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Abstract 

Master of Science in Computer Engineering 

Investigating Machine- and Deep-Learning Model Combinations for a 

Two-Stage IDS for IoT Networks. 

by André van der Walt 

By 2025, there will be upwards of 75 billion IoT devices connected to the internet. Notable 

security incidents have shown that many IoT devices are insecure or misconfigured, leaving them 

vulnerable, often with devastating results. AI’s learning, adaptable and flexible nature can be 

leveraged to provide networking monitoring for IoT networks. 

This work proposes a novel two-stage IDS, using layered machine- and deep-learning models. 

The applicability of seven algorithms is investigated using the BoT-IoT dataset. After replicating 

four algorithms from literature, modifications to these algorithms' application are then explored 

along with their ability to classify in three scenarios: 1) binary attack/benign, 2) multi-class attack 

with benign and 3) multi-class attack only. Three additional algorithms are also considered. The 

modifications are shown to achieve higher F1-scores by 22.75% and shorter training times by 

35.68 seconds on average than the four replicated algorithms. Potential benefits of the proposed 

two-stage system are examined, showing a reduction of threat detection/identification time by 

0.51s on average and an increase of threat classification F1-score by 0.05 on average. In the 

second half of the dissertation, algorithm combinations, layered in the two-stage system, are 

investigated. To facilitate comparison of time metrics, the classification scenarios from the first 

half of the dissertation are re-evaluated on the test PC CPU. All two-stage combinations are then 

tested. The results show a CNN binary classifier at stage one and a KNN 4-Class model at stage 

two performs best, outperforming the 5-Class (attack and benign) system of either algorithm. This 

system's first stage improves upon the 5-Class system's classification time by 0.25 seconds. The 

benign class F1-score is improved by 0.23, indicating a significant improvement in false positive 

rate. The system achieves an overall F1-score of 0.94. This shows the two-stage system would 

perform well as an IDS. Additionally, investigations arising from findings during the evaluation 

of the two-stage system are presented, namely GPU data-transfer overhead, the effect of data 

scaling and the effect of benign samples on stage two, giving a better understanding of how the 

dataset interacts with AI models and how they may be improved in future work. 
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Chapter 1  

Research Background 

1.1 Introduction 

Mass adoption of Internet of Things (IoT) devices has resulted in anywhere between 25 and 50 

billion IoT devices currently in operation [1]. An estimated 79.4 Zettabytes of data is expected to 

be generated, by upwards of 75 billion devices, by 2025 [2], [3]. This trend is expected to proceed 

into the future and for IoT to become an increasingly pervasive part of daily life, business, health 

etc. 

As we become increasingly reliant on the services and convenience offered by these devices, more 

of our data is shared and collected by them and their creators. With use-cases in healthcare, 

personal fitness, private document storage, financial administration etc., the list of areas in which 

IoT brings value is rapidly expanding. The modern-day adage of "information is the new 

currency", is now truer than ever. 

IoT devices' wealth of information has made them prime targets for attackers and bad actors. Palo 

Alto Unit 42 [4] in its 2020 IoT Threat Report identify that 98% of IoT device traffic is 

unencrypted, with 57% of devices vulnerable to severe attacks. Unit 42 also notes that significant 

emphasis is placed on securing traditional computer systems, resulting in a lack of protection for 

custom operating system (OS) devices, such as IoT devices. 

IoT devices come in many shapes and sizes with a plethora of varying goals, capabilities, and 

limitations. This inherently presents an issue in creating standard procedures for these devices. 

What may solve a set of problems for one group of devices, is completely infeasible for millions 

of others. This rings true specifically for security. The emphasis, in many cases, on 'lightweight' 

devices means many of these devices are created with low-compute ability and cheap 

components. This opens the door for attackers to exploit these characteristics and often result in 

catastrophic breaches in security. 

Attacks based on the infamous Mirai Botnet are a perfect example of this, capable of generating 

Distributed Denial of Service (DDoS) events, generating 1.1Tbps of traffic and sustained attacks 

for days on end [5]. This is a singular example of the plethora of threats faced by IoT devices and 

network administrators. Palo Alto [4] identifies exploit attacks (scans, zero-days, SQL injection 
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etc.) as the main threat to IoT devices currently. It also warns against a move towards 'worms' 

that can propagate through a network as the new preferred method of attack. 

Network administrators face two major problems: first is the large number of false positives 

generated by traditional intrusion detection systems (IDS) and, second, the rapid evolution of the 

threat landscape, generating unique attacks at a pace that is difficult to keep up with [6], [7].  The 

learning nature of artificial intelligence (AI) can be leveraged to solve these problems where 

traditional systems may not, reducing the number of false positives while being able to detect 

unique, novel threats to the system. 

The need to use artificial intelligence in IoT for various applications has been recognised for some 

time now [8]–[12]. This must be applied to the security of these devices as well [13]. The design 

of an IDS for these devices must consider the extreme variation found in the implementation of 

IoT devices as well as the variety in network conditions, all while remaining a system capable of 

identifying and preventing unique threats. 

1.1.1 Background 

This section covers necessary background information relating to the security of IoT devices, 

including some of the attacks faced by these systems, methods of securing them and the role of 

AI in their security. 

1.1.1.1 IoT Architecture 

All IoT devices perform the following four broad tasks: receive data, collect and transmit this 

data, process gathered data and use this data to perform a task such as activating a connected 

device or providing information to the user. This is accomplished through sensors, control units, 

communication modules and power sources [13]. The model of IoT architecture has taken many 

forms over the years as research developed the topic further. One of these models is the 5-layered 

model [14]. 
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Figure 1.1: The 5-Layer IoT Architecture Model 

 

1. Perception Layer: This is the physical layer that interacts and perceives the outside 

world, using sensors and actuators to gather information about the environment and effect 

change in it. Hardware level trojans have been reported to be an effective attack vector at 

this layer.  

 

2. Transport Layer: In this layer, data is taken from the perception layer to the processing 

layer over protocols such as Wi-Fi, 3G/4G, Bluetooth etc. The wide variety of 

technologies utilised at this layer all introduce their own unique attack vectors. 

 

3. Processing Layer: This layer stores, prepares and analyses the data delivered to it as well 

as delivering services to the lower layers. 

 

4. Application Layer: This layer gives effect to the application-specific services of the 

device. This is what "is sold on the box", so to speak. Examples include smart-home 

functionality, wearables etc. 

 

5. Business Layer: This is the management layer that oversees the IoT system as a whole. 

It is used to monitor and control applications, user information and privacy, and business 

interests. 

1.1.2 IoT Networking and Security 

Understanding the network activity and protocols of IoT devices is greatly beneficial in 

understanding why and how these protocols and procedures could be, and are, abused to allow 

malicious actors undue influence over these devices. Various protocols are used at the different 

layers of the IoT device. 
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Figure 1.2: IoT Stack [13] 

 

1. IEEE 802.15.4: Approved in May 2020, this standard focusses on flexibility, low cost, 

very low power consumption and low data rate [15]. The transceiver spends most of its 

time in sleep mode and activates when communication is sensed. IEEE 802.15.4 provides 

link-layer security, meaning four basic security services are rendered: access control, 

message integrity, message confidentiality and replay protection [16]. Despite this, Raza 

et al. [17] show that there is a need to supplement the security provided by the IEEE 

802.15.4 protocol. 

 

2. 6LoWPAN: The IPv6 version of a low power wireless personal area network (LoWPAN) 

operating over IEEE 802.15.4, it is a communication network designed for applications 

in which power is a restriction. It places an adaptation layer above the 802.15.4 link layer 

to allow for IP communication [18]. Raza et al. [19] emphasise the need for an IDS as 

these networks are vulnerable to attacks from both inside and outside the network. 

 

3. RPL: Routing Protocol for Low-Power and Lossy Networks (RPL) is designed for use 

in environments similar to the IoT environment, where resources are limited. Gothawal 

and Nagaraj [20] note that an IDS designed specifically for the IoT environment is 

required to prevent attacks, such as sinkhole attacks or disabling attacks that deplete 

system resources. 

 

4. CoAP: The Constrained Application Protocol (CoAP) provides some HTTP functions in 

a constrained environment such as IoT. Security at this layer is provided by the UDP 

variant of TLS (Datagram Transport Layer Security - DTLS) [13] for which, similar to 

TLS, it is beneficial to supplement defence by means of an IDS or IPS.  

 

5. MQTT: The message Queue Telemetry Transport (MQTT) is a messaging protocol that 

was designed to allow low-powered processing and storage-limited devices to 

communicate over low-bandwidth connections. Aziz [21] shows that this protocol is 

vulnerable to attack, identifying Denial of Service as the largest threat. Aziz notes the use 
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of encryption algorithms like SSL would compromise the lightweight nature of the 

protocol. A supplementary IDS may then be a possible solution. 

A clear trend emerges when the protocols at the different layers are considered in terms of their 

security. Significant security is either impossible to introduce or doing so would compromise the 

lightweight nature of these protocols. This then points to an auxiliary solution such as an IDS, 

applied supplementary to these devices that would allow for the stack to be sustained while 

simultaneously removing many of the security risks faces by IoT devices. 

1.1.3 Threats 

The set of threats faced not only by IoT devices but computer systems in general, is vast. Their 

origins, methods and objectives result in far too many attacks to account for individually. 

Understanding these threats is paramount to creating adequate defence systems. 

1.1.3.1 External Threats 

External threats to a system consist of a wide range of attack methods, objectives and damage that 

could be caused. Generally, intrusion refers to the act of accessing digital resources/data without 

the requisite authorisation. The internet is commonly used to intrude. Some common attack types 

are: 

1.1.3.1.1 Denial of Service (Dos) Attack 

The premise of this attack is that by forcing a computing system to become too busy, it can be 

prevented from performing its intended tasks. Flooding and flaw exploitation are ways in which 

a DoS attack can be achieved [22]. 

Flooding abuses the ability of a system to respond to external communications such as servicing 

requests, responding to ICMP Packets or attempting to establish a secure connection using the 

SYN-ACK handshake. Flaw exploitation leverages a vulnerability in the target system that can 

be abused to cause a system crash or for the system to otherwise hang [22]. 

1.1.3.1.2 User-to-Root (U2R) Attack 

U2R attacks are a privilege escalation attack. A threat actor obtains the authentication details of 

a non-admin user and then, using flaws and vulnerabilities, increases the security level of that 

user to have administrator (root) privileges. This allows unfettered access to the system [22]. 
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1.1.3.1.3 Port Scanning Attack 

Port scanning uses tools such as Nmap to query the network for information regarding the ports 

used for communication. This is used primarily for reconnaissance of a target and allows for an 

attack strategy to be formulated by exposing the running services on a network, potentially 

vulnerable hosts and, sometimes, open and unprotected ports [22]. 

1.1.3.1.4 Man-in-the-Middle Attack 

In this scenario, an attacker intercepts the communication between two parties, simultaneously 

impersonating them. The attacker is then able to receive the authentic information and replace it 

with modified, potentially malicious information. The communicating parties may be completely 

unaware of the attack's occurrence [22]. 

1.1.3.2 Insider Threats 

Insider threats originate from trusted points inside the system. An example would be an employee 

of a company inadvertently allowing access to a malicious-intent threat. In some cases, insider 

threats are more dangerous than external threats as there may be very little to alert to a breach 

caused from within [23]. 

The 2020 Insider Threat Report compiled by Cybersecurity Insiders [24] shows that 68% of 

organisations surveyed feel vulnerable to insider attacks and believe that insider threats are 

becoming more frequent. Of the surveyed organisations, 53% also believe detecting insider 

threats are becoming more difficult. Furthermore, 63% believe that privileged IT professionals 

pose the highest risk. This also indicates the probability of a more sophisticated attack being 

employed. Interestingly, only 52% identify internal threats as more difficult to detect and prevent. 

This is important as it shows that, in the general sense, companies believe internal and external 

threats pose a similar level of danger. 

1.1.4 Intrusion Detection Systems (IDS) 

Intrusion Detection Systems are the systems put in place to defend against these threats. Intrusion 

Detection Systems come in many forms and are implemented a variety of ways: 

1. Host IDS: Host Intrusion Detection Systems (HIDS) are used to protect a single system 

('Host') from intrusions. Often this is accomplished by the IDS continually examining the 

log file of that system and then determining if any action or set of actions are potentially 
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dangerous or illegal. If such activity is found, the system is alerted, the activity is blocked, 

and the system administrator is alerted [22]. 

 

2. Network IDS: A Network Intrusion Detection System (NIDS) is installed at the network 

level and monitors for any unauthorized access or suspicious activity. These are the IDSs 

used to detect events such as DoS attacks, port scans etc [22]. Unfortunately, NIDSs 

suffer from a high false detection rate, both positive and negative. This makes some 

solutions unsuitable for full implementation [25]. 

 

3. Active and Passive IDS: NIDS is an active monitoring system as network activity is 

monitored in real time, whereas HIDS is passive, looking at the logs of a system which 

are generated after the fact. It is thus common practice to combine both these systems to 

give a more complete layer of security [22]. 

 

4. Signature-based: Signature-based IDS (SIDS) methods use data gathered from previous 

attacks to determine if current behaviour is malicious. The 'signature' behaviour of an 

attack is stored and used for later evaluation of new threats. This information can be 

updated with the signatures of new attacks as they become available [22]. While this 

method is extremely accurate in determining whether behaviour is malicious if it follows 

a previously known attack pattern, new attacks would not be detected [26]. This is 

obviously a huge vulnerability when using signature-based detection. 

 

5. Anomaly-based: An anomaly-based IDS (AIDS) method compares detected behaviour 

to recorded normal behaviour for a specific network or host. When an action deviates far 

enough from this measure of normalcy, an anomaly is declared and an alarm raised. This 

method has a substantial benefit and an equally substantial disadvantage. It can detect 

threats that may be completely new, not only in terms of the system, but also globally. 

Unfortunately, this method may also produce many false positives when detecting 

intrusions [22]. 

 

6. Placement: This refers to where the IDS exists on the network, being either centralised 

or distributed. A centralised IDS sits at a border node (router) and inspects traffic between 

the node and the internet. A distributed IDS is placed at the individual nodes that 

constitute the network [13]. 

 

7. Hybrid Methods: Hybrid Detection is a combination of Signature- and Anomaly-based 

methods, as well as mixed placement strategies, to counteract each other’s weaknesses 
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and create a stronger overall system. A good example of this is when an anomaly is 

detected, the pattern of the detected intrusion can be included into the dataset of a 

signature-based system [26]. Tabassum et al. [13] note that deep learning is a valuable 

tool in creating Hybrid Systems for use in IDS as it would otherwise be impractical to 

cater to all scenarios individually. 

1.1.5 AI, ML and DL 

A clear distinction should be made between the terms artificial intelligence, machine learning and 

deep learning as they are often used interchangeably but comprise different concepts. Figure 3 

provides a graphical overview of these concepts. 

 

Figure 1.3: Machine- and Deep-Learning Algorithms 

1. Artificial Intelligence (AI): The exact definition of artificial intelligence has been a 

source of debate since nearly the inception of the term. A common definition is 'to make 

machines/computers think as humans do'. Even this is an extremely wide net cast over 

the field which has diverged into a great multitude of disciplines each with a different 

focus. The term AI will not be used in any specific capacity to refer to a set of algorithms 

or methods in this work. Instead, machine learning and deep learning will be considered, 

both of which are branches of AI. 

 

2. Machine Learning (ML): When referring to ML in this work, it will refer specifically 

to traditional, statistics-based algorithms such as Naïve Bayesian Classifiers (NB), 

Random Forest (RF), Support Vector Machines (SVM) etc. In other words, algorithms 

explicitly concerned with classification based on known features learned from training 

data [26]. ML is also referred to as shallow learning, in some cases to show the contrast 

between it and deep learning [27]. More examples of shallow learning algorithms can be 

seen in Figure 3. 

 

3. Deep Learning (DL): Deep Learning, as opposed to ML, refers specifically to the use of 

a neural network used to simulate the human brain. Examples of these algorithms include 



Research Background  9 

 

 

 

Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Long-Short 

Term Memory (LSTM). More examples of deep learning algorithms can be seen in Figure 

3. Typically, deep learning models require a large set of data, does not require as much 

data pre-processing as ML but requires significantly more processing power, usually from 

a Graphics Processing Unit (GPU), and will take longer than most ML algorithms [26]. 

1.1.5.1 Supervised and Unsupervised Learning 

Supervised learning refers to the use of labelled data to train models to classify data into defined 

groups or to accurately predict outcomes of given input. Significant pre-processing is usually 

required when implementing supervised learning as an appropriate 'feature vector' should be 

utilised to obtain the best results. Feature vectors are often generated through a 'feature selection' 

process or algorithm. 

Unsupervised learning utilises unlabelled data to cluster similar datapoints, effectively generating 

its own classes. As there is less human intervention in the training process due to no labels being 

attached to the data, it is considered 'unsupervised'. These algorithms are often capable of finding 

correlations between data that may not be apparent to humans. 

1.1.5.2 Application of Machine- and Deep-Learning in Security 

From the previous sections, it is easy to envision where the evolving nature and flexibility 

provided by AI may be useful in cybersecurity applications. The dynamic nature of the field 

demands a system that can adapt in order for it to be acceptably secure. The adaptability of AI 

also allows for good integration with standard IDSs. For example, an AI decision engine can be 

used to determine if an anomaly in an IDS is malicious and if it is, add it to the data for a signature-

based IDS. As such, most implementations of machine/deep learning are hybrid IDS’ [26]. 

1.1.6 Datasets 

Along with the ever-increasing need for enhanced cybersecurity comes the need for increased 

research conducted in the field. For this, data is needed. As collecting data on a per-study basis is 

infeasible, the sheer number of datasets (and in some cases, their respective sizes) are astounding. 

Table 1.1 identifies some of the common datasets used in literature: 
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Table 1.1: Common Datasets 

Dataset Year Attack Types Details 

NSL-KDD 2009  DoS, Probe, R2L and U2R  Created to solve some of the 

shortcomings of the KDD cup 99 set, 

namely: removing redundant and 

duplicate records and making the 

dataset more reasonable in terms of 

size [25], [28].   

UNSW-

NB15  

2015  Fuzzers, Analysis, Backdoors, 

DoS, Exploits, Generic, 

Reconnaissance, Shellcode 

and Worms  

Contains real and synthetic network 

activity and threats [29]. 

CICDDoS-

2019  

 

2019   DDoS  Contains very recent attack 

methodologies [30]. 

CICIDS-

2017  

2017  Brute Force FTP, Brute Force 

SSH, DoS, Heartbleed, Web 

Attack, Infiltration, Botnet and 

DDoS  

Data was collected over a five-day 

period, generating 2,800,000 

datapoints with 85 features [31].   

CSE-CIC-

IDS2018  

2018 Brute-force, Heartbleed, 

Botnet, DoS, DDoS, Web 

attacks, and insider infiltration  

Created to solve many of the problems 

that pervade the field of IDS research 

(low dataset availability, out-of-date 

attack scenarios, privacy concerns 

etc.)  [31]. 

Bot-IoT  2018  DDos, Dos, OS and Service 

Scan, Keylogging and Data 

exfiltration  

Contains normal and bot-net traffic 

[32]. 

1.1.6.1 NSL-KDD Dataset 

This dataset builds on the KDD Cup 99 dataset. It was created to solve some of the shortcomings 

of the KDD Cup 99 set, namely: removing redundant and duplicate records and making the dataset 

more reasonable in terms of size [25], [28]. Despite being an improved set, it is common for both 

the KDD Cup 99 and NSL-KDD sets to be used together when evaluating performance [33]. 
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1.1.6.2 UNSW-NB15 Dataset 

Created by the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS), this dataset 

contains real and synthetic network activity and threats. The 100 GB of captured data contains 

nine attack types (Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, 

Shellcode and Worms) [29]. 

1.1.6.3 CICDDoS2019 Dataset 

Created by the Canadian Institute for Cybersecurity (CIC), this dataset aims to address the 

shortcomings of other DDoS datasets as identified by the authors. A large focus of this dataset is 

that it contains very recent attack methodologies in an attempt to allow for the creation of equally 

modern detection algorithms [30]. 

1.1.6.4 CICIDS2017 Dataset 

The Canadian Institute for Cybersecurity released this dataset in 2017. Focusing on network 

intrusion detection, the data was collected over a five-day period, generating 2,800,000 datapoints 

with 85 features from attacks such as Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web 

Attack, Infiltration, Botnet and DDoS [31], [34]. 

1.1.6.5 CSE-CIC-IDS2018 Dataset 

Created through a collaboration between the Communications Security Establishment (CSE) and 

the Canadian Institute for Cybersecurity (CIC), this dataset was created to solve many of the 

problems pervading the field of IDS research (low dataset availability, out-of-date attack 

scenarios, privacy concerns etc.). The dataset (over 400 GB in size) contains seven attack 

scenarios (Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and insider infiltration) 

with over 80 features extracted [31]. 

1.1.6.6 Bot-IoT Dataset 

This dataset was created by the Cyber Range Lab of The Center of UNSW Canberra Cyber. 

Containing normal and botnet traffic, the dataset is created from 69.3 GB of captured network 

traffic with the focus on IoT traffic. The types of attacks included in the dataset are: DDos, Dos, 

OS and Service Scan, Keylogging and Data exfiltration [32]. 
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1.2 Research Objectives 

This section details the current state of research available in literature where the use of AI-based 

Intrusion Detection Systems is considered for use in IoT networks and systems. The shortcomings 

are identified, and proposed work and improvements to address these shortcomings are 

introduced. 

1.2.1 Current State of IoT Intrusion Detection Systems using AI 

The use of AI for creating IDS’ designed specifically for use in IoT networks is a field that is not 

as well explored as that of IDS’ for traditional computer systems [35]. A key reason for this is the 

poor utilisation of appropriate datasets when designing IDS’ for IoT [36]. Many authors prefer to 

use older, inappropriate datasets that often do not contain modern attack prototypes or IoT traffic 

as these older datasets are more widely studied and provide a ‘benchmark’. As pointed out in 

earlier sections, the rapid evolution of the threat landscape makes the use of an appropriate dataset, 

such as the BoT-IoT dataset, an absolute necessity. Furthermore, it is reasonable to assume that 

even this dataset’s worth will diminish over time and revisions and/or newer datasets will have to 

be generated. 

The work in which appropriate, recent datasets are utilised is limited. Considering work in which 

the BoT-IoT dataset is used, it is commonly the case that the dataset is modified using 

oversampling techniques such as Synthetic Minority Oversampling Technique (SMOTE) [9] or 

extremely small subsets are used to balance the classes. There is very little work that considers 

the data as it was presented by its authors, Koroniotis et al. [32]. 

Literature regarding the use of AI-based IDS’ mostly focusses on finding a single, ‘best’ model 

to detect and classify attacks [8]–[11], [32], [33], [35], [37]. Often this work is also limited in the 

range of algorithms considered. However, it is common to see that in many of these works, deep 

learning algorithms provide substantial time and classification metric benefits over machine 

learning methods. Guizani and Ghafoor [37] note the flexibility of neural networks and propose 

their use over traditional machine learning methods. 

Clearly, the use of AI to defend and protect against threats in IoT networks is well supported in 

literature. Furthermore, the need for more advanced approaches in the form of distributed and 

combination-based systems has also been identified as a possibly advantageous solution [13]. An 

important observation of the work performed by Ferrag et al. [33] is that some algorithms are able 

to detect different attacks with better accuracy than others. This points to a possible layered 

solution, in which various algorithms can be leveraged in specific scenarios to provide optimal 
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results. A similar conclusion is reached by Susilo and Sari [11], proposing a hybrid ML/DL 

system. 

Very little work investigates layered approaches to this problem where the additional restrictions 

of the dataset and IoT environment are also considered. Khraisat et al. [38] use a C5 SIDS to 

separate known and unknown attacks. Unknown attacks are then classified as attack or normal 

traffic by a One Class SVM (OCSVM) at the second stage. Bovenzi et al. [39] instead uses their 

first stage to detect attack traffic and then classify the attack at the second stage. A modified Deep 

Autoencoder (DAE) is used at the first stage with a RF classifier at the second. Ullah and 

Mahmoud [40] follow a similar methodology to Bovenzi et al. but use a Decision Tree at the first 

stage. In all cases, the authors show that the proposed layered system provides significant benefit 

over a single-stage system. 

The focus of the research in this dissertation is to propose and investigate a system that addresses 

the need for security in IoT networks while being applicable in resource-constrained 

environments. This system leverages the learning and adaptive nature of machine- and deep-

learning methods to identify and classify malicious traffic in an IoT network. Specifically, seven 

(three machine learning and four deep learning) algorithms are evaluated for, and in, a two-stage 

system using the BoT-IoT dataset. 

1.2.2 Proposed Work and Improvements 

The work performed in this dissertation can be divided into three broad sections. The first is to 

investigate and compare the performance of various machine- and deep-learning models in 

different malicious traffic classification scenarios. Using the BoT-IoT dataset, the performance 

of algorithms and their relative strengths are investigated to gauge their suitability for the 

subsequent sections of work to be performed. This work places emphasis on deep learning 

methods due to their identified benefits over traditional machine learning methods. 

Secondly, this work will design and propose a two-layer intrusion detection system to provide 

benefits in terms of time and classification metrics. The objective of this system is to meet the 

evolving security requirements of IoT networks and systems while remaining aware of the unique 

conditions and constraints of these networks and systems. This means identifying areas where 

redundancy can be reduced and considering the requirements at different stages of the system. 

Finally, this work will investigate and evaluate the proposed system in terms of its efficacy and 

performance, using relevant metrics, such as time, F1-score, and false positive rate. Using the 

design from section two and the models implemented in section one, the proposed system can be 

fully realised and interrogated. This will explore the data flow through the system, the intricacies 
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of its operation and the interactions of the stages with each other. The performance benefit over 

single-stage systems can then be examined in greater detail. 

1.3 Contributions 

The research conducted in the preparation of this dissertation has contributed directly to two 

research articles. The title, authors, article type, publication status and a brief summary of each 

article is provided. 

Article 1 

Title Two-Stage IDS for IoT Using Layered Machine- and Deep-Learning Models 

Authors André van der Walt, Tahmid Quazi and Brett van Niekerk 

Type Journal Article 

Status Under Review at Cyber-Physical Systems (ISSN: 2333-5785) 

Summary An investigation of the applicability of various algorithms for use in a proposed 

two-stage system is presented. Using the BoT-IoT dataset, seven different 

(machine learning and deep learning) algorithms are applied. Similar works in 

literature have explored the application of augmentation techniques to balance the 

dataset as well as advanced feature selection techniques before applying the 

classification algorithms. Unlike such investigations, this work applies 

classification algorithms to an unmodified dataset and feature vector as proposed 

by the dataset authors. Furthermore, modifications of these algorithms’ 

application, with the objective of obtaining improved efficiency, are explored 

along with their ability to classify in three scenarios: 1) binary attack/benign, 2) 

multi-class attack type with benign samples and 3) multi-class attack only. The 

modifications made to the application of the algorithms (where it varies from 

literature) are shown to have a positive effect on the results, achieving higher F1-

scores than the four original Neural Network algorithms by an average of 22.75% 

and shorter training times relative to the base system by an average of 35.68 

seconds. Furthermore, the potential benefits of an implemented two-stage system 

are examined, showing a potential reduction of threat detection/identification time 

of 0.51s on average and a potential increase of threat classification F1-score by 

0.05 on average. 
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Article 2 

Title Investigating Machine- and Deep-Learning Model Combinations for a Two-Stage 

IDS for IoT Networks 

Authors André van der Walt, Tahmid Quazi and Brett van Niekerk 

Type Journal Article 

Status Under Review at Sensors (ISSN: 1424-8220) 

Summary Using the BoT-IoT dataset, the work in this paper investigates the performance of 

the algorithm combinations, layered in the two-stage system, as proposed in the 

previous work. Stage one determines if a network flow is malicious or benign. 

Malicious flows are then classified at stage two into DDoS, DoS, Scan or Theft 

attack categories. The first stage, binary classification performance of the 

algorithms is explored and compared in terms of classification and time metrics. 

The algorithms are then evaluated for multi-class classification of the attack types, 

and all two-stage combinations are tested. The results show a system consisting of 

a CNN binary classifier at stage one and a KNN 4-Class model at stage two 

performs best, beating the 5-Class system of either algorithm that classifies attack 

and benign classes. This system's first stage improves upon the 5-Class system's 

classification time by 0.25 seconds. Importantly, the benign class F1-score is 

improved by 0.23, indicating a significant improvement in false positive rate. The 

two-stage system achieves an overall F1-score of 0.94. The observed performance 

gains provided by using a two-stage system align broadly with the proposed 

benefits predicted in the previous work, showing the two-stage system would 

perform well as an IDS. Additionally, investigations arising from findings during 

the evaluation of the two-stage system are also discussed, namely GPU data-

transfer overhead, the effect of data scaling and the effect of benign samples on 

stage two, providing a better understanding of how the BoT-IoT dataset interacts 

with AI models and how these models may be improved in future work. 
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2.1 Abstract 

The ever-growing integration of Internet-of-Things (IoT) devices into our daily lives provides us 

with a level of convenience never seen before. However, as with most computer systems that deal 

with sensitive information, as IoT devices do, they must be secure. With billions of devices 

forming the IoT network, many low-powered and incorrectly configured, they are vulnerable to 

a myriad of attacks. The effects of attacks on these devices can be devastating. The discrete, low-

powered nature of IoT devices makes their security a difficult problem to solve. The objective is 

to detect these threats before they can cause damage. To do this, we turn to machine-learning-

based Intrusion Detection Systems (IDS) that can detect malicious traffic. This work proposes a 

two-stage detection and classification system using layered machine- and deep-learning models. 

An investigation of the applicability of various algorithms for this purpose is presented. Using the 

BoT-IoT dataset, seven different (machine learning and deep learning) algorithms are applied. 

Similar works in literature have explored the application of augmentation techniques to balance 

the dataset as well as advanced feature selection techniques before applying the classification 

algorithms. Unlike such investigations, this work applies classification algorithms to an 

unmodified dataset and feature vector as proposed by the dataset authors. Furthermore, 

modifications of these algorithms' application, with the objective of obtaining improved 

efficiency, are explored along with their ability to classify in three scenarios: 1) binary 

attack/benign, 2) multi-class attack type with benign samples and 3) multi-class attack only. The 

modifications made to the application of the algorithms (where it varies from literature) are shown 

to have a positive effect on the results, achieving higher F1-scores than the four original Neural 

Network algorithms by an average of 22.75% and shorter training times relative to the base system 

by an average of 35.68 seconds. Furthermore, the potential benefits of an implemented two-stage 

system are examined, showing a potential reduction of threat detection/identification time of 0.51s 

on average and a potential increase of threat classification F1-score by 0.05 on average. It is thus 

evident that a two-stage system such as the one proposed has potential benefit in the IoT context 

and is a viable tool to be explored further. 
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2.2 Introduction 

It is estimated that there is anywhere between 25 and 50 billion IoT devices currently in operation 

[1]. As we introduce more and more devices into this connected web and become more reliant on 

them, we are entrusting these devices, and their creators, with increasingly concerning amounts 

of data. Ranging from personal health and well-being to administrative and financial data, we are 

becoming more connected not just with each other, but with our devices. Many say information 

is the new currency, usually followed by the phrase "if it's free, you are the product". Data theft, 

infiltration and disabling (or otherwise preventing these devices from functioning) can all have 

devastating consequences for individuals and companies using IoT devices. 

A key aspect of IoT devices in many cases is to make them as low-powered and cheap as possible. 

This unfortunately also becomes one of the largest drawbacks of these devices in terms of 

security. With many security solutions being too 'heavy' for the IoT space, exploring any and all 

ways of improving computing efficiency of security solutions is paramount to ensuring viability. 

Lax security configuration, little-to-no standardisation and constant internet connectivity make 

IoT devices easy targets for threat actors. A proven favourite of these attackers are Distributed 

Denial-of-Service (DDoS) attacks. Attacks such as those based on the Mirai Botnet can be 

especially difficult to counter and have devastating consequences, being able to hit up to 1.1Tbps 

of traffic and sustained attacks for days on end [2]. Attacks based on the Mirai botnet are just one 

facet of a slew of challenges faced by these systems daily. These include information theft, 

keylogging, zero-days, etc. 

Previous work has clearly shown the benefit of using artificial intelligence to detect these attacks 

[3]–[7]. The dynamic nature of the field demands a system that can adapt for it to be acceptably 

secure. The adaptability of AI also allows for good integration with standard IDSs. The 

application of machine learning/deep learning (ML/DL) in an IDS for the IoT environment is not 

as well explored as IoT's more fully featured computer counterparts [8]. 

2.3 Related Works 

Calderon [9] explores the benefits of AI in cybersecurity, specifically in terms of IDPS (Intrusion 

Detection and Prevention Systems). Noting two specific problems, the use of Botnets to launch 

DDoS attacks and the large number of false positives generated by IDS's, Calderon shows that 

the adaptable, 'learning' nature of ML/DL solves these problems.  

Kumar and Kumar [10] note that the rapid evolution of attacks leads to a lack of signatures of 

novel attacks to use with traditional Signature-based IDS's. This, along with the thousands of false 

positive alarms daily, present a massive challenge for network administrators. AI-based IDS 
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techniques are proposed as a solution due to their "flexibility, adaptability, new pattern 

recognition, fault tolerance, learning capabilities, high computational speed, and error resilience 

for noisy data." 

Lazic [11] looks at the real-world implications of using AI in IDS's. 64% of organisations reported 

a reduction in costs due to the use of AI to detect threats, with an average saving of 12%. 

Furthermore, time taken to detect threats and breaches was reduced by 12%. This shows the 

benefits of AI in threat detection extend beyond the academic, hypothetical realm. 

IoT security is not a new topic and thus has several pieces of work dedicated to moving the field 

forward from which knowledge can be garnered. Tabassum et al. [12] investigate the recent 

approaches in creating appropriate IoT Threat Detection Systems. They note specifically the 

threat posed by DDoS attacks due to the large number of IoT Devices used today. They draw 

several very pertinent conclusions from their review. Chief among these is the need for an 

advanced, combinatorial, and distributed approach. They identify the use of ML/DL nearing a 

point of absolute necessity, however bringing with it a major challenge due to the resource 

intensive nature of its operation. Very importantly, they note that ML is unsuitable in some cases 

for detecting variations of attacks that DL may be able to detect, pointing out that DL may be the 

best direction in the future. 

Vinayakumar et al. [13] explored the accuracy of a Deep Neural Network (DNN) on several 

datasets (KDDCup99, NSL-KDD, UNSW-NB15, WSN-DS, CICIDS2017, Kyoto), as well as 

comparing this to several ML algorithms (Logistic Regression, Naive Bayes, K-Nearest 

Neighbours, Decision Tree, AB, RF, SVM-rbf). The results show that different algorithms detect 

different attack methods with varying accuracy. Importantly, some cases of classical ML 

outperforming the DNN were observed. Again, this reinforces the idea that a one 'catch-all' 

solution does not exist, and that the optimal solution may rather be found by combining several 

algorithms. In general, it was found that the DNN outperformed the classical ML algorithms. 

They note the limitations found in many datasets which do not represent real-world traffic. 

Liang et al. [3] look at the various hyperparameters of a Deep Neural Network (DNN) model used 

to classify IoT traffic. Although using the NSL-KDD dataset (which does not contain IoT Traces), 

the researchers found that an Adamax Optimizer and ReLU activations perform best. 

Looking more specifically at work conducted with the BoT-IoT dataset: Ferrag et al. [14] utilised 

both the CSE-CIC-IDS2018 and Bot-IoT datasets. using multiple deep learning models. They 

classified these into two sets of models: deep discriminative models (Deep Neural Network, 

Recurrent NN, Convolutional NN) and generative/unsupervised models (Restricted Boltzmann 

Machine, Deep Belief Network, Deep Boltzmann Machine, Deep Autoencoder). The study 

expanded beyond just testing the overall accuracy of each dataset and included the accuracy of 
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each model in detecting different attack types. This provides the very interesting conclusion, 

similar to [13], that different models are able to detect various attacks with different accuracy. 

This indicates that no one optimal algorithm will outperform all others. Rather, multiple layers of 

detection may be necessary to achieve the best results. They found that, generally, the Deep 

Autoencoder performed best in the IDS2018 dataset, and the CNN performed best in the BoT-

IoT dataset. 

Susilo and Sari [6] use the BoT-IoT dataset to examine the efficacy of various learning algorithms 

(Random Forest, Convolutional Neural Network, Multi-Layer Perceptron) and varying hyper-

parameters (Batch size and epochs). The authors found that RF performed best overall and that, 

for large batch sizes, accuracy increases with epochs for the CNN and MLP. Noting this speed-

up, they propose a hybrid system of ML and DL techniques. 

Alsamiri and Alsubhi [8] investigate the implementation of machine learning algorithms for 

detecting cyber-attacks in an IoT context, explicitly. They use the BoT-IoT dataset's raw traffic 

files with features extracted using the CICFlowMeter tool and curated using a random forest 

regressor. Seven different ML algorithms are applied to classify the ten different attacks contained 

in the dataset. The results show that KNN performs best of all the algorithms with an F1-score of 

0.99 but has a significantly longer training time than the other algorithms (nearly double that of 

the next slowest).  

Guizani and Ghafoor, [15] noting the flexibility provided by neural networks over traditional 

machine learning algorithms, propose a Recurrent Neural Network Long-Short Term Memory 

(RNN-LSTM) Model for threat detection. Using the BoT-IoT dataset and the Keras Python 

Library, they perform dimensionality reduction on the feature vector and hyper-parameter tuning. 

The highest accuracy reported is 85% when classifying 10 classes. 

Ge et al. [5] perform a comparison between a ML (Support-Vector Classifier) and DL (Feed-

forward Neural Network) algorithm applied to the BoT-IoT Dataset. The authors note that using 

a sufficiently large sample size, the ML algorithm can outperform the DL algorithm in terms of 

accuracy metrics but does so at the cost of being "more than an order of magnitude slower" than 

the DL algorithm. They conclude that it is thus more efficient to make use of a DL algorithm. 

Soe et al. [4] look at the Bot-IoT dataset's DDoS category. Noting the massive class support 

disparity, they use SMOTE to bolster the Benign Class to equal weight of the DDoS Class (477 

Records to 1.9 million Records). They conclude that the imbalance in the dataset is a large 

problem in detection accuracy and F1-score, and that using SMOTE successfully reduces this 

problem, moving the F1-score from 0.99 to 1.00 on a simple Neural Network. 
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Koroniotis et al. [16] authored the BoT-IoT dataset and details some experiments on it in the 

paper accompanying the dataset. First identifying the shortcomings (chiefly the lack of IoT traces 

in most other datasets), the authors describe the data capture procedure, the features extracted by 

the Argus client program and generated features. The authors also explore the importance of 

dimensionality reduction. The ten most valuable features are identified, and they propose a 5% 

subset of the data to be used for training and testing purposes. Using the proposed 5% subset, the 

authors applied SVM, RNN and Long-Short Term Memory models for classification of the data. 

The authors achieve very good results with all three models (88% accuracy - worst case (SVM), 

99% accuracy - best case (RNN and LSTM)). These models will serve as the base systems for the 

work performed in this paper. 

Multi-stage AI systems used to detect attacks are not common, especially in IoT. Khraisat et al. 

[17] propose a two-stage model to detect threats using the BoT-IoT dataset. The first stage is a 

C5 SIDS phase used to identify known attacks, and to separate known attacks from unknown 

attacks. The second stage is a One-class Support-Vector Machine trained on benign samples to 

detect abnormal behaviour. Using Information Gain to select the feature set they obtained the 

following results: 0.957 F-measure and 94% accuracy in stage one, classifying the 5 attack 

classes. 0.927 F-measure and 92.5% accuracy in stage two, classifying benign and malicious 

traffic. The combined result gives an overall F-measure of 0.957 and 99.97% accuracy. It should 

be noted that the authors used a modified subset of the data to create more balanced classes, using 

only a few thousand entries as opposed to the few million contained in the dataset. 

Ullah and Mahmoud [18] propose a two-level model to detect anomalous traffic. First detecting 

anomalous traffic and then determining the type of attack in levels one and two, respectively. 

Using the CICIDS2017 and UNSW-NB15 datasets as inputs to the model, and Recurrent Feature 

Elimination and Synthetic Minority Oversampling Technique to bolster the minor classes, the 

authors achieve a perfect F1-score in both binary datasets (using a decision tree) barring a 0.99 

F1-score for UNSW-NB15 anomaly traffic. For multi-class (an Edited Nearest Neighbours 

algorithm), 1.00 and 0.97 F1-scores were achieved for CICIDS2017 and UNSW-NB15 

respectively. 

The same authors [19] later propose another two-layer system and evaluate it with the BoT-IoT 

dataset. The first layer classifies an input flow as anomalous or normal, while the second layer 

classifies the category or subcategory of a flow labelled as anomalous by the first layer. Notably, 

the second layer is trained to also classify benign flows. This is repeated work as benign and 

malicious flows were already classified in the first layer. A decision tree was used for layer one 

and a RF classifier for layer two. The authors achieve a 99.99 F1-score for the Binary 

classification and an average of 99.80 and 98.80 for 5-Class (Category) and 11-Class 
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(subcategory) F1-score. The work performed by these authors does not look at any other 

algorithms or possible combinations. No deep learning models are considered either. Thus, one 

of the aims of this work will be to examine a wider variety of algorithms, both machine- and deep-

learning. 

As pointed out by Singh and Kumar [20], there is a tendency in the field to use outdated and 

unrealistic datasets in the name of 'benchmarking'. Considering the rate of progress in this and 

related fields, this is untenable. It is for this reason that datasets such as BoT-IoT are important to 

this and future work, especially with respect to IoT threat detection. This work utilises the BoT-

IoT dataset to ensure that it is representative of modern attack vectors and traffic signatures. 

The work of Koroniotis et al. [16] in which the dataset is described, and from which the base 

system of this work is derived, is limited in terms of its application of ML/DL models to the 

dataset and can be expanded upon. Considering the work performed with the BoT-IoT dataset in 

literature, several authors make use of re-sampling or other augmentation techniques to balance 

out the classes of the dataset instead of using the original class weights of the dataset.  

It is uncommon to see work in literature that focusses on the applicability of DL methods when 

investigating IDS’ for IoT networks. Many papers will identify them as important avenues for 

exploration in identifying means of securing systems, but they are rarely investigated in the IoT 

context. This is even more so the case when two-stage systems are considered literature [17]–

[19]. This work includes four deep learning models in its investigation. 

The performance metrics used to measure the efficacy of such an unbalanced dataset are also 

extremely important. For example, the 'accuracy' metric becomes much less important if the 

classes are extremely imbalanced as is the case with the BoT-IoT dataset. The 'recall', 'precision' 

and 'F1-score' metrics would in this case be much more representative of performance. 

Additionally, understanding the computational requirements of a system designed for potentially 

resource-constrained devices is also important. This work evaluates the performance of the 

investigated algorithms not only on their F1-score but also considers the associated time metrics 

to give insight into the relative computational performance of the considered algorithms. Table 

2.1 summarises the limitations of closely related works in literature, namely those that look at 

multi-stage IDS’ for use in IoT. 

Table 2.1: Limitations of Related Work 

Related 

Work 

Summary Limitations 

Khraisat et al. 

[17] 

This work proposes a two-stage 

system with a C5 SIDS at the first 

The chief limitation of this work 

stems from its lack of consideration 
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stage followed by a OCSVM at the 

second. Attacks are first separated 

into known and unknown signatures 

and then classified further at the 

second stage. The system achieves a 

0.957 F-Score. 

of other algorithms for use in the 

two-stage system. No deep learning 

models are considered, and 

significant emphasis is placed on the 

‘accuracy’ metric. No computational 

or time metrics are considered when 

judging performance. 

Ullah and 

Mahmoud 

[18] 

The authors propose a two-layer 

system in which traffic is first 

determined to be benign or 

malicious after which malicious 

traffic is classified into attack types. 

The authors do not use the BoT-IoT 

dataset but achieve a 1.00 and 0.97 

F-score in two other recent datasets. 

A major shortcoming of this work is 

not using a dataset containing IoT 

traces despite aiming to develop a 

system for IoT networks. 

Furthermore, only two algorithms 

are considered. Time or computation 

metrics are also not considered. 

Ullah and 

Mahmoud 

[19] 

The authors here extend their idea 

from the previous work, utilising the 

BoT-IoT dataset. A DT is used at the 

first stage with a RF classifier at 

stage 2. The system achieves 0.9999, 

0.9980 and 0.9880 F-scores for 

binary, 5-class and 11-class 

classification respectively. 

While an appropriate dataset is used 

here, as opposed to [19], it is again 

the case that only two algorithms are 

investigated, neither of which are 

deep learning models. Similar to 

[19], time and computation metrics 

are again not considered. 

 

This work contributes to the literature by investigating the applicability of seven different 

machine- and deep-learning algorithms in a proposed two-stage system for detecting and 

classifying attacks in the IoT environment. The algorithms are applied to the unmodified and 

unaugmented BoT-IoT dataset as described by the dataset authors to maintain the original class 

weights. The ability of these algorithms to classify the binary attack/benign traffic as well as 5-

Class attack and benign traffic and 4-Class attack-only traffic is also considered. Modifications 

are made to the application of the algorithms to the dataset and their effects are interrogated, 

seeking performance improvements in terms of time and classification metrics. This investigation 

will provide insight to the feasibility of a proposed, two-stage system. 

The contribution of this paper is therefore as follows: 

• Proposing a two-stage intrusion detection system is for an IoT network. 
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• Evaluating the applicability of various algorithms (ML and DL) for a two-stage detection 

system. 

• Expanding the work performed with the BoT-IoT dataset by evaluating various ML/DL 

algorithms on an unmodified and unaugmented BoT-IoT dataset in different classification 

scenarios. 

The paper, following this point, is organised as follows: Section 3 presents the proposed system. 

Section 4 details the experimental setup, dataset and tools used as well as a discussion of some 

choices made before commencing with the work. Section 5 documents the experimental work 

performed, and the results obtained at the various stages of the experiment, showing a logical 

flow between the sections as the work progressed. Section 6 is used to discuss the results obtained 

in the previous section. Section 7 is the conclusion, followed by recommendations for future work. 
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2.4 Proposed System 

 

Figure 2.1: Proposed Two-Stage System UML Diagram 

 

The proposed system in Figure 2.1 shows the flow of data through the system. The first stage 

performs the data clean-up and preparation of the packet capture data for the binary classification. 

The output of this stage is a binary classification of 'Benign' or 'Attack'. If the traffic is 'Benign', 

the packet is permitted and passed on to the next step in the network. If the traffic is an 'Attack', 

it is passed on to the second stage of the system. 

At the second stage, a multi-class classification is performed. Here the flow can be classified as 

DDoS, DoS, Scan or Theft attacks. Since the flow is already known to be malicious at this stage, 

the system does not have the possibility to classify traffic as 'Benign' as the system proposed by 

[19] does. This should result in a more efficient system as work is not repeated. After the 

classification, the packet can be saved for later review and training and dropped from the network. 
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Beyond the operation of the system, the continuous learning of such a system would be paramount 

to its success and maintained reliability. The dashed lines and boxes in Figure 2.1 show branches 

where flows may be fed back into the underlying models to train on new data. This can be based 

on the labels assigned at stage one and two for unsupervised learning or admin assigned/approved 

labels from review of the packets for supervised learning. 

2.4.1 Stage Positions 

 

Figure 2.2: Proposed Two-Stage System in IoT Network 
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Figure 2.2 illustrates the location of the stages of the proposed system in the IoT stack. The first 

stage is placed at the network layer as the incoming flows are inspected by the system before 

being passed or dropped. This stage can either be physically located on a host IoT device or a 

gateway device depending on the network conditions and compute capability of the devices in the 

network. The second stage exists further up the stack, where the data collected by the system can 

be further classified. This second stage would likely be implemented on a dedicated IDS server 

or a more powerful gateway node. 

2.5 Experimental Setup 

2.5.1 BoT-IoT Dataset 

For this work, the BoT-IoT dataset was selected as it is both very recent and contains the IoT 

traces necessary to create a system designed specifically for the IoT environment. Kororniotis et 

al., the authors of the dataset, further propose a 5% (3 million records, 1.07 GB) subset of the data 

to allow for easier handling [16]. Further to this, the ten most important features are selected by 

the dataset authors. 

Table 2.2: BoT-IoT 10 Best Features [16] 

Feature Description 

Seq Argus sequence number 

Stddev Standard deviation of aggregated records 

N_IN_Conn_P_SrcIP Number of inbound connections per source IP 

Min Minimum duration of aggregated records 

State_number Numerical representation of feature state 

Mean Average duration of aggregated records 

N_IN_Conn_P_DstIP Number of inbound connections per destination IP 

Drate Destination-to-source packets per second 

Srate Source-to-destination packets per second 

max Maximum duration of aggregated records 

 

Table 2.3: Description of the 5% BoT-IoT Subset 

Class Count Sum 

Train Test 

Benign 370 107 477 

Attack DDoS 1 541 315 385 309 1 926 624 
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DoS 1 320 148 330 112 1 650 260 

Reconnaissance 72 919 18 163 91 082 

Theft 65 14 79 

Total 2 934 817 733 705 3 668 522 

 

This 5% subset, using the proposed 10-best features, is used in this paper. 

2.5.1.1 Imbalance 

A crucially important feature of the dataset, paramount to its usage, is that it is severely 

imbalanced. Attack traffic constitutes 99.99% of the dataset and of this attack traffic, DDoS and 

DoS attacks comprise a high percentage of this attack traffic. This imbalance makes the dataset 

difficult to utilise without balancing during pre-processing. 

2.5.1.2 Pre-processing 

The pre-processing of the 5% subset of data was very light as it merely required some data 

cleaning and enumeration. However, an important decision taken in this work is to not augment 

the dataset as many other researchers have done. While the appeal of a balanced dataset is clear, 

and in many cases beneficial, the objective of this work is to examine the capability of the various 

algorithms on the dataset as it was presented. Thus, no balancing techniques such as SMOTE, 

were used. 

2.5.2 Tools 

All experiments were conducted on a Windows 10 PC. The PC has the following specifications: 

• CPU: Intel Core i7-10700k (8C/16T) @ 4.9GHz 

• Memory: 64GB DDR4-3200 CL16 

• GPU: Nvidia GeForce RTX 2070 Super 

To create the experimental environment and models, the Anaconda Python 3 Distribution was 

used. For all deep-learning models, Keras (with a TensorFlow 2 backend) was used. For machine-

learning, Scikit-Learn was used. 



Two-Stage IDS for IoT Using Layered Machine- and Deep-Learning Models  33 

 

 

 

2.5.3 Performance Evaluation 

Due to the imbalance of the dataset, F1-score will be used as the main evaluation metric derived 

from the Confusion Matrices. Generally, this metric is most important in cybersecurity 

applications [21].  

Table 2.4: Confusion Matrix 

 Predicted Positive Predicted Negative 

Labelled Positive True Positive (TP) False Negative (FN) 

Labelled Negative False Positive (FP) True Negative (TN) 

 

F1-score is given by 2 ∗ 𝑇𝑃/(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃), this is the harmonic mean of precision and 

recall.  

Additionally, the performance of each system must be evaluated in terms of its computational 

requirements. As these models are implemented on a test system and considering the wide variety 

of devices for which such a system may be used, computational requirements may be evaluated 

through examination of time metrics. By comparing time metrics when different models are run 

on identical hardware, we gain an insight into relative performance of the models to one another. 

2.6 Comparison and Investigation of Algorithms for the Two-Stage System 

The objective of this section is to determine the viability of, and compare, various machine- and 

deep-learning algorithms for the two-stage system to detect attacks from a dataset with IoT traces 

proposed in Section 3. The work of Alsamiri and Alsubhi [8] and the work of Koroniotis et al. 

[16] are of particular interest in this case. From the results of these papers, specific algorithms 

and implementation steps were selected to be replicated, as well as additional algorithms to be 

introduced to expand upon this work. 

Koroniotis et al. [16] discuss the intricacies of their proposed BoT-IoT dataset, exploring the 

significant features from the extracted data, a proposed standard training and testing subset and 

three algorithms used to evaluate the threat detection of each, using the dataset. The pre-

processing steps, model architectures and parameters are also presented. Alsamiri and Alsubhi 

[8] similarly perform this work, focussing on different machine learning algorithms. 

The proposed system consists of binary classification followed by a more granular multi-class 

classification. As such, the models are tested in three classification scenarios. The binary scenario 

looks only at attack or benign classification. The 4-Class seeks only to classify the attack types 

and is not classifying any benign traffic. The 5-Class model discriminates between DDoS, DoS, 

Scans, Theft and Benign Traffic. The 5-Class model serves as the base from which the other 
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models are built as it allows for comparisons to be made to related work as well as a comparison 

to the two-stage system. 

2.6.1 Replication and Verification 

As a starting point to the planned experiment, it was decided to replicate the implementations of 

Koroniotis et al [16]. Using the proposed 5% subset and the identified 10 best features, the SVM, 

RNN and LSTM networks were replicated.  

 

Figure 2.3: RNN Binary Classification Network 

 

 

Figure 2.4: LSTM Binary Classification Network 

 

Figures 2.3 and 2.4 show the replicated architecture implementation of the Binary Classifiers. The 

results obtained by running these models and the SVM are documented along with their multi-

class counterparts. The confusion matrices of the Binary Classifiers are also given. This can be 

seen in Tables 2.5 and 2.6(a-c): 
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Table 2.5: Replication (Epochs = 4, Batch = 100) Results 

Algorithms Accuracy 
F1-

score 

Weighted F1-

score 

Training 

Time 

Classification 

Time 

RNN Bin 99.9850% 0.61 1.00 331.26s 11.22s 

LSTM Bin 99.9879% 0.72 1.00 363.31s 12.82s 

SVM Bin 99.9862% 0.55 1.00 2.93s 0.05s 

RNN 5-Class 97.3418% 0.81 0.97 326.85s 11.44s 

LSTM 5-

Class 
97.3538% 0.75 0.97 358.56s 12.94s 

SVM 5-Class 83.6295% 0.42 0.83 138.31s 0.04s 

 

Table 2.6: Replication Binary Classification Confusion Matrices 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 15 92 

Attack (1) 18 733580 

(a) RNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 6 101 

Attack (1) 0 733598 

(c) SVM Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 35 72 

Attack (1) 17 733581 

(b) LSTM Binary Classification Confusion 

Matrix 

 

 

 

The model architectures described by Koroniotis et al. [16] for the neural nets are well 

documented. However, some choices such as the activation functions for the hidden and output 

layers are not discussed and seem arbitrarily chosen. Interestingly, the confusion matrices used to 

represent the classification performance of the models show 477 benign samples in the test set. 

This implies that the training samples were used in testing as well as the total of the benign 

samples in both the training and testing 5% subsets is 477. This would significantly skew the 

results and invalidate them. As can be seen from Tables 2.5 and 2.6(a-c), the results obtained 

through replication of the work performed by the dataset authors yield significantly different 

results but does show a similar trend in terms of model performance relative to the other 

algorithms implemented. 

Note in Table 2.5 the 'F1-score', 'Training Time' and 'Classification Time' columns as these will 

be the main points of comparison used throughout the paper. Table 2.6(a-c) shows the confusion 

matrices of the different algorithms applied to the binary classification scenario. The binary 
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classification confusion matrices will also be used for comparison throughout the work 

performed. It is clear that LSTM performs best here with the highest true positive rate for normal 

traffic and smallest false positive rate for attack traffic. This is also seen in the work of Koroniotis 

et al. [16] where their implementation of an LSTM network also outperformed (in terms of F1-

score using the 10-best feature vector) the other models, with SVM performing the worst. 

2.6.2 Modification 

Following the results obtained during the replication stage, it was decided to investigate the 

discrepancy by means of finding the parameters needed to attain the accuracy reported by the 

authors [16]. 

2.6.2.1 Modification: Categorical Target Vector (Epochs = 4, Batch = 100) 

The first attempt was to experiment specifically with the way the target vector was handled by 

the binary models. This was done by changing the class vector of integers into a binary class 

matrix. The results of these changes are shown in Tables 2.7 and 2.8(a-b). 

Table 2.7: Categorical Target Vector Modification (Epochs = 4, Batch = 100) Results 

Algorithm Accuracy 
F1-

score 

Weighted F1-

score 

Training 

Time 

Classification 

Time 

RNN (Bin) 99.9848% 0.61 1.00 324.23s 11.66s 

LSTM (Bin) 99.9868% 0.76 1.00 365.82s 12.77s 

 

Table 2.8: Categorical Target Vector Modification Confusion Matrices

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 15 92 

Attack (1) 19 733579 

(a) RNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 52 55 

Attack (1) 42 733556 

(b) LSTM Binary Classification Confusion 

Matrix 

Table 2.7 illustrates this change did not yield significant benefit, only showing a small 

improvement in the F1-score of the LSTM network and a small decrease in training time for the 

RNN. Table 2.8(a) shows no changes outside margin of error, while Table 2.8(b) shows an 

improvement in the TP rate of normal traffic and a worse FP rate in attack traffic compared to the 

base models. This is still, however, a net improvement compared to the replicated models. 
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2.6.2.2 Modification: Activation Functions (Epochs = 4, Batch = 100) 

The next modification examines the activation functions used at the various layers. More 

specifically, the activation functions of the input and hidden layers were changed from tanh to 

ReLU, and the output layer activation function was changed from sigmoid to SoftMax. The 

change of activation function was also applied to the models which had already been modified in 

the previous section. The results are recorded in Tables 2.9 and 2.10(a-d): 

Table 2.9: Activation Function Modification (Epochs = 4, Batch = 100) Results 

Algorithms Accuracy 
F1-

score 

Weighted F1-

score 

Training 

Time 

Classification 

Time 

RNN Bin  99.9854%   0.50   1.00   341.92s   11.56s 

LSTM Bin  99.9854%   0.50   1.00   368.43s   12.83s 

RNN Bin (Cat)  99.9898%   0.78   1.00   338.32s   12.19s 

LSTM Bin 

(Cat)  99.9893%   0.73   1.00   364.66s   13.42s 

RNN 5-Class  97.1103%   0.84   0.97   309.21s   12.07s 

LSTM 5-Class  95.7923%   0.66   0.96   347.14s   13.41s 

 

Table 2.10: Activation Function Modification Confusion Matrices

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 0 107 

Attack (1) 0 733598 

(a) RNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 47 60 

Attack (1) 15 733583 

(c) RNN Binary Classification Confusion 

Matrix (Categorical) 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 0 107 

Attack (1) 0 733598 

(b) LSTM Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 32 75 

Attack (1) 3 733595 

(d) RNN Binary Classification Confusion 

Matrix (Categorical) 

These modifications returned some notable results. First, looking at the binary classification in 

Table 2.9, it can be seen that when the target vector has not been modified, the models fail to 

classify the non-attack traffic. However, when the target vector is changed into a binary class 

matrix, an improvement in the F1-score of the RNN is observed. A slight dip in the F1-score of 

the LSTM is also noted. 
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For the multi-class classifiers, a slight increase in the F1-score of the RNN and a decrease in the 

F1-score of the LSTM network are noted. However, this is also accompanied by a decrease in 

training time. 

Tables 2.10(a) and 2.10(b) show that the use of the new activation function made the models 

predict all traffic as attack traffic. Conversely, Tables 2.10(c) and 2.10(d) show that the ReLU 

activation, combined with a categorical target vector, provides a net improvement in TP and FP 

rates relative to the replicated models. 

2.6.3 Additional Algorithms and Attack-only Classification 

Based on the results of the previous section, it was decided to continue with the modified version 

of the models, both regarding the target vector and activation functions. The next step was to start 

tuning the hyper-parameters of these models. The tuning focused mainly on the batch size and 

number of epochs. 

From the results of [8], it was decided to also implement a RF and KNN on this data. In addition, 

a Convolutional Neural Network and a Deep Neural Network were also introduced. The decision 

to implement these models are supported by the results of [14] and [6] for CNN, and [13] and [3] 

for DNN. 

From this, the 4-Class model was implemented (the second stage classifier). This system ignores 

benign traffic and only looks at the four attack classes. 

The final hyperparameter options were 100 epochs at a batch size of 5000. As a matter of 

comparison, the model architecture was maintained and not made any deeper or shallower. The 

results can be found in Tables 2.11 and 2.12(a-g): 

Table 2.11: Final Implementation Results 

Algorithms Accuracy 
F1-

score 

Weighted F1-

score 

Training 

Time 

Classification 

Time 

DNN Bin  99.9985%   0.97   1.00   281.06s   9.44s 

CNN Bin  99.9974%   0.96   1.00   294.75s   14.13s 

RNN Bin  99.9981%   0.97   1.00   288.87s   12.13s 

LSTM Bin  99.9961%   0.94   1.00   307.42s   13.29s 

SVM Bin  99.9862%   0.55   1.00   2.93s   0.05s 

RF Bin  99.9898%   0.73   1.00   250.44s   2.49s 

KNN Bin  99.9989%   0.98   1.00   1695.29s   55.04s 

DNN 5-Class  97.5711%   0.93   0.98   257.11s   10.52s 

CNN 5-Class  97.7132%   0.94   0.98   293.07s   14.94s 

RNN 5-Class  97.5243%   0.94   0.98   333.48s   12.41s 

LSTM 5-Class  97.4660%   0.95   0.97   307.47s   13.07s 

SVM 5-Class  83.6295%   0.42   0.83   138.31s   0.04s 

RF 5-Class  92.2151%   0.56   0.92   261.08s   3.86s 
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KNN 5-Class  99.0624%   0.97   0.99   1683.04s   55.37s 

DNN 4-Class  97.7151%   0.97   0.98   252.47s   10.43s 

CNN 4-Class  97.8938%   0.97   0.98   289.71s   14.73s 

RNN 4-Class  97.6148%   0.97   0.98   286.00s   12.57s 

LSTM 4-Class  97.4794%   0.96   0.97   302.17s   13.25s 

SVM 4-Class  84.8457%   0.54   0.85   139.09s   0.05s 

RF 4-Class  90.2681%   0.69   0.90   259.91s   3.59s 

KNN 4-Class  99.0785%   0.98   0.99   1448.17s   53.89s 

 

Table 2.12: Final Implementation Confusion Matrices 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 101 6 

Attack (1) 5 733593 

(a) DNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 102 5 

Attack (1) 9 733589 

(c) RNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 6 101 

Attack (1) 0 733598 

(e) SVM Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 104 3 

Attack (1) 5 733593 

(g) KNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 98 9 

Attack (1) 10 733588 

(b) CNN Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 105 2 

Attack (1) 26 733572 

(d) LSTM Binary Classification Confusion 

Matrix 

True\Predict Normal 

(0) 

Attack (1) 

Normal (0) 32 75 

Attack (1) 0 733598 

(f) RF Binary Classification Confusion 

Matrix 

 

 

 

 

 



 

40 

 

 

2.7 Results Discussion 

Table 2.13: Metric Improvements: Modified vs Replicated 

Algorithm  
F1-score 

Improvement  

Training Time 

Improvement  

Classification Time 

Improvement 

RNN Bin   0.36   42.39s   -0.91s 

LSTM Bin   0.22   55.89s   -0.47s 

SVM Bin   0.00   0.00s   0.00s 

RNN 5-Class   0.13   -6.64s   -0.97s 

LSTM 5-Class   0.20   51.09s   -0.13s 

SVM 5-Class   0.00   0.00s   0.00s 

 

The final set of results in Tables 2.8 and 2.9(a-g), and summarised in Table 2.13, clearly shows 

that modifications performed (using a categorical target vector, ReLu and SoftMax activation 

functions, and increased batch sizes and epochs) throughout the course of the experiment yielded 

significantly better results. By using a SoftMax output function paired with a categorical target 

vector (for which SoftMax is usually applied), improvement is observed as is to be expected in a 

categorical situation. Furthermore, the use of ReLU (which is less computationally intensive than 

tanh) allows for more epochs without significant penalty to training and classification times. 

Disregarding the SVM model, which saw no change, the other two models showed clear 

improvements in F1-score. Similarly, training time decreased substantially in all cases, barring a 

small increase in training time for the one-stage 5-Class RNN. Considering the substantially larger 

number of epochs, this is very good. The main negative aspect of the obtained results lies in the 

longer classification time, albeit almost negligible amounts. Again, considering the gains in F1-

score and training time, this appears to be a worthwhile trade-off. 

As noted previously, the imbalanced nature of the data makes the F1-score the most important 

metric in determining the efficacy of a model. Using this, paired with training time, some 

interesting observations become apparent when considering the additional algorithms introduced. 

Firstly, the k-Nearest Neighbours algorithm with k=3 performed the best of all the algorithms. 

Unfortunately, this comes at a significant performance penalty. KNN takes five-and-a-half times 

longer than the next longest-running algorithm for binary classification. A similar ratio is true for 

the 5- and 4-Class systems. Naturally, a balance should be sought between computation time and 

accuracy. Fortunately, the DNN implementation in all cases performs similarly but is able to 

complete much faster. The accuracy result is echoed by the confusion matrix of the DNN when 

comparing it to that of the KNN implementation. 
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It should also be noted that the architecture of the models as proposed by Koroniotis et al. [16], 

and modified in this paper, are unorthodox in terms of the composition of the hidden layers. It is 

possible that more complex models may be able to perform even better than these modified 

versions. 

Table 2.14: Proposed Two-Stage System Benefits 

Algorithm Classification Time Benefit F1-score Benefit 

DNN 1.08s 0.04 

CNN 0.6s 0.02 

RNN 0.28s 0.03 

LSTM -0.04s -0.01 

SVM -0.01s 0.13 

RF 1.37s 0.17 

KNN 0.33s 0.01 

(a) Stage one: Classification Time Benefits: Binary vs 5-Class 

 

Algorithm Classification Time Benefit F1-score Benefit 

DNN 0.09s 0.04 

CNN 0.21s 0.03 

RNN -0.16s 0.03 

LSTM -0.18s 0.01 

SVM -0.01s 0.12 

RF 0.27s 0.13 

KNN 1.48s 0.01 

(b) Stage one: Classification Time Benefits: 4-Class (attack-only) vs 5-Class 

 

Table 2.14 (a-b) shows the proposed performance benefits of the two-stage system when 

compared to a single-stage system. At stage one, binary classification is performed to minimise 

the load on the IoT device that the stage is deployed on. Thus, the classification time benefit is of 

highest import here. Table 2.14(a) illustrates that there is indeed a noticeable decrease in time 

required to classify for most algorithms. This indicates reduced computational load, meaning this 

stage could be used in lower compute-power devices and conditions. Further to this, there is also 

a F1-score benefit observed. This would potentially reduce the number of false positives 

generated by the two-stage system compared to a system that classifies attack and benign traffic 

(5-Class). 

Table 2.14(b), similarly, looks at the potential benefits of stage two. Here, the emphasis is on 

accurate classification of the attack type and classification speed is less important. An 

improvement in the F1-score of the 4-Class attack-only classifier is observed when compared to 

the attack and benign 5-Class system. This indicates a potential improvement in the proposed 

system as a whole to accurately classify flows when compared to a single-stage 5-Class model. 
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The promising results here make a strong case for the proposed system to be considered for 

deployment as an efficient IDS for practical IoT implementations.  

2.8 Conclusion 

In this paper, a two-stage system is proposed and considered for an IoT network. This two-stage 

system offers time and classification metric improvements when compared to a single-stage 

detection and classification system. Furthermore, we examine the algorithms applicable to such a 

system. By applying these algorithms in multiple scenarios and with various modifications, a 

"best" algorithm for each scenario can be identified. Notably, the use of an unmodified 

(unbalanced) BoT-IoT dataset to allow for the traffic to be as close as possible to that which was 

recorded is useful for simulating a real-world environment. First, the work of Koroniotis et al. 

[16] was replicated as a base and point of comparison. The results of that implementation 

prompted the modification of the implementation. These modifications included experimenting 

with activation functions and target vector composition. Finally, once optimal modifications had 

been found, tuning was conducted on the epochs and batch size to optimise for F1-score and 

training/classification time. 

The final results showed the KNN implementation with k=3 performed best in terms of F1-score 

but took significantly longer to train than the other models. The next best-performing models 

(considering F1-score and time metrics) were Neural Network implementations (Binary - DNN, 

5-Class - LSTM, 4-Class - CNN), all with similar training and classification times. Pair this with 

evidence from the literature, and Neural Networks are shown to be the best approach for threat 

detection. 

The results obtained in the investigation of these algorithms - when viewed through the lens of 

the proposed two-stage system - are promising. The proposed two-stage system would result in a 

decreased load on the devices on which the first stage is deployed, as it is shown that the time 

(and thus, computation) requirements of the classification is reduced by 0.51s on average. 

Furthermore, increased accuracy is expected when classifying attacks in the second stage as F1-

score gains of 0.05 on average are observed when compared to a 5-Class attack and benign 

system. 

The work performed in this paper is not without limitations. Firstly, it was performed on a test 

system which is not necessarily representative of a system on which the IDS as proposed may be 

implemented. It is also possible that different and/or better results may be achieved if the models 

used are implemented and tuned differently (different hyperparameters, different architectures 

etc.). Finally, the potential benefits of implementing the two-stage system as described are 

theoretical as the system is not implemented at this stage. 
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This work only focusses on a small aspect of a much larger goal which is creating safer, more 

robust IoT networks. Future work should study the performance of an integrated two-stage system 

using the machine- and deep-learning models proposed in this paper. Additional work can also 

be done to further enhance the benefits to be had at the individual stages of such a system by 

further reducing computation requirements of the first stage and further improving the 

classification capability of the second stage. 
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3.1 Abstract 

Rapidly evolving, novel attacks and large false positive rates make securing IoT devices, that are 

already resource constrained in many situations, a significant challenge for network 

administrators. AI can provide tailored security to the unique conditions and threats found in IoT 

networks. Previous work investigated the applicability of seven different ML and DL algorithms 

for use in a two-layer IDS system. This work investigates the performance of various algorithm 

combinations of the two-stage system. Stage one determines whether network traffic is malicious, 

and stage two classifies malicious traffic into DDoS, DoS, Scan or Theft categories. The 

performance is evaluated for the stage one binary classification, stage two multi-class 

classification, and then all algorithm combinations for the multi-layer system. The results show 

that a CNN binary classifier at stage one and a KNN 4-Class model at stage two performs best. 

Malicious traffic classification time is improved by 0.25 seconds and the benign class F1-score is 

improved by 0.23, indicating significantly improved false positive rates. The system achieves an 

overall F1-score of 0.94 which, along with the other metrics, shows that the system would perform 

well as an IDS and improves in the crucial areas of attack detection and false positive rates over 

a single-stage AI system. Additional investigations arising from findings are presented, namely 

GPU data-transfer overhead, data scaling impact and the effect of benign samples on stage two, 

giving insight into how the dataset interacts with AI models and how these models may be 

improved in future work. 
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3.2 Introduction 

The world has seen large-scale adoption of Internet-of-Things (IoT) devices over the last couple 

of years, resulting in record amounts of traffic moving across global networks with an estimated 

79.4 Zettabytes of data expected to be generated by upwards of 75 billion devices by 2025 [1]–

[3]. This trend is expected to proceed into the future and for IoT to become an increasingly 

pervasive part of daily life, business, health etc. Their rapid adoption has made them a massive 

target for attackers and bad actors. Palo Alto Unit 42 [4] in its 2020 IoT Threat Report identifies 

that 98% of IoT device traffic is unencrypted with 57% of devices vulnerable to severe attacks. It 

further identifies a lack of security systems designed for IoT as existing systems are designed for 

conventional computer systems but neglect custom-Operating System (OS) devices. 

IoT devices, because of their extremely wide array of use-cases and varying implementations 

make standardization of protocols for these devices very difficult, especially in terms of security. 

This is compounded by their, in many cases, low compute ability. These circumstances allow 

catastrophic and, often, far-too-easy breaches in security. Perhaps the most infamous attack in 

this regard are attacks based on the Mirai Botnet, resulting in Distributed Denial-of-Service 

(DDoS) events capable of generating 1.1 Tbps of traffic and sustained attacks for days on end [5]. 

This is just one of the many threats faced by IoT devices. Palo Alto [4] identifies exploit attacks 

(scans, zero-days, SQL injection etc.) as the main threat to IoT devices. It notes a move towards 

worms that can propagate through the network as the new preferred method of attack. 

Along with Botnet DDoS attacks, the large number of false positives generated by traditional 

Intrusion Detection Systems (IDS) and rapid attack evolution are a challenge for network 

administrators [6], [7]. Previous work has shown the use of artificial intelligence (AI) to be 

effective in detecting these attacks [8]–[12]. The need to use AI in IoT for various applications 

has been recognized for some time now. It is evident that this must be applied to the security of 

these devices as well [13]. Any system designed for this purpose must acceptably account for the 

wide variety of possible implementations and network conditions as well as the capability of the 

devices that constitute that network and the unique threats faced. 

3.3 Related Works 

Previous work in literature has examined how to best defend against and prevent these threats, 

leveraging the capabilities of learning approaches. 

Koroniotis et al. [14], the authors of the BoT-IoT dataset, identify the shortcomings in most other 

datasets as the lack of IoT traces. The authors describe the data capture procedure, the features 

extracted by the Argus client program and generated features that constitute the BoT-IoT dataset. 
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After identifying the ten most "valuable" features, they propose a 5% subset of the data to be used 

for training and testing purposes. Using this subset, Support Vector Machine (SVM), Recurring 

Neural Network (RNN) and Long-Short Term Memory (LSTM) models are evaluated. The 

authors achieve very good results with all three models: 88% accuracy with the SVM and 99% 

accuracy with the RNN and LSTM models. 

Alsamiri and Alsubhi [15] interrogate the use of machine learning (ML) algorithms for detecting 

threats in an IoT environment. They use the BoT-IoT dataset's raw traffic files and extract features 

using CICFlowMeter. They apply seven ML algorithms to classify ten different attack categories. 

It is shown that K-Nearest Neighbors (KNN) performs best in terms of F1-score, achieving a 0.99 

score, but takes significantly longer in time metrics (almost twice as slow as the next slowest 

algorithm). 

Hussain et al. [16] seek to address shortcomings in exiting solutions' attack detection rate. The 

authors here propose a two-stage system, consisting of a SVM anomaly detection first stage with 

an Artificial Neural Network (ANN) misuse detection second stage, evaluated with the NSL-

KDD [17] dataset. The authors find that the two-stage system outperforms single stage systems, 

with a 99.95% detection accuracy and 0.2% false positive rate. 

Kaja et al. [18] attempt to address the problem of excessive false positives common in many IDS'. 

The authors propose a two-stage detection system and evaluate using the KDDCUP99 [19] 

dataset. The first stage detects the presence of an attack using unsupervised learning, with the 

second stage classifying the attack using supervised learning. A K-Means algorithm is employed 

at the first stage with multiple ML algorithms tested at the second stage. The authors identify the 

J48 algorithm as the best performer with no false positives and a 0.999 F1-score. 

Khraisat et al. [19] propose a two-stage model, using a C5 Signature-IDS (SIDS) first stage to 

separate known and unknown attacks. The second stage is a One-Class SVM anomaly detection 

model. Using the BoT-IoT dataset and Information Gain feature selection, a 0.957 F-measure and 

94% accuracy is achieved at stage one, classifying the 5-attack classes. A 0.927 F-measure and 

92.5% accuracy is achieved in stage two, classifying benign and malicious traffic. The combined 

result gives an overall F-measure of 0.957 and 99.97% accuracy. The authors used data balancing 

techniques to address the imbalance in the dataset, using only a few thousand entries as opposed 

to the few million contained in the dataset. 

Ullah and Mahmoud [20] propose a two-stage system, detecting anomalies at stage one and then 

classifying the attack type at stage two. The authors use the CICIDS2017 [21] and UNSW-NB15 

[22] datasets, Recurrent Feature Elimination and Synthetic Minority Oversampling Technique to 

address imbalance. The authors achieve a perfect F1-score for binary classification in nearly all 
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cases using a decision tree, barring a 0.99 F1-score for UNSW-NB15 anomaly traffic. Using an 

Edited Nearest Neighbors algorithm for multi-class classification, 1.00 and 0.97 F1-scores were 

achieved for CICIDS2017 and UNSW-NB15 respectively. 

Bovenzi et al. [23] propose a two-stage hierarchical Network-IDS (NIDS) which is then evaluated 

with the BoT-IoT dataset. The first stage detects anomalous traffic with the second classifying 

any identified attacks. The anomaly detecting first stage leverages a modified Deep Autoencoder, 

dubbed M2-DAE. In the second stage, Random Forest (RF), Naive Bayes (NB) and Multi-Layer 

Perceptron (MLP) are investigated. It was found that Random Forest performed best at the second 

stage, yielding a system F1-score of 0.9761. 

Ullah and Mahmoud [24] again propose a two-layer system to detect and classify attack traffic. 

The BoT-IoT dataset is used here for evaluation. The first layer performs binary classification of 

anomalous or normal flows, with the second layer classifying the category or subcategory of flows 

identified as anomalous. The second layer is, however, trained to also classify benign traffic where 

this work was already performed at the first stage. Stage one uses a decision tree for binary 

classification, achieving a 99.99 F1-score. The second stage uses a RF classifier and achieves an 

average of 99.80 and 98.80 for 5-Class (Category) and 11-Class (subcategory) F1-scores. 

Van der Walt et al. [25] propose a two-stage system, detecting attacks at stage one and classifying 

them into categories at stage two. The authors explore seven ML and DL algorithms, looking at 

their ability to classify in binary (attack/benign), 4-Class (attack classes only) and 5-Class (attack 

classes and benign) scenarios to determine their viability for use in the proposed system. The 

BoT-IoT dataset is used. The authors found that, aside from KNN, which was removed for having 

excessive time penalties when classifying, the best performing algorithms for binary, 4-Class and 

5-Class were Deep Neural Network (DNN), LSTM and Convolutional Neural Network (CNN) 

respectively. The authors here stop short of testing the integrated model and draw conclusions 

from the individual results only. Potential F1-score improvements of 0.05 on average and time 

metric improvements of 0.51s on average are shown to be possible, using the suggested 

algorithms in the proposed model. 

Table 3.1: Comparison of Related Works 

Work 
IoT 

IDS 

BoT-IoT 

Dataset 
ML DL 

Multi-

layer 
Notes 

Koroniotis et al. [14] X X X X   

Alsamiri and Alsubhi [15] X X X    

Hussain et al. [16]   X X X  

Kaja et al. [18]   X  X  
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Khraisat et al. [19]

  
X X X  X 

 

Ullah and Mahmoud [20] X  X  X  

Bovenzi et al. [23] X X X  X  

Ullah and Mahmoud [24] X X X  X  

Van der Walt et al. [25] 

X X X X X* 

*This work does not 

investigate an integrated 

system and only considers the 

theoretical benefits of a two-

stage system. 

This Work X X X X X  

 

Related works that investigated the use of AI-based IDS’ for IoT networks and systems are often 

only single-stage systems and do not consider the potential benefits of layering multiple 

algorithms [14,15]. The work of this paper will investigate how these algorithms can be utilised 

collaboratively to produce a superior system compared to current state-of-the-art single-stage 

systems. 

Much of the work investigating these two-stage systems does not consider their applicability in 

the IoT environment, despite the potential advantages in such computationally constrained 

devices. When these systems are investigated for this purpose, work is often conducted with 

inappropriate datasets for the types of threats commonly faced by IoT networks [6,14] or only 

one or two algorithms are investigated, rarely including Deep Learning (DL) algorithms among 

those. The work presented in this paper addresses this by investigating seven different algorithms 

- three machine learning algorithms and four deep learning algorithms. 

The research of Ullah and Mahmoud [24], which inspired this work, is limited in the algorithms 

considered. The authors consider only one algorithm at each stage and no deep learning 

algorithms are evaluated while there is clear evidence of their benefits over traditional and ML 

methods [13]. Furthermore, Ferrag et al. [26] show that different algorithms are able to classify 

various attack types with differing accuracy, presenting the case for a wider array of algorithms 

to be considered when such a system is designed. This paper considers seven algorithms, 

investigating all possible combinations in the two-stage system, to identify a best-case system. 

The system proposed by Ullah and Mahmoud repeats work at the second layer that was already 

done in the first. Their second stage classifier is also allowed to classify a flow as benign traffic. 

Given a sufficiently accurate first stage classifier, this work can be avoided and allows the second 

stage system to be less restricted in terms of time metrics. This allows the system more time to 

classify attack types as all attack traffic at this stage would have been identified and need not pass 
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to the rest of the network. The system examined in this work foregoes this redundant operation at 

the second stage for the sake of lessening the computational requirements of the system where 

possible. 

The previous work of this paper's authors [25] describes a proposed system that addresses some 

of the identified shortcomings in other works. Using the BoT-IoT dataset, the proposed system 

performs binary (attack/benign) classification at the first stage and only classifies attack types at 

the second stage. Additionally, seven algorithms (4 DL, 3 ML) are suggested and investigated for 

applicability. The aim of this paper is to investigate the practicalities of implementing the system 

and testing algorithm combinations where they were not considered in [25]. 

This work contributes to literature by testing the effectiveness of a proposed two-stage IDS in an 

IoT network. Necessary steps between the system's stages are first identified, followed by 

homogenizing the test environment and re-running some of the experiments done in [25] to give 

an accurate comparison of their performance and ability. A discussion of the processing overhead 

introduced by data transfer to a Graphics Processing Unit (GPU) (as done in [25]) follows, 

demonstrating the time metric benefits observed. A total of 49 different algorithm combinations 

are then tested (both ML and DL algorithms) to identify an optimal system composition. An 

investigation into observed misclassifications is then conducted, identifying the second-stage 

models' sensitivity to benign samples missed by the first-stage classifier. It is shown that the 

proposed system offers benefits in threat detection and a lowered false positive rate relative to 

previous systems described in literature. 

The contributions of this paper are therefore as follows: 

• Evaluating and testing a two-stage system for detecting and classifying attacks in an IoT 

network using both ML and DL algorithms. 

• Investigating data-scaling and the data-transfer overhead associated with using the BoT-

IoT dataset for GPU-enhanced DL training and testing. 

• Investigating the effect of benign samples on models designed to classify attack classes. 

The paper, following this point, is organised as follows: Section 3 presents a description of the 

implemented system. Section 4 details the experimental setup, dataset and tools used, as well as 

a discussion of some choices made before commencing with the work. Section 5 documents the 

experimental work performed, and the results obtained at the various stages of the experiment. 

Section 6 is used to discuss the results obtained in the previous section. Section 7 is the conclusion, 

followed by recommendations for future work. 
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3.4 System Description 

The system in Figure 3.1 illustrates the logical flow of data through the system. The first stage is 

responsible for sorting benign traffic from attack traffic. The second stage classifies malicious 

traffic identified in the first stage further into sub-categories to identify the attack type. These 

classes are DDoS, DoS, Scan or Theft attacks. The flow is already assumed to only contain 

malicious traffic and thus the second stage is not trained to classify benign flows again as seen in 

the system proposed by [24]. After the classification, the packet can be saved for later review and 

training, and then dropped from the network. 

 

Figure 3.1: Proposed Two-Stage System UML Diagram adapted from [25] 

Figure 3.2 shows the possible locations of the system stages in the IoT stack. Stage one is placed 

at the network layer either on a host IoT device or a gateway device. The second stage is located 

on a dedicated IDS server or a more powerful gateway node. It is evident that there are many 

instances in which such a system may be deployed in an environment where compute performance 

and network bandwidth are limited. 
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Figure 3.2: Proposed Two-Stage System in IoT Network adapted from [25]. 

3.5 Experimental Setup 

This section discusses the dataset, experimental environment, and some additional considerations 

while performing the work described in this paper. 

3.5.1 BoT-IoT Dataset, Imbalance and Pre-processing 

The use of a recent dataset is important to accurately represent the current state of the field [27]. 

The BoT-IoT dataset is used to maintain congruence with the work in [25]. This dataset is very 

recent and contains IoT traces of a weather station, smart fridge, smart lights, a garage door, and 
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smart thermostat. Created by the Cyber Range Lab of The Center of UNSW Canberra Cyber, it 

contains 69.3 GB of captured normal and botnet traffic. Each flow is labelled, first as normal 

(benign) or attack (malicious) traffic, then according to its category and then according to its sub-

category. Attack traffic is divided into four categories: DDoS, DoS, Scan and Theft. These 

categories are then divided into subcategories: DDoS and DoS both contain HTTP, TCP and UDP 

sub-categories, Scan is divided into OS and Service scans, and Theft is split into Data Exfiltration 

and Fingerprinting [14].  

Kororniotis et al. propose a 5% (3 million records, 1.07 GB) training and testing subset of the 

data [14]. The authors also identify the ten most important features. This 5% subset, using the 

proposed 10-best features, is used in this paper, as was also the case in [25]. It should be noted 

that the BoT-IoT dataset is severely imbalanced [9]. Attack traffic constitutes 99.99% of the 

dataset and DDoS and DoS attacks constitute a high percentage of this attack traffic. However, 

the objective of this work, as in [25], is to examine the capability of the various algorithms on the 

dataset as it was presented. Thus, no balancing techniques such as SMOTE, were used. 

3.5.2 Tools 

All experiments were conducted on a Windows 10 PC. The PC has the following specifications: 

• CPU: Intel Core i7-10700k (8C/16T) @ 4.9GHz 

• Memory: 64GB DDR4-3200 CL16 

• GPU: Nvidia GeForce RTX 2070 Super 

 

To create the experimental environment and models, the Anaconda Python 3 Distribution was 

used. For all deep learning Models, Keras (with a TensorFlow 2 backend) was used. For machine 

learning, Scikit-Learn was used. It should be noted that the Python Environment used is the exact 

same one used in [25]. Furthermore, while the test system does have GPU, it was not utilised, and 

these experiments were all run on the CPU as an equal-ground comparison is sought between the 

ML and DL models. 

3.5.3 Performance Evaluation 

Due to the imbalance of the dataset, F1-score will be used as the main evaluation metric derived 

from the Confusion Matrices. 

Table 3.2: Confusion Matrix 

 Predicted Positive Predicted Negative 
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Labelled Positive True Positive (TP) False Negative (FN) 

Labelled Negative False Positive (FP) True Negative (TN) 

 

The metrics in Table 3.2 are as follows [28]: 

• True Positive (TP): Items correctly classified as positive 

• False Negative (FN): Items incorrectly classified as negative (i.e., they were positive) 

• False Positive (FP): Items incorrectly classified as positive (i.e., they were negative) 

• True Negative (TN): Items correctly classified as negative 

 

Additional metrics can be derived from those in the table [29]. These are: 

• Accuracy: Given by the formula (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), this ratio shows 

the overall accuracy of the model and its ability to, in general, correctly predict a given 

input 

• Precision: Given by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), this shows how frequently the model is correct when 

predicting positive 

• True Positive Rate (or Recall or Sensitivity): Given by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), this is the ratio 

of correctly classified positive samples to number of positive samples 

• False Positive Rate: Given by 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁), this is the ratio of incorrectly classified 

negative samples to number of negative samples 

• F1-score: Given by 2 ∗ 𝑇𝑃/(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃), this is the harmonic mean of precision 

and recall. Generally, this metric is most important in cybersecurity applications [29]. 

This is emphasized again when considering an imbalanced dataset such as BoT-IoT. 

 

The Weighted F1-score will not be used to evaluate performance due to the dataset’s large 

imbalance. As stated in the previous section, all the experiments were run on the same CPU to 

attempt to draw comparisons between the training and classification times of the models to gain 

insight into their computational requirements. Thus, these times will also be a factor when judging 

an algorithm or algorithm combination’s performance. 

3.6 Results 

The aim of the discussion in this section seeks to identify the best algorithms at each stage of the 

system as well as the best stage one and two combinations. This work follows immediately from 

the work performed in [25]. The same algorithms are implemented and evaluated for each stage 

and their combinations are tested. 

Ullah and Mahmoud [24] perform similar work, albeit utilizing different algorithms and allowing 

their system to classify benign traffic again at the second stage. The work in this paper explicitly 
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considers an array of ML and DL models and attempts to minimise redundant work where 

possible.  

 

Figure 3.3: Two-Stage System UML Diagram with Inter-Stage Processing. 

 

The system in this work performs binary classification at the first stage to decide between benign 

and malicious traffic. Benign traffic identifiers (sequence numbers, indices etc.) are used to 

eliminate these flows from the data which is then passed to the second stage. This stage classifies 

the remaining traffic into four possible attack classes, namely: DDoS, DoS, Scan and Theft 

attacks. Figure 3.3 illustrates the system along with the inter-stage processing. The performance 

of each model at each stage is evaluated and compared and the final performance of the system is 

compared to a single 5-Class model that classifies attack and benign traffic. 
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3.6.1 Stage 1 Results 

The performance of the various algorithms is first explored in the context of the first stage binary 

classification. The objective of this classifier is to distinguish, in binary terms, malicious traffic 

from benign traffic. This work is almost exactly repeated from [25] but is now performed on the 

test PC CPU, allowing for better comparison of ML and DL algorithms, as opposed to the GPU 

used for some algorithms in [25]. 

Table 3.3: Stage one Results 

Algorithm Accuracy Training Time Classification Time F1-score 

CNN 99.99% 370.94s 3.81s 0.96 

DNN 99.99% 360.58s 3.54s 0.96 

RNN 99.99% 385.14s 4.65s 0.96 

LSTM 99.99% 446.38s 5.82s 0.96 

SVM 99.99% 2.70s 0.02s 0.55 

RF 99.99% 244.39s 2.46s 0.73 

KNN 99.99% 1501.28s 55.31s 0.98 

 

Table 3.4: Binary Classification Confusion Matrices. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 100 7 

Attack (1) 10 733588 

(a) CNN Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 101 6 

Attack (1) 12 733586 

(b) DNN Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 98 9 

Attack (1) 7 733591 

(c) RNN Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 105 2 

Attack (1) 14 733584 

(d) LSTM Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 6 101 

Attack (1) 0 733598 

(e) SVM Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 32 75 

Attack (1) 0 733598 

(f) RF Binary Classification Confusion 

Matrix. 

True \ Predict Normal (0) Attack (1) 

Normal (0) 104 3 

Attack (1) 5 733593 

(g) KNN Binary Classification Confusion 

Matrix. 

 

 

Table 3.3 shows the accuracy, time and F1-score metrics for each algorithm and tables 3.4 (a) to 

(g) show the classification performance by way of confusion matrices. These tables provide initial 
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insight into the expected performance of the algorithms. The accuracy metric is shown to be 

unreliable as a method of comparison in Table 3.3. All algorithms achieve a 99.99% accuracy. 

This is caused by the severe imbalance of the dataset, where 99.99% of all samples are attack 

traces. 

The SVM model is fastest by a considerable margin for both training and classification times but 

has underwhelming F1-score performance. This is echoed by the confusion matrix, showing that 

the SVM model only correctly classified six benign samples. The RF model (another ML 

algorithm) performs next fastest but again does so at the expense of F1-score. The final ML 

algorithm, KNN, performs best of all the algorithms in F1-score but takes significantly longer to 

train and classify than any of the other algorithms (as also noted in [15] and [25]). The DL 

algorithms perform slightly worse than the KNN implementation but have much more reasonable 

training and classification times. 

3.6.2 GPU overhead 

During the implementation of the stage one algorithms on the CPU, a reduction in classification 

time was observed compared to the GPU implementation in [25]. An investigation was done to 

determine the magnitude of these changes and to identify any other metrics that have changed. 

Table 3.5: GPU vs CPU Times 

Algorithm GPU Train GPU Test GPU F1-

score 

CPU Train CPU Test CPU F1-

score 

CNN Bin  294.75s   14.13s   0.96   370.94s   3.81s   0.96  

DNN Bin  281.06s   9.44s   0.97   360.58s   3.54s   0.96  

RNN Bin  288.87s   12.13s   0.97   385.14s   4.65s   0.96  

LSTM Bin  307.42s   13.29s   0.94   446.38s   5.82s   0.96  

SVM Bin  2.93s   0.05s   0.55   2.70s   0.02s   0.55  

RF Bin  250.44s   2.49s   0.73   244.39s   2.46s   0.73  

KNN Bin  1695.29s   55.04s   0.98   1501.28s   55.31s   0.98  

CNN 5-Class  293.07s   14.94s   0.94   367.26s   4.06s   0.92   

DNN 5-Class  257.11s   10.52s   0.93   354.27s   3.57s   0.95   

RNN 5-Class  333.48s   12.41s   0.94   380.52s   4.57s   0.95   

LSTM 5-Class  307.47s   13.07s   0.95   430.57s   5.62s   0.93   

SVM 5-Class  138.31s   0.04s   0.42   138.31s   0.04s   0.42   

RF 5-Class  261.08s   3.86s   0.56   261.08s   3.86s   0.56   

KNN 5-Class  1683.04s   55.37s   0.97   1683.04s   55.37s   0.97  

CNN 4-Class  289.71s   14.73s   0.97   357.78s   3.89s   0.97   

DNN 4-Class  252.47s   10.43s   0.97   339.37s   3.57s   0.97   

RNN 4-Class  286.00s   12.57s   0.97   367.74s   4.64s   0.96   

LSTM 4-Class  302.17s   13.25s   0.96   433.24s   5.78s   0.84   

SVM 4-Class  139.09s   0.05s   0.54   139.10s   0.05s   0.54   

RF 4-Class  259.91s   3.59s   0.69   259.91s   3.59s   0.69   
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KNN 4-Class  1448.17s   53.89s   0.98   1448.17s   53.89s   0.98  

 

Table 3.5 shows the results found when comparing the CPU and GPU implementations. As 

initially observed, there was a large improvement in classification times of the DL models when 

run on the CPU. Notably, the training time of these algorithms increased. Most importantly, 

changes in the F1-score are observed as well. These changes initially appear to be within the 

margin of per-run error. However, the 4-Class LSTM model saw a 0.12 decrease in F1-score when 

run on the CPU. The ML algorithms saw negligible changes in all metrics. 

The authors theorise that the observed changes could be caused by the data transfer overhead 

when data is loaded onto the GPU over the PCIE 3.0 data link. If the data batch size transferred 

onto the GPU is too small, the accumulated overhead will result in a bottleneck. As the testing 

dataset is 1/4th the size of the training dataset, it is likely that the data size does not sufficiently 

utilise the available bandwidth when classifying. As for the changes in F1-score, the authors 

suspect this may be caused by the differing math libraries used on the CPU and GPU and how the 

model algorithms are implemented using mathematical operations. This does require further 

investigation to be confirmed. 

3.6.3 Stage 1 and 2 Combinations 

This section looks at the performance of all possible combinations of the examined algorithms. 

To ensure that there is minimal run-to-run variance, the indices of the traffic flows identified as 

benign were exported and used in the second stage to ensure all the first stage outputs (second 

stage inputs) for a given algorithm are the same. Furthermore, a random, single run of all the 

second stage algorithms was saved to be reused for all the combinations such that the run-to-run 

variance is eliminated. 

Table 3.6: Stage One and Two Combinations 

Stage 2 Stage 1 Time Stage 2 Accuracy Stage 2 F1-score System Accuracy System F1-score 

CNN CNN  7.56s   71.939%   0.57   71.942%   0.76  

CNN DNN  7.59s   71.940%   0.57   71.942%   0.75  

CNN RNN  7.65s   71.939%   0.57   71.942%   0.76  

CNN LSTM  7.75s   71.940%   0.57   71.942%   0.76  

CNN SVM  7.42s   71.930%   0.56   71.930%   0.59  

CNN RF  7.48s   71.933%   0.57   71.934%   0.66  

CNN KNN  7.50s   71.940%   0.57   71.943%   0.76 

DNN CNN  7.33s   80.512%   0.46   80.513%   0.64  

DNN DNN  7.22s   80.512%   0.46   80.514%   0.64  

DNN RNN  7.70s   80.512%   0.46   80.514%   0.64  

DNN LSTM  7.27s   80.513%   0.46   80.514%   0.64  

DNN SVM  7.61s   80.502%   0.46   80.502%   0.48  

DNN RF  7.28s   80.505%   0.46   80.505%   0.55  
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DNN KNN  7.25s   80.513%   0.46   80.515%   0.65 

RNN CNN  9.13s   71.156%   0.61   71.159%   0.80  

RNN DNN  9.23s   71.156%   0.61   71.159%   0.79  

RNN RNN  9.07s   71.156%   0.61   71.159%   0.80  

RNN LSTM  9.99s   71.156%   0.61   71.159%   0.80  

RNN SVM  9.03s   71.147%   0.59   71.147%   0.61  

RNN RF  8.93s   71.149%   0.61   71.151%   0.70  

RNN KNN  9.30s   71.156%   0.61   71.160%   0.81 

LSTM CNN  9.35s   82.200%   0.60   82.201%   0.78  

LSTM DNN  9.37s   82.200%   0.60   82.201%   0.78  

LSTM RNN  9.31s   82.200%   0.60   82.201%   0.79  

LSTM LSTM  9.44s   82.200%   0.60   82.201%   0.79  

LSTM SVM  9.32s   82.189%   0.60   82.189%   0.62  

LSTM RF  9.41s   82.192%   0.60   82.193%   0.69  

LSTM KNN  9.54s   82.200%   0.60   82.202%   0.79 

SVM CNN  0.03s   81.570%   0.42   81.548%   0.60  

SVM DNN  0.03s   81.548%   0.42   81.549%   0.60  

SVM RNN  0.03s   81.546%   0.42   81.548%   0.60  

SVM LSTM  0.03s   81.548%   0.42   81.549%   0.60  

SVM SVM  0.03s   81.536%   0.42   81.536%   0.44  

SVM RF  0.03s   81.539%   0.42   81.539%   0.51  

SVM KNN  0.03s   81.547%   0.42   81.549%   0.61 

RF CNN  3.61s   90.841%   0.56   90.841%   0.74  

RF DNN  3.60s   90.841%   0.56   90.841%   0.74  

RF RNN  3.60s   90.841%   0.56   90.841%   0.74  

RF LSTM  3.68s   90.842%   0.56   90.841%   0.74  

RF SVM  3.63s   90.829%   0.56   90.829%   0.58  

RF RF  3.63s   90.832%   0.56   90.833%   0.65  

RF KNN  3.61s   90.841%   0.56   90.842%   0.75 

KNN CNN  75.70s   95.600%   0.76   95.599%   0.94  

KNN DNN  75.23s   95.600%   0.76   95.599%   0.94  

KNN RNN  75.71s   95.600%   0.76   95.599%   0.94  

KNN LSTM  76.08s   95.601%   0.76   95.599%   0.94  

KNN SVM  75.65s   95.588%   0.76   95.588%   0.78  

KNN RF  76.11s   95.591%   0.76   95.591%   0.85  

KNN KNN  75.65s   95.601%   0.76   95.601%   0.95 

 

Table 3.6 shows all the combinations implemented. Some clear trends are immediately visible. 

All systems using SVM and RF first stages perform far worse than the remaining systems. KNN 

first stages result in the best system F1-score in all cases, but this comes at an unacceptable time 

penalty in the first stage (as seen in table 3.3) which allows these systems to be all but eliminated 

from consideration. The effect of different DL algorithms at the first stage is minimal, when 

comparing F1-scores, with a slight advantage found with RNN and LSTM first stages. 

The disconnect between accuracy and F1-score is also clearly demonstrated again with the RF 

second stage having good accuracy but poor F1-score in all cases. As expected from the work in 

[25] and the first stage metrics, the KNN second stage systems perform best in terms of F1-score 

at the detriment of its time metrics. The SVM and RF second stage systems also perform worse 
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than any of the DL second stage systems. Of the DL second stage systems, RNN performs best, 

closely followed by CNN. 

3.6.4 Minmax Scaling 

Analysing the results of the previous section showed that the systems were misclassifying many 

more samples than initially expected as per the 4-Class system results (see table 3.5). This 

prompted an exploration of the processing steps performed between stages. 

The system currently records the indices of benign traffic at the end of stage one. These indices 

are then used to strip the benign traffic from the already processed data. This data is then passed 

to the second stage for classification as shown in Figure 3.3. 

One of the crucial pre-processing steps is to scale the data according to the minimum and 

maximum values in column (MinMax Scaling). As this step is done before the benign samples 

are removed, it was suspected that these benign samples may 'contaminate' the data passed to the 

second stage (which was trained as a 4-Class classifier on data cleaned of all benign flows). To 

test this, a modification was made to the systems with CNN first stages. 

In this modified system (seen in figure 3.4), the scaled data in the first stage is not used but instead 

the benign flows are removed from a copy of the processed data before scaling is applied. After 

these flows are removed, the data is scaled on the remaining flows. Where, in the original system 

in figure 3.3, the MinMax scaling occurred before removing the benign flows, here it occurs after. 
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Figure 3.4: MinMax Scaling After Removing Benign Flows. 

 

Table 3.7: Minmax Scaling Location Effect (% Accuracy/Macro Avg F1-score/Weighted Avg 

F1-score). 

Algorithm Minmax before Minmax after 

CNN  71.939/0.57/0.73   71.946/0.57/0.73  

DNN  80.512/0.46/0.81   80.533/0.46/0.81  

RNN  71.156/0.61/0.71   71.177/0.61/0.71   

LSTM  82.200/0.60/0.82   82.499/0.60/0.83   

SVM  81.547/0.42/0.81   81.585/0.42/0.81   

RF  90.841/0.56/0.91   89.514/0.55/0.89   

KNN  95.600/0.76/0.96   95.592/0.76/0.96  
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Table 3.7 shows the results of the modified system versus the original. The results are minimally 

different with one case of improved F1-score occurring once per system. As these results do not 

show significant difference, and to rule out the scaling as a potential cause of the 

misclassifications, the 'original' (MinMax scaling done before removing the benign flows) was 

compared to an identical system which used the Minimum and Maximum values from training of 

the 4-Class model to scale the second stage input. 

Figure 3.5 shows this system. As the data in the stage one system is already scaled, it cannot be 

used to scale again with the 'imported' training values. Thus, a copy of the data is again taken, 

before the scaling in stage one is performed, to use for this purpose. 

 

Figure 3.5: MinMax Scaling with Training Values Before Removing Benign Flows. 
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Table 3.8: Minmax Scaling Extremes Effect (% Accuracy/Macro Avg F1-score/Weighted Avg 

F1-score). 

Algorithm Original System Minmax from Training 

CNN  71.939/0.57/0.73   71.940/0.57/0.73   

DNN  80.512/0.46/0.81   80.512/0.46/0.81   

RNN  71.156/0.61/0.71   71.156/0.61/0.71   

LSTM  82.200/0.60/0.82   82.207/0.60/0.82   

SVM  81.547/0.42/0.81   81.554/0.42/0.81   

RF  90.841/0.56/0.91   90.859/0.56/0.91   

KNN  95.600/0.76/0.96   95.992/0.76/0.96   

 

Now, there is even less difference observed between the two systems. This shows that there is not 

a significant enough difference between the values of benign and malicious flows that would 

cause the MinMax Scaling to have a significant effect on the performance of the system. It does 

not, however, explain the large classification errors observed. 

3.6.5 Effect of Benign Samples on Stage 2 

To explain the misclassification observed, benign samples were introduced into the CNN 4-Class 

system's classification step. This is to simulate a worst-case scenario where a stage one model 

does not identify any of the benign samples. 

 

Figure 3.6: CNN 4 Class Classification Report. 

 

Table 3.9: CNN 4-Class Confusion Matrix. 

True / Predict 0 1 2 3 

0 377892 7358 59 0 

1 8300 321777 35 0 

2 77 93 17993 0 

3 1 0 1 12 
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Figure 3.6 and Table 3.9 show the expected performance of the CNN 4-Class system when no 

benign samples are included. 

 

Figure 3.7: CNN 5 Class Classification Report 

 

Table 3.10: CNN 5-Class Confusion Matrix with Benign Samples. 

True / Predict 0 1 2 3 4 

0 269790 111249 0 4270 0 

1 53378 239826 0 36908 0 

2 0 36 0 69 2 

3 28 10 0 18125 0 

4 1 0 0 1 12 

 

Figure 3.7 and Table 3.10 show the performance of the system when the benign samples are 

included. 

Table 3.11: Effect of Benign Samples. 

Algorithm Classification Time Accuracy F1-score 

CNN 4-Class 7.71s  97.829% 0.97 

CNN 4-Class with Benign 7.74s  71.930%  0.56 

 

Table 3.11 summarizes the differences in notable metrics between the two systems. The observed 

behaviour shows that the inclusion of benign samples has a drastic effect on the ability of the 

system to classify all classes. The system with benign samples exhibits behaviour similar to the 

two-stage system with a CNN second stage and SVM first stage. This stands to reason as the 

SVM first stage misses almost all benign samples. Thus, the performance of the system is heavily 

dependent on the ability of the first stage to accurately classify benign samples. 

It could be that the benign samples appear to the model to be false starts or ends to attacks or may 

be disrupting concurrent flows. This behaviour is undesirable and should be investigated further 

by future work to 'tune it out' of the system. 
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3.7 Results Discussion 

The work presented in the previous section shows promising results when the first stage results 

and perceived classification time improvements are considered. However, the concept of a two-

stage system then seems less viable from the results presented in section 5.3. It is shown that the 

cause of the poor performance is a lack of resilience in the models to benign data when classifying 

attack types. The inclusion of any benign samples into the second stage results in the system 

misclassifying many flows. Any of the two-stage systems under-perform against a single-stage 5-

Class system. Even in the best-case scenario (without considering time metrics), the best two-

stage system (KNN at first and second stage) matches the 5-Class DNN and RNN systems and is 

beaten by the KNN 5-Class system. However, to simply compare a single F1-score value does 

not give the complete picture when considering these systems. The objective of the system is to 

act as an IDS which requires, first and foremost, the ability to separate benign from malicious 

traffic.  

 

Figure 3.8: CNN Binary Classification Report. 

 

 

Figure 3.9: CNN 5 Class Classification Report. 

 

Figures 3.8 and 3.9 show the classification reports of the CNN stage one binary classifier and the 

single stage 5-Class CNN model respectively. Note here the F1-score for class '0' in Figure 3.8 
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and for class '2' in Figure 3.9. These are the F1-scores for the benign class in each system. Clearly, 

the binary system greatly outperforms the single-stage 5-Class system in this regard.  

Table 3.12: Benign Sample Classification Ability. 

Algorithm Binary F1-

score 

5-Class F1-score 

CNN  0.96   0.73  

DNN  0.92   0.88  

RNN  0.92   0.84  

LSTM  0.93   0.80  

SVM  0.11   0.02  

RF  0.46   0.80  

KNN  0.96   0.95  

 

Table 3.12 summarizes this same result for all 11 algorithms. In all cases, the binary models are 

far more capable of classifying benign samples correctly (i.e., will produce fewer false positives). 

The implication of this for the two-stage system is that it would be more valuable as an IDS than 

any of the 5-Class models would [6], [7]. Furthermore, it shows that the 5-Class F1-score is 

skewed by the severe imbalance of the dataset. 

Perhaps the most notable result here is the equivalent performance of the CNN and KNN Binary 

models. Considering the time metrics, the CNN model clearly outperforms the KNN model, 

achieving a similar F1-score while being 14.52 times faster. This allows for an informed decision 

on a proposed 'best' combination for a two-stage system. 

In the two-stage system, the first stage has the requirements of being as fast and accurate as 

possible. From table 3.6, this is achieved by the CNN first stage model. Stage two should be as 

capable as possible to classify various attack types but is not severely constrained by the need for 

fast classification times. Thus, from the results presented in section 5, KNN would be best here. 

This results in a ML-DL combination 'best' system which was also identified as promising by 

[11]. 
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Figure 3.10: Final Proposed Two-Stage System 

 

Table 3.13: Two-Stage System Comparison. 

Metric Two-Stage System Compared System 

Stage 1: Classification Time 3.81s  4.06s (CNN 5-Class) 

Stage 1: Benign F1-score  0.96 0.73 (CNN 5-Class) 

Stage 2: System F1-score  0.94  0.98 (KNN 5-Class) 

 

Figure 3.10 shows the proposed final system and Table 3.13 shows how the system compares in 

important metrics at each stage to the relevant 5-Class systems. While the system does not 

perform as well in attack type classification as the KNN 5-Class, the results in Table 3.13 strongly 

suggest that the proposed two-stage system would perform far better as an IDS than any of the 

examined 5-Class systems. 
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3.8 Conclusion 

In this paper, the performance of various algorithm combinations for the two-stage system 

proposed in [25] were investigated. This system aims to provide time and classification metric 

improvements when compared to single-stage systems by layering different ML and DL 

algorithms. The first stage classifies benign and malicious traffic, with the second stage 

identifying the type of attack.  

First, the stage one, binary classification models were evaluated on the test system CPU, as 

opposed to the GPU used for the DL models in [25]. This allows for 'equal ground' comparison of 

the various algorithms. It was found that the results deviated from [25], noting changes in F1-

scores and decreased classification times in some cases. This was explored further, and all models 

(Binary, 4-Class, and 5-Class) were run again on the CPU. This revealed similar behaviour across 

all models. The decrease in classification times of the DL models specifically, leads the authors 

to believe that these differences are the result of the data transfer overhead when moving data to 

the GPU for classification. The observed behaviour did not alter the status or viability of the 

models and further testing proceeded. 

Next, all 49 algorithm combinations were investigated, and pertinent metrics recorded. This 

showed clear trends in model performances. It was shown that the ML models, when used at the 

first stage, produced unacceptable results. In the case of SVM and RF first stages, they performed 

poorly when distinguishing between benign and malicious samples, resulting in lower-than-

average F1-scores for the system. SVM produced 0.12 lower F1-scores on average and RF, 0.05 

lower on average. The classification time performance of the KNN model rules it out for use in 

the first stage, taking 10-times longer than the next slowest model. When used at the second stage 

however, the KNN model performed consistently better than other algorithms and is the clear 

'winner'. 

The generally poor performance of the systems prompted an investigation into the cause. Initial 

suspicions that the order of pre-processing steps is the cause was ruled out, finding instead that 

the 4-Class models used in the second stage are extremely sensitive to benign sample 

contamination and that the inclusion of any benign samples would severely hamper the ability of 

the model to accurately predict attack types and result in lower-than-expected F1-scores. 

However, when considering the appropriate metrics at each stage and remaining cognisant of the 

fact that the system is designed to be an IDS, it is shown that the proposed system would still 

perform better than any of the single-stage 5-Class systems. This is due to the 0.25s classification 

time speed-up over the 5-Class CNN system and the significant 0.23 F1-score improvement for 

benign samples, reducing the number of false positives. 
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It should also be noted that there were a few challenges encountered while performing the work 

described. A major challenge arose before any experimentation even began; it quickly became 

apparent that there is very little related literature in this highly specific area. While this provided 

some additional leeway in performing the work, it also complicated the procedure of verifying 

and comparing results to similar works. During experimentation, the described observations of 

GPU overhead, MinMax scaling and remnant benign samples at stage 2 provided additional areas 

of investigation that had to be ruled out as factors that could invalidate any of the results obtained. 

Finally, a challenge that persisted throughout the work performed is that of ensuring homogenous 

test system conditions. The test system is a traditional Windows OS PC, meaning significant 

multi-tasking is occurring while experiments are being run. To limit this as far as possible, 

attempts were made to ensure that no unnecessary programs or services were running during any 

of the experiments, and in some cases it was necessary to run experiments multiple times to 

validate results obtained. 

The proposed system achieves an overall F1-score of 0.94. While this is not as high as a KNN 5-

Class system, the classification time benefit and benign sample F1-score improvements offered 

by the proposed system make this a better solution to the challenges faced by IoT network security 

managers. Specifically, the proposed system offers improved threat detection and lower false 

positive rates. This would reduce the need for the security administrator’s intervention in the 

system operation, which has potential operational and financial benefits to the organisation [30]. 

Future work should further explore and develop the two-stage system proposed in this paper. 

While the system is shown to perform better as an IDS than a single-stage ML or DL solution, 

there are several areas in which the system could be even further improved. Additional tuning of 

the models used at each stage may yield further time and classification metric enhancements. The 

second-stage shortcomings, namely when benign samples are not correctly identified at the first 

stage, should be further investigated, and addressed. The 'lightweight' requirement of this system 

should also be further explored with the intention of reducing the load placed on IoT devices in 

resource-constrained situations. The observed drop in F-score of the LSTM model when running 

of the CPU of the test PC should also be investigated to better understand why it occurs and if it 

may be prevented. Similarly, the seemingly insignificant impact of changing when minmax 

scaling is performed during pre-processing should be interrogated. Ideally, future work would 

investigate the system as proposed, implemented on appropriate hardware and/or networks and 

evaluated with traffic representative of real-world scenarios. Finally, the financial and resource 

benefits such a system may offer to an organisation or business must also be explored. 
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Chapter 4  

Concluding Remarks 

In this dissertation, a two-stage intrusion detection system using machine- and deep-learning 

methods for IoT networks has been proposed and investigated. This two-stage system improved 

upon time and classification metrics when compared to single-stage detection methods and, thus, 

the system is shown to be a viable IDS solution. 

In Chapter 2, the two-stage system was proposed. Applicable algorithms were identified and 

investigated in specific 'classification scenarios' to determine the potential performance benefits 

of a two-stage system. The BoT-IoT dataset is utilised in an unmodified form to achieve as close 

a representation to real-world traffic as possible. First, the implementation and classification 

scenarios of Koroniotis et al. [32] were replicated, serving as a base for the research conducted. 

These implementations were then modified to find more effective hyperparameters, model 

architectures and target vectors. Tuning was conducted to optimise F1-score and training time 

metrics.  

Additional ML and DL models were also explored, resulting in a total of seven models - DNN, 

CNN, RNN, LSTM, SVM, RF, KNN - evaluated in three classification scenarios - binary 

(attack/benign), 4-Class (attack only) and 5-Class (attack and benign). The results obtained 

indicated that the KNN implementation, with k=3, outperforms all other algorithms in terms of 

F1-score but takes far longer to train and classify. All the next-best performing models were 

neural network implementations. DNN performed best in the binary classification scenario, 

LSTM performed best in the 5-Class scenario and CNN performed best in the 4-Class scenario. 

This reinforces the opinion found in literature, that DL methods present the most promising 

outlook when it comes to securing systems. 

Using these results, the expected performance benefits of a two-stage system were presented. 

Time metrics improvements of 0.51s on average over a single-stage system were observed at the 

first stage with a F1-score improvement of 0.05 on average seen at the second stage. This indicates 

a system that can perform better than a single-stage method at a lesser performance cost. 

In Chapter 3, the expected performance of the system was put to the test and the system was 

evaluated in its final arrangement. The performance of all algorithm combinations was 

investigated. The first stage, binary classification models were re-evaluated on the test system 

CPU, as opposed to the GPU used for the DL models previously, to provide a more direct 
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comparison of the time metrics for each model. Variations were observed in the F1-scores and, 

interestingly, decreases in classification time metrics where increases were expected. To 

understand this anomaly, all models (Binary, 4-Class and 5-Class) were re-evaluated on the CPU.  

Similar behaviour was seen in all models. As these changes were seen only in the models that had 

previously utilised the GPU, it is theorised that the behaviour is caused by the transfer time 

overhead when moving data between the CPU and GPU. The observed behaviour did not, 

however, significantly alter the objective of the work or its ability to proceed. 

All 49 possible algorithm combinations were then tested, evaluating pertinent metrics. All cases 

where a ML model - SVM, RF or KNN - was employed at the first stage resulted in a system that 

produced unacceptable performance. In the case of SVM and RF at the first stage, poor F1-score 

performance was observed. SVM produced a 0.12 lower F1-score on average and RF produced a 

0.05 lower F1-score on average. Using KNN at the first stage provided an excellent F1-score 

result but extremely poor first stage classification time performance, taking 10-times longer than 

the next slowest model. CNN and DNN performed best at the first stage but produced extremely 

similar results, varying within margin of error in classification time. At the second stage, the KNN 

model can be used. As the second stage is not necessarily a time-sensitive stage, time metrics can 

be sacrificed in favour of classification metrics, in which KNN performs best. 

The system's performance deviated from what was expected, underperforming in certain areas. 

This was investigated to determine the cause. While it was initially thought that the order in which 

data-scaling was performed during data pre-processing was the cause, this was ruled out, showing 

minimal differences when this step's order was modified. It was then discovered that the second-

stage 4-Class models are negatively affected by any benign samples missed by the first stage. If 

any benign samples were put through to the second stage, the model would misclassify several 

samples, resulting in low F1-scores. 

Despite this apparent poor performance, it is seen that the two-stage system still outperforms a 

single-stage 5-Class system in two very important metrics. A two-stage system consisting of a 

CNN binary model at the first stage and a KNN 4-Class model at the second, performs 0.25s 

faster than a 5-Class CNN in binary classification, reducing any potential network traffic 

bottleneck. The two-stage system also exhibited a 0.23 F1-score improvement for benign samples 

over a CNN 5-Class system. This would significantly reduce false positive alarms. The conclusion 

can then be drawn that despite an overall system F1-score decrease of 0.04, the two-stage system 

would outperform any of the evaluated 5-Class systems as an IDS. 

The two-stage system proposed in this dissertation should be further explored in future work. 

There is room for further development and enhancements in several areas of the system. In terms 

of the per-stage performance, additional tuning or variation of the models may yield improved 
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performance. Most importantly, the sensitivity of the second stage to benign sample 

‘contamination’ from the first stage must be explored to a greater degree and addressed. Finally, 

the system should also be optimised further to make it more ‘lightweight’ and thus, suitable to a 

wider range of IoT applications where resources may be constrained. 




