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Abstract

This research work focused on the performance ofistecs and metaheuristics for the recently
defined Hostel Space Allocation Problem (HSAP), ewninstance of the space allocation
problem (SAP) in higher institutions of learninglifd SAP is a combinatorial optimisation

problem that involves the distribution of spacesilable amongst a set of deserving entities
(rooms, bed spaces, and office spaces etc.), sthihavailable spaces are optimally utilized and

complied with the given set of constraints.

HSAP deals with the allocation of bed space in lak& but limited halls of residence to
competing groups of students such that given reqents and constraints are satisfied as much
as possible. The problem was recently introducediterature and a preliminary, baseline
solution using Genetic Algorithm (GA) was providéa show the viability of heuristics in
solving the problem rather than recourse to thalusianual processing. Since the administration
of hostel space allocation varies across institstiocountries and continents, the available
instance is defined as obtained from a top ingituin Nigeria. This instance identified is the
point of focus for this research study. The mam aff this thesis is to study the strength and
performance of some Local Search (LS) heuristicsalving this problem. In the process
however, some hybrid techniques that combine bagpulation-based and LS heuristics in
providing solutions are derived. This enables tmearry out a comprehensive comparative
study aimed at determining which heuristics anadf@mbination performs best for the given

problem.
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HSAP is a multi-objective and multi-stage problesach stage of the allocation has different
requirements and constraints. An attempt is magedeide a formulation of these problems as
an optimisation problem and then provides variotsrirelated heuristics and meta-heuristics to
solve it at different levels of the allocation pess. Specifically, Hill Climbing (HC), Simulated
Annealing (SA), Tabu Search (TS), Late Acceptandé Elimbing (LAHC) and GA were
applied to distribute the students at all the thesels of allocation. At each level, a comparison
of the algorithms is presented. In addition, vasaof the algorithms were performed from a
multi-objective perspective with promising and betolutions compared to the results obtained
from the manual method used by the administratotke institutions. Comparisons and analyses

of the results obtained from the above methods dene.

Obtaining datasets for HSAP is a very difficultk@s most institutions either do not keep proper
records of past allocations or are not willing t@aka such records available for research
purposes. The only dataset available which is atsl for simulation in this study is the one

recently reported in literature. However, to tdst tobustness of the algorithms, two new data
sets that follow the pattern of the known datad¢tioed from literature are randomly generated.
Results obtained with these datasets further detnadesthe viability of applying tested

operations research techniques efficiently to stli®new instance of SAP.
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CHAPTER ONE
INTRODUCTION AND BACKGROUND

1.1 Introduction

Hostel Space Allocation Problem (HSAP) is a hugerrs® of concern for university
administrations especially in developing countndsere hostels are provided to students for
residential purposes (Alitheia 2012; Adewumi & A#010, Adewunmi 2010). This concern
stems from many conflicting factors. Primarily, diwethe fact that university funding does not
seem to favour the construction of more hostellifeas for the ever increasing population of
students. Therefore, there is the need to managble spaces efficiently to serve the needs of
students while achieving the overall goal of thstitntions. However, HSAP deals with the
process of allocating a limited number of bed spasghin hostels (resources) among many
competitive customers (eligible students) under ierg set of hard and soft constraints
(Adewumi, 2010). Adewumi & Ali (2010) defined HSA& a combinatorial optimisation
problem (COP) and proposed the use of heuristicsatulle this new instance of the Space

Allocation Problem (SAP).

Meanwhile, the range of optimisation methods treatehbeen used to handle the COP consist of
two main groups which are the exact (traditionall approximate (heuristics) methods (Landa-
Silva, 2003). Exact methods seek to find the ogtismdution to an optimisation problem but
have expensive computational needs that increatfe growing difficulty of the problem. In
addition, exact methods may not find solution tensoreal world problem. However, for
practical applications, heuristic methods seekrtd §ood solutions (in most cases near-optimal)

within short computational times while trading a@ay for computational efficiency (Adewumi,
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2010; Landa-Silva, 2003). Metaheuristics are imptb\heuristics methods that have been

successfully applied to many COPs and SAPs fop#se few decades.

This thesis reports a further investigation andlgtinto the effectiveness of applying heuristics
technigues to solve the HSAP within the contexadfligher Institution of Learning (HIL). A
previous study on HSAP (see Adewumi & Ali, 2010)dhadvocated the application of
optimisation techniques to handle the allocatiarcpss. This research study on the HSAP seeks
to take the previous study further, both in ternisTmdelling and heuristic solutions. We
provide a model for the last stage of the allocatmrocess while also investigating the
performance of more heuristics, metaheuristics thrd hybridizations in solving this instance
of SAP. Extensive simulation studies were carrietl @an five combined heuristics techniques

(and hybrids) with their comparative results repdrt

Before giving a further overview of the problempaef general overview of an optimisation

problem is presented.

1.2 General Optimisation Problem

Optimisation is the field of study that seeks tdam the best possible results under given
constraints and several alternatives. Optimisgpiailems abound in all fields of study and all
areas of human endeavour including engineeringnsei technology, aeronautics and even in
planning warfare. The main objective is to seeloptimise (maximize or minimize) certain
decision variables. Mathematically, therefore,imogation seeks to find the best value for

decision variable(s) that would maximize or minimian objective function. Optimisation

17



techniques provide procedural steps that help plogxg a search space to seek a feasible
solution that optimises given objective functiomgler stated constraints. It is a known fact that
there is no single optimisation technique that peovide optimal solutions to various forms of
optimisation problems hence the search for bettechrigues as well as the
improvement/application of known techniques to sohew problems are the subjects of on-
going research activities. Literature has proposedkeral optimisation methods or tools for

solving diverse types of optimisation problems.

Definition 1.1

If we assumex to be a decision variable, then an optimisatiorblenm can be stated as:

maxg (x) (1.2)
subject to xS (1.2)
g(x)< g(x)forall xOS (1.3)

where X maximises the function g subject to the constraings, and thatg(x) is the

maximum value of the function g subject to the ¢@ustxJ S. Minimization is simply a

negation of maximization, i.e [min f(x) = -max {dy}].

Definition 1.2
The variable x* is defined as a local maximisethd function g subject to the constraigS«if
there is a number > 0 such that g (& g (x*) for all xS for which the distance between x and

X* is at mosto. A local minimiser is also defined similarly.
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Optimisation problems can be classified based armraé factors and characteristics of the
problem to be solved. A few classifications of op$ation problems according to certain

characteristic features are presented in the ndxtssction.

In a broad sense, optimisation problems can beedalsing exact (traditional) and/or heuristic
techniques. Exact methods seek to obtain an opsoiation to a given problem but in most
cases at the expense of computational time espetmalmany NP-Hard problems. They may
therefore not be too appropriate for some complex difficult problems (Adewumi, 2010).

Heuristic (approximate) algorithms, on the othendjaseek to get near-optimal solutions to
given optimisation problems thereby compromisingcuagacy for computational speed.
However, attempts geared towards seeking a balaradetoff between accuracy and significant

reductions in computational time are currently geimade.

1.3 Classification of optimisation problems

1.3.1 Classification based on constraints
Constraints are the limits that restrain the vatithe objective functiog. They characterize the

bounds within which feasible solutions are obtain€dnstraints can be of two types: hard
constraints or soft constraints. Hard constrairgéfing the feasibility of the solutions to be

obtained and cannot be violated while soft constsatan add to the quality of the solutions but
can be compromised with or without penalty. Inemeyal sense, all hard constraints must be

satisfied and as many soft constraints as possé#d to be satisfied if one is to get any feasible
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solutions. Hence, based on the types of constranpi$misation problems can be categorised

into unconstrained and constraint optimisation [gwis(Rao, 1996)

a) Unconstrained Optimisation Problems If there are no constraints leading to the
evaluation ofg, the problem is considered an unconstrained ogditiain problem. Iim
equals the number of constraints, timenO.

b) Constrained Optimisation Problems If there are constraints leading to the evalumatio
of g, the problem is considered to be a constrainengg#tion problem. Iim equals the
number of constraints, them>1. Most of the real-world optimisation problems are

multi-constrained problems.

1.3.2. Number of objective functions
Based on the number of objective functions to beimized, optimisation problems can be

categorised into two, viz. single and multi-objeetprogramming problems.

Single-Objective Programming Problem
A single-objective programming problem can be dbscras the following:
Find x which minimizes 9(x) (1.4)

subject to
g(x)=0,J=1.2,...,m (1.5)

whereg; denotes the objective functions to be minimized.

Multi-objective Programming Problem:
A multi-objective programming problem can be ddsedi as the following:

Find x which minimizes gx) ,(X),. . .G (X) (1.6)
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subject to
g(x) <0,J=1.2,..m (1.7)

where g, @,..... g denote the objective functions to be minimized siameously.

1.3.3 Nature of the problem
Another significant classification of optimisatipmoblems is done on the basis of the nature of

expressions for the objective function and the traimgs. In line with this classification,
optimisation problems can be categorised into wariftorms: linear, nonlinear, geometric, and
guadratic programming problems.
* Linear programming
Linear Programming (LP) problem is such that bdbfective functions and constraints
are linear functions of the design parameters. Aldblem is often described in the

following standard form:
Find X=(X, %,.....,% ) (1.8)
which minimizes g(x) EL, o;x; (1.9
subject to constraints
., a;x; = b,j=1,2,......,m (1.10)
% =0,i=12, 00, n. (1.11)
wherec; , a; andb; are constants.
* Nonlinear programming
When there are a number of variables determiniegthjective and constraint functions,
the problem is termed a Non-Linear Programming (Nfu®blem. This type of problem

is quite common, other problems can be considesgbaaticular cases of the NLP

problem.
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» Geometric programming
A function v(x) is termed as a polynomialvfcan be expressed as the sum of power
terms each of the form

CX X e X

n

(1.12)

wherec; anday; are constants witg;>0 and x>0.

So an N term polynomial is expressed as the fotigwi

v(x) = clx:'-'-x;'-‘ XS L L CNx:“‘-x;N‘ v X ONT (1.13)

A geometric programming problem is one in which dhgective function and constraints
are expressed as polynomialsyof
* Quadratic programming

A subset of NLP problems with a quadratic objecfiwection and linear constraints is

known as quadratic programming which can be degiasefollows:

g(X) = c+ Z.nl q >I<+Zi"zlzj”:1 Q X x (1.14)
subject to
Yrax=h, j=12..m, (1.15)
x20, i=12,...10, (1.16)

wherec,q,Q , g, andbare constants.

1.3.4Nature of the decision variables

Optimisation problems can be categorised as camtisi@r combinatorial optimisation problems

based on the decision variables used.
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e Continuous Optimisation Problems:

The model form of afcontinuous) optimisatic (Boyd & Vandenberghe, 20C problem is:

min f (x) (1.17)
subject to

g(¥=0, i=1...m (1.18)

h(x) =0, i=1,....p (1.19)
where

f(x):0" - O is thegoal functior which is minimiseover the variable,

g,(X) <0 are callednequality constrain, and

h (X) = Oare calledequality constrain.

Combinatorial Optimisation Problem (COP):

CORP is in quadruple forgh, f ,m,g), where:

| is defined as the set of instant

When an instance is provicxO I, f (x) is the possible solution s

When an instance is provid X and the possible answeryir x, m(x, y)stand for the

evaluation ofy , that is more often than not a positive 1

g is the objective function which is eithmin or max .

The objective can then be definecbeing to discover some casas amoptimal solutiol, which

is a feasible solutiory with
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m(x y)=dnxy| ¥ €% (1.20)

For every COP case, there is a consequent degsdtaem that hinges on the fact that there is a

feasible solution for some particular measuye

1.4. Heuristics and Metaheuristic Algorithms

Heuristic optimisation algorithms (heuristics fdnost) search for good feasible solutions to
optimisation problems in situations where the carijpies involved or the paucity of time does
not permit an optimal solution (Garey & Johnson79)9 Unlike exact algorithms, there are two
very strong issues that have to be considered enethaluation of heuristics, they are: how

quickly solutions can be obtained and how closg e to being optimal.

A metaheuristic is a black box process that gumlesibordinate heuristic by merging cleverly
different concepts for investigating and exploititngg search space in order to obtain efficient
near-optimal solutions (Osman & Laporte, 1996). rmagkes include SA, TS and GA
(Kirkpatrick et al., 1983; Holland, 1975), most which are inspired by social behaviour or
concepts in nature. Metaheuristic algorithms trystoke a balance between exploring and
exploiting the local neighbourhood structures oé tholution space (Syam & Al-Harkan,
2010).Exploitation involves locating more ‘promigirlocal neighbourhood structures as these
areas may enclose superior solutions while exptorateeks to find the global optimum solution
point(Syam & Al-Harkan, 2010). This leads to thkassification of optimisation search

techniques into LS and Global Search (GS) techsique
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LS techniques work by applying local changes of sauart within a defined neighbourhood
contained in the search space, until a solutiomaeeoptimal is found or a time frame/limit has
elapsed. These methods have proved highly efieatigolving some optimisation problems and
very recently as supportive cum improvement hyldiddGS techniques (Battiti, Brunato &
Mascia, 2008). Examples of LS methods include Biimbing (HC), Guided Local Search and
Iterative Local Search algorithms, among others.t&®niques, on the other hand, aim to find
the global optimum solution within the best possibhlue(s) of decision variables within the GS
space by way of effective combination of explodatand exploration features of the underlying
algorithm. However, there are many real-world fpeots in which locating the global optimal
solution still remains practically impossible (Laa8ilva, 2003; Wikipedia, 2012). Furthermore,
there is no single GS technique that guaranteasitgrthe global optimal solution to all kinds of
optimisation problems hence the need for simulaggperiments to sometimes determine which
technique is best for a given state of an optinosgtroblem. GS heuristic algorithms, therefore,
only attempt to assess the global optimal soluiom a set of local optimal solutions. Examples
of GS techniques include GA, Particle Swarm Optatg (PSO), Ant-Colony Optimisation

(ACO), among others.

1.5. Objectives of the Study

It is practically difficult to handle Non-determstic Polynomial-time hardNP-Hard) real world
COPs with the exact solution techniques especidilgre the search space is considerably large,
hence, most researchers settle for near-optimatient that provide realistic solutions to these

problems. SAPs recently became an interestingarelsearea in metaheuristic research with
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various interesting case instances being explaindderature (for example, see Landa-Silva,

2003; Burke, Cowling & Silva, 2001; Adewumi & AR010).

SAP addresses the challenge of allocating limitegilable space among a set of demanding
entities requiring space utilization. These classkeproblems are multi-constrained and multi-
objective problems in nature (Adewumi, 2010). Riglifeasible solutions to them require the
maximization of space utilization in such a wayttbatisfies all hard constraints while satisfying
as many soft constraints as possible (Adewumi, R0TIBe aim is to provide as much

satisfaction as possible to all demanding entified require space utilization. Instances of the
SAP that have been introduced in literature espig@a they relate to HILs include the Office

Space Allocation Problem (OSAP), timetabling profdeand most recently, parking spaces

allocation problems and the HSAP.

The HSAP, a recent instance of SAP in literatusezancerned with the efficient allocation of
limited amounts of bed spaces to eligible studeritisin the halls of residence at a given HIL.
HSAP is an NP-hard COP and like other SAPs is nbt multi-constrained and multi-objective
but also multi-staged hence near-optimal soluti@re determined using heuristic and

metaheuristic algorithms (Adewumi & Ali, 2010).

The objective of this research study is to furtirerestigate the deployment of heuristics in
solving the HSAP. Our emphasis is on investigatmg comparing the effectiveness of LS
heuristic algorithms in providing solutions to thRKSAP. The research study investigates five
techniques namely, HC, Simulated Annealing (SAbur&earch (TS), Late Acceptance Hill
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Climbing (LAHC) and GA. As an extension, some hgbrbf these algorithms are investigated
with other search metaheuristic algorithms. Resoittgined from these different instances are

compared.

1.6. Thesis Outline

The chapters of this thesis are organized as fatidBhapter 2 introduces SAP at HILs and
explains some of the problems experienced in utdispace efficiently at these institutions. It
also reviews some variants of the SAP. Chapteitrddoces the HSAP. It describes the HSAP
and discusses previous research that has beenrdtme area. It also presents the mathematical
modelling of the problem. Chapter 4 presents ththaumlogy employed in providing solutions
to the problem. Chapter 5 presents and discusgesxperimental results obtained. Chapter 6
contains the conclusion and discussions of futMtensions to the problem. Appendices A, B, C
and D provide details about the three data sets asevell all the associated constraints involved

in the allocation process of the HSAP.

1.7. Contributions
The following are the contributions of the thesis:

1. The thesis explores the performance of the varm@usistics which are most common in
literature and also the performance of their hybnehich is considered as the strong
point of this research work.

2. The thesis provides new datasets on which furészarch o n the HSAP can be based.

3. Several important issues in the HSAP were idemwtjfand practical models for this type

of HSAP are proposed including the floor stage.
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CHAPTER 2
SPACE ALLOCATION PROBLEMS

2.1. Introduction

SAPs are one of the most difficult NP-hard COPsedmi & Ali, 2010; Burke and Varley,
1998) to solve. It is a very important space mamnege issue that is concerned with the
distribution of limited available space amongst deding sets of entities requiring space
utilization. It is a well-known fact that space aable to accommodate entities (for instance, bed
space for students, shelf space for items) is dfteited especially as an organization grows.
Mismanagement of this limited space can thus aeéleraffect the overall operations of an
organization. Inefficient use of the limited spaceas in turn affect the overall costs involved in
the organisation’s operation, amongst others. Sineecost and feasibility of space expansion is
often and almost impracticable in many real lifeiaiions, it is pertinent therefore to consider
best practices in the management of available sgdtteough, a strict management issue, space
allocation is essentially an optimisation problemd acan thus benefit from mathematical
modelling and optimisation research, hence theifstignce of this research study. It is often
easy to conceive SAP in terms of well-known COP®@schmark problems like bin-packing

problems, knapsack problems, etc. are essentiaéspdization or allocation problems.

In this section, we give a general description pdce allocation with specific focus on some
instances of the SAP such as Berth Space Alloc&roblem (BSAP), Office Space Allocation
Problem (OSAP) (Pereira, et al., 2010), Timetabkngblem (TTP) (Adewumi, Sawyerr & Ali,

2009; Burke & Bykov, 2008 & 2010) and HSAP. Thistsen describes some of the problems
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and complexities involved in addressing space zatilon, and give an overview of some

instances of SAP as well as more details on thePHSA

2.2. Space Allocation in Higher Institution of Leaning

Space utilization presents a common challenge tbsHThis is due to the challenge of
distributing limited numbers of available space amaemanding entities that require space
utilization. The demanding entities may includeffstiecture venues, students demanding on-
campus accommodation, laboratories or practical @dewumi & Ali, 2010; Landa-Silva,
2003).In addition, the objective of space allogatie to provide optimum satisfaction to all
demanding entities while satisfying all hard coastts and as many soft constraints and

requirements as possible (Adewumi & Ali, 2010).

Mismanagement of available space in HILs may negbtiaffect the overall running and
operating costs of the institution hence the nemd efffective and efficient utilization and
management of space. However, finding optimaltewig in the way space is utilized presents a
challenge as SAPs are computationally “hard” inureat Furthermore, the problem is
complicated due to the dynamic nature of space geanant in real life instances as entities are
added and removed continuously (Landa-Silva, 20@830, in determining the best solution to
SAPs, the convenience of the underlying entitiey i@ an important factor. For example,
faculty and departments should be allocated spasetose as possible to lecture venues while
physically challenged students need to be allodatstel space that is closest to health facilities,
amongst others. These issues make space allo@treny important managerial responsibility

and hence automated solutions that incorporate @puuoximation algorithms are essential.
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This will provide for efficient and effective, agate and fair distribution of spaces without
personal biases. However, many institutions, paerty in developing countries, still rely on

using manual processes in dealing with space ditocat HILs.

The manual approach, though in some cases mayoreome form of computer processing
which are prone to inefficiency, errors and biagegeam experience, the timely production of
distribution lists also poses a great challengeesthere is no guarantee that solutions obtained
via this approach will either be good or near thkpeeted optimal solution. While the manual
approach may be relatively easy and quick for smeiaitd organizations, dealing with cases
involving larger population sizes such as the allimn of hostel space in higher institutions will
pose a challenge. This is due to the larger sitéise input data sets and the complexities of the

constraints and objectives associated with obtgiaalutions.

Mathematically, most SAPs have been modelled usiallrknown benchmark COPs such as
BPP, Knapsack Problem (KSP), assignment, or resoallocation problems. Similarly, this

study employs a form of multiple knapsack modelstalel the different stages of the HSAP. A
brief discussion of some of these benchmark maalelggiven below while details of the HSAP

is presented in the Chapter 3.
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2.3. Benchmark Model commonly used for SAP

2.3.1 Knapsack Problem
KSP is a very common NP-Hard benchmark COP thatbeas used in modelling many real-

world optimisation problems. It involves the agament or assignment of items (or the subsets
thereof) into knapsack(s) so as to maximize thal ®mtcumulated profits of the items while the
capacity constraint of the knapsack(s) is/are baihgerved. Each item to be arranged has

associated profit and weight values as illustrateitie simple example in Figure 2.1.

122 (18@) R20 25Kg
BOX
m R35 (30Kg) Ca pacity
R8 (25KG) R 15 (20KG) 55 Kg

Figure 2.1: An illustration of a one-dimensionabksack problem (Source: Wikipedia)

Various forms of knapsack models (and their vasjphtive been applied in literature to model
optimisation problems. These include the binargctional, bounded, multiple, and quadratic
knapsack models (Landa-Silva, 2003; Martello & Tdi®90a).The differences lie in the way the
items are distributed and the number of knapsavoksived (Nyonyi, 2010). In a binary model,
an item is either selected or not selected, whiléhé fractional model, a fraction of items can be
selected. The bounded knapsack model allows fanpger bound on the number of times an
item can be selected while the multiple knapsa@ssrhore than one knapsack where the items

can be placed. The latter can be binary, fractionainy other combination.
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The aim of the multiple knapsack modelling is tbrfiultiple knapsacks with subsets of items in
such a way that the total accumulated profits ef shbsets are maximized without having the
total accumulated weights of the subsets exceedapacities of the knapsacks. Mathematically,
a binary otherwise called the 0-1 multiple knapsacdkel can be described as follows:
Let

m = number of knapsacks

n = number of items

c(i) = capacity of knapsack i

p(j) = profit associated with item |

w(j) = weight associated with item j

x(i,)) = 1 if j is selected for knapsack i, O othése

The objective function is:

Maximize
f(0=33" )X ) 2.1)
subject to:
iw(j)x(i, )<ce(@) i=42..m (2.2)
Zn:x(i, sl j=1,2..p; {0,1} (2.3)

In this research study, a form of the 0-1 multibhapsack model is used to model the different

stages of the HSAP.
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2.3.2 Bin packing problem

The BPP is another well-known NP-Hard COP with masi forms appearing in literature as well
(Martello & Toth, 1990a). We defined one dimensidria packing problem as follows: Given a
set of entities or item$ ={1,...,n} each having a corresponding size or weiyhand a set of
bins with identical capacities. The goal is to pack all the items into a few birfslevobserving
the size constraint of the bins. Many researchax® studied different dimensions of the BPP
and applied them to modelling and to solve realldvproblems using both exact and heuristics

techniques (for example see Scholl, Klein & Jurgd897; Martello & Toth, 1990a).

2.3.4 Generalised Assignment Problem

The Generalised Assignment Problem (GAP) is an MRiHproblem that is similar to the
multiple KSP except that the profit and weight atle item varies with respect to the containers
assigned to them (Burke et al., 2000). It can bthemaatically formulated as follows:

m = the number of containers;

n = the number of items;

p, = profit of item i if allocated to container j;
w; =weight of item i if allocated to container j;

C; = capacity of container

i — |0 otherwise.

_[1 if itemi is assigned to knapsgcl
j
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max ernﬂzin:l P %, (2.4)

subjecttoy " w, <¢  j= 1.1 (2.5)
" x <1, i=1,..

2% ' n (2.6)

x=0orl, i=1.nj= 1.m (2.7)

A practical application of the model is assigningasks to m processors, (or n jobs to m

machines) given the profip; and the level of resource requireg for the assignment of task i to
processor j and total resoug@vailable for each processor j (Martello & Toth,759Martello

& Toth, 1990a ).

2.4. Related Works

On-campus residence for students of HILs is a ystinent issue as their availability and
efficient management have been shown to influeheeperformance of students (M&G 2009;
Oghifo 2012). Many irregularities and strikes inLKlacross Africa have been linked to the
problem of unavailability and/or mismanagementesidential accommodation for students. The
above are important reasons why it is necessans¢oautomated systems to assist in finding
effective solutions for allocating students accordatmn. Automated systems are fairer, more
accurate and faster, compared to manual proceldsegever, many HILs still employ manual

processes. This is primarily prevalent in develgmountries (Adewumi & Ali, 2010).
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Meanwhile, this problem was recently described &C® and heuristics solutions have been
proposed in solving it (Adewumi, 2010). Earlieretaheuristics have been successfully applied
to similar SAPs. The use of heuristics (and itSsards) was necessitated by the complex nature
of the problem for which exact algorithms have gawnsufficient especially as the problem’s
search space increases. Researchers have theaefaveated the use of heuristics and any
efficient hybrid thereof for SAPs. Previous stwdleave employed both population-based and
LS techniques as well as their hybrids (e.g. Mahristics, hyper-heuristics) to solve SAP.
The initial study on HSAP was essentially basedG# This current study therefore looks

further into the performance of LS and hybridshef HSAP.

Generally, space planning is a major issue in HUst as management has to cope with the
demand for office space, lecture venues, examimatenues, residence space etc. There are
many factors that influence how available spacesadiocated with each HIL differing from
another in terms of its space planning policy arahagement. Previous research concentrated
on these areas of space allocation in HIL: offigace (Burke, Cowling, & Silva, 2001; Fomeni,
2010; Landa-Silva., 2003;Pereira, et al., 2010&ilerreira, & Costa, 2008) and timetabling
(Adewumi,Sawyerr& Ali, 2009; Burke & Bykov , 2008 2010).Current research efforts are a

furtherance of the recent focus on hostel spaceatibn.

Past studies on SAP sought to formulate mathenhaticalels for the identified real-world
instances while considering various constraints r&agiirements. The issue of hostel space has

great influence not only on the academic perforreamicstudents (Alitheia, 2012; Pat-Mbano,
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Alakal & Okeoma, 2012; Yusuff, 2011) but also oeitlsafety, convenience and undivided
concentrations on their primary duty. In Nigeriaese the current case study is based, some real
estate agents have started considering the econpoténtial of developing private student
housing near university campuses both to servenéleels of students while carrying out their
own professional services (Alitheia, 2012). Thotigis proposition was welcomed with some
controversies, many major HILs have witnessed feivasidence provision by realtors, private
landlords and other stakeholders that have landedepties close to campuses (Pat-Mbano,
Alakal, & Okeoma, 2012). Thishas compelledadmatsts of HILs in the country to rethink
the management strategies for the distribution \adilable hostel space, this is the major

motivation/justificationfor this study.Some othasiances of SAP are briefly described below.

2.4.1. Berth Space Allocation Problem

Berth Space Allocation Problem (BSAP) is a commastlydied SAP in literature. The BSAP
seeks to assign a set of vessels to a given mrthut within a given time horizon. Appropriate
allocation and positioning of ships carrying con&s has been a major source of concern for a
long period of time. Fluctuations in the demand $bips carrying containers have created
considerable apprehension leading to serious ogdiimon problems at the marine terminals. In
addition to dealing with space allocation, the BS#$b considers time (temporal dimension) as
a major constraint. Depending on the case andnostat hand, there can be several objective
functions to be optimised, for example, to minimthe service time to vessels, minimize the
time of stay at the port, or to minimize the numbgrejected vessels. Each instance and real life
case of the BSAP has varying constraints and reménts such as the spatial and temporal

constraints. Therefore, there is no unique mattieaianodel that can fully describe the BSAP,
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it depends on the case, objective and constraihtiatl. Several models have been reported in
literature involving BSAP with various temporal ¢fuas vessel arrival process, start of service
and handling times) and spatial (such as berthutagiad restrictions) attributes. Regardless of
the formulation of the problem, BSAP is an NP-hardNP-complete problem that requires the

use of heuristics and meta-heuristics to obtaintswis within reasonable computational time.

Most recently, Umang et al. (2013) studied the i@pfibn of exact methods based on mixed
integer programming and heuristics approach toestile BSAP in bulk ports with the objective
of minimizing service times of vessels for a giweard layout. The study, which was based on
real life data, found that near-optimal solutioas de obtained for even larger instances with the
heuristics. In addition, various exact and heuwsstnethods have been successfully applied to
solve varying models of the BAP. Initially, quegimodels were developed to solve the BAP
(Edmond & Maggs, 1978) which is formulated as a C@®Rrious models of the BAP are
presented in Buhrkal et al, 2010. Solution methadsliterature include the exact or
mathematical programming approaches (Umang et(l3)2 heuristics based on Lagrangian
relaxation (Akio et al., 2001), use of clusterirgguch (Oliveira et al., 2011)and hybrid approach

of TS and mathematical programming (Giallombardalkt 2010), among several others.

2.4.2. Office Space Allocation Problem (OSAP)

The OSAP applies not only in HIL but also in maayge organizations where the allocation of
buildings and office space to departments, unitsl amployees pose a challenge especially
given the increasing number of constituents denmandmited office space. In other words,

OSAP seeks to assign employees workspace in acedfiiilding in an optimal way which

37



satisfies the given objective criteria and requigats. This can occur in two forms: a complete
reassignment of all employees in the organizatmra thew workspace, this is likely due to
reorganization or relocation; and secondly, a sgasnent or new assignment of workspace due
to a change in the employees’ composition sucheas mring and personnel turnover. The
former might aim to maximize the use of availabpaee while the latter might emphasise

minimizing the disruption of the current workforc€ases of multiple objectives are possible.

OSAP has been considered and modelled as a vafighe Bin Packing Problem (BPP), the
Knapsack Problem (KSP) or the Generalized AssignrReablems (GAP) (Burke & Varley,

1998), which are well-known NP-complete problemsniature. Exact methods have been
employed to solve instances of OSAP (for exammde, dlker & Landa-Silva, 2010a&b). Ulker

& Landa-Silva (2010a) developed a 0/1 integer progning technique to solve the OSAP with
the primary aim of optimizing space utilization \ehsatisfying a set of given constraints. The
model was solved using CPLEX with significant réswalbtained for some combinations of hard
and soft constraints. In another related workh®ysame authors (Ulker & Landa-Silva, 2010b),
a 1/0 integer programming formulation model was eligy for OSAP using University of

Nottingham’s data set. The model was implementéujute Gurobi solver which gave a better

result when compared with known result from the salata set.

Furthermore, various heuristic and meta-heurigidhiniques have also been proposed including
the GA, SA, TS, Particle Swarm Optimisation (PS@J ather hybrid approaches (see Landa-

Silva & Burke, 2007; Landa-Silva et al., 2010; Qrg'& Landa-Silva, 2012; Ulker & Landa-
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Silva, 2012, Zahiri, 2009). For instance, Peretrale(2010) studied the performance of a greedy
search and TS for generating high quality solutitmsthe OSAP with the objectives of
maximizing synergies within the organization, miigimg over-usage of limited office space
while also maximizing the number of closed spacéBe TS gave better performance than the
greedy LS algorithm. A study by Lopes & Girimont2010) showed that extensions of a
combination of LS operators can improve the pertoroe of LS algorithms for this type of

problem.

2.4.3. Timetabling Allocation Problem (TTP)

TTP is a major academic problem that has posedetiygs to HILs worldwide. It exists in
various forms of which are the lecture or coursé®Tahd examination TTP, each with varying
complexity of constraints. Course TTP involvekestuling a number of students taking given
course(s), lecturers and lecture rooms into a figedof timeslots for days of the week in an
optimal schedule. TTP generally has diverse setarfstraints, resources and requirements
depending at times on the different real-life seceneonsidered (Adewumi, et al., 2009). Some
hard constraints common to TTP include having dale where no lecturer, class or classroom
is used more than once in any given period. Baihegc and real-life forms of TTP present
various forms of hard and soft constraints (seewAdsi et. al, 2009; Murray, Uller & Rudov,

2010).

Similar to other SAPs, both exact and heuristigsr@gches have been successfully applied to

solve the TTP.Landa-Silva & Obit (2011) designedstanuctive hybrid heuristics for the course
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TTP. Four different hybrid heuristics that combin® and the graph colouring method were
tested with promising results shown by the consitradechniques. Schimmelpfeng & Helber
(2006) modelled a case of examination TTP in Gegraana mixed integer assignment problem
and found an exact solution using CPLEX solverwads evident from this real world problem
that an exact method can give satisfactory resuttee problem size is not big White& Zhang
(1998) employed a hybrid of TS and constraint Idgisolve the course TTP for small data sets
of a university timetable. Dammaket al. (2006) folated TTP as a zero-one integer linear

programming problem and applied a three-stage $i#uto solve it.

Burke & Bykov (2010) showed the effectivness of t&hniques in solving the TTP.

Specifically, they designed LAHC to solve an inswanof TTP with promising solutions.

Although, HC has mostly been regarded as weak malivey large instances of COP, the study
showed that an improvement on HC can be very piamis It therefore suggested the
application of similar improved algorithm (LAHC, tme discussed later) to any problem where
HC has been previously but unsuccessfully appligds is why in this research study, the
LAHC is used as one of the LS techniques in our ASAn addition, the authors further suggest
the incorporation of improvement ideas into anyraeanethod where candidate and current

costs can be compared.

2.5. Summary
High demand for on campus accommodation in thetutisins of higher learning has initiated
managers of these institutions to adopt systenaitomate and optimise their decision making

processes. The HSAP is one of the key factors ffariency of any higher institution. Current
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computer applications, however, do not offer hospece allocation optimisation and humans

usually do this intuitively.

This chapter gave an overview of the SAP and ifgoifance. Also examples of specific cases
where this problem has been tackled were giventlaegk include: berth space allocation, office

space allocation and TTP.

The chapter also describes some of the problemsamglexities involved in SAP. However,
these cases are discussed in more detail when ssdityespace utilization. Well-known
mathematical models that have been used in theg sfuBAP are introduced, these include: the

knapsack problem, bin packing problem and the gdised assignment problem.

This chapter raises several important issues afostel space allocation. Due to the different

constraints encountered in allocation, the HSAPhkmaa very difficult problem to solve.

However, due to the NP-Hard nature of the HSAB iimpractical to work out a polynomial time
bounded solution procedure that can solve everpleno instance to optimality. The first
method proposed is dynamic programming used tanigei the space allocation model of which
the hostel space problem is an example. Howeves, tdthnique may require very high
computational times for large problems. Heuristicl anetaheuristic techniques were used as
alternatives. This research work focuses on theigteuand metaheuristic approaches in solving

the HSAP.
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CHAPTER 3

HOSTEL SPACE ALLOCATION PROBLEM

3.1. Introduction

As stated in the preceding chapter, the HSAP imstance of the NP-Hard SAP (Adewumi &
Ali, 2010). Like other SAPs, it is a multi-stagedulti-constrained, and multi-objective COP that
involves finding feasible and acceptable solutitmthe distribution of available but limited bed
spaces in on-campus residences to eligible studerisvay that satisfies given objectives. This
chapter describes the HSAP and previous reseaati#is been carried out in this area. Detailed
background information associated with the probiemresented along with the different stages
of the problem and the way in which solutions aceind along with the mathematical

formulations.

3.1 Hostel Space Allocation Problem

The adequate provision of student residence hamgacts on academic success as on-campus
residence gives students peace of mind allowinghthave consistent focus on their studies.
The issue of residence provision for students lea®mne a source of concern for administrators
of HILs due to the increased pressure of studesitsgbadmitted to such institutions without a
corresponding increase in the provision of fae#itiThe demand for on-campus accommodation
has increased significantly in recent years. Thakes the management of student residences an
important responsibility. With limited amounts o&d spaces available for accommodation,

students need to be allocated in ways that areafadr as evenly distributed as possible. This
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opens up a new phase of research for researchmesiaty in metaheuristic as the question of
how best to manage and distribute available hagtate for students has not been adequately
studied. The issue has been handled as a ratherycgorocess with varied degrees of success in
different universities especially in developing nties (Adewumi & Ali, 2009). The
pioneering research study reported in the HSAP (Aol & Ali, 2010) is based on
experimental studies which were conducted usingwedd data from one of the largest tertiary
institutions in Nigeria. This data is represen&tof what obtains in other HILs in Nigeria but
the situation might be slightly different in otheountries including South Africa. However,
efforts to gather more data from institutions iruBoAfrica have yielded little or no results as
most HILs do not keep proper records of such d&ame institutions have indicated that they
are yet to initiate this proper recording keepimgcess. Furthermore, due to the novelty and
nature of the problem at hand, there is as yet ethod to measure the quality of hostel
allocation and students distribution except agaspsicified goals. The lack of data archives on
previous allocations also makes it difficult to blbmark results with past manual results.
Consequently, the success of space allocation vessumed in terms of each of the variables
involved, essentially the number of beds and thaber of students that could be accommodated
within the necessary guidelines of the universityiqy. The above limitation has constrained
this study, being a further foundational researchnkwn this area, to still be based on available
data from the previous study as indicated earliére goal therefore is to further study the
feasibility of other heuristics especially LS tecjues in providing solutions to this problem.
Moreover, the current study attempts to providehter mathematical modelling of the problem
which was not very obviously presented in the presistudy, hence the approach in this study is

slightly different. It is an attempt to furthercsh the viability and efficiency of heuristics in
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tackling the HSAP. Since most HILs would requirederange plans to construct additional

hostel space by building more hostels, it is impeeathat the distribution of the existing space
optimised to achieve given goals. Further studieshe HSAP based on the pioneer work done
by Fomeni (2010) and Nyonyi (2010) have buttregbedefficiency of heuristics to the HSAP.

Current research presents a mathematical moddleoHSAP and re-applies GA techniques to
solve it based on this model and a new chromos@peesentation. Other heuristics and their
hybrids are also tested. A comparative study siilite among the heuristics based on simulation

experiments was conducted and reported.

3.1.1. Problem Description

In the case study on which this research is baseeéwumi & Ali, 2010; Adewumi, 2010),
allocations of male and female students into hesaet done in a mutually exclusive manner as
undergraduate hostels are delineated based on rgdfrden the dataset available, there are
twelve on-campus residences with six designatedrfale and female respectively. Usually,
residences are built as multi-story structureshihie exception of one hostel) each with varying
numbers of floors that are further divided intodk® (otherwise call wings). Rooms are located
on each wing per floor with each having one or ntmds depending on the number of students
it is designed to accommodate. Usually, due tostigatage of space, most rooms are designed
to take more than one student and students onweiaghhave access to common facilities such
as toilets and baths. The university, throughdtiiee of students’ affairs, sets the criteria that
make a student eligible for a bed space and eagiblel student is entitled to only one bed

space. The eligibility criteria may vary and ismaally checked by staff.
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After initial application and expression of interaés residence accommodation, the students
affairs officers classify all eligible studentsantategories for the purpose of allocation. Thus,
the allocation of bed space goes through threéndigbhases, each with different requirements
and objectives. These are the category allocatimstel allocation and floor allocation
(discussed later in more detail). Once the distidlouis done per floor, the porters in charge of
each residence take charge of settling studentsraams and bed spaces. These stages are not
essentially necessary as far as mathematical nioglelihd allocation distribution are concerned.
With regards to this study, the categories are YAdsi & Ali, 2010):
1. Final Year Students (Fy): Those in the last yeastofly
2. Scholars (Sc): Students with cumulative grade paudrages that are in the first class
range.
3. Foreign Students (Fo): whose nationality and exsié is not Nigeria.
4. Health Students (Ht): Physically challenged stuslent
5. Fresher (Fr): First year and direct-entry students
6. Sports students (Sp): Male and Female studentspattcipate in sporting activities at
the university.
7. Discretionary (Ds): Students considered based eniaprequests

8. Others (Ot) All other students requiring accommodation (in was years of study)

Each category of students has peculiar charadgtsrishd requirements which can be factored in
as constraints into the allocation process. Fan®te, disabled (health) students cannot be
given allocation on the top floor in any resideso®e none of the hostels is built with escalators

for ease of movement for them. Moreover, since dpace available is limited, some of the
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categories are prioritized based on pre-set adtratisge and/or other considerations (Adewumi
& Ali, 2010; Nyonyi, 2010). This serves as a mdjpard constraint during category allocation.
Other administative considerations that serve #werehard or soft constraints include: 1) Fy
students must be allocated to a floor that wilbedfthem less distractions (soft); 2) Ht students
must be accommodated in hostels close to the methosres and on the lowest floor for easy
access (hard); 3) Sp students must be accommodktsel to sports facilities due to practice
(hard); 4) all Fy, Fo and Ht students should beoawoodated (hard). Further details on the

problem can be found in Adewumi (2010), Adewumi & ®010) and Nyonyi (2010).

The process involved in the allocation problemllissirated in Figure 3.1. As stated earlier, the
allocation process is done in three stages narttedycategory allocation (CA), HaMllocation
(HA) and the Floor Allocation (FA) stages (Adewué&iAli, 2010). The number of students to
be accommodated are selected from each categding &A stage while the HA stage seeks to
distribute this students into various hostels. Heestage distributes the students allocated to
various hostels into various floors. The stagesraerdependent as the output from the CA stage
serves as input for the HA stage whose output sdsees the FA stage. Each stage has varying
constraints and requirements. Adewumi & Ali (201@xher sub-divided the eight categories of
students into two for the purpose of modelling aswlutions namely: fixed and flexible
categories. The fixed categories are groups thst tme accommodated at the CA stage, that is,
all students in this group must be given bed spatte HA stage, the fixed category represents
those given preference in terms of distributionoimarious halls. The fixed category was

determined based on given administrative critemi@ifly based on students’ peculiarity) for

! 1t should be noted that the term hall is used as a synonym for hostel and these two terms would be used
interchangeably throughout this research.

46



allocation. For example, at the CA stage, Ht, Rd 8p must be accommodated hence they are
considered fixed while at the HA stage, it is necessary to give the Fo category special
preference as they can be accommodated into anglhblowever, the Fy category are given
preference at this stage due to the requiremeat¢éommodate them where there will be less
distraction. Moreover, the university has preférspecified hostels for final year students as at
the time of this study (See appendix A for detdllsg flexible categories, on the other hand, are
groups that are less restrained and are thus sérgsiority when it comes to hostel allocation.
For instance, since there are always too many stasdéan available space, only as many as
possible of the flexible categories will be accondiated at the CA stage. Also at the HA stage,
these categories can be distributed into any hitlout restraint. The constraints for the HSAP
can therefore be summarized as follows (Adewumil§ 2010):

Hard Constraints:

1. The number of students accommodated must not exbeddtal capacity of space available.
2. The number of students allocated to a specificrhakt not exceed the capacity of that hall.

3. A student must be allocated only once (to one ppades).

4. Atthe CA stage, all fixed categories students nheshtccommodated.

5. At the HA stage, fixed categories must be allocatelgl to stated halls (see Appendix A).

6. Flexible categories must be allocated at the C4estesed on given priority.

7. At HA stage, Ht students should be allocated atdtwest possible floor.

Soft Constraints:

1. Atthe CA stage, as many Fy students as possibléddho be accommodated.

2. Similarly, as many Fy students as possible shoelddzommodated.

3. At HA stage, Fy students should be accommodatétedtighest possible floor.
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The main goal is to achieve fairness in the distidn of available space.

All Interested Students

|

Fill Out Application

Forms

!

All Applicants

Categorized

ﬂ

CA Stage: Determined total number
of student to be accommodated

ﬂ

HA Stage: Students are distributed to

their respective halls

!

FA Stage: For each hall, students are

allocated to specific blocks and floors

Figure 3.1: General HSAP Allocation Process

3.1.2 Data Set<Jase Study)

Secondary dataset on the number of hostels, sampider of applicants, categories of students

and others were used as presented in Adewumi &28110) and shown in Appendix A. There
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are twelve undergraduate hostels which are geogaphspread across the main campus of the
institution under study. The study did not deahwthe postgraduate hostels which are separate
from the undergraduate hostels and are administeaedd on different rules. The number of

floors, wings and bed spaces (capacity) vary adresiostels as shown in Appendices A and B.

In order to test the efficiency of the models atgbathms used in this research, other random

datasets that follow the distribution patternsted tivailable real dataset were generated. Two
sets of data were generated and results were prddoc each of them. The data sets have the
same characteristics as our case study excepthnatvere scaled to 1.5 of the original data set
from the literature. In each of the data sets, axeheight categories of students and six halls of
residence each for male and female students. Ii@udeach of the halls has varying capacities,

blocks and floors. The generated data sets howellew the same requirements and constraints

as specified for the original data set. See appesdh, C and D for detail.

A feasible solution to the HSAP is such as doednedk any hard constraint and that satisfies as
many soft constraints and objectives as possiliies eeds to be done while allocating students
in ways that are fair and that are as evenly sptieaighout the halls of residence as possible.

The models for the multi-staged allocation proassdescribed in detail in the next section.
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3.2. Modelling the Multi-stage HSAP

As earlier stated, the HSAP as defined in litemtturrently involves three stages of allocation
namely the CA, HA and FA stages. The CA stage detes the exact number of students from
each category that will be allocated accommodatiimce established, the HA stage determines
the distribution of students from each categoryp ispecific halls while allocation to floors are

done at the FA stage (see Figure 3.1).

3.2.1 Category Allocation Stage

As application for residence usually outnumbers dhailable space, this stage determines the
students to be considered for accommodation frametlgible application pool in such a way

that the total capacity of available space is nateeded.Figure3.2 gives an overview of the
allocation description at this stage which we miadkas a bounded KSP with restrictions. The

modelling is described as follows:

Fixed
a Allocation
[ Category

Allocation

Allocate all }

Total
hall

capacity

Allocation Priority setting

Flexible Based or }

1
~,
[

Figure 3.2: Description of Category Allocation Sta§ource: (Adewumi & Ali, 2010)



Applicants are classified into fixed and flexiblategories of students as explained earlier with

both groups assigned weights to represent theiyriof allocation. We assumg to represent
the number of students of i-th category to be aled,c, as the number of applicants in

categoryi, k as the total count (number) of fixed categorigs,as the total number of
categoriesT as the total number of allocations anf@lv, as the total number of flexible

allocations. A weightv = 1is assigned to the fixed categories while wei@hsw, < is 1

assigned to the flexible categories. The objectivéo maximize the utilization of available

space so as not to exceed the total available spds is considered as

maXZ W, X (3.1)
i=1

wherew, is the weight representing the allocation to shid of categoriyamong the set of

applicants. Nyonyi (2010) assumed that= ——i.e. allocation is proportional to the number

2.
of applicants per category. However, in this studg,allow w, to be user-defined as in another

pioneer research by Adewumi & Ali (2010). The doaisit is defined such that the full capacity

of available space is used.

Subject to:

(3.2)
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This is an equality constraint rather than an imditpuconstraint which is only useful when the
total number of applicants is smaller than theltoggpacity, in which case the solution of the
problem becomes trivial. Besides, with the equatitystraint, there is the guarantee that all

spaces would be fully occupied. To take care ofittez] categories, we set
X=qg,i=1..K (3.3)

This constraint ensures that all students in fizgggories are allocated. However, for the

flexible category, we have

O<sx,<¢,i=k+1,...,m

(3.4)

This constraint ensures that allocated studentdencategoryare smaller than the number of
applicants in category If the fixed categories are allocated, one iswth the fair distribution

of the flexible categories, thus the objective bees:

m (3.5)
max > wx
i=k+1
Subject to
m
Do =T,
=k +1 (3.6)
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Feasible solutions determined at this stage wpkegent the number of students that will be
given accommodation in the fixed and flexible catégs. These students will then need to be

distributed throughout the halls of residence atHA stage.

3.2.2 Hall Allocation Stage

This stage follows and takes input from the CA stagt this point, the distribution of students
into halls based on fair and evenly distributed mseare considered. Constraints for this stage
have been discussed earlier and presented in AppéndAdewumi & Ali, 2010; Nyonyi,
2010). The fixed categories defined for this stagest be allocated to specified halls while the
flexible categories are allocated to the remairied spaces in such a way that there is even

distribution in all the halls as illustrated in Eig 3.3.

Fixed To specific
a Allocation hall
b\[

Individual
hall

Hall
Allocation _
capacity

Allocate to
maximum
distribution
spread

Flexible
Allocation

Figure 3.3: Description of Hall Stage AllocatioroBess. Source: (Adewumi & Ali, 2010)

Following the model given in the CA stage with daniassumptions, we formulate this stage as

follows:
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If we takex; to represent the number of students of categooybie allocated to the j-th hall,
h; as the capacity of hall jp; as a proportion of the number of students of ¢ategory in the
halls, m as the total number of categories,as used in the CA stage, as the total number of

halls, k as the number of fixed categories in HA allocatsomd N, number of halls that have

some students of i-th category. The objective okimaing the spread of students across the

halls is modelled as:

max>_ p,N,
=1 (3.7)

Selections of the objective function respond to kvesstrictions of spreading. To illustrate this
categoryis taken,N, is the number of halls with at least one studdgntategoryk For this
reason, maximizing\, will maximize the number of halls with students adtegoryk. The
students of this category will be spread out mqre= max {x } - (max{x; } - min {x, | )is the

proportion of students in the halls with fewer &t and the number of students in the most

populated halls. Maximizing this value will enhamaere uniform distribution of the students.

Subject to:

2% =h,

i=1 (3.8)
This constraint guarantees that students alloaatedch hall are equal to the hall’s capacity.

n
D% =%
=1

(3.9)
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This guarantees that students allocated to eaelg@at are equal to CA results.

X; = c;for some jfixed for eachi = 1.k

(3.10)

x; =Ofor other j # j for eachi = 1.k (3.11)

This constraint ensures the students in categdikes sports and health are allocated in
designated halls as stated by the hard constiednwhile, p, is the proportion of students in
the i-th category allocated to each hall dividedabystudents in the i-th category whipeis the

mean of the maximum and the minimum of these r&éth the function to maximize given as
Zin;l P N; , with N, ensuring that the objective function increases withquantity of halls with

students of category In addition, p, will ensure that students are proportionatelyritigted to

each category. Once a feasible solution is deteuhinhe exact number of students to be
allocated from each category per hall will be knowising this solution, we can allocate

students at the floor level.

3.2.3 Floor Allocation Stage

The results from the HA stage serve as input te $tlige. This stage determines exactly how
many students of each category will be allocatéd @ach floor of each hall. FA is determined
separately for each hall. Thereafter, the studehts make up these numbers will be distributed
across all the floors of the halls in ways thatfareand evenly spread. The fixed categories here
are the Ht students who are to be allocated ttothest floor in their specified halls while the Fy

students are to be in the highest possible floadh&ir halls. Other categories are regarded as
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flexible categories and can be allocated to angrfio a way that is evenly spread. The solution
is determined exactly as in the HA stage, excegt itih this case the distribution is determined
separately for each hall. For each hall, if a fixadegory has been assigned to it, the students
will be allocated to the best floors possible anthstimes based on specific needs as in the Ht
category (See appendix A). This stage is also nexti@ls a form of multiple KSP as illustrated

in Figure 3.4.

Ht to lowest
floor
Floor
Floor Fy to highest capacity
Allocation floor

Others spread

across floor

Figure 3.4: Description of Floor Stage Allocatiomé&ess. Source: (Adewumi & Ali, 2010)

Following the assumptions made in the previousestagdelling, one can proceed as follows:
The objective is to

b

Jf'

m i
max)

Z\Nijl P N;
01 k=l 1= (3.12)
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subject to:

m
Z Xi = Qi
=

(3.13)

b, f;

J

Z X = X

=1 1= (3.14)

]

This constraint guarantees that the number of atsd#located from each category in each hall

corresponds to the HA results.

where

X represents the number of students to be allocdtdéi-th category in the I-th

floor of the k-th block of the j-th hall.

X; number of students of category i allocated tg-tiehall (result of hall allocation)
b; number of blocks in the j-th hall.
f, number of floors in the j-th hall.

a;,, capacity of the I-th floor of the k-th block ofetrth hall.

m total number of categories.

Py Proportion (rate) of students of the i-th categorgach floor of each block,

computed as irp, for the hall allocation.
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weight of allocating a student of i-th categorythe I|-th floor of the j-th hall.
Weights are assigned in the same way as in Adevguwili (2010) as follows:
where the hall has Ht allocation and no Fy allasatw, = 1; w, = 0 with
subscript 1 representing the Ht category and sigis2r representing the Fy
category. Where the halls have Fy allocation andHhow, = O; w, = 1 are
assigned; and where the hall has both Ht and Bgatibns,w, = 0.7; w, = 0.3.

The rest of the categories were assigned w = 0.5.

N. the sum for each block of the number of floorg tteve some students of i-th

category in the j-th Hall.

Since the objective is maximization, the higher fitreess value (set as the objective function),

the better the solution provided when the funcisevaluated.

3.3. Summary

This chapter was focused on the HSAP. It uses fipeniamples where the process of space
allocation is demonstrated. It showed that the ggetas several stages that deal with numerous
constraints. Mathematical models for all the thstsges for the optimisation of the HSAP under

the different constraints were developed.
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CHAPTER 4

HEURISTICS FOR HOSTEL SPACE ALLOCATION PROBLEM

4.1 Introduction

The challenge involved in obtaining the solution tlee analytical models at different stages of
the allocation process for the HSAP reflects thenmatational complexities involved in
determining feasible solutions to the problem. Asadant of KSP and an instance of the SAP,
an NP-hard problem requires good solution techsicaspecially as the solution space increases.
Burke &Varley (1998) recommend the adoption of Ieias in tackling this type of COP. In
this chapter, the techniques and the solution ndetiogy adopted namely the HC, SA, TS,
LAHC and GA including hybrids with GA and LAHC amiscussed. The purpose of the
hybridization is to synergize the strengths of timelerlying algorithms for possible improved
performance. To enable comparisons to be madet escdutions using the CPLEX solver

incorporated into AIMMS software were computed and reported.

4.2 Methodology

This section presents an overview of the algorittitechniques adopted for the HSAP including

the exact solution obtained from AIMMS The descriptions of each algorithm are givemwel

4.2.1 Exact Method

AIMMS® is optimisation modelling software utilised forhdng large-scale scheduling and

optimisation problems. It comprises of algebraidelbng language, an Integrated Development
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Environment (IDE) for model editing as well as Graal User Interface (GUI) for model
viewing and development. AIMMSincorporated many solvers including CPLEX, KNITRO
SNOPT, IPOPT, and Conopt through the aid of AIMM& solver interface. The software
provides both imperative and declarative prograngnstyles. Optimisation model formulation
occurs through declarative language elements kteasd indices, as scalar and parameters in
multidimensional approach, constraints and varmbtat are peculiar to all algebraic modelling
languages, and permits for a precise descriptionsahe problems in the mathematical
optimisation domain. The language also supports wiimeasurements as well as compiles and

runtime analysis of unit, which detect modellingoes if employed.

AIMMS supports control flow and procedure stateraefior data exchange with external data
sources like databases, spreadsheet, test fildseatensible mark-up language (XML)
optimisation models for post and pre-processingstasandling of user interface events and the
development of hybrid algorithms for some typegmiblem to which solvers cannot efficiently
proffer solutions. AIMMS supports reusability aserss can arrange models in libraries of user
models for later use. A free version of the sofewves available online. Figure 4.1 gives a
description of the model explorer of the softwardeich is very useful in solving mathematical
optimisation problems in various forms includingdar, quadratic, nonlinear, mixed-integer,
mixed-integer nonlinear, global optimisation, stasfic, robust optimisation and constraint

programming problems.
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Figure 4.1: Model explorer with parameter form

4.2.2 Genetic Algorithms

GA was first proposed independently by Fraser (J9® Bremermann (1962). However,

Holland (1975) is often cited as the main pionesearch work in the GA field. GA extracts

inspiration from the biological concept of the sual of the fittest or the natural selection

principle. A population of solutions evolve fromebgeneration to another through a successive

combination of a number of operations of selectmessover and mutation (Goldberg, 1989;

Forrest, 1993; Michalewicz, 1996). A solution (wmdual) is usually encoded as a string (called

a chromosome) with several of this forming a pofioia A new population is generated by

copying some fitter individuals from the currentpptation and selecting some newly created
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individuals using genetic operators, such as nartaind crossover. Once the termination criteria
are met, the algorithms stop. The encoding otietion into chromosome is an important step
that influences the efficiency of GA (Falkenaue®97). Usually, the encoding (genotype)

should have a one-to-one mapping with the actuahptype (actual solution).

The crossover operator permits chromosomes toitrdeane promising traits from two (possibly
more) selected parents while mutation seeks todotte some new traits that can enhance the
solution obtained from the crossover operation (a¥987; Goldberg, 1989). Selection of
parents are done via various means including tHekwewn roullete wheel selections. While it
is agreed that fitter individuals should have aydarprobability of being selected for the new
generation, it is also important to permit a fews$-fit” individuals to increase the diversity of

the population.

GA has proved to be very efficient in solving maegl-life optimisation problems including the
HSAP as shown in the pioneer research mentiondigéreaBased on the new model introduced,
this research study implemented GA in order tditaté the comparison of results obtained with
other techniques for the HSAP. More information @A and it variants can be found in
literature (examples: Sastry et al., 2005; Goldp&Q89; Davis, 1991; Beasley et al., 1993,
Reeves, 1995;Mitchell, 1996; Michalewicz & Foged0R). An overview of GA as implemented
in this work is given in Figure 4.2. Since the ralsdused are based on KSP, a string
representation of chromosomes that treat the nuoftudents to be distributed as items, each
with associated profit and weight values, to bekpddnto the knapsack which is the capacity

constraints are chosen, depending on the levdladfadion.
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1. Generate an initial random population = best
2. Evaluate the fitness of best = x
3. for each generation i till n do
3.1. for m iterations to create a new population do
3.1.1. Select parents
3.1.2. if random][0,1¥ crossover_rate then
3.1.2.1. Perform crossover to create new children
3.1.2.2. for each child do
3.1.2.2.1. if random[0, mutation_rate then
3.1.2.2.1.1. Perform mutation
3.1.2.2.2. end if
3.1.2.3. end for
3.1.2.4. Add children to population P(i)
3.1.3. else
3.1.3.1. Add parents to population P(i)
3.2. end for
3.4. Evaluate the fitness of P(i) = x*
3.5. if x* > x then
3.5.1. x=x*
3.5.2. best = P(i)
3.6. end if
3.7.ifi==nthen
3.7.1. Finished
3.8. else
3.8.1. Goto 3.
3.9.end if
4. end for

Figure 4.2: Genetic Algorithm

4.2.3 Hill Climbing Algorithm

HC is a LS technique that seeks to improve on eentisolution by iteratively replacing it with
the best solution found within the neighbourhood tbé LS space. This algorithm thus
continuously moves in the direction of the patft firavides a better solution. The main problem

with HC is premature convergence, that is, getingk in a local optimum. Figure 4.3 shows
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the description of the algorithm implemented irsthesearch study. This research attempts to
adapt HC to escape the local optimal point by wialyybridization as will be described in later

sections.

1. Generate an initial random solution = best
2. Evaluate the fitness of best = x
3. for each iteration i till n do
3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of N(i) = x*
3.3. if x* > x then
3.3.1. best = candidate
3.3.2. X =Xx*
3.4. end if
3.5.ifi == n then
3.5.1. Finish
3.6. else
3.6.1. Goto 3.
3.7.end if
4. end for

Figure 4.3: The Hill Climbing Algorithm implemented

4.2.4 Tabu Search Algorithm

TS was initially proposed by Fred Glover (Glove®7T) and was later popularized in Glover
(1989) and Glover, (1990). It is a single solutiapproach that has found a variety of
applications in practice. TS makes use of histbriicBormation and a memory (tabu list) to
prevent the search from cycling and becoming trdgpea local optimum. The tabu list is a
short-term memory of recent neighbourhood moves #@na prohibited during the search to
prevent it from going back to recently visited g@siin the search space. The length of the tabu
list determines how many moves are stored in thiewhile tabu tenure defines how many

iterations of each move in the tabu list are tabadthough the tabu list is helpful, sometimes it
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may restrict the search excessively. Thereforet fi8salgorithms have integrated a mechanism
called the aspiration criteria, which is used taigmaite the strength of the tabu list. Some long-
term memories that store records of the entirecheprocess for the purpose of intensification
and diversification are also used. A simple intecetion and diversification method can be
carried out by introducing incentive or penalty ued to modify the evaluation of moves
according to the frequency memory (Glover & Lagut205). Other diversification methods are
also provided in Soriano & Gendreau, (1996). Detaih the TS can be found in Glover

&Laguna (1997) and Gendreau (2003).

TS approaches have been used in many practicad ameluding transportation and routing,
scheduling, bioinformatics, telecommunications,wwek design and graph partitioning and
colouring (see Widmer & Hertz, 1989; Reeves, 1¥grin-Kapov & Vakharia, 1993; Taillard,
1994; Gendreau et al., 1994; Mazzola & Schantzp1B®@lland et al., 1996; Glover & Laguna,

1997). The TS algorithm as implemented in thisaedework is presented in Figure 4.4.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and ftreegs of working (f_working) = f_best
5. Initiate the Tabu List TL
6. for each iteration i till n do
6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. if (f_working better then f_current and !Fifidaboo(working)) or (f_working
better than f_best) then
6.3.1. iff_working better than f_best then
6.3.1.1. f_best =f_working
6.3.1.2. best = working
6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working
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6.3.5. f_current = f_working
6.4. else
6.4.1. working = current
6.4.2. f_working =f_current
6.5. end if
6.6. if i > n then
6.6.1. Finish
6.7. else
6.7.1. Goto 6
6.8. end if
7. end for

Figure 4.4: The Tabu Search Algorithm

4.2.5 Simulated Annealing Algorithm

SA is a LS method inspired by the physical coolimgcess of metals (Metropolis et al., 1953).
Since its introduction as an optimisation tool bykidatrick et al. (1983), it has been very
usefulness and has shown efficiency in handlingnogation problems including graph
partitioning and colouring, route-planning, layoutesign, sequencing and scheduling,
timetabling and signal processing(see Carnevall.etl985; Sechen et al., 1988; Johnson et al.,
1989; Ogbu & Smith, 1990; Abramson, 1991; Johnsoal.e 1991; Thompson & Dowsland,
1998; Burke & Kendall, 1999; Tian et al., 1999; Li9899; Chen & Luk, 1999; Bouleimen &
Lecocq, 2003). Details on the algorithms and otygplications can be found in Dowsland

(1995) and Henderson et al. (2003).

SA follows a simple process similar to the HC ba la probability of accepting worse solutions.
For example, in a maximisation problem with objeetiunctionf and neighbourhood structure
N, SA starts from an initial solution and repeatedgnerates and transfers to a neighbouring

current solution. During this process, SA has thespbility of visiting worse neighbours in order
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to escape from a local optima solution. Particylaal parameter known as temperatijnis used
to direct the likelihood of moving to worse neighibcolutions. In each iteration, the algorithm
accepts all uphill moves (a move which increases dbjective value for a maximisation
problem) and some of the downhill moves (a decreadige objective value for a maximisation
problem) based on the metropolis probability defias expd / t) whered is the variation in the
objective function between the new candidate smiutind the current solution. A simulated

annealing algorithm implemented in this researchkvsdescribed in Figure 4.5 below.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and ttreegs of working (f_working) = f_best
5. Initiate starting temperature T and final tenapere F
6. while T> F do
6.1. for each iteration i till n do
6.1.1. working = Randomly_Generate_Solution
6.1.2. Evaluate fitness of working = f_working
6.1.3. iff_working better then f_current then
6.1.3.1. use_solution = true
6.1.4. else
6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then
6.1.4.2.1. use_solution = true
6.1.4.3. end if
6.1.5. end if
6.1.6. ifuse_solution then
6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. iff_current better then f_best then
6.1.6.4.1. best = current
6.1.6.4.2. f best=f current
6.1.6.5. end if
6.1.7. else
6.1.7.1. f_working = f_current
6.1.7.2. working = current
6.1.8. end if
6.1.9. ifi > n then
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6.1.9.1. end for
6.1.10. else
6.1.10.1. Goto 6.1.
6.1.11. end if
6.2. end for
6.3. Update T according to cooling schedule
6.4.if T < Fthen
6.4.1. Finish
6.5. else
6.5.1. Goto 6.
6.6. end if
7. end while

Figure 4.5: The Simulated Annealing Algorithm

4.2.5 Late Acceptance Hill Climbing Algorithm

The LAHC was introduced and used by Verstichel &dBe (2009). Similar to other single-
solution search techniques such as the HC, SA &@dtiie LAHC starts with a randomly
generated initial solution and at each iteratioeviluates a new candidate to determine whether
to accept or reject it (Verstichel & Berghe, 200@).order to apply its acceptance rule, LAHC
maintains a list (of a fixed length) of previoudues of the current cost function. The candidate
cost is compared with the last element of thedidd if it is not worse, it is accepted. After the
acceptance procedure, the cost of the new curcdutian is inserted into the beginning of the
list and the last element is removed from the ehthe list (Abuhamdah, 2010). The inserted
current cost is equal to the candidate's cost sesaf acceptance, while in cases of rejection it
equals the previous value. The LAHC is memory basewsistent with the TS (Taillard, et al,
2001). However, the TS and the LAHC lists havefedint nature and purpose. In TS, solutions
(or moves) are memorized while in the LAHC the tshtains the values of the cost function.

Moreover, at each iteration in TS, the candidalatems are compared with the complete list
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whereas in LAHC only one value from the end oflibeis used (Edmund & Yuri, 2012). These
alterations in the memory utilization mechanism en&AHC less time consuming than TS.
Besides, it is possible to make the processing tfleAHC genuinely independent of the length

of the list by eliminating the shifting of the wiedlist at each iteration.

An improvement on the initial idea of the LAHC thgh the use of “virtual” shifting of the list

has been proposed by Edmund & Yuri (2012). Howetver list elements are immobile and the
list appears as a fitness arr&y of length s, its virtual beginning/, at thei" iteration, is
calculated as:

v=imodL,,
Where “mod” represents the remainder from the ertefivision. At each iteration, the value of
f, is compared with the candidate cost and afterpditge or rejecting the current cost, a new
value is assigned tf.The lengthL,, appears as a single genuine input parameter fsr th

algorithm. No other parameter is required.

LAHC performance is not affected by the initial wa$ of fitness array (Ozcan et al, 2009). At
the beginning of the search, the initial list camtain any arbitrary values. If these are much

higher than the initial cost, then the algorithnil generate a corresponding number (equal to the

L.,) of random perturbations while filling the listtwicurrent costs. If all elements of the initial

fitness array are very low, then the algorithm wgiéinerate the same number of non-accepted
moves and again, will fill the fithess array withetvalue of the initial cost. However, a very

small delay in the search procedure can causer @thbe two variants to occur. If one does not
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wish to wait until the algorithm does it automaliigathen it is possible to set up all elements of

the fitness array to be equal to the initial cafobe starting the search.

It should be noted that the LAHC uses a greedy #aoee rule process (rejects all worse
candidates) only in the case of the delayed commpari(Hu, Kahng, & Tsao, 1995).
Nevertheless, if a current solution is acceptedh w immediate candidate, LAHC (in a similar
way to SA, threshold accepting (TA) and generalideterministic annealin¢GDA)) allows the
acceptance of worsening moves. This can happersituaion where the current cost is better
than the value from the list and the candidate $bcated amongst them. Considering that
accepting worsening moves usually increases teagitn of a search process, it can be estimated
that the LAHC has a better performance than thedyddC. Alternatively, there are possible
cases where the current cost is worse than thes fatun the list (Abuhamdah, 2010). Here
(using the initial approach of LAHC), a non-worsemimove can still be discarded. Such
algorithmic behaviour is usually regarded as undbk in computational search (SA, TA, and
GDA always accept non-worsening moves). In orddve@ersistent with this practice, Burke &
Bykov (2008) proposed a second improvement on tiigali idea, so that not only “late
acceptance” rules can be used for the worseningesydout also all non-worsening ones can be
accepted. Results of the initial experiments in ¢bherent research work further show certain
advantages of both improvements on the initial .id&lh experiments in this research were

carried out with the final (improved) version of HE. Consequently, its final acceptance
condition at the™ iteration is expressed as:

G<sGim OF G=6G,
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In this formula,c is the candidate cost, , is the current cost angl_ ., denotes the cost of the
current solution, iterations, which is equal # 4 ,- Obviously, whenL,, is equal to 1 or

0, LAHC is simply greedy HC. Consequently, LAHC etes its exclusive properties whiep

is equal to two or higher. The algorithm for LAHEdiven in Figure 4.6.

1. Generate an initial random solution = best s
2. Evaluate the initial cost function of best s)C

3. Give the length_,,

4. For all iterationk J{0...Lfa-1} f :=q 9

4.1. Counter 1=0;

4.2. Do until the end of the condition
4.2.1. Generate a candidate solution s*
4.2.2. Evaluate the cost function C(s*) and compute
42,3,V =1 modL,

42.4.1fc(s)< f or oS)< d $
4.2.4.1. Then the candidate is accepted (s:=s*)
4.2.5. Else, the candidate is rejected (s:=S)
4.2.5.1. Add current cost into the fitness affiayC(s)
4.3. Update the counter [:=1+1
5. End for

Figure 4.6: Late Acceptance Hill Climbing

4.2.6Hybridization of techniques

Various hybrids of the underlying techniques weterapted in order to enhance the strength of
these techniques in the search for better solutmtise HSAP. The algorithms for some of these

hybrids are presented in this section.

First, hybrids of LAHC with GA, HC, TS and SA wemaplemented in this study. For the
LAHC_GA hybrid, some GA operators (e.g. crossovet mutation) were introduced in order to
enhance the performance of the LAHC technique. I8ityj the GA and LAHC were hybridised
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with HC, SA and TS to find solutions to the HSAPtla¢ three stages of the allocation process.

The algorithm for LAHC_GA is given in Figure 4.7.

1. Generate an initial random solution = best s
2. Evaluate the initial cost function of best s )C

3. Give the length_,

4. For all iterationk J{0...Lfa-1} f :=q9

4.1. counter=0
4.2. while countex length of candidate do
4.2.1. Select individuals P(counter) and P(couritgfrom candidate
4.2.2. if random[0,1¥ crossover_rate then
4.2.2.1. Perform crossover
4.2.3. end if
4.2.3.1. if random[0,1F mutation_rate then
4.2.3.1.1. Perform mutation
4.2.4. end if
4.2.5. Increment counter by 2
4.2.6. if counter > length of candidate then
4.2.6.1. end while
4.2.7. else
4.2.7.1. Goto 3.3.4.
4.2.8. end if
4.3 end while
4.4. Evaluate fitness of candidate = x*
4.5. if x* > x then
4.5.1. best = candidate
452. x=x*
4.6. end if
5. Do until the end of the condition
5.1. Generate a candidate solution s*
5.2. Evaluate the cost function C(s*) and compute
53 v=imodL,,

5.4.1fc(s)< f or o(S)< € $
5.4.1. Then the candidate is accepted (s:=s*)
5.4.2. Else the candidate is rejected (s:=S)
5.5. Add current cost into the fitness arfay=C(s)
5.6. Update the counter I:=I+1
6. End for

Figure 4.7.LAHC and GA Hybrid (LAHC_GA)
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For the GA hybrids, each individual chromosome espnts the students (gene) that have been
allocated to each category. These are the stutiettdave been allocated to each category, for
each hall, at the HA stage and the students that heen allocated to each category, for each
floor of each hall, at the FA stages. The unifomossover technique was used while mutation

was performed by randomly swapping one gene froenidividual to the next.

Furthermore, HC was also hybridized with GA (HC_G#)d LAHC (HC_LAHC) in order to
explore the LS ability of HC to improve the perf@ante of GA and LAHC. This is done with
the hope to provide improved solutions. The alhong for HC_GA and HC_LAHC are given in

Figures 4.8 and 4.9 respectively.

1. Generate an initial random solution = best
2. Evaluate the fithess of best = x
3. for each iteration i till n do
3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of candidate = x*
3.3. if x* > x then
3.3.1. best = candidate
3.3.2. X =x*
3.3.3. counter =0
3.3.4. while countex length of candidate do
3.3.4.1. Select individuals P(counter) and P(cadiitefrom
candidate
3.3.4.2. if random][0,1f crossover_rate then
3.3.4.2.1. Perform crossover
3.3.4.3. end if
3.3.4.4. if random][0,1f mutation_rate then
3.3.4.4.1. Perform mutation
3.3.4.5. end if
3.3.4.6. Increment counter by 2
3.3.4.7. if counter > length of candidate then
3.3.4.7.1. end while
3.3.4.8. else
3.3.4.8.1. Goto 3.3.4.
3.3.4.9. end if
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3.3.5. end while
3.3.6. Evaluate fitness of candidate = x*
3.3.7. if x* > x then
3.3.7.1. best = candidate
3.3.7.2. x=x*
3.3.8. end if
3.4. end if
3.5.ifi == n then
3.5.1. Finish
3.6. else
3.6.1. Goto 3.
3.7.end if
4. end for

Figure 4.8: Hybrid of HC and GA (HC_GA) Algorithm

1. Generate an initial random solution = best
2. Evaluate the fitness of best = x
3. for each iteration i till n do
3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of candidate = x*
3.3.if x* > x then
3.3.1. best = candidate
3.3.2. Xx=x*
3.3.3. Evaluate the initial cost function of best C(s)
3.3.4. Give the lengtlh. .,

3.3.5. For all iteratiork 0{0...Lfa-1 f :=d 9

3.3.5.1. Counter 1=0;

3.3.5.2. Do until the end of the condition
3.3.5.2.1. Generate a candidate solution s*
3.3.5.2.2. Evaluate the cost function C(s*) and jgota

3.3.5.2.3V =1 modL,

3.35.3.1Ifc(s)< f or o(S)< d 3
3.3.5.3.1. Then the candidate is accepted (s:=s*)
3.3.5.4. Else the candidate is rejected (s:=5)
3.3.5.4.1. Add current cost into the fitness aftayC(s)
3.3.5.4.2. Update the counter |:=I+1
3.3.6. end for
3.7.end if
3.8.ifi ==nthen
3.8.1. Finish
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3.9. else
3.6.1. Goto 3.
3.10. end if
4, end for

Figure 4.9: Hybrid of HC and LAHC (HC_LAHC) Algohin

SA was also hybridized with GA (SA_GA) and LAHC (S8AHC) in order to explore the
ability of SA to accept worse solutions comparethv@A and LAHC techniques. The SA_GA

and SA_LAHC algorithms are given in Figures 4.16 dril 1 respectively.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and ftreegs of working (f_working) = f_best
5. Initiate starting temperature T and final tenapere F
6. while T> F do
6.1. for each iteration i till n do
6.1.1. working = Randomly_Generate_Solution
6.1.2. Evaluate fitness of working = f_working
6.1.3. iff_working better then f_current then
6.1.3.1. use_solution = true
6.1.4. else
6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then
6.1.4.2.1. use_solution = true
6.1.4.3. end if
6.1.5. end if
6.1.6. ifuse_solution then
6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. counter =0
6.1.6.5. while countet length of working do
6.1.6.5.1. Select individuals P(counter) and P(tei) from
working
6.1.6.5.2. if random[0,X crossover_rate then
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6.1.6.5.2.1. Perform crossover
6.1.6.5.3. end if
6.1.6.5.4. if random[0, mutation_rate then
6.1.6.5.4.1. Perform mutation
6.1.6.5.5. end if
6.1.6.5.6. Increment counter by 2
6.1.6.5.7. if counter > length of working then
6.1.6.5.7.1. end while
6.1.6.5.8. else
6.1.6.5.8.1. Goto 6.1.6.5.
6.1.6.5.9. end if
6.1.6.6. end while
6.1.6.7. Evaluate fitness of working = f_working
6.1.6.7. iff_working better then f_current then
6.1.6.7.1. f_current = f_working
6.1.6.7.2. current = working
6.1.6.8. iff_current better then f_best then
6.1.6.8.1. best = current
6.1.6.8.2. f_best =f_current
6.1.6.9. end if
6.1.7. else
6.1.7.1. f_working = f_current
6.1.7.2. working = current
6.1.8. end if
6.1.9. ifi > n then
6.1.9.1. end for
6.1.10. else
6.1.10.1. Goto 6.1.
6.1.11. end if
6.2. end for
6.3. Update T according to cooling schedule
6.4.if T < Fthen
6.4.1. Finish
6.5. else
6.5.1. Goto 6.
6.6. end if
7. end while

Figure 4.10: Hybrid of SA with GA (SA_GA) Algorithm

1. Generate an initial random solution = best

2. Set current = working = best

3. Evaluate the fitness of best = f_best

4. Set the fitness of current (f_current) and ttreegs of working (f_working) = f_best
5. Initiate starting temperature T and final tenapere F
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6. while T> F do
6.1. for each iteration i till n do

6.1.1. working = Randomly_Generate_Solution

6.1.2. Evaluate fitness of working = f_working

6.1.3. iff_working better then f_current then
6.1.3.1. use_solution = true

6.1.4. else
6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then

6.1.4.2.1. use_solution = true

6.1.4.3. end if

6.1.5. end if

6.1.6. ifuse_solution then
6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. Evaluate the initial cost function of tes C(S)
6.1.6.5. Give the length,

6.1.6.6. For all iteratiokk U{0...Lfa-1} f :=d 9

6.1.6.6.1. Counter [=0;

6.1.6.6.2. Do until the end of the condition
6.1.6.6.2.1. Generate a candidate solution s*
6.1.6.6.2.2. Evaluate the cost function C(s*) aohpute

6.1.6.6.2.3" = modl,
6.1.6.6.3. Ifc(s)< f or o(S)< d $

6.1.6.6..3.1. Then the candidate is accepted (5:=s*
6.1.6.6.4. Else the candidate is rejected (s:=S)
6.1.6.6.4.1. Add current cost into the fitnessyafva=C(s)
6.1.6.6.4.2. Update the counter I:=I1+1
6.1.6.7. end for
6.1.8. else
6.1.8.1. f_working = f_current
6.1.8.2. working = current
6.1.9. end if
6.1.10. if i > n then
6.1.10.1. end for
6.1.11. else
6.1.11.1. Goto 6.1.
6.1.12. end if
6.2. end for
6.3. Update T according to cooling schedule
6.4.if T < Fthen
6.4.1. Finish
6.5. else
6.5.1. Goto 6.
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6.6. end if
7. end while

Figure 4.11: Hybrid of SA with LAHC (SA_LAHC) Algahm

Similarly, TS was hybridized with GA (TS_GA) and HE (TS_LAHC) in order to synergize
the strengths of these algorithms. The algorithond65_GA and TS_LAHC are given in Figures

4.12 and 4.13 respectively.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and theeés of working (f_working) = f_best
5. Initiate the Tabu List TL
6. for each iteration i till n do
6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. iff_working better then f_current and !Find bba(working) or f_working better
thenf_best then
6.3.1. iff_working better then f_best then
6.3.1.1. f_best =f working
6.3.1.2. best = working
6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working
6.3.5. f_current =f working
6.3.6. counter =0
6.3.7. while countex length of working do
6.3.7.1. Select individuals P(counter) and P(cadiifefrom working
6.3.7.2. if random[0,1¥ crossover_rate then
6.3.7.2.1. Perform crossover
6.3.7.3. end if
6.3.7.4. if random[0,1F mutation_rate then
6.3.7.4.1. Perform mutation
6.3.7.5. end if
6.3.7.6. Increment counter by 2
6.3.7.7. if counter > length of working then
6.3.7.7.1. end while
6.3.7.8. else
6.3.7.8.1. Goto 6.3.7.
6.3.7.9. end if
6.3.8. end while
6.3.9. Evaluate fitness of working = f_waorking
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6.3.10. iff_working better then f_current and !Fifihboo(working) or
f working better then f_best then
6.3.10.1. iff_working better then f_best then
6.3.10.1.1. f_best=f working
6.3.10.1.2. best = working
6.3.10.2. end if
6.3.10.3. Update TL with working
6.3.10.4. current = working
6.3.10.5. f_current =f_working
6.3.11. end if
6.4. else
6.4.1. working = current
6.4.2. f_working = f_current
6.5. end if
6.6. if i > n then
6.6.1. Finish
6.7. else
6.7.1. Goto 6
6.8. end if
. end for

U, WNPEF

Figure 4.12: Hybrid of TS with GA (TS_GA)algorithm

. Generate an initial random solution = best
. Set current = working = best
. Evaluate the fitness of best = f_best
. Set the fitness of current (f_current) and timeés of working (f_working) = f_best
. Initiate the Tabu List TL
. for each iteration i till n do
6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. iff_working better then f_current and !Find bba(working) or f_working better
thenf_best then
6.3.1. iff_working better then f_best then
6.3.1.1. f_best =f working
6.3.1.2. best = working
6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working
6.3.5. f_current =f_working

6.3.6. Evaluate the initial cost function of best C(s)
6.3.7. Give the length.,,

6.3.8. For all iteratiork J{0...Lfa-1} f :=d 9

6.3.8.1. Counter [=0;

6.3.8.2. Do until the end of the condition
6.3.8.2.1. Generate a candidate solution s*
6.3.8.2.2. Evaluate the cost function C(s*) and pora
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6.3.8.23 " Modls
6.3.8.3.1fc(s)< f or (S)< € $
6.3.8.3.1. Then the candidate is accepted (s:=s*)
6.3.8.4. Else the candidate is rejected (s:=s)
6.3.8.4.1. Add current cost into the fitness afiayC(s)
6.3.8.4.2. Update the counter I:=I+1
6.3.8.5. end for
6.3.10.3. Update TL with working
6.3.10.4. current = working
6.3.10.5. f_current = f_working
6.3.11. end if
6.4. else
6.4.1. working = current
6.4.2. f_working = f_current
6.5. end if
6.6. if i > n then
6.6.1. Finish
6.7. else
6.7.1. Goto 6
6.8. end if
7. end for

Figure 4.13: Hybrid of TS with LAHC (TS_LAHC) algtmm

In the next chapter, details of the simulation expents conducted are presented along with the
settings and the results obtained for these teaksidpased on the three data sets used for the

HSAP as stated previously.
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CHAPTER 5

EXPERIMENTAL SETTINGS AND RESULTS

5.1 Introduction

As stated earlier, the allocation into male and dierhostels follows the same but mutually
exclusive procedure. Thus, male and female styslgmilations are considered separately in the
implementation and allocation processes. Someefdhults obtained for the male and female
allocations are therefore presented separately agh estage of the allocation process.
Furthermore, the performances of the heuristic rdlgns are compared by evaluating their
fitness values. The algorithms with the best fisneglues will represent the heuristics that have
provided the best solutions for each stage. Famgke, at the HA and FA stages, the
performance of the heuristics depend on the digioh (spread across halls or floors for the
flexible categories) obtained from each algorithResults obtained are essentially the
distribution (not the actual physical allocatiotfjat is, the exact number of students from each

category that are to be accommodated at each atdlge allocation process.

5.2 Parameter Settings

Most heuristics have parameters that determiner thehaviours and performance. Wrong
settings and/or combination of parameters can caugaod technique to performance badly in
its search for solutions to a problem. It is thmportant to find good parameter settings for

algorithms before their execution. Often timess ttan be obtained from previous research work
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and available literature. However, it is pertineEnperform some simulation experiments on this

problem to determine the best parameter settings.

Parameters can be kept static (fixed) throughoaitettecution of their underlying technique or
varied dynamically according to some pre-defineileca or testing procedure. This study
adopted the static approach as the initial paransetéing used for each of the algorithms which
remain the same at each stage of the allocatiazepso A series of simulation experiments were
performed using the real dataset (data set ondamptimal parameter combinations that give
the best results consistently. Values of varicarmmeters were varied for different runs and the
result obtained compared to determine the bestevalbhis was done for all the implemented
algorithms. The parameter combination and valuas gfave the highest fitness (in terms of
constraint satisfaction) and the best studentdridigions were chosen and later used in the

actual experiment.

At the end of the processing for each algorithne, plarameters obtained are described in this
section. Some of the parameters were tuned acgptdithe size of the problem instance and by
observing many runs of simulation experiments. edasn this, the number of iterations for HC,
TS, SA, and LAHC was set to 200. Similarly, thener of iterations for GA was set to 200. A
tabu list of sizelO is specified for TS while LAHG@s a tabu list size of 20. The initial
temperature for SA was set to 80 while the finahgerature was set to 0.5. The temperature
decreases by an alpha of 0.99. These settings meimaisame for GA and LAHC hybrids. GA
has a population size of 20, a crossover rate ©faid a mutation rate of 0.1. Each algorithm
was executed 100 times with each problem instan@ataset and the best results in terms of

solution quality are recorded. The simulation ekpent was performed on a stand-alone
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desktop computer with an Intel dual core procesdat.86 GHz and 2GB RAM, running on
Windows 7 Ultimate operating system. Coding wasedasing MATLAB 7.10.

5.3 Testing

Figure 5.1represents the general framework (blaelgrdm) for testing all the stages of the

HSAP. The pseudo-code associated with this bloagrdim is given below (Figure 5.2).

A 4

P
Run ] > Output
\ J Solution

\ 4
[ Increment | ]

!

A 4

No
Yes
N
Compute fitness- "
Value and Time )
\ 4
<
[ Stop
J

Figure 5.1: Framework for algorithm testing
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1. Select data set
2. Open log files
3. Set m, max_it, good_profit (, temperature if usBAor a SA variant)
4. Initialize inner_time, temp, eval_func, cnt
5. Forifrom1ltom
1. Select algorithm
2. Run algorithm
3. Write to Type 1 log file
4. if the current run was stopped by the good_prafitdition
1. cnt=cnt+1,
5. endif
6. Compute inner_time, temp, eval_func
6. End
7. Compute Fitness_Values, Time
8. Write to Type 2 log file

Figure 5.2: The pseudocode for the testing method

A detailed description of Figure 5.2 is given below

1. Select data set:
— in this step the data sets are stored in the Magadbat are used as inputs for the
algorithm used;
— the input variables for the MATLAB function (implemtations of the algorithms)
which depend on the data set currently used are:
o CA:
= total_cap: total capacity of the hostels
= cat_app: the applicants classified in categories
o HA:

» H: hall capacities
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» S: determines whether the HA stage is solved fde mafemale
students
= ca: the results from the category allocation s{#ge distribution

of students from each category)

»= H: hall capacities
= S: determines whether the HA stage is solved fde miafemale
= fa: the current hall number
2. Open log files:
— in a bit to simplify the means by which the resalts saved, two types of log files
were designed:
» Type 1 log files — used to store the solution giseeach program run
» Type 2 log files — used to store the other measafrperformance of the
algorithms
3. Set m, max_it, good_profit and temperature
— Given the structure of the testing method, add#tivariables are used:
0 m — the number of program runs
0 max_it — the maximum number of iterations (thet fat®pping condition for
every algorithm)
0 good_profit — the objective value threshold at whids considered that the
algorithm has reached convergence; this reprefiemtsecond stopping

condition; the values were determined by first ingrthe algorithms max_it
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times, taking the values close to the steady stdtees of the objective

function and computing them as follows:

good__ profit = max(val_ func) —5%(maxval_ func) —min(eval_ func))
where eval_func is the mean value of the objedtinetion in each program run.

0 temperature — is the initial temperature used foa8d SA hybrids.
4. Initialize inner_time, temp, eval_func, cnt.
— Another set of temporary variables used are ne¢decbmpute the performance
measures defined earlier. The roles of these agalye defined as follows:

* inner_time- is the vector of lengthwhich stores the computation time of the
currently selected algorithm at each program run.

* temp— is a m x max_itmatrix that stores all thendrant values of the
objective function for each program run; it is ugedcompute an average
transient sequence of the objective function testiate the convergence of
the currently selected algorithm.

* eval_func- is a vector oin elements that stores the best objective value
returned by the algorithm for each program run.

e cnt— is a variable that counts how many of the @ogruns are stopped by
the good_profit condition, meaning how many programs converge in less
than max_ititerations.

5. For i from 1 tan {run the algorithhrmtimes}
» Select algorithm — based on the string stored gnvalriable the program will switch
between the algorithms; the values that the algabl can take are: “HC”, "GA”,
"HC_GA”, "HC_LAHC”, "LAHC”, “LAHC_GA”, “SA”, “SA_GA ", “SA_LAHC",

“TS”, “TS_GA”, “TS_LAHC".
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* Run algorithm — in this step the selected algorithmun with the configurations made in
the previous steps.
* Write to Type 1 log file — in the log file the stilbn will be written; the number of
solutions will bem.
» Check the stopping condition
» Store the values needed for computing the perfocmaneasures in the corresponding
temporary variables.
6. Compute the performance measures — Fitness ¥ahaTimes
7. Write to the Type 2 log file — the performanceasures computed at the previous step will be

written in the log files.

5.4 Results and Discussions

Simulation experiments were done using the thréasdss. At the CA stage, the Ht, Sp and Fo
categories are considered fixed categories for mmadefemale students. At the HA stage, the Ht,
Sc and Sp categories are fixed and are to be @sstgrthe T 2"¥ and %" halls respectively (for
male students) and®13%and &" halls respectively (for female students) as sjestifn the
requirements and in Appendix A. The result obtaiaethe CA stage is deterministic (AIMMS)
and only results obtained for one execution ofgtegram are shown. For comparison purposes,
the results of the separate runs are shown inthth&s with the results obtained from AIMMS. It
should be noted that the AIMMS software could natiacm any exact solution at the HA and FA

stages as the number of constraints become toe targandle. This further justifies the use of
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heuristics at all the three stages. The resul&IEgiMS, evidently the best (see Table 5.7), was

computed at the CA stage to serve as the initiatisa and input for the HA and FA stages.

After testing all algorithms at the CA stage, tbé&uson obtained by the best algorithms become
the input to the HA stage. Similarly, the best soluobtained by the best algorithms at the HA
stage is used as the input for the FA stages. Pesftce comparisons can be done by viewing
the exact number of students each algorithm asstgascommodation, and their fithess values;
the value of the fithess function or objective fumie for an individual is its score. Algorithm

performances were compared with each other by atrafytheir ability to determine improved

solutions over a specific number of iterations. Bxecution times of the algorithms were also

noted.

Results are presented in tabular form for the HA BA stages to show the numbers of students
from each category that are allocated to eachamallinto each floor with regards to the relevant
technique. The effectiveness of the algorithms determined by comparing the most feasible
solutions found by each algorithm over a specifimber of iterations. For the FA stages, results

for the halls are shown.

5.4.1 CA Stage Results

Tables 5.1-5.6 show the number of students fromh eategory obtained from the various
techniques at this stage of the allocation procéhke. result is benchmarked with the exact
solution (distribution) obtained with the AIMMS s$wafire. The tables represent the results for all

three data sets and for both male and female ssiden
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The results of the heuristic techniques show sinpigdterns to that of the AIMMS software. All
results satisfied the constraints associated withdtage and have similar students’ distribution
with that obtained from the AIMMS. All fixed categostudents (Fo, Ht and Sp) were allocated
by the use of all the techniques. The performaridheoheuristics was determined by observing
their ability to generate feasible solutions ov@0 Zerations (a measure of their fithess values)
and comparing them with that of AIMMS. At this stagf the allocation process, the higher the
fitness value, the better the solution. Tables%97show the performances of the algorithms for
the three data sets and for male and female std€&he best fithness values and the shortest
times determined by the algorithms are emphasizetdld) in the tables presented below for
the purpose of clarity.

Data Set One

Table 5.1: Category Allocation for male students

Category | Fo|Ht [Sp [ Fy | Sc | Fr Ds| Ot | Total
Applicant | 20| 70| 400 1240| 400| 1332| 100| 1800| 5362
Category Results by Each Algorithm
AIMMS 20 70[ 400 1240| 400| 1332| 100| 348| 3910

HC 20| 70| 400| 1240| 400| 1332| 100| 348| 3910
TS 20| 70| 400| 1240| 400| 1332| 100| 348| 3910
SA 20| 70| 400| 1164| 400| 1188| 61| 607| 3910
LAHC 20| 70| 400| 1240| 400| 1332| 100| 348| 3910
GA 20| 70| 400| 920|160| 1277| 30| 1033| 3910

LAHC_HC | 20| 70| 400| 1240| 400| 1332| 100| 348| 3910
LAHC_TS | 20| 70| 400| 1240| 400| 1332| 100| 348| 3910
LAHC_SA | 20| 70| 400| 1240| 400| 949| 100| 731| 3910
GA_HC 20| 70| 400( 1240| 400| 1332| 100| 348| 3910
GA_TS 20| 70| 400 1240( 400| 1332| 100| 348| 3910
GA_SA 20| 70| 400( 1240| 400| 1007| 51| 722| 3910
GA_LAHC | 20| 70| 400| 1240| 400 1332| 100| 348| 3910
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Table 5.2: Category Allocation for female students

Category | Fo|Ht [Sp | Fy | Sc | Fr Ds| Ot | Total
Applicant | 25| 80| 500| 1240| 230| 1367| 60| 1000| 4502
Category Results by Each Algorithm
AIMMS 25| 80| 500| 1260| 230| 1367| 53| 73| 3588

HC 25| 80|500|1262| 230| 1367 53| 71| 3588
TS 25| 80|500(1420| 230| 641| 60| 632| 3588
SA 25| 80|500| 1420| 118| 1367 48| 30| 3588
LAHC 25| 80|500( 1313|230 1367| 60| 13| 3588
GA 25| 80|500( 1420|119/ 1367 60| 17| 3588

LAHC_HC | 25| 80| 500 1420| 230| 1258| 13| 62| 3588
LAHC_TS | 25| 80| 500 1307| 230| 1367| 60| 19| 3588
LAHC_SA | 25| 80| 500| 780| 32|1124| 60| 987| 3588
GA_HC 25| 80|500| 1420| 123|1367| 60| 13| 3588
GA_TS 25| 80| 500| 1420| 230| 1246| 45| 42| 3588
GA_SA 25| 80| 500| 1420| 230| 1236| 60| 37| 3588
GA_LAHC | 25| 80| 500| 1420| 230| 1270| 52| 11| 3588

Data Set Two

Table 5.3: Category Allocation for male students

Category | Fo|Ht |[Sp |Fy | Sc | Fr Ds | Ot | Total

Applicant | 30| 105| 600| 1860| 600| 1998| 150| 2700| 8043

Category Results by Each Algorithm

HC 30| 105|/600|1717|600|1998| 66| 749| 5865
TS 30| 105| 600| 1860| 600| 1998| 150| 522| 5865
SA 30| 105| 600| 1860| 600| 1998| 150| 522| 5865
LAHC 30| 105| 600| 1860| 600| 1998| 150| 522| 5865
GA 30| 105|600| 1860| 600| 1811| 112| 747 | 5865

LAHC_HC | 30| 105| 600| 1860| 600| 1998| 150| 522| 5865

LAHC_TS | 30| 105| 600| 1860| 600| 1998| 150| 522| 5865

LAHC_SA | 30| 105|600 1717| 600| 1998| 66| 749| 5865

GA_HC 30| 105| 600| 1860| 600| 1998| 150| 522| 5865

GA_TS 30| 105| 600| 1860| 600| 1998| 150| 522| 5865

GA_SA 30| 105| 600| 1573| 600| 1998| 53| 906| 5865

GA_LAHC | 30| 105|600 1860| 600| 1998| 150| 522| 5865
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Table 5.4: Category Allocation for female students

Algorithm |Fo |Ht |Sp |Fy | Sc | Fr Ds| Ot | Total
Applicant | 38| 120| 750| 2130| 345| 2051| 90| 1500| 7024
Category Results by Each Algorithm

HC 38|120] 750] 1851|181 1851| 21| 570| 5382
TS 38| 120| 750| 1512| 114 1654| 90| 1104| 5382
SA 38| 120| 750( 1959| 345| 2051| 86| 33| 5382
LAHC 38| 120| 750| 2130| 345| 1678| 25| 296| 5382
GA 38|120| 750| 2130| 345| 1869| 23| 107| 5382

LAHC_HC | 38| 120| 750| 1950| 237| 2051| 73| 163| 5382
LAHC_TS | 38| 120| 750| 2130| 345| 1320| 41| 638| 5382
LAHC_SA | 38| 120| 750| 2130| 345| 1115| 84| 800| 5382
GA_HC 38|120| 750| 1933| 260| 2051| 10| 220| 5382
GA_TS 38|120] 750| 1681| 212| 2051| 14| 516| 5382
GA_SA 38| 120| 750| 2130| 345| 802| 74| 1123| 5382
GA_LAHC | 38| 120| 750| 2130| 345| 1907| 40| 52| 5382

Data Set Three

Table 5.5: Category Allocation for male students

Category | Fo|Ht |Sp | Fy Sc | Fr Ds | Ot Total

Applicant | 45| 158| 900| 2790| 900| 2997 | 225| 4050| 12065

Category Results by Each Algorithm

HC 45| 158|900| 2790| 900 | 2997| 225| 783| 8798
TS 45| 158|900| 2790| 900 | 2600, 42| 1363| 8798
SA 45| 158|900| 2790| 900 | 2997| 225| 783| 8798
LAHC 45| 158|900| 2790| 900 | 2997| 225| 783| 8798
GA 45158 900| 2790| 900 | 2997| 225| 783| 8798

LAHC_HC | 45| 158|900| 2301| 75|2467|124|2728| 8798

LAHC_TS | 45| 158| 900| 2790| 900 | 2997| 225| 783| 8798

LAHC_SA | 45| 158|900 2790| 900| 2997| 225| 783| 8798

GA_HC 45158 900| 2790|900 | 2997| 225| 783| 8798

GA_TS 45158 900| 2790| 900 | 1395| 225| 2385| 8798

GA_SA 45| 158|900| 2790| 900 | 2625| 160 | 1220| 8798

GA_LAHC | 45| 158|900 | 1603| 583| 2770| 36| 2703| 8798
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Table 5.6: CA for female students

Category | Fo|Ht |Sp Fy | Sc | Fr Ds | Ot | Total
Applicant | 57| 180| 1125| 3195| 518| 3077| 135| 2250| 10537
Category Results by Each Algorithm

HC 57[180| 1125|3195 518| 2197 60| 742| 8074
TS 57(180| 1125| 3195|518 | 2664| 128| 207| 8074
SA 57[180| 1125| 2949|486| 3077, 38| 162| 8074
LAHC 57[180| 1125| 2698|518 | 3077 96| 323| 8074
GA 57[180| 1125]| 3195| 518| 2409| 56| 534| 8074

LAHC_HC | 57| 180| 1125| 3195| 518| 2030| 135| 834| 8074
LAHC_TS | 57|180| 1125| 2574| 518| 3077| 78| 465| 8074
LAHC_SA | 57|180| 1125| 3195| 518| 2409| 56| 534| 8074
GA_HC 57[180| 1125|2919 973077, 88| 531| 8074
GA_TS 57(180| 1125| 2774|518 | 3077 126| 217| 8074
GA_SA 57(180| 1125| 2917| 160| 2092| 135| 1408| 8074
GA_LAHC | 57|180| 1125| 3195| 518| 2092| 97| 810| 8074

Data Set One

Table 5.7: Performance of the algorithms at CA stag(Data Set 1)

Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
AIMMS 2086.726 15| 2108.888 10
HC 2086.725 6 2108.824 7
TS 2079.624 7 2100.884 6
SA 2080.636 8 2104.828 7
LAHC 2085.526 7 2107.624 7
GA 2082.726 44 2105.554 43
LAHC_HC 2085.824 476 2101.804 402
LAHC_ TS 2085.724 378 2103.894 386
LAHC_SA 2086.626 113 2106.424 120
GA_HC 2083.726 43 2099.624 46
GA TS 2082.934 43 2105.924 40
GA_SA 2084.796 42 2104.874 42
GA_LAHC 2085.826 21 2107.824 24
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Data Set Two

Table 5.8: Performance of the algorithms at CA stag(Data Set 2)

Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 2443.203 23 2420.286 25
TS 2443.427 24 2419.87 26
SA 2443.507) 23 2421.416 21
LAHC 2443.793 23 2421.309 22
GA 2445.559 53 2422.748 41
LAHC_HC 2446.422 374 2422.248 291
LAHC_TS 2446.327 364 2422 .778 309
LAHC_SA 2446.522 334 2422.648 305
GA_HC 2445.559 45 2422.548 43
GA_TS 2446.4273 51 2422.748 48
GA_SA 2446.134 43 2422.738 41
GA_LAHC 2445.846 52 2422.604 50
Data Set Three
Table 5.9: Performance of the algorithms at CA stag) (Data set 3)
Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 2509.812 28 2300.059 22
TS 2475.20(0 26 2249.362 27
SA 2472.476 24 2282.819 18
LAHC 2472.997 35 2266.284 25
GA 2506.759 30 2306.88 29
LAHC_HC 2512.101 200 2304.256 194
LAHC_TS 2525.855 216 2299.713 200
LAHC_SA 2508.044 197 2312.229 184
GA_HC 2502.551 32 2288.774 49
GA_TS 2487.988 53 2293.353 40
GA_SA 2481.244 37 2286.362 40
GA_LAHC 2497.256 37 2308.004 25
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Tables 5.7, 5.8 and 5.9 show the performancesl algdrithms for the three data sets for both
male and female students. From the results predemelable 5.7 from data set one, AIMMS
was able to find the best value (data set one) eomapto other algorithms for male and female
student distributions. Additionally, HC and TS detaed near optimal solutions for male and
female students in the shortest time duration (8uibeis). The best fitness value for data set two
and three are recorded from LAHC_SA and HC respegtifor male students’ allocation. Also
for the male students’ results, HC, SA and LAHC Mzl shortest possible times of 23 minutes
and 24 minutes for data sets two and three raspgctHowever, for data sets two and three for
female students, LAHC TS and LAHC_SA have the Haetss values of 2422.778 and
2312.229 respectively. SA had the shortest timéslaind 18 minutes for female allocations for
data sets two and three respectively. The restikldMMS, LAHC_SA and HC are used as the
inputs for the HA stage for both male and femalecalkions since they generated the best fitness

values in both cases.

5.4.2 HA Stage Results

Once the solutions are received from the CA stdgenumber of students from each category
that will be allocated into specific halls is detemed. These allocations are shown in Tables
5.10-5.15 for data sets one, two and three resdgtifor both male and female students) while
the comparative performance of the algorithms aesgnted in Tables 5.16-5.18 for the three

data sets respectively.
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Table 5.10: Hall Allocation for ale students (Date5et 1)

Hall |Fo|Ht |Sp | Fy | Sc | Fr Ds| Ot| Total
1| 5|70 O] 240, 0| 259| 19| 67| 660
2/ 1] 0] O 91400 13| 11| 10| 444
3] 5| 0] O] 328 0] 355| 21| 91| 800
4| 1| 0| O] 409| O] 431| 22|105| 968
5/ 5| 0/400| 46| O] 50| 11| 14| 526
6| 3| 0| O| 208| O] 224| 16| 61| 512
Total | 20| 70| 400| 1240| 400| 1332| 100 | 348| 3910

Table 5.11: Hall Allocation for female students (D& Set 1)

Fo|Ht |Sp | Fy | Sc | Fr Ds| Ot | Total
H1 7/80| O 252|230 273| 10| 14| 866
H2 7/ 0| O| 349| 0] 375| 14| 19| 764
H3 2| 0| 0] 125| 0] 137| 5| 7| 276
H4 4/ 0| O] 238] 0| 260| 9|13| 524
H5 5/ 0] 0] 298| 0] 317|10| 16| 646
H6 0| 0]500 0| O 5| 5| 2| 512
Total | 25| 80| 500| 1262| 230| 1367| 53| 71| 3588

Table 5.12: Hall Allocation for male students (DateéSet 2)

Hall |[Fo |Ht |Sp | Fy Sc | Fr Ds| Ot | Total
H1l 3/105| O] 333 0| 392|12|145| 990
H2 5/ 0 0 221600 24| 5| 10| 666
H3 7/ O 0| 451 O] 528| 17|197| 1200
H4 41 0 0| 551| 0| 646]| 13| 238| 1452
H5 6| 0/600] 71| O 72| 8| 32| 789
H6 5/ 0 0| 289| 0| 336|11|127| 768
Total | 30| 105| 600| 1717| 600 | 1998| 66 | 749| 5865
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Table 5.13: Hall Allocation for female students (D& Set 2)

Hall |Fo|Ht [Sp |Fy | Sc | Fr Ds| Ot | Total
H1 41120 0| 431|345| 264| 8|127| 1299
H2 6/ O| O] 591| 0] 363|11|175| 1146
H3 8/ 0] O] 208| O] 131| 4| 63| 414
H4 7/ 0| O] 401 O] 251| 7|120| 786
H5 8/ 0] O] 495| O] 306|11|149| 969
H6 5/ 01750 4, 0 5/ 0| 4| 768
Total | 38| 120| 750| 2130| 345| 1320| 41 | 638| 5382

Table 5.14: Hall Allocation for male students (Dat&Set 3)

Hall |Fo|Ht |Sp |Fy | Sc | Fr Ds | Ot | Total
H1 111158, 0| 541| 0| 581| 43|151| 1485
H2 6/ O] O] 41[900| 38| 3| 11| 999
H3 11| 0| 0| 736| 0] 788| 59| 206| 1800
H4 9| 0| O] 888| 0| 961| 71|249| 2178
H5 1| 0]900| 115, 0| 125| 11| 32| 1184
H6 7/ 0| O| 469| O] 504| 38|134| 1152
Total | 45| 158| 900| 2790| 900 | 2997 | 225| 783| 8798

Table 5.15: Hall Allocation for female students (D& Set 3)

Hall |Fo |Ht | Sp Fy Sc | Fr Ds| Ot | Total
H1l 9| 180 0| 644|518| 482| 11| 106| 1950
H2 100 O 0| 886| 0| 667|10|146| 1719
H3 100 O 0| 307 0| 241| 10| 53| 621
H4 100 O 0| 602 O 454|12|101| 1179
H5 13| O O| 748| 0| 560| 8|125| 1454
H6 5/ 011125 8 0 5/ 5 3| 1151
Total | 57| 180| 1125| 3195| 518 | 2409| 56 | 534 | 8074

96




Table 5.16: Performance of the algorithms at HA stge (Data Set 1)

Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Value| Time (Minutes)
HC 111708 3 124826 3
TS 111701 4 124825 7
SA 111709 15 129489 5
LAHC 111710 5 124824 4
GA 111728 6 129492 8
LAHC_HC 111729 15 129494 15
LAHC_TS 111728 15 129493 13
LAHC_SA 111727 4 129491 7
GA_HC 111730 5 129490 8
GA_TS 111724 5 129494 6
GA_SA 111731 6 129495 9
GA_LAHC 111732 10 129493 12

Table 5.17: Performance of the algorithms at HA stge (Data Set 2)

Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 92530 48 92049 50
TS 92531 46 92044 47
SA 92532 47 92048 33
LAHC 88670 47 92046 46
GA 92524 474 92175 470
LAHC_HC 88671 99 92045 93
LAHC_TS 88669 100 92047 96
LAHC_SA 92525 63 92050 54
GA_HC 92526 4162 92195 4233
GA_TS 88668 3864 92150 4139
GA_SA 92533 4247 92225 4344
GA_LAHC 92527 590 92043 578
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Table 5.18: Performance of the algorithms at HA stge (Data Set 3)

Male Female
Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 113334 54 102011 53
TS 113333 64 102014 44
SA 113332 37 102010 36
LAHC 113326 46 102013 41
GA 113417 507 102017 464
LAHC_HC 113327 91 102012 119
LAHC_TS 113325 117 102015 116
LAHC_SA 113328 63 102009 67
GA_HC 113447 4630 102016 4659
GA_TS 113448 4029 102017 3686
GA_SA 113424 5371 102018 5080
GA_LAHC 113418 616 102014 630

As stated earlier, the total number of studentanfeach category, that are allocated into each
hall must not exceed the capacity of the hall. Atse accumulated number of students from the
same category that have been allocated acrossatlsenust be equivalent to the knapsack of
allocated students as determined by the best hiewatshe CA stage. Also, the allocation of the
flexible categories of students must be done ipgrtoon to their priority factors from the CA.
These hard constraints do not have to be satisified feasible solution. As can be ascertained
from Tables 5.10 - 5.15, these constraints aresfgadi by all the algorithms with feasible
allocation results achieved. For example, Ht, &g &c are allocated to halls one, five and two
respectively as required for male students’ distidns, while other categories of students were
evenly distributed across other halls (comparech vabnstraints given in appendix A for

specified halls for each category).
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In the flexible category, students need to be ibistied throughout the halls as evenly spread as
possible. Based on the assumption made and maglallithis stage of the allocation process, the
higher the fitness values the better the distrdsutResults for this are presented in Tables 5.16,
5.17 and 5.18.As can be established from Table, 526 LAHC and GA_SA clearly have the
highest fitness values for male and female studesgpectively while HC has overall, the
shortest time for data set one as extracted from Table. All other heuristic algorithms’

performances are similar to this.

For data set twoTable 5.17), GA_SA has the best fitness value whitk and SA have the
shortest times in execution compared to other dlgns. Data set 3 (Table 5.18) produced
GA_TS and GA_SA with the best fithess values forlemand female student distributions

respectively. GA_SA showed consistent strengttafidhree datasets.

Generally, the hybrid algorithms performed bettant the individual heuristic algorithms. In
view of the fact that GA_LAHC/GA_SA, GA_TS and GAA $ave the best performance for
data sets one, two and three respectively, andgnéde and female students in terms of fithess

values, these solutions are used as the inputeddfA stage.

5.4.3 Floor Allocation Stage Results

FA stage results are determined separately for balkhThey are generated using the results of
the best heuristic from the HA stage for individhall solutions as input. The distribution of
students to the floors of each hall is done exatitysame way as in the HA stage. The only

difference is that the distribution is to the flecand blocks of each hall and not to the halls
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directly. Also, similar to the HA stage, the resutif the algorithms are compared to determine
which algorithm gives the best distributions. tRermore, a comparison of the execution times

for the algorithms for each hall allocation is cartgnl and reported.

Fixed categories assigned to specific halls wezatéd first as being assigned to specific but
sufficient number of floors while the flexible cgtgies were distributed by the algorithms to fill
up the remaining bed spaces in a way that maximiespread of the categories. Tables 5.19—
5.36 show these results (the exact number of madefamale students for each category)as
allocated to each floor. The results were similar the three datasets, showing consistent
behaviour regardless of the size of the data, henbethe results of dataset one are reported in
this thesis. However, a comparative performancethef algorithms in providing feasible
solutions (based on their fitness values and ekmcutme) for all the three data sets are
presented. This is based on their performancermstef even distribution of students across the
floors of each hall with regards to the specifiedstraints. Similar to the HA stage, the higher

the fitness values, the better the distribution.

Data Set One
The experimental results obtained for data set ameepresented below for male and female
allocations. In the comparative performance, thgorhm with the best fitness value and

shortest execution time is shown (in bold for ¢{gnn each table of results.

Hall One
A study of Table 5.19, in relation to the given swaints, shows that results obtained satisfy as

many constraints as possible. Only Ht categoryesttgdare allocated to this hall among the fixed
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categories for the FA stage. Furthermore, as marpoasible of the Ht students are allocated to
the lowest floor. Block 1 floor 1 represents groutwbr, therefore, in this research study, a
greater percentage of students being allocatetheoground level is avoided. The flexible

category students fill up the remaining spaces.

Table 5.19: Male allocation throughout the floors bhall 1

Category Fo|Ht | Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1 3| 1| O 6| 0 71 0 1 18
Block 1 Floor2| 0| 12| 0| 36| 0| 39| 3| 10| 100
Block 1 Floor3] 0| 10| 0| 38| 0| 39| 3| 10| 100
Block 1 Floor4/ 0| 12| 0| 36| 0| 39| 3| 10| 100
Block 1 Floor5 0| 1| O 4, 0 6| 0| 1 12
Block 2 Floor1] 0| 1| O 6| 0| 10| O 1 18
Block 2 Floor2| 0| 10| 0| 38| 0| 39| 3| 10| 100
Block 2 Floor3] 0| 10| 0| 38| 0| 39| 0| 13| 100
Block 2 Floor4/ 0| 10| O| 34| 0| 39| 7| 10| 100
Block 2 Floor5 2| 3| O 41 0 2| 0] 1 12
Total 5|/70| 0|240| 0]259| 19| 67| 660

Table 5.20 shows the allocation of female studemtsall 1. Ht and Sc are allocated to this hall
and to no other fixed category. The distributiohsther categories are done in a similar way to
that of the male allocation. The comparative rasaftthe algorithms for both male and female

students in hall 1 are given in Table 5.21
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Table 5.20: Female allocation across the floor of &l 1

Category Fo|Ht | Sp|Fy | Sc | Fr | Ds| Ot | Total
Block 1 Floor1) 0| 0| O 0 0 0l 0] O 0
Block 1 Floor2| 0| 1| 0| 19 0| 10 0| O 30
Block 1 Floor3] 0| 1| O 7 0| 10| 0] 12 30
Block 2 Floor1) 0| 1| 0| 19| 10| 10| O| O 40
Block 2 Floor2| 0| 2| 0| 12| 10| 16| O| O 40
Block 2 Floor3] 0| 10| 0| 17| 10 3| 0] O 40
Block 3 floor 1 0 12| 0| 17| 10 1] 0| O 40
Block 3 floor 2 O 5/ 0| 15| 10| 10| 0| O 40
Block 3 Floor3] 0| 3| 0| 11| 10| 16| 0| O 40
Block 4 Floor1] 0| 0| O 0 0 0l 0] O 0
Block 4 Floor2] 0| 5| O 7| 20| 28| 0| O 60
Block 4 Floor3] 0| 5| O 7| 20| 28| 0| O 60
Block 4 Floor4) 0| 5| 0| 13| 20| 22| 0| O 60
Block 5Floor1) 0| 5| 0| 17| 19| 18| 0| 1 60
Block 5 Floor2| 0| 5| 0| 17| 15| 18| 5| O 60
Block 5 Floor3] 0| 5| 0| 17| 15| 18| 5| O 60
Block 5 Floor4/ 0| 5| 0| 17| 15| 23| 0| O 60
Block 6 Floor1] 0| 0| O 0 0 0l 0| O 0
Block 6 Floor2] 0| 2| O 8| 10 9| 0| 1 30
Block 6 Floor3] 3| 2| O 8| 10 71 0] O 30
Block 7 Floor1 2| 3| 0| 12| 13| 13| 0| O 43
Block 8 Floor1] 2| 3| 0| 12| 13| 13| 0| O 43
Total 7180 0|252|230|273| 10| 14| 866
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Table 5.21: Comparison of the performance of the gbrithms for Hall 1

Male Female
Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 615540 13 15251875 22
TS 615540 15 15519017 25
SA 720425 16 16137809 24
LAHC 615540 14 15303373 21
GA 307944 118 8858633 131
LAHC_HC 618160 27 15813022 28
Hall 1 LAHC TS 618160 37 16052314 29
LAHC_SA 879532 26 16165621 27
GA HC 802068 391 17357262 337
GA TS 798067 411| 20340692 356
GA _SA 811128 138 18295324 323
GA LAHC 618160 80 6937668 105

The comparisons show that LAHC_SA and GA_TS ararlyiehe best performers for the male
and female distributions respectively. The othegoathms perform very similarly to this,
especially the hybrids ones, this is also a featlrserved when compared to the pattern in the

HA allocation stage. HC and LAHC have the shortestcution times for male and female

distributions respectively.

Hall Two

As can be ascertained from Table 5.22, all the lcartstraints are satisfied in allocating the
categories of male students to each floor alsohasStc students are allocated to hall 2 as
required. From Table 5.23, female students are lgwdistributed across all blocks and floor

levels. No Ht or Sp students are allocated to 2dlhis is permitted as they must be allocated to

halls 1 and 6 respectively.
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Table 5.22: Male Allocation throughout the floor ofHall 1

Category Fo|Ht |Sp|Fy|Sc | Fr| Ds| Ot | Total
Block 1 Floor1) 0| 0| 0] O 0Ol 0| 0| O 0
Block 1 Floor2| 0| 0| 0| O| 40| O, O| O 40
Block 1 Floor3] 0| 0| 0| O| 40| O, 0| O 40
Block 1 Floor4) 0| 0| 0| O] 40| 0| 0| O 40
Block 2 Floor1) 0| 0| 0] O 0Ol 0| 0| O 0
Block 2 Floor2| 0| 0| O 1| 39| 0| 0| O 40
Block 2 Floor3] 0| 0| 0| O] 40| 0| 0| O 40
Block 2 Floor4| 0| 0| O] 2| 35| 2| 1| O 40
Block 3 Floor1l] 0| 0| 0| O 0l 0| 0] O 0
Block 3 Floor2| 0| 0| 0| O| 38| 2, 0| O 40
Block 3Floor3] 0| O O 1| 28] 2| 9| O 40
Block 3 Floor4f 0| 0| O| O| 37| 2| 1| O 40
Block 4 Floor1) 0| 0| 0] O 0Ol 0| 0| O 0
Block 4 Floor2) 0| O 0| 2| 25| 1| 0| O 28
Block 4 Floor3] 0| 0| O] 2| 24| 2| 0| O 28
Block 4 Floor4| 1| 0| O| 1| 14| 2|, 0| 10 28
Total 1| O O] 9]400| 13| 11| 10| 444

Table 5.23: Female Allocation throughout the floorof Hall 2

Category Fo|Ht | Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1] 0| 0| O 0/ O 0l 0] O 0
Block 1 Floor2] 0| 0| 0| 32| O 0| 0| O 32
Block 1 Floor3] 0| 0| 0| 32| O 0Ol 0] O 32
Block 1 Floor4; 0| 0| 0| 32| O 0| 0| O 32
Block 2 Floor1] 0| 0| 0| 23| 0| 21| O 4 48
Block 2 Floor2] 0| 0| 0| 37| 0| 39| 0| 4 80
Block 2 Floor3] 0| 0| 0| 25| 0| 51| 0| 4 80
Block 2 Floor4; 0| 0| 0| 25| 0| 51| 2| 2 80
Block 3 Floor1] 0| 0| O 9| 0 9| 2| O 20
Block 3 Floor2] 0| 0| 0| 20| 0] 56| 3| 1 80
Block 3 Floor3] 0| 0| 0| 25| 0] 51| 3| 1 80
Block 3Floor4/, 0| O 0| 36| 0| 39| 4| 1 80
Block 4 Floor1] 0| O 0| 18| 0| 20| 0| 2 40
Block 4 Floor2| 4| 0| 0| 17| 0| 19| 0| O 40
Block 4 Floor3] 3| 0| O| 18| 0| 19| 0| O 40
Total 7| 0| 0[349| 0|375| 14| 19| 764
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A comparison of the performances of each algoritsvextracted from Table 5.24 shows that
LAHC_TS clearly performs best for male and femakributions. The other algorithms have

similar performances, especially the hybrids on#ddC and HC have the shortest execution

times for male and female students respectively.

Table 5.24: Comparison of the Performance of the gbrithms for Hall 2

Male Female

Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 195256 27 6159741 19

TS 202032 25 5807991 21

SA 202024 31 5617424 22

LAHC 214516 19 5881764 20

GA 43406 95 2055892 106

Hall 2 LAHC HC 507005 42 5989451 25
*“[TAHC TS 1145336 58| 13236300 31
LAHC_SA 483523 40 5748126 25

GA HC 375599 530 6203093 964

GA TS 3730864 652 6191173 1292

GA _SA 496112 396 7043637 532

GA LAHC 213598 49 3484308 83

Hall Three

Table 5.25 shows how the male students are alldd¢atball 3. No fixed categories are allocated
to this hall. Fitness value comparisons are shawmable 5.27. From the results, GA_TS and
LAHC_TS have the best fithess values for male amdale distributions. In addition, HC and

LAHC have the shortest execution times compareth@roalgorithms. Similarly, Table 5.26
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shows the female distributions across hall 3. Thel ttonstraints are satisfied and the total
distribution of students does not exceed the capatthis hall.

Table 5.25: Male Allocation throughout the floor ofHall 3

Fo|Ht | Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1] 0| 0| O 8| 0 8| 0| 4 20
Block 1 Floor2] 0| 0| 0| 25| 0| 29| 0| 6 60
Block 1 Floor3] 0| 0| 0| 25| 0| 29| 0| 6 60
Block 1 Floor4) 0| 0| 0| 25| 0| 29| 0| 6 60
Block2 Floor1] 0| 0| O 8| 0 8| 0| 4 20
Block 2 Floor2] 0| 0| 0| 25| 0| 28| 0| 7 60
Block 2 Floor3] 0| 0| 0| 25| 0| 26| O] 9 60
Block 2 Floor4; 0| 0| O| 25| 0| 26| O| 9 60
Block 3 Floor1] 0| 0| O 8| 0 8| 0| 4 20
Block 3Floor2] 0| O| 0| 25| 0| 26| 3| 6 60
Block 3Floor3] 0| O| 0| 25| 0| 26| 3| 6 60
Block 3 Floor4; 0| 0| 0| 25| 0| 26| 3| 6 60
Block 4 Floor1l) 0| O| O 8/ 0 8| 2| 2 20
Block 4 Floor2] 0| 0| O| 25| 0| 26| 3| 6 60
Block 4 Floor3] 2| 0| 0| 25| 0| 26| 3| 4 60
Block 4 Floor4| 3| 0| O| 21| O| 26| 4| 6 60
Total 5/ 0| 0328 0[355|21|91| 800

Table 5.26: Female Allocation throughout the floorof Hall 3

Fo|Ht | Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1] 0| 0| O 0/ O 0l 0] O 0
Block 1 Floor2] 0| 0| 0| 10| 0| 20| 0| O 30
Block 1 Floor3] 0| 0| 0| 21| O 9| 0| O 30
Block 2 Floor1) 0| 0| 0| 10| 0| 30| 0| O 40
Block 2 Floor2] 0| 0| 0| 18| 0| 22| 0| O 40
Block 2 Floor3] 0| 0| 0| 10| 0] 29| 0| 1 40
Block 3 Floor1] 0| 0| O 0/ O 0l 0] O 0
Block 3 Floor2] 0| 0| O| 18| O 6| 0| O 24
Block 3Floor3] 0| 0| 0| 18| O 6| 0| O 24
Block 4 Floor1] 0| 0| O 0/ O 0l 0] O 0
Block 4 Floor2] 0| 0| O| 11| 0| 13| 0| © 24
Block 4 Floor3] 2| 0| O 9|, 0 2| 5| 6 24
Total 2| 0| O0|125| 0137 5| 7| 276
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Table 5.27: Comparison of the performance of the gbrithms for Hall 3

Male Female
Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 754544 17 943646 18
TS 754544 21 902381 19
SA 779682 16 866169 24
LAHC 754544 17 958086 17
GA 654994 108 243339 105
LAHC HC 754544 24 963015 22
Hall 3 1 e 7S 754544 40 1841212 39
LAHC_SA 806034 27 920616 21
GA_HC 907752 928 1089711 551
GA TS 779104 1106 1205684 769
GA _SA 849830 455 1300190 907
GA LAHC 743294 83 604929 82
Hall Four

Tables 5.28 and 5.29 present male and femalehiisins respectively across the blocks and
floors for hall 4. No fixed categories are allochte this hall. Fitness value comparisons are
shown on Table 5.30. From the results, GA_TS anHICATS have the best fithess values for
male and female distributions respectively. GA BAGHC have the shortest execution times

compared to other algorithms.
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Table 5.28: Male students’ allocated throughout théloor of hall 4

Fo|Ht |Sp|Fy | Sc|Fr |Ds|Ot |Total
Block 1 Floor1] 0| 0| O 8| 0 8| 2 2 20
Block 1 Floor2] 0| 0| 0| 28] 0| 26| O 6 60
Block 1 Floor3] 0| 0| 0| 28] 0| 26| O 6 60
Block 1 Floor4/ 0| 0| 0| 28| 0| 26| O 6 60
Block 2 Floor1] 0| 0| O 41 0 5| 2 1 12
Block 2 Floor2| 0| 0| 0| 28] 0| 26| O 6 60
Block 2 Floor3] 0| 0| 0| 28] 0| 26| O 6 60
Block 2 Floor4; 0| 0| O| 28] 0| 26| O 6 60
Block 3Floor1l] 0| 0| O 5/ 0 6| O 1 12
Block 3Floor2] 0| 0| 0| 24| 0| 29| 1 6 60
Block 3Floor3] 0| 0| 0| 24| 0| 29| 1 6 60
Block 3Floor4] 0| O| O| 24| 0| 29| 1 6 60
Block 4 Floor1] 0| 0| O 41 0 71 0 1 12
Block 4 Floor2] 0| 0| 0| 24| 0| 27| 1 8 60
Block 4 Floor3] 0| 0| 0| 24| 0| 26| 1 9 60
Block 4 Floor4] 0| 0| 0| 24| 0| 26| 1 9 60
Block 5Floor1] 0| 0| O 41 0 5/ 0 3 12
Block 5Floor2] 0| 0| O| 24| 0| 26| 5 5 60
Block5Floor3] 0| O] O| 24| 0| 26| 4 6 60
Block 5Floor4, 1| 0| 0| 24| 0| 26| 3 6 60
Total 1| O 0|409| 0(431| 22|105| 968
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Table 5.29: Female allocation throughout the flooof hall 4

Fo|Ht |Sp|Fy | Sc|Fr |Ds | Ot | Total
Block 1 Floor1l] 0| 0| 0| 27| O 3| 0] O 30
Block 1 Floor2] 0| 0| O| 15| 0| 12| 0| 13 40
Block 1 Floor3] 0| 0| 0| 12| 0| 28| 0| O 40
Block 1 Floor4) 0| 0| 0| 18| 0| 22| 0| O 40
Block 2 Floor1) 0| 0| 0| 13| 0| 17| 0| O 30
Block 2 Floor2] 0| 0| 0| 18| 0| 22| 0| O 40
Block 2 Floor3) 0| 0| 0| 18| 0| 22| 0| O 40
Block 2 Floor4; 0| 0| O| 18| 0| 22| 0| O 40
Block 3 Floor1] 0| 0| O 0/ O 0l 0] O 0
Block 3 Floor2] 0| 0| O| 16| O| 16| 0| O 32
Block 3Floor3] 0| 0| 0| 16| 0| 16| 0| O 32
Block 3 Floor4/ 0| 0| O| 16| O| 16| 0| O 32
Block 4 Floor1) 0| 0| 0| 16| O| 16| 0| O 32
Block 4 Floor2] 0| 0| 0| 16| 0| 16| 0| O 32
Block 4 Floor3] 1| 0| O| 14, 0| 17| O O 32
Block 4 Floor4 3| 0| O 5/ 0| 15 9| O 32
Total 41 0| 0]238] 0{260| 9|13| 524

Table 5.30: Comparison of the performance of the gbrithms for hall 4

Male Female
Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1126740 23 3747166 19
TS 112674G 23 3682748 21
SA 1145042 20 3599103 19
LAHC 1126740 18 3640744 17
GA 1126662 5 1089881 104
LAHC_HC 1126740 27 3615572 27
Hall 4 e Ts 1126740 40 9688018 33
LAHC_SA 1234936 28 3559936 25
GA _HC 1381332 899 4277576 1080
GA_TS 1410295 1051 4032865 1313
GA SA 1323007 430 4866551 260
GA LAHC 1100514 83 2109015 82
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Hall Five

Table 5.31 shows the categories distribution fdr havith the Sp category assigned to this hall.
Furthermore, Table 5.32 shows the female distrmstiacross all the blocks and floors of this
hall with the total distribution not exceeding thigen capacity of each hall. Comparisons of the
fitness values are shown in Table 5.33. LAHC TS th&s best fitness values for male and
female distributions. HC and LAHC have the shorés&cution times.

Table 5.31: Male allocation throughout the floor ofhall 5

Fo|Ht |Sp | Fy| Sc| Fr | Ds| Ot | Total
Block 1 Floor 1 O 0| 28| 4| O 1| 1| 6 40
Block 2 Floor 1 O 0| 20 3| 0| 0|10 7 40
Block 3 Floor 1 O 0| 32| 4, 0] 4] 0| O 40
Block 4 Floor 1 0 0| 32| 4| Of 4, 0| O 40
Block 5 Floor 1 O 0| 32| 4/ 0] 4, 0] O 40
Block 6 Floor 1 O 0| 32| 4/ 0] 4, 0] O 40
Block 7 Floor 1 0 0| 32| 4| 0| 4, 0| O 40
Block 8 Floor 1 O 0| 32 3] 0] 5/ 0] O 40
Block 9 Floor 1 O 0| 32 3, 0] 5]/ 0| O 40
Block 10 Floor1] 0| 0| 32| 4|, 0| 4| 0| O 40
Block 11 Floor1) 0| 0| 32| 3| 0| 5| 0| O 40
Block 12 Floor1) 0| 0| 32| 3| 0| 5| 0| O 40
Block 13 Floor1) 5| 0| 32| 3| 0| 5| 0| 1 46
Total 5| 0/400| 46| 0|50| 11| 14| 526

Table 5.32: Male allocation throughout the floors bhall 5

Fo|Ht |Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1l] 0| O 0| 28| 0| 30| 0| 2 60
Block 1 Floor2] 0| 0| 0| 30| 0| 28| 0| 2 60
Block 1 Floor3] 0| 0| 0| 30| 0] 29| 0| 1 60
Block 2 Floor1) 0| 0| 0| 28| 0| 12| 0| © 40
Block 2 Floor2] 0| 0| O| 28| 0| 70, 0| 2| 100
Block 2 Floor3] 0| 0| 0| 30| 0| 68| 0| 2| 100
Block 3Floor1l] 0| 0| 0| 20| O 6| 0| O 26
Block 3 Floor2] 0| 0| O| 28| 0| 70| O| 2| 100
Block 3 Floor3] 5| 0| 0| 76| O 4110 5| 100
Total 5/ 0| 0]298| 0|317| 10| 16| 646
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Table 5.33: Comparison of the performance of the gbrithms for Hall 5

Male Female

Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 267796 21 2800789 16

TS 251103 24 2725159 18

SA 252826 23 2879460 19

LAHC 255307 22 2698552 15

GA 154843 97 873002 104

Hall 5 LAHC HC 262348 23 2714914 20
2 LAHC_TS 698244 37 5266183 31
LAHC_SA 260912 25 2728788 21

GA _HC 361283 812 3192745 662

GA TS 328913 960 3176483 1043

GA _SA 385257 726 3499579 1569
GA_LAHC 109268 93 1812695 82

Hall 6

Table 5.34 shows the categories allocation fo6halth no fixed categories allocated to the hall.
Table 5.35 shows the female distributions acrosshidl with the fixed Sp students (female)
allocated to it. The total distribution of the stmtls did not exceed given capacities. The
comparisons of the fitness values are shown iner&td36. LAHC_SA and LAHC_TS have the
highest fitness values for both male and femalgibigions respectively and are considered the
best solutions. HC and TS have the shortest exectitnes for male and female distributions

respectively.
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Table 5.34: Male students’ allocation throughout tle floor of Hall 6

Fo|Ht | Sp|Fy | Sc|Fr |Ds| Ot | Total
Block 1 Floor1] 0| 0| 0| 32| 0| 35| 2|11 80
Block 1 Floor2] 0| O, 0| 58| 0| 63| 6|17 144
Block 1 Floor3] 0| 0| 0| 60| O| 63| 4|17 144
Block 1 Floor4; 3| 0| O| 58| 0| 63| 4| 16| 144
Total 3] 0| 0/208| 0|224| 16| 61| 512

Table 5.35: Female allocation throughout the flooof Hall 6

Fo|Ht |Sp | Fy| Sc| Fr | Ds| Ot | Total

Block 1 Floor1] 0| 0| 80| 0| O] O] O] O 80

Block 2 Floor1l) 0| 0|144| 0| 0| O| O] 0| 144

Block 3 Floor1l] 0| 0|144| 0| 0| O| 0| 0| 144

Block4 Floor1] 0| 0132 0| O] 5| 5| 2| 144

Total 0l 0/500f 0| O] 5| 5| 2| 512

Table 5.36: Comparison of the performance of the gbrithms for Hall 6
Male Female

Halls | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 285440 5 124082 12
TS 285440 9 126121 8
SA 285440 7 125091 21
LAHC 285440 6 124238 9
GA 131895 112 9973 90
LAHC_HC 285440 17 244753 142
Hall 6 LAHC_TS 285440 34 280120 371
LAHC_SA 346696 19 221535 94
GA_HC 285440 10 235235 487
GA_TS 285440 13 221535 735
GA_SA 285440 14 227211 4111
GA_LAHC 285440 19 145577 58
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Data Set Two

The distributions for dataset two are very simitathose of dataset one discussed above hence,
the distribution is not presented here due to spag&tions. However, the performance of the

algorithms for each hall is presented.

The comparisons of the algorithms in terms of tfigiess values and execution times for both
male and female students in all the halls are gimehables 5.37-5.42.The algorithm with the
highest fitness value is usually the best algori{sotution). The best fithess values and shortest
execution times are put in bold letter in eachddbl the purpose of clarity. Table 5.37 shows
that GA_SA and GA_HC are clearly the best perfosmiar male and female distributions
respectively while the other algorithms performyvsimilarly to the pattern observed in the HA
allocation stage. The distributions obtained by@#e SA and GA_HC are the best solutions in
terms of effective distribution of students to fleors of each hall for male and female students

respectively. HC has the shortest execution timenfale and female student distributions.

Furthermore, Table 5.38 shows the performance efdllgorithms at hall 2. LAHC_TS and
GA_TS have the best distributions for male and fenstudents respectively. HC and LAHC
have the shortest execution times for male andleediatributions. Table 5.39 shows clearly the
performances of all the implemented algorithmsal B GA_TS and LAHC_TS have the best
feasible solutions for male and female studentpe@s/ely. LAHC has the shortest execution
time for both male and female students’ distribngioAlso, Table 5.40 shows how each of the
implemented algorithms performed in allocating stud to hall four. From the results, GA_HC

and LAHC_TS have the highest fitness values. LAHS the shortest execution time for both
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male and female students’ distributions. Table i/es the detailed performances for all the
algorithms for hall five at the FA stage. The résshow that LAHC_TS outperformed all other
algorithms in distributing male and female studetdshall five. LAHC had the shortest
execution time for both male and female distribogio Finally, Table 5.42 shows the
comparisons of the implemented algorithm for hiall $he results clearly show that GA_SA and
LAHC_TS have the highest fitness values for malel &male distributions respectively.

However, SA and LAHC have the shortest executiores for male and female allocations to

hall five.
Table 5.37: Performance of algorithms at FA stageof Hall 1
Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1011454 23 4300121 74
TS 1011454 28 4286735 80
SA 1105322 38 4320852 83
LAHC 1011454 24 4273418 75
GA 496580 916 2682923 825
LAHC_HC 1023914 66 4574601 78
Hall 1 - He Ts 1023914 166 4335068 94
LAHC_SA 1326652 76 4218129 80
GA _HC 1340302 2764 6502593 824
GA TS 1336414 1324 5527632 1506
GA_SA 1420966 773 5780719 1119
GA_LAHC 1023914 95 2509336 650
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Table 5.38: Performance of algorithms at FA stageof Hall 2

Male Female
Hall | Algorithms [ Fitness Values| Time (Seconds)| Fitness Values| Time (Minutes)
AC 1529537 63 1984862 80
TS 1543003 89 1835967 86
SA 1562891 81 1802612 78
LAHC 1548826 69 1925070 65
GA 298644 760 883516 712
LAHC HC 1662805 77 1792910 90
Hall 2 7 Rc 7s 2028300 158 2109672 3879
LAHC_SA 1576627 92 1813910 88
GA_HC 2104848 2952 2487012 8235
GA_TS 280697¢ 1454 4073679 159
GA _SA 22202772 836 2618740 395
GA _LAHC 1373147 556 1734632 476
Table 5.39: Performance of algorithms at FA stageof Hall 3
Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1159382 54 458923 66
TS 1159382 63 450669 85
SA 1172694 82 438875 78
LAHC 1159382 40 453346 62
GA 991956 717 129135 748
Hall 3 LAHC_HC 1169360 47 472527 87
LAHC_TS 1169360 179 817466 164
LAHC_SA 1388184 111 458010 89
GA HC 154829¢ 6485 608976 4319
GA_TS 1589968 3728 607531 2076
GA_SA 1387624 2537 710231 292
GA LAHC 1139444 475 448816 508
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Table 5.40: Performance of algorithms at FA stageof Hall 4

Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1813307 53 1532111 66
TS 1813307 72 1551997 75
SA 1859987 79 1525560 82
LAHC 1813307 51 1596735 64
GA 1737656 738 578502 794
LAHC_HC 1852250 61 1576401 94
Hall 4 3hc s 1852250 177 4473946 160
LAHC_SA 2021223 119 1457635 107
GA_HC 5376261 4699 2419639 3858
GA TS 2156221 2895 2002689 2101
GA _SA 2293723 2206 2448671 617
GA_LAHC 1774418 477 1280123 526
Table 5.41: Performance of algorithms at FA stageof Hall 5
Male Female

Hall | Algorithms | Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 595194 89 1262747 80
TS 627434 99 1299939 79
SA 612759 89 1277910 74

LAHC 597103 78 1299058 73
GA 454428 715 381824 729
Hall 5 LAHC HC 610224 88 1281781 99
*>[TAHC TS 1632083 186] 3029095 153
LAHC_SA 605417 103 1193542 79
GA HC 944003 1488 1767901 4643
GA TS 1314464 1351 2388121 2521
GA SA 1045248 1538 1725143 483
GA LAHC 348614 591 1093599 479
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Table 5.42: Performance of algorithms at FA stageof Hall 6

Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 197792 96 125125 17
TS 197792 133 125125 15
SA 213116 50 128150 66
LAHC 197792 92 125125 14
GA 102201 801 27240 618
LAHC HC 197792 140 642864 246
Hall 6 e 75 197792 152 650752 637
LAHC_SA 302884 88 499730 215
GA _HC 472169 720 578498 1331
GA TS 4730117 1588 632254 2294
GA_SA 501468 360 498237 15722
GA LAHC 197792 453 199104 69
Data Set Three

The student distributions for data set three amelai to those of the other data sets described
previously; the only exception is that the sizeshef hall capacities differ. The number of halls,
floors and blocks for this data set are the santle thie others. Therefore, only the performances
of the algorithms for each hall are discussed. ddmaparisons of the algorithms in term of their
fitness values and times of execution for both naale female students in all the halls are given
in Tables 5.43-5.48. The higher the fitness valtes, better the solutions. The best fitness
values and shortest execution times are shownertahle of results. The comparisons of the
performances in Table 5.43 show that LAHC_TS clerthe best performer for both male and
female distributions. HC and LAHC have the shortesecution time for male and female

students’ distributions respectively.
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Furthermore, Table 5.44 shows the performance efatorithms for hall two. LAHC_TS has

the best distributions for both male and femaledettss. HC and LAHC have the shortest
execution times for male and female students’ ibistions. Table 5.45 shows the performance
of all the implemented algorithms in hall three. G&C and LAHC_TS have the best feasible
solutions for male and female students respectideyHC and HC have the shortest execution

times for male and female distributions respecyivel

Similarly, Table 5.46 shows how each of the impletad algorithms performed in allocating
students to hall four. From the results, GA_HC &AHC_TS have the highest fithess values.
LAHC and SA have the shortest execution times fatenand female students’ distributions.
Table 5.47 gives the detailed performances oflgbbrahms for hall five at the FA stage. The
results show that LAHC_TS outperformed all othegoathms in distributing both male and
female students to hall five while LAHC has the rébst execution time for both male and

female students’ distributions.

Table 5.48 shows the comparisons of the implemeaitgatithms for hall six. The results clearly
show that GA_HC and LAHC_TS have the highest fgnesues for male and female students’
distributions respectively. HC has the shortestcetien times for both male and female

allocations to this hall.
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Table 5.43: Performance of the algorithms at FA sige for Hall 1

Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 957623 10 13029192 76
TS 957623 14 11836040 61
SA 957623 17 15055113 43
LAHC 957623 18 8998077 42
GA 515185 401 7308776 494
LAHC_HC 2213417 16 13211108 60
Hall 1 =72Rc Ts 4800719 89 15260758 71
LAHC_SA 1880020 15 11643060 60
GA _HC 960085 16 15961318 6732
GA_TS 960085 7] 16051929 8201
GA_SA 960085 19 14279887 8358
GA LAHC 957623 12 5087450 347

Table 5.44: Performance of the algorithms at FA sige for Hall 2

Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 201792 11 5662577 50
TS 201792 12 5768102 64
SA 201792 16 5851004 48
LAHC 201792 13 5776616 46
GA 174696 28 1982981 345
Hall 2 LAHC_HC 1073863 35 6104478 72
2 LAHC_TS 4360212 79 14225279 88
LAHC_SA 686310 13 6096504 73
GA _HC 212496 17 7154299 3874
GA TS 212494 18 5998834 5297
GA_SA 212496 23 6765762 4767
GA_LAHC 201792 33 3383250 258
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Table 5.45: Performance of the algorithms at FA sige for Hall 3

Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1714048 50 969516 42
TS 1714048 61 940574 48
SA 1714048 51 950242 57
LAHC 1714048 31 969516 46
GA 1598838 384 243339 361
LAHC HC 1714048 42 1003975 58
Hall 3 1 e 75 1714044 107 3260533 91
LAHC_SA 1992152 47 939106 61
GA _HC 2319483 4353 1112725 1467
GA TS 1714048 47 1051542 2839
GA_SA 1714048 49 1190947 1838
GA LAHC 1714048 42 582226 262
Table 5.46: Performance of the algorithms at FA sige Hall 4
Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness values Time (Minutes)
HC 2974072 47 3389686 53
TS 2974072 41 3564891 59
SA 2974072 44 3657268 52
LAHC 2974072 40 3436718 55
GA 3243218 408 1019534 335
LAHC_HC 2974072 47 3489308 83
Hall 4 3he s 2974072 109] 5222996 94
LAHC SA 3346932 46 3688489 74
GA_HC 5373412 4343 3473423 4245
GA TS 2974074 8 3606269 5472
GA_SA 29740772 8 4619587 1265
GA _LAHC 2974072 3 1673008 270
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Table 5.47: Performance of the algorithms at FA sige for Hall 5

Male Female
Hall | Algorithms ["Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 1959575 61 2819480 40
TS 248210 35 2780270 52
SA 249013 39 2645386 49
LAHC 254055 24 2819480 42
GA 1307800 364 872984 371
Hall 5 LAHC HC 687098 22 2817099 61
2 LAHC_TS 2476189 88 5511655 84
LAHC_SA 611184 34 2748806 49
GA _HC 1664962 5885 3092136 2567
GA TS 424321 35 3430390 3290
GA _SA 386057 28 3433795 3557
GA_LAHC 267918 16 1976166 269
Table 5.48: Performance of the algorithms at FA sige for Hall 6
Male Female
Hall | Algorithms [ Fitness Values| Time (Minutes) | Fitness Values| Time (Minutes)
HC 309552 50 115698 21
TS 309552 61 108783 27
SA 309552 55 103910 48
LAHC 309552 52 107239 28
GA 157260 381 27917 342
LAHC HC 309552 49 257298 94
Hall 6 HAhc Ts 309552 120 586953 327
LAHC_SA 396232 57 206752 57
GA_HC 636756 4290 274512 1372
GA TS 309552 48 189508 1795
GA SA 309552 66 200687 1430
GA LAHC 309552 52 137085 221
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5.5 Summary

This chapter has presented the results of theniueistic algorithms and their hybrids applied to
the HSAP. The exact solution obtained using AIMMS&s only performed for the first (CA)

stage being the most important stage that detesmit® is to be accommodated and who is to
be excluded. The remaining two stages (HA and digg)l with the distribution of students into

the halls and floors respectively hence the heariglgorithms were employed here. The
principal objective of the extensive application hauristics is to determine from among the
various combinations which is the best that cameesemmended for actual implementation of
the HSAP. The performances of the algorithms wetehre same at all stages of allocations and
for all three datasets. This is an expected outcasnessentially all the heuristics employed are

stochastic in nature.

From the results obtained, LAHC_TS provided the besults in 21 out of 36 cases based on the
fitness values as the performance metric espe@alifl stages. Out of the remaining 15 cases,
the performance of LAHC_TS is quite comparativehe best algorithm. Moreover, where the

LAHC_TS is not the best performing algorithm, isemewhat good enough to be considered as
a possible technique to implement while develog@irtgcision support system for the HSAP that

has similar dataset characteristics and constraints

Also, in most cases, the hybrid algorithms prowdéstanding feasible solutions. In addition, at
the CA stage, HC was the best performer in twoobix cases. At the HA and FA stages, the

hybrid algorithms have the best solutions compaoedther “pure” algorithms. This confirms
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the underlying idea of synergizing the strengthihaf underlying heuristics into this hybrid for
better performance. In addition, the results shésarty that hybrid algorithms are the best

performing algorithms for this instance of the Sgiffen the three data sets.

The time required for the manual computation of distributions can be enormous as it takes
days and in some cases weeks to compute. Howhearsults show that an automated solution
with the underlying heuristics will offer a prommgj alternative in the allocation process. This
research work has thus further confirmed the \tgb#dnd efficiency of applying heuristics in

tackling the HSAP.

123



CHAPTER 6
CONCLUSION AND FURTHER WORK

6.1 Summary and Conclusion

The HSAP was recently introduced in literature wétlcase study from Nigeria. Presently,
administrators of HILs especially in Nigeria whéhes study is based are beginning to appreciate
the need for automated solutions that incorpor#teient approximation algorithms to tackle
this problem. Such solutions will enhance thecedficy, transparency and effectiveness of the
decision making process involved in distributingiéable limited bed spaces to meet the ever
increasing demand from students. Definitely, such aatomated transparent solution will
increase students’ trust in the allocation protessg executed by the university as it will ensure
fairness in distribution while also enhancing theademic performance of the students.
Moreover, a fair residence allocation process ®ilhance the smooth running of the institution
as a result of high levels of student satisfactibims study presented a further study into the
viability of heuristics especially LS techniquesdamybrids for solving the multi-stage HSAP

that is expressed as a form of KSP.

This dissertation presents mathematical modelshimmulti-staged HSAP as revealed from the
case study considered. The general aim of thisares work is to seek novel and innovative
approaches that may be used to generate everbdigins of students based on a specified set of
hard and soft constraints. The problem is a forrthefKSP where students in various categories

are to be distributed into halls and floors thaten&arying capacities, each category has an
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associated weight (hnumber of students to be a#dgand profit (the cost of assigning students
in that category to a hall). As is the case with timderlying KSP, this is a well-known NP-hard
problem; therefore, the search for efficient hdigssthat give the best feasible solutions is
necessary. In view of this, the research work stidhe performance of a number of single-
solution based heuristics, GA and hybrids to det@mwhich of them yields the best
performance in terms of proffering solutions to H®AP. Of note is the LAHC approach which
recently attracted large scale interest amidst Ineetastics researchers seeking solutions to
complex real-world COPs (Burke & Bykov, 2010).Thetiwation for using these techniques lie
in the fact that they have proved to be successfablving many well-known KSPs and BPPs.
Some have been successfully applied to similar SiiPgrevious researches as revealed in
literature but none has applied these techniqusslt@ the HSAP hence the significance of this

study.

Results obtained have shown the effectiveness qfiayfing heuristics in determining near-

optimal solutions for the HSAP. This study has alBown that hybridizing heuristics in a way
that combines their strong points can help to imertheir efficiency and performance as the
hybrid algorithms implemented in this thesis clganitperformed other algorithms especially at
the HA and FA stages. In addition, the LAHC_TS hadexceptional performance compared to

other algorithms. These results establish the Myalaind justification for applying heuristics

6.2 Further Works

HSAP is still a relatively new field of study irtdrature with much still to be done both on the

case study, benchmarking, modelling, and solutechriques for the problem. Moreover,
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constraints vary from one HIL to another especialyross countries. For example, the
requirements and criteria for allocating studentballs of residence in South Africa are slightly
different from those obtainable in Nigeria wheres tbase study is based. There is therefore the
need for further future studies in this area apjplies to HILs across countries in order to be
able to establish a more generalized model foH8AP. Moreover, in this current study, the
possibility of harmonising the multi-level modelstbe HSAP into a single model might provide

more insight in proffering solutions to this prafle

Although, it is very challenging to obtain realelitrchived data from past manually computed
allocation distributions due to the problem of padministrative processes in many institutions,
it will be noteworthy to consider the possibility lsarmonising the multi-level models of the

HSAP into a single model over time in order to haxethy benchmark for subsequent results.
Also, various opportunities abound to study thefgrarance of other classes of metaheuristics
and computational intelligence techniques in adingsthe HSAP. No study as yet has
examined the performance of swarm intelligence riegles, intelligent solutions such as

artificial neural networks, self-organizing mapc @t solving HSAP. Furthermore, researchers
involved in mathematical modelling can further assi specifying a strong mathematical model

needed to address the problem and to prove th&t$d° is essentially NP-hard in nature.
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Appendix A

Table 1: Overview of the Hall Capacities

Zone (Area) Hostel ID Sex Capacity

A HAl Male 660
HA2 Male 444
HA3 Female 866
HB1 Male 800
HB2 Female 764

B HB3 Female 276
HB4 Female 524
HB5 Male 968
HC1 Male 526

c HC2 Female 512
HC3 Female 646
HC4 Male 512

Source: (Adewumi & Ali, 2010)

Table 2: Summary of Hall Facilities (Capacity)

ZONE
A B C Total
Female| 866 1564 1158| 3588
Male 1104 1768 1038 3910
Total 1970 |3332 |2196 |7498

Source: (Adewumi & Ali, 2010)
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Table 3: Summary of Constraints/Requirements

Level Constraints Classification
Categqry a All students in Fo, Ht and Sp categories allocated. must be) Hard
Allocation
b. | As many Fy, Sc, Fr, Ds, and Ot as possible shoaldllocated in this | Soft
order of priority.
Hall Allocation a.| Students in Ht, Sc and Sp must designated hostéle allocated to | Hard
(see Table 4)
b | Allocation for the remaining categories musirbthe stated order of | Soft
priority
Block/Floor a. | Ht category should be allocated to the lowest floassible in their Soft
Allocation assigned hall
b. | Fy category should be allocated to the highest Soft

possible floor in a hall

Fo, Ht, Sp, Fr, Fy, etc. represents Foreign, he8iplort, Fresh, and Final student categories

respectively

Source: (Adewumi & Ali, 2010)

Table 4. Specified Halls for certain Categories

SPECIFIED HALLS

CATEGORY MALE FEMALE
Ht HAL HA3
Sc HA2 HA3
Sp HC1 HC2

Source: (Adewumi & Ali, 2010)
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Appendix B

Table 1 contains the number of applicant per categdhile the rest give the number of
block/floor (with capacity) for various halls. Adal A 0 implies block A floor O (in this thesis it
implies block 1 floor 1).Cap stands for the capacitfCap with value O implies that the
block/floor is reserved and not to be allocateck Tdtal capacity for the hall is given in bracket

Data Set One

Table 1: Applicants by Category

Category Fy Fo | Fr Ht | Sp | Sc | Ds | Ot

Male Applicants 124020 |1332| 70 | 400| 400| 100| 1 800

Female Applicants| 1420| 25| 1 367| 80 | 500| 230| 60 | 1 000
Male Halls:

HA1 (660) HA2 (440) HB1(800) |
BIk/FIr | Cap | Blk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | Blk/FIr | Cap
AO 18 |AO 0 co 0 FO 20 |RO 20
Al 100 (A1 40 |C1 40 |F1 60 R1 60
A2 100 A2 40 |C2 40 |F2 60 |[R2 60
A3 100 [A3 40 |C3 40 |F3 60 |R3 60
A4 12 |BO 0 DO 0 GO 20 | SO 20
BO 18 |B1 40 |D1 28 |G1 60 |S1 60
B1 100 | B 2 40 |D2 28 |G2 60 |S2 60
B2 100 [B 3 40 |D3 28 |G3 60 |S3 60
B3 100
B4 12

HB5(968) HC1(526) HC4(512)
BIk/FIr | Cap | Blk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | Blk/FIr | Cap
EO 20 |J2 60 |10 40 |110 40 |10 80
E1l 60 |J3 60 |20 40 |120 40 |11 144
E2 60 |TO 12 |30 40 |130 46 |12 144
E3 60 |T1 60 |40 40 13 144
HO 12 | T2 60 |50 40
H1 60 | T3 60 |60 40
H2 60 |WO 12 |70 40
H3 60 W1 60 |80 40
JO 12 |W2 60 |90 40
J1 60 |W3 60 |100 40
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Female Halls:

HA3 (866) HB2(764) HB3(276)
BIk/FIr | Cap | Blk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap
AO 0 D2 60 |DO 0 Us3 80 |CO 0
Al 30 |D3 60 |D1 32 |VO 40 |[C1 30
A2 30 |EO 60 |D2 32 | V1 40 |[C2 30
BO 40 |E1 60 D3 32 |V2 40 |LO 40
B1 40 |E2 60 | KO 48 L1 40
B2 40 |E3 60 | K1 80 L2 40
co 40 |FO 0 K2 80 PO 0
C1 40 |F1 30 | K3 80 P1 24
C2 40 |F2 30 |UO 20 P2 24
DO 0 GO 43 |U1 80 SO 0
D1 60 |HO 43 |U2 80 S1 24
S2 24
HB4(524) HC3(646) HC2(512)
BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | BIK/FIr | Cap
AO 30 |[M2 32 |AO 60 |10 80
Al 40 |M3 32 |A1l 60 |11 144
A2 40 |NO 32 |A2 60 |12 144
A3 40 |N1 32 |BO 40 (13 144
BO 30 |N2 32 |B1 100
B1 40 | N3 32 |B2 100
B2 40 CoO 26
B3 40 Cl1l 100
MO 0 cz2 100
M1 32
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Data Set Two

Appendix C

Table 1: Applicants by Category

Category Fo | Ht Sp| Fy Sc| Fr Dg Ot
Male Applicants | 30 | 105 600 1860 600 1998 150 2700
Female Applicants 38 | 120 750 2130 345 2051 90 1500
Male Halls

HA1 (990) HA2 (666) HB1 (1200)
BIK/FIr Cap | BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap
A0 27 |AO 0 [CO 0 |FO 30 [RO 30
Al 150 A1 60 [C1 60 [F1 N0 |R1 90
A2 150 A2 60 [C2 60 [F2 9 [R2 90
A3 150 A3 60 [C3 60 [F3 90 [R3 90
A4 18 |BO 0 [DO 0 [GO 30 [SO 30
BO 27 |B1 60 (D1 42 |G 1 90 [S1 90
B1 150 B2 60 [D2 42 |G 2 90 [S2 90
B2 150 | B 3 60 [D3 42 |G 3 90 | S3 90
B3 150
B4 18

HC4 (768)
HB5 (1452) HC1 (789)

BIK/FIr | Cap | BIK/FIr | Cap BIk/FIr | Cap | BIk/FIr BIK/FIr [Cap

EO 30 |J2 90({10 60 (110 60 10 120

E1l 90 [J3 9020 60 |120 60 11 216

E?2 90 |TO 18|30 60 |130 69 12 216

E3 90 | T1 90(40 60 13 216

HO 18 | T2 90({50 60

H1 90 | T3 90({6 0 60

H 2 90 (WO 18|70 60

H3 90 (W1 90(80 60

JO 18 |W?2 90({90 60

J1 90 [W3 90100 60
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Female Halls

141

HA3 (1299) HB2(1146) HB3 (414)
BIk/FIr | Cap | BIK/FIr | Cap | BIk/FIr | Cap [ BIk/FIr | Cap [ BIk/FIr | Cap
AO 0 [D2 90 |DO 0 [U3 120 |CO 0
Al 45 |D3 90 |D1 48 |V O 60 [C1 45
A2 45 |EO 90 |D2 48 |V 1 60 [C2 45
BO 60 |E1 90 |D3 48 |V 2 60 [LO 60
B1 60 [E2 90 | KO 72 L1 60
B2 60 [E3 90 | K1 120 L2 60
CcO 60 [FO 0 [K2 120 PO 0
C1l 60 |F1 45 [K3 120 P1 36
C?2 60 |F2 45 [UO 30 P2 36
DO 0 |GO 65 U1 120 SO 0
D1 90 [HO 65 |U2 120 S1 36
S2 36
HB4 (786) HC3 (969) HC2 (768)
BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap | BIk/FIr | Cap
A0 45 | M2 48 [AOQ 90 10 | 120
Al 60 (M3 48 |A1l 90 11 | 216
A2 60 |NO 48 [A2 90 12 | 216
A3 60 |N1 48 |BO 60 13 | 216
BO 45 | N2 48 |B1 150
B1 60 | N3 48 B2 150
B2 60 CO 39
B3 60 Cl 150
M O 0 c2 150
M1 48




Appendix D

Data Set Three
Table 1: Applicants by Category
Category Fo| Ht Sp Fy Sc Fr Ds Ot
Male Applicants 45| 158 | 900 2790 90( 2997 225 405D
Female Applicants 57 180| 1125 3195 518 3077 135 022%
Male Halls
HA1 (1485) HA2 (999) HB1 (1800)

BIK/FIr | Cap BIk/FIr | Cap BIk/FIr | Cap BIk/FIr | Cap BIK/FIr | Cap
AO 405 |AO 0 CO 0 F O 45 RO 45
Al 225 |Al 90 |[C1 90 F1 135 [R1 135
A2 225 |A2 90 |C2 90 F2 135 |R2 135
A3 225 | A3 90 |[C3 90 F3 135 [R3 135
A4 27 BO 0 DO 0 GO 45 SO 45
BO 405 |B1 90 D1 63 G1 135 [S1 135
B1 225 | B2 90 D2 63 G2 135 [S2 135
B2 225 | B3 90 D3 63 G3 135 |S3 135
B3 225

B4 27

HB5 (2178) HC1(1184) HC4 (1152)

BIK/FIr | Cap | BIK/FIr | Cap BIK/FIr | Cap BIK/FIr | Cap BIK/FIr | Cap

EO 45 1J2 135 (10 90 |110 90 10 180
E1l 135 |J3 135 |20 90 (120 90 11 324
E2 135 |TO 27 |30 90 (130 104 12 324
E3 135 |T1 135 (40 90 13 324
HO 27 | T2 135 |50 90

H1 135 | T3 135 |60 90

H?2 135 WO 27 |70 90

H3 135 ([W1 135 (80 90

JO 27 |W2 135 |90 90

J1 135 |W3 135 (100 90
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Female Halls

HA3 (1949) HB2 (1719) HB3 (621)
BIk/FIr | Cap BIk/FIr |Cap BIK/FIr | Cap BIK/FIr | Cap BIk/FIr [Cap
AO 0 D2 135 |DO 0 U3 180 [CO 0
Al 67 D3 135 |D1 72 |VO 90 |C1 67
A2 67 EO 135 |[D2 72 |V1 90 |C2 68
BO 90 E1l 135 |D3 72 |V2 90 LO 90
B1 90 E2 135 |KO 108 L1 90
B2 90 E3 135 |[K1 180 L2 90
cO 90 FO 0 K2 180 PO 0
Cl 90 F1l 67 K3 180 P1 54
Cc?2 90 F2 68 Uuo 45 P2 54
DO 0 GO 97 Uil 180 SO 0
D1 135 [HO 98 U?2 180 S1 54
S2 54
HB4 (1179) HC3 (1454) HC2 (1152)
BIK/FIr | Cap BIk/FIr | Cap BIK/FIr | Cap BIk/FIr | Cap
AO 67 M 2 72 |AOQ 135 10 180
Al 90 M 3 72 |A1l 135 11 324
A2 90 N O 72 |A2 135 12 324
A3 90 N 1 72 BO 90 13 324
BO 68 N 2 72 B1 225
B1 90 N 3 72 B2 225
B2 90 CcO 59
B3 90 Cl 225
M 0 0 Cc2 225
M1 72
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