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THESIS ABSTRACT 

Annual demand for rice in Liberia far outstrips local production, mainly as a result of rice 

blast and drought. The use of resistant cultivars has been widely considered as the most 

economical means of controlling the disease and mitigating the impact of drought stress 

(DS) on rice (Oryza sativa L.). However, despite the high variability of the rice blast 

pathogen (Pyricularia oryzae Cavara), efforts aimed at genetically managing the disease 

have focused mainly on the development of cultivars with vertical resistance, which has 

repeatedly failed soon after the release of new cultivars because new pathotypes evolved 

with matching virulence genes. The current research was consequently undertaken to 

devise breeding strategies aimed at durably controlling rice blast and mitigating the impact 

of DS on rice by integrating host plant resistance with biocontrol agents. Towards these 

objectives, separate studies were undertaken to appraise local perspectives of rice 

production in Liberia and to identify key rice varietal traits preferred by farmers, to 

characterize upland rice locally cultivated in Liberia for resistance to rice blast and tolerance 

to drought, to determine suitable environments for screening rice for drought tolerance and 

quantitative resistance to rice blast, to determine the gene action and combining ability for 

the inheritance of key rice blast resistance traits, to determine the effects of a combination 

of ethephon and gibberellic acid (GA3) on the hybridization of rice, and to investigate the 

effects of two strains of Trichoderma harzianum on blast resistance and drought tolerance 

of rice.  

Results of both factor and conjoint analyses of farmers’ selection criteria and trait 

preferences revealed that farmers considered a combination of specific agronomic and 

morphological characteristics, including grain yield, grain quality, stress resistance and 

post-harvest traits when selecting rice varieties for cultivation. Farmers expressed a strong 

preference for hardy, early maturing varieties with intermediate stature, which generate soft 

but discrete (loose) grains when boiled. 

Pathogenicity tests involving 38 upland genotypes, inoculated with three pathotypes of P. 

oryzae under controlled environment (CE) conditions, revealed that the blast resistance of 

selected varieties of upland rice from Liberia was characterized by the occurrence of both 

race-specific and race-non-specific patterns of resistance. Additive main effects and 

multiplicative interaction analysis revealed significant (p < 0.05) genetic variability among 

the genotypes for the number and size of sporulating lesions per plant. Rice plants 

subjected to intermittent DS both under CE and field conditions exhibited larger and more 

lesions with sporulating centres than those grown under well–watered conditions, thereby 
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indicating the value of managed DS for evaluating rice for horizontal resistance to blast 

disease.  

Studies on drought tolerance of 22 of the upland rice genotypes showed that drought 

imposed for 21 days during the booting-to-grain-filling stage of development severely 

diminished grain yield (GY) and its components, and that the difference in grain yield 

between plants subjected to DS during the tillering stage and those grown under 

continuously well-watered conditions was not significant (p = 0.05). This study identified the 

booting-to-grain-filling stage as the primary phenological stage for improving drought 

tolerance of upland rice from Liberia. Principal component analysis showed that the 22 

genotypes exhibited the greatest variation for GY, tiller productivity (TP) and chlorophyll 

content index (CCI) under well-watered conditions, and for leaf rolling, GY, CCI, spikelet 

fertility (SF), and TP, under drought imposed during the booting-to-grain-filling stage. Simple 

correlation and path analyses identified high levels of biomass at heading (BM), stomatal 

conductance (SC) and SF as important selection criteria for achieving high GY under well-

watered conditions, and TP, BM and 1000 grain mass as the key criteria for selecting high 

yielding genotypes under DS occurring around the booting-to-grain-filling stage.  

Field screening for drought tolerance of rice over two seasons, using up to 24 genotypes, 

revealed that a novel technique using a plastic mulch soil cover system, designed at the 

University of KwaZulu-Natal, was effective for excluding rainfall from the plants, and is 

therefore a valuable tool for facilitating controlled drought screening of rice plants during a 

season with normal rainfall levels. 

Evaluation of eight blast susceptible genotypes and their F2 progenies derived from a full 

diallel mating system indicated that both additive and non-additive gene actions were 

involved in the inheritance of LN, LS and area under the disease progress curve (AUDPC), 

which are three key parameters measured to quantify the levels of horizontal resistance 

against rice blast. However, the genes with additive effects were more important, since the 

level of general combining ability (GCA) for each trait was higher than that of specific 

combining ability (SCA). These results indicated that future breeding of Liberian rice 

varieties aimed at increasing the level and durability of rice blast resistance should 

emphasize recurrent selection for reduced LS and lower LN and AUDPC, using genotypes 

that exhibit negative GCA effects for these traits as progenitors. 

Greenhouse studies with plant growth hormones showed that application of ethephon at 

4000 to 6000 µL L-1 during microsporogenesis, combined with gibberellic acid applied at 90 

or 150 µL L-1 during anthesis can provide for reliable male sterilization of flowers without 

diminishing female fertility. This can be used to facilitate the large scale cross-pollination of 
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rice genotypes and their progeny, which is essential for recurrent selection breeding 

programmes. 

The results of both CE and field studies demonstrated that two biocontrol products, Eco-

77® and Eco-T®, containing different strains of T. harzianum, were useful for managing rice 

blast and the effects of drought on rice, respectively. Notably, the impact of the biocontrol 

treatments tended to increase with the levels of host plant resistance. 

Overall, the results of this research show that new high yielding cultivars with durable 

resistance to rice blast and tolerance to drought can be bred in Liberia by adopting a 

recurrent selection scheme, using locally adapted genotypes as progenitors, and evaluating 

breeding lines under managed drought stress and well-watered conditions. Integrating the 

current biocontrol agents with improved host plant resistance will be important for increasing 

rice production in Liberia and other regions where rice suffers from rice blast and drought. 
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THESIS INTRODUCTION 

1. Background 

Rice (Oryza sativa L.) is the most important source of food and calories for more than one-

half of the human race (Partnership, 2013). The crop provides employment and livelihood 

for close to a billion households in Africa, Asia and the Americas (Diouf, 2003). Rice has 

been ranked consistently, since 2008, as the second most important food and agricultural 

commodity in the world, with a mean trade value of $182 billion per annum (FAO, 2013). 

In Africa, rice is a  major part of the diets of millions of people (Oteng and Sant'Anna, 1999). 

According to Africa Rice Centre (AfricaRice, 2010), the demand for rice on the continent 

continues to increase. The current import costs of rice to African countries is at least $4 

billion per year for approximately 10 million tonnes of rice (AfricaRice, 2010), indicating the 

economic importance of rice in the lives of many Africans. 

In Liberia, the primary target region, rice is the most important food crop, annually 

accounting for at least 80% of the total land area under annual staple food production (GOL, 

2009). The nation has one of the highest per capita consumption (120 kg p.a.) of rice in the 

world (GOL, 2010; IRRI, 2014). This makes rice a major food security issue, as any change 

in its availability and price can impact the poor directly. 

Like many other nations in Africa, Liberia largely depends on rice imports to augment its 

recurring domestic production deficit (Table 1). This failure to be self-reliant in rice 

production is largely caused by the low annual production as a result of low yields per unit 

area (Table 1). Whereas the global mean yield of rice is about 4.2 t ha-1 (FAO, 2011), yields 

in Liberia are only 1.4 t ha-1. The poor yield and production of rice in Liberia are caused by 

a combination of environmental and socio-economic factors.  

Apart from the socio-economic limitations, rice blast and drought stress are the most 

important constraints limiting the yield and production of rice in Liberia (Maclean et al., 

2002). Reversing the yield reduction caused by rice blast and drought would not only 

improve food security and reduce national trade deficits, but also increase the income and 

livelihood of resource poor farmers, particularly if the interventions are sustainable and 

affordable.  

Rice blast and drought are also common problems affecting most rice-producing countries 

around the world (O'Toole, 2004), many of which depend on foreign imports to satisfy 

domestic demands. As the global food crisis of 2005 to 2008 clearly highlighted, developing 

countries cannot allow themselves to remain reliant upon foreign food imports (Shah, 2008; 
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Headey and Fan, 2010). Hence, there is a great need to develop tools to reduce the impact 

of rice blast and drought on rice yield and production in order to avert future food crises. 

Table 1: Liberia rice production, yield and trade trends (Data source: Diagne et al. (2008); 

GOL (2010); MOA-Liberia (2012))  

 
Production / trade 

 1961-     
1970 

 1971-
1980 

 1981-
1990 

 1991-
2000 

 2001-
2010 

Paddy production (1000 t) 141.30 234.90 278.75 123.32 204.25 
Yield (t ha-1)    0.83     1.23     1.24     1.15     1.22 
Harvested area (1000 ha) 186.90 190.40 224.74 105.49 164.70 
Milled rice consumption 
(1000 t) 

115.19 186.52 251.64 134.20 350.71 

Per capita consumption (kg 
yr-1) 

  93.97 113.61 118.04   58.20 106.30 

Milled rice imports (1000 t)  36.54   51.78    91.18   44.48 170.97 
Import value (1,000,000 
US$) 

   6.31   17.39    35.65   13.66   90.98 

Self-sufficiency ratio (%)   83.00   84.99    73.99    63.91   39.10 
 

Rice blast and drought in the target environment 
Rice blast, caused by Pyricularia oryzae Cavara, is amongst the most important rice 

diseases in the West African sub-region and globally. The disease causes annual yield 

losses of up to 50% in most rice growing areas (Scardaci et al., 1997; Wallwork, 2009), and 

annually destroys more than 150 million tonnes of rice around the world, enough to feed 

about 60 million people (Zeigler et al., 1994). In Liberia, yield losses resulting from blast 

infections have been reported to be as high as 77% in experimental trials (Zeigler and 

Correa, 2000). Farmers generally lack access to any form of agro-chemicals to control 

diseases and pests, or to enhance rice growth, leaving the use of resistant varieties as the 

only available option for controlling rice blast. 

Like blast, drought stress is a global constraint to rice production, especially in rainfed 

farming systems. Production losses resulting from drought stress have been estimated at 

44-71% in major rice producing countries in Asia (Pandey et al., 2007). In sub-Saharan 

Africa, where farmers depend solely on rain for irrigation, drought accounts for about 20% 

of their annual yield losses (Serraj and Atlin, 2008). Globally, the average reduction in 

annual rice production due to drought is estimated at 18 million tonnes (O'Toole, 2004). In 

Liberia, drought essentially limits rice production to not more than one crop per year, even 

though all other environmental factors remain favourable for year-round production. Even 

during the regular season, some farmers often fail to plant and consequently lose entire 

crops due to erratic rainfall distribution. The lack of capital to invest in irrigation structures 
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and equipment makes the use of drought tolerant varieties as the only option for managing 

the effects of drought on the growth and productivity of upland rice for farmers in Liberia. 

Acting together, these two factors, rice blast and drought, pose a serious threat to food 

security, livelihood earnings, as well as peace and stability, in Liberia and in most parts of 

the developing world, with significant implications for global peace and commerce. 

Furthermore, as reduced production leads to increased prices, given constant demand, 

nations like Liberia that depend on foreign imports will have to increase production in order 

to meet domestic demand at an affordable cost. 

 
Nature of the relationship between the target environment and the problems of rice 
blast and drought  
 
The problems of rice blast and drought, associated with rice production in Liberia, are 

closely linked to the climate of the region and the farming practices of the growers. 

Developing a thorough understanding of these variables is an important pre-requisite for 

formulating appropriate interventions to adequately address the problems.  

Historical weather data show that the climate of Liberia has consistently proved conducive 

for the development and outbreak of pests and diseases at almost any time of the year 

(Figures 1 and 2). The climate is tropical and humid, presenting uniform high temperatures 

throughout the year, with a daily mean of 27°C. The daily temperature rarely falls below 

20oC, and humidity typically averages around 82%. Under the prevailing climatic conditions 

of Liberia, the rice blast fungus is able to reproduce and cause new infections throughout 

the year (TeBeest et al., 2007). Furthermore, the pathogenicity of P. oryzae is usually 

enhanced by aerobic conditions such as those that characterize upland rice production, in 

contrast to paddy rice (Scardaci et al., 1997; IRRI, 2010).  

Apart from its conduciveness to pest and disease outbreaks, the climate of Liberia is 

characterized by rainfall patterns that also hinder rice production in the country. Liberia is 

considered to be a high rainfall country, recording annual rainfall that range from 3500 to 

4600 mm along the coast in the south, to between 1500 to 2500 mm in the highlands of the 

north (Figure 1). Compared to low rainfall countries like South Africa and others that are 

arid or semi-arid, the high rainfall received annually in Liberia may give the impression that 

drought should be a rare event impacting on agriculture in the country. However, rainfall 

from November to April of each year is barely sufficient to support upland rice production, 

using the current varieties, as most parts of the country experience a largely unimodal 

rainfall pattern occurring between May and October (Figure 2). The uneven distribution and 

intensity of rainfall in Liberia impacts on the potential for large scale production of rice at 
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any given time of the year. In the wet season, the intense rainfall results in flooding in the 

lowlands. In the dry season, the level of rainfall is not adequate to sustain reliable rice 

production (van Staten, 2005). 

 
Figure 1: Rainfall map of Liberia (MOA-Liberia, 2007) 

Furthermore, in addition to the global phenomenon of climate change, the historical weather 

data of Liberia clearly points to alternating wet and dry periods during successive decades 

(McSweeney et al., 2010a; b). Whereas the early 1970’s and 1980’s were relatively dry, 

and 2005 and 2006 were extremely dry, the 1960’s and late 1970’s were particularly wet. 

These variable climatic patterns have the power to undermine rice production and threaten 

food security and livelihood earnings in resource poor communities, where crops are 

produced under rainfed conditions. The seasonality of rainfall and its erratic nature even in 

the rainy season, therefore renders drought as the single most important limitation to the 

intensification of rice production in Liberia by double cropping. 
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Figure 2: Monthly distribution of rainfall (A) nation-wide and (B) across three regions of 

Liberia over two times periods. Data are means of the total rainfall for each month. Data 

source: McSweeney et al. (2010a; b).  

 
Effect of the farming system on the incidence and severity of rice blast and drought 
in Liberia 
 
The scale of problems posed by rice blast and drought are exacerbated by the agronomic 

practices adopted by rice farmers in Liberia. Rice in Liberia is grown almost exclusively 

under rainfed conditions either in the uplands, which account for 90% of the total rice 

production area (Lancon and Erenstein, 2002; WARDA, 2007), or in wetland paddies. The 

production system is largely subsistence-based, characterized by traditional shifting 

cultivation practices, which also explains the low productivity of the crop. This production 

system is a high risk to vulnerable small scale farmers because rainfall is the only source 

of irrigation for the crop. The occurrence of drought can adversely affect production and 

lead to loss of income and increased hunger. Also, the production system based on shifting 

cultivation on lands under tribal tenure is not sustainable in the long term because 

population growth intensifies competition between farmers for superior lands, and between 

rice and other crops for the limited land resources. Since this system has failed to provide 
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sufficient food for the nation, an intensive production system that integrates improved 

agricultural techniques that both improve crop growth and maintain soil quality has been 

advocated (Otenga, 1999). Furthermore, environmental concerns over natural forest 

depletion, coupled with the shrinking area of forest land available to support shifting 

cultivation will lead to demand for more intensive use of land for rice production and the 

option of two or more upland crops per year will become increasingly important to sustain 

rice production in the country. A change in land tenure will be predicated by competition for 

land, and will also impact on future rice production. 

2. Rationale for research focus 

From the foregoing, it is clear that there are many challenges to increasing rice yield and 

production in Liberia. Effective methods of controlling blast in this environment are needed 

to limit the impact of the disease on crop performance, and interventions that limit the effects 

of drought stress on rice are also needed to improve yield and production. 

Rice blast, like most other fungal diseases of plants, may be controlled by applying 

fungicides, implementing sanitation to eliminate sources of inoculum, and other crop 

management procedures that reduce susceptibility of the crop to the disease, or by using 

resistant varieties. For drought stress, its impact can be diminished or eliminated by either 

providing irrigation, or by using drought tolerant cultivars that either reduce water use or 

escape probable periods of drought. Of all the potential approaches, cultivation of blast 

resistant and drought tolerant cultivars remains the simplest and most economical means 

of managing rice blast and drought stress (Lenne, 2000). Hence, providing farmers with rice 

blast resistant cultivars that are drought tolerant will largely help reduce the threat posed by 

the disease and drought in Liberia. 

Breeding for resistance against rice blast and tolerance to drought, like any other genetic 

trait, may be achieved by identifying and appropriately manipulating sources of resistance 

to produce better varieties. Effective exploitation of sources of resistance for any trait is 

possible only if the genetics underlying the expression of the trait are known. Current 

understanding of resistance against rice blast suggests that the trait can be either simply 

inherited or quantitatively inherited (Koide et al., 2009); whilst drought tolerance is thought 

to be quantitatively inherited (Chang et al., 1982; Mitra, 2001). By simple inheritance, it is 

implied that the trait is qualitative: it is either effective and exhibited as complete resistance, 

or ineffective and exhibited as complete susceptibility. Quantitatively inherited resistance is 

partially effective and is expressed on a continuous scale, ranging from poor to excellent 

resistance, without offering complete resistance. Rice blast resistance conferred by simple 

inheritance has  consistently become ineffective in a relatively short time, mainly in cropping 
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environments infested with multiple races of the pathogen due to the evolution of new, 

virulent races of the pathogen. This is a serious problem for rice breeders, as several 

hundred races of blast have been identified by their virulence against major gene resistance 

in rice (Ou, 1985; Khush and Jena, 2009). Cultivars with quantitative resistance are believed 

to be capable of proffering stable resistance against multiple races of a pathogen, thereby 

expressing more durability of resistance than that provided by simply inherited genes. 

The agro-ecology of Liberia is interconnected with much of West Africa’s. Studies of the 

virulence spectrum of rice blast in the sub-region from 1996 to 2002 have found a range of 

11 to 28 P. oryzae pathotypes in each of four countries surveyed. This indicates both a high 

degree of pathotype diversity, and a high density of pathogen virulence within the sub-

region (Sreenivasaprasad et al.; Chipili et al., 2001). The occurrence of such diversity in the 

blast pathogen populations in the region clearly dictates quantitative resistance as the most 

viable option for genetically protecting rice from blast disease in the region.  

Since durable resistance against multiple races of the blast pathogen and drought tolerance 

are both inherited quantitatively, it may be possible to concurrently improve both traits. 

However, environmental factors often influence the expression of quantitative traits, thereby 

requiring special consideration for choosing screening environments suitable for evaluation 

of the quantitative traits.  

Breeding to improve quantitative traits may also require the creation of large numbers of 

crosses and progenies for evaluation. Such a goal could be difficult to achieve with a self-

pollinating crop such as rice. Effective means of overcoming that difficulty and facilitating 

mass emasculation of rice florets will therefore be required for enhancing breeding for 

quantitative blast resistance and drought tolerance. Additionally, the expression of 

quantitative resistance and drought tolerance is usually partial. The integration of host plant 

resistance with other disease and stress management tools can also be useful for 

increasing and sustaining rice production in both blast-infested and drought-prone 

environments. 

 

3. Research objectives 

The following studies were therefore undertaken to increase yields of upland rice varieties 

for Liberia, primarily by breeding for improved quantitative resistance to rice blast and for 

enhanced drought tolerance. The specific objectives of these studies were to: 

a. Assess local farmers’ needs and identify their preferences for various rice varietal 

traits;  
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b. Evaluate and characterize upland rice varieties from Liberia for reaction to rice blast 

and drought stress;  

c. Determine suitable environments for screening drought and quantiative resistance 

against rice blast;  

d. Determine the gene action and combining ability for the inheritance of rice blast 

resistance traits;  

e. Determine the efficacy of ethephon and gibberellic acid at facilitating mass 

emasculation in rice; and 

f. Investigate the effect of Trichoderma harzianum on blast resistance and drought 

tolerance of rice.  

 

4. Thesis outline 

This thesis consists of eight distinct chapters (Table 2) reflecting a number of activities 

related to the above-mentioned objectives. Chapters 2 to 8 are written in the form of discrete 

research chapters, each following the format of a stand-alone research paper. The 

referencing system used in the chapters of this thesis is based on the Journal of Crop 

Science system. This is the most recommended thesis format adopted by the University of 

KwaZulu-Natal. As such, there is some unavoidable repetition of references and some 

introductory information between chapters. Chapter 6 has been accepted for publication in 

Euphytica, while Chapter 8 is currently being considered for possible publication in the 

Journal of Biocontrol Science and Technology. 

Table 2: Thesis structure 
Chapter Title 
- Thesis introduction 
1 Literature review 
2 Farmer-preferred traits and criteria for selecting rice varieties in the 

Gibi District of Liberia 
3 Blast resistance of selected upland rice from Liberia 
4 Drought tolerance of selected upland rice genotypes from Liberia 
5 Screening rice (Oryza sativa L.) for tolerance to drought using a 

plastic mulch soil cover system 
6 Combining ability and gene action of three components of 

horizontal resistance against rice blast  

7 Investigation of ethephon and gibberellic acid as a combined 
chemical hybridizing agent for rice 

8 Effects of Trichoderma harzianum on the responses of rice (Oryza 
sativa L.) to blast disease and drought stress 

- Thesis overview 
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 CHAPTER 1 

LITERATURE REVIEW 
 

1.1 Taxonomy of the rice plant 
The rice plant belongs to the grass family Poaceae (Gramineae) and consists of two 

cultivated (Oryza sativa L. and Oryza glaberrima Steud.) and 22 wild species (Aggarwal et 

al., 1999; Chopra and Shyam, 2002). Oryza sativa, also known as Asian rice, consists of 

two main types: Japonica and Indica, which originated in the tropical and sub-tropical / 

temperate parts of Asia, respectively (Glaszmann, 1987; Garris et al., 2005). The O. 

glaberrima species (African rice) has been found to also consist of two main types, namely 

a “floating” photosensitive ecotype and a “non-floating” early erect ecotype (Ghesquiere et 

al., 1997; Sarla and Mallikarjuna, 2005). Both rice species show parallel variation for nearly 

all traits, and it is often difficult to distinguish O. glaberrima from O. sativa (Oka et al., 1978; 

Richards, 1996). However, O. glaberrima varieties can be identified by their usual short 

round ligule shapes, lack of panicle branching, glabrous leaves and spikelets, small seeds 

and red caryopses (Nayar, 1973).  

The African rice has been cultivated as a crop only in West Africa, where it originated more 

than 2000 to 3000 years ago (Porteres, 1956; Nayar, 2010). Oryza sativa originated in Asia, 

at about the same time as O. glaberrima (Porteres, 1956) and is cultivated in all rice-

producing regions of the world, including West Africa, where it has largely displaced the 

African rice, due to its higher yield potential (Wopereis et al., 2009). Subsistence farmers in 

West Africa have traditionally grown varieties of the two cultivated species of rice in the 

same field, partly as a mean of preserving diversity and minimizing risk in the 

heterogeneous environments, where they grow the crop with little or no modern input 

(Ghesquiere et al., 1997; Semon et al., 2005). Probably, because of the poor yield 

characteristics of O. glaberrima, the limitation of funding for research, and the need to 

urgently address the perennial problem of food shortage on the African continent, it has 

received little attention for breeding, compared to O. sativa. However, the recent work at 

AfricaRice, leading to the creation of NERICA rice, a hybrid obtained from crosses between 

the two cultivated species of rice (Jones et al., 1997; Sie et al., 2005; Somado et al., 2008) 

has highlighted the significance of exploiting O. glaberrima for rice improvement in Africa. 

 

1.2 Rice in Liberia 

Rice cultivation is indigenous to Liberia. Before its creation as an independent state, the 

land of present day Liberia was known as one of the areas of intensive rice production in 
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West Africa (Carney, 2001; Dunn et al., 2001). In the 15th century a French navigator 

reported that rice was a staple food for the people in that region, with O. glaberrima varieties  

being the species of rice grown (Voeks and Rashford, 2013).  

Up until the 1960’s, farmers in Liberia relied mainly on traditional varieties developed and 

maintained mostly by women farmers. Thomasson (2010) reported the systematic 

maintenance of a collection of more than 112 traditional varieties, with specific adaptability 

to local conditions of that farming community, in one village alone in the 1980s. 

Modern efforts aimed at improving rice in Liberia have been consolidated through a national 

programme body - presently known as the Central Agricultural Research Institute (CARI) - 

in collaboration with international programmes such as the West African Rice Development 

Association (WARDA, now AfricaRice), the International Institute for Tropical Agriculture 

(IITA) and the International Rice Research Institute (IRRI). Rice breeding in Liberia was first 

initiated in the late 1960’s at the Liberia Agriculture Company (LAC), leading to the release 

in 1967-68 of LAC 23, which was basically a selection from a local variety (Gupta and 

O'Toole, 1986).  

Through the collaborative efforts, several O. sativa varieties were tested and a number of 

them, including Suakoko 8, 9, 10 and 12 were released between 1977 and 1979, for 

cultivation in various agroecologies (Dalrymple, 1986). Suakoko 8, a selection from a cross 

between Siam 25 and Malunja 3, Suakoko 10 (an improved Mashuri) and Suakoko 12 (an 

introduction from IRRI, IR1416-131-5) were either rainfed or irrigated lowland varieties, 

while Suakoko 9 (a selection from LAC 23) was developed for the upland agroecology 

(Virmani et al., 1978; Dalrymple, 1986).  

By 1989 about 14 O. sativa varieties had been released, formally or informally, for cultivation 

in the upland agroecology (Table 1.1). By then, the national programme had assembled 

more than 3 000 rice accessions in its gene bank, all of which were lost during the civil war 

which lasted from 1989 to 2003. Consequently, information describing farmers’ adoption 

and use of released varieties has been lacking. It is possible, though, that some or all of the 

varieties are being grown by farmers; but, their names and genetic characteristics have 

certainly changed, as farmers rely on their own standards to name and maintain their 

varieties under the prevailing informal seed system.  

Since 2006, several introductions, mainly New Rice for Africa (NERICA) varieties from 

AfricaRice have been evaluated at CARI for possible release as the relevant procedures 

and laws are being put in place (MOA, 2008). Efforts to introduce F1 hybrid rice to Liberia 

are also being pursued by partners from the People’s Republic of China. So far, LAC 23 
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(both red and white), remains the only recognized “improved” upland variety ever adopted 

by farmers in Liberia. LAC 23 is still being promoted by the government and praised by 

farmers (FAO, 2014). 

Table 1.1: Rice varieties released in Liberia (Dalrymple, 1986; Chaudhary et al., 1998; FAO, 

2002). 

Variety name Ecology Time to maturity (days) 
IR5 Rainfed lowland 135-140 
ITA 212 Rainfed lowland 130-135 
ITA 222 Rainfed lowland 130-135 
ITA 306 Rainfed lowland 110-115 
Kuati Kundor Rainfed lowland NA 
Mahsuri Rainfed lowland 125 
ROK 10 Rainfed lowland 140-150 
ROK 14 Rainfed lowland  
ROK 3 Rainfed lowland 125-135 
Suakoko 12 Rainfed lowland  
Suakoko 8 Rainfed lowland 140-145 
ROK 5 Tidal wetland 140-145 
IDESSA 6 Upland 110-120 
IRAT 133 Upland 115-125 
LAC 23 Upland 135-140 
Morobekan Upland 145 
OS 6 Upland 130-135 
WAB 32 80 Upland NA 
WAB 56 125 Upland NA 
WAB 56 50 Upland NA 
WAB 56 104 Upland NA 
WAB 96-1-1 Upland NA 
WAB 56-50 Upland NA 
WABIS 550 Upland NA 
WABIS 18 Upland NA 
WABSOKA Upland NA 
Suakoko 9 Upland 135-140 
IR 5 Upland 135-145 

 

Essentially, varietal improvement of upland rice in Liberia has been mainly concentrated on 

the introduction of exotic varieties or application of mass selection to the traditional stock of 

germplasm. So far, the new introductions have failed to impact on production because they 

were not adopted by the farmers, who preferred their landraces. The lack of records on the 

impact of released varieties other than LAC 23 and its relative Suakoko 9, suggests that 

adoption by farmers has been negligible. Non–adoption of the varieties could have been as 

the result of their low comparative advantage over the traditional varieties, or the result of 

non-preference by farmers. Determination of farmers’ preferences could therefore help 

shape future breeding objectives, if any new varieties are to be widely adopted.  
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1.3 Blast disease of rice 

1.3.1 Occurrence and epidemiology 
Rice blast, caused by Pyricularia oryzae Cavara, is the most important disease of rice world-

wide. The disease was first recorded in China (1637) and later in Japan (1704), Italy (1828), 

USA (1876), India (1918) and in more than 80 other countries since then (Ou, 1987). In 

Africa, rice blast was reported for the first time in 1930 (Feakin, 1976 ). Today, the disease 

affects all rice growing areas around the world (Khush and Jena, 2009). Blast is known to 

affect rice in all agroecologies, but rice grown under dryland conditions is known to be more 

susceptible to the disease (Zeigler et al., 1994). 

The epidemiology of rice blast disease is polycyclic. In the field, primary inoculum arises 

from infected plant materials such as seeds and straw left on the soil surface, whereas the 

secondary inoculum is generated from sporulating lesions produced on infected plants 

during the cropping period. The numbers of infection cycles and spores produced per lesion, 

and consequently, disease severity, tend to depend largely on the conduciveness of the 

environment and the level of host plant resistance. Environmental conditions that favour the 

outbreak and spread of blast disease are mainly moderate temperatures (24 - 28°C), 

periods of high humidity, and high levels of available nitrogen (TeBeest et al., 2007). 

The process of P. oryzae infection of rice plants may be summarized into five basic steps, 

as described by Hamer et al. (1988): (1) conidiation and conidial dispersal; (2) landing and 

attachment of a conidium on a host surface; (3) appresorium formation; (4) appresorium 

penetration; and (5) invasive hyphal growth (Figure 1.1). Conidia from sporulating lesions 

of P. oryzae are disseminated to new hosts by splash or wind dispersal. Upon landing, a 

dispersed conidium releases from its apex compartment a sticky mucilage that enables it to 

adhere firmly to the surface of the rice plant. Usually, within 1.5 h the conidium germinates, 

and produces a germ tube that differentiates into a specialized infection structure known as 

appresorium, from which an infection peg penetrates the host tissue (Parker et al., 2008).   

Conidiation and factors that pre-dispose plants to infection are key to understanding 

epidemics of rice blast and consequently formulating actions for controlling the disease, or 

for evaluating host resistance. In both field and controlled environments, moderately high 

temperatures and high humidity are known to influence sporulation and conidia dispersal 

(Manibhushanrao and Krishnana, 1991). Alternating light and dark photoperiods of 16 /8 hr, 

and various growth media (including potato dextrose, corn meal, oatmeal and rice polish 

agars) have been successfully used to culture isolates of P. oryzae and to produce conidia 
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for pathogenicity assays (Latterell and Rossi, 1986; Hosseyni-Moghaddam and Soltani, 

2013; Lodhi et al., 2013).  

 

 

Figure 1.1: Disease cycle of rice blast. Source: Wilson and Talbot (2009). 

1.3.2 Effects of blast on rice physiology and yield 
Nearly all parts of the rice plant are susceptible to blast. Blast infection leads to direct 

destruction of cells, resulting in the disruption of vascular translocation of water and 

minerals in the affected and neighbouring tissues of the plant, thereby negatively affecting 

yield. Blast lesions tend to reduce the rates of leaf photosynthesis and respiration, and to 

reduce overall canopy photosynthesis, the primary effect being a reduction of carbohydrate 

production (Bastiaans and Kropff, 1993). Lesions produced on heavily infected leaves 

during the early growth stages usually lead to premature senescence. Leaf blast effectively 

reduces net radiation interception, crop growth and leaf area formation during the vegetative 

stage of crop growth, leaving less green leaf area during the reproductive phase. The net 

effect is a reduction in source capacity to fill the developing grain sink, leading to a net 

reduction in grain yield (Bastiaans, 1993). Lesions appearing on the collar can lead to death 

of an entire leaf. Blast attacking the nodes often causes the stem to break.  Blast may also 

attack the panicle and rot the neck, thereby leading to loss of the entire panicle or prevention 
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of grain filling and maturation (Wilson and Talbot, 2009; FAO, 2013). Seeds may also be 

contaminated and become sources of new infection. 

 
1.4 The rice blast pathogen 

Based on scientific and economic relevance, the rice blast fungus, P. oryzae, is regarded 

as the most important fungal pathogen in the world (Dean et al., 2012). One area of scientific 

importance of the pathogen lies in its use as a model organism for elucidating the molecular 

basis of plant fungal diseases (Ebbole, 2007). Members of the genus  parasitize more than 

50 species of grass plants worldwide (Ou, 1985; Beckerman et al., 1997), as well as 

Arabidopsis, which is a dicotyledonous plant (Park et al., 2009). 

 

1.4.1 Nomenclature and host range 
The rice blast pathogen is a polymorphic fungus belonging to the class ascomycete. Both 

the anamorph (Pyricularia) and teliomorph (Magnaporthe) are heterothallic and filamentous 

(Talbot, 2003). The teliomorph is the sexually reproducing form, consisting of two mating 

types. Only fertile strains of opposite mating types can be paired in a sexual cross leading 

to the formation of perithecia containing  ascospores contained in uninucleate asci (Talbot, 

2003). According to Nelson (1996) and Kronstad and Staben (1997) mating in this bipolar 

system is controlled by two different alleles at a single locus, and the genes are believed to 

encode master regulators of sexual development that regulate the expression of mating 

type-specific genes, such as pheromones, receptor signal transduction and self-non-self 

recognition. The asexual form (anamorph) produces three-celled conidia that are borne on 

the apex of specialized hyphae known as conidiopores. The teliomorph is rarely found under 

field conditions, but can be propagated in the laboratory. Since the anamorph is the form 

relevant to this study, its name shall be used throughout this thesis to refer to the pathogen, 

as advised by Rossman et al. (1990). 

Due to unresolved confusion over classification, the blast pathogen (its anamorph) has 

interchangeably been referred to in the literature as Pyricularia grisea Sacc. or P. oryzae. 

However, Couch and Kohn (2002) proposed that P. oryzae should be recognized as a 

distinct species, separated from P. grisea. Using dendrograms generated from the DNA 

sequences of the genes for actin, beta-tubulin, and calmodulin, and from the analysis of 

mating experiments, these researchers showed that the two taxa differed molecularly by 

several base substitutions in each of three loci, and that mating between the two species 

did not occur. Hence, the name P. grisea remains consistent with strains isolated from crab 

grass (Digitaria ciliaris (Retz.) Koeler), while the name of strains isolated from rice and other 
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grasses was confirmed as P. oryzae (Ou,1987; Rossman et al., 1990). These authors also 

noted that the morphs of the two species are very similar morphologically. 

 

1.4.2 Pathogenic stability and variability of blast pathogen 
Due to the remarkable ability of P. oryzae to overcome the defences of rice plants, questions 

about host specificity or cross infection by isolates between rice and other grass hosts, 

including the stability of P. oryzae populations are important. Cross inoculation studies have 

revealed that some isolates from rice plants are capable of infecting other grasses, and 

some isolates from non-rice grass hosts are able to infect rice plants (Mackill and Bonman, 

1986; Choi et al., 2013). Other studies have concluded that populations of P. oryzae were 

strongly delimited by host range (Valent et al., 1984; Hamer et al., 1989; Borromeo et al., 

1993), although failing to completely rule out the possibility that some strains are capable 

of infecting both rice and other grasses. On the basis of restricted fragment length 

polymorphism (RFLP) data, Borromeo et al. (1993) found that P. oryzae populations 

infecting rice and rice-field weeds in the Philippines shared a common ancestry, but that 

isolates from grass weeds in rice fields could not infect the rice plants.  

Earlier studies reviewed by Ou (1985) reported the recovery of multiple pathotypes from not 

only single lesions, but also from monoclonally derived cultures, and concluded that P. 

oryzae pathotypes were highly polymorphic and pathogenically unstable or continuously 

changing. This view was later opposed by Latterell and Rossi (1986) who, on the basis of 

30 years’ research involving repeated testing of more than 2,000 blast isolates, concluded 

that blast pathotypes were basically stable. They noted, however, that induced or natural 

mutation usually resulting in increased sporulation or broader host range did occur, but quite 

rarely. Several researchers have contended that estimates of the diversity and variability of 

pathotypes could be inflated due to difficulties in standardizing testing procedures and 

interpreting lesion types (Latterell, 1975; Bonman et al., 1987). Levy et al. (1991) used 

Magnaporthe grisea repeat (MGR)-DNA fingerprints to accurately identify the pathotypes of 

several isolates collected over a 30 year period and to delineate the organization of clonal 

lineages between and within the groups of isolates, demonstrating the efficiency of MGR 

probes for resolving pathotype diversity. 

The occurrence of many pathotypes of P. oryzae has been reported in most rice growing 

areas, and new races are reported regularly. New races are thought to emerge as the result 

of virulent mutations that occur at the rate of one in 103 to 105 (Kiyosawa, 1976). Chumley 

and Valent (1990) attributed these virulent mutations to deletions, appearing at an estimated 

rate of 5% in some isolates. Marchetti (1994) further argued that owing to the huge number 
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of propagules produced in the field, spontaneous mutations would give rise to thousands of 

pathogen variants, many of which would disappear immediately because they offered no 

advantage in fitness. Hence, according to Marchetti (1994), the discovery of new races 

follows when pathotypes capable of infecting a new pathodeme increase, over time, to the 

point where they become noticeable. 

 

1.5 Genetics of rice blast resistance   
Resistance against rice blast has been extensively studied, leading to the discovery of at 

least 85 major (R) genes and 347 quantitative trait loci (QTLs) (Ballini et al., 2008). However, 

several of the genes may be identical to each other or are tightly linked, leading to similar 

genes being called by different names (Kinoshita et al., 1994). The major genes and QTLs 

with large effects governing rice blast resistance and their putative locations on rice 

chromosomes have been reviewed by Koide et al. (2009).  

Generally, resistance against plant diseases can be classified into two main categories: 

vertical and horizontal resistance. Both types of resistance are known to occur in rice. The 

terms were first introduced in the genetics of pest and disease resistance by Vanderplank 

(1963). Accordingly, vertical resistance (VR), sometimes called hypersensitivity resistance, 

is often complete and produces a resistant infection type (IT) because it fully inhibits 

pathogen reproduction on a genotype possessing it, where the pathogen race is avirulent. 

It is usually race-specific (effective against all races of the pathogen except novel, virulent 

races), monogenic, controlled by R genes, and largely insensitive to environmental effects. 

The hypersensitive response to pathogen attack is exhibited when cell death occurs at the 

site of an attempted infection by the pathogen (Morel and Dangl, 1997), thereby preventing 

the spread of the disease and reinforcing plant defences by triggering systemic acquired 

resistance, and inducing lignification and synthesis of antimicrobial compounds (Kombrink 

and Somssich, 1995; Pontier et al., 1998). Rice blast lesions appearing as tiny brown 

specks on leaves are normally scored as a resistant infection type, since these lesions are 

typical of a hypersensitive response (IRRI, 2006). 

Unlike VR, horizontal resistance (HR) is usually expressed as partial resistance, in a 

gradient that ranges from low to high, depending on the environment, host genotype, and 

the aggressiveness of the pathogen isolate. It is often described as partial resistance or 

quantitative resistance. Parlevliet and van Ommeren (1975) defined a partial-resistance 

genotype as one that allows limited but significantly reduced pathogen reproduction when 

compared with a genotype that is susceptible. Horizontal resistance is considered a 

quantitative trait, as the mechanisms underlying its expression are believed to be complex 
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and involve multiple genes or alleles, each of which contributes additively to the expression 

of the trait. This principle of additive action of the polygenes accounting for horizontal 

resistance contrasts with the principle that vertical resistance is controlled by mono- or 

oligogenic resistance genes. 

 

1.6 Durability and specificity of horizontal resistance 

The resistance spectrum of HR has largely been described as broad; that is, it is effective 

against all races of the same pathogen species, although the aggressiveness of pathogen 

isolates may vary (Wisser et al., 2005). Race-specificity of partial resistance has been 

reported by Bonman et al. (1989), Talukder et al. (2004) and Zenbayashi et al. (2002) 

amongst others, suggesting that HR genes function similarly as complete resistance genes. 

However, Vanderplank (1984) pointed out that partial vertical resistance can also occur, 

where the resistance expressed is initially good but partial, but this is later matched by a 

new virulent race, rendering it ineffective. Li et al. (1999) earlier suggested that HR genes 

could in fact be R genes, having shown that rice cultivars carrying a major resistance gene 

against bacterial blight, Xa4, exhibited residual levels of resistance against other virulent 

strains. Defence genes have been implicated in the expression of HR, when markers 

derived from such genes were used to enhance selection for HR against rice blast in 

separate studies (Liu et al., 2004; Wu et al., 2004). Vergne et al. (2010) also concluded that 

constitutive, rather than induced, expression of defence-related genes could be responsible 

for a significant portion of HR against rice blast. 

Cloning of an HR gene, pi21, revealed that the mechanisms controlling HR are quite 

different from that controlling VR (Fukuoka et al., 2009). Devanna et al. (2014) reported that 

at least 19 of the 23 vertical blast resistance genes cloned and characterized contained 

nucleotide-binding sites and leucine-rich domains, which showed race-specific interactions 

with avirulence gene products of the pathogen (DeYoung and Innes, 2006; McHale et al., 

2006). These are unlike pi21, which has a heavy-metal-binding leucine rich domain that is 

functionally dissimilar to other proteins of known function (Fukuoka et al., 2007; Fukuoka et 

al., 2009).  

From the above studies, it is clear that HR differs from VR. The polygenic nature of HR 

suggest that the mechanisms controlling HR are not confined to the action of any single 

gene, such as pi21. Rather, HR results from the combined action of additive genes to 

provide protection to a plant. Epistatic interactions between the various genes could also 

account for the effects of environment on the expression of HR. 
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1.7 Breeding for horizontal resistance 

The use of resistant cultivars has been long recognized as the most economical means of 

controlling rice blast. It is easy to manage by farmers, and is more environmentally-friendly 

than the use of fungicides, which pose risks to users and the environment. Genetic 

resistance against rice blast can be bred by either pedigree or population breeding, or a 

combination of the two methods. However, pedigree breeding is largely used to introgress 

major genes with qualitative effects. The literature is replete with studies where newly 

released rice cultivars protected by novel major genes, or novel major gene combinations, 

abruptly succumb to blast only a few years after their release, creating a “boom-and-bust” 

cycle. The need is for a more durable form of genetic resistance. In order to breed for 

durable resistance to blast, Roh et al. (2009) enumerated the potential approaches, 

including the accumulation of minor genes, pyramiding of major genes and the breeding of 

a combination of minor and major genes. The multiline approach involves synthesizing as 

many lines as possible with different R genes, in order to provide an array of planting 

materials, each capable of resisting different races of the pathogen. The limitation of this 

approach may lie in the difficulty presented in choosing which variety to plant at a given time 

because it is not possible to predict which virulent race will be present a priori. It is also an 

extremely expensive approach in terms of breeding resources. 

Several rice cultivars (Moroberekan, LAC-23, ROK 16, OS 6, and Tetep) have been 

observed to demonstrate durable resistance to blast in their areas of cultivation (Ahn, 1994; 

Fomba and Taylor, 1994). Bonman (1992) associated the durable resistance in those 

cultivars with polygenic horizontal resistance, and found no evidence of race specificity. 

Genetic studies have uncovered at least two major genes and QTLs in the genetic 

background of those cultivars (Chen et al., 2000; Chen et al., 2009), suggesting that the 

complementary effects of those genes and QTLs could contribute to the observed broad-

spectrum and durable resistance.  

When aiming to increase horizontal resistance to rice blast, it would first be necessary to 

eliminate vertical resistance genes present in the parent population, in order to avoid the 

“vertifolia” effect (Vanderplank, 1984), whereby the presence of one or more effective major 

genes obstruct the phenotypic selection for horizontal resistance genes. One efficient 

technique to do so is the “one-pathotype” technique (Robinson, 1987). A single pathotype 

is used to screen the parent population, and all subsequent progeny. Any cultivar 

expressing a high level of resistance to the pathotype is eliminated, and only susceptible 

parents are used. Subsequently, the same pathotype is used to screen the progeny, to 

ensure that any residual vertical resistance genes are rendered ineffective in each 
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generation. Cultivars carrying resistance QTLs, such as the Pi21 locus, have been reported 

to maintain resistance for up to a century of cultivation, but the co–introduction of this gene 

with the undesirable gene for taste has since hindered efforts to transfer this QTL to other 

varieties (Fukuoka et al., 2009).  

 

1.8 Characteristics of drought stress and drought tolerance in rice 

The requirement for consistent supplies of water is recognized universally as one of the 

most important constraints for agriculture. In agronomic terms, drought may be defined as 

the occurrence of sustained water deficit resulting from the insufficiency of water to support 

crop growth and production (McKee et al., 1993; Wilhite, 1993). Water stress ensues when 

soil water has diminished, or when its uptake is interrupted, to the extent that plant roots 

cannot absorb enough water to meet transpirational demands by the foliage. 

In the target environment, Liberia, about 90% of the soils of are highly weathered and 

consequently classified as Oxisols (Latosol), according to the USDA soil classification 

system (Reed, 1951; De Datta and Feuer, 1975). Besides being low in natural fertility due 

to the dominance of clay particles by oxides of iron and aluminium, the Oxisols of Liberia, 

as in other parts of the world, are soils prone to drought due to their low capacity to retain 

water (Beinroth et al., 1996). Plants grown in these soils often suffer from water stress much 

earlier than those grown in other soils, thereby rendering regular supplies of water as an 

essential input, in addition to nutrient minerals, for healthy crop growth and production. 

However, Liberia experiences seasonal droughts, and erratic rainfall in the rainy season. 

Understanding the nature of drought stress and its effect on rice, including the intricacies 

involved in breeding for the trait are therefore important for the success of any study aimed 

at improving drought tolerance of the crop. 

 

1.8.1 Effects of drought stress on rice 
Water is a major component of soils, and is the solvent for translocating minerals from the 

soil and dissolved substances in the plant. Additionally, water constitutes 80 – 90% of 

herbaceous plants (Kramer and Boyer, 1995). Water plays a number of essential roles, 

such as the maintenance of cell turgidity, and is an essential substrate in photosynthesis 

and a reactant or ligand in numerous biochemical reactions (Rand, 1992; Lambers et al., 

2008).  

The impact of water shortage on plant growth has been well studied. It reduces plant growth 

and vigour, resulting in wilting, the deficiency of essential nutrients and eventual plant 

mortality (Lahiri et al., 1973; Peet, 2005). The ability of plants to absorb essential nutrients 



23 
 

from the soil is largely diminished by the lack of soil water. Lack of water in plants inhibits 

cell expansion and development, thereby limiting plant growth. The rates of transpiration 

and photosynthesis may diminish under drought stress as stomata close in response to 

water stress. Leaf rolling, caused by drought, essentially reduces the effective leaf area for 

the interception of solar radiation, and leads to reduced canopy photosynthesis and 

enhanced leaf senescence (Wopereis et al., 1996). 

Studies by Yamauchi et al. (1994) also showed that drought reduces root growth in rice. In 

their investigation of rooting pattern and soil water extraction of four rice cultivars in 

response to water deficit, Lilley and Fukai (1994a) found that root length and density was 

larger in the surface soils and declined with depth, and that root growth virtually ceased 

when a water deficit was imposed at either the vegetative or reproductive stage. They 

concluded that selecting for deeper roots and large root density could prove useful for 

developing more drought-tolerant upland cultivars, since these traits enabled the extraction 

of more water. 

Drought can cause injury to plants at all stages of the production cycle, and the magnitude 

of injury increases with the intensity and duration of exposure. Even during the normal 

production season, delayed or erratic rainfall early during the season can adversely impact 

crop establishment, and can lead to additional costs in terms of seeds and labour for 

replanting, or low yields as a result of poor crop stands. Drought may reduce plant height, 

the number of tillers and the subsequent number of panicles when it occurs during the 

vegetative stage (Bouman and Tuong, 2001); however the effect of reduced tiller and 

panicle number per hill can be compensated for either by an increase in the number of 

grains per panicle or an increase in grain mass or both (Bouman et al., 2007).  

When drought occurs late during the season, such that it coincides with the reproductive 

stage of crop development, yield can be severely diminished. Drought can be especially 

damaging during the period from three weeks before flowering up to a week after anthesis. 

Drought occurring during the early stages of panicle development may delay flowering in 

rice (Puckridge and O'Toole, 1980; Inthapan and Fukai, 1988), and the magnitude of delay 

is often proportional to the duration (Tsuda and Takami, 1991) and intensity (Lilley and 

Fukai, 1994b) of the stress. The occurrence of drought between panicle initiation and 

flowering can also lead to marked reduction in spikelet fertility, and the number of spikelets 

per panicle, thereby resulting in decreased number of grains per panicle and / or poor grain 

filling (Saini and Westgate, 1999). The negative effect of drought on spikelet fertility can 

arise from poor anther dehiscence, pollen shedding and germination (Ekanayake et al., 

1990; Rang et al., 2011).  
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Some of the negative effects of drought on yield may be reversed or mitigated upon relief 

of drought; however, others such as enhanced leaf senescence, spikelet sterility and 

reduction in the number of spikelets, are often irreversible. A thorough knowledge of the 

nature of drought and factors that influence drought susceptibility or resistance of plants, 

particularly rice, is therefore necessary for informing selection and other breeding decisions 

that may lead to the improvement of the crop. 

 
1.9 Drought tolerance  
Response to drought is often expressed by plants in the form of escape, avoidance or 

tolerance (Levitt, 1972). Understanding the characteristics of drought tolerance could be 

useful for defining useful targets for breeding improved varieties.  

According to Mitra (2001), drought escape is inherently structured to ensure that the life 

cycle of a plant is completed before a period of acute water deficit. Drought avoidance 

operates by ensuring that the water status of plant tissues remains relatively high under 

conditions of water deficit. Unlike escape and avoidance, drought tolerance is expressed 

when a plant remains viable even when the water potential of its tissues becomes low. 

Hence, drought tolerance is clearly defined in terms of stable grain yield under stress, 

following from the maintenance of growth processes and normal development (Serraj et al., 

2009).  

Biological mechanisms underlying favourable drought responses under stress, and the 

alleles or loci underlying the biological mechanisms of drought responses have been found 

to be extremely complex (Bidinger, 2002). One of the mechanisms that has been associated 

with high dry matter accumulation in drought tolerant rice cultivars is the superior ability to 

access soil water, and this feature is believed to be largely endowed by a deep rooting 

ability (Lilley and Fukai, 1994b; Fujii and Horie, 2001). Other traits that have been observed 

to play roles in the complex expression of drought tolerance of rice are early vigour, leaf 

rolling, leaf drying, plant recovery ability, anther dehiscence, grain mass, osmotic 

adjustment and leaf water potential (Chang et al., 1982; Jongdee et al., 2002) and canopy 

temperature (Garrity and O'Toole, 1995).  

Plant traits associated with each of the three mechanisms of drought tolerance are outlined 

and described according to Price et al. (2002). Traits conferring drought escape are usually 

short growth duration, developmental plasticity or variation in flowering time and maturity, 

and remobilization of pre-anthesis assimilates to grain. Traits typical of drought avoidance 

are usually of two types: those that reduce water loss from plant tissues, and others that 

specifically maintain turgor. Traits responsible for reducing water use from plant tissues 
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include low surface and stomatal conductance, leaf rolling and smaller leaf area, whilst an 

efficient root system and high hydraulic conductance are two specific traits that maintain 

turgor. High protoplasmic resistance tends to increase desiccation tolerance, as high 

osmotic adjustment and cell elasticity and small cell size tend to increase turgor. Such traits 

are typical drought tolerance traits.  

However, most of these traits are difficult to measure, and require sophisticated and costly 

equipment, in most cases. Furthermore, some of the mechanisms by which plants resist 

drought by regulating their internal water status (leaf rolling, stomata closure) can negatively 

affect other processes (such as solar radiation interception and carbon dioxide uptake) that 

lead to reduced biomass accumulation and yield attainment. Therefore, mechanisms 

advancing earliness may diminish yield. Consequently, traits associated with reduced water 

use should not be discounted as long as the extent of their impact on economic yield is 

minimal. Plants usually exhibit more than one form of adaptation to drought in any given 

environment of water deficit (Turner, 1981). Furthermore, drought tolerance is generally a 

complex trait that integrates both direct actions and interactions of several morphological, 

biochemical and physiological characters. Therefore the screening and selection of parental 

materials and progenies should be aimed at combining a number of traits that integrate the 

various modes of drought tolerance. 

 
1.10 Breeding for drought tolerance 

When breeding for tolerance to drought, the major factors to consider are usually, but not 

limited to, the target environment, the sources of resistance, and the screening 

methodologies adopted to enhance selection. 

 

1.10.1 Breeding targets for drought tolerance 
Precise characterization of drought occurring in a target environment, the region of future 

cultivation of an improved variety, could facilitate the identification of appropriate traits for 

drought and assist breeding efforts. Kamoshita et al. (2008) classified the types of drought 

occurring in rice production regions by ecosystem, and by severity and timing of the drought, 

in relation to the crop developmental stage. They noted that the upland rice environment 

was characterized by frequent incidences of mild stress, which may become severe 

between major rainfall events; whereas lowland rice typically encountered drought when 

standing water in the field dried up during rainless periods. 

Drought may also be classified on the basis of the time at which it occurs; hence, there may 

be a vegetative stage, intermittent or terminal drought event. In the upland ecology of Liberia 
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where the rainfall pattern is largely unimodal, rice grown during periods of below average 

rainfall, early in the wet season, is prone to vegetative stage drought; whereas crops grown 

late during the season may suffer terminal drought. Hence, the optimum planting time is 

when it becomes certain that rainfall will be frequent enough to support a crop from sowing 

to maturity. In Liberia this means that under rainfed, upland conditions only one crop per 

annum is possible. Whilst the end of the rainy season may be predicted fairly accurately the 

start of consistent rainfall in the rainy season is often difficult to predict. Practical breeding 

targets for such an agroecology could therefore be for drought escape, to enable the rice to 

grow to maturity before the rains recede, and drought tolerance to keep plants alive early 

during the season until the wet season becomes fully established. Drought tolerance could 

also be useful for achieving double cropping, which would be possible if a level of 

supplementary irrigation was available to farmers. 

Various approaches, both conventional and molecular, are been explored around the world 

to breed and improve rice for drought tolerance. At AfricaRice the conventional approach 

has been mainly aimed at developing early maturing cultivars that are capable of escaping 

late season drought, while their molecular breeding approaches are currently focused on 

the application of marker assisted selection to combine traits for deep root penetration and 

osmotic adjustment in high yielding genotypes (Sie et al., 2008). Research at IRRI and its 

collaborators has primarily focused on the development of two types of germplasm for 

drought tolerance: (1) aerobic varieties, for well-drained unbunded uplands and bunded 

fields in the upper most toposequence; and (2) varieties for drought prone lowlands (Atlin 

et al., 2008). Direct selection for yield under stress is widely cited as a key strategy for 

breeding these materials (Venuprasad et al., 2007; Atlin et al., 2008).  

 

1.11 Screening for drought tolerance 

Procedures for screening for drought tolerance should be fully capable of identifying genetic 

variations that are heritable in the target environment. The screening procedure also has to 

reliably provide drought stress events with the timing, severity and duration that are 

characteristic of the target environment (Atlin et al., 2008). In order to adequately quantify 

and articulate the nature of drought stress in the target environment, long term climatic data 

have to be carefully analysed. 

Screening for drought tolerance is usually designed or aimed to target a yield-based 

definition of tolerance or basic stress response mechanisms. According to Bidinger (2002), 

following a yield based definition often requires taking into account all other factors that 

affect yield (such as day length, temperature, and disease) in the target environment, when 

selecting the screening environment, to ensure that none of these factors vary significantly 
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enough as to affect the phenology of the crop, since drought escape plays a major role in 

determining yield under stress. Otherwise, drought escape may operate differently between 

the target and screening environments. In their review of drought tolerance traits in rice and 

their QTLs, Kamoshita et al. (2008) concluded that, in addition to selecting for specific traits 

or genomic regions, screening for yield as a main trait, followed by low leaf roll scores, low 

spikelet sterility and high drought tolerance index (DTI) in managed drought environments 

appeared to be the most useful traits to screen for when breeding for drought tolerant 

cultivars. 

 
1.12 Integrating host plant resistance with biocontrol 

Integrated approaches to pest and stress management have been advocated as a means 

of more effectively controlling the problem posed by the stress factors. In essence, it is a 

means of intensifying efforts to control a disease or problem, using a combination of 

resources, which in most cases are not totally effective on their own, with the intention that 

the resources will complement each other, thereby yielding a better result. The key to 

success may lie in the ability of the factors to act additively or synergistically, rather than 

antagonistically in any way. The foregoing discussions reveals that the levels of expression 

of quantitative resistance against rice blast and drought can vary mainly with the intensity 

of the problem. Given that quantitative resistance is largely incomplete, inputs that enhance 

its effectiveness would be useful to reduce the impact of blast on rice yields (Shyamala and 

Sivakumaar, 2012; Spence et al. 2014). 

 
1.13 Conclusion 

Mono- and oligogenic resistance to rice blast does not have a history of providing stable 

resistance to blast due to the rapid evolution of virulent races in conducive environments. 

The long life of preferred rice varieties in Liberia could be the result of either the farming 

system, the presence of stable horizontal resistance in these cultivars, or a combination of 

the two. The shifting cultivation farming system that has allowed farmers in Liberia to cut 

and burn new forest land every year for rice cultivation is fast giving way to fixed fields, as 

competition for unclaimed land increases. The widening gap between local production and 

demand for rice could be reduced by intensifying rice production. However, the use of fixed 

fields, and more intensive rice culture in the uplands will likely result in increased incidence 

and severity of pests and diseases. Erratic and low rainfall will also continue to threaten 

upland rice intensification. More resilient varieties will be needed to effectively manage the 

increased threats. As populations of the rice blast pathogen are highly variable, polygenic 
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resistance would be more useful for protecting varieties against blast and other diseases. 

Breeding methods that improve polygenic resistance against rice blast, and concurrently 

allow for the selection of enhanced drought tolerance, would be best for addressing the two 

most important problems limiting upland rice production in Liberia and most other parts of 

the world. 
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CHAPTER 2 

FARMER-PREFERRED TRAITS AND CRITERIA FOR SELECTING RICE 

VARIETIES IN THE GIBI DISTRICT OF LIBERIA 
 

2.1 Abstract 

Upland rice varieties grown by farmers in Liberia are largely low yielding, traditional varieties 

that have not been systematically bred for enhanced performance. The rate of adoption of 

new varieties by farmers in the country and several parts of the world has been low because 

many of the new varieties lack key traits required by farmers. Understanding farmers’ 

varietal preferences, priorities and trait preferences are crucial for the outcome of a 

successful breeding project, which is the widespread adoption of the new varieties by 

farmers. This study was undertaken to develop a clear understanding of the systems of rice 

production and rice utilization in Liberia, and hence to determine the most important 

selection criteria of farmers and their criteria for choosing rice varieties. Two hundred eighty 

farmers from four village clusters in the Gibi District of Liberia were selected and interviewed 

individually. Focus group discussions were also held. The results confirmed that the current 

array of rice varieties grown by farmers in the study area were old and that farmers still 

exclusively practiced shifting cultivation for producing rice. Factor analysis of 23 phenotypic 

traits revealed that farmers select varieties based on a combination of yield, grain quality, 

disease and pest resistance and post-harvest traits when deciding which rice varieties to 

grow. In addition to high grain yield, conjoint analysis of farmers’ preference ranking of nine 

model varieties revealed that early maturity, intermediate plant height, and cooking quality 

(a tender, non-sticky texture) were the main traits that influenced farmers’ preferences for 

a new variety. Numerous problems, ranging from the prevalence of birds and rodents to the 

paucity of farming implements and a perceived increasing frequency of poor early rains, 

and rice blast, were cited by farmers as the major problems limiting rice production in their 

communities. It is therefore concluded that any breeding effort aimed at developing more 

resilient rice varieties for the region should also involve selection for high yield, early 

maturity, intermediate plant height, and good grain cooking quality. 

 

Keywords: cooked grain texture, farmers’ perception, grain yield, participatory rural 

appraisal, rice   
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2.2 Introduction  

Farmers have played an active role in the domestication and subsequent improvement and 

maintenance of many crop species, leading to constantly evolving landraces (Scialabba et 

al., 2002). However, with the evolution of modern agriculture, advances in plant breeding 

have led to the development of better and more productive varieties, and in the process, 

often negated the role of small-scale producers in many plant breeding decisions (Atlin et 

al., 2001). As a result, the improved varieties developed by centralized breeding have 

seldom benefited resource-poor farmers, since the varieties are normally developed for 

optimum production environments with inputs such as fertilizers and water, or to meet the 

requirements of clients with access to resources (Ceccarelli and Stefania, 2005). Reasons 

for the non-adoption of new or otherwise improved varieties by subsistence farmers have 

been widely studied (Brush, 1991; Almekinders and Elings, 2001; Weltzien et al., 2005; 

Witcombe et al., 2006). Besides the lack of seeds, or information on a new variety, the major 

reason cited for farmers declining a new variety has been related to its inability to meet their 

needs (IRRI, 2006).  

In Liberia, rice is the primary staple food and is the major source of calories in the diets of 

the indigenous population. As the primary food crop, rice has been produced in Liberia 

largely by subsistence farmers, predominantly under dry land conditions, using traditional 

shifting cultivation and a “slash and burn” technology. The crop accounts for up to 80% of 

the land cultivated for staple food production (GOL, 2009; GOL, 2010) and is a major source 

of income for thousands of rural inhabitants in the country. However, the rice seed system 

in Liberia is largely informal (Mwah, 2012), forcing farmers to obtain seeds from unregulated 

sources. Local initiatives based on indigenous knowledge systems aimed at selecting, 

maintaining and preserving traditional varieties (Thomasson, 2001) virtually disappeared as 

a result of the civil war which ravaged Liberia for over 14 years. This debilitated the local 

rice production system further. 

As post-war national agricultural services to farmers resumed after 2005, crop improvement 

has become a key priority. Towards this end, interactions with rural communities have 

focused mainly on assessments of food security and vulnerability, and farmer mobilization 

for the transfer of improved agricultural technologies, including new varieties. During the 

early stages of disseminating some of the newly introduced varieties, no attempt was made 

to confirm the merits of these varieties for the targeted communities, often leading to failure 

of adoption by the farmers. In one region, Grand Gedeh County, for example, many farmers 

objected to growing the variety FKR-19 because they found that it headed too soon after 

transplanting and that the mature plants were not tall enough to facilitate harvest by the 
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traditional panicle reaping method. Subsequent attempts in 2011 to disseminate variety 

WITTA-4 in the same region had to be accompanied by an intensive marketing campaign, 

with varying responses from the locals. Some communities rejected the variety on the 

grounds that they already had better cultivars, whilst others accepted it but often with 

circumspection. These cases suggest that farmers value their own experience and 

priorities, and will not gamble with unknown varieties. There is a lack of solid research into 

documenting rice farmers’ experiences and needs, in part because of the prolonged 

absence of agricultural research and extension activities in the country.  

Investigations into farmers’ needs and priorities are needed to accurately assist the planning 

of crop improvement and other agricultural service-oriented programmes. Recognizing the 

short-comings of many of the past and current interventions, this study sought to involve 

farmers in crop improvement decisions, starting from the beginning, in the planning stage, 

thereby establishing a scientific basis for breeding new rice varieties. If they are bred 

specifically to meet the expressed needs of Liberian farmers, then these new varieties may 

be adopted by rice farmers. Hence, a consultative analysis of the current status of the local 

production system was undertaken to assess farmers’ perceptions of, and preferences for 

rice varieties and traits. Data on farmers’ perception of various aspects of the current 

farming system, along with their desired standards for new varieties are presented and 

discussed within the context of their implications for breeding, using basic participatory rural 

appraisal (PRA) tools, as described by Biggs (1989). 

 
2.3 Research Methodology 

The research mainly involved a survey to assess the knowledge, thoughts, opinions, and 

feelings of rice farmers about aspects of rice production in a farming district in Liberia. 

2.3.1 Description of the area and design of the study 
The survey was conducted in four clusters of villages in the Gibi District of Margibi County, 

Liberia (Figure 2.1) during the rice pre-planting season from January to February of 2012. 

The communities are ordinarily rural, but are accessible by motor roads for most of the year. 

The district was chosen because it has consistently been a rich source of locally produced 

(“country”) rice, but has received little attention for research and development of the crop. 

The population of the four village clusters varied from 2 000 – 2 800 households (LEGIS, 

2009). The region is part of the upper highland tropical forest zone, which comprises the 

major agricultural belt of Liberia (CAAS-Lib, 2007). The rainfall during the nearly six month 

long wet season is bimodal and ranges from 1 200 – 2 900 mm per annum. The soils are 

predominantly Latosols with loam to sandy clay loam textures (Reed, 1951), and are usually 
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acidic and low in minerals, as a result of the high leaching of essential nutrients that occurs 

under conditions of high rainfall and limited soil cover (Beinroth et al., 1996). Farmers in the 

study area mainly practice mixed cropping, with rice as the primary crop. 

 

Figure 2.1: Location of study area. * Villages grouped into four clusters (1 – 4) 

2.3.2 Survey and sampling procedures 
Both structured and semi-structured interviews were used to solicit farmers’ responses 

during the survey. A total of 280 households were randomly selected in the villages for the 

structured interviews (Table 2.1). Four groups, one for each village cluster, comprising of 

equal numbers of males and females, were set up for the group interviews. Each group, 

containing 12 or 10 members, was identified and selected with the aid of facilitators who 

also resided in the respective communities. The characteristics of each group were kept as 
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homogenous as possible in order to minimize biases and promote freedom of expression 

amongst the participants, as advised by Krueger and Casey (2000).  

Table 2.1: Number of farmers interviewed in PRA survey in Gibi District, Liberia 
Type of 
interview 

Cluster Name of Village / Town Male Female Total 

Individual  

1 Whorn, Joe Vahn 28 42 70 
2 Bawfeng, Isaac Town, Molim  33 37 70 
3 Payeta, Peterta,  35 35 70 
4 Bakuoima, Ginda, Togbapolu 31 39 70 

 Total  125 155 280 
 1 Whorn, Joe Vahn 6 6 12 
Group  2 Bawfeng, Isaac Town, Molim  5 5 10 

3 Payeta, Peterta,  5 5 10 
4 Bakuoima, Ginda, Togbapolu 5 5 10 

 Total  21 21 42 
 

For the structured interviews, information was gathered through a questionnaire 

administered to individual heads of households with the aid of trained facilitators. The 

questionnaire was pre-tested in a pilot survey involving 15 farmer staff of the Central 

Agricultural Research Institute of Liberia, and subsequently fine-tuned before the actual 

survey. The order and wording of the questionnaire items were carefully standardized and 

scheduled in order to minimize any context effect, to ensure reliability of both the aggregated 

responses and comparison between the respondents, as advised by Phellas et al. (2011). 

The semi-structured interviews and group discussions that were held in each village cluster 

were largely open-ended to allow the participants to freely convey their thoughts and ideas 

(Grandstaff and Grandstaff, 1985). Furthermore, participants of the group discussions were 

listened to carefully not only for content, but also for possible emotions, ironies, 

contradictions and tensions in order to both confirm the facts and the meaning behind the 

facts, as suggested by Grudens-Schuck et al. (2004).  

2.3.3 Data structure and analyses 
Data on demographic aspects of rice production and utilization, including farm size, 

cropping pattern, sources of seeds, and other information were recorded from the structured 

interviews, using the Likert scale (Likert, 1932) and dichotomous questions. These two 

types of questions were also used to determine farmers’ perception of the current 

production system and varieties. Farmers’ assessments of their most important production 

problems were measured by pair-wise ranking.   

A set of potential selection criteria for 23 trait characteristics were proposed by leading 

farmers who were consulted. These criteria were scored on a scale of 0 – 5 (0 meaning not 
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important and 5 meaning highly important). The scores obtained were then subjected to 

factor analysis using the principal components method to determine the most important rice 

varietal traits that influenced farmers’ decisions to grow a variety.  

The influence of grain yield and quality, in addition to plant height and growth duration, and 

their attributes, on farmers’ preferences for future rice varieties were also determined using 

conjoint analysis procedures. Thirteen model varieties (9 and 4 as experimental and holdout 

cases, respectively) were constructed for the experiment using the SPSS (IBM Statistics) 

orthogonal design facility, with above average and average as levels of grain yield, and 

tender, flaky and soft-sticky as categories of grain quality. Categories of plant height were 

tall, intermediate and short (dwarf), whilst periods of growth were early (90 – 110 days), mid 

(120 – 140 days) and late (above 150 days). All the model varieties were scored on a 0 – 

10 scale (0 meaning undesirable, and 10 highly desirable) by individual participants of the 

group discussion and ranked later by all the members of the group.  

The scoring system utilized throughout the study was the full scoring approach described 

by Maxwell and Bart (1995), and all rankings were accomplished by pair-wise comparisons. 

The scoring system required participants to give each item to be scored any value within 

the prescribed ranges, so that the respondents were free to allocate the same score to 

different items, as they deemed fit. With the pair-wise comparisons, matrices were used to 

match the alternatives provided two at a time, as described by Russell (1997). The 

alternatives were subsequently ranked by the number of times they appeared in a matrix. 

Where there was a tie, the alternative allocated the higher rank was that which won when 

both alternatives were compared. 

All numerical data from the interviews were analysed using SPSS version 19 (IBM 

Statistics). Data on the demographic aspects of rice production and utilization, as well as 

those on farmers’ perception of the current production system, varieties and problems were 

subjected to analysis of variance to determine the average responses of the farmers.  

Scores of both the experimental and holdout cases for the model varieties were analysed 

to determine the relative importance of each trait and utility of their attributes, using the 

conjoint analysis syntax, specifying grain quality as a discreet factor and grain yield, plant 

height and growth duration as linear factors. Group ranks and the ranked frequency scores 

of the individuals for the experimental cases were compared using the Chi–square test for 

goodness of fit to determine how well group consensus compared with individual choices. 

Patterns and themes arising from the group discussions were also summarized and 

analysed by logic to determine communal consensus on the various questions and key 

issues. 



45 
 

2.4 Results 

2.4.1 General aspects of rice production and utilization in Gibi District 
Data on cultivation practices, land holdings and use, and utilization of rice in the study area 

are presented in Table 2.2. The data show that lands for rice production in Gibi District are 

mainly owned communally. Only 6.1% of the respondents indicated personal ownership of 

the land used to grow their rice. Farmers’ estimates of their annual plot sizes ranged from 

0.3 to 1.8 ha. All the respondents indicated that they had not planted rice in or around the 

same plot in the last three years, and that they regularly grew other crops in addition to rice. 

Twelve percent (12%) of the farmers declared that they grew other crops instead of rice 

sometimes, but not always. The farmers ranked rice as the most important crop, followed 

by cassava (Manihot esculenta Crantz.), and vegetables. Maize (Zea mays L.) and sweet 

potato (Ipomoea batatas L.) were jointly ranked in fourth place, followed by taro (cocoyam) 

(Colocasia esculenta L. Schott) and yam (Dioscorea spp.) and other crops. From the 

individual and group interviews, farmers indicated that they grew either upland rice alone, 

or both upland and lowland rice depending on the availability of suitable land (Table 2.2). 

The utilization pattern of rice produced varied significantly with farmer. Most farmers 

indicated that they grew rice mainly to feed their households. However, 72% of the farmers 

indicated that they had sold rice in the past year, and the quantity sold was up to 25% of 

their production. 

In the group interviews, some farmers said that they only sold the surplus from their rice 

production, whilst others sometimes had to sell some of their production when they found 

no other means of accessing cash to meet unavoidable expenses. 

2.4.2 Farmers’ perception of rice production system and cropping pattern 
In the group discussions, farmers agreed that lowland rice could produce a high yield, when 

properly sown and managed. However, they recorded their preference for upland rice 

production because of its lower requirements for inputs such as labour for sowing, weeding 

and fertilizing. On the system of land use, farmers indicated that each year they had to find 

a new piece of land to grow upland rice, but that the length of the fallow period had become 

shorter and shorter. Their solution to the shortage of fallow land for farming in their 

communities was to migrate to a new community or to travel further away from the village 

to find suitable communal lands that were unclaimed. Panellists in the focus group 

discussions expressed a fear that land use was changing fast, and their communal crop 

lands were increasingly being planted to perennial crops, particularly rubber (Hevea 
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brasiliensis Mull. Arg.), thereby leading to increased competition for an increasingly limited 

area of farm land for annual crops. 

 

Table 2.2: Rice production practices and utilization in Gibi District, Liberia 

Production practices Descriptions Village cluster and response (%)  Mean 
1 2 3 4    (%) 

Land tenure 
Personal 2.9 11.4 4.3 5.7  6.1 
Communal 92.9 87.1 94.3 94.3  92.2 
Rental 4.3 1.4 1.4 0.0  1.8 

Shifting cultivation Yes 100.0 100.0 100.0 100.0  100.0 
No 0.0 0.0 0.0 0.0  0.0 

Estimated plot size 
< 0.5 ha 5.7 8.6 1.4 2.9  4.7 
0.6 – 1.0 ha 94.3 85.7 98.6 97.1  93.9 
>  1.0 ha 1 5.7 0.0 0.0  1.7 

 
Number of rice crops 
last year 

1 77.1 85.7 67.1 90.0  80.0 
2 22.9 12.9 32.9 7.1  19.0 
3 0.0 1.4 0.0 2.9  1.1 
> 3 0.0 0.0 0.0 0.0  0.0 

Type of rice crop 
produced last year 

Upland  82.6 86.7 86.1 87.5  85.7 
Lowland  2.9 1.4 1.4 1.4  1.8 
Up- / lowland  14.5 11.9 12.5 11.1  12.5 

        
Usual number of 
varieties grown / field 

1  2.9 10.0 10.0 5.7  7.2 
> 1 97.1 90.0 90.0 94.3  92.8 

        
Sold rice? Yes 70.5 64.7 77.6 75.2  72.0 

No 29.5 35.3 22.4 24.8  28.0 
        
Amount of rice sold? 75 – 100% 0.0 0.0 0.0 0.0  0.0 

50 –   74% 0.0 0.0 0.0 0.0  0.0 
25 –   49% 0.0 0.0 0.0 0.0  0.0 
  1 –   24% 100.0 100.0 100.0 100.0  100.0 

        
Purchased rice? Y 100.0 100.0 100.0 100.0  100.0 

N 0.0 0.0 0.0 0.0  0.0 
 
Goal of production 

Self-use 90.0 87.1 100.0 90.0  91.8 
Sale only 0.0 0.0 0.0 0.0  0.0 
Self-use & 
sale 10.0 12.9 0.0 10.0 

 8.2 

 
Estimated rice 
purchase 

1 – 25 % 55.7 90.0 75.7 77.1  74.6 
26 – 50 % 35.7 5.7 21.4 18.6  20.4 
51- 75% 8.6 5.7 0.0 1.4  3.9 
76 – 100% 0.0 0.0 1.4 2.9  1.1 

 See Table 2.1 for description of village clusters 

 

For the pattern of rice cropping, the interviews revealed that farmers grew only one rice crop 

on any given piece of land per season; or more than one crop, but each on different pieces 
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of land. Only 20% of the farmers indicated that they had produced more than one rice crop 

during the past season (Table 2.2). 

2.4.3 Varieties and sources of rice seed grown in Gibi District 
In both the structured and semi-structured interviews, farmers indicated that they mainly 

grew traditional varieties of upland rice, which they referred to as “country rice”. All the 

farmers indicated they had not grown any new variety provided by government employees 

since 1997. Farmers who maintained their own varieties indicated that they kept up to 7 

upland rice varieties in their personal collections (Table 2.3). A common theme documented 

across the four discussion groups was that certain varieties were unique to collections kept 

by specific farmers. Farmers listed the most common varieties in the district as LAC 23, 

Mahn, Jia, and Sodiadu. 

The farmers affirmed that the seeds they cultivated were sourced from their personal 

collections, from other farmers, or bought from unofficial sources. Seventy-nine (79%) of 

the respondents planted seeds from their own stock, 5% had received seeds from other 

farmers, and the rest bought the seeds that they had planted (Table 2.3). From the focus 

group discussions, farmers disclosed that they normally acquired new varieties from their 

neighbours, but under a customary contract that made the donor the joint owner of the first 

crop produced from the seed. From the group discussions, farmers also revealed that they 

had lost several of their varieties during the civil war, but that they had recovered most of 

them, often from distant communities. Most farmers indicated that they grew more than one 

variety in a single field during the past year (Table 2.3). They also indicated that they 

regularly dedicated a small portion of their fields to testing new varieties, and to multiplying 

seeds acquired from other farmers. 

 

Table 2.3: Types and number of rice varieties and sources of seeds grown by farmers in 

Gibi District, Liberia 

Varieties  Descriptions  Village cluster and response (%) Mean 
 1 2 3 4  

Type of variety 
grown since 1997  

New only  0.0 0.0 0.0 0.0 0.0 
Traditional only  100.0 100.0 100.0 100.0 100.0 
New & traditional  0.0 0.0 0.0 0.0 0.0 

Number of varieties 
kept by farmer* 

_  5.5 6.0 10.3 7.1 7.2 

Major seed source 
for last season  

Own  92.9 74.3 61.4 88.6 79.3 
Neighbour  1.4 12.9 4.3 1.4 5.0 
Market  5.7 12.9 35.7 10 16.1 

See Table 2.1 for description of village clusters. * Values for the number of varieties kept 
by farmers are counts, not percentages. 
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2.4.4 Farmers’ perception of current rice varieties 
The respondents indicated that most of the varieties they grew had been grown for as long 

as they could remember. From the focus group discussions, it was learned that farmers 

have only heard of the availability of new varieties from the one agricultural research station, 

but were never given the opportunity to test them. They overwhelmingly indicated their 

willingness to grow new varieties, provided they had the opportunity to independently 

evaluate their performances. The respondents strongly agreed that their current collections 

of varieties were quite old, and that although they treasured them, they remained open to 

increasing their collections by adopting new varieties that met their criteria. 

2.4.5 Farmers’ criteria for discriminating between rice varieties 
Farmers indicated that they mainly relied on easily distinguishable morphological traits such 

as paddy colour, paddy or caryopsis shape (grain length and grain length-width ratio), 

caryopsis colour, and awn length and colour to differentiate between their varieties. They 

also relied on peculiar agronomic or quality traits such as growth duration, growth habit, 

yield potential, pest resistance, or grain quality.  

Factor analysis of up to 23 traits showed that farmers usually considered a combination of 

morphological, agronomic, and grain quality traits when selecting their varieties. The major 

morphological, agronomic and grain quality traits used by farmers to select varieties were 

plant height, grain yield and growth duration, and cooked grain texture, respectively (Table 

2.4). Panicle mass, followed by the number of productive panicles, number of grains per 

panicle and seed set rate were highly correlated with Factor 1. These traits are basically 

components of grain yield; hence, Factor 1 was largely a measure of the components of 

grain yield, which on average were 79% correlated with the factor. Factors 2, 3 and 4, 

respectively, explained grain quality, pest and disease resistance, and post-harvest traits. 

Cooked grain texture, followed by grain taste, received the highest scores for grain quality 

traits used by farmers to select varieties. Host plant resistance traits given high scores by 

farmers were disease resistance and weed competitiveness, followed by lodging resistance. 

Milling recovery, followed by ease of milling and threshability were the key post-harvest 

traits given high scores by the farmers. 
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Table 2.4: Factor loadings of various traits used by farmers as selection criteria for new rice 

varieties. Values in bold face are highly correlated with the given factor.  

Rice traits  Factor 1 
Grain yield / 
Agronomic 

Factor 2 
Grain 

Quality 

Factor 3 
Stress 

resistance 

Factor 4 
Post-

harvest 
Grain taste -0.008 0.487 -0.174 0.137 
Grain colour  0.088 0.116 -0.164 0.068 
Grain size 0.503 0.437 0.585 0.101 
Cooked grain texture 0.064 0.844 0.131 0.016 
Ease of cooking 0.183 0.182 0.090 0.111 
Milled grain appearance 0.092 0.149 -0.004 0.542 
Milling recovery -0.155 -0.014 -0.209 0.836 
Panicle weight 0.803 0.086 -0.098 -0.498 
Number of grains / panicle 0.652 0.042 0.251 0.343 
Seed set rate 0.648 0.291 -0.072 -0.163 
Number productive of panicles 0.757 0.283 0.126 0.070 
Number of tillers 0.588 0.349 0.066 -0.007 
Yield stability 0.419 0.029 0.089 0.000 
Plant height 0.428 -0.014 0.583 0.190 
Lodging resistance 0.065 0.290 0.320 -0.075 
Disease resistance 0.124 0.083 0.860 0.293 
Insect resistance 0.098 0.011 0.203 -0.063 
Drought resistance 0.081 0.007 0.462 0.126 
Earliness 0.406 0.124 -0.067 0.273 
Threshability  0.292 -0.039 -0.491 0.551 
Ease of milling 0.114 -0.105 0.012 0.686 
Weed competitiveness  0.205 0.120 0.626 0.024 
Grain shattering 0.239 0.117 -0.480 -0.057 

 

2.4.6 Farmers’ preferences and priorities for varietal traits 
Conjoint analysis to determine farmers’ choices based on hypothetical models showed that 

the ideal variety preferred by farmers would be one with a high grain yield, tender grain 

texture after cooking, early maturity and intermediate plant height. In the event that such a 

variety was not available, farmers’ preferences and choices would follow the pattern 

displayed in Table 2.5. 
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Table 2.5: Farmers’ ranking of nine model varieties created to reflect a mixture of traits 

Variety 
Traits and attributes Village cluster  

Grain yield Grain quality Plant height Growth duration 1 2 3 4 Mean Rank 
1 above average soft sticky short mid 6 5 6 6  6 
          
2 above average tender tall  late  4 4 4 5 4 
          
3 average  flaky short  late   9 9 9 9 9 
               
4 average  soft-sticky tall  early  1 2 2 2 2 
               
5 average  tender intermediate  mid  5 6 5 4 5 
               
6 above average soft-sticky intermediate  late  7 7 7 7 7 
               
7 above average tender  short  early  2 1 1 1 1 
               
8 above average flaky  tall  mid   8 8 8 8 8 
               
9 above average  flaky  intermediate  early 3 3 3 3 3 
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Accordingly, the lowest preference was for short-statured, late maturing varieties, with an 

average yield and flaky grains. The relative importance and path worth (utility scores) of the 

four cardinal traits and their respective attributes to farmers in the study area are presented 

in Table 2.6. Grain texture received the highest score for relative importance, followed by 

grain yield. Flaky and soft-sticky grains, and late maturity received negative utility scores, 

whilst the rest of the traits gained positive estimates. The Chi–square test of goodness of fit 

indicated that individual choice of model varieties could be reliably estimated (p < 0.01) by 

group consensus. 

Table 2.6: Relative importance and utility of traits and their descriptions that farmers use to 

choose new varieties 

Trait  Description  Utility estimate  Standard error Relative 
importance 

Grain yield above average 1.2 0.21  
average 2.1 0.21 32.6 

Grain texture 
tender 5.3 0.19  
flaky           -3.2 0.19  
soft & sticky -1.1 0.19 27.4 

Plant height 
tall 1.3 0.48  
intermediate 4.2 0.25  
short 0.9 0.48 8.9 

Maturity 
early  3.8 0.47  
mid 2.8 1.11  
late            -1.5 1.11 15.2 

Constant           13.3 1.42  
 

2.4.7 Farmers’ perception of production problems 
Farmers indicated the prevalence of several problems affecting rice production in their 

district. The problems posed by the various factors are presented in Table 2.7. Birds, 

rodents and poor farm implements were considered to be the most serious problems for the 

farmers across the four village clusters. Rice blast was identified as the most important 

disease problem they encountered, and ranked as the 8th most important problem that 

limited production of their rice crops. Poor rains during the early part of their cropping 

season was ranked as the 4th most important production problem. 
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Table 2.7: Relative importance of constraints to rice production in Gibi District, Liberia. 

Scores are the means of the number of times each constraint appeared in the pair-wise 

comparison matrix. 

Production constraints Village Cluster Mean Rank 
1 2 3 4   

Birds 27.5 30.2 23.6 14.7 24.0 1 
Rodents 19.2 15.4 17.5 17.3 17.4 2 
Poor farm implements 10.5 17.6 14.3 21.7 16.0 3 
Poor early rains 17.9 13.3 11.1 18.2 15.1 4 
Weeds 11.6 16.7 15.7 9.5 13.4 5 
Low soil fertility 9.2 13.9 11.5 15 12.4 6 
Shortage of high bush 11.7 8.2 13.2 12.3 11.4 7 
Rice blast 10.6 7.4 13.3 8.5 10.0 8 
Termites 13.2 8.7 10.5 7.7 10.0 8 
Excessive rains 4.1 7.8 8.3 1.1 5.3 9 
Brown spot 4.8 3.3 2.7 8.2 4.8 10 
Stem borers 6.2 4.3 3.3 4.5 4.6 11 
Leaf feeders 0.1 1.1 2.7 4.8 2.2 12 
Lack of seeds 0.1 2.7 1.1 4.7 2.2 12 
Lack of suitable cultivars 2.7 1.1 1.3 1.1 1.6 13 
Sheath rot  1.1 1.6 0.1 2.6 1.4 14 
Smut  2.6 1.1 0.0 1.1 1.2 15 
Uncontrolled livestock 0.2 0 2.7 0 0.7 16 

 See Table 2.1 for descriptions of village clusters 

 

2.5 Discussion 

2.5.1 Demographic aspects of rice production and utilization 
Both individual and group interviews revealed that farmers largely grew traditional varieties, 

and often, more than one variety in the same field, sometimes according to land contour 

and soil characteristics. This shows that farmers still regard diversity as their major 

safeguard against crop failure and food vulnerability, and would like to increase their pool 

of germplasm. Indeed, the farmers’ collections of varieties were old, partly due to the low 

rate of cultivar adoption amongst them, and because they are resource poor and farm only 

on small fields. Up until the eruption of civil war in 1990, the pool of improved cultivars was 

mainly dominated by LAC-23 (both red and white), which had only a marginal yield 

advantage over traditional varieties (IFAD, 1989). In effect, diffusion of improved cultivars 

into the upland production system of Liberia has been poor and no other bred cultivar, apart 

from LAC 23, can be identified as being in circulation, despite the long history of rice 

research in the country. The need for genuinely superior upland rice varieties remains high 

in Liberia. 
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Rice production and utilization are mainly influenced by the socio-economic conditions of 

farm households, and the consumption behaviour of urban dwellers. Respondents to the 

interviews clearly indicated that they produced rice mainly for their own consumption (Table 

2.2), a pattern of rice harvest utilization that has not changed over the years. However, one 

startling revelation from this study is that none of the respondents were able to produce 

sufficient rice to feed their own household, let alone produce a surplus to sell. Accordingly, 

they only sold portions of their limited harvest in desperate situations, and resorted to other 

crops like cassava to supplement their calorie intakes. Similar responses were obtained in 

a food security and vulnerability study held earlier in other parts of the country (CAAS-Lib, 

2007). This confirms the need to increase the productivity of rice farmers in Liberia. 

 

2.5.2 Farmers’ perception of rice production and varieties 
In the late 1970’s a number of high yielding rice varieties, mainly from the International Rice 

Research Institute (IRRI), were introduced to Liberia through the efforts of AfricaRice (then 

WARDA) in collaboration with the country’s Ministry of Agriculture (MOA). Several were 

released as cultivars. However, none but LAC 23 and Suakoko 8 remain in cultivation today. 

Those varieties are only available in pure form at the nation’s one agricultural research 

station. Some respondents noted that where novel varieties were locally adopted by 

farmers, they had evolved to appear different in characteristics to what they were like when 

first released. This could be due to further development of those materials owing to the 

mass selection commonly practiced by farmers in the informal seed sector, as characterized 

by seed saving for cultivation purposes during the succeeding season. The limited adoption 

or rapid degeneration of new varieties further show the weakness of the national research 

programme, as it seemed to have neglected the establishment of a strong outreach 

programme for the dissemination of new varieties. The establishment of a national 

programme dedicated to the promotion, development and maintenance of new varieties will 

therefore be important for boosting rice production in Liberia.  

Group discussions on farmers’ perceptions of the rice production system revealed that the 

rice production system is still dominated by dryland cultivation (Table 2.2). Essentially, rice 

is produced in Liberia on both dry and wet lands, with the former alone accounting for at 

least 85% of the area amongst rice producing households in the Gibi District of Liberia. 

Similar estimates have been reported for other parts of the country (GOL, 2006). Farmers 

have traditionally preferred upland production over lowland production in paddies, despite 

its lower yield potential (Hughes et al., 1989), mainly because the cultivation of upland rice 

is less demanding in terms of labour for planting and weeding (Parthasarathi et al., 2012), 
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and it is more amenable to intercropping with other crops that ensure additional income and 

which contribute to food security (Gupta and O'Toole, 1986; Prajitno, 2007). It is also not 

surprising that the farming system, dominated by shifting cultivation, has remained basically 

unchanged over the years.  

Farmers confirmed that the availability of land, mainly communally owned, for farming is 

shrinking rapidly. The issue of sustainability becomes more worrying because it is difficult 

to change farmers’ practices. However, with a growing population, available communal land 

is diminishing. Solving the issue of land tenure is an even bigger challenge. Intensive 

research, especially in collaboration with farmers, will be needed to improve and sustain 

rice production in Liberia. With shorter fallow periods and an increasing shift towards fixed 

farming, pest and disease problems will increase, further challenging farmers to seek more 

resilient varieties. Constant crop improvement and cultivar development will therefore be 

needed to address such problems and needs. 

 

2.5.3 Analysis of farmers’ selection criteria 
Factor analysis of farmers’ selection criteria showed that a farmer’s decision to grow a new 

variety may be based on a combination of grain yield, agronomic, grain quality, pest 

resistance and post-harvest traits. The high correlations between yield components and 

Factor 1, grain quality traits and Factor 2, pest and disease resistance and Factor 3, and 

post-harvest traits and Factor 4 are a good indication of how well farmers understood rice 

varietal traits and their contribution to the selection of varieties. Farmers understood that as 

panicle mass increases, so does the number of productive panicles, and to a lesser extent, 

the number of grains per panicle and the rate of seed set.  

The texture and taste of cooked grains, and host plant resistance and post-harvest 

characteristics, were important to farmers when deciding which varieties to plant. This 

analysis emphasizes the fact that farmers are extremely knowledgeable about the crop they 

grow, and their input on decisions to develop new varieties could prove valuable to the 

eventual success of any breeding programme.   

2.5.4 Farmer-preferred varieties 
A conjoint analysis of the farmers’ preferences was undertaken to create model varieties 

that could be used to predict and determine farmers’ preferred varieties for the future. It was 

established that the varieties farmers would like to grow should present a combination of 

high yield, tender cooked grain texture, early maturity and intermediate plant height.  

Grain quality, particularly eating quality, remains important when evaluating varieties. This 

partly explains why farmers have stuck to growing traditional upland rice than lowland rice, 
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in spite of the higher yield potential of the latter. Earlier studies on the adoption of lowland 

rice varieties in Liberia, for example, found that farmers preferred a variety (Suakoko 8) 

because the taste and eating quality of its grains were perceived as similar to their best 

upland varieties (ECC, 1987). 

In addition to grain yield and quality, plant height and grain yield were key components of 

farmers’ preference criteria for choosing any new variety. Intermediate height and early 

maturity were regarded by farmers as essential attributes of the respective traits. The 

importance of these traits were not unique to farmers in the study area. Using a hedonic 

price model to evaluate rice trait preferences of West African rice producers, Dalton (2004) 

found that non-yield production characteristics including plant height, growth duration, grain 

colour, plate size and tenderness of cooked grains, were more important to farmers than 

yield.  

Panicle reaping is the method traditionally used by farmers to harvest their rice crops. 

Farmers complained that it is painful stooping low to harvest dwarf cultivars. Plants of 

intermediate height (110 – 130 cm) were thus preferred. Farmers were clear that they 

preferred to work with tall plants compared to dwarf ones. According to them, to harvest 

very tall plants, they simply break the straw by trampling the stems, thus lowering the 

panicles to a position that they can conveniently reach for reaping. The dwarf plant types, 

however, provide the significant advantage of lodging resistance, compared to tall plants. 

Farmers could be supported to adopt an improved harvesting technique, specifically the 

faster and more efficient sickle reaping method, which would allow for selection of shorter 

varieties, resistant to lodging. 

2.5.5 Farmers’ assessment of rice production problems 
Low yield and production of rice in Liberia are the direct result of various problems acting 

singly or with each other. The most important yield limiting factors in the study communities 

were birds, rodents, poor farm implements and poor rains early in the production season. 

The problem of birds could be overcome by synchronizing cultivation and expanding 

aggregate production across regions so that the impact of the problem becomes less 

pronounced for any one farmer. Farmers largely attributed the problems of rodents and 

weeds to the use of low vegetation areas, which usually border the main habitat of the 

groundhog (Thryonomys swinderianus), for rice production. These problems cannot, 

however, justify the continual depletion of the high forest reserves for shifting cultivation of 

rice.  
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The issue of poor farming implements has been one of the prominent features of slash-and-

burn methods employed in shifting cultivation. More farmer education and empowerment 

will be required to move them away from subsistence to commercial, albeit small-scale, 

farming. This could potentially stimulate national or private investment in equipment and 

machinery for land preparation, cultivation and other production activities. But this will 

require the establishment of private tenure for rice farmers. 

 

2.6 Conclusion 

Studying farmers’ perceptions and preferences is an integral part of any process aimed at 

finding sustainable solutions to important food security problems in any region. This study 

relied on various rural participatory appraisal methods to identify the essential traits of rice 

varieties that influence farmers’ decisions to adopt new rice varieties in Liberia. It was found 

that besides high grain yield, farmers highly valued grain quality traits, especially, the texture 

of cooked grains. Plant height, and earliness of varieties were two other traits that farmers 

regarded as important to their decisions for selecting varieties to plant. As the need to 

develop more resilient varieties is clear, it is important that breeding efforts aimed at 

accomplishing that goal also incorporate the traits of grain quality, plant height and crop 

duration, as desired by farmers in the target regions. This will increase the level and speed 

of adoption of any future variety. Information on the demographic aspects of rice production 

and utilization, as well as perceived problems in the study area, should also be useful to 

plant breeders and other providers of agricultural services to Liberia. 
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CHAPTER 3 

BLAST RESISTANCE OF SELECTED UPLAND RICE GENOTYPES FROM 
LIBERIA 

 

3.1 Abstract 

Eliminating the confounding influence of vertical resistance and creating reliable screening 

environments are two essential prerequisites in breeding for horizontal resistance against 

rice blast. Two greenhouse trials and a field study were conducted to evaluate up to 38 

upland rice genotypes for breeding to enhance quantitative resistance against rice blast 

disease caused by Pyricularia oryzae, and to identify suitable growth conditions for 

discriminating between rice genotypes for quantitative resistance against blast. The first 

greenhouse study revealed that the reactions of the 38 rice genotypes to three distinct races 

of P. oryzae were characterized by the occurrence of both race-specific and race-non-

specific resistance patterns, even though the susceptible genotypes were not killed by the 

disease. Up to 34% of the genotypes exhibited complete resistance to all three pathotypes 

tested, whereas 26% were susceptible to all three pathotypes. Variation for two quantitative 

resistance traits (the number of sporulating lesions per plant and the number of leaves with 

sporulating lesions per plant) was mainly due to genotypic differences, as determined by 

AMMI analysis. Twenty-two genotypes produced susceptible reaction types against SIK-

111, the most virulent of the three pathotypes. These were further evaluated for levels of 

quantitative resistance using spreader plants under greenhouse and field conditions. Up to 

10 of the 22 genotypes (LR-2, 6, 8, 10, 11, 14, 24-2, 25 and 26) were scored for smaller 

numbers or sizes of lesions with sporulating centres and / or disease severity and AUDPC 

scores, suggesting that they possessed higher levels of horizontal resistance. Plants 

subjected to intermittent drought stress developed larger and more lesions with sporulating 

centres than those grown under well–watered conditions, both in the greenhouse and in the 

field. Field testing did not seem suitable for evaluating quantitative resistance against rice 

blast in South Africa as values recorded for components of the trait were lower than 

captured in the greenhouse. In order to advance breeding for quantitative blast resistance 

using the current set of genotypes, it would therefore be important to recombine genotypes 

showing lower values of lesion number (LN), lesion size (LS), and / or AUDPC, and to 

evaluate their progeny against SIK-111 under controlled environmental conditions and 

managed drought stress, or field conditions more conducive to rice blast. 

Keywords: AUDPC, Pyricularia oryzae, race-non-specific, resistance breeding, rice  
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3.2 Introduction 

Rice blast, caused by Pyricularia oryzae Cavara, is a serious constraint to rice (Oryza sativa 

L.) production in Liberia and other rice growing countries. Annually, the disease destroys 

enough rice to feed about 60 million people (Zeigler et al., 1994) and causes yield losses of 

up to 77% in Liberia. As such, breeding for blast resistance is a major objective of most rice 

breeding programmes because the use of resistant varieties would be the safest and 

cheapest way of controlling the disease. However, populations of P. oryzae are usually 

highly variable genetically (Ou, 1985). The result is that rice cultivars containing single major 

(R) genes conferring resistance against many races of the pathogen frequently become 

susceptible as one or more virulent races become prominent (Kiyosawa, 1982; Bonman et 

al., 1992; Han et al., 1995). This phenomenon has been a major impediment to genetically 

controlling the disease, especially in such blast-prone agro-ecologies that exist in the target 

environments (TeBeest et al., 2007; Khush and Jena, 2009). Since it is impossible to limit 

pathogen variability, horizontal resistance could be exploited, instead of race-specific or 

vertical resistance, to control rice blast.  

Horizontal resistance, also known as partial resistance, is usually conferred by polygenes 

whose actions are additive in nature (Vanderplank, 1984; Stoskopf et al., 1993). Knowledge 

of population genetics has revealed that the combined action of the polygenes tends to 

protect plants against multiple races of a pathogen (Khush, 1977; Parlevliet, 1985; Agrios, 

1997). Despite these merits, breeding horizontal resistance has been seen as an 

unattractive breeding goal because of the difficulty involved in assessing the often 

numerous components associated with the trait, and the difficulties in conducting recurrent 

selection in rice. As with other quantitative traits, the performance of a cultivar for horizontal 

resistance against a disease is usually only a partial reflection of its genetic value due to 

environmental influences (Semagn et al., 2010). Choosing non-adapted donors for the 

improvement of such a trait could potentially delay progress as additional trials would be 

required to first establish their adaptability. Hence, improving rice for horizontal resistance 

within a specific target environment would require the use of parents which should be 

adapted, as much as possible, to the agro-ecological conditions of that environment. 

Conditions that favour epidemics of the disease would also be required to establish the true 

resistance potential of a variety. Furthermore, research shows that detection of and 

breeding for horizontal resistance is often difficult in the presence of vertical resistance, 

which may mask the expression of horizontal resistance genes (Landeo and Turkensteen, 

1989; Robinson, 2004). Excluding or inactivating the vertical resistance genes is important 

to guarantee measurable progress in breeding programmes aimed at increasing levels of 

horizontal resistance to blast (Robinson, 2006), for example, by using a single pathotype 
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approach to eliminate the expression of vertical resistance genes in the parents and their 

progeny. 

In order to identify potential rice genotypes, with adaptation to the target environment, for 

future hybridization, a collection of upland rice genotypes from Liberia were characterized 

for both qualitative and quantitative blast resistance. In the process, different pathotypes of 

P. oryzae were also evaluated for their capacity to produce susceptible lesions on the 

genotypes. The value of the various genotypes, as well as different growth environments, 

for improving horizontal resistance of rice are analysed and discussed.  

 
3.3 Materials and methods 

Two controlled environment (CE) experiments and a field study were conducted to 

characterize blast resistance of upland rice from Liberia. The first CE study investigated 

race specificity of three rice blast pathotypes against all the varieties; the second CE 

experiment and field study were subsequently carried out to confirm the interaction of the 

most aggressive pathotype with only the genotypes on which it caused susceptible infection 

types in the previous study.  

3.3.1 Plant materials 
A total of 40 rice genotypes, including 38 traditional varieties and an improved cultivar from 

Liberia, and a Japonica variety from IRRI, were used in the studies. The traditional varieties 

were collected from 5 regions (Gibi [6.6, -10.0], Fuamah [6.78, -10.39], Suakoko [6.99, -

9.58], Belle Fassama [7.52, -9.99] and Kilibay [6.97, -9.98]), sorted by glume characteristics 

and grain colour, and kept true-to-type through selection at the Central Agricultural 

Research Institute (CARI) of Liberia. The improved cultivar (LAC 23) and a Japonica variety, 

Lijiangxintuanheigu (LTH), were used as resistant and susceptible checks, respectively in 

all the trials. LAC 23, a selection from traditional upland rice varieties in Liberia, is the oldest 

and best improved cultivar grown in the country. Lijiangxintuanheigu is a universally 

susceptible genotype that is often used as a susceptible check in rice blast differential 

varieties. 

3.3.2 Sources of infection 
Pathotypes used for challenging the test plants were mainly sourced from AfricaRice in 

Cotonou, Benin. Based on preliminary observations (data not presented), three of the 

pathotypes (SIK111, EDOZ and GH-8) were selected for their sporulating capacity and 

virulence to LTH and were utilized for the experiments. 
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3.3.3 Description of study sites 
The CE and field studies were conducted at the research facilities of University of KwaZulu-

Natal in Pietermaritzburg, South Africa. The first CE study was carried out in a glasshouse 

(30 / 250C; 80% RH) and the second conducted in a greenhouse tunnel, with day and night 

time temperature varying between 30 to 200C and 65-95% RH. Humidity and leaf wetness 

in the glasshouse were increased by covering plants with thin sheets of transparent plastics 

overnight and by misting with fine sprays of sterile water three times daily for up to 7 days 

after inoculation.  

Field trials were conducted at the university’s Ukulinga Research Farm (29° 40’ S, 30° 24’ 

E; 806 meters above sea level [m.a.s.l.]). Based on annual means of long term climatic 

data, Ukulinga has a mean annual temperature and rainfall of 18°C and 738 mm, 

respectively. Climatic data for the duration of the field experiment are presented in Table 

3.1.  

Table 3.1: Monthly climatic data during the field trial (November 2012 – May 2013) at 

Ukulinga Research Farm. Data source: Agricultural Research Council – Institute for Soil, 

Climate and Water (ARC–ISCW), South Africa. 

 
Month 

Minimum 
temperature 

(0C) 

Maximum 
temperature (0C) 

Solar radiation 
(MJ m-2) 

Reference 
Evapotranspiration 

(mm) 
November 9.62 32.90 15.92  91.17 
December 14.12 31.50 20.71 124.90 
January 14.75 38.40 18.28 113.60 
February 13.90 33.80 18.84 105.00 
March 12.96 32.00 15.43   93.98 
April 9.28 35.10 14.12   86.96 
Mean 12.44 33.95 17.22 615.61* 

* Values for reference evapotranspiration are totals, not averages. 

3.3.4 Experimental design and treatments 
All studies were laid out in a randomized complete blocks design with three replications. 

Treatments for the first CE experiment consisted of 40 genotypes (38 traditional and two 

check varieties), and three P. oryzae pathotypes, replicated at different time periods. Plants 

were established by direct seeding of pre-germinated seeds in 30 X 30 cm seedling trays, 

with 15 plants per genotype X pathotype X replication.  

The second CE and field studies comprised a factorial arrangement of 24 genotypes (LR 2, 

6, 8, 9, 11, 14, 19, 21, 24-1, 24-2, 25, 26, 27, 29, 32, 36, 38, LAC 23 and LTH) and two 

water regimes (well–watered and intermittent drought stress). Test plants were grown in 4.8 

L pots at 2 hills per pot. Soils in well–watered pots were kept continuously moist throughout 

the experiment, or subjected to intermittent drought stress, commencing at 14 days after 



64 
 

emergence (DAE), by withholding water and only irrigated when plants showed symptoms 

of leaf rolling. 

Treatments for the field experiment were the same as for the second CE study. Fifteen 

plants of each genotype per water regime per replication were grown in single row plots. 

Spaces within and between rows were 15.0 cm. For both the second CE and field studies, 

the uniform blast nursery procedure, using SIK-111, was used to develop the disease 

epidemic.  

For each experiment, soils were amended appropriately to ensure a proper balance of 

nutrients. Nitrogen was supplied prior to sowing at the rate of 90 kg ha-1, and at two week 

intervals thereafter beginning at 14 days after sowing at the rate of 30 kg ha-1, in order to 

stimulate vigorous vegetative growth. 

3.3.5 Inoculation of test plants 
For the first CE trial, disease was initiated by spraying plants with solutions containing 1 X 

105 spores of each of the P. oryzae pathotypes. The inoculants were grown on oat meal 

agar, amended with chlorotetracycline (25 mg L-1), at 20 to 250C under 16 / 8hrs alternating 

light and dark periods in a laboratory growth chamber (Labcon, South Africa). Spore 

solutions were prepared by scraping off and washing mycelia in sterile water containing 

0.2% gelatine. The gelatine was used to increase the osmotic concentration of the spore 

solution to prevent lysis, and to increase adhesion of the sprayed solution to the surface of 

the plants.  

Following the uniform blast nursery procedure (IRRI, 2006) for the second CE and field 

studies, LTH seedlings, pre-infected in the glasshouse, were used as disease spreaders to 

initiate disease on the experimental plants. The spreader plants were established in single 

alternating rows before and after each genotype. Spreader plants were prepared in 

polyethylene bags and transferred with intact growth media to their designated rows to 

minimize transplanting shock. Each epidemic was considered ended when the spreader 

plants completely succumbed to the disease. 

3.3.6 Disease evaluation and data analyses 
For the first CE, the predominant lesion type (LT), considered for determining qualitative 

resistance, was assessed at 7 days after inoculation (DAI) using the 0 – 9 scale developed 

by IRRI (2006). The number of lesions with sporulating centres per plant (LN) and the 

number of leaves with sporulating lesions per plant (NLL) were also determined at 7 DAI for 

the first CE study. For the second CE and field studies, LN was determined at 10 days after 

transplanting the spreaders. The sizes of sporulating lesions (LS) were estimated at 10 days 
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after transplanting the spreaders, using the keys created by Roumen (1992). The 

predominant lesion on the older leaves were chosen for lesion size measurement. Data on 

LT, LN and NLL were recorded for 10 plants per experimental plot.   

During the second CE and field studies, disease severity on all fully expanded leaves per 

plant was estimated visually for 10 plants per plot, five times at 3 day intervals using a 

diagrammatic scale (depicting 0. 0.5, 1, 2, 4, 8, 16, 32, 64 and 82% of diseased leaf area), 

as developed by Notteghem (1981). Disease severity scores were used to calculate area 

under the disease progress curve (AUDPC) based on the formula developed by Shaner 

and Finney (1977):  

AUDPC = ∑Ni = 1((Yi + 1 + Yi)/2) (Xi + 1– Xi),                                                           

where Yi = the percent of diseased leaf area on the ith day of assessment, Xi = time of the 

ith assessment in days from that of the first assessment, and N = total number of times 

disease was assessed. 

Data on LT was averaged per genotype to determine qualitative resistance against rice 

blast, and also subjected to ranks overall ANOVA to further evaluate differences between 

the genotypes and pathotypes, using IRRI’s statistical software CropStat Version 7 (IRRI, 

2007). CropStat Version 7 was also used to analyse data on LN and NLL from the first CE 

study, based on the additive main effects and multiplicative interaction (AMMI) statistical 

model. All other data were subjected to analyses of variance using the statistical package 

GenStat® Version 14 (VSN, International). The means of factors showing significant 

difference were separated by Fisher’s least significant difference (LSD) test at the 5% 

probability level.  

 

3.4 Results  

3.4.1 Qualitative reactions of genotypes to rice blast 
In order to check for qualitative resistance to rice blast, genotypes were evaluated for the 

type of lesion produced in response to inoculation with different rice blast pathotypes. The 

genotypes varied significantly by LT, both between and within pathotypes (Table 3.2).  
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Table 3.2: ANOVA for rice blast resistance traits assessed on spray inoculated plants in a 
controlled environment facility.  

Source of variation   Df 
Mean square 

       LT      LN   NLL 
Genotype   39   56239.0***         587.6***   9.7** 
Pathotype     2 130804.0***      1344.4** 19.6** 
Genotype X Pathotype   78   13008.2 ***        160. 6**   2.5** 
Replication     2       869.0ns           63.0ns   0.9ns 
Genotype X replication   78     1142.4ns          71.2ns   1.3ns 
Pathotype X replication     4     1064.2ns        68.7ns   1.2ns 
Genotype X pathotype X 
replication 

156      917.7 ns           65.8ns   1.1ns 

Error 3231      586.2     38.41   0.5 
 ***(p < 0.001), **(p < 0.01), ns (p > 0.05); Df = degrees of freedom; LT = Lesion type; LN 
= number of sporulating lesions per plant; NLL = number of leaves with sporulating lesions 
per plant. 

 

Each cultivar was classified as resistant or susceptible, based on the score of the LT 

exhibited (Table 3.3). A total of 27 genotypes showed susceptible reactions to at least one 

of the pathotypes. Ten genotypes, including LR 2, 6, 8, 10, 11, 14, 24-1, 24-2, 25 and 26, 

in addition to both check varieties, showed compatible reactions to all three of the 

pathotypes, whilst 13 (LR- 1, 7, 12, 13, 16, 17, 19, 20, 31, 33, 34, 35, and 37) exhibited 

equally incompatible reactions to all three of the pathotypes. SIK-111 produced susceptible 

LT reactions on more genotypes than the other two pathotypes.  
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Table 3.3: Qualitative classification of rice genotypes resistance to three P. oryzae 

pathotypes. Scores are means of predominant lesion type; compatible or incompatible 

reactions are presented as R or S, respectively. 

Genotypes 
Pathotypes 

EDOZ GH-8 SIK 111 
Score Class Score Class Score Class 

LR 1 0.0 R 0.7 R 0.3 R 
LR 2 5.7 S 5.7 S 5.0 S 
LR 3 0.3 R 0.3 R 5.7 S 
LR 4 2.3 R 0.0 R 5.0 S 
LR 5 3.0 R 0.7 R 5.7 S 
LR 6 7.0 S 5.7 S 5.0 S 
LR 7 0.0 R 0.0 R 1.0 R 
LR 8 5.7 S 5.0 S 6.3 S 
LR 9 7.3 S 0.0 R 1.0 R 
LR 10 7.3 S 5.0 S 7.0 S 
LR 11 7.0 S 6.3 S 6.3 S 
LR 12 0.3 R 0.3 R 1.0 R 
LR 13 3.0 S 0.0 R 0.0 R 
LR 14 5.0 S 5.0 S 6.3 S 
LR 15 1.7 R 0.0 R 8.3 S 
LR 16 1.0 R 0.7 R 0.0 R 
LR 17 0.3 R 1.0 R 2.3 R 
LR 18 7.0 S 2.3 R 7.7 S 
LR 19 0.0 R 0.3 R 1.7 R 
LR 20 0.0 R 2.3 R 1.7 R 
LR 21 3.0 R 5.7 S 7.7 S 
LR 22 0.0 R 0.0 R 5.0 S 
LR 23 6.3 S 3.0 R 7.0 S 
LR 24-1 7.0 S 5.7 S 7.0 S 
LR 24-2 5.0 S 5.7 S 7.0 S 
LR 25 7.0 S 5.0 S 5.7 S 
LR 26 5.7 S 5.7 S 5.0 S 
LR 27 2.3 R 0.0 R 6.3 S 
LR 28 0.3 R 8.3 S 7.0 S 
LR 29 6.3 S 0.0 R 3.0 R 
LR 31 0.0 R 0.0 R 0.0 R 
LR 32 0.0 R 0.0 R 5.0 S 
LR 33 0.0 R 0.0 R 0.0 R 
LR 34 1.0 R 0.0 R 0.0 R 
LR 35 0.0 R 1.7 R 0.7 R 
LR 36 1.0 R 6.3 S 6.3 S 
LR 37 1.0 R 0.7 R 0.0 R 
LR 38 0.0 R 0.0 R 5.0 S 
LAC 23 5.0 S 5.3 S 5.0 S 
LTH 9.0 S 9.0 S 9.0 S 
Mean 2.9  2.4  4.2  
 SEM      
Genotypes 0.32      
Pathotypes 0.09  CV (%) = 9.7    

SEM= standard error of the means; CV = coefficient of variation. 

 



68 
 

 

Figure 3.1: Mean ranking of blast susceptible genotypes. Bars represent only genotypes 
that showed compatible interactions with all of three pathotypes. Error bar represents LSD 
(P = 0.05), trend line represents mean rank for 40 genotypes. 

 

3.4.2 Quantitative reaction of genotypes to rice blast 
Averaged over the three blast pathotypes across the first CE study, the mean responses of 

the 40 genotypes for the number of sporulating lesions and infected leaves per plant 

respectively ranged from 0 to 29, and 0 to 3.6. Significant interactions between genotypes 

and pathotypes were also observed. Additive main effects and multiplicative interaction 

(AMMI) analysis revealed that 9 genotypes (LR- 1, 12, 16, 19, 31, 33, 34, 35 and 37) 

expressed the highest levels of quantitative resistance to all three pathotypes, whilst four 

(LR- 21, 23, 24-1 and LTH) showed the lowest, as indicated by the number of sporulating 

lesions (Figure 3.2a) and leaves infected (Figure 3.2b) recorded per plant. Genotypes LR- 

3, 4, 17, 20, 22, 27 and 32 appeared quite unstable for these traits. SIK-111 induced the 

highest number of sporulating lesions on the genotypes, and GH-8 appeared least capable 

of inflicting a large number of sporulating lesions on the plants or infecting a large number 

of leaves.  
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Figure 3.2: Mean and interaction effects of 40 rice genotypes and three P. oryzae 
pathotypes for the number of rice blast sporulating lesions (a) and number of infected 
leaves per plant (b) 

 

                                                                             (a)

 

                                                                        (b) 
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The AMMI ANOVA (Table 3.4) revealed that the genotypes, followed by the pathotypes, 

accounted for most of the variation in the numbers of sporulating lesions / infected leaves 

observed in this study. The variation due to interaction of genotype and pathotype was 

markedly small. Of the interaction variance (SS), IPCA 1 accounted for 72.5% (for the total 

number of sporulating lesions produced per plant) and 65.6% (for the number of infected 

leaves per plant), while the second IPCA explained only 27.5 and 34.4% of the interaction 

SS for the respective traits (Table 3.4).  

 

Table 3.4: AMMI ANOVA for the number of sporulating lesions and infected leaves per 

plant. (*) indicates significant variance ratio (p < 0.01). 

 Number of sporulating lesions per 
plant 

No of infected leaves per 
plant 

Source of 
variation 

D.f. S.S. M.S. F 
Ratio 

D.f. S.S. M.S. F Ratio 

Treatments 119 38131.00 320.40 8.23 119 612.20 5.15 9.58* 
Genotypes 39 22919.00 587.70 15.10 39 377.30 9.68 18.01* 
Environments 2 2689.00 1344.40 50.09 2 39.20 19.62 39.24* 
Block 6 161.00 26.80 0.69 6 3.00 0.50 0.93 
Interactions 78 12524.00 160.60 4.13 78 195.70 2.51 4.67* 
IPCA1 40 9078.00 227.00 5.83 40 128.40 3.21 5.98* 
IPCA2 38 3446.00 90.70 2.33 38 67.30 1.77 3.30* 
Error 234 9106.00 38.90  234 125.70 0.54  
Total 359 47398.00 132.00  359 740.90 2.06  

D.f.= degree of freedom; S.S.= sum of squares; M.S.= mean squares. 

3.4.3 Effects of genotype and water regime on blast disease severity  
3.4.3.1 Lesion size and lesion number 
The quantitative responses of the genotypes to rice blast were assessed in both the second 

CE and field studies. The size of sporulating lesions 10 days after deployment of disease 

spreaders varied significantly amongst the genotypes grown under greenhouse or field 

conditions (Table 3.5). The mean difference in the size of sporulating lesions between the 

two water regimes during this period was negligible under greenhouse conditions; but in the 

field, intermittent drought stress (before and during blast incidence) tended to significantly 

increase lesion size. Genotype by water regime interaction was also significant as some 

genotypes developed larger lesions under well–watered conditions, contrary to the general 

pattern of lesions being larger under intermittent drought stress. On average, lesion size 

recorded in the field was slightly larger than that recorded in the greenhouse.  

The number of lesions with sporulating centres was markedly smaller in the genotypes from 

Liberia, compared to the susceptible check, LTH (Table 5) both in the CE and field trials. 

The number of lesions developed on 8 of the genotypes (LR- 2, 6, 8, 10, 24-2, 25, 26 and 
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38) were highly comparable to that observed on the resistant check variety, LAC 23. The 

number of sporulating lesions on plants subjected to drought stress was significantly higher 

(p < 0.01) than those observed on plants grown under well–watered conditions, both in the 

field and in the greenhouse. Genotype by water regime interaction was not significant (p = 

0.05) for the trait in either growing environments. 
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Table 3.5: Effects of growing conditions on the number and size of sporulating lesions 

developed on different rice genotypes.  

Genotype Sporulating lesion size (mm2)   Lesion number 
Greenhouse    Field trial   Greenhouse    Field trial 
drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

 drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

LR-2 3.2 2.7 3.4 3.2   16.0 10.0 3.1 2.3 
LR-3 3.6 4.2 4.2 3.9   33.0 23.3 3.2 3.8 
LR-4 1.9 4.6 3.7 2.4   42.0 32.0 6.8 6.0 
LR-5 2.8 2.3 2.8 3.0   22.7 24.3 3.4 3.0 
LR-6 4.4 2.2 3.6 3.8   10.0 6.7 3.5 2.8 
LR-7 3.9 2.3 3.4 3.2   35.0 25.0 3.8 2.3 
LR-8 2.1 2.6 2.6 2.1   12.7 12.7 2.9 1.6 
LR-10 2.1 2.3 1.6 2.8   8.0 12.0 5.4 4.6 
LR-11 5.6 2.2 4.2 4.9   20.0 16.0 3.2 3.0 
LR-14 3.2 3.8 3.8 3.5   24.0 21.0 5.2 4.3 
LR-15 4.5 3.1 4.5 4.9   19.0 16.7 1.2 2.4 
LR-21 3.2 3.2 2.8 3.5   32.0 23.3 8.1 11.0 
LR-22 3.0 5.5 4.7 3.1   34.0 28.0 4.7 2.9 
LR-23 7.0 4.4 6.0 6.7   36.3 33.0 13.7 10.6 
LR-24-1 3.2 2.0 2.8 2.6   30.0 34.0 11.8 12.0 
LR-24-2 2.8 4.2 3.8 3.1   8.0 4.0 3.5 3.0 
LR-25 3.2 1.9 2.5 3.4   14.3 10.7 4.5 3.2 
LR-26 2.8 2.9 3.1 2.7   16.3 8.0 7.8 6.7 
LR-27 4.1 3.1 3.3 4.5   29.5 33.2 9.4 8.0 
LR-32 2.7 5.3 4.0 1.9   19.0 26.0 2.9 2.0 
LR-36 2.6 4.4 3.3 1.8   27.8 33.0 2.4 2.6 
LR-38 3.9 3.1 3.8 4.2   9.0 6.3 1.6 0.5 
LAC 23 2.6 3.2 3.5 3.0   7.3 6.3 1.4 0.3 
LTH 6.1 6.3 6.2 6.7   51.7 49.0 18.6 13.0 
Mean 3.5 3.4 3.7 3.5   23.2 20.6 5.5 4.7 
             Sporulating lesion size (mm2) Lesion number 
  Greenhouse Field  Greenhouse Field 

LSD(p = 0.05) 

Genotype 0.6 0.7  8.2 2.1 
Water regime 0.2 0.2  2.4 0.7 
Genotype x Water 
regime          

0.8 0.9  11.6 4.9 

CV (%)  14.1 27.8  33.0 36.1 
 

 
3.4.3.2 Area under disease progress curve 
Area under the disease progress curve values ranged from 75.4 to 505, and differed 

significantly (p < 0.001) between the 24 genotypes exposed to conidia of P. oryzae from 

spreader plants in the greenhouse (Table 3.6).  
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Table 3.6: Mean greenhouse and field blast severity scores for 24 rice genotypes grown 
under different water regimes. 

Genotype AUDPC   Maximum diseased leaf area (%) 
Greenhouse    Field trial   Greenhouse    Field trial 
drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

 drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

LR-2 252 132 48 40.9   17.2 15.5 8.6 3.9 
LR-3 339 99 48 30.7   62.4 28.9 21.2 13.1 
LR-4 369 171 84.9 53   72.9 17.8 18.5 9.6 
LR-5 573 150 91.8 46.5   80.6 14.9 15.3 18.2 
LR-6 157.5 147 31.8 48.8   6.3 7.1 3.2 1.4 
LR-7 300 273 69.5 84.6   58.2 40.0 9.1 13.2 
LR-8 222 132 41.1 40.9   18.6 8.2 4.3 6.2 
LR-10 195 219 54.9 67.9   8.8 14.1 2.4 2.0 
LR-11 144.8 157.5 30.3 48.8   11.8 9.4 3.9 2.7 
LR-14 171 99 33.3 30.7   9.6 12.2 2.8 2.2 
LR-15 121.5 417 27.9 59.3   8.5 82.6 2.3 1.9 
LR-21 243 205.5 57.9 63.7   26.1 22.2 19.1 5.9 
LR-22 417 207 85.9 64.2   81.6 67.7 20.8 18.5 
LR-23 241.5 246 65.5 76.3   33.3 42.0 10.7 7.6 
LR-24-1 219 339.8 77.2 67.9   53.7 40.6 16.9 12.2 
LR-24-2 168 102 36.5 52.1   6.5 13.2 2.3 1.5 
LR-25 217.5 147 43.8 67.4   7.1 15.5 3.6 1.6 
LR-26 243 168.8 45.9 52.3   19.7 11.2 4.9 4.5 
LR-27 414 114 95.2 35.3   79.7 18.3 19.9 13.1 
LR-32 312 273 62.8 84.6   65.7 29.9 16.9 9.9 
LR-36 240.8 217.5 55.4 67.4   23.0 36.7 8.5 5.2 
LR-38 78 72.8 16.9 21.6   4.4 4.5 2.2 1.0 
LAC23 170.5 131.2 39.2 40.7   7.6 6.2 3.5 1.7 
LTH 524 486 132.4 149.7   82.0 82.0 41.0 58.6 
Mean 263.9 196.1 57.3 58.1   35.2 26.7 10.9 9.0 
             AUDPC Max. Diseased leaf area (%) 
  Greenhouse Field  Greenhouse Field 

LSD(p = 0.05) 

Genotype 21.9   4.3  17.2 13.3 
Water regime 6.3   1.6  4.9 2.2 
Genotype x Water 
regime          

31.0   7.2  24.3 15.9 

CV (%)  8.3 28.9  26.8 31.7 
 

All the traditional varieties displayed lower AUDPC values than the susceptible check, 

indicating lower levels of susceptibility to leaf blast. In the field, the AUDPC values varied 

significantly with genotype (p < 0.001), but not with water regime (p = 0.05). For both water 

regimes, AUDPC recorded in the field was markedly lower than values measured in the 

controlled environment facility. Maximum disease severity measured on plants in the 

greenhouse and the field followed a similar trend as measurements for AUDPC (Table 3.6). 
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3.4.3.3 Plant mortality and grain yield 
Plant mortality was low in all genotypes, except the susceptible check in both the 

greenhouse and the field (Table 3.7). In the field, mortality was significantly higher amongst 

plants subjected to drought stress (p < 0.001). Grain yield per plant varied significantly with 

genotype (p < 0.001), and tended to decrease with drought stress, both in the greenhouse 

and the field.  

 
Table 3.7: Effects of environment on mortality and yield of rice blast affected plants 

Genotype Mortality (%)   Grain yield (g plant-1) 
Greenhouse    Field trial   Greenhouse    Field trial 
drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

 drought 
stressed 

well 
watered 

drought 
stressed 

well 
watered 

LR-2 0.0 0.0 0.0 0.0   5.2 9.7 6.5 12.0 
LR-3 0.1 0.0 0.2 0.0   1.3 2.4 2.7 4.8 
LR-4 0.0 0.0 0.1 0.0   5.3 6.0 6.7 8.3 
LR-5 0.0 0.0 0.1 0.0   4.7 4.8 6.0 6.8 
LR-6 0.0 0.0 0.0 0.0   2.2 16.0 3.5 18.3 
LR-7 0.0 0.0 0.1 0.0   4.7 4.8 6.4 7.1 
LR-8 0.0 0.0 0.0 0.0   5.0 7.6 6.4 9.9 
LR-10 0.0 0.0 0.0 0.0   3.3 4.3 4.6 6.6 
LR-11 0.0 0.0 0.0 0.0   2.2 7.3 3.6 9.6 
LR-14 0.0 0.0 0.0 0.0   9.9 8.6 11.2 10.9 
LR-15 0.1 0.0 0.1 0.0   0.8 3.8 2.2 6.1 
LR-21 0.0 0.0 0.0 0.0   3.5 7.8 4.9 10.1 
LR-22 0.0 0.0 0.0 0.0   2.4 6.0 3.8 8.3 
LR-23 0.0 0.0 0.0 0.0   1.6 2.2 3.0 4.6 
LR-24-1 0.1 0.0 0.2 0.0   0.9 5.0 2.2 7.3 
LR-24-2 0.0 0.0 0.0 0.0   6.2 6.3 8.2 8.7 
LR-25 0.0 0.0 0.0 0.0   4.0 9.9 5.4 12.3 
LR-26 0.0 0.0 0.0 0.0   3.5 11.6 4.9 13.9 
LR-27 0.0 0.0 0.0 0.0   1.5 2.6 2.8 4.9 
LR-32 0.0 0.0 0.0 0.0   2.0 3.1 3.4 5.5 
LR-36 0.0 0.0 0.0 0.0   3.8 5.5 5.1 7.9 
LR-38 0.0 0.0 0.0 0.0   3.2 4.1 4.5 6.5 
LAC23 0.0 0.0 0.0 0.0   5.2 6.1 6.5 8.4 
LTH 100.0 100.0 92.0 81.0   0.0 0.0 0.9 1.5 
Mean 4.2 4.2 3.9 3.4   3.4 6.1 4.8 8.4 
             Mortality (%) Grain yield (g plant-1) 
  Greenhouse Field  Greenhouse Field 

LSD(p = 0.05) 

Genotype 0.05 1.66  4.5 5.3 
Water regime 0.02 0.48  1.5 2.2 
Genotype x Water 
regime          

0.08 2.35  6.4 8.1 

CV (%)  2.7 40.0  17.2 23.6 
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3.5 Discussion 

3.5.1 Effects of pathotype on rice blast resistance 
Host specificity is a common characteristic of the rice blast pathogen (Couch et al., 2005). 

Selection of virulent pathotypes would therefore be required for differentiating blast 

resistance of various host genotypes. SIK-111 was the most virulent of the three pathotypes 

as it showed a compatible interaction with at least twice as many genotypes as the least 

aggressive pathotype, GH-8. Its interaction pattern with the genotypes for both the number 

of sporulating lesions and infected leaves per plant was quite distinct from those of the other 

two pathotypes, which appeared to be similar (Figure 3.2). SIK-111 would therefore be 

useful for further evaluating horizontal resistance of the genotypes with which it showed a 

compatible interaction.  

3.5.2 Genetic variation for qualitative and quantitative blast resistance 
The infection type produced by a blast pathotype is often used as a key criteria to establish 

the susceptibility or resistance of a rice plant against rice blast; while indices relating to 

disease severity are often used to determine quantitative resistance (Ahn et al., 1998).  

 
3.5.2.1 Qualitative resistance in the rice population 
In these studies, expression of LT was used as an index to determine the presence or 

absence of qualitative (vertical) resistance in the genotypes.  From the artificial inoculation 

trial conducted in the greenhouse, it was observed that differences between the genotypes 

that developed susceptible LTs against all three pathotypes, and the susceptible check 

variety were far larger than that between those cultivars and the resistant check (Figure 

3.1). In that this group, however, differences in the main effects of LR- 2, 8, 11, 14 and 26  

were negligibly small, indicating that the combined virulence effect of the pathotypes on 

these genotypes was essentially the same, and that the genotypes possessed similar levels 

of resistance. In disease assessment trials, entries that showed consistent LT ratings 

ranging from 4 to 6, with mean scores of not more than 5.5 were regarded as having good 

levels of horizontal resistance (IRRI, 2006). In these studies, 3 genotypes (LR- 2, 14 and 

26) exhibited similar LT profiles, suggesting the possible existence of several genotypes in 

the parent population with useful levels of horizontal resistance.  

Adaptation of the genotypes to different rice blast pathotypes could be a major characteristic 

of Liberia’s upland rice genetic resources, as observed from the significant genotype by 

pathotype interaction for LT. Traditionally, subsistence farmers have always maintained 

several varieties, growing them more than one at a time per cropping cycle or alternating 

them from time to time, as a mean of minimizing the risks of crop loss to unfavourable 
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environmental factors (Smith and Lenhart, 1996), including disease incidence. The 

presence of different vertical resistant genes in different varieties is a key property of the 

multi-line approach to increasing the durability of resistance in a farming system (Dabholkar, 

2006; Skamnioti and Gurr, 2009). But such an approach may not limit loss during severe 

blast outbreaks as much as a good level of horizontal resistance.  

 
3.5.2.2 Quantitative resistance in the rice population 
Measurements on the numbers of sporulating lesions and infected leaves were used to 

assess quantitative (horizontal) resistance of the genotypes under disease pressure 

initiated by both spray and simulated natural inoculation. Genotypes capable of minimizing 

both the number and size of sporulating lesions are better suited to tolerate a blast epidemic 

and to slow the spread of the disease once it starts (Villareal et al., 1981; Yeh and Bonman, 

1986). In the first glasshouse experiment, LR 9, 13, 19, 35, and 38 developed lower 

numbers of sporulating lesions and had fewer leaves with sporulating lesions. Sporulating 

lesions produced on those genotypes were rather small and could be controlled by a single 

R gene with a large effect (Roumen, 1993). These genotypes, like those on which the 

pathotypes were unable to develop sporulating lesions (LR 1, 12, 16, 33, 34, and 37), may 

not be suitable for breeding for horizontal resistance using any of the pathotypes used in 

these studies because of the race-specific resistance exhibited against the pathotypes. 

Intermediate numbers of sporulating lesions or lesions of intermediate sizes observed in all 

other genotypes (except LR 21, 23, and 24-1) may likely be attributed to horizontal 

resistance genes. Bonman et al. (1991) and Parlevliet (1992) have similarly classified 

reduced lesion size and numbers as rate-reducing or partial resistance.  

Leaves with sporulating lesions, besides having the potential to further spread the disease 

also suffer impaired capacity to photosynthesize and translocate carbohydrates needed by 

the plant (Bastiaans, 1991; Bastiaans and Roumen, 1993). Susceptible plants with fewer 

lesion-affected leaves could greatly mitigate the physiological effect of rice blast as long as 

the lesion-free leaves continue to function normally with little interference from any lesion. 

Hence, the number of sporulating lesions could be a useful index for quantifying horizontal 

resistance. The additive effects of fewer and smaller lesions can drastically diminish 

sporulation potential (Yeh and Bonman, 1986), and therefore the magnitude of secondary 

infections.  

From the spray inoculation experiment, it was further determined that the genotypes were 

more diverse than the pathotypes for both the number of sporulating lesions and number of 

infected leaves as portrayed by the large proportion of (48% / 51%) sum of squares 
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calculated in the analysis of variance (Table 3.4). The SS of the pathotypes was markedly 

small (5.7% / 5.3%), revealing that most of the variation in pathogenicity of the pathotypes 

as well as the GXI interaction were due to the large differences between the genotypes. 

This further suggests that considerable variation exists for horizontal resistance against rice 

blast in Liberia’s upland rice population. The ANOVA table further shows that the first two 

IPCAs were enough for highlighting the GXI interaction for these traits as they could predict 

the interaction of the 40 genotypes and 3 pathotypes used in the study.  

A significant interaction was observed between genotype and pathotype for the number of 

leaves in plants bearing at least one sporulating lesion. Genotypes LR- 2, 6, 8, 11, 14, 24-

2, 25 and 26 exhibited low to moderate main effects and interactions with all three of the 

pathotypes, and tended to differ progressively along the interaction and main effect 

gradients for the number of sporulating lesions per plant (Figure 3.1). It would therefore be 

useful to use these genotypes to breed for improvement of horizontal resistance, using SIK-

111 as the designated pathotype, since the genotypes produced susceptible infection types 

against that pathotype. Even though fewer sporulating lesions is desirable, other genotypes 

(LR- 1, 12, 16, 19, 31, 33, 34, 35 and 37) that showed higher levels of quantitative resistance 

to all the three pathotypes, may not be useful for breeding for horizontal resistance using 

SIK-111 as the designated pathotype, because the genotypes exhibited incompatible 

interactions with it. Nonetheless, when a pathotype that is capable of producing susceptible 

lesions on those genotypes is found, it could then become useful for hybridization using the 

one pathotype technique to eliminate the effects of vertical resistance carried in these 

genotypes (Robinson, 2006). As the means of both checks were rather distant and distinct 

from those of the above (Figure 3.1), these varieties could also be useful for a genetic study 

into the pattern of inheritance of horizontal resistance against the disease.  

It was observed that the AMMI biplots displayed a high similarity between the number of 

infected leaves and the number of sporulating lesions per plant. The close association of 

these traits (R2 = 0.87, t pr < 0.001) was also confirmed by correlation and regression 

analysis. It may therefore be possible that selecting for the number of leaves with 

sporulating lesions could largely simplify screening in large populations when the number 

of sporulating lesions per plant are regarded as a measure of horizontal resistance.  

The number of sporulating lesions, lesion number and AUDPC corresponded well with the 

levels of grain yield obtained in the greenhouse study. This observation corresponds with 

assertions that plants with horizontal resistance tend to show reduced disease severity 

and therefore produce higher yields under disease pressure than others that are 

susceptible or possess lower levels of resistance (Crill et al., 1982). 
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3.5.3 Effects of environment on expression of quantitative traits 
As observed in the spray inoculation trial, significant genotypic differences for lesion size 

was recorded when the blast epidemic was initiated by spreader plants in the greenhouse 

or in the field, indicating that either type of the inoculation protocol may be adapted for 

differentiating rice plants for blast resistance. The mean lesion size of the genotypes was 

larger under soil moisture conditions defined by intermittent drought stress, indicating that 

this water regime is more useful for determining the minimum limits of rice blast lesions and 

screening for blast resistance. This conclusion was supported by earlier studies, which 

showed that during periods of rapid leaf growth, drought stress tends to increase the size 

of rice blast lesions (Bonman et al., 1988; Gill and Bonman, 1988). 

The pattern of infection was quite distinct between drought stressed and well-watered 

plants. During the initial stages of the epidemics, the older leaves of plants subjected to pre-

infection drought stress were more infected and developed more lesions than younger 

leaves. The trend was the opposite for plants grown under well watered conditions. 

However, as the epidemic progressed, the young leaves of the drought stressed plants 

became even more severely infected than those grown under stress-free conditions. This 

appeared as a form of secondary susceptibility, in that there were two prominent infection 

events: initially older leaves were almost exclusively infected, and only later (about a week 

later), upper leaves became severely infected. In a related experiment, Gill and Bonman 

(1988) reported a longer period of infection when plants were subjected to drought stress 

prior to their exposure to the blast pathogen. Variation in patterns of leaf infection with the 

level of water deficit was not apparent. 

The number of sporulating lesions developed on the 22 genotypes showing susceptibility to 

SIK-111 were more in the uniform blast nursery in the greenhouse than in the spray 

inoculated trial. In the field, the numbers were much lower. The means of the genotypes for 

the number of sporulating lesions per plant measured in the three different environments 

were significantly correlated (t pr < 0.01), suggesting very little or no GXE interaction was 

associated with the trait. Hence, conditions that tend to increase plant responses for this 

trait would be best for evaluating plants if good progress is to be attained when breeding for 

horizontal resistance using the number of sporulating lesions per plant as a selection 

criterion. 

 
3.6 Conclusion 

From the three experiments conducted, it was found that different rice accessions from 

Liberia responded differently to three pathotypes of P. oryzae used to infect them. Most 
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genotypes that developed susceptible LTs expressed partial resistance to the disease, 

unlike the susceptible check. Blast resistance in upland rice from Liberia was characterized 

by both race and race non-specific interactions. Since LR- 2, 6, 8, 11, 14, 24-2, 25 and 26 

expressed low to moderate counts of sporulating lesions, and measures of lesion size and 

disease severity, they should be further tested for gene action to determine their suitability 

as parents for breeding new varieties with high levels of horizontal resistance against blast. 

Field conditions were not ideal for studying blast resistance in the genotypes because the 

disease pressure under field conditions was lower than that experienced under controlled 

environment conditions. As the key conditions that influence blast epidemics can be more 

effectively controlled in the greenhouse than in the field, the greenhouse should be 

considered for future assessment of rice plants for blast resistance if reliable estimates are 

to be obtained. Furthermore, since disease severity was more pronounced under conditions 

of intermittent drought stress, it would also be better to screen rice under such conditions in 

order to increase the likelihood of identifying truly resistant genotypes. Finally, rice blast 

pathotypes, such as SIK-111, capable of inducing susceptible lesion types on the genotypes 

recommended above, should be the designated pathotype for future studies of horizontal 

resistance. 
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CHAPTER 4 

DROUGHT TOLERANCE OF SELECTED UPLAND RICE GENOTYPES FROM 
LIBERIA 

 

4.1 Abstract 

Studies on the drought tolerance (DT) status of varieties of rice (Oryza sativa L.) from Liberia 

are limited, although a significant portion of the national crop is produced under drought-

prone, upland conditions. Both controlled environment and field experiments were 

conducted to evaluate 24 rice genotypes for their reaction to drought stress (DS) imposed 

during the establishment, tillering and booting-to-grain-filling phenological stages of 

development. All genotypes emerged earlier in soils with a water content of 75% or 50% of 

field capacity than in continuously well-watered soils, and remained viable until the relief of 

DS at 28 days after sowing. Unlike plants subjected to DS around the time of booting-to-

grain-filling, the grain yield (GY) and its components of plants subjected to DS during the 

tillering growth stage did not vary significantly from the control plants grown in well-watered 

plots. The genotypes LR 24-2, followed by LR 32, 8, and 11 produced the highest GY in the 

plots subjected to DS during the booting-to-grain-filling growth stage, whilst LR 8, followed 

by LR 2 and LAC 23 expressed the highest yield potential under well-watered conditions. 

Principlal component analysis revealed that the 24 genotypes exhibited the greatest 

variation for GY, tiller productivity (TP) and chlorophyll content index (CCI) under well-

watered conditions, and for leaf rolling, GY, CCI, spikelet fertility (SF), and TP, under DS 

applied during the booting-to-grain-filling stage. Simple correlation and path analyses 

revealed that high levels of biomass at heading (BM), stomatal conductance and SF were 

the traits most strongly associated with high GY under well-watered conditions, whereas 

TP, BM and 1000 grain mass were the traits that most influenced GY in the genotypes 

subjected to DS at the stage of booting-to-grain-filling. These results showed that the stage 

of booting-to-grain-filling of crop development should be targeted for improving DT in the 

current population of rice germplasm, using combinations of LR 24-2, 32, 11, 8, and 2, and 

LAC 23 as the primary progenitors. The results also showed that yield potential and DT can 

be improved by directly selecting for GY under all field conditions, and indirectly for high 

levels of BM, SC and SF under well-watered conditions, and TP, BM and 1000 grain mass 

under DS applied during the booting-to-grain-filling stage. 

 

Key words: booting-to-grain-filling, drought stress, rice, tillering, traits, well-watered 

conditions 
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4.2 Introduction 

Drought is a major constraint to the production of rice (Oryza sativa L.), particularly upland 

rice, which is the predominant form of rice production in Liberia and other parts of sub-

Saharan Africa (Balasubramanian et al., 2007). In these agro-ecologies, drought occurs 

intermittently at various times during the cropping cycle, leading to water deficits, as a result 

of poor or irregular rainfall, which is the only source of water for the crop (De Datta, 1981). 

A low frequency or intensity of rainfall, coupled with poor moisture holding capacity of the 

soil, can lead to water deficits, which if they occur even for short periods, can reduce crop 

yields. Rainfall in Liberia is distinctly seasonal, being most abundant from April to 

September, and is sparsely distributed during the rest of the year (McSweeney et al., 2010a; 

2010b). The prolonged spells of water deficits, annually occurring between October and 

March, makes drought the single most important factor stopping year-round production of 

rice in Liberia, and most of West Africa. 

Drought influences an array of physiological processes, ranging from photosynthesis, to 

growth, yield and quality of crops. The effect of drought stress on rice tends to increase with 

the intensity of water deficit, which is a combination of the duration and level of drought 

stress. Intermittent drought is recognized as a major cause of poor yields under upland rice 

culture (De Datta and Vergara, 1975; Pandey et al., 2007; Pandey and Bhandari, 2009).  

In addition to intensity, the timing of drought may also determine its level of impact on a rice 

crop. During the establishment phase of rice production, drought stress may limit 

germination and emergence, retard seedling growth, and result in poor crop stands (Pandey 

and Bhandari, 2009). The potential number of panicles and biomass accumulation may be 

reduced when drought occurs during the tillering stage of development (Bouman et al., 

2007). Drought occurring during the reproductive and ripening stages of development can 

lead to direct reductions in grain yields (Inthapan and Fukai, 1988; Saini and Westgate, 

1999). Acute drought stress at any time during the cropping cycle can lead to plant mortality 

and complete crop failure. 

Yield potential, which is the maximum yield obtainable in stress-free environments, may be 

incompatible with superior drought tolerance (Laing and Fischer, 1977; Fischer and Maurer, 

1978; Blum, 2005) because most cultivars that produce high yields in well-watered 

environments perform poorly under drought stress, relative to other cultivars with lower yield 

potentials. The traditional breeding approach, which emphasizes yield as a selection 

criterion for drought tolerance (Richards, 1982), clearly suggests that the yield realized in a 

drought-affected environment is a function of drought tolerance (Atlin et al., 2008). 

Therefore, it is likely that the genetic mechanisms controlling yield potential and drought 
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tolerance, determined as yield realized in a stress-afflicted environment, may be dissimilar 

in one or more respects. Genotypes that combine both traits will be desirable for increasing 

rice production under high risk, rainfed conditions. 

Constitutive traits that enable genotypes to maintain a high internal water status during 

extended periods of water deficit could be important for indirectly selecting cultivars with 

improved tolerance to drought. However, research has demonstrated that the value of a 

secondary trait usually depends on the level of its association with grain yield (Lafitte et al., 

2003), implying the need for direct or indirect selection of these traits.  

In the current study, the growth and yield performances of 24 rice genotypes from Liberia 

were investigated under both well-watered and water-limited conditions, in order to identify 

potential parents in order to breed high yielding, drought tolerant cultivars for upland rice 

ecologies, and to identify yield responsive traits that could be useful for indirectly selecting 

genotypes with superior yield potential and drought tolerance. The responses of the 

genotypes to drought occurring at different stages of plant development were also assessed 

in order to determine the optimum screening patterns for drought tolerance breeding in 

upland rice for Liberia. 

 

4.3 Materials and methods  
Both controlled environment (CE) and field trials were conducted at the research facilities 

of the University of KwaZulu-Natal (UKZN) in Pietermaritzburg, South Africa to determine 

the responses of selected upland rice from Liberia to drought imposed for 21 days during 

the establishment, tillering and booting-to-grain-filling stages of development. The plant 

establishment stage consisted of the period commencing from sowing up to 28 days after 

sowing (DAS). The tillering stage was considered to be the period from the emergence of 

the first tillers to the commencement of stem elongation. The period from 10 days after 

emergence of the flag leaf to the onset of grain ripening was considered to be the booting-

to-grain-filling stage, as described by De Datta (1981) and Yoshida (1981).  

4.3.1 Plant materials 
Twenty-four rice genotypes from Liberia were evaluated. The genotypes included 22 

traditional upland varieties, which had shown compatible reactions to a virulent pathotype 

of Pyricularia oryzae, SIK-111 (Chapter 3), and two improved cultivars, LAC 23 and FKR 

19. LAC 23 and FKR 19 were used as resistant and susceptible checks, respectively. LAC 

23, a selection from a traditional upland variety in Liberia, is the oldest and best performing 

improved cultivar grown in the country, and is known to show high levels of drought 

tolerance under severe drought stress in the vegetative stage, and under moderate drought 
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stress in the reproductive stage (De Datta and Seshu, 1982). FKR-19 is an improved rice 

variety from Burkina Faso, developed mainly for wetland conditions, with little drought 

tolerance. 

4.3.2 Controlled environment study: Experimental design and treatments  
The CE experiment was conducted in a glasshouse (day / night temperature, 30 / 200C; 

65% RH) situated on the Life Sciences Campus of UKZN. The experiment was laid out in a 

completely randomized design with four replications. The treatments included three water 

regimes: 100% field capacity (FC), 75% FC, and 50% FC, representing well-watered, 

moderate drought stress and acute drought stress, respectively. Twenty-five seeds of each 

genotype per replication were sown 3.0 cm apart, 1.0 cm deep in 4.8 L plastic pots (27.0 

cm high, with an upper diameter of 30.0 cm), utilizing a local topsoil as the growing medium. 

Each pot represented a single replication of each genotype per water regime. At sowing, all 

pots were saturated with water until free drainage occurred. Thereafter, the water-limiting 

treatments were imposed and maintained by regularly weighing the pots, and only replacing 

lost water up to the desired FC level, when necessary. The 100% FC (well watered) pots 

were watered once or twice daily until drainage occurred.  

 

4.3.3 Field experiments: Experimental design and treatments 
The field experiments were conducted under two contrasting environmental conditions 

(bare soil, or soil covered with a plastic mulch to exclude rainfall), over two seasons at 

UKZN’s Ukulinga Research Farm (29° 40’ S, 30° 24’ E; 806 m above sea level), from early 

November to end of April in 2012/2013 and 2013/2014. Based on annual averages of long 

term climatic data, Ukulinga has a mean annual temperature and rainfall of 180C and 738 

mm, respectively. Weather data for the period of the field trials are presented in Table 4.1. 

During the first year, plants were evaluated separately for reaction to drought imposed at 

both the tillering and the booting-to-grain-filling stages of development, and only for drought 

stress imposed at the booting-to-grain-filling stage during the second year.  

 

The experimental design for each environment consisted of a split plot arrangement, with 

water regime as the main plot, and genotype as the sub-plot. Each treatment combination 

was randomly assigned in three blocks. Genotypes were established by transplanting two-

week old seedlings of each genotype at one seedling per hill in single row plots measuring 

15.0 m for the first year, and 30.0 m for the second year. Intra- and inter-row spacing was 

15.0 X 50.0 cm.  
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Table 4.2: Monthly minimum and maximum temperatures, solar radiation, and 
evapotranspiration at Ukulinga research site during the experiments.  Data source: 
Agricultural Research Council (ARC), SA. 

 
Year 

 
Month 

Temperature Solar 
radiation 
(MJ m-2) 

Evapo-
transpirati
on (mm)  Minimum (0C) Maximum (0C) 

2012/  
2013 

November 9.62 32.90 15.92   91.17 
December 14.12 31.50 20.71 124.90 
January 14.75 38.40 18.28 113.60 
February 13.90 33.80 18.84 105.00 
March 12.96 32.00 15.43   93.98 
April 9.28 35.10 14.12   86.96 

 Mean 12.44 33.95 17.22 615.61* 

2013/ 
2014 

November 14.88 25.00 19.00 112.30 
December 15.93 23.40 16.78 100.50 
January 18.10 28.00 20.46 131.10 
February 18.20 28.20 20.83 116.10 
March 17.13 26.20 16.30 101.70 
April 13.62 24.40 15.48   87.49 

 Mean 16.31 25.87 18.14 649.19* 
* Values for Reference evapotranspiration are totals, not means. 

The well-watered treatment was maintained by irrigating regularly, ensuring that the soil 

water tension at 30 cm depth of the profile remained at levels below -15 kPa, throughout 

each experiment. Drought stress was imposed by withholding irrigation supply to the 

intended plots for 21 days beginning at 4 weeks after transplanting, or at booting. MPS-2 

dielectric water potential sensors (Decagon Devices, USA) were used to monitor moisture 

tension in the soil. Drip irrigation, supplied by perforated plastic pipes (www.netafim.co.za) 

was used to deliver water to the plots, both covered and uncovered. The irrigation tubes for 

the plastic-covered plots were buried beneath the plastic mulch, such that water flow was 

directed upward at the plastic mulch, in order to prevent erosion due to water pressure.  

Delivery and control of irrigation water to the plots were managed with the aid of solenoids 

and an automatic irrigation scheduling unit (Hunter Industries, USA). 

The trials were laid out on a well-drained, slightly sloping land. The upper levels of the slope 

were allocated to the drought stress treatment plots, and the lower level to the control 

treatment, in order to reduce seepage (interplot interference), and to improve drainage of 

the stress treatment plots. 

Since the genotypes differed in days to heading, plants were planted at different time 

intervals in order to achieve synchronization of booting for all the plants in the reproductive 

and ripening stage drought stress treatment plots. 
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4.3.4 Measurements and data analyses 
Data collected from the CE experiment included emergence and seedling plant height. 

Seedlings were counted daily for up to 14 days to determine the number of days to 50% 

emergence (D50E) and final emergence (FE). Seedling heights (PH) were measured at 28 

days after sowing (DAS) by determining the length of each main culm, from the surface of 

the soil to the tip of the longest leaf.  

During the field experiments the following data were collected: leaf rolling (Lr), leaf death 

(Ld), days to heading (DDH), flowering delay (FD), spikelet fertility (SF), leaf chlorophyll 

content index (CCI), and stomatal conductance (SC), in addition to above ground biomass 

at heading (BM), tiller productivity (TP), grain yield (GY), and 1000 grain mass (GM). Leaf 

rolling, CCI and Sd were measured 14 days after withholding irrigation (DAWI), and Ld at 

21 DAWI by visually integrating the symptoms exhibited by five plants per plot, according 

to the standard evaluation system for rice (IRRI, 2006). 

Leaf rolling was scored during the morning hours using the scale 0, 1, 3, 5, 7 or 9, indicating 

leaves were healthy, leaves just started to fold (shallow), leaves folded and showed deep 

V-shape, leaves fully cupped (U-shape), leaves folded with margins touching (o-shape), or 

leaves tightly rolled, respectively. Based on the total leaf area lost to desiccation, leaf death 

was scored on a scale of zero (no senescence) to 5 (leaves completely dried). Drought 

recovery, after relieving tillering stage drought stress, was assessed 10 days after 

reinstatement of irrigation. Leaf chlorophyll content index and SC were measured around 

10 am to 12 noon at each occasion, using a portable leaf chlorophyll meter (SPAD-502 

Plus, Konica Minolta) and a leaf porometer (SC-1, Decagon Devices), respectively. The top 

most fully developed leaf on each of five plants, chosen randomly per plot, was selected for 

the measurements. 

The days to flowering was recorded as the number of days from transplanting to the time 

when 50% of the plants per plot headed. Flowering delay for each genotype was measured 

as the difference between the days to flowering in the stress-applied plots and the days to 

flowering in the well-watered (control) plots. Above ground biomass was determined at 

heading, by averaging the dry masses of five sampled and tagged plants per plot, after oven 

drying at 700C for 48 hr. Spikelet fertility, TP and 1000 GM per plant were determined by 

harvesting the five plants per plot at maturity. Spikelet fertility was measured according to 

the method proposed by Lafitte et al. (2003). A sample of 6 to 12 panicles were taken from 

the harvested plants, threshed by hand, and the filled and empty spikelets separated and 

weighed. Thereafter, the mass of 200 spikelets from each of the two subsamples were 

obtained and used to calculate spikelet fertility as follows: 
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Spikelet fertility (%) = 100 X (number of filled grains in the sample) / (number of filled grains 

+ number of unfilled spikelets), where the number of filled grains or empty spikelets was the 

quotient of the total mass of filled grains or empty spikelets and the average mass of 200 

filled grains or empty spikelets. Tiller productivity was determined as the percentage of tillers 

that developed grain-bearing panicles. 

All data were summarized by analysis of variance, using the statistical software GenStat® 

Version 14 (VSN, International) to determine the mean performances of the genotypes for 

each trait. Fisher’s LSD test was applied to separate the means of the levels of treatments 

showing significant differences for D50E, FE and PH. Since several different traits were 

measured on different scales during the field trials, principal components analyses, based 

on correlations, were applied to determine the linear combinations of the traits that 

contained most of the variation between the genotypes. Simple correlation and path 

analysis were calculated to determine the associations between the measured traits, as well 

as their usefulness for predicting grain yield under both well-watered conditions and drought 

stress imposed during the booting-to-grain-filling stage. 

 
4.4 Results 
 

4.4.1 Effects of water regime on seedling emergence and height  
Data on final emergence, the days to 50% emergence and seedling height at 28 DAS are 

presented in Table 4.2. The genotypes varied significantly (p < 0.01) for all three traits under 

the three water regimes. The mean number of days to 50% emergence was lower for seeds 

sown under soil water conditions of 75% and 50% FC than for those sown under well-

watered conditions. Except for FKR 19, the genotypes emerged relatively earlier in soils 

with lower water status than those kept continuously well-watered. The levels of final 

emergence were statistically similar between the three water regimes.  

At 28 DAS, seedling height followed an increasing trend, with increasing levels of water in 

the soil, except for LR 26, 5, 38, 15 and LAC 23 whose heights were statistically similar 

under the two water limited conditions. LR 26 exhibited the lowest mean decline in seedling 

height due to low soil water status, whilst LR 24-1 exhibited the highest decline in seedling 

height. 
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4.4.2 Influence of water regime on plant performance under field 
conditions  
 
The mean effects of water regime on the expression of various traits during the 2012 / 2013 

cropping season are presented in Table 4.3. Drought stress imposed during the booting-to-

grain-filling stage of the plants’ development significantly reduced the performances of the 

plants for all the traits, and increased DDH by a mean of 13 days. Except for CCI, Lr, Ld, 

SC, and TP during the periods of drought stress, differences in the expression of traits 

between the well-watered plots and those subjected to drought stress during the tillering 

stage of development were not significant (p = 0.05). Drought imposed during the tillering 

stage led to a significant increase in tiller productivity (p < 0.01). The chlorophyll content 

index, Lr, Ld and SC of the genotypes measured during tillering stage drought stress did 

not differ significantly from those obtained when drought was imposed during the booting-

to-grain-filling stage. Of all the genotypes, FKR-19 suffered the greatest injury, as exhibited 

by its yield performance under tillering stage drought stress (Figure 4.1).   

As reported in Chapter 5, differences between plants grown on bare soil and those grown 

on soil covered with plastic mulch were not significant for all the traits, except CCI, Lr, SD 

and Ld, in the plots subjected to drought during both the tillering and reproductive stages of 

development. Significant differences were also found between the two environments for TP 

and GY of the plants subjected to drought during the booting-to-grain-filling stage of 

development. 
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Table 4.2: Plant height and emergence characteristics of rice genotypes grown under 
three levels of soil water content  

 Plant height at 28 DAS 
(cm)  

  Days to 50% 
emergence  

  Final emergence (%) 

Genotype 100% 75% 50%  100% 75% 50%  100%   75%   50% 
LR 2 43.3 25.3 21.5  5.0 4.0 5.0  100.0 100.0 100.0 
LR 3 44.3 31.3 20.7  5.0 5.0 5.0  96.0 100.0 76.0 
LR 4 50.2 28.5 19.3  5.0 4.0 5.0  100.0 100.0 100.0 
LR 5 45.2 25.0 24.3  5.0 4.0 5.0  96.0 100.0 100.0 
LR 6 43.8 26.0 21.2  6.0 4.0 5.0  100.0 100.0 96.0 
LR 7 41.4 23.9 18.4  6.0 4.0 6.0  92.0 96.0 100.0 
LR 8 46.8 31.7 23.3  7.0 4.0 5.0  100.0 100.0 100.0 
LR 10 46.9 28.2 23.8  6.0 5.0 5.0  96.0 100.0 100.0 
LR 11 51.7 29.3 23.3  5.0 4.0 4.0  100.0 100.0 96.0 
LR 14 45.7 31.8 23.7  5.0 4.0 6.0  80.0 80.0 100.0 
LR 15 42.0 23.4 17.7  5.0 4.0 4.0  100.0 100.0 100.0 
LR 21 44.5 29.7 23.0  5.0 5.0 5.0  96.0 100.0 100.0 
LR 22 43.0 28.3 21.4  6.0 4.0 4.0  100.0 100.0 100.0 
LR 23 47.8 31.5 25.1  5.0 5.0 5.0  96.0 100.0 100.0 
LR 24-1 49.3 29.6 23.5  5.0 4.0 5.0  96.0 100.0 100.0 
LR 24-2 45.8 30.7 25.5  5.0 5.0 5.0  100.0 100.0 100.0 
LR 25 46.3 28.3 23.5  5.0 4.0 5.0  100.0 100.0 100.0 
LR 26 41.1 27.2 23.9  5.0 5.0 5.0  100.0 100.0 96.0 
LR 27 45.9 29.8 19.9  5.0 5.0 5.0  100.0 100.0 100.0 
LR-32 47.3 27.4 21.8  5.0 4.0 5.0  100.0 100.0 96.0 
LR 36 44.4 26.0 21.8  5.0 5.0 5.0  92.0 100.0 100.0 
LR 38 43.2 24.2 20.7  5.0 4.0 5.0  96.0 100.0 100.0 
LAC 23 49.2 32.9 27.6  5.0 4.0 4.0  100.0 100.0 100.0 
FKR 19 39.4 22.3 21.8  5.0 6.0 6.0  100.0 76.0 76.0 
Mean 45.4 28.0 22.4  5.3 4.4 5.0  97.3 98.0 97.3 
LSD(p = 0.05)          2.1a   0.8b   3.6c  0.3a 0.1b 0.5c  1.2a 0.5b 2.0c 
CV (%)                                            7.3                          5.7  4.3 

a LSD(p = 0.05) for genotype; b LSD(p = 0.05) for water regime; c LSD(p = 0.05) for genotype X water 
regime 
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Table 4.3: Effect of water regimes on the expression of various traits  

 
 
Trait 

Water regime  
Well 

watered 
Drought at 

tillering stage  
Drought at booting-

to-grain-filling 
stage  

 
LSD(p = 0.05) 

1000 grain mass (g) 29.19         28.46  15.74 6.55 
Biomass (g plant-1) 77.93 68.25 59.34    12.26 
Chlorophyll content index 27.33 11.72 12.08 4.00 
Days to heading   120.08       120.45           132.91 6.02 
Flowering delay (day)       -           0.00 12.83 - 
Grain yield (g plant-1) 31.65 30.48 11.44 7.82 
Leaf death       -  3.64   3.15 0.91 
Leaf rolling       -  6.77   6.79 0.32 
Spikelet fertility (%) 84.56         81.95  22.53    11.33 
Stomatal conductance   393.64         30.20            29.67    25.60 
Tiller productivity (%) 80.99         84.81    5.32 2.04 

Data are means for two environments (bare soil and soil covered with plastic mulch) during the 
2012 / 2013 cropping season. 

 

 

 
 
Figure 4.1: Pattern of yield responses of 24 rice genotypes subjected to drought stress 
during the tillering stage of development 
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4.4.3 Performance of genotypes under well-watered conditions 
Mean squares of various sources of variation for traits expressed by the plants grown under 

well-watered conditions are presented in Table 4.4. Significant levels of variation were 

recorded amongst the genotypes for all the traits measured, except CCI. Differences 

between the growing environments (bare soil and soil covered with plastic mulch) was 

significant only for BM and CCI (Table 4.4).  

Table 4.4: Mean squares and significant tests of eight traits expressed by 24 rice genotypes 
grown under well-watered conditions 

Component 

Sources of Variation 

Genotype Soil cover Year 

Genotype 
x 

Soil cover 

Genotype 
x 

Year 

Soil cover  
x  

Year 

Genotype  
x Soil 

cover x 
Year Error 

DF      23       1 1        23     23      1      23 190 
1000 GM    47.10***   0.11  0       0.01    0.01     0.02***   0.01     0.04 
BM 2248.00***     10.81*    10.35    68.28   3.12 0.61   3.39 269.00 
CCI     174.71   102.82**       0.61     10.19  14.85       6.30 14.33    22.00 
DDH   1356.53**  28.13     80.22     15.76  11.95     19.01  13.70   156.03 
GY   537.49***     91.46      3.32     37.41   0.48       0.00   0.76   17.00 

SC 14100.90** 8562.70 1357.20   2294.90 2781.50 3523.80  2693.10 3225.00 

SF 132.67**   21.62     30.23     17.91     3.86       0.26     4.38       7.00 

TP    659.42     0.50     21.78     26.45     2.76       0.00     4.52     14.20 
DF, GM, BM, CCI, DDH, GY, SC, SF and TP represent degrees of freedom, 1000 grain mass, above ground 
biomass at heading, chlorophyll content index, days to heading, grain yield, stomatal conductance spikelet 
fertility and tiller productivity, respectively. ** and *** represent level of significant value at p < 0.01 and 0.001, 
respectively. 
 

The influence of year on the responses of the genotypes was not significant. Compared to 

the other traits, minimal variability between the genotypes were recorded for 1000 GM, SF 

and CCI. 

Principal components analysis of the eight traits measured revealed that most of the 

variation (74%) between the genotypes under well-watered conditions occurred in the 

direction of GY, TP, and CCI (Table 4.5). The first principal component (PC1) accounted for 

35.2% of the variation, and was primarily a measure of GY. It also showed that the higher 

yielding genotypes were those that accumulated more BM by the time of heading. The 

second PC (PC2) was mainly correlated with TP (0.55), and showed that the genotypes 

with higher levels of TP also tended to exhibit higher values for 1000 GM (0.51). The third 

PC accounted for 10.06% of the total variation, and was negatively related to CCI (-0.64). 

The genotypes that showed lower levels of CCI and SC also tended to have poor grain 

filling characteristics, leading to lower values for 1000 GM. The late maturing genotypes 

tended to exhibit increased greenness (CCI) and higher levels of SF, and these traits 

exhibited the highest level of correlation with the fourth PC.  
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Table 4.5: Latent vectors showing eight traits of 24 rice genotypes evaluated under well-
watered conditions in two environments over two seasons 

  Principal component 
 Trait PC1 PC2 PC3 PC4 
1000 grain mass -0.1097   0.5175 -0.4247 0.3221 
Biomass 0.5254 -0.1169 0.1266 -0.0782 
Chlorophyll content index 0.0247 -0.3276 -0.6567 0.3662 
Days to heading 0.2096 -0.4709 0.2482 0.6037 
Grain yield 0.5468 0.0654 0.0133 -0.2457 
Stomatal conductance 0.3981 0.0916 -0.4621 -0.2972 
Spikelet fertility 0.4447 0.2002 -0.0144 0.3493 
Tiller productivity 0.1098 0.5803 0.3112 0.3477 
Percentage of variation 35.2100      21.47300      16. 9600      10. 0600 
Cumulative variation 35.2100 56.9400 73.9000 83.9600 

 

Based on the percentage of the variances accounted for by the PCA biplot (57%) (Figure 

4.2), it reflects the responses of the genotypes for each trait, as well as the association 

between each pair of traits. The genotypes were well dispersed in all sections of the PCA 

biplot. LR 8 appeared more similar to the resistant check and LR 2, whereas LR 6 and LR 

21 were similar to FKR-19 for most traits. LR-8, followed by LR-2, produced the highest 

grain yield, with a marginal advantage over the elite LAC 23 genotype. The latest maturing 

genotypes were LR 23 and 26, whilst LR 7 and 38, which also exhibited the lowest CCI, 

were the earliest to mature. Traits with vectors pointing in the same direction were positively 

correlated, and those in opposite direction, were negatively correlated. Stomatal 

conductance, SF and BM were more closely associated with GY than were the rest of the 

traits.  

Simple correlation analysis showed that BM at heading, SC and SF were highly correlated 

(P < 0.01) with grain yield under well-watered conditions (Table 4.6). The direct and indirect 

paths leading to high grain yields for the current population under well-watered conditions, 

as determined by path analysis of the data on correlation between the various traits are also 

presented in Table 4.6. The days to heading emerged as the direct path leading to high 

grain yield, indirectly through BM and CCI.  
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Figure 4.2: Association amongst 24 rice genotypes and 8 traits assessed under well-

watered conditions 

 

Table 4.6: Associations between grain yield and yield components of 24 rice genotypes 
grown under well-watered conditions. The bold-numerals arranged diagonally are direct 
path values; the remaining numerals are indirect contributors to grain yield. Numerals in 
column labelled GY are correlation coefficients. 

 Trait 
Path coefficient   

1000 GM BM CCI DDH SC SF TP  GY 

1000 GM 0.05 0.01 0.00 -0.07 0.01 0.00 0.00  -0.12 

BM -0.02 -0.04 0.00 0.05 0.02 -0.02 0.00   0.85** 

CCI 0.00 0.00 -0.06 0.04 0.01 0.00 0.00  -0.07 

DDH -0.02 -0.01 -0.01 0.17 -0.01 -0.01 0.00   0.11 

SC 0.01 -0.02 -0.01 -0.02 0.06 -0.02 0.00   0.62** 

SF 0.00 -0.02 0.00 0.03 0.03 -0.03 0.00   0.57** 

TP 0.02 0.00 0.02 -0.02 -0.02 -0.01 0.00   0.16 
DDH, CCI, BM, GM, SC, SF, TP, and GY represent days to heading, chlorophyll content index, straw 
dry mass, grain mass, stomatal conductance, spikelet fertility, tiller productivity and grain yield per 
plant, respectively. ** represents p < 0.01. 
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4.4.4 Responses of rice genotypes to drought stress imposed during the 
booting-to-grain-filling stage of development 
 
The levels of the variation for several traits amongst the plants subjected to drought stress 

during the booting-to-grain-filling stage of rice development are presented in Table 4.7. 

Variation for each of the traits was due mainly to genotypic effects, and less to the year or 

growing environment. Interactions between the different combinations of factors were not 

significant, except for 1000 GM, which showed a significant soil cover by year interaction.  

 
Table 4.7: Mean squares of 10 traits expressed by 24 rice genotypes in response to drought 
stress occurring during the booting-to-grain-filling stage of development 

 Sources of Variation 

  Genotype 
Soil 

cover Year 

Genotype 
x  

Soil cover 

Genotype 
x 

Year 

Soil cover 
x  

Year 

Genotype x 
Soil cover x  

Year Error 
DF     23      1 1         23         23      1     23 190 
1000 GM 47.10*** 0.11*** 0.00 0.01 0.01   0.02*** 0.01     0.04 
BM 616.40*** 288.60 9.90 108.90 203.40     8.10    141.60 207.90 
CCI    12.67** 0.05 0.01 0.00 0.00     0.00 0.02 1.01 
FD 177.04*** 0.10 0.04 0.18 0.19     0.00 0.21 0.22 
GY 75.36*** 0.08 0.00 0.19 0.17     0.00 0.19 0.23 
Ld      7.64** 0.14 0.00 0.19 0.19     0.00 0.23 0.27 
Lr    17.81** 0.09 0.00 0.19 0.20     0.00 0.18 0.25 
SC    24.73** 0.13 0.03 0.00 0.01     0.01 0.02 0.98 
SF 2197.62*** 0.11 0.00 0.19 0.18     0.00 0.24 0.24 
TP 178.03*** 0.12 0.00 0.19 0.21     0.00 0.20 0.21 

DF, GM, BM, CCI, FD, GY, Ld, Lr,  SC, SF and TP represent degrees of freedom, 1000 grain mass, above 
ground biomass at heading, chlorophyll content index, flowering delay, grain yield, leaf death, leaf rolling, 
stomatal conductance, spikelet fertility and tiller productivity, respectively. 
 
Principal component analysis revealed that the variation between the genotypes subjected 

to drought stress during the booting-to-grain-filling stage of development can be largely 

explained by their patterns of Lr, GY, CCI, SF, and TP (Table 4.8). The fitted values of the 

genotypes for each trait are depicted in Figure 4.3, as the orthogonal projection of their 

respective points to the vector of each trait. LR 24-2, followed by LR 32, 8, and 11 produced 

the highest GY, whilst the susceptible check (FKR 19) and LR 23 produced the least. LR 

10, 2 and 11 exhibited the lowest leaf rolling characteristics, whilst LR 36, followed by LR 

8, 32 and 25 portrayed the highest values of CCI. Spikelet fertility, which showed a negative 

correlation with the third PC, was highest in LR 6, LR 8 and LAC 23. Flowering delay was 

shortest in LR 11, followed by the resistant check variety, and LR 10 and LR 6. Genotypes 

LR 38, 7 and 15 were the earliest maturing varieties, with similar FD profiles as LR 11, LAC 

23, LR 10 and LR 6. 
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Table 4.8: Latent vectors of the directions in which 24 rice genotypes exhibited the greatest 
variations for a combination of 10 traits, when subjected to drought stress during booting-
to-grain-filling in two environments, over two seasons 

  Principal component 
 Trait 1 2 3 4 
1000 grain mass 0.4577 -0.3002 0.0256 -0.0612 
Biomass 0.1623 0.3790 0.3043 0.3864 
Chlorophyll content index 0.0335 0.3015 0.6485 -0.0756 
Flowering delay -0.2319 0.3817 -0.4632 -0.2484 
Grain yield 0.2584 0.5018 -0.0837 0.3155 
Leaf death -0.3937 -0.1029 0.0095 0.4236 
Leaf rolling -0.4950 0.2741 0.0650 0.0558 
Stomatal conductance 0.4074 0.0455 -0.0269 0.0857 
Spikelet fertility 0.2498 0.2283 0.5077 0.2625 
Tiller productivity 0.1193 0.3714 0.0427 0.6489 

Percentage of variation 33.3500      17.6500      12.8600       11.1000 
Cumulative variation 33.3500 51.0000 63.8600 74.9600 

 

 

Figure 4.3: Association amongst 24 rice genotypes and 10 traits assessed under drought 
stress applied during the booting-to-grain-filling stage of development 
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4.4.5 Association between grain yield and other traits in response to 
drought stress imposed during the booting-to-grain-filling stage of rice 
development 
 
Table 4.9 depicts both the direct and indirect contributions of each trait to GY, as well as 

the levels of correlation between the traits and GY, as derived from the assessment of the 

rice plants subjected to drought stress during the booting-to-grain-filling stage of 

development. Tiller productivity and BM were the most important traits associated with high 

GY. Thousand grain mass directly influenced grain yield, via lower leaf rolling 

characteristics; whereas, high leaf rolling characteristics directly influenced grain yield 

negatively. 

Table 4.9: Direct and indirect contributions of various traits to grain yield, as exhibited by 24 
rice genotypes subjected to drought stress during the booting-to-grain-filling stage of 
development. The bold-numerals arranged diagonally are direct path values; the remaining 
numerals are indirect contributors to grain yield. Numerals in column labelled GY are 
correlation coefficients. Numerals in column labelled GY are correlation coefficients. 

Trait 
 Path coefficient 

GY 1000 GM BM CCI FD Ld Lr SC SF TP 
1000 GM 0.82 -0.01 0.00 0.02 -0.02 -0.68 -0.01 0.02 0.00   0.15 

BM 0.07 -0.06 0.01 0.01 -0.01 -0.05 0.00 0.03 0.00   0.45** 

CCI -0.09 -0.01 0.03 0.01 0.00 0.10 -0.01 -0.03 0.00   0.14 

FD -0.33 0.01 0.00 -0.06 0.00 0.36 0.01 0.02 0.00   0.12 

Ld -0.41 0.01 0.00 0.00 0.03 0.40 0.01 -0.04 0.00  -0.22 

Lr -0.72 0.00 0.00 -0.03 0.02 0.77 0.02 -0.07 0.00  -0.13 

SC 0.34 0.00 0.00 0.02 -0.01 -0.39 -0.03 0.07 0.00   0.41 

SF 0.09 -0.01 0.00 -0.01 -0.01 -0.26 -0.01 0.20 0.00  0.36** 

TP 0.14 -0.01 0.00 0.01 0.00 -0.19 -0.01 0.06 -0.01  0.62** 
DF, GM, BM, CCI, FD, GY, Ld, Lr,  SC, SF and TP represent degrees of freedom, grain mass, above ground 
biomass at heading, chlorophyll content index, flowering delay, grain yield, leaf death, leaf rolling, stomatal 
conductance, spikelet fertility and tiller productivity, respectively. ** represents p < 0.01. 
 

4.5 Discussion 

Identifying potential progenitors, specific breeding targets and effective selection criteria are 

essential requirements for developing resilient varieties for drought-prone environments. 

Results of many previous studies suggest that yield stability across the expected range of 

variability in moisture regimes of such environments may be achieved by cultivating 

varieties that yield relatively higher, both under stress-free and drought-stressed conditions 

(Ramezanil and Torabil, 2011; Raman et al., 2012). In the current studies, the performances 

of a collection of rice genotypes from Liberia were assessed for various traits under well-

watered or under drought stress conditions imposed during the establishment (seedling), 

tillering or booting-to-grain-filling stages of development.  
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4.5.1 Growth-stage-specific vulnerabilities of genotypes to drought stress 
Drought stress due to the limitation of water during plant establishment mainly resulted in a 

significant reduction in seedling growth, as the genotypes grown in the pots with soil water 

contents of 50% or 75% FC were more stunted than those grown in the well-watered pots. 

Despite this negative impact of limited soil water content, no seedling mortality was 

observed. These results show that the traditional genotypes possessed good levels of 

tolerance to drought occurring at the establishment phase of development, a trend that is 

indicative of their specific adaptability to production under dry land conditions.  

Drought stress imposed during the tillering stage of growth, by withholding irrigation for up 

to 21 days, did not significantly alter the mean yields of the genotypes from the pattern 

observed under well-watered conditions, although the yield of the susceptible check was 

significantly lower than the mean. The lack of differences in yields and most of its 

components was perhaps the result of a drought that was not severe enough as to cause 

plant mortality and to diminish crop stand. Earlier research has shown that yield reduction 

arising from drought stress occurring during the vegetative stage of rice growth were mainly 

attributed to poor plant recovery following relief of the stress (Herve and Serraj, 2009; Serraj 

et al., 2009).  

Despite the limited impact of drought stress on yield and its components, when imposed 

during the tillering stage of development, drought stress induced leaf rolling and leaf death, 

and led to significant decreases in CCI and SD. The lack of significant differences in key 

traits (including BM, GY, DDH, SF and 1000 GM) between genotypes grown under well-

watered conditions and those subjected to drought stress during the tillering growth phase 

indicates that drought stress occurring around mid-season may not threaten the production 

of upland rice genotypes from Liberia, as long as it does not continue indefinitely or become 

intense enough to cause significant mortality. A close relationship between yield under 

moderate drought stress and yield under well-watered conditions was earlier reported by 

Seetharama et al. (1982), suggesting that mild drought stress is usually insufficient to 

induce reactions that can clearly discriminate between genotypes for drought tolerance. 

The levels of leaf rolling, leaf death, CCI and SD recorded under vegetative phase drought 

stress was not statistically different to those observed when the genotypes were subjected 

to drought stress during the booting-to-grain-filling stage of development. Early screening 

for these traits could therefore be sufficient for charactering genotypes of the present 

population for these traits.  

The grain yield and yield components of all the genotypes significantly diminished as a 

result of withholding water during the booting-to-grain-filling stage of development, showing 
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that this growth phase is the critical growing period or phenological stage to consider when 

breeding to improve drought tolerance of rice. Studies have shown that rice is particularly 

sensitive to drought stress occurring at the reproductive stage of development, even if the 

drought occurs for some limited period that coincides with the period of grain formation and 

grain filling (Ekanayake et al., 1989; Saini and Westgate, 1999).  

4.5.2 Responses of genotypes to drought stress during the establishment, 
tillering and booting-to-grain-filling stages of development  
 
During the establishment phase of development, drought was imposed by limiting soil water 

content to levels not exceeding 50% or 75% FC, following the sowing of seeds. All the 

genotypes, except FKR 19, emerged more evenly and faster under those water-limiting 

conditions. Although the genotypes varied significantly for each of the three traits (final 

emergence, days to 50% emergence and PH at 28 DAS) measured, the differences for 

these traits were small and were not sufficient to exploit for crop improvement purposes. 

As during plant establishment, drought imposed during the tillering stage of development 

did not seem sufficient to clearly differentiate the upland genotypes for drought tolerance. 

However, all of the upland genotypes appeared to possess superior levels of drought 

tolerance relative to the susceptible check (FKR 19).  

When drought was imposed during the booting-to-grain-filling stage of development, 

significant differences were observed between the genotypes for all traits measured. LR 24, 

32, 11 and 8 emerged as the least affected genotypes. Generally, at least two traditional 

upland genotypes appeared better than the resistant check (LAC 23) for every trait 

measured, whilst all appeared better than FKR-19 for every trait. These results indicate that 

several of the upland genotypes could be useful as parents when breeding to improve 

drought tolerance of rice from Liberia.  

4.5.3 Importance of traits for selection  
The traditional approach to breeding crops for drought tolerance has mostly focused on 

yield as the criterion for selection (Richards, 1982). However, in situations of severe drought 

stress, yield may be eliminated, rendering it impossible to apply selection upon the 

genotypes: they all score zero for yield. It may therefore become necessary to rely on 

secondary traits to determine drought tolerance of breeding lines. The value of each 

secondary trait will therefore depend on the level of its association with grain yield under 

drought stress in the target environment (Lafitte et al., 2003). Principal components, simple 

correlation and path analyses were therefore applied to explore the association between 

the various traits in order to identify traits that could be used as secondary selection criteria 
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for determining both drought tolerance and yield potential within the germplasm under 

study. 

Under well-watered conditions, the correlation between the various traits and the first two 

principal components revealed that high SF, SC and BM accumulation were important for 

achieving high grain yield, whilst the second cluster showed that the late maturing 

genotypes tended to display higher levels of CCI. Tremblay et al. (2011) showed that leaf 

chlorophyll content is directly associated with plant nitrogen status, which is essential for 

the healthy growth and yield of crops (Prasertsak and Fukai, 1997; Adhikari et al., 1999). 

However, the higher CCI of the late maturing genotypes did not relate closely with high GY, 

as revealed by simple correlation and path analyses (Table 4.6). Hence, selection for 

shorter DDH can be important for enhancing the capacity of genotypes to escape terminal 

drought, thereby improving GY in drought-prone environments.  

The third cluster of genotypes projected by the PC analysis revealed that the 1000 GM of 

the genotypes tended to increase with improved levels of TP. Hence, selecting for improved 

TP can be useful for grain quality assurance because ineffective tillers are likely to 

contribute immature grains, which may inadvertently lower head rice yield, as well as the 

eating and cooking qualities of grains (Counce et al., 1996; Wang et al., 2007).  

Simple correlation analysis also revealed BM at heading and spikelet fertility as direct 

selection criteria for high grain yield under well-watered conditions. But two of these traits 

can only be assessed towards or at the end of the production cycle, rendering stomatal 

conductance as a key trait to use for the prediction of high grain yield early during the 

season.  

Path analysis, which is a statistical procedure used to explore cause and effect relationships 

in a system of correlated variables (Lleras, 2005), identified DDH as the most important 

criterion for improving grain yield than other traits; however, this may be achieved by indirect 

selection for high biomass at heading, and for high spikelet fertility. Path coefficient analysis 

revealed that when breeding rice for tolerance to drought occurring at the booting-to-grain-

filling stage of development, 1000 GM and Lr can be important for directly influencing high 

grain yield, using progenitors from the current population. Hence, by directly selecting for 

high 1000 GM and low leaf rolling scores, the breeder could inadvertently be selecting for 

high tiller productivity and low leaf death tendencies, respectively. In the event of intense 

drought stress, leading to very low grain yield, 1000 GM could be useful for further 

differentiating genotypes for levels of drought tolerance. However, leaf rolling may be a 

more useful index for determining drought tolerance of genotypes in the event of complete 

yield loss, or when screening is to be done early during the growing period. 
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4.6 Conclusion 

The upland genotypes exhibited the ability to emerge faster, and in greater numbers under 

limited soil water conditions of 50% to 75% FC than under continuously wet conditions of 

100% FC. These varieties also had the capacity to recover from drought stress imposed at 

the tillering phase of growth, although tillering was relatively lower in plants subjected to 

stress. All the plants were able to recover, progress to maturity, and yield almost equally as 

the well-watered controls. These results showed that the traditional upland rice varieties 

from Liberia were less vulnerable to drought stress for short periods during the 

establishment and tillering stages of development, as the ultimate impact of drought stress 

occurring at those times had relatively little effect on the final grain yield of the plants. 

However, drought occurring at the booting-to-grain-filling stage of development significantly 

diminished spikelet fertility, tiller productivity and grain yield of all the genotypes. Hence, the 

booting-to-grain-filling stage should be the most important growth stage to consider for 

improving upland rice from Liberia for tolerance to drought stress. The Liberian varieties LR 

2, LR 8, LR 11, LR 24-2, and LR 32 should be considered as possible progenitors for 

improving drought tolerance and yield potential of upland rice from Liberia, since they were 

the best performing genotypes under both well-watered and drought conditions occurring 

around the booting-to-grain-filling stage of development. Tiller productivity, above ground 

biomass at heading and 1000 grain mass appeared to be the most important drought 

responsive traits because they directly influenced grain yield in the population, as shown by 

the high levels of correlation with grain yield under reproductive stage drought stress. These 

traits should be used as secondary criteria for further selection of varieties with improved 

tolerance to drought, as the breeding cycle progresses. In addition, since field screening for 

drought tolerance is usually unreliable in a high rainfall country like Liberia, a more precise 

phenotyping methodology for such environments need to be developed. 
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CHAPTER 5 

SCREENING RICE (ORYZA SATIVA L.) FOR TOLERANCE TO DROUGHT 
USING A PLASTIC MULCH SOIL COVER SYSTEM 

 

5.1 Abstract 

Screening for drought tolerance during a normal cropping season in most target 

environments is problematic in the absence of a reliable water control mechanism such as 

a rainout shelter. The feasibility of using a plastic mulch soil cover (PMSC) facility to 

stimulate drought stress in rice (Oryza sativa) during periods of normal rainfall was 

investigated under field conditions and over two seasons. Twenty-four genotypes were 

grown either on bare soil, or on soil covered entirely with a 130 µm-thick polyethylene sheet, 

and subjected to well-watered or drought stressed conditions during the tillering or the 

booting-to-grain filling stages of development. Soil water potential and temperature at 

depths of 30 and 60 cm in the soil profile, stomatal conductance (SC), chlorophyll content 

index (CCI), chlorophyll florescence (CF), leaf rolling, leaf death, tiller productivity and grain 

yield of the plants were measured to determine the usefulness of the PMSC facility for 

drought screening. Measured soil water potential at depths of 30 and 60 cm during periods 

of controlled drought revealed that the PMSC facility largely excluded water when rainfall 

occurred. Leaf rolling and leaf death scores of plants subjected to drought stress in the 

PMSC facility were significantly higher (p < 0.05) than those subjected to drought stress in 

the bare soil. Also, when subjected to drought stress during the booting-to-grain-filling 

stage, plants grown in soil covered with plastic mulch showed significantly lower (p < 0.01) 

levels of tiller productivity and grain yield, compared to those grown in bare soil. The plastic 

mulch did not significantly alter (p = 0.05) soil temperature. Data on SC, CCI and CF 

revealed that plants grown in the well-watered plots of the PMSC photosynthesized and 

developed normally, as shown by high values of SC and CF, relative to the plants in 

simulated drought plots. This suggested that the plastic covering of the soil had no adverse 

effect on plant growth and development. The PMSC system was effective for enhancing 

managed drought stress in this study, and is therefore recommended for screening rice 

during periods of normal rainfall. The PMSC system is cheaper than a rain-out shelter 

facility, and is scalable for use on large plots and at diverse locations where rain-out shelters 

are neither affordable nor feasible. 

 

Keywords: drought screening, drought tolerance, plastic mulch soil cover, rice, soil water 

potential   
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5.2 Introduction 

In rainfed agriculture, uneven and low rainfall often exposes plants to drought stress, which 

is a major constraint to crop production and yield stability world-wide (Farooq et al., 2012). 

The ultimate impact of drought stress on crop growth and development depends on the 

severity of drought, which is determined by its timing, duration and intensity (Serraj et al., 

2005).  

Drought, mild or severe, poses a constant threat to rice production under rainfed conditions 

(Garrity et al., 1986). Drought stress occurring at various stages of crop development may 

slow crop growth rates, limit the absorption and translocation of minerals, and reduce 

tillering and biomass accumulation (Bouman et al., 2007). When drought occurs at the 

reproductive stage of rice development, it can impair grain formation and yield by disrupting 

panicle development, spikelet fertility and grain filling (Saini and Westgate, 1999). Reducing 

the impact of drought stress on rice production is therefore critical to avoiding losses and to 

enhancing productivity of the crop. 

Water saving production technologies, including the cultivation of drought tolerant and 

aerobic varieties, have been recommended to reduce water use in rice production without 

sacrificing yield (Tuong and Bouman, 2003). However, identification and development of 

such varieties requires field screening procedures capable of resolving small differences in 

the levels of drought tolerance of the selected entries. In situations where other elements 

of the environment, such as sub-optimal temperatures, tend to influence and confound 

results of screening during off-season periods of limited rainfall, test materials may have to 

be evaluated during a normal cropping season, which may be characterized by abundant 

rainfall. Also, during so-called dry seasons, unanticipated rainfall events may interfere with 

managed drought treatments during critical stages of assessment. When screening is to be 

conducted during a normal season, a reliable, accurate drought simulation technique may 

be needed to eliminate interference from rainfall and to impose drought of the desired 

intensity and duration at the right growth stages, if reliable results are to be obtained (Clarke 

and Townley-Smith, 1984; Subbarao et al., 1995).  

Traditionally, rain-out shelters have been used for drought simulation studies during normal 

cropping seasons (Blum, 2010). Unfortunately, the high cost of constructing a durable rain-

out shelter facility has largely limited its use to a few localities, and usually for small scale 

applications. Furthermore, their size is always quite limited (Saxena and O'Toole, 2002). As 

the problem of water scarcity intensifies around the world due to climate change, more 

research will be needed to develop efficient water-saving technologies, including the 

breeding of more drought tolerant varieties of all crops, particularly in emerging and 
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developing economies where the problem of drought is often acute. In a quest to create a 

technology that combines the flexibility of low cost and adaptability to multiple locations and 

various scales of operation, the present study was undertaken. The goal was to investigate 

the usefulness of a plastic mulch soil cover (PMSC) system for imposing an experimentally 

controlled drought stress, aimed at screening rice genotypes for drought tolerance during 

periods of normal to high rainfall.  

5.3 Materials and methods 

Plants were grown either on soil covered with polyethylene sheets, or on bare soil, and were 

subjected to either of two water regimes during the tillering stage of development from 

November to April in 2012/13, or during the booting-to-grain-filling stage during the same 

months in 2013/14.  

5.3.1 Description of study site 
The experiments were conducted at the Ukulinga farm (29o40’ S, 30o24’ E, 806 m above 

sea level) of the University of KwaZulu-Natal in Pietermaritzburg, South Africa. The 

prevailing temperatures, solar radiation and reference evapotranspiration measured during 

the trials are presented in Table 5.1.   

Table 5.3: Measured monthly climatic data during the field trial at Ukulinga, Pietermaritzburg 
(2012 /13 & 2013/14). Data source: Agricultural Research Council (ARC) – Institute for Soil, 
Climate and Water (ISCW), SA. 

 
Years 

 
Months 

Temperature (oC) Solar 
radiation 
(MJ m-2) 

Evapo-
transpiration 
(mm) 

Minimum Maximum 

2012/13 November 9.62 32.90 15.92   91.17 
December 14.12 31.50 20.71 124.90 
January 14.75 38.40 18.28 113.60 
February 13.90 33.80 18.84 105.00 
March 12.96 32.00 15.43   93.98 
April 9.28 35.10 14.12   86.96 
Mean 12.44 33.95 17.22 615.61* 

2013/14 November 14.88 25.00 19.00 112.30 
December 15.93 23.40 16.78 100.50 
January 18.10 28.00 20.46 131.10 
February 18.20 28.20 20.83 116.10 
March 17.13 26.20 16.30 101.70 
April 13.62 24.40 15.48   87.49 
Mean 16.31 25.87 18.14 649.19* 

* Values for reference evapotranspiration are totals, not averages. 
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5.3.2 Experimental design and treatments 
The design of the experiment, under each ground cover environment during both seasons, 

consisted of a split plot arrangement. Two water regimes (well-watered and drought 

stressed) were administered as the main plot factor, and twenty-four rice genotypes as the 

sub-pot treatment, replicated across three blocks. The genotypes (sub-plots) were randomly 

assigned to each water regime.  

The well-watered treatment was maintained by regularly watering to keep water potential at 

the 30 cm depth of the soil at -15 kPa throughout the trial. Drought stress was imposed by 

completely withdrawing water supply to the target plots for 21 days during the tillering or 

booting-to-grain-filling stages of plant growth.  

The genotypes included 22 rice varieties traditionally grown under rainfed upland conditions 

in Liberia, and two check varieties (LAC 23 and FKR 19). LAC 23 and FKR 19 were used 

as tolerant and susceptible checks, respectively. Plants were established in single row plots 

by transplanting one three-week-old seedling per hill, and establishing them under well-

watered conditions before subjecting them to drought stress at 4 or 16 to 22 weeks after 

transplanting (WAT). Within and between row spacings in each ground cover environment 

were 15.0 and 50.0 cm, respectively.  

5.3.3 Layout of the plastic mulch soil cover facility 
The basic components of the plastic mulch soil cover (PMSC) facility were polyethylene 

sheets (130 µm thick) and underground drip irrigation pipes. Plots were established on 

slightly sloping land to permit utilization of the lower levels of the slope for the well-watered 

(control) plots. After ploughing, ridges (10.2 m long) were prepared 50.0 cm apart to 

facilitate run-off of water from the plastic sheeting. Thereafter, each block of plots consisting 

of 12 ridges was completely covered with a single layer of the polyethylene sheet. The 

extreme ends of the sheets were buried in trenches in the ground to a minimum depth of 

1.0 m, in order to prevent lateral flow of water into the experimental plots from the ground 

bordering the plastic covered plots. The vegetation cover of the surrounding soil was also 

maintained to enhance evapotranspiration and water removal from the soil. Directly above 

the apex of the ridges, the plastic was perforated at 15.0 cm intervals, making circular holes 

(with diameters of 2.5 cm) to accommodate individual plants.  
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5.3.4 Water supply, soil water assessment and drought imposition 
Water to the plastic-covered plots was provided through a network of pressure-

compensated dripper lines (Netafim, Israel), buried beneath the plastic mulch, such that 

water flow was directed upward at the plastic mulch, in order to prevent erosion due to water 

pressure. Delivery and control of irrigation water to the plots were managed with the aid of 

solenoids and an automatic irrigation scheduling unit (Hunter Industries, USA). Water to the 

bare-soil plots was delivered by overhead sprinklers (Rainbird, USA). A 2.0 m barrier of 

plastic sheeting was used to prevent water delivered by the sprinklers from reaching plots 

subjected to drought stress. 

5.3.5 Data collection and analyses 
Soil water potential was monitored daily to determine the water status of the plots. Daily 

water potential and temperature of the soil at depths of 30 and 60 cm were calculated from 

hourly measurements obtained with the aid of dielectric water potential sensors (MPS-2, 

Decagon Devices, USA) that were connected to a data logger (EM50, Decagon Devices, 

USA). Chlorophyll florescence, leaf chlorophyll content index, and stomatal conductance of 

the test plants were recorded after withholding water and compared to those of plants grown 

on bare ground in order to ascertain the effect of the plastic mulch covering on plant 

performance. A portable plant efficiency analyser (Pocket PEA, Hansatech Instruments), 

was used to measure CF, and a leaf porometer (SC-1, Decagon Devices) to measure SD. 

The chlorophyll content index was measured with the aid of a chlorophyll meter (SPAD-

502Plus, Konica Minolta). Measurements were taken between 10 am and noon, on the top-

most, fully developed leaf of each plant, and averaged over five plants per treatment 

combination. Leaf rolling and leaf death scores were recorded by visually integrating the 

respective symptoms per plot, according to a standard evaluation system for rice (IRRI, 

2006). Leaf rolling was scored during the morning hours on the following scale of 0, 1, 3, 5, 

7 or 9: indicating leaves that were healthy; leaves just started to fold (shallow); leaves folded 

and showed deep V-shape; leaves fully cupped (U-shape); leaves folded with margins 

touching (0-shape); or leaves tightly rolled. Based on the total leaf area lost to desiccation, 

leaf death was scored on a zero (no senescence) – 5 (leaves completely dried) scale.  

Rainfall data was monitored and captured daily by an automatic weather station. Soil water 

potential data and plant growth responses during the imposed drought periods were 

subjected to analysis of variance and compared to determine the effectiveness of the PMSC 

system for simulating drought.  
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5.4 Results  
 

5.4.1 Soil water status of plots 
Data on soil water status and rainfall measured during the trial are presented in Figure 5.1. 

Water potential (30 cm depth) in the control plots remained well below -15 kPa, indicating 

that the plots were well watered and free of drought stress throughout the experiment. Soil 

water potential (at 30 and 60 cm depths) in the simulated drought plots decreased (became 

more negative) following the withdrawal of irrigation; soil water potential approached limits 

below field capacity (-33.3 kPa) after 3 days of withholding irrigation, during both the tillering 

and booting-to-grain-filling stages of development of the plants. Changes in soil water 

potential were more pronounced at the 30 cm depth of the profile, where soil water potential 

declined to levels below -500 kPa, the effective range of the sensors, after 10 - 19 days of 

withholding water. During both the tillering and booting-to-grain-filling stages of 

development, the soil water potential between the 30 and 60 cm profile depths varied 

significantly (P < 0.001) in all plots, except the control, where the mean soil water potential 

ranged from -12.6 kPa during the booting-to-grain-filling stage to -12.7 kPa during the 

tillering stage.  

5.4.2 Effect of rainfall on soil water status 
The effect of rainfall on the water status of the soil during the managed drought period varied 

significantly between the PMSC and bare soil treatments (Figure 5.1). No change was 

detected in soil water potential at depths of 30 or 60 cm under the PMSC during or following 

a rainfall event. Under bare soil, water potential in the soil tended to decline on most days 

of rainfall, including the following one to two days following heavy rainfall events.  



111 
 

Figure 5.1: Effect of managed drought treatment and rainfall on soil water potential during 

both the tillering (A) and booting-to-grain-filling (B) stages of growth. 
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5.4.3 Effects of the PMSC on selected physiological and agronomic 
responses of rice genotypes  
 
The PMSC caused no adverse effect on the test genotypes, apart from causing them to 

exhibit signs and symptoms of drought stress when drought was intentionally imposed 

(Figure 5.2). The values of all the traits  measured (CCI, SC, CF, tiller productivity and grain 

yield) for the plants grown under well-watered conditions in the PMSC plots did not differ 

significantly from those of plants grown under well-watered conditions in plots without plastic 

cover (Tables 5.2 and 5.3). No leaf rolling, nor leaf death, was observed for all the plants 

grown under well-watered conditions, irrespective of soil cover type. The temperature of the 

soil at both 30 and 60 cm depths ranged from 20 to 240C (Table 5.2), and did not significantly 

differ (p = 0.05) with soil cover.  

 

Figure 5.2. Using a plastic mulch soil cover system to facilitate drought screening of rice 

under field conditions during a normal rainfall season. Note: nets were used to prevent bird 

damage.  
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Table 5.2: Soil temperature and physiological responses of rice genotypes grown in soil 
with or without plastic mulch soil cover. Data are means for two seasons for booting-to-
grain-filling stage drought stress, and means for one season under tillering stage drought 
stress. 

Parameters 

Tillering stage Booting-to-grain-filling stage 

Plastic 
covered 
soil 

Bare 
soil 

LSD 
(p=0.05) 

CV 
(%) 

Plastic 
covered 
soil 

Bare 
soil 

LSD 
(p=0.05) 

CV 
(%) 

Soil Temperature 

(oC) 

        

Well watered 23.69  24.21   20.22  23.25   
Drought stressed 24.37  22.86   20.64  21.05   
  1.92 13.80  3.33 15.67 
Chlorophyll 

fluorescence 

(fv/fm) 

        

Well watered 0.79  0.78   0.79  0.79   
Drought stressed 0.65  0.72   0.58  0.71   
   0.07 10.82   0.09 13.25 
Chlorophyll 

content index 

(SPAD value) 

        

Well watered 45.33  42.6   41.72 38.50    
Drought stressed 18.21  26.7   22.6 19.57    
   2.25 19.67   2.30 17.50 
Stomatal 

conductance 

(mol m-2 s-1) 

        

Well watered 0.40 0.39   0.38 0.39    
Drought stressed 0.22 0.24   0.25 0. 23   
   0.08 14.7   0.12 11.11 
Leaf roll         
Well watered 0.00 0.00   0.00 0.00   
Drought stressed 7.80  6.50   8.20 8.20   
   0.68 12.20   1.22 9.82 
Leaf death         
Well watered 0.00 0.00   0.00 0.00   
Drought stressed 4.10  3.10   4.30 3.50    
   0.06 13.98   0.05 13.33 
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Table 5.3 Tiller productivity and grain yield of rice plants grown in soil either covered or not 
with a plastic mulch. Data are means for two seasons for booting-to-grain-filling stage 
drought stress, and means for one season under tillering stage drought stress. 

Parameters 

Tillering stage Booting-to-grain-filling stage 

Plastic 
covered 
soil 

Bare 
soil 

LSD 
(p=0.05) 

CV 
(%) 

Plastic 
covered 
soil 

Bare 
soil 

LSD 
(p=0.05) 

CV 
(%) 

Tiller productivity (%)         
Well watered 81.04 80.12   81.04 80.12   
Drought stressed 88.59 86.42   5.3 4.7   
  3.84 21.33  7.62 17.80 
Grain yield (g plant -1)         
Well watered 31.09 28.17   31.09 32.17   
Drought stressed 29.09 34.72   8.43 6.02   
   3.24 15.22   5.67 10.96 

 

5.5 Discussion 

Water is held largely in the soil by matric forces, both adsorptive and capillary, which plants 

must overcome to absorb water from the soil (Hillel, 1971; Lal and Shukla, 2004). Matric 

potential constitutes the major component of total soil water potential, which is normally 

equal to the former in non-saline environments (Campbell, 1988). Soil water potential 

corresponding to the upper and lower limits of available water (i.e., field capacity and 

permanent wilting point) in fine textured soils, as the one used for the current experiment, 

are typically estimated at -33 and -1500 kPa, respectively (O'Geen, 2012). Monitoring the 

status of water in the soil is not only an essential practice for sustaining crop production, 

but is also a critical component of studies involving plant water relations (Ram  et al., 1996; 

Torres et al., 2002; Munoz-Carpena, 2004). Therefore, in this study soil water potential was 

logged regularly to determine the status of water availability in the plots during the course 

of the experiments. 

5.5.1 Soil water potential and plant growth responses 
Throughout the study, soil water potential in control plots was maintained at levels below -

15 kPa, which is an indication that the plants were well watered and free of drought stress. 

As expected, following the withdrawal of irrigation to the target plots, the water potential at 

both depths of 30 and 60 cm became increasingly negative, leading to drought stress for 

the plants. Plants began showing signs of wilting less than 5 days after cessation of 

irrigation; however, assessments of drought sensitivity of the test plants were only done 7 

to 21 days after withdrawal of irrigation. The difference between plants grown in the well-
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watered and drought applied plots were obvious as shown in Figure 5.2 and Tables 5.2 and 

5.3. 

The water potential of the soil at 30 cm remained significantly lower than that at 60 cm 

(Figure 5.1), most likely as a result of higher extraction of water from the upper zone by the 

plants, as rice is characteristically a shallow rooted plant (Kondo et al., 1999). Studies have 

shown that at least 90% of the root lengths of most upland and lowland rice cultivars remain 

concentrated within the upper 40 cm of the soil profile (Beyrouty et al., 1997; Crusciol et al., 

2013). The relatively few strands of roots that extended further down to 60 cm did not absorb 

much water from this zone.  

5.5.2 Impact of rainfall on drought treatment under the PMSC 
The impact of rainfall on the drought treatment plots was closely monitored during the 

course of the trials. Leaf roll scores were recorded two to three days after single or 

consecutive rainfall events, and compared with the scores recorded on the previous day. 

Soil water status on every day of rainfall and the days thereafter was also noted. The results 

of leaf roll scores and soil water data showed that rainfall had no significant influence on 

the efficacy of the system (Figure 5.1). Soil water potential did not increase after rainfall 

events. Wilted plants remained wilted even after several consecutive days of rainfall. 

Soil water potential data also showed that water intercepted by the leaves or perforations 

in the plastic was not significant enough to trigger any significant shift in soil matric potential, 

at least at the 30 cm depth (Figure 5.1). This demonstrates the value of using a PMSC 

facility to exclude rainfall water during a drought screening experiment.  

Drought sensitivity (particularly leaf rolling and leaf drying) data recorded from drought 

imposed plots showed that the PMSC was highly effective at excluding water from simulated 

drought plots, leading to stress on the plants. These were further validated by readings from 

the soil water sensors, which ranged from -10 kPa before the withholding of water, to well 

over -500 kPa two to three weeks later. Differences between the drought imposed and well-

watered plots under the plastic cover were quite clear, as seen from the responses of plants 

(Figure 5.2).  

5.5.3 Cost analysis 
The plastic sheeting used in the experiment was standard silage plastic (LDPE) sheeting 

with a thickness of 130 microns. Silage plastic sheeting is manufactured to various 

specifications of length, width, thickness, strength and colour (Visqueen, 2014). Weather 

resistant sheets of high strength and good resistance to tearing are recommended. A roll of 
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a 18 m wide, standard gauge (125 -130 microns) would cost around R6.41 ($0.59) m-2 

(ObalCentrum, 2014), putting the cost of setting up the facility (sheets, irrigation system and 

construction) at less than R10.86 ($1.00) m-2 of plot area, compared to a minimum of 

R140.00 – R2533.30 ($13.00 – $235.00) m-2 for a rainout shelter (Ries and Zachmeier, 

1985; Chauhan et al., 1997). 

 
5.6 Conclusion 

Screening for drought tolerance during the regular cropping season is essential to reduce 

the influence of genotype by environment interaction on the usefulness of results. The 

capacity of the current technology, using plastic mulch cover, to exclude rainfall and 

facilitate the imposition of drought of desired duration and intensity, renders it a useful tool 

for intensive drought tolerance and screening studies. Because the technology is relatively 

cheap, compared to the cost of erecting a sound rain-out shelter, it can be scaled up to 

accommodate as many entries as needed, and can be a useful tool for researchers in 

developing countries, where research funds are often scarce. This plastic mulch soil cover 

methodology should therefore be widely disseminated to agricultural research institutions 

in Africa in order to enhance their capacity in drought research. 
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CHAPTER 6 

COMBINING ABILITY AND GENE ACTION OF THREE COMPONENTS OF 
HORIZONTAL RESISTANCE AGAINST RICE BLAST 

 

6.1 Abstract 

Major gene resistance to rice blast, caused by Pyricularia oryzae Cavara, has not provided 

stable resistance in many countries.  The alternative approach is to accumulate minor genes 

for resistance, an approach that holds great potential for protecting rice against multiple 

races of the pathogen. However, its exploitation is limited by the lack of understanding of 

the inheritance pattern in specific rice genetic resources. Eight pure line rice varieties from 

Liberia, along with their F2 segregants derived from a complete diallel mating design were 

consequently evaluated under controlled environment conditions to determine combining 

ability and gene actions for three components of horizontal resistance (HR) (number of 

sporulating lesions per plant (LN), size of sporulating lesions (LS) and area under the 

disease progress curve (AUDPC)), in order to develop breeding strategies for future 

improvement of HR to blast. Genetic analysis of general combining ability (GCA) and 

specific combining ability (SCA) based on the fixed effects model of Griffing’s Method 1, 

showed that both additive and non-additive gene actions were involved in the inheritance 

of LN, LS and AUDPC in this study. However, the high ratio of GCA to SCA found for the 

traits suggested that genes with additive effects were more important. P1 was adjudged to 

be the worst combiner for LN, LS and AUDPC since it expressed the highest positive GCA 

effects for the traits. P6 emerged as the best combiner for LS, whilst P2 proved to be the 

best for both LN and AUDPC, as they showed the highest negative GCA effects for the 

respective traits. Graphical analysis of the covariance and variances of the traits ruled out 

epitasis as a contributor to the limited non-additive gene action revealed for LN, LS and 

AUDPC. The graphical analysis further showed that dominance gene action detected in the 

parents was rather partial. The overall results revealed that a population breeding approach 

should be used to improve HR in Liberian rice, using LS, LN and AUDPC as selection 

criteria, and that all of the parents but P1 would be good donors. High estimates of 

heritability and phenotypic correlation were found for all three traits, which suggested that 

selection for the traits under controlled environment conditions would be effective in a 

recurrent selection programme. 

Key words: combining ability, component of resistance, gene action, resistance breeding, 

rice blast. 



120 
 

6.2 Introduction 

Rice blast, caused by Pyricularia oryzae Cavara, is a devastating disease of rice (Oryzae 

sativa L.), which is a staple food for more than one-half of the world’s population (Talbot, 

2003; Bouman et al., 2007). The disease occurs almost everywhere rice is grown, and 

accounts for annual losses of 10 – 30% in rice production (Skamnioti and Gurr, 2009). 

Reducing the impact of the disease on rice production is therefore necessary in order to 

ensure food security. As with many other disease and pest problems, the use of resistant 

varieties remains the safest and most economical means of managing rice blast. However, 

successful use of resistant varieties containing major genes that confer resistance against 

the pathogen have been limited by the rapid evolution of virulent races globally (TeBeest et 

al., 2007; Khush and Jena, 2009). Such varieties become susceptible as new virulent races 

emerge (Ou, 1985). An alternative form of host plant resistance is therefore needed to 

adequately control the disease genetically.  

In many plant-pathosystems, horizontal resistance mechanisms have proved capable of 

increasing the production life of cultivars by providing protection against multiple races of 

the pathogen (Devasahayam and Henry, 2009; Keane, 2012). Improving the levels of 

horizontal resistance in rice against blast is a better long term option for genetically limiting 

the scale of crop losses caused by the disease. However, the genetic mechanisms 

controlling the inheritance of important horizontal resistance traits for the disease are not 

well understood, and this limits its full exploitation for protecting rice against the disease. 

The number of sporulating lesions per plant (LN), the size of sporulating lesions (LS), and 

area under the disease progress curve (ADUPC) are known as important traits that 

contribute to horizontal resistance against rice blast (Bonman, 1992; Wang et al., 1994; 

Mohapatra et al., 2008). Undertaking rice breeding to improve these traits would therefore 

require a thorough understanding of the genetic basis for their expression in rice.  

Insight into the genetic mechanisms controlling the expression of traits can be obtained by 

evaluating breeding lines and their hybrids for combining ability and gene action. Knowledge 

of combining ability and gene action is important for selection of suitable parents for 

hybridization, as well as identification of promising recombinants for the breeding 

programme (Sprague and Tatum, 1942; Falconer et al., 1996). Breeders can also utilize 

such information to determine the most appropriate breeding procedure for improving 

specific traits of interest.  

In order to understand the combining ability and gene actions for LS, LN, and AUDPC, the 

present study determined genetic components of variation for each trait in an array of eight 

rice varieties and their F2 segregants derived from a complete diallel mating design. This 



121 
 

paper presents and discusses the breeding values of the parents and the performances of 

their hybrids, and suggests a strategy for developing new varieties with improved horizontal 

resistance based on advancing the traits studied. 

  

6.3 Materials and methods 

6.3.1 Plant materials and experimental design 
Plant materials used in this study consisted of eight pure line rice varieties (Table 6.1) and 

their F2 progenies. The 8 parents were crossed in a full diallel mating scheme in a 

greenhouse situated on the Life Sciences campus of the University of KwaZulu-Natal in 

South Africa, during the summer of 2012. The few seeds of the 56 F1 hybrids produced 

were later grown in a glasshouse to generate sufficient F2 seeds for the current study.  

Table 6.1: Eight rice pure lines used for the diallel crosses 

Code Name  Origin Blast resistance 

P1 LTH IRRI Highly susceptible 

P2 LAC 23 Liberia Highly resistant 

P3 Kuwaylikulay Liberia Moderately resistant 

P4 Laiefeh Liberia Moderately resistant 

P5 Cammueta Liberia Moderately resistant 

P6 Paylaieto Liberia Moderately resistant 

P7 Molonliagie Liberia Moderately resistant 

P8 Wennie Liberia Moderately resistant 

 

The F2 segregants and the parents were evaluated in a simulated uniform blast nursery in 

a greenhouse. The experiment was laid out in a randomized complete blocks design, and 

replicated three times between November 2013 and May 2014. Up to 60 plants of each 

genotype per replication were grown in seedling trays and 10 were randomly selected and 

tagged for measurements. 

A blast epidemic was initiated by exposing the test plants to disease spreader plants. Plants 

of LTH were used as spreaders and were inoculated with conidia harvested from mycelia 

of a P. oryzae isolate, SIK-111, obtained from AfricaRice.  

6.3.2 Data analyses 
The number and size of sporulating lesions were recorded 10 days after exposure to the 

diseased spreaders. The percentage of diseased leaf area was estimated at three-day 
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intervals, using a diagrammatic scale developed for rice blast (Notteghem, 1981), and used 

to calculate the area under the disease progress curve (AUDPC). The following equation 

developed by Shaner and Finney (1977) was used to calculate AUDPC:  

AUDPC = ∑Ni = 1((Yi + 1 + Yj)/2)(Xi + 1– Xi)                                                     Equation 6.1, 

where Yi = the percent of diseased leaf area on the ith day of assessment, Xi = time of the 

ith assessment in days from that of the first assessment, and n = total number of times 

disease was assessed. 

Differences in LN, LS and AUDPC values between the 64 genotypes (parents and hybrids) 

were determined by ANOVA using Genstat Version 16 (VSN, International). General 

combining ability (GCA)  of the parents and specific combining ability (SCA) of the hybrids 

were analysed according to (Griffing, 1956), following the fixed effects model of Method 1, 

using the statistical software DIAL 98 (Ukai, 2006). DIAL 98 was also used to estimate other 

genetic parameters, including additive and dominance variances, and broad- and narrow-

sense heritability over the three replications following the methods of (Hayman, 1954a; 

Hayman, 1954b). Graphical analysis of covariances / variances (Wr-Vr) were performed 

following the methods of Hayman (1954b) and Jinks (1954) to further explain gene action 

in the parental genotypes. 

   

6.4 Results  

6.4.1 Genotypic means and variances 
The mean of each trait varied significantly with genotype for each trial (Table 6.2). The 

number of sporulating lesions per plant ranged from a high of 55 on P1 to a low of 7 on P2. 

Crosses P2xP7 and P1xP4 yielded the highest and lowest numbers of sporulating lesions 

per plant, respectively. The largest and smallest lesions were recorded on P1 and P5, 

respectively. The values of AUDPC were comparatively low for P7 and cross P2xP4. The 

highest AUDPC values were recorded from P1 and cross P1xP5.  
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Table 6.2: Mean sporulating lesions, lesion size and AUDPC of eight inbred rice genotypes 

and their F2 segregants 
 Sporulating lesions plant-1  Lesion size (mm2)  AUDPC 

Genotypes Trial 1 Trial  2 Trial 3  Trial 1 Trial 2 Trial 3  Trial 1 Trial 2 Trial 3 

Parents 
P1 52.0 54.0 60.0  6.7 14.3 20.0  530.0 541.0 524.0 
P2 7.3 6.4 8.1  3.5 4.2 3.2  170.0 170.0 178.0 
P3 17.0 17.8 22.0  3.4 3.5 3.3  252.0 250.0 255.0 
P4 11.0 10.5 9.8  3.8 3.9 4.0  160.0 157.0 152.0 
P5 12.7 12.0 14.0  2.6 4.2 2.8  222.0 210.0 229.0 
P6 24.0 23.0 17.0  3.8 2.9 3.7  175.0 175.0 171.0 
P7 8.0 9.0 7.2  4.2 4.0 4.8  165.0 170.0 168.0 
P8 16.3 16.0 17.2  3.1 3.9 3.9  243.0 250.0 239.0 
Crosses 
P1xP2 27.0 17.5 42.6  4.1 9.6 13.5  292.5 343.5 273.5 
P1xP3 38.0 24.5 41.4  3.5 11.3 10.0  350.0 375.0 403.0 
P1xP4 27.0 45.0 32.6  6.0 8.2 17.1  277.5 345.0 281.5 
P1xP5 33.5 38.5 28.1  5.1 11.0 12.5  350.0 367.5 391.0 
P1xP6 45.1 28.5 37.5  6.2 7.5 8.5  289.0 341.0 257.0 
P1xP7 39.6 17.5 42.1  6.0 13.7 11.5  292.0 345.0 333.0 
P1xP8 23.7 20.5 25.0  5.9 11.5 13.1  363.0 377.5 409.5 
P2xP3 10.0 8.5 7.5  4.3 4.1 3.1  195.5 207.5 213.0 
P2xP4 9.6 7.5 7.3  3.6 4.1 3.8  163.5 165.0 157.0 
P2xP5 9.8 7.5 8.1  3.3 4.0 3.3  205.0 294.5 162.5 
P2xP6 14.3 8.1 8.0  3.7 3.4 3.1  167.8 162.5 190.5 
P2xP7 6.4 7.3 6.3  4.1 4.1 3.9  167.0 169.5 164.0 
P2xP8 12.0 13.5 12.1  3.4 4.0 3.4  177.5 185.0 194.5 
P3xP4 13.2 14.1 14.8  3.7 3.6 3.8  172.0 205.0 192.0 
P3xP5 14.5 13.1 13.1  3.2 3.5 3.3  222.5 237.5 226.0 
P3xP6 15.5 17.2 16.9  3.4 3.4 3.5  237.5 212.5 205.0 
P3xP7 13.2 12.3 12.9  3.9 3.9 4.2  238.0 207.5 195.0 
P3xP8 13.7 10.5 15.0  3.3 3.5 3.4  250.0 242.5 252.5 
P4xP5 11.1 10.8 12.6  3.6 4.2 3.8  200.0 202.5 165.5 
P4xP6 13.0 17.1 22.3  3.8 3.7 4.0  166.0 265.0 164.5 
P4xP7 11.1 9.5 8.2  4.1 3.7 4.2  164.5 267.0 160.0 
P4xP8 14.3 12.8 15.5  3.7 3.8 3.8  230.0 197.5 227.5 
P5xP6 16.0 17.1 23.4  3.4 4.1 3.7  207.5 195.5 205.0 
P5xP7 9.0 9.5 7.1  3.8 4.1 4.4  198.0 195.0 196.5 
P5xP8 15.4 14.5 17.0  3.1 4.1 2.9  237.5 229.0 235.0 
P6xP7 16.5 12.0 14.4  4.0 4.0 3.8  169.8 168.5 171.0 
P6xP8 12.1 15.1 22.2  3.4 3.8 3.7  162.5 202.5 222.5 
P7xP8 9.5 10.6 12.8  3.4 4.0 4.3  195.0 204.5 211.0 

Mean 17.8 16.4 18.9  4.0 5.4 5.8  229.4 245.4 232.6 
CV (%) 22.2 26.7 24.9  9.3 4.1 3.6  12.5 17.2 13.3 
LSD 5.8 6.1 7.6  2.2 2.6 3.2  90.4 95.2 97.6 

AUDPC = area under the disease progress curve; CV = coefficient of variation; LSD = least 
significance difference. See codes of genotypes in Table 1. 
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6.4.2 Combining ability 
The variances due to GCA and SCA were both highly significant for LN and LS; but for 

AUDPC, only the GCA variance was significant (Table 6.3). The ratio of GCA to SCA for 

the three traits were quite high and ranged from 43% for LN, to 54% for AUDPC. No 

reciprocal effect was observed for the inheritance of any of the three traits. 

Table 6.3: Analysis of variance for combining ability in the F2 population of an 8 X 8 

complete diallel cross in rice. 

Source of variation    Df 

Mean square 

Lesion number Lesion size         
(mm2) 

  AUDPC 

Trial     2   269.73 **   51.74 **   6454.00 ** 

GCA     7 1927.71 ** 145.72 ** 93778.23 ** 

SCA   20     45.14 *     1.90 ns   1751.05 ** 

Reciprocal   28       2.17 ns     0.46 ns       55.71 ns 

Error 110     24.21      3.89     701.79    

GCA : SCA (%)   -     42.71   76.69       53.56 

* p < 0.05, ** p < 0.01, ns p = 0.05; Df = degrees of freedom; AUDPC = area under the 
disease progress curve. 
 

General and specific combining ability effects for LN, LS and AUDPC are shown in Table 

6.4. For all the traits measured, P1 displayed the highest positive GCA effect essentially for 

susceptibility. P2 showed the highest negative effect for both LN and AUDPC, which is in a 

desirable direction for resistance breeding. The highest negative GCA effect for LS was 

exhibited by P6. All the crosses derived from P1 showed high positive SCA effects for LN, 

as P2xP8 exhibited the highest negative SCA effect for the trait. Positive SCA effects for 

LN, LS and AUDPC were exhibited by P1xP8. The lowest negative SCA effects for LS and 

AUDPC were recorded from the crosses between P1 and P3 and P1 and P6, respectively. 

Crosses involving P1 and all the other parents, but P5, showed increasing negative trends 

of SCA. 
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Table 6.4: General combining ability effects of parents and specific combining ability effects 

of crosses for three components of horizontal resistance against rice blast in the F2 

generation of an 8 X 8 diallel population of rice 

Parents    Lesion number    Lesion size (mm2)    AUDPC 

General combining ability effects 
P1   17.22***      4.93***    118.30*** 
P2 -6.36** -0.77   -37.58** 
P3 -1.41 -1.00* 6.22 
P4 -2.01*             -0.43     -31.06** 
P5 -1.99*             -0.74       -0.23 
P6 1.50  -1.09* -31.37** 
P7 -4.31** -0.26 -28.66** 
P8 -2.64* -0.65 4.38 
Specific combining ability effects 
P1xP2 0.77 -0.22*     -12.20 
P1xP3 1.44 -0.79**      16.84** 
P1xP4  2.27* -0.78**     -20.55 
P1xP5 0.73             0.22      16.78 
P1xP6 0.91 -1.56**  -25.91*** 
P1xP7  2.76*             0.61      -0.95 
P1xP8     8.89***             0.95     26.00*** 
P2xP3          -0.97             0.46       2.05 
P2xP4          -0.90            -0.11      -4.18 
P2xP5          -0.59            -0.08   23.82*** 
P2xP6          -2.41*             0.13        7.88 
P2xP7          -0.04            -0.06       -1.58 
P2xP8          -4.14            -0.12*     -15.75 
P3xP4          -0.04            -0.03     -20.13** 
P3xP5          -0.41            -0.07 -11.79 
P3xP6          -0.95             0.39 8.84 
P3xP7 1.11             0.10 1.30 
P3xP8          -0.26            -0.07 3.09 
P4xP5 -1.94*            -0.11     -14.02 
P4xP6 0.58             0.20    24.28*** 
P4xP7 -1.49*            -0.45    22.24*** 
P4xP8 1.44            -0.31 10.37* 
P5xP6 1.92             0.44 -0.38 
P5xP7 -2.57*            -0.04 -9.26 
P5xP8  2.85*            -0.36* -4.97 
P6xP7         - 0.27             0.17 -4.87 
P6xP8           0.23             0.23* -11.83* 
P7xP8           0.51            -0.32* -6.87 

* p < 0.05, ** p < 0.01; *** p < 0.001; AUDPC = area under the disease progress curve. 
 

6.4.3 Estimates of genetic parameters for LS, LN and AUDPC 
Important genetic parameters estimated for each trait expressed by the 8 parental lines and 

their progenies are presented in Table 6.5. The additive genetic variance accounted for a 
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large proportion of the gene action expressed for all the three traits studied. The proportions 

of dominant to recessive genes in the parents were less than zero for LN and LS, but slightly 

above 1 for AUDPC. The degree of dominance for all traits were quite small and largely in 

the negative direction for LN and AUDPC, or mildly positive for LS. Both the broad and 

narrow sense heritability were high for all the traits, and ranged from 84 to 94 %.   

Means of the crosses were generally less than those of the parents for LS and AUDPC. The 

converse was, however, true for LS. Variances of the parents were markedly larger than 

the variances of either their hybrids or of the environment. 

 

Table 6.5: Estimated genetic parameters and standard errors for three blast resistance traits 
in rice lines and their hybrids evaluated in three greenhouse environments. 
 
Parameter Lesion number Lesion size (mm2) AUDPC 
Additive variance 235.46 ± 32.29 11.31 ± 3.24 144483.77 ± 1354.06 
Dominance variance 1 9.24 ± 10.39 -2.47 ± 1.41 707.26 ± 398.90 
Dominance variance 2 10.88 ± 8.10 -1.59 ± 0.99 606.25 ± 280.52 
Additive X dominance 15.90 ± 29.28 -4.43 ± 2.78 3243.48 ± 1345.09 
Average degree of dominance 0.20 ± 0.06 0.00 ± 0.15 0.22 ± 0.40 
Proportion of dominant genes 0.59 ± 0.08 0.00 ± 0.37 0.75 ± 0.06 
Average direction of 
dominance 

-2.56 ± 1.82 0.35 ± 0.77 -6.52 ± 9.19 

Heritability (broad sense) 0.94 ± 0.01 0.84 ± 0.2 0.96 ± 0.01 
Heritability (narrow sense) 0.916  ± 0.02 0.89 ± 0.3 0.94 ± 0.01 
Mean of parents 18.85 ± 0.97 4.90  ± 0.4 238.38  ± 4.87 

Mean of crosses 17.38 ± 0.36 5.10 ± 0.16 234.65 ± 1.97 
Mean of whole diallel 17.57 0.34 5.08 ± 0.15 235. 11 ± 1.81 
Variance of parents 242.78 ± 32.28 12.65  ± 3.24 15692.27 ± 1354.57 

Variance of crosses 87.25 ± 6.56 6.41 ± 0.82 4190. 72 ± 251.58 
Variance of whole diallel 103.39 ± 6.86 7.01 ± 0.80 5292.58 ± 262.51 
Environmental variance 7.32 ± 0.88 1.34 ± 0.16 208.49 ± 25.60 

AUDPC = area under the disease progress curve. 

6.4.4 Graphical analysis of genetic components 
The coefficients of the regression of Vr on Wr for LN, LS and AUDPC were 1.15, 0.98, and 

1.06, respectively, and did not differ significantly from unity. For LN, P1 and P2 were far 

from the regression line, unlike the rest of the parental array (Figure 6.1). All of the parents, 

except P1, also tended to cluster along the regression line for LS. For AUDPC, the entire 

array of parents tended to cluster close to the regression line. The parents, however, 

maintained distinct positions along the regression line. For all the traits, the regression line 

intercepted the Wr axis well above the origin (Figure 6.1). 
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Figure 6.1: Covariance (Wr) / variance (Vr) graph for rice blast resistance traits. 
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6.5 Discussion 

6.5.1 Combining abilities of rice parents and their crosses for LN, LS and 
AUDPC 
 
Biometrical procedures developed by Griffing (1956) to study the combining ability of 

genotypes and their relatives are commonly used by plant breeders to assist selection of 

parents for hybridization (Shattuck et al., 1993). A full diallel crossing system, in which 

parents are mated in all possible combinations to produce hybrids, was used to determine 

and compare the performances of 8 pure line rice varieties and their F2 hybrids for LN, LS 

and AUDPC in the current study. As defined by Sprague and Tatum (1942), the average 

performance of a parent in a hybrid combination is termed GCA, whilst the deviation of the 

performance of a hybrid from the expectation based, on the average GCA effects of the 

lines that produced the hybrid is termed the SCA.  

 

According to Falconer et al. (1996), the GCA and SCA variances, respectively correspond 

to the variances of additive and dominance effects, assuming the absence of epitasis. In 

the current study, the sum of squares due to GCA and SCA were highly significant for LN 

and AUDP, and therefore indicated that both additive and non-additive gene actions were 

important in the mechanisms governing the inheritance of those traits. Variation for LS, 

owing to SCA of the crosses, was non-significant, thereby suggesting that non-additive 

effects were not important for the inheritance of the trait. It would therefore be useful to 

ensure that genotypes inherently showing smaller sporulating lesions are involved in 

crosses aimed at generating progenies with smaller lesions. However, a study by Jeanguyot 

(1984) suggested that smaller sporulating lesions can be the result of race-specific 

interactions. To minimize the risk of race-specificity for smaller lesion size, genotypes which 

exhibit a combination of declining lesion size in older leaves and larger lesions in the 

younger leaves could be targeted for selection (Roumen, 1992).   

 

In their review on hybrid breeding of autogamous crops, Reif et al. (2007) affirmed that in 

the absence of epitasis, the ratio of the GCA to SCA variances tend to increase as the 

relevance of dominance effects decreases. The high ratios of GCA to SCA obtained for all 

the traits therefore, suggest that the three components of host resistance studied here were 

largely under additive genetic control. These results are similar to those reported from 

studies with other rice populations. In tests involving two sets of F3 lines derived from two 

parents, Ali et al. (2004) reported the occurrence of additive gene action for lesion number 

and size in one set, and possible epitasis for one gene, in addition to additive gene action, 

in the other. Veillet et al. (1996) also observed both additive and non-additive effects for 
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lesion size and lesion density from a genetic study involving a population of upland rice from 

Brazil. The predominance of GCA variance is not only advantageous for identifying 

promising hybrids based on predictions from parents, but also for ensuring consistent gain 

from recurrent selection (Duvick et al., 2004; Gordillo and Geiger, 2008). A recurrent 

selection programme could therefore be useful for improving the three traits for horizontal 

resistance to blast studied in these trials. 

 

The parents exhibited various levels of GCA effects for each of the traits studied. P1 showed 

the highest positive effects for LN, LS and AUDPC, and consequently proved to be the worst 

combiner, since positive effects for these traits would mean higher levels of disease 

susceptibility. The best combiner for LS was P6, whilst P2 emerged as the best combiner 

for LN and AUDPC, as indicated by the high negative effects they expressed for the 

respective traits. The P2 and P6 varieties would therefore be important for producing 

progenies with increased quantitative resistance against rice blast. 

 

Crosses involving P1 exhibited high SCA effects for LN. This observation strongly supports 

the role of P1 as a poor combiner in this study. The high susceptibility of P1 to blast may 

largely lie in its weakness to sustain large numbers of sporulating lesions, which quickly 

coalesce and become much larger. The negative SCA effects for LS observed when P1 

was crossed with the other parents suggest that dominance gene action played a role in 

the non-additive effects that govern the expression of the trait. 

6.5.2 Gene actions for LN, LS and AUDPC in the parental genotypes 
Concepts of the proportion of dominant and recessive genes occurring in a group of parents, 

as well as the degree and direction of dominance, has been clearly explained by Jinks and 

Hayman (1953) and Viana et al. (2001). The estimated ratios of dominant to recessive 

genes in the parents used in this study were characteristically similar for LN and LS, as they 

both fell below zero, thereby indicating that the recessive genes in the varieties were more 

numerous than dominant genes. For AUDPC, the dominant genes were more numerous 

than recessive genes in the parents, as reflected by the proportion of dominant to recessive 

genes, which exceeded 1. 

 

The negative direction of the dominance occurring in the polygenic system under review for 

LN and AUDPC shows that dominance alleles present could have also contributed to the 

reduction in the values of these traits in the hybrids. The direction of dominance for LS was 

positive, contributing to the tendency for increased lesion size in the hybrids; if dominance 

gene action were largely responsible for increasing lesion size, it would be more difficult to 
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increase blast resistance by introgressing alleles for smaller lesions. Since this is not the 

case, evidence of the predominance of additive genetic effects for the inheritance of these 

traits, as indicated by the high ratio of GCA to SCA, remains strong. Since additive genes 

are largely fixable, unlike to those with non-additive effects (Dabholkar, 2006), the best 

combiners found in this study should be useful for developing new rice varieties with higher 

levels of horizontal resistance against blast. 

 

The diallel was largely effective for increasing rice blast resistance in the F2, especially 

when LN and AUDPC are taken as the index. This was demonstrated by the average 

reduction in the value of these traits, compared with those of the parents. Selecting the best 

progenies as parents for the next generation would likely lead to future gains. The variation 

observed in the experiment for all the traits were mostly due to the parents (Table 6.3). The 

environmental variance was smaller, indicating the potential of such environments for 

reliably screening for blast resistance based on the traits under reference.  

6.5.3 Graphical assessment of genetic components 
Graphical analysis of the covariance and variances of LN, LS and AUDPC measured in this 

study showed that the regression coefficient for each trait did not statistically differ from 

unity. This showed that epitasis cannot be considered to have played a role in influencing 

the expression of any of the traits measured. In order for gene actions and components of 

variance estimated from the analysis of a diallel to be valid, the following assumptions for 

the additive / dominance genetic model listed by Hayman (1954b) must be present:  
a. Diploid segregation of chromosomes 

b. Homozygosity of parents 

c. Independent effect of non-allelic genes 

d. Independent distribution of genes between parents and no multiple allelism. 

From the graphical analysis, epitasis can be ruled out from playing any role in the 

inheritance of LN, LS and AUDPC in this study. Secondly, the rice plant is diploid (2n = 24), 

and self-fertilization prevails as the primary mode of reproduction of the species. All these 

satisfy the above assumptions, and consequently uphold the merit of the diallel procedure 

employed to study the inheritance of the three traits under reference.    

 

The parental lines used in this study did not scatter widely away from the regression line 

which highlighted the association of Wr and Vr for the traits measured in this study. This 

may indicate that the parents did not vary very much for the traits. However, it is noted that 

since all of the other parents showed lower values for these traits than P1, these parents 
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can be used as donors for a breeding programme aimed at developing blast resistance in 

high yielding rice varieties. 

 

For all the traits, the regression line was found to intercept the Wr axis at points above the 

origin, indicating that any dominance present in the parental lines was partial for the traits 

measured. P6 carried the maximum number of dominant alleles for LS and AUDPC, whilst 

P8 carried the maximum for LN, as indicated by their close proximity to the origin (Figure 

6.1). On the other hand, P1 tended to harbour the maximum number of recessive alleles for 

LN and AUDPC, and P8 harboured the maximum for LS (Figure 6.1). The occurrence of 

partial dominance ([H1/D]1/2)) for the traits, as assessed graphically, is consistent with the 

calculated result, which shows that the mean degree of dominance for the traits were less 

than unity (Table 6.5). 

6.5.4 Heritability for LN, LS and AUDPC 
Heritability, both in the broad and narrow sense, for all traits were quite high in the 

environment in which the genotypes were evaluated. This underscores the value of 

screening under controlled conditions that both influence plant susceptibility and pathogen 

aggressiveness. It also showed that selection for all three traits is likely to be effective in 

increasing blast resistance. The high levels of heritability estimated in this study was derived 

from the limited variability in growth conditions imposed in the greenhouse, even though the 

experiment was replicated across three distinct time periods. Under field conditions, 

estimates of heritability would probably be lower because environmental variables such as 

temperature, humidity, moisture and soil heterogeneity are often uneven. 
 

6.6 Conclusion 

Since not much was known about the mode of action of genes controlling LN, LS and 

AUDPC, undertaking a genetic study of parents and their F2 progenies derived from a diallel 

mating scheme was important for determining an appropriate procedure for improving 

Liberian rice varieties for horizontal resistance against blast when considering those traits 

as criteria for selection. The analysis of general and specific combining abilities was useful 

for showing that the traits were mainly controlled by additive genes, although non-additive 

genes with partial dominance effects were also present. The occurrence of additive gene 

effects with partial dominance for the three traits showed that recurrent selection methods 

that emphasize GCA would be the best strategy for breeding new rice varieties with 

improved blast resistance. Varieties such as P2 and P6, which showed high GCAs, would 

be useful for recombining genes with the expectation that favourable recombinants would 
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be incrementally recovered as the selection cycle progressed. The likelihood of obtaining 

consistent results when screening breeding lines for horizontal resistance against blast 

under controlled environment conditions that favour the disease was highlighted by the high 

heritability scores for the traits. If the natural levels of disease conducive factors in the filed 

can be appropriately mimicked in a greenhouse, then screening in the greenhouse can 

enhance the selection process and the responses to selection.  
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CHAPTER 7 

INVESTIGATION OF ETHEPHON AND GIBBERELLIC ACID AS A COMBINED 
CHEMICAL HYBRIDIZING AGENT FOR RICE 

 

7.1 Abstract 

Crop improvement and genetic analyses of traits require the making of large numbers of 

pair-wise crosses and progenies. In rice (Oryza sativa L.), hand emasculation is slow and 

tedious, limiting the number of controlled cross pollination events that can be completed in 

a single season. Chemical hybridizing agents (CHAs) may facilitate emasculation when 

appropriately applied on growing plants; but their use as a breeding tool for rice has been 

limited, partly due to genotypic differences, and a lack of information on effective chemicals, 

doses, and timing of applications. In this study, ethephon and gibberellic acid were 

evaluated at various doses and growth stages of rice to determine their utility for breeding 

tropical upland rice. Five upland rice genotypes of Liberia were grown in a controlled 

environment, and at the phenological stages of flag leaf collar formation and 

microsporogenesis they were sprayed with ethephon at 0, 1 000, 2 000, 4 000, or 6 000 µL 

L-1. At heading, gibberellic acid was applied onto these plants once or twice as a foliar spray 

at 0, 90 or 150 µL L-1. Treatment combinations were laid out in a randomized complete 

blocks design, with four replications. Pollen viability, panicle exsertion, plant height, seed 

set and outcrossing rates were assessed at various times from anthesis to post-harvest. 

Ethephon and subsequent gibberellic acid applications induced significant changes in all 

the traits measured. Pollen viability decreased with increasing doses of ethephon. Ethephon 

significantly reduced (p < 0.001) panicle exsertion and the rate of seed set in all genotypes. 

Gibberellic acid significantly increased panicle exsertion, thereby enhancing rates of seed 

set and outcrossing in ethephon-treated plants. Unlike gibberellic acid, efficacy of ethephon 

depended on panicle developmental stage, as microsporogenesis proved to be the most 

sensitive stage for effecting physiological male sterility in the plants. The levels of male 

sterility induced by ethephon were acceptable given the level of outcrossing achieved, when 

aided by gibberellic acid application. The combination of both of compounds could be useful 

as an effective CHA for breeding rice. 

 

Keywords: microsporogenesis, outcrossing, panicle exsertion, pollen viability, spikelet 

fertility   
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7.2 Introduction 

Recurrent selection is often identified as being the most appropriate selection method when 

breeding crops to improve complex traits in plants (Ali et al., 2004; Runge et al., 2004), 

including horizontal resistance against rice blast. This may require the execution of 

controlled crosses and polycrosses in order to increase the likelihood of obtaining desirable 

recombinants, as the recurrent selection cycles progress (Hallauer and Darrah, 1985; 

Pandey and Gardner, 1992). Hand emasculation and generating large numbers of crosses 

in rice (Oryza sativa L.) may be a difficult and time consuming procedure because of the 

structure and biology of the rice florets. Owing to the cleistogamous nature of the rice flower, 

self-pollination naturally prevails as the predominant mode of reproduction (Taillebois and 

Guimaraes, 1988; Tripathi et al., 2011), therefore efficient emasculation is required to allow 

for cross pollination to take place. 

Cross-pollination in rice may be enhanced either by mechanically removing anthers from 

the florets (Acquaah, 2007), by using a cytoplasmic male sterility system (Chan and Cheah, 

1983), or by using chemical hybridizing agents (CHAs) to effect emasculation (Brabosa et 

al., 1987; Acquaah, 2012). Utilizing mechanical or hand emasculation to facilitate large-

scale hybridization of rice may be both labour-intensive and time-consuming, owing to the 

difficulties involved in removing the anthers from each of the many tiny rice florets (Tripathi 

et al., 2011). Although potentially cheaper and more convenient to utilize, cytoplasmic male 

sterility (CMS) systems are only amenable to a limited pool of rice genetic resources 

(Brabosa et al., 1987). Chemical hybridizing agents, on the other hand, have the potential 

of combining the advantages of those other two means of promoting rice hybridization: they 

require less labour and time for deployment as with CMS, but they can be effective on a 

wider range of rice germplasm, as with hand emasculation. Given these advantages, CHAs 

are an attractive option for controlling pollination and facilitating rice breeding based on 

recurrent selection, or for genetic analyses. 

Essentially, CHAs are gametocides or compounds used to effect male sterility with the aim 

of facilitating cross-pollination between chosen parents. Various chemicals, including 

auxins, halogenated aliphatic acids, gibberellins, ethephon [2-chloroethyl phosphonic acid], 

arsenates, dalapon, oxanilates and some patented compounds (RH-531, RH-532, N-312, 

and HAC-123) have been tested and developed as gametocides for various crops (Tu and 

Banga, 1998; Virmani et al., 2003a; Sharma and Sharma, 2005). Many of these compounds 

are, however, either highly toxic to users and the environment (Thakur and Rao, 1988), or 

difficult to obtain (Virmani et al., 2003a), except for a few such as ethephon and gibberellic 
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acid (GA). Investigating the gametocidal properties of these compounds could have value 

to rice breeding involving large numbers of crosses. 

Ethephon, widely available under the trade name Ethrel®, spontaneously releases ethylene 

in aqueous solution, and has shown potential as a CHA causing male sterility in crops such 

as oats (Pinto et al., 1988), pearl millet (Thakur and Rao, 1988) and wheat (Brabosa et al., 

1987). Its value as a CHA is very dependent on the dosage and timing of application. It can 

also sterilize the ovaries of flowers, rendering flowers both male and female sterile. 

However, its efficacy as a CHA on rice remains poorly understood. Also, the capacity of 

ethephon to impair the elongation of the upper internodes of plants (Tu and Banga, 1998) 

could potentially limit its usefulness for breeding rice, in the absence of a suitable mitigating 

factor. Beek (1986) solved these problems by treating wheat plants with gibberellic acid 

(GA) to counter the negative effects of ethephon, achieving male sterility, combined with 

female fertility and plant vigour. 

The present study was therefore undertaken to determine the level and timing of ethephon 

for inducing male sterility in rice, and to investigate the use of a second compound, GA, 

mainly for its ability to mitigate the negative side-effects of ethephon.  

 
7.3 Materials and methods 

7.3.1 Study sites, experimental design and trial establishment  
The experiment was conducted in a greenhouse tunnel at the Life Sciences campus of the 

University of KwaZulu-Natal during the summer of 2012/13 with day and night temperatures 

of 30/20°C, and 65% relative humidity. A randomized complete blocks design was used in 

a factorial experiment consisting of five upland rice genotypes, five doses of ethephon and 

three doses of gibberellic acid, replicated three times.  

The test plants consisted of five upland genotypes (LR-1, 8, 10, 18 and 19) that differed 

mainly by hull colour, but with similar basal leaf sheath colour (green). Plants were grown 

in 4.8 L plastic pots (with height and upper diameter of 27 cm and 30 cm, respectively) with 

three plants per pot, per genotype. 

Ethephon was applied at 0, 1 000, 2 000, 4 000 or 6 000 µL L-1 at the phenological stages 

of panicle differentiation or at microsporogenesis. The stages of panicle differentiation and 

microsporogenesis were determined according to the rice plant growth staging system 

described by Counce et al. (2000). Penultimate leaf collar formation, which coincides with 

the latter stages of panicle differentiation, was used as a marker for panicle differentiation. 

The time at which the flag leaf collar formed and aligned horizontally with the collar of the 



138 
 

penultimate leaf was considered to be concurrent with the stage of microsporogenesis 

(Counce et al., 2000; Williams et al., 2010). 

Gibberellic acid-3 (GA3) was applied once at 0, 90 or 150 µL L-1 at anthesis, when the heads 

of the main culm started to emerge, or twice at 0, 45 or 75 µL L-1 at anthesis and at 2 days 

after the onset of anthesis. Both ethephon and GA3 were applied as foliar sprays onto whole 

plants until plants were completely drenched with the spray solution. 

 

7.3.2 Measurements and data analyses 
Pollen viability, panicle exsertion, spikelet fertility, plant height and outcrossing success 

were the main parameters measured. Spikelet fertility and outcrossing success were 

assessed as measures of female fertility, whilst plant height and panicle exsertion were 

considered as attributes of the levels of elongation of the uppermost internodes of the 

plants. Prior to GA application, 10 intact florets (which had not shed pollen) were randomly 

taken from each panicle and immediately fixed in 70% ethanol for microscopic examination 

of pollen viability. Three of the six anthers were extracted from a random subsample of five 

florets, ruptured and stained with a 1% iodine potassium iodide (IKI) solution, and the pollen 

examined under a stereo microscope (Stemi 2000 c, Carl Zeiss Microscopy). Data on pollen 

count were recorded for three microscopic fields. Only darkly stained, round pollen grains 

were considered viable and therefore, fertile. Unstained (withered or spherical) and partially 

stained round pollen grains were considered to be sterile. The percentage of viable pollen 

was calculated as the sum of fertile pollen divided by the total number of pollen counted 

and multiplied by 100.  

Panicle exertion was assessed at 10 days after anthesis by recording the extent of coverage 

of each panicle by the flag leaf sheath, using a rating scale developed by IRRI (2006), where 

1, 3, 5, 7 and 9, represent 0, 1 -10, 11 – 25, 26 – 40, and > 40% of the panicle enclosed in 

the flag leaf sheath, respectively.  

The level of seed set at maturity was used to estimate spikelet fertility. Empty or unfilled 

spikelets were regarded as sterile, and any spikelet containing a caryopsis was considered 

fertile. Spikelet sterility was rated using a similar scale as for pollen sterility. Plant height 

was determined at 10 days after the beginning of anthesis. The length of the main culm, 

measured from the base of the plant to the apex of the panicle was determined as plant 

height and expressed in cm. Anthesis was the period when the spikelets on the main culms 

began opening to effect pollination. 
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During anthesis, supplementary pollination was carried out by shaking the panicles of a 

blooming genotype aligned parallel to the test plants in order to enhance possible 

outcrossing. The supplementary male parent was distinguished from the test genotypes 

mainly by its purple coloured basal leaf sheath. Outcrossing was determined at 45 days 

after harvest by sowing to 100 mature seeds obtained from each experimental unit, and 

counting the number of seedlings that showed pigmented basal leaf sheaths. 

All measurements were taken and averaged over three panicles per plant, and the data 

subjected to analysis of variance using GenStat Version 14 (VSN International). The means 

of factors showing differences at the 0.05 level of significance were separated using Fisher’s 

LSD test procedure. 

 
7.4 Results 

7.4.1 Effect of ethephon on pollen viability 
Data on the effect of ethephon on pollen viability at anthesis are presented in Table 7.1. 

The magnitude of pollen viability was significantly lower (p < 0.01) in plants treated with 

ethephon at microsporogenesis than in those plants treated at panicle differentiation. Pollen 

viability decreased consistently with increasing doses of ethephon, irrespective of when the 

plants were treated with ethephon. On average, pollen viability ranged from 94% in the 

control to 16% in plants treated with 6 000 µL L-1 ethephon at microsporogenesis.  

Differences in sensitivity to ethephon was negligible amongst the rice genotypes (p = 0.05).  

Table 7.1: Effect of ethephon on the viability (%) of rice pollen. 

Treatment  Genotype  
Growth stage Ethephon (µl L-1) LR 1 LR 8 LR 10 LR 18 LR 19 Mean 

Panicle 
differentiation 

0 96.67 97.21 94.87 98.21 95.91 96.57 
1000 91.39 86.53 79.5 80.47 88.54 85.29 
2000 72.33 78.66 80.16 82.85 80.75 78.95 
4000 50.92 58.8 44.4 51.57 58.27 52.79 
6000 44.94 46.59 47.45 40.94 60.32 48.05 
mean 71.25 73.56 69.28 70.81 76.76 72.33 

Microsporo-
genesis 

0 94.62 95.49 91.72 97.11 93.4 94.47 
1000 86.1 78.25 66.92 68.48 81.51 76.25 
2000 55.33 65.56 67.98 72.32 68.93 66.02 
4000 20.79 33.5 10.27 21.83 32.65 23.81 
6000 11.13 13.8 15.19 4.67 35.96 16.15 
mean 53.6 57.32 50.41 52.88 62.49 55.34 

 Grand mean 62.42 65.44 59.85 61.84 69.62 63.84 
LSD(p = 0.05) = [Genotype = 11.21; Ethephon = 7.94; Growth stage = 9.62]; CV = 17.2% 
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7.4.2 Effects of Ethephon and GA3 on spikelet fertility  
The effect of ethephon and GA3 on spikelet fertility of the genotypes differed significantly 

with application dose (Figure 7.1). On average, spikelet sterility was 41 to 44% lower in all 

plants of every genotype treated with high doses of ethephon. Differences between the 

genotypes for spikelet fertility were not significant (p = 0.05).  

Gibberellic acid significantly increased (p < 0.01) spikelet fertility, particularly in plants 

treated with high levels of ethephon (Figure 7.1). The levels of spikelet fertility recorded did 

not differ between the 90 and 150 µL L-1 doses of GA3, nor between the full and split 

applications (p = 0.05). 

 

 

Figure 7.1: Effect of gibberellic acid (GA3) on spikelet fertility of rice plants treated with 

ethephon at the microsporogenesis stage of development. Error bar indicates LSD(p= 0.05). 

7.4.3 Effects of ethephon and GA3 on panicle exsertion 
The panicles of all the plants of every genotype treated with ethephon exserted poorly from 

the flag leaf sheath, with more than 25 to 40% of the lengths of panicles remaining enclosed 

in flag leaf sheaths (Figure 7.2). The proportion of the panicles covered by the flag leaf 

increased steadily as the dosage of ethephon increased. Differences in panicle exsertion 

resulting from treatment with ethephon was negligible between the genotypes.  
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Gibberellic acid significantly increased (p < 0.001) the rate of panicle exsertion in all the 

cultivars, effectively countering the negative effects of ethephon. However, application of 

GA3 in split doses produced no more effect on panicle exertion than a single application. 

Also, the difference between the 90 and 150 (µL L-1) application levels of GA3 for influencing 

panicle exertion was not significant (p = 0.05).  

 
Figure 7.2: Effects of ethephon and GA3 on the level of panicle enclosure by the flag leaf 

sheaths of rice plants (failure of exsertion). Error bar indicates LSD(p = 0.05). 

7.4.4 Effects of ethephon and GA3 on plant height 
Plant height showed a linear decline with increasing dosage of ethephon (Figure 7.3). The 

genotypes significantly differed (p < 001) for plant height, but the trend of differences was 

neither affected by ethephon, nor by GA. Differences in plant height resulting from single or 

split application of GA were also non-significant (p = 0.05), irrespective of the dosage of GA 

applied. GA applied at 150 ppm, however, led to excessive increase in plant height (Figure 

7.4). 

7.4.5 Effects of ethephon and GA on outcrossing  
Increased levels (p < 0.01) of outcrossing (cross pollination) were observed in ethephon 

treated plants amended with GA3 (Figure 7.5). The highest rates of outcrossing (up to 25%) 

were recorded for plants treated with a combination of 4 000 or 6 000 µL L-1 ethephon and 
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90 or 150 µL L-1 GA3. Differences between the single and split doses of GA3 were not 

significant (p = 0.05) for the rates of outcrossing measured. 

 

 

Figure 7.3: Effect of ethephon on plant height at 10 days after anthesis. Error bars represent 

± 3.97 SEM. 

 

 

Figure 7.4: Effect of GA3 on stature of rice plants at 10 days after anthesis. Error bar 

indicates LSD(p = 0.05). 
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Figure 7.5: The effect of GA3 on the levels of outcrossing in the spikelets of rice plants 

treated with various doses of ethephon. Error bar indicates LSD(p = 0.05).  

 

7.5 Discussion 

Ethephon and GA are well known plant growth regulators used in agriculture for various 

applications, including crop hybridization. As a result of its availability and safety, ethephon 

was selected and evaluated in this study for its capacity to facilitate cross pollination in rice 

by inducing male sterility of designated female plants. However, ethephon has been 

reported to suppress plant height and limit female fertility in plants (Brown and Earley, 1973; 

Kaul, 1988; Kurepin et al., 2013); hence, GA was tested for its ability to reverse the negative 

effects of ethephon on rice (Beek, 1986). 

7.5.1 Effect of ethephon on the induction of male sterility  
Male sterility, the failure of male gametes to function, may result from one or more of the 

following events: disruption of meiosis in pollen mother cells, leading to the arrest of anther 

development; reduced deposition of starch and poor vacuole formation in the microspores, 

resulting in the failure of pollen germination or cessation of pollen tube elongation and 

therefore, the failure of fertilization; and delayed dehiscence or indehiscence of normal 

anthers (Sharma and Sharma, 2005). 

In this experiment, ethephon induced male sterility in test genotypes by significantly 

reducing pollen viability, or conversely, increasing pollen sterility. The recorded loss of 
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pollen viability could be attributed to the disruption of pollen development resulting from 

shock suffered by plants upon exposure to ethephon. Plants appeared physically stressed 

within 2 – 7 days after application of ethephon, and symptoms of pitting appeared on the 

leaves and sheaths of the treated plants (data not shown). Parmar et al. (1979) reported 

similar symptoms on rice treated with high doses of ethephon, ranging from 2000 – 10000 

ppm. The symptoms of pitting observed in the current study followed an increasing trend 

with increasing levels of ethephon. 

Ethephon is a recognized releaser of ethylene, which when exogenously applied during 

critical periods of pollen formation, inhibits starch accumulation and / or the formation of 

sperm nuclei in the pollen grains (Bennett and Hughes, 1972; Tu and Banga, 1998). From 

experiments with Petunia hybrid, Kovaleva et al. (2007) showed that between the period of 

meiosis and early microspore stage, endogenous ethylene induced pollen abortion by 

causing degeneration of the tapetum. Abdullah et al. (2001) also found that in rice, stress 

during the critical period of spikelet development led to pollen sterility by inhibiting starch 

synthase activity, thereby limiting the translocation of soluble carbohydrates in the 

developing spikelets. Stress has also been reported to cause defects in the lipids 

components of pollens, leading to pollen sterility in Arabidopsis (Aarts et al., 1995; Fiebig 

et al., 2000).  

 

7.5.2 Effect of growth stage on efficacy of ethephon for male sterility 
induction 
 
All of the genotypes were more sensitive to ethephon at microsporogenesis than at panicle 

differentiation, as indicated by the levels of pollen sterility induced by ethephon application 

at each stage. Microsporogenesis is the period when the pollen mother cells are undergoing 

meiosis, at which time they are extremely sensitive to stress. Stresses such as drought (Yue 

et al., 2013) and low (Nishiyama, 1984; Gothandam et al., 2007) or high (Matsui and 

Omasa, 2002; Rang et al., 2011) air temperatures have been associated with pollen 

abortion during this period. Yoshida (1981) described panicle differentiation as the time 

when the panicle branches, and spikelets are formed. Any effect of stress on plants at this 

time can result in the loss of entire panicle branches and spikelets, as observed in this 

study. Hence, in order to ensure high levels of pollen sterility, application of ethephon should 

be timed to coincide with the period around microsporogenesis.  
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7.5.3 Impacts of ethephon and GA on spikelet fertility and outcrossing 
Spikelet fertility, or the level of seed set, was evaluated as a measure of pistil fertility in this 

study. Low levels of spikelet fertility and outcrossing were observed in plants treated with 

ethephon alone, suggesting that ethephon negatively affected the pistils of the rice florets. 

Similar negative effects by ethephon on female fertility of rice has also been reported by Xi 

et al. (1981).  

Overall, pollen sterility measured in this study was not complete. The viable pollen within 

the spikelets most likely out-competed the pollen from the designated male parent, 

accounting for the low levels of outcrossing recorded. The relative positions of the male and 

female parts of the rice flower naturally tends to limit the crossing of two different plants. At 

anthesis, dehiscence of rice anthers tends to occur concurrently with glume opening, at 

which time the stigmas are also receptive (Matsui et al., 1999; Matsui et al., 2000), thereby 

leading to the promotion of self-pollination rather than cross-pollination. In genotypes whose 

anthers have large basal pores, self-pollination occurs even more efficiently (Matsui and 

Kagata, 2003). In such genotypes, the basal pores are usually situated above the stigma, 

and open during glume opening, so that the pollen grains fall directly onto the stigma 

(Morinaga and Kuriyama, 1944). High pollen loads from the male parents could therefore 

be required to increase the levels of outcrossing in partially male sterile female plants. 

While ethephon proved capable of causing some gametocidal effects in the rice plants, GA3 

appeared to counter, or mitigate the accompanying negative effects of ethephon. Higher 

levels of spikelet fertility and outcrossing were observed in GA3 treated plants, compared 

with those treated with ethephon alone. A minimum of a two-fold increase in spikelet fertility 

was recorded when plants treated with high levels of ethephon were supplementally treated 

with GA3 (Figure 7.5).  

Essentially, rice is a self-pollinating crop. Although natural outcrossing occurs in the 

species, it is usually less than 1% (Taillebois and Guimaraes, 1988; Rong et al., 2004). The 

increase in fertility facilitated by GA3 could be due to GA3 directly increasing the vitality of 

the pistil, by enhancing stigma exsertion. Gibberellic acid has been reported to play a major 

role in increasing stigma exsertion and receptivity in rice, leading to significantly higher rates 

of outcrossing in male sterile rice plants (Virmani and Sharma, 1993; Gavino et al., 2008a), 

as stigmas protruding out of the glume are more easily accessible by pollen from other 

blooming panicles. While Beek (1986) reported the use of GA3 to enhance female fertility 

of wheat plants treated with ethephon, Colombo and Favret (1996) showed that GA3 

increased pollen sterility in bread wheat when applied successively at high concentrations. 
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It is, therefore, unlikely that GA3 influenced the increase in spikelet fertility by reviving the 

viability of the pollen previously suppressed by ethephon.  

7.5.4 Effects of ethephon and GA3 on panicle exsertion and plant height  
Besides inducing pollen sterility, ethephon suppressed the growth of the uppermost 

internode of all genotypes by causing the failure of panicles to extend out of the flag leaf 

sheath. Similar effects of ethephon on panicle exsertion and plant height have been 

reported for millet (Thakur and Rao, 1988), rice (Chan, 1983) and wheat (Kaul, 1988). Poor 

panicle exsertion, as with spikelet sterility, has also been reported in rice as a result of 

drought and other stresses occurring during the reproductive stage of crop development 

(Ahmed et al., 1996), which can lead to early senescence.  

The effect of ethephon on panicle exsertion and plant height was phytotoxic, and these 

effects are undesirable. The failure of panicles to extend out of the flag leaf sheaths, or for 

plant height to increase any further was certainly equivalent to a net cessation of growth. In 

effect, ethylene released by ethephon is a plant growth hormone that also accelerates 

senescence. It was therefore to be expected that the growth of plants ceased or slowed 

substantially following the application of ethephon sprays.  

Gibberellic acid significantly increased panicle exsertion and plant height in all genotypes; 

hence, it effectively countered the negative effects of ethephon on plants by fully extending 

the panicles out of the flag leaf sheaths, as was anticipated. Gibberellic acid has been 

similarly used in hybrid rice seed production to enhance panicle exsertion of female CMS 

lines (Yuan et al., 2003). Essentially, GA3 is a plant growth regulator that is involved in 

several growth and developmental processes, including the regulation of stem elongation 

(Spielmeyer et al., 2002; Sun, 2010), of plants (Naeem et al., 2001; Emongor, 2007). GA 

has been found to increase growth of cells by mainly stimulating the production mRNA 

molecules responsible for coding for hydrolytic enzymes, which eventually increases plant 

growth (Solaimalai et al., 2001).  

Differences in panicle exsertion and plant height, as influenced by either split or single dose 

of GA3, were negligible, implying that a single application of GA3 is adequate to reverse 

the negative effects of ethephon for breeding purposes. Split application of GA3, however, 

has been used to increase seed yield, not only by increasing panicle exsertion and seed 

set, but also by increasing the number of effective tillers (Gavino et al., 2008b; IRRI, 2009). 

Application of GA3 at 90 or 150 µL L-1 was equally effective for increasing panicle exsertion; 

however, the higher dose excessively increased plant height, especially in plants treated 

with lower doses of ethephon. Appropriate control of GA3 dosage could be important for 
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plant height adjustment in a large scale breeding project. In the event that the male parents 

become shorter than the female, small doses of GA3 could be used to adjust their heights, 

in order to optimize pollen dispersion onto the females (Sindhua and Kumar, 2003; Virmani 

et al., 2003b).  

7.5.5 Influence of genotype on efficacies of Ethephon and GA3 
The capacity of ethephon to reduce pollen viability and consequently cause male sterility 

was largely the same for all genotypes tested. Also, the rice genotype did not seem to 

influence the effect of ethephon on panicle exsertion and plant height, although genotypes 

inherently differed for these traits. Hence, it is likely that ethephon + GA3 can be used as a 

male gametocide for a wide range of rice genotypes.  

 

7.6 Conclusion 

In a rice breeding programme where large numbers of crosses are required, a male sterility 

technology is needed, not only to accelerate progress, but also to minimize the costs 

involved in hand emasculation. The use of male gametocides to effect mass emasculations 

needed to facilitate large numbers of crosses may be advantageous for application in 

recurrent selection programmes that often require several cycles of random polycrosses. 

Using chemicals to effect male sterility in the chosen female parents of rice plants could be 

useful for ensuring cross pollination of large numbers of plants quickly and cheaply. In this 

study, ethephon was used as a male gametocide; it induced acceptable levels of pollen 

sterility in all the genotypes tested. However, its efficacy as a CHA by itself would be limited 

because it also tended to diminish seed set and outcrossing, mostly as the result of its 

negative effects on panicle exsertion. Gibberellic acid applied at 90 or 150 µL L-1 reversed 

the negative effects of ethephon by stimulating the extension of the panicles out of the flag 

leaf sheaths, thereby increasing the levels of seed set and outcrossing in the treated plants. 

The application of a combination of ethephon and GA3 can be useful as a chemical tool for 

breeding rice. The best outcome resulted when ethephon was applied at 4 000 µL L-1 at the 

microsporogenesis stage of rice development, followed by application of GA3 at 90 µL L-1 

at anthesis. Although results from these preliminary studies indicated the possibility of 

effecting random polycrosses in these genotypes with the aid of ethephon and GA3, further 

studies may be required to further test the usefulness of this CHA treatment under field 

conditions. Hence, when perfected, this CHA treatment has potential in rice hybrid 

development as well. Testing of other compounds will be needed in order to find a 

compound capable of inducing higher levels of male sterility, ideally 100% sterility, with no 

loss of female fertility and seed development. 
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CHAPTER 8 

EFFECTS OF TRICHODERMA HARZIANUM ON THE RESPONSES OF RICE 
(ORYZA SATIVA L.) TO BLAST DISEASE AND DROUGHT STRESS 

 

8.1 Abstract 

Integrating host plant resistance with cost-effective methods of control could enhance the 

management of blast disease and drought stress affecting rice (Oryza sativa L.). Both 

greenhouse and field experiments were conducted to evaluate two biological control 

products (Eco-77® and Eco-T®), containing different strains of Trichoderma harzianum, for 

their capacity to mitigate the effects of rice blast and drought stress on rice, and to determine 

the effect of rice blast infection on drought tolerance. Five rice genotypes were treated with 

Eco-77® and Eco-T®. Eco-77®, applied twice as a foliar spray onto rice infected with blast, 

significantly reduced (p < 0.01) disease severity by limiting the size of sporulating lesions, 

resulting in a reduced area under the disease progress curve (AUDPC). The efficacy of 

Eco-77® at limiting the severity of rice blast tended to increase when combined with Eco-

T®, applied as seed dressing or as root drench, prior to the sowing or transplanting of rice. 

Eco-77® was not effective at reducing disease severity on the universally susceptible 

genotype, LTH, compared to the other genotypes, which seemed to display various levels 

of host resistance. Eco-T® significantly increased drought tolerance by reducing the rate of 

plant mortality, and increasing root mass density, shoot dry mass and grain yield per unit 

area of the plants subjected to post-blast infection drought stress under field conditions. The 

mortality rate of rice blast-infected plants subjected to drought stress, by 62 days after 

sowing, was significantly higher than that recorded in the blast-free plants. The mortality 

rate, root mass density, shoot dry mass and grain yield of rice plants subjected to pre-blast-

infection drought stress were significantly higher than those of the plants subjected to post-

blast-infection drought stress. These results indicate that the development of blast disease, 

followed by drought stress, is more damaging to rice productivity and yield, than the impact 

of drought stress succeeded by blast disease. Because the Trichoderma treatments were 

more effective in reducing the effects of rice blast in plants that showed higher levels of 

blast resistance, integrating Trichoderma with host plant resistance is a good strategy to 

reduce the impact of blast and drought on rice crops. 

Keywords: biological control agents, disease severity, drought stress, Eco-T®, Eco-77®, 
rice  



154 
 

8.2 Introduction 

Rice blast, caused by Pyricularia oryzae Cavara and drought are serious constraints to rice 

production in all rice growing regions of the world (Serraj et al., 2008; Khush and Jena, 

2009). These problems are especially acute in developing countries, such as Liberia, where 

the crop is predominantly grown by subsistence farmers, under rainfed conditions in upland 

fields. Host plant resistance has remained the most important tool for managing plant 

diseases. However, the frequent failure of vertical resistance used to control rice blast 

(Bonman, 1992; Han et al., 1995) has often resulted in severe crop losses, reflecting a clear 

need to develop new varieties with effective levels of horizontal resistance. Control of rice 

blast using minor genes however, is usually only partial resistance, although it is useful for 

reducing losses to the disease (Bonman et al., 1992; Wang et al., 1994). Like resistance to 

rice blast, drought tolerance, currently conferred by plant breeding, is often inadequate to 

protect rice plants against yield losses caused by drought stress. Augmenting the levels of 

control proffered by varieties with horizontal resistance to blast, and increasing tolerance to 

drought would therefore be valuable to ensure reliable yields from rice crops in Liberia or 

similar agro-ecologies.  

Biological control agents (BCAs) are widely known to offer a wide range of benefits to plants 

exposed to suboptimum conditions, ameliorating both biotic and abiotic stresses, and can 

be useful when integrated with host plant resistance (Folli-Pereira et al., 2013). Trichoderma 

harzianum Rifai, neo typified as T. harzianum s.l. (Gams and Meyer, 1998), is recognized 

as an important BCA against several agriculturally important root and foliar pathogen 

species (Inbar et al., 1994; Grondona et al., 1997; Reino et al., 2008; Yobo et al., 2013; 

Zafar et al., 2013). Trichoderma harzianum may control diseases of plants by either direct 

mycoparasitism (Mukherjee et al., 1995), or by antibiosis through its production of 

secondary metabolites (Ordentlich et al., 1992; Scarselletti and Faull, 1994). Trichoderma 

harzianum may also act by lysing pathogenic cells (Elad et al., 1982), by inducing host plant 

resistance (Zimand et al., 1996; De Meyer et al., 1998), or by combining two or more of 

these mechanisms.  

Some strains of T. harzianum have also proven effective for mitigating the harmful effects 

of abiotic stresses such as salinity, cold, and drought (Bjorkman et al., 1998; Yildirim et al., 

2006; Mastouri et al., 2010). The capacity of T. harzianum to mitigate the effect of abiotic 

stresses may be mediated by its ability to enhance the growth of crops under adverse 

conditions (Chang et al., 1986; Yedidia et al., 2001; MwangiI et al., 2011). 

Despite the potential of T. harzianum for the management of agriculturally important 

stresses, research on its usefulness for managing the effects of rice blast and drought stress 
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in rice, has received little attention. The present studies were therefore carried out, under 

both greenhouse and field conditions, to determine the usefulness of two strains of T. 

harzianum (Eco-77® and Eco-T® from Plant Health Products (Pty) Ltd, South Africa) for 

managing rice blast infections, as well as the effects of pre- and post-blast infection drought 

stress on rice. 

8.3 Materials and methods 

Both controlled environment (CE) and field experiments were conducted to evaluate the 

capacity of two strains of T. harzianum to manage the effects of rice blast and drought stress 

on rice. Concurrently, experiments were conducted to determine the effect of rice blast 

infection on the response of rice to drought stress. 

8.3.1 Plant materials 
Five rice genotypes, including two landraces (LR 8 and 18) and an improved cultivar (LAC 

23) from Liberia, one improved cultivar from Burkina Faso (FKR 19), and 

Lijiangxintuanheigu (LTH), a traditional variety from Japan, were used in the experiments. 

The genotypes from Liberia were upland varieties; FKR is mainly grown in irrigated paddies; 

and LTH is a universal blast-susceptible genotype widely used as a susceptible check for 

rice blast differential variety studies. Lijiangxintuanheigu and FKR 19 were used as 

susceptible checks for rice blast and drought stress, respectively. LAC 23 was used as a 

resistant check for both rice blast and drought stress. 

8.3.2 Description of the study sites 
The CE and field studies were conducted at the research facilities of University of KwaZulu-

Natal in Pietermaritzburg, South Africa. The CE experiment was carried out in a greenhouse 

tunnel (25 / 30 oC; 65% RH) from August to December of 2012, whilst the field trial was 

conducted at the university’s Ukulinga Research Farm (29° 40’ S, 30° 24’ E; 806 m above 

sea level) from November 2013 to April 2014. Based on annual means of long term climatic 

data, Ukulinga has a mean annual temperature and rainfall of 18°C and 738 mm, 

respectively. Climatic data for the duration of the field experiment are presented in Table 

8.1.  
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Table 8.4: Monthly climatic data during the field trial (November 2013 – April 2014). Data 

source: Agricultural Research Council – Institute for Soil, Climate and Water (ARC–ISCW), 

South Africa. 

 
 
Months 

Temperature (oC) 
 

Solar 
radiation 
(MJ m-2) 

Reference 
Evapo-

transpiration 
(mm) 

Minimum Maximum 

November 14.88 25.00 19.00 112.30 
December 15.93 23.40 16.78 100.50 
January 18.10 28.00 20.46 131.10 
February 18.20 28.20 20.83 116.10 
March 17.13 26.20 16.30 101.70 
April 13.62 24.40 15.48 87.49 
Mean 16.31 25.87 18.14 649.19a 

a Values for Reference evapotranspiration are totals, not averages. 

8.3.3 Experimental design and treatments 
The CE study was laid out in a randomized complete block design with four replications, 

comprising a factorial arrangement of the five rice genotypes, four factors of Trichoderma 

harzianum (Control, Eco-T®, Eco-77®, and Eco-T® plus Eco-77®) and two water regimes 

(well watered and drought stressed). A split-split plot design was utilized for the field 

experiment, using the same sets of treatments tested in the CE. The main plots were the 

water regimes, and the subplots the Trichoderma factors. The genotypes were the sub-sub 

plots, randomly assigned to each subplot. 

Test plants for the CE study were grown in 4.8 L plastic pots with 15 plants per pot, whilst 

plants in the field were grown in 1.5 m X 3.0 m plots, with intra-row and inter-row spacings 

of 0.15 m X 0.15 m. Soils in well–watered pots and plots were kept continuously moist 

throughout the experiment. Drought stress was imposed prior to, or after plant infection by 

rice blast. The pre-infection drought stress was applied beginning at 10 days before plant 

exposure to disease spreader plants, by withholding water and only irrigating on the day of 

exposure to disease spreaders. For the post-infection drought stress treatment, a water 

deficit was applied intermittently, beginning at 44 days after sowing or transplanting (DAS / 

DAT), and temporarily restored when all of the plants showed symptoms of complete leaf 

rolling, scored as 9 according to the International Rice Research Institute’s (IRRI) drought 

evaluation system for rice (IRRI, 2006). 

 

Eco-T® and Eco-77® were obtained as wettable powder formulations of T. harzianum 

strains KD and B77, respectively; each containing 2 X 109 conidia g-1. Eco-T® was applied 

as a seed dressing at 2.0 g kg-1 of seed, or as seedling root drench prior to sowing or 
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transplanting at 0.25 g L-1. Eco-77® was applied as a conidial suspension with 0.5 g L-1 of 

sterile water, applied twice a foliar spray: when blast symptoms appeared as tiny specks or 

light green water-soaked spots, and at 5 days after the first application. The control seeds 

or plants were treated with a placebo containing a sterile mixture of each Trichoderma 

formulation and water. The foliage of plants treated with Eco-T® were also sprayed with a 

placebo in order to exclude any effect due to the spraying.  

For each experiment, soils were amended in keeping with the results of soil analyses. 

Phosphorus was applied as basal application at 20 kg ha-1; and nitrogen was applied prior 

to sowing at a rate of 110 kg ha-1, in order to stimulate vigorous vegetative growth, and 

thereafter, at 30 kg ha-1 at 62 DAT. 

8.3.4 Inoculation of test plants 
An isolate of P. oryzae (SIK-111), sourced from the AfricaRice Centre in Cotonou, Benin, 

was used to infect the test plants with rice blast. A uniform blast nursery procedure was 

applied to initiate the disease cycle, using pre-infected LTH seedlings as disease spreaders. 

The test plants were exposed to the disease spreaders at 21 DAS in the CE, and at 21 DAT 

in the field. The spreader plants were established in single alternating rows before and after 

each genotype, both in the CE and in the field. In the field, the disease spreaders were 

prepared in polyethylene bags and transferred with intact growth media to their designated 

rows to minimize transplanting shock.  

8.3.5 Sampling and data analyses 
The number of lesions with sporulating centres per plant (LN) were determined at 10 days 

after exposing plants to the disease spreaders (DAEP) in the CE and at 10 and 14 DAEP 

in the field. The size of lesions with sporulating centres (LS) was estimated at 10 DAEP, 

both in the CE and in the field, using the keys adapted by Roumen (1992) (Figure 8.1). The 

predominant lesion on the older leaves were chosen for LS measurement. Data on LN and 

LS were recorded from 10 randomly chosen plants per pot or plot. 
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Figure 8.1: Assessment key for estimating the size of sporulating rice blast lesions. Source: 

Roumen (1992). 

 

Disease severity on all fully expanded leaves per plant was estimated five times at three 

day intervals (31, 34, 37, 40 and 43 DAS), beginning at 8 – 10 days after exposure of plants 

to the inoculum source. Ten plants per pot in the CE, and all but the border plants of each 

plot in the field, were visually scored for disease severity, using a diagrammatic scale 

(depicting 0, 0.5, 1, 2, 4, 8, 16, 32, 64 and 82% of diseased leaf area) developed by 

Notteghem (1981). Leaf area was considered 100% affected when entire leaves died from 

lesions on the leaf collars. The sequential disease severity scores were used to calculate 

the area under the disease progress curve (AUDPC), in order to compare the effectiveness 

of the treatments and genotypes, based on the formula developed by Shaner and Finney 

(1977):  

AUDPC = ∑Ni = 1((Yi + 1 + Yi)/2)(Xi + 1– Xi)                                                                (8.1), 

where Yi = the percent of diseased leaf area on the ith day of assessment, Xi = time of the 

ith assessment in days from that of the first assessment, and N is the total number of times 

disease was assessed. The highest diseased leaf area during disease progress was 

recorded as maximum disease severity.  

Ten days following relief of post-blast infection drought stress, drought recovery of the 

plants was assessed by counting the number of surviving plants. Differences in the mortality 

rates between blast-infected and blast-free plants under CE conditions were analysed to 

determine the effect of rice blast infection on rice responses to drought stress.  

At heading, the field grown plants were sampled from an area of 1.0 m2 per plot to determine 

dry shoot mass and root mass density.  Root samples were collected from the 0 to 30 cm 
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depths of the soil profile, with the aid of a core sampler, according to the procedures outlined 

by Henry et al. (2012). Three soil cores were collected from each plot from the centre of 

four hills and sorted in plastic bags. Roots were subsequently separated from the soil by 

flotation, following the protocol described by Bohm (1979). Samples were soaked in, and 

mixed with sufficient water, and the floating roots isolated by sieving. At maturity, an area 

of 1.0 m2 per plot was harvested to measure grain yield. Root and shoot dry masses were 

determined after oven drying the samples at 70oC for 48 hr. Root mass density was 

expressed as the mass of root dry matter per volume of the soil core sampled. Grain yield 

was determined after reduction of grain moisture content to 14% by drying the seeds at 

ambient temperature.  

 

All data were subjected to analyses of variance using the statistical package GenStat® 

Version 14 (VSN, International). The means of factors showing significant difference were 

separated by Fisher’s least significant difference (LSD) test at the 5% probability level.  

 

8.4 Results 

8.4.1 Effect of Trichoderma on the number of sporulating lesions per 
plant 
 
The number of sporulating lesions developed on plants at 10 days after exposure to P. 

oryzae were not affected by treatment with either Trichoderma, nor by the water regime, 

under both CE and field conditions. However, in both the CE and field, the number of 

sporulating lesions per plant differed significantly with genotype (p < 0.001) (Figure 8.2). 

The susceptible check, followed by LR 8, developed the highest number of sporulating 

lesions per plant. The number of sporulating lesions recorded per plant were lower under 

field conditions than CE conditions. The pattern of differential susceptibility between the 

genotypes for the number of sporulating lesions per plant observed in the CE was similar 

to that observed under field conditions. No significant interaction effects were found 

between the treatments. At 14 days after exposure to disease spreaders, plants treated with 

Eco-77® alone, or with Eco-77® plus Eco-T®, displayed significantly lower numbers of 

sporulating lesions on the top of most fully expanded leaves (Figure 8.3). 
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Figure 8.2: Number of sporulating lesions developed by five rice genotypes under controlled 
environment and field conditions at 10 days after exposure to disease spreaders. The error 
bars represent LSD(p = 0.05). 
 

 
Figure 8.3: Numbers of sporulating lesions developed on five rice genotypes under field 
conditions at 14 days after exposure to disease spreaders, following treatment with T. 
Harzianum strains. The error bar represents LSD(p = 0.05). 
 

8.4.2 Effect of Trichoderma on size of sporulating lesions 
Data on the size of lesions developed on the plants are presented in Figure 8.4. Eco-77® 

alone, or in combination with Eco-T®, significantly reduced the size of sporulating lesions 

(p < 0.01) that developed on the genotypes. Eco-T® alone had no influence on LS 

measured in this study. The pattern of reaction for LS of the Trichoderma treatments and 

varieties did not differ between measurements obtained from the CE and the field trials.  On 
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average, the LS measured on plants in the field were slightly larger than the measurements 

obtained from the CE; however, differences between the two were negligible (p = 0.05). 

 

 
Figure 8.4: Effect of two strains of T. harzianum on the size of rice blast lesions on five rice 
genotypes. The error bar represents LSD(p=0.05). 
 

8.4.3 Effects of Trichoderma on disease severity and progression 
Disease severity (percentage of leaf area with sporulating lesions) differed significantly over 

time with genotype, Trichoderma treatment and with pre-infection water regime, both in the 

CE and in the field trial (Table 8.2). Disease progressed significantly faster on susceptible 

genotypes than the resistant genotypes. Eco-77® and Eco-77® plus Eco-T® significantly 

slowed the progress of disease, under both well-watered and water stressed conditions, 

both in the CE and in the field (Figure 8.5). Overall, disease progress was faster in drought 

stressed than in well-watered plants.  
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Table 8.2: ANOVA for rice blast severity in the greenhouse and field 

 

 
Source of variation 

Greenhouse Trial 
 

Mean squares 
D.f. 31 DAE 34 DAE 37 DAE 40 DAE 43DAE 

Genotype 4  653.0*** 2185.5*** 4488.5*** 5593.4*** 9094.8*** 
Trichoderma 3 64.1*   891.2*** 5142.7*** 9422.8*** 7312.4*** 
Water regime 1 99.0* 1763.3*** 1717.6*** 56.0 76.5 
Genotype x Trichoderma 12 15.2 111.2   234.0 304.8   216.0 
Genotype x water regime 4 86.2* 311.3   264.1 520.6 1054.5** 
Trichoderma x water regime 3 20.8  1243.1   835.3 167.3* 128.7 
Genotype x Trichoderma x 
water regime 12 24.5  1073.6 4163.2 1720.2  2413.3 

Error 78 20.0 136.5 157.1 190.0 229.6 
 
 Field Trial 

Genotype 4  715.2*** 1890.0*** 5054.1*** 6321.3*** 8922.2*** 
Trichoderma 3 69.8* 736.8** 5431.5*** 9501.2*** 6895.0*** 
Water regime 1 97.6* 1688.4*** 2011.0***     62.7   105.5 
Genotype x Trichoderma 12 17.0 97.9   265.8   317.4   372.2 
Genotype x water regime 4 91.0*   295.0   304.5   543.0 982.8** 
Trichoderma x water regime 3 22.5  1111.7   888.5   176.7*   117.5 
Genotype x Trichoderma x 
water regime 12 25.9 1021.1 4420.0 1781.0 1954.2 
Error 78 22.8   122.3   177.5   195.6   190.0 

 
D.f = degree of freedom; ***, **, * = significance levels of p < 0.001, p < 0.01 and p < 0.05, 
respectively. 
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Figure 8.5: Effect of Trichoderma harzianum on the progress of rice blast severity on plants 

grown under well-watered (a) and drought stressed conditions 

8.4.4 Maximum disease severity 
Maximum disease severity measurements taken under CE conditions are displayed in 

Figure 8.6. The Trichoderma treatments and genotypes differed significantly (p < 0.001) for 

their effects on the maximum area of leaves infected by rice blast, both in the CE and in the 

field trials. Maximum disease severity was significantly lower in plants treated with Eco-77® 

alone or with Eco-77® plus Eco-T®. The water regime tended to have no significant 

influence on maximum disease severity; however, a significant interaction (p < 0.05) was 
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observed between water regime and genotype for maximum disease severity. Disease 

severity was more pronounced in LR 8 when grown under well-watered than under drought 

stressed conditions. 

 

 
Figure 8.6: Maximum disease severity in five rice genotypes treated with or without 

Trichoderma harzianum treatments. The error bar represents LSD(p = 0.05). 

 

8.4.5 Area under the disease progress curve 
The area under the disease progress curve varied significantly with genotype, Trichoderma 

treatment, and with water regime (p < 0.001), as portrayed in Figure 8.7. Treatments with 

Eco-77® showed the lowest values of AUDPC with all the genotypes. The AUDPC values 

were significantly lower in every other genotype than the blast susceptible check, LTH, 

irrespective of water regime, both in the field and in the CE trials. On average, plants 

subjected to pre-blast infection drought stress developed significantly higher AUDPC values 

than those grown under well-watered conditions prior to infection by rice blast. Interactions 

between either combinations of the three factors were not significant, except for that 

between genotype and water regime (p < 0.05). This was only observed in the CE trial in 

which the AUDPC values were higher under drought stressed conditions than under well-

watered conditions for LTH, LR 8 and 18; and the opposite was true for LAC 23 and FKR-

19 (Figure 8.7). 
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Figure 8.7: The effect of T. harzianum treatments on rice blast intensity under contrasting 

soil water conditions, when applied to five rice genotypes. The error bar represents LSD(p = 

0.05). 

8.4.6 Percent reduction in disease severity 
Table 8.3 shows the level of reduction in disease severity caused by the Trichoderma 

treatments. The level of reduction in disease severity by Trichoderma varied significantly 

with genotype. The susceptible check, LTH, displayed the least reduction in disease 

severity. The combination of Eco-77® and Eco-T® achieved the greatest reduction in 

disease severity under both well-watered and intermittent drought stressed conditions. The 

difference in disease reduction between the two soil water regimes was not significant (p = 

0.05) 

 

Table 8.3: Reduction in the severity of rice blast developed by five rice cultivars as a result 

of different Trichoderma treatments. Values are percentages. 

 Drought stressed  Well watered 

Genotype ECO77 ECOT ECOT+77 Mean  ECO77 ECOT ECOT+77 Mean 
LAC 23 42.7 10.7 32.0 28.5  44.0 16.7 54.7 38.5c 
LR 19 38.7 0.0 50.0 29.6  21.3 10.7 37.3 23.1bc 
LR 8 44.7 6.0 39.3 30.0  28.0 0.0 39.3 22.4b 
FKR 33.3 6.0 44.0 27.8  34.0 -0.7 28.7 20.7b 
LTH 6.0 6.0 18.0 10.0  6.0 -6.0 12.0 4.0a 
Mean 33.1 5.7 36.7 25.2  26.7 4.1 34.4 21.7 
LSD         15.8 
CV (%)         6.3 

Means with the same letters are not significantly different at p = 0.05. 

0

100

200

300

400

500

600

700

FKR 19 LAC 23 LR 18 LR 8 LTH FKR 19 LAC 23 LR 18 LR 8 LTH

AU
D

PC

Control Eco-77 Eco-T Eco-T+77

Drought stressed Well watered 



166 
 

8.4.7 Effects of Trichoderma on pre- and post-infection drought tolerance 
of rice 
 
Rice blast infected plants subjected to drought stress two weeks after blast incidence (62 

WAS) showed significantly high rates of mortality (p < 0.001), ranging from 53 to 90% 

(Figure 8.8). No mortality was observed in rice-blast-free plants subjected to water stress 

by 62 DAS. Trichoderma applications significantly reduced the mortality rate of the blast 

infected plants of all the varieties subjected to drought stress, with Eco-T® accounting for 

the highest reduction in the level of plant mortality (Figure 8.8). The level of mortality also 

varied significantly with genotype; LR 18 exhibited the lowest mortality, followed by LAC 23. 

Differences in plant mortality between the well-watered plants and those subjected to pre-

infection drought stress were not significant (p = 0.05). 

 

 
Figure 8.8: Effect of Trichoderma on survival of rice blast-infected plants of five rice 
genotypes subjected to drought stress. The error bar represents LSD(p = 0.05). 

8.4.8 Effect of Trichoderma on biomass accumulation of rice 
Under post-blast infection water stress, plants treated with Eco-T® or with a combination of 

Eco-T® and Eco-77® developed significantly higher shoot dry mass and grain yield per unit 

area, and higher root mass density than those left untreated, or treated with Eco-77® alone 

(Table 8.4). Shoot dry mass and grain yield of plants did not vary significantly with 

Trichoderma treatment for the plants grown under well water conditions. However, the dry 

mass of roots varied with Trichoderma treatment under well-watered conditions, with the 

plants treated with Eco-T® and Eco-T® plus Eco-77® being significantly heavier than the 

other plants.  
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Table 8.4: Effects of Trichoderma harzianum on growth and yield of five rice genotypes 

under different post-blast-infection water regimes 

Trichoderma Genotype 

Drought stressed  Well watered 

RMD 
(mg cm-3) 

SDM 
(g m-2) 

GY 
(g m-2) 

 RDM 
(mg cm-3) 

SDM 
(g m-2) 

GY 
(g m-2) 

Control LAC 23 3.6 370.8 162.5   6.2 479.2 184.0 
LR 19 3.7 256.9 112.5   5.4 371.0 162.5 
LR 8 3.3 363.8 160.0   5.6 562.7 197.5 
FKR 2.9 172.4 88.6   6.0 233.9 128.6 
LTH 0.4 47.0 22.5   0.4 78.4 37.5 
Mean 2.8b 242.2b 109.2b   4.7a 345.0ab 142.0a 

Eco-T® LAC 23 6.4 395.2 178.8   5.8 455.0 182.6 
LR 19 5.9 266.1 124.6   5.3 405.2 166.4 
LR 8 6.2 368.5 181.3   6.8 498.9 201.3 
FKR 5.7 190.4 113.6   5.3 355.7 133.4 
LTH 0.4 47.9 22.7   0.5 62.5 32.5 
Mean 4.9a 253.6a 124.2a   4.7a 355.5a 143.2a 

Eco-77® LAC 23 3.4 368.2 158.2   5.5 384.8 179.1 
LR 19 4.1 255.5 114.6   6.1 419.4 157.6 
LR 8 3.1 358.6 166.1   6.7 515.4 185.4 
FKR 2.8 180.0 96.5   5.4 230.4 112.8 
LTH 0.5 45.2 23.5   0.4 73.4 24.0 
Mean 2.8b 241.5b 111.8b   4.8a 324.7a 131.8a 

Eco-T® + 
Eco-77® 

LAC 23 6.6 403.3 174.4   6.2 432.8 193.2 
LR 19 5.8 278.0 121.7   6.6 389.5 176.0 
LR 8 6.6 372.1 173.2   5.9 566.4 199.5 
FKR 3.1 183.5 117.0   4.6 214.0 124.5 
LTH 0.5 42.6 17.8   0.4 58.6 30.0 
Mean 4.5a 255.9a 120.8a   4.7a 332.3b 144.6a 

Grand Mean 3.8 248.3 116.5   4.8 339.4 140.4 
CV (%) 37.2 16.4 22.8  37.2 16.4 22.8 

RMD =root mass density; SDM = shoot dry mass; GY = grain yield; CV = coefficient of 
variation. Means in the same column followed by different letters differ significantly (p = 
0.05). 

 

8.5 Discussion 

Understanding the influence of Trichoderma harzianum on blast disease and drought stress 

responses of rice could be useful for devising more effective strategies for managing two of 

the most important problems limiting rice production in many parts of the world. Also, further 

insights into the nature of the relationship between rice blast and drought stress would help 

producers more effectively address the risks posed by these problems. 
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8.5.1 Effects of Trichoderma on the number of sporulating lesions and 
lesion size inflicted by P. oryzae on rice 
 
The capacity of T. harzianum to control rice blast in these studies depended largely on the 

strain applied to control the pathogen. In both the CE and field experiments, Eco-77® was 

effective at controlling blast when applied at the time plants began showing symptoms of 

the disease. Conidia of the pathogen were likely to be established on the plants by then, 

and the differences between the Trichoderma-treated and control plants were not significant 

at 10 days after exposure to the disease spreaders. However, at 14 days after plant 

exposure to disease spreaders under field conditions, a marked reduction in the number of 

sporulating lesions on new leaves was observed on plants treated with Eco-77® alone, or 

with Eco-77® plus Eco-T®, suggesting that if applied earlier, Eco-77® could be more 

effective. 

 

Eco-77® also significantly reduced the size of sporulating lesions and overall disease 

severity in plants, as measured by AUDPC and maximum disease severity levels. The 

capacity of Eco-77® to reduce disease severity in these studies was likely mediated through 

the mechanism of parasitism. Studies have shown that T. harzianum can disrupt the 

pathogenic activity of other fungi by coiling around their hyphae and producing enzymes 

that dissolve the cells walls of the pathogen (Elad et al., 1982; Mukherjee et al., 1995). 

Benhamou and Chet (1997) showed that chitinase is a common enzyme produced through 

gene transcription by T. harzianum to parasitize Pythium ultimum. Eco-T®, applied as a 

seed coating or as a seedling root drench, did not control rice blast in these studies. 

However, studies by Singh et al. (2012)have shown that seed treatment with a strain of T. 

harzianum reduced rice blast severity in lowland rice plants by 17 to 25%. It is likely that 

Eco-T® may be more adapted for managing rhizosphere-related problems, as specifically 

indicated by the manufacturer.  

8.5.2 Effect of Trichoderma on drought tolerance of rice 
Trichoderma-treated plants subjected to post-blast infection drought stress displayed an 

enhanced ability to recover from the effect of drought stress. Eco-T® was particularly 

effective for reducing plant mortality, as a significantly higher number of plants treated with 

this formulation were able to survive, compared to the other treatments. Disease-challenged 

plants treated with T. harzianum have been found to exhibit characteristics of tolerance to 

various abiotic stresses, including drought, when applied as a seed coating (Mastouri et al., 

2010) or as a soil drench (Yildirim et al., 2006).  
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8.5.3 Effects of Trichoderma on growth and yield of rice 
Shoot and root dry matter and grain yield of plants were measured to determine the effect 

of the various Trichoderma treatments on the growth and yield performance of rice. Eco-T® 

caused a significant increase in shoot and root biomass at heading, and consequently 

increased grain yield per unit area. The capacity of some strains of T. harzianum to improve 

crop growth and productivity has been demonstrated in several studies (Bjorkman et al., 

1998; Bal and Altintas, 2006; Chiurase et al. 2015; Shoresh and Harman, 2008; Zhang et 

al., 2013).  

The increase in root biomass, as mediated by Eco-T® under the well-watered conditions, 

did not correspond to any increase in shoot biomass or grain yield. A larger root volume 

may be expected to lead to increased extraction and utilization of nutrients from the soil, 

which could translate into higher above ground biomass and yield, if the plant was under 

stress. However, under ideal conditions, extra root biomass is unlikely to affect yield as it 

confers no advantage to the plants. 

8.5.4 Genotypic influences on the effectiveness of Trichoderma 
harzianum 
 
Genotypic differences in plant mortality was observed, irrespective of Trichoderma 

treatment, when plants were subjected to post-blast-infection drought stress. This was 

probably due to differences in the levels of their genetic resistance to the disease. It was 

also observed that the more effective Trichoderma treatment (Eco-77®) did not significantly 

reduce disease severity in the universally blast susceptible genotype (LTH), as it did the 

other cultivars, which possessed various levels of host plant resistance against rice blast 

(Chapter 3). This suggests that some minimum level of host resistance may be required to 

delay disease progress, if the potential of Eco-77® for controlling rice blast is to be realized.  

8.5.5 Effect of blast disease on drought tolerance of rice plants 
Comparison of drought sensitivity and disease severity (reflecting percentage of diseased 

leaf area) data showed that disease severity was fairly constant within treatments and 

genotypes, whereas blast-infected plants subjected to water stress showed poor recovery 

(or high mortality), irrespective of genotype and the strain of Trichoderma with which they 

were treated. Both rice blast and drought stress contribute to plant mortality, and 

consequently, reduction in rice yield and productivity. But the trends recorded in these 

studies suggest that, although water stress may increase rice susceptibility to blast, its 

ultimate impact on yield and productivity of the crop may be far less pronounced than the 

impact of drought stress that may affect rice blast afflicted plants. When plants are infected 
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with rice blast in farmers’ fields, prioritizing proper management of water resources would, 

therefore, be important to prevent further losses of both crop and grain yield. 

 

8.6 Conclusions 

Integration of two or more methods of control can be more effective for managing several 

pests and diseases of crops. In this study, it was found that strains of the BCA, T. 

harzianum, were highly effective at reducing the severity of rice blast and mitigating the 

adverse effects of drought stress on blast affected plants. The effectiveness of the 

Trichoderma treatments for reducing the severity of rice blast and enhancing drought 

tolerance of the blast susceptible LTH were however, nominal. The Japanese cultivar, LTH, 

is not known to possess any blast resistance genes, and was therefore unable to contribute 

towards limiting the effect of the disease on it, compared to the other genotypes which 

displayed various levels of partial resistance, as determined in previous studies. Integrating 

T. harzianum with genotypes possessing good levels of drought tolerance will also be 

important for reducing the ultimate impact of drought stress on rice blast-infected plants, 

since it was also found that the impact of drought stress on rice blast-infected plants can be 

far more pronounced than the impact of rice blast incidence on drought stressed rice plants. 

Because the commercially available T. harzianum formulations studied in this experiment 

are relatively inexpensive and have other plant growth-enhancing potentials, they should 

be recommended to smallholder farmers to enhance production in their fields. 
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THESIS OVERVIEW 

 

The focus of this study was to develop strategies for improving rice blast resistance and 

drought tolerance of rice, which are two of the most important factors limiting rice production 

in Liberia and other parts of the world, where the crop is cultivated mainly under rainfed 

conditions. In this overview, the major findings of the research are presented and discussed 

within the context of their implications for future research and development. 

Since farmers are the primary users of most agricultural innovations, the first of the seven 

studies conducted comprised a comprehensive survey, conducted in the Gibi District of 

Liberia, aimed at appraising the local farming systems and determining the key varietal traits 

valued and preferred by farmers of that district of Liberia. It was important to solicit farmers’ 

input on breeding decisions in order to ensure that farmers’ needs and preferences were 

considered from the very beginning of the breeding programme. This would facilitate early 

adoption of any new cultivar arising from the breeding effort. In that study, factor analysis 

of the pair-wise comparisons of 23 traits revealed that the farmers of Liberia considered a 

combination of grain yield (GY), grain quality, stress resistance and post-harvest traits when 

deciding which variety to plant. These findings showed that the farmers had a sound 

knowledge of the crop they grew, and their contributions to breeding decisions will be 

important for the success of any rice improvement programme in that country. Conjoint 

analysis of the ranked preference data from the study also showed that apart from high GY, 

farmers would be more inclined to adopt new varieties that are early maturing, and have 

intermediate plant heights, and produce grains that cook to a tender state, but where the 

cooked grains remain separated. The farmers further identified the lack of improved 

varieties with blast resistance and drought tolerance as the key problems that they faced in 

producing the crop. This confirmed that the farmers were cognizant of the limitations of their 

current stock of cultivars and would be prepared to adopt new ones, if the new varieties met 

their selection criteria, and surpassed current varieties in these traits, without any critical 

deficiencies. 

The second study was aimed at characterizing up to 38 rice genotypes, currently grown by 

farmers in Liberia, for their reaction to rice blast, in order to determine their potential as 

parents for breeding new cultivars with improved resistance to the disease. Only 26% of the 

genotypes developed susceptible infection type (IT) lesions against all the three pathotypes 

tested, and about 40% displayed either susceptible or resistant ITs against one or two of 

the pathotypes (i.e., typical of major gene resistance, which is matched by virulent 

pathotypes). Interestingly, only fewer than 2% of the genotypes that developed susceptible 

ITs against either or all of the pathotypes were completely killed by the disease, i.e., 98% 
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expressed partial vertical resistance. These results showed that the rice blast resistance 

expressed by the test members of Liberia’s rice population is characterized by the 

occurrence of both race specific and race non-specific patterns of resistance. Further 

controlled environment and field evaluations of the 22 genotypes that developed susceptible 

ITs against SIK-111, the most virulent of the three pathotypes, revealed that most of the 

genotypes possessed very low levels of horizontal resistance. This finding clearly 

highlighted the need for further research that should focus on population improvement for 

higher levels of blast resistance for the agro-ecology of Liberia based on stable, quantitative 

resistance. 

Additive main effect and multiplicative interaction (AMMI) analysis of the number and size 

of sporulating lesions revealed significant levels of variability for quantitative resistance to 

rice blast in the Liberian rice population, which was due mainly to genotypic effects and less 

to environment. These results suggested that there are useful levels of diversity in the 

upland rice germplasm of Liberia, which could be exploited for the improvement of blast 

resistance. 

The blast screening study also showed that rice plants subjected to intermittent drought 

stress, both in the controlled environment and field, developed larger and more lesions with 

sporulating centres. Similar effects of water deficit on rice blast development in the field was 

reported by Bonman et al. (1988), and Gill and Bonman (1988). The present study showed 

the value of using managed drought stress conditions in future blast screening research. 

The drought tolerance experiments revealed that, as with most rice germplasm (Ekanayake 

et al., 1989; Boonjung and Fukai, 1996; Bouman et al., 2007), rice genotypes from Liberia 

were particularly sensitive to drought occurring around the booting-to-grain-filling stage of 

development. The levels of spikelet fertility (SF) and GY of plants of all the genotypes 

subjected to drought stress for 21 days, beginning at booting, were significantly low, 

compared with others subjected to drought stress for a similar length of time during the 

tillering growth stage. On the other hand, the best genotypes showed the ability to recover 

from drought imposed during both the seedling and tillering stages of growth, with little effect 

on final yield. The seedlings also showed a higher emergence pattern under limited soil 

water conditions. These results demonstrated that improvement of upland rice germplasm 

of Liberia should focus more on enhancing tolerance to drought occurring during the 

reproductive stage of development. Because genotypes with high yield potentials may not 

necessarily possess superior drought tolerance (Fischer and Maurer, 1978; Blum, 2005), it 

was desirable to identify traits that predicted the capacity of genotypes to combine higher 

levels of both traits, with the aim of devising breeding strategies that could increase yield 
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stability in the population. Using simple correlation and path coefficient analyses, the current 

studies revealed that high levels of biomass and stomatal conductance at heading, and high 

levels of SF tended to be associated with genotypes expressing a high GY when grown 

under well-watered conditions. In contrast, for plants subjected to drought stress during the 

booting-to-grain-filling stage, their GY was highly associated with their levels of tiller 

productivity (TP), biomass at heading, and their 1000 grain mass. Future application of 

these selection criteria will be important for concurrently increasing both yield potential and 

drought tolerance in upland rice. Variability within the present population was mainly 

explained by GY, TP, CCI and SF, as determined by principal components analysis. The 

analysis of variance revealed significant genotypic differences for these traits. This showed 

that the genotypes that developed the highest values could be used for breeding purposes. 

It was also noted that the days-to-heading of at least 90% the genotypes were particularly 

long. This trait was also poorly correlated with grain yield. Although a key strategy in 

breeding for drought tolerance is to increase the effectiveness of mechanisms that reduce 

water use and enhance stress tolerance (Richards, 2006; Cattivelli et al., 2008), mechanism 

that enhance the chances of genotypes escaping drought should also be sought by 

breeding for varieties with fewer days-to-harvest. Incorporating genes for earliness could 

therefore be important for sustaining upland rice production, especially in Liberia where the 

wet season is becoming shorter and less reliable (McSweeney et al., 2010a, 2010b). 

During the drought screening study, the genotypes were grown either in bare soil or in soil 

covered with plastic sheets, in order to also determine the utility of a plastic mulch soil cover 

(PMSC) system for simulating drought during periods of rainfall. The basic components of 

the system comprised 130 µm-thick polyethylene sheeting, drip irrigation pipes, solenoids, 

an automatic irrigation controller, and soil moisture sensors. The experiments showed that 

the PMSC facility was effective at excluding water from rainfall because the water potential 

at both the 30 and 60 cm depths of soil did not increase (become less negative) during or 

after periods of rainfall, as observed at similar depths in the control plots. Tiller productivity, 

GY, and both leaf rolling and leaf death scores of plants grown in the control plots (bare 

soil) were also significantly higher than those grown in the PMSC environment due to 

interference of rainfall during critical periods of assessment and stress management. This 

clearly highlighted the importance of an effective water exclusion mechanism as a key pre-

requisite for executing managed drought trials in the field, as emphasized by Seetharama 

et al. (1982) and Atlin et al. (2008). Cost analysis showed that the PMSC facility can be 

about 13 to 235 times cheaper to set up than a rain-out shelter. Due to its low cost and 

scalability to cover large areas of land and to use diverse locations, the technology of PMSC 
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could be useful for further drought research in developing countries where funding is often 

limited.  

As revealed in Chapter 3, twenty-two of the Liberian upland cultivars produced susceptible 

infection types against SIK-111, which proved to be the most virulent of the three pathotypes 

tested. Six of those cultivars were consequently chosen and recombined, along with the 

universally susceptible variety, LTH, and a resistant check, LAC 23, in a full diallel mating 

scheme. The F2 progenies and their parents were subsequently evaluated for the size and 

number of sporulating lesions per plant and the area under the disease progress curve 

(AUDPC), in order to determine the gene action underlying the inheritance of these three 

basic component traits of quantitative (horizontal) resistance to rice blast. This study 

showed that both additive and non-additive gene actions were involved in the inheritance 

of these traits. However, the genes with additive effects were more important, since the ratio 

of the general combining ability (GCA) to specific combining ability (SCA) was higher. 

Previous studies have shown that the predominance of GCA effects in a genetic system 

normally leads to consistent gains in a recurrent selection programme (Duvick et al., 2004; 

Gordillo and Geiger, 2008). Hence, future works aimed at increasing the level and durability 

of rice blast resistance should emphasize recurrent selection for reduced number and size 

of sporulating lesion per plant, and lower AUDPC. Heritability of sporulating lesion number 

per plant, sporulating lesion size per plant and AUDPC were particularly high in the study, 

indicating a high degree of consistency in the screening environment. The importance of a 

conducive screening environment was also highlighted in the screening study involving the 

parental population, as stated above. Future studies should therefore prioritize conditions 

that assure high and consistent disease pressure when screening for horizontal resistance 

to rice blast. 

When recurrent selection is adopted for improving rice in Liberia for durable resistance 

against blast disease the one pathotype technique, as proposed by Robinson (2004, 2006), 

will be used to ensure the elimination of major gene effects, and the accumulation of additive 

genes for horizontal resistance as the breeding programme progresses. Using the best 

crosses of the current segregating population, SIK-111 would be useful as the designated 

pathotype because it worked well at matching all vertical resistance genes present in the 

Liberian germplasm tested in the current research. 

Large numbers of crosses are normally required when aiming to improve complex traits in 

crop genotypes using a recurrent selection scheme (Hallauer and Darrah, 1985; Pandey 

and Gardner, 1992). The difficulty of generating large number of crosses in a cleistogamous 

plant, such as rice, can limit the application of recurrent selection. From the study on gene 
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action and combining ability of horizontal resistance against rice blast (Chapter 6), it was 

shown that GCA was more important than SCA, and hence that recurrent selection is the 

most appropriate breeding scheme for improving the current population of rice genotypes 

from Liberia for increased yield, blast resistance and drought tolerance. Therefore, an 

additional study was undertaken to determine the usefulness of a combination of ethephon 

and gibberellic acid (GA3) for overcoming that limitation. That study showed that application 

of ethephon at 4000 to 6000 µL L-1 at the microsporogenesis stage of rice panicle 

development can be effective for inducing male sterility in the Liberian rice cultivars on which 

it was tested. Gibberellic acid, applied at 90 or 150 µL L-1 during anthesis, was effective for 

reversing the negative effect of the ethephon on treated plants, which was manifested as 

poor panicle exsertion, high pistil sterility and reduced plant height. These results 

demonstrate that a combination of ethephon and GA3 can be an effective chemical 

hybridizing treatment for promoting cross pollination in rice. In turn, this makes it feasible to 

make the large numbers of crosses needed in a recurrent selection programme. A rice 

breeding programme could be undertaken using recurrent selection, based this male 

gametocide treatment, or novel male gametocides such as ethyl 4’-fluorooxanilate 6-BA-

benzyladenine (Ghebrehiwot et al. 2015). This programme would use the best of the 

Liberian germplasm identified in this study as the initial parent population. Screening would 

be to select for the traits valued by Liberian farmers, including resistance to drought and 

blast, cooking quality and for high yields. 

The final study investigated the effects of strains of a biocontrol agent (BCA) Trichoderma 

harzianum on the responses of rice to blast disease and drought stress. A commercial 

biocontrol product, Eco-T®, containing T. harzianum Strain KD, was effective at reducing 

the rate of plant mortality and increasing root mass density, shoot dry mass and GY of plants 

subjected to drought stress when applied as seed dressing or root drench. Another T. 

harzianum product, based on Strain B77 (commercially available as Eco-77®), significantly 

reduced the size of sporulating lesions and the AUDPC of rice blast infected plants when 

applied twice as a foliar spray. Similar stress mitigating and growth enhancing effects by T. 

harzianum on other crops have been reported by Elad et al. (1980), Datnoff et al. (1995) 

and Bal and Altintas (2006). More importantly, this research clearly highlighted the value of 

integrating host plant resistance with biocontrol, as plants with that expressed higher levels 

of host resistance were more responsive to the T. harzianum treatments, compared to 

highly susceptible varieties. Integrating host plant resistance with biocontrol could therefore 

be important to stabilizing rice production in blast-infested and drought-prone 

agroecologies. 
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