and I are non-negative on [0, T ). Finally,

from (4.2.1),

dN

dt
= (β − µ)N − µ∗I ≤ (β − µ)N.
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It follows that

0 < N(t) < N0e
(β−µ)t, t ∈ [0, T ).

Hence, N = S + I is bounded on [0, T ) for any T > 0. Therefore, according to Theorem

3.2.1.3, the solutions to (4.2.1) with initial condition in R2
+ exist on R+.

Since, by (4.2.1), the dynamics of the total population is given by

dN

dt
= (β − µ)N − µ∗I, N(0) = N0, (4.2.2)

system (4.2.1) is equivalent todN
dt = (β − µ)N − µ∗I,

εdIdt = −ε(µ+ µ∗)I + I(λ(N − I)− γ),
(4.2.3)

with initial condition (N(0), I(0)) = (N0, I0), and the degenerate system is given bydN̄
dt = (β − µ)N̄ − µ∗Ī ,

0 = Ī(λ(N̄ − Ī)− γ),
(4.2.4)

with initial condition N̄(0) = N0.

4.2.0.2 Theorem. 1. If N0 < ν and β − µ ≤ 0, then the solution to (4.2.1) satisfies

lim
ε→0

I(t, ε) = 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = N0e
(β−µ)t, t ∈ (0, T ].

2. If N0 > ν and β − µ ≥ 0, then the solution to (4.2.1) satisfies

lim
ε→0

I(t, ε) = N̄2(t)− ν, t ∈ (0, T ],

lim
ε→0

S(t, ε) = ν, t ∈ (0, T ],

where N̄2(t) =

(
(β−µ−µ∗)N0+µ∗ν

)
e(β−µ−µ∗)t−µ∗ν

β−µ−µ∗ .

Proof. Solving the degenerate system, we obtain two solutions: (Ī1, N̄1) and (Ī2, N̄2)

where N̄1(t) = N0e
(β−µ)t, Ī1(t) = 0, and N̄2(t) =

(
(β−µ−µ∗)N0+µ∗ν

)
e(β−µ−µ∗)t−µ∗ν

β−µ−µ∗ , Ī2(t) =

N̄2(t) − ν, for t ∈ ĪT . It follows that there are two quasi steady states Ī1 = 0 and

Ī2 = N̄ − ν which intersect at N̄ = ν. Let us consider Ī1 = 0 as our isolated solution.



Section 4.2. Two Dimensional Case: Case of a Quick Disease (Influenza) Page 28

For N0 < ν and β − µ ≤ 0, we have N̄1(t) < ν for all t ∈ ĪT . That is, N̄1(t) ∈ Ψ− for

t ∈ ĪT . Since N̄1 satisfies the equation

dN̄1

dt
= (β − µ)N̄1, t ∈ ĪT , (4.2.5)

it follows that the domain Ψ− = {N,N < ν} is invariant under the flow defined by

(4.2.5). Similarly to the one dimensional case, it is easy to see, considering the auxiliary

equation, that Î = Ī1 is uniformly asymptotically stable on Ψ−. Therefore, according to

the Tikhonov theorem, for N0 < ν and r ≤ 0,

lim
ε→0

I(t, ε) = 0, t ∈ (0, T ],

lim
ε→0

S(t, ε) = N̄1(t), t ∈ (0, T ].

This case corresponds to the case of a stable population.

Further, setting I = N − S, from (4.2.2) we have

dN

dt
= (β − µ)N − µ∗(N − S), N(0) = N0. (4.2.6)

Thus (4.2.1) becomesεdSdt = ε(βN − µS)− (λS − γ)(N − S), S(0) = S0,

dN
dt = (β − µ)N − µ∗(N − S), N(0) = N0.

(4.2.7)

Setting ε = 0 in (4.2.7), we obtain the degenerate system0 = −(λS̄ − γ)(N̄ − S̄), S̄(0) = S0,

dN̄
dt = (β − µ)N̄ − µ∗(N̄ − S̄), N̄(0) = N0.

(4.2.8)

Thus, there are two quasi steady states: S̄1 = N̄ and S̄2 = ν where S̄i = N̄− Īi, i = 1, 2.

Let us consider S̄2 = ν as our isolated quasi steady state. The solution of the degenerate

system (4.2.8) for S̄ = ν is

N̄2(t) = − µ∗ν

β − µ− µ∗
+ (N0 +

µ∗ν

β − µ− µ∗
)e(β−µ−µ∗)t.

Furthermore, let us consider the right hand side of the auxiliary equation of (4.2.7) denoted

by

ĥ = (λŜ − γ)(Ŝ −N)
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We have,

∂ĥ

∂Ŝ
= 2λŜ − γ − λN

It follows that ∂ĥ
∂Ŝ
|Ŝ=ν = γ − λN < 0 for N ∈ Ψ+. Therefore, Ŝ = S̄2 is uniformly

asymptotically stable on Ψ+. Finally, let us find out whether or not Ψ+ is invariant under

the flow generated by the degenerated system. We distinguish three cases with respect

to r̊ = β − µ− µ∗; that is, either r̊ = 0, r̊ < 0, or r̊ > 0.

• If r̊ = 0 and N0 > ν then N̄2 is solution to the differential equation

dN̄2

dt
= µ∗ν, (4.2.9)

with N̄2(0) = N0. Thus,

N̄2(t) = µ∗νt+N0 for t ∈ IT .

It follows that for N0 > ν,

N̄2(t) ≥ ν for t ∈ IT ,

since µ∗νt > 0. Therefore,

N̄2(t) ∈ Ψ+ for t ∈ IT .

• For β−µ > 0, β−µ−µ∗ > 0 and N0 > ν, let us consider the equation satisfied by

N̄2 and given by

dN̄2

dt
= (β − µ− µ∗)N̄2 + µ∗ν, (4.2.10)

with N̄2(0) = N0. That is,

N̄2(t) =
µ∗ν

β − µ− µ∗
(e(β−µ−µ∗)t − 1) +N0e

(β−µ−µ∗)t.

However, since N0 > ν,

N0e
(β−µ−µ∗)t > ν ⇒ µ∗ν

β − µ− µ∗
(e(β−µ−µ∗)t − 1) +N0e

(β−µ−µ∗)t > ν.

Thus,

N̄2(t) ∈ Ψ+ for t ∈ IT .
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• For β − µ > 0, β − µ− µ∗ < 0 and N0 > ν, let us consider again equation (4.2.10).

Its equilibrium solution is

N̄∗2 = −µ
∗ν

r̊
= (1− β − µ

β − µ− µ∗
)ν.

Since β − µ > 0 and β − µ− µ∗ ≤ 0, it follows that

N̄∗2 ≥ ν.

Furthermore, let us denote the right hand side of (4.2.10) by

g2(N̄2) = (β − µ− µ∗)N̄2 + µ∗ν.

The derivative of g2 with respect to N̄2 is

g2N̄2
= β − µ− µ∗ < 0.

Thus, the equilibrium N̄∗2 is attractive. Therefore, since the solutions are monotonic

and N̄∗2 ≥ ν, any solution to (4.2.10) with initial condition N0 > ν converges to the

equilibrium while remaining greater than ν It follows that

N̄2(t) ∈ Ψ+ for t ∈ IT .

Hence, for β − µ > 0 and N0 > ν,

N̄2(t) ∈ Ψ+ for t ∈ ĪT .

In other words, Ψ+ is invariant under the flow generated by (4.2.10). Therefore, according

to the Tikhonov theorem, that for N0 > ν and β − µ ≥ 0,

lim
ε→0

S(t, ε) = ν, t ∈ (0, T ],

lim
ε→0

I(t, ε) = N̄2(t)− ν, t ∈ (0, T ].

4.2.0.3 Remark (Some Comments on the Case of an Unstable-Stable Population). Let

us assume that

β − µ− µ∗ < 0 and β − µ > 0. (4.2.11)

We aim to analyse the existence and the stability of the equilibria of (4.2.7) under as-

sumption (4.2.11). It is easy to see that (N,S) = (0, 0) is an equilibrium point of (4.2.7).
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Let us determine the second equilibrium point, (NE, SE), of (4.2.7). From the second

equation of (4.2.7), we have

NE =
−µ∗SE

β − µ− µ∗

and, since (4.2.1) and (4.2.7) are equivalent systems, we have from the second equation

of (4.2.1)

SE =
ε(µ+ µ∗) + γ

λ
.

It follows that NE > 0 and NE > SE if and only if β − µ − µ∗ < 0 and β − µ > 0.

Therefore, under assumptions (4.2.11), there exists a relevant biological equilibrium point,

(NE, SE), to (4.2.7). Moreover, we have

lim
ε→0

SE(ε) = ν,

lim
ε→0

NE(ε) =
−µ∗ν

β − µ− µ∗
,

where S = ν is the second quasi steady state of (4.2.7). It is asymptotically stable if

N ∈ Ψ+. The solution of the degenerate system of (4.2.7) for S = ν is

N̄2(t) = − µ∗ν

β − µ− µ∗
+ (N0 +

µ∗ν

β − µ− µ∗
)e(β−µ−µ∗)t.

It can be noticed that

lim
t→∞

N̄2(t) =
−µ∗ν

β − µ− µ∗
= lim

ε→0
NE(ε).

Let us now study the stability of the equilibria (N,S) = (0, 0) and (N,S) = (NE(ε), SE(ε)).

The matrix B0 of the linear system associated to (4.2.7) at (N,S) = (0, 0) is given by

B0(ε) =

(
β − µ− µ∗ µ∗

β + γ
ε −(µ+ γ

ε )

)
.

If follows that the determinant is

detB0(ε) = −(β − µ− µ∗)(µ+
γ

ε
)− µ∗(β +

γ

ε
)

= −(β − µ)γ

ε
− µ(β − µ− µ∗)− µ∗β.

Thus, since β − µ > 0,

lim
ε→0

detB0(ε) = −∞.
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This means that B0(ε) has a positive eigenvalue for sufficiently small ε. Thus the equilib-

rium (N,S) = (0, 0) is unstable. Let us consider the equilibrium (NE, SE) and denote

f̃(N,S) = (β − µ− µ∗)N + µ∗S,

g̃(N,S) = βN − µS − 1

ε
(λS − γ)(N − S).

We have at (NE, SE),

∂f̃

∂N
= β − µ− µ∗ and

∂f̃

∂S
= µ∗,

∂g̃

∂N
= β − 1

ε
(λSE − γ) = β − µ− µ∗ and,

∂g̃

∂S
= −µ− λ

ε
(NE − SE) +

1

ε
(λSE − γ)

= µ∗ +
λ

ε

1 + µ∗

β − µ− µ∗
SE = A+

B

ε
,

where A = µ∗ + (1+µ∗)(µ∗+µ)
β−µ−µ∗ and B = γ(1+µ∗)

β−µ−µ∗ .

It follows that the Jacobian matrix at (NE, SE) is

BE(ε) =

(
β − µ− µ∗ µ∗

β − µ− µ∗ A+ B
ε

)
.

The determinant of BE is

detBE(ε) = (β − µ− µ∗)(µ∗ − µ) + (1 + µ∗)(µ∗ + µ) +
γ(1 + µ∗)

ε
,

and the trace of BE is

trBE(ε) = β − µ+
(1 + µ∗)(µ∗ + µ)

β − µ− µ∗
+

γ(1 + µ∗)

β − µ− µ∗
1

ε
.

Therefore,

lim
ε→0

detBE(ε) = +∞,

lim
ε→0

trBE(ε) = −∞,

since, by assumption, β − µ − µ∗ < 0. Thus, (NE, SE) is asymptotically stable for

sufficiently small ε.

4.2.1 Numerical Simulations

Figure 4.3 shows the graphs of the dynamics of the infective population, solution to (4.2.3),

for ε = 0.05, 0.01 and that of the infective population, solution to the degenerate system
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(4.2.4), represented by ε = 0. The value of the parameters used for simulation are,

[9, 57] λ = 0.0018, γ = 0.14, β = 0.038, µ = 0.013, µ∗ = 0.015 with initial condition

(I0, N0) = (220, 270) for Case 2 in Theorem 4.2.0.2 (the unstable case). For Case 1 in

Theorem 4.2.0.2 (the stable case), we considered λ = 0.0018, γ = 0.14, β = 0.03, µ =

0.038, µ∗ = 0.04, I0 = 20 and N0 = 70. It can be observed that in both cases the

solution to (4.2.3) tends to the solution of the degenerate system as epsilon tends to

zero, as predicted by the Tikhonov theorem.

4.3 Two Dimensional Case: a Simple Model for the
Dengue Fever

According to the World Health Organization (WHO), the annual number of dengue fever

and dengue haemorrhagic fever cases has increased dramatically in recent years. In en-

demic countries the burden of dengue is nearly 1,300 disability-adjusted lives per million

population [33]. The geographical areas with high risk factor have expanded in recent years

and travellers from endemic areas can contribute to a further spread [34, 77, 40]. The

dengue fever is a vector borne-disease mainly transmitted by aedes aegypti mosquitoes.

In order to capture the essence of the dynamics of the disease [60], let us consider the

simplest model possible. It is obtained by considering only one strain and assuming that

the long-life immunity is negligible. Let us consider the following model, [60],

dS
dt = α(N − S)− β

MSV,

dI
dt = β

MSV − αI,
dU
dt = ψ − νU − ϑ

NUI,

dV
dt = ϑ

NUI − νV,

(4.3.1)

where the initial condition is (S(0), I(0), U(0), V (0)) = (I0, S0, U0, V0), S and I represent,

respectively, the numbers of susceptible and infected hosts; U and V are, respectively, the

numbers of susceptible and infective vectors; N and M stand for the total host population

and the total vector population, respectively and they are assumed to be constant over

time. The vector’s infection rate is ϑ and its death rate is ν. The recruitment into the

vector’s population is ψ. The force of infection in the host’s population is β
M and its

recovery rate is α. The parameters α, β, ν, ϑ, ψ are positive parameters.
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Figure 4.3: These figures show the graphs of the solutions to (4.2.3) for ε = 0.05, 0.01 and the solution to the
degenerate system (4.2.4) represented by ε = 0 in both cases: stable (Case 1 in Theorem 4.2.0.2) and unstable
(Case 2 in Theorem 4.2.0.2) population. The first figure shows a stable population, while the second presents
an unstable population. One can easily notice that in both cases the solutions to (4.2.3) tend to that of the
degenerate system (4.2.4) as ε tends to zero.
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4.3.1 Analysis of the Model

4.3.1.1 Theorem. For the initial condition (S0, I0, U0, V0) ∈ R4
+ at t0 = 0 the solution

to (4.3.1) exists, is unique and non-negative on R+.

Proof. It is important to mention that this proof will be referred to as a generic example

of a proof for similar problems. Let us consider model (4.3.1) and denote

f1(S, I, U, V ) = αI − β

M
SV,

f2(S, I, U, V ) =
β

M
SV − αI,

f3(S, I, U, V ) = ψ − νU − ϑ

N
UI,

f4(S, I, U, V ) =
ϑ

N
UI − νV,

f = (f1, f2, f3, f4), X = (S, I, U, V ), and X0 = (S0, I0, U0, V0).

Local existence and uniqueness of the solution. It can be noticed that the function

f is continuous and Lipschitz continuous with respect to X. According to the Picard

theorem, Theorem 3.2.1.1, there exists τ0 > 0 such that the solution to (4.3.1) exists and

is defined locally at least on [0, τ0]. Again, let us consider the initial condition X1 = X(τ0)

at t0 = τ0. Using Theorem 3.2.1.1, it follows that there exist τ0 ≤ τ1 ∈ R+ and a unique

solution to (4.3.1) defined on [τ0, τ1]. By uniqueness of the solution of (4.3.1) with a

given initial condition, it follows that the solutions of (4.3.1), obtained on [0, τ0] and on

[τ0, τ1] form a unique solution of (4.3.1) on [0, τ1] with the initial condition X0 at t0 = 0.

Repeating this process many times, we obtain the maximal forward interval of a existence

for the solutions of (4.3.1), say [0, τ̂) with τ̂ > 0.

Positivity of the solution. For X ∈ R4
+,

f1(0, I, U, V ) ≥ 0,

f2(S, 0, U, V ) ≥ 0,

f3(S, I, 0, V ) ≥ 0,

f4(S, I, U, 0) ≥ 0.

Therefore, according to Theorem 3.2.1.3, the unique solution of (4.3.1) is positive on

[0, τ̂).
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Global existence, uniqueness and positivity of the solution. Since S, I, U, V are

positive on [0, τ̂), it follows from (4.3.1) that

dM

dt
= ψ − νM ≤ ψ and N(t) = N0, t ∈ [0, τ̂).

Thus 0 < U +V < ψt+M0 and S+ I = N0 for t ∈ [0, τ̂). Hence the solution to (4.3.1)

is bounded on [0, τ̂). In other words, it does not blow up on any finite interval of R+.

Therefore, according to Theorem 3.2.1.3, the solution of (4.3.1) exists for all time.

Thus, for any initial condition in R4
+, the problem (4.3.1) possesses a unique and positive

solution in R4
+.

Since at any time t the total populations are equal to the respective sums of the numbers

of susceptible and the infective individuals, we can simplify (4.3.1) todI
dt = β

MV (N − I)− αI, I(0) = I0,

dV
dt = ϑ

N I(M − V )− νV, V (0) = V0,
(4.3.2)

with S = N − I, U = M −V . Furthermore, since the vector life cycle is faster than that

of the host, the scaling of (4.3.2) leads to the following singularly perturbed modeldI
dt = β

MV (N − I)− αI, I(0) = I0,

1
365

dV
dt = ϑ̃

N I(M − V )− ν̃V, V (0) = V0,
(4.3.3)

with ϑ = 365ϑ̃ and ν = 365ν̃.

As before, we introduce a small parameter ε and consider the following class of equationsdI
dt = β

MV (N − I)− αI, I(0) = I0,

εdVdt = ϑ̃
N I(M − V )− ν̃V, V (0) = V0.

(4.3.4)

The problem (4.3.3) can be obtained from (4.3.4) with ε = 1
365 .

The degenerate equation is ϑ̃
N I(M − V̄ )− ν̃V̄ = 0. It follows that its solution is unique

(therefore isolated) and is given by

V̄ =
ϑ̃
NMI

ϑ̃
N I + ν̃

.

The auxiliary equation is

dV̂

dτ
= ĝ(V̂ , I) =

ϑ̃

N
I(M − V̂ )− ν̃V̂ , V̂ (0) = V0,
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where I and N are parameters. It is easy to notice that V̂ = V̄ (I) is an equilibrium of

the auxiliary equation. Differentiating the right hand side of the auxiliary equation with

respect to V̂ , we obtain

ĝV̂ (V̂ , I) = − ϑ̃
N
I − ν̃.

Since I is non-negative, it follows that ĝV̂ < 0. Therefore, V̂ = V̄ (I) is asymptotically

stable uniformly on M = {I, I ≥ 0}.

Thus, according to the Tikhonov theorem, the solution of (4.3.4) satisfies

lim
ε→0

I(t, ε) = Ī(t), t ∈ [0, T ],

lim
ε→0

V (t, ε) = V̄ (t), t ∈ (0, T ],

where (Ī , V̄ ) is the solution to the degenerate system
dĪ
dt = β

M (N − Ī)
ϑ̃
NMĪ
ϑ̃
N Ī+ν̃

− αĪ, Ī(0) = I0,

V̄ =
ϑ̃
NMĪ
ϑ̃
N Ī+ν̃

, t ∈ ĪT .
(4.3.5)

4.3.2 Numerical Simulations

Figure 4.4 shows the graphs of the orbits V (I) and V̄ (Ī), respectively, for ε = 0.02, 0.005

and ε = 0. We considered the parameters, taken from [60], α = 1
10 , ν = 1

10 , ν̃ =

α, ψ = νM, ϑ = 2ν, M = 10N, β = 2α, ϑ̃ = ϑ
να and the initial condition is

(I0, V0) = (100, 2500). The time unit is a year. It can be observed that V tends to V̄ as

ε tends to zero. Therefore, the quasi steady state is a good approximation of the solution

of (4.3.4) when ε is small enough, on a finite interval [0, T ].

4.4 Three Dimensional Case: a Simple Model for
Malaria

Malaria is among the most lethal and prevalent human infections worldwide. The Plas-

modium falciparum is the parasite that causes the disease. It is transmitted by the female
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Figure 4.4: This figure presents the graph of V̄ (Ī) represented by the line ε = 0 and the orbits (I(t, ε), V (t, ε))
for ε = 0.02, 0.005. It can be noticed that as ε tends to zero, V tends to V̄ .

vector of the genus anopheles mosquitoes who can get infected when feeding on an in-

fected blood. This disease may be fatal. According to WHO, in 2015 almost half the

global population lived in the areas, where the risk of getting an infection of malaria is

high [30, 37]. Developing countries have a higher incidence of malaria [30, 72]. In partic-

ular, tropical and sub-tropical regions of the world each year have approximately 300-600

million cases of clinical malaria, of which 1-2 million result in death [30, 37], with 90% of

malaria-associated deaths occurring in Africa.

In this study we look at a simplified model of malaria given by:

dSh
dt = ΨhNh + ρhRh − λh(t)Sh − µ1hSh,

dIh
dt = λh(t)Sh − γhIh − µ1hIh − µ2hIh,

dRh
dt = γhIh − ρhRh − µ1hRh,

dSv
dt = ΨvNv − λv(t)Sv − µ1vSv,

dIv
dt = λv(t)Sv − µ1vIv,

(4.4.1)

with initial condition (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v ) and where

Sh, Ih and Rh denote, respectively, the susceptible, infective, and recovered class for the

host. The variables Sv and Iv are, respectively, the numbers of susceptibles and infectives

for the vector. The total population for the host (resp. vector) is Nh = Sh + Ih + Rh

(resp. Nv = Sv + Iv) and the birth rate for hosts (resp. vectors) is Ψh (resp. Ψv). The

parameter γh is the recovery rate of the host from the disease and ρh is the rate of loss

of immunity for hosts. The natural death rate in the host (resp. vector) population is µ1h
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(resp. µ1v), the disease induced death rate is µ2h in the host population and the force of

infection of hosts (resp. vectors) is λh (resp. λv). According to Chitnis, [23], the force

of infection of hosts (resp. vectors) is the product of the probability that a vector (resp.

a host) is infectious, βvh (resp. βhv), the probability of transmission of the disease from

a vector to a host (resp. from a host to a vector) and the number of vectors’ bite a host

can receive per unit of time, σh (resp. the number of bites a vector can make per unit of

time, σv). The mathematical formulae are

λh = `(σv, σh)βhv
Iv
Nh

and

λv = `(σv, σh)βvh
Ih
Nh

,

where `(σv, σh) = σvσh
σv(Nv/Nh)+σh

represents the number of vector bites on the hosts, [23].

In particular, assuming the case of a very large host population and a very small vector

population, we have the following approximations of the forces of infection, [23],

λh ≈ σvβhv
Iv
Nh

and λv ≈ σvβvh
Ih
Nh

.

Substituting these values into (4.4.1) and assuming a stable vector population, that is,

Ψv = µ1v, we obtain



dSh
dt = ΨhNh + ρhRh − σvβhv IvShNh

− µ1hSh,

dIh
dt = σvβhv

IvSh
Nh
− γhIh − µ1hIh − µ2hIh,

dRh
dt = γhIh − ρhRh − µ1hRh,

dSv
dt = µ1vNv − σvβvh IhSvNh

− µ1vSv,

dIv
dt = σvβvh

IhSv
Nh
− µ1vIv,

⇒



dSh
dt = (Ψh − µ1h)Sh + ΨhIh+

(Ψh + ρh)Rh − σvβhv IvShNh
,

dIh
dt = σvβhv

IvSh
Nh
− (γh + µ1h + µ2h)Ih,

dRh
dt = γhIh − (ρh + µ1h)Rh,

dSv
dt = µ1vIv − σvβvh IhSvNh

,

dIv
dt = −µ1vIv + σvβvh

IhSv
Nh

.

(4.4.2)

4.4.1 Analysis of the Model

4.4.1.1 Theorem. Let us assume that Ψh−µ1h−µ2h ≥ 0. For a positive initial condition

(S0
h, I

0
h, R

0
h, S

0
v , I

0
v ) the solution to (4.4.1) exists, is unique and positive on R+.
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Proof. The poof of the existence and the uniqueness of the solution to (4.4.1) is similar to

that of Theorem 4.3.1.1. In order to prove that the solution exists globally, let us assume

Ψh − µ1h − µ2h ≥ 0. From (4.4.1) we have

dNh

dt
= (Ψh − µ1h)Nh − µ2hIh.

It follows that

(Ψh − µ1h)Nh ≥
dNh

dt
≥ (Ψh − µ1h − µ2h)Nh. (4.4.3)

From solving (4.4.3), we obtain

N0
he

(Ψh−µ1h)t ≥ Nh(t) ≥ N0
he

(Ψh−µ1h−µ2h)t ≥ N0
h , t ≥ 0.

Thus for N0
h > 0, Nh(t) > 0 and is bounded for all t ∈ R+. Therefore the solution exists

globally.

Substituting the parameter values shown in Table 4.4.1,[23], into system (4.4.2) we obtain

dSh
dt = 1.2609× 10−2Sh + 2.7981× 10−2Ih+

5.3569× 100Rh − 4.3800× 100 IvSh
Nh

,

dIh
dt = 4.3800× 100 IvSh

Nh
− 1.3674× 100Ih,

dRh
dt = 1.3520× 100Ih − 5.3443× 100Rh,

dSv
dt = 5.2159× 101Iv − 1.8250× 102 IhSv

Nh
,

dIv
dt = −5.2159× 101Iv + 1.8250× 102 IhSv

Nh
,

(4.4.4)

with (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), Rv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v , R

0
v). Considering the

initial condition S0
h = 1000.0, R0

h = 0, I0
h = 40.0, S0

v = 100.0, E0
v = 0, I0

v = 30.0, [23],

the numerical result of (4.4.4) is shown in Figure 4.5.

To ease the understanding of the model, we study the range of the coefficient values of

the model (4.4.4) written in scientific notation. It can be observed that the coefficients

are between factors of 10−2 and factors of 100 for the host and between factors of 101 and

factors 102 for the vector. This significant difference in the ranges between the coefficients

of the host and the vector reflects the fact that the vector population has a fast life cycle

in comparison with the life cycle of the host. Let us merge these ranges by making sure

that they have the lower bound of order 10−2. The model (4.4.4) can be rewritten in the
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Figure 4.5: Solution to system (4.4.5).
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Table 4.1: Parameter values

Parameter Values per day Values per year

Ψh 7.666× 10−5 2.7981× 10−2

µ1h 4.212× 10−5 1.5372× 10−2

ρh 1.460× 10−2 5.3290× 100

σv 0.6 2.1900× 102

γh 3.704× 10−3 1.3520× 100

µ2h 10−7 3.6500× 10−5

µ1v 0.1429 5.2159× 101

Dimensionless Parameters
βvh 8.3333× 10−1

βhv 2.0000× 10−2

form 

dSh
dt = 1.2609× 10−2Sh + 2.7981× 10−2Ih+

5.3569× 100Rh − 4.3800× 100 IvSh
Nh

,

dIh
dt = 4.3800× 100 IvS̄h

Nh
− 1.3674× 100Ih,

dRh
dt = 1.3520× 100Ih − 5.3443× 100Rh,

10−3 dSv
dt = 5.2159× 10−2Iv − 1.8250× 10−1 IhSv

Nh
,

10−3 dIv
dt = −5.2159× 10−2Iv + 1.8250× 10−1 IhSv

Nh
,

(4.4.5)

with (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), Rv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v , R

0
v). As before we

introduce a small parameter ε and consider the following class of equations

dSh
dt = 1.2609× 10−2Sh + 2.7981× 10−2Ih+

5.3569× 100Rh − 4.3800× 100 IvSh
Nh

,

dIh
dt = 4.3800× 100 IvS̄h

Nh
− 1.3674× 100Ih,

dRh
dt = 1.3520× 100Ih − 5.3443× 100Rh,

εdSvdt = 5.2159× 10−2Iv − 1.8250× 10−1 IhSv
Nh

,

εdIvdt = −5.2159× 10−2Iv + 1.8250× 10−1 IhSv
Nh

,

(4.4.6)

with (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), Rv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v , R

0
v). The system (4.4.5)

is obtained for ε = 10−3 in (4.4.6). Since the total vector population is assumed to be
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stable, we have Iv = N0
v − Sv. Thus,

dSh
dt = 1.2609× 10−2Sh + 2.7981× 10−2Ih+

5.3569× 100Rh − 4.3800× 100 (N0
v−Sv)Sh
Nh

,

dIh
dt = 4.3800× 100 (N0

v−Sv)Sh
Nh

− 1.3674× 100Ih,

dRh
dt = 1.3520× 100Ih − 5.3443× 100Rh,

εdSvdt = 5.2159× 10−2(N0
v − Sv)− 1.8250× 10−1 IhSv

Nh
,

(4.4.7)

with (Sh(0), Ih(0), Rh(0), Sv(0), Iv(0), Rv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v , R

0
v). It follows that

the degenerate system of equations corresponding to (4.4.7) is given by

dS̄h
dt = 1.2609× 10−2S̄h + 2.7981× 10−2Īh+

5.3569× 100R̄h − 4.3800× 100 ĪvS̄h
Nh

,

dĪh
dt = 4.3800× 100 ĪvS̄h

Nh
− 1.3674× 100Īh,

dR̄h
dt = 1.3520× 100Īh − 5.3443× 100R̄h,

0 = 5.2159× 10−2(N0
v − S̄v)− 1.8250× 10−1 ĪhS̄v

N̄h
,

(4.4.8)

with the initial condition (S̄h(0), Īh(0), R̄h(0), S̄v(0), Īv(0)) = (S0
h, I

0
h, R

0
h, S

0
v , I

0
v ).

The solution to the degenerate equation is unique, and therefore isolated, and it is given

by

S̄v =
5.2159× 10−2N0

v

1.8250× 10−1 Īh
N̄h

+ 5.2159× 10−2N̄0
v

.

Furthermore, setting τ = t
ε in (4.4.7), we obtain the auxiliary equation

dŜv
dτ

= 5.2159× 10−2(N0
v − Ŝv)− 1.8250× 10−1IhŜv

Nh
,

where Nh and Ih are taken as parameters. It is easy to see that Ŝv = S̄v is an equilibrium

to the auxiliary equation. Let us denote ĝ = 5.2159×10−2(N0
v − Ŝv)−1.8250×10−1 IhŜv

Nh
.

It follows that

∂ĝ

∂Ŝv
= −5.2159− 1.8250× 10−1 Ih

Nh
< 0,

for Ih, Nh > 0. Since Ψh − µ1h − µ2h ≥ 0, according to Theorem 4.4.1.1 we have

Nh(t) > 0 for all t ∈ ĪT . Therefore, Ŝv = S̄v(Sh, Ih, Rh) is uniformly asymptotically
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stable on M̄ = {(Sh, Ih, Rh) ∈ R3
+, Sh + Ih + Rh ≥ N0 > 0}. Hence, according to the

Tikhonov theorem, the solution to problem (4.4.6) satisfies

lim
ε→0

Sh(t, ε) = S̄h, t ∈ [0, T ],

lim
ε→0

Ih(t, ε) = Īh, t ∈ [0, T ],

lim
ε→0

Rh(t, ε) = R̄h, t ∈ [0, T ],

lim
ε→0

Sv(t, ε) = S̄v, t ∈ (0, T ],

lim
ε→0

Iv(t, ε) = N0
v − S̄v, t ∈ (0, T ].

4.4.2 Numerical simulations

With the same initial conditions as on Figure 4.5, Figure 4.6 shows the graphs of the

solutions to (4.4.5), (4.4.6) and (4.4.8). So, the solution to (4.4.5) is represented by the

graph corresponding to ε = 10−3, the solution to (4.4.6) by the graphs with ε = 5× 10−4

and ε = 5 × 10−3, and the solution to (4.4.8) by the graph ε = 0. We can observe that

as ε tends to zero, the solution of (4.4.6) tends to the solution to the degenerate system

(4.4.8), agreeing with Tikhonov’s approximation.

4.5 Conclusion

We observed that the Tikhonov theorem provides an easy way to approximate systems of

differential equations. The two main assumptions are that the solution to the degenerate

equation should be unique (or isolated) and uniformly asymptotically stable on a well

defined domain. However, as in the case of influenza, we found that these conditions are

not always satisfied. In the next chapters we will study the case where the solutions to the

degenerate equation are not isolated but intersect each other and, at their intersection,

the QSSs switch stability and the solution to the original problem exists.
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Figure 4.6: The solution to (4.4.5) is represented by the curve labelled ε = 10−3, the solution to (4.4.6) is
represented by the graph ε = 5× 10−4, 5× 10−3 and the solution to (4.4.8) by ε = 0. It is easy to see that as
ε tends to 0, the solutions of (4.4.6) tend to the solution of (4.4.8).
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5 Stability Switch in a One Dimensional Case
Study: Influenza

In this chapter, we aim to go further in our analysis by considering the case where the

solution passes through the intersection point of the quasi steady states. Even though the

Butuzov theorem dealt with one dimensional problems of this type, we found it instructive

to provide a direct study of the one dimensional SIS model. It is important to mention

that this study has already been done in [57]. However, we decided to recall this result

here because not only it constitutes the foundation of the extension of the method used

in the Butuzov theorem to the two dimensional SIS model in the next chapter, but also

details of the proof are needed and will be referred to later on.

5.1 Preliminary Results

Let us consider problem (4.1.1)dS
dt = βN − µS − 1

ε (λIS − γI), S(0) = S0,

dI
dt = −µI + 1

ε (λIS − γI), I(0) = I0,
(5.1.1)

where, as already mentioned, S and I describe, respectively, the size of the susceptible

and the infective populations, λ is the transmission rate of the disease from an infected

to a susceptible, γ is the recovery rate from the disease, µ is the death rate and N is the

total size of the population (N = S + I). The parameter ε > 0 is a small.

From (5.1.1) it follows that the dynamics of the total population is given by

dN

dt
= rN,

where r = β − µ and the initial condition is N(0) = N0. Therefore

N(t) = N0e
rt, t ∈ [0, T ].

Thus the problem (5.1.1) becomes: dI
dt = −µI + 1

ε (λI(N − I)− γI),

N = N0e
rt and I(0) = I0.



Section 5.1. Preliminary Results Page 47

This implies,

dI

dt
= −µI +

1

ε
(λI(N0e

rt − I)− γI), I(0) = I0. (5.1.2)

1. Solution of equation (5.1.2). Equation (5.1.2) can be written as

dI

dt
= −λI

2

ε
+ I
(1

ε
(λN0e

rt − γ)− µ
)
.

Let us denote

φε(t) =
1

ε
(λN0e

rt − γ)− µ. (5.1.3)

Then (5.1.2) becomes

dI

dt
= −λ

ε
I2 + φε(t)I. (5.1.4)

This is a Bernoulli equation. Let us change the variable I by setting

I =
1

z
.

This implies that

dI = −dz
z2
.

It follows from (5.1.4) that

dz

dt
+ φε(t)z =

λ

ε
, (5.1.5)

with initial condition z(0) = z0 > 0. This equation is a linear first order equation.

Upon using e
∫ t

0 φε(s)ds as an integrating factor, the equation (5.1.5) becomes

d

dt
(ze

∫ t
0 φε(s)ds) =

λ

ε
e
∫ t

0 φε(s)ds.

Integrating both sides, we get

ze
∫ t

0 φε(s)ds − z0 =
λ

ε

∫ t

0

e
∫ s

0 φε(x)dxds,

with z0 = I−1
0 , and hence

z(t) =

[
z0 +

λ

ε

∫ t

0

e
∫ s

0 φε(x)dxds

]
e−

∫ t
0 φε(s)ds. (5.1.6)
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However, from (5.1.3) we have∫ t

0

φε(t) =
1

ε

∫ t

0

(λN0e
rs − γ)ds− µt =

1

ε

[N0λ

r
(ert − 1)− γt

]
− µt.

Hence equation (5.1.6) becomes

z(t) =
[
z0 +

λ

ε

∫ t

0

e
1
ε

[
N0λ
r (ers−1)−γs

]
−µs

ds
]
e
− 1
ε

[
N0λ
r (ert−1)−γt

]
−µt

.

Therefore, the solution to (5.1.2) is

I(t, ε) =
1

z(t)
=

e
1
ε

[
N0λ
r (ert−1)−γt

]
−µt

1
I0

+ λ
ε

∫ t
0 e

1
ε

[
N0λ
r (ers−1)−γs

]
−µs

ds

. (5.1.7)

2. Quasi Steady States. Let us consider equation (5.1.2) at ε = 0. We have

I

(
λ(N0e

rt − I)− γ
)

= 0.

It follows that there are two solutions:

I1(t) = 0 and I2(t) = N0e
rt − ν, t ∈ [0, T ], (5.1.8)

They will be called, respectively, the first and the second quasi steady state.

3. Determination of time tc at which the quasi steady states intersect. The

time tc is determined by I2(tc) = I1(tc); that is, N0e
rtc − ν = 0. Solving, we obtain

tc =
1

r
log
( ν

N0

)
. (5.1.9)

It follows that to ensure the time at which the intersection occurs is positive, we

should have either r > 0 and N0 < ν or r < 0 and N0 > ν. The former case

corresponds to the unstable population and the latter corresponds to the stable pop-

ulation.

5.2 The Case of an Unstable Population

In this section, we consider the case of an unstable population. We will assume that the

birth rate is bigger than the death rate and the initial total population is smaller than the

threshold ν.
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5.2.1 Characterisation of the Function G.

Consider again equation (5.1.2) and let g(t, I, ε) = I
(
− µε − γ + λ(N0e

rt − I)
)
. We

have

gI(t, I, ε) = −µε− γ + λN0e
rt − 2λI.

This implies that,

gI(t, 0, ε) = −µε− γ + λN0e
rt.

Therefore, the function G of Theorem 3.3.4.1 is given by

G(t, ε) =

∫ t

0

(−µε− γ + λN0e
rs)ds = (−µε− γ)t+

λN0

r
(ert − 1), t ∈ IT ,

and at ε = 0 we have

G(t, 0) = −γt+
λN0

r
(ert − 1), t ∈ IT . (5.2.1)

Let us now study the properties of the function G. The derivative of the function G is

given by

G
′
(t, 0) = λN0e

rt − γ.

It follows that the solution to

G
′
(t, 0) = 0

is

tc =
1

r
log(

γ

λN0
).

So, dG
dt (tc, 0) = 0. Since dG

dt (0, 0) = λN0 − γ < 0, we have G
′
(t, 0) < 0 for t < tc, and

G
′
(t, 0) > 0 for t > tc. Consequently, the function G(t, 0) is decreasing between 0 and tc

and increasing for t > tc. In particular,

G(tc, 0) < G(0, 0);

that is

G(tc, 0) < 0. (5.2.2)
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Figure 5.1: This figure illustrates the characteristics of the function G for an unstable population.

On the other hand, let us consider the limit of G(t, 0) at infinity. We have,

lim
t→+∞

G(t, 0) = lim
t→+∞

t
(
− γ +

λN0

rt
(ert − 1)

)
= lim
t→+∞

t
(
− γ +

λN0

r
(
ert

t
− 1

t
)
)
.

Since

lim
t→+∞

ert

t
= +∞ and lim

t→+∞

1

t
= 0,

it follows that

lim
t→+∞

−γ +
λN0

rt
(ert − 1) =∞.

Thus

lim
t→+∞

G(t, 0) = +∞. (5.2.3)

From equations (5.2.3) and (5.2.2), it follows, using the intermediate value theorem, that

there exists a t∗ ∈ (tc,+∞) such that G(t∗, 0) = 0. Since G(., 0) is monotone on (tc, T ],

it follows that t∗ is unique. Figure 5.1 shows the graph of a function G.
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5.2.2 Dynamics of the Infected Population before t∗

From the definitions of the functions I and G given, respectively, by the equations (5.1.7)

and (5.2.1), it follows that

0 ≤ lim
ε→0

I(t, ε) = lim
ε→0

I0e
1
εG(t,0)−µt

1 + λI0
ε

∫ t
0 e

1
εG(s,0)−µsds

≤ lim
ε→0

I0e
1
εG(t,0)−µt,

since the term λI0
ε

∫ t
0 e

1
εG(s,0)−µsds is positive for all t > 0. So,

lim
ε→0

I(t, ε) = 0

since G(t, 0) < 0 on (0, t∗). Therefore, as ε is getting smaller, the solution tends to the

first QSS up to t∗. However, we found in the previous section that t∗ is bigger than the

time at which the intersection occurs. Therefore there is a delay in the stability switch.

5.2.3 Dynamics of the Infected Population after t∗

After proving that the solution to equation (5.1.2) first converges to the first quasi steady

state up to t∗, in this section we will determine the behaviour to the solution after t∗. The

solution (5.1.7) can also be rewritten as

I(t, ε) =
I0

e−
1
εG(t,0)+µt + λ

ε I0e−
1
εG(t,0)+µt

∫ t∗
0 e

1
εG(s,0)−µsds+ λ

ε I0e−
1
εG(t,0)+µt

∫ t
t∗ e

1
εG(s,0)−µsds

.

Let us find the limit of each term of the denominator of I.

Since G(t, 0) > 0 for t > t∗,

lim
ε→0

e−
1
εG(t,0) = 0. (5.2.4)

Thus,

lim
ε→0

e−
1
εG(t,0)+µt = 0, t ∈ (t∗, T ].

On the other hand, G(t, 0) ≤ 0 for t ∈ [0, t∗], therefore

e
1
εG(t,0)−µt ≤ 1, ∀ε > 0, 0 ≤ t ≤ t∗.

It follows that
∫ t∗

0 e
1
εG(s,0)−µ(s−t)ds is bounded. In other words, there exists M > 0 such

that ∫ t∗

0

e
1
εG(s,0)−µ(s−t)ds ≤M.
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Therefore, since G(t, 0) > 0 for t > t∗,

0 ≤ lim
ε→0

λ

ε
I0e
− 1
εG(t,0)+µt

∫ t∗

0

e
1
εG(s,0)−µsds ≤ lim

ε→0

λ

ε
I0Me−

1
εG(t,0) = 0, t > t∗.

Hence, it follows that

lim
ε→0

λ

ε
I0e
− 1
εG(t,0)+µt

∫ t∗

0

e
1
εG(s,0)−µsds = 0, t > t∗. (5.2.5)

Finally, let us determine

lim
ε→0

λ

ε
I0e
− 1
εG(t,0)+µt

∫ t

t∗
e

1
εG(s,0)−µsds. (5.2.6)

Notice that G−1(., 0) exists on (t∗, t) for G(., 0) is a one-to-one function on that interval.

Let us denote z = G(s, 0). Then dz = G
′
(s, 0)ds and s = G−1(z, 0). So, defining

a = G(t, 0) and noticing that G(t∗, 0) = 0, we have from (5.2.6),

lim
ε→0

λ

ε
I0e
− 1
εG(t,0)+µt

∫ G(t,0)

G(t∗,0)

e
1
ε ze−µG

−1(z,0)

G′
(
G−1(z, 0), 0

)dz = lim
ε→0

λ

ε
I0e
−aε+µt

∫ a

0

e
1
ε ze−µG

−1(z,0)

G′
(
G−1(z, 0), 0

)dz,
= lim

ε→0
λI0e

µt

∫ a

0

R(z)
e
z−a
ε

ε
dz,

where R(z) = e−µG
−1(z,0)

G′
(
G−1(z,0),0

) . Furthermore, let us define the function ηε by

ηε(z) =

e
z−a
ε

ε , 0 ≤ z ≤ a,

0, z > a and z ≤ 0.

It follows that limε→0 ηε(z) =∞ if z = a and limε→0 ηε(z) = 0 if z 6= a. Further,∫ +∞

−∞
ηε(z)dz =

∫ a

0

e
z−a
ε

ε
dz = 1− e−

a
ε

which tends to 1 as ε tends to zero. Moreover for 0 ≤ z < a,

lim
ε→0

ηε(z) = lim
ε→0

e
z−a
ε

ε
= 0.

Therefore, ηε is a delta sequence, [57]. So,

lim
ε→0

∫ a

0

R(z)
e
z−a
ε

ε
dz = lim

ε→0

∫ +∞

−∞
R(z)

e
z−a
ε

ε
dz = R(a) =

e−µG
−1(z,0)

G′
(
G−1(z, 0), 0

) ,
=

e−µt

G′(t, 0)
=

e−µt

λN0ert − γ
.
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Thus,

lim
ε→0

λI0e
µt

∫ a

0

R(z)
e
z−a
ε

ε
dz =

λI0

λN0ert − γ
.

Therefore,

lim
ε→0

I(t, ε) =
I0

λ I0
λN0ert−γ

= N0e
rt − ν, t > t∗. (5.2.7)

Hence, the solution converges to the second quasi steady state for t > t∗. In the next

section we will prove that this convergence is almost uniform.

5.2.3.1 Proof that the Convergence to the Second Quasi Steady State is
almost Uniform on any Interval [t̃, T ], t̃ > t∗

According to the result of the previous section, in order to prove that the convergence of

the solution to the second quasi steady state on (t∗, T ] is almost uniform, it is enough to

show that the convergence to zero as ε tends to zero of∫ a

0

R(z)
e
z−a
ε

ε
dz −R(a)

where a = G(t, 0), is uniform for t ∈ [t̃, T ] with t̃ > t̄∗. This is equivalent to prove that

for any δ > 0 there exists ε0 > 0 such that for ε ∈ Iε0, a ∈ [ã, A] = [G(t̃, 0), G(T, 0)], we

have ∣∣∣ ∫ a

0

R(z)
e
z−a
ε

ε
dz −R(a)

∣∣∣ < δ.

However,∣∣∣ ∫ a

0

R(z)
e
z−a
ε

ε
dz −R(a)

∣∣∣ =
∣∣∣ ∫ a

0

R(z)
e
z−a
ε

ε
dz −R(a)−R(a)e−

a
ε +R(a)e−

a
ε

∣∣∣
=
∣∣∣ ∫ a

0

R(z)
e
z−a
ε

ε
dz

+R(a)(1− e−
a
ε )− e−

a
εR(a)

∣∣∣
=
∣∣∣ ∫ a

0

(R(z)−R(a))
e
z−a
ε

ε
dz − e−

a
εR(a)

∣∣∣
=
∣∣∣ ∫ bε

0

(R(z)−R(a))
e
z−a
ε

ε
dz

+

∫ a

bε

(R(z)−R(a))
e
z−a
ε

ε
dz − e−

a
εR(a)

∣∣∣,
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where bε ∈ [ã, A] and limε→0 bε = a. Let us denote M = supz∈[0,bε] |R(z)−R(a)|.

It follows that∣∣∣ ∫ a

0

R(z)
e
z−a
ε

ε
dz −R(a)

∣∣∣ ≤ ∣∣∣M ∫ bε

0

e
z−a
ε

ε
dz

+ sup
z∈[bε,a]

|R(z)−R(a)|
∫ a

bε

e
z−a
ε

ε
dz − e−

a
εR(a)

∣∣∣
≤
∣∣∣M(e

−a+bε
ε − e

−a
ε )

+ sup
z∈[bε,a]

|R(z)−R(a)|(1− e−
a
ε )− e−

a
εR(a)

∣∣∣
≤
∣∣∣M(e

−a+bε
ε − e

−a
ε )

+ sup
z∈[bε,a]

|R(z)−R(a)| − e−
a
εR(a)

∣∣∣
≤M

∣∣∣e−a+bε
ε − e

−a
ε

∣∣∣
+ sup

z∈[bε,a]

|R(z)−R(a)|+
∣∣∣e−aεR(a)

∣∣∣,
since 1 − e−aε ≤ 1. Let us show that e−

a
εR(a) converges uniformly to zero as ε tends to

zero for a ∈ [ã, A]. For a ∈ [ã, A],

e−
a
ε ≤ e−

ã
ε ⇒ |e−

a
εR(a)| ≤ |e−

ã
εR(a)|.

Since R is continuous on [ã, A] there exists P > 0 such that |R(z)| ≤ P. Thus for

a ∈ [ã, A] we have |e−aεR(a)| ≤ |e− ãεR(a)| ≤ Pe−
ã
ε → 0 uniformly as ε tends to zero.

Finally, since R is a continuous function defined on a compact interval [ã, a], then R is

uniformly continuous on that interval. In other words, for any ε > 0, there exists δ > 0

such that for all z1, z2 ∈ [ã, A],

|z1 − z2| < δ ⇒ |R(z1)−R(z2)| < ε.

Thus supz∈[bε,a] |R(z)−R(a)| tends to zero uniformly as ε tends to 0. On the other hand,

for e
−a+bε
ε − e−aε to converge uniformly to zero, it is enough to take bε = a−

√
ε. In fact,

setting bε = a−
√
ε, for any δ > 0 and 0 < ε < min

(
1

ln2( 2
δ )
, a
ln( 2

δ )

)
, we have

e−
a
ε < δ/2, and e−1/

√
ε < δ/2.

It follows that

|e
−a+bε
ε − e

−a
ε | < |e

−1√
ε |+ |e

−a
ε |,

<
δ

2
+
δ

2
= δ.
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Hence M
∣∣∣e−a+bε

ε − e−aε
∣∣∣ + supz∈[bε,a] |R(z)−R(a)| +

∣∣∣e−aεR(a)
∣∣∣ converges uniformly to

zero as ε tends to zero. Thus,
∫ a

0 R(z)e
z−a
ε

ε dz − R(a) converges uniformly to zero on

[ã, A] as ε tends to zero.

5.3 The Case of a Stable Population

5.3.1 Preliminary Results

In this section we consider a stable population characterised by a birth rate smaller than

the death rate (r < 0) and we assume that ν < N0 so that according to equation (5.1.9),

the time at which the intersection of the quasi steady states occurs is positive.

(a) The Second Quasi Steady State. According to (5.1.8), the second quasi state is

I2(t) = N0e
rt − ν, t ∈ ĪT . However, from the definition (5.1.9) of tc, we have for

0 ≤ t < tc,

0 ≤ t <
1

r
log

γ

N0λ
.

This implies that

N0 − ν > N0e
rt − ν ≥ 0.

Therefore, for 0 ≤ t < tc, I2(t) > 0, and similarly, we show that for t > tc, I2(t) < 0.

(b) Stability of the Quasi Steady States. Denote the right hand side of equation

(5.1.2) by

g(t, I, ε) = I

(
− µε+ λ(N0e

rt − I)− γ
)
.

Its derivative with respect to I is g
I
(t, I, ε) = −2λI − µε − γ + λN0e

rt. Then,

evaluating the derivative of the function g at the quasi steady states gives, for ε = 0,

g
I
(t, I1, 0) = −γ + λN0e

rt = λI2(t),

and

g
I
(t, I2, 0) = −2λI2 − µε− γ + λN0e

rt = −λI2.
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From the result found in part (a), it follows that for 0 < t < tc, gI(t, I1, 0) > 0 and

g
I
(t, I2, 0) < 0, and for t > tc, gI(t, I1, 0) < 0 and g

I
(t, I2, 0) > 0. Hence, according

to Remark 3.3.2.2, I2 is asymptotically stable for t < tc and unstable for t > tc,

while I1 is unstable for t < tc and asymptotically stable for t > tc. Therefore, there

is a stability switch at the intersection of the QSSs.

(c) Characterisation of the function G. As before, let us consider the function G

given by

G(t, ε) =

∫ t

0

g
I
(s, I, ε)ds = (−µε− γ)t+

N0λ

r
(ert − 1),

and denote by t∗ the root of G(t, 0); that is,

−γt∗ +
λN0

r
(ert

∗
− 1) = 0,

if it exists. In order to prove the existence of t∗, let us study the shape of function

G(., 0). Its derivative is dG
dt (t, 0) = λN0e

rt − γ = I2(t), t ∈ [0, T ], and

dG

dt
(t, 0) = 0⇒ t =

1

r
log

γ

N0λ
= tc.

It follows, according to the result in part (a), that dG
dt (t, 0) > 0 for 0 < t < tc, and

dG
dt (t, 0) < 0 for t ∈ (tc, T ]. Therefore,

G(0, 0) < G(tc, 0);

that is

G(tc, 0) > 0. (5.3.1)

Furthermore,

lim
t→+∞

G(t, 0) = −γt+
λN0

r
(ert − 1) = −∞, (5.3.2)

since r < 0. From (5.3.1) and (5.3.2) it follows, using the intermediate value

theorem, that there exists t∗ > tc such that G(0, t∗) = 0. Furthermore, since
dG
dt (t, 0) = I2(t) < 0 for t > tc, G is monotone on (tc, T ). Therefore, t∗ is unique.

Figure 5.2 shows the graph of a function G for a stable population.
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Figure 5.2: Illustration of the characteristics of the function G for a stable population.

5.3.2 Dynamics of the Infected Population before tc

The dynamics of the behaviour of the infected population before the intersection of the

quasi steady states can be described by its limit as ε tends to zero. For t < tc,

lim
ε→0

I(t, ε) = lim
ε→0

e
1
ε

[
N0λ
r (ert−1)−γt

]
−µt

1
I0

+ λ
ε

∫ t
0 e

1
ε

[
N0λ
r (ers−1)−γs

]
−µs

ds

= lim
ε→0

1
1
I0
e−

1
εG(t,0)+µt + λ

ε e
− 1
εG(t,0)+µt

∫ t
0 e

1
εG(s,0)−µsds

.

Let us set z = G(t, 0), then dz = G
′
(t, 0)dt and we can define s = G−1(z, 0) for the

function G is a one-to-one function on (0, tc). So,

lim
ε→0

λ

ε
e−

1
εG(t,0)

∫ t

0

e
1
εG(s,0) dz

G′(G−1(z, 0), 0)
= lim

ε→0

λ

ε
e−

1
εG(t,0)

∫ G(t,0)

0

e
1
ε zR(z)dz

with R(z) = 1
G′(G−1(z,0),0)

. Thus,

lim
ε→0

λ

ε
e−

1
εG(t,0)

∫ t

0

e
1
εG(s,0) dz

G′(G−1(z, 0), 0)
= lim

ε→0

λ

ε
e−

1
εG(t,0)

∫ G(t,0)

0

e
1
ε zR(z)dz,

= 1/I2(t),
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see Section 5.2.3. Moreover

lim
ε→0

1

I0
e−

1
εG(t,0) = 0,

since G(t, 0) > 0, for 0 < t < tc. Hence

lim
ε→0

I(t, ε) = I2(t), t < tc.

Therefore before reaching the point of intersection of the two quasi steady states, the

solution converges to the second quasi steady state uniformly in t ∈ (tc, T ] as ε tends to

zero.

5.3.3 Dynamics of the Infected Population for the Time be-
tween tc and t∗

Let us determine the limit of the infected population for the time between tc and t∗.

lim
ε→0

I(t, ε) = lim
ε→0

e
1
ε

[
N0λ
r (ert−1)−γt

]
−µt

1
I0

+ λ
ε

∫ t
0 e

1
ε

[
N0λ
r (ers−1)−γs

]
−µs

ds

= lim
ε→0

e
1
εG(t,0)−µt

1
I0

+ λ
ε

∫ t
0 e

1
εG(s,0)−µsds

= e−µt lim
ε→0

1

1
I0
e−

1
εG(t,0) + λe−

1
ε G(t,0)

ε

(∫ tc
0 e

1
εG(s,0)−µsds+

∫ t
tc
e

1
εG(s,0)−µsds

) .
We have

lim
ε→0

1

I0
e−

1
εG(t,0) = 0,

since G(t, 0) > 0, for 0 < t < t∗, and

lim
ε→0

λe−
1
εG(t,0)

ε

∫ tc

0

e
1
εG(s,0)−µsds =

1

I2
,

according to the result found in Section 5.2.3. Therefore,

lim
ε→0

I(t, ε) = e−µt lim
ε→0

1

(I2)−1 + λe−
1
ε G(t,0)

ε

∫ t
tc
e

1
εG(s,0)−µsds

= e−µt lim
ε→0

1

(I2)−1 + λ
∫ t
tc

1
εe

1
ε (G(s,0)−G(t,0))−µsds

.
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Since G is a decreasing function between tc and t∗, G(s, 0) ≥ G(t, 0) for s ∈ (tc, t) and

hence

lim
ε→0

1

ε
e

1
ε (G(s,0)−G(t,0)) = +∞ for s ≤ t.

Therefore,

lim
ε→0

I(t, ε) = 0 for t ∈ (tc, t
∗).

In other words, as ε tends to zero, the solution converges to the second quasi steady state,

passes close to the intersection of QSS and immediately switches to the first quasi steady

state. Therefore, conversely to the unstable case (see Section 5.2.2), there is no delay in

the stability switch in this case.

5.3.4 Dynamics of the Infected Population after t∗

Similarly, we will determine the asymptotic behaviour of the infected population by finding

its limit for t > t∗ as ε tends to zero. For t ∈ (t∗, T ],

lim
ε→0

I(t, ε) = lim
ε→0

e
1
εG(t,0)−µt

1
I0

+ λ
ε

∫ t
0 e

1
εG(s,0)−µsds

= lim
ε→0

e
1
εG(t,0)−µt

1
I0

+ λ
ε

∫ t∗
0 e

1
εG(s,0)−µsds+ λ

ε

∫ t
t∗ e

1
εG(s,0)−µsds

≤ lim
ε→0

e
1
εG(t,0)−µt

1
I0

.

Since G(t, 0) < 0 for t > t∗, we have limε→0 e
1
εG(t,0)−µt = 0. Therefore,

lim
ε→0

I(t, ε) = 0 for t > t∗.

It follows that after reaching t∗ the solution continues converging to the first quasi state

as ε tends to zero.

5.4 Numerical Simulations

Figure 5.3 is made of two pictures. The first picture is for the stable case, while the

second picture is for the unstable case. The values of the parameters used for the stable
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case are λ = 0.0018, N0 = 100, γ = 0.14, β = 0.001, I0 = 100, µ = 1/70.0 and the

values of the parameters for the unstable population are λ = 0.0018, N0 = 0.5, γ =

0.14, β = 0.1, I0 = 0.4, µ = 1/70.0, [9, 57]. In both cases, the time is in years. It

can be observed that the solution tends to the second QSS and then tends to the first

QSS without delay in the case of a stable population. However, in the case of an unstable

population, the solution tends to the first QSS and remains on the first QSS after reaching

the intersection point. It will move to the second QSS only after the time t∗. Thus, we

observe the delay in the switch of stability which, in this case, is approximatively 20 years.

5.5 Conclusion

As already found in [57], we realised that there is a delay of stability switch in the case

of an unstable population, while in the case of a stable population we have no delay

of stability switch. The solution moves immediately from the second quasi steady state

to the first quasi state for a stable population. However, in the case of an unstable

population, the solution converges to the first quasi steady state and, after crossing the

intersection point, the solution remains for a while on the first quasi steady state, which

became repulsive before moving to the second quasi steady state. The switch that was

expected to occur at tc occurs at t∗. Since t∗ > tc, there is a delay in stability switch.

It is also important to mention that though the function G also has a unique root t∗ in

the stable case, the delay in stability switch is not observed. Also, we proved that the

convergence to the second quasi steady state as ε tends to zero in the unstable case is

almost uniform for t > t∗.

The next chapter consists in studying the two dimensional case of the flu model, when

the total population is allowed to reach the threshold value ν.
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Figure 5.3: Dynamics of the infective population in the one dimensional case of the flu model for different values
of epsilon (eps). The first picture presents the case of a stable population and the second picture presents the
case of an unstable population. In general, in both cases the solution tends to the asymptotically stable part
of the QSSs. There is no delay in the stability switch for the stable population, while a significant delay of
approximatively 20 years is observed in the case of the unstable population.
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6 Stability Switch for a Two Dimensional
Case: Influenza

In this chapter, we study a two dimensional case of the influenza model obtained from

[9, 57] by considering a non-zero disease induced death rate and we assume that the

total population can reach the threshold value ν at which the two quasi steady states

intersect. Similarly to the previous chapters, we consider two cases: the case of an

unstable population and the case of a stable population. The aim of this chapter is

to find the asymptotic behaviour of the solution. In particular, we seek to determine

conditions under which a delay in stability switch and an immediate stability switch are

observed. We use the method of upper and lower bounds. This method consists in finding

two functions called the lower bound (I,N) and the upper bound (I,N) such that

I(t, ε) ≤ I(t, ε) ≤ I(t, ε), (6.0.1)

N(t, ε) ≤ N(t, ε) ≤ N(t, ε), (6.0.2)

for t ∈ IT , ε ∈ Iε0, and having the same limit as ε tends to zero. Thus, using the squeeze

theorem, respectively, on (6.0.1) and on (6.0.2), it follows that

lim
ε→0

I(t, ε) = lim
ε→0

I(t, ε) = lim
ε→0

I(t, ε),

lim
ε→0

N(t, ε) = lim
ε→0

N(t, ε) = lim
ε→0

N(t, ε),

for t ∈ IT .

6.1 Preliminary results

Consider the system (4.2.1) with µ̊ = µ+ µ∗. The system (4.2.1) becomesdS
dt = βN − µS − 1

ε (λIS − γI),

dI
dt = −µ̊I + 1

ε (λIS − γI),
(6.1.1)

with initial condition (S(0), I(0)) = (S0, I0) and ε ∈ Iε0, ε0 > 0, a small parameter.

Summing both equations of this system, we obtain

dN

dt
= βN − µS − µ̊I, (6.1.2)
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with initial condition N(0) = N0 = S0 + I0. Using N = S + I, it follows that N satisfies

both equations

dN

dt
= (β − µ)N − (µ̊− µ)I, N(0) = N0, (6.1.3)

and

dN

dt
= (β − µ̊)N + (µ̊− µ)S, N(0) = N0. (6.1.4)

So, considering (6.1.3), system (6.1.1) becomesεdIdt = −εµ̊I + I(λ(N − I)− γ),

dN
dt = (β − µ)N − (µ̊− µ)I,

(6.1.5)

with initial condition (I(0), N(0)) = (I0, N0). In this chapter, we denote

g(I,N, ε) = −εµ̊I + I(λ(N − I)− γ)

and its derivative with respect to I by

gI(I,N, ε) = −εµ̊− 2λI + λN − γ.

Our objective is to understand the asymptotic behaviour of the solution of the problem

(6.1.5) using the method of upper and lower bounds to system (6.1.5). We will restrict

our study to R2
+ since, according to Theorem 4.2.0.1, the solution to (6.1.5) exists, is

unique and non-negative for non-negative initial condition.

6.1.1 Quasi Steady States

Setting ε = 0 in the first equation of (6.1.5) we obtain two quasi steady states: φ1(N) = 0

and φ2(N) = N−ν. Similarly to the one dimensional case, the quasi steady states intersect

each other at N = ν. Moreover, we have for N ∈ R+,

φ2(N) ≤ 0 for N ≤ ν, (6.1.6)

φ2(N) ≥ 0 for N ≥ ν. (6.1.7)

The derivative of g with respect to I at ε = 0 is

gI(I,N, 0) = −2λI + λN − γ.
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Thus

gI(φ1, N, 0) = λN − γ,

gI(φ2, N, 0) = −λN + γ.

Hence, for N < ν,

gI(φ1, N, 0) < 0,

gI(φ2, N, 0) > 0,

and, for N > ν,

gI(φ1, N, 0) > 0,

gI(φ2, N, 0) < 0.

In other words, for N < ν, φ1 is asymptotically stable, while φ2 is unstable. Conversely,

for N > ν, φ1 is unstable, while φ2 is asymptotically stable.

6.2 The Case of an Unstable Population

6.2.1 Determination of an Upper Bound for the Infective and
Total Population

Let us consider the following ordinary differential equation

dN

dt
= rN, (6.2.1)

with initial condition N(0) = N0 ≥ 0, r = β − µ, and t ∈ ĪT . The solution of (6.2.1)

is N(t) = N0e
rt, t ∈ ĪT . Let us assume r ≥ 0. It follows that N(t) ≥ 0 for t ∈ ĪT

since N0 ≥ 0. Moreover, we have µ̊ − µ > 0 and, according to Theorem 4.2.0.1, I ≥ 0.

Therefore, according to the comparison theorem, Theorem 3.2.2.6, applied to (6.1.3) and

(6.2.1), we have

N(t) ≥ N(t, ε), (6.2.2)

for t ∈ ĪT , ε ∈ Iε0. Furthermore, using (6.2.2), it follows that

−µ̊I +
I

ε
(λ(N − I)− γ) ≥ −µ̊I +

I

ε
(λ(N − I)− γ). (6.2.3)
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Hence, using the comparison theorem, Theorem 3.2.2.6, we obtain

I ≥ I,

where I is the solution to the equation

dI

dt
= −µ̊I +

I

ε
(λ(N − I)− γ),

with initial condition I(0) = I0. The pair (I,N) is therefore an upper bound to the system

(6.1.5).

6.2.1.1 Quasi Steady State Corresponding to the Upper Bound

By definition, I satisfies

ε
dI

dt
= I(−µ̊ε+ λ(N − I)− γ), (6.2.4)

with initial condition I(0) = I0. Then, the quasi steady states to the upper bound are

defined by g(I,N, 0) = 0. Hence, there are two steady states:

I1 = 0 and I2 = N0e
rt − ν,

for t ∈ ĪT .

6.2.1.2 Intersection of Quasi Steady States for the Upper Bound.

Let us denote by tc the intersection point of the two steady states of the upper bound.

At the time tc,

I1(tc) = I2(tc).

It follows that

N0e
rtc − ν = 0.

Therefore,

tc =
1

r
log
( ν

N0

)
.
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6.2.1.3 Convergence of the Infective Population to the First Quasi Steady
State

Since I is the solution to (6.2.4), we see that all the one dimensional calculations in

Chapter 5 can be applied. So, let us consider the function Ḡ defined by the equation

(5.2.1) with r > 0 and let t
∗

be its root. It is easy to prove that

lim
ε→0

I(t, ε) = 0 for t ∈ (0, t
∗
).

The proof is similar to the one in Section 5.2.2.

Thus, since 0 ≤ I(t, ε) ≤ I(t, ε), we have

0 ≤ lim
ε→0

I(t, ε) ≤ lim
ε→0

I(t, ε) = 0 for t ∈ (0, t
∗
).

Therefore,

lim
ε→0

I(t, ε) = 0 for t ∈ (0, t
∗
). (6.2.5)

6.2.2 Maximum Interval on Which the Convergence to the First
Quasi Steady State Holds Almost Uniformly

In this section, we prove that the interval (0, t
∗
) is the biggest interval, where the con-

vergence of the solution I(t, ε) to the first QSS as ε tends to zero is almost uniform. We

use the contradiction method. Therefore, let us assume that there exists t̂ > t
∗

such that

lim
ε→0

I(t, ε) = 0, t ∈ (0, t̂), (6.2.6)

almost uniformly.

6.2.2.1 Definition of the Lower Bounds

Relation (6.2.6) means that for any η > 0 and any δ > 0, there exists ε0 > 0 such that

for all 0 < ε < ε0, we have

0 ≤ I(t, ε) ≤ δ for t ∈ [η, t̂− η].
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Let us consider the function Nηδ such that

dNηδ

dt
= (β − µ)Nηδ + (µ− µ̊)δ, t ∈ [η, t̂− η], (6.2.7)

with Nηδ(η) = Nη which will be determined later. It follows that on the interval [η, t̂− η]

0 ≤
dNηδ

dt
= (β − µ)Nηδ + (µ− µ̊)δ ≤ (β − µ)Nηδ + (µ− µ̊)I,

since µ− µ̊ ≤ 0 and 0 ≤ I ≤ δ. Thus

0 ≤
dNηδ

dt
≤ (β − µ)Nηδ + (µ− µ̊)I.

Therefore, since the right hand side (β−µ)N + (µ− µ̊)I is a continuous function of type

K (for it is a scalar function), according to Theorem 3.2.2.6, and provided Nη ≤ N(η),

we have

Nηδ(t) ≤ N(t) for t ∈ [η, t̂− η].

In other words, Nηδ is a lower bound on [η, t̂−η]. Furthermore, let us define Nηδ on [0, η]

by

dNηδ

dt
= (β − µ̊)Nηδ, Nηδ(0) = N0. (6.2.8)

Therefore

Nηδ(t) = N0e
r̊t, t ∈ [0, η],

with r̊ = β − µ̊. Since µ̊ − µ ≥ 0 and S ≥ 0, it follows, from the comparison theorem

applied to (6.1.4) and (6.2.8), that

N(t) ≥ Nηδ(t), t ∈ [0, η]. (6.2.9)

Solving (6.2.8) and (6.2.7) with Nηδ(η) = N0e
r̊η, we obtain

Nηδ(t) =

N0e
r̊t, 0 ≤ t ≤ η,

(Nη − δµ∗

r )er(t−η) + δµ̃
r , η ≤ t ≤ t̂− η,

where r = β − µ, Nη = N0e
r̊η, µ∗ = µ̊− µ. By construction,

Nηδ(t) ≤ N(t), (6.2.10)

on [0, t̂− η].

Note that for Nηδ to be a meaningful lower bound, it has to be positive on [0, t̂− η]. A

sufficient condition is

Nη −
δµ∗

r
> 0.



Section 6.2. The Case of an Unstable Population Page 68

This can be achieved as Nη and δ are chosen independently. Going back to (6.2.7), we

can select arbitrary η > 0 which gives a fixed value to Nη. Thus, for any δ < Nηr
µ∗ , there

exists ε0 such that for all ε ∈ Iε0,

0 < I(t, ε) < δ on [η, t̂− η].

Consequently, we define Iηδ by
dIηδ
dt = −µ̊Iηδ +

Iηδ
ε (λ(Nηδ − Iηδ)− γ),

Iηδ(0) = I0.
(6.2.11)

Applying the comparison theorem to the definition of I and Iηδ, it follows that Iηδ ≤ I.

Therefore, (Iηδ, Nηδ) is a lower bound to (6.1.5).

6.2.2.2 Quasi Steady States for the Lower Bound to the Infective Population

From the definition of the lower bound given in (6.2.11), there are two quasi steady states:

I1 = 0 or I2 = Nηδ − ν. In full, the two quasi steady states are

I1 = 0 and I2 =

N0e
r̊t − ν, 0 ≤ t ≤ η,

Nηe
r(t−η) + δµ∗

r (1− er(t−η))− ν, η ≤ t ≤ t̂− ν.

6.2.2.3 Intersection of the Quasi Steady States of the Lower Bound to the
Infective Population

Denote by tc the time at which the quasi steady states of the lower bound intersect each

other. Therefore, it satisfies the equality

I1(tc) = I2(tc). (6.2.12)

Since the lower bound is a continuous function, we can choose η (for Nη = N0e
r̊η) small

enough for tc ≥ η. Then (6.2.12) can be written as

Nηe
r(tc−η) +

δµ

r
(1− er(tc−µ))− ν = 0;
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that is,

tc =
1

r
log
( rν − δµ
rNη − δµ

)
+ η. (6.2.13)

We observe that

lim
η→0
δ→0

tc =
1

r
log
( ν

N0

)
= tc.

Since for ε ∈ Iε0,

Iηδ(t, ε) ≤ I(t, ε) ≤ I(t, ε) for t ∈ [η, t̂− η],

tc ≥ tc. These two points can be made as close to each other as we wish by choosing δ

and η small enough.

6.2.2.4 Conclusion

From the definition of the function g, we have

gI(0, Nηδ, ε) = −µ̊ε− γ + λNηδ.

Thus, for t ∈ ĪT , and ε ∈ Iε0,

G(t, ε, η, δ) =

∫ t

0

gI(0, Nηδ(s), ε)ds = (−µ̊ε− γ)t+ λ

∫ t

0

Nηδ(s)ds.

So, replacing Nηδ by its value, we obtain

G(t, ε, η, δ) =


(−µ̊ε− γ)t+ N0λ

r̊ (er̊t − 1), 0 ≤ t ≤ η,

(−µ̊ε− γ)t+ (−µ̊ε− γ)λη + N0λ
r̊ (er̊η − 1) + λ

[
δµ∗

r (t− η)+

1
r(Nη − δµ∗

r )e−rη(ert − erη)
]
, η ≤ t ≤ t∗ − η.

(6.2.14)

We observe that G(t, 0, 0, 0) = −γt + λ
rN0(ert − 1) is the function defined by (5.2.1).

Therefore, according to the result obtained in Section 5.2, there exists t
∗

such that

G(t
∗
, 0, 0, 0) = 0. In order to prove the existence of the root of G(t, ε, η, δ), we use

the implicit function theorem, Theorem 3.2.3.

The function

G(t, ε, η, δ) = (−µ̊ε− γ)λη +
N0λ

r̊
(er̊η − 1)− ηλδµ∗

r

+ (−γ − µ̊ε+
λδµ∗

r
)t+

λ

r
(Nη −

δµ∗

r
)e−rη(ert − erη)
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is continuous and has continuous partial derivatives on R4
+. Let P = (t

∗
, 0, 0, 0) ∈ R4

+.

We have G(t
∗
, 0, 0, 0) = 0 and

∂G(t)

∂t
= −γ − µ̊ε+

λδµ∗

r
+ λ(Nη −

δµ∗

r
)er(t−η);

that is

∂G(P )

∂t
= −γ + λN0e

rt
∗
.

So,

∂G(P )

∂t
6= 0⇔ t

∗ 6= 1

r
log(

ν

N0
)⇔ t̄∗ 6= tc,

which is true. Therefore, according to the implicit function theorem, Theorem 3.2.3, there

exist positive parameters δ0, ε0, η0 such that for all δ ∈ Iδ0, ε ∈ Iε0, and η ∈ Iη0, there

exists a unique t∗ = t(ε, η, δ) such that

G(t∗, ε, η, δ) = 0.

Moreover,

lim
ε,η,δ→0

t∗ = lim
ε,η,δ→0

t(η, δ, ε) = t
∗
. (6.2.15)

Using the one dimensional theory developed in Section 5.2, we see that Iηδ(t, ε) does not

converge to zero for any t > t
∗
. Since I(t, ε) ≥ Iηδ(t, ε), I(t, ε) cannot converge to zero

as ε tends to zero for any t > t
∗
. Thus the assumption that there exists t̂ > t

∗
such that

(6.2.6) holds is false. Therefore, the convergence of I to the first quasi steady state is

uniform on any interval with right end point smaller than t
∗
.

6.2.3 Convergence to the Second Quasi Steady State

6.2.3.1 Construction of a Lower Bound on IT

6.2.3.2 Theorem. Let us consider t̃ ∈ (tc, t
∗
) and define the pair of functions (N

ηδ
, I

ηδ
)

by

N
ηδ

(t) =

Nηδ(t), t ≤ t̃,

N (2)

ηδ
(t), t ≥ t̃,



Section 6.2. The Case of an Unstable Population Page 71

where N (2)

ηδ
satisfies 

dN (2)
ηδ

dt = (β − µ̊)N (2)

ηδ
+ ν(µ̊− µ),

N (2)

ηδ
(t̃) = Nηδ(t̃) > ν,

(6.2.16)

and I
ηδ

satisfies 
dI
ηδ

dt = −λ
ε I

2 +
[

1
ε (λNηδ

− γ)− µ̊
]
I
ηδ
,

I
ηδ

(0) = I0.

Then the pair of functions (N
ηδ
, I

ηδ
) is a lower bound to (6.1.5) on IT .

Proof. In the previous section, we have determined tc and t
∗

for the upper bound N =

N0e
rt, and we found that the infective population I tends to zero as ε is getting smaller

on (0, t
∗
). Applying the regular perturbation theorem to (6.1.3), we find that N tends to

N on (0, t
∗
) as ε tends to zero. Moreover, from (6.2.10) and (6.2.2) on (0, t

∗
),

Nηδ(t) ≤ N(t, ε) ≤ N(t).

Furthermore, we have N(t
∗
) > ν, since N is an increasing function, N(tc) = ν and

t
∗
> tc. This means that for some t̃ ∈ (tc, t

∗
), N(t̃) > ν and hence N(t̃, ε) > ν for

sufficiently small ε. However, for t ∈ IT , ε ∈ Iε0, S(t, ε) = N(t, ε) − I(t, ε). Thus,

considering sufficiently small ε, we have

S(t̃, ε) > ν

since I(t̃, ε) converges to zero as ε tends to zero. So N(t̃, ε) is approximately equal to

S(t̃, ε) for ε small enough.

Consider the system (6.1.5) and let us determine the behaviour of the solution at S = ν.

Let us denote the normal vector ω = (1,−1). For S = ν, the infective population satisfies

I = N − ν. It follows that

ω.
(dN
dt
,
dI

dt

)∣∣∣
I=N−ν

= (1,−1).
(
r(I + ν)− Iµ,−µ̊I

)
= βI + rν > 0.

It follows that the infective population decreases with time. Since S = N − I, it follows

that the susceptible population increases at S = ν. Since S(t̃, ε) > ν for ε sufficiently

small, we have

S(t, ε) ≥ ν for t > t̃.
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Hence

(β − µ̊)N + S(µ̊− µ) ≥ (β − µ̊)N + ν(µ̊− µ).

Thus, according to the comparison theorem, N(t) ≥ N (2)

ηδ
(t) for t ≥ t̃.

Hence, N
ηδ
≤ N(t) for all t ∈ IT .

Furthermore, from the definition of I
ηδ

and of I,

−µ̊εI + I
[
λ(N

ηδ
− I)− γ

]
≤ −µ̊εI + I

[
λ(N(t)− I)− γ

]
.

Therefore

I
ηδ
≤ I for t ∈ IT , ε ∈ Iε0.

The pair of functions (N
ηδ
, I

ηδ
) is therefore a lower bound to (6.1.5) on IT .

6.2.3.3 Characterisation of the Function G

By solving (6.2.18), we obtain

N (2)

ηδ
(t) = −νµ

∗

r̊
+
(
Nηδ(t̃) +

νµ∗

r̊

)
er̊(t−t̃), t > t̃. (6.2.17)

with r̊ = β − µ̊ 6= 0. Therefore,

N
ηδ

(t) =


N0e

r̊t, t ≤ η,

Nηe
r(t−η) + δµ∗

r (1− er(t−η)), η ≤ t ≤ t̃,

−νµ∗

r̊ +Ker̊(t−t̃), t ≥ t̃,

where K = Nηδ(t̃) + νµ∗

r̊ > 0. Similarly to equation (5.1.3), let

ϕ(t, ε, η, δ) =
1

ε
(λN

ηδ
(t)− γ)− µ̊,

denote Υϕ =
∫ t

0 ϕ(s, ε, η, δ)ds and define

I
ηδ

(t, ε) =
eΥϕ(t,ε,η,δ)

1
I0

+ λ
ε

∫ t
0 e

Υϕ(s,ε,η,δ)ds
,

for t ∈ IT and ε ∈ Iε0. Let us denote

G(t, ε, η, δ) =

∫ t

0

g
I
(s, 0, ε, η, δ)ds, t ∈ IT , ε ∈ Iε0,
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with g(t, I, ε, η, δ) = −λI2 + I(λN
ηδ

(t)− γ − µ̊ε) = −λI2 + εϕI, and

g
I
(t, 0, ε, η, δ) = εϕ. Thus, G(t, ε, η, δ) = εΥϕ; that is,

G(t, 0, η, δ) =



G
00

:= (λr̊N0e
r̊t − γt), t ≤ η,

G
10

:= G
00

(η) + λ
r (Nη − δµ

r )(er(t−η) − 1)− (γ − δµλ
r1

)(t− η), η ≤ t ≤ t̃,

G
20

:= G
10

(t̃) + λ
r̊

(
Nηδ(t̃) + ν(µ̊−µ)

r̊

)
(er̊(t−t̃) − 1),

−(νλ(µ̊−µ)
r̊ + γ)(t− t̃), t ≥ t̃.

Note that G coincides on [0, t̃] with the function studied in (6.2.14). So, for η small

enough, similarly as in (6.2.13), it is easy to show that there exists tc(η, δ) such that

∂G

∂t
(tc(η, δ)) = 0 and lim

η,δ→0
tc(η, δ) = tc,

and, according to (5.2.2),

G(tc, 0, 0) < 0.

So, by the continuity of G around tc(η, δ), G(tc, η, δ) < 0. Since t̃ is chosen to be smaller

than t
∗
, we use the function G

20
to prove the existence of t∗(η, δ), the root of G(t, 0, η, δ).

We know that G
20

(t̃) = G
10

(t̃) < 0 by the continuity of G
10
. Also,

lim
t→+∞

G
20

(t) = lim
t→+∞

G
10

(t̃) +
λ

r̊

(
Nηδ(t̃) +

ν(µ̊− µ)

r̊

)
(er̊(t−t̃) − 1)− (

νλ(µ̊− µ)

r̊
+ γ)(t− t̃).

In order to determine limt→+∞G20
(t), we have to study the sign of

νλ(µ̊− µ)

r̊
+ γ

for different values of r̊ (except for r̊ = 0 which will be studied later).

Case 1: If r̊ = β − µ− µ∗ < 0 then, since by assumption r = β − µ ≥ 0,

β − µ̊ ≥ µ− µ̊⇒ γ <
µ− µ̊
r̊

νλ.

Thus,

νλ(µ̊− µ)

r̊
+ γ ≤ 0.

Therefore

lim
t→+∞

G
20

(t) = lim
t→+∞

−(
νλ(µ̊− µ)

r̊
+ γ)(t− t̃) = +∞.



Section 6.2. The Case of an Unstable Population Page 74

Case 2: If r̊ = β − µ− µ∗ > 0, then

lim
t→+∞

G
20

(t) = lim
t→+∞

λ

r̊

(
Nηδ(t̃) +

ν(µ̊− µ)

r̊

)
(er̊(t−t̃) − 1) = +∞.

It follows that there exists t∗(η, δ) such that G(t∗, 0, η, δ) = 0. The uniqueness of

t∗(η, δ) follows from the monotonicity of G
20

on (t̃, T ). Let us now consider the function

G(t, 0, η, δ) and the point P = (t
∗
, 0, 0, 0). From the result found in Section 6.2.2.4, we

have G(P ) = 0 and
∂G

∂t (P ) 6= 0. So, according to the implicit function theorem, Theorem

3.2.3, there exists a neighbourhood of P such that G(t, ε, η, δ) = 0. In other words, there

exist positive numbers δ0, ε0, η0 such that for all δ ∈ Iδ0, ε ∈ Iε0, η ∈ Iη0, there is a unique

t∗ = t∗(ε, η, δ) such that G(t∗, ε, η, δ) = 0. Moreover,

lim
η,ε,δ→0

t∗(ε, η, δ) = t
∗
.

6.2.3.4 Proof of the Convergence of the Lower Bound of I to its Second
Quasi Steady State

For r̊ 6= 0, the proof is similar to that of the one dimensional problem developed in Section

5.2.3. It can be obtained by replacing G by G
20

and N by N (2)

ηδ
. Moreover, similarly to

the one dimensional case we prove that this convergence is uniform (see Section 5.2.3.1).

Let us assume that r̊ = 0. From equation (6.2.18) we have
dN (2)

ηδ

dt = νµ∗,

N (2)

ηδ
(t̃) = Nηδ(t̃) > ν.

(6.2.18)

It follows that, according to the Theorem 4.2.0.2, there is uniform convergence to the

second quasi steady state.

6.2.3.5 Construction of an Upper bound on IT

Since I
ηδ

tends almost uniformly to the second quasi steady state i(t) = N (2)

ηδ
(t)− ν on

(t
∗
, T ], then for all small values θ > 0 and δ1 > 0, there exists ε0 > 0 such that for all

ε ∈ Iε0,
|I
ηδ

(t, ε)− i(t)| < δ1,
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for t ∈ [t̄∗ + θ, T ]. It follows that

−δ1 + i(t) ≤ I
ηδ

(t, ε) ≤ I(t, ε),

for ε ∈ Iε0, t ∈ [t̄∗ + θ, T ]. Therefore,

i(t)− δ1 = −δ1 +N (2)

ηδ
(t)− ν ≤ I(t, ε), (6.2.19)

for ε ∈ Iε0, t ∈ [t̄∗ + θ, T ]. Now, let us use this lower bound of I to construct an upper

bound for N which takes into account the fact that I is no longer small. Replacing I in

(6.1.3) by i(t)− δ1, we obtain

(β − µ)N(t, ε)− µ∗I(t, ε) ≤ (β − µ)N(t, ε)− µ∗(i(t)− δ1), (6.2.20)

for ε ∈ Iε0, t ∈ [t̄∗ + θ, T ]. Now, define N
(2)

ηδδ1 on [t̄∗ + θ, T ] as follows
dN

(2)

ηδδ1

dt = rN
(2)

ηδδ1 − µ
∗(i

ε
− δ1),

N
(2)

ηδδ1(tθ) = N0e
rtθ ≥ N(tθ),

(6.2.21)

where tθ = t̄∗ + θ. It is easy to prove, using the comparison theorem, that

N(t) ≤ N
(2)

ηδδ1
(t),

for t ∈ [tθ, T ]. Solving (6.2.21) for N
(2)

ηδδ1, we obtain

N
(2)

ηδδ1
(t) = −µ

∗

r
(ν + δ1 +

µ∗ν

r̊
)(1− er(t−tθ)) +

(
Nηδ(t̃) +

νµ∗

r̊

)(
er̊(t−t̃) − ert−r̊t̃−µ

∗tθ
)

+N
(2)

ηδδ1(tθ)e
r(t−tθ),

for t ∈ [tθ, T ]. Therefore, we consider the upper bound for N

Nηδδ1(t) =


N1 = N0e

rt, t ∈ [0, tθ],

N
(2)

ηδδ1 = −µ∗

r (ν + δ1 + µ∗ν
r̊ )(1− er(t−tθ))

+
(
Nηδ(t̃) + νµ∗

r̊

)(
er̊(t−t̃) − ert−r̊t̃−µ∗tθ

)
+N0e

rt, t ∈ (tθ, T ].

The corresponding upper bound for I is the solution Iηδδ1, of
dI
dt = −µ̊I + 1

εI
[
λ(Nηδδ1(t)− I)− γ

]
,

I(0, ε) = I0,
(6.2.22)
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for ε ∈ Iε0 and t ∈ IT . Thus, according to (5.1.7), we have

Iηδδ1(t, ε) =
e

1
εG(t,0,η,δ,δ1)−µ̊t

1
I0

+ λ
ε

∫ t
0 e

1
εG(s,0,η,δ,δ1)−µ̊sds

,

with

G(t, ε, η, δ, δ1) =

∫ t

0

gI(s, 0, Nηδδ1, ε)ds,

= (−µ̊ε− γ)t+ λ

∫ t

0

Nηδδ1(s)ds,

for ε ∈ Iε0 and t ∈ IT .

6.2.3.6 Determination of the Limit of the Infective Population as ε Tends to
Zero

From the definition (6.2.21), we have

dN
(2)

ηδδ1

dt
= rN

(2)

ηδδ1
− µ∗(N (2)

ηδ
− ν − δ1) (6.2.23)

for t ≥ tθ, while, from (6.2.18),

dN (2)

ηδ

dt
= rN (2)

ηδ
− (N (2)

ηδ
− ν)µ∗, (6.2.24)

for t ≥ t̃. It can be noticed that (6.2.23) is a regular perturbation of (6.2.24). Thus,

according to the regular perturbation theory, Theorem 3.3.1.1,

∆N(t) = O(δ1)

uniformly on [tθ, T ], where ∆N = N
(2)

ηδδ1 −N
(2)

ηδ
.

Further, from equation (6.2.22), we have
dIηδδ1
dt = −µ̊Iηδδ1 + 1

εIηδδ1

[
λ(Nηδδ1 − Iηδδ1)− γ

]
,

Iηδδ1(0) = I0, t ∈ IT .

So, according to the convergence proved in Chapter 5 (see (5.2.7)), it is enough to prove

that G(t, 0) > 0 for t ≥ tθ to conclude that

Iηδδ1(t, ε)→ N
(2)

ηδδ1 − ν for t ∈ [tθ, T ].
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The derivative of G on [tθ, T ] is given by dG2

dt (t, 0) = λN
(2)

ηδδ1(t)− γ. This implies that it

is enough to show that

dG2

dt
(t, 0) > 0;

that is,

N
(2)

ηδδ1(t) > ν, (6.2.25)

for t ∈ [tθ, T ]. But, since ∆N = O(δ1), proving (6.2.25) is equivalent to prove N (2)

ηδ
(t) >

ν. Let us consider the right hand side of equation (6.2.18),

f(N (2)

ηδ
) = r̊N (2)

ηδ
+ νµ∗.

The equilibrium point of (6.2.18) is

N∗ = −νµ
∗

r̊
.

We consider three cases here:

case 0 If r̊ = 0 then f(N (2)

ηδ
) = νµ∗ > 0. This implies that solutions are monotone and

increasing. Consequently, any solution of (6.2.18) with initial condition N
2θ

=

N (2)

ηδ
(tθ) > ν remains greater than ν all the time.

Case 1 If r̊ = β−µ−µ∗ > 0, then N∗ < 0 < ν and the derivative of f with respect to N
(2)
ηδ ,

f
N

(2)
ηδ

(N (2)

ηδ
) = r̊, is positive. The equilibrium is repelling. This implies that, since we

have monotonic solutions to (6.2.18), those with initial condition N
2θ

= N (2)

ηδ
(tθ) > ν

remains greater than ν as time goes on.

Case 2 If r̊ = β − µ− µ∗ < 0, then

N∗ = −νµ
∗

r̊
= ν
−r̊ + r

−r̊
= ν(1 +

r

−r̊
) > ν

and

f
N

(2)
ηδ

(N (2)

ηδ
) = r̊ < 0.

Since N∗ is asymptotically stable, any initial condition N
2θ

= N (2)

ηδ
(tθ) > ν is in its

domain of attraction. Therefore the solution tends to the equilibrium and remains

above ν since solutions are monotonic.
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In each case, the solution remains greater than ν. Hence, Iηδδ1 converges uniformly to

Nηδδ1 − ν. However, by their definitions, I
ηδ

and Iηδδ1 satisfy, respectively,

dI
ηδ

dt
= g(I

ηδ
, N (2)

ηδ
, ε)

and
dIηδδ1
dt

= g(Iηδδ1, N
(2)

ηδδ1, ε)

on [tθ, T ]. Since N
(2)

ηδδ1 −N
(2)

ηδ
= O(δ1), Iηδδ1 is close to the solution Ĩε of

dĨε
dt

= g(Ĩε, N
(2)

ηδ
+ kδ1, ε)

for some k. Furthermore, on one hand, we have

lim
ε,η,δ→0

I
ηδ

(t, ε) = N (2)(t)− ν,

where N (2) satisfies

dN (2)

dt
= r̊N (2) + ν(µ̊− µ), N (2)(tθ) = N0e

rtθ

and on the other hand,

lim
ε→0

η,δ,δ1→0

Ĩε(t, ε) = N (2)(t)− ν.

This implies

lim
η,δ,δ1,ε→0

Iηδδ1(t, ε) = N (2)(t)− ν.

Hence, since for t > t̄∗, ε ∈ Iε0,

I
ηδ

(t, ε) ≤ I(t, ε) ≤ Iηδδ1(t, ε),

it follows using the squeeze theorem that

lim
η,δ,ε→0
θ→0

I
ηδ

(t, ε) = lim
η,δ,δ

′
,ε→0

θ→0

Iηδδ1(t, ε) = lim
ε→0

I(t, ε) = N (2)(t)− ν, t̄∗ < t.

6.3 The Case of a Stable Population

Let us consider system (6.1.5) and assume that

β − µ < 0 and N0 > ν. (6.3.1)
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6.3.1 Dynamics of the Infective Population before the Intersec-
tion of the QSSs

Consider δ > 0, and define the domain Nδ = {N, N ≥ ν + δ}. From (6.1.6), it follows

that

inf
N∈Nδ

φ2(N) = δ > 0.

Therefore, φ2 is an isolated quasi steady state on Nδ. Further, the degenerate system

associated to (6.1.5) is given byĪ(λ(N̄ − Ī)− γ) = 0,

dN̄
dt = (β − µ)N̄ − (µ̊− µ)Ī , N̄(0) = N0.

(6.3.2)

Solving 6.3.2 for Ī(t) = φ2(N2(t)) = N2(t)− ν, we obtain

N2(t) =
ν(µ̊− µ)

µ̊− β
+ ke(β−µ̊)t, (6.3.3)

where k = N0 − ν(µ̊−µ)
µ̊−β and t ∈ IT . It follows that, for t ∈ IT ,

N2(t) = ν
µ̊− µ
µ̊− β

(1− e(β−µ̊)t) +N0e
(β−µ̊)t ≥ 0,

since β − µ < 0. Let us determine the time tc at which N2 = ν. From 6.3.3, it follows

that N2 can be rewritten as

N2(t) = −νµ
∗

r̊
+
(
N0 +

νµ∗

r̊

)
er̊t

with r̊ = β − µ− µ∗ and t ∈ IT . Thus

tc =
1

r̊
ln
( ν + νµ∗

r̊

N0 + νµ∗

r̊

)
From condition (6.3.1), it follows that tc > 0. Hence, applying the Tikhonov theorem on

Nδ and letting δ tend to zero, it follows, under condition (6.3.1), that

lim
ε→0

I(t, ε) = φ2(N2(t)) = N2(t)− ν, t ∈ (0, tc),

lim
ε→0

N(t, ε) = N2(t), t ∈ [0, tc).
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6.3.2 Dynamics of the Infective Population after the Intersec-
tion of the QSSs

From the previous result, under the assumptions (6.3.1), and by the continuity of the

solution of (6.1.5), for any ρ0 > 0 there exist t1 < tc and ε0 > 0 such that for ε ∈ Iε0,

0 < ν − ρ0 < N(t1, ε) ≤ ν + ρ0 and I(t1, ε) ≤ ρ0. (6.3.4)

Let us denote f(I,N) = (β − µ)N − µ∗I. Since β − µ < 0, from (6.3.4), it follows that

f(I,N) < (β − µ)N < (β − µ)(ν − ρ0) < 0,

for all positive variables I,N. Therefore, the trajectory of the solution to (6.1.5) enters

the domain of attraction of φ1 and no trajectory can leave through the wall

Rρ0 = {(I,N), N = ν − ρ0, 0 < I < ρ0}

from N < ν − ρ0. Further, consider the composite function

Φ(N) =

φ2(N), N ≥ ν,

φ1(N), N ≤ ν.

For I > Φ, we have I > N − ν for all N > 0. It follows that

g(I,N, 0) = I(λ(N − I)− γ) < 0,

for all N, I > 0 and I > Φ. This implies that, considering I ≥ Φ + α with α > 0, for

ε ∈ Iε0 there exists β1 > 0 such that

g(I,N, ε) = −εµ̊I + I(λ(N − I)− γ) < −β1,

for N > 0. That is

g(I,N, ε) ≤ 0,

for ε ∈ Iε0, I > Φ, and N > 0. Therefore, for ε ∈ Iε0, there exists wε > 0 such that

0 < I(t, ε) < wε,

for t > t1 with wε → 0 as ε→ 0. In other words, the solution is bounded.

Hence letting t1 tends to tc we obtain, since the solution is in the region where I ′(t, ε) < 0,

lim
ε→0

I(t, ε) = 0,

uniformly on [tc, T ]. Therefore, by the regular perturbation theory,

lim
ε→0

N(t, ε) = N0e
rt,

uniformly on [tc, T ].
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Figure 6.1: Case of a two dimensional stable population. The orbits are traversed from the right to the left.
We observe the convergence to the second quasi steady state and to the first quasi steady state, without delay
after passing the intersection point.

6.3.3 Numerical Analysis

Figure 6.1 shows the orbits of the system (6.1.5) for ε = 0.01, 0.005, 0.001. It presents

the dynamics of the infectives population in term of the total population. The parameters

considered in this case are µ = 0.2, µ̊ = 0.3, β = 0.1, γ = 0.18, λ = 0.014. The initial

condition is (N0, I0) = (24, 5). We can observe that there is no delay in the stability

switch. The solutions tend to the second quasi steady state and then, after passing the

intersection point, they tend to the first quasi steady state without delay.

6.4 Conclusion

In this chapter, we used the method of upper and lower bounds to study the two dimen-

sional problem (6.1.1). We found similar results to the one dimensional case. We proved

that there is a delay of stability switch in the case of an unstable population, while in the
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case of a stable population, the switch between the second quasi steady state and the

first one is without delay.

The next chapter consists mainly in the generalisation of the method used in chapter 5

for general one dimensional non-autonomous models.
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7 General Theories for One Dimensional Prob-
lems

In this chapter we aim to extend the Butuzov theorems,[19], in the light of the work done in

Chapter 5. The Butuzov theorems concern two types of bifurcation (the transcritical and

the pitchfork bifurcations) for the unstable one dimensional case and study the asymptotic

behaviour of solutions of singularly perturbed scalar differential equations of the formεdxdt = g(t, x, ε), t ∈ IT , x ∈Mx,

x(t0, ε) = x0, ε ∈ Iε0,
(7.0.1)

with Mx ⊂ R an open bounded interval containing the origin and

ε ∈ Iε0 = {ε : 0 < ε < ε0 << 1}.

We proceed first by making some remarks on the original proof of the Butuzov theorem

with positive initial conditions for the case of transcritical bifurcation; second we provide

a proof of the Butuzov theorems with both initial conditions (negative and positive) for

the case of a pitchfork bifurcation; and finally we state and prove the theory for the one

dimensional stable case with positive initial conditions.

7.1 Some Remarks on the Butuzov Theorem for the
Case of a Transcritical Bifurcation

In the following remarks, we are going to present and prove some facts used in the proof of

the Butuzov theorem for the case of a transcritical bifurcation without a full justification.

7.1.0.1 Remark. Let us consider the problem (7.0.1) and let us denote by φ the second

quasi steady state satisfying the assumptions of the Butuzov theorem, Theorem 3.3.4.1.

If a solution of (7.0.1) is in the basin of attraction of φ from a time t̄ to a time t̂ ≤ T,

then it converges to the second quasi steady state for t ∈ (t̄, t̂] as ε tends to zero. It is

important to note that here the solution at t̄ is depending on ε. This case is different

from the original problem (7.0.1) where the initial condition is a constant.

Proof. Let us consider problem (7.0.1) but with initial time at t̄. We obtain the following
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problem

ε
dx

dt
= g(t, x, ε),

where t ∈ [t̄, t̂], ε ∈ Iε0 and with the initial condition x(t̄, ε). We want to prove that

lim
ε→0

x(t, ε) = φ(t)

for t ∈ (t̄, t̂]. We know, by hypothesis, that the solutions of (7.0.1) are in the basin of

attraction of φ only from a time t̄ to a time t̂. This means that there exist a and b in the

basin of attraction of φ such that

a < x(t̄, ε) < b.

Let xi be the solution to (7.0.1) with the initial condition xi(t0, ε) = i, i ∈ {a, b}.
According to the Tikhonov theorem,

lim
ε→0

xi(t, ε) = φ(t),

for t ∈ (t̄, t̂]. Since solutions cannot intersect, we must have

xa(t, ε) < x(t, ε) < xb(t, ε), t ∈ (t̄, t̂].

It follows, using the squeeze theorem, that

lim
ε→0

x(t, ε) = φ(t),

for t ∈ (t̄, t̂].

7.1.0.2 Remark. Let x = φ(t) be the second quasi steady state in problem (7.0.1)

satisfying the assumptions of the Butuzov theorem, Theorem 3.3.4.1. Then, for any

t̊ ∈ (tc, T ), there exist an ε̂ ∈ Iε0 and r > 0 such that if a solution x to (7.0.1) satisfies

for all ε ∈ Iε̂, s ∈ B(φ(t), r),

φ(ť)− s < x(ť, ε) < φ(ť) + s,

for some ť ∈ [̊t, T ], then

φ(t)− s < x(t, ε) < φ(t) + s,

for all t ∈ [ť, T ].

Proof. Since φ(t) > 0 for all t ∈ (tc, T ), then for t̊ ∈ (tc, T ), there exists r > 0 such that

for t ∈ (̊t, T ), s ∈ B(φ(t), r), φ(t) + s > 0 and φ(t)− s > 0. Since g ∈ C2(D̄), it follows
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that for r small enough Mx ∩B(φ(t), r) = B(φ(t), r). Thus, from assumptions (II) and

(III) of Theorem 3.3.4.1, g(t, φ(t)− s, 0) > 0 and g(t, φ(t) + s, 0) < 0 on [̊t, T ]. Since

the functions

(t, ε)→ g(t, φ(t)± s, ε), s ∈ B(φ(t), r),

are continuous on IT × Iε0 and [̊t, T ]× {0} is a compact in IT × Iε0, there is an open set

containing [̊t, T ]× {0} such that

g(t, φ(t) + s, ε) < 0 and g(t, φ(t)− s, ε) > 0.

In particular there is ε̊t > 0 such that

inf
t∈[̊t,T ], ε∈[0,ε̊t]

g(t, φ(t)− s, ε) := d− > 0 and sup
t∈[̊t,T ], ε∈[0,ε̊t]

g(t, φ(t) + s, ε) := d+ < 0.

(7.1.1)

Now, let us consider the following function

D(t) = (x(t, ε)− φ(t))2.

It is a Lyapunov type function and represents the square of the distance between x(t, ε)

and φ(t). Let us assume that the solution leaves the region {(t, x), φ(t)−s ≤ x ≤ φ(t)+s}
at a time τ . This means that D increases at τ and consequently, dD

dt (τ) > 0. On the

other hand, if the solution to (7.0.1) leaves the region {(t, x), φ(t)− s ≤ x ≤ φ(t) + s}
at time τ and if x(τ, ε) = φ(τ)− s, then

dD

dt
(τ) = −2s(

1

ε
g(τ, x(τ, ε), ε)− dφ

dt
(τ)).

From (7.1.1), it follows that

dD

dt
(τ) < 2s

(
− d−

ε
+ sup

t∈[̊t,T ]

∣∣∣dφ
dt

(t)
∣∣∣) < 0,

for ε small enough; that is, for ε ∈ (0, ε̂), where ε̂ = min(ε0,
d−

supt∈[̊t,T ] |φ(t)|). Thus a

contradiction. In the same way, if the solution leaves the region {(t, x), φ(t) − s ≤ x ≤
φ(t) + s} at x(τ, ε) = φ(τ) + s at time τ , then

dD

dt
(τ) = 2s(

1

ε
g(τ, x(τ, ε), ε)− dφ

dt
(τ)) < 2s

(d+

ε
+ sup

t∈[̊t,T ]

|dφ
dt

(t)|
)
< 0,

for ε small enough. It is enough to take ε ∈ (0, ε̂) with ε̂ = min(ε0,
−d+

supt∈[̊t,T ] |φ(t)|). Thus a

contradiction.
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7.1.0.3 Remark. Referring to the proof of the Butuzov theorem in [19], we noticed that

the assumption that the function g is two times differentiable with respect to all variables

is too strong. Indeed, for G(t,ε)
ε ≤ G(t,0)

ε +k to be true, it is only needed that gx(t, 0, ε) be

a Lipschitz continuous function in Iε0, uniformly in t ∈ [t0, t
∗]. Furthermore, the relation

gx(t, 0, ε)− gx(t, x, ε) = −1
2gxx(t, x

∗, ε)x2, together with earlier calculations, require g to

be a C2−function with respect to x. Finally, for ε small enough, it is sufficient for G

to be a C1−function in some neighbourhood of (t∗, ε) in which gx(t, 0, ε) is C1 which

respect to ε and uniformly in t in a neighbourhood of t∗. Summarising, it is enough to

assume that g is a Lipschitz function with respect to all variables, on D̄, a C2−function

with respect to x, uniformly on Mx and finally, there is a neighbourhood of (t∗, ε) where

gx(t, 0, ε) is differentiable with respect to ε, uniformly in t.

7.1.0.4 Remark. Let us simplify condition (V I) of the Butuzov theorem, Theorem

3.3.4.1, which assumes the existence of a positive constant c0 such that ±c0 ∈ Mx

and

g(t, x, ε) ≤ gx(t, 0, ε)x (7.1.2)

for t ∈ [t0, t
∗], ε ∈ Īε0, and |x| ≤ c0. According to the Taylor theorem, any continuous

function S differentiable n+ 1 times and with its n− th derivative dnS
dtn continuous on the

closed interval between a ∈ R and x can be decomposed as S(x) = Tn(x) +Rn(x) with

Tn(x) = S(a) + (x− a)
dS

dx

∣∣∣
x=a

+
(x− a)2

2!

d2S

dx2

∣∣∣
x=a

+ ...+
(x− a)n

n!

dnS

dxn

∣∣∣
x=a

,

and

Rn(x) =
1

n!

∫ x

a

(x− s)nd
n+1S

dtn+1
(s)ds.

So, for S = g, a = 0 and n = 1, we have

g(t, x, ε) = T1(t, x, ε) +R1(t, x, ε)

with

T1(t, x, ε) = g(t, 0, ε) + xgx(t, 0, ε) = xgx(t, 0, ε)

and

R1(t, x, ε) =

∫ x

0

(x− s)gxx(t, s, ε)ds.

It can be noted that s ∈ (0, x); that is x−s > 0. Thus, if gxx(t, s, ε) < 0 for all s ∈ [0, x],

then

R1(t, x, ε) ≤ 0,
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and hence

g(t, x, ε) ≤ xgx(t, 0, ε).

In conclusion, for condition (7.1.2) to be satisfied, it is enough that g be differentiable,

gx continuous on a closed interval containing 0 and gxx ≤ 0 on that interval.

7.2 Proof of the Butuzov Theorem for Pitchfork Bi-
furcation

Let us consider the following assumptions, [19].

(II)∗ The degenerate equation g(t, x, 0) = 0 has a set of three quasi steady states: x ≡ 0

for t ∈ [t0, T ], and x = ψ±(t) defined for t ∈ (tc, T ] such that ψ±(tc) = 0, ψ+(t) > 0

and ψ−(t) < 0 for t ∈ (tc, T ].

(III)∗ There is a stability switch at tc; that is,

gx(t, 0, 0) < 0, t ∈ (t0, tc),

gx(t, 0, 0) > 0 and gx(t, ψ±(t), 0) < 0, t ∈ (tc, T ].

(V I)∗ The following set of inequalities are satisfied

g(t, x, ε) ≤ gx(t, 0, ε)x for t ∈ [t0, t
∗], x ∈ [0, c0], ε ∈ Īε0,

g(t, x, ε) ≥ gx(t, 0, ε)x for t ∈ [t0, t
∗], x ∈ [−c0, 0], ε ∈ Īε0,

for some c0 such that ±c0 ∈Mx, and where t∗ is the root of the function G defined

by (3.3.6).

7.2.0.1 Theorem. Let us assume that the conditions (I), (IV ), (V ) of Theorem 3.3.4.1

and the conditions (II)∗, (III)∗, and (V I)∗ hold. Then, for sufficiently small ε > 0,

there exists a unique solution to problem (7.0.1) such that,

lim
ε→0

x(t, ε) =

0 for t ∈ (t0, t
∗)

ψ+(t) for t ∈ (t∗, T ]
if x0 > 0,

lim
ε→0

x(t, ε) =

0 for t ∈ (t0, t
∗)

ψ−(t) for t ∈ (t∗, T ]
if x0 < 0,
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see [19].

Proof. 1. Let us assume x0 > 0. As in the proof of the transcritical bifurcation, [19],

we use the method of lower and upper solutions knowing that the existence of the

ordered upper and lower solutions to the problem (7.0.1) implies the existence of

a unique solution x(t, ε). Under the assumptions (I), (II)∗, (III)∗, the Tikhonov

theorem implies that for any given δ > 0 with t0 + δ < tc, there exists ε(δ) such

that for ε ∈ (0, ε(δ)) the solution of (7.0.1) exists and it satisfies the inequality

x(t0 + δ, ε) ≤ c0 for t ∈ [t0, t0 + δ], where c0 was introduced in (V I)∗. Thus, we

can assume that x0 < c0 without loss of generality. Let us consider the following

function

X̄1(t, ε) = x0e
G(t,ε)
ε , t ∈ [t0, t

∗ − α] (7.2.1)

where α is any small number such that t∗ − α > tc and the function G is defined in

(3.3.6). Clearly,

ε
dX̄1

dt
= gx(t, 0, ε)X̄1, X̄1(t0, ε) = x0.

By the assumption (I), there exists k ∈ R+ such that G(t, ε)−G(t, 0) < εk for t ∈
[t0, t

∗], ε ∈ Iε0. Let us consider α such that t0 + α < tc. Since from (III)∗,

G(t, 0) < 0 for t0 < t < t∗, (7.2.2)

then, from (7.2.2), there exists ε(α) ∈ Iε0 such that for ε ∈ Iε(α),

G(t, ε) ≤ 0, t ∈ [t0, t0 + α], (7.2.3)

G(t, ε)/ε < 0, t ∈ [t0 + α, t∗ − α]. (7.2.4)

From (7.2.1) and (7.2.4), it follows that

X̄1(t, ε) ≤ c0

for t ∈ [t0 + α, t∗ − α] and ε ∈ Iε(α). Hence, from condition (V I)∗,

ε
dX̄1

dt
− g(t, X̄1, ε) = gx(t, 0, ε)X̄1 − g(t, X̄1, ε) ≥ 0 for t ∈ [t0 + α, t∗ − α), ε ∈ Iε(α).

Thus, X̄1 is an upper solution to the problem (7.0.1) for t ∈ [t0 + α, t∗ − α] and for

ε ∈ Iε(α). Since α is an arbitrarily small positive number, it follows from (7.2.1) and

(7.2.4) that

lim
ε→0

X̄1(t, ε) = 0 for t ∈ (t0, t
∗).
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By assumption (IV ), since x0 > 0, a trivial lower solution of the problem (7.0.1) is

X ≡ 0. It follows, by the squeeze theorem, that

lim
ε→0

x(t, ε) = 0 for t ∈ (t0, t
∗), x0 > 0.

On the other hand, in order to prove that

lim
ε→0

x(t, ε) = ψ+(t), t > t∗,

let us consider the following function

X(t, ε) = ηe
G(t,ε)−δ(t−t0)

ε , t ∈ (t0, t̄),

where t̄ ∈ (t∗, T ), η and δ are the small positive numbers, independent of ε that will

be determined later. Let us also assume that

η ≤ min( min
t∗≤t≤T

ψ+(t), x0).

It is easy to prove that X satisfies

ε
dX

dt
= (gx(t, 0, ε)− δ)X, X(t0, ε) = η ≤ x0,

on [t0, t̄]. Thus,

ε
dX

dt
− g(t,X, ε) = gx(t, 0, ε)X − g(t,X, ε)− δX. (7.2.5)

By assumptions (III)∗ and (V ), for t ∈ (t0, t
∗), G(t, 0) is negative and has a simple

zero at t = t∗. Hence, G(t, 0) − δ(t − t0) has a simple zero at t = t∗ + ∆(δ) > 0

for sufficiently small positive number δ and where ∆ > 0 is a positive function such

that ∆(δ)→ 0 as δ → 0. Moreover G(t, 0)− δ(t− t0) is negative on (t0, t
∗+ ∆(δ)).

It follows that there exists ε1(δ) ≤ ε(α), such that G(t, ε) − δ(t − t0) has a unique

simple zero for ε ∈ Iε1 at t = t̂δε = t∗+ ∆(δ) +ω(ε) with G(t, ε)− δ(t− t0) negative

for t ∈ (t0, t̂δε), where ω(ε) → 0 as ε → 0, ε1(δ) is taken sufficiently small and

∆(δ) + ω(ε) > 0. Hence

X(t, ε) ≤ η, t ∈ (t0, t̂δε), (7.2.6)

where X(t̂δε, ε) = η.

From assumption (IV ) it follows that

g(t, x, ε) = gx(t, 0, ε)x+
1

2
gxx(t, x

∗, ε)x2, x ∈Mx.
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It follows, for 0 < x < c0 and for some constant k1, that

gx(t, 0, ε)x− g(t, x, ε) ≤ k1x
2.

Thus, from (7.2.5),

ε
dX

dt
− g(t,X, ε) ≤ k1X

2 − δX.

For η ≤ δ
k1
, it follows, from (7.2.6), that

ε
dX

dt
− g(t,X, ε) ≤ 0.

Thus, for t ∈ (t0, t̂δε), X(t, ε) is a lower solution to problem (7.0.1) and

x(t̂δε, ε) ≥ X(t̂δε, ε) = η.

Let us define ω̄(δ) to be the maximum of |ω(ε)| on Iε1(δ) and t̄δ = t∗+ ∆(δ) + ω̄(δ).

We have ω̄(δ) → 0 as δ → 0 and thus t̄δ → t∗ as δ → 0. Now let us construct a

lower solution on [t̂δε, t̄δ]. Let us set ε1 sufficiently small such that, according to (I),

(II)∗ and (IV ), for ε ∈ Iε1,

g(t, η, ε) > 0 for t∗ ≤ t ≤ T.

It is easy to see that X = η satisfies

ε
dX

dt
− g(t,X, ε) ≤ 0.

Thus, the function X(t, ε) = η is a lower bound on [t̂δε, t̄δ]. Therefore

x(t̄δ, ε) ≥ η > 0. (7.2.7)

Since η lies in the basin of attraction of the stable root ψ+(t) on the interval [t̂δε, t̄δ],

according to Remark 7.1.0.1, the solution x converges to the second quasi steady

state on [t̂δε, t̄δ]. It follows that there exist s, ε̂ > 0 such that for all ε ∈ Iε̂,

ψ+(ťδε)− s < x(ťδε, ε) < ψ+(ťδε) + s

for some ťδε ∈ [t̂δε, t̄δ]. Therefore, according to Remark 7.1.0.2,

ψ+(t)− s < x(t, ε) < ψ+(t) + s,

for t ∈ [ťδε, T ]. Since ťδε tends to t∗ as ε, δ tend to zero, it follows, according to

Remark 7.1.0.1, that

lim
ε→0

x(t, ε) = ψ+(t) for t ∈ (t∗, T ]. (7.2.8)



Section 7.2. Proof of the Butuzov Theorem for Pitchfork Bifurcation Page 91

2. Let us assume x0 < 0 and let us now prove the theorem with a negative initial

condition x(t0, ε) = x0. Similarly to the previous case, we apply the same method

of lower and upper solutions knowing that the existence of ordered upper and lower

solutions of the problem (7.0.1) implies the existence of the unique solution x(t, ε).

Under the assumptions (I), (II)∗, (III)∗, the Tikhonov theorem implies that for any

given δ > 0 with t0 + δ < tc there exists ε(δ) such that for ε ∈ (0, ε(δ)), the solution

of (7.0.1) exists and, for t ∈ [t0, t0 + δ], satisfies the inequality x(t0 + δ, ε) ≥ −c0,

where c0 is defined in (V I)∗. Thus we can assume that x0 > −c0 without loss of

generality.

Let us consider the following lower bound

X1(t, ε) = x0e
G(t,ε)
ε for t ∈ [t0, t

∗ − α], ε ∈ Iε(α), (7.2.9)

where x0 < 0, α is any small number such that t∗ − α > tc and the function G is

defined in (3.3.6). Clearly,

ε
dX1

dt
= gx(t, 0, ε)X1 for X1(t0, ε) = x0

is satisfied. As previously, according to (I) and (III)∗,

G(t, 0) < 0 for t0 < t < t∗, (7.2.10)

and there exists k ∈ R+ such that

|G(t, ε)−G(t, 0)| < εk for t ∈ [t0, t
∗], ε ∈ Iε0. (7.2.11)

Thus, from (7.2.10), it follows that for a given α such that t0 + α < tc there exists

ε(α) ∈ (0, ε0) such that for ε ∈ Iε(α),

G(t, ε) ≤ 0, t ∈ [t0, t0 + α], (7.2.12)

G(t, ε)/ε < 0, t ∈ [t0 + α, t∗ − α]. (7.2.13)

From (7.2.9) and (7.2.13) it follows that

X1(t, ε) ≥ −c0 for t ∈ [t0 + α, t∗ − α], ε ∈ Iε(α).

Hence, from condition (V I)∗, we obtain the following relation

ε
dX1

dt
− g(t,X1, ε) ≤ gx(t, 0, ε)X1 − g(t,X1, ε) ≤ 0,
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for t ∈ [t0 + α, t∗ − α] and ε ∈ Iε(α). Thus, X1 is a lower solution of the problem

(7.0.1) for t ∈ [t0 + α, t∗ − α] and ε ∈ Iε(α). Since α is an arbitrarily small positive

number, it follows from (7.2.9) and (7.2.13) that

lim
ε→0

X1(t, ε) = 0,

for t ∈ (t0, t
∗).

Since x0 < 0, by assumption (IV ) a trivial upper solution of the problem (7.0.1) is

X ≡ 0.

Therefore, according to the squeeze theorem,

lim
ε→0

x(t, ε) = 0 for t ∈ (t0, t
∗), x0 < 0.

To prove the convergence of x to ψ− after t∗, let us consider the following function

defined on (t0, t̄), with t̄ ∈ (t∗, T ), by

X̄(t, ε) = −ηe
G(t,ε)−δ(t−t0)

ε ,

where the small and positive numbers η and δ are independent of ε and will be chosen

later. Also, let us assume

η ≤ min( min
t∗<t<T

|ψ−(t)|,−x0). (7.2.14)

It is easy to prove that the following differential equation is satisfied:

ε
dX̄

dt
= (gx(t, 0, ε)− δ)X̄, X̄(t0, ε) = −η ≥ x0.

Thus,

ε
dX̄

dt
− g(t, X̄, ε) = gx(t, 0, ε)X̄ − g(t, X̄, ε)− δX̄. (7.2.15)

By assumptions (III)∗ and (V ), for t ∈ (t0, t
∗), G(t, 0) is negative and has a simple

zero at t = t∗. Hence, G(t, 0) − δ(t − t0) has a simple zero at t = t∗ + ∆(δ) > 0

for sufficiently small positive δ and where ∆ > 0 is a positive function such that

∆(δ)→ 0 as δ → 0. Moreover, G(t, 0)− δ(t− t0) is negative on (t0, t
∗ + ∆(δ)). It

follows that there exists ε1(δ) ≤ ε(α) such that G(t, ε)−δ(t−t0) has a unique simple

zero for ε ∈ Iε1 at t̂δε = t∗+ ∆(δ) +ω(ε) with G(t, ε)− δ(t− t0) negative on (t0, t̂δε)

with ω(ε) → 0 as ε → 0 and ε1(δ) sufficiently small such that ∆(δ) + ω(ε) > 0.

Hence

X̄(t, ε) ≥ −η, t ∈ (t0, t̂δε), (7.2.16)
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where X̄(t̂δε, ε) = −η. From assumption (IV ) it follows that

g(t, x, ε) = gx(t, 0, ε)x+
1

2
gxx(t, x

∗, ε)x2.

Therefore, for −c0 < x < 0 and for some constant k1,

gx(t, 0, ε)x− g(t, x, ε) ≥ k1x
2.

Hence, from (7.2.15),

ε
dX̄

dt
− g(t, X̄, ε) ≥ k1X̄

2 − δX̄.

For η ≥ δ
k1
, it follows, from (7.2.16), that

ε
dX̄

dt
− g(t, X̄, ε) ≥ 0.

Thus, for t ∈ (t0, t̂δε), X̄(t, ε) is a upper solution of problem (7.0.1) and

x(t̂δε, ε) ≤ X̄(t̂δε, ε) = −η.

Let us define ω̄(δ) to be the maximum of |ω(ε)| for ε ∈ Iε1(δ) and t̄δ = t∗ + ∆(δ) +

ω̄(δ). We have ω̄(δ)→ 0 as δ → 0 and thus t̄δ → t∗ as δ → 0. Now, let us construct

an upper solution on [t̂δε, t̄δ]. Let us set ε1 sufficiently small such that, according to

(7.2.14),(I), (III)∗ and (IV ), for ε ∈ Iε1,

g(t,−η, ε) < 0 for t∗ ≤ t ≤ T.

It is easy to see that X̄ = −η satisfies

ε
dX̄

dt
− g(t, X̄, ε) ≥ 0.

Thus, the function X̄(t, ε) = −η is an upper bound on [ťδε, t̄δ]. Therefore

x(t̄δ, ε) ≤ −η < 0.

Since −η lies in the basin of attraction of the stable root ψ−(t) on the interval

[t̂δε, t̄δ], according to Remark 7.1.0.1, the solution tends to ψ− as ε tends to zero. It

follows that there exist s, ε̂ > 0, such that for all ε ∈ Iε̂,

ψ−(ťδε)− s < x(ťδε, ε) < ψ−(ťδε) + s

for some ťδε ∈ [t̂δε, t̄δ]. Therefore, according to Remark 7.1.0.2,

ψ−(t)− s < x(t, ε) < ψ−(t) + s for t ∈ [ťδε, T ].
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Since ťδε tends to t∗ as ε, δ tend to zero, it follows from Remark 7.1.0.1 that

lim
ε→0

x(t, ε) = ψ−(t) for t ∈ (t∗, T ].

7.3 One Dimensional Stable Case with a Positive Ini-
tial Condition

It is interesting to observe that, as in the one and two dimensional epidemiological cases

studied respectively in Chapter 5 and Chapter 6 and illustrated in Figure 5.3, if the roles

of the quasi steady states are reversed, the phenomenon of the delay exchange of stability,

described in Theorem 3.3.4.1, does not occur even though the root of G(t, 0) exists.

7.3.0.1 Theorem. Consider the problem (7.0.1) and assume that g(t, x, 0) = 0 has two

roots x ≡ 0 and x = φ(t) ∈ C2(ĪT ) in Mx × ĪT , which intersect at t = tc ∈ (0, T ) with

φ(t) > 0 for t ∈ (0, tc), and φ(t) < 0 for t ∈ (tc, T ). Furthermore, they switch stability

at their intersection in the following sense

gx(t, 0, 0) > 0 and gx(t, φ(t), 0) < 0 for 0 < t < tc, (7.3.1)

gx(t, 0, 0) < 0 and gx(t, φ(t), 0) > 0 for t > tc. (7.3.2)

Additionally, let us assume that condition (IV ) of Theorem 3.3.4.1 holds. Then for

positive initial condition x0, the solution to (7.0.1) exists and satisfies

lim
ε→0

x(t, ε) = φ(t), t ∈ (0, tc), (7.3.3)

lim
ε→0

x(t, ε) = 0, t ∈ [tc, T ]. (7.3.4)

Proof. According to the Picard theorem, Theorem 3.2.1.1, the solution to (7.0.1) exists

and is unique on ĪT . In what follows, we prove the asymptotic behaviour of the solution on

the intervals [0, tc) and [tc, T ]. Let us consider the domain D = [0, tc− α]× [b, b0] where

b0, b, α are arbitrary positive numbers such that b0 < inft∈[0,tc−α] φ(t) and 0 < b < x0.

The quasi steady state x = φ(t) is an isolated and attracting quasi steady state in D. So,

according to the Tikhonov Theorem,

lim
ε→0

x(t, ε) = φ(t),
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for t ∈ (0, tc − α]. Since α is chosen arbitrarily, letting α tends to 0, we obtain (7.3.3).

On the other hand, let us consider a composite quasi steady state defined as follows:

φ̃(t) =

φ(t) for 0 < t < tc,

0 for t ≥ tc.

By the hypothesis, the quasi steady state x = φ(t) is attractive on [0, tc), while x ≡ 0 is

attractive on (tc, T ]. It follows, from (7.3.1) and (7.3.2), that g(t, x, 0) < 0 for x > φ̃ and

for any ε ∈ Iε0, there exists wε > 0 such that g(t, x, ε) < 0 for x > φ̃ + ωε with ωε → 0

as ε → 0. Thus for all ε ∈ Iε0 there exists ρωε > 0 such that for any tc − α < t, we

have x(t, ε) ≤ ρωε. In other words, the solution is bounded. The solution, x(t, ε), being in

the region where x′(t, ε) < 0 converges to zero on [tc, T ] as ε and α tend to zero. Thus

(7.3.4) is satisfied.

7.4 Conclusion

In this chapter we discussed the proof of the Butuzov theorem by providing a proof to

some facts used while demonstrating this theorem. Also, we gave a proof of the Butuzov

theorem for pitchfork bifurcations with a positive and a negative initial condition and we

generalized the study of immediate stability switches discussed in Chapter 5 for dimension

one problems. The developed theory for immediate stability switch focuses particularly on

non-autonomous systems having the first quadrant invariant under their flow. As already

underlined, one of the most striking difference between the stable and the unstable case

is that the positions of the quasi steady states are ”flipped” around. Also, it is possible to

generate a similar theory for one dimensional stable case with a negative initial condition

by making obvious changes.

In the next chapter we will generalise the study done in Chapter 6 for general two dimen-

sional non-autonomous problems.
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8 General Theories for Two Dimensional Prob-
lems

After studying the two dimensional influenza problem using the method of upper and lower

bounds in Chapter 6, we aim to generalize the method to more general two dimensional

problems. In particular we will study the asymptotic behaviour of the solution to non-

autonomous planar systems of the form
dx
dt = f(t, x, y, ε),

εdydt = g(t, x, y, ε),

x(0) = x0 > 0, y(0) = y0 > 0,

(8.0.1)

on V̄ := ĪT × ĪM × ĪN × Īε0 with M,N, T ∈ (0,+∞) and ε0 > 0 a small parameter. We

proceed by stating and proving the theories for the two dimensional unstable and stable

cases for a transcritical bifurcation. We assume that the stable parts of the quasi steady

states of the transcritical bifurcation are non-negative.

8.1 Two Dimensional Unstable Case with a Positive
Initial Condition

In this section, we analyse the case of a delay in stability switch. We assume that (8.0.1)

has a transcritical bifurcation as described in Figure 8.1 where the stable parts of the

QSSs are non-negative.

8.1.0.1 Theorem. Let us consider the following general assumptions concerning the

structure of the system:

A1- Functions f, g are C2(V̄ ).

A2- g(t, x, 0, ε) = 0 for all (t, x, ε) ∈ ĪT × ĪM × Īε0.

A3- For all (t, x, y1, ε) ∈ V̄ , (t, x, y2, ε) ∈ V̄ with y2 ≤ y1, f(t, x, y1, ε) ≤ f(t, x, y2, ε).

A4- For all (t, x1, y, ε) ∈ V̄ , (t, x2, y, ε) ∈ V̄ with x1 ≤ x2, g(t, x1, y, ε) ≤ g(t, x2, y, ε).
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Figure 8.1: Transcritical Bifurcation considered to prove the delayed stability switch. The unstable parts of
the QSSs are the parts with dotted contour and the stable parts have continous contours. We observed that
the QSSs intersect each other, switch stability at their intersection and their stable parts are non-negative.

Furthermore, consider the following assumptions on the structure of the quasi steady

states of (8.0.1).

A5- There are two quasi steady states, y = 0 and y = φ(t, x), that are the solutions of

the equation

g(t, x, y, 0) = 0 (8.1.1)

in ĪT × ĪM × ĪN . There is a unique solution y = ψ(t) to the equation

φ(t, x) = 0 (8.1.2)

for t ∈ ĪT , x ∈ ĪM and ψ ∈ C2(ĪT ). Further, we assume that

φ(t, x) < 0 for x− ψ(t) < 0,

φ(t, x) > 0 for x− ψ(t) > 0.

A6- There is a stability switch at the intersection of QSSs; that is,

gy(t, x, 0, 0) < 0 and gy(t, x, φ(t, x), 0) > 0 for x− ψ(t) < 0,

gy(t, x, 0, 0) > 0 and gy(t, x, φ(t, x), 0) < 0 for x− ψ(t) > 0.
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Denote by x̄(t, ε) the solution of

dx

dt
= f(t, x, 0, ε), x(0, ε) = x0. (8.1.3)

Then,

A7- any solution x̄ = x̄(t) to the problem (8.1.3) with ε = 0,

dx̄

dt
= f(t, x̄, 0, 0), x̄(0) = x0, (8.1.4)

where 0 < x0 < ψ(0) satisfies x̄(T ) > ψ(T ) and there is exactly one 0 < t̄c < T

such that x̄(t̄c) = ψ(t̄c).

Further, we define the function Ḡ by

Ḡ(t, ε) =

∫ t

0

gy(s, x̄(s, ε), 0, ε)ds, (8.1.5)

for t ∈ IT , ε ∈ Iε0.

A8- the function Ḡ(., 0) has a root t̄∗ ∈ IT .

Finally,

A9- there is c0 ∈ IN such as for all ε ∈ Īε0, y ∈ Īc0,

g(t, x̄(t, ε), y, ε) ≤ gy(t, x̄(t, ε), 0, ε)y

for all t ∈ ĪT .

Then there exists a unique solution
(
x(t, ε), y(t, ε)

)
to the problem (8.0.1) such that

lim
ε→0

y(t, ε) = 0 for t ∈ (0, t̄∗),

lim
ε→0

x(t, ε) = x̄(t) for t ∈ [0, t̄∗).

The convergence is almost uniform on each interval and (0, t̄∗) is the biggest interval on

which the convergence of y to 0 as ε tends to zero is almost uniform .

8.1.0.2 Remark. As in the one dimensional case we observe that, by assumption A6, Ḡ

reaches its unique negative minimum at t̄c and is strictly increasing for t > tc. Therefore

the root t̄∗, defined in assumption A8, is unique on IT .
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8.1.0.3 Remark. The assumption A7 is simplified if we deal with autonomous problemes

then ψ(t) is constant and hence it is satisfied if f is separated from 0 on [x0,∞) and T

is large enough.

8.1.0.4 Remark. We will repeatedly use the following argument based on [[65], Appendix

B]. Consider a system of differential equationdx
dt = F (t, x, y), x(0) = x0,

dy
dt = G(t, x, y), y(0) = y0,

(8.1.6)

with F,G satisfying the Lipschitz conditions with respect to x, y in some domain of R2,

uniformly in t ∈ ĪT . Assume that F satisfies

F (t, x, y1) ≤ F (t, x, y2) for y1 ≥ y2, (8.1.7)

and a solution (x(t), y(t)) of (8.1.6) satisfies

φ1(t, x(t)) ≤ y(t) ≤ φ2(t, x(t)) (8.1.8)

on ĪT for some Lipschitz functions φ1 and φ2. Then for t ∈ ĪT ,

z2(t) ≤ x(t) ≤ z1(t),

where zi satisfies

dzi
dt

= F (t, zi, φi(t, zi)), zi(0) = x0, (8.1.9)

i = 1, 2. Indeed, consider z1 satisfying

dz1

dt
(t) ≡ F (t, z1(t), φ1(t, z1)), z1(0) = x0.

Then, from (8.1.7) and (8.1.8), we have

dx

dt
(t) ≡ F (t, x(t), y(t)) ≤ F (t, x(t), φ1(t, x(t))

and from the comparison theorem, Theorem 3.2.2.6, it follows that x(t) ≤ z1(t) on ĪT .
We prove similarly that x(t) ≥ z2(t) for all t ∈ ĪT .

We also note that if F satisfies

F (t, x, y1) ≤ F (t, x, y2)

for y1 ≤ y2 and a solution (x(t), y(t)) of (8.1.6) satisfies

φ2(t, x(t)) ≤ y(t) ≤ φ1(t, x(t))
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Figure 8.2: Illustration of the assumptions of Theorem 8.1.0.1.

on ĪT for some Lipschitz functions φ1 and φ2, then for t ∈ ĪT ,

z2(t) ≤ x(t) ≤ z1(t),

where zi, i = 1, 2, is a solution of (8.1.9).

Proof. We proceed in three steps. Firstly, we prove the existence and the uniqueness of

the solution to the problem (8.0.1); secondly, we show the convergence of the solution as

ε tends to zero on the interval (0, t̄∗) and then we will prove that this interval is actually

the biggest interval where the uniform convergence is observed.

Step 1- Since f, g are sufficiently regular, according to the Picard theorem (Theorem 3.2.1.1),

for a given initial condition, the solution to (8.0.1) exists and is unique on [0, T ] for

all T > 0.

Step 2- Let us prove the convergence of y to zero on (0, t̄∗) as ε → 0. Consider the fol-

lowing initial condition (x0, y0) with 0 < x0 < ψ(0) and y0 > 0. Let
(
x, y
)

be

the corresponding solution to problem (8.0.1). To simplify the notation, we will not

mention the initial conditions in this part since they are fixed. According to A2, for

all t ∈ IT , ε ∈ Iε0, y(t, ε) > 0 and, from assumption A3, f(t, x, y, ε) < f(t, x, 0, ε).
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Therefore, from the comparison theorem, Theorem 3.2.2.6,

x(t, ε) ≤ x̄(t, ε),

where x̄ is the solution to (8.1.3). Similarly, let ȳ be the solution to

ε
dy

dt
= g(t, x̄, y, ε), y(0, ε) = y0. (8.1.10)

Thus from Remark 8.1.0.4 it follows that

0 ≤ y(t, ε) ≤ ȳ(t, ε). (8.1.11)

To shorten the notation, we denote

ḡ(t, y, ε) := g(t, x̄(., ε), y, ε),

where, clearly, ḡ(t, 0, 0) = g(t, x̄(t), 0, 0). Hence, we consider the shortened version

of (8.1.10),

ε
dy

dt
= ḡ(t, y, ε), y(0, ε) = y0. (8.1.12)

Then, from A5, the only solutions to ḡ(t, y, 0) = 0 are y = 0 and y = φ(t, x̄(t)). Let

ϕ(t) = φ(t, x̄(t)). From (8.1.2), φ(t, x) = 0 if and only if x = ψ(t) and thus ϕ(t) = 0

if and only if x̄(t) = ψ(t); that is, by A7, for t = t̄c : ϕ(t̄c) = φ(t̄c, ψ(t̄c)) = 0 with

ϕ(t) < 0, for t < t̄c and ϕ(t) > 0 for t > t̄c (by assumption A5). Hence, assumption

(II) of Theorem 3.3.4.1 is satisfied. Further, since ḡy(t, y, ε) = gy(t, x̄(t, ε), y, ε),

from assumption A6,

ḡy(t, 0, 0) < 0 and ḡy(t, ϕ(t), 0) > 0 for t < tc,

and

ḡy(t, 0, 0) > 0 and ḡy(t, ϕ(t), 0) < 0 for t > tc.

Therefore, assumption (III) of Theorem 3.3.4.1 is satisfied. In the same way, as-

sumptions A8 and A9 show that assumptions (V ) and (V I) of Theorem 3.3.4.1 are

satisfied for (8.1.12) and thus ȳ(t, ε) satisfies the hypotheses of Theorem 3.3.4.1.

Therefore

lim
ε→0

ȳ(t, ε) = 0 for t ∈ (0, t̄∗), (8.1.13)

lim
ε→0

ȳ(t, ε) = φ(t, x̄(t)) for t ∈ (t̄∗, T ]. (8.1.14)
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Together with (8.1.11), it yields

lim
ε→0

y(t, ε) = 0 for t ∈ (0, t̄∗). (8.1.15)

Now, for any x0 satisfying A7, there is a neighbourhood U of x0 and t̂ ∈ (0, t̄c) such

that y = 0 is an isolated quasi steady state on [0, t̂]× Ū so that (8.0.1) satisfies the

assumptions of the Tikhonov theorem, Theorem 3.3.2.1. Thus,

lim
ε→0

x(t, ε) = x̄(t)

for t ∈ [0, t̂] and, on the other hand, the problem

dx

dt
= f(t, x, y(t, ε), ε) (8.1.16)

with initial condition x(t̂, ε) is a regularly perturbed problem on [t̂, t̄∗). Therefore,

lim
ε→0

x(t, ε) = x̄(t)

on [t̂, t̄∗). Combining the above observations, we have

lim
ε→0

x(t, ε) = x̄(t), (8.1.17)

uniformly on [0, t̄∗).

Step 3- We shall prove next that the interval (0, t̄∗) is the maximum interval on which

y(t, ε) converges to zero almost uniformly. Let us assume, to the contrary, that

limε→0 y(t, ε) = 0 almost uniformly on (0, t1] for some t1 > t̄∗; that is, for any ρ > 0

and any θ > 0 there is ε1 = ε1(ρ, θ) such that for any t ∈ [θ, t1] and ε ∈ Iε1,

0 ≤ y(t, ε) ≤ ρ. (8.1.18)

Let us fix ρ > 0 and θ > 0 such that 0 ≤ y(t, ε) < ρ on [θ, t1]. Then, by assumption

A3, on [θ, t1],

f(t, x, ρ, ε) ≤ f(t, x, y(t, ε), ε). (8.1.19)

However, according to the initial layer proposition [[7], Proposition 3.4.1], there exist

bounded functions ȳ1 and ỹ1 such that for δ > 0 there exists ε2 ∈ Iε1 such that for

t ∈ [0, t1], ε ∈ Iε2, ∣∣∣y(t, ε)− ȳ1(t) + ỹ1

( t
ε

)∣∣∣ ≤ δ.
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This implies

y(t, ε) ≤ C, t ∈ [0, t1], ε ∈ Iε2,

where C = maxt∈[0,t1],ε∈Iε2 |ȳ1(t)− ỹ1( tε)|+ δ. Thus, by A3, on [0, θ],

f(t, x, C, ε) ≤ f(t, x, y(t, ε), ε). (8.1.20)

Let us define the function

x1(t) =

x1(t, ε), t ∈ [0, θ)

x2(t, ε), t ∈ [θ, t1],
(8.1.21)

where x1 and x2 are, respectively, solutions to

dx1

dt
= f(t, x1, C, ε), x1(0) = x0

and
dx2

dt
= f(t, x2, ρ, ε), x2(θ, ε) = x1(θ, ε).

It follows that

x1(t, ε) ≤ x(t, ε), t ∈ [t0, t1], ε ∈ (0, ε2).

However, we cannot use x1 to construct a lower bound for y(t, ε) since it is not

continuous. To fix this problem, let us consider x3 such that

dx3

dt
= f(t, x3, ρ, 0), x3(0) = x0,

on [0, t1]. Since f is Lipschitz continuous, it follows that

|x1(t, ε)− x3(t)| =
∣∣∣ ∫ θ

0

f(s, x1, C, ε)− f(s, x3, ρ, ε)ds

+

∫ t1

θ

f(s, x1, ρ, ε)− f(s, x3, ρ, 0)ds
∣∣∣,

≤ L1θ + L2(ε)

∫ t1

θ

|x1(t, ε)− x3(t)|ds ≤ Lθ,

where Li, i = 1, 2 is a Lipschitz constant and L = L1e
L2(ε)t1, according to Gronwall’s

lemma. It is possible to consider L independent of ε as f is C2 with respect to all

variables on V̄ . Thus, for t ∈ [0, t1],

|x1(t, ε)− x3(t)| ≤ Lθ ⇒ −2Lθ ≤ −x1(t, ε) + x3(t)− Lθ ≤ 0.
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This implies

−2Lθ ≤ x := x3(t)− Lθ ≤ x1(t, ε).

Hence

x(t, ρ, θ) ≤ x(t, ε), ε ∈ Iε2, t ∈ [0, t1]. (8.1.22)

Then, according to Remark 8.1.0.4, the solution y = y(t, ρ, θ, ε) to

ε
dy

dt
= g(t, x(t, ρ, θ), y, ε), y(0, ρ, θ, ε) = y0, (8.1.23)

satisfies

y(t, ρ, θ, ε) ≤ y(t, ε), t ∈ [0, t1].

Let us denote

g(t, y, ρ, θ, ε) = g(t, x(t, ρ, θ), y, ε), ε ∈ Iε2, t ∈ [t0, t1].

As with g, we note that g is a C2 function with respect to all variables. We define

the function

G(t, ρ, θ, ε) =

∫ t

0

g
y
(s, 0, ρ, θ, ε)ds, ε ∈ Iε2, t ∈ [t0, t1]. (8.1.24)

We observe that g(t, 0, 0, 0, ε) = ḡ(t, ε) = g(t, x̄(t, ε), 0, ε) and also g
y
(t, 0, 0, 0, ε) =

ḡy(t, ε) = gy(t, x̄(t, ε), 0, ε). Clearly

G(0, ρ, θ, 0) =

∫ 0

0

g
y
(s, 0, ρ, θ, 0)ds = 0.

Since G(t̄∗, 0, 0, 0) = Ḡ(t∗, 0) = 0 and G
′
(t̄∗, 0, 0, 0) = gy(t̄

∗, 0, 0, 0) > 0, the

implicit function theorem shows that for sufficiently small ρ, θ there is a C2 function

t∗ = t∗(ρ, θ) such that G(t∗, ρ, θ, 0) ≡ 0 with t∗(ρ, θ)→ t̄∗ as ρ, θ → 0. Furthermore,

since by A4 g(t, x1, y, 0) ≤ g(t, x2, y, 0) for x1 ≤ x2 and g(t, x, 0) = 0, we easily

obtain

gy(t, x1, 0, 0) ≤ gy(t, x2, 0, 0), x1 ≤ x2. (8.1.25)

Since

x(t, ρ, θ) ≤ x(t, ε) ≤ x̄(t), t ∈ [0, t1],

it follows that G(t, ρ, θ, 0) ≤ Ḡ(t, 0) and t∗(ρ, θ) ≥ t̄∗.
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The problem (8.1.23) is, by construction, in the form allowing for the application of

Theorem 3.3.4.1. However, we are not going to consider the full theorem but only

the lower bound found in its proof, [19]. Let us denote by Y (t, ρ, θ, η, ε) the function

defined by

Y (t, ρ, θ, η, ε) = ηe
G(t,ε)−δt

ε , (8.1.26)

with G defined by (8.1.24) and the parameter δ independent of ρ and η so that

G(t(ρ, θ, δ, ε), ρ, θ, ε)− δt ≡ 0

and

Y (t(ρ, θ, δ, ε), ρ, θ, δ, ε) = η,

[19].

This function Y is a lower bound to (8.1.23) provided η ≤ δ
k , see [19], where k is

independent of any other parameters. So, for some ρ0, θ0 such that

sup
{ρ∈Īρ0 ,θ∈Īθ0}

t∗(ρ, θ) < t1, (8.1.27)

and since Īθ0 and Īρ0 are compact intervals, there exists t̃ such that

sup
{ρ∈Īρ0 ,θ∈Īθ0}

t∗(ρ, θ) ≤ t̃ < t1. (8.1.28)

Thus, for the parameters ρ, θ satisfying the above, we have

t(ρ, θ, δ, ε) = t∗(ρ, θ) + w(δ, ε)

with δ and ε1 such that w(δ, ε) + t̃ < t1 for all ε < ε1. For such a δ, let us set

ρ < η < δ/k. Then,

y(t(ρ, θ, δ, ε), ε) ≥ Y (t(ρ, θ, δ, ε), ρ, θ, δ, η, ε) = η > ρ. (8.1.29)

On the other hand, for sufficiently small ε, according to (8.1.18),

y(t, ε) < ρ, t > θ.

Thus, the assumption that there is t1 > t∗ such that y(t, ε) converges almost uni-

formly to zero on (0, t1] is false.



Section 8.1. Two Dimensional Unstable Case with a Positive Initial Condition Page 106

Our next step is to investigate the behaviour of the solution beyond t̄∗. Clearly, we cannot

use the lower bound y defined by (8.1.23) since it is a lower bound only for y(t, ε) ≤ ρ

which holds for t ≤ t̄∗. Thus, another lower bound for y(t, ε) has to be found. To achieve

this, an additional assumption need to be adopted to ensure that the solution does not

return to the region of attraction of y = 0. Thus, we assume

g′

gx
+ f
∣∣∣
(t,x,y,ε)=(t,ψ(t),0,0)

> 0, t ∈ ĪT . (8.1.30)

8.1.0.5 Remark. Geometrically, the condition (8.1.30) has a clear interpretation since

the normal to the curve x = ψ(t) pointing towards the region {(t, x);x > ψ(t)} is given

by (−ψ′(t), 1). On one hand, we have 0 ≡ φ(t, ψ(t)), hence by differentiating both sides

we get

φ′(t, ψ(t)) + φx(t, ψ(t)).ψ′(t) = 0;

that is

ψ′ = − φ
′

φx

∣∣∣
(t,x)=(t,ψ(t))

.

On the other hand, we have

g(t, x, φ(t, x)) = 0,

which gives by differentiation with respect to t and x, respectively,

g′ + gyφ
′(t, x) = 0, (8.1.31)

and

gx + gyφx(t, x) = 0. (8.1.32)

It follows that

g′

gx
= − φ

′

φx
.

Hence

ψ′(t) = − g
′

gx

∣∣∣
(t,x,y,ε)=(t,ψ(t),φ(t,ψ(t)),0)=(t,ψ(t),0,0)

. (8.1.33)

Thus, condition (8.1.30) is equivalent to

(−ψ′, 1).(1, x′) = (−ψ′, 1).(1, f), (t, x, y, ε) = (t, ψ(t), 0, 0).
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Figure 8.3: Construction used in the proof of Theorem 8.1.0.6.

This means that the solution x of (8.1.4) can only cross x = ψ(t) from below.

In the case of an autonomous problem, condition (8.1.30) becomes

f |(x,y,ε)=(a,0,0)> 0, t ∈ ĪT .

where x = a ≡ ψ(t). So, the graph of the solution x of (8.1.11) strictly increases when

it crosses the line x = a.

8.1.0.6 Theorem. Let us consider the assumptions A1-A9 and condition (8.1.30). Then,

for sufficiently small ε, there exists a unique solution
(
x(t, ε), y(t, ε)

)
to the problem (8.0.1)

on [0, T ] such that for t ∈ (t̄∗, T ],

lim
ε→0

y(t, ε) = φ(t, x∗(t)),

lim
ε→0

x(t, ε) = x∗(t),

where the function x∗ is the solution to

dx∗
dt

= f(t, x∗, φ(x∗, t), 0), x∗(t̄∗) = x̄(t̄∗), t ∈ [0, T ].

Moreover, the convergence on (t̄∗, T ] is almost uniform.

Proof. According to the Picard theorem,Theorem 3.2.1.1, the solution to (8.0.1) exists

and is unique on IT . In order to make the proof more concrete, we will proceed by steps.



Section 8.1. Two Dimensional Unstable Case with a Positive Initial Condition Page 108

Step 1 - Proof that the solution, having crossed φ, does not go back. Let us consider

arbitrary t̂ ∈ (t̄c, t̄
∗). According to the assumption A7, there exists ρ0 > 0 such

that x̄(t̂) > ψ(t̂) + ρ0. Additionally, as established in the previous proof, we have

x(t̂, ε)→ x̄(t) and y(t̂, ε)→ 0, therefore there exists a positive number ε0 such that

for any ε ∈ (0, ε0) x(t̂, ε) > ψ(t̂) + ρ0/2 and 0 < y(t̂, ε) < ρ. Let us define the

function Ψ as follows:

Ψ(t, x, y, ε) :=
gt(t, x, y, ε)

gx(t, x, y, ε)
+ f(t, x, y, ε).

It follows that Ψ(t, ψ(t), 0, 0) > 0 for t ∈ ĪT (according to (8.1.30)) and hence there

exist α1, r1, r2, ε0 such that for all |y| ≤ r1, |ρ| < r2, |ε| < ε0,

Ψ(t, ψ(t) + ρ, y, ε) ≥ α1.

Let Sρ = {(t, x, y); t ∈ ĪT , x = ψ(t) + ρ, y ∈ [0, r1]} and Sφ = {(t, x, y); t ∈
ĪT , ψ(t) ≤ x ≤ M, y = φ(t, x)}. Since φ(t, ψ(t)) = 0, by continuity, there exists

sufficiently small ρ0 such that

max
t∈ĪT
{φ(t, ψ(t) + ρ0)} < r1.

Let us consider the number,

αρ0
= min

t∈ĪT ,x∈[ψ(t)+ρ0 ,M ]
φ(t, x) > 0,

the layer

Σw = {(t, x, y); t ∈ ĪT , ψ(t) + ρ0 ≤ x ≤M, y ∈ [φ(t, x)− w, φ(t, x) + w]},

for w ∈ (0,min{αρ0
/2, r1 −max0≤t≤T φ(t, ψ(t) + ρ0)}) and also, the domain

χw = {(t, x, y); 0 ≤ t ≤ T, [ψ(t) + ρ0,M ], y ∈ [0, φ(t, x) + w]}.

We can notice that the left wall of χw,

Lχw = {(t, x, y); t ∈ ĪT , x = ψ(t) + ρ, y ∈ [0, φ(t, x) + w]},

satisfies condition (8.1.30) and therefore it is contained in the set

{(t, x, y); Ψ(t, x, y, ε) > 0}.

Thus, according to Remark 8.1.0.5, no trajectory can leave χw across the left wall

Lχw from the region x > ψ(t) + ρ0.
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Step 2 -Proof that the solution, once in Σw, will not leave it. Let us prove that if for

some ε ≤ ερ0
, a solution (x(t, ε), y(t, ε)) satisfies

φ(̊t, x(̊t, ε))− w < y(̊t, ε) < φ(̊t, x(̊t, ε)) + w (8.1.34)

for some t̊ ∈ (t̂, T ], then

φ(t, x(t, ε))− w < y(t, ε) < φ(t, x(t, ε)) + w

for all t ∈ [̊t, T ]. Similarly to the proof of Remark 7.1.0.2, there exists ερ0 such that

inf
t̂<t<T,ε∈[0,ερ

0
],ψ(t)+ρ

0
<x
g(t, x, φ(t, x)− w, ε) := d− > 0,

sup
t̂<t<T,ε∈[0,ερ

0
],ψ(t)+ρ

0
<x

g(t, x, φ(t, x) + w, ε) := −d+ < 0.

Let us consider the Lyapunov type function

V (t) = (y(t, ε)− φ(t, x(t, ε)))2

which is the square of the difference between the y coordinates of the solution

(x(t, ε), y(t, ε)) and (x(t, ε), φ(t, x(t, ε))). In order to prove that the solution can-

not leave Σw, we will proceed by contradiction. Since the trajectory cannot leave Σw

through the left wall Lχ(w), let us assume that it leaves it at some time t̃ ∈ [̊t, T ]

with y = φ(t̃, x) − w or y = φ(t̃, x) + w. On the one hand, V
′ ≥ 0. On the other

hand, if y(t̃, ε) = φ(t̃, x(t̃, ε))− w, then

V
′
(t̃) = 2(y(t̃, ε)− φ(t̃, x(t̃, ε)))

(
y
′
(t̃, ε)− d

dt
φ(t, x(t, ε))

∣∣∣
t=t̃

)
≤ 2w

(1

ε
g(t̃, x, y, ε)− d

dt
φ(t, x(t, ε))

∣∣∣
t=t̃

)
≤ 2w

(
− d−

ε
+M

)
< 0

for ε ∈ Iε̂ where ε̂ < min{ερ0,d−/M} with M = max(t,x,y,ε)∈V̄ (|φt| + |φx||f |). Sim-

ilar calculations apply for the case y(t̃, ε) = φ(t̃, x(t̃, ε)) + w. Thus, the solution

(x(t, ε), y(t, ε)) ∈ Σw for t ∈ [t̂, T ].

Step 3 - Construction of a lower bound to x defined beyond t̄∗. In Theorem 8.1.0.1,

we proved that for any ρ > 0 there exists ε < ε0 such that 0 < y(t, ε) < ρ on

[θ, t̄∗ − θ] with sufficiently small θ > 0. Moreover, from (8.1.22), we have

x(t, θ, ρ) ≤ x(t, ε), t ∈ [0, t̄∗ − θ]. (8.1.35)

Then, let us denote by x4 the solution to

dx4

dt
= f(t, x4, φ(t, x4) + w, ε), x4(t̂) = x(t̂, θ, ρ), t ∈ [t̂, T ].
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From Step 2, y(t, ε) ≤ φ(t, x4) + w. It follows that, according to A3,

f(t, x4, φ(t, x4) + w, ε) ≤ f(t, x4, y, ε).

Thus, using Remark 8.1.0.4, we have x4(t, θ, ρ, ε) ≤ x(t, ε) for all sufficiently small

ε. On the other hand, let us define x5 to be the solution to

dx5

dt
= f(t, x5, φ(t, x5), 0), x5(t̂) = x(t̂, θ, ρ), t ∈ [t̂, T ]. (8.1.36)

It follows, according to the regular perturbation theory, that for any ℘ > 0, there

exists ε5 > 0 such that for any ε ∈ Iε5,

|x5(t, θ, ρ)− x4(t, θ, ρ, ε)| < C℘, t ∈ [t̂, T ],

where C is independent of the parameters θ, ρ, ε, ℘. Let us now define the function

X by

X(t, θ, ρ, ℘) = −C℘+

x(t, θ, ρ) for 0 ≤ t ≤ t̂,

x5(t, θ, ρ) for t̂ < t ≤ T.
(8.1.37)

It is clear that X satisfies

X(t, θ, ρ, ℘) ≤ x(t, ε), t ∈ IT . (8.1.38)

By assumption A1, there exists K ∈ R such that inf V̄ f ≥ K. Since f = dx5

dt , it

follows by integration that

x5(t)− x5(t̂) ≥ K(t− t̂)⇒ x5(t) ≥ x5(t̂) +K(t− t̂). (8.1.39)

By condition (8.1.30), there exists t1 < t̄∗ such that x̄(t) ≥ ψ(t) + Ω
′

for t ∈ [t1, t̄∗]

and for some Ω
′
> 0. Further, according to the poof of Theorem 8.1.0.1, the lower

bound x and the upper bound x̄ can be made as close as one wishes for t < t̂. Then,

for small parameters θ, ρ, there is 0 < Ω” ≤ Ω
′

such that X(t, θ, ρ, ℘) ≥ ψ(t) + Ω”

for t ∈ [t1, t̄∗]. Let Ω ∈ [0,Ω”]. Then, from (8.1.39), it follows that

x5(t) ≥ ψ(t) + Ω” +K(t− t̂);

that is,

x5(t) ≥ ψ(t̂)− ψ(t) +K(t− t̂)− C℘+ Ω” − Ω + Ω + ψ(t) + C℘.

Since the constants Ω,Ω” and C are taken to be independent of the choice of t̂ and

considering t̂ ∈ [t1, t̄∗], it follows, by continuity, that there are t̃ > t̄∗, t̂ sufficiently

close to t̄∗ and ℘ > 0 such that

X(t, θ, ρ, ℘) ≥ ψ(t) + Ω, t ∈ [t̂, t̃]. (8.1.40)



Section 8.1. Two Dimensional Unstable Case with a Positive Initial Condition Page 111

Step 4 - Determination of a lower bound with respect to y and its characterisation.

Let us now consider the solution Y (t, θ, ρ, ℘) of the Cauchy problemεY
′
= g(t,X(t, θ, ρ, ℘), Y , ε),

Y (0, θ, ρ, ℘, ε) = y0,
(8.1.41)

at least on [0, t̃]. According to the assumption A5, the above equation has two quasi-

steady states y = 0 and y = φ(t,X(t, θ, ρ, ℘)) which intersect at tc. Let us now

define the function G by

G(t, ρ, θ, ℘, ε) =

∫ t

0

gy(s,X(s, θ, ρ, ℘), 0, ε)ds, t ≤ t̃. (8.1.42)

According to the Butuzov Theorem, Theorem 3.3.4.1, we have to consider

G(t, ρ, θ, ℘, 0) =

∫ t

0

gy(s,X(s, θ, ρ, ℘), 0, 0)ds, t ≤ t̃. (8.1.43)

By the definition of X and from (8.1.25) it follows that for t < t̂,

G(t, ρ, θ, ℘, 0) =

∫ t

0

gy(s,−C℘+ x(s, θ, ρ), 0, 0)ds ≤ G(t, ρ, θ, 0).

Similarly, since X ≤ x ≤ x̄ on ĪT ,

G(t, ρ, θ, ℘, ε) ≤ Ḡ(t, 0). (8.1.44)

Since Ḡ(t, 0) ≤ 0 for t ∈ [0, t̄∗], it follows that G < 0 for t ∈ [0, t̄∗], and G → 0 as

t̂→ t̄∗, and θ, ρ, ℘→ 0. Now, from the definition of X, for t > t̂ we have

G(t, ρ, θ, ℘, 0) =

∫ t̂

0

gy(s, x(s, θ, ρ)− C℘, 0, 0)ds+

∫ t

t̂

gy(s, x5(t, θ, ρ)− C℘, 0, 0)ds.

Since X 6= ψ(t), from (8.1.40), it follows that, gy(t,X, 0, 0) 6= 0 for t ∈ [t̂, t̃]. From

A6, it follows that gy(t,X, 0, 0) > 0 and thus

gy(t,X, 0, 0) ≥ L, (8.1.45)

for some L > 0. By integrating both sides of the equation (8.1.45) on [t̄∗, t̃], we have∫ t̃

t̄∗
gy(s, x5(s, θ, ρ)− C℘, 0, 0)ds ≥ L(t̃− t̄∗).

On the other hand, from (8.1.44) and A8,

G(t, ρ, θ, ℘, ε) ≤ Ḡ(t, 0) < 0, t ∈ (0, t̄∗).
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Thus, ∫ t̂

0

gy(s, x5(s, θ, ρ)− C℘, 0, 0)ds <

∫ t̂

0

gy(s, x̄(s), 0, 0)ds < 0.

Hence∫ t̃

t̄∗
gy(s, x5(s, θ, ρ)− C℘, 0, 0)ds ≥ L(t̃− t̄∗) > 0 >

∫ t̂

0

gy(s, x5(s, θ, ρ)− C℘, 0, 0)ds.

Therefore, by continuity of the function G, there is a solution t∗ = t∗(t̂, ρ, θ, ℘) < t̄∗

to G(t, ρ, θ, ℘, 0) = 0.

Moreover, from (8.1.44), it follows that G is monotonic for t > t̂. Thus its root t∗ is

unique and it tends to t
∗

of as |t̄∗− t̂|, θ, ρ, ℘ tend to zero. Let us set ℘, θ, ρ, t̄. Then,

for (t, ε) ∈ (t̂, t̄∗) × (0, ε̄), G is C2−function with ε̄ chosen such that the relation

(8.1.38) is satisfied for all ε ∈ (0, ε̄). Thus, by applying the Butuzov theorem and

Remark 7.1.0.3,

lim
ε→0

Y (t, θ, ρ, ℘, ε) = φ(t, x5(t)− C℘),

almost uniformly on (t∗, t̃].

Step 5 - Determination of upper bounds for x and y and their characterisation.

By the definition of the uniform convergence, for any t∗ < τ < t̃ and any δ
′
> 0,

there is ε̃ > 0, ℘̃ > 0, such that for any ε ∈ Iε̃, ℘ ∈ I℘̃ and t ∈ [τ, t̃],

|Y (t, θ, ρ, ℘, ε)− φ(t, x5)| ≤ δ
′
.

It follows that

−δ
′
≤ Y (t, θ, ρ, ℘, ε)− φ(t, x5(t)) ≤ y(t, ε)− φ(t, x5)⇒ y(t, ε) ≥ φ(t, x5)− δ

′
.

(8.1.46)

Let us denote by x6 the solution to the problemdx6

dt = f(t, x6, φ(t, x5)− δ′, ε),

x6(τ, ε) = x̄(τ, ε),

where ε is sufficiently small. From (A3) and (8.1.46) it follows that

x6 ≥ x(t, ε), t ∈ [τ, t̃].
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Thus, the composite function defined by

X̄(t, ε) =

x̄(t, ε), t ∈ [0, τ ],

x6(t, ε), t ∈ (τ, t̃],

is an upper bound for x(t, ε) on [0, t̃] and the function Ȳ , defined as the solution of

εȲ = g(t, X̄(t, ε), Ȳ , ε), Ȳ (0, ε) = y0,

is an upper bound for y(t, ε). For 0 < t < τ , we have g(t, X̄(t, 0), 0, 0) = g(t, x̄(t), 0, 0).

Hence

Ḡ(t, 0) =

∫ t

0

gy(s, X̄(s), 0, 0)ds =

∫ t

0

gy(s, x̄(s), 0, 0)ds = Ḡ(t, 0).

Thus, Ḡ(t̄, 0) < 0 for t < t̄∗, Ḡ(t̄∗, 0) = 0 and Ḡ(t̄, 0) > 0 for t ∈ (t̄∗, t̃). According

to the Butuzov theorem, it follows that

lim
ε→0

Ȳ (t, ε) = φ(t, x6(t, 0))

uniformly on [τ, t̃].

Step 6 - Relationship between the lower bound, the upper bound and the original

solution.

Now, let us consider the following equations

dx6

dt
= f(t, x, φ(t, x5)− δ

′
, 0), x6(τ, ε) = x̄(t, 0) (8.1.47)

and

dx5

dt
= f(t, x5, φ(t, x5), 0), x5(t̂, ε) = x(t̂, θ, ρ), t > t̂.

It can be noticed that the former equation is a regular perturbation of the latter one.

Thus, for any δ” > 0 there exist t̂, τ, θ, ρ, ℘, δ
′
, ε” such that for all ε < ε”,

|x6(t, 0)− x5(t)| < δ”, t ∈ [t̂, t̃].

Finally, let us consider the following equation

dx∗
dt

= f(t, x∗, φ(t, x∗), 0), x∗(t̄∗) = x̄(t̄∗).

It can be noticed that this equation is a regular perturbation of both (8.1.36) and

(8.1.47). Thus, for any α > 0, for ε sufficiently small,

φ(t, x∗(t))− α ≤ y(t, ε) ≤ φ(t, x∗(t)) + α, t ∈ [τ, t̃]. (8.1.48)
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This implies

lim
ε→0

y(t, ε) = φ(t, x∗(t)), t ∈ [τ, t̃].

By the regular perturbation theory, Theorem 3.3.1.1, it follows that

lim
ε→0

x(t, ε) = x∗(t) (8.1.49)

uniformly on t ∈ [τ, t̃]. Thus, by (8.1.49), relation (8.1.48) can be rewritten as follows

φ(t, x(t, ε))− δ̃ ≤ y(t, ε) ≤ φ(t, x(t, ε)) + δ̃, t ∈ [τ, t̃],

with arbitrarily small δ̃ > 0.

Step 7 - Conclusion. We proved in Step 2 that the trajectory cannot leave the layer Σw;

that this

φ(t, x(t, ε))− δ̃ ≤ y(t, ε) ≤ φ(t, x(t, ε)) + δ̃, t ∈ [τ, T ].

Since τ can be chosen arbitrarily close to t̄∗, it follows that

lim
ε→0

y(t, ε) = φ(t, x∗(t)),

lim
ε→0

x(t, ε) = x∗(t),

on t ∈ (t̄∗, T ].

8.2 Two Dimensional Stable Case with a Positive
Initial Condition

Let us study the case of immediate stability switch for two dimensional non-autonomous

problemes with a transcritical bifurcation described in Figure 8.4. It can be observed

that the stable parts of the quasi steady states are non-negative. Consider the following

conditions.

B5- Existence and intersection of two quasi steady states.
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Figure 8.4: Transcritical Bifurcation considered to prove the immediate stablity. The unstable parts of the QSSs
are the parts with dotted contour and the stable parts have continous contours. We observed that the QSSs
intersect each other, switch stability at their intersection and their stable parts are non-negative.

Assume that there are two quasi steady states y = 0 and y = φ(t, x) that are

solutions of the equation g(t, x, y, 0) = 0 in ĪT × ĪN × ĪM . There is a unique solution

y = ψ(t) to the equation

φ(t, x) = 0 for t ∈ ĪT ,

x ∈ ĪM and ψ ∈ C2(ĪT ). Also, we assume

φ(t, x) > 0 for x− ψ(t) < 0,

φ(t, x) < 0 for x− ψ(t) > 0.

B6- Exchange of stability at the intersection of quasi steady states. Assume that

the quasi steady states switch stability at their intersection in the following way:

gy(t, x, 0, 0) > 0 and gy(t, x, φ(t, x), 0) < 0 for x− ψ(t) < 0,

gy(t, x, 0, 0) < 0 and gy(t, x, φ(t, x), 0) > 0 for x− ψ(t) > 0.

B7- Assumptions on the behaviour of the solution close to the quasi steady

states.

Since we are concerned with the behaviour of solutions close to the intersection of

quasi steady states, we must assume that they actually pass close to it. Denote by
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Figure 8.5: Construction used in the proofs of Theorem 8.2.0.1 and Theorem 8.2.0.2.

xφ(t, ε) the solution of

dx

dt
= f(t, x, φ(t, x), ε), x(0, ε) = x0. (8.2.1)

Then we assume that any solution xφ = xφ(t) to problem (8.2.1) with ε = 0,

dx

dt
= f(t, x, φ(t, x), 0), x(0) = x0, (8.2.2)

and 0 < x0 < ψ(0) satisfies xφ(T ) > ψ(T ) and there is exactly one t̃c ∈ IT such

that xφ(t̃c) = ψ(t̃c).

8.2.0.1 Theorem. Let us assume that A1, A2, B5, B6, B7, A8 and A9 hold. Then the

solution to (8.0.1) exists on [0, T ], is unique and satisfies

lim
ε→0

y(t, ε) = φ(t, xφ(t)) for t ∈ (0, t̃c),

lim
ε→0

x(t, ε) = xφ(t) for t ∈ [0, t̃c),

where xφ(t) is solution to

dxφ
dt

= f(t, xφ, φ(t, xφ), 0), xφ(0) = x0.

On each interval of time, the convergence is almost uniform.
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Proof. According to the Picard theorem, Theorem 3.2.1.1, the solution to (8.0.1) exists

and is unique on ĪT . From the assumption B7, for any t1 < t̃c there exists a constant c1

such that

c1 ≤ inf
t∈[0,t1]

(
ψ(t)− xφ(t)

)
.

Let us consider 0 < % < c1, and S% = {(t, x), t ∈ (0, t1), x ∈ (0, ψ(t)− %)}. From B5, it

follows that

κ% = inf
(t,x)∈S%

φ(t, x) > 0.

Therefore, φ is an isolated quasi steady state on S%. Thus, according to the Tikhonov

theorem on S% and, by letting t1 tends to t̃c and % to 0, it follows that

lim
ε→0

y(t, ε) = φ(t, xφ(t)) for t ∈ (0, t̃c),

lim
ε→0

x(t, ε) = xφ(t) for t ∈ [0, t̃c),

where xφ(t) is the solution to

dxφ
dt

= f(t, xφ, φ(t, xφ), 0), xφ(0) = x0.

8.2.0.2 Theorem. Let the assumptions A1, A2, B5, B6, A7, A8, A9 and condition

(8.1.30) hold. Then, the solution to (8.0.1) exists on [0, T ], is unique and satisfies

lim
ε→0

y(t, ε) = 0 for t ∈ (t̃c, T ], (8.2.3)

lim
ε→0

x(t, ε) = x̄(t) for t ∈ [t̃c, T ], (8.2.4)

where x̄(t) is the solution to

dx̄

dt
= f(t, x̄, 0, 0), x̄(0) = x0.

Proof. According to the Picard theorem, Theorem 3.2.1.1, the solution to (8.0.1) exists

and is unique on ĪT . We note that some technical steps of this proof are similar to those

in the proofs of Theorem 8.1.0.1 and 8.1.0.6. Therefore only a sketch of them will be

provided. From the continuity of the solution and the assumption B7 it follows that for
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any % > 0 there exists t1 < t̃c such that ψ(t1)−% < x(t1, ε) < ψ(t1)+% and y(t1, ε) < %.

Now, as in (8.1.30), there exist positive parameters α1, σ0, ε0 such that

Ψ(t, ψ(t) + σ, y, ε) :=
gt(t, ψ(t) + σ, y, ε)

gx(t, ψ(t) + σ, y, ε)
+ f(t, ψ(t) + σ, y, ε) ≥ α1 (8.2.5)

for all |y| ≥ σ0, |σ| < σ0, |ε| < ε0. Furthermore, let us define the composite stable quasi

steady state Φ by

Φ(t, x) =

φ(t, x), t ∈ IT , x ∈ (0, ψ(t)),

0, t ∈ IT , x ∈ (ψ(t),M),

and consider w > 0 such that w < σ < σ0 and φ(t, ψ(t) − %) + w < σ. Then it is clear

that y(t, ε) < σ. Arguing as in the Step 1 of Theorem 8.1.0.1, it follows from (8.2.5) that

the trajectory cannot go back through the left wall {(t, x, y); t ∈ IT , x = ψ(t) − %, y ∈
(0, φ(t, ψ(t)− %) +w)}. Using (8.2.5) we can get a more detailed picture of the solution.

From (8.2.5), we see that

x(t, ε) > ψ(t) + % for t < t1 +
2%

α1

and, for sufficiently small ε, the solution (x(t, ε), y(t, ε)) cannot cross back through the

wall {(t, x, y); t ∈ [0, T ], x = ψ(t) + %, y ≥ 0}. So the only possibility of exit is through

y = Φ(t, x) + w for x > ψ(t)− %.

It follows that, by the selection of constants, the trajectory enters the region where

gy(t, x, y, 0) < 0.

Further, from assumption B6 we have g(t, x, y, 0) < 0 for t ∈ IT , x ∈ IM and y ∈
(Φ(t, x), N). Therefore, for any γ > 0 there exists β̃ > 0 such that g(t, x, y, 0) < −β̃ for

y > Φ + γ. Hence g(t, x, y, ε) ≤ 0 for ε sufficiently small and for y > Φ + γ. It follows

that for all ε ∈ Iε0 there exists w̃ε > 0 such that we have 0 < y(t, ε) < w̃ε for t > t1.

In other words, the solution y is bounded. Therefore, letting t1 tends t̃c and since the

solution is in the region where y′(t, ε) < 0, we obtain

lim
ε→0

y(t, ε) = 0 (8.2.6)

uniformly on [t̃c, T ]. Since the problem

dx

dt
= f(t, x, y(t, ε), ε), x(t̃c) = xφ(t̃c)
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is a regular perturbation of

dx

dt
= f(t, x, 0, 0), x(t̃c) = xφ(t̃c),

according to the regular perturbation theory, Theorem 3.3.1.1,

lim
ε→0

x(t, ε) = x̄(t), t ∈ [t̃c, T ]. (8.2.7)

It follows that (8.2.3) and (8.2.4) are satisfied.

8.3 Conclusion

In this chapter we stated and proofed general theories on the detection of the delay and

immediate stability switch for non-autonomous singularly perturbed planar systems with

a positive initial condition and possessing the first quadrant invariant under their flow.

The method used is that of the upper and lower solutions. Using the theories developed

in this chapter, one will be able to easily test and detect the presence of a delay and

an immediate stability switch in a large number of models. They can also serve in the

development of more specialised numerical simulations to improve the accuracy of the

numerical approximations of stiff equations. Similar theories for non-autonomous singular

perturbed planar systems with a negative initial condition and having the fourth quadrant

invariant can be obtained by performing obvious changes.

In the next chapter we study a classical prey-predator model by applying the theories found

in this chapter.
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9 Study of a Two Dimensional Ecological
Model

The predator-prey systems study is one of the cornerstones in Mathematical Biology.

The prey-predator theories in general involve the logistic equation, the Lotka-Volterra

equations, the incorporation into the equation of the prey and the predator of the ratio-

dependent or the Michaelis-Menten-Holling functional response [14]. The aim of this

chapter is to apply the theorems for planar systems developed in the previous chapter to a

two dimensional ecological model of two species, say prey and predator, with interactions

governed by the mass action law. Let us consider the following modeldx
dt = x(A+Bx+ Cy),

εdydt = y(D + Fx+ Ey),
(9.0.1)

where (t, x, y, ε) ∈ IT × IM × IN × Iε0 with T,M,N ∈ R+ and ε0 > 0 being a small

parameter. The initial condition is (x(0), y(0)) = (x0, y0), and A,B,C,D,E, F are

parameters. As in [58], in order to have a slow-fast predator-prey system, we assume

that the dynamics of both species differ; that is, one of the species has a fast dynamics,

while the other has a slow dynamics. In this case, ε > 0 represents the ratio of the time

scales of the dynamics of the two species. We will denote by a, b, c, d, e, f, respectively,

the absolute values of A,B,C,D,E, F. Our goal is to determine conditions under which

solutions of (9.0.1) exhibit a delay in stability switch and an immediate stability switch

as described in Sections 8.1 and 8.2.

9.1 Preliminary Study

9.1.0.1 Theorem. Consider the system of equations (9.0.1). For (x0, y0) ∈ R2
+, there

exists globally a unique and non-negative solution (x, y) to (9.0.1).

Proof. The proof is similar to that of Theorem 4.3.1.1.

It can be observed, after setting ε = 0 in the second equation of (9.0.1), that there are
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two quasi steady states:

y1 = 0 and y2 = −F
E
x− D

E
.

They intersect each other at x = −D
F = xc. In order to determine their stabilities, let us

denote g(x, y) = y(D+Fx+Ey). It follows that gy(x, y) = D+Fx+2Ey. Substituting

y by y1 and y2, respectively, in the expression of gy, we obtaingy(x, y1) = D + Fx

gy(x, y2) = D + Fx+ 2E(−F
Ex−

D
E ) = −D − Fx.

(9.1.1)

Therefore, the quasi steady states switch stability at xc = −D
F for any value of D and

F 6= 0. In order to keep our study realistic, we will focus only on the cases where the

stable parts of both quasi steady states are non-negative.

Let us denote by x̄ the solution to

dx̄

dt
= x̄(A+Bx̄), x̄(0) = x0; (9.1.2)

that is,

x̄(t) =
x0Ae

At

A+Bx0 −Bx0eAt
, (9.1.3)

with t 6=
ln
(

1+ A
x0B

)
A . It is easy to prove that x̄ is an upper solution of (9.0.1) by applying

the comparison theorem, Theorem 3.2.2.6, to (9.0.1) and (9.1.3). From (9.1.3) and

according to the assumption A7 of Theorem 8.1.0.1,

t̄c =
1

A
ln
(−D

F (A+Bx0)

x0(A−BD
F )

)
=

1

A
ln
(−D

F (AB + x0)

x0(AB −
D
F )

)
. (9.1.4)

It follows that t̄c exists if −D
F (AB + x0) and x0(AB −

D
F ) 6= 0 have same sign. It is positive

if either

• A > 0 and
∣∣− D

F (AB + x0)
∣∣ > ∣∣x0(AB −

D
F )
∣∣;

• or A < 0 and
∣∣− D

F (AB + x0)
∣∣ < ∣∣x0(AB −

D
F )
∣∣.

Furthermore, the function Ḡ is given by

Ḡ(t) =

∫ t

0

gy(x̄(s), 0)ds =

∫ t

0

D + Fx̄(s)ds (9.1.5)

= Dt− F

B
ln |A+Bx0(1− eAt)|+ F

B
ln |A|, t ∈ IT , (9.1.6)
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Figure 9.1: Case of an unstable population. It can be noticed that for the trajectory to cross the line x = −D
F ,

the initial condition should be 0 ≤ x0 < −D
F .

with t 6=
ln
(

1+ A
x0B

)
A . In the discussion below we have distinguished two cases depending

on the sign of the slope of the second quasi steady state.

9.2 Case of the Second Quasi Steady State Increas-
ing with Respect to x

This case corresponds the unstable case considered in Section 8.1. The assumptions of this

case are geometrically represented in Figure 9.1. It can be observed that for the trajectory

to cross the plane x = −D
F the initial condition should be such that 0 < x0 < −D

F .

We assumed that the slope of the quasi steady state is positive; that is m = −F
E > 0.

Therefore, F and E have opposite sign. There are two possible options: either F < 0 < E

or E < 0 < F.

1. If F < 0 < E, then F = −f and E = e. We have, xc = −D
F = D

f > 0 if and only if
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D = d. The second equation of (9.0.1) becomes

ε
dy

dt
= y(d− fx+ ey).

Moreover, the system (9.1.1) becomes

gy(x, y1) = d− fx,

gy(x, y2) = −d+ fx.

It follows that for x ≤ xc,

gy(x, y1) = d− fx ≥ 0,

gy(x, y2) = −d+ fx ≤ 0.

Therefore, the quasi steady state y1 is unstable for x ≤ xc, while y2 is stable.

Conversely, for x ≥ xc,

gy(x, y1) = d− fx ≤ 0,

gy(x, y2) = −d+ fx ≥ 0;

that is, the quasi steady state y2 is unstable for x ≥ xc, while y1 is stable. Hence,

there is a stability switch at xc. However, we will not study this case since the stable

parts of the quasi steady states are non-positive.

2. If E < 0 < F, then E = −e and F = f. It follows that xc = −D
F = −D

f > 0 if and

only if D = −d. The second equation of (9.0.1) becomes

ε
dy

dt
= y(−d+ fx− ey). (9.2.1)

From (9.1.1), we have

gy(x, y1) = −d+ fx,

gy(x, y2) = d− fx.

Thus, for x ≤ xc,

gy(x, y1) = −d+ fx ≤ 0,

gy(x, y2) = d− fx ≥ 0.

Therefore, the quasi steady state y1 is stable, while y2 is unstable for x ≤ xc.

Conversely, for x ≥ xc,

gy(x, y1) = −d+ fx ≥ 0,

gy(x, y2) = d− fx ≤ 0;
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that is, the quasi steady state y1 is unstable, while y2 is stable. Therefore, there is

stability switch at xc with non-negative stable parts of the quasi steady states.

In order to study the case of the delay in stability switch, let us denote

f(x, y) = x(A+Bx+ Cy).

According to the assumption A2 of Theorem 8.1.0.1, f should be decreasing with

respect to y. In other words,

∂f

∂y
= Cx ≤ 0;

that is

C = −c,

since x is non-negative. Furthermore, let us consider the function Ḡ, as defined in

assumption A8 of Theorem 8.1.0.1. We have

Ḡ(t) =

∫ t

0

gy(x̄(s), 0)ds =

∫ t

0

−d+ fx̄(s)ds, t ∈ IT .

Thus, its derivative with respect to time is

Ḡ
′
(t) = −d+ fx̄(t)

and its second derivative with respect to time is

Ḡ
′′
(t) = fx̄

′
(t).

Since, by definition, x̄ is solution to the equation dx
dt = f(x, 0) = x(A + Bx), it

follows that Ḡ
′′
(t) = fx̄(A + Bx̄). For the root t̄∗ of Ḡ to exist, it is enough that

the second derivative Ḡ
′′
(t) > 0 for t ∈ IT ; that is A+Bx̄ > 0. Therefore, there are

three possible options for A and B.

Case 1: A = a and B = b; t̄c > 0 if and only if x0 < x(t̄c).

Case 2: A = a and B = −b; t̄c > 0 if and only if k > x(t̄c) > x0, where k = a
b .

Case 3: A = −a and B = b; t̄c > 0 if and only if x(t̄c) > x0 > k with k = a
b .
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Recapitulating, a delay in stability switch is observed in
dx
dt = x(a+ bx− cy),

εdydt = y(−d+ fx− ey),

x0 <
d
f ,

dx
dt = x(a− bx− cy),

εdydt = y(−d+ fx− ey),

x0 <
d
f <

a
b ,

dx
dt = x(−a+ bx− cy),

εdydt = y(−d+ fx− ey),

a
b < x0 <

d
f .

9.2.0.1 Numerical Simulations

Let us consider the following problemdx
dt = x(1 + 0.1x− 10−2y),

εdydt = y(−1 + 0.2x− 0.2y),
(9.2.2)

where the initial condition is (2, 0.5). We considered a = 1, b = 0.1, c = 0.01, d =

1, e = f = 0.2. Therefore the condition x0 <
d
f is satisfied. Moreover, after setting ε = 0

in (9.2.2), we obtain two quasi steady states:

y1(x) = 0 and y2(x) = x− 5.

Therefore the second quasi steady state is increasing with respect to x. The intersection

of the quasi steady states occurs at xc = d
f = 5. From (9.1.4), we have t̄c = 0.7 time

units. According to (9.1.6), the function Ḡ is given by

Ḡ(t) = −t− 2 ln |1.2− 0.2et|,

with t ∈ [0, ln(6)). The numerical approximation of the root t̄∗ of Ḡ is t̄∗ = 1.17 time

units. Thus the delay of stability switch is approximately equal to 0.47 time units.

Figure 9.2 shows the graph of the orbits of the solutions to the problem (9.2.2) for

ε = 0.03, 0.02, 0.015, 0.011. It can be noticed that as ε tends to 0, the orbits of the

solution tend to the first quasi steady state and then switch to second quasi steady state

with a delay.
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Figure 9.2: Illustration of the unstable case with a delay in stability switch.

9.3 Case of the Second Quasi Steady State Decreas-
ing with Respect to x

This case corresponds to the situation described in Section 8.2. The assumptions of this

case are geometrically represented in Figure 9.3. It can be observed that for the trajectory

to cross the plane x = −D
F the initial condition should be x0 < −D

F . Since the second

quasi steady state is assumed to be decreasing with respect to x; that is m = −F
E < 0, it

follows that F and E must have the same sign. In other words, F and E are either both

positive or they are both negative.

1. If E = e and F = f then x(t̄c) = −D
f > 0 if and only if D = −d < 0. Further, from

(9.1.1), it follows that

gy(x, y1) = D + Fx = −d+ fx,

gy(x, y2) = −D − Fx = +d− fx.
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Figure 9.3: Case of a stable population. It can be noticed that for the trajectory to cross the plane x = −D
F ,

the initial condition should be 0 ≤ x0 < −D
F .

Thus, for x ≤ −D
F ,

gy(x, y1) = −d+ fx ≤ 0,

gy(x, y2) = +d− fx ≥ 0.

Therefore, y1 is attracting and y2 is repelling. On the other hand, for x ≥ −D
F ,

gy(x, y1) = −d+ fx ≥ 0,

gy(x, y2) = +d− fx ≤ 0.

Therefore, y1 is repelling, while y2 is attracting. Since y2 is considered to be decreas-

ing with respect to x, it follows that the attracting parts of the quasi steady states

are non-positive. Therefore, we will not further our study in this case.

2. If E = −e < 0 and F = −f < 0 then, xc = D
f > 0 if and only if D = d > 0. From

(9.1.1), we have

gy(x, y1) = D + Fx = d− fx,

gy(x, y2) = −D − Fx = −d+ fx.
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It follows that, for x ≤ xc,

gy(x, y1) = d− fx ≥ 0,

gy(x, y2) = −d+ fx ≤ 0.

Therefore, y2 is attracting and y1 is repelling for x ≤ xc. However, for x ≥ xc,

gy(x, y1) = d− fx ≤ 0,

gy(x, y2) = −d+ fx ≥ 0.

Therefore, for x ≥ xc, y2 becomes repelling, while y1 is attracting. Thus, there is

a switch of stability at the intersection of the quasi steady states with non-negative

stable parts.

From assumption B7 of Theorem 8.2.0.1, let us determine the function xφ. By defi-

nition, xφ satisfies the differential equation

dx

dt
= x(A+Bx+ Cy2) =

x

e
(Ae+ Cd+ (Be− Cf)x). (9.3.1)

We will consider two cases: Cf −Be = 0 and Cf −Be 6= 0.

(a) If Cf − Be = 0, then equation (9.3.1) possesses only one equilibrium point

x = 0 which is either repelling, or attractive depending on the sign of Ae+Cd.

However, from B7, we have xφ(T ) > f
d . Therefore x = 0 should be repelling.

Thus Ae+ Cd > 0; that is, −A < C d
e . Since C = Be

f , it follows that

−A <
Be

f
· d
e

;

that is

−A < B
d

f
.

(b) If Cf − Be 6= 0, then there is a critical point at xeq = Ae+Cd
Cf−Be . For B7 to be

satisfied; that is, for xφ(T ) > d
f , one of these cases should be satisfied.

i. Either the equilibrium point (xeq, yeq) is attracting and xeq >
d
f ,

ii. or the equilibrium point (xeq, yeq) is repelling and 0 < xeq <
d
f .

However, Cf −Be 6= 0 implies that either Cf −Be > 0 or Cf −Be < 0.

• If Cf −Be < 0, then xeq <
d
f implies that

Ae+ Cd

Cf −Be
<
d

f
;
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that is, −A < B d
f . Similarly, xeq >

d
f implies that

−A > B
d

f
.

• Conversely, if Cf −Be > 0, then xeq >
d
f implies that

−A < B
d

f
,

while xeq <
d
f implies that

−A > B
d

f
.

Let assume that −A < B d
f , then the possible values for A and B are

A = a,B = b or A = −a,B = b, with
a

b
<
d

f
or A = a,B = −b, with

d

f
<
a

b
.

In summary we observe a switch of stability with no delay, as described in Section

8.2, in the following casesdx
dt = x(a+ bx+ Cy),

εdydt = y(d− fx− ey),dx
dt = x(−a+ bx+ Cy),

εdydt = y(d− fx− ey), a
b <

d
f ,dx

dt = x(a− bx+ Cy),

εdydt = y(d− fx− ey), a
b >

d
f ,

with C ∈ R such that

• if Cf −Be = 0, then (xeq, yeq) is repelling;

• if Cf −Be < 0, then (xeq, yeq) repelling with xeq ∈ (0, df );

• if Cf −Be > 0, then (xeq, yeq) attracting with d
f < xeq.

Similar conditions with assumption −A > B d
f can be obtained in the same way,

except that the case (a) will not satisfy assumption B7 of Theorem 8.2.0.1.
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Figure 9.4: Case of the second quasi steady state decreasing with respect to x and an increasing prey population
x. The orbit is traversed from the left to the right. It can be noticed that there is no delay in stability switch.

9.3.0.1 Numerical Simulations

Let us consider the following problemdx
dt = x(10− x+ y),

εdydt = y(4− x− y),
(9.3.2)

with initial condition (x0, y0) = (1, 6). This problem satisfies the condition Cf −Be = 0

with (xeq, yeq) repelling. The graph of the solutions to (9.3.2) is shown in Figure 9.4 for

ε = 0.03, 0.02, 0.01. We observe that as ε tends to zero, the solutions converge to the

second quasi steady state and then to the first quasi steady state with no delay in the

switch of stability.

9.4 Relationship Between Cases

In this section, we aim to determine additional assumptions under which some models

satisfying the assumptions of Theorem 8.1.0.1 and Theorem 8.1.0.6 can be transformed

into models satisfying the assumptions of Theorem 8.2.0.1 and Theorem 8.2.0.2 and vice
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Figure 9.5: Case of the second quasi steady state increasing with respect to x. The red graph represents a graph
of a solution in an unstable case while the gray graph is the graph of a solution in a stable one.

versa as indicated, respectively, in Figure 9.5 and 9.6 where the red graph is transformed

into the gray graph. Let us consider a general model whose parameters satisfy the

assumptions of Theorem 8.2.0.1 and Theorem 8.2.0.2 and let us determine under which

conditions it can be transformed into a problem whose parameters satisfy the assumptions

of Theorem 8.1.0.1 and Theorem 8.1.0.6. In other words, we want to study the possibility

of having a delay in stability switch with the second quasi steady state decreasing with

respect x. According to the previous study, a general model whose parameters satisfy the

assumptions of Theorem 8.2.0.1 and Theorem 8.2.0.2 is given by
dx
dt = x(A+Bx+ Cy),

εdydt = y(d− ey − fx),

(x(0), y(0)) = (x0, y0),

(9.4.1)

where A,B,C ∈ R are parameters.

Let us set x = 2d
f − z. The system (9.4.1) becomesdz

dt = −dx
dt = (z − 2d

f )(A+B(2d
f − z) + Cy),

εdydt = y(d− ey − f(2d
f − z));
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Figure 9.6: Case of a the second quasi steady state decreasing with respect to x. The graph in red is the graph
of a solution without a delay in the switch of stability while the gray graph is the graph of a solution with a
delay in stability switch.
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Figure 9.7: Illustrations of the different options that satisfy assumption A7.

that is dz
dt = (z − 2d

f )(A+B(2d
f − z) + Cy),

εdydt = y(−d− ey + zf).
(9.4.2)

We observe that the last equation of (9.4.2) is the same as equation (9.2.1). Let us now

determine the condition on A,B, and C for the delay to occur. Since x is positive, the

factor z− 2d
f < 0. Thus, according to the assumption A3 of Theorem 8.1.0.1, C = c > 0.

On the other hand, for y = 0, we have two equilibria z1 = 2d
f and z2 = A

B + 2d
f . Assumption

A7 of Theorem 8.1.0.1 will be satisfied in the following cases:

1. z2 <
d
f and it is repelling with z0 ∈ (z2,

d
f ). This case is shown in Figure 9.7 case a).

However, substituting z2 and z0 by their values, we obtain the following implications:

z2 <
d

f
⇒ d

f
< −A

B
,

z2 < z0 <
d

f
⇒ −A

B
> x0 >

d

f
,

and

x2 =
2d

f
− z2 = −A

B
.

It follows that A,B should be of opposite sign with d
f < x0 <

a
b and x2 = a

b being a

repelling equilibrium.

2. d
f < z2 <

2d
f and it is attracting with z0 <

d
f . This case is described in Figure 9.7
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case b). Substituting z2 and z0 by their values, we obtain the following implications:

d

f
< z2 <

2d

f
⇒ −A

B
<
d

f
,

z0 <
d

f
⇒ x0 >

d

f
,

and

x2 =
2d

f
− z2 = −A

B
.

Thus, A,B should have opposite sign with x0 >
d
f >

a
b , and x2 = a

b is attractive.

3. z2 >
2d
f and z1 attractive with z0 <

d
f as described in Figure 9.7 case c). However,

substituting z2 and z0 by their values, we obtain the following implications:

z2 >
2d

f
⇒ A

B
> 0,

z0 <
d

f
⇒ x0 >

d

f
,

and

z1 =
2d

f
− x1 ⇒ x1 =

2d

f
− z1 = 0.

Therefore, we should have A,B with the same sign, x1 = 0 attractive and x0 >
d
f .

In summary, there are three forms of the model that will exhibit a delay in stability switch

with a decreasing quasi steady state. There are
dx
dt = x(−a− bx+ cy),

εdydt = y(d− ey − fx),

x0 >
d
f , y0 > 0,

dx
dt = x(a− bx+ cy),

εdydt = y(d− ey − fx),

x0 >
d
f >

a
b , y0 > 0,

dx
dt = x(a− bx+ cy),

εdydt = y(d− ey − fx),

y0 > 0, d
f < x0 <

a
b .
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Figure 9.8: Case of the second quasi steady state decreasing with respect to x and a fast prey population y. As
time go on, the orbit is traversed from the right to the left. We observe a delay in stability switch.

9.4.0.1 Numerical Simulation

Let us consider the following system of differential equation
dx
dt = x(4− x+ 0.08y)

εdydt = y(6− y − x)

(x0, y0) = (10, 10),

(9.4.3)

Setting ε = 0 in the second equation of (9.4.3), we obtain two quasi steady states: y1 = 0

and y2 = −x+6. Therefore we have the second quasi steady state decreasing with respect

to x and a fast prey population y. From equation (9.1.4), we have t̄c = 0.14 time units.

From (9.1.6), the function Ḡ is given by

Ḡ(t) = 6t+ ln | − 6 + 10e4t|+ ln(4),

for t > 0. The numerical computation of the root of Ḡ gives t̄∗ = 0.39 time units.

Therefore, the delay is approximately equal to 0.25 time units. Figure 9.8 shows the

graphs of the solutions to the system (9.4.3) for ε = 0.05, 0.04, 0.03, 0.02, 0.01. It can

be observed that the solutions tend first to the first quasi steady state and then, switch

to the second quasi state as ε tends to 0 with a delay in the switch of stability.
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9.5 Conclusion

In this chapter we have been able to study a general two dimensional prey and predator

model governed by the mass action law using the theories developed in the previous

chapter. We generated a number of systems of equations which exhibit a delay in stability

switch and an immediate stability switch depending on the parameter values. Also we

showed the relationship between both cases (stable and unstable) by presenting under

some assumptions a transformation of an immediate stability switch into a delayed stability

switch.
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10 Conclusion

We introduced the thesis by a numerical example showing some dangers of using standard

computer software to deal with singularly perturbed problems. Singularly perturbed prob-

lems belong to the class of stiff problems for which standard ODE solvers often produce

erroneous results. We found that such erroneous but plausible results generated by stan-

dard packages occur to some of the discussed models. In this thesis we have presented

some results concerning the application of the Tikhonov theorem to singularly perturbed

problems in epidemiology for the cases of the delay and the immediate stability switch.

Classical Tikhonov theory shows that if in a singularly perturbed problem with a small

parameter there is an isolated attractive quasi steady state, then all solutions originating

from initial conditions in the basin of attractiyon of this quasi steady state will converge

to it when the small parameter tends to zero. This theory enabled us to understand the

asymptotic dynamics of some complex epidemiological problems including the cases of

dengue fever, malaria and of the influenza under some conditions. The stability switch

occurs when the quasi steady states are non-isolated; that is, if they have intersection

points at which there is an exchange of their attractiveness. In many cases, according

to intuition, often the switch of stability is immediate; that is, a solution in the basin of

attraction of one quasi steady state will converge to it and then, having passed close to

the intersection of the quasi steady states, it will “switch” stability by immediately starting

to follow the other quasi steady state, which is now attracting. Contrary to this intuition,

a delay of switch of stability can be observed. In other words, what often happens is that

the solution, having passed the intersection, continues along the now repelling branch of

the first quasi steady state for a fixed time, and only later jumps towards the attracting

branch of the new one. We studied the delayed stability switch and the immediate stability

switch for one and two dimensional models with transcritical bifurcations. The developed

theories target non-autonomous models having the first quadrant invariant under their

flow and possessing a positive initial condition. Furthermore for the delay to occur we

focused on models whose functions possess a specific form of monotonicity (see Assump-

tions A3 and A4 in Chapter 8). The presented analysis was mainly based on the method of

upper and lower bounds which, for the purpose of the discussed models, was generalized

to a two dimensional case. We distinguished two types of behaviour: the unstable and

the stable cases. We found many applications to the theories among which we have: an

ecological model between two species with interactions satisfying the mass action law,
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and an epidemiological model with vital dynamics and a disease of quick turnover. In

both cases we found that, depending on the assumptions, the model can exhibit either a

delay or an immediate stability switch which have been proved to be related in the case

the ecological model with interactions satisfying the general mass action law. The pre-

sented theories allows not only to spot the erroneous numerical results and thus to apply

more refined methods to provide a correct numerical picture of the singularly perturbed

evolution, but also to characterise analytically models exhibiting a delay and an immediate

stability switch. It is worth mentioning that even though we used models with positive

initial conditions, it is possible to derive similar theories for models with a negative initial

condition and having the fourth quadrant invariant under their flow by making obvious

changes.
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