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Abstract 
 

A major challenge in savanna rangeland studies is estimating woody vegetation cover and 

densities over large areas where field based census alone is impractical. It is therefore 

crucial that the management and conservation oriented research in savannas identify data 

sources that provides quick, timely and economical means to obtain information on 

vegetation cover. Satellite remote sensing can provide such information. Remote sensing 

investigations, however, require establishing statistical relationships between field and 

remotely sensed data. Usually regression is the empirical method applied to field and 

remotely sensed data for the spatial estimation of woody vegetation variables. 

Geostatistical techniques, which take spatial autocorrelation of variables into 

consideration, have rarely been used for this purpose. We investigated the possibility of 

improving woody biomass predictions in tropical savannas using cokriging. Cokriging was 

used to evaluate the cross-correlated information between SPOT (Satellites Pour 

l’Observation de la Terre or Earth-observing Satellites)-derived vegetation variables and 

field sampled woody vegetation percentage canopy cover and density. The main focus was 

to estimate woody density and map the distribution of woody cover in an African savanna 

environment. In order to select the best SPOT-derived vegetation variable that best 

correlate with field sampled woody variables, several spectral vegetation and texture 

indices were evaluated. Next, variogram models were developed: one for woody canopy 

cover and density, one for the best SPOT-derived vegetation variable, and a cross-

variogram between woody variables and best SPOT-derived data. These variograms were 

then used in cokriging to estimate woody density and map its spatial distribution. Results 

obtained indicate that through cokriging, the estimation accuracy can be improved 

compared to ordinary kriging and stepwise linear regression. Cokriging therefore provided 

a method to combine field and remotely sensed data to accurately estimate woody cover 

variables.  
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Chapter 1. Introduction 
 

1.1 Background  

 

Savanna is a vegetation type defined by a mixture of trees and grasses that characterize 

vast areas of tropical landscapes. Savanna landscapes represent one of the largest biomes 

worldwide and are well known for their inherent dynamism (Sharp & Bowman 2004). 

Specifically, the dynamic vegetation composition and relative cover of the mixed trees and 

grasses that characterize savannas have important ecological effects such as their influence 

on density, diversity and distribution of wildlife (Mcnaughton & Banyikwa 1995; Mutanga 

et al. 2004; Mutanga & Rugege 2006). Savanna woody vegetation is also an important 

biophysical variable related to a wide range of other savanna ecosystem components, such 

as woody and herbaceous biomass, hydrological cycles, soil carbon and nitrogen pools 

(Hudak et al. 2003). 

 

Research has shown that savanna woody vegetation do not only influence the density and 

distribution of wildlife species, but they are themselves susceptible to significant 

transformations due to complex ecological factors and varying land-management practices 

such as landuse changes (Hudak & Brockett 2004; Gillson & Duffin 2007). For example, 

prolonged variations in rainfall intensity, and altered fire regimes accompanied by shifts 

from one land-management system to another have had major and continuing impacts on 

savanna landscapes, and specifically on woody vegetation density and canopy cover 

distribution (Couteron 2002; Hudak & Brockett 2004). In this regard, information on the 

distribution and spatial variations in woody vegetation density and canopy cover in 

savanna environments is critical for making timely assessments of savanna ecosystem 

condition (Coops & Culvenor 2000).  

 

Woody vegetation density and canopy cover assessment in savannas has been a major 

challenge to rangeland ecosystem managers and researchers. Ecosystem managers in South 

Africa, particularly in the Kruger National Park (KNP) use series of monitoring endpoints 

often denoted as thresholds of potential concerns (TPCs) to define the upper and the lower 

limits of acceptable changes in biodiversity (Gillson & Duffin 2007). The limits of 
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acceptable changes in vegetation resource components of savanna biodiversity can be; 

spatial distribution, density and floristic composition. For instance, in the KNP it is 

suggested that TPC for woody vegetation density or cover in any landscape group should 

not drop by more than 80% of its highest ever value and the mean drop for the entire KNP 

is expected not to exceed 30% (Gillson & Duffin 2007). This technique views the 

conservation of biodiversity as the ultimate goal. Hence, it uses thresholds to determine an 

acceptable range along a continuum of patterned change for a selection of measurable 

vegetation variables to establish whether management is achieving its goals. However, if a 

component of the vegetation resources, e.g. bush encroachment or loss of woody 

vegetative cover exceeds its thresholds, then there is need for potential concern. It is 

therefore crucial that the management and conservation oriented research in savannas 

should identify data sources that provides quick, timely and economical means to obtain 

information on woody vegetation cover and its density estimations.  

 

In the past, assessment of woody vegetation density and canopy cover in the vast arid to 

semiarid savanna environments has been limited to analysis of field data. The acquisition 

of field data for relatively large areas can be impractical, considering that longer time of 

fieldwork is required, and the related issues of accessibility, personnel, and cost 

constraints. In this respect, remote sensing applications can provide information that is 

quick, timely and economical for the estimation of vegetation resources over large and 

complex savanna environments. Satellite remote sensing measurements of vegetation 

reflectance, for example, SPOT5 (Satellites Pour l’Observation de la Terre or Earth-

observing Satellites) and Multi-Spectral Scanner (MSS) have provided repetitive local to 

regional coverage data that is useful for vegetation studies (Hudak & Wessman 1998). 

Remotely sensed data such as SPOT5 image provides a means to extend the traditional 

techniques of ground-based vegetation survey by providing high resolution multispectral 

imagery useful to estimate the amount and the extent of vegetation distribution over large 

areas where field-based data alone could be insufficient. 

 

Remote sensing is shown to play a critical role in acquisition of data, and have been widely 

used to model the spatial variability of vegetation density or cover in different vegetation 

types (Yang J. & Prince, 1997; Skidmore et al 1997; Moskal & Franklin, 2001; Hudak & 

Brockett, 2004; Olsson, 1984). However accurate remote sensing of vegetation in savannas 
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has been prohibited by its complex stand structure and abundant vegetation species. Since 

savannas generally depict complex stand structure and abundant vegetation species, the 

development of remote sensing techniques to estimate vegetation has been biased toward 

savanna landscapes, as compared to other vegetation types such as forests. In addition, 

although several studies investigate the applications of remotely sensed data for vegetation 

estimation, identification of the remotely sensed data that best correlate with woody 

density or canopy cover variables have not been well-established for specific savanna 

landscapes. Only a handful of researches conducted in the African savanna ecosystems 

demonstrate analysis of spectral data, such as individual spectral bands, spectral vegetation 

indices (SVI), image spatial transformation by textural analysis, and spectral mixture 

analysis (SMA) at varying accuracies for the spatial estimation of woody vegetation cover 

and density in savanna woodlands (Hudak & Wessman 1998; Yang & Prince 2000; Hudak 

& Wessman 2001; Hudak et al. 2003; Small 2003; Ellis et al. 2006; Murwira & Skidmore 

2006; Wessels et al. 2006). For example, Hudak & Wessman, (1998) characterized woody 

plant encroachment in the South African savanna by sampling several woody canopy 

structural traits (including density as well as percentage canopy cover) and correlates with 

few first order image texture indices. In the study the authors suggest that the application 

of textural indices to high resolution imagery has potential for estimating woody structural 

variables where spectral vegetation indices fail. To assess the potential of spectral 

vegetation indices such as the Normalized Difference Vegetation Index (NDVI) derived 

from the Advanced Very High Resolution Radiometer (AVHRR) data to estimate 

vegetation productivity in the KNP, Wessels et al, (2006) evaluated the influence of tree 

cover on NDVI-biomass relationship using woody vegetation density and canopy diameter 

variables.  

 

Various image transformation techniques have been tested for the purpose of estimating 

woody density or cover in the African savanna environment (Hudak & Wessman 1998; 

Yang & Prince 2000; Hudak & Brockett 2004; Mutanga & Skidmore 2004; Wessels et al. 

2006). However, none of them to our knowledge have compared the spectral approach 

using spectrally derived vegetation indices with that of spatial image transformation by 

texture analysis to determine the most suitable image variable for woody canopy cover and 

density estimation. Selection of the most suitable remotely sensed vegetation variable is 

critical for the reliability of vegetation modelling. In this respect, this study mainly focused 
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on identifying suitable SPOT image data by establishing statistical relationships between 

woody vegetation density and canopy cover variables, using both SPOT5 vegetation and 

texture indices, as well as SPOT panmerged spectral bands. Other woody vegetation 

variables such as crown diameter, basal area of tree, height of tree, woody stem diameter 

and density of woody shrubs were also measured to evaluate how they relate to the 

remotely sensed SPOT derived vegetation and texture indices. 

 

Research has revealed that studies of savanna ecological systems can be improved by 

integrating ecosystem modelling and remote sensing applications (Buyantuyev et al. 2007). 

Modelling ecological systems such as the savanna landscapes often requires the application 

of traditional methods of identifying statistical relationships between field and remote 

sensing data. Usually regression is the empirical method applied to field and remotely 

sensed data for the spatial estimation of woody vegetation variables. Ordinary regression 

method do not make maximum use of field and remotely sensed data because it ignores the 

spatial dependence of the two datasets (i.e. woody cover variable and derived SPOT 

vegetation data), and do not account for interdependence of the field and remote sensing 

data (Mutanga & Rugege 2006). Since ordinary regressions do not take into consideration 

the spatial autocorrelation in the vegetation and its radiation (Atkinson et al. 1994; 

Mutanga & Rugege 2006), the technique has resulted in either under estimation or over 

estimation of vegetation resources in the African savannas (Said 2003; Mutanga & Rugege 

2006). In this respect, it is important for vegetation modeling to consider the fundamental 

principle that the vegetation natural groupings depicts spatial (data) distribution and spatial 

interdependence within vegetation communities and its radiation derived from remote 

sensing data, which are spatially correlated both to themselves (auto correlated) and to one 

another (cross correlated) (Atkinson et al. 1992; Mutanga & Rugege 2006).  

 

Geostatistical techniques which take spatial autocorrelation of sparsely (e.g. woody canopy 

cover and density) and intensively sampled variables (e.g. SPOT data) into consideration 

can combine field and remote sensing data and model their interdependence 

simultaneously through cokriging. Cokriging is an extension of ordinary kriging which 

takes into consideration spatial dependency. The method has been applied to model 

herbaceous biomass distribution in the African savanna woodland (Mutanga & Rugege 

2006), but so far this technique has not been tested for woody cover distribution and spatial 
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estimation. The extension of the technique to estimate woody cover density and 

distribution is expected to improve the accuracy since it combines remotely sensed data, an 

intensively sampled auxiliary vegetation variable with sparsely sampled woody cover 

structural parameters. 

 

This study investigated the suitability of intensively sampled SPOT satellite imagery and 

field sampled data for the estimation of woody vegetation cover in the KNP. The objective 

was to predict woody vegetation density and canopy cover distribution by establishing 

geostatistical relationships between the woody vegetation variables and remotely sensed 

SPOT data. In order to choose the best SPOT image variable for subsequent geostatistical 

analysis (co-kriging), preliminary analyses of the SPOT imagery were conducted. That 

included measures of texture analysis and spectral vegetation indices, as well as the raw 

multispectral and panmerged SPOT image data.The purpose was to evaluate the utility of a 

geostatistical technique (cokriging) to estimate woody vegetation cover with woody 

density serving as a dependent variable and the best SPOT derived spectral vegetation or 

texture index serving as independent variables. The results obtained from cokriging were 

validated and compared to those obtained from ordinary kriging using the field samples 

alone (ordinary kriging) as well as to those obtained using linear regression. 
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1.2 Aim and Objectives of the study 

 

In the light of this background, the aim of this study was to investigate the utility of high-

resolution satellite images in combination with geostatistics to assess the density and 

spatial distribution of woody vegetation cover in a semiarid African savanna. The study 

specifically aimed to employ geostatistical approaches to this investigation: cokriging with 

field and remote sensing data. An integration of remote sensing and geostatistics 

(particularly cokriging) was used to estimate woody vegetation density and spatial 

distribution in an experimental study area of Kruger National Park, South Africa. The aim 

of this study could be accomplished by considering the following objectives: 

 

• Evaluate the utility of different vegetation indices and texture measures to 

characterise savanna woody vegetation cover.  

• Compare the utility of SPOT5 multi-spectral and SPOT Panmerged imagery to 

estimate savanna woody cover. 

• Predict woody vegetation canopy cover and density using geostatistical techniques 

(particularly cokriging) with the SPOT-derived spectral vegetation data or image 

texture measure that best correlates with the woody cover and woody density 

variables. 

 

 

1.3 Key Research Questions 

 

• Which image texture algorithm or spectral vegetation data is most appropriate to 

characterise savanna woody vegetation cover?  

• Which spatial resolution of SPOT image is the most appropriate to characterise 

savanna woody vegetation cover? 

• To what extent can geostatistical techniques (particularly co-kriging) improve 

estimation of savanna woody vegetation density and canopy cover?  

 

 

 



   7 

1.4 Organisation of the Thesis 

 

The overall organisation of this thesis is in two major sections. Section one is divided into 

two parts. Part one involved preliminary analysis of SPOT satellite imagery to extract 

spectral vegetation and texture indices, and the analysis of field sampled woody cover 

parameters. The second part of section one was to establish statistical relations between 

woody vegetation cover and density variables and SPOT derived vegetation and texture 

indices as well as the raw SPOT (multispectral and panmerged) imagery, with the purposes 

of identifying the best SPOT derived vegetation variable through simple linear correlation 

analysis.  

 

The second section is modelling woody vegetation cover using regression and 

geostatistical techniques to estimate woody vegetation cover in the study area. Analysis in 

this section is three fold: first is stepwise multiple linear regression with the field sampled 

woody cover as well as woody density and the best SPOT derived vegetation or texture 

indices selected in section one. The second is ordinary kriging using field data alone for 

quantitative prediction of woody cover density, and cover. The third is cokriging with the 

woody vegetation cover and density variable serving as the dependent (primary) variables 

and the best SPOT derived vegetation or texture indices serving as independent variables, 

with the purpose to quantitatively predict the woody vegetation density and cover 

distribution. In order to draw conclusions, the results obtained from cokriging were 

validated and compared to those obtained from kriging using the field samples alone 

(ordinary kriging) as well as to those obtained using linear regression. Figure 1.1 illustrates 

the flow chart for the conceptual framework of the research.  
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Figure 1.1: Flowchart for methods followed in this research 

RS = remote sensing  

SPOT = Satellites Pour l’Observation de la Terre, 

MS = multispectral,VI = vegetation index 
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1.5 Study Area 

 

The study area is located in Shingwedzi woodlands of the Kruger National Park (KNP). 

KNP is situated on the eastern side of Limpopo and Mpumalanga provinces of South 

Africa. Figure 1.2 shows the location of the study area. Geographically the KNP lies 

between 30
0
 53

’
 18

’’
 E, 22

0
 19

’
 40

’’
 S and 32

0
 01

’
 59

’’
 E, 25

0
 31

’
 44

’’
 S, covering a total area 

of 2 000 000 Ha and extends 360 km from north to south. The KNP falls within the 

savanna biome with a diverse landscape classified into significant environmental units for 

the purpose of conservation planning and management (Wessels et al. 2006). Thirty-five 

landscapes have been identified based on geomorphology, climate, soil, vegetation pattern 

and associated fauna (Gertenbach 1983). A simplified classification joined the 32 

landscapes into 17 landscape groups. 

 

Kruger National Park experiences 4 to 8 months hot, wet season (October to April) and a 

mild, dry winter (May to August). KNP is crossed by seven major river systems, all of 

which originate to the west of the KNP and drain a combined area of about 860 000 Ha 

(Mabunda et al. 2003). Estimated woody canopy cover in the northern woodlands ranges 

from 5 to 60% and is dominated by Acacia spp., Combretum spp. and Colophospermum 

mopane (here after refer as mopane) (Venter et al. 2003).The soils of the region are 

derived from the underlying undifferentiated metamorphic rock and amphibolite of the 

Swaziland system, as well as granite (Khomo & Rogers 2005). Away from the rivers the 

soils form shallow red clays becoming deeper with more recent alluvia adjacent to the river 

(Venter et al. 2003; Khomo & Rogers 2005 ). Tree size and tree density decrease with 

increasing distance from the riparian zone. 

 

Generally, savannas are structurally heterogeneous at the local, landscape-level due to fine-

scale floristic heterogeneity as well as the responses of individual species to underlying 

environmental variation (Hempson et al. 2007). However, in the Shingwedzi region of the 

Kruger National Park, the structure of mopane woodland which is an arid savanna of 

southern Africa, there is little local variation in the relative dominance of woody tress and 

shrubs forms of the dominant species, Colophospermum mopane across continuous 

environmental settings such soil forms and plant available moisture condition (Khomo & 

Rogers 2005 ; Hempson et al. 2007). 
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Figure 1.2: Location of the Study Area in the Kruger National Park (KNP)- South Africa 
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Chapter 2. Literature Review 
 

Throughout sub-Saharan Africa, rainfall is highly seasonal and temperatures can rise as 

high as 45
o
C or more. Arid and semiarid savannas are dominant ecosystems occupying this 

type of climatic region. It is common ecological knowledge that woody vegetation is an 

important characteristic of woodland savannas. However, characterizing the structure, 

composition and dynamics of the mixed trees and grasses in savanna areas has been a 

major challenge to savanna vegetation studies.  Remote sensing data is often correlated 

with field sampled data to determine the relationships between biophysical variables such 

as woody vegetation cover and remotely sensed data with mixed results. However, until 

recently only a few studies have integrated remote sensing and other techniques such as 

spatial statistics for the spatial estimation of vegetation resources in savannas (Mutanga & 

Rugege 2006). This chapter reviews literature on three main approaches which are 

addressed in this study: the relationship between savanna woody vegetation variable and 

remote sensing data using image analysis methods based on (i) spectral vegetation and (ii) 

texture indices, and (iii) geostatistical techniques of interpolation 

 

 

2.1 Remote sensing of vegetation density estimation and Savanna study   

 

Increasingly, the application of remotely sensed data has proved to be the most efficient 

means to assess vegetation cover or density. Remote sensing-based vegetation estimation 

methods and assessment of existing issues influencing vegetation estimation are inevitable 

for improving estimation accuracy. However, vegetation canopy cover or density 

estimation remains a difficult task especially in areas with complex vegetation stand 

structures and heterogeneous environmental conditions. Various techniques based on 

integration of field measurement and remote sensing have been applied for vegetation 

modelling (Yang J. & Prince, 1997; Skidmore et al 1997; Moskal & Franklin, 2001; Hudak 

& Brockett, 2004; Olsson, 1984 ).  

 

Savannas are described as tropical vegetation consisting of a continuous grass layer usually 

with a sparse canopy of either trees or woody vegetation. Savanna ecosystems worldwide 

occupy about 20% of the Earth’s land surface (Stott 1991) and support a diverse 
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community of species. At the regional or landscape level the savanna biome is estimated to 

occupy 46% of southern Africa and over one third of South Africa, making it the largest 

biome in southern Africa (Low & Rebelo 1998). 

 

Savanna structure and dynamics are influenced by many factors that determine the 

vegetation structure and composition. These factors can be primary and secondary 

determinants. The primary determinants can be available plant moisture, available 

nutrients, soil types and geographical gradients. These factors influence the vegetation 

structural composition and vary spatially at both regional and local scales. The secondary 

determinants can be fire frequencies and intensity, as well as herbivory, which varies in 

spatial extent and intensity. The structure and dynamics of savannas are therefore a 

consequence of various disturbances acting within the constraints of the primary 

determinants (Mentis & Bailey 1990). 

 

Although, savannas support a large community of species, most of them are extensively 

exploited for crop cultivation, livestock grazing, commercial forestry and infrastructure 

development. Due to the extensive human over-utilization or reckless exploitation caused 

by over-stocking, shorter fallow periods between crops, fuel-wood harvesting and 

changing fire patterns have specifically altered the African savanna landscapes and these 

continue to influence rapid changes in vegetation productivity, structure and biodiversity 

composition (Hudak & Brockett 2004). In this regard, the establishment of protected areas 

systems (PAs) and the biodiversity conservation status designated in some savanna 

rangelands ecosystems have so far helped to protect some savannas from further 

degeneration. However, vegetation resource dynamics in PAs are inherently unstable 

(McNaughton 1984; Scholes & Archer 1997), as well as the vegetation structure is 

influenced by both ecological factors (e.g. climate change, soil and available moisture) and 

effects of ecosystems management practices (e.g. vegetation resource burning and fire 

regimes, herbivory, desertification, and distribution of available watery sites). Several 

studies have revealed that the dynamics of woody cover density and distribution could 

specifically have serious implications on the savanna vegetation structure and floristic 

composition (Hudak & Wessman 2001; Hudak et al. 2003; Hudak & Brockett 2004; 

Hudak et al. 2004). 
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Given that savanna vegetation dynamics are inherently unstable, they variably, respond 

spatially to unpredictable disturbances (Hudak et al. 2004). For example, in a study on the 

assessment of habitat heterogeneity in a savanna environment using variance measures 

derived from remotely sensed images, Murwira and Skidmore (2006) found out that woody 

vegetation cover patterns in an African savanna ecosystem are spatially distributed and 

highly heterogeneous. In addition, several studies have indicated that spatial variation of 

vegetation cover in the savanna ecosystem is an important indicator of species habitat 

selection (Mcnaughton & Banyikwa 1995; Mutanga et al. 2004; Mutanga & Rugege 2006). 

The vegetation resource (woody cover) which is an important biophysical variable related 

to the structure of savannas is an important determinant factor of the savanna status 

(Gareth et al. 2007). In this regard, investigations into the spatial aspects of woody 

vegetation component of savannas have been considered as an important step towards 

improved understanding of the patterns and distributions of species habitat requirement 

since vegetation resources influence the density and diversity of wildlife species, and their 

habitat preference (Mcnaughton & Banyikwa 1995; Mutanga et al. 2004; Mutanga & 

Rugege 2006). 

 

In a series of articles, it is increasingly recognized that assessment of variations in 

vegetation productivity and its spatial distributions is an important technique for 

understanding the factors (e.g. woody overstorey effects on soil carbon and nitrogen pools) 

driving local to global environmental change (Turner II et al. 1994; Hudak et al. 2003). In 

southern African, several studies have emphasized the importance of spatial estimation of 

vegetation resources in savanna environments and assessment of implications for global 

landcover change (Hudak & Wessman 1998; Yang & Prince 2000; Hudak & Brockett 

2004; Murwira & Skidmore 2006). For example, Hudak & Wessman, (2001) noted that 

transformations in savannas, such as woody vegetation encroachment phenomenon have 

important habitat implications relating to significant shifts in the savanna ecosystem 

function. In addition, the spatial dynamics of savanna vegetation resources, particularly 

woody tree cover (reported to have negative relationship with herbaceous biomass 

(Wessels et al. 2006)influences the density and distribution of wildlife (Curran & Foody 

1994; Mcnaughton & Banyikwa 1995; Mutanga & Rugege 2006) as well as influencing the 

occurrence and intensity of fire in savanna ecosystems (Hudak & Brockett 2004). 
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Current concerns about local and global environmental changes have lead to an increasing 

demand for spatial data on vegetation, particularly, for biodiversity planning and 

conservation. Satellite remote sensing is an efficient means to obtain such data in a timely, 

consistent, and economical manner. Remote sensing technologies, with its synoptic views 

and relatively frequent repeat times, have proved to be a key source of data for studying 

vegetation resources in savannas. Remote sensing methods have since provided important 

details of savanna composition and structure, as well as optimized field surveys targeted 

for local to regional scale vegetation estimation and mapping. However, remotely sensed 

vegetation data are not error-free, as they usually rely on regression of spectral responses 

of vegetation signal, often without accounting for interdependence factors (spatial 

autocorrelation and cross correlation) between ground data and the measured vegetation 

radiations. In this regard, studies of savanna ecology and vegetation assessment have 

investigated the applicability of integrated remote sensing and geostatistical techniques for 

the spatial estimation of vegetation resources (Mutanga & Rugege 2006). The combination 

of these techniques can enhance our understanding of the spatial dynamics of vegetation 

density and spatial distributions in the highly heterogeneous savanna environments, as well 

as allow for maximum use of remotely sensed vegetation data. 

 

The following sections therefore introduce savanna vegetation studies and the applications 

of remote sensing to this regard. The main focus however, is on the utility of satellite 

remote sensing techniques for the spatial estimation of woody vegetation cover. 

 

 

 

2.2 Savanna Woody Cover Estimation and Remote Sensing 

 

Increasingly savanna environments transformed by a diverse range of land management 

systems and naturally occurring disturbances is cause of potential concern for ecosystem 

managers and researchers alike. Savanna landscapes set aside for biodiversity conservation 

(e.g. vegetation resources in PAs) play an important role in their capacity to function as 

carbon sinks for the reduction of global atmospheric carbon emission (Hudak et al. 2003), 

and their influences on the density, diversity and distribution of wildlife species 

(Mcnaughton & Banyikwa 1995; Mutanga & Rugege 2006). Woody vegetation cover is 
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specifically an important component and a variable relating to the savanna ecosystem 

composition(Hudak 1999). Hence, the ability to quantify woody vegetation structural 

parameters can provide a measure of the underlying variation in savanna areas and enhance 

our understanding of the factors driving variability in the savanna environment. Remotely 

sensed vegetation data is an efficient means to obtain information on savannas. 

 

Remote sensing has been utilised as a primary source of spatial data to characterize 

patterned woody vegetation density and canopy structure in the southern African savanna 

ecosystems (Hudak & Wessman 1998; Yang & Prince 2000; Hudak & Wessman 2001; 

Wessels et al. 2006). Remotely sensed data has also been used to develop updated 

vegetation maps and establish statistics about percentage woody canopy cover in semiarid 

savanna environment (Stuart et al. 2006; Wessels et al. 2006). In those studies, the 

researchers employed and tested different techniques to assess remote sensing data based 

on spectral measures or image texture analysis of both aerial photographs and satellite 

images, and assess how the remotely sensed vegetation variables relate with woody 

vegetation structure parameters. The various remote sensing techniques applied to woody 

cover assessment produced varying significant levels of correlation with the woody 

vegetation cover and their estimation accuracy (e.g. Hudak & Wessman, 1998; Yang & 

Prince, 2000; Hudak & Wessman, 2001; Wessels et al, 2006). 

 

Although several image analysis techniques have been evaluated for vegetation remote 

sensing, one of the main challenges of using remotely sensed data to estimate woody 

vegetation cover in savanna ecosystems has been the identification of the best remote 

sensing derived vegetation variables that significantly relates with the ground surveyed 

vegetation data. In addition, unsatisfactory levels of estimation error arising from the use 

of traditional correlation or ordinary regression models that ignores the spatial 

autocorrelation factor in both field and remote sensing data (Atkinson et al. 1994; Mutanga 

& Rugege 2006)limits the full potential of remote sensing for vegetation resources 

estimation. 

 

 In this regard, the application of remote sensing techniques that explores the maximum 

use of information contained in remotely sensed vegetation coverage is crucial for the 

accurate delineation of the patches of vegetation cover (woody cover, a continuous 
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variable) from other scene elements. The utility of spatial information such as auto and 

cross correlation factors, using applications of spatial statistics such as kriging interpolators 

which reduces interpolation error (Atkinson et al. 1994; Mutanga & Rugege 2006)can be 

beneficial for the estimation of woody vegetation cover. It is important to evaluate the 

utility of spatial statistical approaches in combination with remote sensing because 

fundamentally vegetation and its spectral measure (radiation) are spatially correlated, both 

to themselves (auto correlated) and to one another (cross correlated) (Atkinson et al. 1992; 

Acharya 1999; Mutanga 2000; Mutanga & Rugege 2006). In this respect, the spatial 

dependence between vegetation and its radiation obtained from remote sensing (e.g. 

spectral vegetation indices or image texture measures) can enhance the utility of using 

remote sensing techniques to extract woody canopy parameters. 

 

Given that it is imperative for studies of savanna remote sensing to identify critical 

variables for modeling vegetation resources, the following two sections introduce satellite 

remotely derived vegetation data for the estimation of woody vegetation cover. 

 

 

 

2.3 Vegetation indices and Remote Sensing of Woody vegetation Cover 

 

Analysis of vegetation resources from spectral measurements is a remote sensing technique 

which is aimed at reducing spectral digital number (often denoted as DN data) to a single 

number which is related to physical characteristics of vegetation (e.g. leaf area, biomass, 

productivity, photosynthetic activity, and percent cover) (Baret & Guyot 1991; Gong et al. 

2003; Mutanga & Rugege 2006; Wessels et al. 2006). The purpose of spectral evaluation 

of remotely sensed vegetation parameters is to minimize the effects of internal factors such 

as canopy geometry. In addition, vegetation spectral analysis often involves the 

combination of information from two or more spectral channels to retrieve vegetation 

signal, while minimizing external factors such as; soil, atmosphere, and solar irradiance 

effects on the spectral data (Huete & Warrick 1990; Baret & Guyot 1991; Jackson & Huete 

1991; Gong et al. 1992; Li et al. 1993). 
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The Red (R) and Near Infrared (NIR) wavebands are the common bands used to compute 

various vegetation indices for acquiring precise estimation of vegetation abundance. There 

are several spectral vegetation indices relating to the abundance of vegetation. The spectral 

properties of vegetation resources, such as woody cover parameters are highly responsive 

to electromagnetic energy entering the tree canopy. Depending on the spectral properties, 

vegetation material can reflect or absorb light in precise regions of the electromagnetic 

spectrum. For example plant pigments such as chlorophyll will strongly absorb visible 

light between 400 to 700nm of the electromagnetic spectrum, and water content in plant 

leaves will absorb electromagnetic energy at longer wavelength regions of about 1400nm. 

This absorption and reflection characteristics of vegetation resources in specific 

wavelengths provides very useful information for the analysis of remotely sensed 

vegetation resources. 

 

In semiarid savanna areas, the spectral behaviour of woody vegetation contrasts with that 

of other land surfaces and atmospheric features. This is an important factor which can be 

used to spectrally detect vegetation and the quantification of its abundance in the savanna 

environments. In this respect, a number of savanna studies have considered using satellite 

imagery data for the estimation and monitoring of woody vegetation cover pattern in 

semiarid savannas. Based on plant spectral properties, the following vegetation indices that 

account for the strong reflectance contrast between NIR and the red spectral channels of 

SPOT5 multispectral image are discussed for this study. 

 

 

 

2.4 Description of SPOT5 derived Vegetation Indices 

 

The ratio of NIR and red bands is the simplest vegetation index. As a Simple mathematical 

fraction, this index name is Simple Ratio (SR). SR indicates the amount of vegetation 

presence in an image by calculating the ratio of spectral values from the two spectral 

channels. In the output SR image, high ratios about 20 or more indicate dense vegetation 

and low ratios close to value of 1 indicate soil background or water body (Jackson & Huete 

1991). One characteristic of SR worth consideration when it is being applied for the 

analysis of vegetation at landscape level is that it doesn’t give information that is related 
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with landscape topography. This severely limits application of SR when quantitative 

measure of vegetation biomass is required. However, because SR primarily shows spectral 

information relating to the physical properties of vegetation it is useful for spectral class 

identification of vegetation resources (Huete & Warrick 1990). Closely related to the RS is 

the square root of Simple Ratio (sqrt-SR), which is developed to provid higher 

coefficient of determination for the presence of green vegetation. 

 

Difference Vegetation Index (DVI) is another basic vegetation index, like the SR, it is 

also sensitive to the amount of the vegetation. It measures the differences between the NIR 

– R bands. DVI has the capability to distinguish soil and vegetation in non-shady scenes. 

In this regard, DVI can be limiting where noises such as topography, atmosphere or 

shadows affect the reflected vegetation signals. 

 

The most common vegetation index, which is often applied to a wide range of vegetation 

types and in diverse environments, including savanna areas is the Normalized Difference 

Vegetation Index (NDVI). The NDVI explores the fact that vegetation is highly reflective 

in the NIR and strongly absorbing in the visible R due to chlorophyll absorption. The 

output NDVI image measure changes between -1 and 1 which is measure of vegetation 

property. For example, empirical results and theoretical explanation show that, if the 

resultant NDVI image value is 0.1 or less, it indicates an area of bare soils or rocks; if it is 

between 0.2 and 0.3, it indicates an area of shrubs or grasslands, if it is about 0.6 or higher 

it indicates an area of trees and woody vegetation (Tucker 1979). 

 

Transformed Normalized Difference Vegetation Index (TNDVI) is the square root of 

the NDVI + 0.5. It has a higher coefficient of determination for vegetation than NDVI and 

this is the difference between the two closely related indices. The resultant formula of 

TNDVI ensures positive values and the variances of the ratio are proportional to mean 

values (Azzali & Menenti 2000). TNDVI generally indicates the amount of green biomass 

that is in a pixel. Azzali & Menenti, (2000) applied TNDVI in semiarid savanna 

environment by correlating the TNDVI measures with savanna woody canopy structure 

parameters and found significant correlation between percentage cover and TNDVI values. 
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As stated in the introductory section of this chapter, rainfall is highly seasonal and 

precipitation is low, as well as, temperatures can rise extremely high in arid and semiarid 

savannas. These climatic conditions can influence soil moisture content, as well as plant 

moisture content. The combination of plant water content deficient and other 

environmental variables can cause stress in the savanna vegetation status and composition. 

The fundamental principle is that both biophysical and biochemical aspects of plant 

functioning is influenced by moisture deficiency (Niemann & Visintini 2005). For remote 

sensing, both biophysical and biochemical component of plants is important since these 

relate to plant reflectance properties. For example, dry vegetation under water stress shows 

increased  reflectance throughout the visible and middle infrared (1300 to 2500nm) 

(Aldakheel & Danson 1997), and a decreased reflectance in the NIR portion of the 

electromagnetic spectrum, due to reduced absorption in the chlorophyll active red edge 

band (Carter & Knapp 2001). Analysis of remotely sensed image data in the spectral 

domain usually takes advantage of contrast in spectral responses to enhanced vegetation 

presence and abundance. However, spectral analysis do not account for spatial 

arrangement of objects in an image. There is spatial dependence contained in vegetation 

and its radiation (Atkinson et al. 1992; Mutanga & Rugege 2006). In order to upscale or 

improve upon spectral analysis and develop alternatives that integrates spatial information, 

image (King 2000) texture analysis has been one of the techniques applied (King 2000; 

Dye et al. 2008). Transformation and analysis of remotely sensed imagery using texture 

measures is tested in this study. Spectral mixture analysis (SMA) (Small 2003; Ellis et al. 

2006) is one of the vegetation transformation techniques that could be assessed and used 

but it was avoided in this study because of the complex structural nature of savanna 

vegetation.  

 

 

 

2.5 Remote sensing of Savanna Vegetation and Image Texture analysis 

 

Remote sensing investigations on tree canopy cover often follow the spectral or the spatial 

domains which are the two main approaches applied in vegetation studies (Jupp & Walker 

1997). The first approach exploits the relationship between the vegetation structural and 

floristic parameters and the recorded spectral response. The second approach relies on the 
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spatial variations in pixel intensities, which is defined as tonal variability in the spectral 

values of an image. In the later approach, the pixel size and the signal of its neighbouring 

pixels become a key factor for the successful retrieval of tonal information. In this respect, 

the fundamental concept is that remote sensing imagery are composed of two 

interdependent characteristics: the spectral information which is often denoted as the ‘tone’ 

and the image ‘texture’, also referred to as the ‘tonal variability’ in a scene (Harralick et al. 

1973). The image texture characteristic is further defined as a function of the spatial 

variation in pixel intensities contained in an image, which is often signified as gray values. 

In addition, image texture response describes the fineness, coarseness, contrast, regularity, 

directionality and periodicity in an image (Harralick et al. 1973). For remote sensing 

investigations, the image texture response therefore contains important information about 

the spatial and structural arrangement of the remotely sensed objects (Tso & Mather 2001). 

 

Texture information contained in remote sensing data has been very useful for a wide 

range of remote sensing applications. For example, to assess global landcover, image 

texture analysis has played important role in the classification of vegetation communities, 

which have been remotely sensed (Lark 1996; Miranda et al. 1998; Carter & Knapp 2001). 

Texture information extracted from high-resolution multispectral images has been 

intensively studied and considered useful for the discrimination of different landcover 

classes such as water bodies, urban areas and agricultural fields (Atkinson & Curran 1997; 

Chica-Olmo & Abarca-Hernândez 2000). However, the applications of image texture 

measures for savanna woody vegetation study is relatively not well established and studied 

by a handful of investigators who tested image texture information specifically in savanna 

areas to characterise woody vegetation cover. One outstanding application of texture as an 

efficient remote sensing variable is (Hudak & Wessman 1998, 2001) who considered 

image texture measures from the analysis of gray level values to characterize woody plant 

encroachment in a South African woody savanna environment. 

 

Although, spectral analysis of image data can provide important information for savanna 

woodland assessment, using spectral information exclusively to assess vegetation pattern 

in sparsely heterogeneous savanna ecosystems can be limiting. This is because analysis of 

available satellite remote sensors with varying spectral resolutions (e.g. 10m spatial 

resolution, SPOT5, IKONOS, Quickbird, Orbview imagery) may not provide enough 
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spectral variability, which can separate close reflectance response of scene elements. For 

example, per-pixel classification of the mixture of woody trees, shrubs, bushes, grass 

stratum, and other scene elements that characterise other landscapes often result in high 

probability of misclassification and lack of spatial consistency (Soille 1996; Woodcock et 

al. 2001; Wilson & Sader 2002; Maggi et al. 2007). To avoid these limitations, it is 

important therefore, to consider spatial information inherently contained in the input image 

data. Methodologies that emphasize the use of spatial information include image 

segmentation techniques such as texture analysis of remotely sensed images. In this regard, 

image texture measures can help quantify the tonal variability in the scene, where spectral 

measure alone cannot quantify variability in the image data (Hudak & Wessman 1998). 

 

Texture analysis is used to retrieve spatial information contained in the scene that is related 

to the different object types in the scene for evaluation. For semiarid savanna studies, 

researchers have demonstrated that, structural and spectral information can lead to 

significant improvement in woody cover assessment. The output texture image generated 

can be correlated directly or used as an additional variable together with other multi-

spectral raw or transformation landcover classification (Puissant et al. 2005). In this 

regard, the role remote sensing plays in dry land savanna environments can be enhanced 

when texture information is incorporated in the analysis.  However, Hudak & Wessman, 

(1998) assessed the effect of spatial resolution of remotely sensed imagery and found out 

that, the accuracy at which texture measures can be use to assess woody cover depends in 

the image spatial resolution, as well as depending, on the objectives of the study. In the 

study, the authors found that the best spatial resolution suitable to assess woody cover in 

semiarid savanna environments is the remote sensors with 2m-20m spatial resolutions. In 

this study, woody cover estimation using texture information is assessed and integrated 

with alternative techniques such geostatistical methods of spatial interpolation. 
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2.6 Geostatistics and Remote Sensing of Savanna woody vegetation 

 

Geostatistics is the term applied to a group of spatial statistical techniques which describes 

the correlation of spatial data by exploration, modeling and surface generation of local 

variables and their estimation at unsampled locations(Curran & Atkinson 1998). 

Geostatistical techniques are based on the Regionalized Variable Theory (Matheron 1971). 

Central to geostatistics is the modeled variogram which measures the spatial 

autocorrelation in the sampled data, arising from the underlying spatial structure in the 

variable (Curran & Atkinson 1998).  

 

Until the past few decades, the synergy between geostatistics and remote sensing went un-

utilized for landscape studies such as the assessment of biophysical variables (e.g. woody 

vegetation resources). Over the past few decades, geostatistical techniques increasingly aid 

researchers to explore and quantify the spatial information in remotely sensed data. In 

addition, geostatistical techniques are being used to design optimum sampling schemes for 

field and remotely sensed image data, and improve the accuracy with which image data in 

particular can be used to estimate biophysical variables (Hudak & Wessman 1998; Wallace 

et al. 2000). 

 

Because in geostatistics, spatial autocorrelation is utilized to estimate optimally local 

values from data sampled elsewhere (Curran & Atkinson 1998) which is based on the 

techniques of regionalized variable theory (Matheron 1971), the extraction of information 

from field data and remotely sensed woody vegetated surfaces would greatly enhance the 

accuracy with which patterned savanna vegetation can be estimated. In geostatistics, the 

utility of spatial structure in image data becomes visible because the scenes contain 

discrete patches that are identifiable based on their spectral/spatial properties that are more 

homogeneous within the natural grouping of the vegetation composition than between 

them (Curran & Atkinson 1998). This spectral/spatial property can be measured using a 

series of geostatistical tools such as kriging and cokriging, which is increasingly applied in 

remote sensing of savanna vegetation studies (Atkinson et al. 1996; Hudak & Wessman 

1998; Mutanga & Rugege 2006). 
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2.7 Geostatistical measures of spatial variation 

 

The management and conservation oriented research in semiarid savanna woodland need 

to take advantage of the underlining spatial factor of vegetation density and distribution 

when making quantitative estimates of the savanna woody cover. It is important to 

consider the spatial aspects because in semiarid savanna environments, assessment of 

sample data from the patches of vegetation communities is spatially dependent on the 

natural grouping of the woody species. 

 

As semiarid savanna environment are dynamic and inherently unstable (Hudak & 

Wessman 2001), the vegetation cover often exhibits poor correlation with the spectral 

characteristics of remotely sensed imagery, making vegetation cover estimation by simple 

statistical analysis result in high estimation error. Fortunately, savanna landscapes exhibits 

distinctly and measurable spatial variations in the vegetation patterning even where 

differences in the spectral values are unpredictable (Hudak & Wessman 1998). In this 

respect, geostatistical techniques such as ordinary kriging can spatially provide quantitative 

measures in estimating woody vegetation cover based on the regionalized variable theory. 

Regionalized variable theory share characteristics of both deterministic and absolute 

randomly sampled data, which is a critical element in the distribution of woody species in 

savanna areas. In this regard, kriging is considered as the most suitable interpolation 

technique for woody cover estimation and is a useful tool for mapping quantitative trends 

in woody vegetation cover density and distribution (Mutanga & Rugege 2006). 

 

The variogram which is used to measure the strength of statistical correlation in both field 

and remote sensing data as a function of distance has been tested by kriging unsampled 

locations with data sampled from elsewhere. The variogram has three parameters, namely, 

nugget, sill and range. The nugget describes the intercept at some positive value on the 

variogram. For remotely sensed images, the nugget generally provides a reliable estimate 

of the measurement error (Atkinson 1993); sill is the value where  the variogram levels out 

to a value equal to the variance of the dataset. The presence and magnitude of the sill are 

both important parameters. The lack of a sill in a variogram could be due to: (1) the 

existence of a trend in the data, or (2) very small spatial resolution compared to the scale of 

pattern in the data (Jupp et al., 1989). If it exists, the sill could relate to the proportion of 
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the area covered by objects which is determined by their density (Woodcock et al. 1988a); 

and range is the lag or distance value (also referred to as range of influence) at which the 

variogram reaches the sill. This parameter is highly related to the size of objects in the 

sampled data (Woodcock et al. 1988a). For vegetation studies, the range relates to the size 

or density of the sampled trees, or for remotely sensed imagery, the range has been found 

to be highly related to the size of objects is the scene (Woodcock et al. 1988b; Hudak & 

Wessman 1998). 

 

Essentially, kriging is method of local weighted averaging technique where the weights 

originate from the variogram parameters (Curran 1988; Curran & Atkinson 1998). The 

kriging estimates are therefore based on the spatial variation of the property (in this study; 

woody vegetation cover) under investigation. Several studies have demonstrated that 

Kriging is more robust and is the most reliable two-dimensional spatial estimator (Laslett 

et al. 1987; Laslett 1994) useful for multi-staged sampling designs that are intended to give 

reliable measure of the variogram to estimate woody cover. 

Co-kriging is the logical extension of kriging in situations where two or more variables are 

spatially interdependent and the primary or dependent variable is undersampled (Curran & 

Atkinson 1998).  Using ordinary co-kriging, the estimate is a weighted average of the 

available data with weights chosen so that the estimate is unbiased (Deutsch & Journel 

1992). Cokring like the ordinary kriging has minimum variance, and in practice, utilizes 

the fundamental principle that near observations are likely similar, hence, carries more 

weight to have effect on the interpolation surfaces (Curran & Atkinson 1998).  This 

principle explores the covariance and cross-variation to set sum of the weights applied to 

the primary variable (one of immediate interest) to one, and the sum of the weights applied 

to secondary (in this study, the SPOT imagery serving as independent variable) is set to 

zero (Deutsch & Journel 1992). The second condition tends to limit severely the influence 

of the secondary variable. For example, when cokriging is applied to estimate woody cover 

it is important that, since woody cover, covariance functions are required when image 

variables are considered, reduction in the variance will require additional modeling effort. 

This is because woody cover parameters are relatively under-sampled compared to the 

image, which is more sampled (Isaaks & Srivastava 1989). In addition, the linear model of 

co-regionalization provides a framework for modeling the auto- and cross-variogram of 

two or more variables so that the variance of any possible linear combination of these 
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variables is always positive (Journel & Huijbregts 1978). In this regard, each variable is 

characterized by auto-variogram and each pair of variables by their own sample cross-

variogram. 

 

 

2.8 Lessons learnt from Literature Review 

 

This section concludes on the main issues in the literature as regards the utility of remote 

sensing and geostatistics for vegetations studies. The section further highlights on what has 

been done and outlines questions that need to be answered. 

 

It was evident in the literature that as demand for spatial information increases, it is crucial 

that spatial data acquisition must be quick, timely and economical. Remote sensing of 

vegetation resources was identified as an effective method of obtaining spatial information 

which is useful for species habitat monitoring and biodiversity assessment. 

 

Spectral vegetation or image texture indices correlates with vegetation structural traits and 

are therefore remarkably used to characterize vegetation presence and abundance. 

However, each of these indices has its own merits and limitations. 

 

It was therefore emphasized in the literature that an ideal vegetation index should be 

relatively insensitive to noise caused by canopy background and atmospheric effects while 

spectrally sensitive to the presence and abundance of vegetation resources. The literature 

also recommended that an ideal vegetation index useful for spatial estimation should be the 

one that is highly correlated to vegetation structural parameters. This study will investigate 

the image spectral or texture data that best correlates with specific woody structural 

parameter. 

 

Although several authors (e.g. Mutanga & Rugege, 2006) have shown that vegetation and 

its radiation are spatially related and the spatial characteristics of vegetation traits can be 

estimated from its spectral reflectance properties, regression techniques (e.g., Gong et al., 

2003; Wessels et al., 2006) have been the typical method used to evaluate the relationship 

between spectral data and woody vegetation parameters for the spatial estimation of 
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vegetation cover with limited results. The extent to which the integration of geostatistical 

techniques and spectral data can be use in vegetation assessment especially in the savannas 

have not been widely studied, yet they contain information that captures spatial 

autocorrelation which is useful to improve the accuracy of spatial estimation of vegetation 

resources. In this respect, this study will investigate the utility of geostatistical techniques 

such as cokriging to estimate the density and spatial distribution of woody vegetation 

cover. 

 

Cokriging with sparsely sample field observations require that remotely sensed image data 

should be optimally sampled to ensure computational efficiency. Optimal sampling for 

image analysis has been usually done by the rule of a thumb (Mutanga & Rugege 2006) 

but there can be a statistical approach that can be developed to determine the optimal 

sampling scheme for image analysis. This study aims to determine the optimal image 

sampling lag distance using the application of experimental semivariogram parameters in 

this regard. 

 

The selection of critical remote sensing variables to input in cokriging has been a subject 

of major concern in the literature. To account for the difficulties associated with selecting 

optimal remotely sensed data, this study will compare the performance of two set of 

imagery (multispectral and panmerged data) as well as various types of image 

transformation techniques. 
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Chapter 3. Materials and Methods 

 

3.1 Introduction 

 

Materials and methods consist in brief terms: pre-field and post-field processing of remote 

sensing data as well as the organization of ground survey mission for georeferenced data 

collection. In the pre-fieldwork stage, pre-processing of the SPOT imagery for further 

analysis was done. After this, the first step in the methods was to calculate spectral 

vegetation and texture indices. The second step was to carry out fieldwork in order to 

collect validation (i.e. training and test) data and all other information that could help 

improve our understanding of the savanna landscape (mopane woodland) under 

investigation. Figure 3.1 displays the overall outline of the methods, which included: 

fieldwork design, data collection and data compilation, as well as data analysis. The third 

step was to identify critical SPOT variables for geostatistical analysis. This was done by 

establishing statistical relationships between field (woody cover and density variables) and 

the remotely sensed datasets. The fourth step was to estimate woody density and cover 

using geostatistical techniques. At this stage, cokriging was considered as the most suitable 

technique (Mutanga & Rugege 2006), which could combine the critical variables (woody 

parameter and SPOT derived vegetation variable) identified in the previous step to predict 

or estimate woody cover. The final step (five) was to perform an accuracy assessment of 

the cokriging technique and compare the results to those obtained from ordinary kriging, as 

well as, results obtained from linear stepwise multiple regression method. 
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Figure 3.1: Field Design and Data Collection 

 

 

 

 

3.2 Software and Field Materials 

 

The image processing and GIS operations, as well as variogram modelling were performed 

using ERDAS imagine software version (v) 9.1, ArcGIS v9.2 respect5ively. Additional 

data analysis such as calculation of image texture measures and statistical tests were done 

using RSI ENVI v4.3. and Statistica 7 (StatSoft. Ltd. London. Inc) respectively. The 

materials and equipments used for this research are listed in table 3.1. 
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Table 3.1: List of materials 

 

No. Type of material 

1.  Altimeter 

2.  Diameter tape 

3.  Calliper  

4.  Meter tapes (30m and 50m lengths) 

5.  Garmin 76CL GPS receiver  

6.  Digital Photo camera 

7.  Topographic maps (1:25 000) 

8.  Field guide ( plant species identification handbook)   

9.  Field bag   

10.  Plant specimen 

11.  

 

GIS shapefiles (‘ecozone’ maps of vegetation 

communities and study area boundary coverage) 

12.  

 

 

Four scenes of SPOT5 MS and SPOT panmerged 

satellite images (10m and 2.5m resolution 

respectively) of the KNP study area for 2005   

 

 

 

3.3 Methods 

 

Prior to starting the methods, few concepts have to be explained. The method explains and 

outlines the theoretical considerations, which are integrated in the techniques used for this 

study. For instance, issues relating to the description of savanna woodlands which was 

considered as a continuous landscape, that could be confused as a discrete savanna feature 

in their surroundings. An understanding of the nature of savanna landscape under 

investigation is central in the selection of appropriate techniques to apply for data 

collection and analysis. In this study, knowledge about such issues and how to treat them is 

mainly gathered from previous studies. For example, Hudak & Wessman (1998) 

characterized woody plant encroachment in a semiarid African savanna using texture 

analysis of high resolution imagery to map woody plant densities and monitor woody plant 
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encroachment across savanna landscapes. In the study, dominant tree species in savanna 

woodland environments were considered as a continuous variable. The authors however, 

note that spatial heterogeneity introduced through the mixture of herbaceous and woody 

plant challenges quantitative assessments of woody plant densities using remote sensing, 

particularly, analysis in the spectral domain for vegetation cover assessment. 

 

Several studies have indicated that significant changes in woody vegetation cover or 

density occur in decadal scales (Hudak & Wessman 1998; Yang & Prince 2000; Wessels et 

al. 2006). Given that changes in woody plant densities and cover distributions occur in 

decadal scales, field data which was collected in October, 2007 for this study was used to 

process remotely sensed woody vegetation variables derived from SPOT5 image data , 

acquired for October, 2005 hot but wet season. The fundamental principle is that 

vegetation and its radiation at any given time or season is correlated. Therefore it is 

important that time of field data collection must coincide with the season images were 

acquired with minimum time lapses. 

 

 

 

3.3.1 Pre-Processing of Imagery and Auxiliary Data  

 

Remote sensing and GIS applications for woodland savanna studies require that a pre-

fieldwork should be carried out. In the pre-fieldwork stage of this study, GIS operations on 

auxiliary datasets were carried out. This involved analysis of shapefiles consisting of: 

boundaries, established Kruger National Park’s (KNP) Veld Condition Assessment sites 

(VCAs), land classification groups (referred to as “Ecozones”) and vegetation maps of the 

KNP (Trollope & Potgieter 1986; Mutanga & Rugege 2006; Wessels et al. 2006). In order 

to ensure best accuracy and circumvent any spatial or geometric distortions in the GIS 

databases, all shapefiles and imagery were geo-registered and where necessary re-projected 

to the original SPOT5 imagery projection. The initial GIS processing required definition of 

the study area, which involved selection of Mopane, dominated woodland area that 

matches the SPOT5 scenes. The next task was to use Hawths Analysis Tools for ArcGIS 

v9.2 to select well distributed and representative number of VCA points within the defined 

study area. 
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In the pre-fieldwork stage, all available information about the study area was collected and 

processed before commencing the actual field work. Assessment of appropriate sampling 

design (e.g. optimum sample size, plot size and the location of the sample plots) before 

commencing field-work gives a researcher great advantage to address any foreseen 

sampling difficulties as well as helps to establish an unbiased fieldwork sampling criteria. 

In this regard, availability of GIS spatial analytical capabilities has provided crucial tools, 

necessary for planning and designing of the fieldwork, which could have been otherwise 

difficult or inefficient 

 

 

 
Figure 3.2: Cluster of 4 plots at VCA sites: For each sample plot, all trees with DAH > 2.5 

cm are measured and counted, tree crown diameter measure in north- south, east-west 

directions as well as percentage tree canopy cover estimated for each sample plot 
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3.3.2 Sampling Design  

 

In this study, a square plot of 30×30 meters (m) was used. All woody species completely 

inside the plot were identified and structurally assessed. Since a square plot has greater 

perimeter as compared with circular plots, the chances that a woody plant which is of 

primary interest fall completely in the plot is likely. Further, the square plot coincides with 

the square shaped remotely sensed image pixels, which enhances computational efficiency. 

In addition, the size of the sampling plots conform to the general guideline that, the spatial 

scale of object on the ground must be at least ×2 the spatial resolution of the remote 

sensing sensor (in this study SPOT5 MS and SPOT PM images are 10m and 2.5m 

resolution respectively), for spatial delineation of the woody plant traits to be reliable 

(Cowen et al. 1999). Previous experiments also recommended that plot size ranging from 

20×20m up to 50×50m can be used for woody vegetation studies in savannas (Demisse 

2006). The 30×30m (figure 3.2) plot was considered large enough to represent the 

surrounding woody plant properties, as well as optimum to retrieve spatial information 

contained in the respective, 2.5m panmerged and 10m multispectral spatial resolution 

images. The overall distribution of the sample plots is presented in figure 3.3. The sample 

plot distribution displayed in figure 3.3 depicts the distribution if sampled KNP’s VCAs 

that fall completely within the extent of the study area. The backdrop in figure 3.3 shows 

the SPOT coverage data, which cover the entire study area. Because the SPOT image 

coverage is over the entire study area, the SPOT data selected for  cokriging was sampled 

at a predetermined lag size (3000m) using a semivariogram model parameter. This was 

done to aid computational efficiency for cokriging analysis. Detailed explanation on this is 

presented in the geostatistical analysis section of this chapter. 
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Figure 3.3: Distribution of sample locations in the study area. The pink squares display the 

cluster of field plots and the yellowish squares show the lag space (3000m) for image 

sample points. The backdrop is the SPOT multispectral image coverage of the study area. 

 

 

 

3.3.3 Sample Plot Survey and Structural Data Collection 

 

Georeferenced field data was collected by sampling at selected, already established VCAs. 

This approach was followed to ensure spatial consistency in vegetation assessment in the 

KNP. However, because the distance between VCA sites are very large (figure 3.3) and do 

not represent the range of spatial influence in the surrounding woody vegetation 

community, spatial interpolation of the KNP’s VCA data does not provide reliable spatial 

vegetation maps (Wessels et al. 2006).  Given that the main focus of this study was to 

predict estimate woody density and woody cover spatial distribution using an interpolation 

technique, sample plots were clustered around each selected VCAs sites. The VCA points 

were selected using the Hawths Analysis Tools for ArcGIS9 v9.2 and geo-registered in 

Decimal Degrees (DD) format. The DD data was saved as MS Excel comma delimited 

(CSV) and then imported into the GPS. The GPS together with field maps which were 

created using the VCA and road maps were then used to navigate to VCA sample points. 
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After a sample point has been successfully located and marked, a total of 4 sample plots at 

a distance of 250m (north, south, east and west directions) were clustered around each 

VCA site. Figure 3.2 illustrates the sampling plot layout in the four directions. 

 

 

Table 3.2: List of field variables sampled 

 

No. Types of Woody vegetation structural traits 

1.  Woody stem Diameter(m), measured at Ankle Height (DAH) 

2.  Basal area of individual trees in a plot (calculated based on DAH) 

3.  Height of  individual trees per plot  

4.  Number of woody tree stems (density per sample plot)  

5.  number of woody shrubs (density per sample plot) 

6.  Crown diameter of individual woody trees per plot 

7.  Percentage woody tree canopy cover 

 

 

The criterion for selecting woody species was to classify the woody plants as trees or 

shrubs. Trees in this study included all woody species with Diameter at Ankle Height 

(DAH) (10cm-15cm from the ground) greater than 2.5cm (Mueller-Dombois & Ellenberg 

1974; Demisse 2006). Woody species attaining DAH less than 2.5cm were recorded as 

woody shrubs. Data sheets (see Appendix 1), which had been prepared already, were used 

to record woody trees structural parameters and total number of shrubs in each plot. 

Identification of woody species was done using field guides. As stated in the introduction 

chapter of this repot, the main woody variables considered for spatial estimation are 

density and cove (percentage canopy cover). 

 

However, because woody density and cover variables relates to other vegetation 

parameters such as woody stem diameter, plant basal area, tree height, woody plant crown 

diameter or under storey shrub layer density, in this study these variables were also 

measured. This was done to check the performance of these variables as these variables 

could be of important to the ecologist. Table 3.2 displays the sample plot information 

consisting seven woody cover parameters which were measured in the field. The DAH for 
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trees was measured using a standard caliper, as well as a 5m diameter tape. Percentage 

woody canopy cover per plot was assessed by estimating the total area covered by all trees 

in the plot. Crown diameter of trees was determined by measuring individual tree canopy 

in the north-south and east-west directions. 

 

 

 

3.3.4  Data Processing and Analysis 

 

3.3.4.1 Field Data processing 

 

Field variables (table 3.2) measured at each sample plots were processed according to the 

study’s objectives. Because the intent in this study was to evaluate woody structural 

parameters between plots and not within, the field variables measured were pooled for each 

plot. Woody stem diameter (variable1) measured at ankle height for all trees were averaged 

for each plot. Basal area of individual trees in a plot (based on DAH) was calculated using 

equation 1: 

π∗







=

2

2

1
dBa

 (1)  

 

Where Ba is basal area and d is diameter of individual plants measure at ankle height 

(DAH). 

 

Variables 3-5 (Height of individual trees per plot, tree density per plot and shrub density 

per plot respectively) required no further processing, so were pooled by totalling the 

numbers for each plot (Mueller-Dombois & Ellenberg 1974; Hudak & Wessman 1998; 

Demisse 2006). Crown diameter of individual woody trees was pooled by calculating the 

average canopy diameter per plot. Percentage woody tree canopy cover was estimated 

using the plotless Bitterlich technique (Mueller-Dombois & Ellenberg 1974; Hudak & 

Wessman 1998) and the results averaged for each plot covering 900m
2
. 
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The field data for all selected 25 VCA sites which consist of 4 clusters of sample plots was 

tallied to 100 samples, covering the study area. This approach of clustering helps to reduce 

the large distances (3km-12km) between VCA sites, which does not provide reliable 

spatial interpolation of the surrounding vegetation resources (Wessels et al. 2006) in the 

KNP. In addition, by clustering the sample plots in a systematic pattern, rather than 

randomly locating clusters as in simple random sampling, a regular pattern of sampling 

plots was insured. For spatial interpolation of vegetation resources, it is critical that the 

samples should be representative of the surrounding vegetation resources in the study area 

(Mutanga & Rugege 2006) as well as, follows a regular pattern, which also ensures that the 

maximum spatial interpolation (e.g. kriging) error is minimized (Webster & Oliver 2001). 

 

In order to circumvent the problem of upwards bias in the estimation accuracy (Mcgarigal 

et al. 2000; Mutanga & Rugege 2006), a prediction error that is experienced when the 

same training samples are used for the model validation, the samples for this study were 

split into the ¼ and ¾, test and training data sets respectively using a geostatistical analyst 

tool for ArcGIS v9.2. This randomly divided the samples into training 75 samples for 

woody cover estimations and 25 samples for validating the results. The concept of the split 

criterion gives more weights to the training data set which provides reliable model building 

in vegetation studies (Kokaly & Clark 1999; Curran et al. 2001; Schmidt & Skidmore 

2003; Mutanga et al. 2004; Mutanga & Rugege 2006). The split sample validation criterion 

was used in this study because the training ample size was large enough to compute 

variograms for spatial (geostatistical) analysis, as recommended by Webster & Oliver, 

(2001) who assessed the effect of different sample sizes on woody species spatial 

estimation. The authors suggested that 50 sample plots are the minimum samples needed 

for calculating variograms for plant density estimations. In those studies, the authors 

emphasized that the higher the number of samples, the more results of the predictions can 

be reliable. 
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3.3.4.2 Satellite Image Transformations, Analysis and Data Extraction 

 

3.3.4.2.1 SPOT5 Imagery and Vegetation Indices 

 

Table 3.3 displays the spatial and spectral properties of the SPOT multispectral (MS) and 

SPOT panmerged (PM) image datasets. The spectral reflectance values of all the four 

bands for both SPOT5 MS and panmerged were extracted to coincide with each 100 field 

sampled in the study area. The individual SPOT5 imagery bands were used in this study in 

order to test the potential of the very high spatial resolution (10m and 2.5m respectively) 

images for woody cover assessments. Usually the NIR and Red bands are the spectral 

regions where the signal of vegetation presence and abundance are strongest, and are 

generally considered as the best spectral regions for vegetation resource detection and 

mapping (Gong et al. 2003; Wessels et al. 2006). However, the blue/green and shortwave 

infrared (SIR) spectral regions have also received considerable and increasing attention by 

several authors for studying vegetation resources (Mutanga & Rugege 2006; Dye et al. 

2008). 

 

 

 

 Table 3.3: Spectral bands and resolutions for SPOT 5 Multispectral (MS) & Panmerged 

(PM) 

 

BAND No. SPECTRAL RANGE 
SPATIAL 

RANGE(m), MS/PM 

1 Blue/Green (500-590nm) 10/2.5 

2 Red (610-680nm) 10/2.5 

3 Near Infrared-NIR (780-890nm) 10/2.5 

4 Shortwave Infrared-SWIR (1580-1750nm) 10/2.5 

 

 

 

A widely used spectral technique when evaluating the utility of remotely sensed imagery in 

vegetation studies is the assessment of differences in reflectance values from green healthy 

or dry vegetation in the visible and infrared (IR) wavelengths. The reflectance differs from 

around 10 % in the visible red band to over 50 % in near IR band (Rouse et al. 1973). This 

is a distinctive vegetation feature that no other naturally occurring land or atmospheric 
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features show such significant differences in reflectance in the same spectral range (Rouse 

et al. 1974). For SPOT5 multispectral scanner (MS) system, this difference corresponds to 

the ratio or spectral differences between bands 3 and 2. Ratios of spectral bands are 

commonly used because they enhance the spectral contrasts between vegetation and other 

land surfaces, while decreasing the variations in surface brightness due to topography and 

atmospheric effects (Jackson & Huete 1991). In this regard, in addition to the four bands 

for the SPOT5 MS image, five vegetation indices were calculated as follows: 

 

  D V I N IR R= −   (2) 

N IR R
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=
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      (3) 
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sqrt SR
R

=
      (6) 

 

Where: DVI= Difference Vegetation Index, NDVI = Normalized Difference Vegetation 

Index, TNDVI = Transformed Normalized Difference Vegetation index, SR = Simple 

Ratio, sqrt-SR = Square root of Simple Ratio, NIR = near infrared band, R = red band.The 

extraction of all individual spectral band reflectance values and all derived vegetation 

indices was done using the zonal statistics function in the spatial analyst tool for ArcGIS 

v9.2. 
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3.3.4.2.2 Texture Analysis 

 

In a series of articles, the theory of image spatial transformation techniques such as texture 

analysis in remote sensing are outlined (Harralick et al. 1973; Carr 1996; Lark 1996; 

Atkinson & Curran 1997; Tso & Mather 2001; Woodcock et al. 2001). Image texture 

transformation was calculated in ENVI 4.3 (RSINC, 2007) and extracted (using ArcGIS 

zonal statistics tool) for all field sample plots locations. 

 

There are two classes of texture measures: first order (occurrence) and second-order (co-

occurrence) statistics as outlined by Harralick et al. (1973). The first class of texture 

measure, occurrence statistics are derived from the histogram of pixel intensities in a given 

neighborhood (i.e., a moving window), but ignores the spatial relationship between pixels 

(Harralick et al. 1973). The second class, co-occurrence statistics are calculated from grey-

level co-occurrence matrix (GLCM). GLCM assume the probability that each pair of pixel 

values co-occur in a given direction and distance (Harralick et al. 1973). The co-

occurrence statistics assumes that all pairwise combinations of the grey levels within a 

spatial window occur in conditionally combined probabilities. In that case, a set of grey 

level co-occurring probabilities (GLCP) are stored in the GLCM, and statistics are applied 

to the matrix. The centre pixel of the moving windows is then assigned with the resulting 

co-occurrence statistics which generate the texture measures (Jobanputra 2006). The 

second-order texture measures are comparatively more complex to compute than the first-

order texture measures which are fast and easy to compute. Equations 7-9 show the best 

three image texture algorithms (measures) that correlates with the ground sampled woody 

cover parameters. The detailed description of all the first and second-order texture 

variables that were calculated in this study are in appendix 2. 

 

Mean (first order texture index) calculates the average texture value at each plot or at each 

moving window (St-Louis et al. 2006) and is represented as: 

k

k

x

A V G
K

=
∑

         (7) 

Where AVG is mean texture index for first order statistics.  
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Mean (second order texture index) calculates average probability of grey-level co-

occurrence, µ i and µ j (Lévesque & King 2003). It is represented as: 
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    (8)    

 

Where i,j are the coordinates in the co-occurrence matrix space; p(ij) is the co-occurrence 

matrix value at the coordinates i,j. 

 

Entropy (second order texture index) is a statistical measure of uncertainty. It is low if 

image texture is relatively smooth and high if the texture is structured. It can be used as a 

measure of the absence of a distinct structure or organization of image patterns (Yuan et al. 

1991). It is represented as: 
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Where i,j are the coordinates in the co-occurrence matrix space; p(i, j) is the co-occurrence 

matrix value at the coordinates i,j; n is the dimension of the co-occurrence matrix. 

 

In this study both first and second order texture measures were evaluated based on the 

SPOT5 MS image data. The texture measures were calculated using 3×3 filter window, 

which is capable to capture the textural characteristics of individual objects such as trees in 

the scene (Moskal & Franklin 2001). Only 3×3 filter window was calculated as 

recommended by Hudak & Wessman, (1998). This window size was used in this study 

because in semiarid savanna environments larger filter windows exhibit an undesirable 

smoothing effect on the small-scale vegetation structural parameters (Hudak & Wessman 

1998), which are the primary variable of interest in this study. Since the spatial resolution 

of the SPOT5 MS is 10m, using the 3×3 pixel (900m
2
) moving window ensured spatial 

representation with the 30×30m (900m
2
) ground sample plots. 
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3.3.5 Statistical Analysis 

 

3.3.5.1 Stepwise linear regression 

 

Stepwise linear regression is usually used to determine the relationships between remotely 

sensed data and ground surveyed vegetation variables (Cohen et al. 2003; Mutanga et al. 

2004; Mutanga & Rugege 2006). In this study, stepwise linear regression was performed 

on the best SPOT5 derived vegetation variables that yielded significant correlation 

(significance level: p< 0.05) with woody canopy cover and density. Regression analysis 

was done for the texture indices, as well as the individual bands for SPOT5 MS, SPOT 

panmerged bands, and the SPOT5 derived vegetation indices. 

 

Given specified criteria for the best fit model, stepwise linear regression analysis can be 

used to find subsets of the predictor variables that best predict responses on a dependent 

variable by a regression equation (Mutanga & Rugege 2006). However, to avoid over 

fitting a given stepwise regression model, the rule of thumb, as suggested by several 

authors (Skidmore et al. 1997; Serrano et al. 2002; Cohen et al. 2003; Mutanga et al. 2004; 

Mutanga & Rugege 2006) are that: (1) the number of predictor variables to enter the model 

be less than 1/3 the number of observations and (2) the number of steps in the stepwise 

linear regression analysis be 10 to 20 times less than the training data set. In this regard, 

the number of steps selected for this study was set at 6 on a training dataset of 75 samples. 

The authors recommended this ratio will circumvent the problem of predictions (regression 

line) being very unstable. 
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3.3.6 Accuracy assessment 

 

An independent test dataset (n=25) was used to validate each spatial interpolation method. 

The predictive capability of the methods was determined using the root mean square error 

(RMSE) between the predicted and the measured test data. For ordinary kriging as well as 

cokriging, the RMSE was calculated as part of the modeling steps using the Geostatistical 

analyst tool for ArcGIS v9.2, and for stepwise linear regression, the RMSE was calculated 

as follows: 

 

2

i
SSE

RMSE
n

=  (10) 

 

Where SSE is sum of errors (observed-predicted values) and n is the number of pairs 

(Siska & Hung 2001). 

 

 

 

3.3.7 Geostatistics 

 

3.3.7.1 Exploring spatial structure of the data 

 

After ground sampled woody data was pooled for all 100 sample plots, as well as the 

SPOT5 derived spectral vegetation and texture variables, which were extracted to match 

the ground sampled locations, preliminary statistical tests and analyses were performed 

using Statistica 7 (StatSoft. Ltd. London. Inc). Normality test was performed on all data 

sets using the Kolmogorov-Smirnov test. Once the normality test was completed and 

distribution of the datasets is known, the suitable statistical technique to use for further 

spatial-statistical analysis was then decided. Linear correlation analysis was performed on 

the datasets to assess the relationships between the ground sample woody vegetation 

variables and the SPOT5 derived variables. By taking this significance approach of testing 

the relationships between ground and remotely sensed data, a pursued goal of selecting 

critical variables required for modeling the woody cover in the savanna environment could 
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be achieved. The identified, most suitable variables were then used in spatial statistical 

(geostatistical) analysis, as well as in forward stepwise linear regression analysis. 

 

When constructing a linear model of coregionalization, it is imperative that isotropic 

variograms are applied. Examining the different pairs of sample (in this case woody cover) 

locations is an efficient means to assess the spatial structure in the regionalized variables. 

This is important because exploring the data gives a better understanding of the spatial 

autocorrelation among the measured values. This understanding helps to account for 

directional influences, known as anisotropy in the sampled data. The presence of 

anisotropy has an effect on geostatistical prediction methods, by imposing directional 

influence on the predicted surfaces. It is therefore, important to investigate anisotropy so 

that if directional differences are detected in the autocorrelation, it can be accounted for, by 

applying an affine transformation (ESRI Inc, 1999-2006). In this study, anisotropy was 

investigated using a semivariogram cloud tool in ArcGIS v9.2. The surface of the 

semivariogram values are calculated for each pixel (generated from a point map) and all 

pairs of locations that are in a certain distance apart. The pairs were selected by brushing 

all points at a search distance in the semivariogram cloud to visualize possible anisotropy 

of data and to determine the direction of the anisotropy axis (ESRI Inc, 1999-2006). 

 

3.3.7.2 Sampling image data using the Variogram 

 

The significant savanna woody vegetation density as well as percentage woody canopy 

cover and best selected SPOT data (identified from correlation analysis) were analysed 

using the basic geostatistical tool known as semivariogram (commonly referred to as the 

Variogram). The variogram is based on the theory of regionalization (Woodcock et al. 

1988a). 

 

The best selected SPOT5 texture measure data (i.e. pixels that coincided with the ground 

sample locations) was modeled using the variogram in order to determine the spatial range 

of influence in the samples. The range of spatial influence is an important parameter of the 

semivariogram (details of the theoretical features of the variogram was discussed in section 

2 .7 of chapter2). The range has been found to be highly related to the size of objects in an 
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image (Woodcock et al. 1988b). For vegetation studies, the range is found to be 

significantly related to tree density (Hudak & Wessman 1998). 

 

The Range is an important feature of the semivariogram which represents spatial 

dependence as a function that relates semivariance to the lag distance (Atkinson 1993). The 

semivariance (γ ) is half the expected squared differences between values of a property at a 

distance of separation which is generally referred to as the lag (h). The lag has two 

components, namely magnitude and direction. The semivariogram can be used to measure 

the strength of statistical correlation in both ground and remotely sensed data and generally 

takes the form: 

 

 ( ) ( ) ( ){ }
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2
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 (11) 

 

Where x and x+h are two sample points, separated by distance h, and [ ].Ε  is the 

mathematical expectation and ( )'

i xΖ  is the density of woody plants at sample location x  

(Isaaks & Srivastava 1989). Using the modeled lag value, the best SPOT5 derived images 

were sampled at 3000 m intervals in addition to the extracted pixel values that coincide 

with the field sampled locations (Mutanga & Rugege 2006). 

 

 

 

3.3.7.3 The Experimental Variogram  

 

The experimental variogram computed from both field and remotely sensed samples were 

assessed at different lag sizes before fitting a model. The variograms were calculated with 

varying lag spacing and visually determine the best resemble empirical variogram models. 

For this study because the data was acquired using an irregular VCA locations (although 

sampling scheme followed a regular pattern), the selection of a suitable lag size was 

determined using a basic rule of thumb. This rule suggests that multiplication of the lag 

size by the number of lags should be about half the largest distance among all sample 

points (ESRI Inc, 1999-2006). 
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The model fitting was performed for several empirical semivariogram (exponential, 

spherical, Gaussian, circular) models. The spherical model (equation 9) was the best 

closely resembled the experimental variogram model, which also happened to be the best 

model for woody plants spatial modeling (Isaaks & Srivastava 1989; Hudak & Wessman 

1998; Wallace et al. 2000). 
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Where 0 nuggetC = , distanceh = , 1 sillC = , rangea = (Isaaks amd Srivastava, 1989) 

 

 

 

3.3.7.4 Kriging 

 

Two kriging techniques were evaluated for this study. The main focus was on cokriging 

method. However, ordinary kriging was assessed for the purposes of comparative analysis 

of the savanna woody cover prediction. These two kriging methods were computed using 

the geostatistical analyst tool for ArcGIS v9.2. 

 

Kriging methods generally use the distance weighting factor and the spatial arrangement in 

the weights to quantify spatial autocorrelation in sample data. Ordinary kriging is thus 

based on the linear model of regionalization, which is fundamentally a weighting function 

approach which uses the variogram to estimate or predict variables. The variogram plots 

semivariance γ as a function of the distance between sample values of a property, usually 

called lag (h) distance.  The semivariogram calculates n pairs of data locations, which is 

defined as follows: 
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Where γ(h) is semivariance, h is lag distance, n(h) is the number of data pairs separated by 

h, and z is the value at location xi and (xi+h) (Hudak et al. 2002; Mutanga & Rugege 

2006). 

 

 In ordinary kriging the fitted model estimates a value U* (x) at unsampled location x 

based on the weights at measured points, the distance to the prediction location, and the 

spatial relationships among the measured values around the prediction location. Equation 

(10) shows how the ordinary kriging formula is used to estimate a value and create a map 

of the prediction surface: 

( ) ( ) ( )
( )

1

1 1

n x

U x x U xα α
α

λ∗

=

= ∑  (14) 

 

Where U(xα ) is the predicted primary variable and (λα) and (xα) are the weights and 

locations, respectively of measured values around the prediction location (Isaaks & 

Srivastava 1989). 

 

Cokriging is the multivariate extension of ordinary kriging to situations where two 

variables are spatially interdependent and the one of immediate interest is sparsely 

sampled. Cokriging computes estimations for the primary variable with the help of the 

secondary variable which is intensively sampled (Papritz & Stein 1999; Mutanga & 

Rugege 2006). In this study woody vegetation canopy cover and density sampled from the 

field are the variables of primary interest and the best sampled SPOT5 data is the 

secondary variable. The technique is based on the linear model of coregionalisation that 

provides a framework for modeling the spatial autocorrelation in the primary variable as 

well as the cross-correlation between the primary and the secondary variable (Hudak et al. 

2002; Mutanga & Rugege 2006). Each regionalized variable is therefore characterized by 

its sample autocorrelation and each pair of variables by their sample cross-correlation. 

Since kriging uses the semivariogram to model spatial autocorrelation in the primary 
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variable, then the cross-correlation between variable u and v can be graphically represented 

by the cross-semivariogram, defined as: 

 

( )
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( ) ( ){ } ( ) ( ){ }
( )

1

1

2

n h

uv u i u v i v i

i

h z x z x h z x z x h
n h

γ
=

= − + − +∑  (15) 

 

Where γuv(h) is the cross-semivariance between variables u and v, n(h) is the number of 

pairs of data locations separated by lag distance h, zu is the value of variable u at locations 

xi and (xi+h), and zv is the data value of variable v at the same locations (Van Der Meer 

1998; Hudak et al. 2002; Mutanga & Rugege 2006). 

 

The technique uses the theory of linear co-regionalization and exploits the covariance 

between a primary variable U and a single secondary variable V to predict or estimate the 

unknown  U variable at an unknown location x, which takes the form of U
*
(x): 

( ) ( ) ( ) ( ) ( )
( )( )

1 2

1 1 2 2

1 1

*

1 1

n x n x

U x x U x x V xα α α α
α α

λ λ
= =

= +∑ ∑  (16) 

 

Where γα1 and xα1 are the weights and locations, respectively, of the n1 primary data, and 

γα2 and xα2 are the weights and locations, respectively, of the n2 secondary data (Hudak et 

al. 2002; Mutanga & Rugege 2006). 

 

The cokriging estimator uses important conditions to satisfy positive definiteness 

constraint for the linear model of coregionalization. In this case the cross-semivariogram 

insures that the variance of the weights assigned to model at any possible linear 

combination of variables is positive (Atkinson et al. 1992). Thus, the sum of the weighted 

averages assigned to the primary variable u is forced to 1, and the sum of the weighted 

averages applied to the secondary variable is set to 0. These constraints avoid bias in the 

model prediction (Atkinson et al. 1994; Hudak et al. 2002). In this study, the cokriging 

estimator used operates under the two nonbias constraints: 
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Using unbiased conditional constraints in the estimation of the primary variable ensures 

minimum variance which is very important because in practice near observations carry 

more weights to have effect (McBratney & Webster 1983).  However, some studies 

suggest that the second condition tends to limit severely the influence of the secondary 

variable (Isaaks & Srivastava 1989; Hudak et al. 2002). In this study since the best selected 

SPOT5 data  covariance functions is required when woody cover or density are considered, 

the reduction in estimation variance is worth the additional modeling effort because the 

primary variable (woody canopy cover and density) are sparsely sampled, relative to the 

secondary variable (SPOT5 vegetation indices or texture measures). 
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Chapter 4. Relationship between Spot image Data and Woody 

Vegetation 
 

This chapter report results obtained from analysis of the relationship between savanna 

woody vegetation parameters and remotely sensed SPOT image data. Such a relationship 

was investigated using statistical analysis based on field data acquired on woody 

vegetation traits of the study area. Prior to determining the relationship between the field 

and remotely sensed data, analysis of the spatial structure (data distribution and normality 

testing) of the datasets is presented. The study examined the SPOT data in two analytical 

domains: (1) spectral domain, which included analysis of spectral vegetation indices and 

individual SPOT multispectral (MS) bands as well as individual SPOT panmerged bands; 

and (2) spatial domain, which involved spatial transformation of the SPOT MS image by 

calculating several image texture indices. Following an analysis of the relationship 

between the datasets, the chapter presents the results of the best woody vegetation 

correlates predicted using multiple independent SPOT variables. Finally, to accomplish the 

set objectives outlined in chapter one, the results presented in this chapter served to 

identify critical SPOT variables for geostatistical analysis. 

 

 

 

4.1 Descriptive Statistics 
 

Table 4.1 displays the descriptive statistics for selected sampled woody and image 

correlates per plot (900m
2
) in the study area. Differences in intensity of herbivory, fire, 

fine-scale soil disparity, as well as site hydrology may have influenced local variation in 

tree densities and percentage woody canopy cover values in the sampling sites (see table 

4.1), as observed within the study area (Hempson et al. 2007). 

 

The null hypothesis formulated for a Kolmogorov-Smirnov test computed for one-sample 

test of normality was that the D statistic of the dataset under test are normally distributed if 

Ho: p= ns (i.e. D not significant). If the D statistic is not significant, then the alternate 

hypothesis that the data under test are not normally distributed (Ha: p = s (significant)) is 

rejected, where p is the significance of normality from the Kolmogorov–Smirnov D 

statistics. In this regard, the p values for the mentioned woody and SPOT variables were 
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not significant. Therefore the null hypothesis could not be rejected. Results of the 

Kolmogorov–Smirnov D statistics test (K-S) which revealed that the datasets under test are 

normally distributed are displayed in table 4.1. 

 

Because the selected datasets are normally distributed, parametric statistical methods, as 

well as geostatistical techniques were applied in subsequent analysis of the field sampled 

woody parameters, as well as the SPOT derived vegetation datasets. In this regard, testing 

for normality in the datasets is important for the selection of suitable statistical or 

geostatistical techniques which assume a normal distribution of the datasets. 

 

 

Table 4.1: Descriptive statistics for best woody and SPOT variables (Total n = 100). 

K-S = Kolmogorov-Smirnov test, p=ns signify ‘p value is not significant. 

 
No. Parameter Woody tree 

density,900m-2 
%Woody 

canopy cover 
1st order Mean 

texture measure for 

SPOT MS Band3 

Panm_band3 

1 Mean 53 56 119.95 130.41 

2 Median 36 60 125.5 131.78 

3 Minimum 4 6 0 98.05 

4 Maximum 361 96 255 171.36 

5 Standard deviation 56 22.87 64.23 15.07 

6 Sum of individuals 5306 - - - 

7 K-S  (p = ns) 0.0342 0.0630 0.0625 0.0322 
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4.2 Relationship between SPOT5 Spectral Data and Woody Vegetation 

Cover 
 

The relationship between ground sampled woody vegetation parameters (table 3.2) and 

SPOT derived vegetation indices, as well as individual SPOT MS and panmerged bands 

were assessed using a linear correlation analysis. The fitted linear relationship between 

woody parameters and SPOT5 MS datasets, as well as the SPOT panmerged bands is 

displayed in table 4.2. 

 

The results of statistical analysis reveal a positive relationship between percentage canopy 

cover as well as tree density with all the SPOT derived data. The relationship largely 

showed average correlation coefficient for the individual SPOT bands. The spectral 

vegetation indices calculated on the SPOT MS imagery yielded weak correlations with all 

sampled woody parameters, including the tree density samples (table 4.2). Percentage 

canopy cover yielded strong correlation with SPOT panmerged band3. The highest 

correlation coefficients for SPOT MS (Band3) and SPOT panmerged (Band3) imagery 

were 0.37 and 0.58 respectively. The high correlation observed for the NIR (SPOT5 

band3) can be associated with the multiscattering effects in the near infrared region of the 

electromagnetic spectrum (Kumar et al. 2001). Detailed explanation of spectral reflectance 

characteristics of vegetation and the related effects on vegetation radiation measurement is 

well documented in Kumar et al. (2001). In addition, stronger correlation coefficients 

recorded for woody parameters and the SPOT panmerged data can be attributed to the very 

high spatial resolution (2.5m) for the panmerged imagery compared to that of 10m 

resolution for the SPOT MS image data. The 2.5m panmerged image data is the product of 

3 band SPOT MS fused with the SPOT panchromatic band (Cnes SPOT image, 2005) and 

has high spatial resolution capable of detecting small scale sparsely distributed woody 

stands more accurately at a panchromatic viewing geometry. This is indicated by the high 

correlation coefficient values recorded for the panmerged bands. 

 

Spectral vegetation ratios such as NDVI and Simple ratio (SR) that have been formulated 

to enhance vegetation presence and abundance yielded low correlation coefficients with 

woody parameters as shown in table 4.2. Previous studies have suggested that low 

correlation coefficients observed for the vegetation indices such as NDVI can be attributed 

to the asymptotic nature of the NDVI–vegetation relationship (Mutanga & Skidmore 
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2004). For example NDVI calculated from multispectral images such as SPOT data is 

known to saturate in dense canopies as the growing season for vegetation progresses (Yang 

& Prince 1997; Mutanga & Skidmore 2004). The significance of the relationship between 

field and image data recorded for majority of the variables including the one with the 

highest correlation coefficient was at the 0.01 confidence limits (table 4.2). 

 

 

Table 4.2: Relationship between woody vegetation parameters and SPOT multispectral 

(MS) and panmerged (Panm) bands (n=75) 
 

Variables Tree density % Canopy cover 

 

MS_band1 

 

0.34** 

 

0.25* 

MS_band2 0.30** 0.44** 

MS_band3 0.34** 0.53** 

MS_band4 0.31** 0.39** 

Panm_band1 0.29* 0.25* 

Panm_band2 0.27* 0.44** 

Panm_band3 0.37** 0.58** 

Panm_band4 0.35** 0.49** 

NDVI (equation 3) 0.21* 0.42** 

TNDVI (equation 4) 0.21* 0.41** 

DVI (equation 2) 0.20* 0.40* 

SR (equation 5) 0.17 0.39** 

sqrt_SR (equation 6) 0.2* 0.42** 

   Correlation coefficient: * Significance level: p<0.05.  

     ** Significance level: p<0.01. 
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4.3 Relationship between Image Texture and Woody Vegetation Cover  
 

Image texture measures were calculated on the SPOT5, 10m resolution Multispectral (MS) 

data. The relationship between field sampled woody structural parameters and SPOT5 

derived texture indices were analyzed using correlation coefficient matrices. The resulting 

correlation coefficients between the best three texture algorithms and the woody correlates 

are displayed in Table 4.3. The highest correlation coefficients were 0.59 and 0.37 for 

percentage woody canopy cover and tree density respectively, using 1
st
 order (occurrence) 

Mean texture measure for the SPOT MS Band 3. Appendix 3 displays the correlation 

matrices for all first and second order texture statistics and all field sampled woody 

vegetation parameters. As shown in appendix 3, correlation coefficients between some 

texture measures were very low or not significant. This can be attributed to the 

configuration of the texture algorithms on the image bands, as well as the effect of spatial 

resolution of the SPOT image bands. The results displayed in table 4.3 show that both first 

order (occurrence) and second order (co-occurrence) texture measures yielded high 

correlation with percentage woody canopy cover values, compared with that of woody tree 

density variant. This indicates that image texture measures performance is not only 

influenced by the type of image band but also dependent on the type of woody vegetation 

traits as is shown in this study. Other studies have suggested that performance of image 

texture to characterize vegetation is dependent on the spatial (pixel) resolution (Hudak & 

Wessman 1998). 

 

 

Table 4.3: Relationship between woody parameters and top three SPOT MS texture 

variables 

 

Rank Image Texture Variables 
Percentage  

canopy cover 

Woody tree 

density/plot 

1 
1

st
 order Mean texture measure for SPOT 

MS Band 3 
0.59** 0.37** 

2 
2

nd
 order Mean texture measure for SPOT 

MS Band 3 
0.54** 0.33** 

3 
2

nd
 order Entropy texture measure for 

SPOT MS Band 4 
0.50** 0.34** 

 

Correlation coefficient (R): ** Significant level: P<0.01 
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4.4 Predicting woody vegetation parameters using multiple independent 

SPOT variables 
 

Forward stepwise linear regression analysis using the significant SPOT variables was 

carried out on percentage (%) woody canopy cover and tree density (training datasets n 

=75). The regression models calculated for the %woody canopy cover and the tree density 

variables resulted in R
2
 = 0.58 and R

2
 = 0.38 respectively (regression significance: p < 

0.00001). Low R
2
 values could have been the result of outliers that often have large impact 

on the strength of linear relationships determined from small datasets that may not be fully 

representative of the local variation (or fine scale heterogeneity) in the study area. 

 

Betas of the SPOT variables (table 4.3) that were used in the stepwise linear regression 

equation were input to ArcGIS spatial analyst tool (raster calculator) to calculate the 

regression model equation using the selected SPOT data for the predictant variables. 

Figure 5.2 (c) and figure 5.3 (c) shows the respective estimated surfaces for the % woody 

canopy cover and tree density in the study area. The prediction accuracy of the models was 

calculated using the RMSE analysis on an independent %woody canopy cover and tree 

density (datasets n = 25). The resulting RMSE (900m
-2

) values are displayed in table 5.2. 

 

 

Table 4.4: Betas used in the forward stepwise multiple regression. 

 

                            Betas   
Parameter 

 
SPOT band %woody canopy cover Tree density 

Intercept  82.98658 -108.17087 

1
st
 oder Mean texture band 3 0.35061 - 

1
st
oder Mean texture band 4 - 0.07566 

2
nd

 order Mean texture band 2 -0.23898 - 

1
st
 oder skewness texture band 1 -0.22257 - 

1
st
 oder skewness texture band 3 -0.10472 - 

2
nd

 order correlation texture band 3 -0.14905 -0.46453 

2
nd

 order correlation texture band 4 - -0.20953 

SPOT panmerged image band 2 0.52197 - 

SPOT multispectral image band 1 - 0.32105 

TNDVI (equation 4) band 2&3 - 2468.69118 

sqrt_SR (equation 6) band 2&3 - -1452.03648 
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Chapter 5. Geostatistical analysis 
 

This chapter presents the results obtained using different geostatistical tools, such as the 

variogram modelling and the kriging methods, as outlined in chapter one. The results 

obtained in chapter four (i.e. assessment of the relationships between ground sampled and 

remotely sensed data) provided an efficient method to select critical variables for the 

geostatistical analysis. The chapter also examined the effects of sample plot layout on the 

kriging interpolators, and investigated the existence of directional influence or anisotropy 

in the optimal ground sampled woody data. Finally the results obtained from cokriging 

were evaluated and compared with the results obtained from ordinary kriging, as well as 

the results obtained from multiple regression analysis. 

 

 

 

5.1 Selecting Optimal Field and Spot Derived Vegetation Variables for 

Cokriging 
 

Correlation tests were calculated to determine the strength of the significant relationship 

between SPOT data and woody vegetation structural traits measured in the field (chapter 

4). The results indicate that some woody plant parameters did not have significant 

correlation with the spectral vegetation indices and individual SPOT bands, as well as the 

texture measures. Percentage canopy cover and the number of trees per plot (tree density) 

were the woody parameters with highest significant correlation coefficients. The highest 

correlation coefficients were 0.59 and 0.37 (using first order image texture statistics for 

SPOT MS band3) for the percentage canopy cover and tree density respectively. In the 

spectral domain, the highest correlation coefficients were 0.58 and 0.37 (SPOT panmerged 

band3) for percentage canopy cover and tree density respectively. As shown in table 4.2 

and table 4.3, first order image texture statistics for SPOT MS band3 yielded the highest 

correlation with both percentage woody canopy cover and woody tree density per plot, and 

was therefore selected for cokriging. It was important to use the best image texture 

correlate for cokriging because: (1) it recorded the highest correlation with the ground 

sampled woody data, and (2) texture measure is a good indicator of objects contained in an 

image, based on the spatial variability in an image, which is spatially correlated with 

vegetation radiation. 
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5.2 Investigating Directional Influence or Anisotropy in the Datasets 

 

Anisotropy or directional influence in the datasets was investigated using the variogram 

surface. The resulting variogram surfaces reflected a gradual increase in the semi-

variogram values from the centre into all directions (Figure 5.1) for both %woody canopy 

and tree density datasets. This shows that there is no anisotropy effect in the datasets, as 

suggested by Mutanga & Rugege, (2006). Figure 5.1 displays the pattern of the variogram 

surfaces for the datasets. Absence of anisotropy in the variogram surfaces measured for % 

woody canopy cover and tree density datasets makes it conducive to have a reliable linear 

model of coregionalization and accurate predictions using the two kriging interpolation 

techniques employed in this study. The fundamental principle is that when there is isotropy 

for spatial correlation, then the semi-variance, γ(h) depends only on the magnitude of h and 

not on its direction. 

 

 

 

     
Figure 5.1: The isotropic variogram surfaces for measured %woody canopy cover (a) and 

tree density (b) datasets. The value in each cell represents a semi-variogram value. 
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5.3 Estimating Woody variables using ordinary kriging and Cokriging 

 

Five variograms were constructed for the two selected woody parameters: one for 

percentage woody canopy cover data, one for woody tree density, one for the 1
st
 order 

Mean texture measure for SPOT MS Band 3, and a crossvariogram between the 1st order 

Mean texture measure for SPOT MS Band 3 and the percentage woody canopy cover, as 

well as the tree density data. Figure 5.2 shows the fitted variograms using the spherical 

model with a nugget component. 

 

The least square fitting for all the variograms is shown on each modeled variogram (figure 

5.2), where as the parameters of all the variograms is displayed in table 5. 2. The 

variogram models were used to predict woody parameters using ordinary kriging and 

cokriging. Figures 5.3 and 5.4 show the distribution of the woody vegetation density and 

cover parameters respectively, using the three approaches evaluated in this study. 

 

It is important to note that the cross-variogram models (for SPOT 5-derieved data and the 

woody variables) as shown in figure 5.2 d and e have very small nugget effect (nugget 

value closer to 0 or resembling the ideal variogram) suggesting that the measurement error 

(Atkinson, 1999; Curran, 1988) can be reduced when cross-correlation factor between 

intensively sampled SPOT 5 image data and woody variables are encompassed in cross-

semivariogram modeling. An understanding of the nugget effect is therefore very 

important for cokriging interpolation which can be exact or smoothed depending on the 

measurement error model calculated from the cross-semivariogram. 

 

 

 

 

 

 

 

 

 

 



   58 

 

  Distance, h  10
-4

γ   10
-2

0 0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6

3.67

7.34

11.01

14.68

18.35

   Distance, h  10
-4

γ   10
-3

0 0.38 0.76 1.14 1.52 1.9 2.28 2.66 3.04

2.58

5.16

7.74

10.32

12.9

 

  Distance, h  10
-4

γ   10
-1

0 0.38 0.76 1.14 1.52 1.9 2.28 2.66 3.04
-397.67

-265.15

-132.63

-0.11

132.41

264.93

    Distance, h  10
-4

γ   10
-3

0 0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6

1.13

2.26

3.39

4.52

5.65

 

 

  Distance, h  10
-4

γ   10
-3

0 0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6
-1.7

-0.85

0

0.85

1.7

2.55

 

Figure 5.2: Isotropic variograms for predicted primary variables (woody tree density (a) 

and %woody canopy cover (b)), covariable (SPOT data (c)) and cross-variograms for a & c 

(d), and b & c (e); h is distance in meters and γ is the semi-variance values. 

 

Table 5.1: Variogram parameters for predicted woody canopy cover and density vs the 

transformed SPOT variable 

 

No.      Variable Range (m) Nugget Sill 

1 Woody tree density 12042 1412 2633 

2     1st order Mean texture measure for SPOT 

MS Band 3 
12042 687 2276 

 3 Cross-covariance for Woody tree density 

and the SPOT data 
12042 - 1351 

5 Percentage canopy cover 15 975 202 321 

5 1
st
 order Mean texture measure for SPOT 

MS Band 3 
15 975 859 2329 

6 Cross-covariance for percentage canopy 

cover and the SPOT data 
15 975 - 718 

 

 

R
2
=0.47 

R
2
=0.94 

d 

R
2
=0.30 b 

R
2
=0.7 c 

a 

e 
R

2
=0.79 
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Figure 5.3: Predicted percentage canopy cover values (900m

-2
) using cokriging (a), 

ordinary kriging (b) and linear regression (c). 

 

 

        
Figure 5.4: Predicted woody tree density values (900m

-2
) using cokriging (a), ordinary 

kriging (b) and linear regression (c). 

 

 

 

5.4 Evaluation of the prediction error of the kriging models 
 

The fit model semivariogram for the %woody canopy cover as well as tree density 

prediction in the study area were both at 3000 lag size. At this lag size, the experimental 

model with a nugget effect yielded the best fit for the datasets sampled at 900m
2
 plots. The 

predictive performance of the models at the set lag for both datasets was identical (figure 

5.5). The prediction error was less in the eastern part, through to the center of the study 

area. The highest prediction error values were at the north-western corner and the southern 

parts of the study area.  The high error largely reflected the non-systematic sample plot 
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layout in the study area. In this regard, it is important to note that high prediction error 

occurred in areas that were sparsely sampled. Figure 5.5 shows the prediction error map for 

the %woody canopy cover and tree density estimation in the study area. 

 

 

   
Figure 5.5: Prediction error for % woody canopy cover (a) and tree density (b), 900 m

-2 
of 

the study area 

 

 

5.5 Comparing the cokriging method with ordinary kriging and 

regression approaches 
 

The predictive capability of the approaches used in this study indicates that cokriging 

yielded the highest squares of linear fit: r
2
 = 0.83 (predicted woody tree density) and r

2 
= 

0.66 (predicted % woody canopy cover) respectively. The predictive performance of the 

cokriging approach was further compared with that of ordinary kriging as well as stepwise 

linear regression using the 1st order Mean texture measure for SPOT MS Band 3 data. 

Table 5.2 shows accuracy assessment results obtained from the three approaches 

(regression model, ordinary kriging and cokriging) using the Root Mean Square Error 

(RMSE) of prediction. The RMSE between the measured and predicted woody parameter 

using cokriging on the independent test dataset is lower than that obtained using ordinary 

kriging and multiple linear regression methods. 
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Table 5.2: The Root-Mean-Square Error (RMSE) for predicting woody vegetation 

parameter on an independent SPOT-derived vegetation dataset. 

 

RMSE measures 
Predictant Variable  

Cokriging Ordinary kriging Regression 
Percentage woody canopy (%900m

-2
)  13 17 25 

Woody tree density (individual plants 900m
-2

) 17 23 62 

 

5.6 Summary of Results 

 

Chapters four and five have shown the results of data analysis. Descriptive statistics of the 

datasets revealed normal distribution for the sampled woody correlates as well as remotely 

sensed datasets. Parametric statistical techniques that assume normal distribution of 

datasets were therefore performed in subsequent data analyses. Chapter four reported 

results obtained from analysis of the relationship between woody vegetation parameters 

and remotely sensed SPOT derived vegetation data. The results revealed that field sampled 

percentage woody canopy cover and tree density per plot were the best field measured 

woody correlates. SPOT panmerged band3 as well as first order (occurrence) image texture 

calculated on the SPOT5 multispectral image (band3) yielded the highest correlation 

coefficients (table 4.1 & 4.2) with the field sampled woody canopy cover and density. The 

individual SPOT5 bands as well as spectral vegetation indices calculated on the SPOT5 

data yielded low correlations as compared to the best SPOT panmerged band and the best 

texture index. 

 

Chapter five presented the results obtained from geostatistical (variogram modelling and 

the kriging interpolations) analysis of the woody canopy cover and density as well as the 

1st order Mean texture measure for SPOT MS Band 3. The results show that there is no 

anisotropy (figure 5.1) in the datasets. However, the predictive error maps (figure 5.3) 

showed high prediction error in the upper and lower western corners of the study area. This 

was attributed to the effect of sample plots layout on the kriging interpolators. The best 

image texture measure (first order texture for SPOT band3) which recorded the highest 

correlation coefficient with the ground sampled percentage woody canopy and tree density 

data yielded the lowest RMSE (table 5.2) for the predictant variables using cokriging, as 

compared to the results obtained from ordinary kriging, as well as the results obtained from 

the simple linear multiple regression. 
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Chapter 6. Discussion 

 

This chapter discusses the results obtained in chapter four and five in respect of the 

organization of the study as outlined in chapter one. The study was structured in two major 

parts and sections in order to effectively accomplish the set objectives of this study. Part 

one was to establish statistical relationships between woody vegetation variables and 

SPOT vegetation and texture indices for the purposes of identifying the best SPOT 

vegetation or texture indices. Analysis in part one also involved evaluating the effects of 

the sampling scheme employed, as well as evaluating the effects of the image spatial 

resolution and various image transformation methods on the relationship between the field 

and remotely sensed data.The second part was to model the woody canopy cover and 

density using cokriging and compared the results with those obtained using simple linear 

regression as well as ordinary kriging. 

 

 

 

6.1 Comparison between the 10m SPOT5 MS and the 2.5m SPOT 

panmerged images used in Characterizing Woody cover and density 

 

Several studies (e.g. Kumar et al 2001; Mutanga & Rugege, 2006) have shown that 

vegetation and its radiation are spatially correlated. Therefore, the ability to identify remote 

sensing data that strongly correlate with woody vegetation is an important step towards 

achieving high accuracy in woody cover estimation using remotely sensed data analysis 

procedures. An evaluation of the performance of the two SPOT images (SPOT5 

multispectral and SPOT panmerged images respectively) to characterize woody cover and 

map its spatial distribution using remote sensing techniques has been demonstrated in this 

study. 

 

The results obtained from analysis of the relationship between the two SPOT images and 

woody vegetation parameters yielded best correlation coefficients for percentage woody 

canopy cover, as well as tree density with the SPOT panmerged bands as compared to the 

10m resolution SPOT multispectral bands. The high correlation coefficients observed for 
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the SPOT panmerged data as compared to the SPOT5 multispectral data (table 4.2) can be 

attributed to the high spatial resolution, as well as the panchromatic view geometry of the 

SPOT panmerged image data. In semiarid savanna ecosystems, woody vegetation crown 

cover is highly reflective as well as the canopy background reflectance of actively growing 

herbaceous under storey.  Hence, the surface reflectance recorded by the remote sensor is 

composed of mixture of signals from both woody over storey layer as well as noisy 

reflectance signals from underlying herbaceous layer   for most pixels. Because actively 

growing or photosynthetic herbaceous under storey reflectance is contained in the recorded 

pixels, spectral saturation in the woody vegetation signals is expected (Mutanga & 

Skidmore 2004). Spectral saturation may have significantly influence the recorded signals 

which most likely resulted in weak correlation for the multispectral data. However, the 

high correlation coefficients observed for the SPOT panmerged bands indicate that high 

spatial resolution data is capable of reducing the effect of noise in the reflectance values 

recorded for woody structural parameters.  In this regard, the SPOT panmerged image is 

better predictor of woody vegetation cover in the homogeneous mopane woodland savanna 

as shown in this study. 

 

Although the SPOT5 multispectral bands yielded lower significant correlation coefficients 

with both percentage woody canopy  and tree density parameter (table 4.2), it is important 

to note that the near infrared region (band 3) for both SPOT multispectral and SPOT 

panmerged images yielded the highest correlations coefficients respectively. Kumar et al. 

(2001) and Mutanga & Skidmore (2004) indicated that reflectance measurements for the 

NIR strongly correlate with vegetation structure due to multiscattering effects in the near 

infrared (NIR) region of the electromagnetic spectrum. In this respect the high correlation 

observed for band 3 can be attributed to the multiscattering in the band 3 for both SPOT 

multispectral as well as the SPOT panmerged images. 

 

The results obtained from correlation analysis further revealed that percentage woody 

canopy cover yielded the highest correlation coefficient (R = 0.58) with both image data as 

compared to tree density (R = 0.37) (table 4.2). This result is very important for both 

biodiversity study (e.g. biomass prediction) as well as environmental monitoring studies 

(e.g. climate modeling). This is because studies have shown that there is a linear 

relationship between canopy cover estimates and vegetation biomass particularly in 
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semiarid savannas (Olsson 1984; Tietema 1993). Therefore the high correlation obtained 

for percentage canopy cover means that further environmental or biodiversity predictions 

can be made based on the results of canopy measures of the study area. For example, Yang 

& Prince, (2000) have shown that canopy cover can be used as a critical input variable to 

simulate various climate and vegetation processes. Specific examples are net primary 

productivity and CO2 pool modeling using biomass and canopy cover data as critical input 

parameters(Prince 1991; Sellers et al. 1996). In this regard, the high correlation coefficient 

observed for the percent woody canopy cover and the SPOT panmerged data in this study 

do not only help to improve the accuracy of estimating the density and distribution of 

woody cover in the study area but also provide great potential for quantitative 

measurement of environmental  and biodiversity variables in savanna rangelands. 

 

 

 

6.2 Relationship between SPOT5 multispectral vegetation indices and 

sampled Woody Variables 

 

In the literature, the utility of remotely sensed spectral vegetation indices for vegetation 

study is well document. However, little is known about the effects of spatial resolution on 

multispectral vegetation indices for biomass estimations. By virtue of their purpose, 

vegetation indices are computed to combine spectral information contained in two spectral 

channels to produce a single value that indicates the presence and vigor (or abundance) of 

vegetation while being relatively insensitive to noise caused by canopy background or 

atmospheric effects (Yang & Prince 2000). 

 

In this study, the results obtained from linear correlation analysis for field sampled woody 

vegetation parameters and 10m resolution SPOT5 derived vegetation indices have shown 

significant correlation coefficients (table 4.2). As stated in the description of the study area 

in chapter one, the Shingwedzi woodlands region of the Kruger National Park experiences 

four to eight months hot but wet season in October to April. In chapter three of this study, 

it was stated that the SPOT satellite images used in this study were acquired for October, 

2005, hot but wet season. This means that at the time when the image was acquired, 

vegetation in the study area was actively high in photosynthesis. 
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In the literature, several studies have shown that vegetation indices computed from 

multispectral satellite remote sensing, using the red and near infrared bands may be of 

limited use as they asymptotically saturate in dense vegetation canopies (Skidmore et al. 

1997; Mutanga & Skidmore 2004; Mutanga & Rugege 2006). It therefore possible to 

assume  the both effect of resolution and saturation may have influence the strength of the 

correlation coefficients obtained from the analysis if the vegetation indices. 

 

It is important to emphasize that, although this study did not setout to investigate the effect 

of pixel resolution on the relationship between woody vegetation parameters and spectral 

vegetation indices, the correlation results obtained suggests that spatial resolution of a 

remotely sensed vegetation index should not be ignored. In this study the assumption that 

resolution may have influence the performance of the raw multispectral bands as well as 

the vegetation indices is based on high correlation obtained for the 2.5m resolution SPOT 

panmerged data as compare to the 10m resolution SPOT5 multispectral data. In this regard, 

it can be suggested that finer resolution image provided better spectral data that is highly 

correlated with the ground sampled woody vegetation variables. 

 

 

 

6.3 Image Texture Vs Woody Vegetation Cover and density Estimation 

 

While high resolution multispectral satellite images may have adequate spatial resolution 

that is capable of detecting large landcover types such as forest stands or agricultural areas, 

they provide limited information that can be used to quantify densely distributed vegetation 

patches in open canopy savanna woodlands (Hudak & Wessman 1998). A number of 

studies (e.g. Hudak & Wessman, 1998) have shown that even relatively large trees in 

savannas are too small to be spectrally detected by most available high resolution 

multispectral remote sensing data. 

 

In this study, analysis of the 10m resolution SPOT5 multispectral satellite imagery have 

shown significant correlation coefficients with field sampled woody parameters as shown 

in chapter four and further discussed in section 6.1. The application of texture algorithms 

to the raw 10m resolution SPOT5 multispectral bands yielded higher correlation 
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coefficients with the best field sampled woody parameters: percentage woody canopy, R = 

0.59 and tree density per plot, R = 0.37. The results obtained using image texture measures 

were relatively higher, as compared to the results obtained using the individual 10m 

resolution SPOT5 multispectral bands as well as the results obtained using spectral 

vegetation indices which was calculated on the 10m resolution SPOT5 multispectral image 

data. This shows that the application of suitable texture algorithm to multispectral data is 

an important step towards improving the accuracy of vegetation estimation where the 

performance of spectral data alone is insufficient. 

 

The good correlation results obtained from texture analysis of the 10m resolution SPOT5 

multispectral further confirms the recommendations made by a previous study (Hudak & 

Wessman 1998). In the study, the authors tested the performance of several image 

resolutions and found that texture measures calculated on simulated 20m resolution SPOT 

image was capable of characterizing savanna woody cover more accurately. And in this 

study, texture measures calculated on the 10m resolution SPOT5 multispectral image 

yielded the highest correlation with the field observations. Hence, the performance of 

texture measure is dependent on the spatial resolution of the original imagery that the 

texture index is calculated. 

 

It is important to note that results obtained from the texture analysis were closely average 

with the results obtained for the 2.5m resolution SPOT panmerged data (table 4.2 and table 

4.3). As stated earlier: we concluded that the 2.5m resolution SPOT panmerged data 

yielded higher correlation coefficients with selected woody parameters as compared with 

the 10m resolution SPOT5 multispectral image because the panmerged data has higher 

spatial resolution with a panchromatic geometry view. Therefore, higher correlation 

coefficients obtained for image texture calculated on the  10m resolution SPOT5 

multispectral image data implied that image texture overcome the effect of spatial 

resolution, as well as  highly insensitive to noisy reflectance which is attributable to woody 

canopy background in vegetation estimation processes. 
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6.4 Modeling woody vegetation cover 

 

It has been evident in this study that to improve estimation accuracy, it is critical that 

correlation coefficient between primary (predictant) and secondary (an independent) 

variables should be highly correlated as suggested by Van Der Meer, (1998). In this study, 

the link between the primary and a secondary variable (in this case, SPOT derived 

vegetation correlate) for accurate prediction has been achieved through the selection of 

most strongly correlated ground and remotely sensed data. First order image texture 

measure for SPOT MS band 3 (r = 0.59) yielded the highest correlation coefficient (table 

4.2) and was selected as the independent variable for modeling woody structural 

parameters. Cross-correlation information between the sparsely field sampled woody 

parameters and intensely sampled independent variable was exploited. 

 

In order to model the cross-correlation factor as well as spatial dependence information in 

the variables, the semivariogram modeling was calculated. The semivariogram model 

calculations largely confirmed the results of the simple linear correlation analysis, by 

depicting more spatial auto and cross-correlation between the selected woody parameter 

and the highest correlated SPOT variable. The plot of cross-semivariance vs lag spacing 

yielded R
2 

= 0.94 and R
2 

= 0.79 for the predicted percentage woody canopy cover and tree 

density respectively (figure 5.2 c and e). This proves the existence of strong spatial 

autocorrelation in vegetation as well as its reflectance values and the cross-semivariogram 

modeling is a practical way of exploiting the spatial autocorrelation between ground 

sample and remotely sensed image data. 

 

Cokriging which is a multivariate extension of ordinary kriging uses the well-sampled 

secondary variable derived from SPOT imagery to provide additional information about 

the primary data using the cross-semivariance information. Cokriging therefore yielded the 

highest accuracy of estimation of the primary variable (i.e. woody vegetation parameter) in 

this study. Analysis of the cokriging estimator yielded an average percentage woody tree 

cover of 49 % and varied between 16 % and 78 %, with a standard deviation of 21 %. In 

addition, woody tree density estimation in the study area using cokriging varied between 

11 and 175 trees in 900m
-2

, with an average of 43 and a standard deviation of 42 trees in 

900m
-2

. 
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6.5 Evaluation of the methods 

 

A small field sampled woody test dataset (n= 25) was used for evaluation of all the 

methods tested. An integration of first order texture measure calculated for SPOT MS band 

3 image data and field sampled woody variables in cokriging yielded a RMSE (table 5.3) 

of 17 woody trees in 900m
-2

 and 13% percentage tree canopy cover between the predicted 

and measured values for the tree density and percentage canopy cover respectively. As 

stated in few paragraphs above, the result is better than that obtained by ordinary kriging as 

well as the result obtained by stepwise linear regression on best correlated field sample and 

SPOT variables. The high RMSE’s (25 % and 62 trees per 900m
-2 

) for simple linear 

regression model can be explained on account that the woody parameters were predicted 

by ignoring spatial arrangement of objects in the scene, as the variable at the ground is 

predicted from information in a given pixel and the information in the neighbouring pixel 

is ignored (Mutanga et al. 2004). 

 

The results obtained in this study have shown that identification of the best woody 

parameter, by correlation analysis between field and remotely sensed woody variables do 

not only help improve the prediction when the utility of spatial dependence in field and 

remotely sensed datasets was incorporated through cokriging but also significant increase 

in accuracy can be achieved using only the best field sampled woody values through 

ordinary kriging as compared to the linear regression which do not take account for spatial 

dependence in the datasets for the spatial prediction of the predictant variable. 

 

Results obtained from this study have shown that a combination of remotely sensed data 

and geostatistics can improve the accuracy of predicting woody vegetation density in 

complex savanna landscapes. The results compare well with a previous study by Mutanga 

& Rugege (2006) who evaluated the utility of remotely sensed and field data through 

cokriging to map herbaceous vegetation biomass quantities and distribution over large 

areas in the African savanna rangeland. Results in this study have therefore shown that the 

technique, with some refinement can be extended to woody density or percentage canopy 

cover prediction. The good result obtained in this study can be attributed to the capability 

of cokriging to utilize cross-correlation factor between a sparsely sample primary variable 

and a well sampled auxiliary (independent) variable. Cokriging therefore provided a 
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method to combine field and remotely sensed data to accurately estimate woody cover 

variables and map its spatial distribution in respect to the results obtained in this study. The 

practical application of integrating remote sensing and geostatistical technique such as 

cokriging in this study presents a critical method for conservation managers and natural 

resource managers to spatially define the amount and extent of woody vegetation cover. 

 

 

 

6.6 Remote sensing and Geostatistics for Savanna Woody Vegetation 

Estimation 

 

Although savanna woody resources are spatially distributed (autocorrelation) and contain 

spatial dependence (cross-correlation) with remotely sensed data, vegetations studies in 

savannas rarely exploit the spatial aspects of woody cover in many attempts  of woody 

cover quantification and mapping. Spatial techniques such as the semivariogram has been 

conventionally applied either to field observations alone or applied to remote sensing data 

in an attempt to estimate vegetation resources (e.g. Hudak & Wessman, 1998). However, 

an extension of this powerful tool to integrate field and remotely sensed data to predict 

vegetation resources has not been tested in the African savanna until recently. An 

integration of field and remote sensing data for herbaceous biomass prediction in the 

African savanna environment has been tested by Mutanga & Rugege, (2006). The study 

yielded good results when a cross-correlation factor was exploited by calculating a cross-

semivariogram between field and remote sensing data through spatially engrained 

cokriging interpolation. 

 

The utility of an integrated approach involving geostatistics and remote sensing to estimate 

woody vegetation cover in an African savanna rangeland has been demonstrated in this 

study. Remotely sensed SPOT5 satellite image data has provided a practical method of 

integrating geostatistics and remote sensing techniques to quantify woody vegetation cover 

and density in African savanna (mopane) woodland. The use of high spatial and temporal 

resolution SPOT5 imagery has therefore provided immense opportunity to intensively 

monitor savanna woodland for the benefit of both wildlife habitat studies and rangeland 

biodiversity assessment. 
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Chapter 7. Conclusion 

 

This chapter reviews the aim and set objectives of the study, evaluate what has been 

achieved as regarding the set goals and provides a synthesis of the approaches adopted for 

this study. Conclusion as well as limitations and recommendations for future applications 

of remote sensing and geostatistical techniques for the estimation of savanna woody 

vegetation cover will also be provided. 

 

 

 

7.1 Aim and Objectives re-examined 

 

7.1.1 Aim reviewed 

 

The main aim of this study was to investigate the utility of remote sensing data (high-

resolution satellite images) in combination with geostatistical techniques (e.g. cokriging) to 

estimate density and map spatial distribution of woody vegetation in a Colophospermum 

mopane dominated woodland savanna. Cokriging was implemented as a novel 

geostatistical technique which combines field and remotely sensed data in an attempt to 

reduce error in estimating woody vegetation structural parameters. 

 

This study has shown that there is a variation in the relationship between remotely sensing 

data and field measured woody vegetation structural parameters. In addition, the study 

revealed that the variation depends on the type of field sampled woody parameter and how 

it relates to both spectral and spatial characteristics of the remotely sensed image data. 

 

The best field and image variable used in geostatistics is based upon the determined linear 

correlation coefficient values obtained for field and remotely sensed data. In this regard, 

the study has demonstrated that it is crucial that field and remotely derived vegetation data 

should be highly correlated in order to be useful input in geostatistical analysis procedures. 

This conclusion was reached following good results observed for geostatistical analysis of 

the best correlated field and remotely sensed data through cokriging. 
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While, previous studies have sampled remotely sensed images using a rule of thumb in an 

attempt to increase computational efficiency, this study has demonstrated the use of 

statistical approach of sampling the remotely sensed image data using the semivariogram 

modeling tool. The results showed that using semivariogram to sample image data for 

cokriging offer great potential for future studies within this niche of remote sensing to 

accurately estimate and map the spatial distribution of woody vegetation resources. 

 

 

 

7.1.2 Objectives reviewed 

 

The aim of this study as stated above was accomplished by considering the following set 

objectives: 

 

1. Evaluate the utility of different vegetation indices and texture measures to 

characterise savanna woody vegetation cover. 

 

The first specific objective was to investigate the extent to which spectral vegetation 

indices which included: NDVI, TNDVI, DVI, SR and sqrt-SR computed from the 10m 

resolution SPOT5 multispectral image data can predict woody cover density and 

distribution. The results obtained using correlation coefficient of determination showed 

very weak relationship (highest value, R = 0.21 and R = 0.42 for NDVI) with field sampled 

tree density and percentage woody canopy respectively. The low correlation observed for 

the spectral vegetation indices, particularly, the widely used NDVI was attributed to the 

effect of spatial resolution on a small scaled woody density, as well as attributed to the 

“saturation problem” suggested in a previous study by Mutanga and Skidmore, 2004. 

 

The second specific objective was to investigate whether texture indices computed from 

the 10m resolution SPOT5 multispectral data can improve prediction of woody cover 

density and distribution. The correlation coefficients results obtained for the calculated 

texture measures (e.g. highest value, R = 0.37 and R = 0.59 for 1st order Mean texture 

measure for SPOT MS Band 3) with best field sampled tree density and percentage woody 

canopy respectively was higher than the results obtained from the vegetation indices. It has 
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been shown in this study that the use spatial information contained in the10m resolution 

SPOT5 multispectral data in image textural analysis can overcome the effect of spatial 

resolution on small scaled woody density, as well as overcome the “saturation problem” 

which limit the performance of multispectral vegetation indices in estimating vegetation 

resources such as biomass densities (Mutanga & Skidmore 2004). 

 

2. Compare the utility of SPOT5 multi-spectral and SPOT Panmerged imagery to 

estimate savanna woody cover. 

 

Following objective one, the second set objective set to accomplish the main aim of this 

study was to compare the performance between the 10m resolution SPOT5 multispectral 

bands and 2.5m resolution SPOT panmerged dada. The results revealed that the 2.5m 

resolution SPOT panmerged data is a better predictor of the field sampled woody 

vegetation variables. This was shown by the high correlation coefficient measures (highest 

value, R = 0.37 and R = 0.58 for the panmerged spectral band3) with the best field 

sampled, tree density and percentage woody canopy cover respectively. This study has 

shown that cokriging with image textural index is capable to estimate woody cover 

structure.  The main conclusion made on the high correlation is attributed to the finer 

spatial resolution (2.5m) at panchromatic view geometry for the panmerged band3 

compared to the coarser spatial resolution (10) for the SPOT5 multispectral data. 

 

3. Predict woody vegetation cover using geostatistical techniques (particularly 

cokriging) with the best SPOT derived spectral vegetation data or image texture 

measure. 

 

As stated in the main aim, the final objective of this study was aimed at using the outcome 

of objectives 1 & 2, in an attempt to combine field sampled woody canopy cover, as well 

as density data and the best selected remotely sensed woody vegetation correlate in 

geostatistics (particularly cokriging) to estimate the density and map spatial distribution of 

woody vegetation cover in the study area. The 1st order Mean texture measure calculated 

from the 10m resolution SPOT multispectral Band 3 image yielded the highest correlation 

(R = 0.37 and R = 0.59) with the tree density and percentage woody canopy cover 

respectively. The best SPOT variable (i.e. 1st order Mean texture measure for SPOT5 MS 
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Band 3) was therefore selected for cokriging with both tree density and percentage woody 

canopy cover. 

 

The performance of the cokriging method was validated by calculating a RMSE on an 

independent test dataset. The result obtained reviewed that RMSE for cokriging were 

lower than those obtained from ordinary kriging using the tree density and percentage 

woody canopy cover alone as well as to those obtained using linear regression. This study 

has demonstrated that the utility of a combination of the best SPOT derived vegetation data 

and geostatistics through cokriging improves the accuracy of estimation in savanna woody 

vegetation and spatial distribution. 

 

 

 

7.2 Limitations and Recommendations 

 

This section highlights important limitations of this study and suggests some 

recommendations for future studies aimed at utilizing remote sensing and geostatistical 

approaches to estimate woody vegetation resource components in savanna ecosystems. 

 

 

 

7.2.1 Imagery spatial resolution 

 

In the literature, it is has been established that vegetation and its reflectance are spatially 

correlated (Yang & Prince 2000; Mutanga & Rugege 2006). In this study, evaluation of the 

performance of two images of different spatial (10m SPOT5 multispectral as well as 2.5m 

SPOT5 panmerged) resolutions respectively re-affirms the position in the literature. 

 

Differences in the strength of correlation analysis between the 10m and 2.5m images with 

woody vegetation cover and density has shown to what extent the effect of spatial 

resolution can determine the spatial correlation or relationship  between vegetation and its 

reflectance. In this respect, this study showed that finer resolution image such as 2.5m 

SPOT5 panmerged image data presents high potential for spatial estimation of woody 
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vegetation density in densely vegetated woody savanna rangeland. However, assessment of 

the effect of spatial resolution was limited by only two images. It could be ideal to 

resample the images in several spatial resolutions. Hence, for future studies it is 

recommended to sample different spatial resolutions for more accurate comparison as 

regard the effect of spatial resolution, something that was beyond the scope of this study 

since we mainly focused on understanding geostatistical relationships between image and 

field data. 

 

 

 

7.2.2 Image transformation techniques 

 

In order to explore the full potential of the 10m SPOT5 multispectral image data for 

assessment of relationship between woody vegetation and its reflectance data, various 

image transformation techniques are needed in addition to the use of the raw spectral 

bands. The best correlation results obtained for image texture measures demonstrate that 

applying textural indices to high resolution multispectral data has potential for accurate 

estimation of woody plant density as well as mapping the spatial distributions of woody 

cover where spectral vegetation indices are less effective. 

 

 

 

7.2.3 Geostatistics 

 

7.2.3.1 Sampling image Data For Cokriging 

 

In the literature it is recommended that sampling image data in addition to the pixels that 

coincide with ground sampled locations enhances the computational efficiency within 

cokriging environment (Mutanga & Rugege 2006). Previous studies have therefore 

sampled image data conventionally using a rule of thumb. In this study, we have 

demonstrated that optimal image sampling can be done using a statistical approach such as 

the application of semivariogram modeling technique to determine optimum lag spacing 
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for extraction of pixel values. It was important though, that caution has to be taken in the 

analysis of the experimental semivariogram to avoid overfitting of the model parameters. 

 

In addition, the extraction of pixel values that coincide with the ground sample plots can be 

limited because the image resolution and field sample plots are different. In this study, the 

spatial resolution of the SPOT image data was 10 m resolution, while the sample plots size 

was 30 m × 30 m. In this respect, the individual SPOT5 image bands were resampled to a 3 

× 3 pixels, as well as the image texture indices were calculated using 3 × 3 moving 

windows in order to ensure spatial match between the image data and the ground sample 

plots. It is therefore recommended that image resolution must match the field plot size to 

ensure spatial representation of the image scene to ground observation. 

 

 

 

7.2.3.2 Modeling Vegetation and its reflectance value using Cokriging  

 

As has been stated, vegetation and its reflectance are spatially correlated and this spatial 

reflectance characteristic can be modeled by combining ground sampled and remotely 

sensed vegetation data through cokriging. The application of semivariogram provided the 

means to model the cross-correlated information contained in ground sampled woody 

vegetation parameters and remotely sensed image data. However, semivariogram modeling 

(particularly for the remotely sensed covariable) was time consuming due to large amounts 

of data as compared to the size of field samples. Further research is therefore 

recommended in order to establish an understanding of optimal image sample size required 

to ensure reliable model building for the spatial prediction of woody density and canopy 

cover using cokriging interpolation method. 
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7.3 Concluding Remarks 

 

The research reported in this thesis is intended both for biodiversity monitoring as well as 

wildlife habitat management aspects in the study area. The research output has shown 

direct practical application of the integration of remote sensing and geostatistics for up-

scaling traditional vegetation assessment methods. 

 

It is important to note that while the best correlated image datasets such as best image 

texture index or best SPOT5 panmerged data may be good predictors of woody plant 

density, as well as percentage woody canopy cover, they could be poor indicators of other 

woody structural parameters (e.g. tree basal area, tree height, etc.) which can be equally 

important to the ecologists. 

 

The implication of this study showed that combination of remote sensing and geostatistics 

for woody vegetation density and cover estimation can offer great potential for improving 

semiarid savanna biophysical resources assessment as well as providing means to monitor 

wildlife habitat. However, the present research assessed the spatial aspects of savanna 

woody vegetation density and cover by combining remote sensing and geostatistics, it is 

important that, with availability of multi-temporal image data, future studies could extent 

the techniques employed in the current study for the assessment of temporal aspects of 

savanna woody cover and density. 

 

 

 

 

 

 

 

 

 

 

 

 



   77 

Chapter 8. References 
 

Acharya B. (1999). biodiversity assessment: a spatial analysis of tree species diversity in 

Nepal. In: PhD thesis. ITC-Wageningen, the Netherlands. 

Aldakheel Y.Y. & Danson F.M. (1997). Spectral reflectance of dehydrating leaves: 

Measurements and modelling. International Journal of Remote Sensing, 18, 

3683−3690. 

Atkinson P.M. (1993). The effect of spatial resolution on the experimental variogram of 

airborne MSS imagery. International Journal of Remote Sensing, 14, 1005−1011. 

Atkinson P.M. & Curran P.J. (1997). Choosing an appropriate spatial resolution for remote 

sensing investigations. Photogrammetric Engineering and Remote Sensing, 63, 

1345–1351. 

Atkinson P.M., Dunn R. & Harrison A.R. (1996). Measurement error in reflectance data 

and its implications for regularizing the variogram. International Journal of Remote 

Sensing, 17, 3735−3750. 

Atkinson P.M., Webster R. & Curran P.J. (1992). Cokriging with ground-based 

radiometry. Remote Sensing of Environment, 41, 45-60. 

Atkinson P.M., Webster R. & Curran P.J. (1994). Cokriging With Airborne Mass Imagery. 

Remote Sensing of Environment, 50, 335–345. 

Azzali S. & Menenti M. (2000). Mapping vegetation-soil-climate complexes in southern 

Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. 

International journal of remote sensing, 21, 973–996. 

Baret F. & Guyot G. (1991). Potentials and limits of vegetation indices for LAI and APAR 

assessment. . Remote Sensing of Environment, 35, 61–173. 

Buyantuyev A., Wu J. & Gries C. (2007). Estimating vegetation cover in an urban 

environment based on Landsat ETM+ imagery: A case study in Phoenix, USA 

International Journal of Remote Sensing, 28, 269–291. 

Carr J.R. (1996). Spectral and textural classification of single and multiple band digital 

images. Computers & Geosciences, 22, 849-865. 

Carter G.A. & Knapp A.K. (2001). Leaf optical properties in higher plants: linking spectral 

characteristics to stress and chlorophyll concentration. American Journal of Botany, 

88, 667-684. 

Chica-Olmo M. & Abarca-Hernândez F. (2000). Computing geostatistical image texture 

for remotely sensed data classification. Computers & Geosciences, 26, 373-383. 

Cohen W.B., Maiersperger T.K., Gower S.T. & Turner D.P. (2003). An improved strategy 

for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of 

Environment, 84, 561–571. 

Coops N. & Culvenor D. (2000). Utilizing local variance of simulated high spatial 

resolution imagery to predict spatial pattern of forest stands. Remote Sensing of 

Environment, 71, 248– 260. 

Couteron P. (2002). Quantifying change in patterned semi-arid vegetation by Fourier 

analysis of digitized aerial photographs. International Journal of remote sensing, 

23, 3407–3425. 

Cowen D.J., Jenson J.R. & Hodgson M. (1999). State of knowledge on GIS databases and 

land use/cover patterns:South Carolina. In: Land Use-Coastal Ecosystem Study 

Charleston, South Carolina, USA. 

Curran P.J. (1988). The semivariogram in remote sensing: an introduction.  . Remote 

Sensing of Environment, 24, 493-507. 



   78 

Curran P.J. & Atkinson P.M. (1998). Geostatistics and remote sensing. Progress in 

Physical Geography, 22, 61-78. 

Curran P.J., Dungan J.L. & Peterson D.L. (2001). Estimating the foliar biochemical 

concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark 

methodologies. Remote Sensing of Environment, 76, 349-359. 

Curran P.J. & Foody G.M. (1994). The use of remote sensing to characterise the 

regenerative states of tropical forest. In: Environmental remote sensing from 

regional to global scales. G. M. Foody, & P. J. Curran (Eds.) Chichester: Wiley, 

pp. 44– 83. 

Demisse G.B. (2006). spatial distribution of savanna woody species biodiversity in 

Eerowe, Botswana. In: Forestry for sustainable development: department of 

natural resources. International Institude for Geo-Information Science and Earth 

Observation (ITC) Enschede, pp. 1-97. 

Deutsch C. & Journel A.G. (1992). GSLIB: Geostatistical Software Library and User’s 

Guide, New York: Oxford University Press. 

Dye M., Mutanga O. & Ismail R. (2008). Detecting the severity of Sirex noctilio 

(woodwasp) infestation in a pine plantation in KwaZulu-Natal, South Africa using 

texture measures calculated from high spatial resolution imagery. African 

Entomology, 16, in press. 

Ellis E.C., Wang H., Xiao H.S., Peng K., Liu X.P., Li S.C., Cheng H.O.X. & Yang L.Z. 

(2006). Measuring long-term ecological changes in densely populated landscapes 

using current and historical high resolution imagery. Remote Sensing of 

Environment, 100, 457 - 473. 

Gareth P.H., F. E.C. & Verboom G.A. (2007). Determinants of savanna vegetation 

structure: Insights from Colophospermum mopane. Austral Ecology, 32, 429–435. 

Gertenbach  W.P.D. (1983). Landscapes of the Kruger National Park. Koedoe, 26, 1–121. 

Gillson L. & Duffin K.I. (2007). Thresholds of potential concern as benchmarks in the 

management of African savannahs. Philosophical Transaction of the Royal Society, 

B, 362, 309–319. 

Gong P., Marceau D.J. & Howarth P.J. (1992). A comparison of spatial feature extraction 

algorithms for land-use classification with SPOT HRV data. Remote Sensing of 

Environment, 40, 137–151. 

Gong P., Pu R., Biging G.S. & Larrieu M.R. (2003). Estimation of Forest Leaf Area Index 

Using Vegetation Indices Derived From Hyperion Hyperspectral Data IEEE 

Transactions on Geoscience and Remote Sensing, 41. 

Hall-Beyer M. (2007). In: The GLCM Tutorial Home Page. University of Calgary. Canada. 

Harralick R.M., Shanmugam K. & Dinstein I. (1973). Textural features for image 

classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC, 3, 610-

621. 

Hempson G., P., February E.C. & Verboom A., G. (2007). Determinants of savanna 

vegetation structure: Insights from Colophospermum mopane. Austral Ecology, 32, 

429–435. 

Hudak A.T. (1999). Rangeland mismanagement in South Africa: failure to apply 

ecological knowledge. Human Ecology, 27 55–78. 

Hudak A.T. & Brockett B.H. (2004). Mapping fire scars in a southern African Savannah 

using Landsat imagery. International Journal of remote sensing, 25, 3231–3243. 

Hudak A.T., Fairbanks D.H.K. & Brockett B.H. (2004). Trends in fire patterns in a 

southern African savanna under alternative land use practices. Agriculture, 

Ecosystems and Environment, 101, 307–325. 



   79 

Hudak A.T., Lefsky M.A., Cohen W.B. & Berterretche M. (2002). Integration of lidar and 

Landsat ETM+ data for estimating and mapping forest canopy height. Remote 

Sensing of Environment, 82, 397–416. 

Hudak A.T. & Wessman C.A. (1998). Textural Analysis of Historical Aerial Photography 

to Characterize Woody Plant encroachment in South African Savanna. Remote 

Sensing of the Environment, 66, 317–330  

Hudak A.T. & Wessman C.A. (2001). Textural analysis of high resolution imagery To 

quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955–1996. 

International Journal of remote sensing, 22, 2731–2740. 

Hudak A.T., Wessman C.A. & Seastedt T.R. (2003). Woody overstorey effects on soil 

carbon and nitrogen pools in South African savanna. Austral Ecology 28, 173–181. 

Huete A.R. & Warrick A.W. (1990). Assessment of vegetation and soil water regimes in 

partial canopies with optical remotely sensed data. Remote Sensing of Environment, 

32, 155-167. 

Isaaks E.H. & Srivastava R.M. (1989). An Introduction to Applied Geostatistics, New 

York: Oxford University Press. 

Jackson R.D. & Huete A.R. (1991). Interpreting vegetation indices. Preventive Veterinary 

Medicine, 11, 185–200. 

Jobanputra D.A.C. (2006). Preserving boundaries for image texture segmentation using 

grey level co-occurring probabilities. Pattern Recognition, 39, 234-245. 

Journel A.J. & Huijbregts C.J. (1978). Mining geostatistics, London: Academic Press. 

Jupp D.L.B. & Walker J. (1997). Detecting structural and growth changes in woodlands 

and forests: the challenge for remote sensing and the role of geometric-optical 

modeling. In: H. L. Gholz, K. Nakane,&H. Shimoda (Eds.), The use of remote 

sensing in the modeling of forest productivity Dordrecht: Kluwer Academic 

Publishing., pp. 75– 108. 

Kayitakire C., Hamel C. & Defourny P. (2006). Retrieving forest structure variables based 

on image texture analysis and IKONOS-2 imagery. Remote Sensing of 

Environment, 102, 390-401. 

Khomo L.M. & Rogers K.H. (2005 ). Proposed mechanism for the origin of sodic patches 

in Kruger National Park, South Africa. African Journal of Ecology, 43, 29–34. 

King D.J. (2000). Airborne Remote Sensing in Forestry: Sensors, Analysis and 

Applications. The Forestry Chronicle, 76, 25-42. 

Kokaly R.F. & Clark R.N. (1999). Spectroscopic determination of leaf biochemistry using 

band-depth analysis of absorption features and stepwise multiple linear regression. 

Remote Sensing of Environment, 67, 267-287. 

Kumar L., Schmidt K.S., Dury S. & Skidmore A.K. (2001). Imaging spectrometry and 

vegetation science. In: Imaging Spectrometry (eds. van der Meer F & de Jong SM) 

Dordrecht: Kluwer Academic, pp. 111–155. 

Lark R.M. (1996). Geostatistical description of texture on an aerial photograph for 

discriminating classes of land cover. International Journal of Remote Sensing, 17, 

2115-2133. 

Laslett G.M. (1994). Kriging nonstationary data. Soil Science society of American Journal, 

89, 391–400. 

Laslett G.M., McBratney A.B., Pahl P.J. & Hutchinson M.F. (1987). Comparison of 

several spatial prediction methods for soil pH. Journal of Soil Science, 38, 325-341. 

Lévesque J. & King D.J. (2003). Spatial analysis of radiometric fractions from high-

resolution multispectral imagery for modelling individual tree crown and forest 

canopy structure and health. Remote Sensing of Environment, 84, 589-602. 



   80 

Li Y., Demetriades-Shah T.H., Kanemasu E.T., Shultis J.K. & Kirkham M.B. (1993). Use 

of second derivatives for monitoring prairie vegetation over differerent soil 

backgrounds. Remote Sensing of Environment, 44, 81-87. 

Low A.B. & Rebelo A.G. (1998). Vegetation of South Africa, Lesotho and Swaziland. In. 

Department of Environmental Affairs and Tourism Pretoria. 

Mabunda D., Pienaar D.J. & Verhoef J. (2003). The Kruger National Park: a century of 

management and research. In: The Kruger Experience: Ecology and Management 

of Savanna Heterogeneity, J. Du Toit, H. Biggs and K. Rogers (Eds). London: 

Island Press, pp. 3–21. 

Maggi M., Estreguil C. & Soille P. (2007). Woody vegetation increase in Alpine areas: a 

proposal for a classification and validation scheme. International Journal of 

Remote Sensing, 28, 143–166. 

Materka A. & Stralecki M. (1998). Texture Analysis Methods - A Review. Technical 

University of Lodz, Brussels. 

Matheron G. (1971). The Theory of Regionalized Variables and its Applications. Les 

Cahiers du Centre de Morphologie Matheâmatique de Fontainebleau, Ecole des 

Mines de Paris, Fascicule 5, Fontainebleau. 

McBratney A.B. & Webster R. (1983). How many observations are needed for regional 

estimation of soil properties? Soil Science 135, 177-83. 

Mcgarigal K., Cushman S. & Stafford S. (2000). Multivariate Statistics for Wildlife and 

Ecology Research. Springer: New York. 

McNaughton S.J. (1984). Grazing lawns: animals in herds, plant form, and coevolution. 

Am. Nat., 124. 

Mcnaughton S.J. & Banyikwa F.F. (1995). Plant communities and herbivory. In: Serengeti 

II—Dynamics, management, and conservation of an ecosystem. A..R.E. Sinclair 

and P. Arcese (Eds) Chicago: Chicago Press, pp. 49–70. 

Mentis M.T. & Bailey A.W. (1990). Changing perceptions of fire management in savanna 

parks. Journal of the Grassland Society of Southern Africa, 7, 81-85. 

Miranda F.P., Fonseca L.E.N. & Carr J.R. (1998). Semivariogram textural classification of 

JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest. 

International Journal of Remote Sensing 19, 549-556. 

Moskal L.M. & Franklin S.E. (2001). Classifying multilayer forest structure and 

composition using high resolution, compact airborne spectrographic imager image 

texture. In: American Society of Remote Sensing and Photogrammetry Annual 

Conference St-Louis. 

Mueller-Dombois D. & Ellenberg V. (1974). The count-plot method and plotless sampling 

techniques. In: Aims and Methods of Vegetation Ecology. John Wiley & Sons New 

York, pp. 96–108. 

Murwira M. & Skidmore A.K. (2006). Monitoring change in the spatial heterogeneity of 

vegetation cover in an African savanna. International Journal of Remote Sensing 

27, 2255–2269. 

Mutanga O. (2000). Natural woodland distribution in parts of Mashonaland West province 

in Zimbabwe using GIS based spatial statistics. Geographical Journal of 

Zimbabwe, 30, 1–9. 

Mutanga O., Prins H.H.T., Skidmore A.K., Huizing H., Grant R., Peel M.J.S., Biggs H. & 

Van Wieren S. (2004). Explaining Grass-Nutrient Patterns in a Savanna Rangeland 

of Southern Africa. Journal of Biogeography, 31, 819–829. 



   81 

Mutanga O. & Rugege D. (2006). Integrating remote sensing and spatial statistics to model 

herbaceous biomass distribution a tropical savanna International Journal of Remote 

Sensing, 27, 3499-3514. 

Mutanga O. & Skidmore A.K. (2004). Narrow band vegetation indices solve the saturation 

problem in biomass estimation. International Journal of Remote Sensing, 25, 3999-

4014. 

Niemann K.O. & Visintini F. (2005). Assessment of potential for remote sensing detection 

of bark beetle-infested areas during green attack: a literature review In: Working 

Paper Department of Geography University of Victoria Victoria, B.C. 

Olsson K. (1984). Estimating canopy cover in dryland with Landsat MSS data. Advance 

Space Remote Sensing, 4, 161-164. 

Papritz A. & Stein A. (1999). Spatial prediction by linear kriging. . In: Spatial Statistics for 

Remote Sensing (ed. A. Stein FvdMaBGE). Dordrecht: Kluwer. 

Prince S.D. (1991). A model of regional primary production for use with coarse resolution 

satellite data. International Journal of Remote Sensing, 12, 1313-1330. 

Puissant A., Hirsch J. & Weber C. (2005). The utility of texture analysis to improve per-

pixel classification for high to very high spatial resolution imagery. International 

Journal of Remote Sensing, 26, 733–745. 

Rouse J.W., Haas R.H., Schell J.A. & Deering D.W. (1973). Monitoring vegetation 

systems in the great plains with ERTS. In. Proceedings of the Third ERTS 

Symposium Washington, DC: NASA, pp. 309–317. 

Rouse J.W., Haas R.W., Schell J.A., Deering D.W. & Harlan J.C. (1974). Monitoring the 

vernal advancement and retrogradation (greenwave effect) of natural vegetation. In: 

NASA/GSFCT Type III Final Report Greenbelt, MD, USA. 

Said M.Y. (2003). Multiscale perspectives of species richness in East Africa. In: PhD 

thesis ITC-Wageningen University Enschede, The Netherlands. 

Schmidt K.S. & Skidmore A.K. (2003). Spectral discrimination of vegetation types in a 

coastal wetland. Remote Sensing of Environment, 85, 92-108. 

Scholes R.J. & Archer S.R. (1997). Tree-grass interactions in savannas. Annual Review of 

Ecology and Systematics 28, 517–544. 

Sellers P.J., Randall D.A., Collatz C.J., Berry J.A., Held C.B., Dazlich D.A., Zhang C. & 

Collelo G.D. (1996). A revised land surface parameterization (SiB2) for 

atmospheric GCMs. Part I: Model formation. Journal of Climate, 9, 706-737. 

Serrano L., Penuelas J. & Ustin S. (2002). Remote sensing of nitrogen and lignin in 

Mediterranean vegetation from AVIRIS data: Decomposing biochemical from 

structural signals. Remote Sensing of Environment, 81, 355 - 364. 

Sharp B.R. & Bowman D.M.J.S. (2004). Patterns of long-term woody vegetation change in 

sandstone-plateau savanna woodland, Northern Territory, Australia. Journal of 

Tropical Ecology, 20, 259–270. 

Siska P.P. & Hung I.H. (2001). Assessment if kriging accuracy in the GIS environment. In: 

The 21
st
 Annual ESRI international User Conference San Diego, CA. 

Skidmore A.K., Varekamp C., Wilson I., Knowles E. & Delaney J. (1997). Remote sensing 

of soils in a eucalypt forest environment. International Journal of Remote Sensing, 

18, 39-56. 

Small C. (2003). High spatial resolution spectral mixture analysis of urban reflectance. 

Remote Sensing of Environment, 88, 170-186. 

Soille P. (1996). Morphological partitioning of multispectral images. Journal of Electronic 

Imaging, 5, 252–265. 



   82 

St-Louis V., Pidgeon A.M., Radeloff V.C., Hawbaker T.J. & Clayton M.K. (2006). High-

resolution image texture as a predictor of bird species richness. Remote Sensing of 

Environment, 105, 299-312. 

Stott P. (1991). Recent trends in the ecology and management of the world’s savanna 

formations. Progress in Physical Geography, 15, 18 -28. 

Stuart N., Barratt T. & Place C. (2006). Classifying the Neotropical savannas of Belize 

using remote sensing and ground survey. Journal of Biogeography, 33, 476–490. 

Tietema T. (1993). Biomass determination of fuelwood trees and bushes of Botswana, 

Southern Africa. Forest  Ecological Management, 60, 257-269. 

Trollope W.S.W. & Potgieter A.L.F. (1986). Estimating Grass Fuel Loads With A Disc 

Pasture Meter in the Kruger National Park. Journal of the Grassland Society of 

Southern Africa, 3, 148–152. 

Tso B. & Mather P.M. (2001). Classification methods for remotely sensed data. Taylor & 

Francis, New York. 

Tucker C.J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring 

Vegetation. Remote Sensing of Environment 8, 127-150. 

Turner II B.L., Meyer W.B. & Skole D.L. (1994). Global land use/land cover change: 

Towards an integrated study. AMBIO, 23, 91– 95. 

Tuttle E.M., Jenson R.R., Formica V.A. & Gonser R.A. (2006). Using remote sensing 

image texture to study habitat use patterns: a case study using the polymorphic 

white-throated sparrow (Zonotrichia albicollis). Global Ecology and Biogeography, 

15, 349-357. 

Van Der Meer F. (1998). Mapping dolomitization through a co-regionalisation of 

simulated field and image-derived reflectance spectra: a proof-of- concept study. 

International Journal of Remote Sensing, 19, 1615-1620. 

Venter F.J., Scholes R.J. & Eckhardt H. (2003). The abiotic template and its associated 

vegetation pattern. In: The Kruger Experience: Ecology and management of 

savanna heterogeneit J.T. Du Toit, K.H. Rogers and H. Biggs (Eds) (London: 

Island Press). 

Wallace C.S.A., Watts J.M. & Yoola S.R. (2000). Characterizing the Spatial Structure of 

Vegetation Communities in the Mojave Desert Using Geostatistical Techniques 

Computers & Geosciences, 26, 397-410. 

Webster R. & Oliver M.A. (2001). Geostati.sticsfor Environmental Scientists. J. Wiley & 

Sons, Chichester. 

Wessels K.J., Prince S.D., Zambatis N., Macfadyen S., Frost P.E. & Van Zyl D. (2006). 

Relationship between herbaceous biomass and 1-km2 Advanced Very High 

Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. . 

International Journal of Remote Sensing, 27, 951–973. 

Wilson E.H. & Sader S. (2002). Detection of forest harvest type using multiple dates of 

Landsat TM imagery. Remote Sensing of Environment, 80, 385–396. 

Woodcock C.E., Macomber S.A., Pax-Lenney M. & Cohen W.B. (2001). Monitoring large 

areas for forest change using Landsat. Generalisation across space, time and 

Landsat sensors. Remote Sensing of Environment, 78, 194–203. 

Woodcock C.E., Strahler A.H. & D.L.B. J. (1988b). The use of variograms in remote 

sensing: II. Real digital images. Remote Sensing of Environment, 25, 349-379. 

Woodcock C.E., Strahler A.H. & Jupp D.L.B. (1988a). The use of variograms in remote 

sensing:II. Scene models and simulated images. Remote Sensing of Environment, 

25, 323–348. 



   83 

Yang J. & Prince S.D. (1997). Assessment of the relation between woody canopy cover 

and red reflectance. Remote Sensing of Environment, 59, 428- 439. 

Yang J. & Prince S.D. (2000). Remote sensing of savanna vegetation changes in Eastern 

Zambia,1972-1989. International Journal of Remote Sensing, 21, 301-322. 

Yuan X., King D.J. & Vleck J. (1991). Sugar maple leaf decline assessment based on 

spectral and textural analysis of multispectral aerial videography. Remote Sensing 

of Environment, 37, 47-54. 

 



   82 

Chapter 9. Appendices 
 

Appendix 1: Woody Tree/Shrub Data Collection Form 
 

Section Name: Date: 

VCA_ID: 

Quadrate no: 

Latitude 

Longitude 

Altitude  

 

 

Crown 

Diameter (m) 

 

Plot_ID 

  

Scientific name 

 

No. of 

stem 

 

DAH 

(m) 

 

1 2 

Height 

Of  

stem 

(m) 

% 

canopy 

cover 

Remark  

 

 

 

 

 

       

  

 

 

       

  

 

 

       

 

Checklist:  woody vegetation traits measured at each sampling plot 

• Identify number of woody species per plot 

• Woody Stem basal diameter (m), measured at ankle height (DAH)  

• Woody stem height approximated to the nearest meter 

• Number of woody stems (density per sample plot)  

• Crown diameter of woody trees and shrubs   

• Percentage canopy cover of trees and shrubs   
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Appendix 2: Texture algorithms calculated from the high resolution SPOT5 MS satellite 

image Adapted from Dye et al. (2008) 

 

 

 
Type of 

Measure 

 

Measure Formula Description 
Example: NIR band 

(3x3 window) 

 

 

Entropy 

 

 

[ ])(log)(
1

0

2 ipip
G

i

∑
−

=

 

Where G is the total number of 

intensity levels 

Entropy is a measure of 

histogram uniformity (Materka 

& Stralecki 1998).  

 

 

Data Range 

 

 

{ } { }XX minmax −  

Where kxxxX ,...,, 21=  

Measures the range of the pixel 

data(St-Louis et al. 2006)  

 

Mean AVG = 
K

x
k

k∑
 

The mean calculates the average 

texture value at each plot (St-

Louis et al. 2006). 

 

 

 

 

Skewness 

 

 

 

)()µ(µ 3
1

01

3

3 ipi
G

∑
−

=

− −= σ  

Where G is the total number of 

intensity levels 

Measures the skewness of the 

data set, if the skewness is 0 the 

histogram is equal about the 

mean (Materka & Stralecki 

1998). 

 

 

First-order 

Variance 

( )
1

2

−

−∑
n

Mxij
 

Where ijx  is the digital number of 

the pixel ( )ji, , and n is the number 

of pixels in the moving window 

(ERDAS, 1997).  

 

The variance texture measure 

accounts for the variability of 

the spectral response of pixels  

 

Contrast 

 

1

0,

−

=

∑
N

ji
P ji,

( )
2

ji −  

 

Contrast is a measure of the 

overall amount of local variation 

in a window (i.e., it is 

proportional to the range of grey 

levels) (Yuan et al. 1991). 

 

 

Second-order 

 

 

 

 

 

 

 

 

 

 

 

 

Dissimilarity 

 

1

0,

−

=

∑
N

ji
P ji,

ji −  

 

The Dissimilarity measure is 

similar to the contrast measure. 

However, where contrast 

weights increase exponentially 

(0, 1, 4, 9, etc.) as one moves 

away from the diagonal, 

dissimilarity weights increase 

linearly (0, 1, 2, 3 etc.)(Hall-

Beyer 2007). 
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Type of 

Measure 

Measure Formula Description 
Example: NIR band 

(3x3 window) 

 

Homogeneity 

 

 

1

0,

−

=

∑
N

ji
2

,

)(1 ji

P ji

−+

 

 

Homogeneity measures the 

smoothness of image texture. 

Large changes in spectral values 

will result in very small 

homogeneity values, while small 

changes will result in larger 

homogeneity values (Tuttle et al. 

2006). 

 

Second Moment 

 

1

0,

−

=

∑
N

ji
P ji

2

,
 

 

Second moment or angular 

second moment is a measure of 

homogeneity. A small second 

moment value indicates contrast 

in image texture while a large 

second moment value shows that 

the image is quite homogeneous 

(Yuan et al. 1991). 

 

Entropy 

 

1

0,

−

=

∑
N

ji
P ji,

( )P ji,n1−  

 

 

Entropy is a statistical measure 

of uncertainty. It is low if image 

texture is relatively smooth and 

high if the texture is structured. 

It can be used as a measure of 

the absence of a distinct 

structure or organization of 

image patterns (Yuan et al. 

1991). 

 

 

 

Mean 

 

 

=µ
i
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−

=

∑
N

ji

i ( )P ji ,
   

=µ
j

1

0,

−

=
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N

ji

j ( )P ji ,
 

 

Average probability of grey-

level co-occurrence (Lévesque 

& King 2003). 

 

Variance 

 

σ
2

i
=

1

0,

−
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∑
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ji
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σ
2
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Accounts for the variability of 

the spectral response of pixels 

but considers the pairwise 

combinations of variability. 

 

 

Second-order 

Correlation 
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−
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The correlation texture 

algorithm measures the grey 

level linear-dependency within 

the image (Kayitakire et al. 

2006). 
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Appendix 3: Relationship between woody parameters and first order (1
st
) as well as second order (2

nd
) texture indices 

or SPOT Multispectral image bands (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        Correlation coefficient: * Significance level: p<0.05. 

     ** Significance level: p<0.01. 
 

1
st

 & 2
nd

 order Texture 
Variables 

NO_SHRUBS NO_TREES DAH BASAL_AREA CROWN_D TREE_H CANOPY_C 

1
st 

B3_Mean -0.25* 0.36** 0.08 0.02 0.15 -0.01 0.59** 

2
nd

B3_Mean -0.28* 0.33** 0.11 0.04 0.17 0.00 0.54** 

2
nd

B4_Entropy -0.10 0.34** -0.09 -0.14 0.04 -0.08 0.50** 

1
st
B4_Mean -0.24* 0.36** -0.07 -0.11 0.05 -0.10 0.49** 

2
nd

B4_Dissimilarity -0.32** 0.25* 0.09 0.06 0.29* 0.02 0.48** 

2
nd

B2_Dissimilarity -0.26* 0.23* 0.09 0.07 0.31** 0.24* 0.46** 

2
nd

B1_Dissimilarity -0.26* 0.09 0.14 0.11 0.33** 0.29* 0.41** 

2
nd

B1_Contrast -0.25* 0.10 0.17 0.13 0.38** 0.31** 0.41** 

2
nd

B4_Variance -0.28* 0.25* 0.14 0.13 0.38** 0.09 0.41** 

2
nd

B4_Contrast -0.31** 0.18 0.17 0.14 0.40** 0.10 0.41** 

2
nd

B2_Contrast -0.28* 0.14 0.14 0.11 0.36** 0.27* 0.40** 

2
nd

B3_Entropy 0.10 0.24* -0.07 -0.09 0.01 0.06 0.40** 

2
nd

B2_Entropy -0.10 0.27* -0.03 -0.01 0.09 0.00 0.39** 

2
nd

B3_Dissimilarity -0.12 0.05 0.12 0.07 0.21 0.13 0.38** 

2
nd

B2_Variance -0.24* 0.19 0.07 0.04 0.20 0.21 0.38** 

1
st
B2_Range -0.24* 0.05 0.24* 0.19 0.31** 0.28* 0.37** 

1
st
B3_Range -0.12 0.05 0.23* 0.18 0.31** 0.19 0.37** 

1
st
B2_Mean -0.22 0.23* 0.06 0.01 0.07 -0.12 0.37** 

1
st
B1_Entropy -0.27* 0.14 0.08 0.06 0.16 0.12 0.36** 

2
nd

B4_Mean -0.31** 0.30* -0.03 -0.08 0.02 -0.11 0.36** 

1
st
B3_Variance -0.10 0.07 0.27* 0.23 0.37** 0.22 0.36** 

1
st
B1_Range -0.25* 0.09 0.16 0.11 0.18 0.19 0.35** 
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Appendix 3 continued 

 

 

 

 

 

1
st

 & 2
nd

 order Texture 
Variables 

NO_SHRUBS NO_TREES DAH BASAL_AREA CROWN_D TREE_H CANOPY_C 

1
st
B2_Variance -0.22 0.00 0.27* 0.22 0.36** 0.28* 0.34** 

1
st
B1_Variance -0.22 0.08 0.18 0.13 0.21 0.23* 0.33** 

2
nd

B2_Mean -0.25* 0.26* 0.02 -0.04 0.04 -0.13 0.32** 

2
nd

B3_Contrast -0.14 -0.05 0.18 0.13 0.27* 0.17 0.31** 

2
nd

B3_Variance -0.14 -0.02 0.24* 0.19 0.30** 0.16 0.31** 

1
st
B3_Entropy -0.12 0.02 0.11 0.06 -0.05 0.06 0.31** 

1
st
B4_Range -0.03 0.06 0.21 0.18 0.34** 0.18 0.31** 

2
nd

B1_Variance -0.16 0.11 0.11 0.07 0.14 0.20 0.29* 

1
st
B2_Entropy -0.23* 0.07 0.17 0.15 0.18 0.09 0.28* 

1
st
B4_Entropy 0.11 0.02 0.17 0.12 0.19 0.18 0.22 

1
st
B1_Mean -0.05 0.29* -0.14 -0.14 0.00 -0.18 0.22 

2
nd

B1_Mean -0.03 0.31 -0.20 -0.19 -0.04 -0.19 0.20 

2
nd

B2_Corre 0.02 0.12 0.11 0.09 -0.03 0.07 0.19 

1
st
B2_Skewness -0.06 -0.05 0.09 0.09 0.01 0.08 0.07 

2
nd

B1_Entropy 0.13 0.19 -0.22 -0.19 -0.04 0.00 0.06 

2
nd

B1_Correlation -0.03 -0.17 0.17 0.13 0.07 0.15 -0.02 

1
st
B3_Skewness -0.23 0.04 -0.18 -0.14 -0.22 -0.28* -0.09 

2
nd

B1_Second Moment -0.14 -0.18 0.15 0.13 0.00 -0.06 -0.12 

1
st
B4_Skewness -0.03 0.13 -0.40** -0.41** -0.16 -0.18 -0.13 

2
nd

B3_Correlation 0.07 -0.33* 0.11 0.08 0.02 0.16 -0.16 

1
st
B1_Skewness 0.18 -0.01 -0.04 -0.08 0.02 0.03 -0.18 

2
nd

B1_Homogeneity 0.15 -0.12 0.04 0.03 -0.04 -0.09 -0.25* 

2
nd

B4_Correlation 0.10 -0.33* 0.05 0.04 -0.08 -0.11 -0.27* 

2
nd

B3_Second Moment -0.12 -0.24* 0.06 0.08 -0.03 -0.07 -0.38** 

2
nd

B2_Second Moment 0.09 -0.25* 0.01 0.00 -0.11 -0.03 -0.38** 

2
nd

B3_Homogeneity 0.02 -0.23* 0.07 0.11 -0.01 0.00 -0.42** 

2
nd

B2_Homogeneity 0.14 -0.33* 0.05 0.04 -0.14 -0.04 -0.46** 

2
nd

B4_Second Moment 0.08 -0.34* 0.08 0.13 -0.06 0.06 -0.48** 

2
nd

B4_Homogeneity 0.25* -0.27* -0.02 0.02 -0.15 0.03 -0.50** 


