
UNIVERSITY OF KWAZULU-NATAL

AN AGILE BASED INTEGRATED FRAMEWORK FOR SOFTWARE

DEVELOPMENT

By

Sanjay Ranjeeth

972170992

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Management, IT and Governance

College of Law and Management Studies

Supervisor: Professor M Maharaj

2018

 ii

DECLARATION

I , Sanjay Ranjeeth declare that

(i) The research reported in this dissertation/thesis, except where otherwise

indicated, is my original research.

(ii) This dissertation/thesis has not been submitted for any degree or examination

at any other university.

(iii) This dissertation/thesis does not contain other persons’ data, pictures, graphs

or other information, unless specifically acknowledged as being sourced from

other persons.

(iv) This dissertation/thesis does not contain other persons’ writing, unless

specifically acknowledged as being sourced from other researchers. Where

other written sources have been quoted, then:

a) their words have been re-written but the general information

attributed to them has been referenced;

b) where their exact words have been used, their writing has been

placed inside quotation marks, and referenced.

(v) Where I have reproduced a publication of which I am an author, co-author or

editor, I have indicated in detail which part of the publication was actually

written by myself alone and have fully referenced such publications.

(vi) This dissertation/thesis does not contain text, graphics or tables copied and

pasted from the Internet, unless specifically acknowledged, and the source

being detailed in the dissertation/thesis and in the References sections.

Signature:

Date: 08/01/2018

 iii

ACKNOWLEDGEMENTS

I would like to express my gratitude and thanks to Professor Manoj Maharaj for his

support and expert academic guidance in helping me to compile this thesis.

I would also like to thank my wife Dawn and my daughter Lerushka for their support

and motivation and for providing an enabling environment for me to undertake this

study.

Finally, I would like to express my appreciation to my mum Shusheila and my late

dad Robert who were both inspirational influences in helping me to complete this

journey.

 iv

LIST OF ABBREVIATIONS

ASDM Agile Software Development Methodology

AM Agile Methodology

BA Business Analyst

BE Build Engineer

CVF Competing Values Framework

CO Compatibility

DOI Diffusion of Innovation

IID Iterative and Incremental Development

IS Information Systems

IT Information Technology

OS Organisational Support

PU Perceived Usefulness

PEOU Perceived Ease of Use

PO Product Owner

SDM Software Development Methodology

SAFe Scaled Agile Framework

SE Software Engineering

SPI Software Process Improvement

SPM Software Process Model

SN Subjective Norm

SDOM Scrum Development Operations Methodology

TAM Technology Acceptance Model

TASDM Theory of Acceptance of Software Development Methodology

XP Extreme Programming

 v

ABSTRACT

AN AGILE BASED INTEGRATED FRAMEWORK FOR SOFTWARE

DEVELOPMENT

Software development practice has been guided by practitioners and academics

along an evolutionary path that extends from a Waterfall approach, characterised as

highly prescriptive, to an approach that is agile, embracing the dynamic context in

which software is developed. Agile Methodology is informed by a set of generic

principles and agile methods that are customised by practitioners to meet the

requirements of the environment in which it is used. Insight into the customisation of

agile methods is pivotal to uphold the evolutionary trajectory of software development

methodology.

The study adopted a ‘socio-technical’ orientation to enhance the

implementation of Agile Methodology. The social component of the study was aligned

to the role played by organisational culture in the adoption of software development

methodology. The amorphous concept of organisational culture has been

operationalised by implementing the Competing Values Framework to develop a

model that aligns organisational culture to an optimal methodology for software

development. The technical component of the study has a software engineering focus.

The study leveraged experiential knowledge of software development by South

African software practitioners to develop a customised version of a prominent agile

software development method. The model has been developed so that it is compatible

with a variant of organisational culture that is aligned with agile methodology.

The study implemented a sequential research design strategy consisting of two

phases. The first phase was qualitative consisting of a phenomenological approach to

develop the study’s main models. The second phase was quantitative, underpinned by

technology acceptance theory, consisting of a survey based approach to determine

South African software practitioners’ acceptance of the agile-oriented technical model

that was developed in the study.

 vi

The results from the survey indicated an 80% acceptance of the model proposed

in study. Structural Equation Modelling was used to demonstrate that the inclusion

of organisational culture as an independent construct improved the predictive

capacity of technology acceptance theory in the context of software development

methodology adoption. The study’s overall theoretical contribution was to highlight

the significance of organisational culture in the implementation of agile methodology

and to extend the evolutionary path of software development methodology by

proposing an agile oriented model that scales the software process to an

organisational infrastructure level.

 vii

Table of Contents

Declaration .. ii

Acknowledgements .. iii

List of Abbreviations .. iv

Abstract ... v

List of Tables ... xii

List of Figures .. xiii

1.0 Introduction ... 1

1.1 The Challenge of Software Development .. 1

1.2 Background and Rationale for the Study ... 4

1.3 Research Questions and Main Objective of the Study 12

1.4 Outline of the Study ... 12

2.0 Literature Review... 15

2.1 Introduction .. 15

2.2 The Software Process ... 18

2.3 Software Process Models and Paradigms of Software Development – A

Historical Perspective .. 20

2.3.1 The Code and Fix Model and the Software Crisis ... 21

2.3.2 The Waterfall Software Process Model ... 25

2.3.3 Iterative and Incremental Software Process Models 28

2.3.4 The Spiral Software Process Model ... 32

2.3.5 The Unified Process ... 39

2.3.6 The Agile Unified Process (AUP) ... 42

2.4 Agile Software Development ... 43

2.4.1 The Need for an Agile Intervention ... 43

2.4.2 Agile Software Development Methodology .. 46

2.4.3 Extreme Programming (XP) Methodology .. 50

2.4.4 The Migration from XP Methodology to Scrum Methodology 65

 viii

2.4.5 Scrum Methodology .. 70

2.4.6 Challenges Facing Agile Software Development Methodology 86

2.4.7 The Quest for a ‘Theoretical Lens’ .. 90

2.5 The Enterprise-Wide Context .. 93

2.5.1 Water-Scrum-Fall .. 94

2.5.2 DevOps .. 96

2.5.3 Disciplined Agile Delivery (DAD) .. 99

2.5.4 DAD Acceptance ... 102

2.5.5 The Challenges to the DevOps Strategy .. 103

2.5.6 The Scaled Agile Framework (SAFe) .. 105

2.6 A Discourse on Organisational Culture (OC) .. 110

2.6.1 Organisational Culture and Software Development Methodology 114

2.6.2 The Competing Values Framework (CVF) .. 116

2.7 Conclusion ... 120

3.0 The Study’s Overall Design .. 124

3.1 Introduction .. 124

3.2 A Worldview Orientation .. 125

3.2.1 The Post-Positivist Worldview .. 126

3.2.2 The Constructivist/ Interpretivist Worldview .. 126

3.2.3 The Pragmatic Worldview ... 127

3.2.4 The Software Engineering (SE) Worldview .. 128

3.2.5 The Researcher’s Worldview ... 132

3.3 The Research Classification and Design Considerations 133

3.4 The Research Design ... 136

3.4.1 The Sequential Exploratory Research Design ... 138

3.5 Qualitative Research Methodology .. 141

3.5.1 The Use of Theory in Qualitative Research ... 142

3.5.2 A Choice of Qualitative Methodology ... 143

3.5.3 Phenomenology as a Viable Qualitative Methodology 145

3.5.4 Main Types of Phenomenological Approaches ... 150

 ix

4.0 The Qualitative Data .. 154

4.1 Introduction .. 154

4.2 The Sampling Approach .. 154

4.2.1 Sample Size.. 156

4.3 Method of Data Collection... 158

4.4 The Interview Questions .. 159

4.4.1 The Need for a Pre-Questionnaire ... 162

4.5 The Pilot Study .. 165

4.6 The Main Interview ... 169

4.6.1 The Study’s Participants .. 169

4.6.2 The Interview Protocol .. 174

5.0 Qualitative Data Analysis and Presentation .. 177

5.1 Introduction .. 177

5.2 Framework for Phenomenological Qualitative Data Analysis 179

5.3 The Coding Phase .. 181

5.3.1 The Use of Qualitative Data Analysis Software .. 182

5.3.2 Initial Coding ... 184

5.3.3 Second Cycle Coding ... 199

5.3.4 Rising above the Codes .. 211

5.4 A Rich Textural Description of Software Development in South Africa 212

5.5 A Proposed Model for the Adoption of a Software Development

Methodology .. 218

5.5.1 The Influence of Organisational Culture (OC) on the level of Agility 221

5.5.2 Addressing the Technical Dimension of Software Development

Methodology .. 226

5.6 Conclusion of the Qualitative Phase .. 247

6 Quantitative Validation .. 248

6.1 Introduction .. 248

6.2 The Quest for a Theoretical Lens to Determine Acceptance of a

Software Development Methodology .. 249

6.2.1 Acceptance Theory .. 251

6.2.2 A Unified Theory of Acceptance for Software Development

Methodology .. 257

 x

6.3 The Data Collection Preparatory Phase ... 261

6.3.1 The Questionnaire Design.. 261

6.3.2 The Pilot Study and Ethical Clearance .. 264

6.3.3 The Sample Used for the Quantitative Phase .. 265

6.4 The Quantitative Data Presentation ... 266

6.4.1 Reliability Testing .. 266

6.4.2 Quantitative Data Preparation .. 267

6.4.3 Construct Validity Testing ... 270

6.4.4 Quantitative Data Analysis .. 273

6.4.5 A Structural Equation Modelling (SEM) Intervention 298

6.5 Discussion of the Quantitative Data Analysis ... 308

6.6 Discussion of the Open Ended Responses ... 310

7.0 Summary and Conclusion .. 316

7.1 Introduction .. 316

7.2 A Review of the Study’s Research Questions ... 316

7.3 A Discussion of the Study’s Findings .. 318

7.4 Theoretical Contributions of the Study .. 330

7.5 Limitations of the Study .. 335

7.6 Implications and Future Research .. 337

7.7 Autobiographical Reflection .. 340

7.8 Concluding Remarks .. 342

 xi

References ... 344

Appendix A: Semi Structured Interview Guide ... 381

Appendix B: Ethical Clearance Phase 1 .. 391

Appendix C: Interview Schedule .. 392

Appendix D: Survey Questionnaire ... 394

Appendix E: Ethical Clearance Phase 2 .. 400

Appendix F: Email Correspondence .. 401

INDEX ... 406

 xii

LIST OF TABLES

TABLE 2.1: CHARACTERISTICS OF AGILE SOFTWARE DEVELOPMENT METHODS _________________________ 46

TABLE 2.2: CORE PRINCIPLES OF AGILE MANIFESTO AND DIVERGENCE FROM TRADITION ________________ 48

TABLE 2.3: CORE PRINCIPLES OF XP (ADAPTED FROM (BECK, 1999)) _________________________________ 51

TABLE 2.4: AGILE SWEET-SPOT (BOEHM, 2002) AND AGILE BITTER-SPOT (KRUCHTEN, 2004) _____________ 88

TABLE 2.5: TIMELINE REPRESENTATION OF SDM’S ___ 121

TABLE 2.6: SDM “SWEET AND BITTER SPOTS” ___ 121

TABLE 3.1: RESEARCH METHODOLOGY ALIGNED TO RESEARCH QUESTIONS ___________________________ 152

TABLE 5.1: TRANSITION FROM FIRST CYCLE TO 2ND CYCLE CODING __________________________________ 201

TABLE 6.1: ROGER'S (1983) DIFFUSION OF INNOVATION FACTORS ___________________________________ 257

TABLE 6.2: LAYOUT OF THE QUESTIONNAIRE __ 262

TABLE 6.3: CRONBACH ALPHA COEFFICIENT VALUES ___ 267

TABLE 6.4: SW TESTS OF NORMALITY FOR THE CONSTRUCTS FROM TASDM __________________________ 274

TABLE 6.5: ONE SAMPLED T-TEST FOR PU ___ 279

TABLE 6.6: ONE SAMPLED T-TEST FOR COMPATIBILITY OF SDOM ___________________________________ 282

TABLE 6.7: ONE SAMPLED T-TEST FOR COMPATIBILITY OF SDOM ___________________________________ 285

TABLE 6.8: ONE SAMPLED T-TEST FOR OS FOR SDOM __ 288

TABLE 6.9: ONE SAMPLED T-TEST FOR OS FOR SDOM __ 292

TABLE 6.10: PEARSON PRODUCT-MOMENT CORRELATION ANALYSIS OF PU, CO, SN, OS AND BI __________ 294

TABLE 6.11: MODEL SUMMARY FOR MULTIPLE REGRESSION ANALYSIS OF TASDM ____________________ 296

TABLE 6.12: COEFFICIENTS MODEL FOR MULTIPLE REGRESSION ANALYSIS OF TASDM ________________ 296

TABLE 6.13: STEPWISE REGRESSION WITH SN AS THE DV AND ORGSUPP AS THE IV ____________________ 297

file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366971
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366972
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366973
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366974
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366975
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366976
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366977
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366978
file:///C:/Phd/PhD1/FINAL%20THESIS/Sanjay_PhDFinalThesisCD.docx%23_Toc520366979

 xiii

LIST OF FIGURES

FIGURE 1.1: THE COST OF HANDLING CHANGING USER REQUIREMENTS (ALI, 2012) _____________________ 6

FIGURE 2.1: SEQUENTIAL OVERVIEW ILLUSTRATION OF THE LITERATURE REVIEW ______________________ 16

FIGURE 2.2: ARCHITECTURAL HIERARCHICAL DESIGN OF THE LITERATURE REVIEW _____________________ 17

FIGURE 2.3: CODE AND FIX SOFTWARE PROCESS MODEL (ADAPTED FROM SCHACH (2008, P. 50) __________ 21

FIGURE 2.4: THE RELATIONSHIP BETWEEN THE SPM AND SDM’S ____________________________________ 24

FIGURE 2.5: THE WATERFALL SOFTWARE PROCESS MODEL (ROYCE, 1970) ____________________________ 25

FIGURE 2.6: IID BASED SOFTWARE PROCESS MODEL (ADAPTED FROM IBM (1998)) _____________________ 31

FIGURE 2.7: THE SPIRAL SOFTWARE PROCESS MODEL (BOEHM, 1988) ________________________________ 33

FIGURE 2.8: THE UNIFIED PROCESS (SCHACH, 2008, P. 86) ___ 39

FIGURE 2.9: THE EVOLUTION TO XP (BECK, 1999)___ 51

FIGURE 2.10: AN INTEGRATION OF XP AND SCRUM METHODOLOGY (TAKEN FROM FITZGERALD ET AL.

(2006)) ___ 67

FIGURE 2.11: AN OVERVIEW OF SCRUM METHODOLOGY BY SCHWABER (1997) _________________________ 73

FIGURE 2.12: SCRUM METHODOLOGY (TAKEN FROM SUTHERLAND ET AL. (2012) ________________________ 74

FIGURE 2.13: THE DISCIPLINED AGILE DELIVERY (DAD) LIFECYCLE MODEL (AMBLER & LINES, 2012, P.

12) __ 100

FIGURE 2.14: AN AGILE “SWEET-SPOT” IN THE CVF IDENTIFIED IN IIVARI AND IIVARI (2011) ____________ 118

FIGURE 3.1: THE SEQUENTIAL EXPLORATORY DESIGN ADAPTED FROM CRESWELL ET AL. (2003, P. 180) ___ 139

FIGURE 3.2: AN ITERATIVE MODEL OF QUALITATIVE DATA ANALYSIS (HUBERMAN ET AL., 2013, P. 14) ____ 148

FIGURE 4.1: AN ADAPTATION OF THE AGILE SUCCESS FACTORS MODEL FROM CHOW AND CAO (2008) _____ 161

FIGURE 4.2: TYPE OF ORGANISATION REPRESENTED BY THE INTERVIEWEES __________________________ 171

FIGURE 4.3: BOX AND WHISKER PLOT SHOWING OUTLIER FOR YEARS OF EXPERIENCE __________________ 172

FIGURE 4.4: NUMBER OF YEARS OF EXPERIENCE AS A SOFTWARE PRACTITIONER ______________________ 173

FIGURE 4.5: NUMBER OF YEARS OF EXPERIENCE IN USING AGILE METHODOLOGY _____________________ 173

FIGURE 5.1: FRAMEWORK TO GUIDE THE ANALYSIS OF QUALITATIVE DATA ____________________________ 180

FIGURE 5.2: A PRE-CONCEPTUAL MIND MAP __ 183

file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788554
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788555
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788556
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788557
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788558
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788559
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788560
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788561
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788562
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788563
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788564
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788564
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788565
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788566
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788568
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788570
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788571
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788572
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788573
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788574
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788576
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788577

 xiv

FIGURE 5.3: TEXT QUERY SEARCH ON THE WORD ‘DEVELOPMENTAL’ _________________________________ 186

FIGURE 5.4: PRELIMINARY NODE IDENTIFICATION BASED ON WORD/TERM FREQUENCY COUNT __________ 187

FIGURE 5.5: HIERARCHICAL CHART SHOWING VOLUME OF REFERENCES _____________________________ 189

FIGURE 5.6 A FREQUENCY ILLUSTRATION OF THE 12 2ND CYCLE CODES ______________________________ 206

FIGURE 5.7: FREQUENCY OF REFERENCES TO THE SCRUM NODE AND ITS CHILD NODES ________________ 206

FIGURE 5.8: CROSS QUERY BETWEEN SCRUM AND TRANSITION FROM WATERFALL _____________________ 208

FIGURE 5.9: CROSS QUERY BETWEEN SCRUM AND SCALABILITY _____________________________________ 209

FIGURE 5.10: CROSS QUERY BETWEEN SCALABILITY AND BUSINESS VALUE ___________________________ 210

FIGURE 5.11: CROSS QUERY BETWEEN OC AND SOFTWARE DEVELOPMENT METHODOLOGY _____________ 213

FIGURE 5.12: THE STUDY’S TRINITY__ 219

FIGURE 5.13: LEVEL OF AGILITY CLASSIFIED ACCORDING TO ORGANISATIONAL CULTURE _______________ 222

FIGURE 5.14: ADAPTATION OF THE DAD MODEL ___ 227

FIGURE 5.15: THE SILO BASED APPROACH TO AGILE SOFTWARE DEVELOPMENT _______________________ 228

FIGURE 5.16: THE DEVELOPMENT-DEPLOYMENT PIPELINE __ 232

FIGURE 5.17: THE “INTERNAL” DEVELOPMENT, INTEGRATION & TESTING CYCLE ______________________ 236

FIGURE 5.18: THE SCRUM DEVELOPMENT OPERATIONS MODEL (SDOM) _____________________________ 241

FIGURE 6.1: TAM2 MODEL PROPOSED IN VENKATESH AND DAVIS (2000) _____________________________ 252

FIGURE 6.2: UTAUT MODEL PROPOSED IN VENKATESH ET AL. (2003) ________________________________ 254

FIGURE 6.3: ADAPTATION OF THE RIEMENSCHNEIDER ET AL. (2002) THEORY OF ACCEPTANCE OF SOFTWARE

DEVELOPMENT METHODOLOGY (TASDM) ___ 261

FIGURE 6.4: CONFIRMATORY FACTOR ANALYSIS OF THE TASDM ___________________________________ 272

FIGURE 6.5: AGGREGATED PERCENTAGES FOR PU __ 276

FIGURE 6.6: FREQUENCY BASED INDICATOR OF PU OF SDOM ______________________________________ 277

FIGURE 6.7: HISTOGRAM AND CENTRAL TENDENCY DATA FOR PU OF SDOM _________________________ 278

FIGURE 6.8: NON PARAMETRIC TEST OF THE MEDIAN ___ 280

FIGURE 6.9: AGGREGATED PERCENTAGES FOR COMPATIBILITY OF SDOM ____________________________ 280

FIGURE 6.10: FREQUENCY BASED INDICATOR OF COMPATIBILITY OF SDOM __________________________ 281

file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788578
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788580
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788581
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788582
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788583
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788584
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788585
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788586
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788587
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788588
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788589
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788590
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788591
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788592
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788593
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788594
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788595
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788596
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788596
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788597
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788598
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788599
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788600
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788601
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788602
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788603

 xv

FIGURE 6.11: HISTOGRAM AND CENTRAL TENDENCY DATA FOR CO OF SDOM ________________________ 282

FIGURE 6.12: NON PARAMETRIC TEST OF THE MEDIAN VALUE FOR COMPATIBILITY ____________________ 283

FIGURE 6.13: AGGREGATED PERCENTAGES FOR THE SUBJECTIVE NORM OF SDOM ____________________ 284

FIGURE 6.14: FREQUENCY BASED INDICATOR OF THE SN OF USING SDOM ___________________________ 284

FIGURE 6.15: HISTOGRAM AND CENTRAL TENDENCY DATA FOR SN OF SDOM ________________________ 285

FIGURE 6.16: AGGREGATED PERCENTAGES FOR THE OS FOR THE SDOM _____________________________ 286

FIGURE 6.17: FREQUENCY BASED INDICATOR OF THE OS FOR USING SDOM __________________________ 287

FIGURE 6.18: HISTOGRAM AND CENTRAL TENDENCY DATA FOR OS FOR SDOM _______________________ 288

FIGURE 6.19: NON PARAMETRIC TEST FOR ORGANISATIONAL SUPPORT _______________________________ 289

FIGURE 6.20: AGGREGATED PERCENTAGES FOR THE BI TO USE SDOM ______________________________ 290

FIGURE 6.21: FREQUENCY BASED INDICATOR OF THE BI TO USE SDOM ______________________________ 290

FIGURE 6.22: HISTOGRAM AND CENTRAL TENDENCY DATA FOR BI FOR SDOM ________________________ 291

FIGURE 6.23: NON PARAMETRIC TEST FOR THE CONSTRUCT OF BI ___________________________________ 293

FIGURE 6.24: JUST IDENTIFIED PATH MODEL FOR THE TASDM ____________________________________ 300

FIGURE 6.25: OVER-IDENTIFIED PATH ANALYSIS DIAGRAM FOR TASDM _____________________________ 301

FIGURE 6.26: INITIAL HYPOTHESISED SEM FOR THE STUDY’S DATA _________________________________ 305

FIGURE 6.27: SECOND HYPOTHESISED SEM FOR THE STUDY’S DATA ________________________________ 306

FIGURE 6.28: A SECURITY AND TESTING MODEL FOR DEVOPS PROPOSED IN YASAR AND KONTOSTATHIS

(2016) ___ 312

FIGURE 7.1: THEORETICAL CONTRIBUTION OF THE STUDY ___ 332

file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788604
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788605
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788606
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788607
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788608
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788609
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788610
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788611
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788612
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788613
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788614
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788615
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788616
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788617
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788618
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788619
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788620
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788621
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788621
file:///C:/Users/User/Desktop/PhDCorrect/SubmitCorrections/New%20folder/Sanjay_PhDFinalThesis_AfterCorrections.docx%23_Toc517788622

 1

1.0 INTRODUCTION

1.1 The Challenge of Software Development

Software systems and technology in general have become pervasive to

society, thereby propagating changes to societal behavior at an accelerating pace.

From a pragmatic perspective, all business and social sectors of society have been

transformed through the influence of software systems (Alshamrani & Bahattab,

2015; Fuggetta & Di Nitto, 2014). The societal relevance of software systems was

earlier recognised by Jobs who made the prediction that software systems will not

only be a major enabler in society but will also assume a defining role in people’s

lives (Jobs, 1995). This sentiment is echoed in Melo et al. (2016) and Ryan (2015)

who posit that software systems are beginning to assume a pivotal role in people’s

personal and work oriented activities, and has a global influence on the business

and economic sectors, civil and industrial infrastructures, transport, politics,

education, sport and entertainment. Society has already begun to establish a

‘mission critical’ reliance on software systems (Fitzgerald & Stol, 2017), thereby

elevating the responsibility of the software engineering community to develop

software that delivers on quality and reliability on a magnitude that is befitting of

the trust bestowed by society upon these systems. In this regard, the development

of systems that are successful has become a necessity because it obviates the risk

of economic failure as well as the risk of lives being lost. Pressman (2010) adds a

new dimension by referring to the value of software systems in the production and

dissemination of information on business, medical and social platforms, all of

which are vital elements of the current information intensive society that we live

in. Hence, there is a strong economic and social imperative to ensure that the

activity of software development is refined (Fuggetta & Di Nitto, 2014) so that all

possible causes of software failure are obviated enabling software systems to

deliver value that is congruent with societal expectations. This can only be

achieved by learning from mistakes of the past so that the activity of software

development is evolved along a path that enhances the prospect of producing

 2

functional, accurate and user friendly software systems that meets the needs of

society.

Historically, a de-facto methodology for software development was to follow

the steps outlined in the Waterfall software process model (SPM) (Alshamrani &

Bahattab, 2015). The Waterfall SPM received a lot of prominence because of its

simplicity and uncomplicated, sequential nature. The simplicity of the process was

based largely on an approach that involved rigid adherence to a software plan that

was based on early identification of user requirements with minimal provision for

adjustments to these requirements at a later stage of development. However,

software development is an intricate activity reflective of the dynamics of society

(Allison, 2015; Brooks, 1987; Clarke et al., 2016) thereby rendering such a plan

driven approach as ineffective in handling the complex requirements imposed on

current software systems. In response to the shortcomings of the Waterfall SPM,

the software practitioner community advocated the adoption of iterative and

incremental SPM’s. This transition epitomised a flexible approach that

accommodated changing user requirements that were obtained iteratively rather

than in accordance with a planned approach that prescribed a specific phase for

the gathering of user requirements (Stoica et al., 2013). The preference for an

iterative approach is a deviation from a prescriptive approach enabling software

systems to dynamically evolve along a path of incremental functionality. However,

this change in the strategy for software development requires the invocation of a

set of software development methodologies that could support such an iterative

and incremental strategy. The quest for methodological support for an iterative

and incremental SPM culminated in a global transition to a set of software

development methods collectively referred to as the Agile Software Development

Methodology (ASDM). According to Ryan (2015), this transition has been perceived

as highly beneficial to the software development community and has resulted in

the adoption of a software development demeanour that is agile and closely

reflective of the dynamics of society thereby rendering this transition as

irreversible.

 3

ASDM is underpinned by characteristic features that embrace changing

user requirements and prioritises the “visibility” (Turk et al., 2014, p. 8) of a

software system over comprehensive documentation and planning. The evolution

of software development methodological approaches ‘trace out’ a trajectory that

may be envisioned as a continuum consisting of the plan-driven Waterfall SPM on

one end and the flexible, more dynamic process models that leverage ASDM

attributes on the other end. These plan-driven and dynamic SPM’s have an

opposing conceptual grounding, thereby presenting a challenge in respect of the

transition from one SPM to the other. The extant literature on the transition from

the Waterfall SPM to process models that have an agile orientation alludes to the

success of the latter approach compared to the former approach (Dikert et al., 2016;

Dingsøyr & Moe, 2014; Ranjeeth et al., 2013; Stoica et al., 2013). However, there

are also widespread reports of challenges that accompany an agile approach to

software development. These challenges may be classified as ‘socio-technical’ in

nature. The social aspect encompasses the challenge of aligning agile methodology

to the prevalent organisational culture or changing the culture of an organisation

so that there is an enabling organisational environment for ASDM to achieve

optimal results (Fuggetta & Di Nitto, 2014). The technical challenge manifests in

the ability of ASDM to scale to an organisational level or to enable organisations

to customise the methodology so that it resonates with organisational processes,

without compromising the principles of agility (Campanelli & Parreiras, 2015;

Meso & Jain, 2006; Nerur et al., 2005).

These challenges are being circumvented in an ad hoc manner by virtue of

a ‘trial and error’ approach towards the adoption of software development

methodology (Abrahamsson et al., 2017), thereby compromising the value

delivered by the quality of the final system. Hence, while the current evolutionary

path of the software development process is enhancing the prospect of software

development success, there is a need for a phenomenological inquiry into the

current practice of software development. It is envisaged that such an inquiry

would provide a practitioner perspective on the ‘socio-technical’ challenges of

software development, thereby facilitating an informed academic contribution that

 4

guides the evolutionary path of software process improvement (SPI) techniques so

that mistakes of the past are not repeated.

1.2 Background and Rationale for the Study

Historically, the activity of software development has been tagged as being

embroiled in a crisis because of the inability of software developers to deliver

quality software that is usable and in accordance with customer’s expectations of

the system (Glass, 1994; Pressman, 2010; Schach, 2008). Brook’s analogous use of

a werewolf to represent the problems of software development and the quest to

find a ‘silver bullet’ that is required to slay the werewolf (Brooks, 1987) has become

a seminal reference. Many software engineering experts (e.g. Boehm & Turner,

2003; Booch, 1986; Glass, 1994) use this analogy as a point of reference in their

contributions to address problems related to software development. Woods (1999)

as well as Griswold and Opdyke (2015) remarked that the nature of software

development makes it unlikely that there will be any ‘silver bullet’ that will resolve

the difficulties associated with developing software. This assertion is confirmed by

Ingale and Jadhav (2012) and Jensen (2014) who claim that in spite of all efforts

to alleviate the software crisis, software projects are still delivered late, exceed the

allocated budget and are generally vulnerable to unanticipated problems. The

complexities associated with software development is widely recognised by the

software engineering community (e.g. Booch, 1986, 2006; Jacobson et al., 1999;

Pressman, 2010; Schach, 2008; Sommerville, 2007) where there is a pre-occupation

with attempts to find the elusive silver bullet. However, Duggan (2004) suggests

that instead of finding a silver bullet, software process improvement initiatives,

referred to as ‘silver pellets’ could help “…tranquilize the werewolf” (p. 2) and

lessen the impact of the software crisis. The idea conveyed is that the adoption of

lightweight software development methodologies that are agile, adaptive and

simple to implement could collectively make a defining contribution to the

alleviation of the problems associated with software development.

 5

ASDM as a less Prescriptive Alternative

Aligned to this imperative to adopt a methodology that is less prescriptive

and bureaucratic, the software engineering community has advocated the

implementation of ASDM as a recourse to remedy the shortcomings of the

Waterfall SPM. The underlying philosophy of the agile approach is that the

software development process should be less prescriptive and more reactive so that

it leverages value from constant interaction with the customer with a view to

efficiently accommodating changing customer requirements (Beck et al., 2001).

Theoretically, ASDM presents itself as methodology that is less imposing with a

renewed focus on ensuring customer satisfaction as opposed to a focus on the

methodological bureaucracy inherent in the Waterfall SPM. The customer-centric

orientation of ASDM and the focus on speed to deliver software functionality in

response to societal requirements qualify ASDM to be regarded as a silver bullet

innovation in terms of software development methodology. While there has been

an overwhelmingly positive response to the advent of ASDM, the attachment of

silver bullet status to ASDM may be somewhat premature. There have been

problems related to the implementation of ASDM in an organisational context as

identified by Murphy et al. (2013) based on experience reports of ASDM

implementation at the Microsoft Corporation.

The Success of ASDM

The growth in the popularity of agile methods is accompanied by reports of

successful implementation of information systems projects that used an agile

approach. The success of these interventions is confirmed by the Standish Group

2015 report that software applications developed through the agile process have

approximately three times the success rate of the traditional Waterfall method (see

Chaos, 2015). The acceptance of ASDM was further endorsed by the State of Agile

Development survey by VersionOne (2015), that indicated a global acceptance of

the agile approach as the current de-facto software process model of choice. These

results are not surprising and according to Cohn (2012) the philosophy

underpinning ASDM (flexibility and increased customer collaboration) could be

viewed as a possible solution to the problem of failed software projects. These

 6

sentiments are similar to Kong’s (2007) claim that it is the agile philosophy of

embracing changing customer requirements and adopting a flexible approach to

the software development process that was receiving reports of widespread success

and would continue to do so. The inflexibility of traditional software development

methods to handle changing user requirements in the current dynamic,

information intensive society has made the agile approach a more appealing option

allowing developers to leverage the flexibility inherent in the methodology. From

a technical perspective, a significant shortcoming of the traditional, plan driven

approaches is that as the system enters more advanced stages of development, the

cost of maintenance as well as the cost (in terms of resource consumption) of

changing the system requirements tends to “increase exponentially” (Schach,

2008, p. 15). However, with ASDM, the cost of changing user requirements as the

system evolves over time does not have such a significant increase (Ali, 2012). This

effect is illustrated in Figure 1.1.

In spite of the reported success of ASDM, the pivotal question is whether

ASDM provides the methodological ‘silver bullet’ that will slay the software

engineering werewolf. Brooks’ software engineering werewolf comprised of 4

Figure 1.1: The Cost of Handling Changing User Requirements (Ali, 2012)

Time

Cost

Agile Methodology

Traditional Methodology

 7

dimensions. These include complexity (technical and management), conformity

(quality standards and interface expectations), changeability (software is

embedded in a mix of usability issues, laws and computing architecture that are

subjected to continual change) and invisibility (software is an intangible artifact

that does not have a geometric representation).

ASDM as the Silver Bullet

According to Boehm and Turner (2003), the agile approach makes a

contribution in certain aspects whilst lacking in others. This view is endorsed by

Ambler and Holitza (2012) who are of the opinion that ASDM may be viewed as

the silver bullet for those IT projects that embrace a rapidly changing user and

requirements environment. This is in keeping with the underlying philosophy of

the agile approach that espouses flexibility to accommodate change and prioritises

working software so that the abstractionism inherent in the software artifact is

reduced from a client’s perspective (Beck et al., 2001). From a critical analysis

perspective, these attributes of ASDM handle the changeability and invisibility

dimensions of Brooks’ software engineering werewolf. While this is seen as a major

step in the right direction, the aspects of handling complexity and conformity

associated with software development is still not catered for in the agile approach.

According to Kong (2007), the less discerning implementers of the agile approach

avail themselves of the flexibility inherent in the agile philosophy to adapt the

methodology in an ad hoc manner to create customised versions of an agile

methodology. The practice of technological modification resonates with the

observation by Robinson and Sharp (2009, p. 211) that “…the intellectual history

of an idea underpinning a technology differs from that technology’s path of

adoption”. While this strategy is aligned to the human imperative to embrace

creativity and autonomy (Fuggetta & Di Nitto, 2014) it exacerbates the problem of

non-conformity with regards to software development methodology. Senapathi and

Srinivasan (2012) have observed that organisations do not adhere strictly to a

specific agile method, but use a tailored approach that reflects their contextual

requirements from an organisational perspective.

 8

The Need to Modify ASDM

The strategy of modifying a methodology so that it aligns to the operational

environment enhances the effectiveness and usage of the methodology in the short

term. Senapathi and Srinivasan warn that this pragmatic approach of adapting

agile methodology has to be coupled with an understanding of the social, technical

and organisational factors that influence the adoption and adaptation of agile

methods in order to enhance the sustainability of the methodology. Hoda et al.

(2010) refer to the ad hoc tampering of an agile methodology as “undercover agile”

(p. 13) and they regard this activity as premature with no underlying formal

framework to contextualise the existence of these ad hoc agile methods. Hence,

there is a situation where organisations are adapting ASDM so that it has an

‘organisational fit’ that aligns the methodology to the prevalent organisational

culture and technical operating environment. While this practice is theoretically

aligned to the agile philosophy of flexibility and adaptability, the practical

challenges of sustaining such an approach manifests in reports of scepticism of the

agile approach with regards to alignment to organisational culture (Misra et al.,

2009; VersionOne, 2011, 2015, 2016; Wan & Wang, 2010) as well as the handling

of complex software projects that need to be scaled so that it achieves the intended

business value on an organisational-wide platform (VersionOne, 2011, 2016).

Gualtieri (2011) asserts that ASDM is a response to software mistakes of the past

and while it is perceived as a successful development methodology, the empirical

evidence supporting such claims are not convincing (a claim previously made by

Dybå and Dingsøyr (2008) and Erickson et al. (2005)). According to Gualtieri

(2011), a renewed effort is required to construct a software development

methodology (SDM) that embodies a modification of the agile approach so that

greater coverage is attached to the ‘non-coding’ aspects of software development.

As Boehm (2002) suggested, software engineering (SE) has a dwindling focus on

computer programming and a greater focus on the economic imperative that it

serves. From an ASDM perspective, Fitzgerald and Stol (2017) warn that the gains

made by the transition to agility will be sub-optimal if the methodology is not

adapted to satisfy the economic imperative that drives organisational behaviour.

 9

These sentiments are a representation of the SE perspective that the agile

approach is fundamentally conducive to successful software development, but it

needs to be complemented with methodology guidelines or a framework that can

assist in the adaptation of agile methods so that it is compatible with the

organisational context. The need for methodological frameworks that inform the

adaptation of ASDM is persistently sought after by the software practitioner

community as is epitomised by the sentiments of SE author Robert Glass:

Here’s a message from software practitioners to software researchers:

We need your help. What help do practitioners need? We need some

better advice on how and when to use methodologies. (Glass, 2004, p.

19)

The development of frameworks that provide guidance on the use of

software development methodology should however be guarded against the

concomitant consequence of adding a new layer of complexity thereby negating the

philosophy of simplicity and adaptability enshrined in the principles of ASDM

(Beck et al., 2001). A constrictive framework would also be in conflict with the

assertion by Larsen et al. (2012) that organisations consist of a network of complex

systems that are adapted by individuals in an innovative manner to enhance

productivity and performance. The requirement with regards to the adaptation of

ASDM is for a framework that guides the adaptation of ASDM so that it upholds

the principles of agility and adds value to the broader organisational context

(Dingsøyr & Lassenius, 2016). The underlying framework should take cognisance

of the complexities inherent in the software development process as well as the

organisational context in which software is developed. This can only be achieved

by software process improvement initiatives that are implemented in an

incremental manner without having a disruptive influence on the culture of an

organisation.

The development of such a framework would require an understanding of

the factors that influence the adoption and usage of a SDM in an organisation.

According to Maciaszek (2007, p. 5) the process of software development in an

organisation must be aligned with its developmental culture, social dynamics,

developers’ expertise, managerial practices, customers’ expectations, project sizes

 10

and complexity of the application domain. From an empirical perspective, in a

study involving 3200 software practitioners conducted by VersionOne (2016),

organisational culture was identified as the most significant factor that influences

the adoption and usage of a SDM. The influence of organisational culture on the

adoption and use of a SDM has also been recognised by the academic community

(e.g.Chow & Cao, 2008; Conradi et al., 2000; Gallivan & Srite, 2005; Sahota, 2012;

Strode et al., 2009; Tolfo et al., 2011).

From an overview perspective, Montoni and da Rocha (2013) provide a

classification of the main factors that influence the software development process

in an organisation. These were classified according to individual, organisational,

and technological. While the technological aspects of a software system consist of

quantifiable concepts (Pressman, 2010), the influence of organisational culture and

practitioner perspectives and practitioner acceptance of a particular SDM are

research oriented phenomena. According to Cao et al. (2009), there have been

instances of research efforts that have focused largely on understanding the

suitability of a specific type of SDM for different project contexts (e.g.Mnkandla,

2008). While this is a step in the right direction, Cao et al. (2009) go on to suggest

that researchers need to focus their efforts on gaining deeper insights into why the

adaptation and implementation of SDM’s result in either a substantial or

inadequate improvement in project outcomes. According to Ryan and O’Connor

(2013), one way of achieving this is by testing the underlying principles of agile

methods, thereby enhancing our understanding of the human factors in the

software development process. Hence, there is a need to underpin the adaptation

of ASDM from a dual perspective based on knowledge from both the behavioural

and technical realms of software development. This assertion resonates with

Fugetta’s (2000) opinion that software development is a creative, human-centered

endeavor that is reliant on the precision and objectivity of an engineering

methodology. According to Fugetta, software quality is reliant on the people,

organisation and processes used to develop and deliver the software system. In

order to engage in software process improvement initiatives, researchers need to

 11

focus their efforts on the “…complex interrelation of a number of organisational,

cultural, technological and economic factors” (Fuggetta, 2000, p. 28).

Fitzgerald (1997) and Adolph et al. (2011) suggest that such studies

involving the software process are ideally undertaken by adopting a

phenomenological approach so that the real issues facing software developers are

incorporated, thereby enhancing the prospect of the acceptance of the emergent

view/outcome of these studies by the software development community. Such an

approach would facilitate the acquisition of deeper insights into the cognitive

processes that drive developer behavior. This viewpoint regarding the use of

phenomenology to study software process improvement (SPI) initiatives are also

endorsed by Bai et al. (2011) as well as (Brown, 2013).

Hence, there is a need for the academic community to develop theory that

will enhance SPI initiatives by obtaining insight into the ‘phenomenon’ of software

development as experienced by software practitioners within an organisational

context. This is aligned to the call made by Basilli in his paper titled “Software

Development: A Paradigm for the Future” where it is suggested that future

strategy for research in software engineering is to align software engineering

research with the practice of software development in a professional environment.

Basili (1989) goes on to suggest that the objective of such an approach is to use the

emergent view from such studies to provide an immediate enhancement to the

software development process. This viewpoint is reiterated by Dingsøyr and

Lassenius (2016).

The current popularity and pervasive influence of agile methods have

compelled the academic community to focus SPI initiatives around ASDM with the

intention of evolving the methodology based on software practitioner feedback (e.g.

Brown, 2013; Lal, 2011; Montoni & da Rocha, 2013; Sidky et al., 2007). In keeping

with this evolutionary trajectory underpinning ASDM, the current study has the

subsidiary objective of obtaining an insight into current software development

practice. This insight would be pivotal in achieving the main objective of providing

a framework for the adaptation of agile methods, thereby contributing to its

evolution. This is aligned to the suggestion from McCormick (2001) that a viable

 12

contribution from the academic community would be to produce a meta-

methodology for software development that is based on software development

methodologies that have proven to be successful.

1.3 Research Questions and Main Objective of the Study

From a problem statement perspective, the main problem underpinning the

current study is stated as:

How can experiential knowledge of Agile Software Development

practice be used to develop a Socio-technical Framework to Guide the

Implementation of Agile Software Development Methodology?

The set of sub-problems is listed below:

 What are South African software practitioners' perspectives on Agile

Software Development Methodology (ASDM) from a technical

perspective?

 How does organisational culture influence the implementation of

ASDM?

 How can South African software practitioners’ knowledge of ASDM

be used to develop a framework to guide the implementation of agile

methodology?

 What is the acceptance by South African software practitioners of a

framework that informs the technical implementation of ASDM?

These above-listed research questions will be used to inform the study’s

main objective of developing a framework for the implementation of agile methods.

1.4 Outline of the Study

An outline of the study classified according to the chapter delineations is

presented below.

 13

Chapter 2 – Literature Review

This chapter will be guided by a philosophy that is aligned to critical

hermeneutics. The evolution of software methodologies will be traced from a

formalistic as well as a hermeneutics perspective. This will entail a critical

inquisition of software development methodologies as it evolved from its earliest

form (embodied by the ‘code and fix’ and the Waterfall methodology), through to

its intermediate representation (prototyping and iterative and incremental

models) culminating in the current state (the agile approach to software

development). The objective of this chapter is to ‘set the scene’ for the operational

elements of the current study.

Chapter 3 – The Study’s Overall Design

The chapter commences with a discussion of the main ‘worldview’

orientations that dictate research designs in general. The discussion converges to

the establishment of the researcher’s philosophical assumptions and the alignment

of these assumptions with an interpretivist ‘worldview’ orientation. The final part

of this chapter is devoted to a discussion of qualitative research methodology and

the relevance of using a phenomenological approach to answer the study’s research

questions.

Chapter 4 – The Qualitative Data

The chapter provides an insight into the qualitative data collection phase

of the study. There is also a discussion of the main method of data collection, the

sample used for the purposively oriented qualitative data collection phase and the

criteria used for the selection of the study’s sample. The chapter culminates in a

discussion of the main data collection instrument and a presentation of the

attributes of the study’s participants from the perspectives of years of experience

and the organisational sector represented.

Chapter 5 – Qualitative Data Analysis and Presentation

The main component of Chapter 5 is the qualitative data analysis. The data

analysis procedures are preceded by a discussion of the techniques used to analyse

phenomenological data and the implementation of these techniques in the context

of the study’s data. The qualitative analysis culminates in a synthesis phase

 14

referred to as the study’s trinity that consists of a discussion of the 2 main models

that are an output of the qualitative data analysis. Both the models have an

alignment with the adoption of software development methodology. The first model

represents a framework that links organisational culture to the adoption of a

software development methodology. The second model represents an enhancement

of ASDM from a technical perspective.

Chapter 6 – Quantitative Analysis

This chapter comprises of a quantitative validation of the technically

oriented model derived as an output of the qualitative data analysis. The

validation exercise is underpinned by technology acceptance theory and a

quantitative method of data collection and analysis. The chapter culminates with

a discussion of the study’s data alignment to the underlying technology acceptance

theoretical model. Structural Equation Modelling is used in an exploratory manner

to develop a ‘closer fitting’ theoretical model for the study’s data.

Chapter 7 – Summary and Conclusion

The final chapter will be a reflection of the achievements of the study with

a focus on the study’s success in answering the main research questions. There will

be a presentation of the main findings of the study, the study’s limitations, the

contribution to the body of IS knowledge and recommendations for future research

work on software development methodology.

 15

2.0 LITERATURE REVIEW

Systematic literature reviews in all disciplines allow us to stand on the shoulders of

giants and in computing, allow us to get off each other’s feet (Keele, 2007, p. 12)

2.1 Introduction

One of the main reasons for engaging in a discussion of the literature is to

establish what is known in the field of study thereby providing a foundation for

the research topic and “…placing the study in the context of existing work” (Levy

& Ellis, 2006, p. 4). Such a discussion serves the purpose of providing an insight

into how the research area has become established and also provides a foundation

whereby the vocabulary of the subject area may be introduced (Hart, 1998). A

viable strategy for conducting a literature review is to engage in a “progressive

narrowing of the topic” (Hart, 1998, p. 13) until a compelling need to solve the

research problem becomes apparent. These sentiments are commensurate with the

suggestion by Leedy and Ormrod (2005) that the design of a literature review

should resemble an “inverted pyramid” (p. 96) also referred to as the “funnel

method” (Hofstee, 2006, p. 95).

The objective of the current literature review is to provide comprehensive

coverage of the main literary contributions that have underpinned academic

discourse on software engineering and software development methodology.

However, Hofstee (2006) observes that a comprehensive or exhaustive literature

review is difficult to achieve. A possible strategy is to commence the literature

review with a broad review of the major concepts and classic theories that have

defined the problem domain. Cooper (1988) provides a taxonomy for the structure

of a literature review that hinges on the 2 pivotal components of coverage and

organisation. From a coverage perspective, a review should cover defining

academic contributions that have provided direction for the domain of the study.

One strategy to achieve this is by organising the review in a historical,

chronological order.

The literature review for the current study will be preceded by an

explanation of 2 crucial pieces of software engineering nomenclature that will be

 16

used throughout the study. The first is a reference to the software process, a set of

tasks performed by software practitioners to develop quality software that meets

the requirements of those who have commissioned its development (Pressman,

2010). The second is a reference to software process improvement (SPI), an

expression that alludes to activities that enhance the process of software

development to enable the production of higher quality software.

Architectural Design of the Literature Review

The ‘architectural’ design of the literature review for the current study will

be arranged chronologically and it will assume an evolutionary path that is guided

by SPI initiatives, as illustrated in Figure 2.1. This strategy is commensurate with

the assertion by Marakas (2006, p. 4) that “…an ideal way to understand the

current state of a technology is to become familiar with its evolution.” The SPI

initiatives have been driven by the quest to produce quality software and have

followed an evolutionary path that has culminated in a philosophy and a set of

software development methods collectively referred to as the Agile Software

Development Methodology (ASDM). After having experienced more than a decade

of agile methods, the software practitioner community is making an initiative to

adapt ASDM so that a ‘best practice’ framework for ASDM can be developed. These

initiatives are being labelled as ‘Agile 2.0’, a reference to the extension/adaptation

of ASDM on the basis of feedback from the software practitioner community. The

scope of coverage is quite expansive and provides coverage of the main software

process models that have had a defining influence on the academic discourse on

SPIs. This strategy is adopted so as to compensate for the lack of a solid theoretical

foundation in the IS discipline (Levy & Ellis, 2006).

A sequential overview version of the literature review is presented in

Figure 2.1.

Figure 2.1: Sequential Overview illustration of the Literature Review

 17

The initial phases of the literature review have a historical slant and traces

the evolution of software process models from the ‘code and fix’ methodology

through to the iterative and incremental methodology culminating in agile

software development methodology (ASDM). The coverage of ASDM is in reference

to the main agile process models that have been purposively selected by virtue of

usage trends. The potential for agile methodology to scale to an organisational

level so that it delivers on the expected business value is currently receiving a lot

of attention in the academic and practitioner sectors. This trend warrants a review

of enterprise/organisational wide software process models that have an alignment

with ASDM. The literature review will culminate with a discourse on organisation

culture because of the influence that organisational culture has on the adoption of

a software development methodology. The preceding narrative on the detail of the

literature review is presented graphically as a hierarchical illustration in Figure

2.2.

Figure 2.2: Architectural Hierarchical Design of the Literature Review

 18

The expansive coverage of the literature on software development

methodology (broadly illustrated in figures 2.1 and 2.2) provides the researcher

with an opportunity to leverage this insight to find ‘gaps in the body of knowledge’.

2.2 The Software Process

According to Sommerville (1996), the software process consists of the

acquisition of information about the requirements of a software system and the

implementation of activities that will contribute to the development of that system.

Schach (2008) formalises this interpretation by suggesting that the software

process incorporates a software development methodology with an underlying

software process model (SPM). Pressman (2010) provided a bit of clarity on the

concept of a SPM by suggesting that a SPM is a series of predictable or repeatable

steps that has to be followed in order to produce quality software. Whilst these

interpretations of a SPM are adequate, one has to go back to Boehm’s elaboration

of a SPM in order to fully understand its relevance to the software process. As a

precursor to the introduction of the Spiral model of software development, Boehm

(1988) suggested that a SPM delineates the different stages of software

development and establishes different criteria that would indicate a transition

from one stage to the next. Hence, it can be established that a SPM is an

abstraction of the software process with clearly defined phases that a software

system undergoes from its inception to completion. Transition between the phases

occurs in a controlled manner. From the preceding discussion, the notion that a

SPM embodies a listing of software development processes as well as a protocol

regarding the sequence and transition between the phases makes the use of the

term appropriate for the requirements of the current study.

 19

The SDLC and the Waterfall SPM

The second issue that needs clarification is the interchangeable use of the

SDLC model and the Waterfall SPM. The first instance of a comprehensive SDLC

model was suggested by Sir Winston Royce by virtue of the Waterfall model1 for

software development proposed in Royce (1970). The Waterfall model served as a

catalyst for the software engineering community to suggest adaptations and

alternatives to the model based on practitioners’ perspectives on the use of the

Waterfall model. The dominance of this model in the 1970’s and early 1980’s

resulted in the Waterfall model becoming a de facto replacement for the generic

concept of a SDLC model (inferred from Aveson & Fitzgerald, 2006; Marakas, 2006;

Scacchi, 1987). The Waterfall SPM became a synonym for the SDLC model. This

situation was not ideal as it became an implicit impediment to the development of

SDLC models that were not aligned to the Waterfall model (McCracken & Jackson,

1982; Victor, 2003). In a paper titled ‘A Spiral Model for Software Development

and Enhancement’2, Boehm attempted to rectify this untenable situation. In this

article, Boehm (1988) tries to re-establish the concept of a SPM (somehow lost with

the collapsing of the SDLC and the Waterfall model into one and the same thing).

Boehm uses the terminology SPM as a generic reference to ‘cover’ specific instances

of SPM’s such as the Waterfall, Spiral, and Iterative and Incremental models. The

usage of the term SPM in the current study is strongly aligned to Boehm’s

interpretation. The term software process model (SPM) will be broadly used in the

current study to refer to the architectural design of the software process as well as

the criteria that controls traversal through the different phases of the software

process. In essence, a SPM alludes to the various systems development phases

found in the SDLC as well as a protocol that controls the transition between the

different phases of the SDLC.

The software process is composed of a mix of a SPM and a software

development methodology (Schach, 2008). Whilst the concept of a SPM has been

given prominence in the preceding discussion, the concept of a software

1 The Waterfall SPM is discussed in Section 2.3.2
2 The Spiral SPM introduced by Barry Boehm is discussed in Section 2.3.4

 20

development methodology (SDM) needs to be clarified. George et al. (2004, p. 24)

regard a SDM as a “step-by-step description” of the process of developing an

information system or as Schach (2008) describes it simply as the strategy used to

develop a software system. However, once more it was Boehm who provided some

clarity by contextualising a SDM with reference to a SPM. Boehm (1988) suggested

that a SDM provides guidance on how to ‘navigate’ through any specific phase of a

SPM. This navigation may be facilitated by software development techniques such

as stepwise refinement, flowcharting, structured analysis and design (commonly

referred to as the classical paradigm of software development) and object-oriented

analysis and design. For the purpose of the current study, the use of the terms

software process model (SPM), software development methodology (SDM) and

software development technique is aligned to Boehm’s interpretation of these

concepts as presented in the preceding discussion. The preceding paragraph serves

the purpose of:

 introducing the concept of a SPM and how it is interpreted as part

of the current study;

 providing clarity on the distinction between a SDLC model, a SPM

and the Waterfall model for software development;

 providing an introduction to the concept of a SDM and its relevance

to the software process.

The concepts introduced in the preceding paragraph play a pivotal role in

the software process. A discussion of these concepts was required in order to

facilitate the presentation of a cogent discussion on the evolution of SPM’s

(conducted in the next section).

2.3 Software Process Models and Paradigms of Software

Development – A Historical Perspective

Lonchamp (1993) stresses on the importance of introducing the

nomenclature used for deliberations regarding SPM’s in a pragmatic way so that

 21

it enables a precise discourse on SPI initiatives. The strategy adopted in the

current study is to provide a critical overview of the traditional SPM’s thereby

establishing a foundation from which SPI initiatives with regard to ASDM may be

explored with minimal distraction from a terminology perspective. This strategy

also provides a firm foundation from which the evolutionary trajectory of SPM’s

may be understood, thereby enabling a deeper appreciation of the nuances that

provide a distinction between different SPM’s.

2.3.1 The Code and Fix Model and the Software Crisis

One of the earliest software process models (late 1940s to early 1960s) is

referred to as the ‘code and fix’ method (Boehm, 1988) that entailed a simple 2-step

process (Figure 2.3) of writing some code and fixing errors that may be observed

when the program is run. This process is repeated until the software solution

produces an accurate output that conforms to the expected output from the test

case values that are input into the software product. On the basis of the match

between the expected output and the actual output of the system, the software

product is deemed to be successful or not. Schach (2008) claimed that this model

of software development also prevailed in the 1970’s and referred to the model as

the “development-then-maintenance” model (p. 9).

FIX

CODE

FINAL

SOFTWARE

PRODUCT (includes

a post-delivery

maintenance phase)

Figure 2.3: Code and Fix Software Process Model (adapted from Schach (2008, p.

50)

 22

The focus of the effort is around the actual coding of the system and the

allure of the process is that the software product begins to materialise almost

immediately, thereby reducing the “invisibility” (Brooks, 1987, p. 3) of the evolving

software product. The ‘code and fix’ SPM basically ‘got the job done’ and it was

reported by Trauring (2002) that this unstructured process gave rise to the

following criteria that were used to measure the success of a software product.

These criteria were that software:

 should have a relatively low cost of initial development;

 is highly maintainable;

 is portable to different hardware platforms;

 performs the processing expected by the customer.

These criteria epitomised much of what is expected from a software product

and became a benchmark for software success that has maintained its relevance

over a period of time (Kaur & Sengupta, 2013; Pressman, 2010; Van Veenendaal,

2008). However, while the code and fix process model was functional in producing

software quickly, ironically it did not abide by the very same criteria that became

a benchmark for software success. Lehman (1980) referred to the code and fix

model as one that lacked any guiding theory and made no formal attempt to ensure

accuracy or validity of the emergent software product. Boehm (1988) highlighted 3

significant weaknesses of the code and fix model. These weaknesses are listed as:

 A number of fixes contributed to a code base that became difficult to

manage; this observation prompted a call for a design phase prior to

coding;

 The emergent software product did not meet with the user’s

requirements thereby necessitating the need for a requirements

phase prior to design;

 The lack of provision for a testing and a maintenance phase resulted

in increased costs to modify the software to satisfy user

requirements.

 23

Schach (2008) commented that the code and fix SPM may work well for

software tasks consisting of less than 200 lines of code. However, it did not scale

well for software products that contained higher levels of complexity or delivered

substantive functionality. Schach (2008) also concurred with Boehm’s criticism of

the code and fix model. A common source of concern was the high cost of

maintenance incurred as well as the inability to handle changing user

requirements. Another area of concern was that the code and fix SPM did not

ensure any form of accountability from the actual computer programmers because

there were no specifications in terms of what constituted as a successful software

product. The ease of code modification gave rise to a “hacker culture” (Boehm,

2006, p. 14) enabling computer programmers to adopt a strategy of hastily

patching faulty code to meet project deadlines. This negative indictment on the

code and fix model is sustained by Schach (2008, p. 51) who commented that the

code and fix model “…is the easiest way to develop software and by far the worst

way”.

Much of the criticism levelled at code and fix SPM stemmed from a lack of

up-front planning and design to underpin the software development effort. In an

effort to add elements of planning and design to the software process, Dijkstra

introduced his method of structured design at the NATO Conference on Software

Engineering Techniques in 1969 (see Dijkstra, 1970).

The structured design method entailed the following main strategies

(Jensen, 1981):

 Postpone details – prioritise major functions early and focus on

details later;

 Make decisions at each level of abstraction regarding alternate

design paths;

 Be flexible – the existing structure design structure should be

amenable to change;

 Consider the data at lower levels of abstraction;

 Make an effort to reduce software complexity.

 24

A significant consequence of these software development deliberations was

that a paradigm of software development began to emerge. The emergent

paradigm of software development consisted of a mix of SPM’s and SDM’s. The

software process model (SPM) provided guidance on ‘what needed to be done’ while

the software development methodology (SDM) provided guidance on ‘how to do it’.

From a more formal perspective, the SPM provided guidance from an ‘elevated’

level on the sequence that needs to be followed when moving from one software

development phase to the next as well as the criteria that needs to be met in order

to sanction progression through the various phases. At the operational level, a

SDM consisted of a set of software development methods such as structured

analysis and design, stepwise refinement and flowcharting that enabled the

attainment of the objectives of each specific phase of the SPM. The relationship

between the SPM and the set of techniques, collectively referred to as the SDM is

illustrated in Figure 2.4.

The acceptance by the software practitioner community of a SDM that

consisted of techniques such as the structured design method and flowcharting (to

a lesser extent) paved the way for a strong focus on requirements analysis and

design as precursors to the actual coding phase. In a review of the software

development methods that had received much prominence in the late 1960’s and

Figure 2.4: The Relationship between the SPM and SDM’s

 25

early 1970’s, Boehm (1988) commented that there was a need for a software process

model that guided the software development process through the sequence of

stages from analysis to design to coding. The quest for such a well-defined process

model was aligned to the SE imperative to adopt an approach for software

development that was prescriptive, well defined and resembled a manufacturing

process that was similar to the traditional branches of engineering (Mahoney,

2004). This quest for a well-defined, prescriptive and highly controlled SPM was

pivotal in promoting the viability of the Waterfall SPM.

2.3.2 The Waterfall Software Process Model

The strategy of adopting a well-defined procedural approach for the

development of a software system was first implemented by Benington (1987) as a

9 stage sequential, procedural approach to guide the development of software to

control an air defence system for the United States (US) Air Force. In a seminal

paper titled ‘Managing the development of large software systems’ Royce (1970)

presented a modified version of the 9-stage sequential model for software

development and named it the Waterfall model (the name represented progress of

the development process just as water would travel/progress down a waterfall),

illustrated in Figure 2.5.

Details of the Waterfall Approach

Royce’s Waterfall SPM consisted of 7 sequential steps that contained

iterations between preceding and successive steps. However, a major source of

Figure 2.5: The Waterfall Software Process Model (Royce, 1970)

 26

contention was the lack of iteration between non-adjacent steps in the model.

Royce (1970) did concede that this was a potential weakness of the model and tried

to embed more layers of iteration into the model. He proposed execution of the 7

step sequence twice where the first iteration was regarded as a

preliminary/prototyped version with the intention of getting to understand the

requirements a lot better thereby enhancing the prospect of developing an accurate

design model which in turn would arguably ensure that the system would meet its

operational expectations. While this iterative intervention boded well for

imparting an element of dynamism into the model, it is negated by the model’s

reliance on substantive documentation requirements that underpinned each stage

of development. It is reported in Victor (2003, p. 55) that the allure of the simplicity

of the “…single pass, document-driven waterfall model of requirements, design,

implementation held sway during the first attempts to create the ideal

development process.” Hence, the simplicity of the Waterfall model was its biggest

advantage and provided the SE community with a solution to the quest to find an

orderly, accountable and quantifiable SPM. With the passage of time, there was a

growing criticism of the Waterfall model’s capacity to handle software

requirements that were becoming increasingly complex. These criticisms,

summarised in Parnas and Clements (1985), Sommerville (1996) as well as

Ranjeeth et al. (2013), include the following:

 a system’s users seldom know exactly what they want and cannot

articulate all they know;

 even if the system’s users could state all requirements, there are

many details that they can only discover once they are well into

implementation;

 Even if the system’s users knew all these details, as humans we can

master only so much complexity;

 even if the system’s users could master all this complexity, external

forces lead to changes in requirements some of which may invalidate

earlier decisions.

 27

The criticism of the Waterfall model is also alluded to by Nerur et al. (2005)

who make the observation that the model has a propensity to foster an adversarial

relationship between the people involved in the development of the software

system, prompting a suggestion that development of software using this approach

was not intrinsically rewarding.

These factors coerced the SE community to look at other process models. At

an international conference on Systems Analysis and Design held in September

1980 at Georgia State University, McCracken and Jackson (1982) criticised the

concept of the systems development life cycle (SDLC). This criticism was based on

the commonly held perception that the SDLC was synonymous with the Waterfall

approach to systems development. Based on this assumption, the SDLC approach

necessitated the early ‘freezing’ of requirements and a lack of end user involvement

in the latter stages of systems development. According to McCracken and Jackson,

this strategy (of using a SDLC approach) perpetuates the failure of the SE

community to obviate the communication gap between the end user and the

systems analyst. McCracken and Jackson proposed 2 alternate approaches to

software systems development, both of which do not fit the SDLC mould of

development. These approaches are briefly described below:

 Systems development is heavily dependent on end user involvement

and presence during all phases of the development process. The

development team engages with end users to produce a prototype of

the system. Based on feedback from user interaction with the

prototype, the development team continually refines the prototype

until it eventually evolves into a final product;

 A process of systems development that involves repetition of the

following activities: implement, design, specify, re-design and re-

implement.

A significant aspect of the software development approach advocated by

McCracken and Jackson (1982) was that at the inception of the software

development process, a working version of the software system should be made

 28

available to the end user and it should form the basis for further refinements until

a final system is developed.

The Quest for an Iterative Enhancement Technique

According to Larman and Basili (2003), there were numerous SPM’s

advocated by the SE community and a ‘common theme’ in all these process models

was the deliberate effort made to avoid a single-pass, sequential, document-driven

approach. The common thread in these deliberations regarding software process

improvement (SPI) initiatives was that software development process should

follow an ‘iterative enhancement’ technique as suggested by McCracken and

Jackson. The objective of these SPI initiatives was to minimise the “…gulf that

exists between the user and the developer perspectives on a system” (Reid Turner

et al., 1999, p. 3). According to Reid Turner et al. (1999), the user perspective of

the system is centred in the problem or business domain while the developer’s focus

is on the creation and maintenance of software artefacts that represent the

developer’s interpretation of the problem domain. It does not necessarily reflect

the reality as experienced by the end user when using the system in the actual

problem or business domain. In order to acquire this realistic view of the system,

the developer has to iteratively expose the end user to incremental views of the

evolving system so that the feedback obtained can be used to underpin all phases

of the development process.

Ideally, a SPM should enhance the prospect of accurately predicting user

requirements (Davis et al., 1988). While this objective may not be fully achieved,

it is imperative that SPM’s should be engineered to obviate the gap between the

user and developer perspectives of a software system. In this respect, the iterative

and incremental approach is more compatible with the philosophy of sustaining a

focus on user requirements rather than focusing on the operational aspects of the

software development process as is embodied by the Waterfall SPM.

2.3.3 Iterative and Incremental Software Process Models

Basili and Turner (1975) suggested that a software process model that

consists of an iterative and incremental development (IID) methodology would

 29

entail a “…sequence of successive design and implementation steps, beginning

with an initial ‘guess’ design and implementation of a skeletal sub-problem” (p.

395). After successive iterations that continuously elicit end user feedback, the

system’s design model is refined and the solution to the initial skeletal sub-

problem is evolved into a complete solution to the actual problem. This approach

embodies a more accurate modelling of the business/problem domain thereby

enhancing the maintainability3 and the robustness4 of the final software product.

Hence, any SPM based on IID methodology would have to start with the

implementation of a subset of the system requirements and incrementally build

functionality onto the evolving system until the final product is developed. An IID

software process model, referred to as the “antithesis” of the Waterfall SPM

(Booch, 1986, p. 232), had been employed in numerous software projects in the

1960’s and 1970’s (Larman & Basili, 2003). This strategy was formally presented

in a seminal publication by Basili and Turner titled “Iterative Enhancement: A

Practical Technique for Software Development” (see Basili & Turner, 1975). A

significant deviation of the IID methodology from previous SPM’s and SDM’s is

that IID does not impose the condition of having all the system requirements being

declared ‘up front’. Larman and Basili make reference to a set of core requirements

that are listed as tasks in a “project control list” (p. 390) that is refined while the

system is being developed. The project control list acts as a project management

instrument that provides an indicator of the progress made with meeting system

requirements. Each task in the project control list becomes the subject of the

iterative activities of analysis, design and implementation. The project control list

is an inherently dynamic list that is refined on the basis of increased knowledge

that the development team acquires with regards to the system requirements. This

knowledge is obtained by virtue of feedback from end user interaction with the

earlier, incremental versions of the system (Larman & Basili, 2003). From a SE

perspective, the strategy of keeping the systems developers as well informed as

3 Software maintenance is the activity performed whenever a fault is fixed or an adjustment is made to

the software product to accommodate a change.in the set of requirements (Schach, 2008, p. 11),
4 The ability of a software product to accommodate changes without any degradation in performance of

the software product (Schach, 2008, p. 47)

 30

possible at all stages of development is a compulsory requirement for ensuring

quality of the final system (Mills, 1980). Also, the heavy reliance on end-user

involvement at all stages of development is aligned to the prototyping approach

suggested by McCracken and Jackson (1982).

This iterative approach to software development represented a significant

change to the sequential Waterfall-like approach and formed the basis of a new

paradigm5 of software development. The focus of the development effort is on

refining user requirements, not confining them to a pre-defined prescriptive list of

requirements. In terms of Brooks’ quest to find the elusive ‘silver bullet’6 that will

obviate some of the difficulties associated with software development, Brooks’

comments with regards to the IID methodology are summarised below:

 One of the important activities performed by a software developer is

the accurate extraction and refinement of the requirements for a

software system. Most often, the client is not fully aware of the

requirements themselves, hence there has to be extensive iteration

between the client and the system developer so that an accurate idea

of the system requirements is obtained;

 Even with extensive consultation between the client and the systems

developer, it is still difficult for the client to provide a precise

specification for the software system;

 One of the most promising technological developments that

represents a viable ‘attack’ on the essence of software complexity is

the rapid prototyping approach that is part of the iterative

specification of requirements;

 Software systems should be ‘grown’ or developed using an

incremental, evolutionary approach. It should not be ‘built’ from an

initial set of prescribed requirements. This is aligned to the strategy

proposed in Mills (1980) that a software system should first be made

5 The sequential Waterfall SPM represented the older paradigm of software development.
6 See Brooks (1987) for an elaboration of the “silver bullet” analogy

 31

to run successfully, even if it did not do anything meaningful. The

system could simply demonstrate its ability to successfully activate

high level ‘dummy subprograms’. Hereafter, the ‘dummy

subprograms’ should be developed using a method of stepwise

refinement (Wirth, 1971) until the lower level subprograms are

populated with actual program code.

Brooks (1987) concludes by remarking that IID methodology has had a

profound impact on the effectiveness of software development process models.

What has emerged from the preceding discussion is that the IID

methodology allows the developer an opportunity to refine the system

requirements on the basis of responses obtained from end users’ interaction with

a working version of the actual system. The system is also ‘grown’ incrementally

into the final product. The IID methodology was proposed as a mechanism to divert

the sequential mentality inherent in the Waterfall SPM to a more dynamic one.

However, the individual phases of the Waterfall SPM form the core elements of

the IID based SPM’s as illustrated in Figure 2.6.

Figure 2.6: IID based Software Process Model (adapted from IBM (1998))

 32

Whilst the methodological aspects of the iterative and incremental

approach are quite clear (as illustrated in Figure 2.6), a variety of SPM’s based on

the IID methodology were proposed by the SE community. The essence of these

models is that they need to have a mechanism that enables developers to test the

system with end users in order to refine the system’s design models during the

development process (Cusumano & Selby, 1997). A discussion of SPM’s that

incorporate the IID methodology is presented in the subsequent text.

2.3.4 The Spiral Software Process Model

In a paper titled ‘A Spiral Model of Software Development and

Enhancement’ Boehm (1988) presented a modification of the Waterfall SPM by

introducing a SPM based on iterative and incremental development methodology

that was named the Spiral Model of software development. Boehm contextualised

the Spiral SPM by suggesting that the generic IID based SPM could easily

degenerate into a code and fix style of development. According to Boehm (1988),

software developers who develop with an IID mentality would be inclined to

prioritise changing end user requirements without being constrained by an overall

planning and risk mitigation strategy. Such an approach would have a strong

propensity to produce ‘spaghetti’ code that would render software systems as

unmaintainable. In response to this perceived weakness of the IID SPM, Boehm’s

Spiral model incorporated elements of the IID methodology within a framework

that included a liberal presence of planning and risk mitigation initiatives in each

of the iterative development cycles as illustrated in Figure 2.7.

 33

As can be seen in Figure 2.7, the Spiral SPM entails an iterative sequence

of the following activities for each specific portion of the system.

 Identification of objectives, alternatives and constraints for specific

phases of the development cycle (upper left quadrant in Figure 2.7).

The objectives of a specific phase of development entails aspects such

as the desired functionality, the expected performance of the system,

the ability to accommodate change, etc. (Boehm, 1988). The

alternatives allude to identification of possible alternative designs

and off-the-shelf solutions. The constraints refer to operational

parameters that are normally expected as part of the systems

development process. This includes cost, resource and interface

constraints;

 An evaluation of the alternatives (identified earlier) relative to the

constraints and objectives. A proof-of-concept prototype7 is

7 A proof-of-concept prototype is a scale model constructed to test the feasibility of construction

(Schach, 2008, p. 61)

Figure 2.7: The Spiral Software Process Model (Boehm, 1988)

 34

suggested as a possible risk evaluation strategy. These activities

form the upper right quadrant of the Spiral model;

 The lower right quadrant of the Spiral SPM represents the

development phase of the model. However, the significant aspect of

the development phase is its dynamic nature. If concerns regarding

the system performance or the viability of the user interface cannot

be resolved, then an evolutionary8 development approached is

suggested. In this case, the system is developed incrementally. The

main aspects of the system are developed early, thereby providing

the developers with an opportunity to evaluate the risks of system

failure at an early stage of development. The system is evolved into

the fully, fledged final product. If, however, all performance and user

interface risks have been identified and resolved at the

requirements phase, then the basic waterfall approach to software

development may be followed (as indicated in the lower right

quadrant). This is not the same as simply a different case of the

Waterfall SPM. Boehm makes reference to a software development

strategy that entails partitioning of the software product into

components that are developed iteratively using the phases of the

Waterfall SPM.

Spiral is a Typical IID Methodology

Based on the illustration and the subsequent narrative, the Spiral SPM is

representative of a typical IID methodology. However, according to Schach (2008,

p. 64) the Spiral model is not a “truly incremental model” because it consists of

discrete phases of “waterfall-like” development (in reference to the different

quadrants that underpin the Spiral SPM as illustrated in Figure 2.7).This

assertion is certainly debatable because the strategy of prototyping ensures

incremental refinement of system requirements, unlike the Waterfall approach

where the requirements are declared and ‘frozen’ at the beginning of the

8 The evolutionary approach is described by Pressman (2010, p. 42) as an approach that produces an

increasingly more complete version of the software with each iteration

 35

development process. Boehm and Hansen (2000) are in agreement with the

dynamism inherent in the Spiral SPM by virtue of their assertion that the Spiral

model embodies a cyclic approach where the objective is to incrementally refine a

system’s degree of definition whilst at the same time, reducing the degree of risk.

Ruparelia (2010) endorses the suggestion regarding the incremental nature of the

Spiral SPM by claiming that the philosophy underlying the spiral approach is to

start small, and think big. This is certainly aligned to the IID methodology of

focusing development on small, manageable portions of the system. It is expected

that each portion will be aligned to the overall system development objectives that

attempt to ensure optimal functionality without incurring significant cost

overheads and also ensuring the maintainability of the system. Hence, whilst there

is a case to be made for the Spiral SPM to be regarded as an iterative and

incremental type SPM, the “quadrant-like” structure of the Spiral model (Figure

2.7) does give credibility to Schach’s interpretation that the Spiral SPM simply

entails successive iterations of the phases of the Waterfall SPM. Hence, a closer

inspection of the Spiral SPM is warranted in order to resolve the doubt cast by

Schach regarding the iterative and incremental nature of the Spiral SPM.

The problem of creating a SPM that attempts to minimise the weaknesses

of other SPM’s is that the complexity of the newly created process model increases.

This assertion may be substantiated by using the case of risk analysis in the Spiral

SPM. Risk analysis was included as a control measure in the Spiral SPM so that

the incremental functionality of the evolving system was added within the

parameters of cost and resource consumption feasibility. However, the stringent

implementation of such control measures necessitates the introduction of a new

set of processes and activities that will require concise and comprehensive

documentation in order to create an effective ‘audit trail’ of the risk analysis

deliberations. This added overhead to the Spiral SPM tends to render the process

as a ‘high ceremony’ process.

 36

Spiral Methodology viewed as a “High in Ceremony” Process

The expression ‘high ceremony’ was coined in the annals of SE literature to

refer to SPM’s that entailed substantive focus on documentation, formal software

reviews, rigid adherence to methodology and embodied a highly controlled

demeanour towards the software development process. The attributes of a high

ceremony process have been gleaned from the use of the expression by McBreen

(2000), McCormick (2001) and Booch (2001) in reference to general software

development methodology as well as Cockburn (1999), Fowler (2001) and Fowler

(2006) in reference to agile software development methodology. From the

preceding references, the ‘waterfall-like’ approach to software development is

regarded as high ceremony while the SPM’s that are strongly influenced by an

iterative and incremental approach and gives prominence to the visibility of the

software rather than the documentation, is regarded as ‘low ceremony’.

A distinctive aspect of the Spiral SPM is that it has elements of the IID

methodology, although the major focus is on extensive risk analysis. The risk

analysis overhead renders the Spiral approach to software development as a high

ceremony SPM. As such, it is ideally suited for large-scale software systems that

serve a ‘mission critical’, institutionalised purpose and entails a substantive

financial and resource investment. In such systems, the cost of failure warrants an

approach that is underpinned by continuous risk analysis, thereby minimising the

prospect of system failure and enhancing the traceability and accountability of the

software development process. The Spiral SPM embodies an engineering-like

approach to software development, the significance of which is highlighted in

Booch’s commentary on the future of SPM’s, where he refers to the idealism of

“…managing requirements, iteratively and incrementally growing a system’s

architecture, controlling change, and testing continuously” (Booch, 2001, p. 120).

A significant aspect of the preceding comment is that Booch refers to the idealism

of incorporating proper software development principles into the process of

software development. The implication here is that the ideal route is perceived to

be more of a vision of perfection rather than being representative of what is

 37

practically feasible. In this regard, the Spiral SPM is theoretically sound, but

practically untenable.

Given the rigour and effort spent on ensuring system success, there is a

lack of popularity of the Spiral SPM. While the SE community has endorsed the

Spiral SPM as a viable approach to software development, it is the economic

imperatives that have ‘derailed’ any prospect of a unanimous show of support for

the Spiral SPM. Booch (2001) points out that economic constraints tend to be given

priority over quality software thereby resulting in SPM’s that produce software

systems that are less than optimal. In an article titled, “When Good Enough

Software is Best”, (Yourdon, 1995) coined the expression Good Enough Software.

In this article Yourdon asserts that software development does not have to always

abide by the rigour, standards and precision of engineering-like projects. He

contends that a “good-enough approach” (p. 79) would faciltate a software

development process that is rational and attaches significance to the domain of

usage of the software system thereby modulating the exclusive focus on the rigour

and precision of the development process. Meyer (2003) endorsed the concept of

good enough software and suggested that a software system with ‘good enough’

quality, that is delivered on time so as to enhance the prospect of competitive

business advantage is better than a software system that is deemed to be perfect,

but is delivered too late to provide business value. It is within this context that

high ceremony SPM’s such as the Spiral model began to lose popularity amongst

software developers.

Schach (2008) pointed some other issues of concern regarding the Spiral

SPM. Schach contends that the additional costs incurred by the risk analysis

phases of the Spiral SPM renders the Spiral approach appropriate for large-scale

software projects where the cost of the risk analysis is only a small percentage of

the entire project. He also refers to the skill required by the analysis team in

reliably identifying areas of risk. If this is not done accurately, then the cost of

recovery from such risks could be quite substantial. Boehm (1988) has

acknowledged the criticisms of the Spiral SPM by members of the SE community

and has conceded that the model relies heavily on comprehensive documentation

 38

and the involvement of highly experienced software practitioners who are skilled

in risk analysis.

Conditions for the Successful Implementation of the Spiral Methodology

From the prevailing discussion, a necessary condition for the successful

implementation of the Spiral model is to always have a multi-skilled team

available. While software development skills are an absolute necessity, the

development team also needs to have the expertise of experienced software

developers readily available to make risk assessments during the life-cycle of the

Spiral model. The main issue with these requirements is that the intensity of

demands for software availability cannot be satisfied by software developers who

always take the high ceremony approach. For most business oriented systems that

serve an immediate need, a satisficing approach that entails the development of

‘good enough’ software may be perceived to be a much more viable alternative to

the Spiral SPM. Naumann and Jenkins (1982) commented that SPM’s need to be

adjusted to handle software requirements that are more complex and operate in

less structured environments. These SPM’s need to be able to handle changing

user requirements, respond to the feedback provided on the basis of users’

experiences in interacting with initial versions of the system as well as be able to

handle new technology. Hence, there was a call for SPM’s to become more dynamic

The Spiral SPM had served its purpose in contributing to the evolutionary

trajectory of SPM’s. However, the potential of the Spiral SPM to be accommodating

of a dynamic development environment was limited. This quest for a dynamic

software process model that was flexible enough to handle changing user

requirements became an urgent source of enquiry by the SE community. Aligned

to the issue of obtaining an accurate and adaptable representation of user

requirements, the object-oriented (OO) paradigm of software development was

beginning to achieve a ubiquitous presence in the field of software development.

According to Capretz (2003), the OO paradigm enhanced the prospect of obtaining

a better software based representation of real world artefacts. The Unified Process

(UP) is a SPM that leverages the advantages inherent in OO development to offer

a truly IID methodology.

 39

2.3.5 The Unified Process

The UP is representative of an iterative and incremental methodology

where each increment entails all of the activities of the traditional SDLC.

However, the significant aspect of the UP is that each iteration is not an

independent activity and according to Jacobson et al. (1999), each increment yields

a working software artefact that provides the client/user with an early opportunity

to interact with the evolving system in order to provide feedback regarding

expectations of the system. The UP conforms to the generic framework inherent in

most software process models. According to Pressman (2010) the generic

framework of software development consists of the activities of requirements

gathering, system planning, analysis and design, coding, testing and deployment.

These activities are manifested in the UP in an iterative manner, as depicted in

Figure 2.8 below. The iterative demeanour of the UP is required to accommodate

changes to the evolving system based on user feedback. This is a pivotal area of

differentiation between the Waterfall-like software process models and the UP. As

illustrated in Figure 2.8, there is a substantial overlap between the different

phases of the UP. The UP is architecturally modelled on the phases that underpin

a typical SDLC. The iterative and incremental features are incorporated by virtue

of the UP’s two-dimensional structure. The phases of the UP are illustrated in

Figure 2.8.

Figure 2.8: The Unified Process (Schach, 2008, p. 86)

 40

The Inception Phase is predominantly focused on establishing the

system’s objectives and the economic viability of developing the system. This phase

is regarded as a risk analysis phase where a business case for the development of

the system is compiled. The Elaboration Phase entails refinement of the

system’s objectives, the compilation of a software project management plan and

the development of system models that provide an abstraction of the complete

system. Unified Modelling Language (UML) is used to represent these models. The

Construction Phase is predominantly focused on coding and testing activities.

The first fully operational version of the system is released as a beta release where

feedback is obtained from the client regarding expectations of the system. The

iterative process of correcting system faults so that it conforms to the client’s

expectations is regarded as the Transition Phase.

It should be noted that the phases are not mutually exclusive as can be

observed in the illustration in Figure 2.8. Schach (2008) makes a point of

explaining that the four phases of development depicted in the illustration of the

UP are representative of a typical software development effort where functionality

is added to the evolving system in an incremental manner. The UP represented a

software process model that incorporated much of the flexibility/agility of an

iterative and incremental approach to software development. It heralded the

beginning of an era that embraced an adaptive rather than a prescriptive approach

to software development.

However, the UP was still driven by a substantive design effort prior to

intensive coding. The elaboration and construction phases are heavily reliant on

extensive UML based models that needed to be coupled with substantial

documentation. According to Fowler (2001) this situation does not auger well for

software projects where the requirements are volatile and not clearly understood.

Fowler suggests that there is a tendency for the UP to follow a ‘big design up front’

(BDUF) approach, thereby compromising the ability of the software development

team to handle new or changing requirements paradoxically leading to a situation

where the UP degenerates into a waterfall-like approach. The BDUF intrinsic to

the UP has also been criticised for creating a situation where the prevalence of a

 41

complex inheritance hierarchy9 compromises the maintainability and extensibility

of the system (Bennett & Rajlich, 2000). As a response to this situation, Ambler

(2001) suggested invocation of an iterative approach to modelling as opposed to

adopting a BDUF approach. This can be achieved by creating high level,

lightweight models such as use case diagrams and user stories that are not

necessarily specified to completion. These so called agile models become the basis

for coding efforts that result in the incremental release of versions of the software

product that are refined iteratively until it meets with user expectation. This

strategy is commensurate with the ideas previously expressed by Fowler (2000) in

an article titled “The New Methodology” where he alludes to the strategy of

integrating design and coding, thereby blurring the distinction between these two

phases of the software process.

This iterative relationship between the design and coding phases is

essential in order to accommodate the volatile nature of software requirements.

From a UP perspective, the consequence of such a strategy is the conflation of the

elaboration and construction phases of the UP, thereby prioritising working

software over comprehensive documentation. Fowler extends this idea by

suggesting that the source code is actually an integral part of the documentation.

These deliberations converge towards a software process model that is

underpinned by the structure of the UP and supported with a set of agile models.

However, in order for such a software process model to succeed, Ambler (2001)

warns that an organisation’s culture should be receptive to the UP and agile

modelling. Ambler makes the point that the UP is normally adopted by

organisations that are ‘documentation centric’ and tend to align themselves with

a development philosophy that is fairly rigid and prescriptive. In such a situation,

an agile approach to modelling is not easily reconciled with the prevailing

prescriptive mind set. In 2001, Ambler proposed a software process model named

the Agile Unified Process (AUP) (see Ambler (2001)) that consisted of a lightweight

version of the UP.

9 Inheritance is an OO strategy to enable code reusability

 42

2.3.6 The Agile Unified Process (AUP)

The AUP preserves some of the formality of the UP but it also consists of

an agile ‘flavour’ that is underpinned by lightweight models and frequent software

releases. The evolving software artefact is used as a validation instrument rather

than the documentation or the system’s analysis and design models. The elevated

priority attached to the actual coding of the software system coupled with an

ideology that UML and other non-code artefacts are of secondary importance,

prompted the software engineering community to develop a software process model

that is receptive to changing user requirements. The focus of the development

effort shifted from the subservience to the process models that dictated software

development to a higher level of interactivity with the end users of the system.

This embodied a shift in focus to the social context in which software systems were

being used. According to Boehm (2006), this shift in emphasis to a software process

model that enhanced the prospect of rapid software development is necessitated

by societal demands where software is being used as a “competitive discriminator”

(p. 18). The increased pressure on the software development community to ‘reduce

software time-to-market’, prompted the advent of software process models that are

underpinned by characteristics that are iterative, incremental and agile. The

renewed focus on extensive client collaboration, less intensive modelling, quick

coding and instantiation of software artefacts to enable client validation, converges

to the idea that adoption of a specific SPM may be perceived as too restrictive in

achieving these objectives. This assertion resonates with the claim made by

Nandhakumar and Avison (1999) that a SPM has an invisible presence that merely

serves as a controlling rather than a usable framework that adds value to the

software development process. This remark may have been a catalyst for the

formalisation of a set of software development methods that embody an element of

dynamism and lightweight structure to the software development process.

Collectively, these methods are referred to as agile methodology.

 43

2.4 Agile Software Development

According to Cohen et al. (2004), an agile approach to software development

is a reaction to the traditional ways of developing software and an

acknowledgement of the “…need for an alternative to documentation driven,

heavyweight software development processes” (p. 3). Cockburn (2002) stresses that

the focal point of agile methods is to facilitate a software process model that

embodies flexibility and the capacity to handle changing requirements. According

to Abbas et al. (2008) these elements of agility have been intrinsic to the software

development process for a number of years prior to the formalization of the

methodology in the late 1990s. Cohen et al. (2004) suggested that agile

characteristics such as the response to change, customer involvement, and working

software in preference to elaborate documentation became increasingly important

to the software development process from 1975 onwards. These attributes of the

software development process were collectively referred to as the iterative

enhancement development technique. However, these attributes were being used

in a fragmented manner without being recognized as part of an overriding software

development methodology.

2.4.1 The Need for an Agile Intervention

The preceding discussion on software development process models and

methodologies that culminated in the UP (sections 2.3.1 to 2.3.6), seem to suggest

that there is a lingering element of doubt and discontent by software practitioners

regarding the effectiveness of ad hoc techniques and prescriptive process models

in solving the problem of successful software development. This assertion is

corroborated by Strode (2012) who suggests that in the late 1990’s, the IS

development research community seems to converge to an opinion that software

development methodology is not universally beneficial and in some instances, it

can be quite detrimental to the efforts of developing software successfully. Despite

the best efforts of the software engineering and IS research communities, the

software development process models have not achieved a level of success that

would arguably ensure confidence in the successful development of a software

 44

artefact. This is contrary to other engineering disciplines where a planned,

controlled, engineering-like approach to development would normally guarantee a

successful product. The preceding assertion is commensurate with the overriding

opinion that emerged from the 1996 seminar titled “The History of Software

Engineering” (see Aspray et al., 1997) and is also partially aligned to the call by

Fenton et al. (1997) for the adoption of a more scientific approach to the software

development process.

Tackling the SE Crisis

There was a need for the software engineering community to re-establish a

measure of confidence in the software development process. An impending crisis

situation such as the one that confronted the software engineering community is

normally tackled by examining the epistemological underpinnings of a discipline.

Incursions into the epistemological underpinnings of the computing discipline can

be quite diverse and could easily degenerate into a problem in itself that may well

‘creep’ beyond the scope of the current discourse. However the ontological synopsis

of the discipline of computing by Jackson (1995) in an article titled “The World and

the Machine”, provides a frame of reference from which there may be a generation

of some discussion on the topic. Jackson undertakes an exploration of the

relationship between the ‘world’ (a reference to society) and a machine (a reference

to a computing device). According to Jackson, this relationship has at least four

facets. These are:

 the modelling facet where the computing device simulates society;

 the interface facet that provides society with a mechanism to interact

with the computing device;

 the engineering facet, where the computing device exerts a degree of

control over the societal behavioural patterns;

 the problem facet where societal convention influences the

shape/form of the computing device and the solution that it provides.

The preceding lucid illustration of what could potentially be a complex

relationship paves the way for a high level analysis of the relationship between

 45

society and a computing device. Jackson identifies the conceptual gaps of

understanding between the technological realm and the societal realm as possibly

an area where the software engineering community has failed society. This

conceptual gap of understanding manifests in all four facets of the relationship

between the world and the machine.

The Social Dimension of SE

While substantial progress has been made in providing structure and

guidance for the technical aspects of software development, not much has been

done to address the communication gap between the software engineering

community and the society of human end-users. Jackson concludes this ontological

analysis on the state of computing by suggesting that discourse on software

development methodology should focus on the human realm and the development

of methodologies and process models that elevate the importance of the social

element in the software development process. The social dimension has a strong

presence in the requirements elicitation phase, the modelling and coding phases

that typically involve a team of developers and finally within the context of use

that has an impact on end user behaviour at the organisational level. These

socially oriented issues were not as prominent in the early 1990’s where software

development typically involved a small group of end users and developers who

interacted with standalone, “stovepipe” systems (Boehm, 2006, p. 23) that had a

limited potential to enable interoperability with other systems and exerted a

degree of influence that was seldom felt at the organisational level. The late 1990’s

and early 2000’s heralded a change in this situation. Software began to play a more

pivotal role in society thereby becoming a catalyst for the software engineering

community to explore software process models that endeavoured to incorporate

processes that embodied an acknowledgement of the human influence on the

software development process. This assertion is corroborated in Highsmith and

Cockburn (2001) and Cohen et al. (2004) who claimed that there was a need for

new software development practices that were people-oriented and flexible and are

based on generative rules that do not break down in a dynamic environment.

Abbas et al. (2008) added to the impetus for a more dynamic, agile software process

 46

model by suggesting that the traditional methodologies did not adequately cope

with the “…turbulence of business demands and fluctuating advances in

technology” (p. 3). These unpredictable traits of a changing, modern society

rendered it almost impossible to anticipate a complete set of the requirements

early in the project lifecycle.

2.4.2 Agile Software Development Methodology

The agile philosophy is centered on the idea of being adaptive and non-

prescriptive. Incorporation of this philosophy into the domain of software

development culminated in the spawning of software development methods that

were grouped together to constitute agile software development methodology.

According to Abbas et al. (2008), it is not easy to provide a succinct definition for

the concept of agile software development methodology. However, there were

contributions regarding some of the defining characteristics of agile software

development methods (listed in Table 2.1) that collectively provide an overall

illustration of the methodology.

Table 2.1: Characteristics of Agile Software Development Methods

Characteristics Reference

Lightweight and manoeuvrable; produce the first

working software version in a short time frame;

invent simple solutions, so there is less to change and

making those changes is easier; improve design

quality continually

(Highsmith & Cockburn, 2001)

Employs a simple design with short iteration cycles;

actively involve users to establish, prioritize, and

verify requirements; and rely on tacit knowledge

within a team as opposed to documentation

(Boehm, 2002)

Refactoring, iterative feature-driven cycles, with

involvement of customer focus groups
(Highsmith, 2002)

 47

Prioritising project manoeuvrability with respect to

shifting requirements, shifting technology, and a

shifting understanding of the situation.

(Cockburn, 2002)

Emergent, iterative and exploratory; not confined by

formal rules; learning through experimentation and

introspection, constantly reframing of the problem

and its solution

(Dybâ & Dingsoyr, 2009)

Adaptive, iterative, incremental, and people oriented (Abbas et al., 2008)

As indicated in Table 2.1, the elements of dynamism, simple design and

quick delivery of working software that underpinned most of the agile methods

was a reason for the software engineering community to feel upbeat about the

prospect of obviating the dilemma regarding the changeability and invisibility10

that plagued the software development community. The strong focus on providing

the customer with a quick, working, initial version of the software system as well

as the iterative nature of development provided a measure of confidence that

changing customer requirements could easily be accommodated. However,

according to Boehm and Turner (2003), agile methods flounder on handling

complexity and to some extent conformity. They claim that agile methods are

suitable for small projects where there is less complexity. Also, the dynamism

inherent in agile methods do not auger well for the desire to impart obedience and

order to the software development process. These statements are a serious

indictment on the prospect of the newly introduced agile methodology to achieve

success levels that could match up to the hype and enthusiasm that these methods

initially generated. However, before conducting a critique of the preceding

statement, it is only fitting that an incursion into the advent and formalisation of

agile methods be undertaken in order to obtain a deeper insight into the

philosophical and operational aspects of agile methodology.

10 A reference to Fred Brooks’ indictment on the software crisis in Brooks (1987)

 48

 According to Abbas et al. (2008) as well as Dingsøyr et al. (2012), the term

agile methodology is used to collectively refer to lightweight software development

methods such as Extreme Programming, Scrum, Dynamic Systems Development

Method (DSDM), Feature Driven Development (FDD), Crystal, and Adaptive

Software Development (ASD). Each of these methods is centered on core principles

listed in Table 2.2. In an effort to consolidate the principles espoused by each of

the agile methods listed above, a group of 17 software practitioners, who were

instrumental in promoting the use of lightweight software development methods

in the late 1990’s, put together the Manifesto for Agile Software Development (see

Fowler & Highsmith, 2001) that documented their shared philosophy of software

development (Misra et al., 2012). The Agile Manifesto, consisting of a set of 12

principles, is holistically based on the core principles listed in Table 2.2. The

divergence from traditional software development methodology, interpreted from

the original set of 12 principles, is also presented in Table 2.2.

Table 2.2: Core Principles of Agile Manifesto and Divergence from Tradition

Core Principles of Agile

Manifesto
Divergence from Traditional Practice

Preference is given to

individuals and interactions

over processes and tools.

An inclination towards a non-prescriptive

methodology that is responsive to the social

dynamics of the development environment

rather than a process; system development

is driven by a “self-organising” software

development team.

Working software is prioritized

over comprehensive

documentation

Software is developed incrementally over

shorter time scales using smaller designs;

The focus is on developing specific features

of the system thereby facilitating customer

collaboration; working software is regarded

as the primary measure of progress.

Customer collaboration is

valued more than contract

negotiation

System developers maintain a high level of

interactivity with the business

stakeholders.

 49

Responding to change over

following a plan

The lightweight development demeanour

enhances the prospect of accommodating

changing requirements even late in the

development cycle. The rationale is to

enable change in order to provide the

customer with a competitive advantage.

Cohn, one of the contributors to the Agile Manifesto, makes reference (see

Cohn, 2004) to the software development process model that prevailed during the

mid-1990 as a ‘mix’ of the following techniques:

 Extensive collaboration with end users culminating in informal

documents that captured the essence of what the end user desired

in the system

 Sketching of screen interfaces on paper;

 Prototyping;

 Coding small parts of the system that would be demonstrated to a

representative set of end users.

Cohn (2004) claimed that extensive upfront requirements gathering and

documentation can be counter-productive. He cited the inaccuracies of the English

language as a pivotal aspect that could compromise efforts at capturing accurate

user requirements of a system. These sentiments are an endorsement of the

philosophy of maintaining a lightweight, adaptive approach to software

development that is enshrined in the Agile Manifesto. Cohn suggests that the agile

oriented practice of capturing user requirements as a set of user stories, which

entails a short description of the required functionality from the perspective of the

user or the customer of the software (Cohn, 2004) is more effective in bridging the

gap between the end user and the developer. The technique of documenting user

requirements as a set of user stories is more closely aligned to agile methodology

in contrast with the technique of compiling a comprehensive user requirements

document used for prescriptive process models such as the Waterfall approach or

the technique of use case modelling, intrinsic to the UP. The point of departure

 50

regarding these requirements documentation techniques is that user stories are

lightweight in the sense that it captures a minimal set of requirements that

become the focus of a single iteration of an agile based software project. In order

to contextualise the iterative techniques used by agile methods, an overview

discussion of these methods will be presented in the subsequent sections. The

discussion will be structured around the listing of agile methods presented in

Abbas et al. (2008) and Dingsøyr et al. (2012).

2.4.3 Extreme Programming (XP) Methodology

Extreme Programming (XP) is a software development methodology that is

considered to be the catalyst responsible for generating a focus on ASDM (Fowler,

2013). During the initial period of engagement with ASDM, XP was one of the most

commonly used agile methods (Hummel, 2014; Sinha & Prajapati, 2014; van

Valkenhoef et al., 2011)

Many of the values and principles of XP, which are documented in Beck

(1999) and his publication titled “Extreme Programming Explained” (see Beck,

2000), that reached seminal status, is closely aligned to the values and principles

enshrined in the Agile Manifesto. According to Beck (1999), XP transforms the

conventional software process models into a sideways orientation as illustrated in

Figure 2.9. Beck suggests that the evolution of software process models was

structured along the philosophy that reflected a preference for a shorter

development cycle because it is conducive to accommodating changing user

requirements. This philosophy is reflected in Figure 2.9 where the transition from

the Waterfall model and its long development cycles to the shorter iterative

development approach epitomised by the Spiral model, culminating in XP where

all of the development activities (analysis, design, implementation and test) are

‘blended’ into smaller iterations, throughout the entire software development

process.

 51

Beck’s structuring of XP entails a transformation of the conventional

software process into a ‘sideways’ orientation, where the focus is prioritisation of

quick coding and testing rather than developing for the future. In order to achieve

this strategy of blending the software development activities into smaller

iterations, Beck proposed a set of major practices that have to be followed to

facilitate compliance with XP methodology. The main practices of the XP

methodology are summarised in Table 2.3.

Table 2.3: Core Principles of XP (Adapted from (Beck, 1999))

Planning game

Customers determine the most valuable features

that they want prioritised; these features are

documented as user stories that contain

specifications regarding the scope and timing of the

release of the feature; each feature release is

regarded as an iteration/small release of the XP

process model; The planning game is a subtle

reference to the interactivity between the “business

people”/customer and the “technical

people”/programmer.

Metaphor

Each project is guided by a single overarching

metaphor/ a story that provides a user friendly/non-

technical reference for the basic elements of the

system; a piece of system jargon that enables all

system stakeholders to identify with the overall

purpose of the system; a deliberate attempt to avoid

Figure 2.9: The Evolution to XP (Beck, 1999)

 52

a reference to technically oriented terminology such

as system architecture (Grinyer, 2007)

Simple Design and

refactoring

There is no big design up front; the designs are very

much focused on individual user stories; the overall

system design evolves into a final design via a

process of continuous refactoring

(restructuring/optimising system code without

changing its behaviour).

Tests

XP is regarded as a test driven methodology (TDD);

Programmers and customers compile a set of tests as

part of a user story document; this is done before

coding.

Pair Programming All production code is written by two programmers

in a single location using a single machine.

On-site customer A customer sits with the team full-time

Continuous integration New code is integrated with the evolving system

within a short space of time; any new code that

compromises the systems’ ability to pass the set of

pre-defined tests is discarded.

Table 2.3 has made liberal reference to the entities, customer and

programmer. In order to establish a bit of convention and provide some clarity with

regards to the use of terminology pertaining to XP methodology, Lindstrom and

Jeffries (2004) explained that the main role players are the customer and the

programmer. The customer is a business representative who provides details

regarding the system’s requirements and the expected business value. Around

these requirements and business value specifications, a set of test cases are

developed to enable the system delivers the expected functionality. The

programmer is a member of the technical team assembled to implement the

customer’s requirements and develop the software system. The major

contributions of XP are centered on shorter development cycles, the

recommendation of using an evolutionary design approach (as opposed to the ‘big

design up front’ used in traditional methodologies), an emphasis on continuous

testing and integration, the invocation of a pair programming strategy and the

 53

requirement of having an on-site customer. The essence of XP methodology is

simplicity in terms of planning, design, programming, testing and feedback

(Lindstrom & Jeffries, 2004). There is a high focus on interactivity with the

customer because the customer is responsible for prescribing the acceptance tests

and then evaluating the software to ascertain if it delivers the intended business

value. Each iteration of an XP cycle produces a working version of the software

that is evaluated by the customer. Hence, there is a high priority attached to

visibility of the software thereby enhancing the prospect of customer feedback.

This is different from traditional software development methodology where the

customer involvement is restricted to specific phases of development and the actual

system is delivered completely at the end of the development cycle.

While the XP methodology has received many endorsements, Beck (1999)

did concede that it was not “…a finished, polished idea” (p. 77) and it is ideally

suited to small, medium sized systems where requirements are not concise and

were likely to change during the course of development.

Empirical Deliberations Involving XP Methodology

An objective indictment on the effectiveness/success of XP was not easy to

acquire because many of the reports in this regard have been based on anecdotal

evidence (Abrahamsson & Koskela, 2004; Layman et al., 2004). According to

Abrahamsson and Koskela (2004) and Williams et al. (2004), this situation was not

entirely unexpected and while empirical evidence is valued, much of the decision

making regarding software development within the practitioner community did

not have empirical justification. This observation resonates with the assertion by

Glazer et al. (2008) that although it was clear, to many businesses and software

engineers, that the XP attributes that prioritised rigorous customer interactions

and frequent delivery of software enabled the production of superior software, this

claim was not based on accurate empirical evidence. This situation ‘opened’ up the

methodology to criticism for lacking in its ability to deliver quality software

systems.

In an effort to address this situation, Abrahamsson and Koskela (2004)

conducted a controlled case study on XP in a practical setting that entailed

 54

development of a system for managing research data. The development team

consisted of 4 developers and the user base was in excess of 300 users. The large

user base meant that there would be varying expectations of the system and as

such, the developers were provided with an incomplete set of user requirements

that would be modified on the basis of continual user interaction with the system.

The overriding objective of the study was to set a benchmark for the performance

of XP on the basis of empirical data that provided an indication of the success of

core aspects of XP methodology. This would serve as a point of reference that

researchers and practitioners could use in their analysis of XP methodology both

holistically and also with respect to the specific practices that underpin the

methodology. This strategy resonates with the suggestion by Erickson et al. (2005)

that the main XP methods have to be studied separately to determine whether

each of these methods achieve the expected levels of success.

XP and the On-site Customer

One of the significant findings of the Abrahamsson and Koskela (2004)

study was that direct customer did not play a significant role in the success of the

system. This outcome is commensurate with the results of a similar study by

Rumpe and Schröder (2014). The suggestion that the presence of an on-site

customer is not pivotal to the success of XP is contrary to the dictates of

methodology as suggested in Beck (1999). However, on closer analysis,

Abrahamsson and Kosokela do concede that the development team appreciated the

convenience of having an on-site customer for quick system reviews, the

development of user acceptance tests as well as to provide a tokenistic presence to

instil a sense of sense of urgency and commitment to the development effort. Also,

user involvement in the systems development effort is positively correlated with

end user acceptance of the system (Bano & Zowghi, 2013; Kujala, 2003;

Kundalram, 2013; Williams et al., 2004). The Rumpe and Schroder study that

entailed a survey of 45 software practitioners, was not conclusive in this regard.

The majority of the survey responses indicated that the presence of an on-site

customer would have been preferred, but it was mostly logistical problems that

prevented the dedicated involvement of an on-site customer. There were also

 55

reports of instances where the on-site customer was not competent enough to

contribute towards the writing of accurate user stories or the generation of

adequate test criteria to ensure that valid tests were conducted on the evolving

system. In these instances, the system development effort was delayed and lead to

much frustration on the part of the developers as well as the on-site customer.

Hence, the dedicated presence of an on-site customer would be ideal, provided the

customer is familiar with the user story concept and also has the competency to

write valid test criteria that could guide the system development effort in the right

direction. This ideal scenario may not be always feasible, thereby compromising

the integrity of the methodology. However, a compromise situation that entails

sufficient involvement of the on-site customer to provide only overview detail with

regards to the compilation of user stories and the generation of test conditions

seems to be the most plausible resolution to the dilemma of on-site customer

involvement.

XP and Design, Testing and Code Refactoring

As indicated in Table 2.3, XP is regarded as test driven development (TDD)

where each feature of the system is coupled with a series of predefined tests that

are compiled by the programmers and the on-site customer. It is reported in

Causevic et al. (2011) and Layman et al. (2004) that TDD consists of an iterative

cycle of test, development and refactoring of code with the objective of ensuring

that all test cases are passed. The significant aspect of TDD is that it minimises

the need for a comprehensive system design phase. The system design evolves on

the basis of interaction with the on-site customer. This feature of XP may be

deemed to be rather controversial within in the annals of conventional systems

analysis and design literature. Historically, a comprehensive system design phase,

referred to as the big design up front (BDUF), has always been part of the systems

development process. However, the XP methodology with its TDD approach adopts

a minimalist approach to design, thereby rendering the methodology to be in

conflict with the BDUF strategy.

 56

BDUF vs TDD

The dilemma arising out of XP’s deviation from the BDUF convention is

whether the lack of a comprehensive system design in favour of the iterative TDD

approach will compromise system quality. In order to shed some light on this

dilemma, Layman et al. (2004) conducted a case study at IBM involving the

development of device driver software. The development of the device driver

software was done using the conventional BDUF approach and at a later stage, an

updated version of the software was developed using TDD. In both instances, UML

was used to create designs of the system. However, while a comprehensive design

model was developed for the older system, the newer system had a scaled down

design model that was accompanied by a set of predefined acceptance tests. A

comparative analysis on the number of defects that were identified in the code for

both the older and newer versions of the device driver software was conducted and

a significant outcome was that the newer system using the TDD approach had 40%

fewer code defects reported. While this outcome seems to suggest that TDD is a

superior methodology, Laymen et al. do acknowledge that the limitations of the

case study approach (such as the lack of external validity and the inability to

produce statistically significant results) may justify an element of caution when

making generalisations on the basis of such a study.

However, a case study can provide valuable insights into the adoption and

effectiveness of new technology or practice (Layman et al., 2004). The insight into

the benefits of TDD alluded to in the Laymen et al. study is however reinforced in

a systematic literature review of empirical studies on TDD undertaken by

Causevic et al. (2011). The review identified and provided a summative report on

the outcome of 48 empirical studies where TDD was the main focus. The most

significant outcome of this review was that TDD had a significant positive effect

on code quality. This conclusion was based on reports of a lowering in the code

defect density11 once TDD was used. Also, many of the studies reported on the

positive perception of software practitioners towards TDD.

11 A software defect is a generic term for a fault, failure or error in a software product (Schach, 2008,

p. 50)

 57

Whilst the apparent benefits of TDD seems to suggest an improved software

process, Causevic et al. warn about the limiting factors that may have a

moderating effect on the claimed benefits of using TDD. A significant moderating

factor that will hinder widespread adoption of TDD is the lack of experience or

knowledge in the use of the methodology. This lack of expertise will have a negative

impact on the code quality as well as contribute towards a less than optimal return

with regards to time and budgetary constraints. Another constraint is the reports

of unscheduled increases in the development time (confirmed in a previous study

by George and Williams (2004)). This is attributed to the time incurred to

implement a set of requirements, attempt to ensure that the acceptance tests are

met and engage in code refactoring so that there is an improvement in the code

quality.

The code refactoring activity, an intrinsic part of TDD, may also introduce

regression faults that make it necessary to repeat all of the acceptance tests

subsequent to any change in the code base, thereby increasing the development

time. Depending on the organisational context, development time may be regarded

as a critical factor in enabling business value (Causevic et al., 2011). If a project is

not completed within a given time, then it impacts negatively on the business value

(Alsultanny & Wohaishi, 2009), thereby compromising the viability of the project

and the methodology used to develop the project. In a study by Kim et al. (2012)

the issue of code refactoring was examined in a case study of the Windows

operating system at Microsoft. The study entailed a quantitative component where

1290 software engineers at Microsoft were surveyed as well as a qualitative

component that entailed semi-structured interviews with 6 engineers who were

assigned the task of refactoring the Windows 7 operating system. In the

quantitative part of the study, developers were asked to critically analyse the

concept of code refactoring. The reported benefits of code refactoring were

improved readability of the code, improved maintainability, a lower defect rate and

better extensibility of the system. The reported risks associated with code

refactoring entailed the generation of regression faults and the time taken to

conduct code refactoring. The significant outcome from the interviews was that

 58

code refactoring provided an opportunity to add business value to the system. In

the Windows case, this was done by customising the code to make it compatible

with different execution environments. From an overview perspective, it may be

concluded that the time overhead incurred by these code refactoring efforts may

well be mitigated by the increased maintainability that is incorporated into the

system, thereby saving on additional development costs. Hence, based on the

evidence presented, the XP philosophy of intensive refactoring throughout the

project (Kim et al., 2012) may be pivotal in improving software quality at a cost

that may be repaid by virtue of a reduced maintenance overhead (which according

to Schach (2008, p. 13) consumes approximately 75% of the cost of software

development).

While the lack of experience in the use of TDD and the time overhead have

been flagged as criteria that may impede the widespread adoption of XP, Causevic

et al. (2011) also examined the strategy of adopting a minimalist approach towards

an upfront system design. This strategy, which heralds a significant departure

from traditional software development ideology, has also received much attention

in Breivold et al. (2010) and Mishra and Mishra (2011). In each of these studies, it

is reported that the lack of a BDUF approach is not seen as a hindrance or a

limiting factor in the quest to develop quality software. However, Causevic et al.

do caution that there are studies where the lack of a comprehensive design phase

particularly for larger, complex systems has had a negative impact on the quality

of the system. Hence, there is no definitive indictment on whether the lack of a

comprehensive upfront design is beneficial or detrimental to the quality of a

software system. Breivold et al. (2010) is of the opinion that this aspect of agile

methodology should be the focus of further empirical inquisition. In a subsequent

study, McHugh et al. (2012) conducted a survey of 20 medical device software

organisations. Fifteen of these organisations had opted for a plan driven,

prescriptive software process model where there is a large emphasis on upfront

planning and design. It is claimed that such an approach provides the stability and

point of reference for a software project that serves a ‘mission critical’ purpose.

This sentiment is endorsed by Meyer (2014, p. 13) who is of the opinion that the

 59

agile-like stance of rejecting extensive upfront planning and design is

“irresponsible” and does not auger well for the sustainability of agile methodology.

The User Story as a Proxy for BDUF

Whilst this opinion resonates well with the dictates of traditional software

engineering practice, the McHugh et al. study did reveal that the software

practitioners were of the opinion that user stories are an adequate form of upfront

planning and provide the necessary stability that a distinct design phase would

provide for the traditional methodologies such as the Waterfall approach. These

observations give rise to a paradoxical situation where the academic fraternity is

wary of diminishing the relevance of a comprehensive upfront design effort, while

the practitioner community is gravitating towards a strategy that entails

diminishing of the overheads that would be incurred if too much time and effort is

spent on the analysis and design phase of the development lifecycle.

As a concluding observation regarding the design issue, the lack of a

comprehensive upfront design effort may not necessarily hinder the software

process. In some instances, where the system requirements may be deemed to be

volatile, the XP methodology consisting of user stories, TDD and code refactoring

may be ideal. However, in other instances where the system is deemed to be

complex or it serves a ‘mission critical’ purpose, the more prescriptive

methodologies such as the Waterfall model with a BDUF focus will be preferred.

XP Methodology and Pair Programming

Another aspect of contention regarding XP is the programmer-centric

nature of the methodology. XP is not reliant on expert contributions in the areas

of systems analysis and design (Crawford et al., 2013). Most of the analysis, design

and coding is done by two programmers who work together on the same

programming task using one computer and one keyboard (Dick & Zarnett, 2002;

Hannay et al., 2010). Programmers work together in pairs and develop simple

designs that represent a high-level abstraction of the system. XP methodology

entails the development of code using pair programming as well as rigorous testing

of the code until it conforms to a set of acceptance tests that have been specified

upfront, in collaboration with the business stakeholder. While the minimalist

 60

design approach has been deliberated upon in the previous paragraph, the

invocation of a pair programming strategy to develop code for the system has

received much focus in software engineering academic literature (Abrahamsson &

Koskela, 2004). Pair programming has been researched extensively from an

academic and a practitioner oriented context. In the academic setting, it has been

claimed that pair programming enhances code quality and programmer confidence

in the software development process (Slaten et al., 2005) and is also pivotal in

reducing the number of errors that may be found in a code review (Tomayko, 2002).

These claims have been corroborated in empirical studies by Radermacher and

Walia (2011), Wood et al. (2013) and Abeyratne (2014). The strategy used in these

studies was to make use of a control group that entailed a comparison of the quality

of programming solutions when using individual programming12 in contrast with

pair programming techniques. In all of these studies, it was apparent that the pair

programming strategy yielded higher quality software solutions than the

individual programming strategy. In terms of students’ perceptions of both

programming strategies, there was a strong preference for pair programming as

opposed to individual programming because of better defect identification and code

quality (Tomayko, 2002), greater synergy and problem solving ability (Abeyratne,

2014) and the ability to deliver a solution in a shorter time duration (Radermacher

& Walia, 2011). In the latter study, all of the subjects who used pair programming

indicated a preference for pair programming over individual programming.

The discussion in the preceding paragraph attest to the benefits of using a

pair programming strategy in an academic setting. However, all the authors whose

studies formed the basis of that discussion expressed an element of caution with

regards to extrapolation of the conclusions made to any other context. The

implementation of a control group based experimental stance would be difficult to

achieve in an industrial setting because of the unpredictable environmental factors

that will have a confounding influence on the outcome of such a study (di Bella et

al., 2013). Also, any sort of software engineering research efforts in an industrial

12 Individual programming is a reference to the traditional approach to write computer programs where

a single developer works alone on a development task (Gallis et al., 2003)

 61

setting is generally difficult to achieve. This assertion is based on the suggestion

by Gallis et al. (2003) that software engineering research is complex and involves

a mix of technological elements with the human and organisational influences. In

most studies on the effectiveness of pair programming, the possible moderating

effect that social and organisational issues may have had on the outcome of these

studies have largely been ignored (Arisholm et al., 2007). Although Gallis et al.

(2003) did provide a framework for evaluating the effectiveness of pair

programming, researchers have opted for issuing disclaimers that allude to the

possible moderating influence of the social and organisational issues on the

outcome of these studies.

In an attempt to remedy this deficiency of knowledge regarding pair

programming, di Bella et al. (2013) conducted a 14 month case study to investigate

the effectiveness of pair programming in an industrial setting. The analysis of the

results of this study seems to suggest that pair programming contributes to a small

reduction in the defect density of code used for the implementation of user stories.

However, the use of pair programming was pivotal in ensuring that no new defects

were introduced when efforts were made to rectify the original defects.

The outcome of this inquisition on the benefits of pair programming may

not be conclusive from a scientific perspective. However, the empirical and

anecdotal evidence seems to suggest that pair programming makes a significant

contribution towards enhancing code quality by enabling a reduction in the defect

density found in code artefacts during the initial stages of development and more

significantly, during the maintenance phase. There is also greater synergy that

prevails between paired teams and within the teams themselves. While this

synergy is beneficial to the overall morale of the development team there have been

suggestions that pair programming does not necessarily translate to better

productivity with respect to delivery of functionality by the development team.

A Review of XP Methodology

The expansive coverage of issues underpinning XP methodology from a

historical perspective is deemed pertinent as part of the current discourse because

it provides coverage of specific aspects of contention with regards to methods that

 62

are intrinsic to XP and the broad framework of agile methodology. In an opinion

piece on lightweight software development methodologies with a specific focus on

XP methodology, McCormick (2001) alludes to the importance of appreciating the

essence of XP methodology within specific contexts. A cautionary note is issued

that XP and agile methodology in general should not be seen as a ‘prescriptive

panacea’ to the software crisis. However, the agile approach is reflective of a stance

to software development that is adaptive to the technology being used, the size and

complexity of the software project, the criticality of the system being developed as

well as the regulatory and cultural constraints imposed on the systems

development effort. Given all of the afore-mentioned parameters that influence the

software development process, the ‘sweet spot’ area for XP has been identified as

software systems that are perceived to be smaller and serves a less critical purpose

(Beck, 1999; McCormick, 2001). Although this is a delimiting indictment on the

applicability of XP methodology, McCormack asserts that “…XP ought to be one of

the tools in our bag of tricks” (p. 110) and serves a niche area of software

development.

The seemingly capricious state of XP and agile methodology in general

prompted Dybâ and Dingsoyr (2008) to conduct a systematic review of published

literature on agile methodology. The review, that included only research papers

based on empirical evidence, acquired seminal status by providing a definitive,

overview knowledge of XP and agile methodology. The study entailed a meta-

analysis of 36 empirical studies on agile software development (narrowed down

from 1996 articles). Seventy-six percent of these studies were based on XP

methodology. While the Dyba and Dingsoyr review was one of the most

comprehensive regarding XP and general agile practice, the results of the review

were defended by disclaimers that the analysis was not definitive and were based

on the evidence of a limited number of empirical studies that had been conducted

up until 2005. This disclaimer was coupled with a call for further empirical studies

on the viability of using XP and agile methodology in general. The outcome of the

review shows an overriding positive indictment on XP methodology, although a few

serious limitations were noted. The limitations included aspects such as:

 63

 The presence of the on-site customer is not sustainable over a long

period of time. This assertion is commensurate with a similar

sentiment expressed in Martin et al. (2004) as well as Rumpe and

Schröder (2014) where it is claimed that it is challenging for the

onsite customer to become accustomed to the prevailing

organisational culture as well as conform to the social dynamics of

the interaction with the development team over a prolonged period

of time. The relationship between the on-site customer and the

development team has a potential to degenerate into an adversarial

one because of an arrangement whereby a non-technical stakeholder

is accorded peer status to a technically oriented software

engineering team. Another issue that plagues this aspect of XP

methodology is the logistics of adjusting to the potential

disorganisation that may result as a consequence of the prolonged

absence of the on-site customer from the regular role played within

the organization;

 It is difficult to introduce agile methods and XP in particular into

large and complex projects;

 In some instances, pair programming proved to be frustrating and

many projects ended with the development team resorting to

individual programming for the latter stages of the project. Although

this assertion was more tentative than definitive, there were reports

that pair programming was beneficial only in the initial

development phases. Hereafter, there was a tendency for

programmers to resort to individual programming in the latter

phases of development or during the maintenance phase;

 There were concerns regarding the lack of analysis and design at the

initial stages of development. This lack of a BDUF strategy resulted

in a development philosophy that was unstructured and ad hoc and

not ideal for complex systems;

 64

 XP and agile methodology in general is not ideal for large projects.

While these limitations provided a cautionary perspective, the majority of

the studies in the review issued a positive indictment on XP methodology from the

following perspectives:

 XP methodology is a huge improvement from the Waterfall

methodology;

 XP methodology reduces the development time as well as the cost

overruns that have become intrinsic to the software development

process;

 XP methodology enhances productivity of the development team and

customer satisfaction with the final product;

 Pair programming was positively received by XP developers and

there is empirical evidence to suggest that the pair programming

strategy leads to higher quality code.

The factors listed are significant in upholding the perception that XP

methodology has received widespread acceptance in the software development

community. However, it is in the social and organisational realms where the major

benefit of using XP methodology has been reported (Dybâ & Dingsoyr, 2008). A

study by Sharp and Robinson (2005) that involved 3 companies of varying

organisational and physical infrastructure reported that XP was sufficiently

‘malleable’ to be successfully implemented in all 3 companies. Based on the results

of an empirical study, Mannaro et al. (2004) claimed that the adoption of XP

methodology lead to greater productivity and job satisfaction. Tripp and

Riemenschneider (2014) did however caution that claims such as these were

generally not based on any theoretical underpinning, deemed to be pivotal for

operationalising abstract concepts such as job satisfaction. In order to remedy the

situation, Tripp and Riemenschneider used the Job Characteristic Model (JCM),

claimed to be one of the most tested theoretical models in social science, as a

theoretical basis develop a questionnaire that was disseminated to a sample of 104

software development practitioners in the United States. The focus of the

 65

questionnaire was to establish a possible relationship between the implementation

of agile methodology and job satisfaction of the practitioners. Whilst this study did

not focus on any specific agile method, many of the XP techniques such as test

driven development, code refactoring and pair programming formed the basis of

the analysis that was performed.

The Success of Agile

The results of the analysis indicated that there is a significant positive

relationship between the implementation of agile methods and job satisfaction.

While the Tripp and Riemenschneider study may have been obfuscated by general

principles of agility and not just XP methodology, the benefits of XP methodology

from an organisational and social perspective are confirmed in Tessem and Maurer

(2007), who used a single case study specifically focused on XP, and de O Melo et

al. (2012) who used a multiple case study approach that entailed a mix of agile

methods, one of which was XP. A periphery observation from the O Melo et al.

study was that while XP was given some focus, the dominant agile methodology of

development was Scrum. From a historical perspective, the advent of agile

software development methodology in the late 1990s was accompanied with a

specific preference for XP because of the vast amount of literature that was

available on the methodology (Fowler, 2005). Also, the test driven development

(TDD) culture as well as the focus on the engineering aspects of software

development made XP an attractive option for practitioners who were venturing

into the realm of agile software development for the first time. However, over a

period time, the demand for a methodology that focused on the management

aspects of the software process rather than the engineering or the technically

oriented coding aspects, resulted in a migration within the agile domain, from XP

methodology to Scrum methodology.

2.4.4 The Migration from XP Methodology to Scrum Methodology

According to Fowler (2005) Scrum attaches importance to the management

aspects of software development, dividing development into concise time periods

referred to as iterations or sprints. The intention is to establish closer monitoring

 66

and control of the software process by engaging in daily meetings referred to as

the daily scrum. As was observed in the multiple case study by de O Melo et al.

(2012), a viable arrangement would be to combine Scrum and XP thereby enabling

the attainment of a project management and software engineering focus at the

same time. This complementary coupling has been pivotal in establishing Scrum

and XP as the 2 most popular agile methodologies (Fitzgerald et al., 2006).

Theoretically, the project management value provided by Scrum and the software

engineering value provided by XP would render an integration of these

methodologies an optimal one. This strategy of selecting only parts of agile

methods that are perceived to be ‘fit for purpose’ within an organisational context

is referred to as method engineering (Henderson-Sellers, 2006) or a meta-method

approach (Fitzgerald et al., 2006) where a methodology is developed from existing

method fragments.

In order to establish the viability of the method engineering approach,

Fitzgerald et al. (2006) adopted a case study approach to investigate the

customisation of XP and Scrum at the software engineering division of an

international organisation. The study involved an interpretive, exploratory

strategy that entailed a series of interviews with software engineers who were

responsible for the customisation of XP and Scrum. The interviews were designed

to obtain feedback from the software engineers on the basis of their continuous

monitoring and evaluation regarding this customisation process over a 3-year

period. The culmination of the study was a presentation of a tentative framework

for software development that consisted of a hybrid arrangement of XP and Scrum

based methods, illustrated in Figure 2.10

 67

The framework proposed by Fitzgerald et al. (2006) consists of an invocation

of selected methods from XP and Scrum where the objective is to leverage the

benefits of the methods in a complementary manner so that the customisation

process resonates with the prevailing socio-technical environment in an

organisation. As illustrated in Figure 2.10, the specific context of the problem

domain necessitated the inclusion of only a subset of the full suite of XP methods.

The omission of certain XP practices such as the presence of an on-site customer,

continuous integration of code artefacts and a 40-hour working week was

necessitated by the requirements of the project. Also, the practice of pair

programming and the use of a metaphor to describe the main system functionality

was used sparingly because it was not practically feasible to enforce either

practice.

The Scrum contribution is centered on the value provided by the sprints

which are used as a node of the development process around which much of the

planning and control is invoked. This approach obviated the need for the ‘planning

game’ approach advocated in XP. In this way, the customisation process entailed

the selection of specific methods from a palette of XP and Scrum methods so that

it became a ‘best fit’ for the situation at hand. From a holistic perspective, the

Figure 2.10: An Integration of XP and Scrum Methodology (taken from Fitzgerald

et al. (2006))

 68

complementarity of these methods is manifested in the support provided by XP for

the technical aspects of the systems development effort while the project planning

and tracking support is provided by Scrum. It should be noted that Paulk (2001)

warns against the adoption of a fragmented, method based customisation of an

agile methodology. However, the successful customisation of agile methodology

where the agile methods are chosen in an a la carte manner as suggested by

Fitzgerald et al. (2006) is corroborated by Treacy et al. (2008) who used a multiple

case study approach involving 3 companies that used customised versions of XP as

well as an integration of XP and Scrum methodologies. The findings of this study

concur with the claims by Fitzgerald et al. (2006) that XP and Scrum can be

modified to match the requirements of the project as well as organisational and

management norms and expectations.

The preceding discussion alludes to the positive reports regarding the

complementarity between XP and Scrum. While this integration of XP and Scrum

has been endorsed by the empirical findings of Fitzgerald et al. and Treacy et al.,

both these studies are subjected to the limitation that XP and Scrum have not been

assessed to ascertain whether they may each be individually superior to the

customised versions. Fitzgerald et al. do concede that the problem with agile

method engineering is that only those parts of an agile method that are perceived

to be ‘fit for purpose’ are included in the customised version, thereby running the

risk of compromising the holistic benefits that may be achieved when using the

methodology in its original format. These concerns regarding the method

engineering of agile methods coupled with the observation that there was a need

for better project management guidance in the adopted methodology resulted a

gradual decline in the popularity of XP as well as the XP and Scrum combination.

This trend is explored in the succeeding discussion.

According to Dybâ and Dingsoyr (2008), many of the academic studies

published until 2005 focused on XP. During this period, the prominence of XP in

the academic community was also aligned to its prominence in the practitioner

domain, as illustrated in Ambler’s survey (reported in VersonOne, 2011) of 4232

software practitioners who were using agile methodology. A significant outcome of

 69

this study was that the highest adoption rate of all the agile methodologies used,

was XP (57%). Vijayasarathy and Turk (2008) reported on the results of a similar

study as the one conducted by Ambler. This study was underpinned with a

theoretical framework that consisted of Rogers’ Diffusion of Innovation

Theory(DOI) (explained in Rogers, 1983). One of the objectives of the study was to

survey a sample of early adopters of agile methodology and to establish which agile

methods were most popular. Using Rogers’ DOI theory as a theoretical base, the

study examined the preferences of early adopters of agile methodology and

concluded that there was a strong preference for agile methods that were intrinsic

to XP methodology. This included TDD, pair programming and code refactoring.

The early adopters of agile methodology had a preference for the engineering

oriented aspects of the methodology (as embodied by XP) rather than the

management aspects of software development (as embodied by Scrum). However,

the ‘later adopters’ of agile methodology had a preference for the methods that

enabled better control and management of the software development process. This

trend that represented a need for better control and management of the software

process rather than focusing on the operational aspects of the process, manifested

in Scrum replacing XP as the more popular agile methodology.

From a practitioner perspective, the results from Ambler’s survey were

slightly different to the global survey conducted by VersionOne13 (see VersionOne,

2013) in 2013. The results from the 2013 survey reported Scrum as the most

adopted agile methodology (40%), followed by XP (23%) and then a hybrid

methodology based on Scrum and XP (14%). The results suggested a trend that

Scrum was regarded as the most popular methodology, followed by the Scrum

hybrids and then XP. This trend continued in an unabated manner and Scrum has

become established as the most highly adopted agile methodology. The preceding

assertion resonates with the prediction by Dybâ and Dingsoyr (2008) that Scrum

methodology was gaining substantial focus and would soon replace XP as the most

popular agile methodology. In the 2015 VersionOne survey, a total of 3880 software

13 VersionOne is a software organisation that conducts global survey on issues pertaining to ASDM in

order to enhance the success of the agile management tools that the organisation develops.

 70

practitioners were surveyed on their use of agile methodology. The results

indicated that 58% of the respondents were using Scrum as the default

methodology for software development. The Scrum/XP hybrid was the 2nd most

preferred methodology with exclusive use of XP reported at less than 1%.

The Migration from XP to Scrum

A significant outcome of the 2015 survey was an affirmation of the trend

regarding the decreasing reliance on exclusive use of XP methodology and an

increase in the adoption of Scrum methodology. The popularity of the Scrum/XP

hybrid was however an indication that many agile concepts attributed to XP

methodology (such as TDD, code refactoring, pair programming and continuous

code integration) were perceived by practitioners as being quite useful to the

software development process. The significant preference for a Scrum based

approach was quite distinctive in this regard. A possible explanation for this trend

is that the regular ‘stand up’ meetings intrinsic to Scrum enables more frequent

reporting on the status of a project thereby facilitating better project management

and ultimately ensuring accountability on the consumption of project resources.

This overwhelming preference for Scrum warrants a closer inspection of the

underlying techniques used in the methodology.

2.4.5 Scrum Methodology

As was the case with XP, Scrum methodology was proposed as an

alternative to the sequential, ‘heavyweight’ methodologies that were not flexible

enough to accommodate the changes in user requirements as well as the volatile

environment in which the software systems were required to operate. The origins

of the Scrum methodology can be traced back to a paper titled “The New Product

Development Game” by Takeuchi and Nonaka (1986) where they proposed a more

dynamic approach to development of new products. According to Takeuchi and

Nonaka, the parameters governing new product development have changed and

the development process has to incorporate speed and flexibility as pivotal factors

in the criteria used to determine successful product development. The old approach

of product development where each phase of development was specified completely

 71

with great precision and detail before a new phase could commence compromised

the parameters of speed and flexibility. Schwaber (1997) explains that the Scrum

development methodology enables speed and flexibility by incorporating strategies

that enable the quick delivery of a working version of the system based on a broad

set of system specifications. The development team acquires good working

knowledge of the main objectives of the system and then engages the Scrum

methodology to achieve the main objectives of the system. The strategy is

analogous to the game of rugby (the analogy is explained in greater detail in the

article by Takeuchi and Nonaka (1986)) where the ball gets passed within the team

as the team moves as a unit up the field until it reaches the opposition’s goal line.

The idea here is that the team is provided with an overall objective and the team

members are given the autonomy of deciding on the strategy of how to best achieve

the objective in the quickest possible time. Although project teams are given the

autonomy of deciding on the strategy that will enable optimal progress,

management have the opportunity of establishing ‘checkpoints’ to prevent

instability and avoid the impending chaos of an uncontrolled process.

The Scrum methodology was adapted for the software industry by Jeff

Sutherland and jointly presented at the Object-Oriented Programming, Systems,

Languages & Applications '95 Conference (OOPSLA '95) with Ken Schwaber, who

formalised Scrum methodology in a paper titled “Scrum Development Process” (see

Schwaber (1997)). According to Schwaber, Scrum is a methodology that is an

enhancement of the iterative and incremental software process model (SPM) and

an improvement of the Spiral SPM which he claims is a linearly oriented model

where each phase of development precluded activities that belonged to any other

phase of development. This lack of flexibility is offset by Scrum methodology that

enabled software development teams to operate with maximum flexibility that

enhances the prospect of producing “orderly systems under chaotic circumstances”

(p. 8). The main difference between the Waterfall, Spiral and Iterative and

Incremental SPM’s and Scrum is that the core component of the systems

development activity, referred to as a Sprint (illustrated in Figure 2.11). The inner

workings of a Sprint are assumed to be completely unpredictable, prompting

 72

Takeuchi and Nonaka (1986) to accord ‘black box’ status to a Sprint. The skeletal

structure of Scrum methodology as illustrated in Figure 2.11, makes reference to

a project initiation phase, a development phase referred to as a Sprint and a project

closure phase that is planned and prescribed.

The Sprint is the Central Construct of Scrum

The Sprint phase, which forms the central construct of Scrum methodology

is subjected to the complexities of a volatile development and target environment

as explained in Takeuchi and Nonaka (1986). These complexities render the Sprint

phase as highly unpredictable. From a holistic perspective, the strategy used to

mitigate the risk inherent in the unpredictability of a Sprint phase is to implement

an iterative approach as illustrated in Figure 2.11. The iterative demeanour,

embodied by the Sprint phase, provides an opportunity to impart controls that

enable ongoing assessment of the systems development effort so that risks are

identified and mitigated. This risk driven approach does not seem to be radically

different from previous iterative SPM’s such as Boehm’s risk driven Spiral process

model. This observation is endorsed by Bannerman et al. (2012) who commented

that Scrum methodology is an expedited version of the Spiral SPM with a few

minor differences. The Spiral SPM is classified as an iterative model that is

managed by a risk assessment exercise at the end of each phase of development

thereby ensuring an accountable process. However, development proceeded slowly

because of the inability of the Spiral model to impart a sense of urgency and

flexibility to the software process.

 73

These shortcomings of the Spiral SPM are mitigated by Scrum techniques

such as Sprints, time-boxing, maintenance of a product backlog and the holding of

daily Scrum meetings. As can be observed in Figure 2.11, there is still a prescribed

phase for planning (development of the product backlog (PB) list; prioritising

system features for release based on the level of importance; risk assessment and

acquisition of management support and approval; analysis and lightweight design

of the planned system release) and system closure (invocation of integration and

system testing, concluding of system documentation and training artefacts to

facilitate smooth integration of the newly developed system into the organisational

infrastructure). The core phase of the Scrum methodology is the Sprint which is a

time-boxed iteration of the development cycle. The time restriction placed on the

development cycle imparts a sense of urgency and the daily Scrum meetings that

occur within the Sprint facilitate a sense of accountability in terms of the quality

of the evolving system and the resources consumed. The illustration in Figure 2.11

provides an overview of the methodology. Greater detail of the Scrum methodology

is provided by Sutherland et al. (2012) and illustrated in Figure 2.12.

Figure 2.11: An Overview of Scrum Methodology by Schwaber (1997)

 74

As can be ascertained from the representation of Scrum methodology in

Figure 2.12, there is a significant emphasis on ensuring a high level of interactivity

between the system’s stakeholders in order to uphold the primary objective of

developing software that is made accessible for users without incurring the delays

of exhaustive planning and design. An important aspect of Scrum is that there is

only high level focus on analysis and design modelling or on documentation. The

inner details or detailed specifications of analysis and design modelling is left to

the discretion of the development team and tends to evolve with the system’s

coding phase that occurs during the Sprints. While this philosophy is congruent

with agile methodology in general, it is the inner workings of Scrum that

differentiate the methodology from other agile methods. The inner workings are

centered on a Product Backlog (PB) and iterative work cycles named Sprints (as

illustrated in Figure 2.11 and Figure 2.12).

The PB contains a prioritised list of all items relevant to a specific product.

The Product Owner is the person responsible for managing and controlling the PB.

One of these responsibilities entails the setting of priorities for each item in the

PB. The PB is continually updated to reflect changing customer requirements as

Figure 2.12: Scrum Methodology (taken from Sutherland et

al. (2012)

 75

well as changes in the development and business domain. The PB serves the

purpose of providing the customer with an opportunity to refine or enhance system

requirements to reflect changes in the business domain, thereby ensuring that

Scrum maintains a demeanour of flexibility that is aligned to the principles of

agility. However, as the system specification evolves to the point where the

requirements have been completely defined, Scrum tends to enter a phase of

intensive development that is not fully amenable to further changes in the system

specification.

The Scrum Notion of Backlog Management

Those requirements from the PB that have been refined and confirmed by

the client are decomposed into tangible development tasks that are recorded in the

Sprint Backlog (SB) where it becomes the immediate focus of all development

activities. The SB is an output of the Sprint Planning Meeting and consists of the

tasks for the Sprint derived from the PB. Each Sprint has a one month time horizon

together with a definition of what is to be developed, a flexible design and plan to

guide the development process over the prescribed time period (Sutherland &

Schwaber, 2009). The ‘time-boxed’ or prescribed time period is coupled with the

understanding that the requirements underpinning a Sprint task will be ‘frozen’

for the duration of the Sprint providing the development team with the stability

that is required to enable the completion of the Sprint on time. However, at the

end of a Sprint the development team has an opportunity to review the

functionality of the evolving system with the system stakeholders. At this juncture,

changes are accommodated and risk analysis is performed to determine whether

the product sustains its feasibility. From the developers’ perspective, the Sprint

phase provides the development team with an opportunity to conduct themselves

in an autonomous manner, with little management interference.

The Sprint phase provides the development team with an opportunity to

exercise their expertise, intuition and creativity to facilitate the completion of the

Sprint task. The PB and SB provides management with a strategic conduit to

conduct monitoring of the overall progress of the system. Development teams make

use of a project management artefact named a Burndown Chart that graphs the

 76

estimated work remaining against time thereby providing a quick reference from

which a decision regarding the development schedule of the system can be made.

The PB is also used as a point of reference to re-negotiate system priorities and

functionalities with the client as well the development team. Success of Scrum

methodology hinges on the synchronisation of the ‘ceremonies’ (Cho, 2008) or

processes that underpin the methodology.

The Role of the Scrum Master

A significant role player is the Scrum Master, who has the responsibility of

ensuring that this synchronisation does take place and the values and rules of the

methodology are enforced. The Scrum Master is responsible for ensuring that there

is sufficient management control over the development process and there is an

enabling environment for the development team to obtain optimum productivity

(Cho, 2008). A Scrum Master may be viewed as the coach of the team and has the

primary responsibility of coercing the team to deliver on the expectations of each

Sprint cycle and ultimately to enable the delivery of the product on time, within

budget and meets with the customer’s expectations. However, a significant

observation is that the Scrum Master does not have any managerial control over

the Scrum team. According to Cohn (2006), a Scrum Master has the task of

ensuring that the team members accord maximum focus to the Sprint. The Scrum

Master is essentially the team facilitator who organises the logistical and the

operational requirements of the development environment so that the

development team is not distracted by organisational issues.

This role is technically different from a project manager (PM) and it is not

the task of the Scrum Master to provide daily direction to the team or to assign

team members to individual tasks as is the responsibility of a PM. The PM’s role

is technically subsumed collectively by the PO, the Scrum Master and the

development team members. The traditional project steering role played by a PM

has been completely re-defined (possibly leading to a source of confusion

(Nkukwana & Terblanche, 2017)). Such changes to the traditional mode of

software development as embodied by the new roles, ceremonies and artefacts of

Scrum methodology is given comprehensive coverage in the definitive guide to the

 77

methodology published by the Scrum Alliance (see Sutherland & Schwaber, 2009).

These architectural changes to the software process have a combined effect of

ensuring that there is a convergence of expectations of the evolving software

system from management, the customer and the development team so that

software is produced in a flexible, highly controlled and structured manner. The

coherent integration of structure and flexibility to the Scrum methodology

qualifies the perception that Scrum is the panacea to the problems associated with

traditional software process models that were criticised for being either too

prescriptive or lacking in management control. However, these virtues of the

methodology need to be subjected to scrutiny from an academic and a practitioner

perspective.

A Review of Scrum Methodology

The preceding discussion provides an overview of Scrum methodology. A

plausible conclusion emanating from this discussion is that Scrum is a

methodology that obviates the shortcoming of traditional software development

methodologies by enabling flexibility of requirements by virtue of its iterative

demeanour and continual PB reviews; it also provides an opportunity to impart

project management control by virtue of the Sprint and PB review meetings as well

as a ‘window of opportunity’ within each Sprint cycle that provides the software

development team with an autonomous environment thereby minimising the

overhead of too much bureaucratic control. System development is centered on

quick progress with regards to producing working software. The analysis and

design phases are interwoven into the software coding phase thereby minimising

the prospect of incorporating extravagant analysis and design phases that are

document-driven.

Prioritising Working Software over Documentation

This attribute is fully aligned to the agile principle of prioritising working

software over comprehensive documentation and in many instances, the code itself

becomes a proxy for system documentation (Cho, 2008; Turk et al., 2014).

Holistically, the ‘refactoring’ of the traditional software process model that has

seen a change in nomenclature from analysis, design, implementation, testing,

 78

deployment and documentation to the Scrum based nomenclature of Product

Backlog, Sprint Cycle, Review meetings and product increment has generally been

positively received by the practitioner (Mann & Maurer, 2005; Sutherland, 2001;

VersionOne, 2013) and academic (Dybå & Dingsøyr, 2008; Kropp & Meier, 2015;

Vijayasarathy & Turk, 2008; Vlaanderen et al., 2011) communities. A significant

contributor to the positive attitude towards Scrum methodology is the attribute of

ensuring early visibility of the system. In a case study by Bannerman et al. (2012)

that involved a software development project that leveraged Scrum methodology

to facilitate development in a distributed development environment that entailed

a single Scrum team working in the United States of America (USA) and another

4 teams working in Australia, it was the Scrum philosophy of ensuring visibility

of the developing system that enabled developers to transcend the logistical

challenges of working in a ‘global space’. Responses from the software developers

and project manager in the Bannerman et al. case study included comments such

as:

 …with Waterfall, you don’t know if anything has been done for

months; with Scrum, you know in a matter of weeks (p. 5313)

The best thing about Scrum is project visibility…you have to deliver

every two to four weeks for inclusion in a release so it is very visible if

you don’t (p. 5313)

In a multiple case study consisting of 12 semi-structured interviews with

Scrum practitioners in 2 organisations in South Africa, Tanner and Seymour

(2014) found that practitioners had a high level of intrinsic and extrinsic

motivation to implement Scrum methodology. The high levels of intrinsic

motivation lead to a sense of ‘enjoyment’ and ‘passion’ in using the methodology

which in turn enabled an easy and seamless transfer of knowledge of the

methodology between practitioners. The daily Scrum meetings provided a platform

for the knowledgeable members of the Scrum team to impart their expert

knowledge of the methodology to their peers thereby enhancing their credibility in

the Scrum team (a symptom of extrinsic motivation).

 79

This endorsement of Scrum methodology from a social perspective may be

referenced to the potential for the methodology to enhance collaboration between

system stakeholders (during system planning and PB identification) and fellow

team members (Sprint planning and daily Scrum meetings). There is also a sense

of intrinsic and extrinsic motivation to leverage the dynamism inherent in the

methodology to obtain optimal benefit in terms of the quality of the system that is

developed. The social benefits of using Scrum methodology are usually reported

via interpretivist studies, such as the Tanner and Seymour study that does not

have an explicit purpose to generalise the results beyond the confines of the context

from which it is reported. However, the socially oriented studies on agile

methodology and Scrum in particular provide a meaningful, deeper understanding

of the value that the methodology provides from a human perspective.

The acquisition of large scale empirical data on the value of using Scrum

methodology from a technical perspective is not easy to achieve because

organisations do not have the luxury of conducting extensive experiments or

engaging in longitudinal studies to validate the success of the methodology

(Mahnič, 2008). Many of the reports regarding the success of the methodology are

either anecdotal, experience based or based on case studies (Li et al., 2010;

Serrador & Pinto, 2015). The lack of empirically based academic research on the

use of agile methodology maybe somewhat alleviated by the comprehensive.

industry-based surveys conducted in VersionOne (2015) and VersionOne (2016).

In both these surveys conducted with a sample in excess of 3000 software

practitioners, reference is directed to the global adoption rates of agile

methodology. The discerning trend is the emphatic endorsement of Scrum (58%)

and the Scrum/XP hybrid (10%) as the methodology of choice for software

development. The main reason advocated for the popularity of Scrum are the

attributes of greater product visibility, the ability to handle changing requirements

and greater team productivity and team morale. While these surveys provide a

broad global view of trends in agile methodology adoption, the academic literature

on the subject provides a greater depth of understanding on issues pertaining to

agile and Scrum methodology adoption.

 80

Concerns Regarding Lack of Documentation

In a case study of a company that employed Scrum methodology for most of

its Web based projects, Cho (2008) reported that many of the software developers

were not comfortable with the Scrum strategy of minimising the effort to produce

quality documentation. The lack of quality documentation compromises system

quality when it comes to maintenance. The problem is exacerbated when members

of the original development team are no longer accessible to provide input into the

maintenance phase. The reservations regarding Scrum’s lack of quality

documentation is also aligned to the results from a study by Flora et al. (2014) who

surveyed 130 software developers in order to comprehend the strengths and

weaknesses of agile methodology in general. Although the study had a focus on

agile development in general. Scrum was reported to be the most widely used and

the lack of quality documentation was flagged as the main source of concern

regarding the adoption of agile methodology.

In a 2009 survey of 1298 software professionals on the adoption of agile

methodology (see West & Hammond, 2010), conducted by the Forrester Research

Organisation, Scrum was reported to be the most adopted of the agile

methodologies. However, a significant outcome of this survey is that there were

many instances where the principles underpinning agility in general and more

specifically Scrum methodology were ‘tampered’ with. One of these is the principle

of prioritising the delivery of working software at the expense of documentation.

Development teams were forced to decrease the priority attached to working

software and attach greater priority to the documentation of the evolving system.

The need for this intervention was to ensure that the maintenance teams were

provided with an enabling environment to handle modifications to the system

without incurring too much overhead to establish the logic used during the

development of the system.

Another criticism of Scrum methodology and agile methodology in general

is the issue of scalability. It is reported in Lindvall et al. (2002) that the lack of

documentation compromises the ability of an agile methodology to scale-up to

bigger development projects that involves more than a single development team.

 81

The Scrum of Scrums

However, Sutherland (2001) had a differing view based on the success he

achieved in using a tactic named the Scrum of Scrums for the development of a

large scale system for a healthcare software system where the development effort

consisted of more than a hundred programmers. Sutherland used this experience

to make the claim that Scrum scales up quite well. The Scrum of Scrums strategy

basically entails adding on further layers of Scrum meetings depending on the size

of the development effort. In the Sutherland case, there was the routine daily

frontline Scrum meetings, a series of weekly Scrum of Scrum meetings that

consisted only of representative members from the individual Scrum teams as well

as a monthly Scrum meeting consisting only of business managers. While the

implementation of the Scrum of Scrums strategy worked well in the Sutherland

case, it must be noted that this an organisation-wide development effort that

required full commitment by all stakeholders including company executives. This

is an idealistic setting that worked well in an organisation where software

development is the main business. However, this is not always the default

situation and quite often, the development effort is fragmented and involves

developers who may be working on other projects or physically located in a

dispersed setting (Turk et al., 2014). This situation is not commensurate with the

demands of Scrum methodology where one of the underlying assumptions is that

development should be conducted by small (5 to 10 members), co-located teams

where there is significant reliance on face-to-face communication (Rising & Janoff,

2000; Turk et al., 2014; Vijayasarathy & Turk, 2008).

According to Turk et al. the strategy of using the Scrum of Scrums approach

to mitigate the challenge of not having co-located teams especially for a

development effort that involves more than one team may not necessarily achieve

the desired level of success. They go on to make the claim that in such situations,

less agile methods such as comprehensive documentation, change control and

better upfront system design are more applicable for large teams. From an

empirical perspective, Paasivaara et al. (2012) conducted a multiple case study to

understand how organisations managed the co-ordination across multiple Scrum

 82

teams working in a distributed environment. The data collection effort entailed 58

semi-structured interviews with various system stakeholders such as members

from the development team, Scrum Masters, software testers and business

managers. The overwhelming response from the cohort of interviewees was that

the Scrum of Scrums meetings did not work well and in some instances, these

meeting were regarded as a wasted effort.

The Problems with Scrum of Scrums

The main problem with the Scrum of Scrum meetings was that the

participants were not interested in what others were doing, thereby impeding the

prospect of achieving synergy between participants at the meeting. Another aspect

of concern was that the schedule of having weekly meetings which were deemed to

be inadequate to deal with problem situations that were occurring on a daily basis

and required immediate intervention. However, a significant outcome of this study

is the report of success with regards to a scaled down version of the Scrum of Scrum

meeting. The scaled down version is named the Feature Scrum of Scrum meeting

that consisted of team representatives from teams that were jointly developing a

specific feature/aspect of the system. In this situation, there was better synergy

between the participants because they all had a better understanding of the

specific feature that was being discussed. The empirical evidence presented in the

Paasivaara et al. study converges to the conclusion that the strategy of using a

Scrum of Scrums meetings to enhance the scalability of Scrum methodology does

not work well in all circumstances. However, the ad hoc intervention with a scaled

down version to remedy the shortcomings of the Scrum of Scrums proved to be

more successful. The idea of scaling down the Scrum of Scrums approach to create

a better collaborative environment between Scrum development teams is accorded

greater coverage by Bradley (2014).

While Scrum has been highly endorsed for its substantive support for

project management (Machado et al., 2015), the methodology has been criticised

for not having an equal focus on the engineering aspects of software development

(Mushtaq & Qureshi, 2012; Ranasinghe & Perera, 2015). A significant absence

from the methodology is any reference to test driven development (TDD) or code

 83

refactoring. According to Cao and Ramesh (2008), review meetings are not good

enough for verification and validation and cannot replace the ‘traceability’

provided by specifying upfront acceptance tests. The upfront acceptance tests

provide the customer as well as the development team with a source of reference

to determine if the correct product is being built (validation) and whether it is

being built correctly (verification). The suggestion of including TDD as part of

Scrum methodology is also supported by Kniberg and Farhang (2008) as well as Li

et al. (2010). In both these studies, it was found that the iterative nature of Scrum

prioritised acceptance testing thereby improving customer satisfaction with the

system and ultimately contributing significantly to the level of success of the

methodology. However, the methodology is centered on the philosophy of ensuring

a quick release of working software and ‘reduced time to market’(Ahmed et al.,

2010). This places more stress and time pressure on the development team making

them reluctant to engage in verification tests and code refactoring in order to

improve the quality of system code and the maintainability of the system (Li et al.,

2010).

Scrum of Scrum Compromised by Lack of TDD

According to Kniberg and Farhang (2008), it is the lack of TDD that

compromises the capacity of Scrum to produce quality code thereby diminishing

the maintainability of the system. The assertion by Kniberg and Farhang was

based on an experience report from the development of an online gaming software

system that made use of Scrum methodology. Perfective14 and adaptive15

maintenance of the system was difficult to achieve because of the difficulty of

understanding the code compounded by the issue of “…all the criss-crossing and

circular dependencies riddling the code” (Kniberg & Farhang, 2008, p. 442). From

a classical software engineering viewpoint, compromising the maintainability of a

system is not economically viable. This assertion is based on the claim by Schach

(2008, p. 13) that approximately 75% of the cost of software system development

14 Perfective maintenance is defined by Schach (2008, p. 517) as a change made to code to improve its

efficiency or enhance its functionality.
15 Adaptive maintenance is defined by Schach (2008, p. 517) as changes made to a software system to

react to changes in the operating environment of the system.

 84

and maintenance is incurred in the post-delivery maintenance phase. Also, the

widely accepted benchmark for software quality, named the ISO/IEC 9126 quality

standard (see Jung et al. (2004)) has listed maintainability as one of the mandatory

criteria that determines the quality of a software product. If Scrum methodology

does not prioritise TDD, code refactoring and extensive documentation, then

according to the ISO/IEC standard, the maintainability and quality of the

information system being developed is bound to be compromised.

Agile and Code Quality

At the Agile 2006 Conference, Khramov (2006) informed delegates that code

quality was not the main objective of agile methodology and there was no positive

correlation between the quality of the code and the success of the system.

According to Khramov, code quality is regarded as optional and the real goal of

agile development is the commercial success of the product or the timely solution

to an important problem where the focus is on time and cost benefit rather than

quality of the system. Khramov’s assertion regarding code quality and software

success is based on an analysis of data from 80 software development projects and

is commensurate with a similar sentiment by Wolff and Johann (2015) as well as

Kanellopoulos and Yu (2015) that business return on investment with regards to

software development is not exclusively dependent on the quality of the code.

The extent of the problem with regards to code quality is highlighted by

Khramov’s observation that poor code quality and erroneous software are not the

main contributors to software failure. An elucidation of the concept of software

success/failure is however, not a trivial one. As Paulk (2014) points out, the success

of a software system is bound to its context of usage and may be driven by cost and

schedule predictability as well as operational excellence (as is the case for software

systems commissioned by government departments). From a commercial

perspective, “…success is based on functionality delivered and the relationship of

that functionality to business objectives” (Paulk, 2014, p. 3).

After conducting a comprehensive analysis of studies that examined factors

that were deemed to be critical to the success of a software system, Söderland et

al. (2012) posited that overall customer/end user satisfaction is the main criterion

 85

that determines success of a software system. It should be noted that the concept

of customer satisfaction is vague, highly subjective and time dependent. Much of

this vagueness has been operationalised, courtesy of the theoretical model of end

user acceptance contained in the Technology Acceptance Model (TAM) proposed by

Davis (1985) as well as the Information System Success Model (ISSM) proposed by

DeLone and McLean (1992).

The End User Perspective

The end user perspective is a pivotal contributor to the success of a software

system, and the iterative nature of agile development positions the methodology

firmly in a vantage point to facilitate customer satisfaction and commercial success

of the software system (Paulk, 2014). However, the allure of obtaining customer

approval of the system thereby enabling a quick release of usable software detracts

developers from the software engineering intrinsic activity of producing quality

code. A situation that Kruchten et al. (2012) describe as placing the system into

“technical debt” (p. 18) in the sense that software that is released early is bound to

have flaws that will need to addressed at a later stage. Scrum methodology does

not have an explicit focus on minimising the technical debt. The preceding

deduction is aligned to a similar sentiment by Kniberg and Farhang (2008) and

Liu et al. (2010) and may be seen as an impeding factor in ensuring the

sustainability of a software system developed using Scrum methodology. The

sustainability becomes tenuous when the system has to undergo perfective or

adaptive maintenance because of the effort that will be incurred to change a

system that has not been optimised for change. It should be noted however, that

this is not a negative indictment on agile methodology in general. The engineering-

like attributes of XP such as code refactoring, TDD, continuous integration and

pair programming (in certain cases) enhances the prospect of enabling the

production of better code quality in a software system (Khramov, 2006) thereby

mitigating the risk of excessive technical debt.

Scrum has been established as the most popular agile methodology

(Mundra et al., 2013) largely based on its support for the project management

aspect of software development (Mushtaq & Qureshi, 2012). The Scrum philosophy

 86

of ensuring a quick release of software so that the customer has the opportunity to

interact with the system from an early stage thereby enabling an accurate capture

of customer requirements has also been a pivotal contributor to the success of the

methodology. Scrum has however been challenged for its limited support for

ensuring quality system code thereby compromising the maintainability of the

system. Also, the lack of comprehensive documentation and attention to better

upfront system designs have cast a measure of doubt regarding the capacity of the

methodology to handle the development of large complex systems or systems that

serve a mission critical purpose.

2.4.6 Challenges Facing Agile Software Development Methodology

In terms of offering a better alternative to the plan driven prescriptive

approach to software development, the increasing popularity of agile methodology

has culminated in the establishment of the methodology as the de facto

methodology for software development (Dingsøyr & Moe, 2014; Scheerer et al.,

2014). A possible explanation for this phenomenon could be traced back to

Jackson’s (1995) ontological analysis on the state of computing and his reference

to the conceptual gaps of understanding between the technological realm and the

societal realm and the need for software developers to bridge this gap. According

to Boehm and Turner (2003), the agile philosophy of elevating the significance of

individuals and interactions over processes and tools is a step in the right direction

towards the quest to lessen the gap between the technology and the society in

which the technology will be used. A pivotal strategy in this regard is the agile

tactic of obtaining maximum input from the customer by suggesting the presence

of an on-site customer to provide the development team with accurate user stories

and to provide feedback on the evolving system at review meetings thereby

ensuring a high level of customer involvement throughout the development life-

cycle of the system. This is unlike prescriptive development methodologies such as

the Waterfall methodology where customer requirements are established at the

beginning of the development effort with very little recourse left to the customer

 87

to subsequently adjust the requirements specifications document in response to a

volatile application domain (Abbas et al., 2008).

The benefit of having extensive user involvement in the software

development process is confirmed by Bano and Zowghi (2013) and Kundalram

(2013) who reported on the positive correlation between user involvement and

system success. Congruous to this finding, Morandini et al. (2017) refer to the

imperative for software development practices that were observant of changing

user requirements because of the dynamic nature of the social context in which

these systems function. To a large extent, these requirements resonate quite well

with many of the principles underlying the agile philosophy of software

development. From a practitioner perspective, the allure of using a methodology

that is adaptive and oriented towards satisfying user requirements has been

instrumental in ensuring high adoption rates of agile methodology. The popularity

of Scrum has largely been attributed to the resilience of the methodology to an

unstable requirements elicitation phase. The adjustments that may made to the

Product Backlog to factor-in new and changing user requirements is all part of the

framework of development practices intrinsic to the Scrum methodology. The

academic community has also accepted that agile methodology has generally been

instrumental in improving the software process. There is however a concern

regarding the lack of empirical evidence in the academic literature attesting to the

success of the methodology and the lack of an integrative theory to underpin

studies that analyse the success of the methodology (Abrahamsson et al., 2009;

Dybâ & Dingsoyr, 2008; Paulk, 2014)

The current discourse on agile software development has covered a

spectrum of agile methods such as the strategy of enlisting an on-site customer to

enhance development, pair programming, TDD and code refactoring, minimalist

documentation and up-front system designs. These methods have been classified

under 2 prominent agile methodologies named Scrum and XP. The distinctive

strengths of Scrum is to enable better project management while XP provides

software engineering guidance to enhance the quality of the coding effort. There is

however, a unanimous acknowledgement that the agile methods are context-bound

 88

to the specific requirements of the project. A framework to guide the contextual

applicability of agile methodology is provided in Table 2.4. This framework

comprises of contributions by Boehm (2002), who provides an ideal scenario for the

optimal implementation of agile methodology (named the ‘Agile sweet-spot’ in

Table 2,4) and a counter scenario, (named the ‘Agile bitter-spot’ in Table 2.4)

suggested by Kruchten (2004).

Table 2.4: Agile Sweet-spot (Boehm, 2002) and Agile Bitter-spot (Kruchten, 2004)

Aspect Agile Sweet-spot Agile Bitter-spot

System Specifications

Emergent requirements;

rapid and late change to the

requirements specifications

is expected

Type of project New development projects Maintenance projects

Project Duration
Shorter development

timeframe; 2 to 3 months

Long term project spanning

up to 2 years

Location of

Development team

Developers need to be

knowledgeable about the

process, co-located and

collaborative

Development team works in

a distributed environment

Size of development

team

Development team is small;

15 to 20 developers is

optimal

Large development team;

excess of 200 developers

Customer

There is a core need to have

a dedicated, on-site

customer who is

representative of the

application domain

The lack of a representative,

on-site customer

Refactoring and

Documentation

Refactoring and

documentation should not

incur major overhead

A system that needs

extensive documentation to

faciltate continuity and

communication between

team members

 89

According to Turk et al. (2014), knowledge of the context of application for

agile methods is pivotal in order to maximise the value obtained from agile

methodology. Aligned to this claim, Turk et al. conducted an analysis of the

assumptions underlying agile methodology in order to generate a list of conditions

that provide guidance with regards to the applicability of agile methods. The

conditions identified in the analysis conducted by Turk et al. are congruent with

the listing in Table 2.4. The notable addition to this list is a reference to the limited

support that agile methodology provides for the development of safety-critical

software. This claim is based on the minimal focus on formal software engineering

techniques (such as formal specifications, rigorous code path testing, extensive

documentation, quality assurance and continuous redesign) in the underlying

assumptions of agile methodology.

What has emerged from the preceding discussion is that the successful

implementation of agile methodology is intrinsically linked to its context of

implementation. In this regard, practitioners have been reliant on anecdotal

evidence that is based on intuition and experience reports to develop conditions to

provide this guidance (e.g. Boehm, 2002; Kruchten, 2004; Turk et al., 2014). This

set of heuristics serve the purpose of providing an informed underpinning to the

implementation of agile methodology in order to enable practitioners to obtain

immediate benefit. Paulk (2014) does however, warn against the temptation of

using these agile heuristics to create a piece-meal variant of XP or Scrum in order

to suit the application domain. Such an adaptation should be done on the basis of

empirical studies that provide a reliable guide for an informed implementation of

the methodology. However, in order to extend the applicability of the methodology

to domains where it has been perceived as being inappropriate, a formal unifying

Architecture and

Primary objective

A minimalist approach to

upfront system architecture;

objective is to meet an

immediate need; not much

focus on low level

architectural issues.

System is designed for

stability and long term

maintenance; comprehensive

upfront design models are

required; expansive upfront

detail is expected

 90

framework that incorporates the assumptions underlying the methodology as well

as the contexts in which it is deemed appropriate for implementation, is required.

2.4.7 The Quest for a ‘Theoretical Lens’

In an article for the Software Development Times, West (2015) makes an

erudite acknowledgement of the importance of understanding the context within

which a software development methodology is used. The opinion expressed in the

article alludes to the imperative for software development teams to implement a

software development methodology that is befitting of the circumstance in which

it is used. This enables practitioners to leverage the advantage of using preferred

tools and expertise in order to maximise the chances of producing a successful

system. Whilst the afore-mentioned strategy is condoned, there has to be a

unifying framework that incorporates these “success situations” into a repository

of knowledge that may be used as a resource to guide future software development

projects. According to West (2015), the consequence of not having a unifying

framework that integrates context and methodology is that there will be a vast

amount of “siloed information” (p. 1) on the software development process that will

be fragmented and severely lacking in cohesive support for the development

process. The practitioner perspective on this matter is congruent with the

academic opinion that there is a need to understand agile methods within its

context of use in order to optimise the benefits that may be gained from using the

methodology (Abrahamsson et al., 2009; Dingsøyr et al., 2012; Kirk & MacDonell,

2014). However, this understanding needs to be underpinned by an integrated

framework/ theory that informs the use of the methodology in different project and

organisational contexts. The call to make use of better theoretical frameworks to

extend the relevance of scholarly contributions on the topic is eloquently

encapsulated in the statement by Dingsøyr et al. (2012) that the pioneering

contributions on agile methodology have “…established a foundation on which the

edifice of software development theory and practice can be built” (p. 1219).

Aligned to the call by Dingsøyr et al. for a “robust theoretical scaffold” (p.

1219) to underpin further research on agile methodology, Kirk and MacDonell

(2014) suggest that the development of theory on the use of agile methodology

 91

should be centered on the relationship between the implementation of the

methodology and context in which it is used. An outcome of this understanding is

that the academic community will be in a better position to provide a framework

that informs the implementation of the methodology in a professional setting.

(Kirk & MacDonell, 2014). This imperative to underpin the implementation of

agility with a theoretical basis should however, not be seen as an attempt to

streamline the process thereby resulting in a paradoxical situation where the core

principles of agility are eroded by a framework that is perceived to be prescriptive.

The theoretical intervention needs to embrace the multi-faceted and contextual

nature of software development (Lyytinen & Rose, 2006) so that organisations

have at their disposal an academic frame of reference that may be used as a

platform/cohesive body of knowledge to guide the adoption and adaptation of agile

methodology (Abrahamsson et al., 2009).

Such an intervention will enhance the possibility of extending the

applicability of agile methods, which are traditionally associated with small, non-

critical systems where development teams are co-located and user requirements

are elicited dynamically. According to Abrahamsson et al. (2009), many studies

have reported on the issues pertaining to the adoption of agile methodology (AM).

However, this knowledge needs to be encapsulated into a theoretical framework

that will enhance the prospect of meaningfully engaging in post-adoption studies

that examine the sustainability of AM. An example of such a study is the one

conducted by Port and Bui (2009) who studied the viability of using a mixed

methods approach that entailed an integration of AM and a plan based (PB)

methodology to develop software. The study used a simulation strategy to vary the

complexity of the software system. An outcome of this study is that the approach

of mixing AM with PB methodology is confirmed as a viable option to mitigate the

risks (such as the lack of architectural stability (Cao et al., 2009; Yang et al., 2016)

imposed by using AM to develop large, complex software systems. The Port and

Bui (2009) study represents an initial incursion into the realm of extending the

applicability of AM. The initiative to extend the applicability of AM was sustained

by Cao et al. (2009) who conducted a multi-site case study to determine how AM

 92

may be adapted for use in different contexts. The study uses adaptive structuration

theory (AST) to provide an adaptation framework for AM based on the

requirements of different projects and organisational environments. AST is a

framework proposed by DeSanctis and Poole (1994) that attaches greater priority

to the social aspects of technological interventions rather than the technical

aspects of the intervention. The Cao et al. study used AST to understand the

adaptation of agile methodology as a consequence of the social interaction that

occurs when the methodology is used. A significant aspect of the study is the

presentation of empirical evidence attesting to the need to apply specific tenets of

agile methods for the varying contexts of usage. A corollary of this finding is that

it is not viable to apply agile methods in their entirety and there is a need to temper

agile methods so that there is a strong alignment with the prevailing

organisational culture with specific focus on priorities established by higher level

management and the development styles of software teams and the type of project

that is being undertaken. The study by Cao et al. (2009) provides the empirical

support for the claim by Nerur et al. (2005) that agile development is characterised

by social interaction where the various stakeholders, including business analysts,

developers, project managers and end users engage who engage repeatedly in a

reflective mode and leverage their experiences of using the methodology to curate

a customised version of the methodology.

The reference to the various stakeholders involved in software development

in an organisational context opens up another dimension to agile software

development (ASD) that has largely been neglected in the literature review this

far. This is a reference to the role that ASD plays from an

organisational/enterprise-wide perspective. While the academics and practitioners

have devoted a lot of attention to the operational issues regarding ASDM, the

wider environmental impact has not received much focus in the literature on ASD

prompting Fitzgerald and Stol (2015) to suggest that any attempt to adapt ASD

will be futile if it is not done from an enterprise-wide perspective that incorporates

business objectives. Based on the preceding argument, an incursion into the

enterprise-wide impact that ASD will incur is warranted.

 93

The business dimension usually manifests in respect of the cost to develop

software as well as the time and resources consumed and invariably the quality of

the software produced (Basili et al., 2013). In order to address the issue of business

interests, a traditional practice by project managers was to make use of a command

and control strategy to uphold the business imperative (McAvoy & Butler, 2009).

However, the rigidity inherent in such a dictatorial approach is not commensurate

with the principles of agility. From an agile perspective, project managers are

expected to provide an environment that facilitates participatory decision-making

thereby devolving authority to all members of the development team. In order to

recognise the impact of the afore-mentioned social intervention, there is a strong

imperative to make use of a socially oriented theoretical base such as that provided

by AST in studies that purport to obtain a deeper understanding of agile

methodology.

2.5 The Enterprise-Wide Context

According to Ambler and Lines (2012), agile software development teams

do not work in a vacuum. There has to be a sense of “enterprise awareness” (p. 17)

that is integrated into the software development process. Ambler and Lines are of

the opinion that agile software development methodology has many proven

benefits exclusively from a software application perspective. However, it does not

handle the complexities inherent in the activity of integrating the software

applications into the organisational IT infrastructure. These sentiments are quite

controversial in the sense that the underlying philosophy of ASDM is the concept

of simplicity and the adoption of lightweight protocols in the development of

software. In a rebuke of these attempts to undermine the philosophy of agility, the

contributory authors of the Agile Manifesto, used the GOTO 2014 Conference

platform (see Fowler et al., 2014) to explain that any attempt to obfuscate the

simplicity in ASDM will impede the progress that the software development

community has made with regards to the development of software systems that

are delivered on time and meet user requirements. West (2015) concedes that the

introduction of agility into the software process has achieved much success.

 94

However, the adoption of agility is constrained by organisational culture and

governance over the software process.

Agile and Business Value

The imperative imposed by most organisations is that software systems

need to uphold the priority of delivering business value. In order to achieve this,

software development teams need to facilitate systems development so that there

is complete compatibility with the existing IT infrastructure. West is also critical

of the highly touted agile based strategy of frequent release of systems. The idea

behind this strategy is that feedback can be obtained early, enabling the

development teams to handle arising issues. However, this is not easy to achieve

because maintaining an IT infrastructure that supports dynamic, flexible releases

may not be practically feasible because of the business oriented controls that may

impede such an initiative. Hence, there is a break in the lineage between business

value, software development and the release of the software systems into a

production environment. In order to address this impasse, many experts in the

software engineering community have rallied around the concept of a complete life-

cycle model for software development. The idea advocated is that the activity of

software development has to be contextualised from an enterprise-wide

perspective, rather than just a software development perspective. In order to

achieve this enterprise-wide focus, new software process models have been

proposed so that agile methodology may be scaled to be compliant from an

organisational/ enterprise-wide perspective. These process models are discussed in

the subsequent sections.

2.5.1 Water-Scrum-Fall

The Water-Scrum-Fall model resurrects the Waterfall approach, from a

holistic perspective (West, 2015). The main elements of the Waterfall approach is

the upfront establishing of requirements, the analysis, design and construction

phase and finally testing and maintenance. The newly proposed model retains the

sequential structure of the Waterfall model, in the sense that the first activity is

to establish the business value, requirements and plans for the system, followed

 95

by a development phase (where Scrum has been endorsed as the driving

methodology) and finally the phase where the system is released into a production

environment where it is used by the customer/ end user. This sequence of activities

is named the Water-Scrum-Fall methodology for software development.

The resurrection of the diluted version of the Waterfall approach was

subjected to scrutiny by many within the software engineering research

community (e.g. Aitken & Ilango, 2013; Bannink, 2014; Theocharis et al., 2015;

West, 2011) The main outcome in all of these studies is that the transition to Agile

Methodology and Scrum in particular has not been a smooth one. The main reason

for this phenomenon is that the entire organisation is not willing to make a

transition to an agile operational mode, resulting in a Water-Scrum-Fall

methodology that serves the dual objectives of maintaining traditional

organisational processes and also embracing an innovative development culture.

There is however a perceived lack of empirical evidence to truly understand

the adoption of Agile Methodology in the context that it serves (Bannink, 2014;

Theocharis et al., 2015). Much of the literature focuses on the internal workings of

the methodology, whilst ignoring the organisational processes that form the

environment in which agile methods operate (Dingsøyr et al., 2012). These

sentiments are re-affirmed in the systematic literature review conducted by

Theocharis et al. (2015) that examined 473 papers that investigated the use of agile

methods in an organisational setting. The significant outcome from this study is

that most organisations have to improvise and develop ad hoc solutions to

compensate for the lack of support that Agile Methodology provides for the

‘organisational interface’.

Agile methods have a strong system development focus while the

traditional approaches do incorporate a specific phase to faciltate compatibility

between the newly developed systems and the interfaces that enable integration

with the enterprise. The ‘organisational interface’ shortcoming of the Agile

Methodology has been a catalyst for the popularity of a hybrid approach. A hybrid

arrangement between agility and a plan-driven methodology such as the waterfall

approach is beneficial from a dual perspective. The plan-driven approach provides

 96

a controlled environment with development phases that are dedicated to transition

of the newly developed system onto the organisational infrastructure and the agile

approach enables a dynamic, shorter development cycle that enhances the evolving

system’s visibility so that end user feedback is obtained a lot quicker.

Theocharis et al. (2015) adopted a case study approach where the use of

agile methods is investigated in an organisation that recently made a transition

from traditional software development methodology to a Scrum based

methodology. The results of the study show a trend where the development teams

had a preference for a hybrid methodology that comprised of the routine Waterfall

processes like intensive upfront analysis and design followed by Scrum based

development. The final phase entailed a software release process that was

described as infrequent and time consuming due to the effort required to integrate

these system releases with the organisational IT infrastructure. This methodology

falls under the classification of ‘Wagile’ development, an umbrella term used to

describe a methodological approach that is planned as an agile approach, but has

a tendency to revert back to the implementation of Waterfall methods.

The apparent gravitation of organisations towards a Water-Scrum-

Fall/Wagile approach under the ‘alleged’ claim of full agility is as a consequence of

the inability of Agile Methodology to achieve its objectives at enterprise level. The

potential for the Water-Scrum-Fall/Wagile methodologies to handle organisational

interfacing issues were still not perceived as adequate, a shortcoming that

prompted the conception of 3 enterprise-oriented versions of agile methodology

named DevOps, Disciplined Agile Delivery (DAD) and Scaled Agile Framework

(SAFe), which are all discussed in the subsequent sections.

2.5.2 DevOps

A ‘spin-off’ or an extension to agile software development is the strategy

referred to as DevOps. Aligned to the agile strategy of ensuring quick software

release, and implementation, DevOps is a strategy that attempts to reduce the

‘disconnect’ between the developers (Dev) and the operators (Ops) of a system

(Limoncelli & Hughes, 2011). It should be noted that although the DevOps concept

has been conceived around 2009 (Kim, 2013), it is currently at a stage of infancy

 97

with regards to the rate of adoption (Zhu et al., 2016). DevOps is a concept that

attempts to dismantle the ‘silo-based’ or fragmented approach to application

development and the delivery and operation of the application from an enterprise

perspective (Ravichandran et al., 2016). Traditionally, the development of an

application proceeds linearly from development/coding to quality assurance to

integration of the application with an organisation’s IT infrastructure. This path

entails the involvement of software developers, quality assurance (QA) personnel

and IT management who are entrusted with the task of providing a smooth

operational environment (Ops16) for the successful implementation of the

application. The DevOps philosophy comprises of a strategy where the specialists

who are involved in each of these individual activities are brought together to work

in a collaborative environment (Ravichandran et al., 2016). It mitigates a situation

where developers write the code and entrust the responsibility of deployment of

the application onto the operations staff. DevOps is an initiative to embrace an

approach to software development and deployment that integrates the different

silos of the IT department that typically are involved in the software development,

deployment and maintenance of an application in an organisation. A closer

working relationship between developers and operations staff will enable the

ongoing management of the application to be conducted in a manner that enhances

the prospect of a quick and efficient deployment of the application to a ‘live

environment’ as well as a quick turnaround time when it comes to issues of

perfective and adaptive maintenance. Hence, DevOps embodies a working

environment that prioritises collaboration, cross-functional teams and enables

early and continuous delivery of working software. The preceding statement

reflects the resonance of the DevOps concept to the principles of ASDM.

If one had to adopt a restricted view of the DevOps concept, then there could

be a claim made that the linkage between DevOps and ASDM is a tenuous one.

This assertion is based on the perception that much of the deliberations regarding

16 The operators (Ops) of a system include organisational personnel who have any form of contact with

the system after it has been released by the development team as a finished product or a finished version

of a product. The list includes network administrators, database administrators, system administrators,

network engineers, security engineers and general application support staff.

 98

ASDM has been conducted from a coding/purely software development perspective

while the operational environment in which the application delivers its expected

functionality is not the domain of the development team. However, Mueller (2016)

does make the claim that if the development team did not take cognisance of the

operational side of the system, which becomes the main focus during the

deployment phase, then the benefits of having adopted an agile approach will not

be realised. The speed and agility used to facilitate competitive advantage via the

‘quick-release’ of software may become counter-productive if the development team

did not consider issues pertaining to systems integration as well as compatibility

with the technological infrastructure. According to Mueller, cognisance of these

issues need to take place at high level systems development planning meetings as

well as during the deployment phase once an initial version of the system has been

released. This close collaboration between the development team and the

operational staff embodies the DevOps framework. Sharma (2017) provides an

overview of this close collaboration intrinsic to the DevOps approach by suggesting

that:

 developers have to work with operations staff so that they can

understand the environment in which the systems work;

 operations staff need to be close observers of the development

process so that they have an intimate understanding of the

requirements as well as the coding logic used.

Whilst these characteristics of the DevOps approach are suggestive that the

DevOps strategy is easily understood, many authors (e.g. Bass et al., 2015; Roche,

2013; Sharma, 2017) allude to the difficulty of providing a precise definition of the

DevOps strategy. In many cases authors are willing to propose a rather informal

description of the DevOps strategy such as Limoncelli and Hughes (2011) who

provide an uncomplicated interpretation by advocating that DevOps represents a

strategy that brings developers and operators closer together. Mueller (2016) adds

to this interpretation by suggesting that the developers and operations staff

collaborate on a project throughout the development and service lifecycle. This

 99

collaboration comprises of an integration of Dev and Ops functions from design

through to the development process up until production and support for the

system. This collaborative strategy blurs the traditional distinction between

development, quality assurance and operations. It also has implication from an

organisational culture perspective because it requires the various stakeholders to

work in an interactive manner to facilitate the building, testing and release of

software in a quick and reliable manner.

The DevOps strategy as outlined in Mueller (2016) requires that once a

development team declares that a specific version of a system is ready to be

deployed, the assumption is made that any further development will be suspended

while the application is deployed into production. At this juncture, the application

is subjected to ‘live’ testing and intensive scrutiny whilst in the ‘live’ environment.

The DevOps practice requires that developers are allocated the task of observing

the progress and analysing systems errors so that remedial action can be taken. In

this way an iterative relationship is maintained between the developers of the

system and the operators of the system. This iterative arrangement enables

quicker releases and the implementation of quicker changes that may be required

by the operators who enjoy the benefit of having immediate access to the

developers.

2.5.3 Disciplined Agile Delivery (DAD)

According to Ambler and Lines (2016), many organisations adopt agile

methodologies such as Scrum because it is the best strategy to provide guidance to

software teams with regards to the coding aspect of the application. However, the

‘beauty’ inherent in these agile methods is lost because the methodology does not

provide adequate support for the full life-cycle of the application from an

organisational perspective. The criticism of agile methodology in its current form

stemmed from the perceived inability of the methodology to handle the release of

the solution that has been developed into a production environment. Ambler and

Lines do concede however, that Scrum methodology had achieved substantial

popularity and success from a purely development perspective. It was the

operational side that needed attention. In order to address this situation, Ambler

 100

and Lines proposed a modified version of Scrum in 2012. The modified version of

Scrum is referred to as the Disciplined Agile Delivery (DAD) approach (see Ambler

and Lines (2012)). DAD is an extension of agile methodology (Scrum in particular)

where the focus is on ensuring that the solution provided by agile teams is

successful at an enterprise level. In order to achieve this, Ambler and Lines

leveraged the best practices from Scrum, XP and the Unified Process to propose a

methodology that shifts the focus to application delivery, operation and support

from an enterprise/organisational context. The preceding narrative is echoed in

the comment by Ambler and Lines (2012, p. 9) that:

Core agile methods such as Scrum and XP are typically project focused,

whereas DAD explicitly strives to both leverage and enhance the

organizational ecosystem in which a team operates.

Essentially, the DAD methodology re-aligns the focus from producing

software to providing an IT solution that resonates with business, technical and

the cultural constraints in which that solution operates. An overview of the DAD

methodology is provided in Figure 2.13.

Figure 2.13: The Disciplined Agile Delivery (DAD) lifecycle model (Ambler &

Lines, 2012, p. 12)

The underlying philosophy of the DAD methodology is to provide sufficient

guidance, but not to be overly prescriptive. The Inception phase as illustrated in

Figure 2.13 may be seen as an ‘envisioning’ phase where the system’s evolution is

mapped out to the developers as well as the stakeholders. A significant activity in

the Inception phase is to set up a development environment that facilitates quick

Inception
(One or more short iterations

that entail requirements,

modelling, release planning and

acquiring stakeholder

consensus)

Construction
(Identify highest priority work

items; Many short iterations

(Scrum based) to service

iteration backlog in order to

produce a potentially

consumable solution after each

iteration; demonstrate solution

to stakeholders; obtain

feedback)

Transition
(Release solution into

production; operate and

support solution whilst in

production mode enabling

evolution into final product)

 101

and easy release of the application into production. Also, an initial plan of the

application release schedule is drawn up together with an architectural/design

model that provides a logical view of the application so that there is an alignment

between the objectives of the application and the business/organisational

objectives. The activities that have been listed are regarded as goals of the

Inception phase and there no prescribed way of achieving these goals. The

rationale for this approach is that the development teams are at liberty to

customise the development processes in order to address the context of the

situation in which the application is being developed

The goals of the Construction phase are to produce a ‘demonstrably

consumable solution’ that addresses stakeholder’s requirements and has an

‘organisational fit’. This is achieved by employing techniques such as continuous

integration, developer regression testing and test-first development. The actual

development is executed by implementing all of the ceremonies intrinsic to the

Scrum methodology. The main point of departure from traditional Scrum is that

the focus is on ensuring that the solution is compatible with the existing

architectural framework that underpins the organisation’s IT infrastructure.

According to Ambler and Lines (2013), the lack of enterprise-wide focus is

one of the reasons that popular agile methodologies such as Scrum were not fully

successful. In an article titled “Going Beyond Scrum”, Ambler and Lines make the

point that agile teams do not work in isolation and application solutions produced

by Scrum teams should be regression tested so that it is compatible with existing

organisational processes, is compatible with the data infrastructure and compliant

with security and usability constraints that have been established as an

organisational norm (referred to as the organisational ecosystem by Ambler and

Lines). In order to develop solutions that have an ‘enterprise-wide’ awareness,

Ambler and Lines make several suggestions that collectively form the essence of

the DAD framework that they propose as an extension/supplement to Scrum

methodology. The underlying strategy of DAD is to arguably ensure that the

Scrum team works closely with enterprise professionals. The reference to

enterprise professionals is where the organisational linkage is established.

 102

According to Ambler and Lines (2013), ‘enterprise professionals’ is a reference to

personnel in the organisation who ensure that business processing protocols are

maintained and upheld by new and emerging IT systems. These include IT based

personnel who oversee aspects such as IT governance database design and

administration, IT security and user interface design and quality control and

testing. The close collaboration with enterprise professionals and operations staff

is representative of a DevOps philosophy that has been “…baked right into DAD”

(Ambler & Lines, 2013, p. 11).

The goal of the Transition Phase of DAD is to ensure that the system’s

stakeholders have worked with the new application and are delighted by its’

performance and conformance within the organisational ecosystem. Ambler and

Lines make a claim that the DAD framework ensures that the Transition Phase is

a smooth one. This is in contrast to the current, traditional agile situation where

transition and deployment of newly developed systems is where the major

bottleneck to agile application delivery is experienced (Ambler & Lines, 2016). The

smooth passage for the Transition Phase is facilitated and enhanced at the

Construction Phase where there is greater stakeholder involvement from a

training and consultation perspective. This strategy has a strong resonance with

the DevOps approach.

2.5.4 DAD Acceptance

From a rational and pragmatic perspective, the DAD framework makes a

lot of sense. As suggested in Ambler and Lines (2012), one of the intentions of DAD

is to provide an agile based methodology for software development that has an

enterprise-wide focus. The DAD approach enhances the scalability of agile

methodology so that the methodology has the ability to handle the development of

large scale applications in an organisation.

The advent of DAD may be perceived as a relatively recent contribution to

the domain of agile software development, thereby compromising the possibility of

current widespread acceptance and usage of the methodology. However, the

DevOps mentality that prevails in DAD paves the way for the methodology to gain

traction in the software development domain. This assertion is supported by the

 103

empirical evidence provided in the 11th Annual State of Agile report compiled by

the software development company named VersionOne. The survey was conducted

in 2016 (see VersionOne, 2016) and is regarded as the biggest global survey of agile

usage behaviour. A significant outcome of this survey is that Scrum is the most

widely used agile development methodology and almost 71% of the respondents

have engaged or intend engaging in a DevOps initiative where the focus is on

enterprise-wide solution development and delivery. It should be noted however,

that DAD has a very low report of usage (less than 1%). This phenomenon may be

explained by the understanding that DAD is a framework that is super-imposed

onto Scrum methodology and is not seen as a methodology by itself. Hence, it may

be difficult to obtain a concise perspective on the usage of DAD. However, the

conceptual acceptance of DAD superimposed onto Scrum is being manifested in

the DevOps strategy.

2.5.5 The Challenges to the DevOps Strategy

The theoretical foundation of DevOps as discussed in the preceding section

has an aura of acceptability and viability. In essence it sounds very good in theory.

However, as cautioned by Kerzazi and Adams (2016), the DevOps concept is

currently at a stage of infancy and lacks a common vocabulary and a substantial

body of knowledge as well as empirical evidence attesting to its success. The roles

that may emanate from a DevOps strategy is rather vague and organisations do

not have an understanding of the skill-set required by a DevOps engineer. From a

technical perspective, the DevOps approach is strongly aligned to Scrum

methodology but there is lack of engineering-oriented detail that specifies how

DevOps provides an enabling environment for operations processes within the

confines of a Scrum methodological framework (Vaidya, 2014). The Scrum

methodological framework currently does not have any reference to operations

activities or the roles played by operations staff during the development process.

From a social perspective, Sharma (2017) cautions that DevOps requires an

organisational-wide mind-set change that may be seen as a business processing re-

engineering initiative and its success depends on support from upper level

management in an organisation. The DevOps philosophy attaches the highest

 104

priority to ensuring that there is a collaborative environment that enables

seamless transition of processing requirements from business to development to

operations. The DevOps strategy is based on an untested assumption that such a

collaborative environment may be easily achieved. As Riungu-Kalliosaari et al.

(2016) caution, the influence of organisational culture should not be

underestimated and it may have an impeding effect that will prevent such a

collaborative environment from occurring naturally.

One of the biggest issues with the strategy of DevOps is that it enables a

culture of continuous deployment (CD) of working software. While this may be seen

as a positive attribute and has a strong resonance with agile philosophy, it could

also become severely delimiting in the sense that it creates an IT environment that

is always in a state of transition. The release of new features for a system needs to

be carefully planned and managed so that the users of the system are not

overwhelmed with too much change in a short time period. The irony of the ‘pre-

DevOps’ phase of agile development is that the backlog and time delay caused by

integrating new features into an existing system from an operational perspective

has some unintended benefits. The time delay between development and

deployment provided users of the ‘old’ system with a bit of a ‘breathing space’ to

establish familiarity with that system before being faced with the task of getting

to know the newly added features to the system. However, there are instances

where a quick release of new features is pivotal to enable organisations to obtain

competitive advantage. This is the case with Internet based organisations such as

Facebook, Netflix and Etsy where DevOps has been used to increase the prospect

of presenting customers with new features on a regular basis that enhance the

quality of the interaction with the company’s website (Shahin et al., 2017).

In order to leverage the benefits of DevOps and facilitate continuous

delivery and deployment of working software, it is essential that the Dev and Ops

teams do not form silos and are easily accessible to each other. This strategy has

been successfully implemented at Facebook (Savor et al., 2016) in a rather extreme

version of the DevOps concept. The strategy used at Facebook is to focus on the

development of relatively small increments of functionality and enable the rapid

 105

deployment of the new features. In some instances, new features are added onto

the main system in a matter of two hours. In order to achieve this rapid

deployment, cross-functional software development teams are formed and they

take full responsibility for the design, development, testing and configuration of

the updates as well as support for the updates after they have been deployed. In

the event of a problem, there is a single point of contact and that is the development

team that was responsible for the new feature that has been added to the system.

One of the main issues of the strategy of quick deployment is that it may work for

organisations where the consequence of code failure or bugs in the code is not

‘mission critical’ and may be reversible. While it may be conceded that recovery

will be quick because of the close collaboration between the deployment and

development personnel, this benefit is appreciated in a context where the

consequence of a flawed or incorrect system transaction may be reversed.

Based on the case study of Facebook and OANDA (an online trading

organisation) Savor et al. (2016) report that in order for a DevOps strategy to work

so that continuous deployment can take place, there needs to be a business process

re-engineering effort that permeates throughout the organisation. This entails an

organisational cultural shift that primarily requires full commitment by senior

management and the main focus of the shift is that there has to be a drastic

reduction in the layers of bureaucracy that impede the deployment of software

updates to the main organisational system. In the case of OANDA, the entire

management team that consisted mainly of business minded people were replaced

by a management team that consists of people who have a software engineering

background. This was done to facilitate a change in the management style from a

hierarchical management structure to a more ‘flattened’ structure where

innovation was prioritised at the expense of business accountability.

2.5.6 The Scaled Agile Framework (SAFe)

DAD and DevOps are representative of methodologies that address the

weakness of agile methodology to scale to an organisational level. These initiatives

are further extended by SAFe where the objective is to provide guidance on the

implementation of agile methodology at enterprise/organisational level. As Dybâ

 106

and Dingsoyr (2008) point out, the implementation of agile methodology in larger

organisations is challenging from a co-ordination and cultural perspective. Co-

ordination becomes an issue when there is a greater number of stakeholders

involved and multiple teams work on a single project. There is also the dimension

of organisational culture where there is a natural resistance to change from a

behavioural perspective. In larger organisations, this situation tends to get

exacerbated and successful agile adoption requires a change in the entire

organisational culture (Chandra Misra et al., 2010).

In an attempt to address the issue of agile scalability from an enterprise-

wide perspective Leffingwell (2007) introduced the methodology of SAFe that is

underpinned by 4 different frameworks each configured to handle specific

organisation environments. An overview of the SAFe frameworks (see

Scaled_Agile (2017)) is provided for reference.

 Essential SAFe – Consists of a new structure named the Agile

Release Train (ART) that functions at the lower software

development level (called the SAFe Team level) and at a higher

business and infrastructure level (called the SAFe Program level).

At the team level, SAFe provides guidance on the coding part of

system development. At the program level, SAFe provides guidance

on the operations activities that enable business value. The core

“ingredient” to the Essential SAFe is the ART that comprises of a

cross functional team that delivers the development and operations

value streams;

 Portfolio SAFe – An enterprise-wide plan that makes use of value

streams (a term used to describe an enterprise-wide strategy to

develop products, services or software systems) that provide value to

the customer. The Portfolio SAFe is aligned to the organisational

imperative to identify strategies that enable product differentiation

in the marketplace and to ensure competitive advantage. Leffingwell

(2010, p. 43) refers to these strategies as “a set of investment

themes”. These investment themes are achieved in the form of

 107

“epics” which is a term used as a high level descriptor of customer

need and translates to a software development initiative. These

epics are maintained in a portfolio backlog. One of the key role

players is the Enterprise Architect, a person (or group of persons)

who manages the portfolio backlog and works across programs (from

the Essential SAFe) to provide technical direction that can arguably

ensure that the outcomes for the portfolio are optimally achieved.

The portfolio SAFe is a scaled up, business version of Agile Software

Development Methodology;

 Large Solution SAFe – used for developing complex enterprise wide

solutions; typically used for government and military systems and

require multiple ARTs;

 Full SAFe–a SAFe configuration that is the most comprehensive

version of the framework and provides support for organisations

that build and maintain large, integrated solutions and require

extensive collaboration across the organisation to include

stakeholders that function at the SAFe Team, Program, Large

Solution and Portfolio levels of the framework.

SAFe seen as the “Big Picture” Approach

SAFe provides a framework to guide the software process from a team and

organisational perspective thereby reducing the divide between the business

imperative and software development at the agile team level (Vaidya, 2014).

Leffingwell (2010) calls this the “big picture” (pp. 32-33) approach to software

development that has the objectives of providing an enabling environment for the

achievement of business value as well as ensuring that there is sufficient

collaboration between the various “pods of agile teams” (p. 35) that traditionally

function in a disparate manner. This holistic approach to software development

where agile development is contextualised from an organisational perspective and

not just a software development team perspective, is highly endorsed by Fitzgerald

and Stol (2015) as well as (Vaidya, 2014). Fitzgerald and Stol (2017) suggest that

a framework such as SAFe provides the linkage between business, development

 108

and operations. The collaborative environment espoused by SAFe also reduces the

“architectural decay” or “technical debt” (p. 9) incurred by many agile teams when

there is no effort made to faciltate compliance of the evolving system with

organsational architectural/infrastructure requirements. The imperative to

ensure that deliberations regarding the scalability of software development

methodology is given high priority is also highlighted by Boehm (2011) who

provides a scalable version of the Spiral methodology for software development

that is named the Incremental Commitment Spiral Model (ICSM). The main

difference between the ICSM and the original Spiral model is the inclusion of and

Operations and Production phase. The ICMS has a similar orientation to the

Essential SAFe.

The Alignment of SAFe to Agility Principles

Theoretically, the SAFe framework embraces agile principles to provide an

all-encompassing solution to the problem of the lack of scalability of agile

methodology to an organisational level. Dikert et al. (2016) do however caution

about the lack of academic research to verify the long term viability of

comprehensive frameworks for software development such as SAFe. The main

concern expressed is that the adoption of organisational-wide frameworks require

a major change in the organisational norms when it comes to software

development.

Agile, SAFe and Organisational Culture

One of the challenges faced in the transition to basic agile development was

the issue of organisational culture. The adoption of agile methodology requires a

shift in the organisational culture that is not easily achieved. A further imposition

of agile methodology at the organisational and operational level (as espoused by

SAFe) makes this transition a lot more difficult to achieve (Fitzgerald & Stol, 2017)

resulting in only a lightweight adoption of SAFe at the Essential SAFe level

(Vaidya, 2014). As Dikert et al. (2016) point out, a formal intervention to achieve

agile scalability will require comprehensive staff training and support from senior

management. The greatest obstacle to enable a framework such as SAFe is the ‘top

down’ management style that will have to prevail to ensure that there is sufficient

 109

cooperation at all levels of the organisation to enhance the adoption of such a

framework. During the transition from an ‘old way of working’ to the new

framework, any problem encountered has the potential to be magnified because of

people’s general resistance to change and preferring to revert “…to the ways they

know” (Dikert et al., 2016, p. 97).

Organisation-Wide Agility

A further issue that compromises the attainment of organisation-wide

agility is that of communication and coordination. In a multi-case study by Eklund

et al. (2014) that spanned the banking, telecommunications and insurance sectors,

it was found that scaling agile teams to an organisational level was not easily

achieved. One of the main reasons for this phenomenon was the lack of

coordination between Scrum teams that were co-dependent17 resulting in a

disjointed development effort. In order to alleviate this situation there was a need

to appoint an oversight manager who is able to coordinate the activities between

the various teams. Conceptually this adds another layer of management control

thereby exacerbating the complexity of the development process and also

compromising the agile principle of ‘simplicity’, prompting Thomas (2015), one of

the co-authors of the Agile Manifesto to suggest that SAFe is not agile.

The discourse on software development methodology and the scalability of

the methodology to an organisational level converges to a viewpoint that the

organisational culture and social factors are pivotal enablers in the adoption of a

software development methodology. The intertwining of software development

methodology with the social realm necessitates an incursion into the essence of

organisational culture. This ‘digression’ is perceived as crucial so that any

empirical study to understand the adoption of software development methodology

is cognisant of the influence of organsational culture (Sheffield & Lemétayer,

2013).

17 A reference to agile teams that have a dependency on other agile teams for lower level functionality

 110

2.6 A Discourse on Organisational Culture (OC)

The incursion into OC culture is necessitated in order to ascertain whether

the concept of OC can be quantified so that the abstractionism inherent in this

concept could be given a tangible form thereby enabling better comprehension of

the organisational context. However, according to Leidner and Kayworth (2006),

providing a precise definition as well as a strategy for measuring an amorphous

phenomenon such as OC is one of the biggest challenges facing IS research. This

drawback may be attributed to the multi-dimensional nature of OC (Simberova,

2015) or the lack of consensus regarding a precise definition of OC (Hu et al., 2012).

In such instances, a viable approach would be to follow the research design that is

informed by the methods and suggestions of pioneers and respected writers in the

domain of OC theory. From an OC perspective, van Muijen and Jaap (1999)

suggest using the methods of Geert Hofstede and Edgar Schein as a point of

reference.

Organisational Culture as an Abstraction that needs Acknowledgement

The seminal contributions made by Edgar Schein with respect to OC

positions him to advocate a possible definition of OC. According to Schein (1985),

OC is defined to be:

A pattern of shared basic assumptions that a group has learned as it

solved its problems of external adaptation and internal integration,

that has worked well enough to be considered valid and therefore, to be

taught to new members as the correct way to perceive, think, and feel

in relation to those problems (p. 4)

Schein does warn however, that OC is an abstraction that needs to be

respected because the influences that are created from the interplay between social

and organisational relationships derived from culture can be quite overwhelming

(Schein, 1983). From a software process improvement perspective, Schein’s theory

on OC is suggestive of a natural organisational tendency to preserve a traditional

approach at the expense of embracing an innovation that changes behaviour and

could possibly yield better quality. The resilience to change is extended to a point

 111

where traditional behaviour begins to be taken for granted and simply becomes

unconscious assumptions that are taught to newer members of an organisation as

a reality that should not be challenged because it is perceived as the proper way of

doing things. These sentiments resonate quite well with the contributions by

Gershon et al. (2004) and Simberova (2015) who suggest that OC is an embodiment

of the norms, values, and basic assumptions of a given organisation. Much of

Hofstede’s contributions with regards to OC have a similar inclination, although

he also conveys the disclaimer that the concept of OC cannot be objectively defined.

He does however, suggest that OC has characteristics that are commonly agreed

upon by most scholars who have made a contribution in this regard. These

characteristics are that OC is holistic, historically determined, related to

anthropological concepts, socially constructed, soft and difficult to change

(Hofstede et al., 1990). Hofstede extends this list of characteristics by also

suggesting that OC is also manifested through practices that are acquired through

socialisation at the workplace (Hofstede & Hofstede, 2001; Minkov & Hofstede,

2011).

In order to contextualise the influence of OC as a variable of any study of

software development methodology, it is imperative that the abstractionism

inherent in the variables underpinning such a study is reduced. Sekaran and

Bougie (2010) posit that a common technique is to reduce the abstract notions to

observable behaviour so that it can be quantified for the purpose of analysis. A

viable strategy to reduce the abstractionism inherent in OC is to examine how this

was achieved in the seminal publications by scholars such as Hofstede and Schein.

Hofstede’s Theory of Organisational Culture

In an effort to understand the influence of OC on business processes,

Hofstede and his colleagues conducted a study spanning 10 organisations and 20

organisational units (see Hofstede et al., 1990). The research design involved the

conducting of 180 interviews with top level managers coupled with 1300 survey

responses that were received from employees at various levels of an organization.

The survey that focused on the influence of OC on business processes consisted of

54 Likert scale type questions. A factor analysis of the responses to the 54

 112

questions resulted in a 6-dimension classification of OC with each dimension

containing a subset of the original 54 questions. The 6 dimension classification of

OC proposed in Hofstede et al. (1990) is presented as opposing forces in an

organisation. These allude to organisational behaviour that may be classified as

process oriented or results oriented, employee oriented or job oriented, parochial

or professional, open system or closed system, loose control or tight control and

normative or pragmatic. While Hofstede’s dimensions of OC provide a framework

from which a viable attempt can be made to operationalise the amorphous concept

of OC, it does not provide enough detail on how to achieve this transition. In order

to obviate this shortcoming, a complementary perspective of organisational culture

is obtained by examining the contributions made by Schein in this regard.

Schein’s Theory of Organisational Culture

Edgar Schein, a professor at Massachusetts Institute of Technology (MIT)

has established himself as a seminal author on the topic of OC. He has authored

15 books on management and OC. According to Lambrechts et al. (2011), Schein’s

contributions have been instrumental in shaping management practice and

organisational scholarship.

According to Schein (1996, P. 32), OC can be analysed at 3 levels. These

levels are listed in order from most to least superficial. At the most superficial level

is ‘Artefacts’, a reference to the observed behaviour within an organisation. Schein

does suggest that determining the type of culture that prevails within an

organisation on the basis of analysing the observable behaviour in an organisation

will in all probability produce an inaccurate interpretation of the prevalent culture.

The 2nd level makes reference to ‘espoused values and beliefs’, primitively

explained as ‘the way things are done around here’. This aspect of OC evolves over

a period of time where a specific problem solving strategy is critiqued, adjusted

and transformed into an assumption that it will always be the correct way of

solving a specific type of problem. While this is an indicator of how organisational

values and beliefs are constructed and validated over a period of time (referred to

as “social validation” (Schein, 1996, p. 26)), there is a low probability of empirically

testing the link between performance and problem solving strategy. However,

 113

Schein makes the observation that when a solution to a problem works quite well,

then the solution strategy that started off as a hypothesis is transformed into

reality and becomes part of the set of underlying assumptions that defines

processing within an organisation. This set of basic assumptions regarding reality,

constitutes Schein’s 3rd, and most substantive, level of organisational culture. At

this level, Schein (P. 28) refers to a set of “dominant value orientations” that reflect

the preferred solution among several alternatives, and members in an organisation

will find it inconceivable to exhibit behaviour based on any other solution strategy.

Iivari and Iivari (2011) named this behaviour as “enculturation” (p. 512), which

refers to the process during which newcomers gradually learn by doing and

observing how it is appropriate to talk, behave and act in an organisation. This

enculturation activity takes place in order to establish a framework for stability

and predictability within an organisation. Schein’s explanation is that the human

brain has a constant quest for cognitive stability and any challenge to the set of

basic assumptions that preserve this stability will be met with a defensive

response that seeks to uphold the existing cultural identity within an organisation.

The Need to Identify the Prevalent forms of Organisational Culture

This set of basic assumptions that defines the cultural identity within an

organisation is regarded as one of the most significant factors that contribute to

ASDM implementation failure (Chow & Cao, 2008; Howell et al., 2010; Misra et

al., 2009). In order to ascertain the prospect of ASDM success within an

organisation, the preceding discussion provides an a priori argument for focus to

be bestowed on Schein’s 3rd level of the OC framework. At the same time, the

preceding discussion also identifies a need to establish how ASDM can be adjusted

so that it aligns with the set of basic assumptions that defines the prevalent culture

within an organisation. While there may be a temptation to look at the corollary

arrangement whereby OC is manipulated and streamlined to suit ADSM, Iivari

and Iivari (2011) point out that such an idea may not be feasible because we are

referring to an “…anthropological and sociological phenomenon that is quite

unique in every organisation” (p. 512). The preceding statement is quite significant

in respect of the current study because the ‘deep seated’ nature of OC means that

 114

a prevalent strain of OC will not change in order to accommodate ASDM. However,

given the flexibility inherent in ASDM, a logical suggestion is that ASDM could be

customised to suit a specific strain of OC. The implication of this suggestion is that

the prevalent forms of OC needs to be identified so that the adaptability of ASDM

can be analysed with the objective of ensuring that there is organisational

compatibility (Iivari & Iivari, 2011) with reference to these different forms of OC.

The adoption of a software development methodology has to take cognisance of the

prevailing OC. A failure to contextualise a software development methodology so

that it has a resonance with the prevalent OC is one reason for the weak

acceptance of software development methodologies in organisations (Iivari &

Huisman, 2007).

2.6.1 Organisational Culture and Software Development Methodology

The relevance of OC to agile software development and software

development methodology in general is highlighted in a seminal article by Alistair

Cockburn and Jim Highsmith (see Cockburn and Highsmith (2001)) titled “Agile

Software Development, the people factor”. A verbatim comment made in this

article reads as:

An agile team working within a rigid organization has as difficult a

time as agile individuals working within a rigid team. (P. 132)

Cockburn and Highsmith make the point that organisations that

implement an agile approach to software development will not be successful if the

de-facto command and control management style is maintained throughout the

organisation. Organisations need to change norms and values to facilitate a

leadership style that is collaborative rather than dictatorial. These norms and

values (Hofstede & Hofstede, 2001; Minkov & Hofstede, 2011) as well as the basic

assumptions (Gershon et al., 2004) that are enshrined into OC have an influence

on the software development process (Lee et al., 2016) which is now considered to

be a socio-technical process that incorporates organisational, human and technical

components (Fuggetta & Di Nitto, 2014). A study by Claps et al. (2015) to

determine the challenges faced by an organisation in adapting to a new software

development methodology, it was observed that irrespective of the technical

 115

suitability of the new methodology, if it is not socially suitable, it will not be widely

adopted. The study also found that the adoption of an agile oriented SDM required

almost an organisation-wide commitment to enhance the prospect of successful

adoption of the methodology. The role players ranged from senior managers to

software developers to the end users of the system. The study adopted a

technically-oriented theoretical model and there were many technical challenges

that were identified. However, the researchers did acknowledge that it was the

non-technical factor of organisational culture that was the biggest challenge.

From an academic perspective, the main challenge is to find appropriate academic

theories that enable the study of technology from a human perspective. This

challenge is somewhat alleviated by technology acceptance models such as the

Technology Acceptance Model (TAM), Unified Theory and Use of Technology

(UTAUT) and the Diffusion of Innovation Theory (DOI). As much as these models

have enabled an incursion into the social realm with respect to technology usage

and adoption, they do not provide optimal coverage for issues pertaining to

organisational culture.

The difficulty of conducting OC research in the domain of software development

methodology has been countered by researchers who have opted for the Cameron

and Quinn (2011) Competing Values Framework (CVF) that explains OC using a

quadrant-based orientation and provides a basis for the explanation of 2 dominant

culture types in an organisation. These are the Stability and Control culture type

and the Flexibility and Discretion culture type. In a study to determine aspects of

OC that have an influence on the adoption of software process improvement (SPI)

techniques, Lee et al. (2016) leveraged the CVF (explained in Section 2.6.2 and

illustrated in Figure 2.14) to classify the types of organisational culture that are

prevalent in an organisation. The outcome of this study was that the OC

orientations that are aligned to flexibility and discretion promoted a more

collaborative environment that was conducive to SPI initiatives. A plausible

deduction is that the OC traits aligned to Flexibility and Discretion provided a

fertile environment for the implementation of an agile approach to software

development. The CVF framework was also used by Ngwenyama and Nielsen

 116

(2003) who suggested that the lack of focus on OC in studies of software

development methodology may result in a “blind-spot” error that may compromise

any attempt to improve the software development process. In order to compensate

for the “blind-spot” (p. 101) error, Ngwenyama and Nielsen (2003) used the CVF

as the underlying theoretical model of OC for their study on software process

improvement strategy in an organisational setting. A significant finding in this

study was that organisations that strive for highly defined software development

processes (as espoused by the Capability Maturity Model (CMM)) tend to adopt a

cultural orientation that is lacking in flexibility and becomes more of an

impediment towards the attainment of genuine software process improvement.

This strategy of using the CVF was also used by Iivari and Iivari (2011) in their

study of the relationship between organisational culture and the deployment of

agile methods (explained in Section 2.6.2 and illustrated in Figure 2.14).

2.6.2 The Competing Values Framework (CVF)

According to Simberova (2015), amongst the numerous models that espouse

to capture the essence of OC, the CVF is the most widely used and most widely

cited. The CVF is a framework that is broadly informed by Hofstede’s six-

dimensional framework for OC. However, upon closer scrutiny, it is evident that

the CVF is driven by the espoused values prevalent within an organisation and

can be interpreted as a framework constructed on the basis of an overlap between

Schein’s (1996) 2nd and 3rd levels of organisational culture framework. As is the

case with the classification of OC that was made by Hofstede and Schein, the CVF

is made up of individuals with competing values and these values define the

culture of an organisation (Quinn & McGrath, 1985). The CVF is based on the 2

dimensions of ‘change versus stability’ and ‘internal versus external’ forces, both

of which provide a basis for the explanation of organisational behaviour (Iivari &

Iivari, 2011; Simberova, 2015). These dimensions are reflected in the competing

values of traditionalists and the advocates of innovation. They also form a subset

of the 6 dimensional classification of OC proposed by Hofstede et al. (1990). The

change/stability phenomenon emanates from Hofstede’s dimension of pragmatic

versus normative behaviour and the internal/external phenomenon of the CVF

 117

emanates from Hofstede’s open system versus closed system orientation. The full

CVF is based on an amalgamation of theoretical constructs underpinning OC that

were proposed by 2 of the leading authorities on OC, Edgar Schein and Gert

Hofstede. From an ASDM perspective, the CVF has significant relevance and has

been widely used in information systems research in general (Iivari & Iivari, 2011).

The original CVF was subjected to an adaptation by Denison and Spreitzer (1991)

who performed a juxtaposition of the 2 dimensions of culture from the CVF that

resulted in the emergence of four types of cultural orientations that define

organisational behaviour. These are:

 Rational Culture – achievement oriented, where the focus is on

productivity, optimisation of processes, accountability; internally,

the focus is on economic use of resources and the external focus is on

goal achievement and the attainment of competitive advantage;

 Hierarchical Culture – the focus is on stability and internal control

with the underlying operational demeanour of ensuring security,

control and stability by enforcing regulations prescribed by

management structures;

 Group Culture – the emphasis is on flexibility and internal control;

this aspect is strongly driven by the influence of staff members who

use their individual and collective expertise and experience to

determine the operational demeanour of an organisation; there is a

strong focus on internal control, an aspect that profiles this type of

culture as somewhat of a contrast to Developmental culture;

 Developmental Culture – the emphasis is on flexibility, and external

focus; a direct contrast to group and hierarchical culture.

Organisations that are anchored in this quadrant take risks, focus

broadly about the big picture and big ideas, and are agile in their

actions and the resources that they cultivate (De Graff, 2007); the

initial investment in resources is mitigated by expectations of long

terms benefits.

 118

The Quadrant-Like Structure of the CVF

According to Denison and Spreitzer (1991), each of the culture types has its

‘polar opposites’, thus graphically manifesting as a 4 quadrant rectangular

structure. On the basis of their study to investigate the relationship between

ASDM and organisational culture, Iivari and Iivari (2011) extended this graphical

manifestation of the CVF by identifying the main quadrant of applicability for

ASDM as illustrated in Figure 2.14.

The quadrant based classification provided by the CVF (illustrated in

Figure 2.14) is further conflated into a classification centered on change and

stability as well as an internal and external focus. The quadrants in the upper half

of Figure 2.14 represent an alignment with change, flexibility and spontaneity,

whereas the lower half of Figure 2.14 represent an alignment with strong control,

continuity and order. Internal focus is a reference to the maintenance and

preservation of existing/traditional socio-technical systems and culture within the

organisation and is represented by the left half of the CVF in Figure 2.14. External

Figure 2.14: An Agile “Sweet-spot” in the CVF identified in Iivari and Iivari (2011)

 119

focus emphasizes sensitivity to environmental issues where there is a focus on

competition and interaction with the business domain elements that exist outside

the organisation.

The Optimal Placement for ASDM in the CVF

According to Iivari and Iivari (2011), the optimal placement for ASDM is in

the quadrant that represents a strong alignment with change and an external

focus. As illustrated in Figure 2.14, the quadrant of optimal applicability for ASDM

is situated in the upper right quadrant of the CVF model and has been named the

Developmental Culture quadrant. According to Iivari and Iivari (2011), an

organisational culture that espouses change and has a strong external focus is

regarded as a ‘fertile environment’ wherein the principles of agility may be upheld,

enabling the implementation of ASDM for the development of software systems.

While the CVF may be presented as a quantifiable, structured and

theoretical model of organisational culture, Denison and Spreitzer (1991) warn

that such a classification would rarely be found in reality. Although an

organisation may be given an overall classification according to the CVF, by virtue

of the presence of a single dominant type of culture, there is usually a presence of

a mix of culture types that resonate between the various quadrants of the CVF.

Iivari and Iivari (2011) also defend their contribution regarding the quadrant of

applicability for ASDM, by asserting that while a Developmental Culture would be

ideal for the deployment of ASDM, the methods underpinning ASDM have

elements of the other 3 cultural types as well. As an example, features such as

time-boxing, effort estimation and productivity (prominently used as part of Scrum

and also relevant to XP), reflect values of a Rational Culture. Also, the Agile

Manifesto is centered on behaviourist elements such as trust, motivation and

commitment, all of which are traits of Group Culture. However, an argument for

the compatibility between ASDM and Hierarchical Culture is not easy to defend

and as such, it may be regarded as the least appropriate for the deployment of

ASDM.

As suggested by Simberova (2015), the CVF has become a well-recognised

standard for the classification of the type of culture that exists within an

 120

organisation. It is envisaged that the CVF will provide an ideal context for

discourse on the influence of OC on the adoption and adaptation of ASDM. Also,

Schein’s concept of ‘enculturation’ provides an avenue whereby ‘the way things are

done around here’ may be adjusted on the basis of success stories regarding the

use of agile methodology. The main outcome from the discourse on OC is that the

CVF provides a conduit from which a researcher may be able to understand the

prevalent culture in an organisation. This knowledge will be crucial in identifying

a software development methodology that is strongly aligned to the culture

prevalent in an organisation.

2.7 Conclusion

The study’s review of the literature was conducted using a ‘funnel’ approach

that started off with a broad review of the software process improvement

initiatives that have had a defining influence on the trajectory followed by software

development process models. The literature review converged to a focus on

iterative and incremental software development process models where there has

been a unanimous endorsement by the professional software development

fraternity for an agile approach to software development. A further specification

in this regard is an overwhelming preference for the Scrum methodology because

of the potential for the methodology to enable visibility of the evolving system

thereby enhancing the prospect of generating quick business value. Scrum has also

been endorsed because of its flexibility to handle changing user requirements. The

adoption of Scrum methodology is however, susceptible to setbacks from a social

and technical perspective.

A timeline illustration of the transition of the software methodologies

(SDM’s), as discussed in the content of the literature review, extending from 1940

until 2018 is represented in Table 2.5.

 121

 Table 2.5: Timeline Representation of SDM’s

Timeline/
Dominant
type of
computer

1940
- 1960

1960
-1970

1970
-1980

1980
-1990

1990
-2000

2000
-2010

2000
-

2018

2010-2018

Mainframe
Code
and
Fix

Mainframe
Structured

Design

Midrange/
microcomputer

 Waterfall

Personal
Computer (PC)

Iterative

and
Incremental

PC/Client
Server

 Spiral

PC/Client
Server

The
Unified

and Agile
Unified
Process

PC/Client
Server/Cloud
Computing

 Agile

PC/Client
Server/Cloud
Computing

 Wagile

The major advantages and disadvantages of each SDM is presented in

Table 2.6 as SDM “sweet and bitter spots”.

Table 2.6: SDM “Sweet and Bitter Spots”

SDM Sweet Spot Bitter Spot

Code and

Fix

Quite simple; Gets the job

done; Effective for

simple/trivial systems;

Enhances software

maintainability through a

“hacker” mentality

Lack of design compromised the stability

of the system; Lack of formal

requirements elicitation phase resulted

in a system that did not meet user

requirements; lack of testing

compromised system reliability

Structured

Design

High Level Design consisting

of a hierarchy of sub-

routines; enabling quick

visibility; reduces

complexity; Extensive use of

Flowcharting

Rather vague in specifying the details of

each level of the hierarchy; once design is

in place, the flexibility is limited

 122

Waterfall

Full support for entire

development lifecycle; simple

to implement; documentation

intensive enabling greater

accountability and

maintenance

Too predictive; Users did not understand

the system’s requirements at the early;

does not encourage an iterative

demeanour because of it “single pass”

nature; not much flexibility

Iterative

and

Incremental

Iteratively refine user

requirements; handles

changing requirements

better than previous

methodologies; rapid

application development

facilitate better system

visibility

Not regarded as a true development

process/methodology; may degenerate

into a code and fix methodology; potential

to produce “spaghetti code”

Spiral

Greater methodological

presence; incorporated risk

mitigation;

A complex methodology regarded as a

“high ceremony” approach; substantial

focus on documentation and reviews;

system visibility is compromised; the

model is theoretically sound but lacking

in practicality and flexibility

The Unified

Process

(UP)

A truly adaptive

methodology; extensive focus

on upfront modelling and

documentation; several

iterations enabled better

flexibility

Reliance on comprehensive upfront

design and documentation reduced the

capacity to faciltate quick system

visibility thereby compromising the

handling of changing user requirements

The Agile

Unified

Process

Greater focus on

implementation and system

visibility; better interactivity

with end users; heralded a

migration from technical

aspects of development to the

social context

Too process oriented compromising the

flexibility somewhat

Agile

Embodies a fully dynamic

and flexible process that is

focused on the

accommodation of user

requirements and changing

system specifications; simple

design and short iteration

cycles

Does not scale well; does not handle

“mission critical” system development;

lack of focus on design compromises the

system’s stability; Not practical to have

an on-site end user; system’s

maintainability is compromised

Wagile/

Water- Scrum-

Fall

Compromises dynamism to

enable control and project

management of the

development process;

incorporates greater focus on

design; better control of

“scope creep”; Incorporates

adequate flexibility to let the

development team decide on

the level of control and agility

Suspicion of too much Waterfall focus

thereby compromising the flexibility;

tries to incorporate the best of Waterfall

and Agile methodology thereby

compromising each methodology

individually

 123

Many of the minor technical and logical impediments of SDM’s (referenced

as “bitter spots” in Table 2.6) have been resolved by practitioners who have

customised the methodology by intuitively making use of waterfall-oriented

practices such as a BDUF and XP-oriented practices such as TDD, pair

programming and code refactoring.

The major technical impediment manifests in the ability of the methodology

to scale to an organisational platform. A consequence of this impediment has been

the advent of organisation-wide variants of Scrum methodology such as DAD,

DevOps and SAFe all of which have introduced the operations process as an

integral part of the software development activity. There is however, still a lack of

clarity and direction in terms of detail with regards to the integration of Scrum

methods with operations process. The social impediment manifests in the form of

OC and its influence on the adoption of an agile methodology such as Scrum. An

inquiry to ascertain the influence of OC is difficult to accomplish because of its

amorphous nature. The CVF does however, provide an operational guide to

dichotomise OC so that it can be classified according to its scope of applicability to

agile methodology. In order to guide the adoption of agile methodology, the CVF

provide a classification structure that can be used as a basis to identify cultures

within an organisation that resonates with the different variants of agile

methodology.

The literature review has identified Scrum as the de facto agile

methodology of choice for agile software development. However, the adoption of

Scrum has been subjected to setbacks with regards to its scalability and its

alignment with the prevailing culture in an organisation. This socio-technical area

of Scrum adoption becomes a viable area for an inquiry that will enhance the

implementation of the methodology thereby ensuring that the methodology

achieves the intended objective of satisfying the customer “… through early and

continuous delivery of valuable software” (1st principle of the Agile Manifesto

taken from Beck et al. (2001)).

 124

3.0 THE STUDY’S OVERALL DESIGN

3.1 Introduction

The literary incursion into trends and practices with regards to software

development methodology has been concluded. It now becomes incumbent upon

the researcher to provide a narrative with regards to the design of the study

currently being undertaken. It should be noted however, that the literary analysis

of the domain of software development methodology has provided much guidance

in terms of the research design that needs to be followed for the current study.

A research design has to be aligned to the philosophical assumptions and

the preferred paradigm that the researcher has adopted for the study, Creswell

(2013). The abstractionism inherent in the preceding statement maybe somewhat

obviated by the explanation from Scotland (2012) that a paradigm is a set of

assumptions that a researcher makes about the researcher’s interpretation of

reality, also referred to as the researcher’s worldview18. These assumptions are

qualified by the structure provided in the philosophical concepts of ontology (a

researcher’s knowledge and interpretation of reality) and epistemology (a

researcher’s viewpoint of how new knowledge can be created). Pinch (2008)

elucidates this incursion into the philosophical realm by suggesting that a

researcher establishes a paradigm for research by adopting a research design that

adequately addresses the duality between human and non-human phenomena

that prevail in society. In order to address this duality in the context of the current

study, the narrative that follows provides clarity on what has been achieved thus

far, what needs to be accomplished and how this will be accomplished. In essence,

the epistemology and ontology of the current discourse is substantiated with

reference to the research questions that underpin the study.

One of the outcomes that has been achieved is the knowledge that Agile

Software Development Methodology (ASDM) has been established as the current

de-facto standard for software development methodology (SDM). At a more

18 Morgan (2007) postulates that a worldview represents an all-encompassing disposition towards

experiencing and thinking about world issues, including beliefs about morals, values and aesthetics.

 125

granular level, Scrum has become entrenched as the most influential methodology

that underpins software development. The current study may be seen as a

contribution to the evolutionary trajectory that has been adopted in the

implementation of SDM practice by engaging software practitioners in order to

obtain a ‘depth-driven’ perspective on SDM’s, with a specific focus on the methods

espoused by ASDM. This foray into the experiential domain of software

development by practitioners will be conducted predominantly from a technical

perspective as well as a socio-technical perspective (as suggested in Pinch (2008)).

The technical aspects will be aligned to the methods used in software development

and the socio-technical aspect will have an exclusive focus on the influence that

organizational culture has on the choice of SDM. In order to derive optimum value

from an engagement with software practitioners, the overall research design

adopted for the study is aligned to the Sequential Exploratory Design model

suggested in Creswell (2013, p. 209).

The current chapter provides a philosophical basis for the choice of research

design as well as a discourse on the methodology that will be used for the main

phase in the study’s design.

3.2 A Worldview Orientation

Mehra (2002) as well as Creswell (2013, p. 49) make the observation that

qualitative research is underpinned by philosophical assumptions that ‘drive’ the

methodological aspects of a study. The philosophical assumptions that constitute

a researcher’s worldview19 are not a random occurrence, but formulated by

dominant trends in the domain of the research discipline or based on past research

experience, or as Mehra suggests, “…what we believe in determines what we want

to study” (p. 8). The significance of this discourse on the worldview orientation

towards research methodology is that a researcher’s basic set of

assumptions/beliefs is pivotal in determining whether the researcher adopts a

qualitative, quantitative or mixed methods approach to their research (Creswell,

19 Morgan (2007) postulates that a worldview represents an all-encompassing disposition towards

experiencing and thinking about world issues, including beliefs about morals, values and aesthetics.

 126

2013, p. 35). The dilemma in this regard is that it is difficult to add structure to a

discussion of on amorphous concept such as a researcher’s beliefs or philosophical

orientation towards ‘worldly issues’. Creswell does however resolve this dilemma

somewhat, by reducing worldly issues to a human and non-human duality that is

best understood according to 3 dominant worldviews, discussed in the discourse

that follows.

3.2.1 The Post-Positivist Worldview

The post-positivist worldview is representative of the traditional form of

research, also referred to as the scientific method and is based on observation and

measurement of the objective reality that exists in the world. The post-positivist

stance is an adaptation of the positivist worldview which advocates the belief that

there is an irrefutable truth to scientific knowledge that consists of generalisations

that are time-and-context-free (Guba & Lincoln, 1994). Based on the contributions

by Kuhn (1970), the softening of the positivist stance on scientific knowledge

resulted in a post-positivist worldview that embraced the importance of the context

of scientific knowledge as well as the acknowledgement that the evidence provided

by scientific research is not perfect and should be viewed as a conjectural truth

rather than the absolute truth. The post-positivist worldview is intrinsically

coupled with the quantitative approach to research. The researcher uses deductive

reasoning and starts off with a research hypothesis, collects relevant data and tests

the hypothesis with this data. A rejection or acceptance of the null hypothesis

becomes the basis for the generation of a theory that may be subjected to further

testing using new data and possibly in a different context.

3.2.2 The Constructivist/ Interpretivist Worldview

A worldview that is human-centric and embraces a philosophy that humans

construct their own meaning thereby acknowledging the existence of multiple

realities (Guba & Lincoln, 1994) that are subjective and based on interpretation.

The research practice entails a quest by the researcher to unearth a complexity of

views rather than aggregate viewpoints into one or a few generalisations. In

contrast to the positivist stance, the truth is context-sensitive and there may be

 127

varied interpretations of an observation. According to Guba and Lincoln (1994),

the research follows an evolutionary path that is highly inductive, where the focus

is on theory generation rather than theory testing. Walsham (1993) does however

issue the warning that theories do not represent the ‘absolute’ truth. The theories

that emanate from a study underpinned by interpretivist philosophy should be

judged according to the relevance and the ‘excitement’ that the theory generates

in its domain of applicability. The objective of such research endeavour is to elicit

in-depth, meaningful data from the phenomenon of interest.

The dominant methodology coupled with the interpretivist worldview is

qualitative, where researchers ask open-ended questions in order to provide

subjects with an open forum to express themselves with regards to their

experiences and interpretations of world phenomena. The researcher’s intent is to

make sense of these interpretations and inductively generate a theory or a pattern

that describes the collective experiences that subjects of a study may have in the

context of the research phenomenon.

3.2.3 The Pragmatic Worldview

The pragmatic worldview embraces methods of both the post-positivist and

constructivist worldviews. According to Creswell (2013), researchers make liberal

use of methods that have underlying assumptions that are both qualitative and

quantitative, in essence embodying a dualistic epistemology in the discovery of new

knowledge. Pragmatism provides researchers with the freedom to choose

quantitative and qualitative methods and procedures of research that best meet

the objectives of the study. According to Petersen and Gencel (2013), the

pragmatists viewpoint is to engage with research methodology on the basis of

“…what is practically useful and whatever works at the time” (p. 2). It relies on a

version of abductive reasoning (Morgan, 2007) that oscillates between induction

and deduction. Morgan uses the term pragmatic reasoning to suggest that

researchers who work in the pragmatic worldview use inductive results that have

been obtained from a qualitative study to serve as inputs to meet the deductive

objectives of a quantitative study and vice-versa. This strategy would be useful to

 128

address the dichotomy between the objective (positivist) and subjective

(constructivist) research paradigms.

Morgan (2007) offers a summation of the discourse on worldviews by

suggesting that:

 Qualitative research methodology conforms to an epistemology that

is inductive, subjective and context bound;

 Quantitative research methodology conforms to an epistemology

that is deductive, objective and generalizable;

 Mixed methods/pragmatic research methodology conforms to an

epistemology that is abductive, intersubjective and transferable to

different contexts.

3.2.4 The Software Engineering (SE) Worldview

Software engineering has its roots in computer science, thus placing it

firmly in the realm of the reductive and deterministic domain of science where the

dominant epistemology is positivism or post-positivism (Penny, 1997). Aligned to

this traditional perspective is the commonly held perception that software

development is an engineering-like activity (Pressman, 2010; Schach, 2008;

Sommerville, 2007) and software developers are engineers who are provided with

‘construction specifications’ and are expected to proceed in a quantifiable, highly

structured and organised manner to produce a software artefact that satisfies the

pre-defined specifications (Jemielniak, 2008). However, this notion of developing

software in a mechanistic manner has been subjected to a critique by Bryant is his

philosophical foray into the origins and path trajectory of software development

practice (see Bryant (2000)). In the article titled, “It’s Engineering Jim ... but not

as we know it”, Bryant acknowledges that software development needs an

exemplar discipline that embodies rigour, precision and quality, thereby endorsing

an identity with the domains of engineering, mathematics and science. However,

to suggest that the software development process should proceed in the same

manner as the construction of an engineering-like artefact is unwarranted because

the perception created is that the software development process embodies a

 129

methodology that is highly prescriptive and mechanical. Software development is

also not governed by the physical laws of nature (as is the case with engineering),

thus rendering the reference to engineering to be one that is more metaphorical

than literal.

Engineering as a Metaphor

The metaphorical reference to engineering has served the domain of

software development reasonably well in the sense that it has instilled an

appreciation for the application of technical expertise, discipline and rigour into

the development process. There were however, voices of dissent with regards to the

appropriateness of the engineering/construction metaphor. The perception is that

the engineering metaphor has outlived its usefulness and needs to be replaced by

an image that portrays software development as an evolutionary process (Lehman

& Ramil, 2003) where a software artefact is grown or ‘nurtured’ into a final product

(Bryant, 2000). The ‘softening’ of the engineering metaphor has been necessitated

by its incapacity to deal with the human/social element that has become a core

component of the systems development process and the functionality offered by

modern software systems. The understanding of software engineering has been

coupled with a gravitation of opinion that was historically dominated by a scientific

theoretical base to one that is more inclusive of the human and social aspects of

computing. This movement espouses a migration from a worldview that was

dominantly modernistic (the scientific perspective that the world could be

explained by a set of rational and objective facts) to one that has been labelled as

post-modernism.

Robinson et al. (1998, p. 368) explain that modernism “…lays the world

bare, stripped of myth and mystery” and focuses on the rigid rules of determinism

and the mechanistic logic of rationality that has an exclusive scientific orientation.

This modernistic stance towards software development has created a mismatch

between the actual process of software development and the type of methodologies

that were advocated by the software engineering community to enhance the

software development process. Robinson et al. suggest that adherence to the values

of modernism by the software engineering community was a critical factor in

 130

causing the software crisis in the 1970’s and 1980’s creating a situation where the

software engineering community became victims as well as perpetrators of the

crisis. The complicity of the SE community in contributing to the software crisis is

explained in Robinson et al. (1998) as a consequence of devaluing the user’s

experience and knowledge of their world, thereby creating a disconnect and a sense

of inequality between the developer and the end user of a software system. In the

traditional, modernist viewpoint, the software engineer is conceived as the expert

whilst the consumer of the product is referred to as the end user of the system. The

expert/end user distinction was suggestive of an arrangement where the expert

made the decisions regarding the feature-set, performance and usability of a

software system whilst the users was forced to adjust to the workings of the system

that was bestowed upon them. This narrative is descriptive of an inflexible

arrangement where the experts/developers were not obliged to provide any form of

accountability to the end users of the system. It was at this juncture that the SE

community began to acknowledge the need to have an interactive relationship with

the end users in order to develop systems that were perceived to be successful.

The Importance of the End User

The acknowledgement of the importance of the end users role in the

software development process has provided impetus for the popularity of agile

methodologies, which according to Northover et al. (2007) heralds a paradigm shift

in software development, completely replacing the old, traditional methodologies.

From a philosophical perspective, this transition may be seen as a migration of the

SE perspective on research and development from one of modernism to one that

subscribes to the principles of postmodernism. Postmodernism is a philosophy that

was developed as a rebellion against the positivist stance that reality could be

explained using objective, rational thought and there was no flexibility to

accommodate alternate explanations. Bertens (1995) explains that it is not easy to

develop a precise definition of postmodernism and no single definition of

postmodernism has gone uncontested or has even been widely accepted. Robinson

and Sharp (2009) do however, provide some guidance and suggest that

postmodernism is representative of a descriptive theory where there is no

 131

dominant narrative, enabling one to make an argument for knowledge that is

constructed on the basis of the context in which the knowledge is discovered.

Postmodernism is neither predictive nor prescriptive, but a philosophy that

endorses a multiplicity of interpretations of factual knowledge. Software

development practice typically consists of human intervention that embraces

changing requirements and the ability of software developers to adapt software

systems to suppprt the dynamic operational expectations of end users of these

systems. These attributes are completely different to the modernisitic perspective

that endorses engineering like precision where the physical artefact is predefined,

foreseen and precisely built.

In his 1974 Turing Award acceptance speech (see Knuth (2007)), Knuth

suggested that the activities of software development and research of the software

development process were best understood when there is an acknowledgement

that these activities embodied elements of modernism and postmodernism. Knuth

qualified this claim by suggesting that the scientific approach (characterised by

words such as logical, impersonal and calm) as well as the artistic approach

(characterised by words such as aesthetic, creative, anxious and irrational) were

intrinsic to the domain of software development. These sentiments heralded an

acknowledgement that software engineering has an identity that is commensurate

with the philosophy of postmodernism. The process of software development has

to incorporate an amalgamation of modernistic traits such as logic and rationality,

prescription and precision together with post-modernistic traits such as creativity

and an appreciation of aesthetic quality. These predictive sentiments were

empirically affirmed to some extent in a qualitative study by Jemielniak (2008).

An interesting outcome of the study was that the dominant vocabulary and

metaphors used by the software engineers had a stronger resonance with art

rather than engineering. The resonance between software development and art

has added impetus to the claim that an optimal understanding of issues related to

software development is only acquired if there is sufficient cognisance accorded to

the philosophy of postmodernism.

 132

3.2.5 The Researcher’s Worldview

In the context of the current study, the researcher makes a commitment to

a philosophical stance that software engineering research has to be conducted in a

constructivist/interpretivist space that does not preclude the use of positivist

oriented methodology for software engineering research. The researcher’s

dominant worldview is essentially interpretivist with elements of pragmatism.

Ontologically speaking, this viewpoint is classified as one of relativism, where

knowledge is viewed as a social reality and it comes to fruition by virtue of the

human context that is present in the discovery of knowledge. The researcher’s

interpretivist/pragmatic worldview orientation is not based on a laissez-faire

attitude towards the worldview issue regarding software engineering. It has been

carefully crafted on the basis of the researcher’s personal experiences in the field

of software engineering and also informed by the discourse on the dominant

worldviews in the domain of software engineering as expressed by Bryant (2000);

Dybâ and Dingsoyr (2009); Knuth (2007); Petersen and Gencel (2013) and

Robinson et al. (1998).

According to Morgan (2007), there has to be an alignment between a

researcher’s ontological and epistemological perspectives and the choice of

research methodology as well as the methods used to conduct research. Petersen

and Gencel (2013) elaborates on this alignment in an article that deals with

research methods and their relationship with a researcher’s worldview in the

domain of software engineering. In this article, a clear line is drawn between the

interpretivist/pragmatist worldview, the extrapolation to qualitative research and

the use of interviews or case studies as the main research method. In conclusion,

the researcher’s dominant worldview orientation will underpin the methodology

and methods used in the current study, which at this stage has a strong resonance

with the sentiments expressed by Petersen and Gencel (2013).

 133

3.3 The Research Classification and Design Considerations

The research design is the grand plan that illustrates the “methodological

congruence” (Morse & Richards, 2002, p. 34) between the research problem the

research, the research methods and the collection and handling of research data.

The most significant determinant of the research design adopted for a study is the

researcher’s worldview orientation (Saunders, 2011).

In the context of the current study, a narrative of the researcher’s

worldview orientation has been presented in the preceding section. It has been

established that the researcher has a preference for the interpretivist worldview

but in a more pragmatic sense. As Saunders (2011, p. 149) explains, “pragmatism

is an intuitively appealing recourse” because it provides the researcher with the

latitude required to enable focus on the research questions and the execution of

the research process in a manner that is deemed to be feasible and doable. Before

a commitment to a specific research design is proposed, it is essential to advocate

a classification for a research project so that the research design can be identified

in a manner that facilitates methodological congruence. According to Saunders

(2011, p. 170) the three main types of research classifications are exploratory,

descriptive and explanatory.

Exploratory research is a means of establishing ‘what is happening’ and to

obtain new insight into a phenomenon. It is often used when knowledge of the

research domain is vague and there is a deficiency of previous empirical research

into the topic. The principal mechanisms of conducting an exploratory study is to

compile an extensive literature review and to conduct interviews with experts on

the subject matter. A descriptive study is undertaken in order to compile in-depth

information about a person or event. Descriptive studies are rather static and are

usually used as a precursor to an exploratory or explanatory study. An explanatory

study is used when the main objective of the study is to establish a causal

relationship between variables of a study.

 In order to propose a classification type for the current study, reference is

made to the first 2 research questions that underpin the study. These are:

 134

 What are South African software practitioners' perspectives on Agile

Software Development Methodology (ASDM) from a technical

perspective?

 How does organisational culture influence the implementation of

ASDM?

Both these questions require an in-depth engagement with software

developers in South Africa. From an empirical perspective, there is a paucity of

knowledge that is available from in-depth research oriented interactions with

software practitioners in South Africa. Based on the argument presented, the

exploratory approach is deemed to be the most appropriate classification for the

initial empirical phase of the current study. The output of this phase of the study

will consist of a static and a dynamic component. The static component will be a

report on the current status of agile software development as experienced by the

cohort of South African software practitioners. The dynamic component will be the

development of a framework or a set of models that guide the future practice of

ASDM. The choice of research design for the planned phases of the study is guided

by the array of research designs presented in Creswell (2013, p. 11). An overview

of these designs are presented for reference.

Quantitative Research Design

The two main methods of quantitative research designs are experiments

and surveys. The underlying strategy is to generate numerical data that is context

independent. The analysis procedures are predominantly deductive and entail the

use of graphical analysis and statistical tests of significance to faciltate objective

accuracy and enable generalization of results, Quantitative research designs have

a strong affiliation to the positivist worldview that upholds the principles of

objectivity and a single reality with minimal latitude for researcher bias.

Qualitative Research Design

Qualitative research is based on the philosophy that reality or knowledge

can only be obtained in the context it exists. Qualitative designs rely on textual,

 135

image and video data that is analysed by the use of inductive and deductive

methods to develop greater insight into a phenomenon. There is a strong alignment

to the interpretivist worldview although Huberman et al. (2013, p. 7) suggest that

it is more appropriate to label qualitative researchers as pragmatic realists. The

purpose of qualitative research is to make sense of the complexities that exist

around social phenomena from a cognitive and practical perspective. The

participants in a qualitative study are selected on the basis of their knowledge or

experience with the main phenomenon of the study. The outcome of qualitative

inquiry is to discover new meanings, themes and generate explanations and

conceptual frameworks to explain complex situations or cultures(Rubin, 2012).

Mixed Methods Research Design

Methodological pluralism is a strategy that is gaining traction in the

domain of business and organizational research (Saunders, 2011) as well as

research in the domain of information systems development (Frank et al., 2014;

Mingers, 2001). Traditionally, research in these areas have been dominated by a

positivist philosophy where reality is considered to be objective and quantifiable.

However, Mingers (2001), Petter and Gallivan (2004) and Frank et al. (2014) point

out that the multi-disciplinary nature of studies within information systems

development necessitates multi-method research approaches that embrace both

positivist and non-positivist traditions. This strategy will help to broaden

understanding because it incorporates elements of objectivity and scientific rigour

as well as interpretivist and qualitative rigour. The diversity of research

approaches will arguably ensure that the researcher is in a position to leverage the

strengths of both research paradigms thereby mitigating the complexities inherent

in information systems development research.

According to Saunders (2011, p. 185), mixed methods research is a reference

to a research design where quantitative and qualitative data collection and

analysis techniques are used for different phases of a study. The phases of such a

study are done either concurrently or sequentially. The choice of design strategy is

guided by the researcher’s intuition and perspective.

 136

3.4 The Research Design

The possible research designs that could be implemented in the current

study have been presented in the previous section. This narrative should facilitate

a choice of research design quite easily. However as Saunders (2011, p. 185) points

out, the choice of design is still not easy to identify. In the context of the current

study, the researcher has made a definite commitment to the

interpretivist/constructivist/pragmatic worldview in the discourse on the

worldview perspective. This commitment suggests a leaning towards a more

qualitative oriented design, In order to validate this inclination, guidance is

obtained from Mingers (2001) who provides a conceptual framework for

information systems (IS) research design that is based on the philosophical works

of Kuhn Kuhn (1970) and Habermas (1970). Mingers advocates a conceptual

framework of research that is based on the construct of “three worlds”. These are

the:

 Material world: a world that is outside and independent of human

beings and observations in this world are objective and theory-

driven;

 Personal world: a world that consists of human beings own

individual thoughts, feelings and experiences and observations in

this world are subjective and constructed by experience;

 Social world: a world that represents the co-existence of human

beings and is driven by inter-subjectivity that consists of social

practices, norms and values that enable and constrain the action of

human beings in a society.

Mingers (2001), Saunders (2011) as well as Creswell (2012) are of the

opinion that research in general is not a discrete event and entails a set of phases

that ask the questions: What is happening with reference to a specific phenomenon,

why it is happening and what can be done to implement a change so that there is

 137

an improved experience of that phenomenon. Each of these questions may be

answered using multiple research approaches. From an IS/IT perspective, the

significant benefit of using a multi-method approach is that it will arguably ensure

the synthesis of a reality that captures the technical and social complexities that

define the IT/IS domain.

Having made a commitment to an overarching exploratory design for the

current study as well as an endorsement of the value of a mixed methods research

approach for IS/IT based research, the researcher enlisted the guidance provided

in Creswell et al. (2003) on the topic of possible designs for a mixed methods study.

The objective of this exercise was to identify a viable research design that enabled

the answering of the research questions for the current study.

The main criterion that provides a distinction in terms of the type of mixed

methods approach is the sequence that is used to collect and analyse data. The

data collection for the multiple phases may be done concurrently or sequentially.

The sequential strategy entails an initial phase that is either qualitative or

quantitative and a subsequent phase that reverses the methodology. Based on

these 3 core mixed methods designs, Creswell et al. (2003, p. 167) introduce 3

additional distinguishing criteria. These are the overall priority that is attached to

the type of research, the point at which integration of data is conducted and the

relevance of a theoretical framework to underpin the study. Aligned to this

framework of research designs, the design for the current study is structured along

the specifications.

 The design will have an overarching qualitative focus to enable an

in-depth exploration of the phenomenon (of agile software

development);

 The design will enable a convergence of ideas and experiences so

that a holistic explanation of the phenomenon of software

development in South Africa may be ventured;

 The design incorporates the synthesis of a set of models that

captures the essence of the qualitative component of the study;

 138

 The design provides an option whereby the researcher is able to

validate the model by making use of a theoretical framework to

ascertain acceptance of the proposed model using a quantitative

approach. The choice of a quantitative approach in the latter phase

of the study is guided by the suggestion in Saunders (2011, p. 185)

that the use of different techniques in a complementary manner is

sometimes advisable to cancel out the “method effect”. The “method

effect” is a reference to the shortcomings that may be present in a

single strategy and the cancelling out of this shortcoming is achieved

by enlisting the service of a complementary approach. It is claimed

in Saunders that this strategy will arguably ensure that there is

greater confidence that may be placed in the conclusions of the

study.

Using the specifications listed above, the most appropriate research design

identified for the current study is the Sequential Exploratory Design suggested in

Creswell et al. (2003, p. 180). In terms of the notation used to describe this type of

research design, Morse (1991) suggested the use of the expression QUAL quan

to denote a study that has an overarching qualitative design but also makes use of

a subsequent quantitative approach that is dependent on the outcome of the

qualitative phase of the study. The phases of the study are executed in a sequential

manner.

3.4.1 The Sequential Exploratory Research Design

The sequential exploratory design is conducted in two phases where

priority is attached to the first phase of the study. The initial phase consists of a

qualitative data collection and analysis phase followed by a quantitative data

collection and analysis phase. The final phase entails an integration of the analysis

from the both phases. The intention of the first phase of the study is to explore the

problem under study and then follow up with a quantitative phase that seeks to

obtain validation of the outcome obtained from the first phase of the study. The

 139

sequential exploratory design adopted for the current study is illustrated in Figure

3.1.

Figure 3.1: The Sequential Exploratory Design Adapted from Creswell et al.

(2003, p. 180)

In order to contextualise the use of the Sequential Exploratory Design illustrated

in Figure 3.1, reference is made to the inception of the current study which was at

the literature review phase. The literature review conducted in Chapter 2 entailed

an elucidation of the practices and methods used in software development and was

predominately technical. However, the relevance of organisational culture in

understanding the technical issues became integrated with many of the technical

issues underpinning software development. The culture within an organisation

consisted of habits and practices that became embedded into software development

techniques. This phenomenon necessitated a foray into the socio-technical domain

of software development. An outcome of this process is the instantiation of the first

2 research questions20 which necessitated an overarching qualitative21 approach

towards the study. The first 2 phases in the sequence of the research design

(illustrated in Figure 3.1) is attributed to the first 2 research questions. It should

be noted that the strategy of using a literature review to inform the research

question(s) in a qualitative study is endorsed by Creswell (2013, p. 50) who asserts

20 The first 2 research questions have been repeated in Section 3.3 for ease of reference
21 A discourse on the choice of an overarching qualitative approach for the study is
presented in Section 3.5

 140

that sufficient flexibility may be accorded to the qualitative researcher, unlike in

quantitative research where a theoretical framework is given much more

prominence. The lack of reference to a specific theoretical underpinning renders

this phase of the study as inductive. According to Thomas (2006) the main purpose

of an inductive approach is to allow research findings to be obtained from the

significant themes found in the raw data without the constraints imposed by any

structural underpinning such as academic theory or a structured methodology.

Thomas elaborates on the purpose of an inductive approach and suggests that the

following outcomes are expected from the inductive approach:

 a condensation of extensive and diverse raw data into a cogent,

summarised form;

 an alignment of the research objectives and the summarized

findings that is transparent and defensible;

 enables the synthesis of a model or theory about the underlying

structure of experiences or processes that are found in the data.

The synthesis phase in the current study forms the 3rd phase of the study

(illustrated in Figure 3.1) and entails the development of a set of models that guide

the implementation of agile software development methodology (ASDM). The

models will have a social and a technical orientation. The social dimension will be

aligned to organisational culture theory. It is envisaged that the organisational

culture dimension of the study will provide an overarching framework to match

the culture within an organisation to the type of development methodology best

aligned to this culture. The technical dimension will be largely dictated by the

evidence in the qualitative, exploratory phase of the study. This phase of the study

will provide an answer to the 3rd research question, listed below for reference.

 How can South African software practitioner’s knowledge of ASDM

be used to develop a framework to guide the implementation of

ASDM?

The 4th phase of the study follows a quantitative approach that entails an

inquiry to determine the level of acceptance by software development practitioners

 141

of the technical component of the proposed framework for the implementation of

ASDM. The researcher has made a conscious decision to validate the technological

component of the proposed framework because of its envisaged pragmatic

relevance to practitioners. This decision resonates with the suggestion by Creswell

et al. (2003, p. 171) that practical constraints with regards to data collection

coupled with the “amenability” of the research approach to the validation exercise

will determine the level of intensity of the quantitative phase of the study. A social

science-oriented theoretical model of technology acceptance will be used to

operationalise software practitioners’ acceptance of the proposed technological

model to guide the implementation of ASDM. It should be noted that the design

for the quantitative phase of the study is only tentative at this stage (as indicated

in Creswell et al. (2003, p. 171)). It will however be used to answer the final

research question, listed below for reference.

 What is the acceptance by South African software practitioners of a

framework that informs the technical implementation of ASDM?

An analysis and condensation of the knowledge obtained from the 1st 5

phases of the study will lead to a conclusion of the study. This conclusion will entail

the ‘mixing’ of results in order to present an element of sequential triangulation

which is one of the hallmarks of a successful mixed methods study (Morse, 1991).

The remainder of the chapter comprises of a discussion of qualitative

research methodology, the approach that underpins the first (and defining) phase

of the study.

3.5 Qualitative Research Methodology

According to Leedy and Ormrod (2005, p. 133), qualitative research is a

multi-faceted research approach that entails the study of “real world phenomena”

together with all the complexities that define these phenomena. The complexities

inherent in these phenomena make it impossible to simplify the outcome of a

qualitative inquiry so that it converges to “…a single, ultimate truth to be

discovered”. The underlying philosophy of qualitative research is that the

 142

researcher should have the ability to interpret the results of a qualitative study by

not only appreciating the immediate outcome of a study, but also to be cognisant

of the broad social context in which the study has been undertaken. Remler and

Van Ryzin (2011) suggest that qualitative research is best defined according to the

kind of data that it generates as well as the methods used to analyse this data. The

data is primarily nonnumeric consisting of textual data that provides an insight

into the thoughts and experiences of the human subjects of the study. In order to

present a solution to a research problem, the researcher uses the newly acquired

insight into the problem to develop a theory to explain the problem or construct a

model that represents a solution.

Qualitative research does have its limitations in the sense that the results

may be not be generalizable to a broader population. The lack of generalisability

is however, made up by the depth of understanding that a qualitative study

produces, thereby providing a forum to enhance the understanding of issues that

are humanistic and underpinned by a strong social context. Aligned to the

preceding assertion is the claim by Remler and Van Ryzin (2011) that qualitative

research is ideal for exploratory studies or studies that attempt to understand

social and organisational behaviour that is deemed to be vague or not easily

explained.

3.5.1 The Use of Theory in Qualitative Research

The theoretical framework forms the blueprint for the entire dissertation

inquiry (Grant & Osanloo, 2014) or as is suggested in Sekaran and Bougie (2010),

the theoretical framework provides the conceptual foundation from which the

research project evolves. Sekaran and Bougie do make the claim that the

theoretical framework forms the underpinning of the hypothetico-deductive

research method because it informs the research hypotheses used to guide the

research process. However, this claim has a strong bias towards quantitative

research projects that are typically ‘driven’ by deductive logic. In these instances,

the theoretical framework provides an indication of the researcher’s beliefs or

theory of the relationship(s) between the variables of a study. This theory becomes

the focus of a testing process where the objective is to use statistical methods to

 143

either support or reject the researcher’s theoretical stance within the context of the

study’s data.

However, qualitative research is typically, not initiated with any dominant

theoretical disposition, does not have an exclusive reliance on deductive logic and

“…produces findings not arrived at by statistical procedures or other means of

quantification” (Strauss & Corbin, 1998, pp. 10-11). The methodology of qualitative

research facilitates the generation of a theory or a pattern that emerges

inductively towards the end of such a study (Creswell, 2013). Creswell also points

out that in some instances, qualitative studies may not include an explicit theory

and entails a presentation of descriptive research of the central phenomenon.

3.5.2 A Choice of Qualitative Methodology

 Creswell (2013, p. 13) and Glesne (2015, p. 20) provide a list of prominent

qualitative research methodologies that include narrative studies, ethnography,

phenomenology, grounded theory and the case study approach. These

methodologies leverage a common set of methods that provide the researcher with

an identifiable strategy to enable an understanding of the phenomenon that forms

the center of the inquiry. From an overview perspective, Creswell provides a useful

summary of the purpose of the main qualitative methodological approaches. From

the perspective of the current study, the most applicable approaches were the

following:

 Phenomenology: the researcher obtains an insight into the lived

experiences of individuals about a phenomenon; this insight is used

to develop a framework/picture or a cluster of themes that

encapsulates the individual experiences and enables the

understanding of the phenomenon in a broader context. The main

form of data collection is an interview with the individual who has

experienced the phenomenon;

 Grounded Theory: the researcher develops an abstract theory of a

phenomenon that is based on knowledge of the phenomenon as

 144

conveyed by the study’s participants. Data collection is done

iteratively until a convergent view is established;

 Case Study: the researcher develops an in-depth analysis of a case

that may include an event, a process or activity or one or more

individuals over a sustained period of time. A variety of data

collection procedures may be employed including interviews,

documentation, observational notes and surveys.

The choice of research approach for the current study is guided by the

researcher’s ontological perspective regarding research in the domain of software

engineering (discussed in Section 3.2.5) as well as current research trends in the

domain of software engineering. The use of Grounded Theory has been hailed by

Stol et al. (2016) as a viable alternative to the tradition of following a hypothetico-

deductive research model. However, a major source of concern regarding grounded

theory research with regards to software engineering is that there is a high

probability of method slurring, a situation where the researcher does not engage

with the methodology in a rigorous manner. One of the reasons for this

phenomenon is that theory generation in an amorphous discipline such as software

engineering is difficult to achieve because of the number of variables that may be

involved.

Case Study as a Viable Methodology

The use of a case study approach is also a viable methodology that could

underpin the current study. According to Yin (1981), the case study approach

entails an inquiry regarding a phenomenon in a specific context. While the

preceding outcome may be deemed as partially appropriate for the current study,

it was not sufficient to enable the acquisition of knowledge regarding the use of

agile software development methodology (ASDM) from a broader context.

Phenomenology enables the researcher to obtain a broad perspective on the topic

as has been illustrated in studies of ASDM by Nguyen (2016), Matthews (2014),

Malone (2014) and Mayfield (2010). This precedent of using phenomenology for

software engineering research coupled with the perceived shortcomings of the

 145

grounded theory and case study approaches, makes phenomenology a viable

qualitative methodology to underpin the current study.

3.5.3 Phenomenology as a Viable Qualitative Methodology

A phenomenological study is a qualitative discourse that “…describes the

common meaning for several individuals of their lived experiences of a concept or

a phenomenon,” Creswell (2012, p. 76). Phenomenologists arrange their inquiry by

first establishing a phenomenon of human interest and then proceed to obtain

knowledge of that phenomenon by eliciting details of people’s experience(s) by

virtue of their interaction with the identified phenomenon. The underlying

intention is to establish a noetic (“how did you experience the phenomenon?”) and

noematic (“what is the value that may be derived from your experience of the

phenomenon?”) correlation (Langdridge (2008); (Groenewald, 2004)).

Chan et al. (2013) further explains that phenomenological research is based

on the ideology that a better understanding of a phenomenon is obtained by

analysing the experiences of the phenomenon by the subjects of a study. The

phenomenological strategy is to ask the interviewee an initial question that opens

up a channel of communication to enable a deeper inquisition of the subject matter.

The objective here is to acquire general knowledge that is based on the

interviewee’s experience and learned perspective of the phenomenon. In order to

conduct phenomenological research, the researcher should however have some

knowledge on the presence of the phenomenon as well as an intuitive list of

respondents who will have sufficient experience in the phenomenon. Basically, the

researcher should have an interest in the phenomenon and knowledge of the

parameters that define the phenomenon.

 The discourse on phenomenology, coupled with the researcher’s

epistemological viewpoint that reality is constructed by virtue of an individual’s

subjective experience of a phenomenon, has resulted in a plausible argument for

the use of phenomenology in the current study. However, the main methodological

aspects of phenomenology need to be established in order to ensure that the

phenomenological inquiry is based on sound theoretical principles. From an

operational perspective, Englander (2012) provides an insightful explanation of

 146

the methodological aspects of phenomenological research by contextualising the

operational elements according to the expectations of logical positivism, which has

assumed the role of the de facto methodology for research in the era of modernism.

From a positivist perspective, the initial step of data collection is sampling, which

emanates from the notion that the sample needs to be identified so that

observations regarding the sample may be statistically generalisable to the

population at large. The critical questions that drives this process is: Is each

element of the sample representative of each element in the population? And, how

many elements are required in the sample so that observations can be statistically

inferred onto the population?

However, in phenomenological research, representativeness is not the main

criterion that drives the methodology. While there is a quest for general knowledge

of the phenomenon, this is acquired more from a ‘depth’ rather than a ‘breadth’

perspective. The main criterion that drives the identification of respondents for the

study is the answer to question: Do you have the experience that I’m looking for?

In terms of the sample size, Smith et al. (1997) is of the opinion that there is “…no

right answer to the question of sample size” (p. 56) and unlike logical positivism,

the sample size is determined by the richness of the evolving data collection

process. Englander (2012), concurs with this assessment of the issue of sample size

and makes the point that because the study is qualitative, the sample size does not

really matter. There is however a ‘veiled’ agreement that the more interviews you

conduct, so will your understanding of the phenomenon improve. In this regard,

the actual sample size could be anything from 3 to 20 respondents. The maximum

number suggested is based on the assumption that at some stage, there will be a

convergence of the information gathered so that no new information becomes

available in which case a point of data saturation has been reached. The main

sampling strategy for qualitative research is purposive (Huberman et al., 2013, p.

31) and these samples are not necessarily pre-specified and identification of

potential respondents for the study can evolve during the course of data collection.

With regards to the data collection instrument, unlike logical positivism

where the data collection instrument is seen as a device of measurement, in

 147

phenomenological research, the data collection instrument is a device used to elicit

meaning. The research instrument represents an opportunity to become

acquainted with the phenomenon via the interpretation of the person/interviewee,

without being overly concerned about the individual/demographic traits of the

person. As Chan et al. (2013) explains, the ultimate goal of phenomenological

research is to gain an intimate understanding of the lived experience of the

interviewee. An ideal strategy would be to make use of open-ended questions to

elicit the experiential data as well as a semi-structured interviewing technique so

that general knowledge regarding the phenomenon is obtained from the

interviewee. The underlying strategy is to enhance the prospect that the interview

questions are developed around the research aims.

With regards to the analysis of the interview data, the dictates of

qualitative research analysis come to the fore. As suggested by Huberman et al.

(2013, p. 14), “…qualitative data analysis is a continuous, iterative enterprise.

Issues of data condensation, display, and conclusion drawing/verification come into

play successively as analysis episodes follow each other” as illustrated in Figure

3.2. This process is conceptually similar to that followed by quantitative research

where there is a preoccupation with data condensation via the calculation of means

and standard deviations, data display via correlation tables and regression

printouts and conclusion drawing via the reliance on significance levels and

experiment/control group differences. However, in quantitative research, the

activities are carried out in more of a sequential manner. In qualitative research,

the transition between activities is more iterative (as illustrated in Figure 3.2).

 148

3.6 The Main Phenomenon of the Study

The current study’s design may be perceived as an evolutionary one. Based

on the knowledge gleaned from the literature review, it has been established that

the agile methodology, specifically the scrum-oriented version of the methodology,

seems to have been established as the de facto standard for software development.

However, embedded in this knowledge is also the awareness that practitioners are

using customised versions of agile methodology for software development. A

significant imperative that follows is the attainment of knowledge with regards to

the issues that underpin the customization of agile methodology from a South

African perspective. The idea is to uncover the essence of the software craft

knowledge (also referred to as “software crafting” in Boehm (2006, p. 13)) that

prevails in South Africa so that this knowledge can be used to ‘fuel’ the

development of a practitioner-informed, agile based software methodology guiding

framework. One of the challenges associated with achieving the afore-mentioned

imperative is to implement a research strategy that can be defended from a

philosophical and methodological perspective. In order to achieve this, reference is

made to a paper by Barry Boehm, titled “20th and 21st Century Software

Figure 3.2: An Iterative Model of Qualitative Data Analysis (Huberman

et al., 2013, p. 14)

 149

Engineering”, where Boehm presents a discourse on the current trends as well as

a prognosis for the direction of research and practice in the field of software

engineering (see Boehm, 2006). Boehm structured the paper by using a strategy

whereby the discourse was presented according to the dictates of the philosopher,

Georg Hegel, who hypothesised that:

…increased human understanding follows a path of thesis (this is why

things happen the way they do); antithesis (the thesis fails in some

important ways; here is a better explanation); and synthesis (the

antithesis rejected too much of the original thesis; here is a hybrid that

captures the best of both while avoiding their defects).

This Hegelian perspective of thesis, antithesis and synthesis provides an

ideal philosophical framework that defines the current study. The assertion is

corroborated by the study’s plan which in essence consist of a thesis (establish a

trend with regards to the current practice of agile based software development

projects in South Africa), antithesis (ascertain reasons for the customisation of

agile based methods and elicit suggestions for an improvement to the agile

methods) and a synthesis (propose a framework that is based on agile methodology

that incorporates the suggestions from practitioners on how agile methodology can

be improved within the South African context).

Hegel’s philosophical outlook, as explained in Stern (2002), is strongly

aligned to phenomenology. According to Dowling (2007) and Kafle (2013),

phenomenology is a term that has a dual context. It is regarded as a philosophy as

well as research methodology. From a philosophical perspective, phenomenology

(considered to be a branch of epistemology) has a focus on the cognition that occurs

as people construct knowledge on the basis of reflection and experience of their

“lifeworld” (Langdridge, 2008, p. 1128) . From a research methodology perspective,

Leedy and Ormrod (2005, p. 139) define a phenomenological study as “…a study

that attempts to understand people’s perceptions, perspectives and

understandings of a particular situation”. One of the core objectives of the current

study is to acquire an understanding of software practitioners’ perspectives on the

phenomenon of software development. The preceding narrative, regarding the

 150

Hegelian perspective on knowledge acquisition, the essence of phenomenology as

a research methodology and the objective of knowledge acquisition regarding the

phenomenon of software development by practitioners in South African, provides

rational testimony to support a gravitation of the study’s methodological

underpinning towards phenomenology.

3.5.4 Main Types of Phenomenological Approaches

According to Chan et al. (2013), there are seven approaches to

phenomenological research. However, the two main types of phenomenological

approaches are descriptive and hermeneutic. In the case of descriptive

phenomenology, the researcher employs a strategy named ‘bracketing’ where every

effort is made to ensure that the researcher’s experiences, knowledge and opinion

on the topic of the study is not used to influence the interviewee’s responses.

Basically, the influence of the researcher has to be ‘bracketed-away’ enabling the

interviewee to provide an organic response. This form of phenomenology has many

critics (e.g. Chan et al., 2013; LeVasseur, 2003) who claim that it is impossible for

the researcher to eliminate pre-understanding of the topic and there has to be a

point where this pre-understanding influences the conversation with the

interviewee.

Much of the discourse on phenomenology is attributed to the philosophers,

Husserl and Heidegger. Heidegger was of the opinion that the biases and

assumptions of the researcher cannot be ‘bracketed away’ and is embedded within

the interpretive process of engaging with the interviewee (Laverty, 2003). This

interpretivist attitude towards a phenomenological study has its origins in the

ontological perspective that there are multiple realities/interpretations that

underpin the experience of a phenomenon and reality can only be appreciated in

the local context in which it has been created and experienced. Reality is not

necessarily a global phenomenon. The preceding statement also serves as a

powerful endorsement of the qualitative/interpretivist paradigm of research.

Laverty (2003) advises that the researcher should be creative and adopt

approaches that enable an optimal response to a question thereby enhancing the

prospect of obtaining rich, meaningful insight into the interviewee’s experience

 151

and perception of a phenomenon. In order to achieve this Englander (2012)

suggests that the initial phases of an interview should adopt a bracketing approach

and hereafter, the hermeneutic approach may be used to obtain deeper insight into

the interviewee’s experiences as well align this with the objectives of the study.

The research instrument used in the qualitative phase of the study (see

Appendix A) is designed to incorporate elements of bracketing and hermeneutics.

3.6 Conclusion to the Research Design

At the outset, the research plan has been largely dictated by the

researcher’s worldview that gravitates towards an interpretivist, pragmatic

orientation, resulting in the adoption of a predominantly qualitative approach to

underpin the study. In order to mitigate for the potential influence of

methodological bias, a quantitative phase was included in the study. From the

perspective of research methodology theory, the study’s design is aligned to the

Sequential Exploratory design defined in Creswell et al. (2003), an embodiment of

a mixed methods research approach. The qualitative phase of the study was

conducted using a phenomenological approach. From an empirical perspective,

data for the qualitative phase of the study was obtained through in-depth

interviews conducted with software practitioners experienced in the domain of

agile software development methodology and who have expert knowledge in the

domain of general software development. The output of the exploratory phase is

the development of a set of socio-technical models to inform the use of agile

software development methodology. The technically oriented output from this

phase is subjected to a quantitative validation process. The quantitative validation

is underpinned by technology acceptance theory and implemented through a

survey based approach for data collection. The qualitative and quantitative data

analyses is conducted independent of each other. The study’s conclusion is used as

a platform to achieve sequential triangulation and explain the convergence the

results.

 152

A Synopsis of the Research Design

A synopsis of the research design is contextualised according to the

research questions underpinning the study and presented in Table 3.1.

Table 3.1: Research Methodology Aligned to Research Questions

Research Question Research Approach Main Activity

What are South African

software practitioners'

perspectives on Agile Software

Development Methodology

(ASDM) from a technical

perspective?

Qualitative

Interviews guided

by

Phenomenological

Theory

How does organisational

culture influence the

implementation of ASDM?

Qualitative

Interviews Guided

by the Competing

Values

Framework

How can South African

software practitioners’

knowledge of ASDM be used to

develop a framework to guide

the implementation of agile

methodology?

Qualitative

Synthesis Phase

Qualitative Analysis

using the Van

Kaam method for

qualitative data

analysis (explained

on P. 188)

What is the acceptance by

South African software

practitioners of a framework

that informs the technical

implementation of ASDM?

Quantitative

Survey and

quantitative

analysis informed by

the Theory of

Acceptance of

Software

Development

Methodology

(TASDM)

The answers to the study’s research questions provide a convergence to the

study’s main question that has been specified as:

How can experiential knowledge of Agile Software Development

practice be used to develop a Socio-technical Framework to Guide the

Implementation of Agile Software Development Methodology?

 153

As can be established from Table 3.1 the study has been designed with a

mix of qualitative and quantitative methodologies. The qualitative methodologies

have been used in an exploratory manner and the quantitative methodology has

been used in a confirmatory manner. The main research question alludes to the

development of a socio-technical framework. This framework is developed on the

basis of the experiential knowledge obtained from the cohort of software

practitioners that form the sample for the qualitative phase of the study. A

verification of the framework is then obtained by leveraging quantitative research

methodology and the Theory of Acceptance of Software Development Methodology

to survey a cohort of software practitioners on the viability of implementing the

proposed framework.

 154

4.0 THE QUALITATIVE DATA

4.1 Introduction

According to Creswell (2012, p. 19), methodology is a reference to the

process followed in achieving the research objectives. An integral

component of the methodology for the qualitative phase of the study is the

process adopted to obtain the qualitative data. The objective of the current

chapter is to provide an insight into the qualitative sampling approach and

the interview protocol used in the study. The current chapter ‘sets the scene’

for the qualitative data analysis (Chapter 5) by including a discussion on:

 the qualitative sampling approach and the sample size;

 the design of the interview guide/questions for qualitative data

collection;

 the pilot study;

 the attributes of the study’s participants.

4.2 The Sampling Approach

The dominant sampling technique for qualitative research is purposeful

sampling (Given, 2008; Leedy & Ormrod, 2005; Remler & Van Ryzin, 2011)

because the research objective in a qualitative inquiry is to obtain an in-depth view

of the main phenomenon of the study. In order to achieve this objective, the

methodology has to enable the selection of an appropriate, information-rich sample

that typically ranges from a single case to a relatively few cases that are

purposefully selected (Patton, 1990). Patton qualifies the concept of ‘information-

rich’ cases as those cases from which one can obtain maximum knowledge about

issues that are of central importance to the purpose of the research. Patton (1990,

p. 182) and Given (2008, p. 697) provide a listing and an explanation of the

purposeful sampling techniques that may be used to obtain knowledge of

information-rich cases. The underlying theme that emanates from this discourse

 155

on purposeful sampling techniques is that they are not mutually exclusive and the

researcher is advised to make a selection that enhances the prospect of obtaining

information-rich cases that enable an optimal illumination of the issues pertaining

to the research question(s). Patton does however concede (p. 181) that there is no

perfect choice of a purposeful sampling technique and the researcher should select

a technique that fits the purpose of the study, the questions that are asked and the

resources that are available.

The phenomenological approach adopted for the current study necessitated

the selection of respondents based on the following criteria:

 The respondents must be software practitioners who have had at

least 5 years of experience in software development in an

organisational context;

 The respondents must have at least 2 years of experience in the use

of agile software development methodology or in the use of methods

that are intrinsic to agile software development.

The criteria identified for the selection of respondents is aligned to the

purpose of the study. The purposeful sampling used is a mix of criterion-based

sampling, snowball sampling and opportunistic sampling. These purposeful

sampling techniques have been described in Patton (1990, p. 183) and Given (2008,

p. 697) as:

 Criterion-based sampling: identifying information-rich cases that

meet some criterion;

 Snowball/Chain sampling: Use the identified subjects of a study as

a source to obtain knowledge of cases of interest of other people who

meet the criteria for the study and to continue this process

iteratively;

 Opportunistic sampling: The researcher makes ‘on the spot’

decisions to take advantage of new opportunities during data

collection. This approach capacitates the researcher to identify new

opportunities from which information-rich data may be generated.

 156

The purposeful sampling strategies adopted in the current study consists

of a hybrid of planned and unplanned data collection. The planned component

(criterion-based) entails an identification of subjects who meet the set criteria for

the study. Patton (1990) does however suggest that one of the strengths of

purposeful sampling is the ability of the researcher to be agile and identify

opportunities that may develop after fieldwork has begun. This approach permits

the sample to emerge during the course of fieldwork and is aligned to the snowball

and opportunistic sampling techniques.

4.2.1 Sample Size

With regards to sample size, many of the prominent authors of qualitative

research methodology are of the opinion that there is a trade-off between breadth

of the study and the depth of the study (Patton, 1990, p. 184). Huberman et al.

(2013) clarify this assertion by suggesting that qualitative research usually

involves a small sample of people who become the focus of an in-depth study. While

none of the authors venture to provide any form of quantified guidance on the

sample size of a qualitative study, Creswell (2013, p. 239) suggests the following

guidelines regarding the sample size for qualitative research:

 In narrative research, a sample size of two would be adequate;

 In phenomenological research, a sample size in the range from 3 to

10 is advocated;

 In grounded theory research, a sample size of 10 to 30 is advocated;

 In case study research, there should be a study of at least four to five

cases.

While these guidelines apply to general qualitative research, they also have

a strong resonance with a qualitative study that adopts a phenomenological

approach. The preceding claim is based on the guidelines suggested by Vagle

(2016) for the sample size for a phenomenological study. Basically, the researcher

has two options. The study could involve spending substantial time with one or

two participants over a prolonged period or spending relatively little time with ten

 157

to fifteen participants. The choice between these alternatives is an intuitive one

and is left to the discretion of the researcher. Whilst these quantification measures

merely provide a set of guidelines, Creswell goes on to suggest that the data

gathering exercise should continue until no new insights in the main phenomenon

of the study is revealed, or a point of data saturation is achieved.

An initial sample of 12 software professionals was used for the purpose of

the current study. The criteria used in the selection of the cohort of software

professionals is that they should have had at least 5 years of experience in the

capacity of a software developer or manager of the software development process

in an organisational context and at least 2 years of experience of working in an

environment where agile software development methodology (ASDM) is

implemented. This criterion-driven phase was supplemented by an opportunistic

phase where the researcher was able to use the initial sample as a lead onto other

practitioners who met the study’s main criterion, a strategy that Huberman et al.

(2013, p. 31) refer to as “conceptually driven sequential sampling”.

The Sample Size and Selection Criteria

As Gill (2014) has suggested, the decision to opt for a phenomenological research

approach is based on the imperative to search for the “essences” (P. 5) of the

subjective experience of a phenomenon. Malone (2014, p. 42) reinforces the

preceding suggestion by commenting that phenomenology “…places a primacy over

participant’s experience over established theory”. Hence the reliance on purposive

sampling is crucial because it allows the researcher an opportunity to select

participants who can offer a rich insight into the phenomenon of the study.

With regards to the choice of samples size, guidance is obtained from a seminal

paper on sample size selection for a PhD study that uses the phenomenological

approach by Mason (2010). The essence of this study is to provide knowledge of

previous studies that have used phenomenology successfully. In the context of a

phenomenological study, success alludes to the potential for the study to obtain

data saturation (no new information emanates from the study’s respondents) as

early as possible. According to Malone, 68% of the phenomenological studies

 158

successfully used a sample size that ranged from 5 to 25. With reference to the

current the choice of sample of 16 falls well within this range.

With regards to the level of experience of the respondents for the study, guidance

is obtained from a study by Malone (2014). In this study, Malone used

phenomenology to ascertain the experiences of Scrum Masters when it comes to

adaptation of Scrum methodology in an organisational context. In this study, the

average number of years of experience by the respondents was 4.7 years. Although

Malone prescribed the minimum number of years of experience as 1, much of the

information rich data was generated by respondents who had in excess of 2 years

of experience. It was also established that the more experienced respondents

(between 2 and 5 years) provided greater insight into the adaptation of Scrum

methodology. Aligned to this outcome, the current study prescribed a minimum of

5 years of experience of working in the domain of general software development

and 2 years of experience in the domain of agile software development. These

specifications fall within the parameters reported in the Malone study that

provided information rich data and enhanced the prospect of data saturation.

4.3 Method of Data Collection

According to Leedy and Ormrod (2005), the main method of data collection

for a phenomenological study is unstructured interviews. The preceding claim is

somewhat endorsed in Corbin and Strauss (2014). However, Corbin and Strauss

do concede that while the unstructured interview may yield the richest source of

data, it could also lack focus and consistency. The main source of concern is that

the participants may not be too responsive, in which case the researcher has the

arduous task of maintaining the continuity of the interview. A possible strategy to

mitigate the afore-mentioned issue is to use a semi-structured interview approach.

Although this strategy is somewhat restrictive, the subjects of the study are given

an opportunity at the end of the interview to add any other data that they may

perceive to be relevant to the study. At this juncture, researchers may also ask

additional questions to add some clarity to the discussion. The dualism inherent

in the semi-structured interview, where the interviewer has the luxury of resorting

to prescribed questions as well as the flexibility to deviate and explore new

 159

concepts that may appear during the course of an interview, is what makes the

semi-structured interview a viable alternative. Based on the argument presented

in the preceding discussion, coupled with the suggestion by Glesne (2015) that

qualitative researchers generally make use of semi-structured interviews, the

researcher adopted the strategy of using a semi-structured interview.

4.4 The Interview Questions

Corbin and Strauss (2014) are of the opinion that in qualitative research, a

researcher may resort to the concepts that formed the essence of the literature

review in order to formulate questions for a semi-structured interview. This is

important because the questions will indicate the overall intent of the research

and convey an image of professionalism to the stakeholders in the researcher’s

environment. Aligned to this suggestion, the questions that guided the semi-

structured interview for the current study were based on a content analysis of the

literature review.

Glesne (2015) does however provide valuable insight into the operational

phase of the interview process. According to Glesne (2015, p. 96), the questions

that are used to guide a semi-structured interview “…are not set within a binding

contract” and may be viewed as a tentative set of questions that may be termed as

the set of best effort questions. Based on the responses from the initial set of

interviewees, the “’best effort’ questions may be altered to incorporate glaringly

missing concepts or to remove questions that elicited answers that were lacking in

depth. Further guidance with regards the interview questions is provided by

Corbin and Strauss (2014) who suggest that the questions underpinning a semi-

structured interview should consist of technical and non-technical content.

While the preceding guiding philosophy provides a rationale for the

researcher to exercise discretion and also imparts a measure of autonomy in the

design of the questionnaire, the overall philosophy underpinning the questionnaire

design is based on an interview that the researcher conducted with Grady Booch

(see Booch (2012)). One of the main themes emanating from this discussion is that

software development is a socio-technical activity and any study conducted in this

domain needs to incorporate both the social and technical perspectives. This advice

 160

aligns quite well with the Corbin and Strauss perspective and it is around this

theme that a phenomenological instrument was developed to examine software

practitioners’ experiences of using agile methodology. The dictates of

phenomenological theory (discussed in Section 3.5.3) assumed precedence in terms

of the overall design of the questionnaire. However, the inner aspects of the

questionnaire contained a software engineering orientation that is based on factors

that influence the success/adoption of agile software development in an

organisation. There have been many literary contributions in this regard and one

of the initial forays into this domain of software engineering research was

conducted by Chow and Cao (2008). This study was initiated with a comprehensive

literature review to identify pivotal factors that influenced the success of software

projects with a specific focus on agile software development methodology in an

organisation. The literature review culminated in the development of a conceptual

framework that identified the main factors that influenced the success of agile

software development methodology. These are the organisational context, the

people/stakeholders involved with the system, the technical aspects of the

development methodology, the business and project management processes that

provide a context for the system and the type, complexity and scalability of the

system being developed.

These factors have a strong resonance with the factors identified in studies

with a similar agenda and methodology, conducted by Dybå and Dingsøyr (2008)

and McLeod and MacDonell (2011). The broad classification of factors listed have

also been endorsed in empirical studies conducted by Lalsing et al. (2012), Nguyen

(2016) and Kropp and Meier (2015). Each of these studies used a conceptual model

that had a strong resonance with the Chow and Cao (2008) model (illustrated in

Figure 4.1 with a slight adaptation with regards to the terminology used). The

 161

Chow and Cao model is used as a conceptual framework to guide the questionnaire

content from an operational perspective.

The design of the interview questions for the current study were critiqued

by two lecturers from the Information Systems & Technology (IS&T) Department

at the University of KwaZulu-Natal (UKZN). Each of the lecturers have extensive

experience in the use of agile software development methodology by virtue of their

involvement in the capstone IS student project. The capstone IS project, which

forms a substantial component of the assessment for final year IS&T

undergraduate students at UKZN, is implemented using a predominantly Extreme

Programming (XP) approach. A discourse on the use of agile methodology to

underpin the student project at UKZN is presented in Ranjeeth et al. (2013). A

significant aspect regarding the use of the agile approach at UKZN is that the

Figure 4.1: An Adaptation of the Agile Success Factors model from Chow

and Cao (2008)

 162

overall methodology has a strong Waterfall flavour interspersed with many of the

XP methods. Staff at the IS&T department at UKZN are currently deliberating

upon a transition to a Scrum based approach. The importance of highlighting the

dynamics of the context provided by the academic staff at UKZN is that these staff

members have sufficient knowledge of the dominant methods and methodologies

that underpin agile software development. From an academic perspective, they

have also been involved in the lecturing of the Software Engineering course at

postgraduate level. A significant component of the software engineering domain is

academic and practitioner-based discourse on the use of current software

development methodology to underpin software development in the professional

sector. Hence, input from these staff members regarding the design of interview

questions were pivotal.

4.4.1 The Need for a Pre-Questionnaire

One of the outcomes of the deliberations regarding the questions that

underpinned the interviews for the study was the observation that many of the

questions would invariably elicit a structured response that was essentially

dichotomous in nature. These questions were aimed at eliciting a response from

interviewees with regards to the value that was attached to the core set of agile

methods that collectively formed the basis of agile methodology. These questions

were classified by the reviewers as potentially routine and would best be

administered using a survey-based approach. In order to streamline the interview

process, a pre-questionnaire was devised to precede the interview.

The pre-questionnaire contained a series of Likert Scale type questions that

served a dual purpose. The primary purpose of the pre-questionnaire was to obtain

a structured response with regards to the value attached to each of the methods

that frame the prominent agile methodologies such as XP and Scrum. The

secondary purpose of the pre-questionnaire was to create a context for the

interview session that was planned as a follow-up to the pre-questionnaire

component of the engagement with the interviewees.

From a methodological perspective, the survey type pre-questionnaire is

classified as quantitative in essence whilst the interview is qualitative. According

 163

to Venkatesh et al. (2013), the use of diverse methods in IS research can only

contribute towards a richer, deeper outcome to the research process. From a purist

perspective, the current phase of the study makes use of a multimethod approach

but has a predominant qualitative worldview. This approach is further elaborated

in Venkatesh et al. (2013) as one that is pragmatic, embodying a belief that the

“…dictatorship of the research question” (p. 37) takes precedence over the

imperative to conform exclusively to an existing methodological paradigm. Aligned

to this theory of pragmatism, the primary objective of the pre-questionnaire was

to obtain a quick and instinctive response to aspects of software development that

have played a prominent role from a software development methodological

perspective.

The secondary objective was to use the responses obtained in the pre-

questionnaire as a catalyst for further discussion via the interviewing phase of the

data collection exercise. The main aspects of software development methodology

(discussed in the literature review) that comprised the pre-questionnaire were the

following:

 Waterfall methodology;

 Iterative and incremental development;

 The use of a Big Design Up Front (BDUF) strategy;

 The importance of using analysis and design models such as DFDs,

ERDs, structure charts, user stories, use case modelling, class and

sequence diagrams;

 The use of workflow visualisation tools such as Gant & Pert Charts

as well as the Kanban Story Board;

 The importance of XP techniques such as pair programming, test

driven development, the availability of an on-site customer,

continuous integration and code refactoring;

 The importance of Scrum based techniques such as the product

backlog, the concept of a sprint, daily scrum meetings, time boxing,

 164

the maintenance of a sprint backlog, a sprint review meeting, sprint

retrospective meetings and a burn-down chart.

The strategy used to elicit opinion on the software development methods,

listed above, was to make use of a Likert scale design for the pre-questionnaire.

The surveying technique is a commonly used research strategy to obtain

knowledge of attitude or opinion towards issues in the domain of software

engineering (Pfleeger & Kitchenham, 2001). There are two main types of survey

techniques. These are the commonly used unsupervised survey technique or the

semi-supervised technique. In the semi-supervised version, the researcher engages

with the respondents during their interaction with the survey instrument so that

the researcher is able to provide an explanation of the rationale behind the

questions asked and to provide a platform for the respondent to provide additional

insight pertaining to the survey question.

In order to uphold the qualitative ethos of the data gathering exercise, the

researcher opted for a semi-supervised approach for the pre-questionnaire that

consisted of Likert Scale type questions. As Rowley (2014) points out, the

distinction between questionnaires and interviews is a fuzzy one, because they are

both question answering research instruments. Surveys are used when the

researcher is trying to establish an overall pattern concerning a phenomenon about

which there already exists sufficient knowledge. In the context of the current

study, the questions included in the pre-questionnaire focused on routine aspects

of software process models as well as agile software development techniques that

have been in the domain of software engineering discourse for a substantial period.

The preceding discourse provided some insight into the contents of the

questionnaire that will be used to guide the data collection process. However, a

‘disclaimer’ has to be added with regards to the reliance on the content of the

questionnaire. According to Creswell (2012, p. 47), the research process for a

qualitative study is “emergent and dynamic”. This indictment on the process

provides the researcher with substantial flexibility to change questions according

to the context of any specific instance of data collection. In accordance with this

guiding suggestion, the current study adopted an ‘agile’ stance to the structure and

 165

sequencing of the questions and adapted the questions according to the knowledge

that was elicited from the interviewee. There were instances that necessitated the

omission, addition and adaptation of the pre-planned questions so that the

questionnaire provided a structure that enhanced the prospect of creating an

enabling environment where the researcher is able to engage the interviewee in a

conversational context. As Creswell suggests, the main idea is to learn about the

problem by implementing strategies that enable seamless elicitation of

information to enhance the richness of the engagement with the study’s

respondents.

4.5 The Pilot Study

The pilot study entailed the involvement of four discipline/IT domain

experts. The panel of interviewees for the pilot study consisted of 2 academic staff

from the Discipline of Information Systems & Technology at University of

KwaZulu-Natal (UKZN) as well as two industry professionals who have each had

at least 7 years of experience as software developers. One of the two industry

professionals has had 10 years of experience as an academic in the IT field as well

as six years of experience in the use of agile methodology in the professional sector,

spanning two different software development organisations. This combination of

academic and professional experience enabled the acquisition of vital insight into

the design of the questionnaire so that it had a good balance between academically

intrinsic focus areas of software engineering as well as aspects that had a strong

resonance with the professional IT sector.

The protocol used in the pilot study was to initiate contact with the

members of the pilot study panel via a telephonic conversation where the objectives

of the study were explained as well as a query regarding their willingness to

participate in the pilot study. In the case of the industry professionals, permission

was obtained regarding their willingness to provide data for the actual study.

There were separate face-to-face discussions with 3 of the pilot study panel

members where a printed version of the interview questionnaire was subjected to

their critique. The 4th pilot study panel member was sent an emailed version of the

questionnaire and contacted via Skype for a video chat.

 166

From an overview perspective, the pilot study panel were of the opinion

that the questions targeted the main issues regarding agile software development

methodology. However, a few aspects needed to be noted as omissions, additions

or general comments that will arguably ensure that the questions asked during

the interview sessions had a good balance and targeted pivotal issues in the

domain of agile software development. These aspects are classified according to

the designation of the members of the pilot study panel, and are listed below:

From the industry based professionals:

 The use of a pair programming strategy was not done as it is

formally implemented in many academic settings (such as the case

at UKZN). The comment made in this regard is that pair

programming is done more on an ad hoc basis rather as an

institutionalised strategy;

 The tracking of project progress is conducted via a plain old

whiteboard (POW) strategy rather than making use of any

formalised project management tools such as the Gant and Pert

Chart, as is the case in an academic context. The POW approach

entails the drawing of columns on a whiteboard where project teams

document features of an application that ‘need to be done’, are ‘in-

progress’ and ‘have been completed’. This approach has a strong

resonance with agile methodology, in particular, the Kanban

Storyboard;

 The issue of organisational culture (OC) is not something that many

IT professional will identify with from a theoretical perspective.

However, they will be knowledgeable about the influence of OC from

a pragmatic perspective. A suggestion made in this regard was to

provide an explanation of the different ‘strands’ of OC so that the IT

professionals will be able to identify with the theoretical version a

lot more easily and provide a more meaningful response in this

regard;

 167

 A currently emerging aspect of agile development is the dilemma

regarding scalability. Many organisations were resorting to a

DevOps-based version of agile methodology. A question/reference to

DevOps should be included;

 The original set of interview questions were too long and many

industry professionals may not have the time to engage with these

issues in a focused manner for such a lengthy period. In addition,

there were instances of overlap between aspects that were included

as discussion questions. These aspects should be conflated into a

single/follow-up question that fitted in seamlessly into the

discussion rather than being included as a separate discussion

points. These aspects included issues dealing with

design/architecture as well as iterative and incremental

development.

From the academic representatives:

 It would be ‘nice to know’ the actual paradigm of development that

was followed in industry. This comment was a reference to the use

of object-oriented (OO) development, a classical/structured approach

or a hybrid approach. This comment was deemed to be pertinent to

the study because a pure OO approach would entail the use of

Unified Modelling Language (UML) which has been claimed to be

documentation-intensive and contrary to the objectives of agile

methodology (Petre, 2013; Rumpe & Schröder, 2014; Turk et al.,

2014). The objective of this knowledge is that it would provide an

insight into the modelling/architectural requirements for the

implementation an agile approach to software development;

 Issues pertaining to the design of the user interface should be given

some sort of coverage in the interview questionnaire. This

suggestion has been endorsed by the researcher as a valid one and

 168

it is an issue that has been the subject of extensive deliberations as

alluded to in Brhel et al. (2015).

While the input obtained from the pilot study was quite useful in ensuring a

measure of validity with regards to the content of the questionnaire, the overall

design of the questionnaire was guided by the dictates of Rubin and Rubin (2012,

p. 6) who suggest that the structure of an interview should revolve around three

types of linked questions. These are the main questions, probes and follow-up

questions. The main questions attempt to ensure that there is adequate linkage

with the research questions, probes are used to encourage the interviewee to

continue talking and follow-up questions are used to explore main themes

discussed enabling the researcher to elicit more depth from the interview. The

questionnaire (see Appendix A) used as a guide for the interview sessions in the

current study is structured along the lines of main questions, follow-up questions

and probe type questions

The questionnaire content is guided by the suggestion in Rubin and Rubin

(2012) that the main questions should emanate primarily from the researcher’s

knowledge and experience in the study’s domain. A secondary source could be the

academic literature. However, they do warn that the formulation of main interview

questions from the academic literature is not ideal, because “…it will blind the

researcher to what is actually out there” (Rubin & Rubin, 2012, p. 134). The

academic literature should be used sparingly and questions based on the literature

should be worded carefully and simply so as not to convey the idea that the

interview entails an examination of the interviewee’s theoretical knowledge. Also,

in order to obtain an insight into the lived experience(s) of the interviewee, the

researcher needs to pose questions that are open-ended and to make use of a

technique called responsive interviewing (Rubin & Rubin, 2012, p. 4) where the

researcher is able to dynamically “…change questions in response to what he or

she is learning.” This responsive style of questioning has been adhered to in the

current study by virtue of the probes and follow-up question that have been

included in order to arguably ensure that there is a measure of responsiveness

with regards to the questions asked. This also enables the interview process to

 169

resemble a conversational partnership that the researcher establishes with the

interviewee (whom Rubin and Rubin (2005, p. 6) refer to as a conversational

partner). The probes and follow-up questions that were dynamically generated and

converged to a finite set is highlighted in the questionnaire (see Appendix A).

4.6 The Main Interview

Prior to any formal form of engagement, as is required by institutional norm,

informed consent has to be obtained so as to ensure that the participants are not

forced to participate, but do so on a voluntary basis and are also given a guarantee

of anonymity if required. As is suggested in Rubin and Rubin (2012), the committee

that oversees the ethical issues that underpin a study needs to be informed that

the qualitative nature of the study does not enable the researcher to provide the

exact wording or content of the questions that will be asked. However, a set of

sample questions may be made available to the committee so as to minimise the

prospect of ethical violations with regards to the type of questions that are asked.

In order to abide by this suggestion, the researcher made available the main

interview questions and follow-up questions (see Appendix A) to Committee for

Research Ethics at UKZN. The ethical clearance certificate for the qualitative

phase of the study can be referenced in Appendix B.

4.6.1 The Study’s Participants

As Creswell (2012, p. 149) points out, the important criterion in identifying

respondents in a phenomenological study is to ensure that they are “…individuals

who have all experienced the phenomenon being explored and can articulate their

lived experiences.” For the purpose of the current study, respondents have been

identified as software professionals who have had at least 5 years of experience in

the domain of software development/management with the proviso that they have

had at least 2 years of experience in the domain of agile software development

methodology. Hence the use of purposive sampling becomes the most appropriate

choice of sampling technique. The main foray into the data collection exercise was

based on the researcher’s knowledge of the extensive and highly informed use of

 170

agile methodology in one of the 4 of the major banking institutions in South Africa.

Coupled with this initial contact and an internet based search for software

development organisations that subscribed to the use of agile software

development methodology, a total of 36 prospective participants were identified for

the study. Each of the participants was contacted telephonically to explain the

objectives of the study and to determine their willingness to participate. The

objectives of the study were also explained via an email. The consent form as well

as the pre-questionnaire was sent as an attachment. Eighteen of the prospective

respondents replied via return email with responses to the questions asked in the

pre-questionnaire. From this group, only 12 of the respondents indicated their

willingness to participate in the interview session. The interview sessions were

scheduled to take place in the time period from October 2016 to January 2017. Due

to the unavailability of many of the respondents during the planned period, the

bulk of the interviews were conducted from December 2016 to April 2017. During

this ‘core data collection’ period, many of the interviewees suggested the names of

colleagues who would add value to the knowledge on agile software development,

based on their experience and expertise in that domain. This iterative approach to

sampling is usually recommended in a qualitative study to optimise the prospect

of obtaining theoretical saturation, thereby enabling the researcher to make valid

conclusions (Huberman et al., 2013). A final set of 16 interviews were conducted.

The interview schedule is presented in Appendix C. The interview schedule

includes the profile of the interviewees with regards to the type of organisation

that they currently worked in, the capacity in which they have served in the

organisation as well as the total number of years of experience in the domain of

software development and the number of years of involvement with projects that

implemented an agile software development methodology.

A significant observation that was made during the researcher’s

engagement with the subjects of the study is the intensive effort that the banking

sector in South Africa has made to invoke strategies that enable an improvement

in the software development process. A major focus of this effort has been in the

domain of agile software development methodology. The researcher was provided

 171

with an opportunity to meet with many of the members of the software

development teams in the banking sector who were being ‘groomed’ by agile

coaches on various aspects of agile methodology. The ‘richness’ of the dialog with

software practitioners in the banking sector is the main reason for the prominence

of representatives from this sector in the sample selected for the analysis

(illustrated in Figure 4.2).

As can be observed in Figure 4.2, the main business domain represented by

the interviewees is the banking sector. A total of 8 interviews were done with

software practitioners from all 4 of the largest banks in South Africa, constituting

50% of the total number of interviews that were conducted. Four interviews were

held with software practitioners who belong to organisations that provide a

bespoke software solution service to various organisations in South Africa. The

remaining 4 interviews (labelled as ‘other’ in Figure 4.2) were conducted with

practitioners from the agricultural sector, the motor industry, the petro-chemical

industry and a national logistics organisation. In each of these organisations, agile

methodology has been used extensively for software development thereby enabling

an informed response by the software practitioners of the value of agile

methodology from a phenomenological perspective.

Figure 4.2: Type of Organisation Represented by the Interviewees

 172

An important aspect of a phenomenological study is that the experience of

the respondents in the domain of inquiry is crucial to ensure that the interaction

between the researcher and the respondent yields meaningful data. As discussed

previously, the 2 compulsory minimum requirements were that the respondents

must have at least 5 years of experience in the general domain of software

development, in the capacity of a software developer or manager, as well as 2 years

of experience of working in an agile software development environment. The

respondents for the current study were well within these established parameters

as is verified in the subsequent narrative.

From the total of 16 interviews that were analysed, the number of years of

experience of the interviewees in the professional software sector has a range from

5 to 30 years. One of the respondents had 30 years of software development and

management experience. However, the data value of 30 was recognised as an

outlier (illustrated in the Box and Whisker plot of Figure 4.3) and removed from

the computation of the measures of central tendency for the number of years of

experience that the respondents have in general software development.

The average number of years of experience of the interviewees in general software

development is 8.8. As illustrated in Figure 4.4, the number of years of experience

Figure 4.3: Box and Whisker Plot showing Outlier for Years of Experience

 173

in general software development for the bulk of the interviewees is in the range

from 7 to 10 years.

In terms of the number of years of experience in the use of agile software

development methodology (ASDM), the range is from 3 to 9 years with an average

of 5.9 years and a median of 6 years. The mode with regards to experience in the

use of ASDM is 5 years and as illustrated in Figure 4.5, the number of years of

experience for the bulk of the interviewees is in the range from 5 to 8 years.

 Figure 4.5: Number of Years of Experience in Using Agile Methodology

It should be noted that a large number of respondents (as indicated in the full

interview schedule in Appendix C) started off their careers as software developers

Figure 4.4: Number of Years of Experience as a Software Practitioner

 174

and later progressed to roles as business managers, systems analysts and in some

instances, solution architects. As part of their experience, they have all been

involved in the development of software systems that made use of the traditional

waterfall methodology, agile methodology and a hybrid of agile methodology and

waterfall methodology. Hence the sample used in the current study had all the

attributes to provide a multi-dimensional perspective on their experiences in

software development and agile methodology in particular.

It should also be noted that the interview schedule in Appendix C makes

reference to 20 interviews that were recorded as part of the study’s data corpus.

As mentioned previously, 16 of the interviews were transcribed and analysed as

part of the study’s qualitative analysis phase. The role played by the remaining 4

interviews is explained below.

 The first interview conducted for the study was done with IBM

Research Fellow, Grady Booch. The objective of this interview was

to obtain a focus area for the study from a highly respected expert in

the domain of software engineering;

 Three interviews were conducted with software engineers who have

expertise in the domain of agile methodology and the operations

phase of the development lifecycle (the DevOps dimension). These

interviewees were well-placed individuals who were invited by the

researcher to verify the strengths, weaknesses and ideas on how

agile methodology could be integrated with the operations phase.

These 3 interviews were conducted after the main set of exploratory

interviews were conducted and were included as part of the

synthesis phase of the qualitative data analysis.

4.6.2 The Interview Protocol

The protocol adopted for the study is structured along the sequence of

activities for qualitative research as suggested in Creswell (2013, p. 192). The

sequence entails identification of a set of open ended questions, identification of

the panel of interviewees who have experience in the phenomenon being studied,

 175

engagement with members of the panel either individually or as a focus group

discussion, audiotape and transcribe the interview. For the purpose of the current

study, initial contact with all potential respondents was made via an email request

followed by a telephonic conversation regarding the logistical arrangements for an

interview. The initial email contained the research consent form as well as the pre-

questionnaire that was used to set a context for the dialogue on agile methodology.

The respondents were asked to fill in their demographic details including their job

profile and experience in the IT domain. In most instances, these consent forms

and pre-questionnaire were emailed back to the researcher together with a note

indicating the respondent’s willingness to participate in the interview. In a few

instances, the consent form was physically collected by the researcher during the

interview session.

Nine interviews (from the main data corpus) were conducted as face-to-face

interview sessions that were conducted at the interviewees’ workplace. The

remaining 7 interviews were conducted via Skype video. All interview sessions

were recorded as audio sound files by a professional external recording device. A

backup recording was also made by the built-in Skype recorder as well as the

recording tool that is found as a utility of the Windows desktop operating system.

As suggested in Creswell, the researcher recorded the date, time and location of

each interview session and also made notes of points of emphasis and visual

expressions of the interviewee during the interview session.

The interview itself entailed a few ‘ice-breaker’ questions and comments

before the main opening question that focused on the interviewee’s experience in

the use of agile methodology with reference to specific instances where it worked

well and instances where it proved to be problematic. The initial engagement was

used as a platform from which additional probing questions were asked in order to

elicit meaningful insight into the interviewee’s experience of agile methodology

and to maintain continuity with the questions so that a conversational demeanour

was maintained. The interview was concluded by thanking the interviewees for

their time coupled with an enquiry with regards to their availability to provide

clarity on issues that were discussed in the interview. A query was also made to

 176

establish contact details of other potential respondents whose input would be of

value to the study.

At the conclusion of each interview session, the recordings were transcribed

as soon as possible so that any part of the recording that may have been unclear

would be easily recalled by the researcher based on the actual interview. The

transcriptions varied in the number of pages per interview. The average length of

the interview sessions is 52 minutes. The total number of transcription pages is

235 with an average of 14.6 pages of text per transcription.

 177

5.0 QUALITATIVE DATA ANALYSIS AND PRESENTATION

5.1 Introduction

Qualitative data analysis consists of preparing and organising the data and

then reducing the data into themes through a process of coding and code

condensation, Creswell (2013, p. 179). A summarised form of the analysed data is

presented in the form of figures, tables, or a discussion that provides a rich textural

description of the salient issues that are conveyed by the data corpus. The main

purpose of qualitative data analysis is to develop concepts that enable an

understanding of a phenomenon by leveraging off the experiences, opinions and

meanings attached to that phenomenon by members of a social system. The

phenomenon under inquiry is usually not easy to understand via quantitative

research methodology. It is best analysed by invoking methods that can interrogate

rich textual descriptions of the phenomenon by subjects who can relate and explain

their experience of the phenomenon. Analysis entails an iterative, inductive

engagement with the ‘raw data’ in order to extract themes from the textual

content. These themes are coded and classified so that so that prominent categories

can be identified to enable conceptualisation of the research problem (Pope &

Mays, 1995).

The preceding narrative on quantitative data analysis resonates with the

research design and analysis that is used in the current study. The first phase of

the analysis involves content analysis to reduce the raw interview data into

categories that will enable conceptualisation of the practitioner’s experience and

opinion of agile software development methodology. However, cognisance has to be

accorded to the cautionary advice from Myers (1997) that qualitative data analysis

is not as structured and prescriptive as is the case with a quantitative study. One

aspect of this complexity is attributed to the relationship between the data

gathering and the data analysis phases. In quantitative research, there is a clear

distinction between both phases of the research process. However, in a qualitative

study this distinction is somewhat blurred, especially in the context of a

hermeneutic study where the researcher’s assumptions and biases may influence

 178

the data gathering phase by virtue of the questions that are posed to the subjects

of the study. In such a situation the data and the analysis has a bidirectional

relationship where the data informs the analysis and the analysis is used to

arguably ensure that the correct data is gathered. Much of the complexity in a

qualitative study emanates from the imperative to adopt varying degrees of

intensity with regards to data collection, analysis and interpretation at the

different stages of the study. According to Myers, textual analysis of qualitative

data resembles a ‘hermeneutic circle’, a reference to the dialectic between

comprehension of the text from a holistic perspective as well as the interpretation

of the individual parts of the text. In the context of an information systems related

study, Myers (1997) suggests that the holistic interpretation needs to incorporate

the relationship between the people, the organisation, and the technology. A

complementary technique is semiotics, which entails an analysis of the words in a

transcript so that individual words may be assigned to categories which are then

interpreted in terms of the frequency with which these categories present

themselves in the text. The interpretive aspect of a semiotic approach is referred

to as content analysis, a qualitative research technique where “…the researcher

searches for structures and patterned regularities in the text and makes inferences

on the basis of these regularities,” (Myers, 1997, p. 12).

The opening narrative is used to introduce some of the terminology and

techniques that are synonymous with qualitative data analysis. However, the

operational aspects of conducting qualitative data analysis for a study that is

aligned to phenomenology is guided to a large extent by the writings of Creswell

(2012), Moustakas (1994) and Saldana (2009). Guidance in this regard is also

obtained from the works of grounded theory specialists such as Corbin and Strauss

(2014) and Huberman et al. (2013). The rationale behind this approach is that

there is a lot of commonality between the various types of qualitative data analysis

and it is an acceptable practice to leverage off an array of techniques that serve

the ultimate objective of attaching meaning to qualitative data.

 179

5.2 Framework for Phenomenological Qualitative Data Analysis

The qualitative data collection phase entailed the implementation of an

interviewing strategy that invoked a bracketing and a hermeneutic approach. The

bracketing phase of the interview consisted of the opening questions where the

interviewees were asked to talk openly about their experience in the use of

software development methodology in general and a follow-up question that made

specific reference to agile software development. The subsequent questions in the

interview were aligned to the hermeneutic phenomenological approach where the

researcher’s knowledge and experience of software development issues were used

to enhance the prospect for a coherent conversation-style to be adopted for the

interview so that the richness of the engagement is enhanced in a natural way.

This strategy is aligned to the guidance on phenomenological interviews advocated

in Creswell (2013) and Moustakas (1994). The responses to the first two questions

are pivotal in guiding the analysis phase that seeks to establish an understanding

of the common experiences, by the interviewees, of the phenomenon under inquiry.

The researcher is required to go through the data and identify statements and

extracts of anecdotal evidence that are used to develop ‘clusters of meaning’ from

these significant observations so that themes can be identified to provide an

understanding of how the interviewees experienced the phenomenon. Moustakas

(1994, p. 120) refers to this process as “horizontalisation”. A conceptual framework

for the analysis of the qualitative data for the current study is illustrated using

flowcharting notation in Figure 5.1. The framework is an adaptation of the Van

Kaam method for phenomenological data analysis that is presented in Moustakas

(1994, p. 121).

The nomenclature used to describe qualitative data analysis is vast and

consists of terminology that is often equivalent in meaning. The terminology used

by Moustakas is synonymous with most of the qualitative analysis terminology

that is used in Creswell (2013), Huberman et al. (2013) and Saldana (2009). This

commonality is revealed through an examination of the specific phases illustrated

in Figure 5.1.

 180

The horizontalisation phase is the first phase of analysis where the

researcher engages with the raw data with the intention of creating expressions or

codes that serve as an abstraction of the raw data. The objective of this exercise,

Figure 5.1: Framework to guide the analysis of Qualitative Data

 181

which Corbin and Strauss (2014, p. 105) refer to as “initial coding” and Saldana

(2009, p. 8) refers to as First Cycle Coding, is to reduce and condense the level of

detail to enable further analysis. The next phase of First Cycle coding is to create

code categories (Corbin & Strauss, 2014, p. 220) where codes are grouped according

to the phenomenon that they reference or “chunked” into broad topic areas

(Bazeley & Jackson, 2013, p. 105).

From a more practical perspective, the activity of coding when using

qualitative data analysis software (QDAS) such as Nvivo, entails the creation of

nodes where chunks of data that have a similar meaning are coded as a node.

Groups of nodes may be categorised under a common parent node thereby creating

a hierarchy of node categories.

The next phase which represents a higher level of abstraction is referred to

as thematising. Themes are uncovered on the basis of an analysis of the codes and

categories in order to identify patterns and relationships that may contribute to

the answering of the research question (Saldana, 2009, p. 5). Thematising is part

of the Second Cycle coding phase that Saldana alludes to. The idea is to reduce or

conflate the First Cycle codes into a broader category that paves the way for theory

development or a holistic textural description of the data.

In the context of the current study, the preceding coding and thematising

methodology (illustrated in Figure 5.1) is followed in order to obtain insight into

the phenomenon of agile software development methodology as experienced by

software practitioners in South Africa.

5.3 The Coding Phase

A core activity in qualitative data analysis is the coding phase. Huberman

et al. (2013, p. 72) emphasise the significance of coding by suggesting that

qualitative analysis has commenced once a researcher engages in the activity of

coding. There are various explanations offered to elucidate the purpose of coding

(e.g. Huberman et al., 2013; Saldana, 2009) From these explanations, it becomes

apparent that coding is part of the data reduction or data condensation process to

enable the researcher to succinctly capture the essence of the volumes of data that

 182

is typically gathered in a qualitative study. According to Huberman et al. (2013, p.

71) codes are labels that are used to categorise data as well as to convey the essence

of the data by making use of meaningful, descriptive names. The codes are also a

convenient strategy to enable the researcher to quickly retrieve and reference

‘chunks of textual transcripts’ to set the stage for further analysis and the

development of a construct or a theory. The process of coding is not an exact science

and is largely heuristic, based on the researcher’s intuition and careful reading

and reflection in order to obtain intimate understanding of the message that is

being conveyed in the textual transcripts. Saldana makes reference to 25

approaches that may be followed for First Cycle coding. From this list, the most

relevant choices for the current study are the following:

 Descriptive: The use of a noun or an expression to succinctly capture

the essence of a passage of text. The set expression eventually

provides an inventory of topics that serve as an abstraction of the

raw data;

 In Vivo coding: A popular coding strategy that has the same

objective as descriptive coding, but is technically different in the

sense that it makes use of short phrases taken from the participant’s

own language as an initial code;

 Process Coding: Entails the use of gerunds (a verb form that serves

as a noun) to represent action or interaction sequences in the text.

The First Cycle coding approach is usually quite time consuming, but it

adds some structure to the qualitative data. Corbin and Strauss (2014, p. 25) offer

some respite by cautioning against an obsession with too much structure and the

need to maintain an element of flexibility and fluidity so that intuition and insight

from the researcher is not totally ignored.

5.3.1 The Use of Qualitative Data Analysis Software

Qualitative data analysis software (QDAS) is used as a supplementary

qualitative data analysis tool. It is not meant to replace the ‘time-honoured’

tradition of manually examining data to establish relationships and patterns.

 183

However, software tools such as the Nvivo software package that was developed to

support the qualitative researcher, serves as an ideal mechanism to “manage” the

data thereby enabling the researcher to focus on the meaning conveyed by the data

(Bazeley & Jackson, 2013, p. 2). The current study adopts a strategy of using the

Nvivo 11 Professional Version for the qualitative data analysis based on the

premise that Nvivo will provide an enhanced capacity for recording, sorting,

matching and linking of qualitative data while also maintaining access to the

source data or contexts from which the data have come.

The Initial Mind Map

At the outset, Bazeley and Jackson (2013, p. 28) advise that the qualitative

researcher should develop an initial concept/mind map that documents

assumptions and also clarifies the conceptual framework that underpins the study.

From a QDAS perspective, this is quite beneficial because it allows the software to

make comparisons between emerging concepts and the initial pre-conceptual

constructs that are introduced by the researcher at the start of the analysis

process. For the current study, preference is given to a graphical version of such a

pre-conceptual map. This is illustrated in Figure 5.2

Figure 5.2: A Pre-Conceptual Mind Map

 184

The main constructs of the pre-conceptual mind map illustrated in Figure

5.2 are the pre-conceived heuristics (largely emanating from the literature review)

of software development that are used by the researcher to add structure to the

engagement with the software practitioner. The researcher and practitioner

perspectives are guided by socio-technical elements represented by organisational

culture and software development methodological rigour that has a strong

technical orientation. The essence of the mind map is that it has to make reference

to the traditional approach to software development epitomised by the Waterfall

approach so that a comparison standard can be created. There also has to be a

reference to agile software development methodology because it epitomises current

software development practice and it is a core aspect of the current study. Based

on the outcome of the literature review, the hybridisation of agile methodology

plays a prominent role in the actual implementation of the methodology. The

traditional, modern and hybrid approaches to software development provide the

terms of reference that may be used to optimise the insight obtained from the

engagement with the software practitioner, paving the way for a synthesis phase

that produces a model/framework that enhances existing software process models.

5.3.2 Initial Coding

Initial coding is a technique that is a subset of Saldana’s First Cycle (see

Saldana, 2009) coding methodology where the researcher engages in a process of

breaking down the ‘mass’ of qualitative data into manageable parts. This is

referred to as the process of conceptualising the raw data into a higher level of

abstraction which represents a meaningful form of data reduction. Creswell (2013)

warns of the challenges associated with qualitative data analysis because of the

volume of data that needs to be analysed. In order to manage this process, Creswell

eloquently suggests that qualitative data analysis conforms to a general contour

that is referred to as a “data analysis spiral” (Creswell, 2013, p. 182). The spiral

analogy is used to convey a methodology where the researcher moves iteratively

between the phases of data collection, data capture, data analysis and reporting.

This approach is used to decipher the complexity that is usually found within the

 185

confines of the voluminous textual data. Aligned to this spiral approach, the data

analysis for the current study is conducted via a strategy where the first 9

interview transcripts are analysed as an initial foray into the data analysis phase.

The objective of this exercise is to enable the researcher to obtain an initial sense

of the main concepts that emerge from the initial set of interviews. This knowledge

will guide the researcher to achieve the purposeful sampling objective as well as

to focus on interview questions that provide a better insight into the prominent

concepts that emanate from the initial foray into data analysis. This strategy of

selective sampling and interviewing will enhance the prospect of achieving data

saturation in an intelligent way.

The transcripts from each interview were entered into Nvivo in

chronological order. Each transcript was linked to a memo that incorporated field

notes made by the researcher during the course of each interview. These field notes

served a dual purpose. They were used to make reference to the interviewee’s

organisational context in terms of the domain of the organisation as well as the

capacity that the interviewee served in the organisation. A reflective entry was

also made in the memo providing details regarding the salient ideas that emerged

from the interview. This memo provided valuable guidance during the

transcription process because elements of the interview that were not well

recorded or aspects that were not coherently expressed by the interviewee were

supplemented with comments made in the memo. In cases where both

instruments, the interview recording and the memo did not achieve the objective

of providing the insight required, an email was sent or a telephone call was made

to the interviewee just to clarify the ‘grey area’ of understanding. This strategy

enhanced the prospect of maintaining a very good level of interactivity with the set

of interviewees subsequent to the actual interview itself.

The data analysis process was done both deductively and inductively. The

initial mind map illustrated in Figure 5.2 contributed to the deductive aspect of

the data analysis by providing an initial set of concepts that are used as categories

for the coding phase. The Nvivo nomenclature for data analysis includes the term

‘node’ to represent these categories. In order to identify a viable set of nodes for the

 186

current study, a word frequency count was computed from the analysis of the 1st 9

interview transcriptions. The words that were identified to be the most frequently

used was analysed for further meaning by examining the context in which these

words were used. These words were augmented with an additional word so that it

was an accurate representation of the context in which these words appeared in

the transcripts. The process of word augmentation was conducted by running a

text search query and establishing the most common words that were found near

a specific word. As an example, a text query of the words that were in proximity of

the word “developmental” yielded the tree structure illustrated in Figure 5.3.

From the results of the text query search shown in Figure 5.3, it can be

established that the context for the word ‘developmental’ is in reference to the

culture that prevails in the organisation. Hence the words ‘developmental’ and

‘culture’ were combined in the output of the word frequency count exercise as

Figure 5.3: Text Query Search on the word ‘developmental’

 187

illustrated in Figure 5.4 below. Also, the words that were deemed to be superfluous

to the word analysis exercise were removed from the word frequency calculation.

A weighted average of the remaining words was computed and a frequency

distribution of the 1st 20 words/terms arranged in descending order of the relative

percentage of references that were coded according to this word/term is illustrated

in Figure 5.4.

Figure 5.4: Preliminary Node Identification Based on Word/Term Frequency

Count

The objective of this exercise was to enable the identification of a viable set

of nodes that will guide the coding process. This strategy also ensured that the

coding process incorporates an inductive approach as well since the coding

categories/nodes which were initially pre-defined have been supplemented with

the additional nodes identified from Figure 5.4. The additional codes emanated

from the raw data, a strategy aligned to the dictates of qualitative data analysis

as suggested in Corbin and Strauss (2014). According to Corbin and Strauss (2014,

 188

p. 221), as raw data is captured for analysis, the underlying concept represented

by the data needs to be identified as the code or category that represents a higher

level of abstraction of the underlying data. Attached to this concept should be a

memo that documents the relevance of the concept in the context of the research

questions. From an Nvivo data capture perspective, these concepts are represented

as nodes.

Preliminary Data Analysis and Presentation

The need to conduct a preliminary data analysis is aligned to the suggestion

by Corbin and Strauss (2014, p. 221), that the preliminary analysis is pivotal in

establishing a “springboard” for subsequent analysis. This preliminary analysis of

raw data coupled with the researcher’s observations and recognition of patterns or

trends in the data, is a useful strategy to enable convergence of understanding of

the main issues relating to the phenomenon of the study.

Based on the analysis of the first 9 interview transcripts, a total of 68

nodes/categories (including sub-categories) were identified. The preliminary use of

frequency counts is advocated by Huberman et al. (2013) who are of the opinion

that such knowledge will enable the researcher to converge the categories

identified to a manageable set. For the purpose of the current study, a hierarchical

chart is used to obtain a broad perspective of the most influential categories based

on the number of references that were attached to these categories. An adjusted

(for illustration purposes) version of this chart showing the main nodes/categories

that received the most number of references is illustrated in Figure 5.5. It should

be noted that the display area of the rectangle has a mosaic-like appearance that

represents each category in an area that is proportional to the volume of references

attached to that category.

 189

As shown in Figure 5.5, 8 categories received the most number of

references. There were a substantial number of references attached to the

categories of Agile Methodology, Scrum, Organisational Culture, Scalability,

Traditional methodology as embodied by the Waterfall approach, Interface (from

the UX (user experience) perspective as well as the functional interfacing with

existing systems), Big Design Upfront (BDUF) and Business Value. The relatively

large cohort of references to agile methodology was however, an expected outcome

because much of the conversation with the interviewees had an agile focus. The

references to organisational culture (OC) was also prescribed. However, the

enthusiastic responses with regards to OC escalated the priority attached to OC

so that it became one of the emergent themes in the analysis. The other main

contributions such as the prominence of Scrum methodology, the constant

reference to the Waterfall approach (coded as a sub-node of the main node named

Traditional Methodology), the relevance of a BDUF strategy and the imperative

for attainment of quick business value were all pivotal in providing the researcher

with a focused stance for the subsequent interviews.

In order to provide better insight into the broad themes that were emerging,

references to the raw data will be done by making use of “rich thick descriptions”

(Creswell, 2013, p. 201) and verbatim excerpts from the interview transcripts. In

accordance with the default agreement of confidentiality that was prescribed in

the consent section of the interview schedule, the anonymity of the interviewees

Figure 5.5: Hierarchical Chart Showing Volume of References

 190

will be preserved by using a strategy whereby an identifier will be used to make

reference to the interview number as well as the capacity that interviewees serve

in their respective organisations.

The excerpt below is a comment regarding the scalability of software

development methodology. This comment was made by an experienced agile

practitioner who is currently employed in a software engineering capacity at a high

profile software consultancy organisation in South Africa. This comment was made

in response to an open ended question where the interviewee was asked to offer an

opinion on software development methodology.

Many people have focused on the development aspect but tend to

neglect how you run an agile project from a programme or portfolio

perspective. Because systems are not built as stand-alone systems, they

interface with other organisational systems. So I think that agile and

Scrum methodology needs to become scalable so that it takes into

account other organisational systems and ensures that agile teams

work in synchronisation with other development teams as well as with

testers and operations and quality control people.

(Interview 4, Software Engineer)

This comment became a catalyst for the researcher to explore issues related

to the fitness for purpose of agile methodology, not just from a software

development perspective but also from an organisational interfacing perspective.

The broad comments that were made with regards to general software

development methodology as well as agile development practices were taking on a

discernible pattern where references were made to business value and the need for

extensive upfront planning so that the expected business value is not

compromised. An excerpt that adds credibility to the preceding claim is referenced

to a transcript of an interview with a respondent from the banking sector.

… the lack of time invested in upfront planning costs more in the end

because there has to be a lot of rework that entails additional resources,

costs and time…I think that it is better to fully specify all the

requirements upfront because then we can scope the project and

allocate the necessary resources which is all linked to the expected

business value. (Interview 3, Business/Systems Analyst)

 191

There seems to be a tendency for the IT practitioners to have a preference

for the stability offered by extensive upfront planning where the project

management issues as well as the business value aspect of a systems development

effort is given the highest priority. Aligned to the business value and project

management imperative is the significance of the operations component where the

developers are expected to take ownership of these systems right up until the point

of delivery, deployment and production of these systems into a live environment.

The live environment view of these systems is where business value and

investment in system resources can be justified and appreciated. The significance

of this “live view” of the system and the significance of a DevOps approach is

highlighted from the verbatim excerpt quoted below:

 …so DevOps or shall I say the Ops part is crucial because they don’t

just look at a solution in an isolated way like the developers do, the Ops

people have a global view of the value and relevance of a system, so in

terms of the development effort and the use of agile or waterfall it all

comes down to Ops people who then bring these systems to life and that

is when you have a true idea of how well the system is working and

enabling business value. (Interview 3, Business/Systems Analyst)

The initial data analysis was useful in enabling a better interview protocol

because the prominent discussion points were noted and added as probes (see

Appendix A for interview protocol) to enhance the depth and quality of subsequent

interview sessions. New probes (questions used to elicit a deeper insight into a

phenomenon) were added to the interview protocol based on the analysis of the 1st

9 interview transcripts as well as the memos that the researcher compiled at the

end of each interview. These probes are listed below:

 The relevance of the scalability of software development

methodology so that is has a strong alignment with the current IT

infrastructure;

 The significance of DevOps (mentioned in all of the 1st 9 interviews)

and how it enables the scalability of software development methods;

 192

 The alignment of the methodology of development with

organisational processes to enable a seamless acquisition of business

value;

 The integration of processes into the methodology of software

development to ensure that newly developed/ reworked systems

interface seamlessly with the IT infrastructure at enterprise level.

Incorporated as part of the interfacing dialog, the role played by

issues pertaining to the human computing interface (HCI) will be

examined. This includes coverage of aspects such as general

usability and user experience (UX) design as well as user acceptance

testing (UAT);

 The relevance and intensity attached to upfront planning sessions

and the role played by a Sprint Zero (mentioned by 6 of the 9

interviewees).

Each interview was preceded by the administering of a set of Likert Scale

questions (referred to as the pre-questionnaire in Appendix A). The responses to

the Likert scale items were used as a catalyst to enhance the hermeneutic

component of the semi-structured interview by enabling quick and early

identification of aspects of ASDM that warranted further inquiry. The main

outcomes of the pre-questionnaire phase are listed below.

 Scrum is the de facto methodology for software development. This

response was made by all 16 interviewees;

 The Scrum and XP methods typically associated ASDM were all

endorsed as useful. The exceptions being the use of pair

programming and the presence of an on-site customer. Pair

programming was not done with any formal rigour. The on-site

customer was represented by the Product Owner (PO) or the

Business Analyst (BA). Both these roles were used to subsume the

role played by the onsite customer in systems development. The

daily stand up meeting received emphatic endorsement by all of the

 193

interviewees and became the source of further inquiry during the

interview session;

 The use of systems design models followed a routine pattern of

general acceptance of the main design models that were listed. From

an analysis perspective, Data Flow Diagrams, User Stories and Use

Case modelling were endorsed as important development models.

The preference for lightweight analysis and design modelling was

further explored during the main interview session;

 The issue of Big Design Upfront (BDUF) did generate varying

responses and became the source of further inquiry during the main

interview.

At a preliminary stage, based on the analysis of input from the 1st 9

interviews and the pre-questionnaire, a hypothetical disposition towards a

description of the phenomenon of software development methodology as

experienced by software development practitioners in South Africa is as follows:

 The culture within an organisation strongly influences the adoption

of a software development methodology;

 The issue of extensive upfront planning has elicited varying

opinions although the weight of evidence is gravitating towards the

use of an extensive planning phase sometimes referred to as a

Sprint Zero;

 Agile software development is highly endorsed but it needs to re-

establish focus on the business value that the systems

development effort provides; this should ideally be done at the

planning phase of development which should receive more priority

than is currently allocated by agile methodology;

 Scrum is the de facto methodology of choice for software

development in South African based organisations; from a pure

software development perspective, Scrum works well; Scrum is

 194

supplemented with user stories and test driven development as well

as the Scrum Board or the Kanban Storyboard to enable project

management;

 The issue of interface plays a dual role. A reference to interface is

contextualised as a reference to the user interface and a reference to

the capacity of newly developed systems to interface with the

organisational technical infrastructure;

 Deployment of newly developed systems needs to be given higher

priority because a major stumbling block to agile methodology is that

these systems only provide evidence of business value once they

have demonstrated a propensity to interface with existing

organisational systems in a live/production environment. The use

of a DevOps strategy is endorsed as a viable mechanism of

achieving good systems visibility from which business value can be

quickly ascertained.

The purpose of this listing is aligned to the suggestion by Corbin and

Strauss (2014, p. 375) that the earliest interviews must be analysed for “significant

happenings” so that core concepts may be identified and used as a platform for

further analysis. The core concepts identified (listed above) were used as a guiding

framework to refine and reduce the extensive listing of 68 codes/nodes identified

in the first phase of coding.

In order to establish the validity of the core concepts that have been

identified thus far, a further set of 7 interview transcripts were added to the data

corpus for analysis. The process of 1st Cycle coding was conducted on the latest

data set. At this stage there was a total of 16 interview transcripts that were

subjected to 1st Cycle coding. The coding process was becoming a routine exercise

because the list of 1st Cycle codes was extensive and ensured that much of the text

from the newly added sources was easily accommodated in the existing set of 1st

Cycle codes. The exception was the addition of 3 new 1st Cycle codes bringing the

 195

total number of 1st Cycle codes to 71. A discussion of the 3 new codes that were

added is warranted based on the relevance and importance of these new codes.

The first new code added is a reference to ‘legacy systems’. Three of the

interviewees made reference to the influence of legacy systems and agile software

development in an organisational context in South Africa. It should be noted that

the issue of legacy systems was mentioned during the first batch of transcriptions

but the text accompanying this concept was coded under the node named Waterfall

because in all cases, reference to legacy systems was accompanied by a reference

to the use of Waterfall methodology in the development of these systems. A note

was recorded by the researcher in the memo attached to the interview

transcription so that reference to the narrative on legacy systems could be quickly

retrieved if this concept begins to play a significant role (a strategy advocated by

Corbin and Strauss (2014, p. 240)). The relevance of the memo was soon realised

when the issue of legacy systems was given a bit more prominence in the 2nd batch

of interviews after it was mentioned by 3 more interviewees. This was sufficient

evidence to warrant the recording of legacy systems as an additional code. A

retrospective coding exercise revealed significant statements that were made

during the 1st batch of interviews but were not recorded as a significant contributor

to the set of 1st cycle codes. This situation was rectified. An example of this

situation is illustrated by the verbatim excerpt taken from the 1st interview

attesting to the phenomenon of legacy systems. The 1st interviewee, who has 8

years of experience with agile software development, serves in the capacity as a

software engineer and systems development manager at a government controlled

national freight and logistics provider in South Africa.

You must understand that there are many legacy systems that still

prevail with many South African organisations and these legacy

systems are maintained using traditional systems development

methodology. So even though organisations are making an effort to

move to agile, there are pockets of waterfall mentality that still prevail

in these organisations. (Interview 1, Systems Development

Manager)

 196

The second new code added is a reference to a ‘Bimodal Approach”’ to

software development. This term is used in Horward (2015, p. 8) to advocate the

Gartner Group’s contribution to enabling the scalability of agile software

development by suggesting that “you must be part solid and part fluid to thrive in

digital business.” The analogy is used to align Waterfall methodology with the

concept of having a solid base/foundation and agile methodology with something

that is quite fluid and not well established. The Bimodal approach entails the

practice of implementing two separate but related styles of problem solving. Mode

1 is used for problems that are well understood and predictable and is ideally used

for transitioning a legacy environment so that it is compatible with the

requirements and standards of the current digital environment. Mode 2 is a

reference to a more exploratory approach where the problem domain is highly

unpredictable and requires a problem solving strategy that embraces uncertainty

and has a high threshold for managing the impact of changing requirements.

According to Horward (2015), a bimodal approach is required to drive

organisational change that embraces the digital transformation. A catchy phrase

used by Horward that links software development to this bimodal approach is that

“slow and steady (a reference to Waterfall for the legacy systems) plus fast and

agile (a reference to the methodology for newly developed systems) wins the race.”

The bimodal approach is linked to the ‘renovation’ of legacy systems as suggested

in the verbatim excerpt from an interview with the manager of the business

architecture division at a private logistics provider in South Africa.

…there are many failures with agile implementation. It is because of

the culture of adoption and the resistance to change and it is not ideal

when transitioning legacy systems. Our approach is to use a Bimodal

strategy where there is a slow transition. The smaller teams working

on smaller projects that are focused on establishing competitive

advantage should work in an agile way. The bigger teams that are doing

more critical development projects that are invariably linked to the

mainframe legacy systems that actually run the core processes of the

company should continue in a traditional Waterfall way.

(Interview 8, Senior Business Architect)

 197

These comments suggest a strong link between the dilemma of handling

the upgrade of legacy systems and the gravitation towards agile methodology in

South Africa. The transition to agile methodology is also inextricably linked to an

organisational cultural shift that cannot be implemented instantaneously. There

is also a legacy mentality that needs to be transitioned in a controlled and pedantic

manner as is suggested in the verbatim excerpt taken from Interview 8 that links

up the complexities of handling a transition to agile methodology in a very eloquent

manner.

The reason for this bimodal approach is that the required functionality

of the legacy systems is highly predictable and development can be done

in a more structured way. Also, it enables the traditionalists who have

been with the organisation for many years to continue working in their

comfort zone. However, as the smaller teams become more accustomed

to the workings of agile and as they enjoy success, then there should be

some sort of knowledge transfer to the bigger teams. You see in order

to enable a culture of transformation in an organisation you have to

demonstrate the success of the new methodology and you must

remember that agile is not a recipe for success.

(Interview 8, Senior Business Architect)

These comments are pivotal in addressing the influence of organisational

culture which has been identified in the literature as a major stumbling block in

the transition to agile methodology. From an academic perspective, the reference

to “traditionalists” is a reference to the Group Culture dimension that was part of

the academic discourse on organisational culture and the Competing Values

Framework presented in the literature review. The Bimodal approach also

resonates with a “phasing in” approach that was mentioned in Interview 1.

Recently I've noticed a small shift towards a more relaxed stance

towards development but this happening very slowly. The terminology

that we are using now is that we want to “cannabalise” our existing

traditional methodologies. The idea here is that we slowly eliminate

aspects of Waterfall methodology until there is nothing left. This

approach is good because the senior guys feel very much in control of

the transition and it is not just a big bang approach where everything

 198

is moved to agile immediately. So we're basically phasing in the agile

approach and phasing out the Waterfall approach.

(Interview 1, Systems Development Manager)

A review of the original set of codes revealed that a classification named

Transition from Waterfall had already been created and there were 8 references

from the 16 interviewees to this category. An examination of these references

revealed that the transition from a Waterfall approach has been described by the

interviewees through the use of terminology such phasing-in or a parallel

transition to agile methodology. The proximity of meaning between these terms

and the formal use of a strategy such as the Bimodal Approach was noted as an

area for refinement of codes during the 2nd cycle coding phase.

The third newly added code was security. Once security was added as a

new code, retrospective coding had to be done just to ensure that implicit

references to security oriented issues were not missed during the first coding cycle.

The role played by issues pertaining to security of systems has become prominent

with modern information systems. From a development perspective, security has

become an integral part of the testing phase. However, this casual arrangement

warrants more focus as evidenced by the following verbatim extract:

…the main thing about operations is to ensure that the systems fit in

quite well with the enterprise infrastructure...it must not cause

problems with other systems but it must also not compromise the

security of these systems as well because the security concern is huge

in the banking domain. Sometimes there is a bit of confusion about

where the security people are meant to function ...with the developers

or with the operations people but there has to be explicit focus

somewhere in the process on security management. (Interview 14,

Operations/DevOps Team Leader)

The initial set of 71 codes served as a foundation for further data analysis

that was conducted as part of the 2nd coding cycle aligned to the qualitative data

analysis methodology suggested in Saldana (2009). However, prior to 2nd Cycle

 199

coding many of these 71 codes were re-configured and conflated into existing codes

so that the initial set of codes could be reduced to a manageable set.

The refinement of codes was done strategically so that references to rich

textural descriptions of the experience of the phenomenon of agile methodology

obtained from the interviewees was not lost. The refinement was done in

accordance with suggestions in Saldana (2009) as well as Bazeley and Jackson

(2013). The strategy entailed:

 Merging or removing responses to probes/questions that alluded to

concepts that did not elicit much emotion or the interviewees were

of the opinion that these concepts were not an area that would

enable any improvement in the experience of software development;

 Deletion of codes that were not deemed to contribute to the

envisaged outcome of the current study were deleted;

 A hierarchical arrangement of codes/nodes to enable better

comprehension of the underlying data.

The outcome of this exercise was to refine the initial set of 71 first cycle codes into

a more manageable set of 40 codes which were then subjected to further refinement

during the 2nd Cycle coding phase described in the subsequent section.

5.3.3 Second Cycle Coding

According to Saldana (2009, p. 149), the main objective of Second Cycle

coding is to “…develop a sense of categorical, thematic, conceptual, and/or

theoretical organization from your array of First Cycle Codes”. Basically this phase

of coding entails a reconfiguration of the 1st Cycle codes in order to develop a finer

set of broader codes that each encapsulate chunks of 1st Cycle codes. Saldana (p.

150) identifies 6 techniques for 2nd Cycle coding. These techniques are not mutually

exclusive in their methodology and Saldana suggests that they may be combined

in a “mix and match” arrangement that is referred to as “Eclectic Coding”.

For the purposes of the current study, 3 of the 2nd Cycle coding techniques

were identified to enable further condensation of the data corpus. These are:

 200

 Pattern Codes – used to categorise similarly coded data and is

sometimes referred to as a meta-code based on conceptual similarity

also referred to as “clustering” in Huberman et al. (2013, p. 279);

 Focused Coding – used to streamline the set of First Cycle codes by

establishing focus on codes that occur most frequently and is

perceived as being the most appropriate in the context of the

research questions. It also enables convergence of the diverse set of

First Cycle Codes so that further analysis is directed towards

obtaining a cogent understanding of the main phenomenon of the

study. In the context of the current study, this method of coding was

used to remove codes that represented some of the periphery aspects

related to the phenomenon of software development as experienced

by practitioners in South Africa;

 Axial Coding – regarded as an extension of initial coding/First Cycle

coding and entails the reassembling of data that was “fractured”

during the First Cycle coding phase. This form of coding entails

identification of a central word/term that serves as an appropriate

descriptor for the text that is coded under this “axis”.

The process of 2nd Cycle coding, informed by the coding methods listed above, has

been implemented on the set of 1st Cycle nodes to reveal a coding configuration

that consists of 12 Second Cycle codes. The salient aspects of the code

reconfiguration exercise from 1st Cycle into 2nd Cycle codes is explained in Table

5.1.

 201

Table 5.1: Transition from First Cycle to 2nd Cycle Coding

1st

Cycle Code
Action Taken

Reduction

Technique

2nd Cycle

Code

 Management

Control

Added as a child

node to code

named Agile

Methodology

Axial

Coding

Agile

Methodology

Researcher

Reasoning

The direct influence of management control over agile teams

seems be on the decline in the context of the migration to Agile

Methodology; the transition to agile is accompanied by a more

democratic style of management where all team members take

joint responsibility for the systems development effort.

Supporting

Evidence

Well I haven’t reported to a project manager for some time now.

Although we still perform project management, but this is done so

that we can track the project’s progress. Our main role players are

the product owners, developers, testers, BA’s and possibly a scrum

master although there are times when we all assume that

responsibility. Also, I feel that if we want to move away from the

Waterfall mentality where everything was command and control

and management driven then this shift in thinking is actually a

good one. (Interview 9, Software Developer in banking sector)

We are basically given a system to develop and once the team is

formed, we identify our product backlog together with the Product

Owner and then we start with the Scrum development cycle. We

do a lot of workflow tracking by making use of a combination of

the Kanban Board and the Scrum Board. We normally just create

these progress charts on a white-board as you see all around us.

We make use of colour coded stickers to track progress. This

approach is easy to manage and works well for us because it gives

us a good sense of knowing the status of our development efforts.

Also we are able to identify bottlenecks quite easily and handle

them in our standups. We pretty much manage ourselves in this

way. (Interview 16, Analyst/developer for a national software

organisation)

1st

Cycle Code
Action Taken

Reduction

Technique

2nd Cycle

Code

Big Design

Upfront

(BDUF)

Merged into

existing Code

named Planning

Pattern

Coding
Planning

 202

Researcher

Reasoning

The issue of BDUF elicited highly emotive responses ranging

from a ‘compulsory requirement’ to an ‘optional requirement’

that depends on the organisational imperative as well as the

type of project. The general consensus was that the issue of

BDUF should be deliberated upon at the planning phase and

there is a preference for lightweight design models.

Supporting

Evidence

…this is an aspect where I think that Waterfall may have had its

advantage over Agile because the initial focus on planning and

upfront design at the requirements phase basically got everyone on

the same page, whereas with agile, you sometimes have not

defined the requirements in full and you end with a system that

does not deliver explicit business value or does not fully meet the

business requirements that were expected of the system. But I

think that Agile has removed much of the intensity of modelling

and this is a huge improvement on Waterfall because the system

starts unfolding quite quickly so that if there are design flaws, you

pick it up early. (Interview 3, Business/Systems Analyst in banking

sector)
…we are trying to do as much upfront analysis as we can in order

to try and cost the project as accurately as possible. There can be

no grey areas in this regard because our company is a third party

vendor, we have to be very clear with the client upfront with the

system features that will be developed. The primary purpose here

is that the client can be accurately billed for the effort that it takes

to develop the system. From a requirements perspective, we do this

a little more dynamically where we use the upfront design as the

baseline set of requirements and then adjust and modify as we

consult with the client regarding incremental features that are

added on. (Interview 2, Manager at a Software Development

Organisation)

I’m trying to push for a slight drop in the amount of upfront

analysis and design that we currently do. Right now we are sitting

at 100% requirement that all the analysis and design is completed,

inspected, signed off, and only then do we invoke our development

teams into a scrum based arrangement. But the upfront planning

is non-negotiable and thus far we do not trust the developers to

allow the system design to evolve with the coding. (Interview 11,

Chief Software Development Methodologist in the banking sector)

 203

1st

Cycle Codes
Action Taken

Reduction

Technique

2nd Cycle

Code

Documentation,

maintenance

and error

handling

Merged into

existing Code

named Quality

Control

Axial

Coding &

Pattern

Coding

Quality

Control

Researcher

Reasoning

The importance and relevance of documentation and

maintenance and error handling was often mentioned in the

context of quality control;

Supporting

Evidence

So in a perfect world where everyone is focused on a single project,

the documentation is not that crucial because there is a strong

focus on the one project. But when you are working on multiple

projects concurrently then good documentation is crucial to ensure

that you build quality systems…this makes maintenance a lot

easier because errors or issues picked up later in the development

cycle can be handled a lot quicker and easier. This becomes a

problem when developers who use agility as an excuse to reduce

documentation because it causes a huge time delay to re-establish

the context of the requirements as well to track progress of the

project. We call it re-harvesting the design and documentation and

this is time consuming. (Interview 3, Business/Systems Analyst in

banking sector)

1st

Cycle Code
Action Taken

Reduction

Technique

2nd Cycle

Code

Ownership &

System

Visibility

Merged into

existing Code

named Scrum

Axial

Coding
Scrum

Researcher

Reasoning

The issues of ownership and system visibility were identified as

the main contributors to the popularity of Scrum methodology in

South Africa.

Supporting

Evidence

…one of the other things that I find with scrum…the developers

bind to the idea of the development schedule, they bind to the idea

and expectation of the daily stand ups, they bind to the idea that

we’re releasing a sprint and they adopt an attitude that says at

this stage, everything has to be in order …this promotes good work

ethic amongst the developers because they know the deadlines and

the expectations on a daily basis so Scrum ensures that there is a

sense of ownership because things around a specific project are

 204

happening on a daily basis. (Interview 2, Manager at a Software

Development Organisation)

From my experience, scrum and agile provide a better turn-around

time…customers get to see the system a lot quicker…the

development team has better ownership of agile systems because

once you get customer or product owner feedback then there is a

natural urge for you to want to act on that feedback and then go

back to the customer and say is this what you were talking

about...there is an immediate sense of knowing that we're built the

right thing. (Interview 7, Software Developer in banking sector)

1st

Cycle Code
Action Taken

Reduction

Technique

2nd Cycle

Code

 DevOps & SAFe

Merged into

existing Code

named Scalability

Axial

Coding
Scalability

Researcher

Reasoning

There were numerous references to the DevOps approach that

many organisations in South Africa are beginning to adopt.

However, there have been 2 instances where reference has been

made to the Scaled Agile Framework (SAFe) which represents a

highly mature version of the DevOps approach. The

DevOps/SAFe ideology is encapsulated under the name

Scalability. The reasoning here is that both these strategies are

aligned to the imperative to ensure that an agile mentality

becomes ubiquitous throughout the organisation

Supporting

Evidence

…the DevOps initiative enables better communication and this is

what breaks down the silos that previously existed. In the past you

had your Agile teams and there was still very much a Silo

mentality. Now with the DevOps mentality, everyone works

together from the business architects, the planners, the developers,

testers, the network administrators and because everyone works

together communication is not such a big problem anymore and

agile is scaling up to an organisational level… the only problem

that I've seen with other banks as well, is that everyone wants to go

straight to DevOps and there is this talk about SAFe but I think

it’s more of a journey. People wan’na run before they can walk. It’s

the small things people need to start looking at such as easy to

digest changes where we can break the silos. (Interview 9, Systems

Architect in the banking sector)

So the empowerment of agile teams from a business perspective is

hugely important and I suppose the DevOps teams feel a lot more

empowered than the pure Scrum based or agile teams and so with

DevOps there is better ownership of the product and the team

members feel empowered to protect and maintain their system

 205

because they can see the business value at company level and feel

that they are responsible for generating this business value.
Interview 4, Solutions Architect at an International software

consultancy)

1st Cycle

Code(s)
Action Taken

Reduction

Technique

2nd Cycle

Code

 Wagile and

Bimodal

Added to existing

Code named

Transition from

Waterfall

Axial

Coding &

Pattern

Coding

Transition

from Waterfall

Researcher

Reasoning

The transition from Waterfall methodology has been done either

as a phased-in approach, a Wagile approach or a bimodal

approach. This transition is epitomised by aspects of agility and

Waterfall being integrated into a customised version of agility.

Supporting

Evidence

But I've noticed that there is a lot of Waterfall stuff that goes on in Scrum

based teams. So each Sprint consists of a Waterfall approach and the

entire Scrum based project is driven by a Waterfall plan because we may

be adding functionality incrementally, but this is not released. We release

the system when all the specified functionality is available, the system

has been intensively unit and integration tested and then we hand over

the system for release. So in a way you can say that we think we are agile

but we're actually ‘wagiling’ the whole thing. (Interview 3,

Business/Systems Analyst)

The initial set of codes contained references to the technical aspects of software

development such as object orientation, code reusability, UML design models,

inheritance hierarchies as well as strategies such as pair programming and code

refactoring. By making use of a focused coding strategy, the textual content

classified under these codes were either conflated into codes that had more

relevance to the research objectives or were eliminated altogether.

Once the process of 2nd Cycle code refinement had been completed, there

was a total of 12 Second Cycle codes/nodes that remained. While this is quite a

substantial reduction from the initial set of 71 First Cycle codes, many of the 1st

Cycle codes were clustered into the 2nd Cycle coding categories as child nodes so

that the richness of the verbatim responses were preserved. A frequency graph

 206

displaying the 2nd cycle nodes as weighted percentages is illustrated in Figure 5.6.

Included in Figure 5.6 is a frequency count of the number of interviewees who

‘contributed’ towards the frequency value of each of the 12 nodes.

The data coded under each of the main nodes illustrated in Figure 5.6 is composed

of sub nodes that are used to add structure to the data. A sample of this

hierarchical structuring is illustrated in Figure 5.7

Figure 5.6 A Frequency illustration of the 12 2nd Cycle Codes

Figure 5.7: Frequency of References to the Scrum Node and its Child Nodes

 207

The Scrum node contains 8 sub-nodes (child nodes). Figure 5.7 illustrates a

frequency count of the general coding references to the 8 Scrum child nodes. The

conflation of 1st Cycle Codes into 2nd Cycle codes was done mechanically by making

predominant use of the Axial and Pattern coding techniques which worked quite

well for many of the codes that could be clustered together quite naturally. The

outcome of the strategy is illustrated in Figure 5.6 with reference to the 2nd Cycle

Scrum node that was created by grouping together many of the concepts that form

an intrinsic part of Scrum methodology. However, the main Scrum node also

contained references to concepts/methods that are not naturally associated with

Scrum methodology. These include test driven development (TDD) (an intrinsic

part of XP), design models (an intrinsic part of the software development process

in general and not necessarily a Scrum based concept), system ownership, system

visibility and team collaboration (abstract concepts that allude to general traits of

the software development process). These concepts/methods were clustered as part

of the main Scrum node because a review of the context in which these concepts

were mentioned by the interviewees revealed that in all cases, it was part of the

discussion of Scrum methodology.

The frequency counts that were undertaken such as the illustration in

Figure 5.7 for the Scrum node provided the researcher with a quick overview of the

patterns that were emerging from the data. In the case of the Scrum node, a

discernable trend is the interviewees’ gravitation towards the opinion that Scrum

is regarded as the methodology of choice for software development and has become

a de-facto standard in this regard. This assertion is based on the observation that

in all 16 interview transcripts, Scrum was assumed to be the default methodology

used for software development. The only other discernable methodology that was

mentioned was the Waterfall methodology. However, this was more in the context

of an approach to software development that needed to be changed because of a

legacy mindset. The expected outcome of the envisioned change was to embrace

agile development by adopting a scrum/scrum-like approach. As illustrated in

Figure 5.6, a relatively high percentage of the interview transcripts were coded as

Scrum (22.2%, n=16) as well as Transition from Waterfall (17.9%, n=14).

 208

By running a query of the number of joint references to Scrum and

Transition from Waterfall, it can be observed in Figure 5.8 that there were 14

sources that made a reference to the Transition from Waterfall, and all 14 also

made a reference (in the same paragraph taken from the transcript) to Scrum

Methodology. The majority of the coding references (as illustrated in Figure 5.8) to

Scrum also included a reference to the Transition from Waterfall (and vice versa).

Only 2 of the transcripts made coded contributions to the Scrum node and did not

make a contribution to the Transition from Waterfall node. Upon closer

examination of both these transcripts, it was established that both the

interviewees were software developers who were currently working on Scrum

based projects and the transition from Waterfall was not perceived as an issue

because Scrum methodology had been prescribed at the organisational level. In the

Figure 5.8: Cross Query between Scrum and Transition from Waterfall

 209

case of the 14 interviewees who made concurrent references to Transition from

Waterfall Methodology and Scrum Methodology, a plausible inference that could

be made is that the transition from Waterfall Methodology culminates in the

adoption of Scrum as the preferred methodology for software development.

Another discernable relationship that can be established from the analysis of 2nd

Cycle codes is the issue of scalability and the imperative to build mechanisms of

scalability into the Scrum development methodology. The use of the term

scalability is in reference to the potential for systems that have been developed

using agile /Scrum methodology, to be in a ‘production-like’ state or for the system

to acquire a capacity to seamlessly integrate with enterprise-wide systems. This

concern has manifested in references to the node named Scalability which includes

DevOps as a child/sub-node. The relationship between Scrum and Scalability is

illustrated in Figure 5.9.

From Figure 5.9, it can be established that there were coded contributions

from all 16 of the interviewees to the Scrum node. In 10 of the 16 (62.5%)

interviewees made a reference to the nodes Scrum and Scalability in the same

Figure 5.9: Cross Query between Scrum and Scalability

 210

context. According to Huang (2008, p. 49) and Niwattanakul et al. (2013) a cluster

analysis test is a good indicator of the similarity of word content between textual

documents. The Jaccard coefficient may be used as an indicator of the word

similarity. The cluster analysis between the nodes Scrum and Scalability revealed

a Jaccard coefficient of 0.76 indicating a 76% similarity index that made reference

to Scrum and Scalability in the same context reveals a pattern that attests to the

inability of Scrum Methodology to provide solutions that are easily scalable to an

organisational platform.

A further query based analysis of the relationship between the nodes Scalability

and Business Value revealed the structure illustrated in Figure 5.10. Eight of the

coded references (50%) to the node Scalability also included references to the node

Business Value in the same context.

As can be seen in figures 5.9 and 5.10, there is a significant amount of

commonality between codes attached to the nodes Scrum, Scalability and Business

Value. Emerging patterns such as this provides the researcher with an opportunity

to verify this outcome in subsequent interviews and also enables an informed

Figure 5.10: Cross Query between Scalability and Business Value

 211

convergence towards a holistic and summative representation of the data corpus

that is accurate and complete. The quantification exercise consisting of frequency

count illustrations, the cluster analysis as well as the intersection queries is being

used to obtain overview knowledge of the data corpus. In keeping with the dictates

of qualitative analysis, the significance of the actual numeric values attached to

the frequency count for the nodes/child nodes do not have a bearing on the outcome

of the analysis or as Huberman et al. (2013, p. 287) points out, “…numbers tend to

get ignored”. However, there is an assertion that qualitative researchers have a

reliance on tactics such as frequency counts and word/term correlations in order to

aid in the identification of themes or patterns. According to Huberman et al. (p.

288) the numeric option enables a qualitative researcher to obtain a quick overview

of the main components of a large batch of data, provides support for the

verification of a hunch or hypothesis and “…to keep yourself analytically honest,

protecting against bias”.

5.3.4 Rising above the Codes

The analytical phase of the qualitative data analysis culminates in the

identification of several categories, major themes or concepts or possibly at least a

theory that provides the highest level of abstraction to the underlying data corpus

(Saldana, 2009). This is usually achieved after the process of 2nd Cycle Coding.

This synthesis phase of qualitative research is however highly interpretive

and there are many diverse methods that may be used to “crystalise the analytical

work undertaken thus far” (Huberman et al., 2013, p. 277). All of the methods have

a common objective of systematically assembling a coherent understanding of the

data.

Huberman et al. (2013, p. 290) make reference to a “logical chain of

evidence” where individual data items are conflated into themes/conceptual bins

to create a “more economic whole” that represents more than just the sum of its

parts. A viable strategy to develop this “economic whole” is to make use of

Saldana’s (p. 187) code weaving method, which entails an integration of key code

words and phrases into a narrative format in order to see how “the pieces fit

together”. The operational aspects of code weaving are to make use of 2nd Cycle

 212

Codes to form the salient components of a narrative that provides a “story line”

that may be used as a foundation for the development of a theoretical model (that

could lead to a successful experience of the main phenomenon of the study). This

process is eloquently described by Huberman et al. (2013, p. 292) as “…moving up

progressively from the empirical trenches to a more conceptual overview of the

landscape”. The act of putting together the narrative is dependent on the 2nd Cycle

codes as well as the intuition and insight of the researcher. The latter is referred

to as the “inferential glue” (based on the insight obtained by the researcher as a

consequence of engagement with the data corpus) that binds the main emerging

concepts into an overarching story line that accounts for the “how” and “why” of

the phenomenon under study.

5.4 A Rich Textural Description of Software Development in South

Africa

An outcome of a phenomenological study is to provide a rich textural

description of the main phenomenon of the study as experienced by the subjects of

the study. In order to present such a description, a code weaving narrative is used.

The narrative is compiled by making strategic use of the main codes that

underpinned the analysis phase of the study.

The rich textural description of the phenomenon of software development

as experienced by practitioners in South Africa, based on the empirical evidence

provided in this study (illustrated in Figure 5.6) coupled with the researcher’s

interpretive analysis of the evidence is as follows:

 Organisational Culture has a substantial influence on the

adoption of a specific software development methodology. The design

adopted in the study necessitated a reference to specific types of

organisational culture that could influence the adoption of

software development methodology. An outcome of this heuristic

approach is that there is a resonance between Developmental and

Rational Culture and the practice of agile software development.

The Hierarchical and Group Culture classifications were found to

 213

resonate more with a Waterfall-like approach to software

development where there is a preference for strong management

control. An appropriate excerpt that defines the role of culture in an

organisation is provided in the following 2 verbatim excerpts.

The company is maybe hierarchical as you have defined it because

management delegates tasks and responsibilities; but hereafter it is

quite developmental and I suppose rational in the sense that teams

manage themselves in an agile way but must account for time spent by

demonstrating progress made towards meeting a client’s requirements.

(Interview 2, Manager at a Software Development Organisation)

I don’t think that there is a culture that is consistent across the whole

business, it is the culture within that particular team. We have got

different dynamics, obviously we have corporate culture and that is

hierarchical but then we have a vibe underneath this which I would say

is quite developmental and agile. (Interview 11, Chief Software

Development Methodologist in the banking sector)

A cross referencing analysis was compiled by using a frequency

count of words that alluded to a specific type of organisational

culture (OC) and its alignment to either an Agile Methodology (AM)

or a Waterfall Methodology. The outcome of the cross referencing

frequency analysis exercise is illustrated in Figure 5.11.

Figure 5.11: Cross Query between OC and Software Development Methodology

 214

As can be established in Figure 5.11, there were 7 joint references to

Rational Culture and AM and 1 joint reference to Rational Culture

and Waterfall Methodology. Also, there were 11 joint references to

the Developmental Culture and 0 references to Waterfall

Methodology. The number of joint references to AM and Group

Culture and Waterfall Methodology and Group Culture were

similar. However, the Group Culture orientation seems to have a

slightly stronger association with Waterfall Methodology. Another

extreme case manifests in a high association between Hierarchical

Culture and Waterfall Methodology;

 Waterfall methodology has a prominent role to play because it is

seen as a baseline methodology that is used to contextualise

deliberations regarding software development methodology. Also,

many organisations in South Africa have core business reliance on

legacy systems that have been developed and are currently

maintained via a Waterfall approach. However, the overriding

imperative of most organisations is to fast-track the transition

from the Waterfall methodology towards an agile approach. The

reason for the criticality of this transition is that the fast pace of

modern business necessitates the use of innovation to arguably

ensure that commercial organisations remain competitive. The

software development approach that enables technological

innovation has to prioritise speed of development to demonstrate

business value and to respond to changing user requirements that

occur because of the changing business landscape. This dynamic

business environment is not compatible with a software

development approach that abides by the dictates of Waterfall

methodology;

 The transition from the Waterfall methodology for software

development to an agile approach is currently being achieved via

a phasing-in approach or a bimodal approach. The reason for

 215

adopting a controlled and planned migration to agility is that there

is a strong allegiance to the Waterfall approach by traditionalists

within an organisation. The traditionalists, who may be classified as

contributors towards a Hierarchical or Group culture, have a

preference for strict management control that entails the upkeep of

bureaucratic processes such as the “signing-off” of different phases

of development by management before the next phase can proceed.

The preservation of the Hierarchical and Group cultural traits

within an organisation poses the biggest impediment to the

transition to an agile approach to software development;

 Scrum has been endorsed as the de facto strategy for software

development. The main benefit of Scrum is that it engages the

development team into an intensive cycle of development that

delivers evidence of business value in a short time frame thereby

guaranteeing quick system visibility. Scrum is however not seen as

a comprehensive methodology but rather as a constellation of

methods that contribute towards successful software development.

Scrum has been hybridised to include methods, design models and

strategies that are prominently associated with methodologies such

as Waterfall, XP and Kanban. The most prominent of these are the

use of user stories (XP), data flow and entity relationship diagrams

(associated with design phase of the Waterfall Methodology) and the

KanBan Storyboard (used to track system development progress);

 Scrum has been flagged as being problematic from a scalability

perspective. It provides an ideal framework for software

development ‘in the small’ but does not ‘scale-up’ to the

organisational level. A consequence of this dilemma is that software

operations and configuration verbiage such as ‘software release’ and

‘software deployment’ have become intrinsically linked to software

development practice. This situation has resulted in an ‘infusion’

of operations and configuration methodology into agile

 216

software development methodology. This heralds an

extrapolation of the concept of agility to all spheres of an IT

department in order for agile software development practice to reach

its’ envisioned levels of success;

 The issue of scalability has been addressed via the DevOps

initiative which has become an area of much deliberation in the

software development domain in South Africa. The reason for this

focus on development and operations is that the operations aspect of

software development has largely been ignored. This has resulted in

a fracturing of association between software development teams and

teams that have been designated as deployment teams. The

deployment teams assume a DevOps role and are responsible for

ensuring that newly developed applications are integrated into the

organisational infrastructure. The current organisational

imperative is to ensure that there is a quick turnaround time from

the inception of a newly commissioned application to the release of

that application into a ‘live’ production environment. This approach

will arguably ensure that the newly developed application delivers

the envisioned business value in a short development timeframe,

thereby enabling the organisation’s competitiveness and business

viability. There is also an imperative to integrate a DevOps

dimension into Scrum development as intimated by the following

verbatim extracts:

…the DevOps approach is quite new and I think it is good if you engage

with the operations people early while you are in your Scrum mode.

Because then the ops guys can configure your dev environment so that

it matches the production environment and when you commit code you

can quickly see your contribution to the main system and you feel a

sense of ownership of the system because of your coding contribution.

In the past there were always issues with the dev and production

environment and during lunchtime talk...that's when you hear about

how your code created some regression error...but if you are part of the

 217

process the whole way then you feel a lot more in control (Interview

16, Analyst/developer for a national software organisation)

…just like how agile methodology enables system visibility from a

technical perspective DevOps enables the visibility of business value of

an IT application from a business manager’s perspective

(Interview 6, Software Engineer in the Banking Sector)

…let’s suppose you were able to see the business case unfold from

planning to development to installation in a seamless continuous

manner by removing all the bottlenecks…and these usually occur at

the deployment phase…then I think that will be the ideal working

arrangement because the BA is able observe and appreciate the business

value quite quickly (Interview 6, Software Project Manager in the

Petro-Chemical Sector);

 There is still a huge focus on the planning (specification of business

value, requirements specifications, analysis and design) as

evidenced by the following verbatim extract.

… there tends to be a culture of mistrust and developers and managers

are more comfortable when the crucial functional components are built

exactly to specifications and all stakeholders know everything about the

component and are able to predict paths of execution that may lead to

regression errors. So the upfront specification phase is non-negotiable.

(Interview 1, Systems Development Manager)

The planning phase needs to incorporate strategies for quality

control such as system performance testing and user

acceptance testing. The agile philosophy of allowing the system

design to evolve with the coding of the system is not readily

endorsed. This assertion is based on the volume of codes that were

recorded as part of the planning phase (Figure 5.6) as well as the

number of references to a Sprint Zero (Figure 5.7) which is

essentially a planning phase. An underlying driver for software

process improvement is the imperative to ensure that software

development efforts have a strong alignment to the delivery of

business value.

 218

This quest to achieve this alignment will ensure an organisational

cultural-transition from what is perceived to be Hierarchical and

Group culture to a culture that is more Rational and Developmental.

The preceding assertion is made in the context of South African

organisations.

5.5 A Proposed Model for the Adoption of a Software Development

Methodology

The rich textural narrative presented in the previous section represents a

synthesis of the diverse strands of empirical data encountered in the study. The

status assumed by this narrative may be seen as descriptive in a static sense but

can also be viewed as rather dynamic in an inferential sense. The narrative which

is based on the experience of software development in South Africa by expert

practitioners has an ‘inevitable’ theme of proposing a best practices

guide/framework to arguably ensure future success in the use of software

development methodology in South Africa. This assertion is made on the basis of

the researcher’s engagement with these practitioners who were driven by an

innate desire (“…people are meaning finders” (Huberman et al., 2013, p. 277)) not

to simply describe their experience in the use of software development

methodology but to also make suggestions that will contribute to an improvement

of the software development process. In order to propose a framework that will

enhance the prospect of the successful implementation of software development

methodology in South Africa, a strategy of identifying the main themes or “gestalts

that pull together many separate pieces of data” (Huberman et al., 2013, p. 277) is

used. This strategy is informed by the method proposed in Saldaña (2015, p. 187)

that entails an identification of the three main ideas that emanate from the rich

textural narrative of the main phenomenon of the study. Saldana calls this the

study’s trinity.

The three main ideas/themes that binds the data corpus is listed below:

 219

1. The culture of an organisation influences the adoption of the methodology

used for software development. There is an imperative for South African

business organisations to migrate from a Waterfall approach to an agile

approach for software development. This can only be achieved by an

accompanying shift in the culture within the organisation to one that is

Developmental or Rational.

2. Agile software development has migrated towards a Scrum based approach.

However, the proviso is that the Scrum approach is preceded by upfront

planning sometimes referred to as a Sprint 0.

3. Software process improvement (SPI) efforts are driven by a desire to obtain

discernable business value. There is a requirement to ensure that SPI

strategies enable the attainment of business value by ensuring that the

methodology adopted is highly scalable to the enterprise operating

environment. This can only be achieved by factoring in the operational

requirements of a system at an early stage of development.

The illustration in Figure 5.12 shows the core ideas that have emanated from the

empirical evidence gathered thus far.

 Figure 5.12: The Study’s Trinity

 220

The relational format adopted in Figure 5.12 is used to display the researcher’s

interpretive effort to ‘join the dots’ and present a cogent overview of the main

constructs that have emerged from the empirical evidence presented thus far. The

influence of organisational culture on the methodology used for software

development in an organisation has been accorded the highest priority because it

has a cascading influence on all SPI initiatives. The organisational imperative to

ensure that the software development process is aligned to the generation of

business value has influenced South African organisations to adopt an agile

approach to software development. The preferred agile methodology of choice in

South Africa is Scrum, although there are many variants of the methodology that

are currently being used. The customisation of Scrum has been achieved by

combining Scrum methods with Waterfall-like methods as well as XP and Kanban

methods so that the development team is placed in a ‘comfort zone’ that enhances

optimum productivity. The proviso for Scrum based development is that it is

preceded by an upfront planning session that is undertaken with varying levels of

intensity that depends on the type of project as well as the culture in an

organisation. The biggest impediment to Scrum as a methodology is its inability to

scale up to the operational environment at infrastructure/organisational level. In

order to address the issue of scalability, many South African organisations have

resorted to a DevOps initiative where the intention is to reduce or eliminate the

‘disconnect’ between development and operations. This initiative requires greater

collaboration between all stakeholders involved in the software process. Under this

new collaborative arrangement, software development teams are required to

abandon the ‘sanctity of the Scrum development space’ and change development

habits to embrace stakeholders such as business analysts, operations and security

engineers and quality assurance personnel during development cycles. The

adoption of a collaborative environment for software development requires the

invocation of a software lifecycle approach that enhances collaboration and ease of

access to the various stakeholders involved in the development process. The

complexities of enhancing the value obtained from such a socio-technical

 221

environment is best understood by firstly ‘unpacking’ the oversight influence that

organisational culture has on the adoption of a software development methodology

in an organisation.

5.5.1 The Influence of Organisational Culture (OC) on the level of Agility

The strategy adopted in the current study to operationalise the abstraction

inherent in OC is to make use of the Competing Values Framework (CVF) that

was introduced in Section 2.5.2 of Chapter 2. An overview of the CVF is presented

for quick reference to enable comprehension of the discourse on OC and the level

of agility that may be adopted in an organisation.

A Recap of the Competing Values Framework (CVF)

Quinn and McGrath (1985) proposed the CVF as a theoretical model to

operationalise the amorphous concept of OC. The CVF has been adapted by

Denison and Spreitzer (1991) to classify OC according to one of the following 4

dimensions. A Hierarchical Culture where there is a focus on stability and

management ‘command and control’, a Group Culture where the focus is on control

and monitoring of employee alignment to a set of prescribed processes derived from

historical organisational practice, a Rational Culture that has a focus on

innovation, productivity and accountability with regards to resource consumption

and a Developmental Culture that has a focus on innovation and the generation of

new ideas.

Based on the interpretation of the empirical data with regards to OC, a

framework (illustrated in Figure 5.13) was developed to guide the adoption of a

software development methodology classified according to the prevalent culture in

an organisation. The model presented in Figure 5.13 provides a ‘roadmap of

change’ from a purely Waterfall-driven approach to an agile-like approach that

may eventually culminate in a full-blown agile approach. The cultural shift that is

a prerequisite for an agile approach entails a migration from a cultural disposition

that prioritises predictability and order to one that embraces spontaneity and

flexibility as enablers of competitive advantage. These 2 competing paradigms of

cultural philosophy is further classified according to 4 cultural types (from

 222

Denison and Spreitzer (1991)) that have each been matched to a methodology of

software development (an output from the empirical analysis conducted in the

current study) and illustrated in Figure 5.13.

The OC classifications of the CVF have been reconfigured and presented in

Figure 5.13 according to the parameters of management control and the level of

agility. In Quadrants 1 and 2 (upper level quadrants in Figure 5.13), there is a

high level of management control. The culture classification in Quadrant 1 is the

Hierarchical Culture which is the antithesis of agile methodology. The Waterfall

methodology for software development resonates quite well with an organisational

culture that is hierarchical (also confirmed in the frequency cross analysis from

Figure 5.13: Level of Agility Classified according to Organisational Culture

 223

Figure 5.12) and places high value on predictability and order. A discernable trend

in South African organisations is the shift away from a hierarchical culture where

a ‘command and control’ style of management is being phased out in preference for

a more democratised approach that embraces controlled innovation and a ‘relaxing’

of management control. The compromised stance towards management control is

seen as an attempt to yield positive results such as higher staff morale and

employee satisfaction. The following verbatim excerpt attests to this claim.

At first I would say that it was quite hierarchical and the methodology

of choice was Waterfall. However, recently with the hype around agile

methodology and the training sessions on the use of Scrum the

management influence is not that great and developers have a greater

freedom to express themselves. (Interview 6, Software Engineer in the

Banking Sector)

The Group Culture (in Quadrant 2 of Figure 5.13) also espouses a high level

of management control. However, this culture is a lot more dynamic and there is a

prominence of change management structures that enable controlled changes to

be made to existing procedures and protocols. The change management structures

arguably ensure that change is gradual, highly controlled and subjected to

management scrutiny to ascertain the viability of implementing the change. The

use of terms such as Wagile and Bimodal are symptoms of the prevalence of a

Group Culture. The Wagile approach, which is a compromise between a plan-

driven approach and an agile approach, incorporates a high level of upfront

planning followed by agile methodology such as Scrum for the actual coding phase.

In a South African context, the Group Culture is one that employees feel quite

comfortable with because at various stages of the organsational history, employees

make innovative contributions that are subjected to organisation-wide scrutiny.

Once the innovation is implemented, employees are responsible for ‘championing’

the innovation until it becomes successful and fully entrenched as part of the

organisational set of procedures or as part of organsational behaviour. The

preceding assertion is corroborated by 2 verbatim excerpts attesting to a

preference for a Group oriented culture in the context of agile and DevOps adoption

respectively.

 224

I also think Group Culture is unavoidable because you cannot expect

an organisation to be fully Developmental over a sustained period of

time because this will cause a chaotic situation. So if you have adopted

a Developmental Culture so that Agile can work well, then after a

period of time, this becomes a new culture and that you may now say

is Group Culture …so when you have new staff members, they will

have to adapt to the norm which is now a Group Culture. (Interview

8, Senior Business Architect)

…remember if it is a new way of doing things, it inevitably ends up a

culture within an organization. So if it is a DevOps culture that we are

trying to build, agile culture that we trying to build, if you can’t fit in,

you don’t belong. (Interview 14, DevOps Manager in the Banking

Sector)

The Group Culture still maintains a high level of management control where the

focus is on ensuring that established organisational processes are followed quite

rigidly. Hence, it cannot be accorded a status of being fully compatible with agile

methodology because the Group Culture can easily promote a highly prescriptive

environment that could degenerate into a Hierarchical Culture. It does however,

represent a form of OC that enables a transition from Waterfall methodology to a

‘diluted’ version of Agile Methodology. This theory is aligned to the suggestion by

Denison and Spreitzer (1991) who claim that a change in organisational processes

can only be implemented successfully if the change agent is able to understand and

transform the underlying values and assumptions that underpin organsational

behaviour. In the context of software process improvement initiatives, there has to

be greater value accorded to the innovative suggestions made by an organisation’s

software development practitioners. Once this imperative is achieved, the culture

within the organisation gravitates away from a Hierarchical orientation thereby

creating a path for the adoption of agility

The Rational Culture orientation is less prescriptive than the Group

Culture orientation and highly compatible with agile values and encourages

innovation and responsiveness to change from a software development

methodology perspective. Software developers are not micro-managed in terms of

adherence to a specific methodological approach. Development teams are

 225

encouraged to be innovative and customise a development methodology according

to the requirements of the project. There are variant strains of agility in terms of

development strategy. As an example, the intensity of upfront planning and design

is left to the discretion of the development team. However, attached to the flexible

environment is the requirement of accountability with regards to resource

consumption. While project management is not necessarily invoked via traditional

project management protocol, the development teams are expected to be self-

managing not only in terms of progress with the development effort but also in

terms of time and resource consumption. The Rational Culture is also driven by an

imperative to ensure that the business value inherent in the systems development

project is not compromised. Hence a Spiral approach is ideal because after each

release of a version of a system, a cost-benefit risk driven analysis is undertaken

to facilitate the attainment of business value is still on track and resource

consumption is within the expected parameters.

The final quadrant in Figure 5.13 is reserved for Developmental Culture

which represents the highest form of agility. The Developmental Culture is

strongly aligned to the Scaled Agile Framework (SAFe) discussed in Section 2.5.

The SAFe requires a complete shift in organisational thinking that requires an

enterprise-wide effort to endorse an agile approach not only in the context of

software development, but also general business decision making and problem

solving. Under this environment, where an organisation reaches full agile

maturity, the true benefits of a DevOps approach will be achieved. In a South

African context, based on the empirical evidence provided by virtue of the

interview data, none of the practitioners have indicated that their organisation

had achieved this highest form of agile maturity. A distinguishing feature of

Developmental Culture is that management control is low and the level of agility

that may be achieved is high. In order to attain this level of agile maturity there

has to be a high level of trust that is bestowed upon employees. A verbatim

comment attesting to this phenomenon is provided below.

If agile methodology ensures that quality systems are built and all

requirements are met and the system is delivered on time and within

 226

the allocated budget …and if that happens regularly then the

perception of an organisation being hierarchical will not be that great

and more trust will be conveyed to the IT people… in which case a

developmental and rational culture may become the order of the day.

(Interview 3, Business/Systems Analyst in banking sector)

5.5.2 Addressing the Technical Dimension of Software Development

Methodology

Based on the empirical evidence provided, the two major technical areas that were

identified are:

 the endorsement of Scrum as the default methodology of software

development with the proviso that there is an appropriate intensity

of effort accorded to upfront planning;

 the need to integrate operations processes into the development

methodology to enable a smooth transition of the system from a

development environment onto the production environment thereby

enabling quicker realisation of business value.

A possible ‘ready-made’ solution that meets these requirements from a

methodological perspective is the Disciplined Agile Delivery (DAD) model proposed

in Ambler and Lines (2012, p. 12) and presented and critiqued in the current thesis

in sections 2.4.3 and 2.4.4 respectively. From an overview perspective DAD

differentiates the software process into 3 phases. These are the inception,

development and transition phases. The inception phase consists of the upfront

planning which may be further decomposed into business and the software

specifications. The development phase consists of Scrum based methodology to

handle the coding and testing of the evolving systems and transition is a reference

to the deployment of the system onto a production environment. The inception

phase is given upfront priority and is handled by the business analysts, the

systems analyst and the product owner to create a set of development processes

and protocols that are ‘intuitively shaped’ to align with the culture of the

organisation. The output of the inception phase is a plan that guides the

development and transition phases. Based on the empirical evidence from the

 227

current study, the inception phase has been identified to play a pivotal role in

systems development and there has been a substantial effort made by

organisations to derive a process model that works in the context of that

organisation. From a South African context, this phase is driven by the Business

Analysts (BA’s) (4 interviewees have served in this capacity) and has become

widely acknowledged as a phase where the business requirements are specified to

the software development team, usually represented by the Product Owner (PO)

(in an agile context). The liaison between the BA’s and PO’s has become well

entrenched and is not viewed as a problematic phase of the development process.

The arrangement between development and transition has been identified as an

area of concern because of the inability of Scrum to enable the attainment of the

expected business value within the expected timeframe. In order to address this

situation, an adapted version of DAD is used to provide an overview of the proposed

solution. The illustration in Figure 5.14 is based on the DAD model. The main area

of modification is the conflation of the development and transition phases into a

single DevOps phase, illustrated in Figure 5.14.

Based on the empirical evidence, the organisations have achieved moderate

success in the transition from a Waterfall methodology to Agile Methodology by

focusing efforts on reducing the divide between business and software development

through the establishment of roles such as the PO and BA. Although the ‘silo

Figure 5.14: Adaptation of the DAD Model

 228

mentality’ still exists in many organisations, the PO and BA are pivotal in

ensuring that the business imperative of the software development process is

upheld. The PO’s and BA’s enable collaboration between the ‘business silo’ and the

development and quality assurance (QA) silos as illustrated in Figure 5.15.

This divide between the various stakeholders in the software development

process is illustrated in Figure 5.14. Business is logically separate from

development although the PO’s and BA’s manage to ensure that the Wall 1 divide

is circumvented by conveying business requirements to the development team in

the form of the system specifications document that contributes towards the

Product Backlog. There is also a close working relationship between the

development teams and QA. In many instances the Scrum development team

members are responsible for running unit tests thereby conflating the roles of

developer and tester. The formal reviews and inspections are conducted by PO’s,

BA’s, developers and testers who collectively perform the QA function.

The glaring omission from this collaborative initiative is the lack of clarity

on the role of the operations staff, the people who are responsible for the technical

Figure 5.15: The Silo Based Approach to Agile Software Development

 229

alignment of the newly developed application into the ‘organisational ecosystem’

or the organisational infrastructure. Once a new system is commissioned by the

business division, the functional requirements are conveyed to the development

teams by the PO’s and BA’s. The development teams develop the system iteratively

and add functionality in an incremental manner using Scrum oriented methods.

As each increment is endorsed by QA, the expression ‘done’ is used to indicate the

completion of a task. Once all increments have been completed and the required

functionality is achieved to the satisfaction of QA, the newly developed application

is ‘tossed over the wall’ to the operations people who are responsible for the build

engineering phase of the application’s development lifecycle. The build engineering

phase is traditionally regarded as a separate ‘silo’ in the process of getting the

application into a ‘live’/ production environment. The empirical evidence gathered

thus far seems to converge to the perspective that there is not much support for

the operations phase and once the application traverses Wall 2 (illustrated in

Figure 5.15), a ‘bottleneck’ situation is created because of the lack of resources

available to the operations staff. However, the bigger impediment to productivity

is the lack of collaboration between the development team and the operations team

when it comes to tackling system integration problems. Once a system is handed

over to the operations staff, the Scrum team is disbanded and allocated to other

projects. The operations staff are then saddled with the task of fixing operational

errors typically linked to the network and security infrastructure of the

organisation. The operational error fixes are compounded by the sparse

documentation that is generated as well as the non-availability of members of the

development team. In order to address the impasse between development and

operations, an incursion into realms of software build engineering is necessitated.

The Build Engineering Phase

The discourse on Build Engineering is based on interviews that the researcher has

conducted with the following experts in the field of software operations and

DevOps. These interviews were not part of the main data corpus. However, the

initial data analysis converged to an outcome that necessitated an engagement

 230

with operations engineers. In all 3 instances, the experts who were interviewed

agreed to have their identities revealed in the study’s report.

 Bob Aiello – American based chair of the IEEE Working Group on DevOps

and co-author of the book Agile Application Lifecycle Management

(referenced as Aiello and Sachs (2016)) and expert in the domain of software

engineering and DevOps (the interview is referenced as Aiello (2017));

 Brad Black – American based Scrum Coach and expert in the domain of

software engineering and agile software development (referenced as Black

(2017));

 Jonathan Frankel - An experienced DevOps Engineer at a leading bank in

South Africa where there has been a major process re-engineering effort to

alleviate the bottleneck situation that prevails at operations level by

adopting a DevOps strategy (referenced as Frankel (2017)).

According to Aiello (2017) software development has to have a complete lifecycle

approach and it is misleading to speak about a software development methodology

that functions in isolation of the context in which the software is developed. The

context from an organisational perspective includes BA’s, QA, project managers,

security managers, developers, testers, operations engineers and end users. In

order to achieve this all-inclusive environment, a possible strategy is to pack each

sprint with functional requirements as well as a continuous integration (CI) and

continuous delivery (CD) imperative. This viewpoint is supported by Black (2017)

who is of the opinion that currently, software development occurs in an

environment where there are many “moving parts” and in order to account for the

various influences on the development process, an agile scrum based approach is

required together with a DevOps culture to enhance the prospect of the business

value planned for a software system is achieved and delivered in a short space of

time. The main benefit of adopting a DevOps approach is that it will enable the

breaking down of the traditional silos that impedes software development

productivity and enables a lifecycle approach that extends from inception to

release of the system on a production server. These sentiments also concur with

 231

the perspective of Frankel (2017) who endorses a DevOps approach to software

development because it enables a collaborative environment that is structured so

that all stakeholders in the software development process are easily accessible

thereby ensuring ease of access to cross-functional knowledge. As a best case

scenario, Frankel suggests that all the stakeholders should be co-located especially

where there is a critical time based constraint to deliver a system. However, he

does concede that this may not be practically feasible and a more dynamic

approach that enables quick access to all stakeholders at instances when they are

required will be ideal.

At this juncture the researcher realised the need to make an incursion into

the domain of Build Engineering in order to comprehend the full essence of

operations work.

According to Aiello and Sachs (2016, p. 91) Build Engineering is the

discipline of efficiently converting source code into binary executables that is in a

state of readiness for deployment to the underlying technology infrastructure. This

is normally achieved by running scripts that are created using technologies such

as Ant, Maven or Make so that the process is repeatable and quick. These

technologies were also mentioned by Frankel (2017). There is currently a trend for

the development team to run these scripts that are then deployed to a test

environment, and not the actual production/live environment. The Build Engineer

(BE) performs the operations task of deploying the application to the production

environment. However, as Aiello and Sachs (p. 93) point out, this process can

become quite complicated and the Build Engineer is required to make an

intervention on the development side to rectify incompatibilities or bugs that were

not identified during QA. Quite often this entails an incursion into development

technologies such as the .Net, Java or COBOL platforms. The complexity of the

task is exacerbated by poorly written source code or when the build activity is

undertaken as a ‘big bang’ deployment rather than an incremental one (Aiello,

2017). Aiello and Sachs (2016, p. 97) make the salient point that the Build

Engineers need to engage with the developers early in the development lifecycle so

that there is convenient availability of “deep knowledge” of the system from a

 232

developmental and technical perspective. Organisations that adopt a DevOps

strategy tend to curate an environment that enables easy collaboration between

the various software development stakeholders. In reference to the OC

classification provided in Figure 5.13, the DevOps strategy resonates well with a

cultural environment that is classified as Developmental.

The path taken by the current study started with a focus on the inner

workings of software developmental methodology and the perspectives provided in

this regard by experienced software engineers. The outcome of the analysis of

empirical evidence provided thus far has resulted in the study’s gravitation

towards the operations domain. In the annals of software engineering academic

literature there is sparse coverage of operations methodology and minimal

reference to the ‘tool stack’ used by operations engineers. The interviews conducted

with Frankel (2017) as well as Aiello (2017) coupled with information from Aiello

and Sachs (2016) is used to mitigate this situation. The empirical evidence

gathered from these sources are suggestive of a systems lifecycle (illustrated in

Figure 5.16) that consists of development, continuous integration (CI), continuous

delivery (CD) and deployment (and monitoring). The illustration in Figure 5.16 to

represent the development, integration, delivery and deployment pipeline is based

on ideas pioneered by Humble and Farley (2010).

Figure 5.16: The Development-Deployment Pipeline

 233

The phases of the Development-Deployment pipeline are explained below.

 The first phase is the actual development undertaken by the

software developers. The main deliverable from this phase is the

contribution of incremental functionality towards the development

of a system. The evolving system is referred to as the baseline system

and developers are required to contribute towards the incremental

enhancement of the baseline system by adding functionality that is

the output from sprint cycles. According to Frankel (2017)

developers are encouraged to ‘commit’ code towards the baseline as

often as possible. This activity of committing code towards the

baseline is referred to as continuous integration (CI). The

management and co-ordination of the ‘commits’ towards the baseline

system is done via automation servers and tools. The tools that are

popularly used currently for this process in South Africa are Git (an

open source software version control tool) and Team Foundation

Server popularly used on Microsoft platforms. A significant

observation with regards to software development teams in South

Africa is that the practice of code commits to the baseline system has

only been recently identified as an area of urgency. Previously the

code commits were quite infrequent and the developers did not have

a compulsion to commit their code to a central repository on a

regular basis. The current imperative is to commit code as often as

possible during the course of each day and at least once a day.

However, Aiello and Sachs (2016) do warn against too many builds

in a short space of time because it creates a destabilising

environment for the developers. The code baseline is constantly

monitored by the CI server for any changes to the baseline code. If a

change is detected, the code merge tests are immediately executed

and feedback is provided to the developers. This practice arguably

ensures that ‘code merge’ defects are detected early which can then

be handled on a continual basis rather than a ‘big bang’ approach

 234

where all defects are handled at the end of the sprint, at which point

the system has acquired “…a level of complexity that is not easily

tamed” (Aiello, 2017). The testing environment that detects build

related issues linked to merge conflicts or possibly conflicts with the

different environments in which the application will be installed is

referred to as the CI server and the most frequently mentioned

server by all 3 interviewees is the java based open source server

named Jenkins. All errors identified by the CI server are sent via an

error report to the members of the development team;

 The 2nd phase entails the delivery of the systems that have

undergone a successful build and has been released for QA testing

as well as staging tests. This is referred to as the continuous

delivery phase were the code baseline is in a state of readiness to

be deployed to the production server at any time;

 The final phase entails deployment of the system onto the

organisation’s production servers. This phase is referred to as the

Deployment phase and is usually not a continuous process. The

immediate release of newly developed systems via automated

processes may be impractical for pragmatic reasons. The main

reason is the requirement to release new features to the end user

base in a controlled manner thereby ensuring that end users are not

overwhelmed with changes to the system in short time intervals.

Another reason could be the culture orientation within an

organisation. This may be classified as Hierarchical or a Group

Culture where there has to be extensive ‘sign offs’ before a system

feature is implemented on a live production environment. Based on

the empirical evidence gathered, the signing off activity is a major

component of the systems development lifecycle. In organisations

that are transitioning to an agile methodology, the signing off phase

is quite dynamic because business managers who are entrusted with

 235

this responsibility have a close working relationship with the

development teams.

As suggested by Frankel (2017) and Aiello (2017) the recent trend which is

aligned to the adoption of a DevOps approach is to try and achieve maximum

automation in the development, build and deployment pipeline. This was not the

case previously when the strategies of continuous integration and continuous

deployment were not practiced.

The integration of software deployment requirements into the development

lifecycle (a reference to a ‘left shift’) is an idea that has been endorsed by both

Jonathan Frankel and Bob Aiello. Whilst the current strategy is to aim for

maximum automation via the development-deployment pipeline illustrated in

Figure 5.16, the entire framework still has a ‘silo-oriented’ appearance that is

essentially sequential in nature. This situation becomes quite apparent when the

process is reviewed via a Sequence Diagram as is illustrated in Figure 5.17 where

the need to have a left shift from the ‘Ops’ perspective becomes quite apparent. The

‘internal’ development, testing and integration seems to be well handled via the

sequence illustrated in Figure 5.17. However, the delivery of value to the end

user/customer is only made possible after the involvement of the operations staff.

A significant outcome of the researcher’s conversation with Aiello (2017)

and Black (2017) is that the consequence of not following a continuous integration

plan that includes operations staff as part of the software development is that the

expected benefits of following an agile approach to software development is not

achieved in an optimal manner. This assertion is corroborated in the South African

context by Frankel (2017) who makes reference to initiatives within his

organisation to try and address this issue.

The first principle based on the Agile Manifesto is an attachment of the

highest priority level to the imperative to “...satisfy the customer through early and

continuous delivery of valuable software” (Fowler & Highsmith, 2001). However,

the focus on continuous delivery seems to have a blurred interpretation within the

confines of software development nomenclature. This assertion is based on the

empirical evidence which suggests that the agile-based term done alludes to the

 236

activity of development and internal testing within the software development

environment and not the actual deployment environment. This situation is

illustrated in Figure 5.16 as the internal development cycle (illustrated as code

commit cycle/loop) and Figure 5.17 (cycle to the end of the Sprint phase and the

achievement of ‘done’), where the activity of development is focused more on the

software system and the pre-defined requirements tests.

The system is not viewed as a product or a ‘business commodity’ that has a

strong organisational context where it contributes to the attainment of business

value. Based on the evidence from the initial set of interviews, 86% of the

interviewees made mention of the requirement for the software development

process to deliver business value. However, this ‘business value’ is not being

delivered with the immediacy envisioned by the transition to agile methodology.

At this juncture the empirical phase of the study has been pivotal in establishing

Figure 5.17: The “Internal” Development, Integration & Testing Cycle

 237

a possible “Achilles’ heel” in the agile software development process. This is the

lack of continuity between the development and the deployment phases of the

software process.

The ‘disconnect’ between software development and the attainment of value

from a software product has been addressed by invoking techniques such as

Continuous Integration (CI) as illustrated in figures 5.16 and 5.17. The practice of

CI is endorsed as a core activity of agile software development and is documented

by the Agile Alliance as an initiative to ensure that software that is tagged as done

should be available for immediate release into a production environment. CI is also

an integral method of the XP oriented approach to software development.

However, the complexities of implementing CI and achieving a state whereby

software produced from the agile development phase may be tagged as

‘immediately releasable’ are not easily attained as explained in an article by

Martin Fowler (see Fowler, 2006), one of the authors of the Agile Manifesto. Fowler

suggests that the problem lies with the lack of focus on the activity of CI thereby

making continuous delivery and deployment difficult to achieve. This problem is

given extensive coverage in Aiello and Sachs (2016) and Humble and Farley (2010).

The problem of the lack of continuity between development and deployment

has been the subject of interventions that entail the use of tool-based support for

CI. The current availability of sophisticated tools from the open source community

(such as Git and GitHub) and vendor based tools (such as Team Foundation

Server) has made the strategy of CI a feasible option because of the minimal

overhead that is incurred to arguably ensure that developers engage in the practice

of updating the code base on a regular basis. The problem is two-fold.

1. CI is restricted to the development environment which is not an accurate

reflection of the production/live environment. CI ensures that the

functional requirements are met and then the system is handed over for

delivery and deployment to an environment that is not identical to the

development environment.

 238

2. CI is not a formal part of the Scrum ‘ceremony’ and it needs to be

incorporated as a Scrum method. This will ensure alignment with the agile

principles that espouse CI and Continuous Delivery.

The Development and Deployment Dilemma

According to Aiello (2017) and Frankel (2017) it is not easy to fully align the

development environment to the production environment. The reasons for this

dilemma are elaborated in Aiello and Sachs (2016) as well as Humble and Farley

(2010, p. 105). The ‘development-deployment’ dilemma was previously identified

by Jez Humble22 as a possible aspect of the development lifecycle that could impede

the prospect of agile software development methodology from upholding those

principles that relate to the frequent delivery of working software to its end user

base.

However, as Humble (2017) points out, the topic of software deployment

has not received much attention from academic circles although it has become a

major source of concern in industry where it is still not very well understood.

Currently, the practitioner community is making a concerted effort to address this

situation by ensuring that developers at least engage in the practice of CI.

According to Frankel (2017) his organisation has requested for development teams

to ensure that they ‘commit’ code to the baseline system as often as possible and to

maintain the baseline code in a state of stability. McConnell (1996, p. 144) used

the expression “maintaining the heartbeat” of the system to describe CI efforts that

ensure that the baseline system is in a stable state. Both Fowler (2006) and

Humble and Farley (2010) provide clear directives on how to ensure that the

baseline system is maintained in a state of stability. The process entails daily code

commits from the developers coupled with an effort to ensure that the code baseline

is maintained in a stable state. If the stability of the code baseline is compromised,

then this should be flagged as a problematic situation and all further development

has to stop. The alternatives at this juncture is to try and achieve a quick fix to the

problem or to roll back the code baseline to a stable state.

22 Jez Humble received the 2011 Jolt Award for his contributions to software engineering excellence

and his co-authorship of the book titled Continuous Delivery

 239

As can be ascertained from the preceding paragraph, CI entails a

substantial effort on the part of the software development team. However, Scrum

methodology does not make direct reference to any form of CI as an integral part

of the methodology. The pivotal role played by CI cannot be ignored by the

methodological component of Scrum software development practice. The

incorporation of CI practice into the Scrum ceremony may be seen as part of the

evolutionary trajectory of agile software development methodology where software

process improvement techniques have to incorporate aspects from the delivery and

deployment phase. Aligned to the afore-mentioned imperative to adjust software

process models so that CI is incorporated as part of the development process, the

de facto model representing the Scrum-oriented software process has been

modified to incorporate activities that enhance a DevOps approach to software

development.

According to Aiello (2017) the activity of Build Engineering should form an

integral part of the agile software development process. Aiello and Sachs (2016, p.

91) define Build Engineering as the process of converting source code into binary

executables that may then be run on any platform. The need for Build Engineering

is linked to software developer habits which entail a preference for using an

integrated development environment (IDE) and a software development platform

with which they have acquired substantial familiarity. This assertion is verified

empirically by the study’s core data collection phase where it has been established

that developers make use of varying technologies, frameworks, platforms, IDEs

and programming languages. There are instances where team members make use

of different IDE’s whilst working as part of a single team. Hence, the heterogeneity

of the development platform becomes a source of challenge for the Build Engineer

(BE) who has the task of identifying the compile and runtime dependencies of the

development environment so that an appropriate binary executable may be created

for the test environment. Aiello and Sachs (2016, p. 98) provide a compelling

imperative for the need to include the topic of Build Engineering in any discourse

on software process improvement. The argument made is that developers usually

engage in the development, build and test cycles without any consideration for the

 240

actual deployment environment. The ideal situation is to have the build and test

environments that are as ‘identical as possible’ and as ‘close to production as

possible’.

In order to mitigate this problem Aiello (2017) makes the suggestion that

“…as a Build Engineer, I would like to sit with the developers so that I can learn

how the system works and I am plugged into the flow of the development effort.”

This suggestion is also endorsed by Frankel (2017) who intimated that a similar

approach was followed in his organisation as part of the DevOps strategy. The

point being made is that Build Engineering planning should be incorporated early

and continually in the development lifecycle. From an agile perspective, this could

occur at the Sprint planning phase where the BE (serving in the capacity as a

representative from the Operations team) is provided with details of the

development platform so that the testing and production environment could be

configured to enable compatibility between development and operations. A

proposed solution that integrates Build Engineering into the Scrum development

cycle is illustrated using a cross-functional flowchart model showed in Figure 5.18.

The underlying theory behind the model illustrated in Figure 5.18 (referred

to as the Scrum Development Operations Model (SDOM)) is that the invocation of

a DevOps approach is only possible if there is a ‘left shift’ (Aiello & Sachs, 2016, p.

223) of the operations function into the development domain. As illustrated, the

‘Product and Sprint Backlog’ swim lane is identical to the original Scrum model

(presented in Section 2.4.5 of Chapter 2). However, adjustments to the original

Scrum model is based on the practice of continuous integration which have been

added to the traditional processes associated with Scrum development. Also, an

additional layer has been added to mitigate the risks attached to a pre-mature

product increment release that has not been completely tested in a ‘production-

like’ environment.

 241

The adjustments to the Scrum development cycle as illustrated by the SDOM

model shown in Figure 5.18, are discussed below:

 The Sprint Planning meeting incorporates the Build Engineer

(BE) who uses this opportunity to engage with the development

team and establish familiarity with the functional specifications of

the Sprint cycle. The BE is also responsible for configuring the

Figure 5.18: The Scrum Development Operations Model (SDOM)

 242

development machines, the integration server, the test server as

well as a staging server were the product increment may be tested

in an environment that is as close to the production environment as

possible. According to Aiello (2017) the BE may opt for adoption of a

strategy referred to as containerisation where the production

environment is simulated on development and test machines inside

‘containers’ that provide a development space that is independent of

the underlying operating system. In this way the development team

is able to develop in a truly production-like environment thereby

mitigating the complexities of incompatibilities between the

development, testing and deployment environments. Aiello (2017)

made mention of the current technological stack that enables this

strategy and suggested that the optimal tools to enable continuous

integration using the strategy of containerisation are the open

source tools named GitHub and Docker;

 The Scrum stand up meetings should include a discussion on the

status of the baseline code for the evolving system. The development

team should report on the frequency of their ‘code commits’ to the

baseline system which resides on the integration/version control

server. Ideally, there should at least be a single daily build that is

‘triggered’ by the ‘code commits’. However, Aiello and Sachs (2016)

caution about the undue complexity that may be added to the

development overhead when there are too many builds to contend

with. The reason for this concern is that the entire development

team has to update changes to their local development workspace so

that they always have a current version of the baseline system. If

there are too many commits and builds in a short time period

increases the overhead of maintaining a current (up to date) version

of the system on the local development machine at all times. The

benefits of engaging in a practice of continuous integration (CI) is

that the baseline system is always kept in a stable state and there

 243

is minimal effort to integrate new code. The dilemma is resolved by

getting team members to make a commitment to the CI practice with

the undertaking that during the initial stages of development, code

commits to the baseline system may be infrequent. However, as the

system approaches the final stages of completion, there should be

frequent code commits thereby ensuring that the final integration

and testing phases do not have to deal with the complexity that may

be introduced by lack of adherence to a CI strategy;

 The testing suite should include unit tests that consist of

cyclomatic tests so that there is optimal testing of branch and

looping logic. The test server that invokes pre-defined functionality

tests (test driven development (TDD)) should be customised to

include different stages of development. During the initial

development stages, the pre-defined TDD strategy will not be

feasible because of incomplete coding. However, as McConnell (1996)

points out, the use of a strategy that entails smoke testing and

stubs/place holders for incomplete functionality will arguably ensure

that the baseline code is always in a stable state. The smoke tests

are not as complex as TDD tests, but they ensure that the evolving

system demonstrates basic functionality and is always in a stable

state so that it runs and produces some form of output. The

invocation of a smoke testing and TDD strategy enables the

developers to do an internal verification that a user story or a task

has been completed. This is crucial from a workflow perspective. If

the team is using a Kanban Board to track the development

progress, then the internal verification that the task has been

successfully completed will enable the task to be labelled as done or

verified from a workflow perspective, thereby freeing up the number

of tasks that fall into the verification swim lane of the Kanban

Board. The mechanism of the Kanban Board is that there is a pre-

defined limit to the number of tasks that can be placed in a specific

 244

swim lane. However, the Scrum Board technique does not have such

a restriction. Based on the evidence of the empirical data, the

strategy of restricting the number of items in any specific swim lane

is regarded as a good strategy because it provides a quick indication

of a ‘bottleneck’ situation that needs to be resolved before any further

development in the sprint can be undertaken;

 The role of the Build Engineers is to provide a testing environment

that is relevant and as close to the production environment as

possible. Aiello and Sachs (2016, p. 129) make reference to a “pre-

flight” build where the development and integration platforms are

similar to the production environment. This strategy may be viewed

as a ‘right shift’ where the BE provides resources for the developers

early in the development lifecycle so that the build quality of the

evolving system can be verified before it is handed over to the

operations team. Aiello (2017) makes the point that setting up of the

test environment is a complicated process because the test server

has to be set up so that it provides the runtime dependencies that

developers were using in their local development machines. Hence

the involvement of the Build Engineer as an additional role player

is crucial because it arguably ensures that there is a degree of

compatibility between the development, test and production

environments;

 The Product Increment is the immediate output of a Sprint cycle.

The phase traditionally referred to as ‘done’ is shifted to the right of

the Scrum process because once a product increment has been

completed, the quality of the increment has to be verified and

validated prior to the allocation of a ‘done’ status. This verification

and validation process first occurs internally between the PO, the

Scrum development team and the Build Engineer during a Product

Increment Review session. The presence of the BE is required to

sort out issues that deal with the testing environment. The

 245

documentation requirements for the product increment is also

deliberated upon during this phase of the Scrum development cycle.

Plans for the maintenance of the system should be incorporated into

deliberations at this stage and the documentation requirements to

support the maintenance activity should be identified and created

by the development team;

 The BE is then responsible for developing a deployment package

that is tested in a production-like environment. Once more a

containerised version of the deployment package should be made

available for Quality Assurance (QA) and user acceptance testing

(UAT);

 The Sprint Review phase has undergone a ‘right shift’ due to the

added layer of quality checks (product increment review) and the

build engineering activity to arguably ensure that the system is in a

deployable state. The Sprint Review phase is essentially a showcase

of the system’s functionality, usability and performance. This phase

also presents an ideal opportunity for the end user to interact with

the evolving system thereby providing the development team and

the Product owner with an opportunity to obtain feedback regarding

the system’s functionality and usability. This phase is a vital

inclusion in the Scrum development cycle because one of the

problems identified from the study’s empirical evidence is that the

end users do not have ample opportunity to interact with the system

and provide feedback that the developers could use to improve the

usability of the system. This phase serves the purpose of re-

establishing the close working relationship between the

development team and representatives from the end user group.

This phase is also an ideal opportunity to engage the BE on issues

related to the system’s performance because performance testing can

be done in a production-like environment;

 246

 The final phase of the Scrum sprint cycle is the assessment from the

stakeholders that the product increment is done and can be made

available for the build package that may be subjected to integration

tests in a staging environment. Once more, a containerised version

of the ‘done’ portion of the system is maintained and used as a

baseline system onto which new elements of functionality are added

during the remaining sprint cycles until the full system has been

developed. The containerised ‘done’ version of the system is also in

an immediately releasable state.

The development of SDOM is based on an interpretive analysis of empirical data

where the researcher leveraged expert knowledge provided by a purposively

selected group of software developers, BA’s and Operations Engineers. The model

represents a convergence of this knowledge that is contextualised according to the

experience and expertise provided by the study’s respondents. SDOM should not

be seen as a definitive version of Scrum based software development practice.

However, the integration of Scrum based methods for software development with

methods that are deemed to be operational or infrastructure oriented should be

seen as representative of a trajectory for software development methodology that

takes cognisance of the operational environment in which the software will be

used.

A Note on the use of Scrum as a Baseline for the Proposed Framework

Based on the analysis of qualitative data, the weighted percentage of

significant words that were counted indicated that the expression Agile

methodology accounted for 15% of the total word count and Scrum accounted for

10% of the total word count. These statistics are illustrated graphically on P. 187

Figure 5.4. A further investigation revealed that the transition from Waterfall

methodology to an agile approach basically entailed a transition to Scrum

methodology. This is illustrated in the cross-query (P. 208; Figure 5.8) that was

conducted between the themes Transition from Waterfall and Scrum where it was

revealed that 87.5% of the interviewees associated Agile methodology with Scrum

methodology. An outcome of the analysis of the pre-questionnaire that was

 247

administered to all 16 respondents, revealed that all 16 respondents indicated that

Scrum was regarded as the central methodology for software development.

However, Scrum was adapted according to the organisational context to include

agile methods from XP and Kanban. The overwhelming preference for Scrum was

a significant factor that “cajoled” the naming convention adopted for the proposed

model to contain a reference to Scrum.

5.6 Conclusion of the Qualitative Phase

The qualitative phase of the study has been designed to achieve the benefits of

implementing a phenomenological approach to obtain a deeper insight into the

phenomenon of agile software development as experienced by South African

software practitioners in an organisational context. A total of 16 interviews were

conducted, transcribed and subjected to a content analysis to enable the

presentation of a rich textural description of the activity of software development.

The output from this phase of the study is structured according to a socio-technical

perspective resulting in 2 main models that were synthesised in the study. The

first model developed, represents the 4 dimensions of organisational culture as

defined by the Competing Values Framework (CVF) and its alignment with the

main software development methodologies. An intended outcome of this exercise

is to provide a framework that informs the transition from the Waterfall

methodology to an agile methodology along the dimensions of organisational

culture. The 2nd model developed represents an incursion into the operations/ build

engineering phase of the development lifecycle. The model, named the Scrum

Development Operations Model (SDOM) has the objective of mitigating the

perceived shortcomings of agile/Scrum methodology from an operations

perspective.

The final empirical phase of the study entails a quantitative exercise to

determine the acceptance of SDOM, which is conducted in the next chapter.

 248

6 QUANTITATIVE VALIDATION

As part of the methodology adopted for the study, a 2nd phase of data

collection entailed a quantitative validation of the proposed Scrum Development

Operations Model (SDOM). The validation exercise was conducted by a group of

purposively selected expert practitioners in the domain of software development

and operations. The objective of this exercise was to determine whether SDOM has

an alignment with current software development practice and whether SDOM will

be accepted as a useful intervention that adds value to the agile framework for

software development. A peripheral objective of the quantitative acceptance

exercise was to verify the ‘goodness of fit’ of the Theory of Acceptance of Software

Development Methodology (TASDM) to the study’s data. Based on the outcome of

this validation process, an adjusted version of the theoretical model to determine

acceptance of a software development methodology was proposed.

6.1 Introduction

The use of a quantitative approach has to be accompanied by a disclaimer

to the effect that there is no intention to generalise the acceptance of SDOM to a

wider population. However, the quantitative approach is used to obtain feedback

from selected individuals who have a measure of familiarity and maturity with

general agile software development and operations. The feedback obtained from

these individuals has been operationalised via a social science behavioural model

of acceptance that has a strong resonance with technology acceptance theory. The

structural sequence adopted for the presentation of the quantitative phase of the

study is as follows:

 A discourse on technology acceptance theory is presented with the

explicit purpose of contextualising the theoretical model used in this

phase of the study;

 A discussion of the questionnaire items and the process used to

finalise these items;

 249

 A description of the study’s sample;

 A presentation and analysis of the study’s data by making use of

descriptive statistics and inferential tests of significance with

regards to the data’s measures of central tendency. The study’s data

is also subjected to tests of reliability and construct validation (via

confirmatory factor analysis);

 A bivariate and regression analysis exercise is conducted to examine

the relationships between the study’s main constructs;

 A graphical presentation of the regression data is presented by

virtue of a path analysis diagram;

 An exercise in Structured Equation Modelling is undertaken to

theorise a model that has a better predictive capacity/ ‘model fit’ for

the study’s data;

 A discussion on the acceptance of SDOM, based on the quantitative

data analysis;

 A discussion of the open ended comments made by the study’s

respondents.

6.2 The Quest for a Theoretical Lens to Determine Acceptance of a

Software Development Methodology

In order to determine the acceptance of the proposed Scrum based DevOps

model as a software process improvement technique, the study’s design has been

extended to incorporate a quantitative dimension that is underpinned by

technology acceptance theory. Pfleeger (1999) makes the suggestion that the

discipline of software engineering needs to draw upon social science models to

further understand the adoption of technology. From this perspective, there have

been several theoretical models, emanating from psychology and sociology that

have been used to explain technology acceptance (Erasmus et al., 2015; Venkatesh

et al., 2003; Venkatesh et al., 2012). The majority of these models are centred on

the behavioural intention (BI) to use a technology (Chau & Hu, 2002). The concept

 250

of BI is elucidated by virtue of theories such as the Theory of Planned Behaviour

(TPB) (Ajzen, 1985), the Theory of Reasoned Action (TRA) (Fishbein & Ajzen,

1975), the Technology Acceptance Model (TAM) (Davis, 1985), the Unified Theory

and Acceptance of Technology (UTAUT) ((Venkatesh et al., 2003) and Rogers’

Diffusion of Innovations (DOI) (1983) theory. According to Kim et al. (2012) and

Erasmus et al. (2015), these afore-mentioned theories are the most widely used

from a technology acceptance perspective.

The use of the expression ‘technology acceptance’ may be misleading in the

context of the current study where the focus is on software development

methodology. However, reference is made to the academic defense provided by

Riemenschneider and Hardgrave (2001) as well as Wallace and Sheetz (2014) who

justify the use of technology acceptance theory as a proxy for theory on the

acceptance of software development methodology. As a disclaimer, it should also

be noted that in the annals of software engineering literature there is a dearth of

guidance on the determinants of software development methodology acceptance.

Riemenschneider et al. (2002) contend that the technology acceptance theories

emanate from general theories of human behaviour. This should in all probability

enable an extension of the domain of application of these theories to a realm that

is beyond just technology adoption and to include the intention to use a software

development methodology. This claim was backed up with the presentation of

empirical evidence that attested to the validity of technology acceptance models to

predict acceptance of software development methodology. The afore-mentioned

claim is based on a study by Riemenschneider et al. (2002) that entailed the

gathering of survey data from software practitioners on the determinants of

software development methodology acceptance. The study examined the

significance of technology acceptance constructs in ascertaining the adoption and

acceptance of software development methodology. The outcome of this study is that

the technology acceptance constructs are all valid predictors of acceptance of

software development methodology. The construct of Perceived Usefulness (PU)

was found to be the most reliable predictor of intention to use a software

development methodology. The reliability of technology acceptance constructs as a

 251

predictor of intention to use a methodology have been confirmed in Hardgrave and

Johnson (2003), Johnson (1999), Templeton and Byrd (2003), Chan and Thong

(2009) and Wallace and Sheetz (2014). Chan and Thong (2009) do however, caution

that the acceptance of a methodological approach as opposed to technology

adoption needs to be examined with theoretical models that provide a “lens” that

covers not only the technical factors, but also caters for the non-technological

factors such as individual and organisational characteristics.

While TAM provides implicit coverage of the non-technological factors that

influences adoption behaviour, TAM2, UTAUT and DOI incorporate constructs

that make explicit reference to the social and organizational domain. Based on the

preceding argument, the current study engages in an overview coverage of the

TAM2, UTAUT and DOI theoretical models with the intention of identifying a

viable academic underpinning that will guide the collection of empirical evidence

on the acceptance of the proposed Scrum based DevOps model for software

development.

6.2.1 Acceptance Theory

The theoretical underpinnings of TAM are centered on the psychological

factors of perceived usefulness (PU) and the perceived ease of use (PEOU) of using

a technology. Upon closer scrutiny of the data emanating from studies that tested

TAM theory, Venkatesh and Davis (2000) posited that empirical studies have

confirmed PU as a stronger and more reliable determinant of usage intention than

PEOU. However, as Edmunds et al. (2012, p. 4) point out, the “…interaction

between technology and its acceptance for use is multi-faceted” and the two

primary constructs of PU and PEOU are not sufficient to capture the essence of

this interaction. A significant limitation of TAM is the inadequate focus on the

social context in which the technology is being used. There is a lack of reference to

the social context from the perspectives of general use of technology in an informal

setting (Evans et al., 2014) as well as in a formalised organisational setting (Legris

et al., 2003). In order to improve the predictive capacity of TAM so that there is

 252

cognisance of the social and organisational context in which technology is used,

Venkatesh and Davis (2000) proposed the TAM2 model illustrated in Figure 6.1.

According to Venkatesh and Davis (2000) the additional constructs of the

TAM2 (illustrated in Figure 6.1) improved the predictive capacity of the TAM by

approximately 20% (TAM accounted for only 40% of the variance in technology

acceptance whereas TAM2 was able to account for almost 60% of the variance).

The additional constructs are classified by Venkatesh and Davis as the Social

Influence Processes and the Cognitive Instrumental Processes. An overview of the

TAM2 model together with the constructs is provided below:

The Social Influence Processes

 Subjective Norm: A construct (with roots in the Theory of Reasoned

Action and the Theory of Planned Behaviour) that is defined as the

degree to which an individual is of the opinion that usage of the

technology is endorsed by ‘important others’ or “people of influence”

within the individual’s context of use of the technology;

Figure 6.1: TAM2 model proposed in Venkatesh and Davis (2000)

 253

 Image: A construct (with roots in the Diffusion of Innovation theory)

that is defined as the degree to which the use of an innovation

enhances one’s status in a social system. From a work-oriented

perspective, this construct is a reference to an individual’s

perception that by using a technology, it will lead to improvements

in that individual’s job performance by virtue of an enhancement in

the individual’s image in the work environment.

Cognitive Instrumental Processes

 Job relevance: A reference to the degree to which a user perceives a

technology to be applicable to that individual’s job. This judgement

is based on the alignment between the functionality offered by the

technology and the functionality required by a job. If an individual

perceives a technology to be not relevant to a job situation, then that

technology is discarded from that individual’s set of options for

consideration with regards to completing a job;

 Output quality: A reference to more than just a capacity of the

technology to handle a specific processing requirement, but a

judgement on how well the technology is able to perform a job task.

In contrast to job relevance, if the technology has some relevance but

does not contribute optimally towards job completion, it is still

considered as a viable option;

 Result Demonstrability: A reference to the degree to which an

individual attributes productivity in their job performance to the use

of the technology. However, if the role of the technology in enhancing

job performance is obscure, then an individual is less likely to

continue using the technology.

The essence of the TAM2 model is embodied by the subjective norm

construct which according to Venkatesh and Davis (2000), has a significant

moderating influence on PU. It should be noted that the absence of subjective norm

from TAM has been identified as a limitation of TAM’s predictive capacity. The

 254

preceding claim is corroborated in Schepers and Wetzels (2007) where a meta-

analysis of 51 articles containing 63 empirical studies of TAM as a predictor of the

intention to use a technology confirmed the influence of subjective norm on PU and

PEOU. The moderating effect of subjective norm is that it factors in the

organizational context in which PEOU and PU can be evaluated, thereby

establishing a tangible link between the organisational culture and the acceptance

and use of technology.

Aligned to an imperative to develop a technology acceptance model that has

an improved predictive capacity, Venkatesh et al. (2003) conducted a review of 8

competing theoretical models that identified up to 7 constructs used to determine

the acceptance of technology. The outcome of the study was that only 4 of these

constructs had a significant influence on user acceptance of technology and usage

behaviour. These UTAUT constructs (illustrated in Figure 6.2), are elaborated in

Venkatesh et al. (2003). An overview of these constructs is presented below,

together with a comment regarding an alignment with the constructs from TAM

and TAM2.

Figure 6.2: UTAUT model proposed in Venkatesh et al. (2003)

 255

These UTAUT constructs (illustrated in Figure 6.2), are elaborated in

Venkatesh et al. (2003). An overview of these constructs is presented below,

together with a comment regarding an alignment with the constructs from TAM

and TAM2.

 Performance expectancy: The degree to which an individual believes

that system usage will enhance his/her job performance. This

construct resonates quite well with job relevance and output quality

from TAM2 and perceived usefulness from TAM (Dwivedi et al.,

2011; Venkatesh et al., 2003);

 Effort expectancy: A measure of the ease with which a system may

be used. This construct is conceptually identical to the PEOU

construct contained in TAM and TAM2 (Dwivedi et al., 2011;

Venkatesh et al., 2003);

 Social influence: The degree to which an individual is of the opinion

that system usage is endorsed by ‘important others’ or ‘people of

influence’ in an organisational setting. This construct has a strong

alignment with the subjective norm construct found in TAM2. It also

provides a conduit through which organisational culture may be

factored into an individual’s intention to use a new technology;

 Facilitating conditions: A reference to the level of organisational

support and the capacity of the infrastructure to facilitate use of the

new technology. This construct is an objective indictment on the

resources available within the organisation as well as the user’s self-

efficacy in handling the cognitive demands of using the system. This

construct does not have a direct alignment to any of the constructs

from TAM and TAM2.

UTAUT also posits that the influence of the above-listed determinants of

behavioural intention to use technology is moderated by the gender, experience

and age of the user. Voluntariness also has a mediating effect on social influence.

The UTAUT model is validated in Venkatesh et al. (2003) who make the claim that

 256

UTAUT is able to account for 70% of the variance in intention to use a technology.

This is a substantial improvement to the TAM model which accounted for just 40%

of the variance in usage intention (Legris et al., 2003). The main reason for this

improvement is the inclusion of socially oriented constructs in the UAUT model,

as opposed to an exclusive focus on the technology aspects of usage intention as

embodied by the TAM. However, UTAUT only exhibits a 10% improvement on the

predictive capacity of TAM2, thereby rendering both these models as viable options

to study technology acceptance in a social and organisational context.

Another highly influential acceptance model that seeks to explain the

acceptance or rejection of an innovation is the Diffusion of Innovation Theory

(Miranda et al., 2014). Everett Rogers, a sociologist, developed the concept of

innovation, which he regarded as any object, idea, technology, or practice that is

new (Rogers, 1983). Rogers identified several intrinsic characteristics of innovation

that influence an individual’s decision to adopt or reject an innovation. These

characteristics became the basis for Rogers’ Diffusion of Innovations (DOI) theory

that is widely used in the information technology (IT) field to study adoption of

technological innovations (Lyytinen & Damsgaard, 2001; Pozzebon et al., 2014).

Chang (2010), stressed the relevance of DOI theory by asserting that innovative

products or ideas have a widespread influence on society and the adoption

behaviour of the wide range of stakeholders is best understood by leveraging

theoretical models such as DOI.

In the context of the current study, the proposed Scrum based software

process model incorporates a wide range of active participants who are required to

collaborate on a more frequent basis to facilitate the delivery of a successful

software system. The integration of the wider range of stakeholders such as

business representatives, the development team, the end user and the operations

engineer into the actual development process may be viewed as innovative,

especially from a DevOps perspective. It is within this context that Rogers’ DOI

theory may be seen as a viable theoretical framework.

 257

According to Rogers (1983), there are 5 intrinsic characteristics of

innovations that influence an individual’s decision to adopt or reject an innovation.

These factors together with a description of each factor are presented in Table 6.1.

Table 6.1: Roger's (1983) Diffusion of Innovation Factors

Factor Description

Relative Advantage The improvement offered by a current innovation over its

predecessor

Compatibility
The level of compatibility that an innovation has in

enhancing the prospect of being assimilated into an

individual’s life

Complexity or

Simplicity

An individual’s perception of how difficult it is to use an

innovation; a determinant of whether the individual is likely

to use the innovation

Trialability

The ease with which an innovation may be subjected to

experimentation; The reasoning here is that if it is easy to

test an innovation, then it will in all likelihood be easier to

use

Observability

The extent that an innovation is visible to others. An

innovation that is more visible will drive communication

among the individual’s peers and personal networks and

will in turn create more positive or negative reactions.

6.2.2 A Unified Theory of Acceptance for Software Development

Methodology

Although there are various viable theoretical models that may be used to

investigate the phenomenon of technology acceptance, all of these models have a

congruous structure. The independent constructs resonate with the following axial

classifications that provide a linkage between the various acceptance theory

models:

 Technical: Perceived usefulness (TAM) or performance expectancy

(UTAUT); Perceived ease of use (TAM) or effort expectancy

(UTAUT) or complexity (DOI);

 258

 Social: Social Influence (UAUT) or subjective norm (TAM2) or

observability (DOI);

 Socio-technical: Facilitating conditions (UTAUT) or Compatibility

(DOI).

Having completed a review of the popular technology acceptance theory,

reference is drawn once more to a study by Riemenschneider et al. (2002) in order

to identify a cogent set of constructs that are reliable predictors of the intention to

use a software development methodology. The objective of the Riemenschneider et

al. (2002) study was to obtain empirical evidence to establish whether there is clear

distinction between factors that influence the adoption of a technology as opposed

to the adoption of a software development methodology. A total of 128 software

practitioners were surveyed on their intentions to use a software development

methodology. The main constructs from technology acceptance theory were used

to structure the questionnaire that was used in the study. The questionnaire,

which was subjected to internal validity tests, consisted of standardised questions

that are used to measure technology acceptance (validated in the original

technology acceptance theories). A significant outcome of this exercise is that

voluntariness, perceived usefulness (PU), compatibility and subjective norm were

found to be the only reliable predictors of behavioural intention to use a software

development methodology. An analysis of these factors in the context of a

behavioural response to the adoption of a software development methodology

reveals that:

 Voluntariness is expected to have a significant influence on an

individual’s decision to adopt a software development methodology

in an organsational context because once an organisational mandate

is issued, then employees are required to make an effort to comply.

Also a change to a new methodology is quite radical requiring

complete transition to the mandated methodology. However,

voluntariness is not the only driver of the decision to accept a

software development methodology;

 259

 The most significant construct that measures acceptance of a new

software development methodology is Perceived Usefulness (PU).

This outcome is aligned to similar findings by Venkatesh et al. (2003)

in the context of technology adoption as well as Dyba et al. (2004) in

the context of software developers’ intentions to adopt a new

software process improvement initiative. This outcome is explained

from a behavioural perspective within an organisational context

where employees have an innate desire to achieve optimal

performance so that they can benefit from performance based

reward structures. The imperative to engage with methodologies

that enhance productivity and quality is the biggest driver of the

behavioral intention to adopt a methodology;

 The greater the compatibility a new methodology has with current

work practice, the more likely it is that employees will form

intentions to use it, especially if there is a perception that it will

enhance their productivity and quality of work (PU). The corollary

situation also applies in the sense that if a new methodology deviates

substantially from current work practice and there is a perception

that it may not be useful, then software developers are less likely to

adopt the methodology. In the context of the current study, this is

an important construct to measure because the proposed model of

software development has been structured according to a Scrum-

based development approach that has been empirically endorsed as

a useful methodology;

 The final determinant of software developers’ intention to accept a

new methodology is subjective norm, which is intrinsically linked to

the culture within an organisation. If a mandated new methodology

is perceived to be useful and compatible with current work practice,

software developers may still avoid using it if there is also a

perception that fellow employees and supervisors think that they

should not be using it. This construct has a strong resonance with

 260

the Group Culture dimension of the Competing Values Framework

that explains the different types of organisational culture. As much

as developers may perceive a new methodology to be useful, they are

also driven by the desire to uphold key working relationships and

preserve the existing ‘social order’. The use of a new methodology in

such an instance may be advocated incrementally in a manner that

is minimally disruptive.

The outcome of the study by Riemenschneider et al. (2002) has a direct

influence on the operationalisation of the concept of ‘acceptance’ in the context of

software development methodology as well as the context of the current study. The

review of the various technology acceptance models provided an insight into the

general constructs used within the domain of information systems research.

However, the Riemenschneider et al. study provides a focused view of these

constructs from a software development methodology perspective. This knowledge

played a pivotal role in the researcher’s decision to use an adapted version of this

model to underpin the current study’s imperative to ascertain acceptance by

software practitioners of the proposed Scrum based model for software

development. The adaptation made to the original theory is in reference to the

construct of voluntariness which does not apply to the context of the current study.

A global study by Ahmad et al. (2016) to determine software practitioners’

acceptance of Kanban methodology as a viable methodology for software

development implemented an adapted version of the Riemenschneider et al. model.

The voluntariness construct which was not deemed to be appropriate for the

objectives of the study, was replaced with perceived organisational support which

was found to be a significant predictor of software practitioners’ intention to adopt

a Kanban oriented approach to software development. Based on the narrative

presented, a conceptual model (illustrated in Figure 6.3) of the Theory of

Acceptance of Software Development Methodology (TASDM) is used for the

purpose of the quantitative dimension of the current study.

 261

The constructs of Perceived Usefulness (PU), Compatibility (CO),

Subjective Norm (SN) and Perceived Organisational Support (POS) will be used to

operationalise the acceptance of the proposed SDOM for software development.

The dependent variable Behavioural Intention (BI), will be used to measure the

intention of software practitioners to implement the proposed model if an

opportunity arises.

6.3 The Data Collection Preparatory Phase

The empirical phase of the study consists of a survey to establish software

practitioners’ acceptance of SDOM. The data collection instrument that is used is

a questionnaire (see Appendix D). The sample for this phase of the study has been

purposively selected to facilitate an alignment with the sample used in the first

(qualitative) phase of the study. The questionnaire design, review, ethical

considerations and the sample used in the study is discussed in the subsequent

sections.

6.3.1 The Questionnaire Design

The questionnaire has been designed to align with the main constructs of

the TASDM and consists of a set of pre-formulated questions that has been

validated as reliable measures of software development methodology acceptance

Figure 6.3: Adaptation of the Riemenschneider et al. (2002) Theory of Acceptance of

Software Development Methodology (TASDM)

 262

in Riemenschneider et al. (2002) and Ahmad et al. (2016). The constructs of

Perceived Usefulness, Compatibility and Subjective Norm are standardised

questionnaire items that have been used in TAM, TAM2, UTAUT and DOI based

studies. According to Sekaran and Bougie (2010), a questionnaire is an efficient

data collection mechanism when the researcher has good knowledge of the main

variables of interest and the items used to measure these variables have been

validated in previous studies. The questionnaire has been designed to consist

primarily of close-ended, Likert scale type of questions containing 5 descriptors

that ranged from ‘strongly agree’ to ‘strongly disagree’. The explicit purpose behind

the use of this design strategy was to enable the respondents to make intuitive

decisions regarding the alternative responses and also to enable the researcher to

easily code the data for subsequent analysis. This approach is aligned to similar

strategies used for acceptance/adoption based research (e.g. Riemenschneider et

al., 2002; Venkatesh & Davis, 2000; Venkatesh et al., 2003). Respondents were

however, provided with a section of the questionnaire where they could provide an

open-ended response in the form of comments or suggestions about SDOM.

The layout of the questionnaire is shown in Table 6.2.

Table 6.2: Layout of the Questionnaire

Section Topic of Section
No of

Questions

 Demographic & Background Information 7

1 Perceived Usefulness (PU) of the Proposed

SDOM
6

2 Compatibility of the Proposed SDOM 3

3 Subjective Norm/Social Factors that

Influence the use of the Proposed SDOM
3

4 Perceived Organisational Support for the

use of SDOM
2

5 Behavioural Intention to use SDOM 2

6 Comments/Feedback/Suggestions on SDOM 1

 263

The main sections in the questionnaire are discussed below:

Introduction

The Introduction section is used to establish a context for the study as well

as explain the main outcomes that relate to the development of SDOM from the

first phase of the study. An illustration of SDOM is provided in the questionnaire

for quick reference. Respondents are also directed to view a detailed narrative on

SDOM that has been made accessible via the study’s website. The website is

accessible at: http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx

Demographic and Background Information

Respondents were required to provide their names and surnames as well

as details regarding the type of organisation that they belonged to, the capacity

that the respondent served in the organisation and the number of years of

experience in the domain of software development. All respondents were however,

informed of the voluntary nature of their participation and the measures that will

be taken to assure their anonymity and the confidentiality of the data that is

provided.

Perceived Usefulness (PU) of SDOM

The questions are phrased in a manner that enables the attainment of a

measure of the usefulness that SDOM may provide for software practitioners

working in an organisational setting.

Compatibility (CO) of SDOM

The questions are phrased to obtain knowledge of the compatibility that

SDOM has with the current work-based practices of software practitioners.

Subjective Norm (SN) that Influence the Use of SDOM

The questions are phrased to ascertain whether the use of SDOM will be

acknowledged as a progressive intervention by colleagues and people of influence

to the software practitioners.

http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx

 264

Perceived Organisational Support (OS) for the Use of SDOM

The questions are aligned to those used in the Ahmad et al. (2016) study

and have been phrased to determine the perceived resource-based support that the

organisation’s management will provide for the use of SDOM.

Behavioural Intention (BI) to Use SDOM

The construct of BI is the only dependent variable and the questions are

phrased to ascertain whether the respondents have a preference for the use of

SDOM if an opportunity arises.

Comments/Suggestions

The final section of the questionnaire provides the respondents with an

open-ended forum to document their comments or suggestions about SDOM. It is

envisaged that responses from this section will be crucial to help identify aspects

of SDOM that could be improved upon or possibly require a re-engineering

intervention.

6.3.2 The Pilot Study and Ethical Clearance

The questionnaire was piloted with 2 academics from the Discipline of

Information Systems & Technology at University of KwaZulu-Natal (UKZN) and

one industry professional who has 7 years of experience as a general software

practitioner and 5 years of experience with Scrum oriented software development.

The main point of contention during deliberations in the piloting phase

involved the syntax and the semantics of the PU section of the questionnaire. Four

of the six questions in this section made use of a personal pronoun. The panel was

of the opinion that the choice of pronouns should be changed because SDOM is a

model that has relevance to software practitioners in the context of their

involvement in software development as part of a team of developers who work in

an organisation. The original questionnaire made a reference to the respondents

with regards to the influence that SDOM may have if they acted individually in a

personal capacity. This wording of the question was changed slightly so that the

semantics were aligned to the respondent’s perception of SDOM in the context of

perceived usefulness for a software development team functioning in an

 265

organisational setting. The panel was of the opinion that the remainder of the

questions were clear and concise enabling easy comprehension. The pilot panel was

also of the opinion that the respondents to the survey were provided with adequate

documentation to enable full comprehension of the study’s context and the

research objectives. The data collected in the pilot study was not used as part of

the data corpus during analysis of the quantitative data.

Ethical clearance for the quantitative phase of the study was obtained from

the Committee for Research Ethics at UKZN (see Appendix E).

6.3.3 The Sample Used for the Quantitative Phase

The sample for the current phase of the study consists of members who were

purposively identified and invited to participate in the qualitative phase (first) of

the study. This purposive approach is deemed as necessary because members of

the sample from the current phase of the study were required to meet the following

criteria:

1. Each member of the sample must have been eligible to participate in

the qualitative phase of the study. The criteria used in the qualitative

phase of the study is that participants of the study must have at least

5 years of experience as a software developer and at least 2 years of

involvement with agile software development methodology.

2. Members from the sample must have some familiarity with the context

of the current study. This would have been achieved during the

researcher’s initial contact with the prospective subjects of the study

during which time the objectives of the study were explained to them.

An additional requirement that has been necessitated by the type of model

that was developed in the study was to include practitioners who have knowledge

or expertise in the domain of Build Engineering. During the first phase of the data

collection, it became apparent that many of the respondents were very much aware

of the deployment requirements and the need for Build Engineering expertise to

be included into the Scrum development methodology. However, the role played by

BE was not well defined and accorded the recognition that was deserving of this

responsibility. From an empirical perspective, the first phase of the study did

 266

include 3 members of the sample who have experience or expertise in the domain

of Build Engineering. In order to mitigate for the relative lack of representation

from the Build Engineering domain during the first phase of data collection, an

effort was made to include representation by 5 additional practitioners who have

experience in the Build Engineering domain.

The sample group size for the quantitative component was computed to be

45. This included:

 All 16 interviewees from the first phase of the study;

 A further 24 participants from the first phase of the study who

indicated their willingness to contribute, but did not from part of the

interview cohort;

 Five representatives from the Build Engineering domain.

6.4 The Quantitative Data Presentation

A total of 45 questionnaires were e-mailed to the members of the sample.

Forty completed questionnaires were returned yielding a response rate of 88%. The

responses to the Likert Scale questions were analysed by making use of the

Statistical Package for the Social Sciences (SPSS) software. The data was initially

coded by assigning the numbers from 1 to 40 to each of the returned

questionnaires. The individual questions were given variable names and

numerical values ranging from 1 to 5 were used to capture the actual response

indicated in the questionnaire. In terms of the extremes, a value of 5 was assigned

to the Likert scale option of ‘strongly agree’ and a value of 1 was assigned to the

Likert scale option of ‘strongly disagree’. A value of 3 was assigned to the Likert

Scale option of ‘neutral’.

6.4.1 Reliability Testing

As suggested by Gliem and Gliem (2003), when Likert scales are used, it

becomes imperative to compute and report the Cronbach’s alpha co-efficient to

 267

establish the reliability of the questionnaire. According to Sekaran and Bougie

(2010, p. 324) the reliability test is used to determine “…how well the items

measuring a concept hang together as a set”. In general, a Cronbach Alpha co-

efficient value that is less than 0.6 is regarded as ‘poor’, indicating that the set of

questions do not provide a reliable measure of a specific construct. Values that are

in the range from 0.7 to 1 are reflective of a reliable measure of a specific construct.

The reliability of the constructs used to measure acceptance of SDOM is

presented in Table 6.3.

As can be observed in Table 6.3, all the Cronbach’s alpha values are in excess of

0.7, indicative of a data set that may be seen as a reliable measure of the

acceptance of SDOM.

6.4.2 Quantitative Data Preparation

Confirmatory Factor Analysis (CFA) was used to confirm that the latent

variables identified by the Likert scale items of the questionnaire are aligned to

the TASDM. In order to obtain an individual score for each of the major

factors/latent variables identified in the CFA as well as the TASDM, averages of

the individual Likert scale items for each latent variable was computed. This

Table 6.3: Cronbach Alpha Coefficient Values

Construct No of Likert Scale Items
Cronbach’s

alpha

Perceived Usefulness (PU) of

the Proposed SDOM

6

(abbreviated as PU1 to PU6)
0.752

Compatibility of the

Proposed SDOM

3

(abbreviated as Comp1 to Comp3)
0.737

Subjective Norm/Social

Factors that Influence the

use of the Proposed SDOM

3

(abbreviated as SN1 to SN3)
0.775

Perceived Organisational

Support for the use of

SDOM

2

(abbreviated as OrgSupp1 to

OrgSupp2)

0.900

Behavioural Intention to use

SDOM

2

(abbreviated as BI1 to BI2)
0.704

 268

procedure of collapsing several Likert Scale items into a single variable by

computing an average value is rather controversial in the annals of statistical

scholarship (see Allen & Seaman, 2007; Boone & Boone, 2012; Jamieson, 2004;

Norman, 2010). The reason for the controversy is that the process entails a

conversion from ordinal data (the original Likert scale items) into interval data

(the average values). Norman (2010) does however, provide comprehensive

evidence to verify the validity of this approach. Boone and Boone (2012) explain

that a possible reason for the controversy is the lack of clarity between Likert scale

items and a Likert scale measure. A Likert scale measure alludes to a latent

variable that is operationalised by many Likert scale questionnaire items. When

these items are combined into a composite value using techniques such as the

mean computation or a summation (also suggested as a data reduction technique

in Sekaran and Bougie (2010, p. 311)), then the resulting Likert scale value may

be treated as interval data (also confirmed in Brown (2013)). In the context of the

current study, the Likert scale items are cohesively aligned to the main constructs

of the TASDM (confirmed by the CFA results) thereby enabling these individual

Likert scale items to be coalesced into the 4 broad Likert scale measures of PU,

CO, SN and OS.

The next aspect of ‘statistical controversy’ concerns the assumptions that

underlie many of the statistical tests. These are the assumptions of randomness

and normality of data.

The Issue of Randomness

The intention of the quantitative data analysis and presentation section is

to obtain quantified knowledge of the acceptance of SDOM by the respondents in

the study. As a disclaimer, the statistical analysis conducted does not represent an

attempt to extrapolate the results to a wider population. The sampling strategy

used in the current study is purposive sampling, thereby violating the assumption

of randomness that is a pre-requisite for inferential statistical analysis. The

objective of the statistical analysis exercise is to obtain a summative overview of

the data. This imperative will be achieved by making use of univariate and

multivariate analysis techniques. Both the afore-mentioned techniques will

 269

implement a hypothesis testing strategy to answer questions about the statistical

significance of the relationships between:

 the main constructs of the study and the statistical measures of central

tendency such as the mean, median and the mode of the data

(univariate);

 the main constructs of study by implementing correlation statistical

analysis techniques (multivariate).

The Issue of Normality

Statistical data analysis is classified according to 2 main techniques. These

are parametric and non-parametric tests. The difference is that parametric tests

are traditionally based on the assumption that the data is normal (normally

distributed) whereas, non-parametric tests do not make any assumptions about

the distribution of the data (Agresti, 2018). However, the enforcement of rigid rules

that guide the choice of statistical tests has also become a source of controversy

(Norman, 2010). The accepted heuristic in the annals of statistical theory is that

parametric statistical tests should only be conducted when there is a large sample

size and the data is normally distributed. If the assumption of normality is not

met, then the data should be subjected to non-parametric statistical tests which

provide a more robust alternative for data analysis. These heuristics have

however, been subjected to extensive scrutiny in various simulation exercises

where the results did not corroborate the heuristics (e.g. Kitchenham et al., 2017;

Norman, 2010). There are many instances where parametric tests provide a more

robust analysis alternative to non-parametric tests including situations where

there is a small sample size and the data does not conform to a normal distribution.

Added to this mix of deliberations is the Central Limit Theorem which states that

in a sample where the sample size exceeds 30, the distribution of the sample means

will be approximately normal (McClave et al., 2012). Hoskin (2012) does however,

provide some guidance on the choice of statistical tests by suggesting that the

parametric route should be taken if the sample size is greater than 30 (n>30)

because parametric tests are easier to interpret and have greater statistical power

than the equivalent non-parametric tests. However, if the data displays a

 270

significant deviation from the condition of normality, then there is no option but to

make use of non-parametric tests.

The preceding discourse provides a rationale for attempting to gravitate the

choice of strategy for the statistical analysis in the current study towards the

parametric domain of statistical analysis. As a disclaimer for this approach,

reference is drawn to the comments made in a highly cited article by Norman

(2010, p. 7) that:

Parametric statistics can be used with Likert data, with small sample

sizes, with unequal variances, and with non-normal distributions, with

no fear of coming to the wrong conclusion.

However, an intervention to align the analysis with the expectations of the

‘statistical purists’ will be made by resorting to non-parametric methods if the

condition of normality is not met. A final word on the issue of controversy with

regards to statistical testing is accorded to Wilkinson (1999, p. 601) who makes the

point that “ …there is no substitute for common sense” and a researcher should be

guided by heuristics that determine whether the statistical outcome makes sense

and the procedure used is appropriate for the type of study being undertaken.

6.4.3 Construct Validity Testing

According to Sekaran and Bougie (2010, p. 160) construct validity is a

strategy used to determine how well the results obtained from a study “fit” the

theory that underpins the data collection and analysis. Remler and Van Ryzin

(2011) refine the concept of construct validity by suggesting that the main

constructs or variables in a study should converge (correlate) with variables that

are predicted by the theory. Also, the main constructs of the study are not expected

to have a significant relationship with other variables of the study where this

relationship is not aligned to the theoretical model, a concept referred to as

discriminant validity. In order to verify the convergent and divergent validity of

the study’s data, the multivariate technique named Factor Analysis is used. There

are 2 types of factor analysis techniques that may be used. In the case where a

study does not have an a-priori theoretical model, then Exploratory Factor

 271

Analysis is used to enable the data patterns to dictate the theoretical model.

However, when a study is underpinned by a theoretical model, as is the case for

the current study, then the ideal preference is for Confirmatory Factor Analysis

(CFA) where the theory is used to find the best ‘fit’ for the data. According to

Williams et al. (2010), the norm is that sample sizes greater than 300 enhance the

reliability of the CFA exercise. However, in cases where each factor is defined by

several variables, the sample size can be relatively small, and in cases where the

normality of the data is not severely compromised, sample sizes of at least 40 are

suggested. In the context of the current study’s data parameters (n=40, assumption

of normality is based on the discussion in Section 6.4.4) the pre-requisites for CFA

are minimally achieved, thereby subjecting the results of the CFA exercise to the

disclaimer that the lack of a better sample size may compromise the validity of the

analysis. The CFA exercise is however a very good strategy for the researcher to

obtain overview knowledge that the data pattern has some form of alignment to

the theory. The CFA analysis was conducted by making use of the Analysis of the

Moment Structures (AMOS) plug-in software for the SPSS package. An

illustration of the CFA model produced by AMOS for the current study’s data is

shown in Figure 6.4.

The factor loadings, displayed as values that range from 0 to 1, are the main

indicators of convergent and divergent validity. As an indication of good

convergent validity, there should be high (>0.5) factor loadings from the main

constructs of the theory (represented as ellipses in Figure 6.4) to the observed

variables (questionnaire items) represented as rectangles in Figure 6.4. As an

indication of good discriminant validity, there should be low (<0.5) covariance

factor loadings between the main constructs of the model.

 272

An analysis of the outcome of the CFA exercise reveals the following

information:

 Four of the five main constructs show good convergent validity. The

exception being the Organisational Support (OS) construct where

the convergent validity is less than 0.5;

Figure 6.4: Confirmatory Factor Analysis of the TASDM

 273

 The constructs of Perceived Usefulness (PU), Subjective Norm (SN)

and OS have poor discriminant validity relative to Behavioral

Intention (BI) indicated by a high covariance values (>0.5). This

outcome is not entirely unexpected from a PU and SN perspective

because a respondent who perceives SDOM positively with regards

to these constructs will in all likelihood have a strong intention (BI)

to use the model (a hypothesis that is confirmed in Riemenschneider

et al. (2002) and resonates with general acceptance based theoretical

models). The covariance between OS and BI will be subjected to

further analysis;

 The constructs of SN and OS have poor discriminant validity,

indicated by a high covariance value of 0.56. This result will be

subjected to further analysis;

 In terms of the overall ‘data fit’ to the theoretical model, also referred

to as the Goodness of Fit (GFI) index, it is reported in Cheung and

Rensvold (2002) that the main measures of GFI are the Tucker

Lewis Index (TLI) and the Comparative Fit Index (CFI) which

should both be in the range from 0.9 to 1. The TLI and CFI values

reported as part of the CFA output are both outside this range

(TLI=0.736; CFI=0.86) suggesting that the study’s data does not

have an optimal fit with the theoretical model. This interpretation

may however, be compromised because of the issue of a low sample

size. Based on the subsequent analysis of the data, an attempt will

be made to find a ‘better fitting’ theoretical model for the study’s

data.

6.4.4 Quantitative Data Analysis

The data analysis will be introduced by presenting a graphical

representation in the form of frequency charts that will be used to illustrate the

responses received from the sample with regards to their perception of the

 274

usefulness, compatibility, subjective norm and organisational support towards

SDOM. In order to have a clear foundation for the subsequent data analysis, the

study’s data is subjected to a test of normality. According to Lott (2015), 2

prominent tests for normality are the Kolmogorov-Smirnov and the Shapiro-Wilk

tests. Both these tests specify a null hypothesis that the data is not significantly

different from a normal distribution. The main output from these tests is a p-value

that provides a probability indicator attesting to whether the sample is normal. A

p-value greater than 0.05 (95% confidence) is usually used as a condition to accept

the null hypothesis that the sample has a normal distribution. The data

representing the main constructs from TASDM was subjected to the Normality

tests that are available in the SPSS package. The tests that were conducted are

the Kolmogorov-Smirnov (KS) and Shapiro-Wilk (SW) tests of normality. The KS

test has however, been criticised for being less accurate than the SW test especially

when it comes to the handling of extreme values in the data (Ghasemi & Zahediasl,

2012; Steinskog et al., 2007). Also, the SW test has greater statistical power when

it comes to handling data from small sample sizes (n<50). Based on the preceding

argument, the SW test for normality has been adopted as the main measure of

normality.

The results from the SW test for normality are illustrated in Table 6.4.

As can be observed in Table 6.4 the constructs of PU, CO, OS and BI all fail

the SW test for normality (null hypothesis rejected, p<0.05). However, SN passes

the test for normality (null hypothesis accepted, p>0.05). Based on ‘pure’ statistical

theory, the implication of the rejection of the assumption of normality is that non-

Table 6.4: SW Tests of Normality for the Constructs from TASDM

Shapiro-Wilk

Statistic df Sig.
Perceived Usefulness (PU) 0.909 40 0.004

Compatibility (CO) 0.935 40 0.024

Subjective Norm (SN) 0.954 40 0.096

Org Support (OS) 0.918 40 0.007

Behavioural Intention (BI) 0.872 40 0.007

 275

parametric testing should be the default strategy. The Central Limit Theorem does

however, introduce an element of doubt because the sample of 40 also renders the

parametric approach as a viable alternative. Kim (2013) provides some advice in

handling a dilemma of this sort by suggesting that the skewness (measure of

asymmetry) and kurtosis (measure of pointiness) may also be used as indicators of

normality. The decision to opt for parametric or non-parametric testing will be

taken on a case by case basis that depends on the shape of the data as rendered by

the frequency graph illustrations. In the case of the parametric tests, the mean

will be used as the indicator of central tendency of the data. In the case of the non-

parametric tests, the median will be used as a measure of central tendency.

Based on the guidance provided in Boone and Boone (2012), the one sample

t-test (parametric) and the Wilcoxon one-sample signed rank test (non-parametric)

will be used to determine if there is a significant difference between the sample

mean/median and a hypothesised mean/median value of 3 (representing

neutrality). The conducting of significance tests is guided by a 5-stage framework

suggested in Agresti (2018, p. 140). The framework consists of assumptions,

hypotheses, test statistic, p-value and conclusions about the data. A hypothesis

testing approach is suggested where the null hypothesis (H0) is a statement that

the test parameter assumes a specific neutral value or a range of values and the

alternate hypothesis (Ha) assumes an alternative range of values. In the context of

the current study where the data is structured according to Likert scale responses,

H0 will assume the neutral value of 3. In the case of the parametric approach, the

test statistic that will be used is the mean (H0: M=3) and in the case of the non-

parametric equivalent, the test statistic that will be used is the median (H0:

Mdn=3). The alternate hypothesis is that the mean and median are significantly

different from the neutral value of 3 (i.e. Ha ≠ 3). Depending on the assumptions

regarding the type of data, the one sampled t-test or the Wilcoxon one-sample

signed ranked test will be used to determine if the null hypothesis may be rejected

or upheld.

 276

Presentation and Analysis of Perceived Usefulness (PU) of SDOM

The Likert scale responses (6 items) for the construct of PU is illustrated as

aggregated percentages in Figure 6.5.

In order to obtain initial overview knowledge of the data presented in

Figure 6.5, the mean responses were classified into broader nominal intervals that

entailed a conflation of the 5 Likert scale options into 3 categories labelled negative

(to represent strongly disagree and disagree), neutral (to represent neutral) and

positive (to represent agree and strongly agree). The Likert scale design strategy

used for the questionnaire entailed the use of positively phrased ‘stem’ statements

so that the coding approach entailed the allocation of lower values (1 and 2) to a

negative response, 3 represented a neutral response and the higher values (4 and

5) represented a positive response. This approach of refining the rating scale so

that overview knowledge of the data may be obtained is aligned to the suggestions

in Huck (2012, p. 425) and Lovelace and Brickman (2013). A graphical frequency

based overview of the responses to the construct of PU using the refined

classification is illustrated in Figure 6.6.

Figure 6.5: Aggregated Percentages for PU

 277

As can be observed in Figure 6.6, the majority (80%, n=32) of the

respondents have a positive disposition towards SDOM and perceive the model to

be useful to enhance the software development process in their organisation. The

reduced/conflated scale also serves a secondary purpose by enabling the

computation of a Chi-Square (χ2) goodness of fit test statistic that provides an

indicator as to whether there is a significant difference between the observed

frequencies from Figure 6.6 and the expected frequencies for the categories of

positive, neutral and negative. The reduction in the number of categories ensures

that there is no possibility of a violation of the basic assumption underling the χ2

test (i.e. for the given data set, the minimum number of expected values in each

category must exceed 5). The χ2 test uses a null hypothesis that indicates that

there is no significant difference between the observed frequencies and the

expected frequencies. The results of the χ2 for the observed frequencies illustrated

in Figure 6.6 suggests a rejection of the null hypothesis. The majority preference

for the positive option for the PU of SDOM is statistically significant (χ2(2,

40)=39.35, p<0.01).

Figure 6.6: Frequency Based Indicator of PU of SDOM

 278

To determine the significance of the measures of central tendency for PU (6

items), reference is drawn to the original 5 point Likert scale items that are used

as the data source for the histogram illustrated in Figure 6.7. Included in Figure

6.7 is a report of the mean (M=3.47 and SD = 0.461) and median (Mdn= 3.5).

The skewness is reported at -1.014 and the kurtosis is reported at 0.914.

According to Kim (2013), if the absolute values of these measures are less than

1.96, then the assumption of normality is upheld. The assumption of normality is

somewhat blurred by the result from the SW test that suggests a non-normal

distribution for PU. Hence, there is an argument for parametric as well as non-

parametric testing that may be used to establish the significance of the measures

of central tendency. In the context of the Agresti (2018) five stage framework, the

assumptions that can be made is that the sample distribution warrants both a

Figure 6.7: Histogram and Central Tendency Data for PU of SDOM

 279

parametric as well as a non-parametric approach. In both instances, p<0.05 will

be used as the indicator for the acceptance of the null hypothesis.

For the ‘parametric version’ of PU significance test, a one sample t-test was

conducted on the significance of the observed mean of 3.5. The results of the one

sample t-test are reported in Table 6.5.

As can be observed in Table 6.5, there is a statistically significant difference

between the hypothesised mean and the observed mean at the 95% confidence level

(p<0.05), suggesting a rejection of the null hypothesis and an acceptance of the

alternate hypothesis (Ha: M ≠ 3). In order to determine if the observed mean is

significantly greater than the hypothesized mean, the null and alternate

hypotheses are changed to read H0: M ≤ 3 and Ha: M >3 respectively. A one tail-t

test is computed to determine if the null hypothesis is rejected or upheld. Although

the SPSS package does not provide the results for a one-tailed t-test, the

parameters for the 2-tailed t-test shown in Table 6.5 can be adjusted to provide a

t value that may be compared with a critical value from the Student’s t distribution

table. From this table, it is reported that df(39) = 1.685 which provides a

boundary/critical value for the region of rejection of the null hypothesis. From the

results of the One-sample t-test (t(40) = 6.47, p<0.01), the null hypothesis is

rejected suggesting that the sample mean is significantly greater than the

hypothesised mean of 3.

This result is also confirmed in the non-parametric equivalent tests of

significance. The Wilcoxon-one sample signed ranked test of the sample median

(Mdn=3.5) against the hypothesised median value (Mdn=3). The results are

illustrated in Figure 6.8.

Table 6.5: One Sampled t-test for PU

 280

As can be seen from Figure 6.8, the observed median is significantly

(p<0.05) greater than the hypothesised median of 3.

 Presentation and Analysis of the Compatibility (CO) of SDOM

The Likert scale responses (3 items) for the construct of CO is illustrated

as aggregated percentages in Figure 6.9.

An exercise in conflating the 5 Likert scale categories into 3 categories was

once more undertaken (similar to PU) so that an initial overview understanding of

the data pattern could be obtained for the Compatibility construct. The outcome of

this exercise is illustrated graphically in Figure 6.10.

Figure 6.8: Non Parametric test of the Median

Figure 6.9: Aggregated Percentages for Compatibility of SDOM

 281

As can be observed in Figure 6.10, the majority (67.5%, n=27) of the

respondents have a negative disposition towards SDOM and perceive the model to

be incompatible with their current software development process. The results of

the χ2 test for the observed frequencies illustrated in Figure 6.10 suggests a

rejection of the null hypothesis that the observed frequencies are equal to the

expected frequencies (χ2(2, 40)=25.5, p<0.01). The majority of the responses on the

compatibility of SDOM to current organisational software development processes

is negative.

To determine the significance of the measures of central tendency for CO (3

items), reference is drawn to the original 5 point Likert scale items that are used

as the data source for the histogram illustrated in Figure 6.11. Included in Figure

6.11 is a report of the observed mean value (M=2.7) and the observed median

(Mdn=2.7). It should be noted that the skewness is reported at -0.032 and the

kurtosis is reported at -0.099. The absolute values for both these measures are less

than 1.96 thus suggesting that the assumption of normality may be upheld. The

assumption of normality is somewhat blurred by the result from the SW test that

suggests a non-normal distribution for the Compatibility construct. Based on these

Figure 6.10: Frequency Based Indicator of Compatibility of SDOM

 282

deliberations, there is an argument for parametric as well as non-parametric

testing. The measures of central tendency will be subjected to parametric tests and

there will be an attempt to corroborate these results with the non-parametric

version. An illustrative view of the sample distribution for CO is presented as a

histogram illustrated in Figure 6.11.

To determine if the observed mean (M=2.7) is significantly different from

the hypothesised neutral value of 3 (H0: M=3), a one sample t-test was conducted.

The result of the t-test is reported in Table 6.6.

Figure 6.11: Histogram and Central Tendency Data for CO of SDOM

Table 6.6: One Sampled t-test for Compatibility of SDOM

 283

As can be observed in Table 6.6, it can be concluded that the observed mean

is significantly different from the hypothesised mean (p<0.05), thereby suggesting

a rejection of the null hypothesis and an acceptance of the alternate hypothesis

(Ha: M≠3). In order to determine if the observed mean is significantly less than the

hypothesized mean, the null and alternate hypotheses are changed to read H0: M

>=3 and Ha: M<3 respectively. A one tail-t test is computed to determine if the null

hypothesis is rejected or upheld. A comparison of the t value from Table 6.6 (t=-

2.867) with the critical value from the Student’s t distribution table (df(39) =1.685)

indicates that the observed t statistic (t(40)=-2.867, p<0.05) lies to the left of the

boundary/critical value of 1.685. The observed mean is thus significantly less than

the hypothesised mean suggesting a rejection of the null hypothesis.

As a confirmatory exercise, the Wilcoxon-one sample signed ranked test of

the sample median value was tested against a hypothesised median value of 3. The

results are illustrated in Figure 6.12.

As can be seen from Figure 6.12, the observed median (Mdn=2.67) is

significantly (p<0.05) less than the hypothesised median (Mdn=3).

Presentation and Analysis of the Subjective Norm (SN) of SDOM

The Likert scale responses (3 items) for the construct of SN is illustrated as

aggregated percentages in Figure 6.13.

Figure 6.12: Non Parametric test of the Median Value for Compatibility

 284

An exercise in conflating the 5 Likert scale categories into 3 categories was

undertaken for the construct of SN so that an initial overview understanding of

the data pattern for SN could be obtained. The outcome of this exercise is

illustrated graphically in Figure 6.14

As can be observed in Figure 6.14, the majority (60%, n=24) of the

respondents have a positive disposition towards the SN of using SDOM. The

results of the χ2 test for the observed frequencies illustrated in Figure 6.14 suggest

a rejection of the null hypothesis that the observed frequencies are equal to the

expected frequencies (χ2(2, 40)=7.5, p<0.05). The majority of the responses with

regards to the SN of using SDOM in an organisational context is significantly

positive.

Figure 6.13: Aggregated Percentages for the Subjective Norm of SDOM

Figure 6.14: Frequency Based Indicator of the SN of Using SDOM

 285

To determine the significance of the measures of central tendency for SN (3

items), reference is drawn to the original 5 point Likert scale items that are used

as the data source for the histogram illustrated in Figure 6.15. Included in Figure

6.15 is a report of the mean value (M=3.24, SD=.613) and the median (Mdn=3.33).

In the case of the SN, the SW test as well as the skewness and kurtosis tests reveal

that the sample distribution is normal. Hence the exclusive reliance on the

parametric testing option is warranted.

The one sample t-test was conducted on the significance of the observed

mean (M=3.24). The results of the one sample t-test are reported in Table 6.7.

Figure 6.15: Histogram and Central Tendency Data for SN of SDOM

Table 6.7: One Sampled t-test for Compatibility of SDOM

 286

As can be observed in Table 6.7, there is a statistically significant difference

between the hypothesised mean and the observed mean for SN at the 95%

confidence level (p<0.05), suggesting a rejection of the null hypothesis and an

acceptance of the alternate hypothesis (Ha: M≠3). In order to determine if the

observed mean for SN is significantly greater than the hypothesized mean, the null

and alternate hypotheses are changed to read H0:M ≤3 and Ha: M>3 respectively.

A one tail-t test is computed to determine if the null hypothesis is rejected or

upheld. The Student’s t distribution table, df(39) = 1.685 is used to obtain a

boundary/critical value for the region of rejection of the null hypothesis. The

results of the t test show that the t statistic (t(40)=2.49, p<0.05) lies to the right of

the boundary value thereby enabling a rejection of the null hypothesis and paving

the way for the conclusion that the sample mean is significantly greater than the

hypothesised mean of 3.

Presentation and Analysis of the Organisational Support (OS) for SDOM

The Likert scale responses (2 items) for the construct of OS is illustrated as

aggregated percentages in Figure 6.16.

An exercise in conflating the 5 Likert scale categories into 3 categories was

undertaken for the construct of OS so that an initial overview understanding of

the data pattern for OS could be obtained. The outcome of this exercise is

illustrated graphically in Figure 6.17.

Figure 6.16: Aggregated Percentages for the OS for the SDOM

 287

As can be observed in Figure 6.17, the majority (62.5%, n=25) of the

respondents have a negative perception of the organisational support that SDOM

will receive. The results of the χ2 test for the observed frequencies illustrated in

Figure 6.17 suggest a rejection of the null hypothesis that the observed frequencies

are equal to the expected frequencies (χ2(2, 40)=16.25, p<0.01). The majority of the

responses with regards to the OS for using SDOM in an organisational context is

significantly negative.

To determine the significance of the measures of central tendency for OS (2

items), reference is drawn to the original 5 point Likert scale items that are used

as the data source for the histogram illustrated in Figure 6.18. Included in Figure

6.18 is a report of the mean (M=2.6, SD=0.78) and median (Mdn=2.5). It should be

noted that the SW test for normality indicates a non-normal distribution. However,

the tests for skewness and kurtosis falls within the range of acceptability

indicating that the violation of the assumption of normality is not severe enough

to eliminate the prospect of parametric testing. However, in order to avoid any

element of doubt, the significance of the mean and median values for OS will be

subjected to parametric and non-parametric tests.

Figure 6.17: Frequency Based Indicator of the OS for Using SDOM

 288

The one sample t-test was conducted on the significance of the observed

mean of 2.60. The results of the one sample t-test are reported in Table 6.8.

As can be observed in Table 6.8, it can be concluded that the observed mean

for OS is significantly different from the hypothesised mean (p<0.05), thereby

suggesting a rejection of the null hypothesis and an acceptance of the alternate

hypothesis (Ha: M ≠3)

In order to determine if the observed mean is significantly less than the

hypothesized mean, the null and alternate hypotheses are changed to read H0: M

Figure 6.18: Histogram and Central Tendency Data for OS for SDOM

Table 6.8: One Sampled t-test for OS for SDOM

 289

≥3 and Ha:M<3 respectively. A one tail-t test is computed to determine if the null

hypothesis is rejected or upheld. A comparison of the t value from Table 6.8 (t=-

3.252) with the critical value from the Student’s t distribution table (df(39) =1.685)

indicates that the observed statistic (t(40)=-3.252, p<0.05) lies to the left of the

boundary/critical value of 1.685. The observed mean is thus significantly less than

the hypothesised mean suggesting a rejection of the null hypothesis and

acceptance of the alternate hypothesis that the mean for OS is significantly less

than the hypothesised mean value of 3.

As a confirmatory exercise, the Wilcoxon-one sample signed ranked test of

the sample median value was tested against a hypothesised median value of 3. The

results are illustrated in Figure 6.19.

As can be seen from Figure 6.19, the non-parametric tests of significance

indicate that the observed median is significantly (p<0.05) less than the

hypothesised median of 3. This corroborates the outcome of the equivalent

parametric test.

Presentation and Analysis of the Behavioural Intention (BI) to use SDOM

The Likert scale responses (2 items) for the construct of BI is illustrated as

aggregated percentages in Figure 6.20

Figure 6.19: Non Parametric test for Organisational Support

 290

An exercise in conflating the 5 Likert scale categories into 3 categories was

undertaken for the construct of BI so that an initial overview understanding of the

data pattern for BI could be obtained. The outcome of this exercise is illustrated

graphically in Figure 6.21

As can be observed in Figure 6.21, the majority (80%, n=32) of the

respondents have a positive disposition towards an intention to use SDOM in an

organisational context for software development projects. The results of the χ2 test

for the observed frequencies illustrated in Figure 6.21 suggest a rejection of the

Figure 6.20: Aggregated Percentages for the BI to Use SDOM

Figure 6.21: Frequency Based Indicator of the BI to use SDOM

 291

null hypothesis that the observed frequencies are equal to the expected frequencies

(χ2(2, 40)=39.2, p<0.01). The majority of the responses with regards to a

behavioural intention to make use of SDOM if an opportunity arises within an

organisation is significantly positive.

To determine the significance of the measures of central tendency for BI (2

items), reference is drawn to the original 5 point Likert scale items that are used

as the data source for the histogram illustrated in Figure 6.22. Included in Figure

6.22 is a report of the mean (M=3.84, SD= 0.77) and the median (Mdn=4). It should

be noted that the SW test for normality indicates a non-normal distribution.

However, the tests for skewness and kurtosis falls within the range of acceptability

indicating that the violation of the assumption of normality is not severe enough

to eliminate the prospect of parametric testing. However, in order to avoid any

element of doubt, the significance of the mean and median values for BI will be

subjected to parametric and non-parametric tests.

Figure 6.22: Histogram and Central Tendency Data for BI for SDOM

 292

The one sample t-test was conducted on the significance of the observed

mean of 3.84. The results of the one sample t-test are reported in Table 6.9.

As can be observed Table 6.9, it can be concluded that the observed mean

for BI is significantly different from the hypothesised mean (p<0.05), thereby

suggesting a rejection of the null hypothesis and an acceptance of the alternate

hypothesis (Ha: M #3)

In order to determine if the observed mean is significantly greater than the

hypothesized mean, the null and alternate hypotheses are changed to read H0: M

≤3 and Ha: M >3 respectively. A one tail-t test is computed to determine if the null

hypothesis is rejected or upheld. A comparison of the t value from Table 6.9

(t=6.868) with the critical value from the Student’s t distribution table (df(39)

=1.685) indicates that the observed statistic (t(40)=6.868, p<0.05) lies to the right

of the boundary/critical value of 1.685. The observed mean is thus significantly

greater than the hypothesised mean suggesting a rejection of the null hypothesis

and acceptance of the alternate hypothesis that the mean for BI is significantly

greater than the hypothesised mean value of 3.

As a confirmatory exercise, the Wilcoxon-one sample signed ranked test of

the sample median value was tested against a hypothesised median value of 3. The

results are illustrated in Figure 6.23. As can be seen from Figure 6.23, the non-

parametric tests of significance indicate that the observed median is significantly

(p<0.05) greater than the hypothesised median of 3 for the construct of BI.

Table 6.9: One Sampled t-test for OS for SDOM

 293

The result from Figure 6.23 corroborates the outcome of the equivalent

parametric test suggesting that the measure(s) of centrality for BI is significantly

greater than the neutral value of 3.

Bivariate Analysis of the Constructs from SDOM

Correlation analysis is a bivariate statistical technique that describes the

relationship(s) between the variables of a study. However, as Gravetter and

Wallnau (2014) point out, correlation analysis does not represent a cause-and-

effect relationship between the variables of a study and should not be used to

generalise the correlation beyond the range of the data represented in the sample

unless there is a wide range of data values to work with. As an affirmation of these

principles in the context of the current study, the correlation analysis undertaken

is used to describe the relationship(s) between the constructs (PU, CO, SN, OS and

BI) from the TASDM theoretical model that underpin the quantitative phase of

the study. As a disclaimer, there is no intention to propose a cause-and-effect

relationship between the variables or to extrapolate these relationship(s) to a

domain beyond the confines of the data gathered as part of the current study.

According to Gravetter and Wallnau (p. 450), a correlation is a numerical value

that provides an indicator of 3 attributes of a relationship between variables in a

study. These are the direction (positive or negative), form (linear or non-linear)

and strength (value ranging from -1 to +1) of the relationship. The most common

correlation standard used is the Pearson product-moment correlation which

Figure 6.23: Non Parametric test for the Construct of BI

 294

measures the degree of the straight-line relationship between variables in a study.

The direction and strength of this relationship is represented by the value attached

to the letter r, also referred to as the sample correlation co-efficient. Attached to

the r value is a confidence level statistic (p value) that provides an indicator of the

robustness of the correlation value if more data points were added to the sample

set.

A Pearson product-moment correlation analysis was conducted to examine

the relationship between PU, CO, SN, OS and BI. The outcome of this correlation

analysis is illustrated as a correlation matrix in Table 6.10. As can be seen in Table

6.10, the relationship between Perceived Usefulness (PU) of SDOM and

Behavioural Intention (BI) is a significant positive correlation (r(38)=0.47, p<0.01).

Subjective Norm (SN) also has a significant positive relationship with BI (r (38)

=0.39, p<.0.05) and so does organisational support (r 38) =0.31, p<0.05). However,

the relationship between the Compatibility (CO) of SDOM and BI was not a

significant one (r (38) =0.04, p>0.05).

Table 6.10: Pearson product-moment correlation analysis of PU, CO, SN, OS and BI

 295

The Pearson correlation computation provides an indication of the bivariate

relationships between the main constructs of TASDM. In this regard the main focal

point of analysis is the significant relationships between the main constructs of

the study. From the bivariate perspective, the only significant relationships are

between BI and PU, BI and SN and BI and OS. However, as Remler and Van Ryzin

(2011, p. 293) point out, “…the real world is more than two dimensional-many

factors exert their influence at the same time and in complex ways”. This comment

was made in the context that multiple regression techniques are required to

analyse phenomena that are linked to more than a single independent variable.

Multivariate Analysis of the Constructs from SDOM

In the context of TASDM, the phenomenon of BI is linked to 4

predictor/independent variables thus necessitating a multiple regression analysis.

According to Remler and Van Ryzin, multiple regression is used to predict a

dependent variable by integrating multiple independent variables into a multiple

regression model.

Based on this assertion, it becomes quite clear that multivariate analysis

represents a foray into causal modelling which is not the intention in the context

of the current study. However, the objective of multivariate analysis in the current

study’s context is to obtain an insight into whether the pattern of correlations

between the independent variables (IVs) and the dependent variable (DV) ‘fits’ the

pattern predicted by the underlying TASDM. Multivariate analysis also provides

knowledge of the inter-correlations between the IV’s of the study.

A multiple regression model was developed for the variables in the current

study. The BI construct was specified as the DV and PU, CO, SN and OS were

specified as the IVs. The overall multiple regression model with all 4 IVs produced

R2 = .36, F (4, 35) =4.92, p<0.01. This outcome is illustrated in Table 6.11.

 296

The model summary illustration provides evidence to answer the question:

If the constructs OS, PU, CO, and SN are evaluated as a group, do

they predict the behavioural intention to use SDOM?

The significance value (p<0.01) provides an indicator that the overall

regression model is valid and the amount of variance that can be accounted for in

the DV (BI) is 0.36 (36%). Hence, taken as a set, the 4 IVs (main constructs) of

TASDM is a significantly reliable predictor of the BI to use SDOM. Remler and

Van Ryzin (2011, p. 296) does warn however that the predictive power (robustness)

is increased if the adjusted R-squared value is used instead of the R-square value

from the model. Using this value, the predictive capacity of the 4 IVs is set at

28.7%.

The next model that has been output from the regression modelling exercise

is the set of co-efficient values that examine the influence of the IVs individually.

The coefficients model is illustrated in Table 6.12.

Table 6.11: Model Summary for Multiple Regression Analysis of TASDM

Table 6.12: Coefficients Model for Multiple Regression Analysis of TASDM

 297

The first point of contention is the issue of collinearity. When 2 or more

variables are highly correlated, then for statistical purposes they are essentially

the same variable and both variables cannot be used as independent variables in

the multiple regression model (Remler & Van Ryzin, 2011, p. 297). As can be

observed in Table 6.12 the variance inflation factors (VIF) are all below 4

indicating that the IVs are not highly correlated with each other thereby

suggesting that each of the variables make a unique individual contribution to the

overall predictive power of the model.

The Standardised Coefficients values column in Table 6.12 provides an

indication of the strength of the unique individual predictive capacity of each of

the IVs. In the case of Perceived Usefulness (PU) it is observed that the beta value

is 0.42 (p<0.01) suggesting that PU uniquely accounts for 42% of the variance in

the DV (BI). In the case of Subjective Norm (SN), it is observed that the beta value

is 0.23 (p<0.05) suggesting that SN uniquely accounts for 23% of the variance in

the DV. The amount of variance in the dependent variable that may be attributed

to Compatibility (CO) and Organisational Support (OS) is recorded as not

significant (in both cases p>0.05), suggesting that both these variable do not make

a significantly unique contribution in a multivariate context to the predictive

capacity of the model. However, at the 90% confidence level (p<0.1), OS uniquely

accounts for 23% of the variance in the DV.

In order to determine whether the insignificant IVs have a relationship

with the significant IVs, a stepwise regression analysis was conducted firstly with

PU as the dependent variable and then with SN as the dependent variable. The

results of the stepwise regression analysis exercise show that the only significant

relationship is between SN and OS. As displayed in Table 6.13, OS is a weak

(adjusted R2 =13.6%) but significant predictor of SN.

Table 6.13: Stepwise Regression with SN as the DV and OrgSupp as the IV

 298

The results from the regression analysis attest to the finding that PU

makes the greatest unique contribution towards explaining the variance in the DV.

This is followed by SN. The results for OS are inconclusive at the 95% confidence

level in terms of the unique contribution that it makes towards explaining the

variance of the DV. An emphatic outcome from the regression analysis is that the

construct of compatibility does not make a unique contribution to the overall

predictive capacity of the model. These findings will be used in the subsequent

sections that entail a Sequential Equation Modelling (SEM) intervention that has

an explicit purpose of proposing a model that provides a better predictive capacity

of TASDM so that the proposed model will provide a better account of the

variability in the DV.

6.4.5 A Structural Equation Modelling (SEM) Intervention

According to Foster et al. (2005) SEM is an equation based modelling

exercise that examines the relationship between the variables (observed and

latent) of a study with the objective of selecting a model that “best fits” the study’s

data. SEM is regarded as a causal modelling strategy that incorporates methods

such as factor analysis, path analysis and correlation-based modelling that

represents the researcher’s conceptualisation of the study’s variables based on the

study’s data patterns.

In the context of the current study’s data patterns, SEM will be ideal to

explore some of the anomalies that have thus far been observed between the

study’s data and the theoretical model. Two significant aspects that necessitate

further analysis is the lack of alignment between the Compatibility construct with

the theoretical model and the alignment between the constructs of Social Norm

and Organisational Support. The initial foray into SEM has been undertaken by

virtue of the CFA exercise. The next form of SEM analysis will involve the use of

a path analysis diagram that illustrates the relationships between the main

constructs and also outputs the predictive capacity of the model by providing an

indicator of the amount of variance that the main constructs of the study is able to

account for on the value of the DV. The final SEM will be a Latent Variable

 299

Structural model where hypotheses will be generated to enable the identification

of a model that has the best predictive capacity in the context of the study’s data.

Path Analysis of the Constructs from SDOM

The inter-correlations amongst independent variables (IVs) and the overall

correlation between the IVs and dependent variable (DV) is best illustrated by

making use of a Path Analysis diagram. According to Duncan (1966, p. 15), path

analysis extends the “verbal interpretation of statistics not of the statistics

themselves”. It provides a clear indication of the assumptions regarding the

ordering of the IVs and the DVs as well as the residual variable that represents

measuring error and the influence of unaccounted variables. These factors

arguably ensure that any critical analysis of the regression model is sharply

focused and relevant not only to the current interpretation but also future inquiry.

The path analysis diagram shows the results of the multiple regression model by

creating relationships/paths depicted by arrowed lines between the variables

together with an indicator of the strength of these relationships. The strength of

the relationships are indicated by numerical estimates (beta weights) that

emanate from the multiple regression model (Remler & Van Ryzin, 2011, p. 317).

The nomenclature used in the path analysis diagram is that the dependent

variable is referred to as the endogenous variable and the independent variable is

referred to as the exogenous variables.

The initial path analysis model for TASDM, using the study’s data as input

is illustrated in Figure 6.24.

 300

The main outcomes from the Path Analysis diagram illustrated in Figure

6.24 is an affirmation of the results from the multi-regression analysis. TASDM

explains 36% of the variance in the respondents’ intention (BI) to use SDOM. The

main contributors to the predictive capacity of TASDM are PU (42%, p<0.05), SN

(23%, p<0.1) and OS (23%, p<0.1). The Residual Error term also referred to as the

“disturbance” term represents the composite influence of any other predictive

factors that have not been included in the model as well as any measurement

errors that may have been committed. The construct of Compatibility (CO) did not

make a significantly unique contribution (p>0.05) to the predictive capacity of

TASDM in the context of the study’s data. The model, based on the measurement

data illustrated in Table 6.12, is referred to as a fully saturated or just-identified

Figure 6.24: Just Identified Path Model for the TASDM

 301

model where there is a direct path from each variable to each other variable. The

fully saturated model may be subjected to a refinement exercise by examining the

significance and strength of the relationships between the model’s variables.

Relationships that are deemed to be insignificant or weak may be removed from

the model thereby creating a reduced or over-identified model that is not as

complex as the original saturated model. The advantage of developing such a

model is that it reduces the fit of the model to the data but also increases its

robustness when additional data points are added. However, such an intervention

should not compromise the predictive capacity of the just-identified model. Based

on the analysis of the values and the significance levels of the variances and co-

variances in the just-identified model, the most eligible candidate for elimination

is the path from CO to BI and the co-variance relationship between PU and OS,

CO and SN and C and OS. A reduced structural model that has been subjected to

path elimination is referred to as an over-identified model. The correlation

coefficients of the over-identified model for TASDM in the context of the study’s

data is illustrated in Figure 6.25.

Figure 6.25: Over-Identified Path Analysis Diagram for TASDM

 302

As can be seen in Figure 6.25, the predictive capacity of the over-identified

model in the context of the study’s data has not been severely compromised when

compared to the just-identified (fully saturated) model proposed in Figure 6.24.

However, the main predictor variables have been reduced to PU, SN and OS

thereby increasing the parsimony of the model. A chi-square (χ2) test is conducted

to determine if the “fit” between the over-identified (reduced) model (illustrated in

Figure 6.25) is significantly different from the just-identified (fully saturated)

model that was simply a graphical view of the multi-regression model (illustrated

in Figure 6.24). According to Hu and Bentler (1999), the chi-square (χ2) value is

traditionally regarded as the most appropriate test statistic that may be used to

evaluate the overall model fit as well as the discrepancy between the just-identified

model fit and the over-identified model fit. From a hypothesis testing perspective,

Hooper et al. (2008) advise that the null hypothesis is aligned to the assumption

that the over-identified model is a ‘bad fit’, and a good model fit would produce an

insignificant result. In the context of the data from the current study, the over-

identified model has been tested to show that there is a significantly (p=0.61) good

(not bad) fit between the just-identified model and the over-identified model (χ2

=0.97, p>0.05).

The path analysis diagram illustrated in Figure 6.25 paves the way for a

critical review of the TASDM theoretical constructs in the context of the study’s

data. The main critical points are listed below:

 There is a lack of contribution from the Compatibility construct

towards the overall predictive capacity of the model;

 There is high covariance between Subjective Norm and

Organisational Support.

Hypothesised Structural Equation Model (SEM) for SDOM

Whilst the path analysis exercise is pivotal to obtain an illustrative

overview of the data and the correlations and co-variances between the main

constructs of the theoretical model, SEM enables the researcher to develop

hypothesised ‘best fit’ models for the data and then test the models in terms of

their predictive capacity. SEM is a lot more robust than path analysis because it

 303

incorporates the original measures of data from the data collection instrument

(also called observed or indicator variables) and it attaches an error value to each

of these variables. By incorporating the indicator variables into the model, SEM

provides the researcher with an opportunity to obtain a deeper understanding of

the influence that the indicator variables have on the latent (unobserved) variables

(Huck, 2012). The objective of SEM is to provide the researcher with an

opportunity to use theoretical knowledge and derive a model through a process of

rearrangement of existing variables or to introduce new latent variables and then

test the applicability of the model.

From the path analysis exercise conducted on the current study’s data, it

becomes quite clear that the construct of Compatibility does not have a predictive

alignment with the study’s data. A possible reason for this phenomenon is the

influence of organisational culture where organisations that are perceived to have

a hierarchical or group cultural tendency do not endorse innovative behaviour in

a dynamic manner, preferring to opt for a cautious approach. Hence, whilst many

of the respondents may see the possible usefulness and compatibility of SDOM

with agile methodology, they are rather conservative in suggesting that the model

has an alignment with their current procedures for software development. Two of

the questionnaire items under the Compatibility construct alluded to the relevance

of SDOM to the current work-based practice. Both these questions elicited mainly

negative responses. Also the disruptive suggestions made by SDOM such as the

need for a Build Engineer (BE) and the implementation of automated testing into

the sprint cycle may be seen as unwarranted ‘disturbances’ to a set of development

habits that have been established as a norm for many of the respondents. A

verbatim comment attesting to the conjecture that the imperative to change

development processes is not readily accommodated is made by one of the

respondents in the open ended ‘comments’ section of the questionnaire.

We have just moved from the Waterfall approach that has been hard

wired into our processes, to a Scrum based approach. That transition

was quite slow and painstaking and I’m not sure that we’ve actually

even fully agile as yet. Adding another layer of complexity will take

forever to achieve.

 304

Based on the first phase of data collection and the qualitative analysis, it

has become apparent that the influence of organisational culture (OC) is quite

strong and has a ‘dictatorial’ role when it comes to changing behavioural patterns

in an organisation. Although the TASDM model is based on social science

acceptance theory, it does not incorporate a specific reference to OC. However, the

constructs of Subjective Norm (SN) and Organisational Support (OS) have explicit

references to the perceived behaviour or attitude of the respondents towards the

proposed SDOM in their current organisational setting. These references to

perceived behaviour in an organisational setting is further explored by providing

a hypothesised model where there is a reconfiguration of the behavioural

indicators.

The theory behind this model is that the high measure of covariance

between OS and SN observed in the path analysis model from Figure 6.25 is

suggestive of a relationship where the perceived organisational support for SDOM

is an antecedent to SN. This assertion is corroborated by the regression analysis

where it was established that OS is a significant predictor of SN. Based on this

evidence, a rearrangement of the relationship between SN and OS is warranted to

reflect the antecedent influence of perceived OS on SN. The Compatibility

construct has been removed because of its’ low alignment with the study’s data

resulting in a model (Figure 6.26) that displays a tighter coupling between the 3

main constructs from the theory. The main outcome from this exercise is that the

predictive capacity of the model has improved from 0.38 (from the path analysis

exercise) to 0.58 (explains 58% of the variance in the behavioural intention to use

SDOM).

This newly reconfigured model is presented in Figure 6.26.

 305

Although this model seems to have a better and more appropriate fit to the

study’s data, there is sense of ‘lingering doubt’ that the model does not capture the

full impact of OC. A further hypothesis is proposed that the constructs from SN

and OS should be integrated as indicator variables for the latent concept of OC.

An addition to this set of indicator variables is the 2nd Likert Scale item from the

Compatibility construct where many of the respondents were of the opinion that

whilst SDOM did not align to their current work-based practice (items 1 and 3),

there was a measure of compatibility (item 2, labelled as Comp2) with the general

approach to software development. This outcome of incorporating Comp2 as part

Figure 6.26: Initial Hypothesised SEM for the Study’s Data

 306

of the set of indicators for OC is a second hypothesised SEM that is presented in

Figure 6.27.

The SEM in Figure 6.27 has a slighter better predictive capacity and now

accounts for 59% (an improvement of 1% over the previous hypothesised model) of

the variance in the behavioural intention to use SDOM. Another significant

outcome is that the influence of OC as a predictor of the intention to use a software

development methodology is observed to have increased by 1% as well. A further

Figure 6.27: Second Hypothesised SEM for the Study’s Data

 307

hypothesis that may be subjected to testing in a subsequent study is that the

addition of ‘better qualified’ indicators of OC to such a model will improve the

overall predictive capacity of the model and also magnify the influence of OC

whereby it may supersede PU as the main indicator of behavioural intention.

However, at this stage a concession has to be made that all the indicators for PU

have a significant positive correlation with BI (p<0.05). The same claim cannot be

made for the indicators of OC where it has been observed that 2 of the OC

indicators (Comp2 and OrgSupp2) do not show a significant correlation with BI.

Removing both these indicators from the model will enhance the predictive

capacity of the model. However, both these indicators contribute as substance

indicators to the amorphous concept of OC.

Assessment of the validity of the proposed model is dictated by the

parameters for SEM suggested in Byrne (2010). The first significant statistic is the

chi square test which yields an insignificant result suggesting that the model has

a good overall fit with the data. However, a detailed inspection of the remaining

test statistics reveal that the model has a less than ‘good fit’ with the data. The

Goodness of Fit Index (GFI), and the Adjusted Goodness of Fit Index (AGFI) should

both be in the range from 0.9 to 1. The GFI and AGFI for the proposed model is

reported at 0.86 and 0.83 respectively. The Root Mean Square Error of

Approximation (RMSEA) should be less than 0.05. The RMSEA value reported for

the current model is 0.063.

The discrepancies and lack of ‘model fit’ for Figure 6.27 may be attributed

to a small sample size and the tenuous adherence to the requirement that the

indicator variables should have a normal distribution for the data values. Also, the

ad hoc inclusion of the OC dimension may have compromised the fit of the model

to the actual data values.

The positive outcome from the proposed model is that it provides a better

predictive capacity to understand acceptance and intention to use a proposed

software development methodology.

 308

6.5 Discussion of the Quantitative Data Analysis

The objectives of the quantitative data analysis were to:

 Determine the acceptance of SDOM;

 Determine the validity of TASDM and possibly propose a new

theoretical model that offers a better predictive capacity to

determine acceptance and intention to use a software development

methodology.

Discussion of the Acceptance of SDOM

A combination of parametric and non-parametric statistical methods were

used to analyse the responses from the study’s sample with regards to the

acceptance of SDOM. The acceptance of SDOM was operationalised by the

constructs from the TASDM model. In order to obtain overview knowledge of the

measures of central tendency of each of the 4 constructs from SDOM, the means

and medians from the sample responses were computed and subjected to t-tests

(parametric) and Wilcoxon one sample ranked test (non-parametric). In the case of

the construct of Perceived Usefulness (PU), it was established that the mean

response was significant and strongly positive and PU demonstrated the highest

significant correlation with the behavioural intention (BI) to use SDOM. This

outcome resonates quite well with the results reported in Riemenschneider et al.

(2002) as well as Ahmad et al. (2016). The pivotal role played by PU is also

confirmed in general technology acceptance studies such those by Gefen et al.

(2003) and Schepers and Wetzels (2007), Venkatesh and Davis (2000) and

Venkatesh et al. (2003),

The result for the correlation between BI and the construct of Subjective

Norm (SN) was also significantly positive indicating that the respondents were

generally of the opinion that usage of SDOM will be perceived as a positive

intervention by people of influence in an organisational setting. The correlation of

OS to BI was not significant at the 95% confidence level. However, at the 90%

confidence level there is a significant, moderately positive correlation (p<0.1). This

outcome is not in alignment with the results from the Ahmad et al. (2016) study

 309

where the significance level is recorded at the 95% confidence mark. A possible

explanation for the tenuous influence of OS on BI in the current study is the lack

of a better sample size. The result for the construct of Compatibility (CO) cannot

be analysed with any degree of confidence and is thus rejected as a significant

predictor of BI to use a newly proposed software development methodology. This

outcome does not resonate with general acceptance theoretical models. Whilst a

general explanation for this phenomenon has been provided in the deliberations

regarding the design of the SEM, a further analysis of the lack of significance of

this construct is warranted based on its prominence in the annals of theoretical

models that explain behavioural intention. An analysis of the questionnaire

responses that operationalise the concept of Compatibility reveals that in 2 of the

stems (items 1 and 3 of the set of Likert scale items to measure Compatibility), the

word ‘organisation’ is included and the mean response for both these items is

classified as negative. However, in Likert scale item 2, there is no mention of the

word ‘organisation’ and the Likert scale prompt simply makes reference to the

respondents’ opinion on the compatibility of SDOM to general software

development practice. The mean response to Likert scale item 2 is marginally

positive. These conflicting results would have had a compromising influence on the

significance value attached to the Compatibility construct.

In terms of the covariance patterns, there is one discerning observation.

There is a strong covariant relationship between OS and SN. A hypothesis that

may be ventured is that a perception of good organsational support is an

antecedent for a positive disposition towards SN. This conjecture has been tested

in the SEM illustrated in Figure 6.26 resulting in an improved predictive capacity

of the theoretical model.

Discussion of the Validity of the Theory of Acceptance of Software Development

Methodology (TASDM)

The validity of TASDM was tested in the context of the study’s data, by

making use of CFA and path analysis. The outcome of the CFA exercise confirmed

that TASDM had a good overall fit to the study’s data, but failed the more

discerning goodness of fit tests such as the CFI and TL tests. The path analysis

 310

provided an illustrative indication of the predictive capacity of the TASDM which

was recorded at 38%. A SEM intervention was employed by rearranging the

original latent variables in TASDM and introducing organisational culture (OC)

as an additional latent variable. The outcome of this exercise is that the predictive

capacity of the model improved to 59%. The significance of adding the OC

dimension to the study is that it aligns to the outcome of the qualitative phase of

the study where OC was unanimously endorsed as the main determinant of

software practitioners’ intentions to embrace a new software development

methodology.

6.6 Discussion of the Open Ended Responses

The open ended (optional) response section of the questionnaire provided

the respondents with an opportunity to make comments and suggestions on

SDOM. These responses have been classified as either positive or negative.

Twenty-two of the respondents provided written feedback on SDOM. Eighteen of

these responses were interpretively classified as positive responses with the

remaining four being classified as negative.

Positively Worded Responses

The positively worded responses were not too informative. The common

theme with these responses were that SDOM does herald an improvement to

Scrum based agile development. A verbatim response made by an experienced

developer in the banking sector is provided as a source of reference.

The good thing about SDOM is that it breaks the silo mentality. It

ensures that there is interactivity between the developers and the

operations staff without adding too much of complexity to the sprint

cycle.

These comments epitomise the objective of SDOM. Another comment made

by a project manager/team leader from the bespoke software development domain

that has a similar thematic alignment with the previous comment reads as follows:

 311

...going forward however we do plan on increasing our staff number

and making roles more defined and I do think that having ops members

knowing what is involved and happening in a dev release is vital. I have

as a project manager (in this job and previous ones) always made a

point of informing the operational staff of what was involved in a

release so that they weren't going into an install blind. They have to

know what functionality is being installed so that they know if things

are working or not - if things fail they can troubleshoot and determine

if it's something they can sort out before escalating it to the dev guys.

This comment resonates with the imperative to mitigate the problems that

may arise because of a lack of communication between the development team and

the operations team and ensure that there is a seamless rollout of software along

the development, delivery and deployment pipeline. Included with the positively

worded comments were however a few words of caution. The following comments

were extracted from the open ended response by a software developer who

specialises in security and testing at a financial organisation.

 If this (model) has to be customized to our environment, one thing that

has to be added is clarity on how the “production-like” environment

relates to SIT which is an area used for testing that is as close to

production as possible

In the extract, SIT is used as an acronym for security, integration and

testing. A concession that has to be made is that SDOM does not have any specific

reference to the security imperative which has become part of the core focus for

modern software systems. During the course of the current study, the researcher

has been co-opted as a member of the IEEESA Working Group on agile software

development where fellow group members delivered a paper that addresses the

issue of security in the agile development environment. The paper by Yasar and

Kontostathis (2016) provides a lightweight DevOps model (Figure 6.28) that has

the objective of providing a specific security and testing focus during the agile

development lifecycle.

 312

The basic tenet of this model is that the error situation of ‘breaking the

build’ that has become synonymous with the strategy of continuous integration

(CI) should not have an exclusive focus on functionality, but also on security.

SDOM does make provision for testing, both in a manual and automated form. A

lightweight addition to SDOM could be a specific reference to security based

testing. However, the Yasar and Kontostathis (2016) model makes a call for a

specialised security testing team to be incorporated into the DevOps development

lifecycle so that there are specific security testing phases that are attached to the

lifecycle model. The methodology suggested by Yasar and Kontostathis resonates

with a call previously made in Arkin et al. (2005) that software development

lifecycle models should incorporate a penetration testing phase eloquently

described by Geer and Harthorne (2002, p. 1) as “…the art of finding an open door”

or a test to determine the vulnerability of a system to unauthorised access from

Figure 6.28: A Security and Testing Model for DevOps proposed in Yasar and

Kontostathis (2016)

 313

the point of entry to the availability of functionality that is designated for specific

users of the system. The model proposed by Yasar and Kontostathis suggests that

security testing teams should be involved in the daily build cycles so that a ‘break

of the build’ could be attributed to security breaches that could be identified as the

system evolves rather than at the end of the development lifecycle. As illustrated

in Figure 6.28, the security testing team has to be involved at the system inception

phase, during the daily code commits and once the system is configured so that it

is in a ‘production-like’ state. At the inception stage, the security team is

responsible for developing a document that outlines the penetration testing

strategy and this document is updated, based on the outcomes of the various

penetration testing interventions conducted during the daily and production build

cycles.

A closer examination of the Yasar and Kontostathis model reveals that the

model is not as complex as initially perceived and an integration of this model and

SDOM can be easily achieved. This will provide an ideal security oriented

enhancement to SDOM.

Negatively Worded Responses

The negatively worded responses resonated with the opinion that SDOM

did not align with some of the mainstream approaches that make an organisation-

wide impact and it is not an international standard that will contribute to any

planned level of agile maturity. The researcher provided email responses (refer to

Appendix F), to the respondents who provided the negative responses. The content

of the email communication was essentially to endorse the validity of the negative

comments and also to explain that these comments were certainly applicable to

organisations where the culture was amenable to an organisation-wide agile and

DevOps intervention. Two of the negatively worded verbatim responses are

included for reference.

The differentiation and advantages of SDOM over these mainstream

frameworks needs to be clearly articulated and quantitatively verified

with actual metrics on real software projects that many organisations

are aspiring towards…not sure if I would adopt SDOM if out of the

box frameworks like SAFe are available which provide training and

 314

certification for their frameworks. (Software engineer for a national

logistics organisation)

This is a “light-weight” SCRUM Delivery Model and I unfortunately

don’t see benefits of SDOM than what is already provided by the

originally authored model. I would suggest a model that emphasizes

more on quality and reuse of existing / strong frameworks that would

assist agile delivery.

(Software engineering consultant for a national/international software provider)

The reference to the Scaled Agile Framework (SAFe) is certainly valid.

However, the researcher is of the opinion that SDOM may be seen as a subset of

the SAFe. The respondent who made this comment did agree during the

subsequent email conversation that the SAFe required a major organisational

cultural shift that could entail an intensive investment of resources and

organisational time that is not easily achieved and sustained. The ‘second negative

respondent’ was assured that SDOM does have a strong Scrum alignment but it

has been tweaked to incorporate a ‘DevOps flavour’ thus providing a technical

differentiation between SDOM and a pure Scrum based model. The reference to

reuse and the reliance on existing development frameworks was clarified in a

follow-up email to allude to a software engineering strategy currently being touted

as model based software engineering (MBSE). The MBSE is an initiative that

encourages the use of tried and tested software code bases and design models that

have been previously used as solutions to business problems. The MBSE is seen as

an attempt to regulate/standardise the software industry with tried and tested

models of development. It does however rely on a comprehensive model set to work

from. The lightweight nature of SDOM enables easy integration with software

strategies such as MBSE and this could be a consideration for subsequent versions

of SDOM. It also requires a heightened security add-on because many of the pre-

defined models will be sourced from 3rd party vendors. This ties up with the

security and testing model proposed by Yasar and Kontostathis (2016). The

strength of SDOM is manifested in its lightweight capacity enabling it to integrate

easily with software engineering, operations engineering and security

improvement initiatives.

 315

The main outcome of the open ended deliberations is that the discourse on

methodology models such as SDOM will invariably provoke passionate responses

that are diverse but add to a constellation of ideas that contribute to the

evolutionary trajectory of software development methodology. This trajectory

provides an enabling environment for the attainment of maturity of software

development processes that could culminate in the universal acceptance of SAFe-

like frameworks where software development assumes a ubiquitous presence in

organisational processes.

 316

7.0 SUMMARY AND CONCLUSION

7.1 Introduction

This chapter comprises of the study’s summary and conclusion. The

summary is structured by making a reference to the study’s research questions

with an accompanying discussion of how these questions were answered. The

chapter outline is as follows:

 A review of the research objectives and questions underpinning the

study;

 A discussion of the study’s findings;

 Theoretical contributions of the study;

 A review of the study’s limitations;

 The implications arising from the study and areas for future

research;

 An autobiographical reflection;

 The study’s conclusion.

7.2 A Review of the Study’s Research Questions

The overarching objective of the study is to make a contribution to the field

of software engineering (SE), specifically in the domain of software process

methodology (SPM) and software process improvement (SPI) strategies. The

attainment of this objective is guided by a main research question that has

underpinned the study:

How can experiential knowledge of Agile Software Development

practice in South Africa be used to develop a Socio-technical Framework

to Guide the Implementation of Agile Software Development Methodology?

 317

The essence of this question is attributed largely to the outcome of the study’s

literature review as well as an interview conducted by the researcher with IBM

Research Fellow, Grady Booch. The outcome from both these sources converge to

an opinion that the study of SPM has to be conducted from a social and a technical

orientation. The social dimension manifests in the experiential knowledge of SPM

by expert software practitioners. One of the major influences that makes a pivotal

contribution to the choice and implementation of a SPM is the culture that prevails

in an organisation. The technical dimension is a reference to the engineering-like

methods that are intrinsic to the software development process. The evolution of

software process methodologies is following a trajectory that is gravitating towards

the iterative and incremental approach to software development. The allure of the

iterative and incremental approach is that is embodies flexibility and it has an

ability to deliver working software quickly. The attributes of speed and agility have

been aggregated into a set of methodologies referred to as Agile Software

Development Methodology (ASDM). The main objective of the study is to provide

a social and technical intervention that will enhance the implementation of ASDM.

The empirical phase of the study entailed the acquisition of experiential knowledge

from software practitioners in South Africa to enable the study to meet this

objective.

In order to leverage the knowledge of experienced software practitioners

from a meaningful, ‘depth-oriented’ perspective the dominant methodological

approach implemented in the study is qualitative, with a specific adherence to the

principles of phenomenology. The empirical phase of the qualitative component of

the study comprised of a set of 16 semi-structured interviews conducted with South

African based software practitioners who have acquired general software

development experience as well as ASDM experience in an organisational context.

A content analysis of the interview data was performed to enable a synthesis phase

that comprised of 2 models with each having either a social or a technical

orientation. The socially oriented model developed in the study provides a

framework that integrates the implementation of ASDM with attributes of

organisational culture (OC). The technically oriented model developed in the study

 318

is an extension of one of the prominent agile methodologies so that it is better

aligned to the requirements identified by the cohort of software practitioners who

were interviewed. The final empirical phase of the study entailed a quantitative

verification exercise to establish practitioners’ acceptance of the technically

oriented model. Technology acceptance theory was used as a platform to identify

an appropriate theoretical model to underpin the quantitative verification phase

of the study. A total of 40 experienced software practitioners were surveyed to

establish their acceptance of the proposed technical model to guide the

implementation of ASDM.

The main research question is broken up into the following sub-questions:

 What are South African software practitioners' perspectives on Agile

Software Development Methodology (ASDM) from a technical

perspective?

 How does organisational culture influence the implementation of

ASDM?

 How can South African software practitioners’ knowledge of ASDM

be used to develop a framework to guide the implementation of agile

methodology?

 What is the acceptance by South African software practitioners of a

framework that informs the technical implementation of ASDM?

7.3 A Discussion of the Study’s Findings

The study’s findings will be presented fractionally by making reference to

the sub-questions that guided the study. The discussion of the study’s findings will

culminate in a holistic review of the main outcomes from the study.

 319

What are South African software practitioners' perspectives on ASDM from a

technical perspective?

All 16 interviewees endorsed ASDM as a relatively successful methodology

for software development. This response was made in comparison to the Waterfall

methodology which many South African organisations were either phasing out

completely or were in the process of transitioning to ASDM. The underlying

imperative for the migration from a prescriptive, plan driven approach to a

dynamic, agile approach was the perception that system development occurred a

lot faster, thereby enabling the attainment of business value. Also, the

development process was flexible enough to accommodate changing user

requirements resulting in greater satisfaction by the system’s stakeholders. The

practitioners were also of the opinion that the agile approach enhanced morale

within the team of developers and promoted a sense of ownership and

accountability. This outcome resonates well with similar reports regarding the

benefits of adopting an agile approach to software development (e.g. (Abrahamsson

et al., 2017; Dybâ & Dingsoyr, 2008; Moniruzzaman & Hossain, 2013; Nguyen,

2016).

A defining trend was that all interviewees explained that the adoption of

agile methodology entailed a migration from a Waterfall based approach to a

Scrum based approach for software development. The adoption of Scrum as the

current de facto methodology for software development in South Africa is strongly

aligned to global trends with regards to a preference for a specific agile

methodology (as reported in (Dingsøyr & Lassenius, 2016; VersionOne, 2016)

There was however, a substantive effort made by all the members of the cohort of

practitioners who constituted the interview panel, to explain the need to

implement a customised version of Scrum. The customisation consisted of a hybrid

of XP and Scrum oriented methods. The Extreme Programing (XP) methods that

were invoked are test driven development, code refactoring, continuous integration

and pair programming (to a lesser extent). The Scrum methods that were invoked

are the maintenance of a product backlog, the Scrum Sprint phase, the daily

standup meetings and the integration and system testing and release of the system

 320

into a production environment. These practices resonate well with the findings by

Abrahamsson et al. (2017) that the Scrum/XP hybrid arrangement typically consist

of XP methods that provide guidance on the engineering aspect of software

development and the Scrum methods provide guidance on the project management

aspect of software development.

A deviation from the agile approach does however manifest in the

preference by South African organisations to engage in a big design upfront

(BDUF) strategy. This is contrary to the dictates of ASDM where the upfront

design is specified as a high level design effort with the detailed design evolving

with the coding of the system. However, practitioners expressed reservations about

this practice and intimated that the smaller, less critical projects did adopt a high

level, minimalist upfront design strategy aligned to the agile approach. However,

for the larger organisation-wide applications, a BDUF strategy was employed

because this strategy enabled better project management of the system. This

Waterfall based customisation of ASDM resulted in the use of the term Wagile

development that entailed a BDUF followed by a Scrum approach for the coding of

the system. This strategy was also aligned to the culture in the organisation where

there was a preference to forego competitive advantage in order to preserve a

predictable software development process.

In a majority of the interviews (69%), there was a reference to the issue of

business value. The inability of the Waterfall methodology to deliver on business

value was touted as one of the reasons that lead to the demise in the popularity of

the Waterfall methodology. Although the migration to ASDM and Scrum has

alleviated the situation somewhat, this dilemma was still largely unresolved. The

Scrum model has been criticised for not providing direction to enhance the

scalability of the solutions developed to an organisation-wide platform.

The overriding conclusion from the practitioner perspective is that there is

a preference for ASDM and the ideal arrangement is a Scrum based methodology

infused with Waterfall and XP methods. However, this Scrum oriented approach

was ideal for developing ‘solutions in the small’ but did not scale up to level where

the solution could be directly implemented on the organisational infrastructure.

 321

This setback resulted in the late delivery of expected business value that could be

derived from the system.

The issue of the scalability of agile methodologies such as Scrum has only

recently been receiving attention in the academic literature. Dingsøyr and

Lassenius (2016) suggest that the adaptation and customisation of agile

methodologies have been widely recognised by the academic community and the

practice of customising ASDMs like Scrum have also become entrenched into the

practitioner domain. However, there has been a severe lack of focus by the

academic community on the scalability of ASDM (an assertion that has been

endorsed by Dikert et al. (2016) and Fuggetta and Di Nitto (2014)). According to

Dingsøyr and Lassenius, the lack of direction on the scalability of ASDM is one of

the major shrtcomings of the methodology. This assertion is corroborated by the

empirical evidence gathered on the basis of the analysis of South African

practitioners’ perspectives of ASDM in the current study.

How does organisational culture influence the implementation of ASDM?

The inclusion of OC as a structural component of the current study has been

necessitated by the pivotal role that it plays in the adoption of a software

development methodology. The study of the influence of OC is not easy to achieve

because of the difficulty of acquiring an oversight role over an amorphous concept

such as OC. In order to overcome this problem, the study implemented the

Competing Values Framework (CVF) to operationalise OC. The CVF classifies OC

along dimensions that range from a high level of internal control that is associated

with a hierarchical style of management control to lower levels of internal control

and a more democratic management approach.

From a holistic perspective, the results of the data analysis indicate that

there is unanimous agreement that OC influences the adoption of ASDM, thereby

confirming the reports from the academic literature (Iivari & Iivari, 2011) on this

phenomenon. However, the classification of OC along the dimensions of the CVF

is not a straight forward process. The cultural mix that exists in South African

organisations is varied with a predominance of the hierarchical management style

(referred to as Hierarchical Culture from the CVF) that prevails at the upper

 322

echelons of management. From a technology perspective, this hierarchical culture

was also prevalent at the lower/supervisory management levels during the tenure

of the Waterfall methodology because each phase of the development process

required management approval before the next phase of development could

commence. However, the migration to an agile approach has resulted in a more

organic management style where the focus is on co-operation and consultation and

the ability to respond to change without becoming too embroiled in bureaucratic

processing. Agile teams work in a self-managing environment and this sense of

autonomy enables agile teams to achieve high levels of productivity. From a CVF

perspective, a Developmental Culture orientation (which encourages leadership

and collaboration, innovation and risk taking in the quest to achieve competitive

advantage) has a strong resonance with ASDM. The CVF also makes reference to

a Group Culture orientation (driven by experienced staff members who provide a

flexible environment but prefer to have internal control) which also has a

resonance with ASDM. Cockburn and Highsmith (2001) make reference to the

requirement that ASDM can only be successful in an “agile organisation” that

consists of “agile managers” (p. 132). The current OC classification provides clarity

on these assertions by identifying 4 ‘quadrants of applicability’ for ASDM.

Identification of the 4 ‘quadrants of applicability’ for ASDM within an OC

framework is based on empirical references (9 of the 16 interviewees (56.25%)) to

a phased-in or a bimodal approach to software development where software

development teams are cajoled into an agile environment from a Waterfall

foundation. This approach is guided by the experienced staff members who prefer

to have a measure of control as organisations migrate from a Waterfall to an agile

environment. This migration is coupled with a change in management style

resulting in a shift from a ‘command and control’ style of management, which are

symptoms of a Hierarchical Culture, to a collaborative Group Culture orientation.

Based on the empirical evidence in the study, organisations in South Africa have

a predominant Hierarchical Culture (previously confirmed in a study by Iivari and

Huisman (2007)). However, there is an imperative for these organisations to

migrate towards a Developmental Culture orientation where software

 323

development teams are entrusted with complete autonomy so that the invocation

of ASDM would enable the delivery of greater business value to the organisation.

The empirical evidence suggests that this migration is currently being achieved in

a measured approach where organisations are ‘breaking out’ of the ‘hierarchical

mould’ by venturing into a mix of Group Culture and Rational Culture

orientations. This arrangement is not ideal because the most fertile region for

ASDM to deliver on its expectation of business value is in the Developmental

Culture dimension (Iivari & Iivari, 2011). However, the transition to a

Developmental Culture requires an organisation-wide cultural shift that

comprises of a closer collaborative environment between the business and

technology divisions where technology is the driver of business value. The

transition to Developmental Culture also entails the bestowing of complete trust

onto the development teams to arguably ensure that business value is delivered

and failure is mitigated by comprehensive risk analysis and testing. These shifts

in organisational behavioural norms can only be achieved by providing

comprehensive training programs that empower software developmental teams

with decision making acumen from a technological and business perspective. The

corollary of this arrangement is to empower business analysts (BA’s) with

knowledge of the software development process so that the environment between

software development teams and business managers is more collaborative rather

than command and control.

Based on the input obtained from interviewees from 2 of the major banking

institutions in South Africa, the attainment of Developmental Culture status is

something that these institutions are aspiring towards. The main reason for this

imperative is the realisation that the lack of scalability of ASDM is resulting in a

loss of the expected business value. In order to mitigate this situation, these

organisations are resorting to scaled versions of ASDM such as the Scaled Agile

Framework (SAFe). However, this transition will require a business process re-

engineering initiative coupled with organisation-wide training on SAFe that may

not be easy to achieve. The remaining 2 banking institutions are content to abide

 324

by a Group/Rational cultural mix with a focus on trying to mitigate the agile

scalability dilemma with lightweight adaptations of Scrum.

In conclusion, OC influences the adoption of ASDM. The least ‘fertile’ region

for ASDM is the Hierarchical Culture dimension of the CVF. The ideal placement

of ASDM is in the region of Developmental Culture (from the CVF). The migration

from Waterfall methodology to ASDM in South Africa has been coupled with a

change from a Hierarchical Cultural environment to one that resonates with the

Group/Rational culture mix. This arrangement does not enable the attainment of

maximum value from ASDM. However, it is a workable compromise that facilitates

the transition to ASDM without having to engage in a complete organisation-wide

cultural shift as is required by SAFe. Based on input from South African software

practitioners, the typical OC attributes of organisations that are migrating

towards ASDM is that innovation and collaboration is highly valued, but there is

a strong tendency to uphold current organisational traditional practices and

norms. These attributes place these organisations at an overlap region between

the Group Culture and Developmental Culture classification from the CVF. Hence,

any intervention to improve the implementation of ASDM in these organisations

should ideally be located in the intersection region of the Group and

Developmental Culture quadrants of the CVF.

How can South African software practitioner's knowledge of ASDM be used to

develop a framework to guide the implementation of agile methodology?

The current research question is a reference to the synthesis phase of the

study. The synthesis phase comprises of a social and a technical model that have

been derived as output elements of the qualitative analysis conducted on the

interview data. From an overview perspective, one of the more conspicuous trends

with regards to the adoption of software development methodology in South

African organisations is that the 2 most popular methodologies are the Waterfall

and Scrum methodologies. The trend observed is that organisations are making an

effort to migrate from a Waterfall methodology to the Scrum methodology. This

migration is conducted by adopting a phasing-in approach that embraces a

customised version of the Scrum methodology. The 2 main areas of customisation

 325

is the amount of BDUF that is conducted and the level of project management that

is maintained during the development process. Based on the preceding narrative,

an agile version of the CVF has been developed that classifies the type of

development methodology that best matches each of the 4 OC classifications in the

CVF. The model classifies OC along a continuum from a high level of control and

low levels of flexibility to low levels of management control and a high level of

flexibility. The Waterfall methodology is matched to the Hierarchical classification

of OC. However, at the Group Culture level where management control is not

prescriptive and imposing, but driven more from a guidance perspective, the

Wagile (Waterfall/Scrum) approach is recommended. This approach allows the

more experienced development team members to dictate the amount of BDUF that

may be conducted and customise the level of agility according to the organisational

norm or the requirements of the project. At the Rational Culture level where the

focus is on process optimisation and efficient control of resources, a risk oriented

software development methodology is suggested. The ideal candidates for the

Rational Culture ‘quadrant’ in the CVF is the Spiral methodology (Boehm, 2006)

or the updated, agile oriented version of the Spiral model named the Incremental

Commitment Spiral Model (Boehm, 2011). At the Developmental Culture level of

the CVF, a comprehensive adoption of ASDM is suggested. At this level, the all-

encompassing SAFe framework that mandates an organisation-wide adoption of

the principles of agility, is suggested as an ideal approach for software

development.

The analysis of empirical data revealed that a substantive shortcoming of

ASDM is the lack of scalability of the methodology thereby compromising the

attainment of business value. The issue of scalability has been traced to a silo-

based approach to software development that is prevalent in most organisations.

The symptom of the silo-based approach is the lack of collaboration between the

business, the software development and operations divisions. The business analyst

(BA) serves the role of providing a conduit that conveys business requirements to

the software development division. However, once the software has been

developed, there is a lack of collaboration between the business stakeholders, the

 326

software development team and the operations team that is entrusted with the

main non-functional requirement of ensuring that the system integrates with the

organisational infrastructure. An outcome of the data analysis is that there is a

need for a Build Engineer (BE), who provides the linkage between the development

team and the operations team as well as the business division. The BE will have

the responsibility of ensuring that there is a seamless transition from business

requirements to systems development and deployment onto a ‘live’ organisational

platform. Basically, the BE serves the role of ensuring that the system is in state

of readiness for activation to a live production environment thereby ensuring that

the attainment of business value is not compromised by a time delay between

development and operations. Currently the Scrum methodology does not have any

operations functions interwoven into the Scrum ‘ceremony’ of development. As a

solution to this problem a model has been developed in the current study, named

the Scrum Development Operations Model (SDOM). SDOM has a Scrum

infrastructure infused with operations activities controlled by the BE. This model

provides a forum for the BE to arguably ensure that the development environment

is configured as close as possible to the operations environment where the system

will be deployed. The main modification made by SDOM is the traditional

definition of ‘done’ (from an agile nomenclature perspective) is adjusted so that it

alludes to a state where the system has been developed and tested from a

functional perspective and also tested from an infrastructure (non-functional)

perspective so that ‘done’ now refers to a system that is in a deployable state.

SDOM consists of operations activities juxtaposed onto the traditional Scrum

model as a response to the shortcomings of the latter model identified during the

analysis of the study’s empirical data.

What is the acceptance by South African software practitioners of a framework that

informs the technical implementation of ASDM?

In order to obtain a perception of SDOM, a quantitative survey of 40

purposively selected software practitioners was conducted. The selection criteria

used was that the practitioners must have at least 5 years of experience in general

software development and at least 2 years of experience in the use of ASDM. The

 327

group of software practitioners who formed the main cohort of 16 interviewees from

the first empirical phase of the study was also included in the sample. The

questionnaire used to establish acceptance of SDOM was informed by an adapted

version of the Riemenschneider et al. (2002) Theory of Acceptance of Software

Development Methodology (TASDM). The main constructs of the theoretical model

are Perceived Usefulness (PU), Compatibility (CO), Subjective Norm (SN),

Organisational Support (OS) and Behavioural Intention (BI).

The results from the quantitative analysis indicate that 80% of the

respondents had a positive disposition towards the PU of SDOM. The construct of

PU was also found to be the strongest predictor of the BI to use SDOM and

accounted for 42% of the variance in BI. In the case of SN, 60% of the respondents

had a positive disposition towards SDOM indicating that the majority of the

respondents felt that the use of SDOM will be endorsed by ‘people of influence’ in

an organisational setting. The construct of SN was also found to be a significant

predictor of BI to use SDOM and accounted for 23% of the variance in the BI

construct. In the case of OS, 62.5% of the respondents had a negative disposition

towards SDOM and were of the opinion that their organisations would not provide

management and resource support for the implementation of SDOM. The

construct of OS was not found to be a significant predictor of BI to use SDOM. In

the case of CO, 67.5% of the respondents had a negative disposition towards SDOM

indicating that the processes contained in SDOM were not compatible with the

software process currently implemented in these organisations. The construct of

CO was not a significant predictor of BI to use SDOM. From a holistic perspective,

80% of the respondents had a positive disposition towards a BI to use SDOM.

The empirical evidence from the current study attests to the influence of

PU as the strongest determining factor of BI to use SDOM. This outcome is aligned

to the influence of PU on BI in many other empirical studies regarding adoption

behaviour (e.g. Adams et al., 1992; Agarwal & Prasad, 1998; Davis, 1989;

Riemenschneider et al., 2002; Saadé & Bahli, 2005; Venkatesh & Davis, 2000).

This trend is also confirmed in meta-analysis studies of adoption behaviour such

as King and He (2006) and Schepers and Wetzels (2007). The empirical evidence

 328

also attests to the relatively lesser influence that SN has on the BI to use SDOM.

This outcome is aligned to the reported influence of SN in studies of adoption

behaviour such as Venkatesh and Davis (2000), Vijayasarathy and Turk (2012)

and Schepers and Wetzels (2007).

According to Riemenschneider et al. (2002), PU and SN are the 2 most

decisive factors that influence an individual’s decision to adopt a software

development methodology. The software practitioners who have been sampled in

the current study indicate a positive disposition towards the PU and SN of SDOM.

The argument presented qualifies the deduction that software practitioners

perceive SDOM to be a useful model that will be positively viewed by their peers

in the software development domain.

The detractor to the deduction made in the preceding paragraph is the

negative disposition towards Compatibility and Organisational Support towards

SDOM. Both these constructs, Compatibility (Hardgrave et al., 2003;

Riemenschneider et al., 2002) and Organisational Support (Ahmad et al., 2016)

were reported as significant contributors towards a decision to adopt a software

development methodology. In terms of general technology and innovation adoption

theory Compatibility has also been reported to be a significant contributor towards

the BI to adopt a technological innovation (Kai-ming Au & Enderwick, 2000; Lee

et al., 2011). A closer inspection of the Compatibility construct does however reveal

that the organisational context may have a confounding influence on the values

recorded for this construct (Agarwal & Prasad, 1998; Fichman, 2000; Mustonen‐

Ollila & Lyytinen, 2003). The organisational context alludes to either the

technological infrastructure (Agarwal & Prasad, 1998) or the organisational

culture (Fichman, 2000). According to Fichman (2000) the adoption of an

innovation in an organisational context entails a lot more complexity than

accorded by classical diffusion theory where the Compatibility construct is

measured by determining whether the innovation is aligned to current work

practice. Karahanna et al. (2006) suggest that compatibility is a multivariate

construct and should be decomposed to measure compatibility with existing work

 329

practice and compatibility with an individual’s personal value system and

preferred method of work.

In the context of the current study, the items used to measure compatibility

was aligned to classical diffusion theory, thereby not accounting for the

compounding influence of organisational culture. Many organisations exhibited

symptoms of Hierarchical or Group culture, suggesting that the introduction of

innovation follows a bureaucratic process of adoption that is controlled by the

organisation’s management. Hence, the compatibility of SDOM with the current

work practice of the cohort of respondents may have been compromised by the

perception that the proposed model may not receive management support. This

phenomenon may also explain the lack of convergence of the Organisational

Support construct to the theoretical model used to underpin the questionnaire

design. The anomalous data associated with the constructs of Compatibility and

Organisational Support also highlight the intricate link between the technical

elements of the proposed model and the social context in which it may be used.

One of the discerning aspects of SDOM is that it proposes that the BE plays an

integral role in the Scrum planning and development cycle. This ‘disruptive’

intervention may not be fully aligned with the systems development team

structure currently used in the organisations. In organisations where the culture

is deemed to be a Hierarchical or Group culture, such a reconfiguration of the

development team structure and rearrangement of Scrum practices such as the

coding, integration and testing phases may require extensive deliberation by

management before such a change could be sanctioned. However, in an

organisation that exhibits a Developmental culture, the ‘barriers of resistance’ and

the intensity of bureaucratic deliberations are not that great when it comes to

embracing innovative suggestions such as SDOM.

The study’s main research question is presented again for reference.

How can experiential knowledge of agile software development

practice in South Africa be used to develop a socio-technical framework to

guide the implementation of agile software development methodology?

 330

The study has answered the main research question by leveraging

experiential knowledge of software practitioners to propose 2 models (the agile

based OC framework model Figure 5.13 and the Scrum Development Operations

Model in Figure 5.18) that provide guidance on the implementation of ASDM. The

social dimension is represented by a model that aligns OC to a compatible

methodology for software development. The model provides a framework that is

structured to inform the migration to agile methodology along the dimensions of

change in OC. The culture of an organisation is entrenched into the work practice

of the employees over a period of time and changes to this culture cannot be

implemented in a short time period. Aligned to the imperative of many

organisations in South Africa to migrate towards an ‘agile friendly’ culture, there

is a need to adopt software development methodological approaches that provide

the expected benefits of agile adoption in an incremental, lightweight manner that

does not necessitate ‘sweeping’ changes to the culture of an organisation. The

SDOM model has been proposed so that it aligns with the current technical

implementation of agile methodology and requires only a marginal change in the

OC.

Although both the models proposed in the study are conceptually different

and convey a dichotomous relationship, there is an underlying intricacy that links

both models. The OC model has an inextricable link to the adoption of technically

oriented software development process models and SDOM has been crafted to

embody a simple and lightweight deviation from traditional agile methodology so

that it easily aligns with the intersection of the Group and Developmental Culture

orientation that is typically found in South African organisations.

7.4 Theoretical Contributions of the Study

As Gorla and Lin (2010) as well as Sjøberg et al. (2008) point out, there is little

consensus in academia as to what constitutes a theoretical, scholarly contribution

to a field of study. Sjøberg et al. (2008) do however, provide some guidance in terms

of scholarly theoretical contributions in the domain of software engineering (SE)

by suggesting that such theory should be aligned to the philosophy of pragmatism

 331

because SE is an applied science and should ultimately benefit industrial practice.

In order to achieve this objective, the theoretical contribution should be delineated

according to the dimensions of research and industrial practice. The research

component should contribute to the evolution of ideas and knowledge in the topic

of the study and the industrial practice component should inform decision making

with regards to the choice of a methodology or technology that enables an

organisation to benefit from the output of an academic study. SE research makes

a theoretical contribution by typically following a pattern that gravitates from

practice to theory (induction) and from theory to practice (deduction).

The methodology implemented for the current study comprised of an

inductive approach that entailed the collection of data from a phenomenological

perspective to propose a theoretical model that aligns OC to software development

methodology. The study also implemented an element of abductive inference that

leveraged the phenomenological data with the researcher’s semantic

interpretation of the data to propose a methodology for software development that

integrates software development processes with operations processes (referred to

as SDOM). The theoretical contribution that the current study makes to the

domain of SE is represented as an illustration aligned to the Sjøberg et al model

for a theoretical contributon to the domain of SE, illustrated in Figure 7.1.

 332

As illustrated in Figure 7.1, the study’s main research contribution is

conceptually placed in the domain of the OC and ASDM. The study’s contribution

is contextualised by drawing reference to 2 articles on the current state of agile

software development practice. The first is a meta-study of the challenges and

success factors of agile adoption by Dikert et al. (2016). The most influential factor

that attenuates the adoption of agile methodology is a resistance to change that

usually manifests in a top-down or hierarchical management style that incurs the

prospect of “…reverting to an old way of working” (p. 97). In many instances, agile

methodology degenerates into the ‘management friendly’ Waterfall methodology

because of a lack of commitment by middle and senior management to embrace the

Figure 7.1: Theoretical Contribution of the Study

 333

changing values and practices espoused by agility. The study makes a call for

research efforts that addresses the role played by organisational management in

enabling the transformation to agility as well as the adaptation of agile methods

so that these methods can scale to an organisational level. The second study is an

article by Dingsøyr and Lassenius (2016) that entailed a compilation of research

interests between the academic and practitioner communities over the last decade.

An outcome of this comparison is the mismatch of research trends between these

2 groups. The academic sector has focused their research efforts on agile methods

that are intrinsic to the ‘inner workings’ of XP and Scrum. The practitioner

community has also bestowed a significant focus on Scrum, but more from the

perspective of its use in an organisational/enterprise-wide context. The main

source of inquiry from the practitioner community is to discover ways in which

Scrum can be tailored so that it scales to an organisational platform. The methods

that have been commonly touted as viable areas for future studies are continuous

integration, continuous deployment and DevOps. There is a major focus on

leveraging Scrum methodology to achieve business value by enabling a

collaborative environment between software developers and

operations/infrastructure engineers.

Based on the assumption that the ‘sweetspot’ for software engineering

research has been identified by Dingsøyr and Lassenius (2016) and Dikert et al.

(2016), then the current study has made a contribution by proposing 2 models that

fit into the ‘sweetspot’ for software engineering research. Aligned to the Dikert et

al. call for research that is grounded in the influence of management on the

implementation of ASDM, the current study has leveraged empirical data to

develop a framework that provides a guide on the influence of OC and management

control on the implementation of ASDM. The study is also congruent with the

Dingsøyr and Lassenius imperative to align academic research in SE to the

requirements of industrial practice. This imperative has been achieved by the

development of SDOM, a Scrum based software process model that comprises of

elements of continuous integration, continuous deployment and the strategy of

DevOps. SDOM has been tailored so that it is conveyed as a lightweight model

 334

thereby incurring an unobtrusive adjustment to the prevailing culture within an

organisation. The objective of presenting such a lightweight model is that it does

not have a disruptive influence on the prevailing OC. Models such as SDOM may

be seen as a catalyst that will spawn the development of similar lightweight

models by the academic research community, which can build upon the

conceptualisation that software process models cannot exist in isolation from the

operations activities required to galvanise these models to provide value to an

organisation. The underlying philosophy behind such a stance is that it resonates

with the principles of simplicity and continuous delivery of working software as

espoused in the Agile Manifesto (see Fowler & Highsmith, 2001)

An additional contribution made by the study emanates from the structural

equation modelling (SEM) exercise that was undertaken in relation to the

theoretical model used to operationalise acceptance of SDOM. The theoretical

model consists of the 4 independent variable constructs of PU, SN, CO and OS and

the dependent variable construct of BI to use SDOM. The regression analysis and

the SEM exercise reveals that the construct of CO did not make a significant

contribution to the predictive capacity of the theoretical model and there was a

high level of covariance between SN and OS. PU was however recognised as a

strong predictor of BI to use SDOM. SEM was used to reconfigure the theoretical

model so that those items used to measure SN, OS and CO that were perceived to

be indicators of OC were conflated into the construct named OC. PU was retained

as the other main construct of the model. The SEM exercise revealed that the

overall predictive capacity of the newly configured theoretical model resulted in an

improvement over the original model. This result may be subjected to scrutiny

because the items used to measure OC did not have a strong theoretical

underpinning. However, the conceptual outcome is significant in the sense that the

SEM exercise provides an indicator that OC has to be included with PU as 2 of the

main constructs in any model that is designed to operationalise the acceptance of

a software development methodology.

 335

7.5 Limitations of the Study

The Study’s Scope and Sampling Strategy

The sampling strategy used in both the qualitative and quantitative phases of the

study was purposive sampling which may be perceived as a limitation of the study

from a generalisability perspective. However, as explained in in sections 3.2 and

3.2.5 of Chapter 3, the researcher has an interpretivist worldview orientation,

thereby explaining the gravitation towards a predominantly qualitative approach

for the first and defining phase of the study. The qualitative research approach

resonates with the purposive sampling strategy adopted in the first phase of study

where individuals who are experienced software practitioners were sampled using

a phenomenological approach to generate ‘rich’ quality data on their experience of

using a software development methodology. The phenomenological approach has

yielded quality data, supplemented with input from 3 experienced and highly

respected international practitioners in the SE domain. The contention made is

that the ideas generated in the study have global applicability and a future study

could seek empirical verification of these ideas on a broader, global platform.

The 2nd (quantitative) phase of the study entailed an acceptance study of

one of the models that were output from the qualitative/exploratory phase of the

study. A cohort of 40 purposively selected software practitioners provided a survey

based acceptance response to the proposed SDOM. The use of purposive sampling

in the quantitative phase of the study may also be perceived as a limitation of the

study from a generalisability perspective. However, the exploratory nature of the

study necessitated the use of a strategy whereby quality input could be obtained

from subjects who are qualified to provide a meaningful response. The expansive

testing of SDOM could be achieved in a subsequent study where there is an explicit

focus on achieving external validity.

Completeness of the Validation Phase

The acceptance based quantitative phase of the study was directed on the

technical aspect as represented by SDOM. However, an acceptance and validation

exercise for the socially oriented OC model was not conducted because the

validation of a model that guides ASDM on the basis of an amorphous concept such

 336

as OC can only be achieved if the respondents of the study have extensive

familiarity with OC theory. The development of the OC model has been achieved

on the basis of qualitative empirical data from experienced software practitioners

coupled with the interpretive analysis of the researcher. Iivari and Huisman (2007)

refer to such a model as an “empirically inspired theory” (p. 48), the type of which

is severely lacking in information systems research.

Comprehensive Review of Agile Methodologies

The current study’s review and analysis of agile methodologies has been

confined to XP, Scrum and the Scrum/XP hybrid model. The rationale behind this

strategy is that XP has been widely recognised as one of the pioneering agile

methodologies (Abrahamsson et al., 2017) and Scrum is currently the most widely

used methodology for software development followed by the Scrum/XP hybrid

model (VersionOne, 2016). The study’s focus on Scrum and the Scrum/XP hybrid

has been driven by the reported trends in software development methodology as

well as the empirical data that converged to a viewpoint that Scrum has been

endorsed as the de facto methodology for software development by South African

organisations. It is recommended that an operations-oriented customisation of a

broader range of agile methodologies be undertaken in a future study. The

selection of agile methodologies for such a study may be made from the

comprehensive review of agile methodologies provided in Abrahamsson et al.

(2017).

Lack of Focus on Software Correctness and the CMMI-Dev

The current study’s focus is to provide an extension to ASDM by

incorporating elements of the operations domain into the software development

process. This strategy will enhance the prospect for software systems to be

delivered on time and within budget. The empirical data from the study suggests

that the SDOM model achieves this objective. The researcher does however

concede that SDOM does not have a specific focus on ensuring software correctness.

While the testing phases within SDOM is oriented towards user acceptance

testing, this is no guarantee that the system is correct. The lack of focus on system

correctness is a limitation of the study. This limitation does however open up an

 337

opportunity for a subsequent study to integrate correctness testing as a specific

phase in the agile development process. The advantage of integrating correctness

testing into the process is that it enhances the prospect of aligning agile

methodology to the Capability Maturity Model Integration for Development

(CMMI-Dev). The CMMI-Dev is a model that provides organisations with a

comparative framework to assess the level of maturity that they have reached in

developing software. The lower levels of the CMMI-Dev model refers to software

processes that are lacking in structure. The higher levels of the CMMI-Dev is a

reference to processes that are repeatable where the focus is on defect control so

that all new projects have lower instances of errors because of lessons learnt from

previous systems development exercises.

7.6 Implications and Future Research

The study’s implications will be contextualised by explaining ‘what has

been achieved’ and ‘what still needs to be achieved’.

Scrum Achieves Widespread Acceptance

The empirical evidence from the study attests to widespread acceptance of

ASDM with a specific preference by South African organisations for a Scrum based

approach to software development. Organisations are using hybridised versions of

Scrum so that it aligns with organisational values and the requirements of the

project being developed. The main form of hybridisation entails an integration of

Waterfall practices such as BDUF and XP practices such as test driven

development and continuous integration with core Scrum methods such as time

boxing, the daily stand up meetings, the Scrum sprint and the sprint review.

Scrum as a software process model is seen as a huge improvement over the

Waterfall process model. There is however, a need to scale the Scrum-hybrid

methodologies to the organisational platform so that there is a continuous delivery

of business value. The current study has proposed a lightweight Scrum/DevOps

based model that provides an integrated model of processes and role players who

will be pivotal in enhancing the scalability of Scrum. The empirical evidence

 338

attests to substantial support for such a model where there is a conflation of the

development and operations working environment. The lightweight nature of

SDOM also facilitates easy acceptance because of a minimalistic deviation from

the traditional Scrum model. The advantage of investing in such lightweight

models is that it does not necessitate a drastic change in the prevailing OC. A

further example of such a lightweight Scrum/DevOps model, where the focus is

more on security and testing is proposed by Yasar and Kontostathis (2016), and

discussed in Section 6.6 of Chapter 6 of the current study.

The viability of implementing lightweight models that have a

Scrum/DevOps demeanour to obviate the ‘disconnect’ between development and

operations needs to be further explored using a wider sample of software

practitioners and organisations. The conceptual outcome of such studies would be

that a trajectory of research in software development methodology is initiated,

where the development methodology is integrated with operations processes that

ultimately enable the delivery of business value at organisational level. Further

studies are needed to explore how developers can contribute towards ensuring that

the development code base is compatible with the operations code at the

infrastructure level and a corollary to this would be studies that seek to determine

how operations engineers can provide an operations platform that is compatible

with the technologies that software developers are comfortable with using for

development.

OC is recognised as a Predictor of ASDM Acceptance

OC plays a pivotal role in determining the acceptance of a software

developmental methodology. Migration to an ASDM requires a shift of the OC in

a direction that is less hierarchical. In many South African organisations, the

culture of upper and middle management is hierarchically oriented. Changing

such a ‘deeply set’ culture cannot be achieved in a short space of time. Incremental

changes to the OC in a direction that is less hierarchical may be accompanied by

incremental changes to the software development approach in a direction that is

more agile. A framework that illustrates this transition has been provided in the

 339

current study. The study has also provided empirical evidence to support the

assertion that the transition to ASDM may be accomplished incrementally by

adopting lightweight models of agility such as SDOM thereby minimising the

prospect of imposing a disruptive influence on the prevailing OC.

The academic research community should make further contributions in

this regard by conducting empirical studies to ascertain the acceptance of software

process models that have an agile orientation and provides direction for the

attainment of business value. The theoretical models that are used to underpin

such acceptance based studies should include socially oriented constructs that

factor in the influence of OC. The socially oriented construct of Compatibility

should also be operationalised by implementing the suggestion by Karahanna et

al. (2006) of dissecting this construct into specific dimensions that measure

compatibility with organisational values and compatibility with personal values.

The Scaled Agile Framework (SAFe) Intervention

Aligned to the imperative to improve the scalability of agile methods, the

SAFe model is currently receiving substantial focus (VersionOne, 2016). From the

study’s data it has been established that two of the organisations from the banking

sector in South Africa have made a commitment to adopt the SAFe model to

achieve scalability of ASDM. However, there is a concession from the interviewee

representatives from these organisations that SAFe is a ‘disruptive’ framework

that requires comprehensive training and a firm organisational commitment

towards a Developmental Culture orientation. From the empirical data, it has also

been ascertained that a third organisation, also from the banking sector, does not

see SAFe as a viable framework. The main reason for this negativity is the

perception that SAFe conflicts with their preference for the current Group Culture

orientation that leverages experiential knowledge to derive hybridised lightweight

Scrum variants that have a better fit with the organisation’s business processes.

This kind of differentiation in the implementation of agile frameworks to achieve

an optimal alignment with the OC provides a rich source of data for future

 340

comparative studies that could determine the acceptance of lightweight agile

models compared to organisation-wide interventions such as SAFe.

7.7 Autobiographical Reflection

At the inception of the current study, the researcher’s epistemological stance

towards SE research has been conveyed in Ranjeeth et al. (2013). From an

overview perspective this stance resonates with two main ideas. The first is that

SE has to have a social and technical dimension that should not be dichotomous.

The second is that academic research in SE needs to be pragmatically applicable

in an industrial setting thereby dispelling the belief by software practitioners that

academic research in SE has an ‘ivory tower’ orientation. The ideology emanating

from this philosophical stance resulted in a research agenda that has the primary

objective of making a contribution to the evolution of software development

methodology and the secondary objective of paving a path that bridges the divide

between academic research and its applicability in an industrial setting.

Achieving the objectives alluded to in the preceding paragraph have been

challenging and rewarding. The main challenge faced by the researcher is the lack

of academic literature on the strategies such as continuous integration and

deployment to enable the scalability of agile methodology to an organisational

platform. The plethora of academic studies on the acceptance and adoption of the

‘inner workings’ of agile methodology had somewhat of a misdirecting influence on

the literature review and the preliminary design of the interview protocol used in

the qualitative phase of the study. However, during the data collection phase, this

shortcoming was soon realised and rectified. This adjustment resulted in a change

in the orientation of the study from the ‘inner workings’ of ASDM to the role that

it plays from an organisational and business value context. This realignment was

crucial to arguably ensure that the study achieved its objective of making a

contribution that is deemed to be relevant and applicable to an industrial setting.

A further challenge was to ‘keep pace’ with the rapid change of the capacity

of technological tools to support the software development and deployment process.

 341

The availability of technical support for strategies such as continuous integration

and deployment, necessitated continual adjustment of the data collection plans so

that the correct people were identified to arguably ensure that the study had a

‘rich’ source of data. The busy schedule of many of these software practitioners

meant that the time that could be availed for the purpose of the current study was

at a premium. The priority attached to work related commitments resulted in a

few instances where members of the sample group of software practitioners

requested for a postponement of the scheduled interview. These postponements

contributed to a fragmented data collection phase that disrupted the continuity of

the qualitative data analysis phase.

The rewarding aspect of the current study is that the researcher was

provided with an opportunity to engage with members of the professional software

development community and acquire knowledge of current software development

practice as well as the latest tools that were used to support the development of

professional software. This knowledge was pivotal in meeting the objectives of the

current study and also enabling the researcher to make an input into the design of

the academic SE curriculum at the researcher’s organisation of employment in the

tertiary education sector. The input made is in the domain of analysis and design

and the priority attached to BDUF, the use of open source technologies to support

continuous integration with tools such as Git and Github, the role played by a

continuous integration server such as Jenkins and the use of containerisation tools

such as Docker. The open source option to support continuous integration provides

the flexibility of integrating solutions from both proprietary and open source

platforms into an executable application that may be run on diverse platforms. The

overriding message emerging from the trends in the professional sector is that the

software development process requires methodological support that embraces

flexibility and technological support that enables collaborative development with

the objective of maintaining the evolving system in a ‘ready to deploy’ state.

 342

7.8 Concluding Remarks

The current study was conceived as a plan to make a contribution to the

software process improvement imperative that has been a focal area in the

academic discipline of software engineering. The underlying objective was to make

a contribution to the incremental expansion of the current body of knowledge in

the domain of software development methodology. As alluded to in the study,

current academic knowledge of software development methodology is centered on

the agile approach for software development. This trend is reflective of a

paradigmatic shift from a prescriptive approach to software development to one

that espouses flexibility and the ability to respond to a dynamic environment

where changing functional requirements are embraced as an integral feature of

the software development process. The current study has embraced the concept of

agility and set out to contribute to the trajectory of academic research that focuses

on the enhancement of an agile based software development process model. The

strategy used was to leverage experiential knowledge of ASDM from expert

software practitioners to identify aspects of the methodology that could become the

focus of a software process improvement initiative. An outcome of this empirical

incursion into the experiential dimension of ASDM is that a transition to agility

has to be aligned to a corresponding shift in the prevailing culture that exists in

an organisation. This knowledge became a catalyst for an exploration of the

influence of OC on the adoption of a software development methodology, resulting

in the development of a model that guides the adoption of ASDM according to an

OC classification. The empirical evidence also attests to the need for ASDM to

integrate the non-functional elements of the operational environment with the

software development process so that the transition from development to

deployment is a seamless activity. The study has made a pioneering contribution

in this regard by infusing elements of the operational environment with core

software development activities intrinsic to the Scrum development process.

The study has succeeded in maintaining the trajectory of the current body

of academic knowledge of software development methodology by incrementally

extending this knowledge in the direction of OC and the operational environment

 343

in which software is implemented. Paradigmatically, these interventions resonate

with the current impetus to impart agility and simplicity to the software

development process. However, it also adds the imperative to accord cognisance to

the social and business context in which most software systems function. The

implication is that software process models have to incorporate phases that enable

the integration of business and operational requirements so that these models may

be perceived as useful in a professional, organisational context.

 344

REFERENCES

Abbas, N., Gravell, A. M., & Wills, G. B. (2008). Historical roots of Agile methods:

where did “Agile thinking” come from? Agile Processes in Software

Engineering and Extreme Programming (pp. 94-103): Springer.

Abeyratne, K. S. (2014). Analyzing Student Learning Outcomes In Programming

Course Using Individual Study Vs. Pair Programming. Dissertation, Graduate

School, North Dakota State University, Unpublished.

Abrahamsson, P., Conboy, K., & Wang, X. (2009). “Lots done, more to do”: the current

state of agile systems development research. European Journal of Information

Systems, 18(4), 281-284.

Abrahamsson, P., & Koskela, J. (2004). Extreme programming: A survey of empirical

data from a controlled case study. Paper presented at the Empirical Software

Engineering, 2004. ISESE'04. Proceedings. 2004 International Symposium on.

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software

development methods: Review and analysis. arXiv preprint arXiv:1709.08439.

Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use,

and usage of information technology: A replication. MIS quarterly, 227-247.

Adolph, S., Hall, W., & Kruchten, P. (2011). Using grounded theory to study the

experience of software development. Empirical Software Engineering, 16(4),

487-513.

Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user perceptions

in information technology adoption. Decision Support Systems, 22(1), 15-29.

doi: http://dx.doi.org/10.1016/S0167-9236(97)00006-7

Agresti, A. (2018). Statistical Methods for the Social Sciences. New York: Pearson.

Ahmad, M. O., Markkula, J., & Oivo, M. (2016). Insights into the perceived benefits of

Kanban in software companies: Practitioners’ views. Paper presented at the

International Conference on Agile Software Development.

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. (2010). Agile software

development: Impact on productivity and quality. Paper presented at the

Management of Innovation and Technology (ICMIT), 2010 IEEE International

Conference on.

http://dx.doi.org/10.1016/S0167-9236(97)00006-7

 345

Aiello, B. (2017). Interview on Agile LifeCycle Management and DevOps. In S.

Ranjeeth (Ed.).

Aiello, B., & Sachs, L. (2016). Agile Application Lifecycle Management: Using

DevOps to Drive Process Improvement: Addison-Wesley Professional.

Aitken, A., & Ilango, V. (2013). A comparative analysis of traditional software

engineering and agile software development. Paper presented at the System

Sciences (HICSS), 2013 46th Hawaii International Conference on.

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior: Springer.

Ali, M. A. (2012). Survey on the state of Agile practices implementation in Pakistan.

International journal of Information and Communication Technology Research

(IJICTR), 2.

Allen, I. E., & Seaman, C. A. (2007). Likert scales and data analyses. Quality progress,

40(7), 64.

Allison, I. (2015). Towards an agile approach to Software Process Improvement:

addressing the changing needs of software products. Communications of the

IIMA, 5(1), 8.

Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC models

waterfall model, spiral model, and Incremental/Iterative model. International

Journal of Computer Science Issues (IJCSI), 12(1), 106.

Alsultanny, Y. A., & Wohaishi, A. M. (2009). Essential Characteristics of Software

Model that Provide the Software Quality Assurance. International Review on

Computers & Software, 4(5).

Ambler, S. W. (2001). The agile unified process, 1, from

http://www.ambysoft.com/unifiedprocess/agileUP.html#Philosophies

Ambler, S. W., & Holitza, M. (2012). Agile For Dummies: John Wiley & Sons, Inc.

Ambler, S. W., & Lines, M. (2012). Disciplined agile delivery: A practitioner's guide

to agile software delivery in the enterprise: IBM Press.

Ambler, S. W., & Lines, M. (2013). Going Beyond Scrum: Disciplined Agile Delivery.

Disciplined Agile Consortium. White Paper Series.

Ambler, S. W., & Lines, M. (2016). The Disciplined Agile Process Decision

Framework. Paper presented at the International Conference on Software

Quality.

http://www.ambysoft.com/unifiedprocess/agileUP.html#Philosophies

 346

Arisholm, E., Gallis, H., Dyba, T., & Sjoberg, D. I. (2007). Evaluating pair

programming with respect to system complexity and programmer expertise.

Software Engineering, IEEE Transactions on, 33(2), 65-86.

Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. IEEE

Security & Privacy, 3(1), 84-87.

Aspray, W., Keil-Slawik, R., & Parnas, D. (1997). The history of software engineering:

Citeseer.

Aveson, D., & Fitzgerald, G. (2006). Methodologies for developing information

systems: A historical perspective The Past and Future of Information Systems:

1976–2006 and Beyond (pp. 27-38): Springer.

Bai, X., Zhang, H., & Huang, L. (2011). Empirical Research in Software Process

Modeling: A Systematic Literature Review. Paper presented at the 2011

International Symposium on Empirical Software Engineering and Measurement

(ESEM),.

Bannerman, P. L., Hossain, E., & Jeffery, R. (2012). Scrum practice mitigation of

global software development coordination challenges: A distinctive advantage?

Paper presented at the System Science (HICSS), 2012 45th Hawaii International

Conference on.

Bannink, S. (2014). Challenges in the Transition from Waterfall to Scrum–a Case study

at Port Base. Paper presented at the 20th Twente Student Conference on

Information Technology.

Bano, M., & Zowghi, D. (2013). User involvement in software development and system

success: a systematic literature review. Paper presented at the Proceedings of

the 17th International Conference on Evaluation and Assessment in Software

Engineering.

Basili, V. R. (1989). Software development: A paradigm for the future. Paper presented

at the Computer Software and Applications Conference, 1989. COMPSAC 89.,

Proceedings of the 13th Annual International.

Basili, V. R., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D.,

Seaman, C., & Trendowicz, A. (2013). Linking software development and

business strategy through measurement. arXiv preprint arXiv:1311.6224.

Basili, V. R., & Turner, A. J. (1975). Iterative enhancement: A practical technique for

software development. IEEE Transactions on Software Engineering, 1(4), 390-

396.

 347

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A Software Architect's Perspective:

Addison-Wesley Professional.

Bazeley, P., & Jackson, K. (2013). Qualitative data analysis with NVivo: Sage

Publications Limited.

Beck, K. (1999). Embracing change with extreme programming. Computer, 32(10), 70-

77.

Beck, K. (2000). Extreme programming explained: embrace change: Addison-Wesley

Professional.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,

R. C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto

for Agile Software Development Retrieved 15th June, 2010, from

http://agilemanifesto.org/

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., & Jeffries, R. (2001). Manifesto for agile

software development.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., & Jeffries, R. (2001). Manifesto for agile

software development. The Agile Alliance

Benington, H. D. (1987). Production of large computer programs. Paper presented at

the ICSE.

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: a

roadmap. Paper presented at the Proceedings of the Conference on the Future

of Software Engineering.

Bertens, J. W. (1995). The idea of the postmodern: A history: Psychology Press.

Black, B. (2017). Interview on DevOps and Scrum Methodology. In S. Ranjeeth (Ed.).

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64-69.

Boehm, B. (2002). Software engineering is a value-based contact sport. IEEE Software,

19(5), 95-96.

http://agilemanifesto.org/

 348

Boehm, B. (2006). A view of 20th and 21st century software engineering. Paper

presented at the Proceedings of the 28th international conference on Software

engineering.

Boehm, B. (2011). Some future software engineering opportunities and challenges. The

future of software engineering, 1-32.

Boehm, B., & Hansen, W. J. (2000). Spiral development: Experience, principles, and

refinements: DTIC Document.

Boehm, B., & Turner, R. (2003). Observations on balancing discipline and agility.

Paper presented at the Proceedings of the Agile Development Conference, 2003.

ADC 2003.

Boehm, B., & Turner, R. (2003). People factors in software management: lessons from

comparing agile and plan-driven methods. CrossTalk: The Journal of Defense

Software Engineering, 16(12), 4-8.

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven methods.

Computer(6), 57-66.

Boehm, B. W. (1988). A spiral model of software development and enhancement.

Computer, 21(5), 61-72.

Booch, G. (1986). Object-oriented development. Software Engineering, IEEE

Transactions on(2), 211-221.

Booch, G. (2001). Developing the future. Commun. ACM, 44(3), 118-121. doi:

10.1145/365181.365234

Booch, G. (2006). Object Oriented Analysis & Design with Application: Pearson

Education India.

Booch, G. (2012). Understanding Issues that Influence Agile Software Development.

In S. Ranjeeth (Ed.).

Boone, H. N., & Boone, D. A. (2012). Analyzing likert data. Journal of extension,

50(2), 1-5.

Bradley, C. (2014). Resurrecting the Much-Maligned Scrum of Scrums Retrieved

13/4/2015, 2015, from http://blog.scrum.org/resurrecting-the-much-maligned-

scrum-of-scrums/

http://blog.scrum.org/resurrecting-the-much-maligned-scrum-of-scrums/
http://blog.scrum.org/resurrecting-the-much-maligned-scrum-of-scrums/

 349

Breivold, H. P., Sundmark, D., Wallin, P., & Larsson, S. (2010). What does research

say about agile and architecture? Paper presented at the Software Engineering

Advances (ICSEA), 2010 Fifth International Conference on.

Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring principles of user-

centered agile software development: A literature review. Information and

Software Technology, 61, 163-181.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.

IEEE computer, 20(4), 10-19.

Brown, M. E. (2013). Data-Driven Decision Making as a Tool to Improve Software

Development Productivity. Walden University.

Bryant, A. (2000). It's engineering Jim… but not as we know it: software engineering—

solution to the software crisis, or part of the problem? Paper presented at the

Proceedings of the 22nd international conference on Software engineering.

Byrne, B. M. (2010). Structural Equation Modeling With AMOS, 2nd Edition. New

York: Routledge.

Cameron, K. S., & Quinn, R. E. (2011). Diagnosing and changing organizational

culture: Based on the competing values framework: John Wiley & Sons.

Campanelli, A. S., & Parreiras, F. S. (2015). Agile methods tailoring–A systematic

literature review. Journal of Systems and Software, 110, 85-100.

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2009). A framework for adapting agile

development methodologies. European Journal of Information Systems, 18(4),

332-343.

Cao, L., & Ramesh, B. (2008). Agile requirements engineering practices: An empirical

study. Software, IEEE, 25(1), 60-67.

Capretz, L. F. (2003). A brief history of the object-oriented approach. ACM SIGSOFT

Software Engineering Notes, 28(2), 6.

Causevic, A., Sundmark, D., & Punnekkat, S. (2011). Factors limiting industrial

adoption of test driven development: A systematic review. Paper presented at

the Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth

International Conference on.

Chan, F. K., & Thong, J. Y. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803-814.

 350

Chan, F. K. Y., & Thong, J. Y. L. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803-814.

doi: http://dx.doi.org/10.1016/j.dss.2008.11.009

Chan, Z. C., Fung, Y.-l., & Chien, W.-t. (2013). Bracketing in phenomenology: only

undertaken in the data collection and analysis process? The Qualitative Report,

18(30), 1.

Chandra Misra, S., Kumar, V., & Kumar, U. (2010). Identifying some critical changes

required in adopting agile practices in traditional software development

projects. International Journal of Quality & Reliability Management, 27(4),

451-474.

Chang, H. C. (2010). A new perspective on twitter hashtag use: diffusion of innovation

theory. Proceedings of the American Society for Information Science and

Technology, 47(1), 1-4.

Chaos. (2015). Standish Group 2015 Chaos Report - Q&A with Jennifer Lynch.

Chau, P. Y., & Hu, P. J. (2002). Examining a model of information technology

acceptance by individual professionals: An exploratory study. Journal of

management information systems, 18(4), 191-229.

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for

testing measurement invariance. Structural equation modeling, 9(2), 233-255.

Cho, J. (2008). Issues and Challenges of agile software development with SCRUM.

Issues in Information Systems, 9(2), 188-195.

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81(6), 961-971. doi:

http://dx.doi.org/10.1016/j.jss.2007.08.020

Claps, G. G., Svensson, R. B., & Aurum, A. (2015). On the journey to continuous

deployment: Technical and social challenges along the way. Information and

Software technology, 57, 21-31.

Clarke, P., Mesquida, A.-L., Ekert, D., Ekstrom, J., Gornostaja, T., Jovanovic, M.,

Johansen, J., Mas, A., Messnarz, R., & Villar, B. N. (2016). An Investigation of

Software Development Process Terminology Software Process Improvement

and Capability Determination (pp. 351-361): Springer.

Cockburn, A. (1999). Characterizing people as non-linear, first-order components in

software development. Paper presented at the International Conference on

Software Engineering 2000.

http://dx.doi.org/10.1016/j.dss.2008.11.009
http://dx.doi.org/10.1016/j.jss.2007.08.020

 351

Cockburn, A. (2002). Agile Software Development Joins the" Would-Be" Crowd.

Cutter IT Journal, 15(1), 6-12.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor.

Computer, 34(11), 131-133. doi: 10.1109/2.963450

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods.

Advances in Computers, 62, 1-66.

Cohn, M. (2004). Advantages of User Stories for Requirements Retrieved 10/10/2014,

from http://www.mountaingoatsoftware.com/articles/advantages-of-user-

stories-for-requirements

Cohn, M. (2004). User stories applied: For agile software development: Addison-

Wesley Professional.

Cohn, M. (2006). ScrumMaster: Appointed or Team-Selected? , from

https://www.mountaingoatsoftware.com/articles/scrummaster

Cohn, M. (2012). Agile Succeeds Three Times More Often Than Waterfall Retrieved

12 July 2012, from http://www.mountaingoatsoftware.com/blog/agile-

succeeds-three-times-more-often-than-waterfall

Conradi, R., Lindvall, M., & Seaman, C. (2000). Success factors for software

experience bases: what we need to learn from other disciplines. Paper presented

at the Proc. ICSE'2000 Workshop on Beg, Borrow or Steal: Using

Multidisciplinary Approaches in Empirical Software Engineering Research',

Limerick, Ireland.

Cooper, H. M. (1988). Organizing knowledge syntheses: A taxonomy of literature

reviews. Knowledge, Technology & Policy, 1(1), 104-126.

Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and

procedures for developing grounded theory: Sage publications.

Crawford, B., Barra, C. L. d. l., Soto, R., Misra, S., & Monfroy, E. (2013). Creative

Thinking in eXtreme Programming.

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five

approaches: Sage.

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five

approaches (3rd ed.): Sage.

http://www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-requirements
http://www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-requirements
https://www.mountaingoatsoftware.com/articles/scrummaster
http://www.mountaingoatsoftware.com/blog/agile-succeeds-three-times-more-often-than-waterfall
http://www.mountaingoatsoftware.com/blog/agile-succeeds-three-times-more-often-than-waterfall

 352

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods

approaches: Sage publications.

Creswell, J. W., Plano Clark, V. L., Gutmann, M. L., & Hanson, W. E. (2003).

Advanced mixed methods research designs. Handbook of mixed methods in

social and behavioral research, 209, 240.

Cunningham, W. (1993). The WyCash portfolio management system. ACM SIGPLAN

OOPS Messenger, 4(2), 29-30.

Cusumano, M. A., & Selby, R. W. (1997). How Microsoft builds software.

Communications of the ACM, 40(6), 53-61.

Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A strategy for comparing

alternative software development life cycle models. Software Engineering,

IEEE Transactions on, 14(10), 1453-1461.

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-

user information systems: Theory and results. Massachusetts Institute of

Technology, Sloan School of Management.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance

of information technology. MIS quarterly, 319-340.

De Graff, J. (2007). The Competing Values Assessment Overview. Retrieved from

http://competingvalues.com/competingvalues.com/wp-

content/uploads/2009/09/CV-Overview-16-page.pdf

de O Melo, C., Santana, C., & Kon, F. (2012). Developers motivation in agile teams.

Paper presented at the Software Engineering and Advanced Applications

(SEAA), 2012 38th EUROMICRO Conference on.

DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for

the Dependent Variable. [Article]. Information Systems Research, 3(1), 60-95.

Denison, D. R., & Spreitzer, G. M. (1991). Organizational culture and organizational

development: A competing values approach. Research in organizational

change and development, 5(1), 1-21.

DeSanctis, G., & Poole, M. S. (1994). Capturing the complexity in advanced

technology use: Adaptive structuration theory. Organization science, 5(2), 121-

147.

http://competingvalues.com/competingvalues.com/wp-content/uploads/2009/09/CV-Overview-16-page.pdf
http://competingvalues.com/competingvalues.com/wp-content/uploads/2009/09/CV-Overview-16-page.pdf

 353

di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., & Vlasenko, J. (2013). Pair

Programming and Software Defects--A Large, Industrial Case Study. Software

Engineering, IEEE Transactions on, 39(7), 930-953.

Dick, A. J., & Zarnett, B. (2002). Paired programming and personality traits.

Proceedings of XP, 26-29.

Dijkstra, E. (1970). 7.4 Structured programming. Software Engineering Techniques,

65.

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for

large-scale agile transformations: A systematic literature review. Journal of

Systems and Software, 119, 87-108.

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development:

Introduction to the special section on continuous value delivery. Information

and Software Technology, 77, 56-60.

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development:

Introduction to the special section on continuous value delivery. Information

and Software Technology, 77(Supplement C), 56-60. doi:

https://doi.org/10.1016/j.infsof.2016.04.018

Dingsøyr, T., & Moe, N. B. (2014). Towards Principles of Large-Scale Agile

Development Agile Methods. Large-Scale Development, Refactoring, Testing,

and Estimation (pp. 1-8): Springer.

Dingsøyr, T., Nerur, S., Balijepally, V., & Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile software development. Journal of

Systems and Software.

Dowling, M. (2007). From Husserl to van Manen. A review of different

phenomenological approaches. International journal of nursing studies, 44(1),

131-142.

Duggan, E. W. (2004). Silver Pellets for Improving Software Quality. [Article].

Information Resources Management Journal, 17(2), 1-21.

Duncan, O. D. (1966). Path analysis: Sociological examples. American journal of

Sociology, 72(1), 1-16.

Dwivedi, Y. K., Rana, N. P., Chen, H., & Williams, M. D. (2011). A Meta-analysis of

the Unified Theory of Acceptance and Use of Technology (UTAUT)

Governance and sustainability in information systems. Managing the transfer

and diffusion of IT (pp. 155-170): Springer.

https://doi.org/10.1016/j.infsof.2016.04.018

 354

Dybâ, T., & Dingsoyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and software technology, 50(9), 833-859.

Dybâ, T., & Dingsoyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology, 50(9–10), 833-859.

doi: http://dx.doi.org/10.1016/j.infsof.2008.01.006

Dybâ, T., & Dingsoyr, T. (2009). What do we know about agile software development?

Software, IEEE, 26(5), 6-9.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and software technology, 50(9), 833-859.

Dyba, T., Moe, N. B., & Mikkelsen, E. M. (2004). An empirical investigation on factors

affecting software developer acceptance and utilization of electronic process

guides. Paper presented at the Software Metrics, 2004. Proceedings. 10th

International Symposium on.

Edmunds, R., Thorpe, M., & Conole, G. (2012). Student attitudes towards and use of

ICT in course study, work and social activity: A technology acceptance model

approach. British journal of educational technology, 43(1), 71-84.

Eklund, U., Olsson, H. H., & Strøm, N. J. (2014). Industrial challenges of scaling agile

in mass-produced embedded systems. Paper presented at the International

Conference on Agile Software Development.

Englander, M. (2012). The interview: data collection in descriptive phenomenological

human scientific research. Journal of Phenomenological Psychology, 43(1), 13-

35.

Erasmus, E., Rothmann, S., & Van Eeden, C. (2015). A structural model of technology

acceptance: original research. SA Journal of Industrial Psychology, 41(1), 1-12.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software

development, and extreme programming: the state of research. Journal of

Database Management (JDM), 16(4), 88-100.

Evans, C., Professor Raymond Hackney, D., Rauniar, R., Rawski, G., Yang, J., &

Johnson, B. (2014). Technology acceptance model (TAM) and social media

usage: an empirical study on Facebook. Journal of Enterprise Information

Management, 27(1), 6-30.

Fenton, N., PFIEEGER, S. L., & Glass, R. L. (1997). Science and substance: A

challenge to software engineers. Applying Software Metrics, 46, 6.

http://dx.doi.org/10.1016/j.infsof.2008.01.006

 355

Fichman, R. G. (2000). The diffusion and assimilation of information technology

innovations. Framing the domains of IT management: Projecting the future

through the past, 105127.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An

introduction to theory and research.

Fitzgerald, B. (1997). The use of systems development methodologies in practice: a

field study. Information Systems Journal, 7(3), 201-212.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to

software practices at Intel Shannon. European Journal of Information Systems,

15(2), 200-213.

Fitzgerald, B., & Stol, K.-J. (2015). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software.

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, 123, 176-189.

Flora, H. K., Wang, X., & Chande, S. (2014). Adopting an agile approach for the

development of mobile applications. International Journal of Computer

Applications, 94(17), 43-50.

Foster, J. J., Barkus, E., & Yavorsky, C. (2005). Understanding and Using Advanced

Statistics: A practical guide for students: Sage.

Fowler, M. (2000). The New Methodology Retrieved 6/10/2014, 2014, from

http://www.martinfowler.com/articles/newMethodology.html#rationalUnified

Process

Fowler, M. (2001). The new methodology. Wuhan University Journal of Natural

Sciences, 6(1-2), 12-24.

Fowler, M. (2005). The New Methodology Retrieved 12/13/2014, 2014, from

http://www.martinfowler.com/articles/newMethodology.html

Fowler, M. (2006, 01 May 2006). Continuous Integration Retrieved 12/11/2016, 2016,

from https://martinfowler.com/articles/continuousIntegration.html

Fowler, M. (2006). Using an agile software process with offshore development.

Capturado em http://martinfowler. com/articles/agileOffshore. html.

http://www.martinfowler.com/articles/newMethodology.html#rationalUnifiedProcess
http://www.martinfowler.com/articles/newMethodology.html#rationalUnifiedProcess
http://www.martinfowler.com/articles/newMethodology.html
https://martinfowler.com/articles/continuousIntegration.html
http://martinfowler/

 356

Fowler, M. (2013). Extreme Programming Retrieved 11/12/2014, 2014, from

http://martinfowler.com/bliki/ExtremeProgramming.html

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8),

28-35.

Fowler, M., West, D., Humble, J., Thomas, Badiceanu, & Kirk. (2014). A Retake on

the Agile Manifesto.

Frank, U., Strecker, S., Fettke, P., vom Brocke, J., Becker, J., & Sinz, E. (2014). The

research field “modeling business information systems”. Business &

Information Systems Engineering, 6(1), 39-43.

Frankel, J. (2017). Interview on the Adoption of the Devops Strategy at a Banking

institution in South Africa. In S. Ranjeeth (Ed.).

Fuggetta, A. (2000). Software process: a roadmap. Paper presented at the Proceedings

of the Conference on the Future of Software Engineering.

Fuggetta, A., & Di Nitto, E. (2014). Software process. Paper presented at the

Proceedings of the on Future of Software Engineering.

Gallis, H., Arisholm, E., & Dyba, T. (2003). An initial framework for research on pair

programming. Paper presented at the Empirical Software Engineering, 2003.

ISESE 2003. Proceedings. 2003 International Symposium on.

Gallivan, M., & Srite, M. (2005). Information technology and culture: Identifying

fragmentary and holistic perspectives of culture. Information and Organization,

15(4), 295-338.

Geer, D., & Harthorne, J. (2002). Penetration testing: A duet. Paper presented at the

Computer Security Applications Conference, 2002. Proceedings. 18th Annual.

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping:

An integrated model. MIS quarterly, 27(1), 51-90.

George, B., & Williams, L. (2004). A structured experiment of test-driven

development. Information and software Technology, 46(5), 337-342.

George, J. F., Batra, D., Valacich, J. S., & Hoffer, J. A. (2004). Object-oriented systems

analysis and design: Pearson Prentice Hall.

Gershon, R. R., Stone, P. W., Bakken, S., & Larson, E. (2004). Measurement of

organizational culture and climate in healthcare. Journal of Nursing

Administration, 34(1), 33-40.

http://martinfowler.com/bliki/ExtremeProgramming.html

 357

Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for

non-statisticians. International journal of endocrinology and metabolism,

10(2), 486.

Gill, M. J. (2014). The possibilities of phenomenology for organizational research.

Organizational Research Methods, 17(2), 118-137.

Given, L. M. (2008). The Sage encyclopedia of qualitative research methods: Sage

Publications.

Glass, R. L. (1994). The software-research crisis. Software, IEEE, 11(6), 42-47.

Glass, R. L. (2004). Matching methodology to problem domain. Communications of

the ACM, 47(5), 19-21.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or Agile:

Why Not Embrace Both! Retrieved from

http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm

Glesne, C. (2015). Becoming qualitative researchers: An introduction: Pearson.

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting

Cronbach’s alpha reliability coefficient for Likert-type scales.

Gorla, N., & Lin, S.-C. (2010). Determinants of software quality: A survey of

information systems project managers. Information and Software Technology,

52(6), 602-610.

Grant, C., & Osanloo, A. (2014). Understanding, Selecting, and Integrating a

Theoretical Framework in Dissertation Research: Creating the Blueprint for

Your" House". Administrative Issues Journal: Education, Practice, and

Research, 4(2), 12-26.

Gravetter, F. J., & Wallnau, L. B. (2014). Essentials of Statistics for the Behavioral

Sciences.

Grinyer, A. (2007). Investigating adoption of agile software development

methodologies in organisations Agile Processes in Software Engineering and

Extreme Programming (pp. 163-164): Springer.

Griswold, W. G., & Opdyke, W. F. (2015). The Birth of Refactoring: A Retrospective

on the Nature of High-Impact Software Engineering Research. Software, IEEE,

32(6), 30-38.

http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm

 358

Groenewald, T. (2004). A phenomenological research design illustrated. International

journal of qualitative methods, 3(1), 42-55.

Gualtieri, M. (2011). Agile Software Is A Cop-Out; Here’s What’s Next. Retrieved

from http://blogs.forrester.com/mike_gualtieri/11-10-12-

agile_software_is_a_cop_out_heres_whats_next

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research.

Handbook of qualitative research, 2(163-194), 105.

Habermas, J. (1970). Towards a theory of communicative competence. Inquiry, 13(1-

4), 360-375.

Hannay, J. E., Arisholm, E., Engvik, H., & Sjoberg, D. I. (2010). Effects of personality

on pair programming. Software Engineering, IEEE Transactions on, 36(1), 61-

80.

Hardgrave, B. C., Davis, F. D., & Riemenschneider, C. K. (2003). Investigating

determinants of software developers' intentions to follow methodologies.

Journal of Management Information Systems, 20(1), 123-152.

Hardgrave, B. C., & Johnson, R. A. (2003). Toward an information systems

development acceptance model: the case of object-oriented systems

development. Engineering Management, IEEE Transactions on, 50(3), 322-

336.

Hart, C. (1998). Doing a literature review: Releasing the social science research

imagination: Sage.

Henderson-Sellers, B. (2006). Method Engineering: Theory and Practice. Paper

presented at the ISTA.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of

innovation. Computer, 34(9), 120-127.

Highsmith, J. A. (2002). Agile software development ecosystems: Addison-Wesley

Professional.

Hoda, R., Noble, J., & Marshall, S. (2010). Agile undercover: when customers don’t

collaborate. Agile Processes in Software Engineering and Extreme

Programming, 73-87.

Hofstede, G., Neuijen, B., Ohayv, D. D., & Sanders, G. (1990). Measuring

organizational cultures: A qualitative and quantitative study across twenty

cases. Administrative science quarterly, 286-316.

http://blogs.forrester.com/mike_gualtieri/11-10-12-agile_software_is_a_cop_out_heres_whats_next
http://blogs.forrester.com/mike_gualtieri/11-10-12-agile_software_is_a_cop_out_heres_whats_next

 359

Hofstede, G. H., & Hofstede, G. (2001). Culture's consequences: SAGE Publications,

Incorporated.

Hofstee, E. (2006). Constructing a good dissertation. Johannesburg: EPE.

Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling:

Guidelines for determining model fit. Articles, 2.

Horward, C. (2015). Bimodal IT: Models for delivering scalable innovation in

traditional enterprises, from https://c.ymcdn.com/sites/misaontario.site-

ym.com/resource/resmgr/MCIO_2015/Presentations/Bimodal_IT_-

_Gartner.pdf

Hoskin, T. (2012). Parametric and nonparametric: Demystifying the terms. Paper

presented at the Mayo Clinic.

Howell, D., Windahl, C., & Seidel, R. (2010). A project contingency framework based

on uncertainty and its consequences. [Article]. International Journal of Project

Management, 28(3), 256-264. doi: 10.1016/j.ijproman.2009.06.002

Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure

analysis: Conventional criteria versus new alternatives. Structural equation

modeling: a multidisciplinary journal, 6(1), 1-55.

Hu, Q., Dinev, T., Hart, P., & Cooke, D. (2012). Managing employee compliance with

information security policies: the critical role of top management and

organizational culture. Decision Sciences, 43(4), 615-660.

Huang, A. (2008). Similarity measures for text document clustering. Paper presented at

the Proceedings of the sixth new zealand computer science research student

conference (NZCSRSC2008), Christchurch, New Zealand.

Huberman, A. M., Miles, M. B., & Saldana, J. (2013). Qualitative data analysis: A

methods sourcebook: SAGE Publications, Incorporated.

Huck, S. W. (2012). Reading statistics and research (6th ed.). Boston: Pearson.

Humble, J. (2017). Lecturer Biography. University of California, Berkely Staff Pages

Retrieved 15/07/2017, 2017, from

https://www.ischool.berkeley.edu/people/jez-humble

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation (Adobe Reader): Pearson

Education.

https://c.ymcdn.com/sites/misaontario.site-ym.com/resource/resmgr/MCIO_2015/Presentations/Bimodal_IT_-_Gartner.pdf
https://c.ymcdn.com/sites/misaontario.site-ym.com/resource/resmgr/MCIO_2015/Presentations/Bimodal_IT_-_Gartner.pdf
https://c.ymcdn.com/sites/misaontario.site-ym.com/resource/resmgr/MCIO_2015/Presentations/Bimodal_IT_-_Gartner.pdf
https://www.ischool.berkeley.edu/people/jez-humble

 360

Hummel, M. (2014). State-of-the-Art: A Systematic Literature Review on Agile

Information Systems Development. Paper presented at the System Sciences

(HICSS), 2014 47th Hawaii International Conference on.

IBM, U. P. (1998). Best practices for software development teams. A Rational Software

Corporation White Paper.

Iivari, J., & Huisman, M. (2007). The relationship between organizational culture and

the deployment of systems development methodologies. Mis Quarterly, 35-58.

Iivari, J., & Iivari, N. (2011). The relationship between organizational culture and the

deployment of agile methods. Information and Software Technology, 53(5),

509-520. doi: http://dx.doi.org/10.1016/j.infsof.2010.10.008

Ingale, S., & Jadhav, S. (2012). Comparative Study of Software Development Models.

Paper presented at the International conference on advances in computing

&management.

Jackson, M. (1995). The world and the machine. Paper presented at the Software

Engineering, 1995. ICSE 1995. 17th International Conference on.

Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., & Booch, G. (1999). The unified

software development process (Vol. 1): Addison-Wesley Reading.

Jamieson, S. (2004). Likert scales: how to (ab) use them. Medical education, 38(12),

1217-1218.

Jemielniak, D. (2008). Software engineers or artists? Programmers' identity choices.

Tamara Journal of Critical Organisation Inquiry, 7(1/2), 21.

Jensen, R. W. (1981). Tutorial Series 6 Structured Programming. Computer, 14(3), 31-

48.

Jensen, R. W. (2014). Improving software development productivity: Effective

leadership and quantitative methods in software management: Pearson

Education.

Jobs, S. (1995, 05/06/2014). Quotes About the Future, from

http://stevejobsdailyquote.com/steve-jobs-quotes-about-the-future/

Johnson, R. (1999). Applying the technology acceptance model to a systems

development methodology. AMCIS 1999 Proceedings, 197.

http://dx.doi.org/10.1016/j.infsof.2010.10.008
http://stevejobsdailyquote.com/steve-jobs-quotes-about-the-future/

 361

Jung, H.-W., Kim, S.-G., & Chung, C.-S. (2004). Measuring software product quality:

A survey of ISO/IEC 9126. IEEE software(5), 88-92.

Kafle, N. P. (2013). Hermeneutic phenomenological research method simplified.

Bodhi: An Interdisciplinary Journal, 5(1), 181-200.

Kai-ming Au, A., & Enderwick, P. (2000). A cognitive model on attitude towards

technology adoption. Journal of Managerial Psychology, 15(4), 266-282.

Kanellopoulos, Y., & Yu, Y. (2015). Guest editorial: Special section: Software quality

and maintainability. Software Quality Journal, 23(1), 77-78.

Karahanna, E., Agarwal, R., & Angst, C. M. (2006). Reconceptualizing compatibility

beliefs in technology acceptance research. MIS quarterly, 781-804.

Kaur, R., & Sengupta, J. (2013). Software Process Models and Analysis on Failure of

Software Development Projects. arXiv preprint arXiv:1306.1068.

Keele, S. (2007). Guidelines for performing systematic literature reviews in software

engineering Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

Kerzazi, N., & Adams, B. (2016). Who needs release and devops engineers, and why?

Paper presented at the Continuous Software Evolution and Delivery (CSED),

IEEE/ACM International Workshop on.

Khramov, Y. (2006). The cost of code quality. Paper presented at the Agile Conference,

2006.

Kim, G. (2013). Top 11 Things You Need To Know About DevOps. h ttp://itrevolution.

com/pdf/Top11ThingsToKnowAboutDevOps. pdf.

Kim, H.-Y. (2013). Statistical notes for clinical researchers: assessing normal

distribution (2) using skewness and kurtosis. Restorative dentistry &

endodontics, 38(1), 52-54.

Kim, M., Zimmermann, T., & Nagappan, N. (2012). A field study of refactoring

challenges and benefits. Paper presented at the Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering.

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model.

Information & management, 43(6), 740-755.

 362

Kirk, D., & MacDonell, S. G. (2014). Investigating a conceptual construct for software

context. Paper presented at the Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering.

Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs,

S., & Pohthong, A. (2017). Robust statistical methods for empirical software

engineering. Empirical Software Engineering, 22(2), 579-630.

Kniberg, H., & Farhang, R. (2008). Bootstrapping scrum and XP under crisis a story

from the trenches. Paper presented at the Agile, 2008. AGILE'08. Conference.

Knuth, D. E. (2007). Computer programming as an art. Paper presented at the ACM

Turing award lectures.

Kong, S. (2007). Agile software development methodology: effects on perceived

software quality and the cultural context for organizational adoption. Rutgers

The State University of New Jersey - Newark. Retrieved from

http://books.google.co.za/books?id=JsihLEw41gAC&printsec=frontcover#v=

onepage&q&f=false

Kropp, M., & Meier, A. (2015). Agile Success Factors.

Kropp, M., & Meier, A. (2015). Agile Success Factors. Retrieved May, 12, 2015.

Kruchten, P. (2004). Scaling down large projects to meet the agile “sweet spot”.

Kruchten, P. (2004). Scaling down large projects to meet the agile “sweet spot”. IBM

developerWorks, 13.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor to

theory and practice. Ieee software, 29(6), 18-21.

Kuhn, T. S. (1970). BOOK AND FILM REVIEWS: Revolutionary View of the History

of Science: The Structure of Scientific Revolutions. The Physics Teacher, 8(2),

96-98.

Kujala, S. (2003). User involvement: a review of the benefits and challenges. Behaviour

& information technology, 22(1), 1-16.

Kundalram, V. (2013). Requirements Elicitation as a Predictor of Information Systems

Success. KwaZulu-Natal.

Lal, R. (2011). Strategic Factors In Agile Software Development Method Adaptation:

A Study Of Market-Driven Organisations:. PhD in Information Technology,

Massey University, New Zealand.

http://books.google.co.za/books?id=JsihLEw41gAC&printsec=frontcover#v=onepage&q&f=false
http://books.google.co.za/books?id=JsihLEw41gAC&printsec=frontcover#v=onepage&q&f=false

 363

Lalsing, V., Kishnah, S., & Pudaruth, S. (2012). People factors in agile software

development and project management. International Journal of Software

Engineering & Applications (IJSEA), 3(1), 117-137.

Lambrechts, F. J., Bouwen, R., Grieten, S., Huybrechts, J. P., & Schein, E. H. (2011).

Learning to help through humble inquiry and implications for management

research, practice, and education: An interview with Edgar H. Schein. Academy

of Management Learning & Education, 10(1), 131-147. doi:

10.5465/AMLE.2011.59513279

Langdridge, D. (2008). Phenomenology and critical social psychology: Directions and

debates in theory and research. Social and Personality Psychology Compass,

2(3), 1126-1142.

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. a brief

history. Computer, 36(6), 47-56.

Larsen, D., Derby, E., Eckstein, J., Joiner, B., Viliki, K., Shore, J., Hamman, M., &

Schlitz, G. (2012). Characteristics of Agile Organizations.

Laverty, S. M. (2003). Hermeneutic Phenomenology and Phenomenology: A

Comparison of Historical and Methodological Considerations. International

Journal of Qualitative Methods, 2(3), 21-35. doi:

doi:10.1177/160940690300200303

Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme programming

in context: An industrial case study.

Lee, J.-C., Shiue, Y.-C., & Chen, C.-Y. (2016). Examining the impacts of

organizational culture and top management support of knowledge sharing on

the success of software process improvement. Computers in Human Behavior,

54, 462-474.

Lee, Y.-H., Hsieh, Y.-C., & Hsu, C.-N. (2011). Adding innovation diffusion theory to

the technology acceptance model: Supporting employees' intentions to use e-

learning systems. Journal of Educational Technology & Society, 14(4), 124.

Leedy, P. D., & Ormrod, J. E. (2005). Practical research: Planning and design.

Leffingwell, D. (2007). Scaling software agility: best practices for large enterprises:

Pearson Education.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for

teams, programs, and the enterprise: Addison-Wesley Professional.

 364

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information

technology? A critical review of the technology acceptance model. Information

& management, 40(3), 191-204.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution.

Proceedings of the IEEE, 68(9), 1060-1076.

Lehman, M. M., & Ramil, J. F. (2003). Software evolution—background, theory,

practice. Information Processing Letters, 88(1), 33-44.

Leidner, D. E., & Kayworth, T. (2006). Review: A review of culture in information

systems research: Toward a theory of information technology culture conflict.

MIS quarterly, 30(2), 357-399.

LeVasseur, J. J. (2003). The problem of bracketing in phenomenology. Qualitative

health research, 13(3), 408-420.

Levy, Y., & Ellis, T. J. (2006). A systems approach to conduct an effective literature

review in support of information systems research. Informing Science:

International Journal of an Emerging Transdiscipline, 9, 181-212.

Li, J., Moe, N. B., & Dybå, T. (2010). Transition from a plan-driven process to scrum:

a longitudinal case study on software quality. Paper presented at the

Proceedings of the 2010 ACM-IEEE international symposium on empirical

software engineering and measurement.

Limoncelli, T. A., & Hughes, D. (2011). LISA’11 Theme—“DevOps: New Challenges,

Proven Values”. USENIX; login: Magazine, 36(4).

Lindstrom, L., & Jeffries, R. (2004). Extreme programming and agile software

development methodologies. Information Systems Management, 21(3), 41-52.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R.,

Williams, L., & Zelkowitz, M. (2002). Empirical findings in agile methods.

Extreme Programming and Agile Methods—XP/Agile Universe 2002, 81-92.

Lonchamp, J. (1993). A structured conceptual and terminological framework for

software process engineering. Paper presented at the Software Process, 1993.

Continuous Software Process Improvement, Second International Conference

on the.

Lott, J. P. (2015). A note on normality. Journal of the American Academy of

Dermatology, 72(6), e169-e170.

 365

Lovelace, M., & Brickman, P. (2013). Best practices for measuring students’ attitudes

toward learning science. CBE-Life Sciences Education, 12(4), 606-617.

Lyytinen, K., & Damsgaard, J. (2001). What's wrong with the diffusion of innovation

theory. Diffusing Software Products and Process Innovations, 173-190.

Lyytinen, K., & Rose, G. M. (2006). Information system development agility as

organizational learning. European Journal of Information Systems, 15(2), 183-

199.

Machado, T. C. S., Pinheiro, P. R., & Tamanini, I. (2015). Project management aided

by verbal decision analysis approaches: a case study for the selection of the best

SCRUM practices. International Transactions in Operational Research, 22(2),

287-312.

Maciaszek, L. (2007). Requirements analysis and system design: Pearson Education.

Mahnič, V. (2008). Teaching Information System Technology in Partnership with IT

Companies. Organizacija, 41(2), 71-78.

Mahoney, M. S. (2004). Finding a history for software engineering. Annals of the

History of Computing, IEEE, 26(1), 8-19.

Malone, M. W. (2014). Process subversion in Agile Scrum software development: A

phenomenological approach. Capella University.

Mann, C., & Maurer, F. (2005). A case study on the impact of scrum on overtime and

customer satisfaction. Paper presented at the null.

Mannaro, K., Melis, M., & Marchesi, M. (2004). Empirical analysis on the satisfaction

of it employees comparing xp practices with other software development

methodologies Extreme Programming and Agile Processes in Software

Engineering (pp. 166-174): Springer.

Marakas, G. M. (2006). Systems analysis & design: McGraw-Hill Irwin.

Martin, A., Biddle, R., & Noble, J. (2004). The XP customer role in practice: Three

studies. Paper presented at the Agile Development Conference, 2004.

Mason, M. (2010). Sample size and saturation in PhD studies using qualitative

interviews. Paper presented at the Forum qualitative Sozialforschung/Forum:

qualitative social research.

Matthews, C. R. (2014). Software Quality Strategy Supported by People and

Organizations.

 366

Mayfield, K. M. (2010). Project managers' experience and description of decision

uncertainty associated with the agile software development methodology: A

phenomenological study. Capella University.

McAvoy, J., & Butler, T. (2009). The role of project management in ineffective

decision making within Agile software development projects. European

Journal of Information Systems, 18(4), 372-383.

McBreen, P. (2000). Applying the Lessons of eXtreme Programming. Paper presented

at the TOOLS (34).

McClave, J. T. S., McClave, T. J. T., & Sincich, T. (2012). Statistics.

McConnell, S. (1996). Daily build and smoke test. IEEE software, 13(4), 144.

McCormick, M. (2001). Technical opinion: Programming extremism. Communications

of the ACM, 44(6), 109-119.

McCracken, D. D., & Jackson, M. A. (1982). Life cycle concept considered harmful.

ACM SIGSOFT Software Engineering Notes, 7(2), 29-32.

McHugh, M., McCaffery, F., & Casey, V. (2012). Barriers to adopting agile practices

when developing medical device software Software Process Improvement and

Capability Determination (pp. 141-147): Springer.

McLeod, L., & MacDonell, S. G. (2011). Factors that affect software systems

development project outcomes: A survey of research. ACM Computing Surveys

(CSUR), 43(4), 24.

Mehra, B. (2002). Bias in qualitative research: Voices from an online classroom. The

Qualitative Report, 7(1), 1-19.

Melo, C. d. O., Ferraz, R., & Parsons, R. J. (2016). Brazil and the Emerging Future of

Software Engineering. Software, IEEE, 33(1), 45-47.

Meso, P., & Jain, R. (2006). Agile software development: adaptive systems principles

and best practices. Information Systems Management, 23(3), 19-30.

Meyer, B. (2003). The grand challenge of trusted components. Paper presented at the

Software Engineering, 2003. Proceedings. 25th International Conference on.

Meyer, B. (2014). Agile!: The Good, the Hype and the Ugly: Springer Science &

Business Media.

 367

Mills, H. D. (1980). The management of software engineering, Part I: Principles of

software engineering. IBM Systems Journal, 19(4), 414-420.

Mingers, J. (2001). Combining IS research methods: towards a pluralist methodology.

Information systems research, 12(3), 240-259.

Minkov, M., & Hofstede, G. (2011). The evolution of Hofstede's doctrine. Cross

Cultural Management: An International Journal, 18(1), 10-20.

Miranda, M., Ferreira, R., de Souza, C. R., Figueira Filho, F., & Singer, L. (2014). An

exploratory study of the adoption of mobile development platforms by software

engineers. Paper presented at the Proceedings of the 1st International

Conference on Mobile Software Engineering and Systems.

Mishra, D., & Mishra, A. (2011). Complex software project development: agile

methods adoption. Journal of Software Maintenance and Evolution: Research

and Practice, 23(8), 549-564.

Misra, S., Kumar, V., Kumar, U., Fantazy, K., & Akhter, M. (2012). Agile software

development practices: evolution, principles, and criticisms. International

Journal of Quality & Reliability Management, 29(9), 972-980.

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success

factors in adopting agile software development practices. Journal of Systems

and Software, 82(11), 1869-1890. doi:

http://dx.doi.org/10.1016/j.jss.2009.05.052

Mnkandla, E. (2008). A Selection Framework For Agile Methodology Practices: A

Family of Methodologies Approach. Faculty of Engineering and the Built

Environment, University of The Witwatersrand.

Moniruzzaman, A., & Hossain, D. S. A. (2013). Comparative study on agile software

development methodologies. arXiv preprint arXiv:1307.3356.

Montoni, M. A., & da Rocha, A. R. C. (2013). Applying grounded theory to understand

software process improvement implementation: a study of Brazilian software

organizations. Innovations in Systems and Software Engineering, 1-8.

Morandini, M., Penserini, L., Perini, A., & Marchetto, A. (2017). Engineering

requirements for adaptive systems. Requirements Engineering, 22(1), 77-103.

Morgan, D. L. (2007). Paradigms lost and pragmatism regained methodological

implications of combining qualitative and quantitative methods. Journal of

mixed methods research, 1(1), 48-76.

http://dx.doi.org/10.1016/j.jss.2009.05.052

 368

Morse, J., & Richards, L. (2002). Read me first for a user’s guide to qualitative research.

CA, US: Sage Publications Thousand Oaks.

Morse, J. M. (1991). Approaches to qualitative-quantitative methodological

triangulation. Nursing research, 40(2), 120-123.

Moustakas, C. (1994). Phenomenological research methods: Sage.

Mueller, E. (2016, 2016). What Is DevOps? Retrieved 12 January, 2017, from

https://theagileadmin.com/what-is-devops/

Mundra, A., Misra, S., & Dhawale, C. (2013). Practical Scrum-Scrum team: Way to

produce successful and quality software. Paper presented at the Computational

Science and Its Applications (ICCSA), 2013 13th International Conference on.

Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., & Begel, A.

(2013). Have Agile Techniques been the Silver Bullet for Software Development

at Microsoft? Paper presented at the Empirical Software Engineering and

Measurement, 2013 ACM/IEEE International Symposium on.

Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel Hybrid Model: Integrating Scrum and

XP. International Journal of Information Technology and Computer Science

(IJITCS), 4(6), 39.

Mustonen‐Ollila, E., & Lyytinen, K. (2003). Why organizations adopt information

system process innovations: a longitudinal study using Diffusion of Innovation

theory. Information Systems Journal, 13(3), 275-297.

Myers. (1997). Qualitative research in information systems. Management Information

Systems Quarterly, 21(2), 241-242.

Nandhakumar, J., & Avison, D. E. (1999). The fiction of methodological development:

a field study of information systems development. Information technology &

people, 12(2), 176-191.

Naumann, J. D., & Jenkins, A. M. (1982). Prototyping: The New Paradigm for Systems

Development. [Article]. MIS Quarterly, 6(3), 29-44.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM, 48(5), 72-78.

Nerur, S., Mahapatra, R. K., & Mangalaraj, G. (2005). Challenges of migrating to agile

methodologies. Communications of the ACM, 48(5), 72-78.

https://theagileadmin.com/what-is-devops/

 369

Nguyen, D. S. (2016). Workplace Factors that Shape Agile Software Development

Team Project Success. American Scientific Research Journal for Engineering,

Technology, and Sciences (ASRJETS), 17(1), 323-391.

Ngwenyama, O., & Nielsen, P. A. (2003). Competing values in software process

improvement: an assumption analysis of CMM from an organizational culture

perspective. Engineering Management, IEEE Transactions on, 50(1), 100-112.

Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S. (2013). Using of

Jaccard coefficient for keywords similarity. Paper presented at the Proceedings

of the International MultiConference of Engineers and Computer Scientists.

Nkukwana, S., & Terblanche, N. H. (2017). Between a rock and a hard place:

management and implementation teams' expectations of project managers in an

agile information systems delivery environment. South African Journal of

Information Management, 19(1), 1-10.

Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics.

Advances in health sciences education, 15(5), 625-632.

Northover, M., Northover, A., Gruner, S., Kourie, D. G., & Boake, A. (2007). Agile

software development: a contemporary philosophical perspective. Paper

presented at the Proceedings of the 2007 annual research conference of the

South African institute of computer scientists and information technologists on

IT research in developing countries, Port Elizabeth, South Africa.

Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012). Inter-team coordination in

large-scale globally distributed scrum: Do Scrum-of-Scrums really work?

Paper presented at the Empirical Software Engineering and Measurement

(ESEM), 2012 ACM-IEEE International Symposium on.

Parnas, D., & Clements, P. (1985). A rational design process: How and why to fake it.

Formal Methods and Software Development, 80-100.

Patton, M. Q. (1990). Qualitative evaluation and research methods: SAGE

Publications, inc.

Paulk, M. (2014). On Empirical Research Into Scrum Adoption: Carnegie Mellon

University, viewed.

Paulk, M. C. (2001). Extreme programming from a CMM perspective. Software, IEEE,

18(6), 19-26.

Penny, S. (1997). The virtualization of art practice: Body knowledge and the

engineering worldview. Art Journal, 56(3), 30-38.

 370

Petersen, K., & Gencel, C. (2013). Worldviews, research methods, and their

relationship to validity in empirical software engineering research. Paper

presented at the Software Measurement and the 2013 Eighth International

Conference on Software Process and Product Measurement (IWSM-

MENSURA), 2013 Joint Conference of the 23rd International Workshop on.

Petre, M. (2013). UML in practice. Paper presented at the Proceedings of the 2013

International Conference on Software Engineering.

Petter, S. C., & Gallivan, M. J. (2004). Toward a framework for classifying and guiding

mixed method research in information systems. Paper presented at the System

Sciences, 2004. Proceedings of the 37th Annual Hawaii International

Conference on.

Pfleeger, S. L. (1999). Understanding and improving technology transfer in software

engineering. Journal of Systems and Software, 47(2), 111-124.

Pfleeger, S. L., & Kitchenham, B. A. (2001). Principles of survey research: part 1:

turning lemons into lemonade. ACM SIGSOFT Software Engineering Notes,

26(6), 16-18.

Pinch, T. (2008). Technology and institutions: living in a material world. Theory and

society, 37(5), 461-483.

Pope, C., & Mays, N. (1995). Reaching the parts other methods cannot reach: an

introduction to qualitative methods in health and health services research. BMJ:

British Medical Journal, 311(6996), 42.

Port, D., & Bui, T. (2009). Simulating mixed agile and plan-based requirements

prioritization strategies: proof-of-concept and practical implications. European

Journal of Information Systems, 18(4), 317-331.

Pozzebon, M., Mackrell, D., & Nielsen, S. (2014). Structuration bridging diffusion of

innovations and gender relations theories: a case of paradigmatic pluralism in

IS research. Information Systems Journal, 24(3), 229-248.

Pressman, R. S. (2010). Software engineering: a practitioner's approach: McGraw-Hill

Higher Education.

Quinn, R. E., & McGrath, M. R. (1985). The transformation of organizational cultures:

A competing values perspective. Organizational culture, 315-334.

Quinn, R. E., & McGrath, M. R. (1985). The transformation of organizational cultures:

A competing values perspective.

 371

Radermacher, A. D., & Walia, G. S. (2011). Investigating the effective implementation

of pair programming: an empirical investigation. Paper presented at the

Proceedings of the 42nd ACM technical symposium on Computer science

education.

Ranasinghe, R. C., & Perera, I. (2015). Effectiveness of scrum for offshore software

development in Sri Lanka. Paper presented at the Moratuwa Engineering

Research Conference (MERCon), 2015.

Ranjeeth, S., Marimuthu, M., & Maharaj, M. (2013). A Pedagogical Intervention Based

on Agile Software Development Methodology. Alternation Special

EditionTrends in Management, Informatics and Research in a 21st Century

Digitally Connected World., 8(2013), 225-250.

Ravichandran, A., Taylor, K., & Waterhouse, P. (2016). DevOps in the Ascendency

DevOps for Digital Leaders (pp. 3-14): Springer.

Reid Turner, C., Fuggetta, A., Lavazza, L., & Wolf, A. L. (1999). A conceptual basis

for feature engineering. Journal of Systems and Software, 49(1), 3-15.

Remler, D. K., & Van Ryzin, G. G. (2011). Research methods in practice: Strategies

for description and causation: Sage Publications.

Riemenschneider, C., & Hardgrave, B. (2001). Explaining software development tool

use with the technology acceptance model. Journal of Computer Information

Systems, 41(4), 1-8.

Riemenschneider, C., Hardgrave, B., & Davis, F. (2002). Explaining software

developer acceptance of methodologies: a comparison of five theoretical

models. Software Engineering, IEEE Transactions on, 28(12), 1135-1145.

Riemenschneider, C. K., Hardgrave, B. C., & Davis, F. D. (2002). Explaining software

developer acceptance of methodologies: a comparison of five theoretical

models. IEEE transactions on Software Engineering, 28(12), 1135-1145.

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small

teams. IEEE software, 17(4), 26-32.

Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T.

(2016). DevOps Adoption Benefits and Challenges in Practice: A Case Study.

Paper presented at the Product-Focused Software Process Improvement: 17th

International Conference, PROFES 2016, Trondheim, Norway, November 22-

24, 2016, Proceedings 17.

 372

Robinson, H., Hall, P., Hovenden, F., & Rachel, J. (1998). Postmodern software

development. The Computer Journal, 41(6), 363-375.

Robinson, H., & Sharp, H. (2009). The emergence of object-oriented technology: the

role of community. [Article]. Behaviour & Information Technology, 28(3), 211-

222. doi: 10.1080/01449290701494548

Roche, J. (2013). Adopting DevOps practices in quality assurance. Communications of

the ACM, 56(11), 38-43.

Rogers, E. M. (1983). Diffusion of innovations. New York: Free Press.

Rowley, J. (2014). Designing and using research questionnaires. Management

Research Review, 37(3), 308-330.

Royce, W. W. (1970). Managing the development of large software systems. Paper

presented at the proceedings of IEEE, Los Angeles.

Royce, W. W. (1970). Managing the development of large software systems. Paper

presented at the proceedings of IEEE WESCON.

Rubin, H., & Rubin, I. (2005). The art of qualitative interviewing: Thousand Oaks, CA:

SAGE.

Rubin, H. J., & Rubin, I. S. (2012). Qualitative interviewing: The Art of Hearing Data:

Sage.

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular Agile

process: Addison-Wesley.

Rumpe, B., & Schröder, A. (2014). Quantitative survey on extreme programming

projects. arXiv preprint arXiv:1409.6599.

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT

Software Engineering Notes, 35(3), 8-13.

Ryan, K. T. (2015). Software processes for a changing world. Journal of Software:

Evolution and Process.

Ryan, S., & O’Connor, R. V. (2013). Acquiring and Sharing Tacit Knowledge in

Software Development Teams: An Empirical Study. Information and Software

Technology.

 373

Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived

usefulness and perceived ease of use in on-line learning: an extension of the

technology acceptance model. Information & management, 42(2), 317-327.

Sahota, M. (2012). An Agile Adoption And Transformation Survival Guide.

http://www.infoq.com/minibooks/agile-adoption-transformation: Infotrix.

Saldana, J. (2009). An introduction to codes and coding. The coding manual for

qualitative researchers, 1-31.

Saldaña, J. (2015). The coding manual for qualitative researchers: Sage.

Saunders, M. N. (2011). Research methods for business students, 5/e: Pearson

Education India.

Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., & Stumm, M. (2016).

Continuous deployment at Facebook and OANDA. Paper presented at the

Proceedings of the 38th International Conference on Software Engineering

Companion.

Scacchi, W. (1987). Models of software evolution: life cycle and process: DTIC

Document.

Scaled_Agile. (2017). SAFe 4.5 Introduction. Retrieved from

https://www.scaledagile.com/resources/safe-whitepaper/

Schach, S. R. (2008). Object-oriented software engineering: McGraw-Hill.

Scheerer, A., Hildenbrand, T., & Kude, T. (2014). Coordination in Large-Scale Agile

Software Development: A Multiteam Systems Perspective. Paper presented at

the System Sciences (HICSS), 2014 47th Hawaii International Conference on.

Schein, E. H. (1983). The Role of the Founder in the Creation of Organizational

Culture: DTIC Document.

Schein, E. H. (1985). Defining organizational culture. Classics of organization theory,

3, 490-502.

Schein, E. H. (1996). Leadership and organizational culture. The leader of the future,

11, 116.

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance

model: Investigating subjective norm and moderation effects. Information &

Management, 44(1), 90-103.

http://www.infoq.com/minibooks/agile-adoption-transformation:
https://www.scaledagile.com/resources/safe-whitepaper/

 374

Schwaber, K. (1997). Scrum development process Business Object Design and

Implementation (pp. 117-134): Springer.

Scotland, J. (2012). Exploring the philosophical underpinnings of research: Relating

ontology and epistemology to the methodology and methods of the scientific,

interpretive, and critical research paradigms. English Language Teaching, 5(9),

9.

Sekaran, U., & Bougie, R. (2010). Research methods for business : a skill-building

approach (5th ed. ed.). Hoboken, N.J.: Wiley ; Chichester : John Wiley

[distributor].

Senapathi, M., & Srinivasan, A. (2012). Understanding post-adoptive agile usage: an

exploratory cross-case analysis. Journal of Systems and Software, 85(6), 1255-

1268.

Serrador, P., & Pinto, J. K. (2015). Does Agile work?—A quantitative analysis of agile

project success. International Journal of Project Management, 33(5), 1040-

1051.

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2017). Adopting Continuous Delivery

and Deployment: Impacts on Team Structures, Collaboration and

Responsibilities.

Sharma, S. (2017). Adopting DevOps The DevOps Adoption Playbook (pp. 39-65):

John Wiley & Sons, Inc.

Sharma, S. (2017). DevOps: An Overview The DevOps Adoption Playbook (pp. 1-38):

John Wiley & Sons, Inc.

Sharp, H., & Robinson, H. (2005). Some social factors of software engineering: the

maverick, community and technical practices. SIGSOFT Softw. Eng. Notes,

30(4), 1-6. doi: 10.1145/1082983.1083117

Sheffield, J., & Lemétayer, J. (2013). Factors associated with the software development

agility of successful projects. International Journal of Project Management,

31(3), 459-472.

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile

practices: the agile adoption framework. Innovations in systems and software

engineering, 3(3), 203-216.

Simberova, I. (2015). Corporate culture–as a barrier of market orientation

implementation. Economics and Management(14), 513-521.

 375

Sinha, A., & Prajapati, D. (2014). Review on scrum and extreme programming for

software quality assurance in industries. International Journal of Management,

IT and Engineering, 4(10), 352-362.

Sjøberg, D. I., Dybå, T., Anda, B. C., & Hannay, J. E. (2008). Building theories in

software engineering. Guide to advanced empirical software engineering, 312-

336.

Slaten, K. M., Droujkova, M., Berenson, S. B., Williams, L., & Layman, L. (2005).

Undergraduate student perceptions of pair programming and agile software

methodologies: Verifying a model of social interaction.

Smith, J. A., Flowers, P., & Osborn, M. (1997). Interpretative phenomenological

analysis and the psychology of health and illness. Material discourses of health

and illness, 68-91.

Söderland, J., Geraldi, J., Müller, R., & Jugdev, K. (2012). Critical success factors in

projects: Pinto, Slevin, and Prescott-the elucidation of project success.

International Journal of Managing Projects in Business, 5(4), 757-775.

Sommerville, I. (1996). Software process models. ACM Computing Surveys (CSUR),

28(1), 269-271.

Sommerville, I. (2007). Software Engineering: Addison-Wesley.

Steinskog, D. J., Tjøstheim, D. B., & Kvamstø, N. G. (2007). A cautionary note on the

use of the Kolmogorov–Smirnov test for normality. Monthly Weather Review,

135(3), 1151-1157.

Stern, R. (2002). Routledge philosophy guidebook to Hegel and the phenomenology of

spirit: Psychology Press.

Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software development: Agile vs.

traditional. Informatica Economica, 17(4), 64.

Stol, K.-J., Ralph, P., & Fitzgerald, B. (2016). Grounded theory in software engineering

research: a critical review and guidelines. Paper presented at the Proceedings

of the 38th International Conference on Software Engineering.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and

procedures for developing grounded theory: Sage Publications, Inc.

Strode, D. E. (2012). A Theory of Coordination in Agile Software Development

Projects.

 376

Strode, D. E., Huff, S. L., & Tretiakov, A. (2009). The impact of organizational culture

on agile method use. Paper presented at the System Sciences, 2009. HICSS'09.

42nd Hawaii International Conference on.

Sutherland, J. (2001). Agile can scale: Inventing and reinventing scrum in five

companies. Cutter IT journal, 14(12), 5-11.

Sutherland, J., & Schwaber, K. (2009). Scrum Guide Retrieved 10/03/2015, 2015, from

http://www.scrumalliance.org/resources>,

Sutherland, J., Schwaber, K., Scrum, C.-c. O., & Sutherl, C. J. (2012). The scrum

papers: Nuts, bolts, and origins of an agile process Retrieved 11/11, 2014, from

http://jeffsutherland.com/ScrumPapers.pdf

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard

business review, 64(1), 137-146.

Tanner, M., & Seymour, L. (2014). The range and level of software development skills

needed in the Western Cape, South Africa. Paper presented at the Proceedings

of the e-skills for knowledge production and innovation conference 2014, cape

town, south africa.

Templeton, G. F., & Byrd, T. A. (2003). Determinants of the relative advantage of a

structured SDM during the adoption stage of implementation. Information

Technology and Management, 4(4), 409-428.

Tessem, B., & Maurer, F. (2007). Job satisfaction and motivation in a large agile team

Agile Processes in Software Engineering and Extreme Programming (pp. 54-

61): Springer.

Theocharis, G., Kuhrmann, M., Münch, J., & Diebold, P. (2015). Is water-scrum-fall

reality? on the use of agile and traditional development practices. Paper

presented at the International Conference on Product-Focused Software Process

Improvement.

Thomas, D. (2015). Agile is Dead. Amsterdam.

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative

evaluation data. American journal of evaluation, 27(2), 237-246.

Tolfo, C., Wazlawick, R. S., Ferreira, M. G. G., & Forcellini, F. A. (2011). Agile

methods and organizational culture: Reflections about cultural levels. Journal

of Software Maintenance and Evolution: Research and Practice, 23(6), 423-

441.

http://www.scrumalliance.org/resources
http://jeffsutherland.com/ScrumPapers.pdf

 377

Tomayko, J. E. (2002). A comparison of pair programming to inspections for software

defect reduction. Computer Science Education, 12(3), 213-222.

Trauring, A. (2002). Software methodologies: The battle of the Gurus. Info-Tech White

Papers.

Treacy, F., Rooney, M., Slattery, S., Staunton, C., & McHugh, O. (2008). A Study of

XP & SCRUM: A Project Management Perspective. Paper presented at the

Proceedings of 3rd International Business Informatics Challenge and

Conference.

Tripp, J. F., & Riemenschneider, C. K. (2014). Toward an Understanding of Job

Satisfaction on Agile Teams: Agile Development as Work Redesign. Paper

presented at the System Sciences (HICSS), 2014 47th Hawaii International

Conference on.

Turk, D., France, R., & Rumpe, B. (2014). Assumptions underlying agile software

development processes. arXiv preprint arXiv:1409.6610.

Vagle, M. D. (2016). Crafting phenomenological research: Routledge.

Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? adapting

scaling agile practices into the enterprise. PNSQC. ORG, 1-18.

van Muijen, & Jaap, J. (1999). Organizational culture: the focus questionnaire.

European Journal of Work and Organizational Psychology, 8(4), 551-568.

van Valkenhoef, G., Tervonen, T., de Brock, B., & Postmus, D. (2011). Quantitative

release planning in extreme programming. Information and software

technology.

Van Veenendaal, E. (2008). Foundations of software testing: ISTQB certification:

Cengage Learning EMEA.

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative

divide: Guidelines for conducting mixed methods research in information

systems. MIS quarterly, 37(1), 21-54.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology

acceptance model: four longitudinal field studies. Management science, 46(2),

186-204.

Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User Acceptance of

Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-

478.

 378

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of

information technology: extending the unified theory of acceptance and use of

technology. MIS quarterly, 36(1), 157-178.

VersionOne. (2011). State of Agile Development, from

http://www.versionone.com/state_of_agile_development_survey/11/

VersionOne. (2013). State of Agile Survey 2013 Retrieved 21/02, 2015, from

http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

VersionOne. (2015). State of Agile Survey 2015 Retrieved 15/11/2016, 2016, from

http://www.agile247.pl/wp-content/uploads/2016/04/VersionOne-10th-

Annual-State-of-Agile-Report.pdf

VersionOne. (2016). 11th Annual State of Agile Report Retrieved 12/04/2017, from

https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-

agile-report-2

VersonOne. (2011). State of Agile Survey 2011 Retrieved 02/02, 2015, from

http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_

Results.pdf

Victor, R. (2003). Iterative and incremental development: A brief history. IEEE

Computer Society.

Vijayasarathy, L., & Turk, D. (2008). Agile software development: A survey of early

adopters. Journal of Information Technology Management, 19(2), 1-8.

Vijayasarathy, L., & Turk, D. (2012). Drivers of agile software development use:

Dialectic interplay between benefits and hindrances. Information and Software

Technology, 54(2), 137-148.

Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E. (2011). The agile

requirements refinery: Applying SCRUM principles to software product

management. Information and software technology, 53(1), 58-70.

Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A

technology acceptance model (TAM) perspective. Information & Management,

51(2), 249-259.

Walsham, G. (1993). Interpreting information systems in organizations: John Wiley &

Sons, Inc.

http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.agile247.pl/wp-content/uploads/2016/04/VersionOne-10th-Annual-State-of-Agile-Report.pdf
http://www.agile247.pl/wp-content/uploads/2016/04/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf

 379

Wan, J., & Wang, R. (2010). Empirical Research on Critical Success Factors of Agile

Software Process Improvement. JSEA, 3(12), 1131-1140.

West, D. (2011). Water-Scrum-Fall Is The Reality Of Agile For Most Organizations

Today. Forrester, July, 26.

West, D. (2015). From Controlled Chaos to Differentiation: why companies need to

integrate the software lifecycle. Software Development Times.

West, D., & Hammond, J. S. (2010). The Forrester Wave™: Agile Development

Management Tools, Q2 2010. Forrester Research.

Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and

explanations. American psychologist, 54(8), 594.

Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-

step guide for novices. Australasian Journal of Paramedicine, 8(3).

Williams, L., Krebs, W., Layman, L., Antón, A., & Abrahamsson, P. (2004). Toward a

framework for evaluating extreme programming. Empirical Assessment in

Software Eng.(EASE), 11-20.

Wirth, N. (1971). Program development by stepwise refinement. Communications of

the ACM, 14(4), 221-227.

Wolff, E., & Johann, S. (2015). Technical Debt. Software, IEEE, 32(4), 94-c93.

Wood, K., Parsons, D., Gasson, J., & Haden, P. (2013). It's never too early: pair

programming in CS1. Paper presented at the Proceedings of the Fifteenth

Australasian Computing Education Conference-Volume 136.

Woods, W. A. (1999). Still No Silver Bullet: Managing and Improving the Software

Development Process. [Article]. Armed Forces Comptroller, 44(1), 33.

Yang, C., Liang, P., & Avgeriou, P. (2016). A systematic mapping study on the

combination of software architecture and agile development. Journal of Systems

and Software, 111, 157-184.

Yasar, H., & Kontostathis, K. (2016). Where to Integrate Security Practices on DevOps

Platform. International Journal of Secure Software Engineering (IJSSE), 7(4),

39-50.

Yin, R. K. (1981). The case study crisis: Some answers. Administrative science

quarterly, 26(1), 58-65.

 380

Yourdon, E. (1995). When good enough software is best. Software, IEEE, 12(3), 79-

81.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and its practices. IEEE

Software, 33(3), 32-34.

 381

APPENDIX A: SEMI STRUCTURED INTERVIEW GUIDE

INFORMATION SHEET AND CONSENT TO PARTICIPATE IN RESEARCH
KZN HUMANITIES AND SOCIAL SCIENCES RESEARCH ETHICS COMMITTEE

(HSSREC)

APPLICATION FOR ETHICS APPROVAL
For research with human participants

Date:

Greetings,

My name is Sanjay Ranjeeth (Student No. 972170992) and I am currently
studying for a Doctor of Philosophy (PhD) degree at the University of KwaZulu-
Natal (UKZN), in the School of Management, Information Technology and
Governance. The discipline of my study is in Information Technology (IT). The
contact details for myself as well as my supervisor and the academic
department at UKZN are listed below:

Researcher Name: Sanjay Ranjeeth; e-mail: ranjeeths@ukzn.ac.za ;
Office Contact Number: +27 33 260 5641
Mobile Contact Number: +27 84 4768088

Supervisor Name: Professor M Maharaj; e-mail: maharajms@ukzn.ac.za ;
Office contact Number: +27 33 031 – 260 8003
Department of Information Systems & Technology: +27 33 260 5704; + 27 31
260 7051

You are being invited to consider participating in a study that involves
research on current practice with regards to the software development
process. The objective of the study is to make a contribution by leveraging
off the knowledge from current software practitioners in order to propose a
framework that guides the implementation of software process models in
general. The study does however, have a specific on focus on Agile Software
Development Methodology (ASDM).

An Agile Based Integrated Framework for Software Development

The current aspect of the study is directed at obtaining an insight into your
experiences of the software development process. This insight will be guided
by a semi-structured interview that will be used to add structure to a
conversation regarding your experience of software development as well as
your perspectives on the current methods and methodologies used for

mailto:ranjeeths@ukzn.ac.za
mailto:maharajms@ukzn.ac.za

 382

software development. A significant part of your contribution towards this
research effort will be in the form of your opinion regarding the use of an
agile based approach to develop software. The duration of your participation
if you choose to participate and remain in the study is expected to be
approximately 40 minutes.

We envisage that the information that you provide will be pivotal in
developing a framework that will guide the implementation of ASDM. It is also
envisaged that the outcome of the study will make an academic and
practitioner-based contribution to the general discourse on ASDM.

This study has been ethically reviewed and approved by the UKZN Humanities
and Social Sciences Research Ethics Committee (approval number_____).

In the event of any problems or concerns/questions you may contact the
researcher by making use of any of the contact details provided above, or by
contacting the UKZN Humanities & Social Sciences Research Ethics
Committee. The contact details are as follows:

HUMANITIES & SOCIAL SCIENCES RESEARCH ETHICS

ADMINISTRATION

Research Office, Westville Campus

Govan Mbeki Building

Private Bag X 54001
Durban 4000 KwaZulu-Natal, SOUTH AFRICA
Tel: 27 31 2604557- Fax: 27 31 2604609
Email: HSSREC@ukzn.ac.za

Your participation in the study is voluntary and by participating, you are granting the

researcher permission to use your responses. You may refuse to participate or

withdraw from the study at any time with no negative consequence. There will be

no monetary gain from participating in the study. Your anonymity will be maintained

by the researcher and the School of Management, I.T. & Governance and your

responses will not be used for any purposes outside of this study.

All data, both electronic and hard copy, will be securely stored during the
study and archived for 5 years. After this time, all data will be destroyed.

If you have any questions or concerns about participating in the study, please contact

me or my research supervisor at the numbers listed above.

Sincerely

mailto:HSSREC@ukzn.ac.za

 383

Sanjay Ranjeeth

--

CONSENT TO PARTICIPATE

I ……………………………………………………………………………………. (Name) have been
informed about the study entitled: An Agile Based Integrated Framework for Software

Development by Sanjay Ranjeeth.

I understand the purpose and procedures of the study.

I have been given an opportunity to ask questions about the study and have
had answers to my satisfaction.

I declare that my participation in this study is entirely voluntary and that I
may withdraw at any time without affecting any of the benefits that I usually
am entitled to.

I have been informed about any available compensation or medical treatment
if injury occurs to me as a result of study-related procedures.

If I have any further questions/concerns or queries related to the study I
understand that I may contact the researcher at the details provided in Page
1 of this document.

If I have any questions or concerns about my rights as a study participant, or
if I am concerned about an aspect of the study or the researchers then I may
contact:

HUMANITIES & SOCIAL SCIENCES RESEARCH ETHICS ADMINISTRATION

Research Office, Westville Campus

Govan Mbeki Building

 384

Private Bag X 54001
Durban
4000
KwaZulu-Natal, SOUTH AFRICA
Tel: 27 31 2604557 - Fax: 27 31 2604609
Email: HSSREC@ukzn.ac.za

I hereby provide consent to:

Audio-record my interview / focus group discussion YES / NO
Video-record my interview / focus group discussion YES / NO
Use of my photographs for research purposes YES / NO

____________________ ____________________
Signature of Participant Date

General Instructions for the Interview

During the interview, you are at liberty to request clarification or repetition of the

question. There is no time limit set for answering a particular question or for the

duration of the interview session. It is advisable to complete the interview in a

single sitting.

 Demographic & Background Information:

Job Title/Position

Type of Organisation

Job Description

Department

Gender Male Female

Qualification(s)

Under_

graduate

Degree/

Diploma

Post_

graduate

Degree

Honours Masters PhD

Others-

(please

specify)

Approximately how long

have you been involved

in software development?

mailto:HSSREC@ukzn.ac.za

 385

Approximately how long

have you been involved

in the use of Agile

Software Development?

Pre-Questionnaire for the Interview (Attitude towards Software Development

Methods):

1. The Waterfall software process model (SPM), which entails a linear progression
from requirements to analysis, design, development & testing, is a viable
strategy for the development of software systems.

2. The iterative and incremental approach, which is a non-linear strategy that
entails iteration through the phases of the software development lifecycle to
produce software incrementally, is a viable strategy for the development of
software systems.

3. What is your opinion on the importance of using the following analysis and
design models?

 Very

Important
Important

Somewhat

Important

Not

Important

I Do not

use it

Data Flow

Diagrams

Entity

Relationship

Modelling

Structure

Chart

User Stories

Use Case

Modelling

Strongly agree Agree Neutral Disagree Strongly disagree

Strongly agree Agree Neutral Disagree Strongly disagree

 386

Class

Diagrams

Sequence

Diagrams

4. What is your opinion on the importance of using a work/workflow
visualization tool such as the Kanban Board (uses the: to do, doing and
done columns)?

5. The Big Design Up-front (BDUF) approach to systems modelling enables the
development of quality software systems.

6. How important do you think that using eXtreme Programming (XP) methods
are?

Strongly agree Agree Neutral Disagree Strongly disagree

Strongly agree Agree Neutral Disagree Strongly disagree

Very

Important
Important

Somewhat

Important

Not

Important

Not Sure/

Not

applicable

Pair

Programming

(PP)

Test Driven

Development

(TDD)

Availability of

an on-site

customer

Continuous

Integration

Code Re-

factoring

 387

7. How important are the following Scrum based methods in the software
development process?

Part B of the Questionnaire

The Main Interview Questions:

In this part of the interview, the questions are directed at your general perception of
the processes/methods used for ASDM based on your experiential knowledge of
ASDM (or of software development in general).

PART A – PHENOMENOLOGICAL KNOWLEDGE OF AGILE SOFTWARE DEVELOPMENT

Methodology (ASDM) – A Bracketing Approach

1

Main Please provide some detail regarding your experience(s) of the

processes/methods used with ASDM (or software development in general);

describe any experience that you have had with ASDM.

Very

Important
Important

Somewhat

Important

Not

Important

Not Sure/

Not

applicable

Product

Backlog (PB)

A Sprint

Daily Scrum

meetings

Time-Boxing

Sprint

Backlog

Sprint Review

Sprint

Retrospective

Meeting

Burn Down

Chart

 388

2.

Main What is your view of?

 ASDM – project type/scalability (Probe)

 Software development in general

Context for PART B of the Interview (Knowledge & Practice):

In this part of the interview, the questions are directed at your perceptions of the
generic activities involved in the SOFTWARE (DEVELOPMENT) PROCESS.

Context for PART C of the Interview:
In this part of the interview, the questions are directed at your perceptions of the
activities intrinsic to the implementation of ASDM with a specific focus on eXtreme
Programming (XP) and Scrum methodologies.

PART B – PHENOMENOLOGICAL KNOWLEDGE OF GENERAL SOFTWARE DEVELOPMENT

METHODOLOGY(SDM) – A Hermeneutic Approach

1.

Main What do you think of the iterative and incremental (IID) approach to

software development as opposed to the Waterfall approach?

A follow-up question (optional): IID endorses the delivery of the system with

incrementally greater functionality in each Iteration. What is your

opinion/experience of delivering system functionality in a “piecemeal” kind of

manner?

2.

The use of a Big Design Up Front (BDUF) strategy has been claimed to be

problematic because it slows down the pace of development and impedes the

prospect of refining/changing the system requirements. Main Comment on this

criticism of the BDUF approach…follow up question: Based on your experience

of analysis and design modelling, which analysis and design models do you feel

are pivotal to the software process? Probe: Sprint 0;

3.

Main In your experience of software development, how effective are the object

oriented approach (OO), the classical/structured approach and the hybrid

approach (combination of OO and classical) to systems modelling?

A follow-up question (optional): Probe: What would you regard as an optimal

mix of these software development approaches?

PART C – PHENOMENOLOGICAL KNOWLEDGE OF AGILE SOFTWARE DEVELOPMENT

METHODOLOGY(ASDM) – A Hermeneutic Approach

1.

ASDM advocates a preference for quick/early release of working software as

opposed to ensuring that the software system has the pre-requisite documentation

in place before it can be released to the user community. Main Based on your

experience of software development in general, what is your comment on the

following?

 Software release with incomplete documentation

 389

Context for PART D of the Interview:

In this part of the interview, the questions are directed at your suggestions for the
implementation of ASDM within the context of specific strands of organisational
culture (OC). This part of the questionnaire is aligned to the imperative to provide
guidance on the implementation of ASDM so that it resonates quite well with the culture
that prevails in an organisation.

 Software release with incomplete testing/ availability of on-site
customer/ operations staff/Continuous Integration/Deployment/ Quest

for Business Value (Probe)

2.

Main From your experience of ASDM or general software development, how

would you recommend that the changes to the requirements specification be

accommodated once the software process commences? – scope issues

Follow up: At what point in the development cycle would you recommend that

there should be no further changes to the requirements specification for the

system?

Probe: Opinion on: Agile & Project Management; DevOps, UX Design,

Usefulness of Jira Scrum/KanBan Story Board

3.

Academic sources have suggested that:

 the Waterfall Methodology is too prescriptive and documentation-centric,

 XP enhances the prospect of developing quality systems

 Scrum enables better management of the software process.

Main Which of these qualities would you prioritise? Why?

Follow up: Do you think that XP methods could be integrated with Scrum

methods and possibly with aspects of the Waterfall methodology (as well as

KanBan, Lean, FDD…)?

Why did you respond in this way? Probe:

PART E – PHENOMENOLOGICAL KNOWLEDGE OF THE INFLUENCE OF ORGANISATIONAL

CULTURE ON THE SOFTWARE PROCESS/ASDM IN THE CONTEXT OF THE CVF.

A Hermeneutic Approach

 390

Thank You!

1.

There have been claims within the academic and practitioner community that

ASDM has the potential to de-generate into a code and fix/hacker mentality

where the developers are (possibly) entrusted with too much autonomy. In such

instances, ASDM may not be successful because of the organisational culture.

The academic community have also suggested that the culture within an

organisation may be classified according to a theoretical model named the CVF

that distinguishes between 4 types of OC. In this portion of the interview, I will

provide you with a few significant characteristic(s) of each cultural types and

you could make a suggestion(s) regarding a software process model/software

methods that resonate with the specific strand of OC.
Main What kind of culture would enable Agile Methodology to achieve optimal

success? Follow up: What kind of management support would enable ASDM

to thrive?

 Developmental Culture: An organisation that is quite liberal in its stance
towards product development, embraces risk taking, focuses broadly
about the big picture and big ideas and are keen to use innovative thinking
to establish competitive advantage.

 Rational Culture: An organisation where there is a strong focus on
achieving high productivity, enabling innovation with economic consumption
of resources – basically a “bang for bucks” culture.

 Group Culture. An organisation that has a strong focus on maintaining
traditions and norms and values that have contributed to the success of
the organisation in the past.

 Hierarchical Culture: An organisation that has a strong focus on
management control, security, accountability, a rules-based organisation
where predictability is valued over innovation.

2.

Main Do you think that there is a need to align your software development

methodology with the culture that prevails in an organisation? Follow up: How

can agile methodology be used in a way that enables alignment to the prevailing

OC?

 391

APPENDIX B: ETHICAL CLEARANCE PHASE 1

 392

APPENDIX C: INTERVIEW SCHEDULE

Interview

Identifier &

Name of

Interviewee

Organisation

type(s) – past

& present

Capacity

(Past &

present)

Years of Experience

 Interview

Type

&

Duration

General

Software

Develop_

ment

Agile

Methodology

1
1

Christopher

Pillay

Investment

/Insurance

Developer/

Analyst

manager/BA

15 8
Face to face

(52 minutes)

2
2

Gabriel

Malherbe

Bespoke

Software

Solutions

Developer

Manager
10 7

Skype Video

(45 minutes)

3
3

Havinash

Naidoo

Banking
Head of Online

Banking/ BA
8 5

Skype Video

(45 minutes)

4
4

Mitesh Chotu

Software

Solutions

Provider

Software

Engineer/

Consultant

8 6
Face to Face

(60 minutes)

5
5

Yeshen Pillay
Banking

Developer

Systems

Analyst

5 3
Skype Video

(45 minutes)

6
6

Yonga

Mapongwana

Banking

Developer/

Chief IT

security officer

5 2
Skype Video

(45 minutes)

7
7

Basil Masipa
Banking

Developer/

Systems

Analyst

9 7
Face to Face

(60 minutes)

8
8

Lester Masher

National

Logistics

Provider

Developer

Systems

Analyst

manager/

Solutions

Architect

7 6
Skype Video

(55 minutes)

9
9

Predhayan

Govender

Banking

Software

Developer/

Team Leader

5 2
Skype Video

(35 minutes)

10
10

Hendrik

Strydom

Agriculture

Developer

Systems

Analyst

manager

30 9
Face to Face

(55 minutes)

11

11

Tracy Fraser

(Augmented

with input

from Yashkar

Bundhoo)

Banking
Chief Software

Methodologist
12 8

Face to Face

(60 minutes)

12
12

Obadiah

Naidoo

Banking/ Motor

Vehicle

BA/Systems

Architect

7 5
Face to Face

(60 minutes)

 393

13
13

Luchen

Moodley

Petro-chemical
Manager/

Developer
7 5

Face to Face

(60 minutes)

14
14

Albert

Mupanguri

Banking

Build

Engineer/

DevOps Team

Leader

14 5
Skype Video

(50 minutes)

15
15

Panchol Singh
Banking

Software

Engineer
10 8

Face to Face

(60 minutes)

16
16

Dean Achmad

Software

Solutions

Developer/

Manager/Solut

ion Architect

10 7
Face to Face

(60 minutes)

4 Interviews NOT included in the Exploratory Phase of Qualitative Data Analysis

17
17

Grady Booch

Software

Engineering

Consultant

Software

Engineer and

IBM Research

Fellow

40 15
Skype Video

(60 minutes)

18
22

Bob Aiello

Software

Consultancy

Build

Engineer/

IEEE

Chairperson of

Working

Group AgileSA

20 12
Skype Video

(45 minutes)

19
23

Brad Black

Software

Consultancy
Agile Coach 15 12

Skype Video

(65 minutes)

20
24

Jonathan

Frankel

Banking
DevOps Team

Leader
12 8

Skype Video

(60 minutes)

 394

APPENDIX D: SURVEY QUESTIONNAIRE

UKZN HUMANITIES AND SOCIAL SCIENCES RESEARCH ETHICS COMMITTEE

(HSSREC)
Information Sheet and Consent to Participate in Research

Date: 13th October 2017

Greetings- My name is Sanjay Ranjeeth (Student No. 972170992) and I am
currently studying for a Doctor of Philosophy (PhD) degree at the University
of KwaZulu-Natal (UKZN), in the School of Management, Information
Technology and Governance. The contact details for myself as well as my
supervisor and the academic department at UKZN are listed below:

You are being invited to consider participating in a follow-up study that
entails research on the acceptance of an agile based framework for software
development. The framework is named the Scrum Development Operations
Model (SDOM) and is part of a study titled:

An Agile Based Integrated Framework for Software Development

SDOM represents a convergence of one aspect of the empirical data that was
gathered as part of the first phase of the study. The “first phase” empirical
data consisted of interviews with experienced software practitioners in South
Africa who have provided their insight into the issues related to the
methodology used for software development in South African organisations.

The current phase of the study consists of a survey that is aligned to a
theoretical framework that guides knowledge on the acceptance by software
practitioners of a software development methodology. The duration of your
participation if you choose to participate in this phase of the study is
expected to be approximately 15 minutes for the filling-in of the survey
questions.

This study has been ethically reviewed and approved by the UKZN Humanities
and Social Sciences Research Ethics Committee (approval number:
HSS/0939/016D).

In the event of any problems or concerns/questions you may contact the
researcher by making use of any of the contact details provided above, or by
contacting the UKZN Humanities & Social Sciences Research Ethics
Committee. The contact details are as follows:

HUMANITIES & SOCIAL SCIENCES RESEARCH ETHICS ADMINISTRATION

Researcher Name: Sanjay Ranjeeth;
e-mail: ranjeeths@ukzn.ac.za ;
Office Contact Number: +27 33 260 5641
Mobile Contact Number: +27 84 4768088

Supervisor Name: Professor M Maharaj;
e-mail: maharajms@ukzn.ac.za ;
Office contact Number: +27 33 031 – 260 8003
Department of Information Systems & Technology:
+27 33 260 5704; + 27 31 260 7051

mailto:ranjeeths@ukzn.ac.za
mailto:maharajms@ukzn.ac.za

 395

Research Office, Westville Campus, Govan Mbeki Building, Private Bag X 54001

Durban 4000 KwaZulu-Natal, SOUTH AFRICA, Tel: 27 31 2604557- Fax: 27 31 2604609

Email: HSSREC@ukzn.ac.za
Your participation in the study is voluntary and by participating, you are granting

the researcher permission to use your responses. Your anonymity will be

maintained by the researcher and the School of Management, I.T. & Governance and

your responses will not be used for any purposes outside of this study.

All data, both electronic and hard copy, will be securely stored during the
study and archived for 5 years. After this time, all data will be destroyed.
If you have any questions or concerns about participating in the study, please contact

me or my research supervisor at the numbers listed above.

Sincerely

Sanjay Ranjeeth

--

CONSENT TO PARTICIPATE

I ………………………………………………………. (Name),
have been informed about the study entitled: An Agile Based Integrated Framework

for Software Development by Sanjay Ranjeeth.

I understand the purpose and procedures of the study.

I have been given an opportunity to ask questions about the study and have
had answers to my satisfaction. I declare that my participation in this study
is entirely voluntary and that I may withdraw at any time without affecting
any of the benefits that I usually am entitled to.
If I have any further questions/concerns or queries related to the study I
understand that I may contact the researcher at the details provided in Page
1 of this document.

____________________ _______________
Signature of Participant Date

mailto:HSSREC@ukzn.ac.za

 396

Demographic & Background Information:

This questionnaire has been developed in order to obtain feedback on the

degree of acceptance of the proposed re-engineering of the Agile based Scrum

methodology for software development. This is a follow-up to the first part of a

study that has gathered empirical evidence that attests to the following outcomes:

 Scrum has been endorsed as the de-facto methodology for software

development in South African business organisations

 Software practitioners in these organisations are quite comfortable

with the “inner workings” of Scrum based software development

methodology

 There is a concern that the Agile imperative of delivering working

software that yields a quick return of business value is not being

upheld

 A significant reason for the afore-mentioned phenomenon is that

there is a “bottle-neck” created because of a lack of focus with

regards to the operations/infrastructure requirements of the

software systems that are developed using Scrum methodology

In an effort to resolve this situation the current study has proposed an

integrated model for software development that is centred on Scrum processes and

is integrated with roles and activities for operations/infrastructure staff members.

Job Title/Position

Type of Organisation

Job Description

Department

Gender Male Female

Approximately how long have you been

involved in software development?

Approximately how long have you been

involved in the use of Agile Software

Development Methodology?

Introduction

 397

The proposed model is named the Scrum Development Operations Model

(SDOM).

Please do a review of SDOM and provide a response via the structured

questionnaire indicating your acceptance of SDOM. An illustration and detailed

narrative of the SDOM may be accessed at:

http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx where you are invited to

place a few comments. An illustration of SDOM is provided for your quick

reference.

http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx

 398

Please use an X to indicate the most appropriate response

1. Perceived Usefulness (PU) of the Proposed SDOM

PU of SDOM
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

Using SDOM will improve the

performance of software

development teams.

Using SDOM will increase the

productivity of software

development teams.

Using SDOM will improve the

quality of the software developed

in my organisation

Using SDOM will make it easier to

develop software.

The advantages of using SDOM

outweigh the disadvantages of

using SDOM

SDOM will be useful as a general

approach for software

development.

2. Compatibility of the Proposed SDOM

Compatibility of SDOM
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

SDOM is compatible with the way

software is developed in my

organisation

SDOM is compatible with the

work related responsibilities of

software development

practitioners.

SDOM will ‘fit in’ well with current

software development practice in

my organisation.

3. Subjective Norm/Social Factors that Influence the use of the Proposed SDOM

Subjective Norm/Social

Factors

Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

Influential people in my

organisation will endorse the use

of SDOM

 399

Thank You

People who are important to me

will have a positive view of SDOM

My colleagues will have a positive

attitude towards using SDOM.

4. Perceived Organisational Support for the use of SDOM

Organisational Support
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

My organisation will provide help

and resources for the use of

SDOM

SDOM will receive management

support in my organisation

5. Behavioural Intention to use of SDOM

Behavioural Intention
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

I think that the SDOM is a model

that I will like to try out in my

organization.

Given the opportunity, I would

use SDOM

6. Comments/Feedback/Suggestions on the SDOM

 400

APPENDIX E: ETHICAL CLEARANCE PHASE 2

 401

APPENDIX F: EMAIL CORRESPONDENCE

On 17 Oct 2017, at 14:45, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Hi Lester

I trust you are well!

I must firstly thank your for the invaluable insight that I obtained from my conversation

with you.

The reference that you provided for the bi-modal approach to software development has

received wide coverage in my PhD write-up.

I am currently trying to obtain a survey based response to one of the models that have been

developed in my study. It will be really appreciated in you could fill in the attached 15

minute survey on the Word document and return to me. Also, you can simply type in your

name/ jpeg the signature - there is no need to scan the document and if there is any further

time that you have at your disposal, please leave a comment at the study's website

at: http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx

Once more thanks for your support and highly valued input - enjoy the rest of your day:)

On 29 Oct 2017, at 12:22, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Hi Lester ...thanks for your invaluable insight. I'm really appreciative of the critical insight

that you provide.

If you could "humour" me just for a short while with regards to the main points that you

have raised, it will be highly appreciated...so here goes just a short response:)

Your comments regarding SAFe are well intended and accepted. I have actually done a

critical review of the SAFe approach and if it can be achieved then that will be

great...however, the transition to SAFe requires a complete shift in the culture of the

organisation which I have established is not going to be easy to achieve. My proposal is to

start off in the "small" in order to rectify the immediate problems that are an impediment

to continuous delivery and deployment and from the empirical evidence that I have

gathered, it all points to a lack of co-operation/co-ordination between the development

teams and the build engineer or systems architect. The development and deployment

environments are not identical resulting in a huge "bottleneck" situation when it comes to

deployment. The SAFe approach may rectify this problem … owever the SDOM model that

I propose with the strategy of containerisation and the active involvement of the build

engineer with the agile teams will at least contribute to an alleviation of the "bottleneck"

situation...the idea behind proposing such models is that they are then subjected to tests

of validity in future studies ...so maybe a start has to be made somewhere so that the agile

initiative is enhanced on the basis of experiential knowledge.

 DevOps approaches as practitioners are calling it. This is very hard to do and I’ve only

seen early startups being able to adopt this approach because they have no baggage.

Mature organisations have an extremely hard time putting in DevOps practises due to

substantial investment and hardwired SDLC over many years (Conways Law prevails here

as teams and processes are structured around Org structures and politics in the

organisation) including the mentality and culture resistance to this new way fo

working.(which is the hardest obstacle to overcome, as you also highlight)

mailto:RanjeethS@ukzn.ac.za
http://143.128.146.30/SDOM/ScrumOps/SDOMIntro.aspx
mailto:RanjeethS@ukzn.ac.za

 402

I hope that this response alleviates your concerns somewhat...although I respect your

knowledge and authority over this subject domain. Please feel free to provide me with

further comments and feedback at your convenience because it is this kind of critical

insight that I really appreciate!

Once more thanks for your time and contribution to this discourse on the improvement

of software engineering processes in South Africa...have a great day:)

Regards

Sanjay Ranjeeth

ranjeeths@ukzn.ac.za

From: Lester Masher <lmasher@icloud.com>

Sent: Sunday, 29 October 2017 1:32 PM

To: Sanjay Ranjeeth

Subject: Re: A Quick Favour

Right on track…quantitative approaches to measure software development effectiveness

has eluded us.

Have you looked at MBSE (Model-Based System Engineering approaches) which are now

seeping their way into mainstream development as “Low-Code” development. Model

driven design has been around for ages since early CASE tools and then picked up

by OMG with the conception of UML etc. and then late in 2000’s we saw hope again with

the advent of “Domain Driven” design by fowler and others. But the utopia still eludes

us.

However, now after years of hiatus and with newer with AI techniques (maturing

exponentially) it seems the technology is coming if age and we are getting closer to

realising the dream of Model driven development. Eventually

though automate/augmented coding by AI systems and readily available frameworks and

patterns that can be applied to any software problem by AI systems is the ultimate goal,

and with the speed of Ai those horizons are getting shorter and shorter….

Regards

On 29 Oct 2017, at 14:00, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Right now ...it does sound kind'a utopic ...like you mentioned...however I can see the value

in embracing this approach conceptually because the impediments are quickly being eroded

by the great strides made in AI...however, the assumptions underlying this approach (such

as standardisation of modelling nomenclature) needs to be tested ...ironically the MBSE

approach is a contradiction of agility because of heavy reliance on upfront modelling but at

the same time it is aligned to the agile principle that enables the delivery of working

software quite quickly...provided you have a mature/sophisticated model base to work

from...I suppose it may work well with the service oriented architecture (SOA) approach so

that organisations have a ready-made set of underlying services that are aligned to the

business models thereby enabling really low code development.

mailto:ranjeeths@ukzn.ac.za
mailto:RanjeethS@ukzn.ac.za

 403

On 29 Oct 2017, at 14:20, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Thanks for those references Lester - I've actually attached quite a few references to

the contributions made by Jez Humble in my dissertation...and I am also trying to set up

an interview with him.

However, I was able to speak to a colleague of his by the name of Bob Aiello who is the

chairperson of the IEEE working group on agile improvement techniques and one of the

main things that I have observed is that much of the knowledge acquired is knowledge is

based on anecdotal evidence. I did however subject this to some form of empirical testing

as soon as I realised that there is a problem between development and deployment. So the

model that I propose is based on the suggestions coming from some of the experienced

software engineers who were asked about an integration of operations expertise into the

development domain ...and this is pretty much what I illustrated in the SDOM that I

proposed ...it's not "rocket science" but it is envisaged that such an integrative/collaborative

approach will eventually evolve into a full blown SAFe environment...it is also based on

empirical data that I have collected...which is not easy to acquire in the software

development environment because of the rapid rate of change ...so one of the biggest

challenges that I faced was that of the "moving target problem" ...solving problems of a

technological nature requires a quick and dynamic approach...not part of a PhD

dissertation...but these are lessons that you learn as you become acquainted with the

territory:(

Regards

Sanjay Ranjeeth

From: Lester Masher <lmasher@icloud.com>

Sent: 29 October 2017 02:30 PM

To: Sanjay Ranjeeth

Subject: Re: A Quick Favour

I was just thinking aloud now Sanjay, but if you can determine the correct leveraged data

points to measure software development effectiveness in the SDOM model and you can also

provide large and constant data sets (by analysing enough software projects) then you can

build a deep learning model to automatically find the areas for optimisation. In that way

you can come up with an optimised SDOM…

Could me in if you want to work on something like that.

On 29 Oct 2017, at 14:17, Lester Masher <lmasher@icloud.com> wrote:

And still further….. if you can collect enough data on actual running process in a business’s

value chain and operations then an AI can learn how the business operates in real-time

and then propose new models. It can then go further by automatically updating the

processes for example modifying (BPMN) processes on the fly.

We already starting with early stages to do that by replacing manual processes with

“Robotics” automation” albeit still with human intervention to build the models in

traditional business process management tools. Next step is we point AI tools to running

processes in an organisation and it applies deep learning to build better models via process

intelligence with a feedback loops to update current running software. This is one way to

mailto:RanjeethS@ukzn.ac.za
mailto:lmasher@icloud.com

 404

still use Legacy systems but learn and modernize them build new optimised software. So

don’t throw away the legacy applications just yet….

From: Sanjay Ranjeeth

Sent: Sunday, 29 October 2017 2:33 PM

To: Lester Masher

Subject: Re: A Quick Favour

Great idea Lester ...will definitely include you on any such intervention...and thanks for

contributing your time and wisdom...it's most appreciated!

From: Rishi <ashrisba@gmail.com>

Sent: Monday, 06 November 2017 2:06 PM

To: Sanjay Ranjeeth

Subject: Re: Survey Response

Hi Sanjay

Sounds good. I have extended the questionnaire to a few colleagues. I was cautious to

extend to those that have some Agile knowledge else you going to get a skewed sample

set.

I might send to a digital architecture team within Microsoft - if I get Legal permission

then you might make the numbers you require easily.

I told candidates to respond before the end of the week.

I will gladly include you in the comms for the UKZN talk. I am going to write to Ashraf

later today - happy to include you in 'cc ?

Always glad to help and yes, will be great to meet in person. Maybe we can meet with

Suvash soon? Im seeing him tomorrow morning.

Wishing you well,

-Rishi

On 6 November 2017 at 11:23, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Wow...that is brilliant Rishi!

Firstly, please keep me informed of the details regarding your talk at UKZN and if you

guys need any assistance with the logistics side of things ...it will also enable me to

ensure that there is maximum attendance from the IT students because such an exposure

will be invaluable to these students.

Also, it would be great to have the pleasure of meeting you in person and I must offer

my thanks and appreciation to you for your generous offer of further assistance...even a

single respondent will be great ...if you do have access to more people then perhaps 3 or

possibly 4 more people to respond to the survey will be quite a bonus for me right

now...I've put a call out to various people in the IT sector but understandably, people just

don't have the time anymore ...such is the nature of the hectic professional world of IT as

I'm sure you are fully aware of...hence my utmost appreciation to you for your effort to

assist:)

mailto:RanjeethS@ukzn.ac.za

 405

On 6 November 2017 at 09:26, Sanjay Ranjeeth <RanjeethS@ukzn.ac.za> wrote:

Hi Rishi

Thanks for taking the time and making the effort to complete the survey. I would just

like to endorse many of the comments that you have made and I certainly appreciate your

viewpoints knowing full well that these comments come from a highly experienced and

qualified source.

Just a quick reply to the issue of agile adoption - you're completely justified with your

views on this matter and these viewpoints actually align to a different part of my study.

Based on the assumption that agile has been adopted, one of the main areas of concern

that many of the developers and business managers expressed was the lack of integration

with operations/infrastructure requirements which were not factored into the

development life-cycle...and so this aspect of my study may be seen as the start of a

"minor" movement in that direction...handling this from an organisational perspective

using approaches such as DevOps and SAFe are turning out to be quite a challenge

because of prevailing cultures in an organisation...so basically this is an attempt to

propose a workable solution that does not have organisational-wide impact until such

time an organisation reaches an acceptable level of agile maturity.

Sorry about what turned out to be a long-winded reply ...but I think the time and effort

that you invested in applying your expertise to respond to this survey is deserving of a

respectful response:)

Once more, I must thank you for affording me the opportunity to obtain an insight into

your expert knowledge in this domainthis is much appreciated and it is an absolute

pleasure to make your acquaintance...and thanks for your well wishes ...all the best to

you as well:)

Regards

Sanjay Ranjeeth

mailto:RanjeethS@ukzn.ac.za

 406

INDEX

A

Agile Methodology
Agile Software Development Methodology, v,

20, 30, 35, 67, 109, 131, 146, 155, 344, 345,
400, 410, 426

Extreme Programming, vi, 69, 71, 180, 372, 384,
386, 387, 393, 394, 406

Scaled Agile Framework, vi, 119, 130, 225, 249,
341, 352, 368

Scrum, vi, xv, xvi, 69, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 108, 110, 112, 117, 118, 119,
123, 124, 125, 127, 133, 142, 143, 144, 145,
146, 181, 183, 209, 210, 213, 214, 222, 224,
225, 226, 228, 229, 230, 231, 232, 237, 238,
239, 242, 243, 246, 247, 249, 250, 251, 252,
253, 254, 262, 263, 264, 265, 266, 268, 269,
270, 271, 272, 274, 276, 281, 284, 285, 290,
291, 330, 341, 347, 348, 349, 352, 353, 355,
358, 362, 363, 365, 366, 367, 368, 371, 374,
375, 376, 377, 394, 397, 398, 401, 403, 405,
408, 416, 418, 424, 426, 427

Agile Unified Process
AUP, ix, 63

B

Big Design Upfront
BDUF, 61, 62, 77, 80, 81, 85, 144, 182, 209, 213,

222, 347, 348, 353, 366, 370, 415, 417
Bimodal, 216, 217, 218, 219, 226, 246, 387
Business Analyst, v, 213

BA, v, 213, 222, 240, 250, 251, 252, 253, 254,
271, 354, 422, 423

C

Compatibility, v, xiv, xvii, 282, 283, 286, 287, 288,
289, 293, 301, 306, 307, 308, 320, 323, 325, 327,
329, 330, 331, 332, 336, 355, 357, 358, 368, 429

Continuous integration, 73

D

Design, x, xii, xv, 31, 47, 73, 76, 145, 146, 154, 156,
157, 159, 160, 172, 182, 209, 213, 222, 287, 377,
403, 415, 417, 418

DevOps, x, xviii, 119, 120, 121, 122, 126, 127, 128,
129, 130, 144, 186, 194, 211, 212, 214, 219, 225,
231, 238, 239, 243, 247, 249, 251, 253, 254, 256,
259, 263, 264, 274, 276, 282, 339, 340, 341, 362,
363, 366, 367, 373, 375, 376, 390, 393, 397, 400,
401, 403,409, 418, 423

Disciplined Agile Development
DAD, x, xv, xvi, 119, 123, 124, 125, 126, 127,

130, 144, 250, 251

I

Information Systems, ii, v, 180, 184, 290, 374,
378, 379, 381, 383, 384, 387, 388, 391, 393, 394,
395, 397, 399, 400, 410, 424

Information Technology, v, 375, 391, 397, 401,
405, 407, 408, 410, 424

K

KanBan, 238, 418

O

organisational culture
organisational culture, vii, 21, 26, 28, 30, 32, 36,

84, 115, 117, 122, 128, 130, 133, 134, 136,
137, 139, 141, 142, 155, 160, 162, 186, 204,
209, 218, 234, 235, 243, 244, 246, 271, 279,
280, 285, 330, 331, 337, 345, 346, 349, 357,
358, 418, 419

Organisational Culture
Competing Values Framework, v, vii, 139, 218,

244, 271, 285, 349
Developmental Culture, 140, 142, 236, 244, 247,

249, 350, 351, 352, 354, 359, 368, 419
Group culture, 237, 240, 358

 407

Hierarchical, xv, xvi, 140, 143, 235, 236, 237,
240, 244, 246, 247, 248, 258, 349, 350, 352,
353, 358, 419

Rational, 140, 142, 235, 236, 240, 242, 244, 248,
351, 352, 353, 354, 388, 419

P

Pair Programming, 73, 81, 372, 381, 415
phenomenology, 29, 165, 166, 167, 171, 172, 198,

345, 378, 393, 405
Product Owner

PO, v, 98, 213, 250, 251, 252, 253, 269

R

Research Approach
Qualitative, x, xi, xii, xv, xvi, 32, 149, 156, 163,

164, 165, 166, 174, 196, 198, 202, 271, 375,
378, 380, 388, 392, 393, 395, 397, 398, 401,
423

Quantitative, xii, 32, 149, 156, 272, 291, 292,
293, 300, 335, 402, 407

S

scalability, 103, 126, 130, 132, 134, 144, 179, 186,
210, 212, 216, 231, 238, 243, 348, 351, 354, 366,
368, 369, 417

Software
software quality, 29, 79, 106, 386, 391, 393, 404

Software Development Methodology
SDM, v, xv, 26, 27, 28, 39, 40, 43, 44, 49, 146,

405, 417

Software Engineering, vi, 43, 65, 150, 170, 181,
372, 373, 374, 375, 376, 377, 378, 379, 380, 381,
385, 386, 387, 389, 390, 391, 394, 395, 396, 397,
398, 399, 400, 401, 402, 404, 405, 409, 423

Software Methodology Acceptance
TASDM, vi, xiv, xvi, xvii, 273, 286, 287, 293, 294,

300, 320, 321, 322, 326, 327, 328, 329, 331,
335, 337, 355

Software Process Improvement, vi, 374, 379, 393,
395, 401, 406, 408
SPI, vi, 22, 29, 35, 40, 48, 242, 243, 344

Software Process Model

code and fix, 31, 36, 40, 41, 42, 43, 52, 419
iterative and incremental, 20, 31, 36, 48, 49, 52,

55, 56, 59, 60, 61, 93, 143, 182, 186, 344,
414, 417

Spiral, ix, xv, 37, 38, 52, 53, 54, 55, 56, 57, 58,
59, 71, 93, 94, 95, 132, 248, 354, 376

Unified Process, ix, xv, 59, 63, 123
UP, 59, 60, 61, 62, 63, 64, 71
Waterfall, vi, xv, xvi, 20, 21, 23, 31, 38, 39, 45,

46, 47, 48, 49, 50, 51, 52, 54, 55, 60, 71, 80,
81, 85, 93, 100, 109, 117, 118, 119, 181, 182,
204, 209, 215, 216, 217, 218, 222, 223, 226,
229, 230, 235, 236, 237, 238, 241, 243, 245,
246, 247, 251, 271, 330, 346, 347, 348, 350,
352, 353, 362, 366, 375, 379, 414, 417, 418

Structural Equation Modelling, vii, xii, 32, 325

T

Technology Acceptance
Diffusion of Innovation, v, xiv, 90, 138, 278, 281,

282, 397
Organisational Support, v, xvii, 286, 288, 289,

293, 298, 312, 323, 325, 329, 331, 356, 357,
358, 430

Perceived Ease of Use, v
Perceived Usefulness, v, 275, 284, 286, 287,

288, 289, 293, 299, 300, 302, 320, 323, 335,
355, 428

TAM, vi, 107, 138, 274, 276, 277, 279, 280, 281,
283, 287, 383, 385, 408

Test Driven Development
TDD, 73, 76, 77, 78, 79, 80, 87, 90, 92, 105, 106,

108, 110, 144, 228, 267, 268, 415

U

Unified Modelling Language
UML, 61, 63, 77, 187, 226, 399

user stories, 62, 70, 72, 73, 76, 80, 83, 109, 182,
214, 238

W

Wagile, 119, 226, 246, 348, 353

