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ABSTRACT 
 

Shannon showed that the codes with random-like codeword weight distribution are 

capable of approaching the channel capacity. However, the random-like property can be 

achieved only in codes with long-length codewords. On the other hand, the decoding 

complexity for a random-like codeword increases exponentially with its length. Therefore, 

code designers are combining shorter and simpler codes in a pseudorandom manner to form 

longer and more powerful codewords. In this research, a method for designing non-binary 

compound codes with moderate to high coding rate is proposed. Based on this method, non-

binary single parity-check (SPC) codes are considered as component codes and different 

iterative decoding algorithms for decoding the constructed compound codes are proposed. 

The soft-input soft-output component decoders, which are employed for the iterative 

decoding algorithms, are constructed from optimal and sub-optimal a posteriori probability 

(APP) decoders. However, for non-binary codes, implementing an optimal APP decoder 

requires a large amount of memory. In order to reduce the memory requirement of the APP 

decoding algorithm, in the first part of this research, a modified form of the APP decoding 

algorithm is presented. The amount of memory requirement of this proposed algorithm is 

significantly less than that of the standard APP decoder. Therefore, the proposed algorithm 

becomes more practical for decoding non-binary block codes. 

The compound codes that are proposed in this research are constructed from 

combination of non-binary SPC codes. Therefore, as part of this research, the construction 

and decoding of the non-binary SPC codes, when SPC codes are defined over a finite ring of 

order q, are presented. The concept of finite rings is more general and it thus includes non-

binary SPC codes defined over finite fields. Thereafter, based on production of non-binary 

SPC codes, a class of non-binary compound codes is proposed that is efficient for controlling 

both random-error and burst-error patterns and can be used for applications where high 

coding rate schemes are required. Simulation results show that the performance of the 

proposed codes is good. Furthermore, the performance of the compound code improves over 

larger rings. The analytical performance bounds and the minimum distance properties of 

these product codes are studied. 

  



  viii 

TABLE OF CONTENTS 
 

DECLARATION    ....................................................................................................... iii 

ACKNOWLEDGMENT .............................................................................................. vi 

ABSTRACT ................................................................................................................ vii 

TABLE OF CONTENTS ............................................................................................ viii 

LIST OF FIGURES ...................................................................................................... xi 

LIST OF TABLES ...................................................................................................... xiii 

LIST OF ACRONYMS .............................................................................................. xiv 

1.    INTRODUCTION .................................................................................................. 1 

1.1. Introduction ..................................................................................................... 1 

1.2. Turbo codes..................................................................................................... 2 

1.3. Turbo-like codes ............................................................................................. 4 

1.3.1. Low-density parity-check codes ........................................................... 5 

1.3.2. Turbo product codes ............................................................................. 8 

1.4. Motivation for research ................................................................................... 9 

1.5. Thesis overview ............................................................................................ 10 

1.6. Original contributions ................................................................................... 11 

1.7. Publications ................................................................................................... 12 

2.    A POSTERIORI PROBABILITY ALGORITHMS ............................................. 14 

2.1. Introduction ................................................................................................... 14 

2.2. Background and notation .............................................................................. 16 

2.2.1. General notation ................................................................................. 16 

2.2.2. Trellis for linear block codes .............................................................. 17 

2.3. Computation of the MAP decoding algorithm .............................................. 19 

2.4. Modified APP decoding algorithms.............................................................. 21 



  ix 

2.4.1. APP decoding algorithm based on straightforward implementation .. 22 

2.4.2. APP decoding algorithm based on the code’s dual space .................. 26 

2.4.3. APP decoding algorithm based on Fourier transform ........................ 30 

2.4.4. Complexity comparison ..................................................................... 32 

2.4.5. Simulation results ............................................................................... 34 

2.5. Conclusion .................................................................................................... 37 

3.    NON-BINARY SINGLE PARITY-CHECK CODES .......................................... 39 

3.1. Introduction ................................................................................................... 39 

3.2. Encoding of non-binary SPC codes .............................................................. 41 

3.3. Decoding of non-binary SPC codes .............................................................. 42 

3.3.1. APP decoding algorithm based on straightforward implementation .. 43 

3.3.2. APP decoding algorithm based on Fourier transform ........................ 44 

3.3.3. Complexity comparison ..................................................................... 48 

3.4. Simulation results ......................................................................................... 49 

3.5. Conclusion .................................................................................................... 57 

4.    SINGLE PARITY-CHECK TURBO PRODUCT CODES .................................. 58 

4.1. Introduction ................................................................................................... 58 

4.2. The structure of product codes ...................................................................... 61 

4.3. Turbo decoding of non-binary SPC code ...................................................... 65 

4.3.1. Algorithm   ......................................................................................... 68 

4.3.2. Modified-Algorithm   ......................................................................... 69 

4.3.3. Algorithm   ........................................................................................ 71 

4.4. Simulation results ......................................................................................... 73 

4.5. Conclusion .................................................................................................... 86 

5.    PERFORMANCE ANALYSIS ............................................................................ 88 

5.1. Introduction ................................................................................................... 88 



  x 

5.2. Performance bound ....................................................................................... 89 

5.3. Minimum distance property .......................................................................... 93 

5.4. Conclusion .................................................................................................... 97 

6.    CONCLUSION ..................................................................................................... 98 

REFERENCES .......................................................................................................... 101 

 

  



  xi 

LIST OF FIGURES 
 

Figure 2.1 Trellis diagram of the (7,4) Hamming code given by the parity-check matrix in 

(2.1).………….………………………………………………………………...18 

Figure 2.2 Simulated BER performance of the (7,4) Hamming code over AWGN channel 

using BPSK ..…………………. ………………..………………………………36 

Figure 3.1 Addition and multiplication of    versus     and    versus   …………......….42 

Figure 3.2 Performance of the (5,4) SPC code defined over    ……………………………52 

Figure 3.3 Performance of the (5,4) SPC code defined over   …………………….....……53 

Figure 3.4 Performance of the (5,4) SPC code defined over    and    …………..…..……54 

Figure 3.5 Performance of the (5,4) SPC code defined over    that is decoded with different 

decoding algorithms……………………………………………………………..55 

Figure 3.6 Performance of the (5,4) SPC code defined over    and     that are decoded with 

the APP decoding algorithm based on Fourier transform……………………….56 

Figure 4.1 A general structure for a two-dimensional product code………………………..63 

Figure 4.2 Two-dimensional SPC product code………………………………………….…64 

Figure 4.3 Turbo decoder for the 2D-SPC-TP code………………………………………...67 

Figure 4.4 Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by Algorithm  …………………………………76 

Figure 4.5 Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by algorithm MA- ………………………….…77 

Figure 4.6 Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by Algorithm    …..……………………………78 



  xii 

Figure 4.7 The performance of the (       )  2D-SPC-TP code that is defined over    and 

is decoded by different iterative decoding algorithms after two iterations……...79 

Figure 4.8 The performance of the (       )  2D-SPC-TP code that is defined over    and 

is decoded by different iterative decoding algorithms after two iterations……...80 

Figure 4.9 The performance of the (       )  2D-SPC-TP code that is defined over    and 

is decoded by algorithm MA-  with different number of iterations …………….81 

Figure 4.10 The performance of the (       )  2D-SPC-TP code that is defined over    and 

is decoded by algorithm MA-  after two iterations ………...…………………...82 

Figure 4.11 The performance of the (       )  2D-SPC-TP code that is defined over    and 

is decoded by algorithm MA-  after two iterations…………….………………..83 

Figure 4.12 Comparison between the performance of the (       )  2D-SPC-TP code 

defined over    and   . The codes are decoded by algorithm MA-  after two 

iterations……………………………………………………………………........84 

Figure 4.13 Comparison between the performance of different rate 2D-SPC-TP codes 

defined over    and decoded by algorithm MA-  after two iterations………….85 

Figure 5.1 Comparison between the bit weight spectral for a minimum-weight codeword of 

an SPC code defined over    and    .   (                )…………….…95 

Figure 5.2 Comparison between the bit weight spectral for a minimum-weight codeword of a 

2D-SPC code defined over    and    .   (                )………………96 

 

 

  



  xiii 

LIST OF TABLES 
 

Table 2.1 Complexity comparison between minimal-storage APP decoding algorithm and the 

BCJR algorithm for a code defined over   ………………………………….....33 

Table 2.2 Complexity comparison between the minimal-storage APP decoding algorithms 

for codes defined over    with different code rates …………….…………...….33 

Table 2.3 Complexity of the APP decoding algorithm implemented over the code’s dual 

space by using pre-calculated DFT vectors ……………………..………...……34 

Table 2.4 Complexity comparison between minimal-storage APP decoding algorithm and the 

BCJR algorithm for decoding the (7,4) Hamming code……………….……….37 

Table 3.1 Complexity comparison between the two proposed algorithms…………......…...49 

Table 3.2 Complexity comparison between the two proposed algorithms for decoding the 

(5,4) SPC code defined over   ……………………………………………....…57 

Table 4.1 Code parameters for different rate 2D-SPC-TP codes……………………....……85 

 

  



  xiv 

LIST OF ACRONYMS 
 

2D-SPC    two-dimensional single parity-check 

2D-SPC-TP  two-dimensional single parity-check turbo product 

3GPP LTE  3rd generation partnership project long term evolution 

APP   a posteriori probability 

AWGN   additive white Gaussian noise 

BCH   Bose–Chaudhuri–Hochquenghem 

BCJR   Bahl-Cocke-Jelinek-Raviv 

BER   bit error rate 

BI-AWGN  binary input additive white Gaussian noise 

BP   belief propagation 

BPSK   binary phase-shift keying 

CRC   cyclic redundancy check 

DFT   discrete Fourier transform 

DVB-S2   digital video broadcasting second generation 

EMS   extended min-sum 

EXIT   extrinsic information transfer 

FEC   forward error correction 

FFT   fast Fourier transform 

FFT-BP   fast Fourier transform belief propagation 

GILD   generalized irregular low-density 



  xv 

GLD   generalized low-density 

GSM   global system for mobile communication 

HSPA   high speed packet access 

LDPC   low-density parity-check 

LLR   log-likelihood ratio 

Log-FFT-BP  logarithmic fast Fourier transform belief propagation 

MA-     modified-algorithm    

MAP   maximum a posteriori 

RS   Reed-Solomon 

SISO   soft-input soft-output 

SNR   signal-to-noise-ratio 

SOVA   soft-output Viterbi algorithm 

SPA   sum-product algorithm 

SPC   single parity-check 

TPC   turbo product code 

WiMAX   worldwide interoperability for microwave access 

  



 

1 
 

CHAPTER 1 

INTRODUCTION 
 

 

 

 

 

 

1.1. Introduction 
 

Forward error correction (FEC) codes are used in digital communication systems to 

detect and correct the errors incurred during data transmission over noisy mediums. For this 

purpose, some extra information is added to the original message thus at the receiver side, 

they can be used in crosschecking the original message. It was shown by Shannon [1] in 

1948 that by using FEC codes in communication systems, the error rate can be reduced to 

any negligible level. However, he did not specify any method for constructing good practical 

codes. Since then, the challenge for coding theorist has been to achieve the Shannon channel 

capacity limit by using the FEC codes, which have sufficient structure to be encoded and 

decoded practically. 

The design of FEC codes began with the work of Hamming in 1950 [2] and was 

succeeded with the research on heavily structured codes for almost four decades. The 

structured codes are either algebraic as in most of the block codes or topological as in most 

of the convolutional codes. The decoding of a structured code is relatively easy and practical. 

Therefore, these codes are being used extensively in wireless communication. In deep space 

communication and satellite systems, where power-limited and low spectral efficiency codes 

are required, mainly serially concatenated structures are being used. The most commonly 
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used structured code in satellite communications is constructed from concatenation of an 

outer Reed-Solomon code over an inner convolutional code. In mobile communication 

systems where bandwidth is scarce and expensive, bandwidth-efficient coding schemes are 

required and for example, in global system for mobile communication (GSM) standard, a 

variety of channel coding schemes including Bose–Chaudhuri–Hochquenghem (BCH) 

codes, fire codes and cyclic redundancy check (CRC) codes have been used [3]. However, 

the performance of these structured codes is still far away from the channel capacity.  

 

1.2. Turbo codes  
 

In the mid-90s, a major discovery was made in the field of coding theory. This was 

motivated by the work of Shannon in [1], which showed that the randomly generated long-

length codewords are capable of approaching the channel capacity. Traditionally, increasing 

the code’s minimum distance was considered as the only solution for improving the 

performance of a code. However, in 1993, Berrou, Glavieux, and Thitimajshima [4] 

considered a different approach to reduce the bit-error rate (BER) of a code. In their 

approach, instead of increasing the minimum distance of a code, the multiplicity of the 

minimum weight codeword is reduced. This has resulted in a capacity approaching class of 

codes named as turbo codes. 

Turbo codes are the first class of code that for almost any code rate can get as close as 

1.0 dB to the additive white Gaussian noise (AWGN) channel capacity at the moderate BER 

of     . Therefore, with the exception of very delay-sensitive applications, turbo codes have 

been employed in most industrial standards. In satellite communication systems, they are an 

alternative to the Reed-Solomon-Viterbi codes and in mobile communication, they are 

extensively being used in the third and fourth generations of mobile telephony standards 

such as high speed packet access (HSPA) and 3rd generation partnership project long term 

evolution (3GPP LTE) [5]. Moreover, turbo codes are the coding scheme for the worldwide 

interoperability for microwave access (WiMAX), which is a wireless metropolitan network 

standard [5].  
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The excellent performance of turbo codes has made them an exciting topic in channel 

coding theory. The main reason for this excellent performance is the random-like weight 

spectrum of a turbo code. This means that the distance distribution between any typical 

codeword of a turbo code and all other codewords of that code resembles the distance 

distribution for a randomly generated code. The random-like weight spectrum is caused by 

interleaving or reordering the information symbols (bits) during the encoding process. 

However, this random-like characteristic can be achieved only for long codes (e.g. with more 

than      symbols (bits) per codeword). 

The decoding complexity for a code with random-like structure increases 

exponentially with its length. This means that decoding a turbo code is expected to be very 

complicated. However, turbo codes are cleverly constructed from combination of simple 

component codes so that their decoding complexity can be avoided and a long-length 

codeword can be decoded based on the decoding of its shorter and simpler component codes. 

Furthermore, by using soft-input soft-output (SISO) component decoders in an iterative 

decoding algorithm, the chance of losing information becomes less. This is because in 

conjunction with the channel information, the soft output values of the other component 

decoders, which are known as extrinsic information, can also be used in the decoding 

process. 

The process of a SISO iterative decoding algorithm is initialized by decoding each 

constituent code individually, where each constituent code is decoded based on the channel 

information and the a priori information of its symbols (bits). Subsequently, the soft output 

information generated by each component decoder is shared with the other component 

decoders. In the next iteration, each component decoder uses the shared information of the 

other component decoders as extrinsic information to improve its data estimations. This 

process is iterated multiple times and each time the data estimation of every component 

decoder is improved by the help of extrinsic information received from the other component 

decoders. Eventually, after certain number of iterations, a hard decision for each symbol (bit) 

based on combination of the channel information and the extrinsic information for that 

symbol (bit) can be made. 

 

 



Chapter 1. Introduction  4 

1.3. Turbo-like codes 
 

The concept of concatenated codes was introduced by Forney [6] and in fact, the serial 

concatenated codes were the best-known codes prior to the invention of turbo codes. Turbo 

codes were originally constructed as parallel concatenation of two interleaved convolutional 

codes. Further research showed that other capacity-approaching codes can be constructed 

from parallel concatenation of interleaved block codes [7] or from serial [8] or even hybrid 

serial-parallel [9] concatenation of different interleaved component codes. All these 

capacity-approaching codes can be categorized as turbo-like codes and although there is no 

generic definition for turbo-like codes, all these codes have the following characteristics:  

 

 Compound structure: Turbo-like codes are constructed from multiple low-

complexity component or constituent codes. 

 Interleaving: The information symbols (bits) are reordered before being used 

by each constituent code. 

 SISO iterative decoding: Turbo-like codes are decoded by an iterative 

decoding algorithm where the soft reliability information is repeatedly 

exchanged between the constituent codes.  

 

Therefore, different turbo-like codes based on different type of constituent codes and 

concatenation structures can be designed. In the rest of this section, an overview on the 

literature for the two important categories of turbo-like codes is given. The first category is 

the turbo-like codes constructed from parallel concatenation of single parity-check (SPC) 

codes and the second category is the turbo-like codes with the product structure.  
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1.3.1. Low-density parity-check codes 

 

Low-density parity-check (LDPC) codes were first discovered by Gallager in 1962 

[10] and had the computing power been available at that time, these codes would have 

outperformed the best-known codes prior to the invention of turbo codes. However, besides 

few exceptions such as [11], they were largely neglected until the mid-90s when they were 

rediscovered by Mackey [12, 13] and shown to form a class of capacity approaching codes. 

An LDPC code is defined as the null space of an     sparse parity-check matrix, where   

is the length of the code and   is the number of parity-check equations. Therefore, an LDPC 

code can simply be considered as a turbo-like code constructed from   parallel SPC codes, 

where the information symbols (bits) are interleaved by the position of nonzero elements of 

the parity-check matrix.  

LDPC codes were originally constructed from parity-check matrices with uniform 

column and row weights that in the literatures are known as regular LDPC codes. Later, 

Luby et al. [14] introduced the irregular LDPC codes, where their parity-check matrices have 

non-uniform row and column weights and they can outperform the regular LDPC codes. 

Furthermore, Davey and MacKay [15,16] studied the construction of non-binary LDPC 

codes and they showed that the performance of an LDPC code improves over higher order 

fields. Generally, LDPC codes are constructed either as pseudorandom (or random-like) 

codes [13-20] or as algebraic and combinatorial codes [21-39]. In most cases, the 

performance of a pseudorandom LDPC code is better than that of a structured LDPC code. 

However, a pseudorandom LDPC code does not have sufficient structure and its encoding is 

complicated. On the other hand, structured LDPC codes have encoding advantages over 

pseudorandom codes. For example, in structured quasi-cyclic LDPC codes [29-39], the 

encoders can be implemented from simple shift registers with linear complexity.  

An LDPC code is often presented by a bipartite graph known as Tanner graph. A 

Tanner graph consists of two sets of nodes: variable nodes that correspond to the data and 

check nodes that correspond to the parity-check equations. A variable node is connected to a 

parity-check node if the corresponding variable is involved in the corresponding parity-check 

equation. The performance of an iteratively decoded LDPC code is very much depended on 

the length of its Tanner graph’s shortest cycle [11]. The length of the shortest cycle in a 
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Tanner graph is known as the girth of that graph. In the design of an LDPC code, small 

girths, especially a girth of four, should be avoided. This is because the iterative decoding 

process in a code that has a girth of four becomes correlated after two iterations. It is shown 

that avoiding short cycles in non-binary LDPC codes is more feasible compared with their 

binary counterparts [40]. A well-designed LDPC code has a reasonably large-girth Tanner 

graph and code optimization, based on analyzing the code’s behavior under the iterative 

decoding algorithm, is a crucial process in designing a good-performance LDPC code. 

The density evolution method proposed by Gallager [10] is an optimization method 

and can be used as a practical technique for designing powerful LDPC codes. Richardson et 

al. [17] used the density evolution technique and determined a threshold on signal-to-noise-

ratio (SNR) value for different LDPC codes, from which it was claimed that most LDPC 

codes under SISO iterative decoding algorithm are asymptotically good-performance codes 

above these SNR thresholds. The simulation results for large block length LDPC codes 

confirm these thresholds [18]. Moreover, by using density evolution technique, several well-

performed  

 
 rate LDPC codes were designed [19], including one which its theoretical 

thresholds approaches within 0.0045 dB of the AWGN channel capacity, and another with 

the length of      bits that approaches within 0.04 dB of the AWGN channel capacity at 

BER of     . Density evolution is one of the best-known methods for optimizing an LDPC 

code, however, it is a computationally intensive process which becomes intractable for non-

binary LDPC codes that have alphabet size larger than three [17]. Therefore, other 

approximated optimization techniques such as Gaussian distribution algorithm [41,42] and 

extrinsic information transfer (EXIT) chart [43-45] are proposed. One of the fundamental 

assumptions in density evolution and other approximated techniques is that the channel 

should be symmetric. However, not all communication channels can be considered as 

symmetric. In [46], the non-symmetric channels are considered and a systematic approach 

for designing the non-binary LDPC codes for the memoryless channels is presented. 

LDPC codes under SISO iterative decoding algorithm exhibit performance 

comparable and sometimes even better than turbo codes. The first SISO iterative decoding 

algorithm for binary LDPC codes was proposed in [10], which is based on probability 

distribution of the codeword variables over a graph-based model. Mackay et al. [12] also 

used a similar algorithm for decoding LDPC codes. Moreover, it is shown by Mackay that 

the simplification of the Pearl belief propagation (BP) [47] decoding algorithm over the 
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Tanner graph representation of a code, provides a powerful tool for decoding an LDPC code. 

It is shown in [48] that Gallager and Mackay decoding algorithms are specific instances of 

sum-product algorithm (SPA). Depending on the context, the SISO iterative decoding 

algorithm for an LDPC code can be called as SPA, BP or iterative message passing decoding 

algorithm.  

A good-performance LDPC code has very long length codewords and implementing 

SPA algorithm for such a code is computationally complicated. Therefore, other SISO 

iterative decoding algorithms based on approximation of SPA have been proposed. Fossorier 

et al. in [49] proposed an approximation for SPA algorithm, which is known as min-sum or 

BP-based algorithm. The min-sum decoding algorithm significantly reduces the 

computational complexity of SPA and also degrades the performance of a code. In [50], 

several other reduced-complexity decoding algorithms for binary LDPC codes are proposed. 

In general, there is a trade-off between the performance of an optimized LDPC code and the 

complexity of its decoder. However, for an LDPC code whose Tanner graph contains many 

short cycles, the reduced-complexity decoding schemes may outperform the SPA decoding 

algorithm [50]. 

SPA decoding algorithm is also generalized for decoding non-binary LDPC codes 

[15,16]. However, the computational complexity for SPA decoding of an LDPC code 

defined over a finite field of order q,   , is dominated by  (  ) operations for each check 

sum calculation [16]. By employing a fast Fourier transform belief propagation (FFT-BP) 

decoding algorithm, the decoding complexity can be reduced [51]. Moreover, it is shown 

[52] that by describing FFT-BP algorithm in the logarithmic domain, a more simplified 

decoding algorithm, known as Log-FFT-BP, can be achieved. The computational complexity 

for decoding an LDPC code defined over    (with      for any positive integer  ) and 

decoded by Log-FFT-BP decoding algorithm, is reduced to  (  ) operations for each check 

sum calculation. In [53] a more convenient description for FFT-BP and Log-FFT-BP based 

on the tensoral representation is given. Moreover, an approximation for FFT-BP algorithm, 

known as extended min-sum (EMS) decoding algorithm, is proposed in [54]. To reduce the 

amount of memory requirement for EMS decoding algorithm, a new implementation for this 

algorithm is presented in [55], however, similar to binary LDPC codes, there is a 

performance-complexity trade-off for decoding an optimized non-binary LDPC code. 
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LDPC codes are used in many industrial standards such as digital video broadcasting 

second generation (DVB-S2) [56], WiMAX (IEEE 802.16e) [57], G.hn standard [58] and 

ethernet cable transmission (10GBASE-T) [59]. A well-designed, long-length LDPC code 

performs only a few tenth of dB from the channel capacity; however, for the codes with less 

than      bits per codewords, turbo codes generally perform better than LDPC codes. 

Therefore, designing small and medium block length turbo-like codes constructed from SPC 

constituent code, which can perform close to channel capacity, is still an open research field. 

The generalized LDPC codes such as generalized low-density (GLD) [60,61] and 

generalized irregular low-density (GILD) [62] codes can be considered as turbo-like codes 

constructed from SPC constituent code. The parity-check matrices for both GLD and GILD 

are denser than that of the LDPC codes. The studies in [62] showed that GILD codes could 

perform as good as some LDPC codes and it is suggested that variations of GILD codes 

might be able to match or beat LDPC codes with small or medium block lengths. 

 

1.3.2. Turbo product codes 

 

The first idea for constructing long and powerful codes from a combination of short 

and simple codes dates back to the invention of product codes by Elias in 1954 [63]. Product 

codes can be constructed from any binary or non-binary, block or convolutional constituent 

codes in multiple dimensions, however, common choices are the two or three-dimensional 

product codes that are constructed from BCH codes, binary SPC codes or Hamming codes. 

A d-dimensional product code can be considered as a structured interleaved code where each 

of its information symbols (bits) is employed in d constituent codes.   

The first soft decoding algorithm for a product code was given by Battail [64] and 

later Hagenauer et al. [65] showed that the turbo decoding principles can be used for 

decoding a product code. A turbo product code (TPC) is a product code that is decoded by a 

SISO iterative decoding algorithm and it is shown [66-70] that they can achieve good 

performance. Product codes are efficient for controlling both random-error and burst-error 

patterns [69] and are suggested for applications with high coding rate requirements such as 

submarine cables, optical transport networks and networks at 100Gbit/sec [70]. 
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1.4. Motivation for research 
 

In designing a suitable coding scheme for mobile communication systems, in addition 

to the code performance, other factors such as bandwidth efficiency and quality of service 

must also be considered. In mobile systems, due to the increase in demand and growth in 

number of subscribers, bandwidth is scarce and expensive, and thus, codes with high coding 

rates are required. Also faster encoding and decoding techniques, which result in reducing 

time delays of the systems, and thus improving the quality of service, are required. However, 

existing good-performance LDPC and turbo codes are mostly low-rate codes and are 

computationally complicated [5,19]. This complexity mainly arises from the large block size 

of these codes. Therefore, there is a great necessity for designing good-performance high-

rate codes with small or medium block size. 

It is shown that the performance of a moderate-length LDPC code improves over 

higher order fields [15,16] and since LDPC codes are constructed as parallel concatenation 

of SPC codes, it can be imagined that codes which are designed based on concatenation of 

non-binary SPC codes may perform better over short-length or medium-length block size. 

Moreover, non-binary codes are attractive for high data-rate digital communication where 

high-order modulations are widely being used and it is more convenient to use non-binary 

codes with appropriate alphabet size to match the constellation. Furthermore, the research on 

GLD and GILD codes [60-62] shows that the parallel-concatenated SPC codes with denser 

parity-check matrices are better choices for designing small or medium length good-

performance codes. Therefore, in this research we investigate compound codes that are 

constructed from non-binary SPC codes with average-density parity-check matrices.  

The non-binary SPC component codes can be defined either over a finite field of order 

q or over a finite ring of order q. Furthermore, for designing a compound code, two issues 

have to be taken into consideration. One is the codeword-weight-distribution of the code and 

the other is the structure of the decoder. The multiplicity of the minimum weight codewords 

in a well-designed compound code needs to be reduced and the SISO iterative decoding 

algorithm needs to be simple so that the decoding latency can be avoided in the system. In 

this research, we show that these two conditions can be more satisfied when the compound 

codes are constructed from non-binary SPC codes defined over a finite ring of order q 
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compared with those that are constructed from concatenation of non-binary SPC codes 

defined over a finite field of order q.  

In this research, the design of non-binary compound codes with moderate to high 

coding rates is studied. The proposed compound codes are constructed from combination of 

non-binary SPC component codes. The SISO iterative decoding algorithms for decoding 

these compound codes are proposed. A SISO component decoder can be constructed from an 

optimal or sub-optimal a posteriori probability (APP) decoder. For non-binary codes, 

implementing an optimal APP decoder requires a large amount of memory.   

In the first part of this research, we present a modification on the APP decoding 

algorithm to reduce its amount of memory requirements and computational complexity. The 

amount of memory requirement of the proposed algorithm is significantly less than memory 

requirement of the original APP decoder, thus the proposed modified APP decoding 

algorithm is more practical for decoding the non-binary linear block codes. The proposed 

algorithm is an optimum algorithm and it is not depended on the trellis structure of the code, 

thus it can be used for any linear block code.  

The proposed class of compound codes that is discussed in this research is based on 

production of two non-binary SPC codes. Turbo product codes are efficient for applications 

where high coding rate schemes are required. We study the construction and decoding of the 

non-binary SPC turbo product codes when SPC codes are defined over a finite ring of order 

q. This includes non-binary SPC turbo product codes that are defined over finite fields, but 

this may be more general. The performance bounds for these codes are presented. 

 

1.5. Thesis overview 
 

This thesis is divided into six chapters. In Chapter 1, the major forward error 

correcting codes used in the wireless communication systems were presented. Turbo codes 

and turbo-like codes as the two important classes of capacity-approaching codes were briefly 

introduced. Furthermore, we explained the reasons for their extraordinary performance and 

discussed the issues that should be considered in their design process. Finally, the motivation 

for the work done in this thesis is discussed.  
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The optimal APP decoding algorithm for non-binary block codes is discussed in 

Chapter 2. An algorithm for calculating the symbols’ APP values of a non-binary block 

code, which is based on the Fourier transform, is proposed. By employing this modified APP 

decoding algorithm, the amount of memory requirement and the computational complexity 

of the standard APP decoding algorithm are reduced and therefore, optimal APP decoding of 

a non-binary block codes becomes more feasible. 

The non-binary SPC codes are studied in Chapter 3. The majority of the non-binary 

block codes are defined over the finite fields of order q. In this chapter, the construction of 

non-binary SPC codes when they are defined over the finite rings of order q is studied. 

Different decoding methods for these codes are proposed.  

In Chapter 4, the construction of non-binary SPC turbo product codes is investigated. 

Different SISO iterative decoding methods for these codes are proposed. The simulation 

results show that SPC turbo product codes defined over finite rings perform better than SPC 

turbo product codes defined over finite fields. Moreover, by increasing the order of the ring 

the performance of non-binary SPC turbo product codes is improved. 

The performance analysis of the non-binary SPC product codes are discussed in 

Chapter 5. The minimum Hamming distance of these codes and the multiplicity of the 

minimum Hamming weight codewords are presented. Based on the minimum distance of 

these codes, the upper bound for the bit-error rate is calculated and is compared with the 

simulation results. 

Chapter Six presents the discussion on the conclusions drawn in this thesis. 

 

1.6. Original contributions 
 

The original contributions of this thesis include: 

1. Derivation of optimum APP decoding algorithm for non-binary block codes to 

reduce the amount of memory storage and the computational complexity that is 

required for calculation of APP values of codewords’ symbols. [Chapter 2] 
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2. Study of non-binary SPC codes over finite rings of order q and derivation of 

different decoding algorithm for these codes. [Chapter 3] 

3. Design of non-binary turbo product codes which are constructed from non-binary 

SPC component codes defined over finite rings of order q and a study of the effect of 

ring order on the performance of an SPC turbo product code. [Chapter 4] 

4. Derivation of minimum distance property and analytical bounds of non-binary SPC 

product codes. [Chapter 5] 
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5. Ghayour F. Takawira F. and Xu H. “On MAP Decoding of High-Rate Non-Binary 
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CHAPTER 2 

A POSTERIORI PROBABILITY ALGORITHMS 
 

 

 

 

 

 

2.1. Introduction 
 

After the invention of turbo codes, researchers became interested in the design of 

iteratively decodable compound codes using soft-input soft-output (SISO) component 

decoders. The soft input of an optimal component decoder consists of symbol’s a priori 

information, channel information and extrinsic information, while the soft output of the 

decoder consists of the a posteriori probability (APP) values for the symbols of that 

particular component code. The soft output information of each SISO component decoder is 

shared with the other component decoders, therefore, it can be used as extrinsic information 

in the next iteration. Subsequently, after certain number of iterations, the maximum a 

posteriori (MAP) decoder chooses the maximum APP values as the decoded symbols. 

The standard way for calculating the symbol’s APP values was proposed by Bahl-

Cocke-Jelinek-Raviv (BCJR) [71], which requires storing of all state metric values. 

However, the computational complexity and the amount of memory requirement for the 

BCJR algorithm, which arises from the necessity of computing and storing of all state metric 

values, are often prohibitive in many practical applications. 
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For reducing the computational complexity of the MAP algorithm, both optimal 

algorithms, such as log-MAP [65,73,82], and sub-optimal algorithms, such as soft-output 

Viterbi algorithm (SOVA) [83] and max-log-MAP [65,72], have been proposed. However, 

employing sub-optimal decoding algorithms degrades the bit (or symbol) error rate 

performance of a code. In all these algorithms, whether optimal or suboptimal, although the 

complexity is reduced, the amount of memory requirement is the same as in the BCJR. This 

means that all the state metrics are required and have to be stored for the forward and 

backward recursions. 

In [65,72,73], the BCJR algorithm was used for decoding linear block codes. 

However, implementing the BCJR algorithm for a linear block code usually requires large 

amount of memory storage. It is shown in [73] that for a linear block code with length N and 

dimension K defined over a finite field of order q, the number of states may reach up to  

qmin{K , N – K} states. This means that implementing BCJR algorithm for such a code requires 

storing qmin{K , N – K}  numbers. This large amount of memory requirement makes BCJR an 

impractical decoding algorithm for many non-binary block codes and even for the codes with 

relatively small N. For example, to implement a BCJR decoder for a (31,21) Reed-Solomon 

code, at least 3210 numbers require to be stored. Assuming that each number uses 32 bits of 

memory, more than 4 106 gigabytes of memory storage for decoding this code is required. 

Storing this amount of data imposes great cost, energy consumption and time delay to the 

system. 

Some attempts have been made in [74-77] to reduce the amount of memory 

requirement in a MAP decoder.  It is shown in [74] that using all state metrics for 

computation of APP values is not required and instead, saving some parts of all state metric 

values is sufficient. This method is highly depended on the trellis graph of the code. This 

means that the efficiency of this method is completely related to the code’s structure and it is 

effective only for codes with symmetrical trellis graphs like Reed-Muller codes. Another 

possible approach for decreasing memory requirement of the BCJR algorithm is presented in 

[75-77]. In this method, for computing the APP values of a symbol at a particular time, only 

the metric values for that time and some other adjacent states need to be stored. As it was 

shown in [73], the number of state metric values for some times may reach up to qmin{K , N – K} 

states. This is still a large amount of memory requirement for most of non-binary block 

codes. 
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In this chapter, we present some modifications on the APP decoding algorithm in 

order to reduce its amount of memory requirement compared with the BCJR algorithm and 

therefore, to make it a feasible algorithm to be used for decoding non-binary codes. The 

reduction in the memory requirement is at the cost of increasing the computational 

complexity. However, this can be justified from the power consumption point of view, which 

as it was analyzed in [78,79], data storage and transfer operation consume much more power 

than data computation operation. Furthermore, the computational complexity of our 

proposed algorithm is less than that of the minimal-storage APP decoding algorithm and by 

use of our proposed algorithm, optimal APP decoding of any linear block code becomes 

feasible although it might force some latency to the system. Our proposed algorithm is not 

dependent on the trellis structure of a code, and therefore it can be implemented for any 

linear block code.  

This chapter is organized as follows. In Section 2.2 the problem formulation is given. 

We then, in Section 2.3, provide a description of the MAP algorithm for block codes. In 

Section 2.4, the minimal-storage APP decoding algorithms and our proposed APP decoding 

algorithm are presented and the simulation results are given. Moreover, the computational 

complexity and the memory requirement for each algorithm are discussed. The final section 

concludes this chapter. 

 

2.2. Background and notation 
 

2.2.1. General notation 

 

In this chapter, vectors and matrices are denoted in boldface letters and their elements 

in lower case; e.g.    is the ith element of the vector   (            ). An (N,K) code is 

referred to a non-binary linear block code with length N and dimension K. The non-binary 

codes are mostly defined over a finite field of order q,     however, they can also be defined 

over finite rings or finite groups [80,81]. In this chapter, we consider non-binary codes 

defined over finite ring of integer modulo-q,      as well as the non-binary codes that are 

defined over   . Without loss of generality, all codewords are assumed to be in systematic 
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format so that the first K symbols of each codeword are the information symbols and the 

remaining N-K symbols are the parity-check symbols. The generator matrix of a systematic 

(N,K) code is represented by          , where    is a K×K identity matrix and   is a  

K×(N-K) matrix whose elements belong to set            . The parity-check matrix of a 

systematic (N,K) code is represented by                               where 

   denotes the ith column of  . Furthermore, a sub matrix of   that has the first i columns of 

  is denoted by    (i.e.                  ). We assume that the codewords are 

transmitted over a discrete time memoryless, noisy channel and the soft decision vector 

  (            ) that corresponds to a transmitted codeword is available at the decoder.  

 

2.2.2. Trellis for linear block codes 

 

Let   be an (N, K) non-binary linear block code. A trellis diagram T for code   is a 

directed graph with     levels of vertices and   levels of edges.  For any level              

              ,   ( ) denotes the set of all encoder states at the time i or in other words, 

  ( ) consist of all vertices at the ith level of trellis T. Therefore, at the time 0 and at the 

time N only one node exists, which are respectively represented by    and   . (i.e.   ( )  

     and   ( )      ). Moreover, a branch or edge is a section of trellis between the ith 

level and the (i+1)th level that connects the      ( ) node to the          ( ) node and 

is labeled with a code symbol   , which represents the ith element of the codeword vector. 

Each state in T can be labeled based on the code’s parity-check matrix. 

For code   with parity-check matrix  , the label of the state      ( )
 
is represented 

by  (  ) and is defined as  (  )      
 , where   is the path in trellis T that starts from 

initial state,   , and terminates at the state   ; and   denotes the inner product between the 

vectors. As an example: consider the (7,4) binary Hamming code with the parity-check 

matrix given by (2.1). The trellis graph for this code is shown in Figure 2.1, where the 

vertical axis shows the label of each state and the horizontal axis shows the level of the 

trellis. 
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Figure 2.1: Trellis diagram of the (7,4) Hamming code given by the parity-check matrix in (2.1) 

 

Two states that are connected to each other via one branch are called adjacent states. 

Therefore, a directed path from the initial node S0 to the final node Sf with a label sequence 

(            ) exists if and only if (            ) is a codeword belonging to  . The 

set of all edges between the state space   ( ) and the state space     ( ) is denoted by 

  ( ). Moreover,   ( ) can be spanned to subsets {   
 ( )                } where 

   
 ( )  corresponds to the symbol      . Clearly based on the structure of a non-binary 

linear block code,  {  ( )  ⋃   
 ( )   

                }. Let |  
 ( )|denote the 

cardinality of the subset   
 ( ), therefore, we can write 

 

 |  
 ( )|  |  

 ( )|    |    
 ( )|                                                                                          (   ) 
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2.3. Computation of the MAP decoding algorithm 
 

The MAP value for the symbol    of any codeword   (            ) that belongs 

to code   can be calculated as  

 

 ̂        
             

{
 
 

 
 

∑   (   )
   
    }

 
 

 
 

                                                                                         (   ) 

 

where   (            ) is the received sequence and   (   ) represents the a posteriori 

probability for the codeword  . Moreover, ∑ ( )   
    

  denotes the summation for all 

codewords such as    (            ) that belongs to code   and their ith symbol is equal 

to  . Based on BCJR [71], (2.3) can be calculated as 

 

 ̂        
             

{∑   ( 
 )  ( 

   )    ( )
(    )   

 
}                                                   (   ) 

 

and by defining {      (              )                        }  we have 

 

  ( 
 )    (          )                                                                                                              (   ) 

  ( )    (         )                                                                                                                 (   ) 
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   )    (               )                                                                                            (   ) 
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Let     ( ) represent a set of all states at the (i-1)th level of trellis T, which these 

states are adjacent to state  . Here   is a state at the ith level of trellis  . According to the 

BCJR algorithm for state      ( ) at ith level of trellis  ,     can be calculated recursively 

as  

 

  ( )  ∑     ( 
 )

       ( )

  ( 
   )                                                                              (   ) 

 

with the initial value of    (  )   . Similarly, let     ( ) denote a set of all states at (i+1)th 

level of trellis  , which these states are adjacent to state  . Here   is a state at the ith level of 

trellis  . Therefore, for state      ( ) at ith level of trellis  ,     can be calculated 

recursively as  

 

  ( )  ∑   (    )    ( 
 ) 

       ( )

                                                                              (   ) 

 

with    (  )   . Calculation of                     is known as the forward recursion 

and calculation of                   is known as the backward recursion. Finally, for a 

block code with statistically independent information symbols, the branch transition 

probability used in (2.4) can be calculated as  

 

  ( 
   )    (               )                                                                                                        

   (            )  (               )                                                                

    (    )  (    )                                                                                                 (    ) 
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Although different methods for implementing the MAP decoding algorithm have been 

suggested, the following three major steps are common among all of them: 

 

1. Performing the forward recursion process and storing all the values calculated for                   

                   . 

2. Performing the backward recursion process and storing all the values calculated for                

                    .  

3. For each received symbol,      calculating the maximum APP values from (2.4), using the 

transition probabilities. 

 

Due to the independence of forward and backward recursions from each other, step 1 

and step 2 can be done simultaneously. 

 

2.4. Modified APP decoding algorithms 
 

As it was shown in the previous section, the main drawback with the original MAP 

algorithm is its large amount of memory requirement, especially for non-binary block codes. 

This memory requirement is often costly and prohibitive in many practical applications. In 

this section, first, we discuss the minimal-storage APP decoding algorithms and later we 

present our proposed decoding algorithm. The minimum amount of memory requirement for 

calculating the symbol’s APP values of any linear block code can be achieved by 

straightforward implementation of the trellis [65,82], while for a high-rate code defined 

over   , this can be achieved by the APP decoding algorithm implemented based on the 

code’s dual space [65,84]. This means that for any linear block code defined over   , 

regardless of its rate, the minimum amount of memory requirement for calculating the 

symbol’s APP values can be achieved by straightforward implementation of the trellis. 

However, for linear block codes defined over     the minimal-storage APP decoding 

algorithm can be achieved, depending on the code rate, either by straightforward 

implementation of the trellis for low-rate codes (K<N-K) or by the APP decoding algorithm 

implemented based on the code’s dual space for high-rate codes (K>N-K).  
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Furthermore, we modify the minimal-storage APP decoding algorithm for high-rate 

codes defined over    to reduce the computational complexity of the algorithm. Based on 

this modification, the discrete Fourier transform (DFT) vectors are employed to limit the 

repetitive calculations. Therefore, prior to calculation of symbol’s APP values, a DFT vector 

corresponding to each received symbol is calculated and stored in memory, thus they can be 

retrieved and used during the calculation. Compared with the minimal-storage APP decoding 

algorithm for high-rate codes defined over   , the memory requirement of this modified 

algorithm is slightly increased, but its computational complexity is reduced by the factor of 

q.  

 

2.4.1. APP decoding algorithm based on straightforward implementation 

 

This algorithm can be implemented for any non-binary linear block code. The APP 

value for the symbol    of any codeword   (            ) that belongs to code   can 

be calculated as 

 

     ∑   (   )
   
    

                                                                                                                       (    ) 

 

where   (            ) is the received sequence and subsequently after calculation of 

    , the hard decision is made by   ̂                     {    } . Based on Bayes’ rule 

we have 
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  ( )
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Symbols are transmitted over a memoryless channel. Thus, 
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which can be simplified to 
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where depending on the definition of the code,   denotes addition over    or     and      

denotes the Kronecker delta, which is equal to one if     and zero otherwise. Moreover, 

   (                       ) is a vector with one at the ith position and zero elsewhere. 

Based on trellis property of linear block codes which is given in (2.2), for all codewords of 

code  , the probability that each of             symbols occurs as a parity-check symbol 

is the same, and since all codewords are in systematic format,                                  
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where    is the additive inverse of   such that         
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Equation (2.15) is a general formula to find the APP value for the symbol    when the 

codewords are transmitted over a memoryless channel. Compared with the BCJR algorithm, 

which is the standard way of calculating the symbol’s APP values and is realized by (2.4), 

the amount of memory that is required by (2.15) is significantly reduced. Based on (2.4), for 

calculating the symbols’ APP values, all                     and                      

need to be calculated and stored in memory prior to being used in (2.4), which as it was 

mentioned before, requires a large amount of memory and it is often prohibitive in many 

practical applications. However, for calculating the symbol’s APP values based on (2.15), no 

prior calculations are required and only   memory cells for storing the information symbols 

to generate the codewords of the code space are sufficient. 

Furthermore, for reducing the computational complexity of (2.15), we can use the log-

likelihood ratio (LLR) value for each symbol. LLR in [82]  is defined as 

 

       (
    

    
)                                                                                                                              (    ) 

 

and subsequently the hard decision is made by   ̂                     {    } . In addition, 

LLR can be defined for a pair of joint random variables; for example   (    ), where    is a 

random variable and   is a vector of random variables is given by 
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By using the concept of LLR we have 
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For the special case of binary codes where the codewords are modulated by binary 

phase-shift keying (BPSK) modulation scheme (such that, {0,1} bits are mapped to {-1,1} 

respectively) and are transmitted over an additive white Gaussian noise (AWGN) channel 

with double-sided noise power spectral density of   ; (2.18) can be simplified to (2.19) 
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2.4.2. APP decoding algorithm based on the code’s dual space 

 

As it was mentioned in the previous section, for a high-rate linear block code defined 

over     the minimal-storage APP decoding algorithm can be achieved by the APP decoding 

algorithm implemented based on the code’s dual space. The original idea for calculating the 

symbol’s APP values over the code’s dual space can be found in [84]. Further, this algorithm 

was extended so that it can be employed as SISO decoder for binary [65] and non-binary 

codes [82]. The proof for this algorithm is presented in [84] for a code   defined over     

with modulo-q addition. This condition can be satisfied only if q is prime and      . 

However, in [82] this algorithm is extended to     (  is any positive integer), which 

mathematically cannot be correct and the algorithm is valid only for the codes defined 

over    . 

In this section, a different approach from [82] for calculating the symbol’s APP values 

of a non-binary code using the code’s dual space is presented. Let    be the dual code for the 

code   and    (  
    

        
 ) denotes a codeword of   . Based on orthogonality, the 

inner product between any codeword in   and any codeword in    is zero. Therefore, for any 

N-tuple   (            ) defined over    we have 
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where    is the vector space of all N-tuples defined over   . Therefore,      can be 

calculated as  
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Based on Bayes’ rule and by using the Kronecker delta representation we have 
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By the orthogonality properties of {  
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The inner product between the vectors can be written as 
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and only if   is defined as modulo-q addition then we have 
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The modulo-  addition and multiplication over    are denoted by   and   respectively. 

Since the codewords are transmitted over a memoryless channel and the message symbols 

are statistically independent,  
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Equation (2.29) is the general formula to find the APP value for the symbol   . 

Compared with the BCJR algorithm, which is the standard way of calculating the symbol’s 

APP values and is realized by (2.4), the amount of memory requirement that is required by 

(2.29) is significantly reduced. For calculating the symbol’s APP values using (2.4), all 

                    and                      need to be calculated and stored in 

memory prior to be used in (2.4), which as it was mentioned before, is a large amount of 

memory requirement and is often prohibitive in many practical applications. However, by 

using (2.29), no prior calculations are required and the symbol’s APP values can directly be 
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calculated from the transition probabilities. The total number of memory cells required by 

(2.29) is     memory cells so that all the codewords of the dual code space can be 

generated. Although      can directly be calculated from (2.15) and (2.29), there are two 

issues that need to be considered. The first issue is that (2.29) is valid only for linear block 

codes defined over   , while (2.15) can be implemented for any linear block code. The 

second issue is that the summation in (2.15) is over the code’s space, while the summation in 

(2.29) is over the code’s dual space. Therefore, for decoding the linear block codes defined 

over     the minimal-storage APP decoding algorithm can be achieved depending on the 

code rate, either by (2.15) for low-rate codes (K<N-K) or by (2.29) for high-rate codes 

(K>N-K). 

Furthermore, for reducing the computational complexity of (2.29), the concept of LLR 

can be used. Therefore, 
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For the special case of binary codes whose codewords are modulated by BPSK 

scheme (such that {0,1} bits are mapped to {-1,1} respectively) and are transmitted over an 

AWGN channel with double-sided noise power spectral density of   , (2.30) can be 

simplified to (2.31). 
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2.4.3. APP decoding algorithm based on Fourier transform 

 

The minimal-storage APP decoding algorithm for high-rate codes defined over    was 

presented in the previous section. In this section, we use the concept of Fourier transform to 

reduce the computational complexity of that algorithm. The idea of using Fourier transform 

for decoding codes can also be found in decoding of the low-density parity-check (LDPC) 

codes [51-54]. However, in LDPC codes, the Fourier transform is used to convert the 

convolution operation into multiplication operation and thus, simplify the decoding 

algorithm, while in this section we use the concept of Fourier transform to avoid the 

repetitive calculation and reduce the computational complexity of the decoding algorithm. 

This proposed algorithm can be used for any linear block code defined over   , but it is 

particularly attractive for high-rate codes. The symbol’s APP values for any codeword of 

code   can directly be calculated from (2.29). However, by using the concept of DFT, the 

repetitive calculations can be avoided. Let us consider a  -dimensinal vector       

{   (     )         } and define the DFT for {   (     )} as 
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Therefore, the vector of log-likelihood ratios    {    } for the information symbol,  , can 

be calculated as 
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Based on our proposed algorithm, prior to the computation of     , the DFT vectors for 

all received symbols need to be calculated and stored in memory, thus for computation of 

    , these DFT vectors can be retrieved and used in (2.33). Even though, compared with the 

minimal-storage APP decoding algorithm given by (2.30), an additional amount of memory 

for storing the DFT vectors is required, as we show in the next section, the computational 

complexity of the proposed algorithm is less than that of the minimal-storage APP decoding 

algorithm. Furthermore, the amount of memory requirement that is required by (2.33) for 

calculating the symbol’s APP values is significantly less than that of the standard way, which 

is the BCJR algorithm and is realized by (2.4). For calculating the symbol’s APP values 

based on (2.33), N-1 DFT vectors need to be calculated and stored prior to be used in (2.33). 

Each DFT vector has q arrays and since the arrays are complex, two memory cells for storing 

each array are required. Therefore, the total memory requirement of (2.33) is                    

(   )   (   )  memory cells. 

Our proposed algorithm is valid only for the finite fields with modulo-  addition and 

therefore, it cannot be used for the codes that are defined over finite field of order    (  is 

any positive integer). However, it can be employed for the codes that are defined over      

Moreover, using fast Fourier transform (FFT) algorithms is more efficient for calculating the 

DFT vectors when     . The computational complexity for calculating                 

   ( )   {   (     )} is  (  ), while by using an FFT algorithm, the same results are 

obtained by only  (      ( )) operations and therefore, the overall computational 

complexity is reduced. 



Chapter 2. A Posteriori Probability Algorithm  32 

2.4.4. Complexity comparison 

 

In this section, we compare the complexity between the BCJR algorithm, the minimal-

storage APP decoding algorithms and the proposed APP decoding algorithm. The 

complexity of an algorithm can be measured by the amount of memory requirement and the 

number of real operations that is required for computation of     .  

According to the original MAP algorithm, the results for the forward or backward 

recursion must be stored in memory. Therefore, for storing                     or 

                    , ∑ |  ( )|   
    memory cells are required where  |  ( )| represents 

the cardinality of   ( ). Moreover, the transition probability for each received symbol 

should be saved, which requires    memory cells. Also  ∑ |  ( )|   
    multiplications and                    

 ∑ (|  ( )|   |    ( )|)   
    additions for calculation of                     and 

                     are required. Finally, calculation of (   ) requires  ∑ |  ( )|   
    

multiplications and ∑ (|  ( )|   |    ( )|)   
    additions. 

The minimal-storage APP decoding algorithm for a non-binary code defined over     

is presented in (2.15) and the      based on this algorithm is calculated by (2.18). As it was 

mentioned, for computing the APP value of each symbol using (2.15), only   memory cells 

are required. The division operation is considered as a multiplication operation and the 

logarithmic values are read from a lookup table. Therefore,  (      ) additions and 

 (   )       multiplications for computing 

∑ [(∏  
   

(     )(       
)   

   
   

)   (    )   ]   ∑ [(∏  
   

(     )(       
)   

   
   

)       ]   ⁄  

is required. A comparison between the complexity of the minimal-storage APP decoding 

algorithm and the BCJR algorithm for a code defined over     is given in Table 2.1, where 

 ∑ |  ( )| 
       and  ∑ |  ( )|   

      .  

Although     and     cannot be represented as a closed formula, they are however 

dominated by  (  ). As it is depicted in Table 2.1, the minimal-APP decoding algorithm 

requires significantly less memory compared with the BCJR algorithm but the reduction in 

the memory requirement is at the cost of increasing the computational complexity. 
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Table 2.1 

Complexity comparison between minimal-storage APP decoding algorithm and the 

BCJR algorithm for a code defined over     

 

 BCJR Algorithm Minimal-APP Algorithm 

Memory Cells            

Additions   (     )         

Multiplication        (   )       

 

The minimal-storage APP decoding algorithms for low-rate and high-rate codes 

defined over     are presented by (2.18) and (2.30) respectively. It can be seen that         

(   )(   )     complex additions and   (   )  (   )         complex 

multiplications for computing ∑ [( 
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and (   )(   )     complex additions and   (   )  (   )      complex 

multiplications for computing ∑ [∏ ∑ [   (     ) 
 
  

 
    

 

]
   
   

   
   
   

]        is required. The 

number of real additions and multiplications required for computation of      in the minimal-

storage APP decoding algorithms for codes defined over    is given in Table 2.2. These 

numbers are calculated by considering that each complex addition is equivalent to two real 

additions and each complex multiplication is equivalent to four real multiplications and two 

real additions. The operations over     are neglected and a lookup table is used for reading 

the logarithmic values. As it is observed, the minimum amount of memory requirement for 

calculating the symbol’s APP values for a high-rate code is N-K memory cells. 

Table 2.2  
Complexity comparison between the minimal-storage APP decoding algorithms for codes 

defined over    with different code rates  
 
 

 Low-Rate Codes High-rate Codes 

Memory Cell K N-K 

Addition          (   )               

Multiplication 2(   )        (   )        (    )       
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For computation of      based on pre-calculated DFT vectors,  N-1 DFT vectors need 

to be calculated and stored prior to being used in (2.33). Each DFT vector has q arrays and 

since the arrays are complex, two memory cells for storing each array are required. 

Therefore, compared with the minimal-storage algorithm for high-rate codes,  (   )  

more memory cells for storing the DFT vectors are required. This extra amount of memory is 

endurable, considering that by storing the DFT vectors, the computational complexity for 

calculating the APP values of a high-rate code becomes less. The complexity of the proposed 

algorithm is given in Table 2.3. For calculating each DFT vector,   (   ) complex addition 

and    complex multiplication is required. 

 

Table 2.3 
Complexity of the APP decoding algorithm implemented over the code’s dual 

space by using pre-calculated DFT vectors 
 

Memory Cell  (   )  (   ) 

Addition  (   )      (   )    (   )    

Multiplication         (   )     

 

As it is observed, the computational complexity of the minimal-storage APP decoding 

algorithm for high-rate codes is dominated by  (      ) operations, while by using pre-

calculated DFT vectors this complexity is reduced to the order of  (    ). Therefore, by 

using pre-calculated DFT vectors with an endurable increase in the memory requirement 

compared with the minimal-storage APP decoding algorithm for high-rate codes, the order of 

the computational complexity is reduced by factor    

 

2.4.5. Simulation results 

 

In this section, the simulation results for the performance of a code under different 

APP decoding algorithms are presented. The performance of different decoders can be 

evaluated by comparing the performance of the same code that is separately decoded by each 

algorithm. However, the APP decoding algorithm based on the code’s dual space can be 



Chapter 2. A Posteriori Probability Algorithm  35 

implemented only for the codes that are defined over    . Therefore, we present the 

simulation results for     where       . In the following chapters, the simulation results 

for non-binary codes are also presented. 

The MAP decoding algorithm for the (7,4) Hamming code that has the parity-check 

matrix given by (2.1) is simulated. The codewords are modulated by BPSK modulation 

scheme and are transmitted over an AWGN channel with double-sided noise power spectral 

density of    

 
. The APP decoding algorithm based on direct implementation is realized by 

(2.19) and the APP decoding algorithm based on the dual code is realized by (2.31).  

The code performance is also compared with the soft decoding theoretical upper 

bound. In [85], the theoretical upper bound for the bit-error probability of an (N, K) binary 

block code with the minimum distance of dmin is given as (2.34). It is assumed that the 

received sequences are coherently detected and decoded by a maximum-likelihood decoding 

algorithm.  
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where    is the code rate and      is the number of codewords that have output weight   

associated with an input sequence of weight  . Furthermore, the q-function is defined as 
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.  Based on (2.34) the theoretical upper bound for the (7,4) Hamming 

code, under the given conditions is equal to 
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The performance of the (7,4) Hamming code decoded by different decoding 

algorithms is depicted in Figure 2.2. It is observed that the performance of the APP decoder 
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based on direct implementation matches the performance of the APP decoder based on the 

dual code. 

 

In Table 2.4, the computational complexity and the memory requirement for decoding 

the (7,4) Hamming code using the minimal-storage APP decoding algorithm is compared 

with that of the BCJR algorithm. Due to the rate of the code, the minimal-storage APP 

decoding algorithm is implemented based on the code’s dual space. It can be observed from 

Figure 2.1 that for the (7,4) Hamming code,    ∑ |  ( )| 
        and  ∑ |  ( )| 

    

   . 

 

Figure 2.2: Simulated BER performance of the (7,4) Hamming code over AWGN 
channel using BPSK 
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Table 2.4 

Complexity comparison between minimal-storage APP decoding algorithm and the 

BCJR algorithm for decoding the (7,4) Hamming code 

 

 BCJR Algorithm Minimal-APP Algorithm 

Memory Cells     3 

Additions         

Multiplication          

 

 

2.5. Conclusion 
 

In this chapter, the optimal APP decoding algorithm for the non-binary linear block 

codes was discussed. It was shown that the computational complexity and the amount of 

memory requirement for the BCJR algorithm, which is the standard way for calculating the 

symbol’s APP values, are often prohibitive in many practical applications. Therefore, we 

proposed the minimal-storage APP decoding algorithms for different linear block codes. We 

showed that the minimum amount of memory requirement for calculating the symbol’s APP 

values of any linear block code can be achieved by straightforward implementation of the 

trellis, while for a high-rate code defined over   , this can be achieved by the APP decoding 

algorithm implemented based on the code’s dual space. This means that for any linear block 

code defined over   , regardless of its rate, the minimum amount of memory requirement for 

calculating the symbol’s APP values can be achieved by straightforward implementation of 

the trellis. However, for linear block codes defined over   , the minimal-storage APP 

decoding algorithm  depends on the code rate, which can be achieved by straightforward 

implementation of the trellis for low-rate codes, or by the APP decoding algorithm 

implemented based on the code’s dual space for high-rate codes. Furthermore, we modified 

the minimal-storage APP decoding algorithm for high-rate codes defined over    to reduce 

the computational complexity of the algorithm. Based on this modification, the DFT vectors 

were employed to limit the repetitive calculations. We showed that this modified algorithm 

is valid only for the finite fields with modulo-  addition and therefore, it cannot be used for 
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the codes that are defined over finite field of order    (  is any positive integer). Moreover, 

we showed that by using FFT algorithm for calculating the DFT vectors, this modified 

algorithm can be implemented more efficiently for the codes that are defined over    . The 

numerical results, as well as the complexity comparison for the proposed algorithms, were 

given. 
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CHAPTER 3 

NON-BINARY SINGLE PARITY-CHECK CODES 
 

 

 

 

 

 

3.1. Introduction 
 

Turbo codes [4] and low-density parity-check (LDPC) codes [10,12] are the two major 

classes of capacity approaching codes that have attracted considerable attention. Both of 

these codes are constructed from concatenation of simple constituent codes and are decoded 

by iterative decoding algorithms that repeatedly exchange the soft information between their 

component codes [86]. Turbo codes are typically constructed from parallel concatenation of 

simple convolutional or simple block codes, while LDPC codes can be considered as 

multiple parallel concatenations of single parity-check (SPC) codes [87]. 

Besides LDPC codes, binary SPC codes are also used as constituent codes in turbo-

like structures and good-performance binary codes, with relatively low-complexity decoding 

algorithms, are designed based on their concatenation [66-68,88,89]. It is shown that high-

rate binary SPC product codes can perform as well as the same rate binary LDPC codes, 

while having less encoding and decoding complexity [88] and serially concatenated binary 

SPC codes can outperform 16-state binary turbo codes [89]. Furthermore, the simulation 

results in [68] shows that a binary SPC product code with length of 97751 and rate of 0.985 

performs only 0.44 dB away from the Shannon-limit at a bit-error rate (BER) of  10-5. 
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SPC codes are high-rate codes and are suitable to be used as a constituent code for 

constructing high-rate compound codes. However, they can also be employed as constituent 

code for constructing lower-rate compound codes. The multidimensional product codes 

constructed from binary SPC codes are studied in [66] and it is shown that by increasing the 

number of dimensions, the performance of the resulting compound code improves, yet the 

rate of the compound code reduces. Furthermore, it is shown that by interleaving information 

between the encoding of each dimension, the performance of the resulting compound code 

improves [67]. 

Since the performance of a moderate-length LDPC code improves over higher order 

fields [15], a good-performance code with short or medium block size may be designed 

based on concatenation of non-binary SPC codes. Moreover, non-binary codes are attractive 

for high data-rate digital communication, where high-order modulations are widely being 

used and it is more convenient to use non-binary codes with appropriate alphabet size to 

match the constellation. Furthermore, by considering non-binary alphabets, an extra degree 

of freedom is added to the design parameters of a code.  

In this chapter, the construction and decoding of SPC codes over non-binary finite 

rings are studied. The concept of finite ring is more general and it includes finite field. Since 

SPC codes are mainly used as constituent code in concatenated structures, soft-input soft-

output (SISO) decoding algorithms for decoding SPC codes are required. In this chapter, two 

optimum a posteriori probability (APP) decoding algorithms for decoding non-binary SPC 

codes are presented and the computational complexity and the memory requirement for each 

algorithm are discussed. We show that based on our proposed decoding algorithm the 

decoding complexity for non-binary SPC codes defined over finite ring of integer modulo-q, 

    is considerably small and therefore, non-binary SPC code defined over    is a good 

choice to be used as constituent code in concatenated structures. 

To the extent of our knowledge, non-binary SPC codes have not been studied in the 

literature, however as it was mentioned before, LDPC codes can be considered as multiple 

parallel concatenations of SPC codes and therefore, we can say that non-binary SPC codes 

are not directly but rather indirectly studied through non-binary LDPC codes [15-16, 51-54]. 

In this chapter, we specifically study the structure and decoding of non-binary SPC codes. 

We show that the fast Fourier transform belief propagation (FFT-BP) decoding algorithm 
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[51] and subsequently, other algorithms that are derived from FFT-BP such as Log-FFT-BP 

[52,53] and extended min-sum (EMS) [54] are valid only for the LDPC codes defined over 

  . Furthermore, based on the structure of non-binary SPC codes, the performance 

improvement of non-binary LDPC codes over higher order fields, which was left as an open 

problem by [15], is explained.  

This chapter is organized as follows. The encoding of non-binary SPC codes is 

discussed in Section 3.2. In Section 3.3, two optimum APP decoding algorithms for 

decoding non-binary SPC codes are presented and the complexity of each algorithm is 

discussed. The simulation results are given in Section 3.4. The final section concludes this 

chapter. 

 

3.2. Encoding of non-binary SPC codes 
 

Non-binary SPC codes are not directly but rather indirectly studied through non-

binary LDPC codes [15-16, 51-54]. However, to the extent of our knowledge, they are not 

specifically studied. Non-binary codes are mostly defined over a finite field of order q,     

but can also be defined over finite rings or finite groups [80-81]. In this chapter, we consider 

non-binary SPC codes defined over      as well as the non-binary SPC codes that are defined 

over   . 

A ring of integer modulo-q is a commutative finite ring, where set             

    under addition modulo-q is a group, but set                   under multiplication 

modulo-q is not a group [90]. Thus generally,     cannot be considered as a finite field. 

However, for a prime number q,        under multiplication modulo-q is also a 

commutative group and therefore, for a prime number q,    can be considered as a finite 

field. The addition and multiplication tables for   ,    ,    and     are given in Figure 3.1. It 

can be seen that    tables and     tables are the same, while    tables and    tables are 

different. 



Chapter 3. Non-binary Single Parity-check Codes  42 

 

For K message symbols     where                                  , a non-

binary (K+1, K) SPC code is defined as (K+1)-tuples like (             ) such that 

 

                                                                                                           (   ) 

 

where depending on the definition of the code,   is the addition operation defined over     

or   . Both (    ) and (    ) are commutative group, therefore they are close under 

addition operation and subsequently, we have                 . 

 

3.3. Decoding of non-binary SPC codes 
 

Maximum-likelihood decoding of powerful and mostly long concatenated codes is 

often computationally infeasible. Therefore, concatenated codes are usually decoded based 

 

 

   Addition and multiplication tables 

  0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

   0 1 

  0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 3 1 

3 0 3 1 2 

 

   Addition and multiplication tables 

  0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

   0 1 

  0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

 

   Addition and multiplication tables 

  0 1 

0 0 1 

1 1 0 

 

  0 1 

0 0 0 

1 0 1 

 

   Addition and multiplication tables 

  0 1 

0 0 1 

1 1 0 

 

  0 1 

0 0 0 

1 0 1 

 

Figure 3.1: Addition and multiplication of    versus     and    versus     
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on iterative decoding of their constituent codes. Since SPC codes are typically used as 

constituent code in concatenated structures [66-68,88,89], they need to be decoded by SISO 

algorithms. In this section, two different optimum APP decoding algorithms for decoding 

non-binary SPC codes are presented. In the first algorithm, the symbols’ APP values are 

calculated by straightforward implementation of the code’s trellis, which can be used for any 

SPC code, while in the second algorithm, the APP values are calculated over the code’s dual 

space and as it was explained in Chapter 2, it can be used only for the SPC codes defined 

over       

Let   be a non-binary SPC code and   (          ) be any codeword that 

belongs to  . The codewords are transmitted over a discrete-time, memoryless, noisy 

channel and the received sequence   (          ) that corresponds to a transmitted 

codeword is available at the decoder. From Chapter 2, we know that the vector of log-

likelihood ratios (LLR)     {            } for the information symbols                            

                    of a non-binary code can be achieved from     , which is defined as 
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3.3.1. APP decoding algorithm based on straightforward implementation 

 

The codewords are transmitted over a memoryless channel, therefore, from Bayes’ 

rule we have 

  

  (   )  
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∏   (     )

 

   

                                                                                                (   ) 
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and the LLR value for the symbol    is calculated by 
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(     ) 
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where,   (     )       (       )   (       )⁄  .  

Equation (3.4) is the general formula to find the APP value for the symbol    of an 

SPC code when the codewords are transmitted over a memoryless channel. It can be used for 

SPC codes defined over    as well as SPC codes that are defined over   . Compared with 

the BCJR algorithm [71], which is the standard way of calculating the symbol’s APP values 

and is realized by (2.4), the amount of memory requirement by (3.4) is significantly reduced. 

Based on (2.4), for calculating the symbol’s APP values, all                     and 

                     need to be calculated and stored in memory prior to be used in (2.4), 

which as mentioned before, requires a large amount of memory and is often prohibitive in 

many practical applications. However, for calculating the symbol’s APP values based on 

(3.4), no prior calculations are required and only   memory cells for storing the information 

symbols are sufficient. 

 

3.3.2. APP decoding algorithm based on Fourier transform 

 

As it was mentioned in the previous chapter, for a high-rate linear block code defined 

over     the minimal-storage APP decoding algorithm can be achieved by using the APP 

decoding algorithm that is implemented based on the code’s dual space. Therefore, for the 

SPC codes defined over    , which are high-rate codes, the minimal-storage APP decoding 

algorithm is implemented based on the codes’ dual space. Furthermore, we showed that by 

using the concept of Fourier transform, the computational complexity of the dual 

implementation of the APP decoding algorithm is reduced. The idea of using Fourier 
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transform for decoding codes can also be found in decoding of the LDPC codes [51-54]. 

However, in LDPC codes, the Fourier transform is used to convert the convolution operation 

into multiplication operation and thus simplify the decoding algorithm while in this section, 

we use the concept of Fourier transform to avoid the repetitive calculation and reduce the 

computational complexity of the decoding algorithm. Let    be the dual code of the code   

and    (  
    

      
 ) be any codeword that belongs to   . Therefore, for any (K+1)-tuple 

  (          ) defined over    we can write 
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where   denotes the inner product between the vectors defined over     and the addition 

and multiplication over    are denoted by   and   respectively. Since   is defined as 

modulo-q addition, we have 
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and since   is a non-binary (K+1,K) SPC code, the dual code for that, which is     is a 

repetition code of length K+1 that is defined over     The inner product between any 

codeword in   and any codeword in    based on orthogonality is zero. Therefore, 
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Let    be the vector space of all (K+1)-tuples defined over   . Since the codewords 

are transmitted over a memoryless channel, from Bayes’ rule and by using (3.7) we have 
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which by substituting (3.8) in (3.2),      can be calculated as 
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The discrete Fourier transform (DFT) and the inverse DFT over     is defined as  
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where –   is the additive inverse of   over    . Therefore, by using the concept of DFT we 

have 
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∏( ) in (3.12) represents the term-by-term product of the vectors. 

As it is observed, for each received symbol   , a  -dimensinal vector        

{   (     )         } is considered, where the Fourier transforms of these vectors 

have to be calculated and stored in memory prior to be used in (3.12). However, for all 

information symbols   ,        , and throughout the computation of    {    }, only 

the Fourier transform for each vector  {   (     )} has to be calculated. Therefore, the 

repetitive calculations can be avoided by storing the Fourier transform vectors and 

subsequently, the computational complexity can be reduced.  

Although implementing (3.12) requires more memory than (3.4), compared with the 

BCJR algorithm [71], which is the standard way of calculating the symbol’s APP values and 

is realized by (2.4), the amount of memory that is required by (3.12) is significantly reduced. 

Based on (2.4), for calculating the symbol’s APP values, all                     and 

                     have to be calculated and stored in memory prior to be used in (2.4). 

This requires a large amount of memory and it is often prohibitive in many practical 

applications. However, for calculating the symbol’s APP values based on (3.12), only K DFT 

vectors need to be calculated and stored prior to be used in (3.12). Each DFT vector has q 
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arrays and since the arrays are complex, two memory cells for storing each array are 

required. Therefore, the total memory requirement of (3.12) is     memory cells. 

Although the amount of memory requirement of (3.12) is more than (3.4), it has less 

complexity compared with (3.4). This arises from the amount of calculations that are 

required by each algorithm for computation of     . As it is seen from (3.4), part of 

calculations that are required for computation of      have to be repeated for all codewords 

and therefore, the number of calculations are in the order of  (    ). However, based on 

(3.12) and by using the stored DFT vectors, the computation complexity is in the order of 

 (  ). 

Furthermore, despite the differences between the approaches that we consider for 

deriving (3.12) and the one that is considered in [52] for the row-step of the FFT-BP 

algorithm, they both result in the same formula, which is (3.12). This can be explained by the 

structure of LDPC codes, which are constructed as parallel concatenation of SPC codes. 

However, it can be concluded that the FFT-BP decoding algorithm and subsequently, other 

algorithms that are derived from FFT-BP such as Log-FFT-BP [52,53] and EMS [54] are 

valid only for the LDPC codes defined over    and implementing them for the non-binary 

LDPC codes defined over    is not mathematically correct. 

 

3.3.3. Complexity comparison 

 

In this section, we compare the complexity of the two proposed algorithms. The 

complexity of an algorithm can be measured by the amount of memory requirement and the 

number of real operations required for computation of     . The complexity comparison 

between the two algorithms is given in Table 3.1. These numbers are calculated by 

considering that each complex addition is equivalent to two real additions and each complex 

multiplication is equivalent to four real multiplications and two real additions. The 

operations over     are neglected and a lookup table is used for reading the logarithmic 

values. Moreover, the division operation is considered as a multiplication operation. 
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Table 3.1 
Complexity comparison between the two proposed algorithms  

 
 

 Direct Implementation DFT Based 

Memory Cell K     

Addition          (   )        

Multiplication  (   )        (   )    (   )    

 

For computation of      based on DFT based algorithm,   K DFT vectors and one 

inverse DFT vector have to be calculated. For reducing the computational complexity, the 

DFT vectors are required to be stored in memory prior to being used in (3.12). Each DFT 

vector has q complex arrays and storing each array, requires two memory cells. For 

calculating each DFT or inverse DFT vector,   (   ) complex additions and    complex 

multiplications are required. Moreover, for the SPC codes defined over     (  is any 

positive integer), the fast Fourier transform (FFT) algorithm can be used for calculating the 

Fourier and inverse Fourier transforms. The computational complexity for calculating the 

Fourier transform of {   (     )} is  (  ) while by using an FFT algorithm, the same 

results are obtained by only  (      ( )) operations. Therefore, by using FFT instead of 

DFT, the overall computational complexity is reduced further. 

As it is observed, the computational complexity of the APP decoding algorithm based 

on Fourier transform is dominated by  (   ) operations and it requires     memory cells, 

which are reasonably small numbers. Therefore, non-binary SPC codes defined over    are 

good options to be used as constituent codes in concatenated structures. 

 

 3.4. Simulation results 
 

In this section, the simulation results for non-binary SPC codes are presented. Similar 

to [15, 16], it is assumed that all codewords are modulated by binary phase-shift keying 

(BPSK) modulation scheme and are transmitted over a binary input additive white Gaussian 
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noise (BI-AWGN) channel with double-sided noise power spectral density of    

 
 . Therefore, 

the symbols need to be mapped to bipolar sequences as 
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where  ̅   is the corresponding binary sequence for the symbol     such that                           

   
                 and  ̅   is the corresponding bipolar sequence for the symbol     

such that     
     

              and the length of both sequences are equal to 

         For example: 

  

                ̅   (       )                             ̅   (         )                            

                     

We assume that at the receiver side, the sequence   ( ̅   ̅     ̅   ) is received. 

The noise vector is represented by   ( ̅   ̅     ̅   ), where  ̅   (   
     

      
 ) is 

the corresponding noise sequence for the bipolar sequence of the symbol    . Therefore, 

       and  ̅    ̅     ̅  . Since the codewords are transmitted over an AWGN 

channel, the noise is independent from the transmitted symbol and                                        

   
                     are zero-mean, identically, independently distributed 

(i.i.d.) Gaussian random variables with variance     
  

 
. Therefore, the LLR for the joint 

random variable (     ) is calculated as 
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where   ̅ and  ̅ are the corresponding bipolar sequences for   and   respectively and ‖ ‖ 

denotes the norm of the vector  .  
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‖ ̅   ̅‖   ‖ ̅ ‖
  ‖ ̅‖   ( ̅   ̅)                                                                                (    ) 

 

where   represents the inner product between the two vectors. Since the energy of all 

symbols are equal, ‖ ̅‖  ‖ ̅‖  and after cancelling out the common factors we have 
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where    is the jth
 component of  ̅ and   

  is the jth
 component of  ̅ . Moreover, for 

equiprobable information symbols,   (  )   . Therefore, LLR value that is given by (   ), 

provided that the information symbols are equiprobable, can be realized as  
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and the LLR value based on Fourier transform that is given in (    )  provided that the 

information symbols are equiprobable, can be realized as  
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In Figure 3.2, the performance of the (5,4) SPC code defined over different field 

orders is presented and is compared with the asymptotic bound for the (5,4) SPC code, which 

is calculated in Chapter 5. These codes are decoded with the straightforward implementation 

of the APP decoding algorithm that is given by (3.17). As it is observed, the performance of 

the SPC codes defined over finite field is independent of the order of the field, which can be 

explained by the minimum distance property of the SPC codes that is presented in Chapter 5. 

However, the simulation result shows a different outcome for the SPC codes defined over 

   .  

 

 

 

In Figure 3.3, the performance of the (5,4) SPC code defined over different ring of 

integer modulo-q is presented and the performance is compared with the asymptotic bound. 

These codes are decoded with the Fourier based APP decoding algorithm, which is given by 

Figure 3.2: Performance of the (5,4) SPC code defined over  𝑞  
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(3.18). Since both proposed decoding algorithms are optimum, the performance of an SPC 

code defined over     has to be the same under both decoding algorithms. It can be observed 

that unlike SPC codes defined over finite fields, the performance of the (5,4) SPC codes 

defined over ring of integer modulo-q improves with higher order rings. This can be 

explained by the minimum distance property of the SPC codes that is presented in Chapter 5. 

Furthermore, since LDPC codes are considered as parallel concatenation of SPC codes, the 

performance improvement of SPC codes over higher order rings can be considered as an 

explanation for the performance improvement of non-binary LDPC codes over higher order 

fields, which was left as an open problem by [15]. However, it is important to note that non-

binary LDPC codes actually perform better over higher order rings and not over higher order 

fields.  

 

 

 

Figure 3.3: Performance of the (5,4) SPC code defined over   𝑞 
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In Figure 3.4, the performance of the (5,4) SPC code defined over    is compared 

with the performance of the (5,4) SPC code that is defined over   . As it is observed, for                    

                 and for the small signal-to-noise-ratios (SNR), an SPC code defined 

over     performs better than the same length SPC code defined over   . However for the 

large SNRs, the performance of both codes approaches the asymptotic bound, since both 

codes have the same asymptotic bound, which is independent of the field and ring order, as it 

is given in Chapter 5. Therefore, SPC codes defined over    are better choices to be used as 

constituent code for the compound codes that need to perform at lower SNRs. 

 

 

 

As it was mentioned before, since both decoding algorithms are optimum, the 

decoding algorithm should not have any effect on the performance of the code. In Figure 3.5, 

Figure 3.4: Performance of the (5,4) SPC code defined over    and     
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the performance of the (5,4) SPC code defined over    that is separately decoded by the two 

proposed decoding algorithms are compared and as it was expected, the code performance 

under different optimum decoding algorithms is the same. However, as it is shown in Figure 

3.6, the APP decoding algorithm based on Fourier transform can be implemented only for 

the SPC codes defined over     and as it is observed, the (5,4) SPC code that is defined over 

   and is decoded by the APP decoding algorithm based on Fourier transform, performs far 

away from its asymptotic bound. 

 

 

Figure 3.5: Performance of the (5,4) SPC code defined over    that is decoded with 

different decoding algorithms 
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In Table 3.2, the complexity comparison for decoding the (5,4) SPC code defined 

over    that is decoded by different proposed APP decoding algorithms is given. The FFT 

algorithm is used for calculating the Fourier and inverse Fourier transforms in the Fourier 

based APP decoding algorithm. As it is observed, with a manageable increase in the memory 

requirement, the computational complexity is reduced by 75%. 

 

 

 

 

Figure 3.6: Performance of the (5,4) SPC code defined over    and     that are decoded 

with the APP decoding algorithm based on Fourier transform 
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Table 3.2 
Complexity comparison between the two proposed algorithms 

for decoding the (5,4) SPC code defined over    
 
 

 Direct Implementation DFT Based 

Memory Cell      

Addition          

Multiplication          

 

 

3.5. Conclusion 
 

In this chapter, we studied the encoding and decoding of SPC codes over    and    . 

Two different optimum APP decoding algorithms for decoding non-binary SPC codes were 

proposed. The first algorithm was based on straightforward implementation of the code’s 

trellis which can be used for any SPC code, while in the second algorithm the APP values 

were calculated over the code’s dual space by using Fourier transforms which can be 

implemented only for the SPC code defined over    . 

Furthermore, we showed that despite the differences between the approaches that we 

considered for deriving DFT-based APP decoding algorithm and the one that is considered 

for the row-step of the FFT-BP algorithm, they both resulted in the same formula. The 

reason for this similarity was given and it was concluded that the FFT-BP decoding 

algorithm and subsequently, other algorithms that are derived from FFT-BP such as Log-

FFT-BP and EMS are valid only for the LDPC codes defined over    and implementing 

them for the non-binary LDPC codes defined over    are not mathematically correct. 

Finally, simulation results were presented and it was observed that the performance of 

SPC codes defined over    is independent of the field order, while the performance of SPC 

codes defined over     improves over a higher order ring. Therefore, the SPC codes defined 

over     can be considered as a good option to be used as constituent code in concatenated 

structures. 



 

58 
 

CHAPTER 4 

SINGLE PARITY-CHECK TURBO PRODUCT CODES 
 

 

 

 

 

 

4.1. Introduction 
 

The first idea for constructing long and powerful codes from combination of short and 

simple codes dates back to the invention of product codes by Elias in 1954 [63]. Product 

codes are efficient for controlling both random-error and burst-error patterns [69] and are 

suggested for applications with high coding rate requirements such as submarine cables, 

optical transport networks and networks at 100Gbit/sec [70]. 

Product codes can be constructed from any binary or non-binary, block or 

convolutional constituent codes in multiple dimensions. However, common choices are the 

two or three-dimensional product codes that are constructed from Bose–Chaudhuri–

Hochquenghem (BCH) codes, binary single parity-check (SPC) codes or Hamming codes. A 

d-dimensional product code can be considered as a structured interleaved code where each of 

its information symbols (bits) is employed in d constituent codes. Despite the simplicity and 

weak performance of SPC codes, multidimensional binary SPC product codes have shown 

good performance under iterative decoding [66]. It is shown that a high-rate binary SPC 

product code exhibits similar performance compared with the same rate binary low-density 

parity-check code, yet having less encoding and decoding complexity [88]. Moreover, the 
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simulation results in [68] show that a binary SPC product code with length of 97751 and rate 

of 0.985 performs only 0.44 dB away from the Shannon-limit at a bit-error rate (BER) of   

10-5. 

The first soft decoding algorithm for a product code is given by Battail [64] and later 

Hagenauer et al. [65] showed that the turbo decoding principles can be used for decoding a 

product code. A turbo product (TP) code is a product code that is decoded by a soft-input 

soft-output (SISO) iterative decoding algorithm and it is shown [66-70] that they can achieve 

good performance. 

High data-rate digital communication systems require high-order modulations and it is 

more convenient to use non-binary codes with appropriate alphabet size to match the 

constellation. Furthermore, by considering non-binary alphabets, an extra degree of freedom 

is added to the design parameters of a code. In [91], other advantages for non-binary turbo 

codes over their binary counterparts are also mentioned, including better convergence under 

iterative decoding, larger minimum distance, less sensitivity towards puncturing patterns and 

robustness for the flaws of the component-decoding algorithm. 

As it was mentioned in the previous chapter, low-density parity-check (LDPC) codes 

can be considered as multiple parallel concatenations of SPC codes and therefore, non-binary 

LDPC codes can be considered as non-binary turbo-like codes. However, beside non-binary 

LDPC codes [15,16], the vast majority of turbo and turbo-like codes are binary codes. This 

mainly arises from the computational complexity and the amount of memory storage, which 

is required for optimal soft decoding of non-binary codes. Furthermore, employing sub-

optimal decoding algorithms degrades the bit (or symbol) error rate performance of a code. 

The first investigation on non-binary turbo-like codes was reported in [92] where 

Reed-Solomon (RS) codes were used as constituent code in a two-dimensional product 

structure and a sub-optimal SISO iterative decoding algorithm was employed for decoding 

the resulted product codes. However, due to the simplicity of the sub-optimum component 

decoder that was employed for decoding the RS component codes, the performance of the 

resulting product codes was far away from the channel capacity. The performance of the 

two-dimensional RS product codes can be improved by using a better sub-optimum 

component decoder [93]. Furthermore, it is shown in [94] that compared with the two-

dimensional TP codes constructed from RS component codes, the two-dimensional TP codes 
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that are constructed from extended RS code can perform better under sub-optimum iterative 

decoding algorithms. 

Turbo codes [4] were originally constructed as parallel concatenation of two 

interleaved binary convolutional codes. Furthermore, the feasibility of the extension of turbo 

codes to higher order finite fields was studied in [91,95-96] and non-binary turbo codes were 

constructed from parallel concatenation of convolutional component codes where each 

convolutional code has    (   ) inputs. In [97], the performance of the parallel and serial 

non-binary turbo codes is compared and it is shown that the serial concatenated 

convolutional turbo codes have lower error floor compared with their parallel counterparts. 

Nevertheless, the research in [95,96] shows that the non-binary turbo codes do not perform 

better over higher order fields, yet the complexity of non-binary turbo codes increases over 

higher order fields. 

Non-binary turbo codes are studied over finite ring of integer modulo-q,   , and it is 

shown that they have good performance over additive white Gaussian noise (AWGN) 

channel [81,98-100].  The simulation results in [100] shows that a  
 
 rate non-binary turbo 

code defined over    has 0.5 dB gain at BER of 10-4 over its binary counterpart, while, a  
 
 

rate non-binary turbo code defined over    has 0.1 dB loss compared with the same rate 

binary turbo code. The good-performance non-binary turbo codes can be designed over 

higher order rings of integer modulo-q, yet all designed good-performance turbo codes have 

code rates less than  
 
 [81,98-100].  

The results in [92-94] show that the high-rate non-binary turbo-like codes can be 

constructed based on two-dimensional product structure. Furthermore, it is shown that the 

performance of a moderate-length LDPC code improves over higher order fields [15,16] and 

since LDPC codes are constructed as parallel concatenation of SPC codes, it can be 

concluded that codes which are designed based on concatenation of non-binary SPC codes 

may perform better for short-length or medium-length block size. Moreover, the research on 

generalized low-density (GLD) and generalized irregular low-density (GILD) codes [60-62] 

shows that the parallel-concatenated SPC codes with denser parity-check matrices are better 

choices for designing small or medium length good-performance codes. Therefore, in this 

chapter, we study the two-dimensional, non-binary SPC turbo product (2D-SPC-TP) codes, 
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which are the two-dimensional SPC (2D-SPC) product codes that are decoded by SISO 

iterative decoding algorithms. 

In [101], the maximum a posteriori probability (MAP) decoding of the non-binary 

2D-SPC product codes is studied. In this chapter, different SISO iterative decoding 

algorithms for decoding the non-binary 2D-SPC product codes are presented and the 

simulation result shows that the performance of the 2D-SPC product codes is improved 

under iterative decoding. We consider non-binary SPC constituent codes that are defined 

over    as well as non-binary SPC constituent codes that are defined over finite field of 

order q,   . Different iterative decoding algorithms for decoding the 2D-SPC-TP codes are 

presented and the performance of the 2D-SPC-TP codes over an AWGN channel is studied. 

Simulation results show that regardless of the field’s order, the performance of the 2D-SPC-

TP codes defined over      (  is any positive integer) remains the same for different field 

orders, yet the performance of the 2D-SPC-TP codes defined over     improves over higher 

order rings. This performance improvement is explained by analysis of the weight 

distribution that is given in Chapter 5. 

The rest of the chapter is organized as follows. In Section 4.2, the structure of product 

codes is presented. In 4.3, different SISO iterative decoding algorithms for decoding the non-

binary SPC product codes are presented and the complexity of each algorithm is discussed. 

In Section 4.4, the simulation results are presented.  Finally in Section 4.5 a conclusion for 

this chapter is given. 

 

4.2. The structure of product codes 

 

In general, for constructing any product code, first, the message sequence is arranged 

in a hypercube of dimension  , with              symbols in each dimension. Then, each 

dimension is encoded with a constituent code like   , where    is a systematic linear block 

code with length of    and dimension of   . For a non-binary product code, each code 

symbol belongs to set                . It is obvious that the number of message symbols 

for the resulted product code is  
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and the length of the resulted product code is  
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Thus, the code rate of the resulted product code is  
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where    is the rate of the constituent code that is employed in the ith dimension of the 

product code. Moreover, it can be proved [63] that the minimum distance of a product code 

is equal to  

 

     ∏     

 

   

                                                                                                                             (   ) 

 

where      
 is the minimum distance of the constituent code employed in the ith dimension. 

This product code is denoted by (        ) . A two-dimensional product code, as it is 

depicted in Figure 4.1, is consisted of a data block, a set of parity-check symbols on each 

row, a set of parity-check symbols on each column, and a set of parity-check symbols on the 

parity-checks. 
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SPC product codes are constructed from combination of SPC codes. A  -dimensional 

SPC product code that is constructed from the same length (     ) SPC codes encodes 

   information symbols and its code rate is 

 

  (
 

   
)
 

                                                                                                                                    (   ) 

 

which by tending   towards infinity the code rate approaches one. Therefore, non-binary 

SPC product codes can be considered as an error-correcting scheme for the applications 

where high-rate non-binary codes are required. In this chapter, we only consider the two-

dimensional product codes that are constructed from the same length non-binary             

Figure 4.1: A general structure for a two-dimensional product code 

𝑁  

𝑁  
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(     ) SPC codes and their check on check symbol is punctured. This means that every 

row and column of message data has only one parity-check symbol. The minimum Hamming 

distance of this code is three and it is depicted in Figure 4.2. We denote this code as      

(          ) . 

 

 

                                       are the message symbols,      

   
              are the row parity-check symbols and     

 
              are the column 

parity-check symbols. The parity-check equations are given by  

 

                   
                                                                                     (   ) 

                   
 
                                                                                    (   ) 

 

If the    operation is defined over    then the resulting SPC product code is defined 

over   , and if the   operation is defined over    then the resulted SPC product code is 

defined over   . Both (    ) and (    ) are commutative group, therefore, they are close 
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Figure 4.2: Two-dimensional SPC product code 
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under addition operation and subsequently, we have    
                            

and     
 
                          . 

 

4.3. Turbo decoding of non-binary SPC code 
 

Let   be a (          )  2D-SPC product code as it is depicted in Figure 4.2 and 

  (                ) be any codeword of code  . The codewords are transmitted over 

a discrete-time, memoryless, noisy channel and the soft decision received sequence          

  (                ) corresponding to a transmitted codeword is available at the 

decoder. Without loss of generality, all codewords are assumed to be in systematic format 

such that the first    symbols of each codeword are information symbols and the remaining 

   symbols are the parity-check symbols. Each information symbol                  

involves a horizontal (     ) SPC constituent code that is denoted by    and a vertical 

(     ) SPC constituent code that is denoted by   . Let     (  
    

      
 ) be any 

codeword of code    where its lth (     ) element is the information symbol   , 

  
     , and     (  

 
   

 
     

 
) be any codeword of code    where its nth (     ) 

element is the information symbol   ,   
 
   . Moreover, the soft decision received 

sequence that corresponds to    is denoted by    (  
    

      
 ) and the soft decision 

received sequence that corresponds to    is denoted by    (  
 
   

 
     

 
) and it is obvious 

that by knowing  , the values for   and    are known. 

From Chapter 2, we know that vector of log-likelihood ratios (LLR)                      

    {            } for the information symbols                      of code 

  can be calculated from      that is defined as 
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and the hard decision is made by   ̂                     {    } . Since   is defined as the 

(          )  2D-SPC product code and    involves in only two parity-check 

equations, we have 
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The information symbols are mutually independent and equiprobable, therefore, for 

any      and       the sequence of random variables (       
 )  is independent from 

the sequence of random variables (  |    
 
). Therefore, 
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The MAP decision for the symbol    of code   can be made by 

 ̂                     {    } and since the information symbols are assumed to be 

equiprobable, the MAP decision is equivalent to the maximum-likelihood decision for the 

symbol   . 

The block diagram of the turbo decoder for the 2D-SPC-TP codes is shown in Figure 

4.3. In a turbo decoder, the soft-output value for each dimension is calculated from the 

channel information and the extrinsic information shared by the other dimension. This means 

that the soft-output value of one dimension is shared with the other dimension so that it can 

be used as extrinsic information in the next iteration. Once both dimensions are decoded, the 

decoding iteration is complete. This algorithm can be repeated as many times as required. 

However, after the first iteration, the parity-check equations are statistically dependent and 
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therefore, (4.10) is no longer valid and the maximum value of the summation of a symbol’s 

LLR values over its two dimensions cannot be considered as the maximum-likelihood value 

for that symbol. However, the comparison between the simulation result and the asymptotic 

performance bound for the maximum-likelihood decoding of a 2D-SPC product code shows 

that the performance of a 2D-SPC product code is improved by iterative decoding algorithm. 

 

 

 

In this section, three different iterative decoding algorithms for decoding the 2D-SPC-

TP codes are presented. These algorithms differ in the way that the SISO component 

decoders are realized. In the first algorithm, which in this chapter is referred to as 

Algorithm  , the SISO component decoders are constructed based on direct implementation 

of the optimal APP algorithm. In the second algorithm, which we call it as Modified-

Algorithm    (MA  ), the SISO component decoders are constructed based on the sub-

optimal max-log-APP decoding algorithm. Finally, the SISO component decoders for the 

third algorithm, which in this chapter we call it as Algorithm   , are constructed from the 

optimal APP decoding algorithm based on Fourier transform. Both Algorithm   and 

algorithm MA   can be used for any 2D-SPC-TP codes, while the Algorithm    can be 

implemented only for the 2D-SPC-TP codes defined over   .  

Figure 4.3: Turbo decoder for the 2D-SPC-TP code 
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4.3.1. Algorithm   

 

In this algorithm, the SISO decoders are implemented based on direct implementation 

of the APP algorithm, therefore this algorithm can be used for decoding any non-binary SPC 

constituent code.  From Chapter 3 we know that the LLR value for the information symbol                          

                     can be calculated from 
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Therefore, the LLR value for the horizontal dimension is calculated by 
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and the LLR value for the vertical dimension is calculated by 
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and an iterative decoding algorithm can be implemented as follows: 

1. Initialization: The algorithm begins by calculating     
  and     

  from (4.12) and 

(4.13) respectively. Since the information symbols are assumed to be equiprobable, 

the a priori LLR values for all symbols are taken as zero in the calculations of the 

first iteration. Therefore, { 
  

 (  
 
)     

 (  
 )             } and        

{  (  )                           }.  

2. Decode each dimension: From the second iteration onwards, the a priori LLR 

values for the symbols of one dimension are substituted by the previously calculated 

LLR values for those particular symbols from the other dimension. Therefore,      
  

is calculated by using the extrinsic information provided by the vertical dimension 

and      
  is calculated by using the extrinsic information provided by the horizontal 

dimension. The extrinsic information provided by the vertical dimension for each 

iteration are the values of {    
 

                        }, which are 

calculated in the previous iteration and are substituted for                         

{   
 (  

 )           } in the current iteration in order to calculate     
 . 

Similarly, the extrinsic information provided by the horizontal dimension for each 

iteration are the values of {    
                         }, which are 

calculated in the previous iteration and are substituted for                       

{ 
  

 (  
 
)           } in the current iteration in order to calculate     

 . 

3. Iteration: Step 2 can be repeated as many times as required and eventually a hard 

decision for the information symbol                      is made by          

 ̂                     {    
      

 
 } . 

 

4.3.2. Modified-Algorithm    

 

The SISO decoders for Algorithm   are implemented based on direct implementation 

of the APP algorithm. For reducing the computational complexity of the APP decoding 

algorithm, the component decoders can be constructed based on sub-optimal APP algorithms 
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such as max-log-MAP [65,72], but employing the sub-optimal decoding algorithms, 

degrades the bit (or symbol) error rate performance of a code. However, this is not always 

the situation and as it is shown in [49], the performance of LDPC codes whose Tanner graph 

contains many short cycles improves using sub-optimum decoding algorithms. 

The SISO decoders for MA-   are implemented based on max-log-APP algorithm, 

which is a sub-optimal algorithm. Therefore, the computational complexity of MA-   is less 

than the computational complexity of algorithm  . Since the Tanner graph for 2D-SPC-TP 

codes contains many short cycles, the performance of the 2D-SPC-TP codes might be 

improved using this sub-optimum component decoder. The simulation results, which are 

presented in the next section, show that 2D-SPC-TP codes perform better using MA-   

decoding algorithm. Similar to algorithm  , the MA-   can also be used for any non-binary 

SPC code.  The LLR value for the horizontal dimension is calculated by 
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and the LLR value for the vertical dimension is calculated by 
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and an iterative decoding algorithm can be implemented as follows: 
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1. Initialization: The algorithm begins by calculating     
  and     

  from (4.14) and 

(4.15) respectively. Since the information symbols are assumed to be equiprobable, 

the a priori LLR values for all symbols are taken as zero in the calculations of the 

first iteration. Therefore, { 
  

 (  
 
)     

 (  
 )             } and        

{  (  )                           }.  

2. Decode each dimension: From the second iteration onwards, the a priori LLR 

values for the symbols of one dimension are substituted by the previously calculated 

LLR values for those particular symbols from the other dimension. Therefore,      
  

is calculated using the extrinsic information provided by the vertical dimension and  

    
  is calculated using the extrinsic information provided by the horizontal 

dimension. The extrinsic information provided by the vertical dimension for each 

iteration are the values of {    
 

                        }, which are 

calculated in the previous iteration and are substituted for                         

{   
 (  

 )           } in the current iteration in order to calculate     
 . 

Similarly, the extrinsic information provided by the horizontal dimension for each 

iteration are the values of {    
                         }, which are 

calculated in the previous iteration and are substituted for                       

{ 
  

 (  
 
)           } in the current iteration in order to calculate     

 . 

3. Iteration: Step 2 can be repeated as many times as required and eventually a hard 

decision for the information symbol                      is made by          

 ̂                     {    
      

 
 } . 

 

4.3.3. Algorithm    

 

In this algorithm, the SISO decoders are constructed from the optimal APP decoding 

algorithm based on Fourier transform. As it was mentioned in Chapter 2, for a high-rate 

linear block code defined over     the minimal-storage APP decoding algorithm can be 

achieved by using the APP decoding algorithm that is implemented based on the code’s dual 

space. Therefore, for the SPC codes defined over    , which are high-rate codes, the 



Chapter 4. Single Parity-check Turbo Product Codes  72 

minimal-storage APP decoding algorithm is implemented based on the codes’ dual space. 

Furthermore, we showed that by using the concept of Fourier transform, the computational 

complexity of the dual implementation of the APP decoding algorithm is reduced. The idea 

of using Fourier transform for decoding codes can also be found in decoding of the LDPC 

codes [51-54]. However, in LDPC codes, the Fourier transform is used to convert the 

convolution operation into multiplication operation and thus, simplify the decoding 

algorithm, while in this section, we use the concept of Fourier transform to avoid the 

repetitive calculation and reduce the computational complexity of the decoding algorithm. 

This algorithm can be used only for decoding the non-binary SPC codes that are defined over 

  . 

From Chapter 3 we know that the LLR value based on Fourier transform for the 

horizontal dimension is calculated by  
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and the LLR value for the vertical dimension is calculated by 
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and an iterative decoding algorithm can be implemented as follows: 

1. Initialization: The algorithm begins by calculating     
  and     

  from (4.16) and 

(4.17) respectively. Since the information symbols are assumed to be equiprobable, 
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the a priori LLR values for all symbols are taken as zero in the calculations of the 

first iteration. Therefore, {  (  
 
)    (  

 )                     } 

and        {  (  )                           }.  

2. Decode each dimension: From the second iteration onwards, the a priori LLR 

values for the symbols of one dimension are substituted by the previously calculated 

LLR values for those particular symbols from the other dimension. Therefore,      
  

is calculated using the extrinsic information provided by the vertical dimension and  

    
  is calculated using the extrinsic information provided by the horizontal 

dimension. The extrinsic information provided by the vertical dimension for each 

iteration are the values of {    
 

                        }, which are 

calculated in the previous iteration and are substituted for                         

{   
 (  

 )           } in the current iteration in order to calculate     
 . 

Similarly, the extrinsic information provided by the horizontal dimension for each 

iteration are the values of {    
                         }, which are 

calculated in the previous iteration and are substituted for                       

{ 
  

 (  
 
)           } in the current iteration in order to calculate     

 . 

3. Iteration: Step 2 can be repeated as many times as required and eventually a hard 

decision for the information symbol                      is made by          

 ̂                     {    
      

 
 } . 

 

4.4. Simulation results 
 

In this section, the simulation results for the 2D-SPC-TP codes are presented. It is 

assumed that all codewords are modulated by binary phase-shift keying (BPSK) modulation 

scheme and are transmitted over a binary input AWGN channel with double-sided noise 

power spectral density of  
  

 
 . Therefore, the symbols need to be mapped to bipolar 

sequences as 
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                      ̅   (  
    

       
 )               ̅   (   

    
       

 )                          (    ) 

                  

where  ̅   is the corresponding binary sequence for the symbol     such that                           

   
                 and  ̅   is the corresponding bipolar sequence for the symbol     

such that     
     

              and the length of both sequences are equal to 

         For example: 

  

                ̅   (       )                             ̅   (         )                            

                     

We assume that at the receiver side, the sequence   ( ̅   ̅     ̅       ) is 

received. The noise vector is represented by   ( ̅   ̅     ̅       ), where                

 ̅   (   
     

      
 ) is the corresponding noise sequence for the bipolar sequence of the 

symbol    . Therefore,        and  ̅    ̅     ̅  . Since the codewords are transmitted 

over an AWGN channel, the noise is independent from transmitted symbol and                                        

   
                     are zero-mean, identically, independent distributed 

(i.i.d.) Gaussian random variables with variance     
  

 
. Therefore, the LLR for the 

conditional random variable (     ) is calculated as 
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where   ̅ and  ̅ are the corresponding bipolar sequences for   and   respectively and ‖ ‖ 

denotes the norm of the vector  .  
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where   represents the inner product between the two vectors. Since the energy of all 

symbols are equal, ‖ ̅‖  ‖ ̅‖  and after cancelling out the common factors we have 

 

  (     )  ∑
(    )  

 

  

 

   

                                                                                                          (    ) 

 

where    is the jth
 component of  ̅ and   

  is the jth
 component of  ̅ . The formula given in 

(4.21), is used to calculate the LLR values of the conditional random variables in (4.12)-

(4.17). 

The performance of the (     )  2D-SPC-TP code that is defined over    and is 

decoded by Algorithm  , is depicted in Figure 4.4 and it is shown that the iterative decoding 

improves the performance of the code. This improvement can be explained from the mutual 

information that exists between the two dimensions. However, as it is observed, the code 

performance converges after two iterations and further iterations after convergence has less 

effect on the performance of the code. This is because after certain number of iterations, the 

two dimensions become so correlated that the mutual information between them has less 

effect on their decoding outcomes. Therefore, having more iteration after convergence does 

not improve the performance of the code and is not required. The effect of number of 

iterations on algorithm MA-   and Algorithm    is shown in Figures 4.5 and 4.6 respectively 

and as it is seen, two iterations for decoding a 2D-SPC-TP code is sufficient. 
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Figure 4.4: Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by Algorithm   
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Figure 4.5: Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by algorithm MA-  
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The simulation results for the performance of a 2D-SPC-TP code under different 

iterative decoding algorithms are presented in Figures 4.7 and 4.8. In Figure 4.7, the 

performance of the (       )  2D-SPC-TP code that is defined over    and is separately 

decoded by Algorithm   and algorithm MA-  , is presented. By comparing the code 

performance under different decoding algorithms, the decoders’ performance can be 

compared. The code performance is also compared with the maximum-likelihood decoding 

asymptotic bound for the (       )  2D-SPC product code, which is calculated in Chapter 

5. As it is seen, Algorithm   performs better than algorithm MA-  for the small signal-to-

noise-ratios (SNR); and for large SNRs, turbo decoders in general outperform the maximum-

likelihood decoders. 

 

Figure 4.6: Effect of iteration on the performance of the (     )  2D-SPC-TP code that is 

defined over    and is decoded by Algorithm    
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In Figure 4.8, the performance of the (       )  2D-SPC-TP code that is defined over 

   and is separately decoded by Algorithm  , algorithm MA-   and Algorithm    is presented. 

Similar to the 2D-SPC-TP codes defined over   , for large SNRs, turbo decoders perform 

better than the maximum-likelihood decoder for decoding the 2D-SPC codes defined over 

  . Also it can be seen that the performance of the code under decoding Algorithm   and 

decoding Algorithm   , which both have optimal SISO component decoders, is the same and 

despite using suboptimal SISO component decoders in algorithm MA-  , the code 

performance under this decoding algorithm improves. However, as it is shown in Chapter 3, 

the computational complexity of algorithm MA-   which is almost the same as the 

computational complexity of Algorithm   is much greater than the computational complexity 

of Algorithm   .   

Figure 4.7: The performance of the (       )  2D-SPC-TP code that is defined over    

and is decoded by different iterative decoding algorithms after two iterations 
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In Figures 4.7 and 4.8, the performance of the (       )  2D-SPC-TP under different 

iterative decoding algorithms is compared with the maximum-likelihood decoding 

asymptotic bound for the (       )  2D-SPC product code. However, the comparison 

between the simulation results and the asymptotic performance bound for the maximum-

likelihood decoding of a 2D-SPC product code shows that the performance of a 2D-SPC 

product code under iterative decoding algorithm does not approach the asymptotic bound, 

yet it is improved by iterative decoding algorithm. This can be explained from the fact that 

after the first iteration, the parity-check equations are statistically dependent and therefore, 

the summation of a symbol’s LLR values over the two dimensions of the 2D-SPC codes 

cannot be considered as the maximum-likelihood value for that symbol. This is shown in 

Figure 4.9, by comparing the performance of the (       )  2D-SPC-TP code that is defined 

Figure 4.8: The performance of the (       )  2D-SPC-TP code that is defined over    

and is decoded by different iterative decoding algorithms after two iterations  
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over    and is decoded by MA-I iterative decoding algorithm. As it is seen, the performance 

of the code which is decoded with only one iteration, approaches the maximum-likelihood 

asymptotic bound, while the performance of the code, which is decoded with two iterations 

diverges from the asymptotic bound. 

 

 

The performance of the (       )  2D-SPC-TP code that is defined over different 

field orders is presented in Figure 4.10. The results are compared with the asymptotic bound 

of the maximum-likelihood decoding algorithm for (       )  2D-SPC product code. These 

codes are decoded by algorithm MA-  after two iterations. As it is observed, the performance 

of the (       )  2D-SPC-TP codes defined over     is almost the same for different field 

orders. This is because the addition over      is a bitwise operation and a 2D-SPC-TP code 

defined over      performs like a p-fold binary 2D-SPC-TP code, where each binary code is 

Figure 4.9: The performance of the (       )  2D-SPC-TP code that is defined over    

and is decoded by algorithm MA-  with different number of iterations  
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separately implemented over an AWGN channel with double-sided noise power spectral 

density of    

 
 . However, the simulation result shows different outcome for the (       )  

2D-SPC-TP codes defined over    . 

 

 

 

The performance of the (       )  2D-SPC-TP code defined over different ring of 

integer modulo-q is presented in Figure 4.11 and the performance is compared with the 

asymptotic bound for the maximum-likelihood decoding algorithm for (       )  2D-SPC 

product code. These codes are decoded by algorithm MA-  after two iterations. It can be 

observed that unlike the (       )  2D-SPC-TP codes defined over finite fields, the 

performance of the (       )  2D-SPC-TP codes defined over ring of integer modulo-q 

Figure 4.10: The performance of the (       )𝑞 2D-SPC-TP code that is defined over  𝑞 

and is decoded by algorithm MA-  after two iterations  
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improves over higher order rings. This can be explained by the minimum distance property 

of the 2D-SPC product codes that is presented in Chapter 5. 

 

 

 

In Figure 4.12, the performance of the (       )  2D-SPC-TP code defined over    is 

compared with the performance of the (       )  2D-SPC-TP code that is defined over   . 

Both codes are decoded by algorithm MA-  after two iterations. As it is observed, the 2D-

SPC-TP code defined over     performs better than the same 2D-SPC-TP code that is 

defined over   . Therefore, the 2D-SPC-TP codes over    are not just better choices from 

the decoding perspective but also their performance is better than the same codes defined 

over   . The performance of both codes is compared with the asymptotic bound for the 

Figure 4.11: The performance of the (       )𝑞 2D-SPC-TP code that is defined over  𝑞 

and is decoded by algorithm MA-  after two iterations  
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maximum-likelihood decoding algorithm. It is shown in Chapter 5 that the (       )  code 

defined over    and the (       )  code defined over    have the same asymptotic bound 

for the maximum-likelihood decoding algorithm. 

 

 

 

It is known from (4.5) that by increasing the length of the constituent SPC codes, the 

rate of 2D-SPC-TP code becomes closer to one. In Table 4.1, the parameters for three 

different 2D-SPC-TP codes are given and in Figure 4.13, the performance of these codes is 

compared with each other. All the 2D-SPC-TP codes are defined over    and are decoded by 

algorithm MA-  after two iterations. 

 

Figure 4.12: Comparison between the performance of the (       )  2D-SPC-TP code 

defined over    and   . The codes are decoded by algorithm MA-  after two iterations  
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Table 4.1 
Code parameters for different rate 2D-SPC-TP codes  

 
 

SPC Constituent Code Resulted 2D-SPC-TP Code Code Rate 

(   )  (      )      

(   ) (       )       

(   ) (       )       

 

 

 

 

Figure 4.13: Comparison between the performance of different rate 2D-SPC-TP codes 

defined over    and decoded by algorithm MA-  after two iterations  
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As it is seen, by increasing the length of the 2D-SPC-TP code and subsequently 

increasing its coding rate, the performance of the code is improved. This can be explained 

with the maximum-likelihood decoding asymptotic bound for the 2D-SPC product code, 

which improves with increasing the code rate. Furthermore, the simulation results show that 

compared with maximum-likelihood asymptotic bound, the performance of a 2D-SPC 

product code improves under iterative decoding algorithm. Therefore, it can be concluded 

that the performance of a non-binary 2D-SPC-TP code improves by increasing its code rate 

and the non-binary 2D-SPC-TP codes have the potential to be used for the applications, 

which high-coding rate non-binary codes are required.  

 

4.5. Conclusion 
 

In this chapter, we studied the two-dimensional, non-binary SPC turbo product      

(2D-SPC-TP) codes. A turbo product code is a product code that is decoded by a SISO 

iterative decoding algorithm. For constructing the 2D-SPC-TP codes, we considered the non-

binary SPC constituent codes that are defined over,      as well as the non-binary SPC 

constituent codes that are defined over   . 

Furthermore, three different iterative decoding algorithms for decoding the              

2D-SPC-TP codes were presented and the performance of the codes over an AWGN channel 

was studied. It was shown that after the first iteration, the iterative decoders cannot be 

considered as a maximum-likelihood decoder, however, the comparison between the 

simulation result and the asymptotic performance bound for the maximum-likelihood 

decoding of a 2D-SPC product code shows that the performance of a 2D-SPC product code 

is improved by iterative decoding algorithm. The three proposed iterative decoding 

algorithms differ in the way that the SISO component decoders are realized. In Algorithm  , 

the SISO component decoders are constructed based on direct implementation of the optimal 

APP algorithm. In Modified-Algorithm   (MA  ), the SISO component decoders are 

constructed based on the sub-optimal max-log-APP decoding algorithm and finally, the 

SISO component decoders for Algorithm   , are constructed from the optimal APP decoding 

algorithm based on Fourier transform. Both Algorithm   and algorithm MA   can be used 
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for any 2D-SPC-TP codes, while the Algorithm    can be implemented only for the 2D-SPC-

TP codes defined over   . 

The simulation results showed that regardless of the field’s order, the performance of 

the 2D-SPC-TP codes defined over     remains the same for different field orders, yet the 

performance of the 2D-SPC-TP codes defined over     improves over higher order rings. 

Moreover, it was shown that the non-binary 2D-SPC-TP codes have the potential to be used 

for the applications, where high-coding rate non-binary codes are required. 
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CHAPTER 5 

PERFORMANCE ANALYSIS 
 

 

 

 

 

 

5.1. Introduction 
 

In this chapter, the performance analysis for single parity-check (SPC) codes and two-

dimensional SPC (2D-SPC) product codes is discussed. The performance of a code is 

measured by the probability that a received sequence is decoded to a codeword different 

from the transmitted codeword. Therefore, the code performance is related to the distance 

property between codewords. In a linear block code, it can be shown that all codewords have 

the same set of distances from each other [85]. Therefore, the distance property between any 

selected codeword and the rest of codewords of a linear block code is the same as the 

distance property between the all-zero codeword and other codewords of that code. 

This chapter is organized as follows. In Section 5.2 the performance bounds for SPC 

codes and 2D-SPC product codes are presented. We then in Section 5.3 study the minimum 

distance property of non-binary SPC codes and non-binary 2D-SPC product codes. The final 

section concludes this chapter. 
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5.2. Performance bound 
 

For calculating the performance bound of a non-binary linear block code, we can 

assume that an error occurs when the all-zero codeword,  , is transmitted and at the receiver, 

it is decoded to a non-zero codeword   ̂ . This probability is shown with     ̂ 
. From the 

union bound, we have 

 

    ∑     ̂ 

  ̂   

  ̂   

                                                                                                                             (   ) 

 

where     is the symbol-error rate. In [85], the theoretical upper bound for the symbol-error 

probability of a code, when the codewords are transmitted over a binary input memoryless 

channel and the received sequences are coherently detected and decoded by a maximum-

likelihood decoding algorithm is given as 

 

    ∑ ∑
 

 
      (

   

  
  )

 

   

 

      

                                                                                              (   ) 

 

where  

  is the code length. 

  is the code dimension. 

     is the code minimum Hamming distance. 

     is the number of codewords with output weight   that are associated with an input 

sequence of weight  . 
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  is the code rate. 

  

  
 is the signal to noise ratio per bit. 

 ( ) is the pairwise symbol-error probability function. 

 

In [85], the pairwise bit-error probability function for two binary codewords that are 

different in   positions is given as (5.3). It is assumed that the codewords are modulated by 

binary phase-shift keying (BPSK) modulation scheme and are transmitted over an additive 

white Gaussian noise (AWGN) channel with double-sided noise power spectral density of 

 
  

 
 .  

 

 (
   

  
  )   (√

     

  
)                                                                                                         (   ) 

 

SPC codes and 2D-SPC product codes are linear block codes and their performance 

bounds can be calculated from (5.2). In this research, we consider SPC codes and 2D-SPC 

product codes that are defined either over finite field of order     , or over finite ring of 

integer modulo-      However, we do not make any use of non-binary modulation 

techniques. Therefore, the codewords’ symbols are mapped to binary sequences and 

subsequently are modulated by BPSK modulation scheme. The codewords are then 

transmitted over a binary input AWGN channel with double-sided noise power spectral 

density of  
  

 
. Therefore, under these conditions, the corresponding pairwise bit-error 

probability function,  ( ), for the all-zero codeword and an arbitrary codeword                 

  (            ) that has   non-zero elements is equal to 
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 (
   

  
  )   

(

 √
    

  
∑  (  ̅)

 

   
)

                                                                                      (   ) 

 

where   ( ) represents the Hamming weight of a binary sequence and   ̅ denotes the binary 

sequence corresponded to the symbol   . By substituting (5.4) in (5.2) we have 
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From (5.5) the upper bound for the bit-error rate (BER) of non-binary SPC codes and 

non-binary 2D-SPC product codes can be calculated. Let   be a non-binary (K+1,K) SPC 

code that is either defined over finite field of order     , or defined over finite ring of 

integer modulo-    . The minimum distance of code   is two and it occurs in the 

codewords with only one non-zero information symbol and subsequently, one non-zero 

parity-check symbol. Therefore, we have 
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For the large signal-to-noise-ratios (SNR), the term corresponding to the minimum 

distance becomes the dominating term and therefore, 
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where, depending on the definition of the code,   is the addition defined over    or    then 

   is the additive inverse of   such that       . For non-binary SPC codes 

                (  ( ̅)    (  ̅̅ ̅̅ ))   ; for example for an SPC code defined over     (  

is any positive integer) this may occur for     and for an SPC code defined over     this 

may occur for   
 

 
. Therefore, the BER asymptotic bound for non-binary SPC codes can be 

calculated as 

 

      (√ (
 

   
)
  

  
)                                                                                                          (   ) 

 

For 2D-SPC product codes, the asymptotic bound can be calculated in a similar way. 

Let   be a (          )  2D-SPC product codes that is constructed from the same 

length non-binary (     ) SPC codes and the check on check symbol is punctured.   is 

either defined over     or defined over     and the minimum Hamming distance for   is 3. 

Therefore, from (5.5) we have  
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and for the large SNRs we have 
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where                 (  ( ̅)    (  ̅̅ ̅̅ )    (  ̅̅ ̅̅ ))   . Therefore, the BER asymptotic 

bound for a 2D-SPC product code that is constructed from the same length (     ) SPC 

codes and its check on check symbol is punctured is calculated as 
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5.3. Minimum distance property  
 

As previously mentioned, the performance of a code is related to its distance property. 

In this section, we study the minimum distance property of non-binary SPC codes and non-
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binary 2D-SPC product codes. Since in this research we do not make any use of non-binary 

modulation techniques, the minimum distances are considered for the codes where the 

symbols are replaced by corresponding binary sequences. Therefore, as it was discussed in 

the previous section, the number of non-zero bits in a minimum-weight SPC codeword is 

  ( ̅)    (  ̅̅ ̅̅ ) and the number of non-zero bits in a minimum-weight 2D-SPC codeword 

is   ( ̅)    (  ̅̅ ̅̅ )    (  ̅̅ ̅̅ )  where              . The bit weight spectral for the 

minimum-weight codeword of non-binary SPC codes and the minimum-weight codeword of 

non-binary 2D-SPC product codes are depicted in Figures 5.1 and 5.2 respectively, which for 

each code, the bit weight spectral for the code when it is defined over     is compared with 

the bit weight spectral for that code when it is defined over    . 

As it is seen, by defining the codes over    , the weight spectral becomes denser in the 

middle part. This means that compared with the codes defined over   , the lower-weight 

codewords of the codes defined over     are shifting towards higher-weight codewords. 

Similar phenomenon occurs in turbo codes and in the literature about turbo codes; it has been 

termed as spectral thinning. 

The spectral thinning in non-binary SPC codes and non-binary 2D-SPC product codes 

has no effect on the minimum distance of the code, however, it reduces the multiplicities of 

the low-weight codewords. It is seen from Figures 5.1 and 5.2 that the spectral thinning 

becomes more vivid over higher order rings. Therefore, we expect that non-binary SPC 

codes and non-binary 2D-SPC product codes defined over    have better performance 

compared with the same codes defined over a finite field of order   and by increasing the 

order of the ring, the performance of the code improves. This is also confirmed by the 

simulation results that were presented in Chapter 3 and Chapter 4. 
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Figure 5.1: Comparison between the bit weight spectral for a minimum-weight codeword of 

an SPC code defined over    and    .   (                ) 
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Figure 5.2: Comparison between the bit weight spectral for a minimum-weight codeword of a 

2D-SPC code defined over    and    .   (                ) 
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5.4. Conclusion  
 

In this chapter, the performance analysis for SPC codes and 2D-SPC product codes is 

discussed. We showed that the performance of a code is related to the distance property 

between codewords. It is shown that the performance asymptotic bound for a non-binary 

SPC code defined over     is the same as that for a non-binary SPC code defined over    .  

Moreover, it is shown that the performance asymptotic bound for a non-binary 2D-SPC code 

is also the same as that of the codes defined over     and the codes defined over    . 

Furthermore, we studied the minimum distance property of non-binary SPC codes and non-

binary 2D-SPC product codes and we showed that by defining the codes over    , the weight 

spectral becomes denser in the middle part and compared with the codes defined over   , the 

lower-weight codewords of the codes defined over     are shifting towards higher-weight 

codewords. This phenomenon becomes more vivid over higher order rings and therefore, the 

performance improvement of the SPC and 2D-SPC product codes over higher order rings 

can be explained by this phenomenon. 
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CHAPTER 6 

CONCLUSION 
 

 

In this thesis a method for designing moderate to high coding rate, non-binary 

compound codes was proposed. These compound codes were constructed from a 

combination of non-binary single parity-check (SPC) codes and were iteratively decoded 

based on soft-input soft-output (SISO) decoding of their constituent codes. 

The major forward error correcting codes used in the wireless communication systems 

were presented in Chapter 1. Turbo codes and turbo-like codes as the two important classes 

of capacity-approaching codes were briefly introduced and the reasons for their 

extraordinary performance were discussed. It became clear that low-complexity, high-rate 

coding schemes are essential for mobile communication systems and we showed that the 

existing good-performance low-density parity-check (LDPC) and turbo codes are mostly 

low-rate and, due to their long block size, are computationally complicated codes to be 

encoded and decoded. Therefore, designing small or medium block size good-performance, 

high-rate codes for mobile communication systems is required. Furthermore, different 

coding schemes were discussed, and it was explained that non-binary SPC concatenated 

codes with average-density parity-check matrices have the potential to be considered as the 

coding schemes for mobile communication systems. The motivation for this research was 

given and an overview of the thesis was presented. The original contributions of this thesis 

and the publications resulting from this research were listed. 

In Chapter 2, the optimal a posteriori probability (APP) decoding algorithms were 

studied. Since turbo-like compound codes are decoded iteratively and the soft reliability 

information is repeatedly exchanged between their constituent codes, designing SISO 

decoding algorithms for decoding the constituent codes is required. An optimal SISO 

component decoder is constructed from an optimal APP decoder. However, the 
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computational complexity and the amount of memory requirement for calculating the 

symbol’s APP values, based on standard ways, are often prohibitive in many practical 

applications. Therefore, we presented some modifications on the APP decoding algorithm to 

reduce its amount of memory requirement and computational complexity, and to make it a 

more feasible algorithm to be used for decoding non-binary codes. SPC codes are high-rate 

codes therefore we concentrated more on optimizing the optimal decoding algorithm for a 

high-rate code. We showed that by defining codes over finite ring of integer modulo-q, 

    the amount of memory requirement for decoding a high-rate code could be minimized. 

Moreover, we used the concept of Fourier transform to reduce the computational complexity 

of the minimal-storage APP decoding algorithm for a high-rate code defined over   . Based 

on this algorithm, the discrete Fourier transform (DFT) vectors are employed to limit the 

repetitive calculations. Compared with the minimal-storage APP decoding algorithm for a 

high-rate code defined over   , the memory requirement of the DFT based APP decoding 

algorithm is slightly increased, but its computational complexity is reduced by the factor of 

q. 

Despite the simplicity and weak performance of SPC codes, many good-performance 

codes are constructed from concatenation of binary SPC codes. These concatenated codes 

are decoded by SISO iterative decoding algorithms that repeatedly exchange the soft 

information between the SPC constituent codes. Non-binary codes can also be constructed 

from concatenation of non-binary SPC constituent codes. Therefore, implementing SISO 

decoding algorithms for decoding non-binary SPC codes is required. In Chapter 3, the 

structure and decoding of non-binary SPC codes were studied. We considered the non-binary 

SPC codes that are defined over finite field of order q,      as well as the non-binary SPC 

codes that are defined over   . Moreover, two different optimum APP decoding algorithms 

for decoding non-binary SPC codes were presented and it was shown that the computational 

complexity and the amount of memory requirement for APP decoding of an SPC code 

defined over      is reasonably small. Therefore, non-binary SPC codes defined over    are 

good options to be used as constituent codes in concatenated structures. 

In Chapter 4, the two-dimensional SPC (2D-SPC) product codes that are decoded by 

SISO iterative decoding algorithms were studied and we referred to them as the two-

dimensional, non-binary SPC turbo product (2D-SPC-TP) codes. We considered the non-
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binary SPC constituent codes that are defined over,      as well as the non-binary SPC 

constituent codes that are defined over   . Three different iterative decoding algorithms for 

decoding the 2D-SPC-TP codes were presented and the performance of the codes over an 

AWGN channel was studied. The simulation result showed that the performance of the 2D-

SPC product code is improved by iterative decoding. Moreover, it was shown that regardless 

of the field’s order, the performance of the 2D-SPC-TP codes defined over     remains the 

same, yet the performance of the 2D-SPC-TP codes defined over     improves over higher 

order rings. Furthermore, we showed that the performance of the 2D-SPC-TP codes defined 

over     improves with code-rate and therefore, the non-binary 2D-SPC-TP codes have the 

potential to be used for the applications, where high-coding rate non-binary codes are 

required. 

In Chapter 5, the performance analysis for SPC codes and 2D-SPC product codes was 

discussed and we showed that the bit-error rate (BER) asymptotic bound for a non-binary 

SPC code defined over     is the same as that for a non-binary SPC code defined over    .  

Moreover, it was shown that the BER asymptotic bound for a non-binary 2D-SPC code is 

also the same for the codes defined over     and the codes defined over    . Furthermore, 

we studied the minimum distance property of non-binary SPC codes and non-binary 2D-SPC 

product codes and we showed that by defining the codes over    , the weight spectral 

becomes denser in the middle part, which compared with the codes defined over   , the 

lower-weight codewords of the codes defined over     are shifting towards higher-weight 

codewords. This phenomenon becomes more vivid over higher order rings, which explains 

the performance improvement for the SPC and 2D-SPC product codes over higher order 

rings. 

In general, two issues are important in designing compound codes. One is the 

codeword-weight-distribution of the code, and the other is the structure of the decoder. The 

multiplicity of the minimum weight codewords in a well-designed compound code needs to 

be reduced and the SISO iterative decoding algorithm needs to be simple so that the 

decoding latency can be avoided in the system. We showed that these two conditions could 

be more satisfied by using SPC constituent codes defined over     compared with using SPC 

constituent codes that are defined over   . 



 

101 
 

REFERENCES 
 

 

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., Vol. 

27, pp. 379-423, 1948 

[2]  R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J., 

Vol. 29, pp.147-150, 1950. 

[3] D. J. Costello, Jr., J. Hagenauer, H. Imai, and S. B. Wicker, “Application of error-

control coding,” IEEE Trans. Inf. Theory, vol. 44, no. 10, pp. 2531-2560, Oct. 1998. 

[4] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon-limit error-correcting 

coding and decoding: turbo codes,” in Proc. 1993 IEEE Int. Commun. Conf. 

,Geneva, Switzerland, May 1993, pp.1046-1070. 

[5] P.H. Siegel, D. Divsalar, E. Eleftheriou, J. Hagenauer and D. Rowitch, “The turbo 

principle: from theory to practice,“ IEEE Journal on Selected Areas in 

Communications, vol. 19, no. 5, May 2001. 

[6] G.D. Forney, Jr, “Concatenated codes,” Cambridge, MA : MIT Press, 1966. 

[7] S. Benedetto and G. Montorsi, “Average performance of parallel concatenated block 

codes,” IET Electronics Letters, vol. 31, no. 2, pp.156-158, Feb. 1995. 

[8] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of 

interleaved codes: performance analysis, design and iterative decoding,” IEEE 

Trans. Inf. Theory, vol. 44, no. 5, pp. 909-926, May 1998. 

[9] D. Divsalar and F. Pollara, “Serial and hybrid concatenated codes with applications,” 

in Proc. 1st Intl. Symp. Turbo Codes and related topics. Sep. 1997. 



References 102 

[10] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. IT-8, 

pp. 21-28, Jan. 1962. 

[11] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. 

Theory, vol. IT-27, pp. 533-547, Sep. 1981. 

[12] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density 

parity-check codes,” Electronics Lett., vol. 32, no. 8, pp. 1645-1646, Aug. 1996. 

[13] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,” 

IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 399-431, Mar. 1999.  

[14] M. G. Luby, M. Mitzenmacher, M. A. Shkrollahi and D. A. Spielman, “Improved 

low-density parity-check codes using irregular graphs,” IEEE Trans. Inf. Theory, 

vol. 47, no. 2, pp. 585-598, Feb. 2001.  

[15] M. C. Davey and D. J. C. MacKay, “Low-density parity-check codes over GF(q),” 

Proc. IEEE Inform. Theory Workshop, Jun 1998, pp. 70-71. 

[16] M. C. Davey and D. MacKay, “Low-density parity-check codes over GF(q),” IEEE 

Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun 1998. 

[17] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes 

under message-passing decoding,” IEEE trans. Inf. Theory, vol. 47, no. 2, pp. 599-

618, Feb. 2001. 

[18] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching 

low-density parity check codes,” IEEE trans. Inf. Theory, vol. 47, no. 2, pp. 619-

637, Feb. 2001. 

[19] S. Y. Chung, G. D. Forney, T. Richardson and R. Urbanke, “On the design of low-

density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE 

Communications Letters, vol. 5, no. 2, pp. 58-60, Feb. 2001. 

[20] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive 

edge-growth Tanner graphs,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 386-

398, Jan. 2005. 



References 103 

[21] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on 

finite geometries: A rediscovery and new results,” IEEE Trans. Inf. Theory, vol. 47, 

no. 11, pp. 2711-2736, Nov. 2001.   

[22] S. J. Johson and S. R. Weller, “A family of irregular LDPC codes with low encoding 

complexity,” IEEE Commun. Lett., vol. 7, pp. 79-81, Feb. 2003. 

[23] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “Construction of low-density 

parity-check code based on Reed-Solomon code with two information symbols,” 

IEEE Commun. Lett., vol. 7, pp. 317-319, Jul. 2003. 

[24] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, “On algebraic construction of 

Gallager and circulant low-density parity-check codes,” IEEE Trans. Inf. Theory, 

vol. 50, no. 6, pp. 1269-1279, Jun. 2004. 

[25] B. Vasic and O. Milenkovic, “Combinatorial construction of low-density parity-

check codes for iterative decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 

1156-1176, Jun. 2004. 

[26] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of low-density 

parity-check codes based on balanced incomplete block designs,” IEEE Trans. Inf. 

Theory, vol. 50, no. 6, pp. 1257-1268, Jun. 2004. 

[27] N. Miladovic and M. Fossorier, “Systematic recursive construction of LDPC codes,” 

IEEE Commun. Lett., vol. 8, pp. 302-304, May 2004. 

[28] J. Xu, L. Chen, I. Djurdjevic, S. Lin and K. Abdel-Ghaffar, “Construction of regular 

and irregular LDPC codes: geometry decomposition and masking,” IEEE Trans. Inf. 

Theory, vol. 53, no. 1, pp. 121-134, Jan. 2007 

[29] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon quasi-cyclic low-density 

parity-check codes,” IEEE Trans. Commun., vol. 52, pp. 1038-1042, Jul. 2004. 

[30] Z. Li, L. Chen, L. Zeng; S. Lin and W. H. Fong, “Efficient encoding of quasi-cyclic 

low-density parity-check codes,” IEEE Trans. Commun., vol. 54, pp. 71-81, Jan. 

2006. 



References 104 

[31] L. Lan, L. Zeng, Y. Y. Tai, L. Chen, S. Lin and K. Abdel-Ghaffar, “Construction of 

quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field 

approach,” IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2429-2458, Jul. 2007. 

[32] Y. Y. Tai, L. Lan, Li. Zeng, S. Lin and K. Abdel-Ghaffar, “Algebraic construction of 

quasi-cyclic LDPC codes for the AWGN and erasure channels,” IEEE Trans. 

Commun., vol. 54, no. 10, pp. 1765-1774, Oct. 2006. 

[33] L. Zhang, Q. Huang, S. Lin and K. Abdel-Ghaffar, I.F. Blake, “Quasi-cyclic LDPC 

codes: an algebraic construction, rank analysis, and codes on Latin squares,” IEEE 

Trans. Commun., vol. 58, no. 11, pp. 3126-3139, Nov. 2010. 

[34] H. Chun-Ming, H. Jen-Fa and Y. Chao-Chin, “Construction of quasi-cyclic LDPC 

codes from quadratic congruencies,” IEEE Commun. Lett., vol. 12, no. 4, pp. 313-

315, Apr. 2008.  

[35] J. Kang, Q. Huang, L. Zhang, B. Zhou and S. Lin, “Quasi-cyclic LDPC codes: an 

algebraic construction,” IEEE Trans. Commun., vol. 58, no. 5 pp. 1383-1396, May 

2010. 

[36] C. Chen, B. Bai and X. Wang, “Construction of nonbinary quasi-cyclic LDPC cycle 

codes based on singel perfect difference set,” IEEE Commun. Lett., vol. 14, no. 2, 

pp. 181-183, Feb. 2010. 

[37] B. Zhou, J. Kang, Y. Y. Tai, S. Lin, and Z. Ding, “High performance non-binary 

quasi-cyclic LDPC codes on Euclidean geometries,” IEEE Trans. Commun., vol. 57, 

no. 5, pp. 1298-1311, May 2009. 

[38] L. Zeng, L. Lan; Y. Y. Tai, B. Zhou, S. Lin and K. Abdel-Ghaffar, “Construction of 

nonbinary cyclic, quasi-cyclic and regular LDPC codes: a finite geometry approach,” 

IEEE Trans. Commun., vol. 56, no. 3 pp. 378-387, Mar. 2008. 

[39] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar and M. Xu, “Construction of 

non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE Trans. 

Commun., vol. 57, no. 6 pp. 1952-1662, Jun 2009. 



References 105 

[40] X. Y. Hu and E. Eleftheriou, “Binary representation of cycle Tanner-graph GF(2q) 

codes,” The Proc. IEEE Intern. Conf. on Commun., Paris, France, pp. 528-532, Jun 

2004. 

[41] S.Y. Chung, T. Richardson and R. Urbanke, “Analysis of sum-product decoding of 

low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. 

Theory, vol. 47, no. 2, pp. 657-670, Feb. 2001. 

[42] G. Li, I.J. Fair, and W.A. Krzymien, “Density evolution for nonbinary LDPC codes 

under Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 55, no. 3, Mar. 2009. 

[43] A. Ashikhmin, G. Kramer and S. T. Brink, “Extrinsic Information transfer functions: 

model and erasure channel properties,” IEEE Trans. Inf. Theory, vol. 50, no. 11, 

Nov. 2004.  

[44] G. J. Byers and F. Takawira, “Exit charts for non-binary LDPC codes,” in Proc. Int. 

Conf. Communication (ICC’05), Seoul, Korea, pp. 652-657, May 2005. 

[45] V. Rathi and R. Urbanke, “Density evolution, thresholds and the stability condition 

for non-binary LDPC codes,” IEE Proceedings, vol. 152, no. 6, pp. 1069-1074, Dec. 

2005. 

[46] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes for 

arbitrary discrete-memoryless channels,” IEEE Trans. on Inf. Theory, vol. 52, no. 2, 

pp. 549-583, Feb. 2006.  

[47] J. Pearl, “Probabilistic reasoning in intelligent systems: network of plausible 

inference,” Morgan Kauffmann Publishers, 1988. 

[48] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001. 

[49] M.P.C. Fossorier, M. Mihaljevic and H. Imai, “Reduced complexity iterative 

decoding of low-density parity-check codes based on belief propagation,” IEEE 

Trans. Commun., vol. 47, no. 5, pp. 673-680, May 1999. 



References 106 

[50] J. Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier and X.Y. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Trans. Commun., vol. 53, no. 8, pp. 

1288-1299, Aug. 2005. 

[51] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes of short block 

length and high rate applications," in Proc. IMA International Conf. Mathematics its 

Applications: Codes, Systems Graphical Models, pp. 113-130, Springer-Verlag, New 

York, 2000. 

[52] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes for 

magnetic recording,” IEEE Trans. Magn., vol. 39, no.3, pp. 1081-1087, Mar. 2003. 

[53] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” 

IEEE Inf. Th. Workshop, Paris, France, Mar. 2003. 

[54] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes 

over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633-643, Apr. 2007. 

[55] A. Voicila, D. Declercq, F. Verdier, M. Fossorier and P. Urad, “Low-complexity 

decoding for non-binary LDPC codes in high order fields,” IEEE Trans. Commun., 

vol. 58, pp. 1365-1375, no.5, May 2010. 

[56] ETSI EN 302 307 (V1.1.2), “Digital video broadcasting (DVB); second generation 

framing structure, channel coding and modulation systems for broadcasting, 

interactive Services, news gathering and other broadband satellite applications,” 

European Telecommunications Standards Institute (ETSI), Jun 2006. 

[57] 802.16E-2005&802.16/COR1 IEEE standard for local and metropolitan area 

networks part 16: air interface for fixed and mobile broadband wireless access 

systems amendment for physical and medium access control layers for combined 

fixed and mobile operation in licensed bands, 2/2006. 

[58] V. Oksman and S. Galli, “G.hn: the new ITU-T home networking standard,” IEEE 

Commun. Magazine, vol. 47, no. 10, pp. 138-145. Oct. 2009. 



References 107 

[59] IEEE standard for information technology-telecommunications and information 

exchange between systems-local and metropolitan area networks-specific 

requirements part 3: carrier sense multiple access with collision detection 

(CSMA/CD) access method and physical layer specifications, Sep. 2006, IEEE Std. 

802.3an.  

[60] M. Lentmaier and K. Sh. Zigangirov, “On generalized low-density parity-check 

codes based on Hamming component codes”, IEEE Commun. Lett., vol. 3, no. 8, pp. 

248-250, Aug. 1999. 

[61] J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,” in 

Proc. IEEE ICC 99, Houston, Texas, Jul 1999, pp. 441-445. 

[62] T. M. N. Ngatched and F. Takawira, “An ensemble of iteratively decodable codes 

constructed based on a superposition method,” IEEE Trans. Commun., vol. 54, no. 

11, Nov. 2006. 

[63] P. Elias, “Error free coding,” IRE Trans. Inf. Theory, vol. 4, pp.29-37,  Sep. 1954. 

[64] G. Battail, “Building long codes by combination of simple ones, thanks to weighted-

output decoding,” in Proc. URSIISSSE 1989 , Erlangen, Germany, Sep. 1989, pp. 

634–637.  

[65] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of binary block and 

convolutional code,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429-445, Mar. 1996 

[66] D. M. Rankin and T. A. Gulliver, “Single parity check product codes,” IEEE Trans 

on Commun, vol. 49, pp.1354-1362, Aug. 2001. 

[67] H. Xu and F. Takawira, “A new structure of single parity check product codes,” 

SAIEE Africa Research Journal, vol.97, No.2, pp.132-135, Jun 2006. 

[68] A. Shiozaki, M. Kishimoto and G. Maruoka, “Close-to-capacity performance of 

extended single parity check product codes,” Electronics Letters, vol.47, pp. 34-35, 

Jan. 2011. 



References 108 

[69] H. Burton and E.  Weldon, Jr., “Cyclic product codes,” IEEE Trans on Inform 

Theory, Vol. 11, pp. 433-439, Jul 1965. 

[70] J. Justesen, “Performance of product codes and related structures with iterated 

decoding,” IEEE Trans on Commun, vol. 59, pp.407-415, Feb. 2011. 

[71] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for 

minimizing   symbol error rate,” IEEE Trans. Inf. Theory,  vol. 20, no. 2, pp. 284-

287, Mar. 1974.  

[72] R. Lucas, M. Bossert, and M. Breitbach, “On iterative soft decision decoding of 

linear binary block codes and product codes,” IEEE J. Select. Areas Commun, vol. 

16, No. 2, pp.276-298, Feb. 1998. 

[73] R. J. McEliece, “On the BCJR trellis for linear block codes”, IEEE Trans. Inf. 

Theory, vol. 42, no. 4, pp. 1072-1092, Jul. 1996. 

[74] Y. Lin, S. Lin, and M.P.C. Fossorier, “MAP algorithms for decoding linear block 

codes based on sectionalized trellis diagrams,” IEEE Trans. Commun, pp.577-587, 

vol. 18, no. 4, Apr. 2000. 

[75] T. Johansson and K. Zigangirov, “A Simple one sweep algorithm for optimal APP 

symbol decoding of linear block code,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 

3124-3129, Nov. 1998. 

[76] A. Trofimov and T. Johansson, “A memory-efficient optimal APP symbol-decoding 

algorithm for linear block codes”, IEEE Trans. Commun, vol. 52, no. 9, pp.1429-

1434, Sep. 2004. 

[77] I. Lee, “Modification of the MAP algorithm for memory savings,” IEEE Trans. 

Signal Processing, vol. 53, no. 3, pp.1147-1150, Mar. 2005. 

[78] A. Worm, H. Michel, and N. Wehn, “Power minimization by optimizing data-

transfers in turbo decoders,” Kleinbeubacher Berichte, Band 43, pp. 343-350, Sep. 

1999. 



References 109 

[79] M. L. Vallejo, S. A. Mujtaba, and I. Lee, “A low-power architecture for maximum a 

posteriori turbo-decoding,” in proc. 36th Asilomar Conf., Nov. 2002, pp. 47-51. 

[80] D. Sridhara and T. E. Fuja, “LDPC codes over rings for PSK modulation,” IEEE 

Trans. Inf. Theory, vol. 51, pp. 3209-3220, Sep. 2005. 

[81] A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Rate-1/2 component codes for 

nonbinary turbo codes,” IEEE Trans on Commun, vol. 53, pp. 1417-1422, Sep. 

2005. 

[82] J. Berkmann, “On turbo decoding of nonbinary codes,” IEEE Commun. Lett., vol. 2, 

pp. 94-96, Apr. 1998. 

[83] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its 

applications,” in Proc. Globecom, Dallas, TX, Nov. 1989, pp.1680-1686. 

[84] C. R. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol decoding rule 

for linear codes,” IEEE Trans. Inform. Theory, vol. 22, no. 5, pp. 514-517, Sep. 

1976. 

[85] J. G. Proakis and M. Salehi, “Digital communication”, 5Th ed., McGraw Hill, 2008. 

[86] K. Gracie and M. Hamon, “Turbo and turbo-like codes: principles and applications 

in telecommunications,” Proceeding of the IEEE, vol.95, pp. 1228-1254, Jun. 2007. 

[87] T. R. Oenning and J. Moon, “A low density generator matrix interpretation of 

parallel concatenated single bit parity codes,” IEEE Trans on Magnetics, vol. 37, 

pp.737-741, Mar. 2001. 

[88] J. L. Krishna, R. Narayanan, E. Kurtas, and C. N. Georghiades, “On the performance 

of high-rate TPC/SPC codes and LDPC codes over partial response channels,” IEEE 

Trans on Commun, vol. 50, pp.723-734, May 2002. 

[89] J. S. K. Tee, D. P. Taylor and P. A. Martin, “Multiple serial and parallel 

concatenated single parity-check codes,” IEEE Trans on Commun, vol. 51, pp. 1666-

1675, Oct. 2003. 



References 110 

[90] J. A. Gallian, “Contemporary abstract algebra”, 3rd ed., Lexington, MA: D. C. Heath 

and Company, 1994. 

[91] C. Berrou, M. Jezequel, C. Douillard and S. Kerouedan, “The advantages of non-

binary turbo codes,” in Proc. Information Theory Workshop, ITW 2001, pp. 61-63, 

2001. 

[92] O. Aitsab and R. Pyndiah, “Performance of Reed-Solomon block turbo codes,” in 

Proc. IEEE Global Telecommun. Conf. 1996, vol. 1–3, London, U.K., Nov., pp. 

121–125, 1996. 

[93] P. Sweeney and S.Wesemeyer, “Iterative soft-decision decoding of linear codes,” 

Inst. Electr. Eng. Proc. Commun., vol. 147, no. 3, pp. 133–136, Jun. 2000. 

[94] R. Zhou, R. Le Bidan, Ramesh Pyndiah and A. Goalic, “Low-complexity high-rate 

Reed-Solomon block turbo codes,” IEEE Trans on Commun, vol. 55, pp. 1656-1660, 

Sep. 2007. 

[95] G. S. White and D. J. Costello, Jr, “Construction and performance of q-ary turbo 

codes for use with M-ary modulation techniques,” in Proc.Conf. Inf. Sci. Syst., Mar. 

1999. 

[96] M. B. Shoemake, C. Heefard and E. Rossin, “Turbo codes for high order 

constellation,” in Proc. Information Theory Workshop, ITW 1998, Kilarney, Irland, 

1998. 

[97] A. Ghrayeb and T. Abualrub, “Asympyoyic performance comparison of 

concatenated (turbo) codes over GF(4),” Int. J. Commun. Syst., vol. 17, pp. 479–490, 

2004. 

[98] A. Ruscitto and E. M. Biglieri, “Joint source and channel coding using turbo codes 

over rings,” IEEE Trans. Commun., vol. 46 , pp. 981–984, Aug. 1998. 

[99] M. Xiao and T.M. Aulin, ”Serially concatenated continuous phase modulation with 

convolutional codes over rings,” IEEE Trans. Commun., vol. 54, pp. 1387–1396, 

Aug. 2006. 



References 111 

[100] J. da Silva Barros and R. Baladini Filho, “Turbo codes with symmetric and 

asymmetric component codes defined over finite fields of integers,” IET Commun., 

vol. 3, pp. 1800–1807, Apr. 2009.   

[101] M. Caldera and H. J. Zepernick, “APP decoding of nonbinary SPC product codes 

over discrete memoryless channels,” 10th International Conference on 

Telecommunication, ICT2003, vol. 2, pp. 1167-1170, 2003. 

 


	Title page

	Abstract

	Table of contents

	List of figures

	List of tables

	List of acronyms

	Chapter 1

	Chapter 2

	Chapter 3 

	Chapter 4

	Chapter 5

	Chapter 6

	References


