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ABSTRACT 

This study presents the development of a differential evolution (DE)-inspired 

artificial neural network (ANN) that incorporates climate and socioeconomic 

information for a more accurate and reliable water demand forecasting. The study 

also addresses the limitations of ANN. Multiple feature selection techniques were 

employed to identify the minimal subset of features for optimal learning. The 

performance of the feature selection techniques was validated and compared to 

a baseline scenario comprising a full set of data covering potential casual 

variables including weather, socio-economic and historical water consumption 

data. The performance of the models was evaluated based on accuracy. Results 

show that all the feature selection techniques outperformed the baseline 

scenario. More importantly, the subset of features obtained from the Pearson 

correlation technique produced the most superior model in terms of model 

accuracy. Findings from the study suggests that inclusion of weather and 

socioeconomic variables in water demand modelling could enhance the accuracy 

of forecasts and cater for the impacts of climate and socioeconomic variations in 

water demand planning and management.  

The performance of the optimal DE-inspired model was thereafter compared to 

those developed via conventionally-used multiple linear regression and standard 

time series technique – exponential smoothing as well as other prominent soft 

computing techniques, namely support vector machines (SVM) and conjugate-

gradient (CG)-trained multilayer perceptron (MLP). Results show that the DE-

inspired ANN model was superior to the four other techniques for both the 

baseline scenario and optimal subset of features. DE showcased robustness in 

fine-tuning algorithm parameter values thereby producing good performance in 

terms of the solution efficiency and quality. Generally, this study demonstrates 

that water demand models can account for the impacts of weather and 

socioeconomic variations by incorporating explanatory variables based on 

weather and socioeconomic factors. This study also suggests that the synergetic 

use of feature selection techniques, DE algorithm and an early stopping criterion 

could be used in addressing the limitations of ANN and developing an improved 

and more reliable water demand forecasting model.  
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This work goes further to propose for a novel and more comprehensive integrated 

water demand and management modelling framework (IWDMMF) that is capable 

of syncing conventional evolutionary computation techniques and social aspects 

of society. The methodologies, principles and techniques behind this study 

fosters sustainable development and thus could be adopted in planning and 

management of water resources.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Water scarcity has been a global issue in recent times. Global use of available 

freshwater has grown at roughly twice the rate of global population for the past 

century (Figure 1-1). With a rapidly growing global population, demand for water 

is expected to increase by nearly one-third by 2050 (WWAP, 2018). This 

threatening situation is further being exacerbated by rising water demands due 

to unanticipated factors such as climate variation, rapid urbanization, changing 

consumption patterns and socioeconomic transitions among others (Olofintoye, 

2015). The need for an integrated and sustainable approach to water resources 

management across the globe is increasingly more imperative and of urgent 

attention to water managers and decision-makers.  

Water distribution networks (WDNs) are designed to satisfy consumers’ 

requirements in the short-, medium- and long-terms. One of the key factors in 

planning and management of WDNs is the satisfaction of consumer demand, 

which presumes providing adequate water with acceptable quality and at a 

reasonable pressure (Cabral, 2014). Moreover, the United Nations (UN), in a 

resolution adopted at its General Assembly on 28 July 2010, gave recognition to 

“the Human Right to Water and Sanitation” (HRWS) as a human right; stating 

with respect to water that, the human right to water entitles everyone to sufficient, 

safe, acceptable, physically accessible and affordable water for personal and 

domestic uses” (UN, 2010). The Resolution further acknowledges HRWS as an 

integral component in realizing all human rights.  The adoption of HRWS allows 

for its recognition in international law through human rights treaties, declarations 

and other standards. These developments therefore elucidate the importance of 

assessing and projecting the evolution of water demands, as accurately as 

possible, to ensure appropriate future service levels. 

Water demand forecasting is a critical component of effective water resource 

planning and management as it assists in determining the timing and capacity of 

developing new water resources (Shang et al., 2017). For instance, decisions on 
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water infrastructure investments are critically dependent on the profile of future 

water demands. In addition, water demand forecasting allows for modelling of 

future conditions which assists in facilitating appropriate management options 

that balances water demand and supply (Mohamed and Al-Mualla, 2010). Water 

demand forecasting therefore enables the formulation of appropriate 

management policies to ensure continuity of service with the lowest possible cost.  

 
Figure 1-1: Rate of growth in global freshwater withdrawal and consumption. 
Source: UNEP (2012) 

Water utilities, researchers, governments and other related stakeholders have 

been making concerted efforts towards ensuring that cities meet the water 

demand of their residents. However, in view of the complex and dynamic 

interactions among contributing factors and their intimate ties to urban 

hydrological processes, estimation of water demand remains a complex yet 

imperative task (House‐Peters and Chang, 2011). Over the years, water utilities 

and consultants have generally employed a “fixture-unit” method which considers 

fixture unit demands, facility types, and socioeconomic factors in forecasting 

water demand for infrastructure planning and design (Blokker et al., 2010; Blokker 

et al., 2012; Buchberger and Wu, 1995). However, to compensate for several 

uncertainties associated with demand, this approach involves inclusion of large 
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safety factors which usually overestimate the actual water demand by as much 

as 100% (Shabani et al., 2016). The overestimation of the actual water demand, 

in turn, translates to an over-designed system with high operation and 

maintenance costs (e.g. pumping, pipelines, etc.) as well as high price of water 

as resultant effects. The over-designed systems may also result in negative 

environmental impacts in areas located downstream of the system. Furthermore, 

the conventional “fixture-unit” approach (classically based on the assumption of 

collinearity), does not usually account for nonlinearities which are often 

associated with the contributing factors such as population, stand area, stand 

value, tourism, etc. (House‐Peters and Chang, 2011; Shabani et al., 2017). The 

conventional approach has also been reported in the literature to be 

characterized by a lack of a climate variation perspective to water demand 

forecasting (UNESCO, 2016). These drawbacks, coupled with the complexity of 

water demand analysis, have necessitated the search for more robust and 

reliable water demand forecasting methods that can assist in designing more 

environmentally sustainable systems and in managing available water resources 

more efficiently (Shabani et al., 2016). 

1.2 WATER DEMAND FORECASTING APPROACHES 

Over the last decade, researchers have focused on improving water demand 

forecasting methodologies. They have largely focused on understanding the 

different factors that influence water consumption, improving forecasting methods 

and reducing forecasting uncertainty (Cabral, 2014).  

Explanatory variables that have been considered in water demand forecasting 

can be categorized into three: (i) weather variables (e.g., levels of snow and 

rainfall, temperature, evaporation, wind speed, relative humidity, etc.) (Coomes 

et al., 2010; Dos Santos and Pereira Filho, 2014; Yousefi et al., 2017); 

(ii) socioeconomic variables (e.g., income-level, consumption patterns, tourism, 

population and water price, etc.) (Arbués et al., 2003; Qu et al., 2010; Shaw, 

2007); and (iii) consumption variables which often include historical profiles of 

consumption, varying from previous hours to years (Nasseri et al., 2011; Shabani 

et al., 2018; Walker et al., 2015). Research has however shown that limited 

studies have considered weather variations in developing water demand 
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forecasting models, thereby making water availability prone to uncertainties due 

to meteorological factors (Shabani et al., 2016). Furthermore, the selection of 

explanatory variables is dependent on data availability and quality; necessitating 

the adoption of a robust modelling approach in water demand forecasting. The 

robust modelling approach must ensure that the impacts of each explanatory 

variable is well-analyzed and adequately captured. 

Table 1-1 presents a summary of the forecasting techniques that have been 

applied in water demand forecasting. According to Cabral (2014), these 

techniques are classified as subjective, extrapolation, regression, soft computing 

and other methods. 

The selection of the most suitable forecasting technique involves the 

consideration of several factors including but not limited to expert’s knowledge,  

intended use of forecast results, size and other characteristics of the utility and 

its service area, etc. (Billings and Jones, 2008). None of the techniques 

mentioned in Table 1-1 is yet to be considered as universally applicable to any 

water supply system or referentially relative to other methods (Kozłowski et al., 

2018). However, researchers have recently argued that soft computing 

techniques, especially evolutionary computation techniques, have the potential 

of being universally embraced. This is due to their ability to exploit the tolerance 

for imprecision and uncertainty to achieve tractability, robustness, and low-

solution cost”, while concurrently taking into cognizance nonlinearities inherent in 

contributing variables (Ghalehkhondabi et al., 2017; Maier et al., 2019; Maier et 

al., 2014; Reed et al., 2013). Considering the drawbacks of other techniques and 

the inherent properties of soft computing techniques, more effort is now being 

tailored towards exploiting the potential of soft computing techniques. Reed et al. 

(2013) suggest the need to further explore the potentials of evolutionary 

computation techniques as this approach could accelerate the discovery of water 

resource planning innovations required for enabling a sustainable future.  

This study thus hypothesizes that evolutionary-inspired soft computing 

techniques could offer new high-end solutions required to forecast water demand. 

This would assist water resource managers in offsetting the rising challenges to 

water security from population growth, socioeconomic and weather variations 

among other factors. 
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 Table 1-1: Overview of water demand forecasting approaches. Adapted from: Cabral (2014) 
Approach Description Forecasting technique Research studies Drawbacks 

Subjective 

Range from informed opinions of utility 
management to highly structured Delphi and 
scenario construction methods 

Expert opinion Billings and Jones (2008) Based on several 
assumptions about the 
future which may be 
untrue; Prone to 
sentiments. 

Delphi methods Billings and Jones (2008) 

Extrapolation 
(Time series 
models) 

Involves making statistical forecast by using 
historical trends of only the variable forecasted.  

Based on the assumption that recent and 
historical trends will continue. 

 

Moving average Kozłowski et al. (2018); Mun 
(2006); ;  

Produces large errors if 
discontinuities occur 
within the predicted 
period. Exponential smoothing Billings and Jones (2008); 

Mun (2006); Donkor et al. 
(2012) 

Autoregressive Integrated 
Moving Average (ARIMA) 

Donkor et al. (2012) 

Generalized Autoregressive 
Conditional 
Heteroskedasticity (GARCH) 

Caiado (2009) 

Regression 

Uses a set of drivers or explanatory variables to 
explain why a target variable has changed 
historically and to forecast its future values using 
time series and cross‐sectional data. 

Simple/ Multiple linear 
regression 

Babel et al. (2007); Caiado 
(2009) 

Considers linear 
relationship among 
variables and water 
demand 

Soft 
computing 
methods 

Acquires knowledge via a self‐learning process to 
define a relationship (whether linear or nonlinear) 
between explanatory and target variables thereby 
describing the behaviour of the process being 
modelled and capable of forecasting future 
values. 

Artificial intelligent methods 
(e.g., artificial neural 
networks, support vector 
machines, evolutionary 
algorithms, fuzzy inference 
systems, etc.) 

 Bennett et al. (2013); Firat et 
al. (2009); Ghalehkhondabi et 
al. (2017); Shabani et al. 
(2018) 

Requires high level of 
expertise for model 
development and 
interpretations.  

Other 
methods 

As applicable Bayesian Maximum Entropy 
(BME); Hybrids 

Fagiani et al. (2015); House‐
Peters and Chang (2011); 
Nasseri et al. (2011); Oshima 
and Kosuda (1998) 

May comprise many 
intricate parts 
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1.3 PROBLEM STATEMENT 

Despite the recent advances in the application of soft computing tools, research 

suggests that some of the techniques have not been exhaustively applied to 

water demand prediction. Ghalehkhondabi et al. (2017) and Oyebode et al. 

(2019) in their comprehensive reviews of the application of soft computing 

methods in water demand prediction, identify several areas that are yet to be 

explored which should be considered for future research. These areas include: 

i. Application of hybrid and ensemble models and algorithms. 

ii. Investigating the potential of emerging artificial intelligence and metaheuristic 

techniques (for example, evolutionary algorithms and deep learning). 

iii. Shifting focus from short term to medium- and long-term forecasting to 

enhance the accuracy and reliability of medium- and long-term planning and 

management decisions. 

iv. Incorporating economic factors into medium- to long-term forecasting. 

v. Dealing with noisy data associated with feedforward ANN models. 

Furthermore, Shabani et al. 2016 recommends that greater attention be given to 

the impacts of varying weather conditions on medium- to long-term water demand 

predictions for effective water resource management. 

The above suggestions serve as a motivation for this study. To this end, this study 

explores the potential of a hybrid soft computing technique which entails coupling 

an artificial intelligence technique – artificial neural network (ANN) to an 

evolutionary computation technique – differential evolution (DE) algorithm, in 

forecasting water demand. Monthly forecast models were developed by training 

a feedforward ANN using a DE algorithm. Although the development of hybrid 

soft computing models is gradually increasing within the science and engineering 

domains, including water resources, there has been no report of the techniques 

used in this study in the existing literature. Specifically, the application of DE, 

despite its application in some water resources studies (Abdul-Kader, 2009; 

Olofintoye et al., 2016; Oyebode, 2014) is yet to be used as a training algorithm 

for feedforward ANNs in water demand forecasting. This study therefore pioneers 

the application of DE in a training multilayer feedforward ANN in water demand 

forecasting. Furthermore, this study incorporates weather and socioeconomic 
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variables as model inputs to assess their impacts on water demand forecasts. 

The performance of the ANN-DE was thereafter evaluated against widely used 

soft computing techniques (an ANN trained using a conjugate gradient algorithm 

and a support vector machine) in terms of forecast accuracy and model 

complexity. 

This study also examines the role of EC techniques in enabling sustainable 

development with the United Nations Sustainable Development Goals (SDGs) in 

perspective. The UN SDGs (Figure 1-2), with specific reference to goals 6 and 

10, elucidates the imperativeness of universal and equitable access to clean and 

affordable water. Goal 6 relates to availability and sustainable management of 

water and sanitation for all, while goal 10 promotes reduction in inequality within 

and among countries. This implies that in managing water resources vis-à-vis its 

allocation and safeguarding, balance must be achieved in ensuring equitable 

distribution of water resources to everyone and among competing needs. 

However, research has shown that engineers and water managers often focus 

on the technical, environmental and economic aspects of water demand and 

supply when conceptualizing and implementing water allocation, optimization and 

conservation strategies, leaving the social aspects to social scientist to address 

(Marques et al., 2018; Marques et al., 2015; Menapace et al., 2018; Zeng et al., 

2012). This is evident in many of the existing optimization models, including EC 

optimization models, which lack a social perspective to water demand or 

allocation analysis. Social scientists on the other hand, often focus majorly on the 

social aspects of water such as quality of life, consumer satisfaction or 

perception, poverty, consumption patterns or consumer behavior, legal and 

political constructs, productivity, etc., but place less emphasis on other important 

aspects (Chomba et al., 2017; Johnson et al., 2016; Roa Garcia, 2014). 

Sustainability however centers around technical, environmental, economic and 

social aspects of life. There is therefore a need for a framework that is capable of 

syncing existing optimization models with social aspects of society to foster the 

realization of the UN SDGs. 
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Figure 1-2: The 2030 United Nations Sustainable Development Goals (SDGs) 

1.4 STUDY OBJECTIVES 

This research aims to develop an intelligent model that will seamlessly utilize 

weather and socioeconomic factors for municipal water demand prediction. 

Specific aims of the study are as follow: 

i. To conduct an extensive review of the extent to which evolutionary-inspired 

artificial intelligent models have been employed in water demand modelling.  

ii. To identify and analyze the factors that affect municipal water demand. 

iii. To develop an intelligent system model for municipal water demand 

prediction. 

iv. To evaluate the performance of the intelligent model. 

v. To propose a framework for sustainable allocation of water resources. 

1.5 SIGNIFICANCE OF STUDY 

The methodologies, techniques and models developed in this study could be 

adopted in improving the accuracy of water demand forecasts, and serve as an 

alternative to the conventional method which is often characterized by 

overestimations and several uncertainties. The study could help municipalities, 

water utilities and other stakeholders in planning for adaptive water resource 

allocation at different scales. It could also enhance the future operation and 

management of water resources facilities for both the immediate community and 

the global society.  

The development of the novel framework that integrates equity and justice in EC 

optimization models fosters the realization of the UN SDGs. The novel framework 
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could therefore assist in simultaneously addressing technical, environmental, 

economic and social concerns relating to water allocation and conservation within 

communities, countries and continents around the world. 

This study therefore provides the pathway to strategically and accurately plan for 

the implementation, operation and management of water resources and 

associated infrastructure. 

1.6 SCOPE AND LIMITATION OF THE STUDY 

This study is limited to the application of ANN and DE in forecasting water 

demand at a municipal level. An ANN model is developed for forecasting monthly 

water demand while DE is applied in training and optimizing the network 

architecture of the model resulting in an improved water demand forecasting 

model.  The choice of DE is due to its numerous advantages reported in the 

literature. This study is also limited by data availability. Finding lengthier data 

samples for model development is a challenging process in data analytics, 

especially in developing countries like South Africa. Revenue (i.e. billed) water 

consumption is utilized in this study, hence, the impacts of non-revenue water is 

not considered. 

1.7 THESIS OUTLINE 

This thesis presents manuscripts that were prepared, compiled or published 

during the course of the research work. This thesis is organized into five chapters.  

The work starts with a general introduction in chapter 1. It provides a general 

background to current issues with respect to water demand modelling, identifies 

research problems and presents a brief review of modelling techniques employed 

in the subject area. The statement of the problem, study objectives, significance 

and limitations of the study are also presented. 

Chapter 2 is organized into two sections (Sections A and B).  Section A presents 

a comprehensive review of EC techniques to establish and classify the ways 

wherein they have been employed in water demand modelling and identifies 

important research challenges and future directions. Section B proceeds to 

investigate the inadequacies of conventional EC techniques in influencing water 
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demand management policies and presents a novel and more comprehensive 

integrated water demand and management modelling framework (IWDMMF) that 

is capable of syncing conventional EC techniques and social aspects of society. 

Chapter 3 presents the methods used in developing an artificial intelligent model 

for water demand forecasting. The integration of DE into the model and the 

parameters used is discussed. The impacts of climate, socioeconomic and 

consumption information on the model were investigated and multiple feature 

selection techniques were used to identify the minimal subset of features for 

optimal learning. The performance of the models as per each feature selection 

technique was compared to a baseline scenario comprising a full set of data 

covering potential casual variables. The ability of DE in solving real world water 

demand forecasting problems was investigated in terms of model complexity and 

accuracy. 

In Chapter 4, the performance of the DE-inspired ANN model developed in the 

preceding chapter is evaluated comparatively with four prominent modelling 

techniques - a conventional multiple linear regression (MLR) model, a standard 

time series technique – exponential smoothing (ESm), an ANN trained using a 

conjugate gradient algorithm (ANN-CG) and a support vector machine (SVM). 

The techniques were thereafter tested across two of the scenarios developed in 

chapter 3. The superior models were identified based on their underlying 

performance using standard performance evaluation criteria and their results 

discussed extensively. 

Chapter 5 presents a general summary and conclusion based on the results of 

the previous chapters. It also gives suggestions and recommendations for future 

research. 

This thesis represents a compilation of manuscripts where each chapter is an 

individual entity, hence, some repetitions between chapters are unavoidable.  
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2.1 OVERVIEW 

The purpose of this review is to establish and classify the diverse ways in which 

evolutionary computation (EC) techniques have been employed in water demand 

modelling and to identify important research challenges and future directions. 

This review also investigates the potentials of conventional EC techniques in 

influencing water demand management policies beyond an advisory role while 

recommending strategies for their use by policy-makers with the sustainable 

development goals (SDGs) in perspective.  This review ultimately proposes a 

novel integrated water demand and management modelling framework 

(IWDMMF) that enables water policy-makers to assess the wider impact of water 

demand management decisions through the principles of egalitarianism, 

utilitarianism, libertarianism and sufficientarianism. This is necessary to ensure 

that water policy decisions incorporate equity and justice. 

Keywords: Artificial intelligence; evolutionary computation; sustainable 

development goals; water demand; water equity; water justice   
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2.2 SECTION A: APPLICATION OF EVOLUTIONARY COMPUTATTION 
TECHNIQUES IN WATER DEMAND MODELLING  

2.2.1 Introduction 

Over the past several decades, ever-growing demands for freshwater resources 

have increased the risks of severe water stress in many parts of the world (Figure 

2-1).  According to the 2015 United Nations (UN) World Water Development 

Report, the world is projected to face a 40 per cent deficit in water supply in 2030, 

unless the international community intensely improves water supply management 

(UNESCO, 2015). This figure is expected to increase to 55 per cent by 2050, 

under a business-as-usual scenario (UNESCO, 2015). The management of 

available water resources is therefore important to many decision-makers in the 

public and private sectors, with concerted efforts being made towards ensuring 

that cities meet their water demands in the future. However, factors such as 

increasing population, socioeconomic growth, water leakages, excessive water 

withdrawals and evolving climate conditions remain intimately tied to urban 

hydrological processes, thereby making the estimation of water demand a 

complex task (House‐Peters and Chang, 2011). Increasing water demand makes 

a restoration of the balance between demand and limited supplies necessary to 

avoid severe global water crisis, and attaining the United Nations’ 2050 vision – 

“achieving a water secure world, where every person has access to adequate 

quantities of water of an acceptable quality and from sustainable sources, to meet 

their basic needs and sustain their well-being and development” (UNESCO, 

2015). 

The planning and management of water resources as well as design and 

operation of water infrastructure remains critical to the provision of water supply 

services, and forms the basis for water demand forecasting (Oyebode et al., 

2014a). Decisions on water-related investments are critically dependent on how 

future water demands are to be forecasted (Almutaz et al., 2013). Water demand 

forecasting is therefore of strategic importance, especially in regions with limited 

water supplies where the role of demand management policy becomes 

increasingly significant. Over the years, the conventional approach employed by 

water utilities and consultants in planning and designing water treatment, supply 

and distribution systems has been the “fixture-unit” method which considers the 
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sum of fixture unit demands, facility types, and socioeconomic factors to 

determine the peak demand. However, to compensate for several uncertainties 

associated with demand, this approach involves inclusion of large safety or peak 

factors which usually overestimates the actual water demand by as much as 

100% (Shabani et al., 2016), with resulting high operation and maintenance costs 

and high prices for water. Furthermore, the conventional approach (classically 

based on the assumption of collinearity), does not usually account for 

nonlinearities which may be inherent in the contributing factors (House‐Peters 

and Chang, 2011; Shabani et al., 2017). Another deficiency in the application of 

the conventional approach is the lack of a climate change perspective in the water 

demand planning phase. Research has shown that, for each degree of global 

warming, nearly 7% of the global population will be exposed to a decrease of 

renewable water resources of at least 20% (UNESCO, 2016). The exclusion of 

the impacts of climate change in conventional approaches to water demand 

forecasting may consequently deprive water managers of the opportunity to put 

in place effective early warning systems and implement adaptive interventions to 

variations in water availability and extreme water-related events.  

 

Figure 2-1: Annual average water stress based on withdrawals-to-availability 

ratio (1981-2010). Source: (UNESCO, 2016) 

The complexity of water demand analysis has necessitated a search for more 

sophisticated tools for accurate water demand prediction. More recently, 

researchers have explored soft computing techniques to develop models to 

achieve more accurate water demand forecasts. Soft computing is “a collection 

of methodologies that aim to exploit the tolerance for imprecision and uncertainty 
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to achieve tractability, robustness, and low-solution cost”, while also taking into 

cognizance nonlinearities inherent in contributing variables (Ghalehkhondabi et 

al., 2017). Examples of robust soft computing techniques that have found 

application in water resources include, but are not limited to, artificial neural 

networks (ANN), fuzzy and neuro-fuzzy methods, support vector machines 

(SVMs), and more recently, evolutionary computation (EC) techniques. These 

soft computing techniques and many more have been reported to have achieved 

varying degrees of successes in diverse water resource applications, including 

streamflow forecasting (Kisi and Cigizoglu, 2007; Oyebode et al., 2014a), 

reservoir inflow prediction (Oyebode and Adeyemo, 2014), water quality 

modelling (Chang et al., 2015; Dragoi et al., 2011), wastewater treatment (Enitan 

et al., 2014) and sediment yield modelling (Ch et al., 2013; Guven and Kişi, 2011). 

These techniques have also been hybridized to allow for complementary 

modelling; resulting in improved performance (Adeyemo et al., 2018; Bhagwat 

and Maity, 2013; Londhe and Narkhede, 2017).  

Previous studies have reported the application of soft computing techniques to 

water demand forecasting (Firat et al., 2009; Shabani et al., 2017; Tabesh and 

Dini, 2009; Varahrami, 2010). However, research suggests that despite the 

recent advances in soft computing in water resources, some tools have not been 

exhaustively applied to water demand forecasting (Ghalehkhondabi et al., 2017). 

These tools include recently developed artificial intelligence and metaheuristic 

techniques like evolutionary computation, deep learning, simulated annealing, 

ant colony optimization and particle swarm optimization. Ghalehkhondabi et al. 

(2017)’s finding therefore supports the United Nations’ call for exploitation of new 

data sources, improved models and more powerful data analysis methods for 

implementation of adaptive management strategies to foster effective response 

to varying and uncertain conditions (UNESCO, 2015). 

This paper aims to contribute to the literature that reviews the general application 

of soft computing techniques in water resources (Maier and Dandy, 2000; Maier 

et al., 2014; Oyebode et al., 2014b; Reed et al., 2013) and specifically to water 

demand modelling (Donkor et al., 2012; Ghalehkhondabi et al., 2017; House‐

Peters and Chang, 2011; Shabani et al., 2016). A provisional search of scholarly 

databases however returned no significant review with specific focus on the 
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application of EC techniques in water demand forecasting. Moreover, no attempt 

has been made to review the extent to which EC techniques have been used to 

address the UN SDGs within the context of water demand modelling.  This review 

is therefore pertinent in that its specific emphasis is on the application of EC 

techniques to water demand modelling and how it can be positioned to implement 

water policy decisions based on equity and justice, and foster the realization of 

SDGs. The aims are to (a) establish and classify the diverse ways in which EC 

techniques have been employed in water demand modelling; (b) identify 

important research challenges and future directions; (c) recommend 

implementation strategies for the adoption by policy-makers with water equity and 

justice and SDGs in perspective. 

2.2.2 Water demand forecast variables and determinants 

One of the initial steps in carrying out any modelling study is to collect data of 

explanatory variables that may possibly influence the system to be modelled 

(Oyebode, 2014). The development of models for accurate water demand 

forecasting therefore requires identification of explanatory variables that directly 

and indirectly influence water demand. The identification of explanatory variables 

forms the basis upon which final input parameters will be selected during model 

development.  

This section briefly discusses key explanatory variables that may influence water 

demand and justifies the need for their consideration in the development of water 

demand forecasting models.  The key explanatory variables discussed in this 

paper include weather-based variables (e.g., rainfall, temperature, evaporation, 

wind speed, relative humidity, etc.), population growth, income-level and water 

price. 

Other factors that may influence water demand include those based on water 

conservations and demand management initiatives such as period of restricted 

use, source substitution, adoption of water sensitive urban designs, land use, 

consumer education and end use consumption profiling, and non-revenue water 

(losses from leakages and other sources). 
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2.2.2.1 Weather-based variables 
Weather plays a huge role in water availability as both short-and long-term factors 

can significantly affect water consumption rates. Short-term factors are typically 

daily weather variables like rainfall, temperature, wind speed and humidity, while 

long-term factors which occur as a result of climate change, is likely to impact 

annual average temperature, rainfall and evapotranspiration (White et al., 2003). 

Short-term factors often have an immediate effect on water demand. For 

instance, extremely hot or dry weather will increase the rate of evaporation, 

thereby heightening water consumption rates for drinking, irrigation and 

recreational (swimming) purposes, and ultimately result in a surge in water 

demand. Climate change however can induce changes in seasonal runoff 

regimes and inter-annual runoff variability which can significantly impact water 

availability.  

According to Coomes et al. (2010), weather is hysteretic, dynamic and state-

dependent in nature, and has been proven to have non-linear effects on water 

consumption. Research has also shown that climate change impacts, like the 

changes in the occurrence of droughts, can have significant influence on 

economic growth as evident in Figure 2-2. It is therefore important to take into 

consideration climatic or weather factors when developing a water demand 

forecasting model to account for the impacts of short-and long-term weather 

variability, and potentially improve the performance of the model. It is however 

important to note that inclusion of weather inputs may increase computational 

demand and possibly introduce new risks associated with data quality or handling 

(Bakker et al., 2014). Consequently, consideration should be given to 

performance enhancement as well as computational demand and data quality 

risks during the process of model development. 
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Figure 2-2: Countries with the largest reduction in growth due to drought. Source: 

Sadoff et al. (2015) 

2.2.2.2 Population growth 
Population growth, usually due to urbanization, migration and industrialization, is 

characterized by a nonlinear relationship, and considered as one of the key 

factors that impact water demand (UNESCO, 2015). The rate of demand for water 

has reportedly doubled the rate of population growth, with global population 

growth estimated at about 80 million people per year, and projected to reach 9.1 

billion by 2050 (UNDESA, 2013; USCB, 2012). While some areas are 

experiencing significant increases in population, others are experiencing 

significant decline and depopulation (Fox et al., 2009). Thus, population growth 

is a key component to consider when planning and designing water supply and 

distribution systems. An underestimation in water demand will make the system 

inadequate for the intended purpose; similarly, an overestimation will result to 

high capital and operation costs. It is therefore imperative that population-based 

information be considered when developing water demand forecasting models to 

ensure that the impacts of population growth are taken into account. Variables 

that have been used to depict population growth of a particular area in water 

demand forecasting include historical population, occupancy rate of dwellings, 

number of households or household connections and lot size.  
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2.2.2.3 Income levels 
Water demand of high-income areas is generally higher than those of low-income 

areas considering that large-sized lots that typically require more water are often 

associated with more affluent households or societies (Almutaz et al., 2013; 

CSIR, 2019; Jacobs et al., 2004). Research has shown that the average yearly 

water consumption for high-income households can be up to 40 percent higher 

than the average consumption for low-income households (IPART, 2004). This 

can be explained by the fact that high-income households tend to have extra 

features connected to higher water consumption such as swimming pools, 

gardens and additional water-based appliances. However, it is important to note 

that considerable variability in consumption exists within income classes, and a 

substantial proportion of high water users are low-income households 

(Husselmann and Van Zyl, 2006; IPART, 2004; Jacobs and Haarhoff, 2007). 

Additionally, higher income households may be less responsive to water price, 

as it represents a smaller portion of household income, hence they may be more 

disposed to use high volumes of water. Conversely, low-income household tend 

to be more populated than high-income households, and thus may consume 

higher volumes of water. White et al. (2003) suggested that, although consumer 

income levels have some influence on water consumption patterns, there is no 

automatic link between increasing income (longitudinal) and rising water 

consumption. The authors further argued that high-income households tend to 

purchase newer and more efficient appliances which may result in a reduction in 

water use as they replace older units. Husselmann and Van Zyl (2006) 

investigated the independent effects of both stand size and income on water 

demand, using stand value as a surrogate for income. Their research found a 

definite trend of increasing water demand with increases in both stand size and 

stand value. The authors submitted that stand size is a good measure for defining 

an annual average daily demand range.  These varying perspectives indicate that 

there is not yet a consensus in the manner with which income level affects 

demand. These arguments elucidate the need to further investigate the impacts 

of income level on water demand and to ensure that the impacts, if any, are 

accounted for appropriately. This can be achieved by considering income-based 

variables as potential model inputs during model development. Variables that 

have been used to represent income level of consumers in water demand 
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forecasting studies include but are not limited to per capita gross domestic 

product (GDP), gross national product (GNP), per capita gross provincial product 

(GPP), human development index (HDI), stand size and stand value as well as 

hotel occupancy rate (Babel et al., 2007; Babel and Shinde, 2011; Firat et al., 

2009; Husselmann and Van Zyl, 2006; Shabani et al., 2016).  

2.2.2.4 Water price  
Water price has been reported in the literature as the major tool for controlling 

demand (Arbués et al., 2003). This is based on the premise that consumers are 

likely to reduce their water use (e.g., for irrigating lawns and gardens, car 

washing, and swimming pools) if water prices are substantially increased, and 

that leaks, due to poor or faulty plumbing, that might be ignored under low prices 

would be repaired under high prices. A low water price could thus promote 

wastage. According to Coomes et al. (2010), economic theory predicts that 

residential water demand will be more inelastic towards price, as there are no 

alternatives for water in its basic household uses. However, given the viability of 

on-site supplementary household water sources such as groundwater 

abstraction, rainwater harvesting and greywater reuse in providing non-

potable/second class water to residential consumers (Nel et al., 2017), it can be 

said that, even though an alternative product cannot replace water, supply of 

water from piped municipal system is replaceable. Some researchers have 

reported that low price elasticity abounds in residential areas, limiting the efficacy 

and worthiness of using water price as a conservation instrument (Gaudin, 2006; 

Gaudin et al., 2001). Coomes et al. (2010) however submits that there is a high 

likelihood that a significant change in price would affect consumption, especially 

if sound pricing structures are established to incentivize water conservation. 

Non-payment of water bills is a huge problem, especially in developing countries 

like South Africa, where it seems to have become an established ‘norm’. Non-

payment often depicts a demonstration of consumer dissatisfaction with current 

water services, affordability (i.e. inability to pay, especially in low-income 

households), an “entitlement culture” or a “culture of non-payment” (Fjeldstad, 

2004; Vásquez, 2015). Considering that researchers have differing opinions 

about water being a commodity versus a human right (Bakker, 2007; Kornfeld, 

2012), the non-payment of water bills add a new dynamic to the debate on the 
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impact of price on water demand as the price of water becomes irrelevant if 

consumers do not pay for the water. For example, it is argued that the 

socioeconomic status of many low-income households makes them unable rather 

than unwilling to pay, hence the need for free basic services to the poorer 

segments of the population and/or a lowering of the rates (Fjeldstad, 2004). From 

this perspective, water price may not provide a true reflection of actual water 

demand.  

2.2.3 Application of EC techniques for WD forecasting 

Evolutionary computation techniques (also referred to as “evolutionary 

algorithms”) belong to a class of solution methods referred to as metaheuristics 

that are inspired by observations of natural phenomena for a robust exploration 

and exploitation of a solution space, while integrating variables of structured 

randomness to find near-optimal solutions (Maier et al., 2014). EC techniques are 

a unique set of search methods inspired by the principle of biological evolution; 

yielding outcomes that are based on a collective learning process from a 

population of possible solutions. Bi et al. (2016)  itemized the advantages of EC 

techniques over traditional deterministic approaches to include (i) superior 

potential in exploring the entire search space, resulting to higher possibility of 

achieving near-optimal solutions; (ii) ease of integration with any simulation 

model; and (iii) greater degree of adaptability in solving complex multi-objective 

problems that are typical of those concerned with water resources.   

EC techniques have become increasingly popular in the field of water resources 

and have found application in water demand forecasting. Applications and 

development of EC techniques in water demand forecasting can be categorized 

into two parts – (i) predictive modelling; and (ii) optimization modelling. In 

predictive modelling, EC techniques are either used directly in developing water 

demand forecasting models (Nasseri et al., 2011; Yousefi et al., 2017) or as 

optimization algorithms in intelligent models such as artificial neural network 

(Perea et al., 2015; Varahrami, 2010). In solving optimization problems, EC 

techniques are being widely applied for optimizing model parameters of other 

modelling techniques (Bárdossy et al., 2009; Di Nardo et al., 2015) and in 

estimating the coefficients of functions (Ehteram et al., 2017; Qu et al., 2010). An 

overview of EC techniques that have found application in water demand 
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forecasting is presented in the next section. These techniques are categorized 

based on their mode of application as found in the literature. 

2.2.3.1 Predictive modelling 
The main objective of predictive modelling is to directly estimate a response 

(output) from a defined set of explanatory variables (input), or to indirectly drive 

the choice of decision rules (Steyerberg, 2008).  This typically results to a 

generalized functional relationship as presented below: 

𝑺𝑺 = (𝑫𝑫𝒑𝒑) 

where 𝑫𝑫𝒑𝒑 is a p-dimensional input vector consisting of explanatory variables 𝒅𝒅𝟏𝟏, 

𝒅𝒅𝒊𝒊,… 𝒅𝒅𝒑𝒑, and 𝑺𝑺 is the output variable. In water demand forecasting, values of 𝒅𝒅𝒊𝒊 

may include water demand values with different time lags and the value 𝑺𝑺 is 

typically the water demand in the succeeding period (Wang et al., 2009).  

The development of predictive models require the application of a series of 

processes which comprise data collection, data pre-processing,, input data 

selection, data splitting, determination of model type and model architecture, 

model training and testing as well as model performance evaluation (Maier and 

Dandy, 2000; Oyebode, 2014). These processes are ultimately targeted at 

achieving optimal model predictive accuracy and reliability.  

(a) Direct application of EC techniques in predictive modelling  

Genetic Programming (GP) 

Genetic programming (GP), developed by Koza (1994) is an EC technique and 

population-based search founded on the principle of natural selection (survival of 

the fittest). GP is a member of the evolutionary algorithm (EA) family and an 

extension of genetic algorithm (GA) – an evolutionary-based optimization 

technique which seeks to arrive at the global optimum of a function. Unlike GA 

which operates on a set of binary strings, GP genetically breeds a population of 

candidate solutions (computer programs), via genetic operations like 

reproduction, crossover and mutation, to evolve solutions or models that give the 

best representation of a system (Oyebode and Adeyemo, 2014). The model 

structure and coefficients are simultaneously determined by optimizing a 
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population of computer programs based on a fitness function which accounts for 

how well a given computational task is solved.   

The main steps in the implementation of the GP algorithm, following Sette and 

Boullart (2001), are summarized below and illustrated in Figure 2-3: 

• Step 1: Generation of a random population of candidate solutions. 

• Step 2: Fitness evaluation of all candidate solutions in the population. 

Moreover, if the fitness function is reached, the algorithm is terminated and 

the computer program with the highest fitness is selected as the ultimate 

result. 

• Step 3: Replacement of the current population by a new population via a 

probabilistic application of genetic operators (reproduction, crossover and 

mutation). 

• Step 4: Return to step 2. 

Details on the working principles and applications of GP in the water resources 

modelling domain can be found in Wang et al. (2009) and Oyebode and Adeyemo 

(2014). GP has been applied successfully especially in symbolic regression 

where the main objective is to define a functional relationship between 

explanatory and target variables (Guven and Kişi, 2011; Londhe and Charhate, 

2010; Oyebode, 2014). Furthermore, the ability of GP to “offer a good 

compromise between accuracy and complexity” makes it suitable for solving 

complex real-world problems such as predictive modelling (Chadalawada et al., 

2017).  
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Figure 2-3: Steps in GP implementation process. Source: Sette and Boullart 

(2001) 

GP has been successfully applied and validated in the field of water demand 

forecasting.  Wu and Yan (2010) investigated the ability of GP to evolve daily 

water demand forecast models for a district water system located in a large 

demand monitoring zone in the UK. The daily forecast models were developed 

using various combinations of weather variables and historical water 

consumption data. Results showed that models produced were physically 

interpretable, easy to implement and provided a good representation of the 

complex and nonlinear input-output relationship between the variables utilized.  

In form of a hybrid model, Nasseri et al. (2011) coupled an extended Kalman filter 

(EKF) and GP for dynamic monthly water demand forecasting monthly for 

Tehran, Iran. A time series modelling approach was adopted in the study with 

lags of previous water consumption considered as initial inputs. The EKF was 

employed to deduce latent variables based on results obtained from initial GP 

simulations for forecasting purposes. The proposed hybrid model was found 

capable of replicating, with precision, the pattern of water demand for the city, 

thus, providing a means for reducing the risks associated with online or dynamic 

water demand forecasting. 
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Fagiani et al. (2015) also applied a combination of an EKF and GP to forecast 

domestic water and natural gas consumptions on an hourly basis using 

heterogeneous data comprising different resource types. The study investigated 

the performance of the hybrid model at multiple time resolutions and the mutual 

correlation between the resource types. Results for water consumption prediction 

showed high forecast accuracies across different time resolutions. The authors 

however noted that improved model performance can be achieved if the sample 

size is increased and additional explanatory variables considered. 

Generally, results of studies focused on the application of GP in the field of 

predictive modelling including water demand forecasting have confirmed its 

aptitude for problem-solving in terms of generation of solutions that are accurate, 

transparent and structured in representing complex and nonlinear real-world 

processes. However, GP may encounter challenges in finding constants, as there 

is a tendency to create more intricate functions as the forecast horizon increases 

(Giustolisi and Savic, 2006). 

Gene Expression Programming (GEP) 

Gene expression programming (GEP), advanced by Ferreira (2001) is a variant 

of GA and GP, with similarities in terms of initialization of populations of candidate 

solutions, selection of based on fitness, and application of genetic operators. GEP 

however differs from GA and GP in the manner with which it evolves a new 

generation of candidate solutions. In GAs, the candidate solutions are in a form 

of linear strings of fixed length referred to as “chromosomes”, while in GP, the 

candidate solutions are nonlinear tree-like structures of different sizes and 

configurations. In GEP, however, the individuals are encoded as linear threads 

of constant length chromosomes, enabling the genetic operators function at 

chromosome level, thereby resulting to a remarkably simplified method for 

achieving genetic diversity (Martí et al., 2013). This distinctive, multi-genic 

characteristic of GEP in turn allows for the evolution of more robust programs 

composed of multiple subprograms (Ferreira, 2006). GEP therefore exerts 

superiority over the GP algorithm in 100-10,000 times (Karimi et al., 2016). A 

schematic representation of the GEP algorithm is presented in Figure 2-4. A 

detailed explanation on the implementation of GEP can be found in Ferreira 

(2001). 
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GEP has been reported to be effective in finding explicit formulations of 

relationships governing different physical phenomena, making it useful for 

validating popular physical relationships, in knowledge mining and for improving 

conventional science- and engineering-based theoretical frameworks (Guven 

and Aytek, 2009; Martí et al., 2013). 

 

Figure 2-4: Steps in GEP implementation process. Source: Martí et al. (2013) 

Only a few studies related to the application of GEP in water demand forecasting 

exist in the literature. This can be attributed to the fact that it is a relatively new 

EC technique. Yousefi et al. (2017) coupled GEP with wavelet transform in 

developing models for long term forecasting of water demand in the City of 

Kelowna, British Columbia, Canada. The performance of the GEP models was 

complemented with a three-levelled wavelet transform comprising two transfer 

functions. The input vector space of the model was populated with different 
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combinations of variables including temperature, precipitation and water demand. 

Average mutual information (AMI) was employed to determine the optimal 

number of lags for each input variable. Results showed that GEP models can be 

highly sensitive to wavelet decomposition if all combinations of suitable lag times 

are carefully selected. The authors recommended GEP as one of the emerging 

techniques in water demand forecasting that should be giving more attention. 

This suggestion is supported by findings from earlier studies conducted by Wu 

and Yan (2010) and Shabani et al. (2016) wherein GEP models were found to be 

effective for constructing short- and medium-term water demand forecasting 

models; with an average forecast accuracy of above 90% reported by Wu and 

Yan (2010). 

In a recent study, Shabani et al. (2018) proposed a hybrid model which comprises 

a GEP-supervised and K-means clustering (unsupervised) learning process for 

short-term water demand forecasting. The hybrid model was verified using hourly 

water demand data for the City of Milan. The unsupervised module of the hybrid 

model was applied to organize daily water consumption in six distinct clusters to 

account for seasonality and recurring patterns while GEP was employed to evolve 

explicit water demand forecast models for each of the clusters. AMI was used for 

determining the most suitable lags of the water demand time-series that will serve 

as model inputs. Results show that the hybrid model produced accurate forecasts 

across the six distinct clusters, with the 1-hour lead time models considerably 

outclassing models based on other sampling frequencies. This study further 

confirms the “ease of integration” attribute of EC techniques, and that techniques 

like GEP could be coupled with unsupervised learning algorithms to improve the 

forecast accuracy of water demand models. 

(b) EC techniques as optimization algorithms in intelligent models 

Intelligent models are models that apply the basic working principles of the human 

nervous system in decision-making. These models consist of a large pool of 

processing units (referred to as neurons) which receive, process and send 

information to each other over a large number of weighted connections. They are 

therefore referred to as artificial neural network (ANN). ANN operates in a similar 

fashion to the human brain as experiential knowledge is acquired through a 

search process aimed at determining an optimal set of weights for the 
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connections and threshold values (biases) for the neurons (Elshorbagy et al., 

2010). Each individual neuron computes an output, based on the weighted sum 

of all its inputs, according to a nonlinear function called the activation or transfer 

function (Kalteh et al., 2008). Finding the optimal weight values within the network 

is considered as key to having a well-trained ANN. A learning algorithm is usually 

employed to supervise an iterative adjustment of the connection weights thereby 

minimizing the error measure between the network output and target outputs. A 

network with an output (𝒚𝒚𝑷𝑷), inputs (𝒛𝒛𝒌𝒌), 𝒌𝒌 = 𝟏𝟏, …𝑲𝑲, weights (𝒘𝒘,𝒗𝒗) and number of 

hidden neurons (𝑱𝑱) can be represented using the following expression: 

𝒚𝒚𝑷𝑷 = 𝒗𝒗𝟎𝟎 + �𝒗𝒗𝒋𝒋𝒇𝒇�𝒘𝒘𝒋𝒋𝒋𝒋 + �𝒘𝒘𝒋𝒋𝒋𝒋

𝑲𝑲

𝒌𝒌=𝟏𝟏

𝒛𝒛𝒌𝒌�
𝑱𝑱

𝒋𝒋=𝟏𝟏

 

ANN is, thus, an approximation function mapping inputs to outputs, thereby 

developing learning, adaptive and generalization features. These features make 

ANN suitable for solving a wide variety of problems relating to input and output 

variables in complex systems such as water demand forecasting. ANN can be 

classified as single, bilayer and multilayers according to the number of layers, 

and as feed-forward, recurrent and self-organizing according to the direction of 

information flow and processing (Govindaraju, 2000). A detailed review of 

procedural steps, implementation techniques and applications of ANN can be 

found in Oyebode and Stretch (2019). The authors provided useful insights into 

how the performance of ANN can be improved and potential areas of application 

that are yet to be explored in water resources. 

Over the past decades, ANN has been widely applied in different domains and 

made remarkable developments. Despite its prominence, it is widely accepted 

that ANN is prone to certain problems which include difficulty in network training 

or learning process, over-parameterization and poor generalization (Ding et al., 

2013; Oyebode, 2014). Although a number of optimization methods based on 

gradient descent (e.g., back-propagation, Levenberg-Marquardt and conjugate 

descent algorithms) have been used in ANN model development, these methods 

have been reported to be susceptible to being trapped in local optima and could 

also generate negative values, especially if the error surface is fairly rugged (Kisi 

and Cigizoglu, 2007; Maier et al., 2010). 
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To solve the aforementioned ANN-inherent problems, EC techniques are now 

being integrated with ANN. The combined use of ANN and EC techniques has 

given rise a new category of ANN referred to as evolutionary ANNs (EANNs) 

(also known as neuro-genetic models). EC techniques have been principally 

applied in EANNs for evolution of connection weights, model architectures and 

learning rules (Ding et al., 2013; Yao, 1993). Studies have shown that EANNs do 

not only showcase better learning capabilities than other ANNs, but also exhibit 

robustness in the design and implementation of ANNs, thereby enhancing overall 

model performance (Ding et al., 2013; Kim et al., 1999). 

The successful applications of EANNs in water demand forecasting have been 

reported in a number of studies. EC techniques that have found application in 

ANN optimization include GA and differential evolution (DE). The following 

sections provide a brief description of each technique followed by their 

applications in ANN development with water demand forecasting in context. 

Genetic algorithms 

GA is the most widely used global optimization technique (Nicklow et al., 2009), 

and is based on the rules of evolution and natural selection. It initializes with a 

preliminary population of candidate solutions, distinguishing each as a 

chromosome, and thereafter computes and grades each solution based on a 

fitness function. GA subsequently performs three genetic operations namely 

selection, mutation and crossover to create a new population of offspring 

solutions which may be superior than their parents (Behera et al., 2015). GA thus 

employs this systematic approach to achieve continuous improvement of 

individual solutions, and ultimately evolve an optimal or near optimal solution after 

successive iterations.  

A schematic representation of the fundamental methodologies for implementing 

GA is shown in Figure 2-5. The GA methodology is regarded as the framework 

upon which several other single and multi-objective EC techniques were 

developed. Successful applications of GAs in water resources include vital areas 

like design and operation of water distribution systems, urban drainage and sewer 

systems, water supply and wastewater treatment applications, hydrologic and 

fluvial systems, and groundwater systems design. A review of the extensive 
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applications of GA in water resources can be found in the literature (Nicklow et 

al., 2009). 

 

Figure 2-5: Fundamental methodologies for implementation of GA. Source: 

Nicklow et al. (2009) 

GA has been widely employed in optimizing the performance of ANNs in water 

demand forecasting. Kim et al. (2001) employed the neuro-genetic approach 

based on GA to develop ANN models for daily water demand forecasting for the 

City of Seoul, South Korea. Nine modelling scenarios were implemented using 

different combinations of explanatory variables and their associated lags. The 

predictive performance of the GA-trained ANNs was compared to those trained 

using a back-propagation algorithm for the nine scenarios. Results showed that 

the neuro-genetic approach performed better than the back-propagated ANNs in 

all nine models; suggesting GA as an effective and reliable technique for training 

ANNs in the water demand forecasting domain.  Varahrami (2010) applied GA to 

ANN forecasting of short-term water demand, comparing its performance with 

that of a conventional back-propagated ANN. It was found that the ANN-GA 

model consistently outperformed the back-propagated ANN, showing higher 

precision on unseen data sets. 
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In an irrigation water demand forecasting study conducted by Perea et al. (2015), 

GA was applied to determine the optimal architecture of an ANN model. Twelve 

ANNs were trained with different gradient-based optimization techniques and 

applied to predict water demand one-day ahead. A GA-based multi-objective 

algorithm – Non-dominated Sorting Genetic Algorithm II (NSGA II) was employed 

to optimize the model architecture of the ANNs in terms of computational speed 

and forecast accuracy. The ANNs were tested with actual data recorded in the 

water distribution network of a real irrigation district in Spain. Results showed that 

the GA was capable of evolving an ANN model with optimal sets of architecture 

parameters while simultaneously maximizing model predictive accuracy. The 

authors argued that the appropriate method for achieving an optimal 

generalization in ANNs is to employ GA in determining the optimal network 

architecture. This study therefore elucidates the crucial role of EANNs in 

agricultural water management and in guiding the development of nexus-

sensitive policies, considering the inextricable link between water and food 

security. 

By coupling a GA to a modified adaptive particle swarm optimization (APSO) 

algorithm, Mohammadi et al. (2014) proposed a new hybrid evolutionary 

algorithm to simultaneously determine the architecture and network parameters 

of radial basis function neural networks (RBFNNs). The GA was applied to 

optimize the model architecture (input variables and hidden layer neurons) of the 

RBFNN while the APSO supervised the learning process thereby determining the 

network parameters which include centers, width and weights of the RBFNN. The 

performance of the hybrid algorithm was initially analyzed comparatively with 

several benchmark time series modelling and algorithms. The proposed hybrid 

model was subsequently extended to forecast emergency supplies, including 

water demand, after earthquakes in Iran. Simulation results indicated that 

proposed GA-APSO algorithm demonstrated better forecast accuracy with 

computational efficiency. Findings from this study imply that the performance of 

ANNs can be improved through learning methods that simultaneously adjust the 

entire set of model parameters. More importantly, these findings demonstrate the 

applicability of EANNs to disaster management thereby ensuring water security 

and strengthening the resilience of vulnerable communities, and thus directly 
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contributing to sustainable development. This further suggests that the adoption 

of EC techniques offer great potential in terms of improving individual and 

institutional capacity for achieving a post-2015 development agenda of the UN 

(UNESCO, 2015), and in reducing the impacts of water-related disaster risks. 

Other water demand-based studies wherein GA has been used for ANN 

development include forecasting of irrigation water demand (Pulido-Calvo and 

Gutierrez-Estrada, 2009); regional water demand (Papageorgiou et al., 2016); 

and domestic water demand (Rangel et al., 2017; Walker et al., 2015). 

Differential evolution (DE) 

DE, proposed by Storn and Price (1997), is an EC-based optimization technique 

which evolves candidate solutions in a similar manner as the GA. DE however 

differs from GA in the manner with which the mutation operation is executed. In 

DE, mutation precedes crossover. The mutation operation entails generating a 

mutated population by adding the weighted difference between two random 

candidate solutions (Zheng et al., 2012). Crossover operation is thereafter 

introduced to combine the mutated population with a target population to evolve 

a trial or experimental population (Sedki and Ouazar, 2012). Parameters that 

influence the operation of the DE algorithm are: the population size (NP), the 

mutation scale factor (F), and the crossover constant (CR) (Behera et al., 2015). 

Research has however shown that the performance of DE is significantly 

governed by F and CR (Zheng et al., 2012). The implementation steps for the DE 

algorithm are presented in Figure 2-6.  

DE has received significant attention due to its consistency in converging towards 

the global optimum solution, and has been used in solving several complex 

optimization problems (Qian et al., 2009; Zheng et al., 2012), including water 

resources applications (Kişi, 2010; Suribabu, 2010; Tanyimboh and Seyoum, 

2016; Vasan and Simonovic, 2010). 
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Figure 2-6: Steps for implementing the DE algorithm. Source: Zheng et al. (2012) 

Unlike its GA counterpart, the DE algorithm is yet to be widely applied in water 

demand forecasting. Within the scope of the authors’ knowledge, the only 

application of a DE-trained ANN in water demand forecasting was reported in a 

study conducted by Qu et al. (2010). The study entailed the use of DE to optimize 

a generalized regression neural network (GRNN) to forecast annual industrial, 

agricultural and domestic water demands in Yellow River Basin in China. DE was 

specifically employed to optimize the value of the smoothing parameter which is 

known for influencing the prediction performance of GRNNs. The key explanatory 

variables considered as input parameters include industrial output, agricultural 

output, irrigation quota as well as urban, rural and livestock population. The DE-

GRNN model was used in making water demand projections for years 2010, 2020 

and 2030. Results showed that the model was capable of assimilating the 

complex non-linear relationships between the three different water demands and 

their respective explanatory variables, producing reasonable and comparable 

forecasts with those made by BP-GA and GRNN-GA forecast models. 
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Although the potential of DE has not be fully exploited in the area of water demand 

forecasting, it has however figured prominently in other areas of water resources 

like river flow forecasting (Piotrowski and Napiorkowski, 2011), reservoir inflow 

forecasting (Oyebode and Adeyemo, 2014), reservoir optimization (Olofintoye et 

al., 2016), sediment yield modelling (Kişi, 2010) and optimization of water 

distribution networks (Suribabu, 2010; Zheng et al., 2012). The meagre 

application of DE in water demand forecasting studies is evidential to the 

assertion of Ghalehkhondabi et al. (2017) that the potential of soft computing 

techniques have not been fully utilized in the field of water demand forecasting. 

There is a therefore a need for DE to be given more attention in the development 

of intelligent models for water demand forecasting, to foster the realization of the 

full potential of modelling complex water demand processes using soft computing 

techniques. 

Other EC techniques that have found application in other areas of water 

resources but not in water demand forecasting include evolution strategies (ES) 

(Mirghani et al., 2009) and evolutionary programming (EP) (Muleta and Nicklow, 

2004). ES and EP have however found application in groundwater modelling and 

watershed management studies respectively. 

2.2.3.2 Extent of application of EC techniques in predictive modelling of 
water demand 

A review of existing literature on the application of EC techniques in water 

demand forecasting was conducted via a search on reputable academic 

databases, namely, Google Scholar and Scopus using keywords including 

“water”, “prediction” or “forecast”, “demand” or “consumption” and “evolutionary” 

or “evolutionary algorithm”. A summary of the extents of application of EC 

techniques for water demand forecasting based on the following themes: forecast 

technique, location, forecast periodicity and explanatory variables is presented in 

Table 2-1 and Figure 2-7. It can be observed that GA is the leading EC technique 

for the water demand forecasting. This is followed by GEP and GP in descending 

order. The ES and DE are the least applied techniques for water demand 

forecasting. With regards to periodicity of forecast, majority of the reviewed 

literature have performed water demand predictions based on daily 

usage/consumption. From Figure 2-7, it is obvious that most studies were carried 
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out in Europe. No study in Africa was listed as at the time of this review. This is a 

pointer to the fact that water demand forecasting studies have not been given 

priority in most African countries. This is however of priority based on the UN 

SDGs. For example, studies based on EC techniques could assist in the planning 

and management of water in water-stressed countries like South Africa. 

Furthermore, majority of the literature reviewed employed historical water 

demand as the sole explanatory variable, while a few considered a combination 

of historical water demand and weather variables. Only a couple of studies 

considered the impact of socioeconomic factors like population and income 

levels. 

Table 2-1: Application of EC techniques in water demand forecasting  

SI. no. Author & Year 

Forecast 

technique 

Location  

(by continent) 

Forecast 

periodicity 

Explanatory 

variables  

1. Kim et al. (2001)* GA East Asia Daily HWD, W 

2. Pulido-Calvo and 

Gutierrez-Estrada 

(2009)* 

GA Europe Daily HWD, W 

3. Qu et al. (2010)* DE East Asia Annual HWD, P 

4. Wu and Yan (2010) GP, GEP Europe Daily HWD. W 

5. Fagiani et al. (2015) GP North America Hourly HWD, W, O 

6. Varahrami (2010)* GA West Asia Monthly HWD 

7. Nasseri et al. (2011) GP West Asia Monthly HWD 

8. Mohammadi et al. (2014)* GA West Asia Daily HWD 

9. 
Romano and Kapelan 

(2014)* 

ES Europe Hourly, Daily HWD 

10. Perea et al. (2015)* GA Europe Daily HWD, W 

11. Walker et al. (2015)* GA Europe Hourly, Daily HWD 

12. Shabani et al. (2016) GEP North America Monthly HWD, W, I 

13. Papageorgiou et al. 

(2016)* 

GA Europe Daily HWD, W, P 

14. Yousefi et al. (2017) GEP North America Monthly HWD, W 

15. Rangel et al. (2017)* GA Europe Hourly, Daily HWD 

16. Shabani et al. (2018) GEP Europe Hourly HWD 

*ANN optimization; HWD: Historical water demand; W: Weather-based; P: Population; I: Income-based; O: Others 
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Figure 2-7: Overview of the application of EC techniques in water demand 

forecasting 

2.2.3.3 Optimization modelling 
Owing to the limitation of water resources and increasing water demand, different 

optimization strategies and techniques are being formulated and implemented to 

manage water supply, demand and consumption profiles to achieve the ultimate 

aim of water conservation (Tabesh and Hoomehr, 2009). Optimization of water 

distribution networks (WDNs) and water demand forecasting is therefore closely 

connected. Since this review focusses on the application of EC techniques for 

water demand forecasting, it is therefore essential to present a brief review of 

popular EC techniques used in optimizing WDNs as provided in this section. EC 

techniques that have been successfully applied for water resources optimization 

include GA, DE, ES and EP. 

Savic and Walters (1997), in one of earliest applications of evolutionary 

optimization techniques in water resources, developed and applied a GA-based 

model (GANET) to a combinatorial optimization problem of a least-cost design of 

WDNs. The model was applied for design of a new three-loop WDN and for 

expansion of an existing system. The objective function adopted in the study is 

the minimization of the cost of the solution (i.e., overall costs of the pipes within 

the network), while the minimum pipe pressures were used as constraints to 
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identify the optimal network design.  Solutions produced by the GANET model 

was compared to those previously published in the literature. Results show that 

GANET produced suitable network designs without needless limitations imposed 

by split-pipe or presumptions of linearity. It was concluded that the GA-based 

technique can be effortlessly modified to benefit the design process of completely 

new and existing water networks. The study formed the basis for application of 

GA to solving least-cost design problems and has been widely implemented in 

several network design and optimization studies (Tanyimboh and Seyoum, 

2016). 

Other areas of application of GA in WDN as reported in the literature include 

consumption management and leakage estimation (Di Nardo et al., 2015; Tabesh 

and Hoomehr, 2009), optimal irrigation water allocation (Hassan-Esfahani et al., 

2015; Lewis and Randall, 2017), development of IWRM decision support systems 

(Nouiri, 2014; Zheng et al., 2012), optimization of reservoir operations (Chang et 

al., 2010; Huang et al., 2002), and pumping scheduling (Atkinson et al., 2000; 

Van Zyl et al., 2004). 

DE is increasingly becoming more popular in WDN optimization, and has been 

applied in solving many real-world problems. For example, Vasan and Simonovic 

(2010) developed a simulation-optimization model (DENET) by integrating a DE 

algorithm into a hydraulic simulation model - EPANET, for optimal design of 

WDNs. DENET was applied to benchmark two WDN problems in two distinct 

regions for minimization of network cost and maximization of network reliability, 

and its performance compared with those reported in previous researches. It was 

reported that DENET produced a parallel performance to those reported in earlier 

studies in terms percentage of convergence to global optimum, thereby offering 

feasible cost-effective network solutions while also maximizing network 

resilience. The authors submitted that the simplicity and robustness of the DE are 

key attributes that makes DE a promising optimization technique for design and 

rehabilitation for WDNs.  

In a real-time reservoir optimization study, Olofintoye et al. (2016) coupled an 

ANN model with a novel combined Pareto multi-objective differential evolution 

(CPMDE) for flow forecasting and mathematical optimization of hydropower 

generation from the Vanderkloof reservoir, South Africa. While the ANN was used 
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for real-time forecasting of flow into the reservoir, CPMDE was implemented to 

identify practicable solutions that offer optimal daily operating policies of the 

reservoir. Results showed that the proposed ANN-CPMDE model produced 

solutions that offer policies that trade-off power generation against storage 

depletion and reservoir storage head drop, thereby balancing short-term and 

long-term objectives. In conclusion, the authors argued that there is a significant 

degree of potentiality in the adoption of cutting-edge optimization systems like DE 

for provision of low-cost solution methodology, appropriate for sustainable real-

time optimization of reservoir operations. 

Zheng et al. (2012) proposed a self-adaptive DE (SADE) algorithm and integrated 

it into an EPANET network simulator for least-cost single objective WDN 

optimization problems. Unlike in other EC techniques wherein the termination 

criterion (i.e., computational requirements) for solving an optimization problem is 

predefined, the SADE algorithm employs a new convergence benchmark based 

on the coefficient of variation of the objective function values for the existing DE 

population of solutions. Thus, the SADE algorithm terminates when individuals in 

the DE find the same or extremely close final solutions, thereby preventing the 

challenges of computational redundancy and deficiency associated with 

predefining the computational requirement. The SADE algorithm also allowed for 

automatic tuning of the governing parameters (F and CR) via an evolution 

process, and in so doing, it drastically reduces the effort required to determine 

the optimal DE parameters. The efficiency of the proposed SADE algorithm was 

tested using four WDNs as case studies. Results show that the SADE algorithm 

produced optimal least cost solutions, with greater efficiency than other EAs; 

showcasing great potential in terms of percentage of best solutions found and 

convergence speed. 

EP and ES are two other EC techniques that have been applied for optimization 

of WDNs. EP and ES are noticeably different from GA and DE due to their 

reliance on mutation as a principal genetic operator. They are therefore referred 

to as mutation-based EC techniques (Muleta and Nicklow, 2004). Both EP and 

ES typically apply a Gaussian mutation for real-valued functions, contemporary 

modifications however exhibit more diversity (Yang, 2009). Although EP and ES 

share common attributes, the major distinguishing factor in their operation is that 
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there is no recombination or crossover operation between individuals in EP (Bäck 

et al., 1993; Yang, 2009).  

Romano and Kapelan (2014) developed a self-learning water demand 

forecasting technique with the aim of promoting near real-time management of 

smart WDN. The novel technique was implemented in a demand forecasting 

system (DFS) which comprise an intelligent model, and tested using information 

from three District Metered Areas and a Water Supply Zone in the UK. An ES 

algorithm was adopted for determination of the optimal input structure and 

parameters of the intelligent model in the DFS. Highly accurate forecasts (with 

Nash–Sutcliffe efficiency >0.9), were reportedly achieved by the DFS. The 

authors attributed the accurate forecasts to the ability of the ES algorithm to 

identify the best input structure and parameter sets; utilizing less number of 

explanatory variables.  

EC techniques have found application in the selection and optimization of 

demand-side management approaches which are often targeted at reducing the 

volume of water being drawn from a network by scaling-down end-user demand. 

Evolutionary optimization techniques have been used to simultaneously assess 

the performance of different technological options and strategies using multiple 

quantitative and qualitative sustainability criteria and indicators; thereby 

facilitating decision-making (Makropoulos et al., 2008). These technological 

options and strategies may include installation of water saving devices or 

appliances (e.g., low-flush toilets and low-flow shower heads and taps), best 

management practices such as rainwater harvesting, greywater reuse, as well as 

behavioral changes regarding water usage.  

Makropoulos et al. (2008) developed a decision-support tool – Urban Water 

Optioneering Tool (UWOT) for planning of water cycle management for new 

urban developments, including sustainable option selection in water supply and 

demand management. A GA was embedded in UWOT to drive an optimization 

process which was aimed at identifying the most appropriate and feasible water-

saving solutions based on technical, environmental, social and economic 

objectives. The UWOT modelling framework was thereafter applied to identify 

water-saving technological options for a new urban development in the UK. 

Results show that the set of technological options evolved by the GA enabled 
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trade-offs across a series of sustainability indicators. Moreover, the GA-based 

solutions provided a more significant reduction in water demand compared to 

end-user-based optimization techniques. These results further prove the 

applicability of EC techniques to address potentially conflicting views and 

priorities via a rapid assessment of alternative what-if scenarios, and can 

ultimately serve as an anchor for the delivery of integrated, sustainable water 

management for new developments.  

Generally, it can be said that EC techniques have achieved great successes in 

optimization and management of water supply and demand systems. Key areas 

of water supply and demand management wherein EC techniques have been 

successfully applied can be summarized to include optimization of system 

components during the planning and design stage, operational optimization such 

as pumping scheduling, real-time operations, leakage estimation, network 

rehabilitation and water demand analysis as well as in demand-side 

management.  

This review shows that EC techniques are increasingly gaining recognition due 

to their aptitude to fully explore the search space, and greater tendency of 

producing optimal or near optimal solutions when dealing with complex, 

nonlinear, and discrete optimization problems. In addition, the ease with which 

they can be linked to any simulation model further gives them an edge over other 

optimization techniques. Considering the improved interoperability of EC 

techniques, we posit that they could extend their significance beyond advisory 

roles, and be positioned as an effective tool for developing proper standard 

operating procedures as recommended in the 2016 World Health Organization 

(WHO) report on Water Safety in Distribution Systems (WHO, 2016). EC 

techniques could thus be instrumental to the making of sustainable policies in the 

water sector. One of the key pathways wherein the application of conventional 

EC techniques could be enhanced is by employing them in establishing a synergy 

between ensuring optimality in the water network management and the wider 

issues of society such as poverty, economic growth (productivity) and welfare. To 

this end, a comprehensive framework, that is capable of incorporating EC 

techniques and extending their influence to assessing the impact of policy actions 

(based on optimized variables) on society, is thus advocated. Such framework 
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should be capable of socializing EC techniques by ensuring that their operations 

harmonize optimization with justice and equity. The next section thus presents a 

discussion on the need for balance and equity in adopting EC techniques to 

address the UN SDGs. 

2.3 SECTION B: EXTENDING THE CAPABILITIES OF EC TECHNIQUES IN 
WATER DEMAND MANAGEMENT  

From the review presented in the last section, it is evident that vast research 

efforts have been directed towards the development, improvement and 

application of EC techniques in solving water demand and allocation problems 

for over the last two decades. Results from our survey shows that the EC 

techniques are robust and flexible when applied appropriately. Although EC 

techniques have been extensively researched, there are still vast opportunities 

that can be explored regarding water demand management.  In many parts of the 

world, there are emerging issues that EC techniques must evolve to address. 

One of such emerging themes is the need for equitable and sustainable water 

resource management; including conservation and allocation (UN, 2010). This is 

inevitable due to scarce water resources and disparity in income class. 

Furthermore, emerging and multidisciplinary research is fast redefining the 

disciplinary confines of water resource management. Moreover, sustainability 

centers, not only around technical, environmental and economic circles (as often 

analyzed by water engineers/ modellers), but also and more importantly, the 

social aspects of water. As such water resource (including demand) management 

frameworks must be robust enough to accommodate the impacts (e.g. new 

complexities, system dynamics, uncertainties, nonlinearities, etc.) associated 

with including social factors and/or objectives in water demand modelling and 

management. These emerging subjects pose important challenges that motivate 

the need for extending the applications of EC techniques to water justice and 

equity. As a contribution, we propose a novel integrated water demand and 

management modelling framework (IWDMMF) that will enable water policy-

makers to assess the wider impact of water demand management decisions 

through the principles of egalitarianism, utilitarianism, libertarianism and 

sufficientarianism. The next section presents a framework that has the potential 

of extending the capabilities of EC techniques in water demand modelling. This 
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is necessary to ensure that future water demand optimization and allocation 

models allow for water policy decisions that incorporate equity and justice. The 

section starts by discussing the role of UN SDGs in improving water demand 

management and modelling. The SDGs are then linked to the proposed 

framework. 

2.3.1 The United Nations Sustainable Development Goals (SDGs) 

As a successor to the millennium development goals (MDGs), the Sustainable 

Development Goals (SDGs), otherwise known as the Global Goals according to 

UNDP (2018) “are a universal call to action to end poverty, protect the planet and 

ensure that all people enjoy peace and prosperity.” To this effect, some 

researchers have given attention to the assessment of various components that 

make up the SDGs (Casini et al., 2019; Escrig‐Olmedo et al., 2017; Lehner et al., 

2018; Saladini et al., 2018; Siksnelyte et al., 2018). For example, Saladini et al. 

(2018) developed a monitoring tool based on 12 sustainable development 

indicators for the Mediterranean region. This tool was developed specifically for 

monitoring progress towards food security (SDG 2) and sustainable water 

management (SDG 6), and to keep track of the impact generated by projects 

promoted by Partnership for Research and Innovation in the Mediterranean 

Areas (PRIMA) in the region. The authors suggest modelling as an essential 

component in monitoring the progress of sustainable development. To foster the 

realization of the 2030 UN SDGs, Casini et al. (2019) proposed a step-by-step 

procedure based on the fuzzy set theory for the construction of a 

multidimensional index for sustainability assessment. The study was focused on 

agro-food sustainability, using unique composite or multidimensional indicators 

that allow for identification of key independent factors that determines the 

sustainability of a system. The framework was applied to assess the progress of 

17 countries in terms of sustainable development with country scores calculated 

for each independent factor and an overall index defined. 

Water is one of the highest priorities for healthy living and economic development, 

as well as a crucial factor in maintaining peace and security (Rosemeyer, 2017). 
SDGs 6 and 10 are thus of high importance. While goal 6 seeks to “ensure 

availability and sustainable management of water and sanitation for all”, goal 10 

promotes the reduction in inequality within and among countries. This balance 
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thus ensures that in managing water resources vis-à-vis its allocation and 

safeguarding, balance must be achieved in ensuring equitable distribution of 

water resources to everyone and among competing needs. Such distribution 

must thus promote sustainable consumption (goal 12) and ensure sustainability 

of the ecosystem. However, a major determinant in water resource availability in 

recent times has been climate change which has altered the existing water 

management paradigm of command and control (Neal et al., 2014). Furthermore, 

the increasing influence of climate change on water resource availability and the 

need for the incorporation of justice in water resource management has exposed 

a gap in the adoption of most techniques adopted in forecasting water demand. 

For instance, the common water demand forecast variables adopted by most 

water demand forecasting tools include the weather-based variables (e.g., 

rainfall, temperature, evaporation, wind speed etc.) and social variables 

(population growth, income-level, water price etc.). In utilizing these variables in 

forecasting water demand, it is generally assumed that demand should follow 

historical trends with seasonal variations. To compensate for discrepancies 

between demand and supply, tolerance levels are usually included in forecast 

with the attendant problems of increased cost and wastage. In ensuring that the 

goals of the SDGs are achieved especially goals 10 and 16 through goal 6, there 

is the need to define a framework that allows for the incorporation of values into 

the management of water resources. An implication of the conventional 

application of EC techniques in water resource management is that EC 

techniques could extend their influence beyond ‘advisory roles’. Aside providing 

the utility with data for planning, EC techniques need to be positioned to 

‘intervene’ or extend their influence on issues surrounding the implication of 

adopted water allocation strategies. Considering the domino impact of policy on 

lifestyle (quality of life (QoL), poverty etc.), behaviour (increase/decrease in water 

consumption) and the society at large (productivity), EC techniques must be able 

to provide beyond conventional data, other information such as the effect of an 

allocation strategy on 1water poverty (water burden), non-revenue water (losses), 

productivity (gross Value Added, GVA), estimated revenue to the utility, pressure 

 
1 For this research, a household is said to experience water poverty when it expends more than 10% of its 
income on water and sanitation services. Water poverty thus presents itself in the forms of access (i.e. the 
ease of accessing sufficiently clean and quality water and sanitation services) and mobility (i.e. the ability 
for households to upscale water consumption easily). 



43 
 

profile etc. This framework must thus be able to extend the benefits of 

conventional EC techniques by also providing answers as to how the adopted 

allocation strategy guarantees egalitarianism, utilitarianism, libertarianism and 

sufficientarianism. In navigating the gap therefore between descriptive and 

prescriptive claims, there is a need to formulate a 2realistic utopia.  This is 

important in enabling water resource experts apply more conveniently the 

normative principles within a realistic context.  

2.3.2 Water demand modelling and Policy discussions 

This section presents policy discussions that are relevant to water demand 

modelling, geared towards realizing the UN SDGs. Considering our realistic 

utopia, emerging water crisis occasioned by climate change places further 

constraints on water management. We thus examine the policy implications of 

conventional water demand modelling and management on the socio-economic 

aspect of society within our realistic utopia and proffer recommendations that 

enhance justice in water resource management. The definition of essential terms 

used in this section is given in Table 2-2. 

Table 2-2: Definition of essential policy terms 
Theory Meaning Applied approach 

Egalitarianism Favours equality among living entities. 

Advocates the removal of inequalities 

among people. 

Bounded by sufficientarianism and 

household’s ability to increase water 

demand 

Libertarianism Emphasizes freedom, liberty, voluntary 

association, and respect of property 

rights. 

Bounded by the water utility being able to 

provide households with services that 

enable them to determine how and when 

they intend to utilize their water allocation 

without impediments from the utility 

Utilitarianism The proper course of action is the one 

that maximises the overall “happiness”. In 

other words, actions are right if they are 

useful or for the benefit of the majority. 

Bounded by households being able to 

derive optimum utility from water allocation 

Sufficientarianism  

 

Rather than ensuring equality and all as 

well of as possible, the aim is to make 

sure that everyone has enough. 

Bounded by adequate minimum access 

with provision for water mobility.  

 
2 We define for this paper a realistic utopia to be a setting in which water availability is adequate (not surplus), 
with sufficientarianism bounded by adequate minimum access with provision for water mobility, 
egalitarianism bounded by sufficientarianism and household’s ability to increase water demand, utilitarianism 
bounded by households being able to derive optimum utility from water allocation and libertarianism bounded 
by the water utility being able to provide households with services that enable them determine how and when 
they intend to utilize their water allocation without impediments from the utility. 
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2.3.2.1 Policy discussion on water demand modelling and 
sufficientarianism 

Here, we seek to explore the effect of water demand modelling on 

sufficientarianism. Furthermore, we seek to answer the following questions. 

• What constitutes sufficient water under constrained scenarios?  

• Does the adopted water allocation strategy guarantee water mobility for 

households?  

Considering the primacy of water to life and the need to achieve sustainability 

between demand, supply and future use, questions have arisen over what 

constitutes sufficient water for survival. However, beyond immediate water 

access is water mobility (the ability of a person or household to increase water 

consumption due to an improvement in lifestyle, family size or production activity). 

EC techniques must thus adopt measures that ensure that water demand 

modelling does not unnecessarily constrain consumers and stifle productivity. 

The provision of water to households must thus be of sufficient quantity to 

facilitate normal activities (cooking, drinking, sanitation etc.) and production 

(small scale business). While it is generally established that wealthy households 

have the means to pay for water access for sundry purposes (gardening, lawn 

maintenance, swimming pools etc.) beyond normal uses and productivity, water 

allocation strategies adopted must prioritize utilization purposes that directly 

impact of the QoL of residents and their livelihood.  

2.3.2.2 Policy discussion on water demand modelling and libertarianism 
Here, we are concerned with how adopted water demand management affects 

the ability of water users in utilizing water resources as they deem fit. Questions 

to be answered here include: 

• Do adopted water demand management strategies negatively impact on 

the prerogative (in terms of usage) of water users? 

• Can adopted water demand management techniques guarantee 

libertarianism while also ensuring water demand-supply balance? 

The water crisis currently plaguing Cape Town has led to the implementation of 

various water demand strategies such as fines, installation of pressure reduction 

devices, reduction in water allocation etc. While it can be argued that all these 
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measures are geared towards averting a potential water crisis, there have been 

severe consequences as reported in (Mtembu, 2018). Furthermore, the water 

demand management adopted has not indicated any potential benefits for 

households using below the normally allocated values aside from the ‘City Water 

Map” (Capeetc, 2018). This is due to the fact that water rates adopted are flat 

within a usage band as shown in City of Cape Town – CoCT (2018). In 

guaranteeing libertarianism, water demand management must be able to roll over 

daily net surplus from consumers who are unable to utilize their daily/monthly 

allocation and lack on-site storage facilities. In essence, water demand 

management must ensure that consumers decide how and when they intend to 

use their allocated water resources. In planning, allowances must be made for 

guaranteeing storage of surplus unused water from households with a metering 

infrastructure that updates households in [near] real time as to how much extra 

water they have saved. Households are thus left with the options of either 

increasing consumption (up to their accumulated water reserve) or negotiating a 

reduction in water bill. 

2.3.2.3 Policy discussion on water demand modelling and egalitarianism 
Within our realistic utopia, egalitarianism is bounded by the minimum water 

supply quantity needed for meeting normal daily activities (cooking, drinking, 

sanitation etc.) and basic productivity, with additional water consumption 

dependent on the purchasing ability of the household. We thus seek to answer 

the following questions. 

• Do adopted water management strategies exacerbate the water burden of 

poor households?  

• Are poor households afforded enough opportunities in exploiting water for 

productive actives beyond access? 

For instance, an examination of CoCT (2018) shows that water rate increment for 

the Step 1 users is 556% compared to 195% and 202% for Step 2 and Step 6 

users. Similarly, sewage tariff increased by 484% for Step 1 users compared to 

102% for Step 5 users. In addition, the adopted water and sewage tariffs which 

are flat within a range of usage further discriminates low end users of a usage 

band. With increasing poverty levels in South Africa for instance (now estimated 

at over 55%), this implies that a household with a monthly income of R2000 and 
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water usage of 6 kilolitres/month will expend about 22.32% of its income on water 

and sewage. With additional costs of electricity, rent etc., the disposable income 

of households become diminished leading to consequences of reduction (if 

possible) of water, electricity (already shown for South Africa and Nigeria in 

Monyei and Adewumi (2017) and Monyei et al. (2017)) and other services. 

Considering arguments against the commodification of water (Smith, 2017), and 

the need for a sustainable pricing regime that guarantees the availability of funds 

to ensure proper maintenance and management of water resources and its 

delivery, the utilization of EC techniques in water demand modelling must 

incorporate variables that provide assessments on the causal effects between 

pricing regimes, water demand and general economic productivity. This is to 

provide policy makers an overview of the far-reaching implications of their 

policies. Also, in encouraging water mobility especially for low-end water users, 

incentives must be provided that assuage or minimize the effects of increased 

wage bills. This could be in form of a graduated and transitory increment in water 

rates rather than the usual step increase as observed in CoCT (2018). 

2.3.2.4 Policy discussion on water demand modelling and utilitarianism 
Here, we are concerned with the benefits households can derive from water 

allocation. We thus seek to answer the question: 

• Is the allocated water able to improve the QoL of households vis-à-vis 

hygiene and well-being? 

Acknowledging the difficulties placed on water availability as a result of climate 

change, there is the possibility for water demand management policies to allocate 

water quantities that are ‘useless’ to households due to the insufficient quantities. 

In modelling water demand within our realistic utopia, sufficientarianism must 

guide water allocation to ensure that households are able to derive the maximum 

utility from any allocation. This becomes necessary especially for low water users, 

vulnerable households (poor households) and classes (elderly, sick, children and 

women). Furthermore, in making water available to indigent communities, 

measures must be put in place to ensure that less time is spent in accessing 

water supplies by providing water access points close to households, away from 

sewage collection points and with adequate pressure. 
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2.3.3 The way forward 

Based on the highlighted policy discussions, there is a need for an integrated 

water demand and management modelling framework (IWDMMF) as shown in 

Figure 2-8. The IWDMMF is aimed at providing a platform for the incorporation of 

conventional EC techniques for ensuring optimality in water management, and 

assessing their wider impacts on the socio-economic aspect of society in line with 

justice requirements. The proposed IWDMMF thus advances the conventional 

EC techniques by socializing conventional EC techniques and synergizing the 

socio-economic impacts of adopted EC techniques with national imperatives on 

water (access, quality, pricing etc.). Furthermore, the proposed IWDMMF must 

be able to provide water policy makers an opportunity in planning for adverse 

conditions ahead of time, investigating cost-effective mitigation strategies and 

optimizing cost-recovery measures (through pricing and fines) while assessing 

the impacts of such cost-recovery measures on water consumption, water 

poverty, economic productivity and general QoL. Water demand and 

management must thus advance beyond traditional projections to investigating 

impact of water allocation on the wider society.  

 

Figure 2-8: The proposed IWDMMF 
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2.4 CONCLUSION, RECOMMENDATIONS AND FUTURE WORK 

This paper has examined the extent to which EC techniques have been applied 

in water demand modelling and therefore classified their application into 2 major 

categories namely, (i) predictive modelling, and (ii) optimization modelling. The 

predictive modelling category was further sub-categorized into (i) direct 

application in developing forecast models and (ii) indirect application which 

encapsulates their use as optimization engines and learning algorithms in 

intelligent models. In predictive modelling, an analysis of the existing literature 

has shown that developing countries, especially Africa, have not fully harnessed 

the potentials of EC techniques as the current body of knowledge lacks studies 

that focusses on the application of EC techniques in water demand forecasting. 

This may be linked largely to skills shortage and limited knowledge base in soft 

computing. There is therefore a need for Africa to develop policies and create 

platforms to build the requisite capacity in this specialized field to enable them to 

harness the potentials thereof. Other areas that require more attention, as 

identified in this review include, incorporation of weather and socioeconomic 

variables in forecasting studies, application of EC techniques like DE and ES in 

intelligent model development as well as the need to shift focus from short-term 

forecasting to medium- and long-term forecasting. The impacts of input variables 

like land use and water price on water demand should be investigated in future 

research especially for long-term water demand forecasting. The adoption of 

these recommendations will ensure that the potentials of EC techniques evolve 

further, thus translating from concept to demonstration and then to 

commercialization, and by doing so, guaranteeing their adoption in real-world 

water resource applications.  

This study further highlights the fact that the application of EC techniques in water 

resource optimization and allocation could be extended by integrating wider 

issues of society such as poverty, economic growth (productivity), and welfare in 

determining the optimality of water supply and distribution networks. This will not 

only ensure an equitable allocation of water resources but also foster the 

realization of the UN SDGs. This work thus advocates for a more comprehensive 

framework (IWDMMF) that is capable of syncing conventional EC techniques and 

the social aspect of society. This is to ensure that water policy makers and 
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administrators are able to assess the wider impact of policy decisions emanating 

from optimal values provided by EC techniques. Furthermore, considering the 

need for justice and equity in water demand management, the advocated 

framework (IWDMMF) offers a platform for scrutinizing policy decisions through 

the doctrines of egalitarianism, libertarianism, utilitarianism and 

sufficientarianism. This is necessary in ensuring that water demand management 

does not adversely affect the vulnerable and poor in the society. Future studies 

will focus on the application of IWDMMF in resolving real-world multi-objective 

water demand problems and conflicts. 
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CHAPTER 3 
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3.1 OVERVIEW 

This paper presents the development of an artificial intelligent water demand 

forecasting model. The model comprises a single-hidden layer feedforward 

neural network trained using a differential evolution algorithm. Multiple feature 

selection techniques were employed to identify the minimal subset of features for 

optimal learning, namely Pearson correlation, information gain, symmetrical 

uncertainty, Relief-F attribute and principal component analysis. The 

performance of the feature selection techniques was compared to a baseline 

scenario comprising a full set of data covering potential casual variables including 

weather, socio-economic and historical water consumption data. The 

performance of the models was evaluated based on accuracy. Results show that 

the five feature selection techniques outperformed the baseline scenario. More 

importantly, the subset of features obtained from the Pearson correlation 

technique produced the most superior model in terms of model accuracy. 

Findings from the study suggest that the inclusion of weather and socio-economic 

variables in water demand modelling could enhance the accuracy of forecasts 

and cater for the impacts of climate and socioeconomic variations in water 

demand planning and management. 

Keywords: Artificial neural network, differential evolution, feature selection, 

water demand forecasting  
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3.2 INTRODUCTION 

Water demand forecasting is of crucial importance in water resource planning 

and management as it is a prerequisite for optimal allocation of available water 

resources (Qu et al., 2010). City managers and water utilities often rely on water 

demand forecasts to guide their decision-making on infrastructure investments 

as well as the scheduling and operation of water distribution systems. For 

example, long-term forecasts are imperative in providing new water supplies and 

upgrading the capacity of existing water treatment plants while short-term 

forecasts guide day-to-day operation of treatment plants and reservoirs to meet 

daily demands. Accurate water demand forecasts are therefore required for both 

short- and long-term infrastructure planning, operation and coordination. 

Moreover, the importance of water demand forecasting in realizing the 

sustainable development goals (SDGs) has been stressed by the United Nations 

(UN). The UN in its 2015 water development report called for improvement of 

water demand models as competing demands may lead to increasingly difficult 

allocation decisions and restrict the growth of sectors critical to sustainable 

development (UNESCO, 2015). This implies that, amidst growing demands for 

freshwater across the globe, sustainable development can only be achieved if 

competing sources of demand are well defined to enable restoration of the 

balance between demand and supply. Water demand forecasting therefore 

provides useful information for promoting a more economical use of water 

resources and ensuring the sustainability of water distribution systems in the 

short, medium and long-terms. 

Accurate water demand prediction is reliant on the explanatory variables adopted 

in model development. Research has shown that model accuracy is a function of 

the impacts of each explanatory variable (Babel and Shinde, 2011; Firat et al., 

2009; Toth et al., 2018). However, many city managers, consultants and water 

utilities still assume that water demand will evolve simply as a function of per-

capita demand and a prognosis of population, although the predictive power of 

such approaches is deficient under changing conditions (Toth et al., 2018). Babel 

and Shinde (2011) argue on the need to develop improved and city specific water 

demand models as water demand is influenced not only by population but also 

by various weather and socioeconomic variables as well as government policies 
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and strategy related factors, which are often location-based. Therefore, the need 

to carefully define, evaluate, understand and model the explanatory variables that 

directly and indirectly influence water demand is now acknowledged as crucial in 

obtaining accurate demand forecast.  

Over the past few decades, many techniques have been used in forecasting 

water demand. These techniques mainly include traditional forecasting 

techniques such as multivariate regression and time series analysis (Babel et al., 

2007), system dynamics modelling (Qi and Chang, 2011), and more recently, 

advanced computational intelligence techniques like expert systems or agent-

based models (Ali et al., 2017), and artificial neural networks – ANN (Bennett et 

al., 2013). The application of ANN in water demand forecasting is becoming 

increasingly popular due to its superiority over traditional techniques and its ability 

to account for nonlinear patterns observed in real problems (Babel and Shinde, 

2011; Kofinas et al., 2014). ANN is capable of learning and analyzing data 

attributes and thereafter, implement nonlinear approximation function without any 

initial assumption on the physics of the system being modelled or its data 

distributions (Ardabili et al., 2018). As a result, ANN is now being adopted as an 

alternative to the traditional methods which are limited due to their linear pre-

assumption of the form of the model (Kofinas et al., 2014). A review of the 

capability, implementation and application of ANN in water resources modelling 

including water demand forecasting is available in Ghalehkhondabi et al. (2017) 

and Oyebode and Stretch (2019). 

Water demand forecasting using ANN is characterized by some complexities. 

According to Kofinas et al. (2014), these complexities can be summarized as 

(i) inability to adequately extrapolate outside the range of primary (training) data; 

(ii) diminishing forecast accuracy when lagged values of target variable are used 

as input; and (iii) disregarding the impacts of other explanatory variables affecting 

water demand due to the high correlation between future water demand and its 

historical values. In a comprehensive review of techniques used in forecasting 

water demand, Oyebode et al. (2019) noted the non-inclusion of weather-based 

variables as inputs in most of the studies reviewed. It was further argued that, 

due to the non-inclusion of weather-based variables, most studies in the literature 

lack a climate variability perspective to water demand modelling. This jeopardizes 
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the opportunity to put in place effective early warning systems and to implement 

adaptive interventions to deal with variations in water availability and the 

occurrence of extreme climate-linked events.  The inclusion of climate-based 

parameters is likely to enhance the outcome of existing water demand forecasting 

models. 

This study aims to suggest possible ways of addressing the limitations of ANN in 

water demand forecasting. First, this study allows for the enhancement of 

demand forecasting models proposed in earlier works, by integrating new 

explanatory variables related to climate and socioeconomic variations. The study 

explores the capabilities of five feature selection techniques in providing the 

optimal set of explanatory variables required for accurate prediction of water 

demand. Furthermore, the study investigates the ability of an evolutionary-based 

technique – differential evolution (DE) in evolving an ANN model with optimal 

model complexity and accuracy. Research has shown that despite the 

prominence and successful applications of evolutionary algorithms in water 

resources (Maier et al., 2014), DE is yet to be fully explored in water demand 

forecasting (Oyebode et al., 2019; Oyebode and Stretch, 2019). In this study, the 

ability of DE in training a multilayer feed-forward neural network is explored, and 

by doing so, developing a water demand forecasting model with optimal 

complexity and accuracy. 

3.3 METHODOLOGY 

This section presents a brief background on the modelling technique, training 

algorithm and feature selection techniques applied in this study. 

3.3.1 Artificial neural networks 

ANN is a computational intelligence technique inspired by the configuration and 

working principles of the human brain (Tomić et al., 2018). The ANN architecture 

comprises a collection of processors (neurons), typically arranged in three layers 

which collect, interpret, and exchange information over a framework of weighted 

connections (Oyebode and Stretch, 2019). ANN is popularly used for mapping an 

input-output relationship for a given system by combining the input information 

and estimating their weights. The connection weights are a product of the impact 

of each input on the processor, and a threshold value (known as bias) must be 
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exceeded for a processor to be triggered. Each processor returns an output 

based on the weighted sum of all inputs collected and according to a nonlinear 

activation function. ANN thus undergoes a learning process by adjusting the 

weights iteratively between its processors and comparing the resulting error 

between actual and modelled values (Shahin et al., 2008). Given a sigmoidal 

activation function, the relationship between inputs and output(s) is expressed 

as: 

𝑷𝑷 = 𝟏𝟏/[𝟏𝟏 + 𝒆𝒆𝒔𝒔] (1) 

𝒔𝒔 = (𝒂𝒂𝟏𝟏𝒘𝒘𝟏𝟏 + 𝒂𝒂𝟐𝟐𝒘𝒘𝟐𝟐+ . . . ) + 𝑩𝑩 (2) 

where 𝑷𝑷 is the output of each node, 𝒂𝒂𝒊𝒊 is the input value, 𝒘𝒘𝒊𝒊  is the weight, and 𝑩𝑩 

is the bias. The key objective of ANN training is to reduce the overall error 𝑬𝑬 

between the outputs and actual observations by adjusting the weights. The 

overall error, 𝑬𝑬 can be mathematically expressed as (Mafi and Amirinia, 2017):  

𝑬𝑬 =
𝟏𝟏
𝒎𝒎
�𝑬𝑬𝒎𝒎 (3) 

where 𝒎𝒎 is the total number of training patterns and 𝑬𝑬𝒎𝒎 can be expressed as: 

𝑬𝑬𝒎𝒎 =
𝟏𝟏
𝟐𝟐
�(𝑶𝑶𝒏𝒏 − 𝑷𝑷𝒏𝒏)𝟐𝟐 (4) 

where, 𝑶𝑶𝒏𝒏 and 𝑷𝑷𝒏𝒏 are actual and predicted values for 𝒏𝒏th output processor 

respectively. To be concise, details on the configuration of ANN and its 

implementation are not presented in this study, however they are available in the 

literature (Oyebode and Stretch, 2019; Shahin et al., 2008). 

The study investigates the ability of ANN to forecast monthly water demand 

considering the nonlinear, and dynamic nature of input variables based on climate 

and socioeconomic factors. 

3.3.2 Differential evolution training algorithm 

DE is a population-based heuristic algorithm for global optimization over 

continuous spaces. Thus, it can find the optimal weights required for error 

minimization in ANNs (Ilonen et al., 2003). According to Piotrowski (2014), the 

classic DE algorithm evolves a population of 𝑵𝑵𝑵𝑵 individuals, 𝒙𝒙𝒊𝒊,𝒈𝒈 =

�𝒙𝒙𝒊𝒊,𝒈𝒈𝟏𝟏 , . . . ,𝒙𝒙𝒊𝒊,𝒈𝒈𝑫𝑫 �, 𝒊𝒊 = 𝟏𝟏, …𝑵𝑵𝑵𝑵 during successive generations 𝒈𝒈 to obtain the global 
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optimum of a function 𝒇𝒇 in a subset ∏ [𝑳𝑳𝒋𝒋,𝑼𝑼𝒋𝒋]𝑫𝑫
𝒋𝒋=𝟏𝟏  within a decision domain 𝑹𝑹𝑫𝑫. A 

preliminary location of individuals is randomly initiated from a uniform distribution 

expressed as: 

𝒙𝒙𝒊𝒊,𝟎𝟎
𝒋𝒋 = 𝑳𝑳𝒋𝒋 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒊𝒊

𝒋𝒋(𝟎𝟎,𝟏𝟏) ∙ (𝑼𝑼𝒋𝒋 − 𝑳𝑳𝒋𝒋);    𝒋𝒋 = 𝟏𝟏, . . . ,𝑫𝑫;     𝒊𝒊 = 𝟏𝟏, . . . ,𝑵𝑵𝑵𝑵 (5) 

where 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒊𝒊
𝒋𝒋(𝟎𝟎,𝟏𝟏) creates an arbitrary value within the range [0, 1] for every 

component of each individual. 

In newer generations, each parent individual�𝒙𝒙𝒊𝒊,𝒈𝒈�, generates an offspring �𝒖𝒖𝒊𝒊,𝒈𝒈� 

using a dual-staged approach. The initial stage involves creating a donor vector 

�𝒗𝒗𝒊𝒊,𝒈𝒈� via mutation. In the second stage, a crossover operation is executed 

between the donor and parent vectors; resulting in an offspring. A parent and an 

offspring is subjected to a competition-based selection process (greedy selection) 

and only the superior proceeds to the succeeding generation.  

𝑫𝑫𝑫𝑫/𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓/𝟏𝟏 mutation strategy with a scaling factor 𝑭𝑭 used in implementing the 

classic DE can be expressed as: 

𝒗𝒗𝒊𝒊,𝒈𝒈 = 𝒙𝒙𝒓𝒓𝒓𝒓,𝒈𝒈 + 𝑭𝑭 ∙ �𝒙𝒙𝒓𝒓𝒓𝒓,𝒈𝒈 − 𝒙𝒙𝒓𝒓𝒓𝒓,𝒈𝒈� (6) 

where 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐, and 𝒓𝒓𝟑𝟑  are randomly chosen integers within the interval [𝟏𝟏,𝑵𝑵𝑵𝑵], 

such that 𝒓𝒓𝟏𝟏 ≠ 𝒓𝒓𝟐𝟐 ≠ 𝒓𝒓𝟑𝟑 ≠ 𝒊𝒊,  𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃,𝒈𝒈 signifies the most superior individual in the 

present population at generation 𝒈𝒈. 

A binomial crossover operation is executed on the parent and target vectors after 

mutation, producing an offspring �𝒖𝒖𝒊𝒊,𝒈𝒈�, and consequently requiring the value of 

a crossover control parameter (𝑪𝑪𝑪𝑪) to be defined, whence: 

𝒖𝒖𝒊𝒊,𝒈𝒈
𝒋𝒋 = �

𝒗𝒗𝒊𝒊,𝒈𝒈
𝒋𝒋            

𝒙𝒙𝒊𝒊,𝒈𝒈
𝒋𝒋           

 

𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒊𝒊
𝒋𝒋 (𝟎𝟎,𝟏𝟏)

≤ 𝑪𝑪𝑪𝑪 

𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 

𝒐𝒐𝒐𝒐   𝒋𝒋 = 𝒋𝒋𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓,𝒊𝒊 (7) 

The CR values are typically defined within the [0, 1] interval. 𝒋𝒋𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓,𝒊𝒊, is a randomly 

chosen integer within the [1, D] interval, as an assurance that an offspring 

acquires a minimum of one element from a donor vector. Ultimately, the greedy 

selection between the parent and the offspring is expressed by:   



56 
 

𝒙𝒙𝒊𝒊,𝒈𝒈+𝟏𝟏
𝒋𝒋 = �

𝒖𝒖𝒊𝒊,𝒈𝒈
𝒙𝒙𝒊𝒊,𝒈𝒈  

𝒊𝒊𝒊𝒊 𝒇𝒇(𝒖𝒖𝒊𝒊,𝒈𝒈) ≤ 𝒇𝒇(𝒙𝒙𝒊𝒊,𝒈𝒈) 

𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 
(8) 

The DE algorithm typically proceeds with the exploration until a predefined 

number of iterations is attained. DE is employed to optimize the architecture 

(complexity) and network parameters of ANN models developed in this study, 

thus pioneering the application of DE in training multilayer feed-forward ANN 

models in water demand forecasting. 

3.3.3 Feature selection 

To develop a model with high degree of accuracy and minimal complexity, it is 

important to select only a small number of variables with significant predictive 

features. Research has shown that the inclusion of irrelevant or redundant or 

noisy variables could increase model complexity, reduce model interpretability, 

heighten computational demands, and consequently lead to non-convergence 

(Bowden et al., 2005). Feature selection has been widely reported as a technique 

that can be beneficial to learning as it seeks to identify and possibly remove all 

the irrelevant and redundant attributes, thereby reducing the dimensionality of the 

data and the size of the hypothesis space accordingly (Hall, 1999; Oyebode, 

2014). Feature selection achieves this aim by finding a minimum set of variables 

such that the resulting probability distribution of the data classes is, to a great 

extent, close to the original distribution obtained using all variables 

(Azhagusundari and Thanamani, 2013). Feature selection, thus, enables learning 

algorithms to execute faster and more effectively. The techniques utilized in 

evaluating the worth of features (variables) used in this study are briefly described 

in turn. 

3.3.3.1 Pearson correlation  
Pearson correlation belongs to the class of “filter” feature selection techniques 

which are founded on data pre-processing to isolate the features 𝑿𝑿𝟏𝟏, …, 𝑿𝑿𝒑𝒑 that 

most impact the target 𝒀𝒀. Pearson Correlation provides a straightforward 

approach to filter features based on their correlation coefficient. The Pearson 

correlation coefficient between a feature 𝑿𝑿𝒊𝒊 and the target 𝒀𝒀 is expressed as: 
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𝝆𝝆𝒊𝒊 =
𝒄𝒄𝒄𝒄𝒄𝒄(𝑿𝑿𝒊𝒊,𝒀𝒀)
𝝈𝝈(𝑿𝑿𝒊𝒊)𝝈𝝈𝒀𝒀

 (9) 

where 𝒄𝒄𝒄𝒄𝒄𝒄(𝑿𝑿𝒊𝒊,𝒀𝒀) represents the covariance, and 𝝈𝝈, the standard deviation 

(Mangal and Holm, 2018). The coefficient is typically bounded within the interval 

[-1, 1], and applicable to regression and numerical classification problems. The 

Pearson correlation thus serves as a quick criterion for ranking features according 

to the absolute correlation coefficient to the target. 

3.3.3.2 Information gain 
Information gain is a symmetric-based index used to rank features. The index 

computes the number of bits of information gained by an independent variable 

about a target variable (Karimi et al., 2013). Given the entropy is a function of 

impurity in a training set 𝑺𝑺, an index, 𝑰𝑰𝑰𝑰, denoting additional information about 𝒀𝒀 

as provided by 𝑿𝑿 can be defined; representing the amount by which the entropy 

of 𝒀𝒀 decreases. This index is mathematically expressed as: 

𝑰𝑰𝑰𝑰 = 𝑯𝑯(𝒀𝒀) −𝑯𝑯(𝒀𝒀\𝑿𝑿) = 𝑯𝑯(𝑿𝑿) −𝑯𝑯(𝑿𝑿\𝒀𝒀) (10) 

Information gain is thus founded on the premise that the information gained about 

the target variable 𝒀𝒀 after observing an independent variable 𝑿𝑿 is equal to the 

information gained about 𝑿𝑿 after observing 𝒀𝒀. The limitation in using information 

gain is in its bias towards features with more values even when they are not more 

informative (Phyu and Oo, 2016). 

3.3.3.3 Symmetrical uncertainty 
Symmetric uncertainty is a feature selection system that operates based on the 

principle of mutual information. Symmetrical uncertainty measures the 

correlation, 𝑺𝑺𝑺𝑺, between the features and the target class using the following 

expression (Karimi et al., 2013): 

𝑺𝑺𝑺𝑺 =  (𝑯𝑯(𝑿𝑿) + 𝑯𝑯(𝒀𝒀) −𝑯𝑯(𝑿𝑿\𝒀𝒀))/ (𝑯𝑯(𝑿𝑿) + 𝑯𝑯(𝒀𝒀)) (11) 

where 𝑯𝑯(𝑿𝑿) and 𝑯𝑯(𝒀𝒀) are the entropies according to the probability associated 

with each feature and class value respectively, and 𝑯𝑯(𝑿𝑿,𝒀𝒀), the mutual 

probabilities of all combinations of values of 𝑿𝑿 and 𝒀𝒀. 
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3.3.3.4 Relief-F attribute 
Relief-F attribute is a feature selection technique for detecting conditional 

dependencies between data attributes and providing an integrated assessment 

on the attribute estimation in regression and classification-based problems 

(Robnik-Šikonja and Kononenko, 2003). It seeks to draw instances at random, 

calculate their nearest neighbors, fine-tune a feature weighting vector, and 

consequently award additional weight to features that discriminate the instance 

from neighbors of different classes (Phyu and Oo, 2016). Mathematically, Relief-

F attribute attempts to assign a weight for each feature 𝒇𝒇 using a probabilistic 

estimate expressed as: 

𝒘𝒘𝒇𝒇  = 𝑷𝑷(different value of 𝒇𝒇/different class) - 𝑷𝑷 (different value of 

𝒇𝒇/same class) 

(12) 

3.3.3.5 Principal component analysis 
Principal component analysis is a feature selection which seeks to identify linear 

combinations of unique explanatory variables (referred to as principal 

components – PC) capable of summarizing the data, with the aim of retaining 

maximum information during the process. Principal component analysis operates 

by transforming a given set of variables orthogonally such that the transformed 

variables are uncorrelated and independent of each other, especially if the initial 

variables are normally distributed (Hu et al., 2007). 

Given a data set of 𝑮𝑮 variables 𝑿𝑿 on every 𝒏𝒏 individuals, 𝑿𝑿 = (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . . ,𝒙𝒙𝑮𝑮) such 

as water consumption-explanatory variables, the aim is to find a new set of 

variables 𝝃𝝃 = (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, . . . , 𝝃𝝃𝑮𝑮), that are linearly related to the 𝑿𝑿’s but are themselves 

uncorrelated with a declining variance from most significant to least significant: 

𝝃𝝃𝒊𝒊 = 𝜶𝜶𝒊𝒊𝒊𝒊𝒙𝒙𝟏𝟏 + 𝜶𝜶𝒊𝒊𝒊𝒊𝒙𝒙𝟐𝟐+ . . . +𝜶𝜶𝒊𝒊𝒊𝒊𝒙𝒙𝒋𝒋+ . . . +𝜶𝜶𝒊𝒊𝒊𝒊𝒙𝒙𝑮𝑮 (13) 

To apply a condition that the modification is self-orthogonal, the requisite 

constraints are expressed as follows: 

�𝜶𝜶𝒊𝒊𝒊𝒊𝜶𝜶𝒊𝒊𝒊𝒊 = 𝟎𝟎       𝒋𝒋 ≠ 𝒌𝒌
𝑮𝑮

𝒊𝒊=𝟏𝟏

 (14) 
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�𝜶𝜶𝒊𝒊𝒊𝒊𝜶𝜶𝒊𝒊𝒊𝒊 = 𝟏𝟏       𝒋𝒋 = 𝒌𝒌
𝑮𝑮

𝒊𝒊=𝟏𝟏

 (15) 

The setup of PCs depends on the magnitude of importance. In particular, the first 

PC should provide the most important relation between the original variables 

based on the largest variance while the second PC should give the second most 

important relation, and is orthogonal to the first PC, etc. The variances of the 

succeeding PCs would be smaller if high correlation between the original 

variables occurs. Consequently, principal component analysis can provide 

guidance in reducing the number of potential explanatory variables and offer the 

best representation in a fewer number of transformed PCs (Hu et al., 2007). 

3.4 STUDY AREA AND DATA DESCRIPTION 

This research focused on the City of Ekurhuleni, a metropolitan municipality, 

located in the Gauteng province of South Africa – the most populous province in 

South Africa with a population of approximately 14.7million people (Stats-SA, 

2018). The City of Ekurhuleni was established in the year 2000 from the 

amalgamation of two existing regional entities, namely Kyalami Metropolitan and 

the Eastern Gauteng Services Council, thereby agglomerating a set of relatively 

small and fragmented nine towns (Figure 3-1). The City of Ekurhuleni currently 

accounts for about 26% of Gauteng’s population and plays a dominant role in the 

national economy, contributing 8.8% to South Africa’s Gross Added Value as of 

2016 (IDP, 2018). The City also has a Human Development Index (HDI) of 0.704, 

greater than the National value of about 0.653. However, the City is at the 

epicenter of migration, resulting in increased pressure on limited water resources 

(IDP, 2018). The Ekurhuleni area has no significant local water resource. 

Consequently, water is imported over a long distance, via bulk purchase, from 

the Lesotho Highlands transfer scheme and fed into the Vaal dam (IDP, 2018). 

Table 3-1 provides current figures relevant to Ekurhuleni Water Infrastructure. 
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Figure 3-1: Overview of Ekurhuleni Metropolitan Municipality Service Area 

The City Management seeks to ensure that Ekurhuleni transitions from being a 

fragmented City to being a “Delivering City” from 2012 to 2020, a “Capable City” 

from 2020 – 2030, and lastly a “Sustainable City” from 2030 to 2055 (IDP, 2018). 

To achieve these milestones, a long-term development strategy referred to as the 

Ekurhuleni Growth and Development Strategy 2055 (GDS 2055) has been 

developed to systematically analyze Ekurhuleni’s history and its development 

challenges, wherein it therefore outlines the desired growth and development 

trajectory. One of the strategic objectives and the key focus areas and/ 

interventions is the promotion of urban integration and continued investment in 

water infrastructure to ensure security of supply. This is critical to attaining the 

state of a “Sustainable City” and realizing the African Union Agenda 2063 and 

2030 UN SDGs which includes access to clean water and sanitation, innovation 

and infrastructure as well as reduced inequality. Earlier works have focused on 

water demand analysis in the City of Ekurhuleni using stand size and land use as 

well as related water demand patterns in estimating future demand of residential 

households (Jacobs et al., 2004; Vorster et al., 1995). This study adopts an 

approach that considers multiple factors including those related to population, 

weather and socioeconomic profile of the City in developing a water demand 

forecast model that is geared towards sustainability of the City. This would assist 
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in the planning and management of the City’s water resources, thereby fostering 

the achievement of the City’s objectives. Considering the real-world profile of the 

water infrastructure of the City of Ekurhuleni coupled with its associated 

challenges, this water network is thus considered as representative and relevant 

for use as a case of general interest. The methodologies and model development 

techniques applied could therefore be adopted globally. 

Table 3-1: Ekurhuleni water infrastructure data 

Ekurhuleni Water Infrastructure Data 

Average Water Demand (Mℓ/annum) 365 000 

Water Resources/Supply Vaal dam 

Number of Reservoirs 73 

Number of Towers 32 

Number of Bulk Connections 186 

Pipes (km) 11 448 

Number of Distribution Zones 124 

Population (million, 2016) 3.5 

Annual Population Growth 2.51% 
*Source: Gubuza (2017) 

One of the initial steps in water demand forecasting is identifying explanatory 

variables that directly and indirectly influence water demand. The identification of 

explanatory variables forms the basis upon which final input parameters are 

selected for model development. Details on key explanatory variables to be 

considered in water demand forecasting is available in Oyebode et al. (2019). 

Based on availability, the explanatory variables considered in this study include 

monthly total rainfall (𝑹𝑹), monthly average minimum and maximum temperatures 

(𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 and 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎), monthly average relative humidity (𝑹𝑹𝑹𝑹), monthly average wind 

speed (𝑾𝑾𝑾𝑾), number of household connections (𝑯𝑯𝑯𝑯), population (𝑷𝑷), human 

development index (𝑯𝑯𝑯𝑯𝑯𝑯) and water consumption (𝑾𝑾𝑾𝑾). Although, the weather-

based variables usually employed in water demand forecasting studies are 

temperature and rainfall, however, considering the semi-arid characteristics of 

the City of Ekurhuleni (and generally, South Africa), relative humidity and wind 

speed were included as potential explanatory variables as they could influence 

outdoor water consumption (Huntra and Keener, 2017). Moreover, previous 
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studies conducted in areas with similar characteristics have reported the inclusion 

of these parameters in forecasting water demand (Babel and Shinde, 2011; Firat 

et al., 2009; Huntra and Keener, 2017). 

Monthly data records for each variable were obtained from relevant government 

departments (South African Weather Service, Statistics South Africa (Stats SA), 

and the City of Ekurhuleni) for the period August 2010 to March 2018. Water 

consumption data was based on total monthly billed (revenue) water 

consumption of water users. Weather information were supplied from a 

representative weather station located in the OR Tambo International Airport. The 

number of household connections provides an indication of the number of 

dwelling units served by the authority while population represents the total 

number of people domiciled in the City. The HDI is a measure of the City’s overall 

achievement in its socio-economic dimensions including life expectancy, 

education and income levels. Yearly population and HDI data were transformed 

into monthly values for use in this study by linear interpolation. 

The statistical properties and historical trends of the data collected in this study 

are presented in Table 3-2 and Figure 3-2 respectively. A new and increased 

trend in water consumption can be observed between mid-2015 and March 2018. 

As clarified by the City’s water services planning manager, in mid-2015, the city 

management implemented one of its strategic objectives which aimed at reducing 

water loss within the City’s water distribution network. The implementation of this 

strategy entailed the installation of new water meters and repair of faulty water 

pipes to address high water losses which were mainly due to leaks, theft and 

metering inaccuracies. As a result, water initially categorized as non-revenue 

water (i.e. real and apparent water losses) thereafter counts as revenue water. 

Table 3-2: Descriptive statistics of data used in the study 

Statistical parameter 
𝑹𝑹  

(𝒎𝒎𝒎𝒎) 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎  

(°𝑪𝑪) 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎  

(°𝑪𝑪) 

𝑹𝑹𝑹𝑹 

(%) 

𝑾𝑾𝑾𝑾  

(𝒎𝒎/𝒔𝒔) 
𝑯𝑯𝑯𝑯 𝑷𝑷 𝑯𝑯𝑯𝑯𝑯𝑯 

𝑾𝑾𝑾𝑾  

(𝑴𝑴𝑴𝑴) 

Mean 59.37 11.11 23.15 51.10 4.19 607 096 3 280 134 0.69 216 917 

Maximum 210.00 16.20 29.40 75.07 5.60 698 407 3 543 077 0.71 247 135 

Minimum - 2.50 15.10 28.07 3.23 526 700 2 975 216 0.66 196 908 

Standard deviation 59.42 3.65 3.38 11.56 0.58 50 953 165 046 0.01 14 524 

Kurtosis coefficient -0.30 -0.91 -0.72 -0.87 -0.64 -1.21 -1.12 0.01 -0.86 

Skewness coefficient 0.81 -0.55 -0.60 0.07 0.48 0.12 -0.21 -1.15 0.70 
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Figure 3-2: Historical trend of variables considered for model development 

3.5 MODEL DEVELOPMENT 

To identify feature subsets that can describe the water consumption data of the 

City of Ekurhuleni as good or better than the primary data set, the five feature 

selection techniques described above were investigated. The feature selection 

algorithms were implemented by means of a Ranker search method (Witten et 

al., 2016). The features selected by each of the techniques are presented in Table 
3-3. 

Table 3-3: Functional relationship between water consumption and features 

selected 
Feature selection technique Functional relationship of features selected 

Pearson correlation 𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯,𝑾𝑾𝑾𝑾)                                   (16) 

Information gain 𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑹𝑹𝑹𝑹)                    (17) 

Symmetrical uncertainty 𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎)                           (18) 

Relief-F attribute 𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑹𝑹,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑯𝑯𝑯𝑯𝑯𝑯)                        (19) 

Principal component analysis 𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯,𝑹𝑹𝑹𝑹,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎)                    (20) 



64 
 

The functional relationship between water consumption and the original data set 

(i.e. all the potential explanatory variables) is expressed below. This is henceforth 

referred to as “baseline scenario”. 

𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑹𝑹,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑹𝑹𝑹𝑹,𝑾𝑾𝑾𝑾,𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯) (21) 

The data sets were split into two subsets of similar statistical properties in line 

with ANN modelling standards and norms (Maier and Dandy, 2000; Modaresi et 

al., 2018; Oyebode and Stretch, 2019), with 70% of the data (61 instances) used 

for model training and the outstanding 30% (26 instances) for validation. 

To investigate the performance of the feature selection techniques, a multilayer 

feed-forward ANN comprising three layers: one input, one hidden and one output 

layer was developed. The feature subsets produced by each of the feature 

selection techniques were used as model inputs in turn. The baseline scenario 

was also implemented on the ANN.  The optimal architecture of the models was 

established by incrementally changing the number of hidden layer processors 

from 1 to 10 using a single stepping function. The output layer consists of only 

one neuron; representing the target variable – water consumption while a logistic 

sigmoidal-type activation function within [0, 1] interval was utilized in the hidden 

layer to rescale the inputs in the range [0.1, 0.9].  A linear activation function was 

used in the output layer to transform nonlinearities in the inputs into a linear 

space. 

The ANN was trained using a classic DE algorithm (Storn and Price, 1997). The 

crossover probability, 𝑪𝑪𝑪𝑪, and mutation scale factor 𝑭𝑭, were used to govern the 

genetic operations during the algorithm run. Following the suggestion of 

Montgomery and Chen (2010), 𝑵𝑵𝑵𝑵 was set at “𝑫𝑫 multiplied by 10”, where 𝑫𝑫 is 

the number of weights and biases in the selected architecture. Adopting a 

stepping value of 0.1, the DE algorithm was subjected to sensitivity analysis by 

varying 𝑪𝑪𝑪𝑪 and 𝑭𝑭 incrementally within [0.5, 0.9] and [0.1, 0.5] intervals 

respectively. This was aimed at determining the optimal parameter settings to 

govern the evolution process. The algorithm was thereafter run for 1 000 

generations for each of the models.  

Early stopping (Raskutti et al., 2014) was integrated in the ANN models to 

address overfitting problems. Early stopping aims to identify the point where 
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minimum error on the validation data set begins to rise, and then halts training to 

prevent overfitting. Early stopping thus ensures that model performance balances 

model complexity with the errors observed during training and validation.  

The methodological framework developed and implemented for this study is 

depicted in Figure 3-3.   

 

Figure 3-3: Methodological framework 

3.6 MODEL EVALUATION 

To evaluate the predictive capabilities of the models developed using the baseline 

scenario and feature selection techniques, three statistical measures were 
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applied namely root mean-square error (RMSE), Nash–Sutcliffe efficiency index 

(NSE) and coefficient of determination (R2). The RMSE is a measurement of the 

error variance in the model prediction, while the NSE scores the error variance 

within the interval [-∞; 1] (Amaranto et al., 2018). R2 measures the degree of 

collinearity between observed values and predicted values, thereby defining the 

proportion of variance in observed values as explained by the models. Both NSE 

and R2 indicate a better model as their value approaches 1. The mathematical 

expression for the three statistical measures is expressed as follows: 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = �∑ (𝑶𝑶𝒊𝒊 − 𝑷𝑷𝒊𝒊)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
 

(22) 

𝑵𝑵𝑵𝑵𝑵𝑵 = 𝟏𝟏 −
∑ (𝑶𝑶𝒊𝒊 − 𝑷𝑷𝒊𝒊)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

∑ (𝑶𝑶𝒊𝒊��� − 𝑶𝑶𝒊𝒊)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

 
(23) 

𝑹𝑹𝟐𝟐 =

⎣
⎢
⎢
⎡ ∑ (𝑶𝑶𝒊𝒊 − 𝑶𝑶�)�𝑷𝑷𝒊𝒊 − 𝑷𝑷��𝑵𝑵

𝒊𝒊=𝟏𝟏

�∑ (𝑶𝑶𝒊𝒊 − 𝑶𝑶�)𝟐𝟐 ∙ ∑ �𝑷𝑷𝒊𝒊 − 𝑷𝑷��𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏 ⎦

⎥
⎥
⎤
𝟐𝟐

 (24) 

where 𝑵𝑵 is the number of instances in the set, and 𝑷𝑷𝒊𝒊, 𝑶𝑶𝒊𝒊, 𝑷𝑷� and 𝑶𝑶� are the 

predicted and observed values, and their respective average values. 

3.7 RESULTS AND DISCUSSION 

The performance of the ANN models developed in the study were evaluated 

based on learning accuracy and model complexity, and the performance 

evaluation results presented in Table 3-4 and Table 3-5. Table 3-4 compares the 

performance of the ANN models in reproducing the actual water consumption at 

the City of Ekurhuleni, while Table 3-5 presents the optimal model architectures, 

optimal DE control parameters and ranks for each of the ANN models. The results 

show a highly competitive performance amongst the techniques employed in this 

study, with minimal errors (RMSEs) observed in all the ANN models. All the 

models were ranked based on their average performance across the three 

statistical measures and over the validation data sets. Overall, the ANN model 

developed using the Pearson correlation subset performed better than other 

techniques; producing the lowest error (RMSE) estimate of 4 172 Mℓ. Similarly, 
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the Pearson correlation-based ANN model produced the highest R2 and NSE 

values at 0.9233 and 0.9001 respectively.  

Table 3-4: Performance of models developed from each scenario 

Techniques 

Statistical Parameters 

R2 R2  RMSE RMSE  NSE NSE 

Training Validation 
 

Training Validation 
 

Training Validation 

Baseline scenario 0.9038 0.8576  4 766 5 160  0.8808 0.8472 

Pearson correlation 0.8812 0.9233  5 092 4 172  0.8639 0.9001 

Information gain 0.8647 0.8961  5 105 4 505  0.8632 0.8835 

Symmetrical uncertainty 0.8375 0.8611  5 659 5 227  0.8319 0.8454 

Relief-F attribute 0.8576 0.9075  5 372 4 178  0.8485 0.8998 

Principal component analysis 0.8397 0.8943  5 720 4 528  0.8283 0.8823 

The ANN model developed using the Relief-F Attribute technique produced the 

second-best performance, while those developed using the information gain, 

principal component analysis and symmetrical uncertainty came third, fourth and 

fifth respectively. It is interesting to note that all the ANN models developed using 

the five feature selection techniques converged better during validation than 

training, implying that the models do not suffer from the “curse of dimensionality” 

and overfitting which typically plagues ANN models (Adeyemo et al., 2018). This 

also suggests that the early stopping criterion was effective in preventing 

overfitting.  

Table 3-5: Model comparison and ranks based on model architecture and 

forecast accuracy during validation  

Techniques Model 
Architecture 

Optimal DE Algorithm 
Control Parameters 

 
Rank 

Average: 
Overall Model 

Accuracy Cr F R2 RMSE NSE 

Baseline scenario 8-2-1 0.7 0.5  6 6 6 6 

Pearson correlation 4-4-1 0.8 0.3  1 1 1 1 

Information gain 5-2-1 0.7 0.3  3 3 3 3 

Symmetrical uncertainty 4-3-1 0.7 0.3  5 5 5 5 

Relief-F attribute 5-3-1 0.7 0.3  2 2 2 2 

Principal component analysis 5-2-1 0.8 0.4  4 4 4 4 
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Contrastingly, the ANN developed using the baseline scenario had the worst 

model performance amongst the six ANN models. A slight overfit can be noticed 

in its training and validation results. This slight overfit could be due to 

overparameterization; suggesting parameter irrelevancy or redundancy in the full 

set of potential explanatory variables considered. The performance of the 

baseline scenario ANN models agrees with the argument of Phyu and Oo (2016) 

that, if feature selection techniques are employed, the consistency of the full set 

of attributes can never be higher than that of any subset of attributes. 

Notwithstanding, the rank of the ANN model developed from the baseline 

scenario, its performance could be referred to as reasonable considering its 

model architecture (8-2-1) which seems to have the minimal complexity.  

Sensitivity analysis performed on the DE control parameters show that the 

optimal crossover and mutation probabilities were in the [0.7, 0.8] and [0.3, 0.5] 

intervals respectively across the six ANN models. This suggests a high 

exploratory search by the DE algorithm, which is often a product of continuous 

productive search (Montgomery and Chen, 2010).  

Figure 3-4 and Figure 3-5 present plots of observed and forecasted water 

demands for the training and validation phases respectively. The plots clearly 

show that all the models produced a good representation of the water demand 

pattern in the City of Ekurhuleni. Both the peaks and troughs including sharp 

spikes in the water demand pattern were reproduced by the feature selection-

based models. Some constant values are however noticeable in the baseline 

scenario model during training; possibly due to the inclusion of irrelevant 

variables that have little or no significant influence on the learning process. The 

corresponding scatter plots also depict high accuracy and correlation as the 

observed and forecasted values are close to the line of equality in all the models. 

The best model representation and best line of fit is produced by the Pearson 

correlation-based model. 
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Figure 3-4: Comparison of performances of developed models during training 

phase 
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Figure 3-5: Comparison of performances of developed models during validation 

phase 
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Table 3-6 shows the contribution of each potential explanatory variable. The 

contribution of each variable was determined by a total count across the subsets 

derived from the five feature selection techniques. The results show that the 

number of household connections and population contributed the most to model 

performance; appearing in the subsets produced by the five feature selection 

techniques. This is followed by the minimum and maximum temperatures as well 

as human development index which appeared in three of the five subsets. 

Although, wind speed and rainfall are individually evident in only one of the 

subsets, their contribution is noteworthy as they, respectively, belong to the 

subsets that produced the most superior (Pearson correlation) and second-best 

(Relief-F Attribute) performances. Similarly, relative humidity appeared in the 

subsets of the third- and fourth-best models. These results suggest that, besides 

temperature, wind speed, rainfall and relative humidity have some influence on 

water consumption in the City of Ekurhuleni. This may be explained by the climate 

of the study area which is characterized by wet, windy and humid summer, 

resulting in higher water use. Results from this study thus agree with the findings 

of Babel and Shinde (2011) and Huntra and Keener (2017) which found that 

relative humidity, wind speed and rainfall could have some degree of influence 

on water consumption, especially in semi-arid regions. 

Table 3-6: Contribution of explanatory variables used for model development 

Feature selection techniques 𝑹𝑹 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝑹𝑹𝑹𝑹 𝑾𝑾𝑾𝑾 𝑯𝑯𝑯𝑯 𝑷𝑷 𝑯𝑯𝑯𝑯𝑯𝑯 

Pearson correlation             

Information gain            

Symmetrical uncertainty             

Relief-F attribute            

Principal component analysis            

Total count 1 3 3 2 1 5 5 3 

3.8 CONCLUSIONS AND FUTURE WORK 

The capability of five feature selection techniques in finding the optimal subset of 

features for a water demand forecasting model has been investigated in this 

study. The performance of the subsets generated by the five feature selection 

techniques were compared to that of a baseline scenario which comprise eight 

potential explanatory variables; totaling six scenarios. The aim was to develop an 
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improved and reliable municipal water demand model that accounts for the 

impacts of weather and socioeconomic variations. Human development index – 

HDI was introduced for the first time in water demand forecasting as a 

socioeconomic variable and used alongside weather-, population- and water 

demand-based variables. Using a combination of evolutionary computation and 

artificial intelligence approach, DE-inspired ANN models were developed; one for 

each scenario. Results show that minimum and maximum temperatures as well 

as HDI were selected alongside population and number of household 

connections which are popularly used in water demand forecasting. Results 

further show that these three variables contributed significantly to the 

performance of three of the five models. Pearson correlation proved to be the 

most superior feature selection technique. DE showcased robustness in fine-

tuning algorithm parameter values thereby producing good performance in terms 

of the solution efficiency and quality. Generally, this study demonstrates that ANN 

water demand models can now account for the impacts of weather and 

socioeconomic variations by incorporating explanatory variables based on 

weather and socioeconomic factors. This study also suggests that the synergetic 

use of feature selection techniques, DE algorithm and early stopping criterion 

could be used to address the limitations of ANN, thereby improving model 

generalization and forecast accuracy as well as providing a climate variability 

perspective to water demand forecasting. The methodologies, principles and 

techniques behind this study fosters sustainable development and thus could be 

adopted in planning and management of water resources. This study is limited to 

the use of historical water demand, weather and socioeconomic variables in 

predicting water demand. However, to enhance the applicability of the current 

ANN predictions, future research will focus on the impacts of other explanatory 

factors like non-revenue water, land use, recharge and run-off on the City’s water 

demand when the information becomes available. 

3.9 RESEARCH OUTPUT 

1. Oyebode, O. (2019). Evolutionary modelling of municipal water demand with 

multiple feature selection techniques. Journal of Water Supply: Research and 

Technology–AQUA. 68 (4): 264-281. https://doi.org/10.2166/aqua.2019.145   

https://doi.org/10.2166/aqua.2019.145
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CHAPTER 4 
URBAN WATER DEMAND FORECASTING: A COMPARATIVE 
EVALUATION OF CONVENTIONAL AND SOFT COMPUTING 

TECHNIQUES 
Oluwaseun Oyebode1* and Desmond Eseoghene Ighravwe2  

Centre for Research in Environmental, Coastal and Hydrological Engineering 

(CRECHE), Department of Civil Engineering, University of KwaZulu-Natal, Durban 

4014, South Africa 

2Department of Mechanical and Biomedical Engineering, Bells University of 

Technology, Ota 112233, Nigeria 

*Corresponding author: oluwaseun.oyebode@gmail.com; Tel: +27 (0) 84 807 3576 

4.1 OVERVIEW 

This paper presents a comparative evaluation of the potential of soft computing 

and conventional water demand forecasting techniques using the City of 

Ekurhuleni, South Africa as a case study. To this end, three soft computing 

techniques were implemented comprising two feedforward artificial neural 

networks (ANN) and a support vector machine. The two ANN models were 

trained using different algorithms namely, differential evolution (DE) and 

conjugate gradient (CG).  Two input combination scenarios were developed in 

this study comprising (i) a baseline scenario of all potential explanatory variables, 

and (ii) an optimal subset of the baseline scenario. The performance of the three 

soft computing models were evaluated and compared to those obtained from 

conventionally-used exponential smoothing (ESm) and multiple linear regression 

(MLR) techniques. Results show that, across the two scenarios, the DE-inspired 

ANN model was superior to the other four techniques in terms of accuracy. The 

results further demonstrate the robustness of evolutionary computation 

techniques amongst soft computing techniques.  

Keywords: Artificial neural network, differential evolution, evolutionary 

algorithms, water demand forecasting  

  

mailto:oluwaseun.oyebode@gmail.com


75 
 

4.2 INTRODUCTION 

The United Nations’ (UN) Vision 2050 aims to ensure that water is made 

accessible in an appropriate quantity and quality to meet consumers’ basic 

requirements, with healthy lifestyles and behaviors simply sustained through 

dependable and inexpensive water supply and sanitation services (UNESCO, 

2015). To this end, in its World Water Development Report 2015, it identified the 

verification and transformation of data for decision-making in water resource 

planning and management as one of the outstanding challenges to be met in 

knowledge generation and policy formulation. Water demand forecasting remains 

one of the key implementation tools for putting in place effective planning and 

management of water resources, thereby making water management policies 

more efficient (Pulido-Calvo et al., 2007). Water demand forecasting could thus 

assist in addressing the knowledge management and policy formation challenges 

and realizing the UN 2050 Vision. However, for water demand forecasting to be 

effective in achieving this aim, there is a need for a shift in the manner with which 

water demand models are being developed. The conventional “fixture-unit” 

approach (typically based on multivariate regression and time-series analysis), 

often employed by water utilities and municipalities, has been criticized for (i) 

having its working principles based on the assumption of collinearity (Donkor et 

al., 2012; House‐Peters and Chang, 2011), and (ii) having several inherent 

uncertainties resulting in overestimations of actual water demand as much as 

100% (Shabani et al., 2016). Moreover, the ever-increasing trend in urbanization, 

rapid population, socioeconomic growth, climate change and their attendant 

threats to the sustainability of available water resources necessitate a new 

perspective to water demand forecasting (UNESCO, 2016). This implies that 

water demand models, in today’s world, must be developed to better account for 

the dynamic and complex interactions among demographic, environmental, 

technological and socioeconomic characteristics of the water system. This is key 

to building a secure water future at both local and global scales, thereby fostering 

the realization of the UN objectives.  

Research has shown a rapidly growing interest towards the application of soft 

computing techniques in water resources. This growing interest has been 

attributed to their ability to deliver a high level of accuracy, tractability, robustness, 
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and cost-effective solutions to complex, ambiguous, dynamic and nonlinear real-

world problems (Ghalehkhondabi et al., 2017). Examples of prominent soft 

computing techniques that have found application in water resources include the 

artificial neural networks – ANN (Adeyemo et al., 2018), support vector machines 

– SVM (Ch et al., 2013), adaptive neuro-fuzzy inferences systems – ANFIS 

(Soltani et al., 2010), systems dynamics (Dhungel and Fiedler, 2014) and 

evolutionary computation (EC)-based metaheuristics (Olofintoye et al., 2016). 

These techniques are now being explored in water demand forecasting and have 

been yielding some promising results (Adamowski and Karapataki, 2010; Ali et 

al., 2017; Ji et al., 2014; Varahrami, 2010; Vijayalaksmi and Babu, 2015; Wu and 

Yan, 2010; Zhai et al., 2009). In light of the successes recorded in the application 

of soft computing techniques, they are now being envisaged to replace or 

complement the conventional and/or traditional techniques (Oyebode and 

Stretch, 2019). 

Research suggests that, despite the recent advances in the application of soft 

computing techniques,  several areas are yet to be maximized in water demand 

forecasting (Ghalehkhondabi et al., 2017; Oyebode et al., 2019). Ghalehkhondabi 

et al. (2017), in an extensive review of the application of soft computing 

techniques in water demand forecasting, call for investigations into the potential 

of new artificial intelligence and metaheuristic techniques including deep neural 

nets and EC techniques, and how they can be used in optimizing model 

architectures. The authors also motivated for a shift from short-term to medium- 

and long-term forecasting as existing studies are mostly focused on short-term 

forecasting. In a more recent appraisal of the utilization of EC techniques in water 

demand modeling, Oyebode et al. (2019) found that EC techniques like 

differential evolution (DE) have not been adequately tested within the water 

demand modeling domain. In fact, findings from the review suggests that the 

adoption of EC techniques in water demand forecasting is yet to be embraced in 

developing regions, especially in Africa. Furthermore, Shabani et al. (2016) 

recommends the inclusion of weather and socioeconomic variables in long-term 

water demand forecasting to assess the impacts of evolving weather and 

socioeconomic conditions on water demand. Considering the importance of water 

demand forecasting, and the need to improve the accuracy of forecasts, more 
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research is required to fully harness the potentials inherent in soft computing 

techniques.  

To address the gaps in knowledge identified in the above-listed studies, this study 

investigates the potential of two soft computing techniques namely ANN and SVM 

in estimating municipal water demand. The study also seeks to investigate the 

impacts of training algorithms on the learning ability of feedforward ANNs. To this 

end, two ANN models are developed using different training algorithms – DE and 

conjugate gradient (CG) algorithms. The performance of the models (ANN and 

SVM) is thereafter compared to that of the conventionally-used multiple linear 

regression (MLR) and subsequently benchmarked against a standard time series 

technique – exponential smoothing (ESm).  

4.3 METHODOLOGY 

Five different techniques have been employed in this paper for water demand 

forecasting in the City of Ekurhuleni, resulting in five water demand models. Two 

of the models are based on the working principles of artificial neural network while 

the other three include SVM and conventionally-used MLR and ESm. This section 

presents an overview of each method. 

4.3.1 Multiple linear regression 

Linear regression (LR) is a popular statistical technique that has been widely 

applied in water demand forecasting in most water utilities and municipalities 

across the globe (Polebitski and Palmer, 2009; Uca et al., 2018). A regression 

model with two or more predictors (regressors) is referred to as a multiple linear 

regression (MLR) model. The generic formula for implementing a MLR model of 

k independent predictors can be expressed by: 

𝒀𝒀 = 𝜷𝜷𝒐𝒐 + 𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏 + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐 + ⋯+ 𝜷𝜷𝒌𝒌𝑿𝑿𝒌𝒌 + 𝑬𝑬 (1) 

where 𝜷𝜷𝒐𝒐,  𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐, … ,𝜷𝜷𝒌𝒌 are the model parameters that must be determined, while 

𝑬𝑬,𝒀𝒀 and 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝒙𝒙 e are the error, target and predictor variables respectively. 

The values of the predictor variable (𝑿𝑿) is typically correlated with that of the 

target variable (𝒀𝒀), and the performance of the model expressed as a function of 

the error, 𝑬𝑬 (variances between actual and modeled values), correlation 

coefficient (𝒓𝒓) and coefficient of determination (𝑹𝑹𝟐𝟐). Generally, the model of best-
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fit obtained via a least-squares method seeks to reduce, to the smallest possible 

amount, the sum of squares of the difference between the observed and modeled 

variable (Uca et al., 2018). 

4.3.2 Exponential Smoothing 

ESm is a member of the moving average forecasting methods. Forecasts 

produced using exponential smoothing methods are weighted averages of past 

observations, with the weights decaying exponentially as the observations get 

older (Su et al., 2018). In other words, the new observations are given relatively 

bigger weight in forecasting than the old observations. The prediction value is the 

weighted sum of observed values. The fundamental idea of smoothing model is 

that the trend of the time series is stable or regular, and the time series trend can 

be reasonably postponed, and thus, the latest historical trend will persist into the 

future (Hyndman et al., 2008). The forecast accuracy in the ESm technique is 

mainly dependent on the value of a smoothing (α), or damping factor (1-α). 

Although, no formally correct procedure exists for choosing the value of α, to 

minimize the error influence of the smoothing factor, a trial-and-error method is 

often applied to select the optimal value of α (Su et al., 2018). The simplest form 

of ESm is given by the formula: 

𝑭𝑭𝒕𝒕+𝟏𝟏 = 𝑭𝑭𝒕𝒕 + 𝜶𝜶(𝑨𝑨𝒕𝒕 − 𝑭𝑭𝒕𝒕) (2) 

where 𝑨𝑨𝒕𝒕 is the actual value at time 𝒕𝒕; 𝑭𝑭𝒕𝒕 is the forecast value at time 𝒕𝒕; 𝑭𝑭𝒕𝒕+𝟏𝟏 is 

the forecast value at time 𝒕𝒕 + 𝟏𝟏; and 𝜶𝜶 is a smoothing factor, 𝟎𝟎 ≤ 𝜶𝜶 ≤ 𝟏𝟏. 

4.3.3 Artificial neural network 

Please refer to chapters 2 and 3 for details on the configuration and 

implementation of ANN.  

The study investigates the performance of two feedforward ANNs, (trained using 

two different training algorithms), to forecast monthly water demand considering 

the nonlinear, and dynamic nature of input variables based on climate and 

socioeconomic factors. The two training algorithms investigated are (CG) and 

(DE) algorithms. Details on both algorithms are available in the literature (Hanke, 

2017; Ilonen et al., 2003). 
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4.3.4 Support vector machine 

SVM is a soft computing method that originates from the statistical learning theory 

(Vapnik, 1999). It adopts a supervised learning approach to solve regression, 

density estimation and classification problems. SVM initialize by defining a 

practical limit or boundary on the generalization error using a Structural Risk 

Minimization (SRM) principle (Elshorbagy et al., 2010). ). It thereafter advances 

to search for the optimal structure of the model, using predefined model training 

parameters to guarantee an exclusive global minimum of the error surface. SVM 

thus uses a nonlinear approach to transform input domain into a higher 

dimensional attribute domain (Mafi and Amirinia, 2017). This approach enables 

SVMs to have a good performance in terms of generalization. The mapping 

function which is implemented by using a specified kernel may either be a linear, 

polynomial, sigmoidal, radial basis or hybrid function.  

The architecture of SVM is similar to that of ANN in terms of its working principles. 

Both techniques can be denoted as two-layered networks wherein the weights 

are nonlinear and linear in the foremost and output layers respectively (Oyebode 

et al., 2014b). However, unlike ANN wherein an adaptive learning approach is 

adopted in optimizing all network parameters, SVM selects model parameters for 

the foremost layer as training input vectors. One of the advantages of SVM is that 

it works with smaller amount training samples and variables, and remain highly 

sensitive to variations in the variables (Karimi et al., 2016). 

In a regression-based SVM, the training samples can be characterized as [𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊] 

where 𝒙𝒙𝒊𝒊 ∈ 𝑹𝑹𝒏𝒏 refers to the input vector, 𝒏𝒏 signifies the input vector dimension, 

and 𝒚𝒚𝒊𝒊 ∈ [−𝟏𝟏,𝟏𝟏], the target vector. The regression-based SVM employs quadratic 

instructions to discover optimal hyperplanes that partition the input and target 

classes. The quadratic instructions can be mathematically expressed as (Mafi 

and Amirinia, 2017): 

𝒎𝒎𝒎𝒎𝒎𝒎
𝟏𝟏
𝟐𝟐
𝒘𝒘𝒕𝒕𝒘𝒘 + 𝑪𝑪�𝝃𝝃𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

 
(3) 

𝒚𝒚𝒊𝒊(𝒘𝒘𝒘𝒘(𝒙𝒙𝒊𝒊) + 𝒃𝒃) + 𝝃𝝃𝒊𝒊 − 𝟏𝟏 ≥ 𝟎𝟎 (4) 

where 𝝋𝝋(𝒙𝒙𝒊𝒊) transforms the input(s) into a higher dimensional attribute domain. 

𝒘𝒘, 𝒃𝒃, 𝑪𝑪 and 𝝃𝝃𝒊𝒊 ≥ 𝟎𝟎 represent the weight vector, bias, error penalty and slack 
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variable respectively. Respectively, 𝑪𝑪 and 𝝃𝝃𝒊𝒊 are employed to preclude the 

influence of noisy information and avoid overfitting. An illustration of the SVM 

theory for selecting the optimal hyperplane that maximizes the limits is shown in 

Figure 4-1. 

Equations (3) and (4) are solvable using Lagrange methods. Upon creation the 

optimal hyperplane, the regression function is implemented using the 

mathematical expression: 

𝒇𝒇(𝒚𝒚) = 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔��𝒚𝒚𝒊𝒊𝒄𝒄𝒊𝒊𝒌𝒌�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋� + 𝒃𝒃
𝑵𝑵

𝒊𝒊=𝟏𝟏

� (5) 

where 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔() provides an indication of the sign; 𝒄𝒄𝒊𝒊 signifies the Lagrange 

multiplier; the expression, 𝒌𝒌�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋� = 𝝋𝝋(𝒙𝒙𝒊𝒊)𝑻𝑻(𝒙𝒙𝒋𝒋) represents the kernel function, 

wherein 𝑻𝑻 denotes the transpose matrix. Additional information on SVMs is 

available in the literature (Oyebode et al., 2014b; Vapnik, 2013). 

 

Figure 4-1: Graphical illustration of SVM working principles. Source: Mafi and 

Amirinia (2017) 

4.4 DESCRIPTION OF STUDY AREA 

Readers should refer to section 3.4 of chapter 3 for details on the description of 

study area and data sets employed.  
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4.5 MODEL DEVELOPMENT 

Model development often involves subjecting potential explanatory variables to a 

screening process that ensures only inputs that can provide an optimal 

representation of the system being modeled are selected. However, some 

researchers believe that data-driven models including soft computation 

techniques, have the ability to determine important input variables, and thus 

introduce a large number of potential inputs to the model (Adeyemo et al., 2018).  

Bowden et al. (2005) argue that the inclusion of unrelated inputs may increase 

model complexity inhibit the learning process and consequently result in poor 

generalization. 

To test the above assertions, this study employs two scenarios for model 

development.  The first scenario henceforth referred to as “baseline scenario” 

involves the use of all potential explanatory variables (as per collected data) that 

could influence water consumption in the City of Ekurhuleni. The functional 

relationship that governs the baseline scenario can be expressed as:  

𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑹𝑹,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎,𝑹𝑹𝑹𝑹,𝑾𝑾𝑾𝑾,𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯) (6) 

The second scenario, henceforth referred to as “scenario 2”, employs correlation 

analysis (based on Pearson correlation) to determine the dependencies between 

the potential explanatory variables and water consumption. The result of the 

correlation analysis is presented in Table 4-1. A correlation coefficient of 0.5 was 

adopted as cut-off point. The results show high correlation (≥0.5) between 

number of household connections, population, human development index and 

wind speed. Other potential explanatory variables produced lower correlation 

coefficients and were therefore discarded. The functional relationship that 

governs the development of scenario 2 models can be expressed as: 

𝑾𝑾𝑾𝑾 = 𝒇𝒇(𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯,𝑾𝑾𝑾𝑾) (7) 

The data sets were split into two subsets of similar statistical properties in line 

with ANN modelling standards and norms (Maier and Dandy, 2000; Modaresi et 

al., 2018; Oyebode and Stretch, 2019) with 70% of the data (61 samples) used 

for model training and the remaining 30% (26 samples) for validation. 

Table 4-1: Results of correlation analysis 
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Potential explanatory 

variables 

Target Variable 

(𝑾𝑾𝑾𝑾) 

𝑹𝑹 -0.06 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 0.07 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 0.15 

𝑹𝑹𝑹𝑹 -0.23 

𝑾𝑾𝑾𝑾 0.50 

𝑯𝑯𝑯𝑯 0.79 

𝑷𝑷 0.79 

𝑯𝑯𝑯𝑯𝑯𝑯 0.59 

The modeling of the water consumption in the City of Ekurhuleni was based on 

four modeling techniques - MLR, ESm, ANN and SVM. As earlier stated, two ANN 

models were developed. The first ANN, henceforth referred to as ANN-CG, was 

trained using a CG algorithm while the second (ANN-DE) was trained using an 

EC technique – a classic DE. The training of the ANN using the classic DE 

algorithm was implemented using Visual Basic for Applications (VBA) 

programming language and on an Intel Core i7 PC with 2.70GHz and 16GB RAM. 

An extract of codes written in developing the ANN-DE model is presented in 

Appendix 2. A full version of the codes would be deposited in the institutional 

repository and made accessible to potential users upon request from the 

appropriate authority. The SVM, ANN-CG and MLR models were implemented 

using the DTREG platform (Sherrod, 2003) while ESm was implemented using 

the Data Analysis Tool pack in Microsoft Excel. Hence, a total of five modeling 

approaches namely MLR, ESm, ANN-CG, ANN-DE and SVM were implemented 

in this study. Four of the modelling approaches (MLR, ANN-CG, ANN-DE and 

SVM) were implemented for the two scenarios described in Equations (6) and (7) 

and their performance tested against ES. 

Summary of key information that governs the development and run of each of the 

modeling techniques are presented in Table 4-2. 
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Table 4-2: Summary of key information used for model development 
MLR ESm ANN-CG ANN-DE SVM 

Confidence 

interval: 

95% 

 

Optimization 

of damping 

factor: [0.1, 

0.9] 

Incremental 

function: 0.1 

Model type: Multilayer 

Perceptron 

Number of network 

layers: 3 (1 hidden) 

Optimization of hidden 

layer neurons: [1, 10]  

Stepping function: 1 

Overfitting prevention: 

Hold out 20% of 

training rows 

Hidden layer activation 

function: Logistic 

Output layer activation 

function: Linear 

CG Parameters: 

Convergence tries: 4 

Maximum iterations: 

10000 

Iterations without 

improvement: 100 

Convergence 

tolerance: 1.000e-005 

Minimum 

improvement delta: 

1.000e-005 

Minimum gradient: 

1.000e-005 

Training method: 

Scaled-conjugate 

gradient 

Model type: Multilayer 

Perceptron 

Number of network 

layers: 3 (1 hidden) 

Optimization of hidden 

layer neurons: [1, 10]  

Stepping function: 1 

Overfitting prevention: 

Yes, Early stopping 

Hidden layer activation 

function: Logistic-

sigmoidal [0, 1] & re-

scaling of inputs: [0.1, 

0.9]  

Output layer activation 

function: Linear 

DE Parameters: 

Pop. Size, 𝑵𝑵𝑵𝑵 = 𝑫𝑫 ∗

𝟏𝟏𝟏𝟏 

where 𝑫𝑫 = number of 

weights and biases 

Sensitivity analysis: 

Yes 

Crossover rate, 𝑪𝑪𝑪𝑪: 

[0.5, 0.9] interval 

Mutation rate, 𝑭𝑭: [0.5, 

0.9] interval 

Stepping value for 𝑪𝑪𝑪𝑪 

and 𝑭𝑭: 0.1 

Number of 

generations: 1000  

Model type: 

Epsilon SVR 

Kernel function: 

RBF 

Stopping criteria: 

0.001 

Parameter 

optimization:  

Grid search: [10, 

1] 

Pattern search:  

Intervals: 10 

Tolerance: 1e-008 

% rows to use for 

search: 100 

Cross-validate: 4 

folds 

Model 

Parameters: 

C: [0.1, 5000]  

Gamma: [0.1, 50] 

P: [0.0001, 100] 

 

 

4.6 MODEL EVALUATION  

To assess the predictive capabilities of the models developed using the baseline 

scenario and feature selection techniques, three statistical measures were 

applied namely root mean-square error (RMSE), mean absolute percent error 

(MAPE) and coefficient of determination (R2). The RMSE is an assessment of the 
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error variance in the model prediction, while the MAPE scores the absolute 

differences between observed and predicted output values (Amaranto et al. 

2018). R2 is a function of the extent of collinearity between observed and modeled 

values, thereby defining the amount of variance in observed values as explained 

by the models. Both RMSE and MAPE indicate an improved model as their values 

tend towards 0 while R2 indicate an improved model as its value tend towards 1. 

The mathematical expression for the three statistical measures is expressed in 

Equations (8) to (10): 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = �∑ (𝑶𝑶𝒊𝒊 − 𝑷𝑷𝒊𝒊)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
 (8) 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏
𝑵𝑵
�

|𝑶𝑶𝒊𝒊 − 𝑷𝑷𝒊𝒊|
𝑶𝑶𝒊𝒊

𝑵𝑵

𝑰𝑰=𝟏𝟏
 (9) 

𝑹𝑹𝟐𝟐 =

⎣
⎢
⎢
⎡ ∑ (𝑶𝑶𝒊𝒊 − 𝑶𝑶�)�𝑷𝑷𝒊𝒊 − 𝑷𝑷��𝑵𝑵

𝒊𝒊=𝟏𝟏

�∑ (𝑶𝑶𝒊𝒊 − 𝑶𝑶�)𝟐𝟐 ∙ ∑ �𝑷𝑷𝒊𝒊 − 𝑷𝑷��𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏 ⎦

⎥
⎥
⎤
𝟐𝟐

 (10) 

where 𝑵𝑵 is the number of instances in the set, and 𝑷𝑷𝒊𝒊, 𝑶𝑶𝒊𝒊, 𝑷𝑷� and 𝑶𝑶� are the 

predicted and observed values, and their respective average values. 

4.7 RESULT AND DISCUSSIONS 

The performance of the models developed both in the baseline scenario and 

scenario 2 were evaluated based on learning accuracy and presented in Table 

4-3 and Table 4-4 respectively. Results for the baseline scenario show 

satisfactory performance during training as a high degree of convergence can be 

observed in all the models. However, it can be noticed that all the models suffered 

from overfitting during testing. Comparing the performance of the modeling 

techniques irrespective of the overfits, it can be seen from Table 4-3 that the 

ANN-DE model produced the lowest RMSE and MAPE values of 5 160 Mℓ and 

1.8% respectively, as well as the highest R2 values (0.8576), while the SVM, MLR 

and ANN-CG models followed in that order. The ANN-CG model produced the 

highest error estimates of 8 655 Mℓ and 2.8% for RMSE and MAPE respectively, 

as well as the lowest R2 value of 0.6614. Interestingly, the ANN-DE and 

conventional MLR models produced the lowest performance differences 

(percentage overfits) between the training and testing phases, with the MLR 
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models having a slight edge over the ANN-DE models in terms of R2 and MAPE. 

The percentage overfit can be mathematically expressed as: 
𝑷𝑷𝒕𝒕 − 𝑷𝑷𝒗𝒗
𝑷𝑷𝒕𝒕

∗ 𝟏𝟏𝟏𝟏𝟏𝟏 (11) 

where 𝑷𝑷𝒕𝒕 is the value of the performance metric observed during training while 

𝑷𝑷𝒗𝒗 is the value of the performance metric observed during validation. 

The percentage overfit obtained by the ANN-DE model was calculated to be 

5.4%, 8.3% and 2.8% for R2, RMSE and MAPE respectively, while the MLR 

produced 3.4%, 8.8% and 1.8% for R2, RMSE and MAPE respectively. The SVM 

model had the highest percentage overfit, estimated to be 16.8%, 51.2% and 

128.4% for R2, RMSE and MAPE respectively. Generally, the overfitting problems 

encountered in the baseline scenario suggest that some of the explanatory 

variables considered may be irrelevant and/or redundant in determining the water 

consumption profile for the City of Ekurhuleni.  The scatter plots presented in 

Figure 4-2 through Figure 4-5 further illustrate performance of the baseline 

scenario models wherein some degree of under- and over-estimations can be 

observed.  

Table 4-3: Performance of models developed for baseline scenario 
Baseline Training Testing Training Testing Training Testing 

Techniques R2 R2 RMSE RMSE MAPE MAPE 

MLR 0.7268 0.7030        7 449         8 107  2.6699 2.7181 

ANN-CG 0.7236 0.6614        7 492         8 655  2.5906 2.7959 

ANN-DE 0.9038 0.8576 4766 5 160 1.7892 1.8398 

SVM 0.8842 0.7568        4 850         7 336  0.9789 2.2359 

Table 4-4: Performance of models developed for scenario 2 
Optimal Dataset Training Testing Training Testing Training Testing 

Techniques   R2   R2 RMSE RMSE MAPE MAPE 

MLR 0.6765 0.7201 8 106  7 430  2.6823 2.4282 

ANN-CG 0.6835 0.7122 8 017  7 507  2.5472 2.4490 

ANN-DE 0.8812 0.9233 5 092  4 172  1.6650 1.5090 

SVM 0.8609 0.8678 5 315  5 296  1.8775 1.6655 
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Table 4-5: Performance of models developed using exponential smoothing 
Optimal Dataset Training Testing Training Testing Training Testing 

Techniques   R2   R2 RMSE RMSE MAPE MAPE 

ESm 0.9038 0.6103 4 348  8 682  0.9458 1.3188 

In scenario 2, it can be observed that the learning accuracies of all the models 

are superior to those obtained in the baseline scenario. Each of the models 

recorded improved R2, RMSE and MAPE estimates. The percentage 

improvements across the four modeling techniques employed range from 7%-

15%, 9%-39% and 12%-34% for R2, RMSE and MAPE respectively. The results 

show that all models produced in scenario 2 were more generalized and not 

plagued by overfitting. The scatter plots show that the data points were much 

closer to the line of equality than in the baseline scenario (Figure 4-2 to Figure 

4-5: scenario 2). These improvements suggest that the adoption of correlation 

analysis was successful in finding the optimal subset of input variables required 

to model the water consumption data. Remarkably, the optimal subset comprising 

four input variables (𝑯𝑯𝑯𝑯,𝑷𝑷,𝑯𝑯𝑯𝑯𝑯𝑯,𝑾𝑾𝑾𝑾) were good enough to adequately represent 

the water consumption profile of the City as opposed to eight variables used in 

the baseline scenario. This implies that overparameterization effects were totally 

avoided in the scenario 2 models by incorporating a screening technique, thereby 

identifying and removing irrelevant and redundant variables, and consequently, 

reducing the dimensionality of the input vector space. The performance metrics 

of the scenario 2 models are presented in Table 4-4. In a similar but more 

accurate manner to the baseline scenario, the ANN-DE model, during testing, 

outperformed other models, producing the lowest error estimates of 4 172 Mℓ and 

1.5% for RMSE and MAPE respectively as well as highest R2 value of 0.9233. 

The SVM model produced the second-best performance with R2, RMSE and 

MAPE estimates of 0.8678, 5 296 Mℓ and 1.7% and was followed by the 

conventional MLR with corresponding estimates of 0.7201, 7 430 Mℓ and 2.4%. 

The ANN-CG models had the least performance with its R2, RMSE and MAPE 

values estimated to be 0.7122, 7 507 and 2.4% respectively.  

Table 4-5 and Figure 4-6 present results obtained from the ESm technique which 

was implemented by varying the damping factor between 0.1 and 0.9 using an 
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incremental function of 0.1. Upon initial analysis, the damping factor of 0.1 (i.e. 

smoothing factor of 0.9) yielded the least error estimates, and thus, was regarded 

as the optimal damping factor. The performance indices presented in Table 4-5 

show a remarkable model performance during the training phase of the 

simulation, however, the performance depreciated during the testing phase 

resulting in poor generalization, and consequently, a model characterized by 

overfitting. This is also evident in Figure 4-6 wherein two significant 

underestimated points can be observed. The percentage overfit in the ES model 

is estimated to be 32.5%, 99.7% and 39.4% for R2, RMSE and MAPE 

respectively. These results are inferior to those presented in Table 4-4. Notably, 

the performance metrics of the ANN-DE model (developed in scenario 2) show a 

better generalized model, not plagued by overfitting. The ANN-DE model can thus 

be regarded as a better model for water demand forecasting than the standard 

time series-based ESm technique in this case study. These results further 

demonstrate the efficacy of evolutionary-based soft computing techniques over 

conventional methods such as time series analysis and linear regression-based 

methods. 

A comparative evaluation of the architecture of the ANN models show that the 

ANN-DE model exhibited lesser complexity compared to the ANN-CG model. 

Upon varying the number of hidden layer neurons in each of the ANN models 

between 1 and 10, the optimal architecture of the ANN-CG models comprised 

nine hidden layer neurons, while that of the ANN-DE model comprised only four, 

A higher number of hidden layer neurons in the ANN-CG model consequently 

implies a higher computational demand and time than the ANN-DE model. It is 

interesting to note that the ANN-DE model, with lesser complex architecture and 

lower computational demand and time, achieved a higher degree of accuracy 

than the ANN-CG model. This observation agrees with the submission of 

Adeyemo et al. (2018) in a river flow forecasting study that continuous training 

(i.e. higher computational time) is not a guarantee to achieving better 

generalization. Findings from this study thus suggests that the DE algorithm is 

more robust and reliable in training and optimizing ANN network parameters than 

the CG algorithm as it offers a good compromise between accuracy and 

complexity. Ultimately, this study demonstrates the potential of DE-trained ANN 
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in evolving more accurate water demand forecasting models than the 

conventionally-used MLR and ESm, SVM and CG-trained ANN.  

 
Figure 4-2: Scatter plots of observed and MLR-predicted water demand for 

both scenarios 
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Figure 4-3: Scatter plots of observed and ANN-CG-predicted water demand for 

both scenarios 
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Figure 4-4: Scatter plots of observed and ANN-DE-predicted water demand for 

both scenarios 
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Figure 4-5: Scatter plots of observed and SVM-predicted water demand for 

both scenarios 
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Figure 4-6: Scatter plots of observed and ESm-predicted water demand 

4.8 CONCLUSION 

This study has investigated the potential of three soft computing techniques, 

namely, ANN-CG, ANN-DE and SVM against the conventional ESm and MLR in 

estimating the water consumption of the City of Ekurhuleni. The aim was to 

determine the most superior technique in terms of accuracy for water demand 

forecasting in the City of Ekurhuleni using three performance evaluation metrics 

(R2, RMSE and MAPE).  Two scenarios were implemented in the study. The first 

scenario referred to as the baseline scenario involved the use of all potential 

explanatory variables that could influence water consumption in the City, while 

the second employed correlation analysis for model input selection. Eight models 

were developed in total; four for each scenario. Results showed that all the 

baseline scenario models suffered from overfitting problems suggesting 

parameter redundancy or irrelevancy in the input vector space of the models.  

The ANN-DE model however produced the best performance across the three 

performance evaluation metrics adopted in predicting billed water consumption. 

Results also showed that all the scenario 2 models, generally, outperformed the 

baseline scenario models. This suggests that the adoption of correlation analysis 

in scenario 2 was successful in reducing the dimensionality of the models, 

thereby preventing overparameterization. The ANN-DE model was the most 

superior of the four models in terms of accuracy, while the SVM, conventional 

MLR and ANN-CG came second, third and last respectively. Results also show 

that the performance of the ANN-DE model was superior to that obtained from 
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ESm – a standard time series model. Furthermore, the results obtained show that 

the DE algorithm exhibited superiority and robustness over the CG algorithm in 

terms of ANN learning, producing a model with higher accuracy and less complex 

network architecture. This study therefore proves that the integration of 

evolutionary computation techniques like DE can be beneficial to the water 

demand modeling community as it may assist in providing sustainable solutions 

to complex water demand and supply problems. Future studies could investigate 

the potential of other specialized computations such as Bayesian Optimization 

for model architecture determination and hyperparameter configuration. 

4.9 RESEARCH OUTPUT 

1. Oyebode, O. & Ighravwe, D. E. (2019). Urban water demand forecasting: A 

comparative evaluation of conventional and soft computing techniques. 

Resources 8 (3): 156. https://doi.org/10.3390/resources8030156  

  

https://doi.org/10.3390/resources8030156
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CHAPTER 5 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

5.1 GENERAL CONCLUSIONS 

The primary focus of this research was to develop an artificial intelligent model 

for municipal water demand forecasting to improve on current practices in 

predictive analysis of water demand. 

As mentioned in chapter 1, this study has five specific objectives which were: 

1. To conduct an extensive review of the extent to which evolutionary-

inspired artificial intelligent have been employed in water demand 

modelling.  

2. To identify and analyze the factors that affect municipal water demand. 

3. To develop an intelligent system model for municipal water demand 

prediction. 

4. To evaluate the performance of the intelligent model. 

5. To propose a framework for sustainable allocation of water resources. 

Specific objective 1 was addressed in chapter 2 wherein a comprehensive state-

of-art-review of EC techniques in water demand forecasting applications was 

presented. The review unearthed challenges and current gaps in knowledge, 

within the predictive analytics and water demand forecasting domains, that 

needed to be solved and bridged respectively. The challenges and gaps in 

knowledge identified in the reviews can be summarized as: (i) understanding the 

internal mechanism of ANNs, with specific emphasis of model accuracy, 

complexity and architecture, when deployed to solve real-world problems; (ii) 

inability of conventional and traditional water demand forecasting models to 

account for inherent nonlinearities in explanatory variables and accurately predict 

water demand; (iii) need to incorporate weather and economic factors as model 

inputs to enable water demand models cater for the impacts of weather and 

socioeconomic factors on water demand; (iv) need to shift focus to medium- to 

long-term water demand forecasting as existing studies have majorly focused on 

short-term forecasting; (iv) a lack of studies focusing on the application of EC 
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techniques in water demand modelling in developing countries, especially in 

Africa; (v) need for EC techniques to extend their significance beyond advisory 

roles and be positioned as an effective tool for developing proper standard 

operating procedures in the water sector; and (vi) need for a sustainable 

framework that syncs conventional EC techniques with social aspects of the 

society for sustainable water resource allocation.    

To address the gap relating to the integration of social aspects of society with EC 

techniques, a novel sustainable framework (IWDMMF) was proposed in the latter 

section of chapter 2. IWDMMF offers a platform for extending the reach of EC 

techniques beyond just ensuring optimality in water management, to assessing 

their wider impacts on the socioeconomic aspect of society in line with equity and 

justice requirements. Chapter 2 therefore satisfies specific objectives 1 and 5 of 

this study. 

In chapter 3, a DE-inspired ANN model (ANN-DE) was developed and applied to 

forecast water demand in the City of Ekurhuleni, Johannesburg, South Africa. 

The development of the ANN-DE model comprises a combination of genetic 

operations relating to a classic DE algorithm with feature selection and early 

stopping techniques, thereby introducing a new scheme and systematic 

approach for improving the accuracy and optimizing the complexity of ANN 

models. The model development also entails the use of weather and 

socioeconomic variables as input variables. Results obtained show that the 

models developed produced a good representation of the water demand pattern 

in the City of Ekurhuleni; reproducing the peaks and troughs including the sharp 

spikes. The DE algorithm enabled a smooth and adaptive learning process in the 

ANN model. A sensitivity analysis of the DE algorithm ensured selection of 

optimal control parameters (CR and F) that, in turn, produced a model with high 

accuracy and minimal complexity. The integration of an early stopping criterion 

also ensured that the model did not experience overfitting. A computation of the 

contribution of the impacts of each input variable show that weather and 

socioeconomic variables could have significant impacts on water demand. The 

results further show that the application of feature selection techniques enabled 

a reduction in dimensionality, thereby eliminating parameter irrelevancy or 

redundancy, and consequently preventing the model from suffering from 
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overparameterization. The work undertaken in this chapter and the results 

obtained therein addresses the specific objectives 2 and 3 of this study. 

In chapter 4, the performance of the optimal ANN-DE model developed in 

chapter 3 was compared against four techniques comprising the conventionally-

used MLR and ESm, and two other prominent soft computing techniques – a SVM 

and a conjugate gradient-trained multilayer perceptron (ANN-CG). Results show 

that the DE-inspired ANN model was superior to the other four techniques across 

two input combination scenarios in terms of model accuracy and complexity. DE 

showcased robustness in fine-tuning algorithm parameter values thereby 

producing good performance in terms of the solution efficiency and quality. It was 

found that the ANN-DE model, with lesser complex architecture and lower 

computational demand and time, achieved a higher accuracy than the ANN-CG 

model. This suggests that DE could be a better training algorithm for ANNs than 

CG as it offers a good compromise between accuracy and complexity. This 

chapter thus addresses specific objective 4 of this study. 

Generally, it is concluded that the synergetic use of feature selection techniques, 

DE algorithm and early stopping criterion could be used in overcoming the 

limitations of ANN and developing an improved and more reliable water demand 

forecasting model. The ANN modelling approach suggested in this study serves 

as an alternative to the simplistic and thumb-rule concept which forms the basis 

of conventional water demand forecasting techniques, thereby making them to 

be not accurate or reliable enough for every situation. The methodologies, 

principles and techniques behind this study fosters sustainable development and 

thus could be adopted in planning and management of water resources towards 

the overall prosperity of the society. 

5.2 NOVELTIES AND CONTRIBUTIONS TO THE BODY OF KNOWLEDGE 

The following novelties and contributions to the general body of knowledge are 

accomplished and published as enumerated in chapter one: 

1. A state-of-art review of the extent of use of EC techniques in water demand 

modelling, identifying important research challenges and future directions 

while recommending strategies for their use by policy-makers in meeting 

sustainable development goals (SDGs).  
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2. Pioneering the use of DE algorithm, in water demand forecasting, to 

optimize the learning process and model architecture of multilayer 

feedforward neural networks, and comparing its performance with 

conventional and emerging soft computing techniques. 

3. Incorporation of climatic and socioeconomic variables for long-term water 

demand forecasting to account for the impact of climate and 

socioeconomic variations. The study introduced a new variable (HDI) that 

accesses a municipality or city’s overall achievement in terms of 

socioeconomic dimensions including life expectancy, education and 

income levels.  

4. Introduction of a new methodology that comprises a combination of 

evolutionary computation, early stopping criterion and feature selection in 

developing water demand forecasting models. 

5. Development of a novel integrated water demand and management 

modelling framework (IWDMMF) that enables water policy-makers to 

assess the wider impact of water demand management decisions through 

the principles of equity and justice. The novel framework provides a 

platform for integrating conventional EC techniques with social aspects of 

the society, and fosters the realization of the UN SDGs. 

5.3 RECOMMENDATIONS AND FUTURE RESEARCH 

The following recommendations suggest new research ideas that could be 

developed based on the outcome of this work. 

1. Additional input variables like land use, water price could be investigated 

in future research for long-term water demand forecasting. 

2. Future research could extend the application EC techniques to forecast 

water demand at other spatial and temporal scales including in-house end-

use profiles. 

3. Future research could also focus on extending the role of EC techniques 

to assessing the impacts of non-revenue water and nature-based solutions 

as well as water conservation and reuse strategies on water demand. 

These may include simulating the impacts of the use of water efficient 
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appliances, consumer behaviour, alternative water sources on water 

demand. 

4. This study was limited by availability of data. Additional simulations of 

water demand using lengthier data samples may be undertaken when 

relevant information becomes readily available.  

5. Application of IWDMMF for resolving real-world multi-objective water 

demand problems and conflicts is left for further studies. 
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APPENDIX 1  
EXTRACT OF CODES WRITTEN IN DEVELOPING ANN-DE 

MODULES 
ANN_Run 
Public Function InputRangesOK(ByVal NumSamples, ByRef Array2DToCheck) As 
Boolean 
    'Used to check input ranges to avoid extrapolation 
    Dim SampleMin As Double 
    Dim SampleMax As Double 
    Dim echNode As Integer 
 
    InputRangesOK = True    'Assume all the samples are ok 
    For echNode = 1 To numInputNodes 
        SampleMin = getMin(echNode, NumSamples, Array2DToCheck) 
        SampleMax = getMax(echNode, NumSamples, Array2DToCheck) 
        If (SampleMin < MinInputVal(echNode)) Then InputRangesOK = False 'sample 
exceeds limit 
        If (SampleMax > MaxInputVal(echNode)) Then InputRangesOK = False 
    Next echNode 
End Function 
 
Public Sub RunANNonSingleSample(ByVal SamplePoint As Integer, ByRef 
InputSample2DArray) 
    'Runs the ANN with a single input sample point and specified input array 
    Dim echNode As Integer 
    'Load the sample into the 1D input array 
    For echNode = 1 To numInputNodes 
        InputVal(echNode) = InputSample2DArray(SamplePoint, echNode) 
    Next echNode 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    'Now run the ANN from the input nodes to the output 
    ComputeInputNodesActivations InputVal 
    ComputeHiddenNodesActivations 
    ComputeOutputNodesActivations 
    ComputeOutputNodesValues 
End Sub 
 
Public Sub RunANNonEntireSampleSet(ByVal NumOfSamples As Integer _ 
                                   , ByRef InputArray2D _ 
                                   , ByRef OutputArray2D) 
'Runs ANN on entire sample set in a 2D array and stores the output in a 2D array 
    Dim echSample As Integer 
    Dim eachNode As Integer 
     
    For echSample = 1 To NumOfSamples 
        RunANNonSingleSample echSample, InputArray2D 
        'The ANN output is stored in the outputvals array 
        'now copy to the proper output 2D array 
        For eachNode = 1 To numOutputNodes 
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            OutputArray2D(echSample, eachNode) = OutputVal(eachNode) 
        Next eachNode 
    Next echSample 
End Sub 

ANN_Setup 
Option Explicit 
 
Public numInputNodes As Integer '= Number of inputs 
Public NumHiddenNodes As Integer 
Public numOutputNodes As Integer    '= Number of outputs 
Public NumWtsAndBiases As Integer 
Public NumRunSamples As Integer 
 
Public WtPlusBiasArray(1 To 1600) As Double 
Public InputNodesActivations(1 To 15) As Double 
Public HiddenNodesActivations(1 To 50) As Double 
Public OutputNodesActivations(1 To 15) As Double 
 
Public InputVal(1 To 15) As Double 
Public MinInputVal(1 To 15) As Double 
Public MaxInputVal(1 To 15) As Double 
 
Public OutputVal(1 To 15) As Double 
Public MinOutputVal(1 To 15) As Double 
Public MaxOutputVal(1 To 15) As Double 
 
 
Public HiddenNodesStartIndexs(1 To 50) As Integer 
Public OutputNodesStartIndexs(1 To 15) As Integer 
 
Dim ConnectionsPerHiddenNode As Integer 
Dim ConnectionsPerOutputNode As Integer 
 
Public RunSamples2DArray(1 To 1000, 1 To 15) As Double '1000 points by 15 
nodes 
Public RunSamplesOutput2DArray(1 To 1000, 1 To 15) As Double '1000 points 
by 15 nodes 
Dim RunnerSheet As Worksheet 
Dim TrainerSheet As Worksheet 
 
Public Sub Setup_ANNRun() 
    Dim echSamplePoint As Integer 
    Dim echNode As Integer 
    Set TrainerSheet = ThisWorkbook.Worksheets("ANNTrainer") 
    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'get from worksheet 
    numInputNodes = TrainerSheet.Range("E9").Value 
    NumHiddenNodes = TrainerSheet.Range("E10").Value 
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    numOutputNodes = TrainerSheet.Range("E11").Value 
    NumRunSamples = RunnerSheet.Range("W2").Value 
    NumWtsAndBiases = ComputeNumWtAndBiases 
    ComputeHiddenNodesStartIndexes 
    ComputeOutputNodesStartIndexes 
    LoadWtsAndBiases 
    ''''''''''''''''''''''''''''' 
    'Load the Run samples 
    For echSamplePoint = 1 To NumRunSamples 
        For echNode = 1 To numInputNodes    'Load the input space 
            '1st sample on row 10, column 3 
            RunSamples2DArray(echSamplePoint, echNode) = _ 
                    RunnerSheet.Cells(echSamplePoint + 9, echNode + 2).Value 
        Next echNode 
    Next echSamplePoint 
    ''''''''''''''''''''''''''''''''''' 
    'Setup the run ranges 
    getInputRanges ' 
    getoutputRanges 
End Sub 
 
Public Sub LoadWtsAndBiases() 
    Dim mRow As Integer 
    Set TrainerSheet = ThisWorkbook.Worksheets("ANNTrainer") 
     
    For mRow = 1 To NumWtsAndBiases 
        WtPlusBiasArray(mRow) = _ 
                    TrainerSheet.Range("O" & Trim(Str(mRow + 1))).Value 
    Next mRow 
End Sub 
 
Public Function ComputeNumWtAndBiases() As Integer 
    ComputeNumWtAndBiases = ((numInputNodes + 1) * NumHiddenNodes) + _ 
                          ((NumHiddenNodes + 1) * numOutputNodes) 
End Function 
 
Public Sub ComputeHiddenNodesStartIndexes() 
    Dim EachHiddenNode As Integer 
     
    ConnectionsPerHiddenNode = numInputNodes + 1 'Add the bias 
    For EachHiddenNode = 1 To NumHiddenNodes 
        HiddenNodesStartIndexs(EachHiddenNode) = _ 
                    (ConnectionsPerHiddenNode * (EachHiddenNode - 1)) + 1 
    Next EachHiddenNode 
End Sub 
 
Public Sub ComputeOutputNodesStartIndexes() 
    Dim EachOutputNode As Integer 
    Dim OutputNodesStartOffset As Integer 
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    OutputNodesStartOffset = (ConnectionsPerHiddenNode * NumHiddenNodes) 
+ 1 
    ConnectionsPerOutputNode = NumHiddenNodes + 1 'Add the bias 
    For EachOutputNode = 1 To numOutputNodes 
        OutputNodesStartIndexs(EachOutputNode) = _ 
                    (ConnectionsPerOutputNode * (EachOutputNode - 1)) + _ 
                    OutputNodesStartOffset 
    Next EachOutputNode 
End Sub 
 
Public Sub ComputeInputNodesActivations(ByRef InputValsArray) 
    'Input Nodes activations are the inputs normalized btwn 0.1 - 0.9 
    Dim EachInputNode As Integer 
     
    For EachInputNode = 1 To numInputNodes 
        InputNodesActivations(EachInputNode) = _ 
            (0.8 * (InputValsArray(EachInputNode) - MinInputVal(EachInputNode)) / 
_ 
                (MaxInputVal(EachInputNode) - MinInputVal(EachInputNode))) + 0.1 
    Next EachInputNode 
End Sub 
Public Sub ComputeOutputNodesValues() 
    'Compute output values from Nodes activations normalized btwn 0.1 - 0.9 
    Dim EachOutputNode As Integer 
     
    For EachOutputNode = 1 To numOutputNodes 
        OutputVal(EachOutputNode) = _ 
            (((OutputNodesActivations(EachOutputNode) - 0.1) * _ 
                (MaxOutputVal(EachOutputNode) - MinOutputVal(EachOutputNode))) 
/ 0.8) + _ 
                MinOutputVal(EachOutputNode) 
    Next EachOutputNode 
End Sub 
 
Public Sub ComputeHiddenNodesActivations() 
    Dim EachInputNode As Integer 
    Dim EachHiddenNode As Integer 
    Dim NodeOffset As Integer 
    Dim wtPos As Integer 
    Dim yj As Double 
    Dim wjk As Double 
    Dim Sk As Double    'Propagation rule 
    Dim SumWtdInputs As Double 
     
    For EachHiddenNode = 1 To NumHiddenNodes 
        NodeOffset = HiddenNodesStartIndexs(EachHiddenNode) 
        wtPos = NodeOffset 
        SumWtdInputs = 0 
         
        For EachInputNode = 1 To numInputNodes 
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           yj = InputNodesActivations(EachInputNode) 
           wjk = WtPlusBiasArray(wtPos) 
           SumWtdInputs = SumWtdInputs + (wjk * yj) 
           wtPos = wtPos + 1 'Next weight or the bias 
        Next EachInputNode 
         
        Sk = SumWtdInputs + WtPlusBiasArray(wtPos)  'Add the bias 
        HiddenNodesActivations(EachHiddenNode) = Sigmoid(Sk) 
    Next EachHiddenNode 
End Sub 
 
Public Sub ComputeOutputNodesActivations() 
    Dim EachHiddenNode As Integer 
    Dim EachOutputNode As Integer 
    Dim NodeOffset As Integer 
    Dim wtPos As Integer 
    Dim yj As Double 
    Dim wjk As Double 
    Dim Sk As Double    'Propagation rule 
    Dim SumWtdInputs As Double 
     
    For EachOutputNode = 1 To numOutputNodes 
        NodeOffset = OutputNodesStartIndexs(EachOutputNode) 
        wtPos = NodeOffset 
        SumWtdInputs = 0 
         
        For EachHiddenNode = 1 To NumHiddenNodes 
           yj = HiddenNodesActivations(EachHiddenNode) 
           wjk = WtPlusBiasArray(wtPos) 
           SumWtdInputs = SumWtdInputs + (wjk * yj) 
           wtPos = wtPos + 1 'Next weight or the bias 
        Next EachHiddenNode 
         
        Sk = SumWtdInputs + WtPlusBiasArray(wtPos)  'Add the bias 
        OutputNodesActivations(EachOutputNode) = PureLin(Sk) 
    Next EachOutputNode 
End Sub 
 
Public Function Sigmoid(ByVal Sk As Double) As Double 
    If Sk < -709 Then   'To avoid overflow error 
        Sigmoid = 0 
        Exit Function 
    End If 
    Sigmoid = 1 / (1 + Exp(-Sk)) 
End Function 
 
Private Function PureLin(ByVal Sk As Double) As Double 
    PureLin = Sk 
End Function 
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Public Sub getInputRanges() 
    'Gets the ranges of input and output from the worksheet 
    Dim echNode As Integer 
    Dim RangeMin As Double 
    Dim RangeMax As Double 
    Dim mRow, mCol As Integer 
     
    Set TrainerSheet = ThisWorkbook.Worksheets("ANNTrainer") 
    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'Scan the ranges 
    For echNode = 1 To numInputNodes    'get input ranges 
        RangeMin = RunnerSheet.Cells(6, echNode + 2).Value 
        RangeMax = RunnerSheet.Cells(7, echNode + 2).Value 
        MinInputVal(echNode) = RangeMin 
        MaxInputVal(echNode) = RangeMax 
    Next echNode 
End Sub 
 
Public Sub getoutputRanges() 
    'Gets the ranges of input and output from the worksheet 
    Dim echNode As Integer 
    Dim RangeMin As Double 
    Dim RangeMax As Double 
    Dim mRow, mCol As Integer 
     
    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'Scan the ranges 
    For echNode = 1 To numOutputNodes    'get output ranges 
        RangeMin = RunnerSheet.Cells(6, (echNode + 2) + numInputNodes).Value 
        RangeMax = RunnerSheet.Cells(7, (echNode + 2) + numInputNodes).Value 
        MinOutputVal(echNode) = RangeMin 
        MaxOutputVal(echNode) = RangeMax 
    Next echNode 
End Sub 
Public Sub OutputRunResultsToGUI() 
    Dim echSamplePoint As Integer 
    Dim echNode As Integer 
    'Output the run samples results 
    For echSamplePoint = 1 To NumRunSamples 
        For echNode = 1 To numOutputNodes 
            '1st result on row 10, column after last input node 
            RunnerSheet.Cells(echSamplePoint + 9, (echNode + 2) + 
numInputNodes).Value = _ 
                                RunSamplesOutput2DArray(echSamplePoint, echNode) 
        Next echNode 
    Next echSamplePoint 
End Sub 
     

ANN_Trainer 
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Option Explicit 
Public NumLearnSamples As Integer 
Public NumValidationSamples As Integer 
Public HiddenMin As Integer 'For varying number of hidden nodes 
Public HiddenMax As Integer 
 
    Public bestETest As Double 
    Public bestELearning As Double 
    Public bestNumHidNodes As Integer 
    Public bestWtPlusBiasArray(1 To 3500) As Double 'for 15 inpt, 50 hidden, 15 
out 
 
Public LearnSamplesInput2DArray(1 To 1000, 1 To 15) As Double '1000 samples 
by 15 nodes 
Public LearnSamplesExpOutput2DArray(1 To 1000, 1 To 15) As Double '1000 
samples by 15 nodes 
Public LearnSamplesActualOutput2DArray(1 To 1000, 1 To 15) As Double '1000 
points by 15 nodes 
Public ValidationSamplesInput2DArray(1 To 1000, 1 To 15) As Double '1000 
points by 15 nodes 
Public ValidationSamplesExpOutput2DArray(1 To 1000, 1 To 15) As Double 
'1000 points by 15 nodes 
Public ValidationSamplesActualOutput2DArray(1 To 1000, 1 To 15) As Double 
'1000 points by 15 nodes 
Dim TrainerSheet As Worksheet 
Dim RunnerSheet As Worksheet 
Dim LearningSamplesSheet As Worksheet 
Dim ValidationSamplesSheet As Worksheet 
 
Public Sub LoadTrainerSetup() 
    Dim echSamplePoint As Integer 
    Dim echNode As Integer 
    Set TrainerSheet = ThisWorkbook.Worksheets("ANNTrainer") 
    'Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'Set TrainedSheet = ThisWorkbook.Worksheets("TrainedANN") 
    Set LearningSamplesSheet = ThisWorkbook.Worksheets("LearningSamples") 
    Set ValidationSamplesSheet = 
ThisWorkbook.Worksheets("ValidationSamples") 
     
    numInputNodes = TrainerSheet.Range("E3").Value 
    TrainerSheet.Range("E9").Value = numInputNodes 
    numOutputNodes = TrainerSheet.Range("E4").Value 
    TrainerSheet.Range("E11").Value = numOutputNodes 
    HiddenMin = TrainerSheet.Range("G5").Value 
    HiddenMax = TrainerSheet.Range("I5").Value 
     
    NumLearnSamples = TrainerSheet.Range("I3").Value 
    NumValidationSamples = TrainerSheet.Range("I4").Value 
     
    'Load the learning samples 
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    For echSamplePoint = 1 To NumLearnSamples 
        'Load the input nodes 
        For echNode = 1 To numInputNodes 
            '1st sample on row 10, column 3 
            LearnSamplesInput2DArray(echSamplePoint, echNode) = _ 
                    LearningSamplesSheet.Cells(echSamplePoint + 9, echNode + 
2).Value 
        Next echNode 
         
        'Load the expected output nodes 
        For echNode = 1 To numOutputNodes 
         '1st sample after the last input node 
            LearnSamplesExpOutput2DArray(echSamplePoint, echNode) = _ 
                    LearningSamplesSheet.Cells(echSamplePoint + 9, 
((numInputNodes + 2) + echNode)).Value 
        Next echNode 
    Next echSamplePoint 
     
    'Load the validation samples 
    For echSamplePoint = 1 To NumValidationSamples 
        'Load the input nodes 
       For echNode = 1 To numInputNodes 
            '1st sample on row 10, column 3 
            ValidationSamplesInput2DArray(echSamplePoint, echNode) = _ 
                    ValidationSamplesSheet.Cells(echSamplePoint + 9, echNode + 
2).Value 
       Next echNode 
        
       'Load the expected output nodes 
        For echNode = 1 To numOutputNodes 
         '1st sample after the last input node 
            ValidationSamplesExpOutput2DArray(echSamplePoint, echNode) = _ 
                    ValidationSamplesSheet.Cells(echSamplePoint + 9, 
((numInputNodes + 2) + echNode)).Value 
        Next echNode 
    Next echSamplePoint 
End Sub 
 
Public Function getMin(ByVal NodeNumbr As Integer, ByVal NumSamples As 
Integer, _ 
                        ByRef Array2D) As Double 
'Used in getting the minimum sample for each node 
    Dim echSamplPt As Integer 
    Dim minMan As Double 
    minMan = Array2D(1, NodeNumbr) 'Pick on the first sample 
     
    For echSamplPt = 1 To NumSamples    'run through the samples 
        If (Array2D(echSamplPt, NodeNumbr) < minMan) Then 
            minMan = Array2D(echSamplPt, NodeNumbr) 
        End If 
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    Next echSamplPt 
    getMin = minMan 
End Function 
 
Public Function getMax(ByVal NodeNumbr As Integer, ByVal NumSamples As 
Integer, _ 
                        ByRef Array2D) As Double 
'Used in getting the maximum sample for each node 
    Dim echSamplPt As Integer 
    Dim maxMan As Double 
    maxMan = Array2D(1, NodeNumbr) 'Pick on the first sample 
     
    For echSamplPt = 1 To NumSamples    'run through the samples 
        If (Array2D(echSamplPt, NodeNumbr) > maxMan) Then 
            maxMan = Array2D(echSamplPt, NodeNumbr) 
        End If 
    Next echSamplPt 
    getMax = maxMan 
End Function 
 
Public Sub SetInputRanges() 
    'Gets the ranges of input and output from the learning data and set on the Run 
sheet 
    Dim echNode As Integer 
    Dim RangeMin As Double 
    Dim RangeMax As Double 
     
    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'Clear the Data ranges on the Run Sheet. 
    RunnerSheet.Range("C6:AF7").ClearContents 
 
     
    For echNode = 1 To numInputNodes    'Set input ranges 
        RangeMin = getMin(echNode, NumLearnSamples, 
LearnSamplesInput2DArray) 
        RangeMax = getMax(echNode, NumLearnSamples, 
LearnSamplesInput2DArray) 
        MinInputVal(echNode) = RangeMin 
        MaxInputVal(echNode) = RangeMax 
        RunnerSheet.Cells(6, echNode + 2).Value = RangeMin 
        RunnerSheet.Cells(7, echNode + 2).Value = RangeMax 
    Next echNode 
End Sub 
 
Public Sub SetoutputRanges() 
    'Gets the ranges of input and output from the learning data and set on the 
trained sheet 
    Dim echNode As Integer 
    Dim RangeMin As Double 
    Dim RangeMax As Double 
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    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    For echNode = 1 To numOutputNodes    'Set output ranges 
        RangeMin = getMin(echNode, NumLearnSamples, 
LearnSamplesExpOutput2DArray) 
        RangeMax = getMax(echNode, NumLearnSamples, 
LearnSamplesExpOutput2DArray) 
        MinOutputVal(echNode) = RangeMin 
        MaxOutputVal(echNode) = RangeMax 
        RunnerSheet.Cells(6, (echNode + 2) + numInputNodes).Value = RangeMin 
        RunnerSheet.Cells(7, (echNode + 2) + numInputNodes).Value = RangeMax 
    Next echNode 
End Sub 
 
Public Function ComputeEp(ByVal SamplePoint As Integer, _ 
                            ByRef ExpectedOutputsArray2D, _ 
                            ByRef ActualOutputsArray2D) As Double 
'Function to compute Ep = Error per sample 
    Dim dp As Double 'expected node output 
    Dim yp As Double 'actual node output 
    Dim echOutput As Integer 
    Dim sumError As Double 
     
    sumError = 0 
    For echOutput = 1 To numOutputNodes 
        dp = ExpectedOutputsArray2D(SamplePoint, echOutput) 
        yp = ActualOutputsArray2D(SamplePoint, echOutput) 
        sumError = sumError + ((dp - yp) ^ 2) 
    Next echOutput 
    ComputeEp = sumError / 2 
End Function 
 
Public Function ComputeAveEp(ByVal NumSamples As Integer, _ 
                            ByRef ExpOutArray2D, _ 
                            ByRef ActOutArray2D) As Double 
'Function to compute average error per sample 
    Dim echSample As Integer 
    Dim sumEp As Double 
    Dim Ep As Double 
     
    sumEp = 0 
    For echSample = 1 To NumSamples 
        Ep = ComputeEp(echSample, ExpOutArray2D, ActOutArray2D) 
        sumEp = sumEp + Ep 
    Next echSample 
    ComputeAveEp = sumEp / NumSamples 
End Function 
 
 Public Sub OutputTrainResultToGUI() 
    Dim mRow As Integer 
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    Dim epslon As Double 
    Set TrainerSheet = ThisWorkbook.Worksheets("ANNTrainer") 
    Set RunnerSheet = ThisWorkbook.Worksheets("RunSheet") 
    'ClearOutput 
    TrainerSheet.Range("O2:O2000").ClearContents 'wts and biases space 
    'Output the parameters 
    For mRow = 1 To NumberOfParameters 
        TrainerSheet.Range("O" & Trim(Str(mRow + 1))).Value = _ 
        bestWtPlusBiasArray(mRow) 
    Next mRow 
    'Also Ouput the Fittest Values 
    TrainerSheet.Range("C12").Value = bestELearning 
    TrainerSheet.Range("C13").Value = bestETest 
    epslon = Abs(bestELearning - bestETest) 
    TrainerSheet.Range("C14").Value = epslon 
    TrainerSheet.Range("E10").Value = bestNumHidNodes 
     
    'Also Output for optimization monitoring 
    ThisWorkbook.Worksheets("Optimizer").Range("K15").Value = bestELearning 
    ThisWorkbook.Worksheets("Optimizer").Range("K16").Value = bestETest 
    ThisWorkbook.Worksheets("Optimizer").Range("K18").Value = 
bestNumHidNodes 
     
    TrainerSheet.Range("I8").Value = NumberOfVectors 
    TrainerSheet.Range("I9").Value = NumberOfParameters 
    TrainerSheet.Range("I10").Value = MaxGen 
    TrainerSheet.Range("H11").Value = bestCr 
    TrainerSheet.Range("J11").Value = bestF 
 End Sub 

DE 
Option Explicit 
'Variables declaration 
Public MaxGen As Integer            'Maximum number of evolutionary generations 
Public NumberOfVectors As Integer   'Number of DE population members 
 
Public CurPopParameters(1 To 2000, 1 To 2000) As Double    '20000 current 
vectors, 2000 parameters 
Public TrialPopParameters(1 To 2000, 1 To 2000) As Double  '2000 trial 
vectors, 2000 parameters 
 
Public CurPopObjective(1 To 2000) As Double    'Objective functions values 
Public TrialPopObjective(1 To 2000) As Double 
 
Public Cr As Single     'DE's crossover rate 
Public CrMin As Single 
Public CrStep As Single 
Public CrMax As Single 
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Public F As Single     'DE's mutation scale parameter 
Public FMin As Single 
Public FStep As Single 
Public FMax As Single 
 
Public Sub GenerateRandomizedPopulation() 
'Generate a randomized initial poupulation 
    Dim EachVector As Integer 
    For EachVector = 1 To NumberOfVectors 
        GenerateRandomizedVector EachVector 
    Next EachVector 
End Sub 
 
Public Sub GenerateRandomizedVector(VertorIndx As Integer) 
    Dim EachParameter As Integer 
    'Generates a randomized current vector at the given index 
    'Generate random parameters for the vector 
        For EachParameter = 1 To NumberOfParameters 
            CurPopParameters(VertorIndx, EachParameter) = _ 
                            RandomizeBetween(LowerParameterBound(EachParameter), 
_ 
                                            UpperParameterBound(EachParameter)) 
        Next EachParameter 
        'Compute objective 
        CurPopObjective(VertorIndx) = _ 
                    ComputeObjective(VertorIndx, CurPopParameters) 
End Sub 
 
Public Sub Optimize() 
    Dim gKounter As Integer 'To count generations 
    Dim w As Integer 
    LoadSetup 
     
    'The for-next system of VBA has a bug, it fails when variables are in 
    'the fractional area, especially the step. Therefore we employ a series 
    'of do...loops here to vary the DE parameters Cr and F. 
    'We also use the single data type instead of double for Cr and F. 
    If FirstValidationRun = True Then 
        getInitialStartupBestVector 'Avoid overwriting best solution so far 
    End If 
    Cr = CrMin 
    F = FMin 
    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Cr = CrMin - CrStep 
    F = FMin - FStep 
    Do 
        Cr = Cr + CrStep 
        If Cr > CrMax Then Cr = CrMax 
        Do 
            F = F + FStep 
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            If F > FMax Then F = FMax 
            'Output the parameter progress to the GUI'''''''''''''''''' 
            ThisWorkbook.Worksheets("Optimizer").Range("C15").Value = Cr 
            ThisWorkbook.Worksheets("Optimizer").Range("C16").Value = F 
            ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
            'Main optimizer section'''''''''''''''''''''''''''''''''''' 
            GenerateRandomizedPopulation    'Initialize population for every 
parameter change 
             
            ''''''''''''''''''''''''''''''''''''''''' 
                        
            gKounter = 0    'reset the generation counter 
            Do 
                GenerateTrialPopulation 'generate a trial population 
                SelectNextGeneration    'SELECTION 
                SaveBestOfGeneration 
        UpdateValidation (gKounter) 
        'Dim eValidation As Double 'Best Validation error ever found in the whole 
search 
                gKounter = gKounter + 1 
                'Display Progress 
                ThisWorkbook.Worksheets("Optimizer").Range("D15").Value = _ 
                Str(gKounter) & " of " & MaxGen 
                DoEvents 
            Loop Until gKounter >= MaxGen 
            '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
             
            'Check for a better result in the current population 
            'For w = 1 To NumberOfVectors 
            '    If (CurPopObjective(w) <= OutputerObjective) Then 
            '        CopySolutionForOutput w, CurPopParameters, CurPopObjective 
            '    End If 
            'Next w 
            'OutputVectorToGUI 
        Loop Until F = FMax 
        If Cr < CrMax Then F = FMin - FStep 
    Loop Until Cr = CrMax 
End Sub 
 
Public Sub SaveBestOfGeneration() 
    Dim w As Integer 
    'Dim crspdngEtest As Double 
    Dim BetterObjectiveValue As Double 
    Dim bestIndx As Integer 'Index of best vector in current population 
    'During call to select next generation, all better vectors have been copied to 
the 
    'Current population. 
    'Now check for a better result in the current population and save to the outputer 
    bestIndx = 1    'Pick on the first solution 
    BetterObjectiveValue = OutputerObjective 
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    For w = 1 To NumberOfVectors 
        If (CurPopObjective(w) <= BetterObjectiveValue) Then   'minimization 
            BetterObjectiveValue = CurPopObjective(w) 
            bestIndx = w 
        End If 
    Next w 
    If (BetterObjectiveValue <= OutputerObjective) Then 'Improvement 
        CopySolutionForOutput bestIndx, CurPopParameters, CurPopObjective 
        OutputVectorToGUI  'Output better solution 
    End If 
         
        'Output the corresponding eTest on the sheet 
        'crspdngEtest = RunANNonEntireSampleSet(NumTestSamples, 
TestSamples2DArray, _ 
                                                TestSamplesActualOutput2DArray _ 
                                                , ValDayIndx) 
        'ThisWorkbook.Worksheets("Optimizer").Range("Q6").Value = 
crspdngEtest 
End Sub 
 
Public Sub GenerateTrialPopulation() 
    Dim i As Integer     'Vector ID 
    Dim j As Integer     'Parameter ID 
    Dim jrand As Integer 'Random crossover point 
    Dim r0 As Integer    'Base vector index 
    Dim r1 As Integer    'Difference vector index 1 
    Dim r2 As Integer    'Difference vector index 2 
    Dim EachConstraint As Integer 
     
    'Generate a trial vector population (Parameters) 
    For i = 1 To NumberOfVectors   'For each vector 
        'Make sure indices are unique 
        Do: r0 = RandomInteger(1, NumberOfVectors): Loop While (r0 = i) 
        Do: r1 = RandomInteger(1, NumberOfVectors): Loop While ((r1 = r0) Or (r1 
= i)) 
        Do: r2 = RandomInteger(1, NumberOfVectors): Loop While ((r2 = r1) Or (r2 
= r0) Or (r2 = i)) 
        jrand = RandomInteger(1, NumberOfParameters) 
        ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        For j = 1 To NumberOfParameters 'generate a trial vector 
            Randomize 
            If ((Rnd <= Cr) Or (j = jrand)) Then 
                TrialPopParameters(i, j) = _ 
                    CurPopParameters(r0, j) + _ 
                        F * (CurPopParameters(r1, j) - CurPopParameters(r2, j)) 
                'Check Trial vector for out of bound constraint 
                EnforceTrialVectorParameterBounds i, r0, j 
            Else 
                TrialPopParameters(i, j) = CurPopParameters(i, j) 
            End If 
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        Next j 
        'Compute objective 
        TrialPopObjective(i) = ComputeObjective(i, TrialPopParameters) 
    Next i 
End Sub 
 
Private Sub SelectNextGeneration() 
    Dim i As Integer    'Vector ID 
    For i = 1 To NumberOfVectors   'For each vector index 
        If (TrialPopObjective(i) <= CurPopObjective(i)) Then 
            'Copy the trial vector to the current vector for the next generation 
            CopyTrialVectorToCurrent i 
            'Check for better result in the population 
            'CopySolutionForOutput i, CurPopParameters, CurPopObjective 
            'OutputVectorToGUI 
        End If 
    Next i 
End Sub 
 
Private Sub EnforceTrialVectorParameterBounds(ByVal TrialVectorIndex As 
Integer, _ 
                                                ByVal TrialBaseVectorIndex As Integer, _ 
                                                    ByVal ParameterIndex As Integer) 
    'Enforces parameter bounds on parameters requiring compulsory boundary 
constarint 
    'This procedure employs the bounce-back stategy, (Storn and Price, 2004) 
    If EnforceParameterBound(ParameterIndex) = True Then 
        If (TrialPopParameters(TrialVectorIndex, ParameterIndex) < 
LowerParameterBound(ParameterIndex)) Then 
        'Lower bound exceeded 
            TrialPopParameters(TrialVectorIndex, ParameterIndex) = _ 
                RandomizeBetween(LowerParameterBound(ParameterIndex), _ 
                    CurPopParameters(TrialBaseVectorIndex, ParameterIndex)) 
        End If 
        If (TrialPopParameters(TrialVectorIndex, ParameterIndex) > 
UpperParameterBound(ParameterIndex)) Then 
        'Upper bound exceeded 
            TrialPopParameters(TrialVectorIndex, ParameterIndex) = _ 
                RandomizeBetween(CurPopParameters(TrialBaseVectorIndex, 
ParameterIndex), _ 
                    UpperParameterBound(ParameterIndex)) 
        End If 
    End If 
End Sub 
 
Private Sub CopyTrialVectorToCurrent(ByVal VectrIndx As Integer) 
    'Copies the trial vector to the target at the given index 
    Dim j As Integer 
    For j = 1 To NumberOfParameters 'Each parameter 
        CurPopParameters(VectrIndx, j) = TrialPopParameters(VectrIndx, j) 
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    Next j 
    'Copy the objective 
        CurPopObjective(VectrIndx) = TrialPopObjective(VectrIndx) 
End Sub 

DE_Outputer 
Dim OutSheet As Worksheet 
Public OutputerObjective As Double 
Public OutputerParametersArray(1 To 2000) As Double 
Public bestCr As Single 
Public bestF As Single 
 
Public Sub CopySolutionForOutput(ByVal SolnIndx As Integer, _ 
                                    ByRef PopParameterArray, _ 
                                    ByRef PopObjectiveArray) 
    'Copies the specified solution from the given array to the output array 
    Dim j As Integer 
     
    'Copy the parameters 
    For j = 1 To NumberOfParameters 
        OutputerParametersArray(j) = PopParameterArray(SolnIndx, j) 
    Next j 
    'Copy the objectives 
    OutputerObjective = PopObjectiveArray(SolnIndx) 
    '''''''''''''''''''''''''''''''''''''''''' 
    bestCr = Cr 'Parameters at the instance of copy 
    bestF = F 
End Sub 
 
Public Sub OutputVectorToGUI() 
    Dim mRow As Integer 
     
    'ClearOutput 
    Set OutSheet = ThisWorkbook.Worksheets("Optimizer") 
    'Output the parameters 
    For mRow = 1 To NumberOfParameters 
        OutSheet.Range("N" & Trim(Str(mRow + 5))).Value = _ 
        OutputerParametersArray(mRow) 
    Next mRow 
    'Also Ouput the Fittest Values 
    OutSheet.Range("Q8").Value = bestCr 
    OutSheet.Range("Q9").Value = bestF 
    'Best objective function 
    OutSheet.Range("P5").Value = OutputerObjective 
 End Sub 
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DE_Setup 
Option Explicit 
Public NumberOfParameters As Integer 
Public LowerParameterBound(1 To 2000) As Double 
Public UpperParameterBound(1 To 2000) As Double 
Public EnforceParameterBound(1 To 2000) As Boolean 
 
Public Sub LoadSetup() 
    MaxGen = ThisWorkbook.Worksheets("Optimizer").Range("D6").Value 
     
    '''''''''''''''''''''''''''''''''''' 
    NumberOfParameters = NumWtsAndBiases 
    'NumberOfVectors = 
ThisWorkbook.Worksheets("Optimizer").Range("D4").Value 
    NumberOfVectors = NumberOfParameters * 10   'Advise of Storn and Price 
(19xx) 
    'NumberOfVectors = 100   'Overule 
    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
     
    CrMin = ThisWorkbook.Worksheets("Optimizer").Range("C10").Value 
    CrMax = ThisWorkbook.Worksheets("Optimizer").Range("C11").Value 
    CrStep = ThisWorkbook.Worksheets("Optimizer").Range("C12").Value 
     
    FMin = ThisWorkbook.Worksheets("Optimizer").Range("D10").Value 
    FMax = ThisWorkbook.Worksheets("Optimizer").Range("D11").Value 
    FStep = ThisWorkbook.Worksheets("Optimizer").Range("D12").Value 
     
 
    ClearOutput 
    LoadParameterBounds 
End Sub 
 
Public Sub LoadParameterBounds() 
    'Loads the Lower and Upper bounds of each vector parameter from the 
worksheet 
    Dim EachParameter As Integer ' For looping through the parameters 
     
    For EachParameter = 1 To NumberOfParameters 
        LowerParameterBound(EachParameter) = _ 
                                    
ThisWorkbook.Worksheets("Optimizer").Range("I6").Value 
        UpperParameterBound(EachParameter) = _ 
                                    
ThisWorkbook.Worksheets("Optimizer").Range("J6").Value 
        EnforceParameterBound(EachParameter) = _ 
                                    
ThisWorkbook.Worksheets("Optimizer").Range("k6").Value 
    Next EachParameter 
End Sub 
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Public Sub ClearOutput() 
    'Clears the output area 
    ThisWorkbook.Worksheets("Optimizer").Range("P5").Value = "" 
    ThisWorkbook.Worksheets("Optimizer").Range("M6:N2000").ClearContents 
 End Sub 
  
 Public Sub getInitialStartupBestVector() 
 'This function generates initial vector and outputs as the best vector 
    GenerateRandomizedVector (1) 
    CopySolutionForOutput 1, CurPopParameters, CurPopObjective 
    OutputVectorToGUI 
 End Sub 

General Functions 
Public Function RandomizeBetween(ByVal MinValue As Double, ByVal 
MaxValue As Double) As Double 
    'Here we get a random values between the lower and upper boundaries 
    Randomize 
    RandomizeBetween = ((MaxValue - MinValue) * Rnd) + MinValue 
End Function 
 
Public Function RandomInteger(ByVal MinValue As Integer, ByVal MaxValue As 
Integer) As Integer 
    'Generate a random integer between the lower and upper boundaries 
    Randomize 
    RandomInteger = Int((MaxValue - MinValue + 1) * Rnd + MinValue) 
End Function 

Objective Function 
Option Explicit 
'This module contains functions that computes the objective functions 
'Users should make necessary modifications here 
 
Public Function ComputeObjective(ByVal VectorNumber As Integer, _ 
                                    ByRef VectorPopArray) As Double 
    'First get the 1D parameter array 
    Dim EachParameter As Integer 
    Dim Elearn As Double 'Learning error rate to be minimized 
     
    For EachParameter = 1 To NumberOfParameters 
        'Copy the parameters for ANN computations 
        WtPlusBiasArray(EachParameter) = VectorPopArray(VectorNumber, 
EachParameter) 
    Next EachParameter 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    'Now use the prameter array for the necessary computations 
    'The wt n bias array is used for ANN computaion, the output is stored in 
    'the specified 2D array. 
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    RunANNonEntireSampleSet NumLearnSamples, 
LearnSamplesInput2DArray, _ 
                                                LearnSamplesActualOutput2DArray 
     
    Elearn = ComputeAveEp(NumLearnSamples, 
LearnSamplesExpOutput2DArray, _ 
                                               LearnSamplesActualOutput2DArray) 
    'return Elearning 
    ComputeObjective = Elearn 
End Function 

Validation 
'Validation Module 
Option Explicit 
Public FirstValidationRun As Boolean 
 
Public Sub UpdateValidation(ByVal genNumber As Integer) 
    Dim eLearning As Double 
    Dim eTest As Double 
    Dim echParam As Integer 
     
    'At each generation in optimize, this sub is called 
    'During call to optimize, the best Elearning and weights and biases 
    'for the given number of hidden nodes are stored on the DE_Outputer 
    'Copy for further processing 
         
        'First, we get the testing error 
        For echParam = 1 To NumberOfParameters 
            'Copy the best parameters for ANN computations 
            WtPlusBiasArray(echParam) = OutputerParametersArray(echParam) 
        Next echParam 
 
        RunANNonEntireSampleSet NumValidationSamples, 
ValidationSamplesInput2DArray, _ 
                                                ValidationSamplesActualOutput2DArray 
        eTest = ComputeAveEp(NumValidationSamples, 
ValidationSamplesExpOutput2DArray, _ 
                                               ValidationSamplesActualOutput2DArray) 
        eLearning = OutputerObjective 
        'Check for first run or better eTest''''''''''''''''''''''''''''''''''''''' 
        If (FirstValidationRun = True) Or (eTest < bestETest) Then 
            bestETest = eTest 
            bestELearning = eLearning 
            bestNumHidNodes = NumHiddenNodes 
            For echParam = 1 To NumberOfParameters 
                'Copy the best parameters for ANN computations 
                bestWtPlusBiasArray(echParam) = WtPlusBiasArray(echParam) 
            Next echParam 
            OutputTrainResultToGUI 
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            'Output the generation best solution was found 
            ThisWorkbook.Worksheets("Optimizer").Range("K17").Value = 
genNumber 
            FirstValidationRun = False 
        End If 
End Sub 
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