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ABSTRACT

A regional field and geochemical study has allowed the identification of three primary units within the
Proterozoic basement of the Valley of a Thousand Hills. The Nagle Dam Formation incorporates several
chemically distinct orthogneiss series, characterised by limited intragroup fractionation, and derived from
discrete sources. Intrusive into the gneisses are the megacrystic A-type granites of the Mgeni batholith,
comprising the biotite granites of the Ximba Suite; the hornblende granites and charnockite of the
Mlahlanja Suite; and the medium grained leucogranite of the Nqwadolo Suite. Petrogenetic modelling
indicates that these are predominately cumulates. A general model for the A-type granites suggests that
they were derived through variable MASH processes on an original within plate type basalt. Enclaves
within the Mgeni batholith form a distinct series, the Valley Trust Formation, comprising a nongenetic
orthogneiss association of amphibolite and crustal sourced quartzo-feldspathic gneiss and locally derived
paragneisses. Interaction between the biotite granite and the pelitic enclaves generated a biotite gamet
granite. Geothermobarometry suggests temperatures of metamorphism to a maximum of 770°C for the
Nagle Dam Formation and ¢.850°C at a pressure of 6 kb for the Valley Trust Formation. Potential
magmatic temperatures of ¢.760°C at 5 kb are derived for the Mgeni batholith. High Mn garnets within
late veins indicate subsequent intrusion at higher levels.

Derivation of a tectonic model for the Valley of a Thousand Hills is assisted by a revaluation of the
chemical tectonic discrimination plots as source or initiator discriminators. These indicate an origin for
the Nagle Dam Formation in an arc environment, while the bimodal orthogneiss association of the Valley
Trust Formation and the A-type character of the Mgeni batholith suggests their evolution during
extensional events. Geothermobarometry defines an isothermal decompression path, possibly generated
during a collision event, superimposed on which is a potential midcrustal heating event, resultant on the
intrusion of the Mgeni batholith. These data can be integrated with revised lithotectonic data from the
southern portion of the Natal Province to derive a regional model. This comprises: the collision of a
number of arcs with associated splitting to form backarcs, sedimentation, and failed rift systems;
syn-collisional S-type magmatism, contemporaneous with isothermal decompression of the region; and a
series of pulses of post-orogenic granites.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVES OF THE PRESENT STUDY

The present study was initiated by Prof. A. Kerr as
a continuation of the earlier work of Kuyper
(1979), Du Toit (1979), Bulley (1981) and
Eglington (1987) in the Valley of a Thousand Hills,
an area selected as a representative example of the
Proterozoic granite-gneiss association of central
KwaZulu Natal (Cain 1975). Its aim is to extended
the previously limited geochemical data base in the
Valley of a Thousand Hills and so allow the more
specific geochemical characterisation of the major
rock types, distinguish distinct rock groups,
identify the nature of the protolith of the
metamorphosed lithologies  and  develop
petrogenetic models for selected units. In addition,
a geothermobarometric study of the area has been
undertaken to produce a quantitative analysis of the
conditions of metamorphism of the country rocks
and the level of intrusion of the granites.

These data are utilised as the framework for the
development of a general model for the geological
evolution of the Valley of a Thousand Hills during
the Proterozoic, an area largely neglected during
recent regional analyses of the Natal Province (for
example Thomas 1989a). Ultimately this scheme is
extended to provide a comprehensive model for the
southern portion of the Natal Province.

1.2 LOCALITY

The present study is centred within the Valley of a
Thousand Hills, northwest of Durban, KwaZulu
Natal, South Africa (Figure 1.1) and includes the
majority of the Proterozoic basement rocks
exposed in the 1:50 000 topographical sheets 2930
DA Cato Ridge and 2930 DB Inanda, an area of
approximately 600km? This area takes the form of
a large topographic low, open to the northeast, and
surrounded by an escarpment of Phanerozoic
sediments, the Natal Group and Karoo Sequence.
Its northern and western portions are extremely
rugged with prominent granite bornhardts, such as
Sithumba and Nqwadolo, and heavily vegetated
steep-sided ridges. South of the Nanda plateau the
country becomes more subdued, with the Mgeni
River developing a marked meander pattern before
it exits the Valley of a Thousand Hills through the
gorge below Matabetule.

Retreat of the escarpment has left several large
outliers of Phanerozoic sediments within the
basement exposure. These occur as large, flat
topped 'Table Mountains' with distinctive scarp
slopes. From Kwa-Matabata to Nanda a series of
these combine to form a marked linear feature.
This serves to separate the Mgeni River and its
tributaries, to the southwest, from the smaller
Mdloti River system to the northeast.

1.3 PREVIOUS WORK

The first account of the basement rocks of
KwaZulu Natal was in a letter from Sutherland to
Sir R.I. Murchison noting the presence of a large
northeast - southwest trending 'dyke of granite' with
a ‘rough-grained, almost porphyritic' texture
(Sutherland 1855). Subsequently, Griesbach (1871)
in his geological map of the Colony of Natal,
identified several large occurrences of granite
within the major coastal river valleys. The full
extent of these rocks in northemn KwaZulu Natal
was distinguished by Anderson (1902), who
believed that the granites and associated
metamorphic series formed an integral rock
association. Krige (1935), however, in his geology
of Durban considered the granites, although
gneissose, to be intrusive in nature. On
mineralogical grounds he correlated the granites
with those of northern KwaZulu Natal and
Mpumalanga.

Subsequently, numerous studies were initiated
within the Valley of a Thousand Hills and
surrounding areas, including Kent (1938), Cherry
(1946), Dodson (1950), Matthews (1952),
Hargraves (1952), Scheepers (1952), van Straten
(1952), Arnett (1953), Lambert (1954), Thompson
(1955), Gold (1957) and Davies (1964). These
investigations distinguished a series of paragneisses
and orthoamphibolites, which were typically
correlated with the Tugela Series of northern
KwaZulu Natal, and later granites. The granites
were initially thought to have formed through
metasomatic alteration of the gneisses, but later
analysis (Guy 1974; Cain 1975) suggested that they
represented a remobilised basement to the
associated gneisses.

In 1978 a major mapping programme was initiated
in the Valley of a Thousand Hilis (Kuyper 1979;
Du Toit 1979; Bulley 1981). These authors
recognised the fundamental difference between the
paragneisses (Nagle Dam Formation) and the
granitic rocks, which were viewed as the
remobilised basement to the gneisses, portions of
which occur as enclaves within the granites.
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Figure 1.1 Regional geological map of the Natal Province (Thomas 1989a), showing the location of the study area in
' relation with the principle tectonic subdivisions of the province.
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Smaller enclaves were thought to represent restite
material. Metamorphism to granulite grade was
identified, with the development of charnockites
within the granites. Three phases of deformation
were distinguished, including the late large scale
warping of the granites.

Kuyper (1979) and Du Toit (1979) presented 46
geochemical analyses, predominately from the
granites. These defined simple trends on Harker
diagrams which were considered to suggest a
genetic relationship between the various granites,
Kerr (1985), however, proposed that the granites
represented three distinct families, comprising:

Suite I - hornblende granite, charnockite, garnet
hornblende granite;

Suite IT - biotite garnet granite, biotite granite; and

Suite I1I - late Nqwadolo granite.

This conclusion was supported by the isotopic
analyses of Eglington (1987), which showed that
each suite possessed distinct initial strontium ratios
(Sry):

Suite I - Sr; 0.7042+28;

or 0.7053+8 (Eglington ef al. 1989a);
Suite II - Siy 0.7077+12;
Suite III - Sry 0.716+24;

and ages of 1096+180 Ma, or 1029+57 Ma
(Eglington et al 1989a), 1001+35 Ma and
1033+18 Ma respectively. Kerr (1985), Milne
(1986) and Eglington (1987) noted the distinct
chemical characteristics of these granites - high
Fe/Mg ratios and enhanced high field strength
element (HFSE) concentrations - comparable to
those found in the A-type granites of Loiselle and
Wones (1979) and Collins et al (1982) which
intrude during the end phase of an orogenic event
or in an anorogenic setting.

1.4 REGIONAL SETTING

The Proterozoic basement of KwaZulu Natal - the
Natal Province (Tankard et al 1982; Thomas
1989a) - is restricted to a narrow, discontinuous
inlier trending subparallel to the coast from Port
Edward to the Tugela River (Figure 1.1), where
Matthews (1972) identified a thrust contact with
the Archaean Kaapvaal Craton - the Kaapvaal
Province of Thomas (1989a). The lateral extent of
the province is concealed by later sedimentary
cover but it is typically considered to form an
eastern extension of the Proterozoic sequence in
Namaqualand (Tankard er al 1982; Goodwin
1991), while the southern margin of the province is

thought to be marked by the geophysical Southern
Cape conductivity belt and the Beattie magnetic
anomaly (De Beer et al. 1982; De Beer and Meyer
1983). A possible eastern continuation into
Antarctica was proposed by Smith and Hallam
(1970), Piper (1974) and Groenewald et al. (1991).

Many of the earlier workers, including Du Toit
(1954) and Haughton (1969), correlated the
basement rocks of KwaZulu Natal with those of
Mpumalanga. The regional isotopic study of
Nicolaysen and Burger (1965), however, identified
a major hiatus between the ¢.2600 Ma granites in
Mpumalanga and the ¢.1000 Ma granites and
metasedimentary rocks of southern KwaZulu Natal.
Following the identification of this distinct
Proterozoic basement in KwaZulu Natal, a number
of authors, including Matthews (1972; 1981a;
1981b), Cain (1975), the South African Committee
for Stratigraphy (1980), Milne (1986) and more
recently Thomas (1989a), Jacobs et al. (1993) and
Jacobs and Thomas (1994) have developed and are
refining a regional framework for the geological
evolution of the Natal Province.

Initially, the Proterozoic basement of KwaZulu
Natal was partitioned into a series of zones each
characterised by a specific lithological assemblage
or grade of metamorphism (Matthews 1981a).
Subsequently, Thomas (1989a) proposed that these
zones represented four distinct tectonic terranes
(Figure [.1) each separated by a major structural
discontinuity, and distinguished by variations in
their supercrustal lithologies and early intrusions.
This juxtaposition of terranes was considered to
represent the cumulation of a series of collision
events, involving one or more island arcs, of
c.1200 Ma age, and the Kaapvaal Craton
(Matthews 1981a; Milne 1986; Jacobs ef al. 1993;
Jacobs and Thomas 1994). Following the fusing of
these terranes, ¢.1100 Ma (Jacobs and Thomas
1994), the province behaved as a single tectonic
unit, into which a series of granites intruded, the
most prominent of which are the ¢.1050 Ma
(Jacobs and Thomas 1994) rapakivi granite -
charnockite batholiths of the Oribi Gorge Suite
(Thomas 1988a).
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CHAPTER 2

GEOLOGY OF THE VALLEY OF A
THOUSAND HILLS

2.1 INTRODUCTION

In this section the field appearance, petrography
and mineral chemistry of the principle lithologies
present within the Valley of a Thousand Hills will
be described.

Kerr (1985) distinguished two major units within
the Valley of a Thousand Hills:

1) the Nagle Dam Formation, which occupies the
northern portion of the area, and consists
predominately of migmatised banded biotite and
hornblende-biotite gneisses, with lesser
amphibolite, quartzo-feldspathic gneiss and pelitic
gneiss. Meta-ultrabasic, quartzite, marble and small
manganiferous bodies are of minor significance
(described in detail by Kent 1938; Davies 1964).
At least three phases of deformation and
metamorphism that reached granulite grade have
been recognised (Bulley 1981); and

2) the Mgeni megacrystic granite (Mgeni
batholith), a series of granites characterised by
large feldspar megacrysts - believed to be a
member of the Oribi Gorge Suite of post-orogenic
granites (Thomas 1989a) - which intrudes the
gneisses of the Mapumulo Group.

Within these granites a number of enclaves were
identified, predominately an amphibolite - pelitic
gneiss association, correlated with the Nagle Dam
Formation, and  quartzo-feldspathic  gneiss,
believed to be feeder dykes to the Nqwadolo
granite (Kuyper 1979), metamorphosed to granulite
grade. Although small enclaves occur in all the
granites, large enclaves are restricted to the
megacrystic granites, and in the southwest of the
batholith form major septa separating individual
plutons.

Lithological and chemical differences between the
enclaves found within the main body of the Mgeni
batholith and the country rock gneisses, however,
do not support their correlation (Section 4.3.3).
Rather, the enclaves are considered to represent a
separate unit - the Valley Trust Formation. The
numerous small enclaves present in the contact
zone of the Mgeni batholith and the larger enclaves
included within the granite veins intruding the
Nagle Dam Formation are, however, viewed as a
portion of the Nagle Dam Formation.

Three primary units have therefore been recognised
during the present study:

1) the gneisses of the Nagle Dam Formation;
2) the enclaves of the Valley Trust Formation; and
3) the granites of the Mgeni batholith.

These are summarised in Table 2.1 and Figure 2.1.
To facilitate in the analysis of these units an
extensive field sampling programme was initiated,
from which specific samples were selected for
microprobe analysis of their mineral phases and
geochemical analysis. These latter are given the
prefix UND or NQ (for a series of samples
collected from the Ngwadolo Suite), and the results
are given in Appendix 2 (Microprobe Analyses)
and Appendix 3 (Geochemical Analyses). The
position of these samples are given on the
geochemical sample locality plan in Appendix 3.
Other samples, which were not selected for
geochemical analysis are given the prefix NDF
(Nagle Dam and Valley Trust Formations), XS
(Ximba Suite) and MS (Mlahlanja Suite). The
location of those which are discussed in this section
are given on the geochemical sample locality plan
in Appendix 3.

2.2 THE MAPUMULO GROUP
2.2.1 NAGLE DAM FORMATION
a) Biotite Hornblende Gneiss

A grey, medium grained, commonly migmatised,
biotite hornblende gneiss comprises the majority of
the Nagle Dam Formation. It consists
predominately of quartz, plagioclase feldspar
(Angs.g), perthitic  K-feldspar, biotite and
hornblende (Appendix 1), with accessory opaque
ore, apatite, zircon and allanite. Secondary
prehnite, chlorite (after biotite), sphene (around
ore), muscovite and carbonate may be present.
Individual enclaves within the contact zone of the
Mgeni  batholith  may, however, differ
conspicuously from this norm, and mafic rich
gneiss, orthopyroxene bearing gneiss, chlorite
(after biotite) muscovite gneiss and porphyroblastic
gneiss have been identified.

Thin sections are usually seriate, with the mafic
minerals characteristically ~smaller than the
associated  quartzo-feldspathic — material, or
inequigranular, with the development of quartz and
plagioclase megacrysts. Mineral contacts are
predominately interlobate. A lepidoblastic or
nematoblastic texture is developed, depending on
the individual mineralogy of the section. Variations



Table 2.1. Stratigraphic nomenclature of the Proterozoic basement of the Valley of a Thousand Hills.

LITHOSTRATIGRAPHIC PRINCIPLE LITHOLOGIES UNITS
UNIT

Mgeni batholith

Ngwadolo Suite Mafic poor biotite granite Ngwadolo pluton

Mlahlanja Suite

Ximba Suite

Mapumulo Group

Valley Trust Formation

Nagle Dam Formation

Gammet homblende granite
Hornblende granite - charmockite
Hommblende granite

Biotite + garnet + hornblende granite

Pelitic gneiss
Amphibolite
Quartzo-feldspathic gneiss

Biotite hornblende gneiss
Quartzo-feldspathic gneiss
Amphibolite

Spitskop, Matata plutons
Sansikane, Egugwini plutons
Mlangakhuta, eNyoni plutons

Ximba pluton
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in mafic mineral orientations suggest the existence
of a second fabric.

Microprobe analyses of the plagioclase and biotite
are available from a marginal enclave (NDF2)
within the Mgeni batholith (Appendix 2). These
are an andesine (Ans.;) and annite (Figure 2.2)
respectively, with the biotite exhibiting a low iron
(Fe/Fe+Mg = 0.33-0.42) and total alumina (Alror =
2.48-2.58) content.

b) Quartzo-feldspathic Gneiss

In outcrop the quartzo-feldspathic gneiss is
typically white or red in colour and consists
predominately of medium grained felsic minerals,
quartz, perthitic microcline and oligoclase, with
minor biotite (Appendix 1). Accessory amounts of
opaque ore, zircon, apatite and allanite occur, the
latter being particularly abundant in the enclaves
within the marginal granite. Elongate felsic
minerals and biotite define a crude foliation. Bulley
(1981) described two large occurrences adjacent to
the Mgeni and Glendale batholiths, but the former
has since been reinterpreted as a portion of the
Mgeni batholith (A Kerr, 1988, pers. comm.").

It is texturally complex, with individual samples
displaying a heterogranular granoblastic texture, or
in those thin sections with abundant biotite, a
lepidoblastic texture. Elongate quartz may also
define a fabric. The localised occurrence of biotite
in individual thin sections produces a gneissose
texture. Typically the mineral size distribution is
seriate, although the actual size of the crystals
differ greatly. Mineral contacts are variable with
interlobate and amoeboid contacts developed.

Microprobe analyses of the feldspars (Appendix 2)
from a sample (UND 309) collected within the
main gneiss belt indicate that the plagioclase is an
oligoclase (c.Anu.7), frequently with an albite
margin (c.Anys), rarely an albite. The K-feldspar is
highly potassic, typically with limited solid
solution  (Ory.100Abo.sAno), although individual
analyses possess a significant sodium content
(OrngbysAm).

¢) Amphibolite

The amphibolite occurs predominately as a
component of an association of distinct lithologies,
and in particular pelitic gneiss, at Sanvula (Davies
1964) and below Tafamasi (Bulley 1981).
Numerous scattered, smaller exposures also occur

" Prof A Kerr, University of Natal, deceased
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associated with the biotite hornblende gneiss and
within the marginal granite of the Mgeni batholith.
It is a medium grained dark rock, comprising
plagioclase (c.Ang), hornblende and quartz,
occasionally with diopside and biotite (Appendix
1). Opaque ore is a common accessory mineral. A
crude gneissosity, which may be deformed, is
frequently developed. Hornblendite and a medium
grained two pyroxene amphibolite are present
within the marginal granite of the Mgeni batholith.

The amphibolite typically possesses a foliated
equigranular ~ medium-grained  nematoblastic
polygonal texture although the mafic portions of a
thin section and the more mafic samples are coarser
grained than the felsic sections. The pyroxene
amphibolite is markedly inequigranular. A
gneissose texture marked by variations in the
hornblende/plagioclase ratio or the presence of
mineralogically distinct layers is present in
individual thin sections. Particularly well-defined
are plagioclase + diopside or quartz + diopside
zones alternating with hornblende dominant layers.
Triple point contacts are found between the
plagioclase and hornblende, but rarely with the
pyroxene which tends to display rounded contacts,
and especially with the plagioclase.

One sample of the amphibolite was selected for
microprobe analysis - UND 320 - from below
Odlameni (Appendix 2). The plagioclase is an

andesine (c.Ang.as), with individual analyses
displaying considerable solid solution
(AngAb7,Or). The amphibole is magnesium

(Fe/Fe+Mg = 0.39-0.41, Fe’* = 0.48-0.71), with a
low alkali content. Following the terminology of
Leake (1997) it is a calcic amphibole ((Ca+Na)p>1,
Nag<0.5 and (Na+K),>0.50) and on the
classification diagram of Leake (1997) plots in the
edenite field (Figure 2.3). The clinopyroxene is
also magnesium rich (Fe/Fe+Mg = 0.28-0.29), with
a high nonquadrilateral component (ALO; =
1.54-1.63%, Na,O = 0.39-0.40%) and plots in the
diopside field on the pyroxene classification
diagram of Morimoto (1988).

d) Pelitic Gneiss

Pelitic gneiss has been reported from several
localities within the Nagle Dam Formation and the
marginal phase of the Mgeni batholith, and in
particular  Phangendays (Kuyper 1979) and
Tafamasi (Bulley 1981). The present study has
found that it is medium grained with a poorly to
well  defined gneissose texture, consisting
essentially of plagioclase (Anyy.ss), quartz, perthitic
K-feldspar  (microcline and orthoclase), a
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characteristically high biotite content and garnet
(Appendix 1), with accessory opaque ore, zircon
and apatite.

A gneissose texture is distinguished by major
variations in the biotite concentration and the size
of the felsic minerals, which are typically larger in
the leucosome, although plagioclase megacrysts
may occur associated with the melanosome. In
addition, plagioclase appears to be more altered
and muscovite more abundant in the leucosome.
Garnet is ubiquitous.

Within individual layers the pelitic gneiss displays
a well developed lepidoblastic texture. The mineral
size distribution is variable, with the biotite-rich
melanosome being more equigranular than the
seriate biotite-poor leucosome. Mineral contacts
are typically interlobate, but are amoeboid in
quartz-rich zones. Evidence for the development of
a second fabric is recorded in the variation of mafic
mineral orientations.

Two samples of the pelitic gneiss were selected for
microprobe analysis, one a marginal enclave within
the granite at Phangendays (NDF 60) and the other
from Tafamasi (NDF 8) (Appendix 2). The
plagioclase is an andesine (c.Ansss) with no
apparent zonation. The high total alumina content
(Alror = 2.97-3.39) of the biotite places it within
the siderophyllite sector of the ideal biotite plane
(Figure 2.2), while its high titanium content (Ti =
0.33-0.47) is characteristic of biotite from the
granulite grade (Guidotti 1984). Analyses from the
different samples are chemically distinct, and in
particular the biotite from sample NDF 60
possesses relatively high alumina contents but low
iron. Individual analyses may display potassium
loss. The garnet is an almandine, with high pyrope
and lesser spessartine and grossular components
(Almg; 6oSpesss.i2Pyi4.15Grossas), and a marginal
sector enriched in alumina, iron and manganese but
depleted in silica and magnesium
(AlmysSpess;s sPyyGrosss).  These features are
typical of diffusion zoning in garnet (Tracy 1982)
that underwent retrograde breakdown to form
biotite at upper amphibolite conditions (Tracy et
al. 1976; Hollister 1977).

222 VALLEY TRUST FORMATION

The majority of the Valley Trust Formation occurs
as distinct raft swarms at Stanco to the southwest of
the Nqwadolo Mountain and at Bethlehem-
Merryland in the southern portion of the batholith
(Kuyper 1979; Du Toit 1979) extending along
strike  for several kilometres (Figure 2.1).
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Ubiquitous occurrences of smaller mafic-rich
enclaves have, however, been described beyond the
limits of these major raft swarms. All tend to
extend parallel to the fabric in the granite.

Following the terminology of Didier and Barbarin
(1991), the majority of these enclaves are
xenoliths, with highly variable shapes, strongly
dependent upon their mineralogy, or schlieren. The
smaller biotite-rich enclaves described by Kuyper
(1979), Du Toit (1979) and Bulley (1981),
however, are surmicaceous enclaves. Rarely, felsic
microgranular enclaves are distinguished.

a) Amphibolite

The amphibolite occurs predominantly within the
major raft swarms identified by Kuyper (1979) and
Du Toit (1979), closely associated with the pelitic
gneiss. It is typically medium grained with a
marked foliation and a crude gneissosity. Contacts
with the pelitic gneiss and the granites are sharp,
but on a local scale display the effects of intense
deformation. This results in the reduction of the
amphibolitic bodies to a series of small (c.1m)
boudinaged pods.

Two major mineralogical varieties have been
distinguished (Appendix 1):

1) plagioclase hornblende amphibolite; and
2) two pyroxene amphibolite.

The former appears to be relatively rare, with the
majority of the amphibolite samples collected
being pyroxene bearing with distinct brown
homblende.

The amphibolite displays a grano-nematoblastic
texture, slightly inequigranular, with a seriate
distribution of crystal sizes. They are broadly
homogeneous, but mineralogical layering, and the
presence of localised preferential enrichment of
specific phases, particularly hornblende, are noted,
with the development of a crude gneissosity. A
well defined lineation is produced by the elongate
nature of the composite minerals. Interlobate
crystal contacts are widely developed, but triple
point contacts may be present between the major
minerals, particularly at analogous junctions.

One sample was selected for microprobe analysis
(UND 357), collected adjacent to the large pelitic
gneiss enclave in Figure 2.4 (Appendix 2). The
plagioclase is a labradorite (Ang.e;), with more
calcic margins (Ango.es). The amphibole possesses
moderate iron (FeO = 18.59-19.49%, Fe/Fe+Mg =
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0.54-0.55, Fe** = 0.33-0.54) and total alkali
concentrations ((Na+K)ror = 0.54-0.60). Following
the terminology of Leake (1997) it is a calcic
amphibole ((Ca+Na)>1, Nag<0.5 and
(Na+K),>0.50) and on the classification diagram
of Leake plots across the boundary separating the
edenite and ferroedenite fields (Figure 2.3). Slight,
but variable, differences exist between the Fe/Mg
ratio of the core and margin of individual
amphiboles. These analyses are somewhat similar
to those obtained by Du Toit (1979), although the
latter are typically higher in alumina and iron but
lower in magnesium and calcium than the present
analyses. The orthopyroxene is iron rich
(Fe/FetMg = 0.57-0.58), with a low
nonquadrilateral component (TiO; = 0.03-0.11%,
ALO; = 0.45-0.64%, Na,0 = 0-0.03%). The
clinopyroxene possesses a high nonquadrilateral
component (AlLO; = 0.89-1.13%, Na,0O =
0.21-0.25%) and moderate iron levels (FeO =
13-86-14.36%, Fe/Fe+Mg = 0.42-0.43). On the
pyroxene classification diagram of Morimoto
(1988) these plot in the ferrosilite and diopside
fields, respectively.

b) Pelitic Gneiss

The pelitic gneiss is dark grey and medium-grained
with a prominent, multiply deformed, gneissic
fabric. In most outcrops it forms a negative feature,
being eroded preferentially to the surrounding
granite. Contacts parallel to the fabric in the granite
are sharp but may be undulatory with sporadic
marginal inclusions of megacrystic feldspar. The
lateral extremities of the enclaves, however, may
display partial disassociation and mixing with the
granite (Figure 2.4). This process produces a zone
of darker than normal granite within which small
enclaves of dark biotite gneiss are found.

The typical pelitic gneiss consists predominately of
quartz, feldspar, biotite, garnet, sillimanite and
cordierite  (Appendix 1). It possesses a
lepidophyroblastic texture, defined by the marked
elongation of the biotite and sillimanite crystals
and porphyroblasts of garnet and sillimanite, with
individual sillimanite needles reaching 10cm in
length. In more quartzo-feldspathic varieties this
becomes a grano-(lepido)-porphyroblastic texture.
Sulphide mineralisation is locally pronounced.

It is highly heterogeneous, with the development of
marked mineralogically and texturally specific
domains, and in particular zones characterised by:

1) fine grained homogeneous biotite + sillimanite +
cordierite + quartz + feldspar;
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2) biotite + sillimanite folia; and

3) coarse quartztmicrocline-perthite+plagioclase
(c.Any )+garnet leucosomes, probably generated
through partial melting (Powell and Downes 1990).

The biotite gneiss differs markedly from the typical
pelitic gneiss, with a darker colour than the norm, a
poorly defined gneissosity, a finer grain size with
few gamets, no sillimanite or cordierite and no
apparent associated leucosome. In section it
displays a granolepidoblastic texture, with the
lineation defined by the marked parallelism of the
elongate red brown biotite laths. Typically it is
equigranular, or slightly seriate, although
individual plagioclase crystals may be larger than
the average (Appendix 1).

Two sections of the pelitic gneiss were selected for
microprobe analysis, samples NDF 56 and UND
374. Both were collected from the large enclave
pictured in Figure 2.4, with the latter situated
adjacent to a significant concentration of the
granitic partial melt (Appendix 2).

The plagioclase is an oligoclase (Anyas), with
slightly more sodic margins. The K-feldspar is
extremely variable in composition, due to varying
degrees of perthite exsolution, typically potassic
(K:0>13%), but with a substantial sodium content
(1.1-2.6%). Unexsolved K-feldspar possesses
sodium contents to a maximum of 4 percent.

The biotite possesses a high alumina content (Alror
= 3.03-3.35), but is low in iron (Fe/FetMg =
0.3-0.5). It therefore plots in the biotite field, with
extension into the phlogopite field, but towards the
siderophyllite portion of the ideal biotite plane
(Figure 2.2). The garnet from both sections is an
almandine, but that from sample NDF 56
(Almy.77Spessi . Pys0.05Gross, ;) possesses
substantially more pyrope than the garnet from
sample UND 374 (Almys.77Spess;sPyis.15Gross;.q).
No zonation has been identified within sample
NDF 56. Only core analyses are available from
sample UND 374,

Two samples of the garnet partial melt, NDF 92A
and UND 93, were collected for microprobe
analysis of their garnet, the former adjacent to the
pelitic gneiss and the latter from a large granitic
mass within the core of the enclave (Appendix 2).
These are almandine, but with variable solid
solution characteristics, NDF 92A possessing less

almandine and grossular but more pyrope
(Almys.77Spess2sPyis.0Grosss)  than UND 93
(Almz.79SpessysPyi5.1sGrossss,).  The garnet from

sample NDF 92A is somewhat similar to that from
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Figure 2.4. Pelitic enclave within the biotite garnet granite of the Ximba Suite, displaying lateral disassociation.

the juxtaposed pelitic gneiss.
¢) Quartzo-feldspathic Gneiss

Du Toit (1979) and Kuyper (1979) noted the
presence of a series of quartzo-feldspathic
granitoid gneisses within the southern portion of
the Mgeni batholith. These were considered fo
represent a phase of the granite, while smaller
enclaves were viewed as feeder dykes to the
Ngwadolo granite. Bulley (1981), however,
suggested that the large quartzo-feldspathic body at
Nduzula was an enclave. Subsequent field work
has demonstrated the development of granite
veining within the quartzo-feldspathic gneiss
indicating that it represents an early series of
supercrustals. Sharp contacts with the granite are
observed, but an example of a discordant contact
noted by Kuyper (1979) has been reinterpreted as a
fault contact (A Kerr, 1988, pers. comm.").

The white or pink quartzo-feldspathic gneiss
consists of medium grained quartz, microcline or
microcline microperthite, albite or oligoclase with
minor biotite and garnet (Appendix 1), the
elongation of which definesa crude fabric. The
texture is granoblastic and inequigranular, with
feldspar megacrysts. These latter are relatively
common in the 'porphyroblastic’ quartzo-
feldspathic gneiss of Kuyper (1979) and Du Toit

'Prof A Kerr, University of Natal, deceased

(1979), but are less abundant in the smaller bodies
found in the northern portion of the Mgeni
batholith. Individual thin sections display evidence
of shearing, with the development of patches of
finer grained quartzo-feldspathic material around
remnant larger crystals.

Two samples of the quartzo-feldspathic gneiss
were selected for microprobe analysis, UND 302
from a biotite-poor gneiss within the hornblende
granite phase of the Sansikane pluton and UND 42
from a biotite-rich megacrystic enclave in the
eastern portion of the batholith (Appendix 2).

The K-feldspar is orthoclase rich, with a variable
albite content (3-14%). The plagioclase may be an
albite (UND 42) or an oligoclase (UND 302),
rarely an albite. A marginal zone with a higher
albite content is present around the oligioclase.

Analytical totals are low for the majority of the
biotite analyses, with declining potassium and
silica but increasing iron and magnesium
concentrations  with  progressive  alteration.
Unaltered biotite plots within the annite sector of
the ideal biotite plane (Figure 2.2). It differs from
the typical metamorphic biotite analyses of Deer et
al. (1971), with low alumina (Alor = 2.56-2.62)
but high iron (Fe/FetMg = 0.62) contents.
Similarly, it does not plot with the granulite grade
biotites of Giudotti (1984). Rather it is comparable
with biotite analyses from granitic rocks.
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d) Fine Grained Granulite

Kuyper (1979) described a fine grained
hypersthene quartz gneiss, with prominent
mineralogical banding and a plagioclase

amphibolite with a well developed palimpsest
texture. These, with other identified lithologies, are
now considered to form a portion of a fine-grained
granulite association.

The fine-grained granulite series is mineralogically
complex (Appendix 1). Occasional samples are
amphibolitic in composition, but the majority of the
samples collected consist of garnet + biotite +
orthopyroxene + sillimanite in a felsic granoblastic
groundmass. Variations in the mineral assemblage,
and primarily the presence or absence of sillimanite
and orthopyroxene, which occur in separate
mineralogical domains, allow the division of these
latter samples. Three principle mineralogical
groups have, therefore, been identified within this
series:

1) biotite - garnet - orthopyroxene granulite;
2) biotite - garnet - sillimanite granulite; and
3) amphibolitic granulite.

The former may be further subdivided on the basis
of distinct mineralogies and textures. Insufficient
data are available from the amphibolitic granulite
to allow the determination of a similar scheme, but
rather suggest the progressive development of the
amphibolitic granulite from the original dolerite.

Biotite - Garnet + Orthopyroxene + Sillimanite
Granulite

These are grey, fine grained rocks, occasionally
megascopically banded through the presence or
absence of porphyroblastic garnet.

The  orthopyroxene  bearing granulite s
mineralogically and texturally highly variable.
Three distinct classes have been identified:

1) strongly banded garnet - bearing;
2) weakly banded garnet - bearing; and
3) nongarnetiferous granulite;

the latter corresponding with the hypersthene
quartz gneiss described by Kuyper (1979) (quartz +
hypersthene + biotite). The biotite garnet
sillimanite granulite (Appendix 1) possesses less
marked banding than the orthopyroxene bearing
granulite, but is equally mineralogically variable.

Weakly banded  samples

are  relatively

homogeneous, with the banding defined by the
presence or absence of garnet. Within the strongly
banded granulite, however, fine banding is
demarcated by major mineralogical variations, in
particular of biotite, and sharp contacts, marked by
marginal concentrations of mafic minerals. Within
these prominent bands, finer banding can be
distinguished, by changes in the mafic or felsic
mineralogy, or by the presence of monomineralic
layers, in particular of biotite or orthopyroxene.
Modal analyses of these rocks and selected
individual layers are given in Appendix 1.

These rocks display a well-developed fabric, as
defined by the parallelism of the biotite and smaller
monomineralic bands, in addition to the prominent
gneissosity of the more pronounced mineral bands.
Intersecting foliations are possibly related to the
development of discrete mineral assemblages.
Felsic mineral contacts, however, are typically
triple points, as are those between the felsic
minerals and the mafic minerals such as
orthopyroxene in the felsic-rich layers. Typically a
granoblastic-lepidoblastic texture is developed,
with equigranular-seriate crystal sizes. Individual
crystals display polygonal-interlobate shapes. In
garnet-rich layers the texture is grano- (lepido)
porphyroblastic, with the garnet and sillimanite
occurring as porphyroblasts.

Four samples of the fine grained granulite (NDF67,
NDF67a, NDF69 and NDF70), the majority being
orthopyroxene bearing, were selected for
microprobe analysis (Appendix 2).

The orthopyroxene analytical totals are typically
low, but suggest that the pyroxene from each
section is distinct, although nonquadrilateral
component concentrations are uniformly high. In
particular alumina concentrations in excess of 6
percent have been identified. On the classification
diagram of Morimoto (1988) they plot in the
enstatite field, with iron/magnesium ratios of
0.39-0.47. Within individual sections the
orthopyroxene composition is closely related to the
adjacent mineralogy. In particular the presence of
gamnet is marked by a slight increase in the
magnesium concentration of the orthopyroxene, but
depletion in iron. The presence of biotite does not
appear to have a similar effect on orthopyroxene
composition.

The biotite composition is highly variable, both
between and within sections, but all possess
moderate iron (Fe/FetMg = 0.29-0.45) and
alumina (Alor = 2.69-2.93) concentrations. In the
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ideal biotite plane they plot predominately within
the biotite field, but with extension into the
phlogopite field (Figure 2.2). Their high Ti (Ti=
0.34-0.96) content is characteristic of biotites from
granulite grade pelitic schists (Guidotti 1984). The
associated mineralogy, and in particular the
presence of garnet, exercises a strong control on
biotite composition, resulting in lower iron, but
higher magnesium concentrations in adjacent
biotites, similar in style to that identified by Tracy
(1982) for diffusion zoning developed between
biotite-garnet pairs within the granulite facies.

The garnet is an almandine (0.57-0.69) with a large
pyrope (0.27-0.41) component, although average
analyses from each section are distinct and analyses
within an individual section are markedly variable.
Zonation takes the form of an increase in iron and a
decrease in magnesium in a thin marginal rim, as
noted by Tracy (1982) from granulite grade garnet.
No significant calcium or manganese zonation is
apparent.

Amphibolitic Granulite

Kuyper (1979) described a plagioclase amphibolite
with palimpsest texture, which he believed
represented a lower grade equivalent of the
pyroxene amphibolite. During the present study,
however, a series of dark fine grained amphibolitic
rocks have been identified, which suggest that the
plagioclase amphibolite of Kuyper may represent
an initial stage of recrystallisation from an original
dolerite.

Thin section analysis reveals the presence of two
distinct mineral assemblages (Appendix 1):

Assemblage 1 - plagioclase;, (c.Ans;) +
clinopyroxene; + orthopyroxene; with a palimpsest
subophitic texture;

Assemblage 2 - hornblende + orthopyroxene, +
clinopyroxene, + plagioclase, (c.Ans,) + quartz +
garnet;

with Assemblage 2
Assemblage 1.

systematically replacing

The original subophitic texture is altered with
recrystallisation and the increasing size of the new
mineral phases to a grano-porphyroblastic texture,
the porphyroblastic phase in these latter sections
being the augite of Assemblage 1. The completely
altered sections are granoblastic to
grano-nematoblastic, with a lesser range of mineral
sizes. Marked mineral layering occurs, however,
defined by the concentration of specific mineral
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phases.
¢) Biotite Hornblende Gneiss

Kuyper (1979), Du Toit (1979) and Bulley (1981)
noted the occurrence of small (¢.20cm in length),
dark enclaves of biotite-hornblende gneiss. These
are elongated parallel to the foliation in the
surrounding granites, contacts with which are
sharp, but irregular, undulating around adjoining
megacrysts, which may occur included within the
enclave.

They consist of plagioclase (c.Ans), K-feldspar,
quartz, hornblende and biotite (Appendix 1), the
quartz and plagioclase occurring as porphyroblasts
(possibly inclusions from the granite) and possess a
grano-lepidoblastic texture, with a prominent
lineation defined by parallel biotite laths and
elongate concentrations of biotite. Grain contacts
are irregular to interlobate with embayments.

f) Granitic Enclaves

Rare small, ¢.50 cm long, granitic enclaves have
been identified within the granites of the Ximba
Suite. These are distinguished in the field from the
quartzo-feldspathic gneiss by their well developed
gneissosity, much higher mafic content and the
presence of abundant garnet. Contacts with the
granite are sharp, cutting the fabric of the enclave.

They are coarse grained, and consist essentially of
K-feldspar (perthitic microcline), plagioclase (c.
Any;) and quartz, with lesser biotite and garnet
(Appendix 1), and accessory allanite, zircon and
apatite. Minor amounts of secondary chlorite,
prehnite, muscovite and carbonate are also present.
Parallelism of the felsic minerals and the small
mafic mineral clots impart a well defined fabric.
Concentrations of the mafic phases occur adjacent
to the contact of the enclave and the enclosing
granite.

A large range of crystal sizes are present, with most
mineral phases possessing megacrystic tendencies.
Individual megacrysts, and in particular the quartz
and K-feldspar megacrysts, may consist of
groupings of smaller crystals. These megacrysts
are, however, smaller than those found in the
megacrystic granites. Rapakivi and antirapakivi
textures may be present.

One sample (UND 330), was collected for
microprobe analysis (Appendix 2). The biotite
exhibits extreme iron enrichment
(Fe/Fe+Mg=0.78-0.79), at levels comparable with
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biotite from rapakivi and A-type granites
(Anderson and Bender 1989; Abdel-Rahman 1994)
rather than the calc-alkaline granites (Pitcher et al.
1985). All analyses plot in the biotite field of the
ideal biotite plane, within the annite sector (Figure
2.2). The garnet is an almandine, with a large
grossular and smaller pyrope and spessartine
component (Almys.zsSpesssPye.sGrossiie). Marginal
zonation is developed with the margins depleted in
iron and magnesium, and enriched in calcium and
manganese (AlmysSpesss.oPy,4Grossisis), suggesting
garnet growth with falling temperatures (Allan and
Clarke 1981). The plagioclase is an albite.

2.3 THE MGENI BATHOLITH

The various granites identified within the Mgeni
batholith have been grouped into three distinct
suites (Kerr and Milne 1994):

1) the megacrystic biotite granites, the Ximba
Suite, which forms the major portion of the
complex. These occur as a single body, with a finer
grained mafic margin, also present as veins in the
Nagle Dam Formation, grading into a biotite
granite and finally a core of biotite garnet granite
(Figure 2.1);

2) the hornblende granites, the Mlahlanja Suite,
which occur as a series of mineralogically distinct
lens shaped plutons within the Ximba Suite (Figure
2.1). All are megacrystic, with a mafic mineralogy
of hornblende + biotite + orthopyroxene +
clinopyroxene + garnet; and

3) a coarse-grained leucogranite, the Nqwadolo
Suite, present in the core of the complex (Figure
2.1).

2.3.1 XIMBA SUITE

The fresh granites are grey in colour with a red
discoloration adjacent to shear zones. They consist
essentially of megacrystic feldspars set in a matrix
of feldspar, quartz and biotite, locally with garnet
(Figure 2.5) and hornblende. The megacrysts vary
considerably in size, averaging 4cm by 1.5¢m, and
shape with rectangular, ellipsoidal and circular
megacrysts found. Prominent Carlsbad twins and
rapakivi textures are common features of the
K-feldspar. The preferred orientation of the long
axes of the feldspar megacrysts and the biotite
define a crude foliation, considered to be a
deformed magmatic fabric (Milne 1986) with a
general east - west orientation. The marginal
granite and granite veins are characterised by the
presence of fewer and smaller feldspar megacrysts
but a higher mafic content than the normal biotite
granite. Small gneissic enclaves are common in the

marginal granite, while large bodies of gneiss are
enclosed within the granite veins. Deformation
ultimately results in the production of a gneissose
rock (the biotite homblende gneiss of Kuyper
1979). Similarly, local deformation of the biotite
granite adjacent to a large horblende granite -
charnockite pluton has produced an augen gneiss
(Kuyper 1979).

Estimation of the modal content of these granites is
hindered by the extremely large size of the
megacrysts. The concentration of the various
minerals present are therefore estimated, from both
thin sections and hand specimens (Appendix 1).

Megacrysts comprise on average 60 percent of the
granites (Kuyper 1979), the majority being
K-feldspar, either orthoclase or microcline,
frequently perthitic, with fewer plagioclase (c.Angs)
and quartz megacrysts. The groundmass consists of
quartz and feldspar plus the mafic minerals,
primarily ~biotite, locally garnet and rarely
hormblende. Allanite, apatite, zircon, ilmenite and
titanite occur in accessory amounts, with secondary
prehnite, chlorite, sericite and clay minerals. These

are coarse porphyritic  granites, with an
extremely heterogranular texture. The megacrystic
feldspars are euhedral - subbedral while the
groundmass consists of interlocking minerals
displaying lobate or amoeboid crystal faces.
Deformation is recorded in the bent plagioclase
twins and biotite laths, the undulose extinction of
the quartz crystals and the mortar texture around
many of the megacrysts.

Three samples of the Ximba Suite were selected for
microprobe analysis, one from the biotite granite
(UND 40) and two from the biotite garnet granite
(XS 4, UND 90) (Appendix 2).

The plagioclase is typically an oligoclase
(c.Anxa0), with the albite content increasing
slightly from the biotite garnet granite to the biotite
granite. Normal chemical zonation patterns, with
marginal sodium enrichment, are present. The
K-feldspar is typically potassic (14-15.6%), but
with a substantial sodium content (0.5-1.7%).
Variations in the degree of perthitic unmixing
result in a heterogeneous range of compositions.

Biotite analytical totals are commonly low, and in
particular those from the biotite garnet granite,
through potassium loss. Intrasection variability may
therefore be extreme. Unaltered analyses display
extreme iron enrichment (Fe/Fe+Mg = 0.84-0.85),
at levels comparable with biotite from rapakivi and
A-type granites (Barker ef al. 1975; Czamanske et
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Figure 2.5. Biotite garnet granite of the Ximba Suite.

al. 1977; Haapala 1977; Kinnaird et al 1985;
Anderson and Bender 1989; Abdel-Rahman 1994)
rather than the calc-alkaline granites (Dodge et al.
1969; de Albuquerque 1973; Mason 1978; Noyes
et al. 1983; Pitcher et al. 1985). All analyses plot
in the biotite field of the ideal biotite plane, within
the annite sector (Figure 2.2).

The garnet is an almandine (0.72-0.79), with a
large grossular (0.14-0.2) and smaller pyrope
(0.03-0.04) and spessartine (0.03-0.05) component.
Interslide variability is apparent, with the garnet of
section XS 4 possessing lower iron and
magnesium, but higher calcium and manganese
contents than that from sample UND 90. These
differ from the garnet of the granite enclaves,
which has lower calcium levels. Zonation is
developed with a marginal enrichment in
manganese and calcium but depletion in iron and
magnesium  (Alm7.74SpesssPy;.4Grossigze  —>
Alms,.24Spesss.sPy;Grossis.2), comparable with the
reverse zoning profile of Clarke (1981), and
possibly the result of garnet growth with falling
temperatures (Allan and Clarke 1981) or growth in
an evolving magma (du Bray 1988).

2.3.2 MLAHLANJA SUITE

have been
Suite, all

varieties
Mlahlanja

Several mineralogical
identified within the
megacrystic:

1) dark green charnockite, forming prominent

topographic highs;
2) light green hornblende granite - the
subchamockite of Kuyper (1979) - found

surrounding the charnockite;

3) grey hornblende granite, which forms large
depressions, characterised by extensive river
meandering; and

4) grey gammet hornblende granite, found as
pronounced topographic highs.

Individual plutons may be composite with an
association of hornblende granite, subchamockite
and charnockite, such as the Sansikane pluton, or
mineralogically simple, with either hornblende
granite, the Enyoni pluton, or garmet hormblende
granite, the Matata and Spitskop plutons (Figure
2.1).

Within suite contacts are diffuse. Kuyper (1979)

noted a  'green  porphyroblastic  gneiss'
(subcharnockite) which he believed was
gradational between the charnockite and

hornblende granite. No other within suite contact
has been noted, nor has a contact with the Ximba
Suite. The Nqwadolo Suite is, however, intrusive
into the Mlahlanja Suite.

The extremely large grain size of these granites
prohibits the determination of an accurate modal
analysis. Modal analyses are therefore estimated,
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from both hand specimen and thin sections
(Appendix 1).

Feldspar megacrysts, typically an orthoclase or
microcline perthite commonly with a rapakivi
texture, comprise some 60 percent of these
granites. More rarely, plagioclase (c. Angs), quartz
and garnet megacrysts are observed. The
groundmass consists of a mixture of quartz,
feldspar and the mafic minerals, hornblende +
biotite + pyroxene + garnet. Accessory amounts of
apatite, ilmenite, zircon and allanite are present,
with secondary prehnite, chlorite, sericite and clay
minerals. The granites display an extremely
heterogranular coarse porphyritic texture, with
euhedral - subhedral feldspar megacrysts and an
intergrown groundmass, with lobate or amoeboid
crystal faces. Deformation is recorded in the bent
plagioclase twins and biotite, the undulose
extinction of the quartz crystals and the mortar
texture around several of the megacrysts. The
parallelism of the feldspar megacrysts helps define
a crude fabric.

Four samples of the Mlahlanja Suite were selected
for microprobe analysis, a charnockite from the
Egugwini pluton (UND 74), a hornblende granite
from the Sansikane pluton (UND 65) and two
garnet hornblende granites from the Matata pluton
(UND 6 and UND 9) (Appendix 2).

The plagioclase is an oligoclase or andesine
(Annas). A progressive increase in anorthite
content is found with the hornblende granite <
charnockite < garnet hornblende granite.
Intrasection variability may be large. Zonation has
only been identified in the plagioclase from the
garnet hornblende granite, with the development of
an albite rim to the plagioclase. Varying degrees of
perthite exsolution results in highly heterogeneous
K-feldspar analyses, although the majority are
potassic, but with a substantial sodium content
(0.8-3%).

All the mafic minerals possess extreme iron
enrichment (Fe/Fe+Mg c.0.8), typically with the
charnockite < hornblende granite < garnet
hornblende granite. These are comparable with
mineral analyses from rapakivi granites and A-type
granites (Barker et al 1975; Haapala 1977,
Czamanske ef al. 1977; Kinnaird er al 1985;
Anderson and Bender 1989; Ramo 1991;
Abdel-Rahman 1994), rather than the calc-alkaline
granites (Dodge er al. 1968; 1969; de Albuquerque
1973; Mason 1978; Noyes et al. 1983; Pitcher er
al. 1985; Hammarstrom and Zen 1986).

2-13

Many of the biotite analyses are low, apparently
due to potassium loss, but unaltered analyses plot
in the annite field on the ideal biotite plane (Figure
2.2). The amphibole possesses low titanium, but
high total alkalis. Following the terminology of
Leake (1997) it is a calcic amphibole ((Ca+Na)s>1
and Nap<0.5) and plots in the combined hastingsite
and ferropargasite field (Figure 2.3) on the
classification diagram of Leake (1997). Variations
in the Fe**/Al"' ratio suggest that the amphiboles
from the hornblende granite and charnockite are
hastingsite while that from the gamet hornblende
granite is ferropargasite. These amphiboles are
further distinguished by their variable alumina and
magnesium contents, with:

1) the low alumina but high magnesium amphiboles
of the charnockite and hornblende granite; and

2) the high alumina but low magnesium amphibole
of the garnet homblende granite.

Pyroxene data are limited to the orthopyroxene of
the charnockite, and analytical totals are typically
low. These analyses do indicate, however, the
extreme iron enrichment (Fe/Fe+Mg = 0.82-0.83)
and low nonquadrilateral component of this
pyroxene. On the classification diagram of
Morimoto (1988) it plots in the ferrosillite field.

233 NQWADOLO SUITE

The granite of the Ngwadolo Suite consists
principally of quartz and feldspar, a microcline
perthite and a plagioclase (c. Ans), with minor
amounts of biotite and rare garnet (Appendix 1).
Allanite, opaque oxides and zircon occur in
accessory quantities. It has an almost isogranular
coarse texture. Elongate quartz crystals and the
long axes of the biotite laths define the foliation
that strikes east - west, swinging to northeast -
southwest in the western extremity of the body.
Both Kuyper (1979) and Du Toit (1979) noted an
increase in grain size towards the core of the
complex and slight colour changes. Sampling of
the tailings from the water pipeline constructed
through Nqwadolo Mountain indicates, however,
that the granite is internally complex. Individual
samples display a wide range of colours, most
notably green, white and red, and grain sizes, from
medium grained to pegmatitic. The coarse grained
texture of the Nqwadolo Suite allows simple
discrimination from the megacrystic Ximba and
Mlahlanja Suites, which it intrudes,

One section of the Nqwadolo Suite was selected for
microprobe analysis (UND 19), with one additional
sample (UND 22) from a late granite vein
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(Appendix  2), initially identified as a
quartzo-feldspathic gneiss (Kuyper 1979), and a
possible feeder to the Nqwadolo Suite (but see
Section 4.4.3).

The plagioclase from sample UND 19 is an
oligoclase (c.Anyq.17), while that from sample UND
22 is an albite (c.Anss). Normal zonation patterns
are found in sample UND 19, with the
development of an albite margin to the oligioclase
cores. The K-feldspar is typically highly potassic,
but exhibits extreme variability, due to differing
degrees of perthite unmixing, with sodium contents
to a maximum of 4 percent.

The garnets are almandines, but that from sample
UND 19 possesses a small grossular and
insignificant pyrope and spessartine solid solution,
while the gamet from sample UND 22 is
spessartine rich (Almes.ssSpess:aPysGrosss), with a
marginal zone marked with slight manganese
enrichment. These latter are comparable to medium
to high manganese garnet analyses from high level
granites (Hall 1965; Joyce 1973; Harris 1974,
Nevia 1975; Deer et al. 1982). The lack of solid
solution in the gamet from sample UND 19,
however, distinguishes it from the analyses of Deer
et al. (1982).
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CHAPTER 3

PRESSURE - TEMPERATURE
EVOLUTION OF THE VALLEY OF A
THOUSAND HILLS

3.1 INTRODUCTION

This chapter attempts to define the evolution of the
temperature and pressure conditions prevailing
during the metamorphism of the Mapumulo Group
and the intrusion of the Mgeni batholith through an
analysis of the metamorphic mineral assemblages
in the Mapumulo Group and the use of various
geothermobarometers.  Several authors have
analysed the conditions of metamorphism within
the study area (for example Bulley 1981), but these
tended to be generalised estimates based on the
presence or absence of specific mineral phases.
Quantification of the pressure and temperature
conditions prevalent within the Valley of a
Thousand Hills has not been undertaken.

The metamorphic conditions within the central
portion of the Natal Province were summarised by
Cain (1975) and Thomas (1989a), who identified a
regional upper amphibolite facies event
(600-700°C and 5-6 kb (Cain 1975)). Localised
metamorphism to the granulite facies was noted,
typically associated with the megacrystic granites,
and at Nagle Dam Cain described a granulitic
mélange, believed to represent a portion of the
basement to the Mapumulo Group. Kerr (1984),
however, suggested a minimum metamorphic
temperature of 700-800°C at pressures of 4-6.5 kb
for the gneisses within the Valley of a Thousand
Hills.

3.2 METAMORPHISM OF THE VALLEY OF
A THOUSAND HILLS

3.2.1 PREVIOUS WORK

The conditions of metamorphism of the Nagle Dam
and Valley Trust Formations were summarised by
Bulley (1981) and Kuyper (1979) respectively.

Bulley (1981) noted that diagnostic minerals are
generally lacking in the Nagle Dam Formation,
hindering the determination of metamorphic
conditions. Several features, however, and in
particular the widespread partial melting of the
gneisses, led Bulley to propose metamorphism
within the granulite facies, with temperature
estimates of 700-780°C at 4-5 kb.

Within the Valley Trust Formation, Kuyper (1979)
noted the localised occurrence of hypersthene
bearing lithologies (the amphibolite and fine
grained granulite). Other lithologies, and in
particular the pelitic gneiss, were found to possess
assemblages common to the granulite facies, such
as:

K-feldspar + cordierite + sillimanite + biotite
+ quartz + garnet.

Limited results from a  garnet-cordierite
geothermobarometry study of the pelitic enclaves
indicated temperatures of 730-790°C at 4-6 kb.

The conditions of intrusion of the Mgeni batholith
have been little studied. Kuyper (1979) believed
that the granites had been metamorphosed, the
charnockites representing a localised thermal spike,
with their mineralogy reflecting this event. Pressure
estimates for the granites were obtained, however,
from the Q-Ab-An plot, which suggested
low-intermediate pressures of crystallisation, 2-5
kb, for the majority of the granites, but increasing
for the charnockite. Bulley (1981) proposed that
the Mgeni batholith was a catazonal intrusive.

In summarising the metamorphic evolution of the
Valley of a Thousand Hills, Kuyper (1979), Du
Toit (1979) and Bulley (1981) identified two
metamorphic events, which could, however,
comprise a linked prograde and retrograde phase.
Du Toit believed that this progressed as a smooth
P-T-t path, although Kuyper noted a more erratic
variation in temperatures, with the production of
local metamorphic highs associated with the
development of the charnockites and granulite
facies metamorphism within the WValley Trust
Formation.

3.2.2 PRESENT STUDY

As noted by Bulley (1981) there is a general lack
of diagnostic minerals to define the P-T conditions
prevailing during the metamorphism of the Nagle
Dam Formation. The identification of localised
occurrences of hypersthene bearing lithologies
within the Nagle Dam Formation tends, however,
to support the high grade of metamorphism
proposed by Bulley for this unit.

Thin section analysis of the various lithologies
within the Valley Trust Formation indicates the
existence of a variety of assemblages indicative of
granulite facies metamorphism, and in particular
the presence of hypersthene in the amphibolite and
the fine grained granulite. This phase of granulite
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facies metamorphism Kuyper (1979) considered to
be restricted to the vicinity of the charnockite
within the core of the batholith, beyond which the
peak-of metamorphism was believed to be within
the amphibolite facies. This conclusion was not
confirmed during the present study, however, and
granulite facies metamorphism is judged to be
conspicuously more widespread than proposed by
Kuyper (1979).

For the majority of the lithologies studied, thin
section analysis indicates only post-peak
metamorphic reactions, including the breakdown of
pyroxene to hornblende, and late stage retrograde
reactions, such as the development of chlorite.
Specific mineralogical evidence for high grade
metamorphic evolution can, however, be identified
within three units:

1) the pelitic gneiss;
2) the pelitic fine grained granulite; and
3) the fine grained amphibolitic granulite;

with a developing metamorphic texture and mineral
assemblage.

Within the fine grained amphibolitic granulite,
however, this takes the form of the transformation
of an original igneous assemblage of:

Plagioclase, + clinopyroxene, + orthopyroxene;,
to a metamorphic assemblage of:

Plagioclase; + clinopyroxene, + orthopyroxene,
+ hornblende + quartz + ore (+ gamet),

suggesting that the reaction largely involved the
recrystallisation of the igneous mineral phases,
with associated hydration to produce hornblende.
Occasional occurrences of garnet, with abundant
pyroxene and hornblende inclusions, may have
formed through:

Orthopyroxene + anorthite —>
clinopyroxene + almandine + quartz, or

Orthopyroxene + anorthite —>
hornblende + almandine + quartz
(De Waard 1965).

Garnet 'veins' may have originated as an extreme
example of the garnetiferous shear zones of
Buddington (1963).

3-2

a) Pelitic Gneiss
The pelitic gneiss comprises a series of
mineralogically distinct domains:

1) biotite + sillimanite + cordierite gneiss;
2) gametiferous leucosome; and
3) biotite + sillimanite folia;

with the interrelationships between these differing
assemblages indicating an evolving metamorphic
and deformation history.

The presence of rare rounded inclusions of remnant
biotite and sillimanite within the
quartzo-feldspathic portion of the leucosome,
suggest that the leucosome may represent a
localised concentrated partial melt product of the
gneiss, derived through the reaction:

Biotite + sillimanite + quartz —>
gamnet + K-feldspar + melt (Tracy 1978).

Marginal dissolution of the garnet porphyroblasts
and the removal of the associated quartzo-
feldspathic material with the generation of the
biotite + sillimanite folia suggest that the latter is a
relatively late assemblage, originating through the
development of a high-strain domain (Bell 1981;
1985). Variations in the orientation of this texture
within individual thin sections indicate that these
represent an evolving stress field pattern.

Cordierite occurs in a variety of settings. Within
the biotite + sillimanite + cordierite domain it
typically possesses a polygonal habit, although it is
frequently found enclosing sillimanite and
occasionally K-feldspar, perhaps formed through:

Biotite + sillimanite + quartz —>
cordierite + K-feldspar + melt
(Harley and Fitzsimons 1991).

Within the less deformed portions of the
biotite-sillimanite folia cordierite is associated with
biotite and may be included with the biotite and
sillimanite as marginal inclusions within the garnet
overgrowth of certain of these zones, indicating:

Quartz + sillimanite + biotite —>
K-feldspar + cordierite + garnet + melt
(Grant 1985).

A partial cordierite mantle to garnet in association
with biotite and between garnet and ore in
association with sillimanite is also present,
suggesting the late growth of cordierite to mantle
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the peak assemblage (Stuwe and Powell 1989)
through:

Garnet + sillimanite + quartz —>
cordierite (Harley and Fitzsimons 1991).

The occasional occurrence of spinel as inclusions
in individual garnets, suggests the additional
possible reaction:

Sillimanite + biotite —>
Garnet + spinel + cordierite + magnetite
(Stuwe and Powell 1989).

b) Pelitic Fine Grained Granulite

Within the fine  grained  granulite  an
early orthopyroxene assemblage appears to be
overprinted by a garnet + biotite assemblage. In the
nonbanded granulite this is marked by the presence
of orthopyroxene inclusions in the gamet and the
occurrence of an orthopyroxene free - quartz rich
zone surrounding the garnet, suggesting the
generation of the garnet through:

Orthopyroxene + plagioclase —>
garnet + quartz
(Harley and Fitzsimons 1991);

which progressed until the garnet replaced the
orthopyroxene.

Generation of the biotite may have similarly
occurred with the breakdown of orthopyroxene:

Orthopyroxene + K-feldspar + vapour —>
biotite + quartz (Harley et al. 1990).

Rare secondary orthopyroxene may occur marginal
to individual garnets, as noted by Harley et al
(1990), derived from:

Biotite + quartz + plagioclase —>
orthopyroxene + cordierite + K-feldspar
+ vapour/melt; or

Garnet + K-feldspar + Vapour —>
orthopyroxene + cordierite + biotite
(Harley and Fitzsimons 1991).

Evidence from individual thin sections suggests
that the fine grained granulite may have been
affected by a series of fabric forming events. In the
well banded granulite this is marked by the
presence of biotite specific zones, possibly
generated in a high-strain domain (Bell 1985), with
subsequent overgrowth by garnet, to form the

garnet banded gneiss. Similarly, in poorly banded
granulite, a multideformed biotite + orthopyroxene
fabric may be overgrown by garnet, with the
preservation of the biotite to define the original
fabric. Evidence of garnet growth zoning is found
in individual garnets with a quartz inclusion rich
core surrounded by an inclusion poor margin.

An additional biotite bearing fabric is present,
associated with the development of cordierite, and
transgressing the biotite + garnet bands. Extension
of this fabric into the predominately
quartzo-feldspathic bands is evidenced by the
presence of a cordierite lineation. Cordierite may
also be associated with the garnet overgrowth of
the biotite + orthopyroxene assemblage noted
above, and, in the orthopyroxene free zones,
enclosing sillimanite, possibly through the reaction:

Garnet + sillimanite + quartz —>
cordierite (Harley and Fitz/simons 1991).

3.3 GEOTHERMOBAROMETRY

An overview of the mineralogical composition of
the various lithologies within the Proterozoic
basement of the Valley of a Thousand Hills reveals
the presence of  numerous potential
geothermometers and geobarometers, several of
which can be utilised using the available
microprobe data. Where possible a number of
different barometers and thermometers were
applied simultaneously to individual rock types, to
provide an audit of the derived results. A complete
integrated quantitative study of the pressure and
temperature conditions prevalent in these rocks is
not, however, possible, with the available
microprobe data (Appendix 2).

The Fe*'/Fe ratio is an unknown factor in this
study, as all mineral analyses were undertaken
using an electron microprobe. Estimation of Fe** is
possible for several of the minerals analysed,
including pyroxene, amphibole and garnet, through
the assumption of ideal stoichiometry. For the
micas, however, this is not possible (Schumacher
1991). Calculations by several authors including
Harley (1985), Guidotti and Dyar (1991) and
Schumacher (1991) have suggested that
consideration of total iron as Fe* will result in
varying degrees of error when utilising individual
geothermobarometers. Harley (1985), for example,
found that disregarding Fe’* produces pressure and
temperature minima for the garnet-orthopyroxene
geothermobarometers, with  temperatures  of
20-50°C and pressures of 0.7 kb below the figures
obtained with Fe’*. Similarly, Guidotti and Dyar
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(1991) and Rathmell et al. (1999) determined that
for the garnet-biotite geothermometer, ignoring
Fe’* may result in an overestimation of
temperatures to 45°C or 30°C respectively. In
several cases, however, Schumacher (1991) found
that the assumption of Fe**=Feror had no effect on
the derived pressure or temperature, and is
preferable to the estimation of Fe** in only one of
the components of a geothermobarometer, a
situation which may result in larger errors than
ignoring Fe** and accepting Fe**=Feror. For the
garnet-orthopyroxene  geothermobarometers  of
Harley (1984a; 1984b) Carson and Powell (1997)
recommended the use of high Al-orthopyroxenes
(>5% ALO;), which minimise the effects of Fe**.

Within this study Fe’* has been calculated for
several of the mineral phases, and with the
exception of hornblende, has been found to be low
or negligible. Total iron will therefore be taken as
Fe?" for the various geothermobarometers, with the
exception of those formulations which utilise
hornblende.

3.3.1 GEOTHERMOMETRY

A wide variety of geothermometers have been
proposed in the literature (Essene 1982; 1989). The
mineralogy of the various lithologies present and
the availability of accurate microprobe data,
however, limits the applicability of these
thermometers and only seven are considered
suitable for consideration:

1) the two-pyroxene thermometer;

2) the garnet-orthopyroxene thermometer;

3) the biotite-garnet thermometer;

4) the two feldspar thermometer;

5) the pyroxene-hornblende thermometer;

6) the plagioclase-amphibole thermometer; and
7) the hornblende thermometer.

Essene (1982) has reviewed several of these
geothermometers, the majority of which he did not
consider provided accurate temperature estimates
for the granulite facies. The garnet-biotite
thermometer he believed to be unsuitable due to
the increasing inclusion of additional elements such
as Ti and F. Similarly, the two feldspar
thermometer suffers from the need to reintegrate
exsolved phases, although Essene (1989) noted that
subsequent formulations can record granulite grade
temperatures when exsolved K-feldspars are
reintegrated correctly.  The  two-pyroxene
thermometer was considered by Essene (1982) to
provide low temperatures for metamorphic rocks

due to Ca-Mg-Fe exchange during cooling. The
majority of these geothermometers are, however,
the standard means of quantifying temperatures
within the granulite facies (for example Daly et al.
1989). Several of these thermometers have also
been applied successfully to granitic rocks
(Anderson 1996), including the two feldspar,

amphibole-plagioclase and two-pyroxene
thermometers, although they are primarily
calibrated for metamorphic conditions (JL

Anderson, 1989, pers. comm.").
a) Two-pyroxene Geothermometry

For the purpose of this study, two of the
thermometers recommended by Lindsley (1983)
were utilised : the graphic thermometers of
Lindsley (as amended by Nabelek ef al. 1987); and
the thermometers of Kretz (1982), together with the
graphic thermometers of Saxena er al. (1986).
These were applied to the amphibolite of the
Valley Trust Formation while single pyroxene
thermometry through the graphic thermometer of
Lindsley (1983) was utilised for the charnockite of
the Mgeni batholith (orthopyroxene), the fine
grained granulite (orthopyroxene) and the
amphibolite of Nagle Dam Formation
(clinopyroxene).

the

Single pyroxene thermometry yields temperatures
below that normally considered characteristic of
the granulite grade for all the lithologies appraised
- ¢. 600°C for the charnockite and Nagle Dam
Formation amphibolite, and ¢.500°C for the fine
grained granulite of the Valley Trust Formation.
This may have resulted from the requilibration of
the pyroxene during retrogression in these
lithologies.

Application of the various two-pyroxene
geothermometers to the average orthoproxene and
clinopyroxene core analyses (Appendix 2) of the
amphibolite of the Valley Trust Formation derive
temperatures of ¢.700°C. For the thermometers of
Kretz (1982) temperatures of 690-740°C are
obtained, with the exchange reaction thermometer
constantly 50-60°C higher than the transfer reaction
thermometer (as found by Ellis and Green 1985).
This latter is equivalent to temperatures derived
from the graphic thermometer of Lindsley (1983).
Higher temperatures of 790°C are obtained from
the thermometer of Saxena ef al. (1986). Errors in
the thermometer of Saxena et al. were estimated to
be a maximum of 50°C.

'Prof JL Anderson, USC, Los Angeles, USA
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b) Garnet-orthopyroxene Geothermometry

Available analyses of coexisting gamet and
orthopyroxene are limited to the fine grained
granulite of the Valley Trust Formation. Utilisation
of these analyses with several of the
garnet-orthopyroxene thermometers (Dahl 1980;
Sen and Bhattacharya 1984; Harley 1984b;
Perchuk et al 1985; Lee and Ganguly 1988;
Bhattacharya et al. 1991; Lal 1993) generate a
range of temperatures from 700-860°C (NDF 67a)
and 740-900°C (NDF70) for average garnet
core-orthopyroxene analyses (Appendix 2). A
similar spread of temperatures was obtained by
Bhattacharya et al (1991), who found that the
various geothermometers generated a range of
temperatures of ¢.100°C, with the thermometer of
Harley (1984b) providing the lowest temperatures
(also Lee and Ganguly 1988), and that of Lee and
Ganguly (1988) the highest. Rock composition may
also influence the results of these geothermometers,
and for aluminous granulites Lal (1993) noted that
the thermometer of Sen and Bhattacharya (1984)
produced high results.

Core-core temperatures in excess of 700°C, and
frequently in excess of 800°C are, however,
indicated, while temperatures calculated using the
garmnet margins range from 660-790°C (NDF 67a)
and 760-945°C (NDF 70). Compositional variation
within the mineral phases generate a range of
results to a maximum of 300°C in sample NDF 67a.

¢) Biotite-garnet Geothermometry

This thermometer has a wide range of potential
applicability within the Valley of a Thousand Hills,
with coexisting biotite and garnet present in several
members of the Mgeni batholith and the Mapumulo
Group. Reliable data are available from the pelitic
gneisses of the Nagle Dam and Valley Trust
Formations and the fine grained granulite. Data are
not, however, available for the biotite coexisting
with garnet within the Mgeni batholith, with the
exception of the granitic enclaves found in the
Ximba Suite.

Regional  analyses of the  garnet-biotite
geothermometers (Chipera and Perkins 1988;
Dasgupta et al. 1991) suggest that the majority of
these  thermometers  poorly  define  peak
temperatures within the granulite facies. Similarly,
the present study derives an extreme range of
femperatures, to a maximum of 260°C within a
single sample. In particular the thermometer of
Ferry and Spear (1978) yields high temperatures,
while the results from the thermometers of Perchuk

et al. (1985) and Indares and Martignole (1985) are
low. Dasgupta et al. (1991) noted, however, that
their geothermometer produced results comparable
with other temperature estimates within the
granulite facies, with uncertainties considered to
average 50°C. Subsequently it was utilised by
Neogi et al. (1998) to identify granulite grade peak
temperatures. This was applied to the pelitic
gneisses, for core-core analyses (Appendix 2), as
temperatures derived from garnet and biotite
margins within the granulite facies are generally
low (Indares and Martignole 1985).

A wide range of results are derived: 770°C from the
Nagle Dam Formation;, 665°C from the pelitic
gneiss of the Valley Trust Formation and
700-830°C from the individual samples of the fine
grained granulite. Variable Fe-Mg ratios generate a
range of temperatures to a maximum of 200°C in
the fine grained granulite. Recalculation to take
account of potential Fe** (Guidotti and Dyar 1991,
Holdaway et al. 1997; Rathmell et al. 1999) results
in a decline in the temperatures calculated by
¢.20°C.

Results from the gamet-biotite geothermometers
are also available for a sample of the granitic
enclaves within the Ximba Suite. The majority of
the thermometers record core-core temperatures of
¢.600°C, but the thermometer of Ferry and Spear
(1978), which Anderson (1996) considered
provided the best temperature estimates for
granites with low-Mn gamnets, yields temperatures
of ¢.650°C+30°C. Temperatures calculated from
the biotite and garnet margins provide lower
temperatures, ¢.500°C, possibly due to marginal
requilibration at lower temperatures.

d) Two Feldspar Geothermometry

The two feldspar thermometer is potentially
applicable to almost all the identified lithologies
within the Valley of a Thousand Hills, and in
particular the granites of the Mgeni batholith.
Analysis of the available data from the Mapumulo
Group and Mgeni batholith, however, provide
consistently low results, typically approximating
400°C, presumably due to the effect of the
extensive perthite exsolution which is widely
observed in these rocks. Utilisation of available
perthite analyses provide higher temperature
estimates, generally within the range 600-800°C,
but the limited data set and the lack of internally
consistent chemical trends within the perthite
analyses does not allow a high degree of
confidence in these results.
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e) Pyroxene-hornblende Geothermometry

Available coexisting pyroxene-amphibolite
analyses are restricted to the amphibolites of the
Mapumulo Group. These display varying Kp of
1.49 and 1.32 (assuming Fe** = Feror) from the
amphibolites of the Valley Trust and Nagle Dam
Formations, respectively, which on the graphic
thermometer of Kretz and Jen (1978) correspond to
temperatures of approximately 725°C and 785°C.
Consideration of Fe** results in a minor change in
these temperatures.

Similarly, Perchuk et al. (1985) proposed a graphic
amphibole-orthopyroxene and amphibole-
clinopyroxene thermometer. These provide
temperature estimates of 670-680°C and 750°C for
the amphibolites of the Valley Trust and Nagle
Dam Formation, respectively. Anderson (1996)
noted, however, that this thermometer is untested,
and advised caution in its use.

f) Plagioclase-amphibole Geothermometry

The plagioclase-amphibole thermometer was
applied to the various hornblende bearing granites
of the Mgeni batholith and the amphibolites of both
the Nagle Dam and Valley Trust Formations.

The Spear thermometers provide low temperatures.
On the graphical thermometer of Spear (1980) the
analyses plot between Spear's 490°C and 530°C
isotherms, but clustering towards the low
temperature side of this field. Slightly higher
temperatures, up to 550°C for the charnockite, are
calculated using the formulation of Spear (1981a).

The thermometer of Blundy and Holland (1990),
however, provides much higher temperatures,
760°C-790°C from the average plagioclase and
amphibole core analyses of the various granites
(Appendix 2). Individual amphibole analyses
(Appendix 2), with the relevant average plagioclase
composition from the granite, generate a range of
temperatures to a maximum of 20°C within an
individual granite. These high temperatures may
represent near solidus temperatures, and the lack of
markedly lower temperatures suggest little
subsolidus reequilibration. Holland and Blundy
(1994) and Anderson (1996) noted that the
thermometer of Blundy and Holland may give high
results for granites with high Al-hornblendes. The
present results do. not, however, provide the
extreme temperatures derived by Anderson (1996),
and calculation of the preferred (Anderson [996)
edenite-richterite thermometer of Holland and
Blundy (1994), provides comparable, but typically
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slightly lower (20-60°C) results for the hornblende
and garnet hornblende granites, at equivalent
pressure estimates.

The amphibolite of the Nagle Dam Formation
provides temperatures comparable to those
determined from the granites, c. 760°C, but those of
the Valley Trust Formation provide considerably
higher temperatures, c¢. 830°C for either of these
calibrations using average core analyses (Appendix
2). Mineral heterogeneity generates a minor spread
of results, typically ¢.20°C.

g) Hornblende Geothermometry

The hornblende-melt geothermometer (Helz 1979)
has limited potential applicability within the Vailey
of a Thousand Hills and was employed only for the
granites of the Mlahlanja Suite. Calculations reveal
average temperatures of 817°C for the charnockite
and 902-916°C for the garnet hornblende granite.
These temperatures are not, however, considered
highly accurate, in particular as no data are
available regarding the cell volumes of the
hornblendes analysed.

3.3.2 GEOBAROMETRY

Numerous geobarometers have been calibrated for
use in the granulite facies (Essene 1989). Of these,
however, the appropriate mineralogy and analytical
data are only available for the garnet-plagioclase-
aluminum silicate-quartz (GASP) barometer. The
garnet-orthopyroxene barometer has also been
considered, but, as noted by Essene (1989), this
may be inaccurate at crustal pressures, although it
has been used by several authors (including Harley
1985) to determine the pressures of metamorphism.

The geobarometry of granites has been less well
researched, but several barometers are available
(for example Anderson er al 1988; Anderson
1996). The mineralogy of the Mgeni batholith,
however, and in particular the absence of
muscovite and the lack of appropriate data from
specific mineral phases, limits the applicability of
many of these barometers, and data are only
available  for the homnblende  barometer
(Hammarstrom and Zen 1986; Hollister ef al. 1987;
Johnson and Rutherford 1989; Schmidt 1992;
Anderson and Smith 1995),

a) Garnet-orthopyroxene Geobarometer
Available analyses of coexisting garnet and

orthopyroxene are limited to the fine grained
granulite of the Valley Trust Formation, for which
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the analytical totals of the orthopyroxenes are
typically slightly low, 97-100 percent.

Numerous  formulations of  the  garnet-
orthopyroxene  geobarometer are available,
including Boyd (1973), MacGregor (1974), Wood
(1974), Wood and Banno (1973), Harley and
Green (1982) and Harley (1984a). The majority of
these were not considered in the present study as
they were originated primarily for mantle derived
garnet peridotites, with extrapolation to granulites
criticised by Harley (1984a). For the purpose of
this study, therefore, only the geobarometers of
Harley and Green (1982) and Harley (1984a) were
considered. Bhattacharya and Sen (1986) found
that the latter provides results comparable with
those of Newton and Perkins (1981), with the wide
spread of pressures derived in other studies the
result of not correcting for Fe'*.

Calculation of these geobarometers, however,
derive highly variable and frequently extremely
low results, suggesting alumina reequilibration
following the peak of metamorphism. This is
contrary to the findings of several authors,
including Aranovich and Berman (1997), who
considered Fe-Mg exchange to be more sensitive to
reequilibration.

b) Garnet-Plagioclase-Aluminum Silicate-Quartz
(GASP) Geobarometer

Within the Valley of a Thousand Hills use of this
barometer is restricted to the aluminosilicate
bearing pelitic gneiss of the Valley Trust
Formation. Pressures of 5-6 kb are suggested by
the barometers of Ghent et al. (1979) and Powell
and Holland (1988), for average garnet and
plagioclase core analyses (Appendix 2). The
derived pressure estimates are, however, strongly
controlled by the temperature utilised, and for
Ghent et al. (1979), a range of pressures from
4.47-6.4 kb are calculated using the temperatures
derived from the garnet-biotite (pelitic gneiss) and
amphibolite-plagioclase  (from the adjacent
amphibolite) thermometers, respectively.

The accuracy of the various GASP geobarometers
has been evaluated by several authors, including
Hodges and Crowley (1985), Powell and Holland
(1985; 1988), McKenna and Hodges (1988) and
Kohn and Spear (1991a; 1991b). McKenna and
Hodges (1988) calculated potential error at 2.5 kb
but noted that the GASP barometer was the
‘best-calibrated  thermobarometric  reaction
available'. A similar assessment was given by
Kohn and Spear (1991b) who summarised the
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various potential sources of error, and estimated
total pressure uncertainties within the range
1560-2350 bars. This increases for samples with
low grossular and anorthite contents, and, although
the present analyses are within the range of
acceptable data, this generates an estimated
uncertainty of c¢.1100 bars (Todd 1998). Pressure
variations of c¢.2kb are derived from the
heterogeneity of the mineral phases.

¢) Hornblende Geobarometer

Within the Mgeni batholith hornblende has been
reported in all three identified granite suites
(Kuyper 1979), although not noted in the
Nqgwadolo granite during the present study.
Microprobe analyses are, however, limited to the
Mlahlanja Suite, where samples from all the major
granite subtypes were analysed. In each case the
hornblende exhibits the igneous characteristics of
Hammarstrom and Zen (1986), and displays the
features of late crystallising minerals, as indicated
by the presence of abundant inclusions and its
formation through pyroxene breakdown in the
charnockite. Although all these rocks are silica
saturated, only the hornblende granite possesses the
mineral assemblage defined by Hammarstrom and
Zen (1986). Within the charnockite the presence of
pyroxene is unlikely to affect the alumina content
of the hornblende, as it is largely enclosed within
the homblende (and see Hammarstrom and Zen
1986). The presence of garnet, however, although
sporadic within several of the granites and not
present in the analysed probe sections, could, as an
alumina buffer, have a serious influence on the
hornblende geobarometer.

The various geobarometers (Hammarstrom and
Zen 1986; Hollister et al. 1987; Johnson and
Rutherford 1989; Schmidt 1992) suggest pressures
in excess of 5 kb, and typically 6 kb, with the
variable Alwor content of the granites allowing the
identification of a lower pressure group, consisting
of the hornblende granite and the charnockite, and
the higher pressure garnet homblende granite. As
noted by Cosca er al (1991) the various
microprobe normalisation models can result in
slight differences in the calculation of the
hornblende formula. As proposed by these authors
the available hornblende  analyses  were
recalculated using the 13 cation model. This results
in a slight reduction in the estimated pressures,
typically less than 0.1 kb. Variable Alror within the
individual granites results in a spread of pressures
to a maximum of 0.5 kb.

Potentially, this barometer may also apply to the
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hornblende bearing assemblages of the Mapumulo
Group (Hammarstrom and Zen 1986). Available
homblende analyses are restricted to the
amphibolites and these suggest pressures of c. 5
and 5.5 kb for the amphibolites of the Nagle Dam
and the Valley Trust Formations, respectively.

Blundy and Holland (1990) criticised the various
hornblende geobarometers, suggesting that AI" is
distinctly temperature dependent and that the
hornblende geobarometer is consistent with
pressure estimates at a fixed temperature,
approximating the granite solidus. Anderson and
Smith (1995) also noted the temperature
dependence of the homblende geobarometer, and
proposed a temperature correction factor for the
barometer. This provides highly variable results, of
4.5 kb for the charnockite to 6.3 kb for the garet
hornblende granite utilising the temperatures
derived from the Holland and Blundy (1994)
thermometer and average mineral compositions.

3.4 P-T EVOLUTION OF THE VALLEY OF A
THOUSAND HILLS

Regional studies of the Natal Province have
suggested a metamorphic history dominated by a
single event (Thomas 1988a; 1988b), which may
be devisable into a series of prograde and
retrograde stages (for example Grantham 1983;
Evans 1984), and locally affected by the intrusion
of the granite batholiths of the Oribi Gorge Suite
(Thomas 1988a; Cornell et al. 1996). P-T-t models
for the Natal Province are, however, generally
lacking and no metamorphic model has been
advanced for the central portion of the belt.

Within  the Valley of a Thousand Hills
mineralogical evidence indicative of a high grade
evolutionary P-T-t trend is limited to the pelitic
phases of the Valley Trust Formation, within which
metamorphism can be summarised into a series of
distinct phases:

a) for the fine grained granulite:

1) development of an orthopyroxene bearing
assemblage;

2) breakdown of orthopyroxene to form garnet +
sillimanite + biotite; and

3) formation of cordierite;

b) for the pelitic gneiss:

1) development of a biotite +
assemblage;

2) partial melting to produce a garnetiferous partial

sillimanite
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melt;
3) development of biotite-sillimanite folia; and
4) formation of cordierite.

Vernon (1996) noted the difficulty in identifying
different assemblages formed within an evolving
system at approximately similar grades of
metamorphism. In particular Vernon questioned the
identification of distinct phases of metamorphism
from the interpretation of pophyroblast-matrix and
mineral replacement relationships. Within the
present study two distinct examples of these
reactions have been observed - the presence of
biotite - sillimanite folia that wrap around the
garnet porphyroblasts and the occurrence of
cordierite as polygonal aggregates in the biotite +
sillimanite matrix and moulding garnet, biotite and
sillimanite. Various interpretations are possible,
including that of Vernon who suggested that this
may represent a single metamorphic assemblage
with the different textural relationships the result of
deformation. The biotite-sillimanite folia wrapping
around garnet and cordierite porphyroblasts have,
however, also been interpreted as a M2 assemblage
(Hand er al. 1992).

Within the present study the apparent crosscutting
of garnet porphyroblasts by the biotite-sillimanite
folia and subsequent overgrowth of the folia by a
secondary garnet, with cordierite, favours the
interpretation of Vernon, with the mineral
assemblages evolving in varying deformation and
growth phases during a single metamorphic event.
The apparent relationship between the garnet and a
partial melt product, however, indicates that the
garnet was derived through an evolving P-T
system, while the presence of a cordierite mantle to
garnet + sillimanite + ore and the possible
existence of a minor partial melt phase in
association with the cordierite suggest that
cordierite was a late phase within the pelitic gneiss,
rather than a component in a biotite + sillimanite +
cordierite assemblage.

The evolving assemblages within the different
series do not form parallel paths. The fine grained
granulite is distinguished by a retrograde path from
the orthopyroxene bearing assemblage to that of
the garnet + sillimanite + biotite assemblages. The
pelitic gneiss, however, displays a prograde path
with the development of a garnet bearing partial
melt derived from the dehydration melting of a
biotite + sillimanite assemblage.

Subsequent reactions indicate a comparable
decompression event, resulting in the formation of
cordierite. The coincident trend for this later phase
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of metamorphism suggests that the fine grained
granulite and the pelitic gneiss were evolving as a
single system, possibly within the regional structure
resultant on the intrusion of the Mgeni batholith.
The evidence for the interaction of the pelitic
gneiss and its melt phase with the associated
megacrystic granite suggests that at least from
phase 2 of the metamorphism of the pelitic gneiss
this unit was a part of the larger P-T system.

A possible P-T-t evolution loop for the Valley of a
Thousand Hills is summarised on Figure 3.1.
Although data are lacking to define the initial phase
of the metamorphic evolution of this area, available
data from the Nagle Dam Formation suggest a
metamorphic peak of ¢.770°C (Figure 3.1a), with a
minimum pressure estimate of 6 kb extrapolated
from the Mgeni batholith and Valley Trust
Formation. Peak temperatures from the Valley
Trust Formation are higher, ¢.850°C (Figure 3.1b),
with temperatures to a possible maxima of 900°C
(Figure 3.1c) from the Mgeni batholith, the latter
higher temperatures comparable with the range of
temperatures derived from the M-Zr plot of Watson
and Harrison (1984), as determined by Thomas et
al. (1993). These temperature variations suggest an
influx of heat from the Mgeni batholith, which may
have generated the orthopyroxene bearing
lithologies within the Nagle Dam Formation, as
suggested by Thomas (1988a) from the
Ntimbankulu batholith. Corroboration of the higher
temperature estimates are provided by the biotite
dehydration reactions observed in the pelitic gneiss
for which temperatures of ¢.750°C at 6 kb for a
biotite of c.Mgos were proposed by Le Breton and
Thompson (1988), and ¢.850°C by Vielzeuf and
Holloway (1988). These latter may represent a
superior  estimation of peak metamorphic
temperatures  than  the Fe-Mg  exchange
thermometers, as the tendency for the garnet-biotite
thermometers to record relatively low temperatures

(Burgess er al 1995), with Perchuk and
Lavrenteva (1983) as the representative
thermometer, suggest an underestimation of

temperatures (Greenfield ef al. 1998).

Subsequently, temperatures declined, with a
marked clustering of results from the Valley Trust
Formation at 700°C, while the pressure remained
almost constant, as evidenced by the consistent
pressures obtained from the granites and the pelitic
gneiss and the generation of garnet after
orthopyroxene in the fine grained amphibolitic
granulite (Harley 1989). A later decline in pressure
is indicated by the formation of cordierite bearing
assemblages in the pelitic gneiss and fine grained
granulite of the Valley Trust Formation and the
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presence of high manganese, low pressure, garnet
in late granitic veins (Green 1977). Assuming
garnet crystallisation above the minimum melt
solidus this suggests an almost isothermal decline
in pressure.

This pattern differs markedly from the simple
isothermal and isobaric P-T paths described by
Harley (1989). Although a general near isothermal
decompression model is indicated for the Valley of
a Thousand Hills area, superimposed on this is a
near isobaric heating and cooling phase. The
similarity of the temperatures derived from the
metamorphosed lithologies and the Mgeni batholith
suggest a relationship, possibly a local overprinting
of the original PT characteristics of the Mapumulo
Group through the influence of the granites. The
range of temperatures obtained from the Mapumulo
Group may, therefore, reflect the cooling history of
the Mgeni batholith, superimposed on variations in
the reaction rate of the various mineral
assemblages present in the Mapumulo Group.
Specifically, the high temperatures of the
garnet-orthopyroxene thermometer may define a
lower limit to the intrusion temperature of the
granite, with the temperatures derived from the
plagioclase-amphibole thermometer reflecting a
stage in the cooling history of the granite, as
suggested by Blundy and Holland (1990). The
majority of mineralogical reactions identified
within the Valley Trust Formation can therefore be
interpreted as resultant on either of the processes
identified. In particular the production of a partial
melt phase in the pelitic gneiss may be the result of
an increase in temperature, generated by the
intrusion of the Mgeni batholith, rather than
decompression as suggested by Harley (1989). This
is comparable with the model of isobaric cooling
associated with granite intrusion described by
Sandiford et al. (1991), and mirrors the intrusion
related thermal spikes of Williams and Karlstrom
(1996), but in the Valley of a Thousand Hills forms
only a phase in the isothermal decompression of
the region. Sequential production of garnet and
cordierite melts during heating and extensional
decompression was noted by Escuder Viruete er al.
(1997).

Quantification of the time span of the various
metamorphic events identified is hindered by the
lack of geochronological data from the Valley of a
Thousand Hills. In particular, no data are available
for the initial metamorphism of the Mapumulo
Group, although Cornell et al. (1996) proposed a
¢.1100 Ma collision event within the Mzumbe
Terrane. Lead isotopic data, however, suggest a
1030 +20 Ma intrusion age for the Mgeni batholith



Figure 3.1. P-T evolution of the Valley of a Thousand Hills.

a) Temperature ranges within the Nagle Dam Formation.

b) P-T conditions within the Valley Trust Formation.

c¢) P-T conditions within the Mgeni batholith.

d) Summary of P-T evolution within the Valley of a Thousand Hills.

Symbol within P-T range represents the average P-T of the sample.
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(Eglington et al. 1989b), which may date the
isobaric heating and cooling event, including the
partial melting of the pelitic gneiss. Late intrusions
into the Natal Province have been dated at
1026+3Ma, with the tectono-metamorphic
evolution of the Natal Province believed to have
ended ¢.950 Ma (Thomas et al. 1993). These dates
can be utilised to constrain the late stage granitic
intrusions within the Valley of a Thousand Hills.
3.5 DISCUSSION - RAPAKIVI GRANITE
INTRUSION LEVELS

Typically, the rapakivi granites display a range of
physical features suggestive of a high level of
intrusion. In particular are their sharp intrusive
contacts, the local presence of volcanic or
subvolcanic members, roof pendants and roof
breccia outcrops (Haapala and Ramo 1990). This is
supported by several lines of experimental data,
including granite crystallisation modelling (Barker
et al. 1975; Anderson and Cullers 1978; Anderson
1980), geothermobarometry of the country rocks
(Anderson and Bender 1989; Brown et al. 1991)
and fluid and mineral inclusion studies
(Sonyushkin et al. 1991). The Proterozoic rapakivi
granites of Natal differ from these typical rapakivi
granites, however, in not displaying any physical
evidence of a high level of intrusion. Rather, they
are intrusive into high grade metamorphics
(Thomas 1988a).

Various intrusion depths have been proposed for
these granites. Introductory studies of the Mgeni
batholith by Kuyper (1979) indicated intrusion into
an intermediate pressure regime of 2-5 kb. Mineral
assemblage  analysis and  cordierite-garnet
geobarometry of enclaves within the granites
undertaken by Kuyper corroborated this, indicating
metamorphism at pressures of 4-6 kb. The presence
of hypersthene in semi-pelitic rocks in the contact
zone of the Ntimbankulu batholith, however, led
Thomas (1988a, after Winkler 1979) to suggest a
maximum intrusion level of 7 km for this
member of the Oribi Gorge Suite.

Estimates of the depth of emplacement of the
Mgeni batholith gained during the present study
(Milne and Kerr 1995) support the view of Kuyper
(1979) that these granites developed at a moderate
pressure rather than the high level favoured by
Thomas (1988a). Available hornblende
geobarometer data suggest depths of intrusion of
16.5-23 km from the pressure estimates of
Anderson and Smith (1995).

This depth estimate is, however, dependant on the

accuracy of the hornblende geobarometer which
has been questioned by Blundy and Holland
(1990), who proposed a temperature dependence
on the AlY content of hornblende. Further, the use
of the hornblende geobarometer for high iron
hornblendes was queried by Anderson and Bender
(1989), who found that the various hornblende
barometers gave geologically unreasonable results
for A-type granites in the southwestern United
States. Anderson and Smith (1995) noted the lack
of correspondence between the pressures derived
for granites with a high Fe/Fet+tMg mineralogy
using the hornblende barometer and the associated
metamorphic rocks. Vyhnal ef al. (1991) also noted
an Fe/Fe+Mg-pressure relationship from the
amphiboles of the southern Appalachian granitoids.
This is supported by experimental evidence (Mysen
and Boettcher 1975; Allen and Boettcher 1978),
and may be the result of Fe/Fe+Mg-Al coupling
(Robinson et al. 1982).

The homblende geobarometers have, however,
derived geologically consistent results from a
number of studies, including Anderson ef al
(1988), Vyhnal and McSween (1990), Vyhnal ez al.
(1991) and Dawes and Evans (1991).
Hammarstrom and Zen (1986), moreover, did not
consider that the concentration of iron had an
influence on the hornblende geobarometer and
used hornblendes with high iron contents (18-19%)
in determining the high pressure portion of their
barometer. Similarly, Johnson and Rutherford
(1989) used hornblendes with iron contents to a
maximum of 22 percent in their calibration of the
hornblende geobarometer. The hornblende of the
San Isabel batholith is equally iron rich (Cullers et
al. 1992), with the high pressures obtained from
the hornblende geobarometers being supported by
the presence of magmatic epidote (although the
high pressure origin of magmatic epidote has been
questioned by several authors including Tulloch
1986; Moench 1986; Vyhnal et al. 1991; but not
Schmidt and Thompson 1996). Vyhnal et al
(1991) also determined geologically consistent and
comparable results from high (26%) and low iron
hormblendes. Vyhnal et a/. found that although a
crude relationship exists between Fe**/Fe*+Mg and
pressure, this did not hold for highly iron enriched
homblende. Anderson and Smith (1995),
emphasised the importance of the Fe/Fe+Mg ratio,
noting that the hornblende barometer provides
acceptable pressures for iron rich hornblende if
their ratio was ¢.0.6, as for the San Isabel batholith.

Studies of amphibole developed under high
pressure metamorphic conditions have tended to
support the positive correlation between alumina in
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amphibole and pressure (Leake 1965a; 1965b;
Kostyuk and Sobolev 1969; Raase 1974; Robinson
et al. 1982; Selverstone et al 1984). This is
confirmed by experimental studies (Spear 1981b;
Plyusnina 1982; Cao et al. 1986; Jenkins 1988;
1989; but not Cho and Ernst 1991 or Leger and
Ferry 1991). These latter studies found that the
associated mineral assemblage strongly controls the
alumina content of amphibole. Leger and Ferry
(1991) in particular noted the control imposed by
the combination of P, T and mineral assemblage,
with declining alumina as pressure increases for
specific mineral assemblages.

The hornblendes of the Mgeni batholith possess
high iron contents with high Fe/Fe+Mg ratios
(Section 2.3.2). The high pressures of
crystallisation indicated by the various hornblende
geobarometers may therefore be extreme, and
lower pressures, more typical of the rapakivi
granites, may be more realistic. Unlike the majority
of the rapakivi granites, however, evidence does
exist for high pressures of metamorphism within
the Valley of a Thousand Hills, with minimum
pressure estimates of 4.5 kb derived from the
GASP barometer. In addition further evidence for
high pressures of crystallisation are supplied by the
garnets found within the Mgeni batholith and in
melts produced by partial melting of the pelitic
enclaves within the granites. These are
characterised by low manganese and high calcium
contents, indicating pressures of c¢.7 kb (Green
1977). The amphibole-plagioclase geothermometer
of Holland and Bilundy (1994) indicates that all
these granites crystallised over a narrow
temperature range, 720-790°C, with temperature
inversely related to pressure. It seems unlikely,
therefore, that temperature alone could have
controlled the homblende geobarometer, as
suggested by Blundy and Holland (1990).

Comparable emplacement depths for A-type
granites, although rare, have been determined for
other granites. In particular emplacement depths of
17 to 23 km (5-7 kb) were proposed by Cullers et
al. (1992) for the San Isabel batholith. Although
the granites of the Mgeni batholith lack the epidote
found in the San Isabel batholith, it appears that
they may have formed at a similar mid-crustal
depth.

The high iron hornblendes of the Mgeni batholith
therefore appear to provide tolerable estimates of
the intrusion depth of these granites, and so the
problems associated with the use of the hornblende
geobarometer in estimating the intrusion levels of
rapakivi granites must be revaluated. In particular

Leake and Cobbing (1993) questioned whether this
barometer indicates the depth of emplacement or
the depth of crystallisation of the granites.
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CHAPTER 4

GEOCHEMISTRY .

4.1 INTRODUCTION

Limited geochemical data are available from the
Proterozoic rocks within the Valley of a Thousand
Hills. Kuyper (1979) and Du Toit (1979) reported
some 46 analyses, predominately from the biotite
granites of the Ximba Suite, the Nqwadolo Suite
and the amphibolite and quartzo-feldspathic gneiss
of the Valley Trust Formation. Additional samples
of the Ximba Suite and Nagle Dam Formation were
collected by Bulley, but the analyses were never
reported.

To establish a data base sufficient to undertake a
preliminary regional geochemical investigation of
the various lithologies identified within the
Proterozoic basement of the Valley of a Thousand
Hills, an extensive sampling programme was
initiated (Appendix 3). This targeted previously
unsampled lithologies, including the pelitic gneiss
of the Valley Trust Formation, and localities within
formerly sampled lithologies which would assist
with establishing a petrogenetic model, such as the
core zone of the Nqwadolo Suite.

This chapter will describe the chemical
characteristics of the various units identified in the
Valley of a Thousand Hills, identify possible
correlates and, in the case of the metamorphosed
lithologies, determine the nature of their original
protolith. Sample data are given in Appendix 3,
with the sample localities on the attached plan.
Correlation coefficients, elemental ranges and
means of the sample data set are presented in
Appendix 4.

4.2 ANALYSIS OF THE DATA SET

The samples collected during this study were
approximately 50kg in mass. This large sample size
was chosen to compensate for the megacrystic
nature of the granites and the heterogeneous
character of the gneisses. To test the
appropriateness of the selected sample size, the
analyses of three adjacent, visually homogeneous
specimens of the biotite garnet granite are
compared in Table 4.1. These are almost identical,
with minor standard deviation, suggesting that the
selected sample size is sufficient to obtain
representative chemical analyses of these granites.

Three geochemical data sets are available:

1) older data collected by Kuyper (1979), Du Toit
(1979) and Bulley (unpubl);

2) data collected during the present study and
analysed at the Geological Survey, Pretoria; and

3) data collected during the present study and
analysed at the Department of Geology, University
of Natal, Pietermaritzburg.

The generation of geochemical data from a variety
of sources allows the possibility of discrete bias
within the individual data sets. Insufficient data are
available to undertake a relevant statistical analysis
of these data and so determine the relative degree
of any potential bias, which is further complexed
by the geographical spread of individual sampling
phases and the nonrandom selection of specific
samples. For example, six garnet hornblende
granite samples were collected from the Matata
pluton, four by Kuyper (1979) and Du Toit (1979),
and two during the present study. These latter are,
on average, more siliceous than the former, but this
is due to the deliberate selection of a less mafic
sample, UND 81, to investigate the degree of
fractionation present within the pluton. Similarly,
when comparing the available data from the
hornblende granite and charnockite of the
Mlahlanja Suite distinct differences are apparent
between the different data sets, with the original
analyses typically enriched in specific elements,
and in particular Zr, although individual granites
do not necessary reveal these distinctions. Analysis
of the data from the hornblende granite of the
Sansikane pluton, from which Kuyper (1979)
collected a single sample with nine additional
samples collected during the present study, reveals
a slight increase in the standard deviation and
decline in the degree of correlation between the
elements and silica if the original sample is
included with those collected during the present
study, but comparable differences are derived if
individual samples from the control set are
excluded from the calculations. Calculation of the
sum of the squares of the residuals of a model
UND 26 analysis, derived through extrapolation
from the adjacent samples with silica as a constant,
is comparable with that calculated between
analyses from the hornblende granite control data
set. Differences are also apparent between the
biotite garnet granite sample UND 36 (Kuyper
1979; Du Toit 1979) and samples UND 90-92,
which were collected from adjacent sites. In
particular, Al,Os, MgO, Na,O and Y levels are
high, while SiO, concentrations are low in sample
UND 36. Comparison with those biotite garnet
granites contaminated by inclusion of pelitic
material, however, suggests that sample UND 36
may represent a contaminated biotite garnet
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Table 4.1. Comparison of adjacent biotite garnet granite analyses, Ximba Suite.

NDF90 NDF91 NDF92 SD
SiOy(Wt%) 69.25 69.59 69.31 0.181
TiO, 0.37 0.36 0.37 0.003
ALO, 15.79 15.61 15.55 0.125
Fe,0, 3.45 3.34 3.5 0.082
MnO 0.04 0.05 0.05 0.006
MgO 0.34 0.34 0.34 0
Ca0 2.3 2.2 2.25 0.05
Na,O 2.91 2.8 2.65 0.131
K,O 5.27 5.42 5.15 0.135
P,0s 0.11 0.11 0.11 0
Trace elements in ppm
Ba 2062 2098 2049 25.384
Rb 137 141 136 2.73
Sr 227 226 226 0.611
Zr 321 348 368 23.672
Pb 37 35 37 1.155
Nb 17 17 18 0.7
Y 27 31 28 1.823
La 64 62 71 4.726
Ga 24 24 25 0.577
Zn 71 71 71 0.4
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granite (Section 6.4.2).

Several samples were analysed at both the
Geological Survey and the Department of Geology,
Pietermaritzburg, during the present study,
although insufficient to undertake a statistical
analysis of potential bias. Comparison of the
various analyses of the charnockitic samples UND
74 and UND 71 and the marginal granite UND 72
may suggest a tenancy for the analyses from the
Geological Survey to be higher in SiO;, but lower
in ALO;, MgO and Zr than those from the
Department of Geology, Pietermaritzburg, but not
for UND 317, which, with those samples analysed
earlier at the Geological Survey, rather indicates a
tenancy towards higher Y concentrations.
Comparison with the charmockite analyses,
however, reveals no particular variation in the
concentrations of Y from the different laboratories.

With the exception of the high SiO, but low ALL,O;
content of UND 71A the observed elemental
abundances within the duplicate samples are within
the range of chemistries derived from the other
samples. The range of data from the individual
sample sites, however, exceeds the standard
deviation of the biotite garnet granite samples
UND 90-92, suggesting a possible bias in one of
the data sets. Comparison of the duplicate
charnockite analyses with a control set from the
same pluton, the latter all analysed at the
Geological Survey, suggests that the inclusion of
those analyses done at the University of Natal
results in the smaller standard deviation and better
correlation between the elements and silica than the
inclusion of those analyses done at the Geological
Survey, although the inclusion of either of the data
sets typically results in an increase in the standard
deviation and a decline in the correlation
coefficient. This suggests that the analytical
difference between laboratories may be less than
that between runs from a single laboratory.

Within the amphibolite of the Valley Trust
Formation, two distinct series can be distinguished
by their immobile trace element ratios, Zr/Y and
Zr/Nb (Figure 4.5b), of which all the high Zr/Y
amphibolite samples were collected by Du Toit
(1979), while the low Zr/Y amphibolite was
collected during the present study. Comparison of
the data from the gneisses of the Nagle Dam
Formation suggest that the samples of Bulley,
which were analysed at the laboratory of the
Geological Survey at the same time as those of Du
Toit, may have higher Nb concentrations than the
samples collected during the present study, but no
differences are apparent between the Zr and Y
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concentrations from the different sample sets. A
portion of the range in Zr/Nb ratios identified may
therefore have originated from analytical
variability, but this will not explain the distinct
Zr/Y ratios. Individual elemental abundances may
also vary between the series, with the high Zr/Y
series characterised by higher TiO,, but lower MgO
concentrations than the low Zr/Y series.
Fractionation trends also differ, while variations in
the possible influence of crustal interaction with the
melt are apparent (Figure 6.5¢). This suggests that
the amphibolitic groups identified through
variations in the trace element ratios may reflect
original heterogeneous basalt chemistries and
evolutionary histories within the study area.

Insufficient data exist to identify a constant bias
between the different data sets available and
inspection of the spread of data points on the
Harker diagrams typically demonstrates an overlap
between the data sets. For the purpose of this study,
therefore, the available data will be taken to
indicate the existence of real differences between
the samples. In individual cases, however, apparent
trends which may be related to variations in
laboratory results will be noted and in particular
the possible variation in chemistry identified in the
amphibolite of the Valley Trust Formation.

4.3 NAGLE DAM FORMATION
4.3.1 INTRODUCTION

Twenty samples (one duplicated, one divided into
three portions) of the Nagle Dam Formation were
collected for analysis (Appendix 3), sixteen during
the present study and the remainder by Bulley
(unpubl. report). The sample of biotite hornblende
gneiss analysed by Kuyper (1979) has subsequently
been shown to form a portion of the marginal phase
of the Mgeni batholith (Section 4.3.3).

4.3.2 NATURE OF THE PROTOLITH

Zircon morphology and mineralogical
characteristics led Davies (1964), Kuyper (1979)
and Bulley (1981) to identify the Nagle Dam
Formation as a predominately metasedimentary
succession. The available geochemical data,
however, plot parallel to the igneous trend lines
(Figure 4.1) on the various diagrams devised to
distinguish between para- and orthogneisses (Leake
1964; de la Roche 1966; van de Kamp 1968; Leake
and Singh 1986), suggesting an igneous protolith
for the Nagle Dam Formation, excluding the
unsampled  pelitic  gneiss. Further, on
discrimination diagrams such as the Cr-mg diagram



Figure 4.1. Niggli norm protolith discrimination diagrams for the Nagle Dam and Valley Trust Formations.

a) c-mg (Leake 1964).

b) Cr-mg (Leake 1964), for amphibolites and pelitic gneisses.
c) al-alk - ¢ (van de Kamp 1968, Leake and Singh 1986).

d) si-mg (Leake and Singh 1986).
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(Figure 4.1b) the amphibolite plots outside the
pelitic field. The quartzo-feldspathic gneiss may
display a degree of overlap with the field of sands,
but on the si-mg diagram (Figure 4.1d) extends
beyond this field, paralleling the igneous trend.

4.3.3 REGIONAL CORRELATION

Previous studies of the Nagle Dam Formation
(for example Bulley 1981) have suggested that it
comprises a series of related, but distinct,
lithologies. Milne (1988), however, using the
unpublished analyses of Bulley, identified two
distinct chemical subtypes within the Nagle Dam
Formation, characterised predominately by marked
variations in their Zr content. Additional sampling
of the Nagle Dam Formation and the marginal
portion of the Mgeni batholith indicates a close
chemical similarity between the high Zr member of
the Nagle Dam Formation, found immediately
adjacent to the Mgeni batholith, and the marginal
phase of the Ximba Suite (Figure 4.2a).
Comparison of the average major element
concentrations of the biotite hornblende gneiss and
the marginal phase of the Mgeni batholith reveal
distinct differences in CaO, MnO, MgO, K,O and
P,Os concentrations, while the granite is relatively
enriched in Zr, Pb and Ba. Field mapping supports
the contention that at least a portion of Milne's high
Zr member of the Nagle Dam Formation, including
the biotite hornblende gneiss of Kuyper (1979),
may represent a finer grained, foliated marginal
segment of the Mgeni batholith, or veins of the
granite in the Nagle Dam Formation.

Kuyper (1979) correlated the gneisses of the Nagle
Dam Formation with the enclaves of the Valley
Trust Formation. Similarly, Kerr and Milne
(1991b) proposed, on limited geochemical data, a
possible relationship between the amphibolites of
the Nagle Dam Formation and the Valley Trust
Formation. Bulley (1981), however, considered
only those enclaves adjacent to the margin of the
Mgeni batholith (c.200m from the margin) to have
been derived from the Nagle Dam Formation.
Other enclaves found within the batholith he
believed to be restite material.

The gross chemical characteristics of these two
units do not support the proposed correlation, and
in particular is the unimodal silica distribution
pattern found in the Nagle Dam Formation relative
to the bimodal pattern of the Valley Trust
Formation. Similarly, analysis of the individual
members of the Nagle Dam and Valley Trust
Formations reveal distinct chemical differences,
particularly marked for K,O, MnO, TiO,, P,Os, Cr

and Ni (Figure 4.2b) in the amphibolites, which
does not support the correlation of Kerr and Milne
(1991b), and ALO;, TiO,, MnO, Ca0, Na,O, P,O:s,
Zr, Sr and Ba for the quartzo-feldspathic gneisses.

4.3.4 CHEMICAL CHARACTERISATION

The Nagle Dam Formation displays a range in
silica concentrations from 47 - 78 percent SiO,.
Minor gaps exist within this sequence, for example
between 55.5 and 60.5 percent SiO,, but this is
considered to represent a sampling phenomenon.
The Harker diagrams display simple trends over
the entire sequence (Figure 4.3), with the
concentration of the majority of the elements -
Ti0,, Al,0s, FeO, MgO, MnO, CaO, P,0s, Zr, Zn,
Ni, Y and Cr - declining with increasing silica,
while that of K;O, Rb, Ba and Pb rises. The
concentrations of Na,O, Sr and Nb remain constant
with silica variation. Calculation of the correlation
coefficient for the entire available range of silica
values (Appendix 4) reveals significant correlation
at the one percent level between silica and TiO,,
FeOror, MgO and CaO. The correlation between
silica and AL,O3, K,O and P,Os is less well defined,
while Na,0O possesses almost no correlation with
silica. The majority of the trace elements display a
moderate degree of correlation with silica.

These trends are broadly analogous with those of
the typical calc-alkaline analyses of Gribble
(1969), although the lack of continuation between
the amphibolite and the biotite hornblende gneiss
limits this comparison. Some variation is found,
however, and in particular is the decline in Zr and
Y concenfrations with increasing silica. Nb
concentrations are typically low, while their trend
does not display the enrichment at high silica levels
found by Gribble.

4.3.5 INTRAFORMATIONAL CORRELATION

Variable chemical characteristics distinguish the
individual members of the Nagle Dam Formation
(Figure 4.3) and in particular the amphibolite may
plot as a separate grouping.

The amphibolite and the biotite hornblende gneiss
are distinguished by distinct MgO concentrations
precluding their derivation from a common magma
through fractionation (Figure 4.3), while the
quartzo-feldspathic and biotite hornblende gneisses
display markedly different alkali concentrations
(Figure 4.2¢). The main series of the Nagle Dam
Formation therefore appears to consist of a number
of sequences, not related through a simple
fractionation model. These are distinguished on the



Figure 4.2. Correlation diagrams, Nagle Dam Formation.

a) MgO-Zr discrimination of the marginal granite - Ximba Suite and the Nagle Dam Formation.

b) Ni-TiO, discrimination of the Nagle Dam and Valley Trust Formation amphibolites.

¢) Na,0+K,0-Al0; discrimination of the quartzo-feldspathic and biotite hornblende gneisses of the Nagle Dam Formation.
d) Zr/Y-Zr immobile trace element correlation plot for the Nagle Dam Formation.
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Figure 4.3. Element-silica variation diagrams, Nagle Dam Formation.
a) Major elements.
Potential fractionation trends are displayed on the Al,O,-SiO, plot. Fields on the MgO-SiO, plot after Smith et al. (1997).
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b) Trace elements.
(Quartzo-feldspathic gneiss analyses below 1 ppm not shown).
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ALO;-SiO, diagram (Figure 4.3).

Although the range of elemental abundances
observed within the biotite hornblende gneiss is
comparable with a typical arc batholith (Pitcher er
al. 1985), the most basic samples exhibit distinct
AlLO; and Na,O enrichment and MgO depletion
relative to the other members of the series.
Analysis of the trace element fractionation trends
suggest the existence of two separate groups with
distinct fractionation vectors, one originating with
the low silica sample UND 317 and comprising the
mafic portion of the gneiss, with silica
concentrations less than 61 percent, the other
originating with the group of samples with 64
percent silica, and including all the more siliceous
gneiss. This precludes a simple fractionation
process generating the biotite hornblende gneiss as
a single unit.

Potentially immobile trace element data (Cann
1970; Hart et al. 1974; Winchester and Floyd
1976; Weaver and Tarney 1981 but not Kuznetsov
1971; Smith and Smith 1976; Hynes 1980), suggest
a distinct quartzo-feldspathic unit (Sevigny and
Brown 1989; Crow and Condie 1990; Winchester
et al. 1995; 1998) distinguished by a markedly
higher Zr/Y ratio than the majority of the Nagle
Dam Formation (Figure 4.2d). The remainder of
the succession displays a relatively narrow range of
Zr/Y ratios, comparable to that developed within a
fractionating calc-alkaline pluton (Janser 1994) or
batholith (Pitcher et al. 1985), suggesting that the
majority of the Nagle Dam Formation may
represent the product of a evolving magma series.
Possible groupings may, however, exist evolving
from Zr/Y ratios of ¢.3 and ¢.5 (Figure 4.2d) for
the biotite hornblende gneiss.

These correspond with the series identified by their
variable trace element content, with the lower silica
series possessing a higher Zr content at a lower
Zr/Y ratio than the higher silica group, although the
range of Zr/Y is comparable between the series
(Figure 4.2d). One sample, UND 52, does not plot
with either of these groupings, possibly indicating
an additional series within the Nagle Dam
Formation. This sample has therefore not been
included in the petrogenetic modelling of the Nagle
Dam Formation (Section 6.2.3).

4.3.6 NOMENCLATURE AND CLASSIFICATION
None of the lithologies comprising the Nagle Dam

Formation possess any relict mineralogy or textures
which may be used to identify the original
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lithology. Nomenclature and classification must
therefore be based on the chemical characteristics
of these rocks.

On the total alkali versus silica (TAS) diagram the
Nagle Dam Formation plots across a spectrum of
fields, from basalt (amphibolite) to rhyolite
(quartzo-feldspathic gneiss) (Figure 4.4a). It is
predominately subalkalic with medium to high
K,O concentrations, a moderate FeO/FeO+MgO
ratio (Figure 4.4b) and a calc-alkaline trend of
initial moderate iron enrichment, followed by a
marked increase in total alkalis with MgO and FeO
depletion on the AFM diagram. A best fit line
through the entire sequence indicates a Peacock
Index of 61.5, within the calcic field (Figure 4.4c).
The quartzo-feldspathic gneiss does not, however,
plot with the other members of the Nagle Dam
Formation on this diagram, If it is therefore
excluded then a best fit line indicates a Peacock
Index of 66 (calcic), although actual CaO =
Na,0+K,0 intersection occurs at 64 percent SiO,.
The Nagle Dam Formation is classified as
metaluminous on the A-B diagram of Debon and
Le Fort (1982), with extension into the
peraluminous field at high silica levels. The trend
of these analyses on this diagram is comparable to
that of the calc-alkaline series.

The amphibolite is metaluminous, with normative
analyses indicating that it is a tholeiitic basalt with
minor olivine or quartz in its norm. Individual
samples may, however, have abundant olivine in
their norm and in one case nepheline. The biotite
hornblende gneiss may be either peraluminous or
metaluminous. The quartzo-feldspathic gneiss
displays a highly variable range of alumina
saturation, with individual samples possessing
peraluminous, metaluminous and peralkaline
characteristics. All contain minor amounts of
corundum in their norm.

The low HFS element content of the biotite
hornblende and quartzo-feldspathic  gneisses
separate them from the A-type granites (Whalen ef
al. 1987). The relatively high Na,O, CaO and Sr
but low KO and Ni content of the biotite
hornblende gneiss rather suggest a similarity to the
I-type granites of Chappell and White (1974)
(Figure 4.4d), although Cr is high and several
samples are peraluminous. The high KO
concentration of the quartzo-feldspathic gneiss
approximates that of the S-type granites (Figure
4.4d), although only occasional samples are
peraluminous, suggesting comparison with the
I-type granites. The low concentrations of all the



Figure 4.4. Nomenclature plots - Nagle Dam Formation.

a) TAS plot (Le Maitre 1989).
b) SiO,-FeO/FeO+MgO (after Miyashiro 1974).
' ¢) Log(CaO/Na,0+K,0)-SiO, (Brown 1982).

d) Na,0-K,O (after White and Chappell 1983). Lower silica gneiss and amphibolite excluded from plot.
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major elements, with the exception of SiO. and
K,O, is analogous to the minimum melt granite of
White and Chappell (1977).

4.4 VALLEY TRUST FORMATION
4.4.1 INTRODUCTION

Eleven samples of the Valley Trust Formation
were previously analysed, six from the amphibolite
(Du  Toit 1979) and five from the
quartzo-feldspathic gneiss (Kuyper 1979, Du Toit
1979). In addition, Bulley (unpubl. report)
collected one sample of the quartzo-feldspathic
gneiss for analysis. During the present study an
additional 63 samples were collected, primarily
from the pelitic gneiss (Appendix 3).

4.42 NATURE OF THE PROTOLITH

Mineralogical characteristics of the various
lithologies and limited chemical data from the
amphibolite led Kuyper (1979) and Du Toit (1979)
to suggest that the Valley Trust Formation
represented a  mixed  volcanosedimentary
succession, comprising the metasedimentary pelitic
gneiss and fine grained granulite and the
orthoamphibolites. The quartzo-feldspathic gneiss
was considered to form a portion of the Mgeni
batholith and its potential protolith derivation was
therefore not investigated, although Bulley (1981)
concluded that it constituted a series of
metasedimentary enclaves within the granites.

The model of Kuyper (1979) and Du Toit (1979)
for the amphibolite and pelitic gneiss is supported
by the additional geochemical data, with the
amphibolite exhibiting igneous characteristics,
while the pelitic gneiss plots predominately within
the pelite or sedimentary fields on a variety of
diagrams (Figure 4.1a,b) including those of Bard
and Moine (1979) and Winchester and Max
(1984).

The available geochemical evidence suggests that
the quartzo-feldspathic gneiss possesses
predominately igneous characteristics. For example
on the si-mg diagram of Leake and Singh (1986),
the gneiss parallels the trend of igneous rocks
(Figure 4.1d), plotting well below the field of river
sands. Bulley (1981) suggested that their high silica
content precluded an igneous origin, but igneous
rocks with silica contents of ¢.80 percent have been
reported in the literature (for example Bickford er
al. 1981; Tarney et al. 1982; Wybron et al. 1987).
In addition, the megacrystic feldspars found in
certain of the samples occasionally display
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concentrically arranged inclusions, a structure
believed to be indicative of an igneous origin
(Vernon 1986). Relict feldspar phenocrysts have
been previously described from high grade
quartzo-feldspathic gneisses (Pepper and Ashley
1998).

The fine grained granulite displays a mixture of
igneous and sedimentary characteristics on the
various chemical protolith discrimination diagrams,
with mg contents in excess of the typical pelite
(Figure 4.1a,b), although al-alk and ¢ variations
parallel the sedimentary trend (Figure 4.lc),
suggesting an origin as a mixture of clay minerals
and quartz. Both the pelitic goeiss and the fine
grained granulite possess low Ni contents, which
tends to result in their plotting in the field of
igneous rocks on the Ni-TiO, diagram of van de
Kamp (1969) and Winchester and Max (1984),
although shales with low Ni contents have been
reported in the literature (Vine and Tourtelot 1970)
and where the fine grained granulite contains an
appreciable Ni content, it plots in or adjacent to the
sedimentary fields on the various diagrams. The
accumulated chemical and mineralogical evidence
suggest that this sequence had a sedimentary
protolith.

The relict igneous mineralogy and textures of the
incompletely metamorphosed portion of the fine
grained amphibolitic granulite indicate their
igneous derivation. This is supported by the limited
available chemical data (Figure 4.1).

4.4.3 CORRELATION
a) Orthogneisses

Immobile trace element variations suggest the
possible existence of three dissimilar groups within
the quartzo-feldspathic gneiss (Figure 4.5a). These
are further discriminated by distinct Rb/Sr, K/Rb
and Na,O/K,O ratios. Of these, however, one
sample identified by Kuyper (1979) as a
quartzo-feldspathic gneiss displays an extreme
Zr/Y ratio and possesses igneous type garnets
suggesting that it may be a late intrusion. It is
therefore not correlated with the quartzo-
feldspathic gneiss, and is not considered further
here. The different Zr/Y ratios of the amphibolite
and the quartzo-feldspathic gneiss (Figure 4.5a),
and the lack of Zr enrichment in the acidic gneiss
suggest that they are not related through simple
fractionation processes (Garland et al. 1995).

Mineralogical variability within the amphibolites of
the Valley Trust Formation suggests the existence



Figure 4.5. Correlation diagrams, Valley Trust Formation.
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a) Zr/Y-Zr immobile trace element diagram.

b) Zr/Y-Zr/Nb immobile trace element ratio diagram for the amphibolite of the Valley Trust Formation.
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RI'=4Si- 11(Na+K) I 2(Fe+Ti). '
R2 =6Ca + 2Mg + Al

a
1,000 g
F | A Amphibolite & Pelitic gneiss
@ Fine grained amphibolitic granulite O Quartzo-feldspathic gneiss
3K Biotite gneiss @ fine grained granulite
100 b O
I K
10 L o %) o °©
F X
i O _ A ‘m
| A
1 | g s?
10 1,000
100
Zr
Y c
100
90 | x
70 | i* °
60F X Xk 4 %
I RN
50 *‘:5*,‘**
40 | i UK o® *
30 | K g0l X
20 L L 1 1 L L L
0.1 0.2 0.3 0.4 0.5
01 0.2 0.3 0.4

ZriY
5

|l Low Zr/YiamphiboIite
A High Zr/Y amphibolite | A

R2
1,400

1,200
1,000
800
600
400
200

A A

4,000
3,000 5,000

R1

ALLSINGHD09D

(4%



GEOCHEMISTRY

of several distinct subgroups within the association.
This is supported by variations in the Cr/Ni and
MgO/TiO, content of the fine grained amphibolitic
granulite and medium grained amphibolite. The
former consequently appears to represent a distinct
unit, not related to the medium grained
amphibolite. Variation in Zr/Y-Zr/Nb (Figure 4.5b)
similarly suggests that the medium grained
amphibolite may also comprise distinct series.

b) Paragneisses

Two paragneiss sequences are found within the
Valley Trust Formation: the pelitic gneiss and the
fine grained granulite. These were discriminated
initially on variations in grain size, but this is
confirmed by their distinct chemical characteristics
as displayed on the Harker diagrams (Figure 4.6)
and immobile trace element variation diagrams
(Figure 4.5a). They are further distinguished within
the chemical parameters utilised by Lambert et al.
(1981) to identify sedimentary sequences (Figure
4.5¢) and the de la Roche er al. (1980) diagram
(Figure 4.5d).

The pelitic gneiss displays well developed
fractionation trends (Figure 4.5, 4.6) suggesting
that it forms a related sequence. An exception to
this is the chemically distinct biotite gneiss. These
differences may, however, be related to the
processes involved in its development (Section
6.3.5) rather than a distinct protolith.

The more siliceous pelitic gneiss possesses silica
concentrations comparable with the quartzo-
feldspathic gneiss. These are distinguished,
however, both mineralogically, by the presence of
sillimanite in the more felsic component of the
pelitic gneiss, and chemically through their distinct
Zr/Y-Zr characteristics (Figure 4.5a). In addition,
the higher alkali content of the quartzo-feldspathic
gneiss and its lower FeOror, MgO, Zr, Zn and Y
levels are distinctive.

The fine grained granulite forms a highly
heterogeneous sequence, correlated initially on its
textural similarity, and in particular fine grain size.
Some intragroup chemical variability is noted on
the Harker diagrams (Figure 4.6) but its coherent
Zr/Y-Zr fractionation trend (Figure 4.5a), suggests
that it originated from a distinct initial lithology.
Given its highly variable mineralogy and fine
lithological banding, chemical variability may be a
sampling phenomena.
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4.4.4 CHEMICAL CHARACTERISATION
a) Amphibolite

The amphibolite is basic in composition, with silica
concentrations varying from 45-54 percent. On
Harker diagrams it plots within well constrained
fields (Figure 4.6), but with occasional anomalous
analyses on individual diagrams. Calculation of the
correlation coefficient (Appendix 4) demonstrates
significant correlation at the five percent level
between silica and all the major elements, with the
exception of Na,O and CaO, but is less well
defined with the trace elements. With increasing
silica TiO,, FeO, MnO, MgO, CaO, Nj, Cr, Zr, Y
and Nb decline in concentration, while AlO;,
Na;0, K,0, P,0s, Ba, Rb, Sr and Pb contents
increase. Comparable trends are found if MgO is
used as the index of fractionation, although
individual elements, such as TiO, and FeO may
display considerable scatter.

b) Quartzo-feldspathic Gneiss

The quartzo-feldspathic gneiss is highly silicic,
with silica concentrations of 72 - 81 percent. It
plots within well constrained fields, occasionally
with minor scatter, and typically with discernible
trends on the Harker diagrams (Figure 4.6). With
increasing silica, all the major and trace elements,
with the exception of Pb and Y, decline in
concentration. Calculation of the correlation
coefficient (Appendix 4) demonstrates significant
correlation at the five percent level between silica
and ALO; but the correlation with the majority of
the major elements is poorly defined. Correlation
with the trace elements is more pronounced, and
especially Sr and Ba.

c) Pelitic Gneiss

The pelitic gneiss is highly heterogeneous with a
range of silica concentrations from 56-79 percent,
but, with the exclusion of a distinct subgroup - the
biotite gneiss - plots within well defined fields on
the Harker diagrams. The majority of elements
display a distinct negative correlation with silica
(Figure 4.6). Individual elements, and in particular
K,0, Na;0 and Y may, however, display extreme
variability, inhibiting the identification of simple
trends, while P,Os, Sr and Zr increase in
concentration with increasing silica. Calculation of
the correlation coefficient for the entire available
range of silica values (Appendix 4) demonstrates
significant correlation at the one percent level
between silica and the major elements, with the
exception of TiO,;, MnO, CaO and P,Os (which
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Figure 4.6. Element-silica variation diagrams, Valley Trust Formation.
a) Major elements.
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possess almost no correlation with silica). This
correlation is particularly marked for ALO; and
FeOror. Correlation with the trace elements is
poorly defined.

The majority of the samples were collected from a
single large pelitic enclave, with the available data
revealing marked chemical differences between
individual sample sites (Appendix 3). Most notable
is the high K,O content of the samples collected
from the core of the enclave, and their low AlQO;,
FeOror, Zr, Ba and Cr concentrations relative to
those samples collected from the margin of the
enclave. Relative to the pelite samples collected
away from this site, the samples from the large
enclave possess higher K,O and Y and lower FeO
concentrations.

d) Fine Grained Granulite

The majority of the fine grained granulite samples
collected are from the heterogeneous sillimanite +
orthopyroxene bearing variety, with the available
data frequently exhibiting considerable scatter on
the Harker diagrams (Figure 4.6). Calculation of
the correlation coefficient for the pelitic fine
grained granulite (Appendix 4) reveals little
significant correlation between silica and the major
elements, with the exception of MgO, but
correlation with the trace elements is more
pronounced. This hinders the identification of any
trends on these diagrams. General tendencies,
however, suggest declining AlLO;, TiO,, FeO,
MgO, P,Os and Zn concentrations with increasing
silica, while CaO, Pb, Ba, Zr, Cr, Y and Nb levels
rise.

Three samples of the fine grained amphibolite are
available. The limited number of samples collected
and their narrow range of SiO, (49-52%) and MgO
(7-9%) concentrations restricts any possible
interpretation of elemental variation trends (Figure
4.6).

4.4.5 NOMENCLATURE AND CLASSIFICATION
a) Amphibolite

All the amphibolites plot across the basalt/basaltic
andesite (gabbro or quartz gabbro) fields on the
majority of the nomenclature diagrams (Figure
4.7a), although the ophitic or subophitic texture of
the fine grained amphibolitic granulite suggests
that it was originally a dolerite. On the diagrams of
Winchester and Floyd (1977) they extend into the
basalt and andesite fields.
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Although their alumina : alkali ratio is variable, all
the amphibolites are metaluminous. Their very low
alkali contents (Figure 4.7a) and low Zr/TiO, and
Nb/Y ratios (Winchester and Floyd 1977) indicate
their subalkalic nature. The normative mineralogy
demonstrates that the majority of the samples are
tholeiitic, either slightly olivine normative, or
quartz normative (Yoder and Tilley 1962).

On the AFM diagram the amphibolites display a
distinct iron enrichment trend, within the tholeiitic
field. They also plot in the tholeiitic field on the
Si0,-FeO/FeO + MgO diagram (Figure 4.7b) and
the Jensen diagram, but with overlap into the
komatiitic field on this latter. With the
quartzo-feldspathic gneiss the complete series has a
Peacock Index of ¢.60.

b) Quartzo-feldspathic Gneiss

The quartzo-feldspathic gneiss plots within the
rhyolite or granite fields on the various
nomenclature diagrams (Figure 4.7a), with
extension into the comendite or pantellerite and
trachyandesite fields on the Zr/TiO,-Nb/Y diagram
of Winchester and Floyd (1977). On the K,0-Na,O
diagram of O'Connor (1965) it extends across the
granite and adamellite fields.

The alumina alkali ratio of the quartzo-
feldspathic gneiss is highly variable. Samples with
moderate silica levels are peralkaline or
metaluminous, rarely peraluminous, while those
with silica >79 percent are typically markedly
peraluminous. Its variable alkali content and low
Zr/TiO; and Nb/Y ratios indicate subalkalic
characteristics, but occasional analyses may plot in
the alkalic field. The majority of the samples
contain normative corundum.

Its variable FeO/FeO + MgO values, 0.56 - 0.94,
extend across the tholeiite and calc-alkaline
boundary (Figure 4.7b). Typically, however, the
majority of the analyses display tholeiitic
characteristics. On the AFM diagram it plots close
to the total alkali corner and no trend can be
identified.

The low HFS element content of the gneiss
distinguishes it from the A-type granites (Whalen
et al. 1987), with its relatively high Na,O, but low
CaO and FeO contents and metaluminous character
a feature of the I-type granites of Chappell and
White (1974). Corundum is, however, present in its
norm, while its variable K,O content results in
several samples plotting as S-type granites on the
Na,0-K,O diagram (Figure 4.7d) of White and



Figure 4.7. Nomenclature diagrams - Valley Trust Formation.
a) TAS diagram (Le Maitre 1989) for orthogneisses.
b) SiO,-FeO/FeO+MgO (after Miyashiro 1974) for orthogneisses.

¢) S10,/A1,0,-K,0/Na,0 sedimentary nomenclature diagram (Wimmenauer 1984).
d) Na,0-K,O (after White and Chappell 1983) for the quartzo-feldspathic gneiss and garnet granite.
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Chappell (1983). The high silica content of the
quartzo-feldspathic gneiss and its gross elemental
concentrations are comparable with the minimum
melts of White and Chappell (1977).

¢) Pelitic Gneiss

The sedimentary chemical classification system of
Wimmenauer (1984, in Muller 1989) serves to
subdivide the pelitic gneiss into a pelitic and
psammitic (arkosic or quartz arkose) component,
with the separation occurring at approximately 65
percent SiO, (Figure 4.7¢). Further discrimination
of the latter samples is possible with the
Na,0/K,0-8i0-/ALL,0, (Pettijohn ef al. 1987) and
Na,0-Fe;0371or+tMgO-K,O  (Winchester and Max
1989) classification diagrams for lithic sediments,
which classify the relevant analyses as lithic arenite
and arkose.

Relative to the average upper continental crust of
Wedepohl (1995) the average pelitic gneiss
possesses normal to slightly enriched (x2)
elemental abundances, but with marked depletion
in Nb and Sr. The relatively enriched LILE content
of the pelitic gneiss contrasts with that of other
metasedimentary granulites, such as those in the
Bamble sector, southern Norway (Knudsen et al.
1997), although the pattern of enrichment or
depletion observed for other elements is
comparable, including depletion in Nb and Sr and
enrichment in elements such as V and Cr. Low Sr
is not, however, a characteristic of the proposed
source material for the pelitic gneiss (Section
6.3.5), as Knudsen ef al. suggestéd for the Bamble
metasediments. Rather this may indicate a
sedimentary leaching event, which possibly
resulted in the relatively low levels of the other
potential leachates, CaO and Na,O (Harnois 1988),
in the pelitic gneiss.

The average pelite displays the chemical
characteristics of a Proterozoic shale (Taylor and
McLennan 1985). Similarly, on the

Si0/ALO;-K,0/Na,0 (Wronkiewicz and Condie
1987) and Cr-Ni (Taylor and McLennan 1985)
diagrams it plots in the field of post-Archaean
shales. This suggests a minimal Archaean input
during its deposition. Rather a local source, within
the Natal Province, is favoured, similar to the
model of Eglington ez al. (1989b).

The associated garnetiferous partial melt is
peraluminous plotting in the S-type granite field on
the Na,O-K,O diagram (Figure 4.7d) of White and
Chappell (1983). Its high HFS element content,
however, is comparable to the A-type granites

(Whalen et al. 1987), with a high FeO/MgO ratio
suggesting a tholeiitic character.

Evidence for partial melting of the pelitic gneiss
with the production of a gamnetiferous granite phase
(Section 2.2.2b), demonstrates potential large scale
element mobility within this lithology. Complete
removal of this melt phase has not, however,
typically occurred, and the garnet granite is found
as fine segregations in the pelitic gneiss. As such
elemental mobility is not to be expected
(Greenfield ef al. 1996). Some removal of melt is
evidenced by the presence of a marginal rim of
highly garnetiferous granite adjacent to individual
pelitic enclaves, but the lack of a chemically
distinct restitic phase and no evidence for K/Rb
decoupling, with K/Rb ratios (pelitic gneiss
143-292, biotite gneiss 230-238) approximating
average crustal levels (Taylor and McLennan
1985) and the undepleted samples of Tarney et al.
(1972), suggest that the degree of elemental
mobility in these gneisses is minor or localised. In
addition large, 50kg, samples of the pelitic gneiss
were collected for analysis so as to minimise the
potential effect of localised melt migration and
concentration.

d) Fine Grained Granulite

The fine grained granulite plots across a variety of
fields on the sedimentary chemical classification
scheme of Wimmenauer (1984), including the
pelite, arkose, greywacke and pelitic greywacke
fields (Figure 4.7¢). The psammitic portion of this
series is highly variable in composition, and on the
various diagrams for lithic sediments, plot across
the greywacke, lithic arenite and arkose fields.

4.5 THE MGENI BATHOLITH
4.5.1 INTRODUCTION

Eighty nine samples from the various granites of
the Mgeni batholith were analysed for major and
trace elements (3 duplicated), with individual
samples selected for REE analysis (Appendix 3).
Thirty three of these were reported by Kuyper
(1979) and Du Toit (1979), and a further 8§ were
collected by Bulley (unpubl. chemical data). The
remaining 48 samples were collected during the
course of the present study.

4.5.2 CORRELATION

Kuyper (1979) believed that all the megacrystic
granites of the Mgeni batholith were related
through fractionation processes, with subsequent



GEOCHEMISTRY

metamorphic overprint, while the Nqwadolo Suite
was considered to represent a possible partial melt
of the megacrystic granites. This scheme was
revised by Kerr (1985) who identified four granite
suites on the basis of the available field, chemical
and isotopic data. This was subsequently modified
by Kerr and Milne (1994) who recognised three
granitic families:

1) the biotite granites of the Ximba Suite;

2) the hornblende granites of the Mlahlanja Suite;
and

3) the late leucogranite of the Nqwadolo Suite.

These correspond broadly with Suites II, T and 111
of Kerr (1985), respectively, but with the marginal
granite of Kerr included with the Ximba Suite
rather than the Mlahlanja Suite. Kerr's Suite IV is
now considered to form a portion of the
quartzo-feldspathic gneiss of the Valley Trust
Formation.

Although a degree of overlap is apparent on the
Harker diagrams (Figure 4.9), each suite displays a
degree of chemical individuality, most particularly:

1) the high average TiO,, CaO, ALO;, FeOror,
MnO, P,0s, Zr, Sr and Zn concentrations of the
Mlahlanja Suite; and

2) the high Pb, but low Sr, Zr, CaO and FeOror
abundances of the Nqwadolo Suite.

Significant chemical differences only exist,
however, between the Ngwadolo Suite and the
megacrystic granites, with disparities between the
Ximba and Mlahlanja Suites restricted to MgO and
P,0Os. Separation of the megacrystic suites is not
possible through the immobile trace elements
(Figure 4.8a,b) or the cationic R1-R2 (de la Roche
et al. 1980) and A-B (Debon and Le Fort 1982)
diagrams although differences in trend are apparent
and the Nqwadolo Suite is distinctly defined.
Discrimination of the megacrystic granite suites s,
however, obtained through the catonical variables
devised by Ramsey et al. (1986) to identify the
granite suites of the Arabian Shield (Figure 4.8c).

Further subdivision of these suites is suggested by
variations in their trace element data. For the
individual plutons of the Mlahlanja Suite distinct
trends are apparent, radiating from an origin at Zr
700ppm - Y 40ppm and evolving along Zr/Y = 10,
for the charnockite of the Egugwini pluton and the
garnet hornblende granite of the Matata pluton, or
with increasing Y but declining Zr concentrations
towards lower Zr/Y ratios, for the granites of the
Sansikane pluton (Figure 4.8a). The low Na,O of
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the garnet hornblende granite when compared with
the other members of the series suggests its
characterisation as a subunit of the Miahlanja
Suite. Similarly, two distinct chemical types are
evident in the Nqwadolo Suite through variations
in Y-Zr, Zr/Y-Zr (Figure 4.8a,b) and Rb/Nb-Rb/Sr
(McDermott ef al. 1996). Chemical discrimination
of distinct subunits within the Ximba Suite suggests
that these may have evolved through petrogenetic
processes (Section 6.4.2).

This chemical subdivision of the granites of the
Mgeni batholith is supported by the isotopic data of
Eglington et al. (1989b) which demonstrated
distinct differences in Sr; between the suites.
Specifically, the Ximba Suite has an Sry of

0.7077+12, the Mlahlanja Suite 0.7042428
(0.7053+8 (Eglington er al 198%a)) and the
Ngwadolo Suite 0.716+24.

4.5.3 CHEMICAL CHARACTERISATION
a) Ximba Suite

Forty seven samples of the Ximba Suite (one
duplicated) were selected for analysis, 14 from the
marginal granite, 17 from the biotite garnet granite
and 16 from the biotite granite (Appendix 3).
These were collected from sites throughout the
Ximba pluton, with detailed sampling undertaken
at selected [localities, to assist in petrogenetic
modelling (Section 6.4.2).

The Ximba Suite consists of a series of
mineralogically distinct granites which together
display a range of silica concentrations from 59-77
percent SiO,. The average analysis of each member
of the suite suggests an incremental increase in
silica through the series: marginal granite - biotite
garnet granite - biotite granite, but on the Harker
diagrams considerable overlap is apparent between
the individual granites.

As a group the analyses tend to display simple
trends on the Harker diagrams (Figure 4.9), but
frequently with a marked kink between the
marginal granite and the biotite granite. As silica
increases, Ti0O,, ALO;, FeOror, MnO, MgO, CaO,
Na,O, P;Os, Ba, Sr, Zr, Nb, Zn and Y
concentrations decline while those of K,O, Rb, Pb
and Th increase. Calculation of the correlation
coefficient (Appendix 4) demonstrates significant
correlation at the one percent level between silica
and all the major elements, with the exception of
KO, but is less well defined with the trace
elements.



Figure 4.8. Correlation diagrams, Mgeni batholith.
a) Y-Zr (1 and 2 - Fractionation trends, Mlahlanja Suite) and b) Zr/Y-Zr immobile trace element diagrams.
¢) CV2-CV1 Canonical variable discrimination diagram (Ramsey et al. 1986).
CV1=-0.55i0,+ 0.54MgO - 0.313Na,O - 2.828K,0 - 0.711FeOr + 50.139. ,
CV2 =-0.297Si0,- 1.457MgO + 0.551Na,0 - 0.735K,0 + 2.091FeO: - 25.009.
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Figure 4.9. Element-silica variation diagrams, Mgeni batholith.
a) Major elements.
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b) Trace elements.
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Normalised La/Lu ratios vary from 10.19-30.58,
with almost parallel La/Sm and Gd/Lu trends
(Figure 4.10) and a weak positive or negative Eu
anomaly (EwEu" 0.53-1.26). Within-suite REE
variation may display a negative relationship
between silica and REE abundance. A small
negative epsilon Nd value, -0.2 at 1001+35 Ma, for
the biotite granite was reported by Eglington ez al.
(19890).

b) Mlahlanja Suite

Twenty nine samples (two duplicated) of the
Mlahlanja Suite were selected for analysis, 13 from
the charnockite and surrounding green hornblende
granite (subcharnockite), 10 from the hornblende
granite and 6 from the garnet homblende granite.
Sampling was concentrated in the Sansikane,
Egugwini and Matata plutons, principally to aid in
petrogenetic modelling (Section 6.4.3).

The Mlahlanja Suite displays a range of silica
concentrations from 60-78 percent SiO;. Within
this series each member of the suite is chemically
distinct, but no trend of simple progressive
chemical change is apparent. Rather, they display
an almost complete overlap within typically tightly
constrained fields on the Harker diagrams.
Chemical variations between the individual
granites may, however, result in a broad spread of
data, or in one of the mineralogical subtypes
plotting separately. In particular, is the relatively
siliceous nature of the charnockite and
subcharnockite and their low HFSE content, and
the low sodium content of the garmet homblende
granite.

With increasing silica TiO,, ALO;, FeO, MnO,
Ca0, MgO, Na,0, P,0s, Ba, Zr, Sr, Zn, Nb and Y
concentrations decline, while K,O, Rb, Th and Pb
increase (Figure 4.9). Calculation of the correlation
coefficient (Appendix 4) demonstrates significant
correlation at the one percent level between silica,
all the major elements and the majority of the trace
elements.

Normalised La/Lu ratios vary from 4.84-8.63, with
La/Sm ratios of 2.08-3.11, Gd/Lu ratios of
1.08-2.20 (Figure 4.10) and a small positive or
negative Eu anomaly (EwEu" 0.57-1.28). No trend
to the pattern of REE variation with silica
concéntration is apparent within the suite. The
homblende granite, however, displays a general
decrease in REE concentration with increasing
silica, while the charnockite exhibits a slight
increase.
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¢) Ngwadolo Suite

Six samples of the Ngwadolo Suite and one late
vein were originally selected for analysis (Kuyper
1979; Du Toit 1979), the former from the marginal
portion of the granite. Six additional samples were
collected from the core of the granite during the
present study.

All the samples are siliceous (74-78% SiO;). This
narrow range in silica hinders the determination of
well defined trends on Harker diagrams (Figure
4.9). Prevalent tendencies, however, indicate
increasing concentrations of FeO, CaO, K,O and Zr
with rising silica, while TiO,, Al,Os;, MgO, Na,0,
P,Os, Sr, Zn, Rb, Ba, Y, Nb, Pb and Th levels fall.
Calculation of the correlation coefficient
(Appendix 4), however, reveals no significant
correlation at the five percent level between silica,
the major elements, with the exception of ALO;,
Na,O and P,0Os, and the trace elements.

No specific relationship exists between REE
concentration and silica in this granite. La/Lu ratios
vary from 4.79-8.65, with La/Sm ratios of
1.48-2.33, Gd/Lu ratios of 2.31-2.61 (Figure 4.10)
and a large negative Eu anomaly (EwEu
0.11-0.03). One sample, the most siliceous of the
Ngwadolo  Suite, displays an  anomalous
‘cross-over' pattern, with LREE depletion and
HREE enrichment, similar to that described by
Dall'Agnol et al. (1991). A positive epsilon Nd
value, 2.0 at 1033+18 Ma, was reported by
Eglington et al. (1989b).

4.5.4 NOMENCLATURE AND CLASSIFICATION

The extremely large grain size of the megacrystic
granites hinders the use of the Streckeisen (1976)
diagram for nomenclature purposes, but estimated
modal analyses of typical samples plot as quartz
monzonite or granite (hypersthene granite or
charnockite). Similar results are obtained with
normative  analyses, with the widespread
occurrence of perthite resulting in a minor shift
from the monzogranite or granodiorite fields to the
syenogranite or monzogranite fields. Modal
analyses of the Nqwadolo Suite plot as granites on
the Streckeisen diagram.

The various members of the Mgeni batholith plot
predominately as granites on the R1-R2 diagram of
de la Roche et al. (1980), the TAS diagram (Le
Bas et al. 1986; Le Maitre 1989) (Figure 4.11a),
and the diagrams of Winchester and Floyd (1977).
Individual samples plot in the alkalic fields. All the
samples of the Nqwadolo Suite plot as granites.



Figure 4.10. Normalised REE abundances.
a) Biotite garnet granite, Ximba Suite; b) Biotite granite, Ximba Suite; ¢) Charnockite, Mlahlanja Suite;
d) Hornblende granite, Mlahlanja Suite; €) Garnet hornblende granite, Mlahlanja Suite; f) Nqwadolo Suite.
Chondrite normalising factor from Nakamura (1974).
La-0.33,Ce-0.865, Pr-0.122, Nd - 0.63, Sm - 0.203, Eu - 0.077, Gd - 0.275, Dy - 0.342, Ho - 0.076, Er - 0.225, Yb - 0.22, Lu - 0.034.
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Figure 4.10. Normalised REE abundances - continued.
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Figure 4.11.

Nomenclature diagrams - Mgeni batholith.

a) TAS diagram (Le Maitre 1989).

b) SiO,-FeO/FeO+MgO (after Miyashiro 1974).
c¢) Log(CaO/Na,0+K,0)-SiO, (Brown 1982).

d) FeO/MgO-Zr+Ce+Nb+Y (Whalen ef al. 1987).
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The average analyses of the various members of
the Ximba and Mlahlanja Suites compare poorly
with the average acidic analyses of Le Maitre
(1976). Their high K,O/Na;O ratios (0.52-2.73 and
1.06-3.07 respectively) suggest comparison with
Le Maitre's average granite or adamellite, but they
display distinctive high K,0O and, in the Mlahlanja
Suite, FeO, but low CaO (except in the marginal
granite), MgO and Na,O concentrations. The
Ngwadolo Suite is comparable to the minimum
melt of White and Chappell (1977). In particular its
high SiO, and K,O, but low Al,O;, FeO, MgO and
CaO concentrations are distinctive.

The Ximba Suite displays a variable degree of
alumina saturation, with individual samples
possessing metaluminous, peraluminous and rarely
peralkaline characteristics. The Ngwadolo Suite
and the majority of the Mlahlanja Suite are
metaluminous, but individual samples may be
peraluminous and occasionally peralkaline. On the
A-B diagram of Debon and Le Fort (1982) the
Ximba Suite plots across all the delineated
subdivisions of the peraluminous domain,
including the muscovite > biotite field, but with
extension into the metaluminous domain at low
silica levels. The Mlahlanja Suite plots
predominately in the metaluminous domain, with
extension into the peraluminous field at high silica
levels, but the garnet hornblende granite plots
separately, within the peraluminous field. The
Ngwadolo Suite exhibits an unusual vertical trend,
within the peraluminous domain, similar to Debon
and Le Fort's ALUM - quartz poor group. The
hornblende granite is typically diopside normative,
with the exception of the more siliceous analyses.
The majority of the Ximba and Nqwadolo Suites,
the charnockite and the garnet hornblende granite
have corundum in their norms.

On the TAS diagram all the suites exhibit variable
overlap between the alkaline and subalkaline fields,
extending into the shoshonite field on the K,0-SiO,
diagram. Intermediate Nb/Y and Zr/TiO, ratios
similarly result in occasional samples plotting in
the alkalic portion of the diagrams of Winchester
and Floyd (1977).

On the A-B diagram of Debon and Le Fort (1982)
and the AFM diagram the Ximba Suite parallels the
calc-alkaline trend, but with extension into the
tholeiitic field on the SiO,-FeO/FeO+MgO diagram
(Figure 4.11b). The observed trend of the
Mlahlanja Suite on the A-B diagram does not
follow any of the typical styles illustrated by Debon
and Le Fort (1982). The homblende granite and
chamockite parallel the calc-alkaline trend, but at
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lower B levels. The high FeO/MgO and FeO/FeO+
MgO (0.82-0.99) ratios of the Mlahlanja Suite,
however, indicate a tholeiitic character (Figure
4.11b), and on the AFM diagram the suite plots
adjacent to the AF join, extending into the tholeiitic
field. The Nqwadolo Suite plots at the A apex of
the AFM diagram, and no trend can be
distinguished, but its high FeO/MgO and
FeO/FeO+MgO (0.73-1) ratios indicate a tholeiitic
character (Figure 4.11b). The Ximba and
Mlahlanja Suites have a Peacock Index of c¢.54
(Figure 4.11c), within the alkali-calcic field
(Brown 1982). The limited range of silica hinders
the identification of the Peacock Index of the
Ngwadolo Suite (Figure 4.11¢).

The high HFS element content of these granites,
and in particular their high Zr concentration,
classifies them as A-type granites (Whalen ef al.
1987) (Figure 4.11d).
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CHAPTER 5

TECTONIC RECONSTRUCTION

5.1 INTRODUCTION

Regional studies of the Proterozoic basement of
KwaZulu Natal, and in particular by Matthews
(1972) and Thomas (1989a), have resulted in the
development of a collision model as a framework
within which to explain the assemblage of the Natal
Province. This model views the younger Natal
Province as either a continental mass (Matthews
1972) or as a series of exotic terranes (Milne 1986;
Thomas 1989a; Thomas er al 1994; Jacobs and
Thomas 1994), which collided with the older
Kaapvaal Craton, producing a suture marked by
ophiolite obduction. This resulted in the welding
of the various terranes into a single tectonic unit,
which served as a stable environment for the
intrusion of the late- to post-orogenic granites of
the Oribi Gorge Suite (Thomas 1989a).

These models, with the exception of Milne (1986),
were primarily developed from studies based in
northern (Matthews 1972) or southern (Thomas
1989a) KwaZulu Natal, with little attempt to
specify the geotectonic setting of the metamorphic
and igneous rocks of central KwaZulu Natal,
including the Valley of a Thousand Hills, except
through extrapolation. This chapter therefore
attempts to develop a model to explain the
evolution of the tectonic setting of the Valley of a
Thousand Hills during the Proterozoic, through the
chemical characterisation of the various units
identified. To aid this the interpretation of the
various tectonic discrimination diagrams will be
reviewed.

5.2 GEOCHEMICAL
DISCRIMINATION

TECTONIC

5.2.1 NAGLE DAM FORMATION

The Nagle Dam Formation consists of a
metamorphosed igneous series extending from
basalt to rhyolite, with abundant intermediate
members. Although the available chemical data
suggest that the members of this series are not
direcily related (Section 4.3.5), their combined
chemical characteristics indicate that they represent
a unimodal suite in the sense of Martin and
Piwinskii (1972), which typically forms within an
orogenic setting. This identification is supported by
a variety of chemical characteristics considered
indicative of an orogenic series (Petro ef al. 1979),

including the high calc/alkali index of the Nagle
Dam Formation and its calc-alkaline distribution
pattern on the AFM diagram, together with its low
Nb content (Pearce and Gale 1977).

Chemical discrimination of the intermediate and
acidic gneisses suggest that they developed in a
volcanic arc or collision environment (Figure 5.1,
5.2f). These environments are, however,
discriminated by the Rb-Nb+Y diagram (Figure
S.le), with the Nagle Dam Formation plotting
essentially in the volcanic arc granite (VAG) field,
with extension into the syn-collision granite
(syn-COLG) field for the quartzo-feldspathic
gneiss. Ocean ridge granite (ORG)-normalised
spidergrams display a pattern of LILE enrichment
and HFSE depletion (Figure 5.1f). This is
comparable with the volcanic arc and collision
granites, although the lack of an extreme Rb
anomaly suggests an arc or post-collision
environment. The  relatively low  HFSE
concentration of the Nagle Dam Formation
indicates an island arc rather than a continental
margin setting. Division of the biotite homblende
and quartzo-feldspathic gneisses into their
component series (Section 4.3.5) results in little
change to this analysis (Figure 5.1g,h), although
the high Zr/Y quartzo-feldspathic gneiss exhibits
extreme Nb and Y depletion.

The amphibolite possesses both arc and
mid-oceanic ridge basalt (MORB) characteristics
(Figure 5.2a,c,f), although it plots predominately in
the island arc basalt (IAB) field on the Ba-Nb
diagram (Figure 5.2b). The discrimination of the
amphibolite is hindered by the overlap of the fields
on the majority of the tectonic discrimination
diagrams but may also be a function of its primitive
arc volcanic type character, these displaying both
MORB and arc characteristics (Smith et al. 1997).

The MORB-normalised spidergram of Pearce
(1982) (Figure 5.2g), displays a pattern of strong
LILE enrichment, with depletion of Y, Zr and Ti
and minor enrichment of the more compatible Cr.
The lack of Y, Ti and Zr enrichment is suggestive
of an arc rather than a mid-oceanic or within plate
origin, although Nb is enriched. Similarly, on the
primordial mantle normalised spidergram of Holm
(1985) the pattem of declining HFS element
concentrations indicate an arc origin (Figure 5.2h).
The high LILE content of the amphibolite
demonstrates considerable enrichment of these
elements relative to the low-potassium tholeiite
standard of Holm, but these are at levels
comparable with the calc-alkaline and shoshonitic
arc basalts (Pearce 1982).



Figure 5.1.

Granitic tectonomagmatic discrimination diagrams (Pearce e al. 1984) for the biotite hornblende and quartzo-feldspathic gneisses of the Nagle Dam Formation, the quartzo-feldspathic gneiss of the Valley Trust

Formation and the granites of the Mgeni Batholith.

a) Rb-SiO,, b) Y-SiO,, c) Nb-Si0,, d) Nb-Y, €) Rb-Y+Nb, f-1) ORG normalised spidergrams (ORG normalising factors after Pearce er al. 1984), f) average biotite hornblende gneiss and quartzo-feldspathic

gneiss - Nagle Dam Formation, g) individual quartzo-feldspathic gneiss series - Nagle Dam Formation, h) individual .biotite hornblende gneiss series - Nagle Dam Formation, i) quartzo-feldspathic gneiss -

Valley Trust Formation, j) Ximba Suite, k) Mlahlanja Suite, 1) Nqwadolo Suite.

WPG - within plate granite; ORG - ocean ridge granite; VAG - volcanic arc granite; syn-COLG - syn-collision granite; COLG - collision granite.
ORG normalising factors - K,O - 0.4; Rb - 4; Ba - 50, Th- 0.8; Ta- 0.7, Nb - 10; Ce - 35, Hf-9; Zr-340,Sm -9; Y - 70; Yb - 8.
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Figure 5.1. Granite tectonomagmatic discrimination diagrams - continued.

Rb e
1,000
syn-COLG
O
100
10
ORG
1 e L .
1
10 Y+Nb 100 1,000
9
100 — —
] ‘: l High Zr/Y quartzo-  Low Zr/Y quartzo- !
! /,,,,/. e A feldspathic gneiss feldspathic gneiss
o L% \3/\ N e
F \ \
0] [ 5 AN
& \ N
\
! LN
9 3 h -
o [ \ T
—_— . o _~-—-—'““A
- \\ ‘
2 N e e
: L e |
0.01 1 L L | | L ! ] 1 ] ] ]
K,O Rb Ba Th Ta Nb  Ce Hf Zr Sm Y Yb

Rock/ORG

‘

100.0

10.0 |

1.0

0.1

100

)

Rock/ORG

0.1

f
[ L — ,
] e - Biotite Hornblende Gneiss
RN ST -@—
| o PEGA Quartzo-feldspathic Gneiss
. Q- -0 -
y, \
| & AN
E ®. -
! ' o T @ - .
| ) ®
-6 -
1 | | | 1 L | | | | L
KO Rb Ba Th Ta Nb Ce Hf Zr Sm Y Yb
h
E Low silica biotite hornblende gneiss !
J— .,
J High silica biotite hornblende gneiss
L/ . |
[l 1 1 1 1 | 1 | 1 | 1 1

K.O

Rb

Ba

NOLLDNYISNOOTY DINOLDAL

€S



Rock/ORG

Rock/ORG

Figure 5.1. Granite tectonomagmatic discrimination diagrams - continued.
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Figure 5.2. Basaltic tectonomagmatic discrimination diagrams for the amphibolites of the Nagle Dam and Valley Trust Formations.

a) Ti/Y-Nb/Y (Pearce 1982), b) Ba-Nb (Hawkesworth et al. 1991) for Nagle Dam Formation amphibolite, ¢) Zr/Y-Zr (Pearce and Norry 1979, Pearce 1983), d) Zr/Y-Ti/Y (Pearce and Gale 1977), ¢) Cr-Y (after

Pcarce 1982), f) Ti-Zr (after Pearce1982), g MORB normalised spidergram for the amphibolite of the Nagle Dam Formation (Pearce 1982), g) Primordial mantle normalised spidergram for the amphibolite of
the Valley Trust Formation (Holm 1985) (normalising factor (n) primordial mantle composition after Wood e/ @l 1979), i) MORB normalised spidergram for the amphibolite of the Valley Trust Formation
(Pearce 1982), j) Primordial mantle normalised spidergram for the amphibolite of the Valley Trust Formation (Holm 1985) (normalising factor (n) primordial mantle composition after Wood et al. 1979).

WPB - within plate basalt; VAB - volcanic arc basalt; MORB - mid-oceanic arc basalt; IAB - island arc basalt.
Normalising factors for Pearce (1982) - Sr - 120; K,O - 0.15; Rb - 2; Ba- 20; Th - 0.2; Ta- 0.18; Nb - 3.5; Ce - 10; P,O,- 0.12; Zr - 90; Hf - 2.4; Sm - 3.3; TiO, - 1.5, Y - 30; Yb - 3.4; Sc - 40; Cr - 250.

Normalising factors for Holm (1985) - Rb - 0.86; Ba - 7.56; Th - 0.096; U - 0.027, K - 252; Nb - 0.62; La - 0.71; Ce - 1.9; Sr - 23; P - 90.4; Zr - 11; Sm - 0.385; Ti - 1527, Y - 4.87, Yb - 0.43.
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Figure 5.2. Basaltic tectonomagmatic discrimination diagrams - continued.
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The isotopic analyses of Eglington (1987) and
Eglington et al. (1989b) demonstrated the primary
origin of the Natal Province with no Archaean crust
involved in its derivation, suggesting an island arc,
as opposed to a continental margin, setting for the
Nagle Dam Formation. This is supported by its
average composition (Brown 1982, after Mason
and McDonald 1978) and element distribution
patterns on the spidergram of Pearce et al. (1984),
while the low Zr/Y ratio of the amphibolite is
characteristic of the oceanic arcs (Figure 5.2¢). The
relatively high K,O and Ba but low FeO/MgO ratio
of the gneisses, are, however, analogous with those
suites emplaced in cratonic crust (Coulon and
Thorpe 1981; Brown 1982).

Evolutionary trends within arc volcanism have
been recognised by numerous authors, including
Gill (1970), Thorpe et al. (1981), Brown (1982)
and Brown et al. (1984). In particular, Brown
(1982) noted that constant chemical variations on
the AFM and log(Ca0O/Na,0+K;0)-SiO, diagrams
are indicative of increasing maturity in a volcanic
arc. Comparison with the data of Brown suggests
that the Nagle Dam Formation was a fairly mature
arc, plotting within the field of normal calc-alkaline
rocks on the latter diagram. The trace element data,
however, imply a more juvenile setting, with the
Nagle Dam Formation displaying characteristics of
primitive and normal arcs (Brown ef al. 1984).

522 VALLEY TRUST FORMATION
a) Medium Grained Orthogneisses

The medium grained orthogneisses of the Valley
Trust Formation represent a bimodal succession,
comprising amphibolite and quartzo-feldspathic
gneiss. Such sequences are typically developed in
non-orogenic settings within tensional
environments (Martin  and Piwinskii  1972),
although Pin and Paquette (1997) noted that
bimodal suites may occur in a variety of
environments, including an association with the
compressional environment (also McBimey 1968;
Brown et al. 1977; Notsu et al. 1987).

The lack of intermediate members within the
Valley Trust Formation hinders its classification by
the methods of Petro ef al (1979). The bimodal
character of this unit, however, suggests that it
formed in an extensional environment, with the
abundant acidic material indicating a non-oceanic
setting, although the low Nb content of the
quartzo-feldspathic gneiss is comparable with the
orogenic granites (Pearce and Gale 1977).

The basalt spidergrams of Pearce (1982) and Holm
(1985) indicate that the amphibolite possesses
chemical characteristics comparable with the
within plate basalts. On the former (Figure 5.2i) all
the elements display a degree of enrichment,
markedly so for U, with the exception of Zr, which
approaches unity. Particularly prominent is the
enrichment of Ti and Nb, features not apparent in
any environment other than the within plate setting.
Similarly, on the Holm diagram (Figure 5.2j) the
general decline in enrichment from Rb to Y
suggests a within plate type rather than a MORB
environment, while the high Nb content of the
amphibolite serves to distinguish it from the arc
basalts. The lack of a Nb anomaly suggests that the
amphibolite was not emplaced in a back arc setting.
Rather it is comparable to the continental tholeiites
or initial rifting tholeiites, and particularly so if
only the high TiO, amphibolite is considered.

Two disparate groupings are, however, apparent on
several of the tectonic discrimination diagrams
(Figure 5.2a,c), a low Ti group with primarily
mid-oceanic ridge basalt characteristics and a
higher Ti group, which plots in the within plate
basalt field with some extension into the
mid-oceanic ridge basalt field (corresponding with
the low Zr/Y and high Zr/Y amphibolites identified
in Section 4.4.3). Normalisation of these individual
series with MORB (Pearce 1982) derives a pattern
comparable with that of the entire series, but with
the within plate characteristics of the average
amphibolite  emphasised for the  high-Ti
amphibolite. For the low-Ti amphibolite the pattern
of normalised HFS element concentrations at unity
is comparable with MORB (Figure 5.2i).

The quartzo-feldspathic gneiss exhibits both
voleanic arc and collision granite characteristics
(Figure 5.1). On the Rb-Y+Nb diagram, however,
it plots across the syn-collision, volcanic arc and
within plate granite fields (Figure 5.le), a
distribution pattern typical of the post-collision
granites. Similarly, on the ORG-normalised
spidergram, the quartzo-feldspathic gneiss displays
a pattern of LILE enrichment and HFSE depletion
(Figure 5.1i), comparable with the volcanic arc and
collision granite patterns. The low Zr content of the
quartzo-feldspathic gneiss contrasts with the
typically high Zr content of rhyolites associated
with bimodal suites and extensional environments
(such as Cleverly er al. 1984), although low-Zr
rhyolites have been reported in this environment
and may be characteristic of specific portions of
the succession (Ewart 1981; Hildreth 1981;
Crecraft et al. 1981; Leat et al. 1986; Bellieni ef al.
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1986; Ryan et al. 1987; Vivallo and Claesson
1987; Garland et al. 1995).

b) Paragneisses

A variety of tectonic discrimination diagrams have
been designed for clastic sediments, primarily for
sandstones and greywackes, (Bhatia 1983; Bhatia
and Crook 1986), but additional diagrams, such as
that of Roser and Korsch (1986), are also
considered suitable for pelitic sequences.

On the majority of the major element
discrimination diagrams of Bhatia (1983), the
psammitic portion of the medium. grained
paragneiss plots predominately within the active
continental margin or oceanic/continental arc fields
(Figure 5.3a,c,d). Trace element data (Bhatia and
Crook 1986) similarly suggest a continental island
arc or oceanic island arc setting. Limited data are
available for the metasedimentary portion of the
fine grained granulite, but the chemical
characteristics of its psammitic portion suggest an
oceanic island arc setting (Figure 5.3¢,d). On the
K,0/Na,0-Si0, diagram of Roser and Korsch
(1986), however, both series plot across or beyond
the various delineated fields (Figure 5.3b). This
may be due to Na,O loss during source rock
weathering (Nesbitt and Young 1984; 1989;
Condie ef al. 1992; Nesbitt et al. 1996).

The available chemical data therefore suggest that
the paragneisses were deposited in association with
an arc environment. This may be related to the
development of an extensional environment within
which the bimodal volcanic sequence was
deposited, with the arc material forming a
prominent source

¢) Fine grained amphibolitic granulite

The fine grained amphibolitic granulite displays arc
or mid-ocean ridge basalt chemical characteristics
(Figure 5.2). Similarly, on the spidergrams of
Pearce (1982) and Holm (1985) the average fine
grained amphibolitic granulite analysis exhibits
many of the characteristics of the average ocean
floor . basalt, although its LILE, Th and U
concentrations tend to be high (Figure 5.2i,j). The
more incompatible elements approximate unity,
discriminating these analyses from the within plate
basalts. Equally, the lack of a negative Nb or a
positive Sr anomaly distinguishes these analyses
from the low-K tholeiites.

d) Summary

The chemical characteristics of the amphibolite are
typical of the continental flood basalts, which
display extremely variable incompatible element
abundances both within an individual province and
between differing provinces. In particular, the
continental flood basalts tend not to plot within a
specific field on the various tectonic discrimination
diagrams (Morrison 1978; Holm 1982; Bertrand
1991; Wang and Glover 1992). This is partially
due to the chemical complexity of individual flood
basalt provinces in which distinct chemical types
may be identified, such as the markedly bimodal
TiO, and P,Os distributions distinguished in the
Karoo and Paran& Provinces (Mantovani et al
1985; Cox 1988; Piccirillo ef al. 1988).

The major continental flood basalt provinces are
related to an extensional phase, frequently
occurring as a precursor to continental rifting, such
as the Karoo Province (Cox 1988), the Deccan
Traps (Mahoney 1988) and the North Atlantic
Tertiary Province (Dickin 1988). They may also,
however, develop behind a previously active
continental margin immediately after the cessation
of calc-alkaline volcanism, such as the flood
basalts of the Columbia River Province (Hooper
1988), coincidental with a change from
compressional to extensional tectonics (Hooper
1988; Carlson and Hart 1988). These may not be
distinct environments, as noted by Cox (1988) who
proposed that the Karoo volcanics developed in an
environment analogous to a back arc basin.

The relatively restricted distribution of the Valley
Trust Formation is, however, distinctly different
from the large continental flood basalt provinces.
Rather, its local character suggests comparison
with an extensional back-arc basin, or rifting
associated with the development of a small sea,
which acted as a loci for sedimentation. Bimodal
volcanism is found within these environments
(Myrow 1995; Wever et al. 1995; Keppie and
Dostal 1998), with the basaltic member of the
series  displaying both MORB and OIB
characteristics (Winchester et al. 1995; Worthing
and Crawford 1996; Sharkov and Smolkin 1997,
Schofield et al. 1998; Keppie and Dostal 1998).

5.2.3 MGENI BATHOLITH

Petro et al. (1979) recognised the difficulties
inherent in distinguishing the environment of
emplacement of an unimodal acidic suite, but noted
that several chemical features appear to be
characteristic of specific environments. In



Figure 5.3. Sedimentary tectonic discrimination diagrams for the pelitic gneiss and fine grained granulite of the Valley Trust Formation.
a) DF2-DF1 (Bhatia 1983), b) K,0/Na,0-SiO, (Roser and Korsch 1986), c) TiO.-Fe,0,+MgO (Bhatia 1983), d) Al:O/SiO-Fe,0,+MgO (Bhatia 1983).
a,c and d for sandstones; b for sandstones and mudstones. Sandstones identified using Figure 4.7c (Wimmenauer 1984) .

For 5.3a. DF1 = -0.0447Si0;- 0.972TiQ, + 0.008AL0; - 0.267Fe,0; + 0.208FeO - 3.082MnO + 0.14MgO + 0.195Ca0 + 0.719Na,0 - 0.032K,0 + 7.51P,0;+ 0.303.
DF2 = -0.421Si0, + 1.988TiO, - 0.526AL0; - 0.551Fe,0,- 1.610FeO + 2.72MnO + 0.881MgO - 0.907Ca0 - 0.177Na,0 - 1.840K,0 + 7.244P,0;+ 43.57.
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particular they found that the extensional suite
granites possess lower CaO and CaO/Na,0+K;O
but higher total alkalis and FeO/FeO+MgO than
those granites developed in the compressional
environment.

The chemical characteristics of the Mgeni batholith
indicate features of both extensional - Mlahlanja
Suite - and compressional - Ximba Suite -
granitoids. This is particularly evident on the AFM
diagram. Similar analysis of the Nqwadolo Suite is
hindered by its limited range of silica, and no
tectonic discrimination is possible using the
methodology of Petro et al (1979). The
discriminant analysis of Agrawal (1995) generates
a mixed signal, with individual granites within each
of the megacrystic granite suites displaying
orogenic and anorogenic characteristics. The
Ngwadolo ~ Suite  possesses  post-orogenic
characteristics. On the log CaO/Na,0+K,0-SiO,
diagram of Brown (1982), however, the granites
plot in the extensional granite field. Equally, the
presence of rare peralkaline granites in all the
suites of the Mgeni batholith suggests an
extensional environment (Petro et al. 1979).

Chemical discrimination of the Nqwadolo Suite
suggests an origin as a within plate granite, but the
Ximba and Mlahlanja Suites display mixed within
plate and volcanic arc granite characteristics
(Figure 5.1). On the R1-R2 diagram of Batchelor
and Bowden (1985) the granites plot in the late
orogenic and anorogenic fields.

On the ORG-normalised spidergram (Figure
5.1j,k,1), all the suites display enrichment in the
LILE, discriminating them from the ocean ridge
granites, but not the extreme enrichment of Rb
found in the syn-collision granites. Particularly
notable is the lack of a marked Ba anomaly for the
Ximba and Mlahlanja  Suites, suggesting
development in a thin continental crust, with the
negative Ba anomaly of the Ngqwadolo Suite
indicating growth of a thicker crust, while Nb
concentrations are typically above unity. The other
HFSE display variable degrees of enrichment or
depletion but commonly Y is depleted, while Zr
displays either slight enrichment or minor
depletion. These features are characteristic of
post-eollision or within plate granites.

The high HFSE content of these granites is
comparable to that of the A-type granites (Section
4.5.4), a series of distinct granites which intrude
during the end phase of an orogenic cycle and in
authentic anorogenic settings (Loiselle and Wones
1979; Collins er al. 1981; Pitcher 1983: Whalen ef

al. 1987; Sylvester 1989; Rogers and Greenberg
1990). These granites plot predominately as within
plate granites on the diagrams of Pearce er al.
(1984), but with overlap into the syn-collision and
volcanic arc granite fields (Whalen et al 1987),
similar in distribution to the Mgeni batholith, but
with less extension into the volcanic arc granite
field.

A variety of broad chemical characteristics have
been utilised to distinguish between the various
A-type granite sub-groups (Rogers and Greenberg
1990). These, and in particular the high FeO, K,O
and Zr but low CaO content of the Ximba and
Mlahlanja Suites, indicate an association with the
anorogenic anorthosite and rapakivi granites. The
low Y and Nb content of the Mgeni batholith
suggest that it is late- to post-orogenic in character.

Emslie (1991) divided the A-type granites into the
anorthosite-mangerite-charnockite-rapakivi granite
(AMCQ) suite and the late-orogenic-post-orogenic
-anorogenic  (LPA) suite. The presence of
anorthosite was thought to distinguished the
AMCG suite, but a variety of mineralogical,
mineral chemical and bulk chemical data could
also be used to separate these associations.

Although anorthosite has not been identified within
the Natal Province, the abundant presence of
charnockite suggests that the granites of the Mgeni
batholith are related to the AMCG suite. This is
supported by the high alkali content of these
granites and the high FeO/FeO+MgO nature of
their mafic mineral assemblage (Section 2.3). The
relatively low FeO/FeO+MgO ratio of the Ximba
Suite, however, overlaps with the LPA suite.

5.3 DISCUSSION

Identification of the tectonic setting of Precambrian
aged high grade metamorphics and granites
necessitates a comparison with data sets from
known (Phanerozoic) locale, typically through the
tectonic discrimination diagrams (for example
Pharoah et al. 1987; Kalsbeek 1995; Mansfeld
1996). This process assumes that plate tectonic
processes operated during the Proterozoic (Kerr
1985; Kroner 1991; Windley 1993; Passchier
1995; Hamilton 1998; de Wit, 1998) and that the
chemical characteristics of individual rock types
from the Proterozoic match those of the
Phanerozoic (Pearce et al. 1984; Condie 1985;
Taylor and McLennan 1985).

For high grade metamorphic rocks potential
elemental mobility may influence the interpretation



TECTONIC RECONSTRUCTION

of the tectonic discrimination diagrams. Although
Winchester and Floyd (1976) suggested that the
elements typically used for tectonic discrimination
diagrams (Y, Ti, Zr) are immobile at amphibolite
grades of metamorphism and possibly into the
granulite facies (Fowler 1986; James et al. 1987,
Winchester et al. 1998), ‘Little is known about the
stability of these elements' beyond the amphibolite
facies (Rollinson 1993). Evidence of immobile
trace element mobility across the amphibolite/
granulite boundary is present in several studies
(Figure 5.4), while mobility of these elements must
be considered unequivocal for those granulites
which have undergone a phase of partial melting.
Dirks and Hand (1991), for example, noted the
tenancy for zircon to dissolve when in contact with
a melt, while Pidgeon and Aftalion (1978) and
Williams et al. (1983) identified zircon entrainment
within a melt. The tectonic discrimination diagrams
have, however, been utilised for granulites
(Winchester et al. 1998) and their capacity to
identify the tectonic environment of these rocks
must be considered if no evidence is available to
suggest elemental mobility.

Within the Mapumulo Group, K/Rb ratios (88-492)
comparable with crustal averages (Taylor and
McLennan 1985), suggest that the possibility for
misidentification  of  environments  through
elemental mobility is slight. Further, those
discrimination plots which have been constructed
using potentially mobile elements, such as the
Zr-Ti-Sr plot of Pearce and Cann (1973), have not
been considered for the high grade metamorphics
of the Mapumulo Group.

An exception are the granitic tectonic
discrimination plots of Pearce e al. (1984), which
utilise the potentially mobile element Rb (criticised
by Rollinson 1993). These have been applied to the
quartzo-feldspathic  gneisses, with  potential
misidentification of the tectonic environment of
these units through Rb depletion from the higher
levels common to the syn-collision granites to the
lower levels of the volcanic arc granites during
granulite grade metamorphism and partial melting.
K/Rb ratios within the quartzo-feldspathic gneisses
(202-426) do not, however, indicate any marked
deviation from comparable unmetamorphosed
lithologies (Taylor and McLennan 1985).

Rb mobility may also occur during low grade
alteration of granites (Alderton et al. 1980;
Petersson and Eliasson 1997). Evidence for
elemental mobility within the granites of the Mgeni
batholith is, however, lacking with the various
suites  displaying K/Rb  ratios  (121-421)

comparable to typical crustal material (Taylor and
McLennan 1985).

Any Rb mobility is therefore considered to have
been minimal in extent, with limited potential for
influencing the identification of the tectonic
environment of the various units present within the
Valley of a Thousand Hills.

The uncertainty regarding the specific relationship
between rock chemistry and tectonic environment
has resulted in criticism of the tectonic
discrimination diagrams (Arculus 1987; Duncan
1987; Twist and Harmer 1987, Myers and
Breitkopf 1989). The observed connection between
certain rock types and tectonic environments,
however, suggests a more than casual association
and the possibility of geochemical characterisation
of tectonic environments (Clarke 1992; Rollinson
1993; Farster et al. 1997). This may be related to
an environmentally specific source or evolution
process within an individual tectonic environment.
Pearce et al. (1984), for example, noted that their
tectonic discrimination plots for granites 'strictly
reflect  source regions (and melting and
crystallizing  histories) rather than tectonic
regimes’, while distinct sources for basalts from
different environments have been proposed (Hedge
and Peterman 1970; Hart 1971; Pearce 1982; Frey
and Roden 1987; Hart and Zindler 1989). If such is
the case then the tectonic discrimination diagrams
may more properly be considered to identify the
source material specific to a tectonic environment
rather than the tectonic environment.

5.3.1 BASALTS

Initia] attempts to discriminate the tectonic
environment of basalts have focused on three
primary environments:

1) within plate;
2) mid-oceanic ridge; and
3) arc.

Although  numerous tectonic  discrimination
diagrams have been developed to distinguish these
environments, a considerable degree of overlap is
typically found between individual environments
(Pearce 1982) hindering their identification. This
may be partially due to the inclusion in these
diagrams of data from the complete range of basalt
mineralogical and chemical subtypes - tholeiitic,
calc-alkaline and alkaline - which may have
originated and evolved uniquely. To minimise this
potential  complexity in  basalt tectonic
discrimination, comparison should be limited to



Figure 5.4. Immobile elemental mobility across the amphibolite/granulite boundary.
a) Zr-Y, b) TiO,-Zr (data from Raith and Srikantappa 1993), ¢) Zr-Y, d) TiO,-Zr (data from Garde 1990).
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individual chemical types. This is illustrated in
Figure 5.5a where data from tholeiitic basalts from
a variety of sources are displayed on the Cr-Y
diagram. No clear discrimination of the different
tectonic environments is achieved at this level, but
elimination of the more evolved members of the
various series results in the separation of the arc
volcanics from the ocean island tholeiites and
mid-oceanic ridge basalts (Figure 5.5b), for which
no division is possible, as noted by Pearce (1982).
A similar scenario is illustrated on the TiO-Zr
(Figure 5.5¢) and Zr/Y-Zr (Figure 5.5¢) diagrams,
with no distinct discrimination of the individual
environments if the full data sets are employed,
while utilisation of only the less evolved members
of the series allows a clearer division of the
different environments (Figure 5.5d,1).

For the basaltic rocks the less evolved members of
an individual series best specify the tectonic
environment of the series. This is to be expected if
the chemical characteristics which define the
tectonic environment are inherited from the source
material. A provisional reinterpretation of the
basaltic tectonic discrimination diagrams is
therefore undertaken based on this conclusion and
utilising this data set. This provides highly variable
results, indicating that the fields defined on the
Cr-Y diagram by Pearce (1982) do not discriminate
the various environments, with the MORB and
WPB displaying considerable overlap with the arc
basalt field. The fields defined on the TiOx-Zr and
Zr/Y-Zr diagrams, however, are similar to those of
Pearce (1982; 1983), but with a clearer
discrimination of the various environments, and in
particular on the Zr/Y-Zr plot.

Classification of the Nagle Dam Formation
amphibolite is complicated by its transitional
tholeiitic/calc-alkaline nature (Figure 4.4b). On all
the derived diagrams it plots with the mid-oceanic
ridge basalts, suggesting a possible mid-oceanic
ridge basalt source rather than an arc source. This
contradicts the strong LILE enrichment of the
amphibolite, a characteristic of the arc basalts
through the interaction of slab and crustal sources
and might reflect its non-tholeiitic character. As
noted by Pearce (1982) the calc-alkaline arc basalts
approach MORB levels of HFS element
concentrations. Ramsey et al. (1984) also found
MORB type HFS element concentrations in the
primitive arc magmas.

The tholeiitic nature of the medium grained
amphibolite of the Valley Trust Formation is
compatible with the derived diagrams. The Cr-Y
diagram (Figure 5.5b) demonstrates its non-arc

character, and on the TiO,-Zr and Zr/Y-Zr
diagrams (Figure 5.5d,f) it plots predominately
within the MORB field, but with extension parallel
to the WPB to higher TiO, levels on the TiO,-Zr
diagram (Figure 5.5d).

The continental flood basalts were not included in
the derivation of the revised tectonic discrimination
diagrams, as they are considered to have been
derived from a heterogeneous source with a
complex evolutionary history including variable
degrees of crustal assimilation (Carlson and Hart
1988) resulting in their nonclassification on a
variety of tectonic discrimination plots (Holm
1982). Elimination of the more evolved members
of individual continental flood basalt suites from
consideration may, however, result in a
minimisation of the effects of crustal assimilation,
allowing greater specification of the original
chemistry of the basaltic melt and the potential
definition of a continental flood basalt field on the
tectonic discrimination diagrams

Data from the Karoo Province are illustrated in
Figure 5.6, with the development of distinct
chemical subgroups on individual diagrams
comparable with either the mid-oceanic ridge or
within plate basalt data sets in Figure 5.5. This
suggests an origin from a heterogeneous source
zone, with both within plate basalt and mid-oceanic
ridge basalt type source material. Detailed analysis
of individual continental flood basalt provinces,
however, have indicated that the low-Ti basalts
may have originated at least partially from a
lithospheric source (Peate and Hawkesworth 1996).
On the derived diagrams these basalts plot in the
field of mid-oceanic ridge basalts, suggesting that
this may be a composite field, representing a
variety of potential sources.

Comparison with the Valley Trust Formation
amphibolite suggests a similarity to the low-Ti
portion of the Karoo series but with the
amphibolite originating from a lower Zr/Y source
(Figure 5.6f). The Ti-Zr diagram (Figure 5.6d),
however, discriminates between the amphibolite
and the low-Ti Karoo basalts and indicates a trend
for the amphibolite parallel to the Karoo series, but
at a lower Zr concentration.

This suggests the derivation of the amphibolite
from a heterogeneous source with both
mid-oceanic ridge, lithospheric mantle and within
plate basalt characteristics, differing considerably
from that of the Karoo Province, and in particular
with lower Zr concentrations. Comparison with the
trace element data of Le Roux e al (1983)



Figure 5.5. Evaluation of basaltic tectonomagmatic discrimination diagrams and comparision with the amphibolites of the Nagle Dam and Valley Trust Formations.
a, b and e - discrimination using full data sets. b, d and f - discrimination using unevolved data only.
Data from Dickey et al. (1977), Wood (1978), Bryan et al. (1981), Le Roex ez al. (1981), Le Roex and Dick (1981), Le Roex and Erlank (1982), Le Roex et al.
(1983), Bender et al. (1984), Le Roex (1985), Johnson et al. (1985), Weaver et al, (1987), Caroff et al. (1995):
MORB - Mid oceanic ridge basalt; OIB - Ocean island basalt; IAT - Island arc tholeiite.
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Figure 5.5. - continued.
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Figure 5.6. Evaluation of basaltic tectonomagmatic discrimination diagrams for the Karoo volcanics and comparision with the amphibolite of the Valley Trust Formation.
Comparision of the amphibolite, Valley Trust Formation, and MORB subdivisions of Le Roux et al. (1983).
a, ¢ and e - discrimination using full data sets. b, d and f - discrimination using unevolved data only. Data from Erlank (1984).
g and h - comparision with Le Roux ef al. (1983). N-type MORB - normal MORB, P-type MORB - MORB with plume chemical characteristics , T-type MORB -
transitional MORB, after Le Roux ef al. (1983).
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Figure 5.6. - Continued.
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TECTONIC RECONSTRUCTION

indicates that the amphibolite possesses a
chemistry transitional between those of plume
basalts and normal mid-oceanic ridge basalts,
suggesting a variably enriched source zone (Figure
5.6g, h).

5.3.2 GRANITES

For the granites a more complex relationship
exists between the environment and source,
through the interaction with older crustal material.
Attempts to identify distinct crustal sources for
granites, such as Chappell and White (1974) and
Chappell (1996a), have been hindered by the
nature of the crust and the difficulty in
discriminating the different potential sources
(Collins 1996), although Pitcher (1983) proposed
that @ simple relationship exists between the source
and the environment for granites. Given the
complexity of the continental crust this model
appears unlikely, but may have an influence within
juvenile crust or for minimum melts.

Pearce et al. (1984) rationalised a petrogenetic
basis for their granitic tectonic discrimination
diagrams through variations in the mantle sources
for the wvarious granite types, implying a
relationship between the source and tectonic
environment for the granitic rocks similar to that
for the basalts. Isotopic data, however, suggest a
crustal component in the majority of granites
(Clarke 1992), limiting the applicability of this
model, but the MASH model for granite generation
(Hildreth and Moorbath 1988), which proposes
granite derivation through a complex process of
interaction between basalt and the crust, may allow
a system whereby mantle chemical signatures are
transferred to granitic melts. Base level magmas
generated through MASH processes may form the
starting points for further chemical evolution in the
way Pearce et al. (1984) utilised mantle source
points in explaining the derivation of the tectonic
discrimination diagrams,

Potential generation of the chemical characteristics
of the volcanic arc granites through the
fractionation and contamination of volcanic arc
basalts was demonstrated by Hildreth and
Moorbath (1988) and is compatible with the
majority view that arc granites require distinct
basalt and crustal sources (Clarke 1992). The
majority of models for the derivation of the A-type
granites, however, involve partial melting, typically
of a lower crustal or depleted granulite source, or
basalt fractionation, although the isotopic data
suggest a degree of crustal interaction for the latter
(Table 6.1). In Figure 5.7 the potential for crustal

contaminated within plate basalts to serve as source
points for AFC arrays to generate within plate
granites is demonstrated. This model is discussed
in more detail in Section 6.5.

Generation of granitic melts through interaction
with a basaltic melt suggests that the more basic
but noncumulate portion of the granite series would
provide the best indicators of tectonic environment.
As with the basaltic rocks evolution of the granitic
melts through fractionation, contamination or a
combination of processes would tend to remove the
granitic magma from the unique chemical
characteristics of the tectonic environment, as
suggested by Forster et al (1997). This is
particularly true for the effects of contamination as
the potential contaminant may possess a variety of
chemical characteristics.

Following the proposed model the within plate
granites should comprise a series related through
variable degrees of fractionation of granitic magma
generated by the interaction of continental material
with an enriched basalt, each component
contributing to a different degree in individual
granites. Further, the mantle input may be primary
or secondary, through partial melting of flood
basalts (Cleverly et al. 1984; Garland et al. 1995).
Additional acidic material may be derived through
crustal melting with no chemical input from the
mantle melt (Cleverly et al. 1984).

No simple chemical signature therefore defines the
within plate granites, rather their chemistry is
related to a combination of the process and source
rock. This complicates any interpretation of the
tectonic environment of the granites. Certain
generalities can, however, be proposed and in
particular that either the mantle input or the crustal
component controls the chemical signature of the
granites, with the within plate chemical
characteristics suggesting the addition of enriched
mantle material into the crust either as a primary
melt or as a secondary source. A variety of
chemical characteristics can, however, develop
within the extensional environment, including arc
type granites derived through partial melting of an
arc source material with a minor enriched mantle
contribution (Encarnacion and Mukasa 1997).
Interpretation of these features may allow the
analysis of both the tectonic history of an area and
the various controls on granite generation.

Three distinct granite subgroups may therefore be
distinguished:

1) granites derived directly from mantle source



Figure 5.7. Contaminated within plate basalts as a potential source for within plate granites. Granitic tectonomagmatic discrimination diagrams (Pearce et al. 1984) with fields
extended to lower silica levels.

: A-type granite data from Ramo (1991), Tack ef al. (1994), Duchesne and Wilmart (1997); basalt analyses from Hooper (1988).
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TECTONIC RECONSTRUCTION

material;
2) granites with a crustal source; and
3) granites with a mixed source;

corresponding to the cafemic, aluminous and
alumino-cafemic associations of Debon and Le
Fort (1982). Of these groupings those with direct
mantle input should provide chemical evidence of
the tectonic environment within which they
originated. Those granites which are derived
directly from a crustal source with no chemical
input from mantle material, however, will not, but
rather provide data concerning the nature of the
crustal source material (Twist and Harmer 1987).
These granites will be generated primarily, but not
exclusively, within the post-collision environment
through overthickening of the crust (England and
Thompson 1984; 1986), and should therefore be
excluded from the tectonic discrimination
diagrams, where they overlap several of the
delineated fields (Pearce et al. 1984) and are
considered to form a distinct tectonic subgroup
(Harris et al. 1986b).

Recognition of the tectonic environment of an
individual granite is complicated by these
complexities, and in  particular  simple
interpretations using trace element abundances may
be erroneous. Rather the gross chemical and
mineralogical characteristics of the granite and its
relationship with associated rock types must be
considered, with the trace element data from the
more primitive members of the series. In the case
of the Ximba Suite, for example, its overall
chemical and mineralogical characteristics suggest
an A-type granite while its more basic portions
possess the HFS element enrichment of a within
plate granite, but its general trace element data
indicate an origin within a volcanic arc (Figure
5.1). This might result from the contamination of
the melt with a arc type material masking the
enriched mantle input or through the accumulation
of felsic material. A similar model might apply to
the quartzo-feldspathic gneiss of the Valley Trust
Formation. The more distinct within plate granite
chemical signatwe of the Mlahlanja Suite,
however, implies a larger enriched mantle input, as
does its low Sr.

On the A-B diagram of Debon and Le Fort (1982)
the various units identified within the Valley of a
Thousand Hills are compared with those of typical
crustal sourced granites and the Peruvian batholith,
the latter as an example of a granite potentially
derived through MASH processes (Figure 5.8). For
the Nagle Dam Formation and the megacrystic
granites of the Mgeni batholith their distinct
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fractionation profiles, paralleling that of the
Peruvian batholith, indicate their mixed crustal and
mantle origin. The limited data range of the
quartzo-feldspathic gneiss of the Valley Trust
Formation and the Nqwadolo Suite hinder this
comparison, but the trend of these units appears to
mimic the fractionation path of certain crustal
melts, which for the Ngwadolo Suite, with its high
Sry, strongly implies a predominately crustal origin.
The high HFSE content of the Nqwadolo Suite,
however, suggests an enriched component in its
source material, indicating an origin through partial
melting of crustal material and the addition of an
enriched basalt component. The quartzo-
feldspathic gneiss of the Valley Trust Formation is
not enriched, suggesting that it represents a pure
crustal melt. No tectonic discrimination can
therefore be undertaken for this unit.

5.4 CONCLUSIONS

Tectonic discrimination analysis indicates that
during the Proterozoic the Valley of a Thousand
Hills evolved through a variety of mantle and
mantle+crustal melt inputs. Initially a volcanic arc
mantle source, perhaps associated with an
intraoceanic subduction process, was tapped to
derive the Nagle Dam Formation. Subsequently an
extensional phase developed with basaltic
volcanism generated from a heterogeneous source
but with an enriched mantle component, and acidic
magmas, largely crustal sourced. Sedimentation
resulted from the weathering of arc material.

Following arc collision and the associated high
grade metamorphism” which terminated the initial
phase of crustal development in the Valley of a
Thousand Hills, the megacrystic granites of the
Mgeni batholith intruded the gneisses. These
contain an enriched mantle component, but appear
to be predominately crustal sourced or to contain a
primary crustal component.

This simplified model for the tectonic evolution of
the Valley of a Thousand Hills is illustrated in
Figure 5.9. This will be refined and expanded for
Central KwaZulu Natal in Chapter 7.



Figure 5.8. Comparision of the fractionation trends of the Mgeni batholith, Nagle Dam Formation (excluding amphibolite) and quartzo-feldspathic gneiss of the Valley Trust

Formation, with the calc-alkaline Peruvian batholith (Pitcher ef al. 1985) and aluminous association of Debon and Le Fort (1982).
A=Al-(K+Na+2Ca), B=Fe+Mg+Ti, expressed as gram-atoms x 103 of each element in 100g rock (Debon and Le Fort 1982).
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a. Formation of the Mgeni arc - Nagle Dam Formation - above
a subduction zone.

V - Volcanics
S - Sediments

b. Interarc rifting with intrusion of primitive arc magmas
(amphibolite) and deposition of sediments (pelitic gneiss).

c. Rifting and intrusion of Valley Trust Formation amphibolite.
Crustal partial melting - quartzo-feldspathic gneiss.
Sedimentation.
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Figure 5. 9. Tectonic evolution of the Valley of a Thousand Hills
during the Proterozoic.
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CHAPTER 6

PETROGENESIS

6.1 INTRODUCTION

No petrogenetic models are available for the Nagle
Dam and Valley Trust Formations. Analysis of the
geochemical and isotopic data from the
megacrystic phases of the Mgeni Batholith,
however, has resulted in the development of a
number of petrogenetic models to explain their
interrelationship, including:

1) fractionation of a single magma pulse (Kuyper
1979);

2) multiple magma pulses (Kerr 1985); and

3) country rock contamination of an initial Ximba
Suite magma (Eglington 1987; Kerr e al. 1987;
Eglington et al. 1989a; Kerr and Milne 1991a).

These models were reviewed by Kerr and Milne
(1994), who concluded that none were capable of
explaining all the observed features of the granites,
for which evidence exists for the operation of a
variety of concurrent processes, including
assimilation of country rocks and mixing with
melts derived from the partial melting of pelitic
enclaves. Similarly, a number of petrogenetic
models have been proposed for the Nqwadolo
Suite, which was believed to have originated
through either the differentiation (Du Toit 1979) or
the partial melting (Kuyper 1979) of the
megacrystic  granites. The distinct isotopic
composition of the Nqwadolo Suite (Eglington
1987), however, led Kerr (1985) to propose its
derivation from a discrete magma pulse. The
various members of the Mgeni Batholith and the
Oribi Gorge Suite are considered to have
originated through the partial melting of a juvenile
crustal source (Kerr ef al. 1987; Eglington et al.
1989b), possibly depleted from an earlier melting
event (Thomas 1988a).

This chapter therefore attempts to develop
petrogenetic models for the various
metamorphosed sequences within the Valley of a
Thousand Hills, including the identification of
potential source materials for certain of the ortho
and paragpeisses. A petrogenetic model for the
individual granite series within the Mgeni batholith
will also be proposed, and extended to include the
granites of the Oribi Gorge Suite. In addition, a
model for the generation of the A-type granites will
be derived.

6.2 NAGLE DAM FORMATION
6.2.1 INTRODUCTION

Chemical wvariability within the Nagle Dam
Formation suggests that it comprises a series of
distinct units (Section 4.3.5):

1) amphibolite;
2) biotite hornblende gneiss; and
3) quartzo-feldspathic gneiss;

with further subdivision of the gneisses possible
from the available chemical data (Section 4.3.5).

No previous petrogenetic model has been presented
for these series.

6.2.2 AMPHIBOLITE

The majority of the amphibolite samples plot
adjacent to the 1 atm. plag-ol-cpx+liq cotectic of
Thompson et al (1983), suggesting that the
original basaltic magma last equilibrated in a low
pressure environment, although individual samples
display evidence for crystallisation at higher
pressures.  Declining  compatible  element
concentrations with fractionation, including Ni
(Figure 6.1a), Cr and CaO; FeO enrichment; and
constant Sr and ALO; indicate that the original
magma may have evolved through low pressure
fractionation of olivine + clinopyroxene +
plagioclase (Cox 1980; Cox and Hawkesworth
1985). Major element fractionation modelling is,
however, unable to derive the range of
compositions present in the amphibolite, and in
particular its variable K,O/Na,O ratios. This has
not been improved by the elimination of those
analyses that produce the majority of the scatter
observed on the X-MgO fractionation diagrams,
although this revision eliminates the necessity for
significant plagioclase fractionation. The low Cr
and Ni content of the amphibolite (comparable
with the upper intrusives of DeBari 1997) suggests
a minimum role for cumulate accumulation, with
cumulate modelling generating a silica deficient
evolved composition.

The high MgO content of the amphibolite suggests
comparison with the primary arc magmas (Figure
4.3) of Smith et al (1997), but in contrast with
these basalts (Ramsey ef al. 1984; Eggins 1993) the
amphibolite displays a minor degree of intragroup
fractionation, as defined by MgO (Figure 6.1a),
while FeO and CaO concentrations vary
considerably. Similarly, the Y-Zr and Zr/Y-Zr
fractionation trends of the amphibolite do not



Figure 6.1.

Petrogenesis of the Nagle Dam Formation amphibolite.

a) Ni-MgO, b) Zr/Y-Zr (comparision with typical high MgO basalts, data from Ramsey ef a/. (1984) and Eggins (1993)),

¢) K.O/P,0,-MgO/MgO+FeO (fractionation and ACF trends after Carlson and Hart 1988), d) Rb/Zr-Zr (fractionation, assimilation and metasomatic trends after
Smith et al. 1997).
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match those of the high MgO basalts (Figure 6.1b).

The highly variable trace element data do not
suggest that the amphibolite developed from a
single fractionating series. In particular, divergence
in the Rb/Zr-Zr relationship and the lack of Zr
enrichment within the series (Figure 6.1d) are
inconsistent with a model of fractionation from a
single magma. This is supported by the scatter on
the X-MgO fractionation diagrams, the poorly
defined fractionation trends and differences in
incompatible element ratios, such as Rb/Zr-MgO
and Ba/Zr-MgO. The amphibolite similarly does
not follow the mixing lines of Johnson er al
(1985). The trend of increasing K,O/P,Os ratios
with fractionation parallels the ACF trend of
Carlson and Hart (1988), but at higher levels
(Figure 6.1c), suggesting that the chemical
character of the amphibolite was not derived
through crustal assimilation.

Variable Y with declining Cr (Figure 5.2e)
indicates a derivation through either differing
degrees of partial melting of a common source with
fractionation or partial melting of distinct sources
with fractionation (Pearce 1982). The latter is
supported by variations in the Ti/Y-Nb/Y ratio,
which, although predominately comparable with
arc basalts, also displays characteristics typical of
an origin from an alkaline source, indicating
possible mantle heterogeneity. Similarly, the highly
variable Rb/Zr ratio at constant Zr (Figure 6.1d) is
consistent with derivation from a chemically
heterogeneous source (Smith et al. 1997).

Comparison with the average arc basalts reveals a
highly enriched LIL element content, with relative
enrichment of Nb, P, Zr and Cr (Pearce 1982). This
pattern is similar to that of the transitional arc
basalts of Pearce (1982), which were considered to
have resulted from mantle enrichment, including a
potential within plate component.

6.2.3 BIOTITE HORNBLENDE GNEISS

Within the biotite hornblende gneiss, elemental
distribution patterns (Figure 4.3) suggest the
fractionation of a Fe-Mg phase, probably
hornblende, plagioclase, Fe-Ti oxides and zircon,
with a minor role for K-feldspar and biotite
fractionation (Tindle and Pearce 1981; Atherton
and Sanderson, in Pitcher er al. 1985; McDermott
et al. 1996), and the possible presence of a
cumulate phase indicated by occasional high Sr
concentrations (Rapela and Pankhurst 1996). These
trends do not, however, appear related to simple
variations in silica, and assist in the definition of

6-3

the distinct series identified within the biotite
hornblende gneiss (Section 4.3.5).

a) Low Silica Series

Elemental variations in the low silica series suggest
the fractionation of plagioclase, a mafic phase,
probably hornblende, zircon and Fe-Ti oxides
(Tindle and Pearce 1981; Atherton and Sanderson,
in Pitcher et al. 1985; Rapela and Pankhurst 1996;
McDermott et al.  1996). Major element
fractionation modelling, however, does not produce
an acceptable model, with the primary fractionation
of plagioclase incompatible with the increasing
silica content of the melt during fractionation.
Major element cumulate modelling (Appendix 5.1),
utilising as an initial melt composition the average
of the available analyses and sample UND 327
(lowest Na,O, Sr, Zr concentrations and highest Rb
content) as the evolved melt, provides a model, for
which the sum of the squares of the residuals (SSR)
is 0.06, for a cumulate assemblage of:

hornblende + plagioclase + magnetite + ilmenite
+ apatite.

Trace element modelling generates the required
range of elemental compositions, with the cumulate
phase high in Sr but low in Ba and Rb, and
evolving towards lower Sr but higher Ba and Rb.
The potential cumulate does not, however, plot
with the model cumulate, while the more evolved
portion of the series displays a degree of scatter
around the model melt trend (Figure 6.2). These
features may indicate incomplete melt/cumulate
separation.

b) High Silica Series

The high silica series displays elemental variations
compatible with the fractionation of a mafic phase,
probably hornblende, and plagioclase (Tindle and
Pearce 1981; Atherton and Sanderson, in Pitcher
et al. 1985, Rapela and Pankhurst 1996;
McDermott er al  1996). Major element
fractionation modelling (Appendix 5.2), with
sample UND 315 taken to represent the initial melt
(highest FeO and CaO but lowest K,O, Rb and Ba),
the most siliceous sample, UND 300, as the
evolved melt composition and a fractionating
assemblage of:

hornblende + biotite + plagioclase + K-feldspar +
clinopyroxene + orthopyroxene + magnetite +

apatite + quartz,

yields a model, SSR 0.16, for the series. Rb-Ba



Figure 6.2. Cumulate model for the low silica series of the biotite hornblende gneiss, Nagle Dam Formation.
Individual symbols along the evolutionary paths represent 10% fractionation. Model data from Appendix 5.1.
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trace element modelling approximates the observed
evolutionary trend of the series, but modelling of
the Sr-Ba fractionation is less successful, with the
available data trending away from the model trend
(Figure 6.3a,b).

Cumulate modelling (Appendix 5.3), utilising the
average of the available analyses as the initial
magma, generates a model, SSR 0.26, for a
cumulate assemblage of:

hornblende + biotite + plagioclase + K-feldspar +
magnetite + quartz.

As with the fractionation model, the Ba-Rb trace
element model provides a  satisfactory
approximation of the observed evolutionary trend,
but the Sr-Ba data display a degree of scatter
around the model, which does, however, describe
the general fractionation trend (Figure 6.3c,d). This
scattér is due primarily to a single sample, UND
312, which also displays extreme TiO,, ALOs,
FeOror, MgO and Na,O concentrations. These
features may have resulted from preferential
concentration of specific phases in this sample.

¢) Source Characteristics

Although both of the series which comprise the
biotite hornblende gneiss are relatively sodic, with
Na>K, their chemical characteristics distinguish
them from the sodic, slab derived, adakites, and in
particular is their relatively low Sr, St/Y and Zr/Y,
but high Y and Sc (Drummond et al. 1996). The
moderately enriched LIL character of the biotite
hornblende gneiss, together with its low HFS
elements, and in particular Zr and Y, suggest
comparison with the typical volcanic arc granites,
and .an origin in the subcontinental mantle,
enriched through fluxing from the descending slab
(Saunders and Tarney 1979; Pearce 1982). The low
Rb/Sr and Ba/Sr of individual samples indicate a
mantle or lower crustal source (Kay and Gordillo
1994), with an increase in these ratios, and a highly
variable K/Rb ratio, suggesting greater upper
crustal involvement. Relatively low concentrations
of potentially crustally derived elements, and in
particular K,O and Zr (Hildreth and Moorbath
1988), however, and a constant Rb/Zr ratio of 1-2
in the high silica series (Wever et al. 1995) imply
relatively  little crustal involvement in the
generation of the series. The wide range of Rb/Zr
ratios, 0.5-10, in the low silica series may reflect
the influence of a heterogeneous crustal segment,
or the effect of a zircon cumulate phase. Given the
extreme variability of the Rb/Zr ratio, comparable
to that of the Peruvian batholith (Pitcher ef al.

1985), the latter model is preferred.
6.2.4 QUARTZO-FELDSPATHIC GNEISS

Variations in the Zr/Y ratio allow the division of
the quartzo-feldspathic gneiss into two distinct
series (Section 4.3.5). Two samples of the high
Zr/Y quartzo-feldspathic gneiss were collected, one
of which was subdivided to test the effects of
metamorphic segregation, with analyses from the
quartzo-feldspathic and mafic portions of the
gneiss and the undivided sample. Insufficient data
are therefore available to undertake a petrogenetic
analysis of this series. The nature of the observed
chemical variations within the individual sections
of the gneiss, however, and in particular the
concentration of Rb, Sr, Ba, Al,O; and K;O in the
mafic portion of the gneiss and of Zr, TiO,, FeO,
MgO, CaO and Na,O in the quartzo-feldspathic
portion of the gneiss, suggest the effect of
preferential K-feldspar and biotite concentration in
the former, while zircon, Fe-Ti oxides, plagioclase
and quartz accumulated in the latter.

For the low Zr/Y gneiss only three samples were
collected and insufficient data exist to undertake a
petrogenetic analysis of this series. Distinct
fractionation pattemns are, however, apparent for
TiO,, ALOs, FeOror, MgO, KO, Zr and Sr, which
decline with increasing SiO,. These trends are not
comparable with the metamorphic differentiation

pattern  identified from the high Zr/Y
quartzo-feldspathic gneiss, and in particular these
will not produce the low MgO and Zr

concentrations of the more acidic low Zr/Y sample.

The lack of lower silica correlates mitigate against
potential derivation of the low Zr/Y quartzo-
feldspathic gneiss through fractionation, suggesting
that it originated through the partial melting of a
distinct source. Comparison with alumina
concentrations derived from partial melting
experiments on a variety of potential source
materials indicate that the quartzo-feldspathic
gneiss does not possess the high alumina content of
melts derived from water saturated basalts or
metapelites (Helz 1976; Vielzeuf and Holloway
1988). Rather its alumina content approximates
that produced by the partial melting of
metasediments or tonalitic gneisses (Patifio Douce
and Johnston 1991; Skjerlie and Johnston 1993)
with extension to higher silica levels. On the
Na,O-K;O source discrimination diagram of White
and Chappell (1983) it plots predominately in the
S-type granite field (Figure 4.4d), suggesting
derivation from a sedimentary protolith. The
quartzo-feldspathic gneiss is, however,



Figure 6.3.

Petrogenesis of the high silica series of the biotite hornblende gneiss, Nagle Dam Formation.
Fractionation modelling - a) Sr-Ba, b) Ba-Rb. Model data from Appendix 5.2.

Cumulate modelling - ¢) Sr-Ba, d) Ba-Rb. Model data from Appendix 5.3.

Individual symbols along the evolutionary paths represent 10% fractionation.
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metaluminous to weakly peraluminous rather than
strongly peraluminous as expected from a
sedimentary sourced melt (Stevens et al. 1997a).
This suggests a metaluminous source (Conrad ef al.
1988; Clarke 1992) from which potassic melts may
be derived (Skjerlie and Johnston 1993; Singh and
Johannes 1996).

Trace element modelling of the partial melting
systematics is complexed by potential fractionation
processes that may have acted within the
quartzo-feldspathic gneiss, masking its original
chemical characteristics. Modelling of possible
igneous source materials, however, suggest
derivation from a tonalite or granodiorite, although
the low Ba and Sr content of potential tonalite
sources within Natal (Thomas 1989b), do not
generate reasonable approximations of the
available data. Similarly, utilising the acidic
portion of the biotite homblende gneiss as a
potential source provides a poor fit with the
observed  chemical composition of  the
quartzo-feldspathic gneiss.

The low Y and high Sr/Y ratio of the high Zr/Y
quartzo-feldspathic gneiss is similar to that of the
adakite series (Drummond et al. 1996). These are
believed to have been derived by limited melting of
subducting young slab material (Saunders et al.
1987; Defant and Drummond 1990; Kay et al.
1993; Drummond et al 1996; Stern and Kilian
1996), underplated basalts (Atherton and Petford
1993; Muir et al. 1995), or basaltic magma (Feeley
and Hacker 1995; Wareham er al. 1997) with
varying inputs from mantle and crustal material.
These melts typically have an ASI of 1, but
moderately peraluminous variants are found
(Drummond et al. 1996). Relative to the average
adakite of Drummond er al (1996) the
quartzo-feldspathic gneiss is silicic, although high
silica adakites have been reported (Atherton and
Petford 1993; Wareham et al. 1997; Pankhurst et
al. 1998), and enriched in K,O, Rb and Ba,
possibly due to the inclusion of crustal material
(Stern and Kilian 1996), while Sr is low.

6.3 VALLEY TRUST FORMATION
6.3.1 INTRODUCTION

Three; distinct units have been identified within the
Valley Trust Formation:

1) a bimodal igneous association comprising the
amphibolite and quartzo-feldspathic gneiss;

2) metasedimentary pelitic gneiss; and

3) metasedimentary fine grained granulite.

No previous petrogenetic model has been presented
for these series.

6.3.2 QUARTZO-FELDSPATHIC GNEISS

The low Zi/Y series of the quartzo-feldspathic
gneiss includes all the more siliceous members of
the unit, with 79-80 percent SiO,. Only three
samples of this series were collected, however,
insufficient to undertake a petrogenetic analysis.

The high Zr/Y series clusters between 75-78
percent SiO,. Additional analyses, all from Kuyper
(1979), have reported Y concentrations below the
detection level and cannot be categorised using the
Zr/Y ratio (other analyses from Kuyper possess
Zr/Y ratios within the high Zr/Y series). Several
chemical characteristics of these analyses and in
particular their high K,O, Rb and Ba contents
suggest that they are members of the high Zr/Y
series. These samples will not, however, be utilised
for the petrogenetic analysis of this group.

Elemental variation trends within the high Zr/Y
gneiss (Figure 4.6) may have resulted from the
fractionation of plagioclase, Fe-Ti oxides, apatite
and zircon, possibly with K-feldspar (Tindle and
Pearce 1981; McDermott ef al. 1996; Rapela and
Pankhurst 1996). The increasing Rb/Ba ratio with
fractionation suggests K-feldspar fractionation in
preference to biotite, although this is not supported
by an increasing K/Rb ratio.

Major element fractionation modelling, with
sample UND 34 (lowest silica) as the assumed
initial magma, sample UND 302 (highest silica) as
the evolved magma and utilising high Fe/Mg
minerals from a typical A-type granite (Ramo
1991), yields a model, SSR 0.84, for a fractionating
assemblage of:

hornblende + plagioclase + apatite.

Comparable results are obtained for a fractionating
assemblage with biotite + hornblende. This poor fit
results primarily from the relatively low SiO, and
high MgO of the model melt. Utilisation, however,
of minerals from a calc-alkaline granite (Pitcher et
al. 1985), generates a model (Appendix 5.4), SSR
0.03, for a fractionating assemblage of:

hornblende + biotite + plagioclase + oxide +
apatite.

This model deteriorates slightly if biotite or
hornblende is used as the sole mafic phase.
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Trace element modelling, however, generates a
model markedly dissimilar from the observed trace
element fractionation pattern. In particular it
indicates a marked increase in Rb with
fractionation, and a slight decline in Ba, while the
available data shows a marked decline in Ba
concentration and a slight increase in Rb (Figure
6.4a,b).

Major element cumulate modelling (Appendix 5.5),
utilising the average quartzo-feldspathic gneiss as
the initial melt composition, UND 302 as the
evolved composition and either A-type or
calc-alkaline mineral chemistries, generates a
model, SSR 0.16 and 0.05 respectively, for a
fractionating assemblage of:

biotite + plagioclase + K-feldspar; and
biotite + plagioclase + K-feldspar + quartz.

Trace element modelling, utilising the latter
assemblage, approximates the fractionation trends
observed in the quartzo-feldspathic gneiss (Figure
6.4c,d).

6.3.3 AMPHIBOLITE

The amphibolite plots adjacent to the 1 atm.
plag-ol-cpx+liq cotectic of Thompson ez al. (1983),
suggesting that the original basaltic magma last
equilibrated in a low pressure environment.
Elemental variations (Figure 4.6, 6.5a) indicate a
general fractionation process controlled by low
pressure olivine + clinopyroxene + plagioclase
fractionation (Cox 1980; Cox and Hawkesworth
1985). Trends on the Harker diagrams suggest a
common fractionation history for the amphibolite,
although a degree of scatter is frequently apparent
(Figure 4.6).

Trace element ratios, however, suggest that the
amphibolite consists of two distinct series, defined
by Zr/Y and Zr/Nb ratios (Figure 4.5b).
Differences in these ratios imply a variable mantle
source, as has been identified from spatially related
chemically distinct basalt series in several
locations, including the Columbia River Province
(Hooper 1988), the Parand Basin (Peate and
Hawkesworth 1996) and the Tertiary basalts of
Greenland (Fram and Lesher 1997).

The wide range of Y concentrations within the
amphibolite indicate that the individual series were
derived through differing degrees of partial
melting, or mantle heterogeneity. The enrichment
of the incompatible elements with fractionation and
the distinct fractionation pattern of declining Cr

with constant Y present in the low Zr/Y
amphibolite, however, suggest that contrasts in
partial melting or source heterogeneity did not
generate the observed range in chemical
composition of the amphibolite. An increasing
Zr/Y ratio with Zr within the individual
amphibolite series also implies fractionation. The
high Zr/Y but low Zr/Nb and Y/Nb ratios indicate a
possible enriched mantle input (Le Roux er al
1983), while evolving Ti/Y-Nb/Y ratios follow the
within plate enrichment trend identified by Pearce
(1982). Variations in Zr and Nb generate a trend
(Figure 6.5d) that parallels the primitive mantle
ratio (Sun and McDonough 1989) for both series,
with the low Zr/Y amphibolite approximating the
primitive mantle ratio. These features may have
originated through varying degrees of MORB and
OIB mixing (Peltonen er al. 1996). Divergence
from the MORB-OIB mixing line indicates the
action of partial melting and fractionation.

The two amphibolite series identified within the
Valley Trust Formation appear to have undergone
comparable fractionation processes, distinguished
by minor differences in plagioclase fractionation.
Variations in FeO with fractionation suggest that
this was a complex process, with increasing FeOQ
followed by a sharp decline in FeO concentrations
at approximately consistent MgO (Figure 6.5b).

Major element fractionation modelling (Appendix
5.6 and 5.7) for the low Zr/Y amphibolite suggests
the initial fractionation of:

plagioclase + Mg-clinopyroxene + Mg-olivine +
apatite,

with the subsequent fractionation of:

plagioclase + Fe-clinopyroxene + Fe-olivine +
magnetite + ilmenite + apatite,

to generate the fractionation pattern observed in the
amphibolite, with SSR 0.42 and 0.67 respectively
(Figure 6.5b).

For the high Zr/Y amphibolite, the fractionation
modelling has excluded the least evolved sample,
which the chemical data suggest may represent an
accumulation of specific phases. The subsequent
apparent fractionation trend indicates a multiphase
process (Appendix 5.8, 5.9 and 5.10), with the
initial Fe-Ti enrichment phase modelled through
the fractionation of:

plagioclase + Mg-clinopyroxene + Mg-olivine,



Figure 6.4. Petrogenesis of the high Zr/Y quartzo-feldspathic gneiss, Valley Trust Formation.
Fractionation modelling - a) Sr-Ba, b) Ba-Rb. Model data from Appendix 5.4.
Cumulate modelling - ¢) Sr-Ba, d) Ba-Rb. Model data from Appendix 5.5.
Individual symbols along the evolutionary paths represent 10% fractionation.
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Figure 6.5. Petrogenesis of the amphibolite, Valley Trust Formation.
a) Ni-MgO, b) FeO-MgO (with apparent fractionation vector trends), c) K,O/P,0,-MgO/MgO+FeO (fractionation and ACF trends after
Carlson and Hart (1988)), d) Zr-Nb (with fractionation and enrichment trends after Peltonen ef al. (1996). OIB and MORB after Sun and McDonough

(1989)).
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and:

plagioclase + Mg-clinopyroxene + Mg-olivine +
magnetite + apatite,

to generate the extreme iron and titanium
enrichment found in the amphibolite (Figure 6.5b).
Subsequent  fractionation to  lower iron
concentrations is modelled from the intermediate
Fe amphibolite, to parallel the fractionation of the
low Zr/Y amphibolite, through the fractionation of:

plagioclase + Fe-clinopyroxene + Fe-olivine +
magnetite + apatite.

Highly variable silica contents within the high Zr/Y
amphibolite hinder the statistical evaluation of this
fractionation model, SSR >5, but with the error
concentrated in the silica. The entire iron
enrichment phase has been modelled for one stage
fractionation, with a lower SSR, but without
yielding the observed high TiO; content of the
series.

A comparable range of chemical variations were,
however, observed by Fram and Lesher (1997) who
proposed that they represented the effect of
different parental magmas, fractionation and crustal
contamination. Following this the Fe enrichment
trends advanced for the amphibolite may represent
differences in the parental magma, while the low
MgO samples were possibly formed through
crustal contamination.

~ The high silica and Ba concentrations present in
the amphibolite are indicative of a degree of crustal
contamination (Piccirillo and Cox 1988). This is
supported by the increasing ratio of potential
crustal components with fractionation and the
degree of correlation between LIL/HFS ratjos with
fractionation, including large variations in the
Ba/Zr and K/Y ratios. Similarly, the low Mg’ of the
amphibolite (54-27) implies that it was not in
equilibrium  with  the mantle. The Zv/Ti
contamination index of Fram and Lesher (1997),
however, indicates a minimum role for
contamination, although two of the samples plot in
the field of contaminated basalts. Trend variations
on the K,O/P,0-MgO/MgO+FeO  diagram
demonstrate that the amphibolite series may have
evolved along distinct contamination vectors, with
the high Zr/Y series displaying minimal evidence
for contamination while the low Zr/Y series
parallels the ACF evolution curve of Carlson and
Hart (1988), suggesting a possible role for crustal
contamination in its evolution (Figure 6.5¢).

6.3.4 AMPHIBOLITE - QUARTZO-
FELDSPATHIC GNEISS RELATIONSHIP

The occurrence of associated basic and acidic
magmas has been explained as the result of
fractionation, partial melting of basement crust and
the partial melting of the earlier basaltic component
of the series (Mahoney 1988). Although the former
model was supported by Ewart (1985), with
associated side wall melting and assimilation, and
Garland et al. (1995) for specific rhyolites of the
Parand Province, perhaps more studies have
favoured the partial melting model, and in
particular the partial melting of a basaltic source
(Cleverly et al 1984; Piccirillo et al 1988;
Garland et al. 1995). The importance of basaltic
melt intrusions as heat sources for the production
of acidic melts was emphasised by Hildreth (1981).

No apparent chemical continuation exists between
the amphibolite and quartzo-feldspathic gneiss on
potential fractionation plots such as Zr-SiO,
(Figure 4.6), suggesting that the quartzo-
feldspathic gneiss did not develop from the
amphibolite through fractionation processes. Partial
melting modelling of the amphibolite indicates its
potential as a source for the quartzo-feldspathic
gneiss, but the distinct immobile trace element
content of the amphibolite and quartzo-feldspathic
gneiss, and in particular their comparable Zr
content, mitigates against the derivation of the
quartzo-feldspathic gneiss through partial melting
of the amphibolite. Similarly, the quartzo-
feldspathic gneiss does not possess the high HFSE
content common to the melts derived through
partial melting of within plate basalts (Cleverly et
al. 1984; Garland e al. 1995), or their high Sr
concentrations (Garland et al. 1995). The
quartzo-feldspathic gneiss may therefore have
developed from the melting of crustal material
through the introduction of basaltic melts as a heat
source.

Given the high crystallisation temperatures
calculated for the bimodal association, Garland er
al. (1995) noted that any upper crustal source
material with hydrous phases would suffer
complete melting and therefore preferred lower
crustal metasediments and  granulites or
underplated basalts as sources for individual
rhyolites. Comparison with alumina concentrations
derived from partial melting experiments indicate
that the quartzo-feldspathic gneiss does not possess
the high alumina content produced by the partial
melting of water saturated basalts or metapelites
(Helz 1976; Vielzeuf and Holloway 1988), while
water undersaturated melting of basalt produces
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low silica melts (Spulber and Rutherford 1983).
Rather, their alumina content approximates that
produced by the partial melting of metasediments
or tonalite gneisses (Patifio Douce and Johnston
1991; Skjerlie and Johnston 1993), with extension
to higher silica levels.

Variations in the alumina saturation of the different
quartzo-feldspathic gneiss series, highly
peraluminous low Zr/Y gneiss and metaluminous
high Zr/Y gneiss, implies derivation from distinct
sources. The peraluminous nature of the low Zr/Y
gneiss suggests that it was generated through
partial melting of a metasedimentary source
material (Chappell and White 1974; Puziewicz and
Johannes 1988; McDermott e al. 1996; Stevens et
al. 1997a), although the predominately sodic nature
of the gneiss results in the majority of the samples
plotting in the I-type granite field (Figure 4.7d) of
White and Chappell (1983). This high Na,0/K,0
ratio may result from a source with a relatively
sodic plagioclase, An<15 (McDermott et al. 1996),
or a melting assemblage with a high plagioclase/
biotite ratio through biotite dehydration melting in
a sillimanite deficient source (Vielzeuf and Montel
1994). Equally it could have been generated
through the partial melting of a greywacke type
source (Skjerlie and Johnston 1996). The
extremely low Fe,0;+MgO and CaO of the gneiss,
however, mitigates against biotite partial melting
(McDermott et al 1996). Rather muscovite
dehydration melting is suggested, with an average
Rb/Sr of c.4 indicating vapour absent melting
(Harris and Inger 1992).

The metaluminous nature of the high Zr/Y gneiss
indicates an origin from a metaluminous source
(Clarke 1992). Partial melting modelling of
potential igneous sources suggest that the
quartzo-feldspathic gneiss may have originated
through melting of a granodioritic or tonalitic
source.

6.3.5 PELITIC GNEISS

Moderate to high SiO/ALO; (2.84-7.91) and
K:0/Na,O (1.81-6.40) ratios suggest that the
protolith of the pelitic gneiss has undergone a
variable degree of weathering. Calculation of the
Chemical Index of Alteration (CIA) (Nesbitt and
Young 1982) for the average pelitic gneiss derives
a CIA of 58, comparable to relatively unweathered
material. This low CIA results from the very low
CIA of the samples from the large enclave site and
individual analyses may display a CIA of more
weathered rock (CIA ¢.70). Such a low CIA is
comparable to that of glacial sediments (CIA+65).

6-12

No indication of the effects of sorting can be
determine for this unit through variations in
A-CN-K (Nesbitt e al. 1996), with the majority of
the samples plotting on the weathering trend line
between the potential source material, as defined
by the sample with the lowest CIA, and illite.
Possible addition of potassium is, however,
indicated by the samples from the large enclave
which diverge from the weathering trend line
towards the K apex (Fedo et al 1995; 1997),
although Yang et al. (1998) suggested that this
trend, without extension to the A-K join, may result
from the erosion of a K-rich source.

The CIA model was criticised by Harnois (1988),
specifically because of the incorporation of K into
the equation, as K enrichment may occur during
weathering and is a common feature of the
Precambrian (Retallack 1986). Fedo er al. (1995),
however, proposed a correction factor for
potassium metasomatism, which indicates an
original CIA of 60-70 for the K-enriched pelitic
gneiss. Fedo e al. also noted that the Chemical
Index of Weathering (CIW) devised by Harnois
does not account for Al,O; associated with alkali
feldspar and is therefore potentially inaccurate.

Calculation of the Niggli norms (al, alk, si, ti, ¢, k,
fm and mg) allows the identification of sedimentary
fractionation trends. Variation is noted in the
fractionation trends of the psammitic and pelitic
portions of the pelitic gneiss, and in particular
through divergent trends in SiO.-al-alk (Figure
6.6a). The psammites display the effect of quartz
dilution, with the majority of the elements and
al-alk declining in concentration with increasing
silica, while large variations in elemental
concentration and al-alk at almost constant SiO, are
noted in the pelites, indicating the influence of
mineral phases other than quartz. Analysis of the
Niggli normative mineralogy of the pelitic gneiss
suggests that it originally comprised a mixture of
illite and chlorite-montmorillonite (Leake 1996).
No major limestone or dolomite component is
identified.

Senior and Leake (1978) noted that al-alk reflects
the clay and mica content of the original sediment.
Variations in al-alk can therefore be used to
determine the influence that the clay and mica
minerals had on the chemistry of the sediment.
Condie er al. (1992) used ALO; in a similar
fashion, but alumina is not restricted to the clay and
mica minerals, occurring in other phases, such as
detrital feldspar. Within the psammitic gneiss
AlLO;, MgO, Ba, Rb and Y increase in
concentration with al-alk (Figure 6.6¢,d), indicating



Figure 6.6. Sedimentary fractionation trends within the pelitic gneiss, Valley Trust Formation.

a) Si0; - al-alk, b) K,O - al-alk, c) MgO - al-alk, d) Y - al-alk.
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that these elements were possibly added to the
sediment through the clay and mica minerals. FeO
and V possess a similar trend, but the link between
FeO-V and FeO-TiO, fractionation suggest the
possible existence of an Fe-Ti oxide phase.
Declining P,0Os, CaO, Na,O and Sr with increasing
al-alk implies the presence of apatite and possibly
plagioclase.

Within the pelitic portion of the gneiss, increasing
Al;Os, Si0O,, FeO, MgO, P,0s, Zr, Y, Ni, V and Sr
with al-alk is found (Figure 6.6a,c,d), suggesting
the inclusion of these elements in the clay and mica
phases. Zr, Y, CaO and P,Os concentrations vary
considerably with al-alk, however, implying the
existence of an independent zircon and apatite
phase, but without the high Zr/Sc ratios indicative
of zircon accumulation (Yang et al 1998).
Similarly, the increase in V and TiO, with FeO
suggest the presence of an oxide phase. The
declining K;O (Figure 6.6b), Na,O and Rb with
increasing al-alk, but constant Ba, and the high
K,O/ALO; ratio of the gneiss, indicate that these
elements may have been incorporated into a
separate potassic phase, possibly a K-feldspar
(Okonkwo 1989; Cox ef al. 1995), although the
low Ba/Rb ratio of the pelitic gneiss does not
suggest a high K-feldspar content.

Although a variety of sedimentary processes may
influénce the chemical characteristics of pelites,
including the grain size, diagenesis and chemical
weathering (Wronkiewicz and Condie 1987), the
source area may be imaged by elements such as the
REE and HFSE (Taylor and McLennan 1985).
Elements typically associated with basic source
areas, such as FeO, MgO, Cr, Ni and Co (Garver et
al. 1996; McCaffrey and Kneller 1996), are
variably enriched in the pelitic gneiss, with high
FeO but low MgO. Cr overlaps with the lower
range of Gamer et al. but TiO, and Ni are low,
suggesting an acidic source (McCann 1998).
Intermediate La/Sc, Th/Sc and Co/Th ratios (Yang
et al. 1998) and variations in La-Th-Sc (Taylor and
McLennan 1985, amended by Wronkiewicz and
Condie 1987) support this assertion, and indicate a
mixed source area for the pelitic gneiss.

The . sedimentary provenance discrimination
diagrams of Roser and Korsch (1988) suggest that
the pelitic gneiss was derived from either a felsic
-intermediate igneous provenance or a quartzose
sedimentary provenance (Figure 6.7ab). No
potential source comparable with the latter is
known from the Valley of a Thousand Hills or
surrounding areas, but the Nagle Dam Formation
represents a possible source of felsic or
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intermediate material.

Trace element ratio diagrams designed to model
potential source mixing (Cullers et al. 1988,
Condie ef al. 1992) suggest that the pelitic gneiss
may have been derived from a source representing
a mixture of the amphibolite and quartzo-
feldspathic gneiss of the Nagle Dam Formation or
derived primarily from the intermediate biotite
hornblende gneiss. On the La-Th-Sc diagram the
pelitic gneiss is almost intermediate between the
biotite hornblende gneiss and the quartzo-
feldspathic gneiss of the Nagle Dam Formation,
suggesting that the pelitic gneiss may represent a
mixture of these units. The biotite homblende
gneiss, however, may form a source point for the
pelitic gneiss fractionation array (Figure 6.7¢,d),
while a variety of trace element ratios, including
Zr/Y, indicate a similarity between the biotite
hornblende gneiss and the pelitic gneiss. The lack
of Sc analyses from the Valley Trust Formation
inhibits any attempt to assess its potential role in
the derivation of the pelitic gneiss.

Partial melting of the pelitic gneiss is evidenced by
the production of a garnetiferous melt phase, found
as thin veins within the gneiss. Associated with
these veins is a distinct gametiferous phase present
as a marginal mantle to several of the enclaves,
possibly representing the crystal mush melt sheet of
McLeod and Sparks (1998), with the rare
concentration of the melt phase as garnetiferous
granite veins.

The biotite gneiss has been identified as a detached
and possibly restitic portion of the pelitic gneiss
produced through the physical dismemberment of
the gneiss and the removal of a granitic melt phase.
If ALO; or TiO, are taken to be immobile (the
biotite gneiss possesses higher AlLO; but
comparable TiO, to the pelitic gneiss) FeO, MgO,
K>0, Rb, Ni, Cr, Sc and V appear to have been lost
from the biotite gneiss while CaQ, Na,O, Sr, Ba,
La, Zr, U and Th have been enriched. This
indicates the preferential accumulation of zircon
and feldspar in the biotite gneiss, while biotite was
lost, perhaps due to a biotite dehydration melt
producing reaction. The chemical characteristics of
the biotite gneiss do not suggest, however, that it
was associated with a granitic melt generating
event, with the apparent enrichment/depletion
pattern found inconsistent with that identified by
Ahmed-Said and Leake (1990) or Barbey (1991)
for a restite produced through the partial melting of
a metasediment. In particular the depletion of
elements not commonly associated with the
generation of granitic melts, such as MgO, FeOror,



Figure 6.7. Provenance analysis of the pelitic gneiss and fine grained granulite of the Valley Trust Formation.
a) and b) DF2-DF1 major element discriminant function diagrams (Roser and Korsch 1988), ¢) Cr-Zr, d) Sc-La.
For 6.7a. DF1 = -1.773Ti0, + 0.607A1,0; + 0.76Fe,Osq0ra, - 1.5MgO + 0.616Ca0 + 0.505Na,0 - 1.224K,0 - 9.09. . ‘
DF2 = 0.445TiO, + 0.07ALO; - 0.25Fe,Osqora, - 1.142MgO + 0.438Ca0 + 1.475Na,0 + 1.426K,0 - 6.861.
For 6.7b. DF1 = 30.638TiOy/Al,0; - 12.541Fe,0sqora/ALO; + 7.329MgO/AlO; + 12.031Na,0/AL0, + 35.402K,0/Al,0; - 6.382.
DF2 = 56.5TiO/ALOQ; - 10.879Fe,0sq0ra/ AlLOs + 30.875MgO/ALLO; - 5.404Na,0/ALO; + 11.112K,0/ALO; - 3.89.

DF2 a
10 1
i Felsic igneous
A %
°F % & &k plovenance Intermediate
igneous provenance
0F *
Quartzose sedimentary
o) | provenance
L 4 . ® V'S TS
A Pelitic gneiss X
(10) | @ Fine grained Mafic igneous
granulite provenance
(15) ! L, @ | L N . .
(15) (10) (5) 0 5 10
DF1
Cr c
600
- |
500 |- * Pelitic gneiss
B Av amphibolite
400 @ Av biotite hornblende gneiss
- O Av quartzo-feldspathic gneiss
300 @ Fine grained granulite
I *
200 |-
X
| *l
‘e F 4
0 O L ! L ! 2 VR 2
0 100 200 300 400 500 600 700

DF2 b
10 | P
. Quartzose sedimentary
Mafic igneous provenance
5 F provenance
*
x$
°r »n
i * Felsic igneous
(5) i L ] Intermediate provenance
igneous
provenance
| X Pelitic gneiss 49 Fine grained granulite |
(10) 1 L | Py ! . i
(15) (10) (5) 0 5 10 15
DF1
Sc d
50
. K Pelitic gneiss € Av biotite hornblende gneiss @ Fine grained granulite
& B Av amphibolite O Av quartzo-feldspathic gneiss
40 |
o -
3 x ~
L 2
20 | & { L 4
10 | A, X
0 I_” L L
0 50 100 150 200 250
La

SISANADOY.LId

S1-9



PETROGENESIS

Cr, Ni and V, does not suggest the removal of a
granitic phase. Similarly, the K/Rb ratio of the
biotite gneiss (230-238) is analogous to crustal
averages, although its enrichment in specific
elements such as Zr, U and Th is comparable with
that identified by Barbey in typical restites. These
chemical characteristics may, however, reflect the
distinct chemical character of the resultant melt
phase, and in particular the presence of abundant
garnet in the melt, into which FeO, MgO, Ni, Cr,
Sc, V and Y may have partitioned.

6.3.6 FINE GRAINED GRANULITE

Variations in al-alk, ¢, mg and si suggest that the
protolith of the fine grained granulite consisted
primarily of a clay mineral and a siliceous phase,
with minor carbonate. Extension of the unit beyond
the typical pelitic fields indicates an additional
input from a mg rich phase (Figure 4.1). The
available chemical data indicate the effect of
increasing quartz dilution on the majority of the
major elements, Zr, Pb and Nb (Figure 4.6). K;O,
however, increases in concentration with increasing
silica, while Na;O possesses an extreme range of
concentrations, with the possible division of the
unit into distinct groupings based on sodium
fractionation trends. The majority of the trace
elements display no distinct correlation with silica
and a wide scatter of concentrations.

Identification of potential clay fractionation
profiles is hindered by the presence of occasional
chemically distinct samples characterised by
anomalous concentrations of individual elements,
including K,O, MgO and FeOror. Elimination of
this sample on the respective plots allows the
identification of sedimentary fractionation trends in
the fine grained granulite. ALO;, FeO, Rb, Y and
K,O concentrations remain constant or display no
particular trend (Figure 6.8a,b,d) with variation in
al-alk, while Ba, MgO, Cr, Zr and TiO, decline
with increasing al-alk, suggesting that a clay or
mica phase played a minor role in defining the
chemical character of the granulite. The increase in
MgO and TiO, with FeOror, but not MgO with
TiO,, implies the existence of both an Fe-Mg and
an Fe-Ti mineral phase. The general increase in
Rb, Ba and K;O with FeO (Figure 6.8¢) suggest
that these may have been contained within an
Fe-Mg mineral phase, possibly biotite.

The sedimentary provenance diagrams of Roser
and Korsch (1988) and the relatively high MgO
content of the granulite suggest that the fine
grained granulite was derived from a mafic igneous
source (Figure 6.7a,b), similar to the model for

6-16

Mg-pelites of Sheraton (1980) and Harley et al.
(1990). The low Cr and Sr content of the fine
grained granulite does not, however, support this
model. The Cr and Zr data rather suggest an origin
through  mixing of the  biotite  and
quartzo-feldspathic gneisses of the Nagle Dam
Formation, although this is not supported by the
low Sc of the fine grained granulite, which might
indicate a dominant role for the quartzo-feldspathic
gneiss (Figure 6.7¢,d).

6.4 MGENI BATHOLITH
6.4.1 INTRODUCTION

With a relatively large geochemical data base, the
granites grouped by Thomas (1988a) into the Oribi
Gorge Suite are perhaps the most amenable
component of the Natal Province for an analysis of
their petrogenetic development. Initially, the
various studies of the Mgeni batholith (Kuyper
1979; Du Toit 1979) and of those members of the
Oribi Gorge Suite from southern KwaZulu Natal
(Thomas 1988a) suggested that the megacrystic
granites of the individual batholiths were related
through fractionation processes. Within this system
the Nqwadolo Suite was viewed as either the end
phase of the megacrystic granite fractionation
process (Du Toit 1979) or as a partial melt of the
megacrystic granites (Kuyper 1979). Subsequent
isotopic analysis of the Mgeni batholith (Eglington
1987), however, led Kerr (1985) to propose the
existence of three distinct granitic suites within the
Mgeni batholith:

1) biotite granite;
2) hornblende granite and charnockite; and
3) Ngqwadolo granite;

distinguished on mineralogical, chemical and
isotopic grounds (Kerr 1985; Kerr and Milne
1994). These correspond with the Ximba,
Mlahlanja and Nqwadolo Suites, respectively (Kerr
and Milne 1991a).

Eglington (1987) interpreted the chemical
similarity of the marginal granite of the Ximba
Suite and the Mlahlanja Suite as the product of the
contamination of a common initial magma, the
biotite granite of the Ximba Suite, with the Nagle
Dam Formation. A similar model was proposed by
Kerr et al. (1987), Eglington et al. (1989a) and
Kerr and Milne (1991a). Kerr and Milne (1994),
however, reviewed the various models for the
petrogenesis of the Mgeni batholith and concluded,
from a larger data base, that the preexisting models
could not explain all the observed features of the



Figure 6.8. Sedimentary fractionation trends within the fine grained granulite, Valley Trust Formation.
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granites. Although these authors did not offer a
general model for the development of the Mgeni
batholith, they noted that evidence existed for the
potential operation of a variety of concurrent
processes during the crystallisation of the
megacrystic granites.

The distinct isotopic character of the individual
suites within the Mgeni batholith identified by
Eglington (1987) precludes the fractionation model
of Du Toit (1979), Kuyper (1979) and Thomas
(1988a). Such isotopic, chemical and mineralogical
zonation within a single granite may be generated
only -by contamination or melting of a vertically
zoned source (Halliday 1983), but these models
produce an internally consistent Sr; and trace
element content within the component members of
the resultant granite, features not identified within
the Mgeni batholith. Equally, field work has
demonstrated that the proposed country rock
contaminant of Eglington er al (1989a) is a
marginal member of the Ximba Suite. Utilisation of
the extended data base for the Nagle Dam
Formation collected during the present study
suggests that the trace element content of the Nagle
Dam Formation, and in particular its low Ba, Zr,
Nb and La content, is not conducive to a possible
role in generating the high Zr Mlahlanja Suite
through mixing with the low Zr Ximba Suite
(Figure 6.9).

Isotopes, trace element ratios and major element
discrimination analysis (Figure 4.8) suggest that the
suites of the Mgeni batholith may represent distinct
units.  Interpretation of the  petrogenetic
development of the Mgeni batholith will therefore
be undertaken through an analysis of the individual
suites.

6.4.2 XIMBA SUITE

The Ximba Suite consists predominately of a series
of megacrystic biotite granites. In the core of the
pluton these may contain garnet, while adjacent to
the contact with the Nagle Dam Formation they
become darker and finer grained, with fewer
megacrysts and a mafic assemblage of hornblende
+ biotite. Three granitic variants are therefore
apparent in the field:

1) a highly heterogeneous, but typically low silica,
marginal phase;

2) arelatively acidic inner biotite granite; and

3) a core of intermediate biotite garnet granite
(Figure 2.1);

providing a distribution pattern with elements of
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both normal and reverse zonation (Halliday 1983;
Nabelek et al. 1986). Although contacts are
diffuse, available chemical data suggest a degree of
internal gradation between the marginal granite and
the biotite granite, which form a coherent
differentiation trend on the Harker diagrams,
possibly due to the action of crystal-liquid
fractionation processes. The biotite garnet granite,
however, plots away from this trend, with field
evidence indicating that this may be related to the
assimilation of pelitic material. The marginal
granite - biotite granite and biotite garnet granite
series will therefore be discussed separately.

a) Marginal Granite - Biotite Granite

The marginal and biotite granites form a
completely overlapping series on the Harker
diagrams. Although a contamination model for the
Ximba Suite has been proposed by Eglington
(1987) and is supported in the field by the presence
of abundant xenoliths within the marginal granite,
the nonlinear relationships evident on the Harker
diagrams do not suggest a simple contamination
model, but rather the effects of fractionation.
Further, the derivation of the marginal granite
through contamination of the biotite granite by the
Nagle Dam Formation is not supported by the
available trace element data (Section 6.4.1 and
Figure 6.9).

Petrographic observations suggest a fractionating
sequence similar to that found in other rapakivi
granites - early feldspar and quartz megacrysts with
later mafics partially mantling the megacrysts and a
finer grained quartzo-feldspathic groundmass.
Coeval growth of the various components of the
granite is suggested, however, with inclusions of
the mafics and fine grained quartzo-feldspathic
groundmass within the megacrysts. Similar textural
relationships are common in the rapakivi granites,
with the late growth of mafic phases attributed to
the Jow water content of the rapakivi granite melt
(Anderson 1980).

The mafic assemblage evolves through the series.
Biotite, with lesser hombiende, occur together in
the more basic marginal granite, while biotite is the
principal, and typically only mafic phase in the
more evolved biotite granite. Both K-feldspar and
plagioclase megacrysts occur throughout the series,
although the latter is more common in the marginal
granite than the biotite granite, where quartz
megacrysts may become abundant.

Variations in the elemental distribution patterns
suggest the fractionation of feldspar, biotite and or
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hornblende, Fe-Ti oxides, apatite and zircon
(Tindle and Pearce 1981; Atherton and Sanderson,
in Pitcher et al. 1985; Rapela and Pankhurst 1996).
The increasing Rb/Ba ratio indicates the
predominance of K-feldspar fractionation over
biotite but the K/Rb ratio remains constant (with
minor scatter) through the fractionation sequence,
suggesting that K and Rb did not become
decoupled during fractionation.

Fractionation modelling, however, does not
produce an acceptable model for the generation of
the more acidic biotite granite from an initial melt
with the chemical composition of the marginal
granite through the removal of the observed
mineral phases. A two phase model of marginal
granite - biotite granite - evolved biotite granite
similarly fails to generate a model for the complete
evolution of the series, although a reasonable
model for the evolution of the biotite granite is
obtained. Trace element modelling utilising an
estimated model fractionation  assemblage
reproduces the declining Sr and Ba contents
observed in the biotite granite, but not the slight
increase in Rb content. Rather the model suggests a
marked increase in Rb with fractionation, possibly
due to the low biotite content in the model mineral
assemblage. Equally, the available REE data do not
support a fractionation model, with the decreasing
Eu anomaly with increasing silica inconsistent with
a fractionation model primarily controlled by
feldspar fractionation, or REE enriched phases
such as allanite (Miller and Mittlefehldt 1982).

Major element cumulate modelling (Appendix
5.11-5.14) of the marginal granite - biotite granite
series utilising a variety of mineral assemblages,
initial melt compositions (average marginal and
biotite granite samples with silica concentrations
between 69-71%; and average marginal and biotite
granite samples with silica >69%, including and
excluding the more basic samples (UND 41, 49 and
76) with possible cumulate components) and UND
2 as the evolved magma (lowest Sr and Ba),
produces a model, with SSR varying from
0.18-0.36. Trace element modelling reproduces the
trend of declining Ba and Sr, but fails to derive the
observed slight increase in Rb concentrations
found within the series (Figure 6.10). The
decreasing Eu anomaly with increasing silica
(Figure 4.10) may indicate progressive feldspar
accumulation, while the higher REE levels for the
lower silica samples is possibly due to a higher
concentration of biotite and hornblende, with the
increased spread in HREE the result of the
accumulation of a HREE enriched phase, such as
zircon (Fujimaki 1986).
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b) Biotite Garnet Granite

The biotite garnet and biotite granites form a series
with minimal overlap on the Harker diagrams, with
the biotite garnet granite displaying a well defined
straight line trend intersecting the biotite granite at
approximately 70 percent SiO, (Figure 4.9) and
projecting towards the chemically distinct biotite
gneiss associated with the pelitic gneiss of the
Valley Trust Formation, suggesting the formation
of the biotite garnet granite through progressive
mixing of the biotite granite magma with the biotite
gneiss. This is evidenced in the field by the
formation of a 'black granite' along strike from the
biotite gneiss, grading through a darker coloured
granite phase into the normal light coloured biotite
garnet granite, corresponding with the progressive
evolution in chemistries noted. Specific chemical
evidence for this process is the almost straight line
relationship between the biotite garnet granite and
the biotite gneiss for the majority of the elements,
particularly marked for FeOror-SiO;, ALO;-SiO,,
Sr-Si0; and Zr-SiO, (Figure 6.11a).

Marked enrichment in specific elements, when
compared with the biotite granite, such as Ba and
Y, indicate an additional mixing component, which
the available chemical data suggest may have been
the garnet granite. This is illustrated on the Y-Zr
and Zr/Y-Zr diagrams (Figure 6.11c,d) with the
biotite garnet granite trending from a potential
point source biotite granite towards the biotite
gneiss and the garnet granite. This pattern is similar
to that illustrated on the Ba-SiO, diagram (Figure
6.11b).

For several elements a deviation from straight line
mixing is apparent on the Harker diagrams, and in
particular the CaO-Si0,, K,0-Si0,, Ba-SiO;
(Figure 6.11b) and Y-SiO, diagrams. Decoupling
of phases such as K,O and Ba from enclave -
granite mixing lines is possibly due to the
crystallisation of K-feldspar or biotite in the granite
(Di Vincenzo et al. 1996; Bellieni ef al. 1996), or
melt infiltration through magma mushes (D’Lemos
1996).

6.4.3 MLAHLANIJA SUITE

The MIlahlanja Suite comprises a series of
hornblende  granite,  subcharnockite  (green
hornblende granite termed subcharnockite by
Kuyper 1979), charnockite and garnet hornblende
granite. These occur within plutons of variable
mineralogical complexity, with individual plutons
of: hornblende granite; hornblende granite -
subcharnockite - chamockite; charnockite -



Figure 6.10. Cumulate modelling of the marginal granite - biotite granite series, Ximba Suite.
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Figure 6.10. Cumulate modelling of the marginal granite - biotite granite series, Ximba Suite - continued.
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Figure 6.11. Petrogenesis of the biotite gamnet granite - Ximba Suite.
a) Zr-Si0,, b) Ba-Si0,, ¢) Y-Zr, d) Zr/Y-Zr.
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subcharnockite; and garnet hornblende granite
identified. Three of these were sampled:

1) the Matata pluton - garnet hornblende granite;

2) the Sansikane pluton - hornblende granite -
subcharnockite - chamockite (previously termed
the Msunduzi pluton by Milne and Kerr 1990); and
3) the Egugwini pluton - subcharnockite -
charnockite (Figure 2.1).

Although the various members of the series have
broadly comparable chemical characteristics, with
a major element-silica correlation coefficient of
0.62-0.95 for the entire series, analysis of the data
from individual plutons reveals that each possesses
unique fractionation features (Section 4.5.2).

Petrographic observations suggest a fractionating
sequence similar to that identified in the Ximba
Suite- - early feldspar and quartz megacrysts with
later mafics which may mantle the megacrysts, and
a finer grained quartzo-feldspathic groundmass
partially enclosed within the megacrysts, indicating
a degree of overlap in their growth histories.
Through the charnockite - subcharnockite -
homblende granite series a variation in the mafic
assemblage is found, with an apparent fractionation
history of pyroxene —> homblende, biotite the
dominant mafic in the more acidic granites and rare
gamet in the subcharnockite. In the garnet
hornblende granite the garnet occurs with the
hornblende in the more basic phase of the granite,
while biotite is the dominant mafic in the felsic
portion. K-feldspar, plagioclase and quartz
megacrysts occur throughout the series.

Although pyroxene is observed breaking down to
form hornblende in the charnockite no indication
exists that the charnockite forms the more basic
portion of the hornblende granite - charnockite
series, as found in several rapakivi granite
batholiths (Anderson and Cullers 1978; Petersen
1980; Emslie 1991; Creaser 1996), or that the field
evidence for charnockite mantled by hornblende

granite represents a simple pyroxene —>
hornblende fractionation series. Rather the
hormblende granite and charnockite of the

Sansikane pluton display a degree of overlap on the
Harker diagrams, but with distinct differences for
individual elements, such as Zr which is relatively
enriched in the charnockite. A pyroxene —>
hornblende fractionation series may, however, exist
for the chamockite - subcharnockite of the
Egugwini pluton, although the available chemical
data do not indicate a simple zonation pattern, with
the charnockite chemically comparable with the
subcharnockite.
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Available chemical data suggest that the Egugwini
and Sansikane plutons display a broad reverse
zonation pattern, with a relatively basic core,
consisting of either chamockite or hornblende
granite, surrounded by more acidic material. This is
not, however, related to the mineralogical zonation
of the plutons, with the most basic member of the
Sansikane pluton being a hornblende granite rather
than a charnockite. Milne and Kerr (1990)
proposed that this resulted from mineral
accumulation and subsequent autointrusion in a
model similar to that of Nabelek et al. (1986) for
the Notch Peak Granite.

A marked inflection in the chemical data at .69
percent SiO; within the hornblende granite suggests
that the hornblende granite - subcharnockite -
charnockite association may consist of two distinct
series:

1) a basic series (60-69% Si0O,), comprising the
majority of the hornblende granite; and

2) an acidic series (+69% SiO,), comprising the
majority of the subcharnockite;

with the acidic series relatively enriched in Rb, but
depleted in Sr, Zr and Ba.

The two series display similar fractionation trends,
possibly the resuit of the fractionation of
plagioclase, apatite, Fe-Ti oxides, zircon and a
mafic phase, which the increasing K,O and Rb
levels suggest was probably not biotite (Tindle and
Pearce 1981; Atherton and Sanderson, in Pitcher et
al. 1985; Rapela and Pankhurst 1996).

Major element fractionation modelling was
attempted for the general fractionation trends of the
Mlahlanja Suite as defined by the hornblende
granite for the basic portion of the series and the
subcharnockite for the acidic portion of the series
and UND 63 as the initial magma composition.
Major element modelling of the basic portion of
the series (Appendix 5.15) provides a model, SSR
0.91, for a fractionating assemblage of:

hornblende -+ biotite + plagioclase + K-feldspar +
clinopyroxene + orthopyroxene + oxide + apatite.

For the acidic portion of the series (Appendix 5.16)
a model, SSR 0.06, is generated for a fractionating

assemblage of:

hornblende + biotite + plagioclase + K-feldspar +
apatite.

Trace element modelling of the hornblende granite,
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however, does not derive the trace element
characteristics of the subcharnockite, and in
particular its low Ba content (Figure 6.12a,b).
Modelling of the subcharnockite fractionation trend
approximates that observed, but with the
subcharnockite exhibiting little extension along the
fractionation path.

Major element cumulate modelling of the series
(Appendix 5.17), utilising as a model initial magma
an average of the analyses with silica
concéntrations ¢.70 percent, yields a model, SSR
0.11, for an assemblage of:

hornblende + biotite + plagioclase + K-feldspar +
clinopyroxene + orthopyroxene + apatite + quartz.

Trace element modelling defines the general trend
of the series, although the modelled Ba is high and
Sr low, but the available data display little of the
modelled trace element variability, and in
particular a limited range of Rb concentrations
(Figure 6.12c,d).

The narrow range of REE concentrations suggest
limited total REE fractionation (Figure 4.10). This
is incompatible with the proposed fractionation of
zircon and apatite, the latter of which was
emphasised by Zhao et al. (1997) and Duchesne
and _Wilmart (1997) in defining the REE
fractionation patterns in  charnockites and
monzonites. Hughes ef al. (1997), however, noted
that the constant range of REE within charnockites
is inconsistent with fractionation of apatite and
zircon, suggesting rather that the range of REE
within charnockites is inherited.

6.4.4 THE MEGACRYSTIC GRANITES

Modelling of the various megacrystic granites of
the Mgeni batholith poorly constrains their
observed trace element variability. In particular the
variations in the Rb content of the megacrystic
granites are not derived through the modelling,
with an apparent lack of an evolved fractionation
phase within the available data set. This suggests
that the megacrystic granites do not represent an
evolving liquid composition generated through
simple fractionation, or cumulate-melt unmixing,
but rather, the observed chemical characteristics
may have resulted from the Mgeni batholith
representing only a portion of a complete melt
differentiation process. Several features, including
the increasing K/Rb ratio (Creaser 1996) and the
marked variation in specific elements, and in
particular Zr, suggest that this may represent a
cumulate assemblage.
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Petrographic evidence suggests that the individual
suites evolved through a simple variation in
mineralogy, for the Ximba Suite:

Plagioclase + biotite + K-feldspar + quartz +
hornblende (Marginal granite)
—>
K-feldspar + quartz + plagioclase + biotite
(Biotite granite),

and the Mlahlanja Suite:

Hornblende + plagioclase + K-feldspar + quartz +
biotite (+ orthopyroxene + clinopyroxene)
(Hornblende granite+Charnockite)
— >
K-feldspar + quartz + plagioclase + biotite
(Evolved hornblende granite).

Analysis of the major element concentrations
within the granites suggest that these can be
modelled through variations in the observed
mineral phases, with the mineralogical differences
between the end members of the individual series
being compatible with the ftrace element
differentiation trend. In particular the increasing Rb
content in the fractionating biotite granite of the
Ximba Suite and the hornblende granite of the
Milahlanja Suite results from the growing biotite
content of the granites, with a decline in Rb in the
more siliceous granites as increasing quartz and
feldspar dilutes the biotite concentration. This
cannot be related to simple fractionation, as the
typical modelled fractionation trends indicate a
marked increase in Rb concentrations within the
melt with continued fractionation. Rather it
suggests that the megacrystic granites represent an
accumulation of cumulate mineral phases.
Modelling of this proposed process is hindered by
the uncertainty regarding the initial chemistry of
the melt, and for the basic portion of the
hornblende granite of the Mlahlanja Suite was
undertaken with an average initial granite
composition from Creaser (1996), and a variety of
modeled cumulate assemblages for the hornblende
granite. This provides a close approximation to the
observed trace element variations within the basic
portion of the homblende granite (Figure 6.13),
although slight Sr enrichment is apparent for
individual samples, possibly indicating preferential
plagioclase accumulation. The plotting of the
subcharnockite and acidic homblende granite
adjacent to this cumulate evolution trend suggests
that the chemical differences identified between
these and the hornblende granite may represent
differences in their cumulate assemblage.
Similarly, the general trend of the evolution of the
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Figure 6.13. Cumulate model for the hornblende granite and subcharnockite, using the initial melt of Creaser (1996) as the reference initial melt.
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marginal granite - biotite granite is generated
through this data, although not the more extreme Sr
enriched members of the marginal granite, which
again may indicate the preferential concentration of
plagioclase.

The majority of rapakivi and A-type granites are
considered to have evolved through crystal
fractionation processes (Nedelec et al. 1995; Han
et al. 1997; Zhao et al. 1997; Hassanen 1997), but
various studies of the rapakivi granites have
suggested that they may contain a variable
cumulate-liquid fractionation component
(Anderson and Cullers 1978; Ramo 1991; Cullers
et al. 1992; Tack et al. 1994; Creaser 1996), with
the cumulate typically considered to form the
relatively basic phase of the individual intrusions,
and in particular the chamockitic portion of the
rapakivi association (Hubbard 1989; Emslie 1991;
Creaser 1996). Comparison of the megacrystic
granites of the Mgeni batholith with the cumulates
identified by Ramo (1991) in the granites of the
Suomenniemi batholith, reveals a similar trend in
chemical evolution, with little extension along the
liquid evolution curve (Figure 6.14). In particular
is the almost constant Rb content of the cumulates
and the Mgeni batholith with highly variable but
declining Sr. The fractionation pattern for Ba is
more complex, but the concentration range for the
Mgeni batholith is similar to that of the cumulates
of Ramo. The trace element data from the Mgeni
batholith, however, extends to higher levels of Sr
and Ba than observed by Ramo, with the cumulates
of Ramo corresponding to the more evolved biotite
granite and subcharnockite, for a comparable range
of silica. Modelling of the hornblende granite
utilising the initial melt of Ramo with the modelled
cumulate assemblage derives its general trace
element variation trend, but does not give the
observed high concentrations of Ba and Sr found in
the less siliceous hornblende granite. This results
from the relatively low levels of these elements in
the initial melt of Ramo.

Several authors have proposed that the rapakivi
granites are predominately an upper crustal
phenomenon (Barker er al. 1975; Vorma 1976;
Anderson and Cullers 1978; Anderson 1983;
Haapala and Ramo 1990) forming shallow level
granitic batholiths and rhyolites. Cullers et al.
(1992) and Milne and Kerr (1995), however,
identified individual rapakivi granite batholiths that
may have originated as midcrustal intrusives.
Cullers et al. in deriving a model for the San Isabel
batholith proposed a primary fractionation model,
although it was noted that the generation and
separation of cumulate phases controlled the
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development of at least a portion of the batholith,
with the possibility that the chemical variability
observed within this batholith was due to the
separation of cumulate phases.

Hubbard (1989), however, modelled the evolution
of the rapakivi granites through the production of a
cumulate phase, which could, if the conditions
were favourable, become separated from the
granitic liquid phase of the intrusion. In the case of
the Varberg granite complex, Hubbard noted that
the granites remained in contact with their
associated cumulates only through a major thrust
fault which acted as a barrier to their upward
accent. The midcrustal rapakivi granites may
represent such a cumulate assemblage, coeval with
the upper level granitic activity (Cullers er al.
1992). This suggests the possible occurrence of a
depth related rapakivi evolution trend, with:

1) a midcrustal accumulation of rapakivi granite
related cumulate material;

2) upper crustal cumulate and melt related rapakivi
granites; and

3) an extrusive rhyolite series.

It is uncertain from the present data if the mid- to
upper crustal series represents an evolutionary
progression or if this is the result of distinct
fractionation processes within similar magmas
trapped at different levels. If these do, however,
represent stages in the formation of a rapakivi
granite series, then the possibility exists for the
presence in the midcrust of an abundance of
rapakivi granite cumulate bodies beneath the upper
crustal and extrusive rapakivi granite - rhyolite
province.

Thomas (1988a) has proposed that the granites of
the Oribi Gorge Suite formed at high levels,
suggesting that these may form a portion of an
upper crustal rapakivi granite province in southern
KwaZulu Natal. These granites, however, display
chemical characteristics comparable to the Mgeni
batholith (Figure 6.14), indicating that they may
also have originated as cumulates beneath higher
level rapakivi granite-rhyolite activity derived from
the extraction of the melt phase from the
cumulates. The occurrence of similar rapakivi
granites throughout the Natal Province indicates
that a major rapakivi granite-rhyolite province may
have extended across the Natal Province in the
Proterozoic, similar to that identified in North
America (Bickford et al. 1986), but subsequently
removed by erosion.



Figure 6.14. Comparision of the Ximba and Mlahlanja Suites with the rapakivi granite evolutionary trend of Ramo (1991).
The Ximba Suite - a) Sr-Ba; b) Ba-Rb.
The Mlahlanja Suite, with the Oribi Gorge Suite (Thomas 1988a) - ¢) Sr-Ba; d) Ba-Rb .
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6.4.5NQWADOLO SUITE

Only three analyses of the low Zr/Y granite are
available, insufficient for a petrogenetic analysis,
which will therefore concentrate on the high Zr/Y
granite.

Removal of the low Zr/Y granite samples from
consideration considerably reduces the spread of
data within the Ngwadolo Suite, and only ALOs;,
Na,O, K;0, Rb, Sr, Ba, Zn and Pb display any
consistent large variation in concentration, all, with
the exception of K,O, declining in concentration
with increasing silica. The almost constant
concentrations of FeO, Ti0O,, MgO and Zr with
increasing silica while Ba declines, suggest minor
fractionation of biotite and zircon. The more
variable AlLO;, Na,O, K,0 and Sr concentrations
imply more extensive feldspar fractionation, which
the declining Na,O but increasing KO
concentrations indicate was primarily a plagioclase.
An increasing Rb/Ba ratio with fractionation is
suggestive of K-feldspar rather than biotite
fractionation, although this is not supported by an
increasing K/Rb ratio. Ba-Sr and Ba-Rb
fractionation vector trends indicate K-feldspar
fractionation (Tindle and Pearce 1981). The
sharply increasing Rb/Sr ratio (McDermott et al.
1996), and increasing TiO,, Y and Rb
concentrations with increasing Zr (Atherton and
Sanderson, in Pitcher et al. 1985), however, imply
plagioclase fractionation.

Major element fractionation modelling (Appendix
5.18), utilising an average of the two lowest silica
granites as the initial melt and NQG 3 as the
evolved melt composition, provides a reasonable
model for all the elements, SSR 0.96, with the
exception of silica, (SSR SiO, = 0.95), for a
fractionating assemblage of:

biotite + plagioclase + K-feldspar + apatite.

Trace element modelling, however, is unable to
derive the high Sr and Ba concentrations found in
individual ~ samples, although the general
fractionation trend parallels that observed in the
series (Figure 6.15a,b).

Major element cumulate modelling (Appendix
5.19), utilising an average of the available data as
the initial magma composition, yields a model,
SSR 0.148, for an assemblage of:

biotite + plagioclase + K-feldspar + ilmenite +
apatite.

6-30

Trace element modelling closely follows the
observed trace element concentrations found in the
granite, and in particular the high Ba and Sr
content of individual samples (Figure 6.15¢c,d).
Deviations from the model trends may indicate
preferential accumulations of specific mineral
phases or incomplete cumulate/melt unmixing.

The Ngwadolo  Suite is  predominately
metaluminous in nature, with occasional slightly
peraluminous or peralkaline samples possibly the
result of preferential concentration of individual
mineral phases. It is also enriched in the HFS
elements, demonstrating an A-type character. The
metaluminous nature of the granite indicates
derivation through the partial melting of a
metaluminous source (Conrad et al. 1988; Clarke
1992), possibly an I-type tonalite or granodiorite
(Cullers et al. 1981; Anderson 1983; Sylvester
1989; Creaser ef al. 1991 and supported by the
experimental data of Skjerlie and Johnston 1993;
1994; Patifio Douce 1997), although Rutter and
Wyllie (1988) and Chappell and Stevens (1988)
proposed that the partial melting of a tonalite
would result in the production of a granodioritic
melt, rather than an A-type granite.

Simple batch melting of the tonalite of Cullers et
al. (1981) and potential local tonalite sources,
however, indicate that these are unlikely sources
for the granite, with low LREE contents and a high
feldspar component resulting in a high Sr and Ba
content in the melt. In addition, this model is not
supported by the available isotopic data, with the
relatively high Sr; of the Nqwadolo Suite implying
a crustal source for the melt. Potential modelling of
the Nqwadolo Suite through the partial melting
of basaltic material (Garland et al 1995) is
similarly inconsistent with the high Sr of the
granite, without considerable crustal
contamination. Such a model would, moreover,
result in the production of a Sr enriched melt, as
identified by Garland ef o/ in their modelling of
the partial melting of the Pitanga basalts to derive
the Chapeco rhyolites, with a model Sr content of
585ppm.

Halliday et al. (1991) determined that extremely
high Rb/Sr ratios in granite could not be formed
through partial melting. Rather they proposed a
fractionation model to generate high Rb/Sr ratios,
indicating that the chemical variations in the
Ngwadolo Suite do not represent primary
variations in a partial melt.

The relatively low Sry of the majority of the early
orthogneisses from the Natal Province (Eglington



Figure 6.15. Petrogenesis of the Nqwadolo Suite.
Fractionation modelling - a) Sr-Ba, b) Ba-Rb. Model data from Appendix 5.18.
Cumulate modelling - ¢) Sr-Ba, d) Ba-Rb. Model data from Appendix 5.19.
Individual symbols along the evolutionary paths represent 10% fractionation.
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et al. 1989b), and the limited time range over
which the province developed precludes the
isotopic evolution of a potential source to allow the
simple derivation of the isotopic character of the
Ngwadolo Suite through partial melting. The high
Sty of the Nqwadolo Suite and other granites within
the Natal Province Eglington et al suggested
originated through 'rapid growth within a high
Rb/Sr environment, rather than evolution over an
extended period of time'. Thomas et al. (1990),
however, considered that the microgranite dykes
from Margate, with a Sr; of 0.716, were 'derived
from melting of a pre-existing radiogenic crust,
which could have provided a source for the
Ngwadolo Suite.

6.5 MODEL FOR THE ORIGIN OF THE
A-TYPE GRANITES

The A-type granite series comprise an association
of granites which intrude during the closing stages
of an orogenic cycle or during an anorogenic
phase. They are chemically distinct from the
orogenic calc-alkaline granites, with marked
enrichment in total alkalis, FeO/MgO, F, Zr, Nb,
Ga, Y and REE, but with low CaO and Sr (Collins
et al 1982; Whalen er al. 1987). Within the
Proterozoic the anorogenic series consists of
regionally specific rapakivi granites with a related
extrusive rhyolite component, and anorthosites
(Windley 1995).

Several models have been proposed to explain the
origin of the A-type granites (Table 6.1), but
typically they are considered to be the product of:

1) partial melting of previously depleted granulites;
2) partial melting of lower crustal material; or
3) fractionation of basaltic material.

The majority of these models have, however, been
criticised as unlikely to generate A-type granites.

Creaser et al. (1991), for example, in discussing
the depleted granulite model noted the low
incompatible/compatible element ratios formed in
residual granulites through the initial melt
extraction event (Rudnick and Presper 1990;
Abmed-Said and Leake 1990), rendering these an
unlikely source for granitic melt. Similarly, melting
experiments by Dooley and Patifio Douce (1996)
suggest that partial melting of F-rich sources
generate peraluminous granites, rather than A-type
granites. This finding also impacts on the lower
crustal melting model, where the majority of
studies explained the characteristic trace element
content of the A-type granites as a function of the

influence of a high F content or high temperatures
(Collins et al. 1982; Whalen et al. 1987).

Melting experiments of lower crustal material have
generated a variety of results. Skjerlie and Johnston
(1993; 1994) and Patifio Douce (1997) derived a
melt product with the major element characteristics
of an A-type granite through partial melting of a
tonalitic source, while Rutter and Wyllie (1988)
and Chappell and Stephens (1988) suggested that
tonalite melting would produce a melt with a
granodioritic composition rather than an A-type
melt. The experiments of Singh and Johannes
(1996) derived A-type granite chemistries for
specific starting compositions. Patifioc Douce
(1997) noted, however, that in his experiments
A-type granite melt was only generated under low
pressures. Hence this cannot explain the existence
of deeper level A-type granites (Cullers ef al.
1992).

As noted by Turner ef al. (1992) the majority of the
A-type pgranites possess low S, typically
0.702-0.707, suggesting a primary mantle
component through their derivation from extended
fractionation of basaltic melts (Turner ez al. 1992),
or the partial melting of basaltic material (Garland
et al. 1995), although Anderson (1983) argued that
this indicated derivation from an unradiogenic
Proterozoic source material rather than the mantle.
The former model is, however, supported by the
generation of A-type granites within the oceanic
islands (Rasmussen et al. 1988; Geist et al. 1995),
but cannot explain the origin of A-type granites
with high Sr; (Turner et al. Table I). These latter
are typically considered to result from a degree of
crustal mixing in their origin (Eby 1990).

In Section 5.3.2 a model whereby granites reflect
their source or initiator was proposed, within which
the A-type granites are considered to have evolved

from a continental flood basalt, through
fractionation and assimilation of continental
material, similar to the MASH (melting,

assimilation, storage and homogenisation) model of
Hildreth and Moorbath (1988) for arc magmas.

The chemical characteristics of several of the
A-type granites suggest derivation from ocean
island basalts (Eby 1990) and within plate type
basalts are frequently found associated with A-type
granites and rhyolites, in the bimodal association
common to the extensional environment (Piccirillo
et al. 1988; Clarke 1992; Garland er al 1995).
Evidence for widespread contamination of basaltic
material within the extensional environment is
found in the contaminated basalts commonly
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Table 6.1. Models proposed for the generation of the A-type granites.

Model

References

Fractionation of basaltic magma, possibly
alkaline

Loiselle and Wones 1979, Eby 1990, Turner
et al. 1992, Tack et al. 1994, Geist ef al.
1995, Garland et al. 1995

lithospheric mantle

2 Melting of lower crustal material under Bailey 1978
fluxing of mantle derived volatiles
3 Melting of previously depleted granulites Collins et al. 1982, Clemens et al. 1986,
Whalen et al. 1987
4 Melting of a tonalitic I- type granite Anderson and Cullers 1978, Cullers et al.
1981, Anderson 1983, Sylvester 1989,
Ramo 1991, Creaser et al. 1991, Skjerlie
and Johnston 1993, Patifio Douce 1997,
King et al. 1997
5 Partial melting of a depleted Landenberger and Collins 1996
mafic-intermediate lower crust
6 Magma mixing Barker et al. 1975, Eby 1990, Neymark et al.
1991, Stimac and Wark 1991, Foland and
Allen 1991, Kerr and Freyer 1993,
Poitrasson ef al. 1995, Frost and Frost, 1997,
Han et al. 1997
7 Partial melting of metamorphosed Poitrasson et al. 1994
amphibolite bearing KO rich mafic
cumulates
8 Melting of a granodioritic crustal protolith Nedelec er al. 1995
9 Metasomatic alteration Harris ef al. 1986a, Taylor et al. 1981
10 Partjal melting of suprasubduction zone Whalen et al. 1996

11

Partial melting of underplated ferrodiorite

Frost ef al. 1999
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present in continental flood basalt provinces
(Hooper 1988), the more evolved members of
which can plot in the within plate granite field
(Figure 5.7) on the tectonic discrimination
diagrams of Pearce et al. (1984).

The HES element enriched chemistry of the
continental flood basalts (Pearce 1982) serves as a
potential HFSE source for the A-type granites,
while the MASH process would generate a
homogeneous base chemistry, which would assist
in the production of the fundamental A-type granite
chemical characteristics of the melt. Harris (1995)
and Wickham er al. (1996) have adopted such a
model for the generation of the homogeneous
oxygen isotopic characteristics of several A-type
granites.

Kerr and Freyer (1993) utilised the MASH model
of Hildreth and Moorbath (1988) to explain the
derivation of the A-type granites of Labrador, for
which isotopic data indicate mixing of basaltic melt
and the country rocks. In formulating this model,
an initial Mg-rich basaltic component was
proposed. This could not, however, provide the
high HFSE content of the A-type granites, as noted
by Kerr and Freyer, who suggested that the primary
source for HFSE in the A-type granites was the
breakdown of accessory phases in lower crustal
rocks.

In the proposed model within plate basalts pond at
the base of the crust, evolving and developing
through the MASH process, with the chemistry of
the base level A-type granite magmas determined
by the degree of interaction of the primary MASH
processes - basalt fractionation, contamination with
country rocks and mixing with partial melts of the
country rocks. This is illustrated in Figure 6.16,
with crude estimates of the relative proportion of
each component defined by the Sr; of the derived
melt. Low Sry granites would result from a melt
generated predominately through basalt
fractionation, basalt partial melting or through
contamination of the system with low Sr; country
rocks. Higher Sr; within these granites indicates
greater degrees of magma mixing and
contamination.

It is envisaged that at lower crustal levels the
primary result of these processes is the
development of a melt with chemical and-isotopic
characteristics comparable with the evolved
continental flood basalts (Hooper 1988), which
display evidence for contamination with crustal
material. Further fractionation would increase the
concentration of elements such as Y in the magma

(Pearce 1982), by an estimated 1.5-2 times during
the fractionation of the Imnaha Basalt (Hooper
1988). The formation of a feldspar dominant
cumulate could further concentrate the HFSE in the
melt (Pearce et al. 1984). Fractionation modelling
of an evolved continental flood basalt, using the
proposed fractionation assemblage of Pearce et al.
(1984), indicates the general potential for the
generation of A-type granites through this process.
In particular, the typical high HFSE contents
present in the A-type granites are obtained from
such a model.

A high silica end member to this series would
result from the mixing of a primary basalt sourced
A-type granite with a crustal minimum melt. This
would yield a high silica granite with a variably
evolved isotopic character and variable HFSE
enrichment, such as the Nqwadolo Suite. Simple
major and trace element mixing models for average
A-type granites, derived through fractionation of
basaltic material, and typical S-type granite melts
(data from Turner et al. 1992) suggest the potential
for individual A-type granites to develop through
the mixing of distinct granitic melts. The extreme
values for the HFSE found in the fractionated
basalt derived A-type granites allows the derivation
of A-type granites through the small scale addition
of the primary A-type granite to the crustal sourced
melt.

Detailed modelling of these processes is
complicated by the wide range of potential
components, as noted by Hildreth and Moorbath
(1988). Evidence exists, however, for the
generation of A-type granites through the direct
mixing of basalts and granite melts in the upper
crust (Wiebe 1996). The identification of such
upper crustal MASH processes suggest the
potential for the operation of MASH type
processes in the lower crust, which Cruden ez al.
(1995) and Wiebe (1996) considered was a more
favourable environment for magma mixing.

A wide range of potential products can be
generated depending on the degree of mixing
between the basalt fractionation product and the
country rocks. Those members of bimodal suites
which do not possess A-type granite characteristics
may be taken to represent crustal partial melts, in
which the basalts acted primarily as a heat source,
while those granites with chemical characteristics
intermediate between the highly enriched granites
produced by basalt fractionation and the crustal
granites indicate a varying degree of mixing.
Within individual regions this can result in the
generation of granites and rhyolites with a wide
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range of chemical characteristics. Leat et al.
(1986), for example, noted a transitional chemistry
from arc to within plate character for the rhyolitic
members of the bimodal series in the Southern
Caledonides, which may have resulted from
variable interaction between within plate basalts
and arc crustal material. Similarly, the
peraluminous granites of Palmer Land, Antarctic,
were considered by Wever ef al. (1995) to have
been derived through mixing of an enriched basalt
and crustal melt. Analysis of their trace element
data reveals a variable degree of HFSE enrichment,
which overlaps with the within plate granites on the
Rb-Y+Nb diagram of Pearce et al. (1984).

Within the Valley of a Thousand Hills no melt
generation model can be derived for the
megacrystic phases of the Mgeni batholith, as the
original chemical characteristics of these melts are
uncertain, with only the cumulates available for
study. Isotopic data are available for two potential
lower crustal source materials, granulite xenoliths
in kimberlites (Rogers and Hawkesworth 1982) and
metapelites (Eglington es a/. 1989b), which could
serve as potential crustal components in the
derivation of the Oribi Gorge Suite. Comparison
with the isotopic data from the Oribi Gorge Suite
(Eglington et al 1989b) indicate that the
megacrystic granites of the Natal Province possess
isotopic characteristics comparable with the lower
crustal material, but stretched towards depleted
mantle levels (Figure 6.17). This may suggest the
origin of the granites through mixing of depleted
mantle material and a lower crust with isotopic
characteristics comparable with the model potential
sources.

The low HFSE content of the Ximba Suite is
possibly the result of greater feldspar
accumulation, as suggested by Pearce ef al. (1984),
but differentiation cannot explain the increasing Sry
through the series Mlahlanja —> Ximba Suite.
Rather this suggests an increasing crustal
involvement in the generation of these magmas,
with the relatively higher HFSE content of the
Mlahlanja Suite when compared with the Ximba
Suite possibly the result of a greater incorporation
of HFS enriched basaltic material into this magma.
The relatively high Sr; of the Ngwadolo Suite
indicates that it consists, to a large degree, of
crustal material, with its high HFSE and limited
silica content suggesting it may have developed
through the mixing of a fractionated primary
A-type granite melt with a secondary minimum
melt of crustal origin.
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Isotopic data are lacking for the quartzo-feldspathic
gneiss of the Valley Trust Formation, but its
limited range of silica concentrations and typically
low HFSE contents suggest that it may have
originated as a primary crustal melt.
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Figure 6.17. eng-age diagram for the Oribi Gorge Suite. Depleted mantle curve after Ben Othman et o/, (1984). Field
a - mafic lower crustal xenoliths of Rogers and Hawkesworth (1982). Field b - metapelites. (Fields a
and b from Eglington et al. 1989b). Field ¢ - Oribi Gorge Suite (Thomas ez al. 1993).
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CHAPTER 7

CRUSTAL EVOLUTION OF THE
NATAL PROVINCE

7.1 INTRODUCTION

Thomas (1989a) and Jacobs and Thomas (1994) in
their analysis of the Natal Province, identified
three, possibly four, distinct tectonic terranes
(Figure 1.1) which assembled during a series of
collision events ¢.1100 Ma, ultimately welding
onto the Archaean Kaapvaal Craton. From the
north these terranes are:

1) the Tugela Terrane, a remnant of the Tugela
Ocean, present as a series of thrust sheets obducted
onto the craton margin;

2) the granitoid dominant arc related Mzumbe
Terrane;

3) the arc related Margate Terrane, with a
distinctive associated metasedimentary series; and
4) the Transkei Terrane of uncertain origin.

Boundaries between these terranes are marked by
structural discontinuities, with evidence for thrust
tectonics (Jacobs and Thomas 1994), but their
* primary recognition was based on the identification
of terrane specific lithological units (Thomas
1989a). This analysis was undertaken, however,
principally in southern KwaZulu Natal, and was
poorly constrained by a geochronological data set
which predominantly reflects metamorphic cooling
ages (Thomas et a/. 1993) and limited geochemical
data. Extension into central KwaZulu Natal was
conducted on the basis of general lithological
similarity and the available geochemical data base
of Kuyper (1979) and Du Toit (1979) (in Kerr
1985).  Within  southern KwaZulu  Natal
reinterpretation of the relationship between specific
units has been initiated with the growth of the
geochemical data base (Thomas et al. 1990).

In this chapter the existing crustal evolution model
for the Natal Province will be revised. This will be
undertaken through a re-examination of the
regional lithological correlations proposed by
Thomas (1989a) and Comell ez al. (1996) to allow
the identification of distinct tectonic terranes within
central KwaZulu Natal. From each terrane specific
units, for which a geochemical data base is
available, will be targeted to define their tectonic
environment of origin, and allow the development
of a model for the evolution of each terrane.
Further, the accepted age and intrusion model for
the Oribi Gorge Suite will be reviewed. This will

be incorporated into a dynamic tectonic model for
the Natal Province.

7.2 REGIONAL GEOCHEMICAL
CORRELATION

Several authors have noted that the granites within
orogenic belts may be divided into a series of
mineralogically, texturally and chemically similar
units. This was first observed by Larsen (1948),
and has subsequently been rediscovered by White
and Chappell in the Lachlan Fold Belt (White and
Chappell 1983) and Pitcher in the Peruvian Coastal
Batholith (Pitcher et al. 1985), who termed these
fundamental units suites or superunits respectively.
White and Chappell extended this concept to
propose that the suites originated from simple
variations in source material. More complex
modelling by Collins (1996) suggests that the suites
of the Lachlan Fold Belt result from unique parent
magma compositions produced by complex mixing
of a series of potential source components. Similar
analyses have been undertaken for basaltic (Hooper
1988) and sedimentary (Winchester and Max 1996)
sequences and utilisation of this technique has
allowed the correlation of units, including the
granite suites of the Lachlan Fold Belt of Australia
(Chappell 1996b), over hundreds of kilometres. A
degree of chemical similarity should therefore be
apparent between the various correlates from
different localities within the individual terranes of
the Natal Province.

Thomas (1989a) proposed the regional correlation
of the metamorphosed sequences of the Mzumbe
Terrane - the Mapumulo Group - within which
Thomas (1992) recognised the Quha and Ndonyane
Formations. The Quha Formation was described as
a series of biotite hornblende gneiss and migmatite,
with abundant associated amphibolite and lesser
marble and quartzite. Available geochemical data
from the type Quha River area (Comell et al
1996), however, suggest that the orthogneiss of the
Quha Formation is predominately basic in
composition, with the more acidic portion of the
series considered to be locally derived paragneiss.
The Ndonyane Formation consists of siliceous
quartzo-feldspathic gneiss, believed to represent a
sheared portion of the S-type Mzimlilo granite
{Thomas and Gain 1989).

Thomas (1989a) identified a number of granite
series which intrude these gneisses. The most
prominent of these is the Mzumbe Gneiss Suite
(Thomas 1989b), a diorite-tonalite-trondhjemite-
granodiorite series with a calc-alkaline evolution
trend, dated at 1207+10 Ma (Thomas and
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Eglington 1990) and a group of post-orogenic
megacrystic granite batholiths - the Oribi Gorge
Suite (Thomas 1988a, 1989a), which intruded
between 1068+2 Ma (Oribi Gorge batholith) and
1029+10 Ma (Fafa batholith) (Thomas et al. 1993).
The subsequent dating of the Quha Formation,
1163+12 Ma (Comell et al. 1996), however,
suggests that the Mzumbe Suite is older than the
Mapumulo Group, with the arc intrusives
associated with the Quha Formation representing
later arc activity.

Within the Valley of a Thousand Hills the majority
of the supercrustal gneisses of the Nagle Dam and
Valley Trust Formations were correlated with the
Quha Formation (Comell et al. 1996). A potential
correlation was, however, also suggested between
the Mzumbé Gneiss Suite and the Nagle Dam
Formation (Thomas 1989b). Similarly, the multiple
batholiths of the Oribi Gorge Suite were taken to
represent a single related magmatic suite, of which
the Mgeni batholith was considered to be a member
(Thomas 1988a; Thomas et al. 1993).

To date chemical data to support the identification
of these predominately lithologically defined suites
has been limited, and typically obtained only from
southern KwaZulu Natal. In the case of the Oribi
Gorge Suite the geochemical data base was derived
predominately from the Oribi Gorge batholith, with
the remaining batholiths being assigned to the suite
on mineralogical similarity, broad chemical
characteristics and comparable post-tectonic
intrusion age. The existence of these suites will be
re-examined from a broader data base, with the
inclusion of data from the Valley of a Thousand
Hills.

7.2.1 MAPUMULO GROUP

The amphibolite of the Quha Formation is more
highly evolved, with markedly lower Cr, Ni and
MgO concentrations but higher Zr, than that of the
Nagle Dam Formation (Figure 7.1a,c). In particular
the low MgO of the Quha Formation distinguishes
it from the high MgO primitive arc type Nagle
Dam amphibolite (Figure 7.1b). Fractionation
trends are distinct between these units (Figure
7.1a), with the Zr/Y-Zr fractionation pattern
(Figure 7.1d) indicating that the Quha amphibolite
is not an evolved member of the Nagle Dam
amphibolite.

Similarly, the low TiO, concentration, constant V
content and distinct fractionation trends (Figure
7.1a). found in the Quha Formation allow
distinction to be made with the Valley Trust

Formation amphibolite. The Quha amphibolite
plots on the Zr/Y-Zr fractionation trend of the
Valley Trust amphibolite (Figure 7.1d), but
intermediate  between the different groups
distinguished in the amphibolite (Section 4.4.3).

A more acidic series intrudes the amphibolite of
the Quha Formation. Variations in Zr/Y ratios
suggest that this series may comprise two distinct
units, with the low silica samples forming a
separate group. Insufficient data hinders a
comparison with the biotite hornblende gneiss of
the Nagle Dam Formation and in particular is the
lack of more evolved members within the Quha
gneisses. Distinct elemental abundances (Figure
7.2a) and fractionation trends, however, serve to
separate these series, including a trend towards
higher Zr and Y concentrations in the Quha
Formation.

The Ndonyane Formation typically possesses
higher Zr, Ga and Y, but lower Na,O and Sr
concenfrations than the  quartzo-feldspathic
gneisses of the Nagle Dam and Valley Trust
Formations (Figure 7.2b). These features allow the
separation of these units.

The Quha Formation paragneiss sequence (Cornell
et al. 1996) is less siliceous than the pelitic gneiss
of the Valley Trust Formation with distinct Rb and
K,O enrichment in the pelitic gneiss, low Sr and
CaO  (Figure 7.2c), and constant P,0;s
concentrations. Discrimination of the fine grained
granulite is apparent through its lower Zr content
(Figure 7.2d).

The available data therefore indicate that the
various units of the Nagle Dam and Valley Trust
Formation are chemically dissimilar to the
orthogneisses of the Mapumulo Group in southern
KwaZulu Natal and cannot be considered to form
chemically unique suites, in the sense of White and
Chappell (1983). Potential correlation of the
metasedimentary units provides similar results,
although the fine grained granulite and the
paragneiss of the Quha Formation possess several
similarities.

7.2.2 MZUMBE GNEISS SUITE

Thomas (1989b) suggested a possible correlation
between the Mzumbe Gneiss Suite and the Nagle
Dam Formation. Available data, however, suggest
that the Mzumbe Gneiss Suite is chemically
distinct from the Nagle Dam Formation, with
higher Na,O, but lower Ba concentrations and
higher Zr/Y ratios (Figure 7.3a,b), indicating that



Figure 7.1. Comparision of the chemical characteristics of the amphibolites of the Nagle Dam, Valley Trust and Quha Formations (Cornell ef al. 1996).

Fields in 7.1b after Smith e al. (1997) for Nagle Dam and Quha Formations.
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Figure 7.2. Comparision of the chemical characteristics of the intermediate, acidic and paragneiss members of the Quha, Ndonyane, Nagle Dam and Valley Trust Formations.
a) Sr-Rb. Biotite horblende gneiss of the Nagle Dam Formation and the intermediate intrusives into the Quha Formation (Cornell et al. 1996).

b) Y-Zr. Quartzo-feldspathic gneisses of the Nagle Dam, Valley Trust and Ndonyane Formations (Thomas and Gain 1989).
¢) Ca0-Y, d) Zr/Y-Zr. Pelitic gneiss and fine grained granulite of the Valley Trust Formation and the peraluminous intermediate gneiss of the Quha
Formation (Cornell et al. 1996).
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they form separate series.
7.2.3 EQUEEFA METABASITE SUITE

The Equeefa Suite was described by Thomas ef al.
(1992) from various localities in southern KwaZulu
Natal. It consists of a variety of mafic and
ultramafic  rocks, partially to completely
metamorphosed to the upper amphibolite facies. It
intrudes the Quha Formation and the Mzumbe
Suite; and is in twn intruded by the various syn-
and late-tectonic granitoids, including the Oribi
Gorge Suite. Available Rb-Sr age dates, 1024+32
Ma (Eglington et al. 1989b), are comparable with
those from the Oribi Gorge Suite, and Thomas et
al. suggested that the Equeefa Suite is a high level
expression of a mafic underplating event, the heat
pulse which generated the syn- and late-tectonic
granitoids of KwaZulu Natal.

The Equeefa Metabasite Suite may be potentially
correlated with the amphibolite of the Valley Trust
Formation. The former, however, is relatively
unevolved, with high MgO, Sr and Al,O; but low
FeO and Y, when compared to the Valley Trust
Formation amphibolite, and displays distinct
fractionation trends (Figure 7.3c,d). A degree of
overlap is apparent, however, possibly suggesting a
similar source type, but the chemical differences
apparent between these amphibolite groups
indicate that they are not directly related.

7.2.4 CORRELATION OF ORIBI GORGE SUITE
BATHOLITHS

Consideration of the data presented by Thomas
(1988a) reveal chemical differences between the
different granites grouped into the Oribi Gorge
Suite. In particular, the data from the Mvenyane
pluton suggest that it is a high silica granite without
the intermediate members present in the Oribi
Gorge batholith. Specific elemental abundances
also differ between the two batholiths, with
relatively low KO, P,Os and Ba concentrations in
the Mvenyane pluton, while Na,O is high. The
Mvenyane pluton and the Oribi Gorge batholith
may not, therefore, have derived from a common
magma. Insufficient data are available in Thomas
from the Fafa and Kwalembe batholiths to
distinguish them from the Oribi Gorge batholith.

In analysing the possible chemical correlation of
the megacrystic batholiths of KwaZulu Natal,
comparison is made between the Mgeni, Fafa and
Oribi Gorge batholiths, the former two batholiths
being emplaced in the Mzumbe Terrane, and the
latter in the Margate Terrane, as defined by

Thomas (1989a). All are megacrystic in nature,
with a prominent charnockite component and
A-type granite chemical characteristics, including
high FeO/MgO and a high HFS element content.
The individual batholiths can, however, be
distinguished through their distinct chemical
characteristics and fractionation trends. The Mgeni
batholith, for example, displays declining Y levels
with increasing silica, while in the other batholiths
Y concentrations increase with fractionation
(Figure 7.4a). Similarly, the Oribi Gorge batholith
possesses higher Rb concentrations than the Fafa
and Mgeni batholiths from 64 to 69 percent silica,
due to its distinct fractionation trend (Figure 7.4b).
Batholith  specific ~ Y-Zr and  Zr/Y-SiO;,
fractionation trends are also apparent (Figure
7.4¢,d), while variations in the Zr/Y ratio suggest a
progressive increase in Zr/Y, with Fafa<Oribi
Gorge<Mgeni.

The distinct chemical characteristics of individual
batholiths suggest that they are not members of a
single suite. This is supported by the range of age
dates obtained from the megacrystic granites,
although previously interpreted as demonstrating a
single intrusion event, which indicate an intrusion
age of 1068+2 Ma for the Oribi Gorge batholith
and ¢.1030 Ma for the Fafa and Mgeni batholiths
(1029+10 Ma and 1030420 Ma respectively)
(Thomas et al. 1993).

7.3  REINTERPRETATION OF THE
TECTONIC ENVIRONMENT OF SELECTED
UNITS WITHIN THE NATAL PROVINCE

Crucial to the development of a tectonic model for
the Natal Province is the identification of the
tectonic environment of origin of the various units
within the province, which must then be integrated
with the available geochronological data base to
provide a model of the evolution of the province.
To this end seven units from southern KwaZulu
Natal, for which chemical data are available, were
selected for an analysis of their origins through the
utilisation of the standard tectonic discrimination
plots. Interpretation of such plots is complex, as
noted in Chapter 5, and in many cases insufficient
data are available to provide a reasonable result. In
several cases therefore the identification of any
tectonic environment must be viewed as
provisional, to be revaluated when additional data
becomes available.

Seven units were selected for analysis -

1) the Quha Formation, which comprises an
amphibolite with a MORB character and an



Figure 7.3. Comparision of the chemical characteristics of the Nagle Dam Formation and Mzumbe Gneiss Suite (Thomas 1989b) and the amphibolite of the Valley Trust
Formation and Equeefa Metabasite Suite (Thomas et al. 1992).
a) Na,0-Si0,, b) Y-Zr. Nagle Dam Formation and Mzumbe Gneiss Suite .
c) Al,O,-MgO, d) Zr/Y-Zr. Valley Trust Formation and Equeefa Metabasite Suite.
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Figure 7.4. Comparision of the chemical characteristics of the granites of the Fafa (Eglington 1987), Oribi Gorge (Thomas 1988a) and Mgeni batholiths.
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intermediate member with calc-alkaline arc
chemical characteristics (Cornell et al. 1996);

2) the S-type Ndonyane Formation (Thomas and
Gain 1989);

3) the Equeefa Metabasite Suite, heterogeneous but
predominately a within plate basalt (Thomas et al.
1992);

4) the mafic to intermediate Munster Suite with
calc-alkaline affinities (Mendonidis and Grantham
1989);

5) the S-type Sikombe Granite (Thomas and
Mawson 1989);

6) the I-type Mzumbe Gneiss Suite (Thomas
1989b); and

7) the I-type Banana Beach Tonalite (Thomas

19892).
7.3.1 THE BASIC SERIES

The high TiO,, Zr and Y concenirations found in
the Munster Suite suggest a degree of enrichment
in its chemistry and an origin as a within plate
basalt (Figure 7.5b,c), although its relative over
enrichment in Y results in an overlap with the
arctMORB basalts (Figure 7.5a) and plate margin
basalts (Figure 7.5d). The chemical characteristics
of the amphibolites of the Quha Formation and the
Equeefa Metabasite Suite do not allow a similar
simple identification of their tectonic environment.
Rather they plot across the defined fields on the
various tectonic discrimination diagrams (Figure
7.5). In general, however, the Quha Formation does
not display evidence for within plate basalt
enrichment nor the low Y concentrations common
to the arc basalts, suggesting a MORB origin, and
on the Ti-Zr diagram it plots in the MORB field.
The Equeefa Metabasite Suite does not possess the
high V common to the arc tholetites (Figure 7.5b),
although its Y and TiO, are low, but with extension
to levels found in the WPB. Typically, however,
the majority of the samples from the Equeefa
Metabasite Suite display MORB+WPB chemical
characteristics, suggesting an origin for at least a
portion of the Equeefa Metabasite Suite in an
extensional environment (Figure 7.5b).

7.3.2 THE ACIDIC SERIES

The Mzumbe Gneiss Suite and the higher silica
Quha gneiss plot predominately as volcanic arc
granites, with minor extension into the within plate
granite field for the former on the Nb-SiO, diagram
(Figure 7.6). The single sample from the northern
exposure of the Mzumbe Gneiss Suite plots with
the Mzumbe Gneiss Suite on the tectonic
discrimination diagrams, but approaches the within
plate granite field on the Nb-Y and Rb-Y+Nb

diagrams.

The lack of Ga and Ce analyses inhibits the
construction of the A-type granite discrimination
diagrams of Whalen e al. (1987), but the low Zr,
Y and Nb concentrations of the Mzumbe Gneiss
Suite are comparable with I- and S-type granites
rather than the A-type granites. Similarly, its high
CaO and relatively sodic nature suggest an I-type
granite character.

The Banana Beach tonalite displays variable
chemical characteristics, plotting across the within
plate and volcanic arc granite fields on the tectonic
discrimination diagrams of Pearce et al. (1984)
(Figure 7.6). Equally, the high Zr levels of the
tonalite is within the range of the A-type granites,
rather than the I- and S-type granites. Its total alkali
content is low, however, with high MgO and CaO
concentrations, features not characteristic of the
A-type granites (Whalen ef al. 1987). The Banana
Beach tonalite may, therefore, represent an I-type
granite with a degree of enrichment in its source.

The remainder of the acidic series display within
plate granite chemical characteristics (Figure 7.6d),
with variably enriched Y and Nb (Figure 7.6b,c),
while their high Zr+Y+Nb content may exceed the
Zr+Y+Nb+Ce content required to characterise the
A-type granites (Whalen er al. 1987). These
granites do not, however, typically display the
major element ratios identified by Whalen ef al. as
representative of the A-type granites. In particular
is the low FeO/MgO ratio of the Sikombe Granite
and the low silica member of the Quha Formation,
while the Ndonyane Formation possesses a low
total alkali content. This combination of chemical
characteristics suggest that these granites may

represent crustal melts with an enriched
component.
7.4 IDENTIFICATION OF TECTONIC

TERRANES

Thomas (1989a) identified the Mzumbe Terrane as
a discrete component of the Natal Province,
separated from the Margate Terrane to the south by
the Melville Thrust and distinguished by dissimilar
lithological associations. In particular Thomas
noted the abundant amphibolite grade migmatite
and pelitic gneiss of the Mapumulo Group, the
presence of the Equeefa Metabasite Suite and the
tonalite-trondhjemite Mzumbe Gneiss Suite within
the Mzumbe Terrane. In contrast the Margate
Terrane was characterised by a granulite grade
metacarbonate  series, rare pelitic gneiss, the
Munster Metabasite Suite and the tonalite of the



Figure 7.5. Basaltic tectonomagmatic discrimination diagrams for the Equeefa Suite (Thomas ef al. 1992), Munster Suite (Mendonidis and Grantham 1989) and Quha Formation

(Cornell et al. 1996).

a) TVY-Nb/Y (Pearce 1982), b) V- Ti/1000 (Shervais 1982), c) Zr/Y-Zr (Pearce and Norry 1979; Pearce 1983), d) Zr/Y-TVY (Pearce and Gale 1977).

WPB - Within plate basalt; VAB - Volcanic arc basalt; MORB - Mid-oceanic ridge basalt; BAB - Back arc basalt; CFB - Continental flood basalt; OIB - Oceanic
island basalt; AB - Alkali basalt.
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Figure 7.6. Granitic tectonomagmatic discrimination diagrams (Pearce er al. 1984) for the Sikombe granite (Thomas and Mawson 1989), Munster Suite (Mendonidis and
Grantham 1989), Mzumbe Gneiss Suite (Thomas 1989b), Quha Formation (Cornell et al. 1996) and Ndonyane Formation (Thomas and Gain 1989).

a) Rb-SiO;, b) Y-Si0,, ¢) Nb-Si0,, d) Nb-Y.

ORG - ocean ridge granite, VAG - volcanic arc granite, COLG - collision granite, WPG - within plate granite.
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CRUSTAL EVOLUTION OF THE NATAL PROVINCE

Banana Beach area. Distinct pre- and syn-tectonic
granitoid series were also identified by Thomas in
both terranes, with the Margate Complex and the
Glenmore granite in the Margate Terrane and the
Mkomazi, Mzimlilo and Mahlongwa Suites in the
Mzumbe Terrane.

Analysis of the distribution of the various units
within the southern portion of the Mzumbe Terrane
indicates that individual units tend to occur
marginal to the Mzumbe Gneiss Suite.
Identification of the tectonic environment of
several of these units, including the Quha
Formation, suggests that they developed in
environments distinct from the Mzumbe arc. The
proposed back arc environment of the Quha
Formation (Cornell et al. 1996), which divides the
outcrop pattern of the Mzumbe Gneiss of Thomas
(1989b), may suggest that the Mzumbe Gneiss
Suite, as defined by Thomas, actually consists of
two distinct units. Thomas noted that the northern
portion of the Mzumbe Gneiss differed
conspicuously from the main exposure to the south,
but chemical data are unavailable to confirm this
contention as Thomas (1989b) reported only one
analysis from the former. This, however, displays
higher Ba, Zr and Y concentrations, but lower Sr
than the typical Mzumbe Gneiss. In addition,
Thomas et al. (1992) established that the Equeefa
Metabasite Suite is not present within this unit. The
northern portion of the Mzumbe Gneiss Suite may,
therefore, represent a separate arc segment.

This suggests that the southern portion of the
Mzumbe Terrane as defined by Thomas (1989a)
may not form a single integral unit, but rather
consists of a variety of distinct terranes. The
definition of terranes within this zone is, however,
hindered by the possible origin of the Quha
Formation during an extension event that split the
Mzumbe arc. This shall therefore be termed the
Quha sub-terrane, a northern portion of the
Mzumbe Terrane. Intrusive into this zone is the
Humberdale and Sezela granites and the main body
of the Equeefa Metabasite Suite (Thomas 1988b).

Within this area three potential zones are therefore
identified (Figure 7.7):

1) the Mzumbe arc to the south comprising
essentially of the Mzumbe Gneiss Suite - the
Mzumbe Terrane;

2) the Quha basin - the Quha sub-terrane -
developed in a back arc spreading centre; and

3) the northern ‘Mzumbe Gneisses’ - the Mgangeni
Terrane - possibly developed in an arc
environment.

Beyond the Mgangeni Terrane the area is
dominated by the S-type Mkomazi Gneiss Suite,
associated with the gneisses of the Mpambanyoni
Formation. The lack of arc type material, as found
in the Mgangeni Terrane, suggests a fundamental
division between this area, provisionally termed the
Mkomazi Terrane, and the Mgangeni Terrane. The
northern extent of this terrane is uncertain, being
covered by Phanerozoic sediments, with the
occasional inliers of basement gneiss correlated
with the Nagle Dam Formation. This may indicate
the presence of an arc fragment in this area.

Within the Valley of a Thousand Hills the
Proterozoic basement can be divided into the
extension related Valley Trust Formation and the
composite arc sequence of the Nagle Dam
Formation. The presence of high MgO amphibolite
in the Nagle Dam Formation, possibly generated
during extension within the arc (Smith ef al. 1997),
suggests that the Valley Trust Formation may have
originated through the splitting of the Nagle Dam
arc, with the southern extension of the arc located
within the basement inliers to the north of the
Mkomazi Terrane. This area will be provisionally
termed the Mgeni Terrane, with the Valley Trust
and Nagle Dam Formations forming distinct zones
within this unit.

To the north of the Valley of a Thousand Hills,
geochemical data are lacking, The discrimination
of the environment in which the various units
formed or the identification of any terrane is
therefore not possible. The relationship between
this area and the Mgeni Terrane is uncertain, and
the area will be provisionally separated from the
Mgeni Terrane as the Mapumulo Terrane. This
zone terminates at the Lilani-Matigula Shear Zone
beyond which is the Tugela Terrane.

7.5 TECTONIC MODEL FOR THE NATAL
PROVINCE

Several models have been proposed to explain the
development of the Natal Province (Matthews
1972; Milne 1986; Thomas 1989a; Thomas ef al.
1994; Jacobs and Thomas 1994). Typically,
however, these involve the formation of at least one
volcanic arc with subsequent accretion onto the
Kaapvaal Craton, and late intrusion of rapakivi like
granites (the Oribi Gorge Suite of Thomas 1988a).
The present study, however, suggests a more
elaborate origin for the Natal Province, and in
particular the recognition of a number of discrete
terranes, each marked by a specific lithological
association which originated in a distinct tectonic
environment, with the redefinition of the Natal
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Province as a complex multiterrane zone (Figure
7.7).

The initial phase of the development of the Natal
Province was marked by the generation of a series
of volcanic arcs (Figure 7.8a), represented now by
the Mzumbe Gneiss Suite of the Mzumbe Terrane,
the 'northern Mzumbe Gneisses' of the Mgangeni
Terrane and the Nagle Dam Formation of the
Mgeni Terrane. Subsequently these accreted,
ultimately to the Kaapvaal Craton, in an unknown
sequence of collision events (Figure 7.8¢).
Potentially this involved the progressive
amalgamation of the smaller arcs into composite
structures or the sequential collision of individual
arcs. Age dates are limited for this period but a
lead isotopic age of 1207+10 Ma for the Mzumbe
Gneiss Suite is considered to represent the
crystallisation age of the original granitoid
(Thomas and Eglington 1990).

Associated with these arc cores, frequently
marginal to the arcs, are a series of zones,
including the Margate Terrane and Quha
sub-terrane, characterised by the presence of
extension related orthogneiss, occasionally in a
bimodal association with an enriched HFS element
chemistry, profuse sediments and a late arc related
intrusion event. Subsequent melting of the
metasediments resulted in the production of S-type
granites. The timing of the development of these
sequences is uncertain, although a lead age of
1163+12 Ma was obtained for the Quha Formation
(Comell et al. 1996), demonstrating that they are
younger than the arc cores. The presence of
abundant acidic gneiss associated with these series
indicates that they do not represent accreted
oceanic islands, but rather comparison may be
made with the bimodal series developed in a
back-arc basin or local rifting setting (Winchester
et al. 1995; Schofield er al. 1998), formed through
the splitting of the arc margin. Subsequent arc
volcanism, represented by the acidic Quha gneiss
(Figure 7.8b), may explain the ambivalent field
relationships noted by Cornell et al. between the
Quha Formation and the Mzumbe Gneiss Suite.
Information regarding the evolution of the
individual terranes is generally lacking, as
insufficient data are available to allow the
subdivision of the prominent lithological units
identified, and so trace their tectonic development.
Within the redefined Mzumbe Terrane, however,
the data suggest a history of :

1) initial arc formation;
2) possible marginal splitting to form the Quha

back-arc with associated
deposition;

3) secondary arc volcanism;

4) intrusion of the Equeefa Metabasite Suite,
possibly related to a rifting event; and

5) syn-tectonic to post-collision granite intrusion.

basin, sedimentary

The ages of the collision events which
amalgamated these various terranes are uncertain,
and where age dates are available from the various
units identified these tend to indicate metamorphic
cooling ages rather than intrusion ages (Thomas et
al. 1993). In the case of the Equeefa Metabasite
Suite, for example, the derived age of 1024432 Ma
suggests a late collision between the Margate and
Mzumbe Terranes. This is not, however,
compatible with the 106842 Ma age of the Oribi
Gorge batholith, which cuts across the Equeefa
dykes, or the 1055+60 Ma age of the Belmont
Suite, which occurs across the boundary of the
Margate and Mzumbe Terranes. Relative ages can,
however, be determined from the presence of
granitic and basaltic series that transcend terrane
boundaries. The possible occurrence of the
Margate Complex, including the reassigned
Belmont Suite, dated at 1055460 Ma (Thomas ef
al. 1990), in the Transkei, Margate and Mzumbe
Terranes demonstrates that these terranes must
have collided prior to its intrusion. Similarly the
Equeefa Metabasite (Rb-Sr age of 1024+32 Ma
(Eglington et al. 1989b)) is found in the Mzumbe
Terrane and the Quha sub-terrane, but not the
Mgangeni, Mkomazi and Margate Terranes,
indicating that the collision event(s) which fused
these terranes occurred after the intrusion of the
Equeefa Metabasite Suite.

Several regional correlations have not been
considered here, such as that of the Mahongwa
Suite, which the 1:250000 Geological Survey Sheet
(Thomas 1988b) places in the Margate Terrane and
Quha sub-terrane, but not in the Mzumbe Terrane.
This suggests that an essentially analogous series of
granitoids were derived from a similar source, but
their absence from the intervening Mzumbe
Terrane indicates that this was not related to a
regional magmatic episode, but rather represented a
local event. Correlation of these granitoids awaits a
regional geochemical study.

The multiple collision events, ending with the
accretion of the Natal Province to the Kaapvaal
Craton, resulted in regional high grade
metamorphism, to the granulite facies, and multiple
deformation events within the various terranes.
Available P-T-t data from individual terranes
suggest an initial isothermal decompression event,
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which may have been followed by an isobaric
cooling event (Evans 1984). This model differs
from that identified within the Valley of a
Thousand Hills, in the timing of the isobaric
cooling event, but both identify a metamorphic
event with elements of isothermal decompression
and isobaric cooling. Isothermal decompression is
typically considered to reflect the effect of crustal
thickening, followed by uplift (Harley 1989), while
isobaric cooling is thought to result from magma
accretion (Wells 1980; Bohlen 1987). Combined
decompression and isobaric cooling models were
discussed by Harley (1989) as the possible effect of
the extension of thickened crust, and are associated
with the occurrence of syn-collision S-type granites
and syn-extension bimodal magmatism. These may
be represented by the abundant S-type granites and
in particular the Margate Complex and Mkomazi
Gneiss Suite, locally derived from the sedimentary
prisms of the extensional belts (Figure 7.8d), and
the various megacrystic granite batholiths.

Following the peak of metamorphism a series of
granites, including the megacrystic granites
originally grouped in the Oribi Gorge Suite,
intruded (Figure 7.8¢). Available age dates
demonstrate the younging of the megacrystic
granite intrusion ages towards the north, with two
distinct age groupings identified. Anorogenic
granite intrusions with substantially similar ages to
the northern megacrystic granites (1026+3 Ma
(U-Pb)) are, however, present in southern KwaZulu
Natal (Thomas et al. 1993) and may constitute
components of a single event, which possibly
includes the Sezela quartz monzonite, with an
Rb-Sr age of 951+15Ma (Eglington and Kerr
1989). These may represent the final phase of the
evolution of the Natal Province.

The presence of two post-orogenic magmatic
events in the Natal Province, separated by c.40 My,
with no apparent variation in the loci of intrusion is
indicated. This suggests that these granites were
not generated through thermal relaxation following
thrusting (Windley 1991) or interaction with an
isolated mantle hot spot. Rather comparison can be
made with the Proterozoic North American Craton
where a number of anorogenic intrusion events
occwrred almost synchronously within a restricted
area (Anderson 1983) as a result of crustal melting
through interaction with a number of mantle
plumes (Anderson and Bender 1989).

7-15
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CONCLUSIONS

During the present study three primary series have
been identified within the Proterozoic rocks of the
Valley of a Thousand Hills:

1) the gneisses of the Nagle Dam Formation;

2) the megacrystic granites of the Mgeni batholith;
and

3) the gneisses of the Valley Trust Formation.

The Nagle Dam Formation occurs as a series of
orthogneisses, ranging in chemistry from basalt to
rhyolite but predominately intermediate in
character, with lesser paragneiss. The orthogneisses
possess the chemical characteristics of a typical arc
type batholith, plotting in the arc fields on the
various chemical tectonic discrimination diagrams.
Distinct fractionation trends on the Harker
diagrams and trace element data, however, suggest
that it may consist of a series of units, with a
limited range of compositions, which originated
within an evolving tectonic environment from
distinct source zones. The high MgO content of the
amphibolite of the Nagle Dam Formation indicates
that #t is a member of a primitive arc series, with
the distinct variations in major and trace element
data incompatible with simple fractionation
processes. Rather derivation from a chemically
heterogeneous source with possible crustal
assimilation is suggested. Analysis of the
individual units within the Dbiotite hornblende
gneiss demonstrate a degree of cumulate
accumulation in their evolution, although the
available data are limited. The distinct high Si/Y
ratio found within a specific series of the
quartzo-feldspathic gneiss suggests comparison
with the adakites. The remainder of the
quartzo-feldspathic gneiss may have been derived
through partial melting of a tonalitic or
granodioritic  source material. The biotite
hornblende gneiss is characterised by a high
sodium content, but does not possess the chemical
characteristics of the adakites. Available
geothermometry  suggests metamorphism  at
temperatures of c¢. 750°C.

The Valley Trust Formation occurs as a series of
enclaves within the Mgeni batholith. Its primarily
bimodal metavolcanic character with abundant
paragneiss distinguishes it from the Nagle Dam
Formation, a separation supported by the distinct
chemical character of the orthogneiss relative to the
Nagle Dam Formation. The orthogneiss comprises
a series of amphibolite and quartzo-feldspathic
gneiss, with no sampled intermediate member.
Available data suggest that these did not form

through fractionation from a single magma, but
rather they occur as a series of chemically distinct
units which originated from discrete sources. On
the chemical tectonic discrimination diagrams the
orthogneisses of the Valley Trust Formation plot in
a variety of fields, with the amphibolite plotting
across the within plate basalt and MORB fields,
while the quartzo-feldspathic gneiss plots
predominately in the arc field. Revaluation of the
tectonic discrimination diagrams for the basaitic
rocks suggests that for the amphibolite this may
indicate a heterogeneous source with MORB and
within plate components. Various fractionation
models were attempted for the amphibolite of the
Valley Trust Formation, but failed to derive its
high silica content. Rather a model of distinct
parental magmas with fractionation and variable
crustal  contamination is  favoured.  The
peraluminous quartzo-feldspathic gneiss is believed
to have resulted from the partial meiting of a
metasediment, although its high sodium content
results in it plotting in the I-type granite field on
the plots of White and Chappell (1983). This may
have resulted from the melting of a source with a
distinct mineralogical composition, possibly
through a muscovite dehydration event. The
metaluminous quartzo-feldspathic gneiss may have
been derived from the partial melting of a tonalitic
or granodioritic source. Modelling of the
quartzo-feldspathic gneiss suggests that it contains
a cumulate component.

The paragneiss comprises two distinct series - the
pelitic gneiss and the fine grained granulite,
distinguished  initially on mineralogy and
subsequently on the basis of distinct chemical
characteristics. The pelitic gneiss appears to
comprise an evolving series ranging from pelitic to
psammitic in composition. These possess dissimilar
fractionation  trends, with the psammite
fractionation controlled by increasing quartz
dilution, while the pelite displays major variations
in elemental abundance at constant silica levels.
The chemical composition of the fine grained
granulite is controlled by increasing quartz
dilution. Provenance analysis suggests that these
units were derived from an igenous source, with
trace element data indicating the Nagle Dam
Formation as a possible source for both of these
series. Geothermobarometry suggests
metamorphism to 850°C and 6 kb.

The Mgeni batholith is a composite batholith
comprising granite and charnockite characterised
by megacrystic feldspars. Mineralogical, chemical
and isotopic data allow the subdivision of the
Mgeni batholith into three distinct suites:
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1) the Ximba Suite - a series of megacrystic biotite
bearing granites, comprising a relatively basic
hornblende bearing margin grading into an acidic
biotite granite with an inner core of gamnetiferous
biotite granite;

2) the Mlahlanja Suite - a series of megacrystic
hornblende granites and charnockite, which occur
as a_series of lensoid plutons within the Ximba
Suite, each distinguished by distinct mineralogical
and chemical characteristics; and

3) the Ngwadolo Suite - a coarse grained
Jeucogranite, which may be divided into two
distinct series on chemical grounds.

As a group the Mgeni batholith displays the
chemical and mineralogical characteristics of the
A-type granites and on the granitic tectonic
discrimination diagrams plot across the within plate
granite and volcanic arc fields. Petrogenetic
modelling of the megacrystic granites of the Mgeni
batholith suggests that they did not evolve through
contamination of a single parental magma with the
Nagle Dam Formation as proposed by Eglington ef
al. (1989a), and in particular the latter does not
possess the necessary frace element content to
derive the HFS element enriched Mlahlanja Suite
from the relatively depleted Ximba Suite. Rather a
model in which each suite represents the
differentiation product of a distinct parental magma
is proposed. Modelling of the Ximba and
Miahlanja Suites suggests that these principally
represent accumulations of cumulate material.

Similarly, modelling of the Ngwadolo Suite
indicates that it contains a cumulate component.
Within the biotite granite, however, local

assimilation of pelitic material generates the
chemically distinct biotite garnet granite. Analysis
of the A-type granite association suggests that they
may have originated from within plate basalt
interaction with the crust through MASH type
processes. Geothermometry of the Mgeni batholith
predominately derives subsolidus temperatures,
although potential magmatic temperatures of
c.760°C are generated by the amphibole-
plagioclase  thermometer, but with higher
temperatures, ¢.900°C, suggested by the
hornblende-melt thermometer and the M-Zr
diagram. Pressure estimates of c.5 kb are derived
by the hornblende barometer, and are supported by
the low Mn content of the garnet present in the
granites. The increase in peak metamorphic
temperatures from the Nagle Dam to the Valley
Trust Formation suggest a degree of thermal input
from the Mgeni batholith, which the comparable
pressure estimates from the Valley Trust Formation
and the Mgeni batholith indicate was an essentially
isobaric event. High Mn garnet, suggesting

crystallisation at lower pressures, is present in late
veins within the batholith, indicating a phase of
isothermal decompression.

The diverse chemical characteristics of the various
units found within the Valley of a Thousand Hills
together with its apparent metamorphic P-T-t path
suggest a complex tectonomagmatic evolution for
this section of the Natal Province during the
Proterozoic. This involved:

1) the development of an island arc system, the
Nagle Dam Formation;

2) subsequent rifting and the development of the
bimodal Valley Trust Formation, with associated
sedimentation into the rift from the erosion of the
Nagle Dam Formation;

3) metamorphism, possibly associated with an
arc-arc collision and crustal thickening;

4) intrusion of the Mgeni batholith, providing a
thermal pulse to reheat the gneisses;

5) uplift and intrusion of late, high level granitic
veins.

This model was extended to southern KwaZulu
Natal, with an analysis of the available chemical
data from this area together with that from the
Valley of a Thousand Hillls to allow the
identification of possible lithological correlates,
and hence any potential discontinuities within the
basement. This suggests that several of the
lithological correlations proposed in the literature
are not compatible with the chemical data, and that
the basement contains a more complex lithological
association than previously suspected. Provisional
identification of the tectonic environment of origin
of several of these units with the available
geochronological data allows the development of a
model for the evolution of this portion of the Natal
Province. This appears to involve the collision of a
number of arcs with associated backarcs, which
served as loci for sedimentation. Subsequent to the
individual arc-arc collision events S-type granites
developed in response to isothermal decompression
of the terrane. Following the metamorphic peak a
number of post-orogenic granites intruded the area
in a series of pulses. These are typically members
of the rapakivi granite association, and in particular
the megacrystic granites of the Oribi Gorge Suite.
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Modal analyses of the majority of the lithologies were determined from 500-1000 point counts,
dependent on the mineralogy, texture and mineral size distribution of an individual section. Jump
spacings were determined from the largest mineral phase present in the individual thin section, with
the exception of those sections with porphyroblastic phases, where the point counter was set to
maximum. For the mineralogical bands of the fine grained granulites 100 point counts were used. For
the megacrystic granites estimates based on hand specimens and microscopic analysis were used.

+ = Present in trace amounts
- = Absent



1. Modal analyses of the biotite hornblende gneiss - Nagle Dam Formation.

NDF9 | UND | NDF | UND | UND | UND UND | UND | UND | UDF
300 26 312 315 45 50 52 53 325
Quartz 30 38 34 17 18 16 43 34 26 17
Plagioclase 11 31 34 35 41 35 29 29 39 39
K-feldspar 38 13 24 13 15 8 2 12 12 5
Hornblende - - - 11 16 24 - 3 18 7
Biotite 20 17 8 21 8 15 24 20 4 28
Ore 1 1 + 3 2 2 2 1 1 3
Apatite - - - + - - - 1 + -
Sphene - - - - - - - - - 1
Zircon + + + + + + + + + +
Carbonate™* - - - - - - - - R +
TOTAL 100 100 100 100 100 100 100 100 100 100
* Secondary

- 1 XIANAddY

SASATYNY TYAOW

(44



2. Modal analyses of the quartzo-feldspathic gneiss - Nagle Dam Formation.

NDF | UND | UND | UND | UND | UND

3 309 311 31lla 318 319
K-feldspar 29 49 36 9 36 13
Plagioclase 36 16 29 64 26 43
Quartz 27 33 32 27 36 38
Biotite 8 2 3 - 2 6
Ore + - + - - -
Apatite + + + + + +
Zircon + + + + + +
TOTAL 100 100 100 100 100 100

SASATYNY TVAOW - 1 XIANIddV

£V



3. Modal analyses of the amphibolite - Nagle Dam Formation.

UND

UND UND UND UND UND

307 308 308 308 314 320
Homblende 56 65 70 80 64 36
Plagioclase 34 30 29 17 25 39
Quartz + | - 2 9 .
Clinopyroxene 10 - - - - 25
Ore + - 1 1 2 -
Biotite* - 4 - - - -
TOTAL 100 100 100 100 100 100

* Secondary

SASATYNY TVAOW - [ XIANdddV

v



4. Modal analyses of the pelitic gneiss - Nagle Dam Formation.

NDF8 | NDF60
Quartz 31 27
Plagioclase 37 49
Biotite 23 23
Garnet 4 +
K-feldspar 4 +
Apatite + +
Zircon + +
Ore 1 1
Carbonate* + -
Muscovite* + -
TOTAL 100 100
*Secondary

- [ XIANdddY

SASATYNY TVAOW

SV



5. Modal analyses of the amphibolite - Valley Trust Formation.

UND | UND 2a/3 UND | UND | UND [ UND UND UND

334 334 347 348 349 350 357 358
Plagioclase 45 33 22 25 24 21 16 35 33 38
Hornblende 50 60 60 40 55 56 56 49 46 36
Clinopyroxene - 4 11 20 15 12 17 6 9 18
Orthopyroxene - - 4 13 4 6 8 3 6 7
Quartz 4 + - + - 3 2 2 - +
Biotite* 1 1 - - - - - - 3 -
Ore + 2 3 2 2 2 1 5 3 1
TOTAL 100 100 100 100 100 100 100 100 100 100

*Secondary

SASATYNY TYAOW - 1 XIANAddY

9-v



6. Modal analyses of the pelitic gneiss - Valley Trust Formation.

a) Pelites collected away from the main pelitic gneiss enclave.

UND | UND | UND | UND

336 353 354 355
Plagioclase 8 1 8 15
Quartz 20 35 26 30
K-feldspar 44 45 38 24
Biotite 11 8 9 12
Sillimanite 8 7 7 8
Cordierite 5 3 11 7
Garnet 3 1 + 4
Ore 1 + 1 +
TOTAL 100 100 100 100

- [ XIANdddV

SASATYNY TVAOW

LV



b) Biotite gneiss detached from main pelitic gneiss enclave.

UND379 | UND380 | UND381
Plagioclase 61 57 44
Quartz 7 7 12
K-feldspar 8 23 24
Biotite 24 13 20
Ore + + +
Allanite + - +
Apatite + + +
TOTAL 100 100 100

- [ XIANAddV

SISATYNY TVAOW

8-V



¢) Pelitic gneisses from the main enclave.

NDF56

UND328

UND364

UND367 | UND376 | UND378 | UND342 | UND343 | UND344 | UND345 UND346
Plagioclase + 15 30 2 8 10 1 6 9 3 11
Quartz 9 17 39 5 8 6 7 12 21 28 38
K-feldspar 32 31 - 57 49 49 41 36 37 32 37
Biotite 12 19 9 33 14 20 23 15 10 11 9
Sillimanite 8 10 - - 4 2 10 6 2 - -
Cordierite 9 2 7 - 4 + 6 12 9 11 1
Garnet 18 5 11 1 8 11 12 12 11 14 4
Ore 12 1 4 2 5 2 + 1 1 1 +
TOTAL 100 100 100 100 100 100 100 100 100 100 100

- [ XIANdddV

SASATVNY TVAOW

(4



7. Modal analyses of the quartzo-feldspathic gneiss - Valley Trust Formation.

UNDI UND3 UND4 UND34 UND42 UND302 UND305 UND306
K-feldspar 42 48 42 47 53 54 35 26
Plagioclase 26 15 27 21 21 14 37 21
Quartz 31 29 28 28 18 30 25 51
Biotite - 8 - 2 7 1 1 -
Ore 1 + 3 + 1 1 + 1
Hornblende - - - 2 - - - -
Muscovite* - - - - - - 2 1
Sphene* - - - + + - - -
Apatite - + + + + + + +
Zircon + + + + + + + +
Allanite - + - + - - - -
TOTAL 100 100 100 100 100 100 100 100
* Secondary

- [ XIAN3ddVY

SASATVNY TVAON

01-v



8. Modal analyses of the fine grained granulite - Valley Trust Formation.

a) Fine grained granutite from the vicinity of the large pelitic enclave.

UND359 UND360 UND361 | UND362 | UND363 | NDF89
a b c a b c
Quartz+feldspar 4] 78 77 56 54 73 72 68 57 40
Garnet 52 2 3 25 29 3 21 10 28 35
Biotite 2 - - - - - - + 5 4
Pyroxene 1 16 19 18 16 22 + 21 8 20
Ore 2 2 1 1 1 2 1 1 2 +
Cordierite - 1 - - - - - - - -
Sillimanite - - - - - - 4 - - -
Tourmaline* 2 1 - - - - 2 - + 1
TOTAL 100 100 100 100 100 100 100 100 100 100

NDF84 a) Garnet rich band

b) Pyroxene rich band
¢) Pyroxene rich band

NDF85 a) Garnet rich band
b) Garnet rich band
c¢) Garnet poor band

*Secondary

SASATYNY TVAOW - | XIANIddV

11-v



b) Fine grained pyroxene granulite collected away from the large pelitic enclave.

NDF67 NDF69 NDF70 UND329
a b c d € a b c d a b

Quartz+feldspar 59 39 55 62 34 88 77 18 68 56 54 65
Garnet - - - 2 11 - - 48 10 - - -
Biotite - 20 - 7 19 12 17 27 15 31 36 15
Pyroxene 39 40 28 25 29 - - - - 13 10 20
Ore 2 1 2 1 1 + + + + + + +
Cordierite - - 15 3 6 - 6 7 7 - - -
Sillimanite - - - - - - - - - - - -
Tourmaline* - - - - - - - - - + + -
TOTAL 100 100 100 100 100 100 100 100 100 100 100 100

NDF67 a) Pyroxene rich layer
b) Pyroxene and biotite rich layer

c¢) Pyroxene and cordierite rich layer
d) Traverse at 90° to banding
¢) Traverse at 90° to banding
NDF69 a) Mafic poor layer
b) Mafic poor layer
¢) Garnet rich band
d)Traverse at 90° to banding

NDF70 a+b Random traverses

*Secondary

SASATYNY TVAOW - 1 XIANIddV

v



¢) Fine grained sillimanite granulite collected away from the large pelitic enclave.

1/6 2b4 UND 2/9 2a/l 2a/2 2b/3
339
a b a b
Quartz+feldspar 62 62 61 68 63 27 85 80 47
Gamet 10 17 17 16 7 32 12 7 49
Biotite 8 15 6 2 20 19 - + 2
Pyroxene - - - - - - - - -
Ore 2 1 2 1 2 3 1 3 1
Cordierite - - - - 2 3 - - -
Sillimanite 18 5 14 13 6 16 2 10 -
Tourmaline* - - + - + + - + 1
TOTAL 100 100 100 100 100 100 100 100 100
UND339 a) Random traverse

b) Random traverse

2/9 a) Random traverse
b) Garnet rich band

*Secondary

SASATYNVY TVAOW - 1 XIANAddV

[ A4



d) Fine grained amphibolitic granulite.

2b/1 UND338 | UND340
Plagioclase 56 41 33
Pyroxene 40 31 41
Hornblende - 24 25
Ore 4 3 1
Quartz - 1 -
Tourmaline* + - +
TOTAL 100 100 100
*Secondary

SASATYNY TVAOW - I XIANAddV

yi-v



9. Modal analyses of the biotite-hornblende gneiss - Valley Trust Formation.

NDF78 NDF81
Plagioclase 40 46
Quartz 17 17
K-feldspar 14 4
Biotite 15 32
Homblende 13 1
Ore 1 +
Zircon + +
Apatite + +
TOTAL 100 100

- [ XIANdddY

SASATYNY TYAOW

SI-v



10. Modal analyses of the granitic enclaves - Valley Trust Formation.

UND330 UND330 UND330
Plagioclase 24 35 26
K-feldspar 41 36 39
Quartz 16 22 30
Biotite 14 6 4
Apatite + + +
Zircon + + +
Allanite + + +
Garnet 5 1 1
Ore - + -
TOTAL 100 100 100

SASATYNY TVAOW - [ XIANAddV

9I-v



11. Estimated modal analyses for the megacrystic granites - Mgeni batholith.

::;:;z Hogr;l;lietgde Charnockite
K-feldspar 50 45 40
Plagioclase 25 25 25
Quartz 20 15 20
Biotite 5 5 3
Hornblende + 10 7
Pyroxene - - 5
TOTAL 100 100 100

SASATYNY TVAOW - I XIAN3ddV

L1-v



12. Modal analyses of the Nqwadolo Suite.

UND 14

UND 15

UND 16 | UND19 | UND?29 NQ | NQ2 NQ 3 NQ 4 NQ 5 NQ 6
K-feldspar 47 38 40 42 31 38 41 40 41 40 42
Plagioclase 16 24 21 22 33 23 21 20 21 19 21
Quartz 34 36 37 34 35 37 36 38 37 40 34
Biotite 3 2 2 1 1 2 2 2 | 1 3
Garnet - - - 1 - - - - - - -
Zircon + + + + + + + + + + +
Apatite + + + + + + + + + + +
Ore + + + + + + + + + + +
TOTAL 100 100 100 100 100 100 100 100 100 100 100

SASATVNY TVAOW - 1 XIANIddV

8-V



APPENDIX 2

MICROPROBE ANALYSES



APPENDIX 2 - MICROPROBE ANALYSES B-1

Major element microprobe analyses were undertaken on carbon coated polished thin-sections at
Rhodes University following the techniques described by Duncan et a/. (1984) with natural standards.
Matrix effects were corrected using Bence and Albee (1968). Precision is estimated at an absolute
0.1-0.16% for individual elements. Mafic mineral cation calculations performed using MINFILE
9-89, written by Afifi and Essene.

C = core
M = margin



NDF2 - Biotite hornblende gneiss, Nagle Dam Formation.

Plagioclase Feldspar

1 2 3* 4 5 Average

C C C C C
Si0; 59.29 59.63 58.85 59.10 60.05 59.52
Al O 2543 25.00 24.58 24.79 24.50 2493
FeO 0.16 0.13 0.12 0.10 0.16 0.14
CaO 6.93 7.06 7.13 7.16 7.34 7.12
Na,O 7.59 7.60 7.18 7.67 6.81 7.42
K,O 0.24 0.25 0.17 0.20 0.42 0.28
TOTAL 99.64 99.67 98.03 99.02 99.28 99.41
Formula per 32 oxygens
Si 10.62 10.68 10.70 10.66 10.78 10.69
Al 537 5.28 5.27 5.27 5.18 528
Fe 0.02 0.02 0.02 0.02 0.02 0.02
Ca 1.33 1.35 1.39 1.38 1.41 1.37
Na 2.64 2.64 2.53 2.68 2.37 258
K 0.05 0.06 0.04 0.05 0.10 0.06
An 0.331 0.334 0.351 0.337 0.364 0.341
Ab 0.655 0.652 0.639 0.652 0.611 0.643
Or 0.014 0.014 0.010 0.011 0.025 0.016

* Excluded from average

SASATYNY d90UdOIDIN - T XIANIddV

od



UND 309 - Quartzo-feldspathic gneiss, Nagle Dam Formation.

1 p 3 4 5 6 7 8 9 10 11 12 13 14 15 Av Av Av

C C M Albite M Albite C M C C M C M C C Core AIbitp

exsol. exsol. margin

Si0, 68.50 61.58 62.07 68.79 | 68.16 | 68.28 61.00 68.15 61.52 60.80 61.62 | 61.56 60.47 60.39 60.55 62.80 [ 61.99 68.16
Al Os 19.87 2422 | 2435 19.85 | 20.03 | 20.12 24.71 20.21 24.84 24.79 24.80 | 24.72 24.54 24.61 24.68 23.57 | 24.06 20.12
FeO 0.01 0.00 0.03 0.01 0.02 0.04 0.10 0.02 0.00 0.05 0.01 0.02 0.00 0.00 0.00 0.02 0.02 0.02
Ca0 0.94 5.55 5.27 0.21 0.39 0.20 5.50 0.46 5.58 5.73 5.52 5.52 5.44 5.41 5.58 438 498 0.43
Na,O 11.18 8.77 8.93 12.06 11.65 11.70 8.56 11.58 8.48 8.52 8.58 8.55 8.78 8.66 8.66 9.30 8.92 11.62
K;O 0.06 0.14 0.10 0.09 0.07 0.16 0.13 0.22 0.14 0.16 0.08 0.08 0.12 0.12 0.12 0.12 0.12 0.15

TOTAL | 100.56 | 100.26 | 100.75 | 101.0t | 10032 | 100.50 | 100.00 | 100.64 | 100.56 | 100.05 | 10061 | 100.45 99.35 99.19 99.59 | 100.19 | 100.09 100.50

Formula per 32 oxygens

Si 1191 10.92 10.94 11.92 11.89 11.89 10.84 11.86 10.86 10.81 10.87 10.88 10.83 10.82 10.81 11.09 10.98 11.87
Al 4.07 5.06 5.06 4.05 4.12 4.13 5.18 4.14 5.17 5.20 5.16 5.15 5.18 5.20 5.19 4.90 5.02 4.13
Fe 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ca 0.18 1.05 1.00 0.04 0.07 0.04 1.05 0.09 1.06 1.09 1.04 1.05 1.04 1.04 1.07 0.83 0.95 0.08
Na 3.77 3.01 3.05 4.05 394 395 295 391 2.90 2.94 2.94 2.93 3.05 3.01 3.00 3.19 3.06 392
K 0.01 0.03 0.02 0.02 0.02 0.04 0.03 0.05 0.03 0.04 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03
An 0.044 0.257 0.244 0.009 | 0.018 | 0.00% 0.260 0.021 0.265 0.268 0.261 0.262 0.253 0.255 0.261 0.205 0.234 0.020
Ab 0.953 0.735 0.750 0.986 | 0978 0.982 0.733 0.967 0.727 0.723 0.734 0.734 0.740 0.738 0.732 0.788 0.759 0972
Or 0.003 0.008 0.006 0.005 | 0.004 0.009 | 0.007 0.012 0.008 0.009 0.005 0.004 0.007 0.007 0.007 0.007 | 0.007 0.008

SASATYNY FHOUJOUDIN - T XIANTddV

t-d



UND 320 - Amphibolite, Nagle Dam Formation.

1 2 3 4 5 6 Average
C C C C C C*
Inclusion Adjacentto | Adjacent to
in diopside hornblende diopside

SiO, 57.38 56.66 56.63 56.95 55.35 60.40 56.59
AlO; 27.39 27.77 27.69 27.93 25.68 26.39 27.29
FeO 0.14 0.13 0.22 022 225 0.11 0.59
CaO 8.92 9.33 9.24 9.19 9.68 1.63 9.27
Na,O 6.48 6.10 6.22 6.34 5.59 7.63 6.15
K0 0.38 0.41 0.39 0.34 0.46 3.05 0.40
TOTAL 100.69 100.40 100.39 100.97 99.01 99.21 100.29
Formula per 32 oxygens
Si 10.24 10.15 10.15 10.14 10.18 10.82 10.17
Al 5.76 5.86 5.85 5.86 5.56 5.57 5.78
Fe 0.02 0.02 0.03 0.03 0.35 0.02 0.09
Ca 1.70 1.79 1.77 1.75 1.91 031 1.78
Na 2.24 2.12 2.16 2.19 1.99 2.65 2.14
K 0.09 0.09 0.09 0.08 0.11 0.70 0.09
An 0.423 0.447 0.441 0.436 0.476 0.086 0.444
Ab 0.556 0.529 0.537 0.545 0.497 0.724 0.533
Or 0.021 0.024 0.022 0.019 0.027 0.190 0.023

* Excluded from average

SASATYNY FHOUJOUDIN - T XIANIV
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NDF 60 - Pelitic gneiss, Nagle Dam Formation.

1 2 3 4 5 6 7 8 9 10 11 Average

C C C C C C C C C C C
Si0, 59.64 59.2§ 59.32 60.00 60.10 59.18 59.48 59.33 58.80 59.18 59.02 59.39
ALO; 26.08 25.82 26.43 26.06 25.97 25.79 26.06 25.65 25.70 25.80 25.80 25.92
FeO 0.07 0.00 0.10 0.06 0.04 0.08 0.07 0.06 0.11 0.12 0.06 0.07
Ca0O 7.09 7.07 6.66 7.14 6.97 7.00 7.05 7.00 7.05 6.51 7.02 6.96
Na,0 7.59 7.51 7.35 7.37 7.28 7.22 7.46 7.37 7.50 7.45 7.33 7.40
K,O 0.22 0.28 0.58 0.20 0.37 0.32 0.25 0.26 0.33 0.50 0.23 0.32
TOTAL 100.69 99.97 100.44 100.83 100.73 99.59 100.37 99.67 99.49 99.56 99.46 100.06
Formula per 32 oxygens
Si 10.57 10.58 10.54 10.61 10.63 10.60 10.57 10.61 10.56 10.60 10.58 10.59
Al 545 5.43 5.54 543 541 5.44 5.46 5.41 5.44 5.45 5.45 5.45
Fe 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01
Ca 1.35 1.35 1.27 1.35 1.32 1.34 1.34 1.34 1.36 1.25 1.35 1.33
Na 2.61 2.60 2.53 2.53 2.50 2.51 2.57 2.56 2.61 2.59 2.55 2.56
K 0.05 0.06 0.13 0.05 0.08 0.07 0.06 0.06 0.08 0.11 0.05 0.07
An 0.336 0.337 0.323 0.345 0.339 0.342 0.338 0.339 0.335 0.316 0.342 0.336
Ab 0.651 0.647 0.644 0.644 0.640 0.639 0.648 0.646 0.646 0.655 0.645 0.646
Or 0.013 0.016 0.033 0.011 0.021 0.019 0.004 0.015 0.019 0.029 0.013 0.018

SASATYNY J0YdOYIIN - T XIANIddV
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NDF 8 - Pelitic gneiss, Nagle Dam Formation.

! 2 3 4 5 6 7 8 9 10 11 12 Average | Average | Average
C C C C C M C C M C C M Core Margin
Assoc. Assoc.
with with
garnet biotite
Si0; 59.16 59.94 59.93 59.51 59.01 5893 58.95 59.34 59.23 58.80 58.81 58.77 59.20 59.27 58.98
AlLO; 26.08 25.60 26.04 25.82 26.02 26.01 25.86 26.07 26.23 26.01 26.09 26.03 25.99 25.96 26.09
FeO 0.04 0.05 0.13 0.10 0.05 0.23 0.11 0.03 0.04 0.04 0.03 0.01 0.07 0.06 0.09
Ca0 8.31 7.60 7.29 7.25 7.58 7.48 7.28 7.58 7.65 7.72 7.61 7.73 7.59 7.58 7.62
Na,O 6.91 7.12 7.44 7.50 7.25 7.44 7.34 7.30 7.11 7.16 7.25 7.22 7.25 7.25 7.26
K,0O 0.24 022 0.14 0.16 0.19 0.14 0.16 0.20 0.13 0.15 0.20 0.13 0.17 0.18 0.13
EOTAL 100.74 100.53 100.97 100.34 100.10 100.23 99.70 100.52 100.39 99.88 99.99 99.89 100.27 100.30 100.17
Formula per 32 oxygens
Si 10.50 10.63 10.59 10.59 10.53 10.51 10.55 10.54 10.53 10.52 10.51 10.51 10.54 10.55 10.52
Al 5.46 5.35 5.42 5.41 5.47 5.47 5.46 5.46 5.49 5.48 5.49 5.49 5.46 5.45 5.48
Fe 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01
Ca 1.58 1.44 .38 1.38 1.45 1.43 1.40 1.44 1.46 1.48 1.46 1.48 145 1.45 1.46
Na 2.38 245 2.55 2.59 2.51 2.57 2.55 2,51 2.45 2.48 2.51 2.50 2.50 2.50 2.51
K 0.05 0.05 0.03 0.04 0.04 0.03 0.04 0.05 0.03 0.03 0.05 0.03 0.04 0.04 0.03
An 0.394 0.366 0.348 0.345 0.362 0.354 0.351 0.361 0.370 0.370 0.363 0.369 0.363 0.363 0.364
Ab 0.593 0.621 0.644 0.646 0.627 0.638 0.640 0.628 0.622 0.621 0.626 0.624 0.627 0.627 0.628
Or 0.013 0.013 0.008 0.009 0.011 0.008 0.009 0.011 0.008 0.009 0.011 0.007 0.010 0.010 0.008

SASATYNY JE0JdOUDIN - T XIANIddY
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UND 357 - Amphibolite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 11 12 Average Average Average

C C M C C C C C M C C M Core Margin
S0, 52.79 52.74 52.78 52.47 52.96 52.76 52.87 52.25 52.45 52.64 52.57 51.20 52.54 52.67 52.14
ALO; 30.76 30.97 30.80 30.53 29.43 29.46 29.64 29.40 29.45 2922 29.16 30.22 2992 29.84 30.16
FeO 0.07 0.09 0.30 0.24 0.07 0.25 0.05 0.13 0.32 0.14 0.22 0.37 0.19 0.14 033
CaO 12.67 12.73 12.33 12.31 12.46 12.61 12.91 12.94 12.95 12.57 12.80 13.87 12.76 12.67 13.05
Na,0 4.44 432 4.46 455 4.55 4.59 439 4.23 438 4.42 4.44 3.84 438 4.44 4.23
K0 0.15 0.07 0.05 0.09 0.15 0.12 0.16 0.13 0.11 0.14 0.10 0.06 0.11 0.12 0.07
TOTAL 100.88 100.92 100.72 100.19 99.62 99.79 100.02 99.08 99.66 99.13 99.29 99.56 99.90 99.88 99.98
Formula per 32 oxygens
Si 9.49 9.47 9.50 9.50 9.64 9.60 9.59 9.57 9.57 9.63 9.62 9.38 9.55 9.57 9.47
Al 6.52 6.56 6.53 6.51 6.31 6.32 6.34 6.35 6.33 6.30 6.29 6.52 6.41 6.39 6.46
Fe 0.01 0.0} 0.05 0.04 0.01 0.04 0.01 0.02 0.05 0.02 0.03 0.06 0.03 0.02 0.05
Ca 2.44 2.45 2.38 2.39 2.43 2.46 2.51 2.54 2.53 2.46 2.51 2.72 2.48 2.47 2.54
Na 1.55 1.50 1.56 1.60 1.61 1.62 1.54 1.50 1.55 1.57 1.57 1.36 1.54 1.56 1.49
K 0.03 0.02 0.01 0.02 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.01 0.03 0.03 0.02
An 0.607 0.617 0.603 0.596 0.597 0.599 0.613 0.624 0.617 0.606 0.611 0.664 0613 0.608 0.628
Ab 0.385 0.379 0.394 0.399 0.394 0.394 0.378 0.369 0.377 0.386 0.383 0.333 0.381 0.385 0368
Or 0.008 0.004 0.003 0.005 0.009 0.007 0.009 0.007 0.006 0.008 0.006 0.003 0.006 0.007 0.004

SASATYNY J90UdOUDIN - T XIANIddY
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NDF 56 - Pelitic gneiss, Valley Trust Formation.

1 2 3 4 5 6 Average Average Average

Cc C C M M C Core Margin
Si0O, 62.36 61.40 62.64 62.89 63.31 63.17 62.63 62.39 63.10
AlLO; 23.38 23.69 23.82 23.54 23.69 23.09 23.54 23.50 23.62
FeO 0.02 0.00 0.05 0.12 0.38 0.03 0.10 0.03 0.25
CaO 5.36 5.78 5.33 4.86 4.95 4.60 5.15 5.27 491
Na,O 842 8.16 8.41 8.17 8.21 8.74 8.35 8.43 8.19
K0 0.14 0.12 0.12 0.11 0.12 021 0.14 0.15 0.12
TOTAL 99.68 99.15 100.37 99.69 100.66 99.84 99.91 99.77 100.19
Formula per 32 oxygens
Si 11.08 10.99 11.05 11.14 11.12 11.19 11.10 11.08 11.13
Al 4.90 4.99 495 491 4.90 482 491 4.92 491
Fe 0.00 0.00 0.01 0.02 0.06 0.00 0.01 0.00 0.04
Ca 1.02 1.11 1.01 0.92 0.93 0.87 0.98 1.00 0.93
Na 2.90 2.83 2.88 2.81 2.80 3.00 2.87 2.90 2.80
K 0.03 0.03 0.03 0.02 0.03 0.05 0.03 0.03 0.02
An 0.258 0.279 0.258 0.246 0.248 0.223 0.252 0.255 0.247
Ab 0.734 0.714 0.735 0.747 0.745 0.765 0.740 0.737 0.746
Or 0.008 0.007 0.007 0.007 0.007 0.012 0.008 0.009 0.007
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UND 42 - Quartzo-feldspathic gneiss, Valley Trust Formation.

1 2 3 4 5 Average
M M C C C
Adjacent Adjacent Inclusion Adjacent Adjacent to
to to in to K-feldspar
K-feldspar | K-feldspar | K-feldspar | K-feldspar | megacryst
megacryst megacryst megacryst megacryst
SiO, 67.53 67.11 68.39 68.27 69.14 68.09
AlLO; 19.75 19.88 19.37 19.52 19.80 19.66
FeO 0.03 0.00 0.05 0.00 0.06 0.03
Ca0 0.17 0.32 0.35 0.47 0.24 0.31
Na,O 11.59 11.22 11.79 11.33 11.52 11.49
KO 0.15 0.61 0.12 0.52 0.07 0.29
TOTAL 99.22 99.14 100.07 100.11 100.83 99.87
Formula per 32 oxygens
Si 11.91 11.87 11.96 11.95 11.97 11.93
Al 4.10 4.14 3.99 4.03 4.04 4.06
Fe 0.00 0.00 0.01 0.00 0.01 0.00
Ca 0.03 0.06 0.07 0.09 0.04 0.06
Na 3.96 3.85 4.00 3.84 3.87 3.90
K 0.03 0.14 0.03 0.12 0.02 0.06
An 0.008 0.015 0.016 0.022 0.011 0.015
Ab 0.984 0.951 0.977 0.950 0.985 0.969
Or 0.008 0.034 0.007 0.028 0.004 0.016
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UND 302 - Quartzo-feldspathic gneiss, Valley Trust Formation.

Average | Average | Average

S - Vv N R R R A R
Si0; 66.99 64.53 64.42 64.45 64.54 64.75 64.09 63.88 64.68 64.51 64.81 64.28 64.43 64.30 65.48 64.13 64.64 64.65 64.64
AlLO, 21.24 22.54 21.66 22.55 22.52 22.59 22.74 22.85 22.32 22.77 22.66 22.41 22.39 22.66 21.83 22.38 22.38 2242 2234
FeO 0.07 0.01 0.03 0.03 0.08 0.01 0.04 0.07 0.05 0.00 0.13 0.11 0.00 0.00 0.00 0.01 0.04 0.04 0.04
CaO 1.45 3.00 2.36 3.10 3.02 2.91 2.56 321 2.55 3.12 298 3.08 2.83 3.07 228 2.78 2.77 2.84 2.70
NaO, 11.03 10.24 10.86 10.15 10.11 10.05 10.01 9.85 10.52 9.93 10.00 9.76 9.51 9.39 9.98 9.66 10.07 10.00 10.14
K0 0.10 0.07 0.10 0.09 0.15 0.07 0.34 0.11 0.14 0.08 0.16 0.17 0.08 0.11 0.07 0.08 0.12 0.11 0.13
TOTAL 100.88 | 100.39 | 99.43 100.37 | 100.42 | 100.38 | 99.78 99.97 100.26 | 100.41 | 100.74 | 99.81 99.24 99.53 99.64 99.04 100.02 | 100.06 [ 99.99 J
Formula per 32 oxygens
Si 11.66 11.34 11.43 11.33 11.34 11.36 11.33 11.28 11.38 11.32 11.35 11.36 11.41 11.36 11.53 11.39 11.38 11.38 11.39
Al 4.36 4.67 4.53 4.67 4.66 4.67 4.74 4.75 4.63 4.71 4.68 4.67 4.67 4.72 4.53 4.68 4.65 4.65 4.64
Fe 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Ca 0.27 0.56 0.45 0.58 0.57 0.55 0.49 0.61 0.48 0.59 0.56 0.58 0.54 0.58 043 0.53 0.52 0.54 0.51
Na 3.72 3.49 3.74 3.46 3.44 3.42 343 3.37 3.59 3.38 3.39 3.34 3.26 3.22 341 333 344 3.41 3.46
K 0.02 0.02 0.02 0.02 0.03 0.02 0.08 0.02 0.03 0.02 0.04 0.04 0.02 0.02 0.02 0.02 0.03 0.02 0.03
An 0.067 0.139 0.107 0.144 0.141 0.137 0.121 0.152 0.117 0.147 0.140 0.147 0.140 0.152 0.112 0.136 0.131 0.135 0.127
Ab 0.927 0.857 0.888 0.851 0.851 0.857 0.860 0.842 0.875 0.848 0.851 0.843 0.855 0.841 0.884 0.859 0.862 0.859 0.866
Or 0.006 0.004 0.005 0.005 0.008 0.004 0.019 0.006 0.008 0.005 0.009 0.010 0.005 0.007 0.004 0.005 0.007 0.006 0.007
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UND 330 - Granitic enclave.

1

C
SiO, 67.69
AlLOx 19.33
FeO 0.04
CaO 0.34
Na,O 11.64
K,O 0.07
TOTAL 99.11

Formula per 32 oxygens

Si 11.95
Al 4.02
Fe 0.01
Ca 0.06
Na 3.98
K 0.02
An 0.016
Ab 0.98
Or 0.004

SASATYNY ddOAdOUIIN - T XIANIdIY
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UND 40 - Biotite granite, Ximba Suite.

L 2 3 4 5 6 7 8 9 10 1
M C C C M C M C M C C
Myrmekite

SiO, 68.64 61.63 62.10 62.08 67.32 68.34 68.96 62.20 68.29 61.68 61.35
AlO; 19.20 24.10 24.27 23.93 19.82 20.01 19.46 24.11 19.77 23.86 23.88
FeO 0.00 0.03 0.02 0.03 0.13 0.00 0.02 0.02 0.00 0.03 0.07
CaO 0.33 5.49 5.48 5.42 0.76 2.27 0.22 5.49 0.62 5.64 5.66
Na,O 11.19 8.28 8.26 8.34 11.01 9.47 11.12 8.17 11.03 8.12 7.79
K,O 0.08 0.14 0.16 0.18 0.08 0.05 0.09 0.17 0.08 0.12 0.26
TOTAL 99.44 99.67 100.29 99.98 99.12 100.14 99.87 100.16 99.79 99.45 99.01
Formula per 32 oxygens

Si 12.04 10.96 10.97 11.01 11.88 11.90 12.03 11.00 11.95 10.99 10.98
Al 3.96 5.05 5.05 5.00 4.12 4.11 4.00 5.03 4.08 5.01 5.04
Fe 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01
Ca 0.06 1.05 1.04 1.03 0.14 0.42 0.04 1.04 0.12 1.08 1.09
Na 3.80 2.86 2.83 2.87 3.77 3.20 3.76 2.80 3.74 2.81 2.70
K 0.02 0.03 0.04 0.04 0.02 0.01 0.02 0.04 0.02 0.03 0.06
An 0.016 0.266 0.266 0.262 0.036 0.117 0.011 0.268 0.030 0.275 0.282
Ab 0.979 0.726 0.725 0.728 0.959 0.880 0.984 0.722 0.965 0.718 0.703
Or 0.005 0.008 0.009 0.010 0.005 0.003 0.005 0.010 0.005 0.007 0.015
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Table continued.

12 13 Average Average Average

M C Core Margin
67.95 62.15 64.82 61.88 68.23
19.64 24.33 22.03 24.07 19.58
0.02 0.09 0.04 0.04 0.03
0.32 5.33 3.31 5.50 0.45
11.22 8.24 9.40 8.17 11.11
0.07 0.18 0.13 0.17 0.08
99.22 100.32 99.73 99.83 99.48
11.95 10.98 11.44 10.98 11.97
4.07 5.06 4.58 5.04 4.05
0.00 0.01 0.01 0.01 0.00
0.06 1.01 0.63 1.05 0.08
3.83 2.82 3.22 2.81 3.78
0.02 0.04 0.03 0.04 0.02
0.015 0.261 0.162 0.268 0.022
0.981 0.729 0.831 0.722 0.973
0.004 0.001 0.007 0.010 0.005

SASATVYNY FdOUdOADIN - T XIANIddV
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XS 4 - Biotite garnet granite, Ximba Suite.

1 2 3 4 Average

M C C C
SiO, 60.82 61.74 60.30 60.89 60.94
AlLO; 25.25 24.70 2436 24.52 24.71
FeO 0.09 0.12 0.08 0.06 0.09
Ca0 5.38 6.19 6.12 6.33 6.01
Na,O 7.67 7.92 8.07 7.86 7.88
K0 0.92 0.30 0.18 026 0.42
TOTAL 100.13 100.97 99.11 99.92 100.05
Formula per 32 oxygens
Si 10.80 10.87 10.83 10.84 10.84
Al 5.29 5.13 5.15 5.14 5.18
Fe 0.01 0.02 0.01 0.01 0.01
Ca 1.02 1.17 1.18 1.21 1.14
Na 2.64 2.70 2.81 2.71 2.72
K 0.21 0.07 0.04 0.06 0.10
An 0.264 0.297 0.292 0.303 0.289
Ab 0.682 0.686 0.698 0.682 0.687
Or 0.054 0.017 0.010 0.015 0.024
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UND 65 - Hornblende granite, Mlahlanja Suite.

1 2 3 4 5 6 7 8 9 10 11 Average Average Average
C M C M M C C M C C M Core Margin
Assoc.
with
perthite

Si0, 62.28 64.48 62.34 63.33 63.53 63.07 62.42 63.08 62.88 62.69 62.89 63.00 62.61 63.46
ALO; 23.40 22.85 23.47 23.70 23.58 23.78 2341 23.64 22.96 23.38 23.45 23.42 23.40 23.44
FeO 0.05 0.02 0.10 0.11 0.06 0.07 0.13 0.12 0.12 0.08 0.14 0.09 0.09 0.09
Ca0O 481 3.92 5.00 4.78 4.61 4.95 4.57 4.78 4.53 4.66 4.83 4.68 4.75 458
Na;O 8.90 9.20 8.43 8.70 8.84 8.56 8.72 8.72 8.70 8.73 8.78 8.75 8.67 8.85
K,O 0.12 0.10 0.30 0.15 0.14 022 0.18 0.15 0.13 0.15 0.15 0.16 0.18 0.14
TOTAL 99.56 100.57 99.64 100.77 100.76 100.65 99.43 100.49 99.32 99.69 100.24 100.10 99.70 100.56
Formula per 32 oxygens
Si 11.08 11.30 11.08 11.12 1115 11.09 11.11 1E.11 11.19 1112 1111 11.13 11.11 11.16
Al 491 4.72 4.92 4.90 4.88 4.93 491 491 4.82 4.89 4.88 4.88 4.90 4.86
Fe 0.01 0.00 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01
Ca 0.92 0.74 0.95 0.90 0.87 0.93 0.87 0.90 0.86 0.89 091 0.88 0.90 0.86
Na 3.07 3.13 291 2.96 3.01 292 3.01 2.98 3.00 3.00 3.01 3.00 298 3.02
K 0.03 0.02 0.07 0.03 0.03 0.05 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.03
An 0.228 0.189 0.243 0.231 0.222 0.239 0.222 0.230 0.222 0.226 0.231 0.226 0.230 0.221
Ab 0.765 0.805 0.740 0.760 0.770 0.748 0.767 0.761 0.771 0.765 0.760 0.765 0.760 0.771
Or 0.007 0.006 0.017 0.009 0.008 0.013 0.011 0.009 0.007 0.009 0.009 0.009 0.010 0.008
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UND 74 - Charnockite, Mlahlanja Suite.

1 2 3 4 Average Average
M C C M Core Margin
Adjacent to Adjacent to
perthite perthite

Si0, 61.36 61.25 61.95 62.58 61.60 61.97
ALO; 24.00 24.29 24.2] 24.12 2425 24.06
FeO 0.13 0.09 0.07 0.11 0.08 0.12
Ca0O 5.65 5.90 5.44 5.14 5.67 5.40
Na,0 8.16 7.93 8.09 8.15 8.01 8.16
K;O 0.19 0.30 0.15 0.22 0.22 021
TOTAL 99.49 99.76 99.91 100.32 99.83 99.92
Formula per 32 oxygens

Si 10.95 10.91 10.98 11.04 10.94 10.99
Al 5.05 5.10 5.06 5.01 5..08 5.03
Fe 0.02 0.01 0.01 0.02 0.01 0.02
Ca 1.08 1.13 1.03 0.97 1.08 1.03
Na 2.82 2.74 2.78 2.79 2.76 2.81
K 0.04 0.07 0.03 0.05 0.05 0.05
An 0.274 0.286 0.269 0.255 0.277 0.265
Ab 0.715 0.696 0.722 0.732 0.710 0.723
Or 0.011 0.017 0.009 0.013 0.013 0.012
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UND 9 - Garnet hornblende granite, Mlahlanja Suite.

—

C
Si0, 61.83
Al O, 24.26
FeO 0.05
Ca0O 6.52
Na,0 7.03
KO 0.17
TOTAL 99.86

Formula per 32 oxygens

Si 10.96
Al 5.07
Fe 0.01
Ca 1.24
Na 242
K 0.04
An 0.335
Ab 0.654
Or 0.011
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UND 6 - Garnet hornblende granite, Malhlanja Suite.

1 2 3 4 5 6 7 8 Average

C M C C C C C C Core
SiO, 60.79 68.25 60.85 60.35 60.85 61.43 60.49 60.98 60.82
ALO; 24.60 19.70 24 .45 24.32 24 45 24.53 2453 24.69 2451
FeO 0.10 0.01 0.08 0.09 0.04 0.04 0.11 0.06 0.07
Ca0O 6.11 0.44 6.10 6.15 6.04 6.32 6.25 6.38 6.19
Na,O 7.91 11.29 7.88 7.85 7.62 7.51 7.64 7.78 7.74
K0 0.24 0.08 0.17 0.30 0.17 0.17 0.28 0.18 0.22
TOTAL 99.75 99.77 99.53 99.06 99.17 100.00 99.30 100.07 99.55
Formula per 32 oxygens
Si 10.84 11.95 10.86 10.84 10.88 10.90 10.83 10.83 10.85
Al 5.17 4.06 5.14 5.15 5.15 5.13 5.18 5.17 5.16
Fe 0.02 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01
Ca 1.17 0.08 1.17 1.18 1.16 1.20 1.20 1.21 1.19
Na 2.73 3.83 2.73 2.73 2.64 2.58 2.65 2.68 2.68
K 0.05 0.02 0.04 0.07 0.04 0.04 0.06 0.04 0.05
An 0.295 0.021 0.297 0.297 0.302 0314 0.306 0.309 0.302
Ab 0.691 0.974 0.693 0.686 0.688 0.676 0.677 0.681 0.685
Or 0.014 0.005 0.010 0.017 0.010 0.010 0.016 0.010 0.013
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UND 19 - Ngwadolo Suite.

1 2 3 4 5 6 7 8 9 10 11
C M C M C C C C M Exsol. in M

Assoc perthite Inclusion

with in K-feld

K-feld
Si0; 64.43 68.99 65.64 67.77 64.78 64.97 64.46 64.64 67.38 66.32 64.69
AL Os 22.51 19.836 22.45 20.60 22.55 22.23 22.52 22.38 20.28 20.42 22.50
FeO 0.01 0.00 0.00 0.00 0.06 0.00 0.02 0.03 0.00 0.00 0.03
Ca0 3.38 0.30 3.26 1.15 3.57 3.13 3.55 3.11 0.51 0.89 3.22
Na;O 9.87 10.99 9.46 11.03 9.54 9.86 9.56 9.99 11.38 10.12 9.89
K0 0.13 0.06 0.12 0.13 0.18 0.10 0.21 0.20 0.06 1.74 0.13
TOTAL 100.33 100.20 100.93 100.68 100.68 100.29 100.32 100.35 99.61 99.49 100.46
Formula per 32 oxygens
Si 11.33 11.99 11.43 11.79 11.35 11.41 11.34 11.36 11.83 11.75 11.36
Al 4.67 4.07 4.61 4.22 4.66 4.60 4.67 4.64 4.20 4.26 4.65
Fe 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Ca 0.64 0.06 0.61 0.21 0.67 0.59 0.67 0.59 0.10 0.17 0.61
Na 337 3.70 3.19 3.72 3.24 3.36 3.26 3.41 3.87 3.48 3.37
K 0.03 0.01 0.03 0.03 0.04 0.02 0.05 0.04 0.01 0.39 0.03
An 0.158 0.015 0.159 0.054 0.170 0.148 0.168 0.145 0.024 0.042 0.151
Ab 0.835 0.982 0.834 0.939 0.820 0.846 0.820 0.844 0.973 0.861 0.841
Or 0.007 0.003 0.007 0.007 0.010 0.006 0.012 0.011 0.003 0.097 0.007

# Excluded from average
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Table continued.

12# 13 14 IS 16 17 18# 19 20 21 22 Average Average
C C M C M Albite C M C M C Core Margin
exsol in
K-feld

67.51 63.97 68.35 64.51 68.86 65.38 67.10 67.04 64.48 68.25 64.50 64.64 68.09
19.57 22.61 19.89 22.78 20.01 22.28 20.69 20.77 22.62 19.85 22.54 22.52 20.18
0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00
0.18 3.29 0.28 3.58 0.29 2.81 1.12 1.26 3.27 0.15 3.04 3.32 0.56
11.73 9.83 11.67 9.43 11.49 9.81 11.20 10.86 9.62 [1.73 9.83 9.71 11.31
0.06 0.03 0.06 0.20 0.06 0.43 0.09 0.10 0.13 0.07 0.12 0.14 0.08
99.05 99.76 100.25 100.51 100.72 100.71 100.20 100.03 100.12 100.05 100.04 100.35 100.22
11.92 11.31 11.92 11.32 11.94 11.44 11.74 11.74 11.35 11.92 11.36 11.35 11.88
4.07 4.71 4.09 471 4.09 4.59 4.27 429 4.69 4.09 4.68 4.66 4.15
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.03 0.62 0.05 0.67 0.05 0.53 0.21 0.24 0.62 0.03 0.57 0.62 0.10
4.02 3.37 3.95 321 3.86 3.33 3.80 3.69 3.28 3.97 3.36 3.31 3.82
0.01 0.01 0.01 0.04 0.01 0.10 0.02 0.02 0.03 0.02 0.03 0.03 0.02
0.009 0.156 0.013 0.172 0.014 0.133 0.052 0.060 0.157 0.007 0.145 0.158 0.027
0.988 0.842 0.984 0.817 0.983 0.843 0.943 0.934 0.836 0.989 0.848 0.834 0.969
0.003 0.002 0.003 0.011 0.003 0.024 0.005 0.006 0.007 0.004 0.007 0.008 0.004
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UND 22 - Granite vein.

1 2 3 4 5 6 7 8 9 10* 11* 12
M M M C M C M C M Albite Albite M
exsol in exsol in
perthite perthite

Sibz 66.23 67.60 67.75 66.57 68.45 67.30 68.09 67.41 68.57 66.74 66.97 68.40
ALO; 19.99 19.90 19.94 21.54 20.40 20.97 20.39 20.80 20.34 21.33 20.92 20.44
FeO 0.17 0.05 0.10 0.08 0.02 0.03 0.00 0.09 0.03 0.05 0.07 0.06
Ca0 0.72 0.31 0.06 1.63 0.30 1.06 0.30 0.66 0.24 1.45 0.99 0.49
Na,0 11.90 12.05 12.41 10.93 11.60 11.5] 11.80 11.53 11.72 11.22 11.40 11.34
KO 0.09 0.06 0.08 0.15 0.13 0.07 0.10 0.12 0.09 0.11 0.09 0.09
TOTAL 99.10 99.97 100.34 100.90 100.90 100.94 100.68 100.61 100.99 100.90 100.44 100.82
Formula per 32 oxygens

Si 11.75 11.85 11.85 11.59 11.86 11.70 11.84 11.75 11.87 11.62 ll.70. 11.86
Al 4.18 4.11 4.11 4.42 4.17 4.30 4,18 4.27 4.15 438 431 4.18
Fe 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01
Ca 0.14 0.06 0.01 0.30 0.06 0.20 0.06 0.12 0.04 0.27 0.19 0.09
Na 4.09 4.10 421 3.69 3.90 3.88 398 3.90 3.93 3.79 3.86 3.81
K 0.02 0.01 0.02 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02
An 0.032 0.014 0.003 0.076 0.014 0.048 0.014 0.030 0.011 0.066 0.046 0.023
Ab 0.963 0.983 0.993 0916 0.979 . 0.948 0.981 0.963 0.984 0.928 0.949 0.972
Or 0.005 0.003 0.004 0.008 0.007 0.004 0.005 0.007 0.005 0.006 0.005 0.005

SASATYNY JaOUdOYDIN - T XIANIddV

[z-4d



Table continued.

13 14 15% 16 Average Average Average
M C C C Core Margin
68.32 66.40 65.19 66.13 67.48 66.76 67.93
19.92 21.23 22.34 20.79 20.51 21.07 20.17
0.05 0.06 0.09 0.08 0.06 0.07 0.06
0.21 1.53 0.56 1.55 0.70 1.29 0.33
12.04 11.25 10.56 11.36 11.65 11.32 11.86
0.11 0.09 1.05 0.12 0.10 0.11 0.09
100.65 100.56 99.79 100.03 100.50 100.62 100.44
Formula per 32 oxygens
11.89 11.61 11.50 11.64 11.78 11.66 11.85
4.09 4.38 4.64 431 422 4.34 4.15
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.29 0.11 0.29 0.13 0.24 0.06
4.06 3.81 3.61 3.88 3.94 3.83 4.01
0.02 0.02 0.24 0.03 0.02 0.02 0.02
0.009 0.06% 0.027 0.07.0 0.032 0.059 0.015
0.985 0.926 0.913 0.924 0.963 0.935 0.980
0.006 0.005 0.060 0.006 0.005 0.006 0.005

* Not included in average
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UND 309 - Quartzo-feldspathic gneiss, Nagle Dam Formation.

K-feldspar

1 2 3 4 5 6 7* 8 9 10 11 12 13 1 4‘ 15 1 6_* Average Ag:ege
C C C C C C Albite C Perthite | Perthite M C C Pethite C Albite
Assoc. exsol core core core ex;ol
with in in
plag. K-feld. K-feld.

SiO, 64.60 64.54 64.70 64.87 64.48 65.09 67.39 64.76 64.49 65.13 64.53 65.25 65.33 64.26 64.51 65.41 64.75 64.77
ALO; 18.54 18.71 18.61 18.73 18.57 18.72 19.57 18.74 18.61 18.73 18.55 18.82 18.77 18.69 18.82 19.12 18.69 18.70
FeO 0.03 0.04 0.04 0.00 0.04 0.01 0.09 0.04 0.04 0.03 0.02 0.04 0.02 0.03 0.03 0.03 0.03 0.03
Ca0 0.03 0.02 0.01 0.00 0.00 0.00 0.20 0.06 0.00 0.02 0.03 0.06 0.02 0.03 0.03 0.03 0.02 0.02
Na,O 0.66 0.68 0.63 0.79 0.77 0.61 9.11 0.72 0.42 0.60 0.55 0.94 0.02 0.03 0.04 0.14 0.53 0.53
K,O 15.59 15.65 15.62 15.43 15.18 15.52 4.24 15.54 15.86 15.56 15.44 15.20 15.48 15.76 15.23 9.05 15.50 15.51
TOTAL 99.45 99.64 99.61 99.82 99.04 99.95 100.60 | 99.86 99.42 100.07 99.12 100.31 99.64 98.80 98.66 93.78 99.52 99.56
Formula per 32 oxygens
Si 11.98 11.95 11.97 11.97 11.98 11.99 11.90 11.95 11.97 11.98 11.99 11.97 12.03 11.98 11.99 12.27 11.98 11.98
Al 4.05 4.08 4.06 4.07 4.07 4.06 4.07 4.08 4.07 4.06 4.06 4.07 4.07 4.11 4.12 4.23 4.08 4.08
Fe 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Ca 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00
Na 0.24 0.24 0.23 0.28 0.28 0.22 3.12 0.26 0.15 0.21 0.20 0.33 0.01 0.01 0.01 0.05 0.19 0.19
K 3.69 3.70 3.69 3.63 3.60 3.65 0.96 3.66 375 3.65 3.66 3.56 3.64 3.75 3.61 2.17 3.66 3.66
An 0.002 0.001 0.000 0.000 0.000 0.000 0.009 0.003 0.000 0.001 0.002 0.003 0.001 0.002 0.002 0.003 0.001 0.001
Ab 0.060 0.062 0.058 0.072 0.072 0.056 0.759 0.066 0.039 0.055 0.051 0.086 0.002 0.003 0.004 0.023 0.049 0.049
Or 0.938 0.937 0.942 0.928 0.928 0.944 0.232 0.931 0.961 0.944 0.947 0911 0.997 0.995 0.994 0.974 0.950 0.950

* Not included in average
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NDF 56 - Pelitic gneiss, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 11* 12 Average Average Average
M C C M C C C C C C Albite C Core Margin
Exsol. in
K-feld

Si0; 66.91 66.90 65.88 66.36 66.18 66.78 66.29 65.82 65.86 66.28 67.32 65.94 66.29 66.21 66.64
Al,O, 18.65 18.79 18.66 18.68 18.55 18.58 18.55 18.53 18.50 18.42 18.95 18.43 18.58 18.56 18.67
FeO 0.08 0.14 0.06 0.08 0.00 0.00 0.00 0.08 0.04 0.01 0.06 0.03 0.05 0.04 0.08
Ca0 0.03 0.04 0.03 0.03 0.12 0.07 0.08 0.05 0.07 0.09 0.14 0.07 0.06 0.07 0.03
Na,0 1.61 1.41 1.47 1.13 327 3.90 2.61 1.64 1.84 2.14 5.62 2.41 2.13 2.30 1.37
K,0 13.07 13.25 13.40 13.72 12.18 11.26 12.95 14.17 14.11 13.63 8.57 13.22 13.18 13.13 13.40
TOTAL 100.35 100.53 99.50 100.00 100.30 100.59 100.48 100.29 100.42 100.57 100.66 100.10 100.29 100.31 100.19
Formula per 32 oxygens
Si 12.11 12.10 12.06 12.09 12.02 12.04 12.04 12.03 12.02 12.05 12.02 12.03 12.05 12.04 12.10
Al 3.99 4.00 4.03 4.0t 3.97 3.95 3.97 3.99 3.98 395 3.99 3.96 3.98 3.98 3.99
Fe 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 “0.01
Ca 0.01 0.01 0.01 0.0] 0.02 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.01
Na 0.57 0.49 0.52 0.40 1.15 1.36 0.92 0.58 0.65 0.75 1.95 0.85 0.75 0.81 0.48
K 3.02 3.06 3.13 3.19 2.82 2.59 3.00 3.30 329 3.16 1.95 3.08 3.06 3.05 3.10
An 0.002 0.002 0.001 0.002 0.006 0.003 0.004 0.003 0.003 0.004 0.007 0.004 0.003 0.004 0.002
Ab 0.157 0.139 0.143 0.111 0.288 0.344 0.234 0.149 0.165 0.192 0.496 0.216 0.197 0.209 0.134
Or 0.841 0.859 0.856 0.887 0.706 0.653 0.762 0.848 0.832 0.804 0.497 0.780 0.800 0.787 0.864

* Not included in average
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UNDA42 - Quartzo-feldspathic gneiss, Valley Trust Formation.

1 2 3 4 5 6 Average
c . C C C C C
Megacryst | Megacryst Megacryst Megacryst Megacryst Megacryst

SiO; 64.13 63.75 64.23 64.53 64.04 64.55 64.21
ALO, 18.57 18.55 18.54 18.70 18.34 18.67 18.56
FeO 0.07 0.03 0.03 0.06 0.05 0.04 0.05
Ca0 0.01 0.00 0.03 0.01 0.01 0.01 0.01
Na,O 0.98 0.68 1.16 1.42 0.77 1.10 1.02
K:0 15.32 16.12 15.25 14.88 15.84 15.03 1541
TOTAL 99.08 99.13 99.24 99.60 99.05 99.40 99.26
Formula per 32 oxygens

Si | 11.94 11.91 11.94 11.93 11.96 11.95 11.94
Al 4.07 4.09 4.06 4.08 4.04 4.07 4.07
Fe 0.01 0.00 0.00 0.01 0.01 0.01 0.01
Ca 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Na 0.35 0.25 0.42 0.51 0.28 0.39 0.37
K 3.64 3.84 3.62 3.51 3.77 3.55 3.66
An 0.000 0.000 0.002 0.000 0.000 0.001 0.001
Ab 0.089 0.060 0.103 0.127 0.069 0.100 0.091
Or 0.911 0.940 0.895 0.873 0.931 0.899 0.908
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UND 302 - Quartzo-feldspathic gneiss, Valley Trust Formation.

! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Averuge o N
C C C C M M C C C M C C C C C M C M C
Perthite Perthite Perthite Perthite Perthite Perthite Perthite Perthile

Si0: 64.93 64.53 64.81 64.84 64.67 64.90 64.17 65.14 64.76 64.34 64.14 64.54 64.61 64.51 64.51 64.50 64.56 64.41 64.37 64.59 64.62 64.42
ALOy 18.90 18.77 18.92 18.75 18.71 18.71 18.51 18.75 18.74 18.76 18.65 18.76 18.94 18.68 18.75 18.65 18.72 18.79 18.76 18.75 18.75 18.73
FeO 0.0t 0.02 0.00 0.06 0.03 0.05 0.04 0.05 0.01 0.07 0.07 0.02 0.08 0.04 0.05 0.05 0.03 0.02 0.00 0.04 0.07 0.05
Ca0 0.0] 0.00 0.00 0.00 0.00 0.01 0.74 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0,04 0.05 0.03
Na,O 1.03 0.50 039 0.27 0.40 0.36 0.54 1.59 0.34 048 0.63 0.46 0.61 0.56 0.32 0.26 0.49 0.28 0.65 0.53 057 0.34
K:0 1539 15.90 16.13 16.01 16.00 16.00 15.73 14.39 15.99 15.95 15.75 15.95 15.89 15.84 16.25 16.20 15.55 15.98 15.40 15.81 15.76 16.04
TOTAL 100.27 99.72 100.25 99.93 99.81 100.03 9.73 99.95 99.85 99.61 99.26 99.73 100.13 99.64 99.88 99.66 99.35 99.48 99.18 99.76 99.82 99.61
Formula per 32 oxygens
Si 11.93 11.94 11.94 11.97 11.96 11.97 11.91 11.96 11.97 11.93 11.93 11.95 11.92 11.95 11.94 11.96 11.97 11.95 11.95 11.95 11.95 11.94
Al 409 4.09 4.11 4.08 4.08 4.07 4.05 4.06 4.08 4.10 4.09 4.09 412 4.08 4.09 4.08 4.09 4.1 4.10 4.09 4.09 4.09
Fe 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Na 0.37 0.18 0.14 0.10 0.14 0.13 0.19 0.57 0.12 0.17 0.23 0.17 0.22 0.20 o 0.0% 0.18 0.10 0.23 0.1 0.20 0.12
K 3.61 3.75 3.79 3.77 3.77 3.76 372 3.37 377 377 3.74 3.77 3.74 3.74 3.84 3.83 3.68 3.78 3.65 373 372 379
An 0.001 0.000 0.000 0.000 0.000 0.001 0.036 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.002
Ab 0092 | 0.046 0.035 0.025 0.037 0.033 0.048 0.144 0.031 0044 0.057 0.042 0.055 0.051) 0.029 0.024 0.046 0.026 0.060 0.048 0.052 0.031
Or 0.907 0.954 0.965 0.975 0.963 0.966 0.916 0.855 0.968 0.956 0.942 0.958 0.945 0.949 0.971 0.976 0.954 0974 0.940 0.950 0.945 0.967
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UND 40 - Biotite granite, Ximba Suite.

1 2 3 4 5 6 7 Average Average

C C M C C C C Core
SiO, 64.74 64.98 64.81 64.66 65.16 65.08 64.81 64.89 64.91
Al O, 18.51 18.56 18.37 18.38 18.42 18.51 18.46 18.46 18.47
FeO 0.00 0.06 0.02 0.00 0.01 0.02 0.05 0.02 0.02
Ca0 0.05 0.02 0.00 0.02 0.04 0.07 0.05 0.04 0.04
Na,O 0.97 0.66 0.37 0.53 1.16 1.66 0.84 0.88 0.97
| $10) 15.08 15.18 15.54 15.60 14.63 13.94 14.99 14.99 14.90
TOTAL 99.35 99.46 99.11 99.19 99.42 99.28 99.20 99.28 99.31
Formula per 32 oxygens
Si 11.99 12.01 12.03 12.01 12.03 12.00 12.01 12.01 12.01
Al 4.04 4.04 4.02 4.02 4.01 4.02 4.03 4.03 4.03
Fe 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Ca 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
Na 0.35 0.24 0.13 0.19 0.42 0.59 0.30 0.32 0.35
K 3.56 3.58 3.68 3.70 3.44 3.28 3.54 3.54 3.52
An 0.002 0.001 0.000 0.001 0.002 0.003 0.003 0.002 0.002
Ab 0.089 0.062 0.035 0.049 0.107 0.153 0.078 0.082 0.090
Or 0.909 0.937 0.965 0.950 0.891 0.844 0.919 0916 0.908
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XS 4 - Biotite garnet granite, Ximba Suite.

1 2 3* 4 Average
C M Albite exsol C
in K-feld

Si0, 65.73 65.48 66.08 64.60 65.27
ALO; 18.79 18.64 19.50 18.70 18.71
FeO 0.02 0.07 0.02 0.00 0.03
Ca0 0.08 0.06 0.74 0.11 0.08
Na,O 1.23 2.16 7.55 1.71 1.70
KO 14.67 13.72 5.42 14.03 14.14
TOTAL 100.52 100.13 99.31 99.15 99.93
Formula per 32 oxygens

Si 12.00 11.98 11.86 11.95 11.98
Al 4.04 4.02 4.13 4.08 4.05
Fe 0.00 0.0l 0.00 0.00 0.00
Ca 0.02 0.01 0.14 0.02 0.02
Na 0.44 0.77 2.63 0.61 0.60
K 3.42 3.20 1.24 331 3.31
An 0.004 0.003 0.035 0.006 0.004
Ab 0.113 0.192 0.655 0.155 0.154
Or 0.883 0.805 0.310 0.839 0.842

* Not included in average.
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UND 65 - Hornblende granite, Mlahlanja Suite.

SISATVNY F90UdOUIIN - T XIANAddV

1* 2 3 4 5% 6 7 8 9 10 1+ 12% 13 Average Average /:sz:;ﬁf
Albite C C M Albite C M C C C Albite Albite C
exsolin | Perthite | Perthite exsol in Perthite | exsolin [ exsolin | Perthite
K-feld K-feld K-feld K-feld
Sio, 64.04 65.01 64.63 64.61 63.83 65.02 64.66 64.75 65.68 64.82 66.57 64.64 64.73 64.88 64.95 64.64
ALO; 21.35 18.67 18.43 18.54 22.05 18.62 18.55 18.58 18.75 18.34 18.99 21.06 18.29 18.53 18.52 18.55
FeO 0.07 0.02 0.04 0.03 0.07 0.03 0.02 0.05 0.03 0.05 0.03 0.08 0.04 0.03 0.04 0.02
CaO 243 0.05 0.03 0.01 3.64 0.07 0.01 0.03 0.11 0.03 0.27 2.50 0.03 0.04 0.05 0.01
Na,O 6.83 223 1.16 0.80 7.33 220 0.94 1.11 2.94 0.89 5.53 6.50 0.83 1.46 1.62 0.87
K.0 4.39 13.36 14.79 15.15 321 13.33 15.17 14.81 12.30 15.16 8.53 5.20 15.17 14.36 14.13 15.16
TOTAL 99.11 99.34 99.08 99.14 100.13 99.27 99.35 99.33 99.81 99.29 99.92 99.98 99.09 99.30 99.31 99.25
Formula per 32 oxygens
Si 11.5¢ 11.97 11.99 11.99 11.36 11.98 11.97 11.98 11.99 12.01 11.98 11.56 12.02 11.99 11.99 11.98
Al 453 4.05 4.03 4.05 4.63 4.04 4.05 4.05 4.03 401 4.03 444 4.00 4.04 4.03 4.05
Fe 0.01 . 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00
Ca 0.47 0.01 0.01 0.00 0.69 0.01 0.00 0.01 0.02 0.01 0.05 0.48 0.01 0.01 0.01 0.00
Na 2.38 0.80 ) 0.42 0.29 2.53 0.?9 0.34 0.40 1.04 0.32 [.93 2.25 0.30 0.52 0.58 0.31
K 1.01 3.14 3.50 3.59 0.73 3.13 3.59 3.50 2.86 3.58 1.96 1.19 3.59 3.39 333 3.59
An 0.12] 0.002 0.002 0.001 0.176 0.003 0.001 0.002 0.005 0.001 0.013 0.122 0.001 0.002 0.003 0.001
Ab 0.618 0.202 0.106 0.074 0.640 0.200 0.086 0.102 0.265 0.082 0.490 0.575 0.077 0.134 0.148 0.080
Or 0.261 0.796 0.892 0.925 0.184 0.797 0.913 0.896 0.730 0917 0.497 0.303 0.922 0.864 0.849 0.919

* Not included in average.
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UND 74 - Charnockite, Mlahlanja Suite.

1 2 3 4% S 6 7 8 9 10 11 12 Average
C C C " Albite C C M C C C C C Perthite
Perthite Perthite Perthite exsol in Perthite Perthite Perthite, Perthite Perthite Perthite Perthite Core
megacryst megacryst megacryst K-feld adjacem megacryst
to plag
Si0, 65.11 64.93 65.11 64.88 64.96 65.15 64.94 65.25 65.59 65.17 65.02 65.30 65.16
ALO; 18.55 18.60 18.76 19.78 18.60 18.62 18.45 18.56 18.49 18.83 18.71 18.78 18.65
FeO 0.05 0.01 0.04 0.10 0.04 0.08 0.05 0.05 0.03 0.05 0.03 0.18 0.06
Ca0 0.04 0.11 0.13 1.39 0.09 0.11 0.04 0.09 0.08 0.15 0.12 0.10 0.10
Na,O 1.42 1.80 2.66 4.01 1.98 2.46 1.41 2.44 235 2.57 2.59 2.25 2.25
K;0 14.36 13.76 12.42 9.42 13.52 12.63 14.36 12.98 12.92 12.60 12.56 12.95 13.07
TOTAL 99.53 99.21 99.12 99.58 99.19 99.05 99.25 99.37 99.46 99.37 99.03 99.56 99.29
Formula per 32 oxygens
Si 12.00 11.98 11.97 11.78 11.98 11.99 12.00 11.99 12.03 11.96 11.97 11.97 11.99
Al 4.03 4.05 4.06 423 4.04 4.04 4.02 4.02 ©4.00 4.07 4.06 4.06 4;04
Fe 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.03 0.01
Ca 0.01 0.02 0.03 027 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.02 0.02
Na 0.51 0.64 0.95 1.41 0.71 0.88 0.51 0.87 0.84 0.91 0.92 0.80 0.80
K 3.38 3.24 291 2.18 3.18 297 3.39 3.04 3.02 2.95 2.95 3.03 3.07
An 0.002 0.006 0.007 0.070 0.005 ' 0.006 0.002 0.005 0.004 0.008 0.006 0.005 0.005
Ab 0.130 0.165 0.244 0.365 0.181 0.227 0.130 0.221 0.216 0.235 0.237 0.208 0.206
Or 0.868 0.829 0.749 0.565 0.814 0.767 0.868 0.774 0.780 0.757 0.757 0.787 0.789

* Not included in average.
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UND 6 - Garnet hornblende granite, Mlahlanja Suite.

[ 2 Average

C C
Si0, 66.67 64.52 65.60
ALO; 18.53 18.52 18.53
FeO 0.00 0.00 0.00
Ca0 0.08 0.01 0.05
Na,0 1.09 1.05 1.07
K0 13.57 14.96 14.27
TOTAL 99.94 99.06 99.52
Formula per 32 oxygens
Si 12.13 1198 "12.05
Al 3.97 4.05 4.01
Fe 0.00 0.00 0.00
Ca 0.02 0.00 0.01
Na 0.38 0.38 0.38
K 3.15 3.54 3.34
An 0.005 0.001 0.003
Ab 0.108 0.096 0.102
Or 0.887 0.903 0.895
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UND 19 - Ngwadolo Suite.

1 2 3 4 5 6 7 8 9 10 11 12 13% 14 15 16
M C C C C M C C C M C C Albite C C C
Perthite | Perthite exsol in Perthite
K-feld
SiO, 65.35 65.15 65.85 65.91 65.86 65.41 65.83 65.79 65.49 65.58 65.45 64.74 65.34 64.04 63.81 63.79
ALO;, 18.58 18.74 19.28 18.75 18.85 18.65 18.60 18.50 18.52 18.48 18.62 18.59 19.10 18.50 18.71 18.62
FeO 0.02 0.04 0.03 0.02 0.06 0.01 0.00 0.04 0.00 0.01 0.01 0.02 0.04 0.00 0.00 0.00
CaO 0.03 0.04 0.40 0.01 0.02 0.02 0.04 0.02 0.00 0.08 0.04 0.04 0.24 0.00 0.03 0.02
Na,0O 0.70 1.03 395 0.69 0.95 0.62 0.85 0.91 0.77 0.57 0.90 1.12 5.12 0.85 0.83 0.95
K,O 15.64 14.93 10.84 15.52 14.98 16.17 15.63 15.51 15.79 15.71 15.68 15.20 9.92 15.86 15.77 15.72
TOTAL 100.32 99.93 100.35 100.90 100.72 100.88 100.95 100.77 100.57 100.43 100.70 99.71 99.76 99.25 99.15 99.10
Formula per 32 oxygens
Si 12.00 11.98 11.91 12.01 12.00 11.98 12.01 12.02 12.01 12.03 11.99 11.96 11.88 11.93 11.90 11.90
Al 4.02 4.06 4.11 4.03 4.05 4.03 4.00 3.98 4.00 3.99 4.02 4.05 4.09 4.06 4.11 4.10
Fe 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00- 0.00
Ca 0.01 0.01 0.08 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.05 0.00 0.01 0.00
Na 0.25 0.37 1.38 0.24 0.34 022 0.30 0.32 0.27 0.20 0.32 0.40 1.80 031 0.30 0.34
K 3.66 3.50. 2.50 3.61 3.48 3.78 3.64 3.62 3.69 3.68 3.66 3.58 2.30 3.77 375 3.74
An 0.001 0.002 0.020 0.001 0.001 0.001 0.002 0.001 0.000 0.004 0.002 0.002 0.011 0.000 0.001 0.001
Ab 0.064 0.095 0.349 0.063 0.088 0.055 0.076 0.082 0.069 0.052 0.080 0.101 0.435 0.075 0.074 0.084
Or 0.935 0.903 0.631 0.936 0911 0.944 0.922 0917 0.931 0.944 0918 0.897 0.554 0.925 0.925 0.915

* Not included in average.
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Table continued.

17 18 19 20 21 22 23 24 25 26 27* 28 29 30 Average Average
< N ¢ M c M C c M C Albite C C C Core Margin
Perthite By exsol in
albite K-feld
exsol.
64.19 64.01 64.45 64.51 64.92 65.14 65.01 64.69 64.17 64.33 65.83 64.46 64.33 64.57 64.85 65.03
18.66 18.55 18.63 18.60 18.47 18.76 18.41 18.68 18.56 18.58 20.69 18.77 18.54 18.58 18.64 18.61
0.00 0.00 0.02 0.02 0.02 0.12 0.01 0.00 0.00 0.01 0.00 0.01 0.02 0.03 0.02 0.03
0.06 0.10 0.03 0.02 0.04 0.00 '0.02 0.00 0.00 0.01 1.49 0.15 0.02 0.02 0.05 0.03
0.97 1.17 1.87 0.63 0.59 0.60 0.78 0.96 0.78 1.06 7.02 1.81 0.77 1.31 1.14 0.65
15.71 15.33 14.14 15.99 16.25 15.89 15.80 15.66 15.85 15.22 5.58 14.15 15.96 1531 15.23 15.88
99.59 99.16 99.14 99.77 100.29 100.51 100.03 99.99 99.36 99.21 100.61 99.35 99.64 99.82 99.93 100.23
11.92 11.92 11.94 11.95 11.97 11.96 12.00 11.94 11.94 [1.95 11.69 11.92 11.94 11.94 11.96 11.97
4.08 4.07 4.07 4.06 4.02 4.06 4.00 4.06 4.07 4.07 433 4.09 4.06 4.05 4.05 4.04
0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.28 0.03 0.00 0.00 0.01 0.01
0.35 0.42 0.67 0.23 0.21 0.21 028 0.34 0.28 0.38 242 0.65 0.28 0.47 0.41 0.23
3.72 3.64 3.34 3.78 3.82 3.72 372 3.69 3.76 3.6l 1.26 334 3.78 3.61 3.58 3.73
0.003 0.005 0.002 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.071 0.007 0.001 0.001 0.003 0.002
0.086 0.103 0.167 0.056 0.052 0.054 0.070 0.085 0.070 0.096 0.610 0.162 0.068 0.115 0.102 0.058
0.911 0.892 0.831 0.943 0.946 0.946 0.929 0.915 0.930 0.904 0.319 0.831 0.931 0.884 0.895 0.940
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UND 22 - Granite vein.

0.955

\ 2 3 4 5 6 7 8 9 10 11
M M C C Cc M C M C C C
Perthite Perthite Perthite Perthite Perthite
SiO, 64.98 64.65 64.78 64.20 64.57 64.97 65.10 65.34 64.93 65.06 64.29
Al Os 18.83 18.92 18.74 18.78 18.71 18.86 18.90 18.90 18.81 18.77 18.44
FeO 0.06 0.04 0.05 0.03 0.07 0.03 0.05 0.07 0.05 0.06 0.07
Ca0 0.01 0.03 0.0! 0.00 0.01 0.01 0.03 0.02 0.02 0.01 0.00
Na,O 0.18 0.48 0.59 0.36 0.76 0.36 0.60 032 0.67 0.36 0.31
K,O 16.17 15.85 15.67 16.04 15.50 15.83 15.55 15.86 15.25 15.68 16.38
TOTAL [00.23 99.97 99.84 99.41 99.62 100.06 100.23 100.51 99.73 99.94 99.49
Formula per 32 oxygens
Si 11.96 11.93 11.96 11.93 11.95 11.96 11.96 11.98 11.97 11.98 11.96
Al 4.09 4.12 4.08 4.11 4.08 4.09 4.09 4.08 4.09 4.08 4.04
Fe 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
Ca 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Na 0.06 0.17 0.21 0.13 0.27 0.13 0.21 0.11 0.24 0.13 0.11
K 3.80 3.73 3.69 3.80 3.66 3.72 3.64 37 3.59 3.68 3.89
An 0.000 0.001 0.001 0.000 0.001 0.001 0.002 0.001 0.001 0.000 0.000
Ab 0.017 0.044 0.054 0.033 0.069 0.033 0.055 0.030 0.063 0.034 0.028
Or 0.983 0.945 0.967 0.930 0.966 0.943 0.969 0.936 0.966 0.972
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Table continued.

12 13 14 15 Average Average Average
C M C M Core Margin
Perthite
64.47 64.08 64.14 64.21 64.65 64.62 64.71
18.35 18.45 18.52 18.35 18.69 18.67 18.72
0.05 0.10 0.07 0.06 0.06 0.06 0.06
0.00 0.00 0.00 0.00 0.01 0.01 0.01
0.61 0.56 0.33 0.44 0.46 0.51 0.39
15.92 16.05 16.25 16.11 15.87 15.80 15.98
99.40 99.24 99.31 99.17 99.74 99.67 99.87
11.98 11.95 11.95 11.97 11.96 11.96 11.96
4.02 4.05 4.07 4.03 4.08 4.07 4.08
0.01 0.02 0.01 0.01 0.01 0.01 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.22 0.20 0.12 0.16 0.17 0.18 0.14
3.77 3.82 3.86 3.83 3.75 3.73 3.77
0.000 0.000 0.000 0.000 0.001 0.000 0.000
0.055 0.050 0.030 0.040 0.042 0.047 0.036
0.945 0.950 0.970 0.960 0.957 0.953 0.964
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NDF 2 - Biotite hornblende gneiss, Nagle Dam Formation.

Biotite

1 2 3 4 5 6 Average
C C C C C C

Si0, 37.57 36.89 37.15 37.02 37.57 36.80 37.17
TiO, 5.21 4.96 4.70 4.90 3.87 5.38 4.84
Al;O4 14.55 14.16 14.23 13.97 14.57 14.54 14.34
CryOs 0.00 0.00 0.00- 0.00 0.00 0.00 0.00
FeO 17.15 16.05 16.50 16.31 13.91 15.55 15.91
MnO 0.30 0.26 0.20 0.19 0.11 0.28 022
MgO 13.28 13.80 13.45 13.43 15.56 13.28 13.80
CaO 0.00 0.01 0.02 0.00 0.02 0.01 0.01
Na, O 0.01 0.02 0.01 0.02 0.02 0.03 0.02
K:0 9.34 9.63 9.85 9.69 9.52 9.55 9.60
H;O 4.00 4.01 4.00 4.00 4.06 4.02 4.02
TOTAL 101.41 99.79 100.11 99.53 99.21 99.44 99.92
Formula per 22 oxygens

Si 5.55 5.53 5.57 5.57 5.59 5.52 5.56
AlY 2.45 2.47 2.43 2.43 2.41 248 2.45
AV 0.08 0.04 0.08 0.05 0.15 0.10 0.08
Ti 0.58 0.56 0.53 0.56 0.43 0.61 0.55
Fe 2.12 201 2.07 2.05 1.73 1.95 1.99
Mn 0.04 0.03 0.03 0.02 0.01 0.04 0.03
Mg 292 3.09 3.00 3.01 3.45 2.97 3.07
Na 0.00 0.00 0.00 0.01 0.0} 0.01 0.01
K 1.76 1.84 1.88 1.86 1.81 1.83 1.83
Fe/Fe+Mg 0.42 0.39 041 0.41 0.33 0.40 0.39
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NDF 24

1 2 3 4 5
C C c C c
Si0, 40.57 39.53 38.79 38.76 39.17
TiO, 3.80 2.87 3.59 2.86 321
AlLO; 15.65 14.93 15.20 14.87 15.06
Cr0; 0.00 0.00 0.00 0.00 0.00
FeO 18.76 17.02 16.53 16.38 15.94
MnO 0.39 0.33 0.30 031 033
MgO 11.64 11.72 11.21 12.29 11.86
Ca0 0.14 0.38 0.18 0.44 0.40
Na,0 0.18 039 0.53 045 024
K,0 5.95 579 7.19 5.89 7.36
TOTAL 97.07 92.96 93.52 92.23 93.58
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NDF 60 - Pelitic gneiss, Nagle Dam Formation.

1 2 3 4 5 6 7 8 9 10 11 12 13 Average
C C C C C C C C C C C C C

Si0, 35.13 3512 34.79 35.38 35.21 36.11 35.68 35.81 35.26 35.21 35.43 35.01 34.62 35.29
TiO, 3.75 3.85 3.82 3.38 3.67 3.79 3.62 3.60 3.58 3.7 3.82 3.84 3.78 3.71
AL Oy 18.38 18.38 18.57 18.58 18.43 19.16 18.85 18.69 18.50 18.98 18.29 18.32 18.34 18.57
Cr;0; - - - - - - - - - - - - 0.00 0.00
FeO 19.35 19.22 18.92 18.02 18.25 18.98 18.02 17.97 18.49 17.92 18.72 18.90 19.22 18.61
MnO 0.37 036 0.41 0.45 0.42 0.44 0.40 0.36 0.42 0.38 0.37 0.37 0.37 0.39
MgO 9.40 9.11 9.49 9.95 9.59 9.73 9.94 9.79 9.52 9.16 9.42 9.38 9.14 9.51
Ca0 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.00 , 0.00 0.00 0.00 0.00 0.00
Na,O 0.02 0.08 0.07 0.04 0.06 0.03 0.03 0.04 0.03 0.02 0.02 0.01 0.03 0.04
K.0 9.54 9.82 9.49 9.46 9.81 9.40 9.93 9.71 9.88 9.88 9.81 9.85 9.61 9.71
H.0 3.96 3.95 3.96 3.98 397 3.98 3.98 3.99 3.97 3.98 3.97 3.96 3.95 3.97
TOTAL 99.90 99.91 99.54 99.24 99.41 101.63 100.45 99.96 99.65 99.30 99.85 99.64 99.06 99.81
Formula per 22 oxygens

Si 5.33 5.33 5.29 5.37 5.35 5.35 5.35 5.39 5.35 5.35 5.37 5.33 5.31 5.34
AlY 2.67 2.67 2.71 2.63 2.65 2.65 2.65 2.61 2.65 2.65 2.63 2.67 2.69 2.66
ALV 0.62 0.62 0.62 0.69 0.65 0.69 0.68 0.70 0.66 0.74 0.63 0.61 0.62 0.66
Ti 0.43 0.44 0.44 0.39 0.42 0.42 0.41 0.41 0.41 0.43 0.43 0.44 0.44 0.42
Fe 2.46 2.44 2.4} 2.29 232 2.35 2.26 2.26 2.35 227 2.37 2.4} 2.46 2.36
Mn 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Mg 2.13 2.06 215 2.25 2.17 2.15 222 2.20 2.15 2.07 2.13 213 2.09 2.15
Na 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01
K 1.85 1.90 1.84 1.83 1.90 1.78 1.90 1.86 1.91 1.91 1.90 1.91 1.88 1.88
Fe/Fe+Mg 0.54 0.54 0.53 0.50 0.52 0.52 0.50 0.51 0.52 0.52 0.53 0.53 0.54 0.52
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NDF 8 - Pelitic gneiss, Nagle Dam Formation.

1* 2* 3 4 5* 6* 7 8* 9 10 11 Average
C C C M C C M C C c
Inclusion in Adjacent to Adjacent to Adjacent to Adjacent to Adjacent to
gamet garnet garnet garnet garnet gamet
Sio, 33.72 34.97 34.98 34.46 34.20 33.28 34.57 34.49 34.48 34.59 34.74 34.64
TiO; 2.79 3.30 3.73 4.06 3.70 3.77 3.85 3.84 3.95 3.96 397 3.92
AL O, 17.61 16.97 17.17 16.82 17.52 16.95 16.21 16.20 16.31 16.34 16.44 16.55
Cr0s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 21.44 20.58 20.93 21.44 21.68 2245 217 21.50 21.67 21.90 2133 21.50
MnO 0.17 0.09 0.11 0.12 0.16 0.17 0.13 0.19 0.09 0.13 0.14 0.12
MgO 9.85 9.58 9.18 8.89 7.34 9.43 9.2 9.20 9.19 9.16 9.18 9.14
Ca0 0.02 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Na 0 0.11 0.08 0.03 0.08 0.12 0.10 0.06 0.08 0.06 0.07 0.10 0.08
K,0 7.11 9.34 9.59 9.41 8.89 7.73 9.70 9.68 9.65 9.66 9.54 9.59
H,O 395 3.93 3.92 391 3.91 391 3.89 3.89 3.89 3.89 391 3.90
TOTAL 96.77 98.84 99.69 99.19 97.54 97.82 99.33 99.07 99.29 99.70 99.35 99.43
Formula per 22 oxygen
Si 5.29 5.40 537 5.33 5.38 522 536 5.36 5.35 5.35 537 536
AlY 2.71 2.60 2.63 2.67 2.62 2.78 2.64 2.64 2.65 2.65 2.63 2.65
AV 0.55 0.49 0.47 0.40 0.62 0.36 0.33 0.33 0.33 0.32 0.36 0.37
Ti 0.33 0.38 0.43 0.47 0.44 0.44 0.45 0.45 0.46 0.46 0.46 0.46
Fe 2.81 2.66 2.68 2.78 2.85 2.95 2.82 2.80 2.81 2.83 2.76 2.78
Mn 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 Q.01 0.02 0.02 0.02
Mg 2.30 221 2.10 2.05 1.72 2.24 213 2.13 2.13 2.1 2.12 211
L Na 0.03 0.02 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.02 0.03 0.02
K 1.42 1.84 1.88 1.86 1.78 1.55 1.92 1.92 1.91 1.90 1.88 1.89
Fe/Fe+Mg 0.55 0.55 0.56 0.58 0.62 0.57 0.57 0.57 0.57 0.57 0.57 0.57

* Not included in average
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NDF 56 - Pelitic gneiss, Valley Trust Formation.

1 2* 3* 4 s 6* 7 8 9 0 1* Average Average
C C C M C C C C C C C Core
Inclusion in Inclusion in Adjacent to
garnet garnet gamet
Si0, 3497 34.78 35.34 37.79 35.94 35.11 35.70 36.03 35.84 35.76 3391 35.56 35.71
TiO, 5.21 5.18 3.90 552 5.99 4.97 5.30 5.10 4.86 4.66 4.43 5.01 5.19
ALO, 17.65 17.70 18.49 18.59 17.56 17.04 17.15 17.82 17.39 17.66 18.36 17.76 17.54
Cri04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G.00 0.00
FeO 17.80 17.61 11.76 13.80 13.88 17.34 17.54 17.35 16.81 16.95 16.91 16.16 16.72
MnO 0.01 0.02 0.04 0.00 0.02 0.01 0.01 0.02 0.04 0.03 0.04 0.02 0.02
MgC 100} 10.10 15.27 11.97 12.89 10.67 10.69 10.55 10.66 10.53 10,07 11.22 10.89
CaO 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Na,0 0.11 0.11 0.17 0.18 0.25 0.08 0.09 0.06 0.09 0.08 0.06 0.12 0.11
K.0 9.35 930 8.66 8.12 9.53 9.46 9.95 935 9.42 9.58 9.27 927 9.53
H0 3.99 3.99 4.12 4.12 4.06 3.99 3.98 4.01 4.01 4.01 4.00 4.03 4.01
TOTAL 99.10 98.79 97.77 100.16 100.12 98.67 100.41 100.29 99.12 99.26 97.05 99.16 99.72
Formula per 22 oxygens
Si 5.31 530 5.27 5.49 5.30 5.35 5.35 537 5.41 539 5.25 5.34 536
AlY 2.69 2.70 273 2.5 2.70 2.65 2.65 2.63 2.59 2.61 2.75 2.66 2.65
Al 0.47 0.47 0.52 0.67 0.36 041 0.38 Q.51 0.50 0.53 0.60 0.49 0.46
Ti 0.60 0.59 0.44 0.60 0.66 0.57 0.60 0.57 0.55 0.53 0.52 0.57 0.59
Fe 2.26 224 1.47 1.67 1.71 2.21 220 2.16 2.12 2.14 2.19 2.03 2.10
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00
Mg 2.27 2.29 339 2.59 2.84 2.42 239 235 2.40 237 232 2.51 244
Ca 0.00 0.00 0.01 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00
Na 0.03 0.03 0.05 0.0 0.07 0.02 0.03 0.02 0.03 0.02 0.02 0.03 003
K 1.81 1.81 1.65 1.50 1.79 1.84 1.90 1.78 1.81 1.84 1.83 1.78 1.82
Fe/Fe+tMg 0.50 0.49 0.30 0.39 0.38 0.48 0.48 0.48 0.47 0.47 0.49 0.45 0.46

*Excluded from average core
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UND 42 - Quartzo-feldspathic gneiss, Valley Trust Formation.

1 2* 3% 4* S* 6 7 Average
C C C C C C C

SiO, 3594 33.99 35.54 29.94 35.38 36.08 36.43 36.15
TiO, 4.26 3.19 2.92 1.46 3.87 4.07 4.13 4.15
AlLO; 13.96 14.64 14.6] 16.04 14.16 14.28 13.99 14.08
Cr0y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 23.88 25.00 23.39 28.48 22.55 23.44 23.54 23.62
MnO 0.63 0.71 0.71 0.83 0.64 0.70 0.66 0.66
MgO 8.06 8.86 8.98 10.00 7.93 8.06 8.07 8.06
Ca0 0.00 0.08 0.00 0.08 0.01 0.03 0.00 0.01
Na;O 0.06 0.07 0.03 0.01 0.04 0.06 0.03 0.05
KO 9.42 7.58 8.05 284 8.70 8.61 9.30 9.11
H,O 3.86 3.85 3.88 385 3.89 3.88 3.87 3.87
TOTAL 100.07 97.97 98.61 93.53 97.17 99.21 100.02 99.77
Formula per 22 oxygens

Si 5.59 5.41 5.57 5.00 5.62 5.62 5,64 5.62
AlY 2.42 2.60 2.43 3.00 2.38 2.38 2.36 2.39
AlY 0.14 0.15 027 0.16 0.28 0.24 0.20 0.19
Ti 0.50 0.38 0.34 0.18 0.46 0.48 0.48 0.49
Fe 3.10 332 3.13 3.98 3.00 305 3.05 3.07
Mn 0.08 0.10 0.09 0.12 0.09 0.09 0.09 0.09
Mg 1.87 2.10 2.10 2.49 1.88 1.87 1.86 1.87
Ca 0.00 0.01 0.00 0.0l 0.00 0.01 0.00 0.00
Na 0.02 0.02 0.01 0.00 0.01 0.02 0.01 0.02
K 1.87 1.54 1.61 0.61 1.76 1.71 1.84 1.81
Fe/Fe+Mg 0.62 0.61 0.60 0.62 0.61 0.62 0.62 0.62

*Excluded from average
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NDF 70 - Fine grained granulite, Valley Trust Formation.

1 2 3 4 5 6% 7* 8 9% 10 Average
C C C C. C C C C C C

Si0, 37.34 36.07 36.36 36.20 36.03 32.59 35.05 35.82 34.89 35.87 36.24
TiO, 5.76 5.39 5.9t 5.40 5.42 6.30 5.80 5.84 5.96 6.11 5.69
ALO: 15.61 15.37 15.18 15.34 1538 17.11 15.67 15.57 15.62 15.04 15.36
Cr0; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 16.60 15.77 15.29 16.04 15.81 15.35 14.62 15.51 14.43 14.92 15.71
MnQO 0.02 0.04 0.05 0.04 0.03 0.04 0.05 0.05 0.06 0.03 0.04
MgO 12.62 12.45 12.69 12.56 12.31 11.02 12.49 12.33 12.53 12.70 12.52
CaO 0.01 0.00 0.0} 0.00 0.00 0.03 0.07 0.00 0.01 0.00 0.00
Na,O 0.07 0.08 0.08 0.06 0.07 0.10 0.09 0.04 0.06 0.04 0.06
K,O 8.83 9.59 9.39 9.55 9.49 9.47 8.90 9.68 9.23 9.33 941
H;O 4.03 4.01 4.03 4.01 4.02 3.99 4.04 4.02 4.03 4.03 4.02
TOTAL 100.89 98.78 98.99 99.20 98.56 96.00 96.78 98.86 96.82 98.07 99.05
Formula per 22 oxygens

Si 5.50 5.46 5.47 5.46 5.46 5.1 538 5.41 536 5.44 5.46
Al 2.50 2.54 2.53 2.54 2.54 2.89 2.62 2.59 2.64 2.56 2.54
AV 021 0.20 0.16 0.18 0.21 0.27 0.22 0.19 0.19 0.13 0.18
Ti 0.64 0.6} 0.67 0.61 0.62 0.74 0.67 0.66 0.69 0.70 0.64
Fe 2.04 2.00 1.92 2.02 2.00 2.01 1.88 1.96 1.86 1.89 1.98
Mn 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01
Mg 2.77 2.81 2.85 2.82 2.78 2.58 2.86 2.78 2.87 2.87 281
Ca 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
Na 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.02 0.01 0.02
K 1.66 1.85 1.80 1.84 1.84 1.89 1.74 1.87 1.81 1.81 1.81
Fe/Fe+Mg 0.42 0.42 0.40 0.42 0.42 0.44 0.40 0.41 0.39 0.40 041

* Excluded from average
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NDF 67 - Fine grained granulite, Valley Trust Formation.

I 2 3 4 5 6 7 8 9 10 Average

C C C C C C C C C C
Si0, 37.09 35.99 36.33 36.13 35.90 36.64 36.20 36.26 35.87 36.30 36.27
TiO, 3.58 3.55 3.50 4.88 3.71 4.1 3.90 3.03 425 4.08 3.86
AlLO, 16.77 15.76 15.87 15.15 15.67 16.28 16.16 16.48 16.06 15.55 15.97
Cr04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 17.32 17.23 17.07 17.48 17.60 17.10 16.75 16.23 17.33 16.90 17.10
MnO 0.04 0.04 0.03 0.04 0.07 0.07 0.02 0.03 0.09 0.07 0.05
MgO 12.76 13.04 12.62 11.99 12.48 12.79 12.86 13.81 12.27 12.59 12.72
Ca0 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Na,0 0.11 0.11 0.05 0.06 0.08 0.04 0.05 0.10 0.04 0.04 0.07
K0 8.18 9.48 9.46 9.57 9.48 9.44 9.72 9.06 9.80 9.80 9.40
H,O 4.04 3.99 4.00 398 3.98 4.01 4.00 4.03 3.98 3.99 4.00
TOTAL 99.95 99.19 98.93 99.28 98.98 100.48 99.66 99.03 99.69 99.33 99.47
Formula per 22 oxygens
Si 5.51 5.45 5.50 548 5.46 5.46 5.44 5.45 5.42 5.49 5.47
AN 2.49 2.55 2.50 2.52 2.54 2.54 2.56 2.55 2.58 251 2.53
AM 0.44 027 0.33 0.19 027 0.31 0.31 0.38 0.28 0.26 0.30
Ti 0.40 0.40 0.40 0.56 042 0.46 0.44 0.34 0.48 0.46 0.44
Fe 2.15 2.18 2.16 222 2.24 2,13 2.11 2.04 2.19 2.14 2.16
Mn 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.0] 0.01
Mg 2.83 2.95 2.85 2.71 2.83 2.84 2.88 310 2.76 2.84 2.86
Ca 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.03 0.03 0.01 0.02 0.02 0.01 0.01 0.03 0.01 0.01 0.02
K 1.55 1.83 1.86 1.85 1.84 1.79 1.87 1.74 1.89 1.89 1.81
Fe/Fe+Mg 043 0.42 043 0.45 0.44 0.43 0.42 0.40 0.44 0.43 0.43
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NDF67a - Fine grained granulite, Valley Trust Formation.

[ 2 3 4 5 6 7 8 9 10 n* 12%
C C C C C C C C C C C C
In contact {n contact In contact In contact In contact with In contact with In contact with In contact with From garnet From garnet Fr9m garnet Gamet free
with garnet with garnet with garnet with garnet gamet garnet garnet garnet rich area rich area rich zone zone
Si0, 3833 377 37.72 3801 3743 38.03 37.48 36.40 37.09 37.18 38.86 37.92
TiO 4.53 3.54 4.04 3.98 4.35 4.20 4.64 4.59 4.08 4.64 422 3.92
A)O; 16.70 16.46 15.82 16.04 15.76 16.03 16.27 16.34 16.09 15.80 16.94 17.03
Cr.0, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeQ 14.81 14,57 14,46 1437 14.55 14 56 13.85 14.70 14.09 14.82 15.54 16.92
MnO 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.03 0.02 0.01 0.00 0.04
MgO 14.38 1437 14.68 14.89 14.49 14.50 14.09 13.27 14.32 13.79 14.77 13.28
Ca0 0.01 0.03 0.03 0.00 0.0t 0.00 0.11 0.05 0.00 0.00 0.01 0.02
Na,O 0.05 0.14 0.05 0.06 0.05 0.09 0.04 0.13 0.06 0.06 0.04 0.04
KO0 9.08 9.41 9.57 9.80 9.70 9.75 9.80 9.55 9.40 9.72 8.75 8.85
H.0 4.08 4.07 4.06 4.06 4.05 4.06 4.07 4.04 4.07 4.04 4.08 4.04
TOTAL 101.98 100.31 100.43 101.21 100.40 101.23 100.36 99.10 99.22 100.06 103.21 102.06
Formula per 22 oxygens
Si 5.52 5.54 5.55 5.54 5.52 5.55 5.51 5.45 5.51 5.51 5.53 5.51
Al 2.48 2.46 245 2.46 248 2.45 2.49 2.55 2.49 2.49 2.47 2.49
Al 0.36 0.40 0.29 0.30 0.25 0.30 033 0.33 0.33 0.27 037 0.42
Ti 0.49 0.39 0.45 0.44 0.48 0.46 0.51 0.52 0.46 0.52 0.45 0.43
Fe 1.78 1.79 1.78 1.75 1.79 1.78 1.70 1.84 1.75 1.84 1.85 2.05
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Mg 3.09 318 3.22 3.24 3.18 3.15 3.09 2.96 3.7 3.05 303 2.87
Ca 0.00 0.01 0.00 0.00 0,00 0.00 0.02 0.01 0.00 0.00 0.00 0.00
Na .01 0.04 .02 0.02 0.01 0.02 0.01 0.04 0.02 002 0.01 0.0t
K 1.67 1.77 1.79 1.82 1.82 1.81 1.84 1.82 1.78 1.84 1.59 1.64
Fe/Fe+Mg 037 0.36 0.36 035 0.36 0.36 0.35 0.38 0.36 0.38 0.37 0.42

* Excluded from average
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Table continued.

I

13 14 Average biotite Average biotite (in gammet band but not in Average biotite
C C (in contact with garnet) contact with gamet) (in garnet free area)
Garnet free Garnet free
zone zone
36.90 36.50 37.54 37.14 36.70
3.41 4.95 4.20 436 4.18
16.38 15.54 16.10 15.95 15.96
0.00 0.00 0.00 0.00 0.00
15.92 17.20 14.44 14.46 16.56
0.04 0.04 0.01 0.02 0.04
i3.14 12.24 14.33 14.06 12.69
0.00 0.01 0.03 0.00 0.01
0.02 0.04 0.08 0.06 0.03
9.60 9.74 9.65 9.56 9.67
4.03 3.99 4.06 4.06 4.01
99.44 100.25 100.44 99.64 99.84
5.52 5.47 5.52 5.51 5.50
2.48 2.53 2.48 2.49 2.50
0.41 0.2} 0.31 (;,30 0.31
0.38 0.56 0.46 0.49 0.47
1.99 2.16 1.78 1.80 2.08
0.00 0.00 6.00 0.00 0.00
2.93 2.73 3.14 3.11 2.83
0.00 0.00 0.01 0.00 0.00
0.01 0.01 0.02 0.02 0.01
1.83 1.86 1.81 1.81 1.85
0.40 0.44 0.36 0.37 0.42
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NDF69 - Fine grained granulite, Valley Trust Formation.

1 2 3 4* 5 6 7 8 9 10 t 1z 13 14
c c C C C C C ¢ C C C C c ¢
Gammet zone Gamet zone Gammet zone Garnel zone Garnet free Garmnet frec Gamet free Gamet free Garnet free Garnet free Garnet free Gamnet free Gamnet free Garnet free
zone zone zone zone zone zone zone zone zone zone
Si0: 36.54 3631 36.35 34,99 36.43 36.68 36.19 36.39 3738 36.60 37.30 37.29 36.54 36.42
TiO: 5.14 5.1 5.05 5.04 5.46 5.31 5.03 5.41 5.58 534 522 5.47 5.21 5.14
AlLO, 15.57 16.09 15.87 15.31 16.03 15.80 15.69 15.97 16.60 16.29 15.96 16.36 16.18 16.07
Cr:0;4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 12.01 13.34 14.38 13.94 14.75 15.22 15.55 15.05 14.57 14.56 14.29 14.71 14,74 14.61
MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 15.59 14.62 14.31 13.70 13.07 13.01 13.02 12.96 13.72 13.97 14.27 13.60 13.42 13.51
Ca0 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
Na;0 0.06 0.06 0.14 0.06 0.06 0.06 0.07 0.06 0.04 0.08 0.04 0.08 0.07 0.10
KO 10.11 9.83 9.48 9.73 9.76 9.67 9.80 9.55 936 9.90 10.08 9.51 9.64 9.56
H.0 4.08 4.06 4.05 4.03 4.04 4.03 4.02 4.04 4.05 4.03 4.05 4.06 4.04 4.04
TOTAL 99.10 99.42 99.64 96.80 99.60 99.78 99.38 99.43 101,531 100.78 101.22 101.08 99.84 99 45
Formula per 22 oxygens
Si 5.43 5.40 5.41 5.38 5.43 5.47 5.44 5.44 5.42 5.38 5.46 5.45 5.43 5.43
A 2.57 2.60 2.59 2.62 257 2.53 2.56 2.56 258 2.62 2.54 2.55 2.57 2.57
Al 0.15 0.21 0.19 0.16 0.25 0.24 0.22 0.25 026 0.20 021 0.27 0.26 0.26
Ti 0.57 057 0.57 0.58 0.61 0.59 0.57 0.61 061 0.59 0.57 0.60 0.58 0.58
Fe** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.00 0.00 0.00 0.00
Fe* 1.49 1.66 1.79 1.79 1.84 1.90 1.95 1.88 1.77 1.79 1.75 1.80 1.83 1.82
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 3.45 3.24 347 3.14 2.91 2.89 292 2.89 297 3.06 3.11 2.96 297 3.00
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.02 001 0.02 0.02 0.03
K 1.91 1.86 1.80 1.91 1.86 1.84 1.88 1.82 1.73 1.85 1.88 1.77 1.83 1.82
Fe/FerMg 0.30 0.34 036 0.36 0.39 0.40 040 0.39 038 038 0.36 0.38 0.38 0.38

* Not used in average
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Table continued.

15 16 17* 18 19 20 21* 22 23 24 Average Average (Assoc. with garnet) Average (In garnet free zone)
C C C C C C C C C C
Garnet frec Garnet Garnet Garnet Garnet Gamet Gamet Garnet Garnet Garmet zone

zone zone zone 20ne zone zone zone zZone zone

372§ 37.37 37.67 3712 37.60 37.48 31.72 36.53 3733 35.43 36.79 36.81 36.77
4.96 5.05 5.09 5.19 4.85 4.83 5.20 5.06 529 875 535 5.43 5.28
16.25 15.90 16.03 15.62 16.17 16.26 16.26 16.35 15.69 15.66 16.02 15.92 16.10
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14.62 11.93 13.95 14.52 12.83 14.17 14.34 13.89 14.06 12.34 14.10 13.35 14.79
000 0.00 0.01 0,00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 6.00
13.81 16.43 14.97 13.95 15.48 14.77 14.59 14.85 14.85 15.04 14.20 14.99 13.49
0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00
0.06 0.07 0.09 0.1l 0.04 0.05 0.06 0.07 0.07 0.12 0.07 0.08 0.07
9.74 9.74 9.86 9.82 9.90 9.66 9.54 9.82 9.68 9.05 9.70 9.71 9.69
4.05 4.10 4.06 4.04 4.08 4.06 4.07 4,05 4.06 4.08 4.05 4.07 4.04
100.74 100.59 101.73 100,38 100.95 101.28 101.78 100.63 101.03 100.53 100.35 100.36 100.34
5.47 5.44 5.46 548 5.47 546 5.46 5.37 5.46 518 5.42 5.41 5.44
2.53 2.56 2.54 2.52 2.53 2.54 2.54 2.63 2.54 2.70 2.57 2.58 2.56
0.29 017 0.20 020 0.24 0.25 0.24 0.20 g.16 0.00 Q.21 0.18 025
0.55 0.55 0.55 0.58 0.53 0.53 0.57 0.56 0.58 0.96 0.59 0.60 0.59
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
1.80 1.45 1.69 1.79 1.56 1.73 1.74 171 1.72 151 1.74 1.64 1.83
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3.02 3.56 3.24 3.07 3.36 3.21 3.15 3.25 3.24 3.28 312 3.28 297
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.02 0.02 0.03 0.03 0.0l 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.02
1.83 1.81] 1.82 1.85 1.84 1.79 1.76 1.84 1.80 1.69 1.82 1.82 1.83
0.37 0.29 0.34 037 0.32 0.35 036 0.34 0.35 032 0.36 0.33 038
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UND 330 - Granitic enclave.

1 2 3 4 5 6 7 g 9 10 11 12 13 14 Average
c C C C C C C C [ M C C M C
Si0, 34.72 34.21 33.79 3470 34.80 34.60 34.04 34.58 34.78 34.04 34.70 34.12 33.71 34.21 34.36
TiO, 4.24 4.13 3.58 430 4.05 4.14 4.45 4.07 3.78 4.29 3.89 3.58 4.29 4.43 4.09
AlOs 15.54 15.90 16.33 15.41 15.88 15.32 15.27 15.73 16.09 15.78 15.83 15.92 15.64 15.35 15.71
Cr0; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 28.02 28.17 29.25 28.41 27.89 27.55 28.73 27.87 28.31 28.18 27.93 29.08 29.13 28.58 28.36
MnO 0.10 0.09 0.10 0.09 0.10 0.13 0.13 0.07 0.09 0.12 0.07 0.09 0.16 0.10 0.10
MgO 4.40 4.21 4.40 438 4.26 4.28 429 441 4.33 4.26 4.40 4.62 4.50 4.30 4.36
Ca0O 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.06 0.04 0.00 0.05 0.06 0.00 0.02
Na,0 0.06 0.07 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.03 0.06 0.06
K0 9.29 9.10 8.32 9.37 9.23 931 8.94 9.19 8.56 8.88 9.06 8.22 7.13 8.96 .83
H,0 3.79 3.79 3.78 3.78 3.80 3.79 3.78 3.80 3.81 3.79 3.80 3.79 3.80 3.78 3.79
TOTAL 100.16 99.67 99.62 100.48 100.06 99.17 99.70 99.79 99.87 99.44 99.74 99.53 98.45 99.77 99.74
Formula per 22 oxygens
Si 5.48 5.43 537 5.47 5.49 5.51 5.42 5.47 5.49 5.42 5.49 5.42 537 5.44 545
AlY 2.52 2.57 2.63 2.53 2.51 2.49 2.58 2.53 2,51 2.58 2.51 2.58 2.63 2.56 2.55
Al 037 0.41 0.44 0.33 0.44 0.39 0.29 0.41 0.48 0.38 0.44 0.41 0.31 0.31 039
Ti 0.50 0.49 0.43 0.51 0.48 0.50 0.53 0.48 0.45 0.51 0.46 0.43 0.51 0.53 0.49
Fe* 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe” 3.70 3.74 3.89 3.74 3.68 3.67 3.83 3.69 3.73 3.75 3.70 3.87 3.88 3.80 3.76
Mn 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01
Mg 1.04 1.00 1.04 1.03 1.00 1.02 1.02 1.04 1.02 1.01 1.04 1.10 1.07 1.02 1.03
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.12 0.00 0.01
Na 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02
K 1.87 1.84 1.69 1.88 1.86 1.89 1.82 1.86 1.72 1.80 1.83 1.67 1.45 1.82 1.79
Fe/Fe+Mg 0.78 0.79 0.79 0.79 0.79 0.78 0.79 0.78 0.79 0.79 0.78 0.78 0.78 0.79 0.78
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UND 40 - Biotite granite, Ximba Suite.

1 2 3 4 5 6 7 8 Average
C C C C C C C Cc

SiO; 34.55 3471 34,60 34.99 34.13 34.27 34.74 34,12 34.51
TiO. 4.33 4.03 433 3.96 4.09 3.80 325 3.76 3.94
ALO; 14.22 1515 15.64 15.50 15.06 15.86 16.56 14.30 15.29
Cn0s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 30.42 29.99 28.47 29.14 29.32 28.43 28.10 30.85 29.34
MnO 0.41 0.39 0.34 0.39 042 0.33 0.35 0.38 0.38
MgO 3.28 3.04 298 3.09 2.88 3.37 3.48 3.17 3.16
Ca0 0.02 0.03 0.00 0.03 0.00 0.01 0.00 0.01 0.01
Na,O 0.06 0.04 0.04 0.05 0.05 0.04 0.04 0.03 0.04
K0 891 8.92 9.30 9.08 9.24 9.27 9.36 8.98 913
H,O 3.74 3.76 378 3.77 375 3.78 3.79 3.73 3.76
TOTAL 99.94 100.06 99.48 100.00 98.94 99.16 99.67 99.33 99.58
Formula per 22 oxygens

Si 554 5.53 5.52 5.56 5.51 5.49 5.51 5.53 5.52
ALY 2.46 2.47 2.48 2.44 2.49 2.51 2.49 2.47 2.48
AlY 0.23. 0.38 0.46 0.46 0.38 0.48 0.61 0.26 0.41
Ti 0.52 0.48 0.52 0.47 0.50 0.46 0.39 0.46 0.48
Fe 4.08 4.00 380 3.87 3.96 3.81 3.73 418 393
Mn 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05
Mg 0.78 0.72 0.71 0.73 0.69 0.81 0.82 0.76 0.75
Ca 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Na 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01
K 1.82 1.82 1.89 1.84 1.91 1.89 1.90 1.86 1.87
Fe/Fe+Mg 0.84 0.85 0.84 0.84 0.85 0.82 0.82 0.85 0.84
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XS 4 - Biotite garnet granite, Ximba Suite.

1
C
Adjacent to gamet

2
M
Adjacent to garnet

3
M
Adjacent to gamnet

Si0, 32.79 31.31 30.74
TiO, 5.04 3.09 3.59
AlO; 13.86 14.75 14.78
Cr:0; 0.00 0.00 0.00
FeO 29.35 31.85 32.63
MnO 0.14 0.19 0.15
MgO 3.68 4.23 4.65
Ca0 0.51 0.07 0.00
Na,0 0.05 0.03 0.04
KO 7.87 6.15 5.20
H:0 375 3.73 3.74
TOTAL 97.04 95.40 95.52
Formula per 22 oxygens

Si 541 528 5.16
Al 2.59 2.72 2.84
A 0.10 021 0.09
Ti 0.62 0.39 0.45
Fe 4.05 4.49 4.59
Mn 0.02 0.03 0.02
Mg 0.91 1.06 1.17
Ca 0.09 0.0) 0.00
Na 0.02 0.0t 0.01
K 1.66 1.32 1.12
Fe/Fe+Mg 0.82 0.81 0.80
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UND 65 - Hornblende granite, Mlahlanja Suite.

3 4 5 6 7 8 9

C C C C C C C C C
SiO, 26.85 31.77 2927 33.33 30.14 30.49 3191 34.45 30.02
TiO, 3.21 4.60 4.76 4.02 3.68 3.16 5.51 5.00 5.46
AlLOs 14.61 14.15 13.84 13.78 13.90 14.53 13.90 13.91 13.80
Cr04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 3546 3048 3251 30.51 32.71 3327 29.76 29.25 31.14
MnO 0.24 0.29 0.26 0.25 0.27 0.27 0.28 0.31 0.23
MgO 6.26 5.08 5.52 5.01 5.67 5.79 4.76 4.30 5.21
Ca0 1.21 1.01 2.76 0.24 1.06 0.98 1.65 0.00 3.20
Na,O 0.02 0.03 0.02 0.04 0.02 0.00 0.05 0.06 0.03
K0 0.86 6.37 2.89 7.69 3.85 4.08 6.32 8.96 3.55
TOTAL 88.72 93.78 91.83 94.87 91.30 92.57 94.14 96.24 92.64
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UND 74 - Charnockite, Mlahlanja Suite.

! 2 3 4 5 6 7 8 9 10 Average
C C C C C C C C C C
Si0O; 34.97 35.17 3531 35.02 34.66 34.29 34,80 34.72 34.62 34.42 34.80
TiO; 5.59 5.36 5.41 5.75 5.49 532 5.05 5.48 4.80 5.42 5.37
AlOs 12.68 12.84 13.04 13.20 13.09 13.16 13.26 13.32 13.00 13.18 13.08
Cr;0;5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 27.15 27.01 27.62 27.81 27.34 28.04 27.96 28.59 27.57 28.52 17.76
MnO 0.15 0.14 Q.15 0.18 0.15 0.20 0.19 0.17 0.i4 0.15 0.16
MgO 5.24 530 5.51 4.85 495 495 5.14 5.06 5.80 5.03 5.18
Ca0 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na;O 0.05 0.04 0.04 0.05 0.05 0.03 0.04 0.04 0.02 0.04 0.04
K0 9.19 9.00 9.44 9.32 9.02 9.26 9.28 9.28 9.24 9.34 9.23
H,O 3.79 3.80 379 3.78 3.79 3.77 378 3717 3.78 3.76 3.78
TOTAL 98.81 98.68 100.31 99.96 98.54 99.02 99.50 100.43 98.97 99.86 99.40
Formula per 22 oxygens
Si 5.60 5.63 5.58 5.56 5.57 5.52 5.56 5.50 5.55 5.50 5.56
AlY 2.39 2.37 242 2.44 243 2.48 2.44 2.49 2.45 2.48 4.44
AV 0.00 0.05 0.00 0.03 . 0.05 0.01 0.05 0.00 0.01 0.00 0.02
Ti 0.67 0.65 0.64 0.69 0.66 0.64 0.61 0.65 0.58 0.63 0.64
Fe 3.64 3.61 3.65 3.69 3.67 3.77 373 3.79 3.70 3.81 37
Mn 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02
Mg 1.25 1.26 1.30 1.15 119 1.19 1.22 1.19 1.39 1.20 1.23
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
K 1.88 1.84 1.90 1.89 1.85 1.90 1.89 1.88 1.89 1.90 1.88
Fe/Fe+Mg 0.74 0.74 0.74 0.76 0.76 0.76 0.75 0.76 0.73 0.76 0.75
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UND 9 - Garnet hornblende granite, Mlahlanja Suite.

1 2 3 4 5 6 7 8 Average
C C C C C C C C
Associated with
hornblende

SiO, 34,78 34.64 34.68 3425 34.26 33.45 34.30 34.24 34.33
TiO; 3.18 3.88 3.37 3.25 3.80 2.46 3.26 3.56 335
ALO; 15.54 14.80 14.99 15.16 15.51 15.70 15.69 15.92 15.41
Cr0;3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 29.97 30.11 30.16 30.40 30.07 30.52 29.00 29.03 2991
MnO 0.21 O.-27 0.25 0.24 0.24 0.34 0.21 0.25 0.25
MgO 3.50 337 3.49 3.51 2.91 3.63 3.46 3.16 338
CaO 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
NazO 0.02 0.04 0.05 0.03 0.0s 0.04 0.04 0.04 0.04
K,O 9.19 9.02 8.95 8.97 9.22 9.06 9.15 9.27 9.10
H;O 3.76 375 375 3.75 3,75 3.73 3.77 3.77 3.75
TOTAL 100.15 99.88 99.69 99.56 99.81 98.94 98.87 99.23 99.52
Formula per 22 oxygens

Si 5.54 5.54 5.56 5.51 5.49 5.44 5.52 5.49 5.51
AlY 2.46 2.46 2.44 2.49 2.51 2.56 2.48 2.51 2.49
AM 0.46 0.33 0.39 0.38 0.42 0.44 0.50 0.50 0.43
Ti 0.38 047 0.41 0.39 0.46 0.30 0.39 0.43 0.40
Fe 3.99 4.03 4.04 4.09 4.03 4.15 3.90 3.89 4.02
Mn 0.03 0.04 0.03 0.03 0.03 0.05 0.03 0.03 0.03
Mg 0.83 0.80 0.83 0.84 0.70 0.88 0.83 0.76 0.81
Na 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
K 1.87 1.84 1.83 1.84 1.89 1.88 1.88 1.90 1.87
Fe/Fe+Mg 0.83 0.83 0.83 0.83 0.85 0.83 0.82 0.84 0.83
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UND 6 - Garnet hornblende granite, Mlahlanja Suite.

1 2 3 4 5 6 7 8 9 10 1l 12

C C C C C C C C C C C C
SiO; 39.44 26.76 26.66 26.03 24.63 2517 43.94 27.44 41.99 26.20 24.61 25.58
TiO, 1.06 1.09 3.17 2.44 0.34 0.51 0.27 0.24 0.44 0.89 0.20 0.51
AlO, 19.80 16.96 15.55 15.93 16.57 16.81 19.88 16.86 19.97 16.14 16.69 16.45
Cr,0y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 25.74 38.35 36.34 38.04 41.19 40.70 19.00 36.72 20.78 38.02 40.50 41.02
MnO 031 0.48 0.51 0.48 0.55 0.56 0.14 0.53 0.16 0.54 0.52 0.52
MgO 3.58, 5.24 492 4.87 4.79 5.38 3.07 5.48 3.08 5.12 494 4.84
Ca0 0.76 0.78 2.69 2.15 0.22 0.44 0.05 0.03 0.06 0.46 0.07 0.45
Na,O 0.00 0.00 0.03 0.02 0.00 0.01 0.01 0.02 0.02 0.02 0.00 0.01
K,O 4.10 0.47 0.31 0.00 0.00 0.00 7.28 0.46 7.01 0.18 0.00 0.00
TOTAL 94.79 90.13 90.18 89.96 88.29 89.58 93.64 87.78 93.51 87.57 87.53 89.38
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UND 320 - Amphibolite, Nagle Dam Formation.

Amphibole

1 2 3 4 5 6 7 8 9 10 it 12 Average
C C c C c c C C M C M C
Enclosed in Adjacent to Adjacent to
diopside diopside diopside
Si0. 44.18 44.53 44.60 4455 44.69 44 34 44.07 43.83 44.79 4469 44 67 44.53 44.46
TiO: 1.09 111 1.09 112 1.15 1.16 1.24 1.19 111 115 1.14 118 1.14
ALO, 9.69 9.57 9.69 9.52 9.98 9.89 10.22 9.98 9.67 998 0.98 10.16 9.86
Cr,0, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 14.65 14.82 14,45 14.83 14.39 14.99 14.78 14.96 14.13 1439 14.27 14.38 14.59
MnO 0.23 0.21 0.22 0.24 0.25 0.23 0.22 0.27 0.25 0.25 0.24 023 0.24
MgO 12,71 12.74 12,77 12,71 12.50 12.41 12.40 12.33 12.42 12.50 12.37 12.29 12.51
Ca0 1201 11.94 1185 12.00 1182 11.92 .79 1n.7s 12.06 11.82 11.83 ' 11.80 11.88
" Na,0 132 1.23 1.30 1.23 1.23 126 1.20 1.19 115 1.23 122 120 123
K.0 1.05 1.03 1.03 1.01 1.08 1.03 1.01 1.00 1.01 1.08 1.01 1.04 1.03
H.0 2.00 2.01 201 2.01 2,01 2.01 2.00 1.99 2.00 2.01 2.01 2.01 2.01
TOTAL 98.93 99.19 99.01 99.22 99.10 99.24 98.93 98 .49 98.59 99.10 98.74 98 .82 98.94
Formula per 24 oxygens
Si 6.63 6.66 6.66 6.66 6.67 6.63 6.60 6.61 6.71 6.67 6.68 6.66 6.65
Al 1.37 1.34 134 134 133 1.37 1.40 1.39 1.29 1.33 1.32 1.34 135
Al 0.34 0.34 0.37 0.34 0.42 037 0.41 0.38 0.42 0.42 0.44 0.45 0.39
Ti 0.12 0.13 0.12 0.13 0.13 0.13 0.14 0.14 0.13 0.13 0.13 0.13 0.13
Mg 284 2.84 2.85 2.83 2,78 2.77 272 2.77 277 278 256 274 277
Fe 1.70 1.69 1.66 L7 1.67 1.73 1.69 1.72 1.69 1.67 1.67 1.68 1.69
Fe 0.14 0.16 0.15 0.15 0.13 0.15 0.17 0.17 0.08 0.13 0.11 012 0.14
Mn 0.03 003 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Ca 1.83 181 1.83 1.82 1.84 182 1.81 1.80 1.89 1.84 1.86 1.85 1.83
Ca 0.10 0.10 0.07 0.10 0,05 0.09 0.09 0.10 0.05 0.05 0.04 0.04 0.07
Na 0.38 0.36 0.38 0.36 0.36 037 0.35 035 0.33 0.36 0.35 0.35 0.36
K 0.20 0.20 020 0.19 0.2} 0.20 0.19 0.19 0.19 0.21 0.19 0.20 0.20
Fe/Fe+Mg 0.39 0.39 039 0.40 0.39 0.40 0.41 0.41 0.39 0.39 0.41 0.40 0.40
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UND 357 - Amphibolite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 Average Average Average
C C C C M C M C M C Core Margin
Si0, 43.66 44.33 43.45 4339 43.49 43.33 43.22 43.36 43.21 43.39 43 .48 43.56 43.31
TiO, 1.89 1.82 1.88 1.87 1.97 1.81 1.80 1.91 1.89 1.88 1.87 1.87 1.89
ALO;, 10.53 10.16 10.49 10.74 10.47 10.49 10.37 10.62 10.44 10.47 10.48 10.50 10.42
Cr04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 19.47 19.49 19.34 18.80 18.59 19.40 18.70 19.25 18.80 18.86 19.07 19.23 18.70
MnO 0.20 0.18 0.19 0.15 0.15 0.14 0.19 0.19 0.16 Q.15 0.17 0.17 0.17
MgO 8.76 9.26 8.92 8.84 8.97 9.06 9.05 8.95 8.91 8.95 8.97 8.96 8.98
CaO 11.48 11.49 11.51 11.54 11.52 11.01 11.35 11.42 11.43 11.50 11.43 11.42 11.43
Na,O 1.40 1.39 1.39 1.38 1.32 1.24 1.35 1.37 1.33 1.23 1.34 1.34 1.33
K,O 0.96 0.86 -0.96 0.97 1.01 0.93 1.00 0.93 095 1.00 0.96 0.94 0.99
H:O 1.99 2.01 1.98 1.98 1.98 1.97 1.97 1.98 1.97 1.98 1.98 1.98 1.97
TOTAL 100.35 100.99 100.12 99.67 99.46_ 99.39 99.00 99.99 99.08 99.4] 99.75 99.99 99.18
Formula per 24 oxygens
Si 6.58 6.63 6.57 6.57 6.59 6.58 6.59 6.56 6.58 6.59 6.58 6.58 6.59
Al 1.42 1.37 1.43 1.43 1.41 1.42 1.41 1.44 1.42 1.41 1.42 1.42 141
A 045 0.42 043 0.49 0.46 0.46 0.45 0.45 0.46 0.46 0.45 0.45 0.46
Ti 0.21 0.20 0.21 0.21 0.22 0.21 0.21 0.22 022 0.21 0.21 0.21 0.22
Mg 1.97 2.06 2,01 2.00 2,03 2,05 2.06 2.02 2.02 2.03 2.03 2.02 2.04
Fe 2.36 2.31 2.34 2.31 2.29 2.28 2.29 2.32 2.30 2.30 2.31 2.32 229
Fe(M4) 0.09 0.12 0.10 0.07 0.07 0.19 0.10 0.12 0.09 0.09 0.10 0.11 0.09
Mn(M4) 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
Ca(M4) 1.85 1.84 1.86 1.87 1.87 1.79 1.85 1.85 1.86 1.87 1.85 1.85 1.86
Na(M4) 0.03 0.01 0.01 0.04 0.04 0.00 0.02 0.01 0.02 0.02 0.02 0.02 0.03
Na(A) 0.38 0.39 0.40 0.37 0.35 0.36 0.38 0.39 0.37 0.35 0.37 0.38 0.37
K(A) 0.18 0.16 0.19 0.19 0.20 0.18 0.19 0.18 0.18 0.19 0.18 0.18 0.19
Fe/Fe+Mg 0.55 0.54 0.55 0.54 0.54 0.55 0.54 0.55 0.54 0.54 0.54 0.55 0.54
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UND 65 - Homblende granite, Mlahlanja Suite.

I 2 3 4 5 6 7 8 9 10 11 12 13 14 Average
C C C C C C C C C C M C c C
Associated Associated Adjacent to
with with plagioclase
biotite biotite
SiO, 39.26 39.51 39.52 39.81 39.46 39.30 39.16 39.75 39.88 35.70 39.57 39.88 39.72 39.49 39.57
TiO, 1.83 1.90 1.92 1.91 1.77 2.12 1.90 1.88 1.80 1.83 2.44 1.92 1.83 2.08 1.94
ALO, 10.56 10.63 10.92 10.70 10.88 10.85 10.77 10.68 10.54 10.65 10.57 10.86 10.82 10.65 10.72
Cr:0: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 27.34 27.44 27.46 27.24 27.45 27.20 26.98 27.33 27.13 27.43 26.70 27.01 2724 27.01 27.21
MnO 0.64 0.66 0.68 0.66 0.63 0.63 0.64 0.68 0.68 0.65 0.63 0.68 0.65 0.67 0.66
MgO 3.72 378 3.77 371 3.56 3.54 3.67 3.82 3.80 3.83 3.60 3.8 3.73 3.68 3.71
Ca0 10.88 10.84 10.92 10.69 10.97 10.85 10.81 10.75 10.73 10.81 11.20 10.78 10.91 10.84 10.86
Na,0 1.49 1.55 1.78 1.75 1.67 1.71 .68 1.70 * 170 171 1.50 1.76 1.76 1.65 1.67
| K0 1.23 1.29 1.30 131 1.32 1.3} 1.36 1.34 1.34 1.29 1.17 1.36 1.37 128 1.30
H,0 1.86 1.87 1.89 1.88 1.87 1.87 1.86 1.88 1.88 1.88 1.88 1.89 1.88 1.87 1.88
TOTAL 98.8) 99.47 100.16 99.66 99.58 99.38 98.83 99.81 99.48 . 99.78 99.26 99.92 99.91 99.22 99.52
Formula per 24 oxygens
Si 6.33 6.32 6.28 6.35 6.31 6.29 6.30 6.33 637 6.33 6.32 6.34 6.32 6.32 6.32
AlY 1.67 1.68 1.72 1.65 1.69 1.71 .70 1.67 1.63 1.67 1.68 1.66 1.68 1.68 1.68
A 0.33 0.33 0.33 0.36 0.36 0.34 0.35 0.34 0.35 0.33 031 0.37 0.35 0.33 0.34
Ti 0.22 0.23 0.23 0.23 0.21 0.26 0.23 0.23 0.22 022 0.29 0.23 0.22 0.25 0.23
Mg 0.89 0.90 0.89 0.88 0.85 0.84 0.88 091 0.91 0.91 0.86 0.89 0.88 0.88 0.88
Fe 3.56 3.54 3.55 353 3.58 3.56 3.54 3.53 3.53 3.54 354 3.51 3.54 3.54 3.54
Fe(M4) 0.13 0.13 0.11 0.10 0.09 0.08 0.09 0.11 0.10 0.12 0.03 0.08 0.08 0.08 0.10
Mn 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
Ca 1.79 1.78 1.80 1.81 1.82 1.83 1.82 1.80 1.81 1.79 1.88 1.83 1.83 1.83 1.82
Ca(A) 0.09 0.08 0.06 0.02 0.06 0.03 0.04 0.04 0.02 0.05 0.04 0.01 0.03 0.03 0.04
Na(A) 0.46 0.48 0.5 0.54 0.52 0.53 0.52 0.53 0.53 0.53 0.46 0.54 0.54 0.51 0.52
K(A) 0.25 0.26 0.26 0.27 0.27 0.27 0.28 0.27 0.27 0.26 0.24 0.28 0.28 0.26 0.27
Fe/Fe+Mg 0.81 0.80 0.80 0.80 0.81 0.81 0.80 0.80 0.80 0.80 0.81 0.80 0.80 0.80 0.81
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UND 74 - Charnockite, Mlahlanja Suite.

1 2 3 4 s 6 7 8 9 Average

C C C C C C C C C
$i0, 39.04 39.17 39.31 38.39 3895 39.24 38.85 38.87 39.12 38.99
TiO. 1.85 1.72 1.80 1.55 1.87 1.87 1.88 1.70 1.88 1.79
ALO; 10.67 10.71 10.60 10.95 10.71 10.57 10.71 11.00 10.65 10.73
Cr,0s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 27.57 27.88 27.63 27.81 27.30 27.10 27.35 27.36 27.29 27.48
MnO 0.40 0.40 0.41 0.34 0.41 0.42 0.38 0.37 0.39 0.39
MgO 3.83 3.81 3.87 3.76 4.02 3.87 3 3.71 3.85 3.83
Ca0 10.61 10.70 10.80 10.64 10.56 10.62 10.41 10.52 10.65 10.61
Na,O 1.71 1.60 1.61 1.54 1.69 1.79 1.65 1.50 1.71 1.64
KO0 1.46 1.43 1.47 1.46 1".45 1.48 1.46 1.43 1.43 1.45
H;0 1.86 1.87 |.87 1.84 1.86 1.86 1.85 1.85 1.86 1.86
TOTAL 99.00 99.29 99.37 98.28 98.82 98.82 98.31 98.31 98.83 98.78
Formula per 24 oxygens
Si 6.29 6.29 6.31 6.24 6.28 6.32 6.30 6.29 6.30 6.29
AlY 1.71 1.71 1.69 1.76 1.72 1.68 1.70 1.71 1.70 1.71
Al 0.3t 0.32 0.31 0.34 0.31 0.33 0.34 0.39 0.32 033
Ti 0.22 021 0.22 0.19 0.23 0.23 023 0.21 0.23 0.22
Mg 0.92 0.91 0.93 0.91 0.97 0.93 091 0.90 0.92 0.92
Fe 3.54 356 355 3.56 349 3.52 3.52 3.51 3.52 3.53
Fe 0.17 0.19 0.16 0.22 0.19 0.13 0.19 0.19 0.15 0.18
Mn 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05 0.05
Ca 1.77 1.76 1.78 1.73 1.76 1.81 1.76 1.75 1.79 1.77
Ca 0.06 0.09 0.07 0.12 0.07 0.02 0.04 0.07 0.04 0.06
Na 0.53 0.50 0.50 0.49 0.53 0.56 0.52 0.47 0.53 0.51
K 0.30 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.29 0.30
Fe/Fe+Mg 0.80 0.80 0.80 0.81 0.79 0.80 0.80 0.80 0.80 0.80
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UND 9 - Garnet hornblende granite - Mlahlanja Suite.

1 2 3 4 5 6 7 Average
C C C C C C C

Si0; 39.46 39.32 39.78 39.81 39.92 39.85 39.57 39.67
TiO, 1.59 1.70 1.72 1.49 1.67 1.73 1.83 1.68
AlLO, 11.59 11.37 11.52 11.68 11.58 11.59 11.59 11.56
Cr,04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 27.34 2792 27.55 2775 27.73 27.60 27.53 27.63
MnO 0.42 0.49 0.46 0.50 0.49 0.46 0.51 0.48
MgO 2.83 2.65 2.7 2.67 2.77 2.63 2.69 2.71
Ca0 11.05 11.08 11.02 11.29 11.22 11.04 10.95 11.09
Na,O 1.45 1.36 1.48 1.33 1.36 1.48 138 1.41
KO 1.54 1.58 1.57 1.59 1.52 1.40 1.39 1.51
H,O 1.87 1.87 1.88 1.88 1.89 1.88 1.87 1.88
TOTAL 99.14 99.34 99.69 99.99 100.15 99.66 99.31 99.62
Formula per 24 oxygens

Si 6.33 6.31 6.34 6.34 6.34 6.35 6.33 6.33
Al 1.67 1.69 1.66 1.66 1.66 1.65 1.67 1.67
AlY 0.52 0.47 0.51 0.53 0.50 0.53 0.51 0.51
Ti 0.19 0.20 0.21 0.18 0.20 0.21 0.22 0.20
Mg 0.68 0.64 0.64 0.63 0.66 0.63 0.64 0.65
Fe 3.62 3.69 3.64 3.66 3.64 3.64 3.63 3.65
Fe(M4) 0.05 0.06 0.03 0.03 0.04 0.04 0.06 0.04
Mn 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.07
Ca 1.89 1.88 1.88 1.90 1.89 1.89 1.87 1.89
Na 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00
Ca(A) 0.00 0.03 0.00 0.02 0.02 0.00 0.00 0.01
Na(A) 0.45 0.42 0.44 0.41 0.42 0.44 043 0.43
K(A) 0.31 0.32 0.32 0.32 0.31 0.28 0.28 0.31
Fe/Fe+Mg 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85
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UND 6 - Garnet hornblende granite, Mlahlanja Suite.

i 2 3 Average
C C C
Si0, 39.47 39.39 39.74 39.53
TiO, 1.89 1.94 1.95 1.93
AlL,O, 11.22 1112 10.89 11.08
Cr0s 0.00 0.00 0.00 0.00
FeO 27.44 27.48 27.88 27.60
MnO 0.47 0.47 0.44 0.46
MgO 2.66 2.72 2.85 2.74
Ca0 10.80 10.72 10.82 10.78
Na,O 1.52 1.52 1.58 1.54
K,O 1.55 1.52 1.47 1.51
H,0 1.86 1.86 1.87 1.86
TOTAL 98.88 98.74 99.49 99.04
Formula per 24 oxygens
si 6.35 6.35 636 635
Al 1.65 1.65 1.64 1.65
AV 0.48 0.46 0.42 0.45
Ti 0.23 0.23 0.23 023
Mg 0.64 0.65 0.68 0.66
Fe 3.66 3.65 3.67 3.66
Fe(M4) 0.04 0.05 0.06 0.05
Mn 0.06 0.06 0.06 0.06
Ca 1.86 1.85 1.86 1.86
Na 0.04 0.03 0.02 0.03
Na(A) 0.44 044 047 0.45
K(A) 0.32 0.31 0.30 0.31
Fe/Fe+tMg 0.85 0.85 0.85 0.85
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UND 320 - Amphibolite, Nagle Dam Formation.

1 2 Average
C C
Adjacent to
hornblende

Si0, 51.21 51.70 51.46
TiO, 0.11 0.11 0.11
AlO; 1.63 1.54 1.59
CriOs 0.07 0.01 0.04
FeO 9.91 9.44 9.68
MnO 0.35 0.41 038
MgO 13.54 13.53 13.54
CaO 21.78 22.13 21.96
Na,O 0.40 0.39 0.40
K0 0.00 0.00 0.00
TOTAL 99.00 99.26 99.14
Formula per 6 oxygens

Si 1.94 1.95 1.95
AlY 0.06 0.05 0.06
Al 0.02 0.02 0.02
Fe 0.31 0.30 0.31
Mn 0.01 0.01 0.01
Mg 0.77 0.76 0.77
Ca 0.89 0.90 0.90
Na 0.03 0.03 0.03
FelFe+Mg 0.29 0.28 0.29

Pyroxene
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UND 357 - Amphibolite, Valley Trust Formation.

1 2 3 4 S 6 7 Average Average

C C M C C C C Core
Si0, 50.25 51.18 51.45 50.92 50.76 50.40 50.77 50.82 50.71
TiO, 0.10 0.09 0.09 0.15 0.09 0.14 0.12 0.11 0.12
Al O; 1.13 1.08 1.02 1.10 0.89 1.12 1.03 1.05 1.06
Cr,0; 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
FeO 13.86 14.14 1433 14.03 14.29 14.36 14.20 14.17 14.15
MnO 0.24 0.28 0.31 0.32 0.31 0.30 0.30 0.29 0.29
NiO 0.02 0.02 0.03 0.00 0.00 0.02 0.00 0.01 0.01
MgO 10.88 10.88 10.87 10.87 10.90 10.65 10.75 10.83 10.82
CaO 21.60 21.71 21.69 21.77 21.81 21.71 21.90 21.74 21.75
Na,O 0.22 0.24 0.24 0.25 0.21 0.24 0.24 0.23 023
K0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 98.30 99.62 100.03 99.41 99.26 98.95 99.31 99.27 99.15
Formula per 6 oxygens
Si 1.96 1.97 1.97 1.96 1.96 1.96 1.96 1.96 1.96
AlY 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04
AV 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01
Fe 0.45 0.45 0.46 0.45 0.46 0.47 0.46 0.46 0.46
Mn 0.01 0.01 O‘OIl 0.01 0.01 0.01 0.01 0.01 0.01
Mg 0.63 0.62 0.62 0.62 0.63 0.62 0.62 0.62 0.62
Ca 0.90 0.89 0.89 0.90 0.90 0.90 0.91 0.90 0.90
Na 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Fe/Fe+Mg 0.42 0.42 043 0.42 0.42 043 043 0.43 0.43
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UND 357 - Amphibolite, Valley Trust Formation.

I 2 3 4 5 6 7 8 9 10 11 12 13 14 I5 16 17 18 19 20 Av
C C C C C M C C C M M C C C C C C Mj(jm( C Adjrrl/lcem
o epx to cpx
Si0; 50.37 49.94 49.62 50.25 49.68 50.06 49.68 50.02 49.49 49.73 49.91 49.65 49.88 49.63 49.20 48.71 49.77 48.73 49.41 49.32 49.65
TiO; 0.07 0.08 0.08 0.03 0.05 0.05 0.05 0.10 0.10 0.11 0.11 0.10 0.09 0.06 0.05 0.09 0.04 0.07 0.07 0.06 0.07
AlLOs 0.56 0.58 0.50 0.58 0.63 048 0.53 0.58 0.45 0.48 0.61 0.61 0.48 0.54 0.51 0.62 0.45 0.46 0.64 0.52 0.54
ﬁzO: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.05 0.06 0.06 0.06 0.07 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.02
FeO 33.32 33.83 3335 33.08 33.19 33.06 33.36 33.47 33.45 33.06 33.07 33.05 33.48 33.48 33.54 33.52 33.52 33.50 33.98 33.59 33.40
MnO 0.69 0.70 0.69 0.71 0.71 0.71 0.69 0.82 0.73 0.73 0.73 0.74 0.80 0.77 0.76 0.74 0.81 0.78 0.82 0.77 0.74
NiO 0.00 0.00 0.00 0.07 0.06 0.03 0.04 0.09 0.07 0.06 0.08 0.07 0.09 0.03 0.04 0.03 0.01 0.03 0.00 0.01 0.04
MgO 14.02 13.82 13.89 13.81 1391 13.90 13.96 13.73 13.86 14.16 13.77 13.70 13.67 13.73 13.82 13.81 13.83 13.75 13.67 13.83 13.83
Ca0 0.80 0.77 0.70 0.84 0.74 0.76 0.77 0.87 0.83 0.69 0.85 0.85 0.80 0.77 0.76 077 071 0.69 0.83 0.74 0.78
Na,O 0.03 0.02 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01
K0 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 99.86 99.75 98.86 99.37 98.99 99.05 99.08 99.75 99.03 99.08 99.19 98.83 99.36 99.01 98.69 98.31 99.14 98.03 99.42 98.85 99.08
Formula per 6 oxygens
Si 1.99 1.98 1.98 1.99 1.98 1.99 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.97 1.96 1.98 1.97 1.97 1.98 1.98
A 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02
Al 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01
Fe 1.10 1.12 11 1.10 1.11 1.10 11t L1t 1.12 1.10 1.10 110 1.11 112 1.13 113 112 113 113 13 111
Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Mg 0.82 0.82 0.83 0.82 0.83 0.82 0.83 0.81 0.83 0.84 0.82 0.82 0.81 0.82 0.83 0.83 0.82 0.83 0.81 0283 0.82
Ca 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03
EFHMg 0.57 0.58 0.57 0.57 0.57 0.57 0.57 0.58 0.57 0.57 0.57 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
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NDF 70 - Fine grained granulite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 Average

C C C C M C C C C C
Si0, 47.00 46.71 46.91 46.57 46.34 46.48 45.87 46.87 46.53 45.74 46.50
TiO, 0.06 0.04 0.07 0.06 0.06 0.07 0.06 0.04 0.06 0.05 0.06 J
ALO; 6.26 6.56 6.33 6.42 5.88 6.53 6.44 6.09 593 6.09 6.25
Cr,0s 0.00 0.01 0.00 0.03 0.02 0.02 0.00 0.01 0.01 0.02 0.01
FeO 26.36 26.70 26.45 26.20 25.91 25.72 25.41 25.19 25.93 25.62 25.95
MnO 0.19 0.45 0.43 045 0.41 0.49 0.45 0.44 0.50 0.47 043
NiO 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 17.27 17.47 17.09 17.52 17.93 17.42 17.21 17.31 17.50 17.64 17.44
CaO 0.03 0.03 0.01 0.06 0.05 0.04 0.05 0.05 0.03 0.05 0.04
Na;O 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00
K0 0.00 0.00 0.00 0.00 0.00, 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 97.20 97.97 97.29 97.31 96.62 96.77 95.50 96.00 96.49 95.68 96.68
Formula per 6 oxygens
Si 1.84 1.82 1.84 1.83 1.83 1.83 1.83 1.85 1.84 1.82 1.83
AlY 0.16 0.18 0.16 0.17 0.17 0.17 0.17 0.15 0.16 0.18 0.17
AM 0.13 0.12 0.13 0.12 0.10 0.13 0.13 0.14 0.11 0.11 0.12
Fe 0.86 0.87 0.87 0.86 0.86 0.85 0.85 0.83 0.86 0.85 0.86
Mn 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02
Mg 1.01 1.02 1.00 1.02 1.06 1.02 1.02 1.02 1.03 1.05 1.02
Fe/FetMg 0.46 0.46 0.47 0.46 0.45 0.45 0.45 0.45 0.46 0.45 0.46
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NDF 67

1 2 3 4 5 Average
C C C C C

SiO; 48.25 48.72 48.50 48.11 48.55 48.43
TiO, 0.05 0.04 0.04 0.05 0.04 0.04
AlLO; 5.27 571 5.71 5.67 5.23 5.52
Cn0; 0.02 0.00 0.01 0.00 0.00 0.00
FeO 26.01 24.39 24.48 24.44 25.14 24.89
MnO 0.33 0.20 0.28 0.23 0.28 0.26
NiO 0.0} 0.00 0.00 0.00 0.00 0.00
MgO 18.60 19.20 18.75 19.22 19.12 18.98
CaO 0.04 0.02 0.03 0.03 0.03 0.03
Na,O 0.00 0.00 0.00 0.00 0.00 0.00
K0 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 98.58 98.28 97.80 97.75 98.39 98.16
Formula per 6 oxygens

Siv 1.86 1.86 1.87 1.85 1.87 1.86
AlY 0.14 0.14 0.13 0.15 0.13 0.14
AlM 0.10 0.12 0.13 0.11 0.10 0.11
Fe 0.84 0.78 0.79 0.79 0.81 0.80
Mn 0.01 0.01 0.01 0.01 0.01 0.01
Mg 1.07 1.09 1.08 1.10 1.09 1.09
Fe/Fe+Mg 0.44 0.42 0.42 0.42 0.43 0.42
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NDF 67a - Fine grained granulite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9
C C C C C C C C C

Assoc Assoc Assoc Assoc Assoc Assoc Assoc Assoc From

with with with with with with with with biotite

garnet gamet garnet garnet garnet garnet garnet gamet poor zone
Sio, 49.17 48.25 48.56 48.93 48.95 48.39 47.77 47.29 48.26
TiOx 0.07 0.07 0.07 0.05 0.08 0.18 0.12 0.05 0.09
AL O, 6.54 6.51 6.70 6.61 6.53 6.04 6.51 6.54 6.41
Cn04 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01
FeO 23.15 24.15 23.55 23.20 23.09 23.65 24.47 23.97 24.82
MnO 0.10 0.14 0.09 0.12 0.10 0.15 0.15 0.19 0.21
NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
MgO 20.30 19.70 19.96 20.32 20.30 20.20 19.41 20.05 19.22
CaO 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.03
Na;O 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00
K0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TOTAL 99.39 98.86 98.97 99.26 99.11 98.63 98.45 98.12 99.05
Formula per 6 oxygens
Si 1.85 1.83 1.84 [.84 1.84 [.84 1.83 [.81 (.84
AllV 0.15 0.17 0.16 0.16 0.16 0.16 0.17 0.19 0.16
AlVI] 0.14 0.13 0.14 0.13 0.13 0.11 0.12 0.11 0.12
Ti 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Fe 0.73 0.77 0.75 0.73 0.73 0.75 0.78 0.77 0.79
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Mg 1.14 1.12 1.13 1.14 1.14 1.15 1.11 1.15 1.09
Fe/Fe+Mg 0.39 0.41 0.40 0.39 0.39 0.39 0.41 0.40 0.42
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Table continued.

10 1 12 13 14 Average Average Average Average (Associated
C C C C C (Associated with (No associated biotite) biotite)

From From From From From garnet)

biotite biotite biotite biotite biotite

poor zone | poorzone | poorzone | rich zone rich zone

48 11 48.34 47.44 47.49 48.22 4823 48.41 48.04 47.86
0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.06 0.07
6.38 6.25 6.37 6.37 6.25 6.43 6.50 6.35 6.31
0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.01
24.54 24.20 24.91 2470 24.64 24.07 23.65 24.62 24.67
0.18 0.20 0.25 0.26 0.29 0.17 0.13 0.21 0.28
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
19.45 19.37 19.06 19.33 19.35 19.71 20.03 19.28 19.34
0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03
0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
98.73 98.45 98.13 98.25 98.85 98.73 98.85 98.59 98.56
1.84 1.85 1.83 1.83 1.84 1.84 1.84 1.84 1.84
0.16 0.15 0.17 0.17 0.16 0.16 0.17 0.16 0.17
0.12 0.13 0.12 0.11 0.12 0.12 0.13 0.12 0.12
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.78 0.77 0.80 0.79 0.79 0.77 0.75 0.79 0.79
0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01
1.11 1.10 1.09 1.11 1.10 1.12 1.14 1.10 1.11
041 0.41 0.42 0.42 0.42 0.41 0.40 0.42 042
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UND 74 - Charnockite, Mlahlanja Suite.

1 2
C C

Si0, 46.16 46.14
TiO, 0.06 0.05
ALO, 0.46 0.46
Cr0; 0.00 0.00
FeO 43.14 43.20
MnO 1.49 1.56
NiO 0.02 0.00
Mg0 528 5.16
Ca0 0.83 0.82
Na,O 0.00 0.00
K0 0.00 0.00
TOTAL 97.44 97.39
Formula per 6 oxygens

sitv 1.99 1.99
AlY 0.01 0.01
Al 0.01 0.01
Fe 1.55 1.56
Mn 0.05 0.06
Mg 034 0.33
Ca 0.04 0.04
Fe/Fe+tMg 0.82 0.83
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NDF 8 - Pelitic gneiss, Nagle Dam Formation.

Garnet

1 2 3 4 5 6 7 8 9 10 11
C C C C C C C C C C C

Si0: 37.51 37.63 37.49 37.62 38.13 38.11 37.52 37.55 37.63 37.68 37.53
TiO- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Al:O; 20.84 20.55 20.79 20.95 20.44 20.86 21.13 20.96 21.13 20.31 21.00
Cra0s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 3022 30.24 30.17 30.10 30.29 30.87 30.18 31.00 31.28 31.65 30.84
MnO 4.80 5.03 5.00 471 493 5.00 488 463 4.56 5.59 4.66
MgO 445 4.16 422 4.42 4.45 4.32 4.21 4.62 4.36 3.49 4.29
CaO 1.62 1.56 1.78 1.80 1.74 1.69 1.90 1.85 1.72 1.66 1.66
TOTAL 99.44 99.17 99.45 99.60 99.98 100.85 99.82 100.62 100.68 100.38 99.98
Formula per 24 oxygens

Si 6.02 6.06 6.02 6.02 6.09 6.04 6.00 597 5.98 6.05 6.00
AlY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00
AlY 3.94 3.90 3.94 395 384 3.90 3.98 3.90 3.94 3.84 3.96
Fe 4.05 4.07 4.05 4.03 4.04 4.09 4.04 4.12 4.16 4.25 4.12
Mn 0.65 0.69 0.68 0.64 0.67 0.67 0.66 0.62 0.61 0.76 0.63
Mg 1.06 1.00 1.01 1.05 1.06 1.02 1.00 1.10 1.03 0.83 1.02
Ca 0.28 0.27 0.31 0.31 0.30 0.29 033 0.31 0.29 0.28 0.28
Alm 0.671 0.675 0.670 0.668 0.666 0.674 0.670 0.670 0.683 0.694 0.681
Py 0.175 0.166 0.167 0.174 0.175 0.168 0.166 0.179 0.169 0.136 0.169
Spess 0.108 0.114 0.112 0.106 0.110 0.110 0.109 0.101 0.100 0.124 0.104
Gross 0.046 0.045 0.051 0.052 0.049 0.048 0.055 0.050 0.048 0.046 0.046
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Table continued.

12 13 14 15 16 17 18 19 Average Average Core Average
C C M C C C M C Margin
Adjacent to Adjacent to Adjacent to
biotite biotite biotite
37.60 37.02 34.79 36.84 37.63 37.47 35.25 36.77 37.25 37.51 35.02
0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
20.93 20.13 21.75 20.73 20.96 20.70 21.12 2091 20.85 20.78 21.43
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
31.48 32.56 31.48 32.03 31.59 31.37 32.03 31.81 3112 31.04 31.75
4.47 4.43 7.72 4.49 4.59 4.16 6.12 4.12 494 4.71 6.92
4.59 4.17 1.73 445 437 4.42 2.66 4.57 4.10 4.33 2.20
1.67 1.88 1.81 1.80 1.78 1.83 1.83 1.71 1.75 1.74 1.82
100.75 100.21 99.29 100.35 100.92 99.96 99.02 99.89 100.02 100.12 99.16
5.98 5.97 5.74 591 598 6.00 5.80 5.91 598 6.00 5.77
0.02 0.03 0.26 0.09 0.02 0.00 0.20 0.09 0.04 0.02 023
3.90 3.79 3.97 3.84 3.90 3.91 3.90 3.88 3.90 3.90 3.94
4.19 4.39 4.34 430 420 420 4.41 4.28 4.18 4.15 4.38
0.60 0.61 1.08 0.61 0.62 0.56 0.85 0.56 0.67 0.64 097
1.09 1.00 0.43 1.07 1.04 1.05 0.65 1.09 0.98 1.03 0.54
0.29 0.32 0.32 0.31 0.30 0.31 032 0.29 0.30 0.30 0.32
0.679 0.695 0.703 0.684 0.682 0.686 0.708 0.688 0.682 0.678 0.705
0.177 0.158 0.070 0.170 0.169 0.172 0.104 0.175 0.160 0.168 0.087
0.097 0.096 0.175 0.097 0.100 0.091 0.137 0.090 0.109 0.105 0.156
0.047 0.051 0.052 0.049 0.049 0.051 0.051 0.047 0.049 0.049 0.052
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NDF 56 - Pelitic gneiss, Valley Trust Formation.

1 2 3 4 s 6 7 8 9 10 11 12 13 14
C M M c C C C C C C C C C C
Adjacent to
biotite

Si0, 37.39 37.49 37.63 37.75 37.28 36.90 36.82 37.34 37.32 37.47 37.58 36.77 36.93 37.03
Tio, 0.05 0.00 0.02 0.02 0.06 0.04 0.01 0.02 0.01 0.02 0.00 0.01 0.02 0.01
ALO; 2142 21.49 21.77 21.45 21.31 21.22 21.25 21.35 21.29 21.41 20.85 21.24 2129 2149
Cr0, 0.07 0.07 0.06 0.08 0.04 0.06 0.03 0.06 0.08 0.04 0.00 0.00 0.00 0.00
FeO 32.02 3229 32.10 32.06 3231 3263 337 3235 3240 3274 3348 34.65 33.00 33.80
MnO 0.66 0.61 0.67 0.63 0.65 0.62 0.71 0.69 0.64 0.71 0.62 0.67 0.67 0.61
MgO 6.34 6.61 6.31 6.30 6.36 6.54 5.77 6.45 6.42 6.36 585 4.98 6.21 5.79
Ca0 1.15 0.96 1.02 1.05 1.18 1.04 0.95 1.02 0.91 0.93 0.89 0.86 1.13 0.88
TOTAL 99.10 99.52 99.58 99.34 99.19 99.05 99.25 99.28 99.07 99.68 99.27 £ 99.18 99.25 99.61
Formula per 24 oxygens

Si 5.95 5.94 595 5.98 5.94 5.90 5.90 5.94 595 5.94 6.00 5.92 5.90 591
AlY 0.05 0.06 0.05 0.02 0.06 0.10 0.10 0.06 0.05 0.06 0.00 0.08 0.10 0.09
Al 3.97 395 4.01 3.99 3.94 3.90 3.92 3.94 3.95 395 393 3.96 391 395
Ti 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
Fe 426 428 4.24 4.25 430 436 452 4.30 432 434 447 4.67 4.41 4.51
Mn 0.09 0.08 0.09 0.08 0.09 0.08 0.10 0.09 0.09 0.09 0.08 0.09 0.09 0.08
Mg 1.50 1.56 1.49 1.49 1.51 1.56 1.38 1.53 1.52 1.50 1.39 1.19 148 1.38
Ca 0.20 0.16 0.17 0.18 0.20 0.18 0.16 0.17 0.15 0.16 0.15 0.15 0.19 0.15
Alm 0.704 0.704 0.708 0.709 0.705 0.706 0.734 0.706 0.710 0.713 0.734 0.765 0.715 0.737
Py 0.248 0.257 0.249 0.248 0.247 0.252 0.224 0.251 0.250 0.246 0228 0.195 0.240 0.225
Spess 0.015 0.013 0.015 0.013 0.015 0.013 0.016 0.015 0.015 0.015 0.013 0.015 0.014 0.013
Gross 0.033 0.026 0.028 0.030 0.033 0.029 0.026 0.028 0.025 0.026 0.025 0.025 0.031 0.025
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Table continued.

SISATYNY A9OUdOUDIN - T XIANTddV

15 16 17 18 19 20 2] 22 23 24 25 26 27 28 Average Average Average
C C C M C C C [of M C C M M C Core Margin
Adjacent Adjacent Adjacent
to biotite to biotite to biotite
36.39 37.58 37.48 37.38 37.50 37.76 37.64 37.86 37.56 37.63 38.09 36.82 37.70 37.92 37.39 37.38 3743
0.00 0.09 0.07 0.00 0.04 0.03 0.04 0.00 0.03 0.03 0.01 0.04 0.02 0.02 0.03 0.03 0.02
21.56 21.31 21.29 21.98 21.18 2130 21.29 21.19 2145 21.37 20.73 21.48 21.18 21.28 21.34 21.28 21.56
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02
34.69 32.88 32.84 3395 32.79 33.14 32.90 32.99 33.05 32.90 32.64 33.60 32.59 32.66 32.97 3298 3293
0.67 0.62 0.62 0.62 0.64 0.65 0.64 0.67 0.67 0.68 0.69 0.68 0.69 0.62 0.65 0.65 0.66
4.99 6.37 6.26 6.13 6.21 6.33 623 6.38 6.16 6.23 6.28 5.76 6.35 6.29 6.15 6.13 6,22
0.85 1.23 1.23 0.84 1.11 1.07 1.01 0.91 0.91 0.93 0.84 0.89 0.84 0.96 0.99 1.01 0.91
99.15 100.08 99.79 100.90 99.47 100.28 99.75 100.00 99.83 99.77 99.28 99.27 99.37 99.75 99.54 99.48 99.75
5.87 5.94 5.94 5.88 5.96 5.96 5.97 5.98 595 5.96 6.05 5.89 5.99 6.00 5.95 5.95 5.93
0.13 0.06 0.06 0.12 0.04 0.04 0.03 0.02 0.05 0.04 0.00 0.11 0.01 0.00 0.06 0.05 0.07
3.97 3.91 392 395 3.93 392 3.94 3.93 3.96 3.95 3.88 3.95 3.95 3.96 3.94 3.94 3.96
0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.68 4.35 4.35 4.47 4.36 437 4.36 436 438 4.36 4,34 4,50 433 432 438 439 4.37
0.09 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09
1.20 1.50 1.48 1.44 1.47 1.49 1.47 1.50 1.46 1.47 1.49 1.38 1.50 1.48 1.46 1.45 1.47
0.15 0.21 0.21 0.14 0.19 0.18 0.17 0.15 0.15 0.16 0.14 0.15 0.14 0.16 0.17 0.17 0.15
0.765 0.709 0.711 0.729 0.713 0.713 0.716 0.715 0.720 0.717 0.716 0.735 0.714 0.715 0.718 0.719 0.719
0.196 0.244 0.242 0.235 0.241 0.243 0.241 0.246 0.240 0.242 0.246 0.225 0248 0.245 0.239 0.238 0.242
0.015 0.013 0.013 0.013 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.013 0.015 0.015 0.015
0.024 0.034 0.034 0.023 0.031 0.029 0.028 0.024 0.025 0.026 0.023 0.025 0.023 0.027 0.028 0.028 0.024
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UND 374 - Pelitic gneiss, Valley Trust Formation.

SASATYNY JEOUIOUDIN - T XIANAAY

1 2 3 4 5 6 7 8 9 10 Average
C C C C C C C C C C
SiO, 37.09 37.48 36.89 37.46 36.57 36.93 31.22 37.16 37.16 37.49 37.15
TiO, 0.01 0.02 0.02 0.04 0.03 0.02 0.03 0.04 0.03 0.02 0.03
ALO, 21.47 21.61 20.79 21.37 21.05 21.42 21.21 21.04 21.16 2117 2123
Cr0, 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.00 0.05 0.02
FeO 34.47 34.13 34.57 34.43 34.36 34.41 34.00 33.80 33.74 33.88 34.18
MnO 112 1.07 0.90 1.04 1.03 1.05 1.07 0.96 1.02 0.98 1.02
MgO 4.44 4.66 4.54 4.65 4.57 4.54 4.66 4.70 4.74 4.69 4.62
CaO 1.13 1.32 1.21 1.14 1.22 1.23 1.18 1.40 1.24 1.16 1.22
TOTAL 99.74 100.31 98.94 100.14 98.85 99.62 99.40 99.12 99.09 99.44 99.47
Formula per 24 oxygens
Si 5.94 5.96 5.97 5.97 5.92 5.93 5.97 598 5.98 6.00 5.96
A" 0.06 0.04 0.03 0.03 0.08 0.07 0.03 0.02 0.02 0.00 0.04
AlM 4.00 4.00 3.93 3.98 3.94 3.98 3.98 3.97 3.99 4.00 398
Ti 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Fe 4.62 4.54 4.68 4.59 4.66 4.62 4.56 4.55 4.54 4.54 4.59
Mn 0.15 0.14 0.12 0.14 0.14 0.14 0.15 0.13 0.14 0.13 0.14
Mg 1.06 1.10 1.10 1.11 1.10 1.09 112 1.13 1.14 1.12 L1}
Ca 0.19 0.23 0.21 0.20 0.21 021 0.20 0.24 0.21 0.20 0.21
Alm 0.767 0.756 0.766 0.760 0.763 0.762 0.756 0.752 0.753 0.758 0.759
Py 0.176 0.183 0.180 0.184 0.180 0.180 0.186 0.187 0.189 0.187 0.183
Spess 0.025 0.023 0.020 0.023 0.023 0.023 0.025 0.021 0.023 0.022 0.023
Gross 0.032 0.038 0.034 0.033 0.034 0.035 0.033 0.040 0.035 0.033 0.035
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NDF 92A - Garnet granite.

1 2 3 4 5 6 7 8 9 10 Average
C C C C C C C C C C

Si0, 37.28 37.55 37.12 3745 37.66 36.99 37.18 36.87 36.87 37.41 37.24
TiO; 0.03 0.03 0.02 0.01 0.03 0.01 0.02 0.00 0.03 0.00 0.02
AlLLO;, 21.70 21.34 21.51 21.45 21.36 21.47 21.69 21.59 21.64 21.65 21.54
Cry05 0.05 0.04 0.06 0.04 0.06 0.03 0.04 0.03 0.07 0.05 0.05
FeO 34.03 34.18 3398 34.21 34.19 34.42 34.34 34.22 33.79 34.17 34.15
MnO 1.05 0.97 1.02 1.12 1.09 123 1.19 1.17 1.06 1.15 1.1l
MgO 4.96 5.05 5.00 5.01 4.84 443 4.87 5.05 5.02 492 4.92
Ca0O 1.10 1.08 1.11 1.09 1.10 1.04 1.05 1.02 0.98 0.89 1.05
TOTAL 100.20 100.24 9948.2 100.38 100.33 99.62 100.38 99.95 99.46 100.24 100.06
Formula per 24 oxygens

Si 5.93 5.97 593 5.95 598 5.94 5.91 5.89 591 5.95 5.94
AlY 0.07 0.03 0.07 0.05 0.02 0.06 0.09 0.11 0.09 0.05 0.07
AlM 3.99 3.97 398 397 3.98 4.00 3.98 3.96 399 4.00 3.98
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Fe 4.53 4.54 4.54 4.55 4.54 4.62 4.57 4.57 4.53 4.54 4.55
Mn 0.14 0.13 0.14 0.15 0.15 0.17 0.16 0.16 0.14 0.16 0.15
Mg 1.18 1.20 1.19 1.19 1.15 1.06 1.16 1.20 1.20 1.17 1.17
Ca 0.19 0.18 0.19 0.19 0.19 0.18 0.18 0.18 0.17 0.15 0.18 .
Alm 0.750 0.750 0.749 0.748 0.753 0.766 0.753 0.748 0.750 0.754 0.752
Py 0.195 0.198 0.197 0.196 0.191 0.176 0.191 0.196 0.199 0.194 0.193
Spess 0.023 0.022 0.023 0.025 0.025 0.028 0.026 0.026 0.023 0.027 0.025
Gross 0.032 0.030 0.031 0.031 0.031 0.030 0.030 0.030 0.028 0.025 0.030
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UND 93 - Garnet granite.

1 2 3 4 5 6 7 8 9 10 Average
C C C C C C C C C C
Si0O, 36.74 36.65 36.55 37.10 37.29 36.41 36.81 36.50 36.65 37.12 36.78
TiO, 0.03 0.00 0.03 0.03 0.01 0.01 0.04 0.01 0.01 0.00 0.02
Al;O; 20.98 20.86 20.89 21.06 21.19 20.71 20.96 20.86 21.01 21.17 20.97
Cry0: 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 35.24 35.59 35.84 35.58 35.18 35.02 34.94 34.75 35.24 3535 3527
MnO 1.09 L1t 1.03 0.98 1.05 1.16 1.03 0.97 1.07 1.00 1.05
MgO 3.34 3.38 3.37 3.46 3.56 3.49 3.50 3.43 3.53 3.65 3.47
Ca0 1.88 1.90 1.89 2.03 2.12 2.04 232 2.34 225 1.95 2.07
TOTAL 99.32 99.49 99.60 100.24 100.40 98.84 99.60 98.86 99.76 100.24 99.64
Formula per 24 oxygens
Si 5.96 595 593 5.96 597 5.94 5.95 5.94 5.92 5.96 5.95
AlY 0.04 0.06 0.07 0.04 0.03 0.06 0.05 0.06 0.08 0.05 0.05
AlM 3.97 5.93 3.92 395 3.97 3.92 3.94 3.95 3.93 3.96 3.94
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 4.78 4.83 4.86 4.78 4.71 4.78 4.72 4.73 4.76 4.74 4.77
Mn 0.15 0.15 0.14 0.13 0.14 0.16 0.14 0.13 Q.15 0.14 0.14
Mg 0.81 0.82 0.82 0.83 0.85 0.85 0.84 0.83 0.85 0.87 0.84
Ca 0.33 0.33 0.33 0.35 0.36 0.36 0.40 041 0.39 0.34 0.36
Alm 0.788 0.788 0.790 0.785 0.777 0.777 0.774 0.776 0.774 0.778 0.781
Py 0.133 0.134 0.133 0.136 0.140 0.138 0.138 0.136 0.138 0.143 0.137
Spess 0.025 0.024 0.023 0.021 0.023 0.026 0.023 0.02] 0.025 0.023 0.023
Gross 0.054 0.054 0.054 0.058 0.060 0.059 0.065 0.067 0.063 0.056 0.059

SASATVNY JOUYdOUDIN - T XIANAddV

SL-d



NDF 70 - Fine grained granulite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 11 Average Average Average
C C C M C M M C C C C Core Margin
Adjgcgnt Adjace_nt Adjacgnt
to biotite to biotite | to biotite

SiO; 38.62 37.91 40.52 41.35 40.12 38.05 38.88 38.66 38.39 38.59 38.37 39.04 38.90 39.43
TiO, 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al,O4 21.29 21.43 20.80 20.83 20.89 21.10 21.13 21.64 21.44 21.52 21.75 21.26 21.34 21.02
Cr0; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 29.63 29.63 29.17 28.18 29.27 31.63 31.69 29.88 29.67 29.86 29.88 29.86 29.62 30.50
MnO 1.18 1.29 1.27 1.18 1.24 1.45 140 1.19 1.13 1.19 1.19 1.25 1.21 1.34
MgO 8.92 8.79 8.03 3.13 8.63 7.09 7.07 8.64 8.82 8.64 8.48 8.29 8.62 7.43
CaO 1.08 1.08 1.11 1.07 1.14 1.16 1.10 1.04 1.10 1.12 1.03 1.09 1.09 111
TOTAL 100.72 100.14 100.91 100.75 101.29 100.49 101.27 101.05 100.55 100.92 100.70 100.80 100.79 100.84
Formula per 24 oxygens
Si 5.98 5.91 6.22 6.31 6.14 5.97 6.04 5.96 5.95 5.96 5.94 6.03 6.01 6.11
AlY 0.02 0.09 0.00 0.00 0.00 0.03 0.00 0.04 0.05 0.04 0.06 0.03 0.04 0.01
AlY 3.86 3.85 376 ° 3.74 3.77 3.88 3.87 3.90 3.87 3.88 3.91 3.84 3.85 3.83
Fe 3.83 3.87 3.74 3.59 3.75 4.15 4.12 3.86 3.85 3.86 3.87 3.86 3.83 3.95
Mn 0.15 0.17 0.16 0.15 0.16 0.19 0.18 0.16 0.15 0.16 0.16 0.16 0.16 0.17
Mg 2.06 2.04 1.84 1.85 1.97 1.66 1.64 1.99 2.04 1.99 1.96 1.91 1.99 1.72
Ca 0.18 0.18 0.18 0.18 0.19 0.19 0.18 0.17 0.18 0.18 0.17 0.18 0.18 0.18
Alm 0.616 0.618 0.632 0.622 0.618 0.670 0.673 0.625 0.619 0.624 0.628 0.632 0.622 0.655
Py 0.331 0.326 0.311 0.321] 0.325 0.268 0.268 0.322 0.328 0.321 0318 0.313 0.323 0.286
Spess 0.024 0.027 0.027 0.026 0.026 0.031 0.030 0.026 0.024 0.026 0.026 0.026 0.026 0.029
Gross 0.029 0.029 0.030 0.031 0.031 0.031 0.029 0.027 0.029 0.029 0.028 0.029 0.029 0.030
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NDF 67a - Fine grained granulite, Valley Trust Formation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C C C C C C C C C C C C C C C

SiO; 39.20 39.43 38.73 39.21 39.07 39.13 38.82 38.84 39.08 39.05 39.13 39.19 39.08 39.20 39.15
TiO, 0.01 0.01 0.0} 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00
ALO; 2222 22.53 22.32 22.19 2226 22.33 22.22 22.19 22.43 2233 2222 22.28 21.81 22.11 22.05
Cr,Os 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
FeO 27.54 27.51 29.33 28.44 29.19 26.38 27.46 28.92 28.05 2791 27.83 28.09 27.71 28.04 28.13
MnO 0.45 0.46 041 0.44 0.40 0.42 0.42 0.58 0.58 0.53 0.49 0.44 0.47 0.53 0.50
MgO 1041 10.32 9.02 9.12 8.96 10.51 9.84 9.60 9.91 9.82 9.95 9.72 9.87 9.40 9.63
CaO 0.62 0.62 0.62 0.56 0.59 0.58 0.58 0.61 0.65 0.65 0.61 0.65 0.66 0.65 0.64
TOTAL 100.46 100.89 100.45 99.96 100.48 99.36 99.34 100.76 100.72 100.31 100.26 100.38 99.60 99.93 100.11
Formuia per 24 oxygens

Si 598 5.98 5.96 6.03 6.00 6.00 5.99 5.95 5.96 5.98 5.99 6.00 6.02 6.03 6.01
AlY 0.02 0.02 0.04 0.00 0.00 0.00 0.0t 0.05 0.04 0.02 0.01 0.00 0.00 0.00 0.00
Al 3.98 4.01 4.01 4.02 4.03 4.04 4.03 3.96 4.00 4.01 4.00 4.02 3.96 4.0] 3.99
Fe 3.51 3.49 3.78 3.66 3.75 3.38 3.54 3.71 3.58 3.57 3.56 3.59 3.57 3.6} 3.61
Mn 0.06 0.06 0.05 0.06 0.05 0.05 0.05 0.08 0.07 0.07 0.06 0.06 0.06 0.07 0.06
Mg 2.37 2.33 2.07 2.09 2.05 2.40 2.26 2.19 2.25 2.24 227 222 2.27 2.15 220
Ca 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.11 0.11 0.10 0.11 0.11 0.11 0.11
Alm 0.581 0.583 0.630 0.621 0.630 0.570 0.595 0.610 0.596 0.596 0.594 0.600 0.594 0.608 0.604
Py 0.392 0.390 0.345 0.354 0.345 0.405 0.380 0.360 0374 0.374 0.379 0.371 0.378 0.362 0.368
Spess 0.010 0.010 0.008 0.010 0.008 0.008 0.008 0.013 0.012 0.012 0.010 0.010 0.010 0.012 0.010
Gross 0.017 0.017 0.017 0.015 0.017 0.017 0.017 0.017 0.018 0.018 0.017 0.019 0.018 0.018 0.018
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Table continued.

16 17 18 19 20 21 22 23 24 25 26 27 28 Average Average Average Average
c M M M M M M M M M M M M core Margin (Assoc. with | (Assoc. with
Adjacent Adjacent | Adjacent 0opx) bio)
to opx to opx to biotite
38.92 38.50 38.67 38.71 3838 39.08 38.66 39.19 39.03 38.94 39.11 39.01 38.67 39.08 38.83 38.56 38.96
-0.00 0.01 0.02 0.04 0.01 0.03 0.01 0.00 0.01 0.0l 0.01 0.01 0.01 0.01 0.01 0.02 0.01
21.96 22.36 22.17 22.35 21.96 22.09 22.03 2217 2222 22.23 22.49 22.39 21.91 2222 22.20 2221 22.19
0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00
27.06 28.87 28.69 28.42 29.55 30.09 30.12 27.30 30.40 29.11 29.28 28.69 28.96 27.97 29.12 28.89 29.24
0.42 0.53 0.55 0.6} 0.63 0.45 0.47 0.44 0.49 0.54 0.56 0.50 0.50 0.47 0.52 0.58 0.49
10.23 9.17 9.86 10.09 8.70 8.37 8.23 10.27 7.79 9.34 8.86 9.22 9.43 9.77 9.11 9.45 8.94
0.63 0.66 0.65 0.64 0.65 0.60 0.64 0.66 0.61 0.61 0.60 0.63 0.65 0.62 0.63 0.65 0.62
99.22 100.11 100.61 100.87 99.90 100.71 100.16 100.03 100.55 100.78 100.91 100.45 100.14 100.14 100.43 100.37 100.46
6.00 5.94 5.93 5.92 5.96 6.02 5.99 6.00 6.03 597 5.99 5.98 5.97 5.99 5.98 5.94 5.99
0.00 0.06 0.07 0.08 0.04 0.00 0.0t 0.00 0.00 0.03 0.01 0.02 0.03 0.01 0.03 0.06 0.01
3.99 4.0] 3.94 3.94 398 4.0] 4.02 4.00 4.04 3.99 4.04 4.03 3.95 4.00 4.00 3.97 4.0l
3.49 3.73 3.68 3.63 3.84 3.87 3.90 3.50 393 3.73 3.75 3.68 3.74 3.59 3.75 372 3.76
0.05 0.07 0.07 0.08 0.08 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.08 0.06
235 2.11 226 2.30 2.01 1.92 1.90 2.34 1.79 213 2.02 2.11 2.17 223 2.09 2.17 2.05
0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10
0.583 0.620 0.601 0.594 0.636 0.650 0.653 0.583 0.669 0.618 0.631 0.617 0.616 0.600 0.624 0.612 0.630
0.392 0.350 0.369 0.377 0.333 0.323 0.318 0.389 0.304 0.353 0.340 0.354 0.358 0.373 0.348 0.357 0.343
0.008 0.012 0.012 0.013 0.013 0.010 0.010 0.010 0.010 0.012 0.012 0.012 0.010 0.010 0.012 0.013 0.010
0.017 0.018 0.018 0.016 0.018 0.017 0.019 0.018 0.017 0.017 0.017 0.017 0.016 0.017 0.017 0.018 0.017
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NDF 69 - Fine grained granulite, Valley Trust Formation.

! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C c C C C C C C C C C C C M C M C C
Isolated Isolated Isolated Main Main Main Main Main Main Main Main Main Main
gamet gamet garnet band band band band band band band band band band
Si0, 3891 38.25 38.21 38.81 3877 39.14 38.70 38.24 38.90 38.73 3879 38.64 38.52 38.70 38.41 38.60 38.53 38.05
Ti0, 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.00 0.00 ) 0.0V 0.03 0.01 0.00 001 0.02
ALO; 22.17 22.42 22.26 2235 2228 22.23 22,14 21.90 22.25 22.30 22.27 22.09 21.89 2191 21.94 21.89 21.89 22.05
Cry0y 0.04 0.05 0.01 0.01 0.01 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00
FeQ 28,72 29.23 29.51 2949 29.16 2868 29.62 3028 ) 3102 29.78 30.09 3033 29.36 30.51 29.32 29.66 29.72 29.69
MnO 0.27 0.23 0.24 0.26 0.23 0.26 0.27 0.29 0.17 0.18 0.23 0.18 0.28 0.24 0.22 0.24 0.21 0.19
MgO 9.07 8.95 9.18 8.97 9.26 9A5AZ 9.35 8.89 7.81 8.98 8.68 8.68 9.17 7.72 8.92 8.63 8.66 8.66
Ca0 0.85 0.84 0.85 0.84 0.90 0.81 0.82 0.78 0.79 0.88 0.86 0.94 0.78 0.78 0.80 0.80 091 0.86
Total 100.03 99.97 100.26 100.73 100.61 100.68 100.93 100.42 100.96 100.85 100.92 100.86 100.02 99.89 99.63 99.83 99.94 99.52
Formula per 24 ox.ygcns
Si 6.00 5.92 5.91 5.96 595 5.99 5.94 5.92 5.99 595 5.96 5.95 5.96 6.02 5.97 5.99 5.98 593
AlY 0.00 0.08 0.09 0.04 0.05 0.01 0.06 0.08 0.01 0.05 0.04 0.05 0.04 0.00 0.03 0.01 0.02 0.07
AlY 4.02 4.01 3.96 4.00 399 3.99 3.54 3.92 4.04 398 399 3.96 3.96 4.02 3.98 399 398 3.99
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 3.70 3.78 3.81 3.79 3.74 3.67 3.80 392 4.00 3.82 3.87 391 3.80 397 3.81 3.85 3.86 3.87
Mn 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.02 0.02 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.02
Mg 2.08 2.07 2.12 2.05 212 2.17 2.14 2.05 1.79 2,06 1,99 1.99 2.12 1.79 2.07 2.00 2.00 2.01
Ca 0.14 0.14 0.14 0.14 0.15 0.13 0.13 0.13 0.13 0.14 0.14 0.16 0.13 0.13 0.13 0.13 0.15 0.14
Alm 0.622 0.628 0.625 0.631 0619 0.611 0.622 0.638 0.673 0.632 0.642 0.643 0.624 0.671 0.631 0.641 0.639 0.641
Py 0.350 0.344 0.347 0.341 0351 0.362 0.350 0.334 0.302 0.341 0.330 0.327 0.348 0.302 0.343 0.333 0.331 0.333
Spess 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.003 0.004 0.005 0.003 0.007 0.005 0.005 0.005 0.005 0.003
Gross 0.023 0.023 0.023 0.023 0.025 0.022 0.021 0.021 0.022 0.023 0.023 0.026 0.021 0.022 0.021 0.021 0.025 0.023
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Table continued.

19 20 21 22 23 24 25 26 27 28 Average Average Average
c c C C C c M M M M Core Margin
Main band Main band Main band Adjacent Adjacent to Adjacent Adjacent to
to biotite biotite to biotite biotite
37.95 38.12 38.20 39.05 38.52 38.85 38.66 38.76 38.66 38.68 38.58 38.59 38.68
0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.01 0.01
22.00 21.91 22.08 22.17 22.14 22.17 21.65 21.93 21.95 21.71 22.07 2213 21.84
0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.01 0.00 0.02 0.01 0.01 0.01
30.16 29:28 29.56 29.55 29.47 29.58 29.71 30.91 29.34 29.55 29.69 29.62 29.95
0.22 0.21 0.20 0.20 0.17 0.21 0.21 0.26 0.16 0.17 0.22 0.22 0.21
8.38 8.44 8.48 8.70 8.82 8.63 8.10 7.30 8.47 8.47 8.67 8.83 8.12
0.82 0.83 0.85 0.83 0.84 0.80 0.83 0.81 0.86 0.83 0.84 0.84 0.82
99.54 98.80 99.38 100.50 99.98 100.24 99.18 100.00 99.45 99.43 100.09 100.22 99.63
593 5.98 596 6.01 5.96 6.00 6.04 6.03 6.01 6.02 597 5.96 6.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
3.98 4.02 4.02 4.02 4.00 4.03 3.99 4.02 4.02 3.98 3.99 3.99 4.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 30.00 0.00 0.00 0.00 0.60 0.00 0.00
3.94 3.84 3.85 3.80 3.81 3.82 3.88 4.02 3.82 3.85 3.84 3.83 3.89
0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.03
1.95 1.97 1.97 2.00 2.03 1.98 1.89 1.69 1.96 1.97 2.00 2.03 1.88
0.14 0.14 0.14 0.14 0.14 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14
0.650 0.642 0.643 0.637 0.635 0.641 0.653 0.685 0.643 0.644 0.639 0.635 0.655
0.322 0.330 0.329 0.335 0.339 0.332 0.318 0.288 0.330 0.330 0.333 0337 0.316
0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005
0.023 0.023 0.023 0.023 0.023 0.022 0.024 0.022 0.024 0.023 0.023 0.023 0.024
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UND 330 - Granitic enclave.

1 2 3 4 5 6 7 8 9 Average Average

Cc C C C C C M M M Core Margin
SiO, 37.37 36.97 3733 37.12 36.89 - 36.49 37.54 37.18 37.67 37.03 37.46
TiO, 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.01 0.01 0.01
AL 05 20.58 20.38 20.67 20.69 20.93 20.86 21.46 20.83 21.21 20.69 21.17
CnOy 0.00 0.01 0.00 0.01 0.01 0.00 0.03 0.00 0.00 0.01 0.01
FeO 33.83 33.19 33.18 33.82 33.85 34.48 32.55 32.80 32.96 33.73 32.77
MnO 2.25 2.16 2.28 2.14 2.04 2.16 3.72 2.29 2.81 2.17 2.94
MgO 1.10 1.09 0.90 1.20 1.21 1.25 0.50 0.94 0.70 1.13 0.71
Ca0 528 5.32 5.28 4.24 4.84 3.87 4.86 5.26 5.23 4.8] 5.12
TOTAL 100.41 99.12 99.65 99.20 99.70 99.11 100.60 99.30 100.59 99.58 100.19
Formula per 24 oxygens
Si 6.03 6.04 6.06 6.05 5.99 5.98 6.03 6.05 6.05 6.03 6.04
AlY 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00
AM 3.92 3.92 395 3.97 3.99 4.00 4.06 3.99 4.01 3.96 4.02
Fe 4.57 4.54 4.50 4.61 4.60 4.72 4.37 4.46 4.43 4.59 4.42
Mn 0.31 0.30 0.31 0.30 0.28 0.30 0.51 0.32 0.38 0.30 0.40
Mg 0.26 0.26 022 0.29 0.29 0.30 0.12 0.23 0.17 0.27 0.17
Ca 0.91 0.93 0.92 0.74 0.84 0,68 0.84 0.92 0.90 0.84 0.89
Alm 0.756 0.753 0.756 0.776 0.765 0.787 0.748 0.752 0.753 0.765 0.752
Py 0.043 0.043 0.037 0.049 0.048 0.050 0.021 0.039 0.029 0.045 0.029
Spess 0.051 0.050 0.052 0.050 0.047 0.050 0.087 0.054 0.065 0.050 0.068
Gross 0.150 0.154 0.155 0.125 0.140 0.113 0.144 0.155 0.153 0.140 0.151
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XS 4 - Biotite garnet granite, Ximba Suite.

1 2 3 4 5 6 7 8 9 10 11 12
C C C C C C C C C C M C
SiO, 36.75 37.13 37.07 36.80 37.01 36.55 36.81 36.82 36.63 36.90 36.17 36.73
TiO, 0.02 0.01 0.00 0.02 0.00 0.02 0.01 0.02 0.01 0.02 0:04 0.01
AL O, 20.57 20.72 20.52 20.59 20.60 20.59 20.75 20.70 20.73 20.97 20.62 20.75
Cr,0; 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 33.35 33.39 3298 33.53 33.15 33.01 32.97 32.54 32.96 33.37 32.41 33.46
MnO 2.16 2.14 . 225 2.26 220 2.16 212 2.17 2.10 2.31 272 228
MgO 0.86 0.86 0.85 0.89 0.83 0.76 0.86 0.82 T 0.92 0.72 0.67 0.86
Ca0 6.39 6.36 6.66 6.27 6.31 6.40 6.44 6.43 6.29 6.46 6.98 6.51
TOTAL 100.10 100.61 100.33 100.36 100.10 99.49 99.96 99.50 99.64 100.75 99.61 100.60
Formula per 24 oxygens
Si 5.97 5.99 6.00 5.97 6.00 5.97 5.97 5.99 5.97 5.95 5.92 5.94
AlY 0.03 0.01 0.00 0.03 0.00 0.03 0.03 0.01 0.03 0.05 0.08 0.06
AV 391 393 391 3.90 3.94 393 3.94 3.97 3.94 3.94 3.89 3.90
Fe 4.53 4.51 4.46 4.55 4.50 4.5] 4.47 4.43 4.49 4.50 443 4.53
Mn 0.30 0.29 0.31 0.31 0.30 0.30 0.29 0.30 0.29 0.32 0.38 031
Mg 0.21 0.21 0.21 0.22 0.20 0.18 0.21 0.20 0.22 0.17 0.16 021
Ca 1.11 1.10 1.16 1.09 1.10 1.12 1.12 1.12 1.10 1.12 1.22 1.13
Alm 0.737 0.738 0.726 0.737 0.738 0.738 0.734 0.732 0.736 0.737 0.716 0.733
Py 0.034 0.034 0.034 0.036 0.033 0.030 0.034 0.033 0.036 0.028 0.026 0.034
Spess 0.049 0.048 0.051 0.050 0.049 0.049 0.048 0.050 0.048 0.052 0.061 0.050
Gross 0.180 0.180 0.189 0.177 0.180 0.183 0.184 0.185 0.180 0.183 0.197 0.183
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Table continued.

13°

14

15 16 17 18 19 20 21 22 23 24 Average Average Average
M C C M M C M C C C C M Core Margin

Adjacent

to biotite
36.57 36.66 36.37 36.86 36.60 36.82 36.31 36.77 37.35 36.27 36.33 3539 36.65 36.77 36.32
0.00 0.03 0.05 0.02 0.03 0.0l 0.02 0.02 0.03 0.03 - 0.04 0.03 0.02 0.02 0.02
20.10 20.64 20.46 21.16 21.05 20.45 20.39 20.15 19.59 20.61 20.19 21.05 20.58 20.53 20.73
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
32.86 33.50 33.53 32.19 32,65 33.74 33.66 33.40 3347 32.14 33.02 32.17 33.06 33.20 32.66
233 220 2.20 237 2.54 2.03 2.02 2.10 2.11 227 2.09 236 223 2.18 2.39
0.73 0.84 0.76 0.72 0.66 0.86 0.79 0.86 0.64 0.65 0.74 0.68 0.78 0.81 0.71
6.85 6.31 6.35 7.24 6.71 6.75 6.42 6.14 6.67 7.03 6.96 7.68 6.61 6.49 6.98
99.44 100.18 99.72 100.56 100.24 100.66 99.61 99.44 99.86 99.00 99.37 99.36 99.95 99.98 99.86
597 5.96 5.95 5.94 593 5.96 5.94 6.01 6.09 5.95 5.96 5.81 5.96 5.98 5.92
0.03 0.04 0.05 0.06 0.07 0.04 0.06 0.00 0.00 0.05 0.04 0.19 0.04 0.03 0.08
3.89 3.91 3.89 3.96 395 3.86 3.88 3.88 3.76 3.93 3.86 3.88 391 3.91 391
4.48 4.55 4.58 434 442 4.57 4.61 4.57 4.56 44] 4.53 4.42 4.50 451 4.45
0.32 0.30 0.30 0.32 0.35 0.28 028 0.29 0.29 0.32 0.29 0.33 0.31 0.30 0.33
0.18 0.20 0.19 0.17 0.16 0.21 0.19 0.21 0.16 0.16 0.18 0.17 0.19 0.20 0.17
1.20 1.10 1.11 1.25 1.16 1.17 1.13 1.08 1.16 1.24 1.22 1.35 1.15 1.13 1.22
0.725 0.740 0.741 0.714 0.726 0.733 0.742 0.743 0.739 0.720 0.728 0.705 0.732 0.735 0.721
0.029 0.032 0.031 0.028 0.026 0.034 0.031 0.034 0.026 0.026 0.029 0.027 0.031 0.033 0.028
0.052 0.049 0.048 0.053 0.057 0.045 0.045 0.047 0.047 0.052 0.047 0.053 0.050 0.049 0.053
0.194 0.179 0.180 0.205 0.191 0.188 0.182 0.176 0.188 0.202 0.196 0.215 0.187 0.184 0.198
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UND 22 - Granite vein.

1 2 3 4 5 6 Average Average

C C C M M M Core Margin
Si0, "37.08 36.91 37.08 36.92 36.43 36.87 37.02 36.74
TiO, 0.03 0.02 0.02 0.02 0.00 0.01 0.02 0.01
AlLO, 20.58 20.57 20.71 20.35 20.32 20.29 20.62 20.32
Cr;0, 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01
FeO 27.58 . 28.24 28.12 27.68 27.88 28.13 27.98 27.89
MnO 10.26 10.42 10.35 10.69 10.92 10.65 10.34 10.76
MgO 0.68 0.69 0.69 0.73 0.72 0.70 0.69 0.72
Ca0O 2.79 2.76 2.71 2.67 2.68 2.54 2.75 2.63
TOTAL 98.99 99.61 99.68 99.06 98.95 99.21 99.43 99.08
Formula per 24 oxygens
Si 6.08 6.04 6.05 6.07 6.02 6.06 '6.06 6.05
AlY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 3.98 3.97 3.98 3.94 3.96 393 3.98 3.94
Fe 3.78 3.97 3.99 3.95 3.96 394 3.91 3.95
Mn 1.43 1.44 1.43 1.49 1.53 1.48 1.43 1.50
Mg 0.17 0.17 0.17 0.18 0.18 0.17 0.17 0.18
Ca 0.49 0.48 0.47 0.47 0.47 0.45 0.48 0.46
Alm 0.644 0.655 0.658 0.649 0.645 0.652 0.653 0.649
Py 0.029 0.028 0.028 0.029 0.029 0.028 0.028 0.029
Spess 0.244 0.238 0.236 0.245 0.249 0.245 0.239 0.246
Gross 0.083 0.079 0.078 0.077 0.077 0.075 0.080 0.076
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UND 19 - Ngwadolo Suite.

1 2 3 4 5 6

C C C C C C
Si0o;, 35.87 35.90 36.15 35.59 35.86 35.76
TiO, 0.00 0.02 0.01 0.00 0.01 0.01
AlOx 19.99 20.56 20.15 20.14 20.43 20.14
Cr0s 0.00 0.00 0.00 0.00 0.00 0.00
FeO 37.73 37.83 37.94 38.64 38.01 38.08
MnO 0.61 0.62 0.57 0.57 0.56 0.55
MgO 0.24 0.19 0.25 0.25 0.26 0.27
Ca0 2.19 2.06 2.47 2.26 2.39 2.45
TOTAL 96.63 97.18 97.54 97.45 97.52 97.26
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UND 90 - Biotite garnet granite, Ximba Suite.

[

2

3

C C C c e c c c C c c c c Average
SiO, 36.53 37.04 36.97 36.86 36.43 36.84 36.87 36.49 36.68 37.06 36.53 36.71 36.74 36.75
TiO, 0.01 0.00 0.01 0.03 0.01 0.02 0.04 0.01 0.01 0.02 0.00 0.01 0.00 0.01
Al,O; 20.95 20.99 20.54 20.86 20.48 20.77 20.83 20.53 20.80 21.06 20.60 20.80 20.86 20.77
Cr04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeO 34.59 34.88 34.67 34.11 3473 35.06 34.45 35.21 34.73 34.47 35.21 34.57 33.60 34.64
MnO 1.49 1.45 1.37 1.34 1.35 1.49 1.39 1.52 1.40 1.44 1.47 1.53 1.43 1.44
MgO 0.96 0.98 0.94 0.96 0.86 0.85 0.95 0.88 0.91 0.93 0.99 0.84 0.94 0.92
CaO © 540 548 5.64 528 5.31 5.25 5.35 4.87 5.37 527 5.05 5.36 5.53 532
TOTAL 99.93 100.82 100.14 99.44 99.17 100.28 99.88 99.51 99.90 100.25 99.85 99.82 99.10 99.91
Formula per 24 oxygens
Si 5.94 5.97 6.00 6.00 5.98 5.98 5.99 5.98 5.97 5.99 5.96 5.98 5.98 598
AN 0.06 0.03 0.00 0.00 0.02 0.02 0.01 0.02 0.03 0.01 0.04 0.02 0.03 0.02
ALY 3.96 3.96 393 4.00 3.94 3.95 3.98 3.94 3.96 4.00 392 397 3.97 3.96
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 471 4.70 4.71 4.65 4.77 4.76 4.68 4.82 473 4.66 4.81 4.71 4.66 4.72
Mn 0.21 0.20 0.19 0.19 0.19 0.2] 0.19 0.21 0.19 0.20 0.20 0.21 0.20 0.20
Mg 0.23 0.24 023 0.23 0.21 0.21 0.23 0.22 0.22 0.22 0.24 0.20 0.23 0.22
Ca 0.94 0.95 0.98 0.92 0.93 0.91 0.93 0.85 0.94 0.91 0.88 0.94 0.96 0.93
Alm 0.773 0.772 0.771 0.776 0.782 0.782 0.776 0.790 0.778 0.778 0.785 0.777 0.770 0.778
Py 0.038 0.039 0.038 0.038 0.035 0.034 0.038 0.036 0.036 0.037 0.039 0.033 0.038 0.036
Spess 0.035 0.033 0.031 0.032 0.031 0.035 0.032 0.035 0.031 0.033 0.032 0.035 0.033 0.033
Gross 0.154 0.156 0.160 0.154 0.152 0.149 0.154 0.139 0.155 0.152 0.144 0.155 0.159 0.153
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APPENDIX 3 - CHEMICAL ANALYSES C-i

Large, c¢.50 kg samples were collected in the field, with individual samples collected from
construction sites and quarries. The majority of the pelitic gneisses and biotite garnet granites were
collected after blasting. After collection the samples were washed, and split into c¢.5kg pieces. These
were washed again, and the weathered material removed using a rock splitter, which had been cleaned
with a wire brush, then vacuumed and washed with acetone. The fresh material was then crushed in a
jaw crusher, which had been cleaned and then precontaminated with the removed weathered material
from the individual samples. The sample was then subdivided in a sampler splitter, which had been air
blasted clean, and ¢.50g further crushed in an agate mill, which had been washed with distilled water
and then acetone.

Major and frace element analyses were undertaken at the Geological Survey, Pretoria using the
methodology of Frick and Walraven (1985) as discussed by Kuyper (1979) and the University of
Natal, Pietermaritzburg (Krynauw 1986) on an XRF using Norrish fusion discs and pressed powder
pellets. Precision is estimated at 2% for the major elements above 0.1% concentration and 5% above
10 ppm concentration for trace elements for the analyses at the Geological Survey, Pretoria (Frick and
Walraven 1985) and 0.6%-7% for major elements above 1% and 2-10% for trace elements at the
University of Natal, Pietermaritzburg (Krynauw 1986). REE analyses were undertaken at Royal
Holloway and New Bedford College, London, on an ICP using the methods of Walsh et al. (1981),
with an estimated precision of 1-2%.



" APPENDIX 3 — CHEMICAL ANALYSES C2

0 GEOCHEMICAL SAMPLE SITES N LEGEND
0% .
0 a T - 297 30—
o go(é.‘g) 2 % o HATAL GROUP SANDSTONE

328, 330, 33 ‘ . ]
e g - 363 | . NOWADOLO GRANITE

364 - 381, 400 - L09

NDOF-_36, 924, X54 Pz
‘ #”| AUGEN GNEISS BELT

328, 335 - 341

BIOTITE GRANITE

HORNBLENDE GRANITE

BIOTITE - GARNET GRANITE | MGENI BATHOLITH

GARNET - HORNBLENDE GRANITE

CHARNOCKITE

D

B EBEE-

MARGINAL GRANITE

VALLEY TRUST FORMATION

NOF6, 67A, 69,7
©332, 333,334

”

-

1]

o s .

NAGLE DAM FORMATION

30°  SPECIMEN LOCALITY

X MICROPROBE SPECIMEN LOCALITY

O NOWADOLO SUITE

@ MLAHLANJA SUITE

O XIMBA SUITE

O VALLEY TRUST FORMATION
@ NAGLE DAM FORMATION

8° s

30° 30’

1. SPITSKOP PLUTON
4. EGUGWINI PLUTON

2. MATATA PLUTON
5. MLANGAKHUTA PLUTON

3. SANSIKANE PLUTON \
6. ENYONI PLUTON

Skm

no




APPENDIX 3 - CHEMICAL ANALYSES

Amphibolite - Nagle Dam Formation.

UND 307 UND 308 UND 314 UND 320 UND 324
Si0, (w1%) 49.89 47.17 51.89 51.69 50.68
TiO, 0.83 1.25 0.87 0.46 1.43
ALO; 14..63 13.60 14.56 13.21 15.44
Fe; 05 9.72 12.91 12.04 2.59 3.83
FeO 0.00 0.00 0.00 6.07 8.25
MnO 0.16 0.17 0.26 0.19 0.19
MgO 9.21 10.65 8.71 8.19 8.41
CaO 11.00 11.13 8.77 12.77 9.06
Na,0 2.77 2.05 0.80 2.52 2.65
K,0 0.89 0.98 2.13 0.89 0.47
P20; 0.11 0.10 0.08 0.14 0.34
Cr,05 0.00 0.00 0.00
H,0" 0.51 0.35
H,Or 0.09 0.07
CO, 0.09 0.12
S 0.00 0.16
LOI 0.86 0.73 2.22
TOTAL 99.21 100.00 100.11 99.41 101.46
Trace elements in ppm
Rb 15 32 88 58 11
Sr 133 172 184 172 306
Zr 54 59 62 66 67
Ni 115 291 167 66 183
Cr 636 717 456 511 433
Zn 69 81 195 89 106
Pb 13 4 13 34 13
Y 19 19 23 31 29
Nb 11 5 3 6 5
Ba 184 575 928 201 176
Th 3 0 4 8 5
U 2 2 3 15 13
Mo 1 1
Ga 15 17 18 17 21 —‘
Cu 7 30 0 21 59
Vv 249 288 298 250 307
La 10 5 9
Co 52 63 53
Sc 46 42 45
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APPENDIX 3 - CHEMICAL ANALYSES

Biotite hornblende gneiss - Nagle Dam Formation.

C-4

UND 45 UND 50 UND 52 UND 53 UND 300 UND 312 UND 315 UND 317 UND 317a

S0, (wi%) 55.59 67.09 60.84 64.04 69.77 64.05 64.13 52.26 51.91
TiO. 1.25 0.43 0.87 0.34 1 0.39 0.69 0.39 1.27 1.35
ALOs 16.69 14.48 16.69 14.24 1538 16.91 14.46 20.27 19.37
Fe,0s 2.08 1.59 2.29 2.95 3.51 5.37 7.0t 9.03 3.77
FeO 5.90 3.84 4.26 3.19 0.00 0.00 0.00 0.00 5.21
MnO 0.15 0.09 0.10 0.14 0.07 0.08 0.13 0.12 0.12
MgO 4.76 3.17 297 3.44 1.38 2.26 3.22 3.08 331
Ca0 8.48 427 5.04 497 3.62 5.19 6.20 8.40 8.48
Na,O 2.04 1.72 272 2.59 3.74 3.41 2.84 444 3.89
K20 1.52 1.79 2.09 1.86 1.96 1.76 1.57 0.66 0.66
PO 0.27 0.21 0.27 0.24 0.16 0.17 0.18 038 0.45
CrOs 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
H.0" 1.10 0.87 0.44 0.86 1.06
HOr 0.12 0.17 0.11 0.10 0.07
CO, 0.09 0.07 0.04 0.03 0.16
S 0.35
LOI 031 0.78 0.69 137

TOTAL 100.05 99.80 98.74 99.00 99.98 99.89 100.12 99.91 100.16
Trace elements in ppm
Rb 70 102 86 61 107 84 32 23 20
St 479 372 466 395 402 609 520 948 >800
Zr 166 149 151 83 128 111 77 212 200
Ni 23 5 8 14 10 14 12 12 1
Cr 17 30 60 7 43
Zn 80 55 81 56 49 63 38 101 110
Pb 2 13 10 7 21 9 10 23 23
Y 36 23 15 16 24 13 17 30 41
Nb 14 12 12 8 11 4 3 6 9
Ba 489 680 760 408 544 642 387 346 346
Th 15 9 5 9 13 0 0 0 5

U 2 2 | 1 1
Mo 4
Ga 16 18 14 25 25
Cu 3 14 3 22 52
v 50 108 154 169 251
La 35 14 17 21

Co I 15 20 15

Sc 13 1 24 21




Biotite hornblende gneiss (continued).

UND 325 UND 327
IO, (Wt%) 60.86 60.95
TiO; 1.04 0.50
ALO; 16.47 14.78
Fe,0, 0.00 1.91
FeO 6.55 5.49
MnO 0.11 0.13
MgO 2.94 5.21
Ca0 5.64 6.81
Na,O 2.69 0.27
K0 2.15 2.72
P,0;s 0.34 0.12
Cr,0s
H,0" 0.99 1.32
H,Or 0.09 0.15
CO, 0.16 0.12
S 0.08 0.00
LOI
TOTAL 100.11 100.19
Trace elements in ppm
Rb 150 166
Sr 484 252
Zr 98 95
Ni I1 42
Cr 44 189
Zn 87 63
Pb 26 27
Y 36 27
Nb 9 6
Ba 641 418
Th 10 11
U 14 14
Mo 1 2 “
Ga 22 21
Cu 56 27
\Y 202 249
P
]
( Co
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APPENDIX 3 - CHEMICAL ANALYSES

Quartzo-feldspathic gneiss - Nagle Dam Formation.

UND 309 UND 311 UND 311a UND 311b UND 318 UND 319 UND 321

Si0; (Wt%) 77.93 71.65 75.17 77.55 74.85 75.98 76.21
TiO, 0.01 0.01 0.04 0.07 0.11 0.19 0.02
AlLO; 12.92 15.22 14.09 12.83 13.79 13.23 13.71
Fe,03 0.00 0.25 0.64 1.16 0.00 1.38 0.17
FeO 1.2} 0.00 0.00 0.00 1.39 0.00 0.10
MO 0.00 0.01 0.01 0.01 0.02 0.03 0.00
MgO 0.00 0.06 0.17 0.19 0.28 0.68 0.08
Ca0 1.36 0.72 1.06 1.36 1.21 225 0.27
Na,0 234 1.84 2.49 2.62 242 2.90 312
K0 4.11 893 6.52 4.19 6.17 3.44 5.15
P,0s 0.06 0.01 0.02 0.02 0.09 0.05 0.06
Cr,0; 0.00 0.00 0.00 0.00

H,0' 0.12 0.24 0.29
HOr 0.01 0.03 0.06
CO, 0.04 0.07 0.05
N 0.00 0.00 0.00
LOIl 0.56 0.85 1.05 1.13

TOTAL 100.12 98.70 100.21 100.01 100.68 100.11 99.28
Trace elements in ppm

Rb 133 174 129 85 143 105 208
Sr 307 349 318 278 196 485 46
Zr 55 25 43 70 117 39 57
Ni 1 0 0 0 1 5 1
Cr 11 1 0 1 15 4 9
Zn 7 3 5 8 24 21 9
Pb 52 27 21 15 50 27 68
Y 14 2 3 4 17 3 34
Nb 5 0 1 0 5 1 8
Ba 1067 1196 946 688 711 1158 102
Th 17 1 1 3 16 0 11
) 13 0 0 2 13 3 15
Mo 2 [ 2
Ga 15 12 1] 9 16 11 19
Cu 6 0 13 33 5 0 11
v 15 5 8 16 20 31 11
La 6 7 1 9

Co 1 3 5 2
Sc 1 2 1 2
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APPENDIX 3 - CHEMICAL ANALYSES

Amphibolite - Valley Trust Formation.

UND 54 UND 55 UND 56 UND 57 UND 58 UND 59 UND 332 UND 334 UND 347
Si0; (Wi%) 51.10 4733 51.50 46.29 48.94 45.91 52.54 53.95 4833
TiO, 3.24 2.68 1.82 224 131 3.43 0.67 0.88 1.55
ALO; 11.72 13.25 14.90 13.51 12.67 6.24 15.02 16.01 11.07
Fe0; 1.38 0.10 2.42 0.28 0.10 0.10 0.00 0.00 0.00
FeO 13.37 1538 8.09 13.27 10.81 1531 9.89 9.62 13.96
MnO 0.23 0.23 0.14 022 0.20 0.28 0.23 0.17 0.24
MgO 495 5.93 592 7.06 9.34 1032 417 473 10.08
Ca0 9.26 9.59 932 11.49 13.40 14.72 12.79 9.65 13.30
Na,0 2.01 2.23 3.67 2.07 1.04 1.42 0.10 2.70 0.97
K0 041 037 0.71 0.4 0.25 028 143 051 0.13
P.0s 0.25 0.27 0.28 0.20 0.10 0.10 033 0.27 0.16
Cr,0y
H,0" 0.64 0.35 0.37 0.01 0.09 0.23 1.22 0.28 039
H.0" 0.17 0.14 0.13 0.16 0.22 0.22 0.08 0.02 0.04
CO, 0.06 019 0.01 0.04 0.20 0.14 2.03 0.19 036
S 0.00 0.00 0.04
LOI
TOTAL 98.80 98.04 99.28 97.25 98.67 98.70 100.51 98.98 100.62
Trace elements in ppm
Rb 15 23 21 8 12 12 109 i 1
Sr 157 179 460 168 170 65 126 207 128
Zr 201 143 145 91 50 132 62 53 58
Ni 20 48 45 81 84 102 21 29 94
Cr 100 200 200 400 500 400 341 151 563
Zn 125 127 63 109 86 163 78 84 102
Pb 3 5 5 5 5 6 15 14 16
Y 46 34 31 27 20 37 34 29 36
Nb 22 20 12 15 12 18 5 5 5
Ba 831 218 95
Th 5 5 5 T
U 14 13 15 T
Mo 1 1 | ‘
Ga 19 20 19 r
T
Cu 17 126 39
\Y 123 297 507
La
Co

Sc




APPENDIX 3 - CHEMICAL ANALYSES

Amphibolite (continued).

UND 348 UND 349 UND 350 UND 357 UND 358
Si0, (Wi%) 4951 49.17 48.81 48.20 48.42
TiO, 1.52 1.41 1.57 217 2.19
ALO; 10.56 10.93 10.39 12.19 12.06
Fe 0 0.18 4.16 333 0.63 0.03
FeO 12.22 8.52 10.23 13.55 14.42
MnO 0.22 0.22 0.24 0.22 023
MgO 9.86 10.05 10.33 8.36 8.00
Ca0 13.35 13.67 12.87 11.35 10.50
Na,0O 1.23 1.28 1.11 1.66 1.79
K0 0.13 0.12 0.17 0.52 0.34
POy 0.13 0.12 0.14 0.14 021
CrOx
HO* 0.32 0.26 0.31 0.30 0.51
H,Or 0.06 0.07 0.07 0.03 0.07
CO, 0.68 031 0.37 033 0.50
S 0.05 0.04 0.03 0.11 0.07
LOI
TOTAL 100.01 100.34 99.98 99.76 99.32

Trace elements in ppm

Rb 8 5 6 14 8
Sr 120 121 106 147 140
Zr 59 57 60 69 98
Ni 98 98 100 80 73
Cr 527 550 608 377 362
Zn 97 95 102 113 120
Pb 14 11 10 16 11
Y 35 33 43 35 42
Nb 6 5 6 7 9
Ba 47 46 83 88 90
Th 5 5 5 5 5
U 15 11 11 14 12
Mo i 1 1 1 1
Ga 19 19 18 23 23
Cu 59 46 42 83 54
v 514 498 535 735 625 |
La

Co

Sc




APPENDIX 3 - CHEMICAL ANALYSES

Quartzo-feldspathic gneiss - Valley Trust Formation.

UND I UND 3 UND 4 UND33 UND34 UND 42
SiO; (wt%) 74.36 75.85 7272 77.61 74.86 72.04
TiO; 0.20 0.21 0.25 0.03 0.14 0.44
AlLO; 13.30 12.02 15.00 11.98 13.20 13.42
Fe,0s 1.76 1.57 0.56 0.48 0.23 1.12
FeO 0.11 0.19 1.02 0.19 1.09 1.95
MnO 0.01 0.0t 0.02 -0.02 -0.02 0.06
MgO 0.14 0.10 0.13 0.49 0.62 1.04
Ca0 0.07 0.14 051 0.60 0.98 1,77
Na,O 4.11 3.34 2.87 3.39 3.52 3.48
K,0 5.15 6.72 5.60 5.05 5.00 422
P,0; 0.13 0.07 0.14 -0.10 -0.10 0.20
Cr,03
H,0* 0.12 0.26 0.33 0.40
H,Or 0.13 0.23 0.12 0.10 0.14 0.10
CO, 0.01 0.01 0.04 0.06 0.09 0.06
S
LOI 0.24 0.38
TOTAL 99.68 100.78 99.43 100.20 100.20 100.31
Trace elements in ppm
Rb 176 185 174 171 123 160
Sr 63 62 191 18 135 154
Zr 149 93 125 162 118 258
Ni
Cr
Zn 35 32 59 12 32
Pb 25 33 41 3
Y 0 7 0 13 15
Nb 7 5 8 5 5
Ba 500 300 900 47 743 786
Th 15 11 38 6 1
U 3 2 3
Mo
Ga
Cu
v
La
Co

Se




APPENDIX 3 - CHEMICAL ANALYSES

Quartzo-feldspathic gneiss (continued).

UND 302 UND 305 UND 306 UND 316 UND 323
Si0; (wt%) 77.90 75.68 80.90 79.18 80.34
TiO, 0.01 0.04 0.18 0i06 0.02
ALOs 12.33 14.02 10.95 12.12 12.04
Fe:0; 0.70 0.46 0.22 0.32 0.58
FeO 0.00 0.00 0.00 0.35 0.04
MnO 0.00 0.00 0.00 0.01 0.00
MgO 0.07 0.04 0.03 0.08 0.02
Ca0 0.46 037 0.08 0.16 0.35
Na,0 2.86 3.21 341 2.80 291
KO 5.54 598 3.89 3.26 2.93
P,0; 0.00 0.01 0.04 0.07 0.05
Cr,05
H,O" 0.27 0.27
H,O 0.02 0.08
CO, 0.05 0.06
S 0.00 0.00
LOIL 0.14 0.52 0.51
TOTAL 99.87 99.80 99.70 98.76 99.70
Trace elements in ppm
Rb 190 184 138 134 -
Sr 12 83 24 39 35
Zr 95 29 124 64 48
Ni 0 1 1 1 1
Cr 0 0 1 16 9
Zn 6 8 8 19 35
Pb 73 46 57 57 46
Y 9 3 79 18 16
Nb 8 1 23 6 5
Ba 70 647 285 188 142
Th 5 2 26 6 6
U 2 1 4 13 11
Mo 1 2
Ga 19 18 12 18 18
Cu 0 0 0 4 14
v 2 2 3 16 11
La 12 11 169 j
Co 1 (] 1
S¢ 1 1 9




APPENDIX 3 - CHEMICAL ANALYSES

Pelitic gneiss - Valley Trust Formation.

UND 328 UND333 UND335 UND336 UND342 UND343 UND344 UND 345 UND346
SiOz (wtte) 70.38 60.65 75.48 75.49 57.83 58.91 71.09 68.56 78.55
TiO, 0.83 0.86 0.76 0.7 1.03 1.09 0.99 1.06 0.78
ALO; 14.83 1593 11.88 11.69 20.33 18.43 13.47 13.89 9.93
Fe,0; 2.28 0.17 0.38 1.28 432 1.62 0.00 2.26 0.80
FeO 3.78 8.43 4.01 2.86 5.72 7.12 6.44 437 3.24
MnO 0.07 0.13 0.07 0.06 0.10 0.10 0.10 0.08 0.06
MgO 1.67 4.19 119 1.00 3.05 2.63 1.74 2.03 0.93
CaO 1.02 5.86 0.85 0.54 0.51 0.67 1.29 0.59 0.78
Na,O 1.25 0.68 1.61 111 0.79 2.31 141 1.45 1.53
K0 3.00 1.56 2.92 332 5.06 4.27 3.03 3.12 3.01
P04 0.17 0.31 0.15 0.16 0.16 0.13 a.15 0.17 0.12
Cr,0;
H0" 0.43 1.67 0.54 0.70 0.82 1.08 0.62 0.88 0.79
H,O 0.13 0.10 0.14 0.25 0.10 0.20 0.06 0.07 0.09
CO; 0.03 0.32 0.11 0.20 0.04 0.08 0.07 0.10 0.18
S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LOI
TOTAL 99.89 100.87 100.07 99.37 99.87 98.65 100.45 98.63 100.78
Trace elements in ppm
Rb 145 60 131 151 251 176 123 138 102
Sr 123 197 128 121 66 115 124 109 130
Zr 198 72 217 231 193 214 244 246 288
Nj 22 32 11 S 56 43 14 26 7
Cr 89 237 77 65 166 150 98 108 75
Zn 118 93 60 68 214 183 95 126 