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ABSTRACT

The objective of this dissertation is to expand on the proofs and concepts of Degree
Theory, dealt with in chapters 1 and 2 of Deimling [28], to make it more readable and

accessible to anyone who is interested in the field.

Chapter 1 is an introduction and contains the basic requirements for the subsequent
chapters.
The rerﬁa.im’ng chapters aim at defining a Z—valued map D (the degree) on the set
A ={(F,Q,y)/QCX open, F: Q — X,y ¢ F(60) }
(each time, the elements of A safisfying extra conditions )
that satisfies :
(D1) DI, 02, y)=1 ifyeq.
(D2) D(F, Q, y) = D(F, 91’ y) + D(F, Qz, y) if Q1 and Qz are disjoint open subsets of
Q such that y ¢ F(Q \ 2 u Q).
(D3) D(I-H(t,.), Q, y(t)) isindependent oft if H: I xQ — X andy:J — X.

An important property that follows from these three properties is
(D4) Fl(y)#4¢ if D(F,Q,y)40. |

This pfoperty ensures that equations of the form Fx = y have solutions if D(F, Q2, y) # 0.

Another property that features in these chapters is the Borsuk property which gives us

conditions under which the degree is odd and hence nonzero.
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CHAPTER 1

1.1 INTRODUCTION

Nonlinear functional analysis developed mainly because many of the problems in nature
are represented by nonlinear models. In practise, one would like to know whether a
nonlinear equation of the form Fx = y has a solution. If a solution does exist, then one
would want to know if it is unique, and have some way of locating the solution. A field
' in nonlinear functional analysis which addresses the question of the existence of solutions

to such equations is Degree Theory.

To motivate the definition and properties of the degree that uniquely define it, we
consider first, the concept of the winding number of plane curves, which indicates héw
many times a closed curve winds around a fixed point not on the curve.

Let ' C € be a continuously piecewise differentiable closed curve with a € € \ T'. If z(t),

t € [0, 1] is a representation of T, (since I is closed, z(0) = z(1) ), then

w (T, a) = %ﬂ' {1 | Zi—; is an integer and is called the winding number (index) of the

point g with respect to the curve I'. ( see Alfors [25] ) . It is possible to define w (T, a)
for any continuous closed curve I' that does not pass through a (need not be piecewise
differentiable) . We divide T into subarcs I‘l, ...., I‘n , each contained in a ball that does
not contain o . Let o be the directed line segment from the initial point to the terminal
point of I‘k and set o = o + o, + ...+ 7. Then o is piecewise differentiable and

w (o, a) is defined. We define w (T, a) by w (0, a). It can be shown that this definition
is independent of the subdivision. More precisely, if Z1(t) and z2(t) are continuous

piecewise differentiable representations of I‘1 and I' respectively, such that
2



max { |z (t) —2(t)| /t €[0, 1] } < min {|a —2(t)| /t€[0,1] } for j=1,2, then
w (P1’ au):l = w (Fz’ a). Thus we have defined
w: {(T, a) / T'is closed continuous,a € C\ T } — 1
and this satisfies the following properties (which are not hard to see ) :
(a) w is constant on some neighbourhood of (T, a).
(b) w (T, .) is constant on every connected component of € \ T'; in particular, it is
equal to zero on the unbounded component.
(c) If FO can be continuously deformed to 1"1 without passing through a, then
w (I‘o, a) = w (F1’ a). More precisely, let zo(t) and Z1(t) be representations for
I‘O and I‘1 respectively, such that there exists a continuous )
h:[0,1] = [0,1] — €\ {a} satisfying h(0, t) = zo(t) and h(1, t) = zi(t) in
[0, 1] and h(s, 0) = h(s, 1) for all s € [0, 1]; then w (I‘S, a) is constant for all
s € [0, 1] where I‘S is the closed curve represented by h(s, .).
(d) If — T denotes the curve I' with its orientation reversed, then
w(-T,a)=—w(T,a).
- Property (c) is most important since it allows us to calculate the winding number of a

complicated curve by finding the winding number of a possibly simpler curve.

To get a more geometric feel for this, consider the following : —

Let Br(O) be the closed ball of radius r > 0 centred at the origin in R and consider a
continuous F : Br(O) — R . As x travels once around the boundary of the ball, in a
positive direction, the image points Fx travel along an oriented curve C. We assume
that 0 ¢ C. Let w, and w _denote the number of windings about the origin in a positive

and negative direction, respectively, and define w=w, - w.



B (0)
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" (  w= winding number of F
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It is intuitively clear that this definition leads to the following important results.

(i) If w# 0, then there exists x € Br([)) such that Fx = 0. (Kronecker’s existence
principle )

(ii) If F is changed continuously in such a way that none of the corresponding
curves C pass through the origin, then w remains u.nchanged. (Homotopy

invariance )
The degree is'defined so that it satisfies these nice properties.

There has been much development in Degree Theorey since the work of Brouwer in his
paper published in 1912 [37]. Much effort has been made to establish the properties of
the degree using analytic methods instead of algebraic topological methods. In 1934,
Leray and Schauder [36] extended the degree for finite dimensional operators (of
Brouwer ) to infinite dimensional operators (compact perturbations of the identity ). A

lot of work has been done by Nussbaum and Schoneberg in extending the degree to other

kinds of operators.

1.2 PRELIMINARIES

In the sequel K denotes either € or R.



1.2.1 Definition
Let X be a linear space over K. A normon X is a function |.| : X — R such
that for x, y € X and k € K|
(i) |x| >0 and |x| =0iffx =0
(i)  [x+yl<Ix|+ |yl
Gi) kx| = x| Ix].
A normed linear space (nls.) X is a linear space X together with a norm |.| on

it. A Banach space is a nls. in which every Cauchy sequence is convergent.

In the sequel X will denote a Banach space unless otherwise stated.
If X is a nls., x € X and r > 0, then B (xo) ={xeX/ |x —xol < r} is the ball of centre
r

Xo with radius r.

If ||| is another norm on the nls. X, then it is useful to note that the two norms |.|
and ||| are equivalent if they generate the same topology, i.e. if every |.|-ball
contains a ||.||-ball, and every ||.||-ball contains a |.|—ball.

An equivalent condition is : there exist a, # > 0 such that a|x| < ||x|| < 8|x]| for all

x e X.

If F:X— Y isamap between two nlss. X and Y, then we write Fx instead of F(x)
and we speak of the operator F.

Every K—valued operator will be called a functional.

The set of all bounded linearb operators from a nls X to a nls Y will be denoted by

BL(X, Y).

BL(X, Y) is a Banach space iff Y is a Banach space.

BL(X, X) will simply be denoted by BL(X) and BL(X, K) denoted by X*, the Banach

space of all continuous linear functionals x*: X — K .



The simplest element of BL(X) is I, the identity on X, i.e. Ix = x forall x € X.

If Q ¢ X, then © and 069 will denote the closure and boundary of §, respectively.
IfA,BCX,then A\B={x€eA/x¢B}

We let [R“z{x:(xl,...,x J/x€R fori=1,2,..,n} with |x| =(
n 1

i

n M=

xt) /7

The identity of R® will be denoted by id, i.e. id(x) = x for all x € R™.
Linear maps in R™ will be identified with their matrices A = (aij).

If 5, = {‘1) 173 (LKroneckers symbol), then id = (6,)
C,(B) will denote the collection of all continuous functions from B to X and we write
C(B)if B CX. -

We will let J denote the interval [0, 1] in R.

1.2.2 Definition
D g%X is said to be convezif Ax 4+ (1-A)y € D for all x, y € D and all
A€o, 1].
The conver hull of A C X is the intersection of all convex sets that contain A,

and is denoted by conv A.

It is easy to verify that

n
convA={1%

i

Axt/xleA Ne [0, 1] and ?‘J/\,'= L,nelN}.
1 1 . 1

1 1=1

1.2.3 Definitions

Let X be a topological space.

(i) A subset M of X is said to be compact if every open covering of M can
be reduced to a finite open covering of M, ie. if MC U A, , A, CX
= AeA A ) A =



(i)

(iii)

n
is open, then there exist )\1, ...y A, say, such that M C U A)‘ .
n . .
1=1 i

A set M is separable if it contains a countably dense set. (recall:
M CM isdensein M if M =M )
1 2 2 1 2
A subset M of X is relatively compact if M is compact. A subset M of

X is precompact (totally bounded) if to every € > 0, there exist finitely

n
many balls Be(x.) CX,i=1, .., n,such that M C 'U1 Bf(x.).
i i= Si

The following equivalent conditions for compactness are often useful and convenient, and

the proofs may be found in any text on general topology, Willard [30] for example.

1.2.4. Theorem

Let X be a topological space and M C X. Then the following are equivalent :—

(i)
(i)

(iii)

M is compact.

/\2AA y# 0 whenever (A,), , is a family of closed subsets of M such

that the intersection of any finite subfamily is nonempty (the finite

intersection property).

Every net in M has a convergent subnet with limit in M.

The next two results relates the concepts defined above. Again, no proofs are included.

1.2.5 Theorem

Every compact set is separable.

1.2.6 Theorem

In a complete space, relative compactness is equivalent to precompactness.



We state the following useful theorem.

1.2.7 Theorem
Let (X, |.|) be a nls. with dim X = . Then there exists a sequence
(x )¢ HBI(O) such that |[x —x | > 1forn# m.
n m n

1.2.8 Theorem

The closed unit ball in a nls. X is compact iff dim X < w.

From the previous results we obtain the following :—

1.2.9 Theorem

If (X, |.]) is a nls., then HBI(O) is compact iff dim X < w.

Since we have so many sets that are not relatively compact in infinite dimensional
spaces, we introduce the concept of a measure of noncompactness.

Let 2 denote the collection of all bounded subsets of X. (Recall : B is a bounded subset
of X if B is contained in some ball in X).

If B € 2 is not relatively compact (precompact), then there exists an ¢ > 0 such that B

cannot be covered by finitely many e—balls.
1.2.10  Definition

If B is a bounded subset of a nls. X, then diam B = sup {|x—y| / x, y € B} is
called the diameter of B.

It seems natural to introduce the following definition which is due to Kuratowski.



1.2.11  Definition
Let X be a Banach space and .Z its bounded sets. Then
a: B — R* defined by

n
oB)=inf{d>0/BC _UIB_,neIN, diam B < d}
1= 1 1
is called the Kuratowski—measure of noncompactness (e-MNC) and

f: 2 —R* defined by

A(B) =inf{r>0/BC El B (x),neN}
is called the Hausdorff (ball)—measure of noncompactness.
We can regard o(B) and f(B) as the extents to which B is not compact.
Sadovskii [9] also introduced a measure of noncompactness, but his was moré general. It
seems that Sadovskii was not aware of the work of Kuratowskii and Darbo (who proved
some of the properties of the a—MNC).

Although the above definitions, which were introduced in 1930, seem quite natural, they

were only taken up, 37 years later, in 1967.

Darbo has shown that if we work in a Banach space, we obtain the following useful

results.

1.2.12 Theorem

~ Let X be a Banach space, 2 its bounded sets and y: & — R* be either o or

S. Then
(a) (B)=0iff Bis compact for all B € ..
b) vis a seminorm, i.e. y(AB) = || 4(B) and 7(B1+B2) < fy(Bl) + (B ).

c) B1 C B implies 'y(Bl) < 7(B2) and fy(Bl u Bz) = max{y(B ), v(B )}

(
( 1 2
(d) ~(conv B) = ¥(B).
(e) B)=«B).



Proof:

(a)

"—=" . Suppose 9(B)=0. Take any ¢ > 0. Then by definition, B C i§1 Mi
where diam Mi <eif y= aand Mi = Be(xi) ify=0 1If Mi are not
e—balls, then for each i, choose x € Mi. Then we have Mig Bf(xi). Thus
B is precompact and relatively compact. So B is compact.

"<" : Suppose B is compact. Then B is relatively compact and hence
precompact. Let e > 0. Then B admits a finite cover by e—balls. (These
have radius ¢ and diameter 2¢.) Thus &(B) < 2¢ and §(B) < €. Since ¢

was arbitrary, we must have y(B) = 0.
Let d > 0 and let B ¢ ,31 M < d with diam M_< d if"y = & and
1= 1 1
M = Bf(x)if'y: f. Then A B C 'U1 AM with diam A M < |A| dif
1 1= 1 1

i

y=aand AM =By 4(x) if y= 0. Hence 7(A B) < [A] 1(B).

Nowletd >0andlet ABC _SIM.WithdiamM_gdiffy: o and
1= 1 1

M =B (x) ify=f Then BC U XM if A #0and diam 1M <1 d
i d' i 1=1X i X i l)‘l
if y=aor - M =B, (x). Thus || %(B)< 4() B) for A # 0, and

A 1

1

d

>y =

this is trivial for A = 0. So we have (A B) = |A| (B).

2 3=1
and diam N <d if y=aorM =B (x)and N =B (y)if y=4
i 2 i d1 i i d2 J
Then B1 + BZQ U (M +N) with diam (M_+ N ) ¢ d1 + d2 if y=_Qor
i j i j

1y]
M C if v=
T Nj C Bd g (xi + yj) if y= (. Then 'y(Bl + Bz) < 'y(Bl) + 7(B2).

1 2

m
Nowletd,d >0andletB ¢ U M andB U N with diam M_< d
i= i ] i

Hence < is a seminorm.

Letd >0 andlet B ¢ _31 M, with diam M, < dif y= aor M =B (x)
1= 1 1 1

1

if y= 4. Then B1 C B2 C Y M . Thus by definition, fy(Bl) < 7(B2).
i= i :



Now assume, without loss of generality, that

max {7(B1), 7(B2)} = 7(B2). Since B C B1 UB,, we have

m
1B )< HB U B2). Letd >0 with B C U M with diam M_<dif
2 1 1= i i

Yy=aorM = Bd(x.) if y= /4. Since fy(Bl) < fy(B2), we can find N_such
i i j

e}
that B1 C 'U1 N withdiam N <dify=a or N = Bd(x_) ify=p4. So
i=t i i i

B UB C (B N)U (B M ) and hence by definition, (B UB ) < 4(B).
1 2 1=1 ] 1=1 1 1 2 2

Thus 7(B U B,) = max {(B ), 7(B )}
Since B C conv B, we have by (c) that 9(B) < 7(conv B).

(x))

d i
if y = . Since diam (conv M ) < d and Bd(x.) is convex, we may assume
1 1

m
Nowletd > 0withBC U M_with diam M_¢dif y= aor M =B
1= i - i

1

that the M; are convex. Now

m
conv B C conv [M1 U conv (_U2 M )]
1=

m

conv [M. U conv [M_ U conv (,33 M)]]
1=

1

c ..

So if we can show that 4{ conv (C1U C2) ) < max {7(01), 7(02)} for
convex C1 and C2, then we would have
v(conv B) < max {7(Ml), s fy(Mm)} <d
and so 7y(conv B) < 4(B).
We would first like 10 show that

conv(C UC)C U [AC +(1-A)C]=S.
1 2 OS/\SI 1 2

Now C1 U C2 C S, so we just need to verify that S is convex.
Let x,y € Sand € [0, 1]. Thenx = /\cl—}— (1-X) c, and
y=A’c’ + (1-A") ¢’ for some A, A’ € [0, 1] and C c’1 € C1’
¢, C € C2. We must show that px + (1—u) y € S.

px + (1-p)y = phe + p(1-Me + (1-u)A’ e’ + (1-p)(1-1")e;

10



= [whe + (1=p)Ac’] + [p(1=A)e, + (1=p)(1-A")e].
Since A\, A’, p € [0, 1], pd + (1—u)A” € [0, 1].
If0 < p) + (1—p)A’ < 1, then 0 < p(1-A) + (I—p)(1-1") < 1 and so

, A 1-p)A’ /
A1)y = (pA+(1-1)A) [—ﬂﬂ%ﬂ)‘x FRNDER =T DU ]

+ (1=X)+(1-)(1-2")) [ u(l—%}r@zm(l—w) E

€ (pA+(1-1)2")C +(u(1-A)+(1-p)(1-1"))C,
CS
If uh + (1—)A’ = 0, then pA = 0 = (1—x)A’ and so
x4+ (I—p)y = pe + (1—u)c; € C2§ S, and if pX + (1—p)A’ =1, then
p(1-A) + (1—p)(1=X") = 0 and so p(1-A) = 0 = (1—u)(1-A").
Thus ux + (1—p)y = pe + (.1—;1)0’1 € C1 C S. Hence S is a convex set

containing C UC andsoconv(C UC)CS= U [AC+ (1-2)C].
1 2 1 2 OSAgl 1 2

Since C1_ C2 is bounded, there exists r > 0 such that |x| < r for all
xeC-C.
12

Given ¢ > 0, we can find )\1, ..y A €0, 1] such that
P
P

[0,1] C Y (X, —% s A —f) since [0, 1] is compact. Now let

= 1 1
X € conv (C1 U 02). Then x = /\c1 + (1—)\)c2 for some A € [0, 1], c € C1’
c,€ Cz' ‘Since A € [0, 1], we can find i such that

6 —_— pa— —_— —_— —
| A — )\i| <  Sox= )\ic1 + (1 )\i)c2 + [(A )\]_l)c1 (A )\i)c2] and

- —()\— = |- - £r =
[ (A /\i)c1 (/\./\i)c2|—|/\ /\il |<:1 c2| <{I=e

11



Thus x € A C + (1-A)C + B (0).

p
So conv (C U cycy AC+ (1_)‘1)Cz+ B (0)] and hence by (b) and

(c) and the obvious statement that ¥(B (0)) < 2¢, we have

Y(conv (CUC ) ) < 11?a3<c YA C F (1-2,)C + B (0))
1 2 i<p i b 2

¢ max [9(AC)+9((1-4)C J+7(B(0))]
1<i<p

< max [|A [9(C)+|1-A |+(C )+2¢]
1( 1<p 1 1 1 2

< max [I)\ | max{~(C ) 7(C )}
1<i<p

+ [1=A | max{+(C ),7(C )}+2¢.
= ma.x{'y(C1),'y(Cz)} + 2¢ forall € > 0.
Hence 'y(conv(Cl U Cz)) < max{'y(Cl), 7(02)} and we are done.

(e) By (c) we have 7(B) < 7(B). If d > 0 with B C .31 M with diam M. < d
1= 1

m _
\ if'yzaorM_:Bd( x)if y= 4, then B C UlM.and
1 = 1

diam M = diam M_< d.
1 1

So 4(B) < ¥(B) and hence v(B) = ¥(B). [

Now let us compare the —MNC and the f~MNC. Let Be 3. Ifd > 0 with

oo}
1M

By(x,), then diam B ;(x ) < 2d and so o(B) <2 (B). Now let d > 0 with

o
nCB «CB

—_

=
Ta)

[T

M such that diam M < d.- Choose x € M . Then |x —x | <diam M <d forall
1 1 1 1 1 1

x€eM. Thus M C Bd(x_) for each i. So B C _31 Bd(x.) and hence ((B) < a(B). Thus
1 1 1 1= 1
we obtain the inequality A(B) < «(B) <2 A(B) for all B € 3.
Strict inequalities hold in the following subsets of C(J):
={xeCl)/x(0)=0,x(1)=1,0<x(t)<1inJ }
1
B—{xeB/0<x(t) 7] and 5 ¢ (t)<11n[2,]}

1

1
5 in [0,
B, ={xeB /0<x(t)< Zin[0,5]and 5 <x(t) <lin[4, 1] }.



We would now like to calculate the measures of the ball Br(xo).

N.B.: If X is a finite—dimensional space, then Br(xo) is closed and bounded, hence
compact. Thus 7(Br(x0)) = 7(]_3r(x0)) = 0.

We will consider X to be an infinite—dimensional space. Since Br(xo) = Br(O) + X, we

have 'y(Br(xO)) = fy(Br(O)). Also, Br(O) =1 B1(0)' So

7(Br(x0)) =1 fy(Bl(O)) =r 7(]31(0)). Thus we need only compute 7(]31(0)).

Let S = 0B 1(0). Then S € B1(0) and B1(0) is convex. So conv S € B1(0)' For x € S,

|x] =1=|—=x| andso —x € S. Thus0 = %—x + % (—x) € conv S. Now take any

x € B (0) \ {0}. Then X €85, Sox=|x|(-5) + (1 = |x|)(0) € conv S. Thus we
X X

have shown that conv S = B1(0)' So 4(S) = 7(conv S) = _q(EI(O)).

m
By definition of a and f, oS) < 2 and f(S) < 1. Suppose «(S) < 2. Then S = U M,

i=1 1

with closed sets M and diam M < 2. Let X be an n—dimensional subspace of X. Then
1 1 n

SNX = U (MnX )is the boundary of the unit ball in X . By theorem 2.13, which is
n n

i=1 7 i n

proved later in chapter 2, we find that one of the sets Min Xn must contain a pair of
antipodal points, x and —x. Hence diam Miz diam (Min Xn) > 2, a contradiction. So
afS)=2and 1= %&5 B(S) < 1, giving us §(S) = 1. Thus in an infinite—dimensional
space,
a(Br(xo)) = 2r and ,B(Br(xo)) =T.
1.2.13  Definition
Let X, Y be Banach spaces and Q C X. A subset B of CY(Q) is said to be
equicontinuous at £ € Q if for every ¢ > 0, there exists § > 0 such that for
every 1 € Q with |v§ — 7| < 4, we have sup {|u(¢)~u(n)| /ue B} <e Bis

equicontinuous on 2 if it is equicontinuous at each x € .

Let B ¢ C,(£2) be a bounded equicontinuous set and let B(£) = {u(¢) / u € B} be the

13



slice at £ € ). We now prove the following result.

1.2.14

Proof:

Theorem

Let X be a Banach space, D C R® be compact and B C C,(D). Then

(a)
(b)

a(B) = sup o(B(¢)) if B is bounded and equicontinuous.
D

B is relatively compact iff B is equicontinuous and B(¢) is relatively

compact for every ¢ € D.

Let d > 0 with B C 131 Mi and diam Mi < d. Hence B(¢) C iLP;J1 M,i(f) with
dam M (§)  =sup {[u(§)v(&)] /v, veM} "
= sup {|(u = v)(&)] /u, v e M)
gsup{|u—v|0/u,ve Mi}
= diam M
<d. 1
Thus a(B(¢)) < (B) for all £ € D and so sup a(B(¢)) < (B).

D
Now to obtain the opposite inequality welet ¢ > 0, u € B, and (¢ € D. To

p .
show u(¢) € Y (B(¢Y) + BE(O)). Since B is equicontinuous, there exists a
i=

6 > 0 such that for every n € D with | £ — 5| < & we have

|v(&) = v(n)| < € for all v € B. Since D is compact, we can find

p
¢, ..., € e Dsuch that D¢ Y Bé(fi). Now £ € D, so there exists i such
i=

that | € — €| < 6. Thus |u(¢) —u(¢})| < e So
u(¢) = u(€ + (u(é) — u(€) € B(£D) + B (0). Thus

p

B(§) ¢ U [B(¢) + B(0)] forall £ € D. Letd > sup ofB(¢)). Then we
- D
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p
. m
can find M, ..., M , dlam M_< d and _U1 B(&") C ‘U1 M . Now B is the
1 m ] i= i=t ]

union of the finitely many sets {u € B / u(¢!) € Mj , e U(EP) € Mj ,

1 p

where (j1’ j2, ..., j ) is a permutation of (1, 2, ..., p)}, each of which has
p

diameter < d + 2¢. Thus &(B) < sup &(B(¢)) and we are done.
D

If B is equicontinuous and B(¢) is relatively compact for every £ € D,

then by (a), o(B) = sup a(B(£)) = sup 0 = 0 and so B is relatively
D D

compact. Now, suppose B is relatively compact. Then «B)=0.

Since the map u — u(¢) is continuous, we must also have a(B(¢)) = 0.

So B(¢) is relatively compact for every £ € D. Now take e > 0. We can

p

find u, ..., u in C_(D) such that B CU B (u) and {u, ..., u } is
1 X 1=1 € 1 1 p

P
equicontinuous. Therefore, there exists § > 0 such that |[£ — n| < §

_implies that sup {|u (§) —u (n)| /i=1, ..., p} < e Thus for
1 1

| —n| < 6 we have sup {|u(¢) —u(n)] /ue B} <3¢ and so Bis

equicontinuous. [

The following is an important extension theorem and is a special case of Dugundji’s

extension theorem.

1.2.15

Proof:

there exists a neighbourhood V(x) which meets only finitely many U

Theorem

Let X and Y be nlss., A C X closed and F: A — Y continuous. Then F has a

continuous extension ¥ : X — Y such that F(X) ¢ conv(F(A)).

The idea of the proof is simple. We first construct a locally finite covering

(UA)AEA of X\A, ie. X\A = U Uy, U, is open and to every x € X\A

AeA

A\ Then

15



we define

0 ifxg U, v, (%)
2= o, quy) ifxe Uy D= g
UEA H

Notice that since the covering is locally finite, each x € X\A can only belong

to finitely many U and so X ('DM(X) is a finite sum and ¥ <,au(x) > 0. Hence

LEA peA
¥, is continuous in X\A. Furthermore, 0 < ;b/\(x) <1 and A§A¢)‘(X) =1L

Next we choose suitable points a 3 € A and we let

By = Fx ifxeA
X = .
Y 9y (x) Fay ifx¢ A

Obviously F is an extension of F with F(X) ¢ conv(F(A)), F is continuous in
X\A and at interior points of A (if there are any), and
Fx — Fxo = § ¥y (x)[Fay — Fxo] , hence | Fx —Fx0| < § ¥y (x) [Fay — Fx0| for

x ¢ A and xoe A.

It niust be shown that F is continuous on A € A. Let xoe OA. Giyen € > 0,
we then find § > 0 such that |Fz — Fx0| <e€ in AN Bé(xo), since F is
‘continuous.

To prove continuity of F at x , we should have that ¥y(x) # 0 (ie. x € Uy)
with |x — xol sufficiently small implies that a, must be in B 5(xo)’ since then
|Fx—Fx0| < § ¢A(x) |Fa)‘ —Fx0| < );‘ ¢/\(x) €= e

We must now find appropriate U A and a \ Let B}C be a ball with centre

x € X\A such that diam B_ < p(B,, A), for example, B, = B (x) with

r:ﬁ(xé—A—l Then X\A= U B
. xeX\A *

paracompact (see Willard [30]). Thus X\A admits a locally finite refinement

X\A is a metric space and hence is

(U /\) AeA (i.e. a locally finite open covering such that every U ) 15 contained in
some B_). Now U ) ¢ B, implies p(U » A)> p(BZ, A) > 0 and therefore we

can choose a\€ A such that p(a/\, U)‘) < 2 p(U/\, A) for every A € A. Then

16



|x—x0| <fzs and w/\(x);éo(i.e.er/\gBZfor some z € X \ A) imply

tA

|x—a,| p(ay, Uy) + diam Uy

A

2 pay, A) + diam B,

iIA

3 |x—x|
6 0
<3Z

<6 and we are done. 3

1.2.16 Definition
A subset D of X is said to be a retract of X if there exists a continuous map
R: X — D suchthat Rx = x forall x € D.
i.e. D is a retract of X if I| ) has a continuous extension to X.

R is called a retraction of D.

If D ¢ X is closed convex, then by theorem 1.2.15, I|D has a continuous extension F to X
such that F(X) C conv(I(D)) = conv(D) = D. So F:X — D is continuous such that

Fx =x for all x € D. Thus every closed convex subset of a nls. X is a retract of X.

Differentiability
To differentiate a nonlinear operator, we have to use local approximations to the
operator by linear operators. More about this can be found in Kantorovich [33].

We say that w(h) = o(h) as h — 0 if L h) i 0as |h| — 0.

1.2.17  Definition
Let X and Y be Banach spaces over K, Q C X be open and F: Q — Y.
F is said to be Fr;zchet—dz'fferentz'able at X € {1 if there exists an
F’(xo) € BL(X, Y) such that F(x0+ h) = F(xo) + F’(xo) h + w (xo, h) and
w(xo, h) =o(|h|) as h— 0.

17



F is said to be the Frechet —(strong—) derivative of F at X -

F is said to be Gateauz—differentiable at X, € Q if there exists
F(x0+th)—F(x0)

F’(x ) € BL(X, Y) such that lim = F’(xo) h forallh e X
0

t=0 t
F’(x ) is often called the Gateaux— (weak—) derivative of F' at X .
0

In the special case of functionals ¢ : @ C X — K, we say that ¢ is

~ *
Gateaux—differentiable at x € Q1 if there exists <p’(x0) € X such that

p(x +th)—p(x ) .
lim 0 ¢ = <p’(x0) h for all h € X, and ¢’ (xo) is called the
t=0 t

gradient of p at X, denoted by grad go(xo).

We now give some properties of the derivative, the proofs of which can be found in

Kantorovich [33].

(1)
(2)

(3)

(4)

If the operator F is Fréchet—differentiable at x, then it is continuous at x .

Let F = alF1 + a2F2. If F’l(xo) and F’z(xo) exist, then so does F’(xo) and we
have F’(XO) = alF’l(xo) + azll?’z(xo).

If F € BL(X, Y), then F is Frechet—differentiable at every point x € X and

F’ (xo) =F.

Let X, Y, Z be Banach spaces with Q1 € X and (22 C Yopen IfF: Ql — 02
has a Gz;teaux—derivativg at x € QL and F2: 92 .7 is Frechet—differentiable
at ¥, = F1(xo)’ F= F2F1 has a Gateaux derivative at X and

F/(x ) = F(F (x ) F/(x) = F1(y ) T x).

Let F:X —Y have a derivative P’ in 2. Then P’ can be regarded as a mapping of

the set ) into the space BL(X, Y). Thus it is reasonable to speak of the derivative of

this operator, if it exists. Then P”(xo) € BL(X, BL(X, Y)). We identify the space

BL(X, BL(X, Y)) with the space BL(X?, Y), the set of all bilinear operators

18



A : X xX —Y, ie. operators A such that A(x, .) and A( ., x) are linear for all x € X
and |A| =sup {|A(x, X)| / |x| <1, |X]| <1} < a.
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CHAPTER 2

DEGREE IN FINITE DIMENSIONAL SPACES
Before we define the degree we give some definitions, notations and important results.

Let €2 C R™ be open.
Ck(Q2) will denote the set of all f: Q — R® which are k—times continuously

differentiable in ©, while C¥(Q) = CX(Q) n C(Q}) and C(2) = n CXQ). If f’(xo)

exists, then Jf(xo) = det f’ (xo) is called the Jacobian of f at X and X is called a critical
point of f if Jf(xo) = 0. These points will play an important role later, and so we
introduce Sf(Q) ={xe/ Jf(x) = 0} and we write Sf whenever 2 is clear from' the
context.

A point y € R™ will be called a regular value of £if f(y) n Sf(Q) = @, and a singular value

otherwise.

The following theorem is absolutely vital since it allows us to approximate continuous

maps by differentiable maps. It is a special case of theorem 3.5 and so we do not prove

it.
2.1 Theorem
Let A CR™ be compact, f € C(A) and € > 0. Then there exists a function

g € C*(R™) such that |f(x) —g(x)| < e on A.

The next result, which is a-special case of Sard’s lemma, tells us that the regular values
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of a differentiable function form a dense subset of R". The proof can be found in

Schwartz [31].

2.2 Theorem
Let O C R be open and f € C(Q). Then p (£(Sy)) = 0, where p denotes the

n—dimensional Lebesgue measure.

2.3 Theorem (Inverse function theorem)
Let Q be open, f € C{() and Jf(xo) # 0 for some x € ). Then there exists a

neighbourhood U of X such that f| U is a homeomorphism onto a neighbourhood of

f(x ).

(x)
The proof of this is standard, via Banach’s fixed point theorem. We will use this result
to show that if 2 is open and bounded and y is a regular value of {, then £"(y) is finite.
By theorem 2.3, for each x € f-(y), there exists a neighbourhood U(xo) of X such that
f(y)n U(xo) = {xo}. Consequently f(y) must be finite. Otherwise, there would be an
accumulation point x € Q of solutions by the compactness of ). Thus we have a

contradiction to X being an isolated solution. So we must have {(y) to be finite.

The construction of a unique degree in finite dimensions can be found in Heinz [8]

)

Nagumo [15] and Deimling [28]. ’

We state this formally in the following theorem.

2.4 Theorem :
Let & ={(f, Q,y) / Q CR" open bounded, f € C(Q) and y € R® \ £(50) }.
(a) Then there is a unique function d : 4 — I satisfying the following

properties:—
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(b)

(d1) d(id, Q,y) =1 ify e Q.

(d2) d(f, @, y) = d(f, Q1’ y) + d(f, Qz, y) if 91 and 92 are disjoint open
subsets of Q such that y € R\ £(Q \ Qu Q).

(d3) d(h(t, .), Q, y(t)) is independent of tif h:J x @ — R, y:J—R"
are continuous such that y(t) ¢ h(t, 9Q) on J.

If (f, Q, y) € A with e C{(Q) and y is a regular value of f, then we define

d(f, Q,y) = 2 sgn J{x) and we agree that )(g = 0.

_ xef I(x)
If (f, Q,y) € A with f € C¥(Q), then we define d(f, @, y) = d(f, Q, y’)

where y’ is any regular value of f such that ly —y'| < ply, f(65)), and
d(f, Q, y’) is given by (b). -
If (1, Q, y) € 4, then we define d(f, ©, y) = d(g, Q, y) where g € CXQ) is

a map such that |g —{| < p(y, £(62)) and d(g, €2, y) is given by (c).

This degree is often called the Brouwer degree. (f, , y) will be called an admissible

triplet for the Brouwer degree if (f, 2, y) € 4.

Of course, the usefulness of a degree theory stems from the properties it satisfies. Apart

from the three properties (d1)—(d3) that uniquely define the degree, we also have some

simple consequences which we call (d4)—<d7). We write these properties down formally

in the following theorem.

2.5 Theorem

Let 4 = {(f, Q,y) / © C R™ open bounded, f € C(Q) and y € R* \ {(6Q)} and

d: #— I the Brouwer degree defined in Theorem 2.4. Then d has the following

properties:—

(1)
(d2)

did, Q,y) =1 ify € Q.

d(f, Q, y) = d(f, Q1’ y) + d(f, Qz, y) whenever 91 and 92 are disjoint open
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subsets of Q) such that y ¢ f(Q \ QIU QQ}.

(d3)  d(h(t, .), ©, y(t)) is independent of t whenever h:J x @ — R® and
y: J—R® are continuous and y(t) ¢ h(t, Q) for every t € J.

(d4)  d(f, Q,y) # 0 implies that £(y) # 9.

(d5)  d(., ©,y) and d(f, Q, .) are constant on{geC)/ |g—1| < r} and
Br(y) C R™, respectively, where r = p(y, {(69)). Moreover, d(f, 2, .) is
constant on every connected component of R™ \ f(0Q2).

(d6)  d(g, Q, y) = d(f, Q, y) whenever g| 0= f| 50

(dn) 4 Q,y) = d({, Ql, y) for every open subset Q1 of Q such that
y 1\ Q).

No proofs are included here, but they are along the lines of those given in chapter 3 for

the Leray—Schauder degree.

Sometimes we would like to solve equations of the type f(x) = x. Such points are called
fixed points of the map f. The next theorem is Brouwer’s fixed point theorem. It can be

proved using other techniques, but we will use degree theory to prove it.
D? denotes the interior of the set D.

2.6 Theorem (Brouwer’s fixed point theorem)
Let D C R” be a nonempty compact convex set and f: D — D continuous. Then 1

has a fixed point. The same is true if D is only homeomorphic to a compact convex

set.

Proof:

First suppose D = EY(O). We may assume that f(x) # x on 9Q, else we are done.

Let h(t, x) = x —t f(x). Then h:J x D — R" is continuous. For any
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(t,x) € [0, 1) x 9D we have

mt, %)) = |x - ¢ 6] > |xl -t Il 2 (L -8 1 > 0
Also £(x) # x on 9D and so |h(1, x)| > 0 on dD. Thus 0 ¢ h(t, dD) for all t € J.
So by (d3), d(id — £, D% 0) = d(id, B (0), 0) = 1 by (d1). By (d4), since

T

d(id — £, D° 0) # 0, we can find x € Br(O) such that x —{(x) = 0.

Next we consider D to be a general compact convex set. By Theorem 1.2.15 we

have a continuous extension f:R® — R® such that f(R®) C conv f(D) ¢ D. Since

D is compact, it is also bounded, and so we can find r > 0 such that D C B (0). So
T

fl5 /qy: B (0) — B (0). By the first step, we can find x € B (0) such that
B (0) T T T

~

f(x) = x. But f(x) € D. Sox € D. Hence f(x) = f(x) = x.

Lastly, let h: D0 — D be a homeomorphism with D0 compact convex. Then
hYh : D0 — D0 is continuous. By the second step, we can find x € D0 such that
h~'fh (x) = x. Thus f(h(x)) = h(x) € D and

so f has a fixed point. [
The following examples illustrate the above theorem.

2.7 Example
Let A = (aij) be an n x n — matrix such that a_ > 0 for all i, j. Then there exist
i
A2 0 and x # 0 such that x_> 0 for all i and Ax = Ax. (In other words, A has a
1

nonzero eigenvector corresponding to a nonnegative eigenvalue).
. Il
To prove this, let D = {x € R/ x_>0 foralliand ¥x=1}. If Ax = 0 for some
1 1

i=1

x € D, then we are done with A = 0. If Ax # 0 for all x € D, then for x € D
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Ax, n

E(Ax).z a for some a>0. Thus f:x+— /3 (Ax) is continuous on D. If

i=1 =1

x €D, thenx >0forallianda_>0 foralli,j So (Ax) > 0 for all i. Also

i ij i

Ax AX/ n

= 1. Thus %
n B .

"% (Ax) 1=1

1

i=1

(Ax) e DifxeD. Sof(D)CD.

n MB
—

i

D is convex and easily a closed bounded subset of R", hence it is compact. By

Brouwer’s fixed point theorem, we can find x € D such that f(xo) =X Thus

Ax = ( ¥ (Ax))x and A = % (Ax) > 0. A
1 . 1

i=1 i=1

2.8 Example
It is impossible to retract the closed unit ball continuously onto its boundary such
that the boundary remains pointwise fixed, i.e. there is no continuous map
f: B1(0) — 6B1(0) such that f(x) = x for all x € 6B 1(0). Suppose we can find a
map f satisfying these properties. Then by Brouwer’s fixed point theorem, g = —f

has a fixed point x € B1(0)' Thus x € dB 1(()) and we have the ridiculous situation

X = f(xo) =X A

We have been using the homotopy invariance up to now, i.e. if f and g are homotopic
maps, then their degrees are the same. It is also useful to use the fact that if two maps
have different degrees, then they cannot be homotopic. We use this in proving the

following theorem (the Hedgehog theorem).

2.9 Theorem
Let © C R™ be open bounded with 0 € © and let f: 62 — R™ \ {0} be continuous.

Suppose also that the dimension n is odd. Then there exist x € 92 and A # 0 such
that f(x) = A x.
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Proof:
We may assume, without loss of generality, that f € C(£2), by Theorem 1.2.15. By
definition we have
d(-d, ©, 0) = sgn det (—d)’(0)

= sgn det (—id)

= sgn (—1)"

=~—1 since nis odd.
If d(f, ©2, 0) # —1, then f and —id cannot be homotopic and so 0 € h(J x &) where
h(t, x) = (1 —t) f(x) — t x. Thus there exists (to, xo) € J x 0Q such that
0= h(to’ Xo)' If t=1 then —x =0 and if t=0,we have f(xo) =0. Sot¢€ (0, 1).
Thus f(xo) = to(l - to)‘lxo., If d(f, Q, 0) = —1, then f and id cannot be homotopic.
So again, by the same argument as above, h(t, x) = (1 — t) f(x) + t x must have a
ZEeI0 (to, xo) € (0, 1) x 6Q. And so,

— i (1 —¢ ) ~
f(xo) = to(l to) X as required. A

Since the dimension n is odd, the theorem does not apply to €*. A simple
counterexample is the following rotation by % of the unit circlein € :

f(xl, xz) = (_X1’ x2).
If Q =B1(0)’ then the theorem tells us that there is at least one normal such that f
changes at most its orientation. In other words, there is no continuous f: S — R where
S = (9B1(0) such that f(x) # 0 and (f(x), x) = O on S. In particular, if n = 3, this means

that a ‘hedgehog cannot be combed without leaving tufts or whorls’.

Whenever we want to show that f(x) = y has a solution using degree theory, we have to

verify that d(f, @, y) # 0. Borsuk’s Theorem is important in this respect.

2.10 Theorem (Borsuk’s Theorem)

26



Proof:

Let 1 C R™ be open, bounded and symmetric with respect to 0 € Q. Let f € C(()
be odd and 0 ¢ £(02). Then d(f, 2, 0) is odd.

Step 1:
Here we show that we may assume that f € C}(Q) and J{0) # 0. Choose
g € C(Q) such that [f—g | < 2 0(0, £(00)). Let g (x) = 3 (g (x) — g (x)) and

choose § < +— p(0, f(052)) where M is a bound for Q and 6 is not an eigenvalue of
2

g’(0). Then f = 8~ §id isin CYQ), odd and

%]

J_(0) = det £7(0) = det [g;(O) —461]+40. Also
f n
-1 = If—(gz—éii)l0
=s1p |f(x) —5 (g () =& (=) + 6 x]
1 1
<gsup |1(x) —g (x)] + 3 58P (=) —g (=)] + 5851) x|
$li-gl +6M
< 5 0(0, £(62)) + 3 p(0, 1(502))
= p(0,£(09)).
Thus by (d5), d(f, Q, 0) = d(f, @, 0) with f € C{(Q) and J _(0) # 0.
f
Step 2 :

Now let £ € C(Q) and J{0) # 0. Suppose we can find an odd g € CYQ),
|f — g < p(0, £(09)) such that 0 ¢ g(Sg). Then we will have by (d5) and by

definition, d(f, ©2, 0) = d(g, ©, 0) = sgn 1,(0) + Y sgnd (x)
0#xeg(0)
Now g(x) =0 & g(—x) =0 since g is odd. So x € g™{(0) & —x ¢ gi(0). We

also have,
g(—x+h)—g(—=x)~g'(x) b
= —glx—h)+g(x) + g’ (x)(-h)
= —[g(x—h) g(x) =g’ (x)(-h) = o(]h|).
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Thus g’(x) = g’(—x). And so Jg(—‘x) = det g’ (—x) = det g’ (x) = Jg(x). Thus
2 sgn Jg(x) is even. Now if sgn Jg(O) = 0, then Jg(O) = 0 and so

0#xeg™(0)
0€ g(Sg), a contradiction. Thus sgn Jg(O) # 0 and hence sgn Jg(O) e {1, -1}. So

sgn 1,(0) + ) sgn 1(x) s odd. Thus d(f, @, 0) is odd.
0#xeg™(0)
Step 3

We need to find an odd g € CY2), such that |f—g| < p(0, £(8)) and 0 ¢ g(Sg).
Such a map g will be defined by induction. Define

Qk={xeﬂ/xi¢0 for some i < k}
and choose an odd ¢ € C'(R) such that ¢’(0) = 0 and (t) =0 ifft = 0. (For
example p(t) = t%). Let P :R* — R be defined by Pk(x) = x_ for x € R™
Clearly Pk is linear. Define b= Pk. Then

(,o]’((x) - (‘Dl(Pk(X)) P]/((X) = SDI(Pk(X)) P'. Define f(x) = (%83 on

1
Q1 ={xeQ/ x1¢ 0}. By theorem 2.2, we choose y! ¢ f(Sf(Ql)) with

[yl <M‘5—n where M = [sup ] o] , QC[a,a]™
-2,

Define gl(x) = f(x) — (pl(x) y! for x € {. Note g’l(O) = 1/(0) since (,01’(0) =0. If
X € Q1 with gl(x) = 0, then {(x) = gol(x) y! and f(x) =yl Q.1 is open and

f= (plf on Ql. Thus {/(x) = (,o’l(x) I(x) + ('01(X) 1/ (x) for all x in Ql.

Therefore

B(6) = ¢/ 109 + () ') = 07) ' = ) T/(x) and 5o
det g’l(x) = [(‘01(X)]n det f/(x). Now we have f(x) = y! and y!¢ T(Sf(ﬂl)). So

X ¢ ST(Ql)' This means that det {/(x) = Jz(x) # 0. Thus ‘]g (x) = det gll(x) +0
1
since ('01(X) #0 on Q{ Therefore 0 is a regular value of g1| q- Alsoforallxe@
1

N =gl = lp @) Iy <Myl =2 sofi-g] <L,

Now suppose that for some k < n, we have an odd g, € CYQ) such that
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Ce ) <E8 anar(0)=g/(0
(0 1E-g ] <5 md (0 =50)

, —-Q/ =Q o Al
Define Qk+1 = {x¢€ Q/xk”#o}. Then Qk+1 Qk+1 and Qk+1_ - SO

0¢g(S

k1

_ 1 .
! = Q’ . Find
(pk+1¢ 0 on an . So we can define gk(x) W gk(x) on

kel £ O/ kil g = y ksl o
y**1e Q/  such that y ¢gk(Sgk(Qk+l)) and [y**| < M

k+1

g (x) = gk(x) - (’Dku(x) y¥+! is odd. Now with the roles of Q1’ f 1, y. g,
‘played respectively by Q]’( g 8 gk, gL 8, .p we can prove that 0 is a regular
+ +

value of gk+1lﬂ,
k41

Proof: Let x € Q]’( 1 and g, 1(x) = 0. We want to show that Jg (x) 0.
+ + k+1
kil — = : Q/ )
Now g (1) Y5 = g () = o,_(x) B() and g, (x) # 0 (since x € 2/ )
Thus g (x) = y**L Since y**'¢ g (S, (2’ )) wehaveJ_ (x)# 0. Now
k k gk k+1 gk

g = ¢

g Tear X, O
k k+17k

’ A = =7/ — k1 =/
gk(x) = ‘Pk+l(x) gk(x) + (Pk+1(x) gk(X) =9 (x)y**'+ ¢ 1(X) gk(x). Therefore
/ — g/ Y kil — =/ — =7/
g, (=g -¢ (x)y*=¢ (x)E x)=¢x )8 (x). Therefore

Jgk+1(X) = [('D(xk+1)] Jgk(x) # 0 (since (p(xk+1) #£0 and Jgk(x) # 0). Now suppose

that x € le\ﬂkal and gk+1(x) =0. Thenx € Qk with x = 0, implying that

+

(p]’( 1(X) = ¢’(0) = 0. Therefore
+

g/ (x)= g]’((x) and hence Jg (x)=1J

ot (x). Also ¢ (x) = ¢(0) =0 and

k4l gk

— k+l ; : :
gk(x) = gk+1(x) + (pk+1(x) y*+' = 0. Since 0 ¢ gk(Sgk(Qk)) (by the induction

assumption), we must have x ¢ Sg (Qk). So Jg (x) # 0 and hence J_  (x) # 0.
k k k4l

Thus we have proved that if x € Qk 1and g, 1(x) = 0, then Jg (x) #0. So
+ + k+1
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/ —o/(0) — kil _ 5/ — 7
0¢ glm(Sg 1(Q}Hl)). Also & ., (0) = gk(O,. (pk+1(0) y gk(o) £/(0), and

ks
R ; 6 _§
ng_gk+1|0: |(pk+1 yk 1|0 < M ka 1| < MM—n-—ﬁ' Therefore
ko, o )
~ - - ko, 0_(x41)l
|f gk+1|0S |f gk|0 + |gk gk+1I0 < n + n ( + )Il

- By induction, we deduce the existence of an odd g = g € CYQ) such that
f—gl < 20=6 and0gg(S,(2)) (@ = \{0}) and g'(0) = £(0).
Therefore Jg(O) = Jf(O) # 0 which implies that 0 ¢ Sg’ and so
0 ¢ g(Sg)- 0

The following is a generalisation of Borsuk’s theorem and is a consequence of Borsuk’s

theorem and the homotopy invariance.

2.11 Corollary
Let © C R™ be open bounded and symmetric with respect to 0 € Q. Let f € C(Q)
be such that 0 ¢ f(09) and f(—x) # X {(x) on 90 for all A > 1. Then d(f, Q, 0} is
odd.

Proof:
Let h(t, x) = (1 —t) f(x) + t g(x) where g(x) =f(x) — f(—x). Suppose that there
exists (to, xo) € J x 0 such that f(xo) = tof(—xo).
t= 0 implies that 0 € f(09).

to# 0 implies that f(—xo) = %— f(xo) and % > 1, contrary to the hypothesis.
0 0

Thus 0 ¢ h(J x 0Q) and so by (d3), d(f, @, 0) = d(g, ©, 0) and this is odd by

Borsuk’s theorem. &

We now give some applications of Borsuk’s theorem. The first result is known as.the

Borsuk—-Ulam theorem.
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2.12 Corollary
Let  C R™ be open bounded and symmetric with respect to 0 € (2. Let
f: 80 — R™ be continuous with m < n. Then f(x) = f(—x) for some x € 9.
Proof:
Suppose g(x) = f(x) — f(—x) # 0 on 4Q and let g be any continuous extension to Q
of the boundary values, by theorem 1.2.15. By (d5), d(g, Q, y) = d(g, 2, 0) for
all y € Br(D) where T = p(g(09), 0). [N.B. Br(D) is in R®]. By corollary 2.11,
d(g, Q, 0) is odd. Thus d(g, Q,y)#0 forally € Br(D). And so by (d4), y € g(Q)
forall y € Br(O). Thus Br(D) C g(92) CR™ So we arrive at the ridiculous situation
where the R"—ball is contained in R™. Thus

f(x) = f(—x) for some x € Q. (]

This result has applications in meteorology. Here n = 3, and 2 C R™ is the earth, and
the surface of the earth. Let f: 8Q — R? be such that f(x) is the weather at x (i.e.
temperature and pressure, and m = 2). Then we can conclude, from the above result,
that we can find two opposite points on the earth’s surface having the same weather.
The next result tells us something about the coverings of the boundary &) and it is
sometimes referred to as the Lusternik—Schnirelman—Borsuk theorem. It will be

required in our work later on.

2.13 Theorem
Let Q C R® be open bounded and symmetric with respect to 0 € Q and let
{A1’ . Ap} be coverings of 02 by closed sets Aig A such that Ai n (—Ai) =0
fori=1,2,...,p. Thenp>n + 1.

Proof:

Suppose that p < n. Let
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1 on A
f(x)= ! fori=1,..,p—1,

and

fi(x) =1 onQ fori=p,..,n

Fori =1, 2, ..., p—1, extend fi continuously to Q by theorem 1.2.15. We will
show that f satisfies f(—x) # A f(x) on 6Q for every A > 0.

[N.B.: {(x) = (fl(x), . fn(x))] Then by corollary 2.11, we would have

d(f, 2, 0) # 0 since 0 ¢ f(8Q). This would mean that we can find x € {2 such that

f(x) = 0, a contradiction to f (x) = 1.
n

Now, x € A implies that —x ¢ A . Thus —x € A_for some i < p—1,ie x € —A.
p p 1 . b

Thus 0 C I;L_Ji [AiU (—Ai)]. Let x € 0. Then x € Ai implies fi(x) = 1 and
fi(—x) = —1,and x € —Aj implies fj(x) = —1 and fj(—x) = 1. Thus {(x) and f(-x)
do not point in the same direction in both cases. So f(—x) # A f(x) on 6Q for all
A2 0.

Thus, we must have p > n+1. A

This theorem tells us that we need at least n + 1 closed subsets A containing no
1

antipodal points, if we want to cover OB (0) C R™ by such sets. Finally we apply
r

Borsuk’s theorem, to the problem of finding sufficient conditions for a continuous

function to be open. This result is known as the Domain—Invariance theorem for maps

which are locally one—to—one, i.e. to every x in the domain of f, there exists a

neighbourhood U(x) of x such that f| o(x) is one—to—one.

2.14 Theorem (Domain invariance theorem)

Let Q C R™ be open and f: O — R" continuous and locally one—to—one. Then {is

an open map.
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It is sufficient to show that for x € Q, there exists a ball Br(xo) such that
i(B (xo)) contains a ball with centre f(xo).

r
Step 1 :

We will first assume that x =0 and f(0) = 0. Choose r > 0 such that f|5 (4 ( ) is

one—to—one and consider h(t, x) = f( -1% x) —f(— x) for (t,x) € J x B (0)

1+t
h is easily a continuous function of (t, x) with h(0, x) = f(x) and
h(1, x) = {( %x) — (- % x). So h(0, .) = fand h(1, .) is an odd function. We
need to verify that 0 ¢ h(J x B (0)) Suppose 0 = h(t, x) for some

. 1 t
(t,x) € J x 8Br(0). Then {( 1+t x) = {(— 1+t x). Since T3¢ X and — g x are

% X = 1-tH x. Thus

both in Br(O) and f| 5 (0) is one—to one, we must have
x = 0, a contradiction. So 0 ¢ h(J x 8Br(0)) and by (d3) we obtain

d(h(o, .), Br(O), 0) = d(h(1, .), Br(O), 0), i.e. d(f, Br(O), 0) = d(h(1, .), Br(O), 0).
Since h(1, .) is odd, we can apply Borsuk’s theorem to get d(h(1, .), Br(O), 0) #0.
If s = p(f(dB ( )), 0), then for all y € B (0), we have

d(f, Br( ), y) = d({, Br( ), 0), by (d5). So d(f, Br(O), y)# 0forally € BS(O).
(d4) yields y € f(Br(O)) forallye BS(O). So BS(O) C f(Br(O)) as required.

Step 2:

We will now show why we may take x = 0 and f(0) = 0. Let Q=0- x_and
f(x) =1(x + xo) — f(xo) for x € 2. Then 0 € ( and £(0) = 0. Also, (1 is open
and f:Q — R™is continuous and locally one—to—one. So by step 1, there exist
r > 0 and s > 0 such that BS(O) C %(Br(O)). So BS(O) C f(Br(O) + xo) — f(xo) and

hence we have

B (i(x ) = B (0) + (x ) C (B (0) +x ) = (B (x )). &

S S 0 T 0 ‘T 0

The above theorem can be used to prove surjectivity results for continuous maps

f:R" — R™ Suppose f is locally one—to—one and |f(x)| — o as |x| — w. By
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theorem 2.14, f is an open map and so f(R™) is open. We will show that f(R") is closed.

Let (x ) be a sequence in R® such that f(x ) — y. Since |f(x)| — o as [x|— o we
n n

must have (xn) to be bounded. Thus {xn / n € N } is closed bounded and hence
compact. So (xn) has a convergent subsequence. Without loss of generality, we may
assume that X —X. Thus

f(xn) — f(xo) and soy = f(xo). Thus f(R") is an open and closed subset of R*. Since R™

is connected, R® and § are its only open and closed subsets, and so f(R™) = R™.

We shall now state a theorem, due to Leray, on the degree of the composition of two
continuous maps. We prove the product formula in infinite dimensional spaces and so
we do not include the proof here. Before we state it, we need some preliminaries.

If @ C R™ is open bounded, f: ! — R™ is continuous, then by (d5), d(f, Q, y) is the same
integer for every y in a connected component K of R \ f(0Q2). We will denote this
integer by d(f, 2, K). Since f(8Q) is compact we have one unbounded component K_ if
n > 1 and two unbounded components if n = 1, and in this case Km will denote the
union of these two. K _ will not play a role later, since it contains points y ¢ f(Q) and so

d(f, Q, Km) = 0. We write gf to mean gf(x) = g({(x)).

2.15 Theorem (Product formula)
Let 2 C R™ be open bounded, f € C(Q), g € C(R") and K the bounded connected
components of R™ \ f(dQ). Suppose that y ¢ (gf)(6Q). Then
d(gf, @, y) = Z d(f, Q, Ki) d(g, Ki, y) where only finitely many terms are

i

different from zero.

Leray has shown that the product formula for the degree can be generalised to infinite

dimensional spaces and it yields short and elegant proofs of some fundamental
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propositions of topology, for example the Jordan’s—separation theorem. We can extend

Jordan’s curve theorem to R™ as follows.

2.16

Proof:

Theorem
Let Q1 C R™ and Q2 C R™ be compact sets which are homeomorphic to each other.

Then R" \ Q1 and R™ \ 92 have the same number of connected components.

Let h: Q1 — 92 be a homeomorphism onto Qz; h a continuous extension of h to

R®; h~! a continuous extension of h™! to R”; K_the bounded conponents of R™ \ Q1
]

and L the bounded components of R™ \ 92. Since K N K = § for all i, we must
i j i -
have JK € Q{ Similarly JL C Q2.
] 1

Fix jand let G denote the components of R \ h(JK ). Since
q ]

U Li: R™ \ 92 CR*\ h(JK ) = U G, we see that to every i there exists a q such
. ] 9 q

1

that L C G (components are maximal connected sets). In particular Lw C Kw.
i q

Let x € 0K. Then since 0K C Q1’ we have h'h(x) = hlh(x) = id(x) since
] ]
h(x)eQ . Sohh| 4, =id and so by (d6) d(id, K , y) = d(h"'h, K , y).
. |3Kj |8Kj (d6) d( ; y) ( i y)
Consider any y € Kj. Then d(h'h, K , y) = 1. By the product formula (2.12),
j

1=d(h'h, K, y) = 2 d(h, K, G )d(h, G ,y). N ={i /LCG }, then by
] q J q q q 1 q

(d2), d(h-, G y) = ) d(BLL,y)andd(f, K, G ) =d(k K, L) for every
1 ]

iEN ! b
q
ieN. Thus 1 = h ht
- Thus ) ) dbK,L)d(E L, y)

q ieN

q
=) d(f,K,L)d(EL L, K) (1)
i i
1
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since y € K CR®\ h4(Q ) ¢ R \ h(dL).
J

We may repeat the same argument with fixed L instead of Kj, to obtain
1

1 =)dh,L,K)dh K, L)
j 1 J ] 1
= d(h, K, L) d(h, L, K) (2)
I

If there are only m components L , then (1) and summation over i in (2) yields
1

m m
m = )1=) )d(hK,L)d@E" L, K)
i=

1=t

=)1.

i

Therefore we must also have m components K , and conversely. Thus R® \ 91
]
and R™ \ 02 either have the same finite number of components or they both have

countably many. [

We conclude this chapter with some extensions to earlier results and some final remarks.

Degree on unbounded sets

Up to this point we assumed that the open sets 2 C R", used in the degree , were also

bounded, so as to ensure that f'(y) was compact. Now suppose £ C R® is open (not

necessarily bounded), f: @ — R® continuous and y € R* \ f(6Q). Also assume that

sgp |x —f(x)| < w. Let x € {%(y) and let sup |x — f(x)| = M. Then f(x) = y and so
0

|x] < |x—1(x)] + [f(x)] <M + |y|. Thus f(y)is a closed bounded set and hence is
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compact. Let Qo be any open bounded set such that f(y) C Qo. Thus d(f, @ n Qo, y) is
defined, where d represents the Brouwer degree. Now let Q1 be another open bounded
set such that £(y) C Q{ We need to show that d(f, 2 0 Qo, y)=d({ 2n Q1’ y). Now
Qon Q1 is an open bounded set such that ™(y) C Qon Q{ Thus

yEHQ n 2 \Qn (Qoﬂ QI)) fori=0,1. So by (d7), we have
1
d(f, 000, y)=d(, 2N (QNQ),y) fori=0, L Thus
.1 :
d(f, @ n Qo, y) =d(f, Qn Ql, y). This enables us to make the following definition.

2.17 Definition
For Q© C R® open, let C(Q) be the collection of all f € C({2) satisfying
sup |x —f(x)| <w. Let A ={(f Q,y)/ 2 CR" open, f e C(Q), y ¢ £(60)}.
Q

Then we define d: 4/ — 1T by d(f, 2, y) = d(f, @ n Qo, y) where Qo is any open

bounded set containing f)(y) and d is the Brouwer degree.

I Q CR is open and bounded, then it is easy to see that we obtain the Brouwer degree.
We will now show that we obtain (d1)—(d3).
(d1) d(id, Q,y) =1 if yeQ:
Let Qo be an open bounded set containing id(y) ={y}. ThenyeQn QO and so
by (d1), d(id, , y) = d(id, @ n Q, y) = 1.
(d2) Let Q1 and (22 be disjoint open subsets of Q such that y ¢ f(Q \ Q1U Qz)' Then
Q) =d(fQ,9)+d(f9,1):
Let QO be any open bounded set such that f(y) C QO. By definition,
d(f, 2, y) = d(f, @ n Q,y)=d( 200, y)+d(f, 2nQy) by (d2) since
Qlﬂ Qo and (220 Qo are disjoint open subsets of 2 N QO and

Qo0 \(Q 0
0\( anO)U(anQO)gQ\Qluﬂz.

Soy ¢ f(2 n QO \ (Qlﬂ Qo) U (an QO)) Again by definition
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(ds)

df, anQ, y) = d(f, Q, y), fori = 1,2, and we are done.

Let h: JxQ—R and y: J— R be continuous,

sup {|z — Mt, 2)] | (t, 2) € Jx 0} < o and y(t) ¢ k¢, 0Q) on J. Then

d (K, .), Q, y(t)) s constant on J :

Let M = sup {|x —h(t, x)| / (t,x) € J x 0} and M’ = max {|y(t)| / t € J}.

If x € U (h(t, .))(y(t)) = A, then h(t, x) = y(t) for some t € J. Then
J

[x| < |x —h(t, x)| + |h(t,x)| <M+ M’, and so A is a bounded set. Let Qobe
any open bounded set containing A. Then (h(t, .)) (y(t)) CA C QO for all t € J.
Thus by definition d(h(t, .), @, y(t)) = d(h(t, .), @ n Q, y(t)) and this is
independent of t by (d3).

Thus d satisfies (d1)—(d3). We will denote this by d and will also call it the Brouwer

degree.

Degree in Finite Dimensional Topological Vector Spaces

Up to this point we used the standard basis {el, e?, ..., e"} in R™ to define the degree

)

[N.B. : J{x) = det {'(x) is dependent on the basis]. Let {&', &, ..., €'} be another basis

~

for R®. Then there exists a matrix A, det A # 0 such that X = Ax, {1 = AQQ,

g(%) = AfA(%), % € 1. We want to show that d(f, Q, y) = d(g, Q, Ay).

First suppose f € C}({2) and y is a regular value of f. Then for X = Ax,
&) = detg/(%)

= det (AfA )/ (%)

= det (Af"(A"%)A)

= det A det {'(A"'%) det A!
= det ' (x)

= Jf(x).
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We need to check that Ay is a regular value of g. Let g(X) = Ay, and X = Ax. Then
AfA™(Ax) = Ay and so f(x) = y. Sincey is a regular value of f, J{x) # 0 and so
Jg(i) # 0, proving that Ay is a regular value of g.
Let X = Ax. Then

% € g"(Ay) = (ATA™)N(Ay) = (AT7AT)(Ay) = Af(y)
e  Axe Afl(y)

&  xef(y)
e Alkefly).
Thus, d(f, Q,y) = 2 sgn Jf(x)
xef Y(y)
= z sgn Jg(i)
xeg!(Ay)
= d(g O, Ay).

Now take f € C(Q), y € R* \ f(4Q). Choose f1€ C*) such that |f — f1| < p(y, £(60)).
Then
g~ ALA™| = |AIAT-ALAY]
—  sup {[ATATNE) — AT ATR)| /%€ )
= det Asup {|fA7(%) ~f A"(%)| / % = Ax, x € O}
= det A sup {|f(x) —-fl(lel/ x € {1}
= detAlf-f]
< det A p(y, £(60)),
and
p(y, £(09)) = inf{|y —i(x)] / x € 60}
= inf {|AM(Ay — Af(x))| / x = A%, % € 1)
= det Ainf {|Ay — ATATY(X)| /%€ &0}
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= det A1 p(Ay, g(89)).

So |g —AflA‘1| . < det A det A p(Ay, g(8Q))
= p(Ay, g(22)).

Thus d(f, Q, y) = d(fl, Q, y) and d(g, 2, Ay) = d(AflA'l, Q, Ay).
We can now reduce y to a regular value of f1’ and by what was done earlier, Ay can be
reduced to a regular value of AflA‘l. Thus d(f, Q, y) = d(g, 2, Ay) where g = AfA™1,
() = AQ, & = Ax, det A # 0. [N.B.: Q is the representation of {2, where § is given by the
standard basis, using the new basis. Also, 2 need not be bounded.] Thﬁs we have
showh that the degree, defined on R", is independent of our choice of basis for R™.
Our degree, defined up to this point, is only defined on R®. We would like to define a
degree on X, where X is an n—dimensional Hausdorff real topological vector ;pace. (i.e.

a real vector space where addition and scalar multiplication are continuous.)

Now X is homeomorphic to R® and may be regarded as normed.

In fact if {x!, ..., x"} is a basis for X, h: X — R® defined by h(élai(x)xi) = §) a (x)el
is a homeomorphism (see Schaefer [29]) and |h(x)| may be taken as |x]|.

Let 0 C X be open, F :  — X continuous, (id —F)({) relatively compact and

y € X\ F(092). We want to define a degree for the triplet (F, ©, y). Let f = hFhl We

want to show that (f, h({2), h(y)) is an admissible Brouwer triplet:

(i) Since h is a homeomorphism, h(2) C R™ is open.
(ii) h a homeomorphism implies h(0Q2) = 8(h(2)).
(iii) f(a(h(£2))) = (hFh1)(h(692)) = hF(OQ).
Soy ¢ F(0Q) & h(y) ¢ hF(6Q). Thus h(y) ¢ £ a(h(Q))).
(iv) fis continuous.
(v) (id —£)(h(€2)) is relatively compact, hence bounded.

Hence (f, h(Q), h(y)) is a Brouwer triplet.
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If {x!, ..., ¥} is another basis for X, then we obtain a corresponding homeomorphism h.
There exists a matrix A, det A # 0 such that h = Ah. Then

B(2) = A(h(Q)); £ = BFE = ARF(AR)™" = AT A"

Since the degree in R™ is independent of the ch01ce of basis,

d(f, h(Q), h(y)) = d(f, h(Q), h(y)). Thus the degree defined by

d’(F, Q, y) = d(hFh}, h(Q), h(y)) is well—defined.

As before, we can show that d’ satisfies (d’1)—d’3). To show that the'degree is unique,
we define d (f, Q, y) = d’(h7h, hY(Q), h(y)) for (f, ©, y) a Brouwer triplet. Easily d0
satisfies (d 1)— (d03) and so it must be the Brouwer degree (the Brouwer degree is
unique, satisfying (d1)—(d3)). Soif (F, 2, y) is the triplet we are considering, then
(hFhL h(R), h(y)) is a Brouwer triplet and so

d(hFh!, h(Q), h(y)) = d (AFR"L B(Q), h(y)) = d'(F, Q, y).

Formally we have the following definition.

2.18 Definition
Let X be a real n—dimensional Hausdorff topological vector space and
={(F, Q,y) / @ X open, F: Q — X continuous, F(Q) compact and
y € X \ F(6Q)}. Then we define d(F, Q, y) = d 5(hFh, h(Q), h(y)), where
h: X —R" is the linear homeomorphism defined by h(x!) = e!, with {x!, ..., x"}

a basis for X and {el, ..., e"} the standard basis of R® and d, is the Brouwer

degree.
We denote this degree by d and again call it the Brouwer degree.

A Relation Between the Degrees for Spaces of Different Dimension

Suppose 2 ¢ R™ is open bounded, f: @ — R™ with m < n is continuous and
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y € R™

\ g(90) where g = id —f. Then g(x) = y with x € Q implies x =y + f(x) € R™

So all solutions of g(x) = y are already in Q@ n R™. Thus we may expect d(g, 2, y) to be

computed by d(g|—— , 2 N R™, y). We prove this in the following theorem.
QnR"

2.19

Proof:

Theorem
Let X be a real Hausdorff topological vector space with dim X = n, X a
n n m
subspace with dim X = m < n, 2 ¢ X open bounded, f: @ — X continuous,
m n m

g(1Q) relatively compact and y € X \ g(9Q) where g = id —f. Then
m

d(g, Q,y) = d(g|

QanX ,y).
QnX? mo

m

By definition 2.18, assume that X = R™ and
n

X=R"={xelR"/x S TX = 0}. Since the reduction to the regular case
m mi4 n

presents no difficulty, we may assume that f € C{(Q2) and y ¢ g(Sg). We need to

verify that y ¢ g (S
m 8

m

) (g =g|_ ,whereQ =QnX).
m Q m m
m

I-0f(x):-01(x)
Lety = gm(x) = g(x). Then Jg(x) =detg’(x) =det |.M_ L1 o 11

©

and evaluating by the last n—m rows, we obtain Jg(x) = Jg (x). But Jg(x) # 0.

n-m

m

SoJ (x)#0and hencey ¢ g (Sg ). By definition,
m

gm m
d(g, 2, y)= 2 sgn Jg(x) and
xeg(y)
dg , 0 ,y)= ) sgn Iy (%).
xeg (y) "

Alsoxegl(y) ex=y+ix)eR® & xegy).
m

So d(g, 2, y) = }: sgn Jg(x) = }: sgn Jg (x)=d(g ,Q ,y)
m m
xeg ~(y) xeg y) "
as required. [
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CHAPTER 3

COMPACT MAPS

In this chapter we consider an extension of the Brouwer degree to compact perturbations of

the identity.
Preliminaries

3.1 Definitions
Let X and Y be Banach spaces, 2 C Xand F: d —Y.

(a) F is said to be compact if it is continuous and F(Q) is relatively compact, i.e.

F(Q) is compact. We will let % (€, Y) denote the class of all compact maps
and write J (1) instead of %((, X).

(b) F is said to be completely continuous if it is continuous and maps bounded
subsets of {2 into relatively compact subsets of Y.

(¢) F is said to be finite dimensional if F(Q) is contained in a finite dimensional
subspace of Y.
The class of all finite dimensional, compact maps will be denoted by F(Q, Y)
and again we write F(Q) instead of F (9, X).

In the linear case, a map that takes bounded sets into relatively compact sets is
automatically continuous and a finite dimensional map is automatically compact.

But, consider the following example.
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3.2

3.3

34

Example
Let dim X = . By theorem 1.2.7, there exists a sequence (x ) C OB 1(0) such that
n

|x —x | >1forn#m. Let
n m

2

o) k(1—2|x—xkl) if x € Bl/ (xk)‘
0 otherwise

The functional ¢ is continuous and unbounded since w(xk) =k foreach k e N. If

Fx = ¢(x) X, then F is continuous and finite dimensional. Now (xk) C B2(0) and
ka= kx1 for each k € N. Hence F(BQ(D)) is unbounded and thus not relatively
compact. So F : B2(0) — X is continuous and finite dimensional, ﬂ

but not compact. [y

Definition
Let Q C X be closed and bounded. Then F:Q — Y is said to be proper if F(K) is

compact in X whenever K is compact in Y.

Theorem

Let 2 C X be closed, bounded and F : 2 — Y -continuous and proper. Then F is

also closed.

Proof:

Let A be closed in . To show F(A) closed, we let (xn) be a sequence iﬁ A such that
Fxn—» y and we show that y € F(A). Using the third equivalent property for
compactness, we see that {Fxn /nelN}U{y} is compact. Since F is proper,

F‘l({F(xn) /nelN}u{y}) isalsocompact and (xn) is contained in it. Thus (xn)

has a convergent subsequence, say x — X But A is closed, so x € A and F
n 0
k
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continuous gives Fx — Fxo. But Fx —y. Thusy = Fxoe F(A), proving that
"k "k
F(A) is closed. L]

The next result is very useful since it approximates compact maps by finite dimensional
maps in some sense. It is absolutely essential in order to define a degree for compact

perturbations of the identity.

3.5 Theorem
Let X and Y be Banach spaces and B C X be closed bounded. Then
(a) F(B,Y)isdensein JH(B,Y), ie. for F e F(B, Y)and e > 0, there exists
F_€ (B, Y) such that 31Blp [Fx—F x| <e

(b) I Fe J#(B),then I-F is proper.

(a) Let¥e J#(B,Y)and e > 0. Since F(B) is compact, there exists Yo E Y
P

D
such that F(B) C Y B (v.). Define
1= 1

v (y) = max {0, e~|y-y [}

1

and

Now 2 is continuous. For y € F(B), we must have y € B (y,) for some i, and
1

P
hence ('Di(Y) > 0 and j§1(pj(y) > 0. Thus ¢i is also continuous.

P
Define F x = i§1 ¥ (Fx) Y, for x € B. Then F_is continuous and finite

i

dimensional.
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p
w(FB) =  AE ¥ (FB)y)
p
¢ B Y(FB)y)

i i
P -
Now .21 v(y)=1,and 9 (y) >0 forallyeF(B).
1= 1 1

So % .(F(B)) C [0, 1] and [0, 1] is compact. Therefore 7(1pi(F(B)) = 0. But

A (F(B) y) = (¥, (F(B)) |y | =0.
Hence o(F B)=0. So F e F(B,Y).
Take x € B. Then

p
P (Fx)y — 5 ¢ (Fx) Fx |

P
Fx-Fx| = |34 |
€ i=1 i i i=1 1
P
¢ 3 U(Fx) | y—Fx].
i=1 1 = 1
If 9 (Fx)>0,then ¢ (Fx)>0. So |Fx—y | <e.
i i i
P

Thus |F x—Fx| < % ¢ (Fx)e=¢ and sup |F x—Fx| <e.
¢ =101 xeB ¢

(b) Let F e %(B) and K C X compact. Must show that A = (I-F){(K) is
compact. Since I-F is continuous and K closed, A must also be closed.
Now K = (I-F)(A). So ACF(A)+ K and
HA) < 2(F(A)) + 1K) = 2(F(A)) < HF(B)) = 0. So 7(A) =0 proving that A
is relatively compact. Since A is closed, A is compact and hence I-F is

proper. ' /'y

3.6 Theorem

Let X, Y be Banach spaces, 2 C X open, F € % (2, Y) and F differentiable at X .
Then F’(xo) is completely continuous.

Proof:

Let B C © be bounded. Must show that F’(xo)(B) is relatively compact. B bounded
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means that there exists M € R such that |x| < M for all xeB. Suppose we have
already shown that F/(xo)(B1(0)) is relatively compact.

Now x € B implies that | jyx | <1,50 gpx € B (0). Therefore B C M B (0). So

HEGDE) < A (x)(M B (0)
= M F/(xo)(B1(0))), (since ¥’ (xo) is linear)
= MA(F/(x)(B (0)
= 0.

Thus F’(xo)(B) is relatively compact.

Now to show that F’(xo)(Bl(O)) is relatively compact. Since F is differentiable at X

|o(x 5 Bl
F(X0+h) = Fxo—i— F’(xo) h + w(xo; h) where ﬁ——» 0 as |h|.— 0.
h
|w(x 5 B
Given € > 0, there exists § > 0 such that 0 < |h| < § implies that —T—| <€,
h

and so Iw(xo; h)| < € |h| < €6§. Now F’(xo) h = F(x0+ h) —Fxo— w(xo; h).
For |h| <4, |—w(x0; h)| = |w(x0; h)| < € 6. Therefore
~w(x ; h) € B _0) = § B (0). Now F'(x )(B0)) ¢ Flx + B0)) -~ Fx + §B (0),
and so F/(x )(6B ( )) € F( Bé(x Fx0+ 6B (0) . Since-F’(xo) is linear,
§F/(x )(B1(0 )CF(B é( ))—Fx + 6B (0) and so
6 y(F(x )(B1(0) ) < AF Bé(x ({-Fx }) + §~(B (0)) . Hence
< 2¢ for all € > 0. Thus F'(x 0)(Bl(O))) =0 and so

x )
)

AF’ (x )(B (0)))

F’(xo)(Bl(O)) is relatively compact. L

The following theorem is an easy consequence of theorem 1.2.15 , but we state it

nevertheless.

3.7 Theorem

Let X, Y be Banach spaces, A C X closed bounded and F € % (A, Y). Then F has an
extension F e J#(X,Y)and F(X) C conv (F(A)).
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Proof:
By theorem 1.2 15 , there exists a continuous extension F with F(X) ¢ conv (F(A)).
Then oF(X)) < a(conv (F(A))) = a(F(A)) = 0. [ )

The Degree

We are now ready to define the Leray—Schauder degree, a I—valued function D defined on

the triplets (I - F, ©, y) where © C X is open bounded, F : @ — X is compact and

y € X \ (I = F)(89), and satisfying the following conditions :—

(D1) D Q,y)=1iyeQ.

(D2) If 0, are disjoint open subsets of  such that y € X \ (I-F)(Q \Q1U 2)), then
D(I-F, Q,y)=D(I-F, Ql, y) + D(I —F, Qz’ y) -

(D3) H H:J=xQ—X and y:J— X are continuous, H compact and
y(t) e X\ (I—H(t, .))(6) , then D(I—H(, .), Q, y(t)) is independent of t.

The above triplets will be referred to as admissible LS—triplets.

We follow the following steps.

Step 1: We show that if any I—valued function D defined on the collection of

admissible triplets satisfies (D1) — (D3), it is unique.

Step 2 : We define a function D and show that it satisfies (D1)—(D3).

Uniqueness :
Let ©2 C X be open bounded, F € % (), and y € X\ (I - F)(6Q) .
By theorem 3.5(b), I — F is proper and it is also continuous, and so by theorem 3.4 it must

be closed. Therefore (I —F)(0Q) is closed with y ¢ (I — F)(69). Hence

p=p(y, (I—=F)(09)) > 0. By theorem 3.5(a), there exists F1€ F() such that
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|F—F | <p,ie sup |Fx—F x| < p. Define H:JxQ— X by
1o x€Q) {

H(t,x) =t F1(X) + (1) Fx =Fx + t (le—Fx) for (t,x)eJ Q.
F1 and F continuous implies that H is continuous.

For each (t, x) € J x 2, H(t, x) € conv (F1(Q) UF()) and so

H(J x ) C conv (F1(Q) U F(Q)) . Hence

»H(J x ) < A conv (Fl(ﬁ) U F(2)))
= 5(F () U (@)
= max { o(F (), AF(@) }
= 0,

since F1 and F are both compact.

Therefore H is compact.

Suppose y € (I —H(t, .))(80) for somet € J. Theny = (I—H(t, .))(x) for some

x€ 0. So y=x—H(t,x)=x—-Fx—t (le—Fx) . Thus

—(I-F)x=—t (Fx—Fx) , and so
[y = (= F)x| = |t (Fx—Fx)| < |Fx—Fx| <p
But |y —(I—=F)x| > p(y, (I—F)(09Q)) = p, a contradiction.

Hence y ¢ (I —H(t, .))(dQ) onJ.

)
The hypotheses of (D3) are thus satisfied, proving that

D(I-F,Q,y)=D(I— F1’ Q,y) . (1)
Since F is finite dimensional, we can find a finite dimensional subspace X1 of X that
contains F ( () and y (for example : X = span (Fl(ﬁ) U{yh).
Suppose le an X1 $+9. By theorem 1.2.15 , we can find a continuous extension of

F1| a0 X1 to X1’ say Flz Xl—» X1' By theorem 3.7 , F1 is also compact. Since X1 is closed

in X, there exists a continuous projection P1 from X onto X1' Then X = X1® X2, where
X2 = P2(X)’ P2 =1- P1’ and X2 is closed since P2 is continuous.
So the map H:J x Q—»deeﬁnedby H(t,x) =t F (x)+ (1 —1t) FIP x , for

1 _ {
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(t,x) € J x Q, is compact. We must now show that y(t) =y ¢ (I—H(t, .))(6Q) for
teJ. Lety= (I—H(t, .))(x) forxeQandteJ. Thenx =y + H(t, x)€ X . So
Plx =x and F1P1X = F1X = le. So
y=x—1 le—(l—t) F1P1X: X —t le——(l—t) le: X—F1X= (I-—Fl)x. Since
vy (- Fl)(aﬂ), we must have x ¢ 6Q. Thereforey ¢ (I — H(t, .))(00) fort € J. Thus by
(D3),
DI~F,Q,y) = D(I —Flpl, Q, 7). (2)
Now consider Q/ = Q1+ B"i(O) , where B"i(O) is the unit ball of X2. Then ng Q’, and
Q.CQ So 0 canq. Ifx € Q with (I—f‘lPl)x =y, then x =y + Flplx €X . So
x €N X1 and P1X = x. Hencey = (I —f‘lPl)x = (I ——f‘l)x = (I _F1)X' Thus x € (2 and
hence x € ng QnQ’, proving that y ¢ (I _F1P1)(Q \2n Q) and since Q N Q’ is an
open subset of {2, we have by (D2),
D(I—FlPl, Q, y)=D(I—F1P1, QnQ’,y). (3)
We now show that y ¢ (I _F1P1)(Q/ \ Q2nQ’). Suppose y = (I —f‘lPl)(x) forxe Q.
Since x € ', there exists a sequence (yn) in Q7 such that y — x. Lety_ = X +b
where x € Q1 and brl € B"i(O), for all n. Now Plyn — P1X since P1 is continuous. Thus
x — P1X' Also P2yn — P2x , and so bn — P2x. x € Q1 implies that P1X € Ql and
: bn € B";(O) implies that P xe B?(O). So X+ bn — P1X + P2x = x. Thus
X € Ql + E’;’(o) cn X + Bi(o). Now P x € Qn X . Thus f‘lPlx =FPx So
y=(I _F1P1)X’ andx =y + F1P1X € X . Thus x e ng Qn X . Butifxe &, then
y € (I —Flpl)(an). Sox€QNX =0 cQNQ’. Thus we have shown that x € Q' with
y = (I—F‘lPl)(x) implies that x € QN Q. So y ¢ (I —ﬁ‘lPl)(Q’ \QnQ’).
By (D2),
D(I—F‘lPl,Q’,y)zD(I—FlPl,QnQ’,y). (4)
(3) and (4) give
D(I—F‘lPl, Q,y) = D(I—ﬁ‘lPl, Q) y). (5)
(1), (2) and (5) give us
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D(I—F,Q,y)=DI-FP,0y) (6)

Now let x € . Thenx € (_21 + BT(O). So P1X € ng an X1 and hence F1P1X = F1P1X'
Thus (I—FIPI)X: (I—FlPl)x for x € 0/, giving us (I—F1P1)|Q, = (I—F1P1)|— So

Q-
D(I_F1P17Ql)Y):D(I_F1P1)Q,7Y)' (7)
(6) and (7) give
D(I —F, Q,y)zD(I—FlPl,Q’,y). (8)

Let Q ¢ X1 be open bounded, f: Q1 — X1 be continuous and y € X1\ f((’;’Ql) (i.e.

(1, Ql, y) is a Brouwer triplet). Now Pl(Q1 + B?(O)) C Q1 and if x € Q1’ then

X € 91 + B?(O) and P1X =x. S0 x¢€ P1(Q1 + Bfi(O)), and hence P1(Q1 + BT(O)) = Qf

Thus PI(Q’) =0 where 0/ = Q1 + Bj(O). Also Pl(Q’) C Q1 and if x € Q1’ then there

exists a sequence (xn) in 91 such that X —X. Now x € Xl, SO P1X = x. Also

x €0 CQ s0xe€ (/. Hence x = Pxe PI(Q’), proving that Ql C Pl(Q’). Thus we

have Pl(Q’) = Q{

Now P1|Q, Q0 — Qla.nd (I—-1): Ql—*Xl. So (I—f)P1|Q, : Q) —X

In order for (I — (I — f)P17 2/, y) to be an admissible LS—triplet, the following conditions

must be satisfied :

(a) €’ is open bounded in X.

(b) (I- f)Pll () 1s compact.

() y#(I—(1-1P)(o0")

We now show that these conditions are satisfied.

(a) 91 and Bi(O) are open and bounded in X1 and X2 respectively, so 0/ = Q1 + Bfi(D) is
open and bounded in X.

(b) ((I— f)Pl)(Q’) =(I— f)(Q1) C Ql— f(Q1)' Now Q1 C X is compact since it is a closed
bounded subset of a finite dimensional space. So f(Ql) must also be compact in X1

(and hence both are compact in X ).

W (E=HP)O)) <o 2 =H(0)) <o)+ o(f(02)) =0.

51



So (I~f)P1|Q, is compact.
(c) Suppose y = (I—(I ——f)Pl)x forxe Q) = Q1 + B?(O). Then
x=y+ (I—f)Plx € X{ Sox e (_21 and Plx = x. Thus
y=(0I-(I- f)Pl)x =(I-(I~—f))x =fx. Sincey ¢ f(ﬁﬂl), we must have x € Q1’ and
soxeq + B?(O) =’. Thus y ¢ (I—(I —-f)Pl)(BQ’).

Hence (I —(I— f)P1’ Q’, y) is an admissible LS—triplet.

We will now show that do’ defined by do(f, Q1’ y) = D(I — (I — f)P1’ Q1 + Bf(O), y)
satisfies (dol)——(d03), where (f, Q1’ y) is a Brouwer triplet. If it does, then it must be the
Brouwer degree, since the Brouwer degree is unique.
(dol) For y ¢ Q1’
do(id, Q, y) =D(I -1 —-id)Pl, Q + Bf(o), y) = D(I, Q + B?(O), y)=1 by
(D1). |
(d 2) Let Q! and Q2 be disjoint open subsets of Q1 C X1 such that y ¢ f(Q1\ Qlu0?).
Then do(f, Q, y)=D(I - (I- f)P1’ Q + B?(O), y). Now Q! and Q2 disjoint
open in X , imply that Q'+ B?(O) and Q% + Bi(O) are disjoint open in X.
Consider y = (I— (I — f)Pl)x where x € O/ = Ql + Bi(O). Then
x=y+ (I —f)P1 € X . So we get Px=xandxe Ql. Thus y = fx. Since
y ¢ f(Q1 \ 21U Q?), we must have |
xeQluQic(Q'y 92)+Bj(o) = (0 + Bf(o)) U(Q?+ Bf(o)). Therefore
y# (1— (= DP)(@ + BY0)\ (@' + BY0)) U (Q? + B(0))).
Thus by (D2),
D(I—(1-OP, @ +B0), )
=D(I—(I-0)P, '+ BX0), y) + DI~ (I-DP , 2+ BX(0), y)
:do(f, QL y) + do(f, 0% ).
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Therefore do(f7 Q,y) = do(f, QL y) + do(f7 Q2 y)
(d03) Let 01 C X1 be open bounded, h:J x Ql — X1 and y:J— X1 be continuous
and y(t) € X1 \ h(t, 891) fort € J. Then
do(h(t, ), Q, y(t)) = D(I — (I—-h(t, '))Pl’ Q1 + Bf(o), y(t)).
Define H:J x Ql + B?(O) — X by
H(t, x) = (I —ht, .))Plx = P1X — h(t, P1X)'

H is easily continuous.

H(J Q + B"l’(o)) gPI(Q1 + B’f(o)) —h(J x PI(Q1 + Bf(o)))
=0 —h(IxQ).
Now Q1 is closed and bounded in X1 and hence is compact. Therefore h(J x QI)

is also compact in X1' Thus both are compact in X.

Therefore 4 H(J x Q1+ B?(O)) ) <A Ql ) + Y h(J x Ql) ) = 0, proving

that H is compact.

Now let y(t) = (I —H(t, .))x for (t, x) € J x Q1+ Bi(O) =17 x (Q1 + ]_3?(0))
Then x = y(t) + H(t, x) € X So P x=x and x € Ql.

Thus y(t) = x  H(t, x) = x — [x — h(t, x)] = h(t, x).

But y(t) ¢ ht, 891). Therefore x € Q¢ Q + BT(O), and so

5(t) ¢ (1= H(t, )30+ BY(0))). Hence by (D3),

D(I — H(t, .), Q + BT(O), y(t)) is independent of t. Therefore

do(h(t, ), Q1’ y(t)) is independent of t.

Since do’ defined on the Brouwer triplets, satisfies (dol)—(d 3), and since the Brouwer
0
degree is unique, we must have d0 to be the Brouwer degree. Therefore d = d. Thus
0
D(I_FIPI) Q/; Y)

=4 (1-F)lg, 0, ) =d(1-F)|g, 2,y (9)
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(8) and (9) give us

D(I - F: Q; Y) = d((I - F1)|Ql) Ql’ Y)

Thus if a degree on our admissible LS—triplets exists , then it must be unique.

We now show the existence of a degree on admissible LS—triplets.
For © C X open bounded, F € % (Q) andy € X \ (I —F)(09), define

D(I-F, Q,y)= d((1—1«*1)|(2 , Ql, y) where F1 e F(Q), FI: Q —;Xl , dim X1 <w,
1
yE€ Xl,'Ql =Qn X and |F —F1|0 < p(y, (I—F)(60)).

We must first show that this definition is independent of the choice of F1 and X1’ and then
show that D satisfies (D1)—(D3).

well-defined :
Suppose F2, X2 satisfy all the conditions that F1’ X1 do. Let X0 = span(XIU Xz). Since
dim X1 < o and dim X2'< o , we must also have dim X0 < w. Also let Qo =Qn XO.

Since Q is open bounded in X, QO must be open bounded in Xo' Also F |5 : Qo — X is
1 1
0
continuous fori =1, 2. Let h:J x Qo — X0 be defined by h(t, x) =t le + (1 —t) sz

for (t,x) € J x QO.

Then h is continuous.

[N.B.: Qo C Q implies that 800 CAN:Letxe GQO C Qo C Q and suppose x ¢ 0Q. Then

x € Q. Also, Qo can Xo' Therefore x € X0 and hence x € Q n X = QO, a contradiction.
Thus we must have x € dQ and so GQO C o0

IfteJandxe GQO, then

|y —h(t, x)| = |y ~ (I - F)x — (Fx — h(t, x))|
2 [y —(I=F)x| - |Fx—h(t, x)]|

Now

| Fx — h(t, x)| =|Fx—tle—(1—t)F2x|
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= |t (F - Fl)x + (1 —t)(F — Fz)x|
Ct|E=F x|+ (1-t) [(F-F x|
<tp+(1—t)p
= p.
Also, x € BQO implies x € 02, and so
ly = (L= F)x| > p(y, (I - F)(3Q)) = p-
Thus Iy ~h(t,x)| >p—p=0 forallt € Jand x € 890. Therefore y ¢ h(t, 890) for all
t € J. By (d3),
U(1=T )l 03 = d1-F)lg 9, (10)
Therefore, y € Xi\ (I- Fi)(ﬁﬂo) fori=1,2.
By theorem 2.19,
(T-F)lg ) = A1 =F g X 0%, )
= d((i[—Fi)lﬁgi , N Xi, ¥)
= d((T —Fi)lﬁi , Qi, y) fori=1,2. | (11)
By (10) and (11),

d((I_Fl)IQ ? Ql’ y) = d((I_Fz)IQ ) Qza Y)'

2
Hence our definition is independent of the choice of F1 and X1'

We must now show that D satisfies (D1)—(D3).
(D1):
Let ©2 C X be open bounded, and y € Q. Then let X1 = span {y}, 91 =Qn X1' Then

y € X1 and hence

D(I) Q, y) = d((I _O)IQ ) Qla y)
= d(T, 91’ y)
=1 by (d1).
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(D2):
Let 0! and 02 be disjoint open subsets of @ with y ¢ (I—F)(Q \ ©1U Q?). Since
Fe %(Q),I—F is proper and continuous, hence it must be closed. Therefore
(I-F)(Q\ Q'u Q?) is closed and p, = p(y, I=F)(Q\ QluQ?)>o0.
Choose F1 ¢ F(Q) such that sup {|F1x —Fx| [xeQ}< Py Then choose, as we may, X1
a subspace of X with dim X <, F1(Q) CX andy € X . Let Q1 =Qn Xx' But
p = o(y, T =TF)(Q\ 21U Q?) < p(y, T —F)(09Q)) = p. Therefore
sup {|F1X—FX| / x €} < p, and by definition,
DI—F, 0,y) = d((1-F )l .2, ) (12)
1
Now Q'n X1 and Q% n X1 are disjoint open subsets of 91' We need to show that
$EI-F)lg @\ (@0X) (@ 1)) = 0-F)lg @\ (20 @) X))
Suppose y = (I — F1)X for x € Ql\ (Qi uQ?n X . Thenx =7y + FxeX. This must
mean that x ¢ Q' U Q% Therefore x € O \ Q! U Q% and

|F1x—Fx| = |(I——F)x—(I—F1)x|
= |I-F)x—y|
> p(y, (I-F)(Q\ Q'u0?)
=P,

1
contrary to the way F1 was chosen .

Therefore y ¢ (I— Fl)(ﬂ1 \ (QluQHn X1) and by (d2) we obtain
d((1-F)|q
(=7)lg, 2,3

—d((1—TF = Q! w02

= (1T )lg 20X, ) + (1 F)lg 80X, v) (13
We now need to check that sup {|F x —Fx| / x € Q1Y < p(y, 1—F )(80Y) fori=1,2.

| 1

We claim that for i # j, 001 n QI = ¢. For if x € 601 n QJ, then since Q) is open , there
exists an open neighbourhood U of x contained in QJ. But x € dQ!, therefore every

neighbourhood of x meets Q1 as well as its boundary, a contradiction to Q' n QI = ¢. Thus

60in QI =¢. Therefore 21C O\ Q'UQ2 So
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sup{|F1x—Fx|/x€Qi} 5sup{|F1x—Fx|/x€Q}
<py, (I-F)(Q@\Qluq?))
< ply, I-F)(8QY)) fori=1,2.
Again by definition we have fori =1, 2

d(1T-T)lg, 20X, y) = D{I-F,2l,y) (14)
1
(12), (13) and (14) give us

D(I —F, Q, Y) = D(I —F, Ql; Y) + D(I —F, 923 Y)'
Before we prove (D3), we need the following lemma.

3.8 Lemma
Let X be a real Banach space, 2 C X open and bounded, F € % (©2) and
y ¢ (I—F)(8Q). Then D(I—F,Q,y)=D(I—F —y, 0, 0).
Proof :
By theorem 3.5, there exists P e F () such that sup {|Fx — F1x| [ xe} <p,
where p = p(y, I —F)(8Q)). Let X0 be a finite—dimensional subspace of X such that
y € Xo’ Fl(ﬁ) C X0 and QO =Qn XO. Then by definition,
D(I-F, Q,y)=d((id - F1) | QO, Qo’ Y) (15)
Define h:J x QO——» X by h(t, x) = (I —F1)|Qo(x) —ty for(t,x) €J x Qo’ and
y:J— X0 by y(t)=(1—t)y fort €J. Then h and y are continuous. Since
390 € 02, for (t, x) € J x 690, we have
[¥(8) = b, )| = [(1—t)y — ([~ F)x +ty]
= |y~ (I~ F )x]
> [y = (1= F)x| = | (1= F)x— (1~ F )x
=|ly-(I-F)x| - |Fx—le|
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> ply, (I-F)(8Q2 )) — | Fx — F x|
> p(y, (I F)(80)) —sup {|Fx — F x| /xEQO}
2p—sup{|Fx—le| [ xeQ}
>p—=p
= 0.
Therefore y(t) ¢ h(t, BQO) for t € J, and by (d3), d(h(t, .), Qo’ y(t)) s
independent of t.

So we have d(n(0, ), @, y(0) = d(a(1, ), 2, y(1)), which is

the same as
U1-F)lg 8,0 =d0-F)lg =%, 9,0 (0
p(0, (I —F —y)(82)) =inf{[0-(T-F—y)x| /xed0}
—inf {|(I-F - y)(x)| / x ¢ Q)
=inf{|I-F)x—y| /x€e 0}
= ply, (T—F)(602))
= p.
So for x € Q,

|(F —y) x-(F1—y)x| = |Fx—F1x| < sup {|Fx—F1x| [xe}<p.
Again by definition,
D(I_F—yr Q; O)Zd((I_Fl_YHQ )Q(); 0) (17)
0
(15), (16) and (17) imply that

DI-F,Q,y)=D(I~F—y, Q,0). 4
We are now able to prove (D3).

(D3) :

Let H:J x Q — X be compact, y : J— X continuous such that
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y(t) ¢ (I—H(t, .))(02) for all t € J. We have already shown that

D(I—-H(t, .), Q, y(t)) = DI - H(, ) —y(t), @, 0).
Let Ho(t, x) = H(t, x) + y(t). Then H0 :Jx 0 — X is compact, 0 ¢ (I — Ho(t, ))(69)
and D(I — H(t, .), Q, y(t)) = D(I - Ho(t, ), ©, 0) by lemma 3.8.

J x (1 is closed bounded. Let 6§ = inf p((I — Ho(t, ))(8Q), 0). We will now prove that
ted

6> 0. If § = 0, then there is a sequence (t ,x )in J x 9 such that
n n

|x —H(t,x)—-0] —0,iex —H(t,x)— 0. Since Jis compact, by taking a
n 0"n n n 0'n n

suitable subsequence we may suppose that t — to for some 1:0 € J. Similarly, since
n
HO(J x ) C HO(J x Q) is relatively compact, we may also suppose that

H(t,x)— x forsomex € X. Therefore x
0"n n 0 0

— X Since 09 is closed, x € a0 C Q.
n

Hence by continuity of Ho’ X = Ho(to’ Xo) = H(to, xo) + y(to). So

y(to) =(I- H(to, .))x0 e(I— H(to, .))(052), contrary to hypothesis. Thus § > 0.

By theorem 3.5, there exists F € F(J x 0, X) such that

sup_ |F(t, x) —H (t, x)| <inf p((I-H (t,.))(6Q), 0).
Jx 0 teJ 0

So for each t,

sup |F(t> X) —H (t> X)

< sup _ IF(S) X) - HO(S) X)I

x€J 0 Jx 0
<inf p((I—H (s, .))(00), 0)
seJ 0
Cinf [(I—H (s, ))x].

seJ 0
Therefore by definition, '

D(I—H (5, ), 2, 0) = d((L-F(t, .)) | , 2, 0)

where X0 is a subspace of X, dim X0 <o 0€ Xo’ FIxQ)cC X0 and QO =QnX. Then
0
d((I—-F(t,.))] Q- Qo, 0) is independent of t by (d3), proving (D3).
0

We have thus proved the following result.



3.9 Theorem
Let X be a real Banach space and
HA={(I-F,Q,y)/QCXopen bounded, F € F(Q) andy € X\ (I-F)(0) }-
Then there exists a unique function D : & — I (the Leray—Schauder degree )
satisfying (D1)—(D3). This functioﬁ is defined by
D(I-F, Q,y)=d(I~- Fl)lﬁl, Q, y) where F e F(£) such that

sup |F x—Fx| < p(y, (I —F)()), X1 is a subspace of X such that
q |

F(Q)CcX,yeX,dim X1 < o, Q1 =Qn X1 and d is the Brouwer degree of
1 1 1

X1 (defined in chapter 2).
We now obtain the following extension of (D2).

3.10 Lemma
Let Q € X be open bounded, F: 0 — X compact, y € X \ (I - F)(8Q).

Let {Qk [/ k =1, 2, ..} be an infinite disjoint sequence of open subsets of € such

o _
that y ¢ (I — F)(Q \ Y Qi). Then for each k, D(I — F, Qk, y) is defined, only

finitely many of them are non—zero, and

w
DI-F, Q,y)= k§1 D(I —F, Qk, y).
Proof :

Let x € ﬁﬂk. Since Qk is open, we have x ¢ Qk. If x € 000 for somei # k, then Q
1

1

must meet Qk (since x € 6Qk, every neighbourhood of x must meet Qk), a

contradiction. So 02 N(U Q) =49. Also 02 nQ = @. Hence
k itk 1 k k

[¢V] _ @™ _ [¢V]
0 n(UR)=0andso 82 CN\ UQN. Sincey ¢ (I-F)(Q\ UQ), we must
k i=1 i k i=1 i i=1 i
havey ¢ (I — F)((?Qk) and so D(I - F, Qk, y) is defined for each k.
Let M = (I — F)!(y). By theorem 3.5, I — F is proper and hence (I — F)(y)
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is compact. So M is closed.

nC 8

Nowifx € M, then x € Q and I —F) x = y. Sincey ¢ (I —F)(Q\ 101)’ we

i

00] @®
must have x € UQ . Thus M C U . Since M is compact, we can find a finite
i=1 i i=f 1

subset N of N such that M C U £ . Since the 2 are disjoint,
IEN 1 1
Mn( U Q)=9¢
ieM\N
Therefore (I -F)(y)nQ =@ forallie N\N. SoDI-F,Q,y)=0 forall
1 1
ieNM\N. Now (I-F)Xy)Cc U Q andsoy ¢ (I-F)(Q\ u Q). Since Nis
ieN * ieN *?
finite, (D2) yields D(I—F, Q,y) =% D(I—-F,Q,y) andforig N,
ieN b
D(I-F,Q,y)=0. Thus
1

1y
D(I-F, Q) = % DI-F,Q,y). 7y
1= 1

Now we obtain more properties of the Leray—Schauder degree whose analogues for the

Brouwer degree follow by similar proofs and were stated in theorem 2.5 without proof.

3.11 Theorem

The Leray—Schauder degree satisfies the following properties in addition to
(D1)—(D3).
(D4) D(I-F, Q,y)+0 implies (I —F)(y) # 6.
(D5) D(I-G,Q,y)=DI-F,Q,y) for Ge F(Q)n Bp(F) and
D(I-F,Q,y)=D(I-F,Q, yl) for y, € Bp(y),
where p = p(y, (I-F)(69)) > 0.
Also D(I —F, Q, .) is constant on every connected component of
X\ (I-F)(o0).
(D6) D(I-G,Q,y)=D(I-F, Q,y) ifGl(90 = F|(99 , G e F(Q).
(D7) DI-F, Q,y) =D(I-F, Q1’ y) for any open set Q1 of Q such that

61



Proof :

(D4)

(D7)

(D6)

(D5)

yeX\(I-F)(Q\0).

yeX\(I-F)(0)=X\{T-F)(Q\ Qud). Hence by (D2),
D(I—F,Q,y)=DI—F Qy) +DI—F,0 y). Thus
DOI—F,0,y)=0 HI-F)Yy)=9 thenyeX\I-F)(Q\0U9)
and again by (D2),
D(I-F,Q,y)=DI—F,0,y)+DI—F,0,y)=0+0=0.
Thus D(I —F, Q, y) # 0 implies that (I — F)(y) # 9.
IfQ CQisopen such that y € X \(I-F)(Q\ Ql), then
yeX\(I—F)(Q\QIUQ)). So
D(I—F,Q,y) =D(I-F,Q,y) + DI-F,0,y)=D(I-F,Q,y).
Let H(t,x) =t Fx + (1 —t) Gx. Then
v(H(J x B)) < ¥(conv (FB U GB))
= +(FB U GB)
— max {1(FB), 1(GB))
= 0.
Therefore H € &(J x 0, X). If y € (I—H(t, .))(92), then there exists
x € 00 such that
y =I—-H(,.))x
=x—tFx—(1—t)Gx
=x—tFx—(1-1t)Fx
=(I-F)x since F| 50 = G| 50
Thus y ¢ (I —H(t, .))(69). Hence by (D3),
D(I-F,Q,y)=DI-G,Q,7y)
Let G € F(Q)n Bp(F), and H(t, x) = (1 —t) Fx + t Gx with
(t,x) € Jx Q. Easily, He H(J x Q, X). Suppose y € (I — H(t, .))(80)

for some t € J. Then for some x € o)
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y=1-H(t, ))x=x—(1-t) Fx—t Gx =x—Fx + t (Fx - Gx).
So |Fx — Gx| > [t(Fx — Gx)| = |y — (1= F)x| > p(y, (1 - F)(60)) = p.
Therefore |F — G |0 > p, a contradiction. Hence y ¢ (I —H(t, .))(0Q) and
so by (D3),
D(I-F, Q,y)=D(I-G, Q,y).
Now let y € Bp(y), and H(t, x) = Fx where (t, x) € J x Q and
yt)=(A-t)y+ty.
Now He F(J = Q, X).
Suppose y(t) € (I — H(t, .))(6Q). Then y(t) = (I —H(t, .))x for some
x € 0. This implies that (1 —t) y + ¢ y = (I — F)x which means that
t (y1 —y) = (I—-F)x—y. Therefore ”
ly =y 2|t (y =) = [A=-F)x—y| 2oy, T =F)(52)) = »,
a contradiction. Hence y(t) ¢ (I — H(t, .))(09) and by (D3)
D(1-F,Qy)=D(I-F Q7).
Now we show that D(I — F, , .) is constant on every connected
component C of X \ (I — F)(0Q). Since X \ (I —F)(09Q) is open, C is open
and nonempty. Let y € C. By what has just been proved, D(I—F, Q, .) is
constant on some ball neighbourhood in C of y. Thus regarded as a
mapping from C to R, D(I — F, Q, .)IC is continuous at each y € C.
Therefore it is continuous. But a continuous image of a connected set is
connected. Thus D(I - F, Q, C), as a set, is a nonempty connected subset
of R. But it is a subset of Z, and the only nonempty connected subsets of Z
are the one point sets. Thus D(I — F, Q, C) is a one point set, and so

D(I—F, Q, .) is constant on C. L

Below, we have an extension to Borsuk’s theorem. The usefulness of this theorem lies in

fact that it gives conditions under which the degree is odd and hence nonzero.
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3.12 Theorem
Let Q C X be open bounded and symmetric with respect to 0 € Q, F € %(Q),
G=I-F 0¢G(00),G(—x)#+ A Gx on o0 forall A > 1. Then D(I-F, Q,0)
is odd. In particular, this is true if F| a0 18 0dd.
Proof :
Let H(t, x) = 1 Fx — 7og F(—x) for (t, ) € J » . T{B C 0, then
AWH(I xB)) < y(conv (FB U (- F(-B)))
— 4(FB U (-F(-B)))
= max {y(FB), 7(-F(-B))}
(F(Q))

<

o =

Hence H € % (J x Q, X).
Suppose 0 = (I — H(t, .))x with (t,x) € J x Q. Then
x = 1—% Fx 1+t F(—x) and so ﬁ (I-F)x= —i—t (I = F)(—x). Therefore

(I-F)x=1t{I-F)(~-x).
Ift = 0, then G(x) = 0 for x € 60, and if t # 0, then I Gx = G(-x) with x € &0
and % 2 1, contradicting the hypotheses.
Thus 0 ¢ (I —H(t, .))(80), and by (D3),

D(I~F,Q,0)=D{I-F, 0,0, (18)
where F X= % (Fx —F(—x)) is odd.
Choose F € F(Q) such that sgp |Fx F x| < p(0, (I —Fo)(ﬁﬂ)) and let

-sz:j(le—Fl(—x)). Then F € F(Q) is odd and for x € Q,
|F x—F x| = |
2 0

|Fx F x| +255p |F(—x) O(—x]ll

64



=sup |F x—F x|
Q 1 0
< pl0, (T-F )(60)).
Thus by definition,
— = — =, 0,0 19
D(I FO, Q) 0) d((I F2)|QZ> 27 )7 ( )

where X is a subspace of X such that dim X <w, FZ(Q) CX, and
2

Q0 =QnX.

2 2
Since 0 € 2 and 0 € X2 we must have 0 € Qz’ (22 is also open, bounded and
symmetric with respect to 0 € Qz' By Borsuk’s theorem (2.10),
dIT-F)lg (22, 0) is odd. Thus by (18) and (19),

2

D(I-F, Q, 0) is odd.
If F| 5, s 0dd, then
(I-F)(—x)=—=x—F(=x)=—=x+Fx=—I-F)(x)# A(I-F)x for A > 1 and for
all x € Q.
Hence D(I—F, @, 0) is odd by above. [

3.13 Theorem

Let © C X be open, F : § — X completely continuous and I — F locally
one—to—one. Then I — F is open.
Proof :
Tt is sufficient to show that to x € (1, there exists a ball Br(xo) such that
| (I— F)(Br(xo)) contains a ball with centre (I — F)(xo).
We will first consider the case X = 0 and F(0) = 0. Since I — F is locally

one—to—one, we can choose r > 0 such that (I — F)]| B (0) is one—to—one.
r

Define H(t, x) = F( 3 %) — F(— g %) for (t, x) € J x B (0).
Let B C Er(O). Then H(J x B) C F(BY(O)) — F(BT(O)). So

Y(H(J x B)) < 7(F(]§r(0))) + 7(F(]§r(0))) = 0 since F is completely continuous.
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Thus H e F(J = B (0), X).
Now suppose 0 € (I — H(t, .))(B (0)) for some t € J. Then 0 = (I —H(t, .))x

1
for some x € Br(O) So x = F( T * x) — F(— 1+t x). Therefore
1 1]
(I-F)( —JrTx) =(I-F)(— yi x) . Sincex € B (0) we must have
1 —

——+x € B (0) and —1% €B (0). Also (I-F)|g (0) is one—to—one. So
T

£ ..
T ¥ = ~Tyg X givingusx = 0. Thus 0 ¢ (I — H(t, .))(BBr(O)) for all t € J,
and we can apply (D3) to give us

D(I - H(0, .), Br(O), 0) = D(I — H(1, .), Br(O) 0).
But H(0, x) = Fx and H(1, x) = F(5x) — F(-5x). So
D(1—F, B (0), 0) = D(L - K(1, ), B (0), 0).

By theorem 3.12, this is odd, and hence nonzero.
If p=p(0, (I- F)(BBr(O)), then by (D5) we have for all y € Bp(O),
D(I - F, B(0),y) = D(I—F, B (0), 0) # 0. So by (D4), y € (1~ F)(B(0)) for
all y € Bp(()). Hence we have Bp(O) c(I- F)(Br(O)) as required.
Now take x € Q. Passing to Q2 — X and Fx = F(x + xo) — Fx0 forxe 0 — X, we
obtain, by the first part, r > 0 and p > 0 such that Bp(O) C (- F)(Br(O)). Let
X € Bp((I — F)(xo)) Then |x —~(I— F)x0| < p. So
x—(I- F)x0 e(I- F)(Br(O)). Thus we can find y € B (0) such that
x—(I— F)(xo) =(I-F)(y)=y-F(y + xo) + Fxo. So
X=X +Y- F(y + xo) =(I-F)y+ xo) and y + x € Br(xo). Hence

e (- F)(Br(xo)) and so we have Bp((I — F)xo) c(- F)(Br(xo)) and we are
done. A

The above theorem can be used to prove surjectivity results. Now we show that we also

obtain a product formula for the degree.
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3.14 Theorem (Product Formula)
Let 2 C X be open bounded, F0 e X(Q),F=1I- Fo’ Gr0 : X — X completely
continuous, G =1 — Go’ y ¢ GF(0Q), and (K)\))\EA the connected components of
X \ F(6£2). Then
D(GF, Q,y) = AEA D(F, 2, K,) D(G, K}, y)

where only finitely many terms are nonzero and D(F, (2, K)‘) = D(F, Q, z) for
any z € K)‘.
Proof :
We first verify that (GF, , y) is an LS—triplet, i.e. I— GF € #(Q). Now
I — GF means (I - GF)| 5.
I-GF=(—-(1-G)I-F))|q=F +G|q-GCF . Thus
(I-GF)(©) ¢ FO(Q) + GO(Q) - GOFO(Q) and
(I - GEY() < AF (D) + 7(C () + (-G F (A)). F € H(@), s
fy(FO(Q)) = 0. G_is completely continuous, so since ) is bounded, 'y(GO(Q)) = 0.
FO(Q) is relatively compact, hence bounded, and so
fy(—GOFO(Q)) = 'y(GO(FO(Q))) = 0. Thus 1{(I — GF)(?)) = 0. Since I — GF is
continuous, we get I — GF ¢ J%(Q).
Step 1
F({)) is bounded, so there exists r > 0 such that F(Q2) C Br(O). Let
x € Gl(y)n Br(O). Then x € BT(O) and x = G x +y. Thus
Gly) n Br(O) C Go(Br(O)) + y. Gr0 is completely continuous, so Go(Br(O)) is
relatively compact, and hence GO(Br(O)) + y is relatively compact. So
GY(y)n Br(O) must be relatively compact. But G™i(y) n Br(O) is closed, hence it
must be compact. Let M = G7(y) n Br(O). If x € M, then Gx = y and so
x ¢ F(0Q) since y ¢ GF(9Q). Thus x € X \ F(09). So

MCX\F(60) = ,\UA K,. Since M is compact, we can find finitely many i,
€
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p

i=1,2, .. p such that 'U1 K. together with K = K_n B (0) cover M.
1= 1

P+l r+l

Since K _is the unbounded component of X \ F(8Q), it contains points y £ F(Q)

and so D(F, ©, K ) = 0. Hence D(F, Q, Kp 1) = 0.
Now suppose A ¢ {1, 2, ..., p}and A # @. X\ Br(O) C X\ F(Q)c X\ F(0) and
X\ B (0) is unbounded and connected. Hence X \ B (0) CK_. Since

T T

K L Ku0 = ¢ we must have K 3 € B (0). Since the connected components are
T

p+1

disjoint and since M C Y, K. we must have Ky, n M = ¢ and s0 K, n Gl(y) = ¢.
1= 1

Hence D(G, Ky, y)=0 for A ¢ {1,2, ..., p }, proving that the sum is finite.

Step 2 :

Let § = {z € B 1(0)\F((9Q) / D(F, Q, z) = m} and

Nm={)\€A/D(F,Q,K)\)=m} forme 7\ {0}. Now

S B (0)\F(6Q)QX\F(69)=AUA K,.
m r+l €

IfxeS ,thenxeK, for some ) € A and D(F, 0, x) = m. Hence
m
D(F,Q,KA)zmandso)\eN. Thus S C U K)\. Nowifxe U K)\,
m

" )eN AeN
m m
thenxeK)\ forsome A € N . So
m
D(F, Q, x) = D(F, Q, K,) =m. We must still show that x € B 1(0) \ F(oQ).
T+
Now U K, C X\ F(?) and so x ¢ F(6Q). Since m # 0, K, is not the
XeN A
m

unbounded component K and so x must be an element of B 1(0) and hence
rs

x€S. ThusS = U K)\ . Hence S is open. So by lemma 3.10,
m

m m AeN
Y D(F, Q, K,)D(G, K,,y) =¥m( ¥ D(G,K,,
\eA Y A o ()\EN ( )\Y))
= rf& m D(G, S , y). (20)

Thus we have to show that
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D(GF, Q,y)=3%m D(G, S ,y) (207)

K C U 0K, and

Now 08 = U K K
AR AEN. € AN A

\ U
m AeN AEN 2 AEN A
0K, € F(oQ) forall A e N .

Thus 45 C F(0Q). By theorem 3.5, we can find G € F(B (0)) such that

T+l
D |G1x—G0x| < ply, GF(89)). Let@:I—Gl. Then
0)
r+1

|GF — GF| = | (G = )l |, ¢ 16 -Gl =16 -G <y GF(oM)

xeB

and

|G =G| < nly, GF(8Q)) < p(y, G(65 )). Thus by (D5),

m

D(GF, Q, y) = D(GF, Q, y) ) (21)
and
D(G, Sm, y) = D(G, Sm, y) - (22)
for all m.

If M0 =B 1(0) n G-(y) = 0, then both sides of (20) are zero, so we may assume
T+

that M0 $0.

Since M0 is compact and y ¢ GF(Q), we have

p(MO, F(0Q)) =inf {|x —z| [/ x € Mo’ z € F(0Q) } > 0 because
F(o)) = (I— FO)(aﬂ) is closed.

Again by theorem 3.5, we can find F1 € F(Q) such that

[F —F | <min {1, o(M, F(62))}.

Let F =I—F-1. Forx € Q,

|Fx| < |Fx—Fx| + |Fx| < |F—F|0+ |Fx| <1+1,

so F(Q) ¢ B (0).

T+l

Define Sm ={zeB_ (0)\ F(6Q) /D(F, Q,2z) =m }. Since

|F1 - F0| ) < p(MO, F(0Q)) < p(z, F(0Q)) forallz € Mo’ we have
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D(F ,Q,2)=D(F,Q,2) forallzeM . Thus$ nM0=§ nM . Now
1 m m
v ¢ G(8S ). We want to show that y ¢ G(S \smné ). fy =Gx withxe S

thenx € G(y) n B (0):MoandsoxeMonS :Mon§ . Hence
r m m

+1
x€S NS . Thusy ¢ G(S \'S nS),and so by (D7)
m m m m m
D(G, S ,y) = D(G, 8 n §m, y). ' (23)
Similarly,
D(G,5 ,y)=D(G,S nS,y). (24)
m m m
From (20), (22), (23) and (24) we obtain
2 D(F, 0,K,)D(G, K,,y) =2m D(G, S ,y)
h\ A A m m
and from (21) we obtain
D(GF, @, y) = D(GF, Q, y).
Now choose a subspace X1 of X such that dim X1 <w,yE€ X1’ F1(Q) C X1 and

Gl(I_B (0)) ¢ X . By the product formula in finite dimensions and the definition

r+l
of the Leray—Schauder degree, we have

5mD(G, 5 ,y) =2md(G|y,5 nX,y)
m m m { m 1

So we have % D(F, @, K,) D(G, K,,y) =D(GF, Q,y) and
A

D(GF, Q, y) = D(GF, Q, y). Thus, we just need to show that

D(GF, Q,y) = D(GF, Q, ¥)-
Now GF=1- (GIF +F) (25)
and GF =1—(F +G F). (26)
Consider H(t, x) = Fox +t (le —-Fox) + G1(Fx + t(Fx — Fx)) for (t, x) € J x Q.
Then H € F(J x Q, X) and x — H(t, x) = G(Fx + t (Fx — Fx)).
Ify =(I—H(,.))x withx € 82 and t € J, then G(Fx + t (Fx — Fx)) = y.
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Also Fx +t (Fx —Fx) = (1 —t) Fx + ¢ Fx e Br 1(0). Thus
+

z=Fx+t(Fx—Fx)e Mo. Since x € 0Q,
|z — Fx| Zp(Mo, F(60)) > |F1—F0|0. But
|z —Fx| = |Fx 4+t (Fx - Fx) —Fx| =t |F0x—F1x|.
Thus |F0x — lel >t |F0x —lel > |F1_Fo| o2 contradiction.
Hence y ¢ (I — H(t, .))(02). Applying (D3), we get
D(I - H(1,.), Q,y) = DI —H(O,.), Q, y)
which is the same as
D(I—(F + Glﬁ‘), Q,y)=D(I- (Fo +GF), 7).

By (25) and (26) we obtain

D(GF, Q,y) = D(GF, Q, y)

which was what we were required to show. h

We obtain the following version of Jordan’s separation theorem.

3.15 Theorem

Let A and B be closed bounded subsets of the real Banach space X such that
there exists a homomorphism G =1 —F from A onto B, with ¥ € &(A). Then

X\A and X\B have the same number of components.

We do not include a proof here because it is along the lines of theorem 2.16.

Now we prove a result that reduces a degree on some space to a degree on a subspace.

3.16 Theorem

Let X0 be a closed subspace of X, Q C X open bounded, F : @ — X compact,
0
G=1I-F,ye Xo \ G{6Q). Then

71



D(G, 0, y) = D(C| Qnx,y)

2 nX?
0
Proof :
Since G(89) is closed p = p(y, G(8)) > 0. By theorem 3.5, we can find
F e ¥(Q, Xo) such that sup |F1x—Fx| < p.
L Q

Let X be a subspace of X such that dim X1 < o, F1(Q) C X1’ y € X1’ Qo =Qn X0
1
and Q1 =Qn X1'
Now X0 N X1 is a subspace of X, dim (X0 n X1) <w,yE X0 n X1’
F(O)CX nX.
1 0o 1
So by definition

D(G, Q, y) s d((I —F1)|Q n (Xo n Xl) ’ Q ﬂ X() ﬂ X17 Y)r

= (=PI xR0 X, V) (1)
0 1

Also 8 = N Xo\QnXOQQnXO\QnXO:(aﬂ)nXog00
and so sup |F x —Fx| Csup [F x—Fx| < p(y, G(60)) < p(y, G(902 ).
Q Q

0
Hence by definition

D@Glg, 9, ) =d(I-F)lg 1 x,9,0X, ) (28)
0 0 1

From (27) and (28), we get
D(G)Q; y)=D(G|Q )007 y) .

0

The fixed point theorem corresponding to Brouwer’s fixed point theorem is Schauder’s

fixed point theorem, which follows. It was extended by Schauder in 1930.

3.17 Theorem

Let X be a real Banach space, C C X nonempty closed bounded and convex,

F:C— C compact. Then F has a fixed point.
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Proof :
By the remarks after definition 1.2.16, C is a retract of X. So there exists a
retraction R : X — C. Since C is bounded, there exists r > 0 such that
Cc Br(O). Now FR:X — C is continuous. Let H(t, x) =t FRx for
(t,x) € J x Er(O). If0 = (I - H(t, .))x for some (t, x) € J 8Br(0), then
x =t FRx.
t = 0 implies that x = 0, a contradiction.
t # 0 implies %X=FRXEC and so | %xl < 1. But | %x | =%|x| >1, 8
contradiction.
So0 ¢ (I-—-H(t, .))(5Br(0)) onJ.
Thus by (D3),
D(I - FR, B (0), 0) = D(I, B (0),0) = 1 by (D1).
By (D4), there exists x € Br(O) such that (I—FR)x =0. Sox =FRx € C and
hence FRx = Fx. Thus

x = Fx. '

Given a problem where we want to use Schauder’s fixed point theorem or a degree
argument, we first look for a suitable Banach space X. Then we formulate the problem
as x — Fx = 0 such that F is completely continuous, if we can. Thereafter we apply the
homotdpy H(t, x) to reduce I — F to a simpler map I — FO. In most examples, the most
difficult part is finding a suitable open bounded € C X such that H(t, x) # x on 8Q, or
finding a closed bounded convex set C such that C is invariant under F.
This is the question of finding a priori bounds for the possible solutions, i.e. in the
simplest case, find r > 0 such that

{x/x—-AFx=0 forsome A€ [0,1] } C Er(O).
This can be illustrated by the following example.
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318 Example
Let X be a real Banach space, J = [0, a] C R, f:J x X — X completely
continuous and [f(t, x)| < ¢ (1 + |x|) on J x X, for some ¢ > 0. Then the
initial value problem,
x’ =1(t, x), x(0) = X (29)
has at least one solution on J.

It is useful to note that (29) is equivalent to the existence of a continuous

function x:J — X such that

¢
x(t) = x + jof(s, x(s)) ds. (30)
The natural space for (30) is Y = C,(J).

t
Define F: Y —Y by (Fx)(t) = x + [Of(s, x(s)) ds forx € Yandt € J.
To show that F is completely continuous, we must show that for every bounded

B CY, FB is relatively compact. Now
t
F(B)(t) ¢ {xo} + { jof(s, x(s))ds /xe B} fortel.

¢ _
Since Io g(s) ds is the limit of Riemann sums t Y% g(s ) (s, —s. 1)/t, we have
1 1 1 1-

{S5(s,x(5)) ds [x € B}t {f(s,x(s)) /s €, x€B }. So

_ t

oFB(t)) < a{ jof(s, x(s)ds /xeB} )<t o{i(s,x(s)) /seJ, xeB}).
Since J x B is bounded, and { is completely continuous, we must have

o {f(s, x(s)) / s € J, x € B}) = 0, and so o(FB(t)) = 0 for all t € J. Thus

sup o(FB(t)) = 0. . (31)
ted
Now FB is bounded and for x € B, t1’ t2 €J,
2 b
| Fx(t ) —Fx(t )] = | ], 15, x(s)) ds — f (s, x(s)) ds |
t

1
= | ft f(s, x(s)) ds |  (assume t 2 t2)
2
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t

J s, x(3)] ds

2
=t ] e (L |x])

c |t1-—t2| (1 + M) if Mis a bound of B,

Ve

1A

i

and so FB is easily equicontinuous.

Therefore by theorem ,
o(FB) = sup o FB(t)). , (32)
J

So by (31) and (32), (FB) = 0 and hence F is completely continuous.

Now suppose x is a solution of (I — X F)x = 0 for some )\ € [0, 1]. Then
£ 6

(O] < [x |+ [+ ()] ds e + e f[x(s)] ds = wl)

with ¢ = |x0| + ca.

Now ¢’ (t) = ¢ |x(t)] < ¢ ¢(t).

So (y(t) et = @' (t) et —c p(t) e
= [p’(t) —c o(t)] e**
<0.

t
Therefore jo(go(s) e™%)"ds < 0, which is the same as ¢(t) et < (0) = ¢,
for all t € J. Hence we have the a prior: estimate,

|x| <sup p(t) <supc et=c e®=c.
0 teJ teJ ! L 2

Chooser > ¢ . If H(t, x) =t Fx, (t,x) € [0, 1] x Br(O), then H is compact (since
H([0, 1] x Br(O) C conv (F Br(O) U{0}) ) and (I —H(t,.))x = 0 implies that
(I-tF)x=0 andso (I —t F)x =0 with t € [0, 1]. Therefore
|x]| ,$¢, <t Thusxe Br(O) which means that x ¢ (9Br(0), and hence by (D3),

D(I—F, B (0), 0) = D(L, B (0), 0), (33)
and by (D1),

D(I, Br(O), 0) =1. (34)

(33) and (34) give us D(I - F, Br(O), 0) = 1. By (D4), there exists x € B (0) such

T
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that (I — F)x = 0. Thus, (30) has a continuous solution. [

The following is a result of Schifer concerning the homotopy H(t, x) = t Fx.

3.19

Proof :

Corollary
Let F : X — X be completely continuous. Then the following alternative holds:
Either x —t Fx = 0 has a solution for every t € [0, 1], or

S = {x/ x=t Fxfor some t € (0, 1)} is unbounded.

Suppose x — tOFx = 0 has no solution for some to € (0, 1] and let F0 = tOF. Now

take any r > 0 and consider the radial retraction R : X — B (0) defined by
T

b'e if x| <«
RX:: T B
]%l— 1f|x|>r

Then RF0| Br(o): Br(O) — Br(O) is continuous.

n n

Let (x ) C B (0). To show that RFo(x ) has a convergent subsequence. Since F
r
is completely continuous, so is Fo. Thus (Fox ) has a convergent subsequence,
n

say Fox — y and continuity of R gives us RFox — Ry. Thus RF0 is a
n n
k k

compact operator. Since B (0) is closed, bounded and convex, we can apply
T
Schauder’s fixed point theorem (theorem 3.17), to obtain a point x € B (0) such
T
that RFox =x If Fox ¢ B (0), then RFox = Fox and then we get tOFx =X a
T

contradiction to this equation having no solution. Hence |F x| > r and so
0

rF x rt
_ _ 0 _ ; _ 0 :
X——RFOX——-TFOTl-‘SOX——-/JaFX Wlth/.L—TFOYI-aHdO</L<1,1.e;XES. We
1] | rFox
also obtain |x| = | 13 | = 1. Thus S is unbounded. L]
FOX

Compact Linear Operators
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Up to this point we have considered arbitrary nonlinear operators. In applications, we
sometimes encounter nonlinearities of the form F = L + R where L is linear and R is
nonlinear, but small in some sense. Then we would like to know whether the nice
properties of L carry over to F.

Among the linear operators of a Banach space into itself, the compact linear operators,
are quite simple, since the results from linear algebra can be extended to this class. We
denote this class by CL(X) and if L € CL(X), then L is a completely continuous
operator, but we will call it compact. The aim in this section is to obtain a formula

similar to d(A, 2, 0) = sgn det A from chapter 2.

3.20 Theorem ‘
Let X be a real Banach space, Loe CL(X)and L =1— Lo' Then we have
(a) LetM =1~ M0 with M0 € CL(X). Suppose also that L and M are
one—to—one. Then D(LM, Q, 0) = D(L, @, 0) D(M, Q, 0) for every
bounded 2 C X such that 0 € Q.

1=1 1

(b) Let X = gX_ be the topological direct sum of closed subspaces X , ..., X
1

m

such that LO(X_) C X . Let L be one—to—one. Then
1

1

m
D(L, B =
( ) 1(0)7 0) i];Il D(lel) BI(O) n Xi’ 0)
Proof :

(a)  Let K, be the connected components of X\M(92). Now 0 € ©, s0 0 ¢ d9.

Now M is one~to—one and MO = 0. So 0 ¢ M(6Q). Thus 0 ¢ K, for
some o and 0 ¢ K/\ for all A # a.

Also, since L is linear, we must have L0 = 0. Thus L0 = {0} (since L is
one-to—one). So L0 NK, =¢ forall A # @ and hence
D(L, K, 0) = 0. (35)

Now by the product formula, we get
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D(LM, @, 0) = ZD(M, @, K,) D(L, K, 0)
)

and by (35) we get
D(LM, Q, 0) = D(M, Q, Ka) D(L, K, 0). (36)
Since 0 € Ka, we have by definition
D(M, Q, Ka) = D(M, ©, 0). (37)
Also, since 0 = L0 € L(K ), we have 0 ¢ L(Q2 \ K ), and hence by (D7)
D(L, ©, 0) = D(L, Ka, 0). (38)
By (36), (37) and (38) we have
D(LM, Q, 0) = D(M, Q, 0) D(L, @, 0),
as required.
It is sufficient to prove the case m = 2, for the result, will follow by
induction.
Consider the projections P : X — X and M1 = LP1 + P2 and
1 1
M =P +LP.
2 1 2
MM =(LP +P )P +LP)=LP?+PP +LPLP +P LP.
12 t 2 2 1 2 1 12 2 2
Now LPLP (X)=LP L(X)CLPX =0,P*=P,PP =0
{2 {2 2 1 21
and LP (X)CX andsoP LP =LP .
2 2 2 2 2
Thus MM =1LP +1LP =L(P +P)=L.
12 1 2 1 2
(I-MJ)X) =T (P +LPJIX) 1]
= (I-LP )(X)
1 1
= (I-L)(X)
=L (X)
¢ X fori=1,2,
1
and so
I-M =LP eCL(X)andI-M =LP e CLX).
1 0 1 2 0 2

SupposeM2x=0for somex €X. Letx =Px,i=1,2. Sox=x +x
1 1 1 2
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and X, € Xi.
Mi(x1 + x2) = 0 implies that (Pj + LPi)(x1 + x2) =0
and so xj + in = 0.
But in € Xi and xj € XJ_ with 1 # j.
By uniqueness of the representation xj = 0 and in = 0. But L is
one—to—one and so x = 0= X, Thus x = 0.
Thus Mi is one—to—one fori = 1, 2. With Q = B1(0)’
D(L, ©, 0) = D(MM, ©,0)
= D(M1’ Q,0) D(M2, Q,0) (by part (a))

1

2
= RD( QnX,o0)
= 1

M ianx >

2
= 11 D(

MX’Q”Xym' (]

The next two results can be found in basic texts in functional analysis and no proofs will

be given.

3.21 Theorem
Let X be a Banach space, L0 eCL(X)and L=1- LO. Then
(a) N(L) = {x € X / Lx = 0} is finite dimensional and
R(L) = {(x / x € X} is closed.
(b)  Suppose that V and W are closed subspaces of X such that
VW,V #Wand L(W) CV. Then there exists w € W \ V such that
|w| =1 and p(LOW, LO(V)) > %

The next result is a spectral theorem.
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3.22 Theorem
Let X be a Banach space over K = R or K = (, L0 € CL(X), L/\ = Lo — Al
for A € K, and let A be the set of all eigenvalues of Lo' Then
(S1) Ac{ueK/ |u| < |L0|}, A is at most countable and only 4 = 0 may be
a cluster point of A. ‘
(52) L, is a homeomorphism onto X for every A ¢ A U {0}.
(S3) To every A € A \ {0} there exists a smallest natural number k = k(})
such that we have, with R()) = R(L}) and N(}) = N(L})
(a) X =R())eN()\),dim N(}) < o and R(}) is closed.
(b) R(X) and N(A) are invariant under L0 and L/\J-R()\) is a
homeomorphism onto R(A).

(¢)  N(u) CR(A) whenever A, p€ A\ {0} and A # .

As in linear algebra, dim N()) is called the algebraic multiplicity of the eigenvalue A
while dim N(L /\) < dim N(A) is called the geometric multiplicity of A. We now prove
the analogue of
_ dim N
d(A, Q, 0) = sgn det A = (1)

from chapter 2.

3.23 Theorem
Let X be a real Banach space, L € CL(X), A # 0 and A! not an eigenvalue
of L. Let € C X be open bounded and 0 € Q. Then
DI — AL, @, 0) = (—1)m(’\), where m(}A) is the sum of the algebraic
multiplicities of the eigenvalues y of L satisfying x A > 1, and m(}) = 0 if L has
no eigenvalues of this kind.

Proof :

Let M = I — AL = —A(L — A™). By (S2), L — A" is a homeomorphism onto X
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since A"lis not an eigenvalue of L. Hence M is a homeomorphism onto X. Thus
D(I — AL, Q, 0) = D(I — AL, B (0), 0) by (D7) and so it is sufficient to consider
i
Q = B (0). By (S1), there are at most finitely many y € A such that p A > 1, 1.
1

sgn p=sgn A and |p| > | 2|7 say B o b

D D
Let V= N(p)and W =_an(u_). We will now show that X =V e W.
i=t i i=t 7

P
IfxeVnW,then x = 'E1X" x € N(p)andx € R(uj) forj=1,2,..,p.
i=tj ] ]
D

By (S3)(¢c), N(p.) ¢ R(ul) for j =2, ..., p and we have jszjE R(ul). Hence we
J =

p

have x = x — ‘sz' € R(ul) N N(ul) = {0} , and similarly we may obtain
1 i=2j

X ==X = 0. Thus V.n W = {0}.
D

Now take any x € X. Then x = x + y, for x, € N(z ) and Y, € R(uj) by (a) of
j j j j
(S3).

Sox—.gx' = X—X — XX
i=t ] k itk
= y — % x €R(p )by (c)of (S3)fork=1,2,..,p.
k 4 j k
itk
P P

Thus x — j§1xj € Wand sox = j§1xj + w for some w € W. Hence we get
X=VeW.
L(V) C V and L(W) C W since V and W are invariant under L by (b) of (53).
Thus AL(V) C V and AL(W) ¢ W. Also, M is a homeomorphism, hence
one—to—one. So we may apply theorem 3.20 to get

D(M, 0, 0) = D(M|, 2 0V, 0).D(M|y, @ 0'W, 0) ‘ (39)
with 9 = B (0).

Consider H(t, x) =t A Lxfor (t,x) e JxQ n W.

and suppose 0 = (I —H(t, .))(x) for (t,x) € I x (2 n W).
So0=(I—tAL)x
Ift =0, then x = 0.
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Ift = 1, then (I — AL)x = 0 and so (L — A™I)x = 0. Since A™'is not an

eigenvalue of L, we must have x = 0. Suppose 0 <t < 1. Then

(L —(tA) ™ D)x = 0 with (t A)™"A =t > 1. Henceif x # 0 (tA)!is one of

B e pp, say uj and x € N(uj). But x € W. So wehavex e V.n W = {0}. Thus
x=0.

SoforallteJ,0¢ (I-H(t, .))(6Q nW)). Since H is compact, we have by (D3),
D(M|y, @ nW,0)=D(, 2nW,0)and DI, 2 n W, 0) = 1 by (D1). So

D(MlW, Qnw,0) =1 (40)
Since N(g) is finite dimensional for each i and by theorem 3.20, again, we have
1 p
D(M|y, 20V, 0) =iI=[1d(M|N(ﬂ'), an N(ui), 0). g (41)

1

Now define h(t, x) = (2t = 1)x —t A Lx for (t,x) € J x @ n N(p ) and let

1

0= h(t,x). Then 0= (2t —1)x —t A Lx.
Ift =0thenx=0. If t =1 then (I — AL) x = 0 and hence x = 0, since A is not

an eigenvalue of L. Now suppose 0 < t < 1. Thenifx # 0,

(L — ?t—t}—l I) x = 0 and since g is the only eigenvalue of L | N(”j) we must have

2t — 1 2t -1 ..
= 1 and = Ap. > landsot > 1, a contradiction.
TiA “j t “j n

Thus x = 0. So0¢ h(t, &0 n N(x,))) and hence by (d3)
1

d(MIN(Nj)) an N(/Li), 0) = d(_ile(p'j), an N(:U'j)) 0)

= (-)Bm N(w) (42)

Thus (39), (40), (41) and (42) give us
DM, Q,0) = E{I(_l)dim Np) = (qym(d)

p
where m(\) = i§1d1r11 N(p, ). If there are no such y, then X = W and

i

D(M, Q, 0) =1 = (~1)". A
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We illustrate this theorem with the next example.

3.24 Example
Consider the boundary value problem
x'/ +px=0 inlJ (43)
x(0) = x(1) = 0. (44)

By standard results on boundary value problems, (43) and (44) are equivalent to

x(t) - p f:k(s, t) x(s) ds = 0 inJ

45)
1—-t 0 <¢s <t<1 (
where k(s, t) = {:El—s; 0<t <s<1

1
Let X = C(J) and (Lx)(t) = 'fo k(t, s) x(s) ds. Then L € CL(X).
Thus (45) becomes

x—pLlx=0. (46)

Now (46) has nontrivial solutions <=> p™'is an eigenvalue of L.

If 14 < 0, then the general solution to (43) is

%(t) = ce‘/_"u’t+de_‘/:ﬁt , <0
T le+ dt , p=0."

The boundary conditions in (44) give us ¢ = d = 0. Thus x(t) = 0 for z < 0.
If 1 > 0 then the general solution to (43) is x(t) = ¢ sin(y g t) + d cos (yp t).
Again the boundary conditions give us d = 0 and ¢ sin / g = 0.
For ¢ # 0, csin (y p)=0

<=> sin (y p) =0

<=> 4 =nrfor somen €N

<=> p=n?r?for somen € N.

A # 0 is an eigenvalue of L <=> x — A"'Lx = 0 has nontrivial solutions

<=>x(t) =csin ({A1t) c#0and A= n%s? for some n € .

Thus )\n = (n?r?) ' for n € N are the eigenvalues of L.
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N(L—-AX1I) = {xeX/(L-XI)x=0}
n n
= {xeX/x(t):csin(JFt),ce[R}
= span {x (t):sin(mt)}
n n
= span { x (t) = sin (n7t) }.
n
Thus dim N(L— A I) = 1.
n
We now want to show that k(A ) = 1 (i.e. the algebraic multiplicity of A is 1).
n n
Let x € N((L — A 1)?). Then (L— X I)’x =0 ie (L—A I)((L—X DI)x) = 0.
n n n n
So(L—AT)xeN(L— X I)=span {sin(nnt)}. Thus (L — A I)x = ¢ sin(nnt) for
n n n

some ¢ € R and so

x(t) = A: [Lx(t) — ¢ sin (nmt)] i (47)
Now (Lx)(t) - f;k(t, $) x(s) ds

= ] (b, 9)x(s) ds + ] K(t, 5) x(s) ds

= [ s(1-t) x(s) ds + | t(1-s) x(s) ds

= (1) [ s x(s) ds + t | (1-5) x(s) ds (48)
And so
(L/(1) = = sx(s)ds+ (1) tx(t) + [ (1-8) x(s) ds — ¢ (1-t) x(2)

= —j:s x(s) ds + ,ftl x(s) ds

and (Lx)’(t) = —x(t).

By (47), x'(t) = /\'Ill[(Lx)’(t) — cn7 cos (nt)]

and x’/(t) = /\:[(Lx)’ ’(t) + cn®a2 sin (nmt)].

So x’/(t) + /\'Il1 x(t) = ¢ n?x? sin (n7t). (49)
By (47) and (48) we get x(0) = 0 = x(1).

1 1
Now | sin*(nt) dt = jol e 207t 4

1 [t~ sin 2117:1:]1
2 2nmt Y
1

5.
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Thus 5 n’x’ = cn’r? j;sin2(n7ﬂ;) dt
_ j; (x//(8) + A1 x(t)) sin (n7t) dt by (49).
But [ x'"(t) sin(art) dt
= sin(nnt) x'(1)] | — 1 x'(t) o7 cos(nnt) de
= —nn] cos(nnt) x(1)| | + [ x(t) o sin(urt) dt ]
= —n?r? j: x(t) sin(nat) dt

= f: (— /\I;1 x(t) sin (nt)) dt.

272 = 0 and hence ¢ = 0.

Substituting in (49) we get %n
Thus (L — )\nI)x =0 and sox € N(L - /\nI).

So N(L — /\nI) = N((L - /\nI)2) proving that k(/\n) =1 forallnel.

If A < 0then A )\n < 0 for all n € Nand X!is not an eigenvalue of L and so
m(A) = 0. Thus D(L— AL, B (0),0) = 1for A < 0 and

D(1 - AL, B (0), 0) =1 for A =0.

o< A< 7l A1> (7)1 (n2r?) 1= 2foralln 1.

n

So A"lis not an eigenvalue of L. Also AX < 72 (n27?)! = —12- <1 and so
Il
n
m(A) = 0. Therefore
DI — AL, B1(0)’ 0)=1 for—w< <7l (50)

ol <A< (n+1)27% then A < A1< X. SoAlisnotan eigenvalue of L.
n

ni4l

Now A A 1<1. Sod A <A <1 forallm>n+1. AlsoA XA > 1.
n m n n

+ +1

So A /\i > A /\n > 1 fori =1, 2, .., n Therefore /\1, . /\n are the only
eigenvalues of L satisfying A )\i > 1. Also, the algebraic multiplicity of each )\i is
1 since dim N(L = A D¥4)) = dim N(L - A 1) = 1.
So m(A) = n. By Theorem 3.2.21 we have

DL =L, B (0), 0)= ()" for (am)? < A < ((n + 1)1’
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(50) and (51) give us

D(L - AL, B (0), 0) = {

1
(=1)"

(-1)"

if w< A < 72

if

nlr? < X < (n+ )42
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CHAPTER 4

4.1 SET CONTRACTIONS

We saw that we could extend the degree theory for finite dimensional maps to a degree for
compact perturbations of the identity. Now we extend further to another type of

perturbation of the identity. Before we discuss the degree, we will give some definitions.

41.1 Definition
In the sequel, X will denote a Banach space and 7v: 3— R will_ bé either a or f,
the Kuratowski or Hausdorff measures of noncompactness, respectively.
Let Q ¢ X and F: Q — X be continuous.
Fis Lipschitzif |Fx — Fy| <k |x —y| forsomek >0 andall x,y € Q and a
strict contraction if k < 1. If k = 1 is the smallest Lipschitz constant, then F is
called nonezpansive.
F is said to be y—Lipschitzif 4(FB) <k 9(B) for some k > 0 and all bounded
B C Q.
Ifk <1, wecall F a strict y—contraction.
F is y—condensing if (FB) < (B) whenever B C Q is bounded and 7(B) > 0.
(In other words, y(FB) > «(B) implies that {B) = 0.)
SC,y(Q) will consist of all strict y—contractions F: Q — X and C,y(Q) all
¥—condensing maps.

Fis called a k —set contraction if it is a strict y—contraction with constant k.

These definitions contain the condition that F is bounded; i.e F takes bounded sets into

bounded sets. It is easy to see that SC,y(Q) C C,y(Q).
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Also, if Q is closed and F € C”Y(Q)’ then F is 4—Lipschitz with k = 1. To see this, let B C 2

be bounded. If (B) > 0, then ¢(FB) < (B). If v(B) = 0, then B is relatively compact.

Let (y ) be any sequence in F(B). Theny = Fx for some x € B, n € N. Since B is
n n n n

relatively compact, some subsequence (xk ) of (x ) converges in X to say x. Since ) is
n

n

closed, we must have x € Q and (yk ) = (ka ) converges to Fx by the continuity of F.

n n

Thus FB is relatively compact and hence {FB) = 0 = o{B). We have thus shown that F

is v — Lipschitz with constant k = 1.

41.2 Example

If F:Q— X is Lipschitz with constant k, then F is a—Lipschitz with constant
k. To see this, we use the definition of a. Let B C 2 be bounded and suppose B
admits a finite cover by sets Ul, U2, s Un, such that diam Ui <d,i=1,..,n,
d > 0. Then FB is covered by sets FUr’ ]E‘U27 e FUn, with
diam FUi = sup {|Fx—Fy| /x,y¢€ Ui}

¢ supfk | x-y|/xyeU}

= ksuwp {|x~y| /x,yeU }

= kdiam Ui

< kd.
Thus o(FB) < k o(B) and hence F is a—Lipschitz with constant k.
Now, if we have G : Q@ — X to be a—Lipschitz with constant k, then F + G is
a—Lipschitz with constant k + k. Indeed, if B ¢  is bourided, then
o (F+G)B)) < oFB+GB)

< oFB) + o(GB)

< koB)+koB)
= (k+K) ofB).
Therefore F 4+ G is a—Lipschitz with constant k + k. [
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4.1.3

Example

We know that SCV(Q) C C’Y(Q)' Nussbaum [2] gave the following example of a
map that is a—condensing but not a strict e—contraction.

Let ¢ :[0,1] — R be a continuous strictly decreasing nonnegative function such
that ¢(0) = 1 and consider the map F : B1(0) — ]_31(0) defined by

Fx = 4(|x|) x, where B1(O) is the closed unit ball about 0 in an infinite

dimensional space X. Letre€ (0,1). Ifxe 6(BI¢(I)(O)), then |x| =1 ¢(r) and

x:]_);_rl)q :F)E—I-rgb(r):ﬁgb(r). Lety=%—lx—,then ly| =

Therefore

x=y §(r) =y 4(|y|) =Fy e F BI(O). Thus 6(BI¢(I)(O)) C F"BI(O). So we
obtain

a(F B,(0)) 2 a(0(B,y(0))) = 21 §(1) = a(B(0)) ¢(r).

If for some k < 1, F' is a k—set—contraction, then o(F B_(0)) <k o(B_(0)). Since
¢ is strictly decreasing and continuous, we see that ¢(r) — 1 as r — 0, and we
can therefore find r > 0 such that ¢(r) > k, giving us

o F EI(O)) > a(BI(O)) #(r) > k a(EI(O)), a contradiction.

- Thus F cannot be a k—set—contraction for any k < 1, i.e. F cannot be a

strict a—contraction.
Now let B ¢ B1(O)' Then FB C conv (B U {0}) and hence

o FB) < ofconv (B U {0})) = a(B U {0}) = «(B). (1)
However, we can say more than this. Let B C EI(O) with o(B) =d > 0. Select
0<r<d andlet B =BNB0) and B =B\ B (0). Now
d= a(B) < o(B (0) = 2. Thereforer < & < 1 and s0 B(0) C B (0). By (1) we
get a(FBl) < o(FB(0)) < a(EI(O)) = 2r < d = o(B). Therefore

o(FB ) < a(B). )

Ifbe B2 =B\ BI(O) , then |b| > r and since ¢ is strictly decreasing,
#(|b]) < ¢(r). Therefore
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FB = {Fb/beB}
= {4(]b))b/beB)
C {Xb/beB0<A< ()}
C conv (4(x)B U {0} ),
since we have 4(r) > 4(1) > 0and Ab = ﬂ% #(r)b + (1 — a%?j) 0.
Thus a(FBz) < a(conv (4(r)B U {0} ))
= o{¢(r)B U {0} )
= 4(x) of(B)
< ofB). (3)
Now B = B1 U B2 and FB C FB1 U FB2. Therefore, by (2) and (3), we have
ofFB) ¢ ofFB UFB )
= max {a(FBl), a(FBZ)}
< ofB),
showing that F is a—condensing.

Thus F is a map that is a—condensing but not a strict a—contraction. @

We know that every Lipschtz map with constant k, is also 4—Lipschitz with the same
constant k. In the following example our map is Lipschitz with constant k, but

¥—Lipschitz with a smaller constant k.

414  Example

Consider the ball-retraction R: X — B1(0) given by

_ X if |x|<1
Rx=4 x . .
m if |X|21
Let x,y € X. If [x] <1and |y] <1, then |Rx—~Ry| = |x—y| <2|x—y|. If

|x| >1and |y| > 1, then
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|Rx — Ry|

x| = Iyl | + Ix =]

|lx—y| + |x—y

2 |x —yl|.

If (x| >1and |y| <1, then

|Rx — Ry |

LA

X_.
T 7

1 1
r vl =] )

x=y] +|Ix - 1] Iy|
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< Px=yl+ (Ixl =D
< eyl Il = 1y
< lx=yl+ [x—yl

= 2[x—yl
Thus for all x, y € X, |Rx — Ry| < 2 |x —y| and so R is Lipschitz with constant
2.
Hence R is y—Lipschitz with constant 2. But this constant can be improved
upon. )
Let B ¢ X be bounded. Foranyx € B, x=1x+ 0.0 € conv (B U {0}) and
T’l_(TX + (1 _T’_I(T) 0 € conv (B U {0}). Hence Rx € conv (B U {0}) and so
RB € conv (B U {0}). Thus y(RB) < y(conv (B U {0})) = 1{(B U {0}) = ¥(B).

So R is y—Lipschitz with constant 1. [

Theorems 3.5(b) and 3.6 can now both be extended to y—Lipschitz maps.

41.5

Proof :

Theorem

(a) Let B C X be closed bounded and F € C,y(B). Then I — F is proper and
maps closed subsets of B onto closed sets.

(b) Let Q@ C X be open, F :  — X be y—Lipschitz with constant k and
differentiable at X Then F’(xo) is y—Lipschitz with the same constant
k.

(a) Let K be compact and A = (I —F)(K). Then (I - F)A = K and
A CK + FA. Therefore 1{A) < WK 4+ FA) = 1(FA). Since F € C,y(B),

YA) = 0 and so A is relatively compact. But I —F is continuous and K
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is compact, hence closed. Thus A is closed, hence compact. Thus I — F
is proper and since it is continuous, it must also be closed.
(b) Since F is differentiable at X5 F(x0+h) = F(xo) + F’(xo) h + w(xo, h)

where

‘w(ﬁxg,_h)‘ — 0 as |h| — 0, i.e. for € > 0, there exists § = §(¢) > 0
such that |w(x0, h)| < e |h| when |h| < é If B C X is bounded, then
B C B (0) for somer > 0. Therefore AB C A B (0) = B5(0) where
A= % Hence -
A () XB) < ARG, + AB)) + 2(E(x ) + 2ulx,, AB))
= 7(F(x0 + AB)) + ’y(w(xo, AB))..
Now if x € B, then |Ax| = ) |x| <A1t = éand so |w(x0, Mx)| < eé.
So for x, y € B,
|w(x0, Ax) — w(xo, Ay)| < |w(x0, Ax)| + |w(x0, Ay)| € 2¢€é.
Therefore 'y(w(xo, AB)) < 2¢6.
So A 'y(F’(xo)B) 'y(F’(xo) AB)
< AF(x + AB)) + 2¢5

< k 'y(xo + AB) + 2¢6
= k y(AB) + 2¢6
Ak 1(B) + 2¢6.
Thus 1(F (x )B) < k %(B) + 2£9 =k 4(B) + 2er — k 1(B) as ¢ 0.

]

I

So fy(F’(xo)B) < k y(B) showing that F’(xo) is ~-Lipschitz with
constant k. ()

Dugundji’s extension theorem yields, as an easy exercise, that every compact map on a

closed subset of X has a compact extension (see theorem 3.7). We cannot obtain such a

result for -Lipschitz maps.
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If F: BI(O) — X is y—Lipschitz with constant k, then there exists a ~—Lipschitz
extension, with the same k, to all of X, namely FoR where R : X — BI(O) C X is defined
by

X |x—x | <1
Rx = X — X 0 .
x +r——0 |x—x | >1

x — x| :

0 v
In a Hilbert space, any —Lipschitz map defined on a closed convex set has a 4—Lipschitz
extension with the same constant. This follows from the next theorem, which we state

without proof.

41.6 Theorem
Let X be a Hilbert space and C C X be closed and convex. Then the metric

projection P : X — C is nonexpansive, in particular a—Lipschitz with constant

k=1.

The following lemma, which will play an important role in the sequel, is due to

Kuratowski (1930).

41.7 Lemma

Let X be a Banach space, (B ) a decreasing sequence of nonempty closed subsets
1

such that (B ) — 0 asi-— . Then 0 B_is nonempty and compact.
1 1 1

Proof :

Since each B_is closed, N B is also closed. We just need to show it to be
1 1 1

relatively compact. Suppose o( 0B ) > Oandlet ¢ = o( n B)). Since o(B) — 0
1 1 1 1

).
1
as 1 — o, there exists N € N such that i > N implies that o(B ) < €. So fori N,
1

we have a(Bi) < a(NB)<aB), a contradiction. Thus o N B)) = 0 and so it
1 1 1 1 1

is relatively compact. Being closed, it must also be compact.
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We must now show that N B_# @¢. Since each B_is nonempty, for each i we ca
1 1 1

choose an x_ € B_. Then
1 1

o {x,/121}) = o({x, /12P}Ux [i=1,2, ., p-1})

= a({xi/in}) for all p.
Now{xi/in}ng. Hence of {xi/in})ga(Bp)—»O as p —
Therefore o {xi/in})—»O as p — o and so a({xi/121}):0. Th
{xi / 1> 1} is relatively compact. Therefore (xn) has a convergent subsequenc

say X — X . We claim that X € N B. To show this, take n € N. k >
. 1 1 1
1
implies that x € B CB . So{x /k >n}CB. Nowx —x andB
k. k. n k. i n k 0 n

i i i i

closed. Thus X € B . But n € N was arbitrary. Hence we must have X eENB
n 1

1

Thus B is a nonempty compact set.

Now we obtain a generalisation of Schauder’s fixed point theorem.

418

Proof :

Theorem

Let C C X be nonempty, closed, bounded and convex, and F : C —

y—condensing. Then F has a fixed point.

We will assume, for now, that 0 € C.

(1) Suppose the result is true for strict y—contractions. Choose k < 1 su
n

that kI — 1 (for example k = ) l, ) and consider k F. For x € ¢

) n i=1gi n

we need to have kan € C. Since0 € C and Fx € C,

kan = kan + (1- kn) 0 € C because C is convex. Therefore

knF :C— C. Let BCC. Then

7((knF)B) = kn'y(FB) < knv(B) if y(B) > 0. If ¢(B) = 0, then B

relatively compact and so is FB. Thus
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1k (FB)) = kn'y(FB) = 0 = 9(B). Therefore

k F: C— C is a strict »—contraction. Since the result is true for these
n

maps, k F has a fixed point x € C,ie. k F(x )=x.
n n n

n n
Sox —Fx =k Fx —Fx =(k —1)Fx — 0 asn— w. But
n n n n n n n

x —Fx =(I-F)x € (I-F)(C)andI—F is closed (by theorem 4.5),
n n n
0 (I—F)(C) is closed. Thus 0 € (I —F)(C). So there exists x € C such
that 0 = (I -F)x , i.e. Fx =x.

0 o o

Now suppose F :C — C is a strict y—contraction with constant k < 1.

Define a sequence (C ) by C0 = C,C =conv (FC 1), n>l.
n n n-

C1 = conv (FCO) = conv (FC) Cconv (C) =C = Co' Suppose Ck C Ck-1'

Then Ck | = conv (FCk) C conv (FCk 1) = Ck. Hence by iﬁduction,

C2C2CO...
0" 1~ 2
Thus we have a decreasing sequence of closed convex sets. We also have,
HC ) = ~conv (FC ))
n n-1

= AFC_)

ka(C )
ki(C_ )

A

I

gkny(Co)—»O as 1 — m.

Thus 7(Cn) —0 asn—w. Let C = nﬂocn Then C is closed, bounded
and convex. By lemma 4.17, C is compact. For any

x € C, we have x € C foralln SoFxe Fcn_1 ¢ (conv FCn_l) =C_ for
all n. Thus Fx € C and hence Flé : C — C. Since C is compact, Fl{; is

a compact map. Hence by Schauder’s fixed point theorem, there exists
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x € C such that Fx =x . Since CcC, F:C—C has a fixed point.
0

Now suppose 0 ¢ C. Since C # @, there exists y,€ C. Now consider C’ = C — Y,

and F'(x) = F(x + yo) — ¥, Then 0 € C’ and F’ : C© — C’ s also

y—condensing. So by part 1, F’ has a fixed point, i.e. there exists X € C’ such
/ = . — = d F —

that F X =X Therefore F(x0 + yo) y,= X, andso (x0 1 yo) X + Y, |

and F has a fixed point. 3

The previous theorem is a result of Darbo’s theorem and a fixed point theorem of

Krasnoselskii [35].

We are now ready to define a degree for y—condensing maps. As in the case of the

Leray—Schauder degree, we consider the triplets (I — F, Q, y) where X is a Banach space,

Q C X open bounded, F:  — X is y—condensing and y € X \ (I — F)(9), and we define

a unique Z—valued map on these triplets that satisfies the properties :

(D1) D{, Q,y) =1 ifye Q.

(D2) If Q1 and _ are disjoint open subsets of ( such that y € X \I-F)(Q\ Q1 U QQ),
then D(I-F,Q,y) =D(I-F,Q,y)+ D(I-F, Q7).

(D3) Let H:JxQ—X,y:J— X be continuous, y(H(J x B)) < 1(B) for B € Q and
¥B) > 0 (i.e. His y—condensing) and y(t) € X \ (I—H(t, .))(4Q). Then
D(I —H(t,.), 2, y(t)) is independent of t.

Degree for Strict +—Contractions

Let £={(I-F, Q,y)/ QC X is open bounded, F :  — X is a srtict y—contraction, and
yeX\ ([I-F)() }
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We first show that if there exists a T—valued function on 4 satisfying (D1)—(D3), then it

must be unique.

Uniqueness:
Since D satisfies (D1)—(D3), it must also satisfy (D4)—(D7). So by (D4) we have
D(I—F, Q,y)=0if (I—F)Yy) = 0. Therefore we assume that (I —F)7(y) # 6.

Let C0= conv (F(Q) + y) and C = conv (F(Q n Cn 1) +y). Now
1 _

C = cony (F(Q) + y) 2 conv (F(Q2n C)+ y) = C . Therefore C 2 C..
J .
Suppose Ck_1 ) Ck Then

Ck+1= conv (F( n Ck) + y) Cconv (F(Q2n Ck-1) +y)= Ck'

Therefore C is a decreasing sequence of nonempty closed convex sets. Also
n

AC) = ofconv (F(@nC ) +y)
= AF@nC_)+y).
= A(E@nc, )

¢ AF(C )
¢ kAC )
<

¢ kK*9(C)—0 as n — o, sincek < 1.
w

By lemma 4.7, sz nQOC is nonempty, compact and convex. .

We will now show that (I — F)X(y) ¢ C NG Letxe(I—-F)!y) Then I-TF)x =y.

Since y ¢ (I~ F)(02), we must havex € . Also x=Fx+ ye¢ Co’ therefore

x:Fx—{—yGF(QnCO)+y§Cl,andsox:Fx—i—yGF(QﬂCl)-i—ygCQ. IfxeC,
n

then x =Fx+ y e F(Q n Cn) +ycCC . Therefore x € C foralln, s0 x € C_, and hence
04+

n

xeC no.
m
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From the definitions of the sets Cn we hzive that F(Q n Cm) +y<cC_.
Since C_ is a closed convex subset of the nls. X, C_ is a retract (from the remark after
definition 1.2.16). Let R:X -— C_  be a retraction.
We will show that (I — F)(y) C R™(Q) n Q. Since (I -F)(y) C C_n Q, we will show
that C NQCRHNQ)NQ. Let x€ C_NQ. Thenxe C_and x € 2, which means that
Rx = x € Q. Therefore x € R7(x) C R7Y((), and hence x € R7}(Q) n Q.
I-F)Yy) ¢ RYQ) n Q implies that y ¢ (I — F)(@ \ (R(Q) n Q). Since R is
continuous, R"Y() n Q is open and by (D7) we have

D(I—F, Q,y)=D(I—F, RYQ) nQ,y). (4)
We now show that D(I—~F, RY(Q)nQ,y) = DI -FR, RY(Q)n Q, y).

Define H:J x R(N) n @ — X by H(t, x) = t FRx + (1 — t)Fx = Fx + t(FRx — Fx).

Then H is continuous.

Supposey = (I—H(t, .))x fort € Jandx € R{(Q2) n © CRYQ)nN. Then
x=y+ H(t,x) =y + Fx + t(FRx — Fx) = (1 —t)(Fx + y) + t(FRx + y).
Nowx € RH(Q) n Q. SoRx e N andx € Q. Therefore Rx € O n C foralln.
Hence FRx + y € F(Q n Cn) + y foralln. Now x € Q implies Fx + y € F(Q) + y.
Therefore x = (1 —t)(Fx + y) + t(FRx +y) € conv (F(Q) + y) = C, So
Fx+yeF(Qn Co) + y, and hence

x=(1-t)(Fx +y) + t(FRx + y) € conv (F(Q n Co) +y) = Cl. Again
Fx+yEF(QnCl)+y,andso

x=(1-t)(Fx +y) + t(FRx + y) € conv (F(Q n C1) +y) = C , etc.. Thus we have
X € Cn for all n, and hence x € C_. Therefore Rx = x and so x € (I - F)"(y). But
(I-F)y) ¢ RQ) nQ which is open. Therefore x € R(2) n €, and so

x ¢ O(R(Q) n Q). Hencey ¢ (I—H(t, .))(ARQ) n Q).

Let BCR(Q) n Q. We will now show that 1{H(J x B)) < k y(B).
Now H(t, x) = (1 —t) Fx + t FRx. Therefore H(J x B) C conv (F(B) U FR(B)). Now
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R(X) ¢ C_and C_is compact. Hence
NR(X)) ¢ ¥(C_) = 0. Therefore v(R(X)) = 0, and so R(X) is relatively compact. Thus
R € % (X). So R(B) is relatively compact, and therefore FR(B) is relatively compact,
which implies that 4(FR(B)) = 0. Therefore
AH@ xB)) < ofconv (F(B) U FR(B)))

= (F(B) UFR(B))

— max {1(F(B)), +(FR(B))}

— 1(F(B))

<k 9(B)
By (D3), )

D(I-F,RYQ)NQ,y)=D(I—-FR,RY(Q)nQ,y). (5)

Now FR(RY(Q) n Q) ¢ FR(X). Now R(X) relatively compact implies that F(R(X)) is
relatively compact. So YFR(RYQ) n Q)) < F(R(X))) = 0. Therefore FR(RY(Q) n Q) is
relatively compact, implying that FR € F(R(Q) n Q). Thus (I -FR, RYQ) nQ,y)isa
LS—triplet. By the same procedure used in chapter 3, using the uniqueness of the
Leray—Schauder degrée, we can conclude that

D(I - FR, R(Q) 00, y) = D (I - FR, R(Q) n Q, y). (6)

Thus we have shown that

D(—F, 0, y) = {DLS(I—FR, RHQ)NQ,y) i (I—F)y) #0
0 i (1- )iy = ¢

We now show that this formula can be used to define the degree, i.e. we show that R can
be replaced by R in (6) (where R is any retraction of X onto any closed subset C satisfying
c_cc, F(QNnC )+ yCCand F(Qn C)is relatively compact).
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Well—defined:

A set C satisfying all the above properties does exist, namely Cw itself. Since C is closed
convex, it must be a retract (follows from the remark after definition 1.2.16). Let

R: X — C be a retraction, and Q= R(0) n 0, Q = RY(02)nQ, and Q=0nQ.
We show that (I — FR, QQ, y) is a LS—triplet. Easily, we have 92 open bounded and

FR ¢ %(Qz). We need to check that y ¢ (I — Ff{)(aﬂz). Suppose y = (I — FR)x for some.
X € ngf{'l((—l) n{. Thenx =y + FRx. Now Rx ¢ 2 n C. So

x=y+ FRxey+ F(nC)CC. Therefore x € C and hence Rx = x. So we have

y = (I-F)x. Sincey ¢ (I —F)(69Q), we must have x € Q. But Rx = x and so

x € R € R(Q). Therefore x e R(Q)n O = Q. Thusx ¢ & . Soy ¢ (I- FR)(@QQ),
proving that (I — FR, Qz, y) is a LS—triplet.

We now show that DLS(I —FR, Ql, y) = DLS(I —FR, Qa’ ¥)-

Suppose y = (I — FR)x withx € Ql\ Qs' Then x = FRx + y. Now

Ql\ Q= RYQ)n Q\ (RYQ)nQ)n (RYQ) n Q)

Q) n 2\ (RYQ) NRYQ) N Q)

Il
=

F(QnCw)+y§Cw,wehavex:F(Rx)+y€F(QnCw)+y§CmgC. Hence Rx = x
and Rx = x, which means that x € R™(x) and x € R"(x). Therefore
y=x—-FRx=x-Fx=(I-F)x withx € Q. Sincey ¢ (I—F)(00), we must have x € €.
Sox e R Q) nRYQ) N Q = 1, a contradiction. Hencey ¢ (I— FR)(QI\ 93). Therefore
by (D, 47),

Dys(I~FR,Q,y) =D (I-FR,Qy). (7)
Now we show that D (I — FR, Q,y) =D~ FR, 2, y)- We will use (D7), by
verifying that y ¢ (T — Ff{)((_lz \ Qs)' Suppose y = (I —FR)x where x € (_22 \ Qs' Then
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x=FRx + y. Now

0\ 0 =RYQ) n 0\ (RYQ) 0 RYQ)n Q) ¢ ®RI(Q)n Q) \ (RHQ) N R(Q) n Q).
Thus x € R(Q) n Q, and so Rx € Q and x € Q. Therefore
x=FRx+yeF@nC)+yCC. SoRx=xandx € R(x). Therefore

y=x~FRx =x—Fx = (I-F)x. Sincey ¢ (I—F)(60), we must have x € Q. Therefore
x€e RY(x) CRYQ). Nowx=FRx+yeF(Q) +y¢C Co’ which means that Rx = x € Co.
Sox=FRx+yeF(Qn Co) +ycC C1’ which means that Rx = x € C1' Again

x=FRx +ye F(Qn C1) +yC C2,'etc. . Thus x € C for all n, and hence x € C_.
Therefore Rx = x, and so x € R"{(x) C R*{(Q). This givesusx ¢ R(Q) nRY(Q)nQ = 93,
a contradiction. Thus we must havey ¢ (I — FR)(Q2 \ Qs)' By (D, ;7), we obtain

oI —FR, Q,y)=D(I- FR, Q,). (8)
Now we show that D (I —FR, 93, y)=D (- FR, Q, y).

D

Consider H :J x (23 — X defined by H(t, x) = t FRx + (1 —t) FRx.

(23 =RYQ) n RYQ) n @ CRYD)NRYD)nQ,s0ifx e Qs, then Rx € Q, Rx € 0 and
x€Q. SoFRx € F(QnC_)and FRx € F( n C). Therefore
H(t, x) =t FRx + (1 —t) FRx € conv ( F( n Cm) UF(QnC)), and hence
H(J x Qs) Cconv (F(@nC_ ) UF(QNC)). Therefore,
YH(J Qs)) < yconv (F(Q2n C)UF(@nC)))
= AF(@nC )uF(QnC))
= max {1{F(Qn C)), (F(Q@nC))}
= 0, since F(Q n C_) and F(Q n C) are relativelf compact. Therefore
H(J = (_23) is relatively compact. We need to show that y ¢ (I — H(t, ))(393) on J.
Let y = (I-H(t, .))x for (t,x) € J x (_23. Then

x=y+ H(t, x) = t(FRx + y) + (1 —t)(FRx + y). Nowxeﬁsgﬁlnﬂ2, soxeﬁland

X € Qz. Ql =RHQ) N Q@ CRYQ) N Q. Therefore Rx e Qandx € 0. SoRxe Q n C
a
and hence FRx + y € Cm cC.
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Similarly, since x € Q2, we obtain FRx + y € C. Therefore
x = t(FRx + y) + (1 —t)(FRx 4+ y) € conv C = C since C is convex. Thus Rx = x.
Since x € , Fx + y € Co. So x = t(FRx + y) + (1 — t)(Fx 4+ y) € conv C0 = Co.
Therefore x € QN G, and 50 x = t(FRx + y) + (1 — t)(Fx + y) € conv C = C,, etc. .
Hence we get x € Cm, and so Rx = x. Thus x = Fx + y. As before
(I-F)Yy) CRYQ) N Q and (I-F)Y(y) CRY(Q) Q50 I~F)y) £ Q. Thus
x ¢ 693. Therefore y ¢ (I —H(t, ))(803)
By (D ¢3),

D I-FR,Q,y)= D (I-FR, Q7). (9)
By (7), (8) and (9) we have

D (I—-FR,RHQ)nQ,y)=D (I- FR, R(Q)n Q, y).

Thus we have shown that on our definition, the degree is well—defined.
We now go on to show the existence of such a map.

Ezistence:
IfF € SC_ (1), and y ¢ (I~ F)(602), define
D(I-F, 0,y) =D, (- FR,RY(Q)nQ,y),
where C is any closed convex subset of X satisfying C_ C C, FONC)+yCC,FQnC)is

relatively compact and R : X — C is any retraction.
We must now show that D satisfies (D1)—D3).

(D1) :
Let y € Q. If F = 0, then Cm: {y} and R:X — {y} defined by Rx =y for all
x € X is the retraction. So D(L, @, y) = D (I, RYQ) nQ,y). Sincey € {y}, we must

have Ry =y. Thusy € R'(y). Wealsohavey € Q. Soye RY(y)n Q. By (D, 1),
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— -1 —
D(L Q) Y) - DLS(I’ R (Q) n Q: Y) = 1.

(D2) :
Let F e SC,y(Q), y ¢ (I—F)(09) and Q1’ Q2 disjoint open subsets of Q2 such that
yE(I-F)(Q\ Q1 u Qz)' Now

D(I-F,Q,y) =D (I-FR, RHQ)nQ,y) (10)
where R: X — Cm is a retraction.
R"(Ql) nQ and R“(Q2) N Q) are disjoint open subsets of RY(Q) n Q. We need to show

that
vy ¢ (I-FR)RYQ) n Q\ (RM(Q)nQ)u(RYQ)nQY). Suppose y = (I—FR)x
forxe RY(Q) n Q) ((R'I(Ql) n Q1) u (R‘I(QZ) n Qz)) Then x = FRx + y. Also

RY Q) n Q@ CRYNQ)NQ. SoRxeQ and x € Q. Therefore

x=FRx+yeF(Qn Cn) +y foralln. Sox € C_and hence Rx = x. Therefore
y=(I—-F)x. Sincey ¢ (I - F)(Q\ Q1 u Qz) and x € , we must have x € Q1 u Qz’
Suppose (without loss of generality ) that x € Q{ Since Rx = x, we have x € R"(Ql) n Ql,

a contradiction.

Therefore y ¢ (I — FR)(RY(Q) n Q \ ((R'l(Ql) n Ql) U (R‘I(Qz) n Qz))) Applying

(DLS2), we get

_ -1
D (I-FR, R7(Q)n Q,y)

=D (I-FR,RY(Q)NQ,y)+D (I-FR,RYQ)na,y) | (11)
Let C; be constructed just as C_ was, with Q replaced by Q , where i = 1, 2.
1
If (I-F)(y)n Q #9, then ClcC , R:X— C_ and C_is admissible. So
_ _ _ 1
D(I-F,Q,y) =D (I-FR,R(Q)nQ,y)

i

Suppose (I —F)X(y) n Qi =§¢. Then D(I—-F, Q,y) =0. We must show that
1

D (I-FR,RY Q)N Q, y) = 0. Suppose (I —=FR)y)nRY Q) n Q # 0. Then there
1

i i

104



exists x € (I-FR)"(y) nRYQ) n @ C(I-FR)Yy)n R'l((_li) n Qi. This implies that y
1 1
=(I—FR)xandx € R} ) n . Therefore x = FRx 4+ y and
1 1

Rx e 2nC_. Thusx € C_ andso Rx = x. Therefore y = (I —F)x. Since

y ¢ (1 —F)(6Q), we must have x € Q. So we obtain x € (I —F)(y) n ﬁi, a contradiction.

Therefore (I — FR)(y) nRY(Q) n Q =@, resulting in

1 1
D (I-FR,RYQ)NQ,y)=0. SoDI-F,Q,y)=0=D (I-FR,RY(Q)NQ,y).

LS i i i LS i i
So we obtain in either case,
D(I-F, Q,y) =D (I—FR,RYQ)nQ, ). (12)

1 1 1

By (10), (11) and (12), we have
D(I_F: Q; Y) = D(I—F) Ql, Y) + D(I_F7 Qza Y)a

proving (D2).

(D3):
Let H:J x 2 — X be a strict y—contraction with constant k < 1, y : J — X continuous
and y(t) ¢ (I—H(t, .))(dQ) forallteJ.

Let C_ = conv (H(J = Q) + y(3)),C =conv (HJIxQnC 1) +y(J)) forn>1 and
n n-

C (H)= n C . Asbefore C_(H) is compact, convex, and closed.
nzo n

Suppose (I —H(t, .))(y(t)) # 8. Then there exists x € (I — H(t, .))(y(t)). Therefore
x = H(t, x) + y(t) € Co' Sox = H(t,x) +y(t) € Cl, etc. . Therefore x € Cm(H). So
Cm(H) = ¢ implies that (I—H(t, .))™(y(t)) = 0, and so D(I - H(t, .), 2, y(t)) = 0 for all
t€J.
Suppose C_(H) # § and let R :X — C_(H) be a retraction. We need to check that
C_(H) is admissible. Consider H(t, .) for some t € J. Then Cl ¢ C_, where C. is
constructed as Cm was, with F replaced by H(t, .) and y replaced by y(t).
H(t, @n C_(H)) + y(t) C C_(H) by definition of the sets C and

n
H(t, @nC_(H)) CH(JT x Qn C_(H)). So
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w H(t, @ n Cm(H))) <y H(T x Qn Cm(H))) <k /2N Cm(H)) = 0 since Cm(H) is
compact. Therefore H(t, Q n Cm(H)) is relatively compact. Thus Cm(H) is admissible.
Hence D(1— H(t, .), @, y(t)) = D, (I - H(t, R(.)), R(Q) 0 2, y(1)).

YHJ x R(RY(Q) n 0))) < HIT x (R(Q) n2))) <k {R(Q) N Q) =0 since R(N) C C_(H)
which is compact. So H € % (J x Q, X), and by (DLS3) we have

D, (I-H(t, R(.)), R7(Q) n Q, y(t)) is independent of t.

The following theorem ensures that the degree for set contractions is in fact an extension of

the LS—degree.

419 Theorem
IfFe #() and y € X\(I - F)(0), then
D(I-F,Q,y)=D_(I-F,Q,y).
Proof :
By the same procedure as that used in getting equations (4) and (5) in the
uniqueness proof, we get
D (I-F,Qy)=D (I—FR,RY(Q)nQ,y)
where R is defined as before. Also by definition
D(I-F,Q,y) =D, (I-FR,RYQ)nQ,y).
Thus
D(I-F,Q,y)=D (I-F Q). 4

Degree For ¥—Condensing Maps

We first show that if F is y—condensing, then k F is a strict 7—contraction for all positive
k<1
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Let F:Q—X bea y—condensing map. Then k F: @ — X. Take any bounded set

B ¢ Q. Then 7((k F)(B)) = 1(k F(B)) = k 7(FB).

If y(B) > 0, then k 1(FB) < k 7(B) since F is y—condensing.

If 9(B) = 0, then B is relatively compact. Since k F is continuous, k F(B) is relatively
compact, and so y(k F(B)) = 0. Therefore 1((k F)(B)) =0 =k ¢(B).

Thus in either case, 7((k F)(B)) < k 4(B), proving that k F is a strict p—contraction.

We now establish the uniqueness of the degree, if it exists.

Uniqueness:

Let

HA={I1-F,Q,y)/ QCXopen bounded, F : & — X p—condensing and yﬂﬁ (I—F)(60)}
and suppose that that there exists a map D : A4 — I satisfying (D1)—(D3).

Let (I -F,Q,y)€ 4. By theorem 4.5, I — F is proper, hence (I — F)(0) is closed.
Therefore p = p(y, (I —F)(0Q)) > 0. Let 0<r=sup {|Fx| / xeQ}. Choose

0 ¢k < Lsuchthat (1 —-k)r < p.

Define H:Jx Q0 — X by H(t, x) = (1—t) Fx + t k Fx = (1 — t(1 — k)) Fx for
(t,x) e J x Q.
Then H is continuous.
Let B € Q with 9(B) > 0. Then H(J x B) C conv (FB Uk FB). Therefore
WH(J x B)) < Aconv (FB Uk FB)) = «{FB Uk FB) = max { 1(FB), vk FB) }
= max {}(FB), k 7(FB) } < (B).
Also, for (t, x) € J x 99,
|y — (I~ A, .))x] = |y~ (I~ F)x+t(1—k) Fx|
> |y~ (1-F)x| —t(1 - k)| Fx]
> p—t(1-k)

> p—p
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= 0.
Therefore y ¢ (I — H(t, .))(dQ) for all t € J. Thus by (D3),we have
D(I-F, Qy)=D(I-%kF, Q).
By above k F is a strict y—contraction.
As was done in the Leray—Schauder degree, we can show that

D(I-kF Q,y)=D.,, I—-kF, Q,y) where D, is the degree for strict y—contactions.

SC
I'y

Therefore D(I-F, Q,y) = Dy, (I-kF, Q,y), showing the uniqueness of the degree.
Y

Now to show the existence of the dégree.
Ezistence:
For F ¢ C,y(ﬁ) and y ¢ (I—-F)(09) define the degree by

DI-F,Q,y)=D,.. (I-kF,Q,y),

SC
I'y

where (1 —k) sup |Fx| < p(y, (I-F)(0Q)) =p,andk < 1. Lett = sup |Fx|.
x€Q x€()

We now want to show that for k1 and k2 satisfying these conditions,

Dgo (I-kF, €, y) =D

sc (1 —k2F, Q,75).
vy

SC
Define H:J x 0 — X by H(t,x) = (1— t)lex —}r-ytk2Fx for (t,x) € J x 0.
H is continuous. For B C (,
YH(J x B)) < fconv (leB U k2FB))

= 1(k FBUK FB)

= max { 'y(leB), 'y(k2FB) }

=k y(FB) for k = max {kl, k2}

< «B) since 0 < k < 1.
Lastly, we must show that y ¢ (I—H(t,.))(8Q) for t € J. Let (t,x) € J x 49, then
ly = (T—H(t, .)x| = |y—x+H(, x)|

= Iy =((=F)x— (1 =t)(1 —k) +t(1 ~ k )) Fx |
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—((1= (1 =k ) + 1=k )1

(1=t +1p)

\Y
o v 0o

Therefore y ¢ (I— H(t, .))(8Q) for t € J. Thus (Dy, 3) is satisfied, proving that

v
Dy, (1—kF,Qy)= D507(1 ~kF, Q,7).

We will now show that (D1)—~D3) are satisfied.

(D1) :

Let y € Q.

D, Q,y) = Dy (I-kF, Q,y) where F =0and any k € [0, 1). By (DSC 1),
Y Y

Do, (I-kF,Q,y) =1, proving (D1).
v

(D2) :

Let F € C“Y(Q)’ Q and ©_ disjoint open subsets of © with y ¢ (I—-F)Q\ Qu (22). Let
p=ply, T=F)(09Q)), 6§ = p(y, I-F)(Q\ (Q1 u 92))) and choose k € [0, 1) such that
(1-k)r< § wherer =sup {|Fx| /xeQ}. Now §<p,s0(1—k)r<p. Therefore by

definition, D(I-F, Q, y) = D, (I-k F, Q,y). We now need to show that
Y

yﬁ(I—kF)(Q\QIUQ2). Leter\Qluﬂ2. Then

ly = (I -k F)x| = |y —=(I-F}x—(1-kFx]|
> |y =(I=Fx| -(1-k) |Fx|
> f—(1-%k)r
> 0—96
= 0.

Soy £ (I-kF)(Q\ Q1 u 02). Thus
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Dy 7(1 ~%XF,Qy) = Dscv(l ~kF, Q,y) + DSC“Y(I ~kF,Q,y).

Now to show that

C

(1—k)sup {|Fx| /xeQ}<ply, I—=F)(0Q)) fori=1,2.
Now sup {|Fx| /x€eQ} <sup {|Fx] /xeQ} =1 and
ply, T=F)00)) > ply, T—F)(00)) = p since dQ C dQ fori= 1, 2. Therefore

i

(1—k)sup{|Fx|/xEQi} < (1—k)sup{|Fx|/xeQ}
= (1-%)r
< p

< oply, (=F)(0) fori=1,2.

Thus D, I-%XF Q,y)=D(I-F,Q,y) fori=1,2 -
,-y 1 1
Hence D(I-F, Q,y) = D(I —F, Q1’ y) + D(I—F, Qz’ y), proving (D2) for y~condensing

maps.

(D3) :
Let He C(J x Q, X), y € C(J), y(t) ¢ T —H(t, .))(62) on J and for B ¢ Q with 4(B) > 0,
JH(T < B)) < o(B).

Let p, = p(y(t), (T —H(t, .))(0Q)) > 0 and p = inf P
ted

r = sup {|H(t, x)| / (t,x) € J x Q@ }. Assume that p > 0, and choose k € [0, 1) such that
(1—k)r < p. Then
(1 -1 sup {|H(t, )| /x €0}

< (1K) sup {/H(t, x)] / (1, %) € 3« O

= (1-kr

<y

= inf p
teJ ¢

< p forallteld.
b

Thérefore,
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D(I-H(t, ), 2, y(t)) = DS%U -k H(t, ), 9, y(t)),

and this is independent of t since 1k H(J x B)) = k 1{H(J x B)) < k +(B).
Thus (D3) holds.

We still have to show that p = inf P, > 0.
teJ

Suppose p = 0. Then there exists a sequence (t ) C J such that p, 0. For each n, ther

n

exists x_€ 0 such that [y(t ) — (1= H(t, ))(x )| <o, + L and p +5 —
n

Therefore

— (I — — — . 9i C
Iy(tn) (I H(tn, ))(xn)l — 0, and hence y(tn) (xn H(tn, xn)) — 0. Since (tn) C
with J compact, there exists a subsequence of t converging in J, say t — to (without lo

n n
of generality). y continuous implies that y(t ) — y(to). Now
n
{x /neN}C{x —H(t ,x)/neN}+{H(t ,x)/nel}
n n n n n n
x ~H(t,x )=y ) —(5(0) ~ (c ~H(t,x ) —y() =0 =¥t
So{x —H(t ,x )/nelN}U {y(to)} is compact. Hence
n n n
M{x —H(t ,x)/nelN} =0,andso
n n n
'y({xn/nE[N})SO-i—'y({H(t ,X )/nelN}). Now
n n
A{H(t, %) [neN}) <HHTx {x [neN})<o({x [nel)) i
n n
'y({xn/nelN})>0.
Thus y({x /nelN})=0 andso there exists a subsequence of x that converges,
n n
S say X — X (without loss of generality). But (x ) C Q2 which is closed, and so
n

x € & C Q. Therefore H(tn, xn) — H(to, xo). Hence X = H(to, xo) = y(to), implyi
that

y(to) € (I— H(to, .))(682), a contradiction to the hypothesis. Thus p > 0.

Thus we have proved the following theorem.
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4.1.10

Theorem

Let X be a Banach space and

H={{I-F, Q,y)/ QX open bounded, F € C,y(Q), yeX\(I-F)(a)}.

(a) Then there exists a unique map D : 4 — I satisfying (D1)—D3), the
degree for y—condensing maps .

(b) Let F ¢ SC’Y(Q)' If there exists a closed convex C C X such that C_ ¢ C,
F(nC)+yCCandF(QnC) is relatively compact (C, is defined
above ), and if R is any retraction onto C, then

D(I—F, Q,y) =D (I-FR,R(Q)nQ,y)
where D . is the Leray—Schauder degree and D(I-F, Q,y) =0 ifno
such C exists. ST

(c) IfFe Cry((_)), then

D(I——F) Q)Y):DSC (I—_kF7 Q) Y)

5
where k € [0, 1) and (1 —k) sup {|Fx| / x€ O } < p(y, (I — F)(6Q)),

and Dy, 1is the degree defined in (b).
v

Again we obtain the properties (D4)—(D7) of the degree.

41.11

Theorem

Besides (D1)—(D3), the degree defined above has the following properties.

(D4)  D(I—F, Q,y)#0 implies (I—F)y)#9.

(D5) D(I—-G,Q,y)=D(I~F, Q,y) for G ¢ C7(Q) n Bp(F) and
D(I — F, Q, .) is constant on Bp(y) where p = p(y, (I — F)(6Q)). More
than that, we have D(I — F, Q, .) is constant on every connected
component of X \ (I —F)(60).

(D6) D(I—-G,Q,y)=D(I-F, Q,y) whenever G| o0 = Fl 5o and
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Ge 07(9)-
(D7) DI —F, Q, y) = DI — F, Ql, y) for every open subset Q1 of Q
satisfying y ¢ (I — F)(Q \ 91)'

The proofs go exactly like those in theorem 3.11, since they follow from (D1)—D3).

In (D6), for H(t, x) = t Fx + (1 —t) Gx we have for B € {2, %(B) > 0,
HH(J x B)) < max {+(FB), «(GB) } < ¥(B).

The next theorem shows that the 4—condensing degree is in fact an extension of the degree

for strict y—contractions.

4.1.12

Proof :

4.1.13

Theorem
IfFe Sny(Q) with y € X'\ (I—F)(9Q), then

DI—-F, Q,y) :DSC (I-F, Q,y).

7

As in the uniqueness proof, we can show that

DSC (I——F) Q, Y) = DSC (I'_k F, Q, Y))
7 7
where (1—Xk) sup |Fx| < p(y, (I—F)(8Q)).
xefl

By definition,
DI~F,Q,y)=D,, (I-kF,Q,y).
v
Thus we have

D(I—F;Q7Y):DSC (I_F)Q7Y) *
v

Theorem

Let Xo be a closed subspace of X, 0 C X open bounded, F : & — X a
0

y—condensing map, y € Xo \ I—=F)(d0Q). Then
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D(I—F7 Q: Y):D((I——F”Q n XJQnX0> Y)
0

Proof :
Let r = sup {|Fx| /x €}, p=p(y, {—F)(32)) > 0. Choose k € [0, 1) such
that (1 —k) r < p. Then by definition
D(I-F,Q,y)=D(I—kTF, Q7).
Also with QO =Qn XO,
(1—X%) sup {|Fx| / x¢ QO}
<(1—=%)sup {|Fx| /xeQ}
<p
= p(y, (I - F)(0Q))
< ply, I— F)([)‘QO)) since 6QO_C_ 0.
Thus by definition again,

D((I—-F)| o Q,y) =D~k F)|QO> Q,7y)
Thus we only need to show that

DI -k F,2,y) = D((I -k ), 2, ),
0
and hence we may assume that F is a strict y—contraction with constant k < 1,
and we must show that D(I-F, Q,y) = D((I - F)|Q , QO, ).
) Q
H(I-F)Yy) =9, then (I-F)(y)n Qo = ¢ and so
D(I_F; Q; Y) =0= D((I—F)'Q ) QOJ Y)
0

Now assume that (I —F)(y) £ . This implies that C_(F) # 9. Let
R:X—C_ bearetraction. Then

D(I-F, Q) =D(I-FR)[R1q) n o RNy
=D((1-FR)|z1q) n o R(W)0Q,7)

since this result holds for the LS—degree.

C,(Fl QO) ¢ C - Hence C_is admissible for F|5 . Thus
0
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D((I~F)‘Q )007 y) = D((I—FR)lR-I(Q ) n N 7R—1(Qo) n QO) Y)

0
So we need to show that

D((I~FR) g0y n 0 B (®)0Q,¥)

= D((T - FR) gy 0 o RH@) 00,3,

Therefore we must show that
y ¢ ([-FR)YR(Q) n 9\ (RH2)n0)).
Suppose y = (I — FR)x for
x € RYQ)n Q \ (R'i(QO) n QO)
RY(Q)n QO \ (R'I(QO) na)
(R"(Q)\R“(QO) nQ)u(RH()n o).

m

M

Then x € RY(Q) and so Rx € O N C_. Therefore x = FRx + y € C_, and hence
Rx=x Soy=(I—-F)x Ifxe BQO, theny € (I — F)(@QO) C(I-F)oQ),a
contradiction.
fx¢ R“(QO), then x = Rx ¢ Qo, a contradiction tox = Fx + y € XO. Therefore
y¢ (I-FR)R(Q)NQ [RY(Q)nQ ) Thus |

D((I — FR)]R-I(Q) q Qo, R(Q) n QO, Y)

D((I - FR) |R“1(Q ) nao e R—I(QO) n QO’ Y);

proving the result. A

The following lemma can be found in Nussbaum [1].

41.14 Lemma

Let H : QO — X be odd, continuous, ) symmetric with respect 0 € Q, then
C_(H) is symmetric.

Proof :
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If x € conv H(Q2), then x = /\IH(XI) + .+ /\kH(xk) where x € Q and A€ [0, 1]
and the /\k sum to 1.

Then —x = X H(—=x )+ ... + /\kH(—xk) with —x € Q (since Q is symmetric, Q is
1 1

symmetric). Therefore —x ¢ conv H(Q). Thus conv H(Q) symmetric implying
that C = conv H((2) is symmetric. Suppose C 1is symmetric forn > 1. Let
0 n-

x€conv H(QNC ). Thenx = /\IH(XI)+ .+ /\kH(xk), where x € Qnc .
n- n

1 -1

Therefore —x€ Qn C g which implies that
-
—x = /\IH(—xl)+ ot /\kH(—xk) € conv H{QNnC 1). Therefore conv H(Q n C 1)
n- n-
1s symmetric , implying that C is symmetric.
n

Thus Cm is symmetric. [

The extension of Borsuk’s theorem is simple.

4.1.15

Proof :

Theorem
Let © C X be open bounded and symetric with respect to 0 € Q, F ¢ C’V(Q)’
0g (I—-F)(00Q)and I—F)(—x) # A (I—F)(x) on &0 for all A > 1. Then
D(I—F, Q,0) is odd. In particular, this is true if F| 5 18 0dd and x # Fx
on 0Of).
Define H(t, x) = % Fx —% F(—x) for (t,x) € J x Q. Then for B ¢ Q and
1B) >0,
WHU < B)) < sfcony (FB U (—F(~B))))

~ 1(FB U (-F(-B))

= max {4(FB), 7(~F(-B)) )

< %B).
Therefore H ¢ C,y(J x Q, X). If0€ (I-H(t .)(8Q) for somet € J, then
0= (T—H(t,.))x for some x € 30. Therefore
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0= b (L~ F)x — i (1= F)(=). Ift#0, then (I — F)(=x) = :

with %2 1, and if t = 0, then (I — F)x = 0, a contradiction.

(I — F)x

Therefore 0 ¢ (I — H(t, .))(62). Thus we may apply (D3), to obtain
D(I—-F, Q,0)=D(I-G,Q,0), (13)

where G(x) = 5 (Fx — F(—x)) is odd. Choose k € [0, 1] such that

B —

(1—k)sup {|Gx| / xeQ} <p(0, (T—G)(60)). Then
D(I—G,Q,0)=DI—kG,0,0). (14)
Let H =k G. Then H is also odd and H € SC{y(Q). Let

C, = conv (H(Q)), C = conv (H(Q2nC 1)) for n > 1. By lemma 4.1.12, each
n n-

C is symmetric and so C (H) = n C is also symmetric. Let R : X — C (H)
n ® 0 n o 7 ®

be a retraction. Then Rx = % (Rox — RO(—X)) is odd and is also a retraction onto
C_(H), since for x C_(H) we have —x € C_(H) and
Ri =5 (R ()~ R () = 5 (x — (=) = x.
fxeRYQ)NQ, then —x € Q and Rx € © implies that —Rx € (2, and this means
that R(—x) € Q since R is odd. So —x € R(Q) n Q. Thus RY(Q) n Q is
symmetric.
Also G(0) = 0. S0 H(0) = 0, and hence 0 € C_(H). Therefore RO = 0, and so
0eR*Q)and 0 € Q. Thus 0 € R(Q) n Q. By definition,

D(I-H, Q,0) = D(I—HR, R7(Q) n Q, 0). (15)
Since HR is odd, we can apply theorem 3.12 to obtain
D(I—HR, R(Q) n Q, 0) is odd. (13), (14) and (15) yield |
DI -TF, Q, 0) is odd. ‘ L

Before we prove the domain invariance theorem, we require the following lemma which is

found in Nussbaum [1].
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4.1.16

Proof :

Lemma
Let V be a closed bounded set in a Banach space X. For any subset A C V an

anyreal € > 0,let A ={xeV ] p(x,A) < e}. Let £: V— X bea continuot

map such that for any A C V with 7(A) > 0, lim 'y(f(Ae)) < y(A). LetJ =10,
-0

and assume that we are given two homotopies, G: J x V—V and
H:JxV—V, such that G(t, x) and H(t, x) are uniformly continuous in t,

Gt = G(t, .)isa kt—set contraction and E[t = H(t, .)isa ht—set contraction, and
kt + ht <1 for t € J. Consider the homotopy ¥(t, x) = f(H(t, x)) — f(G(t, x)
Then if A is any subset of V with 1{A) > 0,

AP * A)) < 7(A).

Suppose A C V and v(A) = d > 0 and suppose s € J. We want to find an ope
interval JS about s in J such that 7(F(JS x A)) < y(A). To do this consids
HS(A) and GS(A).

If HS(A) and GS(A) are relatively compact, then f(HS(A)) and f(GS(A)) al
relatively compact. By the uniform continuity of H(t, x) and G(t, x) in t, the)
exists 6 > 0 such that for t € J and |t —s]| < §, Gt(A) C Nd/s(Gs(A)) and
Ht(A) C Nd/s(Hs(A))' If we set JS =Jn(s—4§ s+ 0),it follows that

F(JS xA)C{y—z/ye f(Nﬁ/s(Hs(A)))’ z € f(Nd/B(GS(A))) }, so that

AR( < A) <F+ 5 <d=9(A).

If fy(HS(A)) > 0or 7(GS(A)) > 0, we may assume for definiteness that

fy(HS(A)) > 0. By assumption on {, there exists ¢ > 0 such that if we set

CS,E = NE(HS(A)) NV, then ’y(f(CS,E)) < 'y(HS(A)) By the uniform continuity ¢
H in t, there exists 61 > 0 such that if t € J and |t —s] ¢ 61, then Ht(A) C Cs,4
If we write 4a = 7(HS(A)) - 7(f(CS,6)), by the uniform continuity of G in -
there exists 62 > 0 such that for t € J and |t —s]| < 62, Gt(A) C Na(GS(A)). ]
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follows that if we take § = min {51, 52} and JS =Jn(s—§ s+ 6), then

AEH(H(T = A))) < v(H (A)) — 4a and fy(f(G(JS x A))) < W(GS(A)) + 2a. This in
S S

turn implies that

AP = A))

[Fa

Wy —z/yef(HI «A)),zef(GU_xA))}
(7(H (A)) —4a) + (A(G (A)) + 2a)

< AH (A)) + oG (4))

< h o(A) +k (A)

= (hs +k) W(A)

< AA)

The remainder of the proof is a simple compactness argument. As we have

I~

shown, for each s € J, there is an open interval J about s in J such that
) S

»F(J x A)) < y(A). By the compactness of J, J can be covered by a finite
S

number of these subintervals, say J , ..., J . Then
S S

1 n

oA 0 P xA))

i

AF(J = A))

i

= max { W(F(JS xA))/i=1,.,n}

i

< 7(A). [ )

Remarks : If f is a k—set contraction, k < 1, then for any A C V with y(A) > 0,

(A )) <k a(A) <k (9(A) + 2¢), and k o(A) + 2¢k < (A) for € < [(1 — k) v(A)]/2.

Thus the condition of Lemma 4.1.16 holds if f is a k—set contraction, k < 1. The

hypothesis also holds if f is a condensing map. In this case, take § = y(A) — y(f(A)) > 0

and, by uniform continuity, select ¢ > 0 so that f(AE) C Né/g(f(A)). Then we have
A ) $A(E(A)) + 26/3 < 4(A) for0 <€ <e

Theorem (Invariance of Domain )

Let 2 be an open subset of a Banach space X andlet {: @ — X be a continuous
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Proof :

map such that I — f is one—to—one. Assume that for each X € Q, there is a closed

ball V about x ” V C Q, such that for any A C V with v(A) > 0, if we set

A ={xeV/ d(x, A) < €}, then 111(1)1 Wi(A ) < YA).

Then (I —F)(Q) is open.

Suppose (I — f.)xo =z Select a closed ball V about x as in the statement of the
theorem. We want to show that (I —£)(V) contains an open neighbourhood of Z
and since x € Q is arbitrary, this will show that (I — f)(Q) is open. Clearly, we
can assume x =z = 0. Suppose we can show that D(I —1, V° 0) # 0. Since

[ —1{is one~to—ome, x —fx # 0 for x € JV; and since I —f is a closed map (because
fly; is ~7—condensing), |x —1x| > € > 0 for x € dV. For [z] < ¢ I - fZ is
homotopic to I — 1 (fzx = fx + z) by the homotopy I — ¢ fZ —(I—=t)f,0<t <1,
and this homotopy is uniformly continuous in t and has ﬁo zeros on dV. Thus we
see that

D(I—f, V°, 0) = D(I -1, V’,0)

fl
o

(
(I— f —z, V° 0)
= DI -1,V 2)
= D(I—1,V°0)
£ 0,
so there exists u € V with (I —f)u = z. This shows that (I —£)(V) 2 BE(O), the
open ball about 0.
To complete the proof, it thus suffices to prove that D(I—f, V°, 0) # 0. Consider
the homotopy F(t, x) = {( 1+t) f( tx) 0<t <.

1+t

If we set H(t, x) = % and G(t, x) = lth? , weseethat H:J x V. —V,

. 1 .
Glz JxV—=V, H 183 97— set contraction, G is a 1%~ set contraction,
1

Tt = b and G and H are uniformly continuous in t. By lemma 4.1.16, if
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ACVand y(A) >0, (F(J x A)) < (A). Also, F(t, x) # x for (t,x) € J x V,

X y_ —tx —tx
1+t )= I+t — I+t

the fact that I —f is one—to—one. It follows by (D3) that

for if F(t, x) = x, we obtain 1jﬁt — f( ), which contradicts

D(I—1, V°,0) = D(I—F , V%, 0) = D(I~F, V°,0). However,

F (x) = {( % ) —1( —% ), SO Fl( —x) = — Fl(x), and by theorem 4.1.15 we find
1

D(I — F1’ V9 0) is odd and hence nonzero. 'Y

The last two results, with the proofs, are taken from Nussbaum.

4.2 THE NUSSBAUM DEGREE

We would like to define a degree for the triplet (I — T, 2, 0), where X is a Banach space,
Q) C X open bounded, F :  — X ~7—condensing and S = {x €  / Fx = x } compact. (The
empty set is regarded as a compact set.).

Now SC U B (x) where B (x)C Q. Since S is compact, we have S C _81 B (x) with
1=

r r r. i
xeS Ty x i

B (x)CcQ V=

T 1 1

nCo

1 B (x), then V is an open neighbourhood of S and
T, 1
1

e

- n
V C 'U1B (x)CQ. If0=(I-F)x withxe Q, then Fx =xandsox € S CV. Thus
1= T, 1
1

x € V and hence x ¢ dV. So
0f (1-F) V). @)
Since F is y—condensing, so is F|\7 . Therefore (I — F, V, 0) is an admissible triplet for

the y—condensing degree, D o Thus we define
v

DI—-F, Q,0) = DC (I-F,V,0).
v
We must show that this definition is independent of V.

Let V]_l be an open neighbourhood of S with V. C Q fori=1,2. Then V nV 1is an open
1 1 2
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neighbourhood of § and V.V, ¢ \71 n \72 C Q.

Now Q =V _\ VI n V2 and 92 = V1 N V2 are disjoint open subsets of V. Let
1 1 1
0=_1-F)x forxe\_/_\ﬂluﬂz. Then x € SngﬂVZ. ButxfEQlUQ2. So
1

xféV.\V1 n V2 andxféVanQ. Therefore x € V1 n V2 andxféVanz. So
1
X € (9(V1 n Vz), a contradiction.
Thus 0 ¢ (I—F)(V_\ (Q1 U Qz))
1

By (D 2),
I'Y
Dy (I=F,V,0) =D, (I=F,0,0)+Dy (I-F,00)
Y Y Y
Now (I-F)(0)=ScV_ U (V1 n Vz)' Therefore (I — F)(0) n (V_\ v.on V2) =0,
1 1
by (D, 4), Dy (I-F,Q,0)=0. So
g g !
DC (I-F, Vi’ 0) :DC (I-F, VlﬂVZ, 0),
Y Y
and hence

D, (I-F, V1’ 0) = Dy (I-F, Vz’ 0).
7 7
So the the degree is well—defined.

Now we show that D satisfies (D1) — (D3).

(D1) :
Let F =0 and 0 € Q. Then S={xe€ Q / Fx=x}={0}). Let V be any

neighbourhood of S such that V ¢ Q. Then 0 € V and so D(I, 2, 0) = D, (I, V,0)=1

I'Y
by (DC 1).
I'Y

(D2) :

Let Q1’ Qz be disjoint open subsets of  such that 0 ¢ (I—-F)(Q\ Q uQ ).
1 2
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S={xe€Q/Fx=x}iscompact. LetSi:{xEQi/Fx:x} fori =1,2. Then
Si:QiﬂS. Let x € Sﬂ(X\Qg). Then x = Fx, x € QandeX\Qz. Ifx¢ Ql, then
x€eQ\ Q1 U QQ, a contradiction. So x € Q1 and hence x ¢ Sl. Therefore

Sﬂ(X\QQ)gSI.

Now let x € S{ Then x € S and x € Ql. So Fx =xand x € Ql, and hence x ¢ Q2 since Ql
and (22 are disjoint. Therefore x € SN (X '\ Q2), and hence S1 cSn(xX\ 02).

Thus S1 =S5Sn(X\ QQ).

X\ (22 is closed and S is closed, so S1 is closed, and is a subset of a compact set S, hence S1
must be compact.

Similarly 82 is compact. |

Therefore (I - F, Ql, 0) and I—-F, 02, 0) are admissible triplets.

Let Vi be an open neighbourhood of Si such that Vi C Qi fori=1,2,

and let V = V1 U VQ. Ifx € 5, then Fx = x and x € (0. Therefore 0 = (I — F)x for x € Q0.
But0¢ I—-F)(2\ Ql U Q2). Soxe€ Q1 u Qz' Therefore x € 01 OI X € 92, and so

Sgsluszgvluv2zv, andV:VI U Vzgvluvzgn UQZQQ. So V is an open
1

neighbourhood of S such that V € .

By definition,

D(I-F, Q,0) :DC (I-F,V,0), (2)
7
and

D(I - F7 Q.; O) = DC (I "—F7 V.) 0)7 (3)
i v i
fori=1, 2.

We now need to show that 0 ¢ (I — F)(V \ vou VQ) = (I-F)(8V). By (1), this is true,
and hence by (DC 2),
T
Do (I=F,V,0)=D, (I~F,V,0)+Dy (I-F, V0) (4)
v v v
By (2), (3), and (4), we have
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D(I—F,Q,0)=D(I-FQ,0)+DI-F Q,0).

The following theorem is an extension of the ordinary (D3), found in Nussbaum [2].

421

Proof :

Theorem

Let 2 C J x X be open bounded and H : & — X be continuous such that

S = {(t,x) € @/ H(t, x) =x } is compact and 7(H(Q n (J x B))) < «(B) for
all bounded B ¢ X with 9(B) > 0. Set Qt ={xeX/(t,x)€Q} Then

D(I — H(t, .), Qt, 0) is-independent of t.

Step 1:
Suppose we have shown that every t € J has a neighbourhood Or, such that
D(I —H(s, .), QS, 0) is constant for all s € Ot.
Let U= {t € J/ D(I—H(t, .), Qt, 0) = D(I —H(0, .), Qo, 0) } andlet t € U.
Then D(I — H(%, .), Qt, 0) = D(I —H(0, .), QO, 0). But for all s € Ot,
D(I —H(s, .), QS, 0) is constant and hence must be D(I — H(t, .), Qt, 0). So
D(I — H(s, .), QS, 0) = D(I - H(0, .), QO, 0) forallse Ot. Therefore Ot C U and
hence U is open in J.
Let t ¢ U. Then D(I —H(t, .), Qt, 0) # D(I —H(0, .), QO, 0) = do' So for all
s € Ot, D(I —H(s, .), QS, 0) = D(I —H(t, .), Qt, 0) # do. Hence s ¢ U.
So Ot € J\ U. Therefore J\ U is open and hence U is closed in J.
But U is an open and closed set in a connected set J. Hence it is .either empty or
J. Since 0 € U, we must have U = J. Therefore
D(I—H(t, .), Qt, 0) = D(I —H(0, .), QO, 0)
for all t € J, and is thus constant on J.

Step 2 :
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We must now show that for t € J, we can find an open neighbourhood Ot of t
0
0

0

in J such that D(I — H(t, .), Qt, 0) is constant for all t € Ot :
0

Let S = {t} x {x / (t, x) € S }. Given (to, X) € St , we can find an open
6
0

neighbourhood N of x (in X ) and € > 0 such thatJ n Jx Nx CQ
X X X

J =@ —€e,t +¢€)). St is easily shown to be closed and since it is a subset
X 0 x 0 X .
0
of the compact set S, St is also compact. So there exist finitely many that cover
0
it,say (J nJ)xN ,i=1,2 ..,n.
X,

X,
1 1

n
Let e=min{e /i=1,2,..,n} withI:(tO——e,to-l- e)and V = _UIN
X, ~ i= x,
So for (to, x) € St , (to, x)€(J nJ)xN for somei. Therefore xe N CV
0 %4 i *5

and t, € (InJ). So (to, x) € (InJ)x V, and hence

S cAnI)xV. ()
tO
CTnHxV  =(@nIx( U N)
C (10 J)xU R

Let J”] = (to—— b+ 7) where 57 > 0.

We claim that for 77 small enough, St C (Jn NJ)xV forte Jn n J.

Suppose not. Then we can find a sequence (t , x )in S such thatt —t and
n n n 0

X £ V. Since S is compact, we can find a convergent subsequence, say

(tn )X ) — (to, x) € S. H continuous implies that H(t ,x )— H(t, x). So
M U ’

X - H(to, x). Butx —x s0 H(to, x) = x. Therefore
. n,
1 1
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(t,x)eS C(InJ)=xV by(5). Butx ¢V and V open implies that x ¢ V, a
0 t n,

0 1
contradiction.

Thus for 7 small enough, St C (J77 nJ)xV forte J77 nJ.

Choose nand V as above. Then H: (J77 n J)x V— X is continuous and for

t e JTI nJ, St C JT} N Jx V. x€ dV implies that (t, x) ¢ St, and so
H(t, x) # x. Therefore 0 ¢ (I —H(t, .))(aV).
LetS’t:{xEQt/H(t,x):x}. IfxES’t,theanQtandH(t,x):x. So

(t, x) € @ and H(t, x) = x.Therefore (t, x) € St C JT} nNnJxV. SoxeV,

andS’tQV forallte.]77 n J.

Lette.]n N Jand x € V. Then

(t,x)e(JnnJ)xVQ(IﬂJ)xVQQ. Thereforeert(ncanbe

chosen so that JTI CI). SoVc Qt, and hence for all

teJ nJ
677,

D(I —H(t, .), Qt, 0) = D, (I-H(,.), V,0)
7
and (I —H(t, .), V, 0) is admissible (for D, ). Thus
v

D, (I—-H(t, ), V,0) is constant on JT} N J and thus
7

D(I — H(t, .), Qt, 0) is independent of t on JT} nJ. [

4.2.2 Therorem
Let F : O — X be y—condensing and 0 ¢ (I — F)(82). Then

DN(I —-F Q,0) = Dcv(I -F, Q,0),
where DN 18 the Nussbaum degree.

Proof :
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423

Proof :

Let S={xeQ/Fx=x} andlet V be an open neighbourhood of S such that
¥ ¢ Q. Now S is compact since I — F is proper, so D (I — F, &, 0) is defined.
Then

D, (I-F,Q,0)=D, (I-F,V,0)

v
Since 0 ¢ (I —F)(Q \ V), we have

DC (I-F, Q, 0)=DC (I-F,V, 0).
v v
Thus we have

D (I—F,Q,0) =D, (I-F,Q,0). A
g

Theorem

Let Q C X be open bounded and symmetric with respect to 0 € O, F: Q@ — X be
y—condensing, S = { x € 0 / Fx = x } compact and F(x) = — F(—x)

forallx € Q. Then D(I—F, ©, 0)is odd.

Let V be an open neighbourhood of § such that V ¢ Q. Then

D(I—F, Q,0)=D, (I-F,V,0).
v
F| gy is oddsince 6V C . Therefore by theorem 4.1.13, we have

D, (I-F,V,0)isodd, andso D(I-F, Q, 0) is odd. [

fy
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CHAPTER 5

DEGREE OF MAPS ON UNBOUNDED SETS

Up to this point, £ C X was open and bounded. We will now consider {2 C X to be just
open. Of course, we will require extra conditions on our function F . First we consider

locally compact operators and then locally ¥—<condensing operators.
5.1 LOCALLY COMPACT OPERATORS

We will consider the triplet (I —F, Q, y) where X is a Banach space, {2 ¢ X is open,

F: (0 — X is locally compact, y ¢ (I — F)(8Q) and (I — F)(y) is compact. We show that
there is a unique I—valued map defined on these triplets, the degree.

N.B.:  F is locally compact if for each x € €, there exists a neighbourhood U(x) of x

such that F,U(x) is compact.

Firstly we will show that there exists a bounded neighbourhood V € © of (I — F)!(y) such
that FIV is compact. F is locally compact, so for each x € (I — F)(y), there is a
neighbourhood U(x) of x such that FIU(x) is compact. Choose r >0 small enough so that

Er (x) ¢ U(x). Thus ¥|5 (x)is compact. Since (I—F)(y) is compact and
T

X
X

I-=F)y) ¢ XE(I—FL)J‘l(y)BFX(X) we must have (I—F)(y) ¢ El Br'(xi) =V where

1

TSI Let r = max {r1’ ..., T_}. Then Vis a bounded set with bound
. n
1

r+max {[x | /i=1,..,n}
1

Now B(V) = F(U
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M
i
N
ws]
N
>
S’
c
(o
)
~—N
>
S’
S’

= FB (x))Uu..u F(Br (x))

T 1

C FB (x))u..u F(Er (xn))

T n T .
But F(B (x)) is compact for each i, so U F(B (x)) is also compact. Thus F(V) is

i 1 1=1 i 1
relatively compact and so F\v is compact. So we define, for our triplet (I —F, Q, y),
D(I—F,Q,y)=D, (I-FV,y),
1)
where V is any bounded neighbourhood of (I — F)!(y) such that F| {7 Is compact.
Since (I —F)!(y) C V, we have y ¢ (I —F)(aV).
We must show that this well—defines D. Suppose we have

V1’ V2 €  are bounded neighbourhoods of (I — F)!(y) such that F| g 1s compact for
i

i=1,2 Let V=V n V2 and suppose that y € (I—F)(V_\ V).
1
Then y = (I—-F)(x) for some x € V_\ V. Thereforex € (I-F)(y)CV,j=1,2. So
i j
x€V NV =V, acontradiction. Thus y ¢ (I— F)(V \ V)fori=1,2. Soby (D7),
1
D1-F,V,y)=D

LS(I - F) V> y) = DLS(I - F; VQ) y)a

proving that the degree is well—defined.

With D defined in (1), we will show that it satisfies (D1)—(D3).

(D1) :
Let y € Q. Now F =0: (2 — X is locally compact (in fact, it is compact),
(I—F)™(y) = {y} is compact and y ¢ 00 = (I — F)(0). Let V = Bl(y) N Q. Then Visa
bounded neighbourhood of (I — F)Y(y) and F| {7 is compact. Thus
DA, Q,y) = DLS(I, V,y)=1
by (D, .1).

LS
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(D2) -
Let Q1 and 02 be disjoint subsets of Q withy € X \ (I—F)(Q\ Q1 u 92). To show that
DI - F, Q,y) = D(I —F, Ql, y) + D(I — F, QQ, y). Let V C © be a bounded
neighbourhood of (I — F)(y) such that F|<; is compact. Then

DI—F, Q,y) =D, (I —-F, V, 7). (2)
Now let Vi =Vn Qi fori =1,2. Then Vi C Qi is a bounded neighbourhood of

(I—F)™y) nQ_such that F| is compact. Then
i

D(I-F,Q,y) =D (I-F V,y), (3)

fori=1,2. We will now show that y ¢ (I —F)(V \ v Vz). Suppose it does. Then
y = (I —F)(x) for some x € V '\ V1 UV . Now
V1UV2=(Vﬂﬂi)U(VﬂQQ):Vﬂ(Qluﬂz). (4)
Butx e VCQandyg (I-F)(Q)\ Q1 U QQ). Thus we must have x € Q1 U Qz. Therefore
by (4), x ¢ V. But x € (I —F)(y) C V, a contradiction. Thus y ¢ (I —F)(V \ V1 U V2).

So by (DLSZ),
DLs(I - F; V) y) = DLs(I - F) V1> .Y) + DLs(I - F; VQ) y) ‘ (5)

(2), (3) and (5) give us

D(I—F7 Q) y) = D(I_FJ QIJ y) + D(I—F) Q2; y)

(D3) :
Let QC X beopen,y:J— Xand H:Jx Q- X be continuous. Suppose that for each
x € (), there exists a neighbourhood U(x) of x such that H|JxU(x) is compact (i.e. H is

locally compact) and further suppose that for each t € J, y(t) ¢ X \ (I — H(t, .))(02) and

U (I—H(t,.)) " (y(t)) is compact.
ted

We will show that D(I — H(t, .), ©, y(t)) is independent of t.
For each x € , there exists a neighbourhood U(x) of x such that Hj IxU(x) is comnpact.
Choose r > 0 small enough so that B_ (x) C U(x). Thus

X

X
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HIJxBr (x) is compact.

X

Now A = U (I—H(,.)(y(t)) is compact and contained in Q. (Since
teJ

y(t) ¢ (I —H(t, .))(69)). Thus we must have X, X_€ A,r =71 suchthat A C
n 1 1

X,
1

B (x)=V. Letr = max {rl, .., T } and s = max {|x1|, sy |x |}. Then for x € V, v
T, 1 n n
1

have x € B (x) for some i, and so
r, 1

1

x| € [x—x | + x| <1+ |x|<r+s.
1 1 1 1
Thus V is a bounded neighbourhood of A. Then

D(I—-H(, .), 2, y(t)) =D (I —H(t, ), V, ¥(t)), (

if the following conditions (which are proved as well) hold.

(a) For each t € J, H (t, .) is locally compact : For each x € , there exists
neighbourhood U(x) of x such that Hj IU(x) is compact. So H(J x U(x))
relatively compact. Since H(t, U(x)) C H(J x U(x)), H(t, U(x)) is also relative

compact. Hence H(t, .) is locally compact.
(b) 9(t) ¢ (I—H(t,.))(80) : This is given.

(c) At = (I-H (¢ ) y(?)) is compact : At C A, A is compact and At is closed. Hen

At is compact.

(d) Vs a bounded neighbourhood of At for each t : V is a bounded neighbourhood of .

hence of each At.

(e) H(,.) IV 18 compact for each t € J:
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— u H(Jx B (x)

H(J x B (x))) is relatively compact and a finite union of relatively compact sets is

r, 1
1

again relatively compact. Hence H(J x V) is relatively compact. For each t € J,
H(t, V) ¢ H(J = V). Hence H(t, V) is relatively compact. Thus H(t, .) |5 is
compact.

Now D, (I - H(t, .), V, y(t)) is independent of t by (DLS3) and by (6),

D(I —H(t, .), ©, y(t)) is independent of t.

Thus D defined in (1) satisfies (D1)—(D3).

Now, we show that there is only one I—valued map, defined on the given triplets, satisfying

(D1)—(D3).

Let £ ={I—-F,Q,y)/ QX open, bounded, F : @ — X compact, and y ¢ (I — F)(6Q)}

and A4 ={(I-F,Q,y) /0 CXopen, F: 0 — X locally compact, y ¢ (I — F)(80) and
(I-F)Y(y)is compact}.

Let D: A — I satisfy (D1)—(D3) (then D also satisfies (D4)—(D7)).

Now a compact operator is locally compact and if F : O — X is compact, then (I — F)\(y)

is also compact. So 4 C 4. Let D’

(D’1)—D’3).

(D’1) and (D’2) are trivial since (D1) and (D2) hold.

= D| , . We will show that D’ satisfies

(D’3) :
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Let H:Jx ) — Xandy:J— X be continuous, H compact and
y(t) ¢ (T—H(t, .)(9Q) for each t € J. In order to use (D3), we must have

A= U (I—H(t, .)N(y(t)) to be compact.
ted

Let (x ) beasequencein A. Thenx € (I—H(t ,.))(y(t )) for some t € J. Therefore
n n n

n n

x =y )+ H({,x ). (t)isasequencein the compact set J, hence there exists some
n n n n n

subsequence that converges, say tk — to € J.

n

H(J = Q) is relatively compact. Therefore some subsequence of H(tk » X ) converges.

n n

Without loss of generality, we may assume that ]E[(tk ) X, ) —y.

0
n n

= H =x. Si Q h Q.
50 an Y(tkn) + (tkn, an) —y(t )+ V, =X, Since X € ), we have X €

0

) — ) f = =
So H(tkn, xkn) H(to, xo) Therefore Yy, H(to, xo) and so X y(to) + H(to, xo),

which implies that y(to) = (I - H(to, ))(xo) Therefore x € (I - H(to, .))'I(y(to)) C A
Therefore A must be compact and so D’ (I —H(t, .), 2, y(t)) = DI — H(t, .), Q, y(t)) and

is independent of t by (D3).

Therefore D’ : A — 1 satisfies (D’1)—(D’3).
By uniqueness of the Leray—Schauder degree,
D’ =D, (7)

Now D: & — I satisfies (D1)—(D3) (hence it satisfies (D4)~D7)). Let
(I-F,Q,y) € A andlet V be any bounded neighbourhood of (I — F)~(y) such that Flg
1s compact. Suppose
y € (I=F)(Q\ V). Then for somex € 0\ V, y = (I — F)(x) which implies that
x € (I-F)(y) €V, a contradiction. Soy ¢ (I—F)(Q\ V). Therefore by (D7),

D(I-F, Q,y)=D(I-F, V,y). (8)
But (I-F,V,y) € 4, so

D(I-F,V, y)=D'(I-F,V,y)= DLS(I—F; V,y)
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by (7). So there is a unique I—valued map D : M — T satisfying (D1)—(D3). Thus we

have proved the following theorem :

5.1.1 Theorem
Let X be a Banach space and
M ={1-F Q y)/QCXopen F: Q — Xlocally compact, y ¢ (I — F)(52).
and (I —F)(y) is compact}.

(a) Then there exists a unique map D : 4 — I satisfying (D1)—D3) the
degree for locally compact operators.

(b) Let (I-F,Q,y) e 4. Then D(I-F,Q,y) =D (I-F, V{_Y) where V
is any bounded neighbourhood of (I — F)(y) such that F[; is compact

and D, is the Leray—Schauder degree.

It is easy to see that this degree is really an extension of the LS—degree.

We also have the Borsuk property and the properties (D4)—D7) holding.

5.2 LOCALLY CONDENSING OPERATORS
We want to define a degree for the triplet (I —F, Q, y) where Q C X is open,
F:Q— X is locally y—condensing (i.e. for each x € Q, there exists a neighbourhood U(x)

of x such that F|U(x) is y—condensing), y € X \ (I—F)(02) and (I — F)(y) is compact.

First we show the existence of V C Q, a bounded neighbourhood of (I — F)!(y) such that

F| v is 7—condensing. The procedure used to obtain a V is exactly like that used for locally

compact maps.

n
Thus we obtain (I —F)(y) ¢ 191 Br (xi) =V where F[E (x) is y—condensing for
i T
1

1=1,2,..,n. Then Vis a bounded neighbourhood of (I — F)"(y). Let B € V such that
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-1 1 1
1 1

n n
7(B) > 0. Then B = ‘L_Jl(B NB (x))andsoFB = Y F(B N Br (x)).

Soq(FB) = 1( U F(BNB_(x))

= max {7(F(Bn Br_(xi))) /i=1,2,.., 0}

1

= (F(BNB_(x ) say
k

If v(BnB (xk)) =0, then BN B (xk) is relatively compact and since F is continuous
T T
k k

with closed domain Q, F(B n B (xk)) is also relatively compact. Therefore

T

k

1F(BnB (xk))) = 0 and so 7(FB) =0 < 9(B).
Bt
Ify(BnB (xk)) > 0, then y(F(Bn B (xk))) <1(BnB (xk)) < 9(B), since
Tk T "
Flg (x )is y—condensing. Hence 7(B) > 0 implies 9(FB) < 7(B) and so
Ty k

F|y is 7—condensing.

We would like to define

D(I - F; Q) Y) = DC (I - F) V) Y)> (1)
v

where D o 8 the degree for y—condensing maps and V is any bounded neighbourhood of
v

(I—F)"(y) such that F| is ¥ condensing.
As in the case of locally compact maps, y ¢ (I — F)(02) and

D, (I-F, V1’ y) = D, (I-F, V2, y) for V1’ V2 C Q any bounded neighbourhoods of
v v

(I —F)!(y) such that F'V is —condensing for i = 1, 2. Thus the degree defined above is

1

well—defined.

Now to show that (D1)—(D3) hold. The proof of (D1) and (D2) is exactly the same as that

for the locally compact operators, with compact replaced by y—condensing. We will now

prove (D3).
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(D3) :

We have the following hypotheses for (D3):

Let H:Jx Q— X and y : J — X be continuous. Suppose for each x € Q there exists a
neighbourhood U(x) of x such that 7(H(J x B)) < ¢(B) for B C U(x) with 4(B) > 0.

Further, suppose that y(t) € X \ (I — H(t, .))(0Q) and A = UJ (I - H(t, ) (y(t)) is
t€

compact.

We must show that D(I — H(t, .), Q, y(t)) is independent of t. As in the proof for locally

1=

n
compact maps, we obtain A C U B (x )=V where H|; 5 is 7—condensing.
1 or, i J"Br (x.)

i i

1

(a) Foreachte J, H(t,.) is locally y—condensing : )
For each x € Q, there exists a neighbourhood U(x) of x such that ﬁ'JxU(x) is
1—condensing. Let B C U(x) with ¢(B) > 0. Then y(H(t, B) < v(H(J x B)) < B).
So H(t, .) is locally ycondensing.

(b) () ¢ (I—-H(Z )N ()
This is part of the hypothesis.

(c) At = (I—H (% ) y(1) is compact :
At C A with At closed and A compact. Thus At is compact.

(d) Visabounded neighbourhood ofAt forallte J:
V is a bounded neighbourhood of A, hence of At.

(e) HI(t ) |7is Y—condensing :
Let B C V with 7(B) > 0. Now B = _ﬁl (BnB (x)). So
1=

AH(E B))  <H(H{J x B))
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Let

M=

M=

IfBNnB (x))=0,then BnB (xk) is relatively compact. Since H is continuous
r k r
k k

with closed domain, H(J x (B n B (xk))) is also relatively compact.
T
k

Therefore v{H(J x (B n Br (xk)))) =0 < y(B). (3)

So by (2) and (3), v(H(t, B)) < 7(B).

IfyBnB (xk)) > 0, then
T
k

HHQ < (BB (x)) < 2(BNB_(x) < 1(B): (4

k k
So by (2) and (4), (H(, B)) < 1(B).
Thus H(t, .)[ is y—condensing.

Thus we have V to be admissible for each t, and so

D(I—H(t, .), 0, y(1)) =D, (I-H(t, ), V, y(t))
Y

and this is independent of t by (DC 3).
v

{I-F,Q,y)/0CXopen bounded F: { — X <—condensing, y € X \ ([ —-F) / 6Q)}
and

{(I-F,Q,y)/ QCXopen, F: Q— X locally y—<ondensing, y € X \ (I —F)(0Q)
and (I — F)(y) is compact}.

We need to show that there is a unique map D : & — I satisfying (D1)—(D3).

Let D: A4 — T satisfy (D1)—(D3). Then it also satisfies (D4)—(D7).

Any ~y—condensing map is locally y—condensing and if F € 07((_2), then (I — F)(y) is

compact (since I — F is proper).

So K C A .

Let (I-F, Q, y) € 4. As before, there exists an open bounded neighbourhood V in € of

(I—F)"(y) such that F|5; is y—condensing. Theny ¢ (I —F)(Q \ V) and hence by (D7),

D(I-F, Q,y)=D(I-F,V,y). (5)
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Now (I—F,V,y) e 4. We will show that D’ = D| _y satisfies (D’1)—(D’3). Since (D1)
and (D2) hold, we also have (D’1) and (D’2) holding.

(D’3):
Let H:J=xQ —X and y:J— X becontinuous, H y—condensing and

y(t) ¢ (I —H(t, .))}(6Q) for each t € J. In order to use (D3), A = UJ (I-H(t, ) Yy(t)).
te

must be compact. Let (x ) be a sequence in A. Then x € (I—H(t ,.)) ™ (y(t )) for some
n n n n

t € J. Therefore x = y(t ) + H(t, x ). J is compact, so some subsequence of (t )
I I n I n

¢

converges, say t — to € J and by continuity of y, y(tk ) — y(to). So {y(’ck )/ neN}is
n n n

relatively compact (since every sequence in it is convergent). Now

{xk /nem}g{y(tk)/ne-m}+{H(tk,xk)/nE[N}.

So offx /ne W} ¢ oyt ) /neWN}) +o({H(t ,x )/nel})
= 0+({H(, ,x )/neN})

< B x{x_ [neN})).

If 'y({xk /n€eN}) >0 then

n

'y({xk /nelN}) <HQ = {xk /nel})) < ’Y({Xk / n el }), acontradiction.

n

Thus fy({xk /n€eN})=0. Therefore {xk / n € N} is relatively compact. So some

ol n

subsequence of it converges. Without loss of generality, assume X X
0
n
Since x € 2, we must have x € Q, and by continuity of H, H(tk = )— H(t, x)
o’ o
n n n

( x kn) k. y( kn) —X ¥( 0) Y, Therefore H(to, xo) Yy and so

X - y(to) = H(to, xo).' Thus y(to) = (I- H(to, ))(xo) and hence
x € (I —H(to, .))"l(y(to)) CA.

Hence A is compact.
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Thus D’(I — H(s, .), 9, y(t)) = D(I— H(s, .), Q, y(t)) and this is independent of t by (D3).

So D’ : M — I and it satisfies (D’1)<D’3). By uniqueness of the degree for
y—condensing maps,

D/ =D . (6)

Now (I-F,V,y) € A4, so

D(I_F)VJY):D/(I_F7V)Y):DC (I—F,V,Y) (7)

v
by (6).
Thus (1) and (7) give

D(I-F, Q,y) :DC (I-F,V,y),

v
and so there is a unique map, D : A — I satisfying (D1)—+D3).

It is again an easy exercise to check that this degree is an extension of the y—condensing

degree.

As we had in the previous chapters this unique map will satisfy (D4)— (D7) and Borsuk’s

property.
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CHAPTER 6

DEGREE IN LOCALLY CONVEX SPACES

Before we define a degree on such spaces we give some definitions and facts about them.

Proofs of the results can be found in Schifer [29].

6.1

Definition :

(X, 7) is a topological vector space (t.v.s.) if X is a vector space over )

the field K with topology 7 such that addition A : (x, y) — x + y’ and scalar
multiplication S: (), x) — A x are continuous.

The field K is either R or €.

718 separated if different points have disjoint neighbourhoods.

The following theorem gives conditions that a t.v.s. satisfies.

6.2

Theorem

Let (X, 7) be a t.v.s. with 7 separated. Then there is a basic system % (0) of
neighbourhoods of 0, with the following properties.

(@) Ue #%(0)and A # 0 imply that A U e #/(0).

(b) For Ue #%(0), there exists V € %(0) such that V + V C U.

R

(d) Every U e %(0) is open, absorbant and balanced, where U is called absorbant
if to each x € X, there exists A > 0 such that x € A U, and balancedif A U C U

for all A with [A] < 1.
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A basic neighbourhood system of any x € X is given by %(xo) =x + %(0).
A t.v.s. (X, 7) is said to be locally convex if there exists a neighbourhood system % ((
satisfying in addition

(e) Every Ue %(0)is convex.
An Q € X is said to be bounded if to every U € %(0), there exists /\U > 0 such that
QCcA, U

6.3 Theorem
Let X be a locally convex t.v.s. and %(0) a basic system of neighbourhoods of
with the properties (a) — (e). Let p;: X — R be defined by
p,(x) = inf {A>0/x€AU}. Then p,isa continuous seminorm,
U={XEX/pU(x)<1}and6U={xEX/pU(x)=1}.
(pU is called the Minkowski functional.)

The above theorem is standard and so we state it without proof.

We would like to define a degree for the following triplet:

(I —F, Q, y) where X is a locally convex t.v.s., @ C X is open, F :  — X is compact and
y e X\ (I-F)(o0).

Before we do this, we first have to give some approximation for F, the degree of which -

know.

6.4 Theorem

Let X be a topological space, Y a locally convex t.v.s., @ C X and F : @ —

compact. Let % (0) be a neighbourhood base of 0 € Y satisfying (a) — (e)

theorem 6.2. Then we have

(a) For U e %(0), there exists a finite dimensional F. such that F, x — Fx €
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Proof :

(b)

on U. FU also turns out to be compact.

I — F maps closed subsets of Q onto closed sets.

Since F() is compact, we can find Yoo ¥, € Y such that
F(Q) ¢ '31 (y.+ U). Let (pi(x) = max {0, 1 — pU(Fx - yi)} on 2. Then (pii
1= 1
continuous and non—negative. For x € 2, F(x) € v+ U for some i.
So Fx —y € U. Thus p(Fx — yi) < 1 and so 1 — pU(Fx — yi) >
1
Therefore _Iin}lw‘(x) > 0 for all x € Q. So we may define
1= 1
A (x) = ( ) p(x))" o (x)and F x = E‘} A (x)y. on . Then F _is continuou
i j=1"j i U i=1 i i U
m
and finite dimensional. Easily _21/\_(}() =1lonQ. (/\i(x) €[0,1]). So
1= 1
mn
p(Fx—Fp) =g (Fx— 5 (x)y)
m m
= p (3N () Fx— T2 (x)y)
1=1 1 1=1 1 1
m
=py(EA(x) (Fx—-y))
i=1 1 i
< IEH) 2. (A (x)Fx—y)) (p,isaseminorm)
i=1" Ut 4 1 U

m
= izlei(X) pu(FX - yl)
Now ¢ (x) > 0 for some i, and so pU(Fx —y.) < 1forsomei. If
1 1
pU(Fx— y.) > 1, then ¢ (x) = 0 and hence A (x) = 0.
1 1 1
m m
So YA (x) p(Fx —y) < XA (x)=1. Therefore p (Fx — F (x)) < 1 ar
i=1 i U i i=t i [\ U
this implies that Fx — FUx e U.
To show FU(Q) is relatively compact we just need to show that eve
sequence in it has a convérgent subsequence since it is contained in a fini
dimensional subspace of Y.
Let (FU(xn)) be a sequence in F (). (/\1(x )) is a sequence in J, hence it h:
n

a convergent subsequence, say Al(xk) — a. Similarly A (x ) has
1 2 n
n k
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convergent subsequence, etc. So we obtain a subsequence, (xn ) of (xn) suc.
k
that A (x ) — a fori=1,2, .., m Therefore
1 n 1
k .

Fx )=XA&x )y, — i‘niay. So F () is relatively compact. Thus
Un 7 d=0 4 77 =t U

Wm

FU : 2 — Y is compact.

(b) Let Qo C Q be closed. To show (I — F)(Qo) is closed. Let (x,), 4 beaneti
Q0 such that (I — F)(x/\) —y. Now Fx, € F(£2), which is compact. Therefor
0

(FXA)AEA has a cluster point y, € F(2). Thus there exists a subnet (Xw)wes
of (X)\))\EA such that Fx — Yy Sox, = (xw - wa) + Fx, —y+y
and hence y + Y, is a cluster point of (X/\)/\EA. But (X/\)/\EA C Qo and Qoi

closed, hence X =y + Y, € Qo. Therefore

(-F)x) =lim ((=F)(x,) =

So y = (I - F)(xo) c (I - F)(Qo) Thus (I — F)(Qo) ]

closed. (

The following procedure gives a way of defining the degree:
Let (I — F, Q, y) be the triplet we are considering. By Theorem 6.4(b), I — F is close
Hence (I — F)(00) is closed. So there exists

U e %(0) such that (y + U) n (I-F)(6Q) = ¢. (1
i%y Theorem 6.4 (a), there exists a finite dimensional F1 such that le —FxeUon Q. L
X1 be a subspace of X such that dim X1 <w, FI(Q) C Xl, y € X1 and let Ql =0n X1' No
(a) [I-(1-F)] (Ql) is bounded:

-(1-F)] (@) =F ().
and

(b)  yeX \(I-F)00):

Suppose y = (I — F1)(X) for x € Ql. Then Fx=x—y But Fx—-FxeU. So

1
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x —y —Fx € U. Therefore (I - F)(x) €y + U. Since I -F)(oQ)n(y + U) =

we must have x ¢ 0Q.

But o) =00 X\QnX

cQn X1\ QnX

= 00 nXl. (4
Thus x ¢ BQI, and hence y ¢ (I -—Fl)(ﬁﬂl).

So (a) and (b) imply that d((I — F1) | R Q1’ y) is defined by definition 2.17 (where d is tt
1

Brouwer degree extended to unbounded sets). Thus, it seems natural to define the degre

by

DI-F, 0,y =d(I-F)|g,0,y) (
1

We must show that this degree is well—defined.

6.5

Proof :

Theorem

Let (I — F, Q, y) be one of the triplets we are considering. Suppose there exis
finite dimensional F_such that Fx—FxeU (where U is obtained by (1)) on Q ar
a subspace Xi of X such that dim Xi <o, Fi(ﬁ) C Xi, y € Xi and Qi =Qn Xi, for
1=1,2. Then

d1-F)lg, 0,9 =dT-F)lg,2,y)
2

N.B.: Q1 and 92 come from spaces of different dimension. Hence we mus
use theorem 2.19.
Let X =span (X UX )and Q =QnX.
3 12 3 3
Let Qo be any bounded open set that contains (I — F )(y), i = 1, 2. (This can t
1
done since (I — Fi) “I(y) is compact). Then by definition 2.17.

dAI-Flg, 2,5 =d@-F)q SRALMURLAR) (
i 0

i
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and

d((I-F)lg, 2,y =dl-F)lg 1 q,9,00,7) (5
3 3 0

We will first show that

d((I_F1)|Q N Q ,QinQO’ y)=d((I_Fl)|Qs N QO,Q3nQO, y)
i 0

In order to apply Theorem 2.19, we must have F|Q na: (23 n Qo — Xi i
1
3 0

. _ Q A
continuous, 93 n Qo open bounded and y € Xi \ (I Fi)|Qa 0 Qo)(6(93 n 0)4
Easily, F_|Q N0 is continuous.

1
3 0

Supposey = (I—F )(x) for x € (9((23 n Qo).

1

Now 5(93”90) =0 n QO\Q3nQ0

= 693 n Qo) u (93 n 690).

1

Sincex € I—-F ) (y) Qo we must have x € 693 n Qo’

But 693 =Qn X3\9nX3
cn X3 \Qn X3
=0nX
So x € 0.
Now (I - F)x = (I—Fi)x + (Fix—Fx) €Ey+U. So(I-F)a8Q)n(y+ U)+0,
contradiction. Thusy € Xi \ ((I— Fi) | Q3 0 QO)(é?(Q3 n Qo))'

By Theorem 2.19, we have
d((I _Fl)|Q3 n Qo7 Q3 n QO, y)

= d((1-F)

|Q3 n QO n X.’ Q3nﬂonQi’y)
i

= d((I _Fi)IQi N QO: Qi n Qo7 y) (6

By (4), (5) and (6),
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d((1-F)lg, 0,y =dI-F)lg 2, ¥): (7

We will now show that

d((t —FI)|QS7 Q,y)=d —FQHQJ Q.,7).
Define h: J x Qa——»X by h(t,x) =t (I _F1)X + (1 —-t)(I—FZ)x
for (t,x) € J x Qs'
Then (i) h is continuous
(ii) sup {|x —h(t, x)| / (t,x) € J x (_23}
= sup {|x — t(I —Fl)x— (1—-t)(I ——F2)x| [ (t,x) €T x {—23}
= sup {|t Fx+ (1—t) F2x| [ (t,x) €T x (_23}
<sup {|t F1x| / (t,x) €J x Qa}
+ sup {|(1 —t) F2x| / (4, x) €J x (_23}
< sup {|F1x| | x€ Qa} + sup {|F2x| / (t,x) € (_23}
< o.
(iii) If y = h(t, x) for (t, x) € J x 803, then
y =t(-F)x+(1-t)I-F )
=x—Fx—[t (le —Fx)+ (1 —t)(sz—Fx)].
le — Fx, sz —Fx € U and U is convex, so
t(le —Fx) + (1 - t)(sz — Fx) € U. Therefore (I -F)x ey +
with x € 6(23 =00N X3 C 0Q. A contradiction to
(I-F)()n(y+U)=49. Thusy ¢ h(t, 0(23), teld.

Therefore the hypotheses for (d3) in definition 2.17 are satisfied, to give us
d((I_F1)|(_237 QE’ Y) = d((I_FQ)IQ:; Q'.%’ Y)° (?
(7) and (8) imply that

d((I_Fl)IQ ’ 917 Y) = d((I_F2)|Q ) QZ’ Y)'
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6.6 Theorem
Let (I—F, Q, y) be our triplet. Suppose there exist U_€ %(0) such that

(y+U)N(T-F)oQ) =90, i =1, 2, and there exist finite dimensional F_and
1

1

subspace X of X such that dim X <o ,F (Q) X ,y€ Xi, Qi =Qn Xi, i=1,2.
1 1 1 1

Then
d((I—F”Q:Q:y):d((I—F)lQ 7Q2;Y)'

Proof :

Let V € % (0) such that V ¢ U1 n U2. By Theorem 6.4(a), there exist

finite dimensional F3 and a subspace X3 of X such that dim X3 <w, Fa(ﬁ) C Xa’
y € Xs’ (23 = nXs’ and st—er Von ). Hence st—er U on () for
1
i=1,2. So by Theorem 6.5,
d1-F)lg, 0,7 = dT-F)|g,2,7)
fori =1, 2. Thus
d((I—F1)|Q ) Ql’ Y) = d((I_F )IQ ’ Q )Y)
1 2
Thus, the degree defined by
D(I_F) Q: Y) = d((I_F1)| 0 Q >Y)
in (3) is well—defined.

The following lemma can be found in Nagumo[16].

6.7 Lemma

Let Ki (i =1, 2) be compact sets in X. Then K1 + K is compact in X.
2
Proof :

K1 x K2 is a compact set in the product space X x X. The map

¢: X x X — X defined by ¢(x, y) = x + v, (x,5) € X x X is continuous and
(;S(K1 x Kz) = K1 + Kz. Thus K1 + K2 is also compadct.
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6.8

Proof :

6.9

Proof :

Lemma
For our admissible triplet (I —F, Q, y),
D(I-F, Q,y)=D{I-(F+y),Q,0).

(F + y)(Q) = F(Q) + y. Since F is compact, by the above lemma,
F + yis also compact. Also 0 = (I —(F + y))(x) = x — Fx —y implies that

y = (I —F)(x). Therefore x ¢ 0.

So0 ¢ (I—(F +y))(0). Hence (I—(F + y), Q, 0) is an admissible triplet.
y £ (I—F)(0Q) and (I — F)(0Q) is closed, so we can find U € %(0) such that

(y + U)n (I —F)(0Q) = §. By Theorem 6.4, there exists a finite dimensional

such that le —Fx e Uon Q. Let X1 be a subspace of X such that dim X1 <

F1(ﬁ) CX,yeX andletQ = Qn X . Then
D(I-F, Q,y)=d((I —Fl)lﬁl’ 2,y)
=d((I- (F1 + y))|Ql, Q, 0).
Now (F1 + y)(Q) = F1(Q) +yCX,0¢ X and
(F1 +y)x—(F+y)x= le —Fx € Uon Q. Thus by definition
DI~ (F +),0,0)= a1~ (F + )|y, 2,0)
Thus (9) and (10) give us |
D(I-F,Q,y)=D(I—-(F +y),Q,0).

Theorem
For the triplet (I —F, Q, y), the degree defined by
D(I _F) Q) Y) = d((I _Fl)lﬁ ) Ql’ Y)
1

(where the triplet (I — F1’ Ql, y) is defined as above) satisfies (D1)—(D3).

(D1):
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To show D(I, Q,y) = 1ify € Q. Here F =0. Since y ¢ I(00) = 99, there exists
Ue %(0)suchthat (y + U)nor =9. If F1 = 0, then F1 is finite—dimensional an
le —Fx=0€e¢UonQ Let X1 be a subspace of X such that dim X1 <m,yEX
andlet @ = QN X . Now FI(Q) =0eX. So by definition

D(I - F, 4, Y) = d((I - FI)IQI’ Ql, Y) = d(Ilﬁl) Ql’ Y) = 1 since y € Ql, an
by (d1).

(D2) :

Let !, Q2 be disjoint open subsets of 2 such that y € X \ (I=-F)(Q2 \ QU Q?%). W
must show that D(I - F, Q,y) = D(I-F, Q! y) + D(I-F, Q2% y). Now

Q\ Q'u Q%is closed and hence (I — F)(Q! U Q?) is also closed. Therefore the:
exists U € %(0) such that (y + U) n (I—-F)(Q \ Ql U Qz) = §. By theorem 6.4(:
there exists a finite dimensional F1 such that le — Fx € U on ¢

Let X1 be a subspace of X such that FI(Q) C X1’ y € X1 and let Ql =Qn Xl. Then

D(I-F,Q,y)=d(I- Fl) IQ , Ql, y). (1.
1
F1|Qi is also an approximation for F|gi, i = 1, 2. If Qi =Qin X fori=1,
then
D(I~F, 2% y) = d((I-F )| s 0L y), (1:
fori=1,2. 1

Qi and Q"l’ are disjoint open subsets of Q .
1

(21\ Qiuni Qn Xl\ (anxl)u(nzuxl)

g(’lnxl\(ﬂluﬂz)nx1

=(Q\Qlunz)nxl.

Suppose y = (I — Fl)(x). Theny = (I - Fx) — (le — Fx). Now le —FxeU. S
(I-F)(x) ey + U. Thereforex ¢ 0\ Q'U Q2 and so x ¢ Ql\ Qi u Qf Thus

y#(I- Fl)(ﬁl\ Qi u Qf) and by (d2),
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A(T-F)lg, 2, 9)
— _ ~ 1 —Fl A 2 1.
= A=)l gy O} 3) + A(E=F )l gn T y) (

Thus, (11), (12), (13) imply that
D(I - F) Q) Y) = D(I - F’ Ql; Y) + D(I - F7 Qz) Y)

(D3) :
Let H:JxQ —X and y:J— X be continuous, (2 C X open, X is a local
convex t.v.s.) H be compact and y(t) € X \ (I — H(t, .))(o) for all t € J. Then v
must show that D(I — H(t, .), ©2, y(t)) is independent of t. First take y(t) = 0. F
7 € J. We will show that there is some interval about 7 on which the degree
constant. Consider X* =R x X. If % is a system of neighbourhoods at the orig
for X then a system of neighbourhoods at the origin for X* is given by
%*z{(—6,5)xU/6>0,Ue %}.
Let @ =R~ O and define
H*(t, x) = (0, H(<t>, x)),
for (t, x) € Q*,

0 if t<0
where <t>=¢t if 0<t<1
1 if t>1

Then @ =Rx(, 80 =0 \Q =Rx0\RxQ=Rx . Alsofor (t x) € 0
we have H (¢, x) = (0, H(<t>, x)) ¢ {0}  H(J ) , 50

'H*(Q*) € {0} x H(J x Q) and this is relatively compact, and hence H*(Q*)
relatively compact. Thus H 0 — {0} x X is compact. Suppose

(,0) € (I —H )(82"). Then (r, 0) = (I — H')(t, x) for some (t, x) ¢ R » &
Therefore (r, 0) = (t, x) — H (t, x) = (t, x) — (0, H(<t>, x)). Sot = 7 and
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0 = (I —H(7, .))(x) where x ¢ 00, a contradiction. Thus (7, 0) ¢ (I - H*)(aﬂ*:
By theorem 6.4(a), (I — )( ) is closed. Therefore there exists U € %" suc
that (U* 4 (7, 0)) n (I— )( "Y=0. NowU € % implies that there exists

= (=0

6>0and Ue %suchthatU = (-6, 6) x U. So

(=6, 7+ 6 xU)n(I—H )3 ) =0 Let [t—7| <4 Then

(t,%) ¢ (I—H )(@Q") forall xe U. Thus (t, %) # (I — H*)(tl, x) forallx € Uan
forall (¢, x ) € Rx 00 Soin particular, (1, %) # ([~ )(t, x ) for all x € U and
X € 0, ie. (t,x) £ (t, xl) — (0, H(<t>, xl)) for all x € U and X € 00, implyir
that U n (I — H(<t>, .))(092) = # whenever |t — 7| < é. By theorem 6.4(a), the:
exists a finite dimensional F:J x 0 — X such that P(t, x) —H(t, x) ¢ Uon J x §

Ile is a subspace of X such that dim X1 <o, PIxQ)cC X1 and Ql =Qn X1’ ther
D(I - H(t1 ‘)1 Q) O) = d((I - F(t1 ))'Q ) Ql’ O)
1
for [t — 7| < 6on J. Therefore there exists 6> 0 such that D(I - H(t, .), Q, 0)

constant on (7 — 6, 7 + 6) N J. So every 7 € J has a neighbourhood on which t}

degree is constant. Since J is a connected set, D(I — H(t, .), ©2, 0) is constant on J.

Now if y(t) was not a constant, then

D(I - H(t’ ')) Q, Y(t)) = D(I - (H(t’ ) + Y(t)): Q: 0) (14

by lemma 6.8.

Now y is continuous and J is compact so y(J) is compact. Therefore

H(J x Q) + y(J) is compact by lemma 6.7. Therefore (I — (H(t, .) + y(t)), @, 0)
an admissible triplet and so by above D(I — (H(t, .) + y(t)), 2, 0) is constant on .
So (14) implies that D(I — H(t, .), 2, y(t)) is constant on J,

proving (D3). 4

The proof of (D3) is found in Nagumo [16]. The following are some results on subspace
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and projections.

6.10 Lemma
Let X be any topological space and X0 a subspace of X. If K C Ko is compact in Xo’
then K is compact in X.

Proof : |
Let {V_},ca De any open cover of K in X. Then {v,n Xo}.aEA forms an
open cover of K in XO. By compactness, this can be reduced to a finite subcover,
say, V1 n Xo’ e V]n n Xo' So Vx’ e V]n is a finite subcover of K in X. Thus X is

compact in X. [ 3

6.11 Theorem (Tychonoff)
Let (X, 7) be a Hausdorff real topological vector space of finite dimension n. Then
X admits a norm ||.|| that gives the topology 7 and makes (X, ||.||) isometrically
isomorphic to (R®, |.|) (where |.| is the usual norm in R"). Indeed, if h : X — R"
is any algebraic isomorphism, then it is also a homeomorphism (X, 7) — (R", |.|)

and ||x|| = |h(x)], x € X defines a norm ||.|| on X with the asserted properties.

We do not include the proof for the above theorem. If it is required, it can be found in

Schéfer [29].

6.12 Lemma
Let X0 be a .ﬁnite dimensional subspace of a Hausdorff t.v.s. X. Then XO is closec
in X.

Proof :
XO 1s a subspace of X, so X0 has the relative topology induced by th

topology on X. By Tychonoff's theorem (6.11), X0 is homeomorphic with R ans
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has a norm |.| that gives the relative topology on Xo. Now, let (x )‘) e De amet
X0 such that x, — x € X. To show x € Xo. Now B1(0) in X0 is open in X0 ar
hence by the relative topology, there exists an open set 2 in X such that

B1(0) =Qn Xo. ( open in X, and 0 € 2 implies that there exists U € %(0) suc
that U C . Since X is a t.v.s., there exists V € %(0) such that V + V C U.

Xy, — X implies that there exists )\V € A such that (A > )\V implies Xy €x + Vv

Therefore x, —x € Vandsox—x; €(~1)VCV (since V is balanced). So f
v v

A /\V we have

x/\-—x/\vz(x/\—x)-i—(x—x/\ JEV+VUCQ. Butx/\—x/\vEXO. So

v
Xy —x’\v eqNn X0 = B1(0) for all A 2 A, Therefore |x, —x/\vl < 1and

I €1+ [x, | =R forall A2 A, So (x4)y5y € By(0) is a subnet
v :

=
(x/\)/\EA where xy — x. Now B = CL, B, (0) is compact in X0 (it is closed ar
0

bounded) and so, by lemma 6.10, also compact in X. Since X is Hausdorff, B

closed in X. Hencex € B C Xo' Therefore x € Xo’ proving X0 is closed in X.

The next result can be found in standard books on linear functional analysis (for examp
Limaye [27]).

6.13 Lemma

If {xi, x? ..., x"} is a linearly independent set in a nls. X, then there exists
a,a, ..« inX*suchthat a(xi) =f Ll fi=]
7277 Ty j 0 if i # .]
Let X be a finite dimensional real nls. (dim X = n) with basis {x', x’, ..., '}. Then by ¢!

X . ee
above lemma, there exists o, @, ..., @ in X such that a (xl) 1= .
1 2 n i 0 ifi#]
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So if x € X, then there exists )\1, ..., A € Rsuchthat x = Alxl + .+ A X,
n

a (x) = oz_(/\lx1 + ..+ A xn)
J J n
- Ala_(xl) +o A aj(xn)
A n
= a(x)
J ]
=\

J

Then x = al(x) X 4+ ta x)x =% a(x) x1,
The next results can be found in Taylor [32].

6.14 Lemma
A T1 t.v.s. is Hausdorff.

6.15 Lemma
Let X be a locally convex topological vector space. Let M be a subspace of X a
let f be a continuous linear functional on M. Then there exists a continuous line

functional F on X which is an extension of {.

6.16 Lemma
Let X be a locally convex T1 t.v.s. and let X1 be a finite dimensional subspace of
(dim X1 = n). Then there exists a continuous projection P1 X — X1 from X on

X1’ and X1 and X2 =(I- P1)(X) are closed complementary linear subspaces of -
ie. X1 and X2 are closed with X = Xle X2.

Proof :
By lemma 6.14, X is Hausdorff. = Therefore by Tychonoff’s theorem,
admits a norm which gives it precisely the relative topology in X. Let {xl, X

seny
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be a basis for X1' Since X1 is a nls., by remarks after lemma 6.13 there exists

* n
a,..,oa €X suchthatx= Y a(x)xi forallxeX.
1 n 1 i=1 1 1

By lemma 6.15, there exist continuous linear functionals § on X which a
1

n .
extensions of a. Define a mapping P1 X — X1 by P1x = '21[3'(}() x! X € ]
1 . 1= 1

Now P1 is linear and continuous (since each §_is). Ifx € X1’ then
1

Px= ii:)lﬁi(x) x! = iijllai(x) x! = x. Thus P is surjective. Also, since
PxeX for all x € X, P1(P1x) =P x So P": =P. Therefore P s a continuo
projection of X onto X1 ( , = I— P1 is easily a projection of X onto a
complementary subspace of X1)' It remains to be shown that X1 and X2 = P2()
are closed.

Let x € )_(1. Then there exists a net (xy),  in X converging to xin X . But
P1x)\ = x, and P1x)\ — P1X (P1 continuous). Hence Xy — Plx.

By uniqueness of limits (since X is Hausdorff), x = P1X € X1' Therefore X1 is close

Now P2 =] P1 i X — X2 is a continuous projection of X onto X2 and similarly

is closed.
We are now ready to show that the degree is unique.

6.17 Theorem
Let X be a locally convex t.v.s. and
A={(I-F, Q,y)/QCcXopen, F:Q— X compact, y € X \ (I—F)(60)}.
Then there is a unique map D: #— T satisfying (D1)—(D3).

Proof :
By theorem 6.9, the existence of such a map is guaranteed.

Let the map D : M — I satisfy (D1)«(D3) andlet 1 —F, Q, y) € K. I —TFis
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closed operator by Theorem 6.4(b). So (I —F)(09) is closed. Hence there exists
U € %(0) such that (y + U) n (I — F)(82) = §. By theorem 6.4(a), there exists :
finite dimensional F1 such that F1x —Fx e Uon Q. F1 is also a compact map b;
theorem 6.4(a). Consider a subspace X1 of X such that dim X1 < w, F1(Q) C X1’
y€ X1 and Q1 =N Xl. Define
H:IJxQ—X
by
H(t, x) =t le +(1—t) Fx=Fx+ t(le — Fx)
for (t,x) € J x Q.

Let (H(t, x,)) be a net in H(J = Q). Since J is compact, we may assume withou
loss of generality that ¢, — t, € J. F1(Q) is relatively compact, so F1(x/\) has
convergent subnet, say F1(xa) =y, F({) is also relatively compact, so F(xa) hs
a convergent subnet, say F(x ﬂ) —y. So
H(tﬂ, xﬁ) = tﬂleﬁ+ (1 —tﬂ) Fxﬂ—»toy1 + (1 —to) y.
Thus H is compact (since it is continuous).
fy=(1-H(,.))(x) (t x)€eJ =, then

=x—Fx)—t (le —Fx) =(I-F)(x) -t (le — Fx). Now le —Fx € U an
since U is balanced, t (le —Fx) € U. Therefore (I - F)(x) € y + U and so
x ¢ 0Q0. Therefore y ¢ (I —H(t, .))(d0Q) forallt e J. So by (D3),

DI-F,Q,y)= D(I-—Fl, Q,5). (1!

Since X1 is finite dimensional, there exists a continuous projection P1 X — X
Then X = X @ X_where X =P (X), P =1 —P. (By lemma 6.16). I
Tychonoff’s theorem, since X1 is finite—dimensional, it is also a nl:

Now  is a closed subset of X , so by theorem 1.2.15, F la :QnX —X h
1 1 42N X1 1 1

a continuous extension Fl: X1 — X1 such that 1<~11(X1) ceonv (F(2nX))cX. 3
= 1 ="

is a nls., hence has a measure of noncompactness defined on it.
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Hence 7(F1(X1)) < 7 (conv (F1(Q n X1))) = 7(F1(Q n X1)) = 0 since F1(Q n X1) CX
is relatively compact. Therefore }3‘1 is compact.
Now let H(t, x) =t Fx+ (1—1) FPx for (t, x) € J x Q. F is compact, hen
i‘lPl is also compact. Since F1 is compact, H must also be compact. Suppose
y= (I —H(t, .))(x)for (t,x) € I x Q. Thenx =y + H(t, x) € X Therefore
xeQn X Therefore P x = x and f‘lP x= i‘lx =Fx So
y:x—tﬁx—u—nﬁff=x—tRx—a—0F§=a—wa.ﬂmw
must have x ¢ 2 and soy £ (I —H(t, .))(0Q) forallt € J. Thus by (D3) again
Da—Fny):Da—ifoy) (1¢
Now consider €}/ = P;l(ﬂl). Q1 open in Xl and P1 continuous give us 1’ open i
X. Also ngﬂ’. So QIEQ/ N Q with ©/ n Q open in X. If x € O with
y:ﬂ—ifﬁ@%ﬁwx=y+iffexfSoxEQanﬂ%fﬁawm
yga_ifxﬁ\ngga—ﬁfxﬁ\nfnnySOyga_iF%Q\nfnn
Since 2’ n Q is open in X, we have by (D7),
Dﬂ—fffﬁy)=Dﬂ—iFfQ’nQy) (1
Ihfﬂ’=Pﬂﬂgmmy=ﬂ—ifg@%mwx:y+iFFEXﬁmHo
X = Plx and Plx € Q{ Sox¢e 91' Therefore

yE(I-FP)Q \Q) (1

Now to show y ¢ (I — FlPl)(BQ’): Let x € /. Then there exists a net (xy) c€
such that x,— x. P continuous implies P x,— P x. ButPx, € Q. So
A 1 A { rA
Pxe Ql. Therefore x € P;l(ﬁl), and therefore 2’ ¢ P{(Q ).
_ 1 1
Now let y = (I — FlPl)(x) with x € /. Then Pxe Q1 and hence
FPx=FPx So
1 1
= (I - '
y = ( F1P1)x (1¢

andx=y+FlPlxeX1. Thereforex=P1er cQnX.
1 1
Hy=(I-FP)x forx eQthenx =y+FPx ¢X. So
1o 0 0 1o "
P1Xo:Xo andy=(I—-F1)x0 and so xoﬁé‘ﬂ. Therefore
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y £ (I_F1P1)(m)' (20
(19) and (20) give us that x ¢ #Q and sox € 2 N X1 = Q1 € Q’. Therefore

y ¢ (1= F P )(30"). (21
(18) and (21) give y ¢ (I —1}11)1)(0/ \2)2( _ilpl)(ﬁf \ @’ nQ). So by (D7)
D(I—i‘lPl,Q' ne, y)=D(1—i“1P1,Q',y). (22

Let x € Q/ C P;I(Q ). Then Pxe Ql. So ]}1P1x =FPx Therefore
= 1
((—F P )6 =

I— F1P 1)(x). Hence (I — ]}1P 1) lg, =T~ F1P1) |’ Therefore

DI-FP,,y)=DI-FP, 0,y). (2
(15), (16), (17), (22) and (23) give us

D(I-F,Q,y)=DI-FP, PHQ),y). (2

Now let (1, Ql, y) be an extended Brouwer triplet : i.e. Q1 C X1 open, f: Ql—» X1
continuous, y € X \ f(@Ql) and (id — f)(Ql) is bounded.
Define do(f, Q1’ y)=D(I—-(I—- F)P1’ PII(Q1)’ ¥).
For (I-(I - f)P1’ PII(QI), y) to be an admissible triplet for D we must have
(i) P;l(Ql) open in X.

i) (I-9P | P

(i) yeX\(I-(I-DP)(PHQ)).

compact.

We now prove them.

(i) Ql is open in X1 and P1 X — X1 is a continuous projection. So P;l(Q )
1

open in X.

() (=P (PR ) C(1-DOP (P(Q)) = (-0)(@)CcX . But

-1
1 1

(I - f)(Ql) is bounded. So (I — f)P1(P;1(Q1)) is a closed bounded subset

a finite dimensional space, hence is compact. So (I — f)P |
1

PQ)

compact.
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- _p- \ p-l A Y\ PYQ) = PO _ p-l _
(i) oP(@) = P @) \ P(@ ) CPH@ )\ P(@) = P \Q) = B0
Lety=(I-(1I- f)Pi)x with x € 6P11(QI) C P;‘(@Ql). Therefore P x € 891.
AlsoxeX. Sox = P1X' Therefore x € 891. Soy=(1I-(1- f)P1)X =1
1
and x € 00 , a contradiction. Hencey ¢ (I—(I— f)PI)(ﬁP;I(Ql)).

Now we must show that d0 satisfies (dol)—(d03).

(dol) :

Let y € Q{ Then

do(id, Q1 ¥) =D(I-(I —id)Pl, P;l(Ql), ¥)
= D(, P¥(2), )

=1 since Ply =y and hence y € P;I(y) and by (D1).

(do2) :
Let Q) Q2 be disjoint open subsets of QI with y € X1 \ f((—l1 \ 21U Q?). Then

do(f, Q, y)=D(I—(I— f)Pl, PII(QI), y). (25
QY Q? are disjoint open subsets of Q. Hence P;l(ﬂl), PII(QQ) are disjoint ope
subsets of P;‘(Q). Now suppose y = (I — (I —1)P 1)x where

xePﬂQQ\PﬂnwuPﬂQ%gPﬂQQ\Pﬂﬂ&ﬂﬁ):PﬂQA(ﬂuQﬁ
Therefore P1X € (_21 \ Q1u Q% Also

x=y+ (I —f)Plx €X. SoPx=x Therefore x € 0 \ Q'U Q2 and
y=(I-(I1- f)Pl)x = {(x), a contradiction. So

y# (I—(T-9P ))(P(Q) \ P(QY) UPTH(@?). Soby (D2)

D(I—(I-f)P, PHQ ), y)

=D(I—(I-f)P , PYQY),y) + DI~ (I-DP , P(0?),y)
=%@Q£w+%@ﬂ%w. ‘ (26
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(25) and (26) give d (1, @, ) = d (1, 0% y) + d (£, 2% y).

(d03) :

Let ngxlbe open, h : J x Ql—» X1 andy:J— X1 be continuous,

sup {|x —h(t,x)|/(t,x) € J x Ql} < w.

(N.B.: we can write |.]|, since X1 is f.d. and hence a nls) and y(t) ¢ h(t, 601) for 2

t e J.
d,(h(t, ), 9, ¥(1)
= D(I— (I -h(t, )P , P(Q ), y(t). (2

Define H : J x P;l(Ql) — X by H(t, x) = (I —h(t, .))Plx, (t,x) € J x P;I(QI).
{(id — h(t, .))(©)) / t € J} is a bounded subset of a finite dimensional space. Hen

is relatively compact. Thus H is compact (easily continuous). Now suppose

y(t) = (I -H(t, )X), (¢ x)
SoP x=x Alsoxe P;l(QI) C P;l(ﬁl)v. SoP xe Ql. Therefore x € QI, and
y(t) =x —H(t, x) = x — (I = h(t, .))Plx =x— (I —h(t, .))x = h(t, x). Hence
x ¢ 801 ie P x ¢ 801. This implies that x ¢ P;I((XZI).

m

Jx P;l(Ql). Then x = y(t) + H(t, x) € X

But apil(ﬂl) = P;l(Ql) \ P;l(Ql) EPII(Q1) \ P;I(Ql) = P;l(aﬂl). Thus

x ¢ aPil(Ql). Therefore y(t) ¢ (I — H(t, .))(8P;1(Ql)) for all t € J. So by (D3),
D(I — H(t, .), P:(Ql), y(t)) is independent of t and by (27),

do(h(t, ), Q1’ y(t)) is independent of t.

Thus do’ defined on the extended Brouwer triplets, satisfies (dol)——(do3). Since t.
Brouwer degree is unique, d0 =d.

Therefore by (24),

D(I - F, Q) Y) = D(I _F1P17 P;I(QI)) Y) = d((ld _Fl)IQ 4, Y)
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Thus there is a unique map

D: #4— I satisfying (D1)—+D3).
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CHAPTER 7

DEGREE FOR SEMICONDENSING VECTOR FIELDS

In this chapter, we give an extension of the degree to semicondensing vector fields. Most

the work is extracted from the paper by Schoneberg [20].

Let X be a real Banach space of infinite dimension.

7.1

7.2

Definition

Let A& = {c:R*— R* / cis a continuous strictly increasing map such that ¢(0) =
and ¢(r) — o asT— o }.

F:Q — X, where Q C X, is a c—condensing map , for ¢ € A if it is a continuo

map such that «FB) < c(y(B)) for all bounded B € Q with %(B) > 0.

If c(t) = t, then a c—condensing map is simply a y—condensing map.

Definition
* *
The map &: X — 2° defined by Fx={x*eX [x¥x)=|x|2=|x*|?}

called the duality map of X.

The following is an extension of the inner product in Hilbert spaces to real Banach spaces.

7.3

Definition
The semi—inner products (.,.), : X x X — R are defined by

(x,¥)s=|y| lim t(|y + tx| —|y]) and
t-0*

(x,y) =yl lim tY(|y| — |y —tx]).
- t+0 *
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Deimling [28] shows that the semi—inner products have the representations

(x,y), =sup {y*(x) /y*€ Fy} and
(x,y) =inf{y*(x) /y*e Fy}.

Deimling [28] also shows that the semi—inner products satisfy the following useful

properties.

74

7.5

Proof:

Theorem

(x,2) + (v,2) <(x+7y,2),<(x2), +(y,2), ,
|5 y) | < Ix] Lyl

(x+ay,y),=(x,y), +aly|*forall aeR and

(ax, fy), = af (x, y), for afi> 0.

Theorem
Let 2 C X be open, F1’ F2 : § — X be continuous, ¢:R*— R be continuous and
€ > 0. Suppose that for all y , Y, €Q,
1
— — < — — —
Iy, =y,Dly =yl <Py -Fy,y -y )+ely -y |.
Then for all ¥, €0,

oy - ~y | <Py - - =
Uy, =v,D Iy =y, | <(Fy =Fy.y -y) +ely ~v|.

Let ¥y, ¥, € Q2. Since Q is open, there exists d > 0 such that
Zj(t) =7, —1 ijj € ) whenever 0<t<d and j=1, 2.
(12 (&) =2, (6)]) |2 (1) ~2,(1)|

< (Pa)-Fat),2(0) -2 1), + ¢ |2 (1) 2 (1))

= (0~ (0) + Fa ) - Fat) - s (1) ~ 1 (1), 2(1) — 2 (1)),
+ela 1)~z (1)

= (t‘l(zl(t) — Zz(t)) + F1Z1(t) — F2z2(t), z
+ela (i) —a (1)

1 2

(t) —z (), — t'1|zl(t) - z2(t)|2
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7.6

N.B.

IN

67|z () = 2,(t) + t(F 2 (4) = F 2 (1)) = |2 () —2,()]
+ e t] [z (t) —z(t)]
for0<t<d.
Suppose qué Y, Since Zl(t) — z2(t) —y-y, as t — 0+, for all small enough
vy, — v,
|z () = 2,(1)]
oz () —2,t)]) [y, =]
ly, =y |ty —y, + tEy,—Fz () + t(Fz(t) - Fy )
=1y, ~y,~t®y —Fy)l +et]
vy =y, |ty =y [ +tFy —Fz )]+ tIFlzl(t)—Flyll’_
=y, —y,~tFy —Fy)l +et]
=y =y Ity =y =y, tFy ~Fy )l
+ 1y =y | [[Fy,—Fz 0+ |Fz(t)-Fy[+e].

Noting that |y| lim tY[|y| — |y —tx| ] =(xy) ,2(t) —y ast—0*, and
] ]

ot )

t > 0, we may multiply by to get

i

IN

the continuity of ¢, |.], F1 and Fz, we obtain , by taking limits as t — 0+,

- - C(Fy —F - — Vi s the
«(ly, =y, Iy, =y < (Fy —Fy,y —y) +ely y,| giving u
desired result. '

Definition

Let @ C X and F: @ — X. Then F is said to be accretive if (Fx —Fy, x —y), > 0
for all x, y € Q.

If c e A, then Fis c—accretiveif (Fx —Fy,x—y),2c¢(|x—y|) [x —y]| forall
x,y €.

F is strongly accretive if F is c—accretive for some c € 4.

If Q is open and F is continuous, then we can replace (., .), by (., .) in the

above definition, by theorem 7.5. (In theorem 7.5, ¢ need not belong to ).
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7.7

Theorem

Let € X be open and F :  — X be continuous and strongly accretive. Then the
following are equivalent :—

(1)  F hasa zero in .

(2)  There exists x € ) such that |Fx0| < |Fx| forall x € 0.

The proof of the above theorem can be found in Kirk and Schoneberg [23] and [24].

7.8

Definition

Let  C X be open bounded. Then F : Q — X is said to be semicondensing if it is

continuous and if there exists a bounded continuous mapping V : "  — X and

c € 4 such that :—

(a) Fx=V(x,x) forall x€ Q.

(b)  {V(,y)/yeQ} isequicontinuous.

(¢) For all A C Q with ofA) > 0, there exists ¢ € [ 0, c(a(A)) ) and a finite
covering {A1’ o An} of A such that
oIy, =y, Iy, =y, (V0 y)=V(x,y)y =y )+ ely —y,| for
all Y, € Q and all X, X, € A Dbelonging to the same Ai.

The pair (V, ¢), in the above definition, is called a representation for the semicondensing

vector field F on (.

7.9

Remark

Theorem 7.5 with F1 = V(xl, .) and F2 = V(xz, .) allows us to replace (., .), by
(., .) in condition (c).

The following example illustrates the conditions (a), (b) and (c) in definition 7.8 .
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7.10

Example

Let © € X be open bounded, F1 : 0 — X continuous bounded and accretive, and

F2: 0 — X a—condensing. We will show that T + F1 —F is semicondensing. The

map V: Q x @ — X defined by V(x, y) = (I + F1) y — sz is bounded and

continuous.
(a) V(xx)=01+ F1 — F2)x for all x € Q.
(b) Let x € 2 and ¢ > 0. Since F2 is continuous, there exists § > 0 such that
|x —x’| < §implies |F2x—F2x’ | <e.
Soif [x —x’| < §thenfory € Q
V(x, ¥) = V(x, 3)]
= [(I+ Fl)y—sz—(I-i- Fl)y + F2x’|
= |Fx-Fx'|
< €.
Hence {V(.,y)/y € Q} isequicontinuous.
(c)  Letc(t) =t and let X, X557, € Q2. Then

Iy ~vy,D Iy, =y
=y, -yl
< |y -7, |2+(Fy —Fy g ¥, 7Y )+ (sinceF is accretive)
= (Fyl—Fy +y —¥, —y2) (bytheorem74)
(Ve y) =V, 5)y =v)
¢ (Vlx,y) = Vix, ),y =Y )t (Vx,y) = V(x,5), 7 ~¥)s
(Vx,y )

+

) ( )) y =Y. )+
Fx — —
+| X, F2x2| v, =yl (1)
Let A € Q with a(A) > 0. Since F is a—condensing, ofF (A)) < a(A). By
2
definition of a, we can find ¢ > 0 such that o(F (A)) < € a(A), and a finite
2
covering {A , .., A’} of A suchthat |Fx —F x | < ¢ whenever x, x
1 n 21 22 ! 2

belong to the same Ai. So by (1), for all Y, ¥, € {2 and all x, x in the same
'
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A , we have
1
2 - - - «
v, =y, SV, ¥ )=V, ¥ )y =3 et e ly =)
Thus (V, c¢) is a representation for I + F1 — F2 and so I + F1 - F2 is

semicondensing. 3

We will now give some properties of semicondensing vector fields.

7.11

Proof:

Theorem

Let  C X be open bounded and let F: Q -— X be semicondensing. Then
(1)  F is bounded.
(2)  Fis proper.
(

3)  F(A)is closed whenever A C Q is closed.

)
(4) If Q1 C Q2 is open, then F| g is semicondensing.
t

(5) If F:Q — X is semicondensing and t, t > 0 such that t + t > 0, then

tF + tF is semicondensing.

(1) and (4) are obvious. (3) follows from (2) since F is continuous.

To prove (5), if (V, ¢) and (V, ©) are representations for F and F respectively, then
(tV + tV, tc + tc) is a representation for tF + tF (noting that in the definition of
semicondensing vector fields, (., .), can be replaced by (., .) ).

Now to prove (2). Let (V, ¢) be a representation for F. Let K C X be compact. To
show that F(K) is compact. Let (xn) be a sequence in FY(K). Then (Fxn) CK
and so we may assume that Fxn — z € K. By the continuity of F we may select a
sequence (zn) in  such that |xn - znl < % and |Fxn — anl < 3—1 for each n.

Then an: Fxn+ (an——Fxn)——»z +0=2z Let A= {zn/n e N} If wecan

show that a(A) = 0 then some subsequence of (z ) will be convergent, say
n
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7.12

z —y. Then we will have x =2z +(x —z )—y+ 0=y and thus
n n. n, n n

i i i i i

Fli(K) will be compact

So suppose a(A) > 0. Since F is semicondensing, there exists ¢ € [ 0, c(a(A)) )
and a finite covering {A1’ . Am } of A such that

(17 =FD) 1y =71 € (V(x, ) = V(5 7), y = F) + ¢ |y = 7| forally, 7 €@ and
all x, X € A belonging to the same A;. Choose § > 0 such that ¢ + 26 < c(a(A))
and then choose n € N such that |an —z| < § foralln> n. Let I‘i C A be defined
by I‘i = {y € Ai |y = z for some n > n }. By definition of a, we can find
some j€ {1, ..., m} such that diam I‘J_ > ofA). (N.B: o(A) = a({zn /0> n D).

Sofory,y eI, we have,
j

o(ly =yl) < IV, 9) = V(E )| + e
= |Fy —Fy| + ¢
¢ [Fy—o|+ [a—F5| 4 e
< 6+ 0+ ¢
= 204 €

So c(diam I' ) <26 + € < c((A)) and since c is strictly increasing,
j

diam I' < o(A) < diam T', a contradiction. Hence o A) = 0. é
j j

Definition

Let Q C X be open bounded and F : Q@ — X. F is said to be semiaccretive if F is
continuous and there exists a bounded continuous map W : 2 x 2 — X such that
Fx = W(x, x) for x € @, W(x, .) is accretive for all x € Q, and the map

x — W(x, .) is a compact map of Q into the space of bounded, continuous and

accretive mappings of Q into X, where the latter space is taken with the topology of

uniform convergence.
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7.13 Theorem
Let © C X be open bounded, F : I — X semicondensing and G : @ — X

semiaccretive. Then F + G is semicondensing.

The proof of the previous theorem can be found in Schoneberg [20]. In defining the degree,

the following theorem proves very useful.

7.14 Theorem
Let @ C X be open: bounded and let F1 : ) — X and F2 0 — X be
semicondensing with representations (Vl, cl) and (V2, c2) respectively. Define
W:IxQxQ—X andd:J xR*—R* by ﬂ
W(t, x,y) =t V1(X’ y)+(1—1t) Vz(x, y) and d(t, 1) =t cl(r) + (1 —1t) cz(r).
Then theset G ={(t,x)eJxQ /) W(t,x,y) =0 forsomey e Q} isopenin
J x X and there is a unique map H: G — Q satisfying W(t, x, H(t, x)) = 0 for
all (t, x) € G.
Furthermore, H is continuous and for all bounded A C X with a(A) > 0 we have
o(H(G n (J x A))) < a(A).
Proof:
We break the proof up into four parts.
(a)  Forall(t, z) € Jx Q, the map W({, z,.) is continuous and d(t, .)—accretive:
t F1 + (1—1t) F2 is semicondensing by theorem 7.11 and (W(t, ., .), d(t, .)) is
easily a representation for it. Let (t, x) € J x Q. Since 2 is open, there exists
r > 0 such that Br(x) C Q. Then a(Br(x)) = 2r > 0. Thus there exists
e(t) € [0, d(t, a(Br(x))) )=1[0,d(t, 2r) ) and a finite covering {A1’ o An}
of Br(x) such that
dct, [y =v,D) Iy —v,|

<(W(t - = -
COWCx,y ) =Wt x, ¥ )y =y )u+ t) Iy =7,
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for all y,¥,¢€ Q2 and all X, X € Br(x) belonging to the same Ai.
Take X =X =X and let r — 0. Then we have
d(t, [y =y, 1) |y -7,
< (Wt xy) =Wt xy )y —vy) (2)
for all y,¥,€ Q. Thus, by definition, W(t, x, .) is d(t, .)—accretive.
Now let y, € Q2 and € > 0. Since W is continuous, there exist neighbourhoods

Nt, N and N of t,x, and Y, respectively, such that if

x y

0
(t1,%7)eN xN xN | then
t X yo
|W(t, %, 7) - W(t, x, yo)l < ¢. Thus whenever ¥ € N , we have
Yo

|W(t, x, ¥) — W(t, x, yo)l < ¢, proving the continuity of W(t, x, .).

G s open :

I

Let (to, xo) € G. Then there exists y, € Q0 such that W(to, X yo) 0.
Since 2 is open, we can choose R > 0 such that BR(yO) C Q. From (2) we
have for all Y, ¥, € Q,
dt, ly, =y, Iy, =,
¢ (WG, y ) =W, x5y ),y =, )
$ WGy ) =Wy Ty =y L
Thus for yp ¥, € Q with Y, # Y,
ey 1y, =7,1) < Wt %, 7) = Wi x, v)
If ¥y, =, and y, =€ 8BR(yo) (and hence v, # y2), then
[W(t,x,y)l
= AW, x,y) - Wit ,x, 7))
2 dt, ly -y D)
= d(to, R)

> 0. . (3)
By the equicontinuity of {Vi( YY)/ ye} i=1 2 and by the
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()

boundedness of V1 and V2, {W(.,.y)/yeQ}isequicontinuous.

Therefore there exists § > 0 such that if max { [t — tol, |x — xol } < § then

[W(t, %, ¥) — W(t, x, ¥)] <5d(t, B) (4)
forally € Q.

So if max { |t—t0|, |x—x0| }<bandye BBR(yO), then

|W(t7 X, Y)l 2 ‘W(t07 XO’ Y)| - |W(t7 X, Y) - W(t07 X07 Y)l
> d(t,R)—5d(t, R) (by (3)and (4))
= 3d(t, R).

Therefore €(6) inf { |W(t,x,y)| /ye€ BBR(yO), (t,x) € J x  with
max{|t—-t0|, |x—x0|} <6}

> Ld(i, R) "

> 0.
By continuity of W, we may assume that ¢ is chosen so small that
| W(t, x, y0)| < €(8) whenever (t, x) € J x Q with
max {|t —t0|, |x—x0|} < 6. But for all such (t,x) € J x Q,
| W(t, x, yo)l <e(6) < |W(t,x,y)| forallye BBR(yO). Now by part (a),
W(t, x, .) is d(t, .)—accretive and hence is strongly accretive. Applying
theorem 7.7, we obtain that W(t, x, .) has a zero in BR(yo) C Q. Thus for all
(t, x) € J x Q with max {|t —tol, |x—x0|} < 6, there exists y € Q such that
W(t, x, y) = 0 and hence (t, x) € G. Proving that G is open.
There exists a unique map H: G — Q such that W(t, z, H(t, z)) = 0 for
(t, z) € G and this map H is continuous:
Since for (t, x) € G, there exists y € Q such that W(t, x, y) = 0, we can find
amap H:G — Q such that W(t, x, H(t, x)) = 0. Suppose H1 was another
such map. By (2) we have for (t, x) € G,
d(t, [H(t, )~ H (6, )]) [H(t, x) —H (3, %)

<(W(t, x, Ht, x)) — W(t, x, Hl(t, x)), H(t, x) — H1(t x) ),

)
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= (0, H(t, x) — H1(t’ X)),

= 0.
So either d(t, |H(t, x) — H1(t’ x)|) =0 or |H(t,x)— H1(t’ x)| = 0.
In either case H(t, x) = H1(t’ x) and so H1 = H.
Therefore there must be a unique map H: G — Q satisfying

W(t, x, H(t, x)) = 0 for all (t, x) € G.

We now want to show that H is continuous. Let (to, xo), (t, x) € G. With
y, = H(t, x) and y,= H(to, xo) we have by the result in (a),
d(t, [y =y, 1) Iy, =v,|

C(W(txy) =Wt %y )y =y

< |W(t, x, y2)| |y1 — y2| since W(t, x, H(t, x)) = 0.
If y, <9, # 0, then d(t, |y1 - y2|) < W, x, y2)| and if y, Y, 0, then
this is trivially true. Let (t, x) — (to, xo) in G. Since W( ., ., H(t , x)) is

0 "o
continuous, we have W(t, x, H(to, xo)) — W(to, X H(to, xo)) = 0.
Since d € A, |H(t, x) — H(to, xo)l — 0 and so H(t, x) — H(to, xo), proving

that H is continuous.

For all bounded A C X with a(A) > 0, o HGN (Jx 4))) < o4) :
Without loss of generality assume A C Q. Since o(A) > 0, there exists a
finite covering {A17 - An} of Aand ¢(t) € [0, d(t, a(A))) such that
dt, |y, =y, Iy, =y | < (Wt x, 5 ) =Wt x5 ),y —v, )

+e(t) [y, v,
for all yp¥, € (), for all t € J and for all X, X, € A belonging to the same Ai.
Since V1’ V2 are bounded, for each t € J we can find an open neighbourhood

Nt of t such that

[W(t,x,¥) = W(s, %, y)| <3 (d(t, a(A)) — (t) ) foralls e N and all
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X,y €.

Select t , ..., t € J such that {Nt ) ey Nt } covers J and define I‘ij cJxX
1 m

1 m
by I' =N x A_. Then for (t,x), (t, %) € I‘,j N G, we have
i t. i i
]
d(t, |H(t, x) —H(T, x)| ) |H(t, x) — H(E, X))
j

]

< (W(t,x, H(t, X)) = w(t,, %, (%), H(t, x) —H{E, %)),
+ e(t.) [H(t )~ (T, %)|
<G, 0 — B D] W x B x) = W, % HE )]+ )]
< [H(t, %) = B3| [[W(t, x, B(t, ) = Wb, x Bt, )|
+ W, X, H(E ) —W(T, %, HE X)) + e(t) ]
<0 HE D] [F A, o(A) ~ et ) + e(t) ]
= JH(, %) - HE D[40, a(A) + g e(t)]
Therefore

d(t , diam H(T'_ n G))
j ij
<2d(t, o(A)) + 3 €(t)
j j
<24(t, ofA) + (¢, o(A))
j j
=d(t, o(A)).
j
Hence diam H(I'_ n Q) < o(A) for alli, j.
ij
But Gn(JxA)C U (T, nG). Hence by definition of ¢,

iy} ij

o HGn (I x A))) < ofA). A
The following corollary follows easily from the above theorem.

7.15  Corollary

Let © C X be open bounded and let (V, c) be a representation for a semicondensing
vector field on Q. Then theset G={xeQ / V(x,y) =0 forsomey € Q} is

open in X and there is a unique map H: G — Q satisfying V(x, H(x)) = 0 for all
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x € G. This map is a—condensing.

We are now nearly ready to define a degree for semicondensing maps. The following

lemma helps in this regard.

7.16

Proof:

Lemma

Let 2 C X be open bounded, and fori = 1, 2, let Fi : 0 — X be semicondensing
with representation (Vi, ci). Let Gi C X be defined by

Giz{xe Q/Vi(x, y) =0 for somey e Q} and let Hi: Gi—'Qbedeﬁnedby
Vi(x, H(x))=10 forall x e Gi. Then t le + (1—1t) F2x #0 forall t € Jand

x € 00 implies that D (I Hi, Gi, 0),i=1,2 is defined and

DN(I — H1’ G,0) = DN(I — H2, G, 0) , where D is the Nussbaum degree from

chapter 4.

Let W, d, G and H be as in theorem 7.14. Set M = { (t,x) € G/ H(t, x) = x }.
Then, easily, M={ (t,x) eI xQ/ W(t,x,x)=0}. If((t,x ))CM such that
n n
(t,x)—(t,x)eJxQ,thenV(x ,x )=Fx,i=12 So
n n 1 n n 1n

0=W(t,x,x)=t Fx +(1-t)Fx —tFx+ (1 —t)F xsince F and
n n n n In n 2 n 1 2 1

F2 are contnuous on (). Thus t le + (1 —~t) F2x = 0 and by hypothesis x ¢ 9Q.

Let A={xeQ/(t,x)eM forsometeJ}.

Ifxe A, thenx € Qand (t,x) € M for somet € J. Thus

(t, x) € G and H(t, x) = x. So x = H(t, x) € H(G n (J x A)) and hence we get

ACH(G N (J x A). If ofA) >0, then a(A) < o(H(G n (J x A))) < oA), a

contradiction. So o(A) = 0. Since M C J x A, we must have that (M) = 0 and

since M is closed, it must be compact.
If G'={xeX/(t,x)eG}

={xeX/(t,x)€JxQ and W(t,x,y)=0 forsomeyeQ},
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then G'={x e X /x€ Qand W(0,x,y) =0 for someyeQ}
:{xeX/erandV2(x,y):0 for some y € Q }
=G
2
and G'={xeX/xeQand W(l,x,y) =0 for someyeQ }
={x€X/Vl(x,y):0 for some y € 2 }
=G.
1
Now by theorem 4.2.1,
D (I—H(0,.), G’ 0) = D (I - H(1, .), G, 0). Soif H = H(1, .) and H = H(0, .)
then

D,(I-H , G, 0) =D (I-H,G,0). ) A

Now consider the triplet (F, €, 0) where Q C X is open bounded, F : & — X
semicondensing such that 0 ¢ F(0Q).
Let (V, c) be a representation for F and set G ={x€Q/ V(x,y) =0 for somey e Q}
and define H: G — Q by V(x, Hx) =0 for all x € . By lemma 7.16,
DN(I —H, G, 0) is defined and hence we define the degree on the triplet (F, 2, 0) by
D(F, ©,0) = D (I - H, G, 0).
We must show that this is well—defined.
Let (Vj, cj) ,jJ=1,2 be two representations for F. If G and H are defined as in

j j
lemma 7.16 with F1 = F2 = F, then, since 0 ¢ F(d), we must have by the same lemma

that

D (I- H1’ G1’ 0) =Dy (I- H2, GQ, 0). Hence D(F, €, 0) is well—defined.

7.17 Remark
If F=I-H with H: ?— X o—condensing and x — Hx # 0 for all x € &0, then F
is semicondensing by example 7.10. Here F =14+ 0—H and 0:Q — X is

accretive, continuous and bounded. Here (V, c¢) is a representation for F where
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V(x,y)=y—Hx,x,yeQandc(t)=t,t €J.
Let G ={xeQ/V(x,y)=0 forsomeyeQ}
={xecQ/Hx=y forsomeyeQ}
={xeN/HxeQ}
Now for x € G, we have Hx € @ and so V(x, Hx) = Hx — Hx = 0.
Therefore by definition,
D(I-H, Q,0)=D(I-H,G, 0). (5)
Since H : ) — X is a—condensing, I — H is proper and hence (I — H)™(0) is
compact. Since 0 ¢ (I — H)(Q), we must have (I —H)™(0) C Q and this is compact.
Thus (I —-H|q, ©,0) is a Nussbaum triplet. Tet 0 = (I—-H)(x) with x € Q.
Then Hx = x and x € . So x € G. Thus 0 ¢ (I - H)(Q\G) and so by (D, 7),
D,(I-H, G, 0)=D,(I-HQ,0). (6)
(5) and (6) give us
D(I-H, Q,0)=D,(I-H Q,0).
Thus the degree defined is in fact an extension of the

Nussbaum degree. [

The following results show that our degree satisfies those properties that make degree

theory useful.

7.18 Theorem
Let €2 C X be open bounded and F:  — X be semicondensing with representation

(V, c) such that 0 ¢ F(&). Then the degree, defined above satisfies

(a) DI, 0,00=1if0eQ. (D1)

(b) If Q1 and 92 are disjoint open subsets of Q with 0 ¢ F(Q \ Q1 U 92), then
D(F, 2, 0) = D(F, 2, 0) + D(F, @ _0) (D2)

(c) ID(F, Q,0)4#0, then F(0) # §. (D4)
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If F is strongly accretive and F7(0) # ¢, then D(F, 2, 0) = L.
IfF| 50 =Glyq and G: Q) — X is semicondensing, then

D(F, 0, 0) = D(G, Q, 0). (D6)
If  is symmetric with respect to 0 € © and Fx = —F(—x) for all x € 01,
then D(F, Q, 0) is odd.

Follows from remark 7.17.
If G={x€eQ/V(x,y)=0 for somey € Q }, then by corollary 7.15, let
H:G—Q be the unique map such that V(x, Hx) =0 for x € G. Then by
definition,
D(F, 0, 0) =D, (I-H, G, 0). (7)
Let Gi ={xe€ Qi | V(x, y) = 0 for some y € Qi }. Then Gi is open.
Consider Hi = H|G : Gi — Q. Then Hi ; Gi — Qi . So by definition
i
again,
D(F,Q,0)=D(I-H,G,0) ,i=12. (8)
Now Gi is an open subset of G fori =1, 2 and G1 and G2 are disjoint.
Suppose 0 = (I — H)x for x € G\(G1 U Gz). Then x = Hx. Since x € G,
V(x, Hx) = 0 and so Fx = V(x, x) = 0 withx € G \(G1 U Gz)' Since x ¢ Gi
and V(x, Hx) = 0 we must have x ¢ Qi. Hence x € Q\(Q1 U Qz) with
Fx = 0, a contradiction. Hence 0 ¢ (I — H)(G\(G1 u G2), and so by (D,2),
Dy(I-H,G,0)=D(I~H G,0)+D(I-HG,0)
=Dy(I-H,C,0)+D(I-H,G,0). (9)
(7), (8) and (9) give us
D(F, 2, 0) = D(F, Q. , 0) + D(F, 2, 0).
Let D(F, Q,0) # 0. By corollary 7.15, if

G={xeQ/V(x,y) =0 forsome y € 0}, then there exists a unique map
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H:G— Q such that V(x, Hx) =0, x € G. Then

D(F, Q,0) = D (I~ H, G,0). SoD (I—H,G,0)#0 and by (D,4),

.(I — H)"0) # #. Thus we can find X € G such that X = on. But x € G,
) V(xo, on) = 0. Hence Fx0 = V(xo, xo) = V(xo, on) = 0. Therefore
F10) # 0.

Since F is strongly accretive, we can find ¢ € 4 such that F is c—accretive.
Soforallx,y€Q, (Fx—Fy,x—y),2c(|x—y]|) |[x—y|. Suppose

F(0) # ¢ and let X, X, be zeros of F in Q. Then

0=(0,x —x),=(Fx =Fx,x —x),>c(|x —x|) [x —x

12 1 21 1 2| 1 2|'
So c(|x1—x 1) |x1—x2| = 0. Hence |x1——x2| = 0 and so X =X, Thus F

2
has a unique zero in 2, say X €. Let W:QxQ— X bedefined by
W(x, y) = Fy.
(W, ¢) is a representation for F :
(1) W(x, x)=Fx
(2)  Let ¢ > 0and x € Q. Then for all x € Q
sup { [W(x, y) = W(x,y)| /yeq}
=sup { |[Fy—Fy| /yeQ}
=0
< €.
Thus { W(., y) / vy € Q } is equicontinuous.
3  cly=yl) Iy -7l
<(Fy —Fy,y-y),
= (W(x,y) - W(x 5), y -y).
CWEy) =W 5),y-5), + ¢ ly -7l
forall x,x,y,y € Q.

Hence (W, ¢) is a representation for F.

Define G ={xeQ/W(x, y)=0 forsomeyeQ}
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={xe€Q/Fy=0 forsomeyeQ}
={xe/ FxO =0} since X is the unique zero of F
= (.
There exists a unique map H : Q — Q such that W(x, Hx) = 0 for x € Q.
But W(x, Hx) = FHx. So FHx = 0. But F has a unique zero X hence
Hx = X for all x € 2. So by definition,
D(F, 2, 0) = D, (I - H, 0, 0)
=D (I-x, 0, 0)
= DN(I’ Q,x)
=1 by (D,1) since x € Q. |
Let Fi be semicondensing, 0 ¢ Fi(aﬂ), with representation (Vi, ci) ,i=1, 2,
and such that F1| 50 = F2| 50 -
Let Giz{xe Q/Vi(x,y):o for some y € 2 } and Hi: Gi——»Q be
defined by Vi(x, Hix) =0 forall x € Gi.
Suppose 0 =t le + (1—1t) F2x for x € 002 .
Then 0=t le + (1—1t) le = le. A contradiction. Therefore
0¢t le + (1 —1t) F2x forall t € J and x € dQ. Then by lemma 7.16,
DN(I - H1’ G1’ 0) = DN(I - H2, G2, 0) and so by definition,
D(F , 0,0) = D(F , 0, 0).
If we replace F by % (Fx — F(—x)), we will have Fx = — F(—x) for all
x € {2 and F will also be semicondensing. Let (V, c) be a representation for
F. Then if we define V:Q x Q0 — X by
V(x,y) = % (V(x,y) — V(= x, —y)), then (V, ¢) is also a representation of F.
Let G={xeQ/V(x,y)=0 forsomeye N} and H: G — Q be
defined by V(x, Hx) =0 for x € G.
0e G:

Now 0 € Q. So F(0) = — F(—0). Thus F(0) = 0 and so V(0, 0) =0,
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giving us 0 € G.
G=-G
Let x € G. Then V(x,y) = 0 for some y € . Then
V(=x, —y) =—V(x, y) = 0 and since y € @ and Q is symmetric
with respect to 0, we must have —y € . Since — x € {1, we must
have —x € G, and so G is symmetric with respect to 0.
Hz = — H(— z):
Let x € G. Then V(x, Hx) = 0.
Now V(x, — H(—x)) = — V(— x, H(—x)). Since x € G we must have
—x € G and so V(-x, H(—x)) = 0. Hence V(x, —H(—x)) = 0.
But H: G — Q was a unique map such that V(x, Hx) = 0 for all
x € G. Hence Hx = —H(—x) forallx € G.
By Borsuk’s theorem for the Nussbaum degree, DN(I —H, G, 0) is odd. But
D(F, ©,0) =D (I—H, G, 0) by definition.
Hence D(F, ©, 0) is odd. [

The last result is the (D3) property.

7.19 Theorem

Let © C X be open bounded and H :J x & — X be continuous such that

H(t, x) # 0 for (t, x) € J x 8, H(t, .) is semicondensing for all t € J and

{H(., x)/x€ I }is equicontinuous. Then D(H(t,.), 2, 0) is independent of t.
Proof:

Since J is compact, it suffices to show that for each tO € J, there exists some

interval about t0 on which D(H(t, .), ©, 0) is independent of t.

Fix tO € J. By theorem 7.11 (3), H(to, .)(0R2) is closed. Thus, since

0¢ H(to, )(09), we can find € > 0 such that BE(O) n H(to, (o) = 9. Since
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{ H(t, x) / x € 0Q } is equicontinuous, there exists an interval I C J about b such
that |H(t, x) ——H(to, x)| < € forallt € I and all x € 0.
Fixt1 € I. Then fort € J and x € 0Q,
|t H(tﬂ x) + (1—1t) H(to, x)|
> |H(to, x)| —t |H(t0, x)—H(tl, x)|
> €— |H(t0, x) —H(tf x) |
>e—¢€
= 0.
Thus 0 # t H(t1’ x) + (1 —t) H(to, x) for x € 0Q. So by lemma 7.16, and by
definition, D(H(t , .), , 0) = D(H(to, ), Q,0).

1
Thus D(H(t, .), 2, 0) is constant on I. o
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CONCLUSION

A further extension of the degree, not covered in this dissertation, is the degree of
multivalued maps. More about this can be found in Petryshyn and Fitzpatrick [7] and

Ma [21].
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