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ABSTRACT 

 

Grasslands contribute significantly to socio-economic growth and ecological wellbeing, 

especially in South Africa. The productivity of grasslands is of substantial interest to 

researchers and rangeland managers alike, particularly in the face of climate change. However, 

grassland productivity fluctuates inter-seasonally. Hence, finding innovative, accurate and low-

cost solutions to monitor grasslands is imperative. Recent advancements in remote sensing and 

machine learning provide a rigorous, cost-effective and timeous information that is useful for 

vegetation monitoring and management. In addition, contemporary deep learning algorithms 

create an opportunistic pathway to advance vegetation remote sensing research.  

Hence, the focus of this study was to investigate inter-seasonal changes in grassland 

productivity using aboveground grass biomass as a proxy. This study utilised Sentinel-2 MSI 

with a Artificial Neural Network (ANN) and a Convolutional Neural Network (CNN), to 

predict aboveground grass biomass between the dry and wet seasons. Sentinel-2 MSI spectral 

bands and thirty derived vegetation indices were used as input data to train the models. This 

study was divided into two overarching objectives. Firstly, the performance of the two neural 

networks was compared to ascertain which model was more adept at biomass predictions. 

Thereafter, the better performing algorithm was used to distinguish aboveground grass biomass 

between the dry and wet seasons. 

In comparing the performance of the traditional ANN and the contemporary CNN, findings 

showed that the deep CNN outperformed the ANN in estimating dry season grass biomass. The 

deep CNN attained an R2 of 0,83, an RMSE of 3,36 g/m2 and an RMSE% of 6,09. 

Comparatively, the ANN attained an R2 of 0,75, an RMSE of 5,78 g/m2 and an RMSE% of 

8,90. The sensitivity analysis suggested that the Sentinel-2 blue band, Green Chlorophyll Index 

(GCl) and Green Normalised Difference Vegetation Index (GNDVI) were the most important 

variables for model development for both the CNN and ANN. The resulting biomass prediction 

maps captured the spatial variation in grass biomass as predicted by the two models, with the 

CNN model producing a more accurate representation of field data.  

The deep CNN was utilised to distinguish changes in aboveground biomass between the dry 

and wet seasons, based on its higher accuracy. The CNN performed commendably in predicting 

biomass across the two seasons, yielding an R2 of 0,83, an RMSE of 3,36 g/m2 and an RMSE% 

of 6,09 in the dry season and an R2 of 0,85, an RMSE of 2,41 g/m2 and an RMSE% of 3,71 in 
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the wet season. The variables with the highest impact on model development for both seasons 

were the Sentinel-2 blue band, GCl and GNDVI, as noted previously. Changes in biomass were 

associated with changes in precipitation and rainfall. Biomass prediction maps portrayed the 

change in aboveground grass biomass from the dry to the wet season.  

This is considered a pilot study as it illustrated the utility of deep learning algorithms for 

vegetation remote sensing research. Furthermore, it showcased the potential of applying deep 

CNNs with open-access remotely sensed data in creating a synergistic and intricate technique 

for geospatial modelling. Such technology can be used to make informed, strategic decisions 

in managing grasslands at different scales and in different contexts.   
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        CHAPTER 1 

GENERAL INTRODUCTION 
 

1.1 Introduction 

 

Grasslands, also known as steppes, prairies and meadows in other regions of the world, are 

defined as areas of land dominated by grasses from the Poaceae family (Boval and Dixon, 

2012). Grasses are broadly defined as herbaceous monocots with narrow leaves, a generally 

well-developed underground root system and a sward-forming canopy (Boval and Dixon, 

2012). Grasslands cover approximately 30 to 40% of the earth’s terrestrial area and are found 

on every continent apart from Antarctica (O'Mara, 2012). Grasslands cover approximately a 

quarter of South Africa and is the third largest biome present in southern Africa (Mucina and 

Rutherford, 2006, Van den Hoof et al., 2018). Furthermore, grasslands are natural areas of high 

economic, social and ecological value in both local and global contexts (Singh et al., 2018).  

Grasslands produce grains that are used for manufacturing edibles, they are a food source for 

livestock and wildlife and consist of numerous plants that are used in the medicinal and 

pharmaceutical industries (Gxasheka et al., 2017). These industries, and various others, directly 

benefit from grasslands and hence ensure local economic growth. Grasslands also hold a 

significant social standing in South Africa. For example, locals residing in rural areas and 

former homelands heavily depend on communal livestock farming as a livelihood (Gxasheka 

et al., 2017). Communal grasslands are extensively used as a fodder source for livestock and 

for other medicinal and edible plants (Gxasheka et al., 2017). Communal rangelands provide 

households with status, food, income and savings which sustain rural communities (Rasch et 

al., 2016). 

In addition, the ecological role that grasslands play cannot be understated. These are often 

considered ecosystem services that directly or indirectly benefit human civilisation. Grasslands 

are integral in the prevention of soil erosion, and the promotion of arable land. They provide 

suitable habitats and niches for biodiversity to thrive, amongst many other ecological roles 

(Masenyama et al., 2022). However, an area of contemporary interest is on the role of 

grasslands in the combat against climate change. Whereas, there is a global notion that the 

proliferation of forests could increasingly assist in carbon sequestration and regulating 
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atmospheric carbon stocks. Recent studies show that grasslands can play a more decisive role 

in combatting climate change (O'Mara, 2012). A study by Dass et al. (2018) notes that 

grasslands are more resilient at withstanding adverse climate changes such as increased 

drought, heat waves and fires and hence act as more resilient carbon sinks than forests. 

Grasslands store most of their carbon in the soil which acts as a safer carbon sink than forests 

that store most of their carbon in aboveground structures (Dass et al., 2018).  

Numerous biophysical factors drive and maintain grasslands. Grasslands are influenced by 

biotic and abiotic factors (Boval and Dixon, 2012). Biotic factors include grazing, soil 

microbial organisms, pollinators, seed dispersal agents and other vegetation types such as trees 

and shrubs (Koerner and Collins, 2014). Abiotic factors include precipitation, temperature, 

altitude, fire, soil moisture and solar radiation. Both biotic and abiotic factors are complex and 

interact at various spatio-temporal scales to sustain grassland ecosystems (Koerner and Collins, 

2014). Koerner and Collins (2014) suggested that precipitation, grazing and fire are the most 

influential biophysical factors in South African temperate grasslands. These grasslands are 

generally classified into sweetveld or sourveld grasslands (Dedekind et al., 2020). Dedekind et 

al. (2020) describe sourveld grasslands as productive and stable grasslands that occur in regions 

with high rainfall, low altitude, dystrophic soils and have perennial swards. This enables 

sourveld grasslands to support high livestock production levels (Dedekind et al., 2020). Moyo 

et al. (2013) characterise sweetveld grasslands as nutritious grasslands that occur in regions 

with low rainfall, high altitude and fine clay-like soils with poor drainage. Sweetveld grasslands 

are unsuitable for stocking high rates of livestock due to their higher sensitivity to external 

factors (Moyo et al., 2013). Some grasslands exhibit a mixture of sweetveld and sourveld and 

are termed mixed veld grasslands (Ellery et al., 1995). 

The stark difference between the sweetveld and sourveld is during the dry winter season. 

Sourveld grass species tend to withdraw key nutrients such as nitrogen and most minerals from 

the aboveground sward and store them in the underground roots (Dedekind et al., 2020). This 

results in dry foliage with low protein and high fibre content, decreasing its nutritive value and 

palatability (Dedekind et al., 2020). On the contrary, sweetveld grass species remain palatable 

and nutritious throughout the year, even during the dry winter, since they do not translocate 

their nutrients to underground reserves (Moyo et al., 2013). This phenomenon is substantially 

due to precipitation and soil type with higher rainfall in well-drained soils resulting in higher 

leaching in sourveld grasslands and vice-versa (Ellery et al., 1995, Dedekind et al., 2020). 
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Essentially, the limiting factor in the sourveld is the quality of forage and the limiting factor in 

the sweetveld is the quantity of the forage (Ellery et al., 1995). 

It is inherently evident that maintaining grasslands and rangelands is vital in maintaining 

livestock production for socio-economic reasons. Therefore, it is vital to quantify the 

functioning of grasslands to understand and manage them optimally. Grassland productivity is 

a term used to assess and gauge the ability of a grassland to support and maintain living 

organisms, such as wildlife and livestock (Vundla et al., 2020). Grassland productivity can be 

measured using various parameters or variables. These include grass nutrients (Singh et al., 

2018), above-ground biomass (Vundla et al., 2020), grass water content (Sibanda et al., 2021) 

and leaf area index (Dube et al., 2019). These are all vegetative parameters that can be 

measured and quantified and provide insight into the productivity of a particular grassland. 

These parameters enable rangeland managers and scientists to make informed decisions and 

allow for better planning (Vundla et al., 2020, Sibanda et al., 2021).  

To assess historical grassland or rangeland productivity, scientists or managers had to 

physically plan and execute sampling techniques in the field. However, this is often physically 

challenging, time-intensive, redundant and expensive process (Ramoelo et al., 2015, Mutanga 

et al., 2016). The application of remote sensing has significantly advanced over the years and 

has enabled scientists and professionals alike to study various environmental aspects in 

croplands, forests and rangelands (Ramoelo et al., 2015, Mutanga et al., 2016). Satellite 

imagery has become more efficient, highly detailed, relatively inexpensive and easily 

accessible, particularly within a South African context (Mutanga et al., 2016). Vegetation 

monitoring has now become a smoother, faster and highly technical activity with an interface 

between spaceborne satellite data and ground data providing and verifying information 

(Mutanga et al., 2016). Satellite remote sensing has been used extensively to monitor 

vegetation condition, both globally and in South Africa, with satellite data proving to be useful 

and accurate in quantifying and predicting the vegetation variables used to discern such 

conditions (Mutanga et al., 2016). The inclusion of machine learning in remote sensing studies 

is now a norm, with machine learning proving to be a useful tool in analysing and interpreting 

spatial information (Ali et al., 2015). 

This research focuses on the aboveground biomass parameter, which has extensively been 

studied and documented in literature. Vegetative biomass studies have been conducted 

worldwide across various vegetation types such as forests and grasslands using satellite remote 
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sensing. Ali et al. (2016) estimated biomass in Ireland’s intensively managed grasslands using 

MODIS data and multiple linear regression, artificial neural network and adaptive neuro-fuzzy 

inference system models. In the United States of America, Wang et al. (2019) estimated leaf 

area index and aboveground biomass in grazing pastures using Sentinel 1, Sentinel-2 and 

Landsat 8 data combined with multiple linear regression, support vector machine and random 

forest models. A Mongolian biomass study by Pang et al. (2020) utilised Sentinel-2 imagery 

and partial least-squares regression and multiple stepwise regression models to estimate 

grassland productivity and analyse ecosystem condition. In a more recent study, Li et al. (2021) 

combined Sentinel-2 multispectral data with extreme gradient boosting and random forest 

algorithms to model aboveground grass biomass in a wetland system in China. The studies 

above and their main findings are summarised in the Table 1.1:  
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Table 1.1: A summary of international remote sensing studies of vegetation biomass. 

Author Context Satellite Metrics/Indices Algorithm Findings 

Ali et al. 

(2017) 

Grassland MODIS Spectral 

bands/NDVI, 

EVI2, SAVI, 

MSAVI, 

OSAVI 

Multiple linear 

regression 

(MLR) 

Artificial neural 

network (ANN) 

Adaptive neuro-

fuzzy inference 

system (ANFIS) 

The ANFIS 

produced the 

most accurate 

biomass 

estimation as 

compared to the 

ANN and MLR. 

The 

performance of 

ANFIS and 

ANN will work 

better with 

higher 

resolution 

sensors such as 

Sentinel. 

Wang et al. 

(2019) 

Grassland Sentinel 1 

Sentinel-2 

Landsat 8 

NDVI, EVI, 

LSWI 

MLR 

Support vector 

machine (SVM) 

Random forest 

(RF) 

The integration 

of satellite data 

from all three 

sensors 

provided the 

most accurate 

results, 

especially for 

studying 

seasonal 

dynamics. The 

MLR model 

generally 

performed 

better than the 

SVM and RF 

models. 

Pang et al. 

(2020) 

Grassland Sentinel-2 Spectral bands/ 

Simulated 

spectral bands/ 

various VIs 

derived from 

both spectral 

and simulated 

bands 

Partial least 

squares 

regression 

(PLSR) 

Multiple 

stepwise 

regression 

(MSR) 

The simulated 

spectral bands 

and associated 

indices 

produced more 

accurate 

biomass 

predictions than 

the raw spectral 

bands and 

associated 

indices 

Li et al. (2021) Grassland/ 

Wetland 

Sentinel-2 Spectral bands/ 

Various VIs/ 

Various red 

edge indices/ 

Gray-level co-

occurrence 

texture matrix 

RF 

Extreme 

gradient 

boosting 

(XGBoost) 

The texture 

matrix 

moderately 

improved 

biomass 

estimation as 

compared to 

VIs and red 

edge indices. 
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However, the 

use of the 

texture matrix 

alone was not 

useful and 

should only be 

used to 

supplement VIs 

and red edge 

indices. 

  

In a more local context, numerous aboveground biomass studies have been conducted in 

southern Africa. For example, Samimi and Kraus (2004) utilised Landsat 5 and Landsat 7 in 

biomass estimation studies across Kruger National Park and Madikwe Game Reserve in South 

Africa and the Gutu District in Zimbabwe. Palmer et al. (2010) estimated green biomass 

changes for the period 2000 to 2009 using MODIS imagery for grasslands in the Kokstad area 

of KwaZulu-Natal. In a separate study, Dube and Mutanga (2015) also quantified aboveground 

biomass using Landsat 8 multispectral data, albeit for forest plantations located in the uMgeni 

catchment area of KwaZulu-Natal. A study by Sibanda et al. (2017) in Pietermaritzburg utilised 

WorldView 3 satellite imagery and the sparse partial least squares regression model to estimate 

grassland biomass in an intensively managed grassland.  

Furthermore, Shoko et al. (2018) determined the optimal satellite imagery for estimating 

aboveground biomass in the Drakensberg. They compared data from Sentinel-2, Landsat 8 and 

WorldView 2 while utilising the sparse partial least square regression algorithm to determine 

the most suitable sensor for predicting aboveground biomass. Lastly, Vundla et al. (2020) 

sought to evaluate the impact of wattle invasions on grass biomass in the Matatiele district of 

Eastern Cape using Sentinel-2 satellite data and the partial least squares regression model. A 

summary of the abovementioned southern African studies and their findings are tabulated in 

Table 1.2:     
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Table 1.2: A summary of local vegetation biomass studies. 

Author Context Satellite Metrics/Indices Algorithm Findings 

Samimi & 

Kraus (2004) 

Grassland 

Savannah 

Landsat 5 

Landsat 7 

Spectral bands  Non-linear 

regression 

(NLR) 

Significant 

correlations 

between 

satellite 

spectral data 

and field data 

for all foliage 

types. 

Palmer et al. 

(2010) 

Grassland MODIS NDVI/Spectral 

bands 

NLR Created a 

model that 

predicts the 

change in 

biomass over a 

given period. 

Dube & 

Mutanga 

(2015) 

Forest Landsat 8 Spectral 

bands/DVI, GEMI, 

GNDVI, MSAVI, 

MSI, NDII, NDVI, 

NDVIc, OSAVI, 

RDVI, RSR, SAVI, 

SAVI2, SR 

Stochastic 

gradient 

boosting (SGB) 

RF 

Biomass 

estimates are 

more accurate 

when using 

both spectral 

data and 

vegetation 

indices. 

Landsat 8 data 

yields more 

accurate 

estimations 

than Landsat 7. 

Sibanda et al. 

(2017) 

Grassland WorldView 3 Red edge 

vegetation indices/ 

Texture 

Sparse partial 

least squares 

regression 

(SPLSR) 

The 

combination of 

red edge 

indices and 

texture metrics 

significantly 

improves 

accuracy of 

aboveground 

biomass 

predictions. 

Shoko et al. 

(2018) 

Grassland Sentinel-2 

Landsat 8 

Worldview 2 

Spectral 

bands/EVI, SAVI, 

StNDVI, RDVI, 

SR, MSR  

SPLSR WorldView 2 

displayed the 

best predictive 

accuracies 

followed by 

Sentinel-2 and 

then Landsat 8 

in biomass 

predictions. 

Spectral bands 

within the red 

edge, SWIR 

and NIR as well 

as derived 
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As alluded to previously, grasslands are driven by various biophysical aspects. This research 

focuses on the effect of precipitation on grassland productivity, specifically grass biomass. Van 

den Hoof et al. (2018) stated that grasslands in South Africa are very responsive to variations 

in precipitation over different spatio-temporal scales. This research attempts to assess the 

differences in grassland productivity due to inter-seasonal variations in precipitation, with a 

particular focus on biomass. South Africa has distinct dry seasons and wet seasons that 

influence grasslands’ productivity and functioning (Van den Hoof et al., 2018). However, 

research on the effects of inter-seasonal fluctuations on grasslands is somewhat limited in the 

scientific literature (Masenyama et al., 2022).  

Ramoelo and Cho (2014) estimated grass biomass in the dry season using reflectance data from 

RapidEye and Landsat 8 and a random forest algorithm. This study was conducted in the north-

eastern region of South Africa, more specifically Kruger National Park, Sabi Sands and 

Bushbuckridge. Furthermore, a study by Ramoelo et al. (2015) monitored grass nutrients and 

biomass between wet and dry seasons in Sabi Sands, located in the north-eastern region of 

South Africa. Ramoelo et al. (2015) utilised WorldView 2 data and random forest modelling 

to monitor leaf nitrogen content and aboveground biomass as a proxy for rangeland condition. 

Dingaan and Tsubo (2019) conducted grassland availability studies in Bethlehem, 

Bloemfontein, Kimberly and Johannesburg. They used MODIS data and regression models to 

differentiate between green aboveground biomass in the wet season and non-green 

aboveground biomass in the dry season. The studies alluded to above are summarised in Table 

1.3:  

 

indices were 

the most 

important in all 

sensors for 

assessing 

biomass. 

Vundla et al. 

(2020) 

Grassland Sentinel-2  Spectral 

bands/NDVI/SR 

PLSR The most 

influential 

metrics in 

estimating 

biomass were 

red edge 

derived indices, 

especially the 

SR.  
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Table 1.3: A summary of local grass biomass studies focusing on seasonal variability. 

Author Parameter Satellite Metrics/Indices Algorithm Findings 

Ramoelo & 

Cho (2014) 

Biomass RapidEye 

Landsat 8 

Spectral bands RF Spectral 

reflectance 

data can be 

used to 

estimate 

biomass in 

the dry 

season 

accurately. 

RapidEye 

data 

produced 

better results 

than Landsat 

8. 

Ramoelo et 

al. (2015) 

Nitrogen 

content 

Biomass 

WorldView 2 Spectral bands/ 

Traditional VIs/ 

Red edge VIs 

RF The red edge 

band and 

derived 

indices were 

the most 

important in 

assessing 

both 

Nitrogen 

content and 

biomass for 

both 

seasons. 

Dingaan & 

Tsubo 

(2019) 

Biomass MODIS Spectral bands/ 

Traditional VIs   

NLR Green 

biomass was 

aptly 

estimated by 

NDVI.  

Non-green 

biomass was 

more 

accurately 

estimated by 

NDWI.  

      

 

In conclusion, grasslands are the focal point for livestock production in South Africa. However, 

research on the dynamics of this biome is limited and thus hinders the management of 

grasslands. Inter-seasonal fluctuations and climate-induced changes continue manifesting in 

grassland ecosystems at varying spatial and temporal scales. It is therefore essential to further 

research in this arena to promote adaptability and resilience in future. There is an evident 
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research gap in the literature as inter-seasonal grass biomass studies for the KwaZulu-Natal 

region are scarce. This research aims to fill this gap by predicting aboveground biomass 

between the wet season and dry seasons in KZN sourveld grasslands. Many of the studies above 

were conducted in the northern regions of South Africa and have utilised certain satellites and 

algorithms (See Table 1.3). This research can build upon this foundation and advance grassland 

studies in the KZN region to benefit rangeland managers by assisting them in planning and 

decision-making. This research can ensure that optimal livestock production can be maintained 

inter-seasonally in both a communal and commercial context.    

1.2 Aim 

 

The research aimed to predict inter-seasonal aboveground grass biomass using Sentinel-2 MSI 

and machine learning algorithms in the Umngeni catchment, KwaZulu-Natal. 

1.3 Objectives 

 

The broad objectives of this study were to:  

1) Compare the performance of traditional Artificial Neural Networks (ANN) and deep 

Convolutional Neural Networks (CNN) in assessing aboveground biomass using 

Sentinel-2 data. 

2) Predict inter-seasonal (dry and wet season) aboveground grass biomass using Sentinel-

2 and deep learning technique (CNN). 

1.4 Research Questions 

 

1) Which machine learning technique, between the Artificial Neural Network and the 

Convolutional Neural Network, performs more aptly at estimating aboveground 

biomass of grass when paired with Sentinel-2 bands and derived vegetation indices?  

2) Can remote sensing and deep learning be used to estimate and assess the difference in 

grass aboveground biomass between two distinct seasons in South Africa, the dry and 

wet seasons? And what can this change in biomass be attributed to? 
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1.5 Thesis Structure  

 

This thesis has four chapters, with chapters 2 and 3 considered independent manuscripts. 

Hence, these chapters contain their own focused introduction, methods, results and discussion 

sections. It should be noted that chapters 2 and 3 share similarities and linkages as they 

ultimately address the same overarching aim of the study.  

The chapters are as follows:  

Chapter one serves as a general introduction to the thesis, highlighting the importance of 

grasslands and remote sensing. In addition, previous studies that share similarities with those 

in this study are briefly outlined. The aim, objectives and research questions are included in 

this chapter. 

Chapter two acts as the first standalone manuscript comparing the performance of two neural 

networks’ in estimating aboveground grass biomass. Sentinel-2 spectral data and derived 

vegetation indices were used to assess predictive performance of both machine learning 

algorithms to determine which was more apt to predict biomass.  

Chapter three acts as the second manuscript in which the better performing neural network 

from the previous chapter was utilised to assess and determine the difference in grass biomass 

between the dry and wet seasons. Once again, Sentinel-2 MSI data and VIs were used to predict 

grass biomass. Possible explanations of biomass change are suggested in this chapter.  

Chapter four serves as a synthesis of the two previous chapters. Significant findings and 

conclusions are consolidated in this chapter. Furthermore, limitations and recommendations 

are briefly noted in this chapter. 
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CHAPTER 2 

COMPARING THE UTILITY OF ARTIFICIAL NEURAL 

NETWORKS (ANN) AND CONVOLUTIONAL NEURAL 

NETWORKS (CNN) ON SENTINEL-2 MSI TO 

ESTIMATE DRY SEASON ABOVEGROUND GRASS 

BIOMASS 

 

Abstract 

 

Grasslands are biomes of significant fiscal, social and environmental value. Grassland or 

rangeland management often monitors and manages grassland productivity. Productivity is 

determined by various biophysical parameters, one such being grass aboveground biomass. 

Advancement in remote sensing has enabled near real-time monitoring of grassland 

productivity. Furthermore, the increase in sophisticated machine learning algorithms has 

provided a powerful tool for remote sensing analytics. This study compared the performance 

of two neural networks, namely: Artificial Neural Networks (ANN) and Convolutional Neural 

Networks (CNN), in predicting dry season aboveground biomass using open-access Sentinel-

2 MSI data. Sentinel-2 spectral bands and derived vegetation indices were used as input data 

for the two algorithms. Overall, findings in this study showed that the deep CNN outperformed 

the ANN in estimating aboveground biomass with an R2 of 0,83, RMSE of 3,36 g/m2 and 

RMSE% of 6,09. In comparison, the ANN produced an R2 of 0,75, RMSE of 5,78 g/m2 and 

RMSE% of 8,90. The sensitivity analysis suggested that the blue band, Green Chlorophyll 

Index (GCl) and Green Normalised Difference Vegetation Index (GNDVI) were the most 

significant for model development for both neural networks. This study can be considered a 

pilot study as it is one of the first to compare different neural network performance using freely 

available satellite data. This is useful for more rapid biomass estimation and this study exhibits 

the great potential of deep learning for remote sensing applications. 

 

Keywords: Remote Sensing, Grasslands, Biomass, Artificial Neural Network, Convolutional 

Neural Network, Sentinel-2. 
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2.1 Introduction  

 

The study and observation of natural phenomena are increasingly becoming more imperative 

as the world faces unprecedented environmental change (Ali et al., 2015). The consistent 

improvements made to airborne and spaceborne platforms and sensors have resulted in a 

proliferation of remote sensing research (Mutanga et al., 2016). Remote sensing has facilitated 

earth observations in various facets of the natural world, ranging from weather to vegetation. 

Vegetation monitoring, in particular, has become an influential research area in remote sensing 

academia due to the need for continuous and reliable data to assist in decision-making 

processes (Mutanga et al., 2016). The advent of remote sensing, from simple aerial photographs 

to current high-resolution imagery, has enabled scientists to study larger spatial and temporal 

scales (Mutanga et al., 2016). Recently, there has been a significant increase in remote sensing 

data and ground data in vegetation studies which have established a solid foundation for 

vegetation monitoring, presently and in the future (Ali et al., 2015).  

The inundation of remotely sensed data has directed scientists towards finding novel methods 

for data processing and analysis (Ali et al., 2015). Remotely sensed data has proven to be 

voluminous, with data being captured at monthly, weekly and even hourly scales (Das et al., 

2022). The heterogeneity of remotely sensed data, with a vast array of sensors at varying 

spatial, temporal and radiometric resolutions, has produced challenges in data processing and 

analysis (Ali et al., 2015, Das et al., 2022). This challenge has ushered scientists into 

discovering new methodologies at discerning multi-dimensional data, resulting in a paradigm 

shift from conventional statistical methods towards machine learning solutions (Das et al., 

2022). Artificial intelligence advancement and machine learning technologies have enabled 

scientists and practitioners to address pressing environmental issues due to their real-time 

processing of data and strong predictive abilities (Das et al., 2022).  

Neural networks, considered a subset of machine learning, are algorithms designed by 

mimicking of a biological brain’s operation (Mas and Flores, 2008). The artificial neural 

network (ANN), specifically, has been extensively used for remote sensing applications since 

the 1990s as they provided promising results (Mas and Flores, 2008). Mas and Flores (2008) 

state that ANNs have been reported to perform much more admirably as compared to 

traditional statistical methods due to their ability to learn complex patterns, study nonlinear 

relationships between variables, generalisation abilities and perform various analyses without 

necessitating the meeting of data assumptions (eg. Normally distributed data). Jensen et al. 
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(2009) acknowledge that ANNs have been used relatively successfully in remote sensing for 

biophysical estimation and land classification. However, they have their limitations. These 

include the complex architectures of ANNs and their demanding computational requirements, 

the need for large amounts of training data and supervised algorithm training to ensure better 

accuracy and output (Mas and Flores, 2008, Jensen et al., 2009).  

In the last decade, there has been another paradigm shift in machine learning, with the focus 

now on deep learning approaches (Liu et al., 2019). This is essentially a refinement and 

improvement on traditional ANNs, to improve predictive accuracy and reduce the complexity 

of the previous algorithms (Zhu et al., 2017). Zhu et al. (2017) define deep learning as neural 

networks characterised by more than two deep layers in the neural network structure that 

extract distinct feature patterns from input data. One such example of a deep neural network is 

the convolutional neural network (CNN), which has been specially engineered for image 

processing and analysis (Zhu et al., 2017, Kattenborn et al., 2021). The increased number of 

layers and interconnections in CNNs have meant that more complex and intricate patterns and 

relationships can be deciphered, which is particularly useful for vegetation remote sensing 

studies (Kattenborn et al., 2021). CNNs have an advantage over ANNs because they require 

less computational time and power and produce higher predictive accuracies. However, they 

require vast amounts of training data to be able to make such accurate predictions and 

classifications (Brodrick et al., 2019). Although the use of CNNs in remote sensing is trend-

setting, it is currently only in its inception and has to be tested further to reveal its strengths 

and weaknesses (Kattenborn et al., 2021).  

Grasslands are biomes of high socio-economic and conservational value, particularly in 

southern Africa (Palmer et al., 2010). Grasslands are highly sensitive to environmental change 

and are often moderated by biophysical factors such as rainfall and grazing (Vundla et al., 

2020). Vegetation parameters are used to asses health and condition and can either be 

physically measured or remotely estimated by remote sensing (Mutanga et al., 2016). 

Aboveground biomass is one such vegetation measure used to observe and monitor grassland 

productivity (Ali et al., 2015). Neural networks, especially ANNs, have been used to assess 

and predict aboveground vegetation biomass for a considerable time (Ali et al., 2015). In most 

cases, ANNs have outperformed typical Bayesian and iterative statistical methods for 

estimating biomass, as well as other machine learning algorithms such as support vector 

machines (Ali et al., 2015). Recent grass biomass studies have gradually incorporated the 
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utilisation of CNNs for biomass predictions, with varying results based on sensor resolutions 

and platform type (Kattenborn et al., 2021).  

There is a substantial lack of grassland biomass studies, in relation to remote sensing, in South 

Africa, as reported by Masenyama et al. (2022). Furthermore, from a South African context, 

no research has attempted to investigate the performance of conventional ANNs and 

contemporary CNNs in estimating aboveground grass biomass. The study of grasslands is 

imperative in the face of climate change. Hence, the use of machine learning techniques to 

observe and assess grassland health would be valuable to both researchers and practitioners 

(Masenyama et al., 2022, Ali et al., 2015). Therefore, the objectives of this study were to: 1) 

compare the predictive performance of shallow ANNs and deep CNNs in estimating 

aboveground grass biomass using Sentinel-2 MSI and 2) utilise both neural networks on 

Sentinel-2 MSI to predict dry season aboveground biomass for Vulindlela communal area in 

South Africa.  

 

2.2 Methods  

 

2.2.1 Study Area 

 

The Vulindlela area is situated in the greater Umngeni Catchment of the KwaZulu-Natal 

province, South Africa. The study area is part of the Umgungundlovu district and falls under 

the uMsunduzi Municipality (Figure 2.1). The local climate can be classified as a subtropical 

oceanic climate, with cool and dry winters and mild and wet summers (Sibanda et al., 2021). 

A mean annual rainfall of 979mm with a median annual rainfall of 850mm is received in the 

study area. Annual maximum and minimum temperatures are approximately 22°C and 10°C 

respectively (Sibanda et al., 2021). Vegetation growth in the area is limited primarily by 

climate, with low precipitation, low temperatures and frost being the major factors (Sibanda et 

al., 2021). Vulindlela has a mean annual potential evaporation that ranges between 1580 and 

1620mm, which indicates a possible deficit in relation to mean annual rainfall (Sibanda et al., 

2021). The edaphic factors of Vulindlela are characterised by shallow soils with moderate to 

poor drainage; this presents a potential soil erosion risk if not properly managed (Sibanda et 

al., 2021).  
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grasslands are utilised by locals as grazing land for livestock, particularly cattle, sheep and 

goats. The locals use this as a means of subsistence as well as income generation.  

2.2.2 Sentinel-2 MSI satellite imagery 

 

Sentinel-2 is a multispectral imaging sensor operated by the European Space Agency and 

provides open, freely accessible data. Cloud free Sentinel-2 data covering the study area was 

acquired from Land Viewer (https://eos.com/products/landviewer/) on the 21st of October 

2021. The image downloaded was a Sentinel-2B product which is an orthorectified and 

atmospherically corrected product. The Sen2Cor algorithm is used within the Sentinel 

Application Platform environment (SNAP) to perform atmospheric correction and provided 

the bottom of atmosphere reflectance data (Main-Knorn et al., 2017).  The image was captured 

on 22nd of June 2021 and aligns with the field data collection days. The Sentinel-2 mission 

acquires 12-bit images with a swath width of 290km and has a temporal resolution of 5-19 days 

at spatial resolutions of 10, 20 and 60m. The ortho-images have a UTM/WGS84 projection.  

The Sentinel-2 MSI consists of 13 spectral bands that covers the visible, NIR and SWIR 

sections. The three bands with a 60m spatial resolution were excluded from the analysis as they 

are primarily used for atmospheric monitoring (Shoko et al., 2018). Sentinel-2 spectral bands 

are summarised in Table 2.1:  
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Table 2.1:  Sentinel-2B spectral bands (https://eos.com/find-satellite/sentinel-2/) 

Band Number Band Name Central 

Wavelength (nm) 

Bandwidth (nm) Resolution (m) 

1 Coastal aerosol 442.3 20 60 

2 Blue 492.1 65 10 

3 Green 559 35 10 

4 Red 665 30 10 

5 Red edge 1 703.8 15 20 

6 Red edge 2 739.1 15 20 

7 Red edge 3 779.7 20 20 

8 NIR 833 115 10 

8a Red edge 8a 864 20 20 

9 Water vapour 943.2 20 60 

10 SWIR- Cirrus 1376.9 30 60 

11 SWIR 1 1610.4 90 20 

12 SWIR 2 2185.7 180 20 

   

2.2.3 Field data collection and measurements 

 

Grass biomass samples were collected in the study area between the 21st of June 2021 and 23rd 

of June 2021. A total of 120 10m x 10m quadrats, spaced approximately 100m apart, were 

established within Vulindlela using a purposive sampling technique, as conducted by Royimani 

et al. (2022). A GPS reading was recorded using the Trimble GPS within each plot, which is a 

highly accurate sub-metre GPS system. Within each plot, two 1m x 1m sub-plots were 

established, grass clippings were taken, with the dry biomass mass being averaged within each 

plot (Ma et al., 2019). Grass clippings were cut approximately 5cm from the ground and only 

tufts within the sub-plot were taken. Only grasses were sampled, other vegetation such as forbs 

and sedges were discarded. Grass samples were placed into labelled brown paper bags and a 

calibrated digital scale was used to measure the fresh biomass weight on the day of collection, 

which is known as wet mass. Grass samples were then placed into an oven at 70°C for 48 hours 

to remove moisture. The samples were then reweighed after drying to determine dry mass.  
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a.  b.  

Figure 2.2.: a. Aristida junciformis dominated grassland and b. image of a grassland within 

the study area during the dry season. 

 

2.2.4 Vegetation Indices 

 

Vegetation indices (VIs) were computed using the spectral bands to assess aboveground 

biomass (Table 2.2). The VIs used in this study were computed using ArcGIS 10.4 software 

(www.esri.com).    
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Table 2.2: Various vegetation indices (VIs) used in this study. 

Vegetation Index Abbreviation Formula Reference 

 Broadband VIs   

Enhanced Vegetation 

Index 

EVI 
2.5(

𝑁𝐼𝑅 − 𝑅

1 + 𝑁𝐼𝑅 + 6𝑅 − 7.5 × 𝐵
) 

(Huete et al., 2002) 

Soil adjusted vegetation 

index 

SAVI (𝑁𝐼𝑅 − 𝑅) × (1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 

(Huete, 1988) 

Normalised difference 

vegetation index 

NDVI (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

(Huete, 1988) 

Renormalised 

difference vegetation 

index 

RDVI (𝑁𝐼𝑅 − 𝑅)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 + 𝑅)
 

(Roujean and Breon, 

1995) 

Simple ratio SR 𝑁𝐼𝑅

𝑅
 

(Chen, 1996) 

Modified simple ratio MSR (𝑁𝐼𝑅 ÷ 𝑅 − 1)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 ÷ 𝑅) + 1
 

(Chen, 1996) 

Green normalised 

difference vegetation 

index 

GNDVI (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

(Fernández-Manso et 

al., 2016) 

Green-blue normalised 

difference vegetation 

index 

GBNDVI 𝑁𝐼𝑅 − (𝐺 + 𝐵)

𝑁𝐼𝑅 + (𝐺 + 𝐵)
 

(Santoso et al., 2011) 

Chlorophyll green 

index 

CGM 𝑁𝐼𝑅

𝐺
− 1 

(Gitelson and 

Merzlyak, 1997) 

Red-green ratio RGR 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Gamon and Surfus, 

1999) 

Atmospherically 

resistance vegetation 

index 

ARVI (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

(Kaufman and Tanre, 

1996) 

Transformed difference 

vegetation index 

TDVI 

√0.5 +
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(Bannari et al., 2002) 

Difference vegetation 

index 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker, 1979) 

 Red edge VIs   

Red edge 1 NDVI NDVIRE1 (𝑁𝐼𝑅 − 𝑅𝐸1)

(𝑁𝐼𝑅 + 𝑅𝐸1)
 

 

 

 

 

 

 

Red edge 2 NDVI NDVIRE2 (𝑁𝐼𝑅 − 𝑅𝐸2)

(𝑁𝐼𝑅 + 𝑅𝐸2)
 

Red edge 3 NDVI NDVIRE3 (𝑁𝐼𝑅 − 𝑅𝐸3)

(𝑁𝐼𝑅 + 𝑅𝐸3)
 

Red edge 8a NDVI NDVIRE8a (𝑁𝐼𝑅 − 𝑅𝐸8𝑎)

(𝑁𝐼𝑅 + 𝑅𝐸8𝑎)
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Red edge 1 SR SRRE1 𝑁𝐼𝑅

𝑅𝐸1
 

(Shoko et al., 2018) 

Red edge 2 SR SRRE2 𝑁𝐼𝑅

𝑅𝐸2
 

Red edge 3 SR SRRE3 𝑁𝐼𝑅

𝑅𝐸3
 

Red edge 8a SR SRRE8a 𝑁𝐼𝑅

𝑅𝐸8𝑎
 

Normalised difference 

red edge 1 

NDRE1 𝑅𝐸1 − 𝑅𝑒𝑑

𝑅𝐸1 + 𝑅𝑒𝑑
 

 

 

 

(Guerini Filho et al., 

2020) 

Normalised difference 

red edge 2 

NDRE2 𝑅𝐸2 − 𝑅𝑒𝑑

𝑅𝐸2 + 𝑅𝑒𝑑
 

Normalised difference 

red edge 3 

NDRE3 𝑅𝐸3 − 𝑅𝑒𝑑

𝑅𝐸3 + 𝑅𝑒𝑑
 

Normalised difference 

red edge 8a 

NDRE8a 𝑅𝐸8𝑎 − 𝑅𝑒𝑑

𝑅𝐸8𝑎 + 𝑅𝑒𝑑
 

Anthocyanin 

reflectance index 

ARI 1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸1
 

(Kobayashi et al., 

2020) 

Red edge chlorophyll 

index 

RECl 𝑅𝐸3

𝑅𝐸1
− 1 

(Clevers and Gitelson, 

2013) 

Green chlorophyll 

index 

GCl 𝑅𝐸3

𝐺𝑟𝑒𝑒𝑛
− 1 

(Clevers and Gitelson, 

2013) 

Plant senescence 

reflective index 

PSRI 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝐸1
 

(Guerini Filho et al., 

2020) 

Browning reflective 

index 

BRI 1
𝐺𝑟𝑒𝑒𝑛

−
1

𝑅𝐸1
𝑁𝐼𝑅

 

(Kobayashi et al., 

2020) 

 

2.2.5 Statistical analysis and machine learning 

 

2.2.5.1 Artificial Neural Network (ANN) 

 

This study utilised an artificial neural network (ANN) to predict aboveground biomass using a 

Sentinel-2 multispectral dataset. The ANN is a machine learning algorithm based on the human 

brain’s computational mechanisms (Mas and Flores, 2008). ANNs can be trained to recognise 

patterns, perform complex computations and develop self-organising abilities (Mas and Flores, 

2008). ANNs are typically comprised of multiple layers (Figure 2.3): an input, output and one 

or more hidden layers (Yang et al., 2018). A more significant number of layers is associated 

with greater complexity of the model (Yang et al., 2018). In terms of remote sensing 

applications, ANNs have been utilised extensively and have proven to provide more reliable 
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results than conventional statistical methods (Mas and Flores, 2008). Regarding aboveground 

biomass studies, Deb et al. (2017) and Yang et al. (2018) used ANNs to predict aboveground 

grass biomass. 

 

Figure 2.3: The general architecture of an ANN (Jensen et al., 2009) 

 

2.2.5.2 Convolutional Neural Network (CNN)  

 

CNNs are an advancement to typical ANNs and have been developed explicitly for analysing 

visual imagery (Pires de Lima and Marfurt, 2020). CNNs have increasingly become a valuable 

and powerful tool in the remote sensing field, especially with image classification (Pires de 

Lima and Marfurt, 2020). Unlike ANNs that use weights or neurons to “learn” the data, CNNs 

use multiple layers cast on images to analyse them (Figure 2.4) (Pires de Lima and Marfurt, 

2020). ANNs are more suited to concrete datasets, whereas CNNs are more suited for visual 

datasets. CNNs also provide a more automated approach to deep learning as it can detect 

important patterns and features in images with minimal human supervision (Ma et al., 2019). 

For example, Ma et al. (2019) successfully utilised a deep CNN to estimate aboveground 

biomass for wheat.   
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Figure 2.4: The general architecture of a CNN (Liu et al., 2019) 

 

The ANN and CNN models were run to determine the relationship between VIs and spectral 

data with aboveground biomass. The model successfully determined the relationship between 

the variables by manually changing the number of nodes in the hidden layer. Table 2.3 lists the 

parameters used to train the different models.  

Table 2.3: Hyper-parameters used to train the ANN and CNN models 

Model Hyper-parameters Value 

ANN Number of hidden layers 4 

Number of epochs 50 

Learning rate 0.001 

Activation Function Sigmoid 

CNN Kernel number 32, 64,128, 256, 512 

Size 1*2 

Stride 2 

Number of epochs 30 

Learning rate 0.001 

Activation Function ReLu 
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2.2.6 Accuracy Assessment  

 

The models were run a maximum of five times with random initial weights. Model performance 

was analysed using the coefficient of determination (R2), root mean square error (RMSE) and 

RMSE% assessments. The coefficient of determination is a statistical measure of the accuracy 

of a regression by comparing actual versus predicted data points (Schreiber et al., 2022). The 

value of R2 ranges from 0 to 1 with a higher value insinuating a higher accuracy (Schreiber et 

al., 2022). The equation for R2 is found below (Li et al., 2021): 

𝑅2 = 1 − 
∑ (𝑦𝑗−𝑦)²𝑛

𝑗=1

∑ (𝑦𝑗−𝑌)²𝑛
𝑗=1

    (1) 

Where yj and y represents measured and estimated biomass values, respectively; Y is the 

average measured biomass over all samples and n denotes the number of samples (Li et al., 

2021). 

According to Shoko et al. (2018), the RMSE measures the difference between actual and 

predicted values, in this instance, actual and predicted biomass values. The RMSE was 

calculated using the following formula as documented by Shoko et al. (2018):  

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)²𝑛

𝑖−1

𝑛
   (2) 

where measured value is the measured biomass in the field, predicted value is the predicted 

biomass by the model and i is the predictor variable included. The RMSE% was calculated 

using the following formula as expressed by Shoko et al. (2018):  

𝑅𝑀𝑆𝐸% =  
√

1

𝑛
∑ (𝑦𝑖−𝑌𝑖)²𝑛

1=𝑛

𝑦
   (3) 

Where n is the number of measured values, yi is the measured value, Yi is the estimated value 

and y is the average of the measured aboveground biomass (Shoko et al., 2018).  

Models yielding the highest R2 and lowest RMSE/RMSE% between predicted and measured 

biomass levels, based on an independent test dataset (i.e., 30% of the dataset) were retained for 

predicting biomass levels. An aboveground biomass distribution map was computed using the 

ANN and CNN models with spectral data and VIs. A sensitivity analysis was also conducted 

to determine which variables were most important in model development for the ANN and 
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CNN. All statistical analyses were conducted utilising R statistical software package version 

3.1.3. The methodology used in this study is illustrated in Figure 2.5.  

 

 
Figure 2.5: Flowchart of the methodology undertaken in this study. 

 

2.3 Results 

 

2.3.1 Descriptive Statistics 

 

Table 2.4: Descriptive statistics of the observed biomass (g/m2) over the dry season 

 

Observed grass biomass (g/m2) during the dry season across 120 sample plots had an average 

of 47,82 g/m2 with a standard deviation of 23,38 g/m2. The highest biomass recorded was 123,8 

g/m2 whereas 8,2 g/m2 was the lowest (Table 2.4).  

2.3.2 ANN vs CNN  

 

Figure 2.6 show both models’ training and validation process with their set hyperparameters. 

The x-axis represents the number of epochs and the y-axis represents the root mean square 

error in biomass. An epoch is essentially one cycle of the forward- and back-propagation 

phases. The CNN model was more adept at learning than the ANN, as the CNN required 30 

Period n Mean Std. Dev Min. Max. Range 

Dry 120 47.82 23.38 8.2 123.8 115.6 
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epochs to minimise error whereas the ANN required 50 epochs to minimise error. The error 

remained more or less constant after the 30th epoch in the CNN and the 50th epoch in the ANN. 

Determining a suitable number of epochs is essential to preventing under- or overfitting of 

models (Ali et al., 2015, Ali et al., 2016) 

 

 

Figure 2.6: Number of epochs for each model. The arrows indicate that for the CNN and 

ANN models the number of epochs that gave the lowest error was 30 and 50, respectively 

 

In assessing the predictive performance of both the ANN and CNN machine learning 

algorithms in estimating aboveground biomass during the dry season, the ANN produced an 

R2 value of 0,75 with an RMSE of 5,78 g/m2 and a RMSE% of 8,90 (Figure 2.7a). In 

comparison, the CNN produced an R2 value of 0,83 with an RMSE of 3,36 g/m2 and a RMSE% 

of 6,09 (Figure 2.7b).  
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2.3.3 Sensitivity Analysis  

 

In terms of a sensitivity analysis (Figure 2.9), whereby the importance of spectral bands and 

VIs are determined and ranked in relation to dry season biomass estimation for each model, the 

blue band (B02) from Sentinel-2 MSI was the most important band for the ANN, followed by 

the GCI and the GNDVI. In comparison, the GNDVI was the most important variable for 

estimating biomass for the CNN, followed closely by the GCI and the blue spectral band (B02) 

from Sentinel-2. The GBNDVI was the least significant variable in biomass estimation for both 

models. Only variables with an average impact of >0,1 were included in the models.   

 

 

Figure 2.9: Ranking the importance of variables for developing the a. ANN and b. CNN 

models for biomass detection 

 

2.4 Discussion 

 

This study investigated the utilisation of two neural networks in predicting aboveground grass 

biomass and compared their respective performance. The advancement in machine learning 

has provided scientists with numerous opportunities to test their performance in real-world 

applications, such as in remote sensing and vegetation monitoring (Ali et al., 2015). Comparing 

the accuracies of two different neural networks helps reveal the relationships between biomass 

and remote sensing variables (Dong et al., 2020). To date, machine learning algorithms have 

proven to be much more complex and dynamic than traditional statistical modelling, allowing 

for more complex modelling of biophysical parameters and more decisive findings and 
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correlations (Das et al., 2022). This study specifically demonstrated the refinement in neural 

networks, as the contemporary convolutional neural network (R2=0,83) outperformed the 

conventional artificial neural network (R2=0,75) in aboveground grass biomass predictions. 

This indicates the onset of deep learning approaches in remote sensing applications (Zhu et al., 

2017). 

Numerous recent studies have conducted a comparative analysis between different machine 

learning algorithms in remote sensing applications, particularly for vegetation monitoring. The 

ANN is one of the oldest machine learning algorithms and used extensively for grassland 

biomass retrieval (Ali et al., 2015). A study by Xie et al. (2009) compared the performance of 

ANN to a multiple linear regression (MLR) in estimating aboveground biomass of grasslands 

in Mongolia. The study used Landsat ETM+ (NDVI, bands 1,3,4,5,7) data and the results 

showed that the ANN (R2= 0.817, NRMSE= 42,36%) outperformed the multiple linear 

regression (R2= 0,591, NRMSE= 53,2%). Similarly, Yang et al. (2018) found that the ANN 

(R2= 0,75-0,85) outperforms MLR (R2=0,4-0,64) in estimating grass biomass. Their study 

utilised the normalised difference vegetative index (NDVI), enhanced vegetation index (EVI), 

modified soil adjusted vegetation index (MSAVI), soil adjusted vegetation index (SAVI) and 

optimised soil adjusted vegetation index (OSAVI) derived from MODIS data. Xie et al. (2009) 

utilised a single date image whereas Yang et al. (2018) utilised a multi-temporal time series. 

This proved that machine learning techniques are an improvement to typical regression 

analyses, even at different spatio-temporal scales (Ali et al., 2015). 

Masenyama et al. (2022) has stated that the average R2 value for remote sensing-grassland 

productivity studies range between 0,65 (65%) and 0,75 (75%). In comparison, the 

performance of both the ANN and CNN in this study are commendable with model accuracy 

of 75% for the ANN and 83% for the CNN. Furthermore, studies by Dong et al. (2020) and 

Schreiber et al. (2022) found that CNNs outperformed ANNs in aboveground biomass 

estimation from remotely sensed data. Dong et al. (2020) compared the performance of CNNs 

against three other machine learning algorithms, namely random forest, support vector 

regression and ANN, in estimating aboveground biomass of bamboo. The WorldView-2 

platform was used in this study, with spectral bands and vegetation indices as input data. 

Overall, the CNN produced better results than the ANN with an R2 of 0,94 and RMSE of 23,1% 

whereas the ANN could only achieve an R2 of 0,86 and RMSE of 36,1%. The random forest 

and support vector regression obtained slightly better accuracy than the CNN. However, it must 

be noted that the CNN had limited input variables in this study, with only spectral bands being 
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used as input data compared to the other two algorithms that had spectral, VI and texture data 

(Dong et al., 2020).  

Similarly, Schreiber et al. (2022) compared the performance of ANNs and CNNs in predicting 

aboveground biomass of wheat using UAV-based imagery (RGB imagery with 2,14 cm2 pixel 

size). Their findings show that the CNN reached an R2 of 0,9065 whereas the ANN reached an 

R2 of 0,9056. In this case, the ANN was slightly outperformed by the CNN. However, Schreiber 

et al. (2022) also acknowledge that the homogeneity of wheat cultivation could be a slight 

advantage to the ANN. In contrast, more heterogenous study environments could see the 

accuracy of ANNs diminish and the accuracy of CNNs flourish. Furthermore, they also note 

that the use of hyperspectral data and vegetation indices could greatly improve the accuracy of 

CNNs, which was absent in their study.  

Kattenborn et al. (2021) stated that since CNNs have been specialised for image analysis and 

processing, they are highly suitable for remote sensing applications. CNNs have proven to be 

extremely useful in extracting biophysical parameters of vegetation from remotely sensed data, 

such as species composition and biomass (Kattenborn et al., 2021). Deep learning approaches, 

which include CNNs, are gradually replacing shallow learning techniques such as ANNs, as 

they analyse, interpret and predict spatial data much more effectively (Zhu et al., 2017, Pires 

de Lima and Marfurt, 2020, Kattenborn et al., 2021). There has been a steady influx of biomass 

estimation studies utilising CNNs and remotely sensed data in the academic and research 

circles.  

Ma et al. (2019) utilised a deep CNN in tandem with very high-resolution RGB digital imagery 

to estimate aboveground biomass of wheat. The CNN had a high coefficient of determination 

(R2= 0,808) and a low NRMSE (NRMSE= 24,95%) in predicting wheat biomass (Ma et al., 

2019). Karila et al. (2022) utilised a drone with RGB and hyperspectral capabilities to estimate 

grass sward quality and quantity. They compared the performance of multiple deep neural 

networks, a CNN included, to the random forest method. Overall, their findings show that the 

CNN model (NRMSE= 21%) performed better than the random forest model in estimating 

aboveground grass biomass, with the CNN being the most consistent with hyperspectral data 

as compared to only RGB data. Varela et al. (2022) predicted various key traits, one of them 

being aboveground biomass, of Miscanthus grass using UAV imagery and two CNNs. The best 

R2 achieved by the 2D CNN, which was multispectral input from a single image, was 0,59 with 
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an RMSE of 180 g. In contrast, the 3D CNN, which was multispectral and multi-temporal, 

produced a slightly higher R2 of 0,69 and an RMSE of 149 g.  

There have been numerous biomass estimation studies for grasslands using remote sensing and 

machine learning in a southern African context. However, none of these attempted to utilise 

CNNs for biomass prediction (Masenyama et al., 2022). For example, Ramoelo and Cho (2014) 

estimated dry season aboveground grass biomass using the random forest algorithm and by 

comparing Landsat 8 and RapidEye data. They only utilised band reflectance data to estimate 

biomass, stating that VIs are not always plausible for biomass estimation during the dry season 

since the vegetation lacks “greenness” (Ramoelo and Cho, 2014). RapidEye yielded better 

results with random forest, with an R2 of 0,86, RMSE of 13,42 g/m2 and RRMSE of 10,61% 

whereas Landsat 8 yielded an R2 of 0,81, RMSE of 15,79 g/m2 and RRMSE of 12,49%.    

Shoko et al. (2018) utilised the sparse partial least square regression (SPLSR) to estimate grass 

biomass using three different satellites, namely: Sentinel-2 MSI, Landsat 8 OLI and 

WorldView-2 in the Drakensberg. They utilised seven spectral bands from Landsat 8, ten from 

Sentinel-2, eight from WorldView 2 and various VIs. Their findings showed that WorldView 

2 derived variables yielded the best predictive accuracies (R2 between 0,71 and 0,83; RMSE 

between 6,92% and 9,84%), followed by Sentinel-2 (R2 between 0,6 and 0,79; RMSE between 

7,66% and 14,66%) and lastly Landsat 8 (R2 between 0,52 and 0,71; RMSE between 9,07% 

and 19,88%). Vundla et al. (2020) assessed aboveground biomass of grasslands in the Eastern 

Cape using Sentinel-2 MSI and the partial least squares regression (PLSR) algorithm. They 

utilised the visible, red-edge and shortwave infrared bands and NDVI and simple ratio (SR) as 

input data for the PLSR. Their results show that the PLSR performed well in estimating grass 

biomass, with an R2 of 0,83 and an RMSE of 19,11 g/m2.  

The sensitivity analysis for both models were conducted to determine which spectral bands and 

VIs were most important in estimating aboveground grass biomass. This is discerned by 

examining the correlation between aboveground biomass and spectral/VI values (Li et al., 

2021). For both models, the vegetation indices and spectral bands proved to be relatively 

accurate proxies for estimating aboveground grass biomass, a finding that also concurs with 

Pang et al. (2020). This contrasts the suggestions of Ramoelo and Cho (2014) that vegetation 

indices may not be suitable for dry season grass biomass estimation due to grass senescence, 

with only spectral data yielding better results during the dry season. For both the ANN and 

CNN models, five bands (blue, green, red, SWIR2, SWIR1), nine VIs (GNDVI, CGM, ARVI, 
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NDVI, MSR, SAVI, TDVI, SR, GBNDVI) and six red edge VIs (GCI, ARI, NDRE8a, NDRE3, 

NDRE2, RECI) were considered important for model development. Other studies also showed 

that utilising both spectral data and VIs improved on biomass predictions as opposed to using 

them independently (Shoko et al., 2018, Yang et al., 2018, Pang et al., 2020, Li et al., 2021). 

By comparing the results of the sensitivity analysis in this study to other similar biomass 

studies, it is evident that direct comparisons cannot be established due to the diversity in 

platform and machine learning algorithms used. Shoko et al. (2018), using Sentinel-2 MSI and 

SPLSR, found that the SWIR1, SWIR2, green, red and red edge 1 were the most important 

sensor variables, whereas NDRE1 and NDVI were the most important VIs in predicting grass 

biomass. Parallels can be drawn between the spectral bands for this study and Shoko et al. 

(2018); however, this study provides substantially more VIs of significance. Vundla et al. 

(2020), using Sentinel-2 MSI and PLSR, discovered that simple ratio VIs had the highest 

importance whilst NDVI had the lowest importance in assessing grass biomass. Their findings 

on the simple ratio VIs contradict the findings in this study, with the simple ratio VI being of 

less importance in both the ANN and CNN models. However, NDVI was shown to have a 

reduced significance in both studies.   

NDVI, a widely used VI in remote sensing, was shown to have a moderate impact on biomass 

estimation in this study for both models. This concurs with Deb et al. (2017) who also found 

that other VIs produced better biomass estimates than NDVI when paired with neural networks. 

Ramoelo and Cho (2014) suggest that NDVI is susceptible to grass senescence during the dry 

season and hence will tend to underestimate biomass. This is due to NDVI essentially 

measuring vegetation “greenness”, which is primarily absent from grasses during the dry 

season (Ramoelo and Cho, 2014). Deb et al. (2017) stated that NDVI is often subjected to 

variations in atmospheric conditions, soil elements, plant phenology and external disturbances 

which hinder its efficacy in estimating biomass. The findings in this study also show a lesser 

impact of NDVI on biomass estimates than other VIs.  

No known studies to date have utilised Sentinel-2 data with CNNs to assess aboveground 

biomass. Hence, comparing sensitivity analysis results for the CNN is not plausible. Findings 

in this study come closest to findings by Li et al. (2021) who predicted aboveground grass 

biomass using Sentinel-2 MSI in tandem with RF and XGBoost algorithms. They found that 

the GNDVI and GCI were the most important variables for developing the RF model. GNDVI 

and GCI were also high impacting variables in this study for both the ANN and CNN models. 
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According to Dusseux et al. (2022), GNDVI has been well documented and used  concerning 

vegetation biomass. GCI, and other red edge based VIs, have also proven to be particularly 

useful in biomass studies due to their important relationship with chlorophyll content and 

nutrients present in plant cells (Dusseux et al., 2022, Vundla et al., 2020). Ramoelo and Cho 

(2014) found that the blue, green and red edge spectral data were important for predicting 

aboveground grass biomass during the dry season, albeit using RapidEye and RF. This study 

also shows the importance of blue and green spectra; however, shortwave infrared was deemed 

more significant in this study than red edge spectra.   

Compared to the abovementioned studies, the performance of both NNs in this study is 

relatively commendable. However, it must be acknowledged that all machine learning 

algorithms used in remote sensing studies are not comprehensive tools for classifying or 

predicting biophysical attributes (Dong et al., 2020). They all have their own benefits, strengths 

and limitations based on numerous factors such as sensor type, spatial resolution, temporal 

resolution and spectral resolution (Das et al., 2022). Dong et al. (2020) state that both CNN 

and ANN are highly sensitive to the architecture and parameter settings; hence, these aspects 

must be geared appropriately to avoid poor model performance. Model performance can either 

be too low, whereby the model’s predictive ability is poor, or too high, whereby the model 

begins to overfit the data (Kattenborn et al., 2021). Neural networks are typically known for 

their tendency to overfit data; hence, preventative solutions must be implemented during data 

processing to mitigate this (Ali et al., 2015).  

Furthermore, both types of neural networks used in this study require high computational 

power and are time-consuming (Dong et al., 2020). Other machine learning techniques such as 

random forest are much more compatible with smaller sample size or input data than neural 

networks, and these factors must be accommodated (Ali et al., 2015). It must also be noted that 

CNNs perform better with multi-temporal spatial data (3D CNNs) when compared to single 

date imagery (2D CNNs) (Varela et al., 2022). The utilisation of CNNs in remote sensing 

applications is still gaining momentum. Hence, there is need for future research to optimise the 

algorithm for vegetation remote sensing (Kattenborn et al., 2021). Much of the focus of CNNs 

in vegetation remote sensing has been on object identification and classification. However, 

semantic segmentation applications, such as biomass and LAI predictions, must be explored 

further (Kattenborn et al., 2021). It is unlikely that CNNs will replace ANNs altogether in the 

remote sensing field as they both provide advantages and disadvantages, and the practicality of 
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each is case-specific (Ali et al., 2015). However, CNNs have great potential for grassland 

biomass studies in future. 

 

2.5 Conclusion 

 

This study compared two neural networks’ performance in estimating grass’s aboveground 

biomass, using Sentinel-2 space-borne spectral data and derived vegetation indices. Findings 

in this study suggest that the deep learning neural network, CNN, outperforms the traditional 

ANN. However, both algorithms performed satisfactorily in predicting grass biomass. This 

study can be considered pilot scale research, particularly in a southern African context, as no 

known research has attempted to compare the performance of two different neural networks in 

grassland monitoring. Although each algorithm has pros and cons, with large training datasets 

and computational time being a common disadvantage, this pioneering research establishes 

great potential for the utilisation of CNNs in remote sensing research in the future. Future 

research can improve upon this research by incorporating larger training datasets, utilising 

multi-temporal and higher resolution data to enhance the performance of CNNs in biophysical 

remote sensing studies. The primary objective of this study was to determine which neural 

network would better predict grass biomass using open-access and freely available satellite 

data. The CNN model developed in this study can be considered effective for accurate 

estimation of biomass in grassland monitoring, and is evident in the advancement in applied 

deep learning.   

 

2.6 Link to next chapter  

 

The chapter above showcased the ability of the CNN to detect and map aboveground biomass 

more effectively than the ANN over the dry season. Therefore, the next chapter will utilise the 

CNN to compare aboveground biomass over the wet and dry season.   
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CHAPTER THREE 

PREDICTING INTER-SEASONAL GRASS BIOMASS 

UTILISING SATELLITE REMOTE SENSING IN THE 

VULINDLELA AREA OF THE UMGENI CATCHMENT, 

KWAZULU-NATAL 

 

Abstract 

 

The maintenance of optimal grassland productivity is an imperative objective of many 

rangeland managers. This is especially for subsistence farmers who depend on communal 

grasslands for their livelihoods. However, grassland productivity fluctuates between dry and 

wet seasons, primarily due to changes in temperature and precipitation. Biomass is often used 

as a proxy for grassland productivity and is also influenced by seasonal changes. This study 

aimed to distinguish changes in grass biomass from the dry season to the wet season using 

Sentinel-2 MSI data and deep Convolutional Neural Networks (CNNs). Remote sensing in 

tandem with machine learning has proven to be cheap and rapid for vegetation monitoring over 

traditional field measurements. The advancement in deep learning, particularly, has prompted 

novel research for vegetation monitoring applications. In this study, Sentinel-2 MSI spectral 

and VI data were used as a proxy for developing a 2-D CNN model to predict inter-seasonal 

aboveground grass biomass. A sensitivity analysis was also conducted to discern which input 

variables were the most influential for model development. Overall, the CNN performed 

satisfactory in estimating aboveground biomass during both dry and seasons. The model 

produced an R2 of 0,83, an RMSE of 3,36 g/m2 and an RMSE% of 6,09 in the dry season and 

an R2 of 0,85, an RMSE of 2,41 g/m2 and an RMSE% of 3,71 in the wet season. The blue band, 

GCl and GNDVI proved to be the most important input variables for model development in 

terms of the sensitivity analysis. The findings in this study also suggested that grass biomass 

was substantially influenced by changes in rainfall and temperature. This study exhibits the 

great potential in utilising deep learning for grassland monitoring.  

 

Keywords: Remote Sensing, Grasslands, Biomass, Convolutional Neural Network, Sentinel-2, 

Dry Season, Wet Season.  
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3.1 Introduction  

 

Grasslands cover approximately 26% of the total land area with most grasslands situated in 

tropical and sub-tropical developing countries around the world (Boval and Dixon, 2012). 

Grasslands are defined by Mucina and Rutherford (2006) as grass dominated biomes, with the 

majority of grasses being C4 plants in low to mid-altitudes and C3 plants being more prominent 

in higher altitudes. Woody species are controlled by frost, fire or grazing in grasslands allowing 

grasses to dominate (Mucina and Rutherford, 2006). Grasslands are environmentally, socially 

and economically valuable biomes worldwide as they serve as water catchments, biodiversity 

reserves, carbon sinks, recreational areas and agricultural practices (Boval and Dixon, 2012). 

The grassland biome is a major biome in South Africa and exists mainly in the eastern parts of 

the country from altitudes of near sea level to around 2800m above sea level (Mucina and 

Rutherford, 2006).  

In both commercial and rural contexts, grasslands are used extensively in South Africa as a 

fodder for livestock (Richardson et al., 2010), where grasslands are commonly termed 

rangelands (Richardson et al., 2010). South Africa consists primarily two types of grasslands 

based on environmental factors such as precipitation and altitude: the sourveld and sweetveld 

grasslands (O’Connor et al., 2011). The sourveld grasslands have higher fibre content and tend 

to withdraw nutrients from the leaves during winter or dry periods whereas the sweetveld 

grasses have lower fibre content and maintain a consistent conglomerate of nutrients during 

winter or dry periods (Ellery et al., 1995). A significant portion of South African grasslands 

are intensively managed for optimal foraging efficiency in livestock production ensuring that 

livestock remains in peak condition to maintain productivity (O’Connor et al., 2011).   

The livestock and wildlife sectors in South Africa are heavily dependent on the grassland biome 

for maintaining productivity and functionality (Palmer et al., 2010). Livestock production is 

essential for meeting the demand for high quality meat and dairy in South Africa (O’Connor et 

al., 2011). However, livestock is not only economically important, but also socially important, 

as many rural communities depend on livestock for a sustainable livelihood (Palmer et al., 

2010, Richardson et al., 2010). This is particularly so in a South African context whereby 

indigenous people depend heavily on livestock for food, income, social status and overall 

wellbeing (Rasch et al., 2016). Grasslands are a cheap source of stock feed for many rural 

communities in which natural disasters and socio-economic challenges are prevalent (Sibanda 
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et al., 2017). Hence, rangelands must be managed efficiently to ensure that livestock production 

remains viable and beneficial.  

For grazers like livestock, biomass is the primary indicator of the quantity of fodder available 

to livestock for consumption (Ramoelo and Cho, 2014). Biomass varies throughout the year 

based on seasonal fluctuations in precipitation and temperature, namely the wet season in the 

summer months and the dry season in the winter months (Ramoelo and Cho, 2014). Livestock 

are often limited by fodder availability during the dry season. However, in the KZN sourveld 

grasslands, livestock may be limited by quantity and quality during the dry season (Ramoelo 

et al., 2015). Rust and Rust (2013) emphasise that climate change poses a significant threat to 

rangelands and livestock production as increased variability in climatic conditions provides 

rangeland managers with a challenge to predict future fodder availability. Other threats to 

grassland productivity include infrastructural development, crop farming and overgrazing 

(Sibanda et al., 2017). On the contrary, O'Mara (2012) suggests that grasslands may play a 

significant role in food security and carbon sequestration in the future, despite the many threats. 

Therefore, predicting fluxes in seasonal fodder biomass is essential to inform planning and 

management strategies in grasslands (Ramoelo and Cho, 2014).  

The technological advancements in remote sensing enable scientists to successfully predict and 

estimate biomass in both natural and agricultural contexts (Ramoelo and Cho, 2014). Remote 

sensing allows managers to monitor the quantity and quality of fodder throughout the year to 

inform decision making and maintain rangeland productivity (Ramoelo et al., 2015). Ramoelo 

et al. (2015) state that conventional methods of predicting biomass are time- and energy- 

intensive. Mutanga et al. (2016) have documented how remote sensing has been applied to 

vegetation monitoring in South Africa with readily available and easily accessible satellite data. 

Remote sensing, also termed as earth observation, has been used extensively to facilitate 

biomass monitoring at various spatio-temporal scales with satisfactory results of accuracy and 

precision (Sibanda et al., 2017). However, earth observation is a complex process and it often 

produces varying degrees of success based on the different methodologies used as well as the 

diverse biophysical and environmental traits in vegetation (Sibanda et al., 2017). 

The number of biomass estimation studies using remote sensing data is ever-growing. 

However, such studies are still limited in data-scarce countries such as southern Africa 

(Sibanda et al., 2017). Most historical biomass studies have focused on forests and used 

Landsat data due to its availability (Samimi and Kraus, 2004, Sibanda et al., 2017). However, 
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Landsat data has its limitations with restricted spatial and radiometric capabilities (Shoko et 

al., 2018). Recent studies have gradually progressed to more high-resolution data, such as 

Sentinel-2 (Shoko et al., 2018), WorldView-2 (Shoko et al., 2018) and WorldView-3 (Sibanda 

et al., 2017). These satellites provide higher spatial and spectral resolution with faster revisit 

times, allowing for much more refined biomass monitoring and estimation studies (Shoko et 

al., 2018).  

Furthermore, the complexity and multi-dimensionality of remote sensing data have proved to 

be a challenge in data processing and analysis, especially when using traditional statistical 

methods (Ali et al., 2015). Scientists have successfully applied machine learning to remote 

sensing studies over the years for classification, object identification or prediction of 

biophysical variables (Mas and Flores, 2008). However, the ongoing improvement and 

refinement of machine learning techniques resulted in numerous algorithms that can be applied 

to remote sensing (Ali et al., 2015). Currently, there is a growing shift towards deep learning 

approaches, which have the potential to yield much more accurate results in remote sensing 

studies (Zhu et al., 2017). One such example of a deep learning technique is convolutional 

neural networks (CNNs) which are specifically geared for imagery (Kattenborn et al., 2021). 

The utility of CNNs for vegetation biomass has been investigated before by Ma et al. (2019), 

Dong et al. (2020) and Varela et al. (2022). However, the practicality of CNNs for assessing 

aboveground grass biomass has yet to be determined.  

The advancement in multispectral scanners such as the introduction of Sentinel-2 provides 

great opportunities to build on and improve biomass studies in southern Africa (Sibanda et al., 

2017). There is a lack of studies with regards to inter-seasonal changes in grasslands 

(Masenyama et al., 2022), particularly at larger spatial scales in both South Africa (Dingaan 

and Tsubo, 2019) and the rest of Africa (Hunter et al., 2020). In this regard, this study aimed 

at fulfilling this research gap in literature and assist rangeland managers and rural communities 

in making more informed decisions. This study aimed to predict inter-seasonal (dry season and 

wet season) fodder quantity in the Vulindlela area of the Umgeni catchment using high 

resolution satellite imagery. The objectives of this study were:  

• To compare aboveground grass biomass from wet and dry seasons and relate potential 

changes to changes in biophysical conditions. 

• Utilise Sentinel-2 bands and derived vegetation indices in tandem with deep learning 

CNN to estimate aboveground biomass inter-seasonally. 
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• Explore potential measures that can be used to improve grassland management. 

 

3.2 Methods 

 

3.2.1 Study Area 

 

Vulindlela is located within the Umgungundlovu district and is considered  a part of the greater 

Umgeni river catchment in the KwaZulu-Natal province. Sibanda et al. (2021) describe the 

local climate as sub-tropical, typical of cool, dry winters and mild, wet summers. The area 

receives a mean annual rainfall of approximately 980mm and a median annual rainfall of 

around 850mm. Recorded annual maximum and minimum temperatures are 22°C and 10°C 

respectively (Sibanda et al., 2021). Soil factors within the area are shallow with moderate to 

poor drainage (Sibanda et al., 2021). Climatic factors such as temperature and precipitation are 

the main driving factors for vegetation in this area (Sibanda et al., 2021).  

Fynn et al. (2011) state that grasslands within the study area are categorised as mesic grasslands 

and are usually dominated by a few species, depending on grassland condition. The grasslands 

were initially dominated by Themeda triandra grass (Royimani et al., 2022). However, due to 

anthropogenic transformation, the grasslands are now characterised by species such as Aristida 

junciformis, Panicum maximum and Paspalum urvillei, amongst others (Royimani et al., 2022). 

The study area experiences the dry season in June/July (Masemola et al., 2020) whereas the 

wet season usually stretches from October to March (Roffe et al., 2020). Local communities 

utilise the communal grasslands as rangelands for their livestock and cultural purposes. 

Livestock is a significant source of income for the locals; hence, rangeland productivity affects 

them directly.  
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to extensive coverage, high spatial and temporal resolutions and the ability to capture data in 

the Red Edge section of the electromagnetic spectrum (Royimani et al., 2022).  

3.2.3 Field data collection and measurements 

 

Dry season data collection was conducted between the 21st of June 2021 and 23rd of June 2021. 

Wet season data collection was conducted between the 28th of March 2022 and 1st of April 

2022. The sampling strategy remained uniform between the two seasons. In each data 

collection period, a total of 120 plots of 10m x 10m in size at a distance of 100m apart were 

established using the purposive sampling technique (Royimani et al., 2022). Within each plot, 

a GPS reading was recorded using a Trimble GPS which outputs co-ordinates at a sub-metre 

level. Within each plot, two sub-plots of 1m x 1m were sampled for aboveground biomass, 

with the mean dry biomass being recorded for each plot (Ma et al., 2019). Ma et al. (2019) state 

that 1m x 1m quadrats are suitable for heterogenous grasslands, such as natural grasslands. 

Grass clippings were initially weighed using a calibrated scale and wet mass was recorded. The 

samples were then oven-dried for 48 hours at 70°C and were thereafter reweighed to determine 

dry mass.   

 

a. b.  

Figure 3.2: Images of the study area in the wet season where a. has not been grazed and b. has 

been grazed by livestock (March 2022) 
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a. b.  

  

 

3.2.4 Sentinel-2 spectral bands and variables 

 

Sentinel-2 MSI provides spectral data in 13 bands that range from visible to shortwave infrared. 

Blue, green, red and NIR have a spatial resolution of 10m, whereas Red Edge and SWIR bands 

have a spatial resolution of 20m. Coastal aerosol, SWIR Cirrus and water vapour have a spatial 

resolution of 60m. However, this study excluded these as they are mainly used for atmospheric 

monitoring (Shoko et al., 2018).  

Numerous vegetation indices (VIs) were computed from the Sentinel-2 spectral data. All VIs 

were calculated in ArcGIS 10.4 (www.esri.com). A detailed description of all VIs and their 

associated formulas are given in Table 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Images of the study area in the dry season where a. has been grazed 

and b. has not been grazed (July 2021) 
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Table 3.1: Vegetation indices used in this study derived from Sentinel-2 spectral data 

Vegetation Index Abbreviation Formula Reference 

 Broadband VIs   

Enhanced Vegetation 

Index 

EVI 
2.5(

𝑁𝐼𝑅 − 𝑅

1 + 𝑁𝐼𝑅 + 6𝑅 − 7.5 × 𝐵
) 

 (Huete et al., 2002) 

Soil adjusted vegetation 

index 

SAVI (𝑁𝐼𝑅 − 𝑅) × (1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 

 (Huete, 1988) 

Normalised difference 

vegetation index 

NDVI (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

(Huete, 1988) 

Renormalised difference 

vegetation index 

RDVI (𝑁𝐼𝑅 − 𝑅)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 + 𝑅)
 

(Roujean and Breon, 

1995) 

Simple ratio SR 𝑁𝐼𝑅

𝑅
 

(Chen, 1996) 

Modified simple ratio MSR (𝑁𝐼𝑅 ÷ 𝑅 − 1)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 ÷ 𝑅) + 1
 

(Chen, 1996) 

Green normalised 

difference vegetation 

index 

GNDVI (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

(Fernández-Manso et 

al., 2016) 

Green-blue normalised 

difference vegetation 

index 

GBNDVI 𝑁𝐼𝑅 − (𝐺 + 𝐵)

𝑁𝐼𝑅 + (𝐺 + 𝐵)
 

(Santoso et al., 2011) 

Chlorophyll green index CGM 𝑁𝐼𝑅

𝐺
− 1 

(Gitelson and 

Merzlyak, 1997) 

Red-green ratio RGR 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Gamon and Surfus, 

1999) 

Atmospherically 

resistance vegetation 

index 

ARVI (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

(Kaufman and Tanre, 

1996) 

Transformed difference 

vegetation index 

TDVI 

√0.5 +
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(Bannari et al., 2002) 

Difference vegetation 

index 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker, 1979) 

 Red edge VIs   

Red edge 1 NDVI NDVIRE1 (𝑁𝐼𝑅 − 𝑅𝐸1)

(𝑁𝐼𝑅 + 𝑅𝐸1)
 

 

 

 

 

 

 

(Shoko et al., 2018) 

Red edge 2 NDVI NDVIRE2 (𝑁𝐼𝑅 − 𝑅𝐸2)

(𝑁𝐼𝑅 + 𝑅𝐸2)
 

Red edge 3 NDVI NDVIRE3 (𝑁𝐼𝑅 − 𝑅𝐸3)

(𝑁𝐼𝑅 + 𝑅𝐸3)
 

Red edge 8a NDVI NDVIRE8a (𝑁𝐼𝑅 − 𝑅𝐸8𝑎)

(𝑁𝐼𝑅 + 𝑅𝐸8𝑎)
 

Red edge 1 SR SRRE1 𝑁𝐼𝑅

𝑅𝐸1
 

Red edge 2 SR SRRE2 𝑁𝐼𝑅

𝑅𝐸2
 

Red edge 3 SR SRRE3 𝑁𝐼𝑅

𝑅𝐸3
 

Red edge 8a SR SRRE8a 𝑁𝐼𝑅

𝑅𝐸8𝑎
 

Normalised difference 

red edge 1 

NDRE1 𝑅𝐸1 − 𝑅𝑒𝑑

𝑅𝐸1 + 𝑅𝑒𝑑
 

 

 

 

(Guerini Filho et al., 

2020) 

Normalised difference 

red edge 2 

NDRE2 𝑅𝐸2 − 𝑅𝑒𝑑

𝑅𝐸2 + 𝑅𝑒𝑑
 

Normalised difference 

red edge 3 

NDRE3 𝑅𝐸3 − 𝑅𝑒𝑑

𝑅𝐸3 + 𝑅𝑒𝑑
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Normalised difference 

red edge 8a 

NDRE8a 𝑅𝐸8𝑎 − 𝑅𝑒𝑑

𝑅𝐸8𝑎 + 𝑅𝑒𝑑
 

Anthocyanin reflectance 

index 

ARI 1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸1
 

(Kobayashi et al., 2020) 

Red edge chlorophyll 

index 

RECl 𝑅𝐸3

𝑅𝐸1
− 1 

(Clevers and Gitelson, 

2013) 

Green chlorophyll index GCl 𝑅𝐸3

𝐺𝑟𝑒𝑒𝑛
− 1 

(Clevers and Gitelson, 

2013) 

Plant senescence 

reflective index 

PSRI 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝐸1
 

(Guerini Filho et al., 

2020) 

Browning reflective 

index 

BRI 1
𝐺𝑟𝑒𝑒𝑛

−
1

𝑅𝐸1
𝑁𝐼𝑅

 

(Kobayashi et al., 2020) 

 

3.2.5 Statistical analysis and machine learning 

 

Convolutional Neural Networks are an emerging class of machine learning algorithms that 

have been used to interpret geospatial information in primarily two ways: object detection and 

semantic segmentation (Brodrick et al., 2019). Object detection is characterised as identifying 

key components in an image and semantic segmentation is classifying each pixel individually 

in an image (Brodrick et al., 2019). CNNs are a subset of deep learning models and are viewed 

as an advancement to typical ANNs (Brodrick et al., 2019). In the application of remote sensing 

for vegetation monitoring, input data in spectral indices and texture metrics are the cornerstone 

of modelling (Kattenborn et al., 2021). However, these predictors are endless and it is not easy 

to define the most appropriate predictors for vegetation analysis as they are influenced by the 

biochemical and structural properties of plants and other environmental factors (Kattenborn et 

al., 2021). With deep learning, the CNN can learn and decipher which input variables are the 

best for analysis based on learning spatial features present in the data (Kattenborn et al., 2021).  

CNNs are made up of neurons that are organised in layers, with three main layers: input, hidden 

and output layers (Kattenborn et al., 2021). Neurons within the same layer and between 

different layers are connected by weights and biases (Kattenborn et al., 2021). CNNs contain 

at least one convolutional layer within the hidden layers. These convolutional layers exploit 

patterns in the data using filters by convolving, which is the sliding of the filter over the layer 

and calculating the dot-product of the filter and layer values (Kattenborn et al., 2021). The 

product of convolving is called a feature map. The feature maps are simplified in a pooling 

layer which assists in data reduction, simpler model parameters, lower computational load and 

a reduction in overfitting (Kattenborn et al., 2021). Biomass prediction would be performed 

using a semantic segmentation variation of a CNN. Encoding layers within the convolutional 
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layer cluster and aggregate information from the entire dataset. Decoding layers follow 

encoding layers which are responsible for increasing spatial resolution and decreasing 

convolution depth. In simple terms, this allows the CNN to make pixel-by-pixel predictions at 

the same spatial resolution as the input data. This would ensure that model predictions and 

ground truthing data can be compared directly (Brodrick et al., 2019). A typical structure of a 

CNN, known as CNN architecture, is depicted below in Figure 3.4:  

 

Figure 3.4: A general structure of a CNN (Kattenborn et al., 2021) 

 

Dong et al. (2020) give the formula of convolution as:  

𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

= 𝑓 [∑ ∑ ∑ 𝑘𝑙,𝑗.𝑚
ℎ,𝑤𝑊𝑖−1

𝑤=0 𝑚𝑎𝑝(𝑙−1),𝑚

(𝑥+ℎ),(𝑦+𝑤)
+ 𝑏𝑙,𝑗

𝐻𝑖−1
ℎ=0𝑚 ]   (4) 

where 𝑘𝑙,𝑗.𝑚
ℎ,𝑤

represents the value at the position (h,w) of the kernel connected to the mth feature 

map in the (l-1)th layer, Hi and Wi are the height and width of the kernel, bl,j is the bias of the 

jth feature map in the lth layer and f is the activation function (Dong et al., 2020). The CNN 

model was constructed and run using R statistical software version 3.1.3. The hyper-parameters 

of the CNN in this study can be found in Table 3.2.  
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Table 3.2: Hyper-parameters used to train the CNN model. 

Model Hyper-parameters Value 

CNN - Dry Kernel number 32, 64,128, 256, 512 

Size 1*2 

Stride 2 

Number of epochs 30 

Learning rate 0.001 

Activation Function ReLu 

CNN - Wet Kernel number 32, 64,128, 256, 512 

Size 1*2 

Stride 2 

Number of epochs 30 

Learning rate 0.001 

Activation Function ReLu 

 

3.2.6 Accuracy Assessment 

 

Accuracy assessments are essential for understanding model performance and determining 

model practicality. Three standardised error metrics were used to assess model performance: 

coefficient of determination (R2), root mean square error (RMSE) and root mean square error 

percentage (RMSE%). Schreiber et al. (2022) define R2 as a statistical measure of accuracy by 

comparing observed versus predicted data points. R2 values to range from 0 to 1 with a higher 

value translating into higher model accuracy and vice-versa. The equation for R2 is found below 

(Li et al., 2021):  

𝑅2 = 1 − 
∑ (𝑦𝑗−𝑦)²𝑛

𝑗=1

∑ (𝑦𝑗−𝑌)²𝑛
𝑗=1

   (5) 

Where yj represents measured biomass, y is estimated biomass, Y is mean biomass across all 

samples and n is the sample number (Li et al., 2021).  

The RMSE measures the difference between actual and predicted values and is calculated by:  

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)²𝑛

𝑖−1

𝑛
   (6) 
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as documented by Shoko et al. (2018). The measured value and predicted value is the actual 

biomass in the field and the predicted biomass, respectively.  

The RMSE% provides a magnitude of error concerning actual values and can be expressed by 

the following formula (Shoko et al., 2018): 

 

𝑅𝑀𝑆𝐸% =  
√

1

𝑛
∑ (𝑦𝑖−𝑌𝑖)²𝑛

1=𝑛

𝑦
   (7) 

Where n is the number of samples, yi and Yi are measured and predicted values, respectively; 

and y is the average of the measured values. 

Following the general training/test rule, 70% of the dataset was used to train the CNN model 

whereas 30% was used to test the model. Models with the highest R2 and lowest 

RMSE/RMSE% were retained for predicting aboveground biomass in both seasons. Predictive 

biomass distribution maps were constructed for both seasons using Sentinel-2 spectral bands 

and derived VIs as input data. A sensitivity analysis was also run to determine which input 

variables were the most significant in developing the CNN model. Figure 3.5 illustrates the 

processes and methodology used in this study.   

 

 

 

Figure 3.5: Flowchart of the methodology undertaken in this study 
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3.3 Results 

 

3.3.1 Descriptive Statistics 

 

Table 3.3: Descriptive statistics of the observed biomass (g/m2) over the wet and dry season 

 

The mean aboveground biomass recorded during the dry season was 47,82 g/m2 with a standard 

deviation of 23,38 g/m2. The range observed during the same period was 115,6 g/m2 with 123,8 

g/m2 and 8,2 g/m2 being the highest and lowest biomass values recorded, respectively. 

Aboveground biomass recorded during the wet season differed substantially, with an average 

biomass of 195,67 g/m2 and a standard deviation of 72,04 g/m2. The wet season had a range of 

403,5 g/m2 with 477,3 g/m2 and 73,8 g/m2 being the highest and lowest biomass values 

recorded, respectively (Table 3.3). 

3.3.2 CNN Training History 

 

The CNN models for both seasons were run with a maximum of 140 epochs, however this was 

stopped after 30 epochs as this was when model performance was optimal (Figure 3.6). An 

epoch can be defined as one complete cycle of the forward and back-propagation phase. The 

activation function used was ReLu. The loss function for the models were RMSE. 

 

Period  n Mean Std. Dev Min. Max. Range 

Dry  120 47.82 23.38 8.2 123.8 115.6 

Wet  120 195.67 72.04 73.8 477.3 403.5 
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Figure 3.8 illustrates the spatial distribution of aboveground grass biomass during the dry and 

wet seasons. The difference in aboveground grass biomass can be observed between the two 

seasons with higher biomass indicated in the wet season compared to the dry season. Although 

higher biomass was predicted in some areas of the study site during the dry season, these areas 

of high biomass are concentrated in certain parts of the study area. Overall, the wet season 

depicts higher biomass over a greater spatial scale, with biomass being more evenly distributed 

across the study area.  

a. b.  

Figure 3.8: Predicted biomass (g/m2) over the a. dry and b. wet season using CNN 

 

3.3.4 Sensitivity Analysis 

 

Deciphering which input variables are the most significant for model development is critical in 

ensuring respectable model performance. Figure 3.9 depicts which input variables, from 

Sentinel 2 spectral bands and derived VIs, were most important for model development in both 

seasons. It must be noted that only variables with an average impact of >0.1 were included in 

the model. The top three variables for the dry season included the GNDVI, GCI and the blue 

band whereas GCI, GNDVI and the blue band were the three most important for the wet season. 
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Figure 3.9: Ranking the importance of variables for developing the CNN model for biomass 

detection in the a. dry season and b. wet season 

 

3.3.5 Changes in Rainfall and Temperature across seasons 

 

Total monthly rainfall in the study area over the dry season decreased from 33,4mm in April 

2021 to 2,8mm in July 2021, which was peak winter (Figure 3.10a). Overall, a decreasing trend 

was evident in total monthly rainfall during the dry season. In contrast, the wet season recorded 

a highest total monthly rainfall in December 2021 followed closely by January 2022, which 

was peak summer months (Figure 3.10b). Wet season total monthly rainfall data followed a 

more normal distribution pattern with a peak in December 2021.  

 

 

Figure 3.10: Total monthly rainfall (mm) in Vulindela during the a. dry season and b. wet 

season (Data provided by South African Weather Services) 
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A gradual decrease was recorded for average maximum daily temperature across the dry 

season, with a decrease from 24,03C° in April 2021 to 18,13 C° in July 2021 (Figure 3.11a). 

In contrast, a sharp increase in average maximum daily temperature was recorded at the start 

of the wet season from November 2021 (24,6 C°) to December 2021 (27,9 C°). Thereafter, the 

average maximum daily temperature remained fairly uniform for the remainder of the wet 

season (Figure 3.11b).  

 

 

Figure 3.11: Average maximum daily temperature (C°) in Vulindlela over the a. dry season 

and b. wet season (Data provided by South African Weather Services) 

 

3.4 Discussion  

 

This study estimated and compared aboveground grass biomass between the dry season (April-

July) and the wet season (November-March) in the greater Umngeni catchment. Overall, 

recorded grass biomass increased from ±48 g/m2 in the dry season to ±196 g/m2 in the wet 

season. The predicted biomass maps also depict a significant increase in aboveground biomass 

across the study area during the wet season. In contrast, biomass is primarily concentrated in 

small patches across the study area during the dry season.  

Grasslands are driven by external factors such as precipitation, temperature and fire 

(Masenyama et al., 2022). These factors maintain the ecological functionality of the grassland. 

However, these factors also fluctuate spatio-temporally (Shoko et al., 2018). It has been widely 

agreed that grassland productivity is directly and significantly related to changes in both rainfall 

and temperature (Shoko et al., 2018, Dingaan and Tsubo, 2019, Magandana et al., 2020) . Both 

rainfall and temperature variables fluctuate based on seasonal variations and hence play a 
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significant role in influencing grassland productivity, particularly aboveground biomass 

(Magandana et al., 2020). Van den Hoof et al. (2018) found a statistically significant 

relationship between rainfall variability and grassland productivity. Furthermore, Magandana 

et al. (2020) found statistically significant relationships between changes in rainfall and 

temperature with changes in aboveground grass biomass.  

The findings in this study concur with Van den Hoof et al. (2018) and Magandana et al. (2020), 

albeit this study originates from a remote sensing background. Average total rainfall from April 

2021 to July 2021 had a downward trend with an average total rainfall of approximately 16,5 

mm for the dry period (Figure 3.10a). Average rainfall across the wet season, from November 

2021 to March 2021, had an overall increasing trend with average total rainfall for the wet 

period estimated to be 96,84 mm (Figure 3.10b). This indicates an almost six-fold increase in 

rainfall received in the wet season when compared the dry season. Furthermore, temperature 

data from the dry and wet seasons follow the same trend, with the average daily maximum 

temperature decreasing gradually during the dry months and increasing steeply during the wet 

months (Figure 3.11a and Figure 3.11b). The average daily maximum temperature across the 

dry and wet period was approximately 20,44 °C and 27,42 °C, respectively. Therefore, the 

increase in aboveground grass biomass can be linked to rainfall and temperature increase, as 

also suggested by Van den Hoof et al. (2018) and Magandana et al. (2020).  

Although rainfall and temperature are the significant drivers of grassland productivity, the 

influence of other biophysical factors such as soil and rainfall type cannot be omitted (Van den 

Hoof et al., 2018). The type of rainfall received is as important as the quantity received over 

time (Roffe et al., 2019). Gradual rainfall events allow for better water absorption into the soil 

column than erratic rainfall events, in which most of the rainfall is lost as surface run-off (Van 

den Hoof et al., 2018, Roffe et al., 2019). The edaphic factors of the grassland also play a 

significant role in productivity, particularly soil pH, texture and organic matter content (Van 

den Hoof et al., 2018). An increase in precipitation increases plant production, which in turn 

increases soil organic matter (Van den Hoof et al., 2018). Soil type is also influential in plant 

productivity, with fine clay-like soils being more suitable for optimal production than coarse 

sandy soils (Van den Hoof et al., 2018). This is due to clay-like soils being more adept at 

nutrient exchange, holding organic content, better bulk density and higher soil organic carbon 

than sandy soils (Van den Hoof et al., 2018).  
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The study area consists mainly of two soil types, Acrisols and Ferralsols, as deduced from Fey 

(2010). Acrisols are brownish-reddish soils with fine granular structure and sandy-loamy 

texture (Podwojewski et al., 2011). Acrisols are generally unproductive soils that lack sufficient 

plant nutrients, have a high pH and usually form a substrate for grasslands or savannah 

(Podwojewski et al., 2011). Acrisols are also highly porous soils and are especially susceptible 

to soil erosion (Podwojewski et al., 2011). Ferralsols are characterised by reddish-yellow soils 

with high clay content (Mukangango et al., 2020). Ferralsols are structurally sound soils with 

good infiltration and drainage. However, they are chemically poor soils with most plant 

nutrients being stored in the biomass and can only be recycled back into the soil column by 

moribund (Mukangango et al., 2020). Acrisols and Ferralsols are similar and can often be found 

together, with both soils being susceptible to dry periods and drought (Mukangango et al., 

2020). Since both soils are well drained and poor at water retention, they cannot provide enough 

moisture for grasses and vegetation, particularly on slopes (Mukangango et al., 2020). The lack 

of precipitation during the dry season can account for changes in edaphic factors, which 

inherently affect biomass availability.  

Grasslands are naturally maintained by grazing and fire, two non-climatic factors influencing 

plant productivity (Koerner and Collins, 2014). The grassland in this study is utilised as a 

communal rangeland by the local community for their livestock (Cho et al., 2021). However, 

the lack of a formal rangeland management plan has resulted in adverse conditions within the 

grassland, is mainly due to fire and overgrazing (Cho et al., 2021). Fire is administered by the 

local community whenever deemed fit, even though it may be contrary to scientific guidelines. 

This not only affects the ability of grasses to regenerate, but it also affects the soil 

characteristics (nutrients, moisture content, organic content) which severely reduces 

productivity (Reinhart et al., 2016).  

Furthermore, livestock is allowed to graze freely resulting in uneven forage distribution and 

soil erosion in some areas. This was evident and observed within the study area during data 

collection (Figure 3.2 and Figure 3.3). Continuous grazing by livestock hinders grass 

productivity as the grass does not have the ability to regrow, particularly in the dry season when 

stored nutrients are scarce (Koerner and Collins, 2014). Grazing factors such as stocking rates 

are significant in maintaining grassland productivity, as high stocking rates affect grasslands 

negatively if not conducted in a controlled manner (O’Connor et al., 2011). Cho et al. (2021) 

state that the local community face challenges with effective rangeland management, which 

has resulted in a shortfall of forage, especially during the dry season. The need for an effective 
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and collaborative rangeland management plan, with appropriate stocking rates and rotational 

grazing, is imperative to improve grassland productivity in Vulindlela (Cho et al., 2021).  

To the best of the authors’ knowledge, this study can be considered a pilot study as it is one of 

the first studies, to the best of the authors’ knowledge, to predict vegetation biomass using deep 

learning and Sentinel-2 MSI. Remote sensing has been extensively used in biomass studies, 

with relatively good levels of success (Mutanga et al., 2016). The advent of machine learning 

has enabled extensive and complex data analysis in remote sensing, often producing more 

reliable and accurate results as compared to traditional statistical methods (Ali et al., 2015). 

Machine learning has advanced through time and contemporary deep learning approaches to 

data analysis appears to be the outlook for the foreseeable future (Zhu et al., 2017). Neural 

networks are the foundation of deep learning approaches, and the CNN is one of the most 

promising deep learning algorithms for vegetation remote sensing applications (Kattenborn et 

al., 2021). Deep learning differs from typical shallow learning mainly by how the algorithm 

processes data. In typical machine learning, a human has to ensure that structured data is 

organised and pre-processed in order for learning to take place, also termed as supervised 

machine learning (Yuan et al., 2020). However, with deep learning, the algorithm can learn 

and decipher which data components should be used for feature extraction, resulting in less 

dependency on supervised learning and pre-processed data (Zhu et al., 2017).   

The use of deep CNNs for vegetation biomass studies are sparse, however, they are gaining 

momentum in academia (Yuan et al., 2020). Most of the studies utilising CNNs have an 

agricultural background, and have used unmanned aerial vehicles (UAVs) data in small-scale 

spatial contexts. This study utilised a CNN to estimate grass biomass using open-access and 

readily available satellite data at a larger spatial scale. Karila et al. (2022) state that two broad 

types of CNNs that can be used for vegetation monitoring; 2D and 3D CNNs. 2D CNNs are 

simple CNNs that only utilise a single image (mono-temporal) as an input whereas 3D CNNs 

have multiple images as input data (Karila et al., 2022, Varela et al., 2022). This study used a 

simple 2D CNN as only single images from respective dry and wet seasons were used. 

Karila et al. (2022) used a UAV with an RGB and hyperspectral sensor (1024 x 648-pixel size 

and 36 bands between 500-900 nm) to estimate grass biomass, amongst other variables. Their 

2D CNN model recorded a NRMSE of 21% whereas their 3D CNN yielded a NRMSE of 10%. 

Karila et al. (2022) only used NRMSE for model accuracy assessments hence R2 and RMSE 

values are not included. Similarly, Varela et al. (2022) predicted aboveground biomass of 
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Miscanthus grass using UAV imagery with RGB, near infrared and red edge bands (1,4 cm 

spatial resolution) using 2D and 3D CNNs. Their 2D CNN recorded an R2 of 0,59 and an RMSE 

of 180g whereas their 3D CNN produced an R2 of 0,69 and an RMSE of 149g. Alves Oliveira 

et al. (2022) utilised UAV RGB data and 3D CNNs of different architectures to estimate 

aboveground grass biomass. Their best model recorded an R2 of 0,88 and an RMSE of 482,12 

kg/ha, with model performance being significantly influenced by the type of architecture. In 

comparison, the simple CNN model in this study performed well with an R2= 0,83/RMSE%= 

6,09 and an R2= 0,85/ RMSE%= 3,71 in the dry and wet seasons, respectively. Taking into 

consideration that Sentinel-2 imagery was used in this study as opposed to high resolution UAV 

data, this study shows that CNNs have the potential to be used with freely available satellite 

data and can be used at regional spatial contexts.  

Chen et al. (2021) is arguably a study that can be directly compared to the findings in this study. 

Chen et al. (2021) used Sentinel-2 imagery paired with a deep sequential neural network 

(SNN), which is a subset of Recurrent Neural Networks (RNN), to estimate pasture biomass. 

Their study only used the ten applicable spectral bands, used in this study as well, and NDVI. 

However, they also included climate data in their models which could not be included in the 

CNN models in this study due to the lack of complete climate datasets for our study area, with 

data from the SAWS being relatively disjointed and incomplete to be able to be included in 

model development. According to Lakhal et al. (2018), the main difference between CNNs and 

RNNs is that the latter is specialised in processing temporal information or information that 

follows a set sequence. This was apt for Chen et al. (2021) as they utilised time series Sentinel-

2 data from 2017 to 2018 to study pasture biomass, albeit at a paddock-level spatial scale. Their 

SNN model performed adequately with an R2 of 0,6 and an RMSE of 356 kg/ha. Furthermore, 

their study also observed that seasonal patterns in aboveground pasture biomass were distinct, 

with biomass increasing in the wet season and decreasing in the dry season. They also associate 

this with changes in climatic conditions, with water availability being highly influential to 

pasture biomass (Chen et al., 2021).  

Jin et al. (2020) utilised mono-temporal Sentinel-2 imagery with a deep neural network to 

estimate maize biomass. Their study used fifteen VIs and leaf area index (LAI) data as input 

data to predict maize biomass. Their model performed well with the best R2 of 0,91, RMSE of 

1,49 t/ha and RRMSE of 20,05%. In terms of a sensitivity analysis, Jin et al. (2020) found that 

the three band water index (TBWI), normalised difference infrared index (NDII) and 

normalised difference moisture index (NDMI) were the most important VIs for biomass 



57 
 

estimation. In this study, the most important VIs for model development for both seasons were 

GNDVI, GCI and CGM. Théau et al. (2021) study found that GNDVI has a high correlation 

with grass biomass, particularly in grasslands with low vegetation levels of <0,5kg/m2, which 

was the case in our study particularly in the dry season. Hamada et al. (2021), using Sentinel-

2 for grass biomass predictions, found that CGM, GCI and GNDVI all highly correlated with 

biomass. Jin et al. (2020), Chen et al. (2021) and Hamada et al. (2021) found that NDVI was 

moderate to poorly correlated to biomass and hence was not a relatively important variable in 

model development. Findings in this study concur as NDVI was moderately significant for dry 

and wet seasons. Théau et al. (2021) and Hamada et al. (2021) found that green and blue 

spectral bands were more important for biomass predictions than the red band, which was also 

found in this study.   

Many authors agree that using CNN models for biomass estimation is preliminary, novel and 

pioneering (Ma et al., 2019, Dong et al., 2020, Alves Oliveira et al., 2022). The same sentiment 

can be iterated in this study as no known studies have attempted to use CNNs and satellite 

imagery for biomass predictions. CNNs require large amounts of training data to operate 

accurately, which may prove to be a limitation as large datasets are not always available 

(Kattenborn et al., 2021). Using CNNs for small datasets has been done before, as recorded by 

Narayanan et al. (2021); however, they may require some pre-training and transfer learning to 

ensure that they are optimised for biomass estimation (Narayanan et al., 2021). Furthermore, 

the architecture and hyperparameters of CNNs are highly influential in model performance and 

these must be further studied to improve the generalizability of CNNs (Alves Oliveira et al., 

2022). This study was also limited to using only a single image as inputs for model training. 

Studies show that using multi-temporal imagery significantly improves CNN model accuracy 

(Karila et al., 2022, Varela et al., 2022). Future studies can attempt to improve on model 

performance using multi-temporal satellite data.    

 

3.5 Conclusion 

 

This study evaluated the change in aboveground biomass from the dry season to the wet season 

using Sentinel-2 remotely sensed imagery and simple convolutional neural networks. Sentinel-

2 MSI bands and derived VIs were used as input proxy data to train the CNN model for both 

seasons while ground data was used as a benchmark to assess model accuracy. A significant 

difference between dry and wet season grass biomass was discovered, with the wet season 
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biomass increasing four times of dry season biomass. These changes can be primarily related 

to significant changes in rainfall and temperature which also bring about influential changes in 

other biophysical factors such as soil. Overall, the findings in this study concur with previous 

studies studying seasonal biomass changes.  

This study can also be considered a pilot study as it attempted to utilise a deep learning 

approach to predict grass biomass. Model performance produced promising results, albeit with 

a simple CNN and a limited dataset. This research could prove useful to farmers and rangeland 

managers in planning and decision-making as remote sensing allows for fast and accurate 

estimation of grassland productivity. However, future research can improve the reliability and 

practicality of CNN modelling by incorporating multi-temporal data and utilising larger 

datasets. Using more complex and intricate CNN models in future may also improve predictive 

performance.   
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CHAPTER FOUR 

CONCLUSIONS 
 

4.1 Introduction  

 

The focus of this study was to distinguish the difference in aboveground grass biomass between 

the dry and wet seasons using remote sensing and neural network algorithms. In this chapter, 

the research conducted will be evaluated against the aim and objectives of the study, as 

mentioned in Chapter One. This will examine how close the study has come to meeting the 

targets that were set out. The findings in this study will then be synthesised and consolidated 

in the concluding remarks. Limitations in this study will be acknowledged and 

recommendations for future research proposed. 

4.2 Aim and objectives reviewed  

 

4.2.1 Aim 

 

The aim of this study was to predict inter-seasonal aboveground grass biomass using Sentinel-

2 MSI and machine learning algorithms in the Umngeni catchment, KwaZulu-Natal. 

4.2.2 Objectives reviewed  

 

In this study, two broad objectives were established in order to achieve the aforementioned 

aim. This section will review how the study came to achieving these objectives.  

• Compare the performance of traditional Artificial Neural Networks (ANN) and 

deep Convolutional Neural Networks (CNN) in assessing aboveground biomass 

using Sentinel-2 data. 

In order to meet the first objective, this study utilised two neural networks, one 

conventional and one deep, to assess which one performed better in aboveground grass 

biomass predictions when using Sentinel-2 MSI spectral and VI data. Results from these 

investigations demonstrated that the contemporary deep CNN (R2= 0.83, RMSE= 3.36 

g/m2, RMSE%= 6.09) outperformed the commonly-used ANN (R2= 0.75, RMSE= 5.78 

g/m2, RMSE%= 8.90) in predicting aboveground grass biomass. The sensitivity analysis 



60 
 

suggested that the GNDVI, GCI and blue band were the most important variables for model 

development for the CNN (in decreasing importance). In contrast, the blue band, GCI and 

GNDVI were the most important variables for the ANN (in decreasing importance) for 

biomass prediction in the dry season. Previous studies have also observed that deep CNNs 

tend to outperform ANNs in biomass monitoring applications (Ma et al., 2019, Karila et 

al., 2022, Varela et al., 2022). Therefore, it was concluded that deep CNNs are more 

accurate than ANNs and hence have a higher potential to yield more accurate and precise 

model predictions.  

• Predict inter-seasonal (dry and wet season) aboveground grass biomass using 

Sentinel-2 and deep learning technique (CNN). 

Following on from the first objective, the second objective was to utilise the better 

performing algorithm (CNN) to predict and distinguish aboveground grass biomass 

between the dry and wet seasons by also utilising Sentinel-2 MSI data and derived indices. 

Findings showed that the average aboveground grass biomass increased from 47.82 g/m2 

in the dry season to 195.67 g/m2 in the wet season. This correlated with a significant 

increase in rainfall and temperature from the dry season to the wet season. Mean total 

rainfall increased from 16.5mm in the dry season to 96.84mm in the wet season. 

Concurrently, mean maximum daily temperature increased from 20.44 °C in the dry season 

to 27.42°C in the wet season. Findings by Van den Hoof et al. (2018) and Magandana et al. 

(2020) also showed an increase in grass biomass in the wet season due to increased rainfall 

and temperature. The CNN model performed slightly better in the wet season biomass 

predictions (R2= 0.85, RMSE= 2.41 g/m2, RMSE%= 3,71) as compared to the dry season 

biomass predictions (R2= 0.83, RMSE= 3.36 g/m2, RMSE%= 6.09). Similar findings were 

found by Jin et al. (2020) and Chen et al. (2021) on CNN model performance for grass 

biomass estimation between seasons. 

  

4.3 A synthesis 

 

This study has demonstrated the potential of integrating deep learning algorithms in analysing 

satellite imagery for biomass monitoring in KwaZulu-Natal, South Africa. It is evident from 

the investigations in this study that the contemporary deep CNN (R2= 0.83, RMSE= 3.36 g/m2, 

RMSE%= 6.09) outperformed the traditional ANN (R2= 0.75, RMSE= 5.78 g/m2, RMSE%= 
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8.90) in predicting aboveground grass biomass. The sensitivity analysis suggested that the 

GNDVI, GCI and blue band had the strongest correlation to biomass in developing the CNN 

model (in decreasing importance) whereas the blue band, GCI and GNDVI had the strongest 

correlation for the ANN model (in decreasing importance) for biomass prediction in the dry 

season.  

Furthermore, results in this study show that the average aboveground grass biomass increased 

from 47.82 g/m2 in the dry season to 195.67 g/m2 in the wet season. During this period, mean 

total rainfall increased from 16.5mm in the dry season to 96.84mm in the wet season whereas 

mean maximum daily temperature increased from 20.44 °C in the dry season to 27.42°C in the 

wet season, respectively. This reiterated the notion that grass biomass is highly influenced by 

climatic changes. In addition, the CNN model performed slightly better in the wet season 

biomass (R2= 0.85, RMSE= 2.41 g/m2, RMSE%= 3,71) as compared to the dry season biomass 

predictions (R2= 0.83, RMSE= 3.36 g/m2, RMSE%= 6.09). The findings in this study indicated 

that emerging deep machine learning techniques have the potential to be paired with freely 

available satellite data and will perform better at data processing than previous shallow 

algorithms. Furthermore, a snapshot analysis of seasonal fluctuations in temperature and 

precipitation does result in aboveground changes of biomass, which inherently affected 

grassland productivity during drier periods. 

  

4.4 Limitations and Recommendations    

 

This section will first elaborate on the limitations encountered during of the study and thereafter 

will provide recommendations for future research on possible ways to address these limitations.  

4.4.1 ANN and CNN requirements  

 

One of the biggest limitations of the neural networks utilised in this study are the need for large 

datasets and computational power. This is especially so for deep learning algorithms such as 

the CNN as they are an emerging trend in the remote sensing academia. Numerous studies have 

mentioned that deep CNNs require large datasets to improve accuracy, and this often poses a 

challenge when data is limited or disjointed. Although CNNs have been previously tested on 

small datasets, future studies should utilise larger and more detailed datasets to improve on 
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model development. This could entail encompassing different input data such as texture, lidar 

and topographical data to build more complex and productive CNN models. 

4.4.2 CNN architecture and type   

 

The type of CNN heavily depends on the type and amount of input data and variables that one 

has available. This study used a simple 2D CNN which, in simple terms, means that only single 

images were used as input data. Hence, future studies could attempt to incorporate multi-

temporal data which would necessitate the use of 3D CNNs and thus potentially improve model 

performance. It is emphasised in the literature that the architecture and hyperparameters of 

CNNs, and machine learning algorithms in general, are paramount to respectable model 

performance. Hence, these statutes of model design must be geared appropriately in order to 

prevent poor model performance either by under- or over-fitting. Therefore, refining and 

improving deep CNN architecture for vegetation remote sensing applications is also another 

important research gap that can be fulfilled in future.  

4.4.3 Utilise higher spatial resolution sensors  

 

Sentinel-2 MSI was used in this study due to it being an open-access and readily available data 

source with high spatial and temporal resolution. Utilising a CNN in tandem with Sentinel-2 in 

this research yielded respectable results. However, future research could investigate the utility 

of different sensors, both open- and restricted-access, in CNN model performance. This could 

be in the form of newer satellite platforms like Landsat 8, higher spatial resolution satellites 

like WorldView-2 or with ultra-high-resolution imagery from UAVs, albeit at much smaller 

spatial scales.  

 

4.5 Concluding remarks 

 

The aim of this study was to predict inter-seasonal aboveground grass biomass using Sentinel-

2 MSI and deep machine learning algorithms in communal grasslands in KwaZulu-Natal, South 

Africa. By comparing predictive performance of traditional and deep neural networks, this 

study decisively demonstrated that the highly advanced CNN algorithm predicted aboveground 

grass biomass between both dry and wet seasons amicably. This conclusion is consolidated 

based on observations throughout this research and answers the research questions posed in 

Chapter One:  
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• Which machine learning technique, between the Artificial Neural Network and the 

Convolutional Neural Network, performs more aptly at estimating aboveground 

biomass of grass when paired with Sentinel-2 bands and derived indices? 

 

After testing the performance of both algorithms in biomass predictions using Sentinel-

2 MSI bands and 30 derived indices, it was found that the CNN was more adept at 

biomass predictions than the ANN. This was evident in the accuracy assessments as the 

CNN yielded the best R2 of 0.83, RMSE of 3.36 g/m2 and RMSE% of 6.09. In contrast, 

the ANN could only conjure the best R2 of 0.75, RMSE of 5.78 g/m2 and RMSE% of 

8.90. Therefore, the CNN performed better in biomass predictions as compared to the 

ANN.  

 

• Can remote sensing and deep learning be used to estimate and assess the difference in 

grass aboveground biomass between two distinct seasons in South Africa, being the dry 

season and the wet season? And what can this change in biomass be attributed to? 

This study successfully demonstrated the application of deep learning algorithms to 

remote sensing research on vegetation biomass, specifically grass biomass. 

Furthermore, this study conducted this research over two different seasons that occur 

within a South African climatic context, with slightly increased model performance in 

the wet season as compared to the dry season. Findings in this study reiterated the 

substantial effects of precipitation and temperature on biomass fluxes.  

Overall, this study was a pilot study and a first attempt at applying deep CNN algorithms to 

vegetation research and monitoring in a southern Africa. This research could be used to 

establish rangeland management plans not only in communal grasslands, but also assist in 

informed decision-making in both small-scale and large-scale grassland ecosystems. This 

research also advances the theoretical and practical aspects of machine learning in the remote 

sensing academia.    
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