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Abstract 

Ever since the proposal of turbo code in 1993, there has been extensive research carried out 

to improve both the performance and spectrum efficiency. One of the methods used to 

improve the spectrum efficiency was to combine turbo code with a trellis-coded modulation 

scheme, called turbo trellis-coded modulation (TTCM). The scheme is used in various 

applications such as deep-space communication, wireless communication and other fields. 

It is a well established fact that an increase in an interleaver size of a TTCM system results in 

an improved performance in the bit error rate (BER). In this thesis repeat-punctured turbo 

trellis-coded modulation (RPTTCM) is proposed. In RPTTCM, the effect of repeat-puncture 

is investigated on a TTCM system, repetition of the information bits increases the interleaver 

size, followed by an appropriate puncturing scheme to maintain the respective code rate. The 

TTCM and RPTTCM systems are simulated in an Additive White Gaussian Noise (AWGN) 

channel. To understand how the RPTTCM scheme will perform in a wireless channel, the 

Rayleigh flat fading channel (with channel state information known at the receiver) will be 

used. The BER performance bound for the TTCM scheme is derived for AWGN and 

Rayleigh flat fading channels. Thereafter repeat-punctured is introduced into the TTCM 

system. The BER performance bound is then extended to include repeat-puncturing. The 

performances of the TTCM and RPTTCM systems are then compared. It was found that the 

RPTTCM system performed better at high signal-to-noise ratio (SNR) in both AWGN and 

Rayleigh flat fading channels. The RPTTCM scheme achieved a coding gain of 

approximately 0.87 dB at a BER of ���� for an AWGN channel and 1.9 dB at a BER of ���� for a Rayleigh flat fading channel, for an information size of N=800. 
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Chapter 1: Introduction 

1.1 Motivation of Research 

Ever since the introduction of the mathematical study of communication by Shannon in 1973 

[1], where he defined the maximum theoretical capacity of a communication system. This has 

lead to a spark in the field of error correcting codes. There have been many error correcting 

codes developed since then. However no such scheme has achieved near Shannon limits as 

that of turbo code, developed by C. Berrou [2], in 1993. The encoding structure is simple, 

consisting of parallel concatenated RSC encoders connected via an interleaver. Ever since the 

publication of turbo code, there has been extensive research carried out to improve the 

performance. The various areas of turbo code that effect its performance are;   

I. RSC encoder 

♦ The type of generator polynomial used by the encoder effects the 

performance [3]. 

♦ Increasing the constrain length (memory size of the RSC encoder) results 

in an increase in performance [3]. 

♦ Increasing the number of parallel concatenated RSC encoders has a slight 

increase in performance [4]. 

II. Decoder 

♦ The type of iterative decoder used has an effect on the performance. The 

iterative maximum a-priori probability (MAP) decoder has a better 

performance than the iterative soft-output Viterbi algorithm (SOVA) 

decoder [3]. However the iterative MAP algorithm is fairly complicated 

and computational long. Therefore the iterative Log-MAP decoder was 

developed to reduce computational difficulty as well as the complexity. 

The iterative Log-MAP decoder has a slight degradation in performance 

compared to the iterative MAP algorithm but still has a better performance 

compared to the iterative SOVA.  

♦ Increasing the number of iteration of the decoding algorithm increases the 

performance of the system irrespective of the type of decoding algorithm 
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used. However, after a certain number of iteration, the increase in 

performance is eligible [5-7].   

III. Puncturing 

♦ Puncturing (deletion of certain bits) is used to increase the code rate. This 

comes with a drop in performance. However there exists an optimal 

puncturing pattern that reduces the degradation in performance [5, 7-9]. 

IV. Interleaver 

♦ There are various types of interleavers developed for turbo code: S-

random, code matching and random (uniform) interleaver just to name a 

few. The code-matching interleaver results in the best performance, 

followed by the S-random interleaver [3]. The increase in performance 

comes with an increase in complexity.  

♦ The size of the interleaver used has a large effect on the performance of 

turbo code (interleaver gain) [10-13], irrespective of the type of interleaver 

used. 

Examining the effects of various aspects have on the performance of the turbo code, the 

inteleaver size has the best potential in increasing the performance. A method to exploit the 

performance gain due to the interleaver size was developed in [14] using repeat-puncturing. 

The repetition of information bits allows the use of a larger interleave size than that of the 

information size. Thereafter the encoded bits are punctured to maintain the code rate. The 

repeat-punctured turbo code (RPTC) scheme showed a coding gain of approximately 1.5 dB 

at a bit error rate (BER) of ���6 compared to traditional turbo code. Repeat-puncturing was 

extended to turbo code cooperation (TCC) system in [15] and superorthogonal convolutional 

turbo code (SCTC) in [16]. The repeat-punctured turbo code cooperation (RPTCC) system 

achieved a coding gain of approximately 1.8 dB at a BER of ���7 while the repeat-punctured 

superorthogonal convolutional turbo code (RPSCTC) system achieved a coding gain of 

approximately 1.4 dB at a BER of ����. Both the RPSCTC and the RPTCC systems were 

then extended to a dual repeat-punctured system. The dual repeat-punctured SCTC achieved 

a coding gain of approximately 0.25 dB at a BER of  ���6 compared to the RPSCTC system 

while the dual repeat-punctured TCC system achieved a coding gain of approximately 1.5 dB 

at a BER of ���7 compared with the RPTCC system. 
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Turbo code has exceptional performance at low SNR, however it does not exploit the 

availability of bandwidth. Trellis-Code Modulation (TCM) developed by Ungerboeck, 

consisted of a convolutional code that maps �8 information bits to a �8�.-Mary modulation 

scheme, using the set partition method. The performance of TCM scheme is not as great as 

that of turbo code, but has high bandwidth efficiency. It was only natural to combine the 

performance of turbo code with the bandwidth efficiency of TCM. The scheme developed is 

called Turbo Trellis-Coded Modulation (TTCM) [12, 17-18].  Since RPTC has better BER 

performance compared to conventional TC, it is natural to combine RPTC with TTCM, 

called repeat-punctured trellis-coded modulation (RPTTCM). In this thesis we investigate the 

BER performance of RPTTCM. An encoding method along with a modified iterative 

decoding algorithm is discussed. The performance bound of a TTCM scheme is explained 

and then extended to a RPTTCM scheme.      

1.2 Outline of Dissertation 

An introduction to the basics of digital communication is presented in chapter 2. A basic 

overview of an overall digital communication system is discussed along with the types of 

noise that effects the system. Thereafter the fundamentals of turbo codes and trellis-coded 

modulation are discussed in Chapter 3. The various elements that make up a turbo coded 

system, interleaver, puncturing and encoders are discussed. The decoding structure of the 

turbo code is derived and discussed. The basic encoding and decoding structure of a trellis-

coded modulation scheme is discussed. In Chapter 4 the derivation of the BER performance 

bound for the TTCM scheme is explain for a AWGN channel. Thereafter the derivation is 

extended to a Rayleigh flat fading channel.  The performance bound of the TTCM scheme is 

then modified to take into account repeat-puncturing. The BER performance bound of the 

RPTTCM scheme is derived for both noise channels. In Chapter 5 we discussed the turbo 

trellis-coded modulation (TTCM) encoder and decoder structure. The TTCM scheme is 

simulated in both AWGN and Rayleigh flat fading channel. The modification needed at the 

TTCM encoder and decoder to take into account repeat-puncturing is discussed. The 

simulation results of the RPTTCM scheme is compared with that of the TTCM scheme. 

Finally Chapter 6 contains the conclusion as well as details for future research. 
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Chapter 2 : Basic of Communication  

2.1 Digital Communication System 

The basic structure of any digital communication system is shown in Fig. 2.1. The system can 

be broken into three distinct sections: a transmitter, a communication channel and a receiver 

section.  

Fig. 2.1 Basic block diagram of a digital communication system. 

The transmitter is made up of the following subsections: information source, source coding, 

channel coding and modulation. Information source represents the raw data that is required to 

be transmitted. Depending on the type of data being transmitted, there may exist certain 

redundancy in the information source. If we transmit the information source with the 

redundancy, we reduce the efficiency of the system. Therefore the information source is sent 

to the source encoder, in order to remove redundancy. At this stage the data is in general not 

suitable for transmitting in a noisy channel. The channel encoder is used to add redundancy, 

i.e., for every k information bits an extra n redundant bits are added to the transmitted 

sequence. Note that the source encoder removes redundancy since it reduces the efficiency of 

the system. The added redundancy from the channel encoder is used to correct errors due to a 

noisy channel. Finally we need to transmit the digitally encoded information over the 

channel. The modulator maps the digital information into various parts of a sinusoidal wave. 

This is achieved by varying either the frequency, amplitude or the phase of the sinusoid. 

The transmitted sequence corrupted by noise introduced by the communication channel is 

received at the receiver section. The function of the receiver is to minimise the effect of noise 

and recover the transmitted sequence. The first step of the receiver is to demodulate the 

received sequence by extracting the relative information from the sinusoid. The received 

sequence can be in the form of a hard or soft decision, depending on the decoder algorithm 

used at the channel decoder. Thereafter the channel decoder is used to correct any error 
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introduced by the channel. The received sequence is then decoded based on the method used 

at the encoder section. 

2.2 Noise 

For any electrical system there contains an unwanted electrical disturbance. Like all systems, 

noise places a huge problem in the telecommunication field, since transmitted messages are 

altered, resulting in an incorrect message received. This unwanted signal has given birth to a 

research field in error correcting code for telecommunication systems. One of the most 

important channel models used for digital communication system is the Additive-White-

Gaussian-Noise (AWGN) channel. The noise is added to a transmitted signal as follows  

9 � : ; � (2.1) 

where : represents the transmitted signal, 9 denotes the received signal corrupted by noise, � 

is a zero-mean AWGN variable with variance  ! � �� �< � and �� is the one sided power 

spectrum density of the noise. 

However, an AWGN channel does not model a wireless channel since transmitted signals 

suffer from degradation due to scattering, reflection and diffraction. We will be focusing on a 

Rayleigh flat fading channel, which is used to model a non-line-of-sight communication link. 

The term flat fading means all frequency component of a transmitted signal experience the 

same magnitude of fading.  Rayleigh flat fading is added to the transmitted sequence as 

follows: 

9 � %: ; � (2.2) 

where % is the fading coefficient. 

2.3 Convolutional Code 

 A simple example of a block diagram of a convolutional code (trellis code) is shown in Fig. 

2.2. (a). It consists of two shift registers (memory blocks) D1 and D2, as well as Exclusive 

OR (XOR) operators arranged in varies configurations. Convolutional codes can be thought 

of as a finite state machine, where the output is determined by the present state of the shift 
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registers as well as the input bits. The convolutional code shown in Fig. 2.2.(a) consists of a 

generator polynomial of G([1 1 1], [1 0 1] ). We will be using the notation ��� �	
 which is in 

the octal form. Fig. 2.2.(b) shows the corresponding state diagram of the convolutional code. 

 

Fig. 2.2 (a) A ����	
 convolutional encoder, (b) state diagram of the ����	
 convolutional 

encoder. 

The information bit �� at time , enters the encoder, producing two parity bits �.�� and �!��. 
For a ����	
 the parity bits are determined as  

�.�� � ���=����.�=����! (2.3) 

and 

�!�� � ���=����! (2.4) 

where ���. and ���!�are the contents of the shift register 4� and 4� respectively at time ,. 
The contents of the registers are determined as 

4�� � ���. (2.5) 

and   
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4�� � ���!�� (2.6) 

where the initial values of the registers are set to zero. 

Recursive Systematic Convolutional (RSC) code is used in many applications such as turbo 

code. The main difference between the conventional convolutional code and the RSC code is 

the feedback loop in its structure. Fig. 2.3.(a) shows the block diagram of a ��������	
 RSC 

encoder. Fig. 2.3.(b) shows the corresponding state diagram of the RSC encoder. 

 

Fig. 2.3 (a) A ������	
 RSC encoder, (b) state diagram of a ������	
 encoder. 

The ability to terminate the trellis sequence (i.e., return the system to a known state) can 

improve the performance of an error correcting code. For a feed forward convolutional code, 

a tail bit of all zero is required to terminate the encoder. However, for a RSC encoder, the 

solution is shown in Fig. 2.4 [3]. The switch is on position A in order to produce the parity 

sequence from the information bit �� and the transmitted information bit is given as >� � ��. 
In order to terminate the trellis code, the switch is moved from position A to B, therefore the 

input to the shift register 4� is set to zero and the transmitted bit is given as �>� � ���.�=����! (tail bits). The required number of tail bits to terminate a trellis code is 

equal to the number of shift register present in the RSC encoder.  
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 Fig. 2.4.  A �������	
 RSC encoder with trellis termination. 
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Chapter 3: Turbo Trellis-Coded Modulation, Repeat-Punctured Turbo 

Trellis Coded Modulation 

Turbo codes and trellis-coded modulation (TCM) scheme have made huge strive forward for 

the coding community. TCM scheme combined coding and modulation, results in a high 

bandwidth efficient code. Then in 1993 turbo code was introduced, resulted in an exceptional 

performance at low signal-to-noise ratio (SNR). Therefore it is only nature to combine both 

schemes. Hence the fundamental of turbo codes and TCM are discussed below.    

3.1 Turbo Code 

Ever since the publication of the paper, “Mathematics description of Communication” by 

Shannon, where the maximum bandwidth of an error correction code is determined by the 

symbol energy. He concluded that an error correcting scheme based upon a randomised 

encoder will result in a close to capacity performance [1]. However he did not suggest a 

scheme that could achieve these limits. The main problem with using a randomised encoder 

is that the decoding algorithm becomes complicated. In 1993 a new error correcting scheme 

called turbo code was introduced by C. Berrou [2], which incorporated randomise encoding 

(due to interleavers) into a structured encoder. 

3.1.1 Turbo Encoder 

The basic structure of a turbo encoder is shown in Fig. 3.1, it consists of N parallel 

concatenated RSC encoders and (N-1) interleavers �?.� @ � ?A�.	 [19]. Turbo codes are 

sometimes known as parallel concatenated convolutional code (PCCC), which is evident in 

its structure. In turbo code, an information sequence �� is passed through the first encoder, 

producing a parity sequence �.��. Thereafter �� is passed through an interleaver to produce a 

new information sequence �B�  based upon an interleaver pattern. The new sequence �B� is then 

passed through to the second encoder. This process of passing the information bits through an 

interleaver to an encoder can be repeated N times. As the number of concatenation encoders 

increases, the code rate decreases. Therefore to increase the rate of the overall encoder, a 

puncturing scheme is used (deletion of certain bits). The parity bits �.�� @��A�� are punctured 

accordingly to produce a sequence )�. Puncturing bits come with a drop in performance; 

however the puncturing scheme can be optimised to reduce the performance degradation [8]. 
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There are certain factors of a turbo encoder which can be used to increase the performance of 

the scheme, for a particular RSC encoder. The factors are the interleaver and the trellis 

termination. The latter reduces the degradation of the performance if the first encoder is 

terminated (Section 2.3). Since the end state of the second encoder determined by the 

interleaved sequence �B�. If a random interleaver is used, this will not guarantee trellis 

termination on the second encoder. However the degradation decreases as the information 

size increases [5]. 

�
�

���������

�
��

������������

�






��	

���

	

�

�
��

����������



��	

�

�������
� 	

�
	

�
	

�
�������

 

Fig. 3.1 Basic structure of a turbo encoder. 

The function of an interleaver is to scramble the information bits �� using a particular method 

to produce a new information sequence �B� defined by a permutation of N elements with none 

of the bits in the sequence �� repeated. There are different types of interleavers such as 

convolutional, code matching and random interleavers. Generally the random or uniform 

interleaver is used, where the indices of the input bits are rearranged based on a randomly 

generated sequence to produce the sequence��B�, which is illustrated in Fig. 3.2. 

The basic reason for using interleavers is to spread burst errors which help the decoder to 

correct the errors, also to reduce the chance of both RSC encoders producing a low weighted 

parity sequence, since the performance of turbo codes is dominated by low weighted 
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codewords. Another contribution to the performance of a turbo code is the interleaver size, 

which results in large coding gains (interleaver gain).  

 

 

Fig. 3.2 Illustration of a random interleaver. 

3.1.2 Turbo Decoder 

In general there are two types of decoding algorithms presented for decoding trellis based 

encoded structure, namely the maximum a-posteriori probability (MAP) algorithm and the 

soft-output Viterbi algorithm (SOVA). Both algorithms have roughly the same performance, 

however as an iterative decoder, the MAP algorithm outperforms the SOVA algorithm [3]. 

3.1.2.1 Iterative MAP Decoder 

The structure of the iterative MAP decoder is shown in Fig. 3.3. Both decoders share the 

information learnt on the information bits, which is used to improve the error correcting 

capability of the decoder. 
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Fig. 3.3 Structure of an iterative MAP decoder.  

 The information sequence C� and the two parity sequence �.�� and �!�� are received at the 

decoder. The punctured parity bits are set to zero since it is equi-likely to be a one or a zero. 

The information bits C� and the parity sequence �.�� is sent to decoder 1 along with the  

extrinsic information D.(���	, initially set to zero, assuming the information bits are either 

one or zero, to compute the log likelihood ratio (LLR) D.���	. Now the extrinsic information D.(���	 is used to calculate the extrinsic information D!(���	, to be used at decoder 2. 

Decoder 2 computes the LLR D!���	�based on the extrinsic information D!(���	, the 

interleaved information sequence CE.�� and the parity sequence �!��. This is the end of the first 

iteration of the iterative decoder. To start the next iteration, the extrinsic information D!(���	 
is used to calculate the extrinsic information D.(���	. Decoder 1 computes the LLR D.���	. 
The process continues for a predetermine number of iterations. After the iterative decoder has 

completed the iteration process, the LLR D!���	 is then deinterleaved and passed to a hard 

decision block (bits decoded as a zero if LLR is less than zero else its decoded as a one) 

where the recovered message ��FFF is obtained. 

3.1.2.2 Iterative MAP Algorithm 

The derivation of the iterative MAP algorithm follows closely the derivation found in [2-3]. 

The purpose of the MAP algorithm is to minimise the bit error probability. The algorithm 

considers all paths in the trellis and divides them into two sets, one set considers all paths 

with information bits equal to one and the other set consists of all paths containing the 
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information bits equal to zero. Therefore it computes the log likelihood ratio of these sets, 

given as 

D���	 � GHIJ)��� � �K�	)��� � �K�	L�� (3.1) 

We assume that the input bit to the encoder at time , is given as ��. We assume that the RSC 

encoder contains MN number of states and the state of the encoder at time , is "� 
corresponding to the input bit �� and the pervious state "��.. We also define the transmitted 

sequence as ��� � O�.� �P� @ � �Q� @ � ��R and received sequence corrupted by noise at the 

decoder as ��� � O�.� �P� @ � �Q� @ � ��R. The transmitted symbols ��.� �P� @ � �Q� @ � ��	 can be 

broken down into the individual information and parity bits, i.e., �Q � O���.� � � � �Q�1� @ � �Q�+R, � � ��@ � �, where n represents the total number of parity and information bits in a 

transmitted symbol �Q, similarly��Q � O���.� � � � �Q�1� @ � �Q�+R. The probability of receiving a 

sequence ���  given a transmitted sequence ���  is 

)���� K���	 �SS)T���
K���
U�V�
V� �� (3.2) 

For a BPSK signal in an AWGN channel we get 

)T���
K���
 � ;�U � �W�? X���Y�Z��	
3![3 �� (3.3) 

and 

)T���
K���
 � \�U � �W�? X���Y�Z]�	
3![3 � (3.4) 

We now compute the numerator in (3.1) as 
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)��� � �K���	 � ^ )�"��. � $_� "� � $K���	�`a�`	bcYd
�� (3.5) 

where e,� represents all state transitions caused by an information bit �� � ��at the t stage of 

the trellis diagram. By applying Bayes’ theorem to (3.5) we get 

)��� � �K���	 � ^ )�"��. � $_� "� � $� ���	)����	�`a�`	bcYd
�� (3.6) 

Similarly, we can compute the denominator in (3.1) as 

)��� � �K���	 � ^ )�"��. � $_� "� � $� ���	)����	�`a�`	bcYf
�� (3.7) 

where e,� represents all state transitions caused by an information bit �� � ��at the t stage of 

the trellis diagram. Substituting (3. 6) and (3.7) into (3.1) we get 

D���	 � GHIg )�"��. � $_� "� � $� ���	�`a�`	bcYdg )�"��. � $_� "� � $� ���	�`a�`	bcYf �� (3.8) 

Now we need to determine )�"��. � $_� "� � $� ���	, since we take into account a memory less 

channel and  the information bits are independent of each other we break up the received 

sequence ��� � O��Q�����Q���Q]�� R therefore  

)�"��. � $_� "� � $� ���	 � )T"��. � $_� "� � $� ��Q��� �Q� �Q]�� U�� (3.9) 

By applying Bayes’ theorem to (3.9) we get 
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)�"��. � $_� "� � $� ���	 � )T�Q]�� K"��. � $_� "� � $� ��Q��� �QU h������������������������������ 
��������)T"��. � $_� "� � $� ��Q��� �QU 

                                                � )��Q]�� K"� � $	 h )T"��. � $_� "� � $� ��Q��� �QU�� 

 

 

(3.10) 

Applying Bayes’ theorem again to (3.10) we get 

)�"��. � $_� "� � $� ���	 � )��Q]�� K"� � $	 h )T"� � $� �QK"��. � $_� ��Q��U h 
������������������������)T"��. � $_� ��Q��U������������������������� 

����������������������������������� )��Q]�� K"� � $	 h )�"� � $� �QK"��. � $_	 h 
�������)T"��. � $_� ��Q��U���������� 

�������������������������� )��Q]�� K"� � $	 h )T"��. � $_� ��Q��U h 
������������������������^)��� � �� "� � $� �QK"��. � $_	.


i� � 

 

 

 

 

 

(3.11)  

Now from (3.11) we define the following terms 

#�
�$_� $	 � )�j� � �� �� � "� � $K"��. � $_	�� 
&��$	 � )��Q]�� K"� � $	�� 
%��$	 � )�"� � $� ��Q 	�� 

(3.12) 

(3.13) 

(3.14) 

where #�
�$_� $	 is known as the state transition probability, &��$	 the reverse probability 

function and %��$	 the forward probability function. Substituting (3.12), (3.13) and (3.14) 

into  (3.8) we get  
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D���	 � GHIg %��.�$	�`a�`	bcYd &��$	#�
�$_� $	g %��.�$	�`a�`	bcYf &��$	#�
�$_� $	�� (3.15) 

Now we need to compute the following probabilities�%��$	, &��$	 and #�
�$_� $	. Let us start 

with #�
�$_� $	, by applying Bayes’ theorem to (3.12), we get 

#�
�$_� $	 � )�j� � �� �� � "� � $K"��. � $_	����������������� 
� )�j� � �� �� � "��. � $_� "� � $	)�"��. � $_	 ��� 

 

(3.16) 

Applying Bayes’ theorem to (3.16) we get 

#�
�$_� $	 � )���Kj� � �� "��. � $_� "� � $	 h )�j� � �� "��. � $_� "� � $	)�"��. � $_	 �� (3.17) 

Note that moving from state "��. � $_ to the state "� � $ due to an information bit j� � � 
results in the transmitted bit �� at the t level of the trellis, therefore (3.17) is given as 

#�
�$_� $	 � )���K��	� )�j� � �K"��. � $_� "� � $	 h )�j� � �� "��. � $_� "� � $	)�"��. � $	 ��� (3.18) 

Finally by applying Bayes’ theorem to (3.18) we get   

#�
�$_� $	 � )���K��	� )���K"� � $� "��. � $_	� )�"� � $K"��. � $_	�� (3.19) 

We define ����	 � )�"� � $K"��. � $_	 as the a-priori probability of j� � �, therefore #�
�$_� $	 is calculated as follows: 
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#�
�$_� $	 � kl
m����	 nopq\g r���� \ �����$	s!t�.�i� � ! u vwX���$_� $	xe�


����������������������������������������������������������������H,wXCv�yX
z����� (3.20) 

where - � � represents the information bit, �����$	 is the encoded output associated with the 

transition from state "��. � $_ to "� � $ in the trellis and n represents the total number of 

encoded bits (information plus the parity bits). Note the expression for  )���K��	 is 

normalised by multiply  (3.2) with TW�? Ut  [3]. 

Now we compute the reverse probability &��$	. Since the transition from state "� � $ to state "�]. � $_ is dependant of the received bit ��, hence (3.13)  becomes 

&��$	 � )��Q]�� K"� � $	��������������������������������������������������������������������������� 
�^ )��Q]�� � "�]. � $_K"� � $	�{|�.

`ai� ���������������������������� 
 

(3.21) 

By applying Bayes’ theorem to (3.21) we get 

&��$	 �^ )��Q]�� � "�]. � $_� "� � $	)�"� � $	{|�.
`ai� ��� (3.22) 

Since the received bits are independent of each other, we split the received sequence into  �Q]�� � O��Q]��� �Q]P� ], hence (3.22) becomes 

&��$	 �^ )��Q]P� � ��]�� "�]. � $_� "� � $	)�"� � $	{|�.
`ai� ��� (3.23) 

By applying  Bayes’ theorem to (3.23) we get 

&��$	 �^ )��Q]P� K��]�� "�]. � $_� "� � $	 h )���]�� "�]. � $_� "� � $	)�"� � $	{|�.
`ai� ����������  
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�^ )��Q]P� K"�]. � $_	 h )���]�� "�]. � $_� "� � $	)�"� � $	 ������������������������{|�.
`ai�  

�^ )��Q]P� K"�]. � $_	 h )���]�� "�]. � $_K"� � $	 h )�"� � $	)�"� � $	{|�.
`ai� ���� 

 

 

(3.24) 

Note that )��Q]P� K"�]. � $_	 � &�].�$_	 and the probability )�"�]. � $_� ��].K"� � $	 can be 

computed by the summation of all possible information bits j� � � for � � �� �. Hence (3.24) 

becomes 

&��$	 �^ &�].�$_	�^ )�j�]� � �� ��]�� "�]. � $_K"� � $	
b�.��	 �������������{|�.
`ai�  

�^ &�].�$_	�^ #�].
 �$_� $	
b�.��	
{|�.
`ai� ������������������������������������������������ 

 

(3.25) 

Therefore the value of &��$	 is calculated recursively using (3.25) with the initial 

value�&A].��	 � �, assuming trellis termination and &A].��	 � � for � } �. The graphical 

representation of the computation of &��$	 is shown in Fig. 3.4. The value &��$	 for the state "� � $ at the t state of the trellis diagram is equal to the &�].�$_	 value at the state "�]. � $_ 
multiplied by the transition probability��#�].
 �$_� $	, assuming there exists a connection 

between the states "�]. � $_ and "� � $ [20-21]. 
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Fig. 3.4.  Graphical representation of the reverse probability function. 

Finally we need to determine the forward transition probability %��$	. Since the received bits 

are independent of each other, we split the received sequence, ��Q � O��Q��� �Q] and the state "� � $ is dependant on the pervious state "��. � $_, hence (3.14) is given as 

%��$	 � )�"� � $� ��Q 	����������������������������������������������� 
�^ )T"��. � $_� "� � $� ��Q��� �QU{|�.

`ai� ����� (3.26) 

By applying Bayes’ theorem to (3.26) we get 

%��$	 �^ )T"��. � $_� ��Q��U{|�.
`ai� h )T"� � $� �QK"��. � $_� ��Q��U�������������� 

��^ )T"��. � $_� ��Q��U{|�.
`ai� h )�"� � $� �QK"��. � $_	��������������� 

 

(3.27) 

Note that )T"��. � $_� ��Q��U � %��.�$_	 and the probability )�"� � $_� �QK"��. � $_	 can be 

computed by the summation of all possible information bits j� � � for � � �� �� Hence (3.27) 

becomes, 
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%��$	 �^ )T"��. � $_� ��Q��U{|�.
`ai� ^ )�j� � �� �� � "� � $K"��. � $_	
b�.��	 � 

�^ %��.�$_	 h^ #�
�$_� $	
b�.��	
{|�.
`ai� ���������������������������������������������������������� 

 

(3.28) 

Therefore the value of %��$	 is calculated recursively using (3.28) with the initial value %���	 � � and %���	 � � for � } � [20-21]. The graphical representation of the computation 

of %��$	 is shown in Fig. 3.5. The value %��$	 for the state "� � $ at the ,-th state of the trellis 

diagram is equal to the %��.�$_	 value at the state "��. � $_ multiplied by the transition 

probability �#�
�$_� $	, assuming there exists a connection between the states "��. � $_ and "� � $� 

 

Fig. 3.5 Graphical representation of the forward probability function. 

We can rewrite (3.15) as [3] 

D.�j�	 � GHI��!��	��!��	 ; � ! ���� ;~.( ���	� (3.29)  
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where ��!��	 is the probability of �� � ����� �,���	 is the probability of �� � � at decoder 2 

and ~.( ���	 represents the extrinsic information of decoder 1 which is given as 

~.( �j�	 � GHIg %��.�$_	&��$_	{|`�`ai. X:� �g TC��� \ :���U!t�.�i. � ! �
g %��.�$_	&��$_	{|`�`ai� X:� �g TC��� \ :���U!t�.�i. � ! �� (3.30) 

Since the second decoder includes the received soft information�����. Hence the contribution 

due to the received information must be removed from ~. ���	. Since ~.( ���	 does not 

contain the received information C���, it can be used as the a-priori probability  for the second 

decoder, i.e., 

~.( �j�	 � $HI��!��	��!��	� (3.31)  

It can be shown that the a-priori probability  ��!��	 and  ��!��	 is given as [6] 

��!��	 � X~d��jY	� ; X~d��jY	�� (3.32)  

and  

��!��	 � �� ; X~d��jY	�� (3.33) 

Now we have to determine the extrinsic information ~.( ���	 and ~!( ���	 from the MAP 

algorithm as follows:  

~.( ���	 � D.���	 \ � ! ���� \~!( ���	 (3.34) 

and  
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~!( ���	 � D!���	 \ � ! ���� \~.( ���	� (3. 35) 

We now extend the iterative decoder for a Rayleigh flat fading channel with the channel state 

information (CSI) known at the decoder. The forward and reverse recursive probability 

function %��$	  and &��$	  are determined using the modified transition probability #�
�$_� $	 , 
for a fading channel #�
�$_� $	, which is given as [3] 

#�
�$_� $	 � kl
m����	 nopq\g r���� \ %������$	s!t�.�i� � ! u vwX���$_� $	xe�


����������������������������������������������������������������H,wXCv�yX
z����� (3.36)  

where %/represents the fading coefficient. Following a similar derivation above, LLR of the 

information bit for a fading channel can be decomposed to the form 

D.�j�	 � GHI����	����	 ; � ! %����� ;~.( ���	� (3. 37) 

where the extrinsic information ~.( ���	 is given as 

~.( �jQ	 � GHIg %��.�$_	&��$_	{|`�`ai. X:� �g TC��� \ %�:���U!t�.�i. � ! �
g %��.�$_	&��$_	{|`�`ai� X:� �g TC��� \ %�:���U!t�.�i. � ! ��� (3. 38) 

Following a similar derivation to (3.34), we determine the extrinsic information ~.( ���	 as 

follows:  

~.( ���	 � D.���	 \ � ! ������ \~!( ���	�� (3.39)  

and 
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~!( ���	 � D!���	 \ � ! ������ \~.( ���	� (3.40)  

The iterative MAP decoder is summarised as, 

1. We set  ~.( ���	 � � since we assume the information bit �� is equi-likely to be zero or 

    one.    

2. Compute ~. ���	 using the MAP algorithm, using (3.15).  

3. Use (3.35) to compute ~!( ���	 for decoder 2. 

4. Compute ~! ���	 using the MAP algorithm, using (3.15). 

5. Use (3.34) to compute ~.( ���	 for decoder 1. 

6. Repeat steps 2 to 5 for � number of times which is set for the decoder. 

7. After � iteration, apply a hard decision on LLR ~! ���	 of decoder 2.   

3.2 Trellis Coded Modulation 

The Trellis Coded Modulation (TCM) scheme was developed by Ungerboeck in 1982 [22]. It 

was a breakthrough for communication systems in bandwidth limited channels. It is a 

combination of coding and modulation, where the coding section is made up of convolutional 

codes (or trellis codes) along with multilevel/phase signal modulation. Hence TCM scheme 

incorporates the spectrum efficiency brought on by signal modulations with the error 

correctional capability of trellis codes. This results in coding gain without bandwidth 

expansion. 

3.2.1 Encoder 

In general the TCM scheme takes a rate K/(K+1) encoder, where K is the number of 

information bits, and an M-ary signal mapper that maps �8 input bits into a larger �8]. 

constellation points. The structure of a TCM scheme is shown in Fig. 3.6. It consists of a 

basic rate 1/2 ��� �	
 convolutional code with an overall encoding rate of 2/3. The 
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information bits as well as the encoded bits are sent to a constellation mapper, in this case the 

modulation scheme is an 8PSK.  

� �
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Fig. 3.6. A rate of 2/3 TCM encoder. 

The two information bits �.�� and �!�� enter the TCM encoder. The first information bit �.�� is 

left uncoded. The second information bit �!�� is passed through a ��� �	
 convolutional code 

to produce two parity bits �.�� and��!��. Thereafter the bits �.��, �.�� and �!�� are  mapped to an 

8PSK modulation scheme. Note that the information bit �.�� is left uncoded, since it is the 

most protected signal in the constellation. Ungerboeck proposed the set partition mapping 

approach shown in Fig. 3.7 [22]. By examining the mapping procedure we find the bits �. 

and �! are most protected from transmission error since �. requires a ���� phase error at the 

receiver for an error to occur and bit �� is the least protected. 

 

Fig. 3.7 Signal mapping for a rate of 2/3 TCM scheme using 8PSK modulation. 
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3.2.2 Decoder 

The soft output Viterbi algorithm (SOVA) [1, 23-24] is used to decode the most likely valid 

path from the receiver sequence �� However the VA needs to be modified to take into account 

the uncoded bits in the branch metric calculation. Fig. 3.8 shows the modified trellis diagram 

for a ����	
�convolutional code that takes into account the uncoded bit. 

 

Fig. 3.8 Modified trellis diagram taking into account an uncoded bit. 

Note that every state contains two paths due to the uncoded bit. The VA makes a choice on 

the best path based upon the minimum square Euclidean distance between the transmitted and 

expected codewords. 

 The SOVA can be summarised in the following steps: 

Step 1. 

Define the state "�
 as the ��'�state at level t in the trellis and initialise the state "�� � � and "�
 � � for � } �. 

Step 2. 

Compute the branch metrics by taking the square Euclidean distance between the received 

symbol C� and the expected symbol �� from the trellis transition, given as KC� \ ��K!. 
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Step 3 

Compute the state metric at the state "�
 at the ,�stage by adding the branch metric to the 

previous state at the stage�, \ �. 

Step 4. 

Compare the state metric at the , stage for all the paths entering the state "�
. Select the path 

that results in the smallest square Euclidean distance and store the surviving path as well as 

its metric value.  

Step 5 

After completing steps 2 to 4 for , � �� � � � �, where N represents the number of information 

bits, the information bits are determined by selecting the path in the trellis sequence that 

results in the smallest square Euclidean distance.  
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Chapter 4: Performance Analysis of a Turbo Trellis-Coded Modulation 

and Repeat-Punctured Turbo Trellis-Coded Modulation Scheme 

In order to confirm the simulation results of the TTCM and RPTTCM schemes at high SNR 

we need to compute the probability of error, also to predict the performance at high SNR. 

There are various methods developed to calculate the performance of TTCM system [11-12, 

25-26]. In [25], the performance bound was computed base on the calculating the expected 

number of codwords and the distance profile and in [12] obtained the performance bound 

using the union bound approach. Certain methods however have either complexity or 

computational issues. Therefore we use the method developed in [25] to derive the bounds, 

since it is quick and accurate when certain approximations are made. 

4.1 Derivation of the Performance Bound for a TTCM scheme in an AWGN channel 

The performance bound of the TTCM 2 bits/sec/hz shown in Fig. 4.1 is derived in this 

section. In order to make the derivation traceable, two extra interleavers  ?. and ?!�are 

introduced into the scheme, showed in Fig. 4.1. All interleavers are uniform interleaver (all 

permutation of the inteleaver are equi-likely to occur). These interleavers will not affect the 

simulation results in Chapter 3 since the information bits used in the simulation are randomly 

generated. Therefore randomizing a random sequence is redundant.  Since the used 

interleaver is uniform, there may however exists an optimum interleaver pattern that will 

perform better than a uniform interleaver [3]. 

Fig.  4.1 Rate 1/2 TTCM Scheme.  

The TTCM schemes are generally non-linear due to the mapping of constellation points. 

Therefore we need to consider each possible codeword transmitted from the 16-QAM 
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modulation with equal probability. Hence we need to find the error probability over all 

possible transmitted and received codewords (i.e. 4 bits constellation point), rather than all 

possible codewords of the transmitter [25].  

In order to derive the bound we first need to assume the scheme in Fig. 4.1 contains 

deterministic interleaver. Clearly we can write the bound as [25]  

)* � g ��A 
�A � r ��3!Afs� , (4.1) 

where e represents an error sequence, *�! the square Euclidean distance between the 

transmitted and the received sequence and Q(.) the error probability of receiving an incorrect 

sequence with a square Euclidean distance *�!, in an AWGN channel. 

Now we need to determine )* over all uniform interleaver. Therefore we take the expectation 

of (4.1), we get 

)* � � �g ��A 
�A � r ��3!Afs� �. (4.2) 

Now we need to determine the expected number of codewords as well as the square 

Euclidean distance.  

4.1.1 Expected Number of Codewords 

In order to compute the bound we need to define the expected number of codewords for an 

error sequence. Since codewords are transmitted via 16 QAM modulation, we define an error 

vector n as 

+ � ��.������.��.�.��!����!�.��!�!�����!��.�!�, (4.3) 

where the error vector n represents the error sequence and �
���(� � �� - � �) represents the 

number of error codewords that contains an error type (i, j), that is the codeword which 

contains � bit errors in the information part of the constellation and - bit errors in the parity 
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part of the constellation. For the scheme represented in the 16-QAM constellation shown in 

Fig. 4.2, the values of (i, j) are as follows: 

��� -	�x������	� ����	� ����	� ����	� ����	� ����	� ����	� ����	� ����	� 
Referring to Fig. 4.2, for example, an error type (1, 1), we assume the transmitted codeword 

is “0000”, therefore an error type (1, 1) will result in the following codewords being received 

“0101”, “0110”, “1001” and “1010”, since the first two bits in the 4-bit 16-QAM symbol 

represents the information bits and the last two bits represent the parity bits.  

+�++ +��+ ���+ ��++

+�+� +��� ���� ��+�

+++� ++�� �+�� �++�

++++ ++�+ �+�+ �+++
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)

#)

�

#�

�	��
�

)��	��



�	���
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� � � ,-�.

���'

�
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Fig. 4.2 16-QAM gray mapping for the information and parity bits.  

Now let us define the number of error sequences represented by the error vector + as /�+	. 
The number of possible combination of � systematic and - parity bits for an interleaver of size 

� is given as r�� s J�- L��To take into account interleaver ?!�����?�� shown in Fig. 4.1. Let us 

define )
���+ as the number of possible interleavers that will result in an error sequence of type 

n with � information and - parity weighting, which is given as 
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)
���+ � J �y�����@�����L ������������������������� ������� ���/ ������;�����;������;������;�������;���� � ������;�����;������;�����;�������;����� � � z
�������������������������������������������������������������������������������������� H,wXCv�yX  , 

(4.4)  

where the term J �N�.���@��!�!L�represents the total number of possible locations of the error 

type (i, j) among the �N transmitted symbol. For example if we assume that a 100 

constellation points (�N� � ���) are transmitted over a noise channel and we get a single bit 

error at the receiver. Lets assume for all error types (i, j) the value of �
�� � � except for �.��� � �, i.e., there exists one information bit error in one constellation point out of the 

�N�transmitted points. Therefore the single error type can occur in r���� s � ��� positions in 

the transmitted sequence. The term ��d�f� @���d�f� represents the possible locations of the 

information bits and the parity bits for an error type (i, j) within a codeword. For example, for 

an error type (1, 0) there are two possible locations for the error bits in the codeword, “0100” 

and “1000” assuming “0000” is transmitted. Therefore if there is �.����number of error type 

(1, 0), there are ��d�f�possible locations for the information bits of the error type (1, 0). Finally 

the expected weight enumerating function ���� -	 of the encoder in Fig. 4.1 is given as 

���� -	 � g �d�
��d	h�3�
��3	rA
 s�d��3�N���i�d]�3 , (4.5) 

where i represents the number of information bits, -. and -! represents the number of parity  

bits subject to (- � -. ; -!) from encoder 1 and 2, respectfully and ,8��� -8	�represents the 

number of codewords with � information bits and -8 parity bits for the ��' encoder (Appendix 

A). The expected number of error sequences for an error vector n is given as �A/�+	��Where /�+	 is given as 

/�+	 � g ���� -	 �Z���+rA
 srA� s
�� �, (4.6)  

and �A represents the possible number of codewords for a message length of �. 
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4.1.2 Determining the Square Euclidean Distance  

Now we need to determine 4+, the square Euclidean distance caused by the error sequence 

represented by the error vector n, where 4+  is given as 

4+ �  0+��! @ 0+�8¡!�. @ �8¡ ¢, (4.7) 

where �t is the number of possible error distance caused by the error vector +, 0+�1!  is the  

square Euclidean distance and �
 is the probability that the error sequence represented by +  

will result in a square Euclidean distance of 0+�1!  occurring. 

In order to determine 4+ for an error sequence represented by +. We first assume that all 

constellation points in the 16-QAM system are equi-likely to occur. Therefore for each error 

type (i, j) there exists a distance profile given as 

41�5 � £0�! @ 08Z��!�. @ �8Z�� ¤. (4.8) 

For each possible distance of a particular error type (i, j) we need to calculate �
 the 

probability that the distance 0
! will occur for a given error type. The term �
 is given by 

�
 � ¥013¦ , 
(4.9) 

where 2013 represents the total number of received codewords that will result in a distance 01! 

and § represents the total number of received codewords for an error type (i, j). For example 

to calculate the distance profile for the error type (1, 0), i.e., 41�5. We first assume that one 

codeword “0000” is transmitted. Hence the received codewords that results in an error type 

(1, 0) for the 16 QAM mapping are “0100” and “1000”. The square Euclidean distance 

between “0000” and “0100” is 4 and between “0000” and “1000” is 16. Thereafter we take 

into account all other codewords in the 16-QAM constellation. The total number of 

codewords that results in a square Euclidean distance of 4 is 32 and the distance of 16 is 32. 
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The total number of codewords that results in an error type (1, 0) is 64. Hence the probability 

of the square Euclidean distance of 4 occurring for an error type (1,0) is �. � �!�7 � ���. 

Similarly for the square Euclidean distance of 16 we get��! � ���. Therefore the distance 

profile for the error type (1, 0) is given as 

4.�� � � ¨ �©��� ����.  

Finally we need to determine the overall error distance 4+ for the error vector + from the 

distance profiles 41�5 discussed above. 4+ is calculated from 41�5 as follows: 

4+ � 4��.tf�d ª 4.�.td�d ª @�ª�4!�!t3�3 , (4.10) 

where 4
��8  represents the �-fold cross multiplication of 41�5 with itself. The multiplication 

between any error profile is shown in [25]. 

Assume there exist two error profiles 

4. �  �0�!�. �����0!!�! ���@@����08d!�8d ¢,  

and 

4! � £�0�_!�._ �����0!_!�!_ ���@@����083_!�83_ ¤, 
 

then 

4. ª 4! � £�0�!;0�_!�.� �._ ���0�!;0P_!�.� �!_ ����@@���08d! ;083_!�8d � �83_ �¤. (4.11) 

The product of two distance profiles is equal to the sum of the individual square Euclidean 

distance and the product of the corresponding probability��
. 
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From Section 4.1.1, we found that the expected number of error sequence for the error vector 

n as �A/�+	.  Therefore the expected number of error sequence that results in a square 

Euclidean distance 0+�1!  is �
�A/�+	. Now we are in a position to compute expectation of 

(4.1) as 

)* �^^^@^^ ��/�+	�
� «¬+�­!���®
8¡
8

A|
t3�3

A|
td�f

A
�

A

 �              (4.12) 

4.1.3 Results 

The system shown in Fig. 4.1 was simulated and compared with the performance bound 

derived above. There are certain assumptions we make to decrease the computation 

complexity of (4.12). We show that these assumptions results in a very close approximation 

of the complete bound. By examining the summation of all the error term �
��, we find that 

there exists a natural upper bound. Assuming that there are � information bits in errors, the 

upper bound for the error term �.�� is � if � is less than �N . It follows that the upper bound for 

the summation for the term �!�� is 

�td�f!  and the upper bound of the rest of the error term, 

follows suit. The upper bound for the error term reduces the computation of (4.12). However 

this works well for short length codes (N<50). Therefore we need to make a few more 

assumptions. 

The performance of the TTCM scheme in Fig. 4.1 at high SNR is dominated by the terms �.�� and ���.. Since these terms represent a single bit error with a minium error distance in 

the 16-QAM constellation. Fig. 4.3 shows the effect of computing (4.12) using various 

number of error terms. 

Since more error terms are used to evaluate, this severely increases the run-time of the code 

for large information size. By examining Fig. 4.3 we found that the use of extra error term 

has a negligible effect on the bound at high SNR.  Another property of TTCM scheme is that 

the performance is dominated by the low weight information bits. Fig. 4.4 shows the bound 

simulated for different information weight �. 
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Fig. 4.3 Performance bound for a TTCM scheme in an AWGN channel for different number 

of error terms �
��.  

 

Fig. 4.4 Performance bound of the TTCM scheme in an AWGN channel using information 

weight of � � �� � � ��and � � �� 
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Again we find the bound converges at high SNR. We use these assumptions for codes with 

large information length. 

Fig. 4.5 compares the simulation results of the TTCM scheme from Fig. 4.1, for an 

information size of �=200, using the iterative MAP decoder to determine the information 

bits, with the iteration number set to 18 and the number of error frame set to 80. The 

simulation is compared with the performance bound of (4.12). The computation of the 

performance bound for an information size��=200, using an information weight �=10, we 

found the bound matches the simulations results at high SNR values. 

 

Fig. 4.5 Simulation results and performance bound of a TTCM scheme for N=200 in an 

AWGN channel. 

4.2 Derivation of the Performance Bound for RPTTCM in an AWGN channel 

The bound for the repeat-puncture turbo trellis-coded modulation (RPTTCM) scheme shown 

in Fig. 4.6 is derived. The bounds for the RPTTCM system follow the same derivation as the 

bound for the AWGN channel in Section 4.1. 
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Fig. 4.6 RPTTCM encoder scheme.  

The only difference in the computations of the bound is the expected weight enumerating 

function ���� -	 of the encoder in Fig. 4.1 due to the repeat block, hence �¯����� -	 (expected 

weight enumerating function for the repeat-punctured system) is given as 

�¯����� -	 � g �d�
��d	h�3�°
��3	r°A°
 s�d��3�N���i�d]�d , (4.13) 

where G�represents the repetition number of the information bits, ,.��� -.	 represents the 

number of codewords of encoder 1 with information weight � and parity weight -. after 

puncturing and ,!�G�� -!	 represents the number of codewords of encoder 2 with information 

weight G� � and parity weight -! after puncturing (see Appendix A).    

The expected number of error sequence for an error vector n is given as��A/̄ ���+	��where /̄ ���+	 is given as 

/̄ ���+	 � g �¯����� -	 �Z���+rA
 srA� s
�� , (4.14) 

where �A represents the possible number of codewords and )
���+ represents the number of 

possible interleavers that will result in an error sequence of type n with � information bits and - parity bits (explained in Section 4.1.1). Hence the bound is given as 
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)* �^^^@^^ �� /̄ ���+	�
� «¬+�­!���®
8¡
8

A|
t3�3

A|
td�f

A
�

A

 � (4.15) 

The calculation of the error distance *+�­!   is the same for the original TTCM system shown in 

Fig. 4.1 (discussed in section 4.1.2). Since both the TTCM and RPTTCM schemes shown in 

Fig. 4.1 and 4.6 respectfully have the same code rate of � �<  and are transmitted via a 16-

QAM constellation. 

Fig. 4.7 shows the simulation results for the RPTTCM scheme shown in Fig. 4.6, for an 

information size for �=200. The simulations were performed in an AWGN channel. Using 

the modified iterative MAP decoder to determine the information bits, with the iteration 

number set to 18 and the number of error frame set to 80. We compare the simulation result 

to that of the bounds derived above. We implement (4.15) for an information weight of��� ��. By examining Fig. 4.7, we find that the simulation result tends towards the theoretical 

results.  

 

Fig. 4.7 Simulation results and BER performance bound of a RPTTCM scheme for N=200 in 

an AWGN channel. 
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4.3 Derivation of the Performance Bound in a Rayleigh Flat Fading channel 

In this section, we discuss the performance bound in a Rayleigh flat fading channel. We 

derive the performance of the scheme shown in Fig. 4.1. To derive the performance we again 

need to make a few assumptions. Firstly we assume that the channel state information (CSI) 

is known at the receiver. We also assume that the average bit energy is normalised to ��* for 

the 2bits/sec/Hz 16-QAM system and the expected values of the sequence of the fading 

coefficients are normalised to unity. The variance of the noise term is denoted by �� �< . 

4.3.1 Performance Bound of TTCM scheme 

The performance bound for the fading channel is similar to the derivation of the bound for the 

AWGN channel with respect to the expected value of the codeword, i.e. �A/�+	 (derived in 

Section 4.1.1). The difference between both channels is the computation of the probability of 

error due to an error sequence. Let assume that the transmitted sequence is :� and the 

received sequence is :±. Therefore we need to compute )�:�� :±K%	�(where % represent the 

fading coefficient), which is bounded by [3, 11, 27] 

)�:� � :±K%	 � �S �� ; �¨�� ²:��
 \ :±�
²! � �
A|

i.                  (4.16) 

where K:�
 \ :±
K! represents the square Euclidean distance between the ��'�transmitted and 

received codeword. Hence the bound is given as  

)* �^^^@^^ ��/�+	�
S ��; �¨�� ²:��
 \ :±�
²!
A|

i.

8¡
8

A|
t3�3

A|
td�f

A
� � �A


   (4.17) 

Fig. 4.8 shows the simulation results and the performance bound for the TTCM scheme 

shown in Fig. 4.1, for an information size for �=200. The simulations were performed in a 

Rayleigh flat fading channel. The TTCM scheme used the MAP algorithm to decode the 

information bits, with the number of iteration set to 18, for 80 error frames. We compare the 

simulation result to using the bounds derived above. We implement (4.17) up to an 
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information weight of �=8. We find that the performance bound matches the simulation 

results at high SNR values.  

 

Fig. 4.8 Simulation results and BER performance bound of a TTCM scheme for N=200 in a 

Rayleigh flat fading channel. 

4.3.2 Performance Bound of RPTTCM scheme 

Just like the performance of the TTCM scheme for a Rayleigh flat fading channel, the 

probability of error due to the error sequence )�:�� :±K%	 is the same as (4.16). 

The only difference in the computation of the bound is the expected weight enumerating 

function ���� -	 of the encoder in Fig. 4.6 due to the repeat block, hence �¯����� -	 (expected 

weight enumerating function for the repeat-punctured system) is given as 

�¯����� -	 � ^ ,.��� -.	� ,!�G�� -!	rG�G� s�d��3�N���i�d]�d � (4.18) 
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where G�represents the repetition number of the information bit, ,.��� -.	 represents the 

number of codewords of encoder 1 with information weight � and parity weight -. after 

puncturing and ,!�G�� -!	 represents the number of codewords of encoder 2 with information 

weight G� and parity weight -! after puncturing (see Appendix A).    

The expected number error sequence for an error vector n is given as��A/̄ ���+	, where /̄ ���+	 is given as 

/̄ ���+	 �^�¯����� -	 )
���+r�� s J�- L
�� � (4.19) 

where )
���+ represents the number of different interleavers that will result in an error 

sequence of type n with � information and - parity weighting (explained in Section 4.1.1). 

Hence the performance bound for the RPTTCM scheme is given as 

)* �^^^@^^ �� /̄ ���+	�
S ��; �¨�� ²:��
 \ :±�
²!
A|

i.

8¡
8

A|
t3�3

A|
td�f

A
�

A

 ��                                 

(4.20) 

Fig. 4.9 shows the simulation results for the RPTTCM scheme discussed in Section 5.2, for 

the information size of � � ���. The simulations were performed in a Rayleigh flat fading 

channel. The RPTTCM scheme used the modified MAP algorithm to decode the information 

bits, discussed in Section 5.3.2 with the number of iterations set to 18, for 80 error frames. 

We compare the simulation result to that of the bounds derived above. We implement (4.20) 

for an information weight of �� � �. We found that the performance bound matches the 

simulation results at high SNR values. 
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Fig. 4.9 Simulation results and BER performance bound of a RPTTCM (L=2) scheme for 

N=200 in a Rayleigh flat fading channel. 

4.4 Comparison of the Performance Bound for the TTCM and RPTTCM 

Scheme. 

Fig. 4.10 shows the simulation results and the performance bound for the TTCM and 

RPTTCM scheme. The simulation was conducted in an AWGN channel with a zero-mean 

and variance of  ! � �� �< . The simulation was terminated after 80 error frames was 

detected for each SNR value and the number of iterations of the decoder was set to 18. The 

coding gain of the RPTTCM scheme is approximately 0.6 dB at a BER of ����. Since 

performance of turbo code are dominated by the low weighted codewords. By examining the 

expected number of codewords for the RPTTCM and the TTCM scheme, shown in Fig. 4.11, 

the RPTTCM produces less number of low weighted codeword than the TTCM scheme. This 

contributes to an increase in performance of the RPTTCM scheme. 
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Fig. 4.10 Performance bound and simulation result for a RPTTCM and TTCM scheme for an 

information size N=200 in an AWGN channel. 

Fig. 4.12 shows the simulation results and the performance bound for the TTCM and 

RPTTCM scheme in a Rayleigh flat fading with the CSI known at the receiver. The 

simulation was terminated after 80 error frames was detected for each SNR value and the 

number of iterations of the decoder was set to 18. The coding gain of the RPTTCM scheme is 

approximately 2 dB at a BER of ���6. The increase in performance of the RPTTCM scheme 

is due to the interleaver gain. Repeat-puncture not only reduces the number of low weighted 

codewords, it allows the decoder to make more estimates of the information bits due to the 

fact that the information bits are repeated L number of times. The larger interleaver size also 

allows burst errors to be distributed more effectively as to allow better error correcting 

capability of the decoder. If we increase the number of times the information bit is repeated 

(L), we find that there is no significant increase in performance in the BER. By examining the 

expected number of codwords, we find that the RPTTCM scheme produce lower number of 
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the RPTTCM scheme performance better at high SNR values. If we increase the repetition 

number of the information bits, the performance of the system does not show any significant 

improvement. By examining the expected number of codewords produces by the information 

weight i, in Fig 4.11, we find that scheme L=2 produce a similar number of codewords 

compared to a scheme L=3. For the scheme L=3, the interleaver increase by a multiple of 

three, however the number of parity bits that are punctured also has to be increased, in order 

to maintain the code rate. Therefore there is no significant coding gain for the ��� � �< 	
 RSC 

encode, and with a repetition number of L=3, will result in an increases in decoding 

complexity and a larger decoding delay. Note that the RSC encoder has not optimize to take 

into account repeat-puncture.      

 

Fig. 4.11 Expected number of codewords for a RPTTCM (L= 2, 3) and a TTCM scheme for 

an information length of N = 200. 
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Fig. 4.12 Performance bound and simulation result for a RPTTCM and TTCM scheme for an 
information size N = 200 in a Rayleigh flat fading channel.  
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Chapter 5: Turbo Trellis-Coded Modulation and Repeat-Punctured Turbo 

Trellis Coded Modulation 

The fundamentals of Turbo codes and Trellis-Coded Modulation (TCM) schemes were 

discussed in Chapter 3.  The combination of both schemes results in a high performance code 

for a bandwidth limited channel. The performance of the two systems was discussed in 

Chapter 4.  

5.1 Turbo Trellis-Coded Modulation 

TCM scheme proposed by Ungerboek in 1982 [22], has been used in a variety of application 

such telephone, satellite and microwave to name a few. Turbo codes (TC) achieve remarkable 

performance at low SNR values, however they are not suitable for bandwidth limited 

communication system. To achieve large coding gain and high bandwidth efficiency, the 

combination of turbo codes with TCM schemes has been proposed in [6, 10, 17, 18, 25]. 

5.1.1 Encoder Structure 

Fig. 5.1 shows a Turbo Trellis Coded Modulation (TTCM) scheme, which consists of two 

RSC encoders. The outputs of the two encoders are then punctured according to a particular 

pattern to maintain a particular code rate. Thereafter the information and parity bits are 

mapped to an M-QAM constellation. There exist other TTCM schemes found in [17-18]. 

These schemes are a slight modification of the scheme shown in Fig. 5.1. The reason for 

simulating the scheme shown in Fig 5.1 is because of its easy of computation of the 

performance bounds as well as the generality of structure, since the schemes in [17-18] differ 

in there interleaver arrangements, puncture method and its mapping of the codeword.        

 Fig. 5.1 Encoding structure for a TTCM Scheme. 
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Let us define the information sequence of length � given as���, where�, � ��@ � �. The 

information sequence �� is passed to a r�� � �³ s
 RSC encoder to produce a parity sequence 

�.��. Note that the initial state of the RSC encoder is zero and that the first encoder is forced 

to the all zero state at the end of the encoding (trellis termination, Section 2.3). This will 

ensure that there is minimal degradation in the performance of the system. The information 

bits are then passed through a random interleaver ? to produce a new sequence �B� of size � 

before entering another r�� � �³ s
 RSC encoder to produce a parity bit sequence �!��. Before 

puncturing occurs, the rate of the overall encoder structure is � �³ . After applying the 

puncture pattern shown in Fig. 5.2, where the even position of the parity sequence �.�� are 

punctured and the odd positions of the parity sequence �!�� are punctured, resulting in the 

sequence ���� given as 

���!�]. � �.�!�].�� (5.1) 

and 

���!�]! � �!�!�]!�� (5.2) 

where , � ��@ �� �³ .  Therefore after puncturing the overall encoder rate increases to � �³ . 

Note there may exist an optimum puncturing pattern for the given system [5, 8]. 

 

Fig. 5.2 Odd-even puncturing pattern for the TTCM Scheme.   
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Thereafter the information sequence �� is passed to a serial to parallel (S/P) converter that 

outputs a two bit sequence from �� given as �!�].� �!�]! where�, � ��@ � � �³ . Similarly the 

parity bits are concatenated to form a two bit codeword given as ���!�].� ���!�]!.  

Finally the two-bit codewords are mapped to a 16-QAM scheme shown in Fig. 5.3, where the 

codeword �!�].� ���!�]. is mapped to the real axis as  

:±(´`�� � µ;�;�\�\� �/��!�].� ���!�]. � ��������z 
(5.3) 

And the last two-bit codeword �!�]!� ���!�]! is mapped to the imaginary axis as  

:
¶ ´·�� � µ;�;�\�\� �/��!�]!� ���!�]! � ��������z 
 

(5.4) 

 By examining the mapping of the bits to the 16-QAM scheme shown in Fig. 5.3, the 

information bits are better protected from transmission than the parity bits, since the 

information bits plays a significant role in the MAP algorithm [17]. Thereafter the 

constellation point is transmitted over a channel where the transmitted symbol is given as 

:�±´t�� � :±(´`�� ; -:
¶ ´·�� (5.5) 

where - represents the complex variable W\� and , � ��@ � � �³ . 
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Fig. 5.3 16-QAM mapping of the information and parity bits. 

5.1.2 Iterative Decoder 

The decoder used to extract the information bits is an iterative MAP decoder shown in Fig. 

5.4. The decoder is similar to the decoder structure discussed in Section 3.1.2. In Section 

3.1.2 we assumed a BPSK modulation scheme is used. However in the case of the TTCM 

scheme in Fig. 5.1, the information bits as well as the parity bits are transmitted in a single 

constellation point. Hence the inclusion of a log likelihood ratio (LLR) block is used to 

extract the relative information from each transmitted symbol. Thereafter we can perform the 

iterative MAP algorithm discussed in Section 5.1.2.2, using the LLR of the bits as if it was 

transmitted via BPSK modulation [3, 25]. 

Fig. 5.4 Iterative decoding structure for a TTCM scheme. 
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The LLR of the information sequence G�C�	, the two parity sequence G��.��	 and G��!��	 are 

computed. Thereafter the punctured parity bits are set to zero since there are equi-likely to be 

a one or a zero. The LLR of the information bits G�C�	 and the parity sequence G��.��	 are 

sent to decoder 1 along with the extrinsic information D.(���	 from decoder 2 which is 

initially set to zero, to compute LLR D.���	. Now the extrinsic information D.(���	 is used 

to calculate D!(���	. Decoder 2 computes the LLR D!���	�base on the extrinsic information D!(���	, the interlevered information sequence G�CE�	 and the parity sequence G��!��	. The 

extrinsic information D!(���	 is used to calculate the extrinsic information D.(���	 for 

decoder 1. Decoder 1 computes the LLR D.���	 based on the extrinsic information D.(���	, 
the information sequence G�C�	 and the parity sequence G��.��	. The process continues for a 

predetermine number of iterations. After the required number of iterations have been 

completed, the LLR D!���	��computed from decoder 2 is passed to a hard decision block set 

to zero, i.e., if the LLR D!���	�computed from decoder 2 is less than zero the information bit 

is set to zero else it is set to one, to obtain the message  ��FFF. 
5.1.2.1 Log Likelihood Ratio for an AWGN Channel 

For the given transmitted sequence :�, we define the received sequence :± in an AWGN 

channel as 

:± � :� ; � , (5.6) 

where � represents the zero-mean AWGN variable with the variance given as  ! � �� �< . 

Since we transmit both the information and parity bits on a single 4-bit constellation point via 

a 16-QAM (Fig. 5.3). In order to perform the MAP algorithm, we first need to extract the 

relevant soft information from the received constellation point. The LLR for each encoded bit 

is calculate by [3, 25] 

GT���
U � $HI �T¸Y�Zi.K¹º�ZU�T¸Y�Zi�K¹º�ZU . (5.7) 

Hence for an AWGN channel the LLR for the information bit GT���
U is given as 
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GT���
U � »¼ h $HIg (¹½J� d3¾3r¹º�Z�¼�
	s3L¿�Z	ÀÁY�ZÂdg (¹½J� d3¾3r¹º�Z�¼�
	s3L¿�Z	ÀÁY�ZÂf  , 
 

(5.8) 

where »¼ is a constant and ���	 is the set of all constellation points for �x��� @ ��©�. However 

the LLR for all encoded bits is not strictly Gaussian. Thus the binary turbo decoder is no 

longer optimal for the coded modulation scheme. However, simulation results indicate for 

large SNR value, the LLR of the encoded bits is close to a Gaussian random variable with 

variance  ! if we set »¼ � [3!  [3, 25] . 

After computing LLR rGT���
U� GT�.�
U������GT�!�
Us for each of the bits in the received 

constellation point :±�
, we can then use the iterative MAP decoder in Section 3.1.2, where 

we treat LLR values as if they were transmitted via a BPSK medium [3, 25]. Note that the 

value of the LLR of the puncture parity bit is set to zero since it is equi-likely to be a one or a 

zero. 

5.1.2.2 Log Likelihood Ratio for a Rayleigh Fading Channel 

The decoder for a Rayleigh flat fading channel is similar to that of an AWGN channel. For 

the Rayleigh channel we assume that the channel state information (CSI) is known at the 

receiver and for the given transmitted sequence :�, we define the received sequence :± as 

:± � %:� ; � , (5.9) 

where % represents the fading co-efficient. Similarly to the AWGN channel we first need to 

compute LLR of the encoded bits. Therefore to calculate LLR in a Rayleigh flat fading 

channel with the CSI known at the receiver we need to compute, 

GT���
U � $HI �T¸Y�Zi.K¹º�Z�ÃZU�T¸Y�Zi�K¹º�Z�ÃZU . (5.10) 

The LLR for the information bit GT���
U is given as  
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GT���
U � »¼ g (¹½J� d3¾3r¹º�Z�ÃZ¼�
	s3L¿�Z	ÀÁY�ZÂdg (¹½J� d3¾3r¹º�Z�ÃZ¼�
	s3L¿�Z	ÀÁY�ZÂf  , 
 

(5.11) 

where »¼ is a constant. After computing LLR rGT���
U� GT�.�
U������GT�!�
Us for each of the 

bits in the received constellation point :±�
, we can then use the iterative MAP algorithm in 

Section 3.1.2.1, where we treat LLR values as if they was transmitted via a BPSK medium. 

5.1.3 Simulation Results 

Fig. 5.5 shows the simulation results for 2bits/sec/Hz TTCM scheme presented in Fig. 5.1 for 

a zero-mean AWGN channel with the variance given as  ! � �� �< . We simulated for an 

information size of � � ��� and � � ��� respectively. The decoder computes 18 iterations 

before making a decision on the decoded bits. The simulations were terminated after 80 

frame errors were detected for each SNR value. The bit error rate (BER) of ���� occurs at a 

SNR of 6 dB for �=800 and a BER of ���� occurs at a SNR of 8.94 dB for �=200. As 

expected the scheme performs better for the larger information size of �=800, which results 

in an interleaver gain of  2.94 dB. 

Fig. 5.6 shows the simulation results for 2 bits/sec/Hz TTCM scheme presented in Fig. 5.1 

for a Rayleigh flat fading channel with the CSI known at the receiver. We simulated for an 

information size of �=800 and �=200. The decoder computes 18 iterations before making a 

hard decision on the decoded bits. The simulations were terminated after 80 frame errors 

were detected for each SNR value. The BER of ���� occurs at a SNR of 10.8 dB for �=800 

and a BER of  ���6 occurs at a SNR of 14 dB for �=200. As expected the scheme performs 

better for the larger information size of �=800, which is the result of the interleaver gain. 
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Fig. 5.5 Simulation of TTCM scheme in an AWGN channel for an information size of N=200 

and N=800. 

 

Fig. 5.6 Simulation of TTCM scheme in a Rayleigh flat fading channel with the CSI known 

at the receiver for an information size of N=800 and N=200. 
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5.2. Repeat-Punctured Turbo Trellis-Coded Modulation 

The TTCM scheme discussed previously is extended to take into account repeat-puncturing. 

Hence the encoding and decoding structures need to be modified. 

5.2.1. Encoding Structure 

The structure of the encoder is simular to the basic TTCM discussed previously in Section 

5.1. The main difference is the inclusion of the repeat block shown in Fig. 5.7. The function 

of the repeat block is to duplicate the systematic bits G times. Hence for a given input 

sequence �� of length �, the repeat block generates a new sequence �°� of length G�. Since 

the new sequence �°�  is passed through an interleaver, the size of the interleaver needs to be 

increased to G�. By doing so, this allows the use of a larger interleaver size compared to the 

information size, which results in the spectrum tinning of the codewords, thereby increase the 

system’s performance [14]. 

Fig. 5.7 Encoding structure of a RTTCM scheme. 

The information sequence �� is passed to an r�� � �³ s
 RSC encoder to produce a parity 

sequence �.��. The information sequence is passed through a repeat block, which duplicates 

the information bit �� L times to produce the sequence �°�. Thereafter the sequence �°�  is 

passed thought a random interleaver ?. of size G� to produce��B°�. The interleaved sequence ��B°�  enters a  r�� � �³ s
 RSC encoder to produce a parity bit sequence �!��. Since the input of 

encoder 2 is G times the number of information bits, the rate of the scheme before puncturing 
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has decreased to 1/(2+L). Therefore to retain the original overall code rate of 1/2, the 

puncturing pattern shown in Fig. 5.8 is used. Note that this is not the optimum puncturing 

pattern for this system [5, 8]. The sequence ���� is formed from puncturing the sequence �.�� 
and �!��� Therefore the sequence ���� is given as ���!�]. � �.�!�]. and ���!�]! � �.�7���.	]�, 

where , � ��@ � � �³ . Thereafter the information and parity bits are converted from serial to 

parallel bits to form a 2-bit codeword given as �!�].� �!�]! where , � ��@ �� �³ . Similarly the 

parity bits are concatenated to form a 2-bit codeword given as����!�].� ���!�]!. 

� + � + � + ��������

+ � + � + � +�������

+ � +

+ �

����	�������	� /����-�		�����	�

��	



��	



+ + +� +

����	�

�����	��+

 

Fig. 5.8 Puncture scheme for the RPTTCM Scheme (L=2). 

Finally the two-bit codewords are mapped to the axes of a 16-QAM modulation shown in 

Fig. 5.3, where the codeword �!�].���!�]. is mapped to the real axis as  

:±(´`�� � µ;�;�\�\� �/��!�].� �.���]. � ��������z 
 

(5.12) 

And the last two-bit codeword �!�]!���!�]! is mapped to the imaginary axis as  

:
¶ ´·�� � µ;�;�\�\� �/��!�]!� �!���]! � ��������z 
 

(5.13) 

5.2.2 Modified Iterative Decoder 

The iterative MAP decoder discussed in Section 3.1.2 has to be modified slightly to take into 

account the repeat block in the encoder (Section 5.2.1). Fig. 5.9 shows the modified iterative 

decoder structure of the RPTTCM scheme. 
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 Fig. 5.9 Iterative decoding structure for a RPTTCM scheme. 

Since the message is transmitted via 16-QAM modulation, the individual bits must be 

extracted from the incoming symbol using the LLR (discussed in Section 5.1.2.1 for the 

AWGN channel and Section 5.1.2.2 for a Rayleigh flat fading channel). Thereafter the 

punctured parity bits are set to zero since they are equi-likely to be a one or a zero. The 

information bits G���	, the parity bits GT�.��U, and the extrinsic information D.(���	 which is 

initially set to zero, are sent to decoder 1 to compute LLR D.���	. The extrinsic information 

extracted from decoder 1, D.(���	� needs to be passed on to decoder 2. However decoder 2 

requires G� extrinsic information for G� information bits. Therefore the extrinsic 

information from decoder 1, �D.(���	 and the LLR of the information bits G���	 are repeated 

to form the sequence G�GC.��	 and interleaved, G�GCE.��	, before they are passed through to 

decoder 2, along with the parity sequence�GT�!��U. Decoder 2 computes the LLR D!���	 of 

the information bits to complete the first iteration of the decoder. For the next iteration the 

extrinsic information D!(���	�from decoder 2 needs to be passed to decoder 1. Yet again 

decoder 2 computes G� number of extrinsic information bits. Therefore before it is passed to 

decoder 1, the extrinsic information from decoder 2 is first deinterleaved and then averaged 

over G bits. Decoder 1 then computes the LLR of the information bits, and the process 

continues for a predetermined number of iterations. The performance of the system improves 

as the number of iterations is increased. After the required number of iterations has been 

completed, the LLR computed from decoder 2 is deinterleaved. The average over L bits is 
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determined and passed to a hard decision block set to zero, i.e., if the LLR computed from 

decoder 2 is less than zero the information bit is set to zero, otherwise it is set to one. Note 

that the structure of the iterative decoder shown in Fig. 5.9 is the same for both AWGN and 

Rayleigh flat fading channels. However, the LLR computed from the iterative MAP 

algorithm differs. These equations were explained in Section 5.1.2.     

5.2.3 Simulation Results 

Fig. 5.10 shows the simulation results for 2 bits/sec/Hz RPTTCM scheme shown in Fig. 5.7 

for an AWGN channel, for information size of �=200 and �=800. The decoder computes 18 

iterations before making a decision on the decoded bits. The BER of ���� occurs at a SNR of 

6 dB for �=800 and a BER of  ���� occurs at a SNR of 7.45 dB for �=200. It is a well 

established fact that an increase in the information size of a TTCM scheme results in an 

increase in performance in terms of the BER. Similarly the RPTTCM scheme performs better 

for the larger information size of��=800, which is the results in an interleaver gain of 1.45 

dB. 

 

Fig. 5.10 Simulation of RPTTCM (L=2) scheme in an AWGN channel for an information 

size of N=200 and N=800. 
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Fig. 5.11 shows the simulation results for 2bits/sec/Hz RPTTCM scheme shown in Fig. 5.7 

for a Rayleigh flat fading channel with the channel state information (CSI) known at the 

receiver. We simulated for information size of �=800 and �=200. The decoder computes 18 

iterations before making a decision on the decoded bits. The BER of ���� occurs at a SNR of 

8.7 dB for �=800 and a BER of  ���6 occurs at a SNR of 10.4 dB for �=200. The increase 

in the information size N, resulted in a low BER for the RPTTCM scheme in the fading 

channel, as expected the increasing the interleaver size improver the performance of the 

system.  

 

Fig. 5.11 Simulation of RPTTCM (L=2) scheme in a Rayleigh flat fading channel with the 

CSI known at the receiver for an information size of N=800 and N=200. 

5.3 Comparison between Turbo Trellis-Coded Modulation and Repeat-

Punctured Turbo Trellis-Coded Modulation Simulation Results 

Fig. 5.12 and 5.13 shows the simulation results for the TTCM and RPTTCM scheme for a 

frame length of �=200 and �=800 respectively. The simulation was conducted in an AWGN 

channel with a zero-mean and variance of  ! � �� �< . The simulation was terminated after 
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80 error frames were detected for each SNR value. The number of iterations of the decoder is 

set to 18. 

Table 5.1 Summary of the simulation results of the TTCM and RPTTCM scheme in an 

AWGN channel.  

  N=200  N=800 
  BER SNR BER SNR 

TTCM ����   7.97 dB  ����  6.87 dB  

RPTTCM ����   7.45 dB ����  6 dB  

For an information size of �=200, the TTCM scheme outperformed the RPTTCM scheme 

above a BER of ��© ª ���6. Since the RPTTCM scheme requires twice the number of 

punctured parity bits than the TTCM scheme to maintain a code rate of 1/2. The excessive 

puncturing in the RPTTCM scheme results in a slight degradation in its performance at low 

SNR values [5]. However, the RPTTCM has a larger asymptotic gain, which results in better 

performance at high SNR values. 



59 

 

 

Fig. 5.12 Simulation results for the RPTTCM (L=2) and the TTCM scheme in an AWGN 

channel for an information size of��=200. 

For an information size of �=800, the TTCM scheme outperformed the RPTTCM scheme 

above a BER of � ª ���6. Yet again, due to the larger asymptotic gain of the RPTTCM 

scheme compared to the TTCM, the RPTTCM scheme outperforms the TTCM scheme at 

high values of SNR. Since the RPTTCM scheme make multiple estimates of the received 

information, at high SNR the information bits are more reliable (effected less by noise) hence 

the RPTTCM scheme can make a more accurate prediction on certain bits which results in a 

better performance. The RPTTCM scheme achieves a coding gain 0.87 dB and 0.52 dB at a 

BER of ���� for an information size of N=800 and N=200 respectively, Table 5.1.  
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Fig. 5.13 Simulation results for the RPTTCM (L=2) and the TTCM scheme in an AWGN 

channel for an information size of �=800. 

Fig. 5.14 and 5.15 shows the simulation results for the TTCM and RPTTCM for a frame 

length of 800 and 200 respectfully. The simulation was conducted in a Rayleigh flat fading 

channel with the CSI known at the receiver. The simulation was terminated after 80 error 

frames was detected and the number of iterations of the decoder set to 18. For an information 

size of �=200 and �=800. 
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Fig. 5.14 Simulation results for the RPTTCM (L=2) and the TTCM scheme in a Rayleigh flat 

fading channel with the CSI known at the receiver for an information size of � � ���. 

 

Fig. 5.15 Simulation results for the RPTTCM (L=2) and the TTCM scheme in a Rayleigh flat 

fading channel with the CSI known at the receiver for an information size of �=200. 
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Table 5.2 Summary of the simulation results of a TTCM and a RPTTCM scheme in a 

Rayleigh flat fading channel.  

  N=800  N=200 
  BER SNR BER SNR 

TTCM ����   10.6 dB ���6   12.7 dB  

RPTTCM ����   8.7 dB ���6  10.4 dB 

The performance gain of the RPTTCM scheme is evident due to its increased interleaver size 

as compared to the TTCM scheme. The effect of an interleaver is to reduce the chance of 

both RSC encoders producing a low weighted parity sequence, since the performance of 

turbo codes are dominated by low weighted codewords. By examining the expected number 

of codewords for both RPTTCM and TTCM scheme, it was found that the RPTTCM scheme 

achieved a lower number of low weighted codewords than the TTCM scheme. Hence the 

performance of the RPTTCM scheme surpasses the performance of the TTCM scheme at 

high SNR due to the fact that the RPTTCM scheme has a larger asymptotic gain at the 

waterfall region of the BER curve. The RPTTCM scheme achieves a coding gain 1.9 dB at a 

BER of ���� for an information size of N=800.     

By examining the modified decoder structure (Section 5.2.2) of the RPTTCM scheme, the 

second decoder makes L (number of repetition) number of estimates on an information bit. 

Therefore the decoded L repetition bits can make a better approximation on the information 

bits. Another advantage of repeating the information bits (larger interleaver size) is the burst 

error due to the channel is spread more effectively in the transmitted sequence. Hence the 

decoder is able to correct more errors. The Rayleigh fading channel is suitable to burst errors. 

Therefore the increase interleaver size in the RPTTCM effectively spreads the burst errors 

more effectively, along with L number of approximation on the information bit results in an 

improved performance of the RPTTCM schemes over the TTCM schemes. However the 

improved performance due to repeat-puncturing comes with an increase in decoding 

complexity and latency. Since the RPTTCM scheme duplicates the information bit L number 

of times, the number of calculation needed to decode the information bits increases, this 

results in an increase in decoder latency.  
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Chapter 6: Conclusion and Future Research 

6.1 Conclusion 

A turbo trellis-coded modulation (TTCM) scheme that combines the performance of turbo 

code with the bandwidth efficiency of trellis-coded modulation was discussed. The TTCM 

scheme was extended to include repeat-puncturing, known as repeat-punctured turbo trellis-

coded modulation (RPTTCM). The repetition of information bits allows the use of a larger 

interleaver size than that of the information size. Thereafter the encoded bits are punctured to 

maintain the code rate. The puncturing of the turbo code results in the degradation in the 

performance, however the coding gain due to a larger interleaver size surpasses the 

degradation in performance due to puncturing. The modifications needed for the TTCM 

scheme at the encoder as well as the decoder to take into account repeat-puncturing were 

discussed. 

The RPTTCM and the TTCM scheme were simulated in an AWGN channel. A summary of 

the simulation results for the TTCM and RPTTCM scheme is shown in Table 5.1. The results 

for the RPTTCM scheme were compared with the TTCM scheme. For an information size of � � ���, the TTCM scheme outperformed the RPTTCM scheme above a BER of ��© ª���6. The RPTTCM scheme has a larger asymptotic gain which results in a steeper gradient 

in the waterfall region of the BER curve, resulting in a better performance below a BER of ��© ª ���6. For an information size of �=800, the TTCM scheme outperformed the 

RPTTCM scheme above a BER of � ª ���6. For a large information size (�=800) the 

degradation due to puncturing is surpassed by the coding gain due to the interleaver. The 

RPTTCM scheme achieved a coding gain of approximately 0.87 dB at a BER of ����, since 

performances of turbo code are dominated by low weighted codewords. By examining the 

expected number of codewords for the RPTTCM and the TTCM schemes, it was found that 

the RPTTCM scheme produces less number of low weighted codewords than with the TTCM 

scheme. Which contributes to the increase in performance of the RPTTCM scheme.  

Both the RPTTCM and the TTCM schemes were simulated in a Rayleigh flat fading channel 

with the channel state information (CSI) known at the receiver. A summary of the simulation 

results for the TTCM and RPTTCM scheme is shown in Table 5.2. The results for the 

RPTTCM scheme were compared with the TTCM scheme. For an information size of �=800 
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and �=200, the RPTTCM scheme has a coding gain of 1.9 dB at a BER of ����. The effect 

of increasing the interleaver size in the RPTTCM scheme allows burst errors to be distributed 

efficiently to allow the decoder to correct more errors. Along with the decoder’s ability to 

make L (number for repetition of the information bits) number of estimates on the 

information bits compared to the TTCM scheme, this results in an increase in performance 

for the RPTTCM scheme. However, the improved performance due to repeat-puncturing 

comes with an increase in decoding complexity and latency. 

Finally the performance bound of the BER was derived for the TTCM and RPTTCM 

schemes. The derivation of the performance bound for the TTCM scheme followed closely 

the derivation for both an AWGN channel proposed by [25] and a Rayleigh flat fading 

channel [11]. The theoretical bound matched the simulation results at high SNR values for an 

AWGN and a Rayleigh flat fading channel. The performance bound of the bit error rate of a 

TTCM scheme was extended to the RPTTCM scheme for both channels. The simulation 

result converges towards the theoretical bound for the RPTTCM scheme in an AWGN 

channel as well as the Rayleigh flat fading channel. 

6.2 Future Research 

There are various parts of the RPTTCM scheme that can be optimised to improve the 

performance of the scheme. The work carried out in this dissertation can be extended to   

• Investigate the use of different interleaver design, the use of S-random and code-

matching interleaver.  

• Develop an optimal puncturing scheme that reduces the degradation in performance 

of the code. 

• The use of different component code can also be investigated, the use of the generator 

polynomial, constrain length of the RSC encoder. 

• Investigate the performance of RPTTCM in a Nakagami  channel. 

• The use of dual repeat-puncture can be investigated on TTCM schemes.  

• The use of repeat-puncturing can be investigated on different concatenated schemes 

namely the serial concatenated schemes. 
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APPENDIX 

A: Input-Output Weighted Enumerating Function (IOWEF) 

To obtain the performance of coded schemes, we need to determine the expected weighted 

enumerating function of an encoding scheme. Since computing the expected number of 

codewords by manually searching through the entire trellis sequence is computational 

implausible, we use the method developed by [26] to determine the IOWEF, for the ������	
 

RSC encoder shown in Fig. A1.(a). 

 

Fig. A1. (a) A ����	
 convolutional encoder, (b) state diagram of the ����	
 convolutional 

encoder. 

Using the state diagram Fig. A1.(b). We determine the state transition metric Ä�G� �� 4	 as 

Ä�G� �� 4	 � Å G G�4 � �� � G� G4G�4 G � �� � G4 G� Æ (A1) 

where the rows (and columns) from 1 to 4 represent the states “00”, “01”, “10” and  “11” 

respectively and the dummy variable L represents an existing path between states, I 

represents  an input bit, D represents a output bit. Note that a zero represents no connection 

between states. Now we define the number of codewords as ,�$� �� 2	 where � represents the 
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number of information bits, 2 the number of output bit and�$ the number of path length in the 

trellis. From [26] the transfer function�§�G� �� 4	, is given as 

§�G� �� 4	 �^^^G`�
4¥,�$� �� 2	�¥V�
V�`V�  (A2) 

Since � ; Ä�G� �� 4	 ; Ä�G� �� 4	! ;Ç � T� \ Ä�G� �� 4	U�., (A2) becomes  

T�G� �� 4	=T� \ Ä�G� �� 4	U�.� (A3) 

Therefore the transfer function for the ������	
 encoder is given as  

§�G� �� 4	 � � \ G� \ G!� \ G��4! ; �!	� \ G�� ; 4	 ; G��4 ; 4! \ �	 ; G7�4! \ �! \ �!47 ; �74!	� (A4) 

In order to calculate the number of codewords ,�$� �� 2	, we multiple both sides of (A4) with 

the dominator we obtain the recursion formula to compute ,�$� �� 2	 as follows 

,�$� �� 2	 � ,�$ \ �� � \ �� 2	 ; ,�$ \ �� �� 2	 ; ,�$ \ �� � \ �� 2 \ �	 \ ,�$ \ �� � \ �� 2	\ ,�$ \ �� � \ �� 2	 ; ,�$ \ �� �� 2 \ �	 \ ,�$ \ ¨� � \ ¨� 2 \ �	; ,�$ \ ¨� � \ �� 2 \ ¨	 ; ,�$ \ ¨� � \ �� 2	 \ ,�$ \ ¨� �� 2 \ �	; È�$� �� 2	 \ È�$ \ �� � \ �� 2	 \ È�$ \ �� � \ �� 2	 \ È�$ \ �� �� 2 \ �	; È�$ \ �� � \ �� 2	 (A5) 

where È�$� �� 2	 � � if $ � �� � � ������2 � � and È�$� �� 2	 � � otherwise. With the initial 

value of ,������	 � � and ,�$� �� 2	 � � if any index is negative.�
To take into effect puncturing the state transition metric Ä�G� �� 4	 needs to be modified. 

Hence we add new states defined as puncture state (“xxp”) while the unpunctured state 

represented by “xxu”, this can be seen in Fig. A2. 
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Fig. A2 Modified trellis diagram taking into account the punctured states. 

Hence the state transition metric Ä�G� �� 4	  becomes 

Ä�G� �� 4	 �
ÉÊÊ
ÊÊÊ
ÊË � G � G�4 � � � �G � G� � � � � G4� � � � � G� � �� � � � G� � G �� G�4 � G � � � �G� � G � � � � �� � � � � G4 � G�� � � � G � G� � ÌÍÍ

ÍÍÍ
ÍÎ
��      (A6) 

where the rows (and columns) from 1 to 8 represents the states “00u”, “00p”, “01u”, “01p”, 

“10u”, “10p”, “11u” and  “11p” respectively. By following the method above, the recursion 

formula used to compute ,�$� �� 2	 can be determined.   
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