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Abstract 

Metabolic Syndrome (MetS) affects more than 20% of adults globally. Furthermore, the 

prevalence of MetS in HIV-infected patients on chronic antiretroviral (ARV) therapy continues 

to rise rapidly. This is alarming as a significant portion of people are HIV-infected worldwide, 

with the highest incidence experienced in Sub-Saharan Africa. An estimated 21% of people 

receiving ARV treatment display insulin resistance associated with mitochondrial dysfunction 

and inflammation. The current study aimed to determine the disruptions of metabolic processes 

associated with ARV use (Tenofovir disoproxil fumarate (TDF), Lamivudine (3TC) and 

Dolutegravir (DTG)) following a 120-h exposure period in HepG2 liver cells. Thereafter 

mitochondrial stress, inflammasome activation and insulin resistance promotion were assessed.  

Following HepG2 cellular ARV exposure, it was found that mitochondrial stress proteins SIRT3 

and UCP2 expressions were significantly suppressed. Due to these aberrations, endogenous 

cellular attempts to activate the antioxidant responses (pNrf2, SOD2, CAT) and mitochondrial 

maintenance systems (PINK1 and p62) in selected singular and combinational ARV treatments 

seemed insufficient. This resulted in lipid oxidative damage and reduced ATP production. These 

results indicate that ARVs induce mitochondrial dysfunction in liver cells. 

Furthermore, it was deduced that combinational ARV exposure promoted inflammasome 

activation at a genomic level. This was seen in increased expression of NLRP3 mRNA expression 

and caspase-1 activity with coinciding elevation in IL-1β in mRNA expression. Additionally, JNK 

expression was upregulated, with correlating increases in p-IRS1 protein expression and 

decreased IRS1 mRNA expression being observed. Consequently, both PI3K and AKT mRNA 

expression was suppressed, whilst miR-128a expression was significantly upregulated. 

It can be deduced that the combinational use of ARVs induced mitochondrial dysfunction and 

subsequently prompted inflammasome activation. This led to dysregulation of the 

IRS1/PI3K/AKT insulin signalling pathway and the initiation/promotion of insulin resistance. 

This is further supported through miRNA activation, suggesting possibilities for future studies on 

in vivo ARV use and related epigenetic changes. 
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CHAPTER 1 

Introduction 

Metabolic MetS is a non-communicable disease classified by having one or more metabolic 

irregulates associated with MetS. This includes insulin resistance, hypertension, dyslipidaemia, 

obesity and high cholesterol levels [1]. Such abnormalities lead to the development of diseases 

such as Type 2 Diabetes Mellitus (T2DM), cardiovascular diseases (CVD), strokes and Non-

alcoholic fatty liver diseases (NAFLD) [1,2]. MetS affects an estimated 20-30% of adults 

worldwide, causing the World Health Organization (WHO) to declare the condition a global 

hazard [1,3]. 

HIV is an epidemic affecting over 38 million people globally, with more infections observed in 

marginalised groups [4]. An estimated 26 million PLWH receive highly active antiretroviral 

therapy (HAART), which significantly reduces mortality rates but may induce other 

complications such as MetS [5]. 

Interestingly, the occurrence of MetS in PLWH has grown significantly in the past decade. The 

highest percentage of HIV-infected individuals are in Sub-Saharan Africa, with 7.8 million 

infected individuals residing in South Africa [6]. The prevalence of MetS in the South African-

infected population ranges from 24.1- 28.2% [7]. Despite the severity of MetS and the prevalence 

observed in PLWH taking ARVs, very few molecular or biochemical assessments exist studying 

relationships and possible mechanisms of MetS promotion [8]. 

Previous studies emphasise mitochondrial dysfunction and systemic inflammation as promoters 

of MetS. More commonly, both abnormalities promote insulin resistances that can lead to various 

metabolic complications, including T2DM and NAFLD [2]. Commonly induction of 

mitochondrial stress contributes to reactive oxygen species (ROS) production, oxidative stress, 

and inflammation which is strongly linked to MetS pathogenesis [9].  

Excessive ROS production can cause serine phosphorylation of the insulin substrate receptor I 

(IRS1) through the upregulation of serine kinases such as c-Jun N-terminal kinases (JNK). 

Increases in phosphorylated IRS1 (p-IRS1) cause decreased expression of phosphoinositide 3-

kinase (PI3K) and Protein kinase B (AKT), which prevent downstream signalling cascades that 

usually promote insulin sensitivity [10]. Aside from this, mitochondrial stress can increase the 

production of inflammatory cytokines and decrease the expression of IRS1 with similar 

consequences [9]. 

Furthermore, mitochondrial dysfunction is associated with the activation of the (NOD-like) pyrin 

domain containing 3 (NLRP3) inflammasomes and has been highlighted for its implications in 
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insulin resistance [11]. The inflammasome allows cleavage of pro- interleukin 1β to mature 

interleukin- 1β (IL-1β). The attire is responsible for the upregulation of serine kinase and 

decreased IRS1 expression [9]. The occurrence of the NLRP3 inflammasome in PLWH has been 

well studied; however, mechanisms surrounding combinational ARV usage and possible 

activation of inflammasomes and their' linkage to insulin resistance remain limited. 

Several proteins and pathways regulate mitochondrial stress. The most common stress response 

is the antioxidant defence system, which reduces oxidative stress. Nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) is responsible for the transcription of several genes involved in reducing 

ROS [12]. These include superoxide dismutase 2 (SOD2) and catalase (CAT) [13,14]. However, 

Nrf2 further promotes the upregulation of PTEN-induced kinase 1 (PINK1) and ubiquitin-binding 

protein p62 (p62), which are synonymous with maintaining mitochondrial homeostasis [15,16]. 

Additionally, two essential proteins associated with mitochondrial stress maintenance are Sirtuin 

3 (SIRT3) and Uncoupling protein 2 (UCP2) [17]. UCP2 is activated to increase NAD+/NADH 

ratios in cells to activate SIRT3 under oxidative stress conditions. [17]. SIRT3 deacetylates and 

activates other regulatory proteins, such as SOD2 and CAT [18]. Furthermore, UCP2 expression 

is synonymous with ROS reduction through an effect on oxidative phosphorylation (OXPHOS) 

and, thus, respiration regulation [19,20].  

Additionally, insulin resistance can be regulated epigenetically through the expression of 

miRNAs [21]. MiRNAs function by inhibiting target gene translation through binding the 3' UTR 

regions [22,23]. Increased expression of specific miRNAs results in decreased expression of 

targets related to insulin resistance. In this study, we focus on miR-128a, which is known to 

negatively regulate the IRS1/AKT, thus promoting insulin resistance [24]. 

The use of the antiretrovirals 3TC, TDF, and DTG has been approved as a combinational 

treatment in the first line of therapy for HIV by WHO [25]. Studies often assess the side effects 

of these drugs in isolation, with a deficiency in studies evaluating biochemical mechanisms 

involved in their combinational usage [8]. This is imperative as most ARVs are consumed in a 

signal dose tablet containing all three drugs.  

The liver is well known for metabolic function and first pass-hepatic metabolism of drugs. 

Furthermore, insulin resistance in the liver is associated with NAFLD and T2DM progression. 

HepG2 cells are commonly used for metabolism and toxicity studies due to their high metabolic 

activity [26]. Furthermore, they display similar genetic profiles to primary human hepatocytes 

and have been used in serval studies involving ARVs [26-29]. 
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This study aimed to ascertain the relationship between the singular and combinational use of the 

drugs in mitochondrial- stress and -dysfunction and inflammasome activation in vitro as a possible 

method of MetS promotion. Furthermore, we propose possible miRNA regulation and its 

implications for the progression of insulin resistance. 

We hypothesised that combinational ARV therapy would cause mitochondrial stress and promote 

activation of the NLRP3 inflammasome in vitro. As such, disarray in insulin signalling pathways 

would be observed, resulting in insulin resistance progression. An extensive literature review [8] 

was conducted to understand the relationship between HIV, MetS and ARV treatment. Research 

gaps were identified, and future aims, and objectives were developed based on previous studies. 

The aim of the study was to ascertain the relationship between the singular and combinational use 

of ARVs in mitochondrial- stress and -dysfunction, inflammasome activation and insulin 

resistance promotion in HepG2 cells following a 120-h exposure period. The 3 main objectives 

were to determine the effects of ARVs in HepG2 cells after 120-h exposure:  

1. Expression on mitochondrial stress markers, including SIRT3, UCP2, JNK, pNrf2, 

PINK1, p62, SOD2 and CAT. This was further complemented with an assessment of 

lipid peroxidation and ATP concentrations in vitro. 

2. The expression of genes/markers related to the NLRP3 inflammasome (NLRP3, IL-

1β and caspase-1)  

3. Dysregulation of the IRS1/PI3K/AKT axis. 

Ethical clearance for objectives using HepG2 in vitro models was obtained from the University 

of Kwazulu-Natal Biomedical Research Ethics Committee (Ethical approval number: 

BREC/00002256/2020) (Addendum C). 

As per The University of KwaZulu-Natal’s guidelines (Addendum B), this thesis is being 

submitted in the form of 3 manuscripts (one review paper and two experimental papers): 

1. A review article has been published (Addendum A: International Journal of Molecular 

Sciences) and forms the basis of the study. A comprehensive Literature Review is 

presented in Chapter 2 with new information since the publication. 

2. A research article outlining the effects of ARVs on mitochondrial stress/dysfunction in 

HepG2 cells submitted to Biology. 

3. A research article describing the effects of ARVs on inflammasome activation and insulin 

resistance in HepG2 cells submitted to Cells. 
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CHAPTER 2 

Literature Review 

2.1 Human Immunodeficiency Virus 

The first reported case of HIV was documented in 1981, with the infection reaching pandemic 

status by 2006 [30]. As of 2018, roughly 70 million people had acquired HIV since its discovery, 

with over 35 million deaths worldwide. Currently, an estimated 38 million people are HIV-

infected, with approximately 1.7 million new infections per annum [4,31]. Of the total infected 

population, 26 million PLWH received ARV treatment by the end of 2019 [4]. HAART has saved 

15.3 million lives and decreased the HIV-infected population's mortality [5]. 

Unfortunately, HIV disproportionately affects humans, with marginalised and disadvantaged 

groups experiencing higher infection rates. The most considerable portion of infected individuals 

exists in Sub-Saharan Africa, with 71% of infections occurring in adolescents [32]. In South 

Africa alone, there were 7.8 million PLWH in 2020, increasing the urgency for HIV research in 

the country [6]. 

HIV is associated with several comorbidities that result in severe adverse health outcomes and 

possibly death. At least 690,000 people died from HIV-related illnesses by the end of 2019. To 

effectively curb the pandemic, comorbidities need to be addressed. This necessitates studies 

surrounding immune activation, ARV toxicity and co-infections. PLWH are more susceptible to 

complications such as cancer, kidney failure, osteoporosis, and liver failure [33,34]. More 

recently, complications related to MetS have been highlighted, with more cases of cardiovascular 

diseases (CVD) and type 2 diabetes mellitus (T2DM) [35-37].   

 

2.2 Human Immunodeficiency Virus and Metabolic Syndrome 

Metabolic syndrome can be classified by having one or more metabolic irregularities, including 

insulin resistance, visceral obesity, dyslipidaemia and hypertension (Saklayen, 2018). Each 

pathology has risk factors that increase incidence rates, such as sedentary lifestyles, poor diet and 

age (Jaggers et al., 2014). In relation to HIV, MetS has a specific set of risk factors, including 

chronic inflammation and mitochondrial dysfunction, which promote atherosclerosis, CVD, and 

T2DM (Nguyen et al., 2016; Syed & Sani, 2013).  

In the South African community, which has a significant percentage of PLWH, the prevalence of 

MetS ranges from 24.1- 28.2% [7]. Such statistics are substantial enough to warrant research 

surrounding the two conditions. 
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immune activation. Aside from this, binding to CD4 receptors and co-receptors increases immune 

cells' susceptibility to activation [45-47]. Furthermore, lymphocyte activation may occur via the 

HIV accessory molecule Nef. Additionally, Nef can cause infection of macrophages resulting in 

indirect immune activation. [48-50].  

Previous literature draws links between microbial translocation in HIV as a method for continual 

inflammation. More specifically, following infection, increased lipopolysaccharide (LPS) levels 

(an indicator of microbial translocation) are experienced [51]. Macrophages and dendritic cells 

are stimulated by increased LPS and initiate the production of inflammatory molecules such as 

IL-6, IL-1β, and tumour necrosis factor-alpha (TNF-α). This establishes the pro-inflammatory 

state commonly related to the virus [52]. More specifically, inflammatory conditions are initiated 

via inflammasome activation, which is strongly linked to the pathogenesis of MetS. 

Chronic pro-inflammatory states result in the progression toward diseases such as T2DM and 

CVD [53-55]. Inflammation results in the functional inhibition of adiponectin. The latter is a vital 

protein hormone in fatty acid metabolism and glucose regulation. Therefore, the literature 

surrounding adiponectin suggests potent anti-inflammatory, anti-diabetic and anti-atherosclerotic 

functions that suppress MetS progression [56,57]. Inhibition associated with HIV-induced 

inflammation can result in insulin resistance and atherosclerosis which can progress to T2DM and 

CVD, respectively [58,59]. 

 

2.2.2 Human Immunodeficiency Virus and Mitochondrial Dysfunction  

Mitochondrial dysfunction is one of the primary underlying mechanisms associated with MetS 

and is frequently observed in PLWH [60,61]. The binding of the gp120 protein during infection 

elicits pathogenic effects that can be seen through the loss of mitochondrial DNA (mtDNA), 

impaired calcium signalling and ultimate mitochondrial-mediated apoptosis [62]. Such 

mitochondrial dysfunction/dysregulation promotes the production of pro-inflammatory molecules 

and C-reactive protein [63,64]. 

In other instances, HIV induced mitochondrial membrane dysfunction through the accessory 

molecule Viral Protein R (VPR) [65,66]. This causes the opening of the mitochondrial 

permeability transition pore complex (PTPC) and loss of transmitochondrial potential [67]. Such 

effects disrupt mitochondrial processes and may initiate apoptosis by releasing cytochrome c and 

pro-caspase 9 [67,68]. More specifically, HIV can result in the uncontrolled release of cytochrome 

c, thus increasing apoptosis. Consequently, pro-inflammatory states are induced, resulting in 

adiponectin impaired function. This ultimately leads to MetS [63,69]. 
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2.3 The history of ARVs and MetS 

Highly active antiretroviral therapy has significantly reduced the severity of HIV and mortality 

rates in PLWH; however, its use is associated with several other complications [42,70]. Over time 

researchers have improved ARV formulations with reduced adversities. Older generations of 

ARVs resulted in severe adverse effects and many patients had to discontinue treatment or switch 

combinations of drugs to minimise problems [71]. 

Following several trials and testing, researchers developed singular and combinational ARVs with 

non-nucleoside reverse transcriptase inhibitors (NNRTIs) and Nucleoside reverse transcriptase 

inhibitors (NRTIs) being popular. However, first and second-generation ARVs were later 

associated with severe side effects and HIV drug resistance [72]. This was later improved to yield 

newer generations of drugs that induce fewer complications and adverse outcomes [73,74]. 

However, side effects remain a problem resulting in the WHO calling for more research to 

develop newer generations of ARVs, such as DTG, which is associated with less adverse 

outcomes [72].  

Chronic use of certain ARVS is linked to the pathogenesis of MetS in PLWH [75]. This is 

observed through conditions such as mitochondrial dysfunction, inflammation, insulin resistance 

and dyslipidaemia (Figure 2.2). Metabolic complications associated with ARVs causes changes 

in glucose metabolism and fat distribution [76]. Several population studies report high 

prevalence's of MetS in PLWH on HAART. Promotion of MetS following HAART has been 

observed with protease inhibitors (PIs), NNRTIs, NRTIs, and integrase strand transfer inhibitors 

(INSTIs). The current literature indicates that PIs are most commonly implicated in MetS cases, 

and fewer studies show implications of newer generation ARVs in MetS progression [8]. 







 

10 
 

produces triglycerides that are transported via very low-density lipoproteins (VLDLs) to 

peripheral tissues for storage and usage [82].  

However, impaired insulin signalling prevents such processes, and an accumulation of fatty acids 

in the liver occurs. The latter is described as NAFLD and is commonly seen in T2DM. Both 

conditions synergistically increase the risk of hepatic complications, with people experiencing 

NAFLD having a two-fold higher risk of developing T2DM [2]. This is mainly attributed to 

hepatic insulin resistance being the causative agent for impaired fasting glucose, leading to the 

development of T2DM [83]. 

 

2.6 Mitochondrial Dysfunction and Metabolic Syndrome 

Metabolic syndrome is strongly associated with increased oxidative stress in the human body. 

Mitochondrial dysfunction results in ROS generation and release, which contributes to oxidative 

stress in case of insufficient antioxidant responses [1]. Furthermore, aberrant mitochondrial 

pathways promote systemic inflammation, which is synonymous with several pathologies in 

MetS, including T2DM, NAFLD and CVD [84-87]. Although the aforementioned has been 

described in several studies, specific pathways and mechanisms describing the mitochondria's 

role in the pathogenesis of MetS remain elusive [1].  

Commonly, mitochondrial dysfunction is associated with insulin resistance. Aberrations in 

mitochondrial functions can promote insulin resistance through increased serine phosphorylation 

of IRS1. Elevated ROS levels in cells signal for the upregulation of serine kinases JNK and IκB 

kinase (IKK). Both kinases phosphorylate the receptor at serine residues leading to decreased 

metabolic signalling [10]. Aside from this, serine phosphorylation signals for the production of 

pro-inflammatory molecules, which directly interfere with insulin signalling [88,89].  

Furthermore, mitochondrial ROS production can cause the release of damage-associated 

molecular patterns (DAMPs) which is instrumental in inflammasome activation [85]. 

Inflammasomes have been implicated in insulin resistance through their ability to upregulate 

serine kinases and interference with the IRS1/PI3K/AKT pathway [90,91]. Upregulation of 

mitochondrial stress responses has been associated with increased insulin sensitivity, and thus 

interference with stress responses may promote insulin resistance [10]. 
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2.7 Mitochondrial Stress 

To maintain mitochondrial integrity, several stress responses are upregulated during the detection 

of toxicity or endogenous irregularities. Such mechanisms are vital for reducing stress and 

preventing mitochondrial dysfunction [92]. Therefore, it can be concluded that aberrations in 

stress amelioration can promote the occurrence of MetS. 

The most common mitochondrial stress response is the mediation of endogenous ROS production 

[93]. Although ROS are necessary for proper cellular function, including the synthesis of ATP in 

the mitochondria and oxygen-dependent death, excessive ROS (oxidative stress) can damage 

DNA, proteins, and lipids and disrupt cellular functions. Most cellular ROS are produced by the 

mitochondria, which increases the pace of oxidative injury within the organelle. Therefore, the 

antioxidant defence system provides a way for the mitochondria to minimise oxidative stress 

within the cell [94,95]. 

Another critical example is the mitochondrial unfolded protein response (UPRmt) which is 

initiated by the aggregation of unfolded proteins in the mitochondria [96]. These proteins are often 

oxidatively damaged. The organelle has a multitude of molecular chaperones and enzymes that 

regulate the correct folding of proteins. Furthermore, these are complemented with quality control 

enzymes/proteins to degrade misfolded proteins. The tightly regulated process is disturbed by 

excessive ROS production [96,97]. 

 

2.7.1 Mediators of Mitochondrial Stress 

2.7.1.1 Sirtuin 3 

Sirtuin 3 is endogenous to the mitochondria and results in the activation or inhibition of several 

proteins. SIRT3 is a nicotinamide adenine dinucleotide (NAD+) dependent protein belonging to 

a family of deacetylase enzymes that remove an acetyl group from the amino group of a lysine 

residue of target proteins [98,99] (Figure 2.4). This post-translation modification may increase 

the activity of the protein or cause suppression of activity. Specifically, SIRT3 has been described 

as a modulator for metabolism and ageing pathways [100,101]. 
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2.7.1.2 Uncoupling protein 2 

Reactive oxygen species production from the mitochondria is mainly driven through the proton 

gradient across the inner mitochondrial membrane. This gradient is regulated by a family of 

proteins, namely mitochondrial uncoupling proteins (UCP) [19].  

Within this group, UCP2 has been highlighted for its role in reducing ROS production via the 

uncoupling of OXPHOS. Therefore, the expression of UCP2 is vital for mediating oxidative stress 

[19]. Aside from this, under oxidative stress, UCP2 expression is elevated to increase 

NAD+/NADH ratios in cells, thus promoting the activation of SIRT3 [17]. 

Furthermore, UCP2 has been shown to affect mitochondrial respiration. However, the effects on 

ATP production remain varied in different tissues. More specifically, UCP2 overexpression can 

decrease ATP production depending on the tissue, while in other cases, it may not affect 

respiration. This is attributed to increased protein expression causing changes in mitochondrial 

number and size at different magnitudes for specific cells [20]. 

 

2.7.1.3 Nuclear factor (erythroid-derived 2)-like 2 

Nuclear factor (erythroid-derived 2)-like 2 is the master regulator of homeostatic responses in a 

cell. Upon detection of irregularities, the transcription factor induces first-line defences to 

maintain homeostasis in a cell. These include abnormalities such as oxidative stress and 

uncontrolled inflammation, which are synonymous with MetS [105]. Researchers have 

highlighted Nrf2 as a stress marker, and the transcription factor's expression can be manipulated 

during drug exposure [105,106]. 

Nrf2 is a cytoplasmic protein that remains bound to Kelch-like-ECH-associated protein (Keap1), 

which ensures it is constantly degraded. During stress conditions, kinases phosphorylate Nrf2 and 

triggers dissociation from KEAP1 via disruption of cysteine residues. This prevents degradation 

of Nrf2 and allows for nuclear translocation of phosphorylated (Ser40) Nrf2 (pNrf2). In the 

nucleus, pNrf2 can transcribe for various stress-relieving genes, including those involved in 

antioxidant and anti-inflammatory action [107] (Figure 2.5). 
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Selected NRTIs can directly affect respiration and increases oxidative stress via inhibition of 

Complex IV and I of the electron transport chain (ETC) [112-114]. Inhibition of complexes in the 

ETC cause ROS leakage leading to the release of DAMPs and, thereafter, inflammatory activation 

[115].  

More specifically, Tenofovir and TDF compromised mitochondrial function through increased 

superoxide production and oxygen depletion. As a result, mitochondrial membrane potential was 

altered, and oxidative stress ensued. Such effects have been implicated in T2DM and CVD 

pathogenesis [116]. TDF decreased the function of ETC complexes I, II, IV, and V, significantly 

reducing ATP production in rat kidneys [117]. Furthermore, usage of TDF and 3TC increased 

lipid peroxidation and depleted glutathione levels when paired with EFV in rat liver and kidneys 

[118]. 

On the other hand, the NNRTI, EFV, was found to alter mitochondrial mass and induce oxidative 

stress in hepatic cells. Furthermore, disruption in mitochondrial membrane potential promoted 

apoptosis through cytochrome c release [119,120]. Additionally, efavirenz inhibits complex I of 

the ETC, provoking ROS release and altering ATP production [121]. In neuronal cells, mitophagy 

(clearance of damaged mitochondria) was promoted through mitochondrial depolarisation [122]. 

Ritonavir (PI) increases ROS production and causes changes in mitochondrial membrane 

potential. Furthermore, it interferes with respiration by inhibiting steps in the ETC and OXPHOS 

[123]. Consequently, the drug initiates BAX translocation and cytochrome c release, allowing for 

apoptosis progression. Atazanavir (PI) causes superoxide production, leading to depolarised 

mitochondria and apoptosis [124,125].  

DTG and other INSTIs can alter mtDNA copies and ROS production [123]. More specifically, 

DTG reduces respiration in CD4+ T cells through exacerbated mitochondrial ROS production. 

This leads to mitochondrial dysfunction, aberrant OXPHOS, and increased TNF-α responses, 

ultimately promoting MetS [123]. 

The wide array of research provides sufficient evidence of the effects of HAART on 

mitochondrial dysfunction. This gives plausible reasoning for targeting mitochondria to reduce 

side effects. However, most research asses the singular usage of ARVS and does not report 

combinational treatment. This is perplexing, as most infected individuals receive combinational 

treatment. 
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2.9 Inflammasomes and Metabolic Syndrome 

As the prevalence of MetS has increased over the last decade, several studies highlight possible 

mechanisms promoting the condition [85]. Oxidative stress, advanced glycation end production 

and low-grade inflammation have been emphasised as contributing factors to MetS progression. 

More specifically, they collectively lead to metaflammation- an inflammatory state linked to the 

activation of innate immunity through assembling the multiprotein complexes- inflammasomes. 

Many inflammasomes exist; however, the NLRP3 inflammasome has been the most researched 

in terms of MetS pathogenesis [85].  

Activation of inflammasomes is dependent on the stimulation or pattern recognition receptor 

(PRR), with the most common being toll-like receptors (TLRs) and nod-like receptors (NLRs). 

These can recognise external stimuli, namely pathogen-associated molecular patterns (PAMPs) 

or internal stimuli called damage-associated molecular patterns (DAMPs). DAMPs are released 

when damage occurs to cells [85,126]. Mitochondrial DAMPs include mitochondrial DNA and 

the thioredoxin-interacting protein (TNXIP) [127,128]. Specifically, once the NLRP3 PRR is 

stimulated, it binds to an apoptosis-associated speck-like protein, including a caspase recruitment 

domain (ASC) (Figure 2.7). This allows for the attachment of pro-caspase 1, which is cleaved to 

yield caspase 1. Caspase 1 is a well-known converter of IL-1β, i.e. converts pro-IL-β to mature 

IL-1β [126]. This is crucial for insulin resistance progression as IL-1β can activate the serine 

kinase JNK, increasing p-IRS1 expression. Additionally, it can directly reduce the expression of 

IRS1. Both these mechanisms are crucial for the progression of insulin resistance [10,90] (Figure 

2.7).  
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inhibit glucose 4 transporters (GLUT4) [135]. This impairs glucose tolerance and promotes 

peripheral insulin resistance [136].  

Chronic use of PIs can reduce glucose uptake and impair insulin signalling [137]. Saquinavir 

increases the serine phosphorylation of IRS1 and thus affects insulin signalling. Furthermore, 

Indinavir alters TNF-α levels, activating JNK and IKK, which serine phosphorylates IRS1. The 

increased concentration of p-IRS1 inhibits the insulin receptor and affects downstream insulin 

signalling pathways [138,139]. 

NNRTIs exhibit pro-inflammatory promotion, which leads to reduced insulin sensitivity. They 

can increase the expression of TNF-α, IL-6, and IL-1β, which adversely affects adiponectin 

concentrations. The reduction in adiponectin allows insulin resistance progression [140]. NRTIs 

are not commonly implicated in insulin resistance; however, studies suggest they induce 

mitochondrial toxicity and thus affect insulin signalling [141]. 

Newer generations of ARVs, namely INSTIs, have been linked to insulin resistance. Mechanisms 

surrounding toxicity remain limited. DTG favours the onset of insulin resistance through 

increased oxidative stress and lipid accumulation. Additionally, a study revealed induction of 

mitochondrial dysfunction, which allowed authors to conclude that DTG promotes insulin 

resistance [142]. 

 

2.10 MicroRNAs  

MiRNAs are small non-coding ribonucleotide acids (RNA) comprising ~ 22 nucleotides. 

Research has described the function of these molecules as gene expression modulators via protein 

translation. This has led to theories suggesting that miRNA can be used as biomarkers in disease 

and targets in therapeutic interventions [23,143].  

MiRNAs regulate protein expression via binding to the 3’- untranslated region of mRNA. The 

interaction between the mRNA and miRNA inhibits protein translation (Figure 2.8). The function 

of miRNA allows for the regulation of various biological processes, including cell proliferation, 

cell death and metabolism [22,23]. 
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CD4+ cell recovery, which is strongly connected to persistent inflammation and immune 

activation [145]. 

In other cases, Ritonavir (PI) increased levels of miR-28 which were inversely proportional to the 

expression of the GLUT-4 transporter. This suggests that the drug interferes with glucose 

metabolism [146]. Due to limited evidence, more research needs to be carried out to understand 

the role of ARV in promoting MetS through altered miRNA expression. 

It is essential to note that HIV-infected individuals may have comorbidities that favour the onset 

of epigenetic modifications. Although pre-existing comorbidities can contribute to altered 

miRNA expression, there is substantial data to encourage future epigenetic studies related to ARV 

usage and possible implications in MetS. 
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Abstract 

The prevalence of metabolic syndrome MetS in HIV-infected patients on chronic antiretroviral 

(ARV) therapy continues to rise rapidly, with an estimated 21% experiencing insulin resistance. 

The progression of insulin resistance is strongly related to mitochondrial stress and dysfunction. 

This study aimed to draw links between the singular and combinational use of Tenofovir 

disoproxil fumarate (TDF), Lamivudine (3TC), and Dolutegravir (DTG) on mitochondrial stress 

and dysfunction as an underlying mechanism for insulin resistance following a 120 h treatment 

period using an in vitro system- human liver cells (HepG2). The relative protein expressions of 

pNrf2, SOD2, CAT, PINK1, p62, SIRT3, and UCP2, was determined by Western blot. Transcript 

levels of PINK1 and p62 were assessed using quantitative PCR (qPCR). ATP concentrations were 

quantified using luminometry, and oxidative damage (malondialdehyde (MDA) concentration) 

was measured using spectrophotometry. The findings suggest that despite the activation of 

antioxidant responses (pNrf2, SOD2, CAT) and mitochondrial maintenance systems (PINK1 and 

p62) in selected singular and combinational treatments with ARVs, oxidative damage and reduced 

ATP production persisted. This was attributed to a significant suppression in mitochondrial stress 

responses SIRT3 and UCP2 for all treatments. Notable results were observed for combinational 

treatments with significant increases in pNrf2 (p=0,0090), SOD2 (p=0,0005), CAT (p=0,0002), 

PINK1 (p=0,0064), and p62 (p=0,0228); followed by significant decreases in SIRT3 (p=0,0003) 

and UCP2 (p=0,0119) protein expression.  Overall there were elevated levels of MDA (p=0,0066) 

and decreased ATP production (p=0,0017). In conclusion, ARVs induce mitochondrial stress and 

dysfunction, which may be closely associated with the progression of insulin resistance.   

 

Keywords: Metabolic syndrome, ARVs, mitochondrial stress, mitochondrial dysfunction, 

oxidative stress, insulin resistance. 
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Introduction 

Metabolic syndrome (MetS) is a non-communicable disease affecting 20-30% of adults 

worldwide. Due to the increased incidence of MetS over the years, the World Health Organization 

(WHO) has classified the cluster of pathologies as a global hazard. The pathologies that can occur 

include hypertension, insulin resistance, and dyslipidaemia [1,2]. The occurrence of one or more 

of the pathologies can result in severe diseases such as cardiovascular diseases and Type 2 

Diabetes Mellitus (T2DM). 

The occurrence of MetS in people living with HIV (PLWH) has been described extensively in 

previous studies [3]. HIV affects the global population; however, the most severe effects and 

prevalence are observed in sub-Saharan Africa. By the end of 2019, roughly 38 million cases of 

HIV were reported worldwide, with 7.8 million cases being localised to South Africa [4,5].  

Of the infected population, 26 million had access to ARV treatment [4]. Highly active 

antiretroviral therapy (HAART) has been associated with a significant decrease in the mortality 

rate in PLWH [6]. However, the other side effects remain numerous, with clinical studies showing 

a correlation between HAART usage and MetS. At least 21% of PLWH using HAART displayed 

insulin resistance [7-9]. Despite the severity and rising incidence of cases of MetS following 

HAART use, very few biochemical studies exist showing the mechanisms of action in MetS 

promotion following ARV usage. 

One of the most common biochemical outcomes observed in MetS is mitochondrial dysfunction. 

It is well understood that mitochondrial stress contributes to reactive oxygen species (ROS) 

production, oxidative stress, and inflammation which are strongly associated with MetS [1]. 

Previous evidence links mitochondrial dysfunction and inflammation as an underlying process 

that can promote insulin resistance. 

Several different pathways and proteins ameliorate mitochondrial stress. Two of the most 

common proteins involved in mitochondrial stress maintenance are Sirtuin 3 (SIRT3) and 

Uncoupling protein 2 (UCP2) [10]. Under oxidative stress conditions, UCP2 is activated to 

increase NAD+/NADH ratios in cells to lead to the activation of SIRT3 [10]. SIRT3 functions by 

deacetylating other regulatory proteins, such as superoxide dismutase 2 (SOD2) and catalase 

(CAT) [11]. However, the activation of such proteins is not exclusive to SIRT3 activity but may 

occur through upregulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 

(Nrf2) [12,13]. Nrf2 is responsible for the transcription of several genes involved in a cell’s 

antioxidant response [14]. 
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Additionally, Nrf2 has been highlighted in the activation of mitochondrial maintenance 

genes/proteins [15]. PTEN-induced kinase 1 (PINK1) and ubiquitin-binding protein p62 (p62) are 

both activated in response to oxidative stress. PINK1 deficiency has been associated with excess 

ROS production and aberrant mitochondrial respiration [16]. On the other hand, p62 is 

upregulated in response to protein damage as a method of removal of dysfunctional proteins [17]. 

Nrf2 transcriptionally regulates PINK1 and p62 during oxidative stress [18,19]. Mitochondrial 

dysfunction and subsequent excess ROS production promote insulin resistance by activating c-

Jun N-terminal kinases (JNK) and NLR family pyrin domain containing 3 (NLRP3) 

inflammasome which leads to and deactivation of the IRS1/PI3K/AKT pathway and the 

progression of insulin resistance [20]. 

Insulin signalling is imperative for glucose uptake in cells however in the liver, insulin is 

responsible for the initiation of fatty acid synthesis through the regulation of de novo lipogenesis. 

Aberrations lead to fatty acid accumulation and progression of non-alcoholic fatty liver disease 

NAFLD [21]. The latter is closely linked with the progression in T2DM [22] 

The use of the antiretrovirals 3TC, TDF, and DTG has been approved as a combinational 

treatment in the first line of therapy for HIV by WHO [23]. Studies often assess the side effects 

of these drugs in isolation, with very few studies evaluating biochemical mechanisms involved in 

their combinational usage [24]. This study aimed to ascertain the relationship between the singular 

and combinational use of the drugs in mitochondrial- stress and -dysfunction in vitro as a possible 

method of MetS promotion. In order to achieve the aims a HepG2 cell model was used for testing. 

These liver cells are commonly used for in vitro experiments involving drugs as they display 

similar physiological functions and genetic profiles as primary hepatocytes [25-27]. Evidence 

from this study can be used to develop therapies with reduced side effects related to MetS. 

Materials and Methods 

Antiretroviral drugs (3TC, TDF, and DTG) were sourced from the NIH AIDS reagents program. 

HepG2 cells were obtained from American Type Culture Collection (Johannesburg, South 

Africa). All media used for cell culture and supplements were obtained from Lonza (Basel, 

Switzerland). Luminometry kits (ATP) were obtained from Promega (Madison, Wisconsin, 

USA). Reagents used for Western Blots were acquired from Bio-Rad (Hercules, California, 

USA). All remaining reagents were obtained from Merck (Darmstadt, Germany) unless stated 

differently. 
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Cell culture and treatment 

Culturing of HepG2 cells was carried out in 25 cm3 cell culture flasks using CCM [Eagle's 

minimum essentials medium (EMEM) supplemented with 10% foetal calf serum, 1% pen-strep-

fungizone, and 1% L-glutamine] and incubated in a humidified incubator (37 °C, 5% CO2) until 

roughly 80% confluency was reached. Thereafter cells were treated with the physiological 

concentrations (Cmax) of ARVs (3TC: 1.51µg/ml, TDF: 0.3µg/ml, DTG: 3.67 µg/ml) [19-21] for 

120 hours (h) as per Nagiah et al., 2015 [26]. Fresh media and ARVs were replenished every 24 

h.  All subsequent assays were carried out following treatment as explained above. 

 

ATP Quantification 

Luminometry was used to quantify ATP concentration in HepG2 cells using the CellTiter-Glo® 

Luminescent Cell Viability Assay (Promega, #G7570). Following treatment, 20,000 cells/well in 

0.1 M phosphate buffered saline (PBS) were seeded into an opaque 96-well microtitre plate in 

triplicate to ensure a final volume of 25 µL. The CellTiter-Glo® Reagent was reconstituted as per 

the manufacturer’s instructions, and 25 µL of reagent was added to each well. Plates were 

incubated for 20 min at room temperature (RT) without light exposure. Thereafter, luminescence 

was measured using a Modulus™ Microplate Reader (Turner Biosystems, Sunnyvale, CA, USA). 

Results were expressed as relative light units (RLU). 

 

Lipid Peroxidation- TBARS assay 

Oxidative damage was assessed using the thiobarbituric acid reactive substances (TBARS)  assay, 

which quantifies the malondialdehyde (MDA) levels, a by-product of lipid peroxidation. MDA 

concentration is proportional to ROS production in cells. Following treatment, the supernatant 

was collected from flasks and added to test tubes (200 μL). This was supplemented with 2% 

H3PO4 (200 μL), 7% H3PO4 (200 μL), and thiobarbituric acid/butylated hydroxytoluene solution 

(400 μL). The pH of all samples was adjusted to 1.5 and then boiled for 15 min. After cooling, 

samples were supplemented with 1.5 mL of butanol and vortexed for separation into distinct 

phases. Following separation, 100 μL of the upper phase of each sample was dispensed into a 96-

well microtitre plate in triplicates. The optical density was measured on a spectrophotometer at 

532 nm with a reference wavelength of 600 nm. The average optical density was calculated and 

divided by the absorption coefficient (156 mM−1). Results were represented as MDA 

concentration (μM). 
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Western Blots 

Following 120 h treatment, cells were incubated for 30 min with 150 µL Cytobuster™ Reagent 

(Novagen, San Diego, CA, USA, catalogue no. 71009). Cells were dislodged and lysed with a 

cell scraper, and contents were transferred to 2 mL micro-centrifuge tubes. Samples were 

centrifuged (400× g, 10 min, 4 °C), and crude protein isolates (supernatants) were removed and 

transferred to fresh microcentrifuge tubes. The bicinchoninic acid assay (BCA) was used to assess 

protein concentration, and samples were standardised to a concentration of 1 mg/mL. Following 

standardisation, samples were boiling (5 min, 100 °C) in Laemmli Buffer (distilled water, 

glycerol, 10% SDS, β-mercaptoethanol, 0.5 M Tris-HCl (pH 6.8), 1% bromophenol blue and 

glycerol) in preparation for SDS-PAGE. 

A Bio-Rad compact supply was used to separate proteins. 20 µL of each sample was transferred 

to sodium dodecyl sulphate (SDS) polyacrylamide gels (4% stacking, 10% resolving) and 

electrophoresed (1 h, 150 V). The Bio-Rad Trans-Blot® Turbo Transfer was used to transfer 

separated proteins to nitrocellulose membranes. Membranes were blocked for 1 h at RT with 5% 

Bovine Serum Albumin (BSA) in Tween 20-Tris buffer saline (TTBS: 150 mM NaCl, 3 mM KCl, 

25 mM Tris, 0.05% Tween 20, dH2O, pH 7.5)  

Following blocking, membranes were immuno-probed with the required primary antibody (1: 

1000) (Table 3.1) for 1 h at RT and thereafter 16 h at 4° C. Membranes were washed using 5 mL 

TTBS (5x 10 min). HRP-conjugated secondary antibodies were added to membranes for 1 h at 

RT (Cell signalling Technology; anti-rabbit (#7074S); anti-mouse (#7076S) 1:5000 in 5% BSA). 

Following incubation, membranes were washed (5x 10 min in TTBS) and rinsed with distilled 

water. Protein detection was carried out using the Clarity Western ECL Substrate detection 

reagent (400 µL) (Bio-Rad, Hercules, CA, US)), and images were captured using the Bio-Rad 

ChemiDoc™ XRS+ Imaging System. 

Following detection, membranes were stripped using 5% hydrogen peroxide for 30 min at 37 °C. 

Thereafter, 5% BSA was used for blocking, followed by incubation with HRP-conjugated 

antibody for β-actin (A3854, Sigma-Aldrich). β-actin is a housekeeping protein expressed evenly 

across cells. Image Lab™ Software v6.0 (Bio-Rad, Hercules, CA, USA) was used to analyse the 

results. The relative band density of protein was calculated by normalising results against β-actin. 
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Table 3.1: Antibodies used for immunoprobing 

Antibody Company Catalogue number 

Anti-PINK1 antibody 

[N4/15] 

Abcam ab186303 

Anti-SIRT3 Abcam ab264041 

Recombinant Anti-Nrf2 

(phospho S40) antibody 

[EP1809Y] 

Abcam ab76026 

Anti-SQSTM1 / p62 antibody 

[2C11] - BSA and Azide free 

Abcam ab56416 

SOD2 (D9V9C) Rabbit mAb Cell Signalling 13194S 

Catalase (D4P7B) Rabbit 

mAb 

Cell Signalling 12980S 

UCP2 (D1O5V) Rabbit mAb Cell Signalling 89326S 

 

Quantitative PCR 

RNA Isolation and Quantification 

Following treatment, cells were incubated with 500 µL Trizol and 500 µL PBS (5 min, RT). Cells 

were dislodged and lysed with a cell scraper content was transferred to 2 mL micro-centrifuge 

tubes and stored (24 h, −80 °C). Samples were then thawed and supplemented with 100 µL 

chloroform. This was followed by centrifugation (12,000× g, 10 min, 4 °C). Supernatants were 

aspirated and transferred to 2 mL micro-centrifuge tubes containing 250 µL isopropanol. Samples 

were stored overnight at −80 °C. Following incubation, samples were thawed and centrifuged 

(12,000× g, 20 min, 4 °C). Supernatants were removed and discarded, and the remaining pellet 

was washed in 500 µL of 75 % cold ethanol. Thereafter, centrifugation (7400× g, 15 min, 4 °C) 

was carried out. Ethanol was removed, and the resulting RNA pellets were air dried (1 h, 24 °C) 

and re-suspended in 15 µL nuclease-free water. RNA was quantified using the Nanodrop2000 

spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA). RNA quality was 

determined using the A260/A280 ratio. All RNA samples were standardised to 1000 ng/µL. 
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Quantification of mRNA Expression 

Following standardisation, cDNA was synthesised using the iScript™ cDNA Synthesis kit as per 

manufactures instructions (Bio-Rad, 107-8890, Hercules, CA, USA). 

Transcript levels of relevant genes (Table 3.2) were assessed using the CFX96 Touch™ Real-

Time PCR Detection System (Bio-Rad, Hercules, CA, USA) and SsoAdvanced™ Universal 

SYBR® Green Supermix (Bio-Rad, 1725270). The thermo-cycler conditions for each gene were 

as follows: initial denaturation (8 min, 95 °C), followed by 40 cycles of denaturation (15 s, 95 

°C), annealing (40 s, Table 3.1), and extension (30 s, 72 °C). GAPDH is evenly expressed across 

cells and was used for normalisation. Results were calculated using the Livak and Schmittgen 

(2001) method and were represented as fold change relative to the control cells (2−ΔΔCT) [28]. 

 

Table 3.2: Primer sequences with respective annealing temperatures for genes assessed 

Gene  Sequence (5′-3′) Annealing 

Temperature (°C) 

PINK1 Forward 

Reverse 

GGAGGAGTATCTGATAGGGCAG 

AACCCGGTGCTCTTTGTCAC 

57 

p62 Forward 

Reverse 

CAGAGAAGCCCATGGACAG 

AGCTGCCTTGTACCCACATC 

60 

GAPDH Forward 

Reverse 

TCCACCACCCTGTTGCTGTA 

ACCACAGTCCATGCCATCAC 

--- 

 

Statistical analysis 

GraphPad Prism version 5.0 (GraphPad Software Inc., California) was used to perform all 

statistical analyses. Data were analysed using an unpaired t-test (control vs treatment) and 

represented as the mean ± standard deviation unless otherwise stated. A value of p˂0.05 was 

considered statistically significant. 
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Alarmingly, the prevalence of MetS in PLWH and ARV usage is increasing rapidly, with at least 

21% experiencing insulin resistance [7-9]. Newer generation ARVs are associated with fewer side 

effects than older generations; however, metabolic complications persist with usage [6,23]. This 

study determined the impact of singular and combinational use of ARVs on mitochondrial stress 

as an underlying mechanism for insulin resistance promotion.  

Nrf2 has been described extensively for its endogenous role in antioxidant responses. It allows 

for the transcriptional activation of several genes required to ameliorate oxidative stress [14]. Nrf2 

can lead to the activation of SOD2 and CAT; however, the latter two enzymes can be 

independently activated in response to high levels of ROS and inflammation [34,35]. SOD2 is 

located in the mitochondrial matrix, making it a suitable indicator for mitochondrial stress [36]. 

In the present study, only DTG and combinational usage significantly increased the expression of 

pNrf2 (Figure 3.1A). However, it is important to note that the remaining treatments did not 

decrease pNrf2 expression but rather showed no significant changes. Previous studies in HepG2 

cells using older generation ARVs showed selective upregulation of Nrf2 [26] and supports the 

results from the current study. The significant upregulation of pNrf2 following combinational 

usage indicates possible oxidative stress. 

Interestingly, SOD2 protein expression was increased by 3TC, DTG, and combinational usage 

(Figure 3.1B), suggesting that high levels of ROS were present in the mitochondria following 

exposure. This was followed by increase in CAT expression (Figure 3.1C). The results correlate 

with ambient and upregulated pNrf2 expression. Previous studies have shown strong links 

between DTG usage and increased ROS production following the deregulation of Ca2+ signalling 

[37]. Increased ROS potential via DTG exposure coincides with upregulated responses in this 

study. 

Although only selected singular treatments were able to upregulate antioxidant responses, the 

significant increase in combinational treatment indicates synergistic stress induced by combining 

different ARVs. This is critical information as ARVs are rarely ingested individually but in a 

single dose tablet that contains all three drugs.  

PINK1 and p62 expressions were next analysed due to the prevailing oxidative stress 

environment. PINK1 and p62 are mitochondrial maintenance mediators that can be activated by 

Nrf2 [18,19]. PINK1 is upregulated to ensure mitochondrial respiration occurs and ROS 

production is reduced [16]. Although only 3TC and combinational treatments increased PINK1 

mRNA levels (Figure 3.2A), the protein expression of PINK1 for 3TC, DTG, and combinational 

drug treatments was upregulated (Figure 3.2C). Following treatment with these ARVs, PINK1 
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was possibly post-transcriptionally upregulated in response to aberrations in mitochondrial 

function. The results agree with increases in pNrf2 expression for selected treatments. 

Conversely, we observed significant elevations in transcript levels of p62, but only significant 

increases were noted for DTG and combinational ARV usage of p62 protein expression (Figure 

3.2B; D). Literature indicates that p62 is upregulated in response to protein damage as a method 

for the clearance of oxidatively damaged proteins [17]. This suggests that DTG and combinational 

ARV treatments induced damage of proteins, thus eliciting significant upregulation in p62 

expression. Additionally, p62 can activate Nrf2 in a positive feedback loop in response to 

oxidative stress in cells [18,38]. The considerable upregulation in pNrf2 and p62 for DTG and 

combinational ARV treatment suggest that the positive feedback loop was activated in response 

to stress in the HepG2 cells. Moreover, no significant changes in pNrf2 and p62 protein expression 

were observed for TDF and 3TC treatments, suggesting possible absence of the loop. 

All treatments with ARVs showed significant downregulation in SIRT3 and UCP2 expression 

(Figure 3.3). Both proteins play a role in the amelioration of mitochondrial stress. More 

specifically, suppression of SIRT3 has strongly been associated with mitotoxicity due to 

inadequate stress relief. UCP2 is known to activate SIRT3, among other stress responses in cells 

which are imperative to mitochondrial integrity and function [10]. Furthermore, SIRT3 is 

responsible for the deacetylation of complexes in the ETC, which maintains ATP production, 

while UCP2 is responsible for oxygen consumption in ATP synthesis [39]. Aside from this, UCP2 

has been associated with reductions in mitochondrial oxidative stress, and dysfunction in the 

protein has been linked to cardiovascular diseases [40]. It can be deduced that aberrations in 

mitochondrial stress responses were experienced following exposure to all drugs. Additionally, 

SOD2 and CAT were activated independently of SIRT3 activity. 

Following exposure to ARVs, oxidative damage occurred in the form of lipid peroxidation, which 

has previously been associated with ROS production [41]. MDA concentration (Figure 3.4A) was 

significantly upregulated despite the activation of antioxidant responses and mitochondrial 

maintenance in selected treatments. Older generation ARVs showed increased MDA levels in 

HepG2 cells [23], indicating that newer generation ARVs have similar adverse effects. 

Furthermore, usage of TDF and 3TC increased lipid peroxidation and depleted glutathione levels 

when paired with Efavirenz in rat liver and kidneys [42]. The increase in oxidative damage 

indicates that the cells had insufficient antioxidant responses. 

Significant reductions in ATP production for all treatments was observed (Figure 3.4B). The 

considerable suppression in mitochondrial stress proteins SIRT3 and UCP2 (Figure 3.3) provides 

reasoning for decreased ATP production despite PINK1 upregulation (Figure 3.2C). Reduced 
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ATP production is indicative of dysfunctional mitochondrial activity [43]. Previous studies have 

shown that DTG and TDF decreased mitochondrial ATP production via action on the ETC 

[44,45], supporting the findings in the present study. We further observed increased 

depolarisation of mitochondrial membranes which is indicative of dysfunction however results 

were not significant (Supplementary Figure 3.1) 

Increased oxidative damage is a sign of excess ROS production, which coincides with decreased 

ATP production. The current study provides evidence that ROS production increased despite an 

attempt in liver cells to upregulate antioxidant responses. This was mainly attributed to suppressed 

mitochondrial stress responses. Elevations in mitochondrial ROS have been shown to activate 

JNK and the NLRP3 inflammasome, both of which are responsible for the phosphorylation of 

IRS1 through several intermediates. Subsequently, insulin resistance can be promoted through 

decreased action of the IRS1/PI3K/AKT pathway [20]. The present study, therefore, provides 

evidence that combinational usage of ARVs can lead to mitochondrial dysfunction that can 

promote insulin resistance. This information is crucial as HAART is popularly consumed in 

combination. 

Future recommendations and limitations 

The present study was an in vitro study, which has limitations in terms of application to humans. 

Future studies should assess similar markers in an in vivo humanised HIV+ mouse model to fully 

understand the mechanism of ARV induction of MetS. Aside from this, different exposure periods 

should be considered.  
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Abstract 

Metabolic syndrome (MetS) is a non-communicable disease characterised by a cluster of 

metabolic irregularities. Alarmingly, the prevalence of MetS in people living with Human 

Immunodeficiency Virus (HIV) and antiretroviral (ARV) usage is increasing rapidly. Insulin 

resistance is a common characteristic of MetS that leads to the development of Type 2 diabetes 

mellitus (T2DM). The progression of insulin resistance is strongly linked to inflammasome 

activation. This study aimed to draw links between the combinational use of Tenofovir disoproxil 

fumarate (TDF), Lamivudine (3TC), and Dolutegravir (DTG), inflammasome activation and 

subsequent promotion of insulin resistance following a 120 h treatment period. Furthermore, we 

assess microRNA (miR-128a) expression as a negative regulator IRS1/AKT signalling pathway. 

The relative expression of phosphorylated IRS1 was determined by Western blot. Transcript 

levels of NLRP3, IL-1β, JNK, IRS1, AKT, PI3K, and miR-128a were assessed using quantitative 

PCR (qPCR). Caspase-1 activity was measured using luminometry. Following exposure to ARVs 

for 120 h, NLRP3 mRNA expression (p= 0,0500) and caspase-1 activity (p<0.0001) significantly 

increased. This was followed by a significant elevation in IL-1β in mRNA expression (p= 0,0015). 

Additionally, JNK expression (p= 0,0093) was upregulated with coinciding increases in p-IRS1 

protein expression (p< 0.0001) and decreased IRS1 mRNA expression (p=0,0004). Consequently, 

decreased AKT (p= 0,0005) and PI3K expressions (p= 0,0007) were observed. Interestingly miR-

128a expression was significantly upregulated. The results indicate that combinational use of 

ARVs upregulates inflammasome activation and promotes insulin resistance through 

dysregulation of the IRS1/PI3K/AKT insulin signalling pathway.  

 

 

Keywords: Antiretrovirals, metabolic syndrome, insulin resistance, inflammasome, miR-128a 
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Introduction  

MetS is classified as a global hazard that affects 20-30% of adults by the World Health 

Organization (WHO). The non-communicable diseases can be classified by several different 

pathologies, including insulin resistance, obesity, hypertension, and dyslipidaemia [1,2]. These 

isolated pathologies may contribute to the development of more severe conditions such as Type 

2 Diabetes Mellitus (T2DM) and cardiovascular diseases (CVD) [2]. 

Literature indicates a strong correlation between the occurrence of MetS in people living with 

HIV (PLWH) [3]. HIV affects severely affects a considerable portion of the global population, 

with greater specificity in Sub-Saharan Africa. By the end of 2019, roughly 38 million people 

worldwide lived with HIV, with 1.7 million new infections for the year [4]. Of these statistics, 

7.8 million PLWH were localised to South Africa [5].  

Of the total infected global population, 26 million had access to antiretroviral (ARV) treatment at 

the end of 2019 [4]. Highly active antiretroviral therapy (HAART) has significantly decreased the 

HIV-infected population's mortality [6]. However, clinical studies have indicated that the usage 

of HAART promotes MetS in PLWH, with at least 21% displaying insulin resistance [7-9]. 

Despite these findings, proper mechanisms of action surrounding the combinational usage of 

HAART remain elusive. 

It is well understood that inflammation is strongly linked to the occurrence of insulin resistance 

[10]. The upregulation of inflammatory genes and proteins leads to the serine phosphorylation of 

the insulin receptor substrate I (IRS1), which has several downstream targets that reduce insulin 

sensitivity [11]. More specifically, increased phosphorylated IRS1 (p-IRS1) causes decreased 

expression of Protein kinase B (AKT), and phosphoinositide 3-kinase (PI3K) allow for the 

progression of insulin resistance [12]. 

Aside from the more common pro-inflammatory cytokines, the (NOD-like) pyrin domain 

containing 3 (NLRP3) inflammasome has gained popularity for its implications in insulin 

resistance [13]. This is observed through the cleavage of pro- interleukin 1β to interleukin- 1β 

(IL-1β), which allows for the serine phosphorylation of IRS1 both directly and indirectly [11]. 

The occurrence of the NLRP3 inflammasome in PLWH has been well studied; however, 

mechanisms surrounding combinational ARV usage and possible activation of inflammasomes 

and its' linkage to insulin resistance remain limited [14]. 

Additionally, insulin resistance can be regulated epigenetically through the expression of 

miRNAs [15]. Increased expression of specific miRNAs results in decreased expression of targets 
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related to insulin resistance. In this study, we focus on miR-128a, which is known to negatively 

regulate the IRS1/AKT, thus promoting insulin resistance [16]. 

Insulin resistance in the liver contributes to reduced lipogenesis and consequently causes an 

accumulation of fats. This eventually leads to the pathogenesis of non-alcoholic fatty liver disease 

(NAFLD) [17]. Literature indicates that the risk of T2DM is significantly increased when NAFLD 

occurs [18]. 

3TC, TDF, and DTG have been proposed as a combinational treatment in the first line of therapy 

for HIV by WHO [19]. Studies often assess the side effects of these drugs in isolation, with very 

few studies evaluating biochemical mechanisms involved in their combinational usage [20]. This 

study aimed to understand the relationship between the combinational use of TDF, 3TC and DTG, 

inflammasome activation and its promotion of insulin resistance in liver cells following prolonged 

in vitro exposure. HepG2 liver cells were chosen as they exhibit similar functions as primary 

hepatocytes and have been used in several ARV studies [21-23]. Furthermore, we highlight 

miRNA regulation and its possible implications for the progression of insulin resistance. Evidence 

from this study can be used to develop therapies with reduced side effects related to MetS. 

 

Materials and Methods 

Materials 

Antiretroviral drugs were obtained from the NIH AIDS reagents program. HepG2 cells were 

purchased from American Type Culture Collection (Johannesburg, South Africa). Cell culture 

media and supplements were purchased from Lonza (Basel, Switzerland). Luminometry kits were 

obtained from Promega (Madison, Wisconsin, USA). Western Blot reagents were purchased from 

Bio-Rad (Hercules, California, USA). Unless otherwise stated, all remaining reagents were 

obtained from Merck (Darmstadt, Germany). 

 

Cell culture and treatment 

HepG2 cells were cultured in 25 cm3 cell culture flasks using CCM [Eagle's minimum essentials 

medium (EMEM) supplemented with, 10% foetal calf serum, 1% pen-strep-fungizone, and 1% 

L-glutamine] and maintained in a humidified incubator (37 °C, 5% CO2) until approximately 70% 

confluent. Cells were then exposed to physiological concentrations (Cmax) of ARVs (3TC: 

1.51µg/ml, TDF: 0.3µg/ml, DTG: 3.67 µg/ml) [24-26] for 120 hours (h) as per Nagiah et al., 2015 
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[22]. Cells were washed every 24 h with 0.1 M phosphate buffered saline (PBS) and fresh CCM 

with ARVs were added to flasks. Further assays were carried out following treatment as explained 

above. 

 

Caspase-1 Detection 

Caspase-1 activity was measured using the Caspase-Glo® 1 Inflammasome Assay (G9951, 

Promega, Madison, USA). Following incubation cells with treatment, 50 µL of cells suspension 

(20 000 cells/well in 0.1 M PBS) was added into an opaque microtitre plate in triplicate. The 

Caspase-Glo® 1 reagents were reconstituted as per manufacturer's guidelines and 50 µL was 

added to each well containing cells. Plates were then incubated (dark, 1 h, RT). Luminescence 

was measured using a Modulus™ Microplate Reader (Turner Biosystems, Sunnyvale, CA, USA). 

Results were expressed as relative light units (RLU). 

 

Western Blot 

Following 120 h treatment of HepG2 cells with ARVs, cells were washed with 1 M PBS. 

Thereafter, 150 µL Cytobuster™ Reagent was added to each flask (Novagen, San Diego, CA, 

USA, catalogue no. 71009) and incubated on ice for 30 minutes (min). Mechanical lysis of cells 

was performed using a cell scraper and contents were transferred to 1.5 mL micro-centrifuge tubes 

followed by centrifugation (400× g, 10 min, 4 °C). The supernatant containing crude protein 

isolates were removed and transferred to fresh microcentrifuge tubes and protein concentration 

was quantified. The bicinchoninic acid assay (BCA) was used to quantify proteins, and samples 

were standardised to a concentration of 1.5 mg/mL. Protein samples were prepared for further 

usage by boiling (5 min, 100 °C) in Laemmli Buffer (distilled water, glycerol, 10% SDS, β-

mercaptoethanol, 0.5 M Tris-HCl (pH 6.8), 1% bromophenol blue and glycerol). 

A Bio-Rad compact supply was used to electrophorese 20 µL samples (1 h, 150 V) in sodium 

dodecyl sulphate (SDS) polyacrylamide gels (4% stacking, 10% resolving). Separated proteins 

were transferred onto nitrocellulose membranes using the Bio-Rad Trans-Blot® Turbo Transfer. 

Blocking of membranes were carried out using 5% Bovine Serum Albumin (BSA) in Tween 20-

Tris buffer saline (TTBS: 150 mM NaCl, 3 mM KCl, 25 mM Tris, 0.05% Tween 20, dH2O, pH 

7.5) for 1 h at room temperature (RT). 

Membranes were then immuno-probed with the requisite primary antibody (Cell signalling 

Technology; Phospho-IRS1 (Ser1101) Antibody (#2385T) 1:1000 dilution in 5% BSA) for 1 h at 
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RT and overnight at 4 °C. Thereafter, membranes were washed 5 times for 10 min using 5 mL 

TTBS. Membranes were then incubated in HRP-conjugated secondary antibodies (Cell signalling 

Technology; anti-rabbit (#7074S) 1:5000 in 5% BSA) for 1 h at RT. Following incubation 

membranes were washed (5x 10 min in TTBS) and rinsed with distilled water. Proteins were 

detected following the addition of Clarity Western ECL Substrate detection reagent (400 µL) 

(Bio-Rad, Hercules, CA, US)), and images were captured using the Bio-Rad ChemiDoc™ XRS+ 

Imaging System. 

Membranes were quenched using 5% hydrogen peroxide for 30 min at 37 °C, blocked using 5% 

BSA and incubated in HRP-conjugated antibody for β-actin (A3854, Sigma-Aldrich). β-actin is a 

housekeeping protein expressed evenly across cells. Image Lab™ Software v6.0 (Bio-Rad, 

Hercules, CA, USA) was used for analysis of results. Relative band density of protein was 

calculated by normalising results against β-actin. 

 

Quantitative PCR 

RNA Isolation and Quantification 

Following treatment cells were washed using 1 M PBS and incubated with a mixture of 500 µL 

Trizol and 500 µL PBS (5 min, RT). Mechanical lysis of cells was performed using a cell scraper 

and contents was transferred to 1.5 mL micro-centrifuge tubes and stored (24 h, −80 °C). 

Thereafter samples were thawed and 100 µL chloroform was added to each tube followed by 

centrifugation (12,000× g, 10 min, 4 °C). Supernatants were removed and transferred to 1.5 mL 

micro-centrifuge tubes containing 250 µL. Tubes were incubated overnight at −80 °C. Following 

incubation, samples were thawed and centrifuged (12,000× g, 20 min, 4 °C). Supernatants were 

aspirated and discarded, and the remaining pellet was washed in 500 µL of 75 % cold ethanol 

followed by centrifuged (7400× g, 15 min, 4 °C). RNA pellets were air dried (30 min, 24 °C) and 

re-suspended in 15 µL nuclease-free water. RNA quantification was carried out using 

Nanodrop2000 spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA). RNA quality 

was determined using the A260/A280 ratio. All RNA samples were standardised to 1000 ng/µL. 

Quantification of mRNA Expression 

The cDNA was synthesised from the standardised RNA samples using the iScript™ cDNA 

Synthesis kit as per manufactures instructions (Bio-Rad, 107-8890, Hercules, CA, USA). 

Transcript levels relevant genes (Table 4.1) were assessed using the SsoAdvanced™ Universal 

SYBR® Green Supermix (Bio-Rad, 1725270) and the CFX96 Touch™ Real-Time PCR 
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Detection System (Bio-Rad, Hercules, CA, USA). The thermo-cycler conditions for each gene 

were as follows: initial denaturation (8 min, 95 °C), followed by 40 cycles of denaturation (15 s, 

95 °C), annealing (40 s, Table 4.1), and extension (30 s, 72 °C). Data were normalised against the 

housekeeping gene, GAPDH which is evenly expressed across cells. Results were calculated 

using the Livak and Schmittgen (2001) method and was represented as fold change relative to the 

control cells (2−ΔΔCT) [27]. 

Table 4.1: Primer sequences with respective annealing temperatures for genes assessed 

Gene  Sequence (5′-3′) Annealing 

Temperature 

(°C) 

NLRP3 Forward 

Reverse 

CAGGTGTTGGAATTAGACAAC 

TTCAGACAACCCCAGGTTCT 

60 

IL-1β Forward 

Reverse 

ACGAATCTCCGACCACCACTAC 

TCCATGGCCACAACAACTGACG 

60 

AKT Forward 

Reverse 

TGGACTACCTGCACTCGGAGAA 

GTGCCGCAAAAGGTCTTCATGG 

59 

PI3K Forward 

Reverse 

GAAGCACCTGAATAGGCAAGTCG 

GAGCATCCATGAAATCTGGTCGC 

59 

IRS1 Forward 

Reverse 

AGTCTGTCGTCCAGTAGCACCA 

ACTGGAGCCATACTCATCCGAG 

  

59 

JNK Forward 

Reverse 

GACGCCTTATGTAGTGACTCGC 

TCCTGGAAAGAGGATTTTGTGGC 

59 

GAPDH Forward 

Reverse 

TCCACCACCCTGTTGCTGTA 

ACCACAGTCCATGCCATCAC 

--- 

 

 

Quantification of miR-128a expression 

As per the manufacturer's instructions, cDNA was synthesised using standardised RNA using the 

miScript II RT kit (Qiagen, 218161, Hilden, Germany)). The expression of miR-128a was 

assessed using the miScript SYBR Green PCR Kit (Qiagen, 218073, Hilden, Germany)) and 

CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The thermo-

cycler conditions were as follows: initial denaturation (15 min, 95 °C), followed by 40 cycles of 
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denaturation (15 s, 94 °C), annealing (30 s; 55 °C) and extension (30 s; 70 °C). Data were 

normalised against the housekeeping gene, GAPDH which is evenly expressed across cells. 

Results were calculated using the Livak and Schmittgen (2001) method and was represented as 

fold change relative to the control cells (2−ΔΔCT) [27] 

 

Statistical Analysis 

GraphPad Prism version 5.0 (GraphPad Prism Software Inc.) was used to perform all statistical 

analyses. Data were analysed using an unpaired t-test with data having p < 0.05 considered to be 

significant. 

 

Results 

Combinational usage of ARVs results in the upregulation of key components of the 

inflammasome pathway 

The main components of the inflammasome pathway were assessed to determine activation 

following prolonged exposure. NLRP3 results in several downstream actions that cleave 

procaspase-1 to caspase-1. This ultimately leads to the activation of IL-1β from pro-IL-1β. 

Following exposure to ARVS, NLRP3 mRNA expression was significantly increased (Figure 

4.1A; p= 0,0500) with resulting increases in caspase-1 activity (Figure 4.1B; p= < 0.0001). This 

was accompanied by increased expression of IL-1β mRNA (Figure 4.1C; p= 0,0015). 
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need for the development of new ARVs and phasing in off newer generations of ARVs to ensure 

side effects are manageable and reduce HIV drug resistance [6,19]. This study aimed to look at 

biochemical mechanisms and epigenetic modifications associated with ARVs and MetS in liver 

cells which originate from the metabolic hub of the human body.  Evidence from this study  will 

aid in understanding possible mechanisms associated with ARV usage and insulin resistance. 

More specifically, we highlight the role of the NLRP3 inflammasome in the progression of insulin 

resistance and miRNA regulation of targets associated with insulin resistance/ sensitivity. 

Previous evidence has shown links between inflammasome activation, and the constant pro-

inflammatory states associated with the HIV infection [14]. Little evidence exists to show the 

combinational use of ARVs and inflammasome activation. Inflammasomes are multimeric 

protein complexes that assemble in response to different stressors. Several different types of 

inflammasomes exists with similar functions and different response stimuli [28]. The NLRP3 

inflammasome is mostly activated in response to mitochondrial stress. Upon stimulation the 

NLRP3 proteins bind to the ASC proteins via pyridinoline interactions [29,30]. Pro-caspase-1 

then interacts with the ASC protein via CARD domains which ultimately leads to the auto-

proteolytic maturation of pro-caspase-1 into active caspase-1. The latter allows for pro-

inflammatory cytokines into their bioactive forms. More specifically pro-IL-1β is cleaved to IL-

1β and can then perform inflammatory functions [28] (Figure 4.4). 
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In in vitro work, IL-1β suppresses insulin sensitivity by increasing JNK-dependent serine 

phosphorylation of IRS1. Subsequently, increased p-IRS1 causes aberrations in insulin-induced 

PI3K/Akt signalling in cells [11]. Aside from activation via IL-1β, JNK can be upregulated by 

detecting excessive ROS production and mitochondrial dysfunction [12]. The present study shows 

a significant increase in JNK expression following exposure (Figure 4.2A). Furthermore, p-IRS1 

protein expression increased, coinciding with the increases in JNK (Figure 4.2C). Aside from this, 

previous studies show correlations between increased IL-1β expression and decreased IRS1 

expression [11], correlating with data from the present study (Figure 4.2A, B). Similarly, singular 

ARV treatment produced no significant change in JNK expression (Supplementary Figure 4.2A); 

however, combinational usage prompted responses. Studies have shown that DTG can reduce 

mitochondrial ATP production and redox activity in murine cells, further providing reasoning for 

JNK activation  [33]. In similar studies using rat kidneys, TDF was found to reduce ATP 

production via action on electron transport chain complexes signalling for aberrant mitochondrial 

metabolism [34]. The individual capacity of these drugs to initiate mitochondrial dysfunction 

[34,35] provides reasoning for their synergistic activation of related targets such as JNK and, 

subsequently, IRS1 gene expression.  

Under typical conditions, IRS1 allows for the activation of PI3K and AKT. The latter 

intermediates allow for an increase in glucose uptake, vasodilation, and insulin secretion in cells. 

However, elevated expression of p-IRS1 as a consequence of serine phosphorylation by JNK 

causes a decrease in PI3K and AKT expression (Figure 4.3), thus promoting the occurrence of 

insulin resistance and, ultimately, T2DM if not controlled [12]. The current study showed 

significant decreases in AKT and PI3K expression (Figure 4.3A, B) coinciding with the observed 

elevation of p-IRS1 expression. Previous literature indicates that DTG can promote insulin 

resistance in adipose tissue through the induction of oxidative stress; however, mechanisms 

remained unclear [23]. In earlier studies, using 3TC with other ARVs, caused disturbances in 

glucose metabolism with a significant decrease in insulin-mediated glucose disposal, thus 

showing the promotion of insulin resistance. However, no biochemical mechanism of action was 

established [36]. The current study provides possible mechanisms for the occurrence of insulin 

resistance at a genomic and protein level following combinational usage.  

Aside from this, the evidence suggests that the tested ARVS can promote insulin resistance 

through epigenetic changes. It is well known that miRNAs can negatively regulate the expression 

of specific targets [37]. We assessed the expression of miR-128a which was found to negatively 

regulate IRS1/AKT signalling in previous studies [16]. This occurs when miR-128a binds to the 

3′-untranslated region (3′-UTR) of target mRNA [16]. Following exposure in the current studies, 
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miR-128a was significantly increased while AKT and IRS1 showed correlating decreases (Figure 

4.3C). The data suggests that ARVs can promote insulin resistance through the upregulation of 

miRNA expression. This has implications for future studies that are imperative to understanding 

epigenetic changes induced by ARV exposure.  At present, studies showing combinational use 

and epigenetic modifications remain limited. 

Overall, this study provides insights into the possible mechanism of insulin resistance through 

inflammasome activation. Furthermore, we highlight epigenetic changes that coincided with 

insulin resistance promotion in cells. Combinational usage showed an increase in inflammasome-

related genes and enzymes, resulting in reduced IRS1 signalling and, subsequently, promotion in 

insulin resistance despite the drugs not achieving the same result during individual exposure. This 

was further promoted through miRNA expression.  

 

Future recommendations and limitations 

The present study was carried out using HepG2 cells. Future studies should assess similar markers 

in an in vivo HIV+ model at different exposure periods to fully understand mechanisms.  The 

present study quantifies expression of miR-128a as a regulator of the IRS1/AKT pathway, 

however, future studies need to include more markers and experiments that can contribute to 

understanding epigenetic modifications associated with ARV use. 
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CHAPTER 5 

Conclusion  

Over the past 30 years, the prevalence of MetS has increased dramatically. Changes in the 

environment, diet and lack of exercise have increased the risk of developing pathologies 

associated with the syndrome. These include insulin resistance, visceral obesity, prothrombotic, 

hypercholesterolemia and hyperglycaemia  [1-3]. The pathogenesis of these conditions is initiated 

and significantly promoted by mitochondrial dysfunction and inflammation. Additionally, the 

occurrence of one or more risk factors increases the chance of developing T2DM and CVD by 5-

fold and 2-fold, respectively [4]. 

HIV infection affects a significant portion of the global population. PLWH experience 

mitochondrial dysfunction and persistent inflammation, which can be exacerbated by ARV 

therapy. Following the extensive review of biochemical and epigenetic pathways involved in 

HAART, we found that ARVs drastically increased the lifespan of PLWH. In spite of this 

increased lifespan, side effects remain severe and may manifest as metabolic complications [5]. 

Thereafter, the effects of singular and combinational usage of approved ARVs on mitochondrial 

stress and dysfunction in HepG2 cells was assessed. This in vitro model is useful for determining 

toxicity as it mimics primary hepatocytes with similar physiological and genetic profiles in terms 

of drug metabolism [6,7]. The result indicated severe disarray of mitochondrial stress responses 

required for mitochondrial homeostasis. This was complemented by increased ROS and reduced 

ATP production, indicating possible mitochondrial dysfunction. 

Thereafter, effects on the NLRP3 inflammasome were assessed at transcript levels which showed 

significant upregulation following combinational exposure. Downstream effects included 

aberrations in the IRS1/PI3K/AKT pathways seen through significantly decreased gene 

expression. This was further accompanied by increased phosphorylation of the insulin receptor 

substrates, confirming possible serine phosphorylation. 

Overall, it can be concluded from the HepG2 in vitro model that combinational ARV use induces 

mitochondrial dysfunction and subsequently promotes the activation of the inflammasome. 

Consequently, insulin signalling cascades are disrupted, promoting insulin resistance in liver cells 

and, ultimately, MetS progression. This result is imperative for future studies aiming to reduce 

the side effects of ARVs and possibly prevent MetS in PLWH. Furthermore, findings are 

significant for South Africa, where a high prevalence of MetS is observed in PLWH. 
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CHAPTER 6 

Limitations and Recommendations 

These findings provide further insight into ARV-induced toxicity that can lead to  MetS, albeit in 

an in vitro model. The HepG2 liver cell line is a transformed cancer cell line with similar 

physiological profiles to primary hepatocytes; however, certain genetic components may be 

lacking. Therefore, it is recommended that primary hepatocytes be utilised to verify the HepG2 

cell data. Aside from this, it is recommended that future studies include multiple cell line models 

possible derived from muscle and cardiac tissue to strengthen the current findings. 

In general, in vitro monoculture models have limitations due to the lack of a fully functional 

system of organs and limited time exposure. It is recommended that future studies use in vivo 

animal models; these models would allow a greater degree of complexity and multicellularity, 

and results can be extrapolated to humans. It would, be interesting to test the same parameters 

using samples from HIV-infected individuals that display insulin resistance and compare it with 

healthy non-infected individuals and HIV positive patients without insulin resistance. Data from 

these studies with aid in solidifying the result in the present study. 

Currently, there are limited studies on the role of epigenetic modifications and HAART-induced 

MetS. A future study on DNA methylation, histone modifications and miRNA regulation in 

HAART-induced MetS is recommended. 
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Addendum B: Guidelines for Thesis 

 

 

 

 

GUIDELINES FOR PRESENTATION OF MASTERS AND PHD 

DISSERTATIONS/THESES BY RESEARCH 

1. Purpose The purpose of this document is to provide guidance to students and supervisors on 

how to prepare a dissertation/thesis for Masters by Research and PhD degrees using the 

manuscript or publication format..  

2. Introduction These guidelines must be read together with the College of Health Sciences (CHS) 

Handbook as well as the Jacobs documents on examination policies and procedures for PhD 

degrees. The rules on thesis format are based on modification of point 1 of the definition of terms 

section in the Jacobs document. In this section a thesis is defined as “the supervised research 

component of all PhD degrees, whether by supervised research only, or coursework and research, 

or by papers that are either published or in manuscript form (the supervised research component 

of the PhD degree by paper(s) comprises the introduction, literature review, account of the 

methodology, selection of manuscripts, and conclusion).” A dissertation is defined as “the 

supervised research component of all Masters degrees, whether by supervised research only, or 

coursework and research, or by papers that are either published or in manuscript form (the 

supervised research component of the Masters degree by paper(s) comprises the introduction, 

literature review, account of the methodology, selection of manuscripts, and conclusion).”  

2.1 PhD thesis In the CHS Handbook the rules for a PhD thesis are not in one place; they are 

stated in DR8 a i & ii, DR9 c and CHS 16. DR8 a i & ii and direct that a thesis be presented in 

the standard format together with one published paper or an unpublished manuscript that has been 

submitted to an accredited journal, arising from the doctoral research. CHS16 (thesis by 

publications states that the thesis may comprise of at least three published papers or in press in 

accredited journals; such papers must have the student as the prime author. The same CHS16 

provides for a thesis by manuscripts that may have at least 3 papers with the student as the prime 

author that have not yet been published but are in the form of manuscripts; at least two of such 

papers must constitute original research. In both cases (thesis by publications and manuscripts), 

there must be introductory and concluding integrative material sections.  

The standard type thesis is being phased out in many African countries in favour of the other 

options that originate from the Scandinavian countries. While this format ensures that all details 

of the work done for the doctoral degree are captured and thoroughly interrogated, they often 

remain as grey literature which is mainly useful to other students, usually within the same 

university, although with digitization of theses, such work may become more accessible beyond 

the source university. Apart from the risk of losing good work because of it not being on the 

public domain, as students rarely publish such work after graduating, this approach denies the 

college additional productivity units (PUs) emanating from publications.  

The thesis by publication encourages students to publish key aspects of their doctoral research as 

they will not graduate if the papers are not published or in press. This approach ensures that the 

work of the student enters the public domain before the thesis is examined, providing the examiner 
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with some assurance of prior peer review. The thesis must constitute a full study of the magnitude 

expected of a PhD with the papers providing a sound thread or storyline. Furthermore, the college 

maximizes the students’ work as PUs are awarded for the papers as well as for graduating. 

However, this approach may negatively affect throughput and frustrate students as 2 they cannot 

graduate unless all the papers are published or in press, in addition to the synthesis chapter 

demonstrating the story line of the thesis.  

The option of a thesis by manuscripts ensures that students make efforts to start publishing. The 

risk of not passing because of failure to publish all papers (as in the thesis by publication) does 

not exist under this option. However, the PUs emanating from publications from the doctoral 

work are not guaranteed as the submitted papers may eventually be rejected. Thus there is a 

possibility of the doctoral work remaining on the university library shelves as is the case for the 

standard thesis format. The standard thesis does have the advantage that more details of the 

doctoral work are usually included.  

In view of the above, the best option for the college is that of a thesis by publication. However, 

in the interim, the attractive option is that of thesis by manuscripts, as it provides the possibility 

of publication without putting the student at risk of delayed graduation when some of the 

manuscripts are not published/accepted, which also disadvantages the college in terms of PU 

earnings. The standard thesis option should ultimately be phased out for the stated reasons and 

students are not encouraged to present their theses in that format. Consequently this document 

does not describe the standard thesis. 
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Addendum D: Standard Curve 

 

Figure A1: Standard curve used to determine protein concentrations for Western Blots 

y = 0,9835x + 0,1058
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