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Abstract

In this study we generate the matching conditions for a spherically symmetric radi-

ating star in the presence of shear. Two new exact solutions to the Einstein field

equations are presented which model a relativistic radiating sphere. We examine the

role of anisotropy in the thermal evolution of a radiating star undergoing continued

dissipative gravitational collapse in the presence of shear. Our model was the first

study to incorporate both shear and pressure anisotropy, and these results were pub-

lished in 2006. The physical viability of a recently proposed model of a shear-free

spherically symmetric star undergoing gravitational collapse without the formation of

a horizon is investigated. These original results were published in 2007. The tempera-

ture profiles of both models are studied within the framework of extended irreversible

thermodynamics.
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Chapter 1

Introduction

Gravitational collapse of massive stars, and the possibilities for the end state of such a

continued collapse, are outstanding problems in relativistic astrophysics and gravitation

theory today. Once a massive star has exhausted its thermonuclear source of energy,

it enters the state of endless gravitational collapse. It is thus crucial to study the

possible conclusions of this collapse, dominated entirely by the force of gravity. Interest

in this area started in 1939, when Oppenheimer and Snyder studied the problem of

gravitational collapse in which a spherically symmetric dust cloud underwent continued

collapse. Particularly interesting is the fact that general relativity generically admits

the existence of spacetime singularities. These are extreme regions in the spacetime

where densities and spacetime curvatures diverge and the theory must break down.

The Cosmic Censorship Conjecture proposed by Penrose in 1969, which states that

any reasonable matter configuration undergoing continued gravitational collapse will

form a black hole – and never a naked singularity, has attracted much attention in

relativistic astrophysics. Joshi in 2002 assessed the situation due to several models

that proposed naked singularities or black holes as the final outcome of collapse. The

non-existence of trapped surfaces till the formation of the singularity in collapse was

thought to be the signature of naked singularities. Penrose (1998) and Wald (1997)

showed that this need not be the case. A singularity being naked means that there
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exist families of future directed non-spacelike curves, which in the past terminate at the

singularity. No such families exist originating from the singularity when the product of

collapse is a black hole. For black hole formation, the resultant spacetime singularity is

hidden inside an event horizon of gravity, remaining unseen by external observers. For

naked singularity formation, however, there is a causal connection between the region

of singularity and distant observers, thus enabling communication from the superdense

regions close to the singularity to distant observers. Joshi (2002) listed the physical

conditions that could support the cosmic censorship conjecture and prevent the forma-

tion of a naked singularity as the end state of gravitational collapse. The conditions are:

(i) A suitable energy condition must be obeyed, (ii) the collapse must develop from

regular initial data, (iii) singularities from realistic collapse must be gravitationally

strong (divergence of all important physical quantities such as pressure, density, cur-

vature, etc.), (iv) the matter fields must be sufficiently general, (v) a realistic equation

of state must be obeyed, (vi) all radiations from naked singularity must be infinitely

red-shifted. Hence the final outcome of stellar gravitational collapse is still very much

open to debate, primarily due to models that admit naked singularities (Harada et al

1998, Kudoh et al 2000). For the interior of the star forms of the energy momentum

tensor, ranging from a perfect fluid to an imperfect fluid with heat flux and anisotropic

pressure have been investigated (Herrera and Santos 1997a, Naidu et al 2006). It is well

known that when a reasonable matter distribution undergoes gravitational collapse, in

the absence of shear or with homogeneous density, the end result is a black hole. Shear

has been identified as the factor that delays the formation of the apparent horizon,

by making the final stages of collapse incoherent thereby leading to the generation of

naked singularities (Joshi et al 2002, Goncalves 2008). Wagh and Govinder (2001)

showed that all known naked singularites in spherically symmetric self-similar space-

times arise as a result of singular initial matter distribution. This is a result of the

peculiarity of the coordinate transformation that takes these spacetimes into a separa-

ble form. Such examples of naked singularites are therefore of no apparent consequence
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to astrophysics. Banerjee and Chatterjee (2004) showed that the non-occurence of a

horizon is due to the fact that the rate of mass loss is exactly counterbalanced by the

fall of boundary radius. This is a counter example to the cosmic censorship conjecture.

Also observed was that the rate of collapse is delayed with the introduction of extra

dimensions.

The first exact solution to the Einstein field equations was presented by Karl

Schwarzschild in 1916. He considered the matter of a static spherically symmetric

star to be a perfect fluid with constant density, thus simplifying the problem signifi-

cantly. An important assumption made was that the pressure vanishes on the boundary

of the star. In the Oppenheimer and Snyder model of 1939, the exterior spacetime was

described by the exterior Schwarzschild solution. Vaidya derived the first exact solution

for the exterior gravitational field of a spherically symmetric radiating object (Vaidya

1951). Thereafter, the junction conditions for the interior of a shear-free radiating star

were derived by Santos in 1985; and various models of radiating stars could then be

studied. Hundreds of solutions incorporating shear, pressure anisotropy, charge, and

several matter distributions have been found since then (Herrera and Santos 1997a,

Naidu et al 2006).

This dissertation is organized as follows:

• Chapter 1: Introduction.

• Chapter 2: In this chapter we provide an overview of the mathematics and dif-

ferential geometry of general relativity essential to construct stellar models of

gravitational collapse. The Einstein field equations are presented for both the

spherically symmetric shearing metric, and the shear-free metric.

• Chapter 3: The junction conditions for the smooth matching of two spherically

symmetric spacetimes on a timelike hypersurface are presented in this chapter.

We derive the junction conditions for both the shearing and the shear-free line

elements. These results are essential for subsequent chapters.

3



• Chapter 4: To obtain a model of a radiating star undergoing gravitational collapse

and dissipating energy in the form of heat flux, the thermodynamics must be

studied in detail. In this chapter we present an overview of Eckart’s theory of

thermodynamics, and discuss the problems with this theory. These problems can

be avoided by taking a causal approach (Maartens 1996b). Certain aspects of

causal thermodynamics relevant to this study are presented and discussed. We

also include the Maxwell-Cattaneo equation for heat transport and motivate for

the particular form for the mean collision time.

• Chapter 5: We present an exact model for a radiating anisotropic star undergoing

gravitational collapse in the presence of shear. The Einstein field equations are

solved exactly, and a detailed analysis of the thermodynamics is performed.

• Chapter 6: In this chapter we investigate the physical viability of a recently

proposed model of a radiating star undergoing dissipative gravitational collapse

without the formation of a horizon. The thermodynamics are studied in detail.

• Chapter 7: Conclusion
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Chapter 2

Preliminaries

2.1 Introduction

Einstein’s theory of general relativity describes the interaction between matter and

the geometry of spacetime. This theory has been successful in its predictions and has

been shown to be consistent with observations. In this chapter, we provide the basic

framework of this theory in order to develop the mathematical background necessary

to generate a stellar model. An outline of the essential differential geometry and

the field equations of general relativity are presented in §2.2. In §2.3 we consider

spherically symmetric metrics which describe the interior of a radiating star. The

outgoing Vaidya line element, which describes the exterior spacetime of a radiating

spherically symmetric star, is introduced in §2.4.

2.2 Field equations

The general theory of relativity was proposed by Albert Einstein in 1914 to describe

gravity. The fundamental idea in this theory is that matter and the geometry of

spacetime are intimately related, i.e., matter curves spacetime. In this metric theory
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of gravitation, spacetime is represented by a four–dimensional, differentiable manifold

endowed with an indefinite metric tensor g with signature (−+++). Local coordinates

in the manifold are chosen so that (xa) = (x0, x1, x2, x3) where x0 is timelike, and

x1, x2, x3 are spacelike. The invariant distance between two infinitesimally separated

points in spacetime is given by the line element

ds2 = gabdxadxb

The metric connection Γ is defined in terms of the metric tensor field and its derivatives

by

Γa
bc = 1

2
gad(gcd,b + gdb,c − gbc,d) (2.2.1)

where commas denote partial differentiation. The fundamental theorem of Riemann-

nian geometry ensures the existence of a unique metric connection which preserves

inner products under parallel transport. The Riemann tensor is constructed from the

connection coefficients (2.2.1) as follows

Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc (2.2.2)

which provides a measure of the curvature of spacetime. The Ricci tensor is obtained

from contracting the Riemann tensor (2.2.2):

Rab = Γd
ab,d − Γd

ad,b + Γe
abΓ

d
ed − Γe

adΓ
d
eb (2.2.3)

A further contraction of the Ricci tensor (2.2.3) yields the Ricci scalar

R = Ra
a (2.2.4)

The Einstein tensor is given by

Gab = Rab − 1
2
Rgab (2.2.5)

which obeys

Gab
;b = 0 (2.2.6)
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by the contracted Bianchi identity. Semicolons denote covariant differentiation.

The energy–momentum tensor T is decomposed as follows

Tab = Th
ab + T i

ab + T e
ab + Tn

ab (2.2.7)

which is based on the treatment of Krasiński (1997). We consider each term in (2.2.7)

separately:

• The component

Th
ab = (ρ + p)uaub + pgab

represents the dynamically isotropic perfect fluid where u is a unit timelike four–

velocity vector, ρ is the energy density and p is the isotropic pressure.

• The component

T i
ab = qaub + qbua + πab

represents the dynamically anisotropic stress energy tensor where qa is the heat

flow vector and πab is the trace-free anisotropic stress tensor. The heat flow vector

and stress tensor satisfy the conditions

qaua = 0

πabub = 0

relative to the fluid four–velocity u.

• The component

T e
ab = Fa

cFbc − 1
4
gabF

cdFcd

represents the electromagnetic contribution to T and Fab is the electromagnetic

field tensor. We can express the electromagnetic field tensor as

Fab = φb;a − φa;b
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where φa is the four–potential. Maxwell’s equations, governing the behaviour of

the electromagnetic field, are

F ab
;b = Ja (2.2.8a)

F[ab;c] = 0 (2.2.8b)

In the above

Ja = µua

is the four–current density and µ is the proper charge density.

• The component

Tn
ab = εwawb

is the energy–momentum tensor for null radiation where ε is the radiation energy

density and wa is the null four-vector.

Particular forms of the energy–momentum tensor (2.2.7) are used in later chapters.

The Einstein field equations can be written as

Gab = Tab (2.2.9)

in appropriate units. Throughout this thesis we utilise standard geometrical units

in which the coupling constant 8πG/c4 and the velocity of light c are taken to be

unity. The Einstein field equations (2.2.9) couples the curvature of spacetime (2.2.5)

to the matter content (2.2.7). A solution of this system of ten highly nonlinear partial

differential equations is necessary to study the gravitational behaviour of a gravitating

system. For a more extensive and detailed discussion of differential geometry and

manifold structure applicable to general relativity see de Felice and Clarke (1990),

Hawking and Ellis (1973) and Joshi (1993).
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2.3 Spherical spacetimes

2.3.1 Shearing spacetimes

The most general spherically symmetric line element, in spherical coordinates (xa) =

(t, r, θ, φ), can be written as

ds2 = −A2dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2) (2.3.1)

where A, B and Y are functions of the coordinates t and r. The fluid four–velocity u

is comoving and is given by

ua =
1

A
δa
0

Note that the coordinates utilised in (2.3.1) are not isotropic. The kinematical quan-

tities for the line element (2.3.1) are given by

ωab = 0 (2.3.2a)

u̇a =

(
0,

A′

A
, 0, 0

)
(2.3.2b)

Θ =
1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
(2.3.2c)

σ1
1 = σ2

2 = −1
2
σ3

3 =
1

3A

(
Ẏ

Y
− Ḃ

B

)
(2.3.2d)

where ωab is the vorticity tensor, u̇a is the four–acceleration vector, Θ is the expansion

scalar and σ represents the magnitude of the shear (or the rate of shear) of the fluid.

For a relativistic fluid the kinematical quantities are important for studying the evolu-

tion of the system. Dots and primes represent differentiation with respect to t and r

respectively.
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The nonzero Ricci tensor components (2.2.3) assume the following form

R00 = −B̈

B
+

Ȧ

A

Ḃ

B
+ 2

Ȧ

A

Ẏ

Y
− 2

Ÿ

Y

+
A2

B2

(
A′′

A
− A′

A

B′

B
+ 2

A′

A

Y ′

Y

)
(2.3.3a)

R01 = 2

(
Ḃ

B

Y ′

Y
+

A′

A

Ẏ

Y
− Ẏ ′

Y

)
(2.3.3b)

R11 = −A′′

A
+

A′

A

B′

B
+ 2

B′

B

Y ′

Y
− 2

Y ′′

Y

+
B2

A2

(
B̈

B
− Ȧ

A

Ḃ

B
+ 2

Ḃ

B

Ẏ

Y

)
(2.3.3c)

R22 =
Y Ẏ

A2

(
Ḃ

B
− Ȧ

A
+

Ẏ

Y
+

Ÿ

Ẏ

)

+
Y Y ′

B2

(
B′

B
− A′

A
− Y ′

Y
− Y ′′

Y ′

)
+ 1 (2.3.3d)

R33 = sin2 θR22 (2.3.3e)

for the line element (2.3.1). The Ricci scalar is given by

R =
2

A2

(
B̈

B
− Ȧ

A

Ḃ

B
+ 2

Ḃ

B

Ẏ

Y
− 2

Ȧ

A

Ẏ

Y
+

Ẏ 2

Y 2
+ 2

Ÿ

Y

)

− 2

B2

(
A′′

A
− A′

A

B′

B
− 2

B′

B

Y ′

Y
+ 2

A′

A

Y ′

Y
+

Y ′2

Y
+ 2

Y ′′

Y

)
+

2

Y 2
(2.3.4)

for the line element (2.3.1). By making use of (2.3.3) and (2.3.4) we obtain the nonva-
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nishing Einstein tensor components

G00 = 2
Ḃ

B

Ẏ

Y
+

Ẏ 2

Y 2
− A2

B2

(
−2

B′

B

Y ′

Y
+

Y ′2

Y 2
+ 2

Y ′′

Y

)
+

A2

Y 2
(2.3.5a)

G11 =
B2

A2

(
2
Ȧ

A

Ẏ

Y
− Ẏ 2

Y 2
− 2

Ÿ

Y

)

+2
A′

A

Y ′

Y
+

Y ′2

Y 2
− B2

Y 2
(2.3.5b)

G01 = 2

(
Ḃ

B

Y ′

Y
+

A′

A

Ẏ

Y
− Ẏ ′

Y

)
(2.3.5c)

G22 = −Y 2

A2

(
B̈

B
− Ȧ

A

Ḃ

B
+

Ḃ

B

Ẏ

Y
− Ȧ

A

Ẏ

Y
+

Ÿ

Y

)

+
Y 2

B2

(
A′′

A
− A′

A

B′

B
+

A′

A

Y ′

Y
− B′

B

Y ′

Y
+

Y ′′

Y

)
(2.3.5d)

G33 = sin2 θG22 (2.3.5e)

for spherical symmetry. The Einstein field equations are
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ρ =
2

A2

Ḃ

B

Ẏ

Y
+

1

Y 2
+

1

A2

Ẏ 2

Y 2
− 1

B2

(
2
Y ′′

Y
+

Y ′2

Y 2
− 2

B′

B

Y ′

Y

)
(2.3.6a)

pR =
1

A2

(
−2

Ÿ

Y
− Ẏ 2

Y 2
+ 2

Ȧ

A

Ẏ

Y

)
+

1

B2

(
Y ′2

Y 2
+ 2

A′

A

Y ′

Y

)
− 1

Y 2
(2.3.6b)

p⊥ = − 1

A2

(
B̈

B
− Ȧ

A

Ḃ

B
+

Ḃ

B

Ẏ

Y
− Ȧ

A

Ẏ

Y
+

Ÿ

Y

)

+
1

B2

(
A′′

A
− A′

A

B′

B
+

A′

A

Y ′

Y
− B′

B

Y ′

Y
+

Y ′′

Y

)
(2.3.6c)

q = − 2

AB2

(
− Ẏ ′

Y
+

Ḃ

B

Y ′

Y
+

A′

A

Ẏ

Y

)
(2.3.6d)

where we have used (2.3.5) and (2.2.7). In the above we have defined

q = q1 (2.3.7)

where qa = (0, q1, 0, 0) has only a radial component.

The last equation (2.3.6d) can be written as

qB2 =
2

3
(Θ− σ)′ − 2σ

Y ′

Y
(2.3.8)

using the formalism of Herrera et al (2008). We introduce a useful parameter ∆ which

is a measure of the pressure anisotropy:

∆ = pR − p⊥ (2.3.9)

The field equations (2.3.6) describe the interaction of a shearing matter distribution

which is expanding and accelerating with heat flux. In order to describe a physically

reasonable model, the metric functions A, B and Y must be determined. The ‘un-

knowns’ include ρ, p, q, A, B and Y . In order to close the system, we have to either
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employ a suitable equation of state, or make a simplifying assumption such as: (i)

the Weyl tensor vanishes, (ii) the model is acceleration-free, or (iii) the collapse is

expansion-free.

2.3.2 Shear-free spacetimes

In the case of vanishing shear we have

Ẏ

Y
− Ḃ

B
= 0

from (2.3.2d) so that the line element (2.3.1) may be rewritten as

ds2 = −A2(t, r)dt2 + B2(t, r)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(2.3.10)

which is simultaneously comoving and isotropic with Y = rB. Here A and B are

functions of the coordinates t and r. The fluid four–velocity u is comoving and is given

by

ua =
1

A
δa
0

For the line element (2.3.10) the kinematical quantities are

ωab = 0 (2.3.11a)

u̇a =

(
0,

A′

A
, 0, 0

)
(2.3.11b)

Θ =
3Ḃ

AB
(2.3.11c)

σ = 0 (2.3.11d)

where ωab is the vorticity tensor, u̇a is the four–acceleration vector, Θ is the expansion

scalar and σ represents the magnitude of the shear (or the rate of shear) of the fluid.
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The Einstein field equations for the line element (2.3.10) reduce to

ρ =
3

A2

Ḃ2

B2
− 1

B2

(
2
B′′

B
− B′2

B2
+

4

r

B′

B

)
(2.3.12a)

p =
1

A2

(
−2

B̈

B
− Ḃ2

B2
+ 2

Ȧ

A

Ḃ

B

)

+
1

B2

(
B′2

B2
+ 2

A′

A

B′

B
+

2

r

A′

A
+

2

r

B′

B

)
(2.3.12b)

p = −2
1

A2

B̈

B
+ 2

Ȧ

A3

Ḃ

B
− 1

A2

Ḃ2

B2
+

1

r

A′

A

1

B2

+
1

r

B′

B3
+

A′′

A

1

B2
− B′2

B4
+

B′′

B3
(2.3.12c)

q = − 2

AB2

(
−Ḃ′

B
+

B′Ḃ
B2

+
A′

A

Ḃ

B

)
(2.3.12d)

where we have assumed the pressure is isotropic.

We can rewrite (2.3.12d) as

qB2 =
2

3
Θ′ (2.3.13)

which is consistent with (2.3.8) when σ = 0. The field equations (2.3.12) describe

the gravitational interaction of a shear–free matter distribution with heat flux and

vanishing electromagnetic field. The condition for pressure isotropy (2.3.9) becomes

A′′

A
+

B′′

B
=

(
2
B′

B
+

1

r

)(
A′

A
+

B′

B

)
(2.3.14)

from (2.3.12b) and (2.3.12c). We note that in this case, the anisotropic parameter

∆ = 0 since pR = p⊥ = p. The above system of equations will be utilised in subsequent

chapters to generate simple analytic models of radiative gravitational collapse.
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2.4 Vaidya spacetime

The exterior of a radiating star is described by the Vaidya solution (Vaidya 1951, 1953).

This solution may be generated from the exterior Schwarzchild solution by utilizing the

Eddington–Finkelstein coordinate transformation, although this was not the original

approach taken by Vaidya. For details of the coordinate transformation see Govender

(1994).

The Vaidya line element is given by

ds2 = −
(

1− 2m(v)

r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
(2.4.1)

where m(v) is the Newtonian mass of the gravitating body as measured by an observer

at infinity. The Vaidya solution is the unique spherically symmetric solution of the

Einstein field equations (2.2.9) for radiation in the form of a null fluid, and is often

used to describe the exterior gravitational field of a radiating star in applications. Some

authors who have employed the Vaidya solution in applications include Kolassis et al

(1988), de Oliveira et al (1985), and Kramer (1992). It is interesting to note that the

Vaidya solution (3.3.4) is completely determined by the mass function m(v). To ensure

the exterior spacetime of the radiating star is physically reasonable, m(v) must be a

nonincreasing function, i.e.,
dm

dv
≤ 0. Physically, we may conclude that the mass of

the star is decreasing. This is because energy is being carried away in the form of

radiation.
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Chapter 3

Junction conditions

3.1 Introduction

In this chapter we review the junction conditions that match two spherically symmetric

spacetimes across a timelike hypersurface Σ (Bonnor et al 1989, Santos 1985). We only

provide an outline which is relevant for later chapters. The results obtained in this

chapter are valid for the Einstein field equations (2.3.6) with a vanishing cosmological

constant.

3.2 Matching hypersurfaces

We consider a spherical surface described by a timelike three–space Σ. The surface Σ

divides the manifold into the two distinct regions M− and M+. We take gij to be the

intrinsic metric to Σ which enables us to write

ds2
Σ = gijdξidξj (3.2.1)

The intrinsic coordinates to Σ are given by ξi where i = 1, 2, 3. The line elements in

the regions M± are given by

ds2± = gabdX a
±dX b

± (3.2.2)
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The coordinates in M± are X a
± where a = 0, 1, 2, 3. It is necessary that the metrics

(3.2.1) and (3.2.2) match smoothly across Σ. This requirement generates the first

junction condition in the form

(ds2
−)Σ = (ds2

+)Σ = ds2
Σ (3.2.3)

We are using the notation ( )Σ to represent the value of ( ) on the surface Σ. Conse-

quently the coordinates of Σ in M± are given by X a
± = X a

±(ξi). The second junction

condition is generated by requiring that the extrinsic curvature of Σ is continuous

across the boundary. This requirement generates the second junction condition

K+
ij = K−

ij (3.2.4)

where

K±
ij ≡ −n±a

∂2X a
±

∂ξi∂ξj − n±a Γa
cd

∂X c
±

∂ξi

∂X d
±

∂ξj (3.2.5)

and n±a (X b
±) are the components of the vector normal to the surface Σ. Different forms

for the first and second junction conditions have been obtained by other researchers.

We should point out that the junction conditions (3.2.3) and (3.2.4) given above are

equivalent to the junction conditions generated earlier by Lichnerowicz (1955) and O’

Brien and Synge (1952). Lake (1987) provides a comprehensive review of the junction

conditions for boundary surfaces and surface layers with several applications to general

relativity and cosmology.

3.3 Shearing junction conditions

This section provides a summary of crucial results obtained by Govender (1998). The

intrinsic metric to Σ is given by

ds2
Σ = −dτ 2 +R2(dθ2 + sin2 θdφ2) (3.3.1)
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with coordinates ξi = (τ, θ, φ) and R = R(τ). Note that the time coordinate τ is

defined only on the surface Σ. In comoving coordinates we take the interior spacetime

M− to be given by the shearing line element (2.3.1):

ds2 = −A2dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2) (3.3.2)

For M− the first junction condition (3.2.3), for the metrics (3.3.1) and (3.3.2), yields

the restrictions

A(rΣ, t)tτ = 1 (3.3.3a)

Y (rΣ, t) = R(τ) (3.3.3b)

where differentiation with respect to τ is represented by subscripts.

We take the exterior spacetime M+ to be described by the Vaidya line element

ds2 = −
(

1− 2m(v)

r

)
dv2 − 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
(3.3.4)

For M+ the first junction condition (3.2.3) for the line elements (3.3.1) and (3.3.4),

generates the equations

rΣ(v) = R(τ) (3.3.5a)

(
1− 2m

r
+ 2

dr

dv

)

Σ

=

(
1

vτ
2

)

Σ

(3.3.5b)

The intermediary variable τ may be eliminated from these equations. Thus the neces-

sary and sufficient conditions on the spacetimes which ensure the validity of the first

junction condition (3.2.3) are that

A(rΣ, t)dt =

(
1− 2m

rΣ
+ 2

drΣ
dv

) 1
2

dv (3.3.6a)

Y (rΣ, t) = rΣ(v) (3.3.6b)
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The second junction condition (3.2.4) is obtained by equating the appropriate ext-

rinsic curvature components. This gives

(
− 1

B

A′

A

)

Σ

=

(
vττ

vτ

− vτ
m

r2

)

Σ

(3.3.7a)

(
Y Y ′

B

)

Σ

= (vτ (r − 2m) + rrτ )Σ (3.3.7b)

The junction conditions (3.3.7) may be expressed in a form which is equivalent but

more convenient for applications. We can generate an equation for the mass function

m(v) in terms of the metric functions only, from (3.3.7b) by eliminating r, rτ and vτ .

In addition, we may rewrite relation (3.3.7b), with the help of (3.3.3) and (3.3.5), as

m(v) =

[
Y

2

(
1 +

Ẏ 2

A2
− Y ′2

B2

)]

Σ

(3.3.8)

We may interpret m(v) as representing the total gravitational mass within the surface

Σ. The expression (3.3.8) corresponds to the mass function of Cahill and McVittie

(1970) (also see Hernandez and Misner 1966) for spheres of radius r inside Σ.

From (3.3.3) and (3.3.5a) we can write

(rτ )Σ =

(
Ẏ

A

)

Σ

Using this expression for (rτ )Σ and on substituting (3.3.8) in (3.3.7b) we have that

(vτ )Σ =

(
Ẏ

A
+

Y ′

B

)−1

Σ

(3.3.9)

If we now differentiate (3.3.9) with respect to τ and make use of (3.3.3a) we can write

(vττ )Σ =


− 1

A

(
Ẏ

A
+

Y ′

B

)−2 (
Ẏ ′

B
− ḂY ′

B2
− ȦẎ

A2
+

Ÿ

A

)


Σ

(3.3.10)

Substituting (3.3.3b), (3.3.5a), (3.3.8), (3.3.9) and (3.3.10) into (3.3.7a) we obtain

(
− 1

B

A′

A

)

Σ

=

[(
− Ẏ ′

B
+

ḂY ′

B2
+

ȦẎ

A2
− Ÿ

A
− Ẏ 2

2AY
+

A

2Y

(
Y ′2

B2
− 1

))
×

(
Ẏ

A
+

Y ′

B

)−1



Σ
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On multiplying this equation by

(
Ẏ

A
+

Y ′

B

)
and simplifying we obtain the following

result

(pR)Σ = (Q)Σ

where we have utilised the field equations (2.3.6b) and (2.3.6d). This is an important

result which relates the radial pressure pR to the magnitude of the heat flow Q = qB.

It was first established by Santos in 1985 for shear-free matter. The necessary and

sufficient conditions on the spacetimes for the second junction condition (3.2.4) to be

valid are that

m(v) =

[
Y

2

(
1 +

Ẏ 2

A2
− Y ′2

B2

)]

Σ

(3.3.11a)

(pR)Σ = (Q)Σ (3.3.11b)

across the boundary.

The equations (3.3.6) and (3.3.11) are the general matching conditions for the

spherically symmetric spacetimes M+ and M−. Relation (3.3.11b) implies that the

isotropic pressure pR is proportional to the magnitude of the heat flow q which is

nonvanishing in general. The pressure pΣ on the boundary can only be zero when

qΣ becomes zero. In this case there is no radial heat flow and the exterior spacetime

consequently is not the Vaidya spacetime but is the exterior Schwarzschild spacetime.

A physical interpretation of (3.3.11b) is obtained by considering the radial momen-

tum flux across the boundary. As the expression (3.3.8) also gives the total energy for

a sphere of radius r within Σ we can write m(v) = m(t, r). On differentiating partially

with respect to t we obtain
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(
∂m

∂t

)

Σ

=

[
Ẏ

(
Ÿ Y

A2
+

Ẏ 2

2A2
− Y ′2

2B2
− ȦẎ Y

A3
+

1

2

)

−Y ′Ẏ ′Y
B2

+
ḂY ′2Y

B3

]

Σ

(3.3.12)

On using the field equations (2.3.6b) and (2.3.6d) we can rewrite

(
∂m

∂t

)

Σ

as

(
∂m

∂t

)

Σ

=

[
−AY 2

2

(
Ẏ

A
+

Y ′

B

)
pR

]

Σ

(3.3.13)

The radial coordinate is comoving with respect to Σ so we can write

(
∂m

∂t

)

Σ

=

(
dm

dt

)

Σ

=

(
vτ

tτ

dm

dv

)

Σ

(3.3.14)

Utilizing (3.3.3a), (3.3.5a), (3.3.13) and (3.3.14) we obtain

(
− 2

r2
dm

dv
vτ

2

)

Σ

= (pR)Σ (3.3.15)

The radial flux of momentum of the radiation on both sides of Σ is given by

F± = e±a
0 n±bT±

ab

The unit tangent vectors in the τ–direction of Σ are given by

e+a
0 =

(
1− 2m

rΣ
+ 2

drΣ
dv

)− 1
2
(

δa
0 +

drΣ
dv

δa
1

)

e−a
0 = AΣ

−1δa
0

For details of this result see Lindquist et al (1965). It is easy to show that

F+ =

[
2

r2
dm

dv
vτ

2

]

Σ

F− = [−Q]Σ
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so that F+ = F− which is equivalent to the junction condition (3.3.11b). Note that Q

represents the magnitude of the heat flow. Therefore the result (3.3.11b) corresponds

to the continuity of the radial flux of momentum of the radiation across the surface Σ,

i.e., it expresses the local conservation of momentum.

We will now discuss the luminosity of the star. Lindquist et al (1965) define the

total luminosity for an observer at rest at infinity by

L∞(v) = −dm

dv
= lim

r→∞
4πr2Φ2 (3.3.16)

An observer with four–velocity va = (vτ , rτ , 0, 0) located on Σ has proper time τ related

to the time t by dτ = Adt. The energy density that this observer measures on Σ is

Φ2
Σ =

1

4π

(
−vτ

2

r2
dm

dv

)

Σ

and the luminosity observed on Σ is

LΣ = 4πr2Φ2
Σ

The boundary redshift zΣ of the radiation emitted by the star is given by

1 + zΣ =
dv

dτ

which can be used to determine the time of formation of the horizon. The above

expressions allow us to write

1 + zΣ =

(
LΣ

L∞

) 1
2

(3.3.17)

which relates the luminosities LΣ to L∞ via the surface redshift.

Note that the result (3.3.11b) has been established in general for spherically sym-

metric, shearing spacetimes without assuming any particular forms for the metric func-

tions. In addition, our expressions with nonzero shear have the same form as the ex-

pressions in Lindquist et al. However the contribution of the shear (σab) is introduced

via the metric functions in the definition of the mass function m in (3.3.8). The junc-

tion conditions for the smooth matching of a spherically symmetric line element to
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the Vaidya exterior have been extensively studied by various authors (Herrera 2006,

Govender and Maharaj 1999). The junction conditions have also been extended to

include nonspherical collapse and rotation in the slow approximation (Nath et al 2008,

Herrera et al 1998b). In a recent investigation, the matching conditions applicable to

spherically symmetric gravitational collapse were generated by Di Prisco et al (2007)

to include nonadiabatic charged fluids.

3.4 Shear-free junction conditions

In comoving coordinates we take the interior spacetime to be given by the shear–free

line element (2.3.10):

ds2 = −A2dt2 + B2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(3.4.1)

which is obtained by setting Y = rB in (2.3.1). The results of the first junction

condition (3.2.3) can be collectively written as

A(rΣ, t)tτ = 1 (3.4.2a)

rΣB(rΣ, t) = R(τ) (3.4.2b)

rΣ(v) = R(τ) (3.4.2c)

(
1− 2m

r
+ 2

dr

dv

)

Σ

=

(
1

vτ
2

)

Σ

(3.4.2d)

The intermediary variable τ may be eliminated from these equations, to generate the

necessary and sufficient conditions for the first junction condition (3.2.3) to be valid
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on the spacetimes. We obtain

A(rΣ, t)dt =

(
1− 2m

rΣ
+ 2

drΣ
dv

) 1
2

dv (3.4.3a)

rΣB(rΣ, t) = rΣ(v) (3.4.3b)

The second junction condition (3.2.4) is obtained by equating the appropriate ext-

rinsic curvature components which yield

(
− 1

B

A′

A

)

Σ

=

(
vττ

vτ

− vτ
m

r2

)

Σ

(3.4.4a)

(r(rB)r)Σ = (vτ (r − 2m) + rrτ )Σ (3.4.4b)

An expression for the mass function m(v) in terms of the metric functions can be

obtained from (3.4.4b) after eliminating r, rτ and vτ . This leads to

m(v) =

(
r3B

2A2
Ḃ2 − r2B′ − r3

2B
B′2

)

Σ

(3.4.5)

We may interpret m(v) as representing the total gravitational mass within the surface

Σ.

From (3.3.3) and (3.3.5a) we can write

(rτ )Σ =
( r

A
Ḃ

)
Σ

Using this expression for (rτ )Σ and on substituting (3.4.5) in (3.4.4b) we have that

(vτ )Σ =

(
1 + r

B′

B
+ r

Ḃ

A

)−1

Σ

(3.4.6)

If we now differentiate (3.4.6) with respect to τ and make use of (3.3.3a) we can write

(vττ )Σ =


 1

A

(
1 + r

B′

B
+ r

Ḃ

A

)−2

×

×
(

r
B′Ḃ
B2

− r
Ḃ′

B
+ r

ȦḂ

A2
− r

B̈

A

)]

Σ

(3.4.7)
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Substituting (3.3.3b), (3.3.5a), (3.4.5), (3.4.6) and (3.4.7) into (3.4.4a) we obtain

(
− 1

B

A′

A

)

Σ

=




(
1 + r

B′

B
+ r

Ḃ

A

)−1

×

×
(

r

A

ḂB′

B2
− r

A

Ḃ′

B
+ r

Ȧ

A3
Ḃ − r

A2
B̈

+
B′

B2
+

r

2

B′2

B3
− r

2A2

Ḃ2

B

)]

Σ

On multiplying this equation by

(
1 + r

(
B′

B

)
+ r

(
Ḃ

A

))
and simplifying we obtain

the following result

− 2

A2

B̈

B
+ 2

Ȧ

A3

Ḃ

B
− 1

A2

Ḃ2

B2
+

2

r

A′

A

1

B2
+

2

r

B′

B3
+

B′2

B4
+ 2

A′

A

B′

B3

= − 2

AB

(
−Ḃ′

B
+

B′Ḃ
B2

+
A′

A

Ḃ

B

)

which is equivalent to

pΣ = (qB)Σ

where we have utilised the field equations (2.3.12b) and (2.3.12d). Therefore the nec-

essary and sufficient conditions on the spacetimes for the second junction condition

(3.2.4) to be valid are that

m(v) =

(
r3B

2A2
Ḃ2 − r2B′ − r3

2B
B′2

)

Σ

(3.4.8a)

pΣ = (qB)Σ (3.4.8b)

across the boundary.

The first attempt to generalise the above junction conditions to include shear for

neutral matter was carried out by Glass (1989). To obtain a complete solution of ra-

diative gravitational collapse we must solve the pressure isotropy condition (∆ = 0)

together with the junction condition (3.4.8b). It is crucial to check these equations
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and all the associated quantities for consistency in order to obtain a physically rea-

sonable model. The junction conditions for shearing spacetimes for the special case

with geodesic motion have been generated by Tomimura and Nunes (1993). de Oliveira

and Santos (1987) investigated the shear–free case with a nonvanishing electromagnetic

field. This work was extended by Maharaj and Govender (2000) to include the elec-

tromagnetic field. Several solutions to the junction conditions have been found when

the shear is vanishing; recent models generated include the investigations of Herrera

et al (2004b), Maharaj and Govender (2005) and Misthry et al (2008) where the Weyl

tensor components vanish.
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Chapter 4

Thermodynamics

4.1 Introduction

In this chapter we review the Eckart theory and point out its shortcomings. The

essential features of causal thermodynamics are discussed and the truncated trans-

port equations are presented in relativistic Maxwell-Cattaneo form. Under particular

assumptions we obtain an explicit form for the causal temperature in spherically sym-

metric spacetimes. We employ the formalism of Maartens (1996a).

4.2 Aspects of irreversible thermodynamics

We take the particle four-current of a dissipative fluid to be of the form

na3 = comoving constant (4.2.1)

where a is the Hubble scale factor. This is analogous to choosing an average four-

velocity in which there is no particle flux. We call this the particle frame. We

also propose that at any event in spacetime, the fluid is thermodynamically close to

some equilibrium state at the event. The local equilibrium scalars are represented by

n̄, ρ̄, p̄, S̄, T̄ . The four-velocity of the local equilibrium is denoted ūµ. In the particle

frame, we are able to choose ūµ so that: (i) the number and energy densities coincide
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with the local equilibrium values, while (ii) the pressure does not, i.e.

n = n̄, ρ = ρ̄, p = p̄ + Π (4.2.2)

where Π = p − p̄ is the bulk viscous pressure. Hereafter, we will replace p̄ by p. The

effective non-equilibrium pressure becomes

peff = p + Π (p → peff , p̄ → p) (4.2.3)

The conservation of particle number and energy-momentum are crucial to irre-

versible thermodynamics, whether we employ the standard or extended theory. These

are represented by

nα
;α = 0, T αβ

;β = 0 (4.2.4)

If we consider the conservation of particle number, we obtain the same equation that

holds in equilibrium (4.2.1).

The equilibrium energy and momentum conservation equations are

ρ̇ + 3H(ρ + p) = 0 (4.2.5)

(ρ + p)u̇α + Dαp = 0 (4.2.6)

The above equations are changed by the dissipative terms in the energy-momentum

tensor:

ρ̇ + 3H(ρ + p + Π) + Dαqα + 2u̇αqα + σαβπαβ = 0 (4.2.7)

(ρ + p + Π)u̇α + Dα(p + Π)−Dβπαβ + u̇βπαβ + hα
β q̇β

+(4Hhαβ + σαβ + ωαβ)qβ = 0 (4.2.8)

The striking feature of irreversible thermodynamics is that entropy is no longer

conserved. In this theory the entropy grows, in accordance with the second law of
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thermodynamics. The rate at which entropy is produced is given by the divergence of

the entropy four-current. We may now give the covariant form of the second law of

thermodynamics

Sα
;α ≥ 0 (4.2.9)

This gives a new form for Sα which contains a dissipative term

Sα = Snuα +
Rα

T
(4.2.10)

where S = S̄ and T = T̄ are related by

TdS = d
(ρ

n

)
+ pd

(
1

n

)
(4.2.11)

which is the Gibbs equation.

We assume that the dissipative part Rα of Sα is an algebraic function of nα and

Tαβ. Furthermore, we will assume that Rα vanishes in equilibrium. These assumptions

are part of the hydrodynamical description. The assumption is that non-equilibrium

states can be completely specified by the hydrodynamical tensors nα, Tαβ alone. In

irreversible thermodynamics, the form of Rα in the standard theory is different from

that in the extended theory.

In order to satisfy (4.2.9) we follow the approach of Maartens (1996) and impose

the following linear relationships between the thermodynamic ‘fluxes’ Π, qα, παβ and

the corresponding thermodynamic ‘forces’ H, u̇α + Dα ln T, σαβ:

Π = −3ςH (4.2.12)

qα = −λ(DαT + T u̇α) (4.2.13)

παβ = −2ησαβ (4.2.14)

In the standard Eckart theory of relativistic irreversible thermodynamics, these are
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the most important equations for dissipative quantities. They form the relativistic

generalisations of the corresponding Newtonian laws:

Π = −3ς ~∇ · ~v (Stokes) (4.2.15)

~q = −κ~∇T (Fourier) (4.2.16)

πij = −2ησij (Newton) (4.2.17)

We may identify the following thermodynamical coefficients using the Newtonian laws

(4.2.16)-(4.2.17)

• ς(ρ, n) is the bulk viscosity

• κ(ρ, n) is the thermal conductivity

• η(ρ, n) is the shear viscosity

With the linear constitutive equations (4.2.12)-(4.2.14), we can express the entropy

production rate as

Sα
;α =

Π2

ςT
+

qαqα

κT 2
+

παβπαβ

2ηT
(4.2.18)

Sα
;α will be non-negative if

ς ≥ 0, κ ≥ 0, η ≥ 0 (4.2.19)

are satisfied.

Several applications of irreversible thermodynamics in general relativity thus far

have used the Eckart theory as presented above. There are shortcomings to this ap-

proach, however. One such problem is the algebraic nature of the Eckart constitutive

equations. If a thermodynamic force is suddenly set equal to zero in this theory, then

the corresponding thermodynamic flux vanishes instantaneously. This violates rela-

tivistic causality, since the signal propagates through the fluid at an infinite speed. We

discuss the shortcomings of this theory in the next chapter.
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4.3 Causal thermodynamics

Causal theories of dissipative fluids, both relativistic and non-relativistic, were postu-

lated in order to avoid some undesired effects of the conventional Eckart-type theories.

There are several advantages to taking a causal approach, such as: (i) Causal prop-

agation of dissipative signals for stable fluid configurations, (ii) Unlike Eckart-type

theories, there is no generic short-wavelength secular instability in causal theories, (iii)

The perturbations have a reasonably posed initial value problem, even in the case of

rotating fluids.

The central idea in causal theories is to extend the space of variables of conventional

theories by incorporating the dissipative quantities concerned (such as heat flux, parti-

cle currents, shear and bulk stresses) in it. Hence these quantities are treated similarly

to the conserved variables (such as energy density, particle numbers, etc.). This leads

to a more involved theory with a larger number of variables and parameters.

The Eckart postulate for Rα is an oversimplified one. Kinetic theory shows that Rα

is in fact second-order in the dissipative fluxes. By truncating at first order, the Eckart

assumption removes terms that are key in order to provide causality and stability. We

choose the most general form for Rα which is at most second-order in the dissipative

fluxes, which gives

Sµ = Snuµ +
qµ

T
− (

β0Π
2 + β1qνq

ν + β2πνκπ
νκ

) uµ

2T

+
α0Πqµ

T
+

α1π
µνqν

T
(4.3.1)

In the above equation, βA(ρ, n) ≥ 0 are thermodynamic coefficients for scalar, vector

and tensor dissipative contributions to the entropy density, and αA(ρ, n) are thermody-

namic viscous/ heat coupling coefficients. Thus the effective entropy density measured

by a comoving observer is

−uµS
µ = Sn− 1

2T

(
β0Π

2 + β1qµq
µ + β2πµνπ

µν
)

(4.3.2)
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which is independent of α0, α1. At equilibrium, the entropy density is at a maximum.

We proceed to set the viscous/ heat coupling to zero for simplicity. With this, the

divergence of the extended current (4.3.1) follows from the Gibbs equation (4.2.11)

and the conservation equations (4.2.1), (4.2.8) and (4.2.8):

TSα
;α = −Π

[
3H + β0Π̇ +

1

2
T

(
β0

T
uα

)

;α

Π

]

−qα

[
Dα ln T + u̇α + β1q̇α +

1

2
T

(
β1

T
uµ

)

;µ

qα

]

−παµ

[
σαµ + β2π̇αµ +

1

2
T

(
β2

T
uν

)

;ν

παµ

]
(4.3.3)

Following a similar approach as in the standard theory, we impose linear relation-

ships between the thermodynamical fluxes and forces (extended). This is the easiest

way to satisfy the second law of thermodynamics. We obtain the following constitutive

or transport equations:

τ0Π̇ + Π = −3ςH −
[

1

2
ςT

(
τ0

ςT
uα

)

;α

Π

]
(4.3.4)

τ1hα
β q̇β + qα = −κ(DαT + T u̇α)−

[
1

2
κT 2

( τ1

κT 2
uβ

)
;β

qα

]
(4.3.5)

τ2hα
µhβ

ν π̇µν = −2ησαβ −
[
ηT

(
τ2

2ηT
uν

)

;ν

παβ

]
(4.3.6)

where the relaxation times τA(ρ, n) are given by

τ0 = ςβ0, τ1 = κTβ1, τ2 = 2ηβ2 (4.3.7)

In many instances, the terms in square brackets on the right side of (4.3.4) - (4.3.6)

are omitted. This corresponds to an assumption that these terms are negligible when

compared to the other terms in the equations. With the no-coupling assumption, the

truncated equations are of covariant relativistic Maxwell-Cattaneo form:
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τ0Π̇ + Π = −3ςH (4.3.8)

τ1hα
β q̇β + qα = −κ(DαT + T u̇α) (4.3.9)

τ2hα
µhβ

ν π̇µν = −2ησαβ (4.3.10)

The evolution terms, with the relaxation time coefficients τA, are needed for causal-

ity, as well as for modelling high-frequency or transient phenomena, where ‘fast’ vari-

ables and relaxation effects are important. Frequently in the analysis of the gravita-

tional collapse of fluid spheres, the thermal relaxation time τ is ignored, since it is

usually very small in comparison with the typical time scales of collapse for gravitating

systems (for phonon-electron interaction τ ∼ 10−11 sec, and for phonon-phonon and

free electron interaction τ ∼ 10−13 sec at room temperature). However, situations arise

for which τ cannot be disregarded against the gravitational collapse. For instance, in

the cores of evolved stars, the quantum cells of phase space are filled up and the elec-

tron mean-free path increases substantially, as does τ . Furthermore, events prior to

relaxation may significantly influence the subsequent evolution of the system (i.e. for

times longer than τ). It has been shown for spherically symmetric stars with radial

heat flow, the temperature gradient which appears as a result of the perturbation, and

hence the luminosity, and highly dependent on the product of the relaxation time by

the period of the oscillation of the star.

4.4 Thermodynamics of radiating stars

We are primarily interested in heat transport in relativistic astrophysics and hence

(4.3.9) plays a significant role in determining the evolution of the causal temperature

profile of our models. For the line element (2.3.1) the causal transport equation (4.3.9)

becomes

τ(qB),t + A(qB) = −κ
(AT ),r

B
(4.4.1)
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which governs the behaviour of the temperature. Setting τ = 0 in (4.4.1) we obtain

the familiar Fourier heat transport equation

A(qB) = −κ
(AT ),r

B
(4.4.2)

which predicts reasonable temperatures when the fluid is close to quasi–stationary

equilibrium.

For a physically reasonable model, we use the thermodynamic coefficients for ra-

diative transfer outlined in Mart́ınez (1996). We consider the situation where energy

is carried away from the stellar core by massless particles that are thermally generated

with energies of the order of kT . The thermal conductivity takes the form

κ = γT 3τc , (4.4.3)

where γ (≥ 0) is a constant and τc is the mean collision time between the massless and

massive particles. Based on this treatment we assume the power–law behaviour

τc =

(
α

γ

)
T−ω , (4.4.4)

where α (≥ 0) and ω (≥ 0) are constants. With ω = 3
2

we regain the case of ther-

mally generated neutrinos in neutron stars. The mean collision time decreases with

growing temperature, as expected. For the special case ω = 0, the mean collision time

is constant. This special case can only give a reasonable model for a limited range

of temperature. Following Mart́ınez (1996), we assume that the velocity of thermal

dissipative signals is comparable to the adiabatic sound speed which is satisfied if the

relaxation time is proportional to the collision time:

τ =

(
βγ

α

)
τc , (4.4.5)

where τ (≥ 0) is a constant. We can think of τ as the ‘causality’ index, measuring the

strength of relaxational effects, with τ = 0 giving the noncausal case.

Using the above definitions for τ and κ, (4.4.1) takes the form

β(qB),tT
−ω + A(qB) = −α

T 3−ω(AT ),r

B
. (4.4.6)

34



When β = 0, we can find all noncausal solutions of (4.4.6), viz.

(AT )4−ω =
ω − 4

α

∫
A4−ωqB2dr + F (t) ω 6= 4 (4.4.7)

ln(AT ) = − 1

α

∫
qB2dr + F (t) ω = 4, (4.4.8)

where F (t) is an arbitrary function of integration. This is fixed by the expression for the

temperature of the star at its surface Σ. The above expressions for the temperature

T were first generated by Govender and Govinder (2001b) extending the model of

Govender et al (1998) on causal radiating collapse.

In the case of constant mean collision time, ie. ω = 0, the causal transport equation

(4.4.6) is simply integrated to yield

(AT )4 = − 4

α

[
β

∫
A3B(qB),tdr +

∫
A4qB2dr

]
+ F (t) (4.4.9)

while one solution valid for a less limited range of temperature can be found for ω = 4,

which corresponds to variable collision time (Govender and Govinder 2001b):

(AT )4 = −4β

α
exp

(
−

∫
4qB2

α
dr

) ∫
A3B(qB),t exp

(∫
4qB2

α
dr

)
dr

+ F (t) exp

(
−

∫
4qB2

α
dr

)
. (4.4.10)

In order to investigate the relaxational effects due to shear we utilize (4.3.10) as a

definition for the relaxation time for the shear stress. For the metric (2.3.1) the shear

transport equation (4.3.10) reduces to

τ1 =
−P

Ṗ + 8
15

r0σT 4
, (4.4.11)

where we have used the coefficient of shear viscosity for a radiative fluid (Maartens

1996b)

η =
4

15
r0T

4τ1, (4.4.12)

where P = 1
3
(pT − pR) and r0 is the radiation constant for photons. We have further

assumed that τ1 = β1τc where β1(≥ 0) is a constant. This allows for both cases where

the relaxation time-scale is greater than the collision time (β1 > 1, Maartens and

35



Triginer 1998), and the case of pertubative deviations from the quasi-stationary case

(β1 < 1). The degenerate case β1 = 0 recovers the non-causal transport law.
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Chapter 5

Thermal evolution of a radiating

anisotropic star with shear

5.1 Introduction

In this chapter we study the effects of pressure anisotropy and heat dissipation in

a spherically symmetric radiating star undergoing gravitational collapse. An exact

solution of the Einstein field equations is presented in which the model has a Friedmann-

like limit when the heat flux vanishes. The behaviour of the temperature profile of

the evolving star is investigated within the framework of causal thermodynamics. In

particular, we show that there are significant differences between the relaxation time

for the heat flux and the relaxation time for the shear stress.

It has been shown that the role of anisotropy can alter the evolution and subse-

quently the physical properties of stellar objects. As an example, investigations have

shown that the maximal surface redshift for anisotropic stars may differ drastically

from isotropic stars. The origin of anisotropy within the stellar core has received

widespread attention amongst astrophysicists. A review of the origins and effects of

local anisotropy in stellar objects was carried out by Herrera and Santos (1997a), and

Chan et al (2003) and more recently by Herrera et al (2004b). The physical processes
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that are responsible for deviations from isotropy can be investigated in the high and

low density regimes. Hartle et al (1975) have shown that pion condensation at nuclear

densities (0.2f−3 < ρ < 2.0f−3, 1f = 10−13 cm) can drastically reduce the pressure

and hence impact on the evolution of the collapsing star. At higher densities the short

range repulsion effects dominate which damp out the pionic effects giving rise to signif-

icantly different values for the pressure. As pointed out by Martinez (1996) viscosity

effects due to neutrino trapping at nuclear densities can alter the gravitational collapse

of a radiating, viscous star. Anisotropic velocity distributions and rotation can induce

local anisotropy in low density systems.

The boundary of a radiating star divides spacetime into two distinct regions, the

interior and the exterior region. In order to fully describe the evolution of such a system,

one needs to satisfy the junction conditions for the smooth matching of the interior and

exterior spacetimes. In the case of a shear-free, spherically symmetric star undergoing

dissipative gravitational collapse these conditions were first derived by Santos (1985).

Subsequently, many models of shear-free radiative collapse were developed and the

physical viability of these models were studied in great detail (Kolassis et al 1988,

Kramer 1992, Grammenos 1995, Govender et al 1998, Govender et al 1999). These

junction conditions were later generalized to include pressure anisotropy (Chan 1994)

and the electromagnetic field (Maharaj and Govender 2000).

There are a few exact solutions to the Einstein field equations for a bounded shear-

ing matter configuration. There have been numerous attempts to produce models of

radiative gravitational collapse which incorporate the effects of shear (Barreto et al

1992, Chan 2000, Herrera and Mart́inez 1998a). Most treatments to date are based on

numerical results as the resulting temporal evolution equation derived from the junc-

tion conditions is highly nonlinear (Chan 2000). It is in this spirit that we seek an

exact solution of the Einstein field equations which represents a spherically symmetric

radiating star undergoing dissipative gravitational collapse with nonzero shear.

The assumption of local isotropy in the study of objects undergoing gravitational

38



collapse is common. The fluid approximation used to describe the matter distribution

of an object implies a Pascalian character, and is supported by a large amount of obser-

vational evidence that points towards isotropy under several circumstances. However,

strong theoretical evidence suggest that for different density ranges, different kinds of

physical phenomena may occur, leading to local anisotropy. In this chapter, we inves-

tigate the role of anisotropy in the thermal evolution of a spherically symmetric star

undergoing dissipative gravitational collapse in the presence of shear.

In this treatment, we consider the relaxation effects due to the heat flux and shear

separately. We show that earlier assumptions of the relaxation time being proportional

to the corresponding collision time only hold for a limited regime of the evolution of the

star. These results agree with earlier suggestions by Anile et al (1998). We are also in a

position to integrate the causal heat transport equation and obtain the corresponding

causal temperature profile in the interior of the star.

This chapter is organized as follows. In §5.2, we provide the Einstein field equa-

tions for the most general, nonrotating, spherically symmetric line element. The energy

momentum tensor for the interior spacetime is that of an imperfect fluid with heat con-

duction and pressure anisotropy. In §5.3, we discuss the thermodynamics and physical

considerations. The general solution for the special case of constant mean collision

time in both the causal and noncausal theories are presented. A discussion of some

relevant physical parameters is presented in §5.4. The results of this chapter have been

published in Naidu et al (2006).

5.2 Radiating anisotropic collapse

We begin with the line element (2.3.1)

ds2 = −A2dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2) (5.2.1)
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and set A = 1 to obtain

ds2 = −dt2 + B2dr2 + Y 2(dθ2 + sin2 θdφ2) (5.2.2)

where the metric functions B and Y are yet to be determined. The energy-momentum

tensor is given by

Tab = (ρ + p)uaub + pgab + qaub + qbua (5.2.3)

The temporal evolution of B and Y are obtained from the junction condition (pR)Σ =

(qB)Σ which, for the line element (5.2.2) yields

[
2Y Ÿ + Ẏ 2 − Y ′2

B2
+

2

B
Y Ẏ ′ − 2

Ḃ

B2
Y Y ′ + 1

]

Σ

= 0 (5.2.4)

A particular solution of (5.2.4) is given by

Y = rt2/3 (5.2.5a)

B =

(
1 + c1(r)e

3t1/3

r

1− c1(r)e
3t1/3

r

)
t2/3 (5.2.5b)

which yields the line element

ds2 = −dt2 + t4/3




(
1 + c1(r)e

3t1/3

r

1− c1(r)e
3t1/3

r

)2

dr2 + r2dΩ2


 (5.2.6)
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With this form of the line element, the field equations (2.3.6a)–(2.3.6d) give

ρ =
4

3 t2


1 +

1

r3




r2 t
1
3

1− e
3 t

1
3

r c1(r)

+
18 t(

1 + e
3 t

1
3

r c1(r)

)3

−
3

(
r t

2
3 + 9 t

)

(
1 + e

3 t
1
3

r c1(r)

)2 +
−

(
r2 t

1
3

)
+ 3 r t

2
3 + 9 t

1 + e
3 t

1
3

r c1(r)




−
3 e

3 t
1
3

r t
2
3

(
−1 + e

3 t
1
3

r c1(r)

)
c′1(r)

r

(
1 + e

3 t
1
3

r c1(r)

)3


 (5.2.7a)

pR =
−4 e

3 t
1
3

r c1(r)

t
4
3

(
r + e

3 t
1
3

r r c1(r)

)2 (5.2.7b)

pT =
2

3 r3 t
5
3




−3 r t
1
3

(
−1 + e

3 t
1
3

r c1(r)

)2 +
r

(
2 r − 3 t

1
3

)

−1 + e
3 t

1
3

r c1(r)

+
9 t

1
3

(
3 t

1
3 c1(r)− r2 c′1(r)

)

c1(r)

(
1 + e

3 t
1
3

r c1(r)

)2 +
6 t

1
3

(
−3 t

1
3 c1(r) + r2 c′1(r)

)

c1(r)

(
1 + e

3 t
1
3

r c1(r)

)3

+
2 r2 c1(r)− 9 t

2
3 c1(r) + 3 r2 t

1
3 c′1(r)

c1(r) + e
3 t

1
3

r c1(r)
2


 (5.2.7c)

q =

4 e
3 t

1
3

r c1(r)

(
−1 + e

3 t
1
3

r c1(r)

)

r2 t2
(

1 + e
3 t

1
3

r c1(r)

)3 (5.2.7d)

for a shearing, expanding fluid in geodesic motion.
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In the absence of heat flux (c1 = 0) our model yields

Y = rt2/3 (5.2.8a)

B = t2/3 (5.2.8b)

ρ =
4

3t2
(5.2.8c)

pR = pT = 0 (5.2.8d)

The above solution represents a dust sphere and the metric is described by the Einstein–

de Sitter solution. We note that when q = 0 the pressure must vanish which allows

for the matter to have free-fall motion. For q 6= 0, the pressure is non-vanishing so

that it compensates for the outgoing heat flux thus allowing for free-fall motion. With

this in mind we expect that the luminosity radius of the star in both the radiative

and non-radiative cases should have the same temporal dependence. Calculating the

luminosity radius for our radiating model, we obtain

YΣ = bt2/3 (5.2.9)

which is independent of c1. Hence the case c1 = 0 reduces to the model investigated

by Oppenheimer and Snyder (1939).

5.3 Physical considerations

In order to check the physical viability of our model, we investigate the evolution of the

temperature profile within the framework of extended irreversible thermodynamics.
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Utilising (4.4.9) and (5.2.6) we obtain

T 4 =
L∞

(4πδY 2)Σ

+
16βc1

3αt5/3

[
e3t1/3/b

b(1 + c1e3t1/3/b)
− e3t1/3/r

r(1 + c1e3t1/3/r)

]

+
16

9αt2



log




(
−1 + c1e

3t1/3/b

−1 + c1e3t1/3/r

)2 (
1 + c1e

3t1/3/r

1 + c1e3t1/3/b

)3







+
16

3αt

[
tanh−1(c1e

2t1/3/b)− tanh−1(c1e
2t1/3/r)

]
(5.3.1)

where L∞ is given by

L∞(v) = −
(

dm

dv

)

Σ

=
(pR)Σ

2

[
Y 2

(
Y ′

B
+ Ẏ

)2
]

Σ

(5.3.2)

where
dm

dv
≤ 0 since L∞ is positive. An observer with four–velocity va = (v̇, ṙ, 0, 0)

located on Σ has proper time η related to the time t by dη = Adt. The radiation

energy density that this observer measures on Σ is

εΣ =
1

4π

(
− v̇2

r2
dm

dv

)

Σ

(5.3.3)

and the luminosity observed on Σ can be written as

LΣ = 4πr2εΣ (5.3.4)

The boundary redshift zΣ of the radiation emitted by the star is given by

1 + zΣ =
dv

dη
=

(
Y ′

B
+ Ẏ

)−1

Σ

(5.3.5)

which can be used to determine the time of formation of the horizon. The above

expressions allow us to write

1 + zΣ =

(
LΣ

L∞

) 1
2

(5.3.6)

which relates the luminosities LΣ to L∞. The redshift for an observer at infinity

diverges at the time of formation of the horizon which is determined from

Y ′

B
+ Ẏ = 0 (5.3.7)
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Figure 5.1: Causal temperature (dashed line), noncausal temperature (solid line) versus

r.
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Figure 5.2: Relaxation time for the shear stress (close to equilibrium - dashed line),

(far from equilibrium - solid line) versus r.

We note that the causal and the noncausal (β = 0) temperatures coincide at the

boundary (r = b):

T (t, b) = T̃ (t, b) (5.3.8)

However, Figure 5.1 shows that at all interior points, the causal and non-causal

temperatures differ. In particular, we observe that the causal temperature is greater

than the non-causal temperature at each interior point of the star. For small values of β,

the temperature profile is similar to that of the non-causal theory; but as β is increased,

i.e. as relaxational effects grow, it is clear from Figure 5.1 that the temperature profile

can deviate substantially from that of the non-causal theory. Similar results were
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obtained in the shear-free models studied by Herrera and Santos (1997b) and Govender

et al (1998, 1999). Also, from the plots in Figure 5.2 the relaxation time for the shear

stress exhibits substantially different behaviour when the fluid is close to hydrostatic

equilibrium as opposed to late-time collapse. In particular, we find that

(τ1)early

(τ1)late

≈ 100, (5.3.9)

emphasizing the importance of relaxational effects during the different stages of col-

lapse. We further note that while the relaxation time for the heat flux is taken to be

constant, the relaxation time for the shear stress increases as the collapse proceeds.

Making use of (2.3.1) and (5.2.5b) the proper radius can be written as

R =

∫ rΣ

0

Bdr = t2/3

∫ rΣ

0

(
1 + c1e

3t1/3

r

1− c1e
3t1/3

r

)
dr (5.3.10)

Numerical integration of (5.3.10) (with c1(r) = −1) shows that the proper radius is

a decreasing function of time. This is expected as the star is contracting and losing

mass.

5.4 Discussion

We have successfully provided an analytical model of a radiating star undergoing grav-

itational collapse with non-vanishing shear. This model has a Friedmann-like limit

when the heat flux vanishes. We further showed that the causal temperature (repre-

senting the stellar fluid out of hydrostatic equilibrium) is higher than the noncausal

temperature at all points of the star. Further analysis revealed that the relaxation

time for the shear stress (taken to be proportional to the mean collision time) increases

radially outwards, towards the surface of the star. This is expected, as the outer layers

of the fluid are cooler than the central regions. Of particular significance is the result

that the relaxation time for the heat flux (in our case taken to be constant) differs from

the relaxation time for the shear stress. This is contrary to earlier treatments where it

was assumed that (τr)heat ≈ (τr)shear (Mart́inez 1996, Herrera and Mart́inez 1998a).
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To make a more realistic comparison of the relaxation times, one requires an analytic

solution of the causal temperature equation for non-constant relaxation times. Future

work in this direction will also require the comparison of the various relaxation times

using the truncated and full transport equations.
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Chapter 6

Causal temperature profiles in

horizon-free collapse

6.1 Introduction

We investigate the causal temperature profiles in a recent model of a radiating star

undergoing dissipative gravitational collapse without the formation of an horizon. It

is shown that this simple exact model provides physically reasonable behaviour for the

temperature profile within the framework of extended irreversible thermodynamics.

The Cosmic Censorship Conjecture has continued to occupy centre stage within the

realms of relativistic astrophysics. The final outcome of the gravitational collapse of

a star is still very much open to debate with the discovery of models admitting naked

singularities (Harada et al 1998, Kudoh et al 2000). Various scenarios of gravitational

collapse have been considered in which the energy momentum tensor is taken to be

either a perfect fluid or an imperfect fluid with heat flux and anisotropic pressure

(Bonnor et al 1989, Herrera and Santos 1997a, Naidu et al 2006). It is well known that

the collapse of reasonable matter distributions always lead to the formation of a black

hole in the absence of shear or in the case of homogeneous densities. It has been shown

that shearing effects delay the formation of the apparent horizon by making the final
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stages of collapse incoherent thus leading to the generation of naked singularities (Joshi

et al 2002). In this chapter we revisit a radiating stellar model proposed by Banerjee

et al (2002), (hereafter referred to as the BCD model) in which the horizon is never

encountered. The interior matter distribution is that of an imperfect fluid with heat

flux and the exterior spacetime is described by the radiating Vaidya metric (Vaidya

1951). The junction conditions required for the smooth matching of the interior and

exterior spacetimes across a four-dimensional time-like hypersurface are solved exactly.

We present the BCD model in §6.2. In §6.3 we investigate the physical viability of

the BCD model. In particular, we analyse the relaxational effects on the temperature

profiles within the framework of extended irreversible thermodynamics. We are in a

position to obtain exact solutions to the causal heat transport equation for both the

special case of constant collision time as well as variable collision time. Our results are

in agreement with earlier thermodynamical investigations of radiating stellar models.

We find that relaxational effects enhance the temperature at each interior point of the

stellar configuration. Our investigations show that the BCD model displays physically

reasonable temperature profiles throughout the evolution of the star. We discuss the

results in §6.4. The results of this chapter have been published (Naidu and Govender

2007).

6.2 The BCD radiating model revisited

In the BCD model the following form of the metric for the interior spacetime is assumed

to be (2.3.10):

ds2 = −A2(r, t)dt2 + B2(r, t)[dr2 + r2dθ2 + r2 sin2 θdφ2] (6.2.1)

in which the metric functions A and B are yet to be determined. The energy-momentum

tensor for the interior matter distribution is given by

Tab = (ρ + p)uaub + pgab + qaub + qbua (6.2.2)
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The heat flow vector qa is orthogonal to the velocity vector so that qaua = 0. To

generate an exact model of radiative gravitational collapse the following ansatz was

adopted for the metric functions in (6.2.1)

A = a(r) (6.2.3)

B = b(r)R(t) (6.2.4)

which reduces the Einstein field equations for the interior matter distribution to

ρ =
1

R2

[
3

a2
Ṙ2 − 1

b2

(
2b′′

b
− b′2

b2
+

4b′

rb

)]
(6.2.5a)

p =
1

R2

[
− 1

a2
(2RR̈ + Ṙ2) +

1

b2

(
b′2

b2
+

2a′b′

ab
+

2

r

(
a′

a
+

b′

b

))]
(6.2.5b)

q = − 2a′Ṙ
R3a2b2

(6.2.5c)

The condition of pressure isotropy yields

a′′

a
+

b′′

b
− 2

b′2

b2
− 2

a′b′

ab
− a′

ra
− b′

rb
= 0 (6.2.6)

Since the star is radiating energy the exterior spacetime is described by the Vaidya

metric given explicitly in the form

ds2 = −
(

1− 2M(v)

r̄

)
dv2 − 2dr̄dv + r̄2(dθ2 + sin2 θdφ2) (6.2.7)

where v is the retarded time and M(v) is the exterior Vaidya mass. The junction

conditions required for the smooth matching of the interior metric (Banerjee et al

2002) and the exterior Vaidya metric (6.2.7), across a timelike hypersurface Σ, are
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given by

(rB)Σ = r̄Σ (6.2.8a)

pΣ = (qB)Σ (6.2.8b)

mΣ =

[
r3BḂ2

2A2
− r2B′ − r3B′2

2B

]

Σ

(6.2.8c)

where mΣ represents the total mass of the stellar configuration of radius r inside Σ.

Utilising (6.2.5b) and (6.2.5c) in the boundary condition (6.2.8c) yields

2RR̈ + Ṙ2 + mṘ = n (6.2.9)

where m and n are constants. A simple particular solution of (6.2.9) is

R(t) = −Ct (6.2.10)

where C > 0 is a constant of integration. As pointed out in Banerjee et al (2002), the

mass-to-radius ratio, mΣ/r̄Σ, is independent of time. A simple calculation yields

2mΣ

r̄Σ

=
2mΣ

(rB)Σ

= 2

[
C2r2

0b
2
0

2a2
0

− r0b
′
0

b0

− r2
0b
′2
0

2b2
0

]
(6.2.11)

where b(r0) = b0 and r0 defines the boundary of the stellar configuration. It is inter-

esting to note that the parameters in (6.2.11) may be chosen so that 2mΣ/r̄Σ < 1 in

order to avoid the appearance of horizon at the boundary.

6.3 Causal temperature profiles

In this section we consider the physical viability of the BCD model. In order to satisfy

the condition of pressure isotropy (6.2.6), the BCD model assumes b(r) = 1 and

A = a(r) = (1 + ξ0r
2) (6.3.1)
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The fluid volume collapse rate is

Θ =
3

A

Ḃ

B
=

3

(1 + ξ0r2)t
(6.3.2)

which is the same in both the radial and tangential directions in the absence of shear.

The proper stellar radius is given by

rp(t) =

∫ b0

0

Bdr = −Ctb0 (6.3.3)

Since the star is collapsing we require that C be positive which corresponds to −∞ <

t < 0. We further have

C2 < 4ξ0(1 + ξ0r
2
0) (6.3.4)

The Einstein field equations (6.2.5a)–(6.2.5c) reduce to

ρ =
3

t2(1 + ξ0r2)2
(6.3.5a)

p =
1

t2(1 + ξ0r2)2

[
4ξ0

C2
(1 + ξ0r

2)− 1

]
(6.3.5b)

q = − 4ξ0r

(1 + ξ0r2)2

1

C2t3
(6.3.5c)

We note that all the above thermodynamical quantities diverge as t → 0. The regularity

conditions ρ > 0, p > 0 and ρ′ < 0, and p′ < 0 together with the dominant energy

condition, (ρ−p) > 0 and the more stringent requirement (ρ+p) > 2|q| are all satisfied

when [
1− 2ξ0r

C

]2

> −2ξ0

C2
(1− ξ0r

2) (6.3.6)

We can now write

1− 2mΣ

r̄Σ

=

[
1− C2r2

0

(1 + ξ0r2
0)

2

]
(6.3.7)

We note that that when

C2 < 1/r2
0 + ξ2

0r
2
0 + 2ξ0 (6.3.8)
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the boundary surface can never reach the horizon (Banerjee et al 2002). Furthermore,

the surface redshift is given by

1 + zΣ =

(
1 + r0

b′0
b0

+ r0ḃ0

)−1

(6.3.9)

which diverges for an observer at infinity at the time of the appearance of the horizon.

For the BCD model (6.3.9) reduces to

1 + zΣ = (1− Cr0)
−1 (6.3.10)

which diverges when C = 1/r0. In order to avoid the divergence of the surface redshift

we must have

1/r2
0 < C2 < 1/r2

0 + ξ2
0r

2
0 + 2ξ0 (6.3.11)

where we have taken (6.3.8) into account. The luminosity of the star as perceived by

an observer at infinity is given by

L = −dm

dv
=

c3r3(1 + ξ0r
2 − rC)

(1 + ξ0r2)4
(6.3.12)

which is independent of time. We now turn our attention to the evolution of the

temperature profiles of the BCD model. To this end we employ the causal transport

equation for the heat flux, which in the absence of rotation and viscous stress, is given

by

τha
bq̇b + qa = −κ(DaT + T u̇a) (6.3.13)

where τ is the relaxation time for the thermal signals. For constant collision time

(ω = 0), the causal temperature profile is given by

T 4(r, t) =
8βξ0 [2(r2

0 − r2) + ξ0(r
4
0 − r4)]

αt2(1 + ξ0r2)4

+
8ξ0 [3(r2 − r2

0) + 3ξ0(r
4 − r4

0) + ξ2
0(r

6 − r6
0)]

3αt(1 + ξ0r2)4

+

(
L

4πδ

)
1

r2
0c

2t2

(
1 + ξ0r

2
0

1 + ξ0r2

)4

(6.3.14)
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Figure 6.1: Temperature profiles for constant collision time, (close to equilibrium -

solid line), (far from equilibrium - dashed line) versus r.

where L is given by (6.3.12) and δ is a constant. For ω = 4 , the causal temperature

is given by

T 4(r, t) =
8βξ0

αt2(1 + ξ0r2)3

[(
1 + ξ0r

2
0

1 + ξ0r2

)
[8 + αt(1 + ξ0r

2
0)]e

8ξ0
αt

(
r2−r2

0
(1+ξ0r2)(1+ξ0r2

0)

)

−[8 + αt(1 + ξ0r
2)]

]
+

512βξ0e
−

(
8

αt(1+ξ0r2)

)

α2t3(1 + ξ0r2)4

[
Ei

(
8

αt(1 + ξ0r2)

)

−Ei

(
8

αt(1 + ξ0r2
0)

)]
+

[
1 + ξ0r

2
0

1 + ξ0r2

]4
L

(4πδ)r2
0c

2t2
e

8ξ0
αt

[
r2−r2

0
(1+ξ0r2)(1+ξ0r2

0)

]

(6.3.15)

where the exponential integral Ei(z) is defined as

Ei(z) = −
∫ ∞

−z

e−t

t
dt (6.3.16)

We note that the noncausal temperature (β = 0) and causal temperature are equal at

the boundary (r = r0).

Figure 6.1 shows that the relaxational effects are dominant when the stellar fluid

is far from equilibrium (large values of β). In the case of variable collision time, figure

6.2, we see that the causal temperature is everywhere greater than the corresponding

noncausal temperature within the stellar interior. Furthermore, figures 6.1 and 6.2

indicate that the causal temperatures at late times (large values of β) decrease more

rapidly than the causal temperatures when the star is close to quasi-static equilibrium.
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Figure 6.2: Temperature profiles for variable collision time, (close to equilibrium - solid

line), (far from equilibrium - dashed line) versus r.

This is in agreement with the perturbative results of Herrera and Santos (1997b) as

well as the acceleration-free model studied by Govender et al (1998).

6.4 Concluding remarks

We have investigated the physical viability of the BCD model within the framework of

extended irreversible thermodynamics. We have shown that this simple model allows

us greater insight into the evolution of the temperature for different collision times.

More importantly, we were able to confirm earlier findings that the causal temperature

dominates the Eckart temperature within the stellar core, even for variable collision

time. As pointed out in earlier treatments, the constant collision time approximation

is only valid for a limited period of the stellar evolution (Naidu et al 2006). One

expects that the collision time between the particles making up the stellar fluid to

change with temperature. Such effects on the evolution of the temperature profiles were

clearly demonstrated with the variable collision time solution. It must be pointed out

that the truncation of the transport equations leads naturally to an implicitly defined

temperature law (Govender and Govinder 2001a). Such a temperature law may only

be valid for a limited period of collapse. What remains is to investigate the behaviour
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of the temperature by employing the full transport equation for the heat flux as well

as to include the effects of shear. The general framework for such an investigation

has recently been provided by Herrera and Santos (2004a) for a spherically symmetric

radiating star.
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Chapter 7

Conclusion

In this study involving the dynamics of dissipative gravitational collapse, an analytical

model for the anisotropic, shearing case was presented. The relaxation time for the heat

flux was shown to differ from that of the shear flux. In addition, it was confirmed that

the causal temperature dominates the Eckart temperature within the stellar core, even

for variable collision time. The behaviour of the temperature within the framework of

extended irreversible thermodynamics was studied. We also studied the thermodynam-

ics of a radiating star undergoing collapse, with dissipation, avoiding the formation of

a horizon. The matching conditions for spherically symmetric shearing and shear-free

line elements that match to the Vaidya line element, were generated. Future work

involves including the effects of a cosmological constant, rotation, and charge.

Previously, there was no solution to the Einstein field equations which described

the gravitational collapse of a radiating star in the presence of shear and pressure

anisotropy. Our model in chapter 5 represents the first original research in this direction

and was published in 2006. This solution was later extended by Misthry et al (2008).

The analysis of the thermodynamics of a radiating star undergoing gravitational

collapse without the formation of a horizon, was presented in chapter 6. These original

results extend the model of Banerjee et al (2002), and they have been recently published

(Naidu and Govender 2007).
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These simple models of radiative collapse make transparent the physics at play

and also serve as a check for more complicated numerical models. Radiating stellar

models studied here can also act as precursor models for the study of the nature of

the singularities found during collapse. Our models narrow the window on the initial

conditions for the study of continued gravitational collapse.
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