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ABSTRACT 

Learning geometry equips learners with cognitive skills such as visualisation, critical thinking, 

spatial reasoning and problem-solving abilities, that are necessary for learning mathematics in 

general. However, geometry is noted to be difficult for learning as well as teaching. An 

investigation of this difficulty, especially with teachers, will help address its teaching and learning. 

The purpose of this study was to analyse pre-service teachers’ geometric thinking and classroom 

discourse using the commognitive lens. The study was guided by three objectives, which were to 

analyse the pre-service teachers' discursive thinking in geometry; the nature of their routine 

thinking in solving the geometric tasks, and how these informed their classroom geometric 

discourse. The study aligned itself to the qualitative approach and was underpinned by the 

interpretivist research paradigm. Eight pre-service teachers who were second-year university 

students and had taken geometry as part of their programme modules, participated in the study. 

The study site was conveniently selected, whilst the participants were selected on purposively. 

Geometry worksheet (test), interview and classroom observation, were used to generate written, 

verbal (oral) response, and visual data in relation to the study objectives. The data was analysed 

using the themes of the commognitive framework. The results show that both literate and 

colloquial word use were found in the discourses of the pre-service teachers. Many participants in 

Group A used more literate words to define and explain geometric concepts and how they solved 

the geometry problems, than the participants in Group B, who used both literate and colloquial 

words. Also, the routine solution strategies of many in Group A showed more of an explorative 

way of thinking compared to those in Group B, who demonstrated more of a ritualised way of 

thinking. In addition, multiple solutions to tasks were found by many of Group A participants than 

those in Group B. Generally, many of the study participants demonstrated limited geometric 

thinking. Misconceptions were evident in the discourses of some pre-service teachers in both 

groups. Other key findings from the classroom observation were that, many participants in Group 

A demonstrated an explorative instruction that is characterised by developing learner 

understanding and using different kinds of visual mediators as compared to participants in Group 

B, whose classroom geometric discourse was ritualised in nature.  In other words, their teaching 

was more procedure-driven than conceptual. The study concludes that many of the PSTs possess 

limited geometric thinking. In addition, those who possessed good geometric thinking were more 

capable of engaging learners in explorative instruction compared to those with limited geometric 
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thinking. These findings may have an influence on mathematics teacher educators’ efforts to 

develop teaching competence among pre-service teachers. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Several research findings have revealed learners’ poor performance in mathematics throughout the 

globe (Abreh et al., 2018; Bruce, 2016; Kiwanuka et al., 2015; Musa & Dauda, 2014; Ngirishi & 

Bansilal, 2019; Wonu & Zalmon, 2017). This poor performance has attracted the attention of 

mathematics research communities and mathematics educators who are constantly engaged in 

rigorous investigations to determine how to improve the quality of teaching and learning in the 

subject, for improved performance. The reason for this special attention to mathematics is that, it 

has been considered the backbone of all scientific, technological and industrial advancement. 

Knowledge of mathematics is key to all technological advancement and economic growth of a 

nation. People can better manage their lives and information around them when they have some 

fundamental knowledge of mathematics (Kiwanuka et al., 2015). Because mathematics is so 

important, many countries have placed much focus on improving the quality of teaching and 

learning of the subject (Aslan-Tutak, 2015; Robichaux-Davis & Gaurino, 2016). Researchers 

believe that the study of geometry has a central place in the mathematical curriculum. The learning 

of geometry enables people to better understand their world, as well as to improve the teaching 

and learning of mathematics (Luneta, 2015; Riastuti et al., 2017). Despite the significant role of 

geometry in mathematics education, a considerable number of research results show that learners, 

worldwide, have difficulty in learning geometric concepts (Aslan-Tutak, 2015; Ozerem, 2012; 

Sulistiowati et al., 2019).  

 

Geometry is known to play a significant role in learning mathematics (National Council of 

Teachers of Mathematics [NCTM], 2000; Zuya & Kwalat, 2015). It is a branch of mathematics 

that is concerned with the study of points, shapes, straight lines, spatial figures, space, including 

the properties and relations among them (Bassarear, 2012; Biber, et al., 2013; Luneta, 2015). The 

study of geometry develops learners’ critical thinking skills and problem-solving abilities 

(Maulana & Yuniawati, 2018). It is considered a reality-based topic in the mathematics curriculum 

(Ness & Farenga, 2007). 
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Geometry has a long history and its inclusion in the development of mathematics continues to 

receive significant attention in (mathematics education) its teaching and learning due to its 

potential to develop and improve mathematics understanding among learners (Luneta, 2015; 

Robichaux-Davis & Guarino, 2016). Learners’ knowledge of geometry enables them to explore, 

conjecture, deduce and improve their development of mathematical ideas and reasoning skills 

(Maulana & Yuniawati, 2018; Sulistiowati et al., 2019). Learning geometry aims to develop 

learners’ spatial reasoning and abilities for learning geometric shapes and objects encountered in 

daily life (Ozdemir & Goktepe Yildiz, 2015). According to NCTM (2000), geometry equips 

learners with reasoning abilities necessary for developing their mathematical thinking. NCTM 

(2000, p. 41) expects that learners will be able to “analyse characteristics and properties of two-

and three-dimensional geometric shapes and develop mathematical arguments about geometric 

relationships”. In addition, learners should be able to develop the competence to identify and 

describe the attributes of shapes using the appropriate vocabulary, to be capable of defining 

geometric shapes, to develop spatial thinking, to have visual ability and to develop deductive 

thinking among other skills (Jones, 2000). Thus, there are high expectations for learning geometry. 

According to Sulistiowati et al. (2019) and Yurmalia and Herman (2021), learners’ development 

of geometric habits of mind, such as spatial reasoning and visualisation, are critical tools for 

learning mathematics. Jones (2000) maintains that much of the learner’s thinking necessary for 

learning mathematics is spatial in nature. There is a significant relationship between geometric 

understanding and mathematical competencies (Robichaux-Davis & Guarino, 2016). 

 

1.1.1 Learners’ performance in geometry 

Due to the importance and contribution of geometry to our daily life and the development of critical 

thinking and problem-solving abilities, it is included in the mathematics curricula of many 

countries (Jones 2000; Luneta, 2015). However, a growing body of research shows that learners 

find geometry difficulty to learn (Ngirishi & Bansilal, 2019; Sulistiowati et al., 2019). Many 

learners find geometry a difficult subject matter and regard it as the most difficult and confusing 

aspect in the mathematics curriculum, and hence find it irrelevant to their daily lives (Luneta, 2015; 

Ngirishi & Bansilal, 2015). Luneta (2015) asserts that many learners find geometry concepts more 

complex and difficult than other topics of mathematics. As a result of these and other factors, 
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learners are not particularly enthused about learning geometry, which leads to poor mathematics 

performance in both national and international level examinations (Abreh et al., 2018; Bora & 

Ahmed, 2018; Bruce, 2016). Despite the effort of mathematics stakeholders and suggestions made 

in the mathematics curriculum document (Ministry of Education [MoE], 2010) regarding the 

teaching of geometry to enable learners to realise its importance and to appreciate it in their lives, 

learners’ poor performance in mathematics and geometry persists, and it seems to be a global 

problem (Bora & Ahmed, 2018).  

 

In Ghana, like many other countries, many learners find geometry a challenging subject matter to 

learn. As a way of providing feedback on previous examinations, mathematics examiners engage 

in diagnostic analysis of learners’ results to determine their strengths and weaknesses in the various 

content areas of mathematics, which is reported by the West African Examination Council 

(WAEC). In such reports, geometry has, for many years, been among the content areas that have 

been repeatedly highlighted as learners’ major weaknesses WAEC (2015, 2017, 2018). The reports 

have continually indicated that candidates have difficulty in solving tasks in geometry. According 

to the reports, most candidates do not attempt questions on geometry. The few who attempt such 

questions only display errors that shows their misunderstanding of the subject matter. Some 

difficulties involve inability to recall and apply geometric properties and circle theorems to solve 

related problems in plane geometry (WAEC, 2015). Other areas are those of solving problems on 

cyclic quadrilaterals, tangent and chord theorems (WAEC, 2017). Research has shown similar 

geometric misconceptions and learning difficulties among learners around the globe (Aslan-Tutak, 

2015; Ling et al., 2016; Mulungye et al., 2016; Robichaux-Davis & Gaurino, 2016). To improve 

learners’ difficulties in learning geometry and to make them appreciate the subject, teachers need 

to possess deep and flexible content knowledge of the subject matter to enhance its teaching and 

learning activities in the classroom (Robichau-Davis & Gaurino, 2016).  

 

1.1.2 The role of the teacher in geometry education 

Research shows that the quality of instruction learners receive significantly influences their 

learning gains (Jentsch & Schlesinger, 2018; Yi et al., 2022). To enable learners to attain the 

expected competencies in learning geometry, teachers must organise learning experiences that are 

critical to the development of geometric ideas. In the educational system of every nation, teachers 
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are assigned the responsibility to interpret the curriculum for learners. Thus, the implementation 

of every education system depends on teachers, making their function vital. The teacher has the 

role of transforming and representing the subject matter knowledge of the curriculum to learners 

in an understandable way (Shulman, 1986). Jentsch and Schlesinger (2018) outline three 

dimensions of instructional quality in mathematics education, which are: classroom management, 

personal learning support and cognitive activation. Even though all are important, what is worth 

mentioning, as a critical responsibility of mathematics teachers, is the support they provide for 

individual learners in terms of guidance and constructive feedback, and how teachers use problem-

solving tasks to activate and promote the learning process. Thus, in the context of geometric 

education, teachers and pre-service teachers need to learn how to design and implement teaching 

strategies necessary for supporting instructional quality in geometric discourse (Llinares, 2021). 

Learning, understanding and application of knowledge in solving problems all emanate from 

instructional quality (Yi et al., 2022).  

 

1.1.3 Teachers’ content knowledge 

Central to instructional quality is the content knowledge possessed by the teacher. Teachers need 

to possess adequate and functional content knowledge of geometric concepts and ideas to teach 

the subject. The teacher’s content knowledge of geometry serves as a knowledge-base for teaching, 

and facilitating learners’ geometric knowledge construction (Aslan-Tutak, 2015). Learners’ 

geometric thinking can be adequately developed if teachers have, in their knowledge repertoire, 

adequate, comprehensive and flexible geometric knowledge for teaching (Robichaux-Davis & 

Guarino, 2016). High learning gains for mathematics learners can be attributed to the strength of 

the mathematics teaching force. The continued focus on teachers’ knowledge is because learners 

tend to gain more when taught by excellent teachers than when taught by underperforming ones 

(Maruli, 2014). Teachers’ knowledge of the content is the most influential variable in successful 

teaching. The depth of the teacher’s understanding of the subject matter serves as an underlying 

factor for the quality of classroom instruction. It also serves as a predictor of learners’ achievement 

(Hill et al., 2005; Robichaux-Davis & Gaurino, 2016). Almost all classroom activities are centred 

on the knowledge-base of the teacher. According to Krauss et al. (2008), the teacher’s content 

knowledge about the subject matter forms a pivotal point on which teacher competency is built. 

This means that the teacher’s ability to navigate his or her way through quality and effectual 
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instruction depends on how well his or her knowledge is rooted in the subject matter. Aslan-Tutak 

and Adams (2015) assert that teachers’ subject matter knowledge has a strong effect on their 

teaching practices. The authors add that teachers should possess adequate knowledge of what they 

are supposed to teach before determining how to develop that knowledge among learners. Teachers 

who have adequate and in-depth mathematical knowledge for teaching have the potential to guide 

and facilitate learners’ understanding of the subject matter (Danisman & Tanisli, 2017).  

 

According to Mudaly (2015), teachers’ evidence-based knowledge can be achieved by examining 

their thinking about mathematical concepts. He maintains that how a teacher thinks informs his or 

her teaching actions, and the subsequent learning experiences learners are offered. With the focus 

on geometry, both teachers and pre-service teachers need to possess deep geometric thinking to 

successfully teach all content areas in geometry and most importantly, to support learning in 

geometric discourse through guidance and constructive feedback (Ball et al., 2008; Danisman & 

Tanisli, 2017; Yi et al., 2022).  

 

1.1.4 Geometry as a discourse 

According to Sfard (2008), a discourse is a special type of communication activity that depends 

on its admissible actions as defined in a particular community of learners. The discourses learners 

are engaged in largely depend on teachers’ thinking. They are the kinds of communication 

activities teachers make available for learning. Discourses as communication, take the form of 

spoken language, written text, artefacts and physical objects used in learning. According to Sfard 

(2008, p. 93), discourses are “different types of communication set apart by their objects, the kinds 

of mediators used, and the rules followed by participants and thus define different communities of 

communicating actors”. An inference from Sfard’s (2008) definition means the keywords that are 

identified and used in communication (spoken or textual), the visual tools (mediators) that are used 

to communicate concepts and the procedures that are followed in communication make a discourse 

distinct, especially in geometry, which makes use of some specified words to communicate the 

concept. As a result, engaging learners in an effective communication of geometric concepts 

requires high level of teacher competence. 
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To improve performance, it is necessary to reconsider the discourse in mathematics education, 

especially in geometry. The quality of mathematics education depends, to a large extent, on the 

strengths of the teaching force. According to Meli (2020), a significant approach to improving the 

teaching of mathematics is based on the professional development of teachers, particularly, pre-

service teachers who enter the teaching profession every year. 

 

1.2 Statement of the problem 

Research studies on teachers’ mathematics content knowledge and learners’ learning gains show 

that these two variables are positively correlated (Baumert et al., 2010; Hill et al., 2005). In other 

words, the teacher’s content knowledge significantly relates to the learners’ achievement. 

Robichaux-Davis and Guarino (2016) assert that for teachers to help learners learning, they must 

have a broad range of knowledge and a deep understanding of the subject matter.  

 

Literature supports an investigation of teachers’ and pre-service teachers’ content knowledge of 

geometry. The concern about poor performance in mathematics has initiated several research 

inquiries into the factors underlying this problem. The findings of such research show geometry 

as the main area many learners find difficult to learn (Luneta, 2015; Sulistiowati et al., 2019). 

Similar learning difficulties in geometry are found among Senior High School (SHS) learners in 

Ghana, many of whom, do not answer questions in this area, when there is an alternative (Fletcher 

& Anderson, 2012). However, geometry has been noted to be a reality-based topic in the 

mathematics curriculum for which research shows that learners’ geometry competencies also 

correlate positively with their mathematics performance (Ness & Farenga, 2007). This could mean 

that a way to improve learners’ mathematics performance is to pay critical attention to the teaching 

and learning of geometry.  

 

The effectiveness and quality of geometric instruction rests on the teachers’ geometric content 

knowledge, especially pre-service teachers who join the teaching service each year. Mudaly (2015) 

claims that a realistic part of a teacher's knowledge is how they think, which affects all the activities 

they use in the classroom to guide learning. This makes teachers’ (both in-service and pre-service) 

geometric thinking a significant area of research in response to the pursuit of finding ways to 

improve learners’ performance in geometry in particular and in mathematics in general. According 
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to Luneta (2015), it is not only learners who find geometry a difficult topic to learn, teachers also 

find it difficult to teach, and in most cases, some teachers even skip the teaching of geometry 

content within the mathematics curriculum (Clement & Battista, 1992). Anecdotal evidence shows 

that some teachers in our present-day classrooms also skip the teaching of geometry. Research 

shows that many pre-service teachers are not prepared to teach geometry because they do not have 

the required geometry content knowledge, which affects their classroom activities (Duatepe Aksu, 

2013; Martinovic & Manizade, 2018). Jones and Tzekaki (2016) claim that pre-service teachers' 

lack of in-depth geometric subject matter knowledge, impacts how they teach in the classroom. 

This suggests that a research inquiry that investigates pre-service teachers’ learning complexities 

can make a significant contribution to teachers’ preparatory programmes, as well as the teaching 

and learning of geometry in schools, a notion that forms the basis for this study. Pre-service 

teachers should be able to demonstrate a flexible and adequate understanding of the geometric 

topics that they will teach. Ball et al. (2008) assert that pre-service teachers need to have an in-

depth content knowledge of mathematics to be able to teach it well.  

 

If mathematics stakeholders wish to see significant improvement in learners’ performance in 

mathematics, then it will be desirable to focus attention on the teaching and learning of geometry, 

which research has shown, equips learners with important mathematics learning abilities such as 

visualisation, spatial reasoning abilities, critical reasoning and problem-solving skills (Maulana & 

Yuniawati, 2018; NCTM, 2000; Sulistiowati et al., 2019). These mathematics learning qualities 

can be experienced when teachers have deep content knowledge of geometry and can use the 

knowledge to design quality classroom instructional activities, for learners’ engagement. A 

teacher’s thinking is his or her realistic part of mathematical knowledge, which can be accessed in 

detail if given the opportunity to explain, justify, or substantiate his or her mathematical ideas 

(Hufferd-Ackles et al., 2004; Mudaly, 2015; Sfard, 2007, 2008). Even though several studies have 

been conducted on pre-service teachers’ geometric thinking (Arslan et al., 2016; Baktemur et al., 

2021; Biber et al., 2013; Ndlovu, 2015; Unlu, 2022; Zuya & Kwalat, 2015), those that connect the 

pre-service teachers’ geometric thinking and pedagogical practices are rarely explored. This study, 

therefore, filled this gap by analysing pre-service mathematics teachers’ geometric thinking and 

their classroom discourse using Sfard’s (2008) commognitive lens. The participants will generally 

be refered to as pre-service teachers (PSTs).  



8 
 

 

1.3 Critical research questions and objectives 

The purpose of the study was to analyse pre-service teachers’ geometric thinking and how it 

informs their classroom geometric discourse. The following objectives were outlined to guide the 

study: 

1. To analyse the nature of pre-service mathematics teachers’ discursive thinking in 

geometry. 

2. To analyse the nature of pre-service mathematics teachers’ routine thinking in geometry.  

3. To examine how pre-service mathematics teachers’geometric thinking influences their 

classroom discourse. 

 

As guided by the objectives stated above, the study intended to answer the following critical 

research questions: 

1. What is the nature of pre-service mathematics teachers’ discursive thinking in geometry? 

2. What is the nature of pre-service mathematics teachers’ routine thinking in geometry? 

3.  How does pre-service mathematics teachers’ geometric thinking influence their classroom 

discourse?  

 

1.4 Significance of the study  

According to Schoenfeld (2000), two main purposes drive research in mathematics education. The 

first deals with identifying the nature of teaching and learning in schools, and the mathematical 

thinking of learners. The second is concerned with the use of the insight gained to improve 

mathematics discourse. The two purposes aligned with the focus of this study, which analysed pre-

service teachers’ geometric thinking and their classroom geometric discourse. The aim was to 

identify the nature of the pre-service teachers’ geometric thinking and to use the findings to help 

improve the teaching and learning of geometry through teacher support. 

 

Available literature in Ghana on investigating teachers’ knowledge shows that their geometry 

skills is one of the least researched. This study on pre-service teachers’ geometric thinking reveals 

broader views of the nature of their geometric thinking. The study draws stakeholders’ attention 

to the nature of the geometric thinking the pre-service teachers possess before entering the teaching 
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profession. This is necessary because how a teacher organises his or her teaching and the kind of 

learning experiences offered to learners depends on his or her understanding of the subject matter. 

A teacher needs to possess a deep and flexible understanding of the subject matter to be successful 

in teaching and learning (Shulman, 1986). This study contributes to the understanding of the 

participated pre-service teachers’ geometric thinking for teaching geometry, a content area that 

continues to pose learning challenges to learners in Ghana.  

 

The use of the commognitive framework makes a significant contribution to the existing 

theoretical frameworks that have been used to study teachers’ knowledge. Its significance is based 

on its elements that provide a clear path for analysing the discursive thinking of both teachers and 

learners, which can be used to analyse classroom teaching and learning situations. Thus, the use 

of this framework in this investigation draws researchers’ (especially Ghanaians) attention to its 

use in studying various phenomena related to teaching and learning in mathematics education.  

 

The study makes another useful contribution to teacher preparatory programmes. Pre-service 

teachers undergo training to develop teaching competencies to communicate the knowledge to 

learners. Naidoo (2011) asserts that teachers ought to be given the needed support to succeed in 

teaching, and this support must be given before they are fully assigned a duty or begin teaching. 

Findings from her study, draw attention to the need for mathematics teacher educators to offer the 

needed support to pre-service teachers with special attention to the curriculum components they 

will teach.  

 

In addition to teacher support, the study brings into focus the framework used in analysing pre-

service teachers’ geometric thinking in a broader perspective of the constructs of the framework. 

As part of developing the pre-service teachers’ content knowledge for teaching, particularly in 

geometry, the use of the constructs of the framework can cause a discursive turn in teaching and 

in assessing learners’ understanding and progress with instruction (formative, and even summative 

assessment) in teacher education institutions. In this case, minimal focus will be paid to solutions 

to questions, to include justification of the informed choices. Integrating the constructs of Sfard’s 

(2008) commognitive framework into classroom teaching and, assessing learning and 

understanding, can form a solid foundation for developing the pre-service teachers’ thought 
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processes for teaching. Thus, in communicating their thought processes, conscious effort could be 

placed on the words they use in communication, the use of visual mediators to communicate and 

explain geometric and mathematical concepts, what narratives they use to substantiate their 

strategies and how these inform their routines. Evidence from the framework used to investigate 

and analyse the participants’ classroom geometric discourse shows that the framework has 

promising use in mathematics educational research (Presmeg, 2016), both in teaching and learning, 

and to develop mathematics teachers’ teaching proficiencies and communicative competence for 

effective mathematics teaching.  

 

1.5 Defintion of terms  

Learners – is used in the context of lifelong learners. This includes anybody studying any point 

in time to acquire knowledge. 

Pre-service teachsers – refers to students/learners studying to become teachers. In this study, the 

term learners and pre-service teachers will used interchangeably.  

 

1.6 Overview of the study 

The study has been organised into the following chapters. 

 

Chapter one provides the background to the study. It presents the perspective of the problem under 

investigation and delimit it to the area of the study. It also outlines the problem statement and the 

motivation for the study. The research objectives and critical questions that guided the study are 

provided. The contribution the study makes to mathematics education are discussed and ends with 

an overview of the study. 

 

Chapter two provides a review of the related literature on the study. Among the areas reviewed are 

geometry and its place in the mathematics curriculum, mathematics education in Ghana, the 

acquisitionist and participationist views to learning, and cognitive abilities for learning geometry. 

The chapter also presents a review of the literature on pre-service teachers’ geometry thinking in 

the content areas of the study, including their spatial abilities. 
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Chapter three provides the theoretical framework as the lens to conduct the study and a means to 

gain a deeper understanding of the data generated. The use of the framework and its usefulness to 

the current study are also discussed in the chapter.  

 

Chapter four focuses on the research paradigm, the research design and the methods used. It 

describes the development of the instrument for generating data, the piloting of the instrument and 

the processes involved in data generation. It explains the approaches used to gain access to conduct 

the study and, the data analysis procedure. 

 

Chapter five answers the first critical research question. It presents an analysis of the participants’ 

geometric thinking in terms of the discursive constructs of the framework. It also presents the 

findings and relates it to the literature.  

 

Chapter six concentrates on the second critical question and presents findings on the participants’ 

routine thinking in solving the geometry tasks assigned. The chapter focuses on the dominance of 

ritual, or exploratory ways of thinking in their routine strategies.  

 

Chapter seven builds on chapters five and six. It focuses on how the participants’ geometric 

thinking and their solution strategies influence their classroom discourse.  

 

The final chapter eight, presents a summary of the study and its findings. It also discusses the 

limitations of the study and offers recommendations and suggestions for further research. 

 

1.7 Conclusion  

This chapter started with the background to the study and the statement of the problem. It presented 

the guiding study objectives as well as the critical research questions. The chapter concluded with 

the preview of the chapters to follow. The next chapter, discusses the literature review. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The previous chapter focused on the background to the study and the underlying rationale that 

necessitates this study. This chapter presents a review of related literature regarding mathematics 

education and geometry in particular. This places the study within the existing literature of 

mathematical studies on geometry and related issues in teaching and learning. The review begins 

with the concept of geometry, a historical account of geometry, the place of geometry in the 

mathematics curriculum, and relevant issues in the teaching and learning of geometry. Further 

attention is given to some key abilities for learning geometry such as visualisation, spatial 

reasoning abilities, and other related factors.  

The review proceeds with teachers’ geometric thinking and its influence on teaching in the 

classroom context. It continues with the teachers' role in teaching geometry and ways of facilitating 

the development of geometric thinking among learners. The last part of the chapter describes what 

the literature review means for this study. 

 

2.2 Definition of geometry 

Several authors have attempted to define geometry based on its historical account. A general idea 

based on this account shows that geometry is a branch of mathematics that deals with the study of 

shapes, their measurement and dimensions. For this study to have a basis and direction, some 

definitions of geometry are examined.  

 

According to Luneta (2015), geometry is the branch of mathematics that focuses on the study of 

shapes and their properties and the relationships among them. It is the science of study that deals 

with the properties of shapes of the world. This definition relates well to this study. As part of 

analysing pre-service teachers' thinking, attention was paid to their thinking about geometric 

shapes and their properties. The thinking of the pre-service teachers about geometry, shows their 

knowledge and understanding as a basis of their competency for the teaching profession. 
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Previously, Clement and Battista (1992, p.420) said that, geometry is the “study of spatial objects, 

relationships and transformations that have been formalised (or mathematised) and the axiomatic 

mathematical systems that have been constructed to represent them”. Geometric objects relate to 

space as a physical dimension, and since space forms the basis of our living environment, spatial 

thinking is deemed an important tool for teaching and learning geometry. Spatial thinking deals 

with the formation of ideas or thoughts using spatial relationships in learning geometry (Lowrie et 

al., 2018; Ozdemir & Goktepe Yildiz, 2015). Clement and Battista (1992) add that spatial 

reasoning is an intellectual process of engaging in mental representation, construction and 

manipulation of spatial objects, and the relationships among their properties. Since spatial 

reasoning is crucial to learning geometry, as well as to developing problem solving skills, it 

becomes an important part of pre-service teachers' geometric thinking and an essential ability to 

develop among learners. 

 

Also, according to Jones (2000, p. 124), a useful and probably modernised definition of geometry 

was attributed to the British mathematician, Sir Christopher Zeeman who said, "geometry 

comprises those branches of mathematics that exploit visual intuition (the most dominant of our 

senses) to remember theories, understand proof, inspire conjecture, perceive reality and give global 

insight”.. This definition, shows that visual intuition is a critical tool for learning geometry. What 

the eyes perceive aids the thought processes in learning. Visual intuition (senses) and geometry 

can be termed as two sides of a coin for which visual intuition is essential for the exploration of 

geometrical concepts. The visual senses therefore are examined in this study. 

 

2.3 The place of geometry in a school mathematics curriculum  

Geometry plays an important role in the school mathematics curriculum and forms one of the basic 

components of learning mathematics NCTM (2000). A major goal of teaching mathematics is to 

enable learners to develop reasoning abilities and skills to solve challenging problems in their daily 

lives. The mathematics curriculum aims to equip learners with problem-solving abilities to 

understand and devise appropriate strategies to solve challenging tasks (MoE, 2010; Sulistiowati 

et al., 2018). For example, the Ghanaian mathematics curriculum document identifies as one of its 

aims of teaching mathematics, the ability to “use mathematics in daily life by recognising and 

applying appropriate mathematical problem-solving strategies” (MoE, 2010, p. ii). This suggests 
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that problems encountered in life may remain unresolved without basic knowledge of mathematics. 

Geometry has notably contributed significantly to the central goal of teaching mathematics 

(NCTM, 2000; Safrina et al., 2021; Sulistiowati et al., 2018). Geometry plays a major role in 

developing learners’ spatial reasoning, visual abilities, and critical thinking skills that generally 

enhance mathematics learning and develop problem-solving abilities (Safrina et al., 2021; 

Suarsana, 2019). Learning geometry develops learners' spatial and visual skills, which are 

necessary to solve problems and helps to understand the world we live in (Ndlovu, 2014). 

Acquisition of spatial and visual skills in learning geometry has the potential to develop problem-

solving abilities among learners. Hence, developing learners’ proficiency in learning geometry is 

given greater attention in research as a basis for realising improved performance in mathematics. 

Most researchers and mathematics educators believe that geometry is the central component of 

mathematics education (Cheng & Mix, 2014; Safrina et al., 2021).  

 

Major reforms in mathematics education have focused on geometry content. For example, the 1989 

reform (NCTM, 1989) in mathematics included two-and three-dimensional geometry which aimed 

to enable learners to: 

1. describe, model, draw, and classify shapes, 

2. investigate and predict the results of combining, subdividing, and changing shapes, 

3. develop a spatial sense, 

4. relate geometric ideas to number and measurement ideas, and 

5. recognise and appreciate geometry in the world (NCTM, 1989). 

Although the entire mathematics curriculum may have broader expectations for learners’ 

engagement, it may not be that much different from the five goals outlined above. The learning of 

geometry focuses on concept development and relates to the learning of other content in the 

mathematics curriculum. Geometric exploration enables the development of the learners’ visual 

sense, which is a tool for learning mathematics. For example, geometric shapes and other 

diagrammatic representations of mathematical concepts can be well analysed when the learner has 

a high sense of visualisation and spatial reasoning. Since the mathematics curriculum aims to 

provide learners with problem-solving abilities, teaching mathematics requires teachers to engage 

learners in purposeful activities in geometry lessons to help develop their visualisation and spatial 
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reasoning skills, as critical tools necessary for learning geometry and mathematics as a whole 

(Cheng & Mix, 2014; Winarti, 2018). 

 

Mathematics is considered the backbone of all scientific exploration, and infers that no 

development in the human and scientific world can be realised, if mathematics is left out of the 

school curricula. This can be attributed to the centrality of geometry in the mathematics 

curriculum. Jones (2000, p. 3) claims that, tasks requiring geometric knowledge emerge in all 

science courses and programmes, like “chemistry (computational chemistry and the shapes of 

molecules), material physics (modeling various forms of glass and aggregate materials), biology 

(modeling of proteins, docking of drugs on other molecules, etc.), Geographic Information 

Systems (GIS), and most fields of engineering”. Zhang (2017) and Luneta (2015) add that, 

knowledge of geometry is fundamental for learning various subjects such as physics, geography, 

astronomy, art, geology, engineering, technology, chemistry, biology, and many others. The 

importance of geometry in scientific development gives it a central role in mathematics education. 

There are numerous applications of geometry in various areas of study such as computer-aided 

designs and geometric modelling, robotics, medical imaging, computer animation and visual 

representations (Jones, 2000). Jones (2000) observes that there has been phenomenal growth in 

mathematics, which is largely geometrical. His observation has shown that most of this 

geometrical growth in mathematics occurs in dynamic systems, mathematical visualisation, and 

geometric algebra. This observation suggests that geometry continues to grow in mathematics 

education, which requires great attention to its teaching and learning in order to develop functional 

geometric thinking among learners. 

 

2.4  Geometry education internationally 

The teaching and learning of geometry continue to gain attention from researchers and 

stakeholders of education due to its central role in learning mathematics (Jones, 2000). Research 

shows that most of the cognitive abilities required for learning mathematics, are obtained from 

geometric discourse (Atanasova-Pachemska, et al., 2016). Examples are visualisation, spatial 

reasoning, and problem-solving abilities. This suggests that critical emphasis placed on geometry 

education has the potential to improve general mathematics performance among learners. 

According to Jones (2000), geometry, which is among the earlier branches of mathematics, has 
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undergone significant growth from the earliest times to the 21st century, and is still well recognised 

for its coherence and richness in content. However, it seems that geometry education in the 

classroom has not undergone changes in parallel to the growth in content and structure (Kuzle & 

Gracin, 2020). This could mean that, despite the phenomenal growth in geometric content, not 

enough has been realised in terms of its teaching and learning in the classroom. 

Learners are supposed to be exposed to and have an in-depth knowledge of geometry because it 

deals with most of the concepts in our daily lives (Luneta, 2015). Learners are to be engaged in 

quality teaching experiences to enable them to gain proficient geometric thinking. To develop 

quality geometric thinking among learners, they must be guided to construct geometric meaning 

from the learning experiences (Manizade & Orrill, 2020). This means that learners need to be 

encouraged to take ownership of learning by actively participating in the lesson and learn by doing. 

Assisting and developing learners to individualise the learning process enables them to be 

independent and creative thinkers (Sfard, 2007, 2008). For example, learners are expected to be 

engaged in learning experiences that will enable them to observe and compare observations, 

hypothesise, prove and justify the truth or otherwise of mathematical claims (Jones, 2000). This 

makes geometric discourse important in school mathematics. Research shows that geometry is 

important in many ways. Learners’ engagement in geometric discourse develops their cognitive 

skills and mathematical way of thinking (Kuzle, 2022). Kuzle (2022) asserts that geometric 

thinking permeates all the mathematics we do through visualisation, and through visual thinking 

and analysis of issues. Despite the importance of geometric discourse, the teaching and learning 

of geometry seem concealed in classroom mathematics lessons (Kuzle, 2022).  

 

Several studies show that learners across the globe find geometric concepts difficult to learn 

(Adolphus, 2011; Carlin, 2009; Luneta, 2015), which reflects in their performance in both national 

and international examinations. For example, Carlin (2009), who conducted a comparative study 

of geometry curricula, reported that despite the effort to expand geometry education across all 

grades from pre-school through to Grade 12, the Trends in International Mathematics and Science 

Study [TIMSS] results showed that learners in the United States (US) demonstrated difficulties 

with geometric concepts compared to learners of Asian countries such as Singapore and China. 

Martinovic and Manizade (2018) claim that geometry is seen in the mathematics curriculum in 

two ways. It is either taken as a separate strand (high school and the colleages) or it is integrated 
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with other strands in mathematics (elementary and some high schools). The authors add that it is 

a requirement for high school graduation in most states in the US, to take a number of geometry 

strands. 

 

This raises a continued concern with regard to the learners’ low performance in geometry and 

measurement strands, content areas that are strongly related to STEM programmes or courses 

(Steele, 2013). According to Zhang and Bergstrom (2016), Grade 10–12 teachers in the United 

States find the teaching of geometry a major challenge. The authors add that American learners 

have been performing poorly in geometry over the past two decades in both national and 

international assessments. This shows that not only do learners find it difficult to learn geometry, 

but teachers who are trained to teach geometry for the conceptual understanding of learners, also 

find it difficult. Thus, teachers may not have the depth of content knowledge required to develop 

learners’ geometric thinking. This observed knowledge gap among learners and teachers in the 

United States is in line with Luneta’s (2015) claim from research that “geometry is difficult to 

teach as well as to learn” (p.1). According to Provasnik et al. (2012), both the National Assessment 

of Educational Progress (NAEP) and Trends in International Mathematics and Science Study 

produce similar results, showing that the United States Grade 8 learners received the weakest 

performance in geometry among the mathematics content areas, which are numbers, algebra, data 

and chance, and geometry. Dobbins et al. (2014) claim that learners’ difficulty in geometry begins 

during early education and becomes worse as they get to high school. 

 

Research shows that learners in South Africa experience similar learning difficulties in geometry. 

They do not understand most of the basic geometric concepts (Alex & Mammen, 2018; Luneta, 

2015; Ngirishi & Bansilal, 2019). According to Ngirishi and Bansilal (2019), learning outcomes 

in mathematics among South African learners have been very low. This has received research 

attention, especially within the scope of geometry. The authors add that many learners see 

geometry as the most complicated mathematics strand and think it has no bearing on their lives. 

Hence, they do not find it motivating enough to learn.  

 

Perhaps the difficulty of geometry prompted educational authorities in South Africa to revise their 

curriculum in 2006 so that learners in Grades 10-12 were no longer required to take geometry as 
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compulsory in their final examinations. In 2011, geometry being compulsory in final examinations 

was restored since many learners chose not to study it because it was optional. When it was 

restored, many teachers were quite uncomfortable to teach the subject (Ngrishi & Bansilal, 2019). 

This concern motivated the study conducted by the Ngirishi and Bansilal (2019) to explore high 

school teachers' understanding of geometric concepts. Grades 10 and 11 learners' understanding 

was explored in terms of van Hiele’s levels of geometric thinking. The participants comprised 147 

learners selected from three high schools to participate in a study. The study was conducted at a 

time when the participants had completed studying geometry. Data was collected using a 

questionnaire schedule and interviews. The questionnaire contained 15 adapted multiplechoice 

questions and a worksheet containing six open-ended questions. The authors found that learners 

demonstrated difficulties in defining geometric terms and concepts, interrelations of properties and 

shapes, as well as class inclusion of shapes. It was also found that most of the learners operated at 

the visual and analytical levels of van Hiele’s thinking model. Thus, the participants performed 

below expectations. The authors recommended that teachers should use appropriate language and 

engage them in meaningful learning to improve their performance. In a previous study by Luneta 

(2014) on foundation phase teachers’ knowledge of geometry, the author found that the student 

teachers (pre-service) demonstrated limited knowledge of basic geometry. Similarly, Couto 

(2014), who studied pre-service teachers’ knowledge of elementary geometry concepts, found a 

weak performance by the pre-service teachers on a test that addressed elementary geometry 

concepts.  

 

Knowledge of geometry is important to learners in every part of the world, to understand their 

environment and to benefit from careers related to geometry (Jones, 2000; Luneta, 2015). A 

proficient understanding of geometry and mathematics would enable learners to be successful in 

their chosen careers and endeavours in life (Jones, 2000; Luneta, 2015). For example, the building 

engineer needs geometry to set up a square and an upright building. The carpenter will also need 

knowledge of geometry to roof the building. All other careers, such as STEM related ones, need 

geometry. This means that geometry and mathematics in general can be a gateway to brightening 

one’s future. According to Naidoo (2011), learning mathematics paves the way to a better future. 

Thus, geometry is included in the mathematics curriculum to prepare teachers for teaching STEM-

related courses as well as prepare learners for its jobs (Jones, 2000). 
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It seems that attempts made by many countries to improve mathematics education, focuses on the 

geometry content of the mathematics curriculum. Like many countries, stakeholders of education 

in Nigeria acknowledge the importance of geometry in the life of people and the development of 

the country (Fabiyi, 2017). According to Fabiyi (2017), learning geometry is critical to learning 

both primary and secondary mathematics curricula in Nigeria, since it provides a valuable 

cognitive tool such as visualisation, for understanding the subject. According to Fabiyi (2017), 

reports from the Chief Examiner on Nigerian learners’ difficulties in mathematics, highlight 

geometry as an area where their performance is very low. In response to this, Fabiyi (2017) 

investigated the geometry concepts that senior secondary school learners find difficult to learn. 

The study sample consisted of 500 learners selected from 30 co-educational schools in Ekiti State, 

Nigeria. A questionnaire comprising 23 items on geometry concepts was used to collect data The 

study was guided by three research questions and a hypothesis. Results showed that two among 

the eight topics the learners perceived to be difficult, were coordinate geometry and construction. 

The author recommended to teachers to teach these topics or concepts using a participatory method 

with the use of instructional materials. According to the author, other studies in Nigeria show that 

mass failure in mathematics results from difficulties associated with the teaching and learning of 

geometry content in mathematics. Adegun and Adegun (2013), who looked at the difficult parts of 

the mathematics curriculum from the learners’ and teachers' points of view, said that SHS learners’ 

poor mathematics grades are caused by the difficulty they have in learning geometry. 

 

When Fabiyi’s (2017), study results showed learners' difficulty with some geometric concepts, he 

recommended the use of instructional materials in geometric instruction. These materials are 

concrete objects that learners can see, hold, touch, and move around to learn mathematical 

concepts. Similarly, Sfard (2008) asserts that visual mediators (also called instructional materials) 

are objects that control communication in a discourse. When learners can touch, manipulate, and 

see the object of communication, it enhances their thinking processes and narratives about the 

object (Sfard, 2008). This facilitates meaning-making in a discourse between both the teachers and 

the learners, and enhances the individualisation of the learned concept. Viewing learning as a social 

construction means that learners learn with lead discussants or knowledgeable others in settings 

that allow knowledge to be constructed and reconstructed to achieve a shared meaning (Sfard, 
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2007, 2008). The use of instructional materials promotes a learner-centred approach to learning 

where learners are motivated to think of ideas, explore and experiment with new ways of doing 

things, and to communicate with others. In this situation, the teacher or lead discussant supports 

and facilitates the learners' process (Keiler, 2018). The view of teaching with materials (visual 

mediators) is supported in the sense that learners are not made to passively follow the teacher's 

instruction but to share his or her view of the learning process. This form of teaching and learning 

is endorsed by the NCTM (2000) due to its potential to enhance understanding of mathematical 

concepts and of geometry in particular. 

 

Malaysia, like other countries, places a major focus on the teaching and learning of geometry to 

provide its learners with visual and analytical reasoning abilities. This is done in connection with 

their mathematical teaching aim, which is to “provide learners with a deep understanding of 

mathematical concepts so that they can relate, explain, and apply the mathematical knowledge to 

solve daily problems more innovatively” (Boo & Leong, 2016, p. 3). To achieve this aim, a new 

mathematics curriculum introduced in 2011 brought some changes, particularly in geometry, to 

foster the achievement of their mathematical aim (Boo & Leong, 2016). However, research shows 

that learning geometry at the primary and secondary school levels has not been easy for learners 

since many of them are unable to develop an understanding of the concepts, reasoning abilities, 

and problem-solving skills related to geometry. Research shows that Malaysian learners’ inability 

to understand those geometric concepts contributed to their poor performance in the subject area, 

which is reflected in their performance in mathematics (Boo & Leong, 2016). 

 

2.5 Mathematics education in Ghana 

Despite the suggested activities in the Ghanaian mathematics curriculum, to guide learners’ 

mathematics and geometric thinking, learners' performance in national examinations seems not to 

reflect the desired result. Good mathematics performance is required for learners’ admission to the 

institutions of higher learning in Ghana. It also determines one’s eligibility to study desired 

programmes especially in science and technology, in which success in learning depends on a good 

foundational knowledge of mathematics and geometry in particular (Luneta, 2015; Zhang, 2017). 
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Despite more contact hours devoted to high school mathematics instruction, results of learners’ 

performance have been disappointing. The majority of learners’ passes range from 45% to 55%. 

Concerned with such performances, many researchers have investigated this issue to identify the 

possible causes and provide the necessary remedies. Many of these studies have been founded on 

mathematical curriculum specifications and other learner-related factors, teaching processes, and 

the environment of the mathematics discourse (Watson & Harel, 2013). Research reveals that the 

teacher-centred teaching is the common method of instruction used at the various levels of pre-

tertiary institutions in Ghana. For example, a study by Mereku (2003) conducted at the primary 

school level, investigated the alignment between the suggested teaching methods in the official 

mathematics curriculum (textbooks and syllabi) and teachers’ classroom practices. He described 

the classroom instructional pattern as “teacher-led class discussion using situations and examples, 

followed by pupils’ examples in exercises” (Mereku, 2003, p. 63). This finding contradicts the 

suggested participatory teaching methods in the mathematics curriculum to engage both teachers 

and learners in an interactive learning situation (MoE, 2010). The participatory approach is to 

allow learners to actively participate in the discourse, to become acquainted with and gain insight 

into mathematical concepts. According to Sfard (2008), active participation in a discourse is 

necessary to develop an exploratory way of learning and reasoning.  

 

Learning through facts and procedures is what Sfard (2008) terms the acquisitionist approach to 

learning (teacher-centred instruction) where learners receive only verbal explanations for 

everything they must learn. This is considered a mechanistic approach to learning and is often 

suitable for the most basic forms of learning mathematics, such as terminology. This mechanistic 

approach has been criticised as “behaviour without mind” (Sfard, 2015 p. 130). This could also 

mean learning with little or no thinking. De Lina and Tall (2007) assert that the formation of 

mathematics concepts results from doing mathematics. Learning is said to be more effective when 

the learner is involved in developing and constructing concepts and then processing or thinking 

(reflection) about the knowledge constructed.  

 

Mereku’s (2003) findings show that teachers seem not to follow the suggested activities for 

mathematics discourses. This puts difficulty on the learners' learning habits in terms of forcibly 

committing to memory something they may not understand. This could be a reflection of the 
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learners’ continuous low mathematics performance in national examinations. Learners might 

struggle to pass, sometimes, not because they truly understand, but because they rely on rules 

coupled with some cues to enhance recall. Learners who are taught through rule-based instructions 

generally learn by memorisation. According to Fletcher (2000), despite all efforts to encourage 

mathematics educators in Ghana to adopt the constructivist approach to teaching and learning 

mathematics, the reality of teaching at the basic and senior high school levels has been to place a 

strong emphasis on memorisation and imitation at the expense of understanding, resulting in low 

achievement in national and international examinations (Agyei, 2012). Agyei (2012) also attributes 

such poor performance in mathematics to poor presentation or delivery of mathematical concepts. 

Such a poor presentation occurs when the lead discussant assumes a central role in the discourse.   

 

According to Arakaza and Mugabo (2022), Ottevanger, et al. (2007) and Swan (2005), the teacher-

centred method of teaching is characterised by the teacher doing most of the talking in the 

mathematics discourse. The teacher supplies all the information to the learners. The learners sit 

back and follow what the teacher does with little or no contribution on their part. The learners’ 

role in the discourse is to write notes, imitate the teacher’s solution procedure to worked examples 

and apply them to other similar tasks. Learners in such discourses become passive recipients of 

information and are often treated as if they have nothing to contribute to the development of the 

discourse (Fletcher, 2009). This teaching approach limits learners’ cognitive processes as their 

explorative thinking abilities are curtailed by engaging them in routines with little or no 

understanding. These examples within Sfard’s (2008) framework, are characteristics of ritualised 

(acquisitionist) instruction.  

 

One of the aims of teaching mathematics, however, is to enable learners to apply the knowledge 

gained to solve their daily problems (MoE, 2010). This is made possible through teacher guidance 

and fostering learners take responsibility for their own learning by self-construction of knowledge 

and making meaning from the learning activities. Thus, learners’ engagement in mathematics 

discourse, should enable them to provide narratives about the objects of mathematics (Sfard, 

2008). Learners must ideally, modify and expand their knowledge through the learning of 

mathematics (Ben-Zvi & Sfard 2007). This does not seem to be the case for learners in Ghana, 

where they mostly learn by imitating what the teacher does. In the commognitive perspective, 
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learners only develop ‘how’ to routinely complete mathematics tasks, which leads to rigidity in 

thinking. Thus, mathematics discourse in Ghanaian mathematics education can be described as 

one that follows the acquisitionist perspective, in which learners are made to follow procedures in 

solving mathematical tasks. 

 

In a recent study, Mensah and Agyei (2019) desired to understand the philosophical stance of 

Ghanaian teachers, their teaching styles and the use of ICT in mathematics discourse. The study, 

which employed an exploratory case study design, involved six high school mathematics teachers 

selected from six schools. The background of the teachers indicated that all of them had taught for 

a minimum period of about seven years and were all considered professional teachers. The study 

found that their philosophical stand in teaching, followed the absolutist philosophical? view in 

which they adopted the teacher-centered approach in mathematics discourse.   

 

2.6 Geometry education in Ghana 

Ghana's mathematics curriculum includes a significant amount of geometry, which could be 

viewed as a core skill in our daily activities. Our physical environment is composed of geometric 

shapes and hence learners need to develop geometry thinking and skills to explore and understand 

this environment (Jones, 2000; Luneta, 2015). In response to the ever-growing geometric 

knowledge in human life, the Ghana Education Service has a prepared mathematics curriculum 

with needed content to develop functional geometric thinking among learners (MoE, 2010). Unlike 

in the United States, where geometry is a separate course for high school learners, geometry is 

integrated within the Ghanaian mathematics curriculum with other topics, and is taught from pre-

school to senior high school stages (Grade 12). Through these levels, bits of geometry are learned, 

and the geometry content has been designed such that at every level, the understanding of geometry 

concepts aims to match the learners’ abilities. According to Bora and Ahmed (2018), exposing 

learners to geometric discourse from the early stages of education through to higher institutions, 

contributes to the development of critical thinking and problem-solving abilities, which help in 

learning mathematics. 

 

Despite the early exposure of Ghanaian learners to the geometry content of the mathematics 

curriculum to enable them to develop the required cognitive abilities such as visualisation, spatial 
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reasoning, and problem-solving abilities associated with geometry discourse and to facilitate their 

understanding of mathematics, research and available records show that the performances of 

learners at various levels within the education system, falls below expectations and has remained 

low for many years (Abreh, et al., 2018, Bruce, 2016; Fletcher, 2018). Ghana’s Grade 8 learners 

participated in TIMSS in 2003 to ascertain how they compared with learners from other countries 

in the various mathematics strands. Results showed that geometry was among the content areas 

where the learners performed poorly (Anamuah-Mensah et al., 2014). Also, in TIMSS (2011), a 

similar report on low performance of Ghanaian learners was obtained, and further analysis showed 

that geometry was among the poorly performed content areas (Mullis et al., 2011). The Ghanaian 

Grade 8 learners who participated in TIMSS, could not demonstrate the cognitive abilities needed 

to respond to the tasks on geometry concepts they were tested on. Those reports from international 

examinations are the similar as the analysis of learners’ performance in national examinations, as 

mentioned previously. 

 

The state of geometry performance by junior high school learners (Grade 8), is a worrying problem 

because the geometry taught from pre-school to this level is to meant prepare them for higher 

geometry content in the SHS (Grades 10–12). The SHS mathematics “builds on the knowledge 

and competencies developed at the junior high school level” (MoE, 2010, p.ii). Learners’ inability 

to grasp the requisite knowledge and competencies before entering SHS shows that they enter this 

level with knowledge gaps, which will pose learning challenges to them. According to Hailikari et 

al. (2008), a major difficulty that instructors face in teaching, is the learners’ lack of previous 

knowledge needed to understand the higher-level content of the curriculum.  

 

With this concern, Baffoe and Mereku (2010) studied Ghanaian learners’ (entering the SHS) 

understanding of geometry. The study intended to measure the learners’ geometric thinking at SHS 

entry level. The sample comprised 188 first-year learners (Grade 10), selected from two schools 

to participate in the study. The data collection instrument was an adapted van Hiele’s geometry 

test. This test and an aptitude test were administered to the learners in the first month on campus. 

It was found that a little above half (59%) of the participants attained van Hiele’s level 1. 11% 

attained level 2 and 1% attained level 3. This shows that 1% of the participants who had just 

entered SHS, demonstrated the requisite knowledge needed to successfully learn geometry. 
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Hailikari et al. (2008) assert that learners’ previous knowledge influences their knowledge 

acquisition and ability to apply that knowledge in problem-solving. The authors claim that learning 

is actively constructing new knowledge based on previous knowledge. They go on to say that 

learning may be hampered if previous knowledge is inadequate or fragmented. Learning new 

material without adequate previous knowledge or having misconceptions, may result in rote 

memorisation with little understanding. Hailikari et al. (2008) assert that this kind of surface 

learning happens when the learner cannot connect new knowledge to what is already known. 

 

Similar concerns about geometry education probably motivated Asemani et al. (2017) to find the 

geometric thinking level of SHS 3 (Grade 12) learners, who at this level may have been exposed 

to almost all the geometry content in the SHS mathematics curriculum and are expected to attain 

the van Hiele’s level 4. Their study used a quantitative approach with 200 participants who were 

randomly selected from three schools. Data was collected using the adapted van Hiele geometry 

test based on the first four levels. Learners were tested on their ability to identify shapes by their 

appearance, recognise geometric shapes by their properties, analyse properties of geometric 

shapes, show an understanding of the relations among axioms, definitions, theorems, proofs, and 

postulates. The instrument contained 20 multiple-choice items. The results showed that 42.5% of 

the learners could not attain any level. 33% attained level 1, 22.5% attained level 2, 1.5% attained 

level 3, and 0.5% attained level 4. This indicates that the learners’ geometric thinking was very 

low, as only 0.5% could demonstrate adequate understanding of relationships among properties, 

axioms, definitions, theorems, proofs, and postulates. Thus, results of Asemani et al. (2017) 

showed that learners’ geometric knowledge at SHS three (Grade 12) was below expectation.  

 

The increasingly low performance in mathematics and geometry in particular, by Ghanaian 

learners at various levels raise several concerns, especially the knowledge mathematics teachers 

possess for teaching. According to Hourigan and Leavy (2017), a critical focus of research in 

education is teachers’ knowledge, due to its significance on learners’ learning gains. As a result, 

attention has been drawn to pre-service mathematics teachers’ knowledge for teaching geometry. 

 

Due to several concerns regarding Ghanaian learners’ poor performance in geometry (Baffoe & 

Mereku, 2010, Asemani et al. 2017, Yalley et al., 2021), and the fact that teachers’ competency in 
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geometry is critical to effective teaching of the subject, Armah et al. (2017) investigated the 

geometric thinking of Ghanaian pre-service teachers in the colleges of education. The van Hiele 

geometric criterion was used as a yardstick for assessment. The sample included 300 pre-service 

teachers conveniently selected from four colleges of education. The participants had received 

instruction in both content (including geometry) and methodology, and were about to begin their 

teaching practice (internship), specifically at the basic level (Grades 7 to 9). The authors used an 

adapted van Hiele Geometric Test to collect data. Results showed that 16.33% of the participants 

were at level 0, 27% attained level 1, 32% attained level 2, 17.67% attained level 3, 6% attained 

level 4, and 1% attained van Hiele level 5. This shows that most of the pre-service teachers could 

not attain the minimum level of geometric knowledge they needed to teach effectively at the basic 

school level. In other words, most of the pre-service teachers demonstrated geometric thinking 

below the level at which they were expected to teach. This could be the major reason why Ghanaian 

learners’ performance in mathematics, particularly geometry, remains under par. The authors 

confirmed this point of view by saying that most of the pre-service teachers performed worse than 

what is expected of learners in junior high school. 

 

In a similar study, driven by the fact that teachers’ geometric thinking influences their teaching 

efficacy of geometry, Bonyah and Larbi (2021) assessed Ghanaian pre-service mathematics 

teachers’ geometric thinking levels within the first three van Hiele levels, the exact content they 

would be teaching. The study was quantitative in nature and used a descriptive survey design. A 

sample of 217 pre-service teachers who had taken geometry as one of their modules, were 

randomly selected from four colleges of education.  

 

The development of the data collection instrument was informed by the van Hiele Geometry Test 

(VHGT) and the objectives for learning geometry at the junior high schools in Ghana (MoE, 2010). 

Some of the van Hiele items were modified to make them suitable for the context of the study. The 

40 multiple-choice tests used to collect data covered the first three levels of van Hiele’s geometric 

thinking, and the application of geometric properties to solve related tasks in geometry. Results 

showed that even though all the pre-service teachers achieved level one, more than half could not 

demonstrate geometric thinking beyond level two. This means that less than half attained level 3, 

the minimum level required by pre-service teachers to develop their geometric teaching 
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competence. Not only do research results show pre-service teachers’ weak geometric thinking, 

evidence from the Chief Examiners' reports on the examinations they write at the college level, 

also show their poor geometric content knowledge (Armah et al. 2017). It can be conjectured that 

when teachers do not have deep geometrical thinking, the only approach to teaching may be to 

embark on procedures. Thus, research shows that both learners and teachers find geometric 

concepts a difficult content area of the mathematics curricula (Luneta, 2015). 

 

2.7 The acquisitionist and the participationist approaches to learning 

Several teaching strategies are used in mathematics discourse to achieve various outcomes. 

According to Sfard (2008), these strategies can be classified as acquisitionist or participationist. 

Research has shown that the most frequently used strategy in mathematics instruction has been the 

acquisitionistic approach. Whilst change as a product of learning is not doubted, the concern is 

what that change is (Sfard, 2015) and probably, what causes that change. Most of the changes are 

acquired along the path of the acquisitionist metaphor (Presmeg, 2016). Since this approach, 

seemed not to produce the independence and the autonomy required for mathematical discourse, 

a contrasting view known as the participationist view emerged. The participationist view builds on 

the fact that learning occurs when people participate in different kinds of activities (Sfard, 2008). 

The participationists view learning as actively participating in a “patterned collective way of 

doing” (Sfard 2008, p.78). This definition is also supported by Bruner (1966), who asserts that 

learning is an active process where the learner constructs knowledge based on his present or 

previous experiences. It could be inferred from the above that learning results from doing, or 

engaging in, interactive activities that are culturally specific and make use of appropriate resources 

(tool-mediated) to facilitate concept development (Sfard, 2015). Active participation of learners in 

mathematics discourse forms the basis through which mathematical thinking is developed (Essack, 

2015). Participation in a discourse also enhances learners' development of intellectual autonomy, 

through which they can make use of “their own intellectual capacities to reason about mathematical 

ideas” and self-thinking (Presmeg, 2016, p. 2). Perhaps, this is the focus of mathematics education. 

Learners who are to engage in independent reasoning have the potential to produce narratives that 

are acceptable in the mathematics learning community (Sfard, 2008). 
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Proponents of the participationist perspective on learning, are of the view that learning comes 

about through social and cultural interaction (Sfard, 2015). Communication plays a major role in 

teaching and learning. As a result, learners must interact with peers, teachers and available 

resources and actively engage in communication of mathematical ideas to enhance their sense 

making. According to Essack (2015), learning realisation occurs when the learner can 

communicate or talk about mathematical objects. This enables facilitators of mathematical 

discourse to determine what goes on in learners' minds through what they say and do as they 

participate in the discourse (Sfard, 2015). It also enables facilitators to see how well learners are 

understanding what they are being taught and to identify problems or misunderstandings for 

remedy. 

 

Sfard (2008) considers mathematical concepts as abstract entities. Therefore, mathematics 

educators are concerned about how to bring these abstract concepts into reality-based learning. 

The acquisitionist approach to teaching curtails learners’ ability to understand mathematics. 

Within the acquisitionist view, mathematics is more of teaching learners how to solve a task since 

they focus much on operationality and rigour. To a large extent, this approach does not consider 

individual differences in learning. A facilitator who is more in tune with this approach, teaches 

and expects learners to sit back and follow what he or she does with little or no contribution. This 

makes learning mathematics seem like information processing instead self constructed knowledge. 

 

2.8 Learning Geometry 

Learning, in the participationist perspective, occurs when there is growth in discourse through 

active participation (doing), either individually or with others. Learning is said to be an initiation 

into a patterned activity (Ben-Zvi & Sfard, 2007; Sfard, 2008). It is the ability to produce narratives 

about an object of study or about one’s world. Learning takes place through social interaction or 

in collaboration with other participants. Learning, according to Sfard (2008), is a permanent 

change in discourse. She situates her communication framework on Vygotsky’s view of 

knowledge creation through social interaction with others. According to Vygotsky as cited in 

Kivkovich (2015), knowledge creation results from cognitive changes that rely on social-cultural 

interaction. Learning results from the processes of interpersonal relationships among learners, 

through which they develop their cognitive abilities. This translates into Sfard’s (2008) 
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commognitive perspectives on learning, in which the learner plays an active role in the patterned 

activity. Learner engagement in the discourse serves as a key point for developing conscious 

knowledge about the object of study. Like mathematics, geometry is considered a discourse with 

its own specialised form of communication which has words or terms that guide and improve 

communication in the discourse (Sfard, 2008).  

 

In the discourse of mathematics, there are specialised words or terms (vocabulary) that are used 

for communication. As indicated previously, geometry has its own created vocabularies that keep 

geometric discourse in focus. As we focus and reflect on the vocabularies of geometric objects and 

communicate about them, it leads to an enhanced understanding of the subject matter. 

Communication plays a critical role in learning. According to Kivkovich (2015), a learner’s active 

participation in an interaction with others is fundamental to a high level of learning. 

Communication or dialogue enables learners to think and talk about their learning perspectives. 

Facilitating learner communication in a discourse is an important strategy to make learners 

individualise learning. 

 

We live with geometry and talk about its concepts almost every day, utilising geometric knowledge 

in our world of living (Luneta, 2015; Ndlovu, 2014). Learning geometry in a meaningful way 

enables learners to realise the immediate importance of geometry and mathematics in general. 

Developing learners’ ability to learn and practice, or utilise the knowledge in a flexible manner, 

requires teachers to facilitate learners’ construction of ideas (Kivkovich, 2015). This grounds the 

concept of learning as self-knowledge creation and not as something imposed. Such facilitators 

know how knowledge develops among learners and how to organise instruction around their 

learning perspectives. 

 

2.9 Definitions in mathematics  

According to Brunheira and da Ponte (2016), without definitions, mathematics and its 

communication could not be possible. This suggests that definitions play an important role in 

mathematics discourse. To define is to use words to express or describe mathematical concepts 

succinctly (McCammon, 2018). Thus, a mathematical definition should draw attention to certain 
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features or point to the exact intended concepts. Zaslavsky and Shir (2005) outline the following 

four features of mathematical definitions: 

1. Introducing the objects of a theory and capturing the essence of a concept by conveying its 

characteristic properties, 

2. Constituting fundamental components for concept formation,  

3. Establishing the foundation for proofs and problem-solving and 

4. Creating uniformity in the meaning of concepts, which allows us to communicate 

mathematical ideas more freely (Zaslavsky & Shir, 2005). 

 

Winicki-Landman and Leikin (2000, p. 17) add that the definition must portray the following 

mathematical characteristics: 

1. Defining is giving a name. The name of the new concept is presented in the statement used 

as a definition and appears only once in the statement. 

2. For defining the new concept, only previously defined concepts may be used.  

3. A definition establishes necessary and sufficient conditions for the concept. 

4. The set of conditions should be minimal.  

5. A definition is arbitrary. 

 

In this regard, definitions should communicate mathematical concepts clearly and in a meaningful 

way. According to McCammon (2018), a statement that contains necessary and sufficient 

conditions of a concept, qualifies it to be its definition. The author adds that the properties of the 

concept could be presented as the necessary conditions. Herbst et al. (2005, p.17) also consider 

mathematical definitions as a “statement of the necessary and sufficient conditions that an object 

must meet to be labeled by a certain word or expression”. According to Brunheira and da Ponte 

(2016), mathematical definitions play a fundamental role in learning the structures of mathematics, 

and learners’ success in the subject depends on how they understand the role of mathematical 

definitions in learning. They are a vehicle for deepening one’s understanding of mathematics 

(Brunheira & da Ponte, 2016; Ndlovu, 2014). 
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2.10 Cognitive abilities and attributes for learning geometry 

2.10.1 Definitions of geometric concepts 

Learning to define geometric figures and concepts can be a useful starting point of engagement. 

Therefore, mathematics teachers’ definitions of geometric concepts, becomes critical for enhanced 

teaching of the subject matter. They should be able to show an understanding of the definitions of 

geometric shapes and their related properties in a conceptual manner, which plays an important 

role in learning. According to Ndlovu (2014), definitions play a critical role in the Euclidean 

axiomatic system, and they are a starting point to think geometrically. 

 

Geometry possibly requires more definitions in learning than any other topic in the mathematics 

curriculum. The learning of geometric shapes and figures depends on one’s understanding of what 

the shape is. According to Ndlovu (2014), the definition of geometric shapes and figures is crucial 

because it involves their fundamental properties. For example, a triangle, which is often defined 

as a polygon with three sides and angles, communicates important features of the shape and its 

associated properties, which is needed to solve related problems. Researchers have shown the key 

role that definitions play in the learning of geometry (Ndlovu, 2014; Usiskin & Griffin, 2008). 

Ndlovu (2014, p. 6642) claims that “definitions of terms form the basis from which properties of 

the terms are logically defined, and the means by which the user can name and classify geometric 

objects”. This could mean that definitions form the starting point of learning geometry. 

Mathematics teachers’ knowledge and competencies in defining geometric concepts, are necessary 

for effective teaching of the subject. 

 

2.10.2 Terminologies, language and geometric discourse 

Effective communication between teachers and learners is essential for teaching and learning 

mathematics (Mulwa, 2015). Both teachers and learners need to hold a common meaning of words 

and terminologies used in a discourse. Analysis of research findings shows that learners who are 

even more proficient in teaching language, (say English), sometimes are unable to follow certain 

discipline-based discourse due to terminologies that may not be in their learning vocabulary 

(Oyoo, 2009). This suggests that in a discourse, teachers often use words and terms that are more 

aligned to the subject however, those words may not be fully understood by learners. According 

to Atebe and Schafer (2010, p. 53), geometric discourse “stresses the use of language 
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(terminology) more than any other topic of the mathematics curriculum”. Hence, to learn geometry 

and acquire a good sense of geometric thinking, there is a need to be equipped with the meaning 

of, and be associated with the basic geometric terms often used in the discourse. The main purpose 

of language in mathematics instruction is to make it possible for both the instructor and the learner 

to precisely communicate their understanding of mathematics (Mulwa, 2015). 

 

Alex and Mammen (2018) assert that learners’ inability to understand geometric concepts and the 

appropriate terminologies, is the underlying reasons for not achieving success in learning. 

Terminology forms the most fundamental knowledge in any field of study. It is the set of terms 

that are associated with and unique to a field of study (Sfard, 2008). Understanding technical 

terminologies, is key to successful learning of mathematics, particularly geometry (Alex & 

Mammen, 2018; Atebe & Schafer, 2010). In learning geometry, it is important that learners grasp 

an understanding of the appropriate technical terms and develop the ability to use these terms in 

communicating geometric ideas in a related discourse. Research shows that lack of language 

competency in a subject domain, such as geometry, hinders its meaningful learning (Atebe & 

Schafer, 2010). 

 

Most of the basic words used in our daily communication contain geometric terms. Some of these 

words are; line, point, plane, angles, triangles, squares, rectangles, parallel, perpendicular, circles, 

and many others. They help us to communicate and understand the world around us, hence the 

need to learn geometry (Luneta, 2015). According to Clements and Battista (1992, p. 420), there 

is a need to understand geometry because we live in a world that is “inherently geometric”. We 

live in a world of shapes and lines, plane figures, etc. To be able to analyse, understand and 

interpret our world of living, it is important to study geometry, which deals with such figures and 

their properties (Biber et al., 2013; Riastuti et al., 2017), and understand its specialised terms and 

language used in communication. 

 

Several studies have shown learners’ misconceptions in solving a wide range of tasks in geometry. 

Those tasks range from word use (terminology), through classification of shapes, to application of 

geometric properties to solve related tasks (Luneta, 2015; Ngirishi & Bansilal, 2019; Robichaux-

Davis & Guarino, 2016; Sulistiowati, et al., 2019). Learners' geometric misconceptions can be 
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linked to their non-exposure to appropriate geometric vocabulary in the discourse (Alex & 

Mammen, 2018; Atebe & Schafer, 2010; Mulwa, 2015). To remediate learner errors that result 

from inappropriate terminology, it is important that early discourse in geometry focus on the use 

of precise terminology, both in communication and in written work (Alex & Mammen, 2018; 

Atebe & Schafer, 2010).  

 

The concept of precise terminology is one of the subcomponents of the elements of Sfard’s (2008) 

commognitive framework, under word use. The framework holds the fundamental tenet that 

mathematics is a form of discourse due to the distinctive pattern of activities associated with it. 

Sfard (2008) categorises the discourse of words into colloquial and literate. Literate word use has 

a shared and specific meaning within the mathematics learning community. Teaching 

mathematics, which is considered a form of discourse, characterised by distinctive use of 

vocabulary that is grounded in the subject, must adhere to vocabulary-driven instruction in the 

discourse. For instance, we have words that signify numbers and operations, as well as words that 

refer to geometric shapes. Words that are associated with mathematical objects are referred to as 

literate words. This signifies that lead discussants in mathematics discourse must make careful use 

of literate words and draw learners' attention to such words (terms) with their appropriate meaning 

explained. Hence, colloquial words (words with different meanings in day-to-day use) must be 

avoided in a discourse. When such words are used in a discourse, their subject-specific meaning 

should be emphasised. For example, ‘angle’, which has a literate meaning viz ‘an amount of 

opening formed by two rays at a point', can colloquially mean ’one’s viewpoint in ordinary 

discussion’. The word ‘similar’ which has a literate meaning as ‘same shape but not the same 

size’, can also be colloquially interpreted as 'resembling but not exact'. Sfard (2008) cautions 

teachers to be mindful of the words they choose to explain mathematical concepts and those of 

geometry in particular.  

 

Teaching geometry aims to enable learners to produce narratives about the field of study. The goal 

is to help learners develop a firm understanding of the basic, fundamental terminology required to 

compose or produce narratives that are accepted in the discourse. Human minds process 

information that is self-constructed, better than when it is imposed by lead discussants. Hence, to 

ensure learners' proficiency in understanding and use of terms in a discourse, learners must be 
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guided to construct narratives of the field of study (geometry) to show their understanding of the 

terms in the discourse. Thus, until learners can make meaning of the terminologies in geometry 

and use them correctly in communication (oral or written), they may continue to have challenges 

in learning advanced topics in geometry (Alex & Mammen, 2018; Atebe & Schafer, 2010). 

 

Alex and Mammen (2018) studied 126 volunteer, university students' understanding of geometric 

terminology using van Hiele’s theory as a framework. A questionnaire with 60 multiple-choice 

items (30 verbal and 30 visuals on geometric terminology) was used to collect data. The authors 

wanted to obtain data on how the students could identify the names and terminology of some 

geometric concepts (verbal description) and associate them with their visual representation. The 

study found that majority of the participants demonstrated a fairly good understanding of 

geometric terminology. According to the authors, the participants performed better on the visual 

representation of geometric concepts than on the verbal presentation (identifying names), which 

showed a lower level of geometric thinking within van Hiele’s model. The author concluded, that 

a combination of both visual (diagrams) and verbal description should be integrated into 

instructional approaches to develop learners’ conceptual understanding of geometry. They added 

that complementing both verbal description and visuals (pictorial) in an instruction, has the 

potential to support and fill learners’ (pre-service teachers’) content gaps found in the study. The 

interpretation drawn from the finding is that the participants were able to identify the geometric 

concepts in diagram form rather than the names or geometric terms for those concepts on lines, 

circles, triangles and quadrilaterals. 

 

Similarly, Atebe and Schafer (2010) studied learners’ knowledge of the vocabulary in geometric 

discourse. The study was based on the fact that learners’ acquisition and use of correct geometric 

terminology are critical for successful learning of the subject. The study participants were drawn 

from both Nigeria and South Africa. The study used the stratified sampling technique to select 144 

learners. The data collection instrument was a questionnaire of sixty multiple-choice items. 

Analysis of the data showed that the learners’ knowledge of basic geometric terminology was 

limited. This suggests that the learners’ success in learning geometry can be impeded since the 

basic geometric terms that form the foundation for learning, are not firmly grasped. The authors 

also found that the learners’ verbal geometric terminology correlated with their ability in visual 
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tasks in geometry. The acquisition of basic terminology is necessary for learning and 

communicating ideas in geometric discourse. According to Atebe and Schafer (2010), terminology 

forms a critical tool for communication. Therefore, teachers must possess adequate knowledge of 

terminology and vocabulary to communicate ideas and engage learners in geometric discourse. 

Zayyadi et al. (2020) and Khan et al. (2017) assert that a teacher’s communication competence 

with regard to terminology and word use is a significant component in achieving and developing 

learners' learning outcomes. Learning will be affected when inappropriate words are used in 

communication (Khan et al., 2017, Sfard, 2008, Zayyadi et al., 2020).  

2.10.3 Geometric properties 

Geometric properties serve as an important tool for learning the subject matter. According to 

Bassarear (2012) and Luneta (2015), geometry deals with the study of shapes and figures, their 

properties, and the relationships among them. The study of geometry goes beyond the study of 

shapes around us. A learner's ability to identify and classify shapes depends on some characteristic 

features of their properties. According to Ndlovu (2014), learners’ proficient understanding of 

geometry is built on sound knowledge of the properties of geometric shapes. From the structural 

design of a geometric shape, emerges associated properties that must be learned and understood. 

Research shows that high school learners often have difficulty identifying the properties of 

geometric shapes (Atebe, 2008). This hinders their ability to classify shapes, as well as to apply 

their properties to solve related tasks in geometry. Knowledge of geometric properties helps in 

devising strategies to solve a task. It also serves as a foundation for learning more complex or 

advanced concepts in geometry (Ngirishi & Bansilal, 2019; Ndlovu, 2014). Ndlovu (2014) claims 

that the properties of geometric shapes and their relations need to be understood by both teachers 

and learners to facilitate classroom communication. Sabey (2009) adds that learning about 

geometric concepts, properties, and their relationships, deepens learners' understanding of the 

subject matter and offers them the opportunity to communicate ideas in the discourse. As part of 

the purpose of this study, the PSTs' thinking about geometric properties was analysed.  

 

Chigonga et al. (2017) explored exiting Grade 9 learners’ knowledge and understanding of the 

properties of quadrilaterals. The study with 84 exiting 9th graders, was a qualitative case study. 

The instrument for collecting data was an adapted questionnaire from van Hiele’s test for assessing 

learners’ geometric thinking, and contained 25 multiple-choice items. The participants were given 



36 
 

an hour to respond to the test items. The data, analysed in terms of correct or incorrect responses, 

revealed that the participants had limited knowledge of quadrilateral properties. According to the 

authors, a majority of the participants provided wrong answers. They added that except for the first 

item, the remaining items were answered incorrectly by more than half of the participants. For 

example, a little more than half of the participants gave the wrong response to the item “The 

diagonals of a rhombus are perpendicular” (Chigonga et al., 2017, p. 3). The authors advocated for 

secondary school learners to be taught quadrilateral properties through a discovery approach. 

 

In a similar study, Alex and Mammen (2014), investigated Grade 10 learners’ knowledge of the 

properties of quadrilaterals and triangles. The authors found that the learners were unable to 

identify geometric shapes by their properties. In addition, the learners showed difficulty in 

identifying the properties associated with quadrilaterals and triangles. The authors claimed that the 

participants who had limited knowledge of geometry is a knowledge gap that could affect their 

understanding of advanced topics in geometry. The authors called for immediate attention to be 

paid to the learners’ learning needs to bring them to the expected levels which required teachers 

to possess in-depth knowledge of the properties of geometric shapes to facilitate learners’ 

classroom learning and also to diagnose learners’ misconceptions and errors, for correction. 

 

2.10.4 Spatial visualisation 

Visualisation basically has a long tradition in mathematics discourse. Mudaly (2016) asserts that 

visualisation in mathematics is not a new discovery. Rosken and Rolka (2006) gave an example 

where the blind Euler, despite his blindness, was able to produce about 355 pages of work due to 

his “visual imagination as well as his phenomenal memory” (p. 1). In addition to the historical 

nature of visualisation, Stylianou, as cited in Mudaly (2016) posits that visual thinking in 

mathematics dates back to the work of Euclid’s book on geometry, titled ‘The Elements’. In the 

book, geometrical ideas were arranged into definitions, axioms and theorems. Most of his 

arguments in the book were based on geometric figures and shapes, which indicate that the concept 

of visualisation has been used in mathematics for many years. The role of visualisation in 

mathematics discourse has received much attention by researchers (Arcavi, 2003; Lowrie et al., 

2018; Winarti, 2018) and has numerous definitions by several authors. A notable definition of 

visualisation by Arcavi (2003, p. 217) states that: 
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Visualisation is the ability, process and product of creation, interpretation, use of and 

reflection upon pictures, images, diagrams, in our minds, on paper or with technological 

tools, with the purpose of depicting and communicating information, thinking about and 

developing previously unknown ideas and advancing understanding.  

 

The definition shows that visual ability is an indispensable tool for mathematical exploration 

through which meaning is attached to mathematical concepts in learning. Atanasova-Pachemska 

et al. (2016, p. 1) define visualisation as "the creation of a mental image of a given concept”. Its 

utility in a discourse has the potential to enhance learners’ thinking and understanding of several 

concepts in many fields of study. Employing visual abilities in exploring mathematical or 

geometric concepts, builds one’s capacity to develop a global and intuitive sense of understanding 

in learning. In the view of Mudaly and Rampersad (2010, p. 25), “visualisation can be a physical 

or mental process”. In other words, visualisation occurs when we see something with our physical 

eye or with the eye of the mind (imagination). As put forth by the cognitive scientist, “we learn to 

see; we create what we see”, visual reasoning, or ‘seeing to think’, can be developed through 

learning and training (Atanasova-Pachemska, et al., 2016, p. 2). If pre-service teachers have 

developed a good sense of visual reasoning, they can guide and develop the learners’ visual sense 

of reasoning in classroom learning. 

 

Research in spatial reasoning is receiving attention because of its use in learning Science, 

Technology, Engineering and Mathematics (STEM) courses and in understanding the natural 

spatial nature of the world (Jones, 2000; Lowrie et al., 2018). Several studies have been conducted 

to analyse the effect of visual abilities on problem-solving as well as how learners' visual abilities 

and spatial reasoning can be developed. Concerns have been raised that learners should start 

receiving instruction that develops their visualisation to enhance their subsequent mathematics 

discourse (Atanasova-Pachemska et al., 2016; Riastuti et al., 2017). In response, Atanasova-

Pachemska et al. (2016) studied the visualisation of geometry problems with a focus on primary 

school education. They worked with learners whose teachers believed in visualisation in 

mathematics discourse and integrated visual tools into their lessons or otherwise. The study was 

experimental in nature and comprised an experimental group of learners whose teachers taught 

geometry using visuals and encouraged visualisation problems (using I.C.T). The control group 
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however comprised learners whose teachers indicated that learners get confused with visualisation 

problems and left it in the hands of the learners to resolve those problems. The learners in the two 

groups were tested on their competence in solving geometric problems with or without 

visualisation of geometric tasks. The test aimed to determine if visualisation influences the 

successful learning of geometry. The results showed that the experimental group received a higher 

average mean score on the geometry test than their control group counterparts. Further analysis 

showed that there was a significant difference in favour of the experimental group. This means 

that teachers who taught through visual means and encouraged their use in problemsolving, 

produced learners who performed significantly better on visualisation and problem-solving tests 

than learners whose teachers were not so enthused about teaching with visual means. Also, those 

in the experimental group had their visual and spatial reasoning well developed compared to their 

counterparts in the control group. The authors concluded that the use of visualisation in the process 

of teaching problem-solving, influences success in learning and recommended that mathematics 

teachers should implement this teaching and learning strategy in geometric discourse. 

 

 

2.10.5 Spatial orientation  

According to Lowrie et al. (2018, p. 10), spatial orientation requires a “transformation of imagining 

a change in one’s own perspective”. This ability enables a learner to identify geometric shapes in 

different positions. In other words, it deals with the ability to view and recognise geometric shapes 

when displayed in different locations or positions. Clement and Battista (1992) add that spatial 

orientation deals with the understanding of how spatial objects are related when viewed from 

different positions. Learners who have developed their visual processing ability to manipulate and 

transform visual imagery and information are better trained to acquire an important mathematical 

skill for learning (Lowrie, et al., 2018). This is an important ability for learning geometry. For 

example, a learner's ability to identify a shape in its non-standard form depends on his/her 

 spatial orientation. 

   

2.10.6 Spatial ability 

Several abilities enhance the learning of geometry. Learners’ visualisation is supported by their 

spatial ability or spatial intelligence. Spatial intelligence, according to Riastuti et al. (2017), is the 
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learners’ ability to perceive the world as a spatial entity and transform its spatial perception in 

many ways. It is the learners’ ability to mentally manipulate the spatial relations among objects. 

Spatial ability is one of the special cognitive abilities learners need to solve problems in geometry. 

Acquisition of such cognitive ability enables learners to develop geometric thinking in both 

concrete and abstract senses. Riastuti et al. (2017) claim that most of the problems learners have 

with learning geometry, can be traced back to their inability to think spatially. 

 

Similarly, Lowrie et al. (2018) investigated the impact of an intervention on learners’ spatial 

reasoning. The study, which was experimental in nature, included 337 participants selected from 

six schools. These participants were grouped into eight (8) experimental classes and seven (7) 

control classes. The intervention was conducted by teachers who participated in a 5-day 

professional workshop on how to develop spatial reasoning abilities. The teachers were also 

exposed to the constructs of spatial reasoning, which was the lessons’ pedagogical framework. 

They were then encouraged to use such lesson activities to strengthen their classroom pedagogy. 

The intervention with the learners lasted for ten weeks (20 lessons), and the learners were engaged 

in learning activities that developed their spatial thinking. The delivery of the intervention 

programme followed the Experience-Language-Pictorial-Symbolic-Application (ELPSA) 

framework, whilst the control group was taught through standard transitional mathematics 

instruction. A Spatial Reasoning Instrument (SRI) used to collect the data focused on three 

concepts: spatial orientation, spatial rotation, and spatial visualisation. Results showed that 

learners in the experimental group performed better in spatial reasoning abilities than those in the 

control group. According to the authors, there was evidence of high participation and spatial 

reasoning development, based on the stages of the ELPSA model. The authors concluded, based 

on the evidence of the effectiveness of the intervention, that it should be applied when teaching 

STEM programmes. 

 

Research shows that learners who have high spatial reasoning often make fewer errors in solving 

geometry and mathematics tasks. For example, Riastuti et al. (2017) used a qualitative approach 

to analyse learners’ errors in geometry from a spatial intelligence perspective. Purposive sampling 

was used to select the participants. Data was collected through tests and interviews. Data on spatial 

intelligence was obtained from the scores on spatial intelligence tests. Of the 35 participants, 11 
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were classified as high spatial learners, 17 with medium spatial intelligence and 7 with low spatial 

intelligence. The results showed that even though there were different errors in solving the 

geometric tasks in each category of spatial intelligence, learners with low spatial intelligence often 

made errors in their solutions due to deficiencies in their visual abilities. This means that learners 

with low spatial intelligence were unable to see unseen features embedded in geometric tasks, 

limiting their ability to draw relational structures and connections about the tasks, to aid their 

understanding (Arcavi, 2003; Matlen et al., 2018). 

 

A deep reflection on the above findings shows that learning experiences which promote spatial 

intelligence, seems to be missing in our traditional mathematics classroom, and needs special and 

immediate attention. A conscious effort must be made to develop this cognitive skill among school 

learners to improve their performance in learning geometry and mathematics in general. Learners 

need to be trained to utilise their visual abilities in learning. From the teaching point of view, 

Atanasova-Pachemska et al. (2016) claim that visual ability is a powerful teaching and learning 

tool that needs to be utilised to develop learners' understanding of mathematical concepts and 

disciplines associated with STEM. The authors add that many reasons support the teaching and 

learning of mathematics through visualisation, at all levels of education. Seeing differently is not 

inborn but needs to be created, developed and learned and must be given special attention in 

mathematics discourse. Arcavi (2003) asserts that we learn about the world through our sense of 

vision.  

 

2.10.7 The use of diagrams in geometric discourse  

Diagrams play a significant role in the teaching and learning of geometry. According to Samkoff 

et al. (2012), diagrams are visual forms used to present information in mathematics. Diagrams 

make it possible to identify relationships between mathematical concepts. Watson et al. (2013) and 

Yahya et al. (2022) claim that geometry is one of the content areas in mathematics where diagrams 

are used to convey concepts, as well as in its teaching and learning. Jones (2013, p. 38) defines a 

geometric diagram as “a figure composed of lines, serving to illustrate a definition or statement, 

or to aid in the proof of a proposition”.  Sfard (2008) considers mathematical objects as abstract in 

nature, and the only possible way to reduce the abstractness of these objects is the use of diagrams 
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or visual data, for example, a point, an arc, or a line. These geometric concepts can be well 

conceptualised through representation in visual form.  

 

Jones (2013) asserts that the use of diagrams in mathematics education is common for a number 

of reasons. A notable one is the expression “a picture is worth a thousand words” or its equivalent, 

“hearing a hundred times is not as good as seeing once” (p. 37). This suggests that information 

conveyed through diagrams is better processed and retained in the mind than that which is heard. 

This could also mean that the eyes are receptive or sensitive to visual data. Learners' geometric 

thinking can be well developed if diagrams are made an integral component of the geometric 

discourse. Samkoff et al. (2012) remark that mathematics education and mathematicians view 

diagrams as “an integral component of doing and understanding mathematics” (p. 49); also 

“drawing diagrams is commonly cited as a heuristic for mathematics problem-solving that students 

should engage in” (p. 50). This shows that diagrams have the potential to enhance learning 

mathematics and geometric understanding as well as to develop problem-solving abilities, which 

are central to the teaching and learning of mathematics. 

 

Geometric concepts must be conveyed to learners using diagrams, and they must also be made to 

draw them to show their understanding of those concepts. According to Thom and McGarvey 

(2015), drawing is a tool used in geometric education to discover how learners represent geometric 

ideas. It allows learners to gain an in-depth understanding of geometric concepts. Drawing gives 

learners the chance to become familiar with geometric principles, concepts, and their relationships. 

Thom and McGarvey (2015) assert that learners' acts of drawing and the processes attached to 

drawing have a significant impact on how well they understand geometric concepts. Learners’ 

ability to draw is an external representation of the internal thinking process. Thus, the act of 

drawing (visual representation) helps learners to reason before their visual production. In other 

words, the use of diagrams in learning can be regarded as a powerful thinking tool. Brizuela and 

Gravel (2013) claim that visual representation (drawing) is the process one engages in to make 

meaning of a phenomenon. An opportunity to support one's thinking and information processing 

is through visual representation (Lowrie, 2020). Hence, the use of diagrams and drawing can be a 

powerful tool for developing learners’ geometric thinking.  
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Diagrams enhance the thinking and reasoning abilities of learners (Yahya et al., 2022). Rizwan et 

al. (2018) investigated how learners’ geometric thinking can be developed and deepened with 

diagrams as an instructional teaching aid. The study intended to identify high school learners’ 

misconceptions about geometric concepts and how teachers can use diagrams to help develop the 

learners’ conceptual understanding of angles. The study used an experimental design that 

comprised both control and experimental groups. Sixty high school learners participated in the 

study. The control group was taught using the traditional method (chalk and talk) of instruction, 

whilst the experimental group was taught using diagrams to explain concepts of angles. A 25-item 

test with multiple-choice and short-answer questions was used to collect data. The study found 

that the experimental group benefited significantly as the learners used diagrams to clearly explain 

their geometric ideas about angles. The use of diagrams engages both teachers and learners in a 

discourse. According to Rizwan et al. (2018), actively engaging learners in a discourse enables 

them to acquire an in-depth understanding of the concepts that arise from doing mathematics, 

instead of being passive learners who only watch what the teacher does. The use of diagrams in 

teaching and learning can provide an avenue for learners to learn geometric concepts in a less 

abstract context. Another important benefit to be obtained from learning with diagrams is the 

development of learners’ visual abilities, which is important for learning geometry as well as 

mathematics and for developing problem-solving abilities (Hasanah et al., 2019). 

 

 

2.11 Pre-service teachers’ geometric thinking 

2.11.1  Pre-service teachers’ understanding of angles and parallel lines 

Understanding the concept of angles is critical for learning geometry (Arslan et al., 2016; Yigit, 

2014). Biber et al. (2013) assert that angles form one of the basic geometric concepts that permeate 

almost all other topics in geometry. This could mean that teachers and learners would benefit 

greatly if their geometric thinking is based on a good conceptual grasp of angles. Angles are 

formed when two straight lines meet or intersect at a point called the vertex. Musser et al. (2014) 

define angles as the union of two straight lines at a common point. Some concepts that need to be 

learned about angles are their notations, representation, types. For example, angle ABC denoted as 

∠𝐴𝐵𝐶 could be interpreted as the angle formed at the vertex B of line segments A𝐵 and 𝐵𝐶. 

According to Kontorovich and Zazkis (2016), Smith et al. (2014) and Mullins (2020), angles can 
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be viewed as static or dynamic. The static deals with angles formed by two arms or sides, whilst 

the angle as dynamic, involves movement such as a turn. Several angles are formed when two 

straight lines intersect or when a transversal intersects two straight lines. The intersection of these 

straight lines produces several angle properties that need to be learned. 

 

Studies reveal that learners have difficulty in understanding basic geometric concepts necessary 

for learning the subject matter and important aspects of mathematics (Biber et al, 2013; Clement 

& Battista, 1992; Crompton, 2014; Ngirishi & Bansilal, 2019; Zuya & Kwalat, 2015). These 

researchers also show that learners have several misconceptions about angles in geometry. For 

learners' difficulties and misconceptions to be addressed and remedied, teachers need to possess 

good geometric thinking to provide effective learning support to learners (Crompton, 2014). 

Research reveals that teachers and pre-service teachers also possess similar learning difficulties 

with geometric concepts (Biber et al., 2019; Zuya and Kwalat, 2015). 

 

A study by Zuya and Kwalat (2015) may have been informed by the work of Biber et al. (2013), 

who found that the participants focused attention to the appearance of the geometric task instead 

of the geometric properties. They could not relate to or apply the known properties to devise 

solutions for other tasks. According to Biber et al. (2013), the learners’ main learning difficulties 

were the over-generalisation of properties of specific cases to others, and difficulties with the 

concept of parallelism. Zuya and Kwalat (2015) based their study on these findings to investigate 

teachers' geometric thinking. The goal was for the teachers to identify the knowledge learners 

lacked and to determine strategies to help address the problem. The study showed that most of the 

teachers could not identify the knowledge that learners lacked to solve the task on angles and 

parallel lines. Also, the teachers were unable to suggest specific strategies to address or remediate 

the learners’ learning difficulties because the teachers themselves had a limited understanding of 

angles and parallel lines. This causes concern because of the teachers’ role to guide and facilitate 

learning in the classroom and to provide learning support based on identified learning difficulties. 

 

Other studies with pre-service teachers as participants, show similar results (Yigit, 2014). Yigit 

(2014) studied four pre-service mathematics teachers' understanding and mental construction of 

angles. Data was collected through clinical interviews conducted in one-on-one sessions. The four 
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participants were those who were willing to explain their thought processes about their mental 

construction of angles. From the results, all the participants showed adequate schema on 2-line 

angles, but they were less flexible in constructing 0-line and 1-line angles. It meant that these pre-

service teachers had limited knowledge on angles. 

 

2.11.2  Pre-service teachers’ understanding of triangles 

Triangles have a central role in the study of geometry, which forms the basis of the study of 

polygons. A triangle is a polygon with three sides (Smith, 2014) with a narrative that the interior 

angles sum up to 180o (Sfard, 2008; Smith, 2014). Triangles can be classified by sides or by angles. 

For classification by sides, they are equilateral, isosceles and scalene, and by angles, they are right 

triangle, acute triangle and obtuse triangle. The various types of triangles have their own associated 

properties that must be taught to give learners a firm foundation for learning higher concepts in 

the discipline. Types of triangles are represented visually using marks to design the diagrams. 

These marks in the communication framework are termed 'iconic mediators’. Sfard (2008) asserts 

that the iconic mediators are used to communicate certain important features of geometric shapes 

to learners. For example, an equal number of marks placed on any two sides of a triangle 

communicates that the two sides are equal, hence, the name isosceles. It also connects to the 

property that ‘angles opposite the equal sides are also equal’. Learners’ abilities to identify and 

interpret iconic mediators are useful to learning and solving tasks in the discourse (Sfard, 2008). 

 

Ndlovu (2015) conducted a study to investigate pre-service teachers’ understanding of geometric 

definitions and class inclusion of triangles and quadrilaterals. For this section, only findings about 

triangles are discussed. The focus was to determine pre-service teachers’ ability to define a triangle 

in an economical or non-economical way. The survey design was used and 16 pre-service teachers 

participated in the study. In the pre-test, the pre-service teachers were asked to define some types 

of triangles in their own words. Analysis of data showed that they were able to identify the 

geometric shapes and their properties. Based on the study focus on the economy of definitions, the 

author remarked that even though they demonstrated good knowledge of definitions, they 

generally lacked the economy of definitions. The author concluded that teachers’ geometric 

knowledge was weaker than expected.  
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The study of the definitions of triangles comes with several properties required for teaching and 

learning proofs, showing the relationships among many figures in geometry as well as their 

properties (Atebe, 2008). For example, in teaching the analytical proof of the circle theorem, the 

properties of triangles serve as the fundamental knowledge. Other properties of the shape can be 

the exterior angle formed when a side of the triangle is extended, known as the exterior angle 

theorem, which states that the exterior angle formed is equal to the sum of the two opposite interior 

angles. The properties of geometric figures and shapes are critical tools for solving problems in 

the discipline (Ndlovu, 2014; Ngirishi & Bansilal, 2019). 

 

2.11.3  Pre-service teachers’ understanding of quadrilaterals 

Several studies report that pre-service teachers' have difficulty understanding quadrilaterals, 

definitions, and inclusion criteria of classifying quadrilaterals (Baktemur et al., 2021; McCammon, 

2018; Ndlovu, 2014; Pickreign, 2007; Rianasari et al, 2016; Ulger & Broutin, 2017; Wang, 2013; 

Zilkova, 2014). According to Rianasari et al. (2016), quadrilateral classification is one of the topics 

taught in secondary school mathematics, so it is expected that teachers and pre-service teachers 

understand the definitions and inclusion relations among them.  

 

For example, in a study conducted by Ulger and Broutin (2017) to investigate pre-service 

mathematics teachers’ understanding of quadrilaterals and their relationships, open-ended 

questions were posed to 27 participants through clinical interviews. Analysis showed that there 

were more personal definitions (colloquial word use) in their responses, than formal definitions 

(literate word use). According to the authors, the PSTs defined the shapes based on their 

experiences with them, which showed more prototype figures. Adding some details, the authors 

reported that although some of them defined a parallelogram as “a quadrilateral whose opposite 

sides are parallel to each other”, the majority used incorrect properties in their definitions. Others 

defined a parallelogram from the prototype point of view, saying that “a parallelogram does not 

have right angles; a parallelogram is an oblique quadrilateral”. The authors explained that those 

definitions resulted from a prototype figure. According to Fujita (2012), prototype figures are those 

formed during the learners’ first [and subsequent] encounter with such geometric objects. The 

authors of the study claimed that many participants showed difficulties with inclusion relations 
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within the quadrilaterals. Literature shows similar findings as reported by Ulger and Broutin 

(2017).  

 

Baktemur et al. (2021) investigated pre-service teachers’ conceptions and misconceptions of 

definition, classification and inclusion in which 20 purposely selected participants were involved. 

The case study design was used. The participants were to take a module in Methods of Teaching 

Mathematics, after they had taken various content modules, including Analytic Geometry and 

Elementary Geometry. For the two weeks devoted to the teaching of geometry, instruction focused 

on van Hiele’s levels of geometric thinking on two- and three-dimensional shapes and related 

properties. The learners were asked to design tasks that would support learning and understanding 

in the classroom. The instrument used to generate data was a convex quadrilateral test developed 

by the researchers. The test items were open-ended, true-false type questions, definitions and 

inclusion relations among quadrilaterals, as well as identification of shapes and the drawing of 

alternative quadrilaterals. Data was generated before and after taking the module. The study 

revealed that the PSTs, before taking the module, showed inadequate understanding of hierarchical 

classification of quadrilaterals and experienced difficulties with definitions. It was also found that 

the participants described the quadrilaterals with no indication of inclusion relations which means 

that the PSTs did not show any knowledge that ‘a rectangle could also be called a parallelogram’ 

or ‘a square could be called a rectangle’. 

 

Learners with such thinking within the Sfard (2008) commognitive theory, may think that a 

geometric shape cannot have two names. Often, learners will give a ‘no’ answer when they are 

asked ‘if a square can also be called a rectangle or a parallelogram’. This is a demonstration of a 

ritualised way of thinking, and in most cases, it happens due to strict rules of definition (Sfard, 

2008), or, how the object has been experienced or encountered over the past learning years (Fujita, 

2012; Ulger & Broutin, 2017). 

 

In another study by Ndlovu (2014), 16 pre-service mathematics teachers participated. Analysis of 

data generated about the participants' thinking on definitions and inclusion relations revealed that, 

though they showed some understanding of definitions, their thinking on inclusion relations was 

limited. Ndlovu (2014) concluded that the participants' understanding of quadrilaterals was lower 
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than expected. Most of the pre-service teachers held the view that a rectangle is not a 

parallelogram. Also, some did not believe that a square is a rhombus (Ndlovu, 2014). According 

to Rianasari et al. (2016), pre-service teachers frequently prefer partition classification to 

hierarchical classification because in partition, they do not consider shapes that share properties 

with others. Studies show that pre-service teachers’ geometric thinking on quadrilaterals is below 

expectations, as some are even unable to identify or recognise geometric shapes in non-standard 

positions (Contay & Paksu, 2012; Duatepe-Paksu et al., 2012; Rianasari, 2016; Zilkova, 2014). 

 

2.11.4  Pre-service teachers’ understanding of circles and circle theorems 

Unlu (2022) studied pre-service mathematics teachers’ concept definitions of a circle, a circular 

region, and a sphere. The participants comprised 56 pre-service teachers enrolled in a teacher 

education programme at the university. The instrument used to collect data was a test consisting 

of three items on circles, circular regions, and spheres. The data was analysed in terms of 

correctness and generalisability criteria. After the analysis of the initial data, the author conducted 

a semi-structured interview with nine of the participants. The author found that most of the pre-

service teachers’ responses or answers to questions on circles were either insufficient or incorrect. 

Also, a few of the participants provided appropriate examples that related to the concepts 

examined. 

 

Similarly, Aksu (2019) conducted a study to investigate pre-service mathematics teachers’ ability 

to respond to mistakes learners make, in learning about circles. The participants were expected to 

identify the learners’ source of mistakes and suggest a correct solution. The study, which employed 

a qualitative inquiry approach, used open-ended questions to obtain data from 30 participants. The 

author found that the participants could not identify the source of the learners’ mistakes. In 

addition, they could not suggest or propose any correct solutions to the challenges learners faced. 

According to the author, there is a need for pre-service teachers to be aware of the demands of the 

professional career and to prepare themselves for the desired expectations. 

 

Research shows that learners at the various levels of study, from elementary, through high school 

to teacher education levels, also show difficulties in learning concepts about circles and circular 

regions (Aksu & Kul, 2018; Cantimer & Sengul, 2017). Research indicates that secondary school 
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learners have difficulties in remembering basic concepts in circles. In addition, they are unable to 

express their ideas and understanding of the relationship between the concepts, even though they 

can recognise them (Cantimer & Sengul, 2017). It could be inferred that it is these unresolved 

difficulties that manifest themselves, even at the teacher education level. PSTs carry several 

unresolved misconceptions from previous learning, which accounts for their difficulties in learning 

at higher level education. For example, a study conducted by Mudaly (2021) involved 51 

undergraduate mathematics students. Figure 2.1 was one of the tasks used in the study, and the 

people who took part were asked to write down the value of the angle formed at A. 

 

Figure 2.1: Task on circle theorem (adapted from Mudaly, 2021, p. 4) 

 

It was found that 34 of the 51 participants indicated the value as 90o, and substantiated that ‘angle 

in a semi-circle is 90o’. Thus, these participants took the chord to be a diameter without first 

examining whether or not it passed through the centre of the circle. This could result from weak 

visual abilities as well as a misconception in the application of a learned theorem. According to 

Yahya et al. (2022), most learners have difficulty in learning geometry because of their poor 

visualisation skills.  

 

The difficulties of Ghanaian learners regarding circles, have been documented both by researchers 

(Fletcher & Anderson, 2012) and by the Chief Examiner’s report on analysis of candidates’ 

solutions to questions. It is known that learners only answer questions on geometry, particularly 

circles and circle theorems, when that is the only alternative, and in such cases, their solutions 

clearly demonstrate weak knowledge (Fletcher & Anderson, 2012). 
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2.11.5  Pre-service teachers’ spatial abilities 

Sections 2.8.4 to 2.8.6 show the importance of spatial skills that learners need to successfully 

engage with learning geometry and other mathematics content areas. This is an indication that 

teachers’ instructional experiences designed for classroom discourse, must take into consideration 

important cognitive learning abilities such as spatial skills. This presupposes that teachers must 

have their spatial abilities developed and be able to develop such skills among learners in 

geometric discourse. According to Ozdemir and Goktepe Yildiz (2015), spatial abilities are highly 

connected with geometric thinking. Hence, pre-service teachers being prepared to join the teaching 

profession, should be able to demonstrate this knowledge as part of their thought processes for 

effective teaching. In view of this, Ozdemir and Goktepe Yildiz (2015) conducted a study to 

examine pre-service teachers’ spatial abilities in problem-solving. The study used the qualitative 

approach, making use of clinical interviews to generate data. According to the authors, these 

interviews enabled them to connect with the participants' thought processes in an interactive 

manner. Three pre-service teachers willingly participated in the study. Sixteen (16) questions 

comprising open-ended, multiple-choice types, and those requiring drawings, were used for data 

generation. The qualitative data analysis showed a wide range of spatial abilities among the pre-

service teachers. According to the authors, one of the pre-service teachers was found to have poor 

visualisation ability, and his attempts to answer almost all of the questions were based on 

superficial analysis rather than deep thought about the tasks, and hence he failed. This pre-service 

teacher was then found to be performing at the unstructured level. The second pre-service teacher 

was found to be operating at the multi-structural level and, as a result of his ability to employ some 

level of spatial visualisation skills, he was able to progress in his responses to a medium level. The 

last pre-service teacher operated at a higher level and was found to possess high spatial thinking 

skills. According to the authors, this pre-service teacher was able to relate information with others, 

regarding the given problem, and hence was able to satisfactorily solve the given tasks. It can be 

inferred from this study that the development of spatial abilities is not automatic among teachers, 

and therefore, an effort must be made for its development through several specific activities. 

According to Ozdemir and Goletepe Yildiz (2015), the development of spatial abilities can only 

be realised by engagement in various purposeful activities in a discourse. 
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2.12 Research on pre-service teachers’ definition ability 

Despite the importance of definition in learning, research has noted that many pre-service teachers 

have difficulty with mathematics definitions (Kemp & Vidakovic, 2021). According to Ndlovu 

(2014, p. 195), a major difficulty for pre-service teachers in learning geometry is “defining 2D 

shapes and their properties”. Kemp and Vidakovic (2021) report that the major difficulty that 

students enrolled in higher-level mathematics face, is completing tasks on definitions. They lack 

the ability to provide a statement that conveys the meaning of mathematical objects and figures. 

According to Kemp and Vidakovic (2021), this difficulty with definitions occurs among students, 

despite their successful learning of advanced mathematics modules in colleges and universities. 

 

Speer et al. (2015) backed by research evidence, claim that that prospective high school 

mathematics teachers lack sufficient understanding of the high school mathematics curriculum. 

For teachers to be able to rely on good content knowledge necessary for all manner of classroom 

teaching activities, including definitions, it is important that they first acquire a good level of 

understanding of definitions in mathematics (Chesler, 2012). Definitions are important for 

assessing learners’ conceptual understanding of geometric concepts (Usiskin et al., 2008; Zazkis 

& Leikin, 2008), and teachers need to demonstrate this skill in teaching mathematics to enhance 

their teaching competency (Erdogan & Dur, 2014). 

 

2.13 Pre-service teachers’ conceptual and procedural knowledge of geometry  

Teachers’ geometric thinking for teaching requires knowledge of both concepts and procedures. 

Understanding of concepts and procedures is necessary for mathematical proficiency. For 

mathematics teachers to be competent and effective in teaching, they must possess a deep and 

flexible knowledge of the subject matter with understanding of both concepts and procedures in 

the subject (Alex & Mammen, 2018; Erdogan, 2020; Zuya et al., 2017). This suggests that 

teachers’ proficient geometric thinking should entail an understanding of both the concepts and 

procedures of the subject matter and how to blend them, to foster effective teaching. Sfard (2008) 

supports this view when she explains that understanding both concepts and procedures are equally 

important in the teaching and learning of mathematics, even though conceptual understanding 

(explorative discourse) is the focus of school mathematics. Rittle-Johnson and Schneider (2015) 
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consider this type of knowledge to be bidirectional, hence, teachers need to demonstrate adequate 

knowledge of both for teaching. 

 

Even though one may ask which one comes first, the NCTM (2000) claims that procedural 

knowledge should not be taught, in the absence of conceptual understanding. Also, Sabey (2009) 

remarks that a deep conceptual understanding of the subject matter can prevent learners from using 

incorrect procedures. Thus, even though both conceptual and procedural understanding are 

important, conceptual understanding could be more valuable for teaching so that teaching is not 

limited to rules and procedures. According to Alex and Mammen (2018), there has been special 

attention to learning with understanding, because it is the main aim of teaching mathematics and 

a significant approach in preparing learners for the 21st century. 

 

Conceptual knowledge is an understanding of mathematical concepts that enables one to make 

connections between them and engage in meaningful learning (Rittle-Johnson & Schneider, 2015). 

Knowing ‘how’, ‘when’, and ‘why’ mathematical concepts apply in various contexts is associated 

with conceptual understanding. Learners with conceptual understanding, learn mathematics by 

connecting the new ideas to what they already possess in their existing schema and also relate 

these to new situations (Erdogan, 2017; Nahdi & Jatisunda, 2020; Sabey, 2009). Conceptual 

understanding draws on the ability to make connections and generalise from abstractions, and the 

ability to produce principles and properties about an object (Rittle-Johnson et al., 2016). Nahdi 

and Jatisunda (2020) add that conceptual understanding goes beyond knowing information to an 

understanding and interpretation of information in a meaningful way. It helps represent ideas in 

many ways and devise multiple solutions to mathematical tasks, which is an attribute of problem-

solving abilities (Maulana & Yuniawati, 2018; Nur & Nurvitasari, 2017). Conceptual 

understanding in mathematics helps learners become more flexible and develops their ability to 

think creatively (Kivkovich, 2015; Ortiz, 2016). 

 

Procedural knowledge, on the other hand, refers to knowledge of rules and procedures. It deals 

with how to follow rules and routine procedures to solve mathematical tasks and the skills 

necessary to perform them, accurately, efficiently and with flexibility. It is characterised by the 

ability to follow and use step-by-step procedures, also known as algorithms to solve a task (Hurrel, 
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2021; Rittle-Johnson, 2017). A learner who relies on algorithms can solve a given task but may 

have little or no understanding of why a certain procedure works in other situations. Learners need 

to know how to do basic operations quickly and correctly, both in their heads and on paper 

(Erdogan, 2017; Nahdi & Jatisunda, 2020; Sabey, 2009). 

 

According to Erdogan (2017), incorporating conceptual and procedural knowledge into instruction 

enables learners to develop and demonstrate high-order mathematical thinking skills. Whilst these 

two kinds of knowledge are important for teaching, research shows that teachers and pre-service 

teachers seem to demonstrate more procedural knowledge than conceptual knowledge. For 

example, Sabey (2009) studied 15 pre-service teachers’ understanding of Euclidean geometry. The 

PSTs were taking secondary mathematics education as their study programme at the university. 

The study used mixed methods and collected data using both paper-and-pencil tests and 

interviews. The author selected the top three PSTs who answered all the 15 questions correctly 

and the bottom three PSTs who correctly answered only eight (about half) of the 15 questions. 

Two from the high performing group, two from the low group, and one from the middle group 

were invited for follow-up interviews. Results showed that the PSTs in the high group 

demonstrated conceptual and procedural knowledge, and the PSTs in the low group showed 

deficiencies in knowledge of all the strands, including conceptual and procedural. The author 

claims that there was evidence of most of the PSTs’ use of procedural knowledge in their solution 

strategies. According to Sfard (2008), learners stick to procedures and rules because they consider 

them the easiest way to solve mathematical tasks. Sfard (2008) asserts that classroom instruction 

mostly focuses on rules rather than teaching for understanding. 

 

Bryan (2002) studied pre-service mathematics teachers' subject matter knowledge on the 

procedural-conceptual dimension to find out the depth of their knowledge of mathematical topics 

they would teach. The study found that the majority of pre-service teachers could not justify or 

demonstrate any conceptual understanding of the answers they provided to the tasks involved. 

According to the author, only a fourth of the participants successfully explained the rationale or 

conceptual basis of the solution. Most of the questions were solved using rules and procedures, 

which may result from familiarity with those approaches. Researchers (Mann & Enderson, 2017; 
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Rittle-Johnson & Schneider, 2015) claim that learners follow procedures in solving mathematical 

tasks due to familiarity and ease of recall. 

 

Literature shows that the use of a set of rules in solving mathematical tasks, is common among 

learners because they think it leads to the expected results. This affects understanding and limits 

their ability to apply the knowledge in new situations (Akhter & Akhter, 2018; Al-Mutawah et al., 

2019). Sabey (2009) reported Cooney’s findings that pre-service teachers had difficulty 

understanding topics in the high school mathematics curriculum, irrespective of their successful 

study of advanced mathematics modules at university. According to Sabey (2009), several studies 

show that most pre-service teachers can solve mathematics tasks by following procedures, but 

demonstrate weak conceptual understanding of their solutions. 

 

Erdogan (2017) investigated pre-service teachers’ conceptual structures about geometry using a 

qualitative approach. The study that included 60 pre-service teachers, 44 females and 16 males, 

used the Free Word Association Test to collect data. Content analysis of the test responses showed 

that the pre-service mathematics teachers demonstrated inadequate or insufficient knowledge of 

the conceptual structures of the geometric concepts because most of their responses focused on the 

basic concepts. The author claimed, with support from literature that analysis of learners’ 

knowledge, skills and geometric thinking at all levels of education, shows that they have an 

insufficient conceptual understanding of geometry. The author adds that knowledge of isolated 

basic concepts in geometry makes no meaning unless those concepts are associated with other 

concepts in mathematics, which form a basis for meaning-making and conceptual understanding 

to develop. 

 

Similarly, Yurniwati and Soleh's (2021) analysis of pre-service teachers’ conceptual and 

procedural geometric knowledge showed that the pre-service teachers tend to demonstrate surface-

level or basic knowledge of geometry, in which deep learning is not supported. The authors assert 

that teachers need to acquire an understanding of a substantial body of geometric content 

knowledge to scaffold learners' thinking in the discourse. NCTM (2000) supports this by saying 

that teaching for understanding helps improve learners’ learning outcomes and hence the main aim 

of the mathematics teacher education programme. 
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On the other hand, Zuya et al. (2017) studied pre-service mathematics teachers’ conceptual and 

procedural knowledge of geometry. The study, with 28 participants, investigated the relationship 

between the participants’ conceptual and procedural knowledge. A test consisting of 15 items on 

concepts and 15 items on procedures, was used to collect data. The items were open-ended and 

required the participants to compose their responses. Analysis of the data showed that the pre-

service mathematics teachers demonstrated both conceptual and procedural knowledge of 

geometry. The study also found a significant relationship between the participants’ conceptual and 

procedural knowledge, even though they performed better on conceptual items than on procedural 

items. This showed that the participants knew how to solve the tasks and also demonstrated an 

understanding of the solution processes. In other words, they knew more than just the rules for 

learning geometry. According to the authors, conceptual knowledge draws on the ability to justify 

and substantiate why one uses a particular approach to solve a task. It is a demonstration of 

understanding of what works and why. Teachers can be effective in teaching when they have an 

in-depth understanding of the concepts, principles and relations between content in the 

mathematics curriculum (Schneider & Stern, 2010). 

 

Marchionda (2006) and Svensson and Molmqvist (2021) claim that, not only in geometry do pre-

service teachers demonstrate insufficient conceptual understanding, but also in topics such as 

fractions, integers, and statistics. In addition, when pre-service teachers are asked to explain their 

solutions, they often try to identify rules they could use instead of the underlying meaning related 

to the mathematical tasks (Sabey, 2009). This shows a lack of conceptual knowledge. 

 

Mann and Enderson (2017) investigated learners’ approaches to problem-solving based on their 

preference for conceptual or procedural strategies. The study also focused on the preferred solution 

strategies among those whose mathematics performance was above average, and those who 

performed below average. The study used a single-factor, between-subjects experiment on 

conceptual vs. procedural approaches to instruction. The learners watched short videos that 

presented a series of instructions to solve problems in two ways; one using a conceptual approach 

and the other using a procedural approach. A convenient sampling technique was used to select 65 

learners who had also taken an introductory mathematics module at the university. Another 
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criterion that guided the selection of the participants, was based on those who had completed a 

pre-requisite modules and general education mathematics. Each instructional approach was 

evaluated by the learners. The results showed that learners’ preference for the procedural approach 

was higher than that of the conceptual approach. The author remarked that procedural and 

conceptual strategies develop differently among learners and hence recommended that faculty 

modules should be taught by integrating both procedural and conceptual strategies, to facilitate the 

development of learners’ depth of mathematics understanding. The author also states that using 

conceptual strategies in teaching will make learners to think critically, learn deeply, and be able to 

use what they have learned in new situations. 

 

2.14 Fostering classroom geometric discourse 

Teachers' mathematical knowledge is pivotal to all classroom activities (Ball et al., 2008). These 

activities are meant to develop and enhance learning. Research shows that the teachers’ abilities 

to design and deliver quality classroom instruction, is informed by the depth of the content 

knowledge possessed (Kivkovich, 2015). Similarly, a teacher needs to possess deep and flexible 

geometric content knowledge to be able to provide better learning support in the classroom. In-

depth and flexible geometric knowledge deals with the structures that requires one's ability to 

understand geometric concepts, facts, definitions, properties, proofs, and theorems (Bassarear, 

2012; Erdogan, 2017). Teachers need to have adequate thinking ability about these geometric 

structures and their relationships, in order to enhance their classroom delivery.  

 

The teacher should select an appropriate teaching technique that engages learners in learning 

through doing. According to Nissim et al. (2016), teaching techniques are the approaches teachers 

use to achieve their lesson aims. The technique used by the teacher generally contributes to the 

quality of teaching and learning. The authors maintain that the more supportive and adaptable a 

strategy is, the more effective it is in the teaching and learning process. Sfard (2008) maintains 

that learning takes place in an interactive setting. Thus, participatory teaching methods are suitable 

for teaching and facilitates the learning of geometric concepts. The use of participatory teaching 

methods places learners in the central position of the instructional process (Fletcher, 2009). 

Kivkovich (2015) asserts that better learning takes place among learners if they are active 

participants in a discourse with knowledgeable people. According to Sfard (2008), mathematical 
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objects are abstract, which may require a teaching approach that lessens the abstract nature of the 

concept being taught. This could mean that if abstract concepts are communicated in an abstract 

setting through only verbal explanation or the traditional method, no meaningful learning can take 

place since such a learning approach, lays emphasis on memorisation (Kivkovic, 2015). 

 

The use of functional words in communication is significant in learning. According to Ajayi and 

Lawani (2015), the language of discourse is important for learning effectiveness. Sfard (2008) 

adds that a discourse is characterised by keywords (terminology and vocabulary) to communicate 

specific concepts, particularly in geometry, which makes use of mathematical terminology (Atebe 

& Schafer, 2010). This means that teachers' use of formal and functional words to designate? 

specific geometric concepts, is crucial for learning and understanding. Teachers who have acquired 

good terminologies (vocabularies) in a discourse, are able to express ideas in definite and concise 

ways (Ajayi & Lawani, 2015; Oyoo, 2009; Robert, 2010). Hence, teachers’ ability to use formal 

and functional words in their discourse, could make a significant contribution to learners' 

understanding and application of learned concepts. The use of appropriate words in a discourse 

enables learners to express their ideas confidently. According to Alex and Mammen (2018) and 

Robert (2010), when learners understand geometric terminologies, they can describe their ideas in 

ways that specify the particular spatial concept under discussion. Language forms a critical tool 

for communication in a discourse (Sfard, 2008), hence, there is a need to use and guide learners’ 

communication with appropriate use of functional keywords. 

 

Learners’ geometric thinking can be facilitated through tool-mediated instruction. Sfard (2008) 

asserts that visual mediators are objects that learners use to form the centre of their communication. 

The cognitive system is responsive to visual stimuli. Hence, visual mediated instructions have the 

potential to develop learners' knowledge construction and knowledge retention. The visual 

mediators can be diagrams, graphs, sketches, etc. The categories of visual mediators are iconic, 

symbolic, and concrete (Sfard, 2008). These tools have a significant role to play in mathematics 

and they bring abstract concepts into reality. 

 

Concrete mediators, or manipulatives, are key to learners’ understanding in a discourse and enable 

them to learn in an interactive setting (Horan & Carr, 2018). As learners handle and play with the 
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concrete materials, they engage in deep thinking and make some discoveries. This comes from the 

view of Rondina (2019) that hands-on learning contributes to learners’ cognitive development and 

helps them become constructive thinkers. Learning geometry has been noted for its potential to 

develop learners' reasoning abilities and problem-solving skills (Aksu, 2019). These skills can be 

developed and enhanced if learners are not just provided with verbal information to assimilate, but 

are taught through instruction that is designed for concrete or pictorial experience before the 

abstract (Mudaly and Naidoo, 2015). Tool mediated instruction enables learners to become active 

learners and to individualise learning (Kontas, 2016; Sfard, 2008). It also gives them confidence 

to express their ideas and take responsibility for their learning (McDonough, 2016). Research 

shows that the use of concrete mediators in instruction has the potential to meet the learners’ 

preferred ways of learning (Kablan, 2016). These views suggest that learners' geometric thinking 

can be greatly fostered if they are taught with concrete mediators or manipulatives. The benefit is 

that learners' own constructed knowledge is understood, retained, and applied to new learning 

situations, especially in problem-solving environments (Cope, 2015; Kontas, 2016). They can also 

learn in groups and share ideas when they use concrete mediators in the classroom (Chan & Idris, 

2017). 

 

Bassarear (2012) notes that geometry deals with the study of shapes, their properties and their 

relationships, which means that knowledge of geometric properties is crucial for developing 

geometric thinking. Luneta (2015) asserts that learning geometry at high school emphasises the 

use of properties to guide learning as well as fostering competence for writing mathematical and 

geometric proofs. Thus, learners’ weak knowledge of geometric properties can impede the 

learning proficiency that is expected of them. All geometric shapes have their own associated 

properties which need to be taught to learners for them to attain proficient thinking in the 

discourse. Consider the question in Figure 2.2, which is one of the tasks used in this study. 

Figure ABCD is a rhombus and equilateral triangle ABX lie on side AB. If angle BCD =82o, 

calculate angle ADX and angle BDX. 
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Figure 2.2: Task 3.4 on worksheet 

 

From Figure 2.2, the name of the shape ABCD is given. The rest of the information needed relies 

on one’s ability to interpret the iconic mediators used to design the triangle ABX, to identify the 

name, think of its properties, and relate these properties to the entire design of the task, before it 

can be solved. Hence, teaching must focus attention on the properties and all other guiding 

principles such as definitions and theorems, to enhance learning. Mathematics discourse requires 

learners to have a proficient understanding of definitions, theorems, and the ability to write proofs 

(Luneta, 2015; Ndlovu, 2014; Sfard, 2008). Another way to develop learners' geometric thinking 

is through their spatial abilities, which has been discussed in the literature. 

 

2.15 Conclusion 

This chapter began with an overview of some definitions of geometry and how they relate to the 

current study. It also looked at the place of geometry in the mathematics curriculum and the state 

of mathematics education in Ghana. Some cognitive processes needed to study geometry were 

discussed. Further discussion was based on research studies on pre-service teachers’ geometric 

thinking in the various content areas used in plane geometry. The chapter concluded with some 

concepts on how to foster learners’ geometric thinking. Chapter three, will focus on the theoretical 

framework that underpinned this study.  
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CHAPTER THREE 

THEORETICAL FRAMEWORK 

3.1 Introduction 

This study analysed pre-service mathematics teachers’ geometric thinking and their classroom 

discourse. The previous chapter presented a review of related literature which served as a basis for 

situating the study in an academic investigation. This chapter discusses the theoretical framework 

that served as a lens for conducting this study. It explains the potentiality of the framework for 

studying geometric thinking as a discourse. The chapter starts by presenting a discussion of the 

theoretical basis of the commognitive framework and its suitability for this study. It then focuses 

on the various constructs of the framework as well as a review of previous research that has been 

conducted using the commognitive framework. The chapter ends with a discussion on how the 

constructs of the framework will serve as a basis of analysis for this study. 

 

3.2 The commognition theory  

Sfard’s (2008) commognition theory served as a theoretical lens for this study. The theory 

emanates from the idea of thinking as a form of communication. Commognition stems from the 

theory that a person engages in self-communication by thinking, when engaged in an activity. The 

term commognition is derived from two keywords, viz., cognition (thinking) and communication. 

According to Sfard (2008), thinking is a form of communication and is individualised in nature. 

This means that one communicates with oneself whilst thinking. She stresses that the processes of 

communication and individual cognitive processes (thinking) are different occurrences of the same 

phenomenon. Thus, in commognitive perspectives, there is no difference between thinking and 

communication. Thinking is an individualised kind of communication (Nardi, et al., 2014; Sfard, 

2007, 2008). Communication, on the other hand, is “a collectively performed rule-driven activity” 

that directs the activities of people or self (Sfard, 2008, p. 118). The commognition theory is a 

term coined to show the interrelationship between the processes of thinking and communication. 

The theory provides a discursive framework for studying and interpreting an individual’s activity 

to gain insights into “intricacies of learning” (Sfard, 2008, p. 566).  
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The commognition stance of cognitive processes (thinking) and communication is used here as 

learning and teaching activities. Sfard (2008, p. 570) asserts that learning is an individual 

development in a “patterned collective activity” often guided by teachers. In the commognitive 

theory, communication types include expressions in the form of text, spoken, artefacts and use of 

tangible objects. Communication activities that assemble people together are regarded as 

discourses. In Sfard’s (2008, p. 93) expression, “different types of communication set apart by 

their objects, the kinds of mediators used, and the rules followed” that bring participants together 

in a community of communication, are called discourses. Discourses are therefore tools of 

communication such as keywords (spoken and textual) and their uses, and visual mediating tools 

used in communicating concepts to others in regulated activities.  This shows a link between 

discourse and communication in the commognitive theory. Teaching can also be considered as a 

form of a discourse that follows patterned activities through which concepts are communicated to 

learners. Mathematics lessons are characterised by collective activities that are organised for 

learners to participate purposefully in. Teaching that aims at engaging learners in a purposeful 

discourse place them in an active stance for self-knowledge construction rather than being made 

to follow teachers’ directives passively. Sfard (2008) maintains that mathematics is a type of 

special discourse that is characterised by many forms of communication tools which are recognised 

by members of the mathematics community. Mathematics discourse takes into consideration all 

forms of communication, namely spoken, textual, and visual tools that govern the study of 

mathematical objects. Mathematical discourse consists of communication of types of ideas such 

as concepts, proofs, laws and theorems that are generally restricted to mathematics. This shows 

that mathematics discourse is characterised by communication tools that are recognised by fellows 

of a unified community.  

 

In commognition, thinking is linked with learning. Thinking is a personalised form of 

communication, when associated with school learning, deals with the process of restructuring and 

extending one’s discourse on an object of study with the assistance of teachers (Ben-Zvi & Sfard, 

2007; Sfard, 2008). Communication is the mediating tool between teachers and learners in a 

classroom discourse, which makes teaching a social interaction through which learners are 

engaged in purposefully organised activities, in order to construct knowledge. Learning takes place 
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when learners modify their existing knowledge or develop new knowledge, based on the current 

activities (Sfard, 2008).  

 

With evidence of learners’ low performance in mathematics, which has been extensively 

documented through research activities and reports from Chief examiners on national 

examinations, literature falls short of studies examining teachers’ knowledge by analysing their 

thinking, which is the source of all informed actions and inactions, and interractions with learners 

in a discourse. Since teachers are tasked with the role of interpreting the curriculum to learners, 

there is an impetus for a study that focuses on what teachers know, by analysing their thinking 

through their speech and what they do in mathematical discourse, instead of focusing only on their 

solutions to tasks. Such studies will generate a discussion of what teachers know and what they do 

in mathematical discourse (Ben-Yehuda et al., 2005). This will provide the opportunity to 

understand and identify teachers’ deficiencies and the needed measures to develop their 

competency.  It is worthy to note that an educational outcome (success or failure) is a product of 

collective doing (Ben-Yehuda et al, 2005). Teachers engage learners in a discourse to develop their 

autonomy in learning, based on experiences with mathematical objects. Learners learn with 

understanding and gain much autonomy when they actively participate in a discourse instead of 

being passive recipients (Nachlieli & Tabach, 2012; Sfard, 2008). If learners are not performing 

as expected, then there is a need to examine the possible source of disconnection between teachers’ 

and learners’ interaction in a discourse.  

 

3.3 Elements of mathematical discourse 

Sfard (2008) identifies the elements of mathematics discourse as word use, visual mediators, 

routines and narratives. The following sections provide a description of these elements. 

3.3.1 Word use 

According to Sfard (2008), a discourse is characterised by the kinds of keywords used. It refers to 

the vocabularies or terminologies of communication. Communication forms a major tool through 

which teachers convey knowledge and ideas to learners. The kind of words used in a discourse 

gives it a unique feature. In a mathematics discourse, the words, terms, or vocabularies used must 

have specific mathematical meaning. For example, the use of words such as differentiate, 

circumference, perimeter, vertically opposite angles and topology in communication, indicate what 
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is known as mathematical discourse (Kim et al., 2017; Nardi et al., 2014; Sfard, 2008). There are 

certain words that are used in everyday discourse with a loosely attached meaning but have an 

exact or definite meaning in mathematics discourse. Consider the word ‘half’ in ‘I ate half of an 

orange’, which could mean ‘approximately half’ but has a specific mathematical meaning of 

“exact” (Berger, 2013, p. 3). Whilst a word used in literate mathematical discourse has an exact 

and definite meaning, this is not the same in colloquial discourse. Colloquial discourse emerges 

spontaneously from daily talk and may have different meanings to different people. Sfard (2008) 

asserts that word use plays a significant role in a discourse because the meaning of the word 

communicates the exact intent of the user.  

 

In a mathematics classroom, learners make sense of the mathematical objects when the words of 

the discourse have a common meaning to all members in the mathematical community (Sfard, 

2007). Mathematical words used as a signifier to mathematical concepts in an African context, 

have the same meaning in the European context. For example, the words ‘co-interior angles’ have 

a common meaning and understanding around the globe and are associated with two-line segments 

which are crossed by another line segment called a transversal. The meaning or understanding 

associated with the ‘co-interior angles’, is the same among members of the mathematics 

community throughout the world. This kind of discourse is what Sfard (2007) referred to as literate 

discourse. An important aspect of teaching is the kind of words that are used to explain 

mathematical concepts. Sfard (2008) argues that learners use words to construct mathematical 

ideas in a discourse. According to her, mathematical objects are abstract and as a result, cannot be 

assessed by our senses. Word use therefore is an important component of mathematical discourse.  

 

The four categories of words use are; passive, routine, phrase, and object driven (Sfard, 2008).  

Passive word use is a stage where learners are exposed to words about the object. At this stage, 

learners cannot make any contribution to the discourse (Gcasamba, 2014). For example, in learning 

geometry, learners will be able to give the names of shapes according to appearance. At this level, 

learners can only associate the shapes to their names but they cannot mention their properties. The 

learner cannot give any reason why the shape is a rectangle. Learners’ responses are often based 

on what is perceived and not on reasoning.  
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The routine-driven stage is characterised by learner development of word use in an action-based 

activity. Development of words among learners is based on routine techniques (Sfard, 2008). At 

this stage, word use by learners is based on a distinct discursive routine, where the learner matches 

tasks to new words. Learners at the routine-driven stage are able to add a collection of properties 

of the object to the shape identified. In geometry discourse, a learner operates at routine driven 

when the kind of word use is supported by certain visual properties of the object. Thus, a learner’s 

use of words in describing a geometric figure in a discourse, is informed by some geometric 

properties. In addition, a learner can explain his/her course of action. A learner who is asked to 

explain why a figure is a ‘rectangle’ for example, is likely to base his/her reasoning on the fact that 

‘the opposite sides are equal’ and ‘each interior angle measures 90o’. 

 

According to Sfard (2008, p. 207), the development of words which are associated with objects of 

the discourse and form the “basic building blocks” of learners’ discourse, is the phase-driven stage. 

Learners at this stage are able to describe geometric shapes using more malleable words. They can 

provide an accurate description of geometric figures. The learner can also give a formal description 

of shapes (Sfard, 2008).  

 

Object-driven word use in mathematics discourse is more oriented to objectification. The 

development of object-driven word use is through reification and alienation, the two related parts 

of objectification (Sfard, 2008). Reification is the transformation among learners where they move 

from talking about processes to talking about objects. In other words, learners’ word use is more 

oriented to objects than to processes.  It as an evolution from an operational to a structured sense 

of reasoning that is more of “object-like entities” (Sfard, 1992, p. 60). Alienation, according to 

Sfard (2008, p. 295), is the use of “discursive forms to present phenomena in an impersonal way”. 

Word use that is object-driven can be matched with object-level learning, which is the discourse 

that “expresses itself in the expansion of the existing discourse attained through extending a 

vocabulary, constructing new routines and producing new endorsed narratives” (Sfard, 2008, p. 

255). Learner development in the two related parts of the objectification in mathematical objects, 

such as geometry, enables him or her to acquire and develop more flexibility in talk about the 

objects and greater ability to engage in effective communication in geometric discourse. Learners 
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communicate mathematically and in a more efficient and concise manner when they are helped to 

make sense of the objectification process (Ben-Yehuda, et al., 2005). 

 

3.3.2 Visual mediator 

Visual mediators are pictorial materials that are used to communicate geometric and mathematical 

concepts in general. They are visual materials that provide the participants of a discourse, a tool to 

talk about in constructing geometric ideas. Visual mediators, according to Sfard (2008, p. 147), 

are imagery materials that “discussants identify [as] the object of their talk” and steer 

communication among them. These materials personify geometric objects that learners perceive 

through their visual senses. The uses of visual mediators afford participants of a discourse the 

opportunity to communicate their thinking about geometry and the various objects being learned. 

Learners make meaning of geometric objects through their visual senses. Visual senses can 

therefore be considered as a medium that aid in a natural way of reasoning. Visual senses enable 

learners to create mental imagery of geometric objects on their minds. Sfard (2008) maintains that 

visual mediators provide a tool to be operated upon in a discourse. Such tools aid thinking by 

providing learners with some discursive prompts. Examples of visual mediators are variables 

(algebraic symbols), graphs, sketches (drawings), diagrams, numbers, formulae, manipulatives, 

etc. Visual tools play a critical role in geometric discourse. The medium through which learners 

acquire knowledge about geometric objects is through their visual senses. This makes learners’ 

visualisation ability an important tool for learning geometry, and mathematics in general. Sfard 

(2008) categorises three visual mediators which are, iconic, symbolic and concrete. A brief 

description of these categories follows.  

 

3.3.2.1  Symbolic Mediator 

Communication of geometric concepts is enhanced, many times, by using symbols that are realised 

through human visual senses. These symbols are created artefacts, such as written symbols or 

numerals, purposely used to provide additional communication (Sfard, 2008). Although geometric 

objects may seem abstract (Hidayah et al., 2018; Sfard, 2008), they have symbols that are meant 

to provide visual prompts to facilitate learning. These visual prompts, together with numeric 

relations, are known as symbolic mediators. Symbolic mediators communicate several important 

cues in geometric discourse. For example, if two lines AB and CD are parallel, this is often 
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represented symbolically as AB // CD. When the two lines are equal in length, it is often 

represented as |AB|=|CD| or AB = CD. Similarly, a triangular figure can be represented by the 

symbols Δ. Learners’ knowledge of these symbols enables them to develop geometric competence 

in the discourse.  

 

3.3.2.2  Iconic mediator 

Iconic mediators, in this study, include visual tools in the form of signs or marks used to design 

geometric figures, more especially, two-dimensional figures. These visual tools provide 

participants in geometric discourse with an opportunity to create imagery for mental manipulation 

and reasoning (Sfard, 2008). The use of iconic mediators communicates certain important features 

of geometric objects and makes them more meaningful to interpret. Thus, the use of iconic 

mediators in geometric discourse, helps learners to create mental images through their visual 

senses to facilitate their reasoning. For example, two parallel lines, which may be difficult to 

represent concretely, can be presented in the form of diagrams, or sketches, by drawing two-line 

segments with arrows on them. In this way, the visual tools provide learners with materials to think 

with, during a geometric discourse (Yurmalia & Herman, 2021). According to Hidayah et al. 

(2018), the use of visual tools enables learners’ thinking abilities to be developed and enhanced.  

 

The iconic mediators can be used together with the symbolic mediators. For example, Figure 3.1 

denotes triangle ABC (symbolically represented as ΔABC). Apart from the figure being a triangle, 

there is additional information indicated by the ‘marks’ placed on the sides of the triangle. The 

two marks placed on the sides of the triangle communicate that the length AB is equal to length 

AC, which is mathematically written as |AB|=|AC| or AB = AC. Further information, drawn from 

these symbols, is that the size of the angles opposite the equal sides are also equal.   

Thus, ACBABC =  

 

 

 

 

 

Figure 3.1: A triangle (isosceles) designed with iconic mediators 
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Consider the diagram in the Figure 3.2. 

 

Figure 3.2: A question on circles designed with iconic artefacts. 

 

In the diagram, ,XYZY = oWYZ 65= and oXWY 48= , find .WYX  

These artefacts marked on geometric objects communicate additional information to the reader in 

order to obtain a full understanding of the geometric tasks. Learner understanding of the symbolic 

and iconic mediators is a pre-requisite to achieving success in learning geometry and increases the 

ability to solve related problems. Drawing the learners’ attention to such cues enables them to be 

aware of and to process their meaning in geometric discourse. Understanding of such tasks would 

be incomplete if these visual prompts were not understood and could lead to difficulties in 

problem-solving abilities in geometry. Table 3.1 includes examples of mediators of symbolic and 

iconic representational meanings of some geometric concepts. 

 

Table 3.1: Symbolic and iconic representation of some geometric concepts 

Line Word use Symbolic mediator Iconic mediator 

1 Line-segments AB and CD 

are parallel 

 

 

CDAB //  

 
2 Perpendicular line segments 

and right angles  

 

BCAB ⊥  

 
3 Isosceles triangle ABC with 

equal sides AB and BC 

 

 

In ABC ,   

BCAB = or  

BCAB =  
 



67 
 

 

Isosceles triangle ABC with 

equal angles at (vertices) A 

and C 

 

 

In ABC , CA =  

or ACBCAB =  

 

4 Triangle XYZ such that XZ is 

perpendicular to XY 

 

XYZ , XYXZ ⊥  

 
 

3.3.2.3  Concrete mediator 

According to Sfard (2008, p. 112), concrete objects are “tangible, material objects that exist 

independently of communication”. The use of concrete objects in mathematics helps in the 

formation of purely abstract concepts. According to Sfard (2008), concrete objects in a discourse 

facilitates effective communication. She adds that things that are seen create images that “help 

interlocutors in making discursive decisions” (p. 173). This suggests that a person’s thinking 

abilities, decision making skills, and communication with self and others, is greatly enhanced when 

we can see the object of our talk. Concrete mediators are visual tools that can be seen and handled. 

Examples are rulers, set squares, counters, abacuses, geoboards, and the like (Sfard, 2008). 

Concrete mediators are interactive materials that are used in geometric discourse. The use of these 

mediators in learning geometry enables learners to take active participation in learning through a 

hands-on approach. According to Rondina (2019), learners’ involvement in hands-on activities 

greatly influences their cognitive development. Research shows that interactive learning through 

the use of concrete mediators encourages learner involvement, facilitates understanding and recall, 

and leads to improved performance (Hidayah, et al., 2018; Pullen & Lane, 2016; Rondina, 2019). 

Sfard (2008) asserts that concrete mediators have the potential to allow learners to produce new, 

endorsed narratives in a discourse. She adds that when contradictory comments are made, once the 

object of the communication is seen, our sense of understanding evolves. The key notion of 

concrete mediators is that they can be seen and manipulated, or moved about, whilst learning 

(Sfard, 2008). She adds that “communication is mediated by images […] and this is true even if 

all these concrete objects are seen and operated upon, only with the interlocutors’ mind’s eye” (p. 

174). 
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3.3.3 Routines 

Routines can be described as following a procedure or distinctive discursive pattern in a geometric 

discourse. They are repetitive patterns (Berger, 2013) which are characterised by a given discourse. 

Sfard (2008. p. 208) defines routines as “a set of meta-rules that describe a repetitive discursive 

action”. She distinguishes between the ‘how’ and ‘when’ of a routine. She explains the ‘how’ of a 

routine as the set of meta-rules that show the course of action. It determines how to deal with a 

geometric task. It can be described as a step–by–step guide to an action.  

 

The ‘when’ of a routine describes the applicability or its appropriateness. Sfard (2008, p. 208) 

clarifies that the ‘when’ of a routine is a “collection of meta-rules that determines those situations 

in which the discussants would deem the performance as appropriate”. Classroom discourse is 

regulated by rules that guide action. Classroom discourses follow distinctive, patterned ways. 

These discourses show that mathematical words and visual mediators can be used to produce and 

substantiate narratives.  The narratives produced or created can be new or modifications of an 

existing one.  Through routines, we gain insight about what pre-service teachers do and say, and 

their patterns of substantiation in a geometric discourse.  It unveils distinctive patterned ways pre-

service teachers communicate about geometry.  The focus on pre-service teachers’ routines reveals 

valuable information about their creativity, competencies and strategies used in working with 

geometry.   

 

Routines used by pre-service teachers could provide valuable information about the kind of 

discourse or pattern they will organise in their classroom for learners. Sfard (2007, 2008) argues 

that several studies assign value to the processes of a discourse and hence, lay emphasis on process 

as a basis for developing learner autonomy or independence in learning. Pre-service teachers’ 

routines of ‘how’ and ‘when’ play an important role in teaching. They are mandated to know both 

‘how’ to perform a procedure and ‘when’ that procedure works, for teaching purposes. Their 

acquisition of such knowledge will enable them to develop learner competencies in geometric 

discourse instead of limiting their teaching to only the ‘how’ of a routine, that is currently 

predominant in school mathematics discourse (Gcasamba, 2014). 
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Sfard (2008) provides categories of routines based on their goals. These are explorations, deeds 

and rituals. Explorations are routines that aim at creating endorsed narratives of mathematical 

objects. Deeds cause changes in the environment, and rituals aim at producing the ‘how’ that 

attracts social reward. In this study of analysing pre-service teachers’ geometric thinking, attention 

was paid to their rituals and explorative routines in the discourse. Pre-service teachers’ state of 

thinking about these categories, provides an insight into their competencies and capabilities when 

they engage with geometric objects. The following section presents a detailed discussion of rituals 

and exploration routines. 

 

3.3.3.1  Ritualised and explorative routines 

In this section, review on rituals and exploration of routines in mathematics discourse, is put 

together, even though each is different from the other. Sfard (2008) asserts that rituals are the 

distinctive rules that guide an action and are pre-determined by people in authority, such as authors, 

teachers or lead discussants.  Rituals are basic units of a discourse and deal with ‘how’ to get 

something done.  It can be understood as the process of an algorithm which uses a step-by-step 

approach to perform an activity.  In other words, rituals are limited to the ‘how’ of routines. A 

person working within rituals can demonstrate high knowledge of procedures but may be limited 

about the ‘when’ or the ‘why’ underling such action. Ritualised routines are prone to imitating the 

knowledgeable person (teacher) or colleague in a discourse. They are considered as a basis of 

transformation to explorative discourse (Sfard, 2008).   

 

Explorative discourse is the learner’s ability to explain ‘when’ to use a routine and ‘why’ the 

routine works. Exploration is the implicit or explicit understanding of geometric objects of study. 

Learner development of explorative routines enables him/her to apply knowledge in several 

situations. Learners, in this case, exhibit meta-thinking and are capable of devising multiple 

approaches to a task and, can justify their routines (Sfard 2008; Essack, 2015). Explorative routines 

have a great range of applicability to learning mathematical objects. Whilst rituals deal with the 

rules that determine the course of action which, in most cases, place constraints on the learners’ 

thinking/reasoning, exploration enables diversity of thinking, leading to a demonstration of high 

order thinking in learning mathematics. 
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Both ritualised and explorative routines are central to geometric discourse. Rituals are considered 

as an initial phase for learners (Sfard, 2008), and are a necessary foundation on which the learner 

builds upon, to develop the ‘when’ and ‘why’ criteria for transition into an explorative routine.  

Mathematics discourse requires that learners be equipped with both rituals and exploration of 

routines, but with much emphasis on the latter (Sfard, 2008). Learners need to develop 

fundamental concepts and accurate procedures of routines in mathematical discourse but these 

must serve as a basis to develop explorative competencies.  Rituals are structured and often require 

some form of acceptance or approval from the lead discussant.  Such discourse, due to its limitation 

on learners’ diversity in reasoning, often affect their range of applicability (Essack, 2015). 

 

Learners develop autonomy in learning when there is phenomenal growth in moving from ritual 

to explorative routines. Learners who have developed an exploratory routine in a discourse have 

the capacity to produce endorsed narratives about learned geometric objects.  They can use 

knowledge gained to determine the ‘when’ and ‘why’ of routines concerning the ‘how’, to create 

a new endorsed narrative which satisfies the aim of school mathematics. Learners’ ability to 

demonstrate such endorsed narratives is said to result from a wide range of connected routines.  

This enables learners to develop a high sense of flexibility about geometric objects and the ability 

to substantiate them (Sfard, 2008). 

 

3.3.4 Narratives 

Narratives, according to Sfard (2008, p. 134), are “any sequence of utterances framed as a 

description of objects, that is subject to endorsement or rejection with the help of discourse-specific 

substantiation procedures”. These are mathematical statements, either spoken (verbal) or written 

(text), and can be considered by the mathematical community as being true or false. The truth or 

falsity of a narrative is evaluated through mathematical procedures and reasoning. In 

commognition, a narrative is endorsed when it is true, and rejected when its truth cannot be 

established. An example of endorsed narratives are theorems, definitions, axioms, properties, 

theories and the like. Narratives include a sequence of utterances that have been proven or accepted 

for use in mathematical discourse. The narrative ‘the sum of the interior angles of a triangle is 

180o’ is endorsed to describe the interior angles of a geometric shape bounded by three straight 

lines.  
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Narratives are produced using words, mediators and routines. According to Berger (2013), there 

is a difference between the rules of endorsement in school mathematics and that of formal 

mathematics. The author asserts that ‘the sum of angles in a triangle is always 180o, holds only for 

school mathematics discourse which is backed by the axioms of Euclidean geometry. However, 

the statement is not necessarily true in a more formal mathematics discourse, such as hyperbolic 

geometry and spherical geometry. 

 

3.4 Mathematics as a discourse 

As mentioned earlier, a discourse is a form of communication that engages people in a specialised 

activity. A discourse is mathematical if the object of the talk, the processes and the tools of 

communication focus on mathematical objects. Mathematical objects, according to Sfard (2008), 

are abstract, discursive constructs that have specialised mathematical signifiers and form part of a 

discourse. The commognitive theory explains that objects of mathematical discourse include 

signifiers, discursive objects, primary objects realisations. A signifier is a primary object with its 

associated procedures. Commognitive capacities develop as a result of the human ability to acquire 

higher discursive levels. The distinct components of commognitive capacities are commognitive 

objects that involve abstracting, reasoning and objectifying. The other commognitive subjects deal 

with subjectification and consciousness (Sfard, 2008).  

 

Growth in mathematical discourse is a result of learning. According to Sfard (2008), learning is a 

communication with self and others in a social interaction to produce modification and change in 

what one knows. Ben-Zvi and Sfard (2007, p. 81) maintain that “school learning is a process of 

modifying and extending one’s discourse”. From a constructivist perspective, learners construct 

their own knowledge by active participation in a discourse. Learner participation is key to enabling 

him/her to individualise learning. Active participation in learning is a process of developing 

autonomy in mathematics discourse. When learning has been effective, learners demonstrate 

discursive growth in mathematics discourse and can approach mathematical objects and tasks on 

their own with little or no support from the knowledgeable other (peer, teacher or lead discussant). 

Learner development as a result of change in discourse is evident when the learner has developed 

the intellectual capacity to modify his/her mathematical thinking through individualisation. 
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According to Sfard (2008), development is characterised by the learner’s ability to “use the same 

mathematical signifiers in different ways to perform the same mathematical task”, using different 

procedures (p. 161).  

 

Sfard (2000) describes two types of learning in commognitive theory which are object-level 

learning and meta-level learning.  She describes object-level learning as an “expansion of 

exploratory discourse attained through extending a vocabulary in constructing new routines and 

producing new endorsed narratives” (p.253).  In other words, it is the learners’ ability to produce 

or generate new narratives in a discourse that is based on previously endorsed ones.  In object- 

level learning, the discourse of learning expansion is based on objects.   Meta-level learning 

involves an explanation about object-level rules.  It involves changes in rules of discourse.  The 

changes deal with moving from familiar tasks, such as one’s ability to define a word or identify 

geometric figures, to doing it differently in an unfamiliar way, using words with different 

uses/contexts (Sfard, 2008).  Learner development of meta-level learning is when he/she can 

explain other participants’ actions but not about the object itself (Essack, 2015). An example of 

learning at the meta-level is moving from properties of a rectangle to that of a square.  Knowledge 

of new concepts may be conflicting with the properties of a rectangle that the learner knows 

already, for example, taking a decision on what properties of a rectangle apply to the properties of 

a square. Learners need to know the distinguishing features of properties of various geometric 

figures and individualise them in learning. There are three classifications of meta-rules which are; 

procedural application of a routine, results of a procedure, and applicability of a routine (Sfard, 

2008). When learners have developed these three classifications of meta-rules, they are able to 

show some signs of creativity and higher cognitive abilities in a discourse. Their routines show an 

appropriate application of ‘when’ and ‘why’ of routines which probably result from extending the 

discourse beyond the ‘how’ of the routine. A learner expands his/her existing discursive layers as 

a result of changes of ‘when’ and ‘why’, an element of developing competence in mathematical 

discourse.  

 

3.5 Studies informed by the commognitive framework 

Despite the recency of Sfard’s (2008) commognitive theory, it is gradually gaining much attention 

for investigating several aspects of the teaching and learning of mathematics.  Perhaps it has been 
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developed to solve the ‘quandaries’ of mathematics discourse.  As Presmeg (2016, p. 423) puts it, 

the “teaching and learning of mathematics that has posed a lot of quandaries to many, has the 

timely proponent” of Sfard’s (2008) theory.  The theory shows ‘dualistic aspects of mathematics 

education and its research underlying the quandaries.  Presmeg (2016) adds that, the commognitive 

framework has emerged as a theoretical view that provides insight, not only into the teaching and 

learning of mathematics, but also into the entire fabric of human development and what it means 

to be human. Thus, Presmeg (2016) sees commognition as a lens for research which has the 

potential for unveiling human development. It also serves as a tool to investigate the processes of 

learning to become a mathematics educator, and the teaching activities in a discourse.  Hence, the 

theory provides a framework to study mathematics discourse at all levels of learning, such as 

elementary (Ben-Yehuda el al., 2005; Gcasamba, 2014, Roberts, 2016, Essack, 2015), and pre-

service teachers’ development as they undergo training (Nachlieli & Katz, 2017; Tuset, 2018; 

Wang, 2013). There is also research that used the theory to investigate teaching and learning of 

mathematics at a tertiary level (Tasara, 2017; Tabach & Nachlieli, 2011). Although these studies 

have investigated various areas in mathematics, such as arithmetic, algebra and function, calculus 

and geometry, etc, focus is first laid on a review of studies conducted specifically in geometry, 

since they are of direct relevance to this study. Further attention is paid to other mathematical 

objects in which the theory has been applied in learning, other than geometry, such as algebra and 

arithmetic. To gain further insights that will help to decide what needs to be done to enhance and 

refine this study, a review of the existing research literature in mathematics education is conducted. 

 

Wang (2013) conducted a study that focused on understanding prospective teachers’ levels of 

geometric thought through discursive analysis.  The study used Sfard’s (2008) discursive 

framework to investigate the geometric thinking of prospective teachers who had enrolled in a 

measurement and geometry course, in their undergraduate programme.  Data was collected using 

a pencil and paper test and interviews.  A week after they participated in a pre and post-test using 

van Hiele’s geometry test, they engaged in another pre and post interview for 90 minutes.  

According to the author, the purpose of the interview was to gain insight into how the participants’ 

geometric thought aligned with the test taken. The author took video recording of the interviews 

and transcribed them for discursive analysis. Written responses of two participants on the test were 

used to gain initial information about their geometric thoughts.  Further insights were gained 
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through the interview, from what they said and did as the interview unfolded. The study found that 

one of the participants showed tremendous improvement in geometric discourse in the use of 

words and routines. Sam (pseudo name) was able to use definitions to classify polygons, which 

showed a higher level of competency. Sam could engage in informed deductive reasoning, and as 

a result, could reason at level 3 of van Hiele’s geometric thought. Sam’s competencies developed 

as she could identify polygons using definitions, with the ability to substantiate her routines at a 

meta-level. According to the author, there was a substantial improvement by Lulu, the other 

participant, who attained level 4 of van Hiele’s geometric thinking, in the post-test. Lulu showed 

application of knowledge of quadrilaterals to do mathematical proofs.  Lulu’s growth in geometric 

discourse was found to be a continuous progression as she had acquired the needed language, using 

axioms, definitions and symbols to do mathematical proof. There was also evidence of the 

participants’ use of both literate and colloquial words in the discourses. The author concluded by 

confirming the usefulness of the framework in such a study. The diversity of the units of analyses 

enabled the author to attest to the potential utility of the framework in gaining greater insight into 

the pre-service teachers’ thinking. Through the discursive framework, greater insight into the pre-

service teachers’ thinking at the various van Hiele’s levels was gained, as revealed by the author. 

As per the constructs of the framework, what the participants said about word use and narratives 

of the object, parallelograms and their properties, were analysed in detail, in addition to what they 

did. Knowing the kind of words pre-service teachers used in a discourse, and their state of 

appropriateness, has significant implications on effectiveness of communication in teaching. Word 

use is central to teachers’ communication activities in a discourse. Teachers’ word use in 

communication can impede learners’ understanding if words used do not signify the exact, 

intended meaning (Gharbavi & Iravani, 2014), or are used inconsistently. The quality of teachers’ 

discourse largely depends on the suitability of words that best explain the concepts under 

consideration. Teachers, therefore, need to choose words that are aligned with literate 

mathematical discourse and can be substantiated due to their use in the community of scholars in 

that discourse. If pre-service teachers have not developed the correct use of words in a discourse, 

they are less likely to organise and provide learners with the most effective opportunities for 

learning.   
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In another study, Berger (2013) investigated in-service teachers’ mathematical discourse. The 

participants were two practicing teachers who participated in a programme to enhance their 

knowledge for teaching mathematics.  According to the author, the commognition theory which 

has its basis in Vygosky and Wittgentien’s view of mathematics, resonated with his experiences 

of teaching mathematics (Berger, 2013). He was further informed of its use due to the extensive 

analytic constructs of the theory for examining and interpreting activities in mathematics 

discourse. The author’s desire was to use the constructs to examine how ‘word use’ and ‘change 

in discourse’ affect mathematical activities. The mathematical object of focus in the study, was 

function. The study showed that learners’ word use was very important as it served as a basis for 

change in discourse, which manifested in one of the participants’ understanding.  The study also 

showed how the other participant approached the task using a ritualised routine.  In all, the author 

attested to the usefulness of the framework in enabling him to gain an understanding of certain 

phenomena on function.  

 

The commognitive theory also serves as a framework for analysing the quality of teaching 

opportunities teachers make available, for learning mathematics. Tuset (2018) used the framework 

to investigate pre-service teachers’ mathematics discourse and as a tool for developing ambitions 

teaching.  According to the author, ambitions teaching is a kind of teaching that enables learners 

to demonstrate an authority in communicating mathematical ideas thereby developing their 

explorative sense for learning mathematics.  This kind of teaching required learners to actively 

participate in a discourse. The study reported the analysis of only one participant’s teaching.  The 

teaching was analysed as either being ritualised or explorative.  The author reported high ability 

of the participant to demonstrate a good level of explorative instruction. The participant’s 

geometric discourse was characterised by asking learners to provide an explanation to substantiate 

their narratives about geometric figures. The learners were also prompted for further explanations 

by asking the ‘why’ questions, to extend their reasoning about the object being learned.  According 

to the author, the participant’s teaching further revealed opportunities for the learner’s ability to 

explore, which supported their transition to explorative discourse.  The author concluded that the 

framework enabled him to gain insights into teaching opportunities that pre-service teachers 

provided for learners’ participation in a discourse. 
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It is worth mentioning that the potentiality of the commognitive framework to investigate 

mathematical learning based on its constructs, also enables teaching and its quality to be explored.  

The constructs of the theory, enables pre-service teachers to develop good teaching skills that 

facilitate learning. Pre-service teachers’ awareness and use of the construct develops their 

communicative competence and builds their capacity to teach to expectation. In Tuset’s (2018) 

study, the pre-service teachers were required to justify their discourses in a lesson. Asking learners 

to substantiate their narratives gives them the opportunity to extend their reasoning about the 

learned object. This provides learners with the opportunity to claim responsibility for their own 

learning instead of being trained to see mathematics as following rules determined by teachers or 

knowledgeable others.  Learners are mostly not motivated to learn mathematics when they are 

made to excessively follow strict rules of discourse, and they think of the subject as a mere recall 

of rules of the game, which never considers how one reasons to construct ones’ own knowledge.  

According to Sfard (2017), the memorise-symbolic-manipulation in learning is what she termed 

ritualised participation in a discourse which often results from ritualised instruction.  This kind of 

instruction, following rules, enables the learner to please the teacher but not to develop his/her 

creative thinking in learning mathematics (Heyd-Metzuyanim & Graven, 2016). Thus, the 

framework serves a multi-purpose function as it provides a clear direction to investigate learner 

and teacher thinking, as well as to examine the teaching potential of pre-service and in-service 

teachers.  

 

Pre-service teachers’ ability to engage learners in mathematics discourse depends on what they 

themselves have experienced. The generalisation is that teachers teach the way they were taught. 

Hence, how a pre-service teacher has experienced and been engaged in mathematics discourse, 

predicts the kind of opportunities he/she would organise for classroom practice. With the quest to 

determine the learning opportunities made available to pre-services teachers during their training 

programme, Nachlieli and Katz (2017) conducted a study to investigate the learning processes of 

pre-service teachers in the continuum of rituals to exploration.  The authors designed a course that 

aimed to enhance mathematical thinking of these students by providing an opportunity for 

explorative participation in the discourse. The participants in the study were 18 pre-service 

teachers who had enrolled in a course (module) that sought to develop their mathematical 

reasoning abilities. For the purpose of the study, the discourse was designed to give the pre-service 



77 
 

teachers the opportunity to engage in cognitive demand tasks that have multiple solution paths that 

required them to draw connections between their solutions and mathematical ideas.  Data for the 

study included participants’ written examinations results and lesson plans for promoting their 

students’ mathematical thinking. Data was analysed in terms of ritual to explorative continuum. 

Results showed that participants focused on explorative participation in their reasoning about the 

tasks that required them to suggest multiple solution paths. This prompt enabled participants’ 

actions to be guided by some explorative questions, to enhance their transition.  The author 

however indicated that their first reactions to the tasks were more ritual in nature. The participants 

made an effort to recall previously learned formulas and procedures in solving the tasks until they 

were given further suggestions.  

 

Although teaching mathematics aims to develop learner exploratory participation in the discourse 

to enhance conceptual understanding, ritual participation seems to be inevitable in learning.  

Learners thought processes are developed from ritual to explorative by engaging in appropriate 

explorative teaching strategies. Such approaches enable learners to extend their reasoning to 

answer questions by producing new endorsed narratives (Sfard & Lavie, 2005).  According to 

Nachlieli and Katz (2017, p. 2), “exploration is an act of production” of new endorsed narratives 

from existing ones or from the current situation.  It is worthy to note that pre-service teachers, even 

at the college of education, initially expressed rigidity in their thinking by solving the task in a 

ritualised manner until they were prompted to exercise further reasoning to produce new and 

endorsed narratives about the task.  This challenges pre-service teachers to also develop and 

exercise the skill of guiding and facilitating their learners’ sound knowledge construction that goes 

beyond following rules determined by lead discussants.   

 

Extending the use of the framework in investigating teaching of calculus, Tasara (2017) conducted 

a study to analyse teachers’ mathematics discourse on derivatives. The study was concerned with 

how teachers teach derivatives component of calculus at the secondary school level. The study was 

based on suggestions from research that calculus has remained difficult for many learners to grasp. 

Of the nine mathematics teachers who participated in the study, the author reported on data 

obtained from one participant. Data was generated using interviews and lesson observations, which 

were recorded, using audio and video respectively. Two interviews were conducted, one before 
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and one after the observation of the teacher’s classroom lesson. After transcribing the audio data 

from the interview and video data from the classroom observation, an analysis was made using the 

commognitive constructs to determine how the teacher used words, together with the supporting 

narratives, in a discourse, with critical consideration to the specialised language or vocabularies 

related to derivatives. Other attention was focused on the use of visual mediators and routines in 

the discourse. The author found that there were inconsistencies of word use in the discourse. The 

author noted that the words used in the calculus discourse were not consistent with those of literate 

mathematics discourse.  Thus, both literate and colloquial words were used in the discourse. The 

words “the gradient of a curve”, were used when the teacher actually meant “gradient of a curve 

at a point” (p. 4). According to the author, “inconsistent use of words can hinder learning and 

understanding” (p. 4).  The author draws teachers’ attention to word use in mathematics discourse. 

As the author rightly cautioned, word use forms the central point of a mathematics discourse.  It is 

invariably agreed that teachers clarify almost everything in a discourse, and their word use serves 

as a medium through which concepts are communicated and clarified to learners.  Word use in a 

discourse should therefore signify the specific meaning that the teacher intends to convey, 

particularly in mathematics, where word use provides precise and concise communication in a 

discourse.  Learner word use in a discourse is supposed to be shaped by teachers or knowledgeable 

others.  The use of the right mathematical words is crucial to learning success in the discourse. 

Teachers need to choose appropriate words related to specific mathematical objects and to be 

consistent when using them in their communication with learners.  According to Zayyadi et al. 

(2020), learners’ ability to learn with understanding results from teachers’ communication ability, 

since the words used to explain ideas play a significant role in learning. Learners get confused 

when teachers are not consistent in their word use, in communicating ideas and concepts, resulting 

in learners’ learning difficulty. As rightly noted by Tasara (2017), teachers’ inconsistency in use 

of words in a discourse can create difficulty in learning and hinder understanding, in a discourse. 

 

3.6 The commognitive framework used in this study 

All the four commognitive constructs were used as units of analysis in this study.  The first 

construct, ‘word use’ focused on the kind of words pre-service teachers identify and process as 

part of the cognitive process of learning geometry.  Success in learning stems from making 

meaning of words used in communication, either in text or verbal. Geometric words are highly 
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specialised or have unique meaning in the mathematics community.  It is for this reason that 

mathematics, and its various objects, are considered a universal subject. Learner understanding of 

geometric words is supposed to be concise and precise.  Imprecise meaning of geometric words 

causes difficulty in learning the subject matter and related objects in the mathematics curriculum.  

When learners develop imprecise, or vague meanings of geometric words, it is an indication that 

they have developed and brought words commonly used in everyday communication, into learning 

geometry. Learners may make errors in mathematical communication when they use non-

specialised words in geometric discourse (Gcasamba, 2014). The situation worsens when people 

who are trained to teach others, do not themselves have a precise understanding or meaning of the 

words of geometric discourse.  

 

Pre-service teachers need to possess a well-developed visual sense before they can meaningfully 

guide their learners in geometric discourse.  In this respect, one may ask, about the visual ability 

of pre-service teachers in identifying the ‘objects of their talk’ to enhance the communication about 

these objects? Visual sense is a critical tool for learning geometry and mathematics in general.  

These elements of the framework guided the study to analyse how the pre-service teachers are able 

to interpret visual objects that they used in geometric discourse.  The pre-service teachers’ visual 

sense plays a crucial role in their spatial reasoning and enables them to create ideas and manipulate 

them mentally.  Since pre-service teachers are supposed to facilitate the knowledge construction 

of learners, they need to understand geometry and develop its essential learning tools, such as 

visualisation and spatial reasoning, in order to teach it well.  Teacher competence in visual senses 

enables them to use visual tools such as diagrams, drawings, pictures and physical materials in a 

discourse. 

 

Participants’ ability to teach geometry effectively, largely depends on ritualised and explorative 

cognitive processes as part of their routines of geometric discourse.  Pre-service teachers must 

develop flexible and fluent reasoning beyond ritual, to enhance their competency and confidence 

in teaching geometry. Such teaching develops the learners’ potential and ability to produce 

endorsed narratives in mathematics and in geometric discourses in particular.  Learner ability to 

produce new endorsed narratives is a criterion for accepting learners in the mathematics 

community.  This ability emerges from the know-how (knowledge) of teachers themselves.  A 
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teacher with such knowledge is able to guide learners to produce utterances, oral or textual, to 

describe their thinking about mathematics objects and activities (Sfard, 2008).  

 

3.7 Conclusion 

The chapter began by describing Sfard’s (2008) commognitive framework and its constructs, 

taking into consideration how it is related to the current study. This was followed by a review of 

previous research conducted through the lens of the commognitive theory. The commognitive 

theory provides an exhaustive path of analysing the pre-service teachers’ geometric thinking and 

their classroom discourse, with the support of the qualitative approach. Considering how the 

constructs relate to this study, the importance of the words used in a discourse are discussed. 

Learning the keywords (terminology or vocabulary) of a discourse, forms its basic building blocks. 

Hence, difficulties with keywords or geometric terminologies may pose learning challenges and 

can affect learning outcomes in the discourse. Attention to the keywords was in light of whether 

they were used mathematically or colloquially. 

 

Next was the discussion on visual mediators used in communicating geometric concepts. 

Understanding how pre-service teachers’ pay attention to how certain visual mediators are used in 

geometric discourse, was deemed to be of great importance. A further discussion on routines of 

the framework was dealt with. How the participants solved geometric tasks paved the way for 

solution strategies to be classified as ritual or explorative. The routines showed whether the 

participants were prone to using a set of meta-rules in solving geometric tasks or whether they 

were inclined to producing objective properties of the task, based on which tasks were solved.  

 

Finally, a discussion of narratives and how they could help understand the way participants 

substantiate or justify their discursive moves in the discourse, was presented. The kind of narrative 

produced was of great concern, whether they are endorsed in the mathematics community of 

learning or not. Almost all discursive moves in geometric discourse are supported by an 

appropriate narrative. The chapter concludes and paves way for the next one, which discusses the 

research design and the methodology of the study.  
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CHAPTER FOUR 

RESEARCH DESIGN AND METHODOLOGY 

4.1 Introduction 

The commognitive lens, the theory that underpins this study, was discussed in the previous chapter. 

This chapter describes how the research process was carried out. The primary aim was to analyse 

pre-service mathematics teachers’ geometric thinking and their classroom geometric discourse. 

The study was divided into two parts. The first part conducted a detailed analysis of the 

participants’ geometric thinking using constructs of Sfard’s (2008) commognitive framework. The 

second part looked at how pre-service teachers talked about geometry in the classroom and how 

that related to their thought processes about geometry. The goal was to figure out what kinds of 

learning opportunities they offered, as a way to improve learner geometry thinking. 

 

The chapter also describes the philosophical view underlying the study which offers an approach 

through which the study was conducted. It further describes the research methodology, the study 

participants and criteria for their selection, the data generating instruments, and the measures taken 

to refine these instruments. It then describes the stages involved in generating data and the 

approach used to analyse the data. 

 

Describing a study approach and its underpin is built on the fact that all research follows a 

philosophical view or paradigm, which is “a basic set of beliefs that guides an action” (Guba, as 

cited in Creswell, 2014, p.35). Conducting a study from a philosophical viewpoint and following 

its informed methodology, is a necessary approach that contributes to better research practices and 

has the potential to produce more valid results and findings (Ritchie et al., 2014). This section of 

the research work is grounded by the critical research questions that the study sought to answer, 

and the lens through which knowledge was produced. An account of this section follows. 

 

4.2 The critical research questions 

This study analysed pre-service mathematics teachers’ geometric thinking and classroom 

discourse. It determined pre-service teachers’ thinking about keywords they identify and process 

in learning and understanding of geometry, the meaning and interpretation they attach to visual 
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mediators and their visualisation ability, the routines they use to solve problems in geometry, and 

how they justify and substantiate, or make mathematical arguments, when working with geometry. 

In addition, effort was made to determine their routines on the continuum of ritual to explorative 

ways of thinking. The next step assessed the quality of interaction regarding the participants’ 

engagement with learners in communicating geometric concepts, based on the constructs of the 

framework. These foci guided the formulation of the following critical questions in this study to 

guide the study:   

1. What is the nature of pre-service mathematics teachers’ discursive thinking in geometry? 

2. What is the nature of pre-service mathematics teachers’ routine thinking in geometry? 

3.  How does pre-service mathematics teachers’ geometric thinking influence their classroom 

discourse?  

 

4.3 The interpretive research paradigm 

The interpretive paradigm seeks to understand a phenomenon through subjective human 

experiences (Mohamed, 2017). In this paradigm, researchers focus on understanding how 

individuals interpret what they have experienced in their world of living. The interpretive 

paradigm, according to Cohen et al. (2011), is driven by concern for people, and is used to 

comprehend the lived experience of people. The belief of the interpretive researchers is that what 

is considered to be real, is based on people’s subjective experiences. Individuals then become the 

central focus for interpretive researchers, who seek to gain an understanding of how they interpret 

the environment around them (Creswell, 2014). The interpretivist, seeking to understand the 

interpretation humans make of their experiences, often relies on a written text, verbal (spoken 

words) and nonverbal forms of communication.     

 

This approach was found to be appropriate for this study, since it dealt with written, verbal and 

facial cues as forms of communication. In addition, the interpretive paradigm uses approaches that 

rely on people’s participation in a natural life setting. Considering the focus that sought to analyse 

pre-service mathematics teachers’ thinking within the context of their experiences with geometry, 

the interpretive paradigm was considered the best fit within which human thinking could be 

analysed, interpreted and described in order to enhance its validity. Pre-service mathematics 

teachers’ geometric thinking was a result of how each individual had experienced and interpreted 
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geometry in the mathematics curriculum. Part of the data was generated from the pre-service 

teachers’ written text and verbal explanations of their solutions to the geometry tasks. The focus 

on the written text and the verbal explanations, was to gain insight and an in-depth understanding 

of their views, and to interpret the thinking of the participants, based on the analysis of the data 

generated. Human thinking can be analysed by creating contact with their minds through 

conversation and can afford researchers the opportunity to understand their subjective experiences. 

Interpretive researchers believe that language and shared meaning are the only ways to understand 

reality, whether it is given or made by people (Creswell, 2007; Lapan et al., 2012). 

 

Another tool, used by the interpretivist to collect data, is observation, that enables them to observe 

(watch) and collect data about events (Ary et al., 2010). Other data was generated through 

observation within the classroom because the classroom is the most natural setting to witness how 

the pre-service teachers interact with colleagues in a discourse. According to Denzin (2010), 

natural environments are used to examine and explain the experiences that people have created. 

When using the interpretive paradigm, the researcher gains experiences as they emerge, and 

gathers multiple accounts when grouping stories. Examining the pre-service teachers’ teaching 

behaviour, actions and thoughts on geometric discourse would provide an insight, such that a high 

degree of interpretation of the participants’ teaching could be analysed and described.  

 

According to Cohen et al. (2011), the interpretive research paradigm allows for the study of 

individual attributes, such as opinions, behaviour, and attitudes. The interpretive paradigm helps 

to obtain data by examining the world in multiple ways. Cohen et al. (2011) assert that in 

interpretive research, theory should be based on the evidence of multiple data and be created 

directly from experience. Multiple data collection is therefore the hallmark of interpretive 

researchers. The interpretive paradigm is thus characterised by relying on naturalistic techniques 

(text analysis, interviews and observations). These techniques ensure a comprehensive and 

adequate interaction between the researcher and those being interacted with, to construct a 

collaborative and meaningful reality. It is further characterised by the tendency for meaning 

making to emerge naturally from the research process and from qualitative methods (Neuman, 

2014). The use of the paradigm provided an in-depth understanding and insight into meanings and 

actions of the pre-service teachers when engaged with geometry. 
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4.3.1 Situating the study in the interpretivist’s viewpoint  

The aim of the interpretive paradigm is to understand the social environment in which one lives 

and to discover the meaning people create in their natural life setting (Creswell, 2014). The use of 

the interpretive paradigm helped to interact with the pre-service mathematics teachers as they 

interpreted their geometric experiences (Tracy, 2013). The interpretivist shares the view that there 

are varied meanings to experiences that one encounters. People give subjective interpretations of 

their experiences which can be known by relying on the views and experiences of the participants 

in the situation researched (Crewell, 2014). Getting to know the meaning of situations is through 

discussions and interactions with people, to make sense of the meanings they have constructed 

about the places where they live and work. The interpretive paradigm is applicable in this study, 

because it helped to analyse each participant’s geometric thinking based on how they had 

experienced it in their learning pursuits.  

 

Reality, in the interpretive paradigm, is the subjective meaning people attach to their experiences 

that results from the way objects or things have been perceived (Astin & Long, 2014). The 

interpretivist gains insight into the reasons why individuals behave the way they do through their 

social interaction. People create subjective meanings that result from their experiences with the 

objects they encounter. Such experiences result in varied and multiple meanings that are of interest 

to researchers who also seek to understand, by relying on participants’ views (Denzin 2010; 

Creswell, 2007). The interpretive paradigm enables researchers to collect data in a context that 

will promote one’s understanding of an individual’s worldview (Creswell, 2014; Tracy, 2013). It 

lays emphasis on “subjective understanding or interpretation of human action” (Babbie et al., 2010, 

p.30). This study analysed the thinking underlying a particular action. It was therefore crucial that 

pre-service teachers were first given some tasks to complete, then to engage them in a dialogue 

and probe further to better understand individual’s thought processes, and the meaning they 

construct in learning geometry. People do things in different ways which are best understood if 

they are given the opportunity to explain why. Interacting with individuals offers the opportunity 

to understand the reasons underlying their experiences with geometry.  

 



85 
 

As asserted by Creswell (2007), the subjective meanings of participants’ behaviour are best 

negotiated through social interaction with the participants. Thus, the interpretivist relies heavily 

on social interactions to explore the subjective meanings that individuals create, based on their 

experiences within situations. According to Creswell (2014), interpretive researchers believe that 

knowledge is an act of social construction, and reality is only assessed through the meanings that 

are assigned by people.   

 

In Sfard’s (2008) commognitive framework, thinking is a form of communication that may include 

verbal, non-verbal and textual communication. Thinking is a phenomenon that is personalised in 

nature and therefore is considered as subjective, which can be understood only in ways that have 

been experienced by the individual participants. In this study, the interpretive paradigm was found 

to be more suitable because of the belief that participants’ thinking cannot be reduced to an 

objective search, but rather through social engagement to access their views about their geometric 

experiences through written texts, verbal, and facial cues. Such engagement with participants 

normally takes the form of an interview or participant observation, which allows an in-depth study 

of the phenomenon being investigated. The framework, coupled with the interpretive paradigm, 

offered an exhaustive approach to study the participants’ thinking through the subjective meanings 

they had created, resulting from their experiences with geometry.   

 

The interpretive paradigm enables researchers to study several features of an individual, some of 

which are opinions, attitudes and behaviour (Cohen et al., 2011). In this study, the paradigm 

offered many opportunities to gain insight into an understanding of the geometric thinking of the 

participants from different perspectives through the multiple ways of data collection. Data was 

generated using a test to obtain textual solutions to geometric tasks, followed by engaging the 

participants in communication to understand their thought processes, underlying how they solved 

the tasks. Their geometric discourse in the classroom was then observed to find out how they 

interacted with their peers as a learning process of communicating knowledge in the teaching and 

learning situation. The choice of this philosophical viewpoint was guided by the three basic 

informed decisions on ontology, epistemology and methodology which provide information about 

reality, what knowledge is, and the appropriate ways to gain knowledge (Neuman, 2014).  
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4.3.2 Ontological assumptions in the interpretive paradigm 

Ontology deals with the beliefs one holds concerning the nature of reality. It considers the question, 

‘what is the nature of reality’ and what is to be known regarding its features or characteristics 

(Lincoln & Guba, as cited in Mohamed, 2017). It relies on the tenet of social interaction and the 

contributions one makes to social phenomena. The research paradigm was used to analyse, 

understand and describe the PSTs geometric thinking based on how they have experienced it. In 

addition, the interpretive paradigm aspires to understand the relevance of social events which pave 

the way for a profound understanding of human behaviour and actions, and also analysed how 

such thinking exhibited by the up-coming teachers, informed their teaching behaviour within the 

classroom context. Neuman (2014) claims that ontology focuses on what exists or the quest to 

know about the nature of reality. To make an assumption underlying the phenomenon being 

studied based on what was considered to be real and in existence, the two fundamental positions 

of ontology, namely the realist and the nominalist, were considered (Neuman, 2014).  Realists 

view the world as something out there, that is pre-existing and needs to be discovered and that 

“exists independent of humans and their perception” (Neuman, 2014, p. 94). The belief is that 

inquiry into reality gets contaminated when it is searched for using our existing ideas containing 

subjective and cultural interpretations.  

 

On the other hand, the nominalist takes the view that reality is not directly experienced or 

discovered. Humans come to know the world based on their experiences which occur through 

subjective means and interpretations. What is believed to be real, and hence exists, depends on 

what has been experienced. According to Neuman (2014), people’s experiences are organised into 

categories based on their personal and cultural worldview, which sometimes happens without their 

realisation. For the nominalist, no matter how subjective human interpretations may be, they 

cannot be removed from their sense of reality. From the above discussion, the realist-nominalist 

ontological assumptions can be placed on a continuum. The nominalist view of reality, holds that 

people’s understanding of the world is dependent on interpretative-cultural factors and not on 

objective knowledge as far as human experiences are concerned.  

 

Considering the focus of this study, which is concerned with PSTs’ thinking, consideration was 

given to the nominalist’s ontological perspective in which that thinking is relative, especially in 
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mathematics tasks, where the same solution can be obtained with different thinking. This study 

relies on the belief that learners engage in personalised thinking in solving problems in geometry. 

Learner thinking evolves from his or her experiences, which makes thinking personalised and 

subjective in nature (Sfard, 2008). The PSTs’ thinking can then be studied and interpreted based 

on what they have experienced, hence it is that they are given the opportunity to explain their 

thinking. Thus, the phenomenon analysed in this study was believed to be a reality that is not 

objective, but formed by human subjective experiences. This phenomenon therefore, is said to 

exist and can be studied through social interaction.  

 

4.3.3 Epistemological assumptions in interpretive paradigm 

Epistemology focuses on what knowledge is, and how it can be known, with major emphasis on 

the relationship between the inquirer and the object of inquiry. Its major assumption is how 

knowledge is acquired and communicated in ways that are acceptable (Rehman & Alharthi, 2016). 

The authors add that epistemologists are more interested in the kind of relationship that exists 

between the knower and what is to be known. In other words, it is how researchers acquire 

knowledge about what is being studied, that is relevant. It emphasises the kind of relationship that 

exists between the researcher and the participant from whom data is obtained.  

 

To the nominalist,  

the best knowledge about the world that we can produce is to offer carefully considered 

interpretations of specific people in specific settings. We can offer interpretation of what 

we think other people are doing and what we believe to be their reasons in a specific setting. 

To produce social science knowledge, we must inductively observe, interpret, and reflect 

on what other people are saying and doing in specific social contexts whislt we 

simultaneously reflect on our own experiences and interpretations (Neuman, 2014, p. 95). 

 

Guided by the question of how the researcher acquires knowledge about the phenomenon being 

studied, a close relationship was established with the PSTs, which paved the way to observe, study, 

interpret and reflect on what they said and did, and to report based on their viewpoints (Neuman, 

2014).  
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4.3.4 Methodological assumptions in interpretive paradigm 

In selecting the methodology, critical consideration was paid to ontology and epistemology. 

According to Sarantakos (2013), ontological and epistemological stances have great influence on 

methodological consideration and further guide the choices made on the research design and study 

instruments. Methodology, which deals with how knowledge is produced about the phenomenon 

of interest, results from what one has assumed to exist and, the right approach to creating 

knowledge about it. It is the process that governs how research is conducted and how data is 

collected, analysed and interpreted (Creswell, 2014).  

 

Cohen et al. (2011) suggest that in any attempt to understand the subjective world of human 

experiences, there must be an effort to get ‘inside’ the participant so that there could be 

understanding from within. In a similar domain under the interpretative paradigm, the researcher 

goes on a journey with the subjects to learn about how they see the world. The suggestion was 

adopted in this study. The PSTs’ geometric thinking and their classroom discourses were 

understood from ‘within’ the participants.  

 

Diverse research parameters guide how research is conducted. Methodology assumes a central role 

in the research process. It is a vehicle through which ontological and epistemological principles 

are converted into strategies that show how a study is to be carried out (Sarantakos, 2013). These 

strategies result in how data is being generated so that the processes surrounding the data 

generation will help the researcher to analyse, understand and interpret the behaviour of the 

participants. Based on the discussions above, coupled with the purpose of the study to analyse 

humans’ thinking, this study situated itself in the interpretivist paradigm. 

 

4.4 Research methodology 

Research methodology deals with the design, sampling techniques and approaches used in the 

study to analyse pre-service mathematics teachers’ geometric thinking. Pre-service teachers’ 

thinking was chosen as a variable of the study, due to its significant contribution to teachers’ 

professional development. According to Mudaly (2015), thinking forms an evidence-base 

component of teachers’ knowledge. The tendency to study thinking is because it involves complex 

and demanding mental functions such as creativity, innovation and originality in reasoning. Thus, 
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thinking goes beyond one’s ability to just solve a task. If teachers are made aware of the elements 

of mathematical thinking, which are conjecturing, justifying, proving, visualising and exploring 

(Tiwari, et al., 2021), they would most probably integrate these elements into their mathematics 

discourse.  

 

The purpose of this research demanded that multiple forms of data be obtained about pre-service 

teachers’ thinking. The need for such data was to understand, interpret and succinctly describe the 

participants’ thinking as part of their possessed knowledge for teaching. In this regard, the pre-

services teachers’ thinking was investigated utilising multiple data sources to gain an in-depth 

understanding and insight into this variable of the study. It was concluded that using the qualitative 

case study method would be a helpful approach for this study.  

 

4.4.1  Commognitive research 

According to Sfard (2008), any interpretive research conducted along the commoginitive 

perspective should focus attention on both the ‘what’ and the ‘how’ of human thinking. 

Commognitive research is rooted in the interpretive research perspective and supports the view 

that human thinking can be assessed through social interactions via communication, which is 

central in a discourse (Ryve, 2006; Sfard, 2008). It continues down the route of creating narratives 

about a person's thought processes. By utilizing stories about the world, the discursive activity of 

cognition seeks to mediate and establish optimal practices (Sfard, 2012).  

 

In the evolution of the commognitive standpoint on research, Presmeg (2016) asserts that it was 

created as a theoretical perspective to address, not only the challenges in mathematics discourse, 

but also the whole dimension of human development and what it takes to be human. Sfard (2008) 

points out that it is evident that the proposed concept of thinking entails a wide range of data-

gathering processes, therefore a large and diverse range of analytical approaches can be envisaged. 

In addition to the discourse and conventional analyses that have already been done, those ascribe 

to the communicational approach to cognition, have yet to create and test their own data-handling 

algorithms that are tailored to their individual needs.  This view of Sfard (2008) places the 

commognitive method of research to be both compatible and evolving with an interpretative and 



90 
 

a qualitative method. This gives the impetus to place commognitive research in the interpretive, 

qualitative perspective and be guided by its principles of investigation.  

 

4.4.2 Qualitative approach 

According to Creswell (2014), qualitative research provides a means for studying and 

understanding the meaning people ascribe to a social or human problem. It is a research approach 

that is mostly used within the interpretive paradigm. Creswell (2007) asserts that individuals seek 

knowledge about their world of living through subjective meanings based on how objects and 

things have been experienced. This study analysed the PSTs’ geometric thinking and their 

classroom discourse. Thinking is an individualised phenomenon; therefore, the qualitative 

approach was found useful to study the PSTs’ geometric thinking through their individualised, 

subjective meaning on how they have experienced geometry.  The aim was to understand the PSTs’ 

experiences with geometry from their own perspective by interacting with them (Astin & Long, 

2014).  

 

In the qualitative process of inquiry, researchers build knowledge in multiple ways, as experienced 

by individuals. In other words, qualitative researchers rely on meanings constructed by individuals 

in several ways (Creswell, 2014). As a result, any attempt to understand or explore an individual’s 

world of living or experiences, should be carried out by looking for their varied views. The 

qualitative researchers believe that the phenomenon being studied has several dimensions and 

hence the need “to portray it in its multifaceted form” (Leedy & Ormrod, 2015, p. 269). In this 

study, multiple views were sought using the PSTs’ solutions to worksheets, their responses to 

interviews and their practices in the classroom setting. 

  

Also, thinking is a personal phenomenon and can only be assessed through the subjective responses 

(spoken or written) that are offered by the participants, when socially engaged by researchers. The 

qualitative inquiry was found to be a useful approach since it relies mostly on spoken or written 

texts and is open to the subjective view of the researcher in the discussion and findings of the study 

(Cohen et al.,  2011; Creswell, 2014).  
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Creswell (2014) emphasised that asking more open-ended questions gives the researcher the 

opportunity to “listen carefully to what people say or do in their life setting” (p. 21). This makes 

the process of interaction between the inquirer and the participants, a critical tool for data collection 

in a qualitative study. Ary et al. (2010) explain that the qualitative approach allows for intensive 

interactions between inquirers and participants through face-to-face interaction, discussion and 

observation of what occurs in the real-life context.  

 

This approach assisted in generating more open-ended questions during the interview session to 

check for consistency with what they say that they do in the process. This is because what people 

do may differ from what they say they do, for which observation provides a reality check (Cohen 

et al.,  2011). The PSTs’ classroom geometric discourse helped to observe what they said and did 

in the process of teaching geometry.  

 

The use of the qualitative approach to conduct this study in a naturalistic context helped to observe 

the PSTs’ geometric discourse and to report the actual and detailed views of the respondents’ 

(Creswell, 2014). In addition, employing a qualitative approach helped to interact with the study 

participants in their natural setting and allowed the generation of detailed data that was responsive 

to the study focus (Creswell, 2014).  

 

4.5.3 Case study  

According to Creswell (2007), case study of qualitative inquiry is used to explore a phenomenon 

over an extended time period. A case study involves the study of a single or more cases in which 

the focus can be on an individual or a group, a process or an activity, extending for some time, to 

obtain detailed information (Creswell, 2014). Neuman (2014) concurs that a case study explores 

several characteristics of cases. Cases can be individuals, organisations, groups or units of events. 

It examines in detail numerous and extensive cases over a period of time. The case study approach 

was suitable for this study to analyse the PSTs’ geometric thinking and classroom discourse over 

a period of time.  

 

The goal of a case study is to obtain and report on a detailed description of experiences through an 

in-depth understanding of the cases being studied, by using multiple methods of data collection 
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(Ary et al., 2010; Neuman, 2014). It proceeds with the beliefs of the interpretivist that seek to 

conduct an in-depth study and draw descriptions about participants’ interactions with others in a 

context specific situation, and obtain meaning about the phenomenon being studied (Maree, 2016). 

The use of the case study was based on its multiple tools such as interviews, observation and focus 

group discussions, and, is supported with audio and visual materials for data collection (Creswell, 

2007).  

 

Neuman (2014) argues that a case study seeks to study many details of the cases. Hence, it was 

applicable to this study, in which the focus was to study several details of the PSTs’ geometric 

thinking. The case study method, coupled with the study framework, which provided an extensive 

construct for exploring human thinking, paved the way to gain insight into several dimensions of 

each PST’s thought processes about geometry, which included word use and how words are 

processed in learning geometry. Other areas included visual mediators, routines and narratives. 

Further insight was obtained by observing how the PSTs’ geometric thinking influenced their 

classroom geometric discourse. This allowed for a detailed description of the variables studied 

(Yin, 2014). 

 

4.5.4 Selecting the institution  

The first consideration in selecting the participating institution, related to institutions that offer 

teacher education programmes with a specialty in mathematics education. The choice was based 

on working with PST’s who could provide rich data for the study. The next consideration was to 

work with a nearby institution. 

 

Convenience sampling is a non-random sampling technique used to select the places of study 

because of proximity (Ary et al, 2010; Sarantakos, 2013). Creswell (2014) asserts that in a 

qualitative study, the researcher has the choice of selecting an area of study and the study 

participants, if they are found to be capable of providing the needed information to meet the study 

aims. Cohen et al. (2011) go on to say that convenience sampling is the appropriate approach used 

to select a study area due its proximity and easy accessibility to facilitate the research process. The 

study required a prolonged engagement with the study participants to generate extensive and 
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detailed data from several sources, in line with the study purpose. Hence, the two most important 

criteria considered in choosing the institution were proximity and accessibility.  

 

Cohen et al. (2011) assert that the non-probability sampling technique is often used by researchers 

whose aim of study is not to generalise its finding to any larger population. This is a qualitative 

study that sought to describe the geometric thinking of participating PSTs, in depth. Hence, 

working with many institutions was not a priority. In addition, the study did not seek to generalise 

its findings. As a result, only one institution was used, which made it unrepresentative of the 

existing educational institutions in Ghana.  

 

4.5.5 University’s profile 

The mandate of the university, one of the public tertiary institutions within the study area, is to 

provide quality education to citizens who wish to join the educational sector after course 

completion. This is part of the government’s commitment to provide education for all its citizens 

and those aspiring to be teachers. Prospective teachers undergo training to gain knowledge and 

expertise required for teaching purposes. Teacher preparatory institutions are tasked with 

equipping prospective teachers with the knowledge necessary to be successful in the teaching 

profession. Such knowledge encompasses content, pedagogy and the school curriculum (Shulman, 

1986).  

 

The university has several departments that offer various programmes in teacher education, 

including mathematics, which is responsible for mathematics teacher preparatory programmes. 

The department has the basic role of preparing prospective teachers for teaching at the Senior High 

School (SHS) level. This puts the SHS mathematics curriculum into focus. Teaching mathematics 

at the SHS level aims “to enable all Ghanaian young people to acquire the mathematics skills, 

insights, attitudes and values that they will need to be successful in their chosen career and daily 

lives” (MoE, 2010, p. ii). It is believed that all learners must learn mathematics as a school subject, 

as it is a subject underlying all technological development and a tool for a nation’s economic 

growth. Learners at this level are expected to develop sound mathematical competencies for two 

purposes.  It is expected that the SHS leavers would be able to gain admission into tertiary 

institutions and be successful in the study of “associated vocations in mathematics, science, 
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business, industry and a variety of career options” (MoE, 2010, p.ii). Also, the knowledge gained 

should enable those who are unable to further their education, to successfully engage in trading 

activities. Education programmes, guided by such goals, prepares prospective mathematics 

educators to foster the intended curriculum goals.  

 

The department’s varied courses, classified into content, pedagogy, and enrichment, are geared 

toward holistic development of prospective teachers for effective teaching. There is a pre-

internship programme (on-campus teaching practice) that enables prospective teachers to put the 

knowledge gained into practice, for further development for teaching. The pre-internship 

programme enables prospective teachers to design and execute a planned lesson to experiment 

with certain teaching behaviours and teaching skills (Otsupius, 2014). The department, like any 

other mathematics education department, has several content courses in the mathematics education 

programme which are structured to equip the pre-service teachers with required knowledge, to 

enable them to teach effectively at the SHS level and to prepare them for further studies in related 

disciplines in mathematics. 

 

4.5.6 Gaining institutional access 

To gain institutional access, the head of the Department of Mathematics Education was visited, 

where the purpose of the study and the processes for data generation were discussed. The Head 

was also informed that, participation was voluntary, each participant had the right to withdraw 

from the study and, confidentiality of the data collected was assured. A written consent from him 

was required to conduct the study.  

 

4.5.7 Informed consent 

Researchers believe that participating in research activity should be voluntary and based on one’s 

clear understanding of the purpose of the study and what information will be required after his/her 

agreement. One must understand the research processes, to make a decision to participate. A letter, 

which described the purpose of the study and how data was to be generated and recorded, was 

given to the prospective participants to seek their consent and voluntary participation. Willing 

participants were required to append their signatures on the written consent. Contact details (phone 
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numbers and e-mails) of the researcher, the study supervisor and personnel at the University of 

KwaZulu-Natal, were provided. A copy of the letter is attached (see Appendix B). 

 

4.5.8 The study participants  

Eight second year PSTs were selected, based on two factors. The first was those who had learned 

geometry as part of their study programme, and had also been exposed to courses in principles and 

methods of teaching. The choice of the participants was based on Cohen et al’s. (2011) claim that 

that purposive sampling can be used to access data from people who have in-depth knowledge 

about the phenomenon under study. Neuman (2014) support this view and add that choosing 

participants for a study can be done purposively, provided they can provide the researcher with the 

necessary information to gain a rich and in-depth understanding of the phenomenon being studied.  

 

The phenomenon investigated in this study, was thinking. The participants’ geometric thinking 

was investigated to gain insight into the when and the why of their written geometric discourses 

on the how. According to Sfard (2008), thinking is personalised and can be assessed in depth by 

engaging the individual in communication. Hence, the participants were interviewed to generate 

data about their thought processes. After explaining the purpose of the study, they were again 

reminded of their voluntary participation and their free will to withdraw their participation, if they 

wished. People should not be compelled to participate in a study when they are not willing 

(Neuman, 2014).  

 

About 90 PSTs from a class of 97 showed interest in taking a test, but they were made aware that 

taking the test did not guarantee participation in the actual study. Participation was entirely 

voluntary. The intention for the test was to gain an initial insight into their solution strategies and 

select the PSTs based on performance. Consideration was also given to those who solved the tasks 

using different approaches (various solution strategies). Since the 16 test items were based on SHS 

mathematics content, those who correctly solved 12 or more items were considered to have 

performed well and were classified as Group A, whilst those who correctly solved less than 12 

items were considered not to have performed well (not so good) and were classified as Group B. 

Of the ten who were invited to participate in the study, eight (four from each group) showed their 
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willingness to participate in the interview and the classroom lesson observation. The eight were 

considered adequate since in-depth data was to be generated. 

 

4.5.9 Piloting the study 

The test was pilot tested to obtain further possible inputs to improve upon its quality in terms of 

clarity and meaningfulness of the items. This step, according to Leedy and Ormrod (2015), is to 

confirm that the questions are clear and capable of eliciting the information required. Piloting study 

instruments at an early stage is a step taken by researchers to detect, or uncover, any difficulties in 

understanding the items (test or interview), and to highlight areas that may require modification, 

to help refine the instrument (Dikko, 2016; Gani et al., 2020). The pilot test helped to identify and 

modify detected ambiguities, misunderstood words, and other inadequacies in the test questions.  

 

Maree (2016) advises that the population from which the sample is drawn for the pilot test, should 

have the same characteristics as those who take part in the main study. Cohen et al. (2011) concur 

and add that piloting the instrument to a different group with similar characteristics, will enable 

the researcher to analyse the possible trends seen during the piloting stage in case such trends re-

occur in the actual study. Based on these, the test was piloted on students who were also PSTs 

from different institutions and had similar characteristics. Responses obtained in the piloting 

exercises helped to improve the quality of the test instrument. The piloting also helped to determine 

which questions were more capable of eliciting the needed data, with regard to geometric thinking. 

Thus, the pilot study helped to decide whether the questions on the instrument triggered or inspired 

geometric thinking, and to check if the questions were adequate for the study. Another important 

benefit of the piloting was that it helped to gain insights into the kinds of responses to be obtained 

in the actual study, and to determine their suitability to answer the critical research questions. 

During the piloting, two PSTs were selected to practice the interview process before the main 

study. The practicing interview, helped in refining questions that enabled the participants to freely 

express their thoughts in depth.  

 

4.6 Stages of data generation 

Data generation, according to Cohen et al. (2011) is the practice of creating, or eliciting 

information from research participants to gain an understanding of the phenomenon under study, 
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to answer the research questions. The instruments and processes involved in data generation play 

a significant role in research and using inappropriate instruments and procedures may affect the 

credibility of the study. Lapan et al. (2012) and Yin (2014) assert that a qualitative case study is 

characterised by collecting data from multiple sources to facilitate understanding of the 

phenomenon being studied. In this research, data was generated from three multiple sources, viz 

worksheets (test), semi-structured interviews (task-base), and an observation guide. The sequence 

of data generation is shown in Figure 4.1, with details in the sections that follow. 

 

 

Figure 4.1. Steps involved in data generation. 

 

Three research instruments, namely worksheets, interviews and observation, were used in relation 

to the critical research questions. The table below outlines the critical questions and how the data 

was obtained. 

 

Table 4.2: Alignment of critical research questions with research instruments  

Critical Research Questions Research Instruments 

1. What is the nature of pre-service mathematics teachers’ 

discursive thinking in geometry? 

The worksheet and 

 interview 

2. What is the nature of pre-service mathematics teachers’ 

routine thinking in geometry? 

The worksheet and 

 interview 

3. How does pre-service mathematics teachers’ geometric 

thinking influence their classroom discourse? 

Classroom observation 

 

Worksheet/Test

• To gather data on 
PSTs' soluton 
strategies to the 
geometric tasks to 
determine their 
inclusion in the 
interview.

Semi-Structured     
Interviews

• To gather data on 
PSTs' thinking 
underlying their 
solution to the 
geometric tasks on 
the worksheet.

Classroom 
Observation  

• To generate data on 
how the PSTs' 
geometric thinking 
informs their 
classroom 
discourse.
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4.6.1 Stage 1: Structured worksheet 

Although this study was conducted through a qualitative approach, a worksheet was administered 

to the study participants, not for the purpose of quantification, but to provide written responses to 

the items on the worksheet (test). The main rationale was to facilitate the selection of two groups, 

with distinct characteristics. Those who performed well in the testing phase were labeled as Group 

A and those who performed not so good, were the Group B participants.  

 

A worksheet (test) consisting of 16 questions, was used to obtain first hand data about the 

participants' solution strategies. These tests normally consist of tasks or a series of tasks used to 

elicit the information required. According to Nwadinigwe (2002), it is a data collection tool which 

is administered to study participants by subjecting them to testing conditions, to enable the 

researcher to obtain information about their performance concerning the phenomenon of study. It 

is often used to generate data on people’s competence on the objective of the study.  

 

The development of the test was based on several factors. The first was to select items that could 

measure the participants’ geometric ideas in relation to the study’s purpose.  Maree (2016) and 

Cohen et al. (2011) maintain that worksheets should be designed to purposefully obtain the right 

information for achieving the study purpose.  

 

The worksheet items were based on angles and properties of parallel lines, triangles, quadrilaterals 

and circles in the plane geometry content, of the SHS mathematics syllabus for Ghanaian schools 

(MoE, 2010). The literature was also reviewed on what has been documented on learners’ 

difficulties and misconceptions in plane geometry (Luneta, 2015; Mirna, 2018; Ngirishi & 

Bansilal, 2019). Insight gained from this review provided insightful ideas for constructing the test 

items. The test items were open-ended and the purpose was to gain insight into the PSTs' solution 

strategies for those tasks. 

 

The worksheet was administered to the PSTs on the appointed date and time, and they were given 

an hour so that each of them could devise a solution to the test items. The participants were selected 

based on their performance and solution strategies to participate in the interview. 
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4.6.2 Stage 2: Semi-structured interviews 

Interviews, being one of the most commonly used instruments for data generation by qualitative 

researchers, were used to generate data. It is a tool used to explore several traits of individuals 

including their views, feelings and beliefs concerning issues under investigation. Data generated 

by interviews are often in the form of words uttered by the study participants (Gani et al., 2020; 

Ary et al., 2010; Dikko, 2016; Majid et al., 2017). According to Nwandinigwe (2002) and Babbie 

et al. (2010), it is the process of data collection where the researcher dialogues with the study 

participants to elicit data. Interviews proceed through oral questioning to which the respondents 

respond orally (Babbie et al., 2010), providing constant interaction between the researcher 

(interviewer) and the respondent (interviewee).  

 

With the aim to analyse, interpret and describe pre-service teachers’ geometric thinking, the 

interviews helped to communicate with the PSTs, to gain an in-depth account of their thinking. 

This form of communication involves talking and listening to each other as the process of data 

generation unfolds (Cohen, et al., 2011; Sarantakos, 2013). Best and Kahn (2006) contend that the 

main purpose of an interview as a data generation method, is to gain access to what is on a person’s 

mind. It is a tool that enables a participant to share his or her opinion on issues, experiences, what 

informs particular actions, or, the basis under which something is done in response to questions 

related to the study purpose (Wahyuni, 2012). Thus, the interview was a suitable way to create 

contact with the minds of the PSTs to access their thought processes governing the solutions 

provided.  

 

The choice of an interview was further informed by Sfard’s (2008) commognitive framework 

which considered thinking as communication. Engaging the PSTs in communication helped to 

gain insight into their thinking processes on geometry, through the explanations they provided 

about the strategies underlying their solutions to the geometry tasks. Thinking is human behaviour 

that is not seen, heard or touched. Hence, the most appropriate way to investigate such human 

behaviour in detail is to allow the person to express him/herself in their own words (Sfard, 2008). 

Data generation through interviews provides the opportunity to ask questions that demand 

explanations and justifications of one’s actions (Lapan et al., 2012). 
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According to Sarantakos (2013), an interview can be structured, unstructured or semi-structured. 

The structured is formal and is often restricted to a predetermined set of questions, whilst the 

unstructured takes the form of questions that arise as the interview unfolds. In the case of the semi-

tructured interviews, a laid down set of questions are followed but the researcher could formulate 

new ones in the course of the interview, for probing or for clarification (Maree, 2016; Sarantakos, 

2013). In this study, the semi-structured interview was used due to its flexible nature.  

 

The semi-structured interview was used due to its flexibility in allowing for follow-up questions 

(DeJonckheere & Vaughn, 2019). Due to the different ways they solved the tasks, it was not 

possible to ask all of the PSTs the same questions. Although, some of the questions were the ‘why’ 

and the ‘when’, that required participants to substantiate their solutions, most of the questions 

depended on individualised solutions (written responses) to the geometry tasks. This made the 

interview a semi-structured type since it contained questions that were planned before the exercise 

and others that arose from the participants’ responses (Ary et al., 2010; Sarantakos, 2013). Thus, 

some general questions were constructed in advance whilst others were formulated based on 

participants’ solutions. Appendix E shows a copy of the semi-structured questions.  

 

In line with the purpose of the study, each PST was expected to explain how he or she had 

experienced and understood geometry. The semi-structured interview enabled them to express 

themselves freely in an individualised manner. Gani et al. (2020) maintain that the semi-structured 

interview is characterised by its potential to address ‘how’, ‘when’ and ‘why’ questions about how 

an individual has experienced an object and the meaning and interpretation assigned to that 

experience. 

 

The place to conduct the interview was chosen because it was conducive for conversation and 

quiet enough to support the recording. Also, a good rapport was created with interviewees, 

allowing them to communicate freely and willingly. There was no indication of judgement by the 

researcher either in expression or facial looks to PSTs responses, based on the suggestion for 

conducting the interviews (Best & Kahn, 2006; Gani et al., 2020; Jacob & Furgerson, 2012). 
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4.6.3 Stage 3: Classroom Observations  

The PSTs’ classroom geometric discourses were observed to understand how their geometric 

thinking influenced their teaching. Cohen et al. (2011) assert that classroom observation allows 

the researcher to obtain live data from a naturally occurring setting. Observing an activity as it 

proceeds is characterised by immediate awareness, and has a high probability of producing valid 

data. Classroom observation was used as the tool for obtaining such data in its natural setting to 

help gain a detailed understanding of how the PSTs communicated their geometric thinking, in 

line with commognitive constructs (Sfard, 2008). Maree (2016) claims that observation takes place 

in our daily activities where our visual senses are used to assemble data. The observation assisted 

in obtaining original information in connection with the study aims. Classroom observation helped 

to gather valid and extensive data about the PSTs’ teaching of related issues in connection with 

the data generated during the interviews. Ary et al. (2010) explain that observation is a basic tool 

to generate data to gain insights into issues being studied. The use of observation helped to 

understand and describe their teaching behaviour with regard to how the PSTs’ geometric thinking 

informed their geometric discourse.  

 

Teaching is an interactive process where teachers communicate concepts, facts, attitudes and 

knowledge to learners. Teaching is said to be effective when the objectives of instruction have 

been achieved. Classroom interaction is geared towards facilitating learners’ achievement of the 

stated instructional objectives. The desire to generate data as teaching unfolded, was to understand 

how prospective teachers presented geometric concepts in ways that enhanced learners’ sense 

making of the content being taught. Geometry, like mathematics, is a discourse and needs to be 

communicated in a patterned, collective way (Sfard, 2007). The intent was to observe how the 

prospective teachers drew attention to certain keywords in geometric discourse, as the fundamental 

process of guiding learners’ understanding (Atebe & Schafer, 2010; Mulwa, 2015). Learning 

geometry, just as any other mathematical subject, requires identifying and processing basic words 

of the subject (Sfard, 2008). Understanding these basic words enables learners to construct 

knowledge on their own, which requires that teachers facilitate learners’ knowledge creation 

through appropriate use of words and other commognitive constructs. Deeper insights and 

understanding of classroom activities can be known through classroom observation (Maree, 2016; 

Cohen et al., 2011).  
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According to Cohen et al. (2011) and Creswell (2014), observation can be classified into four 

types, namely: complete participant, observer as a participant, participant as an observer, and 

complete observer. The observation type used in this study was the complete observer, where the 

researcher only observes without participating or interfering in the activities (Creswell, 2014). 

Before the observational schedule, the PSTs were visited on several occasions during the pre-

internship programme (on-campus teaching practice) as a way of gaining and strengthening 

familiarity. According to Babbie et al. (2010), researchers must be close to study participants in 

order to gain a high degree of credibility and trustworthiness. All the observed lessons were video 

recorded in order to obtain rich data and also to cater for any information that may have missed. 

The video recording was supported by taking field notes.   

 

Observation can be classified as structured, semi-structured or unstructured, depending on the 

extent to which it is organised (Cohen et al., 2011; Sarantakos, 2013). In structured observation, 

the researcher follows an organised procedure, planned in advance, on what is to be observed, 

before starting the observation process. There is a high a level of standardisation in what is 

observed. The structured observation makes use of planned and well-defined traits to be observed. 

In semi-structured observation, the observer outlines the desired traits to be observed but also 

focuses attention on certain equally important issues that may be noticed in the course of the 

observation. An unstructured observation does not employ any strict procedures for data 

generation but takes note and records any traits that may be of interest as far as they relate to the 

study (Kuranchie, 2021).  

 

Structured observation was used in this study. Placing the study in a commognitive perspective and 

guided by its elements, formed one of the main rationales for the classroom observation. The 

structured observation helped to gain insight into how the commognitive constructs could be seen 

or followed in the PSTs classroom discourse (Sfard, 2008). In agreement with Sarantakos (2013), 

Cohen et al. (2011) claim that structured observation makes use of organised procedures to be 

followed. In a similar way, the traits to be observed were planned in advance before the observation 

schedule. These traits related to the constructs of the commognitive framework, which were how 

the PSTs used, keywords, visual mediators, narratives, and routines to provide learning 
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opportunities for developing geometric thinking. Other traits observed were how they delivered 

instruction in ritualised or explorative ways of concept development. It was conjectured that the 

constructs of Sfard’s (2008) commognitive framework has the potential to develop teachers’ 

communicative competence in a discourse.  

 

During the observation, notes were taken in a field diary and all observed lessons were videotaped. 

The use of the field diary was to take note of issues such as facial cues or expressions, gestures, 

PSTs’ movement, and others. Being mindful of the ethics of the practice, participants were assured 

that there would be no pictures showing their faces and that all written text and verbal responses 

would be reported using pseudonyms.  

 

4.7 Data analysis plan 

Data analysis is the process of examining and deriving meaning from data to understand, 

interpret and explain the phenomena being investigated (Cohen, et al., 2011). Data analysis is the 

process of transforming data into findings. Data analysis in qualitative study can be inductive or 

deductive. In this study, the deductive analysis approach was used based on the guiding research 

questions and the informed theoretical framework employed. Deductive analysis is informed by 

the themes predetermined within a theoretical framework. It considers the proposed themes within 

a framework that guides the research. The researcher is usually aware of the themes in the 

framework before he or she starts collecting data. 

 

In this study, the data analysis was guided by the themes of the commognitive constructs, which 

are keywords (literate or colloquial), visual mediators, narratives and routines. All the research 

questions were analysed through a deductive approach. The rationale was to conduct a search for 

the presence of Sfard’s (2008) commognitive constructs (traits) in the geometric discourses of the 

PSTs. In other words, the search was to analyse and understand the PSTs' planning processes in 

devising solutions to geometric tasks, as well as the learning opportunities they provided for 

classroom learning of geometry. 

 

Research questions one and two were answered through the analysis of text and interviews, whilst 

research question three was answered through the analysis of the classroom observation data. The 
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analysis of the interviews helped to understand the rationale behind the solution strategies of the 

PSTs in order to report accurately. According to Ary et al. (2010), even though there may be slight 

changes in qualitative data analysis, it can be categorised into three: namely organisation and 

familiarity, coding and reducing, and interpreting and representing. 

 

The data collected in the study took the form of text (solutions to tasks), audio-taped material, 

video recordings, and field notes. Based on Ary et al.’s (2010) suggestion, familiarity with the data 

started by listening and re-listening to the audio-taped data, successive reading of the field notes, 

examining the PST’s solutions to the geometry tasks, and viewing the video tapes many times. 

The audio-taped data and video recordings were transcribed into text, whilst the field notes were 

typed. Care was taken to transcribe the exact words obtained from the participants to avoid any 

potential bias that may occur in the analysis process. The self-transcribing of data by the 

researcher, helped to gain a depth of familiarity (King et al., 2018). To avoid several pages of 

transcribed data for each of the eight participants, the transcribed data was organised in terms of 

responses to tasks, and questions asked, to enhance the actual analysis. During the transcription, 

nonverbal information from the data collection process was added. 

 

The data was arranged as described and then began the coding. According to Tracy (2013), coding 

is the process of labelling and systematising the data obtained. Leavy (2017) adds that it is the 

process whereby words or phrases are assigned to segments of data. The discourses of the PSTs 

were coded based on the themes and characteristics of the informed commognitive constructs. The 

coding was done by identifying the words used in communicating geometric concepts and ideas, 

and how further geometric concepts were communicated using visual mediators, narratives and 

routines. The analysed geometric thinking of the PSTs was presented and discussed on the themes 

within the chosen framework. In addition, the analysis was interpreted by reflecting on the 

participants' word usage to gain greater understanding from them. 

 

4.8 Trustworthiness of the study  

Trustworthiness, or rigor, means the extent to which one can establish the authenticity or quality 

of study findings based on confidence in data obtained, interpretation, and approaches used 

(Connelly, 2016). Trustworthiness has its roots in validity and reliability, which is often used to 
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ensure the quality of quantitative studies. Due to the protest of the use of the term ‘trustworthiness’, 

in qualitative inquiry Ary et al. (2010) and Mohamed (2017) outlined  criteria for ensuring the 

quality of qualitative inquiry which is accepted by most qualitative researchers, regarding 

trustworthiness. These are credibility, dependability, tranferability and confirmability.  

 

4.8.1 Credibility  

Credibility, which is analogous to internal validity of a quantitative inquiry, deals with the 

confidence in the truth of research findings (Connelly, 2016; Anney, 2014; Mohamed, 2017). It 

seeks to answer whether the information obtained is what the researcher intended, and whether the 

participants can agree to the study findings, based on the information provided (Lapan et al., 2012; 

Mohamed, 2017). In other words, its purpose is to determine whether the research findings are  

plausible representations of the information drawn from the actual data provided by the study 

participants, as well as to ascertain whether it is correctly interpreted in the views of the 

participants (Korstjens & Moser, 2018). Korstjens and Moser (2018) add that credibility of 

research findings is supported by prolonged engagement with research participants, persistent 

observation, triangulation, peer debriefing and member checks.  

 

To ensure credibility of the findings of this study, time was spent with the PSTs to ensure that a 

good relationship was established with them. This was to develop familiarity with the PSTs in 

order to be recognised as a partial member of their community. Such association helped to gain 

insight into the phenomena studied. Prolonged engagement increases rapport and enables 

participants to volunteer detailed information that they would sometimes provide at the beginning 

of the study Connelly (2016). In this sense, it allowed the participants to communicate freely and 

act naturally, without fear or apprehension about releasing certain vital information. 

 

Another step taken to ensure credibility of the study results, was to generate data through 

triangulation, to obtain rich data from varied or multiple sources to enhance comprehensive 

understanding of the phenomena studied. Data sources used in the study included testing 

(worksheets), interviews and classroom observation, to gain detailed understanding in order to 

enhance the accuracy and credibility of the study findings and to minimize bias. Triangulation aids 

in minimising bias and double-checks the reliability of participant responses (Anney, 2014). 
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There was also peer debriefing apart from discussion with my supervisor. According to Lincoln 

and Guba as cited in Creswell (2014) peer debriefing is the practice of opening up to a neutral peer 

in a way that resembles an analytical session, in order to explore parts of the inquiry that could 

otherwise just be latent in the inquirer's mind. In this situation, the study was shared with 

disinterested peers (people who are knowledgeable sources on the topic, but may not be a 

stakeholder in the study outcome) such as colleagues in doctoral studies, and experienced 

mathematics educators (both at secondary and tertiary levels), for possible scholarly guidance to 

improve the study findings.  

 

In order to prevent the chance of incorrectly interpreting the data acquired, Yin (2014) describes 

member checking as the process of allowing the research participants to review and verify the data 

collected via interviews, participant observations, and documentation. Based on this, the 

participants were visited on several occasions, for them to verify the transcribed data to ensure it 

corresponded with what they said. 

 

4.8.2 Dependability 

Dependability, which is similar to reliability in quantitative studies, is the extent to which the data 

would be stable over a period of time, in different situations but similar conditions (Anney, 2014; 

Connelly, 2016; Mohamed, 2017). It concerns itself with the consistency of the study findings. 

Dependability in qualitative research is ensured by an ‘audit trail’ and offers a rich description of 

the study process (Anney, 2014; Korstjens & Moser, 2018; Mohamed, 2017). Audit trail is the 

process of frequent engagement with the participants to assess the findings, interpretations and 

recommendations of the study, to determine if all that is reported in the study could be supported 

by the data that was provided (Connelly, 2016; Korstjens & Moser, 2018).  

 

To ensure consistency of the study findings, an effort was made to provide a detailed description 

of the methodology which dealt with choosing the study site and sampling the study participants. 

Also, the exact data generation procedure is described in detail, such that it can be followed to 

assess the dependability criterion. 
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4.8.3 Transferability  

Transferability of qualitative research is a quantitative form of generalisability. It is the extent to 

which the findings, or methods of a qualitative study, can be transferred to other participants in 

another context (Anney, 2014; Mohamed, 2017; Korstjens & Moser, 2018). According to Anney 

(2014), transferability is the extent to which one can determine the applicability of the findings of 

a particular inquiry to other contexts, or with other participants. This can be achieved by providing 

a complete and detailed description of the research context, that would enable one to judge the 

applicability of the approach to another context. In this study, a complete, detailed and thoughtful 

description of the research processes has been provided to enable its conclusion to be applicable 

to other situations. There is also an explicitly detailed description of the study purpose and aims, 

including approaches used in data generation, to enable a high sense of transferability of the study 

findings. 

 

4.8.4 Confirmability 

Confirmability in qualitative research can be associated with objectivity in a quantitative inquiry. 

This can be achieved if effort is made to establish credibility, dependability and transferability 

(Mohamed, 2017). Anney (2014) posits that confirmability is achieved if other researchers are able 

to corroborate the results of the study. In this case, the data and interpretation of the findings are 

considered original and not from a researcher’s own imagination. According to Cope (2014), 

research confirmability can be attained when the researcher can show that the data is an accurate 

reflection of the participants' viewpoints and that the participants' responses are devoid of the 

researcher's biases. Issues of confirmability can be addressed through Ary et al.’s (2010) 

suggestions of using audit trail, reflexivity and triangulation.   

 

Efforts were made to achieve credibility, dependability and transferability, which, to a large extent, 

guarantees the establishment of confirmability of the findings. A reflexive journal was kept to 

document issues or events that occurred in course of the study, for reflection.  

 

4.9 Conclusion 

This chapter provided a detailed account of how the study was carried out using the informed 

philosophical views, its method and procedures. The chapter started with a brief introduction of 
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the purpose of the study and the elements of the theoretical framework that served as a lens for 

conducting the study. Next, was the outline of the critical research questions, followed by a 

discussion of the interpretive paradigm used. The chapter also included a discussion of major 

issues of concern in research, namely, research design, methodology and the methods used. The  

research instruments used to generate data from the study participants and the processes of data 

generation were also discussed in detail. The data generated was then transcribed and prepared for 

analysis. 
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CHAPTER FIVE  

PRE-SERVICE TEACHERS’ DISCURSIVE GEOMETRIC 

THINKING 

5.1 Introduction 

In the previous chapter, the philosophical basis underling the study, the research design, and the 

methodology were discussed. It also provided a detailed description of the stages followed, in data 

generation. Data was generated using worksheets, task-based interviews and classroom lesson 

observations. This chapter presents the analysis of the data obtained through tests and task-based 

interviews on the pre-service teachers’ (PSTs’) geometric thinking of/on plane geometry topics in 

the senior high school mathematics curriculum. The analysis, which was informed by the literature 

review and the research questions, is presented in three chapters. This chapter focusses on the 

nature of the PSTs’ discursive geometric thinking in geometric discourse, whilst the other research 

questions, (viz., two and three) are presented and discussed in chapters six and seven respectively.    

 

In the write-up of this chapter and throughout the thesis, italicised texts are used to present the pre-

service teachers’ actual words used in communication. All other expressions are paraphrasing of 

their words, the observations made, the textual solutions they provided, and the interviews held 

with them.  

 

5.2 The results of the study 

The analysis of the results of the PSTs’ geometric thinking was further informed by the constructs 

of the commognitive framework, which are, word use, visual mediators, narratives, and routines. 

In this respect, the analysis was conducted deductively. The presentation of the analysis has been 

organised in the following manner. It begins with a focus on how the PSTs used appropriate words 

to define and describe geometric concepts and properties in a concise and precise way, as well as 

the word use in explaining their solution strategies. Next, it looks at the PSTs’ consciousness of 

centering their talk about the visual mediators governing the tasks, and are discussed in sub-themes 

within the framework. Further analysis focused on their ability to substantiate their discursive 

actions by using appropriate sources of narratives within the geometric discourse. The final 
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analysis deals with the routine patterns used by the PSTs, to devise solutions to the geometry tasks. 

These are briefly discussed in the next section.  

 

5.3 Path of discourse analysis in this study 

This section explains the discourse analysis conducted in the study as guided by constructs of 

Sfard’s (2008) commognitive framework mentioned in section 5.2. These constructs have been 

captured and explained in detail in Chapter 3, section 3.3. Table 5.1 explains how these constructs 

are employed, or associated, in this current study. The constructs of the framework are highly 

connected in discourse that sometimes seem inseparable. However, there is an attempt to put them 

into groups since they can have a significant effect on how to teach. 

 

Table 5.1: Description of discourse analysis in this study 

Commognitive 

construct 

Indicators 

Word use Word use may appear in many forms. The goal of this study was to examine 

how participants used words to define geometric concepts and figures such as 

angles, acute angles, triangles, and their related properties. The ability to 

identify names of geometric shapes and concepts and other terminologies, 

forms part of word use. In addition, attention was given to how words were 

used to explain solutions to geometric tasks. The wording of the geometric 

properties was also of great interest, for example, angles (adjacent angles) on 

a straight line, vertically opposite angles, exterior angles, opposite interior 

angles, etc. 

Visual 

mediator 

Visual mediators come in many forms as a tool for learning geometry. Analysis 

was based on the participants’ interpretations of diagrams (visual abilities or 

visual thinking), their ability to draw geometric figures and related concepts, 

using visual abilities to interpret the diagrams, symbolic mediators, iconic 

mediators, or concrete mediators. 

Narrative Attention was given to the geometric concepts and ideas that participants used 

to solve the geometric tasks. For example, if a participant models the equation 
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for interior angles of triangles by equating their sum to 180o, he/she needs to 

justify by the response, ‘the interior angles of a triangle add up to 180o’. 

Similarly, if two straight lines intersect, and a participant equates the two 

opposite angles, his/her action must be informed by the narrative that 

‘vertically opposite angles are equal’. In short, the intention was to find out 

which geometric concepts the participants used to support their discursive 

actions.  

Routines The focus was on the procedure for solving a given task. The major concern 

was placed on the participants’ ability to model equations connecting the 

angles in the tasks. According to Sfard (2008), this action needs to be informed 

by keywords, visual mediators, and narratives. 

 

The indicators outlined in Table 5.1 draw connections between the constructs of the framework 

and geometric discourse. The constructs were employed to analyse the PSTs’ geometric thinking 

since they were found to be the best fit for discourse analysis.  

 

5.4 Pre-service teachers’ word use in geometric discourse 

This section presents the findings and discussion on the PSTs’ word use in describing geometric 

concepts, terminologies, geometric properties, and word use in explaining their solution strategies 

to the geometric tasks used in the study. The discussion is based on the four content areas, namely, 

angles and straight lines, triangles, quadrilaterals and circles.  

 

5.4.1 Word use in defining /describing geometric concepts 

According to Sfard (2008), the kind of word use (terms of vocabulary) gives a discourse its 

distinctive features. Word use plays a significant role in mathematics discourse. It provides the 

avenue to describe specific ideas in a discourse especially definitions of geometric terms, concepts 

and theorems. Sfard (2007, 2008) claims that mathematical words have a shared or a specialised 

meaning among participants within the discourse, in which case it is literately used, whilst non 

specialised words are colloquial. Word use plays a key role in defining mathematical concepts. 

Concept definitions are the kinds of words used to designate or specify a given concept (Fujita & 

Jones, 2006). Concept definitions play a critical role in the teaching and learning of mathematics 
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(Baktemur, et al., 2021; Cunningham & Roberts, 2010). In this section, the PSTs’ word uses in 

defining geometric concepts and properties, are analysed and described. The PSTs were asked to 

share their thinking and understanding of angles and straight lines, and other geometric figures 

such as triangles, quadrilaterals and circles, as well as their properties. The purpose was to gain 

insight into how they used words, whether literately or colloquially, in defining geometric 

concepts.  

 

All the PSTs shared their understanding of the definition of the concept of an angle. The eight 

participants stated that angles are formed when two straight lines, or rays, meet at a point. The 

definitions of Stephen and Jones from Group A, are shown in the following excerpts:  

… an angle is formed when two lines or two rays meet. When they [rays] meet the space 

between the vertex of the two lines is what we call the angle … (Stephen). 

… an angle is the figure formed when two rays meet at a common point. I can say that an 

angle is the space between two lines when they meet at a common point (Jones). 

 

Similarly, the Group B participants provided definitions that showed their understanding of the 

concept of angles. Examples of these definitions are shown in the extracts below:  

 … angles are formed when two straight lines meet at a point … (Alex).  

… when two lines meet at a point, they form an angle. The point at which the lines meet is 

 called a vertex (Cynthia).  

 

It is evident from the preceding excerpts that a key attribute that emerged from their definitions 

was that angles are produced when two straight lines meet. The participants’ discourses showed 

their knowledge of some terminologies associated with the definitions provided. They stated that 

the point at which the rays meet is a vertex, whilst the rays are called the arms of the angle formed. 

This shows that the participants had developed an understanding of the concept of angles and could 

use acceptable words to express their thoughts about the object.  

 

To investigate further, the participants were asked if they could define, or describe, the concept of 

an angle in a different way. Their responses, except for Stephen’s, were either ‘no’ or a repetition 
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of the same central idea using different wording. Clement (A) and Albert (B) reaffirmed the same 

thinking using planes. For example, Albert said: 

… I can say that when you have a cardboard, or any straight edge and … join them together 

… you …can equally get an angle.  

 

Stephen (A), on the other hand, explained his understanding of angles as the amount of ‘opening’ 

formed by a ray when it turns from one direction to another. His response was as follows. 

 

 … when we take a ray or a line segment [draws on paper] when it is rotated from its 

starting point to the terminal point, the space found between the rays is called an angle. 

 

Stephen defined the concept of an angle from different perspectives. The word ‘rotate’ is 

synonymous with the word ‘turn’. Describing an angle from this perspective shows that Stephen 

has developed good thinking about an angle and was able to describe it with appropriate use of 

words. Stephen’s description can be summarised to mean an angle is a measure of a turn.  

 

Analysis of the participants’ responses showed that seven of them defined an angle in a static form. 

According to Kontorovich and Zazkis (2016) and Smith et al. (2014), learners view angles in a 

static form when they see them as geometric figures in which the focus is on the position of the 

sides or the arms. Mullins (2020, p. 5) asserts that considering angles as static forms is “simply 

pictorial or figurative representation”, which makes it difficult for learners to identify angles in 

various positions, such as 0o and 180o (Smith et al., 2014). Only Clement (A) demonstrated 

adequate thinking of angles in a dynamic form involving movement (Clement & Burns as cited in 

Mullins, 2020). Learners understand angles in various forms when they conceptualise angles as 

dynamic, which makes them develop schemas that can be used in later learning (Mullins, 2020; 

Smith et al., 2014). Thus, the PSTs showed limited thinking about the concept of angles. 

Nevertheless, findings show that their understanding of the concept of an angle was articulated 

with appropriate word use. They used endorsed words to express their thoughts.  

  

Maxwell (A) drew two straight lines to intersect and indicated all the four angles formed, whilst 

Stephen drew two rays that shared a common endpoint and described the two angles around the 
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vertex. The remaining six participants' discourses (two in Group A and the rest in Group B), in 

addition, their drawings seemed to imply that their idea of defining an angle is linked to one angle 

formed when two straight lines meet. All the participants were able to mention the types of angles 

and described them based on the opening or measure (Smith, 2012), with acceptable word use.  

 

Albert’s (B) word use in defining both complementary and supplementary angles was inaccurate. 

He defined supplementary angles as “angles that sum up to 180o”. What needs to be noted is the 

missing word, signifying the number of angles involved. When he was asked about the number of 

angles involved, he said, “it could be two or more”. The other participants described and indicated 

the number of angles involved. For example, Alex (B) defined complementary angles as “when 

two angles sum up to 90o” and supplementary angles as “when the two angles sum up to 180o”. 

 

The Ghanaian mathematics curriculum may be classified as a spiral curriculum, where concepts 

are introduced to learners in portions from lower levels to higher levels of study (MoE, 2010). It 

is a system that ensures that the learners’ knowledge-base is well grounded in the basic concepts 

before advancing to higher ones. In other words, it is an educational system that enables learners 

to absorb the most basic concepts, so that understanding can be developed by relating new 

knowledge to existing knowledge. For example, one’s understanding of an acute angle is necessary 

for learning triangle classification by angle, as ‘acute triangle’ and a ‘right angle’, leading to 

learning ‘right-angled triangle’ or ‘right triangle’, and others. The PSTs’ performance was 

expected because of their long exposure to the concept of angles in their previous lesson in 

mathematics.  

 

Generally, the results show that many of the PSTs possessed good understanding of angles and 

their types, and held sufficient ability to describe them. Pre-service teachers need to possess in-

depth geometric thinking about angles to effectively teach geometry to their future learners. 

According to Biber et al. (2013), almost every topic in geometry requires good knowledge of 

angles, as one of its basic concepts. This implies that anyone who has not grasped these basic 

concepts may encounter learning difficulties as he/she progresses in learning higher content areas 

of geometry, particularly with the PSTs who are being trained to teach these concepts. Placing this 

in the commognitive theory, the participants are said to use mathematically literate words to 
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describe their thinking and understanding of angles. Sfard (2008) asserts that learners should be 

able to use appropriate words to communicate clear intent. This quality was noticed to be present 

in many of the PSTs’ discourses about angles. The participants’ thinking on the concepts of parallel 

lines was analysed, whilst seeking an explanation of the solution to the tasks involved in the study. 

The next paragraph presents the participants’ talk about triangles.  

 

Data on the participants’ discourses on triangles show that many of them had a good ability to 

define triangles and related concepts using mathematically literate words, except for a few who 

demonstrated difficulty in choosing appropriate words in such a discourse. All the participants in 

Group A described triangles and their related concepts using functional words rooted in geometric 

discourse. They used acceptable words in the community of mathematics learners to describe 

triangles.  For example, Stephen (A) defined a triangle as “a three-sided figure which is enclosed 

with straight lines and has three interior angles”. Similarly, Clement (A) defined triangles as “a 

triangle is a figure abounded by three straight lines”.  Their definitions with the overarching words 

‘three-sided figure’ show that they have conceptualised a triangle as a polygon with three sides. 

The definition of a triangle from the Group B participants was similar to those in Group A. 

 

The participants were asked to name and describe types of triangles. Stephen’s (A) responses 

showed that he had adequate knowledge of the types of triangles, and he classified them into two 

categories, namely, by side and by angle. The response from one participant in group A suggested 

that he had little knowledge about triangle classification by angles and by sides. The most common 

categories mentioned by all, were equilateral, isosceles, scalene, and right-angled triangle (right 

triangle). A right-angled triangle was mentioned by some participants (in both groups) during 

further probing. For example, Jones (A) mentioned the third one by using the phrase … “and the 

last one is an equilateral triangle”. The use of such a phrase could indicate that the three 

mentioned were the only triangles in geometry.  

 

An interview segment with Maxwell (A) is as follows: 

Researcher: Can the types of triangles be classified into two categories? 

Maxwell: Classification of triangles? Please, I have no idea. 
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He was then asked to draw the types mentioned. He drew and described them in a mathematically 

acceptable way, with literate word use. After drawing those mentioned (triangles by sides), he was 

probed further. 

 

Researcher: Can you draw any other types of triangles? 

Maxwell: … I have remembered one triangle. The right-angle triangle.  

He drew and said, “It has this side [pointing to the 90o angle] to be 90o”. 

Researcher: Why did you say it is a right-angled triangle? 

Maxwell: … because one of side [moving the pen around the right-angle space] is 90o. 

 

It was observed from Maxwell’s discourse that he used inaccurate words to designate certain 

geometric concepts. For example, he constantly referred to the word ‘angle’ as ‘side’ as in his 

discourse, eg. “it has this side to be 90o”. It is worth mentioning here that asking him to draw the 

ones mentioned played a significant role. Seeing the ones drawn seemed to create some internal 

connections in his mind, which probably reminded him of another one, even though not all were 

mentioned.  

 

The participants’ responses may mean that the three types of triangles (by side) are the common 

ones that they may have used frequently in their geometric discourse, which could have influenced 

their recall, even though one may claim the right-angled triangle is also common due to its 

association with the Pythagoras theorem. It was observed in both Groups that the most common 

types of triangles in their discourse, were the triangles by sides and the right-angled triangle.  

 

Apart from Maxwell, the concepts on triangles described by the participants were good, and they 

used accepted words in their discourse. The correctness of their discourses was tied to triangle 

descriptions by sides, which were easily articulated. Differences in word use started to emerge 

when they were describing the properties of triangles, and the position of the angles, particularly 

with isosceles triangles. Jones’ (A) responses during the interview are shown in the following 

excerpt:  

 

Researcher: What can you say about the angle properties in an isosceles triangle? 



117 
 

Jones: For isosceles, we can say two of the angles are the same.   

Researcher: Which of the angles? 

Jones: Angles facing [opposite] the equal sides. 

Researcher: What about the scalene triangle? 

Jones: For scalene, since all the sides are different… all the angles are also different. 

Researcher: What is a line of symmetry? 

Jones: It is a line which divides a shape into two equal parts. 

Researcher: What can you say about the lines of symmetry of the shapes 

drawn/mentioned? 

Jones: An equilateral triangle has three lines of symmetry. 

Researcher: Okay. 

Jones: For isosceles, it will have emm… it will have only one, since … two sides are the 

same, we can only have it through the point where the two [equal] lines meet. Scalene has 

no line of symmetry. 

Researcher: What can you say about the line of symmetry and the angle formed at the 

vertex by the equal sides of an isosceles triangle? 

Jones: Since the sides are the same, the line of symmetry divides the angle at the top 

[vertex]. 

 

Jones’ substantiating narratives concerning triangles could be attributed to his knowledge of the 

object. His narratives are endorsed, and match well with the content knowledge of triangles. 

Analysis of his response indicates that he has adequate thinking about the properties of triangles, 

especially isosceles triangles. The responses of Stephen and Clement were similar to that of Jones’ 

discourse above. Data showed that three of the PSTs in Group A often made use of mathematically 

literate words in their discourses about triangles.  

 

On the other hand, Maxwell (A) described the position of the angles in isosceles triangles using 

colloquial discourse. He described an isosceles triangle as “a triangle in which the two base angles 

are equal”. The words ‘base angles’ are often heard in traditional geometric discourse, where in 

most cases, isosceles triangles are drawn with equal angles at the bottom and are commonly 

described as ‘an isosceles triangle has base angles equal’. Many teachers sometimes place 
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emphasis on the ‘base angles’ in their discourse, probably because of the way the triangle is mostly 

drawn. Thus, the phrase ‘base angles’ is matched with the prototypic sketch of the figure and seems 

to be one of the most remembered properties of an isosceles triangle.  

 

All the Group B participants also used such colloquial words as used by Maxwell (A) to describe 

the position of the equal angles in an isosceles triangle. Even when the isosceles triangle was 

presented in a different orientation from the prototype (equal angles at the base), they still referred 

to the equal angles as the ‘base angles’. Thus, their words used in describing the position of the 

equal angles in an isosceles triangle were not object driven, and hence, colloquial in nature. Such 

a description is not acceptable in the geometry learning community since it could possibly lead to 

errors in the discourse, as found in Nsiah’s (B) solution to task 3.3 (Appendix D) The discourses 

of the Group B participants are exemplified in the excerpt below: 

  

 Researcher: Is there any other properties of an isosceles triangle you can talk of? 

Alex: It has one line of symmetry and two angles are equal. 

Researcher: Which of the angles? 

Alex: The base angles. 

Researcher: Show me the base of this triangle. 

Alex: This angle [points to the angles opposite the equal sides] 

Similarly, Cynthia said, “In an isosceles triangle, the base angles are equal”, which is a 

representation of the discourses of Albert and Nsiah.  

 

The Group A participants, except for Maxwell, described the exterior angle theorem of a triangle 

using mathematically literate and colloquial words. Those who expressed the theorem correctly 

used appropriate words, which are endorsed in school mathematics. This was evident in the way 

they expressed their thinking about the exterior angle theorem. The following excerpts show the 

responses of the three Group A and one Group B participants when they were asked about their 

understanding of the exterior angle theorem.  

 

… the exterior angle will be equal to the sum of the two opposite interior angles (Stephen, 

A). 
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… for the exterior angle, the sum of two non-adjacent angles is equal to the exterior angle 

(Nsiah, B). 

 

Based on their responses, it is evident that they used functional and literate words to describe their 

thinking about the exterior angle theorem of a triangle through the word use of ‘sum’ to show the 

relationship between the angles.  

 

On the other hand, Maxwell’s description was incorrect because it lacked the operation that 

connects the two opposite interior angles in the theorem. Maxwell stated that: 

What I know is [that] if you have a triangle like this [draws] this is the exterior angle [points 

to the exterior angle]. So, the exterior angle is equal to two interior angles. 

 

Mathematics is about patterns and relationships between variables; failing to specify the exact 

operation can be confusing and lead to errors. Connecting the angles with the word ‘and’ is not 

endorsed and is said to be used in a colloquial way. This omission of the operation was seen in the 

discourses of three of the Group B participants, except for Albert, who used an incorrect name (co-

interior) for the interior angles, even though he stated the operation in his discourse. He said “For 

the exterior angle theorem … the sum of the two co-interior angles is equal to the exterior angle 

of a triangle”. Cynthia and Alex provided a similar response. For example, Cynthia said [with the 

support of drawing] “I know that the two opposite angles are equal to the … exterior angle”.  

 

It is obvious from these participants’ responses that their word use was colloquial in nature, since 

they could not use explicit words to succinctly state the exterior angle theorem of a triangle. For 

example, Albert termed the ‘two opposite interior angles in a triangle as ‘co-interior angles’. 

Placing the statement of the theorem within the commognitive framework, it is claimed that word 

use by the Group B participants and Maxwell in Group A, in substantiating their narratives about 

the theorem, is not endorsed in geometric discourse and hence is an error (Sfard, 2008). 

 

On quadrilaterals, the participants’ geometric discourse gave more insight about the words they 

used in describing quadrilaterals together with their properties. Further insight was gained into 

how the participants used words to substantiate their narratives at an object level or a meta-level. 
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All the participants shared their understanding of a quadrilateral, which they defined using 

appropriate words. Their definitions showed that a quadrilateral is a four-sided figure. A 

representative definition by Clement and Maxwell, (Group A), is shown in the following excerpts: 

… quadrilaterals are plane figures which are bounded by four straight lines (Clement). 

 … quadrilaterals are four sided figures (Maxwell). 

 

The Group B participants defined a quadrilateral in a similar manner, shown in the following 

excerpts: 

… a quadrilateral is a four-sided figure (Cynthia). 

… any plane figure that is bounded by four sides is called a quadrilateral (Nsiah). 

… a quadrilateral is a four-sided figure (Albert). 

 

The preceding excerpts show how all the participants described their understanding of a 

quadrilateral using mathematically literate words. The participants gave an exhaustive list of types 

of a quadrilateral, which they were then asked to define.  

 

All the participants defined a parallelogram using endorsed words. They concisely defined the 

term parallelogram, with either the necessary and sufficient conditions (Zilkova, 2014) or with 

inferred properties. Of the eight, Clement, Jones and Stephen, all in Group A and Cynthia (B) 

defined a parallelogram as the four-sided figure which has two pairs of parallel sides. This 

definition is shown in the following excerpts:  

 

… it is a quadrilateral which has two pairs of sides parallel (Jones, A). 

… it is a four-sided plane figure formed from two pairs of parallel lines (Clement, A). 

… a parallelogram is a polygon with opposite sides parallel to each other (Cynthia, B). 

 

The rest of the participants defined it as follows: 

… a parallelogram is a four-sided figure which has two sides and two opposite angles 

equal (Maxwell, A). 

… a parallelogram is a type of a quadrilateral whose opposite sides are equal (Albert, B). 
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Varied thinking, and hence varied word use, emerged when the participants were asked to define 

the types of quadrilaterals. Some of the participants used mathematically literate words in their 

definitions whilst others used colloquial words. Two PSTs from Group A (Stephen and Clement) 

and Cynthia (B) provided a literate definition of a rectangle and a square. The rest of the 

participants provided incomplete definitions, or the definition did not show the exact description 

of the figure under discussion. For example, Jones (A) defined a rectangle as “… a quadrilateral 

… with opposite sides parallel.” He also defined a square as “a quadrilateral having all sides 

equal.” What needs to be noted is that the definition of a rectangle matches that of a parallelogram, 

and that of a ‘square’ matches that of a rhombus, hence the need to mention that their angles are 

equal or right angles. The rest of the five participants defined these figures in a similar way. This 

finding supports that of Fujita and Jones (2006), who also found that most of the pre-service 

teachers could not define these two shapes correctly. They could not exercise any logical reasoning 

to exclude the shape from a more general one. 

In defining the quadrilaterals, only Stephen defined a rectangle from the perspective of an inclusion 

in a parallelogram. Stephen’s (A) definition shows that he may have considered that some concepts 

or properties of a rectangle also apply to a parallelogram (de Villiers, as cited in Rianasari et al., 

2016), which informed his definition along the path of class inclusion. 

 

Not all the PSTs were able to define a rhombus with an acceptable use of words. Stephen (A) said, 

“A rhombus is a parallelogram with all sides being equal”. Cynthia provided a similar 

understanding when she said, “a rhombus too is a quadrilateral with all equal sides”. A deep 

reflection on their responses shows that Stephen (A) and Cynthia (B) demonstrated some 

knowledge of inclusion criterion in their definitions. Stephen stated that “a rhombus is a 

parallelogram with …”, whilst Cynthia excluded a rhombus from her definition of a square when 

she defined it as “a quadrilateral with all equal sides”, but carefully defined a square as “a square 

has all the sides and angles equal”. She may have linked this definition to her previous definition 

of a rhombus.  
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The rest of the participants could not define a rhombus with concise word use. Jones (A) defined 

a rhombus with no restriction on membership. He said, “a rhombus is a quadrilateral which has 

two pairs of sides being parallel”. A careful consideration of Jones’ definition is more suitable for 

a parallelogram, for which a rhombus shares this property in definition. Hence, it should have 

come with the extra word-phrase ‘with all sides equal’ to make it unique or to exclude it from the 

larger shapes.  

 

The results show that the PSTs have difficulty in using appropriate words to define some 

quadrilaterals such as rhombus, trapezium and the like. In addition, it was found that, except for 

Stephen, almost all the participants’ attempts to define the shapes, made no effort to consider the 

inclusion relation among the quadrilaterals. This finding supports that of Baktemur et al. (2021), 

who also found, in their study, that the participating teachers described the types of quadrilaterals 

without any attention to the inclusion criteria among the shapes. 

 

Maxwell’s (A) word use in defining several types of quadrilaterals could not be fully analysed 

because, at some point in time, he said he had forgotten the definitions of some of the shapes that 

were central to our discussion. Maxwell was able to express some properties of a parallelogram 

using appropriate words but could not transfer such thinking to other related types. For example, 

Maxwell previously described a parallelogram as having opposite sides of equal length and the 

diagonals bisect each other. When asked to define a rhombus, he responded, “I know the figure 

but I have forgotten the definition. I know it is like a square. All the sides are equal, but I have 

forgotten the definition”. This suggests that even though he may have seen the shape in his mind, 

he may not have fully internalised the characteristic features of it, in which case, he was unable to 

use appropriate words to describe it in an object-driven way.  

 

Understanding circles is concerned, not only with the ability to solve complex tasks, but also with 

the ability to understand and define their fundamental concepts and related properties. Knowledge 

of such concepts gives learners a solid foundation upon which higher content knowledge is 

developed (Alex & Mammen, 2018; Atebe & Shafer, 2010). As part of analysing the participants’ 

geometric thinking, they were asked to share their understanding of a circle and parts of a circle as 
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fundamental concepts to learning circle theorems. The following paragraphs show how the 

participants used words to describe different ideas and some of a circle's properties. 

 

All the participants in Group A and two in Group B demonstrated good thinking about the concepts 

of circles, based on their use of acceptable words to describe the basic concepts of circles. The 

definitions contained the essential features of a circle, in which all the points on the circle are 

equidistant from a fixed point known as the centre. The definitions of these six participants are 

given in the following excerpts. 

 

… a circle is defined as a locus of points that is equidistant from a given fixed point, which 

is the centre (Clement, A). 

… a circle is a set of all points in a plane that have a fixed distance, called the radius, from 

the centre of the circle (Jones, A). 

… it is a round plane figure in which all points on the boundary are equidistant from a 

fixed point (Maxwell, A). 

… a circle is a locus of points equidistant from a fixed point called the centre (Stephen, A).  

… a circle is a plane figure in which all the points on the boundary are of equal distance 

from the centre of the circle (Nsiah, B). 

… a circle is a set of points in a plane where all the points on the circle have an equal 

distance from the centre (Alex, B). 

 

Analysis of the above excerpts in defining a circle shows that their word uses are mathematically 

literate. This suggests that they have developed the competencies to use appropriate words to 

describe the salient features in defining a circle, which reads “… set of all points … fixed distance 

… from the centre”. The use of such words is accepted in the mathematics curriculum, which 

endorses their word use and is also object-driven. The results show that six of the participants 

demonstrated the competence to define a circle with appropriate word use. A similar finding was 

reported in a study conducted by Wright (2013) in which the majority (79%) of the participating 

pre-service teachers, provided a formal definition of a circle. Within the commognitive theory, 

these are mathematically literate ways to use words that are correct and accepted (Sfard, 2008).  
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The rest of the two Group B participants’ words were not object-driven. Their definitions lacked 

some key words that express the features of a circle. Albert (B) had an idea of a circle but struggled 

with words to express his thoughts. Having realised that his first definition was not clear, he said, 

“If I should come again, it is a point or any point at a rounded shape … a point found at a rounded 

shape to a fixed point at the centre”. Cynthia (B) also said “A circle is a closed, two-dimensional 

curve”. When she was asked to repeat her definition, she said, “I can define it as a round object 

with no corners”. Describing a circle as a closed two-dimensional curve is incorrect (Wright, 

2013). The words used by these two Group B participants are not endorsed in geometric discourse, 

and hence are colloquial in nature (Sfard, 2008).  

 

The participants were further engaged about the various parts of a circle, which forms the basis for 

successfully learning a circle theorem (Jamhari & Wongkia, 2018; Ntow & Hissan, 2021). 

Mathematics, particularly geometry, deals with some special basic terms that are essential for 

communicating one’s understanding of the object. Understanding arises in a situation where both 

the learner and the teacher share a common meaning of basic words in the discourse. Learners’ 

understanding of the language (terms) of mathematics is necessary for their sense-making in the 

discourse (Anthony & Walshaw, 2009). 

 

Analysis of the participants’ word use in defining parts of the circle shows that they used endorsed 

mathematical words in their discourse, except for a few responses which were questionable. 

Among the parts of a circle that were defined by the participants with appropriate word use, were 

circumference, arc, and radius. All the participants defined a circumference as the distance around 

a circle. For example, in defining a circumference, Cynthia stated, “A circumference is the distance 

around the circle, or the perimeter of a circle”. Similarly, all the participants used appropriate 

words to express the radius of a circle. What is significant to all the definitions provided by the 

participants, was the use of the words ‘centre and circumference’ in their definitions. 

 

Analysis of the participants’ discourses on circumference, radius and arcs, show that they have 

used the appropriate words to communicate their thinking about these geometric concepts. Atebe 

and Schafer (2010) assert that language (terms, word use, and terminologies) is an important tool 

in communication. This means that the PSTs could define and explain these parts of a circle to the 
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learners. Thus, literate words were used to define some parts of a circle. Definitions form the basic 

unit of a discourse (Leikin & Zazkis, 2010), and it is important that learners’ geometric thinking 

is developed on their ability to define some key basic concepts of the discourse, to enhance later 

learning. Within the context of commognitive theory, they are said to express their thoughts on 

these concepts using mathematically literate words. These words used when learning circles, 

contribute to a distinct discourse (Sfard, 2008).  

 

The word diameter, received different definitions from the participants. Seven of them defined it 

using appropriate words that indicate the specific spatial concept accepted in geometric discourse. 

Two representative definitions of the diameter from the Group A participants are exemplified in 

the following excerpts: 

… it is a line that is being drawn to pass through the centre of the circle to touch two parts 

of the circumference (Clement). 

… a diameter is a line that has its two ends touching the circumference of the circle and 

passes through the centre of the circle (Stephen). 

 

Similar representative definitions of the Group B participants are also shown below. 

… a diameter is a line drawn through the centre … to the circumference. The endpoints of 

the line touch the circumference (Albert). 

… a diameter is the line which divides the circle into two equal parts, and it is drawn 

through the centre of the circle (Cynthia). 

 

It is evident from the preceding excerpts that identifying a straight line drawn through the centre 

with its endpoints on the circumference of the circle, qualifies it to be a diameter. Thus, these 

representative definitions of the seven participants show endorsed word use in their discourse. It 

means that their word use in the communication framework is said to be mathematically literate 

(Sfard, 2008). 

 

On the other hand, Maxwell’s (A) word use was open to different interpretations. He used the word 

‘divide’ in his definition of a diameter and connected it to the words ‘equal parts’. He said, “a 

diameter is a line that divides a circle into equal parts”. Not being convinced about his definition, 
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he was asked to draw it. There was no indication in the drawing that the straight line passes through 

the center of the circle. This shows Maxwell’s understanding of diameter is not linked with the 

centre of the circle. A similar finding was reported by Mudaly (2021) in which a chord with no 

indication of it passing through the centre, was considered as a diameter by the participants. The 

use of the word ‘divide’ to define a diameter is a word used in a colloquial way.   

 

The participants’ discourses on chord, the centre of a circle, and tangent, were also analysed. 

Analysis of their responses showed that the Group A participants, except for Maxwell, used 

appropriate words to define the chord as a straight line whose endpoints lie on the circumference 

of a circle.  

 

Four of the participants, two from each Group, used words in the definition of a tangent that 

showed that they clearly understood the concept. For example, when talking about the tangent, 

Jones said, “a tangent is a straight line which touches a circle at only one point”. They added the 

accepted condition ‘touches at only one point’ as found in the literature (Musser, et al., 2014; 

Smith, 2012). This definition is accepted and contains a literate use of words. On the other hand, 

three participants defined a tangent with similar words but lacked the condition of ‘touching at 

only one point’. For example, Clement (A) defined a tangent as “a line that is being drawn to touch 

the circumference of a circle”. Also, Albert (B), whose definition is similar to that of Cynthia, 

stated that “a tangent is a line, or a straight line drawn to touch a circle”. They used the word 

‘touch’ and connected it to a literate meaning. Analysis shows that the three used insufficient words 

to define a tangent. Within the commognitive framework, these three participants are said to use 

colloquial words in their discourse (Sfard, 2007, 2008). 

 

As shown in the following transcript, Maxwell (A) was able to identify a tangent from a diagram 

but could not describe it in his own words. 

 

Researcher: What is the name of the line FG? 

Maxwell: It is a tangent to a circle. 

Researcher: Ok, what is a tangent of a circle? 

Maxwell: These definitions … [pause] I know the name, but the definition I have forgotten. 



127 
 

 

Maxwell’s word use in describing diameter was found to contain a colloquial discourse. It is 

therefore not surprising that in the question posed to him on what a tangent is, he started with 

“these definitions …”. This suggests that he may have some geometric terminologies in his 

knowledge repertoire but may lack the competence to define them using appropriate words. 

According to Kemp and Vidakovic (2021), many expectations of learners, who enrol in higher-

level courses in mathematics at a college or university, are not met due to their difficulties in 

completing tasks involving definitions of mathematical concepts. This is happening even though 

many of them have been successful in taking advanced mathematics courses in their programmes 

of study. This difficulty was seen in the discourses of some of the PSTs, especially Maxwell (A), 

who performed quite well on the geometry tasks, but seemed to lack the ability to define certain 

geometric concepts.  

 

The participants were asked to talk about their understanding of a cyclic quadrilateral. Stephen and 

Jones described the cyclic quadrilateral using appropriate words that are endorsed in geometric 

discourse. In this case, they used mathematically literate words in their discourse. The response on 

cyclic quadrilaterals by Jones and Stephen is as follows: 

 

… a cyclic quadrilateral is an inscription of a quadrilateral in a circle where the vertices 

of the quadrilateral touch the circumference of the circle (Jones, A). 

… a cyclic quadrilateral is a four-sided figure within a circle in which it has four vertices 

touching the circumference of the circle (Stephen, A). 

 

Maxwell’s (A) words in defining quadrilaterals could not be analysed because he could not use 

any appropriate words to define a cyclic quadrilateral. Zilkova (2014) asserts that many future 

(pre-service) teachers have insufficient knowledge of geometry and continues to say that their 

major difficulties are defining 2D shapes. Maxwell was one of the participants in Group A who 

had demonstrated some difficulties in defining many of the 2D shapes and other geometric 

concepts used in this study. A previous question posed to him to define a line he correctly named 

as a tangent, yielded the response “these definitions ...”. Then, after some silence, he said, “I know 
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the name, but the definition I have forgotten”. A similar response was obtained when he was asked 

to define a cyclic quadrilateral shown in the following transcript. 

 

Researcher: What is a cyclic quadrilateral? 

Maxwell: A cyclic quadrilateral hmm … I can draw it but the definition no …  

 

Maxwell’s definitions of geometric concepts suggest that he is deficient in defining geometric 

concepts. Definitions form a critical component of Euclidean geometry and a starting point for 

teachers (and learners) to develop sound knowledge for teaching related aspects of the secondary 

school mathematics curriculum (Guner & Gutlen, 2016; Speer et al., 2015). Definitions serve as 

the foundation for logically determining geometric properties, as well as a means of guiding 

learners in the identification and classification of geometric objects (Ndlovu, 2014). This implies 

that knowledge of defining geometric objects forms a basis on which other concepts can be learned. 

PSTs’ acquisition of the ability to define geometric concepts and terminologies, is critical for the 

development of their geometric competencies necessary for effective teaching. Being good at 

geometry, one needs to know its concept definitions and have extensive knowledge and 

understanding of their properties (Maier & Benz, 2014). Generally, the discourses of the Group A 

participants contained more literate words than those in Group B.  

 

5.4.2 Word use in describing solution to the tasks 

Sfard’s (2008) notion of word use suggests that learners, especially PSTs, should be able to use 

words with literate meaning to describe specific ideas. If words are not used in a literate context, 

it allows for several interpretations by learners during communication. Learners can communicate 

their ideas in geometric discourse only when they have acquired the correct words and terms in 

the discourse (Atebe & Schafer, 2010). This notion forms one of the general aims of teaching 

mathematics in Ghana, which states that the mathematics syllabus is designed to enable learners 

to “communicate effectively using mathematical terms” (MoE, 2010, p. ii). This means that 

teachers should be able to acquire and use appropriate terms (keywords) in teaching mathematics 

as well as geometry, which is noted to use more technical terms than any other discipline in the 

mathematics curriculum (Ashfiel & Prestage, 2006). This formed the rationale for analysing the 

PSTs’ word use in describing their solutions to the geometric tasks through the commognitive lens. 
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This section describes the word use by the PSTs in communicating their thinking and solution 

strategies to the geometric tasks. 

 

The first task that the PSTs had to solve was to find a missing angle in the set of adjacent angles, 

formed on a straight line. The focus was to analyse the words used in stating the properties that 

informed their solutions, and the procedures followed.  

 

All the eight PSTs correctly solved the task and explained it in a similar way. Analysis of their 

discourses showed that they used both literate and colloquial words. For example, Stephen (A) 

said: 

Looking at the diagram … we have three angles all on the straight line. All the three angles 

at this (pointed to it) vertex … on a straight line … sum up to 180o. 

Similarly, Jones (A) explained that: 

… angle x and this angle 90o and … 64o … all lie on a straight line. So, the three angles 

add up to 180o. 

 

A reflection of the preceding excerpts shows that they have used words that convey the intended 

meaning and are acceptable in geometric discourse. For example, Stephen used the words, “all on 

the straight line”. He also indicated that all the angles share a common vertex. Jones also 

substantiated his routine with similar word use. This could also mean that when a straight line is 

filled with angles, then their sum could be taken as 180.  Similar word use was found in six of the 

PSTs’ discourses. For example, Nsiah (B) said, “… the sum of all these angles on a straight line 

is 180o”. Five participants (3 in Group A and 2 in Group B) fall under this category. Within the 

communicative framework, their word use is said to be mathematically literate because they depict 

the exact intent of the property (Sfard, 2008). 

 

Three of the participants substantiated their routines or approaches by using incomplete words in 

stating the property. For example, Maxwell (A) used the words “… angles on a straight line add 

up to 180”. This description contains incomplete information in geometric discourse and is 

classified as colloquial word use. Maxwell connected his colloquial word use with literate 

discourse in explaining his thinking. What needs to be highlighted is that the omission of the word 
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‘adjacent’ leaves the property open to different interpretations by learners, hence, could lead to an 

error in devising solutions to related tasks, as was found by Ngirishi and Bansilal (2019). The 

authors noticed that one of the study participants added two non-adjacent angles on a straight line 

and equated it to 180o, with the reason that s/he remembers one property which states “angles on 

a straight line add up to 180o” (Ngirishi & Bansilal, 2019, p. 8). This misconception could be 

attributed to the omission of the word ‘adjacent’ which sends a signal of a common ray or same 

vertex of the angles. This suggests that the property should be stated by emphasising the word ‘… 

adjacent angles …’ (Greer, 1979). Cynthia said, “all straight angles sum up to 180o”. In the same 

way, Albert said “a straight line angle … add up to 180o”. Maxwell, Albert and Cynthia used 

words in a colloquial way as guided by Sfard’s (2008) theory.  

 

Tasks 1.2 and 1.3 were similar in design and required the PSTs to reflect on and devise solutions 

to them. Task 1.2 was on angles associated with the intersection of two straight lines, and task 1.3 

contained two parallel lines intersected by a transversal, both of which required similar approaches, 

and hence similar thinking and word use in their routine.  

 

In explaining their solutions, six of them, all from Group A and 2 from Group B, produced words 

on the contextual structure of the task, using the appropriate words in naming the property 

associated with the task. Their word use was based on object-level narratives. Those who produced 

the properties associated with the task design made use of acceptable keywords in their discourses. 

The following excerpts show how Stephen expressed his thinking in task 1.3.  

 

Researcher:  Explain how you devised a plan to solve task 1.3.  

Stephen: … in the diagram, we know that we have two parallel lines and a transversal.  

Researcher: Why did you say the lines are parallel? 

Stephen: … lines are parallel because of the symbols [point to the arrows on the line]. 

Stephen: … with the transversal line drawn through the two parallel lines … we have new 

angle properties introduced. I also realised that the same variables were used in the angles 

that are opposite to each other. So, with this vertically opposite angle…  
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Stephen’s use of the geometric properties associated with the parallel lines in planning to devise a 

solution to the task, was similar to the discourses of the remainder in Group A and the two in 

Group B. Their ability to use these words to describe the geometric properties, is evidence of 

connective thinking in geometric discourse. For example, Jones said “3(x – 20) is vertically 

opposite to 2x”. Because they substantiated their interpretation with appropriate words to describe 

the properties involved in solving the task, they are mathematically literate. Lefrida et al. (2021) 

claim that the identification of properties related to geometric tasks, falls under the summarising 

category of keywords in a discourse. Thus, the PSTs should be able to identify the appropriate 

names of the properties they wish to use in their preferred solution approach. 

 

Cynthia (B) used both mathematical literate and colloquial words to name the geometric properties 

connecting the two identified angles. She also named the straight line drawn to intersect the two 

parallel lines, as the diagonal. Her solution routine however, yielded the correct result. This could 

mean that Cynthia may have developed the routine of solving the geometric task but may be 

deficient in word use, in naming and describing some geometric concepts. This deficiency is 

exemplified in the excerpt below. 

  

Cynthia: We are having direct opposite angles, which are 3(𝑥 − 20) and 2x.  

Researcher: You mentioned alternate angles in your plans. What are they? 

Cynthia: When angles alternate, that means you see the position of the angles with a 

line that looks like a Z. 

Researcher: Z? 

Cynthia: Yeah, when you have the Z symbol, it means the angle here and this… 

alternate. [points to the angles in the corners of the Z symbol]. 

Researcher: What are co-interior angles?  

Cynthia: Co-interior angles are angles… [pause]. They are angles within the lines. 

That means this angle and this angle, they are within, that is interior. 

[draws to explain what interior angles are]. 

Researcher: What is the name of the line drawn across the two parallel lines? 

Cynthia: It can be a diagonal. [pause] … I always call it a diagonal. 
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The preceding excerpts show that Cynthia had difficulty in using the correct words to describe the 

spatial geometric ideas explored. This difficulty in describing the angle properties of parallel lines 

was also found in Albert’s discourse, where the properties were described with colloquial words.  

 

Researcher: What are co-interior angles? 

Albert: They…  [pause]…they are interior angles whose sum add up to 180o.  

Researcher: What is your understanding of alternate angles?  

Albert: … are angle you realise that one angle is exterior and one angle will be 

interior but they are marked at one transversal.  

 

These responses show that Albert and Cynthia, both in Group B, have some deficiencies in the use 

of appropriate words to describe these geometric concepts. This difficulty was also shown in 

Albert’s discourse on alternate angles. He used exterior and interior to mean angles on opposite 

sides of a transversal. He could also not describe what co-interior angles are. These participants 

were able to produce associated properties to solve the task. However, analysing their thinking 

about word use in describing these geometric concepts showed that they only know the alternate 

angles by their position and not by definition or description. This could mean that Albert and 

Cynthia, being trained as future teachers, have difficulty in using acceptable words to explain these 

geometric properties and concepts. In a study by Ngirishi and Bansilal (2019, p. 8), a participant 

recounted that when they were taught geometry (viz parallel lines), “the terms were never 

explained” to them, and that they were just told which angles were equal, with their appropriate 

names. Placing this within the commognitive theory, they are said to use words in a colloquial 

way.  

 

When analysing the participants’ thought processes about triangles, attention was devoted to their 

word use, together with their discursive actions. Almost all the tasks on triangles had different 

solution approaches for which the PSTs were required to demonstrate knowledge of, by identifying 

the name of the geometric shapes and their related properties, needed to devise a solution on a 

preferred approach. The focus is to determine how the PSTs use and process words in their 

discourse.  
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The following sections include the participants’ discourses on triangles. They all solved and 

explained task 2.1, making use of appropriate words governing the task, in the preferred routine. 

An interview with Maxwell is shown below. 

 

Researcher: Tell me about how you organised your thinking when solving for m and n in 

task 2.1? 

Maxwell: … know that these are interior angles of a triangle …  

Researcher: Why did you say a triangle?  

Maxwell: I can see the figure here [points to ABE] is bounded by three straight lines.  

Maxwell: … and here [pointing to 62˚] is equal to angle x, vertically opposite angles…. I 

applied the exterior angle theorem.   

 

Stephen also used words in a more literate way with endorsed narratives that matched with visual 

properties and associated narratives. Stephen’s explanation in shown is the following extract: 

 

… I first considered my triangle AEB … since I know the interior angles of a triangle add 

up to 180. To find m, I take my triangle BFC, I realise … m is exterior angle …. two 

opposite interior angles for my angle m are 75o and B. To find B, I used the property of 

vertically opposite to angle n … I can call my angle, say t [referring to the angle found at 

B].  

 

Maxwell and Stephen’s discourses showed that they used words that are acceptable in geometry. 

They first identified the name of the geometric figure to determine the suitable properties required 

to devise the solution. For example, Maxwell named the figure as a triangle and substantiated that 

“…the figure … is bounded by three straight lines”. Stephen, upon identifying the name of the 

shape, said, “I know the interior angles of a triangle add up to 180”. All the participants 

demonstrated knowledge of word use and properties, as shown in the discourses of Maxwell and 

Stephen, both in Group A. They all used similar words in explaining how they solved for n in the 

task. For example, Cynthia (B) explained that: 
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… the diagram here is a triangle…in all triangles, the interior angles sum up to 180o … 

we come to the other side of the triangle too. Let’s assume we have ‘a’ here as the angle… 

n and a are vertically opposite so they are the same. …  

 

Differences in word use emerged depending on the approach one preferred, to solve for the value 

of m. Words used to describe their solutions were found to be both literate and colloquial. Those 

whose word use was based on the structure of the task, used them in an object-driven way. The 

PSTs used similar wording and approaches to solve the remaining triangle tasks. Some stated the 

exterior angle theorem of a triangle, without the arithmetic operation that connects the two interior 

angles, as the theorem demands. The omission of the arithmetic operation makes the statement of 

the theorem incomplete and hence colloquially expressed.   

 

Task 2.3 required thinking that involves the use of any two of the following: (1) the exterior angle 

theorem of a triangle, (2) the interior angle sum of a triangle, or (3) the straight line angle, to devise 

a preferred solution. All the participants, except Clement (A), used words governing the task 

structure based on their visual, informed thinking, governing the design of the task. The words 

used by each of the PST’s depended on the internalisation process that he or she engaged in. These 

internal processes are what commognition is all about. Engaging in thinking (individual cognition) 

to determine which way to go (Sfard, 2008). Those whose thinking was guided by the visual 

analysis and inclusion of the exterior angle, probably first thought of using words associated with 

the exterior angle theorem before thinking of any other properties useful for the task.  

 

On the other hand, Clement (A) used equally accepted words associated with the use of the two 

properties, which are the interior angle properties of triangles and adjacent angles on straight lines. 

His individualised collective patterned way of thinking (Sfard, 2008), resulted in the use of two 

simultaneous approaches in which he demonstrated good algebraic thinking in terms of the words 

used in explaining his approach. Clement’s discourse is shown in the following extract: 

 

… the sum of the interior angles in that triangle is 180o, so … (1). Then I look at the straight 

line on which we can find the angle 2x and m being adjacent angles on it. From (1) which 
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is 68o plus m plus x equals 180o, when I subtract 68o from both sides, I get … I then solved 

to get the answers … 

 

The preceding excerpt shows that Clement used appropriate words in his discourse. In a similar 

previous task on the straight line, he correctly stated the straight line angle property by using the 

endorsed words ‘adjacent angles’. This is also seen in the preceding extract when he said, “angles 

2x and m [are] adjacent …” He showed knowledge of the sequential algebraic steps needed to 

solve the task, with correct use of words. Literature shows that teachers must possess functional 

knowledge of appropriate words about mathematical objects, to engage future learners in 

mathematical discourse using literate words (Atebe & Schafer, 2010; Berger, 2013; Roberts & LE 

Roux, 2019). From a commognitive perspective, Clement is also said to use literate words in 

explaining his thinking about solving the task (Sfard, 2008).   

 

Regarding quadrilaterals, task 3.1 required the participants to use appropriate wording in the figure 

identification and to use its associated properties in devising a solution to the task. Task 3.1 showed 

no indication of parallelism on any of its opposite sides. Six participants (all Group A’s and two 

from Group B) noticed this and hence treated the intersections of the side lines separately. Their 

word use was centred on adjacent angles on a straight line and the emerging angles concerned with 

the intersection of two straight lines.  

  

A demonstration of representative thinking among the six participants is from the discourse of 

Clement. His word use in expressing his thinking about how he planned to solve the task, is shown 

in the excerpt below. 

Researcher: Okay, talk to me about how you organised your thought processes to devise a 

strategy to solve the task. 

Clement: First of all … angle QRM should be equal to angle GRS and is vertically opposite 

angles. I further find angle QLM … adjacent angles. So, this side is a quadrilateral 

QLMR. I add all … angles … it sums up to 360o.  

 

Clement’s (A) solution plan, which reflects that of those in Group A participants, and two in Group 

B, illustrates the functional use of words in describing their thinking processes. This shows that 
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the identification of geometric figures in a task, and thinking about their associated properties, 

cannot be left out when developing geometric thinking. The structure of the task, which is a 

quadrilateral with the sides (lines) extended at the vertices, informed the participants’ thinking 

about the use of properties of angles on a straight line and vertically opposite angles. As indicated 

in his discourse, “angle QRM should be equal to angle GRS … [because] of vertically opposite 

angles”. Analysis of the word use of the six participants shows that they have used words that are 

endorsed about the properties… used in their discourse. Their word use indicate that they have 

developed good thinking and can express such ideas in meaningful ways. They have used words 

in a more mathematical way in explaining the solution of the task. Alex and Mammen (2018) assert 

that the use of appropriate words and terminologies in geometric discourse, is necessary to avoid 

any possible misconceptions. According to Sfard (2008), learners’ interest in participating in 

mathematics discourse would be enhanced when literate words form a specialised role in 

communication and they are also guided and corrected in their usage. Guiding learners’ word use 

in a discourse plays a significant role in developing their autonomy in mathematising (Ben-Zvi & 

Sfard, 2007; Sfard, 2008). Thus, the PSTs who frequently used endorsed words have developed 

the competence to engage learners in mathematics discourse using literate words.  

 

Albert (B), on the other hand, used a combination of colloquial and mathematical words. He 

initially started by using literate mathematical words based on correct use of geometric properties 

identified between the angles. He however made an incorrect assumption about a property 

connecting the angle to be found, and another one in its position that appeared similar without any 

mathematical support.  Albert’s discourse is exemplified in the excerpt below.  

 

Researcher: Can you explain your solution to me? 

Albert: The angle R [referring to QRM] is 103o. That is vertically opposite angles. Angle 

U [referring to angle QLM] is … 57o. So having known angle U, then I can say that 

angle x is corresponding angle to angle KLF. 

Researcher: Can you explain it again with the informing properties?  

Albert: The x, I used the property of corresponding angles … I realised that where the x is 

placed and where I am having my 123o, they are corresponding angles.  
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Albert started well with the step–by-step analysis of the geometric figure by assigning literate 

words to geometric properties of related angles. He then made a wrong assumption that the 

placement of the unknown angle x and angle 123o were in relative positions of the transversal to 

the straight lines. This wrong assumption, leading to wrong word use, was made even though there 

was no indication that the two lines are parallel. He repeated this wrong assumption with 

confidence when a question was posed to go over the informing properties.  

 

Alex (B) also made that same wrong assumption and used the wrong word use in geometric 

property. On his worksheet, he just stated that x is equal to 123o. A question was asked, to justify 

his decision. He responded, “… that one is corresponding to 123o here [pointing to angle 123o]”. 

 

Task 3.2, also on quadrilaterals with arrows on both sides, required the participants to identify the 

geometric construction of the task, assign it the appropriate name (parallelogram) and use it to 

identify the properties in devising strategies to solve for the variables. All the angles involved were 

represented by variables and hence, required critical thinking to devise the solution. This task was 

found to pose some challenges to two of the Group B participants, Alex and Nsiah. Alex was able 

to identify the figure as a parallelogram, but he was unable produce appropriate properties to guide 

his solution. This will be discussed in detail in the next chapter. 

The Group A participants and two from Group B engaged in diverse thinking, which resulted in 

different properties emerging to guide their solution. All the properties raised were accepted and 

hence, endorsed in geometric discourse. These properties were raised because of interpreting the 

salient properties of the task. The following excerpt shows the discourse of Jones and Maxwell in 

their interpretation and word use. 

 

Jones: … m and y are alternate angles. 

Researcher: Why did you say that?  

Jones: … lie on opposite sides of the transversal and are within the parallel lines. Also, PT 

and QR are parallel … considered 3x plus m … two consecutive angles in 

quadrilateral sum up to 180o. … 2x and m are opposite angles … 2x corresponds 

to the y. 

Maxwell: … this is parallel to this [point to the longer side] and this is also parallel to that  
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[pointing to the shorter sides] and in parallelograms, opposite angles are equal 

Those who were able to solve the task used appropriate words about the governing properties of 

the parallelogram. Success and proficient geometric thinking rely on the ability to identify the 

properties related to the task’s structure, through which geometric properties are connected to the 

visual properties of the tasks (Matlen et al., 2018; Ndlovu, 2014). The successful participants 

seemed to produce properties based on how they individualised and interpreted the task.  

 

Tasks on circles provided an opportunity to analyse the participants’ word use in explaining their 

solutions. All the participants, at the stage of devising a solution to the task, used appropriate words 

governing the construction of the task.  

 

Analysis of the excerpt below shows that Stephen’s (A) understanding of devising strategies to 

solve the task, was based on his knowledge of the words used in identifying the names of the parts 

of the circle and their usage in stating the circle theorems governing task 4.1. An interview with 

Stephen is described in the following extract: 

 

Researcher: Can you explain how you solved the task to me? 

Stephen: When I look at the diagram, I have an arc PR. 

Researcher: Ok. 

Stephen: This arc is subtending an angle at the circumference and another at the centre. If 

I should know the angle measure the arc PR subtend at the centre … I can find the 

angle measure for the angle it subtends at the circumference. 

Researcher: Ok. 

Stephen: … when an arc subtends an angle at the centre and also at the circumference … 

Researcher: Yes, proceed. 

Stephen: And looking at the quadrilateral PQRS, it is a cyclic quadrilateral … Because the 

vertices of figure PQRS touches the circumference of the circle. 

 

It could be seen from the above excerpts that Stephen made use of the appropriate words to 

describe the task. He used the word ‘arc’ and connected it to the angle subtended at the centre of 

the circle and the angle at the circumference. In his discourse, he said, “this arc is subtending an 
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angle at the circumference and another at the centre”. He then used appropriate words to state the 

circle theorem governing the relationship between the two angles. Stephen used the precise 

geometric terms in his discourse about the task.  

 

Jones demonstrated similar thinking with words used in a mathematical way. His use of words in 

devising a solution to the task was endorsed in geometric discourses. In such discourses, he has 

used words that are mathematically literate. An extract that follows shows Jones’ responses in an 

interview session. 

 

Researcher: Can you help me understand your solution? 

Jones: … an angle is subtended by an arc PR at the centre … also subtended at the 

circumference. 

Researcher: Ok.  

Jones: … this one … is a quadrilateral because it has four sides and is cyclic.  

Researcher: Why? 

Jones: All the vertices touch the circle. So, I can apply cyclic quadrilateral theorem on x 

and y which states that opposite angles are supplementary. 

 

The discourses of Stephen and Jones are representative of the discourses of all the participants 

about task 4.1. The tasks on circles that received appropriate word use were tasks 4.1 and 4.3 (see 

Appendix D). They used appropriate words to name the parts of a circle and state the theorem and 

properties used in their solution strategies. These were the only two tasks where all the participants 

were able to express their solution strategies with correct use. Details of their solution are discussed 

in the next chapter. Analysis of their word use is classified as mathematically literate within the 

Sfard’s (2008) framework. Their words were specific and were communicated in a clearer and 

more understandable way in describing the specific spatial ideas and relationships they intended.  

 

The more capable ones used the same geometric words (names of circle parts) in their discourses 

about the other circle tasks. For example, in task 4.2, all the Group A participants and Albert in 

Group B, used associated and accepted words in their discourse. This was evident in the discourses 

of the five participants. For example, an interview with Maxwell is shown in the extract below.  



140 
 

 

Maxwell: This is a triangle. That is LOM. 

Researcher: Ok. 

Maxwell: And this is the centre which means that this triangle is isosceles triangle. 

Researcher: Why is it an isosceles triangle? 

Maxwell: Because, any line from the centre to the circumference is a radius. 

Researcher: Ok proceed. 

Maxwell: So, from O to L is a radius and from O to M is also a radius, and the two lines 

are the same. It means we are talking about an isosceles triangle. 

 

Similar to Maxwell’s discourse, the participants expressed their thinking using literate 

mathematical words to describe the spatial concepts involved. The successful participants had 

developed a good plan about how to solve the task. The identification of the shapes and their 

connections probably enhanced their ability to identify the associated properties necessary to 

devise an appropriate plan to solve the task. Developing a high sense of problem-solving ability in 

geometry, and mathematics in general, requires a connection between the unknown and how it 

relates to the given data (Ortiz, 2016). Although this connection is seen in the participants’ 

discourses, it is mostly found in the discourses of Stephen and Jones. As PSTs are being trained to 

develop expertise on how to guide learners’ knowledge construction and develop good thinking 

processes about the subject matter, it is important that they themselves have developed deep and 

flexible thinking about topics in the mathematics curriculum to enhance their teaching 

effectiveness, particularly, in providing a reason for action (Sfard, 2008). In general, the PSTs used 

both literate and colloquial words in their discourses. There were more literate words in the 

discourses of those in Group A compared to their counterparts in Group B. This finding supports 

that of Berger (2013) and Wang (2013) who also found that learners’ discourses showed evidence 

of words used in both literate and colloquial ways.  

 

5.5 Visual mediator 

Along with words, many tasks in geometry come with some visual mediators, or prompts, that 

communicate certain important, distinctive features to learners. These visual mediators help 

learners to make meaning of such tasks. The visual mediators are often in the form of graphs, 
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tables, diagrams, concrete materials, symbols, icons, etc. (Sfard, 2007, 2008). In this study, focus 

was placed on those that are associated with geometric tasks. Hence, this study is interested in 

analysing how PSTs identify and process these mediators associated with geometric concepts. In 

other words, it was deemed necessary to analyse how the participants’ meaning-making of 

geometric tasks was informed by their visual abilities, in addition to their use of diagrams in their 

discourse. The next section discusses the PST’s use of diagrams to explain their thinking about 

some geometric concepts.  

 

5.5.1 Drawing of geometric concepts/shapes 

Drawing in geometric education serves as a medium to understand learners’ representation of 

geometric concepts. It is a means to gain insights into learners’ geometric thinking ability (Thom 

& McGarvey, 2015). The act of drawing provides learners with the opportunity to become aware 

of geometric ideas, concepts, and their relationships. According to Thom and McGarvey (2015), 

learners’ acts of drawing and their processes of attending to drawing, contribute immensely to the 

ways they understand geometric concepts, and communicate their thinking to others (Sfard, 2008). 

 

It was observed that some of the participants drew diagrams of the concepts being explored before 

trying to define them. This shows that diagrams play a significant role in the participants’ thinking 

processes. In this way, the participants seemed to have attached their defining abilities to what 

their eyes saw and perceived. For example, when Stephen (A) was asked if he could define or 

describe an angle in another way, he was seen making a sketch (see Figure 5.1) on the paper to 

explain the idea. 

 

Figure 5.1: Stephen’s sketch of an angle as a turn. 
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After the drawing, he explained that:  

When we take a ray … when it is rotated from its starting point to the terminal point, the 

space found … between the rays is called an angle.  

Based on the sketch, he connected two angles formed at the vertex of the rays, which he labelled 

with the letters A and B.  

 

This result showed that the diagram served as a visual representation of what he had in mind. The 

diagram probably enabled him to observe the important information, he needed to express with 

words. In this regard, the diagram could be considered a powerful tool for thinking. This supports 

the finding of Rizwan et al. (2018) that those who learned through diagrams explained their 

geometric ideas in a precise way. It also supports the claim by Brizuela and Gravel (2013) that 

visual representation (drawing or diagram) is a way to capture and make meaning as well as to 

interpret an idea or a phenomenon. Visual representation provides an opportunity to support one’s 

thinking and increases the ability to process information (Lowrie, 2020). This was evident in 

Stephen’s action of drawing before explaining, which shows that his thinking was supported by 

the representation (diagram drawn).  

Similarly, Cynthia (B), Jones (A) and Maxwell (A) explained their understanding of the exterior 

angle theorem of a triangle with the support of drawings, even when they had not been asked to 

do so. In their attempt to define, they drew diagrams to guide their definition. For example, 

Maxwell stated that: 

What I know is [that] if you have a triangle like this [draws] this is the exterior angle [point 

at the angle]. So, the exterior angle is equal to [the sum of] two [opposite] interior angles. 

 

 

Figure 5.2: Maxwell’s diagram to help define the exterior angle theorem of a triangle.  
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Maxwell (A), upon making the drawing, pointed to the corners marked by the arcs to explain which 

ones are the exterior, and the interior angles, in the theorem.  

 

In the same way, Jones (A) provided a representation of the theorem as shown in Figure 5.3 

 

 

Figure 5.3: Jones’ representation of the exterior angle theorem of a triangle 

 

In defining the theorem with the aid of the diagram, he said: 

… the exterior angle theorem states that when [draws] you sum two opposite interior angles 

in a triangle, it is equal to its exterior angle (Jones). 

 

Figures 5.2 and 5.3 show how some of the PSTs used diagrams to support what they wanted to say 

about the theorem. According to Hasanah et al. (2019), the goal of teaching mathematics is to 

equip learners with thinking and problem-solving skills and to develop their ability to 

communicate mathematical ideas or convey information through […] diagrams.   

 

Another observation was that the PSTs used diagrams to emphasise what they had said. They 

emphasised what they had communicated orally using visual representation to convey the intended 

information. It could also mean that these PSTs may have thought they could not do much with 

words, hence the attempt to draw to put emphasis on some aspects of key concepts they mentioned 

in their communication. For example, Alex (B) first defined a cyclic quadrilateral as “a four-sided 

figure within a circle”. When he was asked to redefine, he drew it as shown in Figure 5.4 and said, 

“This is what I mean”. He pointed to where the vertices of the quadrilateral touched the 

circumference of the circle.  
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Figure 5.4: A drawing produced by Alex to define a cyclic quadrilateral. 

 

He then redefined it as “… a four-sided figure which has its vertices touching the circle”. He may 

have embraced the notion that a diagram is worth a thousand words (Jones, 2013). It is also seen 

that the use of the diagram helped him to use the appropriate geometric terms in his discourse. 

According to Sfard (2008), the use of drawings helps learners to keep their discourse focused. 

 

Attention is paid to the use of diagrams for diverse reasons. Some of the participants, who found 

it difficult to provide word-descriptions of some geometric figures and concepts, resorted to 

drawing as a means of explanation. For example, Maxwell (A), when asked to define a cyclic 

quadrilateral, responded that “… I can draw it but the definition noo …” Maxwell’s sketch is 

shown in Figure 5.5.  

 

\ 

Figure 5.5: Maxwell’s sketch for a cyclic quadrilateral 

 

This shows that Maxwell had a good mental image but found it difficult to offer verbal or word 

descriptions for this geometric concept. It suggests that Maxwell has difficulty in defining 

geometric concepts. He could not translate the image in his mind to verbal representation, even 

though he was able to correctly represent it in a visual form. Just as learners should be guided to 
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use diagrams to convey mathematical ideas (Hasanah et al., 2019), they should be guided to make 

verbal descriptions of diagrams used in learning. Mudaly and Naidoo (2015) assert that creating 

diagrams contributes to understanding. If Maxwell had reflected on the diagram created, he could 

have made some meaning from it and expressed it in words. 

 

The PSTs’ act of attaching their defining abilities to what they had visualised or seen, suggests 

that diagrams play a significant role in geometric discourse, both in learning and recalling abilities. 

Those who drew diagrams to support their defining and describing abilities might have felt 

incapable of defining those concepts alone, without sketches. Thus, they used the diagrams to 

support their verbal representation of concepts. Gagatsis (as cited in Mudaly & Reddy, 2016) 

asserts that visual representation provides learning support in the reflection and communication of 

mathematical ideas. Sfard (2008) remarks that most mathematicians often resort to visual imagery 

for abstract discourse. These visual images are drawn to help keep the discourse focused when 

communicating with others.  

 

The questions to solicit their thoughts about sketching certain types of angles, were favourably 

answered by all the participants. They were able to sketch and indicate the opening of the arms as 

related to the questions asked. Appropriate thinking and the ability to sketch the various angle 

types are necessary, because the angle types also formed the basis for learning the classification of 

triangles by angles. All the participants at some point in time, drew diagrams to indicate their 

understanding of the various concepts explored in the study and also to support their explanations. 

Sfard (2008) asserts that the use of diagrams helps learners to express their ideas in a most 

enhanced way. She adds that learners’ understanding and use of visual cues is important for 

learning mathematics.  

 

5.5.2 Visual ability (Visual interpretation) 

Visual ability is one of the important tools for learning geometry, and mathematics in general 

(Attanasova-Pachemska et al., 2016; Sfard, 2008). Most tasks in plane geometry are presented in 

diagrams, which requires the ability to interpret, or make sense of diagrams through our visual 

senses. When the participants were asked to explain how they organized their thoughts to solve 
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the tasks, they were seen to base their stories by relying on how the structure of the diagrams 

looked to them. 

 

Task 1.1 contained a number of angles formed on a straight line, which required the PSTs to solve 

for the unknown angle involved. This was a task that required minimal visual ability as a tool for 

devising a solution. All the PSTs interpreted the task correctly and demonstrated knowledge of the 

value of the visual cue (90o) which they used to devise the correct solution. Data showed that, 

comparably, all the participants had understood the concept of adjacent angles on a straight line 

and could apply it to solve related tasks. They solved the task correctly because they were able to 

interpret the visual cues used in geometric communication to aid understanding and, to guide their 

thinking processes to design an appropriate plan to solve it. Stephen’s and Maxwell’s explanations 

are noted below: 

 

… Looking at the diagram that is given, we have three angles all on a straight line 

(Stephen, A). 

… These are angles on a straight line (Maxwell, A). 

 

In trying to understand their interpretation of the visual cue, they all mentioned that the sign shows 

an angle value of 90o which they used in their calculation. Such thinking of the PSTs was expected 

because of their long exposure to learning geometry up to their current level of study. They may 

have been exposed to such symbols in geometric instruction in their previous studies.  

 

The PSTs exercised varying degrees of visual ability to understand and solve the rest of the tasks 

in the study. The way they understood the tasks resulted from the extent to which they visualised 

and interpreted them. Visualisation is the process of creating mental images and manipulating 

these images to make discoveries and understand mathematical problems (Attanasova-Pachemska, 

et al., 2016). Arcavi (2003) puts visualisation in a figurative form by considering it as “seeing the 

unseen”. This notion is supported by Mudaly (2021, p. 2) when he asserts that “visualisation 

involves more than just seeing”. In this sense, seeing beyond the ordinary, could be termed as an 

act of visual exploration, which involves mental processes.  
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The participants analysed the tasks (1.2 and 1.3) from different perspectives when they were asked 

to talk about them. Task 1.2 is an intersection of two straight lines and task 1.3 is intersection of 

two parallel lines with a transversal. By talking about the mental process involved in understanding 

the tasks, they were to describe their internal representation of the task’s structure. There were two 

visual thinking approaches, each of which led to the correct answer. On task 1.2, Jones (A) 

demonstrated his thinking on the normal straight line concept in geometry. He stated that “this is 

a straight line … now I can see if I put a here [adjacent to 130o] … I say, adjacent angles on a 

straight line sum up to 180o”. Jones demonstrated his visually informed thinking around the 

straight line and solved the task in two steps (to be discussed in detail on routine thinking). Albert 

and Nsiah, who were both in Group B, also showed this way of thinking. 

 

The other three Group A participants and two from Group B, demonstrated visually informed 

thinking in the structure of the task design. According to Matlen et al. (2018, p. 2), “the ability to 

perceive the relational structure of a mathematical [task] allows the problem solver to more easily 

draw connections across problems or mathematical ideas, and to think more conceptually about 

mathematics”. These participants were seen to be drawing connections that may have been 

informed by their visual recognition and interpretation of the task’s structure. These connections 

probably led to the use of the emerging property of ‘vertically opposite angles’ in planning. In an 

interview with Stephen, he explained that: 

 

 ... looking at the diagram given, I can say that angle 130o is vertically opposite to the two 

angles (m and 60o) …  

 

A similar property guided, thinking solution was seen in Alex’s (B) discourse. In an interview, he 

responded that: 

… I can see that angles (m and 60o) are vertically opposite to the angle 130o. So, m plus 

60o is equal to 130o. 

 

Those who thought this way, informed by such visual processes, and in line with their associated 

properties, solved the task in a few steps (the simplest).  
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A similar property guided solution, was used to solve task 1.2, and was applied to task 1.3. This 

time, six of the PSTs, three from each Group, recognised the relational structure of the task based 

on visual interpretation, hence they used the emerging vertically opposite angle property, in an 

explorative routine solution. In a probing dialogue with Maxwell (A) on why he used that solution 

strategy, he said: 

 

I realised that … I will have to first find the value of x … to make the work simpler 

… finding the values of x, I will be able to apply …  the properties to find the rest 

Delving into his thinking, he was asked to explain why he said solving for x first will make the 

work simpler. He responded that: 

… because this is [pointing at  3(𝑥 − 20)]  and this [pointing at 2x], the two angles facing 

each other …are vertically opposite. 

 

In Maxwell’s discourse, he claimed that “I will have to first find the value of 𝑥 … to make the work 

simpler”. This has support from Matlen et al’s. (2018) claim that when learners have perceived 

the relational structure of a task, they are able to easily draw connections among the mathematical 

ideas, which reflects the ways a solution is devised. Results show that those who demonstrated 

high visual abilities were able to devise solutions informed by properties associated with the task’s 

structure. Several studies (Anwar & Juandi, 2020; Lowrie et al., 2018; Riastuti et al., 2017) have 

shown that learners with high visual abilities often possess high problem-solving abilities and are 

able to devise solutions in the most the efficient ways.  

 

Participants’ visual sense of thinking is informed by their exploration of geometric concepts. 

Attanasova-Pachemska, et al. (2016) assert that several reasons support and substantiate 

visualisation abilities for teaching and learning mathematics. They add that seeing things 

differently is not inborn, but something that can be created and learned. Many of the participants 

in task 1.3, substantiated their narratives about geometric concepts and theorems relying on their 

visual abilities. Visualisation plays a significant role in teaching and learning geometry, where 

most of the tasks are presented in diagrams. Learning geometry is enhanced when one has high 

visualisation ability. Mudaly and Reddy (2016) assert that to visualise is to see in your mind, either 

from an internal or external perspective. It is a tool for learning mathematics and geometric 
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concepts by interpreting important features of diagrams and geometric figures or shapes, to 

enhance conceptualisation of geometric ideas. Even though all participants provided the correct 

solution to the tasks, it was observed that those who devised the most enhanced and easiest 

approaches, were those who utilised a high sense of visual thinking in the contextual structure of 

the task design. This ability was found more in the discourses of the Group A participants 

compared to their counterparts in Group B.  

 

According to cognitive science, “we learn to see, we create what we see; visual reasoning or 

‘seeing to think’ is learned, it can also be taught, and it is important to teach it” (Attanasova-

Pachemska et al., 2016, p. 33). The authors assert that learning to see and creating what to see are 

among the reasons that make visualisation a powerful tool for enhancing learners’ understanding 

of concepts in many disciplines, including mathematics. According to them, effective 

implementation of the visualisation process is useful for making mathematical discoveries and 

understanding mathematical problems. As mentioned in the previous submission, those who 

utilised skillful visual abilities demonstrated enhanced strategies for solving the task beyond the 

more basic ones of using adjacent angles on a straight line. The phrase in Attanasova-Pachemska 

et al.’s (2016) assertion, ‘seeing to think’ is shown in the discourses of the participants. Clement’s 

(A) planning about how to solve the task was based on his ability to interpret certain key portions 

of the task through visual mediators as declared in his expression, “I observed from the diagram 

that …” Thus, Clement verified his approach based on what he observed. According to Mudaly 

and Reddy (2016), visualisation plays a significant role as a tool used to verify a solution. 

 

The participants’ sense of visual thinking was the most important tool for exploring and 

understanding all aspects of tasks on plane geometry. When they were asked to find the unknown 

angles in the given triangles, they were all observed to be interpreting the task construction through 

the sketches of the diagrams. In the process, they were observed to be using their pens to trace 

some portions of the task. 

 

For example, in tasks 2.1 and 2.2, the solutions and discourses of the PSTs’ showed that more 

participants in Group A demonstrated a visual ability to see beyond the ordinary sketches. Of the 

eight participants, the five who used the exterior angle theorem of a triangle as demanded by task 
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2.1, comprised all the Group A participants and one from Group B. It must be added that whilst 

all the PSTs solved the task correctly, the approaches used showed the degree of iteration between 

their visual ability and thinking, which deals with how they connected the external representation 

of the task to their internal processes. 

 

One characteristic feature of visualisation is the ability to solve complex tasks, which is linked to 

mental manipulation of visual information in connection with related, or existing ideas, to discover 

new emergent patterns (Anwar & Juandi, 2020). Task 2.2 seemed complex for many of the PSTs 

(see Figure 5.6). 

In the figure, PQRS and PUT are straight lines. 
oPQU 120= , If QUPQ = , find .URS  

 

Figure 5.6: A task with combinations of triangles. 

 

Three of the Group A participants were able to apply the exterior angle theorem, but only to the 

immediate triangle QRU. Of the three, two demonstrated knowledge of applying the theorem to 

the bigger triangle PRU. Stephen, one of the two, showed knowledge of using the bigger triangle 

PRU from the start but preferred applying the theorem to the immediate triangle QUR. In the 

interview, he said:  

to find angle URS, emm… I can choose to use the exterior angle theorem either for this 

triangle [pointing at triangle QRU] or for the greater triangle [PRU] but I chose this 

[triangle QRU] triangle. 

Similarly, Clement, when asked if he could solve the task with an alternative approach, said: 

Yeah, this time around I will still use the exterior angle property, but this time it is a little 

bit short. Ok, I will find angle QPU, which I got 30o. Since angle RUT is 90o by indication, 

I know that … this place [pointing at angle PUR] can also be 90o … the exterior angle 
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theorem, I will … add the 30o to the 90o … [to] be equal to angle at this place [pointing at 

angle URS]. 

 

The rest of the participants (five), who may have found the task to be a bit complex, preferred 

using the straight line algorithm to solve the exterior angle. In their study, Atanasova-Pachemska 

et al. (2016) reported on an explanation given by teachers, that learners get confused in applying 

their visual abilities to complex geometry tasks. Hence, they prefer to use known formulae and 

procedures to obtain the solution.  

 

Communication on geometric concepts with oneself, and even with others, may be ineffective if 

the object of talk cannot be seen or imagined (Sfard, 2008). Objects seen “help interlocutors in 

making discursive decisions and in sustaining the sense of mutual understanding” (Sfard, 2008, p. 

147). This feature was observed in the discursive actions of the participants. At some point in time, 

they were seen murmuring to themselves (although not loud enough to be heard) as part of devising 

strategies to understand and solve the task. This action could also be referred to as internal 

communication, or talking with oneself, either heard or not (Sfard, 2008). 

 

Similar visual thinking, guided by the structure of the task design, was used to solve the tasks on 

quadrilaterals and circles. For example, the participants were observed to be making visual 

interpretations of the angles subtended at the various parts of the circle, in relation to the related 

arcs.  

 

Tasks on quadrilaterals and circles, similarly required thinking based on visual interpretation about 

an angle subtended at the circumference and at the center of a circle by the same arc, and possibly, 

a cyclic quadrilateral. All the participants described their thought processes in mathematical ways, 

informed by their visual recognition. All the participants were observed to be interpreting some 

important features of the task design. They were seen to be moving the pen around the angles 

formed by the arc PR. Analysis of the participants’ discourses show that their actions were 

informed by their ability to recognise and interpret what triggered their visual abilities.  

 



152 
 

Thinking is a complex activity in problem-solving processes, in which information is processed in 

the mind (Anwar & Juandi, 2020). The participants processed the visual information to aid their 

understanding in devising solutions to the variables involved. It appeared that their line of visual 

reasoning about task 4.1 (see Appendix D) was a demonstration of what they have been exposed 

to in most of their instruction and learning activities. Their discursive actions of finding the 

unknown angle at the centre before finding the angle x at the circumference, could be linked to a 

prototypic diagram found in many books, as well as what happens in traditional mathematics. It 

has been a normal practice that in most cases, the angle at the circumference is always drawn on 

top of the centre angle subtended by the same arc. Therefore, their thinking of finding the angle y 

before x, was not triggered by their visual senses. Analysis of the solution path showed that, their 

visual interpretation was more linked to a prototype form of the task, which seemed to dominate 

their mental image. A similar finding was reported by Cunningham and Roberts (2010) when they 

stated that pre-service teachers lacked the understanding to interpret prototypical geometry tasks 

seen in many textbooks. This often leads learners to rely on recall of previously endorsed 

narratives, to substantiate their new narratives (Sfard, 2008). Even though that task was solved by 

all the participants, the approach used showed some evidence of rigid thinking.  

 

5.5.3 Symbolic Mediator 

Symbolic mediator, for the purpose of this study, is used to mean visual cues or mathematical 

notations that used to denote mathematical concepts. Sfard (2008) asserts that symbols are artefacts 

that need to be operated upon or interpreted to produce endorsed narratives. They are visual objects 

created purposely for communication in a discourse. Many forms of symbols are used in 

communicating concepts in geometric discourse. The advantages of paying attention to such 

symbols in solving problems in geometry, were discussed in the literature (see Chapter 3, section 

3.3.2.1). 

 

With task 2.2, which required the participants to find the value of the unknown angle, which was 

communicated with a symbolic mediator, they were observed to be drawing some connections 

between the symbol and the task design. This observation was made at the initial stages of 

engaging with the task that reads, ‘In the figure, 𝑃𝑄𝑅𝑆 and 𝑃𝑈𝑇 are straight lines, ∠𝑃𝑄𝑈 = 1200. 

If |𝑃𝑄| = |𝑄𝑈|, find ∠𝑈𝑅𝑆’. Some tried to understand the worded instruction governing the task 
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and were observed to be associating, or connecting, the symbolic information |𝑃𝑄| = |𝑄𝑈|, to the 

diagram. They were seen to be identifying the line segment 𝑃𝑄̅̅ ̅̅  and 𝑄𝑈̅̅ ̅̅ . In the process of 

identifying the  ∠𝑈𝑅𝑆, they were observed to be moving their pens along the line segments UR 

and RS to locate the space between them, relative to the vertex.  

 

This action was taken because, as with the other geometric tasks, the angle to be found was not 

labelled by any variable. This meant that the participants’ inability to identify, interpret and 

connect symbolic mediators with the diagram, could be a hindrance to solving the task 

successfully.  

 

All the PSTs were able to identify the required angle using a symbolic mediator. This showed their 

understanding and interpretation of the symbol used to represent the angle. For example,  ∠𝑈𝑅𝑆 

means an angle with a vertex R with sides 𝑈𝑅̅̅ ̅̅ and 𝑅𝑆̅̅̅̅  (Smith, 2012). Pre-service teachers should 

be able to acquire and demonstrate adequate knowledge of angles and the various symbols used in 

the discourse, to teach those concepts of geometry in the mathematics curriculum (Duatepe Aksu, 

2013). Sfard (2008) asserts that the production of narratives is informed by the symbolic realisation 

governing that discourse. The participants’ narratives about the symbolic mediator ∠𝑈𝑅𝑆 have 

general endorsement in the learning community of geometric discourse.  

 

Even though all the participants were able to interpret the angles to be found in task 3.4 (see Figure 

5.7), the task seemed to pose some difficulties for the participants’ visual interpretation. Of the 

eight participants, only Stephen (A) could successfully interpret the visual cues of the task, leading 

to a successful solution. Many did not attempt it at the testing stage, whilst those who attempted it 

demonstrated inadequate thinking which may have resulted from weak visual interpretation. For 

example, when Cynthia was asked to try it, her response was that “this task looks confusing”.  

 

Maxwell’s explanation based on visual interpretation of the geometric task 3.4, shows an error in 

thinking according to his visual recognition. Maxwell (A) made a wrong visual inference about a 

line he interpreted to be perpendicular even though there was no symbolic indication of 

perpendicular angle relations between the two intersecting straight lines (see Figure 5.7).  
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Figure 5.7: A task that seems complex for the participants’ interpretation. 

 

Based on his interpretation, he used a value of 90o by asumming that line DX is a vertical to line 

AB. When he was asked for justification, he said “that is how I see it”. An interview with Maxwell 

is as follows: 

Maxwell: As I said the properties of parallelogram, so, since angle this … is the same as 

this angle … angle and is 82o. 

Researcher: Ok. 

Maxwell: We are looking for this angle [referring to a] and because of the line [pointing 

to line DX] I used the right-angled triangle. [see Figure 5.7] 

Researcher: Which side did you say is 900? 

Maxwell: This [pointing to the angle line DX makes to the left of AB]. 

Researcher: Why did you say it is 90o? 

Maxwell: It looks like a perpendicular line. 

 

Analysis of Maxwell’s (A) discourse reveals that he was misled by what he saw regarding 

relationships between the line segments. Geometric discourse, together with words, use symbols 

to provide the intended meaning to learners. In addition to symbols, diagrams are often designed 

with what Sfard (2008) terms as iconic mediators (to be discussed in detail in the next section), to 

communicate intended meaning, to aid full understanding of the task. This is what, Maxwell 

possibly did not take time to observe, to clarify his thinking.  

 

In a similar manner, task 4.5 on circles, used a symbol to communicate the angle to be calculated. 

Four of the Group A and one Group B participant devised strategies by interpreting the geometric 

task, by matching it with the symbolic mediator XQY , the angle to be found. Those who provided 
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the correct answer were observed to rely on visual cues, to identify the part of the diagram that had 

been represented by XQY . This was evident through their hand movements of tracing line 

segment XQ ( XQ ) and line segment QY ( QY ) to determine the opening at the point where the 

two straight lines intersect (vertex). These participants claimed to have used their visual thinking 

abilities to understand the task which enabled them to devise appropriate strategies to solve it. 

 

5.5.4 Iconic Mediator 

Iconic mediators are visual representations (marks) used to design diagrams (Sfard, 2008). These 

iconic realisations are essential in mathematics discourse, particularly geometry, where most tasks 

are presented in diagram form. Sfard (2008) claims that learners need to identify and interpret 

visual representations to enhance their successful learning of school mathematics. These iconic 

mediators serve as a warrant to mathematicians’ production of narratives about geometric objects. 

As part of analysing the participants’ geometric thinking, some of the diagrams were designed 

with icons to communicate the intended meaning of certain geometric ideas governing the tasks. 

The participants were required to utilise their visual abilities to identify and interpret, to fully 

understand the question and its demands. The intention of such tasks design, was to see how well 

the participants could pay attention to and interpret the iconic realisations to understand and solve 

the task as required.  

 

All the participants interpreted these mediators during the interview sessions. They substantiated 

their narratives by relying on the visual cues of the sides containing the hatch marks. This was 

evident in their discursive actions. In an interview with Jones (A) on task 2.3, he explained that: 

 

 … I first considered triangle PQU which these marks [pointing at the marks made on sides 

PQ and QU] indicates it is an isosceles triangle. … So, it means that the angles that is 

facing each side [pointing to the equal sides] they are the same. 

 

Analysis of Jones’ discourse in substantiating his actions in every step, shows that he has gained 

a good level of fluency in interpreting symbolic artefacts used in geometric diagrams. This 

interpretation was evident in all the participant’s’ discourses, which informed their routines of 

representing the angles opposite the equal sides of the triangle, with the same variable to indicate 
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that both angles had the same measure or were equal in value. This shows that their mathematical 

discourse aligns with literate geometric discourse. According to Sfard (2008, p. 148), “artefacts 

include icons such as individually designed diagrams …”. She goes on to say that learners’ fluency 

in such discourse remains the ultimate goal in learning mathematics in school. Choosing a solution 

path to complete such tasks depends on one’s interpretation.  

 

The highlight of Jones’ discourse is that he substantiated all that he said, even when he had not 

been asked to justify. He indicated the location of the angles in the diagram and provided names 

for the geometric shapes based on his visual recognition of the iconic mediators on the task. This 

is seen in his response, “I first considered triangle PQU which the marks [pointing to the marks 

made on sides PQ and QU] which indicates it is an isosceles triangle”. Thus, the marks (iconic 

mediators) on the geometric shape were used as a visual cue, or a visual trigger, that informed his 

thinking (Arcavi, 2003; Sfard, 2008). What is also worth mention, is his geometric fluency in 

interpreting the meaning of the iconic mediators in relation to devising strategies to solve the task, 

as expressed in his discourse, “so it means that the angles that are facing each side are the same”. 

According to Sfard (2008), narratives can be substantiated based on memory recall that is linked 

to previously endorsed narratives. This assertion can be associated with Jones’ discourse of linking 

the visual information to other endorsed narratives of equal angles. Jones’ initial discourse is a 

representation of what was observed about the discourses of all the participants. Different 

approaches were used to find the required angle URS.  

 

In all the tasks designed with the iconic mediators, the PSTs relied on their visual abilities to 

interpret them, to inform their discursive actions (Sfard, 2007, 2008). Analysis of their discourse 

shows that their actions were based on what they saw on the diagram. The participants’ relied on 

things seen to inform their thinking of the names of the geometric shapes and the properties 

associated with them. This is evident in Stephen’s discourse when he said, “when I look at the 

diagram, I realise that I have line PQ to be parallel to SR and QR to be parallel to PT”. This 

diagram was a quadrilateral with arrows on both of its opposite sides. This figure received the 

same interpretation from all the PSTs, even though not all of them could identify the appropriate 

properties to solve it. Their inability to solve the task could be a result of their weak internal 

processes.  
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The results show that many of the PSTs’ successful attempts to solve the tasks, were as a result of 

their understanding of the iconic realisations about the tasks. According to Sfard (2008), learners’ 

problem-solving abilities are supported by the realisation and meaning making of iconic mediators 

about tasks. She adds that frequent use of such realisations in solution procedures is necessary for 

individualising learning. It could mean that these PSTs may have frequently been exposed to, and 

used these iconic realisations in their previous learning.  

 

5.5.5 Concrete Mediators 

Concrete mediators are materials in the real world that are associated with, or used, in the teaching 

of mathematical concepts (Sfard, 2008). Concrete mediators, commonly known as physical 

manipulatives, are the available materials in one’s environment that are normally used to teach 

mathematical concepts. It was observed that two of the participants, one in each Group, used 

concrete mediators in explaining their thinking about geometric concepts, such as the formation of 

an angle. Albert (B) crossed his arms to form an X shape. Also, Clement referred to playing 

materials in our environment to explain the concept of an angle, when he was asked whether he 

could explain an angle in another way. He said, “angle again can be defined using the normal 

shapes that we have been playing with in the house. I know that whenever there … are shapes or 

boards… when they are joined together, an angle is formed”. This shows that these two individuals 

have acquired the knowledge of using materials around us to explain the concept of an angle. The 

use of materials to teach mathematical concepts enables learners to take an active position in the 

teaching and learning process and also enables them to verbalise their thinking (Jones & Tiller, 

2017; Mudaly & Naidoo, 2015). Within the commognitive theory, Sfard (2008) argues that 

learning with concrete mediators helps learners produce endorsed narratives and also to express 

ideas with relatively few words. 

 

5.6 Narratives 

A narrative is any spoken or written text, usually “framed as a description of objects, of relations 

between objects, or of activities with or by objects” (Sfard, 2008, p. 134). According to the author, 

these narratives can be labelled as true if they are known and well accepted mathematical facts. 
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Berger (2013, p. 3) adds that in a formal mathematics learning community, the narratives are 

approved and are called “mathematical theories”, which can be axioms, definitions, or theorems.  

 

The PSTs were required to produce narratives to substantiate or justify their discursive actions. In 

other words, they were expected to justify their actions based on an accepted discourse on the 

objects under consideration. The participants’ responses are presented in the following sections. 

This would be brief as some have been discussed in the previous sections, in the context of their 

word use. Issues of certain definitions have been discussed with particular focus on the wording 

of such discourse.  

 

In the content of angles and straight lines, all the participants demonstrated adequate knowledge 

of mathematical statements (endorsed narratives) required to substantiate new narratives produced 

about the tasks.  In answering task 1.1, they added the angles and equated them to 180o. This action 

was substantiated by the narrative that ‘the sum of adjacent angles on a straight line is equal to 

180o’. Similarly, in tasks 1.2 and 1.3, which dealt with the intersection of two straight lines and 

two parallel lines crossed by a transversal, respectively, those who preferred solving for the angles 

along the straight line(s), justified their approach with the same mathematical statement for task 

1.1. Others who observed the emerging properties of these tasks used endorsed properties such as 

those of vertically opposite angles, corresponding angles, and alternate angles, to equally 

substantiate the properties associated with the intersection of two parallel lines with a transversal. 

Analysis of their responses shows that many participants in Group A produced object-level 

narratives compared to their counterparts in Group B. Whilst all the participants could produce an 

endorsed narrative of the concept of parallelism in solving task 1.4, Alex (B) could not think of 

any, and hence could not solve the task.  

 

Data on triangles show that their arguments were substantiated by their knowledge of angle 

properties related to the object. They substantiated their action of modelling or developing an 

algebraic equation connecting the angles of a triangle by its related narrative. All participants 

substantiated the equation modelled by the narrative that ‘the sum of interior angles in a triangle 

is 180o’. Learners’ geometric discourse on angle sum in triangles should be backed by the 

statement that the sum of angles in a triangle is 180o (Smith, 2012). Similarly, they produced an 
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associated narrative to justify their discursive actions on tasks in quadrilaterals and, those 

involving circles. Throughout the study, it was observed that many discourses of Group A 

participants were found to contain substantiation compared to their Group B counterparts, who 

provided upon request for justification. Yehuda et al. (2005) assert that a person's competence in 

finding solutions to tasks is often shown by their ability to substantiate. The habits of the PSTs in 

Group A support this claim. 

 

A narrative is endorsed at any level of scholarly mathematical discourse if it can be derived from 

other endorsed narratives in accordance with universally accepted principles (Sfard, 2008). It was 

observed that before the participants produced the governing properties of the shapes, they focused 

on the iconic mediators to identify the shape, to produce the correct associated properties. 

 

5.7 Routines involved in the participants’ solutions 

According to Sfard (2008, p. 234), a routine is “a set of metarules that describe a repetitive 

discursive action”. In other words, they are the steps that are followed to solve mathematical tasks 

in which each step of the solution is produced based on the previous action (Roberts & Le Roux, 

2018). In geometry, particularly in non-worded tasks, which are often in diagrams, angle relations 

are modelled based on one’s understanding of angle properties or theorems related to the task.   

 

The repetitive patterns were associated with the approach used in modelling the angle relations 

(algebraic equations) governing the geometric figure, to solve for the angles involved. The 

participants engaged in several repetitive routines to solve the tasks. The routines involved the use 

of sequential steps in simplifying the algebraic equations modelled to the tasks. In effect, varied 

routines were demonstrated by the participants across and within the geometric tasks. Most of the 

modelled equations were linear, which gave some insight into how the PSTs solve linear equations. 

It is worth mention that though the focus of this study was more on geometric thinking than 

algebraic thinking, how they solved the equations was equally important in analysing the 

mathematics knowledge held by pre-service teachers for teaching (Ferrer, 2020; Strand & Mills, 

2014). 
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In all the equations modelled by the PSTs, it was observed that they solved for the unknown in an 

objectified way. They produced discourse that showed their knowledge of maintaining the 

horizontal equivalence between the left-hand and right-hand of the equations. They used each 

equation as a signifier to generate the next equation, with features of objectified discourse 

maintained (Sfard, 2008).  The discursive sequence of operations executed by the PSTs, included 

the use of distributive property to clear or remove bracket(s) from the equation, and the use of the 

additive and multiplicative inverse. For example, when Jones formulated the equation

ooa 180130 =+ , he said, “I can say I will subtract 130o from both sides”. Cynthia also said, “so 

you subtract 80o from both sides …” This shows that the PSTs (with some evidence in solutions) 

possess knowledge to solve linear equations with guiding discourses that are endorsed in the 

mathematics learning community (Sfard, 2008). Details of the PSTs’ routines, used in their 

solution strategies along the path of ritual and exploratory discourse, are presented in chapter six.  

 

5.8 Conclusion 

The chapter started with a discourse analysis that showed how the participants’ discursive thinking 

was analysed. Representative discourses of the participants have been discussed based on their 

competencies and deficiencies in geometric thinking. The chapter presented and discussed 

participants’ discourses with regard to the constructs of the framework, with support from the 

literature.  

 

The focus of this chapter was to introduce the participants’ discursive thinking in geometry. The 

next chapter deals with the detailed discussion of their routines along ritual and explorative ways 

of thinking in solving the geometric tasks. 
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CHAPTER SIX 

ROUTINE GEOMETRIC THINKING 

6.1 Introduction 

In Chapter Five, the PSTs’ solutions and their explanations about their thinking processes 

regarding the given geometry tasks were analysed in terms of the constructs of the commognitive 

framework. This chapter deals with the analysis of the participants’ geometric routines, in search 

for the presence of ritual and explorative discourse in the strategies they used to solve the geometry 

tasks. 

 

Placing geometry in the commognitive theory assumes that geometric communication exists 

between signifiers. These signifiers support communication in different representations. These can 

be in the form of spoken language, diagrams, symbols and icons. Such signifiers offer a broader 

understanding of, and concept development in geometric discourse. Learners’ competence in 

geometric discourse is marked by their knowledge of these signifiers in their various forms.  

 

The results of the PSTs’ routine solutions to the tasks, were analysed based on the classifications 

and characteristics of ritualised and explorative routines within Sfard’s (2008) commognitive 

framework. According to Sfard (2008), both ritual and explorative routines are important in 

mathematics education. They complement each other in developing learner competence in 

mathematics. In other words, ‘how’ to solve a particular task, and ‘when’ and ‘why’ such an 

approach works, are central to the teaching and learning of mathematics, even though the focus of 

school mathematics is to produce learners with explorative thinking, which focusses on the ‘when’ 

and ‘why’. Sfard (2008) asserts that rituals are acceptable at the initial phase of learning but should 

be a basis for the learner to understand the ‘when’ and the ‘why’, which shows a learner’s transition 

from ritual discourse to explorative discourse. In the following sub-sections, the participants’ 

ritualised routines are described in an attempt to draw attention to the window of explorative 

routine. 
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6.2 Ritual discourse 

In Sfard’s (2008) commognitive framework, a discourse is ritual if it contains talk and actions on 

entities in a dis-objectified manner. The author associates ritual discourse with performing the 

‘how’ of a routine, which uses a set or meta-rule to solve a task. Therefore, in trying to analyse the 

PSTs’ ritual routines, evidence in the ways and manner in which they demonstrated their thinking 

and skills for solving the geometric tasks presented to them, was sought for. The participants’ ritual 

routine is discussed under four (4) sub-themes:  

1. The use of step – by – step solution strategy 

2. Series of (computational) steps in solving a task  

3. Devising a solution using a simultaneous equation 

4. Narrow range of applicability/less attention to important features of the tasks 

 

Apart from task 1.1, which required the application of the property of adjacent angles on a straight 

line, which is often termed the ‘straight line algorithm’, in the write up, it was used quite 

frequently, even when the task design necessitated a simpler approach by its objectified property.  

 

6.2.1 The use of a step-by-step solution strategy 

Rituals, according to Sfard (2008), are the unique guidelines that govern an action and are pre-

established by people in positions of authority, such as authors, professors, or lead discussants. 

Rituals are the fundamental building blocks of a discourse and address "how" to carry out an action. 

It can be viewed as the operation of an algorithm that carries out a task in a step-by-step approach. 

Sfard (2008) asserts that an initial step in acquiring a new notion, is to imitate an authoritative 

figure by adhering to a set of rules. This is regarded as first-hand knowledge, upon which additional 

content is developed. 

 

Task 1.2 required the participants to find the value of the unknown angle represented by the letter 

m. Generally, the value could be found by using the angle property on a straight line, or the 

application of vertically opposite angles (vertical angles), depending on one’s understanding. All 

the eight participants solved these tasks correctly using different approaches. Of the eight, four 

(one in Group A and three in Group B) used the angle property on a straight line to solve the task 

on a step-by-step basis, whilst the remaining four used the vertical angle property. Those who used 
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the step-by-step approach first calculated the angle, labelled p (Nsiah’s plan), which is adjacent to 

1300 on a straight line CD, before considering the angle p together with angles m and 600 on 

another straight line AB. This process is evident in Nsiah’s (B) solution to task 1.2 as shown in 

Figure 6.1. 

 

Task 1.2: Find the size of the angle marked 

by m. 

 

 

 

 

Figure 6.1 Nsiah’s step-by-step solution to task 1.2. 

 

In trying to understand their thought processes governing the solutions provided, the participants 

were interviewed as follows: 

 

Researcher: Could you help me to understand how you solved for the value of m? 

Nsiah (B): … I used angles on a straight line to first find the value of p. With this, I added 

p and 130o and equated to 180o, and subtracting 130o from 180o, I got the p to be 50o. Now, 

using the horizontal straight line, I added the three angles and equated them to 180o. I then 

solved for m which is 70o. 

In a similar manner, Albert (B) explained that: 

 … I used the approach of angle on a straight line. So, I have 130o plus the ‘a’ so their sum 

is equal to 180o. So, I calculated for a. Equally, … I have my angles a and b, and I can say 

they are vertically opposite angles and are equal. … considering this straight line 

[referring to straight line AB] b plus m plus 60 o gives me 180o. I make m the subject and 

solved it to get 70o. 
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It is evident from the preceding excerpts, which are similar to the explanations of the other two, 

that they used the step-by-step approach to work with different straight lines (or the same) to obtain 

their answers. The participants’ ability to devise solutions to the task could result from several 

processes. These participants, upon visualising the task, may have recognised a straight line which 

they internalised, to produce the preferred solution. They seemed to have their a priori knowledge 

more linked to straight lines.  

 

Albert’s explanation shows that he knew of vertically opposite angles, but he chose to work on the 

observed straight line. His knowledge of vertical angles is shown in his solution below:  

 

Step 1 

 
Step 2 

 
 

Step 3 

 

 

Step 1:  

Step 2:  

Step 3:  

Figure 6.2: Albert’s solution to task 1.2 with substantiating narratives. 

 

He explained that “I have my angles a and b, and I can say they are vertically opposite angles and 

are equal” [Refer to Figure 6.1, Task 1.2]. He labelled the angle adjacent to 130o on the straight 

line AB as a. He then related the angle value of a (50o) to that of b (the angle space adjacent to [m 

and 60o]) also on straight line AB and supported by the narrative ‘vertical angles’ (Step 2, in Fig. 
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6.2). He used the straight line AB to solve for the value of m. It is evident in Albert’s discourse that 

he preferred using the straight line in a horizontal appearance or prototype view. His preference 

for the use of the straight line could be linked to his internal representation of the task that resulted 

from his visual ability. Albert’s mention of vertical angles, associated with the intersection of the 

two straight lines AB and CD, could also mean that he did not exercise his visual ability to see 

beyond the ordinary, that the angle 130o is also vertical to the sum of (m and 60o) and hence, equal 

in value. Thus, the task was mentally manipulated at a shallow level by Albert.  

 

What was different from Jones’ solution was that his conception of a straight line seemed to be 

more open compared to that of Albert. When he first calculated the adjacent angle to 130o on the 

straight line AB, and then used the value obtained (50o) on the straight line CD to calculate the 

value of m. In all the solutions devised using the step-by-step approach, these four participants 

showed adequate knowledge of the procedures needed to solve the task and explained their 

thinking, which showed fluency with the procedure. 

 

The participants’ ability to solve the task resulted from an internalisation process that took place 

upon recognition of the straight lines. Internally, they may have connected the straight line seen to 

a picture in their minds, which possibly informed their thinking, and formulated the equation on 

the straight line angle value.  

 

Some of the participants were more capable of using the straight line algorithm and other 

fundamental concepts in geometry to find answers to some of the tasks on triangles and 

quadrilaterals. For example, on triangles, the purpose of most of the tasks was to gain insight into 

the participants’ preferred approach of using either the ‘exterior angle theorem’ or the ‘straight 

line algorithm’.  

 

In task 2.1, the exterior angle could be solved for, using the exterior angle theorem, or otherwise. 

It was found that three Group B participants calculated the adjacent angle to the exterior angle so 

that they could easily apply the straight line algorithm to find the correct answer. They all 

explained their solutions with a clear sense of knowledge and substantiated each step with an 

appropriate geometry property. Cynthia (B) solution in shown in Figure 6.3.  
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Task 2.1: Find the values of n and m 

in the figure below. 

 

  

 

Figure 6.3: Cynthia’s step-by-step solution to task 2.1. 

 

Cynthia’s approach is a representational solution of the remaining two in Group B, who solved for 

m using the straight line approach. All the Group A participants, together with one from Group B, 

explained that they could add angles 62˚ and 75˚, as the two interior opposite angles to get the 

value of the exterior angle m as 137o. 

 

The solution strategies devised by the participants were based on how they thought about the task. 

For example, when Cynthia was asked why she solved the task that way, she said, “I used this 

approach because of the properties I see within this diagram”. This means that Cynthia’s solution 

was an externalisation of her internalisation process about the task. Her word use of “properties I 

see within the diagram” could mean that her action of solving the task was connected to her 

visualisation process that stimulated her mental action. Mudaly (2021) asserts that a person’s 

physical action of devising a solution to a task is related to his/her visualisation process. He further 

claims that “it would be difficult to conceive of a process where no mental action or image has 

occurred” (p. 2). This relation between physical action and mental action was seen in Cynthia’s 
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discourse when she said, “I used this approach because of the properties I see within this 

diagram”. 

 

These three Group B participants probably wanted to work with a clearer focus. This could be an 

approach they may be comfortable with and knew it leads to the correct answer, hence, their 

familiarity with it. Mann and Enderson (2017) partly attribute learners’ preference for a procedure-

driven approach for solving mathematical tasks, to their ease of remembering and their familiarity 

with such an approach.  

 

This finding is in line with the literature which shows that learners often prefer solving tasks using 

a set of procedures (Akhter & Akhter, 2018; Zuya et al., 2017). According to the authors, most 

learners rely on the use of algorithms to solve tasks in mathematics because it never fails.  For 

example, a study conducted by Mann and Enderson (2017) to assess learners’ preference for a 

procedure (rule or formula-driven) rather than concept-driven, found that learners preferred the 

use of a rule-based approach (procedure) to the conceptual approach.  

 

Placing this within the commognitive framework, the use of a set of procedures to solve a task is 

characteristic of a ritual routine (Sfard, 2008). Sfard (2007, 2008) asserts that ritual routines are 

characterised by following strict rules, mostly determined by the teacher or an authority. It is 

concerned with ‘how’ to get something done with no focus on ‘when’ or ‘why’ the approach works.  

 

According to Sfard (2008), learning a new concept begins with imitating an authority by following 

a set of procedures. Among the basic concepts of teaching plane geometry are ‘the sum of adjacent 

angles on a straight line’ and others, such as the ‘sum of interior angles in a triangle’, for learning 

polygons. These concepts serve as a foundation for learning geometry. For example, these two 

basic concepts are used to prove the exterior angle theorem of a triangle, for which learners (and 

teachers) are supposed to demonstrate implicit and explicit understanding, and apply them to solve 

related tasks. Thus, both fundamental thinking and high concept thinking are necessary for holistic 

understanding and use in solving problems (Al-Mutawah et al., 2019; Zuya et al., 2017). According 

to Zuya et al. (2017), knowledge of both fundamental and enhanced concepts in geometry, and 

other topics in mathematics, is needed for teachers to be effective in teaching. Sfard (2008) advises 
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that as learners are taught procedures as a way of imitating the knowledgeable other (teacher), the 

procedures must also serve as a basis to transit to explorative thinking. Even though both ritual 

and explorative routines are good for learning, Sfard (2008) maintains that school mathematics 

aims at producing learners with explorative way of reasoning. 

 

These procedure-driven solutions were discussed in the literature where researchers have noticed 

that most classroom instructions often focus on how to solve problems by showing learners 

methods and algorithms, as a way of creating familiarity with such questions (Sfard, 2008). This 

practice sometimes enables learners to memorise such procedures, with little or no understanding 

of their underlying concepts. This practice often results in difficulty in using knowledge in new 

situations.  

 

6.2.2 Series of (computational) steps in solving a task 

Sfard (2008) asserts that a person functioning within rituals can have strong procedural knowledge 

but may have inadequate understanding of the ‘when’ or ‘why’ behind such activity. These people 

typically limit themselves to using first-hand information to accomplish new tasks. Such a routine 

mode of thinking frequently results in the development of a set of computational solution steps to 

problems (Sfard, 2007, 2008).  

 

A greater number of participants used a series of steps in solving task 2.2, compared to their 

solution to task 2.1. The number increased from three, to five (one in Group A and all four in 

Group B). Maxwell’s (A) solution is representative of those who used a series of computational 

steps. See Figure 6.4. 
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Task 2.2: In the figure, PQRS and PUT 

are straight lines and .120oPQU =

If ,QUPQ = find .URS   

 

 

 

 

 

Figure 6.4: Maxwell’s solution to task 2.2 using a series of steps. 

 

Maxwell explained his thinking and substantiated his routines using the appropriate narrative. It 

was noted that, even when several angles were formed at a point by different line segments, he 

used only one letter to name the angle. Some of the angles were named correctly, whilst others 

were incorrect. The following extract shows his responses governing the solution.  

 

Maxwell: This [pointing to triangle PQU] is an isosceles triangle  

Researcher: Why do you say it is an isosceles triangle? 

Maxwell: … because of this sign here [pointing to the marks (iconic mediators) on sides 

PQ and QU of the triangle]. … the sides [pointing to sides? PQ and QU] are equal 

… definitely their angles are also equal.  

Researcher: Could you show me which of the angles are equal?  

Maxwell: This and this angle P [pointing to angle UPQ] and angle U [referring to PUQ].  

He continued that 

So, since this is 120o and the sum of the interior angles of a triangle adds up to 180o, I 

represented the equal angles by x and added them and solved to get x to be 30o. Now we 
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are looking for this [pointing to angle URS] but we have to get this angle [pointing to angle 

UQR]and this angle [pointing to angle QUR]. … is an angle on a straight line [referring 

to line segment PT on which U is located]. So, you sum the angle and equate it to 180o, 

and then you get this [angle QUR] to be 60o. … this [line PS] is also a straight line so 120o 

plus angle UQR you equate it to 180o and you solve to get 60o. Now I added this [angle 

UQR] and this [angle QUR] then I find for the angle here [pointing to angle URQ] and 

this angle R [angle URQ] is 60o then I used the angle on a straight line to find for angle 

URS. 

 

Maxwell’s responses indicate his fluency in thinking and skill in devising a plan, using a series of 

computational steps to solve the task. Those who solved the task using this approach also 

demonstrated similar thinking by using a series of computations that they were comfortable with 

to find URS . They preferred to first find the adjacent angle URQ so that they could use the 

straight line algorithm to calculate the answer. They demonstrated proficient skills in their 

solutions. All the participants demonstrated these computational solutions, except for Stephen and 

Jones, who skipped finding the angle URQ and instead, applied the exterior angle theorem to 

triangle QRU. It could be seen from the task in Figure 6.3, that the exterior angle theorem could 

also be applied to triangle PUR.  

 

The results of this study indicate that the PSTs’ solution strategy for the task was based on over-

dependence on procedures. Similar studies in the literature report this finding (Mann & Enderson, 

2017). Learners’ preference for, and over-dependence on algorithms often results from familiarity 

with such mathematical procedures (Mann & Enderson, 2017). According to Mann and Enderson 

(2017), learners are so proficient in using algorithms such that they often lack the confidence to 

explore new ways of solving tasks. This was observed in the PSTs’ solution to task 2.2. Even 

though some participants applied the exterior angle theorem to task 2.1, task 2.2 may have seemed 

new to them. The task depicted a combination of two triangles (or partitioning a larger triangle 

into two triangles), for which an application of the exterior angle theorem was equally applicable 

to the larger triangle PUR. This could mean they lacked confidence to apply the exterior angle 

theorem to the larger triangle.  Those who used the theorem applied it to the immediate triangle 

QRU. Mann and Enderson (2017) assert that lack of confidence to apply learned concepts to new 
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situations, is a challenge that needs to be addressed to prepare them for the tasks ahead (especially 

teachers). This demonstration of following a series of steps to solve the task within the 

commognitive framework, is characterised as ritual (Sfard, 2008). Sfard (2008) states that, despite 

the aim of school mathematics, which seeks to develop learners’ explorative thinking (producing 

new narratives), the most common teacher routine in the classroom has been the ‘how’ of a routine 

rather than the ‘when’ and ‘why’. This practice often limits learners’ understanding and, as a result, 

restricts their thinking to strict rules, as was found in this study. Sfard (2008) asserts that 

mathematical procedures are considered as ritual when they are not objectified to the task.  

 

A similar series of computational steps was found in two of the participants’ solutions to task 3.3. 

In the task (see Figure 6.5), only two of the angles marked by letters, b and c, required some form 

of calculation. The rest of the angles could be obtained by the application of objectified properties 

about the shapes. Almost all the participants calculated for b and c, and applied properties to find 

a and d. For angle e, Maxwell (A) and Albert (B) further used the ‘straight line algorithm’ along 

the straight sides of the triangle to first solve for angles marked z and y, as shown in Maxwell’s 

(A) plan in Figure 6.5, even though the values of those angles could be obtained by properties. In 

addition, interpreting the iconic mediators shows that angle e corresponds with angle b and are 

equal. These two participants used the straight lines along the sides of the triangle to find the angles 

z and y (see Figure 6.5) so they could solve the angle marked e by applying the sum of the interior 

angles of a triangle. Maxwell’s plan to solve the task is shown below. 
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Task 3.3: Find the value of angles 

marked by letters in the figure below. 

 

 

 

 

 

 

 

 

 

Figure 6.5: Maxwell’s solution to task 3.3 using a series of steps. 

 

The routines used by Maxwell and Albert seemed to indicate what they were familiar with. This 

led to the approach of using a well-established routine to obtain those angles. Their routine seemed 

to be a result of over-relying on the use of a straight line algorithm to devise solutions to the tasks.  

 

6.2.3 Devising solutions using simultaneous equations 

According to Sfard (2008, p. 267), many learners cling to the ritual of "doing exactly" the same 

thing they do or might have been doing with others to sustain a bond or reward. They frequently 
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use the fundamental concept or standard method of doing a task. The use of a straight line 

algorithm to solve a problem is a fundamental concept in learning geometry. Adhering to such a 

fundamental concept is one of the characteristics of a ritualised way of thinking (Sfard, 2008). 

Task 1.3 (see Figure 6.6) has two parallel lines crossed by a transversal. Angles 3(𝑥 − 20) and 2𝑥 

are vertically opposite, and a is adjacent to all the angles on either of the straight lines. Thus, the 

angles marked by letters could be solved by using a preferred approach of either the objectified 

property or a straight line approach. Clement preferred to work with straight lines and formulated 

two equations in two variables as a solution strategy. These two equations were solved 

simultaneously as shown in Figure 6.6. 

 

Task 1.3: Find the value of the angles 

marked by letters in the figure. 

  

Figure 6.6: Clement’s (A) solution to task 1.3. 

 

He explained how he devised his solution in a flexible manner. When he was probed about the 

missing steps that led to the answers, he explained that after formulating the two equations, he 

used a calculator. This approach was also used by Albert (B). Clement’s (A) and Albert’s (B) 

solutions indicate that they know how to use other mathematical ideas to solve problems on parallel 

lines.  

 

Similarly, Clement (A) used a simultaneous equation to solve task 2.3, whilst the remaining seven 

participants applied the exterior angle theorem of a triangle, in their solutions. Clement’s solution 

is shown in Figure 6.7. 
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Task 2.3: Find the angle value of x and m 

in the figure below. 

  

Figure 6.7: Clement’s solution to task 2.3, using simultaneous equations. 

 

Clement (A) described his thought processes in devising a solution to the tasks 2.3 as follows. 

This time, I used the simultaneous equation. … I found the sum of interior angles in that 

triangle. … and wrote 68o plus m plus x is equal to 180o … sum of interior angles in 

triangle. Then I took the straight line… 2x and m being adjacent angles on it. … 2x and m 

is equal to 180o. So, if I have these two equations … so, I solved both simultaneously and 

my x is 68o and m is 44o. 

 

The use of simultaneous equations to solve the tasks in geometry (parallel lines) can be viewed in 

two ways. It can have both positive and negative impacts on learning geometry, taking into 

consideration the level at which these geometry concepts are taught in Ghanaian schools. In this 

case, it can be used to validate and deepen learners’ understanding of how different approaches 

can be used to solve geometry tasks. This can help them appreciate and make connections about 

how they can apply such knowledge within and across mathematics topics. It can also boost their 

confidence in learning mathematics by the exposure to various strategies used in problem-solving. 

These qualities can be achieved when the learners are good at algebra and know how to solve 

simultaneous equations.  

 

On the other hand, a learner who has difficulty learning simultaneous equations may find this 

approach to solving tasks in geometry more challenging, and difficult to understand. A common 

difficulty found among senior high school learners is the ability to devise an effective method to 

solve simultaneous equations (Ugboduma, 2012). Simultaneous equations are perceived to be 

difficult, and as a result, most learners have little or no interest in studying or attempting such 

questions during a test or examination (Johari & Shahrill, 2020; Ugboduma, 2012). Learners try it 
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in a test or examination, not because they understand it, but purposely to pass (Shahrill, 2018; 

Shahrill & Clarke, 2019). This perceived difficulty, often prevents learners from utilising such 

ideas to any related topics in the mathematics curriculum (Johari & Shahrill, 2020). Thus, if 

learning geometry, which has been noted to present difficulty to learners (Ngirishi & Bansilal, 

2019; Robichaux-Davis & Guarino, 2016), is met with another perceived difficult concept, it can 

greatly reduce learners’ interest in learning. Interest is a crucial and important learning component. 

Ugboduma (2012) considers interest as a crucial variable for learning, and is of the view that 

learners get deeply involved in a lesson when they have an interest in it. It would therefore be 

important that where possible, learners must first be exposed to the most precise and simplest 

solutions to tasks, as an initial scaffold to learning. Alternative approaches can probably be used 

to extend their way of thinking, to deepen their understanding, and to enable them to appreciate 

different ways of solving mathematics problems.  

 

6.2.4 A narrow range of applicability/less attention to the features of the tasks 

Sfard (2008) asserts that the over-reliance on the use of procedures in learning, often hinder 

learners’ ability to apply their knowledge in new situations. She adds that the ritual practices often 

limit the ability to engage in complex reasoning in mathematics. They did not take time to explore 

and interpret other information the task may contain.  

 

Certain tasks on quadrilaterals received ritualised practices from some of the participants. For task 

3.1, which used a quadrilateral with no parallel sides, two of the participants in Group B applied 

equality to the angle properties associated with parallel lines. This can be described as a ritual way 

of thinking by over-generalising the properties of parallel lines to any task with a similar structure. 

The appearance of the lines in the task looked parallel. However, concepts in mathematics or 

geometry are communicated by the use of symbols or icons to design tasks. According to Sfard 

(2008), they are signifiers used in geometric discourse to communicate or describe certain 

important features of the tasks to learners. In this case, Alex wrongly applied the parallel line 

property, hence arrived at the wrong answer 
ox 123= , and substantiated that they are 

corresponding angles. Upon subsequent probing, he still could not describe any visually informed 

thinking of identifying whether the lines were parallel or not. When he was asked why he used that 

approach, he said, “that is properties of angles … and that one [pointing to x] is corresponding to 
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123o here [pointing to the value]”. Alex could not offer a satisfactory response when he was asked 

to indicate the condition under which we apply the equality of two corresponding angles. He 

responded that: 

 … when one angle is given and it corresponds to what you are supposed to find, then you 

use the corresponding angles. 

 

Alex’s response shows that his line of thinking seemed not to be on identifying any signifier or 

any iconic mediator about the task, but focused on the appearance of the lines. His responses 

suggest that he knows of the corresponding angle property but does not know when it is applied. 

Even though his answer was wrong, he demonstrated his thinking about ‘how’ to obtain the answer 

but could not tell ‘when’ to apply the property.  

 

Albert also explained that: 

 angle R that is angle GRS is equal to 103o that is vertically opposite angles are equal. And 

angle U [referring to angle QLM] … is 57o. So, having known angle U then I can say that 

angle x is a corresponding angle to angle FLM. So, angle x is equal to 123o. The reason is 

that they are corresponding angles.  

 

Albert was on the correct solution path when he solved for the interior angles, for which the 

remaining step was to equate the sum of the interior angles to 360o in order to find for x. Suddenly, 

he changed his decision, which was quite odd. His responses to further probing questions were a 

confirmation of his answer, with the statement that “I realise that where the x is placed and where 

I am having my 123o, they are corresponding angles”. 

 

Thus, no effort was made to ascertain the parallelism of the two straight lines. This could be 

interpreted as a weak iteration between his thinking and visualisation. According to Bruce et al. 

(2015), Clement and Battista (1992) and Sinclair et al. (2016), good visual abilities are required to 

develop good geometric thinking. Within the commognitive theory, a mathematical discourse that 

puts emphasis on the ‘how’ at the expense of the ‘when’ is classified as a ritual. Thus, by Sfard’s 

(2008) classification, their routine is ritual since their focus was more on the ‘how’ without 
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considering ‘when’ that approach works. This could also mean that, either they had forgotten, or 

they knew the properties but did not know when they are equal. 

 

Further, Alex could not make any relational geometric thinking to task 3.2, which was a 

parallelogram (see Figure 6.8). Analyses of the routines used by two of the PSTs in Group B, 

suggest that angles formed on a straight line seemed to attract their attention the most. After 

formulating angle relations of the variables informed by the straight line PT, Alex got stuck, and 

could not proceed. Several questions were asked to draw his attention to the signifiers of the task, 

so that he could draw connections between the angles. When asked how he could put ideas together 

to solve the task, he mentioned the straight line and the opposite angles properties, but became 

silent for a while and said he had forgotten. Finally, he said the angles marked by variables could 

not be solved for. An interview to understand Alex’s (B) thinking processes, is shown below: 

 

Alex: You will use angles on a straight line to solve for them. In this case, the figure 

attached to … [long pause] 

Researcher: What again? 

Alex: You use eemm …. angles which are opposite to each other. 

Researcher: Ok. Now explain how you will solve for the various variables. 

Alex: [Silence for some time], … Ahm I have forgotten. 

Researcher: You just said you would use angles on a straight line and opposite angles.  

Alex: Yeah 

Researcher: Can you make any connections between any of the angles? 

Alex: The angles on a straight line. That is when you use 3𝑥 plus 𝑦, then you equate to 

180o because angles on a straight line will be equal to 180o. But in this case, we 

have 𝑥 and 𝑦 which … are not the same … [pause for a while] 

Researcher: In your opinion, can the variables be solved for or not? 

Alex: In my opinion no. 

 

Alex, mentioning that x and y are not the same, could have drawn his attention to exploring the 

possible relationship between the angles. This would have been facilitated if he had observed the 

iconic mediators used to design the task, which indicated that opposite sides are parallel, and hence 



178 
 

figure PSRQ was a parallelogram. Thus, he paid little or no attention to the important features of 

the task that could have informed his decision. He mentioned opposite angles but got stuck since 

the angles were indicated with different variables, as he rightly commented about x and y that “…in 

this case, we have 𝑥 and 𝑦 which … are not the same …” Thus, the angles were considered in 

isolation due to a weak connection between thinking and visualisation. He ended up saying that 

the value of the letters in the task, could not be determined. 

 

Nsiah’s (B) solution is a replica of that of Alex’s (B). Nsiah could not continue with the solution 

after he formulated the equation relating the angles on the straight line and labelled equation (1) 

as in Figure 6.8.  

 

Task 3.2: Find the values of the angle 

marked by letters in the figure. 

 

 

Figure 6.8: Nsiah’s first attempt to task 3.2 

 

The many cancellations in Nsiah’s work show some uncertainty in the way he planned to solve the 

task. He began by writing 2𝑥 + 3𝑥 and struck it off. He may have considered the two angles as 

co-interior angles but changed his mind, probably due to the way they appeared. Therefore, not 

engaging in clear visual thinking about the two angles, viz 2x and 3x, might have caused his change 

of mind, which resulted in cancelling what he initially wrote. This cancellation could have resulted 

from a commognitive process of thinking with himself about the solution (Mudaly, 2015). The 

interview process, which focused on definitions and properties of geometric concepts, probably 

reminded him of something that he wanted to try, but he also gave up in the process. The second 

trial is shown in Figure 6.9.  

 

 



179 
 

Task 3.2. Find the value of the angles 

marked by letters in the figure. 

 

 

 

Figure 6.9: Nsiah’s second attempt to solve task 3.2 

 

He was able to state that 𝑚+ 3𝑥 = 1800 (co-interior angles) but was still a challenged problem 

to solve. When asked a further question to see if he could demonstrate any kind of informed 

thinking, he said, “let’s skip for now”. 

 

In the same way, not much attention was paid to some important features of the tasks on circles. 

Nsiah and Cynthia (both in Group B) had used the properties of an isosceles triangle to solve 

related tasks in this study. They failed however, to connect this knowledge to a similar on circles 

probably because it was not designed with any iconic mediator. These participants failed to identify 

and interpret that joining the ends of a chord to the centre of a circle, forms an isosceles triangle. 

Nsiah made a wrong assumption which may have resulted from his internalisation and 

externalisation processes. There seemed to be a weak iteration between his visual and thinking 

processes (Mudaly, 2021), which resulted in his wrong solution task 4.2 shown in Figure 6.10. 

 

Task 4.2. In the figure, LMN are 

points on a circle with centre O. If 

angle LMO = 42o, find angle LNM. 

 

 

 

 

Figure 6.10: Nsiah’s solution to task 4.2 
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He considered line segment LN to be a diameter, leading to his assumption that angle LMN is 90o 

(see Figure 6.10). Another wrong assumption is considering the sides LM and MN to be equal and 

hence equating the angles opposite these sides to x. In trying to understanding his thinking 

processes underlying why he solved it that way, he said, “… eemm that is the way I understood 

it”. Cynthia (B), who did not attempt task 4.2, claimed, “that because the angle at the centre of 

the circle was not given, it would be difficult to solve such a task”.  

 

Generally, circle theorems have been a major problem for high school learners in Ghana. The Chief 

Examiner’s report on learners’ performances, released every year, mostly touches on the learners’ 

knowledge deficiency in solving questions on the circle theorems (WAEC, 2015, 2017, 2018). 

According to these reports, most learners perform poorly on questions in this area of geometry. 

Learners prefer to solve questions on other topics rather than the circle theorem, and the solutions 

of the few who attempt these questions show that they don’t know much about the subject matter 

(Fletcher & Anderson, 2012). Findings in this study also showed similar difficulties among the 

participants. Almost all the questions on the circle theorem were solved by participants in Group 

A, compared to those in Group B. Question (4.4) was partially solved by Maxwell (A), and 

Cynthia, Albert and Nsiah, in Group B. Question 4.2 was incorrectly solved by Nsiah (B) and 

questions 4.2 & 4.5 were not attempted at all by Cynthia (B). This analysis is shown in Table 6.1. 

 

Table 6.1: Details of PSTs’ performance on circle theorem 

Q. No. Correct  Partial (Incomplete) Incorrect Not Attempted 

4.1 All participants    

4.2 5  Nsiah (B) Alex (B) 

Cynthia (B) 

4.3 All participants    

4.4 3 Maxwell(A); Albert, Alex 

Cynthia and Nsiah (all in B) 

  

4.5 6   Cynthia (B) 

Alex (B) 

 

In addition, data suggests that participants in Group B attempted questions on other content areas 

they were tested on, compared to questions on circle theorems.  
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As mentioned previously, the discussion of the participants’ ritual discourse serves as the first 

layer to provide insight and attention into the window of exploratory discourse. These are 

described and discussed in the subsections that follow.  

 

6.3 Explorative discourse 

This section describes and analyses the PSTs’ solution strategies devised to solve the tasks and 

provides explanations on the perspective of explorative discourse within the Sfard’s (2008) 

commognitive theory. According to Sfard (2008), an explorative discourse is the production of an 

endorsed narrative about the properties of geometric objects, as well as their relationships. 

Although evidence of explorative discourse was found in both groups, it was dominant in the 

discourses of the group A participants. The PSTs whose routines were a manifestation of 

explorative discourse, showed in their explanation that they have deep and flexible geometric 

thinking about the objects involved. From the data, evidence of explorative discourse was 

identified and explained in the sub-themes: 

(1) Frequent expressions of associated geometric properties of objects, 

(2) Engagement in multiple solution path and  

(3) Demonstration of high visual ability. 

 

6.3.1 Frequent expressions about the geometric properties of the objects 

Sfard (2008) notes that a key feature of explorative discourse is the ability to produce an endorsed 

narrative about the properties of an object. Findings from the study showed that some of the PSTs 

(from both Groups) focused their attention on the properties associated with the task design. That 

meant, their discourses about the solution strategies were more of justifying with the objectified 

properties that necessitated the preferred routine. This solution strategy was mostly found in the 

discourses of the PSTs in Group A as compared to those from Group B. The Group A participants 

substantiated their discursive actions by producing endorsed geometric properties about the task. 

It was found that the participants’ plan for devising solutions was based on identifying the most 

associated properties of the task.  
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Their ability to identify the associated properties could be attributed to critical visual engagement 

and mental manipulation with the task(s). Mudaly (2021, p.2) maintains that we manipulate objects 

in our minds in order to “create a deeper understanding”. This process resulted in their discursive 

actions, which aligns with the explorative way of thinking (Sfard, 2008). They were less prompted 

to justify why they chose a particular solution path. Their solution path, was probably based on 

how the task registered in their minds (internalisation). This is evident in the extract of Stephen’s 

(A) response that follows: 

 

… the diagram given I can say that the angle 130o is vertically opposite to the two angles 

(m and 60o). Therefore, knowing that vertically opposite angles are equal, I can write it as 

… 

Similarly, Jones (A) explained that: 

… from the diagram, we can see that 3(𝑥 − 20) is vertically opposite to 2𝑥 which are 

equal. So, I equate the two angles … 

This property-guided explanation was also found in Cynthia’s (B) discourse who said: 

… we are having direct opposite [vertical] angles here which are 3(x – 20) and 2x [points 

to the angles] which are equal. 

 

Their responses show that they have developed the competence to engage in a critical exploration 

of the task design and to identify its objectified properties. Their responses show that their solution 

strategies are informed by identifying the most objectified properties of the task. Participants (in 

both Groups), who were unable to produce the objectified properties of the geometric shape (s), 

preferred working with the straight line algorithm.  

 

The participants’ thinking, to produce objectified properties about the geometric tasks, was also 

frequent in their discourse on triangles. The tasks on triangles were designed so that variables in 

the exterior angle position would draw attention to the exterior angle theorem of a triangle. 

Explorative thinking was evident in the comments of Group A participants about their discourses 

on triangles, compared to their counterparts in Group B. For example, in task 2.1, all the 

participants in Group A, together with Alex in Group B, recognised the angle to be found as an 

exterior angle and hence, they used the exterior angle theorem in their solution to the task. Some 
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of them gave an explanation that indicated their understanding of how the theorem was developed, 

using the ‘sum of angles in a triangle’ and ‘the adjacent angles on a straight line’. Hence, they felt 

confident in applying the theorem to the task. The following extracts depict their explanation.  

 

… this is an exterior angle [pointing to m] … [the sum of the] two … opposite [interior] 

angles will be equal to the exterior angle. … you know 62o we add to 75o and you get 137o 

that will be equal to the exterior angle … m (Alex, B). 

… I should find … m. For m, … is an exterior angle… the sum of two opposite interior 

angles of the triangle [pointing to angle 75o and angle CBF], labeled n. So, this n and 75o, 

when you sum them, it is going to give me m … the exterior angle. So, then I can say the m 

is equal to 75o 5 plus 62o. Then adding, m is 137˚ (Jones, A). 

…  having found the two opposite interior angles for my m, … m my exterior angle is equal 

to 75o plus 62o which gave me 137o (Stephen, A). 

 

Similar property-guided thinking was evident in Jones’ (A) discourse on task 2.2. His discursive 

actions, as seen in the extract below, were based on identifying properties associated with the task. 

He may have frequently engaged with geometric tasks and understood that the easiest way of 

solving geometric tasks is by applying associated properties. There was, however, a decrease in 

the number (from five to three) of participants who focused on the identification of the exterior 

angle in task 2.2. The rest of the participants’ responses focused on the use of angle properties in 

a triangle and the straight line algorithm. Jones’ response is shown below. 

 

Researcher: Can you explain how you organised your thinking to solve the task? 

Jones: …to find or calculate for angle URS … the angle here [moving the pen along the 

arms UR and RS]. I planned to use the exterior angle theorem because of its 

position. So that if I get here [pointing to angle QUR] and this angle [pointing at 

angle UQR], then I sum them and use the exterior angle theorem. 

 

This solution strategy, was evident in the discourses of three participants in Group A. They 

demonstrated high explorative thinking due to their ability to produce associated properties to the 

task (Sfard, 2008). The rest used an equally good approach of the straight line algorithm, possibly 
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because they felt their answers would be guaranteed through the rule-based discourse. Group A 

participants’ demonstration of such thinking means that they have a good understanding and the 

mental ability to interpret information in a meaningful way, as noted by Nahdi & Jatisunda (2020). 

In explorative discourse, discursive actions are based on understanding mathematical principles 

underlying one’s routine and the ability to explain and substantiate why such an action is taken 

(Sfard, 2008). Such discourse is the “product of a process that connects prior knowledge with new 

knowledge” (Nahdi & Jatisunda, 2020, p. 2). The Group A participants’ competence in engaging 

in explorative discourse, demonstrates that they have developed rich connections between the 

properties of geometric shapes used in the study. Although they talked about the exterior angle in 

relation to triangle QUR, the theorem could be applied equally to triangle PRU. 

 

According to Dewi and Asnawati (2019), teachers should show a clear understanding of geometric 

concepts to inform their knowledge of applying these concepts in solving related tasks. In this 

study, the PSTs who produced associated properties, performed beyond the use of strict rules 

(straight line algorithm), which was dominant in the Group B participants. The Group A 

participants showed competence in devising solutions using geometric concepts and properties of 

geometric figures and shapes. This geometric competence was evident in their solution processes. 

During the interview, the participants in Group A substantiated their discursive actions with 

endorsed narratives, which is a feature of explorative discourse (Sfard, 2008). These competencies 

enabled them to devise objectified solutions to the tasks. The PSTs’ ability to develop such 

competence in thinking, was an indication that they have the potential to plan and work with the 

associated geometric properties based on the design of the task, to enhance learners’ understanding 

(Dewi & Asnawati, 2019; Sugeng & Nurhanurawati, 2018). 

 

A similar explorative routine was evident in some of the participants’ solutions for tasks on 

triangles and quadrilaterals. The characteristic feature of the explorative routine is the application 

of the exterior angle theorem which was needed to find the angle measure of m in task 2.1 on 

triangles. All Group A participants, together with Alex, in Group B, were able to show their 

knowledge and competence in applying the theorem to the task. This routine, guided by the 

theorem, led to the use of fewer steps in solving for m compared with those whose solutions were 

devised along the straight line concept using a series of steps. The participants who produced an 
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explorative discourse, showed that they were capable of engaging in mathematical thinking by 

producing objectified properties as a guide to solve geometric tasks (Sfard, 2008). This was evident 

in their word use and attention to some visual cues in solving the task. It was evident in the planning 

phase that they focused attention on the position of the angle to be found. Participants were often 

found to be moving their pens, showing the two angles they needed to complete the task using the 

exterior angle theorem of a triangle. 

 

Explorative discourse is characterised by the ability to apply the concepts of an object, in a 

practical solution, to its related task. In this case, the learner is said to have developed the 

competence to analyse, discern and solve problems related to the learned task (Hurrel, 2021; Sfard, 

2008). According to Hurrel (2021), explorative thinking is the ability to link the knowledge gained 

to other mathematical objects. This knowledge competence was seen in the routines of the Group 

A participants and one from Group B. 

 

 

Task 3.2. Find the value of the 

angles marked by letters in the 

figure below  

 

 

 

Figure 6.11: Albert’s objectified solution to task 3.2. 

 

Stephen (A), Albert (B), and Cynthia (B), when engaged with task 3.2 on the parallelogram in 

Figure 6.11, analysed it based on the iconic mediators on the line segments. Their approach may 

have been enhanced by their internalisation processes. As a result, they each formulated the 

equation oxx 18032 =+ and substantiated it as the co-interior angles. The ability to discern this 

property of the task, is a demonstration of high visually informed thinking. Dewi and Asnawati 

(2019) assert that teachers or learners with good visual abilities can explore and apply the most 

appropriate strategies to solve mathematical tasks. Maxwell also solved the task by applying the 

objectified properties of a parallelogram, using the equality of opposite angles and the sum of 
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interior angles of the generic shape [quadrilaterals], which is 360o. He formulated the equation 

2𝑥 + 3𝑥 + 2𝑥 + 3𝑥 = 360𝑜 and solved by demonstrating proficient algebraic skills when 

explaining what he did. Clement made some mathematical arguments, informed by the observed 

properties, to arrive at the same initial strategy, devised by Stephen and Albert. These arguments 

were based on the properties of corresponding angles and the angle sum on a straight line. This is 

shown in his solution below: 

 

3.2. Find the value of the angles 

marked by letters in the figure below 

 
 

Figure 6.12: Clement’s solution through critical reasoning 

 

Clement’s (A) solution shows evidence of engaging in critical thinking to devise a possible 

solution. Not being able to readily identify that 2x and 3x were co-interior angles, he resorted to 

reasoning by making mathematical arguments to arrive at the same initial equation that Stephen 

(A) and Albert (B) started with. Dewi and Asnawati (2019) assert that learners’ ability to learn 

geometry is based on their tendency to make mathematical arguments using geometric concepts 

and properties. It forms the basis of building learners’ critical reasoning abilities. 

 

The ability to solve the tasks on circles, was seen more in Group A participants, than those in 

Group B. Group A participants demonstrated high competencies in applying theorems and 

properties to solve the tasks on circles. The most answered task on circles was task 4.1, which is 

governed by two theorems. These are (1) the theorem governing the angle subtended at the centre 

and at the circumference of a circle by the same arc and (2), the theorem governing a cyclic 

quadrilateral. It must be noted that any of the variables involved in the task, could have been found 

using knowledge of the first theorem. Even though this is being discussed under explorative 

discourse, where they all identified objectified properties of the task design (Sfard, 2008), their 

discourse showed that they were familiar with the theorem in its prototypic sketch. As noted 
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previously, in most traditional mathematics classrooms, the diagram for theorem (1) above, is 

drawn such that the angle at the circumference is on top of the angle at the centre. Hence, even 

when it would have been easier to first solve for 𝑦 in the task, the participants in both Groups 

preferred to solve for x before y . This is evident in Stephen’s solution in Figure 6.13. 

 

4.1 Find the values of x and y in the 

diagram below. 

 
 

Figure 6.13: Stephen’s solution to task 4.1. 

 

6.3.2 Engagement in multiple solution paths (multiple strategies) 

According to Sfard (2008), learners' ability to create an accepted narrative regarding the 

characteristics of geometric objects as well as their interactions, enables them to engage in complex 

mathematical reasoning and as a result, they are able to devise multiple solutions to tasks. One 

important way of doing, or learning mathematics, is the ability to engage in cognitive strategies to 

devise multiple ways of solving tasks through the use of objectified properties (Sfard, 2008).  

 

The ability to devise multiple solutions to tasks was found in the discourses of less than half of the 

participants, when they were asked if the task could be solved in any other way. It was found that 

multiple solution ability was demonstrated more among those in Group A compared to those in 

Group B.  

 

For example, Stephen (A) demonstrated his competence to solve most of the tasks using multiple 

strategies. In tasks 1.2 and 1.3, which he first solved using an associated property, he also solved 
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them using an alternative approach. He demonstrated good knowledge of applying the objectified 

property to solve the tasks and of using the straight line algorithm. 

Stephen’s use of multiple strategies indicates that he has acquired the geometric thinking needed 

to solve tasks in multiple ways and can teach learners how to solve tasks using alternative 

approaches. Such instruction has support from the NCTM’s (2000) assertion that instructional 

strategies should develop learners’ capabilities, to apply multiple and appropriate strategies to 

solve problems. Exposing learners to this kind of instruction develops their flexibility in thinking 

and their ability to choose the best strategies to solve a task. Klerlein and Hervey (2020) add that 

it fulfils the goal of equipping learners with a range of strategies needed to solve problems and to 

understand that some tasks may be solved by applying more than one strategy. Within the 

commognitive framework, the competence of devising multiple solutions to tasks is a 

demonstration of an explorative way of thinking and an indication of higher order thinking abilities 

(Sfard, 2008). Ability to devise multiple solutions to a given task is a characteristic associated with 

the demonstration of high problem-solving skills, and the ability to be flexible and creative in 

thinking (Kivkovich, 2015; Maulana & Yuniawati, 2018; Nur & Nurvitasari, 2017; Ortiz, 2016; 

Robichaux-Davis & Guarino, 2016). 

Stephen solved task 1.4 using multiple approaches. In recall, we find that Alex (B) could not think 

of any possible strategy to solve it, whilst Clement (A) said the task was a bit complex and that he 

needed to include some line segments. But Stephen and Maxwell, Group A, showed that the task 

could be solved in multiple ways. Strategy one was based on extending the straight line 

perpendicular from the top parallel line to the bottom parallel line to form a triangle in order to 

apply the emerging angle properties. In strategy two, he explained his thinking on the concept of 

parallelism, by introducing a new line segment parallel to the existing ones to produce some 

associated properties that could be applied. These two solutions are shown below.   

 

  

  

 

Figure 6.14: Stephen’s first solution to task 1.4. 
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Stephen explained his thinking about the solution in Figure 6.14 by saying that:  

… when I extend this line to meet this parallel line at 90o, I realise that the angle for x has 

been divided into two. One inside the triangle I have formed using the line that I have 

extended and the other over here [pointing on the extended straight line].  

  

Figure 6.15: Stephen’s alternative solution to task 1.4 

 

In his plan for the alternative solution, he said:  

I decided to introduce another parallel line [the dotted line] here. … I introduce a third 

parallel to meet the vertex at this point at 90o. The reasoning why I did that was because I 

want to find the angle x with the method using angle at a point. 

 

The multiple solutions demonstrated by these participants show that they have acquired good 

knowledge to enable them to teach learners to solve tasks using multiple strategies. Teaching 

several strategies for solving problems can help learners adjust to the one they understand most. 

Teachers, where possible, need to explain how to solve a task in multiple ways to dispel learners’ 

notions that mathematical tasks are solved in only one way. Knowledge of multiple solutions 

enables teachers to teach with confidence. Teachers can teach with confidence and enthusiasm 

when they can answer questions from different perspectives. Its importance is also felt in 

developing learners’ autonomy in learning. In the view of multiple approaches to solving 

mathematical tasks, Leikin (as cited in Bingolbali, 2011) argues that multiple approaches to tasks 

is a meta-mathematical habit that enhances advanced mathematical thinking, which contributes to 

the learners’ critical thinking, creativity and problem-solving skills. 
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Some of the participants who solved the tasks on triangles, by applying the exterior angle theorem, 

also demonstrated the knowledge of solving the same task using different methods. Jones’ multiple 

solutions to the tasks are shown below.  

 

Task 2.3. Find the value of the angle marked by letters in the figure below 

 
  

 
 

Figure 6.16: Jones’ multiple solutions to task 2.3. 

 

Evidence from research shows that teachers who can demonstrate knowledge of multiple solution 

strategies to tasks, are better able to provide a differentiated discourse in class to enhance learners’ 

explorative mathematical thinking, and to provide quality instructional sessions to aid learning 

(Bingolbali, 2011). 

 

Some of the PSTs seemed uncomfortable when asked to devise another solution to the tasks using 

a different method. They probably felt that trying to produce one solution to the task was enough. 

The most common response to the question about possible alternative solutions was ‘no’ or ‘no 

idea’. For example, Jones responded, “Different? No idea”, when asked to devise an alternative 

solution to task 1.4. On the same task, Clement laughed and said, “no other method comes to 
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mind”. This negative reply was also found in the response of the Group B participants to the tasks 

they could not solve using multiple approaches.  

 

This could mean that these participants possessed little or no idea of different ways to solve a task 

in geometry. A few PSTs (mostly from Group A) demonstrated competence in completing the 

tasks using multiple approaches. This could mean that many of the participants who are upcoming 

teachers, have limited knowledge of multiple solution strategies, which is an important approach 

for developing learners’ problem-solving abilities. According to Semanisinova (2021), one of the 

most important aims of PSTs’ programmes is to build their competence, to guide and provide 

relevant and constructive feedback to learners. The mathematics teacher should be able to provide 

feedback to learners on the solutions and strategies they employ, as well as to help them to think 

about other possible methods to solve the same task. Teachers should be able to detect learners’ 

solution paths as right or wrong, from multiple perspectives. The teacher should possess the 

knowledge capacity to provide the solution method that is specific, or appropriate to a given task, 

and also use concepts and properties to devise solutions for learners. The quality of this feedback 

and teacher guidance depends on the depth of knowledge the teacher possesses (Semanisinova, 

2021). 

 

When PSTs have limited knowledge about solving geometric tasks, it can seriously affect the 

quality of instruction and guidance they would provide for their future learners. Thus, a learner 

may be marked wrong, even if his or her solution process is correct, which may happen because 

the learner did not present the solution in the way the teacher is familiar with, or used to. In this 

study, more of the Group B participants showed limited knowledge of solving some tasks that had 

different solution approaches. Indeed, many of the tasks used in the study could be solved in more 

than one way and the participants were required to demonstrate their thinking abilities by devising 

multiple solution paths. The study findings showed that many of the Group B participants could 

not solve most of the tasks in multiple ways. This finding supports that of Bingolbali (2011) who 

found that the study participants who were teachers, were not open to the multiple solutions that 

learners provided for the tasks assigned. In addition, the teachers demonstrated difficulty in 

evaluating (grading) different solutions that were presented to them. Their difficulty was that they 

could not tell if the solutions to the open-ended tasks were correct or not.  
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In summary, the discourses of a many participants in Group A were noted to be more objectified 

in their geometric thinking. Their talks and solution for the tasks were more efficient and object-

driven in nature. The discursive actions of these participants showed more substantiation with 

geometric properties, in an unprompted manner. Some of the Group B participants’ responses 

involved more procedure-based explanations, which shows the ‘how’ of the solution. In most 

cases, they were prompted to substantiate their narratives. The Group B participants’ talk on the 

geometric task showed how to execute the task, compared to the Group A, who in most cases, 

were more concerned with thinking about the appropriate property to use in devising strategies to 

solve the tasks.  

 

The discourses of three participants in Group A revealed that they think of using properties to 

provide a more objectified discourse about an object. In addition, signifiers used in communicating 

geometric concepts seemed to attract more attention of the Group A participants than their 

counterparts in Group B. These actions of the Group As, seemed to be informed by their ability to 

recognise and interpret certain important features of the tasks. The habits of recognising, analysing 

and interpreting the features of the task were more evident in the discursive actions of members of 

Group A than their counterparts in Group B. There was evidence of discursive fluency in the 

discourses of these participants in Group A due to a greater ability to substantiate their narratives. 

Some of the Group B participants made lesser attempts to understand the structural design of the 

tasks. This contributed to their dominant strategy of solving most of the tasks using a straight line 

algorithm. Thus, the Group B participants engaged more in processual thinking than object-

oriented thinking (Sfard, 2008). Some of these participants seemed to connect their processes with 

recall instead of engaging in explorative thinking about the tasks. Whilst the Group A participants 

made an attempt to individualise the discourse, by drawing connections among narratives to 

produce an endorsed one, more of the Group B participants were noted to rely on the recall of 

procedures showing a lack in objectifying their discourse. 

 

6.3.3 Demonstration of high visual abilities 

Visual mediators among the elements of Sfard’s (2008) commognitive constructs, make visual 

abilities an important tool for learning mathematics and geometry. According to Sfard (2008), the 
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practices of connecting our thinking to scanned (visualised) mediators enable us to remember 

more, and have visual abilities to activate our thinking in response to discursive cues. Visual 

mediators could be diagrams, sketches, graphs, pictures, and the like. According to Mudaly (2021), 

diagrams stimulate learners’ thinking about concepts and ideas associated with mathematical 

objects. Good visual interpretation largely depends on drawing a connection between thinking and 

visualisation in relation to previous knowledge. Dewi and Asnawati (2019) claim that learners’ 

geometric abilities are well developed when they have good visual abilities. In this study, those 

who demonstrated an explorative discourse in their routine, utilised or relied on their visual 

abilities to gain a clearer understanding of the task, before devising the solution.  

 

Considering participants’ engagement with the tasks, they were often found to rely on their visual 

abilites to analyse and interpret some visual cues, based on the structure of the task. This is 

apparent in their discourses about planning to solve task 1.3, as in the excerpts that follow: 

 

… looking at the diagram given, I can say that the angle 130o is vertically opposite to the 

two angles (m and 60o) … (Stephen, A). 

… from the diagram, we can see that 3(𝑥 − 20) is vertically opposite to 2𝑥 which are 

equal. So, I equate the two angles (Jones, A). 

… I used this approach because of the properties I see within this diagram (Cynthia, B). 

… in geometry, when you see these short lines or dashes, it means … (Clement, A). 

 

It is evident from these excerpts that these PSTs’ solution plans were centred on what they saw 

and interpreted about the task. There were instances where the participants used their pens to trace 

or move along the line segments. These findings about the participants’ responses and their actions 

made it obvious that visual abilities formed an integral part of their thinking processes, needed to 

devise solutions to the tasks. Atanasova-Pachemska et al. (2016) consider visual abilities as mental 

processing of visually obtained information that enables mathematical discovery and 

understanding of mathematical tasks. Some of the study participants were noted to utilise their 

visual abilities of ‘seeing to think’, or think with what was seen; and in most cases, it was evident 

in their actions when they were observed to be tracing some parts of the task. These actions might 
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have aided their ability to recognise certain important features of the task and to think about 

associated properties.  

 

Although all participants utilised their visual abilities in thinking about the tasks, it was observed 

in some of their utterances that their action plans were based on what they saw and analysed (visual 

senses). They were all given the same tasks, but they analysed and interpreted them differently, 

leading to different approaches in their solutions. This could mean that those who faced challenges 

in solving some of the tasks had weak visual abilities, among other factors.  Riastuti et al. (2017) 

assert that learners’ difficulty in understanding geometric concepts, and devising the most 

appropriate solutions to tasks, is due to their weak visual abilities. This weakness in their visual 

abilities makes it difficult for them to recognise, analyse and make meaning of what they see to 

gain deeper understanding of the task (Dewi & Asnawati, 2019; Mudaly, 2021).  

 

Visual ability can therefore be considered as one of the major tools for learning mathematics and 

plane geometry, where much information is communicated by using diagrams and other signifiers 

to communicate important features, for clearer understanding (Sfard, 2008). The utterances of the 

participants in the study seemed to show that their efforts to devise solutions to the tasks were 

based on their visual senses. 

 

Wai (2018) adds to the debate on visuals by saying that learning geometry greatly relies on visual 

reasoning. This could mean that visual reasoning abilities contribute significantly to developing 

high geometric thinking. Research has documented that those teachers who have high visuals, 

spatial skills and reasoning abilities positively influence their classroom teaching and learning 

activities (Dewi & Asnawati, 2019; Ozdemir & Goktepe Yildiz, 2015). According to Ozdemir and 

Goktepe Yildiz (2015), there is an interrelation between spatial skills and geometric thinking. It 

can therefore be conjectured that those participants who demonstrated their geometric thinking 

through high visual reasoning, have developed a good level of visual ability necessary for 

developing and enhancing learners’ visual thinking abilities. Thus, teachers who have been 

observed to possess a good level of content knowledge, as well as good visual abilities, would be 

able to provide supportive experiences to guide and shape learning in the classroom (Dewi & 

Asnawati, 2019; Wai, 2018).  
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Those who explored geometric tasks with a high visual sense were able to solve the tasks in a well-

organized way because the development of geometric skills is highly dependent on one’s visual 

abilities. Task 3.3 was a combination of different geometric shapes, which required the participants 

to employ their visual skills first, to identify the geometric shapes to guide their thinking about the 

related properties needed to solve it. Though all the participants obtained the correct answers, 

diverse approaches were used in the solution, resulting from their differences in visual abilities. 

Whilst those with high visual abilities were able to notice and use the task’s emerging properties, 

others with low or weak visuals, used straight line algorithms to solve the tasks. 

 

6.4 Routine thinking on the inclusion relation of quadrilaterals 

According to Sfard (2008), when an object has a set of endorsed narratives which are subset of 

another object, the objects are said to be highly similar and can be called by the same name. This 

can be applied to the inclusion relations of classifying quadrilaterals. Within the framework, the 

process of classifying quadrilaterals can be classified as either a ritualised or an explorative way 

of thinking.  

 

In a ritualised discourse, a shape such as a ‘square’ is considered as a distinct object and cannot be 

called by another name. Hence, it does not have any relationship with other shapes. However, in 

explorative discourse, a shape can have several names, such as ‘a square also being called a 

rectangle or a parallelogram’ when they have similar endorsed narratives (Sfard, 2008). According 

to Tuset (2019), defining and classifying quadrilaterals, promotes learners’ development of 

geometric thinking and their ability to make mathematical argument.  

 

In this study, PSTs were required to define the various quadrilaterals, to draw them and show their 

class inclusion. Although definition, drawing and some the properties have been considered in the 

previous sections, any reappearance is meant for emphasis and clarity of description. The 

following sub-sections describe the participants’ thinking about inclusion relations of 

quadrilaterals.  
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6.4.1 Relation between rectangle and parallelogram 

Analysis shows that the PSTs have difficulty with inclusion relations among quadrilaterals. Of the 

eight participants, only two were able to identify that a rectangle is a parallelogram, using the 

necessary conditions whilst the other used reasoning about the properties. Their justification was 

based on the necessary condition of defining a parallelogram as a figure that has two pairs of 

parallel sides or a quadrilateral with two opposite sides being parallel (Rianasari et al., 2016; Ulger 

& Broutin, 2017). For example, Jones (A) said, “… because its two pairs of opposite sides are 

parallel”. Clement (A) also said that “it [rectangle] has two pairs of opposite sides parallel”. 

Stephen (A), on the other hand, showed his understanding of the inclusion of a rectangle in a 

parallelogram, although he did not mention the concept of parallelism of both sides. He compared 

some properties of the two geometric figures as a way of justifying the inclusion of a rectangle in 

a parallelogram. Stephen’s discourse in shown in the excerpt below. 

 

A rectangle … has two pairs of opposite and equal sides … a parallelogram … a figure 

with two pairs of opposite and equal sides. … has opposite interior angles of equal 

measure. … looking at a rectangle, all interior angles are 90o, meaning the opposite angles 

are also of equal measure.  

 

According to Rianasari et al. (2016), showing relationships among quadrilaterals is built on 

exercising one’s deductive reasoning. These responses from the three Group A participants 

indicate that they have a good grasp on the idea that rectangles are a subset of parallelograms.  

 

Cynthia (B), on the other hand, said that a rectangle is a parallelogram, but justified it from a 

quadrilateral point of view. Her justification was that “… because it is also a four-sided figure”. 

This wrong justification for inclusion criteria indicates that Cynthia (B) did not understand, or 

found it difficult to engage in relational thinking about the inclusion of rectangles in 

parallelograms.  

 

In addition, Maxwell (A) and the rest of the participants in Group B responded that a rectangle is 

not a parallelogram. Maxwell gave the reason that “for the properties of a parallelogram, two 

opposite sides and angles are equal but for a rectangle, I know that their opposite sides are the 
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same but the angles are 90o, so a rectangle cannot be a parallelogram”, which shows Maxwell’s 

ritual thinking. His response shows that he could not reason that all the angles being equal is the 

same or similar to opposite angles being equal. Thus, he considered the properties as isolated facts, 

which is classified as ritual thinking within the commognitive framework (Sfard, 2008). Alex also 

said no and explained that “a rectangle has two of its opposite sides equal and parallel and a 

parallelogram has two of its opposite angles equal”. It should be noted that even the comparison 

is wrong because the equality and parallelism of the sides of the rectangle were compared with the 

opposite angles of the parallelogram. Through further prompts to draw his attention to the 

comparison, he responded, “even the way they look is not equal”. This could mean that his thinking 

about the inclusion relations of the shapes is based on their appearance and not their governing 

properties. This finding supports that of other researchers such as Ngirishi and Bansilal (2019) and 

Baktemur et al. (2021) who also found that learners struggle with the class inclusion of rectangles 

in a parallelogram. For example, many participants in the study of Baktemur et al. (2021) did not 

consider a rectangle as a parallelogram at the beginning of an intervention. This, within Sfard’s 

(2008) commognitive theory, is characterised by considering shapes and their properties in 

isolation, and is classified as a ritual discourse.  

 

6.4.2 Relationship between a square and a parallelogram 

It was observed, on the inclusion of squares in parallelograms, that the PSTs found it difficult to 

accept this shape inclusion. Of the eight participants, three in Group A demonstrated acceptable 

thinking about the inclusion of squares in a parallelogram.  Jones’ (A) and Clement’s (A) responses 

showed knowledge of inclusion among the two, with the justification of parallelism of opposite 

sides. Stephen’s justification was still based on reasoning about the properties of the two shapes.  

 

The five others either said ‘no’ or ‘yes’ with the wrong justification. For example, Cynthia still 

justified her ‘yes’ response with the concept of both shapes being quadrilaterals. She said, “a 

square is a parallelogram because a square also is a four-sided figure as a parallelogram”. She 

was probed further to see if she could give a more acceptable reason, but her response showed no 

clear reasoning. She stated that “… because it [square] also has four sides and with the square, all 

the sides are equal”.   
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Cynthia’s response shows that she may be referring to, or thinking about partition classification, 

instead of hierarchical classification, hence referring to the quadrilaterals. The rest of the 

participants said that a square is not a parallelogram, giving the reason for example, that “… for a 

square, it is a type of a quadrilateral which all the sides are equal but that of a parallelogram it is 

not like that” (Albert). 

Other responses included: 

Alex (B): … for parallelogram two of its sides are equal but for square all the sides are 

equal and the angles are also equal. But for a parallelogram only two of its opposite 

angles are equal.  

Maxwell (A): For the square all the sides are equal but for the parallelogram all the sides 

are not equal. Only opposite sides are equal.  

 

The participants’ responses are an indication of their difficulty in accepting that a square is a 

parallelogram, which is a demonstration of ritual thinking because of their inability to draw any 

relationship between the shapes (Sfard, 2008). Their persistent unsatisfactory response could mean 

that they may not have been exposed to a hierarchical classification, in which emphasis is laid on 

particular concepts that are a subset of a more general concept (Baktemur et al., 2021). 

 

6.4.3 Relationship between a rhombus and a parallelogram 

The inclusion of the rhombus in the parallelogram was favourably responded to by almost all the 

participants, compared to previous questions. Seven of the participants provided favourably, even 

though some gave a wrong justification. Cynthia (B), as in previous responses, stated that both 

figures have four sides (quadrilateral), whilst Jones and Clement (both in A) claimed that both 

figures have opposite sides parallel. Stephen responded that, “a rhombus is also a special type of 

parallelogram. It satisfies having two opposite and equal sides and angles”. 

 

In probing further to understand what may have informed their thinking, it was observed that some 

of them drew the two shapes to support their reasoning. This could mean that their thinking may 

have been informed by the appearance of the two shapes, but not by the parallel nature of both 

sides. For example, Albert said, “both figures may have common properties because they look 

similar”. When Maxwell drew the figures, he said, “I … opposite angles of a rhombus are equal, 
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and opposite angles of the parallelogram are also equal”. When probed further, he responded, 

“that is how I see it”. 

 

6.4.4. Relationship between a square and a rectangle 

The participants’ thinking on shape inclusion seemed to have ended with comparing the shapes to 

parallelograms. When we moved to comparison within shapes, particularly squares and rectangles, 

only Stephen (A) responded favourably, and said, “a square is a rectangle which has all sides to 

be equal. Yes, it is a special type of a rectangle”. This could mean that he has a good understanding 

of the inclusion relation between a square and a rectangle. In other words, Stephen understands 

that squares form a subset of rectangles. Findings concerning Stephen’s justification, supports that 

of Rianasari et al. (2016, p. 4) who also found their study participants using the phrase “… is a 

special form of …” to justify the inclusion of squares in rectangles. Cynthia, wrongly supported 

her claim from a quadrilateral point of view.  

 

The remaining six participants said that a square is not a rectangle, and supported it with reasons 

as follows: 

 

Maxwell (A): … for a square all the sides are equal and for rectangle opposite sides are 

equal. 

Albert (B): the square is a type of a quadrilateral in which all the sides and the angles are 

the same but with that of a rectangle, their opposite sides are equal.  

Clement (A): [smiled, sat quietly, and said] A square cannot be a rectangle. A rectangle 

has its opposite sides measuring equal but a square has all sides equal.  

Alex (B): … for square, all the sides are equal but, in a rectangle, only two of its sides are 

equal. 

 

The participants’ responses show that their patterns of thinking are almost the same. They 

considered the shapes in isolation not considering any possible relationship that could be drawn 

from the properties (Sfard, 2008). These responses suggest a ritual routine. Thus, these participants 

did not accept that a square is a subset of a rectangle. Only two (in Group A) of the eight 

participants showed that a square is a rectangle. This finding supports that of Rianasari et al. (2016) 
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who also found that few of the study participants, who were pre-service teachers, showed good 

thinking about the inclusion relations of squares in rectangles.  

 

6.4.5 Relationship between a square and a rhombus 

Only Clement (A) responded favourably that a square is a rhombus and justified that, “a square is 

a rhombus. Their characteristics are almost the same. Four sides equal …, both have opposite 

sides being parallel, diagonals bisecting at 90o, a type of rhombus”. 

 

For the rest of the participants, it was difficult to think that a square is a subset of a rhombus. 

Maxwell justified his ‘no’ response by saying that “for the square all the sides are equal. Even 

though for the rhombus, all the sides are equal, the angles in the square [each] is 90o but for the 

rhombus the angles can be different. Opposite angles are the same”.  

 

This shows the ritual thinking of Maxwell and the rest of the participants. Maxwell thought that 

the fact that each angle in a square is 90o was different from the fact that opposite angles in a 

rhombus are the same.  

 

Stephen and Jones had performed quite well on the shape inclusion when compared with a 

parallelogram. However, data from the study shows that their understanding of the relationship 

among the other shapes was not well developed, or they had no knowledge about it. On square and 

rhombus, Stephen said, “a square is not a rhombus because in a square, all interior angles 

measure 90o, but in rhombus, we do not have that property”.  

 

This response is similar to that of Maxwell. Jones said ‘no’, but he could not give any justification. 

Thus, the participants still considered the properties of shapes learned as isolated facts, with no 

effort to think about the relationships among them. This shows that their thinking about the 

inclusion of shapes is purely ritual (Sfard, 2008). 

 

6.4.6 Relations between a rhombus and a rectangle 

The responses from the participants to the inclusion of a rhombus in a rectangle, show that they 

have little or no knowledge of such a concept in geometry. The responses showed their ritual 
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thinking since they could not draw any relations concerning the sides of these figures, which give 

the necessary and sufficient conditions together with their properties (Rianasari et al., 2016). All 

the participants initially said ‘no’, even though Cynthia, after considering some properties, 

changed her decision with some level of uncertainty. She had been wrongly supporting her 

thinking of inclusion relations from a quadrilateral viewpoint. During the interview, seeking to 

understand her thinking on the relationship between a rhombus and a rectangle, she said, “I don’t 

think so even though they are all four-sided figures”. She paused for a short while and said “Yes, 

it can be a rectangle because with rhombus we have two opposite angles equal like the rectangle”. 

Even though her response showed some level of uncertainty, it is possible she may have begun to 

draw some connections between the properties of the two shapes. 

 

The responses from those who said ‘no’ but used some related properties to justify their argument, 

are evidence of ritual thinking since they could not make any logical deduction from the properties 

they raised (Sfard, 2008). Almost all the participants justified their discourse by using the same 

properties, except for Alex, who said he had no idea. For example, Jones said, “for a rectangle 

two opposite sides are equal in length but for a rhombus, all the sides are equal”. This probably 

shows that the properties of geometric figures are learned by rote with no understanding of the 

relationship among them (Hurrell, 2021), which is a demonstration of ritualised thinking within 

the framework (Sfard, 2008). Perhaps, what they could think of, was to make a logical deduction 

from the properties apart from the concept of parallelism. For example, consider the properties of 

the following quadrilaterals, A and B.  

A: has opposite sides equal 

B: has all sides equal 

 

Question: Which property is a subset of the other? 

It can be noted that answering the above question demands critical thinking. It may be conjectured 

that it is for these critical thinking, reasoning and problem-solving abilities, that the teaching and 

learning of geometry is given more attention in the mathematics curriculum (Erdogan & Dur, 2014; 

NCTM, 2000). Possibly, if the participants had engaged in such a logical deduction from the 

properties, their thinking about inclusion relations may have improved. 
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6.6 Conclusion  

This chapter commenced with a description and analysis of the PSTs’ solution strategies for the 

geometry tasks that were used. The data used here were their solutions to the geometry tasks and 

the explanations of those solution strategies. The solutions provided for the test gave an initial 

understanding of the routines used. The explanations provided during the interviews allowed for 

further insight into their thought process.  

 

Based on the analyses conducted on the solutions and their explanations, the PSTs’ routine 

thinking was classified as either ritual discourse or explorative discourse, as guided by the 

characteristics of the commognitive theory. The analyses of the PSTs’ routines were presented and 

supported with appropriate evidence from the solutions and the explanations. Their routine 

thinking was analysed and categorised into four sub-themes under ritualised discourse, and three 

sub-themes under explorative discourse. The ritualised sub-themes were: the use of step-by-step 

approaches; a series of computational steps; the use of simultaneous equations; and a low range of 

applicability/less attention to important features of the tasks. The explorative sub-themes were: 

frequent utterances of geometric properties; engaging in multiple solution paths; and high visual 

abilities.  

 

Further analysis of the PSTs’ routines was conducted on their thinking about inclusion relations 

of quadrilaterals and some basic proofs in geometry. These were discussed in the light of their 

difficulties in believing that some quadrilaterals can have different names based on the necessary 

and sufficient conditions.  

 

This chapter and the previous one provided an insight into the PSTs’ discursive geometric thinking, 

as well as the nature of their routine strategies in solving geometric tasks, and their thinking about 

the class inclusion of quadrilaterals. The next chapter deals with how this geometric thinking 

informs their classroom discourse. 
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CHAPTER SEVEN 

CLASSROOM GEOMETRIC DISCOURSE 

7.1 Introduction  

The previous chapter analysed the pre-service teachers’ routine geometric thinking in relation to 

ritual and explorative ways. Based on the insight gained about the participants’ thinking with 

respect to the commognitive framework, coupled with their ritualised or explorative ways of 

thinking, this chapter analyses their classroom geometric discourse. In reporting and discussing 

the classroom discourse in this chapter, the terms ‘colleagues’, ‘learners’ or ‘colleage learners’ 

will be used synonymously.  

 

7.2 The PSTs’ classroom geometric discourse  

7.2.1 Stephen’s (A) classroom geometric discourse 

Stephen (A) performed well by solving all 16 geometry tasks in the test during the first phase of 

data generation in the study. He explained his thought processes governing the definitions of 

geometric concepts and the solutions of the tasks using mathematical words. He defined some 

quadrilateral shapes with knowledge of class inclusion and solved most of the tasks using multiple 

approaches. He also demonstrated adequate reasoning on some fundamental geometric proofs and 

showed evidence of an explorative way of thinking in his discourse.  

 

Stephen taught the properties of the rhombus using paper folding and measurement. He started the 

lesson on the assumption that the class had learned about parallelograms and reviewed the learners’ 

previous knowledge on parallelograms. The interaction during the review process is shown below. 

Stephen: What is a parallelogram?  

Colleague: A parallelogram is a plane figure bounded by four sides and has four angles.  

 

When Stephen was not satisfied with the response, he asked for another colleague’s view. One 

said that: “A parallelogram has two [pairs of] parallel sides, two opposite sides to be equal and 

two opposite angles to be equal”.  
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Stephen refined the definition, drew the parallelogram on the whiteboard and explained the 

properties that the colleague used in stating the definition. He drew the learners’ attention to one 

important and necessary condition for defining or considering a four-sided figure as a 

parallelogram. He said: 

If you have a figure of this sort [pointing at the figure on the whiteboard] … all you need 

to do is to look and see if the two pairs of opposite sides are parallel, then it is a 

parallelogram.  

 

After a review of some properties of the parallelogram, he moved to the day’s topic and said:  

Today we will be talking about a rhombus, and in fact, a rhombus is a special 

parallelogram.  

 

He explained what he meant by ‘special parallelogram’ by saying that a rhombus has all the 

properties that a parallelogram has. The unique feature is that all the sides are equal.  

 

Stephen gave samples of paper cut-outs of a rhombus, with varying dimensions, to the colleague 

learners in groups and guided the folding activities with some instructions. The extract below 

shows the classroom dialogue that accompanied the teaching activities. 

Stephen:  What do you realise after the folding? 

Colleague:  They [one part] fall on each the other perfectly. 

Stephen:  Ok first, what is the name of the shape formed? 

Colleague:  Triangle. 

Stephen:  So, we have established that when the rhombus is folded along the diagonal, 

one part falls on the other perfectly. In the same way, when it is folded along 

the other diagonal [shows], one part falls exactly on the other. 

 

Based on Stephen’s first demonstration of folding a parallelogram (during the review), in which 

the shapes formed overlapped, he questioned the colleague learners about what accounted for the 

overlapping shapes in the parallelogram, and perfect fitting shapes in the rhombus when folded 

along the diagonal. After a short time (probably examining the critical features of the two shapes), 

a colleague in Group A said, “I think because in the rhombus, all the sides are equal”. He asked 
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if the whole class agreed with him. He further asked for any different opinion as a way of giving 

everyone the opportunity to share any possible different ideas. 

 

The colleague learners within the various class grouping were found to share ideas governing the 

activities of the object. Cooperative engagement was evident among them. Chan and Idris (2017) 

describe cooperative learning as a teaching technique in which learners are placed in small groups 

where they assist one another in the learning process.  

 

Stephen continued to ask questions throughout the lesson. When he had written two of the answers 

from the learners’ measurements of angles on the whiteboard, he asked for the learners’ 

observation about the angles measured. A colleague (in B) answered, “the opposite angles are 

equal”. He consistently asked questions to ensure that the learners, although engaged in the 

activity, followed the key concepts he was teaching. Through the paper folding, cutting, and 

measurement activities, he directed the class to observe the following properties of the rhombus: 

1. All sides are equal.  

2. There are two lines of symmetry. 

3. The diagonals bisect the angles at the vertices (corner angles). 

4. The diagonals bisect at right angles.    

 

Stephen paid particular attention to the learners’ use of the correct and appropriate geometric terms 

in communicating their ideas, to ensure that they developed and used those terms in geometric 

discourse. An example of Stephen’s guidance of literate word use in geometric discourse is shown 

below:  

 

Stephen: What do you notice about the diagonal and the angle at the vertex (corner 

angles)? 

Colleague: The diagonals divide the angle into two equal parts.  

Stephen: When something is divided into two equal parts, what term (word) do we 

use for it in mathematics or geometry?  

Stephen: It starts with “b” 

A colleague learner raised the hand and said, ‘bisect’. 
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Stephen asked them to use that word to describe their observation as “the diagonals bisect [the] 

corner angles”.  

 

As a way of ensuring the colleague learners’ understanding and application of the concepts learned, 

he solved examples with them. The example required the learners to make use of the property that 

each diagonal bisects the angle at the vertex. Stephen, crafted a task to test their understanding and 

relational thinking gained in the lesson. Overall, the materials chosen for teaching the properties 

of a rhombus, the activities performed, questions used within the discourse, the kind of explanation 

given, with critical concern for word use, the diagrams used to meditate the concrete and abstract 

concepts, all indicate that Stephen demonstrated a high level of in-depth geometric thinking for 

teaching the selected topic. 

 

7.2.2 Jones’ (A) geometric discourse 

Jones (A) performed quite well in the test. He scored correctly on fifteen of the sixteen items. He 

used mathematically literate words in defining almost all the geometric concepts and described his 

thought processes about the solutions devised to solve the tasks. He solved one of the tasks in a 

ritualised way and the rest of the tasks were solved with some evidence of explorative thinking, 

during the task-based interview. He also solved most of the tasks using multiple approaches and 

showed knowledge of the proofs involved.  

 

Jones prepared to teach the first two circle theorems. As a way of firmly developing the colleague 

learners’ understanding of the sketch of the theorem, he reviewed their previous knowledge on the 

definition and meaning, of parts of a circle. Among the parts mentioned by the colleagues in 

response to his question were diameter, circumference, sector, chord, and the like. Jones assessed 

his colleagues’ ability to define a circle including its various parts. He started the review by asking 

the colleagues to define a circle, as shown in the following dialogue: 

 

Jones: 

 

What is a circle? 

Colleague: A circle is the locus of points equidistant from a fixed point. 
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He repeated this definition, drew a circle on the board and added that the fixed point is called the 

centre of the circle, which he labeled with the letter O. He continued with the review. 

Jones: What is a diameter? 

Colleague: A diameter is a line that divides a circle into two equal halves.   

 

Considering this definition to be colloquial (Sfard, 2008), he asked them to produce a more 

mathematical and acceptable definition, as seen in the following dialogue.  

 

Jones: It is ok but I want a more geometrical definition. 

Colleague: A diameter is a line segment drawn through the centre of the circle with its 

endpoints lying on the circle.  

 

Jones accepted this definition, drew a circle (using free a hand or not drawn to scale) and a chord 

passing through the centre on the whiteboard and laid emphasis on the words ‘through the centre’ 

and ‘endpoints on the circle’. He pointed at these for the learners to see, and labelled the endpoints 

of the line segment as AB and the centre with the letter O.  

 

 

Figure 7.1 Jones’ sketch of a diameter 

 

He continued to talk about what the terms meant, and showed his colleagues visual representation 

of these terms by drawing them on the whiteboard.  

Jones: What is a chord? 

Colleague: It is a line drawn from one point on the circle to another point on the circle. 

 

Jones (the teacher) seemed to be confused about the relationship between a chord and a diameter. 

A colleague asked, “can a diameter also be called a chord”? He said “no, a diameter is not a 
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chord”, and gave the reason that a chord does not pass through the centre of the circle. This 

generated some intellectual debate among the peers. Then, another colleague contributed that: 

I think you told us that a chord is a line drawn from one part of a circle to touch the other 

part. So, looking at the diagram, we can see that the line is drawn from one part of the 

circle to touch the other part of the circle. So, I think per your definition, the diameter is 

also a chord.  

Jones listened to him and responded that it is a chord which passes through the centre of a circle.  

This means that teachers should be careful in answering learners’ questions that they may not be 

too conversant with, to prevent learners from losing confidence in them. When all doubts were 

cleared, the lesson continued.  

 

Jones: What is a tangent? 

Colleague: It is a line drawn to touch the circumference of a circle.  

Jones: At how many points does a tangent touch the circle? 

Colleague: at one point. 

 

All these parts of a circle were drawn for the learners to create a mental image of those spatial 

ideas. For example, when the colleague answered that a tangent touches at one point, he drew, and 

added that the point is called the point of tangency. After this review, Jones introduced the day’s 

lesson, which was ‘circle theorem’.  

 

Jones wrote the theorem governing the angle subtended at the centre and at the circumference by 

the same arc. He explained these two key words, ‘angle at the centre’ and ‘angle at the 

circumference’, in the theorem to the class, as seen in Figure 7.2 (a).  In demonstrating the proof, 

he drew a radius from the centre, O, of the circle to the point C on the circumference to form two 

smaller triangles. He explained that the two triangles were isosceles because they were bounded 

by two radii, and he demonstrated the equality of the sides with an iconic mediator (see Figure 

7.2b).  
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(a) 

 
(b) 

Figure 7.2. Jones’ definition and the initial proof of the theorem 

 

He described the properties of an isosceles triangle and used the same variables to represent the 

angles opposite the equal sides. He also labelled the angles formed at the centre of the circle by 

the three radii as a, b, and c (see Figure 7.2b). When he modeled the angle for the interior angles 

of the isosceles triangles, he asked the learners for the justification for it.  

Jones: What informed this equation? 

Colleague: The sum of angles in a triangle is equal to 180o.  

Jones: How about the angle at the circle? 

Colleagues (chorus): the sum of angles at a point is equal to 360o. 

 

He explained the proof process to the learners in a comprehensive way. Finally, the results obtained 

showed that c = 2(x + y), where c, is the angle at the centre, and (x + y) is the angle at the 

circumference. He solved examples and ended the class.  

 

7.2.3 Maxwell’s (A) classroom geometric discourse  

Maxwell solved 15 of the 16 geometry items. He explained his thoughts using both colloquial and 

mathematically literate words. He seemed to have a little difficulty in using appropriate words to 

define some of the geometric concepts. He solved some of the tasks using multiple approaches. In 

his discourse, he demonstrated both ritual and an explorative way of thinking.  

 

Maxwell reviewed the learners’ knowledge on the previous lesson, on types of angles, before 

introducing the day’s topic. The review is shown in the following dialogue: 
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Maxwell: What is a straight angle? 

Colleague It is an angle that measures 180o. 

Maxwell: What is an acute angle? 

Colleague … an angle that measures less than 90o. 

  

The colleagues demonstrated good understanding in the rest of the types of angles reviewed. 

Maxwell made no attempt to draw the types of angles. He covered the topic ‘Angle properties of 

parallel lines’. He mentioned railway tracks as a real example of parallel lines. He drew two 

parallel lines and a transversal (in a slant position) across the parallel lines and said: 

Whenever you have parallel lines and you draw a transversal line, it makes eight angles 

with the parallel lines. We are going to learn the properties of these lines [parallel lines], 

deal with some proofs, and then solve some questions.  

 

He labelled the angles formed as follows: 

 

 

Figure 7.3. Maxwell’s sketch for teaching properties of parallel lines. 

 

Maxwell had some misconceptions about a transversal line. Before he could continue, after 

drawing in Figure 7.3, a colleague asked: 

Colleague: If I choose to draw a perpendicular line across the parallel lines, is it still a 

transversal? 
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Maxwell said: 

A transversal … is a line that goes through two straight lines in a plane at two distinct 

points. … so this [pointing to the perpendicular line drawn across the two parallel lines] is 

not a transversal.  

 

Maxwell’s response seemed to show that he only associated transversals with those drawn in a 

slant position [prototype sketch]. It seems he did not know that a transversal could intersect two 

straight lines at any angle. Hence, a transversal could be perpendicular if it intersects the two 

parallel lines at right angles.  

 

The colleagues were not convinced (noise in the class). One colleague stated that the line that 

crosses any two or more parallel lines could intersect at right angles or any angle. Maxwell made 

no comment but asked the colleagues to clap for him and continued with the lesson.  

 

He talked about the properties of the angles formed (see Figure 7.3) and said: 

‘Angle a and angle f’, and ‘angle c and angle h’, [wrote on the whiteboard] they are 

vertically opposite angles. Now when we talk about vertically opposite angles … they are 

equal. So whenever you are solving a question or I give you a question to solve and you 

see these angles [pointing to the angles opposite each other, a and f] … they are equal.  

Please, do you understand? 

 

He continued by posing the following question: 

 Maxwell: What other … vertically opposite angles do you see here?  

 Colleague: angle e and angle b are also vertically opposite angles. 

 

The remaining properties were taught as described above. No attempt was made by Maxwell to 

explain or describe the properties in words. The properties were taught by just telling them those 

that are equal, together with their names. For example, he said,  

Corresponding angles are always equal, just like vertically opposite angles. So, angles g 

and e, angles f and h, angles a and c, angles b and d, they are all corresponding angles. 
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There was low participation among the colleagues. They were seen as passive learners 

(participants) just following what Maxwell was saying.  

 

A colleague asked, “Sir I once came across the word ‘adjacent’ on these properties in a book. 

Please, what are they?” Maxwell waited for a second and said, “anybody who can help?” One 

colleague responded that, two or more angles are said to be adjacent when they are next to each 

other. 

 

Maxwell continued to teach the properties of these angles, with a questionable approach. There 

was evidence that he knew what he wanted to convey, but he presented it in a way that could be 

confusing to learners, even though his colleagues understood him. The proof process is shown in 

Figure 7.4b.  

 

 
(a) 

 
(b) 

Figure 7.4. Maxwell’s proof process of the equality of vertically opposite angles 

 

He explained it as follows: 

From the property of angles on a straight line, we know that these [pointing to angles a 

and b] are [adjacent] angles on a straight line. If we sum a and b, we should get 180o. I 

want to make b the subject, so I will subtract a from both sides of the equation [see Figure 

7.4 (b)] to get b = 180 – a … (1). 

The second equation was obtained through a similar explanation. After obtaining these equations, 

he said, from equations one and two, we can confidently say that b = c. His claim was that b and 

c are both equal to 180o – a. 
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He further explained why alternate angles are equal and solved examples with the colleagues, 

which brought the lesson to an end. He rushed through the concluding part of the lesson. For 

example, in the figure given, which showed no sign of parallel lines, he went ahead to apply the 

equality of two corresponding angles, until he was prompted by a member of the class, before 

drawing the arrows. 

 

7.2.4 Clement’s (A) geometric discourse 

Clement solved 15 of the 16 items. He attempted task 3.4 but could not provide an appropriate 

solution. He defined the geometric concepts using mathematically literate words. Clement 

demonstrated both a ritual and an explorative way of thinking in devising solutions to the tasks, 

and solved some of the tasks using multiple approaches. He was able to prove some of the 

fundamental geometric concepts explored in the study. 

 

Clement presented a lesson on the exterior angle theorem of a triangle. He began by reviewing the 

colleagues’ knowledge on the properties of parallel lines, by calling one of the colleagues to draw 

parallel lines on the board. Among the properties reviewed, were alternate, vertically opposite 

angles, corresponding angles and co-interior angles.  

 

Clement introduced the topic and indicated that the properties they would be using are of the 

alternate and corresponding angles. He said: 

 We are going to use these two (alternate and corresponding angles) to come up with or 

 verify the exterior angle theorem.  

Clement shared with his colleagues the lesson objectives, which required of them to prove the 

exterior angle theorem and use it to solve problems. 

 

He explained that an exterior angle is formed when the side of a triangle is extended and drew it 

on the whiteboard for them to visualise and internalise (see Figure 7.5a). He pasted a cardboard of 

a figure to explain the exterior angle theorem as is shown in Figure 7.5b. 
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(a) 

 

(b) 

Figure 7.5. Clement’s proof of the exterior angle theorem. 

 

He engaged the colleagues in a discourse based on the figure pasted on the whiteboard. The 

discourse is shown in the following excerpt: 

Clement: What do you see from the two diagrams?   

 Colleague: There is a line drawn through point C in Fig. 1.1 (see Figure 7.5b) 

 Clement: Ok. Any different observation? 

 Colleague: There is a line that is parallel to line BA 

 Clement: How do you know they are parallel lines? 

 Colleague: There are arrows on lines BA and CE. 

 Clement: Ok. I like your answer. 

Clement asked any of the colleagues to come to the board and show why the lines are parallel.  

Colleague: Sir, we have this line BA and also … line CE. So, this line is parallel to this line 

[moving the two hands along the lines to indicate they are parallel] 

Clement: Why? 

Colleague: Because they move with a constant … [still moving the two hands along the 

lines] 

One colleague said, Sir I want to help him. 

 Clement: Yes. Come and help your brother [Laughter in the class]. 

 Colleague: They are parallel because there is an arrow here [pointing to the arrow on line 

BA] showing that this line is going in the same direction as this [pointing to the arrow on 

line CE] and they can never meet.  
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Clement commented that “the arrows are very clear that … line BA and then line CE are parallel”.  

When he said this, somebody whispered, “Ahhh there is an arrow at the top. I didn’t see oo”. 

Clement jokingly said, “Now all those without eyes can see clear [laugher in the class]. 

Clement asked, “what would you call line AC?” After some silence in the class, he said, “or do 

you want me to extend this?” When he extended the line AC beyond the parallel lines, there was a 

chorus response that the line AC is a transversal.  

 

Now he asked: 

What can you see or say about the angles ‘a’ and ‘b’ and the angle formed at ‘f’ here 

[pointing at the whole of the exterior angle formed]? 

 Colleague: angle a alternate with [pointed to angle ACE].  

When Clement asked who agreed with what the colleague said, the whole class was quiet. When 

he realised the figure seemed unclear (probably due to weak visualisation) to the class, he labelled 

the partition of the angle f as ‘1’ and ‘2’. He asked a colleague to go to the board and explain. He 

said “angle a is equal to 1”. This time around, when Clement asked how many agreed with him, 

the class gave a favourable response. The lesson continued. 

 Clement: Ok, what can you say about angle b … and either 1 or 2? 

 Colleague: I can say that angle b corresponds with 2 [was invited to show on the board]. 

 

This time it seemed clear to the class. See Figure 7.6. 

 

 

(a) exterior theorem by properties 

 

 

 

(b) exterior theorem by measurement 

Figure 7.6. The exterior theorem of a triangle. 
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Clement asked, “What is the relationship between a and b and the whole of angle f?” 

Colleague: I see the summation of angles a and b is equal to angle f.  

Clement helped the class to realise that the sum of angles a and b is equal to angle f.  

 

He further supported the learners’ understanding of the theorem by using the measurement of the 

exterior angle and the two non-adjacent interior angles. He shared some cardboard cut-outs of 

triangles of different dimensions and asked them to measure the labelled interior angles a and b, 

and the exterior angle f. He guided the class to use the values obtained from the measurement to 

establish the validity of the exterior angle theorem through the properties. 

 

He asked the colleagues if they could describe the theorem in their own words. This was an 

opportunity to verbalise their thinking about the theorem and to produce a narrative. Sfard (2008) 

asserts that narratives can be accepted or rejected.  

 

Colleague: The two opposite interior angles is equal to the exterior angle.  

Clement said ‘ok’, but asked for another response.  

Second colleague: The sum of the two opposite interior angles is equal to the exterior 

 angles.  

 

He lauded them for their contribution but laid emphasis on the use of the word “sum” as was found 

in the second colleague’s submission. He said: 

All that Alex is trying to say is that, mathematically, the sum of these angles [pointing to 

the two opposite interior angles] should be equal to the exterior angle.  

 

Clement seemed to be teaching too many things within a 30-minute lesson. He solved one example 

and also taught the proof of the theorem. He supported every step with the appropriate narrative. 

Based on the classroom observation, Clement did not assume the central role of the proof process. 

There was evidence of interaction between himself and the colleagues in every step of the routine.  
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7.2.5 Albert’s (B) geometric discourse 

Albert solved 13 of the 16 items. He explained his thought processes in solving the tasks using 

both colloquial and mathematically literate words. Almost all the triangle questions were solved 

in the same ritual type way of thinking. He demonstrated weak thinking in the basic geometric 

proofs.  

 

Albert taught ‘parts of a circle’, as a new topic. He reviewed the colleagues’ previous knowledge 

of shapes, based on the previous lesson. Among the parts mentioned were squares, triangles, 

rectangles and circles. He drew the shapes and focused on the circle. The extract below shows the 

classroom interaction: 

 Albert: In your own words, what can you say a circle is? 

 Colleague: A circle is a round shape. 

 Albert: You have tried. [invited another person’s view] 

 Colleague: A plane figure bounded by curves.  

 

Another colleague defined a circle as “a locus of points equidistant from a fixed point”. He 

accepted this definition and explained that a circle is derived from the Greek word ‘kirkos’ which 

means a hoop or ring. He then defined a circle similar to that of the last person and wrote it on the 

whiteboard (see Figure 7.7). 

 

 

Figure 7.7: Albert’s written definition of a circle. 

 

He explained the definition with the help of a drawing. He used the word ‘equidistant’ to explain 

the fixed-point distances from the centre, as in the definition given. He defined all the concepts or 

terminologies used in a circle, with the help of a chart and drew them on the whiteboard. Some of 

these definitions are as follows: 

A chord is a straight line segment whose endpoints lie on the circle. 
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An arc is any portion or section of the circumference of a circle. 

A diameter is a line through the centre that touches two points on the circle. 

 

He emphasised that a chord must pass through the centre of a circle before it could be considered 

as a diameter. 

 

However, Albert confirmed a colloquial definition put forth by one of the colleagues who asked if 

he could define a diameter as “a line that divides a circle into two equal parts”, for which Albert 

answered ‘yes’, it is true.  

 

Albert was noted to be reading from a sheet, moving from the board to the table where he kept the 

sheets. The colleagues were placed entirely in a passive position. Not even one colleague came to 

the board to do something. The lesson comprised Albert telling the colleagues what to learn. It was 

observed that the colleagues’ attention was quite low, and often, Albert had to shout ‘hellooo’ to 

attract their attention. During the lesson, the only time colleagues voices were heard, apart from 

the noise they were making in the class, was their response of ‘yes sir’ to Albert’s question ‘do 

you understand?’  

 

He handled students’ questions by confirming both errors and correct thinking. When he had 

explained a segment as “a segment is a region of a circle which is cut from the rest of the circle 

by a chord”, he stated that any time you use a chord to cut a circle, that place can be termed as a 

segment. One colleague asked, “if the line passes through the centre, [is it] a segment?” Albert 

said yes, drew it, and explained that it is a special case known as a semi-circle. 

He also gave a colloquial definition of a sector as “any two radii that touch at the circumference 

of a circle”, but drew it correctly. He concluded the lesson without assessing the colleaques’ 

understanding of what they had learned. He only told them what they would be learning in the next 

lesson.  

 

7.2.6 Alex’s (B) geometric discourse 

Alex solved nine of the sixteen items. This means that he obtained no score for five of the 

geometric tasks. He did not attempt task 3.4. He explained his thinking processes governing the 
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solution of the tasks using colloquial, and literate words. Alex demonstrated both ritual and 

explorative ways of thinking in his geometric discourse.  

 

Alex taught the topic ‘the sum of the interior angles in a triangle’. At the beginning of the lesson, 

he did not engage the learners in any review of related previous knowledge. He said: 

Today we are going to talk about the sum of the interior angles of a triangle, and I know 

you know the properties of a triangle, right? So, we are going to do a simple thing to 

indicate that the interior angle of a triangle is 180o.  

He shared paper cut-outs of triangles with the colleagues in groups and gave them some 

instructions about the activity to perform.  He asked the colleagues to open their compasses to any 

reasonable radius and make an arc at the vertices of the triangles and cut them out. He asked them 

to arrange the cut-out angles on a horizontal line, with their vertices together (see Figure 7.8 a and 

7.8b).  

 

 

(a) arrangement for a semi-circle 

 

(b) sum of the angles is 180o 

Figure 7.8: An arrangement of the cut-out corner angles of a triangle. 

 

He engaged them in a discourse. 

 Alex: What do you notice from your arrangement?  

 Colleague: It has formed a semi-circle. 

Alex explained that since it had formed a semi-circle, it meant the arrangement forms a straight 

line. He asked the class to use their protractors to measure the angle along the straight edge of the 

arrangement.  Based on the angle obtained, he explained that the sum of the angles in the triangle 

is 180o (see Figure 7.8b). 

 



220 
 

He elaborated by using properties associated with parallel lines. Alex pasted a chart prepared for 

this lesson, with no indication that the lines were parallel, until he was prompted by a colleague 

during the lesson.  

 

(a) diagram with no indication of parallellism 

 

(b) diagram showing the icons when prompted  

Figure 7.9. Relating the sum of interior angles of a triangle, to angle on a straight line.  

 

He explained that the adjacent angles 4, 1, and 5 are on a straight line. This means that their sum 

is 180o. He needed to find the sum of angles 1, 2 and 3, the interior angles in the triangle. He 

explained using the alternate angle properties that angle 2 is alternative to angle 4 and are equal. 

He then asked: 

 Alex: Do you see any other alternate angles in the figure? 

 Chorus response: Angle 3 and angle 5. 

He affirmed the response and said they are equal. He continued that in the sum

o180321 =++ , angle 2 and angle 3 can be replaced with angle 4 and angle 5 respectively. 

Thus, 
o180541 =++ . This means that the sum of the interior angles in a triangle is equal 

to 180o. He concluded the lesson by inviting one colleague to solve a question he wrote on the 

board.  

 

7.2.7 Cynthia’s (B) geometric discourse   

Cynthia was the only lady among the participants. She solved eleven of the sixteen geometry items, 

and received a partial mark for one of the items. She did not attempt some of the questions. She 

explained her thought processes using both colloquial and literate words. She demonstrated ritual 

ways of thinking in solving three of the tasks. She could not use appropriate words to define or 

describe some geometric concepts, even though she knew the names of those angle properties.  
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Cynthia prepared to teach the exterior angle theorem of a triangle. She used a test to review the 

learners’ knowledge and understanding of the previous lesson, which was about properties of a 

triangle and adjacent angles on a straight line. In the introduction of her lesson, she said:  

Last week we learned about the properties of a triangle and a [straight] line. So, I want to 

test your knowledge and understanding with this question.  

She drew a triangle with one missing interior angle to be determined, and designed another task 

on finding one unknown angle on a straight line. She first asked the colleagues to try the task 

individually, and then called one of them to solve it on the whiteboard and explain the method to 

the class. She said, “today we are going to combine these properties to get one thing”.  

 

In developing the learners’ thinking on the exterior angle theorem, she drew a triangle and 

extended one side to form an angle outside the closed shape. She explained what she meant by an 

exterior angle, saying, “an exterior angle is formed when the line of one side of a triangle is 

extended”.  She pointed on the diagram, to show to the colleagues the place termed the exterior 

angle. She added that, “It is formed outside the triangle …” After the explanation, she built on 

previous lessons and gave them a task to find the unknown interior and exterior angles.  

 

 
Figure 7.10: Cynthia’s example solved in class. 

She said to the class, “Solve for the interior angle as we did last week”. Cynthia introduced a new 

concept based on their previous knowledge.  
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It was evident that she understood what she was teaching but her pedagogical approach was not 

clear, even though the colleagues observed that the exterior angle is equal to the sum of the two 

opposite interior angles. She guided the learners to solve for a in the triangle, and the exterior angle 

f.  

Then she said: 

… now we have our f … 130o, and our a, … 60º, we are coming to make some comparing 

here so please pay attention …  

She modeled the equations of the angles in the triangle, and on the straight line, and said:  

… both the triangle and the line have the same properties [angle sum] which add up to 

180º. 

 

She then compared it without using the transitive property to equate or combine the two equations. 

She asked the learners to identify what was common in the two equations. She cancelled the 50o 

and the 180o from the two equations as shown below. 

 

Figure 7.11: Cynthia’s proof of the exterior angle theorem. 

She explained the process as follows: 

 

Cynthia: … looking at these equations, what is common? 

One colleague responded 50o. 

Cynthia: Very good. We have 50o here and 50o there, [which] means we are taking off 50o 

here and 50o there because they are common [cancelled the 50o from each of the 

two equations]. 

Cynthia: Now what again is common here? [pointing to the two equations]. 

One responded 180°.  
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Cynthia: [Repeated after him] Very good [cancelled out the 180o from both equations] now 

it is left with what? ’60o plus 70o’ and ‘f’ here [pointing to the f]. 

She further explained that: 

Now with this … as we combine 60o, 70o, 50o we got 180o, and when you combine 

the 50o and f we got 180o. So, what is the relationship between this f and 50o plus 

70o. Let us combine 50o and 70o. What will you get? 

One responded: 130° 

Cynthia: So, what is the relationship between this f and 130, or what can you say about 

them? 

One responded: When you combine 60o to 70o, it is the same as the f.  

Cynthia: Good, clap for him. 

After this, she said, “Let’s work more examples for you to understand it well”. 

Before the examples, she drew the colleagues’ attention to the fact that when they solved for the 

value of f using the straight line, they got 130o. Also, looking at the triangle, they got a to be 70o 

from their solution. When you add this 60o and 70o you get 130o, it is the same as the f which is 

the exterior angle. She then generalised that: 

It means whenever we are finding the exterior angle, it is the same as or is equal to two 

opposite interior angles. So, is that clear? Are you okay? Any question? 

 

Cynthia’s approach used for teaching the concept of the exterior angle theorem was quite odd. She 

knew what she wanted to teach but had a problem with the pedagogical approach. She dominated 

the teaching and learning process. She said almost everything, except answers to the few questions 

that she posed to her colleagues.  

She gave the following trial work and asked them to solve the unknown angles marked by, a, b 

and c.  



224 
 

 

Figure 7. 12: Cynthia’s task used to assess her colleagues’ understanding 

 

She called on three of her colleagues in turn, to solve for the angle value for each variable. When 

they finished, Cynthia explained their solutions. She assessed the lesson by asking the colleagues 

about what they had learned. A colleague said, “we have learned that two opposite interior angle 

is equal to one exterior angle”. Based on this question, she ended the class.  

 

7.2.8 Nsiah’s (B) geometric discourse 

Of the 16 items in the geometric test, Nsiah answered ten of them correctly and obtained a partial 

score for one task on circles. He did not attempt task 4.2 on circles. He used both literate and 

colloquial words in his discourse and showed both ritual and explorative ways of thinking in 

devising solutions to the geometric tasks.  

 

He prepared to teach one property of the circle theorem based on the angle subtended at the 

circumference of a circle by a diameter. He briefly reviewed the previous lesson. He said: 

In our previous lesson, we looked at parts of a circle, I want you to mention the parts that 

you learned to me.  

Among the types mentioned were circumference, radius, centre, diameter, and chord, all of which 

he wrote on the whiteboard. He said, “Having known these, we have to look at their meaning”. He 

explored the learners’ understanding of the parts mentioned, as shown in the following excerpt:  

 

Nsiah: What is a circumference? 

Colleague: It is the distance around a circle. 

Nsiah: What is a diameter? 



225 
 

Colleague: The line that passes through the centre with its endpoints on the circle. 

 

The above excerpts show how Nsiah refreshed the colleagues’ knowledge on their previously 

learned concepts, in relation to the topic to be taught.   

Nsiah told the colleague learners to sit in groups and shared the mathematical set to each group. 

He gave the following instructions:  

(1) Take your compass and open it to any convenient radius and draw a circle. 

(2) Locate your centre and label it as O. 

(3) Draw a line from one part through the centre to the other part of the circle [diameter] 

and label the endpoints A and B. 

(4) Draw a chord from point A to any point C on the circumference of the circle drawn. 

(5) Draw a line from the point B to meet point C on the circumference. 

(6) Use the protractor to measure your angle ACB.  

The group followed the instructions given by Nsiah as seen in the activity being performed below 

(see Figure 7.13).  

 

  

Figure 7.13: Different groups drawing and measuring as instructed 

 

Nsiah asked them to use the protractor to measure the angle subtended at the circumference by the 

diameter. Throughout the instruction, he moved from one group to the other to observe what each 

group was doing, and was found to be interacting with some members of the groups. He also drew 
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the diagram as per the instruction provided for the class engagement. He asked each group to give 

the value of the angle measured. Each group determined the angle to be 90°. 

 

He said: 

This is an angle obtained by measurement. So, let’s use the analytical approach to see 

[prove] that the angle subtended at the circumference of circle by a diameter will give us 

90o.  

 

He gave further instruction on the proof process by asking the class to draw a line from the centre 

O to the point C on the circumference of the circle. He explained that each of the straight lines 

drawn from the centre to the points on the circumference, is a radius. He made a hatch mark and 

labeled each r (radius). He engaged the class with the following question: 

Nsiah: How many triangles do we have? 

Colleague: Two triangles. 

 

He explained that because the smaller AOC and BOC are each bonded by two radii, the 

triangles are called isosceles triangles. He added the property that “one property of an isosceles 

triangle is that the base angles are equal”. 

 

Based on this property, he labelled OAC and OCA with the same variable x and AOC to be 

y. Using the same analogy, he labelled OBC  and OCB with the same variable z and BOC as 

w. 

He asked the class “What is the total sum of the interior angles of a triangle?” One colleague 

responded that it is 180o. He generated three equations using the two triangles, and the straight line 

AOB as shown below. 

oyx 1802 =+  … … (1) 

owz 1802 =+  … … (2) 

owy 180=+  … … (3) 
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Figure 7.14: Proof of angle subtended in a semi-circle. 

 

He associated the proof with the angle obtained from measurement in the first activity. He said, 

“From the analytical proof, we can see that angle ozx 90=+ , as obtained from measurement”. 

He stated the theorem, based on the activity, that: 

 Any angle subtended at the circumference by a diameter is equal to 90o. 

 

He concluded the lesson by telling the class captain to see him for a take home assignment.  

 

7.3 Analysis of the PSTs’ classroom geometric discourse 

7.3.1 Word use in classroom geometric discourse  

The category of analysis of word use draws on PSTs’ use of functional words in their classroom 

geometric discourse. According to Sfard (2008), language use plays a significant role in 

mathematics discourse. The analysis focused on the use of words and their related meanings in the 

context of the geometric shape. Sfard (2008) maintains that a discourse is characterised by 

keywords, and mathematics, particularly geometry, includes some specific keywords used to 

designate specific concepts in the subject (Atebe & Schafer, 2010). Word use in a discourse can 

be classified as mathematical or colloquial (explained in Chapter three section 3.3.1). Both literate 

and colloquial words were found in the discourses of the participants. The use of words differed 

across and within groups.  
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Stephen used functional words in his classroom discourse. He explained the various terms by using 

accepted words in learning geometry. He redefined a parallelogram, as stated by one of the 

colleagues, as “a four-sided figure with two pairs of parallel lines”. He termed the straight line 

that connects the two non-adjacent vertices as the ‘diagonal’ and also preferred that the colleagues 

use the word ‘bisect’ to describe the observation that ‘the diagonals bisect at right angles’. Stephen 

used words that are endorsed in geometric discourse. Stephen’s understanding of these technical 

terms enabled him to communicate with his colleagues in a concise manner. This finding supports 

the inference from other researchers’ views on terminologies in geometry, that pre-service teachers 

who possess adequate knowledge of mathematical terms in a discourse, are able to communicate 

ideas in a concise and acceptable way to enhance learners’ acquisition for and use of appropriate 

terms in communication (Atebe & Schafer, 2010; Oyoo, 2009; Roberts, 2010).  

 

Stephen also showed concern about his colleagues’ use of literate words in their discourse. Eg. 

When he wanted to draw their attention to one of the intended properties, he asked about their 

observations regarding the folded rhombus. He did accept the response “that diagonals divide the 

angles into two equal parts”, but encouraged them to use the word ‘bisect’ instead. Stephen knew 

how to use literate words to communicate ideas and how to shape or correct the way other people 

used words in the discourse.  

 

Similarly, Jones (A) did not accept colloquial word use in defining some of the concepts taught. 

For example, one of the colleagues defined a diameter as “a line that divides a circle into two equal 

parts”. Finding it unsuitable, he called for another definition, which yielded the response “a 

diameter is a line segment drawn through the centre of the circle with its endpoints on the circle”. 

Jones accepted this definition, drew it on the whiteboard and emphasised the phrase, ‘through the 

centre’. He corrected his colleagues’ definition of a tangent by encouraging them to add the phrase, 

‘touches at one point’. It was also found in Clement’s (A) lesson that when one of his colleagues 

stated the exterior angle theorem of a triangle without the word ‘sum’, he corrected him and 

emphasised the use of the word ‘sum’ in stating the theorem.  

 

This guidance provided by Stephen and Jones shows that they have developed the competence to 

guide teaching and learning of geometry, with appropriate words in an objectified way. Sfard 
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(2008) maintains that meaningful learning occurs when learners’ word use is guided and shaped. 

Whilst Clement, Jones and Stephen (all in Group A) were correcting their colleagues’ word use in 

a discourse, two others in Group B were approving of colloquial word use. For example, Albert 

confirmed a colleague learner’s question to find out if a diameter could be defined as “a line that 

divides a circle into two equal parts”. He replied in the affirmative way.  

 

The rest of the participants used both colloquial and literate words in their discourses. According 

to Sfard (2008), colloquial word use is informal and could lead to several interpretations. It is not 

often used in discourses practised in schools. Based on the observed lessons, some of the PSTs 

used or endorsed the use of colloquial words in their discourses. For example, in Albert’s lesson 

on parts of a circle, where he read most of the definitions from a paper, he endorsed a colloquial 

definition given by one of the colleagues. A colleague asked if a diameter could be defined a 

diameter as “a line that divides a circle into two equal parts?” Albert endorsed this definition, 

which was stated with colloquial words and is not used in school mathematics (Sfard, 2008). Albert 

also defined a segment as “a region of a circle which is cut from the rest of the circle by a chord”. 

He demonstrated this by drawing and shading a portion bounded by a chord and an arc. 

 

Similarly, Alex (B) described a property of a straight line by using colloquial words. He said, “the 

sum of angles on a straight line is 180o”. This narrative was used as a guide to model equations 

involving the adjacent angles formed on a straight line.  

 

Cynthia also used the colloquial word ‘combine’ to mean ‘add’ in her discourse. She also stated 

the theorem that “the exterior angle is equal to the two opposite interior angles”. What needs to 

be noted is the omission of the words ‘sum of’ in stating the theorem. Nsiah (B) also used the 

words ‘base angles’ to refer to angles opposite the equal sides, in an isosceles triangle. According 

to Sfard (2008), language or word use performs specific functions in mathematics discourse with 

literate meaning in the context of its use. For example, in stating the theorem, the words ‘sum of’ 

cannot be omitted.  

 

Geometry, like any other topics in the mathematics curriculum, has unique terminologies that 

learners need to comprehend, to guide their understanding in learning advanced geometric 
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concepts (Atebe & Schafer, 2010). In this study, some of the PSTs developed their colleague 

learners’ thinking with word use in defining key geometric concepts or terms, required to learn 

higher geometric content.  

 

Word use, in defining and describing geometrical terms plays an important role in the discourse. 

It is an essential tool through which geometric concepts are communicated. According to Atebe & 

Schafer (2010), learners’ acquisition and understanding of the basic geometric terms, forms a 

sound basis to enable them to clearly communicate their ideas. This suggests that certain words 

and terminologies in geometric discourse should not be assumed to be known by the learners, but 

need to be taught. In this study, some of the Group A participants were found to develop 

colleagues’ understanding of certain words, that were prerequisite to understanding the main topic 

to be taught. Some researchers claim that learners’ understanding of geometric words enables them 

to describe specific spatial ideas clearly and to show possible relationships among them (Alex & 

Mammen, 2018; Roberts, 2010). Teachers need to develop learners’ understanding of basic 

geometric concepts and terminologies (word use). Sfard (2008) asserts that what gives a discourse 

its special features are the keywords used. Learners could be proficient in learning geometry when 

certain keywords are learned, understood and used in communication. This supports Atebe and 

Schafer’s (2010) view that keywords (concepts and terminology) form the building blocks, or the 

basic knowledge, on which further content is built. Understanding of these keywords is 

fundamental for learning geometry. The authors contend that learners’ proficient communication 

of geometric ideas depends on how well the basic terminologies have been understood.  

 

According to Sfard (2008), language forms the main tool for communicating ideas in a discourse. 

This makes the kind of word use in explaining solution processes to learners, very important in 

every discipline. Learners’ understanding can be developed and deepened when words are used in 

a literate context. On the other hand, learners’ understanding may be affected if colloquial words 

are used in a discourse.  In the classroom context, communication forms the means through which 

teachers present ideas and content of the curriculum to learners. In teaching properties of geometry, 

teachers need to explain using certain words that would help learners to make relationships and 

draw relevant connections to guide their understanding.  
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7.3.2 Visual mediators 

According to Sfard (2008), visual mediators are artefacts (pictorial materials) that are used to 

communicate mathematical concepts to learners. These can be diagrams, symbols, sketches and 

the like. Visual mediators assist learners to create imagery of the concepts learned. Learners can 

communicate their thoughts better, when the object of discussion is seen (Sfard, 2008). She 

classifies these mediators into iconic, symbolic and concrete mediators. The PSTs used several 

visual mediators to communicate the desired geometric concepts in their lessons. These are 

discussed in the following paragraphs.  

 

7.3.2.1  Diagrams and sketches 

Diagrams are used to convey, or communicate geometric concepts, which serve as a realisation 

that forms a valuable source of a person’s information in a discourse (Sfard, 2008). The use of 

diagrams is central to learning because they offer great prospects for enhancing learners’ 

understanding (Sfard, 2008). By using diagrams to explain ideas, learners can picture the ideas in 

their minds (mental imagery) and remember them later.  

 

All the PSTs incorporated diagrams in teaching the geometric concepts in their lessons. The 

diagrams aroused and sustained their colleagues’ attention in the lessons, compared to other 

lessons which were dominated by the teacher’s verbal explanations. The diagrams enabled the 

colleague learners to create mental images of spatial ideas in the geometric discourse. For example, 

Jones (A), Albert (B) and Nsiah (B), who taught topics on circles, supported their verbal 

explanations of the various concepts by using diagrams. Sfard (2008) asserts that diagrams make 

objects accessible, for learners to produce and substantiate mathematical narratives. This notion 

was embraced by the PSTs. After a concept had been defined, it was visually represented on the 

whiteboard. For example, Jones made the definition of a diameter more accessible to colleague 

learners, by drawing it and emphasising that the straight line (the chord) must pass through the 

centre of the circle before it is considered a diameter. This is in line with Samkoff et al.’s (2012) 

view that the use of diagrams provides a more accessible explanation for learning mathematics. 

The authors state that diagrams enable learners (problem solvers) to view and integrate pieces of 

information with “less cognitive effort” (p. 49). 
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A great advantage of diagrams is that they show relationships between variables or concepts 

(Jones, 2013; Sfard, 2008). When Jones stated the theorem that ‘an angle subtended by an arc at 

the centre is twice the angle subtended at the circumference’, he supported this with a visual 

representation to show the relationship between the angles (see Figure 7.2).  

 

It was observed that, most of the colleagues followed the diagram-supported instruction with rapt 

attention. Most learners benefit from visual and verbal representation of mathematical concepts 

(Jones, 2013; Mudaly, 2012; Sfard, 2008). All learners learn in different ways. For mathematics 

instruction to be effective and meet the various learning styles of learners, concepts need to be 

presented using multiple visual instructional strategies (Mudaly & Naidoo, 2015). Such visual aids 

developed the colleague learners’ ability to make meaning from Jones’ lesson.   

 

The PSTs embraced the use of diagrams, to ensure that their learners not only processed the verbal 

explanation of geometric concepts but also visualised and developed a deeper understanding of the 

geometric ideas (Jones, 2013;). After Stephen had guided the colleagues through the paper folding 

activity, he sketched and explained the properties of a rhombus. In Matlen et al.’s (2018) view, 

diagrammatic representation of concepts enables learners to make sense of ideas and draw 

relational meaning among the concepts learned. Jones (2013, p. 1) adds that diagrams are an 

integral aspect of doing and making meaning of mathematics, and are often used in the teaching 

and learning of geometry, not only because of the nature of the geometric objects, but because 

diagrams offer an “effective problem representation that enables complex geometric processes and 

structures to be represented holistically”.  

 

Geometric concepts and properties are easier to learn and understand when they are presented in 

visual forms such as diagrams (Jones, 2013). The colleague learners welcomed the use of the 

diagrams in learning, as was evident by their participation and contributions in the lesson. This 

pedagogical perspective, adopted by Stephen, aroused and sustained the colleagues’ interest 

throughout the lesson, and Stephen did not have to struggle with lengthy verbal explanations of 

the properties. According to Jones (2013, p. 1), the reason for the widespread use of diagrams in 

teaching and learning is that “a picture is worth a thousand words” or “hearing a thousand times is 

not as good as seeing once”. Possibly, the participants’ interest and active participation in the 
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lesson were heightened as they were not made to process verbal information, but were shown the 

visual meaning of the properties, which may be easier to integrate into their way of learning. 

Stephen’s attempts to assess the colleagues’ progress with the instruction, yielded responses and 

articulation of the properties learned based on the diagrams used (on the whiteboard). In line with 

the commognitive theory, “communication is mediated by images”, which develops learners’ 

fluency in a discourse that being the goal of mathematics learning (Sfard, 2008, p. 148). This 

suggests that learners’ thinking can be highly enhanced when diagrams are used in teaching and 

learning.  

 

Results showed that the use of the diagrams by the PSTs helped to communicate the intended 

geometric ideas, so that the colleagues could follow the lesson in a meaningful way. This finding 

corroborates with other researchers (Dundar & Otten, 2022; Poch et al., 2015) who also found that 

the use of visual resources such as diagrams, enables learners to make meaning of the learning 

activities. The use of diagrams, as instructional aids in geometry, make it easier to present 

geometric concepts and also make the concepts clearer for the learners. Diagrams form an integral 

part of learning and understanding mathematics (Jones, 2013; Matlen et al., 2018).  

 

7.3.2.2  Iconic mediators 

According to Sfard (2008), icons are artefacts used to design diagrams, drawings and graphs. They 

are marks used to design mathematical tasks to communicate important features. Learners produce 

a factual narrative in a discourse based on iconic realisations (Sfard, 2008). This means that 

learners’ proficiency in mathematics depends on their ability to identify and interpret such iconic 

mediators to aid understanding. To develop learners’ understanding, teachers should draw 

learners’ attention to such visual cues to facilitate learning. In geometry, where most tasks are 

presented with diagrams, making learners aware of any additional visual prompts can be useful in 

their discourse (Sfard, 2007; 2008).  

 

The PSTs used iconic mediators to design the diagrams in the lessons. These iconic mediators 

communicated some features of the diagrams. For example, narratives about right angles, types of 

triangles, types of quadrilaterals and related properties, were produced by the colleague learners 

in the discourse when they had observed the various icons used to design the diagrams (Sfard, 
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2008). When one colleague described a triangle as isosceles, he substantiated by stating that the 

two sides of the triangle have an equal number of icons (hatch marks).  

 

Some of the PSTs ensured that narratives produced by their colleague learners, were based on an 

observed iconic mediator and not a mere assumption. In Clement’s (A) lesson on the exterior angle 

of a triangle (see Figure 7.5), he asked about the relationship between the side BA and the straight 

line drawn through the vertex C. One of the colleagues said they are parallel. When Clement asked 

‘why’, he referred to the arrow on the side BA and to the straight line CE. This supports Sfard’s 

(2008) notion that iconic realisations help learners to produce factual narratives in a discourse. 

Clement’s probe was an effort to ensure that narratives are produced by observing and interpreting 

the icons used in the diagram. During the lesson, he commented that: 

Sometimes you may see these straight lines [pointing to the parallel lines] as parallel, but 

do not make a wrong assumption when these marks or signs [iconic mediators] are not 

there. Always check first before you consider the lines as parallel.  

 

This shows that Clement has good geometrical thinking as a basis to guide learners in the 

discourse. Also, Stephen drew attention to the fact that, in the quadrilateral drawn, the opposite 

sides are parallel and equal, which is a rhombus. Similarly, in Jones’ proof of one of the circle 

theorems (see Figure 7.2b), he drew a straight line from C to the centre, O, of the circle and said:   

From here [pointing on the diagram], this is radius OC and OA is also a radius. So, it 

means that they are equal in measure.  

When he said this, he designed the two radii with icons indicating that they are equal. Then, he 

labelled the angles opposite the equal sides with the same variable x in the proof process.  

 

In Nsiah’s (B) lesson on circles, he informed the colleagues that any line segment drawn from the 

centre to any point on the circumference, is of equal length and made an equal number of hatch 

marks on them. He also indicated the angle the diameter formed at the circumference of a circle, 

by using a ‘square mark’ iconic mediator to show that the angle is 90°. 

 

Many of the Group A participants were more conscious of guiding the development of geometric 

thinking using the iconic mediators, compared to the Group B participants. All the PSTs used 
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iconic mediators in the context of the content taught. However, three of the PSTs in Group A based 

their narratives on the icons and deliberately drew their colleagues’ attention, whilst the rest of the 

participants in the study assumed that their colleagues knew them and were silent on them. Within 

the commognitive framework (Sfard, 2008), learners’ fluency and interpretation of visual cues in 

a discourse is an important goal of teaching mathematics, which is achieved when iconic mediators 

are explained to learners.  

 

7.3.2.3  Symbolic mediators  

Symbols are artefacts used in mathematical communication (Sfard, 2008). Many geometric 

concepts are communicated using symbols as signifiers. Knowledge of these artefacts enhances 

one’s understanding in the discourse and improves the communication of ideas. According to Sfard 

(2008, p. 184), learners’ “ability to create an endorsed narrative about geometric shapes” starts by 

visualising and interpreting their associated symbols.   

 

The only symbol used by the PSTs, was for angle, ‘ ’. For example, in teaching properties of 

parallel lines, although letters were used to label the angles, on the chart, they were accompanied 

by the angle symbols during explanations in the lessons of Alex (B), Clement (A) and Cynthia (B). 

Maxwell labelled the spaces between the straight lines related to the vertex, with letters, and 

continued to use these letters in explaining the various related properties of angles as shown below.  

 

 
(a) 

 
(b) 

Figure 7.15: Maxwell’s representation of concepts of angles with only variables. 

 

Even when he used the word ‘angle’ in his explanation, he constantly used a variable (algebraic 

symbol) to represent the concept of an angle. Although the PSTs taught some concepts on parallel 
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and perpendicular lines (right angles), they made no attempt to develop the learners’ thinking on 

related symbolic artefacts.  

 

7.3.2.4  The PSTs’ use of concrete mediators in classroom geometric discourse  

Sfard (2007, 2008) explains that concrete mediators are visual objects that can be seen, handled 

and manipulated for the purpose of learning mathematics, and help in the production of factual 

narratives about the object. Examples are drawing tools, paper cut-outs and gestures. They allow 

for interactive engagement between the teacher and the learner, and bring about learner 

participation in learning through hands-on activities (Horan & Carr, 2018). Learning through 

hands-on activities enhances learners’ cognitive development and helps them to become 

constructive thinkers (Rondina, 2019).  

 

Stephen and Clement (Group A) and Alex and Nsiah (Group B), used concrete mediators in their 

classroom discourse. Stephen used paper folding to develop his colleague learners’ geometric 

thinking on the properties of a rhombus. He gave samples of varying dimensions of cut-out rhombi 

to the colleagues in small groups and engaged them in folding activities. The following extract 

shows the interactive dialogue between Stephen and his colleagues.  

 

Stephen: What did you realise after the folding? 

Colleague: They [one part] falls? on each other perfectly. 

Stephen: If one part falls exactly on the other, what do we call this line [points to the one 

line connecting the two vertices]? If they are falling on each other perfectly, what 

do we call that line? 

Colleague: Line of symmetry.  

Stephen: Ok, first, what is the name of the shape formed? 

Alex: Triangle. 

 

According to Sfard (2008), the use of concrete mediators enables learners to produce factual 

narratives in the discourse. Stephen used leading questions to engage the colleagues, in producing 

narratives governing the activities performed. One colleague said that the folding of the rhombus 

along one of its diagonals forms a triangle. The colleagues followed the lesson critically and were 
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able to provide the answers expected by Stephen, in relation to the activities being performed. This 

finding is in line with Duatepe–Paksu’s (2017) observation that as learners engage in the activities 

of folding and unfolding, they begin to examine certain critical features of the objects more closely 

and derive meaning, which often creates stronger memory and enhances retention.  

 

Stephen engaged the colleagues in critical thinking by asking for their observations about the 

activity performed. When the parallelogram he folded during the review session formed an 

overlapping shape, he asked the colleagues if they could provide a reason for that, by comparing 

the folded rhombus to that of the parallelogram. Maxwell (A) said, “I think because in the 

rhombus, all the sides are equal”. Maxwell reasoned this way to support the non-overlapping sides 

of the rhombus, when he folded it. Stephen asked if the class agreed with Maxwell, and probed for 

any different opinions, as a way of giving everyone the opportunity to share a different line of 

thinking.   

 

Observation showed that the use of paper folding provided the colleagues with the opportunity to 

express their mathematical thinking. Sfard (2008) asserts that when learners are provided with a 

physical object that forms the centre of their discussion, they can communicate their thinking in a 

rich and meaningful way among themselves and with the knowledgeable other. This notion is 

supported by Wares (2016), that concrete materials help in communicating ideas in learning. 

Researchers (Rondina, 2019; Uribe & Wilkins, 2017) also found that when concrete materials are 

used in a lesson, learners have the chance to verbalise their thinking about the observed object.  

 

Duatepe-Paksu (2017) suggests that organising the learners in groups, in paper folding activities, 

enables them to share ideas and learn from one another. The colleagues who were put into groups 

were found to share ideas during the activities. There was evidence of cooperative engagement 

among the learners. Chan and Idris (2017) describe cooperative learning as a teaching technique 

in which learners are put into small groups and learn from one another in the discourse. The 

colleagues were sharing ideas with each other about the folding activities they were engaged in.  
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He used questions to guide his colleague learners’ observations regarding the desired lesson 

objectives. Through the paper folding, cutting and measurement, he showed the following 

properties of the rhombus: 

1. All sides being equal 

2. Two lines of symmetry 

3. The diagonals bisect the angles at the vertices (corner angles). 

4. The diagonals bisect at right angles. 

 

The use of concrete mediators enhanced the colleagues’ understanding and discoveries in learning. 

This was evidenced by processes from which the properties emerged or were discovered. In most 

cases, the properties were mentioned in response to questions posed by Stephen, to guide their 

discoveries in the activities being performed. Several studies reported similar findings, that the use 

of concrete objects in teaching mathematics enables learners to explore, make meaning of and 

understand the concepts being taught (Cockett & Kilgour, 2015; Moyer & Westenskow, 2013; 

Rondina, 2019). Situating this finding in the Sfard’s (2008) commognitive framework, is based on 

her belief that the use of concrete mediators in a discourse, enables learners to express ideas in a 

meaningful way, which facilitates their meaning making in the discourse.  

 

Sfard (2008) asserts that a discourse is characterised by its distinctive word use. Stephen paid 

particular attention to the colleague learners’ use of the appropriate geometric terms in 

communicating ideas to make sure that they learned and used these terms, when talking about 

geometry. Stephen’s guidance of literate word use is shown below: 

 

Stephen: What do you notice about the diagonal and the angle at the vertex (corner 

angles)? 

Nsiah (B): The diagonals divide the angle into two equal parts. 

Stephen: When something is divided into two equal parts, what term (word) do we 

use for it in mathematics/geometry?  

Stephen: It starts with “b” 

A colleague said, ‘bisect’. Stephen asked the learners to use this preferred word to describe their 

observation as “the diagonals bisect [the] corner angles”. Guiding learners’ meaningful use of 
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words in a discourse, is consistent with Sfard’s (2008) commognitive framework. Learners’ ability 

to acquire and use geometric terms meaningfully is fundamental in learning geometry (Alex & 

Mammen, 2018). The authors add that learners must learn technical terms to communicate their 

ideas correctly. 

 

Nsiah (B) taught one of the circle theorems in a reality-based instructional approach using a 

concrete mediator. When he had provided the visual representation of the theorem on the 

whiteboard and had guided the colleagues to draw, but with varying radii, he asked them to 

measure the angle the diameter subtended at the circumference, to which each group gave the 

answer of 90o. Similar to other hands-on-activities, all the colleagues participated in this lesson. 

Nsiah encouraged other group members to measure it to verify for themselves. This corroborates 

Kontas’ (2016) claim that teachers do not only use concrete objects to guide learners’ 

understanding in learning, but most importantly, to actively engage them in the learning process. 

This engagement enables learners to individualise learning (Sfard, 2008). When learners have been 

actively involved in doing and have individualised the concept, it gives them confidence and makes 

them take ownership of their own learning (McDonough, 2016). Learners’ understanding of 

concepts is deepened, retention is enhanced, and they can apply the understanding in a problem-

solving situation (Al-Mutawah et al., 2019). After the ‘doing’ phase of the instruction, Nsiah 

deepened the colleague learners’ understanding, by using geometric properties and concepts to 

prove the theorem analytically. All the lessons designed by the PSTs using concrete mediators, 

shared some characteristics with the concrete-representation-abstract model of instruction.  

 

Throughout the lessons that incorporated the use of visual mediators, learners’ active participation 

was observed, which showed that the approach actually met their style of learning. Kablan (2016) 

asserts that the use of concrete mediators in teaching accommodates for the various learning styles 

of learners. This kind of instruction aligns with learning through doing. It has support from NCTM 

(2000) that knowing mathematics is doing mathematics and constructing knowledge. In addition, 

research shows that knowledge constructed by learners themselves is understood, retained and 

applied to new situations (Cope, 2015; Kontas, 2016). From the lesson observation, learners 

developed an interest in these lessons due to their active participation. Learners’ class contribution 

was observed to be high since many of them often raised their hands, wanting to answer questions 
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posed by the PSTs. Researchers agree with this notion that learners see mathematics as fun, and 

become engaged in the lesson when they are guided to do their own exploration (Cockett & 

Kilgour, 2015; Cope, 2015; Kontas, 2016). Within Sfard’s (2008) theory, learning takes place 

when one works with a more knowledgeable person to receive direction and guidance so that one 

can gain autonomy in learning. When appropriate support and guidance are given to learners, their 

understanding can be deepened more, than when they learn on their own. This could mean that a 

learner may learn more when receiving support from a knowledgeable person (Naidoo, 2011; 

Sfard, 2008). 

 

7.3.3 Narratives 

Sfard (2008, p. 134) explains that a narrative is a sequence of words that are “framed as a 

description of objects, of relationships between objects, or of processes with or by objects”. 

Narratives can be endorsed or rejected in the context of “discourse-specific substantiation 

procedures” about the object. Narratives are endorsed and labelled as ‘true’ when they are accepted 

in a community of learning, otherwise, they are rejected (Sfard, 2008). A narrative can be any text, 

written or spoken, framed to describe an object (Sfard, 2007). 

 

Sfard (2007, p. 574) asserts that in school mathematical discourse, the endorsed narratives are 

called the mathematical theories, which include discursive construction such as “definitions, 

proofs, and theorems”. Geometric discourse requires narratives to be produced as a description of 

the various definitions, theorems, proofs and properties governing geometric concepts and figures.  

 

The PSTs produced various narratives in their geometric discourse, which ranged from definitions 

to properties, to theorems governing geometric shapes. Some of the PSTs developed their 

colleagues’ geometric thinking on definitions of terms within the content area. For example, in 

Jones’ lesson on the circle theorem, he guided the colleagues to define all the basic terms necessary 

for their understanding and meaningful engagement in the lesson. This finding supports (Kemp & 

Vidakovic, 2021; Leikin & Zazkis’, 2010) assertions that definitions form the basic building blocks 

of any content knowledge in mathematics. In addition to Jones defining these geometric terms, he 

represented them in visual forms on the whiteboard. Visual representation helps in producing 

narratives about geometric terms and figures (Sfard, 2008). Cunningham and Roberts (2010, p. 3) 



241 
 

maintain that to define geometric concepts, it is not the definition that comes to the learners’ minds, 

but their “prior experiences with diagrams and their attributes” associated with those concepts. 

 

According to Sfard (2008), narratives can be accepted or rejected in the context of the content 

under discussion. It was observed that not all the definitions produced by the colleague learners 

were accepted by Jones. For example, Jones did not accept or endorse the definition put forth by a 

colleague that “a diameter is a line that divides a circle into two equal halves”, but accepted 

another one that “a diameter is a line segment drawn through the centre of the circle with its 

endpoints lying on the circle”. Jones rejected the previous definition, probably to avoid any 

misconception that learners may associate with it, as was found in the work of Mudaly (2021) 

where learners claimed a line to be a diameter even though there was no indication that it passed 

through the centre of the circle. Alex and Mammen (2018) affirm that producing appropriate 

narratives about geometric concepts, reduces the incidents of misconceptions. The three 

participants in Group A were more particular about how their colleagues produced endorsed 

narratives compared to their counterparts in Group B. 

 

The use of endorsed narratives was seen in the PSTs’ explanations in many forms, such as 

descriptions of geometric figures, identifying and substantiating some geometric properties that 

govern particular solutions, and the use of appropriate theorems in solving the various tasks in 

their lessons. Some of the narratives included; definitions, producing names of geometric figures, 

properties associated with parallel lines and geometric figures as well as the properties and 

theorems associated with circles. For example, a polygon with three sides was named a triangle, 

and the narrative about its interior angles raised by Alex was that “the sum of the interior angles 

of a triangle is 180o”, an object-level type of narrative associated with a triangle, as explained by 

Sfard (2008). Thus, the study focused attention on the kinds of endorsed narratives, such as the 

properties and the narratives that the PSTs used to substantiate or justify their routine actions in 

geometric discourse. For example, angles that are formed on a straight line can be summed and 

equated to 180°, with the supporting narrative that ‘the sum of adjacent angles on a straight line 

added up to 180°’.  
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7.3.4 Routines 

Sfard (2008) defines routines as repetitive patterns that characterise a particular discourse. They 

are mathematical regularities one follows in creating and substantiating narratives in a discourse. 

In other words, they are metarules that regulate learners’ actions in a discourse. Routines are 

classified as ritual or explorative. In the following sections, the different patterns that the PSTs 

followed in developing geometric concepts, are discussed in line with the characteristics of 

ritualised and explorative discourse.  

 

7.3.4.1  Ritualised discourse of teaching.  

Ritualised discourse, according to Sfard (2008), is characterised by using rules in solving 

mathematical tasks. She associates ritualised discourse with the use of meta-rules to show ‘how’ 

to solve a mathematical task.  

 

Based on the classroom observation, the lessons of three of the PSTs, one from Group A and two 

from Group B, were found to exhibit some characteristics of ritualised instruction. They provided 

strict rules of how to solve some of the examples they used, to develop the learners’ geometric 

thinking. In Cynthia’s (B) lesson on ‘the exterior theorem of a triangle’, she solely determined for 

the learners the steps to follow, in solving for the missing angles in the task. She demonstrated 

nearly all the patterned routines they were supposed to learn. Sfard (2008) contends that the most 

common type of instruction in our classrooms, is of the ritualised type. She adds that learners begin 

the learning of mathematical routines in a ritual way by following a sequence of instructions for 

the purpose of “creating and sustaining a bond with other people”, particularly the knowledgeable 

other (p. 241). This sequence of instructions focuses on ‘how’ to get something done. When 

Cynthia had written a task on the whiteboard, she said, “Solve for the interior angle as we did last 

week”. This could be an order for the colleague learners to follow (or recall) the same steps for 

solving a problem that was taught previously.  

 

Another ritualised routine pattern in her discourse emerged from the statement that “so it means 

whenever we are finding the exterior angle, it is the same as [adding] the two opposite interior 

angles”. According to Sfard (2008), ritualised discourse, in most cases, is associated with prompts 

and is extremely restricting. Cynthia seemed to be limiting what they could do, forgetting that 
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tasks may not always appear as she had presented them. This finding is in line with the claim of 

Nahdi and Jastisunda (2020) that classroom mathematics teaching mostly focuses on developing 

learners’ knowledge of procedures for solving mathematical tasks.  

 

This was followed by a series of questions that seemed to be in a command form. The questions 

were ‘Is that clear?’, ‘Are you okay?’, ‘Any questions?’ Little attention was given to the colleague 

learners’ participation, except for one task where she called a colleague to solve on the board.  

 

The colleague learners were made to imitate the solution process as taught by Cynthia, as it is an 

acceptable way in the interim phase of a discourse (Sfard, 2008). When one learner was asked to 

solve a question on the board, Cynthia said, “Do it as I taught you”. Sfard (2008, p. 267) 

acknowledges that the learning process often starts with “loosely related rituals” by depending on 

situational clues? (imitation). Thus, teachers also try to guide learning by imitation. According to 

Sfard (2008), ritualisation makes learners dependent on learning clues, which has restricted 

applicability but is unavoidable in developing learners’ new mathematics discourses. Even though 

teaching by imitation may be unavoidable, the goal of school mathematics teaching is to develop 

an explorative way of thinking (Sfard, 2008).  

 

Ritualised instruction can be associated with Sfard’s (2008) term acquisitionist approach to 

learning, which is characterised by receiving and processing verbal information from teachers, on 

how to solve a task. She associates this type of learning as “behavior without mind” (Sfard, 2008, 

p. 92). In other words, it is learning with little or no thinking, or learning by memorisation.  

 

In Maxwell’s (A) lesson of teaching properties of parallel lines, he provided verbal information 

for the learners to process. Emphasis was laid on the rules of the discourse. The properties were 

just stated for them to learn and apply, in solving related tasks. Even though he started the lesson 

with a brief review, the actual concept development showed more of the ‘how’ throughout his 

discourse. He drew a transversal to the two straight lines and labelled the angles formed at the 

corners. He said, 
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So, we are going to talk about the properties of angles. Now angle a and angle f, angle c 

and angle h [wrote on the board] are vertically opposite angles [asked the colleagues to 

repeat after him].  

He continued that: 

Now when we talk about vertically opposite angles, they are equal. They are what? [the 

learners responded ‘they are equal’]. … do you understand? [colleagues responded ‘yes 

sir’].  

After that he asked the learners to identify the rest of the vertically opposite angles in the figure 

shown (Figure 7.16) 

 

Figure 7.16. Maxwell’s drawing for teaching parallel lines. 

 

Maxwell: Can anybody identify another type of vertically opposite angle? 

Colleagues: Angle d and angle g.  

Next, he asked the learners to identify angles in a similar relative position. Learners responded 

angles g and e, and angles h and f. Maxwell named them as ‘corresponding angles’ and applauded 

the learners. He added that corresponding angles are equal. He also emphasized that ‘angle a and 

angle b’ are on a straight line and that they add up to 180º. He solved examples to demonstrate the 

application of the properties when attempting mathematics tasks.  

 

Sfard (2008, p. 267) maintains that “whenever the conversion of the full-fledged explorative 

discourse fails to occur and what was supposed to be a transitory stage gains permanence, teaching 

methods are the immediate suspect”. We see from Maxwell’s (A) teaching, that he presented 

almost everything the learners had to learn about the properties of parallel lines. He probably, felt 

that the learners knew nothing about the topic and hence needed to fill their minds with 

information. According to Ardeleanu (2019), teachers often regard learners as “having gaps in 

knowledge” that need to be filled, by giving them lots of information. Learners are therefore not 
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engaged in the teaching and learning process and are treated as passive learners (Fletcher, 2009; 

Swan, 2005). Thus, the teacher plays a dominant role as an instructor. This was evident in 

Maxwell’s (A) discourse. After he drew the parallel lines with the transversal, he pointed at some 

angles and gave their associated names. As a characteristic of acquisitionist learning, learners only 

played the role of passively listening to the verbal information that Maxwell offered (Ardeleanu, 

2019; Bishara, 2015; Fletcher, 2009; Sfard, 2008; Swan, 2005). Learners are often provided with 

procedures and facts to learn, which is termed a mechanistic approach to learning (Sfard, 2008). 

Swan (2005) also calls this teaching a transmission approach where the teacher (in this case 

Maxwell), transmitted or told the learners which of the angles are equal, and their names, for the 

learners to commit to memory.  

 

After the facts given by Maxwell, the only time the learners’ voices were heard, was when they 

repeated (in chorus) the name ‘vertically opposite angles’ after him. The next chorus answer was 

a response of ‘Yes sir’ to Maxwell’s question “please, do you understand?” Ardeleanu (2019), 

Fletcher (2009) and Swan (2005), remark that teachers, in mechanistic approaches to teaching, 

only question the learners to check if they are following the lesson, or to direct them in a particular 

way. This was found in Maxwell’s discourse, when on several occasions, he asked the learners to 

repeat some words after him, or to check their understanding, not individually, but the whole class.  

 

Maxwell emphasised which angles were equal based on the position of the intersection of the 

straight lines, in the form of a rule. He said, “so whenever you are solving a question… and you 

see these angles [pointing to directly opposing angles], they are equal”. Thus, the learners were 

only told to recognise the angles that were equal. A similar finding was reported by (Ngirishi & 

Bansilal, 2019, p. 89) in which one of their study participants explained his learning experiences 

on the properties of parallel lines, that in a geometry lesson, “the terms were never explained, they 

were just told which of the angles were equal”. 

 

Maxwell’s discourse was characterised by his assumed central role of giving the learners facts and 

procedures to guide their learning. This supports similar findings reported in the literature, where 

most traditional classrooms portray teacher dominance in the discourse of teaching procedures 

(Ardeleanu, 2019; Bishara, 2015; Stard, 2008).  It was also observed that he did not use any 
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teaching activity such as measuring to facilitate knowledge construction. It was purely a ‘chalk 

and talk’ approach to teaching. Similar findings about Cynthia’s and Maxwell’s lessons were 

observed about Albert’s lesson on parts of a circle.  

 

7.3.4.2  Evidence of explorative routine 

Sfard (2008) maintains that explorative routine is the learner’s ability to produce associated 

properties of mathematics objects. It is characterised by knowing the ‘when’ and the ‘why’ 

underlying a particular routine. It is the implicit and explicit understanding of mathematics and 

geometry in particular. Sfard (2008) claims that producing endorsed narratives about mathematical 

objects remains the ultimate goal of school mathematics. This means that learners should be 

engaged in a lesson that enables them to construct and re-construct ideas as a way of producing 

endorsed narratives, a learning habit and ability that align with Sfard’s (2008) thinking and 

learning.  

 

There was evidence that some of the PSTs engaged the colleague learners in knowledge 

construction in their discourses. These were mostly found in lessons that made use of different 

visual mediators, to ensure the learners’ active involvement. For example, in Stephen’s (A) lesson, 

he used paper folding (origami) to guide the colleague learners’ exploration of the properties of a 

rhombus. This lesson design engaged the colleague learners to assume a central role in finding out 

things for themselves, which contributed to producing narratives through the construction and re-

construction of ideas (Sfard, 2008). Sfard (2007, p. 609) asserts that “agreeing about the discourse 

to follow and the readiness to shape one’s own discourse in its image are the important factors in 

learning”, and this can “only be achieved through [learner] participation”. Based on the colleague 

learners’ participation and the questions posed by Stephen, the colleagues were able to produce 

narratives, some true (endorsed) and others false (rejected). Stephen guided them to reconstruct 

the rejected narratives by suggesting some word use in their discourses, as conforms to literature. 

Thus, the colleague learners were able to produce endorsed and objectified properties of the 

rhombus. Other researchers (Rondina, 2019; Uribe & Wilkins, 2017) have reported similar 

findings that instructional design that puts learners at the centre of the teaching and learning, often 

helps them to produce appropriate verbal representation of what has been observed.  
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The effectiveness of teaching and learning was realised in closing the lesson, when Stephen 

assessed what they had learned. They produced endorsed narratives about the properties of the 

rhombus as per the objectives of the lesson, because the object of discourse was seen and 

manipulated in diverse ways. Sfard (2008, p. 146) asserts that irrespective of the “intangibility” of 

mathematical objects and concepts, mathematical communication depends on what has been seen, 

which reduces the “abstract type of talk”. The colleague learners were taught the properties of a 

rhombus, not in an abstract way, but in a concreate way of experiencing the properties.  

 

Sfard’s (2008) advocacy for the use of visual mediators in mathematics discourse, suggests that 

learners’ visual senses play a significant role in developing their reasoning abilities. Many 

concepts in geometry are presented in diagrams, such as the use of icons in designing diagrams 

and concrete materials, that are signifiers of geometric concepts. In Clement’s (A) lesson on the 

proof of the exterior angle theorem of a triangle (see Figure 7.5b), the concept of parallel lines in 

that task was presented in a different way from how it has been experienced in many traditional 

mathematics classrooms (horizontal appearance). He developed the learners’ visual reasoning in 

the lesson. This is exemplified in the following extracts: 

Clement: What do you see from the two diagrams?   

 Colleague: There is a line drawn through point C in Fig. 1.1 [see Figure 7.5b]. 

 Clement: Ok. Any different observation? 

 Colleague: There is a line that is parallel to line BA. 

 Clement: How do you know they are parallel lines? 

 Colleague: There is an arrow on the lines BA and CE. 

 Clement: Ok. I like your answer. 

 

Clement invited another colleague to come to the board and explain why the straight lines are 

parallel.  

Colleague: Sir, we have this line BA and also … line CE. So, this line is parallel to this line 

  [moving the two hands along the lines to indicate that they are parallel]. 

Clement: Why? 

Colleague: Because they move with a constant … [still moving the two hands along the 

straight lines]. 
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It can be deduced from the preceding exerpts that the colleague thought of parallelism of the two 

straight lines on mere appearance rather than evidence in concept communicaton in geometry, as 

seen in his utterance “Because they move with a constant …” which he demonstrated by moving 

his two figures along the straight lines.  

 

One colleague said, Sir I want to help him. 

 Clement: Yes. Come and help your brother [Laughter in the class]. 

 Colleague: They are parallel because there is an arrow here [pointing to the arrow on line 

BA] showing that this line is going in the same direction as this [pointing to the arrow on 

line CE] and they can never meet.  

Clement commented that “The arrows are very clear that … line BA and then line CE are parallel.  

When he said this, someone whispered, “Ahhh there is an arrow at the top. I didn’t see oo”. 

Clement jokingly said, “Now all those without eyes can see clearly [colleagues laugh upon this 

utterance].  

 

Clement developed the learners’ ability to produce narratives based on the ‘when’. Thus, even 

though some of the learners may have pre-conceived that the lines are parallel (as answered), not 

all of them may have realised that the straight lines were designed with iconic mediators that 

substantiated their notion of parallelism (Sfard, 2008). Clement’s comment that “now all those 

without eyes can see clearly”, could be a prompt to learners to critically examine features of figures 

to aid interpretation. Clement asked, “What would you call line AC?” (see Figure 7.6a). After 

some silence, he said, “or do you want me to extend this”? When he extended the line AC beyond 

the parallel lines, there was a chorus response that the line AC is a transversal. This could be a 

good effort to develop the learners’ visual reasoning. This mode of presentation exercised the 

learners’ levels of spatial reasoning.  

 

Sfard (2008) maintains that explorative routine is the ability to identify properties of mathematical 

objects. Even though all the PSTs developed their colleague learners’ abilities to solve geometric 

tasks through their related properties, the medium in which the properties were developed differed 

between and within the two Groups. The discourses of three of the PSTs in Group A and two in 

Group B showed more of the explorative instructional discourse. Many of the PSTs in Group A 
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designed instruction that had the potential to develop the colleague learners’ explorative ways of 

thinking compared to their Group B counterparts. The instructional design of Group A members, 

shares more of the characteristics of learning by doing, from the constructivist perspective on 

teaching, compared to that of Group B participants, whose instructional design required the 

colleague learners to process the information given to them in the traditional way of teaching and 

learning (Fletcher, 2009; Sfard, 2008; Swan, 2005).  

 

7.4 Conclusion 

This Chapter focused on the participants’ geometric discourse. In the first place, learning 

opportunities that the participants in both groups offered, for learning geometry were presented. 

Secondly, the presented geometric discourses were analysed based on the characteristics of Sfard’s 

(2008) commognitive constructs. Also, the geometric discourses were also analysed based on the 

group characteristics. The discussion of the findings was situated in the related literature.  
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CHAPTER EIGHT 

SUMMARY, RECOMMENDATIONS AND LIMITATIONS 

8.1 Introduction 

Chapter seven presented a discussion of the PSTs’ geometric discourse in themes that highlighted 

the constructs of the commognitive framework. This chapter, which concludes the investigation 

presents the summary, recommendations, and limitations of the study.  

 

8.2.1 The nature of pre-service mathematics teachers’ discursive thinking in 

geometry 

The first critical question sought to analyse the PSTs’ discursive thinking in geometry through the 

constructs of the commognitive framework. Sfard (2008) maintains that thinking is a form of 

communication which takes place with oneself or with others and is individualised in nature. She 

talks about four key ways to understand how a person thinks, which serves as the basis of analysis 

and discussion in the study. 

 

8.2.1.1 PSTs’ word use in geometric discourse  

The PSTs’ word use in geometric discourse was analysed in two ways, namely: word use in the 

definition of geometric terms and word use in explaining their solution strategies. It was found that 

they used both literate and colloquial words in their discourse.  This was evident in the kind of 

word use describing their thinking processes, about the objects on which the interview was centred. 

This finding is in line with other researchers’ view that learners’ discourses are a combination of 

both literate and colloquial words (Berger, 2013; Tasara, 2017; Wang, 2013).  

 

Analysis of the PSTs’ word use in defining geometric terms showed differences between and 

within the two participating groups. Many discourses of the Group A participants showed literate 

word use in defining the geometric terms and properties, compared with their counterparts in 

Group B. Many of the Group A participants were capable of using endorsed words in their 

discourses. Endorsed words are those that have a shared meaning in the community of mathematics 

learning (Sfard, 2008). Three of the Group A participants’ discourses demonstrated that they had 

acquired the appropriate words for comprehensively describing their geometric thinking. It is 
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important to use the correct words to define mathematics concepts, since they play a critical role 

in the teaching and learning of mathematics (Baktemur et al., 2021; Cunningham & Roberts, 2010; 

Fujita & Jones, 2006). The PSTs’ ability to use literate words to define geometric concepts and 

properties would enable them to teach definitions of geometric concepts well, as a fundamental 

aspect of developing learners’ geometric thinking in learning. It would also enable them to explain 

geometric properties in their exact spatial sense.  

 

Ndlovu (2014) asserts that definitions of geometric concepts and shapes are critical in learning 

geometry, because they form the basis for learning the properties of geometric shapes. Leikin and 

Zazkis (2010) claim that definitions form the basic unit of discourse, and it is important that 

learners’ geometric thinking is developed on their ability to define some key, terms and concepts 

of the geometric object. These competencies were demonstrated by three of the Group A 

participants. Stephen, Jones, and Clement used literate words to define and describe geometric 

terms and properties, taking into consideration certain important diagramatic features. For 

example, Stephen defined the exterior angle theorem of a triangle as follows: “… the exterior 

angle is equal to the sum of the two opposite interior angles”. Also, when Jones said that the 

isosceles triangle has two equal angles, he specified these angles by saying “angles facing 

[opposite] the equal sides”. Jones also described another property of the isosceles triangle, viz that 

the line of symmetry divides the angle formed at the point where the two equal sides meet. Sfard 

(2008) asserts that word use is very important because it is responsible for portraying the exact 

meaning the user wants to convey. Analysis of the above description provided by these PSTs, 

shows that their word use communicates the exact intent, from which meaning could be derived. 

The discourses of these PSTs show that they have used words in functional perspectives of 

geometry to define the concepts.  

 

These participants demonstrated the ability to describe geometric concepts with literate word use, 

which is central to teaching and learning. Literate word use is necessary for developing classroom 

mathematical communication because thinking manifests itself through communication. Literate 

word use in mathematical communication is important in ensuring successful learning in geometric 

discourse (Sfard, 2007, 2008). Primarily, word use in mathematics communication helps teachers 

and learners to engage in mathematical discourse, with a high level of precision (Mulwa, 2015).  
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Also, the results show that five of the PSTs used words in both literate and colloquial ways to 

define and describe the objects under discussion. By colloquial, they either used words that are 

open to several interpretations or used incomplete words or terms in their definitions. The use of 

colloquial words in mathematics discourse was found among all the PSTs in Group B and one in 

Group A. For example, three participants in Group B and one in roup A, similarly described the 

exterior angle property as follows: “… the exterior angle is equal to the two opposite interior 

angles” (see sections 5.4.1 and 5.4.2). 

 

The theorem was colloquially stated. What is worth noting about stating the theorem is the 

omission of the word ‘sum’ signifying the operation between the two interior angles. The omission 

of the word renders the theorem incomplete. According to Sfard (2008), the use of words in 

mathematics discourse should draw attention to the exact meaning, as used in school mathematics. 

When words are not used to specify an exact idea, they allow for several interpretations and lead 

to errors in discourse (Atebe & Schafer, 2010; Sfard, 2008).   

 

Other geometric concepts which were defined or described using colloquial words were 

‘diameter’, ‘rhombus’, etc. For example, some of the participants defined a diameter as “a line that 

divides a circle into two equal parts”. Sfard (2008) asserts that words that lead to multiple 

interpretations are characteristic of colloquial word use. This means that such words do not support 

the development of accurate and specific spatial reasoning among learners. This finding supports 

that of Mudaly (2021) who observed that the study participants considered a straight line (that 

seemed to pass through the centre of a circle) as a diameter without carefully examining its spatial 

condition, as to whether it passed through the centre or not. 

 

Further analysis showed that some of the PSTs seemed to have developed their geometric thinking 

on weak fundamental concepts. These are people who have passed tertiary courses in mathematics 

and geometry, yet demonstrated difficulties with the definitions of some basic geometric terms. 

For example, Maxwell (A) solved many of the geometric tasks and demonstrated both ritual and 

explorative ways of thinking, but was found to be deficient in wording the definitions. He had 

already defined some of the geometric terms with colloquial words. When he was asked to define 
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a tangent, he commented, “these definitions” and said, “I know the name, but the definition I have 

forgotten”. This shows that Maxwell could not find any words to express his thoughts on what a 

tangent is. Also, when he was asked to define or describe a cyclic quadrilateral, he responded, “a 

cyclic quadrilateral, hmmm … I can draw it but the definition no”. This finding supports Kemp 

and Vidakovic’s (2021) assertion that many expectations of college students are not met because, 

in spite of passing advanced courses taken in their programme of study, they are unable to complete 

definitions of terms in the same content domain. According to Guner and Gutlen (2016) and Speer 

et al. (2015), definitions form part of the fundamental component of Euclidean geometry and also 

serve as a starting point for teachers (and learners) to develop sound and adequate knowledge of 

content in the mathematics curriculum.  

 

The data showed that the PSTs further used both literate and colloquial words to explain their 

solution processes. As indicated earlier, Sfard (2008) asserts that words use in a discourse can be 

literate or colloquial in nature. Those who used literate words were found to specify the intended 

spatial concept, by using appropriate words. For example, some participants used the word 

‘adjacent’ in stating the angle property of a straight line. They also used endorsed words to state 

the theorem of the exterior angle of a triangle (see section 5.4.2). It was found that many of the 

Group A participants described their thoughts about their solutions with functional use of words, 

as well as by stating the properties and theorems to substantiate their routine solutions. Thus, those 

who performed well in solving the geometric tasks, also showed that they had a good 

understanding of the basic ideas in the content area.  

 

Some of the participants used colloquial words to substantiate the narratives that informed their 

solution strategies. In the analysis of their word use, some said, “angles on a straight line is 180o”. 

It should be observed that the property was stated with incomplete word use. Inappropriate word 

use or an incomplete stated narrative, often leads to misconceptions and errors. Similar findings 

are reported in the literature, that learners’ errors in their solution processes were a result of being 

exposed to incomplete word use in stating a property. As a result, the learners applied these 

properties which resulted in an error solution (Ngirishi & Bansilal, 2019).  
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Also, it was found that participants’ wrong use of words in stating the property of an isosceles 

triangle, related to the interior angle and the equal sides, led to a wrong solution by Nsiah’s (B) to 

task 3.3. In most cases, the property was stated in a traditional classroom discourse that ‘the base 

angles are equal’. This word used in stating the property could emanate from the reliance on the 

visual appearance of the isosceles triangle, as often found in traditional mathematics classrooms, 

where isosceles triangles are drawn with the base containing the equal angles (prototypic figure). 

This suggest that the word is used in a passive-driven form. Sfard (2008) explains that passive-

driven words are those acquired during the early stages of word development in learning, where 

learners associate words with visual recognition of the appearance of geometric shapes (prototypic 

appearance). Nsiah may have been familiar with the term ‘base angles’ because that is what he 

may have been taught in his geometry lessons. According to Sfard (2008), this may result from 

blending word use with objectified talk about the object.  

 

In conclusion, from the analysis of their word use, it could be said that there were many colloquial 

words used in the discourses of the PSTs in Group B compared to their colleagues in Group A. 

Thus, many of the PSTs who performed well in the test were able to use mathematically literate 

words in their geometric discourse. They used words that are endorsed and communicate the 

meaning of the exact geometric concept. On the other hand, some PSTs in Group B used words 

colloquially. Thus, most of the words used in substantiating their solution processes, were prone 

to several interpretations, which could be a major hindrance to understanding and developing 

geometric thinking.  

 

8.2.1.2 Visual mediator 

The participants seemed to rely on the various visual mediators in communicating their ideas about 

the objects of study. Sfard (2008) asserts that visual mediators are objects that can be seen and 

operated upon, that form part of our discursive processes. Many of the participants linked the way 

they thought to the things they saw, which then influenced how they used words. The visual 

mediators seemed to coordinate the participants thinking strategies as well as their communication 

abilities. For example, the participants’ ability to talk about vertically opposite angles depended 

on the interpretation made about the structure of the task designed. When Stephen was asked to 

explain his solution plan to task 1.3, he said,  
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… with the transversal line drawn through the two parallel lines … we have new angle 

properties introduced. I also realised that the same variables are used in the angles that 

are opposite to each other. So, with this vertically opposite angle…  

 

The preceding excerpt shows that his thinking about the emerging properties, was based on the 

diagram interpretation. Thus, the participants’ communication was informed by the visual 

mediators and associated word use. Ryve et al. (2013) reported similar findings in which visual 

mediators and associated words, formed a central part upon which learners built their 

communication.  

 

It was observed that the various visual mediators formed the central part of the participants’ 

communicational abilities. These were diagrams, iconic, symbolic and concrete mediators. The 

most used ones during the interview were the diagrams, iconic and symbolic visual mediators. 

Some of the participants demonstrated mediational flexibility by using a combination of them. 

That is, some of the participants demonstrated the ability to use different visual mediators to make 

meaning of geometric shapes and concepts (Sfard, 2008).  

 

Thus, the participants in Group A were conscious of interpreting the structure of the task together 

with its iconic mediators, before devising a solution strategy. This was evident from the way they 

connected their talk to the visual signifiers governing the task. It was also noticed that no decision 

was made without figuring out the iconic mediators and what they meant. 

 

Some of the participants in Group B were not too conscious of the iconic mediators use in 

designing geometric task(s). They mentioned properties associated with parallel lines and claimed 

equality without first looking out for evidence of the parallelism of the two straight lines. This 

made them apply the property wrongly and led to a wrong solution.  

 

8.2.1.3 Narratives 

The participants’ discourses contained endorsed narratives about the geometric objects. The 

participants focused on existing narratives about geometric figures and shapes to produce new 

narratives, some being accepted, and others rejected. For example, the participants produced 
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narratives about a straight line, as found in Clement’s discourse that “the sum of the adjacent 

angles on a straight line is 180o”. They also produced narratives on triangles as found in the 

discourse of Jones’ that “the sum of the interior angles in a triangle is 180o”. To some extent, the 

participants were able to produce endorsed narratives such as definitions, theories, theorems, and 

proofs related to geometric objects, as used in scholarly mathematics. This finding aligns with 

Sfard’s (2008, p. 200) assertion that communication is a “rule-regulated activity”. She adds that 

discourses result from “rule-governed processes”, expressed as object-level rules about 

mathematical objects. These governed rules can be regarded as the “properties of the objects of 

this discourse and take the form of narratives about these objects” (Sfard, 2008, p. 201).  

 

8.2.1.4 Routines  

The PSTs demonstrated adequate thinking of the required metarules needed to devise solutions to 

the tasks involved in the study. They determined appropriate strategies to solve the tasks, even 

though some wrong calculations were observed in certain solutions processes. They used endorsed 

narratives of the properties and theorems, as a basis to formulate the various linear equations of 

the angles involved in a particular geometric object. There were more substantiating narratives in 

the discourses of the participants in Group A, compared to their counterparts in Group B. In most 

cases, the participants in Group A produced narratives in their planning stages of devising 

solutions. This was also observed in a few discourses of the Group B participants, even though 

some of them stated the property when they were asked to justify their routine strategies.  

 

Thus, many of the PSTs in Group A demonstrated adequate routine thinking about when to use a 

particular solution strategy and the skills involved in performing the procedures. This finding is 

supports that of Supardi et al. (2021), who made similar observations when they studied students’ 

problem-solving skills through the commognitive perspective.  

 

8.2.2 The nature of the pre-service mathematics teachers’ routines thinking when 

solving tasks in geometry  

8.2.2.1 Ritualised routine  

Many of the tasks used in this study could be solved in more than one way. The approaches could 

be the most basic (such as the straight line algorithm) or more advanced thinking, indicating an 
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awareness of the associated properties governing the task design. Analysis of the PSTs’ solutions 

shows that many of them preferred solving the tasks in a ritual way that uses a step-by-step strategy 

to devise solutions to the tasks. These solution strategies are discussed in section 6.2.1. This finding 

resonates with that of other researchers, Zuya et al. (2017), that learners often prefer solving tasks 

using a set of procedures. Most learners rely on the use of algorithms to solve tasks in mathematics. 

In a study by Mann and Enderson (2017) to investigate learners’ preference for rule or formula-

driven (procedures) or concept-driven approaches to learning, they found that learners preferred 

the use of a rule-based approach (procedure) to the conceptual approach. Within Sfard’s (2008) 

commognitive framework, the use of a set of procedures to solve a task is a manifestation of a 

ritual routine. Ritual routines are characterised by the use of strict rules, mostly determined by the 

teacher or authority. The focus of ritual routine is ‘how’ to get something done, with little or no 

attention to ‘when’ or ‘why’ the approach works. 

 

Another finding is that the participants (especially those in Group B), over-reliance on procedural 

approaches to solving tasks, led them to devise a series of computational steps in their solutions to 

the tasks (see section 6.2.2, Figures 6.3 and 6.4). It could be seen in Task 3.3 (Figure 6.4), that 

only two of the angles marked by letters needed some form of calculation. However, Maxwell (A) 

and Albert (B) preferred using a series of computational steps to find the answers. This finding 

supports that of Mann and Enderson (2017), who also reported similar findings and claimed that 

learners often prefer the use of algorithms to solve mathematical tasks because they find those 

methods to be familiar. The authors add that learners’ proficient use of algorithms often obstructs 

their confidence in doing things in a new way. Sfard (2008) asserts that learners stick to the ritual 

way of doing exactly the same thing as they might have been doing, to obtain a reward. She adds 

that the dominant classroom teaching of ‘how’ to solve tasks in the absence of the ‘when’ and 

‘why’ mostly restricts their thinking to rules.  

 

Also, two participants   solved two of the tasks by generating two linear equations in two variables, 

and solved them simultaneously. Although it could be an alternative approach to solving the tasks, 

one participant explained his solution devised along the straight line algorithm, and shared some 

characteristics of ritualised way of reasoning. knowledge. He could not show any other approach 

to solve the task.  
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There was the narrow range of applicability among those who followed the set of procedures to 

solve the tasks. Two of the participants, in Group B, could not think of when to apply certain 

properties that govern the geometric figures. They applied the ‘equality of corresponding angles’ 

to solve task 3.1, even when there was no indication that the two straight lines were parallel. The 

task was probably not examined to check for possible signifiers, often used to communicate or 

describe some important features of tasks (Sfard, 2008). Also, Nsiah’s (B) numerous but 

unsuccessful attempts to solve task 3.2 (see Figures 6.7 and 6.8) could be interpreted as an inability 

to apply the properties of a parallelogram to the task. He only formulated an equation on the 

observed straight line, but could not continue. This failure may have resulted from his inability to 

interpret the icons used to design the task. Placing this within Sfard’s (2008) commognitive 

framework, he seemed to be deficient in ‘when’ to apply the best strategies to solve tasks. 

  

8.2.2.2 Explorative routine  

Even though there was evidence of explorative routine among the PSTs, it was mostly found in 

the discourses of the participants in Group A as compared to those in Group B. A key finding about 

their discourse (Group A), is the frequent mention of geometric properties in relation to how the 

tasks were solved. This is evident in Stephen’s (A) response in the extract that follows: 

… in the diagram given I can say that the angle 130o is vertically opposite to the two angles 

(m and 60o). Therefore, knowing that vertically opposite angles are equal, I can write it as 

… 

Similarly, Jones (A) explained that: 

… from the diagram, we can see that 3(𝑥 − 20) is vertically opposite to 2𝑥 which are 

equal. So, I equate the two angles … 

This property-guided explanation was also found in Cynthia’s (B) discourse, as follows. 

… we are having direct opposite [vertical] angles here which are 3(x – 20) and 2x [points 

to the angles] which are equal. 

 

The preceding excerpts show that these PSTs have developed the competence to engage in a 

critical exploration of identifying the objectified properties, that govern the design of a task. Sfard 

(2008) asserts that a characteristic feature of an explorative routine is the ability to produce 
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narratives about the properties of the mathematical object. Even though some participants in Group 

B also showed proficient use of properties, those in Group A were less prompted for justification 

of the property that informed a particular routine. The participants in Group A demonstrated an 

explorative thinking, which means they had a good understanding of the geometric concepts and 

were able to interpret information in a meaningful way. A similar observation was made by Nahdi 

and Jatisunda (2020) that learners who have a good grasp of geometric concepts are able to 

communicate ideas meaningfully. This result show that some participants, especially those in 

Group A have a good level of understanding of geometric concepts and properties and were able 

to apply those concepts to solve a variety of tasks in geometry (see Dewi & Asnawati, 2019). Sfard 

(2008) asserts that learners’ ability to substantiate their discursive actions with endorsed narratives, 

is characteristic of an explorative discourse which helps in developing one’s competence in 

devising objectified solutions to tasks. Many Group A participants demonstrated these 

competencies of thinking about the associated geometric properties, devise solutions to tasks, with 

clear evidence of understanding (Dewi & Asnawati, 2019; Sugeng & Nurhanurawati, 2018).  

 

Also, it was found that some Group A participants solved some tasks using multiple strategies. 

This was a demonstration of critical thinking and problem-solving abilities. According to Sfard 

(2008), one of the characteristics of the explorative routine is flexibility in thinking, which is also 

an indication of higher order thinking, and the ability to devise several ways of solving 

mathematical tasks. In task 1.4, in which Alex (B) could not devise a single solution, Stephen (A) 

solved this task in multiple ways, as shown in section 6.3.1, (Figures 6.13 and 6.14). This could 

mean that his thinking was not limited to one way of solving a task, but as far as his explorative 

mind could search. Also, Figure 6.15 shows Jones’ (A) multiple approaches to solving task 2.3. 

Kivkovich (2015) and Ortiz (2015) claim that the ability to devise multiple ways of solving a task, 

is a demonstration of good problem-solving skills; flexibility and a creative way of thinking. 

Semanisinova (2021) asserts that the aim of teacher education programme is to develop future 

teachers’ content knowledge to be able to provide the appropriate guidance to enhance learning in 

the classroom. Teachers’ ability to offer quality guidance in classroom learning, depends on the 

depth of their content knowledge (Semanisinova, 2021). It can be said that the participants in 

Group A, who demonstrated multiple ways of solving some of the tasks, have the competence to 

guide learners’ geometric discourse in an explorative way.  Klerlein and Hervey (2020) remark 
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that classroom teaching and learning needsto equip learners with a range of relevant strategies to 

solve problems in mathematics. The Group A participants are equipped with a range of strategies 

to assist learners in geometric problem-solving. 

 

Another key finding within the explorative routine, was a demonstration of high visual skills or 

abilities among the participants. Sfard’s (2008) inclusion of visual mediators as one of the 

constructs of the commognitive framework, signifies that there is a strong connection between 

thinking and visualisation. The PSTs who showed an explorative way of thinking seemed to see 

beyond the ordinary. This is evident in how they explained their plans, noted in the following 

excerpts: 

… looking at the diagram given, I can say that … (Stephen, A). 

… from the diagram, we can see that … (Jones, A). 

… I used this approach because of the properties I see within this diagram (Cynthia, B). 

… in geometry, when you see these short lines or dashes, it means … (Clement, A). 

It is evident from the preceding excerpts that these PSTs used words that signify their reliance on 

what they saw, in interpreting the tasks presented in diagrams. These results show that some 

participants relied on their visual skills a major tool to exercise their thinking. These findings 

support the view of Dewi and Asnawati (2019), who claim that learners who have good visual 

abilities, can develop their geometric thinking in an explorative way. Good visual abilities support 

the way one recognises, analyses, and interprets geometric figures, in learning. It was found in the 

study that those who demonstrated an explorative discourse in their routine, utilised or relied on 

their visual abilities to gain a clearer understanding of the tasks before devising the solutions. The 

PSTs exercised varying degrees of visually informed analysis of the tasks, which resulted in 

different approaches to their solutions.   

 

Also, the participants’ responses and their actions made it clear that visual abilities formed an 

integral part of their thinking processes. According to Atanasova-Pachemska et al. (2016), visual 

ability is the mental processing of visually obtained information, that enables mathematical 

discovery and understanding of mathematical tasks. Some of the participants were found to use 

what they saw to help them think, or to think with what they saw. In most cases, this was evident 

when they were seen tracing parts of the task.  
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Learners’ inability to connect thinking with visualisation can impede their understanding of 

learning mathematics, particularly, plane geometry, in which most tasks are presented in diagrams. 

In this study, those who could not solve some of the tasks, could be said to have weak visual 

abilities. Riastuti et al. (2017) reported similar findng from a study where learners who made errors 

in solving the tasks, were those with low spatial intelligence due to weak visual abilities. According 

to Dewi and Asnawati (2019) and Mudaly (2021), learners’ weak visual abilities hinder their 

ability to recognise, analyse and make meaning of what they see, preventing a deeper 

understanding of the task. However, the participants in Group A demonstrated high levels of visual 

abilities and can be said to have held a deeper understanding of the geometric tasks presented to 

them. Hence, their competence in recognising, analysing, and making meaning from the diagrams. 

Many of the PSTs in Group B were deficient in this visual reasoning competence.  

 

8.2.3 The pre-service mathematics teachers’ geometric thinking and their 

classroom geometric discourse 

8.2.3.1 Word use in classroom geometric discourse 

A distinctive feature of a discourse is the kind of keywords used (Sfard, 2008). Atebe and Schafer 

(2010) add, that geometry includes the use of language and keywords to designate specific 

concepts in the subject. This could mean that communicating geometric concepts can be effective, 

if attention is given to the kind of keywords used. The words used in a discourse can be classified 

as mathematically literate or colloquial.  

 

Observation of the PSTs’ classroom geometric discourses, show that they used both literate and 

colloquial words in their lessons. Some PSTs in Group A were found to use and also accept 

endorsed words that related to the geometric object being discussed. These Group A participants 

were found to use functional words in their discourse. In Stephen’s (A) lesson, when one of his 

colleague learners defined a parallelogram in a colloquial way, he refined it as “a four-sided figure 

with two pairs of parallel lines”. He used words to mean specific ideas he wanted to put across 

and was found to correct his colleagues’ inappropriate use of words. Also, Jones and Clement 

(both in Group A) were found to emphasise literate words in their definitions. This finding supports 

the inference from other researchers’ views on terminologies in geometry, that pre-service teachers 
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who possess adequate knowledge of mathematical terms are able to communicate ideas in a 

concise and acceptable way, to enhance learners’ acquisition and use of appropriate terms in 

communication (Atebe & Schafer, 2010; Roberts, 2010).  

 

It was also found that the rest of the five participants were not mindful of their use of words, as 

well as of their colleagues’ word use in the discourse. They used both literate and colloquial words 

in their discourse and also accepted the same from their colleagues. For example, Albert (B) 

accepted his colleagues’ definition of a diameter as “a line that divides a circle into two equal 

parts”. Similar colloquial words were noticed in the discourses of the rest of the five participants. 

According to Sfard (2008), language or word use performs specific functions in mathematics 

discourse, with literate meaning in the context of its use. She asserts that the use of colloquial 

words affects the development of literate mathematics discourse. Learners’ understanding may be 

affected if colloquial words are used in a discourse.  

 

The PSTs must possess basic terminologies of geometric objects in their knowledge repertoire, in 

order to communicate ideas in mathematics discourse.  According to Sfard (2008), language forms 

the main tool for communicating ideas in a discourse. As a result, the type of words used, or 

language used becomes an important tool in explaining solutions in all disciplines. Learners’ 

understanding can be developed and deepened when words are used in a literate way (Sfard, 2008). 

Atebe and Schafer (2010) and Oyoo (2009) add that learners could be proficient in learning 

geometry, and have their conceptual understanding well developed naturally, if certain keywords 

are learned, understood, and used in communication. However, it was observed that many of the 

PSTs in this study, were not mindful of their use of words in their classroom discourses, hence, 

they could not provide appropriate guidance toward their learners’ word use and accepted the 

learners’ use of colloquial words in defining geometric terms. 

 

8.2.3.2 Use of diagrams in geometry lesson 

All the PSTs used diagrams in their lessons, in teaching geometric concepts. The diagrams they 

used to convey or communicate the geometric concepts taught, served as a valuable source of 

information in the discourse, as they became the objects that coordinated their communication. 

This is in line with Sfard’s (2008) assertion that the use of diagrams to explain ideas, enables 
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learners to picture the ideas in their minds and offers great prospects for enhancing their 

understanding. The PSTs may have held a similar belief as Sfard’s (2008) that a diagram makes 

objects accessible for learners to operate upon, in order to produce and substantiate mathematical 

narratives. This finding supports the view of Samkoff et al.’s (2012) that the use of diagrams makes 

mathematical explanations easily understood and also enables learners (problem solvers) to view 

and integrate pieces of information with less cognitive effort. 

 

Also, the use of the diagrams by the PSTs helped in communicating the intended geometric ideas 

and also helped their colleagues’ meaningful learning. This finding resonates with the finding of 

Dundar and Otten (2022), who also found that the diagrams that served as visual aids enabled the 

learners to make meaning from the learning activities. The finding also supports the belief of Jones 

(2013) and Matlen et al. (2018) that diagrams form an integral part of learning and understanding 

in mathematics. Within the commognitive theory, “communication is mediated by images, which 

develops learners’ fluency in discourse and the goal of mathematics learning” (Sfard, 2008, p. 

148). 

 

8.2.3.3 Use of iconic mediators in geometric lesson 

It was observed that the PSTs used iconic mediators to design the diagrams drawn in their lessons, 

to communicate and bring attention to some important features of the diagram, and also to help 

learners’ production of endorsed narratives. Results showed that the colleague learners made 

meaning from the visual icons used to design the diagrams to produce narratives about the concepts 

of right angles, types of triangles, types of quadrilaterals, and related geometric properties (Sfard, 

2008). For example, one of the colleagues substantiated his classification of a triangle as isosceles, 

by saying that the equal number of icons (marks) placed on the two sides of the triangle indicated 

that the sides were equal, hence the given name. Also, arrows were used by the PSTs designing 

two straight lines to communicate the concept of parallelism to learners. This action is in line with 

Sfard’s (2008) view that icons are artefacts used to design diagrams and graphs in order to 

communicate certain important features in discourse and also help in learners’ production of 

endorsed narratives.  
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It is worthy to note that even though all the PSTs used iconic mediators in their lessons, those in 

Group A seemed to demonstrate consciousness in guiding the development of geometric ideas 

using the iconic mediators, as compared to their colleagues in Group B, who seemed to assume 

the understanding of these icons by their colleagues. For example, in a diagram with two straight 

lines drawn by Alex (B) for a lesson, he claimed the equality of the properties associated with 

parallel lines, until he was prompted by his colleagues to indicate that the lines were in fact parallel 

(see Figure 7.9). According to Sfard (2008), learners’ fluency in a discourse can be attained only 

when visual cues are used in discourses, and interpreted for them.  

 

8.2.3.4 Use of symbolic mediators 

Although the PSTs taught some concepts on parallel lines, perpendicular lines (right angles) and 

triangles, it was observed that no attempt was made to develop the learners’ thinking on related 

symbolic artefacts. The only symbol used by the PSTs (Alex, A; Clement, A; Cynthia, B) was ‘

 ’ to represent the concept of an angle, and was used in their explanation but with no awareness 

creation to learners. Maxwell (A) labelled the angles formed at the intersection of two straight 

lines with letters and continued to use these letters in his proof, even though they signified angles 

(see Figure 7.15). This violates Sfard’s (2008) suggestion that learners need to be taught the use 

of artefacts in mathematics communication. She adds that learners’ ability to produce an endorsed 

narrative about geometric shapes starts by visualising and interpreting their associated symbols. 

 

8.2.3.5 The PSTs’ use of concrete mediators in geometric discourse  

Concrete mediators have been explained by Sfard (2008) as visual objects that can be seen, 

handled, and manipulated for learning mathematics. Four of the PSTs, two from each group, used 

concrete mediators in their classroom geometric discourses. The use of the various mediators by 

these PSTs in their lessons, allowed for interactive engagement between the teacher and his/her 

colleague learners. The colleague learners were found to take an active part in the lesson. This 

finding supports the view of Horan and Car (2018) that teachers’ use of concrete materials in their 

lessons enable learners to become active participants in learning. Rondina (2019) adds that the use 

of concrete materials in a lesson, engages learners in active learning and develops their cognitive 

skills in mathematics.  
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According to Rondina (2019), learning through hands-on approach develops the cognitive abilities 

of learners and enables them to become constructive thinkers. In Sfard’s (2008) view, the use of 

concrete mediators enables learners to produce factual and endorsed narratives in a discourse. In 

Stephen’s lesson, in which he used paper folding (origami) to develop the colleague learners’ 

geometric thinking about the properties of a rhombus, he was found to use questioning techniques 

to engage his colleagues’ production of narratives governing the activities performed. Most of the 

responses given by his colleagues were found to meet his expectations, with the exception of a few 

where he corrected their word use. His colleague learners were noted to engage in critical reasoning 

through the hands-on learning approach. Duatepe–Paksu (2017) has recorded similar findings and 

claims that as learners engage in the activities of folding and unfolding, they begin to examine 

certain critical features of the objects more closely and derive meaning, which often creates 

stronger memory and enhances retention. 

 

Another key finding is that the use of paper folding in the lesson provided the colleagues with the 

opportunity to express their mathematical thinking. This supports Sfard’s (2008) notion that 

learners are able to communicate their thinking in a meaningful way, when physical objects are 

used and form the centre of their discussion. Wares (2016) reports a similar finding that the use of 

physical materials in the teaching and learning of mathematics enables learners to express their 

views about those objects. Researchers have also found that learners are able to verbalise their 

thinking about the manipulatives (concrete mediators) when those materials are used in 

mathematics lessons (Rondina, 2019; Uribe & Wilkins, 2017). 

 

It was also found that lessons that made use of visual mediators, kept the colleague learners 

actively involved in doing and learning, which could mean that the instructional design may have 

met their style of learning. Research shows that the use of concrete mediators in teaching, 

accommodates the various learning styles of learners (Kablan, 2016). Within such an instructional 

design, learners learn by doing, and it fosters their ability to construct their knowledge. In addition, 

the literature shows that knowledge constructed by learners themselves is well understood, 

retained, and applied to new situations (Cope, 2015; Kontas, 2016). It was observed from the 

object-mediated lesson that the colleague learners appeared to be interested in those lessons, 

probably due to their active participation. Learners’ class contribution was seen to be high, since 



266 
 

many of them often raised their hands to respond to the questions posed by the leading PST. Within 

Sfard’s (2008) theory, learning takes place when one engages with a more knowledgeable person 

in order to receive direction and guidance, so that one can gain autonomy in learning. When 

learners receive appropriate support and guidance from knowledgeable others, it deepens their 

understanding (Naidoo, 2011; Sfard, 2008).  

 

8.2.3.6 Narratives about geometric figures and shapes 

Sfard (2007) asserts that “in school mathematical discourse, the endorsed narratives are called the 

mathematical theories, which include discursive constructions such as definitions, proofs, and 

theorems” (p. 574).  Geometric discourse requires narratives to be produced as a description of the 

various definitions, theorems, proofs and properties governing geometric concepts and figures.  

 

It was found that the PSTs were able to produce narratives governing the various geometric 

concepts and figures used in the study, even though some were not explicitly stated. Among the 

narratives produced were definitions, properties and theorems governing geometric shapes. It was 

observed that some of the PSTs developed their colleagues’ geometric thinking on definitions of 

terms within the content area. Some of the PSTs in Group A guided their colleagues’ use of basic 

terms and vocabulary in specific contexts in their discourse. Some of the PSTs used definitions to 

explain certain properties of geometric figures, as seen in the discourse of Stephen (A) in his lesson 

on the rhombus. This finding supports other researchers’ views that definitions form the basic 

building blocks of any content knowledge in mathematics (Kemp & Vidakkovic, 2021; Leikin & 

Zazkis, 2010). It was observed that Jones defined certain geometric terms and further drew them 

(visual representation) on the whiteboard for his colleagues. The diagrams that he drew also helped 

to produce narratives about geometric concepts and figures, as noted by (Sfard, 2008). 

Cunningham and Roberts (2010, p. 3) maintain that when learners try to define (produce 

narratives) geometric concepts, it is not the definition that comes to the learners’ mind but the 

learners’ “previous experiences with diagrams and attributes” that are connected to those concepts. 

 

Narratives can be accepted or rejected depending on the context of the subject matter (Sfard, 2008). 

In a similar manner, Jones did not accept all of the definitions stated by the colleague learners. For 

example, he accepted the definition that “a diameter is a line segment drawn through the centre 
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of the circle with its endpoints located on the circle”, but rejected the definition put forth by 

another colleague that “a diameter is a line that divides a circle into two equal halves”. Jones 

rejected the definition, probably to avoid any misconception that learners may associate with it, as 

was found in the work of Mudaly (2021) where learners claimed a line to be a diameter even 

though there was no indication that it passed through the centre of the circle. The ability to produce 

an appropriate narrative about geometric concepts is important, to avoid misconceptions (Alex & 

Mammen, 2018). When compared to their peers in Group B, three people in Group A were more 

particular about how their colleagues made endorsed narratives. 

 

8.2.3.7 Evidence of ritualised routine in classroom instruction  

Evidence from the classroom observation showed that three of the PSTs delivered instruction that 

shared some characteristics of ritualised routine, as classified by Sfard (2008). In their lesson, they 

provided strict rules that served as a guide for their colleague learners in learning. For example, it 

was observed in Cynthia’s (B) lesson on the ‘exterior angle theorem of a triangle’, that she 

dominated the teaching and learning process by giving them steps to follow, in solving a task. 

Sfard (2008) claims that when classroom discourse is dominated by ritualised instruction, learners 

start learning mathematics by following the sequence of instructions, to create a bond with others. 

A similar observation was made in Cynthia’s instruction when she gave the task to the class and 

said, “solve for the interior angle as we did last week”. This instruction could have been a request 

to colleagues to repeat the same steps they took, to complete a previous task. 

 

Also, there were some elements of ritualised routines in the statement “so it means whenever we 

are finding the exterior angle, it is the same as [adding] the two opposite interior angles”. Sfard 

(2008) claims that ritualised routine is associated with strict procedures and is extremely 

restricting. Cynthia appeared to be limiting what they could do, forgetting that tasks may not 

always appear as she had presented them. This is in line with Mann & Enderson (2017) and Sfard 

(2008), who have reported that learners’ knowledge of procedures is the common instructional 

approach used by teachers. A general guideline can probably be given, but it needs to be done only 

after a series of examples have been considered. After this alert was given by Cynthia, she followed 

up with several questions that seemed a bit commanding. These were “is that clear?” “Are you 
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okay?” “Any questions?” It was observed that little attention was given to the colleague learners’ 

participation, with the exception of one task, where she asked a colleague to solve on the board.  

 

There was evidence of Cynthia making the colleague learners learn through imitation. When one 

learner was asked to solve a task on the board, Cynthia said, “do it as I taught you”. According to 

Sfard (2008’ p. 267), the process of learning begins with “loosely related rituals” depending on 

situational clues (imitation), however, it is only an acceptable way of learning at the initial stages 

of discourse. This finding resonates with Sfard’s (2008) observation that the most common 

approach to mathematics teaching is developing learners’ knowledge of rules and procedures, 

often determined by the teachers.  

 

Another finding about the ritualised routine of these three participants’ lesson delivery, was the 

use of traditional methods of instruction. In Maxwell’s (A) lesson on ‘properties of parallel lines’, 

he only drew the parallel lines with a transversal and labelled the various angles (see Chapter 7 

sections 7.2.3 and 7.3.4.1 for detailed discussion). After that, he mentioned which of the angles 

were equal and provided their associated names. This finding supports the notion of Ardeleanu 

(2019) that teachers often regard learners as having knowledge gaps that need to be filled, by 

giving them lots of information to learn. Learners are therefore not engaged in the teaching and 

learning process and are treated as passive learners (Fletcher, 2009; Swan, 2005). Thus, the teacher 

plays a dominant role as an instructor, as was evident in Maxwell’s (A) discourse. This kind of 

instruction is termed by Sfard (2008) as the acquisitionist approach to learning, in which the learner 

only receives and processes verbal information from teachers. Albert’s (B) lesson was also a 

demonstration of teacher dominance in the lesson delivery (see Chapter seven, section 7.2.5). 

 

8.2.3.8 Evidence of explorative routine in classroom instruction  

The instructional delivery of five of the PSTs (3 in Group A and 2 in Group B) exhibited the 

potential to develop learners’ learning ability and retention, by guiding them to construct and re-

construct new ideas as a way of producing endorsed narratives in a discourse. Sfard (2008) 

maintains that producing endorsed narratives remains the ultimate goal of school mathematising, 

and this can take place on the foundations of discursive learning. According to Sfard (2015, p. 

131), discursive learning refers to “the activity of becoming able to tell and produce ever new 
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stories about the world”, or object of learning, which aligns well with the participationist view of 

learning.  

 

There was evidence of some of the PSTs engaging the colleague learners in knowledge 

construction, during the discourse. This was mostly found in discourse where all kinds of visual 

mediators were used. Utilising those materials, was found to enable the learners to produce 

objectified narratives about the object of talk. According to Sfard (2008), visual-mediated 

instruction contributes to learners’ production of narratives. In Stephen’s lesson, in which paper 

folding was used to investigate the properties of a rhombus, it was found that the colleagues’ 

responses matched the intended lesson objectives, which is evidence of effective lesson (achieved 

lesson objectives). A characteristic feature of an explorative routine is the ability to produce 

identified properties of mathematical objects (Sfard, 2008). Other researchers like Rondina (2019) 

and Uribe and Wilkins (2017) report similar findings, where instructional design that put learners 

at the centre of the teaching and learning, often helped them to produce verbal representations of 

what had been observed.  

 

Three of the PSTs in Group A and two in Group B, designed instruction that shared more of the 

characteristics of learning by doing, as characterised in the constructivist perspective on teaching 

and learning (Bruner, 1966). This shows that the instructional design of Group A members, was 

more aligned with the characteristics of explorative discourse (Fletcher, 2009; Sfard, 2008; Swan, 

2005).  

 

8.3 Interconnective thinking within the commognitive constructs 

Based on the findings from this study, the commognitive theory has indeed served as a potential 

lens for the analysis of the PSTs’ geometric thinking and classroom discourse. Presmeg (2016) 

claims that the commognitive theory has emerged as a theoretical lens to provide an insight into 

teaching and learning of mathematics, and the entire fabric of human development. It was found 

that the PSTs, particularly those in Group A, who performed well in the test (worksheet), 

demonstrated an interconnected thinking within the commognitive constructs. Three of the PSTs 

used words in a more literate way to define and describe the geometric concepts that were 

investigated. Their word use was based on the visual mediators employed to design the tasks. 
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These PSTs could not have carefully used literate words to describe their thinking, if they had not 

seen and interpreted the diagrams, and associated visual mediators. The reliance on their visual 

abilities was seen in the way they chose the underlying properties (word use) of the geometric 

tasks, which influenced their routine strategies of ‘how’ to solve the tasks, and the ’why’ and the 

‘when’ involved, in substantiating and explaining their thinking processes. Thus, their discourses 

were mostly mediated by their visual interpretational abilities (Sfard, 2007, 2008).  

 

These competencies were also seen in their geometric discourses in the classroom. The PSTs in 

Group A were mostly found to guide their colleague learners’ word use with regard to description, 

definition of terms and identification of geometric properties g. overning the tasks (Kim et al., 

2017; Lefrida et al., 2021). Explanation of their solution routines to the tasks was characterised by 

drawing colleague learners’ attention to what informed a particular strategy, as well as by 

substantiating with an appropriate narrative governing the object. Many of the Group A 

participants also engaged their colleague learners in active learning through the use of visual 

mediators, and in most cases, their instructional discourses were characterised by developing 

learners’ explorative way of thinking. These competencies demonstrated by the Group A 

participants were less evident among those in Group B.   

 

8.4 Researcher’s thoughts  

Most learners see geometry content to be difficult, in the mathematics curriculum. This seems to 

affect learners’ interest in taking mathematics-related courses or programmes of study at the 

secondary school or at the university level. The effect has negative implications for economic 

growth and technological advancement in this era of the 21st century, where technology permeates 

our daily activities. Literature shows that learning competence and proficient geometric thinking 

have a positive effect on learners’ mathematics performance. However, literature has documented 

that lots of of research indicate learners’ poor performance in mathematics and geometry in 

particular. The impetus for this study emerged from concerns about learners continued poor 

performance in geometry.  

 

One significant tool for learning geometry is the properties of geometric shapes. It was observed 

that some of the participants demonstrated inadequate thinking about the geometric properties 
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needed, to devise solutions to the tasks. This implies that mathematics teacher educators should 

make a conscious effort to develop and deepen the PSTs’ thinking on the properties of geometric 

objects. Proficient thinking of geometric properties, serves as the foundational competence in 

learning geometry. In most cases, the failure of some of the PSTs to devise the appropriate 

solutions to the tasks, was a result of weak knowledge of geometric properties. On the contrary, 

some of the participants who performed well, demonstrated good thinking about the properties that 

govern the tasks. This was evident in their discourses, where they made mention of the informed 

property needed to devise the solution. This means that mathematics teacher educators must focus 

on teaching for understanding and application of these properties in problem-solving, or learners 

will continue to view geometry as a difficult subject to learn. 

 

Also, attention needs to be drawn to visualisation and spatial reasoning as critical cognitive tools 

in geometry, which seem to be neglected in its teaching and learning. It is worth mentioning that 

tasks in mathematics are presented in three ways, namely; numeric, worded and diagrams. This 

means that in the same way as we need number sense to learn numeric tasks and algebraic thinking 

to learn worded tasks, we also need to demonstrate a high visual sense to interpret and solve tasks 

presented in diagrams. Thus, mathematics teacher educators need to design lessons that help 

learners to exercise their visual thinking abilities. Such lessons should take into consideration 

visual rotation, visual orientation, and visualisation. For example, it was observed that one of the 

participants, although having some ideas about the task, could not engage in the needed visual and 

spatial reasoning of manipulating the task in the mind, which resulted in a wrong solution.  

 

The PSTs use of the kinds of visual mediators in their lessons served as a medium that helped them 

to communicate their geometric ideas. In such instructions, it was observed that the colleague 

learners’ participation was high, and they showed interest in what they were doing. The visual 

tools made the geometric properties and concepts more accessible to the colleague learners, by 

reducing their abstract nature and led them to discover the properties of the rhombus. The teacher 

only corrected the use of words in their discourses. In those lessons, teachers were found to 

facilitate colleague learners’ construction of knowledge rather than being knowledge distributors. 

In practice therefore, mathematics teacher educators should endeavour to use more visual tools to 

mediate communication between themselves and the learners, and among the learners, to enhance 
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knowledge construction as advocated by the constructivists. These kinds of instructions could be 

seen as teaching for retention against teaching for memorisation, which is mostly through the 

processing of verbal information and is teacher-centred.  

 

8.5 Recommendations 

The following recommendations are made based on the study findings: 

It is recommended that as part of PSTs’ development of geometric thinking, they have to acquire 

the basic terminologies, language, and keywords needed to enable them to communicate their 

knowledge of geometric content in the mathematics curriculum.  

 

Also, the PSTs should develop their geometric thinking by identifying and making meaning of the 

various visual mediators that are used in communicating certain important geometric concepts in 

the discourse. Attention should be focused on the use of diagrams in teaching and learning of 

geometry, the use of icons to design diagrams, and the related properties that emerge from such 

use. Other visual tools used in the discourse, such as symbols and concrete mediators, could also 

be enforced. 

 

In addition, the PSTs must develop their geometric thinking on the narratives associated with the 

various geometric objects in the mathematics curriculum, some of which are the definitions, 

properties, theories, theorems, etc. These narratives, when they have been well connected with 

their a priori knowledge, can form a strong basis for them to produce new and endorsed narratives 

about geometric objects.  

 

It is further recommended that the PSTs focus attention on multiple strategies needed to solve tasks 

in geometry. The PSTs should be mindful of the repetitive patterns that govern how to devise 

appropriate solutions to geometric tasks, in the various content areas. In doing so, critical 

consideration should be given to the narratives such as the properties, theories definitions, 

theorems, and other concepts that serve as the foundational knowledge for learning geometry.  

 

Concerning the second research question, the PSTs should focus attention on developing and 

enhancing their explorative way of thinking in geometry. Even though discourses constitute both 
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ritual and explorative approaches, school mathematics aims at developing learners’ explorative 

ways of thinking (Sfard, 2008). Ritualised discourse, even though it is accepted in learning, is 

supposed to serve as a foundation to develop explorative discourse, which provides several 

benefits to learning, as was found with the participants who devised multiple solutons to tasks, 

demonstrating explorative thinking. Thus, the PSTs must work hard to develop their problem-

solving abilities by moving from adhering to strict rules of learning, to exploring several ways of 

doing mathematics.  

 

Based on the findings from the third research question, it is recommended that the PSTs develop 

deep and flexible geometric thinking in order to enhance their competence in teaching geometry 

content in the senior high school mathematics curriculum. Teaching is the act of blending content 

with pedagogical principles in order to create enhanced learning opportunities for learners. This is 

based on the findings that many of the PSTs in Group A, who showed an explorative way of 

thinking, designed an instruction that has the potential to develop the learners’ conceptual grasp 

of geometry.  

 

8.6 Limitations 

First, the sample size used in the study consisted of only eight participants, all of whom were 

selected from one university and and from a year group. Regardless of the detailed data obtained 

for the purpose of the study, which makes the findings insightful, the study should be extended to 

other PSTs of the same programme in institutions of higher learning in Ghana for a broader 

understanding of the variables of study.  

 

Secondly, even though the study focused on a wider content area on plane geometry in the 

Ghanaian mathematics curriculum, there may be other areas that could have been investigated.  

 

Thirdly, since the study was interested in all aspects of classroom learning behaviour, two cameras 

could have been used, one for the teaching activities and the other for the coverage of learners’ 

interactions. Notwithstanding, the video recording was supplemented by taking field notes. 
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8.7 Suggestions for further research 

Research over the years has focused on investigating PSTs’ knowledge for teaching various 

content areas in the mathematics curriculum, using several theories as the study lens. The 

commognitive framework served as a useful approach to investigating PSTs’ geometric thinking. 

Based on the findings of the study, the following suggestions are made for further research under 

the commognitive framework, to: 

1. analyse pre-service mathematics teachers’ sources of errors made in geometric discourse, 

2. explore pre-service mathematics teachers’ responses to learners’ errors in geometry, 

3. explore pre-service mathematics teachers’ difficulties in transiting from ritual to explorative 

discourse in geometry, 

4. analyse mathematics teacher educators’, and pre-service teachers’ participation in geometric 

discourse. 

8.8 Conclusion  

This chapter presented findings of the study in relation to the critical research questions. The study 

analysed pre-service teachers’ geometric thinking and classroom discourse. The findings revealed 

that many participants in Group A demonstrated good discursive geometry thinking compared to 

those in Group B. In addition, many in Group A demonstrated an explorative way of thinking with 

regard to geometric discourse and the strategies used in solving the tasks, compared to their 

counterparts in Group B, who mostly displayed a ritualised way of thinking. It was further found 

during the classroom observation, that many in Group A designed an instruction that showed the 

potential to develop the learners’ explorative ways of thinking and to facilitate conceptual grasp 

of geometry. Some Group B participants produced an instructional design that was ritualised in 

nature. The chapter concluded with recommendations, limitations, and suggestions for further 

research.  
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Appendix B: Permisson letter to conduct the study 

 

Informed Consent Letter to the Head of Mathematics Department  

         1st September, 2020 

The Head Department of Mathematics Education 

College of ……………………………. 

University of ………………………… 

Ashanti Region Ghana 

 

Dear Sir 

PERMISSION TO CONDUCT A RESEARCH STUDY IN YOUR DEPARTMENT 

I am writing to request your permission to conduct a research study in your school. This research 

study is entitled: 

An analysis of pre-service mathematics teachers’ geometric thinking and classroom 

discourse using a commognitive lens 

My name is Ernest Larbi, and I am currently studying towards a Doctor of Philosophy Degree at 

the University of KwaZulu-Natal (UKZN), Durban. My student number is 219095877. As part of 

the requirements of this degree, I am required to complete a research thesis. This study focuses 

on pre-service mathematics teachers’ geometric thinking.  

 

I require 10 pre-service mathematics teachers to participate in this research. I would be very 

grateful if you would consent to these pre-service teachers’ participation in this study. They will 

be selected from your department.  
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If you agree to this, they will be invited to take part in a test, which will be used as a basis for their 

inclusion in the main study. After the test, there will be an individual interview with the selected 

pre-service teachers. Their teaching will also be observed during on-campus teaching practice.  

 

All discussions, interviews and dialogues with participants will be audio recorded using an infinix 

phone, and the classroom observation will be video recorded. Thereafter, both the audio and video 

recordings will be transcribed verbatim to produce transcriptions. This research information (data) 

is required for the analysis of data and completion of the actual write up of the thesis. Collecting 

research information for this study will take approximately 60 minutes with each individual in the 

interview. The video recording of the classroom observation will be based on the time allowed for 

their teaching. However, it will not go beyond 40 minutes. The test and the in-depth individual 

interviews will take place after their lecture hours but on the school premises, with your 

permission. Times and dates will be discussed and arranged with you and the participants at a later 

stage. I will try to ensure that the testing and the interview takes place during their free periods, in 

an attempt to avoid any disruptions during lessons. The lesson observation will however take place 

during on-campus teaching practice with your permission. I will not deprive them of their right or 

opportunities, especially since I intend to use some of their free time in order to collect sufficient 

data for my study. 

 

As indicated earlier, data generation activities will also take place after lectures hours and on 

school premises with your consent. If I am unable to collect my data during their free hours (after 

lectures), I will make arrangements with your consent and with the participants on an appropriate 

time including weekends, if possible.  

 

Please note: 

* Times and dates of this data generation process will be at your sole discretion. I have merely 

presented you with an outline of what I intend to do, however you are free to make any changes 

and suggestions, if necessary.   

* Participation is completely voluntary and participants have the right to withdraw from this 

study at any time. They will not be penalised if they choose to do so.  
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* Confidentiality and anonymity will be maintained at all times. The identity of your school and 

all participants will not be revealed at any time, as pseudonyms (different names) will be used to 

protect everyone’s right to privacy. 

* Any information provided by the participants will not be used against them, or against the 

school, and will be used for purposes of this research only. 

* Participation in this study will not result in any cost to your school or the participants.  

*Neither the participants nor your school will receive financial remuneration. However, costs 

incurred by participants as a result of their involvement in this project will be covered. 

* This study does not intend to harm the participants in any way.  

* Both parents/guardians as well as participants will be handed letters of consent which they will 

have to carefully read and sign, before I begin data collection.  

I may be contacted at: 

Email address: ertlarbi@gmail.com  

Tel: +233 24 481 2402 

 

My supervisor, Prof. Vimolan Mudaly, with contact details:  

Email address: mudalyv@ukzn.ac.za 

Tel: 0027 839 770 577  

 

You may also contact the College of Humanities, Research Office through: 

HSSREC@ukzn.ac.za 

Tel: 0027 031 260 8350  

  

If you would like any further information or if you are unclear about anything, please feel free to 

contact me at any time. Your co-operation and consent will be greatly appreciated.  

If you grant permission to conduct this research at your school, please complete the form below 

and return to me.  

 

Warm regards  

 

……………………… 

Ernest Larbi.  
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DECLARATION 

 

I …………………………………………………………… (full name/s of school principal) of 

……………………………………….….. (name of school) hereby confirm that I understand the 

contents of this document and the nature of this research project, and I consent to the pre-service 

teachers’ participating in this research project. I also grant permission for my school to be used as 

the research site.  

 

Additional consent 

 

I understand that interviews will be audio-recorded and I grant permission for this.  

 YES/NO 

 

I understand that lesson observation will be video-recorded and I grant permission for this. 

YES/NO 

 

I understand that the pre-service teachers and the department are free to withdraw from the research 

project at any time.         

 YES/NO 

 

SIGNATURE OF HEAD OF DEPARTMENT DATE 

 

………………………………………..   …………………… 
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Appendix C: Letter requesting pre-service teacher for participation  

 

 

          1st September, 2020 

Dear Student, 

REQUEST FOR PARTICIPATION IN A STUDY 

I am Ernest Larbi, a doctoral student of the school of education, University of KwaZulu-Natal, 

Edgewood Campus with student number 219095877. As part of the program, I am required to 

undertake a research work in my discipline, which is mathematics.  

My research topic is “An analysis of pre-service mathematics teachers’ geometric thinking 

and classroom discourse using a commognitive lens”. 

As a result, I write to make a request for your voluntary participation in the study which will 

involve; 

1. Answering some test questions on geometry 

2. Engaging you in an interview to enable you talk about what you have done 

3. A classroom observation of your geometry lesson with students/peers (teaching practice) 

The interview and lesson observation will be audio and video recorded respectively.  

I wish to state that this study will not in any way disrupt teaching and learning and the interview 

will be conducted after contact hours.  

This exercise is mainly for research purposes and any information provided to me will be treated 

with utmost confidentiality. Also, your name or the name of the school will not be mentioned in 

any part of the study report. You are at liberty to withdraw your participation from the study should 

you feel uncomfortable.  

I am convinced that this study will contribute to effective teaching and learning of geometry and 

mathematics in general in our educational setting. 

 



304 
 

Should you require any further information about this study, never hesitate to contact my 

supervisor by the address: 

Prof. Vimolan Mudaly 

Email: mudalyv@ukzn.ac.za 

Or College of Humanities research office by the e-mail: HSSREC@ukzn.ac.za 

 

Yours sincerely 

…………………………………… 

Ernest Larbi 

e-mail: ertlarbi@gmail.com 

Contact: +233 24 481 2402 

 

DECLARATION 

I, …………………………………………………………….., (full name of pre-service teacher)  

having read and understood the content of the letter, agree to participate in your research activity. 

I am also aware that the interview will be audio-recoreded and the classroom observation will be 

video-recorded. 

 

Signature:…………………………………  Date:……………………………… 
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Appendix D: Geometry test  

1. Angles and parallel lines 

 

1.1 Find the value of x in the figures below: 

 

 

 

                                  

 

 

1.2 Find the value of m in the figure below 

 

 

1.3 Find the values marked by letters 

 

 

 

 

 

  

 

 

1.4 Find the value of x in the figure 
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2. Triangles 

2.1 In Fig. 5, AD and EF are straight lines. Find the values of n and m in the figure below. 

 

 

 

 

 

 

2.2 In the fig. PQRS and PUT are straight lines. oPQU 120= . If QUPQ = , find .URS  

   

 

 

 

 

2.3 Solve for x and m in the figure below. 

 

  

 

 

 

 

3. Quadrilaterals/Combination of shapes  

3.1 Find the value of x in the diagram below 

 

 

 

  

 

 

 



 
 

 

3.2 Find the values of the angles marked by letters  

  

3.3 Find the values of angles marked by letters in the diagram below 

  

 

 

 

 

 

 

3.4 The figure below ABCD is a rhombus.  If oBCD 82= , calculate ADX and BDX 
  

 

 

 

 

 

 

4. Circles  

4.1 Find the values of x and y in the diagram below. 
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4.2 In Fig. 12, LMN are points on a circle with centre O. If angle LMN = 42o, find angle LNM 

   

4.3 Find the values of x and y in the figure below. 

 

4.4 In the diagram, find the relationship between 

 

(i) b and a 

(ii) a and c 

(iii) b, a and c 

 

 

 

4.5 In Fig. 14, PQR is a tangent to the circle at Q. .54oYQR = and .41oXYQ = Find the size 

of .XQY  
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Appendix E: Semi-sstructured interview protocal  

Interview protocol  

1. Angles and parallel lines 

What is your understanding of the concept of an angle? Can 

you demonstrate it on paper? 

 

Can you explain the concept of an angle in any other way?  

Can you show this using a diagram? 

Can you give some examples of angles? 

 

Task 1.1                        

How did you find the value of x in Task 1.1? 

Can you explain why you employed this method or approach in answering the question? 

Can you find the value of x in any other way? 

 

Task 1.2 

How will you find the value of x in task 1.2? 

Why did you use that approach? 

Is there any other method that can be used in solving for x in task 1.2? 

 

Task 1.3 

How will you find the values of the angles marked by letters in task 1.3? 

What informed your reasoning for using that or this method? 

What geometric ideas/properties did you used to find the angles in the question? 

What other approach can you use to solve the task? 

What is the relationship between angle d and angle g in task 1.3? 

What is the name of the line drawn across the two parallel lines in task 1.3? 

What are corresponding angles? 

What are alternate angles? 
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Task 1.4 

Can you explain how you solved for x in task 1.4? 

Why did you use this approach? 

What geometric ideas or properties informed this approach? 

What other method can you use to find x? 

 

2. PSTs’ conception of triangles 

What is your understanding of a triangle? 

What are the types of triangles? 

Probing: Can you mention any other types of triangles? 

What properties define these triangles?  

Can the types of triangles be put into two groups? 

What is the sum of the interior angles in a triangle? 

Can you show a simple proof for this? 

 

Task 2.1 

How did you solve for the values of n and m in task 2.1? 

Can you explain why you used this approach? 

What geometric properties did you use in this approach? 

Probe: There will be a follow up question depending on the approach used to find m. 

 

Task 2.2  

What geometric properties will you need to solve for the angle in task 2.2 

What is the name of triangle PQU ? 

Why did you say that? / What informed your answer? 

What other way can you use to identify the name of the triangle in the task? 

Can you find angle URS using another method different from what you used earlier?  

 

Task 2.3 

How will you solve for x and m in task 2.3? 

What geometric ideas did you use to solve for the values of x and m?  
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Can you show any other method that you can use to find the values of x and m?  

What is your understanding of the exterior angle theorem?  

Can you demonstrate the proof of this theorem?  

 

3. Quadrilaterals  

What is your understanding of a quadrilateral?  

• What are the types of quadrilaterals?  

Can you define them? 

What is a parallelogram?   

Can you draw it?  

• What can you say about the (1) sides, (2) angles and (3) diagonals of the 

parallelogram?  

• There will be follow up questions based on what the participant draws.  

Can you draw a parallelogram different from the one you drew earlier?  

• What can you say about the sides, angles and diagonals of the parallelogram?  

• There will be follow up questions based on what the participant draws.  

Task  3.1 

How will you solve for x in the diagram above?  

Why did you solve it using that method?  

 

Task 3.2 

Can you explain how you solve for x, m and y in task 3.2? 

What geometric ideas do you need to find the values of x, m and y in the diagram?  

Can you describe the approach used?  

Can you solve for the variables in another way?  

 

 

Task 3.3 

How will you find the angles marked by letters in task 3.3?  
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What geometric ideas did you use to find the values of the angles marked by letters?  

Explain the reasoning behind your solution, indicating the properties.   

 

Task 3.4 

What geometric property informed your solution approach?  

Explain how you solved the question. 

 

 

Classifications of Quadrilaterals/Parallelograms  

You are kindly requested to classify parallelograms by responding to the questions below and 

justify your response.   

Is a rectangle a parallelogram?         

Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

.……………………………………………………………………………………………… .. 

Is a square a parallelogram?           

Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

Is rhombus a parallelogram?           

Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

…………………………………………………………………………………………………… 

Is a square a rectangle?            

Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

…………………………………………………………………………………………………  

Is a square a rhombus?            
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Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

Is a rhombus a rectangle?             

Justify/Explain  

………………………………………………………………………………………………… 

………………………………………………………………………………………………… 

 

4. Circles 

What is a circle?  

Can you draw a circle and name the parts?  

What is a cyclic quadrilateral?  

Probe: If answers are not exhaustive, a circle will be drawn for them to answer questions that 

will be asked.   

On the work sheet provided, provide the names of the parts of the circle as indicated.  

Probe: Participants will be asked to describe the various parts of the circle.   

 

In each of the questions on circle the participants were asked to:  

Explain how they solved the task and the governing geometric properties that they used.  

They were probed based on their solution strategy.  

For example, can you state the theorem required to solve this problem?  
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Appendix F: Lesson observation protocol  

 

Classroom observation was guided by the constructs of the commognitive framework.  

Variables for Observation  Expectation(s) / Indication(s)  

Pre-Observation exercise     

Review of relevant previous 

knowledge  
To help colleagues link or connect new knowledge to 

existing ones to facilitate understanding.  

Main- Lesson Observation    

Word use  Determine the type of words that pre-service teachers used 

in geometric discourse. Attention was paid to determining 

whether the kinds of words or terminologies used in 

developing geometric thinking were colloquial or literate. 

That is, the language employed in a geometric discourse. 

Visual mediators  Observe the kinds of visual objects (paper cutouts, symbols, 

diagrams, etc.) or resources the pre-service teachers used to 

help communicate geometric concepts or develop 

geometric thinking in a discourse. 

Routines  Observe the patterns the pre-service teachers used to 

regulate colleagues’ actions in a discourse. For example, 

guiding them to determine when to apply a theorem or when 

it is suitable to use a routine in discourse. 

Narratives  Determine the kinds of written or spoken statements used 

by pre-service teachers to describe and justify geometric 

discourse. For instance, axioms, theorems, definitions, etc. 

Teaching methods (Partitionist or 

Acquisitionist teaching) 
Find out whether the lesson is teacher dominance (lectures, 

teacher-led demonstrations) or learner dominance 

(activities, discussions, cooperative learning approaches, 

etc.). 

Ritual of Explorative routine 

(Will be linked to teaching 

methods)  

To assess whether the instruction seeks to establish social 

approval- ritual, or to produce or verify an endorsed 

narrative among learners- explorative (constructing 

alternative solution to tasks)  

Learner involvement in the 
discourse  
  

The degree of learner involvement in the discourse. Will the 

learners be treated as acquisitionist (passive) or 

participationist (active) members of the discourse?   
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 Appendix G: Letter from editor  
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