
1

Studies of Heuristics for Hostel Space Allocation Problem

by

Ariyo Sunday Ajibola

A thesis submitted in fulfilment of the requirements
for the degree of Masters of Science in Computer Science

in the

School of Mathematic, Statistics and Computer Science

University of KwaZulu-Natal
Durban, South Africa

July 2013

Examiner’s Copy

2

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION

The research described in this thesis was performed at the University of KwaZulu-Natal under

the supervision of Dr. A. O. Adewumi. I hereby declare that all materials incorporated in this

thesis are my own original work except where acknowledgement is made by name or in the form

of a reference. The work contained herein has not been submitted in part or whole for a degree at

any other university.

Signed:

Ariyo Sunday Ajibola

Date: July, 2013

As the candidate’s supervisor, I have approved/disapproved the dissertation for submission

Signed:

Dr. A. O. Adewumi

Date: July, 2013

3

UNIVERSITY OF KWAZULU-NATAL

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION – PLAGIARISM

I, Ariyo Sunday Ajibola ..declare that

1. The research reported in this thesis, except where otherwise indicated, is my original

research.

2. This thesis has not been submitted for any degree or examination at any other

University.

3. This thesis does not contain other persons’ data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons’ writing, unless specifically acknowledged as

being sourced from other researchers. Where other written sources have been quoted,

then:

a. Their words have been re-written and the general information attributed to them

has been referenced

b. Where their exact words have been used, then their writing has been placed in

italics and inside quotation marks, and referenced.

5. This thesis does not contain text, graphics or Tables copied and pasted from the Internet,

unless specifically acknowledged, and the source being detailed in the thesis and in the

References section.

Signed:

Ariyo Sunday Ajibola

4

Table of Contents

TITLE PAGE .. 1

DECLARATION .. 2

DECLARATION – PLAGIARISM .. 3

Table of Contents .. 4

List of Tables .. 7

List of Figures ... 9

List of Acronyms ………………………………………………………………………………. 10

Abstract ... 12

Acknowledgements ... 14

CHAPTER ONE ... 16

INTRODUCTION AND BACKGROUND .. 16

1.1 Introduction ... 16

1.2 General Optimisation Problem ... 17

1.3 Classification of optimisation problems .. 19

1.3.1 Classification based on constraints .. 19

1.3.2. Number of objective functions .. 20

1.3.3 Nature of the problem ... 21

1.3.4 Nature of the decision variables ... 22

1.4. Heuristics and Metaheuristic Algorithms ... 24

1.5. Objectives of Study ... 25

1.6. Thesis Outline ... 27

 1.7. Contributions ……………………………....………………………………………………………...27

CHAPTER 2 ... 28

SPACE ALLOCATION PROBLEMS ... 28

2.1. Introduction .. 28

2.2. Space Allocation in Higher Institution of Learning .. 29

2.3. Benchmark Model commonly used for SAP .. 31

2.3.1Knapsack Problem ... 31

2.3.2 Bin packing problem ... 33

2.3.4 Generalised Assignment Problem .. 33

5

2.4. Related Works .. 34

2.4.1. Berth Space Allocation Problem ... 36

2.4.2. Office Space Allocation Problem .. 37

2.4.3. Timetabling Allocation Problem ... 39

2.5. Summary …………………………..……………………...………………………………………….40

CHAPTER 3 ... 42

HOSTEL SPACE ALLOCATION PROBLEM .. 42

3.1. Introduction .. 42

3.1 Hostel Space Allocation Problem ... 42

3.1.1. Problem Description .. 44

3.1.2 Data Sets (Case Study) .. 48

3.2. Modelling the Multistage HSAP ... 50

3.2.1 Category Allocation Stage ... 50

3.2.2 Hall Allocation Stage .. 53

3.2.3 Floor Allocation Stage .. 55

3.3. Summary ………………………..…………………...……………………………………………….58

CHAPTER 4 ... 59

HEURISTICS FOR HOSTEL SPACE ALLOCATION PROBLEM .. 59

4.1 Introduction ... 59

4.2 Methodology ... 59

4.2.1 Exact Method .. 59

4.2.2 Genetic Algorithms ... 61

4.2.3 Hill Climbing Algorithm ... 63

4.2.4 Tabu Search Algorithm ... 64

4.2.5 Simulated Annealing Algorithm .. 66

4.2.5 Late Acceptance Hill Climbing Algorithm ... 68

CHAPTER 5 ... 81

EXPERIMENTAL SETTINGS AND RESULTS ... 81

5.1 Introduction ... 81

5.2 Parameter Settings ... 81

5.3 Testing ... 83

5.4 Results and Discussions ... 87

6

5.4.1 CA Stage Results .. 88

5.4.2 HA Stage Results .. 94

5.4.3Floor Allocation Stage Results ... 99

5.5 Summary ... 122

CHAPTER 6 ... 124

CONCLUSION AND FURTHER WORK ... 124

6.1 Summary and Conclusion .. 124

6.2 Further Works .. 125

References ... 127

Appendix A ... 136

Appendix B ... 138

Appendix C ... 140

Appendix D ... 142

7

List of Tables

Table 5.1: Category Allocation for Male students .. 89

Table 5.2: Category Allocation for Female students .. 90

Table 5.3: Category Allocation for Male Students ... 90

Table 5.4: Category Allocation for Female Students.. 91

Table 5.5: Category Allocation for Male Students ... 91

Table 5.6: CA for Female Students... 92

Table 5.7: Performance of the algorithms at CA Stage (Data Set 1) .. 92

Table 5.8: Performance of the algorithms at CA Stage (Data Set 2) .. 93

Table 5.9: Performance of the algorithms at CA Stage (Data set 3) ... 93

Table 5.10: Hall Allocation for Male (Data Set 1) ... 95

Table 5.11: Hall Allocation for Female (Data Set 1) .. 95

Table 5.12: Hall Allocation for Male Students (Data Set 2)... 95

Table 5.13: Hall Allocation for Female Students (Data Set 2) ... 96

Table 5.14: Hall Allocation for Male Students (Data Set 3)... 96

Table 5.15: Hall Allocation for Female Students (Data Set 3) ... 96

Table 5.16: Performance of the algorithms at HA Stage (Data Set 1) .. 97

Table 5.17: Performance of the algorithms at HA Stage (Data Set 2) .. 97

Table 5.18: Performance of the algorithms at HA Stage (Data Set 3) .. 98

Table 5.19: Male allocation throughout the floors of hall 1 ... 101

Table 5.20: Female allocation throughout the floor of hall 1 ... 102

Table 5.21: Comparison of the performance of the algorithms for Hall 1 103

Table 5.22: Male allocation throughout the floor of hall 1 ... 104

Table 5.23: Female allocation throughout the floor of hall 2 ... 104

Table 5.24: Comparison of the performance of the algorithms for hall 2 105

Table 5.25: Male allocation throughout the floor of hall 3 ... 106

Table 5.26: Female allocation throughout the floor of hall 3 ... 106

Table 5.27: Comparison of the performance of the algorithms for Hall 3 107

Table 5.28: Male students’ allocated throughout the floor of hall 4 ... 108

Table 5.29: Female allocation throughout the floor of hall 4 ... 109

8

Table 5.30: Comparison of the performance of the algorithms for hall 4 109

Table 5.31: Male allocation throughout the floor of hall 5 ... 110

Table 5.32: Male allocation throughout the floors of hall 5 ... 110

Table 5.33: Comparison of the performance of the algorithms for Hall 5 111

Table 5.34: Male students’ allocation throughout the floor of hall 6 ... 112

Table 5.35: Female allocation throughout the floor of hall 6 ... 112

Table 5.36: Comparison of the performance of the algorithms for Hall 6 112

Table 5.37: Performance of algorithms at FA Stage for Hall 1 .. 114

Table 5.38: Performance of algorithms at FA Stage for Hall 2 .. 115

Table 5.39: Performance of algorithms at FA Stage for Hall 3 .. 115

Table 5.40: Performance of algorithms at FA Stage for Hall 4 .. 116

Table 5.41: Performance of algorithms at FA Stage for Hall 5 .. 116

Table 5.42: Performance of algorithms at FA Stage for Hall 6 .. 117

Table 5.43: Performance of the algorithms at FA Stage for Hall 1 .. 119

Table 5.44: Performance of the algorithms at FA Stage for Hall 2 .. 119

Table 5.45: Performance of the algorithms at FA Stage for Hall 3 .. 120

Table 5.46: Performance of the algorithms at FA Stage Hall 4 .. 120

Table 5.47: Performance of the algorithms at FA Stage for Hall 5 .. 121

Table 5.48: Performance of the algorithms at FA Stage for Hall 6 .. 121

9

List of Figures

Figure 2.1: An illustration of a one-dimensional knapsack problem .. 31

Figure 3.1: General HSAP Allocation Process ... 48

Figure 3.2: Description of Category Allocation Stage. ... 50

Figure 3.3: Description of Hall Stage Allocation Process. ... 53

Figure 3.4: Description of Floor Stage Allocation Process. ... 56

Figure 4.1: Model explorer with parameter form .. 61

Figure 4.2: Genetic Algorithm .. 63

Figure 4.3: The Hill Climbing Algorithm implemented ... 64

Figure 4.4: The Tabu Search Algorithm ... 66

Figure 4.5: The Simulated Annealing Algorithm ... 68

Figure 4.6: Late Acceptance Hill Climbing .. 71

Figure 4.7. LAHC and GA Hybrid (LAHC_GA) ... 72

Figure 4.8: Hybrid of HC and GA (HC_GA) Algorithm .. 74

Figure 4.9: Hybrid of HC and LAHC (HC_LAHC) Algorithm ... 75

Figure 4.10: Hybrid of SA with GA (SA_GA) Algorithm ... 76

Figure 4.11: Hybrid of SA with LAHC (SA_LAHC) Algorithm ... 78

Figure 4.12: Hybrid of TS with GA (TS_GA) algorithm ... 79

Figure 4.13: Hybrid of TS with LAHC (TS_LAHC) algorithm ... 80

Figure 5.1: Framework for algorithm testing ... 83

Figure 5.2: The pseudocode for the testing method .. 84

10

List of Acronyms

ACO: Ant Colony Optimisation

AIMMS: Advanced Interactive Multidimensional Modeling System

BAP: Berth Allocation Problem

BPP: Bin Packing Problem

BSAP: Berth Space Allocation Problem

CA: Category Allocation

COP: Combinatorial Optimisation Problem

Ds: Discretionary students

FA: Floor Allocation

Fo: Foreign students

Fr: Fresher (Fresh students)

Fy: Final year students

GA: Genetic Algorithms

GAP: Generalised Assignment Problem

GDA Generalized Deterministic Annealing

GS: Global Search

GUI: Graphical User Interface

HA: Hall Allocation

HC: Hill Climbing

HIL: Higher institution of Learning

HSAP: Hostel Space Allocation Problem

Ht: Health students

11

IDE: Integrated Development Environment

IPOPT: Interior Point OPTimizer

KNITRO: Nonlinear Interior point Trust Region Optimization (the "K" is silent)

KSP: Knapsack Problem

LAHC: Late Acceptance Hill Climbing

LP: Linear Programming

LS: Local Search

NLP: Non-Linear Programming

NP-hard: Non-deterministic Polynomial-time Hard in computational complexity theory

OSAP: Office Space Allocation Problem

Ot: Other students

PSO: Particle Swarm Optimisation

SA: Simulated Annealing

SAP: Space Allocation Problem

Sc: Scholar students

SNOPT: Sparse Nonlinear OPTimizer

Sp: Sport men and women

TA: Threshold Accepting

TS: Tabu Search

TTP: Time Tabling Problem

XML: Extensible Mark-up Language

12

Abstract

This research work focused on the performance of heuristics and metaheuristics for the recently

defined Hostel Space Allocation Problem (HSAP), a new instance of the space allocation

problem (SAP) in higher institutions of learning (HIL). SAP is a combinatorial optimisation

problem that involves the distribution of spaces available amongst a set of deserving entities

(rooms, bed spaces, and office spaces etc.), so that the available spaces are optimally utilized and

complied with the given set of constraints.

HSAP deals with the allocation of bed space in available but limited halls of residence to

competing groups of students such that given requirements and constraints are satisfied as much

as possible. The problem was recently introduced in literature and a preliminary, baseline

solution using Genetic Algorithm (GA) was provided to show the viability of heuristics in

solving the problem rather than recourse to the usual manual processing. Since the administration

of hostel space allocation varies across institutions, countries and continents, the available

instance is defined as obtained from a top institution in Nigeria. This instance identified is the

point of focus for this research study. The main aim of this thesis is to study the strength and

performance of some Local Search (LS) heuristics in solving this problem. In the process

however, some hybrid techniques that combine both population-based and LS heuristics in

providing solutions are derived. This enables one to carry out a comprehensive comparative

study aimed at determining which heuristics and/or combination performs best for the given

problem.

13

HSAP is a multi-objective and multi-stage problem. Each stage of the allocation has different

requirements and constraints. An attempt is made to provide a formulation of these problems as

an optimisation problem and then provides various inter-related heuristics and meta-heuristics to

solve it at different levels of the allocation process. Specifically, Hill Climbing (HC), Simulated

Annealing (SA), Tabu Search (TS), Late Acceptance Hill Climbing (LAHC) and GA were

applied to distribute the students at all the three levels of allocation. At each level, a comparison

of the algorithms is presented. In addition, variants of the algorithms were performed from a

multi-objective perspective with promising and better solutions compared to the results obtained

from the manual method used by the administrators in the institutions. Comparisons and analyses

of the results obtained from the above methods were done.

Obtaining datasets for HSAP is a very difficult task as most institutions either do not keep proper

records of past allocations or are not willing to make such records available for research

purposes. The only dataset available which is also used for simulation in this study is the one

recently reported in literature. However, to test the robustness of the algorithms, two new data

sets that follow the pattern of the known dataset obtained from literature are randomly generated.

Results obtained with these datasets further demonstrate the viability of applying tested

operations research techniques efficiently to solve this new instance of SAP.

14

Acknowledgements

My deep appreciation goes to the Lord Jesus Christ for the guidance, inspiration, perfect health,

protection, provision, preservation, vision, grace, mercy and above all love He has for me. I will

forever remain grateful to you my God.

I would like to express my heartfelt appreciation to my supervisor, Dr. A.O. Adewumi, for his

support in terms of his assistance, encouragement, guidance, financial support and interest in my

work and progress. I am deeply indebted to you, sir for all your effort and most of all the time

you have devoted to see to the completion of this thesis.

To my love, Aderonke and to my children, Esther and David for your prayers, support, patience

and for the love you have bestowed on me during the course of this research work, I say thank

you for always being there.

I would like to thank my mother who suffered to ensure that all her children are educated. Your

years of sacrifices have borne fruits today. I pray that God will prolong your life to reap the

reward of your labour. I would like to appreciate all my brothers and sisters for their unwavering

support and encouragement.

15

Special thanks to the Faculty of Agriculture, Science and Engineering, faculty bursary and

School of Mathematics, Statistics and Computer Science for creating an enabling and conducive

environment.

I would also like to specially thank all the members of Deeper Life Bible Church, KZN province

and UKZN’s optimisation group for all their prayers and support.

16

CHAPTER ONE

INTRODUCTION AND BACKGROUND

1.1 Introduction

Hostel Space Allocation Problem (HSAP) is a huge source of concern for university

administrations especially in developing countries where hostels are provided to students for

residential purposes (Alitheia 2012; Adewumi & Ali, 2010, Adewunmi 2010). This concern

stems from many conflicting factors. Primarily, due to the fact that university funding does not

seem to favour the construction of more hostel facilities for the ever increasing population of

students. Therefore, there is the need to manage available spaces efficiently to serve the needs of

students while achieving the overall goal of the institutions. However, HSAP deals with the

process of allocating a limited number of bed spaces within hostels (resources) among many

competitive customers (eligible students) under a given set of hard and soft constraints

(Adewumi, 2010). Adewumi & Ali (2010) defined HSAP as a combinatorial optimisation

problem (COP) and proposed the use of heuristics to handle this new instance of the Space

Allocation Problem (SAP).

Meanwhile, the range of optimisation methods that have been used to handle the COP consist of

two main groups which are the exact (traditional) and approximate (heuristics) methods (Landa-

Silva, 2003). Exact methods seek to find the optimal solution to an optimisation problem but

have expensive computational needs that increase with growing difficulty of the problem. In

addition, exact methods may not find solution to some real world problem. However, for

practical applications, heuristic methods seek to find good solutions (in most cases near-optimal)

within short computational times while trading accuracy for computational efficiency (Adewumi,

17

2010; Landa-Silva, 2003). Metaheuristics are improved heuristics methods that have been

successfully applied to many COPs and SAPs for the past few decades.

This thesis reports a further investigation and study into the effectiveness of applying heuristics

techniques to solve the HSAP within the context of a Higher Institution of Learning (HIL). A

previous study on HSAP (see Adewumi & Ali, 2010) had advocated the application of

optimisation techniques to handle the allocation process. This research study on the HSAP seeks

to take the previous study further, both in terms of modelling and heuristic solutions. We

provide a model for the last stage of the allocation process while also investigating the

performance of more heuristics, metaheuristics and their hybridizations in solving this instance

of SAP. Extensive simulation studies were carried out on five combined heuristics techniques

(and hybrids) with their comparative results reported.

Before giving a further overview of the problem, a brief general overview of an optimisation

problem is presented.

1.2 General Optimisation Problem

Optimisation is the field of study that seeks to obtain the best possible results under given

constraints and several alternatives. Optimisation problems abound in all fields of study and all

areas of human endeavour including engineering, science, technology, aeronautics and even in

planning warfare. The main objective is to seek to optimise (maximize or minimize) certain

decision variables. Mathematically, therefore, optimisation seeks to find the best value for

decision variable(s) that would maximize or minimize an objective function. Optimisation

18

techniques provide procedural steps that help in exploring a search space to seek a feasible

solution that optimises given objective functions under stated constraints. It is a known fact that

there is no single optimisation technique that can provide optimal solutions to various forms of

optimisation problems hence the search for better techniques as well as the

improvement/application of known techniques to solve new problems are the subjects of on-

going research activities. Literature has proposed several optimisation methods or tools for

solving diverse types of optimisation problems.

Definition 1.1

If we assume *x to be a decision variable, then an optimisation problem can be stated as:

max ()g x (1.1)

subject to x S∈ (1.2)

*() ()g x g x≤ for all x S∈ (1.3)

where *x maximises the function g subject to the constraintx S∈ , and that *()g x is the

maximum value of the function g subject to the constraintx S∈ . Minimization is simply a

negation of maximization, i.e [min f(x) = -max {-f(x)}].

Definition 1.2

The variable x* is defined as a local maximiser of the function g subject to the constraint x∈S if

there is a number σ > 0 such that g (x) ≤ g (x*) for all x∈S for which the distance between x and

x* is at most σ. A local minimiser is also defined similarly.

19

Optimisation problems can be classified based on several factors and characteristics of the

problem to be solved. A few classifications of optimisation problems according to certain

characteristic features are presented in the next sub-section.

In a broad sense, optimisation problems can be solved using exact (traditional) and/or heuristic

techniques. Exact methods seek to obtain an optimal solution to a given problem but in most

cases at the expense of computational time especially for many NP-Hard problems. They may

therefore not be too appropriate for some complex and difficult problems (Adewumi, 2010).

Heuristic (approximate) algorithms, on the other hand, seek to get near-optimal solutions to

given optimisation problems thereby compromising accuracy for computational speed.

However, attempts geared towards seeking a balanced trade-off between accuracy and significant

reductions in computational time are currently being made.

1.3 Classification of optimisation problems

1.3.1 Classification based on constraints

Constraints are the limits that restrain the value of the objective function g. They characterize the

bounds within which feasible solutions are obtained. Constraints can be of two types: hard

constraints or soft constraints. Hard constraints define the feasibility of the solutions to be

obtained and cannot be violated while soft constraints can add to the quality of the solutions but

can be compromised with or without penalty. In a general sense, all hard constraints must be

satisfied and as many soft constraints as possible need to be satisfied if one is to get any feasible

20

solutions. Hence, based on the types of constraints, optimisation problems can be categorised

into unconstrained and constraint optimisation problems (Rao, 1996).

a) Unconstrained Optimisation Problems: If there are no constraints leading to the

evaluation of g, the problem is considered an unconstrained optimisation problem. If m

equals the number of constraints, then m= 0.

b) Constrained Optimisation Problems: If there are constraints leading to the evaluation

of g, the problem is considered to be a constrained optimisation problem. If m equals the

number of constraints, then m≥ 1. Most of the real-world optimisation problems are

multi-constrained problems.

1.3.2. Number of objective functions

Based on the number of objective functions to be minimized, optimisation problems can be

categorised into two, viz. single and multi-objective programming problems.

Single-Objective Programming Problem:

A single-objective programming problem can be described as the following:

Find x which minimizes g1 (x) (1.4)

subject to

gj (x) 0, J= 1,2,...,m (1.5)

where g1 denotes the objective functions to be minimized.

Multi-objective Programming Problem:

A multi-objective programming problem can be described as the following:

Find x which minimizes g1 (x) ,g2 (x),. . .,gk (x) (1.6)

21

subject to

gj(x) 0, J= 1,2,...,m (1.7)

where g1, g2,..... gk denote the objective functions to be minimized simultaneously.

1.3.3 Nature of the problem

Another significant classification of optimisation problems is done on the basis of the nature of

expressions for the objective function and the constraints. In line with this classification,

optimisation problems can be categorised into various forms: linear, nonlinear, geometric, and

quadratic programming problems.

• Linear programming

Linear Programming (LP) problem is such that both objective functions and constraints

are linear functions of the design parameters. ALP problem is often described in the

following standard form:

Find 1 2(, ,.....,)nx x x x= (1.8)

which minimizes g(x) = (1.9)

subject to constraints

 (1.10)

 . (1.11)

where , and are constants.

• Nonlinear programming

When there are a number of variables determining the objective and constraint functions,

the problem is termed a Non-Linear Programming (NLP) problem. This type of problem

is quite common, other problems can be considered as particular cases of the NLP

problem.

22

• Geometric programming

A function v(x) is termed as a polynomial if v can be expressed as the sum of power

terms each of the form

(1.12)

where and are constants with >0 and xj>0.

So an N term polynomial is expressed as the following

 (1.13)

A geometric programming problem is one in which the objective function and constraints

are expressed as polynomials of x .

• Quadratic programming

A subset of NLP problems with a quadratic objective function and linear constraints is

known as quadratic programming which can be depicted as follows:

 1 1 1
()

n n n

i i ij i ji i j
g x c q x Q x x

= = =
= + +∑ ∑ ∑ (1.14)

subject to

 1
, 1,2,.....,

n

ij i ji
a x b j m

=
= =∑ , (1.15)

 0, 1,2,.....,ix i n≥ = , (1.16)

where , , , , and i ij ij jc q Q a b are constants.

1.3.4Nature of the decision variables

Optimisation problems can be categorised as continuous or combinatorial optimisation problems

based on the decision variables used.

• Continuous Optimisation Problems:

The model form of an (continuous) optimisation

 min ()

subject to

 () 0, 1,.....,ig x i m

 () 0, 1,.....,ih x i p

where

• () : nf x ℜ → ℜ is the goal function

• () 0ig x ≤ are called inequality constraints

• () 0ih x = are called equality constraints

• Combinatorial Optimisation Problem (COP):

COP is in quadruple form(, , ,)I f m g

• I is defined as the set of instances;

• When an instance is provided

• When an instance is provided

evaluation ofy , that is more often than not a positive real.

• g is the objective function which is either

The objective can then be defined as

is a feasible solution y with

23

ptimisation Problems:

(continuous) optimisation (Boyd & Vandenberghe, 2004)

min ()f x

() 0, 1,.....,ig x i m= =

() 0, 1,.....,ih x i p= =

goal function which is minimise over the variable

inequality constraints, and

equality constraints.

Combinatorial Optimisation Problem (COP):

(, , ,)I f m g , where:

is defined as the set of instances;

When an instance is provided , ()x I f x∈ is the possible solution set;

When an instance is provided x and the possible answer is or , (,)y x m x y

, that is more often than not a positive real.

is the objective function which is either min or max .

The objective can then be defined as being to discover some casexas an optimal solution

Vandenberghe, 2004) problem is:

 (1.17)

 (1.18)

 (1.19)

over the variable ,

is the possible solution set;

 or , (,)y x m x y stand for the

optimal solution, which

24

(,) { (,) ()}m x y g m x y y f x′ ′= ∈ (1.20)

For every COP case, there is a consequent decision problem that hinges on the fact that there is a

feasible solution for some particular measure0m .

1.4. Heuristics and Metaheuristic Algorithms

Heuristic optimisation algorithms (heuristics for short) search for good feasible solutions to

optimisation problems in situations where the complexities involved or the paucity of time does

not permit an optimal solution (Garey & Johnson, 1979). Unlike exact algorithms, there are two

very strong issues that have to be considered in the evaluation of heuristics, they are: how

quickly solutions can be obtained and how close they are to being optimal.

A metaheuristic is a black box process that guides a subordinate heuristic by merging cleverly

different concepts for investigating and exploiting the search space in order to obtain efficient

near-optimal solutions (Osman & Laporte, 1996). Examples include SA, TS and GA

(Kirkpatrick et al., 1983; Holland, 1975), most of which are inspired by social behaviour or

concepts in nature. Metaheuristic algorithms try to strike a balance between exploring and

exploiting the local neighbourhood structures of the solution space (Syam & Al-Harkan,

2010).Exploitation involves locating more ‘promising’ local neighbourhood structures as these

areas may enclose superior solutions while exploration seeks to find the global optimum solution

point(Syam & Al-Harkan, 2010). This leads to the classification of optimisation search

techniques into LS and Global Search (GS) techniques.

25

LS techniques work by applying local changes of some sort within a defined neighbourhood

contained in the search space, until a solution deemed optimal is found or a time frame/limit has

elapsed. These methods have proved highly effective in solving some optimisation problems and

very recently as supportive cum improvement hybrid to GS techniques (Battiti, Brunato &

Mascia, 2008). Examples of LS methods include Hill Climbing (HC), Guided Local Search and

Iterative Local Search algorithms, among others. GS techniques, on the other hand, aim to find

the global optimum solution within the best possible value(s) of decision variables within the GS

space by way of effective combination of exploitation and exploration features of the underlying

algorithm. However, there are many real-world problems in which locating the global optimal

solution still remains practically impossible (Landa-Silva, 2003; Wikipedia, 2012). Furthermore,

there is no single GS technique that guarantees locating the global optimal solution to all kinds of

optimisation problems hence the need for simulation experiments to sometimes determine which

technique is best for a given state of an optimisation problem. GS heuristic algorithms, therefore,

only attempt to assess the global optimal solution from a set of local optimal solutions. Examples

of GS techniques include GA, Particle Swarm Optimisation (PSO), Ant-Colony Optimisation

(ACO), among others.

1.5. Objectives of the Study

It is practically difficult to handle Non-deterministic Polynomial-time hard (NP-Hard) real world

COPs with the exact solution techniques especially where the search space is considerably large,

hence, most researchers settle for near-optimal solutions that provide realistic solutions to these

problems. SAPs recently became an interesting research area in metaheuristic research with

26

various interesting case instances being explained in literature (for example, see Landa-Silva,

2003; Burke, Cowling & Silva, 2001; Adewumi & Ali, 2010).

SAP addresses the challenge of allocating limited available space among a set of demanding

entities requiring space utilization. These classes of problems are multi-constrained and multi-

objective problems in nature (Adewumi, 2010). Finding feasible solutions to them require the

maximization of space utilization in such a way that satisfies all hard constraints while satisfying

as many soft constraints as possible (Adewumi, 2010). The aim is to provide as much

satisfaction as possible to all demanding entities that require space utilization. Instances of the

SAP that have been introduced in literature especially as they relate to HILs include the Office

Space Allocation Problem (OSAP), timetabling problems and most recently, parking spaces

allocation problems and the HSAP.

The HSAP, a recent instance of SAP in literature, is concerned with the efficient allocation of

limited amounts of bed spaces to eligible students within the halls of residence at a given HIL.

HSAP is an NP-hard COP and like other SAPs is not only multi-constrained and multi-objective

but also multi-staged hence near-optimal solutions are determined using heuristic and

metaheuristic algorithms (Adewumi & Ali, 2010).

The objective of this research study is to further investigate the deployment of heuristics in

solving the HSAP. Our emphasis is on investigating and comparing the effectiveness of LS

heuristic algorithms in providing solutions to the HSAP. The research study investigates five

techniques namely, HC, Simulated Annealing (SA), Tabu Search (TS), Late Acceptance Hill

27

Climbing (LAHC) and GA. As an extension, some hybrids of these algorithms are investigated

with other search metaheuristic algorithms. Results obtained from these different instances are

compared.

1.6. Thesis Outline

The chapters of this thesis are organized as follows: Chapter 2 introduces SAP at HILs and

explains some of the problems experienced in utilizing space efficiently at these institutions. It

also reviews some variants of the SAP. Chapter 3 introduces the HSAP. It describes the HSAP

and discusses previous research that has been done in this area. It also presents the mathematical

modelling of the problem. Chapter 4 presents the methodology employed in providing solutions

to the problem. Chapter 5 presents and discusses the experimental results obtained. Chapter 6

contains the conclusion and discussions of future extensions to the problem. Appendices A, B, C

and D provide details about the three data sets used as well all the associated constraints involved

in the allocation process of the HSAP.

1.7. Contributions

The following are the contributions of the thesis:

1. The thesis explores the performance of the various heuristics which are most common in

literature and also the performance of their hybrids which is considered as the strong

point of this research work.

2. The thesis provides new datasets on which further research o n the HSAP can be based.

3. Several important issues in the HSAP were identified, and practical models for this type

of HSAP are proposed including the floor stage.

28

CHAPTER 2

SPACE ALLOCATION PROBLEMS

2.1. Introduction

SAPs are one of the most difficult NP-hard COPs (Adewumi & Ali, 2010; Burke and Varley,

1998) to solve. It is a very important space management issue that is concerned with the

distribution of limited available space amongst demanding sets of entities requiring space

utilization. It is a well-known fact that space available to accommodate entities (for instance, bed

space for students, shelf space for items) is often limited especially as an organization grows.

Mismanagement of this limited space can thus adversely affect the overall operations of an

organization. Inefficient use of the limited spaces can in turn affect the overall costs involved in

the organisation’s operation, amongst others. Since the cost and feasibility of space expansion is

often and almost impracticable in many real life situations, it is pertinent therefore to consider

best practices in the management of available space. Although, a strict management issue, space

allocation is essentially an optimisation problem and can thus benefit from mathematical

modelling and optimisation research, hence the significance of this research study. It is often

easy to conceive SAP in terms of well-known COPs as benchmark problems like bin-packing

problems, knapsack problems, etc. are essential space utilization or allocation problems.

In this section, we give a general description of space allocation with specific focus on some

instances of the SAP such as Berth Space Allocation Problem (BSAP), Office Space Allocation

Problem (OSAP) (Pereira, et al., 2010), Timetabling Problem (TTP) (Adewumi, Sawyerr & Ali,

2009; Burke & Bykov, 2008 & 2010) and HSAP. This section describes some of the problems

29

and complexities involved in addressing space utilization, and give an overview of some

instances of SAP as well as more details on the HSAP.

2.2. Space Allocation in Higher Institution of Learning

Space utilization presents a common challenge to HILs. This is due to the challenge of

distributing limited numbers of available space among demanding entities that require space

utilization. The demanding entities may include staff, lecture venues, students demanding on-

campus accommodation, laboratories or practical etc. (Adewumi & Ali, 2010; Landa-Silva,

2003).In addition, the objective of space allocation is to provide optimum satisfaction to all

demanding entities while satisfying all hard constraints and as many soft constraints and

requirements as possible (Adewumi & Ali, 2010).

Mismanagement of available space in HILs may negatively affect the overall running and

operating costs of the institution hence the need for effective and efficient utilization and

management of space. However, finding optimal solutions in the way space is utilized presents a

challenge as SAPs are computationally “hard” in nature. Furthermore, the problem is

complicated due to the dynamic nature of space management in real life instances as entities are

added and removed continuously (Landa-Silva, 2003). Also, in determining the best solution to

SAPs, the convenience of the underlying entities may be an important factor. For example,

faculty and departments should be allocated spaces as close as possible to lecture venues while

physically challenged students need to be allocated hostel space that is closest to health facilities,

amongst others. These issues make space allocation a very important managerial responsibility

and hence automated solutions that incorporate good approximation algorithms are essential.

30

This will provide for efficient and effective, accurate and fair distribution of spaces without

personal biases. However, many institutions, particularly in developing countries, still rely on

using manual processes in dealing with space allocation at HILs.

The manual approach, though in some cases may rely on some form of computer processing

which are prone to inefficiency, errors and biases. From experience, the timely production of

distribution lists also poses a great challenge since there is no guarantee that solutions obtained

via this approach will either be good or near the expected optimal solution. While the manual

approach may be relatively easy and quick for small sized organizations, dealing with cases

involving larger population sizes such as the allocation of hostel space in higher institutions will

pose a challenge. This is due to the larger sizes of the input data sets and the complexities of the

constraints and objectives associated with obtaining solutions.

Mathematically, most SAPs have been modelled using well-known benchmark COPs such as

BPP, Knapsack Problem (KSP), assignment, or resource allocation problems. Similarly, this

study employs a form of multiple knapsack models to model the different stages of the HSAP. A

brief discussion of some of these benchmark models are given below while details of the HSAP

is presented in the Chapter 3.

31

2.3. Benchmark Model commonly used for SAP

2.3.1 Knapsack Problem

KSP is a very common NP-Hard benchmark COP that has been used in modelling many real-

world optimisation problems. It involves the arrangement or assignment of items (or the subsets

thereof) into knapsack(s) so as to maximize the total accumulated profits of the items while the

capacity constraint of the knapsack(s) is/are being observed. Each item to be arranged has

associated profit and weight values as illustrated in the simple example in Figure 2.1.

Various forms of knapsack models (and their variants) have been applied in literature to model

optimisation problems. These include the binary, fractional, bounded, multiple, and quadratic

knapsack models (Landa-Silva, 2003; Martello & Toth, 1990a).The differences lie in the way the

items are distributed and the number of knapsacks involved (Nyonyi, 2010). In a binary model,

an item is either selected or not selected, while in the fractional model, a fraction of items can be

selected. The bounded knapsack model allows for an upper bound on the number of times an

item can be selected while the multiple knapsacks has more than one knapsack where the items

can be placed. The latter can be binary, fractional or any other combination.

Figure 2.1: An illustration of a one-dimensional knapsack problem (Source: Wikipedia)

R 15 (20KG)

R20 25Kg
R22 (14Kg)

R8 (25KG)

BOX

Capacity

55Kg

R7 (9Kg) R35 (30Kg)

32

The aim of the multiple knapsack modelling is to fill multiple knapsacks with subsets of items in

such a way that the total accumulated profits of the subsets are maximized without having the

total accumulated weights of the subsets exceed the capacities of the knapsacks. Mathematically,

a binary otherwise called the 0-1 multiple knapsack model can be described as follows:

Let

m = number of knapsacks

n = number of items

c(i) = capacity of knapsack i

p(j) = profit associated with item j

w(j) = weight associated with item j

x(i,j) = 1 if j is selected for knapsack i, 0 otherwise

The objective function is:

Maximize

1 1

() () (,)
m n

i j

f x p j x i j
= =

=∑∑ (2.1)

subject to:

1

() (,) () 1,2.....,
m

j

w j x i j c i i m
=

≤ =∑ (2.2)

1

(,) 1 j 1,2.....,
n

i

x i j n
=

≤ =∑ ; {0,1} (2.3)

In this research study, a form of the 0-1 multiple knapsack model is used to model the different

stages of the HSAP.

33

2.3.2 Bin packing problem

The BPP is another well-known NP-Hard COP with various forms appearing in literature as well

(Martello & Toth, 1990a). We defined one dimensional bin packing problem as follows: Given a

set of entities or items {1,..., }I n= each having a corresponding size or weight iw and a set of

bins with identical capacities .c The goal is to pack all the items into a few bins while observing

the size constraint of the bins. Many researchers have studied different dimensions of the BPP

and applied them to modelling and to solve real-world problems using both exact and heuristics

techniques (for example see Scholl, Klein & Jurgens, 1997; Martello & Toth, 1990a).

2.3.4 Generalised Assignment Problem

The Generalised Assignment Problem (GAP) is an NP-Hard problem that is similar to the

multiple KSP except that the profit and weight of each item varies with respect to the containers

assigned to them (Burke et al., 2000). It can be mathematically formulated as follows:

m = the number of containers;

n = the number of items;

ijp = profit of item i if allocated to container j;

ijw =weight of item i if allocated to container j;

jc = capacity of container j

{1 if item is assigned to knapsack ,
0 otherwise.

i jx
ij

=

34

1 1
max

m n

ij ijj i
p x

= =∑ ∑ (2.4)

, 1
subject to 1,...,

n

ij ji
w c j n

=
≤ =∑ (2.5)

 1
1, 1,...,

m

ijj
x i n

=
≤ =∑ (2.6)

0 or 1, 1,..., , 1,...,ijx i n j m= = =
 (2.7)

A practical application of the model is assigning n tasks to m processors, (or n jobs to m

machines) given the profit ijp and the level of resource required ijw for the assignment of task i to

processor j and total resourcejc available for each processor j (Martello & Toth, 1975; Martello

& Toth, 1990a).

2.4. Related Works

On-campus residence for students of HILs is a very pertinent issue as their availability and

efficient management have been shown to influence the performance of students (M&G 2009;

Oghifo 2012). Many irregularities and strikes in HILs across Africa have been linked to the

problem of unavailability and/or mismanagement of residential accommodation for students. The

above are important reasons why it is necessary to use automated systems to assist in finding

effective solutions for allocating students accommodation. Automated systems are fairer, more

accurate and faster, compared to manual processes. However, many HILs still employ manual

processes. This is primarily prevalent in developing countries (Adewumi & Ali, 2010).

35

Meanwhile, this problem was recently described as a COP and heuristics solutions have been

proposed in solving it (Adewumi, 2010). Earlier, metaheuristics have been successfully applied

to similar SAPs. The use of heuristics (and its variants) was necessitated by the complex nature

of the problem for which exact algorithms have proved insufficient especially as the problem’s

search space increases. Researchers have therefore advocated the use of heuristics and any

efficient hybrid thereof for SAPs. Previous studies have employed both population-based and

LS techniques as well as their hybrids (e.g. Math-heuristics, hyper-heuristics) to solve SAP.

The initial study on HSAP was essentially based on GA. This current study therefore looks

further into the performance of LS and hybrids of the HSAP.

Generally, space planning is a major issue in HILs just as management has to cope with the

demand for office space, lecture venues, examination venues, residence space etc. There are

many factors that influence how available spaces are allocated with each HIL differing from

another in terms of its space planning policy and management. Previous research concentrated

on these areas of space allocation in HIL: office space (Burke, Cowling, & Silva, 2001; Fomeni,

2010; Landa-Silva., 2003;Pereira, et al., 2010;Silva, Ferreira, & Costa, 2008) and timetabling

(Adewumi,Sawyerr& Ali, 2009; Burke & Bykov , 2008 & 2010).Current research efforts are a

furtherance of the recent focus on hostel space allocation.

Past studies on SAP sought to formulate mathematical models for the identified real-world

instances while considering various constraints and requirements. The issue of hostel space has

great influence not only on the academic performance of students (Alitheia, 2012; Pat-Mbano,

36

Alaka1 & Okeoma, 2012; Yusuff, 2011) but also on their safety, convenience and undivided

concentrations on their primary duty. In Nigeria where the current case study is based, some real

estate agents have started considering the economic potential of developing private student

housing near university campuses both to serve the needs of students while carrying out their

own professional services (Alitheia, 2012). Though this proposition was welcomed with some

controversies, many major HILs have witnessed private residence provision by realtors, private

landlords and other stakeholders that have landed properties close to campuses (Pat-Mbano,

Alaka1, & Okeoma, 2012). Thishas compelledadminstrators of HILs in the country to rethink

the management strategies for the distribution of available hostel space, this is the major

motivation/justificationfor this study.Some other instances of SAP are briefly described below.

2.4.1. Berth Space Allocation Problem

Berth Space Allocation Problem (BSAP) is a commonly studied SAP in literature. The BSAP

seeks to assign a set of vessels to a given berth layout within a given time horizon. Appropriate

allocation and positioning of ships carrying containers has been a major source of concern for a

long period of time. Fluctuations in the demand for ships carrying containers have created

considerable apprehension leading to serious optimisation problems at the marine terminals. In

addition to dealing with space allocation, the BSAP also considers time (temporal dimension) as

a major constraint. Depending on the case and instance at hand, there can be several objective

functions to be optimised, for example, to minimize the service time to vessels, minimize the

time of stay at the port, or to minimize the number of rejected vessels. Each instance and real life

case of the BSAP has varying constraints and requirements such as the spatial and temporal

constraints. Therefore, there is no unique mathematical model that can fully describe the BSAP,

37

it depends on the case, objective and constraint at hand. Several models have been reported in

literature involving BSAP with various temporal (such as vessel arrival process, start of service

and handling times) and spatial (such as berth layout and restrictions) attributes. Regardless of

the formulation of the problem, BSAP is an NP-hard or NP-complete problem that requires the

use of heuristics and meta-heuristics to obtain solutions within reasonable computational time.

Most recently, Umang et al. (2013) studied the application of exact methods based on mixed

integer programming and heuristics approach to solve the BSAP in bulk ports with the objective

of minimizing service times of vessels for a given yard layout. The study, which was based on

real life data, found that near-optimal solutions can be obtained for even larger instances with the

heuristics. In addition, various exact and heuristics methods have been successfully applied to

solve varying models of the BAP. Initially, queuing models were developed to solve the BAP

(Edmond & Maggs, 1978) which is formulated as a COP. Various models of the BAP are

presented in Buhrkal et al, 2010. Solution methods in literature include the exact or

mathematical programming approaches (Umang et al, 2013), heuristics based on Lagrangian

relaxation (Akio et al., 2001), use of clustering search (Oliveira et al., 2011)and hybrid approach

of TS and mathematical programming (Giallombardo et. al., 2010), among several others.

2.4.2. Office Space Allocation Problem (OSAP)

The OSAP applies not only in HIL but also in many large organizations where the allocation of

buildings and office space to departments, units, and employees pose a challenge especially

given the increasing number of constituents demanding limited office space. In other words,

OSAP seeks to assign employees workspace in an office building in an optimal way which

38

satisfies the given objective criteria and requirements. This can occur in two forms: a complete

reassignment of all employees in the organization to a new workspace, this is likely due to

reorganization or relocation; and secondly, a re-assignment or new assignment of workspace due

to a change in the employees’ composition such as new hiring and personnel turnover. The

former might aim to maximize the use of available space while the latter might emphasise

minimizing the disruption of the current workforce. Cases of multiple objectives are possible.

OSAP has been considered and modelled as a variant of the Bin Packing Problem (BPP), the

Knapsack Problem (KSP) or the Generalized Assignment Problems (GAP) (Burke & Varley,

1998), which are well-known NP-complete problems in nature. Exact methods have been

employed to solve instances of OSAP (for example, see Ulker & Landa-Silva, 2010a&b). Ulker

& Landa-Silva (2010a) developed a 0/1 integer programming technique to solve the OSAP with

the primary aim of optimizing space utilization while satisfying a set of given constraints. The

model was solved using CPLEX with significant results obtained for some combinations of hard

and soft constraints. In another related work by the same authors (Ulker & Landa-Silva, 2010b),

a 1/0 integer programming formulation model was develop for OSAP using University of

Nottingham’s data set. The model was implemented using the Gurobi solver which gave a better

result when compared with known result from the same data set.

Furthermore, various heuristic and meta-heuristic techniques have also been proposed including

the GA, SA, TS, Particle Swarm Optimisation (PSO) and other hybrid approaches (see Landa-

Silva & Burke, 2007; Landa-Silva et al., 2010; Ozg¨ur & Landa-Silva, 2012; Ulker & Landa-

39

Silva, 2012, Zahiri, 2009). For instance, Pereira et al. (2010) studied the performance of a greedy

search and TS for generating high quality solutions to the OSAP with the objectives of

maximizing synergies within the organization, minimizing over-usage of limited office space

while also maximizing the number of closed spaces. The TS gave better performance than the

greedy LS algorithm. A study by Lopes & Girimonte (2010) showed that extensions of a

combination of LS operators can improve the performance of LS algorithms for this type of

problem.

2.4.3. Timetabling Allocation Problem (TTP)

TTP is a major academic problem that has posed challenges to HILs worldwide. It exists in

various forms of which are the lecture or course TTP and examination TTP, each with varying

complexity of constraints. Course TTP involves scheduling a number of students taking given

course(s), lecturers and lecture rooms into a fixed set of timeslots for days of the week in an

optimal schedule. TTP generally has diverse set of constraints, resources and requirements

depending at times on the different real-life scenario considered (Adewumi, et al., 2009). Some

hard constraints common to TTP include having a schedule where no lecturer, class or classroom

is used more than once in any given period. Both generic and real-life forms of TTP present

various forms of hard and soft constraints (see Adewumi et. al, 2009; Murray, Uller & Rudov,

2010).

Similar to other SAPs, both exact and heuristics approaches have been successfully applied to

solve the TTP.Landa-Silva & Obit (2011) designed constructive hybrid heuristics for the course

40

TTP. Four different hybrid heuristics that combine LS and the graph colouring method were

tested with promising results shown by the constructive techniques. Schimmelpfeng & Helber

(2006) modelled a case of examination TTP in Germany as a mixed integer assignment problem

and found an exact solution using CPLEX solver. It was evident from this real world problem

that an exact method can give satisfactory results if the problem size is not big White& Zhang

(1998) employed a hybrid of TS and constraint logic to solve the course TTP for small data sets

of a university timetable. Dammaket al. (2006) formulated TTP as a zero-one integer linear

programming problem and applied a three-stage heuristic to solve it.

Burke & Bykov (2010) showed the effectivness of LS techniques in solving the TTP.

Specifically, they designed LAHC to solve an instance of TTP with promising solutions.

Although, HC has mostly been regarded as weak in handling large instances of COP, the study

showed that an improvement on HC can be very promising. It therefore suggested the

application of similar improved algorithm (LAHC, to be discussed later) to any problem where

HC has been previously but unsuccessfully applied. This is why in this research study, the

LAHC is used as one of the LS techniques in our HSAP. In addition, the authors further suggest

the incorporation of improvement ideas into any search method where candidate and current

costs can be compared.

2.5. Summary

High demand for on campus accommodation in the institutions of higher learning has initiated

managers of these institutions to adopt systems to automate and optimise their decision making

processes. The HSAP is one of the key factors for efficiency of any higher institution. Current

41

computer applications, however, do not offer hostel space allocation optimisation and humans

usually do this intuitively.

This chapter gave an overview of the SAP and its importance. Also examples of specific cases

where this problem has been tackled were given and these include: berth space allocation, office

space allocation and TTP.

The chapter also describes some of the problems and complexities involved in SAP. However,

these cases are discussed in more detail when addressing space utilization. Well-known

mathematical models that have been used in the study of SAP are introduced, these include: the

knapsack problem, bin packing problem and the generalised assignment problem.

This chapter raises several important issues about hostel space allocation. Due to the different

constraints encountered in allocation, the HSAP can be a very difficult problem to solve.

However, due to the NP-Hard nature of the HSAP it is impractical to work out a polynomial time

bounded solution procedure that can solve every problem instance to optimality. The first

method proposed is dynamic programming used to optimise the space allocation model of which

the hostel space problem is an example. However, this technique may require very high

computational times for large problems. Heuristic and metaheuristic techniques were used as

alternatives. This research work focuses on the heuristic and metaheuristic approaches in solving

the HSAP.

42

CHAPTER 3

HOSTEL SPACE ALLOCATION PROBLEM

3.1. Introduction

As stated in the preceding chapter, the HSAP is an instance of the NP-Hard SAP (Adewumi &

Ali, 2010). Like other SAPs, it is a multi-staged, multi-constrained, and multi-objective COP that

involves finding feasible and acceptable solutions to the distribution of available but limited bed

spaces in on-campus residences to eligible students in a way that satisfies given objectives. This

chapter describes the HSAP and previous research that has been carried out in this area. Detailed

background information associated with the problem is presented along with the different stages

of the problem and the way in which solutions are found along with the mathematical

formulations.

3.1 Hostel Space Allocation Problem

The adequate provision of student residence has its impacts on academic success as on-campus

residence gives students peace of mind allowing them have consistent focus on their studies.

The issue of residence provision for students has become a source of concern for administrators

of HILs due to the increased pressure of students being admitted to such institutions without a

corresponding increase in the provision of facilities. The demand for on-campus accommodation

has increased significantly in recent years. This makes the management of student residences an

important responsibility. With limited amounts of bed spaces available for accommodation,

students need to be allocated in ways that are fair and as evenly distributed as possible. This

43

opens up a new phase of research for researchers especially in metaheuristic as the question of

how best to manage and distribute available hostel space for students has not been adequately

studied. The issue has been handled as a rather ad hoc process with varied degrees of success in

different universities especially in developing countries (Adewumi & Ali, 2009). The

pioneering research study reported in the HSAP (Adewumi & Ali, 2010) is based on

experimental studies which were conducted using real-world data from one of the largest tertiary

institutions in Nigeria. This data is representative of what obtains in other HILs in Nigeria but

the situation might be slightly different in other countries including South Africa. However,

efforts to gather more data from institutions in South Africa have yielded little or no results as

most HILs do not keep proper records of such data. Some institutions have indicated that they

are yet to initiate this proper recording keeping process. Furthermore, due to the novelty and

nature of the problem at hand, there is as yet no method to measure the quality of hostel

allocation and students distribution except against specified goals. The lack of data archives on

previous allocations also makes it difficult to benchmark results with past manual results.

Consequently, the success of space allocation was measured in terms of each of the variables

involved, essentially the number of beds and the number of students that could be accommodated

within the necessary guidelines of the university policy. The above limitation has constrained

this study, being a further foundational research work in this area, to still be based on available

data from the previous study as indicated earlier. The goal therefore is to further study the

feasibility of other heuristics especially LS techniques in providing solutions to this problem.

Moreover, the current study attempts to provide further mathematical modelling of the problem

which was not very obviously presented in the previous study, hence the approach in this study is

slightly different. It is an attempt to further show the viability and efficiency of heuristics in

44

tackling the HSAP. Since most HILs would require long-range plans to construct additional

hostel space by building more hostels, it is imperative that the distribution of the existing space

optimised to achieve given goals. Further studies on the HSAP based on the pioneer work done

by Fomeni (2010) and Nyonyi (2010) have buttressed the efficiency of heuristics to the HSAP.

Current research presents a mathematical model of the HSAP and re-applies GA techniques to

solve it based on this model and a new chromosome representation. Other heuristics and their

hybrids are also tested. A comparative study of results among the heuristics based on simulation

experiments was conducted and reported.

3.1.1. Problem Description

In the case study on which this research is based (Adewumi & Ali, 2010; Adewumi, 2010),

allocations of male and female students into hostels are done in a mutually exclusive manner as

undergraduate hostels are delineated based on gender. From the dataset available, there are

twelve on-campus residences with six designated for male and female respectively. Usually,

residences are built as multi-story structures (with the exception of one hostel) each with varying

numbers of floors that are further divided into blocks (otherwise call wings). Rooms are located

on each wing per floor with each having one or more beds depending on the number of students

it is designed to accommodate. Usually, due to the shortage of space, most rooms are designed

to take more than one student and students on each wing have access to common facilities such

as toilets and baths. The university, through the office of students’ affairs, sets the criteria that

make a student eligible for a bed space and each eligible student is entitled to only one bed

space. The eligibility criteria may vary and is manually checked by staff.

45

After initial application and expression of interest in residence accommodation, the students’

affairs officers classify all eligible students into categories for the purpose of allocation. Thus,

the allocation of bed space goes through three distinct phases, each with different requirements

and objectives. These are the category allocation, hostel allocation and floor allocation

(discussed later in more detail). Once the distribution is done per floor, the porters in charge of

each residence take charge of settling students into rooms and bed spaces. These stages are not

essentially necessary as far as mathematical modelling and allocation distribution are concerned.

With regards to this study, the categories are (Adewumi & Ali, 2010):

1. Final Year Students (Fy): Those in the last year of study

2. Scholars (Sc): Students with cumulative grade point averages that are in the first class

range.

3. Foreign Students (Fo): whose nationality and residence is not Nigeria.

4. Health Students (Ht): Physically challenged students.

5. Fresher (Fr): First year and direct-entry students.

6. Sports students (Sp): Male and Female students who participate in sporting activities at

the university.

7. Discretionary (Ds): Students considered based on special requests

8. Others (Ot): All other students requiring accommodation (in various years of study)

Each category of students has peculiar characteristics and requirements which can be factored in

as constraints into the allocation process. For example, disabled (health) students cannot be

given allocation on the top floor in any residence since none of the hostels is built with escalators

for ease of movement for them. Moreover, since the space available is limited, some of the

46

categories are prioritized based on pre-set administrative and/or other considerations (Adewumi

& Ali, 2010; Nyonyi, 2010). This serves as a major hard constraint during category allocation.

Other administative considerations that serve as either hard or soft constraints include: 1) Fy

students must be allocated to a floor that will afford them less distractions (soft); 2) Ht students

must be accommodated in hostels close to the medical centres and on the lowest floor for easy

access (hard); 3) Sp students must be accommodated close to sports facilities due to practice

(hard); 4) all Fy, Fo and Ht students should be accommodated (hard). Further details on the

problem can be found in Adewumi (2010), Adewumi & Ali (2010) and Nyonyi (2010).

The process involved in the allocation problem is illustrated in Figure 3.1. As stated earlier, the

allocation process is done in three stages namely: the category allocation (CA), Hall1Allocation

(HA) and the Floor Allocation (FA) stages (Adewumi & Ali, 2010). The number of students to

be accommodated are selected from each category at the CA stage while the HA stage seeks to

distribute this students into various hostels. The FA stage distributes the students allocated to

various hostels into various floors. The stages are interdependent as the output from the CA stage

serves as input for the HA stage whose output also serves the FA stage. Each stage has varying

constraints and requirements. Adewumi & Ali (2010) further sub-divided the eight categories of

students into two for the purpose of modelling and solutions namely: fixed and flexible

categories. The fixed categories are groups that must be accommodated at the CA stage, that is,

all students in this group must be given bed space. At the HA stage, the fixed category represents

those given preference in terms of distribution into various halls. The fixed category was

determined based on given administrative criteria (mainly based on students’ peculiarity) for

1
 It should be noted that the term hall is used as a synonym for hostel and these two terms would be used

interchangeably throughout this research.

47

allocation. For example, at the CA stage, Ht, Fo and Sp must be accommodated hence they are

considered fixed while at the HA stage, it is not necessary to give the Fo category special

preference as they can be accommodated into any hostel. However, the Fy category are given

preference at this stage due to the requirement to accommodate them where there will be less

distraction. Moreover, the university has preferred specified hostels for final year students as at

the time of this study (See appendix A for details).The flexible categories, on the other hand, are

groups that are less restrained and are thus of lesser priority when it comes to hostel allocation.

For instance, since there are always too many students than available space, only as many as

possible of the flexible categories will be accommodated at the CA stage. Also at the HA stage,

these categories can be distributed into any hall without restraint. The constraints for the HSAP

can therefore be summarized as follows (Adewumi & Ali, 2010):

Hard Constraints:

1. The number of students accommodated must not exceed the total capacity of space available.

2. The number of students allocated to a specific hall must not exceed the capacity of that hall.

3. A student must be allocated only once (to one bed space).

4. At the CA stage, all fixed categories students must be accommodated.

5. At the HA stage, fixed categories must be allocated only to stated halls (see Appendix A).

6. Flexible categories must be allocated at the CA stage based on given priority.

7. At HA stage, Ht students should be allocated at the lowest possible floor.

Soft Constraints:

1. At the CA stage, as many Fy students as possible should to be accommodated.

2. Similarly, as many Fy students as possible should be accommodated.

3. At HA stage, Fy students should be accommodated at the highest possible floor.

48

The main goal is to achieve fairness in the distribution of available space.

3.1.2 Data Sets (Case Study)

Secondary dataset on the number of hostels, sample number of applicants, categories of students

and others were used as presented in Adewumi & Ali (2010) and shown in Appendix A. There

Figure 3.1: General HSAP Allocation Process

All Interested Students

Fill Out Application

Forms

HA Stage: Students are distributed to

their respective halls

FA Stage: For each hall, students are

allocated to specific blocks and floors

All Applicants

Categorized

CA Stage: Determined total number

of student to be accommodated

49

are twelve undergraduate hostels which are geographically spread across the main campus of the

institution under study. The study did not deal with the postgraduate hostels which are separate

from the undergraduate hostels and are administered based on different rules. The number of

floors, wings and bed spaces (capacity) vary across the hostels as shown in Appendices A and B.

In order to test the efficiency of the models and algorithms used in this research, other random

datasets that follow the distribution patterns of the available real dataset were generated. Two

sets of data were generated and results were produced for each of them. The data sets have the

same characteristics as our case study except that they were scaled to 1.5 of the original data set

from the literature. In each of the data sets, we have eight categories of students and six halls of

residence each for male and female students. In addition, each of the halls has varying capacities,

blocks and floors. The generated data sets however follow the same requirements and constraints

as specified for the original data set. See appendices A, C and D for detail.

A feasible solution to the HSAP is such as does not break any hard constraint and that satisfies as

many soft constraints and objectives as possible. This needs to be done while allocating students

in ways that are fair and that are as evenly spread throughout the halls of residence as possible.

The models for the multi-staged allocation process are described in detail in the next section.

50

3.2. Modelling the Multi-stage HSAP

As earlier stated, the HSAP as defined in literature currently involves three stages of allocation

namely the CA, HA and FA stages. The CA stage determines the exact number of students from

each category that will be allocated accommodation. Once established, the HA stage determines

the distribution of students from each category into specific halls while allocation to floors are

done at the FA stage (see Figure 3.1).

3.2.1 Category Allocation Stage

As application for residence usually outnumbers the available space, this stage determines the

students to be considered for accommodation from the eligible application pool in such a way

that the total capacity of available space is not exceeded.Figure3.2 gives an overview of the

allocation description at this stage which we modelled as a bounded KSP with restrictions. The

modelling is described as follows:

Figure 3.2: Description of Category Allocation Stage. Source: (Adewumi & Ali, 2010)

Category
Allocation

Fixed
Allocation

Allocate all

Based on
Priority setting

Flexible
Allocation

Total
hall

capacity

a

b

51

Applicants are classified into fixed and flexible categories of students as explained earlier with

both groups assigned weights to represent the priority of allocation. We assume ix to represent

the number of students of i-th category to be allocated, ic as the number of applicants in

category i, k as the total count (number) of fixed categories, m as the total number of

categories, T as the total number of allocations and Tv , as the total number of flexible

allocations. A weight 1=iw is assigned to the fixed categories while weights 10 ≤< iw is

assigned to the flexible categories. The objective is to maximize the utilization of available

space so as not to exceed the total available space. This is considered as

 1

max
m

i i
i

w x
=
∑ (3.1)

where iw is the weight representing the allocation to students of categoryi among the set of

applicants. Nyonyi (2010) assumed that
∑

=
i

i
i c

c
w i.e. allocation is proportional to the number

of applicants per category. However, in this study, we allow iw to be user-defined as in another

pioneer research by Adewumi & Ali (2010). The constraint is defined such that the full capacity

of available space is used.

Subject to:

 (3.2)

1

m

i
i

x T
=

=∑

52

This is an equality constraint rather than an inequality constraint which is only useful when the

total number of applicants is smaller than the total capacity, in which case the solution of the

problem becomes trivial. Besides, with the equality constraint, there is the guarantee that all

spaces would be fully occupied. To take care of the fixed categories, we set

, 1,...,i ix c i k= =
 (3.3)

This constraint ensures that all students in fixed categories are allocated. However, for the

flexible category, we have

0 , 1, ..., i ix c i k m≤ ≤ = + (3.4)

This constraint ensures that allocated students in the categoryi are smaller than the number of

applicants in categoryi . If the fixed categories are allocated, one is left with the fair distribution

of the flexible categories, thus the objective becomes:

 (3.5)

Subject to

1

m

i V
i k

x T
= +

=∑
 (3.6)

1

max
m

i i
i k

w x
= +
∑

53

Feasible solutions determined at this stage will represent the number of students that will be

given accommodation in the fixed and flexible categories. These students will then need to be

distributed throughout the halls of residence at the HA stage.

3.2.2 Hall Allocation Stage

This stage follows and takes input from the CA stage. At this point, the distribution of students

into halls based on fair and evenly distributed means are considered. Constraints for this stage

have been discussed earlier and presented in Appendix A (Adewumi & Ali, 2010; Nyonyi,

2010). The fixed categories defined for this stage must be allocated to specified halls while the

flexible categories are allocated to the remaining bed spaces in such a way that there is even

distribution in all the halls as illustrated in Figure 3.3.

Figure 3.3: Description of Hall Stage Allocation Process. Source: (Adewumi & Ali, 2010)

Following the model given in the CA stage with similar assumptions, we formulate this stage as

follows:

Hall
Allocation

Fixed
Allocation

To specific
hall

Allocate to
maximum
distribution

spread

Flexible
Allocation

Individual
hall

capacity

a

b

54

If we take ijx to represent the number of students of category i to be allocated to the j-th hall,

jh as the capacity of hall j, ip as a proportion of the number of students of i-th category in the

halls, m as the total number of categories, ix as used in the CA stage, n as the total number of

halls, k as the number of fixed categories in HA allocation and iN number of halls that have

some students of i-th category. The objective of maximizing the spread of students across the

halls is modelled as:

∑

=

m

i
ii Np

1

max
 (3.7)

Selections of the objective function respond to weak restrictions of spreading. To illustrate this

categoryk is taken, iN is the number of halls with at least one student of categoryk . For this

reason, maximizing iN will maximize the number of halls with students of categoryk . The

students of this category will be spread out more. }{ } }){{(ijjijjiii xxxp minmaxmax −−= is the

proportion of students in the halls with fewer students and the number of students in the most

populated halls. Maximizing this value will enhance more uniform distribution of the students.

Subject to:

∑
=

=
m

i
jij hx

1 (3.8)

This constraint guarantees that students allocated in each hall are equal to the hall’s capacity.

∑
=

=
n

j
iij xx

1 (3.9)

55

This guarantees that students allocated to each category are equal to CA results.

iij cx = for some)(ij fixed for each ki ...1=

(3.10)

0=ijx for other)(ijj ≠ for each ki ...1= (3.11)

This constraint ensures the students in categories like sports and health are allocated in

designated halls as stated by the hard constraint. Meanwhile, ip is the proportion of students in

the i-th category allocated to each hall divided by all students in the i-th category whileip is the

mean of the maximum and the minimum of these rates. With the function to maximize given as

∑ =

m

i ii Np
1

, with iN ensuring that the objective function increases with the quantity of halls with

students of categoryi . In addition, ip will ensure that students are proportionately distributed to

each category. Once a feasible solution is determined, the exact number of students to be

allocated from each category per hall will be known. Using this solution, we can allocate

students at the floor level.

3.2.3 Floor Allocation Stage

The results from the HA stage serve as input to this stage. This stage determines exactly how

many students of each category will be allocated into each floor of each hall. FA is determined

separately for each hall. Thereafter, the students who make up these numbers will be distributed

across all the floors of the halls in ways that are fair and evenly spread. The fixed categories here

are the Ht students who are to be allocated to the lowest floor in their specified halls while the Fy

students are to be in the highest possible floor in their halls. Other categories are regarded as

56

flexible categories and can be allocated to any floor in a way that is evenly spread. The solution

is determined exactly as in the HA stage, except that in this case the distribution is determined

separately for each hall. For each hall, if a fixed category has been assigned to it, the students

will be allocated to the best floors possible and sometimes based on specific needs as in the Ht

category (See appendix A). This stage is also modelled as a form of multiple KSP as illustrated

in Figure 3.4.

Figure 3.4: Description of Floor Stage Allocation Process. Source: (Adewumi & Ali, 2010)

Following the assumptions made in the previous stage modelling, one can proceed as follows:

The objective is to

∑∑∑
= = =

m

i

b

k

f

l
ijijklijl

j j

Npw
1 1 1

max
 (3.12)

Floor

Allocation

Others spread

across floor

Fy to highest

floor

Ht to lowest

floor

Floor

capacity

57

subject to:

∑
=

=
m

i
jlkijlk ax

1 (3.13)

∑∑
= =

=
j jb

k

f

l
ijijkl xx

1 1 (3.14)

This constraint guarantees that the number of students allocated from each category in each hall

corresponds to the HA results.

where

ijlkx represents the number of students to be allocated of thei-th category in the l-th

floor of the k-th block of the j-th hall.

ijx number of students of category i allocated to the j-th hall (result of hall allocation)

jb number of blocks in the j-th hall.

jf number of floors in the j-th hall.

jkla capacity of the l-th floor of the k-th block of the j-th hall.

m total number of categories.

ijklp proportion (rate) of students of the i-th category in each floor of each block,

computed as in ip for the hall allocation.

58

ijlw weight of allocating a student of i-th category to the l-th floor of the j-th hall.

Weights are assigned in the same way as in Adewumi & Ali (2010) as follows:

where the hall has Ht allocation and no Fy allocation: 1w = 1; 2w = 0 with

subscript 1 representing the Ht category and subscript 2 representing the Fy

category. Where the halls have Fy allocation and no Ht, 1w = 0; 2w = 1 are

assigned; and where the hall has both Ht and Fy allocations, 1w = 0.7; 2w = 0.3.

The rest of the categories were assigned w = 0.5.

ijN the sum for each block of the number of floors that have some students of i-th

category in the j-th Hall.

Since the objective is maximization, the higher the fitness value (set as the objective function),

the better the solution provided when the function is evaluated.

3.3. Summary

This chapter was focused on the HSAP. It uses specific examples where the process of space

allocation is demonstrated. It showed that the process has several stages that deal with numerous

constraints. Mathematical models for all the three stages for the optimisation of the HSAP under

the different constraints were developed.

59

CHAPTER 4

HEURISTICS FOR HOSTEL SPACE ALLOCATION PROBLEM

4.1 Introduction

The challenge involved in obtaining the solution for the analytical models at different stages of

the allocation process for the HSAP reflects the computational complexities involved in

determining feasible solutions to the problem. As a variant of KSP and an instance of the SAP,

an NP-hard problem requires good solution techniques especially as the solution space increases.

Burke &Varley (1998) recommend the adoption of heuristics in tackling this type of COP. In

this chapter, the techniques and the solution methodology adopted namely the HC, SA, TS,

LAHC and GA including hybrids with GA and LAHC are discussed. The purpose of the

hybridization is to synergize the strengths of the underlying algorithms for possible improved

performance. To enable comparisons to be made, exact solutions using the CPLEX solver

incorporated into AIMMS® software were computed and reported.

4.2 Methodology

This section presents an overview of the algorithm of techniques adopted for the HSAP including

the exact solution obtained from AIMMS®. The descriptions of each algorithm are given below:

4.2.1 Exact Method

AIMMS® is optimisation modelling software utilised for solving large-scale scheduling and

optimisation problems. It comprises of algebraic modelling language, an Integrated Development

60

Environment (IDE) for model editing as well as Graphical User Interface (GUI) for model

viewing and development. AIMMS® incorporated many solvers including CPLEX, KNITRO,

SNOPT, IPOPT, and Conopt through the aid of AIMMS open solver interface. The software

provides both imperative and declarative programming styles. Optimisation model formulation

occurs through declarative language elements like set and indices, as scalar and parameters in

multidimensional approach, constraints and variables that are peculiar to all algebraic modelling

languages, and permits for a precise description of some problems in the mathematical

optimisation domain. The language also supports units of measurements as well as compiles and

runtime analysis of unit, which detect modelling errors if employed.

AIMMS supports control flow and procedure statements for data exchange with external data

sources like databases, spreadsheet, test files and extensible mark-up language (XML)

optimisation models for post and pre-processing tasks, handling of user interface events and the

development of hybrid algorithms for some types of problem to which solvers cannot efficiently

proffer solutions. AIMMS supports reusability as users can arrange models in libraries of user

models for later use. A free version of the software is available online. Figure 4.1 gives a

description of the model explorer of the software which is very useful in solving mathematical

optimisation problems in various forms including linear, quadratic, nonlinear, mixed-integer,

mixed-integer nonlinear, global optimisation, stochastic, robust optimisation and constraint

programming problems.

61

Figure 4.1: Model explorer with parameter form

4.2.2 Genetic Algorithms

GA was first proposed independently by Fraser (1957) and Bremermann (1962). However,

Holland (1975) is often cited as the main pioneer research work in the GA field. GA extracts

inspiration from the biological concept of the survival of the fittest or the natural selection

principle. A population of solutions evolve from one generation to another through a successive

combination of a number of operations of selection, crossover and mutation (Goldberg, 1989;

Forrest, 1993; Michalewicz, 1996). A solution (individual) is usually encoded as a string (called

a chromosome) with several of this forming a population. A new population is generated by

copying some fitter individuals from the current population and selecting some newly created

62

individuals using genetic operators, such as mutation and crossover. Once the termination criteria

are met, the algorithms stop. The encoding of the solution into chromosome is an important step

that influences the efficiency of GA (Falkenauer, 1997). Usually, the encoding (genotype)

should have a one-to-one mapping with the actual phenotype (actual solution).

The crossover operator permits chromosomes to inherit some promising traits from two (possibly

more) selected parents while mutation seeks to introduce some new traits that can enhance the

solution obtained from the crossover operation (Davis, 1987; Goldberg, 1989). Selection of

parents are done via various means including the well known roullete wheel selections. While it

is agreed that fitter individuals should have a larger probability of being selected for the new

generation, it is also important to permit a few “less-fit” individuals to increase the diversity of

the population.

GA has proved to be very efficient in solving many real-life optimisation problems including the

HSAP as shown in the pioneer research mentioned earlier. Based on the new model introduced,

this research study implemented GA in order to facilitate the comparison of results obtained with

other techniques for the HSAP. More information on GA and it variants can be found in

literature (examples: Sastry et al., 2005; Goldberg, 1989; Davis, 1991; Beasley et al., 1993;

Reeves, 1995;Mitchell, 1996; Michalewicz & Fogel, 2000). An overview of GA as implemented

in this work is given in Figure 4.2. Since the models used are based on KSP, a string

representation of chromosomes that treat the number of students to be distributed as items, each

with associated profit and weight values, to be packed into the knapsack which is the capacity

constraints are chosen, depending on the level of allocation.

63

1. Generate an initial random population = best
2. Evaluate the fitness of best = x
3. for each generation i till n do

3.1. for m iterations to create a new population do
3.1.1. Select parents
3.1.2. if random[0,1] ≤ crossover_rate then

3.1.2.1. Perform crossover to create new children
3.1.2.2. for each child do

3.1.2.2.1. if random[0,1] ≤ mutation_rate then
3.1.2.2.1.1. Perform mutation

3.1.2.2.2. end if
3.1.2.3. end for
3.1.2.4. Add children to population P(i)

3.1.3. else
3.1.3.1. Add parents to population P(i)

3.2. end for
3.4. Evaluate the fitness of P(i) = x*
3.5. if x* > x then

3.5.1. x = x*
3.5.2. best = P(i)

3.6. end if
3.7. if i == n then

3.7.1. Finished
3.8. else

3.8.1. Goto 3.
3.9. end if

4. end for

Figure 4.2: Genetic Algorithm

4.2.3 Hill Climbing Algorithm

HC is a LS technique that seeks to improve on a current solution by iteratively replacing it with

the best solution found within the neighbourhood of the LS space. This algorithm thus

continuously moves in the direction of the path that provides a better solution. The main problem

with HC is premature convergence, that is, getting stuck in a local optimum. Figure 4.3 shows

64

the description of the algorithm implemented in this research study. This research attempts to

adapt HC to escape the local optimal point by way of hybridization as will be described in later

sections.

1. Generate an initial random solution = best
2. Evaluate the fitness of best = x
3. for each iteration i till n do

3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of N(i) = x*
3.3. if x* > x then

3.3.1. best = candidate
3.3.2. x = x*

3.4. end if
3.5. if i == n then

3.5.1. Finish
3.6. else

3.6.1. Goto 3.
3.7. end if

4. end for
Figure 4.3: The Hill Climbing Algorithm implemented

4.2.4 Tabu Search Algorithm

TS was initially proposed by Fred Glover (Glover, 1977) and was later popularized in Glover

(1989) and Glover, (1990). It is a single solution approach that has found a variety of

applications in practice. TS makes use of historical information and a memory (tabu list) to

prevent the search from cycling and becoming trapped in a local optimum. The tabu list is a

short-term memory of recent neighbourhood moves that are prohibited during the search to

prevent it from going back to recently visited points in the search space. The length of the tabu

list determines how many moves are stored in the list while tabu tenure defines how many

iterations of each move in the tabu list are taboos. Although the tabu list is helpful, sometimes it

65

may restrict the search excessively. Therefore, most TS algorithms have integrated a mechanism

called the aspiration criteria, which is used to mitigate the strength of the tabu list. Some long-

term memories that store records of the entire search process for the purpose of intensification

and diversification are also used. A simple intensification and diversification method can be

carried out by introducing incentive or penalty values to modify the evaluation of moves

according to the frequency memory (Glover & Laguna, 1995). Other diversification methods are

also provided in Soriano & Gendreau, (1996). Details on the TS can be found in Glover

&Laguna (1997) and Gendreau (2003).

TS approaches have been used in many practical areas including transportation and routing,

scheduling, bioinformatics, telecommunications, network design and graph partitioning and

colouring (see Widmer & Hertz, 1989; Reeves, 1995; Skorin-Kapov & Vakharia, 1993; Taillard,

1994; Gendreau et al., 1994; Mazzola & Schantz, 1995; Rolland et al., 1996; Glover & Laguna,

1997). The TS algorithm as implemented in this research work is presented in Figure 4.4.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate the Tabu List TL
6. for each iteration i till n do

6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. if (f_working better then f_current and !Find_Taboo(working)) or (f_working
better than f_best) then

6.3.1. iff_working better than f_best then
6.3.1.1. f_best = f_working
6.3.1.2. best = working

6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working

66

6.3.5. f_current = f_working
6.4. else

6.4.1. working = current
6.4.2. f_working = f_current

6.5. end if
6.6. if i > n then

6.6.1. Finish
6.7. else

6.7.1. Goto 6
6.8. end if

7. end for
Figure 4.4: The Tabu Search Algorithm

4.2.5 Simulated Annealing Algorithm

SA is a LS method inspired by the physical cooling process of metals (Metropolis et al., 1953).

Since its introduction as an optimisation tool by Kirkpatrick et al. (1983), it has been very

usefulness and has shown efficiency in handling optimisation problems including graph

partitioning and colouring, route-planning, layout design, sequencing and scheduling,

timetabling and signal processing(see Carnevali et al., 1985; Sechen et al., 1988; Johnson et al.,

1989; Ogbu & Smith, 1990; Abramson, 1991; Johnson et al., 1991; Thompson & Dowsland,

1998; Burke & Kendall, 1999; Tian et al., 1999; Liu, 1999; Chen & Luk, 1999; Bouleimen &

Lecocq, 2003). Details on the algorithms and other applications can be found in Dowsland

(1995) and Henderson et al. (2003).

SA follows a simple process similar to the HC but has a probability of accepting worse solutions.

For example, in a maximisation problem with objective function f and neighbourhood structure

N, SA starts from an initial solution and repeatedly generates and transfers to a neighbouring

current solution. During this process, SA has the possibility of visiting worse neighbours in order

67

to escape from a local optima solution. Particularly, a parameter known as temperature t, is used

to direct the likelihood of moving to worse neighbour solutions. In each iteration, the algorithm

accepts all uphill moves (a move which increases the objective value for a maximisation

problem) and some of the downhill moves (a decrease in the objective value for a maximisation

problem) based on the metropolis probability defined as exp (δ / t) where δ is the variation in the

objective function between the new candidate solution and the current solution. A simulated

annealing algorithm implemented in this research work is described in Figure 4.5 below.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate starting temperature T and final temperature F
6. while T ≥ F do

6.1. for each iteration i till n do
6.1.1. working = Randomly_Generate_Solution
6.1.2. Evaluate fitness of working = f_working
6.1.3. iff_working better then f_current then

6.1.3.1. use_solution = true
6.1.4. else

6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then

6.1.4.2.1. use_solution = true
6.1.4.3. end if

6.1.5. end if
6.1.6. ifuse_solution then

6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. iff_current better then f_best then

6.1.6.4.1. best = current
6.1.6.4.2. f_best = f_current

6.1.6.5. end if
6.1.7. else

6.1.7.1. f_working = f_current
6.1.7.2. working = current

6.1.8. end if
6.1.9. if i > n then

68

6.1.9.1. end for
6.1.10. else

6.1.10.1. Goto 6.1.
6.1.11. end if

6.2. end for
6.3. Update T according to cooling schedule
6.4. if T < F then

6.4.1. Finish
6.5. else

6.5.1. Goto 6.
6.6. end if

7. end while
Figure 4.5: The Simulated Annealing Algorithm

4.2.5 Late Acceptance Hill Climbing Algorithm

The LAHC was introduced and used by Verstichel & Berghe (2009). Similar to other single-

solution search techniques such as the HC, SA and TS, the LAHC starts with a randomly

generated initial solution and at each iteration it evaluates a new candidate to determine whether

to accept or reject it (Verstichel & Berghe, 2009). In order to apply its acceptance rule, LAHC

maintains a list (of a fixed length) of previous values of the current cost function. The candidate

cost is compared with the last element of the list and if it is not worse, it is accepted. After the

acceptance procedure, the cost of the new current solution is inserted into the beginning of the

list and the last element is removed from the end of the list (Abuhamdah, 2010). The inserted

current cost is equal to the candidate's cost in cases of acceptance, while in cases of rejection it

equals the previous value. The LAHC is memory based consistent with the TS (Taillard, et al,

2001). However, the TS and the LAHC lists have a different nature and purpose. In TS, solutions

(or moves) are memorized while in the LAHC the list contains the values of the cost function.

Moreover, at each iteration in TS, the candidate solutions are compared with the complete list

69

whereas in LAHC only one value from the end of the list is used (Edmund & Yuri, 2012). These

alterations in the memory utilization mechanism make LAHC less time consuming than TS.

Besides, it is possible to make the processing time of LAHC genuinely independent of the length

of the list by eliminating the shifting of the whole list at each iteration.

An improvement on the initial idea of the LAHC through the use of “virtual” shifting of the list

has been proposed by Edmund & Yuri (2012). However, the list elements are immobile and the

list appears as a fitness array aF of length 2s its virtual beginningv , at the thi iteration, is

calculated as:

 mod fav i L=

Where “mod” represents the remainder from the integer division. At each iteration, the value of

vf is compared with the candidate cost and after accepting or rejecting the current cost, a new

value is assigned tovf .The length faL appears as a single genuine input parameter for this

algorithm. No other parameter is required.

LAHC performance is not affected by the initial values of fitness array (Ozcan et al, 2009). At

the beginning of the search, the initial list can contain any arbitrary values. If these are much

higher than the initial cost, then the algorithm will generate a corresponding number (equal to the

faL) of random perturbations while filling the list with current costs. If all elements of the initial

fitness array are very low, then the algorithm will generate the same number of non-accepted

moves and again, will fill the fitness array with the value of the initial cost. However, a very

small delay in the search procedure can cause either of the two variants to occur. If one does not

70

wish to wait until the algorithm does it automatically, then it is possible to set up all elements of

the fitness array to be equal to the initial cost before starting the search.

It should be noted that the LAHC uses a greedy acceptance rule process (rejects all worse

candidates) only in the case of the delayed comparison (Hu, Kahng, & Tsao, 1995).

Nevertheless, if a current solution is accepted with its immediate candidate, LAHC (in a similar

way to SA, threshold accepting (TA) and generalized deterministic annealing (GDA)) allows the

acceptance of worsening moves. This can happen in a situation where the current cost is better

than the value from the list and the candidate cost is located amongst them. Considering that

accepting worsening moves usually increases the strength of a search process, it can be estimated

that the LAHC has a better performance than the greedy HC. Alternatively, there are possible

cases where the current cost is worse than the value from the list (Abuhamdah, 2010). Here

(using the initial approach of LAHC), a non-worsening move can still be discarded. Such

algorithmic behaviour is usually regarded as undesirable in computational search (SA, TA, and

GDA always accept non-worsening moves). In order to be persistent with this practice, Burke &

Bykov (2008) proposed a second improvement on the initial idea, so that not only “late

acceptance” rules can be used for the worsening moves, but also all non-worsening ones can be

accepted. Results of the initial experiments in the current research work further show certain

advantages of both improvements on the initial idea. All experiments in this research were

carried out with the final (improved) version of LAHC. Consequently, its final acceptance

condition at the thi iteration is expressed as:

* *
1 or i i Lfa i ic c c c− −≤ ≤

71

In this formula, *
ic is the candidate cost, 1ic − is the current cost and i Lfac − denotes the cost of the

current solution faL iterations, which is equal to(mod).i Lfaf . Obviously, when faL is equal to 1 or

0, LAHC is simply greedy HC. Consequently, LAHC achieves its exclusive properties whenfaL

is equal to two or higher. The algorithm for LAHC is given in Figure 4.6.

1. Generate an initial random solution = best s
2. Evaluate the initial cost function of best s = C(s)
3. Give the length faL

4. For all iteration {0... 1} : ()kk Lfa f c s∈ − =
4.1. Counter I=0;
4.2. Do until the end of the condition

4.2.1. Generate a candidate solution s*
4.2.2. Evaluate the cost function C(s*) and compute

4.2.3.
 mod fav i L=

4.2.4. If
* *() or () ()

V
c s f c s c s≤ ≤

4.2.4.1. Then the candidate is accepted (s:=s*)
4.2.5. Else, the candidate is rejected (s:=s)

4.2.5.1. Add current cost into the fitness array fv:=C(s)
4.3. Update the counter I:=I+1

5. End for
Figure 4.6: Late Acceptance Hill Climbing

4.2.6Hybridization of techniques

Various hybrids of the underlying techniques were attempted in order to enhance the strength of

these techniques in the search for better solutions to the HSAP. The algorithms for some of these

hybrids are presented in this section.

First, hybrids of LAHC with GA, HC, TS and SA were implemented in this study. For the

LAHC_GA hybrid, some GA operators (e.g. crossover and mutation) were introduced in order to

enhance the performance of the LAHC technique. Similarly, the GA and LAHC were hybridised

72

with HC, SA and TS to find solutions to the HSAP at the three stages of the allocation process.

The algorithm for LAHC_GA is given in Figure 4.7.

1. Generate an initial random solution = best s
2. Evaluate the initial cost function of best s = C(s)
3. Give the length faL

4. For all iteration {0... 1} : ()kk Lfa f c s∈ − =
4.1. counter = 0
4.2. while counter ≤ length of candidate do

4.2.1. Select individuals P(counter) and P(counter+1) from candidate
4.2.2. if random[0,1] ≤ crossover_rate then

4.2.2.1. Perform crossover
4.2.3. end if

4.2.3.1. if random[0,1] ≤ mutation_rate then
4.2.3.1.1. Perform mutation

4.2.4. end if
4.2.5. Increment counter by 2
4.2.6. if counter > length of candidate then

4.2.6.1. end while
4.2.7. else

4.2.7.1. Goto 3.3.4.
4.2.8. end if

4.3 end while
4.4. Evaluate fitness of candidate = x*
4.5. if x* > x then

4.5.1. best = candidate
4.5.2. x = x*

4.6. end if
5. Do until the end of the condition

5.1. Generate a candidate solution s*
5.2. Evaluate the cost function C(s*) and compute

5.3.
 mod fav i L=

5.4. If
* *() or () ()

V
c s f c s c s≤ ≤

5.4.1. Then the candidate is accepted (s:=s*)
5.4.2. Else the candidate is rejected (s:=s)

5.5. Add current cost into the fitness array fv:=C(s)
5.6. Update the counter I:=I+1

6. End for
Figure 4.7.LAHC and GA Hybrid (LAHC_GA)

73

For the GA hybrids, each individual chromosome represents the students (gene) that have been

allocated to each category. These are the students that have been allocated to each category, for

each hall, at the HA stage and the students that have been allocated to each category, for each

floor of each hall, at the FA stages. The uniform crossover technique was used while mutation

was performed by randomly swapping one gene from one individual to the next.

Furthermore, HC was also hybridized with GA (HC_GA) and LAHC (HC_LAHC) in order to

explore the LS ability of HC to improve the performance of GA and LAHC. This is done with

the hope to provide improved solutions. The algorithms for HC_GA and HC_LAHC are given in

Figures 4.8 and 4.9 respectively.

1. Generate an initial random solution = best
2. Evaluate the fitness of best = x
3. for each iteration i till n do

3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of candidate = x*
3.3. if x* > x then

3.3.1. best = candidate
3.3.2. x = x*
3.3.3. counter = 0
3.3.4. while counter ≤ length of candidate do

3.3.4.1. Select individuals P(counter) and P(counter+1) from
candidate
3.3.4.2. if random[0,1] ≤ crossover_rate then

3.3.4.2.1. Perform crossover
3.3.4.3. end if

3.3.4.4. if random[0,1] ≤ mutation_rate then
3.3.4.4.1. Perform mutation

3.3.4.5. end if
3.3.4.6. Increment counter by 2
3.3.4.7. if counter > length of candidate then

3.3.4.7.1. end while
3.3.4.8. else

3.3.4.8.1. Goto 3.3.4.
3.3.4.9. end if

74

3.3.5. end while
3.3.6. Evaluate fitness of candidate = x*
3.3.7. if x* > x then

3.3.7.1. best = candidate
3.3.7.2. x = x*

3.3.8. end if
3.4. end if
3.5. if i == n then

3.5.1. Finish
3.6. else

3.6.1. Goto 3.
3.7. end if

4. end for
Figure 4.8: Hybrid of HC and GA (HC_GA) Algorithm

1. Generate an initial random solution = best
2. Evaluate the fitness of best = x
3. for each iteration i till n do

3.1. candidate = Randomly_Generated_Neighbour N(i)
3.2. Evaluate fitness of candidate = x*
3.3. if x* > x then

3.3.1. best = candidate
3.3.2. x = x*
3.3.3. Evaluate the initial cost function of best s = C(s)
3.3.4. Give the length faL

3.3.5. For all iteration {0... 1} : ()kk Lfa f c s∈ − =

3.3.5.1. Counter I=0;
3.3.5.2. Do until the end of the condition

3.3.5.2.1. Generate a candidate solution s*
3.3.5.2.2. Evaluate the cost function C(s*) and compute

3.3.5.2.3
 mod fav i L=

3.3.5.3. If
* *() or () ()

V
c s f c s c s≤ ≤

3.3.5.3.1. Then the candidate is accepted (s:=s*)
3.3.5.4. Else the candidate is rejected (s:=s)

3.3.5.4.1. Add current cost into the fitness array fv:=C(s)
3.3.5.4.2. Update the counter I:=I+1

3.3.6. end for
3.7. end if
3.8. if i == n then

3.8.1. Finish

75

3.9. else
3.6.1. Goto 3.

3.10. end if
4. end for

Figure 4.9: Hybrid of HC and LAHC (HC_LAHC) Algorithm

SA was also hybridized with GA (SA_GA) and LAHC (SA_LAHC) in order to explore the

ability of SA to accept worse solutions compared with GA and LAHC techniques. The SA_GA

and SA_LAHC algorithms are given in Figures 4.10 and 4.11 respectively.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate starting temperature T and final temperature F
6. while T ≥ F do

6.1. for each iteration i till n do
6.1.1. working = Randomly_Generate_Solution
6.1.2. Evaluate fitness of working = f_working
6.1.3. iff_working better then f_current then

6.1.3.1. use_solution = true
6.1.4. else

6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then

6.1.4.2.1. use_solution = true
6.1.4.3. end if

6.1.5. end if
6.1.6. ifuse_solution then

6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. counter = 0
6.1.6.5. while counter ≤ length of working do

6.1.6.5.1. Select individuals P(counter) and P(counter+1) from
working
6.1.6.5.2. if random[0,1] ≤ crossover_rate then

76

6.1.6.5.2.1. Perform crossover
6.1.6.5.3. end if
6.1.6.5.4. if random[0,1] ≤ mutation_rate then

6.1.6.5.4.1. Perform mutation
6.1.6.5.5. end if
6.1.6.5.6. Increment counter by 2
6.1.6.5.7. if counter > length of working then

6.1.6.5.7.1. end while
6.1.6.5.8. else

6.1.6.5.8.1. Goto 6.1.6.5.
6.1.6.5.9. end if

6.1.6.6. end while
6.1.6.7. Evaluate fitness of working = f_working
6.1.6.7. iff_working better then f_current then

6.1.6.7.1. f_current = f_working
6.1.6.7.2. current = working

6.1.6.8. iff_current better then f_best then
6.1.6.8.1. best = current
6.1.6.8.2. f_best = f_current

6.1.6.9. end if
6.1.7. else

6.1.7.1. f_working = f_current
6.1.7.2. working = current

6.1.8. end if
6.1.9. if i > n then

6.1.9.1. end for
6.1.10. else

6.1.10.1. Goto 6.1.
6.1.11. end if

6.2. end for
6.3. Update T according to cooling schedule
6.4. if T < F then

6.4.1. Finish
6.5. else

6.5.1. Goto 6.
6.6. end if

7. end while
Figure 4.10: Hybrid of SA with GA (SA_GA) Algorithm

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate starting temperature T and final temperature F

77

6. while T ≥ F do
6.1. for each iteration i till n do

6.1.1. working = Randomly_Generate_Solution
6.1.2. Evaluate fitness of working = f_working
6.1.3. iff_working better then f_current then

6.1.3.1. use_solution = true
6.1.4. else

6.1.4.1. Calculate acceptance probability P
6.1.4.2. if P > random[0,1] then

6.1.4.2.1. use_solution = true
6.1.4.3. end if

6.1.5. end if
6.1.6. ifuse_solution then

6.1.6.1. use_solution = false
6.1.6.2. f_current = f_working
6.1.6.3. current = working
6.1.6.4. Evaluate the initial cost function of best s = C(s)
6.1.6.5. Give the length faL

6.1.6.6. For all iteration {0... 1} : ()kk Lfa f c s∈ − =
6.1.6.6.1. Counter I=0;
6.1.6.6.2. Do until the end of the condition

6.1.6.6.2.1. Generate a candidate solution s*
6.1.6.6.2.2. Evaluate the cost function C(s*) and compute

6.1.6.6.2.3
 mod fav i L=

6.1.6.6.3. If
* *() or () ()

V
c s f c s c s≤ ≤

6.1.6.6..3.1. Then the candidate is accepted (s:=s*)
6.1.6.6.4. Else the candidate is rejected (s:=s)

6.1.6.6.4.1. Add current cost into the fitness array fv:=C(s)
6.1.6.6.4.2. Update the counter I:=I+1

 6.1.6.7. end for
6.1.8. else

6.1.8.1. f_working = f_current
6.1.8.2. working = current

6.1.9. end if
6.1.10. if i > n then

6.1.10.1. end for
6.1.11. else

6.1.11.1. Goto 6.1.
6.1.12. end if

6.2. end for
6.3. Update T according to cooling schedule
6.4. if T < F then

6.4.1. Finish
6.5. else

6.5.1. Goto 6.

78

6.6. end if
7. end while

Figure 4.11: Hybrid of SA with LAHC (SA_LAHC) Algorithm

Similarly, TS was hybridized with GA (TS_GA) and LAHC (TS_LAHC) in order to synergize

the strengths of these algorithms. The algorithms for TS_GA and TS_LAHC are given in Figures

4.12 and 4.13 respectively.

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate the Tabu List TL
6. for each iteration i till n do

6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. iff_working better then f_current and !Find_Taboo(working) or f_working better
thenf_best then

6.3.1. iff_working better then f_best then
6.3.1.1. f_best = f_working
6.3.1.2. best = working

6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working
6.3.5. f_current = f_working
6.3.6. counter = 0
6.3.7. while counter ≤ length of working do

6.3.7.1. Select individuals P(counter) and P(counter+1) from working
6.3.7.2. if random[0,1] ≤ crossover_rate then

6.3.7.2.1. Perform crossover
6.3.7.3. end if
6.3.7.4. if random[0,1] ≤ mutation_rate then

6.3.7.4.1. Perform mutation
6.3.7.5. end if
6.3.7.6. Increment counter by 2
6.3.7.7. if counter > length of working then

6.3.7.7.1. end while
6.3.7.8. else

6.3.7.8.1. Goto 6.3.7.
6.3.7.9. end if

6.3.8. end while
6.3.9. Evaluate fitness of working = f_working

79

6.3.10. iff_working better then f_current and !Find_Taboo(working) or
 f_working better then f_best then

6.3.10.1. iff_working better then f_best then
6.3.10.1.1. f_best = f_working
6.3.10.1.2. best = working

6.3.10.2. end if
6.3.10.3. Update TL with working
6.3.10.4. current = working
6.3.10.5. f_current = f_working

6.3.11. end if
6.4. else

6.4.1. working = current
6.4.2. f_working = f_current

6.5. end if
6.6. if i > n then

6.6.1. Finish
6.7. else

6.7.1. Goto 6
6.8. end if

7. end for
Figure 4.12: Hybrid of TS with GA (TS_GA)algorithm

1. Generate an initial random solution = best
2. Set current = working = best
3. Evaluate the fitness of best = f_best
4. Set the fitness of current (f_current) and the fitness of working (f_working) = f_best
5. Initiate the Tabu List TL
6. for each iteration i till n do

6.1. working = Generate_Working(current)
6.2. Evaluate fitness of working = f_working
6.3. iff_working better then f_current and !Find_Taboo(working) or f_working better
thenf_best then

6.3.1. iff_working better then f_best then
6.3.1.1. f_best = f_working
6.3.1.2. best = working

6.3.2. end if
6.3.3. Update TL with working
6.3.4. current = working
6.3.5. f_current = f_working

6.3.6. Evaluate the initial cost function of best s = C(s)
6.3.7. Give the length faL

6.3.8. For all iteration {0... 1} : ()kk Lfa f c s∈ − =

6.3.8.1. Counter I=0;
6.3.8.2. Do until the end of the condition

6.3.8.2.1. Generate a candidate solution s*
6.3.8.2.2. Evaluate the cost function C(s*) and compute

80

6.3.8.2.3.
 mod fav i L=

6.3.8.3. If
* *() or () ()

V
c s f c s c s≤ ≤

6.3.8.3.1. Then the candidate is accepted (s:=s*)
6.3.8.4. Else the candidate is rejected (s:=s)

6.3.8.4.1. Add current cost into the fitness array fv:=C(s)
6.3.8.4.2. Update the counter I:=I+1

 6.3.8.5. end for
6.3.10.3. Update TL with working
6.3.10.4. current = working
6.3.10.5. f_current = f_working

6.3.11. end if
6.4. else

6.4.1. working = current
6.4.2. f_working = f_current

6.5. end if
6.6. if i > n then

6.6.1. Finish
6.7. else

6.7.1. Goto 6
6.8. end if

7. end for
Figure 4.13: Hybrid of TS with LAHC (TS_LAHC) algorithm

In the next chapter, details of the simulation experiments conducted are presented along with the

settings and the results obtained for these techniques based on the three data sets used for the

HSAP as stated previously.

81

CHAPTER 5

EXPERIMENTAL SETTINGS AND RESULTS

5.1 Introduction

As stated earlier, the allocation into male and female hostels follows the same but mutually

exclusive procedure. Thus, male and female student populations are considered separately in the

implementation and allocation processes. Some of the results obtained for the male and female

allocations are therefore presented separately at each stage of the allocation process.

Furthermore, the performances of the heuristic algorithms are compared by evaluating their

fitness values. The algorithms with the best fitness values will represent the heuristics that have

provided the best solutions for each stage. For example, at the HA and FA stages, the

performance of the heuristics depend on the distribution (spread across halls or floors for the

flexible categories) obtained from each algorithm. Results obtained are essentially the

distribution (not the actual physical allocation), that is, the exact number of students from each

category that are to be accommodated at each stage of the allocation process.

5.2 Parameter Settings

Most heuristics have parameters that determine their behaviours and performance. Wrong

settings and/or combination of parameters can cause a good technique to performance badly in

its search for solutions to a problem. It is thus important to find good parameter settings for

algorithms before their execution. Often times, this can be obtained from previous research work

82

and available literature. However, it is pertinent to perform some simulation experiments on this

problem to determine the best parameter settings.

Parameters can be kept static (fixed) throughout the execution of their underlying technique or

varied dynamically according to some pre-defined criteria or testing procedure. This study

adopted the static approach as the initial parameter setting used for each of the algorithms which

remain the same at each stage of the allocation process. A series of simulation experiments were

performed using the real dataset (data set one) to find optimal parameter combinations that give

the best results consistently. Values of various parameters were varied for different runs and the

result obtained compared to determine the best value. This was done for all the implemented

algorithms. The parameter combination and values that gave the highest fitness (in terms of

constraint satisfaction) and the best students’ distributions were chosen and later used in the

actual experiment.

At the end of the processing for each algorithm, the parameters obtained are described in this

section. Some of the parameters were tuned according to the size of the problem instance and by

observing many runs of simulation experiments. Based on this, the number of iterations for HC,

TS, SA, and LAHC was set to 200. Similarly, the number of iterations for GA was set to 200. A

tabu list of size10 is specified for TS while LAHC has a tabu list size of 20. The initial

temperature for SA was set to 80 while the final temperature was set to 0.5. The temperature

decreases by an alpha of 0.99. These settings remain the same for GA and LAHC hybrids. GA

has a population size of 20, a crossover rate of 0.7 and a mutation rate of 0.1. Each algorithm

was executed 100 times with each problem instance or dataset and the best results in terms of

solution quality are recorded. The simulation experiment was performed on a stand-alone

83

desktop computer with an Intel dual core processor at 1.86 GHz and 2GB RAM, running on

Windows 7 Ultimate operating system. Coding was done using MATLAB 7.10.

5.3 Testing

Figure 5.1represents the general framework (block diagram) for testing all the stages of the

HSAP. The pseudo-code associated with this block diagram is given below (Figure 5.2).

Figure 5.1: Framework for algorithm testing

Start

Initialise I=0

Run

Algorithm

Increment I

Compute fitness-

Value and Time

Stop

I>m

Output

Solution

Output

No

Yes

84

1. Select data set
2. Open log files
3. Set m, max_it, good_profit (, temperature if using SA or a SA variant)
4. Initialize inner_time, temp, eval_func, cnt
5. For i from 1 to m

1. Select algorithm
2. Run algorithm
3. Write to Type 1 log file
4. if the current run was stopped by the good_profit condition

1. cnt=cnt+1;
5. endif
6. Compute inner_time, temp, eval_func

6. End
7. Compute Fitness_Values, Time
8. Write to Type 2 log file

Figure 5.2: The pseudocode for the testing method

A detailed description of Figure 5.2 is given below:

1. Select data set:

− in this step the data sets are stored in the variables that are used as inputs for the

algorithm used;

− the input variables for the MATLAB function (implementations of the algorithms)

which depend on the data set currently used are:

o CA:

� total_cap: total capacity of the hostels

� cat_app: the applicants classified in categories

o HA:

� H: hall capacities

85

� S: determines whether the HA stage is solved for male or female

students

� ca: the results from the category allocation stage (the distribution

of students from each category)

o FA:

� H: hall capacities

� S: determines whether the HA stage is solved for male or female

� fa: the current hall number

2. Open log files:

− in a bit to simplify the means by which the results are saved, two types of log files

were designed:

• Type 1 log files – used to store the solution given at each program run

• Type 2 log files – used to store the other measures of performance of the

algorithms

3. Set m, max_it, good_profit and temperature

− Given the structure of the testing method, additional variables are used:

o m – the number of program runs

o max_it – the maximum number of iterations (the first stopping condition for

every algorithm)

o good_profit – the objective value threshold at which it is considered that the

algorithm has reached convergence; this represents the second stopping

condition; the values were determined by first running the algorithms max_it

86

times, taking the values close to the steady state values of the objective

function and computing them as follows:

where eval_func is the mean value of the objective function in each program run.

o temperature – is the initial temperature used for SA and SA hybrids.

4. Initialize inner_time, temp, eval_func, cnt.

− Another set of temporary variables used are needed to compute the performance

measures defined earlier. The roles of these variables are defined as follows:

• inner_time– is the vector of length mwhich stores the computation time of the

currently selected algorithm at each program run.

• temp– is a m x max_itmatrix that stores all the transient values of the

objective function for each program run; it is used to compute an average

transient sequence of the objective function to illustrate the convergence of

the currently selected algorithm.

• eval_func– is a vector of m elements that stores the best objective value

returned by the algorithm for each program run.

• cnt– is a variable that counts how many of the program runs are stopped by

the good_profit condition, meaning how many program runs converge in less

than max_ititerations.

5. For i from 1 to m {run the algorithm m times}

• Select algorithm – based on the string stored in alg variable the program will switch

between the algorithms; the values that the alg variable can take are: “HC”, ”GA”,

”HC_GA”, ”HC_LAHC”, ”LAHC”, “LAHC_GA”, “SA”, “SA_GA ”, “SA_LAHC”,

“TS”, “TS_GA”, “TS_LAHC”.

))_min()_%(max(5)_max(_ funcevalfuncevalfuncevalprofitgood −−=

87

• Run algorithm – in this step the selected algorithm is run with the configurations made in

the previous steps.

• Write to Type 1 log file – in the log file the solution will be written; the number of

solutions will be m.

• Check the stopping condition

• Store the values needed for computing the performance measures in the corresponding

temporary variables.

6. Compute the performance measures – Fitness Values and Times

7. Write to the Type 2 log file – the performance measures computed at the previous step will be

written in the log files.

5.4 Results and Discussions

Simulation experiments were done using the three datasets. At the CA stage, the Ht, Sp and Fo

categories are considered fixed categories for male and female students. At the HA stage, the Ht,

Sc and Sp categories are fixed and are to be assigned to the 1st, 2nd and 5th halls respectively (for

male students) and 1st, 3rd and 6th halls respectively (for female students) as specified in the

requirements and in Appendix A. The result obtained at the CA stage is deterministic (AIMMS)

and only results obtained for one execution of the program are shown. For comparison purposes,

the results of the separate runs are shown in this thesis with the results obtained from AIMMS. It

should be noted that the AIMMS software could not obtain any exact solution at the HA and FA

stages as the number of constraints become too large to handle. This further justifies the use of

88

heuristics at all the three stages. The results of AIMMS, evidently the best (see Table 5.7), was

computed at the CA stage to serve as the initial solution and input for the HA and FA stages.

After testing all algorithms at the CA stage, the solution obtained by the best algorithms become

the input to the HA stage. Similarly, the best solution obtained by the best algorithms at the HA

stage is used as the input for the FA stages. Performance comparisons can be done by viewing

the exact number of students each algorithm assigns to accommodation, and their fitness values;

the value of the fitness function or objective function for an individual is its score. Algorithm

performances were compared with each other by evaluating their ability to determine improved

solutions over a specific number of iterations. The execution times of the algorithms were also

noted.

Results are presented in tabular form for the HA and FA stages to show the numbers of students

from each category that are allocated to each hall and into each floor with regards to the relevant

technique. The effectiveness of the algorithms was determined by comparing the most feasible

solutions found by each algorithm over a specific number of iterations. For the FA stages, results

for the halls are shown.

5.4.1 CA Stage Results

Tables 5.1-5.6 show the number of students from each category obtained from the various

techniques at this stage of the allocation process. The result is benchmarked with the exact

solution (distribution) obtained with the AIMMS software. The tables represent the results for all

three data sets and for both male and female students.

89

The results of the heuristic techniques show similar patterns to that of the AIMMS software. All

results satisfied the constraints associated with this stage and have similar students’ distribution

with that obtained from the AIMMS. All fixed category students (Fo, Ht and Sp) were allocated

by the use of all the techniques. The performance of the heuristics was determined by observing

their ability to generate feasible solutions over 200 iterations (a measure of their fitness values)

and comparing them with that of AIMMS. At this stage of the allocation process, the higher the

fitness value, the better the solution. Tables 5.7-5.9 show the performances of the algorithms for

the three data sets and for male and female students. The best fitness values and the shortest

times determined by the algorithms are emphasized (in bold) in the tables presented below for

the purpose of clarity.

Data Set One

Table 5.1: Category Allocation for male students

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 20 70 400 1240 400 1332 100 1800 5362

Category Results by Each Algorithm
AIMMS 20 70 400 1240 400 1332 100 348 3910
HC 20 70 400 1240 400 1332 100 348 3910
TS 20 70 400 1240 400 1332 100 348 3910
SA 20 70 400 1164 400 1188 61 607 3910
LAHC 20 70 400 1240 400 1332 100 348 3910
GA 20 70 400 920 160 1277 30 1033 3910
LAHC_HC 20 70 400 1240 400 1332 100 348 3910
LAHC_TS 20 70 400 1240 400 1332 100 348 3910
LAHC_SA 20 70 400 1240 400 949 100 731 3910
GA_HC 20 70 400 1240 400 1332 100 348 3910
GA_TS 20 70 400 1240 400 1332 100 348 3910
GA_SA 20 70 400 1240 400 1007 51 722 3910
GA_LAHC 20 70 400 1240 400 1332 100 348 3910

90

Table 5.2: Category Allocation for female students

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 25 80 500 1240 230 1367 60 1000 4502

Category Results by Each Algorithm
AIMMS 25 80 500 1260 230 1367 53 73 3588
HC 25 80 500 1262 230 1367 53 71 3588
TS 25 80 500 1420 230 641 60 632 3588
SA 25 80 500 1420 118 1367 48 30 3588
LAHC 25 80 500 1313 230 1367 60 13 3588
GA 25 80 500 1420 119 1367 60 17 3588
LAHC_HC 25 80 500 1420 230 1258 13 62 3588
LAHC_TS 25 80 500 1307 230 1367 60 19 3588
LAHC_SA 25 80 500 780 32 1124 60 987 3588
GA_HC 25 80 500 1420 123 1367 60 13 3588
GA_TS 25 80 500 1420 230 1246 45 42 3588
GA_SA 25 80 500 1420 230 1236 60 37 3588
GA_LAHC 25 80 500 1420 230 1270 52 11 3588

Data Set Two

Table 5.3: Category Allocation for male students

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 30 105 600 1860 600 1998 150 2700 8043

Category Results by Each Algorithm
HC 30 105 600 1717 600 1998 66 749 5865
TS 30 105 600 1860 600 1998 150 522 5865
SA 30 105 600 1860 600 1998 150 522 5865
LAHC 30 105 600 1860 600 1998 150 522 5865
GA 30 105 600 1860 600 1811 112 747 5865
LAHC_HC 30 105 600 1860 600 1998 150 522 5865
LAHC_TS 30 105 600 1860 600 1998 150 522 5865
LAHC_SA 30 105 600 1717 600 1998 66 749 5865
GA_HC 30 105 600 1860 600 1998 150 522 5865
GA_TS 30 105 600 1860 600 1998 150 522 5865
GA_SA 30 105 600 1573 600 1998 53 906 5865
GA_LAHC 30 105 600 1860 600 1998 150 522 5865

91

Table 5.4: Category Allocation for female students

Algorithm Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 38 120 750 2130 345 2051 90 1500 7024

Category Results by Each Algorithm
HC 38 120 750 1851 181 1851 21 570 5382
TS 38 120 750 1512 114 1654 90 1104 5382
SA 38 120 750 1959 345 2051 86 33 5382
LAHC 38 120 750 2130 345 1678 25 296 5382
GA 38 120 750 2130 345 1869 23 107 5382
LAHC_HC 38 120 750 1950 237 2051 73 163 5382
LAHC_TS 38 120 750 2130 345 1320 41 638 5382
LAHC_SA 38 120 750 2130 345 1115 84 800 5382
GA_HC 38 120 750 1933 260 2051 10 220 5382
GA_TS 38 120 750 1681 212 2051 14 516 5382
GA_SA 38 120 750 2130 345 802 74 1123 5382
GA_LAHC 38 120 750 2130 345 1907 40 52 5382

Data Set Three

Table 5.5: Category Allocation for male students

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 45 158 900 2790 900 2997 225 4050 12065

Category Results by Each Algorithm
HC 45 158 900 2790 900 2997 225 783 8798
TS 45 158 900 2790 900 2600 42 1363 8798
SA 45 158 900 2790 900 2997 225 783 8798
LAHC 45 158 900 2790 900 2997 225 783 8798
GA 45 158 900 2790 900 2997 225 783 8798
LAHC_HC 45 158 900 2301 75 2467 124 2728 8798
LAHC_TS 45 158 900 2790 900 2997 225 783 8798
LAHC_SA 45 158 900 2790 900 2997 225 783 8798
GA_HC 45 158 900 2790 900 2997 225 783 8798
GA_TS 45 158 900 2790 900 1395 225 2385 8798
GA_SA 45 158 900 2790 900 2625 160 1220 8798
GA_LAHC 45 158 900 1603 583 2770 36 2703 8798

92

Table 5.6: CA for female students

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Applicant 57 180 1125 3195 518 3077 135 2250 10537

Category Results by Each Algorithm
HC 57 180 1125 3195 518 2197 60 742 8074
TS 57 180 1125 3195 518 2664 128 207 8074
SA 57 180 1125 2949 486 3077 38 162 8074
LAHC 57 180 1125 2698 518 3077 96 323 8074
GA 57 180 1125 3195 518 2409 56 534 8074
LAHC_HC 57 180 1125 3195 518 2030 135 834 8074
LAHC_TS 57 180 1125 2574 518 3077 78 465 8074
LAHC_SA 57 180 1125 3195 518 2409 56 534 8074
GA_HC 57 180 1125 2919 97 3077 88 531 8074
GA_TS 57 180 1125 2774 518 3077 126 217 8074
GA_SA 57 180 1125 2917 160 2092 135 1408 8074
GA_LAHC 57 180 1125 3195 518 2092 97 810 8074

Data Set One

Table 5.7: Performance of the algorithms at CA stage (Data Set 1)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Values Time (Minutes)
AIMMS 2086.726 15 2108.888 10

HC 2086.725 6 2108.824 7
TS 2079.626 7 2100.884 6
SA 2080.636 8 2104.828 7
LAHC 2085.526 7 2107.624 7

GA 2082.726 44 2105.554 43

LAHC_HC 2085.824 476 2101.804 402
LAHC_TS 2085.726 378 2103.894 386
LAHC_SA 2086.626 113 2106.424 120
GA_HC 2083.726 43 2099.624 46
GA_TS 2082.936 43 2105.924 40
GA_SA 2084.796 42 2104.874 42
GA_LAHC 2085.826 21 2107.824 24

93

Data Set Two

Table 5.8: Performance of the algorithms at CA stage (Data Set 2)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Values Time (Minutes)
HC 2443.203 23 2420.286 25

TS 2443.427 24 2419.87 26
SA 2443.507 23 2421.416 21
LAHC 2443.793 23 2421.309 22

GA 2445.559 53 2422.748 41
LAHC_HC 2446.422 374 2422.248 291
LAHC_TS 2446.322 364 2422.778 309

LAHC_SA 2446.522 334 2422.648 305

GA_HC 2445.559 45 2422.548 43

GA_TS 2446.422 51 2422.748 48
GA_SA 2446.134 43 2422.738 41
GA_LAHC 2445.846 52 2422.604 50

Data Set Three

Table 5.9: Performance of the algorithms at CA stage (Data set 3)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Values Time (Minutes)
HC 2509.812 28 2300.059 22

TS 2475.200 26 2249.362 27
SA 2472.476 24 2282.819 18
LAHC 2472.997 35 2266.284 25
GA 2506.759 30 2306.88 29

LAHC_HC 2512.101 200 2304.256 194
LAHC_TS 2525.855 216 2299.713 200
LAHC_SA 2508.044 197 2312.229 184

GA_HC 2502.551 32 2288.774 49

GA_TS 2487.988 53 2293.353 40
GA_SA 2481.246 37 2286.362 40
GA_LAHC 2497.256 37 2308.004 25

94

Tables 5.7, 5.8 and 5.9 show the performances of all algorithms for the three data sets for both

male and female students. From the results presented on Table 5.7 from data set one, AIMMS

was able to find the best value (data set one) compared to other algorithms for male and female

student distributions. Additionally, HC and TS determined near optimal solutions for male and

female students in the shortest time duration (6 minutes). The best fitness value for data set two

and three are recorded from LAHC_SA and HC respectively for male students’ allocation. Also

for the male students’ results, HC, SA and LAHC had the shortest possible times of 23 minutes

and 24 minutes for data sets two and three respectively. However, for data sets two and three for

female students, LAHC_TS and LAHC_SA have the best fitness values of 2422.778 and

2312.229 respectively. SA had the shortest times of 21 and 18 minutes for female allocations for

data sets two and three respectively. The results of AIMMS, LAHC_SA and HC are used as the

inputs for the HA stage for both male and female allocations since they generated the best fitness

values in both cases.

5.4.2 HA Stage Results

Once the solutions are received from the CA stage, the number of students from each category

that will be allocated into specific halls is determined. These allocations are shown in Tables

5.10-5.15 for data sets one, two and three respectively (for both male and female students) while

the comparative performance of the algorithms are presented in Tables 5.16-5.18 for the three

data sets respectively.

95

Table 5.10: Hall Allocation for ale students (Data Set 1)

Hall Fo Ht Sp Fy Sc Fr Ds Ot Total
1 5 70 0 240 0 259 19 67 660
2 1 0 0 9 400 13 11 10 444
3 5 0 0 328 0 355 21 91 800
4 1 0 0 409 0 431 22 105 968
5 5 0 400 46 0 50 11 14 526
6 3 0 0 208 0 224 16 61 512

Total 20 70 400 1240 400 1332 100 348 3910

Table 5.11: Hall Allocation for female students (Data Set 1)

 Fo Ht Sp Fy Sc Fr Ds Ot Total
H1 7 80 0 252 230 273 10 14 866
H2 7 0 0 349 0 375 14 19 764
H3 2 0 0 125 0 137 5 7 276
H4 4 0 0 238 0 260 9 13 524
H5 5 0 0 298 0 317 10 16 646
H6 0 0 500 0 0 5 5 2 512
Total 25 80 500 1262 230 1367 53 71 3588

Table 5.12: Hall Allocation for male students (Data Set 2)

Hall Fo Ht Sp Fy Sc Fr Ds Ot Total
H1 3 105 0 333 0 392 12 145 990
H2 5 0 0 22 600 24 5 10 666
H3 7 0 0 451 0 528 17 197 1200
H4 4 0 0 551 0 646 13 238 1452
H5 6 0 600 71 0 72 8 32 789
H6 5 0 0 289 0 336 11 127 768
Total 30 105 600 1717 600 1998 66 749 5865

96

Table 5.13: Hall Allocation for female students (Data Set 2)

Hall Fo Ht Sp Fy Sc Fr Ds Ot Total
H1 4 120 0 431 345 264 8 127 1299
H2 6 0 0 591 0 363 11 175 1146
H3 8 0 0 208 0 131 4 63 414
H4 7 0 0 401 0 251 7 120 786
H5 8 0 0 495 0 306 11 149 969
H6 5 0 750 4 0 5 0 4 768
Total 38 120 750 2130 345 1320 41 638 5382

Table 5.14: Hall Allocation for male students (Data Set 3)

Hall Fo Ht Sp Fy Sc Fr Ds Ot Total
H1 11 158 0 541 0 581 43 151 1485
H2 6 0 0 41 900 38 3 11 999
H3 11 0 0 736 0 788 59 206 1800
H4 9 0 0 888 0 961 71 249 2178
H5 1 0 900 115 0 125 11 32 1184
H6 7 0 0 469 0 504 38 134 1152
Total 45 158 900 2790 900 2997 225 783 8798

Table 5.15: Hall Allocation for female students (Data Set 3)

Hall Fo Ht Sp Fy Sc Fr Ds Ot Total
H1 9 180 0 644 518 482 11 106 1950
H2 10 0 0 886 0 667 10 146 1719
H3 10 0 0 307 0 241 10 53 621
H4 10 0 0 602 0 454 12 101 1179
H5 13 0 0 748 0 560 8 125 1454
H6 5 0 1125 8 0 5 5 3 1151
Total 57 180 1125 3195 518 2409 56 534 8074

97

Table 5.16: Performance of the algorithms at HA stage (Data Set 1)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Value Time (Minutes)
HC 111708 3 124826 3
TS 111701 4 124825 7
SA 111709 15 129489 5
LAHC 111710 5 124824 4
GA 111728 6 129492 8
LAHC_HC 111729 15 129494 15
LAHC_TS 111728 15 129493 13
LAHC_SA 111727 4 129491 7

GA_HC 111730 5 129490 8
GA_TS 111726 5 129494 6
GA_SA 111731 6 129495 9

GA_LAHC 111732 10 129493 12

Table 5.17: Performance of the algorithms at HA stage (Data Set 2)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Values Time (Minutes)
HC 92530 48 92049 50
TS 92531 46 92044 47

SA 92532 47 92048 33
LAHC 88670 47 92046 46
GA 92524 474 92175 470
LAHC_HC 88671 99 92045 93
LAHC_TS 88669 100 92047 96
LAHC_SA 92525 63 92050 54
GA_HC 92526 4162 92195 4233
GA_TS 88668 3864 92150 4139
GA_SA 92533 4247 92225 4344

GA_LAHC 92527 590 92043 578

98

Table 5.18: Performance of the algorithms at HA stage (Data Set 3)

 Male Female
Algorithms Fitness Values Time (Minutes) Fitness Values Time (Minutes)
HC 113334 54 102011 53
TS 113333 64 102014 44

SA 113332 37 102010 36
LAHC 113326 46 102013 41
GA 113417 507 102017 464
LAHC_HC 113327 91 102012 119

LAHC_TS 113325 117 102015 116
LAHC_SA 113328 63 102009 67
GA_HC 113447 4630 102016 4659

GA_TS 113448 4029 102017 3686

GA_SA 113424 5371 102018 5080

GA_LAHC 113418 616 102014 630

As stated earlier, the total number of students, from each category, that are allocated into each

hall must not exceed the capacity of the hall. Also, the accumulated number of students from the

same category that have been allocated across the halls must be equivalent to the knapsack of

allocated students as determined by the best heuristic at the CA stage. Also, the allocation of the

flexible categories of students must be done in proportion to their priority factors from the CA.

These hard constraints do not have to be satisfied for a feasible solution. As can be ascertained

from Tables 5.10 - 5.15, these constraints are satisfied by all the algorithms with feasible

allocation results achieved. For example, Ht, Sp and Sc are allocated to halls one, five and two

respectively as required for male students’ distributions, while other categories of students were

evenly distributed across other halls (compared with constraints given in appendix A for

specified halls for each category).

99

In the flexible category, students need to be distributed throughout the halls as evenly spread as

possible. Based on the assumption made and modelling at this stage of the allocation process, the

higher the fitness values the better the distribution. Results for this are presented in Tables 5.16,

5.17 and 5.18.As can be established from Table 5.16, GA_LAHC and GA_SA clearly have the

highest fitness values for male and female students respectively while HC has overall, the

shortest time for data set one as extracted from this Table. All other heuristic algorithms’

performances are similar to this.

For data set two (Table 5.17), GA_SA has the best fitness value while TS and SA have the

shortest times in execution compared to other algorithms. Data set 3 (Table 5.18) produced

GA_TS and GA_SA with the best fitness values for male and female student distributions

respectively. GA_SA showed consistent strength for all three datasets.

Generally, the hybrid algorithms performed better than the individual heuristic algorithms. In

view of the fact that GA_LAHC/GA_SA, GA_TS and GA_SA have the best performance for

data sets one, two and three respectively, and for male and female students in terms of fitness

values, these solutions are used as the inputs for the FA stage.

5.4.3 Floor Allocation Stage Results

FA stage results are determined separately for each hall. They are generated using the results of

the best heuristic from the HA stage for individual hall solutions as input. The distribution of

students to the floors of each hall is done exactly the same way as in the HA stage. The only

difference is that the distribution is to the floors and blocks of each hall and not to the halls

100

directly. Also, similar to the HA stage, the results of the algorithms are compared to determine

which algorithm gives the best distributions. Furthermore, a comparison of the execution times

for the algorithms for each hall allocation is computed and reported.

Fixed categories assigned to specific halls were treated first as being assigned to specific but

sufficient number of floors while the flexible categories were distributed by the algorithms to fill

up the remaining bed spaces in a way that maximizes the spread of the categories. Tables 5.19–

5.36 show these results (the exact number of male and female students for each category)as

allocated to each floor. The results were similar for the three datasets, showing consistent

behaviour regardless of the size of the data, hence only the results of dataset one are reported in

this thesis. However, a comparative performance of the algorithms in providing feasible

solutions (based on their fitness values and execution time) for all the three data sets are

presented. This is based on their performance in terms of even distribution of students across the

floors of each hall with regards to the specified constraints. Similar to the HA stage, the higher

the fitness values, the better the distribution.

Data Set One

The experimental results obtained for data set one are presented below for male and female

allocations. In the comparative performance, the algorithm with the best fitness value and

shortest execution time is shown (in bold for clarity) in each table of results.

Hall One

A study of Table 5.19, in relation to the given constraints, shows that results obtained satisfy as

many constraints as possible. Only Ht category students are allocated to this hall among the fixed

101

categories for the FA stage. Furthermore, as many as possible of the Ht students are allocated to

the lowest floor. Block 1 floor 1 represents ground floor, therefore, in this research study, a

greater percentage of students being allocated to the ground level is avoided. The flexible

category students fill up the remaining spaces.

Table 5.19: Male allocation throughout the floors of hall 1

 Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 3 1 0 6 0 7 0 1 18
Block 1 Floor 2 0 12 0 36 0 39 3 10 100
Block 1 Floor 3 0 10 0 38 0 39 3 10 100
Block 1 Floor 4 0 12 0 36 0 39 3 10 100
Block 1 Floor 5 0 1 0 4 0 6 0 1 12
Block 2 Floor 1 0 1 0 6 0 10 0 1 18
Block 2 Floor 2 0 10 0 38 0 39 3 10 100
Block 2 Floor 3 0 10 0 38 0 39 0 13 100
Block 2 Floor 4 0 10 0 34 0 39 7 10 100
Block 2 Floor 5 2 3 0 4 0 2 0 1 12
Total 5 70 0 240 0 259 19 67 660

Table 5.20 shows the allocation of female students to hall 1. Ht and Sc are allocated to this hall

and to no other fixed category. The distributions of other categories are done in a similar way to

that of the male allocation. The comparative results of the algorithms for both male and female

students in hall 1 are given in Table 5.21

102

Table 5.20: Female allocation across the floor of Hall 1

 Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 0 0 0 0 0 0
Block 1 Floor 2 0 1 0 19 0 10 0 0 30
Block 1 Floor 3 0 1 0 7 0 10 0 12 30
Block 2 Floor 1 0 1 0 19 10 10 0 0 40
Block 2 Floor 2 0 2 0 12 10 16 0 0 40
Block 2 Floor 3 0 10 0 17 10 3 0 0 40
Block 3 floor 1 0 12 0 17 10 1 0 0 40
Block 3 floor 2 0 5 0 15 10 10 0 0 40
Block 3 Floor 3 0 3 0 11 10 16 0 0 40
Block 4 Floor 1 0 0 0 0 0 0 0 0 0
Block 4 Floor 2 0 5 0 7 20 28 0 0 60
Block 4 Floor 3 0 5 0 7 20 28 0 0 60
Block 4 Floor 4 0 5 0 13 20 22 0 0 60
Block 5 Floor 1 0 5 0 17 19 18 0 1 60
Block 5 Floor 2 0 5 0 17 15 18 5 0 60
Block 5 Floor 3 0 5 0 17 15 18 5 0 60
Block 5 Floor 4 0 5 0 17 15 23 0 0 60
Block 6 Floor 1 0 0 0 0 0 0 0 0 0
Block 6 Floor 2 0 2 0 8 10 9 0 1 30
Block 6 Floor 3 3 2 0 8 10 7 0 0 30
Block 7 Floor 1 2 3 0 12 13 13 0 0 43
Block 8 Floor 1 2 3 0 12 13 13 0 0 43
Total 7 80 0 252 230 273 10 14 866

103

Table 5.21: Comparison of the performance of the algorithms for Hall 1

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 1

HC 615540 13 15251875 22

TS 615540 15 15519017 25
SA 720425 16 16137809 24

LAHC 615540 14 15303373 21
GA 307944 118 8858633 131
LAHC_HC 618160 27 15813022 28

LAHC_TS 618160 37 16052314 29
LAHC_SA 879532 26 16165621 27

GA_HC 802068 391 17357262 337
GA_TS 798067 411 20340692 356

GA_SA 811128 138 18295324 323
GA_LAHC 618160 80 6937668 105

The comparisons show that LAHC_SA and GA_TS are clearly the best performers for the male

and female distributions respectively. The other algorithms perform very similarly to this,

especially the hybrids ones, this is also a feature observed when compared to the pattern in the

HA allocation stage. HC and LAHC have the shortest execution times for male and female

distributions respectively.

Hall Two

As can be ascertained from Table 5.22, all the hard constraints are satisfied in allocating the

categories of male students to each floor also as the Sc students are allocated to hall 2 as

required. From Table 5.23, female students are evenly distributed across all blocks and floor

levels. No Ht or Sp students are allocated to hall 2.This is permitted as they must be allocated to

halls 1 and 6 respectively.

104

Table 5.22: Male Allocation throughout the floor of Hall 1

Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 0 0 0 0 0 0
Block 1 Floor 2 0 0 0 0 40 0 0 0 40
Block 1 Floor 3 0 0 0 0 40 0 0 0 40
Block 1 Floor 4 0 0 0 0 40 0 0 0 40
Block 2 Floor 1 0 0 0 0 0 0 0 0 0
Block 2 Floor 2 0 0 0 1 39 0 0 0 40
Block 2 Floor 3 0 0 0 0 40 0 0 0 40
Block 2 Floor 4 0 0 0 2 35 2 1 0 40
Block 3 Floor 1 0 0 0 0 0 0 0 0 0
Block 3 Floor 2 0 0 0 0 38 2 0 0 40
Block 3 Floor 3 0 0 0 1 28 2 9 0 40
Block 3 Floor 4 0 0 0 0 37 2 1 0 40
Block 4 Floor 1 0 0 0 0 0 0 0 0 0
Block 4 Floor 2 0 0 0 2 25 1 0 0 28
Block 4 Floor 3 0 0 0 2 24 2 0 0 28
Block 4 Floor 4 1 0 0 1 14 2 0 10 28
Total 1 0 0 9 400 13 11 10 444

Table 5.23: Female Allocation throughout the floor of Hall 2

 Category Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 0 0 0 0 0 0
Block 1 Floor 2 0 0 0 32 0 0 0 0 32
Block 1 Floor 3 0 0 0 32 0 0 0 0 32
Block 1 Floor 4 0 0 0 32 0 0 0 0 32
Block 2 Floor 1 0 0 0 23 0 21 0 4 48
Block 2 Floor 2 0 0 0 37 0 39 0 4 80
Block 2 Floor 3 0 0 0 25 0 51 0 4 80
Block 2 Floor 4 0 0 0 25 0 51 2 2 80
Block 3 Floor 1 0 0 0 9 0 9 2 0 20
Block 3 Floor 2 0 0 0 20 0 56 3 1 80
Block 3 Floor 3 0 0 0 25 0 51 3 1 80
Block 3 Floor 4 0 0 0 36 0 39 4 1 80
Block 4 Floor 1 0 0 0 18 0 20 0 2 40
Block 4 Floor 2 4 0 0 17 0 19 0 0 40
Block 4 Floor 3 3 0 0 18 0 19 0 0 40
Total 7 0 0 349 0 375 14 19 764

105

A comparison of the performances of each algorithm as extracted from Table 5.24 shows that

LAHC_TS clearly performs best for male and female distributions. The other algorithms have

similar performances, especially the hybrids ones. LAHC and HC have the shortest execution

times for male and female students respectively.

Table 5.24: Comparison of the Performance of the algorithms for Hall 2

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 2

HC 195256 27 6159741 19
TS 202032 25 5807991 21
SA 202024 31 5617424 22
LAHC 214516 19 5881764 20

GA 43406 95 2055892 106
LAHC_HC 507005 42 5989451 25
LAHC_TS 1145336 58 13236300 31

LAHC_SA 483523 40 5748126 25
GA_HC 375599 530 6203093 964

GA_TS 373086 652 6191173 1292
GA_SA 496112 396 7043637 532
GA_LAHC 213598 49 3484308 83

Hall Three

Table 5.25 shows how the male students are allocated to hall 3. No fixed categories are allocated

to this hall. Fitness value comparisons are shown in Table 5.27. From the results, GA_TS and

LAHC_TS have the best fitness values for male and female distributions. In addition, HC and

LAHC have the shortest execution times compare to other algorithms. Similarly, Table 5.26

106

shows the female distributions across hall 3. The hard constraints are satisfied and the total

distribution of students does not exceed the capacity of this hall.

Table 5.25: Male Allocation throughout the floor of Hall 3

Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 8 0 8 0 4 20
Block 1 Floor 2 0 0 0 25 0 29 0 6 60
Block 1 Floor 3 0 0 0 25 0 29 0 6 60
Block 1 Floor 4 0 0 0 25 0 29 0 6 60
Block 2 Floor 1 0 0 0 8 0 8 0 4 20
Block 2 Floor 2 0 0 0 25 0 28 0 7 60
Block 2 Floor 3 0 0 0 25 0 26 0 9 60
Block 2 Floor 4 0 0 0 25 0 26 0 9 60
Block 3 Floor 1 0 0 0 8 0 8 0 4 20
Block 3 Floor 2 0 0 0 25 0 26 3 6 60
Block 3 Floor 3 0 0 0 25 0 26 3 6 60
Block 3 Floor 4 0 0 0 25 0 26 3 6 60
Block 4 Floor 1 0 0 0 8 0 8 2 2 20
Block 4 Floor 2 0 0 0 25 0 26 3 6 60
Block 4 Floor 3 2 0 0 25 0 26 3 4 60
Block 4 Floor 4 3 0 0 21 0 26 4 6 60
Total 5 0 0 328 0 355 21 91 800

Table 5.26: Female Allocation throughout the floor of Hall 3

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 0 0 0 0 0 0
Block 1 Floor 2 0 0 0 10 0 20 0 0 30
Block 1 Floor 3 0 0 0 21 0 9 0 0 30
Block 2 Floor 1 0 0 0 10 0 30 0 0 40
Block 2 Floor 2 0 0 0 18 0 22 0 0 40
Block 2 Floor 3 0 0 0 10 0 29 0 1 40
Block 3 Floor 1 0 0 0 0 0 0 0 0 0
Block 3 Floor 2 0 0 0 18 0 6 0 0 24
Block 3 Floor 3 0 0 0 18 0 6 0 0 24
Block 4 Floor 1 0 0 0 0 0 0 0 0 0
Block 4 Floor 2 0 0 0 11 0 13 0 0 24
Block 4 Floor 3 2 0 0 9 0 2 5 6 24
Total 2 0 0 125 0 137 5 7 276

107

Table 5.27: Comparison of the performance of the algorithms for Hall 3

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 3

HC 754544 17 943646 18

TS 754544 21 902381 19
SA 779682 16 866169 24
LAHC 754544 17 958086 17
GA 654994 108 243339 105

LAHC_HC 754544 24 963015 22
LAHC_TS 754544 40 1841212 39

LAHC_SA 806034 27 920616 21
GA_HC 907752 928 1089711 551

GA_TS 779104 1106 1205684 769
GA_SA 849830 455 1300190 907
GA_LAHC 743294 83 604929 82

Hall Four

Tables 5.28 and 5.29 present male and female distributions respectively across the blocks and

floors for hall 4. No fixed categories are allocated to this hall. Fitness value comparisons are

shown on Table 5.30. From the results, GA_TS and LAHC_TS have the best fitness values for

male and female distributions respectively. GA and LAHC have the shortest execution times

compared to other algorithms.

108

Table 5.28: Male students’ allocated throughout the floor of hall 4

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 8 0 8 2 2 20
Block 1 Floor 2 0 0 0 28 0 26 0 6 60
Block 1 Floor 3 0 0 0 28 0 26 0 6 60
Block 1 Floor 4 0 0 0 28 0 26 0 6 60
Block 2 Floor 1 0 0 0 4 0 5 2 1 12
Block 2 Floor 2 0 0 0 28 0 26 0 6 60
Block 2 Floor 3 0 0 0 28 0 26 0 6 60
Block 2 Floor 4 0 0 0 28 0 26 0 6 60
Block 3 Floor 1 0 0 0 5 0 6 0 1 12
Block 3 Floor 2 0 0 0 24 0 29 1 6 60
Block 3 Floor 3 0 0 0 24 0 29 1 6 60
Block 3 Floor 4 0 0 0 24 0 29 1 6 60
Block 4 Floor 1 0 0 0 4 0 7 0 1 12
Block 4 Floor 2 0 0 0 24 0 27 1 8 60
Block 4 Floor 3 0 0 0 24 0 26 1 9 60
Block 4 Floor 4 0 0 0 24 0 26 1 9 60
Block 5 Floor 1 0 0 0 4 0 5 0 3 12
Block 5 Floor 2 0 0 0 24 0 26 5 5 60
Block 5 Floor 3 0 0 0 24 0 26 4 6 60
Block 5 Floor 4 1 0 0 24 0 26 3 6 60
Total 1 0 0 409 0 431 22 105 968

109

Table 5.29: Female allocation throughout the floor of hall 4

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 27 0 3 0 0 30
Block 1 Floor 2 0 0 0 15 0 12 0 13 40
Block 1 Floor 3 0 0 0 12 0 28 0 0 40
Block 1 Floor 4 0 0 0 18 0 22 0 0 40
Block 2 Floor 1 0 0 0 13 0 17 0 0 30
Block 2 Floor 2 0 0 0 18 0 22 0 0 40
Block 2 Floor 3 0 0 0 18 0 22 0 0 40
Block 2 Floor 4 0 0 0 18 0 22 0 0 40
Block 3 Floor 1 0 0 0 0 0 0 0 0 0
Block 3 Floor 2 0 0 0 16 0 16 0 0 32
Block 3 Floor 3 0 0 0 16 0 16 0 0 32
Block 3 Floor 4 0 0 0 16 0 16 0 0 32
Block 4 Floor 1 0 0 0 16 0 16 0 0 32
Block 4 Floor 2 0 0 0 16 0 16 0 0 32
Block 4 Floor 3 1 0 0 14 0 17 0 0 32
Block 4 Floor 4 3 0 0 5 0 15 9 0 32
Total 4 0 0 238 0 260 9 13 524

Table 5.30: Comparison of the performance of the algorithms for hall 4

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 4

HC 1126740 23 3747166 19
TS 1126740 23 3682748 21
SA 1145042 20 3599103 19
LAHC 1126740 18 3640744 17
GA 1126662 5 1089881 104

LAHC_HC 1126740 27 3615572 27
LAHC_TS 1126740 40 9688018 33

LAHC_SA 1234936 28 3559936 25
GA_HC 1381332 899 4277576 1080

GA_TS 1410295 1051 4032865 1313

GA_SA 1323007 430 4866551 260
GA_LAHC 1100514 83 2109015 82

110

Hall Five

Table 5.31 shows the categories distribution for hall 4 with the Sp category assigned to this hall.

Furthermore, Table 5.32 shows the female distributions across all the blocks and floors of this

hall with the total distribution not exceeding the given capacity of each hall. Comparisons of the

fitness values are shown in Table 5.33. LAHC_TS has the best fitness values for male and

female distributions. HC and LAHC have the shortest execution times.

Table 5.31: Male allocation throughout the floor of hall 5

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 28 4 0 1 1 6 40
Block 2 Floor 1 0 0 20 3 0 0 10 7 40
Block 3 Floor 1 0 0 32 4 0 4 0 0 40
Block 4 Floor 1 0 0 32 4 0 4 0 0 40
Block 5 Floor 1 0 0 32 4 0 4 0 0 40
Block 6 Floor 1 0 0 32 4 0 4 0 0 40
Block 7 Floor 1 0 0 32 4 0 4 0 0 40
Block 8 Floor 1 0 0 32 3 0 5 0 0 40
Block 9 Floor 1 0 0 32 3 0 5 0 0 40
Block 10 Floor 1 0 0 32 4 0 4 0 0 40
Block 11 Floor 1 0 0 32 3 0 5 0 0 40
Block 12 Floor 1 0 0 32 3 0 5 0 0 40
Block 13 Floor 1 5 0 32 3 0 5 0 1 46
Total 5 0 400 46 0 50 11 14 526

Table 5.32: Male allocation throughout the floors of hall 5

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 28 0 30 0 2 60
Block 1 Floor 2 0 0 0 30 0 28 0 2 60
Block 1 Floor 3 0 0 0 30 0 29 0 1 60
Block 2 Floor 1 0 0 0 28 0 12 0 0 40
Block 2 Floor 2 0 0 0 28 0 70 0 2 100
Block 2 Floor 3 0 0 0 30 0 68 0 2 100
Block 3 Floor 1 0 0 0 20 0 6 0 0 26
Block 3 Floor 2 0 0 0 28 0 70 0 2 100
Block 3 Floor 3 5 0 0 76 0 4 10 5 100
Total 5 0 0 298 0 317 10 16 646

111

Table 5.33: Comparison of the performance of the algorithms for Hall 5

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 5

HC 267796 21 2800789 16

TS 251103 24 2725159 18
SA 252826 23 2879460 19
LAHC 255307 22 2698552 15
GA 154843 97 873002 104
LAHC_HC 262348 23 2714914 20
LAHC_TS 698244 37 5266183 31

LAHC_SA 260912 25 2728788 21
GA_HC 361283 812 3192745 662
GA_TS 328913 960 3176483 1043
GA_SA 385257 726 3499579 1569

GA_LAHC 109268 93 1812695 82

Hall 6

Table 5.34 shows the categories allocation for hall6 with no fixed categories allocated to the hall.

Table 5.35 shows the female distributions across the hall with the fixed Sp students (female)

allocated to it. The total distribution of the students did not exceed given capacities. The

comparisons of the fitness values are shown in Table 5.36. LAHC_SA and LAHC_TS have the

highest fitness values for both male and female distributions respectively and are considered the

best solutions. HC and TS have the shortest execution times for male and female distributions

respectively.

112

Table 5.34: Male students’ allocation throughout the floor of Hall 6

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 0 32 0 35 2 11 80
Block 1 Floor 2 0 0 0 58 0 63 6 17 144
Block 1 Floor 3 0 0 0 60 0 63 4 17 144
Block 1 Floor 4 3 0 0 58 0 63 4 16 144
Total 3 0 0 208 0 224 16 61 512

Table 5.35: Female allocation throughout the floor of Hall 6

 Fo Ht Sp Fy Sc Fr Ds Ot Total
Block 1 Floor 1 0 0 80 0 0 0 0 0 80
Block 2 Floor 1 0 0 144 0 0 0 0 0 144
Block 3 Floor 1 0 0 144 0 0 0 0 0 144
Block 4 Floor 1 0 0 132 0 0 5 5 2 144
Total 0 0 500 0 0 5 5 2 512

Table 5.36: Comparison of the performance of the algorithms for Hall 6

Halls

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 6

HC 285440 5 124082 12

TS 285440 9 126121 8
SA 285440 7 125091 21

LAHC 285440 6 124238 9
GA 131895 112 9973 90
LAHC_HC 285440 17 244753 142
LAHC_TS 285440 34 280120 371

LAHC_SA 346696 19 221535 94

GA_HC 285440 10 235235 487
GA_TS 285440 13 221535 735
GA_SA 285440 14 227211 4111
GA_LAHC 285440 19 145577 58

113

Data Set Two

The distributions for dataset two are very similar to those of dataset one discussed above hence,

the distribution is not presented here due to space limitations. However, the performance of the

algorithms for each hall is presented.

The comparisons of the algorithms in terms of their fitness values and execution times for both

male and female students in all the halls are given in Tables 5.37–5.42.The algorithm with the

highest fitness value is usually the best algorithm (solution). The best fitness values and shortest

execution times are put in bold letter in each table for the purpose of clarity. Table 5.37 shows

that GA_SA and GA_HC are clearly the best performers for male and female distributions

respectively while the other algorithms perform very similarly to the pattern observed in the HA

allocation stage. The distributions obtained by the GA_SA and GA_HC are the best solutions in

terms of effective distribution of students to the floors of each hall for male and female students

respectively. HC has the shortest execution time for male and female student distributions.

Furthermore, Table 5.38 shows the performance of the algorithms at hall 2. LAHC_TS and

GA_TS have the best distributions for male and female students respectively. HC and LAHC

have the shortest execution times for male and female distributions. Table 5.39 shows clearly the

performances of all the implemented algorithms in hall 3 GA_TS and LAHC_TS have the best

feasible solutions for male and female students respectively. LAHC has the shortest execution

time for both male and female students’ distributions. Also, Table 5.40 shows how each of the

implemented algorithms performed in allocating students to hall four. From the results, GA_HC

and LAHC_TS have the highest fitness values. LAHC has the shortest execution time for both

114

male and female students’ distributions. Table 5.41 gives the detailed performances for all the

algorithms for hall five at the FA stage. The results show that LAHC_TS outperformed all other

algorithms in distributing male and female students to hall five. LAHC had the shortest

execution time for both male and female distributions. Finally, Table 5.42 shows the

comparisons of the implemented algorithm for hall six. The results clearly show that GA_SA and

LAHC_TS have the highest fitness values for male and female distributions respectively.

However, SA and LAHC have the shortest execution times for male and female allocations to

hall five.

Table 5.37: Performance of algorithms at FA stage for Hall 1

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 1

HC 1011454 23 4300121 74
TS 1011454 28 4286735 80
SA 1105322 38 4320852 83
LAHC 1011454 24 4273418 75
GA 496580 916 2682923 825
LAHC_HC 1023914 66 4574601 78
LAHC_TS 1023914 166 4335068 94
LAHC_SA 1326652 76 4218129 80

GA_HC 1340302 2764 6502593 824

GA_TS 1336416 1324 5527632 1506
GA_SA 1420966 773 5780719 1119

GA_LAHC 1023914 95 2509336 650

115

Table 5.38: Performance of algorithms at FA stage for Hall 2

Hall

Algorithms

Male Female
Fitness Values Time (Seconds) Fitness Values Time (Minutes)

Hall 2

HC 1529532 63 1984862 80

TS 1543003 89 1835967 86

SA 1562891 81 1802612 78
LAHC 1548826 69 1925070 65
GA 298644 760 883516 712
LAHC_HC 1662805 77 1792910 90

LAHC_TS 4028300 158 2199672 3879

LAHC_SA 1576627 92 1813910 88
GA_HC 2104848 2952 2487012 8235
GA_TS 2806978 1454 4073679 159

GA_SA 2220272 836 2618740 395
GA_LAHC 1373147 556 1734632 476

Table 5.39: Performance of algorithms at FA stage for Hall 3

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 3

HC 1159382 54 458923 66
TS 1159382 63 450669 85
SA 1172694 82 438875 78
LAHC 1159382 40 453346 62
GA 991956 717 129135 748
LAHC_HC 1169360 47 472527 87

LAHC_TS 1169360 179 817466 164

LAHC_SA 1388184 111 458010 89
GA_HC 1548290 6485 608976 4319
GA_TS 1589968 3728 607531 2076

GA_SA 1387626 2537 710231 292
GA_LAHC 1139444 475 448816 508

116

Table 5.40: Performance of algorithms at FA stage for Hall 4

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 4

HC 1813307 53 1532111 66
TS 1813307 72 1551997 75
SA 1859987 79 1525560 82
LAHC 1813307 51 1596735 64
GA 1737656 738 578502 794
LAHC_HC 1852250 61 1576401 94
LAHC_TS 1852250 177 4473946 160

LAHC_SA 2021223 119 1457635 107
GA_HC 2376261 4699 2419639 3858

GA_TS 2156221 2895 2002689 2101
GA_SA 2293723 2206 2448671 617

GA_LAHC 1774418 477 1280123 526

Table 5.41: Performance of algorithms at FA stage for Hall 5

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 5

HC 595194 89 1262747 80
TS 627434 99 1299939 79

SA 612759 89 1277910 74
LAHC 597103 78 1299058 73
GA 454428 715 381824 729
LAHC_HC 610224 88 1281781 99
LAHC_TS 1632083 186 3029095 153

LAHC_SA 605417 103 1193542 79
GA_HC 944003 1488 1767901 4643
GA_TS 1314464 1351 2388121 2521
GA_SA 1045248 1538 1725143 483
GA_LAHC 348614 591 1093599 479

117

Table 5.42: Performance of algorithms at FA stage for Hall 6

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 6

HC 197792 96 125125 17
TS 197792 133 125125 15
SA 213116 50 128150 66

LAHC 197792 92 125125 14
GA 102201 801 27240 618
LAHC_HC 197792 140 642864 246
LAHC_TS 197792 152 650752 637

LAHC_SA 302884 88 499730 215
GA_HC 472169 720 578498 1331
GA_TS 473011 1588 632254 2294
GA_SA 501468 360 498237 15722

GA_LAHC 197792 453 199104 69

Data Set Three

The student distributions for data set three are similar to those of the other data sets described

previously; the only exception is that the sizes of the hall capacities differ. The number of halls,

floors and blocks for this data set are the same with the others. Therefore, only the performances

of the algorithms for each hall are discussed. The comparisons of the algorithms in term of their

fitness values and times of execution for both male and female students in all the halls are given

in Tables 5.43–5.48. The higher the fitness values, the better the solutions. The best fitness

values and shortest execution times are shown in the table of results. The comparisons of the

performances in Table 5.43 show that LAHC_TS clearly is the best performer for both male and

female distributions. HC and LAHC have the shortest execution time for male and female

students’ distributions respectively.

118

Furthermore, Table 5.44 shows the performance of the algorithms for hall two. LAHC_TS has

the best distributions for both male and female students. HC and LAHC have the shortest

execution times for male and female students’ distributions. Table 5.45 shows the performance

of all the implemented algorithms in hall three. GA_HC and LAHC_TS have the best feasible

solutions for male and female students respectively. LAHC and HC have the shortest execution

times for male and female distributions respectively.

Similarly, Table 5.46 shows how each of the implemented algorithms performed in allocating

students to hall four. From the results, GA_HC and LAHC_TS have the highest fitness values.

LAHC and SA have the shortest execution times for male and female students’ distributions.

Table 5.47 gives the detailed performances of all algorithms for hall five at the FA stage. The

results show that LAHC_TS outperformed all other algorithms in distributing both male and

female students to hall five while LAHC has the shortest execution time for both male and

female students’ distributions.

Table 5.48 shows the comparisons of the implemented algorithms for hall six. The results clearly

show that GA_HC and LAHC_TS have the highest fitness values for male and female students’

distributions respectively. HC has the shortest execution times for both male and female

allocations to this hall.

119

Table 5.43: Performance of the algorithms at FA stage for Hall 1

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 1

HC 957623 10 13029192 46

TS 957623 14 11836040 61
SA 957623 17 15055113 43
LAHC 957623 18 8998077 42
GA 515185 401 7308776 494
LAHC_HC 2213417 16 13211108 60
LAHC_TS 4800719 89 15260758 71

LAHC_SA 1880020 15 11643060 60
GA_HC 960085 16 15961318 6732
GA_TS 960085 17 16051929 8201

GA_SA 960085 19 14279887 8358
GA_LAHC 957623 12 5087450 347

Table 5.44: Performance of the algorithms at FA stage for Hall 2

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 2

HC 201792 11 5662577 50
TS 201792 12 5768102 64
SA 201792 16 5851004 48
LAHC 201792 13 5776616 46
GA 174696 28 1982981 345
LAHC_HC 1073863 35 6104478 72
LAHC_TS 4360212 79 14225279 88

LAHC_SA 686310 13 6096504 73
GA_HC 212496 17 7154299 3874
GA_TS 212496 18 5998834 5297
GA_SA 212496 23 6765762 4767
GA_LAHC 201792 33 3383250 258

120

Table 5.45: Performance of the algorithms at FA stage for Hall 3

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 3

HC 1714048 50 969516 42
TS 1714048 61 940574 48
SA 1714048 51 950242 57
LAHC 1714048 31 969516 46

GA 1598838 384 243339 361
LAHC_HC 1714048 42 1003975 58
LAHC_TS 1714048 107 3260533 91

LAHC_SA 1992152 47 939106 61
GA_HC 2319483 4353 1112725 1467

GA_TS 1714048 47 1051542 2839
GA_SA 1714048 49 1190947 1838

GA_LAHC 1714048 42 582226 262

Table 5.46: Performance of the algorithms at FA stage Hall 4

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness values Time (Minutes)

Hall 4

HC 2974072 47 3389686 53
TS 2974072 41 3564891 59
SA 2974072 44 3657268 52
LAHC 2974072 40 3436718 55

GA 3243218 408 1019534 335
LAHC_HC 2974072 47 3489308 83
LAHC_TS 2974072 109 5222996 94

LAHC_SA 3346932 46 3688489 74
GA_HC 5373412 4343 3473423 4245

GA_TS 2974072 8 3606269 5472
GA_SA 2974072 8 4619587 1265

GA_LAHC 2974072 3 1673008 270

121

Table 5.47: Performance of the algorithms at FA stage for Hall 5

Hall

Algorithms

Male Female

Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 5

HC 1959575 61 2819480 40

TS 248210 35 2780270 52
SA 249013 39 2645386 49
LAHC 254055 24 2819480 42
GA 1307800 364 872984 371

LAHC_HC 687098 22 2817099 61
LAHC_TS 2476189 88 5511655 84

LAHC_SA 611184 34 2748806 49

GA_HC 1664962 5885 3092136 2567
GA_TS 424321 35 3430390 3290
GA_SA 386057 28 3433795 3557
GA_LAHC 267918 16 1976166 269

Table 5.48: Performance of the algorithms at FA stage for Hall 6

Hall

Algorithms

Male Female
Fitness Values Time (Minutes) Fitness Values Time (Minutes)

Hall 6

HC 309552 50 115698 21
TS 309552 61 108783 27
SA 309552 55 103910 48
LAHC 309552 52 107239 28
GA 157260 381 27917 342

LAHC_HC 309552 49 257298 94
LAHC_TS 309552 120 286953 327

LAHC_SA 396232 57 206752 57
GA_HC 636756 4290 274512 1372

GA_TS 309552 48 189508 1795
GA_SA 309552 66 200687 1430
GA_LAHC 309552 52 137085 221

122

5.5 Summary

This chapter has presented the results of the five heuristic algorithms and their hybrids applied to

the HSAP. The exact solution obtained using AIMMS was only performed for the first (CA)

stage being the most important stage that determines who is to be accommodated and who is to

be excluded. The remaining two stages (HA and FA) deal with the distribution of students into

the halls and floors respectively hence the heuristic algorithms were employed here. The

principal objective of the extensive application of heuristics is to determine from among the

various combinations which is the best that can be recommended for actual implementation of

the HSAP. The performances of the algorithms were not the same at all stages of allocations and

for all three datasets. This is an expected outcome as essentially all the heuristics employed are

stochastic in nature.

From the results obtained, LAHC_TS provided the best results in 21 out of 36 cases based on the

fitness values as the performance metric especially at all stages. Out of the remaining 15 cases,

the performance of LAHC_TS is quite comparative to the best algorithm. Moreover, where the

LAHC_TS is not the best performing algorithm, it is somewhat good enough to be considered as

a possible technique to implement while developing a decision support system for the HSAP that

has similar dataset characteristics and constraints.

Also, in most cases, the hybrid algorithms provide outstanding feasible solutions. In addition, at

the CA stage, HC was the best performer in two out of six cases. At the HA and FA stages, the

hybrid algorithms have the best solutions compared to other “pure” algorithms. This confirms

123

the underlying idea of synergizing the strength of the underlying heuristics into this hybrid for

better performance. In addition, the results show clearly that hybrid algorithms are the best

performing algorithms for this instance of the SAP given the three data sets.

The time required for the manual computation of the distributions can be enormous as it takes

days and in some cases weeks to compute. However, the results show that an automated solution

with the underlying heuristics will offer a promising alternative in the allocation process. This

research work has thus further confirmed the viability and efficiency of applying heuristics in

tackling the HSAP.

124

CHAPTER 6

CONCLUSION AND FURTHER WORK

6.1 Summary and Conclusion

The HSAP was recently introduced in literature with a case study from Nigeria. Presently,

administrators of HILs especially in Nigeria where this study is based are beginning to appreciate

the need for automated solutions that incorporate efficient approximation algorithms to tackle

this problem. Such solutions will enhance the efficiency, transparency and effectiveness of the

decision making process involved in distributing available limited bed spaces to meet the ever

increasing demand from students. Definitely, such an automated transparent solution will

increase students’ trust in the allocation process being executed by the university as it will ensure

fairness in distribution while also enhancing the academic performance of the students.

Moreover, a fair residence allocation process will enhance the smooth running of the institution

as a result of high levels of student satisfaction. This study presented a further study into the

viability of heuristics especially LS techniques and hybrids for solving the multi-stage HSAP

that is expressed as a form of KSP.

This dissertation presents mathematical models for the multi-staged HSAP as revealed from the

case study considered. The general aim of this research work is to seek novel and innovative

approaches that may be used to generate even distributions of students based on a specified set of

hard and soft constraints. The problem is a form of the KSP where students in various categories

are to be distributed into halls and floors that have varying capacities, each category has an

125

associated weight (number of students to be allocated) and profit (the cost of assigning students

in that category to a hall). As is the case with the underlying KSP, this is a well-known NP-hard

problem; therefore, the search for efficient heuristics that give the best feasible solutions is

necessary. In view of this, the research work studied the performance of a number of single-

solution based heuristics, GA and hybrids to determine which of them yields the best

performance in terms of proffering solutions to the HSAP. Of note is the LAHC approach which

recently attracted large scale interest amidst metaheuristics researchers seeking solutions to

complex real-world COPs (Burke & Bykov, 2010).The motivation for using these techniques lie

in the fact that they have proved to be successful in solving many well-known KSPs and BPPs.

Some have been successfully applied to similar SAPs in previous researches as revealed in

literature but none has applied these techniques to solve the HSAP hence the significance of this

study.

Results obtained have shown the effectiveness of employing heuristics in determining near-

optimal solutions for the HSAP. This study has also shown that hybridizing heuristics in a way

that combines their strong points can help to improve their efficiency and performance as the

hybrid algorithms implemented in this thesis clearly outperformed other algorithms especially at

the HA and FA stages. In addition, the LAHC_TS had an exceptional performance compared to

other algorithms. These results establish the viability and justification for applying heuristics

6.2 Further Works

HSAP is still a relatively new field of study in literature with much still to be done both on the

case study, benchmarking, modelling, and solution techniques for the problem. Moreover,

126

constraints vary from one HIL to another especially across countries. For example, the

requirements and criteria for allocating students in halls of residence in South Africa are slightly

different from those obtainable in Nigeria where this case study is based. There is therefore the

need for further future studies in this area as it applies to HILs across countries in order to be

able to establish a more generalized model for the HSAP. Moreover, in this current study, the

possibility of harmonising the multi-level models of the HSAP into a single model might provide

more insight in proffering solutions to this problem.

Although, it is very challenging to obtain real-life archived data from past manually computed

allocation distributions due to the problem of poor administrative processes in many institutions,

it will be noteworthy to consider the possibility of harmonising the multi-level models of the

HSAP into a single model over time in order to have worthy benchmark for subsequent results.

Also, various opportunities abound to study the performance of other classes of metaheuristics

and computational intelligence techniques in addressing the HSAP. No study as yet has

examined the performance of swarm intelligence techniques, intelligent solutions such as

artificial neural networks, self-organizing map, etc in solving HSAP. Furthermore, researchers

involved in mathematical modelling can further assist in specifying a strong mathematical model

needed to address the problem and to prove that the HSAP is essentially NP-hard in nature.

127

References

Abramson, D. (1991). Constructing School TimeTables Using Simulated Annealing:
Sequential and Parallel Algorithms. Management Science. 37, 98-113.

Abuhamdah, A. (2010). Experimental result of late acceptance randomized descent algorithm
for solving course timetabling problems. IJCSNS International J. of Compu. Sci. and
Network Security 10 , 192-200.

Adewumi, A., & Ali, M. M. (2009). A Hierarchical Heuristic Strategy for Hostel Space
Allocation Problem. Unpublished manuscript under revision to the ToP (Operations
Research) journal.

Adewumi, A., & Ali, M. M. (2010). A multi-level genetic algorithm for a multi-stage space
allocation problem. ELSEVIER 51 (2010), 109-126.

Adewumi A. O. (2010). Some Improved Genetic-Algorithms Based Heuristics for Global

Optimisation with Innovative Applications. PhD Thesis, School of Computational and

Applied Mathematics, University of Witwatersrand, South Africa.

Adewumi, A. O., Sawyerr, B., & Ali, M. M. (2009). A Heuristics Approach to the University
Timetabling Problems. Engineering Computations, Emerald Publishers, UK.

Akio, I., Etsuko, N., & Stratos, P. (2001). The dynamic berth allocation problem for a
container port. Transportation Research Part B 35 (2001) 401±417. Ó 2001 Elsevier Science
Ltd.

Alitheia Capital. (2012). Student Housing - An Emerging Real Estate Asset Class. UK:
Alitheia Research Group.

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive Search and Intelligent Optimization.
Springer Verlag .

Beasley, D., Bull, D. R., & Martin, R. R. (1993). An Overview of Genetic Algorithms: Part
1, Fundamentals, University Computing. 15. 58-69.

128

Bouleimen, K., & Lecocq, H. (2003). A New Efficient Simulated Annealing Algorithm For
the Resource-constrained Project Scheduling Problem and Its Multiple Mode Version.
European Journal of Operational Research. 149, 268- 281.

Bremermann, H. J. (1962). Optimisation Through Evolution and Re-Combination. In:
Yovits,M., Sawbi,G., and Goldstein,G. (Eds.), Self-Organising Systems, Washington,
Spartan.

Burke, E., & Bykov, Y. (2008). A late acceptance strategy in hill-climbing for exam
timetabling problems (extended abstract). In Proceedings of the 7th International Conf. on
the Practice and Theory of Automated Timetabling (PATAT 2008). Montreal, Canada,
August.

Burke, E., & Bykov, Y. (2010). A Late Acceptance Strategy in Hill-Climbing for Exam
Timetabling Problems. Nottingham, UK: Automated Scheduling Optimisation and Planning
Group, School of Computer Science & IT,, The University of Nottingham.

Burke, E., Cowling, P., Landa-Silva, J., & McCollum, B. (2000). Three Methods to
Automate the Space Allocation Process in UK Universities. Proceedings of the 3rd
International Conference on the Practice and Theory of Automated Timetabling, PATAT
2000, Konstanz, Germany.

Burke, E. K., Cowling, p., & Silva, j. l. (2001). Hybrid population-based metaheuristic
approaches For the space allocation problem,, . Proceedings of the 2001 IEEE Congress on
Evolutionary Computation , (pp. 27-30). Seoul, Korea.

Burke, E., & Kendall, G. (1999). Applying Simulated Annealing and the No Fit Polygon to
the Nesting Problem, Proceedings of WMC '99 : World Manufacturing Congress, Durham,
UK, 27-30 September. 51-57.

Burke, E.K. & Varley, D.B. (1998). ”‘Automating space allocation in higher education.”’ In

Proceedings of the 2nd Asia Pacific Conference on Simulated Evaluation and Learning,

pages 6673, Camberra, Australia.

Carnevali, L., Coletti, L., & Patarnello, S. (1985). Image Processing by Simulated Annealing.
IBM Journal of Research and Development. 29, 569-579.

Chen, S., & Luk, B. L. (1999). Adaptive Simulated Annealing for Optimization in Signal
Processing Applications, Signal Processing. 79. 117-128.

129

Dammak, A., Elloumi, A., Kamoun, H. (2006), "Lecture and tutorial timetabling at a Tunisia
University", in Burke, E.K., Rudova, H. (Eds),Proceedings of the of the Sixth International
Conference on Practice and Theory of Automated Timetabling (PATAT 2006), Masaryk
University, Brno, Eds, pp.384-90

Davis, L. D. (1987). Genetic Algorithms and Simulated Annealing, Pitman, London.

Davis, L. D. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold.

Dowsland, K. A. (1995). Simulated Annealing. In: Reeves,C.R. (Ed.), Modern Heuristic
Techniques for Combinatorial Problems. McGraw-Hill, 21-69.

Edmond E.D., & Maggs, R.P. (1978). How useful are queue models in port investment

decisions for container berths? Journal of the Operational Research Society, 29:741–750.

Edmund, K. B., & Yuri, B. (2012). The Late Acceptance Hill-Climbing Heuristic. Technical
Report CSM-192, Department of Computing Science and Mathematics, University of Stirling,
ISSN 1460-9673.

Falkenauer, E. (1997). Genetic Algorithms and Grouping Problems. Chichester, England: 0-
4: John Wiley & Sons Ltd. ISBN 978-0-471-9715.

Fomeni, F. D. (2010). Metaheuristics for Space Allocation Problems: Comprehensive Survey
and Review. Cape Town: African Institute for Mathematical Sciences (AIMS), Submitted in
partial of a postgraduate diploma at AIMS

Forrest, S. (1993). Genetic Algorithms: Principles of Natural Selection Applied to
Computation. Science. 261. 872-878.

Fraser, A. (1957). Simulation of genetic systems by automatic digital computers. I.
Introduction. Aust. J. Biol. Sci. 10, 484–491.

Gendreau, M. (2003). An Introduction to Tabu Search. Metaheuristic Handbook. Boston M.
A: Kluwer Academic Publishers, 37-54.

Gendreau, M., Hertz, A., & Laporte, G. (1994). A Tabu Search Heuristic for the Vehicle
Routing Problem, Management Science. 40. 1276-1290.

130

Giallombardo, G., Moccia, L., Salani, M., & Vacca, I. (2010). Modeling and solving the
Tactical Berth Allocation Problem. Transportation Research Part B 44 (2010) 232–245.

Glover, F. (1977). Heuristics for Integer Programming using Surrogate Constraints,
Decisions Science, 8. 155-166.

Glover, F. (1989). Tabu Search - Part 1. ORSA Journal on Computing 1 (2), 190–206.

Glover, F. (1990). Tabu Search - Part 2. ORSA Journal on Computing 2 (1), 4–32.

Glover, F., & Laguna, M. (1995). Tabu Search. In: Reeves,C.R. (Ed.), Modern Heuristic
Techniques for Combinatorial Problems, McGraw-Hill, pp. 21-69. Glover, F. and

Laguna, M., 1997. Tabu Search, Kluwer Academic Publishers.

Glover, F., & Laguna, M. (1997). Tabu Search. Kluwer Academic Publisher.

Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and Machine Learning.
Addison Wesley. p. 41. ISBN 0-201-15767-5.

Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The Theory and Practice of
Simulated Annealing. In: Glover F. and Kochenberger,G. (Eds.), Handbook of
Metaheuristics, Kluwer. 287-319.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Hu, T., Kahng, A. B., & Tsao, C.-W. A. (1995). Old bachelor acceptance: a new class of
non-monotone threshold accepting methods. ORSA J. on Computing 7(4), 417-425.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Optimization by
Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning. Operations
Research. 37, 865-892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization by
Simulated Annealing: An Experimental Evaluation; Part II, Graph Colouring and Number
Partitioning. Operations Research. 39, 378-406.

131

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing
. Science 220 (4598): doi:10.1126/science.220.4598.671. JSTOR 1690046.PMID 17813860,
671–680.

Landa-Silva, J. D. (2003). Metaheuristic And Multiobjective Approaches For Space
Allocation, November 2003. Nottingham: Thesis submitted to the University of Nottingham
for the degree of Doctor in Philosophy, School of Computer Science and Information
Technology, UK.

Landa-Silva, D., & Burke, E. K. (2007). Asynchronous Cooperative Local Search for the
Office-Space-Allocation Problem. INFORMS Journal on Computing, Vol. 19, No. 4, Fall,
issn 1091-9856 _eissn 1526-5528 _07 _1904 _0575 , 575-587.

Landa-Silva, D., & Obit, J. H. (2011). Comparing Hybrid Constructive Heuristics for
University Course Timetabling. Porto, Portugal: Proc. of the VII ALIO–EURO – Workshop
on Applied Combinatorial Optimization.

Landa-Silva, ¨Ulker, O., & Dario. (2010). Designing Difficult Office Space Allocation
Problem Instances with Mathematical Programming. Automated Scheduling, Optimisation
and Planning (ASAP) Research Group, School of Computer Science, University of
Nottingham.

Liu, J. (1999). The Impact of Neighbourhood Size on the Process of Simulated Annealing:
Computational Experiments on the Flowshop Scheduling Problem, Computers & Industrial
Engineering. 37. 285-288.

Lopes, R., & Girimonte, D. (2010). The Office-Space-Allocation Problem in Strongly
Hierarchized Organizations Infrastructures and Facilities Management Division,. European
Space Research and Technology Center, . Merz (Eds.): EvoCOP, LNCS 6022, Springer-
Verlag Berlin Heidelberg, 143-153.

M&G (2009). Varsities run out of housing. Mail & Guardians (South African) Newspaper

article on higher learning, September 23, pg 31.

Martello, S., & Toth, P. (1975). An Upper Bound for the Zero-one Knapsack Problem and a
Branch and Bound Algorithm,. European Journal of Operational Research. 1 , 169-175.

Martello, S., & Toth, P. (1990a). Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, ISBN: 0-471-92420-2.

132

Nyonyi, Y. (2010). Modelling of Hostel Space Allocation. . Cape Tpwn: African Institute for
Mathematical Sciences (AIMS), Submitted in partial of a postgraduate diploma at AIMS.

Mazzola, J. B., & Schantz, R. H. (1995). Single-facility Resource Allocation Under
Capacity-based Economics and Diseconomies of Scope, Management Science. 41. 669-689.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics 21 (6): 1087. doi:10.1063/1.1699114.
Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. 3rd.
Ed., Springer.

Michalewicz, Z., & Fogel, D. B. (2000). How To Solve It: Model Heuristics. Springer-
Verlag.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, Massachusetts Institute of
Technology.

Murray, K., uller, T. M., & Rudov, H. (2010). Modeling and Solution of a Complex
University Course Timetabling Problem. West Lafayette, USA: Space Management and
AcademicScheduling, Purdue University 400 Centennial Mall Drive, IN 47907-2016.

Ogbu, F. A., & Smith, D. K. (1990). The Application of the Simulated Annealing Algorithm
to the Solution of the n/m/Cmax Flowshop Problem. Computers & Operations Research. 17,
243-253.

Oghifo, B. (2012). Ugly Face of Hostel Congestion. Thisday Newspaper Article, 18 Aug
2012. Retrieved January 24, 2013 from http://www.thisdaylive.com/articles/ugly-face-of-
hostel-congestion/122670/

Oliveiraa, R. M., Maurib, G. R., & Lorenaa, L. A. (2011). Clustering Search for the Berth
Allocation Problem. http://dx.doi.org/10.1016/j.eswa.2011.11.072,.

Ozcan, E., Birben, M., Bykov, Y., & Burke, E. K. (2009). Examination timetabling using late
acceptance hyper-heuristics. In Proceedings of the 2009 IEEE Congress on Evolutionary
Computation (CEC 2009), Trondheim, Norway, May 2009 , 997-1004.

Pat-Mbano, E., Alaka1, I., & Okeoma, O. (2012). Examining the physio, psycho and socio-
economic implications of non-residental policy on Imo State University students.. Copyright
© Canadian Academy of Oriental and Occidenta Culturel, Vol. 8, No. 2 , 170-179.

133

Pereira, R., Cummiskey, K., & Kincaid, R. (2010). Office Space Allocation Optimization.
Proceedings of the 2010 IEEE, Systems and Information Engineering Design Symposium,
University of Virginia, Charlottesville, VA, USA.

Reeves, C. (1995). Modern Heuristic Techniques For Combinatorial Problems. McGraw-
Hill: ISBN: 0-07-709239-2.

Rolland, E., Pirkul, H., & Glover, F. (1996). Tabu Search for Graph Partitioning. Annals of
Operations Research. 63, 209-232.

Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic Algorithms. In: Burke, E. and
Kendall, G. (Eds.), Search Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, Boston, Dordrecht. London: Kluwer Academic Publishers.

Schimmelpfeng, K., & Helber, S. (2006). Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum (2007) 29:783–803, DOI
10.1007/s00291-006-0074-z. Published online: 7 December 2006 © Springer-Verlag

Scholl, A., Klein, R., & Jurgens, C. (1997). BISON: A Fast Hybrid Procedure for Exactly
Solving the One-dimensional Bin Packing Problem. Computers & Operations Research. 24 ,
627-645.

Sechen, C., Braun, D., & Sangiovanni-Vincetelli, A. (1988). Thunderbird: A Complete
Standard Cell Layout Package. IEEE Journal of Solid-State Circuits. 23, 410-420.

Silva, G. C., Ferreira, T. G., & Costa, T. A. (2008). An Efficient Algorithm for the Dynamic
Space Allocation Problem . EngOpt 2008 - International Conference on Engineering
Optimization, 01 - 05 June. Rio de Janeiro, Brazil.

Skorin-Kapov, J., & Vakharia, A. (1993). Scheduling a Flow-Line Manufacturing Cell: A
Tabu Search Approach. International Journal of Production Research. 31, 1721-1734.

Soriano, P., & Gendreau, M. (1996). Diversification Strategies in Tabu Search Algorithms
for the Maximum Clique Problems . Annals of Operations Research. 63, 189-207.

Syam, W. P., & Al-Harkan, I. M. (2010). Comparison of Three Meta Heuristics to Optimize
Hybrid Flow Shop Scheduling Problem with Parallel Machines. World Academy of Science,
Engineering and Technology, Vol. 62 , 271-278.

134

Taillard, E. D. (1994). Parallel Taboo Search Techniques for the Job Shop Scheduling
Problem. ORSA Journal on Computing. 23, 108-117.

Taillard, E. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory
programming: a unified view of metaheuristics. European Journal of Operations Research
135, 1-16.
Thompson, J. M., & Dowsland, K. A. (1998). A Robust Simulated Annealing Based
Examination Timetabling System. Computers & Operations Research. 25, 637- 648.

Tian, P., Ma, J., & Zhang, D. (1999). Application of the Simulated Annealing Algorithm to
the Combinatorial Optimisation Problem with Permutation Property: An Investigation of
Generation Mechanism. European Journal of Operational Research. 118, 81-94.

Ulker, O. ¨., & Landa-Silva, D. (2010a). A 0/1 Integer Programming Model for the Office
Space Allocation Problem. Electronic Notes in Discrete Mathematics 36 (2010) 575–582, ©
2010 Elsevier B.V. All rights reserved, www.elsevier.com/locate/endm doi:10.

Ulker, O. ¨., & Landa-Silva, D. (2012). Evolutionary Local Search for Solving the Office
Space Allocation Problem,. IEEE World Congress on Computational Intelligence (pp. 10-
15). Brisbane, Australia: WCCI .

Ulker, O., & Landa-Silva, D. (2010b). Designing Difficult Office Space Allocation Problem
Instances with Mathematical Programming. Nottingham, UK: Automated Scheduling,
Optimisation and Planning (ASAP) Research Group, School of Computer Science,
University of Nottingham,.

Verstichel, J., & Berghe, G. V. (2009). A late acceptance algorithm for the lock scheduling
problem. Logistic Management 2009 (5), 457-478.

White, G.M., Zhang, J. (1998), "Generating complete university timeTables by combining

tabu search with constraint logic", in Burke, E., Carter, M. (Eds),Lecture Notes in Computer

Science, Springer Verlag, Berlin and Heidelberg, Eds, Vol. 1408 pp.187-98.

Widmer, M., & Hertz, A. (1989). A New Heuristic Method for the Flow Shop Sequencing
Problem. European Journal of Operational Research. 41, 186-193.

Wikipedia. (2012). Retrieved December 15, 2012, from Wikipedia Online Resources:
http://en.wikipedia.org/wiki/Optimization

135

Yusuff, O. S. (2011). Students Access to Housing: A Case of Lagos State University
students-Nigeria. Journal of Sustainable Development Vol. 4, No. 2; Published by Canadian
Center of Science and Education 107.

Zahiri, S.-H. (2009). Fuzzy Multi-Objective PSO, an Approach for Office Space Allocation.
Iranian Journal Of Electrical And Computer Engineering, Vol. 8, No. 2, Summer-Fall.

136

Appendix A

Table 1: Overview of the Hall Capacities

Zone (Area) Hostel ID Sex Capacity
A HA1 Male 660

HA2 Male 444
HA3 Female 866

B

HB1 Male 800
HB2 Female 764
HB3 Female 276
HB4 Female 524
HB5 Male 968

C

HC1 Male 526
HC2 Female 512
HC3 Female 646
HC4 Male 512

Source: (Adewumi & Ali, 2010)

Table 2: Summary of Hall Facilities (Capacity)

ZONE
Total A B C

Female 866 1 564 1 158 3 588
 Male 1 104 1 768 1 038 3 910
Total 1 970 3 332 2 196 7 498

Source: (Adewumi & Ali, 2010)

137

Table 3: Summary of Constraints/Requirements

Level Constraints Classification

Category
Allocation

a.
All students in Fo, Ht and Sp categories allocated.

must be Hard

b. As many Fy, Sc, Fr, Ds, and Ot as possible should be allocated in this
order of priority.

Soft

Hall Allocation a. Students in Ht, Sc and Sp must designated hostels
(see Table 4)

be allocated to Hard

 b Allocation for the remaining categories must be in the stated order of
priority

Soft

Block/Floor
Allocation

a. Ht category should be allocated to the lowest floor possible in their
assigned hall

Soft

b. Fy category should be allocated to the highest
possible floor in a hall

 Soft

Fo, Ht, Sp, Fr, Fy, etc. represents Foreign, health, Sport, Fresh, and Final student categories
respectively

Source: (Adewumi & Ali, 2010)

Table 4: Specified Halls for certain Categories

CATEGORY
SPECIFIED HALLS

MALE FEMALE
Ht HA1 HA3
Sc HA2 HA3
Sp HC1 HC2

Source: (Adewumi & Ali, 2010)

138

Appendix B

Table 1 contains the number of applicant per category while the rest give the number of
block/floor (with capacity) for various halls. A label A 0 implies block A floor 0 (in this thesis it
implies block 1 floor 1). Cap stands for the capacity. Cap with value 0 implies that the
block/floor is reserved and not to be allocated. The total capacity for the hall is given in bracket

Data Set One

Table 1: Applicants by Category

Category Fy Fo Fr Ht Sp Sc Ds Ot
Male Applicants 1 240 20 1 332 70 400 400 100 1 800
Female Applicants 1 420 25 1 367 80 500 230 60 1 000

Male Halls:

HA1 (660) HA2 (440) HB1(800)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 18 A 0 0 C 0 0 F 0 20 R 0 20
A 1 100 A 1 40 C 1 40 F 1 60 R 1 60
A 2 100 A 2 40 C 2 40 F 2 60 R 2 60
A 3 100 A 3 40 C 3 40 F 3 60 R 3 60
A 4 12 B 0 0 D 0 0 G 0 20 S 0 20
B 0 18 B 1 40 D 1 28 G 1 60 S 1 60
B 1 100 B 2 40 D 2 28 G 2 60 S 2 60
B 2 100 B 3 40 D 3 28 G 3 60 S 3 60
B 3 100
B 4 12

HB5(968) HC1(526) HC4(512)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
E 0 20 J 2 60 1 0 40 11 0 40 1 0 80
E 1 60 J 3 60 2 0 40 12 0 40 1 1 144
E 2 60 T 0 12 3 0 40 13 0 46 1 2 144
E 3 60 T 1 60 4 0 40 1 3 144
H 0 12 T 2 60 5 0 40
H 1 60 T 3 60 6 0 40
H 2 60 W 0 12 7 0 40
H 3 60 W 1 60 8 0 40
J 0 12 W 2 60 9 0 40
J 1 60 W 3 60 10 0 40

139

Female Halls:

HA3 (866) HB2(764) HB3(276)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 0 D 2 60 D 0 0 U 3 80 C 0 0
A 1 30 D 3 60 D 1 32 V 0 40 C 1 30
A 2 30 E 0 60 D 2 32 V 1 40 C 2 30
B 0 40 E 1 60 D 3 32 V 2 40 L 0 40
B 1 40 E 2 60 K 0 48 L 1 40
B 2 40 E 3 60 K 1 80 L 2 40
C 0 40 F 0 0 K 2 80 P 0 0
C 1 40 F 1 30 K 3 80 P 1 24
C 2 40 F 2 30 U 0 20 P 2 24
D 0 0 G 0 43 U 1 80 S 0 0
D 1 60 H 0 43 U 2 80 S 1 24
 S 2 24

HB4(524) HC3(646) HC2(512)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 30 M 2 32 A 0 60 1 0 80
A 1 40 M 3 32 A 1 60 1 1 144
A 2 40 N 0 32 A 2 60 1 2 144
A 3 40 N 1 32 B 0 40 1 3 144
B 0 30 N 2 32 B 1 100
B 1 40 N 3 32 B 2 100
B 2 40 C 0 26
B 3 40 C 1 100
M 0 0 C 2 100
M 1 32

140

Appendix C

Data Set Two

Table 1: Applicants by Category

Category Fo Ht Sp Fy Sc Fr Ds Ot
 Male Applicants 30 105 600 1860 600 1998 150 2700
 Female Applicants 38 120 750 2130 345 2051 90 1500

Male Halls

 HA1 (990) HA2 (666) HB1 (1200)
 Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap

 A 0 27 A 0 0 C 0 0 F 0 30 R 0 30
 A 1 150 A 1 60 C 1 60 F 1 90 R 1 90
 A 2 150 A 2 60 C 2 60 F 2 90 R 2 90
 A 3 150 A 3 60 C 3 60 F 3 90 R 3 90
 A 4 18 B 0 0 D 0 0 G 0 30 S 0 30
 B 0 27 B 1 60 D 1 42 G 1 90 S 1 90
 B 1 150 B 2 60 D 2 42 G 2 90 S 2 90
 B 2 150 B 3 60 D 3 42 G 3 90 S 3 90
 B 3 150

 B 4 18

HB5 (1452) HC1 (789)
HC4 (768)

Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Blk/Flr Cap
E 0 30 J 2 90 1 0 60 11 0 60 1 0 120

E 1 90 J 3 90 2 0 60 12 0 60 1 1 216

E 2 90 T 0 18 3 0 60 13 0 69 1 2 216

E 3 90 T 1 90 4 0 60 1 3 216

H 0 18 T 2 90 5 0 60

H 1 90 T 3 90 6 0 60

H 2 90 W 0 18 7 0 60

H 3 90 W 1 90 8 0 60

J 0 18 W 2 90 9 0 60

J 1 90 W 3 90 10 0 60

141

Female Halls

HA3 (1299) HB2(1146) HB3 (414)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 0 D 2 90 D 0 0 U 3 120 C 0 0

A 1 45 D 3 90 D 1 48 V 0 60 C 1 45

A 2 45 E 0 90 D 2 48 V 1 60 C 2 45

B 0 60 E 1 90 D 3 48 V 2 60 L 0 60

B 1 60 E 2 90 K 0 72 L 1 60

B 2 60 E 3 90 K 1 120 L 2 60

C 0 60 F 0 0 K 2 120 P 0 0

C 1 60 F 1 45 K 3 120 P 1 36

C 2 60 F 2 45 U 0 30 P 2 36

D 0 0 G 0 65 U 1 120 S 0 0

D 1 90 H 0 65 U 2 120 S 1 36
 S 2 36

HB4 (786) HC3 (969) HC2 (768)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 45 M 2 48 A 0 90 1 0 120

A 1 60 M 3 48 A 1 90 1 1 216

A 2 60 N 0 48 A 2 90 1 2 216

A 3 60 N 1 48 B 0 60 1 3 216

B 0 45 N 2 48 B 1 150

B 1 60 N 3 48 B 2 150

B 2 60 C 0 39

B 3 60 C 1 150

M 0 0 C 2 150

M 1 48

142

Appendix D

Data Set Three

Table 1: Applicants by Category

Category Fo Ht Sp Fy Sc Fr Ds Ot
Male Applicants 45 158 900 2790 900 2997 225 4050
Female Applicants 57 180 1125 3195 518 3077 135 2250

Male Halls

HA1 (1485) HA2 (999) HB1 (1800)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 40.5 A 0 0 C 0 0 F 0 45 R 0 45

A 1 225 A 1 90 C 1 90 F 1 135 R 1 135

A 2 225 A 2 90 C 2 90 F 2 135 R 2 135

A 3 225 A 3 90 C 3 90 F 3 135 R 3 135

A 4 27 B 0 0 D 0 0 G 0 45 S 0 45

B 0 40.5 B 1 90 D 1 63 G 1 135 S 1 135

B 1 225 B 2 90 D 2 63 G 2 135 S 2 135

B 2 225 B 3 90 D 3 63 G 3 135 S 3 135

B 3 225
 B 4 27

HB5 (2178) HC1(1184) HC4 (1152)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
E 0 45 J 2 135 1 0 90 11 0 90 1 0 180
E 1 135 J 3 135 2 0 90 12 0 90 1 1 324
E 2 135 T 0 27 3 0 90 13 0 104 1 2 324

E 3 135 T 1 135 4 0 90 1 3 324

H 0 27 T 2 135 5 0 90

H 1 135 T 3 135 6 0 90

H 2 135 W 0 27 7 0 90

H 3 135 W 1 135 8 0 90

J 0 27 W 2 135 9 0 90

J 1 135 W 3 135 10 0 90

143

Female Halls

HA3 (1949) HB2 (1719) HB3 (621)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 0 D 2 135 D 0 0 U 3 180 C 0 0

A 1 67 D 3 135 D 1 72 V 0 90 C 1 67

A 2 67 E 0 135 D 2 72 V 1 90 C 2 68

B 0 90 E 1 135 D 3 72 V 2 90 L 0 90

B 1 90 E 2 135 K 0 108 L 1 90

B 2 90 E 3 135 K 1 180 L 2 90

C 0 90 F 0 0 K 2 180 P 0 0

C 1 90 F 1 67 K 3 180 P 1 54

C 2 90 F 2 68 U 0 45 P 2 54

D 0 0 G 0 97 U 1 180 S 0 0

D 1 135 H 0 98 U 2 180 S 1 54

 S 2 54

HB4 (1179) HC3 (1454) HC2 (1152)
Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap Blk/Flr Cap
A 0 67 M 2 72 A 0 135 1 0 180

A 1 90 M 3 72 A 1 135 1 1 324

A 2 90 N 0 72 A 2 135 1 2 324

A 3 90 N 1 72 B 0 90 1 3 324

B 0 68 N 2 72 B 1 225

B 1 90 N 3 72 B 2 225

B 2 90 C 0 59

B 3 90 C 1 225

M 0 0 C 2 225

M 1 72

