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ABSTRACT 

The need for natural human blood and its derived components remains prevalent despite substantial 

developments in the area of artificial blood products. Being a critical component of modern 

therapies, the inventory management of blood platelets is of high importance in healthcare practice. 

Every blood component has a known shelf life after which the product can no longer be used.  

According to the South African National Blood Service (SANBS), platelets have the shortest shelf 

life of 5 -7 days and are the most expensive. This shortness of shelf life leads to huge challenges in 

production and inventory management. On one hand, production and operational costs are high, 

while on the other, shortage can result into higher costs of loss of lives. Large outdate rates are also 

thought to be a threat to the stability of the platelet supply chain because donor participation rates 

are typically low. The blood platelet production and inventory problem is therefore that of 

minimizing operational costs while ensuring low shortage and outdate rates. 

Exact methods have been proposed to handle blood platelet production and inventory management. 

These methods can only handle small or moderate-sized problems due to the explosive growth in 

computational expense with the increase of problem size. Some of these methods have also been 

reported to be very difficult to implement in practice. Due to these limitations of exact solution 

methods, most studies in the area have focused on the use of either approximate models or heuristic 

techniques to produce usable solutions. 

Having identified the advantages that metaheuristics have over many classical approaches, and 

how these advantages make them quite suitable for the problem, this research explores the utility 

of metaheuristics in solving this real world problem. Two different approaches are considered for 
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solving the blood platelet production and inventory problem: optimization of order-up-to policy 

and optimization of daily production amounts. The Greedy Random Adaptive Search Procedure 

(GRASP) is explored for the latter, while differential evolution and Bat Algorithm are explored 

for the former. For the optimization of the order-up-to policy, the operations of the blood platelet 

producer is modeled in two different ways (Model 1 and 2). The algorithms are chosen for their 

attractive properties like efficiency and simplicity. They are successfully applied and shown to be 

easily amenable to the problems studied. Parameter optimization is explored for Differential 

Evolution (DE) and Bat Algorithm (BA) to arrive at recommendations for best performance in 

solving the problem. A comparative study of the two algorithms is also included.  Both DE and 

BA are efficient in solving the models, requiring less than 150 function calls in all cases, which on 

the typical personal computer of today, would run in only fractions of a second. In terms of yearly 

average costs, DE produces solutions that outperform Bat Algorithm on model 1 while the reverse 

is the case on the two scenarios of model 2; BA proved slightly more efficient than DE. 

Finally, GRASP is shown to be adaptable for the blood platelet daily production amount problem. 

It is observed that there is a linear relationship between the number of iterations and the run time. 

The specific relationship or model can therefore be estimated and used to determine the appropriate 

design choice or predict expected run time for a given choice. For the highest number of iterations 

in the case study (500), the average run time was between 1.6 and 1.8 seconds for β = 5 and β = 

10 and even lower for β = 15. The algorithm is therefore suitable for applications with low time 

budget. The results show that the computational cost per iteration is quite low. More so, it is 

capable of arriving at good solutions within a few iterations.   
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CHAPTER ONE 

1 INTRODUCTION AND BACKGROUND 

1.0 Introduction 

This chapter presents an overview of this thesis. Some background is presented on the research 

topic, after which the problem statement is described. Then the research objectives are highlighted, 

followed by clarification of scope of the study as well as overview of the methodology adopted. 

Finally, a few important terms are defined as used in this thesis, before concluding the chapter 

with description of organization of the rest of this thesis. 

1.1 Background and Motivation 

Blood platelets (PLTs) are a vital life-saving perishable product.  Despite substantial developments 

in artificial blood products, the need for natural human blood as well as its derived components 

remains prevalent [1]. Patients needing chemotherapy, organ transplants, bone marrow transplants 

and radiation treatments often require PLT transfusions. There is therefore the need for a readily 

available inventory of PLTs at hospital centers. PLTs can be derived from a unit of whole blood 

together with other two main components: Red Blood Cells (RBCs) and Plasma, or obtained 

directly from a donor through the process of apheresis which separates and retains the PLTs while 

returning the other blood components to the donor’s blood system [2]. Generally, each blood 

component has a known shelf life after which the product is counted as unusable.  According to 

materials from the South African National Blood Service (SANBS) [3], among the various blood 

components, PLTs have the shortest shelf life which ranges from 5 to 7 days, and they are the most 

expensive. 
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Generally, blood product management is a problem that has attracted much societal interest 

because of a number of complicating factors. Supply is quite irregular due to dwindling availability 

of donors. Blood donors have to meet strict requirements such as being free from certain diseases, 

having normal blood pressure and pulse rates, falling into particular age groups and being of a 

minimum weight. While on one hand, a chunk of the populace is not eligible, on the other, a large 

percentage of the eligible adults actually do not donate blood. SANBS reports that less than 1% of 

the South African population are regular donors [4]. Eligible donors also have to allow for a period 

of 56 days between two whole blood donations [5]. The supply of blood also depends on other 

factors ranging from the capacities for collecting and processing blood at the blood banks to the 

availability of transport infrastructures [6]. On the demand side of the process, demand for blood 

products is uncertain even with the information of treatment plans and planned surgeries. 

Emergency cases account for part of this uncertainty. In addition, the variety constituted by the 

eight different blood types, introduces complexity in predicting demand. The very short shelf life 

of PLTs as compared to RBCs and plasma is a major factor that poses problems for managing their 

inventory. The operational costs involved in producing and managing inventories of blood PLTs 

are also high. Production volumes have to be set carefully to prevent high outdate as there are great 

cost and ethical implications. Shortages that put lives at risk should also be minimized. The blood 

PLT producer therefore usually has difficulty in identifying optimal production policy that 

balances wastage, shortages and costs. This optimization problem is the concern of this thesis. 

Exact methods have been proposed in the literature to handle the blood platelet production and 

inventory management problem (BPPIP). One of such methods is Dynamic Programming (DP) 

[7-9]. These methods are limited by the fact that they can only solve small or moderate size 
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problems due to the explosive growth of computational cost as the problem size increases. Some 

of these methods have also been reported to be very difficult to implement in practice [10].  

Because of these limitations of exact methods, most studies have focused on the use of either 

approximate models or heuristic techniques to produce usable solutions [10]. Belien and Force [1] 

in their review pointed out the need for further research to develop fast and robust heuristics to solve 

the PLT inventory problem as they conclude that “there is no proof yet whether a solution to the 

PLT ordering problem exists involving simple order-up-to rules resulting in both low levels of 

outdate and wastage”.  

This research work therefore explores the use of metaheuristics in solving the BPPIP. Two solution 

approaches are presented and the performance of three metaheuristic algorithms are evaluated, 

namely, Differential Evolution (DE), Bat Algorithm (BA) and greedy random adaptive search 

procedure (GRASP). 

1.2 Problem Statement 

The inventory management of blood PLTs is of high importance in healthcare practice. PLTs are 

a critical component of modern therapies and their production and inventory management is 

challenging, due to the very short shelf life associated with this valuable blood product [11]. Costs 

are incurred by the blood banks in processing, storing and transporting blood products. Shortage 

can result in higher costs like loss of lives, hence it should be kept at minimum. Outdates are also 

undesirable because they lead to tangible and intangible penalty costs. There is the tangible costs 

to the blood producer of a waste of production costs and the intangible costs to donors who may 

be less inclined to donate if they feel their precious gift will be scrapped. Large outdate rates are 

thought to be a threat to the stability of the PLT supply chain because donor participation rates are 
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typically small [4, 12]. PLT production volumes must therefore be set carefully at blood banks to 

prevent large outdate and shortage rates as well as minimize costs. Exact solution methods to the 

BPPIP have been found difficult to implement because of the problem of curse of dimensionality.  

This research explores heuristic optimization techniques that are capable of producing good 

solutions to the BPPIP. Two approaches to solving the problem are presented and the performance 

of metaheuristic algorithms, with respect to efficiency and accuracy, are investigated and reported.  

1.3 Research Questions 

The research questions examined in this research are outlined as follows: 

 How can the BPPIP be realistically modeled to capture practical constraints? 

 Which proven metaheuristic technique(s) are relatively easily amenable to the BPPIP, and 

how can each be actually adapted to solve the problem using the different models? 

 How does each of these algorithms perform in terms of efficiency as well as accuracy, the 

quality of solutions being measured by overall cost, shortage rate and outdate rate? 

1.4 Research Objectives 

The objectives of this research work are: 

 To model mathematically, the operations of the blood PLT producer for optimization of 

order-up-to policy in terms of cost, while satisfying practical constraints relating to shortage 

and outdate. 

 To adapt and implement two metaheuristic algorithms (DE and BA), specifically chosen for 

their simplicity and easy amenability, for solving the order-up-to policy models; to 
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empirically determine optimal parameter selection for the algorithms and to compare both 

on the basis of the performance criteria mentioned in section 1.2. 

 To explore another metaheuristic algorithm, GRASP, chosen for the same reason as in the 

second objective, for optimizing daily PLT production amounts over a specified planning 

horizon. 

1.5 Research Methodology 

Performances of the algorithms are studied empirically. The datasets used in the study are 

simulated based on parameters and distribution information from [9, 11], on demand, initial 

inventory, PLT shelf-life and cost. 

Data analysis is done using descriptive statistics and relevant visualizations. Statistical hypothesis 

testing techniques are also employed for generalizing comparison between performances of 

algorithms. The criteria for comparison are accuracy and efficiency. 

All implementations are done in MATLAB 2015b, on an Intel(R) Core(TM) i7-3632QM 2.20GHz 

CPU, operating on a 64bit system. 

1.6 Scope and Limitation 

This research work focuses on the BPPIP at the producer level using metaheuristics. This is 

primarily because the blood center is the source of PLTs production. As long as the blood producer 

can keep making optimal production volume decision every day, outdates and shortages will be 

reduced in the entire PLT supply chain. In addition, reduction of costs made possible by optimal 

production volume decisions will also reduce the price of blood PLTs and make it more affordable 

to the patients who are in need of it. 



6 
 

Selected algorithms are chosen on the basis of simplicity, efficiency and being easily amenable to 

the problems studied. These properties are typically of high priority in software tools used in such 

practical settings. The study is limited to two solution approaches to the BPPIP: 

 the optimization of order-up-to policy 

 optimization of daily production amounts over a specified planning horizon 

1.7 Significance of the Study 

This study holds some significance for research and practice relating to the BPPIP, in a number 

of ways, highlighted as follows: 

 First, on the theoretical front, the model of [11] developed for supply chain inventory 

optimization for short-shelf-life goods, is improved in this work to capture cost for the 

blood producer while satisfying practical constraints of limits on shortage and outdate. 

 Adaptations of metaheuristics are presented, for solving the blood platelet production and 

inventory problem. Research into this important real-world problem among computational 

scientists is relatively young. This is particularly true among metaheuristics researchers.  

While many metaheuristics have generally proved efficient and effective for a wide range 

of optimization problems, a few are identified that are easily amenable to the solution 

approaches considered in this work. 

 The successful adaptations in this work provide a good foundation for further research in 

this area which might portend promising arena for incorporation into decision support 

systems for the BPPIP.  
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1.8 Definition of Terms 

A few terms are defined here, as used throughout this dissertation: 

 Inventory: This refers to a listing or store of raw materials, in-process and finished goods considered 

to be the portion of an organization’s assets that are ready or will be ready for sale. Goods in this case 

are blood PLT units. 

 Order-up-to policy: This is a rule that governs order for new blood PLT units in order to bring 

the inventory level to a certain base stock. 

 Metaheuristics: a procedure, algorithm or technique that solves an optimization problem by 

conducting a non-exhaustive search through the solution space. The final solution may not be 

the global optimum but an effective technique will generally produce good quality solutions. 

Metaheuristics are popular because of their capacity to handle practical problems which 

typically have solution spaces that are too large to be handled by exact techniques or 

exhaustive enumeration. 

 Solution: any hypothetical vector of possible values of decision variables is referred to as a 

solution. Feasible solutions are those that result in expected shortage and outdate rates less 

than or equal to specified percentages.  

1.9 Overview of Chapters 

The rest of this dissertation is structured as follows: 

Chapter two presents a review of related literature. 

Chapter three presents a study of metaheuristics on the order-up-to policy solution approach. In 

this chapter, the models and methodology are described in detail. Results from various related 
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empirical studies are also presented and discussed. DE and BA are adapted for the problem and 

compared on the grounds of accuracy and efficiency. 

Chapter four presents the adaptation of GRASP for the optimization of daily PLT production 

amounts.  

Finally, Chapter five presents the summary and conclusion of this research work, including 

recommendations for future work.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.0 Introduction 

This chapter provides an overview of the inventory management of perishables with an emphasis 

on blood products. It then gives a review of works done in the area of blood PLT inventory 

management. Several themes are identified in literature: scope of operation, major model 

characteristics and model solution approaches. An account into the use of metaheuristics to solve 

the BPPIP is also presented. 

2.1 Perishables Inventory Management 

Inventory refers to stock of materials or goods that is held available for use. Inventory is held to 

ensure operations continue at an organization in the event of a time lag between the order and 

arrival of a given product. For example, time elapses between when a blood bank recruits donors 

and collect, test and prepare blood products. Inventory is also necessary to cater for uncertainties 

in production, demand and supply. Such uncertainties result from the fact that neither the 

availability of donors nor the demand for blood products is known ahead of time. Inventory could 

be a means of achieving economies of scale in the sense that the fixed costs of a blood bank can 

be spread over a number of blood units in order to reduce the overall cost of operations [10]. 

Perishable goods are items that become unusable through natural processes or legal statutes after 

a period of time [13]. The lifetime of perishable items can be fixed, for example in blood products, 

or stochastic, as is the case with fruits and vegetables. Perishability adds complexity and cost to 

any inventory problem [10]. 
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Research into perishable product inventory management has been active for a few decades. One 

of the earliest research efforts on the management of inventory of perishable products, including 

blood products, is the work of Van Zyl [14] published in the 1960s. Nahmias [13] took it further 

in 1982, giving a survey of works that studied periodic review policies. He also considered the 

applications of the models to blood bank management. In 1984, Prastacos [15] reviewed 

contributions from the field of Operations Research to the theory and practice of blood inventory 

management. Also, there is a survey of continuous inventory perishable models up to 1991 by 

Raafat [16]. Goyal and Giri [17] review and classify literature on perishable inventory between the 

early 1990s and 2000, according to shelf life and the nature of demand, considered in the studies. 

According to their classifications, shelf lives are either fixed or random. Similarly, demand is either 

deterministic or stochastic. They also incorporate real-world conditions like delay in payment, 

price discount, and so on in their classification of literature. In another review, Karaesmen et al. 

[22] gave an overview of literature on management of perishable products with respect to supply 

chain, having fixed or random shelf lives. Particular attention is paid to food supply chains. Bakker 

et al. [18] reviewed inventory models of perishable items that have been published since the 

aforementioned review of Goyal and Giri in 2001. The authors suggested that more focus be placed 

on stochastic modelling to better represent inventory control practice. 

2.2 Blood Product Inventory Management 

The earliest review found to focus specifically on the inventory management of blood is  that of 

Prastacos [15] in 1984. Pierskalla [19] discusses both supply chain and blood inventory 

management while Belien and Force [1] give the latest review of advancements made in inventory 

and supply chain management, of blood products. The authors observed two peaks in the 

distribution of papers published on blood products management. The first is between 1976 and 
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1985 and the more recent one is between 2001 and 2010. In terms of focus, they note that most of 

the papers are works on red blood cells or whole blood with a few studies found on the inventory 

management of PLTs.  

2.2.1 Red Blood Cell Inventory Management 

Authors often use the term “RBCs” and “blood” interchangeably. This is probably because RBCs 

are mostly in demand and they are transfused into surgical and intensive care patients to improve 

the delivery of oxygen to the tissues. They are also used in the treatment of premature infants and 

those suffering from anemia [1]. Therefore, a ready inventory of this blood product needs to be 

maintained at hospitals. Approaches to the inventory management of RBCs are discussed in this 

section. 

Pierskalla and Roach [20] used a DP formulation to show that first in first out (FIFO) policies lead 

to optimal solutions in problems involving perishable inventory. Using a simulation methodology, 

Jennings [21] focuses on trade-off between shortages and outdates for a hospital region using 

exchange curves derived under different operating policies. Brodheim et al. [22] suggest an 

equation for setting target inventory level that depends on average daily demand and pre-specified 

acceptable shortage rates. Adopting a similar approach, Cohen and Pierskalla [23] propose a 

simple decision rule for setting optimal target inventory levels for a decentralized regional blood 

banking system or hospital blood bank, that makes it unnecessary for  blood bank administrators 

to explicitly set shortage rates. Using simulation, they identify the minimum cost inventory policy 

in which only shortage and outdate costs are considered, and from the analysis of the results, a 

target inventory level that depends on daily demand, average cross match release and transfusion 

to cross match ratio period, is identified. Friedman at al. [24] describes blood management policies 

from a clinician’s view, suggesting an empirical approach to inventory policy in which safety 
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stocks are gradually reduced. The authors also use simulation to set inventory levels under the 

assumption of an extended 35-day shelf life. Stanger et al. [25] reviewed the inventory practice in 

seven UK hospitals that had recorded low wastage in a year in order to identify the key drivers for 

good blood inventory performance. From their findings, skilled and regularly trained transfusion 

staff, electronic cross matching, simple management procedures and transparency of the inventory 

are key drivers for realization of low wastage and good inventory management practice. Gunpinar 

and Centeno [26] present stochastic and deterministic models to minimize costs, shortage and 

outdates of RBCs and PLTs at a hospital within a planning horizon. 

2.2.2 Platelet Inventory Management 

The limited studies on the inventory management of PLTs can be classified at three levels: the 

hospital blood bank level, the producer or regional blood bank level, and the entire supply chain 

level. Most of the works done in PLT inventory management have also been qualitative in nature. 

They are mostly case studies [11]. 

2.2.2.1 Hospital Blood Bank Level 

Focusing on the hospital level of PLT management, Sirelson and Brodheim [27] test a class of 

PLT ordering policies using simulation. They present a predictive model that relates the base stock 

level and mean demand to the rates of outdate and shortage. Zhou et al. [28] investigated the 

inventory management of PLTs with a three-day shelf life. For a single hospital, they came up 

with an optimal dual-mode replenishment policy comprising one regular order every two days and 

an expedited order in between the two days, if necessary. Blake et al. [12] developed a model for 

hospitals that attempts to find a PLT ordering policy that jointly satisfies pre-specified bounds on 

outdates and shortages while minimizing ordering costs. Civelek at al. [29] show that a protection 
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level policy can improve the blood PLT inventory management performance under various 

conditions. 

2.2.2.2 Producer/Regional Blood Bank Level 

At the regional blood bank level, Haijema et al. [6, 30] explore near-optimal inventory policies 

that belong in the category of simple order-up-to rules. The quantitative method proposed by these 

researchers is described by van Dijk et al. [31] for readers without much background in operations 

research. Blake [10] follows with an editorial write-up, describing the strengths and limitations of 

the solution method employed in the van Dijk paper. Abdulwahab and Wahab [32] developed a 

discrete-event, multi-period model for a single blood bank serving a single hospital. They also 

studied O-percentage within the inventory. de Kort et al. [33] did a practical implementation study 

to minimize outdate and extend time till outdating. A software tool designed specifically for this 

purpose is presented and named Thrombocyte Inventory Management Optimizer. Ghandforoush 

and Sen [34] in their work developed a decision support system to aid the realization of an efficient 

production plan as well as mobile assignment schedule to hospitals for a regional blood center.  

2.2.2.3 Entire Supply Chain Level 

Blake et al. [9] solved an instance of the PLT inventory management problem involving two-level 

supply chain for a single producer and a single hospital. A DP model is formulated and 

implemented for both supplier and consumer to optimize ordering policies. These policies are then 

simulated to select those that practically reduce outdate and shortage rates within the entire supply 

chain. Fontaine et al. [35] worked on improving the PLT supply chain by means of collaboration 

between the blood centre and hospital. The interaction between processes such as inventory 

management, collection, and rotation were studied, and recommendations made to improve the 

performance of supply chain. A post implementation analysis was also done to reflect the 
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improvement in outdates and costs reduction. Mustafee et al. [36] studied the supply chain of the 

UK national blood service and demonstrated the usefulness of simulation in the timely execution 

of such supply chains. 

Duan and Liao [11] proposed a framework for supply chain management of highly perishable 

items based on simulation-optimization with focus on PLTs. They also developed a technique for 

arriving at a new replenishment policy based on a old inventory ratio. This was tested using a 

single-supplier-multi-consumer supply chain and their policy performed better than two other 

policies from the literature, consistently yielding good solutions for all cases considered. 

Figure 2.1 shows the different scopes of operation for the blood PLT inventory problem while 

figure 2.2 shows the distribution of works according to the scope of operation. 

 

Figure 2.1: Scope of Operation for the Blood PLT Inventory Problem 
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Figure 2.2: Distribution of Scope of Operation in Literature 

 

2.3 Blood Platelet Inventory Problem: Model Characteristics  

The BPPIP is a real life problem involving various complex dynamics. As such, models try to 

incorporate different characteristics to capture the real life processes as much as possible. Also, 

the assumptions made and factors considered in any model considerably affects the solutions 

generated [32]. The table 2.1 is a summary of major characteristics and assumptions considered in 

various models. 
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Table 2.1: Major characteristics and assumptions considered in various models. 

Objective Function Major Model 

Characteristics 

Major Assumptions Reference 

Minimize platelet shortage 

and outdate while 

maximizing the total rewards 

and keeping minimum 

inventory level.[32] 

 Stochastic demand 

and supply. 

 Deterministic lead 

time. 

 Six days shelf life. 

 Reward function 

used in place of 

costs. 

 Maximum 

inventory 

capacity for each 

blood type. 

 Production occurs 

six days a week. 

 Shortage is served 

by expediting 

order from 

outside source. 

 Distinction 

between blood 

types with ABO 

substitution 

system (RH not a 

must). 

Abdulwahab 

and Wahab 

[32] 

Minimize total costs, 

shortage and outdating levels 

within a planning horizon. 

 Stochastic demand 

and demand for two 

types of patients are 

differentiated. 

Capacity of blood 

center is limited. 

Gunpinar and 

Centeno [26] 
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 Five days shelf life 

including two days 

of testing. 

 Zero lead time for 

blood supply. 

 Cross match--

transfusion and 

cross match release 

period are 

considered. 

 Purchase, holding, 

shortage and 

wastage costs are 

considered. 

Select an order size that 

minimizes the cost of 

operations over a planning 

horizon. 

 Deterministic 

supply. 

 Stochastic demand. 

 Five days shelf life. 

 One day lead time. 

 Constraints on 

inventory capacity. 

 Order, holding, 

shortage and 

 Donation occurs 

five days a week. 

 Production 

decision is made 

before demand for 

the day is 

experienced. 

 Shortage is served 

by expediting 

Blake, et 

al. [9] 
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disposal costs are 

considered. 

order from 

outside source. 

Minimize average costs over 

a planning horizon. 

 Two types of 

demand (“young” 

and "any age") are 

distinguished. 

 Alternative supply 

rules for the two 

types of demand. 

 Six days shelf life. 

 One day production 

lead time.  

 Production, 

outdating, 

inventory, shortage 

and mismatch costs 

are considered. 

 Production only 

takes place 

during 

weekdays. 

 No restrictions 

on production 

nor storage 

capacity. 

 Shortage is 

served by 

expediting order 

from outside 

source. 

 No distinction of 

blood types. 

Haijema, 

et al. [6] 

[30] 

Minimize the expected total 

costs over an infinite time 

horizon. 

 Age-differentiated 

stochastic demand 

(young, mature, 

old). 

 Three days shelf 

life. 

 Shortage is served 

by expediting 

order from 

outside source. 

 No distinction of 

blood types. 

Civelek, et 

al. [29] 
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 Zero lead time. 

 Replenishment, 

holding, outdating, 

shortage and 

substitution costs 

are considered. 

 

Minimize the system outdate 

rate under a pre-specified fill 

rate constraint. 

 Stochastic demand 

following Poisson 

distribution. 

 Shelf life of 5 

days. 

 Lead time of one 

day. 

 Performance 

measures are 

shortage and 

outdate rates. 

 Costs are not 

considered. 

 Shortage is 

served by 

expediting order 

from outside 

source. 

 No restriction 

with respect to 

production and 

storage capacity. 

 Production only 

takes place 

during 

weekdays. 

Duan and 

Liao [11] 

Find a platelet ordering 

policy that jointly meets 

defined bounds on outdates 

and shortages while 

 Stochastic demand 

assumed to be 

Poisson 

distributed. 

 Hospital 

specifies target 

service level and 

outdate rate. 

 Blake, et al. 

[12] 
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minimizing the overall 

number of orders placed.  

 Six days shelf 

lifeObjective is to 

find a PLT 

ordering policy 

that jointly meets 

defined bounds on 

outdates and 

shortages while 

minimizing the 

overall number of 

orders placed.  

 ABO and Rh 

status of donor 

and recipient are 

ignored. 

 Demand for 

platelets is 

assumed to occur 

in doses rather 

than individual 

units. 

 All stock 

arriving on a 

given day of the 

week is of an 

identical age. 

 

2.4  Existing Solution Methods for the BPPIP 

In this section, a review of some common model solution methods in literature for the BPPIP is 

presented. The advantages and limitations of each method are noted where applicable. 

2.4.1 Dynamic Programming  

The perishable product inventory management problem has been defined in a DP format in the 

early works of Nahmias [7] and Fries [8]. However,  DP problems suffer from the “curse of 
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dimensionality” [10]; the formulations cannot be solved for problems of realistic size as it becomes 

too large for computation. In addition to this, DP solutions have been reported to be very difficult 

to implement in practice. This is because the solution depends not only on the actual number of 

units available, but also on age distribution and the specific day of the week [1, 10]. Because of 

this limitation, Blake et al. [9] adopted a simplification within the DP framework through 

aggregation of data to reduce the problem search space and make the problem tractable. They 

reported that their model has the potential to lower costs by 18% while reducing shortages and 

outdates. 

Haijema and colleagues [6] in their own work followed the same approach, using DP and 

dimension reduction through aggregation of units into doses combined with a computer simulation 

method. They distinguished between two types of periodic demand namely demand for “young” 

PLTs and demand for PLTs of “any” age bounded by the maximum shelf life, while varying the 

supply rules for both demand types. After a downsizing of the problem and solving exactly by 

standard successive approximations, the researchers showed the complexity of the optimal policy. 

They also showed the near-optimality of simple single and double-order-up-to replenishment rules. 

In their opinion, the double level order-up-to rules, with one level corresponding to “young” PLTs 

and the other to the total inventory, perform better and can be shown to be nearly optimal when 

distinguishing between demand for “young” and “any” PLTs. They set up a simulation frequency 

table by for the optimal strategy to identify the order-up-to level that appears most frequently for 

each day of the week. The strategy was simulated over a large number of weeks and a best-fit 

order-up-to rule was determined from the various inventory state and production size 

combinations. By simulation, the best-fit order-up-to rule for the downsized problem was verified 

to compete closely with the real optimal strategy. They then proceeded to rescale the solution to 
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the original problem size, and repeat simulation to verify that the feasibility of the solution for the 

original problem. Finally, a local search procedure based on simulation was used to fine-tune these 

simple order-up-to levels. In their sensitivity analyses, it was shown that increasing shelf life of 

PLTs from 4 to 5 days substantially reduces shortages and outdating while less benefit was found 

by extending from 5 to 7 days. It was also proved that distinguishing between the eight blood types 

and accounting for Rhesus factor was unnecessary. Their justification lies in the fact that less than 

50% of the whole blood donations are processed for PLTs production. They however mention that 

it may become necessary to create a distinction between blood groups, when there are restrictions 

on PLTs production because of a limited availability of whole blood donations. Using sensible 

cost functions, the authors estimated outdating to reduce from 20% to about 1%. In their practical 

application of the results from the approach above for the routine supply of PLTs using a real-

world dataset spanning 3 years obtained from a Dutch regional blood bank, van Dijk et al. [31] 

reported that outdating could be reduced from 15-20% to less than 0.1%  of the annual demand, 

with shortages virtually lowered to zero. Haijema et al. [30] extended their combined DP-

Simulation approach to accommodate irregular production breaks such as holidays, and reported 

that with the maintenance of outdating and shortage rates below 1%, the simple order-up-to rule 

remains optimal. They discovered the possibility of integrating the periods with production. 

While Blake [10] agrees that the method suggested by van Dijk et al. [31] provides insights into 

the PLT inventory problem by suggesting relatively simple and easy to implement policies, he 

disagrees with their assumption. Van Dijk et al. [31] adopted the assumption that the stock age 

distribution can be ignored when making optimal ordering decisions and Blake [10] proved that 

their assumption is incorrect. Blake [10] also cautions against making broad generalizations of the 

proposed solution based on the results from a single case study. Furthermore, he noted an error in 



23 
 

their results presentation which prevents direct comparison with other heuristics thus precluding 

confirmation of their solution quality. 

One author, de Kort et al. [33] reported a practical implementation study of the combined 

stochastic DP and simulation approaches. The study adopted a theoretical approach towards 

minimizing outdating and shortages while extending the time till outdating. They also discussed 

the design of the earlier-mentioned Thrombocyte Inventory Management Optimizer, a dedicated 

software tool used to address the problem. A significant improvement and more structured platelet 

inventory management has resulted from the adoption of their theoretical approach. 

2.4.2 Approximate Dynamic Programming  

Identifying this limitations of problem downsizing because of the “curse of dimensionality”, 

Abdulwahab and Wahab [37] used an approach that combines a news-vendor model, Linear 

Programming (LP) and Approximate Dynamic Programming (ADP), to develop a blood platelet 

inventory model. Factoring into their proposed model the eight different blood types and their ages, 

the daily demand distribution and periodicity of demand and supply, as well as demand of each 

blood type and the inventory level. The researchers evaluated the model in terms of shortage, 

outdate, inventory level, and the gained total reward. The developed model was solved without any 

downsizing and their results show cost reductions and low inventory level. In addition, shortages 

and outdates are reduced to 3.9% and 4.6% of the annual demand and production respectively.  

2.4.3 Integer Programming  

Gunpinar and Centeno [26] in their study developed Integer Programming (IP) models aimed at 

minimizing total cost, shortage and outdate rates of PLTs and RBCs for a hospital inventory within 

a given planning horizon. Their models explicitly accounted for the age of units in the inventory 
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as well as two types of demand (as also found in the work by Haijema et al. [6]). In addition, their 

model captured uncertainty in blood demand and cross match to transfusion ratio. Their results 

showed average wastage reduction from 19.9% to 2.57%. They also incorporated cross-match to 

transfusion ratio into the model using the hospital’s average value. However, only single cross 

matching policy was considered in the models, and cross-match to transfusion requirements for 

specific patient groups were not incorporated. 

2.4.4 Simulation Studies 

Other researchers have addressed the platelet inventory problem through simulation studies. 

Sirelson and Brodheim [27] came up with a predictive model that relates the base stock level to 

the outdate and shortage rate.  Katz et al. [38] also developed computer a simulation model to 

generate daily platelet orders. Both groups of researchers found ample reductions to outdate rate 

from 10-20% to 2-5%. However, since they used simulation models, their solutions cannot be 

proven to be optimal and the extent to which the solutions are robust and generalizable is not clear 

[10, 31]. 

2.4.5 Metaheuristics 

Metaheuristic algorithms generally refer to optimization methods that implement certain strategies 

for searching a solution space and finding the global best solution. These algorithms have been 

reported to find very good solutions although there is no theoretical guarantee that they will always 

find the global optima. In addition, they are known to have advantage in dealing with optimization 

problems that are difficult to be modeled explicitly [39]. Due to corresponding increase in 

complication of optimal/sub-optimal solution search and formulation of constraints or the presence 

of conflicting objectives with increase in problem size, exact algorithms have been found to be 

much slower, causing additional computational costs [40]. Meanwhile, the solution space of 
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practical problems easily gets too large to preclude exhaustive enumeration. For this reason, 

metaheuristics, which are non-exhaustive search techniques have gained popularity in many 

practical fields. Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic 

Algorithm (GA), Tabu Search (TS) and Simulated Annealing (SA) are examples of metaheuristic 

algorithms. 

Metaheuristics have been applied to different aspects of blood management in literature. Dufourq 

et al. [41], Adewumi et al. [42] and Olusanya et al. [43] applied metaheuristics to optimize the 

assignment of blood in a blood banking system. Dufourq et al. [41] presented a comparative study 

of GA, Hill Climbing and Simulated Annealing while Olusanya et al. [43] reported the 

performance of PSO for the blood assignment problem. For the BPPIP, Duan and Liao [11] applied 

a hybrid metaheuristic comprising of two cooperative metaheuristic algorithms (DE and Harmony 

Search) and one local search (Hooke and Jeeves) method. The authors demonstrated the 

effectiveness of this hybrid metaheuristic in generating near-optimal solutions in their simulation-

optimization framework. Based on this precedence and recommendations in literature, this work 

also considers the application of DE, BA and GRASP to the different models of the BPPIP as is 

presented in subsequent chapters. However, an overview of the three underlying techniques is 

provided in the subsections below. 

2.4.5.1 Differential Evolution 

DE is a global optimization algorithm based on evolutionary techniques introduced by Storn and 

Price [44] in 1996, and in congruence with other evolutionary-type algorithms, is stochastic and 

population-based. It is one of the most popular optimization algorithms currently [45].The general 

evolutionary algorithm procedure is as shown in figure 2.3: 
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Figure 2.3: General Evolutionary Algorithm Procedure 

In each generation G,  population is made of N-D parameter vectors in its parallel direct search 

procedure. The parameter vectors are of the form: 

 𝑥𝑖,𝐺 = [𝑥1,𝑖,𝐺 , 𝑥2,𝑖,𝐺 , … , 𝑥𝐷,𝑖,𝐺]  𝑖 = 1,2, … , 𝑁                            (2.1) 

Where N is the population size and D is the number of parameters. Upper and lower bounds are 

defined for each parameter and the initial vector population is chosen randomly from within these 

bounds. Each of the N parameter vectors undergoes mutation, crossover and selection. In the 

mutation process of the DE algorithm, a mutant vector is generated by taking the weighted 

difference between two population members (randomly selected) and adding a third member to 

the result. Crossover is then done with the aim of generating a trial vector by combining the mutant 

vector with the target vector. Thereafter, a selection operator is applied with the aim of comparing 

the fitness function value of the target and trial vectors to determine which of them moves to the 

next generation [46]. 

Each of these steps are described more specifically as follows: 

 Mutation 

For each parameter or target vector 𝑥𝑖,𝐺 , three other vectors 𝑥𝑟1,𝐺, 𝑥𝑟2𝐺, 𝑥𝑟3,𝐺, are randomly 

selected such that the indices 𝑖, 𝑟1, 𝑟2 and 𝑟3 are distinct. A mutant vector is generated of the form: 

Mutation Initialization 

Crossover/ 

Recombination 

 

Selection 
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 𝑣𝑖,𝐺+1 =  𝑥𝑟1,𝐺 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺)                                 (2.2) 

Where F ∈ [0,2] is a real and constant factor which controls the amplification of the differential 

variation. 

 Crossover 

Crossover is introduced to achieve the goal of cumulatively improving solutions such that 

successful solutions obtained from previous generations are incorporated in the current solution. 

To this end, a trial vector 𝑢𝑖,𝐺+1 is developed from the elements of the target vector 𝑥𝑖,𝐺 and the 

elements of the mutant vector 𝑣𝑖,𝐺: 

              𝑢𝑖,𝐺+1 = [𝑢1,𝐺+1, 𝑢2,𝐺+1, … , 𝑢𝐷,𝐺+1]                               (2.3)                                                                 

where 

   𝑢𝑗,𝑖,𝐺+1 = {
𝑣𝑗,𝑖,𝐺+1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗,𝑖 ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐼𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝐺 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗,𝑖  > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠  𝐼𝑟𝑎𝑛𝑑
                    (2.4)                                                 

In (2.4), 𝑟𝑎𝑛𝑑𝑗,𝑖~𝑈[0,1] and 𝐼𝑟𝑎𝑛𝑑 is a random integer from [1,2, … 𝐷] which ensures that 

𝑢𝑗,𝑖,𝐺+1 gets at least one parameter from 𝑣𝑖,𝐺+1. CR is the crossover constant ∈ [0,1] 

 Selection 

The trial vector 𝑢𝑖,𝐺+1, generated at the crossover stage is compared with the target vector 𝑥𝑖,𝐺  

using the objective value function. The one with the lower value function is admitted to the next 

generation 𝐺 + 1: 

        𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1 𝑖𝑓 𝑓(𝑢𝑖,𝐺+1) ≤ 𝑓(𝑥𝑖,𝐺)

𝑥𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                              (2.5)                                                         

The entire procedure is repeated until some stopping criterion is met. 
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The general DE pseudocode is presented below [47]: 

 

 

 

 

Algorithm 2.1: Pseudo-code of the DE  

DE has been shown to be highly effective in handling Combinatorial Optimization Problems 

(COPs) related to the problem under study. For example, Maryam and Farid [48] presented a DE 

algorithm for the single-item resource-constrained Aggregate Production planning Problem (APP). 

They showed that DE has a strong ability to reduce the infeasibility of the addressed problem, and 

 

DE Algorithm 

1 Initialize population: Set 𝑋(0) = {𝑥1(0), … , 𝑥𝑚(0)}   

2 Set 𝑔 = 0 

3 Compute {𝑓(𝑥1(𝑔)), … , 𝑓(𝑥𝑚(𝑔))}   

4 While (stopping criterion not met)  

5      for 𝑖 from 1 to m, do 

6            Set 𝑦𝑖 = 𝑚𝑢𝑡𝑎𝑡𝑒(𝑥(𝑔)) 

7            Set 𝑧𝑖 = 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑥𝑖(𝑔), 𝑦𝑖) 

8            Compute 𝑓(𝑧𝑖) 

9              if 𝑓(𝑧𝑖) < 𝑓(𝑥𝑖(𝑔)) then 

10       Set  𝑥𝑖(𝑔 + 1) = 𝑧𝑖 

11              𝒆𝒍𝒔𝒆 

12          Set 𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) 

13              end if 

14       end for 

15         Set g = 𝑔 + 1 

16 end while 
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is capable of handling linear and multiple-constrainted non-linear objective functions. In addition, 

Piperagkas et al. [49] combined PSO and DE to address a highly-constrained mixed integer 

optimization problem known as the multi-item inventory optimization model with supplier 

selection. The showed that the DE and PSO hybrid algorithm was highly competitive with other 

GA-based methods reported in literature. Radhika et al.[50] applied DE in solving the Master 

Production Scheduling Problem with positive results. Their analysis of results revealed that the 

DE algorithm performed better than GA in providing the optimal solution within reasonable 

computational time. Hence. DE has been successfully applied to large-scale, constrained, multi-

objective and uncertain optimization problems [45]. DE was also chosen as one of the 

metaheuristic algorithms to use in solving the BPPIP because of its simplicity, robustness and good 

convergence properties [44]. 

2.4.5.2 Bat Algorithm 

BA was recently introduced by Yang [51] in 2010 from the study of bats’ echolocation behavior 

in finding their prey. Even in the dark, the bats are able to differentiate between various insect 

types by emitting pulses of varying loudness and listening for the echoes that bounce back [40]. 

By following the delay of the returning echo, the bats are able to measure the distance from their 

prey and also to identify the location of other objects. The echolocation pulses have three 

characteristics: pulse emission rate, pulse frequency and intensity. The pulse frequency for most 

bat species is usually between 25kHz and 150kHz. This pulse emission rate can be sped up to 

about 200 pulses per second upon approaching prey. The pulse loudness varies from the loudest 

(110dB) to the quietest (50dB) as they come close to the prey.  

The BA uses the rules presented in [51]: 
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 The use of echolocation to sense distance and differentiate between prey and surrounding 

barriers. 

 Random flight is conducted with velocity 𝑣𝑖, at position 𝑥𝑖, emitting pulses with a fixed 

frequency 𝑓𝑚𝑖𝑛,  of varying wavelength 𝜆 and loudness 𝐴0 in search for prey. Wavelength and 

rate of pulse emission can be adjusted by the bats depending on the nearness of their prey. 

 The loudness or intensity of the pulse is assumed to vary from a large positive value 𝐴0 to a 

minimum constant value 𝐴𝑚𝑖𝑛 

The BA pseudo-code is presented next [51]: 

 

Bat Algorithm 

1 Objective function f(x), x = (𝑥1, … 𝑥𝑑)
𝑇
 

2 Initialize population 𝑥𝑖(𝑖 = 1, 2, … , 𝑛) and 𝑣𝑖 

3 Define pulse frequency 𝑓𝑖 at 𝑥𝑖 

4 Initialize pulse rates 𝑟𝑖 and loudness 𝐴𝑖 

5 While (t < Max number of iterations) 

6       Generate new solutions by adjusting frequency, 

7        Update velocities and locations/solutions according to equations (2.6) to (2.8) 

8         if (rand >𝑟𝑖) 

9         Select a solution among the best solutions 

10         Generate a local solution around the selected best solution 

11        end if 

12        Generate a new solution by flying randomly 

13       if (𝑟𝑎𝑛𝑑 <  𝐴𝑖 & 𝑓(𝑥𝑖) < 𝑓(𝑥∗)) 

14       Accept the new solutions 

15       Increase 𝑟𝑖 and reduce 𝐴𝑖 
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Algorithm 2.2: BA pseudo-code 

The bat population is first initialized with position 𝑥𝑖, velocity 𝑣𝑖 and random frequency 𝑓𝑖 drawn 

uniformly from [𝑓𝑚𝑖𝑛 − 𝑓𝑚𝑎𝑥]. The bats’ motion is given as an iterative updating their velocities 

𝑣𝑖
𝑡 and positions 𝑥𝑖

𝑡 at time step 𝑡 using equations (2.6) to (2.8) as follows: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽                 (2.6) 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖                 (2.7) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡                           (2.8) 

where 𝛽 ∈ [0,1] is a randomly generated vector drawn from a uniform distribution and 𝑥∗ denotes 

the current global best solution which is obtained by comparing all the solutions found within the 

population. 

A new solution is generated locally for each bat using random walk:  

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡                                                (2.9) 

where 𝜀 ∈ [−1,1] is a random number, while 𝐴𝑡 = < 𝐴𝑖
𝑡 > is the average loudness of all the bats 

at the current time step. 

Furthermore, as the iterations proceed, the loudness 𝐴𝑖 and the rate of pulse emission 𝑟𝑖 are updated 

by equations (2.10) and (2.11) respectively: 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑡𝑖

𝑡                                                          (2.10) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)]                                      (2.11) 

16      end if 

17 Rank bats and find current best 𝑥∗ 

18 end while 

19 Post process results and visualization 
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Where 𝛼 and 𝛾 are constants. A solution is accepted if a randomly generated number is less than 

loudness  𝐴𝑖 and 𝑓(𝑥𝑖) < 𝑓(𝑥∗). The search process continues until some specified termination 

criterion is reached. 

BA has also been successfully implemented in literature to address similar problems to BPPIP. In 

[52], a hybrid BA with optimally tuned parameters was implemented to solve a bi-objective 

inventory model of a three-echelon supply chain. The proposed Hybrid BA was compared with a 

GA algorithm and found to perform better on tested problem instances. Another improved BA 

algorithm was also employed in [53] to solve a proposed portfolio selection model, with results 

showing that the algorithm performed well in achieving the optimal results for the proposed model. 

BAs have been also used to address other COPs as can be seen in [51, 54-56].  

2.4.5.3  Greedy Randomized Adaptive Search Procedure 

GRASP is a metaheuristic which was first described in 1989 by Thomas A. Feo and Mauricio G. 

C. Resende [57]. It is an iterative technique that comprises of a construction phase and a local search 

phase. A feasible solution is built in the construction phase, and its neighborhood is explored for a 

local minimum during the local search stage. The best solution found is usually maintained and 

updated over successive iterations. 

The construction phase is an iterative process which involves building the feasible solution one 

element at a time. The next element to be incorporated into the partial solution is determined 

according to a greedy function which estimates the benefit of selecting each element in the 

candidate list. The list of best candidates, called the restricted candidate list (RCL), consists of the 

elements with the greatest gains. The size of the RCL can be restricted either by value using the 

parameter 𝛼 ∈ [0,1] (i.e. all candidate elements that are not more than α percent away from the 
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greedy choice are included in the RCL. α = 0: purely greedy; α = 1: purely random), or by cardinality 

(i.e. the RCL consists of only the β best candidate elements), or a merge of both criteria. The 

probabilistic aspect of GRASP is demonstrated by randomly selecting one element from the RCL 

(not necessarily the best), this gives a bias towards god solutions and at the same time allows for 

the discovery of different solutions at each GRASP iteration. Therefore, some constructed solutions 

will be worse and some others better than the average solution quality. Once an element has been 

selected to be incorporated into the partial solution, the candidate list is updated to reflect the 

changes resulting from the selection of the previous elements; this is the adaptive part of the 

algorithm.  

The local search phase involves an iterative refinement of each constructed solution until no better 

solution can be found within the neighborhood.  

The GRASP technique is attractive because of its ease of implementation as only two main 

parameters need to be set: the stopping criterion (usually the maximum number of iterations) and 

the parameter to restrict the size of the RCL. Also, as mentioned earlier, at each iteration, a different 

solution is obtained, and in general, the higher the number of iterations, the higher the probability 

of finding a good solution and the higher the computation time required also.  
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The basic GRASP procedure is described below [58]: 

 

 

 

 

 

 

 

 

 

 

Algorithm 2.3: Basic GRASP Pseudo-Code  

The algorithm has been applied to a variety of problems including the set covering, production 

planning and scheduling, and location problems with great success [57]. Igwe et al. [59] used 

GRASP to solve the multiple knapsack model of the blood assignment problem, finding it to be 

better in efficiently handling data than DP. In addition, Jin [60] applied a GRASP algorithm to 

solve the facility location problem for logistics networks, and tested the effectiveness of the 

GRASP method using various data sets. The GRASP algorithm was found to perform successfully 

in achieving solution to the highlighted problem. 

2.5 Identified Gaps in Literature 

The review presented in this chapter shows that the exploration of metaheuristics for optimizing 

blood PLT production and inventory, is relatively young.  Although the limitation of exact methods 

in practice is widely acknowledged, researchers only began to explore metaheuristics which have 

 

Procedure GRASP (stopping_criterion, α) 

Read Input_Instance (); 

While GRASP stopping_criterion not satisfied    

Solution ← ConstructGreedyRandomizedSolution (α) 

      LocalSearch (Solution) 

     UpdateSolution (Solution, BestSolutionFound) 

end while 

     return BestSolutionFound 

     end GRASP 
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generally been shown in a few works to be effective, while offering much better efficiency than 

many other existing techniques. However, the field of metaheuristics itself is fast-growing, hence 

the need to keep up with state of the art. There is still much need for research effort to explore 

those that are easily amenable to the PLT production and inventory problem. Comparative studies 

are also needed in order to evaluate the performances of known metaheuristics and how they 

compare to one another, in order to make good choices for applications. Neither of these is 

abundant in literature.  

Another area that needs much more attention is in the area of modelling. Solution techniques may 

be good but conclusions drawn from studies are only as good as the model adopted. This review 

identifies progressive evolution of practical details catered for in mathematical models developed 

to represent the real-life PLT production and inventory process. While progress has been made in 

moving from overly simplistic models to those that capture more detail, there is much room for 

improvement. Specifically, we identify the model of [11] successfully developed for entire supply 

chain inventory optimization for short-shelf-life goods with a focus on PLTs. The model does not 

capture costs for the blood producer. 

Some of these identified gaps are addressed in the subsequent chapters of this thesis. 

2.6 Summary 

In this chapter, an overview of works in the inventory management of perishables with an emphasis 

on blood products have been given. Studies done in the area of blood PLT inventory management 

have also been reviewed. Some of the commonly used solution methods have been presented. From 

the review, it is observed that the use of metaheuristics in solving this real-world problem has not 

really been explored. This research, therefore, focuses on investigating the performance of 
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metaheuristic algorithms in solving this problem. This is significant in providing a good foundation 

for further research in this area which might portend promising arena for incorporation into decision 

support systems for the blood platelet production and inventory problem. 

  



37 
 

CHAPTER THREE 

3  OPTIMIZATION OF ORDER-UP-TO POLICY FOR THE BPPIP 

3.0  Introduction 

In this chapter, the first solution approach to the BPPIP is presented. The operations of the blood 

PLT producer are described and modeled in two ways, giving rise to models 1 and 2. Two scenarios 

of model 2 are studied: one gives priority to adherence to bounds on shortage rates over outdate, 

in the event that a choice has to be made between two infeasible solutions during the search 

process, while the other prioritizes outdate rate over shortage rate. 

3.1 The Blood Platelet Producer Models for Optimizing Order-up-to Policy 

In this section, the two models (models 1 and 2) for optimizing order-up-to policy for the blood 

PLT producer are presented. The main difference between the two models is that model 1, is 

unconstrained, capturing shortage and outdate within the total cost which constitute the objective 

function to be minimized, while model 2 handles shortage and outdate as constraints. 

3.1.1 Model 1: The Unconstrained Blood Platelet Producer Model 

Here, the blood PLT producer’s problem is that of deciding simple order-up-to rules that yield 

production volumes of PLTs which minimize costs over the entire planning horizon. At the 

beginning of each day, inventory inspection is conducted, and a production decision taken. The 

inventory inspection involves observing the total number of PLT units available as well as their age 

distribution. Whole blood units are collected from donors and prepared for separation into several 

components. An order cost is associated with the collection of whole blood units. It is also assumed 

that the production volume decision is taken before the demand for the day is observed. The 

production of that day will be available the next morning. During the day, it is assumed that demand 
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for PLTs from hospitals is satisfied from the inventory according to the FIFO rule. The demand for 

the day is assumed to be random. If available stock is not sufficient to meet demand, then a shortage 

cost is incurred to ship in PLTs instantaneously from an outside source. At the end of the day, all 

PLTs remaining in stock age by one day. Therefore, any PLT in stock with one day to outdate 

becomes outdated PLT and is removed from the inventory. Accordingly, disposal cost is incurred 

for the outdated units. Ordered PLT units enter the inventory the next morning as the youngest stock 

with a minimum of five days to expire. It is assumed that there is no production on weekends, and 

restrictions on production and storage capacities are negligible [29, 35]. 

3.1.2 Model 2: The Constrained Blood Platelet Producer Model 

The blood PLT producer’s problem here is that of deciding simple order-up-to rules that yield 

production volumes of PLTs which minimize costs over the planning horizon while meeting pre-

specified maximum allowable shortage and outdate constraints. 

Following the classical unconstrained blood producer operation, the inventory state is inspected at 

the beginning of each day and a production decision is taken. Demand for the day is also satisfied 

according to the FIFO policy. However, if there is a shortage, the unmet demand is assumed to have 

been lost.  

According to Blake et al. [29], the important costs of shortage and outdate are non-tangible and 

difficult to determine. Haijema et al. [6] also confirms that the costs for shortages and outdates are 

less concrete as compared to inventory costs. The cost of a shortage may be the well-being of a life 

and the loss of donor good-will associated with an outdate unit cannot really be estimated. Haijema 

et al. [6] and Cohen and Pieskalla [23] adopted a relative cost approach while noting the difficulty 

in setting appropriate values for shortages and outdates. With an example, Blake et al. [29] show 

that the relative cost approach has a significant impact on the actual solutions obtained. They 
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suggest that blood producers are rather comfortable setting operational targets for key performance 

metrics, such as shortage and outdate rates, than dealing in costs. 

 Accordingly, the objective function defined for the constrained variant of the blood PLT producer 

model takes into account order and holding costs only, while meeting pre-specified maximum 

allowable shortage and outdate constraints. 

The following notations are used in the mathematical formulation of models 1 and 2: 

 𝑡 represents the period/day in the planning horizon. 𝑡 =  (1, 2, 3, … , 𝑇) 

 𝑀 represents the maximal residual shelf life. (M =5 for platelets) 

 𝑟 represents the residual shelf life of platelet in stock. 𝑟 =  (1,2, … , 𝑀) 

 𝑎𝑟 represents the amount of PLT units that will expire in 𝑟 days 

The vector 𝑎(𝑡) = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), presented as a tuple, describes the inventory state at 

hand at the beginning of a period t. 𝑎1 represents the oldest units while 𝑎5 are the youngest 

units in inventory 

 𝑛𝑗
𝑡represents the total amount of PLT units in inventory at the beginning of a particular period 

t of age 𝑗 (𝑗 =  1,2, … ,5) or less. 𝑛𝑗
𝑡 =  ∑ 𝑎𝑟

𝑗
𝑟=1  

 𝑑𝑡  is the demand for period t, assumed to be Poisson distributed 

 𝑞𝑡 represents the production quantity for period 𝑡 

 𝑆𝑡 represents the shortage quantity for period t defined as 𝑠𝑡 = (𝑑𝑡 − 𝑛5
𝑡 )+  

𝑡 =  (1, 2, 3, … , 𝑇) where 𝑥+ = 𝑚𝑎𝑥{𝑥, 0} 

 𝑆𝑅 represents the shortage rate over the entire planning horizon defined as 

𝑆𝑅 =
∑ 𝑠𝑡

𝑇
𝑡=1

∑ 𝑑𝑡
𝑇
𝑡=1
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 𝑂𝑡 represents the outdate quantity for period 𝑡 defined as 𝑜𝑡 = 𝑚𝑎𝑥{𝑎1(𝑡),0}  

𝑡 =  (1, 2, 3, … , 𝑇)  

 𝑂𝑅 represents the outdate rate over the entire planning horizon defined as 

𝑂𝑅 =
∑ 𝑜𝑡

𝑇
𝑡=1

∑ 𝑞𝑡
𝑇
𝑡=1

 

 𝑂𝐶𝑡 = Cost of placing an order for period 𝑡, defined as 

                         {
0                       if 𝑞𝑡 = 0
𝑓𝑜 + 𝑣0𝑞𝑡       if 𝑞𝑡 > 0

     

       Where  𝑓𝑜 is the fixed cost of placing an order 

                                                 𝑣0 is the variable cost per PLT unit ordered 

                                     𝑞𝑡 is the order for period 𝑡 

 𝑂𝐶 represents the order costs over the entire planning horizon defined as 

𝑂𝐶 = ∑ 𝑂𝐶𝑡

𝑇

𝑡=1
 

 𝐻𝐶𝑡 = Cost of holding inventory for period t defined as 

                                       {
0                    if 𝑛𝑡 = 0

𝑓ℎ + 𝑣ℎ𝑛𝑡        if 𝑛𝑡 > 0
     

                             Where 𝑓ℎ is the fixed cost of holding any units in inventory 

                                         𝑣ℎ is the variable cost per period per PLT unit 

                                         𝑛𝑡 is the number of PLT units in inventory at period 𝑡 

 𝐻𝐶 represents the inventory holding costs over the entire planning horizon defined as  

𝐻𝐶 = ∑ 𝐻𝐶𝑡

𝑇

𝑡=1
 

 SC𝑡 = Shortage cost of obtaining PLT units from external sources for period t 



41 
 

                                               {
0                     𝑖𝑓𝑠𝑡 = 0 
𝑓𝑠 + 𝑣𝑠𝑠𝑡       if 𝑠𝑡 > 0

  

                             where 𝑓𝑠 is the fixed cost of obtaining units from outside sources 

                                     𝑣𝑠 is the variable cost per PLT unit obtained from external source 

                                    𝑠𝑡 is the number of PLT units obtained from external sources for period 𝑡 

 𝑆𝐶 represents the shortage costs over the entire planning horizon defined as 

      𝑆𝐶 = ∑ 𝑆𝐶𝑡
𝑇
𝑡=1  

 DC𝑡 = Cost of disposing outdated PLT units for period t defined as 

             {
0                     𝑖𝑓𝑜𝑡 = 0 
𝑓𝑑 + 𝑣𝑑𝑜𝑡       if 𝑜𝑡 > 0

    

                                where 𝑓𝑑 is the fixed cost of disposing outdated PLT units                

                                        𝑣𝑑 is the variable cost per PLT unit disposed 

                                         𝑜𝑡  is the number of outdated PLT units for period 𝑡 

 𝐷𝐶 represents the outdate costs over the entire planning horizon defined as 

 𝐷𝐶 = ∑ 𝐷𝐶𝑡
𝑇
𝑡=1  

The objective functions for the Model 1 and 2 respectively are defined in equations (3.1) and (3.2): 
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Model 1 

   𝑚𝑖𝑛{𝐸𝑝(𝐶)} where C= 𝑂𝐶 + 𝐻𝐶 + SC + DC                             (3.1)                                                                                                    

Model 2 

 𝑚𝑖𝑛{𝐸𝑝(𝐶)} where C= 𝑂𝐶 + 𝐻𝐶                                                (3.2) 

subject to   𝑚𝑎𝑥{𝐸𝑃(𝑆𝑅)} ≤ 1 − 𝜑                                                                (3.3) 

            and    𝑚𝑎𝑥{𝐸𝑃(𝑂𝑅)} ≤ 𝛽                                                                       (3.4) 

where 

𝐸𝑃 represents the function of expected value function, with respect to stochastic demand 

distribution 𝑃 

𝜑 is the target availability or fill rate service measure 

𝛽 is the maximally acceptable outdate rate 

The day-to-day transitions between inventory states is jointly determined by the quantity produced 

for the day, demand for the day, the rule by which the demand is served and the replenishment 

policy. Haijema et al. [6] suggest that order-up-to policies be adopted to approximate optimal 

policies, due to the fairly complicated structure of actual optimal policies which makes them 

impractical to implement. From the results of their study, Duan and Liao [11] reported the 

superiority of policies that account for distribution of age of stocks are to policies that do not 

account for age. The old inventory ratio policy proposed by these researchers is therefore employed 

in this study. In this policy, quantity to be produced is firstly arrived at based on the traditional 

order-up-to level, which only accounts for the current amount of items in inventory. The fraction 

of old items among the total items in inventory is then calculated. If the calculated proportion 

exceeds a particular threshold δ, there is an addition to the production quantity to cater for outdates 
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that could possibly arise as a result of the old items.  The size of this addition is equal to the total 

number of old items in stock. The policy is described by the equations (3.5) and (3.6): 

    𝐼𝑓 𝑇𝐼𝑆𝑡 < 𝑆𝑆𝑡 𝑡ℎ𝑒𝑛 𝑞𝑡 =  𝑆𝑆𝑡 − 𝑇𝐼𝑆𝑡                                            (3.5) 

Secondly,  

                              𝐼𝑓 
𝑛2

𝑡

𝑛5
𝑡⁄  ≥ 𝛿 𝑡ℎ𝑒𝑛 𝑞𝑡 =  𝑞𝑡 + 𝑛2

𝑡                                       (3.6) 

Where 𝑇𝐼𝑆𝑡 is the total inventory size on day t  

 𝑆𝑆𝑡 represents the order-up-to level being targeted for day t 

𝑛2
𝑡  represents the number of old items in inventory on day t 

 𝑛5
𝑡  represents total number of items in inventory on day t 

3.2 Solution Framework 

The solution framework adopted in this study is the optimization-simulation framework proposed 

by Duan and Liao [11]. While simulation has proven to be useful in performance evaluation of 

complex systems, it is often insufficient to use simulation only. “An advanced optimizer that 

searches for the best combination of decision variables based on the output of a simulation model 

of the system may be needed in the form of simulation optimization” [11, 61]. In the framework 

adopted for this work, a metaheuristic algorithm generates solutions which are evaluated by the 

simulation model. The method of sample average approximation proposed by Kleywegt et al. [62] 

is adapted in the solution framework to estimate the expected operational costs. Random samples 

of the demand experienced by the blood PLT producer are generated, followed by approximation 

of their expected value functions by means of the corresponding sample average function. 

Let 𝐷1, 𝐷2 , … , 𝐷𝐾 represent a set of 𝐾 realizations of identically distributed independent random 

samples of demand data experienced by the blood PLT producer. The expected operational costs, 
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𝐸𝑝(𝐶), is approximated as 1 𝐾⁄ ∑ (𝐶|𝐷𝑘)𝐾
𝑘=1  where 𝐶|𝐷𝑘) is the operational cost computed based 

on the kth realization. Similarly, the expected shortage rate, 𝐸𝑃(𝑆𝑅), and outdate rate, 𝐸𝑃(𝑂𝑅),  

are approximated as 1 𝐾⁄ ∑ (𝑆𝑅|𝐷𝑘)𝐾
𝑘=1  and 1 𝐾⁄ ∑ (𝑂𝑅|𝐷𝑘)𝐾

𝑘=1  respectively where (𝑆𝑅|𝐷𝑘) is the 

computed shortage rate and (𝑂𝑅|𝐷𝑘), the outdate rate computed based also on the kth demand 

realization. This is because  

𝐸[1
𝐾⁄ ∑ (𝐶|𝐷𝑘)𝐾

𝑘=1 ] → 𝐸𝑝(𝐶), 

𝐸[1
𝐾⁄ ∑ (𝑆𝑅|𝐷𝑘)

𝐾

𝑘=1
] → 𝐸𝑃(𝑆𝑅) 

and 𝐸[1
𝐾⁄ ∑ (𝑂𝑅|𝐷𝑘)𝐾

𝑘=1 ] → 𝐸𝑃(𝑂𝑅) 

as 𝐾 → ∞. 

For Model 2, the parameter-les constraint handling method proposed by Deb 2000 [63] is adapted 

to handle the shortage and outdate constraints in the objective function. A solution that results in 

expected shortage and outdate rates less than or equal to 1 − 𝜑 and 𝛽 respectively is considered 

feasible; otherwise they are counted infeasible. In the adapted constraint handling method, a pair 

of solutions is compared at a time with the enforcement of the following conditions: 

 The feasible solution with a better objective function value option is preferred.  

 For infeasible solutions, two scenarios are considered: 

o Scenario 1 (Model 2a): The outdate constraint is relaxed, and between two solutions 

violating the shortage constraint, preference is given to the one that violates the 

constraint less. 
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o Scenario 2 (Model 2b): The shortage constraint is relaxed, and between two 

solutions violating the outdate constraint, the one with a smaller constraint violation 

is preferred. 

This constraint handling method is adopted in this study because of its efficiency resulting from 

the fact that solutions are not compared on fitness value and amount of constraint violation at the 

same time. 

The optimization and simulation modules are separate entities but they interact with each other. 

The simulation model evaluates the fitness of a solution and the output of the simulator is passed 

as input to the metaheuristic algorithm working in the optimization module to derive new solutions. 

The algorithm aims at improving the quality of the best solution iteratively by repeating the 

optimization-simulation loop and this process continues until successive iterations are found to 

return the same solution. The distinctness of the optimization and simulation modules allows the 

comparison of the performance of three metaheuristic algorithms as stated in the research 

objectives. 

3.2.1 Dataset 

The demand data is simulated following a Poisson distribution with independently varying daily 

means. Table 3.1 gives a description of the dataset used, most of which are obtained from literature 

[9, 11]. A summary of the values of cost parameters also obtained from literature [9] is given in 

Table 3.2. A 5-day PLT shelf life is assumed and a planning horizon of one year (52 weeks) is 

used with the Poisson distributed demand daily means given as in the table: 
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Table 3.1: Model Parameters 

Parameter Value 

Daily demand means over the days of 

the week – d 

[29, 32, 33, 31,33, 22, 20] 

 

Initial Inventory at the beginning of 

planning horizon 

[0 0 20 0 0] 

PLT shelf Life (in days) 5 

Length of Planning Horizon   1 year or 364 days 

 Maximally Allowable outdate rate 5% 

Maximally Allowable shortage rate 1% 

 

Table 3.2: Cost Parameters 

Parameter Fixed ($) Variable ($) 

Order Costs 21.85 0.00 

Holding Costs 0.00 0.05 

Disposal Costs 10.00 0.45 

Shortage Costs 100.00 0.00 
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3.3 Adaptation of Differential Evolution for the BPPIP 

A DE solution to the BPPIP consists of a vector of order-up-to levels for each day of production 

i.e. Monday to Friday. Therefore, the number of decision variables is 5. An upper and lower bound 

is defined for each decision variable using the method suggested by Blake et al. [12]. The lower 

bound is set as the minimum order-up-to level,  𝐼𝑚𝑖𝑛, representing the smallest number of units 

that must be available in inventory after replenishment. It is the smallest integer such that the 

probability that demand is not greater than this value is 𝜑 where 𝜑 is the target availability 

measure: 

𝐼𝑚𝑖𝑛 = 𝑃−1(𝜆, 𝜑)                                       (3.7) 

where 𝑃−1(𝜆, 𝜑) is the inverse Poisson cumulative probability function having mean 𝜆. 

Similarly, the upper bound, 𝐼𝑚𝑎𝑥, is set as the maximum possible stock that can be held in 

inventory after replenishment such that the probability of outdating will not exceed the maximum 

allowable outdate rate, 𝛽. Since daily demand is assumed to be distributed independently and 

identically, the demand can be estimated for a platelet unit arriving on day 𝑖 with residual shelf 

life of 𝑟𝑖 days by the cumulative demand over the 𝑟𝑖 days, 𝐶𝐷(𝑖, 𝑟𝑖): 

𝐶𝐷(𝑖, 𝑟𝑖) = ∑ 𝑑𝑡
𝑖+𝑟𝑖−1
𝑡=𝑖 .                                                (3.8) 

where 𝑑𝑡 is the demand for day 𝑡 

Therefore,  

𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑦 {
∑ (𝑦−𝑥)𝑝(𝑥,𝐶𝐷(𝑖,𝑟𝑖))

𝑦
𝑥=0

𝑦
 ≤ 𝛽}              (3.9) 

where 𝑝(𝑥, 𝜇) is the probability mass function of a Poisson random variable with mean 𝜇, 

evaluated at 𝑥 and  𝛽  is the maximally accepted outdate rate. 
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An initial population is generated within these bounds and each of the population members 

undergoes mutation and crossover. The blood PLT producer model is simulated to evaluate the 

fitness of each population member and the trial vector generated from the crossover operation. The 

better of the solutions is selected to move on to the next generation. Iterative improvement of the 

best solution is continued until the stopping criterion is satisfied; that is, until it is found that there 

is no improvement between successive iterations. 

DE was originally designed for problems involving continuous variables rather than discrete 

optimization problems. However, it does not require that the problem being optimized be 

differentiable as other classical optimization methods do. As a result, it can be used on non-

continuous optimization problems [64]. For the BPPIP, values of the order-up-to levels in newly 

generated solutions in lines 12 and 15 of Algorithm 2.1, are restricted to integers by rounding. 

3.3.1 Validation of Computed Upper and Lower Bounds 

The upper bound and lower bound for the element of the solution vector were computed following 

the method suggested by Blake et al. [12]. To validate the computed upper and lower bounds, an 

attempt is made to reproduce the results of [12]. 

According to the authors, for an hospital with demand vector 𝑑 = (4,4,4,4,4,4,4) with service 

level 𝛼 = 97.5% and target outdate rate 𝛽 = 5%, the minimum and maximum inventory that must 

be on hand after replenishment is 8 units and 22 units respectively. Over the six days until product 

outdate, the expected demand is 24 units and the outdate rates for different inventory sizes 

according to equation (3.12) are given in table 3.3: 

Table 3.3: Outdates vs. Maximum Inventory assuming a six-day shelf life [12] 
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Invmax Expected Outdates Outdate Rate 

19 0.346 1.8% 

20 0.527 2.6% 

21 0.769 3.7% 

22 1.083 4.9% 

23 1.475 6.4% 

 

Using the bounds computed in this study yields exactly the same results. Hence, the computed 

bounds which constitute an important component of the solutions techniques are adopted. 

3.3.2 Factorial Experiment for Parameter Selection in Differential Evolution 

The goal of the empirical studies reported is to arrive at optimal settings for the combination of 

parameters upon which the performance of the algorithm depend. This subsection describes the 

particular design followed in the experiments for reliable results. 

3.3.2.1 Experimental Design 

Considering the fact that performance is affected not only by main effects of the individual 

parameters but also by the interaction among parameters, regular one-factor-at-a-time (OFAT) 

design, in which each experimental run varies the values of one parameter while keeping others 

constant, may be misleading. Therefore, a factorial design [65] is adopted, precisely the full-

factorial design. This experimental design type has been widely applied for years in many fields 

including various areas of engineering [66], social science [67], agriculture [68], computer science 

[69, 70] and general research [71]. In such a design, parameters are coded as factors with discrete 
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levels. Then each possible combination of levels of all parameters are run and the values of the 

performance criteria recorded. In this way both main and interaction effects are accounted for. To 

account for randomness inherent in the algorithm, each combination is run thrice, so the costs, 

shortage and outdate are averaged over the 3 runs. It is these averages that are compared. 

The low, mid and high levels for the DE control variables, (F,CR and N) were chosen according 

to the rules of thumb suggested by Storn and Price [44]. The authors suggest 0.5 and 0.1 as good 

low levels for F and CR respectively. They also recommend 5 to 10 times the number of decision 

variable as a reasonable choice for N. 

Table 3.4: Variable levels for full factorial design of experiment for the DE algorithm 

                  Low Mid High 

F 0.5 1 2 

CR 0.1 0.5 1 

N 25 35 50 

 

Where F refers to a real constant factor ∈ [0,2], CR is the crossover constant ∈ [0,1] and N is the 

population size. The Table 3.3 shows the average costs taken over 3 runs for each of the 27 (33) 

possible combinations. Should it arise that the average cost realized from multiple combinations 

are the same, such ties are resolved using average runtime measured by the number of function 

calls. 

Table 3.5: Factorial Experiment for Parameter Selection in Differential Evolution 

Combination np F cr Average cost 

Average 

function calls 

1 L L L 7000 50 

2 L L M 4940 75 

3 L L H 5290 50 

4 L M L 4680 50 

5 L M M 5170 100 
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6 L M H 5070 100 

7 L H L 4750 100 

8 L H M 5120 75 

9 L H H 5040 125 

10 M L L 5180 70 

11 M L M 5120 140 

12 M L H 5120 140 

13 M M L 5090 70 

14 M M M 4560 140 

15 M M H 5220 70 

16 M H L 4710 210 

17 M H M 5790 70 

18 M H H 4780 105 

19 H L L 4790 200 

20 H L M 5030 100 

21 H L H 4790 200 

22 H M L 5220 250 

23 H M M 5040 200 

24 H M H 5330 100 

25 H H L 5040 100 

26 H H M 5020 100 

27 H H H 4560 100 

   best 4560  

3.4 Adaptation of Bat Algorithm for the BPPIP 

Similar to the DE solution to the BPPIP, a BA solution also consists of a vector of order-up-to 

levels for each production day. Upper and lower bounds are also set for each decision variable 

using the method suggested by Blake et.al [12] as used for the DE algorithm. Every step involving 

in the adaptation of BA for the problem is exactly same as for DE, the only difference being the 

search strategy. An initial population is generated within these bounds and each of the population 

members is updated to constitute a new generation, according to the process outlined in Algorithm 

2.2. The blood PLT producer model is simulated to evaluate the fitness of each population member, 

while record is kept of the personal best of each bat as well as the global best. The process 
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continues, and the global best is then returned as the optimal solution when the termination 

criterion is met. 

Although originally designed for continuous optimization problems, just like DE, BA is easily 

amenable to discrete optimization problems such as the one being studied in this work, by 

restricting values on each dimension to integers, while maintaining every other component of the 

original algorithm. This is achieved simply by rounding to integers, every element of hypothetical 

solution vectors generated in line 6 of Algorithm 2.2. 

3.4.1 Factorial Experiment for Parameter Selection in Bat Algorithm 

As done for DE in section 3.3.2, the goal of the empirical studies reported, is to arrive at optimal 

settings for the combination of parameters upon which the performance of the BA depend. Again, 

a factorial design is adopted, to account for main effects as well as interaction among parameters. 

The coded levels for each parameter is described in table 3.6. 

Table 3.6: Factor Levels for Bat Algorithm Parameters 

Parameter Low Mid High 

Np (population size) 25 35 50 

a (loudness) 0.1 0.5 1 

pr (pulse rate) 0.1         0.5       1 

Qmax (maximum frequency) 1           5 10 

 

Table 3.7: Factorial Experiment for Parameter Selection in Bat Algorithm 

Combination np A pr Qmax 

Average 

Cost 

Average 

function calls 

1 L L L L 9443.1 100 

2 L L L M 6819.45 100 

3 L L L H 13638.7 150 
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4 L L M L 8228.2 100 

5 L L M M 6003.8 150 

6 L L M H 14585.3 100 

7 L L H L 8896.05 100 

8 L L H M 15114.25 100 

9 L L H H 8114.1 100 

10 L M L L 16964.25 100 

11 L M L M 9216.75 100 

12 L M L H 6532.05 150 

13 L M M L 7081.1 150 

14 L M M M 8468.6 200 

15 L M M H 13006.55 100 

16 L M H L 8300.4 150 

17 L M H M 5941.1 150 

18 L M H H 12652.85 150 

19 L H L L 8103.15 100 

20 L H L M 5153.8 300 

21 L H L H 5423.5 200 

22 L H M L 5587.5 150 

23 L H M M 5743 150 

24 L H M H 6444.9 150 

25 L H H L 5444.4 100 

26 L H H M 4800.8 100 

27 L H H H 5423.5 150 

28 M L L L 11303.6 50 

29 M L L M 13698.5 100 

30 M L L H 8355.25 100 

31 M L M L 12184.3 50 

32 M L M M 11285.05 50 

33 M L M H 8599.4 100 

34 M L H L 7985.2 200 

35 M L H M 8699.45 50 

36 M L H H 6140.25 100 

37 M M L L 6552.45 100 

38 M M L M 5205.5 100 

39 M M L H 13319.1 50 

40 M M M L 5816.75 50 

41 M M M M 5423.5 100 

42 M M M H 9686.6 100 

43 M M H L 10190.15 200 

44 M M H M 6333.05 100 
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45 M M H H 9520.9 50 

46 M H L L 5372.2 150 

47 M H L M 5171.6 100 

48 M H L H 5475.35 150 

49 M H M L 5861.05 100 

50 M H M M 6296.95 150 

51 M H M H 6354.3 200 

52 M H H L 8451.95 100 

53 M H H M 5161.2 100 

54 M H H H 10198.35 100 

55 H L L L 6492.4 100 

56 H L L M 12301.65 100 

57 H L L H 13259 100 

58 H L M L 13138.95 100 

59 H L M M 11744.8 100 

60 H L M H 11757 100 

61 H L H L 7612.65 100 

62 H L H M 5910.75 100 

63 H L H H 7593.35 100 

64 H M L L 15165.35 100 

65 H M L M 19707.15 100 

66 H M L H 6612.7 200 

67 H M M L 6493.5 200 

68 H M M M 11743.15 100 

69 H M M H 10531.2 100 

70 H M H L 13826.5 100 

71 H M H M 5385.2 200 

72 H M H H 5165.6 100 

73 H H L L 6731.9 100 

74 H H L M 6540.7 100 

75 H H L H 5107.9 150 

76 H H M L 10938.35 150 

77 H H M M 5386.2 200 

78 H H M H 5296.8 150 

79 H H H L 8241.2 100 

80 H H H M 5423.5 100 

81 H H H H 5386.2 150 

    best 4800.8  
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3.5 Comparative Study of Differential Evolution and Bat Algorithm for the BPPIP 

In this section, the performances of DE and BA are evaluated on the blood platelet production and 

inventory problem, and compared. First this study is carried out using model 1 described in section 

3.1.1. Then they are compared on model 2 described in section 3.1.2, under two different scenarios 

highlighted in section 3.2.  

Table 3.8: Results for Model 1 

    DE     Bat   

Realization Cost 

Shortage 

rate 

Outdate 

rate 

Function 

calls Cost 

Shortage 

rate 

Outdate 

rate 

Function 

calls 

1 4438.50 0.0022 0.0059 100 5452.20 0.0014 0.0076 100 

2 4476.75 0.0022 0.0059 150 5238.80 0.0014 0.0206 100 

3 5037.00 0.0004 0.0000 100 5628.80 0.0014 0.0076 100 

4 4982.80 0.0000 0.0033 100 10694.00 0.0543 0.0444 100 

5 5288.80 0.0000 0.0083 150 6366.60 0.0018 0.0000 100 

6 4427.30 0.0011 0.0084 100 9431.20 0.0301 0.0007 50 

7 4940.05 0.0000 0.0000 150 6651.10 0.0014 0.0079 100 

8 4786.05 0.0023 0.0099 200 5452.20 0.0014 0.0076 100 

9 5184.30 0.0018 0.0000 100 6852.05 0.0039 0.0069 150 

10 4989.40 0.0000 0.0000 100 5401.45 0.0014 0.0090 100 

11 4993.30 0.0001 0.0000 100 13876.25 0.1680 0.0777 100 

12 5050.40 0.0000 0.0033 150 5436.60 0.0014 0.0076 100 

13 5284.15 0.0000 0.0083 100 6507.50 0.0189 0.0154 100 

14 4434.30 0.0010 0.0088 150 5139.00 0.0014 0.0000 150 

15 4365.25 0.0010 0.0083 100 6073.00 0.0014 0.0000 250 

16 5091.35 0.0000 0.0001 100 5155.55 0.0014 0.0019 200 

17 4473.05 0.0026 0.0091 100 5422.90 0.0014 0.0076 150 

18 4930.15 0.0000 0.0001 200 10657.90 0.0351 0.0000 100 

19 5226.40 0.0000 0.0083 100 6363.80 0.0014 0.0019 100 

20 4408.30 0.0010 0.0084 100 5422.90 0.0014 0.0076 100 

21 5039.35 0.0004 0.0000 100 5703.15 0.0014 0.0000 150 

22 5209.05 0.0000 0.0043 100 6580.75 0.0016 0.0019 200 

23 5183.95 0.0057 0.0293 250 14551.80 0.0892 0.0000 100 

24 4980.20 0.0000 0.0033 100 5452.20 0.0014 0.0076 150 

25 5288.80 0.0000 0.0083 150 5452.20 0.0014 0.0076 100 

26 5194.40 0.0012 0.0000 100 6716.45 0.0048 0.0110 150 

27 4800.45 0.0013 0.0202 150 6332.85 0.0108 0.0443 100 

28 4460.55 0.0010 0.0093 100 5138.50 0.0057 0.0083 150 
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29 4449.00 0.0027 0.0054 150 5630.60 0.0070 0.0270 100 

30 5068.15 0.0010 0.0000 100 5452.20 0.0014 0.0076 100 

Averages 4882.72 0.0010 0.0059 125 6807.82 0.0152 0.0116 122 

 

Table 3.9: Results for Model 2, Scenario 1 

    DE     Bat   

Realization Cost Shortage rate 

Outdate 

rate 

Function 

calls Cost Shortage rate 

Outdate 

rate 

Function 

calls 

1 5283.35 0.0016 0.0017 100 6330.25 0.0027 0.0000 50 

2 6742.05 0.0016 0.0109 250 5250.05 0.0031 0.0011 150 

3 8680.75 0.0384 0.0000 150 5193.65 0.0014 0.0019 200 

4 5966.80 0.0060 0.0001 100 5534.95 0.0112 0.0113 100 

5 9966.30 0.0349 0.0002 150 6393.75 0.0014 0.0006 100 

6 6480.65 0.0016 0.0017 100 5503.70 0.0029 0.0004 100 

7 9817.40 0.0285 0.0311 100 6735.95 0.0014 0.0080 100 

8 5762.45 0.0016 0.0109 200 5427.55 0.0014 0.0080 100 

9 9792.35 0.0493 0.0002 150 4657.45 0.0031 0.0120 100 

10 7272.25 0.0163 0.0018 100 6319.90 0.0025 0.0080 50 

11 8741.15 0.0376 0.0000 200 5850.95 0.0075 0.0456 150 

12 6548.30 0.0119 0.0035 100 4535.15 0.0025 0.0091 100 

13 5483.90 0.0016 0.0107 200 5191.95 0.0030 0.0000 150 

14 8165.75 0.0389 0.0169 150 5850.95 0.0075 0.0456 100 

15 9832.85 0.0590 0.0430 100 6058.80 0.0046 0.0131 250 

16 6835.75 0.0037 0.0000 150 5524.15 0.0014 0.0080 150 

17 6558.05 0.0016 0.0017 150 5524.15 0.0014 0.0080 100 

18 9803.45 0.0370 0.0002 150 5533.75 0.0056 0.0081 300 

19 9941.80 0.1235 0.0633 100 5331.25 0.0019 0.0046 150 

20 6757.05 0.0016 0.0109 150 6432.35 0.0053 0.0000 100 

21 7840.30 0.0115 0.0036 100 5524.15 0.0014 0.0080 100 

22 5798.50 0.0077 0.0414 100 6411.00 0.0031 0.0000 250 

23 9450.30 0.0137 0.0000 300 5524.15 0.0014 0.0080 100 

24 8818.35 0.0155 0.0000 100 5524.15 0.0014 0.0080 100 

25 10895.80 0.1463 0.0376 200 5572.75 0.0047 0.0000 200 

26 8057.35 0.0334 0.0127 100 5406.60 0.0014 0.0029 50 

27 11037.35 0.0590 0.0430 100 5389.65 0.0014 0.0365 150 

28 9666.10 0.0606 0.0132 100 5775.05 0.0052 0.0155 150 

29 9765.35 0.0611 0.0415 150 5091.20 0.0018 0.0157 150 

30 5858.70 0.0023 0.0017 150 5524.15 0.0014 0.0080 100 

Averages 8054.02 0.0303 0.0134 142 5630.78 0.0032 0.0099 132 
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Table 3.10: Results for Model 2, Scenario 2 

    DE     Bat   

Realization Cost 

Shortage 

rate 

Outdate 

rate 

Function 

calls Cost 

Shortage 

rate 

Outdate 

rate 

Function 

calls 

1 10601.00 0.0427 0.0259 100 9754.45 0.0529 0.0427 100 

2 5315.65 0.0000 0.0071 100 6623.20 0.0004 0.0047 100 

3 7607.00 0.0000 0.0071 150 5264.05 0.0004 0.0008 100 

4 6691.80 0.0000 0.0071 100 5433.85 0.0004 0.0047 100 

5 5314.55 0.0000 0.0071 100 6161.10 0.0004 0.0047 100 

6 10477.25 0.0357 0.0000 100 5433.85 0.0004 0.0047 150 

7 10833.90 0.0544 0.0420 150 5403.25 0.0004 0.0047 100 

8 8822.85 0.0363 0.0050 100 5159.05 0.0004 0.0000 150 

9 5078.15 0.0009 0.0000 100 5097.90 0.0005 0.0000 100 

10 5350.20 0.0000 0.0071 150 5433.85 0.0004 0.0047 150 

11 6239.35 0.0008 0.0000 100 5209.05 0.0004 0.0001 150 

12 9395.85 0.0115 0.0000 150 5314.50 0.0004 0.0014 100 

13 6530.05 0.0000 0.0071 100 5403.25 0.0004 0.0047 100 

14 8768.40 0.0093 0.0000 100 7130.75 0.0104 0.0029 100 

15 12528.45 0.1309 0.0000 100 9468.10 0.0672 0.0012 150 

16 10521.50 0.0971 0.0000 100 10816.80 0.0542 0.0410 50 

17 5715.55 0.0023 0.0077 150 8085.80 0.0153 0.0000 150 

18 5291.15 0.0000 0.0071 150 5909.05 0.0004 0.0026 100 

19 4977.35 0.0000 0.0000 200 6843.95 0.0004 0.0047 150 

20 6317.55 0.0000 0.0000 100 6303.80 0.0095 0.0448 100 

21 8728.80 0.0351 0.0000 150 5327.85 0.0004 0.0047 100 

22 5451.60 0.0011 0.0135 250 5433.85 0.0004 0.0047 150 

23 7438.90 0.0335 0.0000 150 6401.45 0.0149 0.0233 100 

24 5345.00 0.0000 0.0071 100 4482.90 0.0009 0.0048 100 

25 6042.20 0.0085 0.0000 100 4914.65 0.0004 0.0000 100 

26 5160.15 0.0010 0.0000 100 7373.75 0.0123 0.0032 150 

27 5350.20 0.0000 0.0071 100 5398.70 0.0004 0.0047 100 

28 7197.10 0.0000 0.0000 200 6227.40 0.0007 0.0000 100 

29 5195.80 0.0000 0.0000 150 6303.80 0.0095 0.0448 100 

30 4945.40 0.0000 0.0000 150 5500.50 0.0010 0.0390 100 

Averages 7107.76 0.0167 0.0053 128 6253.82 0.0085 0.0101 113 
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Figure 3.1: Average Yearly Costs associated with solutions from 

DE and BA 

 

 

Figure 3.2: Efficiency (average number of function 

calls) 

 

 

Figure 3.3: Average shortage rates 

 

Figure 3.4: Average outdate rates 
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A number of interesting observations are made from the experimental data presented.  Firstly, a 

glance at Tables 3.8 – 3.10 and Figures 3.1 – 3.3 shows that both DE and BA algorithms quite 

often find solutions with shortage rates and outdate rates that are within the specified threshold of 

0.01 and 0.05 for shortage and outdate rates respectively. Although violations are recorded, in most 

cases the excess percentage is marginal. The reason for such violations may be the fact that the 

algorithms terminate too early at an infeasible solution, since they are terminated based on the fact 

that solution in successive iterations does not change. It is also observed that the average shortage 

rate and outdate rate corresponding to solutions produced by both algorithms for Model 1 produced 

are generally low. They even fall below the thresholds explicitly imposed on Model2a and 

Model2b, which are not imposed on Model 1. One observation is that the cost function of Model1 

has four components while that of Model 2 has just two, of which shortage cost which is one of 

the absent components is the most dominant in magnitude. This may also have contributed to the 

observed behavior of the algorithms on Model 2 compared to Model 1, by reducing the power of 

their search strategies to discriminate between hypothetical solutions as well as to explore the 

solution space. 

Concerning efficiency, both DE and BA perform remarkably well, generally performing less than 

an average of 150 function calls for any of the instances. This would take only fractions of a second 

to run on the typical personal computer. 

3.5.1 Comparing Yearly Costs 

Figure 3.1 shows comparison between average yearly costs associated with solutions returned by DE and 

BA. On model 1 DE outperforms BA, while the reverse is the case on models 2a and 2b. 
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3.5.1.1 Statistical Test of Significance of Difference in Costs from Model 1 

To test whether the observed difference between the costs of DE and BA is statistically significant 

or not, the two-sample t-test is used. This tests the likelihood that the two samples of the 30 results 

are from populations that are indeed different or the observed difference is due to chance. Notice 

that there are two sources of variation: variation in realizations and variation due to inherent 

randomness in the algorithms. 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 costs of DE 

is significantly better (lower) than that of BA.  

p-value: The test is performed using the T.TEST function provided in Microsoft Excel 2013. The 

reported p-value is 4.6444E-05: almost zero. Since the p-value < 0.05, then at 0.05 significance 

level (95% confidence level), the null hypothesis can be confidently rejected. It can be safely 

concluded and generalized that on this problem set, DE is significantly more accurate than BA. 

3.5.1.2 Statistical Test of Significance of Difference in costs from Model 2 

To test whether the observed difference between the accuracy of DE and BA is statistically 

significant or not, the two-sample t-test is used. This tests the likelihood that the two samples of 

the 30 results are from populations that are indeed different or the observed difference is due to 

chance. Notice that there are two sources of variation: variation in realizations and variation due 

to inherent randomness in the algorithms. 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 
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Alternate hypothesis: 𝜇𝐵𝐴 < 𝜇𝐷𝐸 i.e. the population represented by the sample of 30 costs of BA 

is significantly better (lower) than that of DE.  

p-value: The test is performed using the T.TEST function provided in Microsoft Excel 2013. The 

reported p-value is 0.042293 

Since the p-value < 0.05, then at 0.05 significance level (95% confidence level), the null hypothesis 

can be confidently rejected. It can be safely concluded and generalized that on this problem set, 

BA is significantly more accurate than DE. 

3.5.1.3 Statistical Test of Significance of Difference in costs from Model 2b 

To test whether the observed difference between the accuracy of DE and BA is statistically 

significant or not, the two-sample t-test is used. This tests the likelihood that the two samples of 

the 30 results are from populations that are indeed different or the observed difference is due to 

chance. Notice that there are two sources of variation: variation in realizations and variation due 

to inherent randomness in the algorithms. 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐵𝐴 < 𝜇𝐷𝐸 i.e. the population represented by the sample of 30 costs of BA 

is significantly better (lower) than that of DE.  

p-value: The test is performed using the T.TEST function provided in Microsoft Excel 2013. The 

reported p-value is 7.66976E-10: almost zero. 

Since the p-value < 0.05, then at 0.05 significance level (95% confidence level), the null hypothesis 

can be confidently rejected. It can be safely concluded and generalized that on this problem set, 

BA is significantly more accurate than DE. 
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3.5.1 Comparing Shortage Rates 

Figure 3.3 shows comparison of average shortage rates associated with solutions produced by 

DE and BA. DE produces lower average shortage rate than BA on model 1 while the reverse is 

the case on models 2a and 2b 

3.5.1.1 Statistical Test of Significance of Difference in Shortage Rates in solving Model 1 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 shortage rates of DE 

is significantly better (lower) than that of BA.  

p-value: 0.04 

Since p < 0.0.5,  the null hypothesis can be confidently rejected while the alternate hypothesis is accepted, 

resulting in the inference that DE produces better (lower) shortage rates than BA on model 1. 

3.5.1.2 Statistical Test of Significance of Difference in Shortage Rates in solving Model 2a 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 shortage rates of DE 

is significantly better (lower) than that of BA.  

p-value: 0.00 

Since p << 0.0.5,  the null hypothesis can be confidently rejected while the alternate hypothesis is accepted, 

resulting in the inference that BA produces better (lower) shortage rates than DE on model 2a. 

3.5.1.3 Statistical Test of Significance of Difference in Shortage Rates in solving Model 2b 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 shortage rates of DE 

is significantly better (lower) than that of BA.  

p-value: 0.1078 



63 
 

Since p > 0.0.5, the null hypothesis cannot be confidently rejected. The implication is that the difference in 

shortage rates produced by the two algorithms on model 2b is not significant enough. 

3.5.1 Comparing Outdate Rates 

Figure 3.4 shows comparison of outdate rates associated with solutions produced by DE and BA. 

DE produces lower average outdate rate than BA on model 1 and 2b while the reverse is the case 

on models 2a. 

3.5.1.1 Statistical Test of Significance of Difference in Outdate Rates in solving Model 1 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 outdate rates 

of DE is significantly better (lower) than that of BA.  

p-value: 0.0451 

Since p < 0.0.5,  the null hypothesis can be confidently rejected while the alternate hypothesis is 

accepted, resulting in the inference that DE produces better (lower) outdate rates than BA on model 

1, although the difference is only slightly significant. 

3.5.1.2 Statistical Test of Significance of Difference in Outdate Rates in solving Model 2a 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 outdate rates 

of DE is significantly better (lower) than that of BA.  

p-value: 0.1841 

Since p >0.0.5, it is inferred that no significant difference is detected between outdate rates 

produced by both algorithms on model 2a. 



64 
 

3.5.1.3 Statistical Test of Significance of Difference in Outdate Rates in solving Model 2b 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 outdate rates 

of DE is significantly better (lower) than that of BA.  

p-value: 0.06 

Since p >0.0.5, it is inferred that no significant difference is detected between outdate rates 

produced by both algorithms on model 2b. 

3.5.2 Comparing Efficiencies 

Figure 3.2 shows comparison between the measure of efficiency, that is, the function of function 

calls performed by DE and BA. In all three cases, BA performs less function calls than DE, 

although the competition is quite close. 

3.5.2.1 Statistical Test of Significance of Difference in efficiency in solving Model 1 

Similar to the comparison done on accuracy, to test whether the observed difference between the 

efficiency of DE and BA is statistically significant or not, the two-sample t-test is used. This tests 

the likelihood that the two samples of the 30 results are from populations that are indeed different 

or the observed difference is due to chance.  

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝐴 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐷𝐸 < 𝜇𝐵𝐴 i.e. the population represented by the sample of 30 numbers of 

function calls of DE is significantly better (lower) than that of BA.  

p-value: 0.373606 
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Since p > 0.05, the null hypothesis cannot be confidently rejected. The implication is that there 

difference in efficiency between both algorithms is not significantly different. They compete 

closely. 

3.5.2.2 Statistical Test of Significance of Difference in efficiency in solving Model 2a 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝑎𝑡 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐵𝑎𝑡 < 𝜇𝐷𝐸 i.e. the population represented by the sample of 30 numbers of function 

calls of Bat is significantly better (lower) than that of DE.  

p-value: 0.041708 

Since p < 0.05, the null hypothesis can be confidently rejected. The implication is that the difference in 

efficiency between both algorithms is significant, although slight. They still compete closely, but Bat is 

more efficient. 

3.5.2.3 Statistical Test of Significance of Difference in efficiency in solving Model 2b 

Null hypothesis: 𝜇𝐷𝐸 = 𝜇𝐵𝑎𝑡 i.e. there is no difference in the population means 

Alternate hypothesis: 𝜇𝐵𝑎𝑡 < 𝜇𝐷𝐸 i.e. the population represented by the sample of 30 numbers of function 

calls of Bat is significantly better (lower) than that of DE.  

p-value: 0.243535 

Since p > 0.05, the null hypothesis cannot be confidently rejected. The implication is that the difference in 

efficiency between both algorithms is not significant. They compete closely. 

3.6  Summary 

In this chapter, DE and BA are adapted for the blood PLT inventory problem. First the problem is 

described along with relevant models. A description is given for how the basic formulation 

presented by [11] developed for supply chain inventory optimization for short-shelf-life goods, is 
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modified to capture cost for the blood producer while satisfying practical constraints of limits on 

shortage and outdate. Full factorial experiments are reported, concerned with the arriving at 

optimal parameter selection for both algorithms. The performances of both algorithms are also 

compared. The study shows that both algorithms are effective, efficient and easily amenable to the 

PLT inventory problem. The two algorithms are shown to be quite easily amenable to the problem 

without the adoption of complicated discretization operators. This fulfils one important design goal 

of this research: simplicity, which is valued for industrial software implementation.  

With respect to any of the models studied, the quality of the solutions produced by both algorithms 

is generally good, judged by the associated shortage and outdate rates. The quality appears better 

when the unconstrained model in which shortage and outdate are captured in the cost function 

rather than as constraints, although it is noted that this may have more to do with inherent 

properties of the algorithms rather than the models. Both DE and BA are remarkably efficient in 

solving the models, requiring less than 150 function calls in all cases, which on the typical personal 

computer of today, would run in only fractions of a second. In terms of yearly average costs, DE 

produces solutions that outperform BA on model 1 while the reverse is the case on the two 

scenarios of model 2. BA proved slightly more efficient than DE. 
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CHAPTER FOUR 

4 OPTIMIZATION OF DAILY PRODUCTION VOLUME FOR THE BPPIP 

4.0 Introduction 

In this chapter, a variation of the blood PLT producer operations and model is described. The goal 

here is to decide on the daily amount of blood PLTs to produce that minimizes the operational 

costs over an entire planning horizon.  GRASP is adapted to solve this problem and results obtained 

show that the algorithm is computationally efficient, fast and structurally simple for this problem. 

4.1 Blood PLT producer Operation and Mathematical Model 

The model version used in this chapter is adapted from the work of Blake et al. [9]. The problem 

here is that of deciding on daily basis, the production volume of PLTs that minimizes shortage and 

outdate as well as the total costs of operations, not only for the day, but over the planning horizon 

[9]. 

At the beginning of each day, production decision is taken based on inventory inspection. The 

inventory inspection involves observing the total number of PLT units available as well as their age 

distribution. Whole blood units are collected from donors and prepared for separation into several 

components. An order cost is associated with the collection of whole blood units. It is also assumed 

that the production volume decision is taken before the demand for the day is observed. The stock 

produced on a particular day will be available for supply the next morning. During the day, it is 

assumed that demand for PLTs from hospitals is satisfied from the inventory according to the FIFO 

rule. The demand for the day is assumed to be random. If available stock is not sufficient to meet 

demand, then a shortage cost is incurred to ship in PLTs instantaneously from an outside source. At 

the end of the day, all PLTs remaining in stock age by one day. Therefore, any PLT in stock with 
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one day to outdate becomes outdated PLT and is removed from the inventory. Accordingly, disposal 

cost is incurred for the outdated units. Ordered PLT units enter the inventory the next morning as 

the youngest stock with a minimum of five days to expire. It is assumed here that the inventory has 

a maximum capacity and that there is a maximum number of units that may be ordered. 

The blood PLT producer’s problem can therefore be stated as: 

min
𝑦

∑ Ct

𝑇

𝑡=1

 

Where 

 Ct = OC + HC + SC + DC 

 t = (1, 2, 3,…, T) represents the planning horizon 

 Decision variable y is the amount of PLTs to produce in a day 

  OC = Cost of placing an order defined as 

{
0                     if 𝑦 = 0 
𝑓𝑜 + 𝑣0𝑦     if 𝑦 > 0

 

     Where  𝑓𝑜 is the fixed cost of placing an order 

                             𝑣0 is the variable cost per PLT unit 

                y is the order 

 HC = Cost of holding inventory defined as 

{
0                     if 𝑥 = 0 
𝑓ℎ + 𝑣ℎ𝑥     if 𝑥 > 0

     

                   Where 𝑓ℎ is the fixed cost of holding any units in inventory 

                             𝑣ℎ is the variable cost per period per PLT unit 

                             x is the number of PLT units in inventory 
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 SC = Shortage cost involved in obtaining PLT units from external sources 

{
0                     if 𝑤 = 0 
𝑓𝑠 + 𝑣𝑠𝑤     if 𝑤 > 0

         

                   where 𝑓𝑠 is the fixed cost of holding any units in inventory 

                             𝑣𝑠 is the variable cost per PLT unit obtained from external source 

                             w is the number of PLT units obtained from external sources 

 DC = Cost of disposing outdated PLT units defined as 

{
0                     if 𝑧 = 0 
𝑓𝑑 + 𝑣𝑑𝑧     if 𝑧 > 0

     

                   Where 𝑓𝑑 is the fixed cost of disposing outdated PLT units                

                             𝑣𝑑 is the variable cost per PLT unit disposed 

                             z is the number of PLT units in inventory 

 𝑎𝑖 = amount of PLT units that will expire in i days 

The vector 𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) describes the age of all units at hand at the beginning 

of a day. 𝑎1 represents the oldest units while 𝑎5 are the youngest units in inventory. 

 𝑛𝑗 =  ∑ 𝑎𝑖
𝑗
𝑖=1  representing the total amount of PLT units in inventory at the beginning of a 

particular day 

  dt = demand on day t 

 A = maximum inventory that may be held at any time including collected units that is still in 

the preparation process. 

 B = maximum amount of units that may be ordered 
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4.1.1 Model Constraints 

The Decision variable y which represents the amount of PLTs to produce on a day is constrained 

to fall between 0 and the minimum of (B), the maximum amount of PLT units that may be 

ordered and the remaining inventory capacity(𝐴 − 𝑛5).  

𝑦 = (0,1,2, . . , min(𝐵, (𝐴 − 𝑛5))) 

The remaining inventory capacity is constrained to be a non-negative number  

(𝐴 − 𝑛5))  ≥ 0 

4.2  GRASP for the BPPIP 

4.2.1 GRASP Construction Phase 

As mentioned earlier, the GRASP solution construction phase consists in randomly selecting an 

element from the RCL formed by a greedy function. A solution to the blood producer problem 

consists of production amounts per day of the entire planning horizon. In this work, we generate 

the vector of possible production amounts and the corresponding vector of costs for day 1 of the 

planning horizon using the cost functions and inventory and demand data. The RCL is built by 

cardinality, it consists of only the β best candidate elements (i.e. the β production amounts with the 

lowest costs). From the RCL, a production amount is randomly selected and added to the partial 

solution. The possible production amounts and corresponding costs for the next day are then 

generated from the randomly chosen RCL element and a new GRASP construction phase iteration 

will be performed i.e. the greedy function is evaluated again and the RCL built again. A complete 

GRASP solution is achieved when the planning horizon is over. 
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4.2.2 GRASP Local Search Phase 

For each feasible solution at every iteration of GRASP construction phase, the local search phase 

finds a better solution. It keeps the solution with the lowest total costs of operations as the best 

solution until a solution with lower costs is found. It returns the best solution when the total number 

of iterations are over. 

The adapted GRASP is illustrated by flowchart in figure 4.1. 

4.3 Experimental Results 

In this section, the use of the GRASP algorithm to solve the BPPIP was tested on a simple test case. 

The test data used is presented and the numerical results obtained from the above model are 

discussed. 

4.3.1 Test Data 

Tables 4.1 gives a description of the test data used in the model, most of which are obtained from 

[9]. A summary of the values of the cost parameters also obtained from the study in [9] is given in 

table 4.2. A 5-day PLT shelf life is assumed and a planning horizon of 6 days is used with the 

uniformly distributed demand data over the days given as below.    

Table 4.1: Model Parameters 

Parameter Value 

Sizes of RCL – β [5,10,15] 

Demand over six days – d [17 19 2 19 13 2] 

Initial Inventory [0 0 20 0 0] 

Maximum Inventory Size 40 
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Maximum Order Size per day 20 

PLT shelf Life (in days) 5 

     

Table 4.2: Cost Parameters 

Parameter Fixed Variable  

Order Costs 21.85 0.00 

Holding Costs 100.00 0.00 

Shortage Costs 0.00 0.05 

Disposal Costs 10.00 0.45 
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4.4 Experimental Results 

Simulation was performed on a 2.20GHz PC with 8GB of memory running Windows 7 

Professional. The program was written in Matlab 2015 using the data above. Different values of β 

are used to vary the size of the RCL (5 best candidate elements, 10 best candidate elements and 15 

best candidate elements respectively from a total of 21 candidate elements). The number of 

iterations range from a small value of 50 to a larger value of 500 in steps of 50. The algorithm was 

run 100 times for each value of β  and the results are as shown in the tables and figures below: 

Figure 4.1: Flowchart of GRASP for the BPPIP 

 

Read Input 

data, β 

While maxIterations not satisfied 

For t = 1 to end of planning horizon 

Generate vector of possible production amounts and 

corresponding vector of costs for day t 

Build RCL by cardinality of size β and randomly 

select an element from the RCL 

Add chosen element to solution and generate 

possible day t + 1 states from it 

LocalSearch (solution) 

UpdateSolution(solution, BestSolutionFound) 

 

Return 

BestSolutionFound 

Start 

Stop 
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Table 4.3: β = 5 

Number of 

iterations 

Average best 

solution over 100 

runs (Cost) 

Median best 

solution over 100 

runs (Cost) 

Average run time 

over 100 runs in 

seconds 

50 422.056 441.8 0.154288282 

100 428.2015 441.85 0.323067651 

150 431.1025 441.9 0.374376391 

200 419.159 441.7 0.552396771 

250 425.075 441.65 0.795072145 

300 413.5485 420.05 0.960545434 

350 411.2795 420.05 1.004205636 

400 405.5115 419.925 1.229097767 

450 410.3775 420.025 1.34541556 

500 397.484 419.925 1.6243005 
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Figure 4.2: Plot of the Average and Median best solutions for β = 5 

 

 

       Figure 4.3: Plot of the Average Run Time over 100 Runs for β = 5 
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Table 4.4: β = 10 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

iterations 

Average best 

solution over 

100 runs 

(Cost) 

Median best 

solution over 

100 runs 

(Cost) 

Average run 

time over 100 

runs in 

seconds 

50 426.5255 441.875 0.138349277 

100 436.1375 442 0.167026537 

150 424.494 441.85 0.29681515 

200 422.4855 441.75 0.622425806 

250 424.1545 441.7 0.807106747 

300 416.845 420.175 1.039582304 

350 420.0955 420.275 1.194510796 

400 412.76 420.15 1.252349873 

450 412.478 420 1.490102701 

500 416.928 420 1.742608678 
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Figure 4.4: Plot of the Average and Median best solutions for β = 10 

   

      

Figure 4.5: Plot of the Average Run Time over 100 Runs for β = 10 
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Table 4.5: β = 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

iterations 

Average best 

solution over 

100 runs 

(Cost) 

Median best 

solution over 

100 runs 

(Cost) 

Average run time 

over 100 runs in 

seconds 

50 437.7515 442.1 0.157875976 

100 415.7695 441.7 0.320039184 

150 406.806 420 0.344628131 

200 418.113 441.725 0.525949504 

250 426.142 441.65 0.781259956 

300 422.219 420.225 0.954247239 

350 414.7555 420.1 1.218786461 

400 411.895 420.1 0.977898697 

450 400.3615 420 0.723163991 

  500 419.093 420.15 0.806495114 
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Figure 4.6: Plot of the Average and Median best solutions for β = 15 

 

 

Figure 4.7: Plot of the Average Run Time over 100 Runs for β = 15 

   

 

370

380

390

400

410

420

430

440

450

50 100 150 200 250 300 350 400 450 500

So
lu

ti
o

n

No of iterations

β = 15

Average best solution over 100 runs (Rand)

Median best solution over 100 runs (Rand)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250 300 350 400 450 500

R
u

n
 T

im
e

Number of iterations

Average run time over 100 runs (Secs)



80 
 

It can be observed from the tables and figures for all values of β that the algorithm has a higher 

probability of arriving at lower costs as the number of iterations increase. β = 15 seems to produce 

a more random behavior as the RCL is more random rather than greedy. 

The following are also to be noted from the results: 

4.4.1 Solution times for all RCL sizes 

It is observed that there is a linear relationship between the number of iterations and the run time. 

The specific relationship or model can therefore be estimated and used to determine the appropriate 

design choice or predict expected run time for a given choice. For the highest number of iterations 

in the case study (500), the average run time was between 1.6 and 1.8 seconds for β = 5 and β = 

10 and even lower for β = 15. The algorithm is therefore suitable for applications with low time 

budget. 

4.4.2 Efficiency 

The algorithm is computationally efficient. Therefore it is capable of handling large problems. It 

provides facility for efficiently handling the problem of curse of dimensionality, a problem 

common to large combinatorial optimization problems like blood platelet production and inventory 

problem. The results show that the computational cost per iteration is quite low. More so, it is 

capable of arriving at good solutions within a few iterations.  

4.5 Conclusion 

This chapter presents an adaptation of the GRASP metaheuristic for solving a version of the BPPIP.  

The combined strength of randomized and adaptive search in the underlying techniques proved 

efficient as the results show that the computational cost and time per iteration is remarkably low.  
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CHAPTER FIVE 

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction 

This is the concluding chapter of this thesis. The research work is summarized along with 

evaluation of achievement of research objectives. The direction for future work are highlighted. 

5.1 Summary 

The problem studied is a practical one with serious impact on society. The need for natural human 

blood and its derived components remains prevalent despite substantial developments in the area 

of artificial blood products. Being a critical component of modern therapies, blood platelet 

inventory management is of high importance in healthcare practice. However, because PLTs have 

a very short shelf life, their production and inventory management becomes a difficult task. On one 

hand, production and operational costs are high, while on the other, shortage can result into higher 

costs of loss of lives. Large outdate rates are also thought to be a threat to the stability of the PLT 

supply chain because donor participation rates are typically low. The blood PLT producer problem 

is therefore that of minimizing operational costs while ensuring low shortage and outdate rates. 

The prospects of metaheuristics to improve the state-of-the-art in this area are identified. Existing 

exact methods have been shown to only be able to handle small or moderate sized problems because 

the required computational expense grows explosively as the problem size increases. Some of these 

methods have also been reported to be quite difficult to implement in practice. These problems are 

addressed in this work by the use of metaheuristics. Two different solution approaches for the 

BPPIP are considered: optimization of order-up-to policy and optimization of daily production 
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amounts. GRASP is explored for the latter, while DE and BA are explored for two different models 

of the former.  

The algorithms are chosen for their attractive properties like efficiency and simplicity. They are 

successfully applied and shown to be easily amenable to the problems studied. Parameter 

optimization is also explored for each algorithm to arrive at recommendations for best performance 

in solving the problem. Comparative study of algorithms is also included.  

5.2 Conclusion 

For the optimization of the order-up-to policy, DE and BA are successfully adapted for the BPPIP. 

First the problem is described along with relevant models. A description is given for how the basic 

formulation presented by [11] developed for supply chain inventory optimization for short-shelf-

life goods, is modified to capture cost for the blood producer while satisfying practical constraints 

of limits on shortage and outdate. The blood PLT producer operation is modeled to capture basic 

order and inventory holding costs only while shortage and outdate rate were set as constraints. 

This is because of the findings in literature that shortage and outdate costs are non-tangible, less-

concrete and difficult to determine [12] [6]. 

Factorial experiments are reported, concerned with the arriving at optimal parameter selection for 

both algorithms. The performances of both algorithms are also compared. The study shows that 

both algorithms are effective, efficient and easily amenable to the PLT inventory problem. The 

two algorithms are shown to be quite easily amenable to the problem without the adoption of 

complicated discretization operators. This fulfils one important design goal of this research: 

simplicity, which is valued for industrial software implementation.  
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With respect to any of the models studied, the quality of the solutions produced by both algorithms 

is generally good, judged by the associated shortage and outdate rates. The quality appears better 

with the Model 1 in which shortage and outdate are captured in the cost function rather than as 

constraints, although it is noted that this may have more to do with inherent properties of the 

algorithms rather than the models. Both DE and BA are remarkably efficient in solving the models, 

requiring less than 150 function calls in all cases, which on the typical personal computer of today, 

would run in only fractions of a second. In terms of yearly average costs, DE produces solutions 

that outperform BA on model 1 while the reverse is the case on the two scenarios of model 2. BA 

proved slightly more efficient than DE. 

For the optimization of daily production amount for the BPPIP, GRASP is shown to be amenable 

to solve the problem. It is observed that there is a linear relationship between the number of 

iterations and the run time. The specific relationship or model can therefore be estimated and used 

to determine the appropriate design choice or predict expected run time for a given choice. For the 

highest number of iterations in the case study (500), the average run time was between 1.6 and 1.8 

seconds for β = 5 and β = 10 and even lower for β = 15. The algorithm is computationally efficient, 

which makes it suitable for large problems as well as applications with low time budget. It provides 

facility for efficiently handling the problem of curse of dimensionality, a problem common to large 

combinatorial optimization problems like BPPIP. The results show that the computational cost per 

iteration is quite low. More so, it is capable of arriving at good solutions within a few iterations.  

Belien and Force [1] in their review pointed out the need for further research to develop fast and 

robust heuristics to solve the PLT inventory problem as they conclude that “there is no proof yet 

whether a solution to the PLT ordering problem exists involving simple order-up-to rules resulting 

in both low levels of outdate and wastage”. The outcomes of this research portend progress for the 
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desired innate in the words of these researchers. Using the solution techniques explored and the 

models discussed, and data that follow realistic distributions, simple order-up-to rules resulting in 

both low levels of outdate and wastage, are achieved to a good extent. 

5.3 Recommendations for Future Works 

The use of metaheuristics in blood PLT inventory management is relatively underexplored. Given 

the practical nature of this problem, a natural candidate future project would be to apply the models 

and solution approaches adopted in this study, to real-life data. There is quite a handful of 

algorithms yet to be studied among this family. It is recommended that future research efforts 

continue along the direction of this study to explore more of them. Given the efficiency and ease 

of implementation that metaheuristics usher into this field, it will of great benefit to practitioners 

to have decision support software developed out of this techniques. 
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