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ABSTRACT

A study has been made of the 90Zr‘(n,d)89Y reaction at an
“incident neutron energy of 22 MeV. The experimental
aspect of the study was performed at the Van der Graaf
facility at the National Accelerator Centre, using a
particle spectrometer developed by K Bharuth-Ram and
W R McMurray for the study of neutron-induced charged-
particle emissions. Thé spectrometer, which consists of
a telescope of three multiwire proportional counters and
a curved plastic scintillator, permits the simultaneous
accumulation of data over an angular range of 80°. Solid-
angle-calculations have been performed to correct for the
effect of the geometry of the system on the angular
distribution of the cross—seétions. A review has been made
of the shell model of the nucleus, the optical potential model
and the distorted waves method (or DWBA) for the analysis
of direct nuclear reactions. A distorted-waves method
analysis of the reaction is performed with the code DWUCK 4
and the resulting angular distribution of the various .
cross-sections are compared with the experimentally obtained
data. This comparison produces spectroscopic factors which

are used to perform some analysis of the nuclear structure

of the 9OZr nucleus.
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Chapter One

Introduction

9OZr(n,d)89Y reaction which

This study investigafes the
proceeds via a direct pick-up reaction. In this type of
reaction there exists a finite probability that an incident
nucleon(s) can interact strongly with the nucleons in the surface
region of the target nucleus. Such reactions, thus, proceed
directly from initial to final nuclear states without the
creation of an intermediate compound nuclear system, and have

interaction times of the order of the period of an orbit of a

nucleon within a nucleus.

The simplicity ofrthese reactions makes them very
important as sources of information on nuclear stfucture. This
depends on the fact that these singie-step processes produce
cross-sections which depend in a relatively simple way on the
overlap between the initial and final states of the sample
nuclei. This produces informat;on on the similarity between
these states. 1In the case of the (n,d) reaction investigated
it is the similarity between the residual 89Y nucleus and the
target 9OZr‘ nucleus (:89Y nucleus + one proton in the 2p1/2
single particle orbit in the'shell model of the nucleus). The
so-called spectroscopic factor is a measure of this similarity.

It is feasible to employ the pick-up reaction as a tool to

investigate the validity of the nuclear shell model.



Pick-up réactions (like other direct reactions) have a
high degree of selectivity in the choices that they make to
final states. The conservation of total angular momentum and
the conservation of parity ensure that the final states.of the
nuclei are clearly identifiable quantum states. This is
examined in terms of the reaction under consideration. We
assume a shell model picturé'of 9OZr, and therefore start by
making a summary of the Shell Model of the nucleus in Section

1.1.

1.1 Summary of the Shell Model of the Nucleus

Consider a nucleus of A nucleons (Z protons and N=A-Z
neutrons), built-up with a single particle potential, U(i)
where U(i) is a function of the spatial, spin and isospin
coordinates of the i-th particle. 1In addition, the nucleons
experience a two-body residual interaction u(i,j) where
p(i,Jj) is a function of the spatial, spin and isospin
coordinates of both the i-th and j-th nucleons. The p(i, j)
are weak enough to be employed as the first order perturbations
to the U(i) in the evaluation of the energies of the different
shell—modelr}evels. The shell-model Hamiltonian may then be

written as

_ 1 - .

H

l

o ol (—‘r‘12/2u\721 + U(1))

Spatial symmetry of HO gives rise to degeneracy in HO with
respect to the m-states of any.singlefparticle level. In
addition, HO is charge independent and this gives rise to

slmilar neutron and proton states.



The first order perturbation corrections require the
diagonalization of the perturbation within the éubspace of
the degenerate states of;HO. Consider eigenstates ¢a(i) of
HO, that is |

B B0 = e, 0D

where o = (naﬂajama). Due to the spherical symmetry of HO

the configuration (naﬂaja) has (2ja+1) - fold degeneracy.
Similarly, the two-particle configuration (naﬂajwnsﬁajs) has

zeroth-order energy e +e¢, and is (2jaf1)(2j8+1) - fold

B3

degenerate. A suitable choice Of'eigenfuhctions for a two

(2)(3)

particle-configuration is the m-scheme set

0,00 b,
(b(m(l’ mB) = 1/‘/2

¢é(1) 0 (2)

The two-body residual interaction p(i,j) commutes with JZ SO
that

((IJ(ma,mB). lu(1,2) q)(m'a ,_mé ) =0 |if m+ mg # m;-l--mB/

There are (2ja+1)(2j6+1) eigenfunctions ¢(ma,mﬂ). Transforming

to the J-scheme the following set of(2ja+1)(2j8+l) degenerate

states of HO corresponding to the eigenvalue e tEg are obtained.

) (1.1)

(] - > E . . .
[3gdp 0> = 2 (Gm gy 19M) O, (nom,

a
where J = lja-—js|,|3a-33|+1’~ ©oeoe s gt Jg-

Now <jajBJMru(1,2)|jajBJ’M'> = 0 if J#£J° and M £ M™.



Then for a two-particle system ja’js there is only one value
for J and M. Therefore the matrix elements of n(1,2) with the
wavefunctions in (1.1) above are diagonal and give the first-

order perturbation energy; that is
. _ <(i A .. 5 )
BE(J,JgIM) (3,3g9M [ u(1,2) | 3 3 9M (1.2)

This expression holds only for simple two-particle systems.
Equation (1.2) above is invariant under rotations so that with

the Wigner-Eckart theorem the expression for E reduces to
bE(G 3.0 = (20+1) 7% (5 5 0 lu(1,2) (15 §.3)
JoJdg = JoJdg nil, JoJdg

where the reduced matrix element is independent of M. This
demonstrates the (2J+1).—7fold degeneracy that exists within a
state with total angular momentum quantum number J. However,.
n(1,2) does 1lift some of the degeneracy since it shifts states
with different J's differently. This remaining degeneracy is

due to the spherical symmetry of Ho'

For the residual interaction u(1,2),a 6-potential is

(2)

often chosen , So that
w(1,2) = -v_ s(r -r,)
where Vo has units of (energy x volume). Then

AEé(JajBJ) Vs <jaJBJM| -5(21—32)|jajBJM>

Vg Fo(naeanees) A(jajBJM)

where Fo represents the overlap of the radial parts of the

wavefunctions of the particles 1 and 2.
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Hence it is a function only of r. A is a function of J, so
that

BE(3) / SE(I') = A3 3,0) / AI3,97)

The coefficients A(jajBJM) have the following form

'1/4n(2ja+i)(2j8+1) Ja Jg 32
% - % O
A(jajBJM) = ﬁ | (if eu+€8—J is even)
0 (if 2 +£,-J is odd).
L —————— (1.3)

It can be seen from equation (1.3) that if the configuration
(jaje) has even parity-(that is, €a+€B is even) then only
states with even J are affected by the é-potential. While
for odd parity, only odd J states are affected by the
§-potential. What this indicates is that the even or odd
J-value together with the parity combine to determine whether
the probability of finding two particles close together in

energy vanishes or not.

Up: to this point only two-particle configurations have
been considered. Consider a nﬁéleus with level j.filled with
n=(2j+1) nucleons and level j’lﬁith 1<n<2j'+1 nuciéons. The
j-level is fully defined with definite quanfum numbers; the

total angular momentum being zero and its parity positive.
.-
If it is assumed that the j’" configuration is defined by the

T _ .2j+1 .sn’ . .
set of quantum numbers (oJ"™M) then the j J configuration

has the same set of quantum numbers (oJ™M) since the j°9t1

configuration has J"=0" and M=0.



The required condition of antisymmetrization does not alter
this result. In addition to the above, the energy spacings

23+1 .1n
J J

between the levels in the J configuration are identical

to those in the j'n configuration.

The introduction of the isospin formalism ensures the
treatment of a neutron-proton system as if these particles are

different states of the nucleon. This involves writing equation

(1) as

| 3o g IMTMy” =mam§ntamt8(jamaijB!JM) % mg %m | T M)
X(Mmamta, mBmCB)

where me s Mg = % (for proton) and-J% (for neutron). Now, as

nuclei increase in A-number the symmetry between protons and
neutrons begins to break down. A neutron excess builds-up sO

that protons and neutrons fill different major shells.

Nuclear properties undergo sharp changes at certain values
of N and Z. This has been known experimentally for many years.
These numbers are called '"magic numbers'" and their values become
most apparent in the discontinuity of the average binding
energy per nucleon that occurs for most nuclei at those N and 2
values. A sudden decrease in the binding energies of protons
and neutrons is observed at N and Z = 8, 20, 28, 50, 82 and 126.

(5) (6)

McCarthy , quoting Elsasser , also lists 6 and 14 as less-
pronouncec magic numbers. In addition, McCarthy shows how values
for these magic numbers may be obtained theoretically, using

an infinite square-well potential for the interaction between a
nucleon and the nucleus to which it is bound. He performs the

calculation for the harmonic oscillator potential as well,

although results for both these potential proved unsatisfactory-—.
fadt




in that they did not match experimentally observed values. The
infinite square-well potential, for instance, produced the
following magic numbers: 2, 8, 20, 34, 40, 58, 92, 132 and 138.
The inclusion of a spin-orbit potential to the interaction then
produced the correct sequence of magic numbers. Figure (1.1),

(7)

reproduced from Arya , shows both the level scheme and magic
numbers produced by the square-well and harmonic oscillator
potentials, as well as that produced by an average of the square-

well and harmonic oscillator potentials with spin-orbit potential.

9OZr is a member of the highest group of nuclides that may

be described by valence protons and neutrons that fill different
shell-model orbitals(l). The outermost neutrons occupy the
1g9/2 level while the outermost protons fill the 2p1/2 level.

For reasons of expediency we treat the neutron and proton as

distinguishable particles.

The outermost nucleons in the 9OZr nucleus are ten
neutrons that occupy and fill the 1 g9/2 neutron subshell and
two protons, that lie outside the semi-closed 2p3/2proton
subshell, shared between the 2p1/2 and the 1g9/2 levgls. Thus,
this nucleus is characterized by two valence protons outside
the closed inert core of 88Sr (see figure (1.2) ). The protons
can occupy the following configurations (2p1/2)2,(1g9/2)2,
and (2p1/2, 1g9/2). The 2pl/2 configuration can only produce
J"=0%" since €,+%=2 and so J must be even. In the (1 g9/2)2
configuration €a+€s=8 and so J must be even. This gives rise
to the following J™ values : O+, 2+, 4+, 6% and 8*. Finally,
the(2p1/2, 1g9/2) configuration has ¢4t2=5 so that J" = 4~

and 5 . Figure 1.3 demonstrates these calculated levels(4)and

the experimentally observed levels together with their respective
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Fig. 1.1 The sequence of energy levels of a nucleon
according to the shell model.



energies.

The proton pick-up reaction on 90Zr provides an efficient
mechaniém for determining the proton-occupancy of the 2p1/2
level and the 1 g9/2 level, on condition that the energy
resolution of the emerging particles and the angular resolution
of the cross-sections are sufficiently high to allow the
comparison of the experimental results with distorted waves
method calculations. In addition, such an experiment allows

an examination of the ground and excited states of the residual

nucleus, 89Y.
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protons | neutrons
2d5,2 *Sr core
L 0cco000
gs/z 00000
g T{r
2p1/2 v 0 0
Zpam 0000 0000
0 0 0 0 0 o
if
5/2 0 0 0 0o 0 o
“7r

Fig. 1.2 Nucleon occupancy of shell
model orbitals in 90zr.

E (MeV) Jr E(MeV) Jr
3.595 8" .
+ 3.50 8,

3.445 6 3.37 6
3.081 4" 3.04 ' a*
2.74\ 4" -
2.66 4
2.315 5" 2.32 5
2.182 2+ .25 >
: + +
1.752 0 1.75 0
o* -0.02 o*

Experimental -Calculated

Fig. 1.3 Experimental and Calculated Energy levels
of 90zr, (from Ref.4)
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Chapter Two

The distorted-waves method

2.1 The optical model

The introduction and utilization of the optical model in
the understanding of nuclear reactions became necessary when if
was realized that direct reactions were not purely surface
phenomena - that although the formation of a compound system
did not occur some absorption did take place within the target.
The optical model has since become an intrinsic element in the
description of direct nuclear reactions. Its importance to the
distorted-waves method is two-fold. Firstly, it produces an
interpretation of the phenomenon of elastic scattering - of
which the transfer reaction is treated as a first-order
perturbation. Secondly, its use leads to the necessary wave-
functions for the relative motion of the nuclei involved in the
reaction collision. These "distorted waves" are essential

ingredients in the distorted-waves method.

The effective interaction between two colliding nuclei is
very complicated. According to Satchler(l) it is complex,
nonlocal (or momentum-dependent), energy-dependent, has quasi-
bound states which give rise to resonances and finally, it is
dependent on the model spade that is chosen. The optical model
is a model of this interacfion and it reduces the complexity of

the interaction by restricting the model to that of a two-

particle interaction, using a potential.
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This is possible within a model space that involves just one or
a few open channels. The optical model potential parameters
are related to fundamental quantities such as the nucleon-
nucleon interaction and other quantities related to nuclear
structure. However, ambiguities do remain and there is no
guarantee that optical models are not just a parametrization of

(1)'

experimental data points

In a fashion that is analogous to the nuclear shell model,
it is assumed that two nuclei ihteract with each other as if all
the nucleons of one nucleus interact in an average manner
with the nucleons of the other nucleus. The optical model
potential necessary for this is a function of the distance
between the nuclei in some channel e, say. This potential
U = U(Ih) is selected on the basis that it provides the best
possible description of elastic scattering in the a channel.

The direct reactions are then considered to be perturbations on
elastic scattering (which is feasible since elastic scattering
cross—sections are much larger than inelastic or transfer

reaction cross-sections).

2.1.1 Properties of the optical model potential

In the case of a transfer reaction the model space has at
least a few inelastic channels. The potentials that link these
channels and the elastic channel must be complex (since, even
if the bombarding energy is below the threshold for the opening
of inelastic channels flux absorption into compound-elastic

(2)

scattering does occur). Glendenning has shown analytically

that 1if flux absorption does occur then the optical model

potential must be complex.
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The imaginary part of the potential must be chosen so as to
ensure that the flux absorbed is not greater than the flux that

is incident.

The effective interaction is explicitly dependent on the
bombarding energy, E. The optical model potential must mimic
this and this is indeed the case. The pofential parameters
that give a good fit for elastic scattering data at some
bombarding energy will not necessarily produce good fits for the

same colliding nuclei at a different bombarding energy.

The effective interaction B is a nonlocal operator, that
is

B §(r) = fB(z,f_') d(r’) ar’.

The effective interaction permits an incident nucleon to escape
from the elastic channel at r, to traverse part of the nucleus

in an inelastic channel and then to reenter the elastic channel

at EI' Another source of nonlocality is due to antisymmetrization
between the projectile and the target nucleons. This nonlocal
interaction can be modelled by a local but energy-dependent
potential. Several approximations have been used in distorted-
wave method computer codes to minimize this discrepancy, an

,(1)(3)

example being the local energy approximation (LEA

For a local potential the Schrodinger equation may be

written as

(H, + T+ U - E) ¢(r) =0

¢

where Ha operates on the internal coordinates of the particles

in the o channel, Ta is the kinetic energy of the relative
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motion of the particles in the o channel. However, for a
nonlocal potential the Schrodinger equation must be written

as

(H, + T - E) O(r) + Ulr,2") ¢(x') dar’= o

If the nonlocality range is small, that is (E—E')is small,
®(£') may be expanded as a Taylor series about r, that is
O(r’) = P(r) + (z'-r). vP(r) + 1/2 (r’-r)® . v° P(r) +...
where v = p/ih and the v° term is an energy term. The

integral in equation (1) above therefore demonstrates the

energy-dependence of such an optical model potential.

The optical model pofentials are spin-dependent since
nucleon-nucleon interactions are spin-dependent. The
introduction of a spin-dependent part to the potential improved
the fits to the elastic scattering data. The potential may
depend on the spin of the projectile and/or target and L-S
coupling is assumed for nucleons involved in the reaction.
However, for larger projectiles, for example, deuteron, second

rank tensor couplings are assumed.

2.1.2 The form of the potentials

The spherically-symmetric optical potential U(ra) has a
real part which is flat and attractive (i.e. negative). The
short range nuclear force is mimicked by this real part which
rises rapidly and monotonically tp zero at the surface of the
nucleus. The most commonly used analytic form for the real

part of the central potential is the WOods—Saxon(4) "volume"

form.
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It is given by

Re U(r) = -Vg f(xR) where f(xi) = (ex—l)_1

and x; = (r‘—R_i)/a_,_-L

where VR is the well depth. RR is the radius and apg the

surface diffuseness. Then as Xp * =60, Re U(r) + -V and

as X+ +00, Re U(r) + 0.

R

The "volume" part of the potential was assumed to have
both real and imaginary parts when it became clear that flux
absorption occurs in direct reactions. The imaginary part has

the same form as Re U(r):
Im U(r) = -W f(xw) where X, = (r—Rw)/aW.

The complex part of the potential is usually assumed to have a
"volume" and a "surface'" term. The '"surface" term is

proportional to the first derivative of f(x) and has the form

Im U(r) = 4 df(xD)/de
2
= -4W, exp(xD)/((exp(xD) + 1)
where x, = (r—RD)/aD. The factor of 4 is inserted because this
surface potential peaks at r = R_,. The Woods-Saxon and Woods-

D

Saxon derivative optical potential shapes for a nucleon
impinging on an A~100 nucleus are shown in figure (2.1).

(Fig. 2.1 on page 17).
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Fig. 2.1 Woods-Saxon optical potential shape
f(x) and the Woods-Saxon first
derivative optical potential shape
g(x). Reproduced from ref. (1).

Spin-orbit coupling has become a necessary addition to
the family of optical model potentials, although several
examples of global optical potential sets (see Hodgeson(5)(6))
leave out the spin-orbit part. In the type of reaction
considered in this study the spin-orbit interaction is
restricted to the surface region of the nucleus and the
phenomenologically accepted form of a potential for such an

interaction is

U

o = Voo (B/mgc)® 7t af(x__)/dr L.S

where Xeg = (P_Rso»ésd' To be able to express Vo, in MeV
(h/mﬁc)2 must be set to be 2.00 fm°. If the bombarding energy

is more than 100 MeV, then it is necessary for Vso to be

complex.



18.

When charged particles are involved in a reaction it is
necessary to bring in to play the Coulomb potential. This
potential has a slow 1/r drop off so that it has a presence
within and without the nucleus. The form of this potential
depends on the mathematical picture adopted for the charge
distributions involved. If a point-charge form is assumed for

the projectile (charge Zae) and the target nucleus (charge Z,e,

A
radius RCH) then

| v
(2]

= (2 Zy e2)/P r

a CH

Uc(r)

(z e2)/2R x [3 - r2/R

2 1 <
a 2a CH et for r £ Ry
A more precise formulation of this Coulomb potential involves

the use of the single-folded expression for the target nucleus
= 6 ’ — / ’
U, (r) ej} cg (r') / lp - /(1 ar’.

eCH is the spherically-symmetric charge distribution for the
target nucleus. If compound projectiles are involved in the
reaction then a double-folded potential has to be used. The
co-ordinate scheme for the single and double-folded Coulomb

potential are shown in figure (2.2).

All of these potentials have as one of their parameters

potential radii. The nuclear radius is generally taken as

being proportional to A1/3. These potential radii are then
given as
R 1/3 . . .
i = ri A where 1 = R, W, D, 50,and ri 1s a radius

parameter independent of A.
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A a

Fig. 2.2 Coordinates used for (a) simple-folding ?nd
(b) double-folding of the Coulomb potential.

Reproduced from ref. (2).

The optical potential parameters have a smooth dependence
on energy and on changing A. (See figure (2.3) from reference
(2)). If they have an erratic dependence on mass number then
this may be traced to underlying changes in nuclear structure.

(7),(8)

| W increases with energy since more channels become
available to drain flux from the incident (or elastic) channel.

On the other hand, |V| decreases as the incident energy

(7),(8)
(2)

increases and this is attributed to the nucleon-nucleon

interaction
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Fig. 2.3 The smooth dependence
of V and W with
respect to energy.

Reproduced from
ref. (2).
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Fig. 2.4 Elastic scattering cross-sections for
30 MeV protons and optical model
calculations. Reproduced from ref. (2).

The use of optical model potentials to produce fits
for elastic scattering data has been very successful. (See
figure 2.4(1)). However, ambiguities do persist both in the

interpretation of the potential and in the use of the

potentials.
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2.2 The distorted-waves method

The underlying premise in the distorted wave theories of
direct nuclear reactions is that the dominant aspect of a two-
particle collision is the elastic scattering part of the reaction.
The aim of the theories then is to solve the eleastic scattering
exactly and then to treat the other parts of the reaction as
perturbations. This treatment requirés the development of the
distorted wavefunctions that describe the elastic scattering
"exactly". These distorted waves are generated by using optical
model potentials whose parameters are chosen so as to obtain the
best possible fits to elastic scattering data at the

appropriate energy.

In the plane-wave Born approximation (PWBA) treatment of
direct reactions, momentum and angular momentum conservation are
easily visible. The transition amplitude in the PWBA

formulation (for the reaction A(a,b)B) has the form
T o€ j, (Qr) £ (r) r® dr
BA £ £

where ¢ is the transferred orbital angular momentum. Stripping
or pick-up reactions are very selective in their choice of
partial waves so that the angular distribution of the cross-
section of a reaction is oscillatory with a particular £-Bessel
function. However, in the distorted-wave theories the transition
amplitudes of these direct reactions cannot be expressed simply
in terms of Bessel functions or other simple mathematical fofms.
But it is still possible to make unambiguous assignments of

f-values in distorted-wave reaction studies by comparing
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distorted-wave cross section calculations with experimentally

observed cross-sections. (See figures (2.5) and (2.6)).
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Fig. 2.5 DWBA fits to proton pick-up reaction Fig. 2.6 DWBA fits to (n,d)
cross-sections. Reproduced from reaction cross-sections.
W. Parkinson et al, Reproduced from

Phys.Rev. 178 (1969) 1976. W. N. Wang and
— E. J. Winhold,

Phy.Rev.B140 (1965)882.

Consider an interaction between two nuclei a and A in the «

channel (which is the incident channel). This interaction is
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described by

<
i

Vo (X, Ty)

where'xa is the set of internal coordinates in the o channel
and r 1is the vector that joins the centres-of-mass of a and

A in the o channel. The Hamiltonian for the system then is
H=H +T +V  ————= (2.2)
[¢1 [¢1 [¢1

where Ta is the kinetic energy of the relative motion of a

and A in the incident channel and Ha is the sum of the internal
Hamiltonians of a and A. If it is assumed that the total wave-
function for this system is @I, then it must satisy the
Schrodinger equation

(E-H) 1 = 0.

(1),(2),(9)

T may be expressed as the sum of a complete set of

internal states My where

B (xa )

ua(xa).uA(xA)
as

r= o ¢, (ga).ua(xa) ------ (2.3)

the sum being over all available internal states of partition

a . QL(EL) describes the relative motion of the nuclei in the <
channel. Equation (2.3) may be inverted to get
$ (c)= (o I'm
= ¥(wv )V T dx = 6——eee_
J(“a (x ) 1 ax_ (2.4)

I will be described fully only if the necessary boundary

conditions are applied to it.
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Consider some bombarding energy E, at which several
channels which contain outgoing spherical waves are open.
Then, if the incident relative momentum is Ea the incident
wave may be expanded in terms of the states of some partition

B as follows

(+)
no = n Op(g) « wglxg) = (2.5)

In a fashion analogous to equation (2.4) above

Polry) = (“‘s‘ | Ha(+))

and, following reference (1), this function has the following

asymptotic form

. : -1 .
¢B(£B) x eXp(lEa'Ea) S8 * fea(EB’ka) r. exp(lkBrB)
————— (2.6)
as r, > . Ty is a unit vector. fsa is a scattering

amplitude of the outgoing wave in channel 8 induced by a plane

wave in the incident channel.

The differential cross-section for the reaction is given
by

dog./an = (v/v) £, (e k)12~ —ocee (2.7)

The factor (vs/va) enters into this expression because fsa is
a scattering amplitude while the differential cross-section
involves fluxes. The transition:amplitude in terms of fB is
given by |

2
Tsa = - (2rh /“s) fBa ----- (2.8)
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and equation (2.6) may then be written in terms of Tay @S

do, /de = (nong/an*h®) (K /k,) 1T, (k .k
e (2.9)
To obtain a functional form for equation (2.9) it is necessary
to gélve the Schrodinger equation with a suitable Hamiltonian.
The Hamiltonian described in equation (2.2) above does not
cater for the use of perturbation theory and this is corrected
by introducing into it the optical model potential. The
Schrodinger equation associated with this Hamiltonian (2.2) is
Jjust
(+) (+)

(E - Hg - KB) m = Vg 170 e (2.10)

where Ha + Ka + Va = HB + KB + VB = esens for each possible

partition. The optical potential U(ra) may be subtracted

from both sides of equation (2.10) giving

_ (+)
[E - Hy - Ky - UB(PB)] m = [VB UB(rB)] L
----- (2.11)
and
(+)
- - r -
[E - Kg = Uglrg)] 0, () = (g [ Wy | 1'%
————— (2.12)
where wB = VB - UB(rB) is the residual interation. If UB(rB)

includes a major part of VB then wB is small enough to be
treated as a perturbation. UB(rB) is the selected optical
model potential that provides the best interpretation of the

elastic scattering part of the reaction. This minimizes WB'

The formal solution of equation (2.12) is given(l) in
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terms of the solutions of the homogeneous equation

(+) _ L
[EB - KB - UB(PB)] €y (KB’EB) = 0 ——- (2.13)

(+)_

The (+) sign signifies the composition of the €4 It has
the asymptotic form of an incident plane wave and outgoing
spherical waves. These wavefunctions are the distorted waves
which describe the elastic scattering of b and B mediated by
UB(PB) itself. Thesé distorted waves are an integral aspect
of the distorted-waves method. The transition amplitude in
this formalism requires explicit functional forms for these

waves which have to be obtained from a solution of equation

(2.13) with the imposition of boundary conditions.

To obtain more information on the transition amplitude

it is necessary to apply Green's function techniques to equation

9)
(2.12). Austern( ) shows that a formal solution of equation
2.12 1is .
o (+) . eq-1 (+)
¢B = €, 6a6 + [E - ey - KB -Ug + ie’] (uB |WB| m )

where the +ie' is introduced to ensure that there is no
division by zero. The full Schrodinger equation (equation

(2.11)) may then be rewritten (choosing 8 = a) as

(+) _ (+) . -1
m = €, w, o+ [E - Ha - Ka - Ua + ief]

X (VO. - UO.) Ea(+)u

o

-1+ ¢ (v, - w_)] Eu(+)ua ————— (2.14)

(+) . . -1
where G is [E - H +ie’]™". 1Information on scattering by

the optical potential Ua(ra) is carried in the distorted wave
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(+)

€, while the remainder of the scattering is due to the

residual interaction, (Va - Ua(ra)).

The operator relation B = A + (B - A), assuming non-

commutivity, can be written as

Al gl il gyt . (2.15)

by dividing from the left by B and from the right by A.

Iteration of equation (2.15) gives

In the full Schrodinger equation (equation (2.14)), let

o=
Il

[E - H, - K, -V, + ie’] and

— — — . —— 1 '
B =[E Ha Ka Ua + ie’] so that
B-A= V,-UJr,) = W

a a

These may be substituted into equation (2.16) giving

-1 (+) _ (+)s
AT =G = [1 + G, W, +
+ ) +)y. +
Ga(_) waGd( )’wa + oea. ] Ga( M (2.17)
where Ga(+)’ = [E-H, -K, - U_+ ie’1"! is the distortea-

waves propagator for the optical potential Ua(ra).
Substituting (2.17) in (2.14) gives

IS SR S et

a

v Gy e, Py

a
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In the distorted-waves formalism, the expression that

(1)

emerges for the transition amplitude is

Tgo(Kgik,) = 1, (g key) Sp, 4 <o, g mg Wl Geg)>
_ TB(‘o) N TBa’

where TB(O) is the transitioq amplitude for the elastic

reaction. Then the expression for the transition amplitude for
the rest of the reaction, for example the single-nucleon

transfer reaction, using equation (2.18) is

¢ =) (+) (+)¢ (+)s
Tge = S5 Hg W, + woG, "W, + WG, WG, W+

(+) >

l t(! “'0.

- (2.19)

Then finally, the transition amplitude for the distorted wave

Born approximation (DWBA) is

oDWBA  _ <€B(—) bal W |€$,+') B> - (2.20)

In general, the distorted-wave series in (2.19) does not

(1)(10). It is for this reason that some authors(l)

converge
do not refer to this formalism as the distorted wave Born

approximation (DWBA) method but as the distorted-waves method.

The transition amplitude in equation (2.20) may be

written explicitly as

TBG B ff dEBdEa EB(—) (EB’EB)* (“'Blwhla) e-:ot(-’.)(k(x’r-cx)

Equation (2.21) demonstrates that the nuclear matrix element

has become separated from the distorted waves.
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The round brackets round the matrix element means that the
integration is over the internal coordinates of the nuclei in
the o and B8 channels. The separation means that the elastic
part of the reaction (distorted waves) is separated from the

non-elastic parts of the reaction. The nuclear matrix element

Tgo = (g | W | w,)

contains information on the nuclear structure, on angular
momentum and parity selection rules, and on the type of nuclear
reaction that is occurring. It is interesting to note than an
evaluation of the nuclear matrix amplitude in equation (2.21)
leaves the transition amplitude as a six-dimensional integral.
To make this manageable for computing purposes it may be reduced
to a two-dimensional integral by making multipole and partial-

wave expansions.

The nuclear matrix element_IBa is a function of the

internal coordinates of the nuclei a, A, b, and B,

I =

I ' (r,,r.)
Ba BIgMy, I M, oI, M,, I M, 58T

Jeafde-u (x)* w_ o (%)
B "I M, B r M, b

x W uIAMA(xA) uIaMa(xa) ————— (2.22)

where the IB’ Ib’ IA, and Ia are the total angular momenta of
the nuclei B,b,A and a respectively while the M's refer to the
Z- projections of the total angular momenta. J is a Jacobian

Ba
to cater for the transformation of the internal coordinates.
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The multipole expansion of the IBa leads to a separation
of the nuclear matrix element into terms that correspond to
angular momentum transfers between the different parts of the
colliding system. To perform this expansion formally it is
necessary to define the angular momentum transfers that are

involved. Let

Jga * Iz~ Ia
iba = Eb - Ea ————— (2.23)
A =

and = Jpa * Jpa

where ¢ is the orbital angular momentum transferred. Equations

(2.23) allow the expression in the nuclear matrix

k3
bm™ Him

element to be expressed as a sum of vector-coupled terms.

“IBMB( ) “IAMA(XA)

I,-M M
A A BA *
=z <I.I Mo, -M, | J ,M,,> X (=) @ (X%,
JBA B"A''B A BA 'BA IBIAJBA B’7A
where MBA = MB - MA' A similar_treatment.is possible for

“Ib Mb( %) * “IaMa( %)

being a sum of terms through J - These expansions are possible

ba’
I-M

only if the Ros iy

behave as (-) and vice versa, under

LM

rotation of the coordinates.

These sets of terms may be combined in accordance with the

third equation of (2.23).
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* Mba *

@MSA ()%’XA). 1.7 J (xb,xa)
Ipla7BA bTaba

M

_ >
fi% <Jga Jba YBas Mpa | €M

% @(Ibla)Jba (IgT, ) g0t (xgy %) oo (2.24)

where m = Mgy, + Mba' .

The multipole expansion of the IBG may then be written
(1) (2)(3)

I (r.,r )
BIBMB . Ibe . aIAMA . IaMa B o
— . _ —_ >
= ZU 5o TpI Mg, My Iy M > <IgI Mg, -M, | Jp,Mp,
BA " ba
I.-M, + I -M
A A a ‘a
x <J,. J_.M_M | 2 m> (=) G (r_,r )
ba BA ba BA £ JBA‘IDa —B o
——————— (2.25)

where the G are the multipole components. Equation

| ¢ JBA Jba
(2.25) may be inverted to produce the multipole components in
terms of the Clebsch-Gordan coefficients and the nuclear

matrix‘element.

The isospin representation has been ignored. However, if
the isospin had been included then equation (2.25) would have
had additional Clebsch-Gordan coefficients and a sum over the

isospin transfer, t.
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Finally, the transition amplitude (2.21) can be

expressed in terms of the multipole components as follows

DW _S _ 5
Too(KgoKy) =%y <IpI My, =My [ Jga Mgy
BA
I,-M ' mM_ M
ba ba "BA
where t is called the reduced amplitude. Following equations

(2.21) and (2.25) the reduced amplitude may be expressed as

mM_ M

b a ’ ] W,
t (6,0) = £ <. 1. M, -M" | g M >
eraJBA Mb’Ma’ b a b a ba ba
’ A
X <JbaJBAMba Mpp | €m'>
I
I -M
x (=) 2 a’jHEBIAQ e&_)M (Eﬂaﬁs)
b’ b
(+)
X G . (r 9 )E (K 1_.)
eJBAJba B’—a M ,Ma o’ =o

The distofted-wave cross-section angular distributions
are determined by the {-transfer. However, it is also poésible
to make j-value assignments by comparing the.theoretical and
experimental angular distributions. This angular distribution

dependence on j has 3 sources:

(a) The radial part of the bound state wavefunction
for transferred particle is dependent on j. This
is mimicked by the optical potential that is
chosen for the bound particle wavefunction. It

has a spin-orbit part. However, this is a minor

effect.
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(b) The distorted waves are spin-dependent because of
the spin-orbit coupling term in the distorting.
potentials.

(¢c) In the case of transfer reactions which involve
two or more-nucleon particles, it is necessary to
include in the calculations the non-S components
(for example; the D-state in deuteron). This topic
is.covered in a paper by Lee and Schiffer(ll).

Figure (2.7), which is reproduced from reference (1),

demonstrates this j-dependence of the distorted-

wave method calculations.

The nuclear matrix element contained in the expression

for the transition amplitude contains the overlaps (uB ) and

,HA
(ub,ua). A measure of these overlaps is the spectroscopic
factor, for example, Sej(A,xlB) which represents the probability
that when B is in state by it is composed of x (with orbital
angular momentum £ and total angular momentum j relative to A)
and A in state Bpe One way to check on the validity of the
distorted-waves method analysis of a reaction is to compare the
calculated cross-sections with experimental cross-sections so

as to extract spectroscopic factors, which can then be compared

with theoretically calculated spectroscopic factors.

This interpretation of direct nuclear reactions (especially

light ion reactions) has been extensively studied and

tested(lg)(ls)(14).
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Fig. 2.7 DW calculations for € ='1 transfers

demonstrating j-dependence.

Reproduced

from August, Shapiro and Cooper,

Phys.Rev.Lett. 23

(1969) 537.
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Chapter Three

The experimental details

3.1 Introduction

The 90Zr(n,d)89Y reaction is a proton pick-up reaction

on 9OZr. A comparison between experimentally obtained cross-
sections and theoretically predicted cross-sections leads to

information on the nuclear structure on 9oZr and to the level

scheme of 89Y. The measurement of experimental deuteron
cross—-sections has been made possible with the aid of a
spectrometer specifically designed to study neutron-induced
charged-particle emission reactions(l)(z). The measurements
were performed at the Van de Graaf accelerator facility at

the National Accelerator Centre in Faure, South Africa. These
neutron-induced particle emission reactions have been difficult

(1)

to study experimentally The use of conventional silicon
surface barrier AE-E telescopes results in a low reaction
yield which increases the experimental runtime excessively.
In addition, high background rates, competing reactions and

neutron damage to the detectors were all unresolved problems.

The present experiment improves on these problems.

The incident neutrons are produced in the d-t (3H(d,n)4He)
reaction in a tritium gas-cell. The 6 MV Van de Graaf
accelerator produces 5.25 MeV deuterons which are directed onto
the gas cell. The d-t reaction, which has the very high,positive

Q-value of 17.5 MeV, produces neutrons with 22 MeV energy (3).
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3.2 The particle spectrometer

The particle spectrometer was designed by Professor K.
Bharuth-Ram and Dr W.R. McMurray(l). It consists of three
multi-wire proportional counters (PCl1, PC2, A/Co) and a
plastic scintillator. (See figure (3.1). PCl and PC2 are
employed as "AE" detectors while the scintillator acts as an
"E" detector, so that the spectrometer provides AE-E particle
identification. In additibn, the spectrometer allows for
background suppression. However, its major advantage is that
it permits simultaneous data accumulation over an 80° angle
range with an angular resolution of =z 4° (FWHM); the reactions
studied by this system are low yield reactions and this aspect

of its functional ability decreases the required experimental

run-time.

The proportional counters are approximately 6 mm thick
and their active areas are of the order of 1000 mm2. They are
continuously bathed by a 10% methane - 90% argon mixture. The

Zirconium target is a 9oZr—enriched foil with a surface density

of 15 mg/cme. It is a 10 mm wide strip and is positioﬁed

between the first and second proportional counters on the side

of the incident neutron beam. A collimator, between the
proportional counters PC1l and PC2, determines the effective

height of the target foil as 12 mm. Included in this proportional
counter sandwich are a series of thin wires (as "walls') between
the A/Co and PC2 proportional counters to reduce the pérticle
background. The EHT to the proportional counters was set by

using the Am-Mo 17.5 keV X-ray source.



Proportional Counters Curved Scintillator
(35x25x6mm) (BOOxSOxSmm)

A/|Co PC1 l Q j

22MeV _ |1
neutrons —k
(profons )
deuterons

E - AN

0= K( A+B )
ot =PCxCos 6
E =f(A+B),9

Fig. 3.1 Schematic diagram of the spectrometer designed by K Bharuth-Ram and W.R. McMurray.
(Reproduced from ref.(1).

8¢
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The voltages were set to produce peak values of 2 volts for
each of the proportional counters. The Am-Mo source is placed

on the A/Co side of the sandwich.

PC1 and PC2 act in coincidence with the scintillator
while A/Co acts in anticoincidence with PC1l, PC2 and the
scintillator. This ensures that events that do not originate

in the 90Zr—target are ignored.

The scintillator is 5 mm thick, 50 mm high, 300 mm long
and has a radius of curvature of 200 mm. The geometry therefore
subtends an angle of more than 80° at the target. It is viewed
by two photomultipliers (labelled A and B in figure (3.1)) at
its ends. The energy, E, signal is obtained by summing the

outputs from A and B.

The electronics on the beam line and in the control room
are shown schematically in figure (3.2). The signals from the
"AE" detectors (PCl and PC2) and the "E" detector (A+B) each
contribute a fast pulse and a slow pulse. The fast pulses from’
PC1 and PC2 provide the start pulses for the two TAC's while
the fast pulse from the scintillator provides the stop pulse
for both TAC's. In addition, after coincidence/anticoiﬁcidence
requirements are met these produce the gate pulses for the ADC's
(analogue-to-digital converters). The slow pulses from the "AE"
and "E" detectors are the ADC inputs for the AE and E

information.
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3.2.1 The path for the fast pulses

The three proportional counters have their pulses fed
through preamplifiers into spectroscopy amplifiers. These
amplifiers have two outputs - a bipolar output and a unipolar
one. The bipolar outputs are utilized for the fast pulse;
they pass through windows and are delayed in constant fraction
timing single-channel analysers and are amplified to have the

same amplitude.

The pulses for the fast side from the photomultipliers,
A and B, pass through amplitude windows and delays in timing
single channel analyzers and are amplified to have the same
amplitude for the same energy loss through the PC counters.
The fast summed pulse passes through a constant fraction

discriminator into a timing amplifier.

The PCl and PC2 fast pulses become the start pulses for
the two time-to-pulse-height converters/single-channel analysers.
The A+B fast pulse acts as a stop pulse for each of the TAC's.
The single-channel analyser outputs from these units are fed into

linear gates in which they are delayed and adjusted to provide the

correct gate-widths (see later). These pulses are the two
coincidence pulses, which are the partial requirements for the
triggering of an event. The fast pulse from A/Co after being
appropriately delayed is fed into the coincidence unit, in
anticoincidence with the two coincidence pulses, so as to

eliminate events not originating in fhe target foil.
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The output of the coincidence unit provides the gate pulse
for the ADC's. Each pulse from this box is the count of an

event.

3.2.2 The path for the slow pulses

The slow unipolar pulses of PCl, PC2 and A/Co are fed
via delay amplifiers into the ADC's. The A and B slow pulses

are fed through preamplifiers into spectroscopy amplifiers in

which their amplitudes are adjusted to be the same for a particle
detected in the centre of the scintillator. The unipolar outputs
of these amplifiers are delayed and directed into the AD'c. In
addition, for the purpose of providing a monitor during data
accumulation the A and B pulses are summed in a dual sum and

invert box and this (A+B) "energy" pulse is fed into an ADC.

3.2.3 The setting-up

207_. . . .
Bi is a source of =1 MeV internal conversion electrons.

The EHT's to the photomultipliers are set such that the 2O7Bi
source, at the midpoint of the scintillator (that is, at 0°)

produces equal peaks of approximately 0.2 volts in each of A and

B. The EHT is approximately 1530 volts for both the

photomultipliers.

The fast timing gains, detector delays and bias settings
were made with a 5.5 MeV proton beam on line from the
accelerator. A long snout replaced the tritium cell in the setup
procedure. The fast timing resolution for PC1/(A+B) and
PC2/(A+B) were measured after time-calibrating the résulting TAC

spectra, and are shown in figure (3.3).
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time resolution = 30 nsec

PC1/ (A+B)

counts per channel

]80 nsecl

I |

time resolution = 30 nsec

PC2/ (A+B)

counts per channel

|60 nSec|

time (nanoseconds)

Fig. 3.3 The fast-timing resolution for PC1/(A+B) and PC2/(A+B).
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The time between the PC1 /(A+B) proton peaks is 60 nsec giving
a timing resolution of 30 nsec. A similar result was found
for the PC2/(A+B) case. It appears from these figures that PC2
had a better time response than PCl. Discriminator gates were
imposed on the TAC output to eliminate events not contributing

to the coincidence peaks, PC2 responded better than PC1.

The coincidence/anticoincidence conditions could now be
set. The outputs of the two TAC's were delayed to satisfy the
conditions shown in figure (3.4). An additional timing
adjustment is necessary to ensure that the ADC slow inputs
arrive after the gate pulse rising edge by about 0.5 psec.
Pulses which arrive before this time are rejected. Figure

(3.5) demonstrates this condition.

The fast timing resolution was found to be improved by
increasing the amount of methane in the methane-argon gas
mixture that bathes the proportional counters. However, this
has the effect of increasing the background in the proton
spectra. (Whilst this study is of the (n,d) reaction, the system
allows simultaneous accumulation of the (n,p) reaction data(4).)
The real/random events ratio can be improved if the thickness
of the scintillator is reduced to observe deuterons only in

the energy range of interest, which is 9 to 18 MeV(l).

The data inputs A, B and (A+B) from the scintillator,
and PC1 and PC2 from the proportional counters are gated by
coincidence/anticoincidence requirements. They are accumulated
in multi-parameter mode in the PDP-11 data acquisition system

in the control-room of the accelerator, A program, written by

Mr John Pilcher (of the National Accelerator Centre), performs

the off-line analysis of the S5—narameter Aats AAT1An+~A
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The program, called PAID4, has the following facilities:

(a)

(b)

(c)

(d)

It calculates the angle of detection of an event. This
angle is computed as (see later)

o = k (A-B)/(A+B).

If additional higher order corrections to this calculation
of the detection angle are required they may be performed

as well. These will be described later.

It makes angle-related corrections to the scintillator

inputs, as follows:
E = f(A+B,9).

It makes angle—related corrections to the inputs of the

proportional counters as follows:

AEl = PCl1l X cos® and AE2 = PC2 X cos®o.

The identification of particles is greatly facilitated by
the program's ability to draw in identification loci on
two dimensional AE-E displays. This can be done
separately for each of PCl and PC2 for the sum of their

inputs.

The spectrometer has been operated in vacuum and in air.

The effect of in-vacuum operation on the energy loss of the

deuterons and on the response of the scintillator to deuteron

impingements are shown in figures (3.6) and (3.7). The major

effect in this instance is the reduction in the detector

threshold for both protons and deuterons, when the system is

operated in vacuum. The deuteron energy loss in air becomes

significant for low energy deuterons.
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DEUTERON ENERGY LOSS (MeV)

System n AIR

SCINTILLATOR (A+B) RESPONSE

2!‘ T
System evacuated I
W& "X Xy Sample thickness 2 pF----- SRSy S Detector Buas
A s
~ X x x X x 7 . |
——— IRl 0 S 015 20
0 : T ! ' DEUTERON EN
0 5 10 15 20 ENERGY (MeV)
DEUTERON ENERGY (Hev) Fig. 3.7 Deuteron energy loss in air
and in evacuated chamber.
Fig. 3.6 The effect of vacuum operation [Reproduced from ref. (1)].

on the detection threshold of
the scintillator.
[Reproduced from Ref.(1)]

3.2.4 The process of Particle Identification

scintillator is the so-called

AE-E plots are very suitable for particle identification.

PC1 and PC2 are the so-called "AE" detectors while the

llEIl

detector.

The resulting

Seven

ADC's are set up in the singles mode for the following

parameters: A, B,

(A+B), PC1, PC2, A/Co,

TAC. They are all

1024 channels in size except for the TAC ADC which is set at
256 channels. In the multiparameter mode three monitoring

spectra are set-up. They are each 4096 (64 X 64) channels in

size. The parameters in the multiparameter set-up are as follows:
X Y
1. 64 X 64 A B
2. 64 X 64 A+B PC1
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The particle identification efficiency is checked by using
p-polythene, d-polythene and deuterated perspex samples from
time to time during an experimental run. The samples are
bombarded with 21.8 MeV neutrons and the particle identification
loci are set (and checked). These loci are shown in figures
(3.8) and (3.9). The 17 MeV proton spectrum from the p-poly
sample and 19 MeV deuteron spectrum from the d-poly sample

(in figure (3.10)) are obtained by lifting a slice out of the
AE-E plot. As can be seen in the figure there is some overlap
between the Landau distributions for the deuterons and protons
which must indicate that particle identification is incomplete.
However, it is adequate. Figures (3.11) and (3.12) show the

spectra for the (n,p) and (n,d) reactions on 9OZr respectively.

3.2.5 Angle determination

Angle calibration is performed with 207Bi internal

conversion electron source. The source is placed in machined
slots (for this purpose) in the system which correspond to
angular positions of -35°, 0°, and 35° at the scintillator.
See figure (3.13). The process of angle determination depends
on light attenuation and losses along the scintillator and
this leads to a position sensitivity of the scintillator.
Figure (3.13) shows that scintillator outputs, A and B, vary
in a non-linear fashion with position. (A+B) varies more
symmetrically with position and it was found (1) empirically
‘that the ratio (A-B)/(A+B) is very nearly linear with respect
to position. The value of k, (A-B)/(A+B) determines the

position of an event on the scintillator relative to the

incident neutron direction.
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Fig. 3.10 Proportional counter spectra for monoenergetic protons and
deuterons at 17 and 19 MeV respectively. Demcnatrates the
overlap in the Landau distributions. [Reproduced from Ref.(1)].
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Fig. 3.11 Cross sections of the (n,p) reaction
on zirconium and iron samples
[Reproduced from Ref. (1)].
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Additional corrections can be made to this angle calculation.
These include zero offsets of A and B and slewing of the A and
B amplitudes. The plots on figure (3.13) are from reference
(1) and are the result of a much more detailed study. The data
in table (3.1) is the result of a more recent run with only
three sets of data points and figure (3.14) demonstrates the

near-linearity of (A-B)/(A+B) with position.

Thus the detector system allows the simultaneous
accumulation of data over an angular range of 80°. The angular
resolution depends on the position resolution - checked above
- and the geometry of the system (see later). The position
resolution is demonstrated by placing a set of slits in front
of the scintillator and thaiaccumulafing data. The slits
correspond to the angles i7.5°, t17.5°, and f27.50, The
spectrum in figure (3.15) shows proton events obtained from
the (n,p) reaction on the p-poly sample at three average
proton energies (21 MeV, 17‘MeV, and 13 MeV) with the slits in
position in front of the scintillator. The position resolution
obtained in this manner corresponds to an angular resolution

of less than 3° (FWHM).

3.2.6 Energy determination in the scintillator.

The energy determination of a detected particle depends
on the stopping of the particle in the scintillator. As has
already been mentioned, the thickness of the present

scintillator may be reduced to improve the energy resolution,

for the deuteron and proton energy range of interest.
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1000

for 1MeV electrons

RELATIVE AMPLITUDE
01
o
o

] 1

+40°

20° 0
SCINTILLATOR POSITION

-20°

Fig. 3.13 Angle calibration of the scintillator using mgseenergetic

internal conversion electrons emitted from a
[Reproduced from Ref.(1)]. '

Bi source.

+35° 0° -35¢°
Channel Number | Channel Number |Channel Number
Scint A 350 205 165
Scint B 162 210 358
A+R 512 415 529
(A-B)(A+B) 0,367 -0.012 -0,369
. . . _ 70 degrees _

Calibration factor: = 0.736 = 95.1

TABLE 3:1 Calibration of Scintillator Position dependence using 207Bi,

which is a 1 MeV internal conversion electron source

(~ 3 MeV protons).

i
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Fig. 3.15 Determination of the position resolution of the spectrometer by

observing the sensitivity to slits placed in the path of protons

produced in the (n, p) reactlon on a p-poly sample.
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The energy of the particles are obtained by summing the
outputs of the A and B photomultipliers and is then corrected

for angle-related effects by the program PAIDA4.

The energy scales have to be calibrated and this is
performed with proton and deuteron spectra from the H(n,p) and
D(n,d) reactions respectively on p-poly and d-poly samples.

A deuteron energy calibration curve is shown in figure (3.16).

To obtain a measure of the energy resolution of the
spectrometer, proton and deuteron spectra from the H(n,p) and
D(n,d) reactions were obtained, for a scattering angle of
zero degress, from a multiparameter dump with particle
identification and angle selection. Kinematic calculations
give an accurate value for the energy of these monoenergetic
protons and deuterons. The energy resolution emerged as being

of the order of 0.6 MeV (FWHM).

3.2.7 In conclusion

The functioning of the proportional counters and
scintillators were checked at regular intervals during a run
by checking the peak positions of A and B (with the 2O7Bi
source at 0°) and of PCl1l, PC2, and A/Co (with the Am-Mo source
placed on the A/Co side of the sandwich). A further check that
was performed with the same frequency, was with a deuterated
perspex sample placed on the A/Co side of the sandwich. This
data was collected in 3-coincidence mode and the PC1(A+B) and
PC2(A+B) spectra (which were available immediately on the video
monitor of the data acquisition computer) allowed a check of

the deuteron locus as well as the functioning of the proportional

counters and scintillator and the electronics.
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The spectrometer has been used for the study of the reactions

listed below:

9

QOZr(n,d)BgY and OZr(n,p)goY

27Ae(n,d)26Mg and 27Ae(n,p)27Mg

and 56Fe(n,d)55Mn and 56Fe(n,p)56Mn

In these reactions the spectrometer offers the following:

(i) efficient particle identification
(ii) background suppression
(iii) an acceptable energy resolution
(iv) an acceptable angular resolution
and (v) simultaneous accumulation of data over an angular
range of 80°, which allows for
acceptable beam times for the study of low

yield (n,d) reactions.

3.3 The solid angle (or geometry) corrections

The spectrometer has a built-in geometry which adversely
affects its allocation of angular position to events and its
angular resdlution. It is necessary for the analysis and
design of experiments performed with the spectrometer to
determine the effect of the geometry on the angle determination

and resolution of the spectrometer.

3.3.1 The geometry

The accelerated deuteron beam (at 5.25 MeV) has a cross-
sectional diameter of 4 mm(5). It is directed into the tritium

gas cell which is 30 mm long and has a diameter of 10 mm.
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21.8 MeV neutrons are produced all along the deuteron beam
within the cell, and in all directions. The target is
sandwiched between the first (A/Co) and second (PC1)
proportional counters. It is a foil and is assumed to be
two-dimensional. The distance, d between the target and the
forward face of the gas cell has been set at the values of

'd=60 mm and d=120 mm for calculational purposes.

The neutrons that collides into the target have their
source in the 4 mm diameter deuteron beam, and depending on
the size of the target and the value of d these neutrons
arrive at the target in a ranges of angles about the axis of
symmetry. Considering a target of width 10 mm and height
12 mm, and d=60 mm, the largest neutron angle is =8°. For

d=120 mm this angle reduces to 34°. (See figure (3.17)).

Tritium cell — diam 10 mm Largast neutron angle ~ 8°
- 1th 30 mm

ron beam - diam 4 mm
dautero Target 10 mm X 12 mm

Fig. 3.17 The neutron source - target geometry. Determination of the
angular range of impinging neutrons on the target.
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The finite dimensions scintillator is the major source

of error in the angle determination of the spectrometer.

There are two sources:

(1)

(ii)

The scintillator has a radius of curvature of 200 mm.
The target is located at. the centre of- the plastic arc
and is therefore 200 mm ffom the scintillator. Consider
a "largest angle" neutron that picks-up a proton from a
9OZr nucleus located at the top edge of the target. 1If
it is a zero-degree deflected deuteron it arrives at
the scintillator at a position 35 mm from the axis of
symmetry of the system, in which the target is located
at d=60 mm from the gas cell. (See figure (3.18)). 1If
the target is located at d=120 mm then this excursion
from the axis of symmetry is =16 mm.

The scintillator has a width of 50 mm. If a strip of
the scintillator corresponding to a nominal angle of 0°
plus-or-minus 2.5° is considered it will be observed
that the angular contributions to this strip occur in
the range 0° to 8° (see figure (3.19)) for an angle of
incidence of zero degrees at the axis of symmetry. This
means that what was meant to be a 0° £ 2,50 strip
collects cross-section contributions from an angular
fange of 0° to 8°. Of course, this is a very
conservative estimate since the case considered is thé
most symmetrical one. Table (3.2) shows the actual
range of angular contributions to each of these

scintillator strips.



Zero-degree deflected
deuteron
Largest angle

neutron

Tritium cell &

I
60 mm ‘-\ 200 mm

Target 10 mm X 12 mm

Scintillator —

50 mm in height l_

Fig. 3.18 The neutron source — target — scintillator geometry.

19



-412.9 -10.0 -7.8 -2.59 0.0 2.5 7.5 10.0 12.5

Ona degres annuli:

0O -» 8 deg for O0X2.5 geg
8 —->» 43 deg for 10 22.3 deyg

Portion of Scintillator on either side of 2ero~degree position

Fig. 3.19 The effect of the scintillator heighf (= 50 mm) on the assignment of mean
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One last effect was considered.

The position of the

collimator between PCl and PC2 places it at a distance of

6 mm from the target.

Figure (3.20) demonstrates a penumbra

effect, which calculations have shown to be negligible. The

penumbra effect effectively increases the height of the

target but permits cross-section contriputions from the

additional target area in a very limited sense.

Nominal Angle Angular Range gi:itering New Angle
Angle Limit | on Scintillator Angle Limit (FWHM)

d = 60 mm 2,5° 0,0° - 17,0° 6,0° 4,0
7,5° 0,0° - 20,5° 9,0° * 4,20
12,5° 3,5° - 24,5° 13,5° * 4,40
17,5° . 8,5° - 29,0° 18,2° * 4,40
22,5° ’ 13,5° - 33,5° 23,1° * 4,5°
27,50 18,5° - 38,5° 28,00 * 4,50
35,00 26,0° - 45,50 35, 4° * 4,50
50,0° 41,0° - 60,0° 50, 3° t 4,5°
d = 120 mm 2,5° 0,0° - 14,0° 5,4° + 3,60
7,5° 0,5° - 17,5° 9,1° t 3,6°
12,5° 5,5° — 22,0° 13,3° + 3,6°
17,5° + 2,50 10,5° - 26,5° 18,1° t3,7°
22,5° 15,5° - 30,5° 23,0° + 3,7°
27,5° 20,5° - 36,0° 27,9° * 3,7°
35,0° 28,0° - 43,0° 35,30 + 3,7°

TABLE 3.2 Results of the calculation of mean scattering angles and

new angle limits (FWHM) for

¥ 2,5° scintillator strips.

The calculations were performed on an IBM Personal

Computer. Two programs were developed

one for a purely

digital calculation and a second for a semi-analytical

calculation.
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The latter was found to be cost effective but the first was
run from time to time to check on the semi-analytical

calculations. The correspondence between the calculations
was at all times perfect. The calculations were performed

in three stages:

(i) The tritium cell is 30 mm long and has a diameter of
10 mm. The deuteron beam has a diameter of 4 mm(5)
and since the 21.8 MeV neutrons are produced in this
beam, the neutron source is the extended cylinder of
diameter 4 mm and length 30 mm. This source is
digitized into 1 mm3 boxes. The two-dimensional
target has a 1 mm x 1 mm grid imposed upon it and a
neutron source centroid is calculated based on the
following. Each grid-cube produces neutrons in
solid-angle cones that may or may not strike the
target. The frequency of neutron impingements (f(r;))
for each grid-volume of the neutron source
(coordinates ri) is stored together with the

coordinates of the grid-volume. The centroid is

calculated with the expression
<r.> = [z f(ri) ri] / [z ri]

where both sums are over the number of neutron source
grid-cubes. The x and y coordinates (see figure (3.21))
of this centroid lie on the axis of symmetry while

<z> ® 14 mm from the window of the cell for the d=60 mm
case and <z> ® 15 mm for the d=120 mm case. For the
rest of the calculation, the neutron source was assumed

to be a point source located at the centroid of the cell.
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(ii) The only neutrons of interest to the study are those
that impinge on the target. (A long counter is set
up throughout'the experiment, however, to monitor the
neutron production in the gas cell). The next step
was to store on computer diskette the pqsitions on br
off the scintillator of the zero degree deflected
"deuterons' for each imbingement on the target. This
calculation required the angle of incidence of each
"neutron" on the target which varied from 0° to =z 8°
for the d=60 mm case and from 0° to 3 4° for the
d=120 mm case.

As the last part of the calculation requires the zero
degree deflection positions on the sciﬁtillator each
time it is run, this proved to be time and cost

effective.

Tritium Cell

axis af symmetry

Fig. 3.21 The coordinate system employed in the calculation of the
cell controid.
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(iii) These correction calculations involve the
determination of the relative area contributions
of half-degree annuli around each of the zero
degree deflection points, to particular strips
of the scintillator - the typical strips
corresponding to the nominal angles of 2.5°, 7.5°,
12.5°, 17.5°, 22.5°, 27.5°, 35.0°, and 50.0° plus
or minus 2.5°. Table (3.2) shows the angular
range of the annuli that contribute to each of
these scintillator strips (for the d=60 mm case).
The information to reallocate mean angular
representations to the scintillator strips was

available and performed with the expression
<> = [zA(8)., o] / [ze] "

where both sums run over the angular range of the
annuli that contributed to a particular strip and
A(®) is the area contribution of the annulus
centred on 6. These new mean scattering angles
(for the d=60 mm case) corresponding to the
original nominal angles are shown in table (3.2)
with the new angle limits which are taken at FWHM.
The same calculation for the d=60 mm case.is
performed for nominal angles of 5.0°, 15.0°. 25.0°,
and 35.0° with angle limits of plus or minus 5°.
The results for this palculation are given in

table (3.3).
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- 1 R Mean New Angle
Nominal | Angle Angg ?rt.iggi Scattering | Limit
Angle Limit on Scintillator Angle (FWHM)

d = 60 mm 5,0° + 5,00 0,0° — 20,5° 7,50 + 4,70
15,0° *5,0° 3,5° - 29,0° 15,9¢° * 5,4°
25,0° *5,0° 13,5° - 38,5° 25,5° * 5,5°
35,0° * 3,0° 25,5° - 46,0° 35,4° * 4,7°

TABLE 3.3 Results of the calculation of mean scattering angles and

new angle limits (FWHM) for the stated scintillator strips.

In the low yield experiments studied with this
spectrometer, it is advantageous for statistical reasons to
choose the 1étter set of nominal angles with an angle 1limit of
plus or minus 5°. However, there are two major drawbacks with
this. The first one concerns the fact that the angular
resolution is decreased by approxiﬁately 25% and in an
experiment in which the energy resolution is of the order of
0.6 MeV, this places a premium on the efficiency of fhe system.
The second drawback hinges on the fact that the system allows
for the simultaneous accumulation of data over an angular range
of = 80°. However, to improve the statistics of an
experiment the spectrometer is usually used in its most
symmetrical form; that is, the midpoint of thé scintillator
is located on the accelerator beam line (or what has been
referred to as the axis of symmetry). This reduces the angular
range of the data accumulation from 80° to 40° - thus doubling-
up the statistics. This means that for the second case
(nominal angles 5° etc.) there are Just four experimental cross

section data points which are available to compare with the

distorted-wave method calculations.
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The former case proﬁides seven such points which make the
comparisons possible. The area - annuli angle curves are

shown for both cases in figures (3.22) and (3.23) respectively.
These curves indicate that there is considefable overlap
between the contributions of successive nominal angles but
there is sufficient resolution between peaks to recognize mean

scattering angles.

The calculations were repeated for the d=120 mm case.
Table (3.2) shows that doubling the distance between the
tritium cell and the target improves the angular resolution of
the spectrometer by approximately 10% and brings the mean
scattering aﬁgle closer to the nominal angles. This improvement
is significant but has to be balanced with the decrease of
neutron flux which decreases by a factor of four by doubling the
distance between the tritium cell and the zirconium target. In

the low yield (n,d) reaction this consideration is important.
3.4 Results

_The angle range of 0° to 50° was covered in two sets of
measurements with different orientations of the spectrometer to
the beam axis and different cross-section normalisation factors.

Deuteron spectra were generated for nominal scattering
angles of 2.5°, 7.5°, 12.,5°, 17.5°, 22.5°, 27.5°, 35.0°, and 50°
with angle limits of plus'or minus 2.5°. These spectra are
shown in figure (3.24) with the background counts present. To
subtract out the background, it is necessary to choose an
acceptable background line and this is done for the 12.5°
spectrum in figure (3.24). Figure (3.25) shows the modified
12.5° spectrum - the type of spectrum from which the cross-
section integrals are taken. Table (3.4) shows the integrals

for the peaks, which are identified for the time-being as d
0

arnAd A ~ . . -
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Nominal i
d d

Angle * 2,5° o 2
2,5° 36 68 W
7’50 34 61
12,5° 34 70 18x 0,15 mb/ster
17,5° 16 54
22,5° 14 32
27,50 4 32 |J
35,0° 10 18
50.0° 6 u x 0,12 mb/ster

TABLE 3.4 Angular distribution of the absolute
cross sections of the (n,d) reaction
on 90zZr,
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Chapter Four

Distorted-wave method calculations and results

89 .
The experimental study of the 90Zr‘(n,d) Y reaction

cross-sections produced results with sufficient energy and
angular resolution and statistics to permit a distorted-wave
method analysis of the angular distribution of the reaction
cross-sections. These calculations were performed with the

code DWUCK4(1)on the CYBER 815 Computer at Council for Scientific

and Industrial Research.

4.1 Description of the computer code DWUCKA4.

DWUCK4 calculates the ' differential cross-
section for a reaction using a very general form of the distorted-
wave method, so as to be employable over a large range of
reaction studies. These calculations are performed'in the zero-
range approximation with the local energy approximation being
applied to correct for nonlocal and finite-range effects. Its
inability to perform exact finite-range calculations restricts
its usage. Knock-on and heavy-ion stripping and pick-up
reactions have very large finite-range effects which have to be
treated exactly. For these reactions it is necessary to turn to
one of the ofher codes availlable, such as LOLA(Z) which can

b

treat the finite-range effects exactly.

The programme DWUCK4 computes the cross sections using the

theory described in Chapter Two. The notation follows that of

(3)

Austern very closely, which is suitable for light-ion reactions.



76.

(4)
(The notation adopted in Chapter Two follows that of Satchler

and Glendenning(5) which has more symmetry and provides a better
picture for heavy-ion interactions. The calculated cross
sections oemj (DW) have units of fmg/ster_(zlo mb/ster).

4.1.1 Optical model potential options available in the
program

The optical potential options available in the program
are the following:

(a) Volume Woods-Saxon potential

(b) Surface Woods-Saxon potential

(c) Spin-orbit potential

(d) Coulomb potential

(e) Second derivative Woods-Saxon potential

(f) Spin-orbit potential from a surface Woods-Saxon
potential

(g) Volume Woods-Saxon potential X pPover

(h) Surface Woods-Saxon potential X pPOWer
(i) Normalized harmonic oscillator potential
(j) Gaussian shape potential X pPOWEr

(k) Legendre expansions of the volume and surface

Woods-Saxon potentials.
Finally, the program has the facility to accept an
externally introduced poteﬁtial. The first four listed
above are used in this study and they have been described
in Chapter Two. The choice of potentials in the
calculations performed depends on the choice of potentials
to describe the associated elastic scatterings. The rest
of the potentials were not utilized or tried for the reason

that they were not used to describe the elastic

scatterings.
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4,1.2 The finite-range correction factor

In a one-particle pick-up rgaction, such as

a+A=2a+(c+B) » (a+c)+B=Db+8B
the overlap between a and b is described by the function

D(r.,) = (g |V )

where V is the interaction V_ (r_ ). This expression for the
ac ac “ca
overlap occurs in the expression for the transition amplitude
and represents a six-fold integration for a value of the
transition amplitude. To reduce the integration to a two-
dimensional integration, the zero-range approximation is used
for the overlap. This involves the replacement of -the function
D(rca) by a é-function. This is feasible for light ion

(4)

reactions as D has a short range in this case. The overlap

is then represented by

D(Eca) ~ Dy '6(£ca)

where DO is called the overlap integral and is given by

D = \[D(r Ydr .
o ~—ca’ =ca

For the (n,d) reaction, the overlap integral is evaluated to be

1.55 x 104 MeV2 fm3 (6).

This approximation greatly simplifies
the calculation of the distorted-wave method transition |
amplitude but at the cost bf an overestimation of the contribution
of the nuclear interior to the transition amplitude. This is
countered by making a finite-range correction, made within the
local energy approximation(3)(4)(5) (LEA), in which a simple,
nearly equivalent, '"local" potential replaces the nonlocal

potential.
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The wavefunctions E(L) for this local potential are related to

those of the nonlocal potential by the relationship
L
) (py = F(e) ()

where F » 1 as r » » for the scattering waves. The first-order
correction factor from the LEA for the zero-range approximation

in the overlap multiplies the form factor
@B | V| aA>

The program requires the input of a finite-range correction
parameter which is calculated by taking the derivative of the

Fourier transform of the overlap at zero momentum and then

dividing by the transform(4). For the (n,d) reaction, this

(1)

parameter is quoted as being between 0.621 and 0.695

4.1.3 The nonlocal correction factor

The use of an equivalent local potential introduces an
element of error in the calculation of the transition amplitude.
A nonlocal correction is introduced which multiplies the form

factor. The form of the correction is
W..(r) = expl2 3 2 m.V.(r) / 8h2]
NL i i'i

for each of the particles. The Vi are the local potentials, and
the g's are the nonlocal parameters. They are usually quoted as

0.85 for nucleons and 0.54 for the deuterons(l).

In general, the program is user-friendly and has many run-
time saving devices. The results of the calculations are

presented in the next section.
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4,2 The optical potential and the optical potential
parameters :

The choice of optical potential in this analysis depended
on the potentials used in the description of the allied
elastic scattering data. However, this choice is identical to
the choices made by many authors in the analysis of similar

(7)(8)(9)(10)(11)

reactions

All distorted-wave method studies of single-nucleon
stripping and pick-up reactions since 1943 that have been

consulted have adopted the following optical model potential.

V = —VRf(xR) —in(xw) + 4iWD(dAxD)f(xD)

_<h/m“c)2 V.

(L.o)r™h(a/dr)e(x_ ) + V,

/

. -1 1/3
where f(xi) = [1 + exp(xi)] and the x; = (r - riA )/ai.,

The terms are all defined in the section on optical potentials

in Chapter 2. The Coulomb potential is approximated by a

potential due to a uniformly charged sphere of radius rcAl/B.

A search for optical potential parameters that describe
the elastic scattering of neutrons on 9OZr at an incident

energy in the region of 21.6 MeV was unsuccessful. Some

analysis of elastic scattering of protons on 9OZr at ~ 40 MeV(lz)

(13) is available. An examination of global

(14)

and at = 21 MeV

parameter sets for similar nuclei and at similar energies

indicates that the parameters for protons and neutrons have
quite different values. Hence it was decided to rely on global

parameter sets for the neutron optical potential.
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After some experimentation with different parameter

14
ot (15)(16)(27) (14)

S the set of Becchetti and Greenlees proved
to provide the best fit. This set of parameters is for
nucleons with A>40 and for elastic scattering in which the
bombarding energy <50 MeV. The parameters have the following

form for the neutron potential:

Vp = 56.3 - 0.32E -24.0(N-Z)/A MeV
PR = 1.17 fm
ap = 0.75 fm
W = 0.22E - 1.56, or zero MeV (whichever is greater)
W, = 13.0 - 0.25E -12.0(N-Z)/A MeV
rw = rD = 1.26 fm
aw = aD = 0.58 fm
r = 1.30 fm
c
\'/ = 6.2 MeV
SO
r = 1.01 fm
SO
a = 0.75 fm
SO

where E is the incident neutron energy in MeV. The parameter

values for E=21.6 MeV are givén in table (4.1).

For the deuteron parameters a similar search was carried
out for the elastic scattering of deuterons on 89Y at an energy
of 13-16 MeV, which is the deuteron energy region of interest
in this experiment. Failure to find such data necessitated the

use of a global parameter set for this analysis also.



81.

A non-relativistic set was used which was compiled by Daehnick,
Childs and Vrcelj(l8), and 1s intended for the bombarding

energy range of 12-9%0 MeV.

The parameters are defined as follows:

VR = 88.5 - 0.26E + O.882A1/3 MeV
PR = 1.17 fm
ap = 0.709 + 0.0017E fm
W = (12.2 + 0.026E)(1 - e°)  MeV
where 8 = —(E/lOO)2
WD = (12.2 + 0.026E) eB MeV
r = r_. =1.325 fm
w D
a = a, = 0.53 + 0 O7A1/3 - 0.04 S . exp(- u.)

w  °D T V- : : & i
where o= [(Mi - N)/2]2 and the Mi are the
magic numbers 8, 20, 28, 50, 82, and 126, and
N is the neutron number.

r = 1.30 fm
C

v = 7.33 - 0.029E MeV
so

r

so = 1.07 fm

a = 0.66 fm
SO

The parameter values for the deuterons produced in the ground
state transition, for which E=15.4 MeV are given in the

table (4.1).



(MeV) | fm tm | MeV | fm | fm  |Mev |fm |fm | Mev|fm |fm | fm

(a)

46,7| 1.17| 0.75| 3,19 | 1,26} 0.58 6.,2{1.26 (0,58] 6,2}1,01|0,75 (1.3

{(b)

92.1| 1,17| 0,74 2.97|1,33|0,80 |12,3 1.33|0.80| 6,9|1,07|0.66 | 1.3

(a)| (<)

1,17 | 0,75 6.2]11.01|0,75|1.3

(a) Ref.(1l4) Becchetti and Greenlees.
(b) Ref.{(18) Daehnick et al.

(c) Potential depth adjusted to give correct binding

energy (|Bn| = !Bn (g.s)] + EEX).

Table 4.1 The optical model potential and bound
state parameters.

The optical potentiai for the proton that is bound to
the 89Y nucleus, consists of a real Woods-Saxon well and a real
spin-orbit potential. The real well depth is pre-set at some
convenient value and then a search is performed by the program

on the well-depth for the fixed binding energy. This binding

energy 1s adjusted for each excited state, so that

IBnl = IBn(g.s)| + E,

where Bn(g.s) is the binding energy of the proton in the ground
state of 89Y while Ex is the excited state energy of the 89Y
nucleus. The rest of the parameters are obtained from

reference (14) and are reflected in table (4.1).
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v - Level(keV)

Fig. 4.1 Level scheme of Y.

Reproduced from ref.(25).

Level (keV) Jw Level(keV) Iw
0.0 1/2- 45887 , 5725
909.2 1 9/2+¢ 4603 (1/2,972) - 5739
- 1507.4 S 3/2- 4636 o 5753
4654 5774
1784.5 2 5/2- 4682 5793
2222 2 S/2+ 4737 5801
4770 5820
4785 5843
4817 5853 (3/2,5/2) ¢+
2530.0 2 /24 4831
4sa9 (3/2,5/2) +
5R88
2566.5 2 (11/2) ¢ 8862 59 15
2622.1 8 9/2+ 4888 5950
2873 & (5/2,7/2) ¢ 4907 5981
4927 6004 -
4954 6100 20 (3/2,5/2) ¢
2888 6 3/2- 4973 6200 20 (1/2,9/72) +
2893 5006 6280 20 (3/2,5/2) +
3069 & 3/2- 5026 6480 20 (1/2¢)
3107 S (3/2,5/72)- 5046 : 6590 20 (3/2,5/2) ¢
3139 S (3/2,5/2)~ 5075 1/2+ 6680 20
3247 S : 6780 20
3413 S 5089 7720 20
3452 S 5099 ‘
3501 . - 5115 (3/2) -
3512 6 3/2- !
3558 S (1/2) - ;
3612 4- :
3626 6~ (9/2,11/2) + 5125 :
S1u8 '
3716 S 5/2+ $170 g
3748 S (9/2,1172) + 5183 (3/2,5/2)+ |
agey S _ |
3864 6 (3/2,5/2) - 5211 |
3328 5257 ;
3975 (9/2,11/2) ¢ 5275 1/2+
3990 5 (3/2,5/2) -
4000 20 1/2+ 5289
4011 5303
4022 6 (3/2,5/2)- 5321
4103 6 5343 172+
4169 6 (3/2,5/2) -
4188 6 (3/2,5/2) ¢ 5362
6229 6 _ 5382 :
4251 : 5421
4308 (1/2,9/2) - 5430 (3/2,5/2)+
4330
4352 5455
4383 5476
44804 5506
84856 (7/2,9/2) - 5542
8460 20 (1/2+) 5562
8473 5582
. 5592
4y 89 5622
4508 5631
4526 (5/2,7/2)+ S647
4536 (3/2,5/2) - 5668
4555 (1/2,9/2) - 56 94
4580 20 (3/2,5/2)+
89



84

En=21.6 Mev
R a)® Y

-{2/7) n8u 0

+(2/6) AaW 106°
- (2/€) Aaw 0G°% —

r_—*j{_
=

—
-(2/6) Asu gL'}

-(2/€) A8suw gg'e
- (2/G'2/E) Asu yI°E
-(S/€) Asw TG°E r
- (2/7) Asuw 9g°€E ]

1 | I

18

16

14
deuteron energy

12

100

o
<

80
&)

Tauueys dJad saunoa

o
Ql

{mev)

Fig. 4.2 Deuteron spectrum summed in an angle range of 60°.
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4.3 The analysis

9
4.3.1 The target nucleus,’ OZr.

90 (19) -

The Zr nucleus has been studied quite extensively

(24). It is a member of the group of nuclides about A=90 which

may be regarded as few-nucleon systems coupled to the inert

88 (19)(20)(21).

Sr core These are the lightest nuclei in which

the valence protons and neutrons fill different shell model

(19)_

e .. 90, .
orbitals In the shell model description, OZr is

characterized by two valence protons outside the closed 2p3/2

proton subshell, since the neutron number of 9OZr is equal to

885r (= 50, a magic number). The valence

)2

the neutron number of

protons can occupy three possible configurations: s

2 2 . .
1g9/2) , and (2pl/2lg9/2). The (2p1/2) configuration produces

the ground state with J" = 0" while the (1g9/2)2 configuration

produces amongst others, the first excited state with J© = oF

at an excitation energy of 1.752 MeV(25).

The N = 50 nuclei can
be described by the valence protons if the filled 1g9/2 neutron
orbital is a good, closed one. This does appear to be the case.
The neutron occupation of the outerlying 2d

5/2
. .90 (26) . .
orbital in Zr has been shown , Via a neutron pick-up

shell model

reaction, to be 0.0013. Occupation of this orbital in 885r is

higher at 0.1(27).

Studies of the 2p3/2 proton orbital closure indicate that

this is also well established. Proton stripping on 88Sr (28)
shows that the occupation of the 2pl/2 proton orbital of 88Sr
is approximately 0.1. A further measure of the closure of this

orbital and the 1g9/2 neutron orbital is indicated by the fact

88 .
that Sr has only two excited states below the excitation energy

of 3 MeV. 9921 is then assumed to be described by its two

valence protons.
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4.3.2 The residual nucleus, 89Y

This nucleus is similarly described by its single

. 88
valence proton linked to the closed, inert core of Sr. The

level scheme of 89y is given in figure (4.1)(25). It has a
ground state spin of (1/2) from the (2p1/2) configuration, a
first excited state at 0.909 MeV with spin (9/2)" from the
(1g9/2) configuration, a second excited state at 1.51 MeV with

spin (3/2) from the (1p3/2)—1 configuration, etc.

4,3.3 The experimental data

Figure (4.2) shows a summed deuteron spectrum (summed
over 60°). The channel number-energy calibration follows the
study in chapter 3. The figure indicates the state of the
residual nucleus (89Y) opposite each of the deuteron peaks. A
study of this reaction spectrum indicates deuteron peaks
corresponding to deuteron energies of 15.5 MeV and 14.0 MeV
with several smaller peaks in evidence. Kinematic calculations
and a comparison with the accepted level structure of 89Y(25)
leads to the identification of the transitions that correspond
to each of these peaks. Unfortunately, the energy resoluticn
of * 0.6 MeV of the experimental data is not high enough to
resolve all the peaks into a one-to-one correspondence with the
transitions of 9OZr to the excited states of 89Y. One such

peak is that identified as the '"1.6 MeV" peak and an adhoc

fashion analysis of this peak is performed in this study.

4.3.4 The ground state transition

Kinematic calculations indicate that the deuterons produced

in the transition from the ground state of 9OZr to the ground

state of 89Y should have a laboratory energy of 15.5 MeV.
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It is clear then that the first peak in the deuteron spectrum

in figure (4.2) corresponds to this transition. The ground

. 89
state of 9074, has J™ = oY while the ground state of ~"Y has

JT = 1/2°. Then, j (= total angular momentum transferred)
has a value of 1/2 and there is a change in parity. The change

in parity implies that ¢ (= the orbital angular momentum

(4)(5)

This identifies the orbital

angular momentum of the proton (bound to the 89Y nucleus) as

transferred) must be odd

Ep = 1 and its total angular momentum as jp = 1/2. This

ensures that the proton picked-up in the ground state
transition is from the 2p1/2 shell model orbital in 9OZr.

(19)

- Gloeckner calculates the proton occupancy of this orbital as
1.33 and earlier experimental values for this occupancy are

given in table (4.2).

4.3.5 The transition to the first excited state

In the summed deuteron spectrum in figure (4.2), a small
but definite peak occurs at * 14.6 MeV. This peak is not
apparent in the spectra for individual angles (see figure 3.24)

because of poor statistics. This peak corresponds to a

9

transition from the ground state of OZr to the first excited

state of 89Y at 0.909 MeV., This transition involves a j-value
of 9/2 and no change in parity, which produces an £-value of 4.
It is clear then that this deuteron peak corresponds to a pick-
up of a proton with ep = 4 and jp = 9/2; that is, a proton
in the 1g9/2 proton orbital. As has already been indicated,

poor statistics did not permit an analysis of this peak except

as a contribution to the ground state transition.
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The number of protons shared by the 2p1/2 and the 1g9/2 proton

orbitals is two and so the theoretical proton occupancy of the

(19)'

orbital is O.67,following Gloeckner The experimental

l8g/2
values for this occupancy obtained in previous experiments are

given in table (4.2).\

The deuteron peak at approximately 14 MeV is broad and
unresolved. Kinematic calculations, together with the level
scheme of 89Y, indicate that at least three deuteron peaks may

be submerged in this "1.6 MeV" peak.

4,3.6 The transition to the second excited state

The second excited state of the 89Y nucleus has an

excitation energy of 1.51 MeV and a transition to this state

will result in a deuteron peak at = 14.0 MeV. BSuch a transition
(from J™ = 0 to J" = 3/27) corresponds to a j-value of 3/2 and
a change in parity, which implies an £-value of 1. It is clear
then that this transition results from the pick-up of a proton
with €p = 1 and jp = 3/2, which identifies the pick-up as
being from the 2p3/2 proton orbital. This orbital is filled with

2jp + 1 = 4 protons which are available for this transition.

4.3.7 The transition to the third excited state

The second deuteron peak submerged in the "1.6 MeV'" peak

originates in the transition from the ground state of 9OZr to

the third excited state of 89Y at 1.75 MeV which has J7m = 5/27.

This deuteron peak then, corresponds to a j-value of 5/2 and an
£-value of 3 and so the transition corresponds to a proton pick-

up from the lf5/2 proton orbital. The occupancy of this orbital

is 6.
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4.3.8 The transition to the fourth excited state

The fourth excited state of 89Y has an excitation energy

of 2.22 MeV. Kinematic calculations show that deuterons produced
in a transition to this state (if it were possible) would have an
energy of == 13.6 MeV which would make it lie within the

"1.6 MeV" peak. This is a 5/2+ state and the excitation of this

state would require the pick-up of a proton from a j = 5/2 shell

model orbital with an € = 2 orbital angular momentum since there

is no change in parity. This effectively forbids the excitation

of this state in the (n,d) reaction since theiproton occupancy

90

of the 2d shell is zero in Zr.

5/2

4.4 The distorted-wave method analysis

The distorted-wave method calculations were performed
with the optical potentials and optical potential parameters
described in section (4.2) above. The finite-range corrections
(for the zero-range approximation) and the nonlocal potential
Correckions are performed in the LEA. The finite range

correction parameter was set in the middle of the field

(1)

prescribed by Kunz , at 0.667 while the nonlocal correction

parameters were set at 8 = 0.85 for the nucleons and 8 = 0.54

(1)

for the deuterons . The comparisons between the theoretical

and experimental cross sections were carried out via the

(7)

relationship

5(6) = 3/2 Dzo (C%S) o(6)

EXP DwW

The value of the overlap integral Di was estimated by Bassel(G)
to be 1.55 from calculations which included the effect of the

deuteron d-state admixture in the deuteron wavefunction. The

quantity Czs where

C=<T_. T %<t |T T >
f fz z i iz
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is the isospin Clebsch-Gordan coefficient with Ti and Tf
being the isospins of the initial and final nuclei, is then

the spectroscopic factor of a particular transition (i~ f).

Chi-squared fits to the experimental cross sections

were obtained by minimizing the expression

@ =1 [(c®s)ale))
i=1

2 2
exp — €035, 15/16(a(0,) ) ]

where N is the number of experimental points while 6(c(ei)) is
the error (or inverse of weight) associated with o(ei)EXP'

The c(ei)Dw were folded into the modified angular scale because
of the solid angle corrections that were necessary for the

existing geometry in the experimental set-up.

The angular distribution of the ground state deuteron
cross section is shown in figure (4.3), together with distorted-
wave method fits. The broken-line fit represents a calculation
based on the assumption that the deuteron cross section is due
to a pure 2pl/2 proton pick-up and the comparison described
above produces a spectroscopic factor of 1.8 1 0.4. However,
the energy resolution of the spectrometer is in the region of
0.6 MeV (FWHM) and it is likely that the "ground state" peak
contains some contribution from the proton pick-up from the 1g9/2
shell model orbital. (See figure (4.2)). A small contribution
from this proton pick-up cross section, of the order of 0.1
protons, improves the fit to the experimental points significantly
and decreases the spectroscopic factor to 1.7 0.4, This

compared favourably with the calculated value of 1.33(19). This

second fit is represented by the solid line curve in figure (4.3).
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As we have seen, two deuteron peaks are submerged in
the "1.6 MeV" peak, as the fourth excited state of 89Y is
unlikely to be excited in this reaction. The two peaks are

those due to the pick-up of:
(a) the 2p3/2 shell model orbital protons and

(b) the 1f shell model orbital protons.

5/2

These transitions produce deuteron peaks that are associated
with the second and third excited states.of 89Y which have
excitation energies of 1.51 and 1.75 MeV, respectively. These
peaks occur with approximately equal separation on either side
of 1.6 MeV (where the combined peak appears to be peaked).

The insufficient energy resolution forces a combined treatment
of these two peaks. This was done by manually choosing
different spectroscopic factors for each of the transfers and
then obtaining the best fit for the angular distribution of the
deuteron cross sections for this "1.6 MeV", using a modified
version of the Chi-squared equation described above. The best
fit produces the following spectroscopic factors for the pair

of transitions:

3/2, £

I
'_l
Q
wn

I

1.8 - 0.4

o
I
N
I+

5/2, 2

I
w
(@]
wn
il

0.7 0.4.

(a8
I

Whilst this process must appear quite arbitrary it must be

said that the distorted-wave fits are sensitive to the choice

of spectroscopic factors. The reason for this lies in the fact
that the distorted-wave cross sections for the j = 3/2 transition
(which is an ¢=1 transition) peaks at approximately 10° while

the j = 5/2 transition (which is an £=3 transition) peaks at

approximately 25°.
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This ensures that the distorted-wave method fits, which are
independently sensitive to the choice of spectroscopic factors,
are also sensitive in combination since the one dominates the
region about 10° while the other dominates the region about 25°,.
Figure (4.4) shows a distorted-wave method fit to the

experimental points of this "1.6 MeV" peak.

Table (4.2) provides a comparison of the spectroscopic

factors for the transitions investigated in the present study

(22)(23) and those that are

derived from shell model limits. Preedom's values(22) are

with those of earlier experiments

consistly high. The ground state spectroscopic factor

obtained in this study agrees within error with the prediction

(19)

of Gloeckner and with the values obtained from earlier

experiments.

Excitation Energy Present Work Ref.(4) Ref. (10) M9d?l
(MeV) Limits
0.0 1.7(5) 1.91 1.4 1.33
0.91 1.10 0.6 0.67
1.51 1.8(5) 4.25 4.0
1.75 0.7(4) 7.80 6.0

Table 4.2 Comparison of spectroscopic factors.

For the 1.51 and 1.75 MeV states, the values obtained
in this study are very much lower than the model limits. These
model limits are derived from the proton occupancy of the
2p3/2 and 1f5/2 shell model orbitals. If it may be assumed that
the only states with J" = 3/27 and 5/27 excited in this reaction
are the states at 1.51 and 1.75 MeV respectively then it will be

true that the spectroscopic factors for these transitions will be
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the model limits. However, it is clear from a survey of the

(29) of 89Y that there are at least thirteen

level structure
states of 89Y with J7™ = 3/27 (below an excitation energy of

5 Mev) and at least eight excited states with J" = 5/27

(below an excitation energy of 4.5 MeV). It is true that direct
reactions tend to favour lower excitation energy final states,
but the energies considered here are relatively small. Further,
a study of the summed deuteron spectrum in figure (4.2)
indicates that some of these levels are indeed excited in this
(n,d) reaction. The statistics are unfortunately much too poor
to permit a distorted-wave method analysis of these deuteron
peaks. What 1is eVident therefore, is that the transition
strengths to these states at 1.51 MeV and 1.75 MeV do not

exhaust the sum rule limits for proton transfers from the 2p3/2

and if5/2 shell model orbitals.

An attempt to calculate the relative spectroscopic
factors to each of the J™ = 3/2~ excited states of 89Y was
attempted. Use was made of the theory of deShalit and Talmi(So)
for the coefficients of fractional parentage and the expression

of Glaudemans(Sl) 2

for the spectroscopic factor (S = n x c.f.p.
where c.f.p. is the coefficient of fractional parentage and n
is the nucleon occupation number of the orbital under
consideration). Proton seniority considerations in the

calculations tended to show that the theory used above cannot

predict the excitation of 3/2~ states beyond that at 1.51 MeV.
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Chapter Five

Discussion

5.1 Introduction

The major tasks of this study may be divided into four
distinct topics, which are described below. They have all
been covered with some success. In this discussion, it is
hoped first of all to summarize some of the results of the
analysis performed and then to suggest how the analysis may be
improved to present greater efficiency in the spectroscopic

nature of the study.
The aims of the study may be described as follows:

(a) To understand the distorted-wave method and its application
to single-nucleon transfer reactions. This required the
understanding of the Optical Model and its potentials
(including the method for choosing the parameters). In
addition, ambiguities that surround the use of the distorted

-wave method were investigated.

(b) To undertake a survey and to use the charged-particle
spectrometer developed by W. R. McMurray and

K. Bharuth—Ram(l)(z)

, which was employed to amass data in
the reaction studied in this research. An important aspect
of this part of the study was to determine whether the

efficiency and energy and angular resolution of the

spectrometer allowed for a distorted-wave method analysis

of the data.
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To perform a distorted-wave method analysis of the data

obtained from the bombardment of a 90

Zr enriched foil with
21.6 MeV neutrons and then observing the resulting
deuteron (and proton) spectra at various angles. The
distorted-wave method analysis, which required the use

of a high-speed mainframe computer is described in

Chapter Four. A cdmparison between the calculated and
experimentally obtained angular distributions of the cross-

sections indicate that the dominant process in this

interaction is the direct pick-up reaction.

To understand the use of single~nucleon particle transfer
reactions in spectroscopic studies. It is possible, from
comparing the calculated and experimentally obtained
angular distributions of the cross-sections, to extract
information on the nuclear stfucture of the participating
nuclei. The derived cross-section in the distorted-wave
method is related to the distorted-wave scattering cross-
section by the following relationship

ol(e)oc. S oeDw (8)

where ¢£¢=orbital angular momentum transferred and cgw (9)
depends only on the reaction parameters such as the energies
and scattering angles. S, the spectroscopic factor is a
function of the nuclear structure of the target and.residual

nuclei. By determining the spectroscopic factor, very

concrete information on nuclear structure has been obtained.



100.

5.2 A summary of the application of the distorted-wave method
to the reaction

The distorted-wave method has been resorted to in this
analysis because the simpler plane-wave theory formulated by

(3)

Butler , which is referred to very briefly in Chapter Two,

produced cross-sections which were at least an order of magnitude

(4)

greater than those experimentally observed However this
theory did permit the determination of the orbital angular
momentum transferred in these reactions. In the case of zero-
spin target nuclei (such as 9OZr is), it is then possible to
assign ¢ values to the different excited states of the residual
nucleus. The determination of spectroscopic factors depends
heavily on obtaining the correct magnitude in the calculated

cross-sections and so the distorted-wave method is employed

which has greatly improved this aspect of the calculation.

The next step was to examine the intensities of the
different deuteron groups in the spectrum (see figure (4.2)).
This technique is profitable because the (n,d) reaction (as is
true for all direct reactions) is highly selective in the final
states that it populates. This selectivity is demonstrated by
the one-to-one correspondence which exists between the energies
of the deuteron groups and the excitation energies of the
residual nucleus (which result from the pick-up of very sbecific
¢j-protons from the target nuclei). If in the comparison
between the ekperimental.and célculéfed cross—sectioné a
spectroscopic factor of one is obtained then this implies that
one proton was available for pick-up to lead to a specific final
state. (See McFarlane and French(s).) Following this general
approach, an analysis of the available data on the 9OZr(n,d)89Y

reaction was carried out and was partially successful.
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5.3 Problems with the analysis

5.3.1 Insufficient statistics in the data

The énalySis‘allowed the extraction of details on the
proton occupancy of the 2p1/2 proton subshell in 9OZr, as shown
in Chapter Four. However, an anlysis of the transition from
the ground state of 90Zr to the first excited state of 89Y
(which is 1g9/2 state) was impossible. The reason for this was
the relatively insufficient statistics achieved for the
transition, though the summed spectrum (figure (4.2)) shows a
small but definite peak at 2 0.92 MeV excitation energy of 89Y
which is very nearly the exact position of the first excited
state of 89Y (.909 MeV). By performing this analysis it would
have been possible to obtain a value for the proton occupancy
of the 1g9/2 level, and together with the proton occupancy of
the .2p1/2 level, a very indicative measure of the efficiency of

the measuring system and analysis would have been available,

since their sum has to be two.

The lack of statistics resulted in a second major
problem in the analysis. The model limit for the transition
from the ground state of 9OZr to excited states of 89Y with
JT = 3/27 is four; since the proton occupancy of the .2p3/2
proton subshell is four. The spectroscopic factor obtained in
this study for the transition to the second excited state, which
is a 3/2- states at 1.51 MeV, is 1.7 £ 0.4. There is evidence
in the summed deuteron spectrum that several other 3/27 state

were excited in this reaction but poor statistics denied an

analysis of these peaks.
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It must be noted that this spectroscopic factor of 1.7 for the
transition to the second excited state is reasonable on two
grounds:
- . 89
(a) there are at least ten 3/2~ states in Y below an
excitation energy of 5 MeV.
_ . 88 .
(b) The 2p3/2 proton subshell is a closed one (since Sr is
a closed, inert core) and the probability of removing a

proton from it must_be less than one.

The statistics of the data may be improved in several
ways:

(a) Increasing the run-time of the experiment is a possibility,
though the run-times for the previous runs are already long,
making the cost factor an important one.

(b) Doubling the thickness of the target foil will double the

| count rate and thus help to improve the statistics. It is
possible that the energy resolution of the data may be
affected but this will have to be inyestigatedu As for the
angular resolution, the thinness of the foil will permit
the doubled foil to continue to be considered as a two-
dimensional target and should therefore leave the angular
resolution unaffected.

(c) Decreasing the value of d (= the distance between the tritium
cell and the target) from 120 mm to 60 mm has the effect, as
was seen in Chapter Three, of shifting the mean scattering
angle further away from the nominal angle and of adversely
changing the angular resolution. However, the loss in
resolution is greatly outweighed by the gain in neutron flux
on the target wﬁich is quadrupled if d is halved. This gain

in statistics will help the analysis tremendously.
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It will be shown later that the loss in resolution may

not affect the analysis adversely.

5.3.2 The energy resolution of the deuteron spectrum

In reference (1), the authors state that the spectrometer
has an energy resolution of approximately 0.8 MeV. In the run
of the present experiment, it became evident that this value is
really closer to 0.6 MeV, EQen this value has an adverse affect
on the efficiency of a distorted-wave method analysis. A typical
instance of this was in the analysis of the "1.6 MeV" peak, which
is an unresolved peak. As was mentioned in Chapter Four however,
the spectroscopic factors obtained in that analysis were obtained
with a method which was highly senéitive to the choice of
spectroscopic factors. This lack of resolution produced problems
with the analysis of the grourid state peak as well, as it
became necessary to consider some contribution of the 1st excited
state peak to the ground state peak. This, as can be seen in
Chapter Four, improves the fit of the calculated cross-section

to the experimental cross-section.

A reasonable analysis of the data has been possible in
the study of this particular reaction but that is only so
because of the sufficient energy spacing between the excited

states of the 89Y nucleus. For instance, preliminary

27A€(n,d)26Mg

investigations show that an analysis of the
reaction may be much more complicated because of the decreased
level-spacing between the excited states in the 26Mg nucleus.

The use of the spectrometer may therefore be limited unless

its energy resolution can be improved.
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As a comparison, the study of a similar reaction by Ball and
Fulmer(G), in which they used a magnetic spectrograph, had an
energy resolution of approximately 18 keV. They were able to
accumulate accurate information on the nuclear structure

of 90Zr.

5.3.3 The angular resolution of the spectrometer

The angular resolution of the spectrometer depends
largely on the geometry of the experimental set-up.
As was seen in Chapter Three, it differs from Y4.40 to i3.7°
for the cases of d=60 mm and d=120 mm respectively. This
change in angular resolution does not affect the distorted-
wave method analysis to any great extent since the fitting of
the calculated angular distribution of the cross-section to
the experimentally obtained one is determined primarily by
fitting the respective forward angle peaks. The calculated
peaks in the forward direction for {¢-transfers of 0,1,2,
occur at progressively larger angles which make the peaks

easily distinguishable. (see figure (5.1)).

Additional calculations have been performed to determine
the effect of the choice of different angle limits (for
example, *1°, *2.5°, and +5°) on angular resolution. These
calculations tend to éhow that the angular resolution is not
grossly affectgﬁ by this, Statistics requirements tend to
force wider angle limits but the need for as many data points as

- possible (for the analysis) force smaller angle limits. An angle

+ . .
range of - 2.5° seems a suitable compromise.
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Improvements in the distorted-wave method calculations

To be able to obtain accurate information on nuclear

structure using the distorted-wave method, and assuming that

the angular and energy resolutions and statistics are improved,

the following improvements may be necessary in the calculations.

(a)

(b)

(c)

(7)(8)(9)

The adiabatic approximation of Johnson and Soper
must be employed. This technique deals with the (n,d)
reaction as a three-body problem. The approximation is
made in the optical potential of the deuteron. The
technique has been applied successfully in several

studies (10)(11)

The lack .of elastic scattering data on 902r and deuteron
elastic scattering data on 89Y resulted in the use of
global optical potential parameters (which were fairly
successful - see Chapter Four). However, to complete the
analysis efficiently it would be necessary to perform
these elastic scattering reactions to obtain authentic
optical model potential parameters for the analysis.

Even though tﬁe zero-range approximation produées good
results for the single-nucleon transfer reactions, it is
necessary to perform the calculations using one of the
codes which deal exactly with finite-range effects. such

]
as LOLA(12) or to resort to the theory of Charlton(la)
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