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Abstract 

 

Sappi is one of the leading producer and supplier of Eucalyptus pulp to the world market. 

It is also a great contributor to South Africa economy in terms of employment 

opportunity to the rural people through its large plantation and export earnings. Pulp mills 

production of quality wood pulp is mainly affected by the supply of non uniform raw 

material namely Eucalyptus tree supply from various plantations. Improvement in quality 

of the pulp depends directly on the improvement on the quality of the raw materials. 

Knowing factors which affect the pulp quality is important for tree breeders.  

 

Thus, the main objective of this research is first to determine which of the anatomical, 

chemical and pulp properties of wood are significant factors that affect pulp properties 

namely viscosity, brightness and yield. Secondly the study will also investigate the effect 

of the difference in plantation location and site quality, trees age and species type 

difference on viscosity, brightness and yield of wood pulp. 

 

In order to meet the above mentioned objectives, data for this research was obtained from 

Sappi’s P186 trial and other two published reports from the Council for Scientific and 

Industrial Research (CSIR). Principal component analysis, cluster analysis, multiple 

regression analysis and multivariate linear regression analysis were used. These statistical 

analysis methods were used to carry out mean comparison of pulp quality measurements 

based on viscosity, brightness and yield of trees of different age, location, site quality and 

hybrid type and the results indicate that these four factors (age, location, site quality and 

hybrid type) and some anatomical and chemical measurements (fibre lumen diameter, 

kappa number, total hemicelluloses and total lignin) have significant effect on pulp 

quality measurements.  
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Chapter 1 

Introduction  

South Africa is ranked as the 16
th
 largest producer of pulp in the world and is largely self-

sufficient in supplying pulp for the manufacture of printing and writing, packaging and tissue 

grades of paper (PAMSA, 2002). The forest products sector plays an important role in the 

South African economy. In 2002 the forest products accounted for 1.3% of the GDP (FAO, 

2004). The pulp and paper industry directly and indirectly employed 23,981 people in 2006   

(Edwards, 2006). More than 1.5 million hectares of South Africa is covered with industrial 

tree plantations. The pulp and paper industry is the main driver of the expansion of 

plantations and consumes over two-thirds of all the timber from South Africa's plantations. 

More than half of the plantation area is planted with pine where about one-third of this area is 

Eucalyptus and about one-fifth is acacia.  

 

Two main companies dominate the pulp and paper industry in South Africa. One of the two 

dominant companies is Sappi. Sappi was registered in 1936 and today owns 465,000 hectares 

of plantations in South Africa (it has a further 75,000 hectares in Swaziland). Sappi has a 

strong export focus and operates in an open global market worldwide. The primary product of 

Sappi Saiccor is dissolving pulp which is used in manufacturing of a wide range of products 

that touch people’s lives on a daily basis. These include textiles, food, chemicals and plastics          

( Sappi, 2008). In South Africa, pulp production and export stands at 2.406 million, and 671 

thousand tons respectively. The value of pulp exports in 2007 was valued at 3747 million 

Rand (PAMSA, 2007) and still Sappi is currently expanding its Saiccor dissolving pulp mill 

to a target of more than 200,000 tons a year. The company also plans to expand pulp 

production at its Ngodwana mill by 225,000 tons a year. The company is planning to convert 

the plantations feeding its mill from pine to Eucalyptus (Lung, 2007).  

 

 Eucalypts are an important source of fibre and pulp for the South African pulp and paper 

industry. However Eucalypts plantation resources are extremely variable in nature, both with 

respect to rate of growth and quality (Zbonak, Bush and Grzeskowiak, 2007). In order to 



 

2 

 

manage their quality and value it is imperative to define the important quality measures, 

understand the extent of variation in quality and what drives it (Turner, 2001). The extent of 

variation associated with mainly Eucalypts creates the biggest problem but also the greatest 

opportunities for maximizing the value of plantation resources. Variations of the plantation 

resourses affect the fast growing demand for Sappi pulp wood and therefore the aim to 

produce a consistent, high quality product is a key issue for global competitiveness of the 

forestry and forest product industry. The primary constraint in achieving this in the short to 

medium term lies in the variability of the quality of the timber resource. 

 

 An important characteristic of South African forestry holdings lies in the wide range of site 

types and species planted. This, results in a resource of varying quality and value. Pulp mills 

often receive a wide variety of fibre types in terms of basic density, wood age, and from a 

variety of geographic locations. The quality of the raw material delivered to the pulp mills 

has a major effect on the productivity and efficiency of a mill. Mill performance and the 

value of pulp produced are related to the uniformity of the raw material being processed. For 

example, a high pulp yield and fast rate of delignification is only a positive attribute if all the 

material in the digester is of a similar type. If fast and slow cooking fibres are mixed in the 

same digester, one will over cook the fibre leading to lower pulp yield. On the other hand 

undercooking leads to an unacceptably high lignin residual. This means in practice that 

maximum value gain must be achieved in the first instance, through minimizing and or 

effectively managing variation at the pulp mill. A uniform mill furnish allows improved 

control overcooking conditions, less waste and reduction of variation in finished product. To 

address these problems Sappi regularly conducts different scientific and technological 

research in collaboration with the Council for Scientific and Industrial Research (CSIR).  

    CSIR is one of the leading scientific and technology research, development and 

implementation organization in Africa. It under-takes direct research and development for 

socio-economic growth. With research in forestry and forest products focused to a large 

extent on tree improvement, forest assessment, wood science and fibre processing. Research 

work conducted by CSIR indicate that variation in site index, age, clone type also affect 

density, extractives, pulp yield, brightness and other anatomical and chemical properties of 

the Eucalypts wood and the pulp (Turner et al, 1999, Megown, 2000, Zbonak, 2006 ).  
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Knowing the effect of variation in location, site quality, hybrid type and age, wood 

anatomical and chemical properties helps tree breeders and pulp producers to improve raw 

material uniformity for pulp mills. This improvement in raw material will help to increases 

quality of the pulp industries product and decrease production cost of the industry. 

Two major objectives of this research are   

1. to determine which of the anatomical, chemical and pulp properties of wood are 

significant factors that affect pulp properties namely viscosity, brightness and yield; 

and 

2. to see the effect of geographic characteristics (location and site quality), age and 

species type on viscosity, brightness and yield of wood pulp. 

To address these issues different statistical techniques such as principal component analysis, 

cluster analysis, multiple regression analysis and multivariate analysis of variance will be 

used. For the analysis two statistical packages namely SAS and GENSTAT will be used. 

 

This thesis is organized as follows. This chapter gives some background about Sappi and 

introduction to the research. Chapter 2 presents data sources and exploratory data analysis. In 

Chapter 3 the data is analysed using multiple regression analysis and multiple comparison 

methods. Chapter 4 contains application and result of multivariate regression analysis. 

Chapter 5 presents a cluster analysis of the problem and finally Chapter 6 provides a 

summary and conclusions of the study. 
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Chapter 2 

Exploratory data analysis 

2.1 The data 

The data used in this research is mainly obtained from Sappi’s P186 trial and consisted of 

various measures (average diameter at breast height, average height, average height up to 

diameter of 7cm) obtained from different sub-tropical Eucalypts grown at several locations in 

Zululand, KwaZulu-Natal province. There are also two other additional groups of 

measurements. First the anatomical measurements which consist of fibre diameter, cell wall 

thickness, fibre lumen diameter and vessel percentage (Bush and Naidoo, 2008). Secondly 

the chemical measurements which consist of glucose, cellulose, SG ratio, total extractives, 

total hemicelluloses, total lignin and density (Bush, Naidoo and Gounden, 2008). Chemical 

measurements values are mostly from laboratory derived results and the rest are predicted 

values.  

The entire data set in this project can be classified into two different data sets. The first data 

set is called different hybrid data which contains measurements from eighteen different 

eucalypts hybrid types planted at different period of time in eight different locations of 

Zululand, KwaZulu-Natal province, which has two site qualities. The second data set is E-

dunnii data which contains measurements of eucalyptus hybrid type E-dunnii planted at the 

same time in one location (hellelo) which has one site quality.  

The pulp properties namely viscosity, brightness and yield are the dependent variables. While 

the chemical and anatomical measurements and pulp property kappa number are the 

explanatory variables. Other variables which are categorical in nature are location, site 

quality, age and hybrid combination which will be used to account for observable source of 

variation among the observations in the analysis. Table 2.1 gives the codes of hybrid 
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combinations, locations, site quality and age categories. Table 2.2 gives the names and the 

codes for the three different classes of the independent variables as well as the three 

dependent variables used in the thesis. Thus in the entire thesis these respective codes will be 

inter-changeably used together with the actual names. 

Table 2.1 Classification and levels of categorical variables for different hybrid and E-

dunnii data sets  

Hybrid combination Location  Site quality  Age( in years) 

GC GU × (ET + GP) P/Ridge B1 I 5 

GP GU × (G × GU) P/Ridge C10 II 7 

GU GU×((GP) +(G × GT)) P/Ridge C13 III 8 

UG GU × ((GP) × E.ter) P/Ridge D13  9 

G × GU E.uro × E.ter Salpine E05   

GU × GC E.uro × Gra/Ter Terra A01   

GU × GT E. grandis KT E10   

G × GT E.urophylla KT E09   

GU×U E.dunnii Hliello   

GU × GP     

Table 2.2 Variable codes and description 

Anatomical measurements Chemical measurements Pulp properties 

description  code description code description code 

Average diameter at breast height  dbh Glucose  glu Kappa number kno 

Average height  aht Cellulose  cel Viscosity  vis 

Average height of tree up to 

diameter of 7cm 

htc SG ratio  sgr Brightness  bri 

Fibre diameter  fd Total extractives   Yield  yld 

Cell wall thickness cwt Total hemicelluloses  ths   

Fibre lumen diameter  fld Total lignin  tli   

Vessel percentage  vp     

Density  dey     
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2.2 Preliminary Data Analysis 

In this section some exploratory analysis of the data is presented. First we use the box plots as 

a graphical tool to check for possibility of outliers and differences between groups of the 

same variable.  For example difference in site quality with respect to viscosity may give us 

insight about the effect of site on pulp viscosity. The scatter plots of the dependent variables 

(viscosity, brightness and yield) against the independent variables (chemical, anatomical and 

pulp property) are used to give an indication of the type of inherent relationship (linear or non 

linear). In addition normal probability plots for viscosity, brightness and yield are used to 

cheek if the response variables do conform to the normal distribution or not. 

2.2.1 The different hybrid data set 

The summary statistics of viscosity, brightness and yield for the different hybrid data are 

presented in Table 2.3. Table 2.3 shows that there were 117 observations for the different 

hybrid data. For the variable yield the mean, median and the mode are not very far apart. But 

for viscosity and brightness the mode is far less than the median and the mean. In terms of 

variability, yield seems less variable than viscosity and brightness. The shape and peakdness 

measures show a slight positive skewness and peakedness for viscosity, a slight negative 

skewness and peakdness for brightness and yield. These characteristics are further supported 

by the graphical assessment presented in Figure 2.1. The graphical assessment shows that 

viscosity is slightly skewened to the right (Figure 2.1(a)). Brightness and yield are slightly 

skewened to the left as shown in Figures 2.1(b) and 2.1(c). Nevertheless the normal 

probability plots for viscosity, brightness and yield, in Figures 2.2- 2.4 show that all the three 

variables are approximately normally distributed except for some few outlier observations. 
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Table 2.3 Summary statistics of different hybrid data 

 Viscosity Brightness Yield 
N 117 117 117 
Mean 67.124217 45.325399 46.150282 
Median 66.70000 46.45000 46.43000 
Mode 47.60000 35.80000 44.19000 
Variance 367.54357 30.751797 6.1259748 
Std Deviation 19.171426 5.5454303 2.4750707 
Skewness 0.4191059 -0.526332 -0.3769141 
Kurtosis 0.3457136 -0.3330469 -0.7853556 
Std Error Mean 1.7723989 0.5126752 0.2288204 

     

 
  

 
                                       

Viscosity Brightness 
 

 

Yield 

Figure 2.1 The distribution of viscosity, brightness and yield for different hybrid 

data set  
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Figure 2.2 Normal Probability Plot 

Figure 2.3 Normal Probability Plot 

Figure 2.4 Normal Probability Plot 
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Normal Probability Plot of viscosity for different hybrid data

Normal Probability Plot of brightness for different hybrid data

Normal Probability Plot of Yield for different hybrid data
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A distributional assessment of viscosity, brightness and yield of the different hybrid data set 

against each categorical variable namely age, location and site quality are assessed using the 

box-plot in Figures 2.5 – 2.10. Viscosity versus age box-plot in Figure 2.5 indicate that age 

group 8 Eucalyptus trees have the highest mean and age group 7 have the lowest mean. 

Variation or dispersion of viscosity is lowest in Eucalyptus age category 9 compared to other 

age categories 5, 7 and 8 which have almost similar variation. The age category versus 

brightness box-plot, in Figure 2.6 shows that mean brightness increases with age, and also 

that the variation or dispersion is lowest for age category 9 while age category 7  brightness is 

the most variable. Similarly from the yield versus age box-plots in Figure 2.7 trees in age 

category 8 have the highest mean yield and those of age category 5 have the lowest mean 

yield. Yield distribution is most dispersed in age category 7 and least variable in age category 

8.  

The distribution of viscosity, brightness and yield by location is shown in Figures 2.8-2.10. 

These figures indicate that, Location KTE 10, P/ Ridge D13 and P/ Ridge C 13 have the 

highest variation in mean viscosity, brightness and yield respectively. Location KT G09 has 

the lowest mean variation for all of the three variables. Location P/ Ridge C 13 for viscosity, 

Salpine E05 for brightness and KT E10 for yield have the highest means compared to the 

other locations. 

Figure 2.5 Distribution of viscosity by age  

for different hybrid data set         

Figure 2.6 Distribution of brightness by age 

for different hybrid data set  
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Figure 2.7 Distribution of yield by age for 

different hybrid data set                  

Figure 2.8 Distribution of viscosity by 

location for different hybrid data set           

        

 

Figure 2.9 Distribution of brightness by 

location  for different hybrid data set           

Figure 2.10 Distribution of yield by location 

for different hybrid data set                  

The distributional comparison of the two site quality groups in the different hybrid data set 

indicate that site quality ‘I’ has a higher mean and lowest variation for all the three variables 

(viscosity, brightness and yield) compare to site quality “II” as presented in Figures 2.11-2.13 

respectively. 

 

 

 

 

 

Figure  2.11 Distribution of viscosity by site 

quality for different hybrid data    

Figure 2.12 Distribution of brightness by 

site quality for different hybrid data
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Figure 2.13 Distribution of yield by site quality for different hybrid data 

2.2.2 The E-dunnii data set 

The summary statistics of viscosity, brightness and yield using the E-dunnii data are 

presented in Table 2.4. Table 2.4 shows that there were 205 observations for viscosity and 

297 observations for both brightness and yield. For brightness and yield the mean, mode and 

the median are almost equal. But for viscosity the mode is far less than the mean and the 

median. In terms of variability yield is less dispersed about its mean than brightness and 

viscosity. The shape and peakedness measures and the graphical assessment in Figure 2.14 

show a slight positive skeweness for viscosity and yield, and a slight negative skeweness for 

brightness. The normal probability plots for viscosity, brightness and yield are shown in 

Figures 2.15-2.17. These figures show that all the three variables are approximately normally 

distributed except for the presence of some few outlier observations. 

Table 2.4 Summary statistics for E-dunnii data  

 Viscosity Brightness Yield 
N 205 207 207 

Mean 49.8304878 48.077053 41.5112 

Median 45.3 48.3 41.11 

Mode 32.4 48.3 41.08 

Variance 313.076039 14.076376 3.31767 

Std Deviation 17.6939549 3.7518497 1.82145 

Skewness 0.50333169 -0.739232 0.73076 

Kurtosis -0.555596 1.3126814 0.05478 

Std Error Mean 1.23579941 0.2607716 0.1266 

    



 

 

 

 

Viscosity 

Yield 

Figure 2.14 The distribution of viscosity

set  

 

       Figure 2.15 Normal Probability Plot of viscosity
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Brightness 

 

 

 

distribution of viscosity, brightness and yield for E

Normal Probability Plot of viscosity for E-dunnii data

80 90 100

(b)

 

E-dunnii data 

 

dunnii data 



 

 

Figure 2.16 Normal Probability Plot of brightness

 

 

Figure 2.17 Normal Probability Plot of 

               

2.3 Correlation and scatter plot

The correlation coefficient within or between any two anatomical, chemical and pulp 

property measurements indicate the 

between the two measurements. Table 2.

data set. We defined a strong correlation to be a value of magnitude 0.93

indicate a strong correlation within anatomical measurement

breast height, average height and average height of tree up to diameter of 7cm. There is also a 

high correlation (correlation coefficient values of 0.72

diameter, vessel percentage and cell wall thickens. Chemical measurement cellulose, total 

lignin and total extractives and pulp property measurement brightness, yield and kappa 

13 

Normal Probability Plot of brightness for E-dunnii data

Normal Probability Plot of yield for E-dunnii data

2.3 Correlation and scatter plots 

The correlation coefficient within or between any two anatomical, chemical and pulp 

property measurements indicate the strength and the direction of the linear relationship 

between the two measurements. Table 2.5 gives the correlation matrix for the different hybrid 

data set. We defined a strong correlation to be a value of magnitude 0.93-0.99. The values 

correlation within anatomical measurement namely average diameter at 

breast height, average height and average height of tree up to diameter of 7cm. There is also a 

high correlation (correlation coefficient values of 0.72-0.75) within measurement fibre lu

diameter, vessel percentage and cell wall thickens. Chemical measurement cellulose, total 

lignin and total extractives and pulp property measurement brightness, yield and kappa 

 

dunnii data      

 

dunnii data 

The correlation coefficient within or between any two anatomical, chemical and pulp 

strength and the direction of the linear relationship 

different hybrid 

0.99. The values 

average diameter at 

breast height, average height and average height of tree up to diameter of 7cm. There is also a 

0.75) within measurement fibre lumen 

diameter, vessel percentage and cell wall thickens. Chemical measurement cellulose, total 

lignin and total extractives and pulp property measurement brightness, yield and kappa 
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number exhibit correlation ranges from mild ones up to high values that is correlation 

coefficient values from -0.55 between brightness and kappa number up to 0.79 between 

glucose and cellulose. There are also approximately similar correlation strengths between 

variables of E-dunnii data set as shown in Table 2.6.  

Graphics such as the scatter plot matrix can also be very useful in choosing predictor 

variables in multiple regression models. The scatter plot matrix is just a two-dimensional 

array of two-dimensional plots, where each frame contains a scatter diagram. Thus, each plot 

is an attempt to shed light on the relationship between a pair of variables. This is often a 

better summary of the relationships than a numerical summary (such as displaying the 

correlation coefficients between each pair of variables) because it gives a sense of linearity or 

nonlinearity of the relationship and some awareness of how the individual data points are 

arranged over the range of values of any pair of variables. 

The scatter plot matrix in Appendix A Figures A.1 and A.2 shows the presence of a possible 

linear relationship between viscosity or brightness or yield with anatomical or chemical 

measurements. For example in the scatter plot of the different hybrid data set for yield versus 

average height (Appendix A.1(a)) or glucose (Appendix A.1(d)) indicates the presence of 

positive linear relationship between these measurements. A scatter plot of brightness versus 

total extractives of the E-dunnii data set also shows a negative linear relationship between 

these two variables (Appendix A.2 (e)). 
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These observed linear relationships between variables were assessed using simple linear 

regression of each of the dependent variables (viscosity, brightness and yield) with each 

independent variables (chemical and anatomical measurements). Results from simple linear 

regression show the presence of some strong linear relationship between the dependent 

variables (viscosity, brightness and yield) and the independent variables (anatomical and 

chemical measurements) for each data set. 

In summary the above exploratory analysis results indicate,  

i. an approximate normal distribution for all the three dependent variables namely viscosity, 

brightness and yield  

ii. a mean difference and  distributional variability of viscosity, brightness and yield within 

different age group, location, site quality 

iii.  the presences of a significant linear correlation between and within anatomic, chemical and 

pulp property measurements and  

iv. some significant simple linear regression of viscosity, brightness and yield with each of the 

anatomic and chemical measurements. All these results suggest the application of multiple 

linear regression and a multiple comparison of mean viscosity, brightness and yield which is 

under taken in the next chapter.  
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Chapter 3 

Multiple Regression 

Introduction  

Regression analysis is a statistical methodology that utilizes the relation between two or more 

quantitative variables so that a response or outcome variable can be predicted from the other, 

or others (Kutner, Naershelm and Neter 2005). The relation between variables can be a 

functional or statistical relation. The functional relation is a perfect one and is expressed by a 

matimatical formula, Y= f(X). Given a particular value of x the function f yield the 

corresponding values of Y. The statistical relation unlike a functional relation is not a perfect 

one. It is expressed by a regression model which integrate some uncertainty in the 

determination of Y from a given value X= x. 

A regression model is a formal means of expressing a tendency of the response variable to 

vary with the predictor variable in a systematic fashion and a scattering of points around the 

curve of statistical relationship. This model also postulates the presence of a probability 

distribution of the dependent variable (Y) for each levels of independent variable (X). The 

means of these probability distributions vary in some systematic fashion with X. This 

systematic relation of the mean of Y and X is the regression function of Y on X. In particular; 

we will deal with linear regression. First we present an overview of simple linear regression 

then we present a brief formulation of the multiple regression model. 

3.1 Simple linear regression model 

In simple linear regression model there is only one linear predictor variable and the 

regression function is linear. The model can be stated as follows 
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  Y� �  β� � β�x� � ε�         (3.1) 

where �� is the ith value of the response variable. 

 x� is the i
th
 predictor value which correspond to �� 

           β
 and  β� are fixed parameters 

 ε� is a random variable error term with mean E(ε�) = 0 and variance �� 
 ε� and ε�  are uncorrelated for all i ≠ j  i = 1,2 3...n 

The simple regression model (3.1) has also the following important characteristics 

� Y� is a random variable with the constant component  β� � β�x� and random term �� 
� E�Y��  �  β� � β�x� which is the regression function  

� Two error term ε�  and  ε� are uncorrelated, so the responses Y� and Y� are 

uncorrelated  

� The error term ε� and the responses Y� have the same constant variance����, 
regardless of the level of the predictor variable x. 

The parameters β
 and β� in the simple regression model (3.1) are the regression 

coefficients. β� is the slope of the regression line. It indicates the change in Y per unit change 

in X. The parameter β
 is the Y intercept of the regression line which indicate the mean value 

of the Y at X = 0, if the scope of the model include X=0. 

The regression model parameters estimation can be performed either by the method of least 

squares or by the method of maximum likelihood. The method of least squares requires that 

the estimators of β
and β� are those values β��and β�� respectively, that minimize the sum of 

the n squared deviations for the given sample of observations  (x1, y1), (x2, y2), � (xn, yn). 

Let (xi , yi) are observations, � � 1,2,3,� , �. The error sum of squares is   

   � ∑�"�#$� # $�%���         (3.2) 

The values of β
and β�that minimize Q can be derived by differentiating Q with respect to β
and β�. From which it follows that 
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β�� � ∑�xi # x'��yi#y)�∑�xi# x'�2                                                     
        β�� � 1n *∑yi#β+1∑xi, � y)#β+1x'                                        
where % )and "' are means of the X and Y observations respectively. 

The least square estimators  β�� and β�� have several important properties first, β��  and   β�� are 
linear combinations of the observations "� and are also unbiased estimators of the model 

parameters β
and β�, respectively. 

An important result concerning the quality of the least squares estimators  β�� and  β�� is the 
Gauss-Markov theorem which states that for the regression model (3.1) with assumptions 

E(��) = 0 and var ���� � �� and uncorrelated errors the least square estimators are unbiased 

and  have a minimum variance when compared with all other unbiased estimators that are 

linear combinations of  "�, that is least square estimates are best linear unbiased estimators 

(BLUE). 

There are other useful properties of the least squares fit  

� The sum of the residuals in any regression model that contains an intercept $- is 
always zero, that is                                                          

                       ∑� "� # ".� � ∑/� �  0 
� The sum of the observed values "� equals the sum of the fitted value "., or                                        ∑ "� �∑".� 
� The least square regression line always passes through the centroid [the point (%1, "') of 

the data]. 

� The sum of the residuals weighted by the corresponding value of the regression 

variables always equals zero, that is,                                   ∑ %�/� �  0. 
� The sum of the residuals weighted by the corresponding fitted value always equals 

zero, that is 

                          ∑". /� �  0. 
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The least squares method provides unbiased point estimators of β
 and  β� that have 

minimum variance among all unbiased linear estimators whatever the distribution of the error 

terms �� and observation yi  is i = 1,2, � ,n. But to set up of interval estimates and to carry 

out hypothesise test the assumption of normally distributed error term �� is the standard 

assumption. It is also justifiable in many real world situations where regression analysis is 

applied. 

Knowing the specified functional form of the probability distribution of the error terms is 

important to estimate the parameter β
, β� and σ�  by the method of maximum likelihood. 

The method of maximum likelihood chooses as estimates those values of the parameters that 

are most consistent with the sample data. 

The regression model (3.1) implies that �� are independent normal random variables, with 

mean E�Y��  �  β� � β�x�  and variance ��. 
The density of an observation �� for normal error regression model (3.1) utilizing the fact that E�Y��  �  β� � β�x�  and variance of �� �� is 

4� � 1√26�� /%7 8#12 9�"�#$� # $�%��� :�; .                             �3.3� 
The likelihood function for n observations y1, y2, ... ,yn is  

L*βo, β1,  σ2, �> 1√2πσ� exp B#12C�y�#β� # β�x��σ D�EF
�G�        �3.4� 

                         � 1�2πσ��F� exp B# 12σ�I�y�#β� # β�x���F
�G� E.       �3.5� 

The log likelihood function for n observations y1, y2,�,yn is  

ℓ � #�2 ln 26�� # 12��I�y�#β� # β�x���F
�G�                                �3.6� 
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The variance ��of the error terms is usually unknown and the values of β
, β� and σ� that 
maximize the likelihood function or equivalently the log-likelihood functions are the 

maximum likelihood estimates. These estimates denoted by  β+� ,  β�� and  σN�, respectively can 

be estimated from the log likelihood function ℓ by taking partial derivatives of ℓ with respect 

to  β
, β� and σ�, and equating each of the partials to zero. Simple algebraic manipulations 

gives estimating equations that are identical to the least square estimators for β
 and  β�. In 
other words the least squares estimates and maximum likelihood estimates of β
 and  β� are 
identical under the normality assumption. 

3.2 Multiple linear regression analysis 

Multiple linear regression analysis is one of the most widely used statistical method. In 

multiple linear regression analysis one is often concerned with the nature and significance of 

the relationship between a dependent variable and several independent variables.  

The main concerns in this method are: 

� To identify the relative importance of the effect of given independent variables on the 

dependent variable. 

� To determine the magnitude of the effect of given independent variables on the 

dependent variable.  

� To identify which independent variable play a significant role on the dependent 

variable. 

� Model adequacy where, one can consider the impact of including independent 

variables which were initially not included in a simpler model.  

In general, multiple regression analysis is a statistical tool used to explain the relationship 

between the random dependent variable (Y) and the p fixed independent 

variables  O X�, X�, � , XQR.    
If we have p independent variables (X1, X2, �, Xp), then a multiple regression model relating 

Y to X�, X�, � , XQ is given by  

Y= β 0 + β 1X1 + β 2X2 + � +β p Xp + εi ,   i=1,2,…,n                 (3.7)  

where  Y is the dependent variable 

β0   is the intercept 
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    β�, β�, � , βSare partial regression coefficients 

 X1, X2, �, Xp are independent variables 

    εi   is an error term and we assume that the ��′s are IID X�0 , ���, � � 1,2, � , �. 
From the model in (3.7) it follows that E(Y) = β0 + β1X1 + β2X2 + � +βpXp. The coefficient βj 

measures the change in Y per unit change of Xj keeping other independent variables fixed.  

In matrix model (3.7) can be written as  

y =Xβ +ε         (3.8) 

where 

y =   Y"�"�Z"[\,   X =  ]1 �̂� ^��1Z �̂�Z ^��Z1 �̂[ ^�[   
…… ^`�^a�Z… ^`[b  ,  c � ]β�β�ZβSb  and   d = Y����Z�[\  

where y is an n- dimensional vector of observations, X is an n × (p+1) design matrix and d is 
an n- dimensional vector of error terms and thus e~ gh �i , jkl� where I is n×n identity 

matrix.  

The partial regression coefficients β�, β�, β�, � , βS are unknown parameters, which we have 

to estimate in order to fully discuss the fitted regression model. The multiple regression 

model parameters estimation like the simple regression model can also be performed either 

by the method of least squares or by the method of maximum likelihood if the distributional 

assumption is imposed. 

To estimate the parameters, we use least square equation which minimizes the error sum of 

squares, i.e. minimize �m # nc�o �m # nc�  �  eoe . 
To obtain the least square estimate we differentiate eoe  with respect to c, and solve the 

result by setting the derivative equal zero. This process results in the estimator  

                                                c+  �  �no n�p� nom .    (3.9) 
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The estimated variance-covariance matrix for q+ is given by; 

  Var (β�) =σ2
(X' X)

-1
  

assuming that  var(y) = σ2
I. 

The method of maximum likelihood leads to the same estimator for c as those obtained by 

the method of least squares.  

The analysis of variance approach may be used to test the adequacy of the model as follows. 

Let the total sum of squares be SST, the regression or explained sum of squares be SSR the 

error or residual sum of squares be SSE then 
 

SST = SSR +SSE 

   where          

 SST =y' y#r�Fs y'Jy 
  SSR =q+oto u # r�Fs movm  
  SSE = ε'ε = (y – Xc+ )' (y – Xc+) =y' y #c+ono m . 
Here J is an n × n matrix of ones. The degrees of freedom associated with SST, SSR and SSE 

are n-1, p-1 and n-p respectively. Thus the mean sum of squares due to regression (MSR) is 

given by 

MSR = wwx`p�   
and the mean error sum of squares (MSE) is given by 

  MSE =
wwy[p` . 

The mean error sum of squares (MSE) is an unbiased estimator of σ
2
. The partitioned sum of 

squares is summarized in Table 3.1: 
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Table 3.1 Regression ANOVA table summary 

Sources of variation Degrees of freedom Sum of squares  Mean of squares F-ratio 

Regression  p -1 q+ztzu # 91n: mov{ 
||}7 # 1 ||}||~ 

Error n – p y' y #q+ oto u ||~� # 7  

Total  n -1 y' y#r1ns y'Jy   

 

To investigate whether the dependent variable (Y) and the independent variables X1, X2, X3, �, XP   have significant relation we have to test the hypothesis;  

H0: β1 = β2 = β3 = � = β p = 0 

H1: not all βj are zero [for j=1, 2 ,�, p at least one coefficient is different from zero] 

To test the above hypothesis we use the test statistic Fcal = ������  which is distributed as F with 

p and n-p degrees of freedom in the numerator and denominator respectively. If the Fcal � ��p�,`,[p`  then we fail to reject H0 and conclude that, the independent variables do not have 

significant linear relationship to the dependent variable, where ��p�,`,[p`  is the (1-α/2)100 

percentile from the F distribution based on α levels of significance. On the other hand, if 

Fcal � ��p�,`,[p`,this implies that we reject H0 in favour of H1 and we conclude that at least 

one independent variable has significant linear relation with the dependent variable.  

 

If we reject the null hypotheses H0: β1= β2 = β3 = � = β p = 0 we have to test the coefficients 

individually to identify which one is significantly different from zero. To test each regression 

coefficient, the null hypothesis (H0) and the alternative hypothesis (H1) are stated as follows: 

H0: βj = 0 

H1: βj ≠ 0 

The test statistic is t = 
β���.�rβ��s  ,  

where 

 β� �  is the estimated value of βj  and �. /*β� �, the standard error of β� �.  If |�| � ��p�,�[p`� we fail 

to reject HO and conclude that βj is not significantly different from zero, otherwise if |�| 
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� ��p�,�[p`� we reject HO and conclude that βj is significantly different from zero. Here ��p�,�[p`� is the (1-α/2)100 percentile from the t-distribution with n-p degrees of freedom. 

 

It is useful to have some measure of how well the model fit the data. In multiple regression, 

coefficient of multiple determination (denoted by R
2
) is the commonly used measure of 

model fit and it is given by 

R
2 
=  
wwxww� = 1- 

wwyww� . 
It is a measure of the proportion of sum of squares explained by the model. However high R

2
 

does not necessarily imply model adequacy because it is an increasing function of the number 

of independent variables which is not a good caracterstic. Instead we prefer the adjusted 

coefficient of determination, which is given by 

R����= 1- 
�[p���[p`� wwyww� . R���� is more desirable because as p increases R����decreases but as n � ∞ R���� 

approaches the unadjusted R
2 

3.3 Model diagnostics 

The estimation and inference from the regression model depends on several assumptions. 

Thus one should always check the validity of these assumptions and conduct analysis to 

examine the adequacy of the model. Gross violation of the assumptions may yield an unstable 

model in the sense that a different sample could lead to a totally different model with 

opposite conclusions. We usually cannot detect departures from the underlying assumptions 

by examination of the standard summary statistics, such as the t or F statistics, or R
2
. These 

are general model properties, and as such they do not ensure model adequacy. 

 

Model assumptions need to be cheeked using regression diagnostics. Diagnostics methods are 

used to examine for instance the possibility that error variance are constant, or that there is 

any distributional deviation from normality. The data has to be cheeked for possible outliers 

that may exist. In general, model diagnostic methods are used to identify unusual behaviour 

of observations which is usually overlooked and can also be used to remedy these situations. 
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Diagnostics for the response variable are usually carried out indirectly through an 

examination of the residuals, so one should first define the residuals. 

The residuals /� is defined as the difference between the observed value "� and the fitted 

value ".�, it is also a measure of the variability in the response variable not explained by the 

regression model. 

    /� � "� # ".� ,          � � 1,2, … , �.    
Thus any unusual departures from the model assumption on the error should show up in the 

residuals. If the model is appropriate for the data, the observed residual /� should reflect the 

properties assumed for the εi . 

The relationship between / ��� � can be established by defining the ‘Hat’ matrix (H). 

    � � n�nzn�p�n . 
 The hat matrix H symmetric and idempotent, that is H

2 
= H ; it is an n × n matrix that 

transforms the vector of observed values to a vector of fitted values. In geometric terms, the 

i
th
 diagonal element of the hat matrix’s  is a standardized measure of the distance between the 

X value for the i
th
 observation and the means of X values of all n observations. A large value ���  indicates that i
th 

observation is distant far from the center of all X observations.  

The element ���  of the H matrix also may be interpreted as the amount of leverage exerted by 

the i
th
 observation "�  on the fitted value ".�.The diagonal elements are often called the 

leverages. 

Traditionally (Montgomery et al. , 2001, Siverpersad, 2007), it is assumed that an observation 

with a leverage which exceeds  �a[   is considered a severe leverage point, however, this cut off 

only applies to situations where  
�a[ � 1. 

 

Deviations from assumption are often best detected by working with residuals that have the 

same precision. The variance of the residuals or errors can be estimated by the mean square 

of error (MSE) of a regression. The standardized residuals would be 

   �� � ��√�wy    � � 1, 2, � , �. 
The standardized residuals have mean zero and approximately unit variance. Consequently, a 

large absolute value standardized residual ( |��| � 3), potentially indicates an outlier 

(Montgomery et al. , 2001). 
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Studentized residuals, also known as internally sudentized residuals, are defined as 

   �� � �����p��� ,    � � 1, 2, � , �.  
where  � � �∑���[p`  .  

Studentized residuals are scale-free, and its structure makes it t-like (however it does not 

exactly follow the t –distribution). It is very useful to the residual diagnostic analysis. The 

appearance of a large studentized residuals (��� values indicate a possible regression model 

assumption violation. 

 

The other residual that is computed from "� – "N��� , where ".��� is the fitted value of the i
th
 

response based on all observations except the i
th
 one is called PRESS residuals (because of 

their use in computing the prediction error sum of squares) sometimes it is also called deleted 

residual.  

 

If the i
th
 observation "� is really unusual, the regression model based on all observation may 

be influenced by this observation. This could produce a fitted value ".� that is very similar to 

the observed value  "�, and consequentially, the ordinary residual /� will be small. Therefore, 

it will be hard to detect the outlier. However, if the i
th
 observation is deleted, then ".��� cannot 

be influenced by that observation, so the resulting residual should be likely to indicate the 

presence of the outlier. The i
th
 PRESS residual /��� is  /��� � "� # ".���  . 

 The variance of the i
th
 PRESS residual is  

����/���� � ��1 # ���   . 
So that a standardized PRESS residual is    

�������p����. 
which, if we use MSE to estimate ��,  it is  just the studentized residual. Generally, a large 

difference between the ordinary residual and the PRESS residual will indicate a point where 

the model fit the data well, but a model built without that point predicts poorly. 

Let an estimate of  �� based on a data set with the i
th
 observation removed be ����� 
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����� � �� # 7� |} # /��/�1 # ����� # 7 # 1 . 
The estimate of  �� is used instead of MSR to produce an externally studentized residual, 

usually called R-Student, given by  

�� � /��������1 # ���� , � � 1,2, … , �. 
In many situations �� will differ little from the studentized residual ��. However, if the i

th
 

observation is influential, then �����can differ significantly from MSE, and thus the R-student 

statistic will be more sensitive to this point. 

 

One of a model diagnostics measure is Cooks’s distance Di. Cooks’s distance Di is an 

aggregate influence measure, which is used to measure the effect of the i
th
 observation on all 

n fitted values ( Kutner and Neter, 2002, Moeti, 2007). Cook's distance measures the effect of 

deleting a given observation. Data points with large residuals (outliers) and/or high leverage 

may distort the outcome and accuracy of a regression. Points with a Cook's distance of 1 or 

more are considered to merit closer examination in the analysis.  

Cook’s distance is defined as  

   ¢� � /�P¤* |~, B ����1#����2E 
where  ���  is the i-th diagonal element of the hat matrix ; /� is the crude residual (i.e. the difference 

between the observed value and the value fitted by the proposed model); MSE is the mean square 

error of the regression model and p is the number of fitted parameters in the model.  

 

Residuals can produce information regarding the validity of the normality assumption on the 

model errors.  Normality of εi  is required for the validity of hypothesis testing and confidence 

interval estimation. 

 

A simple method of checking the normality assumption, apart from the histogram and the 

stem and leaf plot, is the construction of normal probability plots of the residuals.  The 

normal probability plot is a plot of each residual versus its expected values under the 

normality assumption. The residual plot should be approximately a straight line if the 
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normality assumption holds. A departure from a straight line indicates that the distribution is 

not normal. 

3.4 Application of Multiple Linear Regression to the 

different hybrid data 

In wood science pulp properties namely viscosity, brightness, and yield are expected to be 

mainly influenced by anatomical and chemical properties of wood. Hence, to investigate what 

effect these anatomical and chemical properties have on the pulp properties simultaneously, it 

is appropriate to use multiple regression techniques as a method to deal with multiple 

predictor variables. 

 

 Multiple regressions with viscosity, brightness and yield as dependent variables for the 

different hybrid data is presented in this section. 

3.4.1 Viscosity 

Results from multiple regression analysis with viscosity as the dependent variable for the 

different hybrid data are presented in Tables 3.2, 3.3 and Fig 3.1. The P- value for the F- 

statistics is less than 0.0001 (see Table3.2). This shows that there is an overall highly 

significant linear relation between the dependent variable viscosity and at least with one of 

the independent variables among the anatomical, chemical measurement and pulp properties 

kappa number. The R-square value indicates that 52.73% of the total variation is explained by 

the fit. 

 

Individual t-tests in Table 3.3 indicate that kappa number (kno), total hemicelluloses (ths) and 

total lignin (tli) significantly affect viscosity at 5% significance level. However the variance 

inflation factor (VIF) value for some variables are also greater than 10 which is an indication 

of the problem of multicollinearity that may be present in the analysis. The residual plots of 

Figure 3.1 aid in some model diagnostics. The raw residuals versus predicted values (Figure 

3.1(a)) indicate that the variance of the errors is not constant.  The outward-opening funnel 

pattern of the residuals implies that variance is an increasing function of viscosity. The Hat 
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diagonal versus R-student residual plot (Figure 3.1(c)) also indicates the presence of some 

leverage and outlier observations. Even if some observations are leverage and outliers, the 

cook’s distance versus observation number plot (Figure 3.1(b)) shows that all the cook’s 

distance values are below one which indicates that neither the outlier and leverage 

observations are influential. The normality plot (Figure 3.1(d)) also show that the assumption 

of normal distribution of residuals is not seriously violated.  

Table 3.2 ANOVA with viscosity as the dependent variable (Different hybrid data)  

 

 

Table 3.3 Parameter estimates of independent variables for the viscosity model 

(Different hybrid data) 

                                                         Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 369.71656 130.07918 2.84 0.0055 0 

dbh 1 1.50601 1.24213 1.21 0.2283 11.46528 

aht 1 1.61402 2.22225 0.73 0.4694 77.24169 

htc 1 -2.43717 2.27631 -1.07 0.2870 93.44716 

fd 1 -10.30190 8.89429 -1.16 0.2496 9.71431 

cwt 1 -13.55714 14.75988 -0.92 0.3607 9.35549 

fld 1 3.70440 3.31790 1.12 0.2670 4.27375 

vp 1 5.78612 2.93938 1.97 0.0519 9.73220 

dey 1 -40.48337 57.91027 -0.70 0.4862 2.03038 

kno 1 9.85184 2.72017 3.62 0.0005 1.93946 

glu 1 -1.05619 1.37410 -0.77 0.4440 7.07488 

cel 1 0.45645 1.21617 0.38 0.7083 4.01700 

sgr 1 -2.07626 7.24148 -0.29 0.7749 1.70555 

tex 1 0.64141 1.48223 0.43 0.6662 3.22848 

ths 1 -3.81009 0.70878 -5.38 <.0001 3.00036 

tli 1 -3.92831 1.58187 -2.48 0.0148 2.87055 

 

 

 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 20682 1378.82897 7.14 <.0001 

Error 96 18540 193.12754     

Corrected Total 111 39223      

R-Square = 0.5273                                Adj R-Square = 0.4534 
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Figure 3.1 Model diagnostics with viscosity as the dependent variable (different hybrid 

data) (a) raw residuals versus predicted values  (b) Cook’s distance  (c) standardized residuals versus 
Hat diagonals (d) normal probability plot of residual (e) observed viscosity versus predicted values  

 

3.4.2 Box-Cox transformation of viscosity 

The generalized least squares method can be used to solve the problem of non constant 

variance of residuals directly by specifying model for both the mean and variance, and then 

estimating the relevant parameters simultaneously. The alternative approach commonly used 

and applied in statistics is to transform the data in such a way as to obtain a new regression 

model with the desired properties namely constant variance and / or normally or 

symmetrically distributed errors (Carroll and Ruppert, 1980). The multiple regression 

diagnosis results showed that the transformation of viscosity to solve the problem of non 

constant variance of residuals is important. One convenient way of transformation is the Box-

Cox transformation. 

Box-Cox transformation is a transformation of the response variable of the form  

  y �λ� �  *¥λp�,
λ

   for λ § 0  

(a) 

(b)
(c)

(d) (e)



 

33 

 

               y�0� �   log �y�  for λ � 0      
The definition of λ � 0 is the limit of the first expression, i.e y(λ), as λ� 0.  
Note that the inclusion of this special case makes the transformation a continuous function of 

λ. 

This family of transformations of the positive dependent variable y is controlled by the 

parameter λ. Transformations such as square root, inverse, quadratic and cubic, are special 

cases of Box-Cox transformation.  

Using Proc TRANSREG in SAS a Box-Cox transformation was performed for the dependent 

variable viscosity as a remedial measure for the non constant error variance of the regression. 

Preliminary results are shown in Table 3.4. The best value of lambda was determined as zero 

and thus natural log transformations of viscosity is the most suitable to solve the problem of 

non-constant variance of the residuals. Next multiple regression using log of viscosity as 

dependent variable was performed and the ANOVA Table 3.5 now show 62.61% of the total 

variation is explained by the fit, which is an improvement over the earlier fitted model of 

untransformed viscosity which explained 52.73% of the total variation. The regression 

coefficients based on log viscosity as dependent variable and individual t-tests (Table 3.6) 

indicate that vessel percentage (vp), kappa number (kno), total hemicelluloses (ths) and total 

lignin (tli) significantly affect log of viscosity at 5% significance level. Model diagnostics in 

Figures 3.2 (a) – (f) also supports a log transformation of viscosity as a means to resolve the 

problem of a non constant variance and leads to an improvement on the fitted model. 

Table  3.4 Box-Cox   transformation of viscosity (Different hybrid data) 

  

TRANSREG Univariate History for BoxCox (vis) 

Model Statement Specification Details 

Type DF Variable Description Value 

Dep 1 BoxCox(vis) Lambda 

Used 

0 

  

  

  

Lambda -0.06 

R-square  0.62161 

Adj R-Sq     0.5625 
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Table  3.5 ANOVA with log viscosity as the dependent variable (Different hybrid data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 6.13462 0.40897 10.51 <.0001 

Error 96 3.73428 0.03890     

Corrected Total 111 9.86890       

R-Square  =  0.6216                           Adj R-Sq  =  0.5625 

 

Table 3.6  Parameter estimates of independent variables for the log viscosity model 

(Different hybrid data) 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 8.89798 1.84609 4.82 <.0001 0 

dbh 1 0.02126 0.01763 1.21 0.2308 11.46528 

aht 1 0.01486 0.03154 0.47 0.6385 77.24169 

htc 1 -0.03073 0.03231 -0.95 0.3439 93.44716 

fd 1 -0.18075 0.12623 -1.43 0.1554 9.71431 

cwt 1 -0.13666 0.20947 -0.65 0.5157 9.35549 

fld 1 0.06870 0.04709 1.46 0.1478 4.27375 

vp 1 0.09964 0.04172 2.39 0.0189 9.73220 

kno 1 0.16141 0.03860 4.18 <.0001 1.93946 

dey 1 -0.83127 0.82187 -1.01 0.3143 2.03038 

glu 1 -0.02289 0.01950 -1.17 0.2434 7.07488 

cel 1 0.01502 0.01726 0.87 0.3862 4.01700 

sgr 1 -0.02527 0.10277 -0.25 0.8063 1.70555 

tex 1 0.01524 0.02104 0.72 0.4706 3.22848 

ths 1 -0.06584 0.01006 -6.55 <.0001 3.00036 

tli 1 -0.05744 0.02245 -2.56 0.0121 2.87055 
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Figure 3.2 Diagnostic test with log viscosity as dependent variable (different hybrid 

data) (a) raw residuals versus predicted values  (b Cook’s distance  (c) standardized residuals versus Hat 
diagonals (d) normal probability plot of residual (e) observed log viscosity versus predicted values  

3.4.3 Brightness  

Multiple regression analysis ANOVA results with brightness as the dependent variable and 

anatomical, chemical and pulp property measurement kappa number as explanatory variables 

are presented in Table 3.7 below. The P- value of F statistics is <.0001 indicating the 

presence of highly significant linear relationship between brightness and at least with one of 

the explanatory variables (anatomical and chemical measurement and pulp property kappa 

number). 

 

The individual t-test values for each independent variable presented in Table 3.8 indicate that 

fibre diameter (fd), kappa number (kno), total hemicelluloses (ths) and total lignin (tli) 

significantly affect brightness at 5% significance level. The regression model also explains 

81.20 % of the total variation based on the unadjusted R- square but adjusted R- square is 

78.27%. Some VIF values are greater than 10 which indicate the presence of a 

multicollinearity problem.  

(a) 
(b) (c)

(d) (e)
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Residual plots for model diagnosis are presented in Fig 3.3. A plot of raw residuals versus 

predicted values (Figure 3.3 a) does not show any systematic pattern, meaning that the 

assumption of constant error term variance is not violated. The plot R-studentized residuals 

versus Hat diagonal elements shows the presence of some outlier and leverage observations 

(Figure 3.3c). But the Cook’s distance versus observation number plot (Figure 3.3b) indicate 

that these leverage and outlier observations are not influential because the cook’s distance of 

each observation is below one. The residual versus normal quantile plot (Figures 3.3d) also 

indicate that the error term is approximately normally distributed.  

Table 3.7 ANOVA with brightness as the dependent variable (Different hybrid data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 2767.95225 184.53015 27.65 <.0001 

Error 96 640.69869 6.67394     

Corrected Total 111 3408.65095      

R-Square  = 0.8120                       Adj R-Square =  0.7827 

Table 3.8  Parameter estimates of independent variables for the Brightness model 

(Different hybrid data) 

Parameter Estimates 

Variable DF Parameter Estimate 

 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 61.29732 24.18115 2.53 0.0129 0 

dbh 1 -0.17701 0.23091 -0.77 0.4452 11.46528 

aht 1 0.76408 0.41311 1.85 0.0674 77.24169 

htc 1 -0.03030 0.42316 -0.07 0.9431 93.44716 

fd 1 2.41367 1.65341 1.46 0.1476 9.71431 

cwt 1 -1.50851 2.74380 -0.55 0.5837 9.35549 

fld 1 -2.83416 0.61678 -4.60 <.0001 4.27375 

vp 1 -0.44382 0.54642 -0.81 0.4187 9.73220 

kno 1 -2.87815 0.50567 -5.69 <.0001 1.93946 

dey 1 -14.61864 10.76527 -1.36 0.1777 2.03038 

glu 1 0.15302 0.25544 0.60 0.5506 7.07488 

cel 1 0.14785 0.22608 0.65 0.5147 4.01700 

sgr 1 0.41887 1.34616 0.31 0.7564 1.70555 

tex 1 0.62520 0.27554 2.27 0.0255 3.22848 

ths 1 -0.46418 0.13176 -3.52 0.0007 3.00036 

tli 1 -0.47669 0.29406 -1.62 0.1083 2.87055 
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Figure 3.3 Model diagnostics with brightness as the dependent variable (different 

hybrid data) (a) raw residuals versus predicted values  (b) Cook’s distance  (c) standardized residuals 
versus Hat diagonals (d) normal probability plot of residual (e) observed brightness versus predicted 

values   

3.4.4 Yield  

The ANOVA table of the multiple regression model where yield as dependent variable is 

presented in Table 3.9. The P-value of the F-statistics is < 0.0001 and it indicates the 

presence of highly significant linear relationship between yield and the independent variables 

at 5% significance level. A high proportion of the total variation is 81.27% explained by the 

fitted model. From the individual t-test values of each independent variables (Table 3.10) the 

average height of a tree up to diameter of 7cm (htc), kappa number (Kno), cellulose (cel) and 

total lignin (tli) significantly affect yield at 5% significance level. The multicolinarity 

measure namely variance inflation factor (VIF) values in Table 3.10 for some variables are 

greater than 10 indicating the presence of multicolinarity problem. 

 

Model diagnosis plots of residuals in Figure 3.4 show no systematic patterns indicating that 

the assumption of constant error term variance is not violated (Figure 3.4 a). To test for 

(a) 

(b) (c)

(d) (e)
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outlier or leverage and influential observations, a plot of R-student residuals versus Hat 

diagonal elements and cook’s distance versus observation number, are used respectively 

(Figures 3.4 c, b). The first one shows the presence of some outlier and leverage observations 

but from the second plot namely the cook’s distances of each observation are all below one. 

This indicates that those leverage and outlier observations are not influential. The residual 

versus normal quantile plot (Figures 3.4d) also indicate that the assumption of normally 

distributed errors is not seriously violated. 

Table  3.9 ANOVA with yield as the dependent variable (Different hybrid data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 560.30359 37.35357 27.76 <.0001 

Error 96 129.16803 1.34550     

Corrected Total 111 689.47162       

R-Square  =  0.8127                       Adj R-Square  = 0.7834 

 

Table 3.10  Parameter estimates of independent variables for the yield model (Different 

hybrid data) 

Parameter Estimates 

Variable DF Parameter 

Estimation 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 37.46268 10.85744 3.45 0.0008 0 

dbh 1 -0.13912 0.10368 -1.34 0.1828 11.46528 

aht 1 -0.11510 0.18549 -0.62 0.5364 77.24169 

htc 1 0.49637 0.19000 2.61 0.0104 93.44716 

fd 1 0.71399 0.74239 0.96 0.3386 9.71431 

cwt 1 1.78132 1.23198 1.45 0.1515 9.35549 

fld 1 0.39733 0.27694 1.43 0.1546 4.27375 

vp 1 -0.38166 0.24534 -1.56 0.1231 9.73220 

kno 1 -0.50032 0.22705 -2.20 0.0299 1.93946 

dey 1 -0.12164 4.83365 -0.03 0.9800 2.03038 

glu 1 0.05340 0.11469 0.47 0.6426 7.07488 

cel 1 -0.11211 0.10151 -1.10 0.2722 4.01700 

sgr 1 1.25220 0.60443 2.07 0.0410 1.70555 

tex 1 -0.02186 0.12372 -0.18 0.8601 3.22848 

ths 1 0.05014 0.05916 0.85 0.3988 3.00036 

tli 1 -0.31192 0.13204 -2.36 0.0202 2.87055 
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Figure  3.4 Model diagnostics with yield as the dependent variable (different hybrid 

data)  (a) raw residuals versus predicted values  (b) Cook’s distance  (c) standardized residual versus 
Hat diagonals (d) normal probability plot of residual (e) observed yield versus predicted values  

 

 

 

 

 

  

(a) 

(b) (c)

(d) (e)
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3.5 Application of Multiple Linear Regressions to the  

     E-Dunnii data 

3.5.1 Viscosity. 

The multiple regression analysis results for the dependent variable viscosity of the E-Dunnii 

data are presented in Tables 3.11 and 3.12. The P- value of the F- statistics is  < 0.0001 (see 

Table 3.11). This shows that there is highly significant linear relation between the dependent 

variable viscosity and at least with one of the independent variables (anatomical, chemical 

measurements and pulp properties kappa number). The R-square value indicates that 53.84% 

of the total variation is explained by the fit.  

 

The Parameter estimates and individual t-tests in Table 3.12 for estimation of the regression 

coefficients with viscosity as the dependent variable, indicate that average diameter at breast 

height (dbh), average height of a tree up to diameter of 7 cm (htc), cell wall thickness (cwt), 

fibre lumen diameter (fld), kappa number (Kno), cellulose (cel), total hemicelluloses (ths) 

and total lignin (tli) significantly affect viscosity at 5% significance level. However the 

variance inflation factor (VIF) values for some variables are greater than 10 which are an 

indication that the problem of multicollinearity may be present in the analysis. 

 

The residual plots in Figure 3.5 shows some model diagnostics. The plots of raw residuals 

versus predicted values (Figure 3.5 a) indicate that the variance of the errors component may 

not constant.  The outward-opening funnel pattern of the residual plots implies that variance 

is an increasing function of viscosity. The Hat diagonal elements versus R-student residual 

plot (Figure 3.5 c) also indicate the possible presence of some leverage and outlier 

observations. Even if some observations are leverage and outliers the cook’s distance versus 

observation number plots (figure 3.5 b) show that all the cook’s distance values are below 

one which implies that the outlier or leverage observations are not influential. The normality 

plots (Figures 3.5 d) further show that the assumption of normal distribution of residuals is 

not seriously violated.  
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Table 3.11 ANOVA with viscosity as the dependent variable (E-dunnii data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 30425 2028.35301 12.44 <.0001 

Error 160 26082 163.01026     

Corrected Total 175 56507       

R-Square  = 0.5384                       Adj R-Square  = 0.4952 

 

Table 3.12  Parameter estimates of independent variables for the viscosity model (E-

dunnii data) 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 201.90888 85.58628 2.36 0.0195 0 

dbh 1 2.90849 0.88109 3.30 0.0012 2.56954 

aht 1 0.32983 1.44473 0.23 0.8197 3.29393 

htc 1 -2.84573 1.15373 -2.47 0.0147 4.08711 

fd 1 -14.38909 4.55712 -3.16 0.0019 13.21663 

cwt 1 22.30387 7.50280 2.97 0.0034 4.63420 

fld 1 14.55535 2.44984 5.94 <.0001 5.99532 

vp 1 2.96440 1.71097 1.73 0.0851 11.20939 

kno 1 7.50801 2.15827 3.48 0.0006 1.70694 

dey 1 15.62947 34.37036 0.45 0.6499 1.29937 

glu 1 -0.82641 0.88702 -0.93 0.3529 2.41556 

cel 1 -1.89528 0.77140 -2.46 0.0151 2.80618 

sgr 1 2.51144 3.46833 0.72 0.4701 1.19430 

tex 1 0.91744 0.71436 1.28 0.2009 2.72304 

ths 1 -1.38609 0.34811 -3.98 0.0001 1.97814 

tli 1 -2.14395 1.01160 -2.12 0.0356 2.24588 
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Figure 3.5 Model diagnostics with viscosity as the dependent variable (a) raw residuals 
versus predicted values  (b) Cook’s distance  (c) standardized residual versus Hat diagonals (d) normal 

probability plot of residual (e) observed viscosity versus predicted values  

 

3.5.2 Box-Cox transformation of viscosity 

Using Proc TRANSREG in SAS a Box-Cox transformation was performed on the dependent 

variable viscosity as a remedial measure to make the data achieve a constant variance of the 

residuals. The results of this transformation are shown in Table 3.13. The best value of 

lambda is zero implying that the natural log transformations of viscosity is the most suitable 

to solve the problem of non-constant variance. The multiple regression ANOVA (Table 3.14) 

results show that a total of 59.54% of the total variation is explained by such a fit. The 

regression coefficients with log viscosity as the dependent variable and  individual t-tests 

indicate that average diameter at breast height (dbh), average height of a tree up to diameter 

of 7 cm (htc), fibre diameter (fd), cell wall thickness (cwt), fibre lumen diameter (fld), kappa 

number (Kno), cellulose (cel), total hemicelluloses (ths) and total lignin (tli) are significantly 

associated with log viscosity at 5% significance level as tabulated in Table 3.15  

 

(a) (b) (c)

(d) (e)
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Table  3.13 Box-Cox  transformation of viscosity (E-dunnii data) 

TRANSREG Univariate Algorithm History for BoxCox(vis) 

Model Statement Specification Details 

Type DF Variable Description Value 

Dep 3 BoxCox(vis) Lambda Used 0 

  

  

  

Lambda -0.11 

R- square 0.59734 

Adj R- Square 0.5574 

 

Table 3.14 Analysis of variance with log viscosity as the dependent variable (E-dunnii 

data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 14.21766 0.94784 15.69 <.0001 

Error 160 9.66272 0.06039     

Corrected Total 175 23.88037       

R-Square  = 0.5954                       Adj R-Square =  0.5574 

 

Table 3.15  Parameter estimates of independent variables for the log viscosity model (E-

dunnii data) 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 6.90847 1.64735 4.19 <.0001 0 

dbh 1 0.05017 0.01696 2.96 0.0036 2.56954 

aht 1 0.00121 0.02781 0.04 0.9655 3.29393 

htc 1 -0.04680 0.02221 -2.11 0.0366 4.08711 

fd 1 -0.30593 0.08771 -3.49 0.0006 13.21663 

cwt 1 0.45019 0.14441 3.12 0.0022 4.63420 

fld 1 0.29726 0.04715 6.30 <.0001 5.99532 

vp 1 0.06216 0.03293 1.89 0.0609 11.20939 

kno 1 0.15860 0.04154 3.82 0.0002 1.70694 

dey 1 0.31383 0.66156 0.47 0.6359 1.29937 

glu 1 -0.00283 0.01707 -0.17 0.8688 2.41556 

cel 1 -0.04605 0.01485 -3.10 0.0023 2.80618 

sgr 1 0.06157 0.06676 0.92 0.3577 1.19430 

tex 1 0.02210 0.01375 1.61 0.1099 2.72304 

ths 1 -0.03315 0.00670 -4.95 <.0001 1.97814 

tli 1 -0.04077 0.01947 -2.09 0.0379 2.245 
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Model diagnostics depicted in Figures 3.6 (a) – (e) also supports that a log transformation of 

viscosity resolves the problem of non-constant error variance.  

 
 

Figure 3.6 Model diagnostics with log viscosity as dependent variable (a) raw residuals 
versus predicted values  (b) Cook’s distance  (c) standardized residuals versus Hat diagonals (d) normal 

probability plot of residual (e) observed  log viscosity versus predicted values   

 

3.5.3 Brightness  

Multiple regression analysis results with brightness as the dependent variable against 

explanatory variables falling under anatomical, chemical and pulp property measurement 

kappa number are presented in Table 3.16. The P- value of the F- statistics is < 0.0001 it 

indicate the presence of a highly significant linear relationship between brightness and at 

least with one of the explanatory variables (anatomical and chemical measurements including 

the pulp property kappa number). The individual t-test values for each independent variable 

in Table 3.17 indicate that fibre lumen diameter (fld), kappa number (Kno), density (dey) and 

total hemicelluloses (ths) significantly affect brightness at 5% significance level. The 

regression model overall explains 43.52 % of the total variation. VIF values of fibre diameter 

is greater than 10 which shows the presence of a multicollinearity problem involving fibre 

(a) 

(b) (c)

(d) (e)
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diameter with one or more other predictors. Residuals plots for model diagnosis are presented 

in Figures 3.7 (a) – (e). Raw residuals versus predicted values plot do not shown any 

systematic pattern, meaning the assumption of constant error variance, is not violated. The R-

studentized residuals versus Hat diagonal elements plot none the less show the presence of 

some outlier and leverage observations, but however the cook’s distance versus observation 

number plot indicates that these leverage and outlier observations are not influential since the 

cook’s distance of each observation is below one. The residual versus normal quantile plot 

and the histogram of residual further indicate that the normality assumption of error 

component terms is not seriously violated.  

Table  3.16 ANOVA with brightness as the dependent variable (E-dunnii data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 928.40754 61.89384 8.32 <.0001 

Error 162 1204.65376 7.43613     

Corrected Total 177 2133.06131       

R-Square  =  0.4352                       Adj R-Square  =  0.3830 

Table 3.17  Parameter estimates of independent variables for the brightness model (E-

dunnii data) 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 34.05298 17.76302 1.92 0.0570 0 

dbh 1 -0.06311 0.18692 -0.34 0.7361 2.65259 

aht 1 0.08451 0.30821 0.27 0.7843 3.40325 

htc 1 -0.27038 0.24463 -1.11 0.2707 4.31566 

fd 1 1.53757 0.92490 1.66 0.0984 12.08371 

cwt 1 0.16406 1.59472 0.10 0.9182 4.60374 

fld 1 -1.31197 0.51191 -2.56 0.0113 5.74745 

vp 1 0.04253 0.33964 0.13 0.9005 9.92957 

kno 1 -2.08311 0.45095 -4.62 <.0001 1.63938 

dey 1 27.10937 7.31109 3.71 0.0003 1.29420 

glu 1 0.26805 0.18928 1.42 0.1587 2.45733 

cel 1 0.07605 0.14411 0.53 0.5984 2.38867 

sgr 1 0.33051 0.73689 0.45 0.6544 1.19419 

tex 1 -0.07574 0.13663 -0.55 0.5801 2.29359 

ths 1 -0.16993 0.07364 -2.31 0.0223 1.97100 

tli 1 -0.31145 0.21397 -1.46 0.1474 2.21891 
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Figure 3.7 Model diagnostics with brightness as dependent variable (a) raw residuals versus 
predicted values  (b) Cook’s distance  (c) standardized residuals versus Hat diagonals (d) normal 

probability plot of residual (e)  observed brightness versus predicted value  

 

3.5.4 Yield  

Similar to the regression of viscosity and brightness a multiple regression model with yield as 

the dependent variable was performed. The P- value of F- statistics is < 0.0001 (see Table 

3.18), this indicates highly significant linear relationship between yield and at least with one 

of the independent variables. It is noted that 59.06% of the total variation explained by the 

fitted model. The individual t-test values in Table 3.19 show that average height of a tree up 

to vessel percentage (vp), kappa number (Kno) and cellulose (cel) significantly affect yield at 

5% significance level. The multicolinarity detecting measure namely variance inflation factor 

(VIF) value for vessel percentage (vp) is greater than 10 which indicates the presence of a 

multicolinarity problem. 

 

(a) 

(b)
(c)

(d) (e)
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Model diagnostic plots in Figure 3.8 (a) plots of raw residuals versus predicted values, do not 

show any systematic pattern, and hence the assumption of constant error variance is not 

violated. The test for outlier or leverage and influential observation is detected from a plot of 

R-student residuals versus Hat diagonal element and cook’s distance versus observation 

number respectively (Figures 3.8 b, c). The first one shows the presence of some outlier and 

leverage observations but from the second plot the cook’s distance of each observation is 

below one. Thus those leverage and outlier observations are not influential.  

Table  3.18  ANOVA with yield as the dependent variable (E-dunnii data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 15 354.75172 23.65011 15.58 <.0001 

Error 162 245.89222 1.51785     

Corrected Total 177 600.64394       

R-Square  = 0.5906                       Adj R-Square  = 0.5527 

 

Table  3.19 Parameter estimates of independent variables for the yield model (E-dunnii 

data) 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 29.22635 8.02524 3.64 0.0004 0 

dbh 1 0.11611 0.08445 1.37 0.1711 2.65259 

aht 1 0.03906 0.13925 0.28 0.7794 3.40325 

htc 1 -0.05821 0.11052 -0.53 0.5991 4.31566 

fd 1 0.06764 0.41787 0.16 0.8716 12.08371 

cwt 1 -0.86506 0.72048 -1.20 0.2316 4.60374 

fld 1 -0.44914 0.23128 -1.94 0.0539 5.74745 

vp 1 0.39956 0.15345 2.60 0.0101 9.92957 

kno 1 0.56862 0.20374 2.79 0.0059 1.63938 

dey 1 1.42385 3.30311 0.43 0.6670 1.29420 

glu 1 0.09575 0.08551 1.12 0.2645 2.45733 

cel 1 0.33118 0.06511 5.09 <.0001 2.38867 

sgr 1 -0.36421 0.33292 -1.09 0.2756 1.19419 

tex 1 -0.07798 0.06173 -1.26 0.2083 2.29359 

ths 1 0.02726 0.03327 0.82 0.4139 1.97100 

tli 1 -0.17428 0.09667 -1.80 0.0733 2.21891 
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Figure 3.8 Model diagnostics with yield as dependent variable (a) raw residuals versus 
predicted values (b) Cook’s distance (c) standardized residuals versus Hat diagonals (d) normal 

probability plot of residual (e) observed yield versus predicted value  

3.6 Multicollinearity 

Multicollinearity is a statistical phenomenon in which two or more predictor variables in a 

multiple regression model are highly correlated. This phenomenon is expected wherever we 

are dealing with a regression with several or multiple independent variables. In this situation 

the regression coefficient estimates may change erratically in response to small changes in 

the model or the data. Multicollinearity does not reduce the predictive power or reliability of 

the model as a whole rather it only affects calculations regarding individual predictors. That 

is, a multiple regression model with correlated predictors may still indicate how well the 

entire bundle of predictors predict  the outcome variable, but it may not give valid results 

about any individual predictor, or about which predictors are redundant in relation to others.  

Multicollinearity therefore is problematic when one's purpose is explanation rather than mere 

prediction (Vaughan and Berry, 2005). One consequence to this is that the individual P- 

values can be misleading (a P- value can be high, even though the variable is unimportant). 

(a) (b) (c)

(d) (e)
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The second problem is that the confidence intervals on individual regression coefficients may 

be very wide. The confidence intervals may even include zero, which means one cannot even 

be confident whether an increase in that independent value is associated with an increase, or a 

decrease, in the dependent variable. Because the confidence intervals are so wide, excluding a 

subject or observation (or adding a new one) can change the coefficients dramatically and 

may even change their signs.  

3.6.1 Multicollinearity Diagnostics  

We now consider the correlation matrix presented in Tables 2.5 and 2.6 in relation with the 

above discussion of multicollinearity and its diagnostics in the regression analysis. 

Multicollinearity is a matter of degree, not a matter of presence or absence. The higher the 

degree of multicollinearity, the greater the likelihood of the effects or consequences of 

multicollinearity. Several techniques have been proposed for detecting multicollinearity. The 

first one is through an examination of the off-diagonal elements of the correlation matrix and 

it is a very simple measure of multicollinearity. If the independent variables are nearly 

linearly dependent, then the off diagonal element ª��«ª will be near unity implying a high 

correlation between Xi and Xj . 

The second method for detecting multicollinearity is through the variance inflation factor 

(VIF). The diagonal elements of the inverse of the X′X matrix are very useful for detecting 

multicollinearity. The jth diagonal element of C = (X' X)
-1
 matrix can be written as Cjj = (1-

Rj
2
)
-1
, where Rj

2
 is the coefficient of determination obtained when X j is regressed on the 

remaining p-1 regressors. If X j is nearly orthogonal to the remaining p-1 regressors, Rj
2
 is 

small and Cjj is close to unity, while if X j is nearly linearly dependent on some subset or all 

of the remaining regressors, Rj
2 
is near unity and Cjj will be large. Since the variance of the 

jth regression coefficient is Cjjσ
2
, we can view Cjj as the factor by which the variance of  $¬« is 

increased due to near linear dependences among the regressors. We call this the variance 

inflation factor or VIF given by 

VIFj = Cjj = (1-Rj
2
)
-1 

Marquardt (1970). The VIF for each term in the model measures the combined effect of the 

dependences among the regressors on the variance of that term. One or more large VIF 

indicate multicollinearity. Practical experience indicates that if any of the VIFs exceeds 10, it 
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is an indication that the associated regression coefficients are poorly estimated because of 

multicollinearity. This therefore justifies the reason for under taking multicolinearity 

remedial measures in any regression application problem. 

 

The third method is that the determinant of X
T
X can also be used as an index of 

multicollinearity. Since the X
T
X matrix is in correlation form, the possible range of values of 

the determinant is 0 < | X
T
X | �1. If | X

T
X |=1 the regressors are orthogonal, while if | X

T
X | 

=0, there is an exact linear dependence among the regressors. The degree of the 

multicollinearity becomes more severe as | X
T
X | approaches zero. While this measure of 

multicollinearity is easy to apply, it does not provide any information on the source of the 

multicollinearity. 

 

The F statistic for significance of regression and the individual t statistics can sometimes 

indicate the presence of multicollinearity. Specifically, if the overall F statistic is significant 

but most or all individual t statistics are non significant, then this indicates the presence of 

multicollinearity. Another indicator of multicollinearity is when the signs or magnitude of the  

estimated regression coefficients are contrary to what was a prior expected.  

 

First we note the presence of high correlation of up to 0.9908 (see Table 2.5 and 2.6)  

between wood anatomical measurements (average height, average height of tree up to 

diameter 7cm, average diameter at breast height, cell wall, fibre  diameter and fibre lumen 

diameter) and chemical measurements (cellulose, total lignin and glucose ). Secondly the 

regression models of the three dependent variables viscosity, brightness and yield shown in 

Tables 3.3, 3.8 and 3.10 respectively, indicate that some of the VIF values are greater than 10 

and finally the third indicator about the change of the signs of the regression coefficients is 

also evidence. For example kappa number (kno) and density in the regression model of 

viscosity are contrary to prior expectation which points to the presences of multicolinearity 

problem in the three multiple linear regression models or analyses. 

3.6.2 Remedies of Multicollinearity  

The best solution to the multicollinearity problem is to try to avoid it by not including 

redundant independent variables in the regression model. If we can identify redundancy 
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among independent variables already in the model, several remedies can be used to attempt to 

lessen the influence of the multicollinearity.  

One possible solution is to remove one or more of the highly correlated independent variables 

using stepwise or any other model selection method. This remedial measure has two 

important limitations. First, no direct information is obtained about the dropped predictor 

variables. Secondly, the magnitudes of the regression coefficients for the predictor variables 

remaining in the model may be affected by the correlated predictor variables not included in 

the model. The second remedial measure is to add more observations to the data used in 

building the regression model, so that the multicollinearity is possibly lessened. That is, 

sometimes the data we have collected makes it appear as though two or more independent 

variables are related when, in fact, no strong relationship exists. Collecting additional data 

may then lessen the (apparent) multicollinearity. The third remedial measure for 

multicollinerity that can be used with ordinary least squares is to form one or several 

composite indexes based on the highly correlated predictor  variables, an index being a linear 

combination of the correlated predictor variables. The methodology of principal components 

provides composite indexes that are uncorrelated. Finally, there are estimation procedures 

that are modifications of the least squares estimation procedure. When multicollinerity exists, 

these procedures are capable of producing point estimates that are better than the least 

squares point estimates in the sense that they are closer to the true values of parameters. One 

such procedure is called ridge regression.   

The presence of high correlation within the anatomical and chemical measurements as shown 

in section 2.3 indicates that these subset of variables carry the same information about the 

response variable. Because of this using a principal component analysis for variable reduction 

may be necessary. 

3.6.3 Principal Component Analysis 

Principal component analysis is basically or fundamentally a variable reduction procedure. It 

is useful when we obtain data for a number of variables and believe that there is a correlation 

among these variables (O’Rorke, Hatcher and Stepanski, 2005). 
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Principal component analysis of different hybrid data for strongly correlated set of  variables 

namely (i) average diameter at breast height (dbh), average height (aht) and average height of 

a tree up to a diameter of 7cm (htc), (ii) highly correlated variables (cell wall thickens(cwt), 

fibre lumen diameter (fld) and vessel percentage(vp)) and chemical variables (cellulose(cel), 

total extractives(tex) and total lignin(tli)) was carried out with results tabulated in Tables 

3.20, 3.21 and 3.22 respectively. An approximately equal value of rotated factors indicates 

that variable reduction using principal component analysis is not supportive. So the utility of 

another or alternative means of variables selection for example stepwise regression may be 

necessary. This method is discussed in the next section. 

Table 3.20  Summary of Principal components analysis for average diameter at breast 

height, average height, and average height of a tree up to a diameter of 7cm 

(Different hybrid data) 

Principal components analysis 

Latent roots Variable 

Latent vectors (loadings) Communalities 
Rotated 

factors 

1 2 3 1 1 

1 2.909 dbh -0.56995 0.8138 0.11353 0.3248 -0.57 

2 0.083 aht -0.5793 -0.496 0.64687 0.3356 -0.5793 

3 0.008 htc -0.58272 -0.3029 -0.7541 0.3396 -0.5827 

 

Table 3.21 Summary of Principal components analysis for cell wall thickens, fibre 

lumen diameter and vessel percentage (Different hybrid data) 

Principal components analysis 

 
Latent roots Variable 

Latent vectors (loadings) Communalities 
Rotated 

factors 

1 2 3 1 1 

1 1.761 
cwt 0.68755 0.31514 0.65419 0.4727 0.6875 

2 1.104 
fld 0.10628 -0.93489 0.33866 0.0113 0.1063 

3 0.135 
vp 0.71832 -0.16332 -0.67627 0.5160 0.7183 

 

 

 

 



 

53 

 

Table 3.22  Summary of Principal components analysis for cellulose, total extractives 

and total lignin (Different hybrid data) 

   

Principal components analysis 

 
Latent roots Variable 

Latent vectors (loadings) Communalities 
Rotated 
factors 

1 2 3 1 1 

1 2.324 
cel 0.58355 -0.4589 0.66999 0.3405 0.5836 

2 0.398 
tex -0.58866 0.3293 0.73827 0.3465 -0.5887 

3 0.278 
tli -0.55942 -0.82521 -0.07797 0.3129 -0.5594 

3.7 Model selection with viscosity, brightness and yield as 

dependent variables using stepwise regression   

From any set of p-1 predictors, 2
p
-1 alternative models can be constructed. This calculation is 

based on the fact that each predictor can be either included or excluded from the model. The 

number of models grows rapidly with the number of predictors. Evaluating all of the possible 

alternatives can be very difficult. To simplify this task, a variety of automatic computer 

selection procedures have been developed and one of these is stepwise regression. Selection 

of variables that enter into the models is done through stepwise selection.  

Model selection summary result for different hybrid data set using SAS for the log of 

viscosity model is shown in Table 3.25. The variables ultimately included in the multiple 

regression model are total hemicelluloses, kapp number, total lignin, glucose, vessel 

percentage and fibre lumen diameter. For the brightness model independent variables that 

were retained include average height, kapp number, fibre lumen diameter, total 

hemicelluloses, density, total lignin and total extractives and lastly for the yield model, 

average height of a tree up to a diameter of 7cm, kappa number, Sg ratio, total lignin and 

fibre lumen diameter were included as shown in Tables 3.28 and 3.31, respectively. Tables 

3.24, 3.27 and 3.30 respectively show that except for fibre lumen diameter all selected 

variables have a significant effect. Model diagnostic plots in Figures 3.9 - 3.14 shows an 

improvement in the fitted model with none of the model assumption is violated. The same 

model selection method namely a stepwise regression was applied to the E-dunnii data set 

with log viscosity, brightness and yield as dependent variables. A summary model selection 
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details for each of these three variables are presented in Appendix B Tables B.1, B.2 and B.3. 

Model diagnostic information for selected and fitted models show that there is no linear 

model assumption violation ( see Appendix B Figures B.1- B.3).  

Table 3.23  Analysis of variance with log-viscosity as the dependent variable (Different 

hybrid reduced data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 6 5.92040 0.98673 26.24 <.0001 

Error 105 3.94851 0.03760     

Corrected Total 111 9.86890       

 

Table 3.24  Parameter estimates with log- viscosity as the dependent variables (Different 

hybrid reduced data) 

 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 8.18533 1.04151 2.32267 61.77 <.0001 

fld 0.04483 0.02636 0.10876 2.89 0.0920 

vp 0.05928 0.01897 0.36710 9.76 0.0023 

kno 0.16055 0.03245 0.92049 24.48 <.0001 

glu -0.04015 0.01115 0.48758 12.97 0.0005 

ths -0.06236 0.00838 2.08414 55.42 <.0001 

tli -0.07473 0.01797 0.65042 17.30 <.0001 

 

Table  3.25 Summary of stepwise selection for the log viscosity model (Different hybrid 

data) 

Summary of Stepwise Selection 

Step Variable 

Entered 

Label Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 ths ths 1 0.4213 0.4213 38.8267 80.07 <.0001 

2 kno kno 2 0.0649 0.4862 24.3572 13.77 0.0003 

3 tli tli 3 0.0444 0.5306 15.0873 10.22 0.0018 

4 glu glu 4 0.0239 0.5545 11.0344 5.73 0.0184 

5 vp vp 5 0.0344 0.5889 4.3031 8.87 0.0036 

6 fld fld 6 0.0110 0.5999 3.5072 2.89 0.0920 

 



 

 

 

Figure 3.9 Model diagnostics 

hybrid reduced data) (a) raw residual
residuals versus Hat diagonals (d) normal probability plot of residual (e)

predicted values  

 

Figure 3.10 Model diagnostics of selected variables of 

hybrid reduced data) (a) fibre lumen diameter (b) vessel percentage (c) Kappa number (d) glucose (e) 
total  hemicelluloses (f) total lignin 

 

(a) 

(d)

(a) 

(d)
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 with log viscosity as the dependent variable

residuals versus predicted values (b) Cook’s distance  (c) standardized 

Hat diagonals (d) normal probability plot of residual (e) observed log  viscosity 

Model diagnostics of selected variables of log of viscosity model

(a) fibre lumen diameter (b) vessel percentage (c) Kappa number (d) glucose (e) 

(b) (c)

(e)

(b) (c)

(e) (f)

 

dependent variable (different 

(c) standardized 

viscosity versus  

 

model (different 

(a) fibre lumen diameter (b) vessel percentage (c) Kappa number (d) glucose (e) 
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Table 3.26 ANOVA with brightness as the dependent variable (Different hybrid 

reduced data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 7 2730.93909 390.13416 59.87 <.0001 

Error 104 677.71186 6.51646     

Corrected Total 111 3408.65095       

 

Table 3.27 Parameter estimates with brightness as the dependent variables (Different 

hybrid reduced data) 

 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 93.70327 10.78933 491.51032 75.43 <.0001 

aht 0.69978 0.06736 703.37089 107.94 <.0001 

fld -1.90811 0.36494 178.14450 27.34 <.0001 

kno -3.11826 0.43644 332.65116 51.05 <.0001 

dey -20.91759 8.70472 37.62922 5.77 0.0180 

tex 0.68680 0.22249 62.09784 9.53 0.0026 

ths -0.38283 0.10764 82.42372 12.65 0.0006 

tli -0.55722 0.23836 35.61225 5.46 0.0213 

Table  3.28 Summary of stepwise selection for the brightness model (Different hybrid 

data) 

Summary of Stepwise Selection 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 aht   1 0.5857 0.5857 103.594 155.51 <.0001 

2 kno   2 0.1348 0.7205 36.7659 52.55 <.0001 

3 fld   3 0.0342 0.7547 21.3094 15.05 0.0002 

4 ths   4 0.0198 0.7745 13.1900 9.40 0.0027 

5 cwt   5 0.0091 0.7836 10.5192 4.48 0.0366 

6 fd   6 0.0065 0.7901 9.2231 3.23 0.0753 

7 tli   7 0.0068 0.7968 7.7579 3.47 0.0652 

8 tex   8 0.0051 0.8019 7.1603 2.64 0.1069 

9 dey   9 0.0046 0.8066 6.7896 2.45 0.1208 

10   cwt 8 0.0034 0.8031 6.5394 1.81 0.1819 

11   fd 7 0.0020 0.8012 5.5459 1.03 0.3123 

 

 

 



 

 

 
Figure 3.11 Model diagnostics 

hybrid reduced data) (a) raw residual
residuals versus Hat diagonals (d) normal probability plot of residual (e) 

predicted values  

 

Figure  3.12 Model diagnostics of selected variables of 

hybrid reduced data) (a) average height (b) fibre lumen diameter (c) Kappa number (d) density (e) 
total extractives (f) total hemicelluloses (g) total lignin

(a) 

(d)

(a) 

(d)

(g) 
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Model diagnostics with brightness as the dependent variable

residuals versus predicted values (b) Cook’s distance  (c) standardized 

Hat diagonals (d) normal probability plot of residual (e)  observed brightness

Model diagnostics of selected variables of Brightness model

(a) average height (b) fibre lumen diameter (c) Kappa number (d) density (e) 

tractives (f) total hemicelluloses (g) total lignin 

(b) (c)

(e)

(b) (c)

(e)
(f)

 

dependent variable (different 

(c) standardized 

brightness versus 

 

 

model (different 

(a) average height (b) fibre lumen diameter (c) Kappa number (d) density (e) 



 

58 

 

Table  3.29 ANOVA with yield as the dependent variable (Different hybrid reduced 

data) 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 5 551.24699 110.24940 84.55 <.0001 

Error 106 138.22463 1.30401     

Corrected Total 111 689.47162       

Table 3.30 Parameter estimates with yield as the dependent variables (Different hybrid 

reduced data) 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 45.43916 3.10794 278.73681 213.75 <.0001 

htc 0.32450 0.02150 297.15174 227.88 <.0001 

fld 0.27108 0.14914 4.30838 3.30 0.0719 

kno -0.41812 0.20029 5.68270 4.36 0.0392 

sgr 1.70492 0.50690 14.75155 11.31 0.0011 

tli -0.30284 0.08527 16.44914 12.61 0.0006 

 

Table  3.31 Summary of stepwise selection for the yield model (Different hybrid data) 

Summary of Stepwise Selection of yield 
Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 htc   1 0.6791 0.6791 58.1307 232.83 <.0001 

2 kno   2 0.0692 0.7484 24.2804 29.99 <.0001 
3 sgr   3 0.0243 0.7727 13.7025 11.54 0.0010 
4 tli   4 0.0206 0.7933 5.0359 10.66 0.0015 
5 fld   5 0.0062 0.7995 3.8005 3.30 0.0719 



 

 

Figure 3.13 Model diagnostics 

reduced data) (a) raw residuals versus
versus Hat diagonals (d) normal probability plot of residual (e) 

Figure 3.14 Model diagnostics of selected variables of yield

reduced data) (a) average diameter at breast height (b) fibre lumen diameter (c) Kappa number (d) SG 

ratio (e) total lignin 

(a) 

(d)

(a) 

(d)
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Model diagnostics with yield as the dependent variable (different hybrid

versus predicted values (b) Cook’s distance (c) standardized residual

Hat diagonals (d) normal probability plot of residual (e) observed yield versus predicted value

Model diagnostics of selected variables of yield model (different hybrid 

(a) average diameter at breast height (b) fibre lumen diameter (c) Kappa number (d) SG 

(b)
(c)

(e)

(b) (c)

(e)

 

(different hybrid 

(c) standardized residuals 

predicted values   

 

(different hybrid 

(a) average diameter at breast height (b) fibre lumen diameter (c) Kappa number (d) SG 
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3.8 Multiple Comparisons 

In Chapter 2 the presence of a mean difference and distributional variability of viscosity, 

brightness and yield of trees with different age group, location, site quality was evident. To 

now further, understanding of differences in age, site quality, location and hybrid type on 

viscosity, brightness and yield an application of a mean comparison under these grouping 

factors is important.  

When comparing more than two means, an ANOVA F-test only tells us whether the mean are 

significantly different from each other, but it does not tell us which means differ from which 

other means. Multiple comparison procedures also called mean separation tests, give us more 

detailed information about the differences among the group means. The main goal in multiple 

comparisons is to compare the average effects of three or more treatments or groups of 

subjects to decide which treatments or groups  are  better/different, which ones are worse, and 

by how much, while controlling the probability of making an incorrect decision.  

 

There are a number of multiple comparison procedures that are available. These include least 

significance difference (LSD) method, Duncan’s multiple range test, Tukey method, Dunnett 

method and many more. The selection of the appropriate multiple comparison method 

depends on the desired inference. For more details on methods of multiple comparison, one 

may refer to Gomez and Gomez(1984), Montogomery (1990), Hsu(1991), Dean and 

Voss(1999), Milliken and Johnson (2002). 

3.8.1 A mean comparison on different hybrid data   

A mean comparison of viscosity, brightness and yield measurements for different age group 

of trees for the different hybrid data were performed using Duncan’s multiple range test 

where performed. ANOVA sub-tables in Table 3.32 give P- values of the F- statistics and 

they indicate the presence of significant difference (P-value <.0001) in mean viscosity, 

brightness and yield of trees over different age groups.  Duncan grouping summary for each 

variable in Table 3.33 indicate that, mean viscosity and brightness for a tree of age category 8 

and 9, 7 and 5 are not significantly different. The mean yield of trees in age groups 8 and 9,  9 
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and 7 are not significantly different but trees of age group  5 mean yield is different from all 

the other age  groups.   

Table 3.32 Mean comparison ANOVA of viscosity, brightness and yield at different age 

categories (Different hybrid data) 

Variable  Source DF Sum of 

Squares 
Mean 

Square 
F 

Value 
Pr > F 

Viscosity 

Model 3 9930.857 3310.286 11.44 <.0001 

Error 113 32704.2 289.4177     

Corrected 

Total 
116 42635.05       

Brightness 

Model 3 1338.52 446.1732 22.62 <.0001 

Error 113 2228.689 19.72291     

Corrected 

Total 
116 3567.208       

Yield 

Model 3 352.8535 117.6178 37.15 <.0001 

Error 113 357.7596 3.166014     

Corrected 

Total 
116 710.6131       

 

 

Table 3.33 Duncan grouping of means for viscosity, brightness and yield over different 

age categories (Different hybrid data) 

 

Viscosity Brightness Yield 

Duncan  
Grouping 

Mean N age Duncan  
Grouping 

Mean N age Duncan 
 Grouping 

Mean N age 

A 78.856 33 8 A 48.895 28 9   A 47.5736 33 8 

A 71.566 28 9 A 48.164 33 8 B A 47.2464 28 9 

                B   46.3707 28 7 

B 59.701 28 5 B 42.779 28 7           

B 56.279 28 7 B 40.957 28 5   C 43.1562 28 5 

 

NB : Means with the same letter are not significantly different 

Similarly Duncan’s multiple range test of mean viscosity, brightness and yield of trees over 

different locations were performed and results tabulated in Table 3.34. The P- value of the F-

statistics is < 0.0001 for all the three variables as it seen in the mean comparison ANOVA 

table. This is evidence of a statistically significant difference in mean viscosity, brightness 

and yield over some location. A Duncan grouping of trees over different locations given in 
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Table 3.35 shows all the possible grouping of means by location based for mean viscosity, 

brightness and yield. The tables show that locations can be grouped into four, five and three 

classes based on mean viscosity, brightness and yield respectively. Unlike groupings based 

on mean viscosity and brightness grouping based on yield show  clear distinct groups.  

Table 3.34 Mean comparison ANOVA of viscosity, brightness and yield at different 

locations (Different hybrid data) 

Variable  Source DF Sum of 

Squares 
Mean 

Square 
F 

Value 
Pr > F 

Viscosity 

Model 7 10994.46 1570.637 5.41 <.0001 

Error 109 31640.59 290.2807     

Corrected 

Total 
116 42635.05       

Brightness 

Model 7 2517.754 359.6791 37.36 <.0001 

Error 109 1049.455 9.628026     

Corrected 

Total 
116 3567.208       

Yield 

Model 7 506.5476 72.36394 38.65 <.0001 

Error 109 204.0655 1.872161     

Corrected 

Total 
116 710.6131       

Table 3.35 Duncan grouping of means for viscosity, brightness and yield over different 

locations (Different hybrid data) 

Viscosity Brightness Yield 
Duncan 

 Grouping 
Mean N location Duncan  

Grouping 
Mean N location Duncan  

Grouping 
Mean N location 

    A   82.28 17 P/Ridge 

C13 
  A 51.3 16 Terra 

A01 
A 48.5441 11 KT E10 

B   A   75.22 16 Terra 

A01 
B A 49.953 18 Salpine 

E05 
A 48.0036 18 Salpine 

E05 
B   A C 71.78 10 P/Ridge 

B1 
B C 48.38 5 KT G09 A 47.6972 16 Terra 

A01 
B   A C 71.44 18 Salpine 

E05 
B C 47.936 11 KT E10 A 47.4574 17 P/Ridge 

C13 
B D A C 67.07 5 KT G09 D C 46.992 10 P/Ridge 

B1 
B 45.8833 10 P/Ridge 

B1 
B D   C 60.495 11 KT E10 D   45.212 17 P/Ridge 

C13 
B 45.679 5 KT G09 

  D   C 58.099 23 P/Ridge 

C10 
  E 39.441 17 P/Ridge 

D13 
B 44.9644 17 P/Ridge 

D13 
  D     53.55 17 P/Ridge 

D13 
  E 39.344 23 P/Ridge 

C10 
C 42.6078 23 P/Ridge 

C10 

NB : Means with the same letter are not significantly different 
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A multiple range test for mean comparison of viscosity, brightness and yield over the two site 

quality was performed and the ANOVA results presented in ANOVA Table 3.36. The results 

indicate that mean viscosity between the two site quality are not significantly different but 

mean brightness and yield over site quality I is statistically significantly different from site 

quality II. This significant difference between the two site quality is also supported by a 

Duncan grouping as shown in Table 3.37. 

Table 3.36  Mean comparison ANOVA of viscosity, brightness and yield for different 

site quality (Different hybrid data)  

Variable  Source DF Sum of 

Squares 
Mean 

Square 
F 

Value 
Pr > F 

Viscosity 

Model 1 628.8919 628.8919 1.72 0.1921 

Error 115 42006.16 365.271     

Corrected 

Total 
116 42635.05       

Brightness 

Model 1 1734.936 1734.936 108.89 <.0001 

Error 115 1832.272 15.9328     

Corrected 

Total 
116 3567.208       

Yield 

Model 1 235.3305 235.3305 56.94 <.0001 

Error 115 475.2826 4.132892     

Corrected 

Total 
116 710.6131       

 

 

Table  3.37 Duncan grouping of means for viscosity, brightness and yield of the two site 

quality (Different hybrid data) 

 

Viscosity Brightness  Yield 

Duncan 
 Grouping 

Mean N Site 

quality  
Duncan 

Grouping 
Mean N Site 

quality 
Duncan 

 Grouping 
Mea

n 
N Site 

quality 

A 69.8 50 I A 49.8 5
0 

I A 47.8 50 I 

A 65.1 67 II B 42.0 6
7 

II B 44.9 67 II 

NB : Means with the same letter are not significantly different 
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Lastly a Duncan’s multiple range test of mean viscosity, brightness and yield of trees over 

different hybrid types are presented in Tables 3.38 -3.43. The P-values of the ANOVA F-

statistics are less than < 0.0001 as shown in Tables 3.38, 3.40 and 3.42. This shows an overall 

significant difference in mean of viscosity, brightness and yield between some hybrid types. 

Tables 3.39, 3.41 and 3.43 indicate that means of the same letter are not significantly 

different. But these comparisons present a problem because of the number of observations for 

most hybrid types is below five which may affect the reliability of the comparisons result.  

Table 3.38  Mean comparison ANOVA of viscosity for different hybrid type (Different 

hybrid data) 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 20 22229.63226 1111.48161 5.23 <.0001 

Error 96 20405.42135 212.55647     

Corrected Total 116 42635.05361       

 

Table  3.39 Duncan grouping of means for viscosity over different hybrid type 

(Different hybrid data) 

Means with the same letter are not significantly 

different. 

Duncan Grouping Mean N Hybrid type 

    A   92.95 8 ZGU CN 

B   A   85.60 3 GU x U 

B   A C 78.40 1 E. uro x Gra/Ter 

B   A C 77.79 36 GU 

B   A C 77.50 1 GU x GC 

B D A C 71.25 1 G x GT 

B D A C 69.08 6 E. grandis 

B D A C 66.17 12 GP 

B D A C 64.48 2 G x GU 

B D A C 64.10 1 E. urophylla 

B D A C 57.78 2 E. uro x E. ter 

B D A C 57.73 22 UG 

B D A C 57.25 1 GU x ((GP) + (GXGT)) 

B D   C 55.95 1 GU x GT 

B D   C 52.14 4 GU x ((GP)x E. ter)) 

B D   C 50.53 2 GU x ((GP) + (GxGT)) 

B D   C 49.80 1 GC 

  D   C 47.28 5 GU x GP 

  D   C 41.72 5 GU x (ET+GP) 

  D   C 41.55 1 GU x((GP) + (GxGT)) 

  D     39.53 2 GU x (G x GU) 
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Table 3.40  Mean comparison ANOVA of brightness for different hybrid types 

(Different hybrid data) 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 20 2012.667171 100.633359 6.21 <.0001 

Error 96 1554.541321 16.193139     

Corrected Total 116 3567.208492       

 

Table 3.41  Duncan grouping of means for brightness over different hybrid type 

(Different hybrid data) 

Means with the same letter are not significantly different. 

Duncan Grouping Mean N Hybrid type 

      A   52.100 1 G x GT 

  B   A   50.550 1 GU x GT 

  B   A   50.325 2 G x GU 

  B   A C 48.900 1 E. urophylla 

  B   A C 48.703 36 GU 

  B   A C 48.183 12 GP 

  B   A C 47.900 2 GU x (G x GU) 

  B   A C 47.600 1 GU x ((GP) + (GXGT)) 

  B   A C 47.212 8 ZGU CN 

  B D A C 45.192 6 E. grandis 

  B D A C 45.133 3 GU x U 

E B D A C 44.390 5 GU x (ET+GP) 

E B D A C 44.300 1 GU x GC 

E B D A C 43.360 5 GU x GP 

E B D A C 42.850 1 GC 

E B D   C 41.266 22 UG 

E   D   C 39.500 1 GU x((GP) + (GxGT)) 

E   D     37.200 1 E. uro x Gra/Ter 

E   D     35.400 2 E. uro x E. ter 

E         35.112 4 GU x ((GP)x E. ter)) 

E         35.000 2 GU x ((GP) + (GxGT)) 

Table 3.42  Mean comparison ANOVA of yield for different hybrid type (Different 

hybrid data) 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 20 430.2298428 21.5114921 7.37 <.0001 

Error 96 280.3832391 2.9206587     

Corrected Total 116 710.6130819       
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Table  3.43  Duncan grouping of means for yield over different hybrid type (Different 

hybrid data) 

Means with the same letter are not significantly different. 

Duncan Grouping Mean N Hybrid type 

      A   48.690 1 GU x ((GP) + (GXGT)) 

      A   48.405 1 GU x GT 

  B   A   48.080 12 GP 

  B   A   47.738 36 GU 

  B   A C 47.373 2 G x GU 

  B   A C 47.330 2 GU x (G x GU) 

  B   A C 47.179 5 GU x (ET+GP) 

  B D A C 46.870 1 GU x((GP) + (GxGT)) 

  B D A C 46.505 1 G x GT 

  B D A C 46.430 1 E. urophylla 

E B D A C 46.103 3 GU x U 

E B D A C 45.988 2 GU x ((GP) + (GxGT)) 

E B D A C 45.871 6 E. grandis 

E B D A C 45.652 5 GU x GP 

E B D A C 45.548 8 ZGU CN 

E B D A C 44.989 4 GU x ((GP)x E. ter)) 

E B D F C 43.870 1 GC 

E   D F C 43.300 22 UG 

E   D F   42.735 1 GU x GC 

E     F   42.009 2 E. uro x E. ter 

      F   40.540 1 E. uro x Gra/Ter 

 

3.9 Summary  

Application of multiple regressions to each pulp property measurement viscosity, brightness 

and yield shows the presence of a highly significant linear relation with wood anatomic and 

chemical measurements. But the total variation explained by the fitted models varies from 

one data set to the other and also within pulp properties measurement of each data set. The 

explained variation ranges from a lowest total variation explained of 43.52% for brightness of 

E-dunnii data set to a highest total variation explained of 81.27% for yield for the different 

hybrid data set. This proportion variation explained difference may be because of the 

presence of additional variability of age, location, site quality and hybrid type in the different 

hybrid data set that is not accounted for by the models. This is also further supported by a 
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significant effect of these categorical variables on the pulp viscosity, brightness and yield as 

shown in the multiple comparisons tests. 

Model diagnosis results further showed that there were no serious violation of model 

assumptions, except a non constant error variance for viscosity in the fitted model of both 

data sets and a multicollinearity problem to all the fitted regression models. A natural log 

transformation of viscosity and a stepwise regression was applied to address the problem of 

non constant error variance and multicollinearity respectively. Model selection in terms of 

variables included in the viscosity, brightness and yield models results differ in terms of the 

number and type of variables included in the fitted model. Kappa number and total lignin are 

the only variables included in all the final fitted models.  

In this chapter multiple regressions of viscosity, brightness and yield were under taken 

individually without consideration of the presence of a significant correlation between these 

three variables. An attempt to model the three dependent variables jointly together is 

addressed in the next chapter using multivariate analysis methods. 

 

 

 

 

 

 

 

 

 

 



 

68 

 

 

Chapter 4 

Multivariate linear regression 

Multivariate regression procedures take into account the correlation among the dependent 

variables which is ignored by univarate analysis and this allows construction of simultaneous 

confidence intervals (Kim and Timm 2007). In general the multivariate regression model is 

used to explain the relationship between q dependent variables "�, "�, "­, � , "® and p 

independent variables %�, %�, %­, � , %` (Johnson, 2002). The p-dimensional multivariate 

linear regression model is  

   E�{� � nc or { � nc � e 
where 

  Y =]y�� y�� y�­y�� y�� y�­ZyF� ZyF� ZyF­   
… y�¯… y�¯…… ZyF¯b =  °±² Z ±k Z ±³ Z ±´ Z  …  Z ±µ¶ 

   X =]x�� x�� x��x�� x�� x��ZxF� ZxF� ZxF�   
… x�S… x�S…… ZxFSb 

   β =  ·̧
¹̧β�� β�� …β�� β�� …ZβS� ZβS� ……    

β�¯β�¯ZβS¯º»
»¼ = °q² Z qk Z � Z qµ¶ 
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 ε = ]ε�� ε�� ε�­ε�� ε�� ε�­ZεF� ZεF� ZεF­   
… ε�¯… ε�¯…… ZεF¯b =°�� Z �� Z � Z �`®¶= 

·̧̧
¸̧̧
¹εz�…εz�…Z…εz¯º»»

»»»
¼
 

where E(ε) = 0 and Var(ε) = Σ. 
The p observations on the i

th
 trial have covariance matrix ∑ � O*��«,R but observations from 

different observation unit (tree) are uncorrelated and also in this model the rows of Y and ε 

are assumed to be distributed as multivariate normal. 

4.1 Parameter estimation  

The matrix of residual sum of squares and cross products is Ω � �{ # nβ�z�{ # nβ�; 
differentiating Ω with respect to β, yields 2nz�{ # nβ� � 0 and thus 

 c+ � �nzn�p�nzm , 
provided that n > p or, more exactly provided that nzn is non-singular. Differentiation of Ω 

also minimizes both the determinant and the trace of Ω means. This means that the p 

individual c+¿  in  c+ are identical to those which would be obtained by separate multiple 

regression of each yi on the dependent variables ^�, ^�, ^­…^`. Collecting those univariate 

least squares estimates, $¬� 
c+¿ � �nzn�p²nz{¿                                               (4.1) 

We can obtain β� � °β�� Z β�� Z � Z β�¯¶ � �nzn�p�nz*{² Z {k Z {³ Z {À Z  …  Z {Á,  ��nzn�p�nzm. 
Under normality assumption of ε these least squares estimators are also maximum likelihood 

estimators of  c .  
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So we have matrices of predicted values {+ � nc+ and we have a resulting matrices of 

residuals  

               d. � { # {+ � �l # n�n′n�p�n′�m 
and the variance ∑ is estimated by ∑+  . 

∑+ � �{ # nc�z�{ # nc�� # 7 # 1  

Multivariate linear regression coefficients β from experimental data is used to evaluate the 

marginal or partial effect of a predictor to the dependent variable given the other predictor 

variables in the model. The least squares estimation β� � °β�� Z β�� Z � Z β�¯¶ determined under 

the multivariate regression model with full rank X have the following properties.  

  �.  E*c+¿, � c� i. e, E*c+, � c 
                       ii. Cov (c+¿, c+� � δ���n′n�p� i, j = 1,2,…,q 

                       ���. E�e.� � i and E r e.′e.[p`p�s � ∑ 

                       ��. Cov *eN , c+, � i . 

                        �. Cov�∑+, c+ � �  0 
Further, with full rank X and normally distributed errors ε, c+~N�c , ∑Æ�. where the 

elements of ∑Æ are as given in (ii). 

4.2 Multivariate test statistics 

Other than the likelihood ratio test other tests have been proposed for testing the multivariate 

regression parameter β. Most computer package programs routinely calculate four 

multivariate test statistics, namely Wilks’s Lambda, Pilai’s trace, Hoteling-Lawley trace and 

Roy’s greatest root ( Verbeke, 2004; Johnson and Wichern, 2002,). 
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Let H denote the sums of squares and cross products matrix, and let E denote the error sums 

of squares and cross products matrix. The above four statistics can be defined in terms of E 

and H directly, or in terms of the nonzero eigenvalues Ç� È Ç� È �Ç� of HE
-1
, where s = 

min ( p, r-q) where 

 É � *{ # nc+,z�{ # nc+�                                    (4.2) 

                � � *Êc+,z�Ê�nzn�p²Êz �p�*Êc+,                        (4.3) 

where L is a ( p+1) × q matrix with rank(L) = q. The four multivariate test statistics are 

defined as follows:  

The first statistic called the Wilk’s Λ was the first MANOVA test statistic to be developed 

and one of the most important for several multivariate procedures in addition to MANOVA. 

Wilkzs lambda   � Λ� �  |É||É � �| �> 11 � Ç� .                          �4.4�
�
��1  

The second statistic is the Pillai's trace. Some statisticians consider it to be the most powerful 

and most robust of the four statistics. Its formula is given by 

                                       Pillai’s trace � trO�� � � É�p²R � ∑ ÒÓ�ÔÒÓ��G�  .              (4.5) 

The third test statistic is the Hotelling-Lawley's trace. 

                                       Hotelling # Lawley trace � trO�Ép²R � ∑ λ���G�  .         (4.6) 

The fourth and last statistic is the Roy's largest root. This gives an upper bound for the F 

statistic. 

           Roy’s greatest  root � ÒØ�ÔÒØ                                           (4.7) 

where λ� is the largest or dominant eigenvalue of HE-1. 

4.3 Application of multivariate regression analysis  

The application of multivariate regression analysis for the different hybrid data set using SAS 

PROC GLM is presented in Tables 4.2.1-4.2.4. The four multivariate test results for each 

independent variables indicate that fibre lumen diameter (fld), kappa number (kno), total 

hemicelluloses (ths) and total lignin simultaneously have significant effect on pulp properties 

viscosity, brightness and yield at a time at 5% significance level. Other anatomic and 

chemical measurements have no concurrent significant effect.   
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Table  4.2.1  Multivariate Analysis of Variance of fibre lumen diameter (Different 

hybrid data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall fibre lumen 

diameter Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.77873974 8.90 3 94 <.0001 
Pillai's Trace 0.22126026 8.90 3 94 <.0001 
Hotelling-Lawley Trace 0.28412607 8.90 3 94 <.0001 
Roy's Greatest Root 0.28412607 8.90 3 94 <.0001 

 

Table 4.2.2  Multivariate Analysis of Variance of kappa number (Different hybrid data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall kappa number Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.64990194 16.88 3 94 <.0001 
Pillai's Trace 0.35009806 16.88 3 94 <.0001 
Hotelling-Lawley Trace 0.53869367 16.88 3 94 <.0001 
Roy's Greatest Root 0.53869367 16.88 3 94 <.0001 

 

Table 4.2.3  Multivariate Analysis of Variance of total hemicelluloses (Different hybrid 

data)   

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall total 

hemicelluloses Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.63505085 18.01 3 94 <.0001 
Pillai's Trace 0.36494915 18.01 3 94 <.0001 
Hotelling-Lawley Trace 0.57467704 18.01 3 94 <.0001 
Roy's Greatest Root 0.57467704 18.01 3 94 <.0001 

 

Table 4.2.4 Multivariate Analysis of Variance of total lignin(Different hybrid data)   

     MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall total lignin Effect 

 

  Value F Value Num DF Den DF Pr > F 

Wilks' Lambda 0.83850441 6.03 3 94 0.0008 
Pillai's Trace 0.16149559 6.03 3 94 0.0008 
Hotelling-Lawley Trace 0.19259957 6.03 3 94 0.0008 
Roy's Greatest Root 0.19259957 6.03 3 94 0.0008 
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Similar application of multivariate regression to the E-dunnii data set was undertaken and the 

accompanying results are shown in Tables 4.3.1-4.3.10. The results show that average 

diameter at breast height (dbh), fibre diameter (fd), cell wall thickness (cwt), fibre lumen 

diameter (fld), vessel percentage (vp), kappa number (kno), density (dey), cellulose (cel), 

total hemicelluloses (ths) and total lignin (tli) have concurrent significant effect at 5% 

significance level on viscosity, brightness and yield. But from anatomic measurements, 

average height and average height of a tree up diameter of 7cm and from chemical 

measurements glucose, Sg ratio and total extractives are no joint significant effect on 

viscosity, brightness and yield. 

Table  4.3.1  Multivariate Analysis of Variance of average diameter at breast height (E-

dunnii data) 

 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall average diameter at 

breast height Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.92041464 4.55 3 158 0.0043 
Pillai's Trace 0.07958536 4.55 3 158 0.0043 
Hotelling-Lawley Trace 0.08646685 4.55 3 158 0.0043 
Roy's Greatest Root 0.08646685 4.55 3 158 0.0043 

 

Table  4.3.2 Multivariate Analysis of Variance of fibre diameter (E-dunnii data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall fibre diameter Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.90797047 5.34 3 158 0.0016 
Pillai's Trace 0.09202953 5.34 3 158 0.0016 
Hotelling-Lawley Trace 0.10135740 5.34 3 158 0.0016 
Roy's Greatest Root 0.10135740 5.34 3 158 0.0016 
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Table 4.3.3  Multivariate Analysis of Variance of cell wall thickness (E-dunnii data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall cell wall thickness 
Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.94119375 3.29 3 158 0.0222 
Pillai's Trace 0.05880625 3.29 3 158 0.0222 
Hotelling-Lawley Trace 0.06248049 3.29 3 158 0.0222 
Roy's Greatest Root 0.06248049 3.29 3 158 0.0222 

 

Table 4.3.4  Multivariate Analysis of Variance of fibre lumen diameter (E-dunnii data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall fibre lumen 

diameter Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.76008703 16.62 3 158 <.0001 
Pillai's Trace 0.23991297 16.62 3 158 <.0001 
Hotelling-Lawley Trace 0.31563882 16.62 3 158 <.0001 
Roy's Greatest Root 0.31563882 16.62 3 158 <.0001 

Table 4.3.5  Multivariate Analysis of Variance of vessel percentage (E-dunnii data)   

 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall vessel percentage 
Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.94664370 2.97 3 158 0.0337 
Pillai's Trace 0.05335630 2.97 3 158 0.0337 
Hotelling-Lawley Trace 0.05636365 2.97 3 158 0.0337 
Roy's Greatest Root 0.05636365 2.97 3 158 0.0337 

 

Table 4.3.6  Multivariate Analysis of Variance of kappa number (E-dunnii data) 

 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall kappa number 
Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.66810783 26.16 3 158 <.0001 
Pillai's Trace 0.33189217 26.16 3 158 <.0001 
Hotelling-Lawley Trace 0.49676438 26.16 3 158 <.0001 
Roy's Greatest Root 0.49676438 26.16 3 158 <.0001 
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Table 4.3.7  Multivariate Analysis of Variance of density (E-dunnii data) 

           MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall density Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.91932931 4.62 3 158 0.0040 
Pillai's Trace 0.08067069 4.62 3 158 0.0040 
Hotelling-Lawley Trace 0.08774950 4.62 3 158 0.0040 
Roy's Greatest Root 0.08774950 4.62 3 158 0.0040 

Table 4.3.8  Multivariate Analysis of Variance of cellulose (E-dunnii data)  

        MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall cellulose Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.78744470 14.22 3 158 <.0001 
Pillai's Trace 0.21255530 14.22 3 158 <.0001 
Hotelling-Lawley Trace 0.26993045 14.22 3 158 <.0001 
Roy's Greatest Root 0.26993045 14.22 3 158 <.0001 

 

Table 4.3.9   Multivariate Analysis of Variance of total hemicelluloses (E-dunnii data) 

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall total 

hemicelluloses Effect 

 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.85455146 8.96 3 158 <.0001 
Pillai's Trace 0.14544854 8.96 3 158 <.0001 
Hotelling-Lawley Trace 0.17020454 8.96 3 158 <.0001 
Roy's Greatest Root 0.17020454 8.96 3 158 <.0001 

Table 4.3.10  Multivariate Analysis of Variance of total lignin (E-dunnii data) 

 

     MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall total lignin 

Effect 

 
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.93899854 3.42 3 158 0.0188 
Pillai's Trace 0.06100146 3.42 3 158 0.0188 
Hotelling-Lawley Trace 0.06496438 3.42 3 158 0.0188 
Roy's Greatest Root 0.06496438 3.42 3 158 0.0188 
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In summary fibre lumen diameter, kappa number and total hemicelluloses are the only 

variables that concurrently significantly affect viscosity, brightness and yield in both data 

sets. One way of wood quality improvement is good management of the raw material supply 

for processing which in effect means determine groups of Eucalypts wood hybrid type that 

have similar characteristics. One way of making a homogeneous group is by classification of 

trees in terms of viscosity, brightness and yield an issue that will be addressed in the next 

chapter, by means of cluster analysis.   
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Chapter 5 

Cluster analysis for the combined data 

Mill performance and value of pulp production are related to the uniformity of raw material 

supply to a mill. Management of Eucalypts raw material in terms of differences in viscosity, 

brightness and yield is important during production process. Relating these properties to 

some discernible sources of variation like location and hybrid type will help to improve the 

uniformity of Eucalypts raw supply. This chapter deals with the possibility of classifying 

Eucalypts based on viscosity, brightness and yield and the relation to location and hybrid type 

using cluster analysis. First we will deal with some brief theory of cluster analysis. 

The term cluster analysis does not imply a particular statistical method or model as do a 

regression analysis. We often do not have to make any assumptions about the underlying 

distribution of the data. Ideally we have data that may have come from several populations, 

but it is not known which population they came from. Cluster analysis or clustering is the 

process of grouping of similar objects using data about the objects. It is part of the general 

scientific process of searching for patterns in data than trying to construct laws that explain 

the pattern. The idea of grouping together observations that are ‘similar’, raises questions of 

how one defines similarity and how similar do they have allocate them into the same group. 

Using cluster analysis, we can also form groups of related variables. In cluster analysis there 

is no a prior assumption made concerning the number of groups or the group structure. 

Grouping is done on the basis of similarities or distances (dissimilarities). 

The input required in order to undertake cluster analysis is a similarity measure(s) or data 

from which similarities can be computed. There are three main types of data structures used 

in cluster analysis (Johnson and Wichern, 2002). The first is the d-dimensional vector data 

X1, X2,�, Xn arising from measuring or observing d characteristics  on each of the n objects 

or individuals. The characteristics or variables may be quantitative or qualitative and the data 

can be expressed in a matrix form X = [ (xij)] where X is of dimension d × n.  
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The aim of the cluster analysis is to devise a classification scheme for grouping the Xi into g 

clusters. In this analysis the characteristics of the cluster and, in most cases, the number of 

clusters have to be determined from the data itself. 

A second type of data encountered in cluster analysis consist of an n × n proximity matrix 

denoted by [(Cij)] or [(Dij)], where (Cij) or (Dij), is a measure of similarity (dissimilarity) 

between the i
th
  and j

ih
  subjects. An element (Cij) or (Dij) is called a proximity and the data is 

referred to as proximity data. 

A third type of data that is already in a cluster format is what might be called sorted data. All 

the three types of data can be converted into proximity data. Once we have a proximity 

matrix, we can then proceed to form clusters of objects that are similar or close to one another 

based on the proximities.  

In order to achieve the basic objective of cluster analysis, that is to discover natural groupings 

of the items (or variables), we must first develop a quantitative scale on which to measure the 

association (similarity) between objects. 

5.1 Similarity Measures  

Most efforts to produce a rather simple group structure from a complex data set require a 

measure of closeness or similarity. Important considerations include the nature of the 

variables, scales of measurements and subject matter knowledge.  

When items (units or cases) are clustered, proximity is usually indicated by some sort of 

distance. On the other hand, variables are usually grouped on the basis of correlation 

coefficient or like measures of association. 

The statistical distance between the same two observations is  

                                             ��%, "� � ��% # "�oÙz�% # "� .                                        (5.1) 

Ordinarily, A= S
-1
, where S contains the sample variance and covariance. However, without 

prior knowledge of the distinct groups, these sample quantities cannot be computed. For this 

reason, Euclidean distance is often preferred for clustering. 
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Another distance measures are the Minkowski metric, Canberrra metric and the Czekanowski 

coefficients, where the last two measures are defined for nonnegative variables only. 

Table 5.1 Summary table of distance measure 

1 Minkowski metric ��%, "� � YI|%�`
�G� #"�|�\�/� 

2 Canberrra metric ��%, "� � BI |%� # "�|�%� � "��
a
�G� E 

3 Czekanowski coefficients ��%, "� � 1 # 2∑ Ú���%�, "��a�G�∑ �%� � "��a�G�  

 

 5.2 Clustering methods 

There are basically three types of clustering available, the first one is hierarchical clustering. 

In this clustering method the clusters are themselves grouped into bigger clusters, the process 

being repeated at different levels to form what is technically known as a tree of clusters 

(Everitt and Dunn, 2001, Everitt, 1974) . Such a tree can be constructed from the bottom up 

using an agglomerative method that proceeds by a series of successive fusions of n objects 

into clusters, or from the top down using a divisive method which partitions the total set of n 

objects in to finer and finer partitions. The former method begins with a single cluster of n 

objects, where the latter method consists of the reversus process. The graphical presentation 

of hierarchical clustering is called a dendogram. The second method is partitioning, here the 

objects are partitioned into non overlapping clusters. The last one is overlapping clusters. 

5.2.1 Hierarchical clustering method 

Hierarchical clustering agglomerative techniques all begin with clusters each containing just 

one object, a proximity matrix for the n objects and a measure of distance between two 

clusters, where each cluster contains one or more objects. The first step is to fuse the two 

nearest objects into a single cluster so that we now have n-2 clusters containing one object 

each and a single cluster of two objects. The second step is to fuse the two nearest of the n-1 
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clusters to form n-2 cluster. We continue in this manner until at the (n-1)
th
 step we fuse the 

two clusters left into a single cluster of n objects. A number of different distance measure for 

cluster have been proposed and the one that are or have been widely used are single linkage 

(nearest neighbor) method, complete linkage (farthest neighbor) method, centroid method and 

median method. 

To demonstrate the use of single linkage method let C1 and C2 be two clusters. Next the 

distance between them is defined to be the smallest dissimilarity between a member of C1 and 

C2  that is  

                                d�C���C�� � minÛd��: i Ý  C�; j Ý C�à .                                         (5.2) 

Complete linkage method is the opposite of single linkage method. In this method distance 

between clusters is defined in terms of the largest dissimilarity between a member of C1 and 

C2 given by  

     d�C���C�� � maxÛd��: i Ý  C�; j Ý C�à                                          (5.3) 

At each step we fuse the two clusters that are closest, that is, those with minimum 

dissimilarity d�C���C��. 
Under the centroid method the distance between two clusters is defined to be the distance 

between the cluster centroids. If '̂� � ∑ á�[��Gâ   is the centroid of n1 member cluster  C1 and '̂� 
similarly defined for C2 then ��ã���ã�� � ä� '̂�, '̂��; where P is the proximity measure such 

as the squared Euclidean distance. In general the procedure starts with a proximity matrix 

with elements P (Xi , Xj) and at each stage the two nearest clusters are fused and replaced by 

the centroid of the new cluster. 

Median method is the same as the centroid method, except that a new cluster is replaced by 

the unweighted average ^ ) � �� � '̂� � '̂��. This method was introduced to overcome a 

shortcoming of the centroid method, namely, that if a small group fuses with a large one, it 

loses its identity and the new centroid may lie in the large group. 
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5.3 Non- hierarchical methods 

Nonhirarcical clustering techniques are designed to group items, rather than variables, into a 

collection of K clusters. The number of clusters, K, will either be specified in advance or 

determined as part of the clustering procedure. This method starts from either an initial 

partition of items into groups or an initial set of seed points, which will form the nuclei of 

clusters. One way to start is to randomly select seed point from among the items or to 

randomly partition the items into initial groups. One of the more popular non-hierarchical 

procedures is the K-means method.   

K-Means Method  

 The K-means method in its simplest version is a process composed of these three key steps: 

Step 1. Partition the data into K initial clusters. This may be done at random. 

Step 2. Determine the centroid (that is the mean) for each cluster. For each observation, 

reassign it to the cluster that is closest. That is, compute the distance to each centroid and 

assign it to the one that is smallest. It is best to use the standardized data and normally use the 

Euclidean distance. If an observation is reassigned, recompute the centroid for the cluster 

receiving the new observation and for the one losing that observation. This is like an updating 

step. 

Step 3. Repeat Step 2 until no more reassignments have been made. Alternatively, we could 

begin the procedure by specifying K initial centroids and proceed as in Step 2. 

 

Since the procedure depends on the initial choice of clusters and the number of clusters, it is 

suggested that the process be repeated for different choices. In particular, the specification of 

K could lead to unusual clustering and outlying observations can produce unusual clusters. 

There are numerous ways we can sort cases into groups. The choice of a method depends on, 

among other things, the size of the data file. Methods commonly used for small data sets are 

impractical for data files with thousands of cases. Identifying groups of individuals or objects 

that are similar to each other but different from individuals in other groups can be 

intellectually satisfying, profitable, or sometimes both. 
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5.4 Application of Cluster Analysis on Combined Data 

The main source of variation of Eucalypts wood supply destined to a Sappi mill is trees 

hybrid type and plantation area difference. To include all location and hybrid types in the 

cluster analysis the usage of combined data is important.  The aim of the current application 

of cluster analysis is to group the trees based on viscosity, brightness and yield into 

homogenous groups and associate the grouping with location and hybrid type and then 

characterize the group.  

A SAS PROC CLUSTER method was applied to perform cluster analysis of K- means 

method with median distance as a measure of similarity. Sorted data by location and hybrid 

type result from a cluster analysis was applied to the combined hybrid data which indicated 

some possible grouping of trees based on location and hybrid type. A PROC CLUSTER 

method output summary results for the combined data are presented in Tables 5.2, 5.3 and 

5.5. and dendogram Figuer 5.1 

Table 5.2 indicates that most of the trees planted in location KTG09, P\RidgeB1, 

P\RidgeC10, P\Ridge C13, Salpine E05 and Terra A1 are found in the first group and trees on 

location P\Ridge C10 and P\Ridge D13 form the second group. Trees planted in P\Ridge C13 

form the third group but trees planted on location Hilelo and KTE 10 are evenly distributed in 

different groups.  

Table 5.2 Summary of clusters according to location (Combined data) 

CLUSTER  LOCATION (Grouping of trees based on viscosity yield and 

brightens)  

1  KT GO9, P/RidgeB1, P/RidgeC10 , P/Ridge C 13,Salpine 

E05,Terra A1  

2  P/RidgeC10, P/Ridge d 10  

3   

4  P/RidgeC13  

5   

 HILELO and  KT E10  evenly distributed   
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Association of cluster result with trees hybrid type (Table 5.3) also indicate that hybrids E. 

grandis, E.uro×ETera, E.Uro×GRA/Ter, E.urophlla, G×GT, G×GU, GP, GU, 

GU((GP)×E.ter)), GU×GC, UG form the first group, GP, GU×((GP)+G×GT)), 

G×((GP)+(G×GT)), GU×GP, GU×GT, UG second group,E. Grandis, E. Smithii, 

GU×(G×GU) third  group  and GU the fourth group but , GU×U and E. dunnii evenly 

distributed into different group.  

Table 5.3 Summary of clusters according to hybrid type (Combined data) 

 

CLUSTER  

HYBRIDE TYPE (Grouping of trees based on viscosity yield and brightens)  

1  E. grandis,  E .uro × E Tera, E. Uro×Gra/ Ter, E.urophlla, G× GT, G×GU,  

GP, GU,GU((GP)×E .ter)),GU×GC,UG  

2  G×GU, GC, GP GU×((GP)+G×GT)),GU ×((GP)+(G×GT)), GU×GP, GU×GT, 

UG  

3  E. grandis,E.smithii,GU×(G×GU)  

4  GU  

5   

 

Note :- GU×U and E. dunnii evenly distributed   



 

 

   

Figure 5.1  Dendogram of combined data
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Dendogram of combined data 
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From the overall resolute of cluster analysis we conclude that it could not able 

characterization of the group. However there is some homogeneity interims of viscosity, 

brightness and yield. In the next chapter we will summarize all the analysis applied in this 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

Chapter 6  

Summary and conclusions 

The main objective of this thesis was to determine which of the anatomical, chemical and 

pulp properties of wood that are significant factors affecting pulp properties namely viscosity, 

brightness and yield and also to assess the effect of geographic characteristics (location and 

site quality), age and species type on viscosity, brightness and yield of wood pulp. The data 

used in this thesis came from three different sources. Exploratory data analysis was first 

performed on the different hybrid data set and E-dunnii data set. The results of this initial 

preliminary assessment indicate the presence of a linear relationship between some of the 

independent anatomic, chemical and pulp property measurements and the dependent 

variables  namely viscosity, brightness and yield on both data sets but the relationship 

differed in terms of strength and number of variables.   

Some summary statistics in addition to normal probability plots and histograms each of 

dependent variables viscosity, brightness and yield for each data sets indicated the presence 

of some outlier observations and approximately normally distributed. A box-plot analysis of 

viscosity, brightness and yield versus age, location and site quality supported the presence of 

some outliers and a mean variation between different age categoris of trees, locations of 

where trees grown and site quality. 

A correlation matrix assessment between each variable also indicated the presence of 

redundancies in some of the information. Values of correlation coefficient up to 0.9904 

between some variables were found which necessitated the need for some data reduction 

methods such as principal component analysis. The rotated factors from the use of principal 

component analysis as was shown in Tables 3.20, 3.21 and 3.22 did not support the 

possibility of data reduction using principal component analysis. Other method of data 

reduction was used in particular stepwise regression in this case. 

All anatomic, chemical and pulp property measurements are continuous variables and 

categorical variables namely age, location, site quality and hybrid types were among the fixed 

effects. The presence of a linear relationship between the dependent and the independent 

variables was supportive of the application of a multiple linear regression analysis for both 
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data sets and for each dependent variables (viscosity, brightness and yield). The results for 

both data sets showed the existence of a highly significant linear relationship with F-test p-

values <.0001 at 5% significance level. The coefficient of determination R-square values of 

52.73%, 81.20% and 81.27% for viscosity, brightness and yield respectively were obtained 

for the different hybrid data and 53.84%, 43.52% and 59.06% for the E-dunnii data set. But 

the presence of high correlation between some of the independent variables suggested the 

need for multicolinearity tests using a variance inflation factor (VIF) threshod of >10 for 

some independent variables. This led to the application of stepwise regression analysis for 

variable selection. The result of this application for each of the dependent variables 

(viscosity, brightness and yield) for the two data sets were different in terms of the type and 

number of variables selected. Furthermore, a test of multiple regression model assumptions or 

model diagnosis using residuals like the R-studentized residuals versus predicted values plots 

for viscosity indicated that the variance of the errors was not constant implying that the 

assumption of constant variance of error term was violated.  

An alternative approach commonly used in applied statistics as a remedial measure for non-

normality is the use of transformation of variable which in this case was applied to the 

viscosity data in such a way as to obtain a new regression model which clearly possessed 

properties of constant variance and / or normally distributed errors. One of the appropriate or 

convenient and robust way of transforming data is Box-Cox transformation. Using Proc 

TRANSREG in SAS a Box-Cox transformation was performed and the best value of  lambda 

was conveniently chosen as zero for all the data sets implying the natural log transformations 

of viscosity was the most suitable way of solving  the problem of non-constant variance of 

the error residuals. An application of multiple regression analysis using the transformed 

viscosity (log viscosity) and model diagnostics using residual plot showed that the problem of 

non constant variance of the error term was solved and an improvement on the fitted models 

followed. R-square values also increased from 52.73% to 62.161% for the different hybrid 

data set and from 53.84% to 59.54% for E-dunnii data set.  

Another statistical application tool applied on the different hybrid data set for categorical 

explanatory variables was a multiple comparison procedures also called mean separation 

tests. This gave us more detailed information about the differences among the means of 

viscosity, brightness and yield over different locations and site quality where eucalyptus trees 
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were planted and age group of trees using Duncan’s multiple range test. The results also 

showed a significant mean difference ( P-value <0.0001) of mean viscosity, brightness and 

yield between some age groups, locations and the two site quality and hybrid combinations. 

Even though the mean of viscosity, brightness and yield comparison between different hybrid 

combinations were significant for some hybrid type the number of observations was too small 

namely below five which may have affected the reliability of this mean comparison result 

over hybrid type. 

The presence of a moderate correlation between the dependent variables viscosity,   

brightness and yield also required a statistical analysis test which considered this correlation 

and their linear relationship with tree anatomic, chemical and pulp property measurements. 

To deal with this aspect of the data multivariate linear regression for continuous explanatory 

variables namely MANOVA was used.  

An application of multivariate linear regression using SAS PROC GLM supported the 

presence of significant linear relationship between the dependent variables included into the 

model at once and independent variables for all the three data sets but the number and type of 

variables that affect the dependent variables vary from one dependent variable to the other 

and also from one data set to the other. 

One of the problems of Sappi pulp mill is the non-uniform supply of eucalypts pulp wood in 

terms of viscosity, brightness and yield. Classification of different hybrid type of trees based 

on those three variables was important. A cluster analysis was applied to the combined data 

set and its results indicated some sort of grouping of trees of different hybrid type as 

presented in Table 5.2. This classification may help in terms of management by ensuring a 

uniform pulp wood supply of raw material destined to pulp mills and controlling for 

production process variation.   

In conclusion, significant effect of age, hybrid type, location and site quality difference on 

pulp viscosity, brightness and yield was established. This mean that plantations site quality 

improvement by using suitable agricultural practice and selection of beast hybrid types and 

improvement of trees through breeding will help to ensure uniformity of pulp wood supplied 

to the pulp mills. The multiple regression models were used for prediction of viscosity, 

brightness and yield and also to identify which anatomic and chemical measurements are 
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significant contributors to the production of quality pulp. Further research including finding a 

functional relationship between some selected anatomic and chemical measurements and pulp 

viscosity, brightness and yield will be important. Further statistical techniques to deal with 

non-homogeneous wood quality due to factors such as location, type of data, site quality and 

others not considered in this work can be explored. 
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Appendix A: Scatter Plot for Different Hybrid and E

Data Set 

Figure A.1: Different Hybrid Data

dependent variables versus independent variables.

(a) Scatter plot matrix for
breast height, Average height and Average height of tree up to diameter of 7cm
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r Plot for Different Hybrid and E

A.1: Different Hybrid Data: Scatter plots of the three 

dependent variables versus independent variables.

 

Scatter plot matrix for viscosity, brightness and yield by Average 
breast height, Average height and Average height of tree up to diameter of 7cm

r Plot for Different Hybrid and E-Dunnii 

: Scatter plots of the three 

dependent variables versus independent variables. 

 
Average diameter at 

breast height, Average height and Average height of tree up to diameter of 7cm 



 

 

(b) Scatter plot matrix for
lumen diameter and Cell wall thickness

(c) Scatter plot matrix for
Density, Kappa number 
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Scatter plot matrix for viscosity, brightness and yield by Fibre diameter, Fibre 
lumen diameter and Cell wall thickness  

 

Scatter plot matrix for viscosity, brightness and yield by Vessel percentage,
 

 
Fibre diameter, Fibre 

 
Vessel percentage, 



 

 

(d) Scatter plot matrix for
SG ratio 

(e) Scatter plot matrix for viscosity, brightness and yield by 
Total hemicelluloses and Total lignin
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Scatter plot matrix for viscosity, brightness and yield by Glucose, 

Scatter plot matrix for viscosity, brightness and yield by Total extractives,
Total hemicelluloses and Total lignin 

 
 Cellulose and 

 
Total extractives, 



 

 

Figure A.2: E-Dunnii Data

variables versus independent variables.

(a) Scatter plot matrix for
breast height, Average height and Average height of tree up to diameter of 7cm
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Dunnii Data: Scatter plots of the three dependent 

variables versus independent variables. 

Scatter plot matrix for viscosity, brightness and yield by Average diameter at 

height and Average height of tree up to diameter of 7cm

Scatter plots of the three dependent 

 
Average diameter at 

height and Average height of tree up to diameter of 7cm 

 



 

 

(b) Scatter plot matrix for
lumen diameter and Cell wall thickness

 

(c) Scatter plot matrix for
Density, Kappa number 
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Scatter plot matrix for viscosity, brightness and yield by Fibre diameter, Fibre 
lumen diameter and Cell wall thickness  

 

Scatter plot matrix for viscosity, brightness and yield by Vessel percentage,
 

Fibre diameter, Fibre 

 
Vessel percentage, 

 



 

 

(d) Scatter plot matrix for
SG ratio 

(e) Scatter plot matrix 

Total hemicelluloses and Total 
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Scatter plot matrix for viscosity, brightness and yield by Glucose, 

Scatter plot matrix for viscosity, brightness and yield by Total extract

hemicelluloses and Total lignin 

 Cellulose and 

 

Total extractives, 
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Appendix B Model selection for viscosity, brightness and yield for 

E-Dunnii data 

Table B.1 Analysis of variance with log viscosity as the dependent variable (E-dunnii 

reduced data)   

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

Model 7 13.43961 1.91994 30.89 <.0001 

Error 168 10.44077 0.06215     

Corrected Total 175 23.88037       

 

Table B.2  Parameter estimates of independent variables in a model log of viscosity as 

the dependent variable (E-dunnii reduced data) 

 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Intercept 5.84708 0.83154 3.07279 49.44 <.0001 

fd -0.15870 0.03824 1.07046 17.22 <.0001 

cwt 0.54245 0.11695 1.33699 21.51 <.0001 

fld 0.25532 0.04272 2.21980 35.72 <.0001 

kno 0.17036 0.03783 1.26055 20.28 <.0001 

cel -0.04894 0.01154 1.11713 17.98 <.0001 

ths -0.03061 0.00632 1.45654 23.44 <.0001 

tli -0.03568 0.01568 0.32187 5.18 0.0241 

Table B.3 Summary of stepwise selection for the log viscosity model (E-dunnii data) 

Summary of Stepwise Selection 

Step Variable 

Entered 

Variable 

Removed 

Label Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 ths   ths 1 0.2876 0.2876 109.708 70.24 <.0001 

2 cel   cel 2 0.1249 0.4125 62.3201 36.78 <.0001 

3 kno   kno 3 0.0383 0.4508 49.1567 12.01 0.0007 

4 tli   tli 4 0.0182 0.4690 43.9760 5.85 0.0166 

5 fld   fld 5 0.0169 0.4859 39.2979 5.58 0.0193 

6 cwt   cwt 6 0.0321 0.5180 28.6086 11.25 0.0010 

7 fd   fd 7 0.0448 0.5628 12.8833 17.22 <.0001 

8 dbh   dbh 8 0.0036 0.5664 13.4534 1.39 0.2396 

9   dbh dbh 7 0.0036 0.5628 12.8833 1.39 0.23 



 

 

 

  

Figure B.1 Model diagnostics 

dunnii reduced data) 
standardized residual versus

log viscosity versus predicted value 

 

(a) 

(d)

(a) 

(d)
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Model diagnostics with log viscosity as the dependent variable 

 (a) raw residuals versus predicted values (b) Cook’s distance  

versus Hat diagonals (d) normal probability plot of residual (e) 

predicted value  

(b)

(c)

(e)

(b)

(c)

(e) (f)

dependent variable (E- 

Cook’s distance  (c) 

Hat diagonals (d) normal probability plot of residual (e) observed 

 



 

 

Figure B.2 Model diagnostics of selected variables of 

dunnii reduced data) (
Kappa number (e) cellulose 

 

Table B.4 ANOVA with brightness as the

Analysis of Variance

Source DF Sum of

Squares

Model 7 884.91793

Error 170 1248.14337

Corrected Total 177 2133.06131

 

Table B.5 Parameter estimates

the dependent variable

 

Variable Parameter 

Estimate 

Standard 

Error 

Intercept 64.31767 8.22021 

htc -0.23248 0.13211 

fld -0.78673 0.23414 

vp 0.58264 0.12045 

kno -2.08901 0.38897 

dey 27.20555 7.14906 

ths -0.12130 0.06085 

tli -0.47444 0.17649 

 

 

 

 

(g) 
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Model diagnostics of selected variables of log viscosity

(a) fibre diameter (b) cell wall thickness (c) fibre lumen diameter (d) 
Kappa number (e) cellulose (f) total hemicelluloses (g)  total lignin 

ANOVA with brightness as the dependent variable (E-dunnii reduced data)

Analysis of Variance 

Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

884.91793 126.41685 17.22 <.0001 

1248.14337 7.34202     

2133.06131       

s of independent variables in a model with brightness 

dependent variable (E-dunnii reduced data) 

 

 

Type II SS F Value Pr > F 

 449.47946 61.22 <.0001 

 22.73581 3.10 0.0803 

 82.89456 11.29 0.0010 

 171.78361 23.40 <.0001 

 211.77260 28.84 <.0001 

 106.32445 14.48 0.0002 

 29.17792 3.97 0.0478 

 53.05509 7.23 0.0079 

 

viscosity model (E-

a) fibre diameter (b) cell wall thickness (c) fibre lumen diameter (d) 

dunnii reduced data) 

brightness as 
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Table B.6 Summary of stepwise selection for the brightness model (E-dunnii data)  

Summary of Stepwise Selection 

Step Variable 

Entered 

Variable 

Removed 

Label Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 kno   kno 1 0.2054 0.2054 53.9255 45.50 <.0001 

2 dey   dey 2 0.0806 0.2860 32.8030 19.76 <.0001 

3 cwt   cwt 3 0.0563 0.3423 18.6636 14.89 0.0002 

4 vp   vp 4 0.0246 0.3669 13.6116 6.72 0.0104 

5 tli   tli 5 0.0174 0.3843 10.6064 4.87 0.0286 

6 htc   htc 6 0.0102 0.3945 9.6836 2.88 0.0916 

7 fld   fld 7 0.0080 0.4025 9.4005 2.26 0.1342 

8   cwt cwt 6 0.0013 0.4012 7.7722 0.37 0.5446 

9 ths   ths 7 0.0137 0.4149 5.8484 3.97 0.0478 

10 glu   glu 8 0.0071 0.4220 5.7977 2.09 0.1501 

11   glu glu 7 0.0071 0.4149 5.8484 2.09 0.1501 

 

Figure B.3 Model diagnostics with brightness as dependent variable (E-dunnii 

reduced data) (a) raw residuals versus predicted values (b)  Cook’s distance (c) standardized 
residuals versus Hat diagonals (d) normal probability plot of residual (e) observed brightness 

versus predicted value  

 

(a) 

(b) (c)

(d) (e)

(a) 



 

 

Figure B.4 Model diagnostics of selected variables of Brightness 

reduced data) (a) average height of a tree up to diameter of 7 cm (b) fibre lumen diameter (c) 
vessel percentage (d) Kappa number (e) density (f) total hemicelluloses (g) total lignin

Table B.7 ANOVA with yield as

Analysis of Variance

Source DF Sum of

Squares

Model 7 346.39956

Error 170 254.24439

Corrected Total 177 600.64394

Table B.8 Parameter estimate

dependent variable (E-

Variable Parameter 

Estimate 

Standard 

Error 

Type

Intercept 35.67596 3.79461 132.19642

dbh 0.11173 0.05644 

cwt -1.06608 0.57396 

fld -0.51763 0.16381 

vp 0.44559 0.06681 

kno 0.48037 0.18722 

cel 0.39044 0.05304 

tli -0.26122 0.07129 

(a) 

(d)

(g) 
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Model diagnostics of selected variables of Brightness model

(a) average height of a tree up to diameter of 7 cm (b) fibre lumen diameter (c) 

Kappa number (e) density (f) total hemicelluloses (g) total lignin

with yield as the dependent variable (E-dunnii reduced data)

Analysis of Variance 

Sum of 

Squares 

Mean 

Square 

F Value Pr > F 

346.39956 49.48565 33.09 <.0001 

254.24439 1.49556     

600.64394       

estimates of independent variables in model with 

-dunnii reduced data) 

Type II SS F Value Pr > F 

132.19642 88.39 <.0001 

5.86194 3.92 0.0493 

5.15965 3.45 0.0650 

14.93341 9.99 0.0019 

66.52370 44.48 <.0001 

9.84539 6.58 0.0112 

81.03543 54.18 <.0001 

20.08077 13.43 0.0003 

(b) (c)

(e) (f)  

 

model (E-dunnii 

(a) average height of a tree up to diameter of 7 cm (b) fibre lumen diameter (c) 

Kappa number (e) density (f) total hemicelluloses (g) total lignin  

dunnii reduced data) 

in model with yield as the 
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Table B.9 Summary of stepwise selection for the yield model (E-dunnii data) 

Summary of Stepwise Selection 

Step Variable 

Entered 

Variable 

Removed 

Label Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 cel   cel 1 0.3664 0.3664 76.7211 101.79 <.0001 

2 vp   vp 2 0.0816 0.4480 46.4472 25.85 <.0001 

3 glu   glu 3 0.0577 0.5057 25.6054 20.32 <.0001 

4 dbh   dbh 4 0.0240 0.5297 18.0954 8.84 0.0034 

5 fld   fld 5 0.0161 0.5458 13.7325 6.09 0.0146 

6 tli   tli 6 0.0123 0.5581 10.8661 4.76 0.0305 

7   glu glu 5 0.0041 0.5540 10.4752 1.57 0.2114 

8 kno   kno 6 0.0141 0.5681 6.9019 5.58 0.0193 

9 cwt   cwt 7 0.0086 0.5767 5.5026 3.45 0.0650 

10 glu   glu 8 0.0041 0.5808 5.8983 1.63 0.2029 

11   glu glu 7 0.0041 0.5767 5.5026 1.63 0.2029 

 

 

Figure B.5 Model diagnostics with yield as dependent variable (E-dunnii reduced 

data) (a) raw residuals versus predicted values  (b) Cook’s distance (c) standardized residuals 
versus Hat diagonals (d) normal probability plot of residual (e) observed yield versus predicted 

values  

 

(a) (b) (c)

(d) (e)



 

 

Figure B.6 Model diagnostics of selected variables of yield

data) (a) average diameter 
vessel percentage (e) Kappa number (f) cellulose (g) total lignin

 

(a) 

(d)

(g) 
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Model diagnostics of selected variables of yield model (E-dunnii reduced 

(a) average diameter at breast height (b) cell wall thickness (c) fibre lumen diameter (d) 

vessel percentage (e) Kappa number (f) cellulose (g) total lignin 

(b) (c)

(e) (f)
 

 

dunnii reduced 

at breast height (b) cell wall thickness (c) fibre lumen diameter (d) 


