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ABSTRACT 

 

Plants have been used as ethnomedicine for millennia. In recent years, there has been an 

upward surge of interest in the use of plants as medicine due to the interest in drugs with 

fewer side effects as well as the fight against antibiotic resistance. This study is based on 

Tagetes minuta, an aromatic essential herb that is cultivated for its high percentage 

essential oils which have been used in the treatment of various ailments. In addition, T. 

minuta contains a myriad of secondary metabolites that serve in numerous industrial and 

clinical applications. The aim of this study was to characterise the foliar structures 

responsible for the production, storage, and exudation of these useful compounds, as well 

as to examine the chemical constituents of the crude organic solvents derived from the 

leaves of T. minuta. The potential for green synthesis of silver nanoparticles from the 

crude methanolic extract and its potential as an antibacterial was also determined. 

Stereomicroscopy and scanning electron microscopy revealed the presence of uniseriate 

non-glandular trichomes on the foliar surfaces, as well as large pellucid secretory cavities. 

Histochemical analyses on the non-glandular trichomes showed that they are capable of 

storing various bioactive compounds, which is a novel discovery for this species. The 

development of the subdermal secretory cavities show that the cells undergo autolysis in 

order to form a schizolysigenous cavity in mature leaves, which was revealed using light 

microscopy. The ultrastructure of the secretory epithelium within the secretory cavity was 

analysed using transmission electron microscopy, which displayed the changes of the 

plastids to contain lipid molecules as well as an increase in vesicles indicating the 

presence of essential oils. Phytochemical analysis on the crude organic solvents derived 

from the leaves of T. minuta revealed the presence of alkaloids, sterols, saponins, 

terpenoids, phenols, and lipids. Gas-chromatography mass-spectrometry was carried out 

to reveal that the constituents with the highest percentage were 9-octadecen-1-ol (4.51 

%), β-sitosterol (6.07 %), olean-12-en-3-one (7.47 %), and 3-methyl-1-butanol (14.77 %), 

all of which cause bacterial growth inhibition, as well as showing acaricidal activity, and 

anticancer properties in studies focussed on clinical applications. Silver nanoparticles 

were successfully synthesised from the methanolic leaf extract, which was confirmed 

using UV-visible spectroscopy and energy dispersive x-ray analysis. UV–visible 

spectrum of synthesised silver nanoparticles showed maximum peak at 442 nm, and 
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transmission electron microscopy revealed the silver nanoparticles to be spherical in 

shape, ranging from 10 to 50 nm in diameter. Preliminary antimicrobial activity was 

determined using the agar well diffusion method, which showed growth inhibition against 

E. coli, S. aureus, methicillin-resistant S. aureus, B. subtilis and P. aeruginosa. This study 

has shown that T. minuta contains numerous bioactive compounds that have 

pharmacological and medicinal uses, as well as characterising the non-glandular 

trichomes present on the adaxial and abaxial leaves for the first time. The synthesis of 

silver nanoparticles from the methanolic extract of T. minuta in this study is novel, and 

shows promise for cheaper, more effective, and less risky nanotechnological applications. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Traditional medicine 

South Africa is recognised as being one of the most ecologically biodiverse countries in 

the world. It is home to approximately twenty-four thousand plant species, of which ten 

thousand are endemic (Algotsson, 2009). The economic growth of South Africa’s 

population is heavily reliant on the biodiversity of the country in the form of local 

agriculture, recreational wellbeing and entrepreneurship (Street and Prinsloo, 2013).  

Traditional medicine is firmly rooted in the culture and history of many communities 

around the world. Many of these practices have gained popularity as sources of alternative 

and complementary medicines such as Ayurveda, Chinese herbal medicines, and 

traditional African medicines (Fabricant and Farnsworth, 2001). Since the early 2000s, 

traditional medicine has been a fast-flourishing market due to the growing emphasis on 

healthy living and concerns over the side effects of mainstream drugs. Contemporary 

medicine is constantly searching for new treatments as several antibiotics and other life-

saving drugs have been rendered ineffective due to the rise in drug resistance (Zuber and 

Takala-Harrison, 2018). New drugs can take years in research and development before 

being released to the public for use. This has contributed to the upward rise in the use of 

traditional medicines worldwide. Recent examples of this are the uses of various plants 

in the treatment of malaria and tuberculosis (Ngarivhume et al., 2015; Madikizela et al., 

2017). 

In many developing countries, traditional healthcare plays a vital role in meeting the 

primary healthcare needs of their populations. Through centuries of refinement, herbal 

remedies are prepared based on the plant being utilised and what condition is being 

treated. These methods include infusions, macerations, tinctures, and inhalation of 

powdered plant material (Nafiu et al., 2017). 

Traditional medicine in South Africa is referred to as ‘Umuthi’ and has become an 

increasingly popular industry. Rural poverty and weak healthcare systems are the driving 

forces for approximately 60-80% of South Africans who rely on traditional medicine for 
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an array of ailments (Mander et al., 2007). This industry continues to flourish due to the 

country’s rich plant biodiversity which boasts at least four thousand indigenous 

ethnobotanically-significant species (Van Wyk et al., 2009). Researchers are actively 

exploring the ‘Umuthi’ markets for botanical resources that yield bioactive compounds 

which could be medicinally beneficial.  

 

1.2 Botanical description of Tagetes minuta L. 

Tagetes minuta is an aromatic essential plant with a broad spectrum of biological 

activities among which are medicinal, antioxidant and antibacterial properties (Shirazi et 

al., 2014). It has been reported in literature that T. minuta produces highly volatile 

essential oils that are widely used in the cosmetic and perfumery industries, as flavouring 

agents in food and beverages, as well as a natural herbal medicine (Vasudevan et al., 

1997).  

The genus Tagetes belongs to the Asteraceae family, of which T. minuta is an herbaceous 

plant that produces composite flowers in the rainy season. A synonym of T. minuta is T. 

glandulifera Schrank. The species’ name of T. minuta is derived from the Latin word 

‘minute’ meaning small in reference to the size of the capitula. It is a weed of late summer 

that disappears at the beginning of the colder seasons after the completion of its life cycle 

(Chamorro et al., 2008).  This species is indigenous to South America and Mexico 

(common name: Mexican marigold) but has become naturalised in South Africa (common 

names: Khakibos, Unukani, Mbanje) since the Spanish colonisation. This plant grows 

best on soil with good drainage and grows up to 1.5 metres high. It is commonly used in 

the agricultural industry as the roots secretions are known to deter weeds from growing 

in its nearby vicinity.  

Tagetes minuta is a widely distributed plant in South Africa and is used for different 

purposes in different regions of the country. It has been used for the treatment of 

headaches, body pain and epilepsy by either smelling the strong scent, chewing the leaves 

or rubbing a paste made of the herb on the affected part, e.g. head, joints (Igwaran et al., 

2017; Karimian et al., 2014; Kyarimpa et al., 2014; Vasudevan et al., 1997). The plant’s 

essential oil has also been used in the control of Rhipicephalus microplus (common tick) 
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in cattle by reducing the spread via the halt in the tick reproduction cycle (Andreotti et 

al., 2013). This indicates that the plant has a strong acaricidal activity and thus has 

promise as an insecticide as well. Solvent extractions from other species in this genus 

have also been shown to have promising anticancer properties (Gakuubi et al., 2016; 

Kashif et al., 2015).  
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Figure 1. 1 Vegetative growth and flowers of Tagetes minuta. a) Mature plant growing 

alongside a verge at the University of KwaZulu-Natal (Westville campus), b) Fully 

expanded mature pinnatisect leaves c) Tubular flowers of T. minuta. 

 

Figure 1. 2 Worldwide distribution of Tagetes minuta, image adapted from Global 

Biodiversity Information Facility webpage. (Source: http://www.discoverlife.org 

accessed on 23/08/18) 
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1.3 Rationale of the study 

The active constituents of medicinal plant extracts have been shown to treat various 

ailments and diseases that can lead to the development of novel and more cost-effective 

treatments. Tagetes minuta has been examined for its phytochemical properties (Arora et 

al., 2015; Shahzadi and Shah, 2015; Gakuubi et al., 2016) and its essential oils have been 

used to treat malaria vectors and some types of cancer (Ibrahim and Mohamed, 2017; 

Kimutai et al., 2017; Kyarimpa et al., 2014).  

In South Africa, T. minuta is listed as an invasive species (SANBI, 2015).  However, there 

are beneficial uses for its phytocompounds, indicating the potential use of T. minuta as 

underutilised minor crop. Scarce research was conducted on the foliar micromorphology 

and ultrastructure of this species as well as no description of the mode by which the 

various phytocompounds are secreted. This project describes and reviews the 

micromorphology of the adaxial and abaxial surfaces of emergent, young, and mature 

leaves to identify and determine trichome density, subdermal secretory structures, as well 

as to analyse the histo-phytochemical properties of phytocompounds in T. minuta.  

Trichome morphological attributes have additionally been key qualities in plant 

taxonomic investigations. The morphology of trichomes, chemical nature of the secretory 

products, and how the secretory products are exuded are vital aspects that need to be 

addressed. In addition, the methanolic extract from the leaves of T. minuta was used in 

the screening of preliminary antibacterial activity as well as determining the potential for 

green synthesis of silver nanoparticles. 

 

1.4 Aims and Objectives:  

The aims and objectives of this study as per chapter are outlined below: 

 

Chapter 3:  

Aim:  Examine and describe the foliar structures and secretory cavities of T. minuta 

using various microscopy techniques. 
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Objective 3.1:  Employ the use of stereomicroscopy and scanning electron microscopy to 

image and describe the foliar surface structures such as trichomes, 

secretory cavities and stomata of the leaves.  

Objective 3.2:  Describe the internal cellular organelles and components of the cells 

within the secretory cavities of the leaves. 

Objective 3.3:  Reveal the internal structures of trichomes with regard to phytocompound 

classes using histochemical staining techniques. 

 

Chapter 4: 

Aim:  Elucidate the location and composition of the phytocompounds of the leaves of T. 

minuta using a variety of histochemical and phytochemical analyses. 

Objective 4.1:  Investigate the various compound classes present in the crude organic 

solvent extracts of the leaves using phytochemical tests. 

Objective 4.2:  Elucidate the chemical constituents of the crude methanolic extract using 

GC-MS. 

Objective 4.3: Determine the antibacterial potential of the methanolic extract against 

gram positive and gram negative bacteria. 

 

Chapter 5: 

Aim:   Determine the potential for green synthesis of silver nanoparticles using the 

methanolic extract of T. minuta as well as screen for antibacterial activity. 

Objective 5.1:  To produce silver nanoparticles derived from the crude methanolic extract 

using green synthesis techniques. 

Objective 5.2: To screen for antibacterial activity of the synthesised silver nanoparticles 

against selected gram positive and gram negative bacteria. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Traditional medicines refer to plant materials that are used for curative, preventative, or 

rehabilitative treatment in accordance with traditional or cultural principles 

(Cunningham, 1990). In many developing countries, where traditional medicine is the 

only form of therapy, it fulfils the function of primary healthcare (Dauskardt, 1990; Bisi-

Johnson et al., 2017). Due to its potential in treating various ailments and diseases 

naturally and effectively, this sector continues to grow worldwide (Nair and Chanda, 

2007). The biological screening and isolation of bioactive compounds from medicinal 

plants is the most common source of drug discovery and have resulted in the production 

of many clinically used medicines (Balunas and Kinghorn, 2005). Pharmacognosy is the 

chemical study of the natural products from herbal sources (Cardellina, 2002).   

The high quantities of extractable organic substances plants produce such as essential 

oils, tannins, saponins, rubber, and dyes are economically viable as raw materials for 

various scientific and commercial applications (Balandrin et al., 1985).  The secondary 

metabolites have little bearing in the primary metabolism of the plant, but serve ecological 

roles as pollinator attractants, chemical defences against insects and other predators, and 

as chemical adaptors to environmental stresses (War et al., 2012). These metabolites tend 

to be synthesised at specific developmental stages of the plant’s growth, and are produced, 

stored, and liberated from specialised cell types on and within the plant’s organs (Werker, 

2000).  

Secretory structures in plants include trichomes, mucilage ducts, hydathodes, nectaries, 

and laticifers (Fahn, 2000). These structures are specialised cell formations that are 

responsible for the production of secondary metabolites that protect the plant from 

numerous biotic and abiotic stressors (Werker, 2000). The morphoanatomical and 

phytochemical analyses of these structures enable the understanding of how useful 

bioactive compounds are produced, and how they can be utilised efficiently for medicinal 

and pharmacological applications. 
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2.2 Asteraceae family and the Tagetes genus 

The Asteraceae family (syn. Compositae) is named for the Greek word ἀστήρ which 

means ‘star’, in reference to composite star-like form of inflorescence. With 

approximately 20000 species and 1300 genera, it is the largest family of flowering plants 

(Bremer, 1987; Adedeji and Jewoola, 2008). Three subfamilies are recognized in 

Asteraceae, namely the Asteroideae, the Cichorioideae (syn. Lactucoideae), and the 

Barnadesioideae (Bremer et al. 1992). The family has a worldwide distribution, 

colonising a wide variety of habitats, but are most common in semi-arid and arid regions 

of the subtropics (Achika et al., 2014). Many species of Asteraceae have been deliberately 

introduced to countries worldwide for medicinal use, food, and horticulture – making it 

an economically vital family (Barkley et al., 2006).  

Most Asteraceae species are known to have foliar structures known as trichomes and/or 

secretory cavities that enable the production of chemical compounds, often in the form of 

essential oils (Venkatachalam et al., 1984). Trichomes are appendages that resemble 

small hairs and are found on the surface of leaves, stems, and sepals (Werker, 2000). They 

vary in structure, size and function. Non-glandular trichomes serve to protect the plant 

against herbivores and pathogens, whilst decreasing damage caused by UV-B rays and 

can act as an insecticide (Adebooye et al., 2012) whereas glandular trichomes accumulate 

and secrete essential oils that characterise the plant as aromatic and can also be used 

therapeutically (Wagner, 1991). Secretory structures manifest a high degree of 

morphological diversity and are fairly common in Asteraceae species. The secretory 

cavities of species found in the Asteraceae family is well-documented in those plants that 

are cultivated and harvested for their essential oils and similar bioproducts (Werker et al., 

1994; Monteiro et al., 1999; Milan et al., 2006; Lizarraga et al., 2017; Filartiga et al., 

2017; Bezerra et al., 2018).  
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2.3 The genus Tagetes  

Tagetes minuta L. is an annual aromatic herb from the Asteraceae family. The 

taxonomical grouping for this plant is among the largest, with approximately 1000 genera 

and more than 23000 species (Sadia et al., 2013). The genus Tagetes comprises 56 species 

(Bandana et al., 2018). The most common Tagetes species include T. minuta, T. erecta, 

T. patula, and T. tenuifolia. Tagetes minuta is the most widely studied plant from this 

genus due to its high-grade percentage of essential oil that has versatile uses in the 

perfume, food, and ethnomedicinal industries (Singh et al., 2003).  

Taxonomic classification of Tagetes minuta L. (Bandana et al., 2018): 

Kingdom : Plantae 

Subkingdom : Viridiplantae 

Infrakingdom : Streptophyta 

Superdivision : Embryophyta 

Division : Tracheophyta 

Class  : Magnoliopsida 

Superorder : Asteranae 

Order  : Asterales 

Family  : Asteraceae 

Genus  : Tagetes 

Species : Tagetes minuta L. 

 

Common and local names of Tagetes minuta L. (Qureshi et al., 2007; SANBI, 2015) 

English : wild marigold, stinking Roger, Mexican marigold, Muster  

John Henry 

India  : Jungli gainda 

Spain  : huacatay, enana 

Angola  : ekaibulo 
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Brazil  : chinchilla, coora, cravo de mato, rabo de rajao, suique 

Chile  : quinchihue 

Germany : wild sammetblume 

Kenya  : ang’we, mubangi, nyanjaga, omotioku 

Madagascar : mavoadala 

Portugal : cravo de defuncto 

Paraguay : agosto, suico 

South Africa : khakibos, kleinafrikander, mbanje, insangwana, unukani 

 

Synonyms of Tagetes minuta include T. bonariensis Pers., T. glandulifera Schrank, T. 

glandulosa Link, T. montana (Hort) DC., and T. porphyllum Vell (Maheshwari, 1972; 

Bandana, 2018). The species name of T. minuta is derived from the Latin word ‘minutes’ 

meaning small, in reference to the size of the capitula. It is a weed of spring and it 

disappears at the start of winter after completion of its life cycle (Chamorro et al., 2008).  

This species is indigenous to South America and Mexico (common name: Mexican 

marigold) but has become naturalised in South Africa since the Spanish colonisation. 

Tagetes minuta grows best on soil with good drainage and grows up to two metres high. 

This plant is commonly used in the agricultural industry, as the root secretions are known 

to deter weeds from growing in its nearby vicinity. 

Tagetes minuta is known as an aromatic essential plant that exhibits rich natural product 

chemistry. It produces highly volatile essential oils that are widely used in the cosmetic, 

perfumery and food industries, as well as being used as ethnomedicine (Vasudevan et al., 

1997). This plant is widely distributed in South Africa and is used for different purposes 

in different regions of the country. It has been documented in literature that it is used for 

treatment of headaches, body pain, and epilepsy by either smelling the strong scent or 

chewing the leaves or rubbing a paste made of the herb on the affected part, e.g. head, 

joints. Several papers have documented the medicinal use of extracts of T. minuta 

(Vasudevan et al., 1997; Kyarimpa et al., 2014), which report high levels of effectiveness.  
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2.4 Phytochemical studies on Tagetes minuta 

Phytochemical screening of medicinal plants enables the development of novel 

therapeutic compounds with an improved efficacy to address variable health-related 

issues.  

Tagetes minuta is cultivated primarily due to its richness in essential oil, which is present 

in all organs except the stem (Singh et al., 2003). In addition to the essential oil, T. minuta 

also produces various secondary metabolite compounds including monoterpenes, 

sesquiterpenes, flavonoids, aromatics, and thiophenes (Singh et al., 1995; Lawrence, 

1996; Bansal et al., 1999; Brene et al., 2009; Sadia et al., 2013).  

The major components of T. minuta oil are (Z)-β-ocimene, hydrocarbons (limonene), 

acyclic unsaturated monoterpenoids, ketones, dihydrotagetone, tagetones (E, Z), and 

ocimenones (E, Z) (Kyarimpa et al., 2014; Tiwari et al., 2016; Igwaran et al., 2017). 

Meshkalasadat et al. (2010) characterised the volatile components of T. minuta cultivated 

in Iran using nano-scale injection. Their study indicated that the essential oil is rich in 

monoterpene hydrocarbons (28.3%), oxygenated monoterpenes (45.2%), sesquiterpene 

hydrocarbons (2.5%), oxygenated sesquiterpenes (3.7%), diterpenes (0.6%), and other 

compounds (17.2%). 

The variation in essential oil content and composition of T. minuta in North India was 

studied by Tiwari et al. (2016) using gas chromatography-mass spectrometry (GC-MS) 

and gas chromatography with flame-ionization detector (GC-FID) for analysis. The 

essential oil content varied from 0.52 to 0.78% in the different growth stages of the crop 

(flower initiation, full flowering, late flowering, and seed setting stages). The main 

constituent of the essential oil was found to be monoterpenoids (80.5-92.9%). 

In Argentina, Gil et al. (2002) studied three wild accessions of T. minuta for the 

composition of thiophenes and concluded that there were only quantitative differences. 

The major constituents of the essential oil were dihydrotagetone, α-phellandrene, 

limonene, o-cymene, β-ocimene, and tagetenone. 

In South Africa, Mohammad et al. (2010) showed that the main components of the 

essential oil were β-ocimene (32.0%), and dihydrotagetone (16.4%); while Igwaran et al. 
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(2017) used GC-MS analyses to determine the main compounds to be β-ocimene (14.4%), 

m-tert-butyl-phenol (9.41%), 2,6-dimethyl-, (E)-5,7-octadien-4-one (7.14%), hydro-

methyl-naphthalene (5.58%) and spathulenol (4.56%).  

Tankeu et al. (2013) reported chemotypic variation of the T. minuta essential oil extracted 

from South African plants, revealing two major chemotypes – (E)-tagetone, 

dihydrotagetone, and (Z)-tagetone as the characteristic marker constituents for 

Chemotype 1; while (Z)-β-ocimene, (E)-ocimenone, and (Z)-ocimenone characterised 

Chemotype 2. This supplements the findings of Senatore et al. (2004), which also 

identified two chemotypes for this species. One chemotype is characterised by a higher 

content of tagetones in samples from the United Kingdom, and higher content of 

ocimenes and ocimenones in samples taken from South Africa and Egypt. 

In 2014, Al-Musayeib et al. isolated nine compounds and identified two of them to be 

novel compounds (5-methyl-2,2',5',2'',5'',2''',5''',2''''-quinquethiophene and quercetagetin-

6-O-(6-O-caffeoyl-β-d-glucopyranoside) from the methanolic extract of Tagetes minuta, 

which shows significant antioxidant activity. 

Lizarraga et al. (2017) analysed the chemical composition of the essential oils of T. 

minuta and T. terniflora. They deduced that the oil of T. minuta was characterised mainly 

by high percentages of tagetone (56.2%) and cis-β-ocimene (19.9%), with lower amounts 

of dihydrotagetenone (10.4%) and limonene (2.4%); whereas T. terniflora showed high 

percentages of tagetones (60.6%) and ocimenones (10.3%).  

Ibrahim et al. (2018b) isolated a new compound called ‘tagetnoic acid’ from the hexane 

fraction of the leaves of T. minuta. This compound has been described as a strong 

lipoxygenase inhibitor with IC50 of 1.17 µM as compared to the synthetic inhibitor 

indomethacin (IC50 0.89 µM). This suggests that the consumption of T. minuta leaves 

may alleviate inflammatory disorders. 
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Tagetes minuta is both a cultivated crop and an invasive weed, based on the country. This 

means that the differences in the chemical profile of essential oil can be attributed to both 

anthropogenic and environmental factors, not limited to: 

(i) method of harvesting 

(ii) geographic location of the plant 

(iii) growth stage of the harvested plants 

(iv) the plant organs used 

(v) climatic conditions of growth 

Chemotypes are a result of genotypic × environmental interactions (Tankeu et al., 2013), 

which leads to variations in the chemical composition of essential oil from Tagetes 

minuta.  
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Figure 2. 1 Chemical structures of constituents most abundant in the essential oil of 

Tagetes minuta (Adapted from Sadia et al., 2013; Igwaran et al., Lizarraga et al., 2017). 
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2.5 Trichome types and functions 

Trichomes are epidermal appendages that resemble small hairs on the surfaces of leaves, 

stems, roots, and flowers of almost all angiosperms (Wagner et al., 2004). They have 

served roles in the mechanisms of plants to adapt to a range of biotic and abiotic stressors 

(Levin, 1973; Fahn, 2000; Wagner et al., 2004). Trichomes vary in shape, size, location, 

and the ability to store and secrete bioactive compounds (Levin, 1973; Wagner, 1991). 

More than 300 types of plant trichomes have been described (Aschenbrenner et al., 2013). 

Conventionally, research on trichomes has focused primarily on the metabolic pathways 

in some types of trichomes (Schilmiller et al., 2008; Spyropoulou et al., 2014); however, 

studies show that trichomes can act as a defence syndrome against insects that feed on 

the plant, both mechanically and chemically (Levin, 1973; Wagner et al., 2004). Plants 

induce the growth of a denser cover of foliar trichomes in response to insect damage, as 

well as stimulating an increase in secondary metabolites (such as tannins, terpenoids, and 

alkaloids) that deter predators (Agrawal, 2006; War et al., 2012).  

The classification of trichome types has been subjective; however, there are two major 

categories, glandular (secretory) and non-glandular. As trichomes can be used for 

taxonomic purposes, these can be subdivided further according to their relative 

morphological characteristics (Kim et al., 2011). Glandular trichomes are named for their 

terminal secretory head and ability to produce, sequestrate, accumulate, and exude 

specialised secondary metabolites that deter predators by causing the plant to become 

unpalatable, or secreting substances that attract pollinators (Levin, 1973; Wagner, 1991).  

Non-glandular trichomes are often called ‘simple’ trichomes as their functions are mostly 

aligned with their mechanical properties such as size, shape, and density (Matsuki et al., 

2004; Wagner et al., 2004). They may be unicellular, multicellular, or branched and are 

associated with the texture of the epidermal surface of plants (Adedeji and Jewoola, 2008; 

Gairola et al., 2008).  

Non-glandular trichomes (NGT) form early in the development of plant organs and often 

senesce shortly before the plant reaches maturity (Wagner et al., 2004). Werker (2000) 

suggests that dead trichomes on mature plant organs may still serve mechanical functions 

such as water absorption and abrasion protection. Non-glandular trichomes are most 

commonly associated with plant defence. Agrawal and Fishbein (2006) demonstrated the 
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ability of a plant to increase (non-glandular) trichome density as a result of herbivory 

from caterpillars; however, Wagner et al. (2004) suggest that the increase in NGT density 

is a precursor to the production of defence phytochemicals. The shape of non-glandular 

trichomes can give an indication of its mechanical function on the plant – ‘hooked’ 

trichomes often serve to increase the chances of seed dispersal (given the NGT can be 

found on the seed coating), and ‘spiked’ trichomes immobilise and impale insects (Levin, 

1973).  

Brewer et al. (1991) examined the effect of foliar trichomes in 38 plant species on water 

repellence with the conclusion that plants with leaf trichomes are more water repellent. 

Sletvold and Agren (2012) identified an increase in trichome production on Arabidopsis 

lyrata to be responsible for an improvement of the plant under drought conditions. In 

2016, Mo et al. demonstrated a similar increase of trichome formation for drought-

tolerant genotypes of Citrullus lanatus as compared to the domesticated, drought-

sensitive variants of the watermelon. Gonzales et al. (2008) determined that mechanical 

damage induced density of glandular trichomes, while non-glandular trichome density 

increased in experimental drought conditions in Madia sativa. These studies exhibit the 

ability of trichome density to affect and limit water loss by transpiration by increasing the 

resistance of the leaf-air boundary (Galdon-Armero et al., 2018). 

By employing the use of histochemical techniques and electron microscopy, Tozin et al. 

(2016) demonstrated the ability of non-glandular trichomes from three Lamiaceae and 

four Verbenaceae species to store bioactive compounds. Based on the understanding that 

the cells of non-glandular trichomes are metabolically active in the early stages of 

development (Mayekiso et al., 2008), they were able to exhibit the presence of lipids, 

terpenes, alkaloids, and phenolic compounds within the cells of non-glandular trichomes 

from these plants. It is not clear as to whether non-glandular trichomes are capable of the 

production and liberation of the bioactive compounds they store, but this has been 

evidenced in plants from the Cistaceae and Apiaceae family (Tattini et al., 2006; 

Weryszko-Chmielewska and Chwil, 2014, respectively).  
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Figure 2. 2 Non-glandular trichomes types of Asteraceae (adapted from Adedeji 

and Ajewoola, 2008): 

(A) unicellular trichome (narrow) 

(B) unicellular trichome (spine-like) 

(C) unicellular trichome (spike-like) 

(D) bicellular hooked trichome 

(E) bicellular trichome (large basal cell) 

(F) bicellular trichome (normal basal cell) 

(G) unicellular spiked trichome 

(H) unicellular hooked trichome 

(I) bicellular trichome (normal basal cell) 

(J) bicellular trichome (spiked apical cell) 

(K) multicellular trichome (pointed apical cell) 

(L) multicellular trichome (acicular apical cells) 

(M) multicellular trichome (tapered apical cell) 

(N) multicellular trichome (rounded apical cell) 

(O) unicellular trichome (pointed apical cell) 

(P) multicellular trichome (tapered apical cell, normal basal cells) 

(Q) bicellular long trichome (acicular cells) 
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Figure 2. 3 Multicellular non-glandular trichomes types of Asteraceae (adapted 

from Adedeji and Ajewoola, 2008): 

(A) apex pointed 

(B) apex sickle-shaped 

(C) with one shrivelled cell 

(D) two shrivelled apical cells 

(E) apical cell globular 

(F) apical cell acicular at the end, bulbous cells 

(G) apical cell shrivelled  

(H) one cell slightly shrivelled  

(I) one cell shrivelled  

(J) apical cell acicular 

(K) pointed apical cell 

(L) pointed apical cell (bulbous basal cells) 
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2.6 Secretory cavities 

Plant secretory cavities are glands in plant organs that are made up of specialised 

glandular cells surrounding a secretion-filled space (Turner et al., 1998). They often 

contain essential oils, lipids, resins, alkaloids, flavonoids, tannins, or mucilage (Fahn, 

1979, Bartoli et al., 2011). There are three primary types of developmental secretory 

cavities: schizogenous, lysigenous, and schizolysigenous (Turner et al., 1998).  

Schizogenous cavities are formed by the separation of a single glandular cell that appears 

as a distinct intercellular space (lumina) lined by secretory epithelial cells (Tolke et al., 

2017). Lysigenous cavities are formed by the disintegration of several cells, whereby the 

secretory cells degenerate as they release their secretory product into the developing space 

by a process known as holocrine secretion (Arora and Kumar, 2108). Schizolysigenous 

cavities form as an amalgamation of the previous two processes: the cavity develops from 

a single cell, but the epithelial cells on the periphery of the forming gland undergo 

autolysis in order to enlarge the storage cavity (Turner et al., 1998; Machado et al., 2017). 

In the genus Tagetes, Sacchetti et al. (2001) showed that the secretory cavities of T. patula 

seedlings were schizogenous as it formed a distinct intercellular canal bordered by 

endodermal epithelial cells. Using transmission electron microscopy, they were able to 

demonstrate that the cells on the periphery of the secretory cavity were more electron 

dense and contained many more osmiophilic vesicles and plastids than its neighbouring 

parenchymatic cells.  

Russin et al. (1992) studied the changes in the chemical composition of the secretory 

products of T. erecta during the development phase until late flowering of the plant. Their 

results showed that indole comprised almost 99% of the secretory product, which is a 

metabolite not commonly stored in its free state in vegetative plant organs. More 

interestingly, the ratio of indole to piperitone varied with plant development and aging. 

This also served as the first report in Tagetes of secretory products existing separately 

from the lamina tissues, implying that secretory cavities produce as well as store 

metabolic end products that change in concentrations based on the needs and 

developmental growth of the plant. 



  Chapter 2 

 

22 

 

Lopez et al. (2009) and Lizarraga et al. (2017) described the secretory cavities of T. 

minuta as pellucid, elliptic glands (70 – 200µm) that are covered by a parenchymal sheath 

made up of cutinised epithelial cells. Both studies described the secretory cavities as being 

found along the entire phyllaries. In senescent leaves, the secretory cavity collapses 

inward due to the fragility of the epithelial cells along its periphery.  

 

 

Figure 2. 4 Secretory cavity types: intercellular spaces: a) schizogenous intercellular 

space in Bryophyllum stem. b) lysigenous intercellular space in leaf of Sequoia 

sempervirens (Adapted from Fahn, 2000; Bartoli et al., 2011; Bombo et al., 2017). 
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CHAPTER 3: FOLIAR STRUCTURES AND HISTOCHEMICAL 

ANALYSES OF TAGETES MINUTA L. LEAVES 

 

3.1 Abstract 

Many species in Tagetes are known for producing essential oils and commercially useful 

bioactive compounds. The objective of this study was to investigate the 

micromorphological features of the internal and external foliar structures of Tagetes 

minuta that produce and store these compounds. This was accomplished using 

stereomicroscopy, light microscopy, scanning electron microscopy, transmission electron 

microscopy, and histochemical analyses. The findings show that the trichomes on the 

surface of T. minuta leaves appear to be linear and non-glandular, but still maintains the 

ability to store various bioactive compounds within as shown by histochemical analyses. 

The development of the subdermal secretory cavities show that the cells undergo autolysis 

in order to form a schizolysigenous cavity in mature leaves. Ultrastructure of the 

parenchymal sheath and secretory epithelium within the secretory cavity show the 

changes of the plastids to contain lipid and osmiophilic molecules. These findings are 

novel for T. minuta and enable a better understanding of the exudation process in order 

to optimise essential oil production for industrial applications. 

 

 

 

 

 

 

 

Keywords: histochemistry; non-glandular trichomes; micromorphology; microcopy; 

secretory cavity 
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3.2 Introduction 

Tagetes minuta is a member of the Asteraceae family, which comprises 1535 genera and 

approximately 23 000 species and is the largest family of angiosperms (Shen et al., 

2018a). Many of these species have substantial medicinal, ornamental, and economic 

values due to their chemical composition and biological activities (Vidic et al., 2016). 

Tagetes minuta is commonly known as Mexican marigold, and is native to South 

America. It has since been naturalised in Europe, Asia, North America and Africa since 

the Spanish colonisation (Meshkatalsadat et al., 2010). This plant has a long history of 

human use as both food and allopathic medicine (Tereschuk et al., 1997; Scrivanti et al., 

2003; Senatore et al., 2004). Infusions and extracts prepared from the leaves of T. minuta 

have been used to treat intestinal diseases, alleviate headaches and symptoms of epilepsy 

(Igwaran et al., 2017; Vasudevan et al., 1997).  

Species belonging to Tagetes are characterised by the macroscopic punctate oil glands 

that are found on the abaxial leaf surfaces, which produce and store ‘Tagetes oil’. This 

essential oil is marketed due to its medicinal properties and various health benefits (Lopez 

et al., 2009; Sadia et al., 2013). The secretory cavity, the primary focus of the oil complex 

in Tagetes is relatively well-documented in literature, however, the subject of the foliar 

trichomes on T. minuta is a contentious topic (Lopez et al., 2009; Lizarraga et al., 2017). 

Trichomes are specialised hair-like epidermal appendages that have been shown to play 

a role in the plant defence system against biotic threats such as predators as both a physical 

barrier and by the mediation of chemical defences, as well and abiotic factors such as 

sunlight in the way of reflecting excess radiation (Valverde et al., 2001; Kariyat et al., 

2018). Depending on the plant species, these structures can be found on the leaves, stems, 

roots, and even seed coats (Levin, 1973). Trichomes can be classified as either glandular 

or non-glandular based on their shape and function, with the most distinct morphological 

difference being the absence of a glandular head in the non-glandular trichomes (Werker, 

2000). Due to the lack of a glandular head, non-glandular trichomes are considered to act 

exclusively as mechanical barriers; whereas glandular trichomes are responsible for the 

storage and/or exudation of biologically active phytocompounds (Levin, 1973; Werker, 

2000).  
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The trichomes of T. minuta have been described as both glandular (Cappellari et al., 2013) 

and non-glandular (Lizarraga et al., 2017) with seemingly no consensus. The purpose of 

this study was to determine the trichome type and further investigate the secretory cavities 

of T. minuta using stereo- and electron microscopy, as well as elucidate the chemical 

classes of the phytocompounds stored in its trichomes using histochemical analyses. 
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3.2 Methods and Materials  

3.2.1 Plant collection  

Fresh (emergent, young, and mature) leaves of T. minuta were collected from a population 

at the University of KwaZulu-Natal Westville campus located at 29.817°S 30.940°E in 

Durban, South Africa. A voucher specimen was confirmed and deposited at the UKZN 

Westville Herbarium (accession number 18216, voucher number 01). 

 

3.2.2 Stereomicroscopy 

Both the adaxial and abaxial leaf surfaces at three developmental stages (emergent, 

young, and mature) were examined using the Nikon AZ100 Stereomicroscope, and 

images captured with the Nikon DXM 1200C camera using NIS-Elements Software with 

an emphasis on the foliar structures. 

 

3.2.3 Scanning Electron Microscopy (SEM) 

3.2.3.1 Chemical fixation 

Fresh leaf material was cut into 3 mm2 sections and were fixed in 2.5 % glutaraldehyde 

for 24 hrs. The sections were subsequently subjected to three washes (5 min each) with 

0.1 M sodium phosphate buffer (pH 7.0), followed by post-fixation in 0.5 % osmium 

tetroxide for 2 hrs. Thereafter, the sections were washed three times for 5 min each with 

sodium phosphate buffer. The samples were then subjected to graded dehydration series 

in ethanol (25 %, 50 %, 75 %, and 100 %) for two sessions (5 min each) and two sessions 

(10 min each) in the 100 % ethanol, and were then critically-point dried using a Quorum 

K850 Critical Point Dryer. The sections were fixed using carbon conductive tape onto 

aluminium stubs and sputter-coated with gold using the Polaron SC 500 Sputter Coater. 

The viewing and imaging were performed using a LEO 1450 SEM at 5 kV and a working 

distance of 7 – 10 mm. 
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3.2.3.2 Freeze fracture 

Fresh leaves were fractured along the midrib for analysis. The samples were cut into 2 

cm2 sections for freeze fracture. They were prepared by quenching rapidly in subcooled 

liquid nitrogen and fractured using forceps. Thereafter the fractured segments were dried 

using the Edwards-Modulyo freeze dryer at –60°C for 48 hrs in a vacuum of 10-2 Torr. 

The fractured segments were mounted onto brass stubs and secured with carbon 

conductive cement. The samples were sputter-coated with gold using a Polaron SC 500 

sputter coater and imaged on a LEO 1450 SEM with a working distance of 12 mm. 

 

3.2.3.3 Cryo-scanning electron microscopy (Cryo-SEM) 

Cryo-SEM was performed using a Quorum PP3000T coupled to a Zeiss UltraPlus 

FEGSEM. Fresh leaf material was cryo-fixed in a liquid nitrogen slush before being 

transferred to a vacuum chamber held at -135°C. The samples were then fractured, etched, 

and coated in platinum. The sections were viewed at 2 kV. 

 

3.2.4 Light Microscopy and transmission electron microscopy (TEM) 

Leaves from three developmental stages were trimmed to 2 mm2 and fixed in 2.5 % 

glutaraldehyde for 24 hrs. Samples were rinsed three times in 0.1 M sodium phosphate 

buffer (pH 7.0) and post-fixed in 0.5 % osmium tetroxide for 2 hours. Samples were 

rinsed thrice in sodium phosphate buffer before undergoing dehydration using a graded 

series of acetone (25 %, 50 %, 75 %, for two 5-minute sessions, and 100 % for two 10-

minute sessions). Propylene was used as a clearing agent, which was used in conjunction 

with a graded series of Spurr’s resin (Spurr, 1969) for infiltration of the leaf tissues at    

25 %, 50 %, 75 %, and 100 %, of resin in the propylene solution. Samples were then 

placed in silicone moulds in whole resin and polymerised at 70°C for 8 hrs. 

The sections were cut using a Reichert Jung Ultracut-E ultramicrotome. Semi thin 

sections (0.5 µm) were used to determine the regions of interest. The survey sections were 

stained with 1 % toluidine blue and imaged using the Nikon Eclipse 80i light microscope 
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equipped with a Nikon DS-Fi1 camera and NIS-Elements D imaging software. Ultrathin 

sections (90 – 120 nm) were collected on copper grids and stained with 2.5 % uranyl 

acetate and lead citrate. The ultrathin sections were viewed using the JEOL 1010 TEM 

equipped with an Olympus MegaView III CCD camera and iTEM software.  

 

3.2.5 Histochemical tests 

Fresh leaf sections (100 - 120µm) were obtained using an Oxford ® Vibratome Sectioning 

System, and were stained with the reagents listed below. The purpose of this was to detect 

and analyse the localisation of specific cellular phytochemicals in the leaf structure. The 

images were captured on a Nikon Eclipse 80i compound light microscope. 

 

a. Lipids 

Nile Blue – The fresh sections were stained with 2 % Nile Blue for 1 minute at 

37°C and then transferred to 1 % acetic acid for 1 min. Sections were rinsed with 

distilled water, mounted, and viewed. Pink staining indicates the presence of 

neutral lipids such as fats and oils, whereas blue staining indicates the presence of 

acidic lipids such as phospholipids (Demarco, 2017). 

 

Sudan III/IV – Sections were stained for 10 min before being rinsed in 70 % 

ethanol and viewed. Tissues that stained red/orange indicates the presence of 

lipids or cutin (Buda et al., 2009). 

 

b. Lignins 

Phloroglucinol – The fresh sections were immersed in phloroglucinol stain for 5 

min and rinsed with distilled water. A pink/red colouration indicates the presence 

of lignins (Jensen, 1962). 

 

Acridine orange – The fresh sections were immersed for 10 min in the fluorescent 

dye and rinsed with distilled water. They were viewed under blue light, where a 

yellow/green fluorescence distinguishes the lignified cell walls, and red 
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colouration indicates non-lignified tissues. The red/orange colour indicates cells 

undergoing apoptosis which indicates cell viability (Gupta and De, 1983). 

 

c. Phenolic compounds 

Ferric Chloride – The fresh sections were immersed for 20 min in the stain before 

being thoroughly washed with distilled water. Sections were mounted in 

glycerine. Brown/black deposits indicate the presence of phenolic compounds 

(Zarate and Yeoman, 1994). 

 

Autofluorescence – No stains were used, but fresh sections were viewed under 

UV light. Phenolic compounds emit a blue/green fluorescence, as well as some 

terpenoids (Demarco, 2017). 

 

d. Proteins 

Coomassie Blue – The fresh sections were immersed in 0.25 % Coomassie blue 

for 10 min and then transferred to 7 % acetic acid. After washing in distilled water, 

sections were mounted in glycerine. Proteins stain blue (Demarco, 2017). 

 

e. Alkaloids 

Wagner’s Reagent – The fresh sections were stained for 20 min before being 

washed with distilled water. Alkaloids stain with red/brown colouration 

(Demarco, 2017).  

 

f. Mucilage and pectins 

Ruthenium Red – The fresh sections were stained for 2 min before being rinsed 

with distilled water. The pink/red colouration indicates the presence of acidic 

mucilages and pectins (Colombo and Rascio, 1977). 
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3.3 Results and Discussion 

3.3.1 Vegetative growth and flowering 

Tagetes minuta is an erect annual herb that is capable of reaching 2 m tall (Fig 3.1 a). It 

matures in summer, when the stem turns a distinct red-brown colour. The glossy, green 

leaves are arranged alternately on the stem and are pinnately dissected. The small white-

yellow florets (10 – 15mm) are supported by fused involucre bracts. Each capitula is 

formed from 5 – 10 florets, which groups together to form a clustered panicle on 

flowering plants (Fig 3.1 b). 

 

 

Figure 3. 1 Vegetative growth and flowers of Tagetes minuta at the University of 

Kwazulu-Natal Westville campus: a) Young plant at the vegetative stage. b) Mature plant 

at the flowering stage. 
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3.2 Stereomicroscopy 

The pinnatisect leaves of T. minuta are long and narrow (3 – 15 cm in length and 2 – 8.5 

cm in width), elliptic-lanceolate, and have an acute apex with serrated margins (Fig 3.2). 

Stereomicroscopy images shows that the adaxial surfaces are a darker green in the mature 

leaves, with a light green-yellow colour on the emergent and young leaves. They reveal 

the presence of non-glandular trichomes which appear translucent on both the adaxial and 

abaxial surfaces, with a denser cover on the abaxial leaf surface (Fig 3.2a inset). Between 

the developmental stages, it appears that there are considerably fewer trichomes on the 

mature leaves as compared to the emergent and young leaves.  
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Figure 3. 2 Stereomicrographs of the leaves of Tagetes minuta: a) Abaxial surface of a 

young leaf showing non-glandular trichomes. Inset: isolated trichome on venation. b) 

Adaxial leaf surface of a young leaf showing trichomes growing along the midrib and 

major venation. SC: secretory cavity; NGT: non-glandular trichome. 

 

There are macroscopic oil ‘glands’ on the under-surface of the leaves which appear as 

dark-yellow translucent spots. It is apparent that these oil glands are complex and 

multicellular (Fig 3.2 a). The dots are noticeably larger and more ellipsoid the closer they 

are to the margin of the leaves, while the pellucid glands found along the midvein are 

considerably smaller and rounder. The oil glands, while still visible on the adaxial surface 

of the mature leaves, are less pronounced than on the young leaves (Fig 3.2 b).  
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3.3 Secretory cavities 

The stoma are anomocytic, with a limited number of subsidiary cells. They are in close 

proximity to the oil glands, hereafter referred to as secretory cavities. The secretory 

cavities range from 75 to 200µm in diameter. The secretory cavity (Fig 3.3 a) is round 

and is noticeably present closer to the midvein while the more ellipsoid-shaped cavity 

(Fig 3.3 b) is distributed along the leaf margins and phyllaries. The secretory cavities are 

not immediately obvious from electron micrographs as they are covered by epidermal 

cells on the abaxial and adaxial leaf surfaces, except at the sites of exudation. These 

appear as slight depressions on the surface (Fig 3.3 c). The secretion of oils on the abaxial 

leaf surface in a young leaf can be seen under SEM (Fig 3.3 d). Likewise, under cryo-

SEM, the oils from the secretory cavity appear on the leaf surface as globules (Fig 3.3 e) 

that were released under pressure from the vacuum. An image of the cross-section through 

an oil globule frozen in subcooled liquid nitrogen was also captured (Fig 3.3 f). It is 

evident from this image that there are no cellular structures in the exudate, leading to the 

conclusion that it is the released contents of the secretory cavity. 
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Figure 3. 3 Secretory cavities of Tagetes minuta: a) Stereomicrograph of rounded 

secretory cavity on the abaxial leaf surface. b) Ellipsoid secretory cavity found alongside 

the leaf margin. c)  SEM of secretory cavity on abaxial leaf surface, in close relation to 

the stomata. d) SEM of cavity showing exudation taking place. e) Cryo-SEM micrograph 

showing the oil exudate expelled due to vacuum pressure. f) Cross-section of the exudate 

with no apparent cellular components within. SC: secretory cavity; SP: secretory product. 

  



  Chapter 3 

 

36 

 

 

Figure 3. 4 Scanning electron micrographs of the non-glandular trichomes on the adaxial 

surface of young leaves of Tagetes minuta: a) The growth of non-glandular trichomes 

along the major leaf veins. b) Clustering of trichomes along the major leaf venation.          

c) Dense populations of non-glandular trichomes along the midvein of the leaf. 
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3.4 Non-glandular trichomes 

Scanning electron microscopy shows the topology of the leaf. The trichomes of T. minuta 

do not densely cover the leaf surface, but are clustered around the main and lateral veins 

(Fig 3.4), with a more frequent occurrence on the adaxial surfaces of the emergent and 

young leaves. There is only one type of trichome that is found on the leaves of T. minuta 

and they appear to be non-glandular. Each trichome is uniseriate and multicellular with a 

rounded head, as evident by the segmentation in Figures 3.4 and 3.5. The length of the 

trichomes are not consistent and can range between 70 and 200 µm, where the longer 

trichomes are more frequently found on the mature leaves (Fig 3.5). 
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Figure 3. 5 Single non-glandular trichomes of Tagetes minuta: a) Single uniseriate non-

glandular trichome on the adaxial surface of a young leaf. b) Non-glandular trichome on 

a mature leaf showing attachment to the leaf surface. 
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Trichomes are fine outgrowths of hair-like structures that are found on most angiosperm 

aerial organs, some gymnosperms and bryophytes (Johnson, 1975). They are highly 

diverse structures that are in contact with the external environment and thus function in 

response to different biotic and abiotic stimuli (Tooker et al., 2010; Li et al., 2018). 

Trichomes serve as the first line of defence against predators because they usually 

protrude from aerial surfaces and some types are capable of producing bioactive 

compounds that may attract and guide pollinators (Wagner, 1991; Hegebarth et al., 2016). 

Non-glandular trichomes are capable of enhancing plant defense systems by reducing UV 

radiation due to surface reflectance, and assisting through drought tolerance by reducing 

leaf temperatures and preventing stress from photoinhibition (Levin, 1973; Wagner, 

1991; Werker, 2000). Szyndler et al. (2013) showed that trichomes are also capable of 

limiting movement of herbivores such as insects, restricting the damage inflicted on the 

plant tissues, while Kariyat et al. (2017) proved that non-glandular trichomes deter 

feeding by insects due to post-ingestive gut damage.  

The functional usefulness of trichomes has led to increasing commercial value of the 

secretory metabolites in cosmetic, food, and pharmaceutical industries (Valkama et al., 

2003; Balcke et al., 2017). Trichomes are highly variable and diverse foliar structures that 

provide mechanical and chemical barriers against herbivores (Fabricant and Farnsworth, 

2001; Valkama et al., 2003). Trichome morphological traits have also been key 

characteristics in plant taxonomic studies. 
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Figure 3. 6 Mites on the surface of Tagetes minuta: a) Scanning electron micrograph 

showing broad mite eggs and larvae on the abaxial surface of a young leaf. b) Micrograph 

showing empty egg case in the crevasse created by the midvein on the abaxial leaf surface. 

c) Micrograph of a scale mite from the family Tydeidae on the abaxial surface of a mature 

leaf. 
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3.5 Semi-thin sections of secretory cavities 

The secretory cavities along the midvein are smaller (55 – 75 µm) than those found along 

the leaf margins and phyllaries (150 – 200 µm). They appear as elliptic glands that seem 

to take up the almost the entire width of the leaf blade.  Figure 3.7 shows the development 

of the secretory cavity. The gland begins as a group of modified parenchymal cells that 

form concentric circles in the leaf blade, below the row of columnar epithelial cells on 

the adaxial leaf surface (Fig 3.7 a and b). As the cavity expands to accommodate the 

accumulated substances, the parenchymal cells elongate to form a multi-layered sheath 

with cutinised walls (Fig 3.7 d and e). As previously mentioned, the secretory cavity is 

limited by the chlorenchyma on the adaxial face, but grows adjacent to the epithelial cells 

on the abaxial face of the leaf. This leads to the conclusion that secretions are expelled 

from the abaxial leaf surface. 
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Figure 3. 7 Development of the secretory cavity in Tagetes minuta. a) Initiation of 

secretory cavity in emergent leaf. b) Cells differentiating in emergent leaf. c) Elongation 

of secretory epithelial cells in young leaf. d) Secretory epithelium extending under the 

chlorenchyma. e) Mature secretory cavity showing the movement of lipids into the 

schizolysigenous cavity. SE: secretory epithelium; SC: secretory cavity; PS: parenchyma 

sheath; Li: lipids. 

 

The foliar cavity appears to form from the middle lamella where the cells at the centre 

pull apart (Fig 3.7 a and b). Once the lumen is developed (Fig 3.7 e), it appears that all 

interior cells release their secretory products (lipids) via holocrine secretion into the now 

schizolysigenous cavity. These cells undergo a process known as autolysis and has been 

described by Russin et al. (1992) for Tagetes erecta. 

Many secretory cells are derived from other plant tissues, mainly parenchymatous and 

epidermal tissues (Buvat, 1989). In young leaves, the secretory cavities appear to be 

lysigenous, in which the intercellular substance is only partly dissolved during 

development, but are typically elongated in mature leaves, causing them to appear 

schizolysigenous (Buvat, 1989; Turner and Lange, 2015). The secretory epithelium is 

mainly responsible for the excretion of accumulated substances from the cavity, and can 

either cause the products to be diffused through the cuticle or released via distention of 

the epithelial lining itself (Buvat, 1989; Lopez et al., 2009).  

Lopez et al. (2009) described the oil complex of Tagetes minuta from the standpoint of a 

senescent leaf. While the secretory cavity in a mature leaf (Fig 3.7 e) appears to be 

schizolysigenous, the secretory cavity in a senescent leaf appears lysigenous. The 

development of the secretory cavity from an emergent to a young leaf is shown in Figure 

3.7 a – d. It can be seen that the secretory epithelium is comprised of cutinised 

parenchymal tissues that become narrow and elongated. Although the secretory cavity 

grows to fit the width of a leaf blade (Fig 3.7 e), they are limited on the adaxial face by a 

distinct row of chlorenchyma cells, which suggests that the leaf secretion occurs on the 

abaxial leaf surface.  
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Figure 3. 8 Development of non-glandular trichome. a) Epithelial cells begin 

development by becoming cutinised. b) Cell undergoes periclinal division to create a 

tapering end of the now developing trichome. c) Cell division continues to create a 

uniseriate non-glandular trichome. d) Cutinised cells elongate to form a mature trichome. 
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Figure 3. 9 Histochemical observations on the non-glandular trichomes of Tagetes 

minuta: a) Trichome positively stained with Coomassie Blue. b) Positive staining for 

alkaloids with Wagner’s reagent. c) Ruthenium red staining of a trichome. d) Acidic lipids 

detected using Nile Blue stain. e) Positive test for lipids, stained with Sudan III&IV. f) 

Acridine orange stain used under UV light showing presence of lignins. g) Trichome 

stained with phloroglucinol, positive for lignins. h) Ferric chloride stain shows phenolics. 

i) Autofluorescence of a trichome under UV light shows presence of phenolic 

compounds. 
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3.6 Histochemical analyses of the non-glandular trichomes 

The linear non-glandular trichomes were evaluated for the presence of histochemical 

compounds and localisation. It is evident that some of the bioactive compounds could be 

located within the cells of the trichomes, despite them being non-glandular. They were 

positively stained for lipids using Nile blue and Sudan III&IV and for lignins using 

phloroglucinol and acridine orange stains. Phenolic compounds were identified using 

ferric chloride and proteins were identified using the Coomassie blue stain. Alkaloids 

were present as deduced using Wagner’s reagent, and ruthenium red stained positively 

for mucilages and pectins (Fig 3.9 a – i). The histochemical tests appears to localise the 

bioactive compounds in the apical cells of the trichomes, and occasionally, throughout 

the trichome cells. Figure 3.9 b shows a non-glandular trichome stained with Wagner’s 

reagent, and the alkaloids appear as droplets throughout the trichome.  

Non-glandular trichomes have shown to be metabolically active during the earliest stages 

of development (Levin, 1973; Mayekiso et al., 2008) but are thought to play only a minor 

role during the lifespan of the plant past the stage of development. Tozin et al. (2016) 

shows that while the traditional role of non-glandular trichomes has historically been 

protection of the plant material from predators, UV, and abiotic factors, they have the 

potential to produce, store, and liberate bioactive substances. While their work is 

primarily based on Lamiaceae and Verbenaceae species, a comparison can be drawn with 

T. minuta, which belongs to family Asteraceae. Chaffey (2006) first proposed that despite 

the lack of openings in the cuticle and cell walls of non-glandular trichomes, substances 

can traverse the body cells of the trichomes, which is visible in Figures 3.9 a, c, e, g, and 

h. Although the trichomes on T. minuta appear to be non-glandular, anatomically they are 

similar to the linear glandular trichomes found on other species in the Asteraceae family 

that aid in the storage and production of essential oils (Aschenbrenner et al., 2013; Bombo 

et al., 2017). This serves as the first study to histochemically analyse the contents and 

localisation in the non-glandular trichomes of T. minuta. 
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Figure 3. 10 Electron micrographs of plastids in leaves of Tagetes minuta: a) Chloroplast 

containing starch grains. b) Chloroplasts outside the secretory cavity. c) Elongated 

chloroplasts in the secretory epithelium containing lipids. d) Plastid containing 

plastoglobuli. e) Single chloroplast in the parenchymal sheath of the secretory cavity 

containing lipid globules. S: starch granules; M: mitochondria; Chl: chloroplast; Pg: 

plastoglobuli; Li: lipids. 
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Figure 3. 11 Electron micrograph of cells within the oil complex: a) Epidermal layer 

showing electron-dense osmiophilic material within. b) Cells in the parenchymal sheath 

showing plastoglobuli. c) Elongated cells that form the secretory epithelium in a mature 

secretory cavity that contain vesicles. d) Secretory epithelial cells on the periphery of the 

secretory cavity containing vesicles. EL: epithelial layer; Chl: chloroplast; Pg: 

plastoglobuli; Ve: vesicle; SE: secretory epithelium. 
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3.7 Ultrastructure of the secretory cavities 

The secretory cavities of T. minuta range in size from 75 to 200 µm across, meaning that 

they are not visible in their entirety using TEM. Figures 3.10 and 3.11 show parts of the 

parenchymal sheath and secretory epithelium that make up the secretory cavity, as well 

as the cells surrounding them. The changes in the plastids are evident from Figure 3.10 a 

– e, where primary starch granules are present in the chloroplasts of Figures 3.10 a and b. 

These plastids can be found in the neighbouring cells on the periphery of the secretory 

cavity and often contain plastoglobuli which appear as electron-dense material. Note the 

chloroplasts in these neighbouring cells with a normal thylakoid system. However, in the 

cells found in the secretory epithelium, the chloroplasts contain a dense population of 

what appear to be lipids surrounding the thylakoids and take up the space of the grana 

(Fig 3.10 c and e).   

Sacchetti et al. (2001) assessed the ultrastructural characteristics of the secretory cavities 

of Tagetes patula, showing similar results to those above. The schizolysigenous spaces 

that are bordered by the parenchymal sheath (Figure 3.11 c and d) appears rich in plastids 

with electron-dense stroma and few thylakoids, which is a common feature in plants that 

exude essential oils (Lopez et al., 2009; Lizarraga et al., 2017). This may be strongly 

related to the production of terpene compounds such as thiophene that is prevalent in the 

leaves of T. minuta (Al-Musayeib et al., 2014; Ibrahim et al., 2018a). Also visible are the 

glandular cells which appear elongated and rich in vesicles. 

 

3.8 Conclusion 

The secretory cavities of T. minuta appear macroscopically on both the adaxial and 

abaxial leaf surfaces, and are pronounced in mature leaves. For the first time, the 

ultrastructural development of these secretory cavities shows the changes to the plastid 

system within the secretory epithelial lining. Trichomes on the leaves of T. minuta appear 

to be linear, uniseriate, and non-glandular. However, the histochemical analysis indicated 

the storage of various histocompounds, suggesting that non-glandular trichomes in the 

Asteraceae family have potential biological role that is more than protection against 

predators and abiotic factors.  
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CHAPTER 4: PHYTOCHEMICAL ANALYSES AND 

ANTIBACTERIAL POTENTIAL OF TAGETES MINUTA L. 

 

4.1 Abstract 

Phytochemical analysis was carried out on the crude organic solvent extracts derived from 

the leaves of T. minuta. Alkaloids, sterols, saponins, terpenoids, phenols, and lipids were 

detected from the extracts. Gas-chromatography mass-spectrometry (GC-MS) was 

carried out to reveal that the constituents with the highest percentage were 9-octadecen-

1-ol (4.51 %), β-sitosterol (6.07 %), olean-12-en-3-one (7.47 %), and 3-methyl-1-butanol 

(14.77 %). Preliminary antibacterial activity was performed using the methanolic extract 

which showed inhibitory activity against selected gram positive and gram negative 

bacteria (P. aeruginosa, E. coli, S. aureus, MRSA, and B. subtilis).This study shows that 

T. minuta contains bioactive compounds that have pharmacological and medicinal uses. 

 

 

 

 

 

 

 

 

 

Keywords: antibacterial; bioactive compounds; GC-MS; methanol extract; Tagetes 

minuta 
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4.2 Introduction 

Plant material has been used in traditional medicine for millennia in both developing and 

developed countries due its ease of access and lesser risk of side effects (Qazi Majaz and 

Molvi Khurshid, 2016). The use of ethnomedicine is becoming increasingly popular in 

modern societies as natural alternatives to synthetic products and has become a socio-

cultural phenomenon of third world countries (Dixit et al., 2013).  

In South Africa, healthcare is largely polarised between Western medical therapies and 

traditional African healthcare systems. Although concurrent usage of traditional healers 

and allopathic providers of medicine is common, allopathic healthcare facilities are often 

limited and not easily accessible to most in South Africa (Bisi-Johnson et al., 2017). This 

has resulted in the medicinal plant industry in South Africa being supported by 

approximately 30 million local consumers with almost 70 thousand species of plants 

being used for medicinal purposes, many of which are threatened by overharvesting and 

international trade (Street and Prinsloo, 2013; Xego et al., 2016). The indiscriminate 

overharvesting coupled with extensive land degradation has affected the availability of 

medicinal plants that can be naturally foraged, resulting in an increasing demand for 

medicinal plant material (Phondani et al., 2016; Tanga et al., 2018).  

In order to establish strategies to protect endemic medicinal plants, it is vital that they are 

screened for the bioactive phytochemicals responsible for their therapeutic properties. 

This will ensure regulation for use of wild populations of medicinal plants by putting into 

place mitigative measures such as systematic plant cultivation for the production and 

monitoring of this underutilised resource (Tanga et al., 2018). Moreover, many isolated 

phytometabolites from medicinal plants have led to the development of novel drugs and 

therapies to treat several human diseases such as cancer and diabetes (Hosseinzadeh et 

al., 2015; Shakya, 2016; Kudumela and Masoko, 2017). 

Tagetes minuta belongs to the Asteraceae family, and its essential oils are renowned for 

its medicinal, ornamental, and therapeutic values (Dixit et al., 2013; Rajvanshi and 

Dwivedi, 2017). The essential oils of T. minuta has been researched for its nematocidal 

(Gutierrez et al., 2006), cosmetic (Farjana et al., 2009), food additive (Nandita et al., 

2012), and antimalarial (Kyarimpa et al., 2014) properties.  
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Phytochemical analyses of T. minuta essential oil show that the plant is rich in alkaloids, 

phenolic compounds, flavonoids, and thiophenes which are responsible for its therapeutic 

properties (Chamorro et al., 2008; Meshkatalsadat et al., 2010; Devika and Koilpillai, 

2012). The oil has been reported as having a high inhibitory effect on both gram postitive 

and gram negative bacteria and fungi (Hethelyi et al., 1986). Therapeutically, T. minuta 

has several reported medicinal benefits such as remedies for respiratory inflammations, 

stomach pains, chest infections, coughs, and congestion (Shirazi et al., 2014). It also has 

a healing effect on wounds, cuts, and calluses (Rahimi et al., 2010; Maity et al., 2011). 

This study was undertaken to examine the qualitative phytochemical composition using 

phytochemical tests, determine the quantitative chemical composition using GC-MS, and 

elucidate the preliminary antibacterial potential in the crude methanolic extract of T. 

minuta leaves. 
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4.3 Methods and Materials 

4.3.1 Plant collection 

Fresh leaves of T. minuta were collected from the UKZN Westville campus (29.817°S 

30.940°E) and air-dried for 6 weeks at room temperature (24°C). A voucher specimen 

was deposited at the UKZN Westville Herbarium (accession number 18216, voucher 

number 01). 

 

4.3.2 Extraction with organic solvents 

Ten grams of T. minuta powdered leaf material were placed in a round bottom flask 

containing 100 ml of hexane. The flask was attached to Soxhlet apparatus and boiled for 

three 3-hour sessions to obtain the crude plant extract. This procedure was then repeated 

using the same leaf material for chloroform and methanol, respectively. The crude 

extracts were filtered through Whatman No. 1 filter paper and the stored in airtight jars at 

4°C for further analysis. 

 

4.3.3 Qualitative phytochemical analyses 

a) Detection of carbohydrates 

Molisch’s test – two drops of α-naphthol were added to 2 ml of extract and gently shaken. 

One ml of concentrated sulphuric acid was slowly poured along the side of the test tube 

and allowed to stand. The formation of a red-purple ring at the junction of the two liquids 

is indicative of the presence of carbohydrates (Phani Deepthi Yadav et al., 2013).  

Benedict’s test – One ml of Benedict’s reagent was added to 1 ml of filtrate and boiled 

for 2 min in a water bath at 100°C. An orange-red precipitate indicates the presence of 

reducing sugars (Phani Deepthi Yadav et al., 2013). 

Fehling’s test – One ml each of Fehling’s solutions A and B were mixed into 1 ml of 

extract and boiled in a water bath. The formation of a red precipitate indicates the 

presence of carbohydrates (Phani Deepthi Yadav et al., 2013). 



  Chapter 4 

 

54 

 

b) Detection of amino acids 

Ninhydrin test – two drops of ninhydrin reagent were mixed into 2 ml of extract. A purple 

colour indicates the presence of amino acids and proteins (Minj et al., 2015). 

c) Detection of alkaloids 

Mayer’s test – three drops of potassium mercuric iodide solution were added to 2 ml of 

filtrate. A yellow-orange precipitate confirms the presence of alkaloids (Surendra et al., 

2016). 

Wagner’s test – two drops of Wagner’s reagent were added to 1 ml of extract. A brown 

precipitate indicates the presence of alkaloids (Surendra et al., 2016). 

Dragendorff’s test – two drops of Dragendorff’s reagent were added to 1 ml of extract. 

An orange-red precipitate indicates the presence of alkaloids (Surendra et al., 2016). 

d) Detection of saponins 

Foam test – two ml of extract were diluted using 5 ml of distilled water and vigorously 

shaken for 5 min. A persistent foam later above the mixture indicates the presence of 

saponins (Bargah, 2015). 

e) Detection of sterols 

Salkowski’s test – three ml of chloroform and 2 drops of concentrated sulphuric acid was 

added to 2 ml of extract and gently shaken. A red ring in the chloroform layer and green 

precipitate in the extract indicates the presence of sterols (Bargah, 2015). 

f) Detection of terpenoids 

Sulphuric acid test – two ml of chloroform was added to 5 ml of extract and shaken gently. 

Three ml of sulphuric acid was poured gently along the side of the test tube. A red-brown 

ring indicates the presence of terpenes (Bargah, 2015). 
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g) Detection of phenolic compounds 

Ferric chloride test – two drops of 5% ferric chloride was added to 2 ml of filtrate. A 

green-black precipitate indicates the presence of phenolic compounds (Surendra et al., 

2016). 

 

h) Detection of fixed fats and oils 

Filter paper test – One drop of extract was placed on Whatman No. 1 filter paper and left 

to dry. A persistent oily residue present on the filter paper indicates a positive test for 

fixed fats and oils (Minj et al., 2015). 

 

4.3.4 Gas chromatography–mass spectrometry (GC-MS) 

Five grams of powdered leaf material was submerged in 50 ml of methanol in a round 

bottom flask and boiled for two 3 hr sessions. The crude extracts were filtered through 

Whatman No. 1 filter paper and stored in an airtight jar at 4°C until analysed. The extract 

was analysed by GC-MS using a QP-2010 Ultra Shimazdu system with a Rx-5SilMS 

fused silica column of length 30 m (0.25 µm internal diameter and 0.1 µm film thickness). 

Helium was used as the carrier gas at a constant pressure of 69 kPa. The flow rate was 

0.96 ml/min with a total flow of 4.9 ml/min, along with a linear velocity of 36.7 cm/s at 

purge flow of 3.0 ml/min. The injection port temperature was set at 250°C.  The 

temperature of the oven was initially set to 50°C for 1 min. The temperature was then 

increased to 310°C at a rate of 5°C/min and was maintained for 10 min. The MS was 

taken at 70 eV. The mass selective detector was operated in the scan mode between 50 

and 800 m/z. Peak identification was carried out by comparison of the mass spectra with 

mass spectra data available on database of NIST and WILEY libraries (Kataria et al., 

2016) The chemical compounds present in the crude methanolic extract of T. minuta were 

expressed as percentages based on peak area. 
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4.3.5 Antibacterial activity screening 

The crude methanolic extract was first dried to a powder and re-suspended in deionized 

water to avoid antibacterial activity from the methanol (Valle et al., 2016) and adjusted 

to a final concentration of 1 mg/ml.  

The preliminary antibacterial activity of the crude aqueous extract was evaluated against 

Escherichia coli (ATCC 25218), Staphylococcus aureus (ATCC 29213), methicillin-

resistant Staphylococcus aureus (ATCC BAA-1683), Bacillus subtilis and Pseudomonas 

aeruginosa (ATCC 25215). Agar plates were prepared using Mueller Hilton agar which 

was poured into sterile petri dishes to set at room temperature. The bacterial strains were 

cultured in a nutrient broth for 18 hrs at 37°C before being standardised using the 0.5 

McFarland turbidity standard. The bacterial cultures were then swabbed uniformly onto 

the plates using sterile cotton swabs. Five-millimetre wells were aseptically punched 

using an agar corer (gel puncture). The samples were pipetted into the wells (90 µl), and 

the plates were incubated at 37ºC. The antibacterial activity was assessed after 24 hrs by 

measuring the diameter of the zone of inhibition (mm). 
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4.4 Results and Discussion 

The preliminary phytochemical screening of T. minuta crude methanolic extract was 

performed qualitatively for three organic solvents, viz. hexane, chloroform, and 

methanol, and these results are presented in table 4.1. The crude hexane extract tested 

positively for the presence of alkaloids, saponins, sterols, terpenoids, and fixed fats and 

oils. The crude chloroform extract tested positively for the presence of carbohydrates, 

alkaloids, sterols, terpenoids and fixed fats and oils. The crude methanolic extract tested 

positively for the presence of carbohydrates, alkaloids, amino acids, terpenoids, phenols, 

and fixed fats and oils. 

These bioactive compounds provide the plant with protection against pathogens, 

predators, diseases, and abiotic factors (Saxena et al., 2013). A similar phytochemical 

profile was identified for the essential oil of T. erecta (Rajvanshi and Dwivedi, 2017) who 

suggested that these classes of compound are responsible for antifungal, antibacterial, and 

anti-inflammatory properties of the plant. According to Shakya (2016), medicinal plants 

that contain sterols and saponins exhibit antimicrobial and anticancer properties. 

Alkaloids, flavonoids, terpenes, saponins, and phenolic compounds have been reported 

to possess various pharmacological and therapeutic effects, including antimicrobial, 

antioxidant, anti-diabetic, and anti-inflammatory activity (Abdul et al., 2018). 

The chemical constituents of the crude methanolic extract of T. minuta were analysed 

using GC-MS, as is evident from the chromatogram in figure 4.1. The separation of all 

108 bioactive compounds were identified by retention time and height percentage. 

Twenty-four out of the 108 compounds displayed a peak percentage greater than 1 and 

are presented in this study as table 4.2. Compounds with a peak area less than 1% were 

considered as low-level compounds (Appendix A) (Pakkirisamy et al., 2017).  

The compounds with the highest composition percentage were 9-octadecen-1-ol (4.51 

%), β-sitosterol (6.07 %), olean-12-en-3-one (7.47 %), and 3-methyl-1-butanol (14.77 %). 

These results differ greatly as compared to the chemical profiling of the essential oils of 

T. minuta, where monoterpenes, sequiterpenes, limonene, and tagetones are often the 

most abundant compounds (Shahzadi et al., 2010; Shirazi et al., 2014; Rezaei et al., 2018). 

The compound 9-octadecen-1-ol is a long-chain aliphatic alcohol that is known to 
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decrease low-density lipoprotein (LDL) cholesterol and increase high-density lipoprotein 

(HDL) cholesterol and is most commonly synthetically produced as a lipid-lowering drug 

for high cholesterol patients (Santos et al., 2015). Additionally, Shen et al. (2018b) has 

shown that 9-octadecen-1-ol is also a large constituent of Bidens pilosa. This becomes 

important when paired with the findings of Cid et al. (2016) who studied the effects of 

co-cropping B. pilosa with T. minuta, claiming that their similar chemical profile aids 

their ability to bioaccumulate metals and act as an herbicide.  

Beta-sitosterol is a nontoxic isoprenoid that has displayed anticancer effects against breast 

cancer, prostate cancer, colon cancer, lung cancer, stomach cancer, ovarian cancer, and 

leukaemia by interference of multiple cell signalling pathways (Bin Sayeed and Ameen, 

2015). Ge et al. (2018) and Oladosu et al. (2018) claim that the effects of β-sitosterol and 

olean-12-en-3-one on cancer cells in vitro are weak as compared to other oleanane-type 

triterpenoids, but still exhibit antibacterial, antiviral, and gastroprotective properties.  

Kyarimpa et al. (2014) and Athuman et al. (2016) studied the repellence of the malaria-

carrying mosquito, Anopheles gambiae, using essential oils from T. minuta. Both studies 

concluded that some constituents in the essential oil causes 100 % mortality of mosquito 

larvae as well as adult mosquitoes, but the compound is not isolated. In 2015, Zohdy et 

al. established the use of 3-methyl-1-butanol as an odor-bait for Anopheles mosquitoes. 

This chemical compound produced by both plants and animals acts a lure for mosquitoes. 

This implies that T. minuta has the potential to act as lure for malaria-carrying 

mosquitoes, as well as acting as an insecticide.  

The presence of these phytochemicals make T. minuta a considerable candidate for the 

production and optimisation of valuable compounds with pharmacological and 

therapeutic benefits.  
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Table 4. 1 : Qualitative phytochemical analysis of the crude leaf extracts of Tagetes 

minuta (n=3).  

Phytochemical 

compound 

Test Hexane  

extract 

Chloroform 

extract 

Methanol 

extract 

 

Carbohydrates 

Molisch’s – + + 

Benedict’s – + ++ 

Fehling’s – + – 

 

Alkaloids 

Mayer’s + + ++ 

Wagner’s ++ + + 

Dragendorff’s + ++ + 

Amino acids Ninhydrin – – + 

Saponins Foam + – – 

Sterols Salkowski’s + + – 

Terpenoids Sulphuric acid + + + 

Phenols Ferric chloride – – + 

Fixed fats & oils Filter paper + + + 

– Absent, + Present, ++ Intense positive reaction 
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   Figure 4. 1  GC-MS chromatogram of crude methanolic extract of Tagetes minuta leaves 
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            Table 4. 2 : Phytochemical compounds with % peak area >1 in the methanolic extract of T. minuta by GC-MS. 

Peak Compound name Retention 

time(min) 

Area % Molecular 

formula 

Molecular 

weight (g/mol) 

CAS  

number 

1 D-Limonene 6.664 1.43 C10H16 136.23 138-86-3 

2 Valeric acid 6.939 2.99 C5H10O2 102.13 109-52-4 

3 3-methyl-1-butanol 7.915 14.77 C6H12O2 116.16 110-45-2 

20 Pyrrolidine 12.214 1.37 C4H9N 71.12 123-75-1 

22 Benzaldehyde 12.639 1.65 C7H6O 106.12 100-52-7 

24 Diethyl pyrocarbonate 13.320 1.04 C6H10O5 162.14 1609-47-8 

32 5-pyrimidinol,2-methyl- 16.226 3.15 C6H6N2OS 142.18 4874-33-3 

33 Supinine 16.314 2.22 C15H25NO4 283.37 551-58-6 

35 Phytyl acetate 17.057 1.77 C22H42O2 338.57 10236-16-5 

38 Heptadecanol-1 17.528 2.48 C17H36O 256.47 1454-85-9 

41 Rivastigmine 18.250 1.41 C14H22N2O2 250.34 123441-03-2 

42 Pentadecanoic acid 18.330 2.71 C15H30O2 242.40 1002-84-2 

47 9-octadecen-1-ol, (Z)- 19.920 4.51 C18H36O 268.48 143-28-2 

49 Limonen-6-ol, pivalate 19.411 1.02 C15H24O2 236.36 10121-28-5 

50 Nonadecanol-1 19.513 2.35 C19H40O 284.53 1454-84-8 

52 Phytol 19.746 2.64 C20H40O 296.54 150-86-7 

63 2-chloro-4.6-dimetoxypyrimidine 21.925 2.12 C6H7ClN2O2 174.58 13223-25-1 

64 Oleamide 21.967 1.23 C18H35NO 281.48 301-02-0 

79 Squalene 25.385 2.59 C30H50 410.73 111-02-4 

89 1-heptacosanol 27.339 1.83 C27H56O 396.74 2004-39-9 

99 β-sitosterol 29.260 6.07 C29H50O 414.72 83-46-5 

100 Heptadecanoic acid 29.401 1.20 C17H34O2 270.46 506-12-7 

102 Olean-12-en-3-one 29.752 7.47 C30H48O 424.71 638-97-1 

106 α-amyrin 30.260 1.50 C30H50O 426.73 638-95-9 



Chapter 4  

 

62 

 

Table 4. 3: Preliminary screening of antibacterial activity of silver nanoparticles derived 

from leaves of T. minuta (n=3, mean values represented). 

Bacterial strains Zone of Inhibition (mm) Antibiotic 

Methicillin-resistant 

Staphylococcus aureus 
16 0 

Escherichia coli 10 18 

Staphylococcus aureus 10 0 

Bacillus subtilis 12 6 

Pseudomonas aeruginosa 13 9 

(mm) = inhibition zone including diameter of gel puncture 

 

The antibacterial efficacy of the crude methanolic extract from T. minuta leaves are 

summarised in table 4.3 and were assessed by measuring the diameter of the inhibition 

zone of each well. The crude extract exhibited varying degrees of inhibition against 5 

bacterial strains (MRSA, E. coli, S. aureus, B. subtilis, and P. aeruginosa). The antibiotic 

used for the gram-positive bacteria was streptomycin and gentamycin for gram-negative 

bacteria. In general, the crude methanolic extract proved to be more effective against 

gram-positive than gram-negative bacteria. 

The antibacterial effects are similar to the activity shown from the essential oils of T. 

patula (Rondon et al., 2006) and T. erecta (Tripathi et al., 2012). These studies report 

flavonoids, alkaloids, and phenolic compounds are responsible for the antibacterial 

effects of extracts from Tagetes species (Tripathy et al., 2017).  

 

4.5 Conclusion 

Tagetes minuta has proved to be an important medicinal plant for human use as well as 

an insecticide and herbicide. Its applications extend pharmaceutically to include 

antidiabetic, anti-inflammatory, anticancer, and antimicrobial activities as evidenced 

from the phytocompounds found in abundance in the methanolic extract from the leaves 
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of T. minuta. The results of this study show potential for research regarding the regulation, 

use, and development of bioactive compounds sourced from medicinal plants. 

Additionally, the plethora of pharmacologically useful compounds sourced from T. 

minuta makes a convincing case for the status to be changed from invasive species to 

underutilised medicinal plant crop in South Africa. 

  



Chapter 5  

 

64 

 

CHAPTER 5: GREEN SYNTHESIS OF SILVER NANOPARTICLES 

FROM TAGETES MINUTA L. AND ITS ANTIBACTERIAL 

POTENTIAL 

 

5.1 Abstract 

The plant mediated synthesis of metallic nanoparticles is a fast-growing area of interest 

in the field of nanotechnology due to its eco-friendly approach. This study demonstrated 

the green synthesis of silver nanoparticles (AgNPs) using Tagetes minuta leaf extract. 

The AgNPs were characterised using UV-visible spectroscopy, transmission electron 

microscopy (TEM), energy dispersive X-ray (EDX) analysis and Fourier transform 

infrared (FTIR) spectroscopy. UV–visible spectrum of synthesised silver nanoparticles 

showed maximum peak at 442 nm. TEM revealed that the particles were spherical in 

shape and size ranging from 10 to 50 nm. The EDX spectrum confirmed the presence of 

silver metal. Preliminary antibacterial activity was determined using the agar well 

diffusion method, which showed growth inhibition against selected gram-positive and 

gram-negative bacteria.  

 

 

 

 

 

 

 

 

Keywords: Antibacterial activity; energy dispersive x-ray; FTIR spectroscopy; silver 

nanoparticles; UV-visible spectrometry  
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5.2 Introduction 

Nanotechnology is the blanket term for the synthesis, manipulation, and application of 

materials and structures that range between 1 and 100 nm, and is currently one of the most 

active research fields in material science (Sarsar et al., 2013; Padalia et al., 2015; Khatoon 

et al., 2017). Size, distribution, and morphology of nanoparticles determines their 

biological effectiveness (Krishnamurthy et al., 2012). Noble metal nanoparticles such as 

gold, silver, and platinum show promising applications in the fields of biotechnology, 

bioengineering, solar energy conversion, medicine, and water treatment (Dahl et al., 

2007; Sharma et al., 2009).  

Traditionally, nanoparticles are produced using chemical and physical methods, but these 

methods often face several caveats in the way of costs and environmental damage (Ramya 

and Subapriya, 2012). Green chemistry and green synthesis methods have since been 

adopted in the efforts of reducing both costs and generated hazardous waste, as well as 

decreasing the risk of safety concern over the products (Kaler et al., 2010). The biological 

method of synthesising nanoparticles occurs by redox reaction that builds towards larger 

and more complex systems beginning at the molecular level (Ramya and Subapriya, 

2012). Based on green chemistry perspectives, the selection of an environmentally benign 

solvent and nontoxic chemicals in the synthesis of nanoparticles are imperative (Sharma 

et al., 2009). Natural material from microorganisms, enzymes, and plants are used for 

green synthesis of silver nanoparticles (Kotakadi et al., 2014; Vidhu and Philip, 2014).  

Silver has been used as an antimicrobial agent for many decades, but the rising interest in 

the properties of metallic silver in the form of silver nanoparticles (AgNPs) is focused 

towards the increasing threat of antibiotic resistance (Roy and Das, 2015; Ojo et al., 

2018). Ahmed et al. (2016) claimed that silver is the least toxic metal to animal cells that 

is used as an antimicrobial, and is effective against over 650 microorganisms from 

different classes such as gram-negative and gram-positive bacteria, fungi, and viruses. In 

order for silver to have any antimicrobial properties, it must first be in its ionized form, 

as the positive charge on the Ag+ ions is vital in forming nanoparticles (Ahmed et al., 

2016; AlSalhi et al., 2016). In conjunction, the medicinal properties of plants are 

attributed to its phytochemicals, which are in a position to reduce, cap, and stabilise Ag+ 

ions (Chinnasamy et al., 2017; Tiwary and Jha, 2017). Organic chemicals present in plant 
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aqueous extracts (e.g. carbohydrates, proteins, phenols, flavonoids, terpenoids, alkaloids) 

are capable of donating an electron that results in the reduction of Ag+ ions to Ag0 (Roy 

and Das, 2015; Tiwary and Jha, 2017).   

Nanotechnology also allows for the exploitation of antimicrobial properties of silver, as 

they are used in the form of nanoparticles. Silver nanoparticles display a large surface 

area to volume ratio – which allows for broad contact with the nuclear content of the 

bacteria, thus enabling the inactivation of DNA replication leading to growth inhibition 

(Ojo et al., 2017). It has been reported that AgNPs attach to the cell walls of bacteria and 

disturb the cell wall permeability and cellular respiration (Singh et al., 2008; Roy and 

Das, 2015).  

Tagetes minuta is an aromatic herbaceous plant belonging to the Asteraceae family that 

has been reported for its high-grade essential oil that shows numerous uses in beverage, 

cosmetic, and pharmaceutical industries (Shirazi et al., 2014). It is found along river 

banks, forest margins, dry wooded valleys and hillsides in KwaZulu-Natal since its 

naturalisation in South Africa. The leaves of T. minuta are used in the preparation of 

traditional remedies for the management of stomach ailments, headaches, diarrhoea, 

malaria, and epilepsy (Karimian et al., 2014; Kyarimpa et al., 2014; Igwaran et al., 2017). 

The pharmacological effects of the leaf extracts are purported to be the result of various 

secondary metabolites including essential oils particularly abundant in monoterpenes, 

sesquiterpenes, flavonoids, aromatics, and thiophenes (Bansal et al., 1999; Brene et al., 

2009; Sadia et al., 2013). The aims of this study were to employ the use of aqueous leaf 

extracts of T. minuta in the biosynthesis of AgNPs, characterise the particles, as well as 

to observe its antimicrobial activity against both gram-positive and gram-negative 

bacteria. 
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5.3 Methods and Materials 

5.3.1 Collection of plant material 

Fresh leaves of T. minuta were collected from the UKZN Westville campus (29.817°S 

30.940°E) and air-dried for 6 weeks. A voucher specimen was confirmed and deposited 

at the UKZN Westville Herbarium (accession number 18216, voucher number 01). 

 

5.3.2 Methanol extraction 

The air-dried leaves were ground into a fine powder using a blender. Thirty grams of 

ground material was placed in a round bottom flask containing 50 ml of methanol. The 

flask was attached to Soxhlet apparatus and boiled for two 3-hour sessions to obtain the 

crude plant extract. The extract was filtered using filter paper (Whatman No. 1) and stored 

in an airtight jar at 4°C. 

 

5.3.3 Fresh water extraction 

Ten grams of fresh leaves were thoroughly washed with distilled water. The leaves were 

cut into small pieces and boiled for 10 min in 100 ml distilled water and filtered through 

Whatman No. 1 filter paper and stored in a concealed jar. The filtrate was used for the 

synthesis of silver nanoparticles. 

 

5.3.4 Green synthesis of AgNPs 

Aqueous solution (1 mM) of silver nitrate (AgNO3) was prepared and used for the 

synthesis of AgNPs. The ratio of 1 ml methanol extract to 19 ml silver nitrate solution 

was used for the reduction of Ag+ ions. The solution was then incubated in a hot water 

bath at 60°C until a colour change was observed. This process took 30 minutes. AgNP 

solution was centrifuged at 16000 rpm (20°C) for 5 min on the Eppendorf Centrifuge 

5415R. Thereafter, the pellet was suspended in deionized water. 
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5.3.5 Characterisation of AgNPs 

a) UV–Visible spectroscopy 

UV–Vis spectra of synthesized nanoparticles were monitored on a spectrophotometer 

(Shimadzu UV-1800) in 350–700 nm range at a resolution of 2 nm. 

b) Energy dispersive X-ray analysis 

A drop of the AgNP solution was placed on a glass cover slip, mounted onto a brass stub 

and left to dry. The stub was then sputter coated with gold in a Polaron SC500 sputter 

coater and viewed with a Zeiss Ultra Plus field emission scanning electron microscope 

(FE-SEM) at 5 kV. Silver nanoparticle information by EDX microanalysis of elements 

present was captured using Aztec software coupled to an Oxford X-MAX detector 

(Oxford instruments, UK). 

c) Fourier transform infrared (FTIR) spectral analysis 

Each sample was centrifuged at 10000 rpm (Beckman Coulter Avanti J-E Centrifuge) for 

30 min. The resulting pellet was suspended in deionized water and was used for further 

characterisation. Spectroscopic measurements of the sample (200 µl) were determined 

using a PerkinElmer FTIR Spectrum One spectrophotometer in the diffuse reflectance 

mode operating at a spatial resolution of 4 cm-1. 

d) Transmission electron microscopy 

A copper grid was submerged in the silver nanoparticles sample and thereafter air-dried. 

The size, shape, and overall morphology of the AgNPs was determined using the Zeiss 

UltraPlus FEGSEM at 200 kV. 

 

5.3.6 Antibacterial screening 

The preliminary antibacterial activity of the synthesised AgNPs was evaluated against 

Escherichia coli (ATCC 25218), Staphylococcus aureus (ATCC 29213), methicillin-

resistant Staphylococcus aureus (ATCC BAA-1683), Bacillus subtilis and Pseudomonas 

aeruginosa (ATCC 25215). Mueller Hilton agar medium was prepared and poured into 
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sterile petri dishes to set at room temperature. The bacterial cultures were swabbed 

uniformly onto the plates using sterile cotton swabs. Wells of 5 mm in diameter were 

made using an agar corer (gel puncture). The samples were pipetted into the wells (90 

µl), and the plates were incubated at 37ºC. The effect of the samples on the bacteria was 

assessed 24 hours later by measuring diameter of the zone of inhibition (mm). 
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5.4 Results and Discussion 

The fresh suspension of T. minuta was a light green in colour (Fig 5.1 a). However, after 

the addition of silver nitrate and exposing to heat in a 60°C water bath for 30 mins, the 

suspension turned a dark brown colour (Fig 5.1 b). The reduction of silver ions into silver 

nanoparticles during exposure to the plant extract is indicated by this colour change. It 

appears that the intensity of the colour reaction was directly proportional to the formation 

of the AgNPs. The UV-vis spectra recorded from the methanolic extract of T. minuta is 

presented in Fig 5.2, where the maximum absorption peak is shown to be at 442 nm. 

Surface plasmon resonance (SPR) is the collective oscillation of electrons in the 

conduction band on a nanoparticle surface (Suman et al., 2014). Siddiqui et al. (2018) 

claimed that the absorption band from 400 to 500 nm represents the dipole component of 

the SPR of silver nanoparticles. This implies that the peak wavelength, width, and effect 

of these resonances yield a unique spectral fingerprint for a plasmonic nanoparticle with 

a distinct size and shape. Using high-resolution TEM, Mock et al. (2002) showed that 

silver nanoparticles that peak in the range of 410 – 500 nm are spherical; whereas in the 

range of 500 – 700 nm, particles are usually triangular or pentagonal. This observation 

strongly suggests that the AgNPs synthesised in this study were spherical in shape.  
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Figure 5. 1 Images of silver nanoparticle synthesis using T.minuta extract from leaves: 

a) Silver nitrate solution with leaf extract. b) Synthesised silver nanoparticle solution after 

heating for 30 minutes. 

 

 

Figure 5. 2 UV-Vis absorption spectra of reduction of silver ions to silver nanoparticles 

after 30 min reaction. 
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Figure 5. 3 HR-TEM images of silver nanoparticles in low and high magnification. 

 

The shape and size of the AgNPs from T. minuta leaf extracts are depicted in Fig 5.3. The 

optical and electronic properties of AgNPs are significantly influenced by their shape 

(Kim et al., 2007). The particles appear to be uniformly spherical. The sizes ranged from 

7 – 42 nm and the average diameter was found to be 11.75 nm (Fig 5.4). Similarly-shaped 

silver nanoparticles were synthesised using T. patula leaf extract (Elemike et al., 2018) 

and T. erecta flower extract (Padalia et al., 2015). The AgNPs were predominantly 
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monodispersed and stable. Organic material derived from the plant extraction process 

causes the inherent functional group capping, which in turn offers stability and prevents 

agglomeration (Shaik et al., 2014).  

 

 

 

Figure 5. 4 Frequency histogram for silver nanoparticle size range. 
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Figure 5. 5 EDX spectrum of synthesised silver nanoparticles using leaf extract of 

Tagetes minuta. 

 

A strong signal of silver is evident from the EDX spectrum at 1.5 keV and a weaker signal 

at 3 keV (Fig 5.5) confirming the presence of elemental silver. A similar spectral profile 

for silver has been reported by Hedaginal and Taranath (2017) for the leaf extract of 

Thunbergia alata. Weak signals of carbon, oxygen, iron, manganese, silicon, chlorine, 

and copper are also evident. The presence of silicon, carbon, and copper is likely to be 

from the support glass cover slip and grid used in the methodology for EDX. Signals of 

other trace elements may be the result of x-ray emission from organic compounds 

involved in the capping of the nanoparticles and are bound to the surface of the nano-

silver (Singh et al., 2015).  
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Figure 5. 6 FTIR spectrum of the synthesised silver nanoparticles using leaf extract of 

Tagetes minuta.  

 

The known active ingredients in T. minuta are terpenoids viz. limonene, caryophyllene, 

and eucarvone (Tiwari et al., 2016; Igwaran et al., 2017); amines viz. pyrrolidine 

(Meshkalasadat et al., 2010); ketones viz. tagetone, dihydrotagetenone, tagetenone (Gil 

et al., 2002; Mohammad et al., 2010); and hydrocarbons viz. ocimene (Igwaran et al., 

2017). The FTIR spectrum analysis of biosynthesised silver nanoparticles are displayed 

in Fig 5.6 which manifest absorption peaks located at the regions between 600 cm−1 and 

3300 cm−1 in order to identify the functional groups of the extract involved in the 

reduction of the synthesised AgNPs. Prominent peaks on the FTIR spectrum are marked 

at 3272 cm-1, 2119 cm-1, 1637 cm-1, 1016 cm-1, and 595 cm-1. The absorption peak at 3272 

cm-1 is assigned to –OH stretching in alcohols and phenolic compounds, which indicates 

the possible involvement of the known terpenoids (Awwad et al., 2013; Elemike et al., 

2018). The peak at 2119 cm-1 suggest –C≡C and –CH groups that are found in terpenoid 

ring structures and is close to that reported for aliphatic aldehydes (Shaik et al., 2014; 
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Hedaginal and Taranath, 2017). The absorption peak at 1637 cm-1 arose due to C=C 

stretches that are typical of aliphatic and aromatic amine structures and alkenes (Jha et 

al., 2018). Peaks below the value 1300 cm-1 are usually indicative of C–C and C–O 

groups, but are not as reliably interpreted due to a larger number of different vibrations 

(Kumar et al., 2017). 

 

Table 5. 1 : Preliminary screening of antibacterial activity of silver nanoparticles derived 

from leaves of T. minuta (n=3, mean values represented). 

Bacterial strains Zone of Inhibition (mm) Antibiotic 

Methicillin-resistant 

Staphylococcus aureus 
9 0 

Escherichia coli 11 10 

Staphylococcus aureus 8 0 

Bacillus subtilis 9 6 

Pseudomonas aeruginosa 7 9 

(mm) = inhibition zone including diameter of gel puncture 

 

The antibacterial efficacy of silver nanoparticles synthesised from T. minuta leaves are 

summarised in table 5.1 and were assessed by measuring the diameter of the zone of 

inhibition of each well. The AgNPs exhibited varying degrees of inhibition against 5 

bacterial strains (MRSA, E. coli, S. aureus, B. subtilis, and P. aeruginosa). The antibiotic 

used for the gram-positive bacteria was streptomycin and gentamycin for gram-negative 

bacteria. In general, the silver nanoparticles were more effective against gram-positive 

than gram-negative bacteria.  

The AgNPs were least effective against E. coli and P. aeruginosa, which showed 

inhibition zones very similar to that of the antibiotic (gentamycin). Sondi and Salopek-

Sondi (2014) demonstrated silver nanoparticles penetrating the bacterial cell walls of E. 

coli, but growth inhibition was dependent on the concentration of the AgNPs used, and 

in most instances would only delay the growth of the bacterial colonies. Pal et al. (2007) 
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studied the effects of nanoparticle shape against gram-negative bacteria, and found that 

spherical and rod-shaped nanoparticles are less effective than triangular-shaped 

nanoparticles. This may explain the ineffectiveness of the AgNPs synthesised in this 

study against P. aeruginosa.  

The bacterial growth of the gram-positive bacteria (MRSA, S. aureus, and B. subtilis) 

was more severely inhibited by the AgNPs synthesised in this study. Guzman et al. (2012) 

highlighted the importance of the size of AgNPs against gram-positive bacteria, 

concluding that silver particles between 9 and 14 nm in diameter showed the highest 

activity. In Fig 5.4, it is evident that the silver nanoparticles synthesised in this study that 

were under 15 nm in diameter were the most frequent, which likely contributed to the 

higher antibacterial activity. It has been reported that AgNPs induce the inactivation of 

DNA replication and thus protein synthesis in gram-positive bacteria by interacting with 

present thiol groups (Ojo et al., 2017).  

 

5.5 Conclusion 

This study provided a simple and rapid method for the biosynthesis of AgNPs using T. 

minuta aqueous leaves extract.  The secondary metabolites present in T. minuta perform 

the dual function of formation and stabilisation of AgNPs through the action of various 

terpenoid and amine compounds identified. The AgNPs were further confirmed by using 

UV-Vis spectroscopy, EDX, and FTIR techniques. The shape of the nanoparticles was 

determined to be spherical using HR-TEM. The biosynthesised AgNPs also exhibited 

antimicrobial activity against selected gram-positive and gram-negative bacteria strains, 

which is in part due to the size and shape of the AgNPs. Hence, this study supports the 

efficiency of plant mediated green synthesis of AgNPs, which has the potential to be 

utilised in various clinical applications. 
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CHAPTER 6: GENERAL CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

 

6.1 Main findings 

Tagetes minuta L. is an annual herb that is used as ethnomedicine worldwide. It is reported to 

have numerous medicinal benefits such as treatment for respiratory inflammations, stomach 

pains, chest infections, coughs, and as well as a healing effect on wounds, cuts, and calluses. 

Despite its rich literature in ethnomedicinal uses, the phytocompounds that are responsible for 

its therapeutic properties have not been reported on. Additionally, the foliar structures that 

produce, store, and exude these phytocompounds are not well understood. The aims of this 

study were to critically analyse the leaves of T. minuta with regard to its micromorphology, 

histochemistry, phytochemistry, green synthesis of silver nanoparticles, and potential for 

antibacterial activity.  

The leaves of T. minuta contain two types of foliar structures, viz. non-glandular trichomes and 

secretor cavities. In Chapter 3, the leaves were studied using stereomicroscopy, scanning 

electron microscopy (SEM), and transmission electron microscopy (TEM). Stereomicroscopy 

showed a sparse coverage of trichomes that group along the midvein and major venation 

network, suggesting that they do not play a large role in physical protection to the plant. The 

secretory cavities can be seen macroscopically and appear as large pellucid yellow glands 

between 70 and 200 µm in diameter. Scanning electron microscopy revealed the secretory 

cavity openings along the anomocytic stoma. The trichomes were deduced to be uniseriate and 

non-glandular, reaching up to 200 µm in length. TEM was used to view the cells within the 

secretory cavity, which showed an increase in lipid and vesicle production within the organelles 

as compared to surrounding cells. Histochemical analyses showed that the non-glandular 

trichomes were able to store various classes of phytocompounds, in contrast to the literature 

suggesting non-glandular trichomes are incapable of phytometabolites. This work is novel in 

terms of the micromorphology of T. minuta. 

Crude organic solvent extracts derived from the leaves of T. minuta were investigated in 

Chapter 4. Phytochemical tests were used to determine the main chemical classes present in 

the hexane, chloroform, and methanol crude extracts, revealing the presence of carbohydrates, 
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alkaloids, amino acids, sterols, saponins, terpenoids, phenols, and lipids. The crude methanolic 

extract was further subjected to analysis using GC-MS, which showed that the compounds with 

the highest composition percentage were 9-octadecen-1-ol (4.51 %), β-sitosterol (6.07 %), 

olean-12-en-3-one (7.47 %), and 3-methyl-1-butanol (14.77 %). These compounds are 

discussed in Chapter 4 as having various pharmacological benefits. Antibacterial screening 

using the methanolic extract showed greater growth inhibition on gram positive than gram 

negative bacteria. 

Green synthesis of silver nanoparticles was achieved in Chapter 5 using the methanolic extract. 

Using TEM, the nanoparticles were proved to be spherical in shape and ranged between 10 and 

50 nm in size. The presence of elemental silver was determined using EDX analysis and 

polymeric chemical groups assessed using FTIR spectroscopy. The silver nanoparticles proved 

to have a greater effect on the growth inhibition of gram positive bacteria. 

 

6.2 Future recommendations  

With regard to microscopy, TEM analysis could be taken further to include the intracellular 

components of the non-glandular trichomes to determine whether they produce as well as store 

secondary metabolites. Future research could compare and contrast the percentage composition 

of phytochemicals from the organic solvent extracts to that of the essential oils of T. minuta, 

as well as compare percentage composition from extracts taken at different growth 

development and flowering stages of the plant. Silver nanoparticles derived from the 

methanolic extract can be further investigated in terms of antimicrobial activity in order to 

determine the minimum inhibitory concentrations. Additionally, T. minuta can be used in cell 

culture for possible propagation, changing its status in South Africa from invasive weed to 

underutilised medicinal crop. 
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APPENDIX B – Antibacterial activity 

 

 

 

Appendix B: Antibacterial activity of crude methanolic leaf extract and silver 

nanoparticles synthesised from the leaves of Tagetes minuta against gram positive and 

gram negative bacteria: a) Bacillus subtilis. b) Escherichia coli. c) Pseudomonas 

aeruginosa. d) Staphylococcus aureus. e) Methicillin-resistant Staphylococcus aureus. 


