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Abstract

In this dissertation we study the properties of Bessel-Gauss beams. Bessel-Gauss beams are

created by the interference of plane waves lying on a cone, and have unique properties: they

propagate without spreading and recover their phase and amplitude upon encountering an ob-

struction. These modes have found application in the manipulation of micro-particles, atomic

dipole traps, and atomic guiding. As high-order Bessel-Gauss beams carry orbital angular mo-

mentum, they have been used as a basis for information encoding in both the classical and

quantum regimes. We show how to generate these modes using axicons, and spiral ring-slits,

which we implement digitally on a spatial light modulator. Using an all digital experimental

setup we extract the information encoded in these modes in two dimensions, where we simul-

taneously detect the radial and azimuthal components of these beams. This detection tool

is shown to be useful in studying Bessel-Gauss modes that have propagated through optical

turbulence and that have been obstructed. Vector Bessel-Gauss beams are then generated and

detected using a q-plate and polarized grating, respectively. We then apply the reconstruction

property of the Bessel-Gauss modes in a quantum experimental setup, where we show that we

can recover quantum entanglement after encountering an obstruction. We show that the digital

spiral ring-slit can be used at the single photon level as a single pixel detector, to recover the

phase and amplitude on an object in a ghost imaging setup.
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Chapter 1

Modes in free-space

1.1 Helmholtz scalar equation

The Helmholtz equation [1] is a time-independent partial differential equation that describes

the propagation of waves in free-space, and it is derived from Maxwell’s wave equation [2] in a

vacuum through the method of separation of variables. Maxwell expressed the divergence and

the curl of the electromagnetic wave in a vacuum as follows:

~∇. ~E = 0, (1.1)

~∇. ~B = 0, (1.2)

~∇× ~E = −∂
~B

∂t
, (1.3)

~∇× ~B = ε0µ0
∂ ~E

∂t
, (1.4)

where ε0 and µ0 are the permittivity and permeability of free-space, ~E and ~B are the electric

and magnetic fields, t is time. The speed of light is related to these parameters by

c =
1√
ε0µ0

. (1.5)
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To obtain the wave equation in free-space, we expand the curl of the electric field in Eq. 1.3,

using the vector identity ~∇× (~∇× ~E) = ~∇(~∇. ~E −∇2 ~E), resulting in:

~∇× ~E =
∂(~∇× ~B)

∂t

⇒ ~∇(~∇. ~E)−∇2 ~E = −∂(~∇× ~B)

∂t

⇒ 0−∇2 ~E = − ∂

∂t
(ε0µ0

∂ ~E

∂t
)

⇒ ∇2 ~E = −µ0ε0
∂2 ~E

∂t2

⇒ ∇2 ~E =
1

c2
∂2 ~E

∂t2
. (1.6)

Equation 1.6 is Maxwell’s wave equation, where ∇2 is the Laplacian operator. To obtain the

Helmholtz time-independent wave equation, we separate the electric field ~E in Eq. 1.6 into its

spatial and time domains:

~E(~r, t) = u(~r)T (t). (1.7)

Substituting Eq. 1.7 into Eq. 1.6 results in

∇2(u(~r)T (t))− 1

c2
∂2(u(~r)T (t))

∂t2
= T (t)∇2u(~r)− u(~r)

c2
∂2T (t)

∂t2
= 0

⇒ T (t)∇2u(~r) =
u(~r)

c2
∂2T (t)

∂t2

⇒ ∇
2u(~r)

u(~r)
=

1

c2T (t)

∂2T (t)

∂t2

⇒ ∇
2u(~r)

u(~r)
=

1

c2T (t)

∂2T (t)

∂t2
(1.8)

Since the left hand side of Eq. 1.8 is only dependent on ~r and the right hand side is only

dependent on t, then this equation is valid in the general case if and only if both sides are

equal to a constant. Let

∇2u(~r)

u(~r)
= −k2 (1.9)

and

1

c2T (t)

∂2T (t)

∂t2
= −k2, (1.10)

where k is the wave number, Eq. 1.9 is the time-independent Helmholtz equation.
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1.2 The Gaussian mode

In this section we show how the Gaussian mode forms part of the solution to the Helmholtz

scalar equation, Eq. 1.9. For this calculation, we consider a plane wave modulated by a

complex amplitude envelope A(~r), propagating in the z-direction. The complex

time-independent wave function of this plane wave is given by:

u(~r) = A(~r) exp(−ikz), (1.11)

with k = 2π/λ, where λ is the wavelength and z is the longitudinal coordinate. In order for

the function u(~r) given by Eq. 1.11 to obey the Helmholtz equation, Eq. 1.9, the complex

amplitude must satisfy the paraxial Helmholtz equation:

∇2
TA− i2k

∂A

∂z
= 0, (1.12)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator, ∂2A/∂z2 is ignored since it

is significantly smaller than ∂A/∂z that varies slowly within the distance λ. Equation 1.12

yields one of the solutions as a paraboloidal wave, centred around z = ξ, and if q(z) = z − ξ

then

A(~r) =
A1

q(z)
exp

(
−i kr

2

2q(z)

)
, (1.13)

with a constant, A1 and square radius r2 = x2 + y2, and ξ is also a constant. This

paraboloidal leads to a Gaussian envelope when ξ is purely imaginary: ξ = izR, where zR is a

real parameter known as the Rayleigh range given by zR =
πω2

0

λ
and q(z) = z − izR can be

separated into real and imaginary parts:

1

q(z)
=

1

R(z)
− i λ

πω2(z)
, (1.14)

where R(z) and ω(z) are the radius of curvature and width of the beam respectively. By

substituting Eq. 1.14 in Eq. 1.13 results into the complex amplitude of a Gaussian beam [1]:

u(~r) = u0
ω0

ω(z)
exp

[
−
(

r2

ω2(z)

)]
exp

[
−i
(
kz − φ(z) +

kr2

2R(z)

)]
, (1.15)

3



where u0 = A1/izR is the peak amplitude, ω0 is the width of the beam at the beam waist.

The Guoy phase shift φ(z) is given by,

φ(z) = arctan
(zR
z

)
. (1.16)

The radius of curvature is defined as

R(z) = z

(
1 +

z2R
z2

)
, (1.17)

and beam width as

ω(z) =

√
ω2
0

(
1 +

z2

z2R

)
. (1.18)

The intensity of any field is given by the square of its amplitude I(~r) = |u(~r)|2, hence the

Figure 1.1: (a) The theoretical, (b) experimental CCD images of the Gaussian beam intensity
distribution and (c) a 3D profile view of the experimental Gaussian beam indicating the colour
coding of the beam. (d) Intensity cross-sectional profile of the Gaussian beam of the theoretical
image in red and CCD image in blue, the beam width is measured where the intensity drops
by a factor of 1/e2.

intensity of a Gaussian beam is given by

I(r, z) = |u(r, z)|2 = I0 exp

[
−2

(
r2

ω2(z)

)]
, (1.19)
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and

I0 =
2P0

πω2(z)
, (1.20)

where P0 is the total power of the laser, the intensity distribution of a Gaussian beam is

shown in Fig.1.1 (a) and (b) indicating theoretical and experimental images respectively. The

colour codes are indicated in the 3D profile image in Fig. 1.1 (c), where the red colour

indicates the highest intensity value,while the pink colour indicates the lowest intensity value.

The Gaussian beam width is dependent on the propagation distance z, given by Eq.1.18,

when the radial distance r = ω(z), the beam intensity drops by a factor of 1/e2 as indicated

in Fig. 1.1 (d). The beam width increases gradually with the propagation distance, such that

when z = 0, ω(0) = ω0 which is the waist radius; and when z = z0, ω(z0) =
√

2ω0. These

Gaussian properties are illustrated in Fig. 1.2, where θ0 is the cone half angle defining angular

divergence of the beam, when

Figure 1.2: The Gaussian propagation parameters, showing the dependence of the beam width
on the propagation coordinate (z). ω(z) is minimum when z = 0 and increases linearly with
increasing z.

z >> z0, ω(z) ≈ ω0

z0
z = θ0z, (1.21)

⇒

θ0 =
λ

πω0

. (1.22)

The Gaussian phase from Eq. 1.15 is given by

θ(r, z) = kz − φ(z) +
kr2

2R(z)
, (1.23)
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Figure 1.3: The radius of curvature of a Gaussian beam wave front, with the dashed line
showing the radius of curvature of the spherical wave.

when r = 0, θ(0, z) = kz − φ(z). φ(z) = arctan(z/z0) represents a phase retardation as the

wave travels from z = −∞ to z =∞, the phase retardation is π referred to as the Guoy

effect. The third term in Eq. 1.15 represents the bending of the wave front at z = 0, resulting

in R(z) = [1 + ( z
z0

)] =∞ which corresponds to a planar wave front.

The wave front curvature increases with z, until R(z) = z at z >> z0, as shown in Fig. 1.3.

1.3 Laguerre-Gauss beams

The Gaussian mode in the previous section specified in terms of its intensity profile is not the

only solution to the time-independent Helmholtz scalar equation. In cylindrical coordinates

the Helmholtz scalar equation results in a field distribution that is specified by an azimuthal

phase. This solution forms a complete basis set known as the Laguerre-Gauss (LG) beams.

The amplitude distribution of the LG modes is given by [1, 3, 4]

u`,p (r, θ, z) =
1

ω(z)

√
2p!

π(|`|+ p)!

(√
2r

ω(z)

)|`|
exp

(−r2
ω(z)

)
L|`|p

(
2r2

ω2(z)

)

× exp

(
i
kr2

2R(z)

)
exp(i`θ) exp[iΦ(p, `, z)], (1.24)

where Φ(p, `, z) is the Gouy phase for the LG mode and is given by

Φ(p, `, z) = (2p+ `+ 1) arctan

(
z

zR

)
. (1.25)
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The other parameters, such as R(z) and ω(z), are defined as for the Gaussian beam, in Eqs.

1.17 and 1.18, respectively. The LG modes are characterized by two indices ` and p

corresponding to the azimuthal and radial indices respectively. When `=p=0, the amplitude

distribution in Eq. 1.24 simplifies to a Gaussian amplitude distribution shown in Fig. 1.4 (a).

The azimuthal index ` of these modes arises from the number of times the helical wave front

spirals around the beam axis as the beam propagates. The number of times that this wave

front spirals around the propagation axis in π phase change determines the value of `, and

hence the amount of orbital angular momentum (OAM) carried by the modes. This is shown

in Fig. 1.4 (b) that as the phase varies from 0 to π once a LG mode of ` = 1 is created, and in

Fig. 1.4 (c) the phase varies from 0 to π twice creating a LG mode of ` = 2; as well as in Fig.

1.4 (d) the phase varies three times creating a LG beam of ` = 3. This is also true for larger `

values, and opposite handedness, for instance ` = −10. As the wave front spirals around the

beam axis it creates a phase singularity or an optical vortex, which is illustrated by the null

intensity at the center of the LG modes in Fig. 1.4 (b-d). An optical vortex can be found in a

randomly scattered beam from a rough surface [3], since there is no intensity at the vortex

there is no momentum nor energy, the OAM carried by the modes arises from the surrounding

light [3].

Figure 1.4: The digital holograms showing phase variations of theoretical intensity distribution
images of (a) the Gaussian mode, and the LG mode of (b) `=1, (c) `=2, (d) `=3.

It had not been given attention that light beams that have a helical wave front could be

created in the laboratory, until Allen et. al [5] demonstrated that LG modes carry a

well-defined OAM, and that they could be generated using cylindrical lenses to transform
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high order Hermite-Gauss mode to a LG mode [6]. Diffraction gratings with a fork dislocation

on the beam axis as shown in the first row of Fig. 1.4, were introduced as a simple way of

generating these modes [8], implemented digitally to date. The OAM carried by these modes

is quantized to `~ per photon and it was shown by Padgett and Allen [7] that this quantized

OAM results from the skew angle of the wave vector for a helical phase wave, given by `/kr.

Hence the linear momentum flow of these modes has an azimuthal component of `~/r. The

OAM has an unlimited number of possible states, corresponding to the integer values of `;

unlike the spin angular momentum (SAM) that has only two independent states. Prior to

Allen’s discovery during the 1980s, OAM was said to be carried by emitted photons during

atomic transitions [3]. The OAM carried by the LG modes is not only useful in manipulation

of micro-particles in optical tweezers [4, 8], but also as a potential solution for encoding

information optical communication experiments [9–13] in both free-space and fibre

communication. At the single photon level the LG modes were used to illustrate the first

quantum entanglement experiment in the OAM basis [14]. Recently the mode division

multiplexing (MDM) technique, aimed at improving the bandwidth capacity for optical fibre

communication is based on multiplexing LG modes [13,15,16] as independent information

carries. Tools that focus on the azimuthal detection of these modes such as the azimuthal

decomposition technique [17–20] , phase transformation elements [21, 22], interferometry dove

prisms [23,24] have been introduced to extract the information carried by these modes. The

LG modes are not the only Helmholtz solution with an azimuthal phase dependence,

Elliptical beams [25,26], and Bessel-Gauss (BG) [27] also form part of the helical family. In

the next chapter we will look into the properties of the BG modes.

1.4 Summary

In this chapter we have shown how the Maxwell’s wave equation results in the Helmholtz

scalar equation through the separation of variables of the electric field. We went further to

show how the Gaussian mode forms part of the solution to the Helmholtz scalar equation for

a plane wave modulated by a complex amplitude. We have also indicated that the cylindrical

solution to the equation results in the LG function that has an azimuthal dependence.
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Chapter 2

Bessel-Gauss beams

2.1 Introduction

As classical waves propagate they spread out as a result of diffraction. These classical waves

include the Gaussian and Laguerre-Gauss modes that have been discussed in the previous

chapter. The diffraction-free solution of the Helmholtz scalar equation was first pointed out

by J. Durnin [28] using a Bessel function. Ideally Bessel beams are non-diffracting over an

infinite region and carry infinite power. Experimentally, these beams are realised and remain

Figure 2.1: Propagation of a BG beam of ` = 0 and kr = 0.31 rad/pixel, with zmax = 0.34 m
as calculated using Eq. 2.18.

diffraction free within a finite distance, while maintaining the propagation properties of an

ideal Bessel beam. In Fig. 2.1 a Gaussian beam is refracted by an axicon to formulate a

zeroth order Bessel beam within a finite region in the coloured zone denoted as zmax. At

half-zmax the refracted waves interfere completely resulting in a full zeroth order Bessel

structure with a maximum number of bright concentric rings of light and a central maximum
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as opposed to the edges of the diamond region where the Bessel structure has a minimum

number of bright rings of light. These bright rings of light are a result of the constructive

interference of the plane waves. As the refracted waves move away from each other, the Bessel

structure disappears and an annular ring of radius kr is formed, where kr is the radial wave

vector related to the longitudinal wave vector kz by the angle θ. The formation of the Bessel

structure by the diffraction of a Gaussian beam [29,30] led to them being known as the

Bessel-Gauss (BG) beams to date, the details on how these beams are generated

experimentally will follow in the next subsection. To illustrate that the Bessel function forms

part of the solution to the Helmholtz scalar equation, we rewrite the Eq. 1.9 in cylindrical

coordinates:

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2u

∂θ2
= −k2u(r, θ), (2.1)

using the separation of variables:

u(r, θ) = R(r)Θ(θ). (2.2)

Substituting Eq. 2.2 into Eq. 2.1:

1

r

∂

∂r

(
r
∂R(r)Θ(θ)

∂r

)
+

1

r2
R(r)

∂2Θ(θ)

∂θ2
= −k2R(r)Θ(θ), (2.3)

dividing by Θ(θ), and since the partial derivatives are a function of one variable the equation

becomes,

1

r

d

dr

(
r
dR(r)

dr

)
+
R(r)

r2
1

Θ(θ)

d2Θ(θ)

dθ2
= −k2R(r), (2.4)

grouping the like terms in Eq. 2.4 together:

r2

R(r)

[
1

r

d

dr

(
r
dR(r)

dr

)
+ k2R(r)

]
= − 1

Θ(θ)

d2Θ(θ)

dθ2
. (2.5)

Since the left hand side of Eq. 2.5 is only dependent on r and the right hand side is only

dependent of θ, then this equation is valid in the general case if and only if both sides are
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equal to a constant.

− 1

Θ(θ)

d2Θ

dθ2
= v2, (2.6)

also

r2

R(r)

[
d

dr

(
r
dR

r

)
+ k2R(r)

]
= v2. (2.7)

Applying the product rule on the first term of the Eq. 2.7 RHS:

r2
d2R

dr2
+ r

dR

dR
− (v2 − kr2)R = 0, (2.8)

where k is a constant value. Eq. 2.8 is the Bessel differential equation, the solution to the

equation defines a Bessel function which can be written in the form:

R(r) ∝ Jv(kr) +Hv(kr), (2.9)

where Jv and Hv are the Bessel functions of order v. For the purpose of this dissertation the

Bessel beam will be written as:

u(r, φ, z = 0) = J`(krr) exp(i`φ), (2.10)

where J` is the Bessel function of order `, kz and kr are the longitudinal and radial wave

vectors, and r, φ and z are the radial, azimuthal and longitudinal components respectively.

The Gaussian envelope in Fig. 2.2 (a) changes the cross-section of the BG beams during

propagation, this envelop tends to overlap less for an increasing propagation distance (z) [30].

As the BG beam propagates beyond the allocated region where it has the properties of the

ideal Bessel beam, the overlap between the Gaussian and the BG profiles is determined by the

ratio between the conical angle θ derived from Fig. 2.1,

sin θ =
kr

k
,

θ ≈ kr

k
, (2.11)
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and the divergence angle of a single Gaussian beam from Eq. 1.22,

θ0 =
λ

πω0

. (2.12)

The ratio becomes,

θ/θ0 =
ω0kr

2
. (2.13)

When θ/θ0 > 1, the component of the Gaussian beam gives rise to an annular ring of a radius

kr =
√
k2x + k2y, with its one dimensional cross-sectional profile shown in Fig. 2.2 (b) of radius

x = kxλf , and f is the focal length of a Fourier lens.

Figure 2.2: (a) Bessel profile enveloped by a Gaussian profile and (b) the far-field BG profile
resulting in an annular ring.

The zeroth-order BG beams have a central maximum with a smoothly varying intensity along

the propagation distance, which peaks at 1
2
zmax. The diffraction-free central maximum offers

a focal line of light which is the most useful BG feature in the process of optical manipulation

of micro-particles [27, 31,32]. During this process an optical gradient force traps and confines

a microscopic particle at the focus of a laser beam. Another striking property of the BG beam

which is remarkable for the optical trapping of particles is the fact that the plane waves that

interfere to form a Bessel beam are able to move past an obstruction giving rise to the

self-healing property of the BG beam. The minimum distance that the beam propagates after

encountering an obstruction before the phase and amplitude reconstruction occurs, depends

on the size of the obstacle.To obtain this minimum self-healing distance let us look into the

propagation of the conical waves after encountering an obstruction [33] for an obstruction

placed in the propagation path of the BG beam as shown in Fig. 2.3. Consider a cross-section

of a surface of the obstruction perpendicular to the z-axis as shown in Fig. 2.4, this
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Figure 2.3: The obstruction placed within the zmax region, with its shadow region covering zmin
distance.

cross-section is between points a and b on the boundary of the obstacle, and as a result only

two conical waves (CW1 and CW2) contribute to the BG beam at any given point. The

projection of the two conical waves give rise to three different regions, (1) the region in which

one conical wave contributes i.e a2 < ρ < a1 and b2 < ρ < b1, where CW1 and CW2 contribute

respectively. (2) The region in which non of the conical waves contribute “the shadow region”

confined within a1 < ρ < b2, (3) the region in which the conical waves interfere to form a BG

beam. These numbers are indicated on the Fig. 2.4, for an obstruction of width D = b− a

placed at some distance ρ from the central axis of the BG beam. At some distance z after the

obstruction, the contributions of the conical waves CW1 and CW2 at the points a and b are:

a1 = a+ z tan θ,

a2 = a− z tan θ,

b1 = b+ z tan θ,

b2 = b− z tan θ. (2.14)

For reconstruction to take place, it is required that at z = zmin, where b2 6 a1 the shadow

region vanishes and the BG beam be reconstructed. This implies that we must solve the
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Figure 2.4: Cross-section of an obstacle placed between two conical waves CW1 and CW2

forming a zmin shadow region. Sample figure adapted from [33].

equality b2 = a1, from Eq. 2.14:

b− z tan θ = a+ z tan θ

⇒ 2z tan θ = b− a

⇒ 2zmin tan θ = D

∴ zmin =
D

2 tan θ
. (2.15)

We conducted an experiment to verify the self-healing property of the BG beams based on the

theory above. An obstacle of size D = 0.03 cm was placed along the propagation path of BG

beam of `=1 and kr = 0.25 rad/pixel. Using Eq. 2.11 and Eq. 2.15 the minimum distance

after which the BG beam reconstructed was given by zmin = 9.5 cm. During the experiment

an obstacle was moved around the zmax region, while our detector was fixed at the zmax

position. In Fig. 2.5 (a) the obstacle was placed at 3/4 zmax such that the shadow region

could fall on the detector. The obstacle was them moved 6 cm away from the detector where

a partially reconstructed BG beam fell on the detector as shown in Fig. 2.5 (b). Later in Fig.
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2.5 (c) the obstacle was moved 11 cm away from the detector such that a fully reconstructed

BG beam fell on the detector. Using one of our detection tools, which is outlined in detail in

chapter (4), we were able to study the effects of the obstruction on the radial and azimuthal

components of the BG beam.

The results in Fig. 2.6 shows (a) the radial and (b) azimuthal spectrums, where there is a

minimal azimuthal distortion, whilst there is a broader radial spectrum due to the obstruction

respectively, but as the beam propagates beyond the self-healing distance the radial spectrum

becomes narrower. This self-healing property of BG beams allows for a simultaneous trapping

Figure 2.5: The position of the shadow region is dependent on the position of the obstruction
in relation to the detection plane, (a) is the case when the obstruction is at 3/4zmax, (b) 6 cm
from the detector, and (d) 9.5 cm from the detector.

of multiple micro-particles [34], placed at different chambers a few cm apart such that are

simultaneously trapped because as the beam traps particles in one chamber it propagates

beyond the self-healing distance and traps particles in the next chamber. Other applications

of the zeroth-order BG beams include atomic dipole traps of very large aspect ratio [27].

Electron Bessel beams have been generated and shown to have the same properties as in the

BG light beams, and have also shown to improve the performance of an electron

microscope [35]. High-order BG beams (i.e ` >0) in Eq. 2.10 are characterized by the

azimuthal index ` and have a central minimum. Similar to the LG beams they also carry

OAM of `~ per photon. These OAM carrying beams can transfer momentum to
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Figure 2.6: (a) ` spectrum of the BG beam of kr = 0.25 rad/pixel at the shadow region, and
(b) kr = 0.25 rad/pixel spectrum at different planes in relation to the obstruction.

micro-particles and the first simultaneous transfer of SAM and OAM to a particle was first

observed using high-order BG beams [36,37]. The non-diffractive nature of the central

minimum of the BG can be used as an atomic guide, where atoms can be transported to an

extended distance without transverse spreading as oppose to other hollow beams [27].

The OAM carried by the helical beams [4, 20] can be used as a basis for information encoding

in optical communication [13,16,38], even at the single photon level [96], the

self-healing [27,33,39] property of the beams has shown to be useful in recovering

entanglement between pairs of photons [40]. Although information can be encoded in these

modes, we need efficient techniques to be able to extract the encoded information not only in

one dimension [17,41], but also in two dimensions [42,43,57]. In this thesis we outline

methods for generating and extracting the information encoded in BG beams using diffractive

optical elements.

2.2 Generation of Bessel-Gauss beams

The zeroth order BG beam was first demonstrated by J. Durnin [29], using a circular ring-slit

of a diameter d and width ∆ placed at the focal plane of a lens. Each point source along the

slit was transformed into plane waves lying on the surface of a cone creating a zeroth order

BG beam. This is not the only method implemented in the generation of the BG beams, other

diffractive optical elements (DOEs) such as axicons [27,44–47] and appropriate diffraction

holograms [48–51] can be utilised to generate the BG modes. Unlike an ordinary lens which
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creates a point focus, an axicon refracts all incoming rays at approximately the same angle,

producing narrow focal lines extended along the optical axis [52]. It has a conical shape, made

of glass with refractive index n, and an opening angle γ, this opening angle determines the

cone angle which defines the finite Bessel region. Figure 2.7 (a) shows incoming parallel rays

being refracted by such an axicon of an apex angle β. The rays are refracted at approximately

the same angle, hence the rays interfering to form the BG region are parallel. The interference

angle (the cone angle) θ, is derived from the zoomed in Fig. 2.7 (b):

â = 90◦ − γ

θ1 + â+ 90◦ = 180◦

⇒ θ1 = γ

b̂ = 180◦ − 2θ − ĉ

⇒ b̂ = 90◦ − θ − (90◦ + γ − θ)

⇒ b̂ = 90◦ − θ − γ

θ2 = 180◦ − b̂− 90◦

⇒ θ2 = θ + γ (2.16)

Snell’s law of refraction

Figure 2.7: (a) The rays refracted by an axicon, interfering to form the Bessel region. (b) The
Bessel region zoomed in to determine the cone angle θ.
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n1 sin θ1 = n2 sin θ2

n2 = 1

n1 = n

⇒ nθ1 = θ2

nγ = θ + γ

⇒ θ = γ(n− 1) (2.17)

The finite region within which the BG beam remains diffraction free is given by

zmax =
ω0

θ

=
ω0

γ(n− 1)
. (2.18)

The axicon angle γ determines the spacing between the concentric rings of light of the BG

Figure 2.8: The zeroth-order BG beam (a) generated by an axicon, (b) as a result of mis-aligned
axicon.

beam. In order to generate Bessel modes of differing ring spacing one would require axicons of

differing opening angles γ, but this would be expensive to produce. Another disadvantage is

that the axicon is very sensitive to alignment as seen in Fig. 2.8 (b), hence using an axicon as

a tool to generate BG beams is inefficient. As a result we will investigate the generation of

the BG modes digitally using a spatial light modulator (SLM) encoded with either a digital

ring-slit or a digital axicon.
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2.3 Digital generation of BG beams

2.3.1 Spatial light modulator

A SLM in Fig. 2.9 (a) is an electronic device that has a liquid crystal display (LCD) shown in

Fig. 2.9 (b). The liquid crystal molecules are aligned between electrodes as seen in Fig. 2.9

(c) with a voltage dependent orientation. A gray scaled digital hologram that mimics an

arbitrary DOE is used to apply a voltage across the electrodes. The molecules tilt in the

direction of the applied electric field as shown in Fig. 2.10, as a result the phase of the

horizontal component of a linearly polarized incident beam will be modulated and diffracted

to the first diffraction order, to give the desired spatial mode. The SLM that was in use for

Figure 2.9: (a) Holoeye SLM, (b) LCD screen with its pixel dimensions, and (c) liquid crystal
molecules aligned in between two electrodes.

this work is a Holoeye PLUTO VIS SLM, with a screen dimension of 1080× 1920 pixels. The

gray scale level is scaled in such a way that the black color corresponds to no voltage applied,

implying that there is no phase modulation. As the gray-scale increases from 0 to some

number, the applied electric field causes the molecules to tilt from their original position to

the direction of the applied electric field. This implies that the index of refraction of the

display changes accordingly, resulting in the phase of the beam changing. The equation below

verifies this relationship:

δ =
2π

λ
n, (2.19)

where δ is the phase shift, λ is the wavelength, and n is the index of refraction. Since the

SLM is a digitally controlled birefringent device, it can produce any desired diffraction

pattern, but with limited efficiency. This limited efficiency is due to the 2D structure of the

array of pixels, representing a 2D grating which results in light being diffracted into many
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Figure 2.10: The relationship between the different gray-levels and the applied voltage across
the electrodes, causing a tilt in the molecules of the liquid crystal.

orders. This causes loss in light intensity. Some parts of the SLM are not covered by pixels,

hence some of the incident field is absorbed by the non-pixel area. The quality of the first

diffracted order is affected by its overlap with the non-diffracted zero-order, this can be

improved by adding a grating onto the phase hologram to separate the diffracted and the

non-diffracted order. This is shown in Fig. 2.11, where a Gaussian beam passes through a

fork hologram of ` = 1 with a particular grating size added to it, as a result the modes are

separated into zeroth and first order which is the order of interest with most of the Gaussian

intensity directed to it.

Figure 2.11: The Gaussian beam passing the fork hologram to generate a vortex beam on the
first diffracted order.

2.3.2 Digital Axicon

To generate BG beams digitally we encode a hologram with a transformation function

defining the phase of the BG modes from the Bessel function in Eq. 2.10. Looking at Eq. 2.11

and the Eq. 2.17, we can clearly see that the cone angle θ is directly proportional to the
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radial wave vector kr. Hence the transmission function of an axicon in Fig. 2.12 (a) that is

Figure 2.12: Diffractive optical elements that can be used to generate the zeroth-order BG
beam, (a) conical lens and its digital form (b) an axicon hologram.

used to create a digital axicon in Fig. 2.12 (b), with the control over kr (spacing between the

rings of light) and ` (azimuthal variation of the BG modes) is given by:

t(δ) = exp(iδ)

= exp(ikrr + i`φ), (2.20)

to generate the high-order BG beams using the transmission function, the azimuthal index `

Figure 2.13: (a) The experimental setup used to generate BG beams.(b) The BG beams of
different kr and `, generated by a digital axicons. Holograms are presented in the first row
and corresponding experimentally recorded and theoretical calculated intensity profiles in the
second and third rows, respectively.

must not equal zero. The code used to generate the holograms is shown in the appendix(A).

The experimental setup as shown in Fig. 2.13 (a) was used to generate the BG beams using a

digital axicon, where a Helium-Neon (HeNe) laser was expanded using a lens telescope of L1

(f1 = 100 mm) and L2 (f2 = 300 mm), with a beam magnification M = f2/f1 = 3. This 3×

magnified beam was directed onto the SLM encoded with the axicon hologram, the reflected

beam was imaged using a 4f imaging system to the CCD camera where the propagation
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properties of the BG beams were studied along the zmax region. The unwanted diffracted

orders were filtered using an aperture. We can obtain a variety of holograms with differing

values for kr and ` to generate corresponding BG beams as shown in Fig. 2.13 (b).

2.3.3 Digital spiral ring-slit

Durnin’s ring-slit [29] can be programmed digitally [53] with control over the phase of the

output beam, generating not only the zeroth-order BG, but also high-order BG beams. With

Durnin’s ring-slit, light is only transmitted through the ring and blocked everywhere else. To

incorporate this digitally, one needs to be able to control both the phase and amplitude of the

incident beam. This is possible by generating a hologram with a checker-board pattern

surrounding the phase modulating ring-slit. This checker-board pattern is simply an array of

Figure 2.14: (a) Checker board pattern of arrays of pixels varying from 0 to π, (b) complex
plane representing the phase values in (a) in form of vectors. Sample image adapted from [54].

alternating sets of pixels that are out of phase by π, and can be used to mimic an amplitude

mask, modulating the amplitude of the incident beam. The phase values of the checker-board

pattern in Fig. 2.14 (a) have uniform weighting of 0 and π, this is represented in the complex

plane in Fig. 2.14 (b). In the complex plane the uniform phase values are represented in form

of vectors A1 and A2 having the same amplitude, in opposite directions along the x-axis [54].

As a result the resultant A3 positioned at the origin of the complex plane, has no amplitude.

This implies that the average amplitude of the field at the image plane of the checker-board

hologram is zero. When the field is observed at the Fourier plane, there is a zero intensity

along the propagation axis, and due to the spatial frequency of the checker-board the light is

shifted away from the origin. When there is a phase varying ring-slit added on the

checker-board in Fig.2.15 (a) the phase of the field is modulated and observed at the origin at
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the Fourier plane [53], as illustrated in Fig.2.15 (b). This is not the only method that can be

implemented to modulate the amplitude of the field using a phase only SLM, the Arrizon

technique [55], that we have successfully implemented in the phase and amplitude modulation

of LG modes [56] is another method of modulating the amplitude of the field.

The transmission function of the ring-slit aperture is:

t(r, φ) =





exp(i`φ) if R− 4
2
≤ r ≤ R + 4

2

0 elsewhere




,

where the azimuthal component ` is restricted to the radial coordinate R, which is the radius

of the ring-slit and ∆ is the width of the ring-slit as shown in Fig. 2.15, the hologram was

produced using the matlab code shown in Appendix (A). The output field is given by:

u(r, φ, z0) = exp(i`φ) exp(ikzz0), (2.21)

where kz = k cos(θ) is the longitudinal wave vector. The main difference between generating

Figure 2.15: The generation of a BG beam using (a) the spiral ring-slit, observed at (b) the
Fourier plane of a lens of focal length f .

the BG beam with an axicon and the spiral ring-slit is that the output field is observed at the

near and far-field, respectively.

2.4 Summary

In this chapter we have introduced a diffraction free solution to the Helmholtz equation,

known as the BG beam, and we outlined the propagation properties such as their
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diffraction-free and self-healing properties. We also investigated the tools that can be used to

generate the BG beams such as conical lens, which is very sensitive to alignment and limited

to only being suitable to generate a zeroth order BG of a particular ring spacing. Using a

SLM we have shown that we can create digital axicons, by defining the transmission functions

of the diffractive optic we wish to replace, so as to generate any desired BG and vortex

modes. This is achieved by simply reflecting the Gaussian beam off the SLM encoded with an

appropriate transmission function, and observing the generated output field at the point of

observation.
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Chapter 3

Detection of BG beams

3.1 Introduction

As we have shown that we can generate OAM carrying BG modes, we will also show a

technique we have developed to extract the information carried by these beams in two

dimensions. It has been previously shown that an interferometer composed of dove prisms in

each arm [23], with the relative angle between prisms given by ∆α = π
2
, can separate the odd

and even ` values, in separate output ports for the azimuthal detection of LG modes in single

photons. Another one dimensional detection tool that has been used to extract the amount of

OAM carried by helical modes, is based on the fact that the process of generating LG modes

digitally with fork holograms illuminated by a Gaussian mode is reversible. This means that

by illuminating a fork hologram grating of −` with the beam carrying OAM of ` results in a

Gaussian beam as shown in Fig. 3.1. This process is known as azimuthal

Figure 3.1: Azimuthal decomposition resulting in (a) a signal for matching `, and (b) no signal
for non-matching `.
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decomposition [17,18] of light, which can be used to detect any arbitrary azimuthally varying

field of localized azimuthal components. This azimuthal detection technique is achieved by

expanding any arbitrary field into the angular harmonics basis exp(i`φ) in Eq. 3.1, with `

dependent modal weight co-efficients c`(r), that are obtained by taking the inner product of

the field with the azimuthal filter: the field function

u(r, φ) =
∑

c`(r) exp(i`φ), (3.1)

with its modal weight co-efficients given by

c`(r) = |〈u(r, φ)| exp(−i`φ)〉|

=
1

2π

∫ 2π

0

u(r, φ) exp(−i`φ)dφ. (3.2)

This inner product will give a value for c`(r) when the field u(r, φ) has a complex conjugate of

the azimuthal filter in its azimuthal component i.e u(r, φ) ∝ exp(+i`φ), otherwise the

weighting will be zero (no on axis intensity) as in Fig. 3.1 (b).

3.1.1 Efficient sorter of BG beams

A two dimensional detection of BG beams has been introduced, where refractive optical

elements have been used to transform an azimuthally varying field to a linear phase varying

field through the conformal mapping technique. This linear phase varying field was focused

into cylindrical lenses to simultaneously separate the azimuthal (`) and radial (kr)

components of the BG modes, such that a signal was detected at ` and kr dependent

transverse positions [22, 57,58]. The concept behind this technique was based on a fact that a

lens can focus a plane wave to a spot of light in its focal plane. The transverse position of the

spot at the focal plane of the lens depends on the transverse phase gradient of the plane wave,

which allows for multiple plane waves to be distinguishable from each other at the point of

observation. Since the BG modes are azimuthally varying fields, we needed a way to

transform these modes to a linear phase gradient. An optical geometric approach known as

the conformal mapping technique was used to perform this transformation [22,41]. This

technique can be used to map one coordinate system to another, while preserving the angles,
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this was implemented using diffractive optical elements (with a transformation efficiency of

about 85%) to map a position at an input (x, y) coordinate system to a position at an output

(u, v) coordinate system in the Cartesian plane. The coordinate functions from (x, y) to (u, v)

were given by [58]:

v =
d

2π
, (3.3)

and

u = − d

2π
ln

√
x2 + y2

b
, (3.4)

where b is the scaling factor of the radial component, d is the aperture size of one of the

diffractive optics. Figure 3.2 (a) is the phase transformation element with its height (H1)

Figure 3.2: (a) Phase transforming element, and (b) phase correcting element. Sample image
adapted from [41]

derived from the phase function in [22], and is given by

H1(x, y) =
a

f(n− 1)

[
y arctan(y/x)− x ln

(√
x2 + y2

b

)
+ x− 1

a

(
1

2
(x2 + y2)

)]
, (3.5)

where f is the focal length of the integrated lens given by the last term of Eq. 3.5. The

parameter a = d/2π determines the position of the resulting horizontal line, ensuring the

mapping of the azimuthal angle range to the full width d of the second element.

When an azimuthally varying beam of wavelength λ passes through this element of height H1,

with a refractive index n, the effective optical path length of this beam changes, and the

change in the optical length changes the phase of the beam by ∆Φ = 2π(n−1)H1

λ
and its phase

gradient by 2π`; such that the transverse position of the focused spot is ` dependent.

The change in the phase of the beam during the transformation introduces phase distortions

to the transformed beam. This phase distortion is corrected by the second optical element in
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Fig. 3.2 (b) of height,

H2 = − ab

f(n− 1)

[
exp

(−u
a

)
cos
(v
a

)
− 1

ab

(
1

2
(u2 + v2)

)]
. (3.6)

This phase element was placed at f away from the first element, and the manufacturing

process of these elements is outline in [41]. Using cylindrical lenses the resulting horizontal

Figure 3.3: (a) Superposition of BG modes unravelled through the conformal mapping technique
to (b) a set of parallel horizontal lines passing through cylindrical lenses to be detected in
(c) where the radial and azimuthal components are separated. The results of (d) azimuthal
detection, and (e) radial detection.

line was imaged to a point of observation to give a vertical spread of the radial component:

∆V =
d

2π
ln

(
krf

kb

)
. (3.7)

One of the cylindrical lenses was used to take the Fourier transform of the horizontal line to

produce spots in `-dependent horizontal position given by:

∆H =
λ

f
`d. (3.8)
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The simultaneous detection of the radial and azimuthal components was achieved through the

optical system outlined in Fig.3.3, where Fig.3.3 (a) the superposition of two azimuthal phase

varying annular rings of two BG beams are mapped to linear phase varying modes in (b).

Cylindrical lenses (CL) were arranged in a 4-f system to map the transverse momentum

modes to different x- and y-coordinates in (c). The corresponding results show the

displacement of 3.3 (d) the spot in the `-dependent position, and 3.3 (e) the vertical spread in

kr. In the next section, we introduce another two dimensional detection tool of BG beams

using digital axicons.

3.2 Detection of BG modes using a digital axicon

Similarly to the azimuthal decomposition technique outlined in the previous subsection we

can use the digital axicon that consists of a spiral phase exp(i`φ) and a radial component kr,

as a 2-dimensional detection tool of the BG beams. In this process we considered a ray based

analysis of the formulation of BG beams as generated by an axicon, where an approximate

plane wave is refracted by an axicon of opening angle γ, forming a diamond shaped region

(zmax), these rays propagate to pass through an identical axicon placed in the reverse

direction at the zmax position. The second axicon collimates the refracted rays to form

parallel plane waves forming a Gaussian beam at the far-field, as shown in Fig. 3.4.

Figure 3.4: (a) A Gaussian beam illuminating (b) an axicon mask of ` = 0, generating (c) a
zeroth-order BG beam within the zmax region. This BG is incident on (d) an identical axicon
hologram, such that at the Fourier plane of (e) a Gaussian on axis intensity is observed in (f).

This detection tool is kr and ` specific, since if either kr or ` are not matching, a pure

Gaussian mode will not be formed at the Fourier plane. The transmission function defined for

the detection hologram is that of a digital axicon in Eq. 2.20, with the change of sign:

t = exp(ikrr − i`φ), (3.9)
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where the first exponential term represents the detection of the radial wave vector kr, the

second term represents an azimuthal filter. The detected signals are measured optically

through the convolution process measurement observed at the Fourier plane of the lens:

gout = F (EBG
` )⊗ F (t), (3.10)

where gout is the output signal resulting from the convolution between the Fourier transform

of the BG with the transformation function in Eq. 3.9. The Fourier transform of the

transmission function results in an annular ring, and the angular spectrum of the BG mode

also has the annular-ring shape, given that their radii are equal; their convolution will

produce a bright spot with a Gaussian profile at the centre of the output plane as in Fig.3.5

(a). On the other hand if the ` or the kr values of the BG mode are different from that of the

transmission function in Eq. 3.9 of the SLM, there will be no on axis intensity as shown in

Fig.3.5 (b) and (c) respectively.

Figure 3.5: Detected signal images of (a) matching kr = 0.25 rad/pixel and ` = 1, (b) same
` = 1 different kr, and (c) digital axicons of same kr = 0.25 rad/pixel and different `.
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3.2.1 Experimental methodology and results

An all digital experimental setup was used to extract the azimuthal and the radial

components of the BG beams as shown in Fig. 3.6. In this setup a Gaussian beam was

expanded using the telescope consisting of lenses L1 (f1=300 mm) and L2 (f2= 100 mm) to

obtain a Gaussian size of ω0=1 mm. The BG beams were generated using the first SLM (SLM

1) encoded with the digital axicon holograms. The resulting diffracted orders were filtered

using the 4f imaging system selecting the order of interest. The second SLM (SLM 2) was

fixed at the zmax position, while changing the position of the optical medium such as an

obstruction and the turbulence plate within the zmax region. SLM 2 was used to scan through

the radial and azimuthal components by changing its transmission function for various ` and

kr values, such that the effects of the perturbations on the BG beams propagating in

free-space or through an optical medium could be studied. The resulting signals were Fourier

transformed using lens L5 to the CCD camera.

Figure 3.6: Schematic of the experimental setup for two-dimensional detection of BG beams
using digital axicons.

As the BG is limited to zmax, the optimal position in which the second axicon is placed to

obtain the optimal 2-dimensional detection was verified by placing the second axicon at

different propagation distances within the zmax region. It was obtained to be at the zmax

position as expected. This is seen in Fig.3.7 showing an accurate radial component detection

of kr = 0.25 rad/pixel at its corresponding zmax = 84 cm position. Since zmax is a function of
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Figure 3.7: This graph shows that the optimal position to detect the BG beams using a digital
axicon is at the zmax position.

kr as shown in Eq. 2.18, this implies that there are different zmax positions for various kr

values, as a result we had to physically move the detection axicon to corresponding zmax

position to obtain the kr spectrum in Fig. 3.8 (a). We then chose a kr = 0.25 rad/pixel to

detect the azimuthal component as shown in Fig. 3.8 (b) at the zmax = 84 cm.

Figure 3.8: (a) Radial (kr) decomposition of the BG modes at respective zmax positions for
` = 1. (b) Azimuthal (`) decomposition for kr = 0.25 rad/pixel at zmax = 84 cm.
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Optical turbulence

Optical turbulence arises from differences in refractive indices between points in the

atmosphere, as a result when a laser beam propagates through the optical atmospheric

turbulence it accumulates fluctuations in its phase and amplitude. We tested the efficiency of

Figure 3.9: The graph of the Strehl ratio values on the different turbulence strengths of the
plate, with the images showing the effect of turbulence on the Gaussian beam.

our detection tool, by detecting BG modes that have propagated through a turbulent medium

defined by Kolmogorov turbulence [59]. The strength of the optical turbulence was

characterized with the Strehl ratio (SR) [60], by taking the ratio between the an on axis

intensity of an unperturbed beam with the intensity of the perturbed beam. The turbulence

strength increases with decreasing SR as shown in Fig. 3.9. The turbulence plate was placed

at 1/2zmax and the detector was placed at z = zmax. Two turbulence strengths were used

corresponding to Strehl ratios of SR = 0.2 and SR = 0.03, and the turbulence introduced the

tip and tilt effect on the modes, resulting in distorted phase and amplitude of the beams as

shown in Fig. 3.10 (a). The spatial modes are strongly affected by turbulence, since their

phase structure is given by exp(i`φ), hence the distortion in the phase structure of the beam

result in azimuthal coupling as shown by the results in Fig. 3.10 (b, c) for the different Strehl

ratios, similarly the distortion in amplitude results in radial coupling 3.10 (d) [61]. These
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Figure 3.10: The BG beam of ` = 1, kr = 0.25 rad/pixel passing through (a) optical turbulence
resulting in (b) the spread in kr at different Strehl ratios, and a spread in the ` spectrum (c)
at SR=0.2, and (d) at SR=0.03.

results serves to illustrate the versatility of our detection tool.

3.3 Summary

We have presented a versatile technique to experimentally realize the detection of Bessel

beams using digital axicons programmed on a spatial light modulator. We have shown the

ability to distinguish both the radial and azimuthal indices of such beams, a core requirement

for optical communication protocols. In addition we have considered two applications of the

tool and observed the modal changes to an incoming Bessel beam due to both amplitude and

phase perturbations resulting from an opaque obstacle and a turbulence plate, respectively.

The ability to modally resolve such fields will find uses in both quantum and classical studies.
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Chapter 4

Generation and detection of vector

Bessel-Gauss beams

4.1 Introduction

The beams that have been looked at in the previous chapters have homogeneous polarization,

thus they are scalar fields. Beams of spatially varying polarisation are known as the vector

beams. An example of such beams is the cylindrical vector (CV) beams that are cylindrically

symmetric in polarization, such as the radially and azimuthally polarized light. These vector

beams are a solution to the full wave equation Eq.1.6, and their peculiar feature under high

numerical-aperture focusing has given interest to applications such as spectroscopy,

microscopy, optical trapping, particle acceleration, and interferometry [62–64]. The spatially

varying polarisation of the beam spans the entire Poincare sphere, this implies that any

polarisation state can be represented by a linear combination of orthogonally polarized waves

with different phases. For instance a vector vortex beam is a result of two orthogonal circular

polarized helical beams, with their phase variations superimposed together. Mathametically

this can be illustrated using the Jones vectors [65] for circularly polarized light:

exp(i`φ)




1

i


+ exp(−i`φ)




1

−i


 =




cos(`φ)

sin(`φ)


 (4.1)
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Equation 4.1 is the description of the radially polarized vector vortex beam. Previous

methods of generating CV beams include the use of sub-wavelength gratings [66], polarization

grating axicons [67], and interferometric techniques [68,69]. We have used a geometrical phase

element that introduces a phase shift known as the Pancharatnam-Berry (PB) phase on the

incoming wave to generate CV beams. This geometric phase element is an azimuthally

birefringent plate, which couples spin angular momentum (SAM) and OAM of light, with a

PB phase geometry given by α = qφ+ α0, where φ is the azimuthal angle in the xy-plane, q is

an integer, and α0 is a constant. This azimuthally birefringent element is known as the

q-plate, it has birefringence retardation similar to that of half-wave plate, that converts a

left-right (right-left) circular polarization, while introducing a phase shift (PB) of

∆Φ = ±2qφ [70], with the topological defect on the beam axis. This optical element is

polarization controllable in that it shapes the phase of the input light depending on the input

polarization. The Jones matrix formalism can be used to mathametically illustrate the effect

of the q-plate for a linearly polarized input, for a half wave plate the Jones matrix [71] is

given by

M ′ =




1 0

0 −1


 . (4.2)

The rotation of the Jones matrix M ′ by an angle α along the transverse plane will be given by

matrix M:

M = R(−α)M ′R(α)

=




cosα sinα

− sinα cosα







1 0

0 −1







cosα − sinα

sinα cosα




=




cos 2α sin 2α

sin 2α − cos 2α


 , (4.3)

36



where R(α) is a two-dimensional rotational matrix, and α = Qφ = 2qφ, and Q is the

azimuthal charge introduced by the q-plate:

M =




cos(Qφ) sin(Qφ)

sin(Qφ) − cos(Qφ)


 . (4.4)

When a superposition of scalar non-diffractive BG beams, mathametically described as [72]

u(r, φ, z = 0) =
∑

`

J`(krr) exp(i`φ)




1

1


 (4.5)

passes through the q-plate Eq. 4.4:



cos(Qφ) sin(Qφ)

sin(Qφ) −cos(Qφ)







1

1


 exp(i`φ) →

exp(i(`+Q)φ)




1

−i




exp(i(`−Q)φ)




1

−i


 . (4.6)

In bra-ket notation Eq. 4.6 becomes:

|`, L〉 → |`+Q,R〉 , (4.7)

and

|`, R〉 → |`−Q,L〉 . (4.8)

The left circular component is converted to a right-circular component, while increasing the

azimuthal component by unit charge of OAM depending on the charge of the q-plate as

shown in Eq. 4.6 and Eq. 4.7. The reverse is also true, the right-circular component is

converted to left-circular polarization, decreasing the azimuthal component as shown in Eq.

4.6 and Eq. 4.8, for incoming OAM carrying mode with high efficiency. As a result, the
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non-diffractive vector BG beams [74,75] were generated, this was achieved through the

experimental setup outlined in the next subsection.

4.2 Experimental methodology and results

The experimental realization of the generation of non-diffracting vector BG beams is shown

below, where a HeNe laser beam of λ = 633 nm was expanded using lenses (L1 and L2) and

directed onto SLM1, where the BG modes and their superpositions were generated by the

spiral ring-slit. The scalar fields were observed at the Fourier plane of the lens (L3), where

Figure 4.1: Schematic of the experimental setup divided into 4 divisions [division 1 and 2,
scalar and vector generation respectively; division 3 and 4, vector and azimuthal decomposition
respectively]. L, denotes the lens (f1 = 15 mm, f2 = 150 mm, f3 and f4 = 500 mm, f5 = 300
mm); A, aperture; Q, q-plate; PG, polarization grating; CCD, camera.

they propagated to pass through the q-plate (Q) resulting in CV BG beams as indicated in

the highlighted divisions 1 and 2. The highlighted divisions 3 and 4 represent the detection of

these modes which will be explained in detail. The process of generating scalar BG beams

and converting them to CV BG beams is shown in Fig. 4.2, where in Fig. 4.2 (a) a linearly

polarized Gaussian beam with its polarization illustrated by the arrows pointing in the

horizontal direction is incident on the SLM encoded by the spiral ring-slit of ` = 0, resulting

in a scalar zeroth order BG beam observed at the Fourier plane of the lens. The generated

scalar field passed through the q-plate in highlighted division 2, which was placed some

distance away from the Fourier plane of the SLM to form a radially polarized CV BG beam of

`±1 with its polarization illustrated by arrows pointing radially outward.
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Figure 4.2: (a) The generation of scalar BG beams using a ring-slit hologram, converted in CV
BG beams using a q-plate. The Superposition of (b) scalar BG, and (c) CV BG beams at the
near and far-fields. With inserts showing their theory images.

4.2.1 Detection of vector BG beams

The vector BG beams consist of both SAM and OAM, hence there are different detection

tools that need to be incorporated to detect these degrees of freedom. We employ a diffractive

optical elements such as a polarization grating (PG) and digital holograms to perform an

azimuthal (OAM detection) decomposition as explained in detail in the previous section . A

Figure 4.3: (a) Separation of the circularly polarized beam into right and left circular polariza-
tion states using a PG. Where the azimuthal detection is performed using the fork holograms
resulting in (b) the azimuthal spectrum of the two polarization states.

PG of period 8.3 µm with its detailed manufacturing process outlined in [73], acts as a

polarizing beam splitter for circularly polarized states. It was aligned approximately to

separate the left- and right-circular polarization states such that the azimuthal detection of

the modes was polarization dependent, where in Fig. 4.3 (a) a circular polarised vector BG
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beam of ` = 1 passed through a PG separating the left- and right-circular polarized beams,

where the azimuthal filtering of these modes was done in the LG basis using forked

holograms. As we have shown in Eq. 4.6 that the q-plate converts the left-circular polarized

component of the scalar field into a vector beam of right-circular polarization, while

increasing the azimuthal charge by +Q. Also the right-circular component of the scalar-field

is converted to a left-circular vector field, with a decrease in the azimuthal charge by −Q.

The detected results are shown in Fig. 4.3 (b) where the left-circular polarization states show

a decrease in their OAM charge (pink), while the right-circular polarized states show an

increase in their OAM charge (orange) as expected. In addition we illustrated that the

Figure 4.4: (a) The zeroth-order scalar BG beam of `=0 was propagated through (b) the q-
plate resulting in (c) a radially polarized CV BG beam of the superposition of ` = ±1, passing
through (d) a rotating polarizer, resulting in (e) a rotating vector BG beam. (f) Intensity
profiles of vector BG of ` = 0 recorded with a rotating polarizer. (g) Near-field intensity
profiles of vector BG beams of ` = −5,−3,−1, 0,+1,+3, and ` = +5 recorded with a polarizer
in front of the CCD camera.

intensity of the vector BG beam rotates, when placing a rotating polarizer after the q-plate as

shown in Figs. 4.4 (a)-(e). The snap shots of the rotating vector BG mode of an initial scalar

BG beam of `=0 are shown in Fig. 4.4 (f).

4.3 Summary

Using the generation tools that we have outlined in the previous sections we have successfully

transformed scalar BG beams into vector BG beams by adding a q-plate into our optical

system. Using a polarization grating we were able to separate our modes into two polarization

states and with azimuthal decomposition technique we were able to extract the amount of

OAM carried by these vector BG beams.
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Chapter 5

Entanglement of Bessel-Gauss beams

5.1 Introduction

The question whether quantum mechanics is a complete theory was stimulated by Einstein,

Podolsky and Rosen’s (EPR’s) [76] thought experiment. In their thought experiment they

focused on the spatially separated measurements of the physical properties of two particles (a

and b) that had interacted in the past. Knowing the relative physical properties of these

particles such as their position and the total momentum, they could measure the position or

momentum (xa, or pa) of particle a, and instantaneously predict the position or the

momentum (xb, or pb) of the second particle with certainty, without performing a

measurement on it. However they could not simultaneously have the knowledge of both the

position and momentum of one particle (xa and pa) with certainty, as stated by Heisenberg as

the uncertainty principle [77]. They considered this a “spooky” action, but the ability to

determine the position or the momentum state of particle b, by doing a measurement on

particle a even though the two particles are spatially separated, implies that the two particles

are entangled. This entanglement of quantum particles leads to the EPR paradox that

quantum mechanics has either non-local interactions or that it was incomplete in that there

are hidden variables that can describe the statistical physical quantum system. As a result,

Bell and Clauser-Horne-Shimony-Holt (CHSH) described inequalities that gave a

mathematical formulation of the local hidden variable theory. These inequalities are

consistent with classical correlation and are violated for quantum correlations [78]. This gave

a platform for the experimental realisation of quantum entanglement [79–82] which was first
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demonstrated in the polarization states of entangled photons [79]. The high-dimensional

entanglement of OAM states was demonstrated in 2001 by Mair. et al [14], and since then it

has attracted attention to the OAM carrying beams to date [83–87]. The nature of quantum

entanglement makes it attractive to certain applications such as quantum information

computing [88–90], and quantum cryptography [91,92].

5.2 Generating entangled photons

When a high frequency photon from a laser beam interacts with a non-linear crystal of χ2, a

non-linear process takes place. During this process the high frequency photon is converted

into two lower frequency photons. This process is known as spontaneous parametric down

conversion (SPDC) [93,94], in this process the energy and momentum is conserved as shown

in Fig. 5.1 such that the relationship between the three frequencies is given by:

Figure 5.1: (a) SPDC process, with the energy conservation, and (b) linear momentum conser-
vation.

ωp = ωi + ωs, (5.1)

where ωp, ωi and ωs are the pump, idler and signal frequencies respectively. The conservation

of momentum is given by:

~kp = ~ki + ~ks, (5.2)
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where kp, ki and ks are the pump, idler and signal wave vectors. Similarly for helically phased

beams the conservation of OAM during this process is stated as

`p = `i + `s, (5.3)

where `i and `s can take any integer values that sum up to give `p.

There are two types of SPDC type I and type II. In type I the down-converted photons are

produced with the same polarisation, orthogonal to that of the pump. In type II one of the

down-converted photons has the same polarization as the pump, while the other is in an

orthogonal polarization state. Our experiment is based on type I, where the crystal was

positioned to produce collinear, degenerate entangled photon pairs.

5.3 OAM entanglement

OAM entangled states can be ideally used to define an infinite dimensional discrete Hilbert

space. The first OAM entanglement experimental realisation was demonstrated by Mair et

al. [14], using helical beams in the LG basis. They showed that OAM is conserved during the

SPDC process, and that the photon states can only be explained by quantum correlations,

such that the OAM of the pair must sum to the OAM of the pump such that the two photon

state for OAM can be written as

|Ψ〉 =
∑

`

a`,−`|`〉| − `〉, (5.4)

where |a|2 is the probability of finding one photon in state |`〉, and the other in state | − `〉.

Just like Heisenberg’s uncertainty relation between the linear momentum and position, the

conjugate variable of OAM is the angular position [?] which can be described by an aperture

with angular width φ:

[∆(L)]2[∆(φ)]2 ≥ ~2

4
, (5.5)

where L = `~. This relationship can be used for further quantum entanglement test. The

OAM entanglement can be measured in any angular harmonics basis with phase term

exp(i`φ) such as the LG basis [4, 14,95], and BG basis [96,97].
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These sets of bases are similar in that they have helical wave front structure that gives rise to

the OAM they carry; however they have different properties. For instance the BG beams have

a unique property of being able to reconstruct themselves after encountering an obstruction.

The entangled photon pairs tend to have weak interactions with each other, therefore their

entanglement is fragile as they propagate through the transmission path such as a turbulent

environment [98]. To some extent the properties associated with a particular measurement

basis can offer an advantage in overcoming these transmission path limitations. A clear

demonstration of this is shown in the next section, where the BG and LG beams were set to

propagate through an optical obstruction of a particular size. Due to the properties

associated with the BG basis, the OAM entanglement recovers while this was not observed in

the LG basis.

5.4 Reconstruction of OAM entanglement

The decay of entanglement due to a perturbed transmission path has been demonstrated in

different perturbation media such as the environmental noise [98–101], and the Kolmogorove

turbulence [102–104]. Information processes based on ion-traps, nuclear magnetic resonance,

and hyper-entanglement [105–107] have been used to eliminate de-coherence in quantum

computers. The decay of OAM entanglement in spatial modes has been investigated and

certain methods have been explored to limit the effects of turbulent environments. We show

that by an appropriate choice of the entanglement measurement basis, such as the BG

basis [97], OAM entanglement can be recovered after encountering an obstruction [40]. Using

the self-reconstruction property of BG beams [27] to our advantage, we placed an obstacle of

D = 200µm in the path of one of the down-converted photons and observed an obscured

CHSH inequality in OAM entanglement due to the optical loss. We then measured the

entanglement in both the BG and LG basis, the BG basis allowed the OAM entanglement to

be recovered. The concurrence of the quantum state was dependent on the location of the

shadow region in reference to the BBO crystal. As shown in the classical case as in chapter

(2) where the azimuthal and radial spectra were recovered after a particular distance from the

shadow region, the coincidence counts are recovered after the self-healing distance. On the

other hand the LG basis could not recover the OAM entanglement. This test was done with

44



the experimental procedure outlined in the next section.

5.4.1 Experimental methodology and results

The experimental realisation of OAM entanglement can be separated into two parts as shown

in Fig. 5.2. In highlighted section one, a mode locked ultraviolet (355 nm wavelength) laser of

average power of 350 mW was used to pump a type I barium borate (BBO) crystal to

produce 710 nm down-converted collinear entangled photon pairs through the SPDC process.

To reflect the pump beam and transmit the down-converted light a bandpass filter was placed

after the crystal, a circular obstruction of radius D = 200 µm was placed to obstruct photon

pairs. The front plane of the crystal was imaged by L1 and L2 of focal lengths (f1=200 mm,

f=2 mm) respectively onto two separate SLMs. In highlighted section two, we set the

photons to propagate at different paths separating them spatially. We then performed

Figure 5.2: The schematic diagram of the experimental setup highlighted into two sections: 1.
Generation of entangled photon pairs, and 2. measurement of the coincidence counts of the
entangled pair of photons.

measurements on the photons, where the OAM filters (SLM with varying fork dislocations),

were placed in the propagation paths of the entangled pairs and re-imaged by L3 and L4 of

focal lengths (f3=500 mm, f4=2 mm) respectively. These SLMs were used to preform the

modal decomposition technique, that resulted in a Gaussian signal indicating the detection of

the OAM states of these photon pairs. This Gaussian signal was coupled into single mode

fibres of mode-field diameter of d = 4.6 µm attached to avalanche photo diodes (APDs) that

detect single photon pairs. The bandpass filters were also used to prevent any scattered pump
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light from entering the fibres. Since these photon pairs propagate in different paths, they

arrive at different times of limited interval known as the gating time. This implies that a

coincidence count will only be recorded when photons arrive at the detectors within this time

interval. This process takes place for a series of photon pairs resulting in a recorded

coincidence count rate. The setup in Fig. 5.2 was first set in back-projection mode for

alignment purposes, where the BBO crystal was replaced by a mirror, and a 710 nm diode

laser was connected to the SMF in arm A, allowing light to propagate through the system in

reverse. The SLMs were adjusted in such a way that their first diffracted order overlapped

with the pump beam, such that the measured coincidences can be purely from the specified

signal as the SLM reflects many diffracted orders. This optimisation process was done by

using the OAM conservation to our advantage where, for a pump beam of `p = 0, the

coincidence counts are expected when `i + `s = 0. Hence, if a hologram of `i = 0 is encoded

on SLM A and `s = 1 on SLM B, there will be no signal (coincidence counts). On the other

hand, if `i = 3 is encoded on SLM A and `s = −3 is incident on SLM B there will be

coincidence counts measured as shown in the plots in Fig. 5.3 (a). This was done by encoding

each SLM with holograms ranging from ` = 20 to ` = −20 obtaining a spiral bandwidth. Not

only do the SLMs efficiency play a role in the detected signals that show a decreasing trend

from ` = 0, but also the size of the helical modes increases with increasing azimuthal index `,

so this difference in the size of the modes contributes to how much power they can carry.

Figure 5.3: (a) Density plot of the measured coincidence counts, indicating the conservation of
OAM in the diagonal entries. (b) Density plot of the coincidence counts per second using the
angular holograms. Sample figure adapted from [86]

In a similar method, the angular spectrum in Fig. 5.3 (b) can be obtained, by encoding the

SLMs with angular sector holograms with one of the holograms orientated at a particular
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position, while rotating the other hologram. The process of back-projection allows the beam

to be observed to check for the hologram alignment or for any diffractive element effects on

the beam to be observed as in the case of the obstruction in Fig. 5.4, where the LG beam

shows a distorted structure, while that of the BG beam is reconstructed after the self healing

distance. As the obstruction is moved away from the crystal, the shadow region falls less onto

Figure 5.4: Back-projected obstructed BG and LG beams taken at different crystal planes, (a)
without obstruction, with obstruction placed (b) at the plane of the crystal, (c) 20 mm away
from crystal, (d) 50 mm away from the obstruction.

the crystal, until it no longer falls on the crystal as shown in Fig. 5.4 (d). The minimum

self-healing distance of this BG beam is zmin = 30 mm for R = 200 µ m and it has fully

reconstructed at the expected zmin. On the other hand the LG beam has no indication of

restoration of its structure. The coincidence count rates of the BG and LG basis were

measured for OAM state of |` = ±2〉. As the obstruction was moved away from the crystal in

intervals of 5 mm the coincidence levels of the BG and LG basis were different in that when
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the obstruction was at more than 25 mm distance from the crystal the BG showed an increase

in the coincidence level, while the LG basis remained constant; this illustrates the unique

self-healing property of the BG beams. The unobstructed coincidence count rate of the BG

mode was 140/s, and that of reconstructed BG mode was 80/s, this may be due to the

obstacle resulting in intensity loss. The effects of the obstacle on other quantum

Figure 5.5: The effect of obstruction on the coincidence count rate of the BG and LG basis,
indicating the reconstructed coincidence count rates in the BG mode.

measurements such as the degree of entanglement are not obtained from the recovery of

coincidence count rate. To eliminate the possibility of hidden variables the violation of Bell’s

inequality was demonstrated by looking at the correlation of entangled photon pairs in

superposition states, described as

|Ψ〉 =
1√
2

(|`〉+ exp(iθ) |−`〉) , (5.6)

where θ denotes the degree of rotation. For a particular ` value superposition holograms were

generated for a range of angle θ, these holograms were both varied on SLM A and SLM B,

where the hologram on SLM A was fixed at θA, and the one on SLM B was rotated at angle

θB measuring the coincidence counts. A sinusoidal behaviour shown in Fig. 5.6 was observed,

this can only be observed through quantum correlations in the OAM basis as shown in [95].

The Bell parameter S is given by:

S = E(θA, θB)− E(θA, θ
′
B) + E(θ′A, θB) + E(θ′A, θ

′
B), (5.7)
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where θ′ is a different orientation from θ, and E(θA, θB) is calculated from the measured

Figure 5.6: (a) The hologram on SLM A was oriented at four different angles: 0 rad (blue
curve), π/8 rad (yellow curve), π/4 rad (green curve) and 3π/8 rad (red curve). The typical
sinusoidal Bell curve was measured with the obstruction placed in the propagation path at 45
mm from the crystal. Examples of the binary Bessel holograms (| ± 2〉) used to perform a
CHSH-inequality experiment are shown in the insets. (b) Normalized coincidence count rate
as a function of the orientation of the hologram on SLM B.

coincidence counts at particular orientation. Bell’s inequality is violated when |S| > 2. This

bell-type inequality measurement was performed on the reconstructed state, where the

obstruction was located at 45 mm from the crystal for quantum correlations. This was

achieved by encoding the SLMs with superposition states of OAM and rotating them to

record the coincidence count rates. These recorded coincidence counts were used to calculate

the CHSH-Bell parameter S = 2.78± 0.04, which is not far-off from the unobstructed value of

S = 2.79± 0.03; and shows a clear violation of the CHSH-Bell inequality as expected in

quantum correlations. The statistical state of a quantum system such as the purity of the

entangled state and the degree of entanglement, as well as the probability of finding the

entangled pairs of photons in a particular quantum state; is described by the density matrix

obtained by performing a state tomography on the system. This is achieved by determining

the 2-dimensional density matrix:

ρ =
1

4
σ0 ⊗ σ0 + Σmnρmnσm ⊗ σn, (5.8)
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where σk represents the Pauli matrices for k = 0, 1, 2, 3, 4. In matrix form , the qubit density

matrix can be written as:

ρ =




a11 a12e
iφ12 a13e

iφ13 a14e
iφ14

a12e
iφ12 a22 a23e

iφ23 a24e
iφ24

a13e
iφ13 a22e

iφ22 a33 a34e
iφ34

a14e
iφ14 a24e

iφ24 a34e
iφ34 a44



. (5.9)

The phase and amplitude of the density matrix elements are denoted as φij and aij

Figure 5.7: Reconstructed density matrices for dimensions d = 2, and d = 4 from full-state
tomography measurements. Real and imaginary parts of the reconstructed density matrices
for (a) and (b) no obstruction, (c) and (d) obstruction at 5 mm from the crystal, (e) and (f)
obstruction at 45 mm from crystal.

respectively. The diagonal entries give the probability of detecting one photon in state |`〉 and

the other in state |−`〉. The purity of these states is defined by linear entropy given by the

trace of the density matrix SL = 4
3

(1− Tr(ρ2)), when the trace is equal to zero then the

system is a pure entangled state. The eigenvalues (λ) of the hermitian matrix R ≡
√√

ρρ̃
√
ρ

can be used to evaluate the degree of entanglement denoted as concurrence

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), for maximally entangled states the concurrence is one. In

our case the density matrix from the reconstructed matrices of dimensions d = 2 for |` = ±2〉

in Fig. 5.7 (a,c,e), and d = 4 for |` = −2,−1, 1, 2〉 in Fig. 5.7 (b,d,f) were calculated.

There is a significant change in the density matrices when the obstruction is placed close to

50



the crystal, such that the shadow region fall onto it, soon after the minimum self-healing

distance, the density matrix takes its unobstructed form as seen in the results.

5.5 OAM imaging

The illustration of quantum correlations between the OAM entangled photon pairs have been

since achieved through ghost imaging, which was first observed more than 10 years ago by

Pittman et al. [108]. In ghost imaging an object is placed at the signal beam, and the mobile

detector at the idler beam. This mobile detector scans through the transverse plane of the

idler beam to give coincidence counting rates, by combining information from two photon

detectors; a single pixel (bucket) scanning detector with no spatial resolution, and a

multi-pixel detector. An amplitude image of the object is observed [108,109] as seen in Fig.

5.8. Holography has been recently used to enhance the contrast of the images within the a

Figure 5.8: The ghost imaging setup using ”The Sharks” aperture in the signal arm, and
a scanning detector in the idler arm resulting in coincidence counts that give ”The Sharks”
image.

ghost imaging system [110], however there are uncertainties whether ghost imaging is solely a

quantum phenomenon [111,112], but this is not our interest of study. We show that we can,

using digital holography, recover not only the phase, but also the amplitude of the object

simultaneously. This is possible by using the spiral ring-slit hologram that varies radially and
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azimuthally in the idler beam, provided that the object is symmetric and has an azimuthal

component.

5.5.1 Concept

The task was to find a tool that can be used not only to give the amplitude of the object in

arm A, but also to recover the phase of the object by correlating the detected signals from

both arms. We know that for an arbitrary field u(r, θ) on a transverse plane that does not

have global azimuthal modes, but localized points (vortices) in the field that possesses

azimuthal components, we can extract these localized azimuthal components, by restricting

the azimuthal mode to a set of radial coordinates as shown in Fig. 5.9 (a), with r -dependent

coefficients. We can describe the full field distribution [17] as:

u(r, θ) =
∑

a`(r) exp(i`θ), (5.10)

where a`(r) is the r dependent coefficient, ` is the azimuthal index. We add an amplitude

mask in Fig. 5.9 (b) which is simply an array of pixels that varies from 0 to pi, to this

azimuthal ring, so that not only can we resolve the phase but also the amplitude of the

generated field. The azimuthal ring in Fig. 5.9 (c) of thickness M selects the OAM state of

light acting as a phase filter and the checker board as an amplitude filter.

Figure 5.9: (a) Azimuthal ring restricting the azimuthal mode to a radial coordinate, (b)
amplitude mask added to the restricted azimuthal mode, to yield (c) the spiral ring-slit of a
particular thickness.
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5.5.2 Experimental methodology and results

The same setup as in Fig.5.2 was used to conduct this experiment, but with no obstruction,

and the same alignment procedure using back projection method was implemented. The

following results were obtained in both the projected and down-converted mode. SLM A was

encoded with the object hologram and SLM B was encoded with the spiral ring-slit of

thickness D=0.08 mm scanning through the photons in the radial and azimuthal directions.

Back-projection results

The images of the generated object from SLM A, were recorded by placing a mirror before

SLM B and a CCD camera at the plane of SLM B. During this back-projection mode SLM A

was addressed with an azimuthal index of `=-1 fork hologram generating an LG mode shown

as an insert in Fig. 5.10(a) with its corresponding cross-sectional intensity profile. On SLM B

we encoded a spiral ring-slit of `=+1 and varied it radially and recorded the single count

rates at detector B as a function of the radial position. Fig. 5.10 (b) shows this recorded

Figure 5.10: LG of `=1 (a) intensity profile generated in SLM A, obtained from the cross-section
of CCD image on insert, the corresponding (b) back-projected coincidence counts profile, with
its image reconstructed from the counts.

count rate and it is clear that we recover the profile of an LG mode with its reconstructed

field distribution shown in the insert. We then performed a similar experiment, but this time

changed the object hologram on SLM A, by encoding a hologram with four different

azimuthal indices each at different radii as in Fig. 5.11 (a). That is, the `=0 in Fig. 5.11 (b)

mode was encoded with an inner radius of 0 mm and an outer radius of 0.08 mm, while `=5

Fig. 5.11 (c) was encoded with an inner radius of 0.08 mm and outer radius of 0.16 mm.

Similarly `=3 Fig. 5.11 (d) mode existed between rin=0.16 mm to rout=0.24 mm, and `=1
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Fig. 5.11 (e) existed between rin=0.24 mm to rout=0.32 mm. On SLM B we varied the

azimuthal and radial components of the spiral ring-slit, that resulted in coincidence counts of

recovered phase and amplitude of the azimuthal rings of light in Fig. 5.11(f).

Figure 5.11: (a) The reconstructed digital holograms, from back projected counts of (b) `=0,
(c) `=5, (d) `=3, and (e) `=1. (f) The reconstructed field of the rings of light.

Down-converted results

The setup in Fig. 5.2, was set to down converted mode generating entangled photon pairs

that were projected into first the LG basis and then the BG basis, by encoding SLM A with

appropriate holograms, the fork hologram and binary axicon [97], respectively. The measured

Figure 5.12: (a) Radial profile of LG of `=3, from the CCD image, (b) its down-converted counts
radial profile. (c) BG mode of `=3 radial profile from CCD image,(d) its down-converted counts
radial profile.
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Figure 5.13: The superposition of LG of (a) `=2 and (b) ` = -1 reconstructed down-converted
counts images, similarly those of BG of (d) ` = -1 and (e) ` =2, resulting into a petal structures
(c) and (f) respectively. The CCD images of these modes are shown in the inserts.

coincidence counts were plotted as a function of the radial position of the hologram on SLM

B, and we successfully recovered the phase and amplitude of these angular harmonics as

illustrated in Fig. 5.12.

Since these modes form a complete basis set we can generate their superposition by simply

summing their transmission functions together, which can be implemented through digital

holography [53]. We generated superposition of these modes in SLM A, and by varying the

spiral ring-slit we detected the down-converted counts simultaneously recovering the phase

and amplitude of these fields. The recovered fields were correlated with the CCD images in

the insert of Fig. 5.13, to yield a correlation value of ≈ 0.9.

5.6 Summary

We have further explored the properties of BG modes in OAM quantum entanglement, where

we have shown that the BG modes not only produce a wider spectrum in entanglement as

reported previously; but they can also reconstruct entanglement after encountering an

obstruction. Using one of our BG generation hologram, the spiral ring-slit, and the modal

decomposition technique, we have successfully shown that we can simultaneously recover the

phase and amplitude of any arbitrary field that forms a complete basis set, in a ghost imaging

setup using a digital spiral ring-slit. This is a unique technique as it differs from the

traditional ghost imaging that requires a scanning detector to only recover the amplitude of

the field.
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Chapter 6

Future Work

6.1 Conclusion

In chapter1 we have shown how the Maxwell’s wave equation results in the Helmholtz scalar

equation through the separation of variables of the electric field. We showed how the

Gaussian mode forms part of the solution to the Helmholtz scalar equation for a plane wave

modulated by a complex amplitude, were we also studied the propagation properties of the

Gaussian field. This Gaussian function describes the intensity distribution of the output laser

beam of commercial lasers. We have also indicated that the cylindrical solution to the

equation results in the LG function that has an azimuthal dependence that gives rise to the

OAM the LG beams carry, this OAM has opened room for various applications, such as in

optical communication.

We then introduced a diffraction free solution to the Helmholtz equation in Chapter 2, known

as the BG beams, and we outlined their propagation properties such as their diffraction-free

and self-healing properties. We also investigated the tools that can be used to generate these

BG beams such as conical lens, which is very sensitive to alignment and only suitable to

generate a zeroth order BG beam of a particular ring spacing. Using a SLM we have shown

that we can create digital axicons, by defining the transmission functions of the diffractive

optic we wish to replace, to generate any desired BG and vortex modes. This was achieved by

simply reflecting the Gaussian beam off the SLM encoded with an appropriate transmission

function hologram, and observing the generated output field at screen.

Not only did we successfully illustrated the generation of the BG modes, we have presented a
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versatile technique to experimentally realize the detection of Bessel beams using digital

axicons programmed on a SLM in Chapter 3. We have shown the ability to distinguish both

the radial and azimuthal indices of such beams, a core requirement for optical communication

protocols. In addition we have considered two possible applications for our detection tool and

where it was used to observe the modal changes to an incoming Bessel beam due to both

amplitude and phase perturbations resulting from an opaque obstacle and Kolmogorov

turbulence, respectively. The ability to modally resolve such fields will find uses in both

quantum and classical studies.

We then added another degree of freedom to these BG beams by generating CV BG beams in

Chapter 4, where the generation tools that we have outlined in the previous chapters were

used and as a result, we successfully transformed scalar BG beams into vector BG beams by

adding a q-plate into our optical system. Using a polarization grating we were able to

separate our modes into two polarization states and with azimuthal decomposition technique

we were able to extract the amount of OAM carried by these vector BG beams.

The self-healing property of the BG beams is not only useful in a classical system, where it is

important for the simultaneous manipulation of micro-particles. In chapter 5 we have shown

that this property of BG beams is important for the recovery of OAM entanglement after

encountering an obstruction. We compared it with the LG modes and as it turns out the BG

modes not only provide a broad spectrum for quantum experiments, but also recovers OAM

entanglement. The spiral ring-slit that is used to generate the BG beams at the far-field has

shown to be useful in single pixel imaging at the single photon level. This shows that our tools

of creating these modes are versatile and they can be incorporated for a different applications.

6.2 Future work

Optical networks form a foundation of modern communications networks since the

replacement of copper wires with optical fibres in the 1980s. This fibre technology has been

based on single mode fibres (SMF), and due to the increasing demand in data transmission by

a factor of approximately 10 every four years [38] as a result of the digital world we live in,

the available capacity of the SMF will be limited in the near future. This limit in capacity is

based on the Shannon capacity for non-linear fibre channels [38], where the SMF cannot carry
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more than 100 Tbits s−1 of data. Optical transmission through SMF has been achieved

through other optical properties of light, the dimension that has not yet been explored to

transmit data is space.

Spatial modes such as the Laguerre-Gauss (LG) modes [20], have been studied as potential

solutions to increase the bandwidth for optical communication through the process of mode

division multiplexing (MDM) [13,15,16], which is based on using the LG modes as

independent information carriers through SMFs, as they carry orbital angular momentum

(OAM) [4] which is an unbounded degree of freedom. As we have shown that the generation

tools of the helical modes that we have introduced can be used to detect any complete and

orthogonal basis, for instance we can use fork diffraction grating for the azimuthal detection

of the vector BG beams and that we can use the spiral ring-slit that we have used to generate

the BG beams for single pixel imaging of LG basis and the azimuthally varying rings. For

future studies we would like to characterize optical fibres for SDM, so that we can couple these

LG modes into the fibre and implement our detection methods to extract the information

carried by these modes. Our investigation is based on whether we efficiently multiplex and

couple these modes into a fibre, and also demultiplex them using the methods that we have

implemented and presented in our free-space optical communication experiments.
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Chapter 7

Appendices

7.1 Appendix A

7.1.1 matlab codes

Digital axicon

1 %func t i on b = Besse lJ ( kr , l )

2 %c l c ;

3 %c l e a r a l l ;

4 %c l o s e a l l ;

5 N=1080;

6 M=1920;

7

8 SLM bin = ze ro s (N,M) ;

9 l =1;

10 %lamda = 532∗10ˆ−9;

11 kr= 0 . 2 5 ;

12 f o r n = 1 : N

13 f o r m = 1 : M

14 SLM bin (n ,m) = mod( kr∗ s q r t ( ( n−N/2) ˆ2+(m−M/2) ˆ2) + l ∗( atan2 ( (

n−N/2) , (m−M/2) ) ) ,2∗ pi ) ;

15 end
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16 end

17

18 imwrite (mod( SLM bin ,2∗ pi ) . /max(mod( SLM bin ( : ) ,2∗ pi ) ) , ’C:\ Users\

tmhlanga\Desktop\ l ongrange Bbeam\L rho . 2 5 .bmp ’ , ’bmp ’ ) ;

19

20

21 %2∗ pi ∗

22 %b = mod( SLM bin ,2∗ pi ) /(2∗ pi ) ;

1 c l c ;

2 c l e a r a l l ;

3 c l o s e a l l ;

4 N = 1080 ;

5 M = 960 ; %h a l f width o f SLM

6

7 check = ze ro s (N,M) ;

8 SLM bin = ze ro s (N,M) ;

9 L1=4;

10

11 f o r n=1:N

12 f o r m=1:M

13 n1=f l o o r (n/7) ;

14 m1=f l o o r (m/7) ;

15 i f mod( n1+m1, 2 )==0

16 check (n ,m)=pi ;

17 e l s e

18 check (n ,m) =0;

19 end

20 end

21 end

22
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23 rmin = round (280) ;

24 rmax = round (300) ;

25 f o r n = 1 : N

26 f o r m = 1 : M

27 r (n ,m) = s q r t ( (m−M/2) ˆ2+(n−N/2) ˆ2) ;

28 i f r (n ,m)<= rmax & r (n ,m)>= rmin ;

29 bin check (n ,m) = mod(L1∗( atan2 ( ( n−N/2) , (m−M/2) ) ) ,2∗ pi ) ;

30 %bin check (n ,m)=2∗pi ; % When L1=0 use t h i s command

in s t ead

31 e l s e

32 bin check (n ,m) = check (n ,m) ;

33 end

34 end

35 end

36

37 %imwrite (mod( bin check ,2∗ pi ) . /max(mod( b in check ( : ) ,2∗ pi ) ) , ’ 4 rad iu s

200−220 p i x e l s . bmp’ , ’bmp’ ) ;

38

39 %image ( ( abs ( f f t s h i f t (IMG) ) ) ∗10) ;

40 image ( b in check (n ,m) ) ;

41 %imwrite ( b in check . /max( b in check ( : ) ) , ’ 0 rad iu s 300−320 p i x e l s . bmp

’ , ’bmp’ ) ; % When L1=0 use t h i s

42 command ins t eada

Spiral ring-slit

1 c l c ;

2 c l e a r a l l ;

3 c l o s e a l l ;

4 N = 1080 ;

5 M = 960 ; %h a l f width o f SLM

6
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7 check = ze ro s (N,M) ;

8 SLM bin = ze ro s (N,M) ;

9 L1=4;

10

11 f o r n=1:N

12 f o r m=1:M

13 n1=f l o o r (n/7) ;

14 m1=f l o o r (m/7) ;

15 i f mod( n1+m1, 2 )==0

16 check (n ,m)=pi ;

17 e l s e

18 check (n ,m) =0;

19 end

20 end

21 end

22

23 rmin = round (280) ;

24 rmax = round (300) ;

25 f o r n = 1 : N

26 f o r m = 1 : M

27 r (n ,m) = s q r t ( (m−M/2) ˆ2+(n−N/2) ˆ2) ;

28 i f r (n ,m)<= rmax & r (n ,m)>= rmin ;

29 bin check (n ,m) = mod(L1∗( atan2 ( ( n−N/2) , (m−M/2) ) ) ,2∗ pi ) ;

30 %bin check (n ,m)=2∗pi ; % When L1=0 use t h i s command

in s t ead

31 e l s e

32 bin check (n ,m) = check (n ,m) ;

33 end

34 end

35 end
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36

37 %imwrite (mod( bin check ,2∗ pi ) . /max(mod( b in check ( : ) ,2∗ pi ) ) , ’ 4 rad iu s

200−220 p i x e l s . bmp’ , ’bmp’ ) ;

38

39 %image ( ( abs ( f f t s h i f t (IMG) ) ) ∗10) ;

40 image ( b in check (n ,m) ) ;

41 %imwrite ( b in check . /max( b in check ( : ) ) , ’ 0 rad iu s 300−320 p i x e l s . bmp

’ , ’bmp’ ) ; % When L1=0 use t h i s

42 command ins t eada

74
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Abstract: We propose a simple method for the detection of Bessel beams
with arbitrary radial and azimuthal indices, and then demonstrate it in an
all-digital setup with a spatial light modulator. We confirmthat the fidelity
of the detection method is very high, with modal cross-talk below 5%, even
for high orbital angular momentum carrying fields with long propagation
ranges. To illustrate the versatility of the approach we useit to observe the
modal spectrum changes during the self-reconstruction process of Bessel
beams after encountering an obstruction, as well as to characterize modal
distortions of Bessel beams propagating through atmospheric turbulence.
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1. Introduction

Since their discovery in 1987 by Durnin [1,2], Bessel beams have been extensively studied due
to their nominally non-diffracting behaviour and their ability to self-reconstruct after encoun-
tering an obstruction [3–5] . These beams are characterizedby a radial wave vector (kr) and
azimuthal index (ℓ), which results from their helical wave front structure. Asa result Bessel
beams carry orbital angular momentum (OAM), even down to thesingle photon level [6–8].
However an ideal Bessel beam requires an infinite amount of energy; this beam is practically
approximated in a finite region by Bessel Gaussian (BG) Beams[9]. Such beams have been gen-
erated using annular ring-slits in the far field [2,10], axicons in the near field [11,12], as well as
the digital equivalent of both [13–16]. These beams have been further explored by generating
their superpositions [17], and converting them into vectorBG beams [18]. An emerging area
of research is optical communication with the spatial modesof light, where Bessel beams are
also mooted to play a role, yet very little work has been done on the topic of two-dimensional
detection of such modes [19–21].

In this paper we demonstrate the detection of Bessel beams bya simple scheme comprising
only a helical axicon and a lens. We outline the concept, illustrate how it may be implemented
optically and then demonstrate it with digitally encoded phase-only holograms. We apply the
tool to the self-healing process of Bessel beams after an obstruction as well as to Bessel beams
propagating through turbulence, and observe the changing radial and azimuthal spectrums for
the first time. Our results will be relevant to future studiesin optical communication with Bessel
beams. Such fields are interesting for communication purposes since they carry OAM over
extended distances in a nominally non-diffracting manner,and hence may be advantageous for
signal delivery to distance receivers.



2. Theoretical background

2.1. Bessel-Gaussian modes

The Bessel-Gaussian (BG) modes [9] in polar coordinates, are given by

EBG
ℓ (r,Φ,z) =

√
2
π

Jℓ

(
zRkrr

zR − iz

)
exp(iℓΦ− ikzz)exp

(
ik2

r zw2
0−2kr2

4(zR − iz)

)
, (1)

whereℓ is the azimuthal index (a signed integer), Jℓ(·) is the Bessel function of orderℓ; kr and
kz are the radial and longitudinal wave numbers. The initial radius of the Gaussian profile isw0

and the Rayleigh range iszR = πw2
0/λ . The propagation constantk and the parameterskr andkz

are related byk2 = k2
r + k2

z . While BG modes are nominally non-diffracting, they nevertheless
have a finite propagation distance when generated in the laboratory, given by

zmax =
w0λ
2πkr

. (2)

Bessel beams also exhibit reconstruction of the amplitude and phase of the beam after en-
countering an obstruction [22, 23]. For such beams, there isa minimum distance behind an
obstacle of radiusRobs before reconstruction occurs. This distance represents the shadow re-
gion which is given by

zmin =
2πRobs

krλ
. (3)

The BG modes form a complete orthonormal basis in terms of which an arbitrary paraxial
laser beam may be expanded. In the case of Bessel beams we notethat there are two indices
used to describe the field: the discrete parameter,ℓ, and the continuous parameterkr. The former
determines the helicity of the wavefronts and is related to the OAM content of the field, while
the latter determines the spacing of the intensity rings observed in Bessel beams.

2.2. Concept

The task is to find the modal content of the field for all values of ℓ and kr, which we will
show can be achieved with a simple optical set-up comprisinga lens and a digital hologram
encoded to represent an axicon. Recall that a Gaussian beam illuminating an axicon produces
a BG beam as the output. From the reciprocity of light the reverse process must convert a BG
beam back into a Gaussian beam. Herein lies the possibility of detecting particular BG modes,
since Gaussian modes may readily be detected by single mode fibers. The concept is shown
schematically in Fig. 1. Consider first a ray-based analysisfollowing a heuristic argument: an
incoming Gaussian mode is converted by the first axicon to a BGmode of radial wavevector
kr = k(n−1)γ, wheren is the refractive index of the axicon andγ is the axicon cone angle. This
results in conical refraction at an angleθ = (n−1)γ = kr/k. If this BG mode passes through an
identical (reversed) axicon, then the refracted rays are collimated, or equivalently, the Gaussian
mode is generated again. If, on the other hand, the cone angleof the second axicon does not
match the cone angle of the incoming BG beam, then the outgoing rays will not be perfectly
corrected and equivalently a pure Gaussian mode will not be formed. This detection is therefore
kr specific and is reminiscent of a conventional lens telescopebut with conical axicons rather
than spherical lens. With the addition of a spiral plate withtransmission function exp(iℓφ) the
detection method becomes specific to the BG orderℓ as well.

This heuristic argument made more concrete by considering the problem from a physical
optics perspective and employing digital holograms for thedetection. The detection hologram
may be written as

tSLM = exp(ik̃rr− iℓφ), (4)



Fig. 1. A diagram illustrating the generation and the detection of Bessel-Gaussian beams.
(a) The BG beam is generated using a programmed hologram of anaxicon, illuminating by
a Gaussian beam, and exists in a finite region,zmax. An obstacle placed in the center of the
BG region obstructed the generated beam for a minimum distance,zmin, after which the BG
mode reconstructs. (b-e) experimental beam images of a Bessel beam of orderℓ= 1 at four
different positions. (f) The BG beam is detected at the far field of a programmed hologram
of a second axicon.

where the first term represents an axicon to detect a BG with a radial wavevector of̃kr and the
second term specifies the order,ℓ. Such a hologram is shown in Fig. 2 (a) and the BG mode that
it will detect in Figs. 2 (b) and (c). An inner product measurement is performed optically with
the same set-up by considering the signal at the origin of thefocal plane of the lens [24]. The
resulting signal can be calculated numerically from

gout = F
{

EBG
ℓ

}
⊗F {tSLM} , (5)

wheregout represents the field at the output plane (focal plane of the lens),F is the Fourier
transform,⊗ denotes the convolution process andEBG

ℓ is the incoming BG beam defined in (1).
The angular spectrum of a BG mode and the Fourier transform ofthe transmission function
both have the shape of an annular ring. Provided that the radii of these annular rings (which
represent thekr values of the modes) are equal, the convolution of these rings will produce a
bright spot with a Gaussian profile in the center of the outputplane, as shown in Fig. 2 (d). This
central peak is surrounded by a ring of twice the radius. If there is a mismatch in the respective

Fig. 2. Experimental images of (a) a digital hologram for thedetector of a BG mode with
ℓ = 3 and (b) a BG mode profile ofℓ = 3 and (c) its Fourier transform (annular ring). The
signal at the detector is shown for the scenarios of (d) matching kr andℓ and (e) matching
in ℓ but no matching inkr. The black and white insets show the theoretical results.

radii (kr values) the central spot will itself become a small ring witha low intensity in the
center, which will cause a negligible signal on the detector, as shown in Fig. 2 (e). To quantify
this we note that the width of the annular ring (F

{
EBG
ℓ

}
) is governed by the radius of the



Gaussian envelope of the BG mode. On the other hand, the widthof the ring due toF {tSLM} is
determined by the size of the SLM and is therefore much smaller than the corresponding width
for the BG mode. We’ll therefore assume that the ring for the axicon transmission function is
vanishingly thin. The convolution of the two rings producesa function consisting of two rings
with radii that are respectively equal to the sum and difference of the radii of the original rings.
Thus if the original radii were equal the convolution produces a central spot. Conversely, if
these original radii differ the intensity at the center of the output is given by exp[−(∆R/w0)

2],
where∆r is the difference between the original radii. For∆R > 1.5w0 the intensity at the center
is essentially zero and the corresponding functions are considered to be orthogonal. Likewise,
if the ℓ value of the BG mode is different from that of the transmission function of the SLM,
they won’t canceled during the convolution process. Such a mismatch inℓ values will cause
the central peak in the convolution to have a phase singularity in the center and thus a central
intensity null, which will produce a negligible signal on the detector. Hence the BG mode
detection method is sensitive to both radial (kr) and azimuthal (ℓ) indices.

3. Experimental Setup and Results

The experimental realization of the BG mode decomposition comprises of two parts: (1) the
generation of a BG beam with known parameters (modal profile)and (2) the detection of this
beam by modal analysis. This is accomplished by the optical system shown in Fig. 3, where the
created BG beam on SLM1 is assumed to be our “unknown” beam. A HeNe laser was expanded
with a 3× telescope and directed onto a spatial light modulator (SLM), denoted as SLM1, with
a beam width ofw0 = 1 mm. The SLM (Holoeye, PLUTO-VIS, 1920× 1080 pixels, with a
pixel pitch of 8µm) was calibrated for a 2π phase shift at a wavelength of 633 nm. SLM1 was
programmed with the conical phase of an axicon, plus a helical phase with an azimuthal index
ℓ ranging from -10 to 10.

Fig. 3. A schematic of the experimental setup for accomplishing the decomposition of a
Bessel field. The Lenses L1, L2, L3, L4 and L5 have focal lengthsf1 = 100 mm, f2 = 300
mm, f3 = 500 mm, f4 =500 mm andf5=150 mm, respectively. A is the filtering aperture.
SLM1 and SLM2 denote the two spatial light modulators and M represents a mirror. The
detector was a CCD camera.

The resulting image was filtered through the 4f imaging system, and propagated a distance
of zmax = 340 mm (forkr = 31250 rad/m) onto the detection SLM, denoted as SLM2, where the
transmission function was scanned through the spectrum ofℓ andkr values and the resulting
signal detected by a CCD camera placed after a Fourier transforming lens (L5).

A full modal decomposition was done inkr andℓ at the planez = zmax with the results shown



Fig. 4. (a) Bessel beam radial,kr, decomposition forℓ = 1. Units ofkr are rad/pixel. (b)
Bessel beam azimuthal,ℓ, decomposition forkr = 0.25 rad/pixel.

in Fig. 4 (a) and Fig. 4 (b). The uncertainty in detection of the orderℓ is clearly negligible while
that for the radial wavevector is approximately 5% (one std dev). It is clear that a wide range
of Bessel modes can be detected quickly and accurately with this scheme. Next, we illustrate
the versatility of our approach by applying it to two perturbation studies: the self-healing of
Bessel beams after an obstacle and the propagation of Besselbeams through turbulence. We
use our detection method to experimentally observe the change in modal spectrum during these
processes.

3.1. Bessel Reconstruction

A circular opague disk, with a radius ofRobs = 300µm, was used as the obstruction. The disk
was initially placed at34zmax for a BG ofkr = 0.25. The detection was done atz = 3

4zmax while
the disk was moved away from the detection plane until exceeding the self-healing distance of
zmin = 9.5 cm. The radial and azimuthal spectrum was measured before the obstruction and then
at various distances after the obstruction until the self-healing process completed. We observed
(see Fig. 5) minimal azimuthal distortion of the mode due to the obstruction, but significant
broadening of the radial modes. This broadening reduces as the beam self-heals, returning to
the initial spectrum after the self-healing distance. While the self-healing of Bessel beams has
been studied extensively before, this is the first time that the process has been observed using
modal analysis.

3.2. Bessel propagation through turbulence

Finally, we applied our tool to the study of Bessel beams propagating through turbulence, a
topic that has received much theoretical attention of late.We simulated atmospheric turbulence
using a diffractive plate encoded for Kolmogorov turbulence, which for the purposes of this
study we characterize by the Strehl ratio [25]. The turbulence plate was placed at1

2zmax and the
detector atz = zmax. Two turbulence strengths were used corresponding to Strehl ratios of SR =
0.2 and SR = 0.03, with the impact on the Bessel modes shown in Fig. 6. Without the plate the
results are identical to those shown earlier: narrowkr andℓ spectrums with little cross-talk, as
seen in Figs. 7 (a) and (b). At medium turbulence levels (SR = 0.2), thekr spectrum broadens
and so does the OAM spectrum [Figs. 7 (a) and (c)], becoming wider [Figs. 7 (a) and (d)] as the
turbulence becomes very strong (SR = 0.03). These results are consistent with that predicted by
theory [26,27], and serves to illustrate the versatility ofthe tool.



Fig. 5. (a) Azimuthal decomposition (ℓ detection) of the fully obstructed beam and (b)kr

decomposition without an obstruction and then at three planes with the obstruction.

Fig. 6. Images of a Bessel-Gaussian mode profile forℓ = 1 (a) without turbulence, after
passing a turbulence of (b) SR=0.2 and (c) SR=0.03.

Fig. 7. (a)kr = 0.25 rad/pixel decomposition for different strehl ratio’s. (b) ℓ decompo-
sition spectrum without turbulence. (c) and (d)ℓ decomposition spectrum for SR=0.2 and
SR=0.03, respectively.



4. Conclusion

We have presented a versatile technique to experimentally realize the detection of Bessel beams
using digital axicons programmed on a spatial light modulator. We have shown the ability to
distinguish both the radial and azimuthal indices of such beams, a core requirement for optical
communication protocols if the bit rate per photon is to be increased by exploiting all the
degrees of freedom of spatial modes. In addition we have considered two applications of the
tool and observed the modal changes to an incoming Bessel beam due to both amplitude and
phase perturbations resulting from an opaque obstacle and aturbulence plate, respectively. The
ability to modally resolve such fields will find uses in both quantum and classical studies.
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Q
uantum entanglement in the orbital angular momentum
(OAM) modes of photons has been topical of
late, promising to offer access to high-dimensional

Hilbert spaces1. It was shown that beams with an azimuthal
phase dependence exp(icf) carry an OAM of c�h per photon,
where the azimuthal index c can assume any integer value2.
Laguerre–Gaussian (LG) modes are examples of such beams and
are commonly used to exploit the OAM property of light3,4. As
such, the LG modes were first used to demonstrate OAM
entanglement5. However, a variety of bases may also be used to
demonstrate OAM entanglement, including Ince–Gaussian6,
Bessel–Gaussian (BG)7,8 as well as mutually unbiased bases
derived from these sets9,10. The OAM modal basis defines an
infinite-dimensional Hilbert space, allowing access to high-
dimensional entanglement11. An increase in dimension leads to
improved security in quantum key distribution as well as
increased information capacity in quantum communication
protocols12,13.

Unfortunately, while photons are weakly interacting, their
entanglement is nevertheless fragile to the environment14. There
have been a number of efforts in mitigating the decoherence in
quantum computers and information processes based on ion
traps, nuclear magnetic resonance and hyper-entanglement15–17.
There have also been theoretical suggestions to recover lost
entanglement18; however, it is yet to be demonstrated
experimentally. In the context of OAM modes, the decay of
entanglement has been both predicted19 and measured20 for
atmospheric turbulence as an environment, with some success in
diminishing these effects21–23.

Here we investigate the ability of OAM modes to recover the
measured degree of entanglement of the quantum state after
encountering an obstruction. It is well known that BG beams
have the ability to self-heal after encountering an obstruction24,25.
An obstruction placed in the path of one of the down-converted
photons introduces an optical loss such that the OAM
entanglement, as witnessed by the Clauser Horne Shimony Holt
(CHSH) inequality, is obscured. We then show that by measuring
in the BG basis the classical self-healing of the Bessel profile gives
a higher signal and the OAM entanglement is once again
revealed. We demonstrate a dependence of the calculated
concurrence of the quantum state on the location of the
obstruction within the propagation path, and find that this is in

agreement with the classical self-healing distance of BG beams.
We thus find that even when applied to single photons this self-
healing property of the Bessel beam allows us to overcome the
losses associated with the obstruction such that the spatial
correlations can be measured with sufficient fidelity to reveal the
quantum entanglement of the photon pairs.

Results
Bessel beams. Bessel beams represent a class of nominally pro-
pagation-invariant solutions to the Helmholtz equation26 and
have been extensively investigated to date27. A laboratory
approximation to these fields, BG beams, has similar properties
over finite distances28, including their ability to reconstruct both
in amplitude and phase after encountering an obstruction24,25.
Although this property has been studied using classical light and
single photons29, it may also be applicable in quantum processes.

Higher-order Bessel and BG beams have helical wavefronts and
carry OAM30. Entanglement of the OAM modes in the BG basis
has been shown to offer a wider spiral spectrum as compared with
the LG basis7.

A BG beam is a superposition of plane waves with wave vectors
that lie on a cone28. The electric field of a scalar BG mode of
order c is given by

EBG
‘ ðr;f; zÞ ¼

ffiffiffi
2
p

r
J‘

zRkrr
zR� iz

� �
expði‘f� ikzzÞ

�exp
ik2

r zw2
0� 2kr2

4ðzR � izÞ

� �
;

ð1Þ

where c is the azimuthal (mode) index (a signed integer); Jc( � ) is
the Bessel function of the first kind; kr and kz are the radial and
longitudinal wave vectors, respectively. The initial radius of the
Gaussian profile is w0 and the Rayleigh range is zR¼pw2

0/l,
where l is the wavelength of the BG mode. A BG beam has a
finite propagation distance, zmax, over which it is said to be
nominally non-diffracting27, shown as the shaded diamond-like
region in Fig. 1. In this region the incoming plane waves are
refracted through an axicon (conical lens) and interfere to form
the BG beam. The resulting wave vectors lie on a cone of angle
y¼ arcsin(kr/k). Using simple geometric arguments, the
maximum propagation distance is defined as zmax¼ 2pw0/lkr,
where sin(y)Ey for small y. If an obstruction of radius R is

2 3 4 5

1

kr

kz

k

Zmin

�

Zmax

Figure 1 | Self-healing property of BG beams. The BG beam is generated using a computer-generated hologram of an axicon (yellow triangle) and

exists in a finite region, zmax (pink diamond). An obstacle placed in the centre of the BG region (black rectangle) obstructs the beam for a minimum

distance, zmin (grey triangle), after which the BG field reforms. The insets display the expected image of the beam at four different planes.
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placed in the BG field, a shadow region is formed (see Fig. 1).
However, those plane waves that bypass the obstruction will again
interfere to form a BG beam24,25. The distance after which the
field will recover is given by

zmin �
R
y
� 2pR

krl
; ð2Þ

and is determined from purely geometric arguments31. The insets
in Fig. 1 show the effect of an obstruction on the expected BG
field at different planes.

We generate BG modes by encoding a phase-only hologram
onto a spatial light modulator (SLM)32,33. The transmission
function of this hologram is written as

Tðr;fÞ ¼ sign J‘ðkrrÞf gexpði‘fÞ; ð3Þ

where sign{ � } denotes the sign function. In the following
experimental results, we generated a BG mode with
kr¼ 30 rad mm� 1.

Our experimental setup, shown in Fig. 2, consisted of a type-I
crystal used to produce collinear, degenerate entangled pairs of
photons via spontaneous parametric down-conversion (SPDC).
A glass plate with a circular obstruction with a 200-mm radius was
placed after the crystal in the path of the down-converted light
and mounted on a z-axis translation stage. The plane of the
crystal was imaged with a � 2 magnification onto two separate
SLMs, where the state into which the photon was projected is
defined. Each SLM plane was then imaged with a � 250
demagnification to the input of a single-mode fibre (SMF), which
only allows the propagation of the fundamental mode. The SMFs
were attached to avalanche photodiodes (APDs), which were in
turn connected to a coincidence counter.

Setup. The experimental setup in Fig. 2 was first aligned in back-
projection mode, where a classical laser source was connected to
one of the SMFs to allow light to propagate through the system in
reverse. Klyshko’s advanced-wave representation considered the
field detected in arm A as propagating in reverse back to the
crystal plane, where it reflects off the crystal to propagate forward
through the system to detector B34. This method has been shown
to be useful in examining the conditional probability distribution
of the coincidence count rate8. We implemented this concept
experimentally by disconnecting fibre A from one of the APDs
and reconnecting it to a continuous light source at l¼ 710 nm.
The classical light was directed onto SLM A and imaged to the
crystal plane via lenses L1 and L2. Images of the obstruction were
recorded by placing a mirror between the crystal and obstruction
and a CCD camera at the plane of the crystal. Classical images of
the self-healing property are shown in Fig. 3 for both the BG
(Fig. 3a–d) and LG (Fig. 3e–h) modes, where the unobstructed BG
and LG modes are shown in (a) and (e), respectively. We
calculated the maximum propagation distance of the BG field as
zmax¼ 169.6 mm. The obstruction was first placed at the plane of
the crystal, which is clearly shown in both (b) and (f). It was then
moved 20 mm away from the crystal plane, shown in (c) and (g).
The final images, (d) and (h), were taken 50 mm away from the
crystal. It is clear that the BG mode has reformed at 50 mm, while
the LG mode has not resumed its original structure. In a typical
self-healing experiment25, the obstruction is placed at a fixed
position in the path of the beam and the CCD camera is moved
such that the subsequent planes behind the obstruction can be
imaged. However, an identical effect is seen if the CCD camera
remains fixed, imaging one particular plane, and the obstruction is
moved away from that plane. This is illustrated in Fig. 4, where we
consider back-projected light directed from the SLM to the crystal.
The obstruction is moved away from the crystal towards lens L1.
As the obstruction moves, the shadow region falling on the crystal
becomes less significant until finally it no longer falls on the crystal
and the recovered mode is observed as shown in Fig. 3d.

From equation (2), we calculated a minimum self-healing
distance of B29 mm for R¼ 200mm and kr¼ 30 rad mm� 1.
After a distance, the obstructed BG mode demonstrated a
restored structure, while the LG mode showed no self-healing.
The BG field reconstructed after zmin as expected.

The setup was then returned to the down-conversion mode
(both SMFs were connected to their respective detectors) to
investigate the effects of the obstruction on two-photon quantum
correlations. As OAM is conserved in SPDC5, we chose to first
project the signal and idler photons into the |c¼±2S basis
elements, respectively. The coincidence count rate of this BG
state, unobstructed, was measured to be B140 s� 1. The
obstruction was initially inserted 5 mm after the b-barium
borate (BBO) crystal, the closest it could be placed owing to the
size of the crystal housing, and moved in subsequent intervals of
5 mm away from the crystal. Slight adjustments were made to the
position of the obstruction until a minimum count rate was
measured, causing the coincidence levels to be reduced to
background levels. At each position coincidences were recorded;
a comparison of the coincidence count rates for the BG and LG
modes is shown in Fig. 5. The count rate for the BG mode
increased significantly after a distance of 25 mm, which is
consistent with our calculation of zmin¼ 29 mm. Conversely, the
count rates for the LG mode showed no measurable change with
distance, illustrating the unique self-healing property of BG
modes. The coincidence count rate of the BG mode was not
restored to the original, unobstructed rate, as there is a loss due to
the obstacle. This is also consistent with the classical scenario
where the self-healed BG beam has proportionally less energy
after the obstacle than before.

400 μm
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IF

CCD

Down-converted light Obstruction

SLM A
355 nm

laser
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M3
M4
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Figure 2 | Experimental setup. The setup shown was used to measure the

effect of an obstruction in the path of the down-converted light. (a) An

ultraviolet laser source pumped a type-I BBO crystal to produce pairs of

entangled photons via SPDC. The crystal plane was imaged onto two

separate SLMs using lenses L1 (f1¼ 200 mm) and L2 (f2¼400 mm). Each

SLM plane was again imaged to the input of an SMF using lenses L3

(f3¼ 500 mm) and L4 (f4¼ 2 mm). (b) The down-converted beam at the

plane of the crystal. (c) A circular obstruction (radius¼ 200mm) was

placed between the crystal and lens L1, in the path of the down-converted

light.
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Measuring the degree of entanglement. The recovery of the BG
coincidence count rate does not in itself give an indication of the
effects the obstruction has on the degree of entanglement of the
state. To investigate the measured degree of entanglement, we
first performed a Bell-type inequality experiment on the reformed
state with the obstruction located 45 mm from the crystal to test
for quantum correlations. The superposition of OAM states, also
known as sector states, for |c¼±2S subspace were rotated on
each SLM35 and the corresponding coincidence count rates were
recorded, shown in Fig. 6a.

From the count rates we calculated the CHSH-Bell parameter
to be S¼ 2.78±0.04, which is a clear violation of the CHSH-Bell
inequality36. This value of S can be compared with the
unobstructed value of S¼ 2.79±0.03. The low coincidence
count rate recorded when the obstruction was 5 mm from the
crystal resulted in a low-contrast Bell curve, from which the S
parameter could not be calculated. This prompted us to perform a
full-state tomography experiment37 to determine the degree of
entanglement of the state. Figure 7 shows the real and imaginary
parts of the reconstructed density matrices for dimensions d¼ 2
for |c¼±2S and d¼ 4 for |c¼ {� 2, � 1, 1, 2}S. The
unobstructed density matrices for d¼ 2 and d¼ 4 are shown in
Fig. 7a,d, respectively. When the obstruction is placed near the

crystal, the density matrices in both cases change significantly
such that the inner dominant probabilities are reduced and the
outer terms become non-zero, Fig. 7b,e. However, once the
obstruction is moved beyond the zmin distance, both density
matrices return to their original form (Fig. 7c,f).

From the density matrices, the concurrence of the state was
calculated. Concurrence is a measure of entanglement, with a
range from 0 (no entanglement) to 1 (maximally entangled)38.
The concurrence can only be calculated for two-dimensional
subspaces, so we considered two different OAM subspaces,
|c¼±2S and |c¼±4S, to demonstrate that the self-healing
property holds for higher OAM modes. The unobstructed
BG mode for subspace |c¼±2S (|c¼±4S) generated an
average quantum contrast (see Methods) of QC¼ 43.2±2.0
(QC¼ 41.7±2.0) and a concurrence of C¼ 0.95±0.02
(C¼ 0.94±0.02). When the obstruction was placed 5 mm from
the crystal, the concurrence dropped to C¼ 0.40±0.02
(C¼ 0.43±0.02), but recovered to a value of C¼ 0.94±0.02
(C¼ 0.91±0.02) at 50 mm from the crystal. The results for the
coincidences, quantum contrast and concurrence of the
|c¼±2S-entangled photons are shown in Fig. 8a–c,
respectively. All three graphs display similar trends, where the
values increase after a minimum distance represented by the

1
a b c d

e f g h
0

1

0

Figure 3 | CCD images of the crystal plane for different on-axis obstruction positions. Images for a BG mode (a–d) and an LG mode (e–h) with

the azimuthal index c¼ 2. The unobstructed modes are shown in (a) and (e). The obstruction was first placed at the plane of the crystal, which is

clearly shown in both (b) and (f). It was then moved 20 mm away from the crystal plane, shown in (c) and (g). The final images, (d) and (h), were taken

50 mm away from the crystal. It is clear the BG mode has reformed at 50 mm, while the LG mode has not resumed its original structure.

BBO BBO BBO

Figure 4 | Movement of the obstruction within the Bessel region. Consider the back-projected beam reflecting off the SLM onto the BBO crystal.

The Bessel hologram on the SLM creates a beam with a particular cone angle. (a) The obstruction is at the closest position to the crystal, resulting in

a clear shadow region falling on the crystal. (b) The obstruction is moved away from the crystal, reducing the shadow region. (c) The obstruction is moved

further away such that the shadow region no longer falls on the crystal and a recovered BG image is seen (Fig. 3d).
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yellow dashed line. As in the classical case, where energy is lost in
the recovered field, the coincidence counts also do not fully
recover to the original unobstructed rate. Consequently, the
recovered quantum contrast does not return to the unobstructed
value, as the accidental count rate remains fairly constant with the
insertion of the obstruction.

From the high-dimensional density matrices in Fig. 7, we
calculated the fidelity of the states. Fidelity is a measure of how

close the measured state is to a maximally entangled state, where
a perfectly entangled state will have a fidelity of unity with the
maximally entangled state. We have extended this demonstration
to higher dimensions by reconstructing the density matrices for
dimension d¼ 4, where |c¼ {� 2, � 1, 1, 2}S. The reconstruc-
tion process via full-state tomography is time consuming and
thus only one high-dimensional state was chosen. The density
matrices for different placements of the obstruction are shown in
Fig. 7d–f. Table 1 shows the fidelity measurements recorded at
different positions of the obstruction from the crystal.

The measured fidelities for both dimensions recover to their
relative unobstructed values. Fidelity decreases as the state
dimension increases, however, the recovered fidelity for d¼ 4
lies above the threshold states, which are defined by the minimum
probability for which a high-dimensional Bell inequality is
violated39.

We have therefore demonstrated that the self-healing property
of Bessel beams, even when applied to single photons, can
overcome the losses associated with an obstruction, allowing
sufficient measurement of the spatial correlations to reveal the
quantum entanglement of the photon pairs.

Discussion
Our results show that by making projective measurements in the
BG basis, we were able to recover the reduction in the measured
degree of entanglement resulting from the losses introduced by the
obstruction. By comparison, when the LG measurement basis is
chosen, the entanglement is not recovered. From the density
matrices, we see that while the obstruction perturbs the system,
when measured beyond the minimum self-healing distance, the
density matrix reverts to the original unobstructed form. Compar-
ing the graphs of the coincidence count rates and concurrence in
both experiments, we observe a similar trend: the degree of
entanglement is low for low coincidence count rates and then
increases with the count rate. It appears that the off-axis
obstruction does not destroy the entanglement by scattering a
particular OAM state into many OAM states, as observed in
turbulence-related experiments20, but rather decreases the
measured degree of entanglement by reducing the two-photon
count rates to background levels. For completeness, we also
measured the response of an unobstructed BG mode in the
presence of attenuation. By rotating a polarizer in the path of the
down-converted light the transmission of the photons could be
varied from background levels (E0 transmission) to normal
conditions (transmission of 1). The coincidence count rate,
quantum contrast and concurrence for various transmission
values are shown in Fig. 8d–f, respectively. The quantum contrast
(Fig. 8b) suggests that the obstacle blocks one of the entangled
photons, thus diminishing the coincidence rate but maintaining a
high single-photon count rate. However, the attenuated quantum
contrast remains fairly constant unlike that of the obstructed beam.
The attenuation reduced the count rates for both the single and
coincidence counts proportionally, thereby maintaining a constant
quantum-contrast ratio. The obstruction on the other hand
reduced only the coincidence count rate and in turn the
quantum contrast. The entanglement is therefore obscured by the
noise. The correlations are recovered beyond the minimum
distance after the obstacle because the mode itself recovers, thus
increasing the signal at the detector because of an improved overlap
between the hologram and the projected mode. Interestingly, the
measurement choice is made after the photons have encountered
the obstacle. By contrast, in a classical experiment, the mode is
chosen or generated before interacting with the obstacle.

In conclusion, we have exploited the self-healing property of
BG modes in a quantum entanglement experiment to recover the
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reduction in the measured degree of entanglement. We showed
that the coincidence count rate is reduced in the presence of an
obstacle, but that the count rate recovers after a particular

distance owing to the self-healing feature of BG modes. This
trend was similarly reported for the degree of entanglement of the
quantum state, where the concurrence of the obstructed mode
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returned to its original, unobstructed value. These results may be
useful for quantum key distribution and quantum communica-
tion systems, where preservation of entanglement over long
distances and in the presence of an obstruction is crucial.

Methods
Experimental details. The laser source was a mode-locked ultraviolet laser
(Vanguard 355–2500) with a modal diameter of 1 mm, producing pulses of B10 ps
at a repetition rate of 80 MHz. The BBO crystal was cut at 33� to produce collinear,
frequency-degenerate down-converted photon pairs at 710 nm. The crystal was tilted
to produce near-collinear down-conversion. An interference filter or bandpass filter
centred at 710 nm was used to reflect the pump light and transmit the down-
converted photon pairs. The variable aperture acted as a spatial filter of the higher-
order diffraction modes. The projective measurements were performed by the
HoloEye Pluto SLMs (1,080� 1,920 pixels), which have a resolution of 8mm per pixel
and were calibrated for near-infrared wavelengths. Additional interference filters were
placed before the SMFs to select only the photons at 710 nm. Each SMF has a modal
radius of 2.3mm. The Perkin Elmer APDs have a dark count of 200 s� 1, which were
connected to a coincidence counter with a gating time of 12.5 ns. The back-projection
experiment made use of a 705-nm diode (Laser 2000), temperature tuned to 710 nm.
The images of the obstructed beams were captured on a CCD camera.

CHSH S parameter. The CHSH-Bell parameter, as defined in Leach et al.35, is
given by

S ¼ EðyA; yBÞ� EðyA; y
0
BÞþ Eðy0A; yBÞ�Eðy0A; y0BÞ; ð4Þ

where

EðyA; yBÞ ¼
CðyA; yBÞþCðyA þ p

2‘ ; yB þ p
2‘Þ�CðyA þ p

2‘ ; yBÞ�CðyA; yB þ p
2‘Þ

CðyA; yBÞþCðyA þ p
2‘ ; yB þ p

2‘ÞþCðyA þ p
2‘ ; yBÞþCðyA; yB þ p

2‘Þ
; ð5Þ

with C(yA,yB) being the coincidence count rate for the particular orientation of
each hologram. By calculating the propagation of uncertainty, we were able to
compute a s.d. for the S parameters.

Calculating quantum contrast. Quantum contrast is a ratio of the coincidence
count rate with the accidental count rate. The accidental count rate is defined as
SASBDt, where SA,B is the single-count rate in arm A(B) and Dt is the gating time of
the coincidence counter. Thus we can write the quantum contrast as QC¼C/
SASBDt, where C is the coincidence count rate.

Calculating concurrence. The concurrence is given by C(r)¼max{0, l1� l2�
l3� l4}, where li are the eigenvalues, in decreasing order, of the Hermitian matrixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
p

~r
ffiffiffi
r
pp

, where ~r is the spin-flipped state of the density matrix r. The qubit
OAM density matrices consist of 16 elements, which were calculated by performing
a full-state tomography, consisting of 36 projective measurements. That is, the
probability of simultaneously finding each of the photons (in the entangled pair) in
one of six non-orthogonal states was measured. Although only 16 measurements
are required to reconstruct the two-dimensional density matrix, the over-complete
36 measurements allow a least-squares fit to be performed.

Calculating fidelity. The fidelity is defined as

F ¼ Tr ð ffiffiffiffiffiffirT
p

rd
ffiffiffiffiffiffi
rT
p Þ1=2

n oh i2
; ð6Þ

which is a measure of how close our d-dimensional reconstructed state, rd, is to the
target state rT¼ |cTS/cT|. In our case the target state is the (pure) maximally
entangled state, |cTS¼

P
‘ c‘|cSs|� cSi, where c ranges over d different values

and cc¼ 1/
ffiffiffi
d
p

represents the expansion coefficients.
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Nondiffracting vector Bessel beams are of considerable interest due to their nondiffracting nature and unique
high-numerical-aperture focusing properties. Here we demonstrate their creation by a simple procedure requiring
only a spatial light modulator and an azimuthally varying birefringent plate, known as a q-plate. We extend our
control of both the geometric and dynamic phases to perform a polarization andmodal decomposition on the vector
field. We study both single-charged Bessel beams as well as superpositions and find good agreement with theory.
Since we are able to encode nondiffracting modes with circular polarizations possessing different orbital
angular momenta, we suggest these modes will be of interest in optical trapping, microscopy, and optical
communication. © 2013 Optical Society of America
OCIS codes: (140.3295) Laser beam characterization; (090.1995) Digital holography; (050.2770) Gratings; (050.4865)

Optical vortices.
http://dx.doi.org/10.1364/OL.38.003429

There has been considerable interest of late in optical
modes of spatially inhomogeneous polarization states,
for example cylindrical symmetric polarization, com-
monly referred to as cylindrical vector (CV) beams [1–4]
that includes radially and azimuthally polarized light, and
a linear superposition of the two to form generalized
cylindrical polarization. In the cross-sectional profile of
these CV beams, the local polarization state is linearly
polarized at different orientations, resulting in them
occupying the equator on the Poincaré sphere. Recently
a more general type of vector beam [full Poincaré (FP)
beams] has been proposed and demonstrated [5,6] where
the local polarization state spans the entire surface of the
Poincaré sphere. Various generation methods of CV and
FP beams have been developed from laser gain media
[7,8], optical fibers [9], radial polarization converters
[10,11], liquid crystal displays [12], q-plates [13], and in-
terferometric methods [14]. CV beams exhibit unique
properties under high numerical-aperture focusing giving
rise to the realization of tighter focal spots [15–18] result-
ing in applications in spectroscopy, particle acceleration,
microscopy, optical trapping, and interferometry [1–4].
These beams have interesting propagation characteris-
tics: in free space due to the manifestation of the
universal form of the Gouy phase of astigmatic wave
fields [19] and have been shown to be more resilient
to atmospheric turbulence [20].
It is also possible to generate such vector beams as

vector–vortex beams. Scalar vortex fields carry orbital
angularmomentum (OAM) and have an azimuthal angular
dependence of exp�ilθ� where l is the azimuthal
index and θ is the azimuthal angle. One such example of
propagation-invariant scalar modes which are OAM car-
riers are higher-order Bessel beams [21,22]. Experimental
studies into the generation of diffraction-limited vector
beams have remained somewhat limited with reports
on the use of subwavelength gratings [23], polarization
grating (PG) axicons [24], quantized Pancharatnam

Berry phase elements in conjugation with an axicon
[25], and interferometric techniques [26,27].

In this Letter, we present a new procedure for the gen-
eration and measurement of nondiffracting vector Bessel
beams. We control both the dynamic and geometric
phase, using a spatial light modulator (SLM) and q-plate,
to convert arbitrary incoming scalar fields into nondif-
fracting vector fields. We simultaneously detect both
the polarization and azimuthal components of our vector
Bessel beam by implementing a PG in conjugation with a
second SLM to perform a polarization selective azimuthal
modal decomposition. Although this technique is
outlined with Bessel beams as the spatial modes, it
can easily be extended to other OAM-carrying modes.

We illustrate the concept for both the generation
and measurement of vector Bessel beams with the aid
of Fig. 1. To generate arbitrary superpositions of
scalar Bessel beams an expanded HeNe laser beam
(λ ∼ 633 nm) was directed onto the first SLM (SLM1).
These fields were generated in a similar approach to
Durnin’s ring-slit aperture method [21], implemented
digitally [22] on SLM1 (HoloEye, PLUTO-VIS, with

Fig. 1. Schematic of the experimental setup [division 1, scalar
generation; division 2, vector generation; division 3, vector
decomposition; division 4, scalar (azimuthal) decomposition].
L, lens (f 1 � 15 mm, f 2 � 150 mm, f 3 and f 4 � 500 mm,
f 5 � 300 mm); SLM, spatial light modulator; A, aperture; Q,
q-plate; PG, polarization grating; CCD, camera.
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1920 × 1080 pixels of pitch 8 μm and calibrated for a 2π
phase shift at ∼633 nm) with the use of complex
amplitude modulation [28–30]. Mathematically we may
describe such a generalized superposition of Bessel
beams as

u�r;ϕ; z � 0� �
X
l

Jl�krr� exp�ilϕ�
�
1
1

�
; (1)

where Jl�·� is the Bessel function of the first kind, kr is
the transverse wave vector and the Jones vector denotes
linear polarization. To convert this scalar field into a CV
field, we introduce in the second step (2) an azimuthally
varying birefringent plate, known as a q-plate, which
couples OAM to spin angular momentum through the
transformation

�
cos�Qϕ� sin�Qϕ�
sin�Qϕ� − cos�Qϕ�

��
1
1

�
exp�ilϕ�

→ exp�i�l� Q�ϕ�
�

1
−i

�
� exp�i�l − Q�ϕ�

�
1
i

�
; (2)

where the first matrix corresponds to the Jones
matrix for a q-plate [31] and Q is the azimuthal charge
introduced by the q-plate (Q � 2q). The two vectors cor-
respond to right- and left-circular polarization, respec-
tively. The action of the q-plate [given by the Jones
matrix in Eq. (2)] can be represented in bra–ket notation
as follows: jl; Li → jl� Q;Ri and jl; Ri → jl − Q; Li,
where R and L represent right- and left-circular polariza-
tion, respectively. The q-plate was manufactured as a pol-
ymerizable liquid crystal film on a glass substrate, whose
spatial variation of the optical axis was realized by photo-
aligning the local director of the liquid crystalline
material with UV light [32,33]. The UV light was shaped
to a narrow stripe which was exposed onto the sample
azimuthally with a rotating linear polarization. The con-
cept of this coupling of angular momenta is shown in
Fig. 2(a), where an experimentally generated circularly
polarized Gaussian beam is converted into an oppositely
handed vortex beam. The optical field after the q-plate
(Q � 1) was therefore a vector Bessel beam described by
u ∝ jl � 1; Ri � jl − 1; Li � exp�ilϕ��j1; Ri � j − 1; Li�,
which we note is a radial polarized state since

j1; Ri � j − 1; Li � exp�iϕ�
�

1

−i

�
� exp�−iϕ�

�
1

i

�

�
�
cos�ϕ�
sin�ϕ�

�
: (3)

To perform a modal decomposition on the vector vor-
tex beam we again exploit both the dynamic and geomet-
ric phases. We employ a PG with a period of 8.3 μm,
which acts as a polarizing beam splitter for left- and
right-circular polarization, to split the field into its two
spin components (step 3 in Fig. 1), and also shown in
Fig. 2(b). The process for manufacturing the PG is similar
to that for the q-plate; however, a polarization holography
setup was used where the sample was exposed with the
interference of two plane waves each of opposite circular
polarization [33,34]. With the vector beam projected into
two path-dependent scalar beams, we finally perform a
modal decomposition on each to reconstruct the full vec-
tor vortex beam. We consider the modal decomposition
of our input field E into azimuthal modes exp�ilϕ� so
that E � P

lcl exp�ilϕ�. The modal weighting coeffi-
cients cl may be found by the inner product of the field
with an azimuthal match filter, jhEj exp�ilϕ�ij � cl. The
inner product was executed experimentally by directing
the modes onto the match filter, encoded on SLM2 and
viewing the Fourier transform, with the use of lens L3, on
the CCD (Spiricon BeamGage, SP620U). SLM2 is also
only responsive to horizontally polarized modes. How-
ever, since the horizontal component is present in both
left- and right-circular polarizations, we need not intro-
duce additional polarization optics. The PG was aligned
appropriately so that the port containing the left-circular
polarization modes were incident on SLM2 so as to ex-
tract their azimuthal modes. Later, the PG was adjusted
to direct the right-circular polarization modes onto SLM2
for the execution of their azimuthal decomposition. We
point out that this could be done in a single step by
directing both components to adjacent sectors of SLM2.

Scalar Bessel beams as well as superpositions thereof
were created with SLM1, with near- and far-field images
shown in the top row of Fig. 3. Figure 3(a) shows a

Fig. 2. (a) Transform of a q-plate with corresponding state
equations. (b) The action of a PGwith the incoming polarization
marked in the corresponding outputs.

Fig. 3. Experimentally recorded near- and far-field intensity
profiles of (a) and (b) the scalar single-charged Bessel beam
of azimuthal index l � 0; (c) and (d) superposition of azimuthal
indices l � −2 and�2. (e)–(h) Experimental near-field [(e) and
(g)] and far-field [(f) and (h)] intensity profiles of the corre-
sponding vector Bessel fields recorded after the q-plate. Insets
denote the corresponding vector beams recorded with a polar-
izer in front of the CCD. Red (white) arrows denote the polari-
zation direction (polarizer orientation).
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zero-order Bessel beam recorded at the aperture (A) in
Fig. 1 and its corresponding far-field depicted in Fig. 3(b),
and similarly in Figs. 3(c) and 3(d) for a superposition of
Bessel beams of azimuthal indices l � −2 and �2. In the
case of the superposition, the azimuthal indices are of
equal magnitude but opposite handedness resulting in
the predicted petal structure, where the number of petals
is denoted by 2jlj [22]. The fields entering the q-plate are
linearly polarized (an equal weighting of left- and right-
circular polarization) and so the transformation of
Eq. (2) takes place: the left-circular component is con-
verted to the right-circular component, while decreasing
the azimuthal component by unit charge of OAM while
the reserve procedure takes place on the right-circular
component, converting it to left while simultaneously
increasing the azimuthal component by unit charge of
OAM (jl; Li → jl� Q;Ri and jl; Ri → jl − Q; Li). The
resulting field after the q-plate, is shown in Figs. 3(e)
and 3(g). These are nondiffracting vector Bessel beams
with radial polarization, as described by Eq. (3). In the
case of the zero-order Bessel beam, the OAM associated
with the left-circular component increases by unit charge
of OAM (while the right-circular component decreases by
unit charge of OAM), thus producing a superposition of
two Bessel beams of azimuthal indices l � −1 and �1,
resulting in an intensity structure with two petals
(2jlj) as seen through a polarizer and shown in the insert
in Fig. 3(e). Similarly, the superimposed Bessel beams
of azimuthal indices l � −2 and �2 becomes a superim-
position of Bessel beams of azimuthal indices
l � −3;−1;�1, and �3 after the q-plate, as illustrated
in Fig. 3(g). The corresponding far fields of Figs. 3(e)
and 3(g) are given in Figs. 3(f) and 3(h). Here the number
of line singularities in the far field is denoted by 2jlj (the
same as the number of petals), as illustrated in the inserts
in Figs. 3(f) and 3(h). While the aforementioned exam-
ples illustrate the technique, there is of course a myriad
of choices for which vector Bessel beams to create. We
show in Figs. 4(a)–4(g) additional experimental near-
field images of vector Bessel fields (with a polarizer)
for initial scalar beams of azimuthal indices ranging from
l � −5 to l � �5. A polarizer (positioned after the
q-plate) was rotated to illustrate that the intensity
profile of the vector Bessel field rotates. Snapshots of
the intensity profiles for a CV Bessel beam (for an
initial single scalar Bessel beam of l � 0) is presented

in Figs. 4(h)–4(n), illustrating the rotation of the field
as the polarizer is rotated.

An azimuthal decomposition [35,36] was performed
digitally on each polarization component of the gener-
ated fields and the results are depicted in Fig. 5(a) for the
left- (orange) and right-circular (pink) components, re-
spectively. The measurement of the azimuthal indices,
presented in Fig. 5(a) (orange) [Fig. 5(a) (pink)], illus-
trates that the scalar single-charged Bessel beams incur
an increase (decrease) in their OAM when passing
through the q-plate, as expected from the transformation
in Eq. (2). This is evident by the two rows of off-diagonal
peaks, displaced from the original by �1. Figures 5(b)
and 5(c) denote the left- and right-circular components
(of azimuthal indices l � �1 and l � −1, respectively),
which make up the vector vortex beam presented in
Fig. 3(e).

In conclusion, we have shown an experimental realiza-
tion of nondiffracting vector Bessel beams through con-
trol of both the dynamic and geometric phase. We make
use of digital holograms to create custom vortex beams
and exploit q-plates for the conversion into CV vortex
fields. We detected the polarization of the generated field

Fig. 4. (a)–(g) Experimentally recorded near-field intensity profiles of vector Bessel fields recorded after the q-plate with a polar-
izer in front of the CCD for initial scalar Bessel beams of l � −5;−3;−1; 0;�1;�3, and�5, respectively. (h)–(n) Intensity profiles for
an l � 0 vector Bessel beam recorded with a rotating polarizer. The full data (video) can be viewed in Media 1. White arrows mark
the corresponding polarizer setting.

Fig. 5. (a) Correlation signals for the azimuthal decomposition
for both the left- (orange) and right-circular (pink) polarization
components. (b) l � �1 and (c) l � −1 Bessel beams after the
q-plate associated with left- and right-circular polarization
components, respectively. (d) A table summarizing the transfor-
mation of the input l values after the q-plate.
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with the use of a PG, as well as their vortex nature by
performing an azimuthal modal decomposition. In addi-
tion to their known classical applications, having the abil-
ity to simultaneously control the polarization and OAM
degrees of freedom is useful in hyper-entanglement
systems.

The authors acknowledge support from the U.S.
National Science Foundation (NSF and ECCS-0955127)
and the National Research Foundation.
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Abstract: We demonstrate the efficient sorter of Bessel beams separating 
both the azimuthal and radial components. This is based upon the recently 
reported transformation of angular to transverse momentum states. We 
separately identify over forty azimuthal and radial components, with a 
radial spacing of 1588 m−1, and outline how the device could be used to 
identify the two spatial dimensions simultaneously. 
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1. Introduction 

Numerous studies have been dedicated to optical fields that carry orbital angular momentum 
(OAM), where each field has an azimuthal angular dependence of exp(ilθ) [1–4] where l is 
the azimuthal index and θ is the azimuthal angle. The fact that these fields offer an 
unbounded state space has made them advantageous for increasing the amount of information 
that can be encoded onto a single-photon [5–11]. In particular, higher-order Bessel beams are 
interesting as OAM-carriers as these fields propagate while maintaining their cross-sectional 
form over a finite distance [12–15] and reconstruct after encountering an obstacle [16–18]. 
Recently, entanglement in the Bessel basis has been measured, showing an increased spiral 
bandwidth [19]. Exploiting these properties of Bessel beams may make them useful in the 
field of long-range, broad-bandwidth communication systems. However, in order for these 
fields to be a success in the area of optical communication, efficient techniques for extracting 
the information they carry need to be demonstrated. 

A diffraction grating containing a fork discontinuity can be used to couple light of a 
particular OAM state into a single-mode fibre [5], but this measurement approach requires 
that one must test for the chosen range of states sequentially. Attempts to develop more 
complicated holograms that test multiple states have been made [20, 21], however their 
efficiency is inversely proportional to the number of states being sampled. An alternative 
setup that does not alter the OAM state during the measurement procedure is a Mach-Zehnder 
interferometer with a Dove prism in each arm [22, 23], but to measure 2n states requires 2n–1 
interferometers. A modified Mach-Zehnder interferometer can also be described to determine 
both the angular and radial mode content of scalar optical fields [24] but such systems are 
known to be sensitive to alignment [24]. Digital holograms are also used to extract the 
azimuthal modal content of optical fields for the reconstruction of its amplitude, phase and 
OAM density [25]. Recently it has been demonstrated that two spatial light modulators in 
conjunction with a lens can be used to convert the OAM state of light to a specified lateral 
position [26–28] so that the azimuthal information may be extracted, while leaving the radial 
component undefined. The approach has been made more efficient by replacing the spatial 
light modulators with freeform refractive optical components [29]. 
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In this paper we extend the aforementioned concept to extract the information in both the 
azimuthal and radial components of Bessel beams. We show that we can identify forty-one 
OAM states and forty-one radial components of our higher-order Bessel beams, and show the 
applicability of the approach to measure super-positions of Bessel beams. 

2. Concept and experimental setup 

In this work we make use of Bessel beams as our OAM-carrying bases functions, which are 
characterized by an azimuthal mode index, l, and a radial component, kr, as 

 ( , , 0) ( ) exp( ).l ru r z J k r ilθ θ= =  (1) 

Here kr is the transverse wave number and is defined as kr = ksinα, where k = 2π/λ and α is 
the opening angle of the cone on which the waves propagate. The Fourier transform of the 
Bessel field is described by an annular ring of radius R, 

 [ ] exp( )
( , ) .

0

il R r
u r

elsewhere
θ

θ
≈

ℑ = 


 (2) 

The radial wavevector is related to the radius of the annular ring as kr = kR/f, where f is the 
focal length of the Fourier transforming lens. It is these OAM-carrying fields, of differing 
radial components, whose OAM (l) and radial information (kr) we wish to measure 
experimentally. 

The technique that is employed for the measurement of the OAM spectrum and the radial 
components of the Bessel beams consists of two freeform optical elements [29] that map a 
position in an input plane (x,y) to a position in the output plane (v,u) by a conformal mapping 
[27–29] 
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where the parameter b controls the scaling of the radial component and d is the aperture size 
of both freeform optics. An initial radial spacing of Δkr will result in a vertical spread in the 
signal plane, Δu, given by 

 ,
2

r

r

kdu
kπ

Δ
Δ =  (5) 

and thus the minimum resolvable feature, δ, constrains the resolvable wavevectors to 

 
2

.r rk k
d
π δΔ ≥  (6) 

This implies that while Δkr ≥ Δ [from Eq. (5)] where Δ is the width of the resulting annular 
ring, the system is further constrained by δ which is the smallest resolvable feature in the 
detector plane [from Eq. (6)]. The range of wavevectors that can be detected is also limited by 
the aperture size of the second freeform optic, kr ≥ exp(-π)kb/f. 

In this first step an annular ring of light (Fourier transform of the Bessel beam) is mapped 
to a horizontal line of fixed width, thus any azimuthal phase variation in the ring transforms 
into a linear phase variation along the line - a tilt of the phase front. If this inclined phase 
front is passed through a Fourier transforming lens of focal length f, then a focused spot is 
produced at an l-dependent horizontal position given by 
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d
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We note that imaging of the output will return the radial information of the field, which is 
stored in the vertical off-set of the horizontal line of light: 

 ln .
2

r
V

k fd
kbπ

 Δ =  
 

 (8) 

Thus an optical set-up which images in the vertical axis and Fourier transforms in the 
horizontal axis will allow the simultaneous measurement of ΔH and ΔV and thus the azimuthal 
and radial information of the field. Such an optical system may be implemented with three 
cylindrical lenses; a schematic of the concept is given in Fig. 1 with the experimental set-up 
shown in Fig. 2. A HeNe laser was expanded through a telescope (lenses L1 and L2) to 
illuminate the liquid crystal display of a spatial light modulator (SLM) where the Bessel 
beams were encoded in the far-field [Fig. 2(b)] using complex amplitude modulation [30, 31]. 

 

Fig. 1. (a): The annular rings of two Bessel beams are mapped to transverse momentum modes 
in (b). Cylindrical lenses (CL) arranged in a 4-f configuration map the transverse momentum 
modes to unique x- and y-coordinates in column (c). 

The resulting annular rings were propagated through the mode sorter (denoted by optical 
elements, R1 and R2), where R1 performed a log-polar mapping thus transforming the 
azimuthal modes to transverse momentum states, while also mapping the radial component. 

 

Fig. 2. (a) Schematic of the experimental setup for identifying the azimuthal and radial 
components of Bessel beams. L, lens (fL1 = 15 mm, fL2 = 125 mm, fL3 = 500 mm, fL4 = 500 
mm); SLM, spatial light modulator; M, mirror; R, aspheric optical element; CL, cylindrical 
lens (fCL1 = 50 mm,(orientated to focus the y-axis), fCL2 = 100 mm (orientated to focus the x-
axis), fCL3 = 50 mm (orientated to focus the y-axis)); CCD, CCD camera. (b) The phase profile 
of the annular ring with a zoomed-in insert of the alternating phase values. 
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The freeform optics were fabricated from PMMA (Poly methyl methacrylate) to an 
aperture size of d = 16 mm and a focal length of f = 300 mm, with a scaling parameter b = 
0.00477. As an illustration, the conformal mapping of the ring into a line is shown as a video 
clip (Media 1), which contains experimental images of an annular ring (kr = 2.62 × 104 m−1, l 
=  + 1) propagating between the two freeform optical elements. 

3. Experimental results and discussion 

Bessel beams with kr = 2.62 × 104 m−1, having azimuthal orders ranging from l = –20 to + 20 
were generated and directed through the mode sorter. An example of one of the Bessel beams 
possessing an azimuthal order of l = –5 is given in Fig. 3(a). The unraveled transverse 
momentum mode at the plane of R2 was focused by a spherical lens having a focal length of f 
= 250 mm, producing an elongated lateral spot shown in Fig. 3(b). The position of the spots 
produced by incoming azimuthal modes ranging for l = –20 to + 20 were measured and are 
given in Fig. 4(a). There is very good agreement between the experimentally measured 
positions (red circles) and the theoretical expected positions (black curve), calculated from 
Eq. (7). 

 

Fig. 3. (a) The Bessel beam and (b) lateral spot for kr = 2.62 × 104 m−1 and l = –5. Theoretical 
results are given as inserts. 

The measurement selectivity corresponds to cross-talk between neighboring modes, given 
by the off-diagonal elements in Fig. 4(b). Our results illustrate that OAM states of higher-
order Bessel modes can be measured with a similar selectivity as that obtained for LG modes 
[26]. 

 

Fig. 4. (a) The position of the spot produced at the plane of the CCD as a function of l. 
Accompanying theoretical Bessel beams are given as inserts. (b) Relative fractions of the 
intensity at each detector position for l = –20 to + 20 (kr = 2.62 × 104 m−1). The strong diagonal 
and weak off-diagonal terms imply a highly accurate and precise mode sorter. 

The radial component of the Bessel beam was varied from values of kr = 0.23 × 104 m−1 to 
6.43 × 104 m−1 (Δkr = 0.16 × 104 m−1) and an example of one of the Bessel beams is given in 
Fig. 5(a). In order to simultaneously resolve a range of radial components, the larger of the 
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two limits [resulting from Eqs. (5) and (6)] needs to be satisfied. For the parameters used in 
this paper, the radial spacing for two extreme cases (kr

max and kr
min) is constrained by the 

width of the annular ring (Δkr ≥ 0.32 × 104 m−1), as well as the smallest resolvable feature in 
the detector plane (δ = 44 μm): Δkr ≥ 0.11 × 104 m−1(for kr

max = 6.43 × 104 m−1) and Δkr ≥ 
0.004 × 104 m−1(for kr

min = 0.23 × 104 m−1). The transformed annular ring was imaged onto 
the CCD, with the use of two spherical lenses and is depicted in Fig. 5(b). The position of the 
transformed line shifts vertically as the radius of the annular ring changes and is illustrated in 
Fig. 6(a), where the measured position of the transformed annular ring is plotted as a function 
of kr. Again there is good agreement between the experimentally measured positions (red 
circles) and the theoretical expected positions (black curve), calculated with the use of Eq. 
(8). The error bars decrease as the radial component increases because the width of the 
transformed line in the detector plane becomes narrower. 

 

Fig. 5. (a) The Bessel beam and (b) unraveled transverse momentum mode for l =  + 1 and kr = 
0.72 × 104 m−1. Theoretical results are given as inserts. 

Similarly in detecting the radial components, apertures in the detector plane were centered 
on the expected line positions and relative fractions of the radial spectrum for various input 
modes were determined and are presented in Fig. 6(b). Likewise, there is a slight overlap of 
the transformed lines between neighboring radial coordinates. It is evident from Fig. 6(b) that 
if this spacing is doubled, the cross-talk between neighboring radial modes will be drastically 
diminished. Nevertheless, the results of Fig. 4(b) and Fig. 6(b) clearly show that one can 
extract information stored in both dimensions. 

 

Fig. 6. (a) The position of the transformed line produced at the plane of the CCD as a function 
of R. Accompanying theoretical Bessel beams are given as inserts. (b) Relative fractions of the 
intensity at each detector position for kr = 0.23 × 104 m−1 to 6.43 × 104 m−1 (l =  + 1). 

Multiple Bessel beams were also directed through the mode sorter and an example of the 
superposition Bessel beams is presented in Fig. 7(a). The separation of the two azimuthal and 
two radial components, when using cylindrical lenses CL1, CL2 and CL3, is depicted in Fig. 
7(b) accompanied with the theoretical prediction, illustrating that the mode sorter is capable 
of distinguishing super-imposed azimuthal and radial modes. Although there is good 
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agreement between the experimental and theoretical locations of the lateral spots, the shape of 
the measured lateral spots shows some distortion which could be due to the alignment 
sensitivity of the cylindrical lenses. 

 

Fig. 7. (a) Super-imposed Bessel beams and (b) the lateral spots produced at the plane of the 
CCD. Theoretical results are given as inserts. 

The number of azimuthal and radial modes that can be identified can be increased by 
increasing the aperture size of the freeform optical elements. We tested two different aperture 
sizes (d = 8 mm and 16 mm) and noted that by doubling the aperture diameter, the azimuthal 
bandwidth that can be identified increased by a factor of 2. Our results could further be 
improved by first separating the OAM modes into odd and even ports [22, 23] to decrease 
cross-talk in the measured spectrum. 

4. Conclusion 

We have illustrated the separation of higher-order Bessel beams in both their azimuthal and 
radial indices. This technique is not only limited to Bessel beams, but it can also be 
implemented with other optical fields [32]. The ability to extract encoded information across 
two higher-dimensional state spaces will prove useful in quantum communication and 
information systems. 
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ABSTRACT

Quantum ghost imaging using entangled photon pairs has become an interesting field of investigation as it
illustrates the quantum correlation between the photon pairs. We introduce a new technique using spatial light
modulators encoded with appropriate digital holograms to recover not only the amplitude, but also the phase
of the digital object. Down-converted photon pairs are entangled in the orbital angular momentum basis, which
are typically measured using a spiral phase hologram. Thus by encoding a spiral annular slit hologram into the
idler arm, and varying it radially we can simultaneously recover the phase and amplitude of the field in question.
We show that there is a good correlation between the encoded field function and the reconstructed images.

Keywords: ghost imaging, spiral ring-slit, orbital angular momentum

1. INTRODUCTION

The technique used to illustrate quantum correlations between entangled photon pairs is referred to as ghost
imaging, which was first observed more than 10 years ago by Pittman et al.1 This technique produces an
amplitude image of the object by combining information from two photon detectors; a single pixel (bucket)
scanning detector with no spatial resolution, that collects photons that have interacted with the object and a
multi-pixel detector collecting photons that had not interact with the object1,2 as seen in Fig. 1. There are

Figure 1. The ghost imaging setup using the sharks aperture in the signal arm, and a scanning detector in the idler arm
resulting in coincidence counts that give the sharks image.

uncertainties of whether ghost imaging is solely a quantum phenomenon,3,4 but this is not our interest of study.
Orbital angular momentum (OAM) entanglement has shown to be promising in achieving high dimensional
entangled states that can be useful in quantum key distribution5 and quantum communication.6 Also it has
been shown that the OAM quantum correlations can be used for edge enhancement of the object image within
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a ghost imaging setup,7 where spatial light modulators (SLMs) were encoded with phase modulating holograms
along the edge of the object; one as a phase object and the other as a phase filter in the signal and idler arms
respectively. Not only can we modulate the phase of light using an SLM, but also the checker board pattern
which is simply an array of alternating set of pixels out of phase by π can be used to modulate the amplitude
of light. Taking this into consideration, we took the method of Jack et. al7 further by encoding the signal arm
with a phase object and the idler arm with a phase and amplitude filter to recover the phase and amplitude of
the object by correlating the detected signals on the coincidence counter.

2. CONCEPT

The task was to find a tool that can be used not only to give the amplitude of the object in arm A, but also to
recover the phase of the object by correlating the detected signals from both arms. We know that for an arbitrary
field u(r, θ) that forms a complete basis (orthogonal, complete) set, such as the angular harmonics exp(i`θ), we
can describe its full field distribution8 as:

u(r, θ) =
∑

a`(r) exp(i`θ), (1)

where a`(r) is the r dependent coefficient, ` is the azimuthal index. Equation (1) can be implemented by an
azimuthally varying ring of a particular thickness 4 as in Fig. 2 (b). Just as a Gaussian beam can be modulated
into a vortex mode with the correct hologram, this process works in reverse such that a vortex mode can be
converted into a Gaussian beam. The ring selects the OAM state of light acting as a phase filter and while the
checker board as an amplitude filter.

Figure 2. (a) LG of `=1 passing through (b) a varying spiral ring-slit of azimuthal index `=-1 giving a (c) signal on the
detector recovering the phase of the field. Since the ring varies radially (R) it also gives the amplitude of the field.

3. EXPERIMENTAL REALISATION

The experimental setup consists of two highlighted sections as shown in Fig. 3. The first highlighted section
shows a mode locked ultraviolet (355 nm wavelength) laser of average power of 350 mW which was used to
pump a type I BBO crystal that produces collinear entangled photon pairs through the process of spontaneous
parametric down-conversion (SPDC). To reflect the pump beam and transmit the down-converted light, a band
pass filter was placed after the crystal. The front plane of the crystal was imaged and magnified by L1 (f=200
mm) and L2 (f=400 mm) onto the second highlighted section of two separate spatial light modulators (SLMs).
SLM A was encoded with the object hologram and SLM B was encoded with the spiral ring-slit of thickness
4=0.08 mm scanning through the photons in the radial and azimuthal directions. Each SLM plane was then
imaged by a ×250 demagnification telescope using L3 (f=500 mm) and L4 (f=2 mm), to be coupled into single
mode fibres (SMFs), which only support the fundamental Gaussian mode, of mode field diameter of 4.6 µm.
Each SLF was attached to an avalanche photo-diode (APD), connected to coincidence counter.

3.1 Back-projection results

This setup in Fig. 3 was first set in back-projection mode for alignment purposes, where the BBO crystal was
replaced by a mirror, and a 710 nm diode laser was connected to the SMF in arm A allowing light to propagate
through the system in reverse. The images of the generated object from SLM A, were recorded by placing a
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Figure 3. The schematic diagram of the experimental setup highlighted into two sections, 1. to generate entangled photon
pairs, 2. to perform the spiral imaging technique recovering the phase and amplitude of the object.

mirror before SLM B and a CCD camera at the plane of SLM B. In this back-projection mode, SLM A was
addressed with an azimuthal index of `=+1 fork hologram generating a Laguarre-Gauss (LG) mode shown as
an insert in Fig. 4(a) with its corresponding cross-sectional intensity profile. On SLM B we encoded a spiral
ring-slit of `=-1 and varied it radially and recorded the single count rates at detector B as a function of the radial
position. Fig. 4(b) shows this recorded count rate and it is clear that we recover the profile of an LG mode.
We then performed a similar experiment, but this time changed the object hologram on SLM A, by encoding a
hologram with four different azimuthal indices each at different radii. The resulting radial counts profiles of Fig.
5 (a) `=0 mode, was encoded with an inner radius of 0 mm and an outer radius of 0.08 mm, while Fig. 5 (b)
`=5, was encoded with an inner radius of 0.08 mm and outer radius of 0.16 mm. Similarly Fig. 5 (c) `=3 mode
existed between rin=0.16 mm to rout=0.24 mm, and Fig. 5 (d) `=1 existed between rin=0.24 mm to rout=0.32
mm. These profiles were obtained by varying the azimuthal and radial components of the spiral ring-slit on SLM
B.

Figure 4. LG of `=1 (a) intensity profile generated from SLM A, obtained from the cross-section of CCD image in insert,
with (b) the corresponding back-projected coincidence counts profile.

3.2 Down-converted results

The setup in Fig. 3. was set to down converted mode generating entangled photon pairs that were projected
into first the LG basis9 and then the Bessel-Gauss (BG) basis,10,11 which has shown to provide a wider OAM
entanglement spectrum and the ability to reconstruct entanglement after encountering an obstruction.12 This
was achieved by encoding SLM A with appropriate holograms, the fork hologram and binary axicon respectively.
The measured coincidence counts successfully recovered the phase and amplitude of these angular harmonics as
illustrated in Fig. 6. Since these modes form a complete basis set we can generate their superposition by simply
summing their transmission functions together, this can be implemented through digital holography.13,14 We
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Figure 5. Radial profile counts of (a) `=0, (b) `=5, (c) `=3, and (d) `=1.

generated a superposition of LG modes Fig. 7 (a) on SLM A, and by varying the spiral ring-slit, we detected
the down-converted counts as a function of the radial position, thereby simultaneously recovering the phase and
amplitude of these fields Fig. 7 (b,c). The mode which was not encoded was not detected as shown in Fig. 7 (d),
even though it is the neighbouring mode of the encoded ones, which shows the efficiency of our imaging tool.

Figure 6. Reconstructed fields (a) LG of `=2, (b) BG of `=2 from down-converted counts with their CCD images on the
inserts.
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Figure 7. (a)CCD petal image of the superposition of LG of `=-1 and ` =2 shown on the inserts. Reconstructed radial
profiles of (b) LG of `=-1, (b) ` =2 from down-converted counts. (e) LG of ` =3, which was not encoded on the
superposition, hence there are no counts to recover its profile.

4. CONCLUSION

We have successfully shown that we can simultaneously recover the phase and amplitude of any arbitrary field
that forms a complete basis set, in a ghost imaging setup using a digital spiral ring-slit. This is a unique technique
as it differs from the traditional ghost imaging that requires a scanning detector to only recover the amplitude
of the field.
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ABSTRACT

High-capacity data transmission has been implemented using single channel optical systems. This technique
is limited and soon it will be unable to fulfill the growing needs for higher bit rate data transmission. Hence
multi-mode transmission has been recently given attention as a potential solution to the current problems. In
this context, we demonstrate a method of multiplexing laser modes using spatial light modulators (SLMs). In our
proposed technique, we use Laguerre Gaussian (LG) modes, which form a complete basis set; hence multi-mode
masks can be created by taking a linear combination of the LG modes. Since LG modes are characterised by two
degrees of freedom, the azimuthal index ` and radial index ρ, this allows for multi-dimensional states. There are
however some experimental challenges which include the sensitivity of the setup to misalignment, that leads to
mode-coupling. It is also important that the injected modes ha a uniform power spectrum so that are weighted
equally. The size of the multi-modes is highly dependent on the resolution of the SLM.

Keywords: spatial modes, multiplex, mode coupling

1. INTRODUCTION

Optical networks form a foundation of modern communications networks since the replacement of copper wires
with optical fibres in the 1980’s. This fibre technology has been based on single mode fibres (SMF), and due
to the increasing demand in data transmission by a factor of approximately 10 every four years1 as a result of
the digital world we live in, the available capacity of the SMF will be limited in the near future. This limit in
capacity is based on the Shannon capacity for non-linear fibre channels,1 where the SMF cannot carry more than
100 Tbits s−1 of data. Optical transmission through SMF has been achieved through other optical properties
of light, the dimension that has not yet been explored to transmit data is space. Spatial modes such as the
Laguerre-Gauss (LG) modes,2 have been studied as potential solutions to increase the bandwidth for optical
communication through the process of mode division multiplexing (MDM),3–5 which is based on using the LG
modes as independent information carriers through SMFs, as they carry orbital angular momentum (OAM)6

which is an unbounded degree of freedom. This OAM property of light has shown to be useful in various
applications from manipulation of micro-particles2 to successful classical and quantum free-space communication
experiments.6 There are certain limitations in using these modes for optical communication, such as mode
coupling, which we look into, to improve the signal detection. It has been show that aberrated wave fronts result
in a distorted modal spectrum.7 We illustrate that by taking this into account, we can successful multiplex and
demultiplexed the LG modes of two degrees of freedom in free-space, with minimized mode coupling.
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2. THEORY

The Laguerre-Gauss beams2 form a complete basis set as a solution to the Helmholtz wave equation in cylindrical
co-ordinates with a field function given by:

u`,ρ(r, θ, z) =
1

ω(z)

√
2ρ

π(|`|+ ρ)
(

√
2r

ω(z)
)|`| exp(

−r2

ω(z)
)L|`|ρ [

2r2

ω2(z)
]

× exp[i
kr2

2R(z)
] exp(i`θ) exp(iΦ(ρ, `, z)). (1)

These LG modes are characterized by two indices ` and ρ corresponding to the azimuthal and radial indices
respectively. When `=ρ=0, the mode simplifies to a Gaussian mode having a flat wave front. The wave front
of these modes spirals around the beam axis creating a phase singularity,known as an optical vortex, where
no energy nor momentum exist around that point. The simplest generation of these modes is through digital
holography,2 where the phase of the incoming Gaussian field is diffracted by a `-fork diffraction grating into a
LG mode of order `, where ` corresponds to the number of fork dislocations which indicates the amount of OAM
carried by these modes as shown in Fig. 1.

Figure 1. Generation of the LG mode of `=+1 using a fork hologram.

These are not the only spatial modes that carry OAM, Bessel-Gauss (BG) beams also form part of the family
of helical modes and they are similar to the LG modes in that they also carry OAM. They do however differ
in their ability to reconstruct themselves after encountering an obstacle,8 and they remain diffraction-free upon
propagation for a finite distance.9 The Bessel-Gaussian (BG) function in polar coordinates, is given by

EBG` (r,Φ, z) =

√
2

π
J`

(
zRkrr

zR − iz

)
exp(i`Φ− ikzz) exp

(
ik2rzw

2
0 − 2kr2

4(zR − iz)

)
, (2)

where ` is the azimuthal index (a signed integer), J`(·) is the Bessel function of order `; kr and kz are the
radial and longitudinal wave numbers. The initial radius of the Gaussian profile is w0 and the Rayleigh range
is zR = πw2

0/λ. The propagation constant k and the parameters kr and kz are related by k2 = k2r + k2z . These
modes can be generated using a Durnin’s ring-slit,10 which can be implemented digitally11 by modulating the
input beam Fig. 2 (a) with a ring-slit surrounded by a checker board pattern in Fig. 2(b), which is simply an
array of alternating sets of pixels that are out of phase by π allowing us to modulate the amplitude and phase
of the incident beam to produce the desired mode in Fig. 2 (c).
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Figure 2. (a) Gaussian beam incident on (b) spiral hologram with inserts of the checker board and the ring-slice of
azimuthal variation used to modulate the amplitude and phase of light respectively, generating (c) a BG mode of `=1 at
the far-field.

3. EXPERIMENTAL REALISATION

Using the experimental setup in Fig. 3 where a Gaussian beam Fig. 3 (a) was expanded and collimated using
lenses L1 (f=35 mm) and L2 (f=750 mm) to approximate a plane wave front in Fig. 3 (b) onto SLM1. At SLM1
LG modes of radial index ρ and azimuthal index ` were generated and filtered through the 4f imaging system
using an aperture and imaged onto SLM2, which we encode with varying azimuthal and radial indices. These
indices were detected from the signal obtained at the focal plane of lens L3 (f=250 mm) on the CCD camera.
Using the Arrizon et. al technique,12 we generated holograms that modulate the phase and amplitude of the
incident Gaussian beam with a flat wave front such that we could generate the superposition of the LG modes
in Fig. 4 (a, b, c).

Figure 3. Schematic of the experimental setup where(a) is the Gaussian mode from the laser was expanded by a telescope
to approximating a plane wave (b), where L-lens, M-mirror, SLM-spatial light modulator, CCD-camera.

Bessel-Gauss (BG) beams have shown to be useful in manipulation of micro-particles,8 and in single photon
experiments for high-dimensional entangled state,13 and for reconstruction of quantum entanglement.14 However
the multiplexing of BG modes for optical communication purposes has not been investigated. Holograms encoded
with multiple azimuthal phase components at varying radial distances generate superpositions of BG modes and
can be implemented in the same experimental setup as in Fig. 3, where SLM1 was encoded with the annular
ring holograms with the corresponding petal structures in Fig. 4 (d,e,f).

Proc. of SPIE Vol. 9194  91941B-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/14/2014 Terms of Use: http://spiedl.org/terms



holograms B mod

(a)
ork hobo ram

(b) (c)

f, am.

Figure 4. Holograms of ρ, ` modes of (a) ρ, `=(1, 1), (b) the superposition of ρ, `=(3, 4) and ρ, `=(1, 1) modes as well as
(c) the superposition of ρ, `= (1, 1), (1, 3), (1, 5), (1, 7). BG holograms of (d) the superposition of `=± 3 resulting into 6
petal structures, (e) `= ± 4 resulting into 8 petal, and (f) `=± 6 resulting into 12 petals.

3.1 Detection of the helical modes

Different detection tools have been introduced to extract the azimuthal and radial components of these modes,
from the use of dove prisms separating the odd and even azimuthal indices,2 to the use of refractive optical
elements that transforms the azimuthal varying beam into a linear phase variation resulting in spots of light at
` dependent positions.15,16 Similarly to the generation of LG modes using the fork hologram in Fig. 1, when a
LG mode of order ` is pass through a fork diffraction grating of order −`, the output mode results in a Gaussian
signal in the Fourier plane of a lens as seen in Fig. 5, referred to as the azimuthal decomposition technique.17

This technique can be used to detect any arbitrary field u(r, θ) by expanding the field into the angular harmonics,
exp(i`θ):

u(r, θ) =
∑

c`(r) exp(i`θ), (3)

where c` is the r dependent coefficient and ` is the azimuthal index. We implemented this detection tool in our
experimental setup in Fig. 3, where we generated an ` varying beam in Fig. 5(a) on SLM1 and encoded SLM2
with a −` hologram Fig. 5(b), to observe a Guassian signal Fig. 5(c) on the CCD camera.

Figure 5. (a)LG mode of `=-1 passing through (b) the azimuthal filter fork hologram with charge of `=+1, (c) resulting
in a Gaussian signal of charge `=0.

There are detection limitations associated with these modes such as mode coupling. The contributing factor
to this mode coupling is the spherical aberration of the Gaussian envelope which was corrected for, by generating
a collimated flat wave front. The uneven power distribution of these modes since their sizes increase by a factor
of `, contributes to the uneven modal spectrum. To correct for the uneven power distribution we measured
the power spectrum of these modes and normalised the power to the minimum modal power. The normalised
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coefficients were incorporated in the encoded holograms which modulated the intensity of the modes to be equal
as shown in Fig. 6.

Figure 6. The uneven and corrected power spectrums.

Taking these factors into consideration we show that we can improve the mode coupling between the neigh-
bouring ` modes in Fig. 7(a), to a pure spectrum of `, ρ modes in Fig. 7(b), so that they become more efficient
for optical communication.

Figure 7. Azimuthal and radial spectrums of the multiplexed modes of (a)ρ=0, `=1,3,5,7 without the power and wave
front corrections and (b) ρ=1, `=1,3,5,7 with the power and wave front corrections.

4. CONCLUSION

We have successfully multiplexed spatial modes of two degrees of freedom in free-space and have shown that by
correcting the wave front and the uneven power distribution of the modes we can improve the mode coupling of
multiplexed modes in free space. The next step will be to propagate these modes through a single mode fibre and
incorporate different detection tools to improve our signal processing for optical communication applications.
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