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ABSTRACT 

90 89 . A study has been made of the Zr(n,d) Y reactlon at an 

incident neutron energy of 22 MeV. The experimental 

aspect of the study was performed at the Van der Graaf 

facility at the National Accelerator Centre, using a 

particle spectrometer developed by K Bharuth-Ram and 

W R McMurray for the study of neutron-induced charged-

particle emissions. The spectrometer, which consists of 

a telescope of three multiwire proportional counters and 

a curved plastic scintillator, permits the simultaneous 

accumulation of data over an angular range of 80°. Solid-

angle-calculations have been performed to correct for the 

effect of the geometry of the system on the angular 

distribution of the cross-sections. A review has been made 

of the shell model of the nucleus, the optical potential model 

and the distorted waves method (or DWBA) for the analysis 

of direct nuclear reactions. A distorted-waves method 

analysis of the reaction is performed with the code DWUCK 4 

and the resulting angular distribution of the various 

cross-sections _are compared with the experimentally obtained 

data. ThIs comparison produces spectroscopic factors which 

are used to perform some analysis of the nuclear structure 

90 of the Zr nucleus. 
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Chapter One 

Introduction 

This study investigates the 90Zr (n,d)89y reaction which 

proceeds via a direct pick-up reac tion . In this type of 

reaction there exists a finite probability that an incident 

nucleon(s) can interact strongly with the nucleons in the surface 

region of the target nucleus. Such reactions, thus , proceed 

directly from initial to final nuclear states without the 

creation of an intermediate compound nuclear system, and have 

interaciion times of the order of the period of an orbit of a 

nucleon within a nucleus. 

The simplicity of these reactions makes them very 

important as sources of information on nuclear structure. This 

depends on the fact that these single - step processes produce 

cross-sections which depend in a relative ly simple way on the 

overlap between the initial and final states of the sample 

nuclei. This produces information on the similarity between 

these states. In the case of the (n,d) reaction investigated 

it is the similarity between the residual 89y nucleus and the 

90 89 . target Zr nucleus (= y nucleus + one proton ln the 2p~ 

single particle orbit in the shell model of the nucleus). The 

so-called spectroscopic factor is a measure of this similarity. 

It is feasible to employ the pick- up reaction as a tool to 

investigate the validity of the nuclear shell model. 
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Pick-up reactions (like other direct reactions) have a 

high degree of selectivity in the choices that they make to 

final states. The conservation of total angular momentum and 

the conservation of parity ensure that the final states of the 

nuclei are clearly identifiable quantum states. This is 

examined in terms of the reaction under consideration. We 

assume a shell model picture · of 90zr , and therefore start by 

making a summary of the Shell Model of the nucleus in Section 

1.1. 

1.1 Summary of the Shell Model of the Nucleus 

Consider a nucleus of A nucleons (Z protons and N=A-Z 

neutrons), built-up with a single particle potential, U(i) 

where U(i) is a function of the spatial, spin and isospin 

coordinates of the i-th particle. In addition, the nucleons 

experience a two-body residual interaction ~(i,j) where 

~(i,j) is a function of the spatial , spin and isospin 

coordinates of both the i-th and j-th nucleons. The ~(i,j) 

are weak enough to be employed as the first order perturbations 

to the U(i) in the evaluation of the e nergies of the different 

shell-model levels. The shell-model Hamiltonian may then be 

written as 

IiSM = 

H = 
0 

H 
0 

L. 
l 

+ ~ Li"fj ~(i,j) 

(_h2 
/ 2u v~ + U (i ) ) 

l 

Spatial symmetry of H gives rise to degeneracy in H with 
o 0 

respect to the m-states of any singl e-particle level. In 

addition, Ho is charge independent and this gives rise to 

similar neutron and proton states. 
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The first order perturbation corrections require the 

diagonalization of the perturbation within the subspace of 

the degenerate states of Ho' Consider eigenstates ~a(i) of 

Ho' that is 

where a = (n , j m). Due to the spherical symmetry of H a a a a 0 

the configuration (n ~ j . ) has (2j +1) - fold degeneracy. a ,a a a 

Similarly, the two-particle configuration (na~a~~Bt~je) has 

zeroth-order energy £ a + £13 and is (2j a -:+-1) (2j e+1) -fold 

degenerate. A suitable choice of eigenfunctions fora two 

particle-configuration is the m-scheme set (2)(3) 

~ (2) 
a 

The two-body residual interaction ~(i,j) commutes with J so 
z 

that 

I I 
m +m 

a S 

There are (2ja+1)(2je+1) eigenfuncti ons +(ma,ma). Transforming 

to the J-scheme the following set Of(2ja+l)(2j s+l) degenerate 

states of Ho corresponding to the eigenvalue £a+£s are obtained. 

(1.1 ) 

whe re J = I j a · - j 13 I , I j a - j e I + 1 ,. . . . , j a + j e . 

if J # J' and M # M' . 
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Then for a two-particle system j ,j there is only one value 
et S 

for J and M. Therefore the matrix elements of ~(1,2) with the 

wavefunctions in (1.1) above are diagonal and give the first-

order perturbation energy, that is 

= (1. 2) 

This expression holds only for simple two-particle systems. 

Equation (1.2) above is invariant under rotations so that with 

the Wigne~-Eckart theorem the expression for E reduces to 

= 

where the reduced matrix element is independent of M. This 

demonstrates the (2J+l) - fold degeneracy that exists within a 

state with total angular momentum quantum number J. However, 

~(1,2) does lift some of the degeneracy since it shifts states 

with different JI S differently. This remaining degeneracy is 

due to the spherical symmetry of H . 
o 

For the residual interact i on ~(1,2),a a-potential is 

often chosen(2), so that 

where Vo has units of (energy x volume). Then 

= 

= 

where Fo represents the overlap of the radial parts of the 

wavefunctions of the particle9 1 and 2 . 
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Hence it is a function only of r. A is a function of J, so 

that 

6E(J) / 6E(J') = 

The coefficients A(j j JM) have the following form 
a 13 

(if .e a +.e 13 -J is 

0 (if .e a +.e 13 -J is 

------

even) 

odd) . 

(1. 3) 

It can be seen from equation (1.3) that if the configuration 

(ja j l3) has even parity (that is, .ea+.e S is even) then only 

states with even J are affected by the 8-potential. While 

for odd parity, only odd J states are affected by the 

8-potential. What this indicates is that the even or odd 

J-value together with the parity combine to determine whether 

the probability of finding two particles close together in 

energy vanishes or not. 

Up to this point only two-particle configurations have 

been considered. Consider a nucleus with level j filled with 

n=(2j+1) nucleons and level j' with 1<n<2j'+1 nucleons. The 

j-level is fully defined with definite quantum numbers; the 

total angular momentum being zero and its parity positive. 
f 

If it is assumed that the j#n configuration is defined by the 

set of quantum numbers (aJTIM) then the j2j+1 j,n' configuration 

has the same set of quantum numbers (aJTIM) since the j2j+l 

configuration has JTI=O+ and M=O. 
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The required condition of antisymmetrization does not alter 

this result. In addition to the above, the energy spacings 

.2j+1.Jn 
between the levels in the J J configuration are identical 

. the J' In to those ln configuration. 

The introduction of the isospin formalism ensures the 

treatment of a neutron-proton system as if these particles are 

different states of the nucleon. This involves writing equation 

(1) as 

where m
ta

, m
ts 

= Yz (for proton) and-Yz (for neutron). Now, as 

nuclei increase in A-number the symmetry between protons and 

neutrons begins to break down. A neutron excess builds-up so 

that protons and neutrons fill different major shells. 

Nuclear properties undergo sharp changes at certain values 

of Nand Z. This has been known experimentally for many years. 

These numbers are called "magic numbers" and their values become 

most apparent in the discontinuity of the average binding 

energy per nucleon that occurs for most nuclei at those Nand Z 

values. A sudden decrease in the binding energies of protons 

and neutrons is observed at Nand Z = 8, 20, 28, 50, 82 and 126. 

lVlcCarthy(5),qUoting Elsasser(6), also lists 6 and 14 as less-

pronounce c magic numbers. In addition, McCarthy shows how values 

for these magic numbers may be obtained theoretically, using 

an infinite square-well potential for the interaction between a 

nucleon and the nucleus to which it is bound. He performs the 

calculation for the harmonic oscillator potential as well, 

al though resul ts for both these potential proved unsatisfact/~~\':VO>~; 

* ~ ...... - , 
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in that they did not match experimentally observed values. The 

infinite square-well potential, for instance, produced the 

following magic numbers: 2, 8, 20, 34, 40, 58, 92, 132 and 138. 

The inclusion of a spin-orbit potential to the interaction then 

produced the correct sequence of magic numbers. Figure (1.1), 

reproduced from Arya(7), shows both the level scheme and magic 

numbers produced by the square-well and harmonic oscillator 

potentials, as well as that produced by an average of the square-

well and harmonic oscillator potentials with spin-orbit potential. 

gOzr is a member of the highest group of nuclides that may 
. ~ 

be described by valence protons and neutrons that fill different 

shell-model orbitals(l). The outermost neutrons occupy the 

1 g9/2 level while the outermost protons fill the 2 P1/2 level. 

For reasons of expediency we treat the neutron and proton as 

distinguishable particles. 

The outermost nucleons in the 90zr nucleus are ten 

neutrons that occupy and fill the 1 g9/2 neutron subshell and 

two protons, that lie outside the semi-closed 2P3/2proton 

subshell, shared between the 2 P1/2 and the 1 g9/2 levels. Thus, 

this nucleus is characterized by two valence protons outside 

the closed inert core of 88Sr (see figure (1.2)). The protons 

can occupy the following configurations: (2 P1
/2)2,(lgg /

2
)2' 

and (2 P1 /2' 1 g9/2) . The 2 P1/2 configuration can only produce 

J
1T

=O+ since .e a +.e Q =2 and so J must be even. ~ In the (1 gg / 2 ) 2 

configuration .ea +.ee=8 and so J must be even. This gives rise 

to the following J1T values: 0+, 2+, 4+, 6+ and 8+. Finally, 

the (2 P1 /2' 1 gg / 2) configuration has .e a+.e s=5 so that J1T = 4 

and 5-. Figure 1.3 demonstrates these calculated levels(4)and 

the experimentally observed levels together with their respective 
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Fig. 1.1 The sequence of' energy levels of' a nucleon 
according to the shell model. 
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energies. 

The proton pick-up reaction on 90Zr provides an efficient 

mechanism for determining the proton-occupancy of the 2Pl/2 

level and the 1 g9/2 level, on condition that the energy 

resolution of the emerging particles and the angular resolution 

of the cross-sections are sufficiently high to allow the 

comparison of the experimental results with distorted waves 

method calculations. In addition, such an experiment allows 

an examination of the ground and excited states of the residual 

89 nucleus, Y. 
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Fig. 1.3 Experimental and Calculated Energy levels 
of 90Zr . (from Ref'.4) 
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Chapter Two 

The distorted-waves method 

2.1 The optical model 

The introduction and utilization of the optical model in 

the understanding of nuclear reactions became necessary when it 

was realized that direct reactions were not purely surface 

phenomena - that although the formation of a compound system 

did not occur some absorption did take place within the target. 

The optical model has since become an intrinsic element in the 

description of direct nuclear reactions. Its importance to the 

distorted-waves method is two-fold. Firstly, it produces an 

interpretation of the phenomenon of elastic scattering - of 

which the transfer reaction is treated as a first-order 

perturbation. Secondly, its use leads to the necessary wave-

functions for the relative motion of the nuclei involved in the 

reaction collision. These "distorted waves" are essential 

ingredients in the distorted-waves method. 

The effective interaction between two colliding nuclei is 

very complicated. According to Satchler(l) it is complex, 

nonlocal (or momentum-dependent), energy-dependent, has quasi-

bound states which give rise to resonances and finally, it is 

dependent on the model space that is chosen. The optical model 

is a model of this interaction and it reduces the complexity of 

the interaction by restricting the model to that of a two-

particle interaction, using a potential. 
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This is possible within a model space that involves just one or 

a few open channels. The optical model potential parameters 

are related to fundamental quantities such as the nucleon-

nucleon interaction and other quantities related to nuclear 

structure. However, ambiguities do remain and there is no 

guarantee that optical models are not just a parametrization of 

experimental data pOints(l). 

In a fashion that is analogous to the nuclear shell model, 

it is assumed that two nuclei interact with each other as if all 

the nucleons of one nucleus interact in an average manner 

with the nucleons of the other nucleus. The optical model 

potential necessary for this is a function of the distance 

between the nuclei in some channel a, say. This potential 

U = U(r ) is selected on the basis that it provides the best 
Cl 

possible description of elastic scattering in the Cl channel. 

The direct reactions are then considered to be perturbations on 

elastic scattering (which is feasible since elastic scattering 

cross-sections are much larger than inelastic or transfer 

reaction cross-sections). 

2.1.1 Properties of the optical model potential 

In the case of a transfer reaction the model space has at 

least a few inelastic channels. The potentials that link these 

channels and the elastic channel must be complex (since, even 

if the bombarding energy is below the threshold for the opening 

of inelastic channels flux absorption into compound-elastic 

scattering does occur). Glendenning(2) has shown analytically 

that if flux absorption does occur then the optical model 

potential must be complex. 
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The imaginary part of the potential must be chosen so as to 

ensure that the flux absorbed is not greater than the flux that 

is incident. 

The effective interaction is explicitly dependent on the 

bombarding energy, E. The optical model potential must mimic 

this and this is indeed the case. The potential parameters 

that give a good fit for elastic scattering data at some 

bombarding energy will not necessarily produce good fits for the 

same colliding nuclei at a different bombarding energy. 

The effective interaction B is a nonlocal operator, that 

is 

The effective interaction permits an incident nucleon to escape 

from the elastic channel at £, to traverse part of the nucleus 

in an inelastic channel and then to reenter the elastic channel 

at r'. Another source of nonlocality is due to antisymmetrization 

between the projectile and the target nucleons. This nonlocal 

interaction can be modelled by a local but energy-dependent 

potential. Several approximations have been used in distorted-

wave method computer codes to minimize this discrepancy, an 

example being the local energy approximation (LEA)(1)(3). 

For a local potential the Schrodinger equation may be 

written as 

(H + T + U a a a 

where Ha operates on the internal coordinates of the particles 

in the a channel, Ta is the kinetic energy of the relative 
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motion of the particles in the a channel. However, for a 

nonlocal potential the Schrodinger equation must be written 

as 

If the nonlocality range is small, that is (£-£')is small, 

~(£' ) may be expanded as a Taylor series about £, that is 

~(£I ) . ~(£) (I' I -I') . 1/ ~(£) + 1/2 (I" -I') 2, 1/
2
• ~(r) + ..• = + 

wnere 1/ = E / it1 and the 1/
2 term is an energy term. The 

integral in equation (1) above therefore demonstrates the 

energy-dependence of such an optical model potential. 

The optical model potentials are spin-dependent since 

nucleon-nucleon interactions are spin-dependent. The 

introduction of a spin-dependent part to the potential improved 

the fits to the elastic scattering data. The potential may 

depend on the spin of the projectile and/or target and .L-S 

coupling is assumed for nucleons involved in the reaction. 

However, for larger projectiles, for example, deuteron, second 

rank tensor couplings are assumed. 

2.1.2 The form of the potentials 

The spherically-symmetric optical potential U(r ) has a 
a 

real part which is flat and attractive (i.e. negative). The 

short range nuclear force is mimicked by this real part which 

rises rapidly and monotonically to zero at the surface of the 

nucleus. The most commonly used analytic form for the real 

part of the central potential is the Woods-Saxon(4) "volume" 

form. 
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It is given by 

Re U(r) = -VR f(x
R

) where f(x i ) = (ex _1)-1 

and xi = (r-Ri)/a~ 

where VR is the well depth. RR is the radius and 

surface diffuseness. Then as x R 
+ -(:lIO Re U(r) + , 

as xR~ + 00, Re U(r) + O. 

a R the 

-V and 

The "volume" part of the potential was assumed to have 

both real and imaginary parts when it became clear that flux 

absorption occurs in direct reactions. The imaginary part has 

the same form as Re U(r): 

lm U(r) = -W f(x ) w where x = (r-R )/a . w w w 

The complex part of the potential is usually assumed to have a 

"volume" and a "surface" term. The "surface" term is 

proportional to the first derivative of f(x) and has the form 

lm U(r) = 4WD df(xD)/dxD 

= -4WD exp(xD)/«exp(xD) + 1)2 

where x D = (r-RD)/aD. The factor of 4 is inserted because this 

surface potential peaks at r = RD' The Woods-Saxon and Woods­

Saxon derivative optical potential shapes for a nucleon 

impinging on an A-lOO nucleus are shown in figure (2.1). 

(Fig. 2.1 on page 17). 
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Fig. 2.1 Woods-Saxon optical potential shape 
f(x) and the Woods-Saxon first 
derivative optical potential shape 
g(x). Reproduced from ref. (1). 

Spin-orbit coupling has become a necessary addition to 

the family of optical model potentials, although several 

examples of global optical potential sets (see HOdgeson(5)(6)) 

leave out the spin-orbit part. In the type of reaction 

considered in this study the spin-orbit interaction is 

restricted to the surface region of the nucleus and the 

phenomenologically accepted form of a potential for such an 

interaction is 

= V so 
-1 r df( x ) / dr so L.S 

where xso = (r-RsoYaso · To be able to express Vso in MeV 

(t/m n c)2 must be set to be 2.00 fm2. If the bombarding energy 

is more than 100 MeV, then it is necessary for V to be 
so 

complex. 
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When charged particles are involved in a reaction it is 

necessary to bring in to play the Coulomb potential. This 

potential has a slow l/r drop off so that it has a presence 

within and without the nucleus. The form of this potential 

depends on the mathematical picture adopted for the charge 

distributions involved. If a point-charge form is assumed for 

the projectile (charge Zae) and the target nucleus (charge ZAe , 

radius RCH ) then 

U (r) 
c 

2 2 2 ] = (Za ZA e )/2RCH x [3 - r /R CH for r < RCH 

A more precise formulation of th i s Coulomb potential involves 

the use of the single-folded expression for the target nucleus 

BCH is the spheric ally-symmetric charge distribution for the 

target nucleus. If compound projectiles are involved in the 

reaction then a double-folded potential has to be used. The 

co-ordinate scheme for the single and double-folded Coulomb 

potential are shown in figure (2.2). 

All of these potentials have as one of their parameters 

potential radii. The nuclear radius is generally taken as 

being proportional to Al/3. These potential radii are then 

given as 

R. = r. A1 / 3 
1 1 

where 

parameter independent of A. 

i = R, W, D, SO,and r. is a radius 
1 
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A o 
Coordinates used for (a) simple-folding and 
(b) double-folding of the Coulomb potential. 
Reproduced from ref. (2). 

The optical potential parameters have a smooth dependence 

on energy and on changing A. (See figure (2.3) from reference 

(2)). If they have an erratic dependence on mass number then 

this may be traced to underlying changes in nuclear structure. 

Iwl increases with energy (7),(8) since more channels become 

available to drain flux from the incident (or elastic) channel. 

On the other hand, Ivl decreases as the incident energy 

increases (7),(8) and this is attributed to the nucleon-nucleon 

interaction(2) ; 
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Fig. 2.3 The smooth dependence 
of V and W with 
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Reproduced from 
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Fig. 2.4 Elastic scattering cross-sections for 
30 MeV protons and optical model 
calculations. Reproduced from ref. (2). 

The use of optical model potentials to produce fits 

for elastic scattering data has been very successful. (See 

figure 2.4(1)). However, ambiguities do persist both in the 

interpretation of the potential and in the use of the 

potentials. 
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2.2 The distorted-waves method 

The underlying premise in the distorted wave theories of 

direct nuclear reactions is that the dominant aspect of a two-

particle collision is the elastic scattering part of the reaction. 

The aim of the theories then is to solve the eleastic scattering 

exactly and then to treat the other parts of the reaction as 

perturbations. This treatment requires the deve l opment of the 

distorted wavefunctions that describe the elastic scattering 

"exactly". These distorted waves are generated by using optical 

model potentials whose parameters are chosen so as to obtain the 

best possible fits to elastic scattering data at the 

appropriate energy. 

In the plane-wave Born approximation (PWBA) treatment of 

direct reactions, momentum and angular momentum conservation are 

easily visible. The transition amplitude in the PWBA 

formulation (for the reaction A(a,b)B) has the form 

where e is the transferred orbital angular momentum. Stripping 

or pick-up reactions are v e ry selective in their choice of 

partial waves so that the angular distribution of the cross-

section of a reaction is oscillatory with a particular e-Bessel 

function. However, in the distorted-wave theories the transition 

amplitudes of these direct reactions cannot be expressed simply 

in terms of Bessel functions or other simple mathematical forms. 

But it is still possible to make unambiguous assignments of 

e-values in distorted-wave reaction studies by comparing 
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distorted-wave cross section calculations with experimentally 

observed cross-sections. (See figures (2.5) and (2.6)). 

G.S 

V t \.' . 

3.0 

2.0 

1.0 

0 

~ 2.0 

.Q 

E 

z 1.0 
0 
i= 
0 
w 
(J) 

o 
~ 1.0 
o 
et 
o 
.J 
~ 0.5 

Z 
W 
et 
W 
LL 
LL 
(5 

0 

1.5 

1.0 

-

T I f 

E.IIC·O M.V 

Eue· 1.13 W,V 

T 

? 

T 

i o 

Enc· 4.1 M.V 

000' ~--____________________________________________ _ 

0.5 t i IQ 20 30 40 60 70 

Fig. 2.5 DWBA fits to proton pick-up reaction 
cross-sections. Reproduced from 
W. Parkinson et aI, 
Phys.Rev. 178 (1969) 1976. 

0 

0 20 40 60 eo 100 '20 

~",. (de9) 

Fig. 2.6 DWBA fits to {n,d} 
reaction cross-sections. 
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Consider an interaction between two nuclei a and A in the a 

channel (which is the incident channel). This interaction is 
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described by 

where x is the set of internal coordinates in the 0 channel 
o 

and r is the vector that joins the centres-of-mass of a and 
-0 

A in the 0 channel. The Hamiltonian for the system then is 

H = H + T + V 
000 

( 2 • 2 ) 

where T is the kinetic energy of the relative motion of a 
o 

and A in the incident channel and H is the sum of the internal 
o 

Hamiltonians of a and A. If it is assumed that the total wave-

function for this system is IT, then it must satisy the 

Schrodinger equation 

(E - H) IT = O. 

IT may be expressed ( 1 ) , ( 2 ) , (9 ) 
as the sum of a complete set of 

internal states ~ where a 

as 

IT = L 0 ~ 0 (£0)' Il 0 ( x 0 ) (2.3) 

the sum being over all available internal states of partition 

o. ~ (r ) describes the relative motion of the nuclei in the 0 
,0 -a 

channel. Equation (2.3) may be inverted to get 

.~ (r ) = (Il I IT ) 
o -0 0 

= J( Il * ( x ) IT dx 
o 0 0 

(2.4) 

IT will be described fully only if the necessary boundary 

condi tions are appl ied- to it. 
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Consider some bombarding energy E, at which several 

channels which contain outgoing spherical waves are open. 

Then, if the incident relative momentum is k the incident 
-a 

wave may be expanded in terms of the states of some partition 

S as follows 

( 2 .5) 

In a fashion analogous to equation (2.4) above 

IT (+)) 
a 

and, following reference (1), this function has the following 

asymptotic form 

( 2 • 6 ) 

as r s -+ 00 £s is a unit vector. is a scattering 

amplitude of the outgoing wave in channel 8 induced by a plane 

wave in the incident channel. 

The differential cross-section for the reaction is given 

by 

( 2 .7) 

The factor (vS/va) enters into this expression because fsa is 

a scattering amplitude while the differential cross-section 

involves fluxes. The transition amplitude in terms of f is 
Sa 

given by 

( 2 .8) 
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and equation (2.6) may then be written in terms of TsCl as 

( 2 .9) 

To obtain a functional form for equation (2.9) it is necessary 

to solve the Schrodinger equation with a suitable Hamiltonian. 

The Hamiltonian described in equation (2.2) above does not 

cater for the use of perturbation theory and this is corrected 

by introducing into it the optical model potential. The 

Schrodinger equation associated with this Hamiltonian (2.2) is 

just 

(E - H - K ) IT (+) = s s Cl (2.10) 

where H + K + V = Cl Cl Cl 
for each possible 

partition. The optical potential U(r ) may be subtracted 
Cl 

from both sides of equation (2.10) giving 

(2.11) 

and 

(2.12 ) 

where Ws 

includes a major part of Vs then Ws is small enough to be 

treated as a perturbation. Users) is the selected optical 

model potential that provides the best interpretation of the 

elastic scattering part of the reaction. This minimizes WS. 

The formal solution of equation (2.12) is given(l) in 
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terms of the solutions of the homogeneous equation 

= 0 -----

(+) 
The (+) sign signifies the composition of the Ea 

(2.13) 

It has 

the asymptotic form of an incident plane wave and outgoing 

spherical waves. These wavefunctions are the distorted waves 

which describe the elastic scattering of band B mediated by 

us(ra) itself. These distorted waves are an integral aspect 

of the distorted-waves method. The transition amplitude in 

this formalism requires explicit functional forms for these 

waves which have to be obtained from a solution of equation 

(2.13) with the imposition of boundary conditions. 

To obtain more information on the transition amplitude 

it is necessary to apply Green's function techniques to equation 

(2 12) Austern (9) shows that a f 1 1 t· . . orma so u lon of equation 

2.12 is 

J, = E (+) <5 + [E - e - K U 1]-1 ( I I IT (+)) 
't'S a a a a a - ~ + ie 11 a Wa a 

where the +ie' is introduced to ensure that there is no 

division by zero. The full Schrodinger equation (equation 

(2.11)) may then be rewritten (choosing S = a) as 

IT (+) 
a 

E (+) 1.1 + [E - H 
a a a K - U + ie'J-1 

a a 

x (V - U ) 
Cl a 

=[1 + G(+) (V - W)] E (+)11 
a Cl a a (2.14) 

Information on scattering by 

the optical potential Ua(ra ) is carried in the distorted wave 
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c (+) while the remainder of the scattering is due to the 
a 

residual interaction, (V - U (r )). a a a 

The operator relation B = A + (B - A), assuming non-

commutivity, can be written as 

(2.15) 

by dividing from the left by B and from the right by A. 

Iteration of equation (2.15) gives 

A-1 = B-1 + B-1 (B - A) A-1 + B- 1 (B - A) B- 1 (B _ A) B- 1 

+ ..... ------ (2.16) 

In the full Schrodinger equation (equation (2.14)), let 

A = [E - Ha - K - V + ie' J and et et 

B = [E - H - K - U + ie' ] so that a et a 

B - A = Vet - Ua(r a ) = Wet 

These may be substituted into equation (2.16) giving 

A- 1 = G(+) = [1 + Get(+)~Wa + 

G (+)1 W G (+)'W 
a et a a + • • • • ] Get (+) I , --- ( 2 • 17) 

where G (+), = [E - H - KN 
et et '" Ua + ie'J-1 is the distorted-

waves propagator for the optical potential Uet(r et ). 

Substituting (2.17) in (2.14) gives 

IT 
a 

(2.18) 
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In the distorted-waves formalism, the expression that 

t 't' l't d (1) , emerges for the ranS1 10n amp 1 u e 1S 

T (K k) T (0) '( k k) 0 + < €: (-) ~k_" '~). ~D . I W D lIT '" (+) (k,,) > 
S a - e ' - Il. = S - S ' -a SaS ~ ~ ~ u u 

where 

= T (0) + T ' 
S Sa 

T (0) is the transition amplitude for the elastic 
8 

reaction. Then the expression for the transition amplitude for 

the rest of the reaction, for example the single-nucleon 

transfer reaction, using equation (2.18) is 

T8a' :: <e:/-.}~s 1W8 + W
8

G
a
(+)'W

a 
+ WSG

a 
(+)'WaG

a 
(+)/ Wa + 

e (+)~ > ---- (2.19) a a 

Then finally, the transition amplitude for the distorted wave 

Born approximation (DWBA) is 

= < e: a (:-) J.L I W I £ (+) ~ > . 
.. ~ 8 a a 

(2.20) 

In general, the distorted-wave series in (2.19) does not 

converge(1)(10). It is for this reason that some authors(l) 

do not refer to this formalism as the distorted wave Born 

approximation (DWBA) method but as the distorted-waves method. 

The transition amplitude in equation (2.20) may be 

written explicitly as 

T 8 a = f f d.£ S d.£a £ 8 (-) ( ~ i3 ' .£ 8 ) * (~8 I W I u a) e: a ( + ) (~a ,.£ a. ) 

----- (2.21) 

Equation (2.21) demonstrates that the nuclear matrix element 

has become separated from the distorted waves. 
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The round brackets round the matrix element means that the 

integration is over the internal coordinates of the nuclei in 

the a and e channels. The separation means that the elastic 

part of the reaction (distorted waves) is separated from the 

non-elastic parts of the reaction. The nuclear matrix element 

contains information on the nuclear structure, on angular 

momentum and parity selection rules, and on the type of nuclear 

reaction that is occurring. It is interesting to note than an 

evaluation of the nuclear matrix amplitude in equation (2.21) 

leaves the transition amplitude as a six-dimensional integral. 

To make this manageable for computing purposes it may be reduced 

to a two-dimensional integral by making multipole and partial-

wave expansions. 

The nuclear matrix element lea is a function of the 

internal coordinates of the nuc l ei a, A, b, and B. 

(2.22) 

where the IB' lb' lA' and la are the total angular momenta of 

the nuclei B,b,A and a respectively while the M's refer to the 

z- projections of the total angular momenta. J
pa 

is a Jacobian 

to cater for the transformation of the internal coordinates. 
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The multipole expansion of the IBa leads to a separation 

of the nuclear matrix element into terms that correspond to 

angular momentum transfers between the different parts of the 

colliding system. To perform this expansion formally it is 

necessary to define the angular momentum transfers that are 

involved. Let 

{BA - !B !A 

J - !b I ----- (2.23) -ba -a 

and .e - {BA + J -ba 

where .e is the orbital angular momentum transferred. Equations 

(2.23) allow the expression Iln/ IlIM in the nuclear matrix 

element to be expressed as a sum of vector-coupled terms. 

where MBA = MB - MA' A similar treatment is possible for 

III M (1=,)* III M (X a) 
bb a a 

being a sum of terms through J ba . These expansions are possible 

only if the IlIM behave as (_)I-M 
Ill' -M and vice versa, under 

rotation of the coordinates. 

These sets of terms may be combined in accordance with the 

third equation of (2.23). 
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Ma.... * Mba * 
~I I J (13'xA) · ~I . I J (xb ' xa) 

B A BA b a ba 

=~t <J BA J ba MBA , Mba I ~ m > 

x ~(Ib I a ) J b a (I B I A) J BA' t (xa , x a ) (2.24) 

where m = MBA + Mba · 

as 

The multipole expansion of the Iaa may then be written 

(1)(2)(3) 

I (r ,r ) 
8IBMB . IbMb . aIAMA . laMa -a -a 

=LJ . J ~ <IblaMb' -Ma I JbaMba> <IBIAMB , -MA I JBAMBA> 
. BA ba 

(2.25) 

where the G ~ J J are the mul tipole components. Equation 
BA ba 

(2.25) may be inverted to produce the multipole components in 

terms of the Clebsch-Gordan coeff i cients and the nuclear 

matrix element. 

The isospin representation has been ignored. However, if 

the isospin had been included then equation (2.25) would have 

had additional Clebsch-Gordan coefficients and a sum over the 

isospin transfer, t. 
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Finally, the transition amplitude (2.21) can be 

expressed in terms of the multipole components as follows 

where t is called the reduced amplitude. Following equations 

(2.21) and (2.25) the reduced amplitude may be expressed as 

t <lb la Mb' Mb,Ma , 
-M' a 

x <Jba J BA M'ba MBA I of m'> 

I -M' 
x (-) a a Jd£e[d£a 

(2.26) 

The distorted-wave cross-section angular distributions 

are determined by the of-transfer. However, it is also possible 

to make j-value assignments by comparing the theoretical and 

experimental angular distributions. This angular distribution 

dependence on j has 3 sources: 

(a) The radial part of the bound state wavefunction 

for transferred particle is dependent on j. Th i s 

is mimicked by the optical potential that is 

chosen for the bound particle wave function. It 

has a spin-orbit part. However , this is a minor 

effect. 
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(b) The distorted waves are spin-dependent because of 

the spin-orbit coupling term in the distorting 

potentials. 

(c) In the case of transfer reactions which involve 

two or more-nucleon particles, it is necessary to 

include in the calculations the non-S components 

(for example, the D-state in deuteron). This topic 

is covered in a paper by Lee and Schiffer(ll). 

Figure (2.7), which is reproduced from reference (1), 

demonstrates this j-dependence of the distorted-

wave method calculations. 

The nuclear matrix element contained in the expression 

for the transition amplitude contains the overlaps (~B'~A) and 

(~b'~a). A measure of these overlaps is the spectroscopic 

factor, for example, S.ej(A,xIB) which represents the probability 

that when B is in state ~B it is composed of x (with orbital 

angular momentum .e and total angular momentum j relative to A) 

and A in state ~A. One way to check on the validity of the 

distorted-waves method analysis of a reaction is to compare the 

calculated cross-sections with experimental cross-sections so 

as to extract spectroscopic factors, which can then be compared 

with theoretically calculated spectroscopic factors. 

This interpretation of direct nuclear reactions (especially 

light ion reactions) has been extensively studied and 

tested(12)(13)(14) . 



b 

I 
I , , , 

\ , 
• 1 
1 '.J , , 

1- ~: 
_"-----/ '. ' 
2 1 f 

I , 

• 

1- /1 - --./ , 
2 I ' 1 , , 

34. 

~Ni (a, p)6ICU 

Ea: 30 MeV 

I 
I 
I • I 

I , 
1 , .; \ 

\ 

~'i 

60N· ( )63C I a, p U 

Ea =30 MeV 

I 
I 

I , 

t I 

\ f 
't' 

\ 
\ 
1 
I 
1 
I 
I 
1 
I 

1- /, _....J; 

I 
I 

" , , I, I, :, 

2 , , , , 
\ ' 
" I' 

--

58Ni(a, p)6I CU 

DWBA RESULTS 

,-, , , \ 
I \ , \ 

, I 
, 1 
, I I, , 

I, , t, , 

60Ni (a, p)63Cu 
DWBA RESULTS 

r 

,~ , , , \ 

\ I \ 
I' , , , \ , , \ 
I, I , \ , 

i 20--4-0-~6~O~~80~~IO~0~~12~0--~2~O--4~O~~6~O~8~O~~IO~O~1~20~~ 
8 (DEGREES) c. M. 

Fig. 2.7 DW calculations for t =1 transfers 
demonstrating j-dependence. Reproduced 
from August, Shapiro and Cooper, 
Phys.Rev.Lett. 23 (1969) 537. 



35. 

REFERENCES: 

(1) G. R. Satchler, Direct Nuclear Reactions (Oxford Science 

publications, Oxford, 1983). 

(2) N. K. Glendenning, Direct Nuclear Reactions (Academic 

Press, Incw, New York, 1983. 

(3) F. G. Perey and D. S. Saxon , Phys. Lett. 10 (1964) 107. 

(4) R. D. Woods and D. S. SAxon , Phys . Rev. 95 (1954) 577. 

(5) D. Wilmore and P. E. Hodgeson, Nucl. Phys. 55 (1964) 673 . 

(6) P. E. Hodgeson, Rep. Prog. Phys. 47 (1984) 613. 

(7) F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182 (1969) 

1180. 

(8) W. W. Daehnick, J. D. Childs and Z. Vrcelj, Phys. Rev. C21 

(1980) 2253. 

(9) 

(10) 

(11 ) 

(12) 

(13 ) 

(14) 

N. Austern, Direct Nuclear reaction 

Interscience, New York 1970). 

K. R. Greider and L. R. Dodd, Phys. 

L. L. Lee and J. P. Schiffer, Phys. 

P. G. Roos et aI, Nucl. Phys. A255 

P. B. Foot et aI, Phys. Rev. C31 

B. M. Preedom, E. Newman and J. C. 

(1968) 1156. 

theories (Wiley 

Rev. 146 (1966) 671. 

Rev. B136(1964) 405. 

(1975) 187. 

(1985) 1133. 

Hiebert, Phys. Rev. 166 



36. 

Chapter Three 

The experimental details 

3.1 Introduction 

The 90zr (n,d)89y reaction is a proton pick~up reaction 

on 90zr . A comparison between experimentally obtained cross-

sections and theoretically predicted cross-sections leads to 

information on the nuclear structure on 90zr and to the level 

scheme of 89y . The measurement of experimental deuteron 

cross-sections has been made possible with the aid of a 

spectrometer specifically designed to study neutron-induced 
( 1 ) ( 2 ) 

charged-particle emission reactions The measurements 

were performed at the Van de Graaf accelerator facility at 

the National Accelerator Centre in Faure, South Africa. These 

neutron-induced particle emission reactions have been difficult 

to study experimentally(l). The use of conventional silicon 

surface barrier 6E-E telescopes results in a low reaction 

yield which increases the experimental runtime excessively. 

In addition, high background rates, competing reactions and 

neutron damage to the detectors were all unresolved problems. 

The present experiment improves on these problems. 

The incident neutrons are produced in the d-t (3H(d,n)4He ) 

reaction in a tritium gas-cell. The 6 MV Van de Graaf 

accelerator produces 5.25 MeV deuterons which are directed onto 

the gas cell. The d-t reaction, which has the v e ry high,positive 

Q I f ( 3) -va ue 0 17.5 MeV, produces neutrons with =22 MeV energy 
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3.2 The particle spectrometer 

The particle spectrometer was designed by Professor K. 

Bharuth-Ram and Dr W.R. MCMUrray(l). It consists of three 

multi-wire proportional counters (PC1, PC2, A/Co) and a 

plastic scintillator. (See figure (3.1). PCl and PC2 are 

employed as "llE" detectors while the scintillator acts as an 

"E" detector, so that the spectrometer provides llE-E particle 

identification. In addition, the spectrometer allows for 

background suppression. However, its major advantage is that 

it permits simultaneous data accumulation over an 80° angle 

range wi th an angular resolution of ~ 4° (FWHM); the reactions 

studied by this system are low yield reactions and this aspect 

of its functional ability decreases the required experimental 

run-time. 

The proportional counters are approximately 6 mm thick 

and their active areas are of the order of 1000 mm 2 . They are 

continuously bathed by a 10% methane - 90% argon mixture. The 

Zirconium target is a 90zr-enriched foil with a surface density 

2 
of 15 mg/cm. It is a 10 mm wide strip and i~ positioned 

between the first and second proportional counters on the side 

of the incident neutron beam. A collimator, between the 

proportional counters PCl and PC2, determines the effective 

height of the target foil as 12 mm. Included in this proportional 

counter sandwich are a series of thin wires (as "walls") between 

the A/Co and PC2 proportional counters to reduce the particle 

background. The EHT to the proportional counters was set by 

using the Am-Mo 17.5 keV X-ray source. 



Proportional (ounters 
(35x25x6mm) 

22MeV 
neutrons 

e = K( A-B ) 
A+B 

l\E = PC x COS e 
E =f(A+B), e 

Curved Scintillator 
(300xSOxSmm) 

( ~rotons ) 
Cieuterons 

Fig. 3.1 Schematic diagram of the spectrometer designed by K. Bharuth-Ram and W.R. McMurray. 
(Reproduced from ref ; ( 1 ) . 

tu 
0') 

, ; 
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The voltages were set to produce peak values of 2 volts for 

each of the proportional counters. The Am-Mo source is placed 

on the A/Co side of the sandwich. 

PC1 and PC2 act in coincidence with the scintillator 

while A/Co acts in anticoincidence with PC1, PC2 and the 

scintillator. This ensures that events that do not originate 

90 in the Zr-target are ignored. 

The scintillator is 5 mm thick, 50 mm high, 300 mm long 

and has a radius of curvature of 200 mm. The geometry therefore 

subtends an angle of more than 80° at the target. It is viewed 

by two photomultipliers (labelled A and B in figure (3.1)) at 

its ends. The energy, E, signal is obtained by summing the 

outputs from A and B. 

The electronics on the beam line and in the control room 

are shown schematically in figure (3.2). The signals from the 

"tiE" detectors (PC1 and PC2) and the "E" detector (A+B) each 

contribute a fast pulse and a slow pulse. The fast pulses from " 

PC1 and PC2 provide the start pulses for the two TAC's while 

the fast pulse from the scintil l ator provides the stop pulse 

for both TAC's. In addition, after cOincidence/anticoincidence 

requirements are met these produce the gate pulses for the ADC's 

(analogue-to-digi tal converters). The slow pulses from the "tiE" 

and "E" detectors are the ADC inputs for the tiE and E 

information. 
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3.2.1 The path for the fast pulses 

The three proportional counters have their pulses fed 

through preamplifiers into spectroscopy amplifiers. These 

amplifiers have two outputs - a bipolar output and a unipolar 

one. The bipolar outputs are utilized for the fast pulse; 

they pass through windows and are delayed in constant fraction 

timing single-channel analysers and are amplified to have the 

same amplitude. 

The pulses for the fast side from the photomultipliers, 

A and B, pass through amplitude windows and delays in timing 

single channel analyzers and are amplified to have the same 

amplitude for the same energy loss through the PC counters. 

The fast summed pulse passes through a constant fraction 

discriminator into a timing amplifier. 

The PC1 and PC2 fast pulses become the start pulses for 

the two time-to-pulse-height converters/single-channel analysers. 

The A+B fast pulse acts as a stop pulse for each of the TAC's. 

The single-channel analyser outputs from these units are fed into 

linear gates in which they are delayed and adjusted to provide the 

correct gate-widths (see later). These pulses are the two 

coincidence pulses, which are the partial requirements for the 

triggering of an event. The fast pulse from A/Co after being 

appropriately delayed is fed into the coincidence unit, in 

anticoincidence with the two coincidence pulses, so as to 

eliminate events not originating in the target foil. 
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The output of the coincidence unit provides the gate pulse 

for the ADC's. Each pulse from this box is the count of an 

event. 

3.2.2 The path for the slow pulses 

The slow unipolar pulses of PC1, PC2 and A/Co are fed 

via delay amplifiers into the ADC's. The A and B slow pulses 

are fed through preamplifiers into spectroscopy amplifiers ~n 

which their amplitudes are adjusted to be the same for a particle 

detected in the centre of the scintillator. The unipolar outputs 

of these amplifiers are delayed and directed into the AD'c. In 

addition, for the purpose of providing a monitor during data 

accumulation the A and B pulses are summed in a dual sum and 

invert box and this (A+B) "energy" pulse is fed into an ADC. 

3.2.3 The setting-up 

207Bi is a source of ~1 MeV internal conversion electrons. 

The EHT's to the photomultipliers are set such that the 207Bi 

source, at the midpoint of the scintillator (that is, at 0 0 ) 

produces equal peaks of approximately 0.2 volts in each of A and 

B. The EHT is approximately 1530 volts for both the 

photomultipliers. 

The fast timing gains, detector delays and bias settings 

were made with a 5.5 MeV proton beam on line from the 

accelerator. A long snOUL replaced the tritium cell in the setup 

procedure. The fast timing resolution for PC1/(A+B) and 

PC2/(A+B) were measured after time-calibrating the resulting TAC 

spec tra, and are shown 'in figure (3.3). 
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time resolution - 30 nsec 

pct/ (A+B) 

60 nsec 

time resolution = 30 nsec 

PC2/ (A+B) 

60 nsec 

time (nanoseconds) 

Fig. 3.3 The fast-timing resolution for PC1/(A+B) and PC2/(A+B). 
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The time between the PC1/(A+B) proton peaks is 60 nsec giving 

a timing resolution of 30 nsec. A similar result was found 

for the PC2/(A+B) case. It appears from these figures that PC2 

had a better time response than PC1. Discriminator gates were 

imposed on the TAC butput to eliminate events not contributing 

to the coincidence peaks, PC2 responded better than PC1. 

The coincidence/anticoincidence conditions could now be 

set. The outputs of the two TAC's were delayed to satisfy the 

conditions shown in figure (3.4). An additional timing 

adjustment is necessary to ensure that the ADC slow inputs 

arrive after the gate pulse rising edge by about 0.5 ~sec. 

Pulses which arrive before this time are rejected. Figure 

(3.5) demonstrates this condition. 

The fast timing resolution was found to be improved by 

increasing the amount of methane in the methane-argon gas 

mixture that bathes the proportional counters. However, this 

has the effect of increasing the background in the proton 

spectra. (Whilst this study is of the (n,d) reaction, the system 

allows simultaneous accumulation of the (n,p) reaction data(4). 

The real/random events ratio can be improved if the thickness 

of the scintillator is reduced to observe deuterons only in 

the energy range of interest, which is 9 to 18 Mev(l). 

The data inputs A, Band (A+B) from the scintillator, 

and PC1 and PC2 from the proportional counters are gated by 

cOincidence/anticoincidence requirements. They are accumulated 

in multi-parameter mode in the PDP-11 data acquisition system 

in the control-room of the accelerator, A program, written by 

Mr John Pilcher (of the National Accelerator Centre), performs 

the off-line analysis of the S-nRrRmprp~ n~~~ A~ll~~~~~ 
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The program, called PAID4, has the following faCilities: 

(a) It calculates the angle of detection of an event. This 

angle is computed as (see later) 

S = k (A-B)/(A+B). 

If additional higher order corrections to this calculation 

of the detection angle are required they may be performed 

as well. These will be described later. 

(b) It makes angle-related corrections to the scintillator 

inputs, as follows: 

E = f(A+B,S). 

(c) It makes angle~elated corrections to the inputs of the 

proportional counters as follows: 

(d) 

tiEl = PCl X COsS and liE 2 = PC2 X COsS. 

The identification of particles is greatly facilitated 

the program's abil i ty to draw in identification loci on 

two dimensional lIE-E displays. This can be done 

s~parately for each of PCl and PC2 for the sum of their 

inputs. 

by 

The spectrometer has been operated in vacuum and in air. 

The effect of in-vacuum operation on the energy loss of the 

deuterons and on the response of the scintillator to deuteron 

impingements are shown in figures (3.6) and (3.7). The major 

effect in this instance is the reduction in the detector 

threshold for both protons and deuterons, when the system is 

operated in vacuum. The deuteron energy loss in air becomes 

significant for low energy deuterons. 
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Fig. 3.6 The effect of vacuum operation 
on the detection threshold of 
the scintillator. 

Fig. 3.7 Deuteron energy loss in air 
and in evacuated chamber. 
[Reproduced from ref. (1)]. 

[Reproduced from Ref.(l)] 

3.2.4 The process of Particle Identification 

PC1 and PC2 are the so-called ".6E" detectors while the 

scintillator is the so-called "E" detector. The resulting 

.6E-E plots are very suitable for particle identification. Seven 

ADC's are set up in the singles mode for the following 

parameters: A, B, (A+B), PC1, PC2, A/Co, TAC. They are all 

1024 channels in size except for the TAC ADC which is set at 

256 channels. In the multiparameter mode three monitoring 

spectra are set-up. They are each 4096 (64 X 64) channels in 

size. The parameters in the mul tiparameter set-up are as follows: 

X y 

1. 64 X 64 A B 

2. 64 X 64 A+B PC1 
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The particle identification efficiency is checked by using 

p-polythene, d-polythene and deuterated perspex samples from 

time to time during an experimental run. The samples are 

bombarded with 21.8 MeV neutrons and the particle identification 

loci are set (and checked). These loci are shown in figures 

(3.8) and (3.9). The 17 MeV proton spectrum from the p-poly 

sample and 19 MeV deuteron spectrum from the d-poly sample 

(in figure (3.10)) are obtained by lifting a slice out of the 

L'lE-E plot. As can be seen in the figure there is some overlap 

between the Landau distributions for the deuterons and protons 

which must indicate that particle identification is incomplete. 

However, it is adequate. Figures (3.11) and (3.12) show the 

spectra for the (n,p) and (n,d) reactions on 90zr respectively. 

3.2.5 Angle determination 

Angle calibration is performed with 207Bi internal 

conversion electron source. The source is placed in machined 

slots (for this purpose) in the system which correspond to 

angular positions of -35°, 0°, and 35° at the scintillator. 

See figure (3.13). The process of angle determination depends 

on light attenuation and losses along the scintillator and 

this leads to a position sensitivity of the scintillator. 

Figure (3.13) shows that scintillator outputs, A and B, vary 

in a non-linear fashion with position. (A+B) varies more 

symmetrically with position and it was found (1) empirically 

that the ratio (A-B)/(A+B) is very nearly linear with respect 

to position. The value of kl (A-B)/(A+B) determines the 

position of an event on the scintillator relative to the 

incident neutron direction. 



CORRECTED 6E,E SPECTRlttt 
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E =fCA+ 8),9 (McV) 

" 3,8 and Fig, 3.9 6E-E spectrum 
obtained from neutron 
collisions with 9Ozr­
enriched foil. The proton 
locus is situated between 
a and c. The deuteron locus 
is above the line marked b. 
[Reproduced from ref.(l)]. 
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Fig. 3.10 Proportional counter spectra for monoenergetic protons and 
deuterons at 17 and 19 MeV respectively. Demonstrates the 
overlap in the Landau distributions. [Reproduced from Re£.(l)]. 
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on zirconiUII and iron samples 
[Reproduced from Ref. (1)]. 
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Additional corrections can be made to this angle calculation. 

These include zero offsets of A and Band slewing of the A and 

B amplitudes. The plots on figure (3.13) are from reference 

(1) and are the result of a much more detailed study. The data 

in table (3.1) is the result of a more recent run with only 

three sets of data points and figure (3.14) demonstrates the 

near-linearity of (A-B)/(A+B) with position. 

Thus the detector system allows the simultaneous 

accumulation of data over an angular range of 80°. The angular 

resolution depends on the position resolution - checked above 

- and the geometry of the system (see later). The position 

resolution is demonstrated by placing a set of slits in front 

of the scintillator and then accumulating data. The slits 

correspond to the angles =7.5°, :17.5°, and :27.5 0 • The 

spectrum in figure (3.15) shows proton events obtained from 

the (n,p) reaction on the p-poly sample at three average 

proton energies (21 MeV, 17 MeV, and 13 MeV) with the slits in 

position in front of the scintillator. The position resolution 

obtained in this manner corresponds to an angular resolution 

of less than 3° (FWHM). 

3.2.6 Energy determination in the scintillator. 

The energy determination of a detected particle depends 

on the stopping of the particle i n the scintillator. As has 

already been mentioned, the thickness of the present 

scintillator may be reduced to improve the energy resolution, 

for the deuteron and proton energy range of interest. 
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Fig. 3.13 Angle calibration of the scintillator using m~8genergetic 
internal conversion electrons emitted from a Bi source. 
[Reproduced from Ref.(l)]. 

Scint A 

Scint B 

A+B 

(A-B) (A+B) 

TABLE 3:1 

+35 0 0 0 -35 0 

Channel Number Channel Number Channel Number 

350 205 165 

162 210 358 

512 415 529 

0,367 -0.012 -0,369 

Calibration factor: = 
70 degrees 
0.736 = 95.1 

Calibration of Scintillator Position dependence using 207Bi • 
which is a 1 MeV internal conversion electron source 
(- 3 MeV protons). 
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Fig. 3.15 Determination of the position resolution of the spectrometer by 
observing the sensitivity to slits placed in the path of protons 
produced in the (n,p) reaction on a p-poly sample. Performed for 
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The energy of the particles are obtained by summing the 

outputs of the A and B photomultipliers and is then corrected 

for angle-related effects by the program PAID4. 

The energy scales have to be calibrated and this is 

performed with proton and deuteron spectra from the H(n,p) and . 

D(n,d) reactions respectively on p-poly and d-poly samples. 

A deuteron energy calibration curve is shown in figure (3.16). 

To obtain a measure of the energy resolution of the 

spectrometer, proton and deuteron spectra from the H(n,p) and 

D(n,d) reactions were obtained, for a scattering angle of 

zero degress, from a multiparameter dump with particle 

identification and angle selection. Kinematic calculations 

give an accurate value for the energy of these monoenergetic 

protons and deuterons. The energy resolution emerged as being 

of the order of 0.6 MeV (FWHM). 

3.2.7 In conclusion 

The functioning of the proportional counters and 

scintillators were checked at regular intervals during a run 

by checking the peak positions of A and B (with the 207Bi 

source at 0 0
) and of PC1, PC2, and A/Co (with the Am-Mo source 

placed on the A/Co side of the sandwich). A further check that 

was performed with the same frequency, was with a deuterated 

perspex sample placed on the A/Co side of the sandwich. This 

data was collected in 3-coincidence mode and the PC1(A+B) and 

PC2(A+B) spectra (which were available immediately on the video 

monitor of the data acquisition computer) allowed a check of 

the deuteron locus as well as the functioning of the proportional 

counters and scintillator and the electronics. 
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The spectrometer has been used for the study of the reactions 

listed below: 

and 

90 Zr (n,d)B9y and 90Zr (n,p)90y 

27A~(n,d)26Mg and 27A~(n,p)27Mg 

and 56 56 Fe(n,p) Mn 

In these reactions the spectrometer offers the following: 

( i ) efficient particle identification 

(ii) background suppression 

(iii) an acceptable energy resolution 

(iv) an acceptable angular resolution 

and (v) simultaneous accumulation of data over an angular 

range of BOO, which allows for 

acceptable beam times for the study of low 

yield (n,d) reactions. 

3.3 The solid angle (or geometry) corrections 

The spectrometer has a built-in geometry which adversely 

affects its allocation of angular position to events and its 

angular resolution. It is necessary for the analysis and 

design of experiments performed with the spectrometer to 

determine the effect of the geometry on the angle determination 

and resolution of the spectrometer. 

3.3.1 The geometry 

The accelerated deuteron beam (at 5.25 MeV) has a cross-

sectional diameter of 4 mm(5). It is directed into the tritium 

gas cell which is 30 mm long and has a diameter of 10 mm. 
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21.8 MeV neutrons are produced all along the deuteron beam 

within the cell, and in all d i rections. The target is 

sandwiched between the first (A/Co) and second (PC1) 

proportional counters. It is a foil and is assumed to be 

two-dimensional. The distance, d between the target and the 

forward face of the gas cell has been set at the values of 

d=60 mm and d=120 mm for calculational purposes. 

The neutrons that coll i de into the target have their 

source in the 4 mm diameter deuteron be am, and depending on 

the size of the target and the value of d thes e neutrons 

arrive at the target in a range of angles about the axis of 

symmetry. Considering a target of width 10 mm and height 

12 mm, and d=60 mm, the la~ge st neutron angle is ~8°. For 

d=120 mm this angle reduces to ~4°. (See figure (3.17)). 

Largest neutron engle N eO Tritium cell - diem 10 mm 
- lth 30 mm - ~ -~=-----~7 

/ 

6 mm 

2 mm 
- ~ .--

d - 60 mm 

deuteron beem - diem ~ mm Target 10 mm X 12 mm 

Fig. 3.17 The neutron source - target geometry. Determination of the 
angular range of impinging neutrons on the target. 
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The finite dimensions scintillator is the major source 

of error in the angle determination of the spectrometer. 

There are two sources: 

(i) The scintillator has a radius of curvature of 200 mm. 

The target is located att~e cen t re o~the plastic ~rc 

and is therefore 200 mm from the scintillator. Consider 

a "largest angle" neutron that picks-up a proton from a 

90Zr nucleus located a t the top edge of the targe t. If 

it is a zero-degree de f lected deuteron it arrive s at 

the scintillator at a position ~35 mm from the axis of 

symmetry of the system , in which the target is located 

at d=60 mm from the gas cell. (See figure (3.18». If 

the target is located at d=120 mm then this excursion 

from the axis of symmetry is ~ 16 mm. 

(ii) The scintillator has a width of 50 mm. If a strip of 

the scintillator corresponding to a nominal angle of 00 

plus-or-minus 2.5 0 is considered it will be observed 

that the angular contri butions to this strip occur in 

the range 00 to 8 0 (see figure (3.19» for an angle of 

incidence of zero degrees at the axis of symmetry. Thi s 

+ means that what was meant to be a 00 - 2.5 0 strip 

collects cross-section contributions from an angular 

range of 00 to 8 0 . Of course, this is a very 

conservative estimate since the case considered i s the 

most symmetrical one. Table ( 3 .2) shows the actual 

range of angular contributions t o each of these 

scintillator strips. 
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One last effect was considered. The position of the 

collimator between PC! and PC2 places it at a distance of 

6 mm from the target. Figure (3.20) demonstrates a penumbra 

effect, which calculations have shown to be negligible. The 

penumbra effect effectively increases the height of the 

target but permits cross-section contributions from the 

additional target area in a very limited sense. 

d = 60 mm 

d = 120 mm 

TABLE 3.2 

Nominal Angle Angular Range 
Mean 

New Angle 
Scattering 

Angle Limit on Scintillator 
Angle 

Limit (FWHM) 

2,50 0,00 - 17,00 6,00 ± 4,0 

7,50 0,00 - 20,50 9,00 ± 4,20 

12,50 3,50 - 24,50 13,50 ± 4,40 

17,50 8,50 - 29,00 18,20 ± 4,40 
~ ' 2 50 

22,50 , 
13,50 - 33,50 23,1 0 ± 4,5 0 

27,50 18,50 - 38,50 28,00 ± 4,5 0 

35,00 26,00 - 45,5 0 35,40 ± 4,50 

50,00 41,00 - 60,00 50,30 ± 4,50 

2,50 0,00 - 14,00 5,40 ± 3,60 

7,50 0,50 - 17,50 9,1 0 ± 3,6 0 

12,50 5,50 - 22,00 13,30 ± 3,6 0 

17,50 + 2,50 10,50 - 26,50 18,1 0 ± 3,70 
-

22,50 15,50 - 30,50 23,00 ± 3,7 0 

27,50 20,50 - 36,00 27,9 0 ± 3,70 

35,00 28,00 - 43,00 35 3 0 
. , ± 3,70 

Results of the calculation of mean scattering angles and 
new angle limits (FWHM) for ~ 2,50 scintillator strips. 

The calculations were performed on an IBM Personal 

Computer. Two programs were developed : one for a purely 

digital calculation and a second for a semi-analytical 

calculation. 
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The latter was found to be cost effective but the first was 

run from time to time to check on the semi-analytical 

calculations. The correspondence between the calculations 

was at all times perfect. The calculations were performed 

in three stages: 

(i) The tritium cell is 30 mm long and has a diameter of 

10 mm. The deuteron beam has a diameter of 4 mm(5) 

and since the 21.8 MeV neutrons are produced in this 

beam, the neutron source is the extended cylinder of 

diameter 4 mm and length 30 mm. This source is 

3 digitized into 1 mm boxes. The two-dimensional 

target has a 1 mm x 1 mm grid imposed upon it and a 

neutron source centroid is calculated based on the 

following. Each grid-cube produces neutrons in 

solid-angle cones that mayor may not strike the 

target. The frequency of neutron impingements (f(ri)) 

for each grid-volume of the neutron source 

(coordinates r i ) is stored together with the 

coordinates of the grid-volume. The centroid is 

calculated with the expression 

where both sums are over the number of neutron source 

grid-cubes. The x and y coordinates (see figure (3.21) 

of this centroid lie on the axis of symmetry while 

<z> ~ 14 mm from the window of the cell for the d=60 mm 

case and <z> ~ 15 mm for the d=120 mm case. For the 

rest of the calculation, the neutron source was assumed 

to be a point source located at the centroid of the cell. 



(ii) The only neutrons of interest to the study are those 

that impinge on the target. (A long counter is set 

up throughout the experiment, however, to monitor the 

neutron production in the gas cell). The next step 

was to store on computer diskette the positions on or 

off the scintillator of the zero degree deflected 

"deuterons" for each impingement on the target. This 

calculation required the angle of incidence of each 

"neutron" on the target which varied from 0° to ::: 8° 

for the d=60 mm case and from 0° to ::: 4° for the 

d=120 mm case. 

As the last part of the calculation requires the zero 

degree deflection positions on the scintillator each 

time it is run, this proved to be time and cost 

effective. 

Tritium Cell 

.-- - -.. - ---- - --- . .--. -~--__ ---4J-""'''-'' axis at symmetry Z 

Fig. 3.21 The coordinate system employed in the calculation of the 
cell controid. 

--
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(iii) These correction calculations involve the 

determination of the relative area contributions 

of half-degree annuli around each of the zero 

degree deflection points, to particular strips 

of the scintillator - the typical strips 

corresponding to the nominal angles of 2.5°, 7.5°, 

12.50, 17.5°, 22.5°, 27.5°, 35.0°, and 50.0° plus 

or minus 2.5°. Table (3.2) shows the angular 

range of the annuli that contribute to each of 

these scintillator strips (for the d=60 mm case). 

The information to reallocate mean angular 

representations to the scintillator strips was 

available and performed with the expression 

<8> = [EA(e). eJ / [LeJ 

where both sums run over the angular range of the 

annuli. that contributed to a particular strip and 

A(e) is the area contribution of the annulus 

centred on 6. These new mean scattering angles 

(for the d=60 mm case) corresponding to the 

original nominal angles are shown in table (3.2) 

with the new angle limits which are taken at FWHM. 

The same calculation for the d=60 mm case is 

performed for nominal angles of 5.0°, 15.0°. 25.0°, 

and 35.0° with angle ~imits of plus or minus 5°. 

The results for this calculation are given in 

tab 1 e ( 3 . 3 ) . 
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Nominal Angle Angular Range Mean New Angle 

Limit on Scintillator 
Scattering Limit 

Angle Angle (FWHM) 

d = 60 mm 5,0° ± 5,0° 0,0° - 20,5° 7,5° ± 4,7° 

15,0° ± 5,0° 3,5° - 29,0° 15,9° ± 5,4° 

25,0° ± 5,0° 13,5° - 38,5° 25,5° ± 5,5° 

35,0° ± 3,0° 25,5° - 46,0° 35,4° ± 4,7° 

TABLE 3.3 Results of the calculation of mean scattering angles and 
new angle limits (FWHM) for the stated scintillator strips. 

In the low yield experiments studied with this 

spectrometer, it is advantageous for statistical reasons to 

choose the latter set of nominal angles with an angle limit of 

plus or minus 5°. However, there are two major drawbacks with 

this. The first one concerns the fact that the angular 

resolution is decreased by approximately 25% and in an 

experiment in which the energy resolution is of the order of 

0.6 MeV,thisplaces a premium on the efficiency of the system. 

The second drawback hinges on the fact that the system allows 

for the simultaneous accumulation of data over an angular range 

of ::: 80°. However, to improve the statistics of an 

experiment the spectrometer is usually used in its most 

symmetrical form; that is, the midpoint of the scintillator 

is located on the accelerator beam line (or what has been 

referred to as the axis of symmetry). This reduces the angular 

range of the data accumulation from 80° to 40° - thus doubling-

up the statistics. This means that for the second case 

(nominal angles 5° etc.) there are just four experimental cross 

section data pOints which are available to compare with the 

distorted-wave method calculations. 
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The former case provides seven such pOints which make the 

comparisons possible. The area - annuli angle curves are 

shown for both cases in figures (3.22) and (3.23) respectively. 

These curves indicate that there i s considerable overlap 

between the contributions of successive nominal angles but 

there is sufficient resolution between peaks to recognize mean 

scattering angles. 

The calculations were repeated for the d=120 mm case. 

Table (3.2) shows that doubling the distance between the 

tritium cell and the target improves the angular resolution of 

the spectrometer by approximately 10% and. brings the mean 

scattering angle closer to the nominal angles. This improvement 

is significant but has to be balanced with the decrease of 

neutron flux which decreases by a factor of four by doubling the 

distance between the tritium cell and the zirconium target. In 

the low yield (n,d) reaction this consideration is important. 

3.4 Results 

The angle range of 0° to 50° was covered in two sets of 

measurements with different orientations of the spectrometer to 

the beam axis and different cross-section normalisation factors. 

Deuteron spectra were generated for nominal scattering 

angles of 2.5°, 7.5°, 12.5°, 17.5°, 22.5°, 27.5°, 35.00, and 500 

with angle limits of plus or minus 2.5°. These spectra are 

shown in figure (3.24) with the background counts present. To 

subtract out the background, it is necessary to choose an 

acceptable background line and this is done for the 12.50 

spectrum in figure (3.24). Figure (3.25) shows the modified 

12.5° spectrum - the type of spectrum from which the cross­

section integrals are taken. Table (3.4) shows the integrals 

for the peaks, which are identified for the time-being as d 
o 
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Nominal 
Angle ± 

2,5° 

7,5° 

12,5° 

17,5 0 

22,5° 

27,5 0 

35,0 0 

50,0 0 

-

TABLE 3.4 
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Chapter Four 

Distorted-wave method calculations and results 

The experimental study of the 90zr (n,d)89y reaction 

cross-sections produced results with sufficient energy and 

angular resolution and statistics to permit a distorted-wave 

method analysis of the angular distribution of the reaction 

cross-sections. These calculations were performed with the 

code DWUCK4(1)on the CYBER 815 Computer at Council for Scientific 

and Industrial Research. 

4.1 Description of the computer code DWUCK4. 

DWUCK4 calculates the differential cross-

section for a reaction using a very general form of the distorted-

wave method, so as to be employable over a large range of 

reaction studies. These calculations are performed in the zero-

range approximation with the local energy approximation being 

applied to correct for nonlocal and finite-range effects. Its 

inability to perform exact finite-range calculations restricts 

its usage. Knock-on and heavy-ion stripping and pick-up 

reactions have very large finite-range effects which have to be 

treated exactly. For these reactions it is necessary to turn to 

one of the other codes available, such as LOLA(2), which can 

treat the finite-range effects exactly. 

The programme DWUCK4 computes the cross sections using the 

theory described in Chapter Two. The notation follows that of 

Austern(3) very closely, which is suitable for light-ion reactions. 
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(4 ) 
(The notation adopted in Chapter Two follows that of Satchler 

and Glendenning(5) which has more symmetry and provides a better 

picture for heavy-ion interactions. The calculated cross 

sections cr~mj (DW) have units of fm 2 /ster (=10 mb/ster). 

4.1.1 Optical model potential options available in the 
program 

The optical potential options available in the program 

are the following: 

(a) Volume Woods-Saxon potential 

(b) Surface Woods-Saxon potential 

(c) Spin-orbit potential 

(d) Coulomb potential 

(e) Second derivative Woods-Saxon potential 

(f) Spin,-orbi t potential from a surface Woods-Saxon 

potential 

(g) Volume Woods-Saxon potential X rpower 

(h) Surface Woods-Saxon potential X rpower 

(i) Normalized harmonic oscillator potential 

(j) Gaussian shape potential X rpower 

(k) Legendre expansions of the volume and surface 

Woods-Saxon potentials. 

Finally, the program has the facility to accept an 

externally introduced potential. The first four listed 

above are used in this study and they have been described 

in Chapter Two. The choice of potentials in the , 

calculations performed depen~s on the choice of potentials 

to describe the associated elastic scatterings. The rest 

of the potentials were not utilized or tried for the reason 

that they were not used to describe the elastic 

scatterings. 
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4.1.2 The finite-range correction factor 

In a one-particle pick-up r~action, such as 

a + A = a + (c + B) ~ (a + c) + B = b + B 

the overlap between a and b is described by the function 

where Vac is the interaction Vac(rca )' This expression for the 

overlap occurs in the expression for the transition amplitude 

and represents a six-fold integration for a value of the 

transition amplitude. To reduce the integration to a two-

dimensional integration, the zero-range approximation is used 

for the overlap. This involves the replacement of the function 

D(r ) by a a-function. This is feasible for light ion -ca 

reactions(4) as D has a short range in this case. The overlap 

is then represented by 

D(r ) 
-ca 

D ~ a ( r ) 
o -ca 

where D is called the overlap integral and is given by 
o 

D = J D( r ) dr . o -ca -ca 

For the (n,d) reaction, the overlap integral is evaluated to be 

1.55 x 104 MeV2 fm3 (6). This approximation greatly simplifies 

the calculation of the distorted-wave method transition 

amplitude but at the cost of an overestimation of the contribution 

of the nuclear interior to the transition amplitude. This is 

countered by making a finite-range correction, made within the 

local energy approximation(3)(4)(5) (LEA), in which a simple, 

nearly equivalent, "local" potential replaces the nonlocal 

potential. 
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The wavefunctions E(L) for this local potential are related to 

those of the nonlocal potential by the relationship 

F(r) 

where F + 1 as r + 00 for the scattering waves. The first-order 

correction factor from the LEA for the zero-range approximation 

in the overlap multiplies the form factor 

<bB I V I aA> 

The program requires the input of a finite-range correction 

parameter which is calculated by taking the derivative of the 

Fourier transform of the overlap at zero momentum and then 

dividing by the transform(4). For the (n,d) reaction, this 

parameter is quoted as being between 0.621 and 0.695(1) . 

4.1.3 The nonlocal correction factor 

The use of an equivalent local potential introduces an 

element of error in the calculation of the transition amplitude. 

A nonlocal correction is introduced which multiplies the form 

factor. The form of the correction is 

= exp[2 S.2 m.V.(r) /8h2 ] 
111 

for each of the particles. The Vi are the local potentials, and 

the S's are the nonlocal parameters. They are usually quoted as 

0.85 for nucleons and 0.54 for the deuterons(l). 

In general, the program is user-friendly and has many run­

time saving devices. The results of the calculations are 

presented in the next section. 
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4.2 The optical potential and the optical potential 
parameters 

The choice of optical potential in this analysis depended 

on the potentials used in the description of the allied 

elastic scattering data. However, this choice is identical to 

the choices made by many authors in the analysis of similar 

(7)(8)(9)(10)(11) 
reactions 

All distorted-wave method studies of single-nucleon 

stripping and pick-up reactions since 1943 that have been 

consulted have adopted the following optical model potential. 

2 -efl/m c) 
'IT 

V (L.a)r-1 (d/dr)f(x ) + V so - "-'. so c 

where f(x.) = [1 + exp(x. )]-1 
1 1 

and the 

The terms are all defined in the section on optical potentials 

in Chapter 2. The Coulomb potential is approximated by a 

potential due to a uniformly charged sphere of radius r A1/3. 
c 

A search for optical potential parameters that describe 

. 90 
the elastic scattering of neutrons on Zr at an incident 

energy in the region of 21.6 MeV was unsuccessful. Some 

analysis of elastic scattering of protons on 90Zr at ~ 40 Mev(12) 

and at ~ 21 Mev(13) is available. An examination of global 

t t f .. I (14) l· parame er se s or Slml ar nuc el and at similar energies 

indicates that the parameters for protons and neutrons have 

quite different values. Hence it was decided to rely on global 

parameter sets for the neutron optical potential. 
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After some experimentation with different parameter 

sets(15)(16)(17), the set of Becchetti and Greenlees(14) proved 

to provide the best fit. This set of parameters is for 

nucleons with A>40 and for elastic scattering in which the 

bombarding energy <50 MeV. The parameters have the following 

form for the neutron potential: 

VR = 56.3 - 0.32E -24.0(N-Z)/A MeV 

r R = 1.17 fm 

a R = 0.75 fm 

W = 0.22E - 1.56, or zero MeV (whichever 

W
D 

= 13.0 - 0.25E -12.0(N-Z)/A MeV 

a = aD = 0.58 
w 

r = 1.30 fm 
c 

V = 6.2 MeV 
so 

r = 1.01 fm 
so 

a = 0.75 fm so 

fm 

is greater) 

where E is the incident neutron energy in MeV. The parameter 

values for E=21.6 MeV are given in table (4.1). 

For the deuteron parameters a similar search was carried 

out for the elastic scattering of deuterons on 89y at an energy 

of 13-16 MeV, which is the deuteron energy region of interest 

in this experiment. Failure to find such data necessitated the 

use of a global parameter set for this analysis also. 
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A non-relativistic set was used which was compiled by Daehnick, 

. (18 ) Childs and VrcelJ ,and is intended for the bombarding 

energy range of 12-90 MeV. 

The parameters are defined as follows: 

VR = 88.5 - 0.26E + 0.88ZA1 / 3 MeV 

r R = 1.17 fm 

a R = 0.709 + 0.0017E fm 

W = (12.2 + 0.026E)(1 - e S
) MeV 

where S = -(E/100)2 

WD (12.2 0.026E) S 
MeV = + e 

r = r D = 1. 325 fm w 

aw aD = 0.53 + 0.07A
1

/ 3 - 0.04 ~exp(- ~i) 

where ~i = [(M i - N)/2]2 and the Mi are the 

magic numbers 8, 20, 28, 50, 82, and 126)and 

N is the neutron number. 

r = 1.30 fm c 

V 7.33 - 0.029E MeV so 

r 
so = 1.07 fm 

a = 0 .66 fm so 

The parameter values for the deuterons produced in the ground 

state transition, for which E=15.4 MeV are given in the 

table (4.1). 



(a) 
n 

(b) 
d 

(a) 
p 

V 
0 

(MeV) 

46.7 

92 .1 

(c) 

-

82 • 

r
oR 

a
R 

W 1'01 
a

1 
W

D 
l' aD V 

0 oD so 
fm fm MeV fm fm MeV fm fm MeV 

1.17 0.75 3.19 1.26 0.58 6.2 1.26 0,58 6.2 

1.17 0,74 2.97 1,33 0.80 12.3 1.33 0.80 6.9 

1.17 0.75 6.2 
I 

(a) Ref.(14) Becchetti and Greenlees. 

(b) Ref.(18) Daehnick et al. 

(c) Potential depth adjusted to give correct binding 
energy (I B I I B (g. s.) I + EE .). n n x 

Table 4.1 The optical model potential and bound 
state parameters. 

l' a 
so so 

fm fm 

1,01 . 0,75 

1,07 0.66 

1.01 0,75 

The optical potential for the proton that is bound to 

r 

fm 

1,3 

1.3 

1.3 

89 
the Y nucleus, consists of a real Woods-Saxon well and a real 

spin-orbit potential. The real well depth is pre-set at some 

convenient value and then a search is performed by the program 

on the well-depth for the fixed binding energy. This binding 

energy is adjusted for each excited state, so that 

= + E x 

where Bn(g·s.) is the binding energy of the proton 

state of 89y while E x is the excited state energy 

nucleus. The rest of the parameters are obtained 

reference (14) and are reflected in table (4.1). 

in the ground 

of the 89y 

from 
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Leyel(ke.V) J .. Level(ke.V) J .. LeYel(ke.V), . J .. 

0.0 1/2- "SR8? 5125 

909.2 1 9/2+ 4603 (7/2,9/2) - 5139 
1507.4 5 3/2- 4636 575] 

4654 51'74 

1744.5 2 5/2- 4682 579] 

2222 2 5/2+ 4731 5801 
4170 5820 
4785 58"] 
4817 5853 (3/2,5/2)+ 

2530.0 2 7/2+ 4831 
484q (3/2,5/2) + 

51'88 

2566.5 2 (11/2) + 4862 5915 
2622.1 9 9/2+ 4888 5950 
2873 4 (5/2,7/2l + 4907 5981 

4921 6004 
4954 6100 20 (3/2,5/2)+ 

2884 6 3/2- '973 6200 20 (7/2,9/ 2) + 
2893 5006 6280 20 (3/2,5/2)+ 
3069 " 3/2- 5026 6"80 20 (1/2+' 
3101 5 (3/2,5/2)- 5046 6590 20 (3/2, 5/2) ~ 
3139 5 (3/2,5/2) - 507'5 1/2+ 6690 20 
3247 5 6180 20 
3413 5 5089 1720 20 

34521 5 5099 
· 3501 . 5115 (3/2) -
3512 6 3/2-
3558 5 (1/2) -
3612 4 -
3626 6- (9/2,11/2) + 5125 

5148 
3716 5 5/2+ 5170 
3148 5 (9/2,11/2) + 5183 (3/2,5/2) + 
38119 5 
3864 6 (3/2,5/2) - 5211 
3924 5257 
3975 (9/2 . 11/2) + 5275 1/2+ 
3990 5 (3/2,5/2) -
4000 20 1/2+ 5289 
4011 5303 
4022 6 (3/2,5/2)- 5321 
410 3 6 5343 1/2+ 
4169 6 (3/2,5/2)-
4188 6 (3/2,5/2) + 5362 
4229 6 5382 
4251 5421 
"304 (7/2,9/2) - 5430 (3/2,5/2) + 
"330 
"352 5455 
4383 5476 
1tII04 5506 
4456 (7/2,9/2)- 55"2 
4460 20 ( 1/2+) 5562 
U73 5582 

5592 
4" 89 5622 
4508 5631 
4526 (5/2 ,1/2). 5647 
4536 (3/2,5/2) - 5668 
4555 (1/2, q;2)- 5694 
451J0 20 (3/2, Sj2). 

Fig. 4.1 89 Level scheme of Y. Reproduced from ref.(25). 
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4.3 The analysis 

4.3.1 1 90Z The target nuc eus, r. 

90 ( 19) -The . Zr nucleus has been studied quite extensively 

(24) It is a member of the group of nuclides about A=90 which 

may be regarded as few-nucleon systems coupled to the inert 

88 Sr core(19)(20)(21). These are the lightest nuclei in which 

the valence protons and neutrons fill different shell model 

(19) . dId· t· 90Z . orbitals . In the shell mo e escr1p lon, r 1S 

characterized by two valence protons outside the closed 2P3/2 

t b f 90Z · 1 t proton subshell, since the neu ron num er 0 r 1S equa 0 

the neutron number of 88Sr (= 50, a magic number). The valence 

protons can occupy three possible configurations: 

2 
The (2Pl/2) configuration produces 

the ground state wi th J1T = 0+ 2 while the (lg9 / 2 ) configuration 

produces amongst others, the first excited state with J1T = 0+ 

at an excitation energy of 1.752 Mev(25). The N = 50 nuclei can 

be described by the valence protons if the filled 19
9

/
2 

neutron 

orbital is a good, closed one. This does appear to be the case. 

The neutron occupation of the outerlying 2d
5

/
2 

shell model 

orbital in 90zr has been shown(26), via a neutron pick-up 

reaction, to be 0.0013. Occupation of this orbital in 88Sr is 

higher at 0.1(27). 

Studies of the 2P3/2 proton orbital closure indicate that 

this is also well established. Proton stripping on 88Sr (28) 

shows that the occupation of the 2Pl/2 proton orbital of 88 Sr 

is approximately 0.1. A further measure of the closure of this 

orbital and the 199 / 2 neutron orbital is indicated by the fact 

that 88Sr has only two excited states below the excitation energy 

of 3 MeV. 90Zr is then assumed to be described by its t wo 

valence protons. 
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89 
4.3 . 2 The residual nucleus, Y 

This nucleus is similarly described by its single 

valence proton linked to the closed, inert core of 88sr . The 

level scheme of 89y is given in figure (4.1)(25). It has a 

ground state spin of (1/2)- from the (2P1/2) configuration, a 

first excited state at 0.909 MeV with spin (9/2)- from the 

(lg
9

/
2

) configuration, a second excited state at 1.51 MeV with 

spin (3/2)- from the (lP3 / 2 )-1 configuration, etc. 

4.3.3 The experimental data 

Figure (4.2) shows a summed deuteron spectrum (summed 

over 60°). The channel number-energy calibration follows the 

study in chapter 3. The figure indicates the state of the 

residual nucleus (89y ) opposite each of the deuteron peaks. A 

study of this reaction spectrum indicates deuteron peaks 

corresponding to deuteron energies of 15.5 MeV and 14.0 MeV 

with several smaller peaks in evidence. Kinematic calculations 

and a comparison with the accepted level structure of 89y (25) 

leads to the identification of the transitions that correspond 

to each of these peaks. Unfortunately, the energy resoluti on 

of ~ 0.6 MeV of the experimental data is not high enough to 

resolve all the peaks into a one-to-one correSpondence with the 

transitions of 90zr to the excited states of 89y . One such 

peak is that identified as the "1.6 MeV" peak and an adhoc 

fashion analysis of this peak is performed in this study. 

4.3.4 The ground state transition 

Kinematic calculations indicate that the deuterons produced 

in the transition from the ground state of 90zr to the ground 

89 state of y should have a laboratory energy of 15.5 MeV . 
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It is clear then that the first peak in the deuteron spectrum 

in figure (4.2) corresponds to this transition. The ground 

state of 90Zr has In = 0+ while the ground state of 89y has 
I 

In = 1/2-. Then, j (= total angular momentum transferred) 

has a value of 1/2 and there is a change in parity. The change 

in parity implies that ~ (= the orbital angular momentum 

transferred) must be odd(4)(5). This identifies the orbital 

angular momentum of the proton (bound to the 89y nucleus) as 

~ = 1 and its total angular momentum as j = 1/2. This 
p p 

ensures that the proton picked-up in the ground state 

transition is from the 2P1/2 shell model orbital in 90Zr . 

Gloeckner(19) calculates the proton occupancy of this orbital as 

1.33 and earlier experimental values for this occupancy are 

given in table (4.2). 

4.3.5 The transition to the first excited state 

In the summed deuteron spectrum in figure (4.2), a small 

but definite peak occurs at ~ 14 . 6 MeV. ThiS peak is not 

apparent in the spectra for individual angles (see figure 3.24) 

because of poor statistics. This peak corresponds to a 

transition from the ground state of 90Zr to the first excited 

state of 89y at 0.909 MeV. This transition involves a j-value 

of 9/2 and no change in parity, which produces an ~-value of 4. 

It is clear then that this deuteron peak corresponds to a pick~ 

up of a proton with ~p = 4 and jp = 9/2; that is, a proton 

in the 199 / 2 proton orbital. As has already been indicated, 

poor statistics did not permit an analysis of this peak except 

as a contribution to the ground state transition. 
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The number of protons shared by the 2P1/2 and the 199 / 2 proton 

orbitals is two and so the theoretical proton occupancy of the 

. (19) 
19

9
/

2 
orbital is 0.67,followlng Gloeckner The experimental 

values for this occupancy obtained in previous experiments are 

given in table (4.2). 

The deuteron peak at approximately 14 MeV is broad and 

unresolved. Kinematic calculations, together with the level 

scheme of 89y , indicate that at least three deuteron peaks may 

be submerged in this "1.6 MeV" peak. 

4.3.6 The transition to the second excited state 

The second excited state of the 89y nucleus has an 

excitation energy of 1.51 MeV and a transition to this state 

will result in a deuteron peak at ~ 14.0 MeV. Such a transition 

(from JTI = 0+ to JTI = 3/2-) corresponds to a j-value of 3/2 and 

a change in parity, which implies an .e-value of 1. It is clear 

then that this transition results from the pick-up of a proton 

with.e = 1 
P 

and jp = 3/2, which identifies the pick-up as 

being from the 2P3/2 proton orbital. This orbital is filled with 

2j + 1 = 4 protons which are available for this transition . p 

4.3.7 The transition to the third excited state 

The second deuteron peak submerged in the "1.6 MeV" peak 

originates in the transition from the ground s'tate of 90Zr to 

the third excited state of 89y at 1.75 MeV which has JTI = 5/2 - . 

This deuteron peak then, corresponds to a j-value of 5/2 and an 

.e-value of 3 and so the transition corresponds to a proton pick-

up from the 1f5/2 proton orbital. The occupancy of this orbital 

is 6. 
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4.3.8 The transition to the fourth excited state 

The fourth excited state of 89y has an excitation energy 

of 2.22 MeV. Kinematic calculations show that deuterons produced 

in a transition to this state (if it were possible) would have an 

energy of~ 13.6 MeV which would make it lie within the 

"1.6 MeV" peak. This is a 5/2+ state and the excitation of this 

state would require the pick-up of a proton from a j = 5/2 shell 

model orbital with an ~ = 2 orbital angular momentum since there 

is no change in parity. This effectively forbids the excitation 

of this state in the (n,d) reaction since the proton occupancy 

of the 2d5 / 2 shell is zero in 90Zr . 

4.4 The distorted-wave method analysis 

The distorted-wave method calculations were performed 

with the optical potentials and optical potential parameters 

described in section (4.2) above. The finite-range corrections 

(for the zero-range approximation) and the nonlocal potential 

corrections are performed in the LEA. The finite range 

correction parameter was set in the middle of the field 

prescribed by Kunz(l), at 0.667 while the nonlocal correction 

parameters were set at S = 0.85 for the nucleons and B = 0.54 

for the deuterons(l). The comparisons between the theoretical 

and experimental cross sections were carried out via the 

relationshiP(7) 

The value of the overlap integral D2 was estimated by Bassel(6) 
o 

to be 1.55 from calculations which included the effect of the 

deuteron d-state admixture in the deuteron wavefunction. The 

quantity c 2S where 

C = <T T ~ t TT> 
f fz z i iz 
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is the isospin Clebsch-Gordan coefficient with Ti and Tf 

being the isospins of the initial and final nuclei, is then 

the spectroscopic factor of a particular transi tion (i .... f) . 

Chi-squared fits to the experimental cross sections 

were obtained by minimizing the expression 

where N is the number of experimental points while o(o(e.) is 
1 

the error (or inverse of weight) associated with a(ei)EXP' 

The 0(6 i )DW were folded into the modified angular scale because 

of the solid angle corrections that were necessary for the 

existing geometry in the experimental set-up. 

The angular distribution of the ground state deuteron 

cross section is shown in figure (4.3), together with distorted-

wave method fits. The broken-line fit represents a calculation 

based on the assumption that the deuteron cross section is due 

to a pure 2P1/2 proton pick-up and the comparison described 

+ above produces a spectroscopic factor of 1.8 - 0.4. However, 

the energy resolution of the spectrometer is in the region of 

0.6 MeV (FWHM) and it is likely that the "ground state" peak 

contains some contribution from the proton pick-up from the 19
9

/
2 

shell model orbital. (See figure (4.2)). A small contribution 

from this proton pick-up cross section, of the order of 0.1 

protons, improves the fit to the experimental points significantly 

and decreases the spectroscopic factor to 1.7 ~ 0.4. This 

compared favourably with the calculated value of 1.33(19). This 

second fit is represented by the solid line curve in figure (4.3). 
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As we have seen, two deuteron peaks are submerged in 

the "1.6 MeV" peak, as the fourth excited state of 89y is 

unlikely to be excited in this reaction. The two peaks are 

those due to the pick-up of: 

(a) the 2P3/2 shell model orbital protons 

(b) the 1f5/2 shell model orbital protons. 

and 

These transitions produce deuteron peaks that are associated 

with the second and third excited states of 89y which have 

excitation energies of 1.51 and 1.75 MeV, respectively. These 

peaks occur with approximately equal separation on either side 

of 1.6 MeV (where the combined peak appears to be peaked). 

The insufficient energy resolution forces a combined treatment 

of these two peaks. This was done by manually choosing 

different spectroscopic factors for each of the transfers and 

then obtaining the best fLt for the angular distribution of the 

deuteron cross sections for this "1.6 MeV", using a modified 

version of the Chi-squared equation described above. The best 

fit produces the following spectroscopic factors for the pair 

of transitions: 

j = 3/2, 

j = 5/2, 

.e = 1, 

.e = 3, 

c2s = 1.8 + 0.4 

C2S = 0.7 + 0.4. 

Whilst this process must appear quite arbitrary it must be 

said that the distorted-wave fits are sensitive to the choice 

of spectroscopic factors. The reason for this lies in the fact 

that the distorted-~ave cross sections for the j = 3/2 transition 

(which is an .e=1 transition) peaks at approximately 10° while 

the j = 5/2 transition (which is an .e=3 transition) peaks at 

approximately 25°. 



93. 

This ensures that the distorted-wave method fits, which are 

independently sensitive to the choice of spectroscopic factors, 

are also sensitive in combination since the one dominates the 

region about 10° while the other dominates the region about 25°. 

Figure (4.4) shows a distorted-wave method fit to the 

experimental points of this "1.6 MeV" peak. 

Table (4.2) provides a comparison of the spectroscopic 

factors for the transitions investigated in the present study 

with those of earlier experiments(22)(23) and those that are 

derived from shell model limits. Preedom's values(22) are 

consistly high. The ground state spectroscopic factor 

obtained in this study agrees within error with the prediction 

of GlOeckner(19) and with the values obtained from earlier 

experiments. 

Excitation Energy 
Present Work Ref.(4) Ref.(10) 

Model 
(MeV) Limits 

0.0 1.7(5) 1.91 1.4 1.33 

0.91 1.10 0.6 0.67 

1.51 1.8(5) 4 . 25 4 .0 

1. 75 0.7(4) 7.80 6.0 

Table 4.2 Comparison of spectroscopic factors. 

For the 1.51 and 1.75 MeV states, the values obtained 

in this study are very much lower than the model limits. These 

model limits are derived from the proton occupancy of the 

2P3/2 and 1f5/2 shell model orbitals. If it may be assumed that 

the only states with JTI = 3/2- and 5/2- 't d ' eXCl e ln this reaction 

are the states at 1.51 and 1.75 MeV respectively then it will be 

true that the spectroscopic factors for these transitions will be 
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the model limits. However, it is clear from a survey of the 

level structure(29) of 89y that there are at least thirteen 

states of 89y with JTI = 3/2- (below an excitation energy of 

5 Mev) and at least eight excited states wi th JTI = 5/2-

(below an excitation energy of 4.5 MeV). It is true that direct 

reactions tend to favour lower excitation energy final states, 

but the energies considered here are relatively small. Further, 

a study of the summed deuteron spectrum in figure (4.2) 

indicates that some of these levels are indeed excited in this 

(n,d) reaction. The statistics are unfortunately much too poor 

to permit a distorted-wave method analysis of these deuteron 

peaks. What is evident therefore, is that the transition 

strengths to these states at 1.51 MeV and 1.75 MeV do not 

exhaust the sum rule limits for proton transfers from the 2P3/2 

and 1f5/2 shell model orbitals. 

An attempt to calculate the relative spectroscopic 

factors to each of the JTI = 3/2- excited states of 89y was 

attempted. Use was made of the theory of deShalit and Talmi(30) 

for the coefficients of fractional parentage and the expression 

of Glaudemans(31) for the spectroscopic factor (S = n x c.f.p.2 

where c.f.p. is the coefficient of fractional parentage and n 

is the nucleon occupation number of the orbital under 

consideration). Proton seniority considerations in the 

calculations tended to show that the theory used above cannot 

predict the excitation of 3/2- states beyond that at 1.51 MeV. 
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Chapter Five 

Discussion 

5.1 Introduction 

The major tasks of this study may be divided into four 

distinct topics, which are described below. They have all 

been covered with some success. In this discussion, it is 

hoped first of all to summarize some of the results of the 

analys.is performed and then to suggest how the analysis may be 

improved to present greater efficiency in the spectroscopic 

nature of the study. 

The aims of the study may be described as follows: 

(a) To understand the distorted-wave method and its application 

to single-nucleon transfer reactions. This required the 

understanding of the Optical Model and its potentials 

(including the method for choosing the parameters). In 

addition, ambiguities that surround the use of the distorted 

-wave method were investigated. 

(b) To undertake a survey and to use the charged-particle 

spectrometer developed by W. R. McMurray and 

(1)(2) . 
K. Bharuth-Ram , WhlCh was employed to amass data in 

the reaction studied in this research. An important aspect 

of this part of the study was to determine whether the 

efficiency and energy and angular resolution of the 

spectrometer allowed for a distorted-wave method analysis 

of the data. 
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(c) To perform a distorted-wave method analysis of the data 

obtained from the bombardment of a 90zr enriched foil with 

21.6 MeV neutrons and then observing the resulting 

deuteron (and proton) spectra at various angles. The 

distorted-wave method analysis, which required the use 

of a high-speed mainframe computer is described in 

Chapter Four. A comparison between the calculated and 

experimentally obtained angular distributions of the cros~ 

sections indicate that the dominant process in this 

interaction is the direct pick-up reaction. 

(d) To understand the use of single-nucleon particle transfer 

reactions in spectroscopic studies. It is possible, from 

comparing the calculated and experimentally obtained 

angular distributions of the cross-sections, to extract 

information on the nuclear structure of the participating 

nuclei. The derived cross-section in the distorted-wave 

method is related to the distorted-wave scattering cross-

section by the following relationship 

DW where -€=orbital angular momentum transferred and 0.e (a) 

depends only on the reaction parameters such as the energies 

and scattering angles. S, the spectroscopic factor is a 

function of the nuclear structure of the target and residual 

nuclei. By determining the spectroscopic factor, very 

concrete information on nuclear structure has been obtained. 
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5.2 A summary of the application of the distorted-wave method 
to the reaction 

The distorted-wave method has been resorted to in this 

analysis because the simpler plane-wave theory formulated by 

Butler(3), which is referred to very briefly in Chapter Two, 

produced cross-sections which were at least an order of magnitude 

greater than those experimentally observed(4). However this 

theory did permit the determination of the orbital angular 

momentum transferred in these reactions. In the case of zero­

spin target nuclei (such as 90Zr is), it is then possible to 

assign t values to the different excited states of the residual 

nucleus. The determination of spectroscopic factors depends 

heavily on obtaining the correct magnitude in the calculated 

cross-sections and so the distorted-wave method is employed 

which has greatly improved this aspect of the calculation. 

The next step was to examine the intensities of the 

different deuteron groups in the spectrum (see figure (4.2)). 

This technique is profitable because the (n,d) reaction (as is 

true for all direct reactions) is highly selective in the final 

states that it populates. This selectivity is demonstrated by 

t he one-to-one correspondence which exists between the energies 

of the deuteron groups and the excitation energies of the 

residual nucleus (which result from the pick-up of very specific 

tj-protonsfrom the target nuclei). If in the comparison 

between the experimental and calculated cross-sections a 

spectroscopic factor of one is obtained then this implies that 

one proton was available for pick-up to lead to a specific final 

state. (See McFarlane and French(5).) Following this general 

approach, an analysis of the available data on the 90Zr (n,d)ffiy 

reacti pn was carried out and was partially successful. 
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5.3 Problems with the analysis 

5.3.1 Insufficient statistics in the data 

The analysis allowed the extraction of details on the 

proton occupancy of the 2P1/2 proton subshell in 90zr , as shown 

in Chapter Four. However, an anlysis of the transition from 

the ground state of 90zr to the first excited state of 89y 

(which is 199 / 2 state) was impossible. The reason for this was 

the relat~vely insufficient statistics achieved for the 

transition, though the summed spectrum (figure (4.2)) shows a 

89 small but definite peak at ~ 0.92 MeV excitation energy of Y 

which is very nearly the exact position of the first excited 

state of 89y (.909 MeV). By performing this analysis it would 

have been possible to obtain a value for the proton occupancy 

of the 199 / 2 level, and together with the proton occupancy of 

the 2P1/2 level, a very indicative measure of the efficiency of 

the measuring system and analysis would have been available, 

since their sum has to be two. 

The lack of statistics resulted in a second major 

problem in the analysis. The model limit for the transition 

from the ground state of 90zr to excited states of 89y with 

JTI = 3/2- is four; since the proton occupancy of the 2P3/2 

proton subshell is four. The spectroscopic factor obtained in 

this study for the transition to the second excited state, which 

is a 3/2- states at 1.51 MeV, + is 1.7 - 0.4. There is evidence 

in the summed deuteron spectrum that several other 3/2- state 

were excited in this reaction but poor statistics denied an 

analysis of these peaks. 
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It must be noted that this spectroscopic factor of 1.7 for the 

transition to the second excited state is reasonable on two 

grounds: 
89 

(a) there are at least ten 3/2- states in Y below an 

excitation energy of 5 MeV. 

(b) The 2P3/2 proton subshell is a closed one (since 88 Sr is 

a closed, inert core) and the probability of removing a 

proton from it must be less than one. 

The statistics of the data may be improved in several 

ways: 

Ca) Increasing the run-time of the experiment is a possibility, 

though the run-times for the previous runs are already long, 

making the cost factor an important one. 

(b) Doubling the thickness of the target foil will double the 

count rate and thus help to improve the statistics. It is 

possible that the energy resolution of the data may be 

affected but this will have to be investigated. As for the 

angular resolution, the thinness of the foil will permit 

the doubled foil to continue to be considered as a two-

dimensional target and should therefore leave the angular 

resolution unaffected. 

Cc) Decreasing the value of d C= the distance between the tritium 

cell and the target) from 120 mm to 60 mm has the effect, as 

was seen in Chapter Three, of shifting the mean scattering 

angle further away from the nominal angle and of adversely 

changing the angular resolution. However, the loss in 

resolution is greatly outweighed by the gain in neutron flux 

on the target which is quadrupled if d is halved. This gain 

in statistics will help the analysis tremendously. 
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It will be shown later that the loss in resolution may 

not affect the analysis adversely. 

5.3.2 The energy resolution of the deuteron spectrum 

In reference (1), the authors state that the spectrometer 

has an energy resolution of approximately 0.8 MeV. In the run 

of the present experiment, it became evident that this value is 

really closer to 0.6 MeV. Even this value has an adverse affect 

on the efficiency of a distorted-wave method analysis. A typical 

instance of this was in the analysis of the "1.6 MeV" peak, which 

is an unresolved peak. As was mentioned in Chapter Four however, 

the spectroscopic factors obtained in that analysis were obtained 

with a method which was highly sensitive to the choice of 

spectroscopic factors. This lack of resolution produced problems 

with the analysis of the ground state peak as well, as it 

became necessary to consider some contribution of the 1st excited 

state peak to the ground state peak. This, as can be seen in 

Chapter Four, improves the fit of the calculated cross-section 

to the experimental cross-section. 

A reasonable analysis of the data has been possible in 

the study of this particular reaction but that is only so 

because of the sufficient energy spacing between the excited 

89 
states of the Y nucleus. For instance, preliminary 

investigations show that an analysis of the 27A~(n,d)26Mg 

reaction may be much more complicated because of the decreased 

level-spacing between the excited states in the 26Mg nucleus. 

The use of the spectrometer may therefore be limited unless 

its energy resolution can be improved. 
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As a comparison, the study of a similar reaction by Ball and 

Fulmer(6), in which they used a magnetic spectrograph, had an 

energy resolution of approximately 18 keV. They were able to 

accumulate accurate information on the nuclear structure 

90 of Zr. 

5.3.3 The angular resolution of the spectrometer 

The angular resolution of the spectrometer depends 

largely on the geometry of the experimental set-up. 

As was seen in Chapter Three, it differs from ~4.4° to ~3.7° 

for the cases of d=60 mm and d=120 mm respectively. This 

change in angular resolution does not affect the distorted-

wave method analysis to any great extent since the fitting of 

the calculated angular distribution of the cross-section to 

the experimentally obtained one is determined primarily by 

fitting the respective forward angle peaks. The calculated 

peaks in the forward direction for ~-transfers of 0,1,2, 

occur at progressively larger angles which make the peaks 

easily distinguishable. (see figure (5.1)). 

Additional calculations have been performed to determine 

the effect of the choice of different angle limits (for 

example, ±1°, ±2.5°, and ±5°) on angular resolution. These 

calculations tend to show that the angular resolution is not 

grossly affecteft by this. Statistics requirements tend to 

force wider angle limits but the need for as many data pOints as 

possible (for the analysis) force smaller angle limits. An angle 

range of ~ 2.5° seems a suitable compromise. 
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5.3.4 Improvements in the distorted-wave method calculations 

To be able to obtain accurate information on nuclear 

structure using the distorted-wave method, and assuming that 

the angular and energy resolutions and statistics are improved, 

the following improvements may be necessary in the calculations. 

(a) The adiabatic approximation of Johnson and soper(7)(8)(9) 

must be employed. This technique deals with the (n,d) 

reaction as a three-body problem. The approximation is 

made in the optical potential of the deuteron. The 

technique has been applied successfully in several 

t d " (10)(11) s u les . 

(b) 90 The lack _of elastic scattering data on Zr and deuteron 

elastic scattering data on 89y resulted in the use of 

global optical potential parameters (which were fairly 

successful - see Chapter Four). However, to complete the 

analysis efficiently it would be necessary to perform 

these elastic scattering reac~ions to obtain authentic 

optical model potential parameters for the analysis. 

(c) Even though the zero-range approximation produces good 

results for the single-nucleon transfer reactions, it is 

necessary to perform the calculations using one of the 

codes which deal exactly with finite-range effects. such 

as LOLA(12) ~r to resort to the theory of Charlton(13). 
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