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ABSTRACT 

 

Multiwalled carbon nanotubes (MWCNTs) are carbon materials which have one-dimensional 

structure.  They possess unique properties such as semi-conductor and high tensile strength that 

allow them to be widely used in many applications.  MWCNTs and other shaped carbon 

nanomaterials (SCNMs) were synthesized by chemical vapour deposition (CVD) method.  

Three factors that affect the morphology, thermal, chemical, mechanical and electrical 

properties of SCNMs were investigated.  The parameters are: carbon source, catalyst 

(metallocenes), and growth temperature.  Two different carbon sources were studied for the 

synthesis of MWCNTs i.e., toluene and acetonitrile (also used as a nitrogen source).  The 

metallocenes: nickelocene, cobaltocene and ruthenocene were used as catalysts (2.5 wt.%) 

while ferrocene was employed as control.  These metallocenes were investigated because they 

have similar structure as ferrocene, a well-known catalyst for the synthesis of SCNMs.  The 

synthesis was carried out at five different growth temperatures, 800, 850, 900, 950 and 1000 

°C.   

 

As-synthesized MWCNTs and other SCNMs were further purified, in order to remove 

amorphous carbon and this was performed by testing different methods of purification.  The 

effective method for purification of MWCNTs was method 2 which involved refluxing for 24 

hours.  It was chosen to be the best method because it produced purer MWCNTs as compared 

to other methods which caused damage to the MWCNTs.  The SCNMs obtained were 

characterized using various techniques namely, transmission electron microscopy, scanning 

electron microscopy, electron dispersive X-ray spectroscopy, Raman spectroscopy, 

thermogravimetric analysis, elemental analysis, Branuaer-Emmet-Teller surface area and 

porosity analysis.   

 

It was observed that growth temperature has an impact on the yield and SCNMs distribution.  

At higher growth temperatures of 900, 950 and 1000 °C, carbon spheres were mainly formed 

while lower growth temperature (800 °C) favoured the formation of amorphous carbon.  The 

best growth temperatures, in terms of high yield of MWCNTs, thermal stability and 
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crystallinity, was observed to be 850 °C.  Apart from growth temperature, the morphology of 

the SCNMs was also found to be carbon source dependent.  Acetonitrile as a carbon source, 

was found to form nitrogen-doped MWCNTs with bamboo compartments while toluene 

produced pristine-MWCNTs.  In all cases other SCNMs were obtained. 

 

The length of the bamboo compartments in the nitrogen-doped MWCNTs decreased at lower 

growth temperatures.  Smaller bamboo compartment lengths correlate with lower thermal 

stability and crystallinity.  This suggests a larger incorporation of nitrogen in the MWCNT 

framework.  The highest nitrogen-doping level was obtained at a growth temperature of 850 

°C in all catalysts used.  MWCNTs formed from toluene were more thermally stable as 

compared to those synthesized from acetonitrile.  The catalyst had a great influence in 

determining the morphology of the N-MWCNTs.  Ferrocene and nickelocene produced well-

aligned N-MWCNTs while cobaltocene and ruthenocene yielded ‘spaghetti-like’ structures.  

This study has shown that the synthesis of MWCNTs is highly dependent on the catalyst, 

carbon source and growth temperature of reaction used. 
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CHAPTER 1: INTRODUCTION 

This chapter presents background information on nanotechnology, problem statement, 

motivation, aim and objectives, research questions, approach and outline of the thesis. 

 

1.1 Background 

Nanotechnology represent a wide range of different technologies which are conducted on a 

nanometre scale.1  It involves the design, production, characterization, system and application 

by maintaining the size and shape on the nanometre scale.  It is not only based in making 

components but also make instruments work better.  Nanotechnology enables substitution of 

small structures assigned with low cost, precision and simplicity which results in economic 

growth.  Dr Richard Feynman presented the first concept of nanotechnology in 1959.2  In his 

presentation, he talked about the ways of manipulating matter at the nanoscale and its future.  

However, the term nanotechnology was first used in 1974 by Norio Taniguchi.3 

 

A nanometre (nm) is one thousand millionth of a meter.4  A perfect way to describe the 

nanometre scale is by outlining a range of length scales from millimetre down to the nanometre 

scale.  For instance, the scale of a head of a pin is between 1 and 2 mm while dust mites are 

about 200 µm5 and that of human hair is known to be half the size of the dust mite.6  Human 

red blood cells have a diameter of 8µm.7  Double helix of DNA is not greater than 20 nm wide 

and lastly, the atoms are less than 1 nm in size.8  In nanotechnology we therefore refer to 

particle with a measurement in the ranges between 1 – 100 nm at least in one dimension.  

 

The recognition of new materials on the nanoscale started with the discovery of 

buckminsterfullerene.  However, in 1991, the focus on nanoscale material developed into 

intense research because of the discovery of carbon nanotubes (CNTs) by Sumio Iijima9 and 

since then, several novel nanoscale materials have been reported.  Nanomaterials are well 

known to enhance chemical,10 biological,11 physical,12,13 magnetic,14 thermal,15,16 optical17 and 

electrical18 properties relative to their bulk counterparts.19  For instance, gold is a heavy metal 

in its bulk form and inert,20 however, gold nanoparticles show unique chemical properties, e.g. 

catalytic activity or different physical properties, e.g. different colours at nanometre scale size.  
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Reduction of bulk size can be achieved in different ways.20-22  However, the two most common 

methods are ‘bottom-up’ and ‘top-down’ approaches.23  In the bottom-up approach, the 

arrangement of smaller components is more complex.  For examples atoms can be assembled 

into molecules and molecules into nanostructure.24-26  This arrangement is achieved by covalent 

or non-covalent bonding.27  Top-up approach often uses microfabrication and nanofabrication 

methods whereby externally controlled tools are employed in the breaking down of the single 

crystal (bulk material) into an aqueous form or powder for production of nanomaterials.28-30 

 

The most talked-about nanotechnologies materials are nanoparticles,31 quantum dot32 and 

shaped carbon nanomaterials (SCNMs).33  Nanoparticles are small objects that act as a whole 

unit during their transport and physicochemical properties.31  Quantum dot are nano-sized 

crystals.  Their size ranges from 2 – 20 nm and have a diameter of 10 nm.32  The main synthesis 

of quantum dots involves the use of metals or semiconducting materials.  SCNMs are materials 

that are made of carbon such as carbon nanospheres, carbon nanofibers and CNTs.  The main 

research topic in the study of SCNMs is based on CNTs.  CNTs are made of long cylinders of 

layers of graphene.  They are classified into three categories: single-walled carbon nanotubes 

(SWCNTs) (single cylinder), double walled carbon nanotubes (DWCNTs) (double cylinder 

walls) and multiwalled carbon nanotubes (MWCNTs) (consisting of more than two cylinders 

walls).33  CNTs are extremely strong mechanically34 and very good conductors of electric 

current.35  They are stronger, stiffer and harder than diamond and good thermal conductors.  

The advantages of using CNTs are that they are smaller, and can be used to produce smaller 

and faster components. 

 

The industries that benefit from nanotechnology are those that produce energy, electronic 

products,36 manufacturing sectors37 and medical world.38  In the medical sector, 

nanotechnology is used in the synthesis of smart drugs; that are target specific, limited side 

effects39-41 and faster action.  Areas of focus are normal bone repair,42 tissue regeneration43 and 

immunity.38  Manufacturing sectors uses materials such as nanoparticles and aerogels to 

produce their products because these materials are stronger, lighter and more durable.37  

Nanotechnology in energy sectors, involve the development of energy storage,44 energy 
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absorbing and energy producing devices.45-47  These energy devices include fuel cells,48 solar 

cells49 and batteries.50,51 

 

1.2 Motivation 

In the context of South Africa (SA), very little has been done regarding the commercialization 

of CNTs.  To date, only one manufacturing company is registered with the SA government to 

produce CNTs and other shaped carbon nanomaterials (SCNMs) in a large scale.  There are 

many technical projects which are in progress including development of cheaper solar cells, 

atomic modelling, and synthesis of nanoparticles and electrocatalyst.  The global market for 

CNTs has grown during the past few years and expected to register a healthy growth on account 

of growth in the key and end-user industries (such as batteries, capacitors, medical and energy 

composite). 

 

A number of working groups report the use of iron pentacarbonyl (Fe(CO)5)
52 and 

ferrocene(FeCp2),
53,54 together with their derivatives, as catalysts and precursors for the 

synthesis of MWCNTs.  The effects of changing synthesis parameters such as the growth 

temperature, gas flow rate, catalyst injection rate and catalyst concentration have been studied 

extensively using FeCp2 compounds as catalytic precursor.  Other metallocenes are also very 

promising candidates as catalysts for the synthesis of MWCNTs.  However, very little research 

has been done on their application in the synthesis of MWCNTs. 

 

Metals frequently used to synthesize MWCNTs are normally transition metals, specifically iron 

(Fe), nickel (Ni) and cobalt (Co).  This is because of the solubility of carbon on the metallocene.  

However, the primary reason of applying transition metals in MWCNTs formation is that they 

possess partially filled “d” shells which enables them to interact with hydrocarbons.55  The 

hydrocarbons adsorb on the metal particles and are catalytically decomposed.  This results in 

carbon dissolving into the particle forming a liquid eutectic.  Upon supersaturation, carbon 

precipitates in a tubular, crystalline form.55  Hence, the transition metal nanoparticles serve as 

a seed of MWCNTs in order to strongly influence the quality and structure. 
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Variety of methods are used to synthesize MWCNTs such as laser ablation, arc discharge and 

chemical vapour deposition (CVD).  The CVD method was chosen in this study because of its 

low cost, its ease of scale-up and produce of high yields.  The novelty in this work is the choice 

of the carbon source, the growth temperature program employed and the comparison of the 

various metallocenes used.  Several working groups have reported methods of synthesizing 

CNTs using ferrocene.  However, novel synthetic strategies need to be explored to make 

SCNMs with well-defined properties, morphologies and size. 

 

1.3 Aims and objectives 

The purpose of this study is to determine optimal conditions for the synthesis of MWCNTs 

with respect to growth temperatures, carbon sources, catalysts and the effective removal of 

residual metal catalyst. 

 

1.3.1. The specific objectives were as follows: 

 To study the effect of using a different variety of metallocenes on the type of 

MWCNTs and other SCNMs formed. 

 To evaluate the effect of varying the reaction temperature (800, 850, 900, 950 and 

1000 °C) on the distribution, crystallinity, yield, surface area and thermal stability 

of the MWCNTs. 

 To examine the effect of varying the carbon source (toluene vs. acetonitrile). 

 To investigate the effectiveness of three different purification methods for the 

removal of the residual metal catalyst. 

 

1.3.2. Research questions 

 Apart from ferrocene and its derivatives, which are well known catalysts for 

MWCNTs, is it possible to use other metallocenes such as nickelocene, cobaltocene 

or ruthenocene for the synthesis of MWCNTs? 

 Can MWCNTs be produced with well-defined properties? 

 Can metallocenes be used as catalyst for the synthesis of nitrogen–doped MWCNTs 

(N-MWCNTs)?  



5 

 

 

 What are the effects of varying the reaction condition (growth temperature) namely: 

800, 850, 900, 950 and 1000 °C on MWCNTs/N-MWCNTs? 

 Which is a better method for purification of MWCNTs?  

 What are the effects of purifying the MWCNTs (synthesized from metallocenes)? 

 

1.4 Research approach 

The focus of this study was on nanomaterials preparation, characterization and modifications.  

Commercial metallocenes were used as a catalyst for the synthesis of SCNMs.  Two different 

carbon sources were used; toluene and acetonitrile.  The SCNMs were prepared through the 

CVD method.  The heating programme in the CVD method chosen for the synthesis was 800, 

850, 900, 950 or 1000 °C.  After their synthesis, the MWCNTs were acid-treated.  This was 

done to remove residual metal catalyst and to add oxygen-containing functional groups onto 

the tube. 

 

After synthesis and purification of the MWCNTs they were characterized by a number of 

techniques, namely, transmission electron microscope (TEM) was used to determine the 

dimensions of MWCNTs while the high resolution transmission electron microscopy was used 

for close overview of the structure of the MWCNTs.  Scanning electron microscopy (SEM) 

was used to investigate the surface morphology of the MWCNTs.  SEM was coupled with 

electron dispersive X-ray (EDX) which was used to determine the elemental composition of 

the MWCNTs.  The composition and thermal stability was further investigated using 

thermogravimetric analysis (TGA).  Textural studies such as surface area and pore volume 

were also investigated by use of Brunauer-Emmett-Teller (BET) analysis. 
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1.5 Outline of this dissertation 

This dissertation has been prepared in the format outlined below: 

 Chapter 1 

This chapter provides overall introduction that gives background information on this research.  

The introduction also contains the research objectives, motivation and the dissertation outline. 

 Chapter 2 

This chapter provides an overview on the current advances and knowledge of SCNMs, 

especially MWCNTs.  Introduction and literature on the preparation methods of MWCNTs and 

modification strategies (including surface functionalization and doping) are also presented in 

this part of the dissertation. 

 Chapter 3 

This chapter describes the materials and experimental procedures employed, whereby details 

of the synthesis conditions, strategies and characterization techniques are given.  

 Chapter 4 

The focus of this chapter was on the use of metallocenes to fine tune the diameters and 

morphology of MWCNTs.  The effect of toluene as carbon source and the effect of varying the 

growth temperature were evaluated.  An investigation on the physicochemical properties of the 

MWCNTs is presented. 

 Chapter 5 

This chapter describes the synthesis (and properties) of nitrogen-doped MWCNTs and other 

SCNMs produced using metallocene.  It investigated and provides a summary of effects that 

physical parameters such as temperature and concentration of nitrogen source among other 

variables, have on the type of SCNMs formed, size and yields, as well as the nitrogen content 

incorporated into the tubes that are produced by metallocenes. 

 Chapter 6 

This chapter gives conclusion based on the experimental findings.  It summarizes all the work 

carried out in this research and also provides recommendations for future work.  
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, an overview of the background of metallocenes, metallocene derivatives and 

shaped carbon nanomaterials (SCNMs) are discussed.  The discussion involves basic definition 

of the structures, properties, syntheses, growth mechanism, purification and application of 

SCNMs. 

 

2.1 Metallocenes 

Metallocenes are organometallic compounds made up of a metal center which is bound to one 

or two cyclopentadienyl anion rings (Cp-ring).1  They were discovered in mid-1950s by Dunitz 

et al.2  Metallocenes, normally contain metal center from transition metals and rare-earth metals 

on the periodic table.  They are classified into two classes; i.e. sandwich and half-sandwich 

metallocenes.3  Sandwich metallocenes contains metals facially bonded to two 

cyclopentadienyl rings.4  They appear in two isoenergetic conformation being staggered (D5d 

symmetry) and eclipsed (D5h symmetry).   

 

The first sandwich metallocene discovered was ferrocene (Figure 2.1 a); by Kealy et al.5  

Ferrocene is an orange coloured solid with an electron count of 18 valence electrons, which 

satisfies the 18 electron rule, hence, it has remarkable stability.6  It electron count can be 

expressed in two ways; one possibility is iron(II) coordinated by two 6–electron 

cyclopentadienide (C5H5
- ) ions and second possibility is iron(0) complex with two 5-electron 

C5H5 ligands.  Its vacancy d-orbitals make it possible for the metal to form a bond with the 

cyclopentadienyl anions yielding derivatives. 

 

Fe Ni Co Ru

(a) (b) (c) (d)  

Figure 2.1: Structures of metallocenes: (a) ferrocene, (b) nickelocene, (c) cobaltocene and (d) 

ruthenocene 
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The discovery of ferrocene generated wide interest in the synthesis, characterization and 

applications of metallocenes of other transition metals such as nickelocene, cobaltocene, 

ruthenocene (Figure 2.1 b-d).  These metallocenes have similar structure as ferrocene but they 

do not obey the eighteen electron count rule.7  The extra electrons confer important 

physicochemical characteristics to the metallocenes.  For instance, those metallocenes with 19 

and 20 valence electron counts have electron occupancy in the slightly antibonding orbitals 

(largely Dyz and Dxz in character); as a consequence, the metal-ligand distance increases, and 

correspondingly their enthalpy change for metal-ligand dissociation decreases.7   

 

Cobaltocene (Figure 2.1 c) is a purple crystalline solid that has an electron count of 19.  This 

makes it unstable, according to the 18 e- rule and its easily oxidized to the cobaltocenium ion 

(CoCp2
+) upon exposure to air as shown in Scheme 2.1.  The cobaltocenium ion is a black solid 

that has an electron count of 18 valence electrons.8  Nickelocene (Figure 2.1 b) appears as green 

crystals and have the highest electron count (20 vacant electrons).9  Nickelocene is a practical 

source of fragment NiCp and its protonation leads to a triple-decker sandwich (Ni2Cp3)
+.  

Ruthenocene (Figure 2.1 d) is a pale yellow and volatile solid.10  It consists of ruthenium ion 

between cyclopentadienyl rings with 18 valence electron count. 

 

Co Co

air

+

 

Scheme 2.1: Oxidation reaction of cobaltocene to cobaltocenium ion 

 

The bonding in Cp-ligands is generally via all 5 carbon atoms to a metal centre (η5-

coordination, π-complexes).  In rare cases, the Cp unit can bond through three carbon atoms, 

like in [(η3-Cp)WCp(CO)2]; or through one carbon atom, as in [(η1-Cp)FeCp(CO)2].  However, 

half-sandwich compound (3-legged piano stool geometrics) have cyclic poly-hapto-ligand 

which is bound to an MLn center, where M is the metal and Ln represent the unidentate ligand 

(Figure 2.2).3  The properties and utilities of these metallocenes can be enhanced or altered 
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through derivatization, either through substitution, on either one or both cyclopentadienyl 

rings, with groups such as alkyl, aryl or halogens.11,12 

 

Zr

CC

C

O
O

O

 

Figure 2.2: Structure of a half-sandwich metallocene 

 

2.2 Carbon-based nanomaterial 

Carbon-based materials have created a broad interest in materials science for decades.13  

Carbon is an extremely light and versatile material.  It can act as an insulator, a conductor or a 

semi-conductor.  The two common forms of carbon are diamond and graphite (Figure 2.6 a and 

b) were known in 1770s, however, nowadays it is known that there is a whole family of carbon-

based materials.14  Diamond is hard and transparent whereas graphite is very soft and opaque.  

Both of these structures are allotropes of carbon.  They differ in the structure or the 

hybridisation of the carbon atoms, for example graphite is sp2-hybridised while the 

hybridisation in diamond is sp3.15 

 

The first carbon allotrope that was discovered after the two allotropes of carbon; diamond and 

graphite was the C60 fullerene (Figure 2.3 d-f).16,17  It was named buckmisterfullerene because 

of its resemblance to geodesic spheres.  The C60 fullerene is a hollow and cage-like 

buckminsterfullerene molecule.  Its structure consists of 60 carbon atoms in a number of five-

membered ring separated by six-membered rings.17  The other fullerene is C70 which has 

spherical carbon structure but slightly elongated to resemble a rugby ball.  C70 is more stable 

than C60 because it consists of more carbon atoms than C60.
18  For fullerene to be formed, they 

require the C-C bond interaction through bent sp2 hybridized carbon atoms.19  In brief there are 

many forms of fullerenes, they go up to and beyond C120.
20  They are used in solar cells,21,22 

hydrogen storage media,23 as an antioxidant for polymers,24 hardening agents for carbides25 

and used for drug and gene delivery in medicine.26 
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Figure 2.3: The allotropes of carbon (a) diamond, (b) graphite, (c) lonsdalieteans (d-f) 

buckminsterfullerenes15 

 

Carbon is capable of producing other SCNMs that are known such as carbon helices, carbon 

nanofoams, carbon nanofibers, carbon nanocones, carbon nanohorns, carbon nanospheres, 

carbon nanotubes carbon nanocoils and carbon nano-onions (Figure 2.4).  Carbon helices 

(Figure 2.4 a) were first synthesised in 1953.27  Their synthesis was done at a lower temperature 

of between 250 to 700 °C and was used in the synthesis of novel catalyst support.27  Carbon 

nanofoams were discovered by Rode and co-workers.28  They consist of a low-density cluster-

assembly of carbon atom strung together in a loose three-dimensional web (Figure 2.4 b).  

Similar conditions of synthesizing carbon nanotubes (CNTs) are also used in the synthesis of 

nanofoam.28,29   

 

Carbon nanofibers have graphitic sheets which may be stacked perpendicular to the growth 

axis or at an angle to the growth axis30 (Figure 2.4 c).  They are differentiated into two i.e. 

platelet type and herringbone type.31  Platelet has fibrous carbon layers which are perpendicular 

to fibre axis while for the herringbone, the layers are nested inside one another at an angle.  

Their diameters range between 150 and 300 nm while their lengths range from 10 nm to a few 

centimetres.  They are mainly synthesized using the chemical vapour deposition (CVD) 

method29 in the presence of a catalyst.  During their synthesis, the catalyst plays an important 

role, since it controls the type of nanofibers to be obtained.  Nanofibers are used in various 

composite materials32 for different applications.  A common confusion arises when it comes to 

the distinction between CNTs and nanofibers since they are both elongated carbon 

nanostructures.  However, CNTs are hollow and many times smaller in size. 
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Carbon nanocones have curved walls (Figure 2.4 d). The thickness of the cone walls varies 

between 10 and 30 nm.33  They are synthesized by decomposition of the hydrocarbons 

(hydrogen gas + methane gas) and argon using the plasma-enhanced CVD34 or microwave 

plasma – assisted CVD.35  Carbon nanocones occur on the surface of natural graphite and are 

stable at high temperature.  They have potential application as drug delivery36 agents.  Carbon 

nanohorns have a single wall with horn-like tubes (Figure 2.4 e).  Their diameters range 

between 3 and 25 nm, have lengths between 20 and 150 nm.37  They can be synthesized using 

the arc discharge method.38  They are used in gas storage,39 photovoltaics and 

photoelectrochemical cells40 and also as catalyst support because of their high porosity.41 

 

 

Figure 2.4: Types of SCNMs: (a) carbon helice,27 (b) carbon nanofoam,42 (c) carbon 

nanofiber,43 (d) carbon nanocones,33 (e) carbon nanohorns,44 (f) carbon 

nanospheres,45 (g) carbon nanotubes,46 (h) carbon nanocoils47 and (i) carbon 

nano-onions48 
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Carbon nanospheres (CSs) have solid core or hollow shell structure or a soccer ball shape 

(Figure 2.4 f).45  They can either be crystalline or semi-crystalline because they have more than 

one carbon layer forming the outer carbon layer.  Their diameters range between 2 and 10 000 

nm.  Carbon spheres with diameter less than 1000 nm tend to fuse together forming bead- or 

necklace-like structure called accretion.49  Their classification is based on diameter, 

arrangement of carbon layers and also in terms of surface morphology.  Those that are classified 

in terms of diameter are categorised into three: well-graphitised spheres, less-graphitised 

spheres and carbon beads.49  Well-graphitised spheres have diameters between 2 and 20 nm.  

Less-graphitised has diameters between 50 and 1000 nm.  Carbon beads have a diameter of 

1000 nm and more.49  Structurally, they can be classified as hollow, core-shell or solid (Figure 

2.5).  Their structural morphology depends on how the spheres have been synthesized.50 

 

 

Figure 2.5: An image of (a) hollow, (b) core-shell and (c) solid spheres51 

 

Hollow spheres are synthesized by the templating method.  During the templating method, the 

spherical materials such as micelle, silica or metal nanoparticle are covered with a carbon 

source.  These hollow CSs were reported by Wang et al.,52 where by a carbon source of benzene 

was used.  They have also been synthesized using pyrolysis, a medial-reduction route and 

solvothermal methods subsequently.  At high temperature, the carbon source breaks down into 

carbon atoms and forms core-shell spheres (Figure 2.5 b).  Wang et al.53 had synthesized solid 

carbon sphere with a diameter of approximately 210 nm using the thermal decomposition of 

CH4 and a metal oxide catalyst.  Carbon layers of these sphere are arranged into three ways: 

concentric, random and radial54 (Figure 2.6).   
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Figure 2.6: An image indicating (a) random, (b) concentric and (c) radial layer orientations in 

carbon nanospheres51 

 

The synthesis of nanospheres is similar to that of the CNTs which is discussed in section 

2.2.5.49  They can be functionalized55 and also be doped with boron or nitrogen in order to 

enhance their electric properties.56  Spheres that have been functionalized and doped are more 

reactive and have numerous applications.  For example they have been used in drug delivery,57 

catalyst support materials,58 composite,59 hydrogen storage60 and fuel cell electrodes.61  This is 

because of their low density, thermal stability and electronic properties.62  The current work 

has been focused on carbon nanotubes and nanospheres and herein SCNMs will be referring to 

these structures.  

 

2.2.1 Carbon nanotubes 

CNTs are allotropes of carbon composed of a cylindrical nanostructure.63 CNTs are members 

of the fullerene structural family.  They are tubular in shape.  Their name is derived from their 

long, hollow structure with the walls formed by one-atom-thick sheets of carbon, called 

graphene.  These sheets are rolled at specific and discrete angles and the combination of the 

rolling angle and radius dictates the CNTs properties; for example, whether the individual 

CNTs shell is a conductor or semiconductor.63  They come in different length, diameters and 

functional group content.  They have length-to-diameter ratios of up to 1000 nm and they are 

considered as one-dimensional structures. 

 

2.2.2 Discovery of CNTs 

CNTs dates as far back as 1952 when they were reported in a publication by L.V. Radushkevich 

and V.M. Lukyanovich in the Soviet Journal of Physical Chemistry.64  However, their work 

was not able to be conveyed since their publication appeared in Russian language and this was 

during the cold War when the Soviets had limited accessibility to the press.  Thus, many 
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publications have suggested that it was Sumio Iijima in 1991 that made the discovery of these 

hollow, nanometre-sized tubes consisting of graphene carbon.65  Iijima made the discovery in 

a serendipitious way when he viewed the CNTs that had formed in the soot under the 

transmission electron microscope while analysing the graphite carbons that he had made by the 

arc-discharge apparatus.   

 

In 1992, Ebbesen and Ajayan66 synthesized graphitic nanotubes using arc-discharge technique, 

under helium atmosphere.  Again in that year Saito et al.67 discovered electronic-structure of 

chiral graphene tubules.  In 1993, Iijima63 reported the growth process of single-walled carbon 

nanotubes.  Since then, great advancements have been made in carbon nanotubes research.  

Among other people who made some of these pioneer advancements include, Bethune et al.68 

who used an arc discharge method in order to produce single-walled carbon nanotubes using 

cobalt/nickel catalyst. 

 

As years passed, the research on nanotubes got more interesting; in 1995, boron nitride carbon 

nanotube were synthesized by Chopra et al.69  In 1996, Kroto obtained the Nobel Prize for 

discovering the fullerenes.70  Dai et al.71 in 1996 synthesized single-walled nanotubes using 

laser-vaporized methods from nickel and cobalt mixture.  Since then the preparation of high 

quality CNTs with high yield and with ease has been the goal of many research endeavours. 

 

2.2.3 Structural features and classification of CNTs 

CNTs are categorized as single-walled carbon nanotubes (SWCNTs), double-walled carbon 

nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs) as shown in Figure 2.7.   
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Figure 2.7: Illustration of CNTs categorised on the number of cylindrical tubes: (a) SWCNTs 

and (b) MWCNTs and DWCNTs46 

 

SWCNTs have a single layer of graphene (Figure 2.7 a) and have higher stability.63  The 

diameters of SWCNTs are less than 0.4 nm and have lengths of a thousand times long.72  They 

have more defined and crystalline structures however, it is difficult to synthesize them as it 

requires proper control over growth and atmospheric condition.  During their synthesis, 

catalysts are required.  They are synthesized at a higher temperatures of about 900 – 1200 °C.72  

The way in which their graphene sheet is rolled-up into a tubular sheet is defined by equation 

1: 

 

 Ch  =  na1  +  ma 2                                                                (1) 

 

Where Ch represent the chiral vector and a1 and a2 represent lattice vectors.73,74  The integer 

values (n and m) denote the number of unit vectors along two directions in the crystal lattice of 

graphene (Figure 2.8). 

 

Rolled graphene sheets 

SWCNTs 

MWCNTs DWCNTs 

graphene 

(a) 

(b) 
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Figure 2.8: An illustration of the carbon nanotubes naming scheme (n,m)75 

 

These indices are integers which represent a unit vector along two directions in a honeycomb 

style crystals lattice of graphene.76  When integer m = 0, the shape of the crystal lattice takes a 

zigzag shape thus the CNTs are called zigzag CNTs and have a chiral angle of 0º.This is seen 

when two opposite C-C bonds of each hexagon are parallel to the tube axis.  When m and n are 

equal, the nanotubes are called armchair CNTs and the chiral angle is 30º.  When n is not equal 

to m, CNTs are generally referred to as chiral, with a chiral angle between 0º and 30º.73  The 

different conformations are shown in Figure 2.9.  These integers have been of great importance 

when it comes to theoretical calculations of physical properties and mechanical properties of 

CNTs.  The physical properties have been shown to be dependent on the direction of the chiral 

vector.77  The C-C bonds lies at an angle to the axis of the tube.73 

 

 

Figure 2.9: Illustration of the three helicities graphical structures of: (a) zigzag, (b) arm-chair 

and (c) chiral75 
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DWCNTs and MWCNTs are composed of two and multilayer respectively of graphene (Figure 

2.7 b).46  Their diameters range between 5 and 100 nm.  They are synthesized at higher 

temperature of between 600 and 900 °C.  MWCNTs were first discovered after the SWCNTs 

were observed.  Individual CNTs naturally align themselves into "ropes" held together by van 

der Waals force and mostly by pi-stacking.78  MWCNTs are divided into two models, i.e. the 

Russian Doll model and Parchment or Scroll model.79  Russian Doll model consist of 

concentric SWCNTs which are combined one inside the other concentrically.  These concentric 

SWCNTs have different diameters.  Parchment or Scroll model consist of one graphene sheet 

which is rolled-up on itself like a scroll.  The distance between graphite layers of MWCNTs is 

3.4 Ǻ.80  Figure 2.10 illustrates the cross-sectional cutting of the CNTs.79 

 

 

Figure 2.10: 3D and end-on representation of (a) Russian doll and (b) scroll MWCNTs 

models79 

 

When the CNTs are characterized by scanning electron microscope, they appear as one plane 

whereas SWCNTs appears as two planes.  MWCNTs appear in more than two planes which 

can be viewed as a series of parallel lines (Figure 2.11).  Sometimes MWCNTs have more 

complex array forms due to concentric nanotubes which contain different structures.81 
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Figure 2.11: Aligned MWCNTs81 

 

2.2.4 Properties of CNTs 

CNTs have different types of properties which makes them to be suitable in many applications 

including electrical,82 mechanical83 and thermal application.84 

 

2.2.4.1 Electrical properties 

The electrical properties of CNTs are governed by the arrangement of carbon atoms on the 

tubes.  CNTs can either be conducting or semi-conducting and the degree of conductivity 

depends upon their diameter and chiral vector.82  Investigations of electrical properties of 

nanotubes have been focused solely on SWCNTs, because they have similar electronic band 

structures to graphene.85  For graphene and metallic SWCNTs, the valence band and the 

conduction band are reported to touch at specific points in the reciprocal space, but for 

semiconducting SWCNTs the conduction band and the valence band do not touch.  Generally, 

CNTs are conductive if n and m is a multiple of 3, otherwise they are semiconductors.79  The 

semiconducting SWCNTs are candidates for applications such as transistor devices,86 while 

conducting SWCNTs can be used in field emission devices.87,88  The electrical properties of 

MWCNTs are difficult to predicate because they consist of different SWCNTs with different 

helicities.  Zigzag nanotubes are semi-conducting while the armchair nanotubes are metallic.88  

The functionalization and doping of MWCNTs with nitrogen or boron atoms enhance their 

electrical properties.88 
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2.2.4.2 Mechanical property 

Mechanical properties of CNTs, such as tensile strength, traction resistance, Young’s modulus 

among others, have been determined by both theoretical calculations and experimental 

investigations.  These investigations have shown that CNTs are stronger than diamond and 

have the highest Young’s modulus and tensile strength of all materials.83  The strength of CNTs 

is created by the hybridization of C-C bonds between the hexagonal carbon rings.  The 

estimated Young’s modulus for CNTs is 1060 GPa which is five times higher than that of 

steel.89  Tensile strengths of 150 GPa and a traction resistance of 250 GPa have been reported.  

This is because of stronger and shorter length of sp2 hybridized bonds, similar to those of 

graphene which relatively makes them stronger than sp3 hybridized bonds, and hence this 

determines the tensile strength of CNTs.89 

 

When the mechanical stability is high, it allows the CNTs to resist alteration of the surface area 

of the exposed and the existence of large microspores is avoided which limits the accessibility 

of the substrate to the active site.  Magnetic properties of CNTs are promoted by the 

incorporation of a metal in the tube, which makes them susceptible to a magnetic field. The 

metals which have been incorporated include iron,90 nickel91 and cobalt92 this makes the CNTs 

ferromagnetic.  CNTs are flexible and highly elastic but MWCNTs are not as elastic as 

SWCNTs, as shown by Cheng et al.93  Their elasticity modulus and stiffness may be a result 

of C=C (sp2) bonds which are relatively shorter and stronger than sp3 bonds.94 

 

2.2.4.3 Thermal properties  

Thermal conductivity and thermal expansion as properties have been investigated for both 

SWCNTs and MWCNTs.  These are important when it comes to the technological applications 

of CNTs.84,95  It has been shown that microscale electrical gadgets have a problem with thermal 

management and dissipation and therefore improving such material is required.96  The thermal 

conductivity and thermal expansion investigations are done using graphite as reference.  

Graphite and diamond have high thermal conductivities, so it is expected that CNTs will be no 

exception.97  Indeed this is the case as CNTs have been shown to have thermal conductivities 

as high as 3500 Wm-1 K-1, which is higher than that of copper, known for its exceptional 

conductivity.98  However, thermal expansions of CNTs have been found to differ from those 

of graphite and carbon nanofibers.98  CNTs have high thermal expansion while graphite and 

carbon nanofibers have low thermal expansion. 



24 
 

2.2.5 Synthesis of CNTs 

For over a decade of the study of CNTs, theoretically and experimentally techniques have been 

developed to produce CNTs in sizable quantities.  Such techniques include, arc discharge,99 

laser ablation and chemical vapour deposition.  Among factors considered in choosing a 

synthesis technique are cost effectiveness, yield/quantity and quality of CNTs.  Most of these 

processes take place in vacuum or with process gases.  In the subsequent section these synthesis 

techniques are discussed individually in more detail. 

 

2.2.5.1 Arc discharge method 

Arc discharge method was originally used for producing C60 fullerenes by Kratschmer et al.100 

however, recent investigations have shown that this technique can be used to synthesize CNTs.  

Subrahmanyam et al.101 had shown that arc discharge is useful in synthesizing pure, B- and N-

doped graphene.  The same method had also been employed by Kroto et al.19 and Iijima65 to 

produce buckminsterfullerene and CNTs, respectively. It is accomplished by producing plasma 

between the two graphite electrodes, employing a high current power and low voltage supply.  

CNTs are developed through arc-vaporization of two carbon rods (anode and cathode) as 

shown in Figure 2.12.99  The two carbon rods are placed end to end with a distance of 

approximately 1 mm apart in an enclosure filled with inert gas for instance argon or helium at 

low pressure between 50 and 700 mbar.102  The inert atmosphere prevents oxidation of the 

graphite rods.  A metal catalyst is added as a mixture with graphite powder in the anode.  The 

formation of CNTs occurs when the electrodes are brought together and struck by a high arch 

subliming the carbon in the electrode, this plasma temperature reaches up to 3000 °C.  Then 

the rod shaped tube sublimates settles on the cathode. 

 

The inner core of the arch containing CNTs is much softer than outer grey, hard shell.  The soft 

core also contains a mosaic of polyhedral particles and amorphous carbon. SWCNTs can also 

be formed using this method, however, they require greater selectivity and thus, a mixed metal 

catalyst is often used.  Variable metal catalyst ratios of Fe, Co or Ni are incorporated in the 

anode.103  The vaporization of carbon that occurs produces SWCNTs and other SCNMs.63,104  

The resultant SWCNTs are distributed as a fluffy web-like materials in the chamber.  This 

makes it challenging to measure the diameter and length of the tubes because they congregate 

in “bundles”.  Varying the catalyst as well as carrier gas can alter both diameter and length of 

tubes formed.  The main drawback of using arc-discharge method is small quantities of 
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products (CNTs) obtained and high cost.105  The CNTs produced contains impurities in the 

form of metal catalyst residues and amorphous carbon (soot) and other SCNMs besides 

SWCNTs.  This was shown by Qui et al.106 when they synthesized highly graphitized carbon 

spheres using coal as a carbon source and Ni catalyst. 

 

 

Figure 2.12: Schematic diagram of the arc-discharge99 

 

2.2.5.2 Laser ablation method 

Laser vaporization uses a pulsed-wave or continuous-wave to evaporate catalyst metal or 

graphite.  The laser ablation is a very expensive method and it is mostly used for producing 

SWCNTs.  It was first used by Guo et al.107 in 1995.  After a year it was further used by Thess 

et al.108 in 1996 to produce SWCNTs with more than 70 wt% yield.  In this technique a graphite 

target is placed in a quartz tube surrounded by a furnace.  The graphite target is first mixed 

with metal catalyst in an inert atmosphere (helium or argon) at reduced pressure.  Filling the 

oven with helium or argon gas helps to keep pressure at 500 torr.  The furnace is required to 

heat up to a temperature of approximately 1200 °C (Figure 2.13).107  A water-cooled surface 

may be included in the system.  The soot is transferred by a constant flow of carrier inert gas 

to a water-cooled copper trap where it is collected.  This condensation results in the formation 

of carbonaceous clusters which includes CNTs.  Similar to direct arc discharge, laser ablation 

involves the vaporisation of graphite in an inert environment, however, in this case, better 

quality CNTs are obtained.108-110  This is due to a laser having a better light intensity of 100 

kW cm-2 relative to continuous source of 12 kW cm-2.111 
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Figure 2.13: Laser ablation schematic diagram111 

 

The major drawbacks of laser ablation include: its inability to increase the CNTs yield for 

large-scale production, complex instrumental set-up, and it is relatively costly.  Another issue 

relates to the fact that the vaporization method grows CNTs in highly tangled forms, mixed 

with unwanted forms of carbon or metal species.  Thus the CNTs produced are difficult to 

purify and manipulate.112 

 

2.2.5.3 Chemical vapour deposition method 

The main method for production of CNTs is the CVD method (Figure 2.14).  Jose-Yacaman et 

al.113 was the first person to produce the CNTs using the CVD.  It is widely used because it 

produces high yields of CNTs in good quality.  It also offers better growth control.113  It can 

produce both SWCNTs and MWCNTs and other SCNMs with selectivity.  This method relies 

on decomposition of carbon containing compounds on the surface of nanometer-sized 

transition metal particles that serve two main functions; act as catalysts for carbon source 

decomposition as well as, CNT formation sites.114  There are different kinds of CVD methods, 

differentiated either by the heat source and the catalytic system.  Those that are differentiated 

in terms of the heat source include plasma enhanced CVD (PECVD),115 microwave plasma-

assisted CVD (MPACVD),116 hot wire CVD (HWCVD),117 hot filament CVD118 and thermal 

CVD.119  The CVD is equipped with inert gas source, hydrocarbon source, temperature 

controller, quartz tube and exhaust.  
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Figure 2.14: Schematic diagram of a simplified CVD setup (a) vertical and (b) horizontal.  

 

The setup can be arranged in a horizontal or vertical fashion, with a quartz tube that is inserted 

into a hot oven (Figure 2.14).120  The design of the horizontal CVD is such that the hot zone of 

the furnace is in the middle region and that is where growth would eventually take place.  The 

carbon source is then passed through the quartz tube with a suitable inert carrier gas at a 

temperature of ~ 600 °C – 1100 °C in the presence of a catalyst.  The catalyst can be introduced 

either as a liquid or gaseous form.  The catalyst can be passed through the reactor with the 

carrier gas as a floating catalyst121 or be placed in the reactor as a supported catalyst.122  

Alternatively, the catalyst can be deposited on a support material, that will increase catalyst 

surface area before it is coated on the quartz reactor.114  Upon the decomposition of the 

reactants the CNTs form.  The advantages of using the floating catalyst over supported catalyst 

can be summarized as follows: firstly, no support removal procedures are required after the 

reaction.  Secondly, during the coating step, not all of the catalyst sticks onto the quartz wall.  

Thirdly, the floating catalyst method can introduce catalyst in liquid or gas form and all 

prepared catalyst can participate in the reaction.120  CNTs produced by this method exhibit 

greater electrical properties, because they can be grown to significantly long lengths and are 

seldom found in bundles as in the previous methods.   

 

A vertical CVD reactor works in more or less the same way as the horizontal CVD reactor, 

however, with this technique the inlet flows from the bottom-up (Figure 2.14 a).  The products 

are collected during the reaction thus this makes this technique superior in the ease of product 

extraction.  Moreover, vertical CVD has an added advantage of affordability to produce 

carbonaceous products on a large scale and that are fairly pure, thus minimizing purification.   
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The carbon source and catalyst mixture can also be introduced into the reactor by producing a 

fine mist.  This latter method is known as spray pyrolysis.123  With spray pyrolysis, the system 

consists of two-stage furnace system where the first furnace is for sublimation of the catalyst 

and carbon source into vapour as shown in Figure 2.15.  The vapour is carried by a carrier gas 

either; helium, nitrogen, argon, hydrogen gas (or sometimes can be a mixture of hydrogen and 

argon gases) to the second furnace, which is at higher temperature (1100 °C).124  The quartz 

reactor tube is then used to collect the SCNMs.  

 

 

Figure 2.15: Schematic diagram of a two stage furnace pyrolysis set up121 

 

Reactions at lower temperature from 600 to 900 °C are known to yield MWCNTs whereas 

those that are carried at higher temperature from 900 to 1200 °C yield SWCNTs.  The CVD 

has advantages in that, it requires low power input, lower temperature range and allows for 

scale up of the process.  Other advantages include, easy control of catalyst particles.125  The 

main disadvantage of using the CVD is that the various parameters such as catalyst, carbon 

source, carrier gas, reaction temperature, and reaction time and flow rate need to be regulated 

to optimize quantity and quality, making the synthesis complex.  Other disadvantages include 

the type of catalyst precursors that can be toxic e.g. nickel carbonyl, explosive such asdiborone 

tetrahydride, or corrosive such as tetrachlorosilane and also the by-products of the CVD 

reactions can be hazardous like carbon monoxide, hydrogen gas or hydrogen fluoride.126 
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2.2.6 Factors that affect CNTs growth in the CVD synthesis 

2.2.6.1 Carbon source 

One of the most important parameter in the synthesis of CNTs is a carbon source.  It can be 

introduced in the furnace as a carrier gas or by injection or aerosol or held in the hot zone while 

heating.  The carbon source can be any carbon containing material such as hydrocarbons.  

Liquid and gaseous hydrocarbons are commonly used.  liquid hydrocarbons used are alkyls 

(butane127 and ethane128) and aromatics (toluene,129,130 benzene131 and xylene132) while gaseous 

hydrocarbon that can be used are methane133 and acetylene.127,134  However, the common 

carbon source used for the production of CNTs is carbon monoxide.  The disproportion reaction 

which occurs is given in equation 2:135 

 

CO (g) +  CO(g)       →       C(s)  +  CO2(g)
                                                   (2) 

 

In equation (2), C(s) represent the CNTs.  A range of hydrocarbon used in the synthesis of 

CNTs, have no significant effect on the properties of the CNTs.  However, when the carbon 

source used contains a heteroatom (oxygen, nitrogen, or sulfur), the morphology, size and yield 

are affected.  For example when benzene is used as a carbon source, its yields double size of 

the normal CNTs.131  However, a carbon source of acetonitrile result in CNTs with bamboo 

morphology because of the presence of nitrogen.136  The common heteroatoms used in the 

synthesis of CNTs are discussed in section 2.2.7.  The carbon source works in conjunction with 

the catalyst.  When the carbon source is not accompanied by the catalyst, carbon spheres are 

primarily formed. 

 

2.2.6.2 Catalyst precursor 

A Catalyst determines the product of a reaction.  It can be used as a solid or liquid or in a 

gaseous phase.  In 1993, Tibbets reported the use of ferrocene in the synthesis of carbon 

fibre.137  Since then many reports has been using organometallics on the growth of SCNMs 

because they are volatile, air stable, relatively inexpensive and readily available.121  Different 

types of catalyst have been investigated extensively in CVD.  Common transition metals used 

are iron (Fe), nickel (Ni), cobalt (Co) and ruthenium (Ru).  A study was done by Deck et al.12 

where they used a wide range of metallocenes or chlorides of (Fe, Co, Ni, Cr, Mn, Zn, Cd, Ti, 

Zr, La, Cu, V and Gd) on their suitability as CNTs catalysts and discovered that the three 
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elements suitable for the synthesis of CNTs were: Fe, Co, Ni.  The elements; Ti, Cu, Gd 

produced nothing while the other elements produced soot.12  The morphology, size and growth 

rate of CNTs is influenced by the choice of catalyst and it concentration. 

 

The transition metals are also used as acetates,138 halogen salts139 or metal carbonyl140 but 

mostly as metallocene because of the partially filled d-orbitals.  In their elemental forms, these 

metals are used when supported by substrates such as MgO,141 silicon,142 quartz143 and 

zeolites.144  As halogen salts these metals have been used as MX2 (where M = Fe, Co, Ni and 

X = Cl, Br).  Organometallic compounds such as ferrocene,145 Fe(CO)5,
146 W(CO)5,

145 

arylferrocene ring substituents147 and piano stool complexes148 have been investigated.  

 

The second most used organometallic complex is Fe(CO)5 with the most common being 

ferrocene.  Fe(CO)5 is used in the industrial HiPCO process to synthesis CNTs.135  This 

technique is for catalytic production of SWCNTs in a continuous-flow gas phase using CO as 

the carbon feedstock.  The metal carbonyls have an advantage over elemental catalysts and 

metal halogens because they can act both as a catalyst and as a carbon source (in CO). 

 

The nanoparticle size and distribution of the SCNMs can be also controlled by bimetallic 

catalyst.133  This approach involves the use of two or more metals bonded to each other in metal 

clusters compound or the metal catalyst can be added in the synthesis as a mixture of two 

separate compound.  Bimetallic catalyst has been reported to produce high yields of CNTs.  

This is caused by increase in their carbon solubility and development of well-dispersed metal 

clusters during CNTs synthesis.133,149 

 

2.2.6.3 Injection rate 

The injection rate plays an important role in reaction rate and also in the shape and size of the 

CNTs produced.  Higher injection rate causes an increase in the reaction rate because the partial 

pressure of component in the gas phase is higher.  This results in larger diameters of CNTs 

because of the increased rate of metal nanoparticles collision and coalescence.  Mohlala et al.150 

showed that the injection rate has no effect on the morphology of CNTs when rate of 0.2 and 

0.8 mL min-1 is used.  However, they discovered that the yield of the product (CNTs) was 

influenced by lower injection rate.  A lower injection rate formed more products while higher 

injection rate gave lower product yields. 
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2.2.6.4 Gas flow rate 

The carrier gas influences the type of SCNMs produced in terms of rate of formation, diameter 

and length.  The gas flow rates are important because they promote the elongation of the CNTs 

and also flush impurities out of the system.  Fast flow rates prevent agglomeration and produce 

shorter CNTs.151  Qiu et al.152 reported that the higher the flow rate over coal gas, the higher 

the rate of formation of the SWCNTs.  It had also been reported that higher flow rate causes a 

decrease in SWCNTs.153  This is caused by insufficient carbon to metal nanoparticles. 

 

2.2.6.5 Temperature 

Growth temperatures play an important part in the synthesis of SCNMs.  The temperature 

affects the kinetic energy (rate of collision and coalescence) of the nanoparticles inside the 

CVD.  A wide range of temperatures have been investigated resulting indifferent SCNMs.154 

Lower growth temperature of less than 800 °C produce high amount of amorphous carbon 

while a high temperature above 900 °C produces lots of carbon spheres.  Temperature range 

800 – 900 °C has been reported to be the best for synthesizing good quality CNTs.155  The 

choice of temperature used in the CVD methods influences the levels of amorphous carbon.151  

This was reported by Su et al.151 when he observed that less amorphous carbon were produced 

at higher temperature of 1100 °C.  Bai et al.156 reported that preheating temperature in a two-

phase CVD system also influences the formation rate of CNTs because of the way in which the 

catalyst decomposes which results in low carbon production.  Temperature also affects the 

yield of SCNMs.  Higher temperatures (1000 °C) tend to produce higher yield of SCNMs than 

lower temperature (800 °C) but necessarily for selective production of CNTs.  This change in 

yield is caused by the kinetic energy of the metal nanoparticles in the CVD method.  At higher 

temperature, the rate of collision and dissolution of carbon species increase, hence affecting 

the rate of nucleation and growth.  It is shown that the temperature also affect the diameters of 

the CNTs, as shown by Kuwana et al.157 and experimentally by Singh et al.158  Higher 

temperatures tend to produce larger diameter and lower temperature produce smaller diameter 

CNTs. 
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2.2.7 Effect of introducing nitrogen 

The introduction of heteroatom in reactions has been shown to modify the structure, yield and 

size of CNTs.  Introducing heteroatoms in the lattice structure of the CNTs (often referred to 

as doping) alters the physical and chemical properties of CNTs.  These distortions in the carbon 

fabric cause changes that allow CNTs to be suitable for various applications.  During doping a 

precursor containing an element of choice is used.  When the heteroatom is added, it usually 

replaces a carbon atom.  Heteroatoms such as nitrogen have been included in the synthesis of 

SCNMs.159 

 

Nitrogen can be added as part of the catalyst ligand, part of the carbon source or carrier gas.  

The addition of nitrogen has been shown to change morphology of the CNTs, giving rise to a 

bamboo compartment.  The ‘bamboo compartments are situated in the inner walls of the CNTs 

as shown in Figure 2.16.136  Bamboo compartments are sometimes seen in the pristine-CNTs 

and have been reported to occur due to fluctuation in the carbon concentration in the metal 

catalyst.160  The number of bamboo compartments in the CNTs, depend on the concentration 

of nitrogen incorporated.  The greater the number of bamboo compartments and shorter the 

distance between the compartments, the greater the concentration of nitrogen.161  N-CNTs have 

larger inner diameter whilst their outer diameter are small.  Other than bamboo structure, 

nitrogen doping has been found to produce coiled or telephone cord-like CNTs.162 

 

 

Figure 2.16: TEM image of bamboo-shaped CNTs as a result of N-doping136 

 

The configuration of nitrogen atoms in N-CNTs is better explained by different models, namely 

pyrrole-like, pyridine-like and graphitic-nitrogen configuration.  In pyrrole-like configuration, 

the nitrogen is situated in a five-membered ring whilst in the pyridine-like; nitrogen is 
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connected to two atoms within a six-membered ring.  In graphitic-nitrogen configuration, the 

nitrogen atom replace the graphitic carbon atom.163  Figure 2.17 represent a diagram of 

different configurations. 

 

 

Figure 2.17: Different ways in which nitrogen is incorporated into the carbon structure (a) 

pyridine-like, (b) pyrrole-like and (c) graphitic-nitrogen configuration163 

 

These configurations have different hybridization of nitrogen atom which takes part in 

investigation of the electrical properties of N-CNTs.  Pyrrole-like configurations have a sp3 

hybridized.  Pyridine-like and graphitic-nitrogen configuration are sp2 hybridized because the 

nitrogen atom is coordinated to two atoms.163.  N-CNTs are less mechanical164 and less 

thermally48 stable when compared to their undoped counterpart 

 

Nitrogen-doping is divided into two categories, (i) “in situ”-doping which is done directly 

during the synthesis of porous carbon nanostructure materials, (ii) post-doping, which occurs 

during the post-treatment of pre-synthesized carbon materials with a nitrogen-containing 

precursor such as nitric acid.  The post-doping reaction is performed in nitric acid at high 

temperatures (600 – 900 °C).165  Nitrogen doping of CNTs leads to n-type semiconductor 

behaviour because of the incorporation of nitrogen into CNTs which enhances conductivity.  

Nitrogen has been reported to increase the conductivity and improve the transport and field 

emission properties of the CNTs.  The N-CNTs are normally used as support for nanoparticles 

of Pt-Ru in fuel cells due to the altered properties from the inclusion of nitrogen.50,165  

 

2.2.8 CNTs growth mechanism 

The CNTs growth occurs in a series of steps.  The two most possible growth mechanisms are 

the vapour-solid-solid (VSS)166 and the vapour-liquid-solid (VLS) mechanism.167  In the VSS 

mechanism, carbon vapours are believed to precipitate on the surface of the metal as a solid 

and CNT growth propagates in the solid state.  In the VLS mechanism, carbon is believed to 
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undergo condensation from the vapour phase before the solid state.  Although the exact 

mechanism by which CNTs grow is still unclear, they have been shown to follow two growth 

models, i.e. the tip- and base-growth mechanisms.72  These mechanisms depend on reaction 

conditions and also between the interaction of the metal catalyst particle and the support.  Tip-

growth mechanism is expected to occur when the catalyst-support is weak while the base-

growth mechanism is expected when the catalyst interaction is strong.  When the catalyst-

interaction is weak, the CNTs will lift the catalyst as it grows vertically whereas with the base-

growth mechanism, catalyst-support interaction are strong, therefore, the CNTs will lift the 

catalyst as it grows horizontally.114,168  Both of these growths are achieved by the presence of 

more than one catalyst dot during their growth.169-171 

 

2.2.8.1 Tip-growth mechanism 

Tip-growth mechanism is similar to the floating-catalyst CVD method which is illustrated in 

Figure 2.18.  According to Amelinckx et al.172 tip-growth mechanism occurs when the small 

particle is situated on a support (larger metal particle).  The smaller particles are forced out 

from the support.  The process of extrusion of the smaller metal particle from the larger metal 

particle is driven by the carbon deposition onto the surface of the metal particle.  This 

dissolution of carbon takes place at high temperature.  The growth process continues until the 

metal catalyst is completely coated with graphene sheets.  An increase in outer diameter of the 

tubes is observed as the graphene sheet is continuously deposited (Figure 2.18).172 

 

 

Figure 2.18: Schematic illustration of the tip-growth mechanism in floating-catalyst CVD 

method172 
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2.2.8.2 Base-growth mechanism 

Base-growth mechanism is favoured over tip-growth mechanism when the interaction between 

the catalyst and the support is strong.  The higher strength of this interaction is characterized 

by the location of the metal catalyst at the bottom of the CNTs.  In 2005, Puretzky et al.173 

reported an in situ measurement and modelling of base-growth mechanism.  It occurs mostly 

in the CVD growth of CNTs over a supported catalyst.  The mechanism happens by the 

decomposition of the carbon source into graphitic flakes on the surface of the supported metal 

catalyst parallel to the metal particles (Figure 2.19).  This results in the formation of the 

hemispherical graphene cap on the surface of the metal catalyst like a yarmulke.71,174  Upon 

this catalyst the carbon can be continually deposited until the catalyst is deactivated and forms 

a carbon capsule.  The diameter of the CNTs is equivalent to the circumference of the metal 

particle from which they emerge.  During the synthesis of CNTs other SCNMs of amorphous 

carbon may form, hence this lowers the product purity and therefore purification becomes 

relevant.110,175 

 

 

Figure 2.19: Base-growth mechanism of carbon nanotubes176 

 

2.2.9 Purification of the CNTs  

Purification enables the exploitation of the applications and properties of carbon nanotubes.  

Different types of purification methods are discussed in the following subsections. 

 

2.2.9.1 Acid refluxing 

This purification involves the treatment of CNTs with strong acid such as nitric acid (HNO3), 

sulphuric acid (H2SO4) and hydrochloric acid (HCl) or combination of these acids.177  During 

the purification process, the CNTs are sonicated in an acidic solution to expose the metal 
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catalyst particles and thereafter refluxed for several hours to dissolve the metal.  After 

refluxing, CNTs are then washed with ethanol or acetone for neutralization.  This is then 

followed by drying the CNTs in the oven.  Strong acids such as sulphuric acid and concentrated 

nitric acid usually breaks the CNTs into shorter pieces and surface etching, however, these 

approach leads to a greater degree of purification.  CNTs purified with acids are normally more 

disordered than as-synthesized CNTs and this can be confirmed by Raman spectroscopy.178-180 

 

2.2.9.2 Surfactant aided sonication, filtration and annealing 

The acid treated CNTs usually are entangled together and sometimes have trapped the 

impurities such as catalyst particles and carbon particles.  These impurities are very difficult to 

remove by filtration therefore surfactant-aided sonication is performed.  Sonication is mostly 

done to promote the dispersion of CNTs and also to further improve the CNTs solubility.  

Widely used surfactants are anionic surfactant, sodium dodecylbenzene sulfonate (SDBS) with 

methanol or ethanol as organic solvent.181,182  SDBS and organic solvent are usually preferred 

because during the sonication of CNTs, they cause the CNTs to take longer time to settle down 

which indicates a good suspension.  After sonication the solution of CNTs and surfactant are 

then filtered with an ultra-filtration unit183 and annealed at 1273 °C in nitrogen gas (N2) for 4 

hrs.184  Annealing is powerful in optimizing the structure of CNTs by increasing thermal 

stability and mechanical strength.185  Graphite is known to be stable even at 3000 °C and higher 

temperatures tend to cause evaporation of the metal particles.  Therefore, annealing is capable 

of removing metal nanoparticles in the hollow core or at the tip of CNTs.   

 

2.2.9.3 Oxidation in air 

This purification involves the oxidation of the sample in air which results in the elimination off 

amorphous carbon.  This is achieved upon the subjection of CNTs to high temperatures (but 

below 700 °C) in air. The amorphous carbons and other less stable SCNMs such as fullerenes 

are removed thus leaving behind the pure CNTs.  This is because these impurities are less 

thermally stable and hence oxidized at a faster rate and at lower temperatures (200 °C) than 

CNTs.  However, this can also lead to a decrease in production yield as some of the CNTs can 

also be oxidized at higher temperatures.  Hence, oxidations can result to CNTs damage and 

loss.  In order to prevent this, the temperature has to be controlled.  This can be achieved either 

by using isothermal or dynamic oxidation (Figure 2.20).186 
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Figure 2.20: Comparison of (a) dynamic oxidation with (b) conventional isothermal (static) 

oxidation186 

 

During the dynamic oxidation, CNTs are put through a constantly increasing temperature such 

as 10 °C min-1 in the presence of air while isothermal oxidation is subjected to constant 

temperature (Figure 2.20 b).  Dynamic oxidation requires smaller oxidation time (˂1.5 hr) 

when compared to the isothermal oxidation (˂5 hr).  The smaller oxidation time helps in 

minimizing contributions of catalytic effects.  CNTs that are purified using dynamic oxidation 

method tend to have higher purity compared to those that are purified using isothermal 

oxidation.  CNTs purified using these methods are more graphitic when compared with those 

which are purified by acid and basic treatment, which are more disordered.  A positive note of 

this draw-back is that the thermal treatment results in the rearrangement of CNTs which 

ultimately results in more ordered and crystalline CNTs.186,187 

 

2.2.10 Functionalization of CNTs 

The lack of solubility of CNTs in aqueous media has been a major technical barrier for 

biological and biomedical applications and to tackle this problem, functionalization is done 

with certain groups, such as ester groups, amides or carboxylic acids.188-190  Many applications 

of CNTs require them to be dispersible in water or polar solvents and to be compatible with 

polymer matrices.  Functionalization modifies the physical and chemical properties of the 

CNTs.   

 

Functionalization can be classified into two categories e.g. covalent and non-covalent 

functionalization.  Covalent functionalization requires formation of covalent bond among 

various functional groups on the sidewalls sites and on the tips of CNTs.191  It is irreversible 

and interferes with the electronic properties of CNTs which cause permanent loss of double 

bond.  Covalent functionalization can be accomplished by fluorination, diazonium salt and 
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cycloaddition.192  Non-covalent functionalization is based on attraction of the hydrophobic end 

of an adsorbed molecule to CNTs walls.193  It can be executed in ionic liquids.  Non-covalent 

functionalization does not interfere with the electronic properties of CNTs, since it doesn’t 

interfere with the covalent network of CNTs.  Their main drawback is that it is hard to control 

functionalization system. 

 

2.2.11 Structural and morphological characterization of CNTs 

Carbon nanotubes can be characterized using a range of techniques such as transmission 

electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray 

spectroscopy (EDX), thermogravimetric analysis (TGA), Raman spectroscopy and Brunauer, 

Emmett and Teller (BET) analysis. 

 

2.2.11.1 Transmission electron microscopy 

TEM is usually used for size and structure verification which provides data on parameters such 

as diameter (inner- and outer-diameter), length, viewing the number of layers and the nature of 

the apex, i.e. whether they are open or close and presence of impurities such as metal in the 

structure.194  TEM also enables determination of the quality of the CNTs structure, amorphous 

material in and around the CNTs, and coordination between the CNTs and support material.195 

 

TEM consists of three systems namely: an illumination, imaging and image translating system.  

The illumination consists of two units, i.e. the condenser and electron gun.196  The electron gun 

is the source of electrons while the condenser is capable of controlling the beam incident onto 

the sample (Figure 2.21 a).  The electron gun is made up of three components: filament, 

Whenhelt cap and an anode.  The filament appears in a form of a pure tungsten wire.  It is 

connected to the negative power supply.  During the passing of electric current, it turns up to 

be very hot and emit electrons.  These emitted electrons are further pumped between the 

filament and an anode and the sample is then illuminated.196,197  The imaging system comprises 

of projector and objective lenses.  The lenses allow the electron wave distribution to be 

correctly positioned onto the viewing system.  The image translating system uses charge device 

camera (CCD) to convert the electron image into visible light image.197  HRTEM is the most 

powerful instrument that reveals the diameters of the single-wall and multi-wall CNT, the 

number of walls (Figure 2.21 b)198 and the distance between the walls.199 
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Figure 2.21: (a) Schematic diagram of TEM spectrometer200 and (b) HRTEM image of the 

carbon encapsuled iron particles198 

 

2.2.11.2 Scanning electron microscopy 

SEM is used for the surface morphology studies and the presence of impurities.  It also gives 

information on the surface, alignment of CNTs and also, their crystallinity.201  The advantage 

for using SEM is that it requires minimal sample preparation and also it is relatively easy to 

use.  It is capable of producing three-dimensional image.201  It operates in the same way as 

TEM.  The surface of a sample is scanned using focused beam and produces a diversity of 

signals at the surface (Figure 2.22 a).  The high-energy electrons are then emitted from the 

sample and are converted into a tiny current that is amplified to produce a signal voltage.  The 

signal is further passed onto a cathode-ray tube (CRT) or cathode lenses and the image is 

formed as shown in Figure 2.22 b.202 

 



40 
 

 

Figure 2.22: (a) Schematic diagram of SEM spectrometer202 and (b) SEM image of the 

CNTs203 

 

2.2.11.3 Electron dispersive X-ray spectroscopy 

EDX allows the investigation of the elemental composition of a small scanned region of 

SCNMs from SEM.  The presence of other elements, such as nitrogen, sulfur and phosphorus 

can be evaluated when dopants are used (from catalyst with heteroatoms).204  EDX depend on 

the interaction between incident electron beam and the sample.  These interactions give rise to 

X-rays characteristic of the elemental composition of the sample.  The emitted characteristic 

X-rays follow the fundamental principle that each element has a unique atomic structure 

creating a unique set of its X-ray spectrum as represented in Figure 2.23.205 

 

 

Figure 2.23: EDX spectrum and image of the CNTs206 
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2.2.11.4 Raman spectroscopy 

Raman spectroscopy is a fast, convenient and non-destructive analysis technique.  It is able to 

study liquid, solid and gaseous samples.  It consists of laser source, sample illumination system, 

light collection optics, wavelength selector and detector.  The sample is illuminated with laser 

source.  It uses monochromatic light from laser source during inelastic scattering.  Inelastic 

scattering refers to changes of frequency of photons in monochromatic light when it interact 

with a sample.207  The sample absorbs the photons and then reemits them.  The absorbed 

photons cause a transformation of electrons from low-energy state to high-energy state.  The 

reemitted photon’s frequency is shifted up or down as compared to the original monochromatic 

light (Raman effect).  This shift gives information about rotational and vibrational frequency 

in molecules.  Scattered lights are brought together by a lens and are sent to the wavelength 

selector in order to obtain a spectrum of a sample.207   

 

The laser beam is regards as an oscillating electromagnetic wave which consist of electrical 

vector when it interacts with the sample, it causes electric dipole moment which changes the 

molecule.  This deformation of molecule causes it to vibrate with characteristic frequency.  The 

vibration is called nuclear displacement.  In other words, the monochromatic light excites the 

molecules and convert it to oscillating dipoles which emit light into three different frequencies 

i.e. Rayleigh scattering, stokes and anti-stokes (Figure 2.24 a).207  Rayleigh scattering occurs 

when a molecule which is Raman-inactive absorbs a photon.  The molecule become excited 

and goes back to same frequency as an excitation source.  Stokes occurs when the Raman-

active molecule absorbs a photon (at a ground vibration level (ν = 0).  Some of the photon’s 

energy is moved to Raman-active mode and the scattering light frequency’s reduced.  It 

normally occurs when the scattering radiation has lower frequency than the excitation radiation.  

Anti-stokes occurs when a photon is being absorbed by a Raman-active molecule, during their 

time of interaction, they are in the vibration state.208  The excess energy is released from the 

Raman-active mode and the molecule goes back to their ground state vibrational mode.  Their 

scattering radiations have a higher frequency when compared to the source radiation. 

 

Raman spectroscopy is capable of analysing amorphous carbon, graphene sheet, activated 

carbon, carbon platelets, SWCNTs and MWCNTs.209  MWCNTs possess a discrete Raman 

fingerprint and several bands are perceived which are controlled by the type of laser used.  G-

band (tangential modes – 1580 cm-1) is represented by the first order Raman scattering.  It 
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measures on how the carbon bond structure could deviate from ideal graphite sp2 hybrid 

structure.  The disorder-induced D-band is found around 1450 cm-1.210 

 

This technique can be used to quantify the relative fraction of impurities in the measured CNTs 

sample by using the ratio of disorder to graphitic band (D/G band) under fixed laser power 

density.  It is used to assess molecular motion and fingers printing species.  Its routine energy 

ranges from 200 – 4000 cm-1.211,212  The most used characteristic features are lower-frequency 

peak < 200 cm-1 (which represent the radial breathing mode), 1340 cm-1 (residual ill-organized 

graphite which is normal called D-line), 1500 and 1600 cm-1 (G-line) and a second order which 

is found between 2450 and 2650 cm-1is assigned to the G′ mode (Figure 2.24 b).211  The CNTs 

quality is recognized by the ID/IG ratio, where IG represents the intensity of the G band whereas 

the ID represents the intensity of the D band.  The lower, the ID/IG ratio, higher the graphitic 

structural quality of the CNTs produced.213 

 

 

Figure 2.24: (a) Energy diagram for Raman and Rayleigh scattering214 and (b) Raman 

spectrum showing the most characteristic features of CNTs: radial breathing 

mode (RBM) D-band and G'-band211 

 

2.2.11.5 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) is used in the CNTs analysis in order determine the thermal 

stability.  This is performed by monitoring the weight loss that occurs during the heating.215  

TGA consist of a thermobalance (microbalance), furnace, carrier gas system and a computer 

system (data acquisition and data processing).207  A known mass (1 – 100 mg) of the CNTs 

sample is inserted in a crucible hanged from the micro-balance (Figure 2.25 a).  It is loaded in 

the oven or furnace.  The sample in the furnace is heated from ambient temperature up to 1000 
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°C at a heating rate between 0.1 to 100 °C min-1.  All of this is performed in the presence of air 

or inert gas (He, Ar or N2) in order to prevent undesired reaction.216  During the heating of the 

sample, the mass of the sample changes which cause a deflection of the beam.  The deflection 

of the beam inserts a light shutter between the photodiode and lamp and produces current.  The 

amplified photodiode current is monitored and transformed into weight-loss by the data 

processing system (thermocouple).215,216   

 

The weight loss of the sample is represented in the form of a curve and their derivative weight 

loss curve is used to determine the actual temperature where the weight loss occurs.  Oxidation 

temperature is affected by the length of carbon-carbon bond of the CNTs.  Thermal stability is 

derived from oxidation temperature of the sample.  TGA provides information about the 

amount of amorphous carbon, metal content and CNTs based on oxidation temperature.  

Initially any moisture or solvent will be evaporated at an oxidation temperature of 25-120 °C 

while amorphous carbon will be oxidized at 300-400 °C.215  The oxidative temperature of about 

500 to 600 °C is characteristic of SWCNTs and at 640 to 790 °C of pure MWCNTs (for instance 

Figure 2.25 b).  The mass of the sample remaining after 790 °C indicate the metal content 

present in the sample.216 

 

 

Figure 2.25: (a) Schematic diagram of how the TGA operates and (b) TGA thermogram of the 

MWCNTs 217 

 

2.2.11.6 Brunauer, Emmett and Teller analysis 

Brunauer, Emmett and Teller analysis (BET) is used for the determination of the surface area 

and porosity.  Surface area is the total sum of the surface area of individual particulates 

constituting the material.218  Pore volume is the size of empty spaces in a material.  The amount 
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of gas adsorbed at a given pressure allows determination of the surface area.  BET theory 

involves extension of the Langmuir theory.  Langmuir theory is based on monolayer molecular 

adsorption and multilayer adsorption.  BET theory ignores inhomogeneities of the surface and 

lateral adsorbate-absorbate interactions.  Before the CNTs are characterized using the BET 

method, they are firstly degassed in order to remove moisture.  BET mostly uses nitrogen gas 

because it is readily available and it strongly interacts with many solid surface. 

 

The BET equation is expressed by: 

 

1

V[(
Po

P⁄ ) − 1] 
 =  

C − 1

Vm C
 (

P

Po
) +  

1

Vm C
                                             (3) 

 

In equation 3, V represent quantity of adsorbed gas, P and Po represent the saturation and 

equilibrium pressure of the adsorbates, C represent the BET constant and Vm represent the 

quantity of the monolayer adsorbed gas.  This method is used to calculate the surface area of 

the solid.  V and P/Po are measured by the BET analyser and Vm relates to surface area (it is 

converted to area).  CNTs have a surface area of 264.08 m2 g-1 and pore volume of 2.419 cm3 

g-1.219 

 

2.2.12 Current and potential application of CNTs 

The remarkable properties of CNTs have led to their use in composites,220 energy storage,221 

fuel cells,222 catalyst support223 and drug delivery agents in medicine.224 

 

2.2.12.1 Composites 

CNTs are the strongest and stiffest known material in terms of tensile strength and elastic 

modulus, therefore, they are used as composite nanofibers in polymers to enhance the 

mechanical, electrical and thermal properties of the bulk materials.225  The composite are used 

in bullet-proof vests.  It has been reported, that functionalized-CNTs are also capable of 

improving tensile strength.220  During the synthesis of the composite, the CNTs are mixed with 

the solution of the polymer and the solvent is removed by evaporation.  Then the CNTs are 

pre-treated in order to enhance solubilisation.  
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2.2.12.2 Energy storage 

SCNMs have been used in energy production and have a potential application in energy 

storage.221  There are two elements that can be stored in CNTs, i.e. hydrogen226,227 and 

lithium228 and hence their use in capacitor229 and solar cells.230,231  They have been used as 

anodes in lithium ion based batteries and because of their small diameters they have a potential 

application in hydrogen storage.227  They have also been used to make ideal vessel (storage 

vessels for hydrogen gas).232  This is due to their high surface and abundant pore volume which 

potentially leads to CNTs being good adsorbents.   

 

2.2.12.3 Fuel cells 

Fuel cells have been used as a source of renewable energy and are a major subject for many 

researchers.  The main fuel cell source is hydrogen gas because it is easily available unlike 

fossil-based power sources.222  Major components of fuel cells are membrane, catalyst, catalyst 

support, catalyst layer, gas diffusion layer, and current collector.  There are various fuel cell 

technologies such as proton exchange membrane fuel cells (PEMFCs),233 alkaline fuel cells 

(AFCs),234 direct methanol fuel cell (DMFCs),235 phosphoric acid fuel cells (PAFCs),236 and 

solid oxide fuel cells (SOFCs).237  PEMFCs use a thin proton as a membrane.62  AFCs use 

potassium hydroxide as an electrolyte.  DMFCs use a membrane as electrolyte together with 

methanol at the anode.  PAFCs use acidic electrolytes.  SOFCs use solid ceramic electrolyte.  

Out of all the fuel cells, PMEFCs are advantageous because they can operate at low temperature 

and they do not need to be run when there is no demand for electricity.  

 

The performances of these fuel cells are improved by using CNTs as the catalyst support.  

CNTs increase the reaction kinetics and the rate of oxygen reduction reaction.  In order for the 

CNTs to be used as a catalyst supporter, a surface area of 500 m2 g-1 for the MWCNTs and 

1500 m2 g-1 for the SWCNTs is required.238  The good properties of the catalyst support, such 

as high surface area, low resistance, and high mechanical strength and chemical stability, are 

essential for catalytic electrodes.239  Some of the challenges about using fuel cell technology 

are the cost of fuel cell (because of waste management and platinum catalyst loading). 
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2.2.12.4 Catalyst support  

Catalyst is a substance which is used in small amount in order to increase the reaction rate.  

They can be loaded on another material which has a high surface area so that it can serve as a 

support and form a supported catalyst of a system.  The supported catalyst is used to control 

porous structure, assist in catalysis and to improve mechanical strength.223  CNTs have large 

surface area which enable them to be easily loaded with metal on their surface.240  Metals such 

as palladium and platinum had been used for loading.  Mostly palladium is used because it is 

less sensitive to water or oxygen241 and it is relatively cheaper compared to platinum and other 

platinum group metals (PGMs).  The challenge of making supported nanoparticle is to avoid 

agglomeration.  The examples of catalyst support are Ni/CNTs and Pt/CNTs catalyst.192,241 

 

2.2.12.5 Medicine 

In medicine, CNTs have been shown to have a potential to act as a tool for cancer diagnosis242 

and therapy.224  Polyphosphazene platinum is one of the anticancer drug which is given with 

nanotubes.243  It has been reported to show enhanced permeability and retention in the brain as 

a result of controlled lipophilicity of nanotubes.  CNTs have been also tested for drug delivery 

to the system e.g. Hydro-gel (gelatin CNTs mixture) which is used as a carrier system for 

biomedicals.244  In tablet manufacturing, CNTs are used as glodants or lubricants because of 

their nanosize and sliding nature of graphite layer which are bound with van der Waals 

forces.245  CNTs have been used to manipulate genes in the process of bioimaging genomes246 

and tissue engineering.247  In biology CNTs can be functionalised with a biomedical such as a 

protein or lipid.248  These modified CNTs can be used to mimic certain biological processes 

depending on biomolecule attached onto the wall of the CNTs. 

 

2.2.12.6 Field emission device 

CNTs are used in field emission device because they contain metal which act as an emission 

source249 and can operate at lower voltage.  They have high mechanical strength and high 

chemical stability.250  Their fabrication process is simple and they are anticipated to create field 

emission devices with low power usage and low cost. CNTs doped with nitrogen displays some 

interesting electronic properties.251  Due to their electrical properties, they can be used in field 

emission display252,253 and field emission lamps.254 
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CHAPTER 3: EXPERIMENTAL 

A detailed account of the methods employed in the synthesis of MWCNTs and their 

characterization techniques is herein presented.  There are different methods used to synthesize 

MWCNTs such as laser ablation, arc-discharge and CVD.  However, in this study the CVD 

method is used.  The CVD method was preferred because of its simplicity, availability, 

selectivity and higher yields.  The selectivity of the MWCNTs was controlled by synthetic 

parameters, e.g. catalyst type, carbon source and temperature.  The MWCNTs were further 

purified using nitric acid and their characterizations were carried out using different 

characterization techniques. 

 

3.1 Chemicals, gases, equipment and apparatus 

The metallocenes used in all experiments were of analytical grade and hence used without 

further purification.  Ferrocene (≥ 97%), nickelocene (≥ 97%), cobaltocene (≥ 97%), and 

ruthenocene (≥ 97%) were purchased from Sigma Aldrich LTD and supplied by Capital Labs 

suppliers.  Sodium hydroxide (pellets, ≥ 97%) was purchased from Associated Chemical 

Enterprises (Pty) Ltd, South Africa.  Toluene (≥ 99.5%) was purchased from BDH Chemicals 

Ltd, England.  Acetonitrile (HPLC grade, 99.9%) and ethanol (98%) were purchased from 

Merck, Schuchardt, Germany.  Nitric acid (55%) and sulphuric acid (98%) were purchased 

from Saarchem, Merck, South Africa.  Double distilled water was supplied by BIby sterlin Ltd, 

England, Aqutron model A4000Dl.  A gas mixture of 10% H2 in Argon (v/v) (10% H2:90% 

Ar) was purchased from Afrox Limited Gas Co., Durban, South Africa. 

 

Samples were weighing on the Mettler AE 200 balance, Germany.  Ultrasonic water bath 

treatment was performed on a digital ultrasonic heater supplied by Shalom Lab, South Africa.  

The injection pump employed was a New Era pump system Inc. and the Syringe Pump Model 

No. NE-300.  Filtration was done in a Buchner filtration flask fitted with Whatman grade 4 

filter paper. 

 



64 
 

3.2 General procedure 

3.2.1 Cleaning glassware 

All glassware used in the synthesis procedure were washed with soap and warm water, then 

further rinsed with acetone and dried in the oven.  Quartz tubes and other glass apparatus used 

in the CVD method were cleaned by first scraping off the black carbonaceous deposits from 

CVD, followed by gentle scrubbing in soapy water.  These were then rinsed with water in order 

to remove the soap, followed by rinsing with acetone until the solvent colour turned from 

orange to colourless.  Any remaining black carbonaceous materials in quartz tube were 

removed by heating it at 800 °C for 30 minutes.  After the black carbonaceous materials was 

removed the quartz tube was soaked in aqua regia (HCl:HNO3 3:1 v/v) to dissolve accumulated 

iron and iron oxides.  Thereafter, the tube was washed with water to completely remove the 

orange deposits.  The injection-port and cold finger were occasionally soaked in sodium 

hydroxide and ethanol mixture (base bath), then washed with soapy water and rinsed with 

acetone. 

 

3.2.2 Preparation of catalyst precursors 

0.25 g (ferrocene, nickelocene, cobaltocene or ruthenocene) of a catalyst was weighed out and 

mixed with toluene or acetonitrile, as the carbon source, to make a solution of total mass, 10.0 

g.  This solution was sonicated for 10 minute in order to allow proper dissolution of the 

metallocene.  It was then drawn into a disposable syringe attached to a SS 150 mm L non-

boring 24 gauge bevelled-tip needle, inserted into the septum of the injector port and injected 

into the heated quartz tube at an injection pump rate of 0.8 mL min-1.   

 

3.2.3 CVD reactor set-up 

The synthesis of the MWCNTs was accomplished by using a horizontal floating bed catalyst 

based on a similar design used in literature.1  The setup used to grow the carbon nanotubes is 

similar to that shown in Figure 3.1.  An Elite thermal systems Ltd. furnace was used, model 

TSH 12/50/610 fitted with an overtemperature controller (Eurotherm 2116) and a main zone 

furnace controller (Eurotherm 2416).  The parameters used in the synthesis of CNTs are 

presented in Table 3.1 and were kept constant for all the runs.   
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Figure 3.1: The CVD reactor used in this study 

 

 

Figure 3.2: The components and arrangement of the injector port employed 
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Table 3.1: Parameters used in the synthesis of MWCNTs 

Parameters Types 

Catalysts Ferrocene, nickelocene, cobaltocene or 

ruthenocene 

Carbon source Toluene or acetonitrile 

Reaction temperature 800, 850, 900, 950 or 1000 °C 

Catalyst/carbon source 2.5 wt.% 

Amount injected 10 mL 

Injection rate 0.80 mL min-1 

Holding time 30 min 

Gas 10% hydrogen in argon (v/v) 

Temperature heat rate 10 °C min-1 

Gas flow rate 100 mL min-1 

Carrier gas pressure 80 kPa 

 

A quartz tube reactor (80 cm in length and 2.8 cm internal diameter) was inserted horizontally 

into an electrical furnace with the outlet of the tube connected to a gas bubbler (Figure 3.1).  

At one end of the quartz reactor tube, a quartz water-cooled injection port (see Figure 3.2) was 

fitted, by using a ground glass joint, and at the other end a glass cold finger, was also fitted 

with a ground glass joint.  Both ends were secured firmly onto the reactor tube by a series of 

hooks and elastic bands.  This was done in order to ensure that if an increase in pressure was 

experienced in the reactor, the injection port and cold finger will not detach from the quartz 

tube and also to prevent gas leakage.  The gas and water bubblers were similarly fitted with 

ground glass joints.  The full setup of the furnace is shown in Figure 3.1. 

 

3.2.4 Methods for the synthesis of MWCNTs 

The temperatures inside the quartz tube were kept in the range of 800 - 1000 °C, under 10% 

hydrogen in argon (v/v).  The carrier gas and reducing agent, was supplied into the system via 

silicon tubing at a rate of 100 mL min-1 at 80 kPa after the system had reached a temperature 

of 600 °C in order to remove oxygen, moisture and any other gas which might be present in 

the system.  The carrier gas which contained the reducing agent (H2 gas) was set at a constant 

flow rate and pressure was maintained for the duration of the synthesis.  Waste gases exiting 
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the quartz reactor tube were allowed to pass through a water-trap and then vented to the exterior 

of the building. 

 

The catalyst/carbon source solution was injected in the reactor by means of an injection pump.  

The furnace was maintained at the set maximum temperature (Tmax) for the duration of 

injection.  At the end of the reaction, the furnace was allowed to cool down and the gas source 

was switched off at about 250 °C.  Thereafter, the furnace was allowed to cool to room 

temperature before the quartz components were dismantled.  The carbonaceous products were 

scraped out of the quartz tube with a long stainless steel spatula.  The products deposited in the 

hot zone (Figure 3.1) were collected and weighed.  These products were obtained as shiny 

flakes (Figure 3.3 a) due to etching of the inner walls of the quartz tube or as black powder 

resembling soot (Figure 3.3 b). 

 

 

Figure 3.3: Photographs of (a) shiny flakes and (b) black carbonaceous powder obtained from 

ferrocene at a growth temperature of 900 and 800 °C, respectively 

 

3.2.5 Purification of the MWCNTs  

The MWCNTs that were synthesized usually have impurities in the form of amorphous carbon, 

other SCNMs and metal catalyst residues.2,3  Therefore, purification of the synthesized 

MWCNTs was carried out as shown in Scheme 3.1.  Amorphous carbon and SCNMs can be 

minimised by high heat temperature since they decompose at higher temperature (but less than 

680 °C since higher temperature also cause MWCNTs to decompose).  Acid treatment was 

used to remove the metal particles within the crude nanotube samples and it also assisted in 

opening their tips.4  Three different methods were tested and compared.5 

(a) (b) 
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Scheme 3.1: Acid treated MWCNTs6 

 

3.2.5.1 Method 1  

MWCNTs (≈ 0.20 g) were grinded and calcinated in the CVD reactor for three hours at a 

temperature of 350 °C.  After three hours the MWCNTs were transferred into a 150 mL round–

bottom flask and 6 M nitric acid (15 mL) was added.  This was done in order to expose the 

metal catalyst particles, thus making the purification more effective.  The solution was then 

sonicated for 60 minute in order to disperse the CNTs.  The mixture was further refluxed for 

12 hours at a temperature of 110 °C in order to dissolve the metals.  After 12 hours, the mixture 

was allowed to cool to room temperature and nitric acid was neutralized using sodium 

hydroxide.  Then the mixture was sonicated for 40 minute.  The purified MWCNTs were 

filtered and washed with distilled water until filtrate attained a pH of 7.  The purified MWCNTs 

were then dried overnight in the oven at 130 °C. 

 

3.2.5.2 Method 2 

The same procedure as in method 1 was repeated but the mixture was refluxed for 24 hours 

instead of 12 hours. 

 

3.2.5.3 Method 3 

The same procedure as in method 1 was employed; however, the mixture was refluxed for 48 

hours instead of 12 hours. 

 

The verification of the purification process was determined by the use of TEM and TGA among 

other methods of characterization. 
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3.3 Characterization of the MWCNTs 

This section describes the techniques, instruments and sample preparation used for MWCNTs 

characterization. 

 

3.3.1 Transmission electron microscopy 

The morphology of the MWCNTs was investigated by using transmission electron microscopy 

(TEM).  A JEOL JEM model 1010 transmission electron microscope at 80 kV equipped with 

Megaview imaging system was used to obtain the TEM micrographs.  Figure 3.4 depicts a 

photograph of the TEM instrument. TEM samples were prepared by firstly grinding using an 

agar mortar and pestle and the grounded sample was transferred into labelled vials.  The ground 

sample was dissolved in 1 mL of 100% ethanol and allowed to sonicate for approximately 10 

minutes.  The sonication in ethanol allowed the MWCNTs to be evenly dispersed in order to 

obtain a representative sample that would be used for analysis. 

 

A lacey or holey carbon-copper grid was dipped into the ethanolic dispersion.  The ethanol was 

then allowed to evaporate by placing the grid near a lamp.  The grid was then inserted into the 

specimen chamber of the TEM instrument.  It was analysed under several magnifications.  

megaview digital camera was used to capture images and data, and also provide the 

magnification and scale bar.  Image analysis involved measurements of external and internal 

diameters and lengths using the image J® software.  The average diameters of the MWCNTs 

were quantified by measuring over 100 randomly chosen tubes.  The same procedure was 

repeated for all samples.  The average diameter of the tubes measured was calculated using 

equations 1 and 2: 

 

100 𝑡𝑢𝑏𝑒𝑠 × 3 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑡𝑢𝑏𝑒 = 300 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠                              (1) 

∑ 𝐴𝑙𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

300
= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑛𝑚) 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒                                     (2)   
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Figure 3.4: Photograph of JEOL JEM 1010 transmission electron microscope  

 

3.3.2 High resolution transmission electron microscopy 

The MWCNTs were also investigated by HRTEM.  High magnification was performed with 

JEOL JEM 2100 (Figure 3.5), 200 kV and set at an accelerating voltage of 100 kV.  HRTEM 

employed the ECSI 10 digital micrograph software. Sample preparation for HRTEM was done 

in a similar way as that of the TEM analysis (Section 3.3.1). 

 

 

Figure 3.5: Photograph of JEOL JEM 2100 high resolution transmission electron microscope 
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3.3.3 Scanning electron microscopy 

The morphology of the MWCNTs was investigated by use of SEM in order to determine the 

surface morphology.  It was performed in a JEOL JSM 6100 model (Figure 3.6).  An 

accelerating voltage of 10V was used.  The working distance was kept between 4 and 6 mm 

with Probe current set at 3 p.A and aperture size was 30 µm.  The aluminium stubs were used 

as sample holders.  The aluminium stubs were coated with a piece of a sticky carbon tape.  The 

sample was sprinkled on top of a carbon tape.  Zeiss Smart SEM version 5.03.06 software was 

employed in the data acquisition and analysis.  The JEOL JSM was used in conjunction with 

electron dispersive X-ray spectroscopy (EDX) during the imaging session.   

 

 

Figure 3.6: Photograph of JEOL JSM 6100 scanning electron microscope 

 

3.3.4 Electron dispersive X-ray spectroscopy 

The EDX was used to determine the elemental composition of materials.  EDX is good for 

analysis of both heavier elements such as iron and lighter element such as carbon.  Bruker 1.8 

software X-ray spectrometer attached to the JEOL JSM 6100 SEM instrument was used to 

generate EDX spectra and convert the data in spectra directly into tables of normalized weight 

percent for selected items.  In the EDX analysis, 80 mm2 X-max, Oxford instrument detector 

was used.  The software employed was EDX Aztec.  Samples were scanned at a rate between 

5 to 10 kilo counts per second, with an accelerating voltage of 20 kV and working distance of 

5-10 mm.   
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3.3.5 Raman spectroscopy 

Raman spectrometer was used to investigate the crystallinity of the MWCNTs.  A Delta Nu 

Advantage 532TM Raman spectrometer (USA) with 1800b lines/mm grating was used to get 

the Raman spectra of the MWCNTs (Figure 3.7).  The instrument was operated with NuSpecTM 

software with excitation using a class 3b diode laser (Nd:YAG solid state crystal) operated at 

a wavelength of 532 nm.  The laser was operated at 15 mW.  The samples were ground to a 

very fine powder prior to analysis.  It was placed in the sample holder and the focal length was 

centred at the irradiation centre at approximately 16.45 mm.  The spectrometer was then 

covered with a black cloth before analysis.  Data was collected by means of 2D CCD detector 

with an integration time of 60 seconds.  An average of three spectra was acquired for MWCNTs 

and then background smoothing was done on the spectra.  The spectra were interpreted using 

Origin software package. 

 

 

Figure 3.7: Photograph of Delta Nu Advantage 532TM Raman spectrometer 

 

3.3.6 Thermogravimetric analysis 

The analysis of the degradation of MWCNTs was investigated using a TA instrument Q 

seriesTM Thermal Analyser DSC/TGA (Q600) instrument (Figure 3.8).  A small homogenised 

sample (≈ 5 mg) was used.  Samples were analysed as obtained without any sample preparation.  

A ramp temperature of 10 °C min-1 was used in all the samples.  The samples were analysed in 

air flowing at 50 mL min-1 and heated from ambient temperature up to 1000 °C at a rate of 10 

°C min-1.  TGA curves and first derivatives plots were generated with TA instruments universal 

analysis 2000 software.  Origin software was used to re-plot the weight-loss curves for the 

determination of oxidative stability of MWCNTs (initiation and oxidation temperature). 
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Figure 3.8: Photograph of TA instrument Q seriesTM Thermal Analyser DSC/TGA (Q600) 

instrument used for thermogravimetric analysis 

 

3.3.7 BET analysis 

BET was used to determine the surface area, pore volume and size of the MWCNTs.  Analysis 

of textural properties of the MWCNTs were performed at -196 °C on the Micromeritics Tri-

star II 3020 version 1.03 instruments at 77 K in N2 (supplied by Micromeritics, USA) as shown 

in Figure 3.9.  Accurately weighed CNTs (0.1 g) were ground and then degassed at 90 °C for 

one hour and then at 160 °C for twelve hours using Micromeritics Flow before fitting them for 

analysis on the Micromeritics Tri-star II instrument.  The pore volumes were obtained from the 

Barrett-Joyner-Halenda (BJH) model. 

 

 

Figure 3.9: Photograph of Micromeritics Tri-star II instrument 
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3.3.8 Elemental analysis 

Elemental analysis was used to investigate the relative composition of elements such as carbon 

and nitrogen present in the nitrogen-doped MWCNTs.  The analysis was performed on a LECO 

CHNS-932 elemental analyser, standardised with acetanilide.  Nitrogen-doped MWCNTs 

sample of approximately 5 mg was required and for each run the experiment was done in 

duplicate. 

  



75 
 

3.4 References 

1. E. N. Nxumalo, V. O. Nyamori and N. J. Coville, Journal of Organometallic Chemistry, 

2008, 693, 2942-2948. 

2. Y.-Y. Fan, A. Kaufmann, A. Mukasyan and A. Varma, Carbon, 2006, 44, 2160-2170. 

3. S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta and A. Tagliaferro, 

Physica E, 2007, 37, 58-61. 

4. H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon, The Journal of Physical Chemistry B, 

2003, 107, 13838-13842. 

5. H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis and R. C. Haddon, Journal of 

the American Chemical Society, 2003, 125, 14893-14900. 

6. Z. Dong, B. Yang, J. Jin, J. Li, H. Kang, X. Zhong, R. Li and J. Ma, Nanoscale Research 

Letters, 2009, 4, 335-340. 

 

 



76 
 

CHAPTER 4: RESULT AND DISCUSSION OF MWCNTs 

This section presents results on the synthesis of multiwalled carbon nanotubes.  The synthesis 

was carried out at five different growth temperatures for all the metallocenes.  The materials 

were characterized by TEM, HRTEM, SEM, TGA, Raman spectroscopy and their texture 

investigated as discussed in Chapter 3.  The results obtained were also compared to those of 

other authors who have previously used similar precursors. 

 

4.1 Yield of SCNMs 

The activity of metallocenes as catalysts in the synthesis of MWCNTs was tested.  Toluene 

was used as carbon source and the reactions were done at 800, 850, 900, 950 or 1000 °C.  Black, 

shiny, flaky powders that resemble soot were produced at all five growth temperatures, with 

the yield notably depending on the type of metallocene used.  Varying the growth temperature 

was also found to have an effect on the yield of SCNMs.  The five different temperatures (800, 

850, 900, 950 and 1000 °C) showed that the yield increased with increase in growth 

temperature for all the metallocenes.  The increase in yield with temperature was consistent 

with literature reports.1,2  This could imply that relatively lower temperatures are not conducive 

for the carbon precursor dissociation and dissolution into the metallocene catalysts.  Thus, 

increasing the reaction temperature favoured a faster supply of carbon and dissolution of carbon 

into the metallocene catalysts resulting in the formation of more SCNMs. 

 

From Table 4.1, ferrocene seemed to produce the highest yields at all of the growth 

temperatures tested whilst ruthenocene had the lowest yield of SCNMs.  In the case of 

ruthenocene, a number of possible factors were postulated for this low yields.  Firstly, this 

could be caused by poor solubility of carbon in ruthenocene when compared with the other 

three metallocenes.  Secondly, the much lower yield could also be attributed to some catalyst 

– toluene solution seeping through to the other end of the reactor tube, unreacted, hence not 

available to form MWCNTs at the hot stage.  Some of the SCNMs may have been left on the 

rough inner-wall of the quartz tube during harvesting even after a through recovery procedure.  

It was observed that as the metal size decreases (Ru > Ni > Co > Fe) the yield increases (Table 

4.1).  The highest yield of 1532.1 mg was obtained when ferrocene was used as a catalyst at a 

growth temperature of 1000 °C.   
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Table 4.1: Yields of SCNMs obtained from the pyrolysis of metallocenes (2.5 wt.%) in a 

solution of toluene 

Temperature/

°C 

SCNMsa 

/mg 

SCNMsb /mg SCNMsc /mg SCNMsd /mg 

1000 1532.1 1343.9 1412.1 1278.3 

950 826.8 823.8 825.3 545.1 

900 665.6 652.9 538.0 499.4 

850 495.0 325.8 420.4 213.4 

800 362.1 224.7 157.8 137.2 

Superscript represent the catalyst used; a ferocene, b nickelocene, c cobaltocene, d ruthenocene 

 

4.2 Purification of as-synthesised shaped carbon nanomaterials (SCNMs) 

Samples of as-synthesized MWCNTs usually come with other impurities such as amorphous 

carbon, carbon spheres and transition metal nanoparticles which are introduced as catalysts 

during synthesis (Figure 4.1 a).3-5  The SCNMs were purified using methods which involved 

refluxing with an acid solution for different number of hours.  The acid treatment was chosen 

because it has been reported to cause minimal damage, open the ends of the MWCNTs and 

enable removal of metal nanoparticles impurities.6-8  Additionally, acid purification also 

introduces oxygen-containing groups on the surface of MWCNTs.9   

 

The MWCNTs were firstly ground and then calcined in the oven for three hours at a 

temperature of 350 °C to remove amorphous carbon and then refluxed using 6M nitric acid in 

three different time periods designated as; method 1 (Section 3.2.5.1), method 2 (Section 

3.2.5.2) and method 3 (Section 3.2.5.3).  The refluxing times were varied in order to investigate 

the effectiveness of the purification method and also to find the best method for the purification 

of the MWCNTs.  In this work, the acid treatment did not affect the outer- and inner-diameters 

of the MWCNTs.  Some authors have reported that a mixture of concentrated H2SO4 and HNO3 

does not produce defects in MWCNTs.10,11  The results obtained in this study, using same 

mixture showed a similar trend.  During refluxing, the reaction mixture turned yellow, 

indicating that residual metal nanoparticles were removed from the MWCNTs.12 
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For optimization of the time dependent methods, ferrocene catalysed MWCNTs were 

investigated and the optimum method was chosen based on TEM and TGA results.  The 

optimum method was further used for the purification of MWCNTs obtained from other 

metallocenes.  Purified MWCNTs were expected to contain minimal or no amorphous carbon 

as observed in the TEM images and the TGA thermograms.  The materials that were 

synthesized from ferrocene at a growth temperature of 800 °C were used to compare these 

purification methods.  This was chosen because ferrocene as a catalyst has been widely used 

in the synthesis of CNTs at 800 °C.13,14   

 

MWCNTs were dispersed by sonication in ethanol and a lacey or holey carbon-copper grid 

was dipped in the ethanolic dispersion.  The grid was dried in order for ethanol to evaporate 

and then it was inserted into the TEM instrument for analysis.  The TEM images for method 1 

and method 2 which involved refluxing of MWCNTs for 12 and 24 hours, respectively, showed 

that the removal of metal nanoparticles was effective and the length of the MWCNTs were not 

cut into small pieces (Figure 4.1 b and c).  However, the results obtained for method 3, which 

involved refluxing for 36 hours resulted in breakage of the MWCNTs to shorter length as 

observed from the TEM analysis (Figure 4.1 d).  This was attributed to the longer hours of 

refluxing in a harsh acidic environment.  The MWCNTs appeared cleaner indicating that large 

quantities of metal nanoparticles were removed. 

 

 

 

 

 

 

 

 

 

Figure 4.1: TEM images of SCNMs (a) as-synthesized, (b) MWCNTs purified from method 

1, (c) MWCNTs purified from method 2 and (d) MWCNTs purified from method 

3 
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The amount recovered during purification was also investigated, by comparing the mass of 

MWCNTs before purification and after purification.  In each experiment, a mass of 120 mg 

was weighed out for purification and the masses recovered for method 1, method 2 and method 

3 were 96.0, 84.4 and 78.0 mg, respectively.  Thus, it was found that the highest amount 

recovered was achieved in method 1, with method 3 giving the lowest recovery.  In the case of 

method 3, the destruction was caused by the long hours of refluxing.  After purification, the 

materials were found to be more crystalline as shown by the Raman studies (Table 4.2).  It was 

observed that as the refluxing time increased, the crystallinity of the MWCNTs also increased.  

Purification of MWCNTs with acids result in addition of carboxylate groups on the tube walls.  

Hence, longer hours of reflux may result in more carboxylate groups being attached onto the 

MWCNT walls.  This causes a decrease the in ID/IG ratio.  Therefore, the lower ID/IG ratio, in 

method 3 could be attributed to the destruction of the walls of the CNTs by acid 

functionalization/carboxylation.15 

 

Table 4.2: Results obtained from different purification methods 

 Mass 

purified/mg 

Mass 

recovered/mg 

Purified 

yield/% 

ID/IG ratio 

as-synthesized - - - 0.99 

method 1 120 96.0 80 0.78 

method 2 120 84.4 72 0.72 

method 3 120 78.0 65 0.63 

 

In order to further assess the effectiveness of the three purification methods, the samples were 

further subjected to thermogravimetric analysis.  It was used to investigate the thermal stability 

of the MWCNTs and also the amount of metal content present after purification.  Figure 4.2 

shows the thermograms of the purified materials obtained and compared with that of the as-

synthesized materials.  Methods 1 and 3 produced less thermally stable MWCNTs than method 

2.  The decomposition temperatures for SCNMs which are purified using methods 1, 2 and 3 

were 390, 520, and 410 °C, respectively.  The residual iron content for the SCNMs obtained 

from methods 1, 2 and 3 were 0.5, 0.1 and 0%, respectively.  The iron content decreased when 

the refluxing hours during purification was increased.  From the thermograms, it was observed 

that method 3, which had the longest reflux hours, was able to reduce the iron content from 20 

to 0%.  As the condition became harsher (longer reflux hours and higher temperatures) the 
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stability of the MWCNTs decreased (method 3).  The harsh conditions tend to produce more 

defects on the MWCNTs and shorten the tubes which lowered the thermal stability.  The 

thermograms showed that there is a weight loss around 180 to 400 °C from as-synthesized and 

method 3 (Figure 4.2 – region marked *).  This was caused by the presence of amorphous 

carbon materials.   

 

 

Figure 4.2: TGA thermograms of samples obtained from ferrocene catalysed MWCNTs 

synthesis at a growth temperature of 800 °C purified by the three purification 

methods vs. the as-synthesized 

 

From Table 4.1 and Figures 4.1- 4.2, it was decided that the best purification method is method 

2, since it maintained the size of the MWCNTs with high crystallinity, low content of metal 

nanoparticles and better thermal stability were obtained.  It was then further applied in the 

purification of other SCNMs which were synthesized from other metallocenes. 

 

 

* 
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4.3 Effect of growth temperature  

4.3.1 SCNMs distribution 

TEM analysis was used to investigate the quality, type, size and distribution of the various 

SCNMs produced in the different synthesis reactions temperatures.  All the reactions at the 

various growth temperatures investigated produced MWCNTs.  This concurs with the earlier 

report of a similar process which involved the pyrolysis of a mixture containing benzene and 

an organometallic precursor (ferrocene, cobaltocene or nickelocene).16  It had been also 

reported that in the absence of metallocenes or the catalyst, the pyrolysis only gave rise to 

nanospheres.  However, when ferrocene was used, large quantities of MWCNTs were 

obtained.16 

 

In our finding, various structural morphologies of the SCNMs were observed from the TEM 

images.  The TEM images showed that the use of different metallocenes produced different 

SCNMs such as, MWCNTs, carbon nanospheres, carbon nanofibers and amorphous carbon.  

These results are in agreement with the findings of Nxumalo et al.17 who reported formation 

of similar products on pyrolysis of ferrocenylaniline in different proportions by using toluene 

as a carbon source.  The distribution of these materials varied with growth temperature and 

metallocenes used.  Apart from growth temperature and the kind of metallocene used, the 

distribution of SCNMs also depended on the reaction temperature, gas flow rate, reaction time 

and pressure.18  A summary of the results obtained from different metallocenes used as catalysts 

precursors are presented in Table 4.3.   

 

In these results, higher growth temperature favoured the formation of carbon spheres in large 

proportions.  For example, large amount of carbon sphere (90%) were obtained from MWCNTs 

grown from ruthenocene at 1000 °C.  It was observed that lowering the growth temperature to 

800 or 850 °C yielded more amorphous carbon.  It was also noted that a growth temperature of 

850 °C had the largest amounts of MWCNTs when compared to other temperatures used.  

Ferrocene as a catalyst gave highest yield of MWCNTs, in all of the growth temperatures, 

whilst ruthenocene provided the least yield (Table 4.3). 
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Table 4.3: SCNMs distribution 

Temperature/°C Ferrocene Nickelocene Cobaltocene Ruthenocene 

1000 40(Ts), 60(Cs) 30(Ts), 50(Cs), 

10(CNF) 

35(Ts), 65(Cs) 10(Ts), 90(Cs) 

950 60(Ts), 40(Cs) 50(Ts), 50(Cs) 45(Ts), 55(Cs) 30(Ts), 70(Cs) 

900 65(Ts), 35(Cs) 60(Ts), 40(Cs) 65(Ts), 35(Cs) 35(Ts), 65(Cs) 

850 85(Ts), 13(Cs), 

2(Am) 

80(Ts), 15(Cs), 

5(Am) 

70(Ts), 26(Cs), 

4(Am) 

62(Ts), 38(Cs), 

8(Am) 

800 50(Ts), 46(Cs), 

4 (Am) 

55(Ts), 39(Cs), 

6 (Am) 

60(Ts), 32(Cs), 

8(Am) 

40(Ts), 50(Cs), 

10(Am) 

 Ts - tubes, Cs - carbon spheres, CNF – carbon nanofiber, Am – amorphous carbon٭

 

A considerably larger amount of spheres (fused) were produced at 1000 °C compared to 800, 

850 or 900 °C (Table 4.3).  MWCNTs synthesized at all growth temperatures had iron 

nanoparticle encapsulated in them (Figure 4.3 a-e).  This is consistent with earlier reports 

whereby organometallic complexes have been used in the synthesis of MWCNTs.19  It is from 

these iron nanoparticles that MWCNTs grow, therefore it is not surprising to find them 

encapsulated within the tubes.  MWCNTs grown at 800 °C have similar morphology to that 

grown at 850, 900 and 1000 °C while those grown at 950 °C had some bamboo compartments 

(Figure 4.3 d).  The bamboo compartments could have been caused by the nitric acid which 

was used during purification and likely to added nitrogen in the MWCNT walls. 
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Figure 4.3: TEM images of MWCNTs synthesized from ferrocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

The use of nickelocene as a catalyst at higher temperature resulted in the mixture of MWCNT, 

carbon sphere and carbon nanofiber structures.  The MWCNTs grown at 800 °C were also 

found to show rough surface and curved shape as shown in Figure 4.4 a.  Again unexpected 

bamboo compartments were observed at a growth temperature of 900 °C (Figure 4.4 c).  At a 

growth temperature of 950 °C, a large number of sub-bundle structures were observed, in which 

the MWCNTs appeared well oriented and tightly packed (Figure 4.4 d).  Similar sub-bundle 

structures were reported by Wang et al.20  The formation of carbon nanofibers together with 

MWCNTs and nanospheres was observed at a growth temperature of 1000 °C (Figure 4.4 e). 
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Figure 4.4: TEM images of MWCNTs synthesized from nickelocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

Similar to the MWCNTs synthesized from ferrocene, the MWCNTs from cobaltocene also 

contains cobalt nanoparticles (Figure 4.5 a-e).  Onion-like structure with encapsulated cobalt 

particles were obtained at a growth temperature of 800 °C.  Similar onion-like structures were 

reported by Sen et al.16 when metallocene was used as a catalyst and benzene as a carbon 

source.  Helical coil MWCNTs were obtained at a growth temperature of 950 °C (Figure 4.5 

d).  Helicity of the tubes was caused by the distribution of carbon ring defect in the carbon ring 

networks.  However, a majority of the nanotubes had a curly shape.  For all the growth 

temperatures it was observed that these MWCNTs contained less metal content  
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Figure 4.5: TEM images of MWCNTs synthesized from cobaltocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

The SCNMs which were synthesized from ruthenocene had large amounts of carbon spheres 

and small amounts of MWCNTs at all growth temperatures (Table 4.3 and Figure 4.6).  

However, the growth temperature of 1000 °C was found to produced higher amount of carbon 

spheres than tubes.  The large amount of MWCNTs was observed at 900 °C and these CNTs 

had rough surfaces (Figure 4.6 c). 

 

 

Figure 4.6: TEM images of MWCNTs synthesized from ruthenocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 
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4.3.2 Elemental analysis 

In order to determine elemental composition, the MWCNTs were further characterized using 

EDX.  The samples were scanned on different areas for analysis (Figure 4.7).  Different 

percentages of elements are presented in Table 4.4.  MWCNTs were found to contain different 

elements such as carbon, oxygen and the corresponding metal, i.e. iron, nickel, cobalt or 

ruthenium (depending on the catalyst used).  It was observed that the MWCNTs had carbon 

contents greater than 91%.  All the MWCNTs had high amounts of carbon. The MWCNTs 

obtained from ferrocene, nickelocene, cobaltocene and ruthenocene respectively had 

percentage of 95, 92, 94 and 94% (Table 4.4) of carbon content.  The highest carbon content 

was obtained from MWCNTs grown from ferrocene.  MWCNTs had different metal content.  

The metal content in these MWCNTs came from the metallocene catalysts used in the 

synthesis.  The metal content was low which suggest, that they were not incorporated into the 

structures of the MWCNTs, most of the metal nanoparticles were carried away through to the 

exhaust system and also removed during purification. 

 

 

Figure 4.7: SEM images of MWCNTs synthesized at 850 °C from (a) ferrocene, (b) 

nickelocene, (c) cobaltocene and (d) ruthenocene as catalysts 
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Table 4.4: Elemental composition of MWCNTs synthesized at 850 °C 

Element Content/% 

Ferrocene Nickelocene Cobaltocene Ruthenocene 

C 95 92 94 94 

O 4.48 8.02 6.15 5.64 

Metal 0.06 0.02 0.15 0.60 

 

4.3.3 Average inner- and outer-diameters 

It was observed that the inner- and outer-diameters of the MWCNTs increased with growth 

temperatures (Figure 4.8 and 4.9).  The outer-diameters of the tubes ranged from 48 to 80 nm.  

However, other researchers have shown that the diameter of MWCNTs ranges from 15 to 200 

nm.21,22  The smallest average outer-diameter (48 nm) was produced at 800 °C when 

ruthenocene was used as a catalyst for synthesis of MWCNTs.  The maximum average outer-

diameter was obtained at a growth temperature of 1000 °C with nickelocene as catalyst (80 

nm).  Ruthenocene as a catalyst seems to favour the formation of tubes with smaller inner-and 

outer-diameters; the smallest average inner-diameter (8 nm) was observed at 1000 °C (Figure 

4.9). 
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Figure 4.8: Outer-diameters of the MWCNTs synthesized from different metallocenes at 

different growth temperatures 

 

It is believed that at higher temperature there are more frequent collisions of metal 

nanoparticles (NPs) and these results in the NPs getting bigger and bigger.  The MWCNTs 

grown from these now larger iron nanoparticles have relatively larger diameters.23,24  Also, at 

high temperatures catalyst particles on the substrate surface coagulate into larger islands.  At 

lower temperatures the islands are smaller due to lower activation energies and thus their 

surface mobility is hampered.  It can therefore be argued that higher reaction temperature lead 

to the growth of larger catalyst nanoparticles and subsequently produce nanotubes with larger 

outer-diameters.25 
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Figure 4.9: Inner-diameters of the MWCNTs synthesized from different metallocenes at 

different growth temperatures 

 

4.3.4 Crystallinity of MWCNTs 

Raman spectroscopy is an excellent tool for investigating the graphitic nature of carbon 

materials.  Raman spectra of the MWCNTs generally show two characteristic peaks: G-band 

at ~ 1590 cm−1 originating from the Raman active E2g mode and D-band at about 1350 cm−1 

which is normally explained as a disorder-induced feature due to a finite particle size effect.  

This disorder is normally quantified using the ID/IG ratio, which essentially represents the extent 

of disorder in the graphitic carbon.  Thus, as the ratio approaches 0 the MWCNTs will have a 

more ordered structure.  Materials are termed disordered if they have an ID/IG ratio which is 

equal to or above 1, then they are classified as graphitic.  For ease of comparison, the results 

from the Raman experiments are shown in Table 4.5.26 

 

Table 4.5 shows characteristic bands of MWCNTs, the D- and G-bands at approximately 1350 

and 1580 cm-1, respectively.  Literature associates the D band with disorder (sp3 carbons) and 

the G-band is associated with the crystalline graphite structures (sp2 carbons) of carbon 

nanotubes.27  It was observed that the growth temperature has no effect in graphitic nature or 

crystallinity of the MWCNTs.  However, the catalyst used had an effect on the nature of 

MWCNTs.  The MWCNTs synthesized from cobaltocene were found to be more crystalline 

and the less crystalline were obtained from nickelocene and ruthenocene.  The MWCNTs from 
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cobaltocene had ID/IG ratios of 0.59, 0.53, 0.44, 0.37 and 0.68 for 800, 850, 900, 950 and 1000 

°C growth temperatures, respectively.  Comparatively more crystalline MWCNTs were 

obtained from ferrocene and ruthenocene at a growth temperature of 800 °C which had the 

lowest ID/IG ratio of 0.23 and 0.52, respectively, while the MWCNTs grown from nickelocene 

and cobaltocene were more crystalline at a growth temperature of 950 °C (with ID/IG of 0.37 

and 0.52, respectively). 

 

Table 4.5: Raman spectroscopy analysis of MWCNTs 

Catalyst Temperature/°C D-band/cm-1 G-band/cm-1 ID/IG 

Ferrocene 1000 1358 1588 0.35 

 950 1360 1579 0.77 

 900 1368 1593 0.62 

 850 1360 1590 0.99 

 800 1356 1590 0.23 

     

Nickelocene 1000 1376 1618 0.96 

 950 1359 1647 0.40 

 900 1380 1586 0.98 

 850 1372 1591 0.76 

 800 1367 1603 0.65 

     

Cobaltocene 1000 1362 1588 0.68 

 950 1367 1558 0.37 

 900 1350 1576 0.44 

 850 1368 1602 0.53 

 800 1372 1574 0.59 

     

Ruthenocene 1000 1342 1586 0.88 

 950 1354 1563 0.65 

 900 1356 1581 0.63 

 850 1340 1583 0.99 

 800 1345 1560 0.52 
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4.3.5 Thermal stability of MWCNTs 

TGA experiment provided information on the thermal stability and purity of the MWCNTs.  

Thermograms of the weight percentage as a function of decomposition temperature for various 

synthesis temperatures are presented in the Appendix section (Figures A5-A8).  All the results 

were obtained under the same conditions as described in Chapter 3.  For every sample analysis, 

the TGA analysis was done from ambient temperatures to 1000 °C.  The materials were heated 

in air at a rate of 10 °C min-1 and the profiles showed that all the samples were stable up to 500 

°C.  The presence of water was denoted by a loss in weight below 200 °C whereas amorphous 

carbon on the other hand decomposed between 200 and 400 °C.28  Thereafter, the 

decomposition temperatures observed between 450 and 700 °C were characteristic of 

MWCNTs.29,30  The slopes of the decompositions also shed light on the materials formed, a 

steep sharp curve indicated decomposition of a pure material, and a gentle, smooth curve 

showed a mixture.  

 

The thermal stability of the carbon nanostructures grown from ferrocene, nickelocene, 

cobaltocene and ruthenocene (2.5 wt.%) are compared in Table 4.6.  The thermal stability of 

the different metallocenes decreased in the order ferrocene ˃ cobaltocene ˃ nickelocene ˃ 

ruthenocene.  For example, the MWCNTs which were synthesized from a growth temperature 

of 800 °C from ferrocene, cobaltocene, nickelocene and ruthenocene have a decomposition 

temperature of 602, 531, 520 and 377 °C, respectively.  This was also evident in the results of 

other growth temperatures.  The stability of the MWCNTs varies with the growth temperature.  

Most stable MWCNTs (grown from cobaltocene) were obtained at a temperature of 950 °C 

with a decomposition temperature of 649 °C.  This agrees with the lower ID/IG value 

(suggesting more crystalline material) which is observed in the Raman studies (Table 4.5).  The 

SCNMs grown from ruthenocene were found to be less stable (with a decomposition 

temperature of 377 °C) than those of other metallocene and this was attributed to ruthenocene 

being less superaromatic than the other metallocenes.31 
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Table 4.6: Decomposition temperature of MWCNTs 

Metallocene Temperature/°C Decomposition 

temperature/°C 

Residual metal 

content/% 

Ferrocene 1000 520 0 

 950 509 4.1 

 900 518 1.5 

 850 503 0.2 

 800 602 6.0 

    

Nickelocene 1000 525 3.0 

 950 600 6.2 

 900 568 9.4 

 850 580 0 

 800 520 8.5 

    

Cobaltocene 1000 520 1.5 

 950 649 0 

 900 570 0 

 850 569 2.1 

 800 531 0.5 

    

Ruthenocene 1000 448 0 

 950 447 5.3 

 900 547 7.5 

 850 525 10 

 800 377 2.3 

 

An increase in thermal stability was observed with rise in growth temperature for MWCNTs 

synthesized from cobaltocene.  The decomposition temperature of the MWCNTs grown from 

a growth temperature of 800 to 950 °C increased with the increase in growth temperature but 

decreased at higher growth temperature of 1000 °C.  A similar trend was observed for 

MWCNTs grown from ruthenocene.  The MWCNTs grown from cobaltocene at a growth 

temperature of 800, 850, 900, 950 °C had decomposition temperatures of 520, 649, 570, 569 

°C respectively and at higher growth temperature of 1000 °C was 531 °C.  However, this was 
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not observed for MWCNTs synthesized from ferrocene and nickelocene.  MWCNTs grown 

from ferrocene at growth temperatures of 800, 850, 900, 950 and 1000 °C had decomposition 

temperatures of 520, 509, 518, 503 and 602 °C, respectively, while for those from nickelocene 

were 525, 600, 568, 580 and 520 °C.  Hence, their decomposition temperature did not show 

significant dependence on growth temperature.  

 

The gradients of the weight loss profile for decomposition temperatures of the five growth 

temperatures are all similar, which suggests a similar degree of product distribution of the 

MWCNTs synthesized from cobaltocene (Figure 4.10 a).  The sharper thermogram gradients 

combined and the narrower decomposition temperature ranges observed from the thermograms 

of cobaltocene, indicated that these growth temperatures produced a smaller range of SCNMs 

structure types, and hence likely to be purer samples.  Lower decomposition temperatures were 

observed for the MWCNTs synthesized from ruthenocene, at 800, 850, 900, 950 and 1000 °C 

which decomposed at 377, 525, 547, 447 and 448 °C, respectively (Table 4.7).  This was an 

indication of levels of impurities in these products.  The weight loss (Figure 4.10 b) for these 

ruthenocene samples at T < 200 °C is attributed to the loss of moisture from the materials.   

 

 

 

 

 

 

 



94 
 

 

Figure 4.10: Thermogravimetric analysis of MWCNTs synthesized from (A) cobaltocene and 

(B) ruthenocene 

 

The residual weight (5–10%) observed in the TGA profiles is ascribed to metal oxide (e.g. 

FeOx) residues formed in air from the catalysts.  The residual metal content for all of the 

catalysts used showed that at higher growth temperature more residual metal quantity were 

produced compared to the lower growth temperatures.  For example, at a growth temperature 

of 1000 °C, MWCNTs from ferrocene, nickelocene, cobaltocene and ruthenocene had a 

residual metal of 0, 3.0, 1.5 and 0% respectively.  The high residual metal oxide content may 

be caused by the metal nanoparticles encapsulated inside the MWCNTs.  The highest residual 

metal content was obtained at a growth temperature of 800 °C, for ferrocene and nickelocene 

were 6.0 and 8.5% respectively, while for cobaltocene and ruthenocene were 2.1 and 10%, 

respectively, at 850 °C.  Cobaltocene produced MWCNTs with lower residual metal 
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nanoparticle as compared to other metallocenes.  This shows that cobaltocene had a higher 

solubility in toluene.  

 

4.3.6 Textual studies of MWCNTs 

BET method was used to determine surface area of MWCNTs.  Textural properties and specific 

surface area information obtained from nitrogen sorption measurements at 77 K are presented 

in Table 4.7.  External surface of MWCNTs generally ranges from 50 to 1315 m2 g-1.32  

However, the surface areas for as-synthesized MWCNTs range from 10 to 500 m2 g-1.  

Activation or chemical treatments of MWCNTs that are employed during purification and 

processing can result in opening the capped ends of the nanotube ends.33  This allows access 

for nitrogen molecules to be adsorb on the of inside the nanotube and thus the measured surface 

area of a MWCNT is no longer an external surface area issue only but also include the surface 

area inside the nanotubes.  It has been reported that an increase in surface area is experienced 

when MWCNTs are chemical treated.34 

 

In this work, the MWCNTs from ferrocene at a growth temperature of 800 °C had a surface 

area of 7.3456 m2 g-1 before acid treatment, however, after purification the surface was 

280.2447 m2 g-1.  The results showed that the surface area of the MWCNTs increased after acid 

treatment.  This was expected since the impurities such as, amorphous carbon and residual 

metal were eliminated while introducing various functional groups and de-bundling the 

individual MWCNTs.  Increase in surface area shows that the heating and acid treatment was 

capable of enlarging the surface of as-synthesized MWCNTs by creating defects like small 

hole defect on the surface.32  
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Table 4.7: BET surface area and pore volume of MWCNTs 

Metallocene Temperature/°C Surface area/m2 

g-1 

Pore volume/cm3 

g-1 

Pore 

size/nm 

Ferrocene 1000 12.2694 0.145292 36.1661 

 950 17.6146 0.060343 14.5208 

 900 45.0058 0.043892 4.5210 

 850 66.0057 0.307644 22.0801 

 800 280.2447 0.947583 15.5320 

     

Nickelocene 1000 6.9195 0.033906 26.9102 

 950 12.0487 0.046317 23.0897 

 900 26.2148 0.280173 35.7432 

 850 34.6506 0.086762 14.2765 

 800 55.0847 0.118128 11.7647 

     

Cobaltocene 1000 3.7536 0.011735 33.3908 

 950 15.4568 0.019764 7.8601 

 900 19.1734 0.036001 7.0731 

 850 23.3605 0.025594 44.1675 

 800 34.9837 0.094468 14.9717 

     

Ruthenocene 1000 3.8329 0.013124 9.8298 

 950 6.4938 0.020764 11.3235 

 900 13.9445 0.091358 28.8840 

 850 18.6512 0.105162 25.3510 

 800 39.2307 0.035473 4.6817 

 

The BET results showed that the MWCNTs from higher growth temperatures had lower surface 

areas as compared to those from lower growth temperatures.  It had been speculated that rise 

in growth temperature speeds up the pyrolysis and deposition of toluene, thus rapid deposition 

of amorphous carbon heavily blocked the micropores on the surface of MWCNTs at higher 

temperatures.  Additionally, higher temperatures encouraged the formation of carbon spheres 

which have larger surface areas, thus lowering the overall surface area of the sample.  These 

results correlate with the TEM images which showed that at higher growth temperatures, higher 
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amounts of carbon nanospheres were formed (Figure 4.3 b).  As stated before, that MWCNTs 

have larger surface area, their surface area is affected by nanofiber or tube diameter and 

agglomeration.  It was observed that the higher the growth temperature, the more pronounced 

the formation of non-tubular carbon like nanofibers, and correspondingly a decrease in surface 

areas. This was observed from SCNMs synthesized from nickelocene at 1000 °C (Table 4.7) 

 

For all the MWCNTs synthesized, the highest surface area was obtained at 800 °C.  The 

MWCNTs from ferrocene generally had comparatively higher surface areas.  The highest 

surface (280.2447 m2 g-1) was observed at 800°C from ferrocene while, lowest surface area 

(3.7536 m2 g-1) was obtained from MWCNTs which were synthesized from cobaltocene at 

1000 °C.  However, the BET specific surface area of MWCNTs synthesized from ruthenocene 

was much lower than that of ferrocene.  MWCNTs prepared from ferrocene at 800 °C had the 

best adsorption ability (pore volume - 0.947583 cm3 g-1), while the adsorption ability of the 

CNTs synthesized from cobaltocene at 1000 °C (0.011735 cm3 g-1) was the lowest. 

 

The pore volume and size of the MWCNTs are not affected by the growth temperature.  Small 

pores are due to inner channels of MWCNTs while large pores are as a result of entanglement 

of MWCNTs.  The highest pore size was obtained from the MWCNTs prepared from 

cobaltocene at 850 °C.  High contribution of small pores supports the earlier observation from 

TEM analysis because these samples were found to contain high amounts of tubes with open 

ends.  The MWCNTs which were synthesized from ferrocene at 900 °C had a lower pore size 

of 4.5210 nm.  The low pore size distribution may be caused by the higher presence of 

functional groups on the surface of modified MWCNTs. 

 

The amount of adsorbed nitrogen at relative pressure was also investigated using adsorption 

isotherm.  It is known that there are five adsorption isotherms being Type I, Type II Type III 

Type IV and Type V.  Appendix (Figure A9 - 12) shows nitrogen adsorption isotherms of CNTs 

grown from different growth temperatures.  The adsorption isotherms (Figure A10 – 12) 

represent Type IV isotherm along with a define hysteresis loop which is associated with 

capillary condensation that involved in the mesoporous material.35  However, MWCNTs 

synthesized from ferrocene have Type III because they lack a hysteresis loop and this indicates 

that they have weak adsorbate-adsorbent interaction.    
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CHAPTER 5: RESULT AND DISCUSSION OF N-MWCNTs 

This chapter summarizes the results obtained during the synthesis of N-MWCNTs.  The effects 

of varying parameters, such as catalyst and temperature, on the N-MWCNTs and other SCNMs 

are presented.  The measure of these effects was based on N-MWCNTs produced, the size and 

yield, and also the nitrogen content incorporated into the tubes.  

 

5.1 SCNMs, yields and distribution 

N-MWCNTs were synthesized from a solution of ferrocene, nickelocene, cobaltocene or 

ruthenocene, in acetonitrile at different growth temperatures, i.e. 800, 850, 900, 950 or 1000 

°C.  Ferrocene was used as a catalyst in order to provide reference data as it has been widely 

investigated.1-4  In this work, it was observed that at lower growth temperature (800 °C), lower 

effective carbon decomposition rate was achieved compared to higher growth temperature 

(1000 °C).  Thus, a faster carbon decomposition rate provided higher yields of carbonaceous 

materials as compared to the lower growth temperature.  Consequently, the yield of 

carbonaceous material, with all the catalysts used, showed an increase as the growth 

temperatures was increased.  Cobaltocene as a catalyst gave a higher yield in comparison to 

other catalysts used (Table 5.1).  All the growth temperatures tested for ruthenocene produced 

lower yields of carbonaceous materials.  This may be caused by lower solubility of the 

ruthenocene in acetonitrile. 

 

All investigated growth temperatures had different morphological profiles of SCNMs.  The 

three main SCNMs obtained were: N-MWCNTs, carbon spheres and amorphous carbon.  A 

growth temperature of 800 °C gave high amounts of the amorphous carbon.  However, as the 

growth temperature was raised the amount of amorphous carbon decreased.  Also, it was 

observed that as the growth temperatures increased, percentage yield of tubes decreased while 

the percentage of carbon spheres increased.  The higher percentage of carbon spheres at higher 

growth temperature was caused by the agglomeration of catalyst nanoparticles into larger 

particles, thus not suitable for N-MWCNTs formation.5  High amount of well-structured N-

MWCNTs were observed at 850 °C (Table 5.1) and for instance, ferrocene, nickelocene, 

cobaltocene and ruthenocene gave 85, 80, 75 and 65%, respectively.  From these results it was 

concluded that when ferrocene is used as catalyst, high amounts of N-MWCNTs are obtained 

compared to the other three catalysts investigated. 
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Table 5.1: Distribution of SCNMs synthesized from different metallocenes at the varying 

temperatures 

Metallocenes Temperature/ °C Yield /mg Distribution/% 

Ferrocene 1000 533.7 50 (CSs ), 50 (Ts) 

 950 414.9 40 (CSs), 60 (Ts) 

 900 320.9 30 (CSs), 70 (Ts) 

 850 295.4 15 (Am ), 85 (Ts) 

 800 221.3 50 (Am ), 50 (Ts) 

Nickelocene 1000 415.0 60 (CSs), 35 (Ts) 

 950 381.7 55 (CSs), 45 (Ts) 

 900 229.0 50 (CSs), 50 (Ts) 

 850 182.0 20 (Am), 80 (Ts) 

 800 127.1 40 (Am), 60 (Ts) 

Cobaltocene 1000 760.9 70 (CSs), 30 (Ts) 

 950 644.1 60 (CSs), 40 (Ts) 

 900 397.0 45 (CSs), 55 (Ts) 

 850 352.2 25 (Am), 75 (Ts) 

 800 277.8 60 (Am), 40 (Ts) 

Ruthenocene 1000 490.3 65 (CS), 35 (Ts) 

 950 336.7 50 (CS), 50 (Ts) 

 900 263.1 45 (CS), 55 (Ts) 

 850 134.1 35 (Am), 65 (Ts) 

 800 84.1 55 (Am), 45 (Ts) 

 CSs – carbon spheres, Ts – tubes, Am – amorphous carbon٭
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TEM analyses showed different variation of micro-structures of C-N nanotubes which were 

synthesized at different growth temperatures.  In Figures 5.1 to 5.4, the TEM micrographs 

showed that the nitrogen-doping effect where by the tubes structure showed formation of 

bamboo-like compartments.  This was also observed in the N-MWCNTs structures which were 

separated by compartments similar to those reported by Nxumalo et al.6  However, the presence 

of these bamboo compartments in the tubes does not necessary indicate nitrogen incorporation 

since the bamboo compartment structure have been discovered in Y-junction MWCNTs which 

lack nitrogen.1   

 

In Figure 5.1 d and e, the TEM images showed kinked morphology in the N-MWCNTs 

produced at higher growth temperatures (950 and 1000 °C).  Kinked morphology in the N-

MWCNTs was caused by the development of pentagonal and heptagonal structure into the 

graphene layers.7  Pentagonal and heptagonal structures are induced by pyridinic and pyrrolic 

nitrogen-doping. 

 

 

Figure 5.1: TEM images of the N-MWCNTs synthesized from ferrocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

When nickelocene catalyst was used at a temperature of 800 °C, a mixture of nanotubes and 

amorphous carbon were obtained.  The formation of spheres increased with growth temperature 

while the amount of MWCNTs decreased (Ts: CSs, 35:60).  This implied that for nickelocene, 
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a lower growth temperatures are favoured the N-MWCNTs production while relatively higher 

temperature favoured carbon spheres production.  The SEM images (Appendix – Figure B1) 

and TEM image in Figure 5.2 b reveal that at a growth temperature of 850 °C, very aligned N-

MWCNTs were obtained. 

 

 

Figure 5.2: TEM images of the N-MWCNTs synthesized from nickelocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

Spaghetti-like MWCNTs were observed at a growth temperature of 800 to 900 °C when 

cobaltocene was used as the catalyst (Figure 5.3).  Most of N-MWCNTs grown at lower 

temperature (800 and 850 °C) had curled compartment layers with regular and uniform 

separation while the higher temperature of 1000 °C had random and irregular separation.  This 

was also seen in the SEM image (Appendix – Figure B1).  At 1000 °C, small amount of N-

MWCNTs were observed under carbon nanospheres.   
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Figure 5.3: TEM images of the N-MWCNTs synthesized from cobaltocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

When ruthenocene was used as a catalyst, helical N-MWCNTs were obtained at growth 

temperatures of 800 and 900 °C (Figure 5.4 a and c).  All the N-MWCNTs were open at the 

end with hemi-spherical caps as shown in Figure 5.4 b.  At 850 °C, NMWCNTs with open 

ends were observed (Figure 5.4 b).  The open ends are caused by acid treatment.8  The residual 

metal particles were observed within the walls of the N-MWCNTs (Figure 5.4 d).  This 

indicated N-MWCNTs were mostly grown by the tip-growth mechanism.9  Tip-growth 

mechanism occurs when the residual metal nanoparticle resides at the top of the MWCNTs. 
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Figure 5.4: TEM images of the N-MWCNTs synthesized from ruthenocene at different growth 

temperatures (a) 800, (b) 850, (c) 900, (d) 950 and (e) 1000 °C 

 

5.2 Elemental analysis  

EDX analysis was used to investigate the elemental composition of SCNMs grown at 850 °C.  

The growth temperature at 850 °C was chosen for this analysis because of high amount of 

MWCNT obtained in this temperature.  Different amounts of elements are shown in Table 5.2.  

The materials were found to contain carbon, oxygen, nitrogen and different metals, i.e. iron, 

nickel, cobalt or ruthenium (depending on the catalyst used).  The highest metal nanoparticles 

were obtained from SCNMs grown from ferrocene (3.22%). 

 

The presence of nitrogen in the SCNMs serves as indication that nitrogen was incorporated 

into the CNTs walls.  The amount of nitrogen was 3.42, 5.23, 5.00 and 0% in the SCNMs from 

ferrocene, nickelocene, cobaltocene and ruthenocene, respectively (Table 5.2).  The greater 

nitrogen content was in SCNMs obtained from catalyst nickelocene containing 5.23%.  

However, SCNMs that were grown from ruthenocene were found to lack nitrogen content.  

This was not conclusive since the EDX analysis may not have been good enough in picking up 

nitrogen in sample, as it only analysed certain areas on the sample instead of the bulk materials.  

To eliminate this uncertainty, the samples were then further analysed using elemental analysis 

in order to confirm the actual nitrogen content.  This is further discussed in Section 5.3 and 

results are tabulated in Table 5.2  
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Table 5.2: Elemental composition of N-MWCNTs synthesized from different metallocenes at 

850 °C using EDX 

Element Content/% 

Ferrocene Nickelocene Cobaltocene Ruthenocene 

C 91.20 89.37 84.20 88.34 

O 2.13 5.07 9.03 10.40 

N 3.45 5.23 5.00 0 

Metal 3.22 0.34 1.77 1.26 

 

5.3 Effect of growth temperature  

5.3.1 Bamboo compartments distance and nitrogen content of N-MWCNTs 

The size of bamboo compartments (length) were measured from the TEM images of different 

samples and are presented in Table 5.3.  The compartment distance indicates the level of 

nitrogen in the MWCNTs.  An increase in nitrogen percentage caused a decrease in 

compartment distance.6,10  This was observed from N-MWCNTs synthesized from a growth 

temperature of 850 °C for all of the metallocene catalysts used.   

 

N-MWCNTs synthesized from nickelocene were observed to have the shortest distance of 

bamboo compartments (15.6 nm) and therefore, contained highest percentage of nitrogen 

(18.207%).  The bamboo compartment distance of the N-MWCNTs was found to increase with 

the increase in growth temperatures from 850 to 900 °C.  However, from a growth of 950 to 

1000 °C a drop of nitrogen percentage was seen.  An increase in temperature with nitrogen 

content was also reported by Jang et al.10,11  A growth temperature of 1000 °C was found to 

produce MWCNTs with longer bamboo compartment having a length of 36.0, 30.5, 30.3 and 

49.2 nm when synthesized using ferrocene, nickelocene, cobaltocene and ruthenocene 

catalysts, respectively.  However, from a growth temperature of 800 to 850 °C, a decrease in 

bamboo compartment distance was observed.  This trend was observed in all of the metallocene 

catalyst used. 
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Table 5.3: Elemental analysis of the N-MWCNTs synthesized from different metallocenes at 

different growth temperatures 

Metallocenes Temperature/°C Bamboo 

compartment 

distance/nm 

Nitrogen 

content/% 

Ferrocene 1000 36.0 7.665 

 950 38.5 6.566 

 900 35.7 7.530 

 850 30.1 8.619 

 800 49.4 1.590 

    

Nickelocene 1000 30.5 5.122 

 950 25.1 7.394 

 900 20.3 13.630 

 850 15.6 18.207 

 800 18.8 14.411 

    

Cobaltocene 1000 30.3 5.906 

 950 28.6 7.710 

 900 25.9 12.742 

 850 20.8 11.881 

 800 35.2 1.160 

    

Ruthenocene 1000 49.2 5.215 

 950 45.5 5.792 

 900 43.6 5.894 

 850 40.0 6.521 

 800 50.3 3.367 

 

The elemental analysis of carbon, hydrogen and nitrogen (CHN) was performed in order to 

investigate the relationship between nitrogen-doping and growth temperature.  The percentage 

of nitrogen content in the MWCNTs for all samples increased with increase in growth 

temperature from 800 to 850 °C.  However, from growth temperatures of 900 to 1000 °C, the 

percentage content of nitrogen decreased.  Tang et al.12 reported that as the growth temperature 

increase from 800 to 900 °C, the level of nitrogen-doping decreased by half.  The decrease in 
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nitrogen contents maybe caused by escape of some of the high energy elemental nitrogen or 

radicals which were not fully incorporated within the graphene structure through the exhaust 

system.  This was clearly seen from the water trap which demonstrated vigorous bubbling. 

 

Highly doped N-MWCNTs formed had shorter bamboo compartments because more nitrogen 

atoms were incorporated.  The length of the bamboo compartments indicates the extent of 

nitrogen doping.  At 1000 °C, the bamboo compartments were relatively longer in size when 

compared to those of the lower growth temperature of 850 °C.  As the growth temperature 

increased, the N-content decreased, this resulted in the increased compartment separation.13,14  

Comparable observations were made by Keru et al.15 who also reported an increase in nitrogen 

content in MWCNTs with decrease in growth temperature.   

 

MWCNTs grown from ferrocene at 850 °C were much more aligned and contained higher level 

of nitrogen-doping than those from other growth temperatures.  Kooˊs et al.16 reported 

comparable results.  The highest nitrogen content was obtained at a growth temperature of 850 

°C for all metallocenes; 18.20, 11.88, 8.61 and 6.52% for nickelocene, cobaltocene, ferrocene 

and ruthenocene, respectively (Figure 5.5).  Their elemental analyses at 850 °C, correlates with 

the TEM images from Figure 5.1 b, 5.2 b, 5.3 b and 5.4 b as shown by their shorter bamboo 

compartments.  The N-MWCNTs which were synthesized from ruthenocene catalyst contained 

longest bamboo compartment distances at all the growth temperatures used when compared to 

other metallocenes. 

 

 

Figure 5.5: HRTEM images of N-MWCNTs grown at 850 °C from (a) ruthenocene and (b) 

nickelocene which indicate the distances of bamboo compartments 
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5.3.2 Average inner- and outer-diameters of N-MWCNTs 

The outer- and inner-diameters of the N-MWCNTs were investigated using TEM images and 

the results are summarized in Figures 5.6 and 5.7.  From all of the catalysts used it was observed 

that the growth temperature had a huge impact on the outer- and inner-diameters of the N-

MWCNTs formed.  The outer- and inner-diameters of the N-MWCNTs increased with growth 

temperatures.  However, other reports indicated that higher temperature results in thinner and 

longer CNTs while lower temperature yielded thicker and shorter CNTs.17,18  The difference of 

these results with the reported trend could be attributed not only to the different methods used 

during synthesis, but also by the kind of catalyst and carbon source used.  In addition, the use 

of acetonitrile (as carbon source) formed MWCNTs with bigger inner-diameters and smaller 

wall thicknesses.  The increased internal diameter and reduced wall thickness could be due to 

the level of nitrogen doping.  

 

The N-MWCNTs from different metallocenes had different averages of outer- and inner-

diameter, ranging from 40 to 78 nm for outer-diameter and from 30 to 72 nm for inner-diameter.  

This suggests that as the growth temperature increase, more sintering of the metallocene 

catalysts occur, which results to larger-sized N-MWCNTs being formed.  Similar observation 

of lager diameters of N-MWCNTs have been made using other different precursors.19,20  N-

MWCNTs grown from nickelocene exhibited a larger outer-diameter (52 nm) at a growth 

temperature of 800 °C.  However, the OD of N-MWCNTs synthesized from ferrocene 

increased ranging from 63 nm at 850 °C to 79 nm at 1000 °C.  These N-MWCNTs had largest 

ODs.  The smallest ODs were recorded for N-MWCNTs grown from ruthenocene; 51, 53, 56 

and 62 nm at 850, 900, 950 and 1000 °C, respectively. 
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Figure 5.6: Outer-diameter of the N-MWCNTs synthesized from different metallocenes at 

different growth temperatures 

 

A similar trend was observed for inner-diameters (IDs) of N-MWCNTs.  The IDs increased 

with the increase in growth temperatures of N-MWCNTs.  The N incorporated in the MWCNTs 

caused larger IDs compared to undoped MWCNTs reported in Chapter 4 (Figure 4.8).  Similar 

observations were noted when aniline/ferrocene was used in the synthesis of N-CNTs.21  It had 

been reported that N-MWCNTs with high nitrogen content have smaller IDs.22  This was 

observed in the N-MWCNTs grown from nickelocene and cobaltocene.  However, N-

MWCNTs from ferrocene had larger inner-diameter as compared to other catalysts.  This also 

correlates with the nitrogen content of these N-MWCNTs because they had lower nitrogen 

doping level.  For example, N-MWCNTs grown from 850 °C had 8.619% of nitrogen content 

and an inner-diameter of 58 nm. 

 

For all of the N-MWCNTs grown from different catalysts, it was observed that the N-

MWCNTs grown at growth temperature of 850 °C had the smallest inner wall thickness.  These 

findings were similar with those of Ionescu et al.23 who reported that there was an increase in 

inner-diameter of N-MWCNTs and decrease in wall thickness with increased nitrogen doping. 
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Figure 5.7: Inner-diameter of N-MWCNTs synthesized from different metallocenes at 

different growth temperatures 

 

5.3.3 Crystallinity of N-MWCNTs 

The quality of N-MWCNTs was investigated by using Raman spectroscopy based on ID/IG 

ratio.  A higher ID/IG ratio implied that there is higher degree of disorder, while a low ID/IG ratio 

implied that the materials are more graphitic and correspondingly higher crystallinity of N-

MWCNTs.21  The intensity ratio (ID/IG) also plays an important role in estimating the defect 

concentration of nitrogen content in the MWCNTs.24,25  The intensity ratio of D- to G-band is 

affected by the number of defects which arise from incorporation of nitrogen.  Therefore, as 

the concentration of nitrogen atoms increase, the D-bands becomes more intense and broader 

peaks are observed.26  

 

In the research done by Nxumalo et al.21, which involved the synthesis of CNTs and N-CNTs 

using ferrocene/toluene and ferrocenylaniline/toluene, it was observed that N-CNTs were more 

disordered than the CNTs grown from ferrocene/toluene.  Therefore, similar results were 

obtained in this work, even though Nxumalo et al. had made use of organometallic catalysts as 

the nitrogen source, while in this study, acetonitrile27was used as both carbon and nitrogen 

source. 
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It was observed that as the growth temperature increased from 800 to 850 °C, the level of 

nitrogen-doping increased which implies a higher level of disorder in N-MWCNTs.  This was 

observed in all N-MWCNTs synthesized from different metallocenes (Table 5.4).  For instance, 

N-MWCNTs from ferrocene, grown at 800 and 850 °C had an ID/IG ratio of 1.20 and 1.32, 

respectively.  The higher level of disorder from Raman spectroscopy, also agrees with the 

results obtained from TEM images (Figure 5.1 – 5.4) and elemental analysis (Table 5.3).  This 

similar substantial increase of ID/IG ratio was also observed by Droppa et al.28 in his findings 

on the incorporation of nitrogen in carbon nanotubes.  

 

As the growth temperatures increase from 900 to 1000 °C, lower the level of disorder was 

observed.  For example, N-MWCNTs from ferrocene had an ID/IG ratio of 1.17, 1.09 and 1.07 

at a growth temperature of 900, 950 and 1000 °C, respectively.  This could be caused by 

reduction of amorphous products as well as, drop in level of nitrogen-doping (Table 5.3).  This 

shows that N-MWCNTs become more crystalline as the growth temperatures increases.  This 

was observed for all metallocenes investigated.  Table 5.4 shows a shift in the D-band and G-

band from 1389 to 1340 cm-1 and 1611 to 1550 cm-1, when the growth temperature increase 

from 800 to 1000 °C, respectively.  Similar shifting trend was also observed by Yadav et al.10 

when growth temperature was increased from 850 to 950 °C. 
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Table 5.4: Raman analysis of N-MWCNTs 

Metallocenes Temperature/°C D-band/cm-1 G-band/cm-1 ID/IG 

Ferrocene 1000 1365 1561 1.07 

 950 1377 1564 1.09 

 900 1379 1565 1.17 

 850 1383 1579 1.32 

 800 1379 1573 1.20 

     

Nickelocene 1000 1349 1565 0.99 

 950 1359 1580 1.04 

 900 1373 1611 1.28 

 850 1379 1609 1.65 

 800 1373 1605 1.40 

     

Cobaltocene 1000 1363 1569 1.02 

 950 1378 1570 1.06 

 900 1381 1574 1.08 

 850 1389 1595 1.24 

 800 1389 1587 1.11 

     

Ruthenocene 1000 1336 1550 1.12 

 950 1340 1550 1.21 

 900 1368 1553 1.43 

 850 1372 1553 1.51 

 800 1350 1552 1.37 

 

The Raman analysis of N-MWCNTs, revealed that the ID/IG ratio was high at a growth 

temperature of 850 °C for ferrocene, nickelocene, cobaltocene and ruthenocene: i.e. 1.32, 1.65, 

1.24 and 1.51, respectively.  These results are consistent with elemental analysis, where N-

MWCNTs from nickelocene displayed significantly higher amounts of structural defect as 

compared to the other N-MWCNTs.  However, the N-MWCNTs synthesized from ruthenocene 

were found to be more disordered (ID/IG ratio - 1.51), even with low level of nitrogen-doping.  

This may be caused by the poor solubility of ruthenocene in acetonitrile before their synthesis 

and also it may be caused by the high amounts of amorphous products present in these N-
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MWCNTs products.  N-MWCNTs grown from ferrocene and cobaltocene had lower ID/IG ratio 

as compared to those of nickelocene and ruthenocene.  It can be speculated that the 

metallocenes which contains larger metal sizes produces higher disorders.  The lowest ID/IG 

ratio was obtained from N-MWCNTs synthesized from ferrocene, nickelocene, cobaltocene 

and ruthenocene at 1000 °C, i.e. 1.07, 0.99, 1.02 and 1.12, respectively. 

 

5.3.4 Thermal stability of N-MWCNTs 

The thermal stabilities of SCNMs were evaluated by thermogravimetric analysis under an air 

flow rate of 30 mL min-1 and constant heating of 10 °C min-1.  Appendix (Figure B26-29) 

shows TGA thermograms and their corresponding derivative curves for the N-MWCNTs 

synthesized from 800 to 1000 °C.  The presence of nitrogen in the MWCNTs was indicated by 

the change in their decomposition temperatures21 from the TGA analysis.  N-MWCNTs were 

found to be less stable than their undoped counterparts and this was attributed to the structural 

disorder introduced by the presence of nitrogen into the carbon lattices.29,30  These results are 

in accordance with those reported by Nxumalo et al.21  The decomposition of N-MWCNTs 

corresponds with the lattice defects.  Higher decomposition temperatures have lower defects 

due to lower nitrogen incorporation in the MWCNTs.  The increase in thermal stability as the 

growth temperatures increased was thus observed.  The TGA decomposition temperatures of 

the synthesized materials are listed in Table 5.5. 

 

From Table 5.5 it can be concluded that the N-MWCNTs with more nitrogen incorporated and 

grown at lower growth temperatures are less thermally stable.  For instance, N-MWCNTs 

synthesized from a growth temperature of 850 °C, using ferrocene, nickelocene, cobaltocene 

and ruthenocene had lower decomposition temperatures of 416, 400, 514 and 380 °C, 

respectively.  The possible reason for this could be due to high content of impure materials 

besides high nitrogen content, compared to those that were synthesized from higher growth 

temperatures.  The nitrogen doping in this work produced less thermally stable, less graphitic 

and more disordered MWCNTs.  The elemental analysis in Table 5.3 showed that N-MWCNTs 

synthesized from ruthenocene had lowest nitrogen-doping level, however, their Raman 

analysis indicated higher degree of disorder giving reason why they showed lower thermal 

stabilities in the TGA analysis.  This indicate that not only nitrogen content in MWCNTs 

contribute to thermal stabilities but also presence of other forms of carbon in the sample. 
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Generally, for all metallocenes investigated, it was observed that N-MWCNTs synthesized at 

a temperature of 850 °C showed lowest thermal stabilities and were found to have the highest 

levels of nitrogen-doped.  This inverse relationship between the thermal stability and N 

concentrations in N-MWCNTs found in this work is in agreement with what is reported in 

literature.31,32   
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Table 5.5: Decomposition temperatures of N-MWCNTs 

Metallocene Temperature/°C Decomposition 

temperature/°C 

Residual metal 

content/% 

Ferrocene 1000 598 2 

 950 561 5 

 900 522 5.5 

 850 416 2 

 800 446 10 

    

Nickelocene 1000 609 3 

 950 535 1 

 900 501 2 

 850 400 4 

 800 484 10 

    

Cobaltocene 1000 602 6 

 950 569 3 

 900 563 4.5 

 850 514 2 

 800 523 2.5 

    

Ruthenocene 1000 534 1 

 950 449 3 

 900 440 3 

 850 380 1 

 800 400 4 

 

The N-MWCNTs grown from cobaltocene and ferrocene were found to be more thermally 

stable indicated by their higher decomposition temperatures which ranged from 500 to 620 °C.  

However, they contain lower nitrogen content as compared to N-MWCNTs grown from 

nickelocene.  The N-MWCNTs which were synthesized from a growth temperature of 1000 °C 

from ferrocene, cobaltocene, nickelocene and ruthenocene have a decomposition temperature 

of 598, 609, 602 and 534 °C, respectively.  The stability of the N-MWCNTs therefore, 

depended on the growth temperature.  Most stable N-MWCNTs (grown from nickelocene) 
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were obtained at a temperature of 1000 °C with a decomposition temperature of 609 °C whereas 

those from ruthenocene were found to be least stable with a decomposition temperature of 380 

°C.   

 

The residual weights of the investigated samples ranged from 1 to 10 wt.%.  There was no clear 

trend in the residual metal contents of N-MWCNTs and thus independent of the growth 

temperatures for most metallocenes.  However, for N-MWCNTs grown from ruthenocene, the 

residual metal contents decreased with increase in growth temperatures.  The mean residual 

weights between 5 to 10 wt.%, is normally ascribed to the metal oxide residues formed during 

the oxidation of the residual catalysts.  The highest residual metal content in this work was 

obtained for N-MWCNTs synthesized from ferrocene and nickelocene (10 wt.%) at a growth 

temperature of 800 °C.  Ruthenocene as a catalyst, in this work produced lowest residual metal 

contents at growth temperatures; 800, 850, 900, 950 and 1000 °C which were 4, 1, 3, 3 and 1 

wt.%, respectively. 

 

The highest residual metal content was obtained at a growth temperature of 800 °C, for 

ferrocene, nickelocene and ruthenocene being 10, 10 and 4 wt.%, respectively.  Cobaltocene 

on the other hand, the highest metal content of 6 wt.% was obtained at 1000 °C.  The lowest 

residual metal content was obtained from ferrocene and ruthenocene at 1000 and 850 °C were 

2 and 1 wt.%, respectively.  Also, for cobaltocene (2 wt.%), was observed at a growth 

temperature of 850 °C and nickelocene (1 wt.%) at 950 °C. 

 

5.3.5 Textual morphology of N-MWCNTs 

The surface area, pore volume and pore size of the N-MWCNTs are shown in Table 5.6.  As 

the growth temperature increased the surface area and the pore volume decreased.  However, 

the pore size of the N-MWCNTs showed that they are independent of the growth temperature 

because their size varied non-linearly.  Higher temperature gave low surface areas because of 

significantly larger percentage of spheres which lowered the overall surface areas of these 

materials.  These results correlate with the TEM image and Table 5.1 which showed that at 

higher growth temperature there were high amounts of carbon nanospheres. 
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All metallocenes investigated gave products with higher surface areas at a temperature of 800 

°C.  The N-MWCNTs from ferrocene were found to have highest surface area at all growth 

temperatures.  The highest (79.34 m2 g-1) surface area was observed at 850 °C from ferrocene 

and the lowest surface area was obtained for N-MWCNTs which were synthesized by use of 

cobaltocene at a temperature of 1000 °C (1.79 m2 g-1).  N-MWCNTs prepared from ferrocene 

at 850 °C had the best adsorptive ability (pore volume – 0.403552 cm3 g-1), while the adsorption 

ability of the N-MWCNTs synthesized using cobaltocene at 1000 °C (0.008940 cm3 g-1) was 

the least.  There was no clear correlation between the surface area and the level of nitrogen in 

these MWCNTs.21  
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Table 5.6: BET analysis of N-MWCNTs 

Metallocene Temperature/°C Surface area/m2 

g-1 

Pore 

Volume/cm3 g-1 

Pore size/nm 

Ferrocene 1000 13.5623 0.082034 29.8355 

 950 19.9382 0.105751 23.1771 

 900 39.6166 0.210284 22.8971 

 850 79.3403 0.403552 24.1556 

 800 46.8805 0.271490 23.6588 

     

Nickelocene 1000 3.8447 0.016453 20.1153 

 950 18.6512 0.105162 25.3510 

 900 19.2347 0.069782 17.0795 

 850 24.4370 0.52668 11.8216 

 800 46.0432 0.245566 22.6914 

     

Cobaltocene 1000 1.7927 0.008940 45.5730 

 950 3.3263 0.012015 33.2794 

 900 21.1077 0.116755 23.3178 

 850 55.8089 0.234028 19.4269 

 800 34.6506 0.086762 14.2765 

     

Ruthenocene 1000 3.8329 0.013124 9.8298 

 950 6.4939 0.020764 11.3235 

 900 14.7967 0.035254 10.8439 

 850 21.1077 0.116755 23.3178 

 800 32.4737 0.088358 12.1531 

 

The BET results showed that the N-MWCNTs obtained from higher growth temperatures had 

lower surface area as compared to those from lower growth temperatures.  It was speculated 

that raising the growth temperature speeds up the pyrolysis and deposition of acetonitrile.  This 

rapid deposition of carbon heavily blocked the micropores on the surface of N-MWCNTs at 

higher temperature, thereby dramatically decreasing the adsorptive surface.  Additionally, 

higher temperatures gave low surface areas because of higher percentages of carbon spheres 

which lowered the overall surface area of materials.  
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The highest surface areas were obtained at a growth temperature of 800 °C for N-MWCNTs 

grown from nickelocene and ruthenocene while for ferrocene and cobaltocene was obtained at 

850 °C.  The N-MWCNTs from ferrocene were found to show higher surface area at all the 

growth temperatures.  The highest surface area (79.3403 m2 g-1) was observed at 850 °C from 

ferrocene and the lowest surface area was obtained from N-MWCNTs which were synthesized 

from cobaltocene at a temperature of 1000 °C.  However, the BET specific surface areas of N-

MWCNTs synthesized from ruthenocene was much lower than that of ferrocene.  N-MWCNTs 

prepared from nickelocene at 850 °C had the best adsorption ability (pore volume; 0.52668 cm3 

g-1), while the adsorption ability of the N-MWCNTs synthesized from cobaltocene at 1000 °C 

(0.008940 cm3 g-1) was the lowest. 

 

The pore volume and size of the N-MWCNTs were affected by the growth temperatures.  

Normally, small pores are due to inner channels of N-MWCNTs while large pores are as a 

result of entanglement of N-MWCNTs.  The highest pore size was obtained from the N-

MWCNTs prepared from cobaltocene at 850 °C.  The observed high surface area for these N-

MWCNTs could be largely contributed by the small pores because the TEM images showed 

these samples to contain majorly open ended tubes (Figure 5.4 b).  The synthesized N-

MWCNTs had varied lowest pore sizes at different growth temperatures.  For instance, 

cobaltocene, nickelocene, ferrocene and ruthenocene at 800, 850, 900 and 1000 °C had 14.28, 

11.82, 22.89, and 9.83 nm pore size, respectively.  However, at the same synthesis temperature 

there was no observable trend.  The low pore size distribution of the metallocenes based 

MWCNTs may be caused by the higher presence of functional groups onto the surface of 

modified MWCNTs. 

 

Nitrogen adsorption isotherms of N-MWCNTs grown from different growth temperatures are 

shown in the Appendix (Figures B30-33).  The adsorption isotherms in Figures B30, B31 and 

B33 represent the result of N-MWCNTs grown from ferrocene, nickelocene and ruthenocene, 

respectively.  They are Type IV isotherms with small and almost ill-defined hysteresis loops 

while Figure B31 consist of a defined hysteresis loop.  The isotherms show high adsorption at 

relative pressures (P/P0) up to 1.0, which indicate the formation of large mesopores and 

micropores.  It is interesting to note that the N-MWCNTs grown from nickelocene, cobaltocene 

and ruthenocene at 800 °C had larger relative pressure ranges (0.5-1.0 nm).  However, for 
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NMWCNTs synthesized from ferrocene, a larger relative pressure was obtained at a growth 

temperature of 850 °C. 
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CHAPTER 6: CONCLUSION AND FUTURE STUDIES  

The purpose of this study was to investigate the effect of metallocene catalysts and carbon 

sources on the synthesis of MWCNTs and determine suitable conditions (temperature) for the 

growth of MWCNTs.  This chapter therefore provides overall conclusions of and it highlights 

future studies on the synthesis of MWCNTs and their applications. 

 

6.1 Conclusion 

The discovery of SCNMs especially, MWCNTs has attracted a lot of interest in 

nanotechnology because of their unique physical, chemical, mechanical and electrical 

properties.  Due to the aforementioned properties, SCNMs have been investigated and found 

to be potentially applicable in a wide range of fields.  The challenge is to synthesize MWCNTs 

economically in large quantities.  Modern methods like arc discharge, laser ablation have 

disadvantages of producing low yield and short MWCNTs.  Laser ablation technique is 

expensive due to use of lasers and high power consumptions.  However, CVD is capable of 

producing pure MWCNTs in high yields and it is easy to scale up the production.  MWCNTs 

from CVD technique are known to poses high surface areas and low density, which enhance 

their adsorption properties. 

 

MWCNTs and other SCNMs were successfully synthesized by the CVD method.  They were 

further successfully functionalized by refluxing with concentrated nitric acid.  The acid 

treatment process was found to reduce agglomeration, remove amorphous carbon and residual 

metal content in MWCNTs.  Treatment with nitric acid was also observed to open tube ends.  

The best method for the purification of the MWCNTs was Method 2 which involved refluxing 

for 24 hours.  This method produced purer MWCNTs as compared to other methods which 

caused damage to the MWCNTs. 

 

The SCNMs produced were successfully characterized using various standard instrumental 

techniques, viz: transmission electron microscopy, high resolution transmission electron 

microscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, Raman 

spectroscopy, thermogravimetric analysis, Brunauer-Emmet-Teller surface area and porosity 

analysis and elemental analysis.   
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The SCNMs were produced in highest yield in the temperature range, 800 to 1000°C.  

Increasing growth temperature was shown to have a positive increase in inner- and outer-

diameters of MWCNTs with a high quality at a growth temperature of 850 °C.  The inner-

diameter of MWCNTs increased from 8 to 26 nm while the outer-diameter, from 48 to 80 nm.  

This was in agreement with TEM, TGA and BET analyses that showed that the samples at a 

growth temperature ranging from 800 to 900 °C were purer in terms of 

structural/morphological distribution, especially in the middle of this temperature range; 850 

°C.  The thermal stabilities of these MWCNTs were also observed to vary pseudo-linearly with 

the growth temperatures.  The best growth temperature for synthesis of MWCNTs chosen was 

850 °C.  At this temperature, higher yields of MWCNTs were recovered, the MWCNTs were 

longer, had larger surface areas, better thermal stability and high crystallinity.  In this study 

cobaltocene was more effective than the metallocene catalysts in the synthesis of MWCNTs 

with respect to the crystallinity of the MWCNTs and low content of residual metal catalysts.   

 

The N-MWCNTs were synthesized by ‘‘in situ’’-doping method using acetonitrile as a carbon 

source and growth temperature ranging from 800 to 1000 °C.  Various morphological profiles 

of the N-MWCNTs, amorphous carbon and carbon spheres were obtained at different growth 

temperatures.  The formation of carbon spheres and amorphous carbon depended on the growth 

temperature.  The highest growth temperature (1000 °C) formed more carbon spheres while 

the lowest growth temperature (800 °C) favoured the formation of amorphous carbon.  In this 

study, high quality and aligned N-MWCNTs were obtained in good yields at a growth 

temperature of 850 °C. 

 

All the N-MWCNTs that were synthesized are bamboo-shaped.  The size of the bamboo 

compartments decreased with increase in growth temperature because of the nitrogen content 

in the N-MWCNTs.  Small bamboo compartments indicate that more nitrogen was 

incorporated into the MWCNTs framework.  The highest nitrogen-doping level was obtained 

at a growth temperature of 850 °C for all metallocene catalysts used.  Different metallocenes 

produced different percentages of nitrogen-doping content.  In this regard, nickelocene gave 

the highest nitrogen–doping (18.21%).  The inner- and outer-diameters of N-MWCNTs were 

similarly observed to increase with increase in growth temperatures.   
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The thermal stability and crystallinity of the N-MWCNTs are independent of the growth 

temperature, but varied inversely with the percentage of nitrogen content in the N-MWCNTs.  

N-MWCNTs with high percentages of nitrogen content are less thermally stable and more 

disordered.  Thus, those that had lower nitrogen content were more thermally stable and more 

crystalline.  It was also observed that N-MWCNTs synthesised at a lower growth temperature 

had higher surface area as compared to those that were synthesized at higher growth 

temperatures.  The lower surface area was attributed to the large amount of carbon spheres 

formed at higher growth temperatures in addition to their low nitrogen content.  In general, the 

growth temperatures were found to affect the yield, type of SCNMs formed, and level of 

nitrogen doping. 

 

The carbon sources (toluene and acetonitrile) studied had fundamental effect on the 

morphology of MWCNTs.  Toluene provided more pristine MWCNTs with fewer defects, 

hence, more structured while acetonitrile mainly formed N-MWCNTs.  These N-MWCTs 

showed higher defect levels and less crystallinity.  MWCNTs grown from toluene had smaller 

inner-diameter while those that are grown from acetonitrile had larger inner-diameters.  

MWCNTs had inner-diameters ranging from 8 to 26 nm whereas that for N-MWCNTs ranged 

from 30 to 65 nm.  MWCNTs formed from a solution of toluene were more thermally stable 

(high decomposition temperature) as compared with those which were synthesized from 

acetonitrile (low decomposition temperature) 

 

6.2 Future studies 

There are many investigations that can be further carried out based on findings from this 

research, of particular interest are: 

 Investigating the effect of using metallocenes (especially nickelocene, cobaltocene and 

ruthenocene) and 4-nitroaniline or 4-methylaniline in the synthesis of aryl derivatives 

of metallocenes. 

 Application of aryl derivatives (synthesized above) in the synthesis of MWCNTs and 

also investigate the effect of the heteroatoms (N and O) from the aryl derivatives on 

MWCNTs. 

 From literature, it has been demonstrated that growth temperature is not the only factor 

that affects crystallinity but also the type of catalyst and its concentration are also 
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capable of determining the crystallinity of the MWCNTs, therefore since a catalyst 

concentration of 2.5 wt.% has been investigated in this work, a higher catalyst 

concentration (5, 10 or 15 wt.%) can be further investigated.   

 Investigate the effect of variation of the reaction conditions such as gas flow rate on the 

types and yields of the N-MWCNTs. 

 Determine the effect of varying the carbon and nitrogen source concentration (toluene 

or acetonitrile) and also investigate the mechanism of formation and shape of the 

compartment of the N-MWCNTs. 

 Investigate the effect of using pyridine as a carbon and nitrogen source for the synthesis 

of N-MWCNTs. 

 Investigate the effect of doping MWCNTs with boron (triphenylborane) or sulphur 

(thiophene) using similar metallocenes and varying the dopant concentration (1.0, 2.5 

and 5.0 wt.%). 

 Synthesis N-MWCNTs or B-MWCNTs/polymer composites using direct solution 

mixing and oxidative in situ polymerization. 

 Application of N-MWCNTs or B-MWCNTs/polymer composites in organic solar cells 

as excitation dissociation sites and transfer of charge carriers (investigate the 

effectiveness of the polymer wrapped on the walls of the CNTs and the results on the 

use of nanocomposite in the active layer of organic solar cells). 

 Investigate the effect of using bimetallic catalysts (e.g. ferrocene-nickelocene, 

ferrocene-cobaltocene or ferrocene-ruthenocene) in the synthesis of MWCNTs. 

 

In general, discounting the mentioned possibilities that could be investigated, there are lot of 

other investigation that would be interesting to explore in the future. 
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APPENDICES 

Appendix A (MWCNTs) 

EDX 

 

Figure A1: Elemental composition present in MWCNTs synthesized from ferrocene at a 

growth temperature of 850 °C 

 

 

Figure A2: Elemental composition present in MWCNTs synthesized from nickelocene at a 

growth temperature 850 °C 
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Figure A3: Elemental composition present in MWCNTs synthesized from cobaltocene at a 

growth temperature of 850 °C 

 

 

Figure A4: Elemental composition present in MWCNTs synthesized from ruthenocene at a 

growth temperature of 850 °C 
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TGA 

 

Figure A5: Thermogravimetric analysis of MWCNTs synthesized from ferrocene (A) showing 

amount of residue on the purified samples and (B) their derivatives % weight loss 
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Figure A6: Thermogravimetric analysis of MWCNTs synthesized from nickelocene (A) 

showing amount of residue remaining on the purified samples and (B) their 

derivatives % weight loss 
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Figure A7: Thermogravimetric analysis of MWCNTs synthesized from cobaltocene (A) 

showing amount of residue remaining on the purified samples and (B) their 

derivatives % weight loss 
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Figure A8: Thermogravimetric analysis of MWCNTs synthesized from ruthenocene (A) 

showing amount of residue remaining on the purified samples and (B) their 

derivatives % weight loss 
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BET analysis 

 

Figure A9: Representative N2 adsorption isotherms of MWCNTs synthesized from ferrocene 

at different growth temperatures 

 

 

Figure A10: Representative N2 adsorption isotherms of MWCNTs synthesized from 

nickelocene at different growth temperatures 
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Figure A11: Representative N2 adsorption isotherms of MWCNTs synthesized from 

cobaltocene at different growth temperatures 

 

 

Figure A12: Representative N2 adsorption isotherms of MWCNTs synthesized from 

ruthenocene at different growth temperatures 
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Appendix B (N-MWCNTs) 

SEM images 

 

Figure B1: SEM images of N-MWCNTs synthesized at a growth temperature of 850 C from 

different metallocenes (a) ferrocene, (b) nickelocene, (c) cobaltocene and (d) 

ruthenocene 
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Figure B2: Elemental composition present in N-MWCNTs synthesized from ferrocene at a 

growth temperature of 850 °C 

 

 

Figure B3: Elemental composition present in N-MWCNTs synthesized from nickelocene at a 

growth temperature of 850 °C 
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Figure B4: Elemental composition present in N-MWCNTs synthesized from cobaltocene at a 

growth temperature of 850 °C 

 

 

Figure B5: Elemental composition present in N-MWCNTs synthesized from ruthenocene at a 

growth temperature of 850 °C 
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Elemental analysis 

                

Figure B6: CHNS spectrum of N-MWCNTs synthesized from ferrocene at a growth 

temperature of 1000 °C 

 

Figure B7: CHNS spectrum of N-MWCNTs synthesized from ferrocene at a growth 

temperature of 950 °C 
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Figure B8: CHNS spectrum of N-MWCNTs synthesized from ferrocene at a growth 

temperature of 900 °C 

 

 

Figure B9: CHNS spectrum of N-MWCNTs synthesized from ferrocene at a growth 

temperature of 850 °C 
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Figure B10: CHNS spectrum of N-MWCNTs synthesized from ferrocene at a growth 

temperature of 800 °C 

 

 

Figure B11: CHNS spectrum of N-MWCNTs synthesized from nickelocene at a growth 

temperature of 1000 °C 
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Figure B12: CHNS spectrum of N-MWCNTs synthesized from nickelocene at a growth 

temperature of 950 °C 

 

 

Figure B13: CHNS spectrum of N-MWCNTs synthesized from nickelocene at a growth 

temperature of 900 °C 
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Figure B14: CHNS spectrum of N-MWCNTs synthesized from nickelocene at a growth 

temperature of 850 °C 

 

 

Figure B15: CHNS spectrum of N-MWCNTs synthesized from nickelocene at a growth 

temperature of 800 °C 
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Figure B16: CHNS spectrum of N-MWCNTs synthesized from cobaltocene at a growth 

temperature of 1000 °C 

 

 

Figure B17: CHNS spectrum of N-MWCNTs synthesized from cobaltocene at a growth 

temperature of 950 °C 
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Figure B18: CHNS spectrum of N-MWCNTs synthesized from cobaltocene at a growth 

temperature of 900 °C 

 

 

Figure B19: CHNS spectrum of N-MWCNTs synthesized from cobaltocene at a growth 

temperature of 850 °C 
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Figure B20: CHNS spectrum of N-MWCNTs synthesized from cobaltocene at a growth 

temperature of 800 °C 

 

 

Figure B21: CHNS spectrum of N-MWCNTs synthesized from ruthenocene at a growth 

temperature of 1000 °C 
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Figure B22: CHNS spectrum of N-MWCNTs synthesized from ruthenocene at a growth 

temperature of 950 °C 

 

 

Figure B23: CHNS spectrum of N-MWCNTs synthesized from ruthenocene at a growth 

temperature of 900 °C 
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Figure B24: CHNS spectrum of N-MWCNTs synthesized from ruthenocene at a growth 

temperature of 850 °C 

 

 

Figure B25: CHNS spectrum of N-MWCNTs synthesized from ruthenocene at a growth 

temperature of 800 °C 

TGA Analysis 
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Figure B26: Thermogravimetric analysis of N-MWCNTs synthesized from ferrocene (a) 

showing amount of residue remaining on the purified samples and (b) their 

derivatives % weight loss 
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Figure B27: Thermogravimetric analysis of N-MWCNTs synthesized from nickelocene (a) 

showing amount of residue remaining on the purified samples and (b) their 

derivatives % weight loss 
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Figure B 28: Thermogravimetric analysis of N-CNTs synthesized from nickelocene (a) 

showing amount of residue remaining on the purified samples and (b) their 

derivatives % weight loss 
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Figure B29: Thermogravimetric analysis of N-MWCNTs synthesized from ruthenocene (a) 

showing amount of residue remaining on the purified samples and (b) their 

derivatives % weight loss 
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Figure B30: Representative N2 adsorption isotherms of N-MWCNTs synthesized from 

ferrocene at different growth temperatures 

 

 

Figure B31: Representative N2 adsorption isotherms of N-MWCNTs synthesized from 

nickelocene at different growth temperatures 
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Figure B32: Representative N2 adsorption isotherms of N-MWCNTs synthesized from 

cobaltocene at different growth temperatures 

 

 

Figure B33: Representative N2 adsorption isotherms of N-MWCNTs synthesized from 

ruthenocene at different growth temperatures 


