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ABSTRACT

To produce high quality paper, lignin should be removed from the pulp.

Quantification of lignin concentrations using standard wet chemistry is

accurate but time consuming and costly, thus not appropriate for a large

number of samples. The ability of hyperspectral remote sensing to predict

foliar lignin concentrations could be utilized to estimate wood lignin

concentrations if meaningful relationships between wood and foliar chemistry

are established. LAI (leaf area index) is a useful parameter that is

incorporated into physiological models in forest assessment. Measuring LAI

over vast areas is labour intensive and expensive; therefore, LAI has been

correlated to vegetation indices using remote sensing. Broadband indices use

average spectral information over broad bandwidths; therefore details on the

characteristics of the forest canopy are compromised and averaged.

Moreover, the broadband indices are known to be highly affected by soil

background at low vegetation cover. The aim of this study is to determine

foliar and wood lignin concentrations of Eucalyptus clones using hyperspectral

lignin indices, and to estimate LAI of Eucalyptus clones from narrowband

vegetation indices in Zululand, South Africa

Twelve Eucalyptus compartments of ages between 6 and 9 years were

selected and 5 trees were randomly sampled from each compartment. A

Hyperion image was acquired within ten days of field sampling, SI and LAI

measurements. Leaf samples were analyzed in the laboratory using the

Klason method as per Tappi standards (Tappi, 1996-1997). Wood samples

were analyzed for lignin concentrations using a NIRS (Near Infrared

Spectroscopy) instrument. The results showed that there is no general model

for predicting wood lignin concentrations from foliar lignin concentrations in

Eucalyptus clones of ages between 6 and 9 years. Regression analysis

performed for individual compartments and on compartments grouped

according to age and SI showed that the relationship between wood and foliar

lignin concentration is site and age specific. A Hyperion image was geo­

referenced and atmospherically corrected using ENVI FLAASH 4.2.
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The equation to calculate lignin indices for this study was: L1 R= ~n5il: A'''''y .
1750 AI680

The relationship between the lignin index and laboratory-measured foliar lignin

was significant with R2 = 0.79. This relationship was used to calculate image­

predicted foliar lignin concentrations. Firstly, the compartment specific

equations were used to calculate predicted wood lignin concentrations from

predicted foliar lignin concentrations. The relationship between the laboratory­

measured wood lignin concentrations and predicted wood lignin concentrations

was significant with R2 = 0.91. Secondly, the age and site-specific equations

were used to convert foliar lignin concentration to wood lignin concentrations.

The wood lignin concentrations predicted from these equations were then

compared to the laboratory-measured wood lignin concentrations using linear

regression and the R2 was 0.79 with a p-value lower than 0.001.

Two bands were used to calculate nine vegetation indices; one band from the

near infrared (NIR) region and the other from the short wave infrared (SWIR).

Correlations between the Vis and the LAI measurements were generated and

. then evaluated to determine the most effective VI for estimating LAI of

Eucalyptus plantations. All the results obtained were significant but the NU

and MNU showed possible problems of saturation. The MNDVI*SR and

SAVI*SR produced the most significant relationships with LAI with R2 values

of 0.899 and 0.897 respectively. The standard error for both correlations was

very low, at 0.080, and the p-value of 0.001.

It was concluded that the Eucalyptus wood lignin concentrations can be

predicted using hyperspectral remote sensing, hence wood and foliar lignin

concentrations can be fairly accurately mapped across compartments. LAI

significantly correlated to eight of the nine selected vegetation indices. Seven

Vis are more suitable for LAI estimations in the Eucalyptus plantations in

Zululand. The NU and MNU can only be used for LAI estimations in arid or

semi-arid areas.
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CHAPTER 1: General Introduction

1.1 INTRODUCTION

Foliage plays an important role when monitoring the forest ecosystem. Because of

the role played by the leaves in intercepting and absorbing the radiant energy, and

transforming it to energy of organic substances through the complex process of

photosynthesis, leaves are the most important organs for plant production in

agriculture and in forestry (Wulder, 1998). Foliar chemical composition is one of the

most important forest characteristics because it provides information about the

ecosystem's processes and productivity (Curran, 1989). Foliar chemical composition

can be observed by the use of chemical analysis in the laboratory, the use of

spectroscopy that is well calibrated by laboratory data and the recent new technique

of hyperspectral remote sensing (Smith and Curran, 1995). The pulp and paper

industry has been exploiting the laboratory spectroscopy technique to quantify

biochemicals such as cellulose, lignin and extractives. Quantifications of these

biochemicals is very important in the pulp and paper industry due to the fact that

paper is made of cellulose and for the production of white paper, lignin should be

totally removed (Roberts, 1996). Remote sensing is providing highly rapid results for

the quantification of biochemicals compared to the laboratory spectroscopy. This

technique, however, still currently being researched and tested to validate its

success in producing results comparable to those produced in the laboratory using

the wet chemistry (Ramsey, 2005).

Canopy physical and biochemical characteristics control forests' net primary

productivity (NPP) in many ways (Peterson et al., 1988). Information on the

biochemical content of vegetation canopies for large areas of terrain is of importance

for the study of productivity, vegetation stress, nutrient cycling ~md for input to
I

ecosystem simulation models. The forest canopy is the major locus for energy

capture and water exchange in forest ecosystem. Large amounts of the nutrients,

which play roles in plant structure and productiVity including energy transduction, are

allocated in the canopy (Coops et al., 2001). Leaf area index is associated with

variations in primary net yield and evapo-transpiration for a given area, as well as

with global climatic changes.
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1.2 LIGNIN

Lignin, an aromatic polymer with an extremely complex structure, comprises about

17 to 33% of the dry weight of wood (Baptista et al., 2006). Lignin also acts as a

component that assists in the resistance of the wood towards attack by micro­

organisms and decay (Ting, 1982). Lignin's complexity is increased by its large

molecular weight. Lignin and carbohydrates exist in close association in the wood

structure. There is strong evidence suggesting that formal covalent links exist

between the lignin macromolecule and carbohydrate components of the wood

structure (Roberts, 1996).

There are several processes to remove lignin. The most widely used commercial

methods of more extensive lignin removal are based on aqueous, high temperature

extraction procedures at acidic, neutral or alkaline pH levels (Roberts, 1996). The

use of chemical analysis in determining the amount of lignin is costly and time­

consuming, therefore, alternative methods, such as spectrometric measurements,

are pursued. The region within the range of 400nm to 2500nm is compatible with

optical remote sensing measures that are currently being studied using hyperspectral

remote Sensing (Gastellu-Etchegorry et al., 1995).

Lignin determination is useful for various applications. For this project the focus is on

lignin because it is not desirable in the paper industry. In order to produce high

quality paper with good strength properties it is necessary to remove the lignin from

the wood or fibre matrix (Roberts, 1996). Lignin discolours with age and causes the

sheets to become brittle. The ideal pulping process would therefore completely

dissolve lignin without causing any loss or degradation to the carbohydrate

component, however, the ideal process doesn't exist, the pulping process, therefore,

is a compromise (Roberts, 1996). Because of the cost involved in lignin

determination in a given area, remote sensing could be used as an important

element in producing large-scale, spatially explicit estimates of foliar lignin (Jia et al.,

2006). If a significant relationship exists between foliar and wood lignin

concentrations, then there is a high potential of estimating wood lignin from foliar

lignin concentrations using hyperspectral Remote Sensing.
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Lignin is a polymer of phenylpropanoid and the absorptions appear at 1120, 1200,

1420, 1450, 1690 and 1940. Takahashi et al., (undated) estimated foliar chemical

content by performing stepwise multiple linear with log (1/R), the first derivative of log

(1/R) and the second derivative of log (1/R). The best estimation for lignin of non­

destructive cumulated leaves and dry leaf powder resulted with the first derivative of

log (1/R). Stepwise multiple linear-regression show an R2 value of 0.89 for lignin for

both leaf forms (Takahashi et al., undated).

Measuring of biochemicals using hyperspectral sensors has its origins in the

laboratory where spectrophotometers have successfully been used for decades to

qualify and quantify chemical compositions of substances (Richardson and Reeves,

2005). Extensive work has been done by numerous researches where hyperspectral

sensor reflectances were correlated to wet chemistry results. The correlations that

resulted were significantly higher than those obtained from broadband sensors and

therefore leading to conclusions that hyperspectral remote sensing could be

effectively used to estimate the canopy biochemicals, including lignin (Huang, 2004).

There are a number of precursor biochemicals to wood lignin biosynthesis that can

be effectively quantified using wet chemistry. This study will focus on investigating if

foliar lignin concentrations can be used as a biochemical that can be linked to wood

lignin concentrations because both wet chemistry and hyperspectral remote sensing

can effectively quantify it. Work has not yet been done on correlating the

concentrations of lignin in the canopy with the concentrations of lignin in wood. This

study will attempt to establish that relationship with the use of statistical regression

so as to correlate the spectral reflectances with the lignin concentrations in wood of

Eucalyptus clones.

1.3 LEAF AREA INDEX (LAI)

Leaf area Index (LAI) is an important structural parameter used to quantify energy

and mass exchange characteristics of terrestrial ecosystems such as

photosynthesis, respiration, transpiration, carbon and nutrient cycle, and rainfall

interception. LAI is used as an input parameter in models, such as the 3PG-S model,

that are in place to predict growth and yield. Leaf Area Index is thus defined as the

3



total one-sided area of all leaves in the canopy within a defined region (m2/m2
). A

direct measure of LAI is relatively accurate but extremely labour intensive. Measuring

and estimating LAI over large areas has proved to be problematic, thus, it is more

practical to measure LAI only on limited experimental plots (Lee et al., 2004).

Remote Sensing techniques have improved such that there are methods currently

operational that correlate remotely sensed data with regional estimates of LAI and

absorbed fraction of photosynthetically active radiation (AfPAR) (Schlerf and

Atzberger, 2006). In the past three decades the traditional broadband vegetation

indices (VI) and normalized difference vegetation indices (NDVls) were widely used

to estimate the canopy LAI (Gong et al., 2003).

LAI is a crucial vegetation canopy property that is fundamental in describing

biosphere processes and modelling carbon and vapour f1uxes between atmosphere

and land surfaces. Linear and non-linear relationships between optical satellite­

derived spectral vegetation indices and LAI have been found for different vegetation

types and climatic conditions. These empirical relationships are site and sampling

condition dependent, sensor-specific, change in space and time and generally are

unsuitable for application to large areas or in different phenological seasons (Pu et

al., 2005).

The most commonly used vegetation indices when studying the forest ecosystems

using remote sensing are computed from simple functions based on the R band and

NIR band. These wavebands are used to formulate various vegetation indices to

acquire more precise indications of surface vegetation conditions. The simple ratio

(NIRlR) and the NDVI are most frequently used to correlate with LAI and other

canopy structure parameters from airborne and spaceborne remote sensing data.

With increase in LAI, red reflectance decreases as light is absorbed by leaf pigments

while the NIR signal increases due to the fact that more leaf layers are present to

scatter the radiation upwards because plant cell walls, notably the lignin component,

cause scattering of NIR energy, resulting in relatively high NIR transmittance and

reflectance. The simple ratio VI has proved to be sensitive to optical properties of the

soil background and therefore, its application is limited (Zhao et al., 2005).
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The broadband indices constructed with near infrared (NIR) and red (R) bands result

in loss of information due to the fact that they use average spectral information.

Moreover, the broadband indices are known to be highly affected by soil background

at low vegetation cover (Haboudane, 2004). Narrow bands are crucial for providing

additional information in quantifying biophysical characteristics of vegetation and

more refined vegetation indices. TM band 3 (630 - 690nm) which is a red band and

TM band 4 (760 - 900nm) can further be separated into 6 and 14 Airborne Visible!

Infrared Imaging Spectrometer (AVIRIS) narrow bands respectively. The advantage

of narrow bands is that by using some of them it is possible to correct the effects of

the soil background (Fuentes et al., 2006).

Perpendicular Vegetation Index (PVI) was once proposed in an attempt to reduce the

effect of the soil background on VI. However, experimental and theoretical

investigations indicated that soil background still has an effect. Brighter soils have

resulted in higher index values for a given quantity of incomplete vegetation cover

(Gong et al., 2003). A number of other vegetation indices were developed to

address the influence of the soil brightness. These vegetation indices are still being

successfully used but the utilization of some vegetation indices can be highly specific

to the nature of the site. Hyperspectral data have been researched for its suitability

to estimate and model LAI predictions (Arsenault and Bonn, 2005).

Most of the research has focused on the airborne hyperspectral remote sensing and

this research proved that hyperspectral remote sensing can address the soil

background problem. The indices generated form hyperspectral data are thus

proving to be superior to that of the broadband indices. These indices correlate

better with the field measured LAI, and therefore robust models for growth and yield

result since the estimates of LAI are more accurate (Cheng et al., 2006). Airborne

hyperspectral sensor data is widely used compared to the only spaceborne

hyperspectral sensor: Hyperion. In a South Africa context, Hyperion is the most

practical hyperspectral sensor to use in research because of its easy accessibility

and cost effectiveness compared to the airborne sensors currently available in the

market. It will, thus, be useful to research the utility of this sensor for the South

African forest industry for future exploitations.
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A lot of research on hyperspectral sensors has been conducted internationally but

locally hyperspectral data has only been explored by the mining and geological

sectors. This study will aim to demonstrate that narrow bands can be successfully

used to predict LAI in forest plantations. Gong et al. (2003) investigated twelve

vegetation indices using the traditional bands (NIR and R) and the optimal indices

using bands in the NIR and SWIR. It was found, from this study that the optimal

indices correlated better and significantly with measured LAI. The narrow band

vegetation indices owe their accuracy to the fact that the soil background least

affects them because the specific information on each pixel is packaged in many

narrow bands. Only suitable bands that contain information about vegetation cover

are chosen for vegetation indices (Muira et al., 2006).

1.4 AIMS AND OBJECTIVES

There are two aims to this project:

1. The determination of wood lignin concentrations of Eucalyptus clones

grown in Zululand using hyperspectral remote sensing.

Lignin determination is useful for various applications. For this project the focus is on

lignin because it is not desirable in the paper industry. In order to produce high

quality paper with good strength properties it is necessary to remove the lignin from

the wood or fibre matrix (Roberts, 1996). Due to the cost involved in lignin

determination for a single compartment, it is anticipated that remote sensing could be

used to estimate wood lignin concentrations by using its ability to predict foliar lignin

concentrations. Wood lignin concentrations could be estimated using meaningful

relationships between wood lignin concentrations and foliar lignin concentrations

derived in the laboratory. This project aims at demonstrating that lignin in wood can

be determined through the use of narrow band indices constructed from a band

corresponding to lignin concentrations and a respective lignin reference band.

2. The determination of leaf area index (LAI) of Eucalyptus clones using a

combination of narrow bands of space-borne hyperspectral remote sensing

The popularity of the unitless parameter, LAI, stems from its use in numerous

applications, such as modelling atmospheric carbon assimilation, evapo­

transpiration, fire fuel potential, habitat characteristics, herbivore grazing potential
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and the forest ecosystem (Privette et al., 2002). Direct measure of LAI is relatively

accurate but extremely labour intensive and costly. Measuring and estimating LAI

over large areas has proved to be problematic, thus, it is more practical to measure

LAI only on limited experimental plots (Gong et al., 2003). The broadband indices

result in loss of information due to the fact that they use average spectral information

over a broad bandwidth and are known to be highly affected by soil background at

low vegetation cover (Haboudane, 2004). Narrow bands are crucial for providing

additional information in quantifying biophysical characteristics of vegetation and

more refined vegetation indices.

The following are the specific objectives of the study:

1. To establish a relationship between wood and foliar lignin concentrations of

Eucalyptus clones

2. To establish a relationship between foliar lignin concentrations and canopy

lignin indices from hyperspectral data

3. To predict foliar and wood lignin concentrations from the canopy lignin indices

4. To determine the relationship between ground measured LAI values and the

nine narrow band vegetation indices

5. To map out foliar lignin concentrations, wood lignin concentrations and LAI

values across the study compartments.

1.5 STRUCTURE OF THE THESIS

The first chapter has introduced a rationale for undertaking this study by looking at

how biochemical contents in the forest canopy are quantified using known

hyperspectral narrow bands corresponding to those specific biochemicals, and the

advantages of hyperspectral vegetation indices constructed using narrow bands

over broadband vegetation indices. This chapter firstly formed a theoretical

framework of why it is necessary to quantify wood lignin concentrations using

remotely sensed data. Secondly, the chapter explained why it is advantageous to

construct indices from narrow bands that correlate more accurately to field measured

LA!.
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Chapter two reviews the literature covering aspects of wood lignin in the pulp and

paper industry, lignin extraction methods in the laboratory, NIR technology and an

example of cases of hyperspectral use in the determination of foliar chemistry. This

chapter also introduces remote sensing in forestry, hyperspectral remote sensing,

vegetation indices and Leaf Area Index. Furthermore, the chapter provides an insight

into the work that has already been done in the determination of narrow band

vegetation indices using hyperspectral remote sensing.

Chapter three describes the study areas in terms of climate, topography, soils and

hydrology.

Chapter four discusses the sampling methods and methodology used in this study to

quantify wood and foliar lignin concentrations in the laboratory. This chapter also

describes the indirect method used to measure LAI in the field. Furthermore, this

chapter describes the methods used to extract meaningful data from the Hyperion

image.

Chapter five discusses the results obtained when establishing a model to predict

wood lignin using data acquired in the laboratory and Hyperion data. Chapter six

concludes the findings of the project and presents recommendations summed from

this.
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CHAPTER 2

Literature Review

2.1 INTRDUCTION

This chapter provides an understanding of the importance of foliar chemical analysis

with the emphasis on the lignin and its significance in the pulp and paper industry.

Current quantification methods of both wood and foliar lignin concentrations and

current remote sensing techniques used to quantify foliar biochemicals are reviewed.

Literature on leaf area index (LAI) is presented with emphasis on the benefits of LAI

estimations from vegetation indices (VI) constructed from the hyperspectral narrow

bands. This chapter also presents an introduction to vegetation indices and

hyperspectral remote sensing.

2.2 INTRODUCTION TO FOLlAR CHEMISTRY

Photosynthetic studies have been used as a tool to probe the physiological basis of

plant growth (Gindaba et al., 2005). Leaves play a major role in the prediction of

stand growth (Coops, 1999). Because of the role played by the leaves in

intercepting and absorbing the radiant energy, and transforming it to energy of

organic substances through the complex process of photosynthesis, leaves are the

most important organs for the plant production in agriculture and in forestry (Curran

et al., 2001).

Photosynthesis is the primary metabolic process in nature such that without

photosynthesis life on the planet would cease. Rates of photosynthesis are

commonly expressed as carbon dioxide uptake per unit time per unit leaf area. The

total leaf area of a plant is usually called the photosynthetic potential of a plant.

Photosynthesis in higher plants' leaves takes place in organelles called chloroplasts

(Dale and Milthorpe, 1983).

Foliar chemical composition is an important characteristic because it provides certain

information about the ecosystem's processes and productivity (Curran, 1989). Plant

productivity can be described by the amounts of chlorophyll and nitrogen, the rate of
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litter decomposition, using litter lignin to nitrogen ratio and the cycling and availability

of nutrients such as nitrogen. Biochemical content of vegetation canopies can also

provide information about nutrient cycling; vegetation stress and can provide input to

ecosystem simulation models. Foliar chemical composition can be observed by the

use of chemical analysis in the laboratory, the use of spectroscopy which is well­

calibrated by laboratory data and recently the new technique of remote sensing

(Smith and Curran, 1995). The pulp and paper industry has been using both the

traditional wet chemistry but has also moved towards using laboratory spectroscopy

in quantifying constituents of interest to assess the state of each compartment.

Lignin is one of the most researched biochemical in the pulp and paper industry due

its properties.

2.3 LIGNIN

2.3.1 Description of lignin

Lignin is the second most important organic substance after cellulose. It is the most

important structural substance of plants and thus is universally distributed in the plant

kingdom from mosses upwards. Originally it was lignin that made possible that the

plant life transfer from water to land. In tubular plants it is usually found in the xylem,

the individual elements of which show cell walls incrustated with lignin (Christiernin et

al., 2005).

Lignin is defined as an aromatic polymer, the structure of which is extremely complex

and it comprises about 17 to 33% of the dry weight of wood (Bernhard and Schwartz,

1997). It also acts as a component that assists in the resistance of the wood towards

attack by micro organisms and decay (Ting, 1982). All lignins appear to be polymers

of 4- hydroxycinnamyl alcohol (p-coumaryl alcohol) or its 3- and for 3.5­

methoxylated derivatives, respectively, coniferyl and sinapyl alcohol. The contribution

of each of these three monomers to the lignin macromolecule differs, depending on

the source of the lignin (Christiernin et al., 2005). The generalized structure of lignin

is shown in the following diagram Figure 2.1.
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Figure 2.1 A generalized structure of lignin according to Lindberg et al., 1989

In wood lignin is located in the middle lamella, from which it penetrates in gradually

diminishing amounts, in to the primary and secondary layers of the cell wall (Brauns,

1952). In the true lamella of wood, lignin is the three- dimensional network polymer

comprised of phenylpropane monomers linked together in different ways. In the

secondary wall, lignin is a non-random two-dimensional network polymer. The

chemical structure of the monomers and linkages which constitute the networks differ

in different regions (i.e. the lamella vs. secondary wall), different types cell (vessels

vs. fibres), and different types of wood (softwood vs. hardwood). When lignin is

extracted from wood, the properties of the macromolecules made soluble will reflect

the properties of the network from which they are derived (Glasser and Sarkanen,

1989).

The composition of lignin can vary, not only between plant groups but also between

tissues of the same plant and even between cells of the same tissue. There is

histochemical and chemical evidence that the lignin of the primary xylem in
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angiosperms resembles that of gymnosperms, while lignin of the secondary xylem

generally resembles that of lignin present in angiosperm (Christiernin et al., 2005).

Lignin is formed from cinnamyl that are; coniferyl, sinapyl and 4-coumaryl alcohols.

Various attempts were made to classify lignins according to their origin and

composition, and two main classes were recognized. These classes are guaicyl

lignins and guaicyl-syringyl lignins (del Rio et al., 2005). In general guaicyl type of

Iignins is present in the Gymnospermae, Pteridophyta, Cycadales; and the guiacyl­

syringyl type is present in the Angiospermae and Gnetales (Christiernin et al., 2005).

The relative amounts of these monolignols found in lignin show plant specificity.

Gymnosperm Iignins contain mainly coniferyl alcohol; angiosperm lignins contain

both coniferyl alcohol and sinapyl alcohol, whereas all three types of monolignols are

found within Iignins of grasses (Wardrop, 1981). Figure 2.2 shows a generalized

pathway of the biosynthesis of lignin.

2.3.2 Lignin in the paper industry

The chemical composition of eucalypt wood varies within and between species and

between sites. Wood chemical composition seems to be of particular importance in

paper manufacture (Sandercock et al., 1995). The main components of wood are

cellulose, hemicellulose, extractives and trace materials, and lignin. The distribution

of these in hardwood and softwood is presented in Figure 2.3.

Cellulose is the primary structural component of cell wall and of paper.

Hemicelluloses are not precursors of cellulose and their function is poorly

understood. Their molecular weight is too low for them to be of structural importance,

however, it is widely recognized that they are beneficial to pulp and paper properties

such that the tensile strength of paper generally correlates positively with the

hemicellulose's content (Roberts, 1996). Resins and extractives are a small

proportion of wood and they are extractable by organic solvents such as ethanol.

Many of these substances are removed during the chemical pulping process but

some may still be retained in the final sheet of paper (Alves et al., 2006).
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Figure 2.2 Generalized lignin biosynthesis pathway (Humphreys and Hemm, 1999)
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Figure 2.3 Chemical components of wood (Smook, 1992)

Lignin was initially researched in the beginning of the 19th century. From analyzing

wood of various species Schulze (1865) calculated the elementary composition of

lignin to be 55.6% carbon, 5.8% hydrogen and 38.6% oxygen. From this he arrived

at a formula of C19 H24 0 10 (Wise and Jahn, 1952). This is not far from what was

obtained in the 21 st century as stated in Table 2.1.

Table 2.1: Approximate lignin content from softwood and hardwood (Christiernin et al., 2005)

Source Carbon (%) Hydrogen (%) Oxygen (%)

Spruce lignin (softwood) 65.1 5.8 29.1

Beech lignin (hardwood) 62.6 5.9 31.5

Paper can be made from fibre cells in their unmodified form by mechanical pulping.

Mechanical pulping is suitable only for products with a short life span because lignin

is not removed. Lignin, the third component of wood, discolours in sunlight through

the process of photochemical oxidation. This makes the paper to become yellow and

brittle (Roberts, 1996). The use of lignin-containing fibres is only used for disposable

products such as newsprint and disposable lightweight coated paper. Lignin is

removed by chemical pulping for higher-quality papers that are for long-term or
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lifetime use. The chemical process of delignification produces a brown pulp from

residual lignin; therefore, this process is usually followed by the bleaching process

(Ibarra et al., 2005).

Almost all properties of lignin are undesirable for papermaking applications, hence

the highest-quality paper is usually made from pulps from which most of its lignin has

almost been totally removed. The ideal pulping process would completely dissolve

lignin without causing any loss of the carbohydrate material. Lignin and

carbohydrates exist in close association in the wood structure. There is strong

evidence suggesting that formal covalent links exist between the lignin

macromolecule and carbohydrate components of the wood structure (Ibarra et al.,

2004).

In order to make pulp for the production of paper, lignin in the wood is separated

from cellulose. The chemical processes of wood at elevated pressures and

temperatures can achieve this. Kraft and sulphite pulping processes are the two

most widely used chemical treatments. During pulping, lignin in wood is chemically

split into fragments by the cooking liquor. Unfortunately, the chemical reactions

involved in the removal of lignin seem not to be selective. Substantial amounts of

carbohydrates, primarily hemicelluloses and some cellulose are also chemically

attached and dissolved to some extent. The hemicelluloses and some cellulose are

vulnerable to acid hydrolysis, and are easily lost during acid pulping processes. The

removal of either cellulose or hemicelloses reduces the strength of the pulp and also

contributes to pulp yield loss (Baptista et al., 2006).

There is still some lack of knowledge of chemistry of the widely planted Eucalyptus

species used for pulp and paper. The composition and structure determines the

behaviour of wood and wood fibres during pulping, bleaching and papermaking

processes. The information on chemistry of wood is crucial for the optimization of

these processes and quality of pulp and paper. The chemistry of plantation eucalypt

wood and the behaviour of its components during Kraft pulping and bleaching has

been investigated over the past ten years by Neto et al. (2005) and made significant

advances on the knowledge of the composition and structure of polysaccharides,

lignin and extractives (Neto et al., 2005).
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From the study it was observed that although the relative content of lignin in wood

may contribute to the different pulping performance of Eucalyptus species, the

differences observed between three species that showed similar lignin content are

clearly related to other factors. Extractives may contribute to the different pulping

abilities negatively since they contribute to the consumption of alkali. When S:G ratio

of wood and Kraft pulp lignins was plotted against the chemical charges used in the

pulping and bleaching, respectively, an interesting correlation was observed

confirming the effect of syringyl units in the pulping and bleaching ability (Neto et al.,

2005).

Constituent such as lignin require complicated laboratory procedures and are

consequently costly to measure. Important lag times may occur between collections

of samples and acquisition of laboratory results (Wessman, 1987). There is an

amount of lignin present in leaves and this study will attempt correlate the amount of

lignin present in leaves and the amount of lignin present in wood. Estimation of plant

biochemical composition through high spectral resolution has its foundation in the

laboratory near infrared spectroscopy (NIRS). NIRS has been used successfully to

predict lignin concentrations on dried and ground foliage (Serrano et al., 2002).

Foliar chemical composition and chemical analysis of plant tissue is standardised,

however, the expense in time and money can severely restrict sample size

(Wessman, 1987). Airborne hyperspectral remote sensing has been widely used to

quantify foliar biochemical compositions since the 1980s and extensive research is

still being undertaken (Curran, 1989). Measuring of biochemicals using hyperspectral

sensors has its origins in the laboratory where spectrophotometers have successfully

been used for decades to qualify and quantify chemical compositions of substances

(Richardson and Reeves, 2005).
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2.4 LABORATORY SPECTROSCOPY AND HYPERSPECTRAL REMOTE

SENSING

Hyperspectral sensors or imaging spectrometers are instruments that can acquire

data in many narrow contiguous spectral bands throughout the visible, near-IR, mid­

IR, and thermallR portions of the spectrum. The currently used unit for hyperspectral

bands is the nanometer (nm). The use of hyperspectral remote sensing has its

origins in the laboratory where chemical composition is quantified using calibrated

spectrophotometers. This technology is widely known as spectroscopy, Near Infrared

(NIR) technology or Near Infrared Spectroscopy (NIRS). Spectroradiometers that

are used in the field also evolved from this technology (Curran, 1989).

2.4.1 Near Infrared (NIR) Technology

NIR (Near Infrared) and refers to the region of light immediately adjacent to the

visible range, found between 750 and 2500nm. Near Infrared spectroscopy (NIRS)

utilises the diffuse reflectance of dried, ground samples. Each constituent of a

complex organic has unique absorption properties in the near-infrared (NIR) region.

The absorption of NIR radiation by organic molecules is due to overtone and

combination bands primarily of O-H, C-H, N-H and C=O groups whose fundamental

molecular stretching and bending absorb in the mid-IR region. These overtones do

not behave in a simple fashion, which makes mid-IR and NIR spectra complex and

not directly interpretable as in other spectral region (Richardson and Reeves, 2005).

A measurement of a sample's diffuse reflectance, which is the sum of NIR absorption

and the scattering characteristics of the sample is rapid and requires little sample

preparation. The weight of the sample is not required and no chemical reagents are

necessary and, moreover, the analytical time is short (Wessman, 1987). Standard

wet chemistry of lignin content analyses is both time-consuming and expensive. Near

infrared spectroscopy offers rapid, repeatable and accurate measurements of

biochemicals or constituents (McLellan et al., 1991). The NIRS standard errors of

prediction are comparable to wet chemistry (Peterson et al., 1988).
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Four criteria have to be met for meaningful prediction when using the NIR:

1. selection of calibration samples representative of the population to be

predicted,

2. accurate laboratory analysis of the calibration samples,

3. choice of the correct mathematical treatment of the NIR data for optimum

information extraction and

4. choice of wavelength relevant to the total population of samples (Analytical

Spectral devices, undated).

Prediction of canopy chemical compounds including lignin based on reflectance in

the near- infrared has been demonstrated using hyperspectral information. The fact

that many types of plant phenolics have chemical structures that are similar to lignin

has been overlooked. These phenolics may have similar spectral responses to

lignin's spectral responses in the near infrared. The predictive ability to determine

biochemical composition of vegetation is due to the reflectance of organic

compounds at different wavelengths (Foley et al., 1998).

The statistical processes used in quantitative spectral analysis include multiple linear

regression, classical least squares, inverse least squares and principal component

regression. If the instrument is calibrated properly, it will then predict the correct

amount of parameter in a sample. Validation process then follows where an

instrument is set to predict scanned samples whose parameter had been measured

in the lab. Correlation coefficient derived from regression between the predicted and

measured values gives an indication on how well the instrument will predict the

parameter of interest (Schimleck, 2003).

Spectroscopy or NIR Technology has a number of advantages that makes it a

valuable tool for acquiring biochemical and chemical information. NIR technology is

rapid, non-destructive, does not use chemical, or generate chemical wastes requiring

disposal, simultaneously determines numerous constituents or parameters, and can

be transported to nearly any environment or true portable for field work. NIR

instrumentation is simple to be operated by non-chemists, and operates without fume

hoods, drains, or other installations. Its accuracy is dependent on the accuracy of the

reference method used for training; however the data from NIR method has better
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reproducibility than the conventional method (Shenk, 1981). NIR analysis is the

practical choice over mid-IR and far-IR analysis for most applications because the

absorbencies! reflectances in the NIR region are lower than in neighbouring regions

and generally obey the Beer! Lambert law, i.e., that absorbance increases linearly

with concentration. This is because the NIR absorptions are generally 10-100 times

weaker in intensity than the fundamental mid-IR absorption bands (Richardson and

Reeves, 2005).

This technology also has a number of disadvantages associated with its use.

Separate calibrations are required for each constituent and a portion of unknown

samples must periodically be analyzed by the reference method to ensure that

calibrations remain reliable. It may be necessary to update calibrations during the

initial phases of use to incorporate outliers, until the calibration is acceptable. The

information about samples in the NIR spectra can only be accessed through a

sufficiently powerful computer that allowed the development of complex statistical

relationship between the spectral data and the constituents determined by the

conventional method. It is important to check for and remove outliers in both the

training set and the validation set (Analytical Spectral devices, undated).

Similarities of lignin and cellulose features have been noted and these two

compounds are often quantified together as the total amount of both lignin-cellulose.

The similarity of spectral features of lignin and other phenolics in the near infrared

has not yet been fully studied. If a similarity of spectral signatures of lignin and these

other phenolics does exist, estimation of lignin can be affected, together with

modelling the ecosystem with regards to nutrient cycling because while lignin

decomposes slowly, soluble phenolics are readily leached out of the ecosystem. The

experiments were conducted by Soukupova et al. (2000) to observe the spectral

features of lignin and soluble phenolics using GER spectrophotometer and NIRS.

APPENDIX 1 demonstrates characteristics of lignin when using different instruments.

What was observed is that a distinctive difference between tannin and lignin was

observed at shorter near infrared wavelengths between 800nm and 1300nm. In this

spectral range the reflectance of lignin was observed to increase with increasing

wavelength, but the reflectance of tannin over this part of the spectrum decreased

with increasing wavelength. Both spectrometers recorded a significant drop in
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reflectance beyond 1400nm for tannins while both instruments recorded a strong

absorption feature at approximately 2140nm for tannin. The two instruments

recorded a minor absorption for lignin at the same wavelength (Soukupova et al.,

2000).

The spectral reflectance similarity of lignin and tannin may be due to the fact that

they both contain aromatic rings as well as hydroxyl groups, which have distinctive

spectral characteristics in the near infrared spectral region. The use of different

wavelengths for the prediction of lignin concentrations has been explained by the

heterogeneity and diversity of lignin known not only within the plant kingdom but also

within different tissues and developmental stages of a particular plant species.

Another explanation is based on the fact that most studies use a stepwise multiple

linear regression method from derivative reflectance spectra to predict leaf

chemistry. This method is used to identify the best wavelengths correlated with a

biochemically determined concentrations of lignin and is based on a statistical

operation rather that on the understanding of biochemical composition of compounds

and physical processes that govern spectral responses (Soukupova et al., 2000).

The table showing different wavelengths used to quantify lignin using different

instruments and technologies are in APPENDIX 1.

The extracted lignin is not intact since the extraction process includes cleaving the

parts of long and branched lignin molecules in order to remove them from cell walls.

This study explored the spectral responses of both intact and extracted lignin

molecules from wood. It was found that spectral properties of all wooden blocks

showed great similarity with the extracted lignin and lignin and tannin samples,

therefore the primary structure of lignin controls its spectral signature. The only

exception was that the wood spectral signatures were lacking the absorption feature

at 2143nm that occurred in scans of lignin and tannin powder standards (Soukupova

et al., 2000).

Simultaneous estimation of two or more constituents requires multiple linear

regression equations. When Winch and Major in 1981 applied NIRS to predict

Kjedahl nitrogen in legumes and grasses, with standard errors of the NIRS

calibration (SEC) only slightly higher than those of the laboratory (0.08 - 0.11 vs.
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0.08%N) standard errors of prediction (SEP) ranged from 0.16 - 0.20%N. Shenk et

al. (1981) reported SEP of 0.96% for crude protein, 1.13% for lignin, 1.27% for

cellulose, 0.16% for calcium, 0.04% for phosphorus and 0.37% for potassium.

Wessman et al. (1987) used multiple linear regressions, predicting wet chemistry

values based on near-infrared spectra yielded correlation coefficients of 0.98 for

Kjedahl nitrogen and 0.78 for lignin, with standard errors of 0.11% for nitrogen and

2.9% for lignin. They concluded that near-infrared is very effective for rapid

determination of foliar lignin and nitrogen and should be considered as routine

analytical method (Wessman, 1987).

2.4.2 Hyperspectral Remote Sensing and Canopy Chemistry Analysis

Hyperspectral systems collect more than 200 bands of data, which enables the

construction of a continuous reflectance spectrum curve for every pixel in the scene

(Cetin, undated). The advantage of hyperspectral system is that they can

discriminate among earth's surface features over narrow wavelength intervals, while

these features are lost within the relatively coarse bandwidths of the various bands of

conventional multispectral scanners. A hyperspectral image data set is recognized

as a three-dimensional pixel array. The x-axis is the column indicator, the y-axis is

the row indicator and the z-axis is the band number, which is expressed as the

wavelength of that band or channel (Lillesand and Kiefer, 2000). A hyperspectral

image can be visualized as shown in figure 2.4 below.

z

x
Figure 2.4 Hyperion Data Axes
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When Lillesand and Kiefer (2000) compared the data produced using the Landsat

TM band 7 with the data from hyperspectral sensor with regards to common minerals

over the wavelength range of 2.0 to 2.5 um, the Landsat TM sensor obtained only

one data point, while a hyperspectral sensor obtained many data points over the

same range (Lillesand and Kiefer, 2000). While a broadband system can only

discriminate general differences among material types, a hyperspectral sensor

affords the potential for detailed identification of materials and better estimates of

their abundance (Jia et al., 2006).

Because of the large number of narrow bands sampled, hyperspectral data enable

the use of remote sensing data collection to replace data collection, which in the

past, was limited to laboratory testing or expensive ground site surveys. Some

application areas of hyperspectral remote sensing include determinations of surface

mineralogy; water quality; bathymetry; soil type and erosion; vegetation type; plant

stress; leaf water content, and canopy chemistry; crop type and condition; and snow

ice properties (Plaza et al., 2006).

There is not much readily available information about research done on the

quantification of foliar lignin. There are a number of studies done on foliar nitrogen

but only a few researchers have quantified both nitrogen and lignin using

hyperspectral remote sensing. The most recent successful study of foliar lignin

estimation which is accessible was done by Serrano et al. (2002). She utilized

indices using a reference band and a band corresponding to lignin concentrations

(Serrano et al., 2002).

Martin and Aber (1997) used AVIRIS to determine foliar lignin and nitrogen. From the

calibration equations which were developed, they obtained R2 = 0.87 and 0.77 for

nitrogen and lignin respectively. Calibration equations were evaluated on the basis of

inter- and intra-site statistics (Martin and Aber, 1997).

Peterson et al. (1988) conducted a study where they presented results on

reflectance spectra of forest foliage and canopies, and their relationships to chemical

composition. Their research included analysis at three different stages; 1) analysis of

dry, homogenous leaf samples measured in the laboratory spectrophotometer; 2)
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analysis of laboratory and field spectra taken for fresh, whole leaves and 3) the

analysis of AIS (Airborne Imaging Spectrometer) spectra for whole forest canopies.

The first step was to perform the biochemical analysis using the wet chemistry

method to determine the lignin quantities. Using the results from the wet chemistry,

the spectrophotometer was calibrated. Calibration of the spectrometer allowed that

the remaining sample be analyzed using the spectrometer which is a faster process

of determining the lignin concentrations (Peterson et al., 1988).

Regression analysis was used to determine the optimal wavelengths for predicting

biochemical composition from the spectrophotometer. The regression analysis was

based on raw and smoothed versions of the log (1/R) data and their respective first

and second derivatives. Half to two thirds of the samples set were used to generate

a calibration equation. This calibration equation was then applied to the remaining

test samples to determine how well the model predicted composition from spectral

reflectances. The AIS spectra were evaluated using simple correlation of canopy

nutrient contents versus filtered AIS. A correlogram was generated from these data

that consists of the correlation coefficient between both leaf nitrogen and lignin with

NIR spectra. These laboratory techniques can predict nitrogen and lignin contents

with standard errors of prediction comparable to those achieved in the wet chemistry

(Peterson et al., 1988).

When lignin form pine was measured in the laboratory, it had a number of absorption

peaks throughout the shortwave IR and strongly absorbs in the visible region. The

Oakwood lignin peaks at 1420 and 1920nm ascribed to O-H bonds, and 1696 and

2106nm ascribed to aromatic C-H bonds and phenolic hydroxyls, respectively.

Spectral region between 1500 to 1700 nm is predictive of lignin content in forage

grasses. For fresh leaves, the reflectance pattern is dominated by absorption of

chlorophyll and accessory pigments in the visible and by water absorption in the

shortwave infrared. When water content is reduced through drying, the subtler

biochemical absorptions are revealed (Peterson et al., 1988).
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Gastellu-Etchegorry et al. (1995) conducted a study assessing canopy chemistry

using AVIRIS. Simultaneously with AVIRIS acquisition, an atmospheric profile was

carried out, and the forest vegetation was sampled for chemical analysis and

laboratory spectral measurement. Predictive relations between concentrations of

nitrogen, R was 97%; lignin, R was 89%; and cellulose, R was 83%, and reflectances

of pre-heated pine needles were determined through stepwise analysis. A

methodology was designed to assess their extrapolation to remotely acquired

spectrometric data. The applications of laboratory derived relationships led to

relatively large correlations for nitrogen (74%) and cellulose (79%) but poorer results

were obtained for lignin (44%). Predictive equations based on laboratory

measurements were applied to reflectances of pine needles that were computed

through the inversion of two reflectances models. This approach improved the

correlations for lignin (74%). No improvement was observed for nitrogen (70%) and

cellulose (69%) (Gastellu-Etchegorry et al.,1995).

2.5 LEAF AREA INDEX

Leaf area Index (LAI) is an important structural parameter used to quantify energy

and mass exchange characteristics of terrestrial ecosystems such as

photosynthesis, respiration, transpiration, carbon and nutrient cycle, and rainfall

interception. Leaf Area Index is thus defined as the total one-sided area of all leaves

in the canopy within a defined region (m2/m2
). LAI is an important structural

parameter that is used as an input into growth prediction models in forestry. Direct

measure of LAI is relatively accurate but extremely labour intensive and destructive.

Measuring and estimating LAI over large areas has proved to be problematic, thus, it

is more practical to measure LAI only on limited experimental plots (Pu et al., 2005).

Remote sensing offers vast coverage of natural resources and therefore it is being

exploited to estimate important forest parameters. There are models used to

estimate LAI to produce LAI maps that are used as inputs to other prediction models.

To produce an LAI map or prediction of a large area, a model relating field data with

remote sensing data is typically developed, and the remote sensing data are then

used to extrapolate that relationship to the landscape (Lee et al., 2004).
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2.6 INTRODUCTION TO REMOTE SENSING IN FORESTRY

Remote sensing is the science and art of obtaining information about an object, area,

or phenomenon through the analysis of data acquired by a device that is not in

contact with the object, area or a phenomenon under investigation. The use of

remote sensing allows for the mapping of large areas efficiently, cheaply, in digital

manner that allows for accuracy assessment and integration with Geographic

Information System (GIS) (Benz et al., 2004).

In Remote Sensing electromagnetic sensors are currently being operated form

airborne and space borne platforms to assist in mapping and monitoring earth

resources. The sensors acquire data on the way various earth surfaces emit and

reflect electromagnetic energy. These data are analysed to provide information

about the resources under investigation. Spectral responses measured by the

sensors over various features often permit an assessment of the type or condition of

the features. These responses are referred to as spectral signatures. Features are

spectrally separable, however, the degree of separation depends on the location

within the spectrum, for example water and vegetation might reflect nearly equally in

visible wavelengths but separable in near Infrared wavelength (Casa and Jones,

2005).

Remote sensing instruments allow for the collection of digital data through a range of

scales in a synoptic and timely manner. The use of remotely sensed images allows

for mapping of large areas efficiently digitally in a manner that allows for accuracy

assessment and integration with geographic information systems. The

advancements in sensor technology are increasing the information content of

remotely sensed data and resulting in a need for advanced analysis techniques. The

advances in sensor technology are occurring concurrently with changes in forest

management practices that require detailed measurements intended to enable

ecosystem-level management in a sustainable manner. The review of remote

sensing image analysis techniques, with reference to forest structural parameters,

illustrate the dependence of spatial resolution to the level of detail of the parameters

which may be extracted from remotely sensed data. As a result, the scope of a

particular investigation will influence the type of imagery required and the limits to

details of the parameters that should be estimated. The combinations of image
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processing techniques may increase the complexity of parameters that should be

extracted (Wulder, 1998).

Wavelengths have a profound effect on data collection in remote sensing.

Atmospheric absorption results in the loss of energy to water vapour, carbon dioxide

and ozone, etc. energy specific wavelength regions tend to be absorbed effectively

by these gases, it is therefore important that the bands and spectral regions are

selected with consideration to this fact. The wavelength ranges where the

electromagnetic energy can be transmitted through the atmosphere are called the

atmospheric windows. Therefore when selecting the sensor to be used when

collecting data through remote sensing there are four things to consider; namely (a)

spectral sensitivity of the sensor, (b) the presence and absence of the spectral

windows in the spectral regions where one wishes to sense, (c) the source,

magnitude and spectral composition of the energy available in the ranges, (d) the

manner in which the energy interacts with the features under investigation. Energy is

absorbed, transmitted or reflected. The amount of energy, which is reflected,

transmitted or absorbed, will vary according to different earth's surfaces. These

differences permit the distinguishing of different features in an image (Lillesand and

Kiefer, 2000).

Foliar reflectance presents a rapid and non-destructive means to measure vegetation

properties and conditions. A plant leaf has low reflectance in the visible region of the

spectrum resulting from strong absorption by chlorophyll. In comparison to the visible

region leaf has a higher reflectance in the near-infrared region as a result of internal

leaf scattering and reduced absorption (Zhang et al., 2005).

2.7 VEGETATION INDICES AND LAI

Work on spectral properties of plants began as early as 1913 when it was proved

that light entering leaves is critically reflected internally at the walls where the

reflective index changes from that of water (1.33) to that of air (1.00). This leads to

highly efficient scattering of all wavelengths of light. Plant pigments such as

chlorophyll strongly absorb light in the visible, and the liquid water in plant leaves

absorbs much of the light at the wavelengths longer than 1.4 micrometers,

wavelengths at which plant materials are relatively transparent. Much attention in
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green vegetation is focused on the strong reflectance contrast between the visible

and the near infrared (NIR) that forms a strong step in the spectrum of green

vegetation where the vegetation indices are established (Lillesand and Kiefer, 2000).

Linear and non-linear relationships between optical satellite-derived spectral

vegetation indices and LAI have been found for different vegetation types and

climatic conditions. New methods to extract canopy properties from remote sensing

data have been successfully tested. The inversion of physically based canopy

reflectance models has arisen as the most promising technique for retrieving LA!.

Canopy reflectance model describes the interactions of solar radiation with

vegetation elements and are often coupled with leaf optical properties models that

simulate the reflectance and the transmittance of a leaf as a function of its

constituents. The inversion of these models allows the estimation of both leaf and

canopy parameters in predictive mode, therefore overcoming the need of

parameterization required for the use of regressive semi-empirical models. The

accuracy of such estimations is dependent on three factors: the radiative transfer

model employed, the type and quality of RS data, and the inversion procedure used

(Meroni et al., 2004).

The most commonly used vegetation indices when studying the forest ecosystems

using remote sensing are computed from simple functions based on the R band and

NIR band. These wavebands are used to formulate various vegetation indices to

acquire more precise indications of surface vegetation conditions. The simple ratio

(NIRlR) and the NDVI are most frequently used to correlate with LAI and other

canopy structure parameters from airborne and spaceborne remote sensing data.

With increase in LAI, red reflectance decreases as light is absorbed by leaf pigments

while the NIR signal increases due to the fact that more leaf layers are present to

scatter the radiation upwards because plant cell walls, notably the lignin component,

cause scattering of NIR energy, resulting in relatively high NIR transmittance and

reflectance. The simple ratio VI has proved to be sensitive to optical properties of the

soil background and therefore, their application is limited (Zhao et al., 2005).
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NDVI provides an indication of the green leaf biomass and green leaf area. Coarse

resolution induces reduction in the NDVI signal due to the fact that a pixel may not

be a completely forested area because the spatial resolution covers an extensive

area (Coops, et al., 2001). Perpendicular Vegetation Index (PVI) was once proposed

in an attempt to reduce the effect of the soil background on Vis. However,

experimental and theoretical investigations indicated that soil background still has an

effect. Brighter soils have resulted in higher index values for a given quantity of

incomplete vegetation cover. Additional indices were formulated to address this

problem. An index named weighted difference index was proposed, however it was

found that it did not hold any advantage over the PVI (Gong et al., 2003).

Alternative formulations that include correction factors or constants that attempt to

minimize the effect of varying background reflectance on Vis followed. The soil­

adjusted vegetation index (SAVI) was derived from the NDVI and the adjustment

factor L was introduced to minimize soil brightness influence and to produce

vegetation isolines independent of soil background. The constant L can range from

zero to 1, where if L is zero then vegetation cover is very high and SAVI is equivalent

to NDVI, and where L is 1 then the vegetation cover is very low. If L tends to infinity

then it is equivalent to PVI. It was suggested that an adjusted factor L = 0.5 for

intermediate vegetation amounts should be used, resulting in spectral index (SAVI)

superior to the NDVI and PVI for a relatively wide range of vegetation conditions.

Transformed soil adjusted vegetation index (TSAVI) was proposed to further reduce

the error for a vegetation index (Le. SAVI) for plant canopies with varying low

densities (Gong et al., 2003).

TSAVI is equivalent zero for bare soil and is close to 0.7 for very dense canopies. It

can compensate for soil variability due to changes in solar elevation and canopy

structure. The non-linear vegetation index (NU), the renormalized difference

vegetation index (RDVI) and the modified simple ratio vegetation index (MSR) were

proposed to simulate non-linear relationships between Vis and the surface

biophysical parameters. These indices were formulated in an attempt to linearize

relationships with surface parameters that tend to be non-linear. Modifications and

combining of the existing Vis brings about the improvement in the estimation of LAI.

These are the following examples of the combinations of existing Vis and their
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benefits:

• MNU is a modification of NU and it incorporates the merits of SAVI while it is

more suitable for more arid areas.

• Under conditions of low LAI, where lR is relatively high and lNIR relatively

low, a small change in lR produces a larger proportional change in NDVI than

SR. Under conditions of high LAI where lNIR is higher and lR lower, a

change in lNIR will induce a larger proportional change in SR than in the

NDVI. Therefore, the NDVI*SR is expected to balance the two phenomena to

increase correlation with LAI.

• SAVI*SR combines the merit of SAVI which eliminates the effect of soil

background with that of SR (a wider range of VI values corresponding to

narrower range of vegetation cover) (Gong et al., 2003).

Sellers (1987) derived an important relationship between LAI, APAR to NDVI.

Research found that under specified canopy properties, APAR was linearly related to

NDVI and curvilinear related to LAI. Thus NDVI = fAPAR = f LAI (Coops, et al.,

2001). LAI could serve as a useful indicator to characterize the condition of the forest

ecosystem in the research of global change due to the fact that leaf area responds

rapidly to different stress factors and changes in climatic conditions. Remote sensing

provides the alternative to estimate and monitor LAI and models developed to for

application to remotely sensed data rely on physically based relationships between

LAI and canopy reflectances, expressed as algorithms (Lee et al., 2004).

Even though there have been attempts to improve the NDVI and developing new

indices to compensate for the soil background influences, so far it has not been

possible to design an index that is sensitive only to the desired variable and totally

insensitive to all other vegetation parameters. Therefore, different indices were

defined for different purposes and each optimized to assess a process of interest. No

studies have focused on retrieval of LAI without interference of chlorophyll effects

(Kalacska et al., 2005).
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Fairly strong but site specific relationships between Vis, such as the SR, and the

NDVI have been found in various studies across different vegetation types. Another

problem that has been found with the NDVI is that it tends to saturate at high levels

of LAI. Studies from the boreal forests have shown that NDVI is not dynamic enough

to be utilized for the estimation of LAI. This can be explained by the presence of

green understorey that causes a non-contrasting background reflectance in the

visible area of the spectra. The inclusion of the MlR spectral band in SR based on

visible and NIR reflectance has proved to provide complementary information on the

optical geometrical structure of the canopy and on the optical properties of the

underlying soil. The reduced simple ratio (RSR) is a MlR corrected modification of

the simple ratio (SR), which was introduced to adjust for differences in canopy

closure and background reflectance in the retrieval of LAI. It was found that RSR

correlated better with LAI than did SR due to the fact that it reduces the effect of

background reflectance and increases the sensitivity to changes in LAI (Sternberg et

al., 2004).

When estimating leaf area index with spectral values, caveats to consider are the

presence of understorey vegetation, within-stand shadowing, bidirectional effects

and stand density as well as the canopy closure. According to previous studies, it is

much more difficult to estimate LAI from remotely sensed data once the foliage within

the stands begins to overlap (Wulder, 1998). The openness of the overstorey and the

spatial and temporal variations of the understorey vegetation can pose special

challenges to the retrieval of canopy leaf area index from remotely sensed data. The

research suggests that the confounding effect of the understorey vegetation is

important to the interpretation of reflectance of sparse canopies. An alternate

approach to retrieval of the canopy LAI is to invert a canopy reflectance (Cohen,

2003).

Rosema et al. (1992) introduced the forest-light interaction model (FLlM) to derive

LAI and canopy coverage from TM data; Hu et al. (2004a) modified the FLlM and

produced canopy closure maps using Compact Airborne Spectrographic Imager

(CASI). A strong correlation has been found between the retrieved canopy LAI and

the field measured LAI using model-based methods, where R2 values ranged from
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0.51 to 0.86. In open canopies, near infrared reflectance from understorey,

particularly broad- leaved species, dominates the overall reflectance. It was

suggested that simple relationships need to be replaced by canopy models in open­

canopy cases especially because the understorey also changes seasonally. Images

with stands that had dominating understorey generally produced poor correlations

between NDVI and LAI values (Hu et al., 2004b).

Another approach to the retrieval of open canopy parameters is linear spectral

analysis. Linear spectral mixture analysis of multispectral and hyperspectral remote

sensing data sets has been widely used and has been applied in vegetation

applications. In the past decades, imaging spectrometers have been developed to

acquire continuous spectra over land and water surfaces and these spectrometers

include the Advanced Solid-State Array Spectroradiometer (ASAS), Airborne Visible­

Infrared Imaging Spectrometer (AVIRIS), Compact Airborne Radiographic Imager

(CASI) and the Shortwave Infrared Full Spectrum Imager (SFSI). Research into the

development of these airborne sensors and analysis of high-resolution data has

provided a background for development of spaceborne imaging spectrometers for

Earth Observing System (EOS-1) (Treitz and Howarth, 1999).

Advances in imaging spectrometer technology and radiative transfer modeling have

improved the possibility of accurate estimation of Leaf Area Index from spectral and

angular dimensions of remotely sensed data (Mnyeni et al., 2002). It is not a trivial

task to find optimal vegetation indices for LAI estimation when using hyperspectral

imagery because, for instance, vegetation indices derived from the red and the NIR

band of the traditional TM or Multispectral Scanner (MSS) image could correspond to

hundreds of equivalent counterparts in hyperspectral imagery (Zarco-Tejada et al.,

2005).
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2.8 VEGETATION MODELLING USING HYPERSPECTRAL NARROW BANDS

Many hyperspectral vegetation studies are still based on multispectral indices that

are used as reference data. Hyperspectral data can provide much more possibilities

compared with multispectral data in detecting and quantifying sparse vegetation

because it provides a continuous spectrum across a range in wavelengths. In past

studies hyperspectral linear mixture modeling techniques have been used

successfully to detect inter-annual and seasonal changes in vegetation (Frank and

Menz, 2003). The high signal to noise ratio in the SWIR region allows greater

discrimination of subtle spectral responses. If such subtleties are in any way related

to LAI, then hyperspectral data have an advantage over broadbands (Lee et al.,

2004).

The possibilities of using the spectrometers have increased over the years because

they have become cheaper. Selection of new wavebands in hyperspectral imaging

has been performed in a number of cases, focusing on how to increase the

sensitivity of the vegetation indices. These types of investigations have been

conducted under controlled conditions and as a consequence of different

measurement conditions; hence some level of disagreement exists in the selection of

wavebands. A limited number of results have been published where hyperspectral

reflectances were recorded under natural conditions in high input and high yielding

crops (Hansen and Schjoerring, 2003).

However using hyperspectral data is much more complex than multispectral data in a

sense that hyperspectral systems collect large volumes of data in a short time. The

problems associated with large volumes of data are: data storage volume,

transmission bandwidth, real-time analog to digital bandwidth and resolution,

computing bottle necks in data analysis and new algorithms for data utilization (e.g.

atmospheric correction is more complicated). One significant advantage of

hyperspectral sensors is that they contain a substantial amount of information about

atmospheric characteristics at the time of image acquisition that atmospheric models

can be developed for atmospheric correction parameters (Guo et al., 2006). The

hyperspectral image processing considerations can be viewed in APPENDIX 2.
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The problem with hyperspectral data volume and storage could best be overcome

by introducing specialized sensors that will be optimized to gather data for targeted

applications or employ a narrow waveband hyperspectral sensor like Hyperion from

which users with different applications can extract appropriate optimal wavebands.

Accuracy assessment with increasing number of wavebands would be required to

determine the impact of additional bands in discriminating, quantifying, classifying

and vegetation modelling (Bacjsy and Groves, 2004). Recent research, which was

limited to one or two species, demonstrated that the optimal information in

quantitative characterization of forest canopies is present in a few specific

narrowbands rendering a large number of wavebands redundant (Shettigara et al.,

2000).

In 400 - 2500 nm spectral range, 22 optimal wavebands were recommended that

best characterizes and classifies vegetation and agricultural crops. Overall

accuracies of over 90% were attained when 13 - 22 best narrowbands were used for

vegetation classification. Since the data was aggregated into 10nm wide wavebands

to match the first spaceborne hyperspectral sensor Hyperion, which resulted into 168

wavebands, this study rendered more than 138 of the 168 narrowbands redundant in

extracting vegetation and agricultural crop (Thenkabail et al., 2004a). Although some

of the narrow bands can be edited due to the storage and data complexity problem,

many of the advantages of the fine spectral resolution imagery may be lost and the

discarded portions of data may be vital to certain remote sensing applications. Thus,

a more desirable solution might be to use lossless or information preserving data

compression (Thenkabail et al., 2004a).

Lossless data compression is to represent the data using a minimum number of bits

by reducing the statistical redundancies inherent to the data. However, this method

can only provide compression ratios of about 3:1. Another alternative is lossy data

compression which can provide very high compression ratios. Decompressed data is

susceptible to distortion when using this method, but proper optimization of the

compression system may yield distortions small enough that visual degradations are

practically non-existent and classification errors are small. As a result lossy

compression method is a promising solution to significantly ease the mission

requirements for a hyperspectral sensor (Shettigara et al., 2000).

33



The mean squared error (MSE) or root mean square error (RMSE) is generally used

for measuring the distortion between the original and the compressed data. Data

compression is usually applied at a data level digital number (ON) or radiance. Two

approaches can be used to assess the how remote sensing products are affected by

data compression. The first approach is to compare end product values derived from

the decompressed data cube with those obtained from the original data cube. The

second approach is to compare the end products derived from decompressed data

cube with ground-truth and this approach is ideal, if sufficient and accurate ground­

truth is available for specific applications (Hu et al., 2004a). There are two

assumptions that must be fulfilled if a hyperspectral sensor is to be useful in the

biophysical analysis of the terrestrial ecosystem: (a) there must be a strong

correlation between the canopy characteristics and the rates at which important

processes occur to the biosphere. (b) These canopy characteristics will have to be

data.

The study by Hu et al. (2004b) indicated there was a strong correlation between

measured LAI and LAI estimated from hyperspectral data. Boegh et al. (2002) found

that NIR reflectance correlated better with LAI when using the airborne multispectral

data acquired by the Compact Airborne Spectral Imager (CASI) whereas Stenberg et

al. (2004) found that band 4 of the Thematic Mapper (ETM), which corresponds to

the NIR region, correlated poorly with the LA!.

Stenberg et al. (2004) researched the correlations between the LAI and the three SVI

Spectral Vegetation Indices); the NDVI, SR and RSR (the reduced simple ratio).

They found that the LAI correlated better with RSR then it did with the NDVI and the

SR. The NDVI showed poor sensitivity to the changes in LA!. The performance of

RSR, however, showed to be weaker at plots around which LAI were relatively

constant but the reflectances homogeneous due to a non-vegetation component

(e.g. logging roads, rocks, large ditches). In the LAI deviation maps it was observed

that the "errors" in LAIRsR (Le. large deviations from LAlmean) occurred at plots where

cutting waste had been left or where there was topographical variation (e.g. a hill).

Therefore it is advantageous to use small pixel size. The derived LAI-RSR

regression is sensor specific and sensor dependent in two ways: they depend on

solar angle and bandwidth. RSR was calculated from the ETM data using the
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wavelengths from band 3, 4 and 5 (Sternberg et al., 2004).

Thenkabail et al. (2004b) researched the best hyperspectral wavebands for the study

of vegetation and agricultural crops over the spectral range of 400 - 2500nm and

assessed their classification accuracies through various combinations of

narrowbands. The optimal hyperspectral wavebands to study vegetation and

agricultural crops were determined through rigorous data mining techniques

consisting of principal component analysis, lambda R2 models, stepwise discriminant

analysis and the derivative vegetation indices (Thenkabail et al., 2004b).

Gong et al. (1992) explored the relationship between the original CASI data and the

LAI, where the first and second derivatives were correlated with LA!. A piece-wise

multiple regression analysis procedure was carried out to produce goodness-of-fit

values and standard errors of LAI estimations. Spectral derivative technique was

found to considerably increase LAI estimation accuracy. The accuracy increase is

attributed to the capability of the derivative technique to reduce the effect caused by

the soil background. The first derivative performed slightly better than the second

derivative and it was concluded that one type of soil background is advantageous in

estimation of LAI using hyperspectral remote sensing (Gong et al., 1992).

Gong et al. (2003) tested 12 VI that are originally constructed as simple functions of

Rand NIR. Some researchers have used bands within the SWIR region (1.0 ­

2.Pllm), especially the ratio of middle infrared (MlR) (1.55- 1.75 Ilm) with NIR as a

new vegetation index. Leaf reflectances of the SWIR region are dominated by liquid

water absorption, therefore to obtain a total canopy equivalent water thickness it was

hypothesized that the index is correlated to the LAI through the summation of the

individual leaf equivalent of water thickness for each layer. Removal of bands with

strong water absorption (1346 - 1447 and 1800 - 1961 nm) and weak and noisy

signal bands (wavelengths shorter than 437nm and longer than 2405nm) will leave

168 bands to work with. For each VI a correlation matrix was constructed for a pair of

spectral bands. The 12 correlation matrices that were constructed showed that some

bands have high potential in LAI estimation. Summarized in APPENDIX 3 are

potential bands that were used by Gong et al. (2003) and these bands are to be used

in this study to select the most suitable bands for each of the nine vegetation indices.
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The R2 column in the table lists two R2 values, the highest R2 value for the actual use

of NIR and R bands and an optimal R2 derived from Vis constructed from the SWIR

and NIR regions (Gong et al., 2003).

2.9 SUMMARY

2.9.1 Quantification of Lignin

In summary, the chapter has presented a detailed description of the lignin molecule

and has also explained its importance in the forest industry. Methods of isolation

and quantification have been researched and the benefits of the hyperspectral

remote sensing that evolved from the laboratory spectroscopy were briefly

discussed. The most recent techniques found in literature utilize the development of

lignin indices using bands that correspond to lignin. It was concluded that there are

two reference bands for lignin and they are situated at 1680nm and 2100nm. There

are other researched bands that correspond to the chemical configuration of the

lignin molecule. Construction of lignin indices utilizes one selected lignin band and

the reference band closest to the chosen lignin band. Index images that result are

related to the laboratory-measured concentrations using statistical analysis (Serrano

et al., 2002). Wood chemical analysis has been done in forestry and in the paper

industry. Wet chemistry is used concurrently with near infrared spectrophotometers

to determine and quantify wood constituents. Laboratory spectrophotometers are

calibrated using wet chemistry data and to predict wood chemistry of a large number

of samples. The NIR technology has proved to be time and cost effective and has

showed more reliable repeatability in prediction results. There is not much accessible

literature on meaningful relationships that have been developed between foliar

chemistry and wood chemistry for the purposes of application in the pulp and paper

industry.

Remote sensing techniques provide the ability to observe, analyze and manipulate

data for large areas. The forest industry is researching remote sensing techniques

that are beneficial to the industry. In forestry, remote sensing is very cost effective on

many applications as long as accurate results are achieved but there is no literature

that is focused on finding meaningful relationships between wood lignin and foliar

lignin concentrations. Based on the literature above, this study will attempt to obtain

a relationship between wood lignin and foliar lignin concentrations. Foliar lignin
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concentrations will then be related to lignin indices obtained from the Hyperion data.

2.9.2 LAI and Vegetation Indices

Research is ongoing on the advantages of hyperspectral sensors with regards to LAI

estimations using narrow band vegetation indices. Lee et al. (2004) found that

models with selected AVIRIS channels performed better in LAI predictions than

models derived from ETM+ and MODIS. The best models from AVIRIS had up to 23

AVIRIS channels. When Pu et al. (2005) compared estimations of forest crown

closure and leaf area index from Hyperion, All and ETM+; it was found that

Hyperion outperformed the LAI and ETM+ sensors. It was concluded that Hyperion's

high spectral resolution records subtle spectral information and that the SWIR region

is lightly affected by the atmosphere compared to the SWIR region of All and ETM+.

Therefore, the best spectral region for Hyperion is SWIR and for All and ETM+ it is

the visible region. Hyperion is demonstrating a high potential for forest management

applications (Pu et al., 2005).

It is has been discussed by a number of researchers that certain vegetation indices

are specific to types of vegetation cover. Muira et al. (2006) investigated different

sensors for NDVI estimations and it was suggested that distinct algorithms need to

be developed for every sensor and that land cover dependency need to be explicitly

accounted for to reduce biasness when computing vegetation indices (Muira et al.

2006). This study selected vegetation indices that could be applied to Eucalyptus

plantation.

Fuentes et al. (2006) showed that hyperspectral data is effective in measuring net

CO2 and water flux modeled from narrow bands indices. Some vegetation indices,

like the NDVI are used for detect nitrogen stress in certain ecosystems and Zhao et

al. (2005) concluded that hyperspectral remote sensing produces more robust

estimation results. There are numerous growth models that require NDVI, many

other vegetation indices and LAI as inputs. Hyperspectral narrow bands have proved

to be necessary for cost and time effective accurate estimates (Filippi and Jensen,

2006). According to literature provided in this chapter, narrow band vegetation

indices are well researched in forestry and they are forming an important part in the

formulation of estimation models.
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CHAPTER 3: Study Area

3.1 INTRODUCTION

This chapter consists of information on the study area. The study area is described

according to its location and composition that explain why it was selected. The study

area is also described using topology, geology and soils, climate, and hydrology. The

same study area was used for the research on wood and foliar lignin concentrations

and research on LAI estimations.

3.2 STUDY AREA

The study area is located in the northern coastal area of Zululand in South Africa.

The study area consists of vast plantations of Eucalyptus species and Eucalyptus

clones as well as pine plantations. The study was conducted in twelve Eucalyptus

commercial forestry plantations. The ages of the compartments ranged between six

and nine years, which is the approximate harvesting age. The compartments were

selected to permit a comparative analysis of ecosystem biogeochemistry that will

hypothetically provide a gradient in relation to foliar lignin and wood lignin

concentrations. The selected compartments had light understorey vegetation

consisting mainly of broad-leafed vegetation

Every effort was taken to avoid trees that were diseased or trees that showed signs

of infestation. Random selection of the trees was also based on the representative

varying sizes of the trees in the compartment. Table 3.1 has information on the sites

that were chosen for the research on wood and foliar lignin concentrations. Due to

time constraints, only seven compartments were chosen from the twelve

compartments for LAI measurements (Table 3.1). Other compartmental information

can be viewed in APPENDIX 4. Only compartment 11 was thinned and pruned. The

rest of the compartments were only fertilized a year after planting.
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Table 3.1: Information on the selected compartments for the lignin concentrations and LAI study

Eucalyptus
Age at Plot Field MeasuredCompartment sampling Spacing

Clone (years) (meters)
SI Radius (m) SI

1 E urophylla 7.25 3.0 x 3.0 27.50 15 21.29

2 GU-1 7.25 3.0 x 3.0 23.80 15 22.41

3* GU-2 6.92 3.0 x 2.7 26.50 15 25.90

4 GC-1 7.42 2.7 x 2.4 20.50 15 23.81

5* E urophylla 7.25 2.7 x 2.7 27.10 15 24.13

6* GU-1 8.33 3.0 x 2.0 23.80 15 23.07

7 GU-1 6.33 2.7 x 2.2 20.10 15 22.89

8* GU-3 6.33 2.7 x 2.2 21.40 15 23.80

9* GC-2 8.08 3.0 x 2.0 20.60 15 21.96

10* GU-4 8.00 3.0 x 2.0 20.70 15 17.61

11* GT 8.75 3.0 x 2.5 20.60 15 27.34

12 Egra 8.00 2.7 x 2.4 21.90 15 18.05

* Compartments used In the LAI estimation study

3.3 STUDY AREA LOCATION AND DESCRIPTION

3.3.1 Location

The Zululand coastal plain is situated on the eastern seaboard of the KwaZulu Natal

Province of South Africa. The study area lies between latitudes 28.29°S and 28.77°S

and longitudes 31.92°E and 32.27°E (Figure 3.1).
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3.3.2 Topography

It is well known that topography introduces variations in the radiance detected by the

remote sensing sensor and this effect has been researched in many studies

(Ekstrand, 1996). The researchers have attempted to model and reduce the

influence of local terrain slope and aspect to improve land features identification

(Shepherd and Dymond, 2003). Few studies have focused on the effect of

topography on hyperspectral data sets, particularly in terms of its influence on the

signature of spectral end members. The ability of hyperspectral sensors to detect

and identify sub-pixel materials is of great importance to many applications (Feng et

al., 2003). Due to the complexities of hyperspectral data the study area was chosen

carefully to minimize spectral interference as much as possible. The topography of

the study area is flat to gently undulating, with frequent small to medium drainage

lines and open water pans (Wolmarans and Du Preez, 1986). The topographic

features of Zululand are multi-faceted. The flat coastal region comprises the Natal

Coastal Belt and Zululand Coastal Plain with altitudes ranging between sea level to

120m metres (Feleke, 2003).

3.3.3 Climatic Factors

A number of factors influence temperature within forests. Temperature decreases

with both latitude and altitude. Proximity to the coast has a moderating influence on

temperature and tends to reduce the range in temperature extremes. Climate is an

important factor for site quality or classification of sites in forestry. The variation in

climate is measured regionally using mean annual precipitation (MAP) and mean

annual temperature (MAT) (Schulze, 1997).

MAP is used to characterize the long-term water supply into the region and also

defines the potential of a growing area, while taking into consideration other factors

such as nutrients, available light and suitable substrate. MAT is an indication of the

amount of heat units available that indicate the length of the growing season, the

potential of the evapo-transpiration to take place and the rate of assimilation. The

main atmospheric conditions that determine growth on regional and local scales are

light associated with day length, temperature regimes and available moisture.

Maximum temperature is most extreme on the KwaZulu-Natal north coast where

mean maximums for the hottest month are in the region of 30°C and mean annual
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temperature is 22°C. Due to diverse topography, mean annual rainfall decreases

from an average 1200 - 1400mm along the coastal region to an average of 650mm

inland. Similarly mean annual temperatures decrease from 22°C along the coast to

16°C 20km inland (Schulze, 1997).

3.3.4 Geology and Soils

The geological material occurring on or near the surface is important in forestry.

Some soils are derived from Aeolian deposits, such as those of the coastal dune of

Zululand. Others are derived from material deposited by running water (alluvial

deposits along riverbanks) and ocean and lake sediments; e.g. some parts along St

Lucia (Figure 3.3). South African forest soils often have their origin in more than one

parent material, e.g. the topsoil may be from colluvial drift and the subsoil from

granitic weathered bedrock. The coastal belt areas include sand stone, shales and

mudstones, whose soils have a high agricultural potential. Low potential soils occur

along the portions of the Mhlatuze River (Figure 3.2). The St Lucia formation

comprises richly fossiliferous glauconitic, olive grey silts and fine sands with large

calcareous concretions of marine sediments at various levels. Glauconite, also

known as "green sands", is hydrated aluminosilicate of iron and potassium, usually

enriched in calcium. This formation is the most important for forestry in this sub­

region. It yields poorly drained soils with a clay-loam texture (Ell is, 2000).

The KwaMbonambi (Figure 3.3) area consists of mottled, brown, clayey sand related

to vlei or swamp sedimentary environment. This substrate usually forms

hydromorphic soils. The Uloa formation occurs closer to Richards Bay (Figure 3.2). It

consists of a thin limestone, which is richly fossiliferous (Jacobs et al., 19a9).

3.3.5 Hydrology

The hydrological processes of this area which influence the water quality behaviors

of the catchments are responsive to a large range of climatic conditions. In the past

decades this area has experienced severe storms which have consequently led to

sufficient storm events which were linked to trends in water quality and hydrological

water paths. The degradation of water resources of Zululand in the past has caused

detrimental sediment deposition. Sediment is the most obvious pollutant in the rivers

of Zululand, while commercial agriculture is also adding to pollutants through
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fertilizers, insecticides and herbicides (Kelbe and Germishuyse, 1999).
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Figure 3.2 Map of Southern part of the study area showing the selected compartments, main
towns and catchments
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CHAPTER 4: Materials and Methods

4.1 INTRODUCTION

The aim of this project is to develop an acceptable framework for estimating lignin

concentrations in wood and leaf area index of Eucalyptus species and clones using

hyperspectral imagery. As it has been explained in chapter one, work on correlations

between wood lignin and foliar lignin in the eucalypts was not available. The use of

remotely sensed data to estimate forest attributes, biochemistry or biophysical

factors demands calibration of the sensors for the specific study to confirm and

assess the accuracy of the obtained data. This means that destructive sampling and

direct field-based measurements were carried out in this study. This chapter begins

by describing the procedure that was followed when quantifying lignin

concentrations. Secondly it describes the procedure followed in satellite image

processing, data extraction and statistical analysis to estimate foliar lignin

concentrations from hyperspectral imagery. Thirdly, it describes direct and indirect

field-based methods of estimating LAI and calculation of vegetation indices from the

narrow bands. Lastly, this chapter explains the statistical analyses performed

between LAI measurements and vegetation indices.

4.2 ESTIMATION OF WOOD AND FOLlAR LIGNIN CONCENTATIONS IN THE

LABORATORY

4.2.1 Field Sampling

Compartments were selected to permit for a comparative analysis of ecosystem

biogeochemistry as well as to provide gradients in foliar lignin; therefore different site

qualities were sampled. Twelve compartments that consisted of clones were

selected (Table 3.1). All selected compartments were between the ages of six and

nine years to obtain estimates of the lignin concentrations in compartments that are

at harvesting age. It was assumed that the ages between 6 years and 9 years could

be sampled as one age group. Age was thus assumed to be a constant variable.

Random sampling was used to select trees within a plot*. The areas where sampling

took place overlapped with plots for stand enumeration and LAI measurements. The

• Trees were numbered and a draw was conducted in each plot.
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centers of these areas were marked using a GPS (Global Positioning Systems)

outside a compartment and distance measuring tapes inside compartment to enable

locating these areas on the Hyperion image. Because only clonal material was used,

biological variation was anticipated to be minimal; therefore, five trees were sampled

per stand. For wood lignin analysis, discs were taken at breast height, 35% and 65%

of the height of the tree (Figure 4.1). Leaves were sampled diagonally from the north

upper canopy to the south lower canopy for foliar lignin analysis. The leaves were

stored in large airtight plastic bags to be stored in the refrigerator for later preparation

and use (Wessman, 1987). The weight of the leaves sampled from each tree ranged

between 400 and 600 grams.

65% +-- ....-t--

35% "'4'--- ,..........-

BH ...4---- 1-------1

Figure 4.1 Markings on the felled tree and the diagrammatic locations of sampled discs

4.2.2 Sample Preparation

Wood samples were debarked while the leaves were stored in the refrigerator in re­

sealable and airtight plastic bags.

4.2.2.1 Preparation of leaves

When sampling, leaf stalks break at different points and some are completely broken

off. To reduce erroneous results in quantifying lignin concentration in leaves, leaf

stalks in all leaves that were going to be chemically processed were cut off to

homogenize the samples. The leaves were then oven-dried at 105°C overnight to
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remove moisture. After grinding the leaves, all the ground foliar particles that passed

through a 40-mesh screen were bottled and stored for chemical analysis.

4.2.2.2 Preparation of wood strips

Discs from the DBH, 35% and 65% were cut into wedges using a band saw. One

wedge from each disc was used to prepare wood strips using a circular saw and the

total number of wood strips was 180. The wood strips were air dried before they

were scanned into the NIRS instrument. The typical NIRS spectra can be viewed in

APPENDIX 5.

Figure 4.2 The NIRS by FOSS used to scan prepared wood strips

4.2.3 Biochemical analysis

To obtain representative results for lignin concentrations from the foliar sawdust,

water soluble and solvent extractives were removed from the leaves. The cold-water

procedure removes a part of extraneous components such as inorganic compounds,

tannins, gums, sugars and colouring matter. The hot water procedure removes

starches in addition to compounds mentioned above (Figure 4.3). The solvent

extraction method is for determining the amount of:solvent-soluble, non-volatile

substances. These substances should be removed before any quantitative chemical
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analysis is performed on the sample. The hot water and solvent extractions were

carried out as per the Tappi methods (1998). The Klason method, as per Tappi

Methods (1998) was then performed on the extracted material. The Klason method

separates lignin from sugars (Figure 4.5). The wood strips were scanned into the

NIRS instrument for lignin concentration determination (Figure 4.2).

Figure 4.3 Hot water extraction procedure to remove inorganic compounds and starch

Figure 4.4 Solvent extraction procedure to remove non- volatile chemical substances
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Sugars

Lignin

Figure 4.5 Products of Klason method; lignin and sugars

4.2.4 Stand enumeration for site index (SI) calculations

Circular plots with a 15m radius were marked using a GPS outside a compartment

and distance measuring tapes within a compartment. A calibrated vertex was used to

measure heights of the trees and a DBH (diameter at breast height) tape measure

was used to measure the diameter of each tree at breast height. Height was only

measured for 25% of the trees in a single plot. There is a logarithmic relationship

between DBH and height of a tree (Schumacher and Hall, 1933); therefore, the

remaining 75% of the tree heights were extrapolated from the regression analysis

between the measured DBH and the measured heights. Site indices were derived by

calculating the mean height of 20% of the tallest trees in each stand using a base

age of five years. Site index was calculated using the Modified Schumacher­

difference formulae with coefficients assigned to Eucalyptus grandis (Coetzee,

1994). Information used in these equations is presented in APPENDIX 6.

4.3 IMAGE PRE-PROCESSEING, ANALYSIS AND DATA EXTRACTION

4.3.1 Image Data

The image used in this study was acquired by the Hyperion satellite from the Earth

Observation (EO-1) platform. The selected scene which covered the study area was

of the path 168 and row 80. The image was obtained on July 24,2004; which was
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within 10 days of field sampling. This scene was selected because it covered all the

compartments required for this study. The image was not cloud free but it was

already radiometrically corrected (Level 1R) by the USGS (United States Geological

Survey). The scene dimensions were 42km X 7.5km. This image has a spatial

resolution of 30m and a spectral resolution of 10nm. All image processing was done

using ENVI 4.2 (RSI-ENVI, 2004). This consisted of ortho-rectification, registration of

the bands and sub-setting the image using area of interest. The Red Green and Blue

color composite of the image is presented in Figure 4.6. The scene properties can be

viewed in APPENDIX 7.

4.3.2 Extracting Reflectance data from Hyperion Imagery

To study surface properties using imaging spectrometer data, the atmospheric

absorption and scattering effects should be removed. Several atmospheric correction

algorithms for deriving information from the hyperspectral data have been developed

in the past decade. Changes in spectral resolution and shifts in channel centre

wavelengths may occur when an instrument is airborne or spaceborne due to

changes in instrument's temperature and pressure. Therefore, accurate radiometric

and spectral calibration of the data must be achieved in order to derive improved

surface reflectances. Following calibration, atmospheric correction algorithms are

applied to hyperspectral data and to remove the Raleigh and aerosol scattering (Gao

eta!.,2004).

The major atmospheric absorption bands present in the spectrum are water vapor

bands centered at approximately 940, 1140, 1380 and 1880nm, the oxygen A-band

at 760nm and the carbon dioxide bands near 2010 and 2060nm. Additionally a

Fraunhofer feature (a set of spectral lines observed as dark features in the optical

spectrum of the sun) near 430nm, which is principally associated with the

Hy (Hydrogen-gamma) transition, is strong enough to be observed in this region of

the spectrum (Lillesand and Kiefer, 2000).
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Hyperion Level 1R data were provided as calibrated radiance (Wm-2s(\ ENVI

software supports image-to-map registration through Ground Control Points (GCPs),

where an image is referenced to geographic coordinates from a vector overlay.

GCPs were interactively defined and validated using the error terms displayed for

specific warping algorithms. The three different methods supported by ENVI are

Rotation/ScalinglTranslation (RST), Polynomial, and Delaunay Triangulation, and

they correspond to the three re-sampling methods supported by ENVI: nearest

neighbor, bilinear interpolation, and cubic convolution respectively. An RST warp,

using nearest neighbor, was performed because it produces the least amount of

pixel to pixel averaging and yielded the best match to the actual vector data where

compared to the other warping and re-sampling methods (Hellman and Ramsey,

2003). The Hyperion image was geo-referenced using ground truthed compartment

maps and ortho-photos using Rotation, Scaling and Translation (1 st degree RST)

warping.

The radiance data were first corrected for variation in balance among vertical

columns in the along-track direction of the image data, a product of the sensor's

pushbroom design that is most evident in the SWIR channels (1000-2400nm). The

correction was based on the use of scaling factors of 40 for the VNIR and 80 for the

SWIR (Beck, 2003). Radiance data were then transformed to surface reflectance

using the ENVI 4.2 FLAASH that calculates the effect of atmospheric gases as well

as molecular and aerosol scattering and removes these effects pixel-by-pixel from

the image (RSI-ENVI, 2004). The FLAASH module incorporates the MODTRAN

radiation transfer code. The Level 1 Radiometric (L1R) product has a total of 242

bands but there are only 198 bands that are calibrated. The reason for not calibrating

all the 242 bands is mainly due to the detector's low responsivity in these channels.

The bands that are not calibrated are set to zero in those channels. There is an

overlap between the VNIR and SWIR focal planes; therefore, there are 196 unique

bands (Beck, 2003). The bands were spectrally subsetted such that bands 8 to 57

from the VNIR and bands 77 to 224 from the SWIR were used and the bands that

are not calibrated were deleted.
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4.3.3 Computation of the lignin indices

Serrano et al. (2002) summarized lignin bands and lignin reference bands based on

previous information researched by Curran (1989). There are a number of bands that

correspond to lignin but some bands also respond to water absorption as shown in

Table 4.1. The bands that unequivocally correspond to lignin were selected and the

corresponding reference band closest to the lignin bands was used. The band at

1940nm coincides with water absorption and bands at 2262 and 2380nm had low

signal to noise ratio. The selected lignin band was at wavelength 1750nm with a

reference band at 1680nm. The indices were computed using ENVI 4.2. Reflectance

based indices were calculated using: L1R= Al750 + AI680 2 •

C1..1750 + A1680)
Bulk lignin is the total lignin concentration sensed from the surface of interest, Le. the

total lignin concentrations sensed from the canopy cover of the Eucalyptus plantation

excluding the understorey. The bulk lignin concentrations calculations using Leaf

Area Index (LAI) or Normalised Difference Vegetation Indices (NDVI) were not

necessary since there was no significant variation in understorey among

compartments. The understorey was therefore treated as a constant. Index images,

with a range of index values per compartment, resulted. The regions of interest (ROI)

were developed, using ENVI 4.2, such that they overlap with the area where field

sampling took place within a compartment to eliminate error in correlations. The

indices to be correlated to foliar lignin concentrations were sampled where the ROls

were developed and these indices were averaged.

Table 4.1: Absorption wavelengths for water and lignin as reported by Serrano et aI., 2002

Absorbing biochemical Wavelength (nm)

Water

Lignin

970, 1200, 1400, 1450, 1940

1120,1200,1420,1450,1690,1754,1940,2262,2380

4.3.4 Statistical analysis for the estimation of lignin concentrations

Each point on the regression analysis represents a tree's average lignin concentration

when regressing foliar against wood lignin concentrations that were measured in the

laboratory. Each point is a mean value of two duplicates per tree. Foliar lignin

concentrations were then averaged per compartment and then laboratory measured

lignin concentrations were regressed against all the lignin bands individually. Linear
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regression was performed on the twelve averages of the computed spectral lignin

indices and the compartments averages of foliar lignin concentrations measured in

the laboratory. The resulting equations were then used to convert the computed

lignin indices to create images of predicted or derived foliar lignin concentrations.

The foliar lignin concentrations derived from the lignin indices were then converted to

wood lignin concentrations using the site-specific wood-foliar lignin regression

equations that were developed using the laboratory determined wood and foliar lignin

concentrations. The averages of the predicted wood lignin concentrations were

calculated for each compartment, and they were compared to the laboratory­

measured wood lignin concentrations using linear regression.

4.4 ESTIMATION OF LEAF AREA INDEX FROM HYPERION DATA

4.4.1 Measuring LAI in the field using A Li-Cor LAI 2000 canopy analyser

Only seven compartments were measured for LAI because of time constraints.

These are compartments 3, 5, 6, 8, 9, 10 and 11 (Table 3.1). The central areas

where the LAI readings were taken were marked using a differential GPS (Global

Positioning Systems) and a compass outside a compartment, and distance within a

compartment. A Licor instrument was used and the values measured were within

10% of the mean values with a 0.95 confidence level (L1-COR, 1990). The remote

mode method was used because of the substantial height of the trees. Three sets of

readings were taken for five points under the canopy in each plot. These points were

chosen randomly. The multiple readings below the canopy and the fish-eye filed of

view ensure that LAI calculations are based on a large sample of foliage canopy. All

readings were taken with the instrument pointing away from the sun. A separate

synchronized instrument was located in the centre of a clearing of at least 40m in

diameter, the minimum area necessary at these sites to ensure an uninterrupted

view of open sky conditions. The sensor was taking readings every 15 seconds

representing the above-canopy readings. During the data processing stage, below­

canopy readings were compared with the above-canopy readings closest in time and

averaged.
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4.4.2 Correlation analysis of vegetation indices extracted from Hyperion

data with field LAI measurements

While the NIR is influenced by canopy structure, the SWIR region is mainly

influenced by water content (Huber et al., 2005). Research conducted has shown

that there is a strong correlation between water content of leaves and SWIR

reflectance. SWIR region is associated with water absorption such that its

reflectance alone can be utilized to estimate moisture content at landscape level

(Toomey and Vierling, 2005). It has also been shown that large variations in results

derived from the SWIR region are attributed to the differences in moisture content

between the data collection and satellite data collection period. Broader bands are

highly affected by the water content whereas narrow bands show specificity to the

bands affected by water and moister content. In MODIS data, channel 6 (1628-1652

nm) mainly corresponds to the moisture and water content (Fensholt et al., 2004). In

hyperspectral data, it was found that the water channels are at 970, 1200, 1400,

1450 and 1940nm. This renders most bands usable in the SWIR region when using

hyperspectral data, as long as they do not coincide with the water narrowbands.

Gong et al. (2003) and Pu et al. (2005) established that combinations of bands in the

NIR and SWIR regions of Hyperion produce better correlations with measured LAI

compared to the combinations of bands from red and NIR regions. Therefore in the

context of LAI calculations, bands from the NIR and SWIR regions were termed

optimal bands. Only the optimal bands were explored in this study and therefore all

the vegetation indices are modified, e.g. Normalized Difference Vegetation Index

(NDVI) in this study is Modified Normalized Difference Vegetation Index (MNDVI).

According to Gong et al. (2003), there are several bands in the NIR and SWIR

regions that can be used to calculate vegetation indices. Using the table (APPENDIX

8) of possible bands that can be used to calculate vegetation indices, compiled by

Gong et al. (2003), linear regression was performed between all the possible bands

and the LAI values that were averaged per compartment. Vegetation indices were

then constructed using the selected bands from the NIR and SWIR. Each vegetation

index was constructed using all the possible combinations of selected bands from

the NIR and the SWIR regions. Indices constructed were simple ratio (SR); modified

normalized difference vegetation index (MNDVI); re-normalized difference vegetation

index (RDVI); non-linear vegetation index (NU); modified non-linear vegetation index
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(MNLI); soil adjusted vegetation index (SAVI), SAVI*SR; NDVI*SR and modified

simple ratio (MSR) (the descriptions and equations of the vegetation indices are in

APPENDIX 3a). The soil line slope, soil line intercept and the soil minimizing

adjustment factor were not calculated or measured in the field therefore, TSAVI, PVI

and WDVI were not calculated. L = 0.5 was used in this study because it is

applicable to a wide range of LAI values.

Figure 4.7 summarizes the analysis procedures that were followed from field

sampling to the establishment of the lignin and LAI models. Other bands for VI

calculations can be viewed in APPENDIX 9.

l
Correlation of
wood and fbliar
lignin

. concentrations

Leaf and wood
samples collected
from the field

Determinati.on of
lignin values using

i wet·chemistry

1

LAI

l

Figure 4.7 Summary of the analysis procedures and outcomes of the study
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CHAPTER 5: Results and Discussion

5.1 INTRODUCTION

This chapter presents results of the work that was carried out to quantify

concentrations of wood and foliar lignin in each tree, wood and foliar lignin

relationships results and image analysis for the lignin indices. The chapter includes

the statistical analysis results for the establishment of the lignin estimation model

using regression analysis. Field measured LAI results are presented as well as the

vegetation indices values calculated from the narrow bands. Results on regression

analysis between the calculated vegetation indices and field measured LAI are also

presented. Discussions are also included in this chapter.

5.2 WOOD LIGNIN ESTIMATION USING HYPERION DATA

5.2.1 Wood and foliar lignin concentrations determination in the laboratory

Wood and foliar lignin were analyzed for each sampled tree in a compartment. The

resulting values of wood lignin concentrations were regressed against the resulting

values of foliar lignin concentrations to obtain a general model for wood lignin

prediction from foliar lignin concentrations as shown in Figure 5.1. Linear regression

analysis indicated that there is no general relationship between foliar and wood lignin

concentrations for Eucalyptus clones in the age group between six and nine years,

although the relationship is significant with a p value of 0.044.
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Figure 5.1 Relationship between foliar and wood lignin in all trees
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The R2 is very low at 0.068 and it was concluded that there is a meaningful trend but

not useful for the purpose of the study. It was suspected that the wood-foliar lignin

relationship could be site specific or compartment-specific; therefore, wood and foliar

lignin concentrations were first regressed for individual compartments. The results of

the regression analysis for each compartment are presented in Table 5.1. Average

laboratory-measured values of wood and foliar lignin concentrations for each

compartment are presented in APPENDIX 10.

Table 5.1: A summary of regression analysis between wood lignin concentrations and foliar lignin

concentration per compartment

Standard

Compartment R2 p-value Error

(SE)

1 0.861 0.023 0.104

2 0.834 0.030 0.844

3 0.799 0.041 0.612

4 0.696 0.079 0.134

5 0.824 0.033 0.956

6 0.787 0.045 0.188

7 0.790 0.044 0.134

8 0.777 0.048 0.240

9 0.803 0.040 0.203

10 0.853 0.025 0.130

11 0.871 0.020 0.422

12 0.519 0.170 0.308

The regression analysis for each compartment produced results that indicated that

wood and foliar lignin relationship could be compartment-specific. The results

showed significant relationships between wood lignin and foliar lignin concentrations

in ten compartments. Compartment 4 and 12 did not show significant relationships

between wood and foliar lignin concentrations. The R2 for each of the ten

compartments was very high and ranged between 0.777 and 0.871. The

compartment-specific relationships led an investigation into a correlation matrix

between wood lignin concentrations, foliar lignin concentrations, age and SI. The

results of the correlation matrix are presented in Table 5.2.
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Table 5.2: A summary of the correlation matrix for foliar, wood lignin, site index and Age
(Size = 60)

Foliar Wood
lignin lignin

Wood
-0.260*

lignin
Age -0.287* 0.519**

SI -0.282* -0.089
Clone

0.424* 0.194
type

* Relationship is significant at the 0.05 level (2-tailed).
** Relationship is significant at the 0.01 level (2-tailed).

Age

-0.111

0.491*

Site
index

-0.529*

The results presented in Table 5.2 showed that age has a significant influence on

wood and foliar lignin concentrations. Site index also significantly influences wood

lignin concentrations. These findings led to attempts to find more meaningful

relationships between wood and foliar lignin, therefore, compartments were grouped

according to age and site index.

A. Grouping according to similar age

Grouping of compartments of same or similar ages was also explored, such as

compartments 1, 2, 3 and 4; compartments 7 and 8; and compartments 6, 9, 10 and

12 (Table 5.3). The results of groupings, according to age, that showed significant

relationships are presented in Figure 5.2 (A-F).
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Table 5.3 shows compartments that were grouped according to similar ages. Three

main groups resulted from the12 compartments when they were grouped according

to similar age. Within each group there were more suitable sub-groups that showed

more significant results with respect to the relationship between wood and foliar

lignin concentrations. These sub-groups were more suitable because the

compartments that fell within these sub-groups were either of similar clones or of

more similar or same age.
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Figure 5.2 Graphs (A-B) demonstrating the resulting age groupings that showed significant

relationships between wood and foliar lignin concentrations
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63



35

•
'- •
J ••~. ••

"'-
"'-
~.,,-

•

40

38

36

34

32

30

28

26

24

22

20

20

G: Compartments 9, 10 and 12

25 30

y = -1.254x + 66.867

R2 = 0.815

p«0.OO1

SE=0.166

Figure 5.2 Graphs (G) demonstrating the resulting age groupings that showed significant

relationships between wood and foliar lignin concentrations

Compartment 1, 2, 3, 4 and 5 were grouped together, however when compartment 5

was included there was no significant relationship between wood and foliar lignin.

Even though compartment 5 had the same age as compartment 1 and 2, the site

index was slightly higher than the SI of compartment 1, 2, and 4; it was lower than SI

of compartment 3. Compartment 1 and 5 are of the same Eucalyptus species, but

there was no significant relationship between wood and foliar lignin when these two

compartments were grouped together. When an E. Urophylla and a GU of the same

age were grouped together the R2 was 0.552 and the relationship between wood and

foliar lignin was significant (Figure 5.28). When two GU compartments

(compartments 2 and 3) of similar ages (7.25 and 6.92 years respectively) were

grouped, R2 was high at 0.684, and the p-value was low, indicating a significant

relationship (Figure 5.2C). Compartment 7 and 8 are of exact age and the

relationship between wood and foliar lignin when these compartments were grouped

and the R2 was high at 0.884 (Figure 5.20). The p-value was also low indicating a

significant relationship. This significant relationship with a high R2 can be attributed to

the fact that compartments 7 and 8 are of a similar clone as well as exact age.

Compartment 6, 9, 10, 11 and 12 were grouped together because they were of

similar ages at 8.33, 8.08, 8.00, 8.75 and 8.00 respectively (Figure 5.2 E). The
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relationship between wood and foliar lignin concentration when these five

compartments were grouped was significant with a p-value lower than 0.001 and an

R2 of 0.628. When compartment 11 was omitted because it was closer to 9 years of

age when the other four compartments were closer to 8 years of age, the relationship

between wood and foliar lignin improved and the R2 was 0.739 (Figure 5.2 F). It must

be noted that this group consisted of very different clones; two GU, one GC, one GT

and one E. grandis. The high R2 and low p-value indicate that age in this case is a

major influence of the relationship between wood and foliar lignin and not necessarily

the clone type. When compartment 9, 10 and 12 were grouped together because

their age group is very similar, the R2 improved at 0.815 with a p value of 4.03-06

(figure 5.2 G)

B. Compartments grouped according to similar SI

Compartments with similar site indices were grouped together to investigate

significant relationships between wood and foliar lignin concentrations (Table 5.4).

The results of the grouping according to site index that showed significant

relationships are presented below in Figure 5.3 (A-D).

When grouping the compartments according to similar site indices, only one sub­

group resulted. Compartment 4 and 8 had more similar site indices and they formed

a sub-group.
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Table 5.4: compartments grouped according to similar site indices

Legend (Main group coding)

II1II Heading row and compartments that could not be grouped with other compartments

1*IU:I'J Compartments 2 and 7

1'1.1£1 Compartments 4, 5 and 8

_ Compartments 10 and 12

_ Compartment 1 and 9
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Figure 5.3 Graphs (A-B) demonstrating the resulting SI groupings that showed significant

relationships between wood and foliar lignin concentrations
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Compartment 1 and 9 had similar SI at 21.29 and 21.96 respectively, but

compartment 1 was closer to 7 years of age at 7.25 years and compartment nine

was closer to 8 years of age at 8.08 years. This grouping did not produce a

significant relationship between wood and foliar lignin concentrations. Compartments

2, 6 and 7 were grouped and there was no significant relationship between wood and

foliar lignin that resulted. However, when compartment 6 was omitted in this group

because this compartment was over 8 years old and the site index was slightly

higher that the other two compartments, there was a significant relationship between

wood and foliar lignin concentrations (Figure 5.3 A). The R2 was just above 0.5.

Compartments 4, 5 and 8 were grouped together; there was a significant relationship

between wood and foliar lignin concentrations with an R2 of 0.48. However,

compartments 4 and 8 had the exact SI, and when the two compartments were

grouped, the relationship between wood and foliar lignin concentrations improved to

an R2 of 0.61 (Figure 5.3 C). Compartments 10 and 12 were grouped and the

relationship between wood and foliar lignin was significant with an R2 of 0.97 (Figure

5.30). The high R2 can be attributed to the fact that these two compartments have

exactly the same age (8.0 years). Compartments 10 and 12 are a GU and E. grandis

respectively. Both the age and SI groupings proved that age and SI influence the

relationship between wood and foliar lignin concentrations.

This project aims at predicting wood lignin using canopy spectral reflectance. To

achieve this aim, wood and foliar lignin concentrations had to be determined since

the satellite sensor can only sense information at the canopy level.

5.2.2. Relationship between foliar lignin concentrations from the laboratory

and lignin indices

After the atmospheric correction, spectral bands are supposed to be clear of any

atmospheric influence; however, that is not usually easily achievable. Some

researchers use atmospheric correction together with ground spectroradiometer

measurements to modify and produce improved reflectance images (Pu et al., 2005).

Most lignin bands were either affected by the water absorption or the spectral noise

in the region of longer wavelengths (Lillesand and Kiefer, 2000). Each band was

regressed against the averages of lignin indices extracted from the ROls.
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Reflectances from each lignin band were regressed against the laboratory-measured

lignin concentrations (Table 5.5.)

Table 5.5: A summary of linear regression analysis between all possible bands for the

calculation of spectral lignin indices and laboratory measured foliar lignin concentrations

Spectral Band A. (nm) R'" p-value Standard error

region (SE)

1120 0.059 0.4454 386.469

NIR 1200 0.073 0.3964 365.952

Ref. band 1680 0.761 0.0002 91.462

1690 0.771 0.0002 88.359

SWIR 1750 0.719 0.0005 102.800

2100 0.518 0.0083 156.782

2262 0.515 0.0086 127.126

The reflectance values from the band situated at 1690nm have the highest

correlation with the foliar lignin concentrations; however, this band is also situated

close to the reference band situated at 1680nm (Table 5.5). This means that the data

from the reference band and data from the band at 1690nm are highly correlated.

Therefore the band at 1750nm was selected over the band at 1690nm. The bands

that were used to construct the lignin indices were, thus, bands at 1750nm and the

reference band at 1680nm. The equation was used to construct the lignin index

image using the two selected bands. The mean values of the indices were extracted

from the ROls within each compartment. These mean values were regressed against

the laboratory-measured foliar lignin concentrations for each compartment (figure

5.4)
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Figure 5.4 Relationship between laboratory-measured foliar lignin concentrations and the

reflectance-based non-linear lignin indices (1690nm and 1680nmref)

Figure 5.4 shows a significant relationship between lignin indices and laboratory­

measured foliar lignin concentrations. The equation was used to convert the lignin

index image to the foliar lignin concentration image. Figure 5.5 demonstrates foliar

lignin concentrations across the whole image and Figure 5.6 demonstrate the

distribution of foliar lignin and wood lignin concentrations across each compartment.

The distribution of foliar lignin concentration varies within each compartment. The

advantage of remote sensing is that variation across a compartment can be mapped.

In this study the laboratory measured averages of a compartment correspond to ROI

averages and therefore the distribution of foliar lignin wood lignin concentrations in

the images below is extrapolated across the rest of the compartment and image.
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Figure 5.5 An illustration of foliar lignin concentrations calculated from the lignin indices

across the image
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Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (1 and 2)
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Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (3 and 4)
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Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (5 and 6)
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Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (7 and 8)
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Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (9 and 10)

77



N

A
Legend

Predicted Follar Lignin (%)

value
Low: 0

High: 40

Legend

Predicted Wood Lignin (%)
value

Low: 20

High: 40

FoDar Lignin Concentration

Compartment 11

Compartment 12

1:8 750

1:14987

0' 200 400 Meters
I I I

Wood lignin Concentration

Compartment 11

o 100 200 Meters
I I I

Co mpartment 12

A...

1:9000

1:15000

o 200 400 Meters
I I I

Figure 5.6 An illustration of foliar lignin and wood lignin concentrations calculated from the lignin indices across each compartment (11 and 12)
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5.2.3 Prediction of Wood Lignin Concentrations

The resulting derived foliar lignin concentrations from the image were firstly

converted to wood lignin concentrations using compartment specific equations which

were established using the laboratory data (refer to Table 5.1). Compartment 4 and

12 did not have significant relationships individually but when they were grouped with

other compartments of similar age and SI the relationships between wood and foliar

lignin concentration were significant. The equation in figure 5.3 C was used to

convert foliar lignin concentration of compartments 4 and 8 to wood lignin

concentrations. The equation in Figure 5.2 F was used to calculate the predicted

wood lignin from the predicted foliar lignin concentrations of compartment 12. The

predicted wood lignin concentrations were averaged per ROI of each compartment

and then regressed against the averages of the laboratory-measured wood lignin

concentrations. Figure 5.7 shows a positive relationship between laboratory­

measured and predicted wood lignin concentrations with an R2 of 0.91 and a very

low p-value.

Secondly, foliar lignin concentrations from the image were converted to wood lignin

concentrations using the age and site index dependant equations. Equations from

Figure 5.2 S, C, 0, E and Figure 5.3 S were used to convert foliar lignin

concentrations to wood lignin concentrations. Figure 5.8 shows the positive

relationship between laboratory-measured and predicted wood lignin concentrations.

This relationship implies that wood lignin concentrations can be predicted using

hyperspectral lignin bands and meaningful relationships between wood and foliar

lignin concentrations.

From this study a multiple regression model was attempted to obtain an

indication of the variables that contribute largely to the variations in wood lignin

concentrations. The multiple-regression analysis was performed to assess if the

wood lignin concentration prediction model could be significant with the

inclusion of the SI and age and clone type. The results of the multiple­

regression are presented in Table 5.6.
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Table 5.6 Summary of results of the multiple-regression analysis

Dependent wood lignin concentrations

Input independent variables age, SI and foliar lignin concentrations,

clone type

Variables that significantly

explain the variation in wood

lignin concentrations

Multiple R

No. of cases

Standard error

p

Resulting model

age and foliar lignin concentrations

0.683

0.466

60

3.187

<0.0001

wood lignin concentrations - 3.71A - 0.74F

+ 21.90, where A = age and F = foliar lignin

concentrations

Table 5.6 summarizes that foliar lignin concentrations and age have a

combined significant influence on the variations of wood lignin concentrations.

The R2 improved from 0.06 (Figure 5.1) to 0.47 when age was included in the

wood lignin concentration prediction model for all trees in one regression

analysis. The p value shows that the relationship is adequately significant to

conclude that clone type, SI and age could further be modeled using a wide

range of ages and site qualities. This model is subject to inherent errors due to

the sample size. This study has formed a basis to model specific variables for

the prediction of wood lignin concentrations using hyperspectral lignin indices.
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5.3 LEAF AREA INDEX DETERMINATION USING HYPERION DATA

The regression analysis between all the possible bands for calculating vegetation

indices and the field measured LAI resulted in certain specific bands showing

significant relationships with the LAI measurements. The bands that showed

significant relationship are situated at 814 and 824nm in the NIR region and at 1250,

1630, 1640, 1650, 1660 and 1670nm in the SWIR region. In total, eight bands were

selected. The results of regression analysis for the eight selected bands are

presented in Table 5.7.

Table 5.7: A summary of the linear regression analysis between the selected possible bands

and the field measured LAI

Spectral Band A (nm) R:l p-value Standard error

region (SE)

814 0.819 0.013 1082.025

NIR 824 0.926 0.002 653.280

1250 0.853 0.009 582.889

1630 0.704 0.037 340.831

SWIR 1640 0.873 0.006 267.151

1650 0.876 0.006 265.040

1660 0.656 0.051 404.441

1670 0.590 0.074 398.575

Plant cell walls scatter NIR energy, leading to generally high reflectance values in the

NIR region than in SWIR region in the spectrum of a plant canopy (Lillesand and

Kiefer, 2000). Therefore, when calculating the indices R was substituted with SWIR.

Nine vegetation indices: SR; MNDVI; RDVI; NU; MNU; SAVI*SR; MNDVI*SR; SAVI

and MSR were computed using average spectral reflectance values of two bands in

each compartment using all the eight selected bands for possible combinations. The

two bands that produced vegetation indices that correlated best with the field

measured LAI were situated at 824nm in the NIR region and at 1650nm in the SWIR

region. Linear regression coefficients were calculated between the Vis and

measured LAI for each of the seven compartments (refer to Table 3.1). The results

of the regression analysis for the LAI values of all the seven compartments against

SR, NDVI, RDVI, MNDVI*SR, SAVI*SR, MNLI SAVI and MSR are in Figure 5.8.

82



y = -17.412x + 10.041
2.3

2.2

2.1

2

« 1.9...J

1.8

1.7

1.6

•
~.

"""~ " •
0

R2 = 0.892

p=0.001

SE=0.082

A: SR vs. LAI

1.5

0.45 0.46 0.47

SR

0.48 0.49

y = 18.753x - 4.9055
2.3

2.2

2.1

2

« 1.9...J

1.8

1.7

1.6

•
A

/
;7

....

/'
• /' ~

/.

R2 = 0.894

p= 0.001

SE= 0.082

1.5

0.34 0.35 0.36

NDVI

0.37 0.38

B: NDVI vs. LAI
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NU results for all the LAI values were 0.999. For this reason this graph was not

presented, and therefore only eight graphs were presented in Figure 5.8. Gong et al.

(2003) stated that NU and MNU are indices that can linearize relationships with

surface parameters that tend to be non-linear and are therefore more suitable for

semiarid environments. The study area in this project, Zululand, is a land used for

commercial plantations and therefore cannot be categorised as a semi-arid land.

This could be the reason the NU produced values of 0.999 and the MNU produced

values between 1.499935 and 1.499955. These values are close together and might

saturate with higher or wider range of LAI values. The MNU and NU are, therefore,

not recommended for use in the commercial forestry land. The MNU correlation to

LAI also had a lower R2 of 0.791 compared to all the other seven index-correlations.

The relationship between LAI and the MNU also had the highest p-value (0.007) and

standard error (SE) of 1.114 (Figure 5.8 D). The seven other vegetation indices had

significant relationships with the field measured LA!.

The results of the eight vegetation indices and LAI regression analysis are

summarised in Table 5.8. In six cases (SR vs. LAI; MNDVI vs. LAI; SAVI*SR vs. LAI;

MNDVI*SR vs. LAI, SAVI vs. LAI and MSR vs. LAI) had a p-value of 0.001 when

RDVI vs. LAI produced a p-value of 0.002 and MNU vs. LAI gave a p-value of 0.007.

RDVI is nonetheless recommended for LAI predictions because the relationship

between LAI values and RDVI is significant. The standard error (SE) was relatively

low for all the correlations; the lowest SE was 0.080 and the highest was 0.092.

SAVI*SR and MNDVI*SR correlations had the lowest SE of 0.080, followed by MSR

with SE of 0.081. SR, NDVI and SAVI had the SE of 0.082. RDVI had the highest SE

of 0.092. SAVI*SR and MNDVI*SR had the highest R2 of 0.897 and 0.899

respectively, followed by the MSR with the R2 of 0.895. SAVI and MNDVI produced

very similar statistics for their correlations, with the R2 of 0.894. The SR also has

almost similar results with the SAVI and MNDVI except for the R2 values. The SR

produced an R2 of 0.892, which is slightly lower. The RDVI had the second lowest R2

of 0.865 out of the eight correlations. All the investigated indices produced very

significant results when regressed against LA!. SAVI*SR and MNDVI*SR produced

the best results when regressed with the field-measured LA!. Eight of the nine

vegetation indices that were regressed against the field-measure LAI are suitable for

estimating and predicting ground LAI, however MNU is not recommended for a
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forest plantation because the LAI values corresponded to a very narrow range of

MNU in this study.

Table 5.8 A summary of the results of the regression analysis between the eight VI and LAI

Regression Standard

analysis R 2 p-value error (SE)

SR vs. LAI 0.892 0.001 0.082

NDVI vs. LAI 0.894 0.001 0.082

RDVI vs. LAI 0.865 0.002 0.092

MNLI vs. LAI 0.791 0.007 0.144

SAVI*SR vs. LAI 0.897 0.001 0.08

NDVI*SR vs. LAI 0.899 0.001 0.08

SAVI vs. LAI 0.894 0.001 0.082

MSR vs. LAI 0.895 0.001 0.081

The SAVI*SR index combines the SAVI merits of adjusting variations induced by the

soil brightness and the SR merits where there are changes in the amount of green

biomass, pigment content and leaf water stress. Generally with higher LAI, where the

reflectance is higher in NIR region and lower in the R or SWIR regions, a change in

the NIR region will induce a larger change in the SR than in the MNDVI. The

MNDVI*SR is therefore expected to balance the phenomenon to increase correlation

accuracies for a wider range of LAI values (Pu et al., 2005). MSR, RDVI and NU

linearize the non-linear relationships between the Vis and any biophysical parameter

such as LAI (Goel and Qin, 1994).

SAVI was derived from the NDVI but the soil! background adjustment factor was

introduced to produce vegetation isolines that are more independent of the

background. SAVI with L=O is equivalent to NDVI. In this study a factor of 0.5 was

used because this factor can reduce the soil noise problems for a wide range of LAI

values. However, taking into consideration that in the forest plantations there is

hardly any evidence of exposed soil within the compartments, it can be concluded

that the 0.5 only uniformly affected the reflectance of all the compartments. The

illustrations of the widely used vegetation index: the MNDVI; and the two indices that

had the best relationship with the field-measured LAI in this study: the MNDVI*SR

and the SAVI*SR are shown in Figure 5.9. Only two compartments are shown for
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each index. Different vegetation indices represent vegetation cover differently as

shown in Figure 5.9, based on the different calculations using the two narrow bands.

LAI is therefore calculated from the regression models in Figure 5.8. Figure 5.10

presents a map of LAI across the image that resulted from the MNDVI*SR vs. LAI

model in Figure 5.8 F. It is possible to map LAI across each compartment using

remote sensing as demonstrated in Figure 5.11. These LAI maps were developed

from the MNDVI*SR index because it produced the best correlation results with the

field measured LAI.
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CHAPTER 6: Conclusions and Recommendations

6.1 Conclusions

The aim of this project was to investigate if satellite-borne hyperspectral data can be

used to estimate wood lignin concentrations using calculated lignin indices, and also

to investigate the robustness of the narrowband vegetation indices for estimating LA!.

For the estimation of wood lignin concentrations, selected compartments were

between the ages of six and nine years to obtain estimates of the lignin

concentrations in compartments that are at harvesting age. The age between 6 and 9

years is the approximate age of pulpwood harvesting. It was assumed that the ages

between 6 years and 9 years could be grouped as one age group. Age was thus

assumed to be a constant variable. Large variation among the Eucalyptus clones was

not anticipated since clones and not Eucalyptus species were used. Biological

variation was also, assumed to be a constant. Site indices were, however, not kept

constant to allow for a comparative study. The results showed that there is no general

model to predict wood lignin concentrations from foliar lignin concentrations. The

relationships between wood and foliar lignin concentrations could be compartment­

specific but to generalise the model, a correlation matrix revealed that these

relationships are influenced by site index (SI) and age. This implies that for a model to

be successful to implement, age and SI have to be taken into consideration. There

was no evidence of correlation between wood and foliar lignin concentration when the

. two E. urophylla compartments of the same age were grouped together

The two bands at 1680nm and 1750nm were selected because they were not

correlated and they produced indices that correlated best to the laboratory measured

foliar lignin. The results show that there is potential to predict foliar lignin

concentrations from lignin indices in Eucalyptus clones plantation forests. These

indices correlated to the laboratory measured foliar lignin concentrations. When the

predicted wood lignin concentrations were regressed against the laboratory measured

wood lignin concentrations, the relationship was very significant with an R2 of 0.91. It

is therefore concluded that it is possible to predict wood lignin concentrations if the
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wood and foliar lignin concentration model is pre-determined and accurately

modelled.

Atmospheric correction of Hyperion produced an image with bands that were

explored for the construction of vegetation indices. Eight bands (two in NIR and six in

SWIR) that correlated to field measured LAI were used to construct nine vegetation

indices using all possible combination of any two bands (one band from NIR and the

other from SWIR). The resulting vegetation indices were regressed against the

average field measured LAI of seven compartments. The regression analysis showed

that vegetation indices that best correlate to field-measured LAI are situated at 824nm

and 1650nm; therefore these two bands were selected to construct the nine

vegetation indices.

The results of the NU (non-linear vegetation index) calculation using the reflectances

from the selected bands showed saturation since all the LAI values corresponded to

the NU value of 0.999 and there was no correlation. This index is mainly used in the

semi-arid regions and it is therefore not suitable for LAI predictions in areas like

Zulu land which is populated with forest plantations. The index also showed possible

signs of saturation because the index values that showed correlation with the LAI

values corresponded to a range between 1.499935 and 1.499955. This vegetation

index is therefore not recommended for LAI predictions because it also had the

lowest R2
, highest SE and p-value, compared to the other vegetation indices, when

regressed against LAI values. SAVI*SR and NDVI*SR proved to have the best results

when regressed against the measured LA!. NDVI*SR had a higher R2
. Any of the

vegetation indices can be used to predict LAI depending on the soil brightness in the

image or the extent of bare soil present within the compartments, except for the NU.

MNU could be used with caution because it might easily saturate at extreme values.

With regards to this study area, soil is not of concern since there is very little or no

bare soil present within the compartments. This might be the reason the NDVI*SR is

the best for this study area. Judging by the results obtained in this study, it can be

postulated that hyperspectral-based indices pose many opportunities for formulation

of more accurate models to predict biophysical parameters.
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6.2 RECOMMENDATIONS

The study showed that it is possible to predict wood and foliar lignin using

hyperspectral remote sensing. The results also show that site index and age have an

influence on the wood and foliar lignin model. It will therefore be beneficial to explore

the possibilities of age and site quality models within an individual clone. Sampling

within a compartment should be extensive such that a substantial number of trees are

sampled for statistically viable conclusions about the wood and foliar lignin

concentration relationship and to understand the compartmental relationship between

wood and foliar lignin concentrations. From the results of this study, it is

recommended that models that were developed to predict wood lignin from foliar

lignin concentrations and hyperspectral indices be used for other similar

compartments for pulp and paper processing purposes.

When sampling or acquiring measurements within a compartment, a more specific

ground plot location could be used. This plot can then be marked using distance such

that it can be identified on the image. This will enable a more accurate calibration

model for foliar lignin concentration and LAI predictions if the laboratory-measured

foliar lignin concentrations and field measured LAI are regressed against means of

image data from areas that overlap with the ground plots. The actual foliar lignin

concentrations or LAI can then be extrapolated to the rest of the image. More

accurate estimations of foliar lignin concentrations and NDVI values will be developed

and consequently more accurate wood lignin concentrations and LAI estimations will

result.

It is imperative to use an appropriate atmospheric correction model for the

atmospheric correction of Hyperion data. Leaf area index is one of the frequently

measured biophysical parameters, therefore to confidently conclude that

hyperspectral is more accurate for LAI estimation; a larger number of compartments

should be sampled. This study was conducted on a flat terrain; therefore studies

conducted on more rough terrain should incorporate an accurate digital elevation

model (DEM) for the calculation of correct vegetation indices. Hyperspectral data hold

great potential in providing relatively more accurate LAI estimation, however, more

work needs to be done to arrive at conclusive evidence. The use of Hyperion data for

96



predicting LAI values and subsequently use these estimations in physiological and

ecological models is recommended.
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APPENDICES

APPENDIX 1

Wavelengths of the near infrared spectral region for lignin concentrations predictions using different
technologies

Wavelengths Type of R'" of prediction Instrument Band selection
used for lignin material based on their method
estimation (nm) calibration

equation

1100 - 2498 Dry 0.83 -0.96 NIRS 5000 Partial least
square
regression

1564,1680,2061, Dry Not given Neotec 51 Multiple linear
2328, regression

1500, 1850, 1720, Fresh Lignin and NIRS 6500 ANN algorithm
2100 - 2400 cellulose together and LIBERTY

-0.79 model

1261,1297,2353 Canopy 0.93 AVIRIS Multiple stepwise
linear regression

1730,2100,2300 Dry 0.2 -.0.71 NIRS 6250 Multiple stepwise
linear regression

1438, 1828,2218, Fresh- 0.24 - 0.50 NIRS 6250 Multiple linear
2386 dry regression

1660, 1740, 1900, Canopy 0.71 - 0.90 AVIRIS Multiple linear
2280 regression

1438, 1708,2154, Dry 0.76 - 0.82 NIRS 50 Multiple stepwise
2320 linear regression

1438, 1828,2218, Dry 0.77 NIRS 50 Based on
2386 biophysical

meaning and
good statistical
fit

1654, 1693,2076, Dry 0.37 Perkin Multiple stepwise
2135,2270,2327 Elmer 360 linear regression

1654, 1693,2076, Dry 0.71 Neotec 51A Multiple stepwise
2135,2270,2327 linear regression

Fohar and/ or branch matenalls dned and ground Into fine powder (Soukupova et al., 2000).
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APPENDIX 2

Image Processing

A number of approaches have been advanced to compensate for the atmospheric

contamination of spectra, increase in the volume of data and the relatively poor

signal to noise ratios. Two specific techniques, Internal Average Relative

Reflectance (IARR) and Log Residuals are implemented in ERDAS IMAGINE.

These have the advantage of not requiring auxiliary input information; the correction

parameters are scene-derived. The disadvantage is that they produce relative

reflectances (they can be compared to reference spectra in a semi-quantitative

manner only). As a result the image processing techniques that are used to analyse

hyperspectral imagery differ from the norm. In general, image analysis requires more

attention to issues of atmospheric correction and relies more heavily on physical and

biophysical models rather than on purely statistical techniques such as maximum

likelihood classification (Erdas, 1999).

Enhancement of Hyperspectrallmages

There are a number of methods that can be employed to improve and enhance

hyperspectral images.

A. Normalise

Sensor look angle and local topographic effects affect pixel albedo. For airborne

sensors the look angle effect can be large across the scene whereas it is less

pronounced for satellite sensors. Most scanners look to both sides of the aircraft and

the average scene luminance between the two half-scenes can be large. To help

minimise these effects, an equal area normalisation is applied. This calculation shifts

each pixel spectrum to the same overall average brightness. This method must be

used with a consideration of whether this assumption is valid for the scene. For

example, in the image that contains two distinctly different regions, like the ocean

and the forest, this method is not exactly useful. Correctly applied, this method helps

remove albedo variations and topographic effects (Erdas, 1999).
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B. IAR Reflectance (Internal Average Reflectance)

This technique calculates a relative reflectance by dividing each spectrum by the

scene average spectrum. The algorithm is based on the assumption that the scene

average spectrum is largely composed of the atmospheric contribution and that the

atmosphere is uniform across the scene, however these assumptions are not always

valid. In fact the average spectrum could easily contain absorption features related

to the target material of interest. This method could then overcompensate (remove)

these absorbance features. Therefore the average spectrum should be visually

inspected to check for this possibility. Properly applied, this technique can remove

the majority of atmospheric effects (Erdas, 1999).

c. Log Residuals

The Log Residuals has been modified by the researchers over the years but was

originally described by Green and Craig in 1985. This algorithm can be written as:

Output Spectrum =input spectrum - average spectrum - pixel brightness + image

brightness.

All parameters in the above equation are in logarithmic space, hence the name. This

algorithm corrects the image for atmospheric absorption, systemic instrumental

variation and illuminance differences between pixels (Erdas, 1999).

D. Rescaling

Many Hyperspectral scanners record the data in a format larger than 8-bit. In

addition, many of the calculations used to correct the data are performed with a

floating-point format to preserve precision. At some point it is advantageous to

compress the data back to an 8-bit range for effective storage and display. When

rescaling data to be used for imaging spectrometry analysis, however, it is

necessary to consider all data values within the data cube, not just within the layer of

interest. Any bit format can be input but the output image is always 8-bit. When

rescaling a data cube, a decision should be made as to which bands to include in

the rescaling. A bad band should be excluded. When rescaling data sets it may be

appropriate to rescale each electromagnetic region separately (Erdas, 1999).
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E. Mean per Pixel

This algorithm outputs a single band, regardless of the number of input bands. By

visually inspecting this output information it is possible to if particular pixels are

outside the norm. While this does not mean that these pixels are incorrect, they

should be evaluated in this concept, for example, the detector could have several

sites (pixels) that are dead or have anomalous response, and these would be

revealed in the mean-per pixel image. This can be used as a sensor evaluation tool.

To help in visualizing this three-dimensional data cube, basic tools have been

designed: these are termed profile tools.

• Spectral Profile - a display that plots the reflectance spectrum of a

designated pixel,

• Spatial Profile - a display that plots spectral information along a user-defined

polyline. The data can be displayed two-dimensionally for a single band

(Erdas, 1999).

Processing Sequence

Various processing steps are utilised to convert raw image into a form that is easier

to interpret. This interpretation often involves comparing the imagery, either visually

or automatically, to laboratory spectra or other known end-member spectra. At

present there is no widely accepted standard processing sequence to achieve this,

although some have been advanced in scientific literature. Two common processing

sequences have been programmed as single automatic enhancements. These are:

• Automatic Relative Reflectance - this implements the following algorithms:

Normalise, IAR and Rescale

• Automatic Log Residuals - this implements the following: Normalise, Log

Residuals and Rescale.

A. Signal to Noise

The signal-to-noise (S/N) ratio is commonly used to evaluate the usefulness of a

band. In this implementation, signal to noise is defined as Mean/Standard Deviation

in a 3x3 moving window. After running this function on a data set, each layer in the

output image should be visually inspected to evaluate suitability for inclusion into the

analysis. Layers deemed unacceptable can be excluded from the processing by
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using the Select Layers option of the various Graphical User Interfaces (GUls). This

can be used as a sensor evaluation tool (Erdas, 1999).

B. Spectrum Average

In some instances it may be desirable to average together several pixels. In

preparing reference spectra for classification, or to save in the Spectral Library, an

average spectrum may be more representative than a single pixel. In order to

implement this function it is necessary to define which pixels to average using the

AOI tools. This enables one to average any set of pixels that are defined; the pixels

do not necessarily have to be contiguous and there is no limit on the number of

pixels averaged. The output from this program is a single pixel with the same

number of input bands as the original image (Erdas, 1997).

C. Classification

The advent of data sets with very large numbers of bands has pressed the limits of

the traditional classifiers such as lsodata, Maximum likelihood, and Minimum

Distance, but has not obviated their usefulness. Much research has been direct

towards the use of Artificial Neural Networks (ANN) to more fully utilize the

information content of hyperspectral images. To date, however, these advanced

techniques have proven to be only marginally better at a considerable cost in

complexity and computation. For certain applications, both Maximum Likelihood and

Minimum Distance have proven to be appropriate (Erdas, 1999). A second category

of classification techniques utilizes the imaging spectroscopy model for approaching

hyperspectral data sets. This approach requires a library of possible end-member

materials. These can be from laboratory measurements using a scanning

spectrometer and reference standards. The JPL and USGS libraries are compiled

this way. The reference spectra can also be scene-derived from either the scene

under study or another similar scene (Erdas, 1999).

D. Band selection

Unmixing is a popular technique for target detection in hyperspectral imagery. The

dimensionality of the hyperspectral data is a challenge to the operational use of the

technology, thus, it is important to investigate if unmixing can be achieved using

fewer bands. A new procedure based on metric called Target to Clutter Ratio. The
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TCR based procedure performs much better than the entropy of based procedure

and it has proved to be faster. The preliminary results revealed that a subset

approximately 15 bands would suffice to achieve accuracy comparable with the full

set of 224 bands. The preliminary results were based on a synthetic image

(Shettigara et al., 10th Australian Remote Sensing and Photogrammetry

Conference). Spectral unmixing is a popular technique for target detection when

using hyperspectral images. A linear mixing model is commonly assumed for

unmixing purposes and the observed data is given by the equation:

0= Sf + e (1)

Where

0= observed pixel spectra (vector of n elements or bands)

S =n X k matrix containing field spectra Sk Of objects of interest in columns

f =vector of k elements fj (I = 1..... k) denoting areal fractions of k materials in a pixel.

e =noise in pixel data (vector of n elements or bands)

Target detection through unmlxlng is achieved by recogmslng the presence of

spectra, Le. spectra Sj belonging to material i, which covers a minimum area in a

pixel. The minimum area needs to be above the noise level. Unmixing is not a

simple process and presently there is no known method to guarantee correct and

accurate recovery of the unknown fractional coverage fj • However, the following

multiple regression equation provides a reasonably good estimate of fj :

Where f is an estimate of f and 5 T is a transpose of 5

Equation (2) does incorporate the stochastic nature of the spectral signatures in 5.

This matrix contains mean spectra of materials under consideration and is fixed

during the unmixing process whereas ideally the bands should be selected taking

into consideration that the spectra in 5 are variable. The band selection methods

may be grouped into two categories based on properties they use: a) spectral

fidelity, b) class separability measure (William and Kepner, 2003).
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APPENDIX 3

Table 2.3: Differences in correlations with LAI between traditional indices and optimal indices

R2

Index SR Optimal Band Bandwidth (nm) Band description (spectral

NIRlR centre region and possible
(nm) absorption features)

SRlSVI 0.55 0.78
NIR-SWIR region, water,

230 protein, lignin, starch and oil
absorotion

1250 180
SWIR region, water, cellulose,
starch and lignin absorption
SWIR region, protein, nitrogen,

1648 290 lignin, cellulose, sugar, starch
absorption

NDVI 0.55 0.70 ........ ...... 4 bands similar to SR's

1050 100
NIR-SWIR region, protein, lignin,
and oil absorption

1250 190
SWIR region, water, cellulose,
starch and lignin absorption
SWIR region, starch, cellulose

2100 10 absorption

SAVI 0.50 0.67 ....... ....... 4 bands similar to NDVI's or SR's

NU 0.50 0.73 821 157
NIR region, cell structure multi-
reflected spectra

1200
NIR-SWIR region, water, protein,

578 lignin, cellulose, starch and oil
absorption

1250 191
SWIR region, water, cellulose,
starch and lignin absorption

1640
SWIR region, protein, nitrogen,

300 lignin, cellulose, sugar, starch
absorption

RDVI 0.45 0.66 810 170 NIR region, cell structure multi-
reflected soectra

1054 10 SWIR region, lignin and oil
absorption

1255 161
SWIR region, water, cellulose,
starch and lignin absorption

1669 10 SWIR region, lignin and starch
absorption

2093 10 SWIR region, starch, cellulose
absorption

MSR 0.50 0.70 ....... 4 bands similar to NDVI's or SR's........

2285 30
SWIR region, starch, cellulose and
protein absorption

MNU 0.45 0.75 ........ 4 bands similar to NDVI's or SR's........
NDVI * 4 bands similar to NDVI's or SR's,

SR 0.50 0.71 ......... ...... _, but

SAVI * 1-4 bands similar to SAVI's or SR's

SR
0.50 0.71 ......... ... ... ..

2083 30 SWIR region, sugar, starch and
cellulose absorotion

2153 10 SWIR region, protein absorption
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APPENDIX 4

A: Information on the compartments used for the study

Compartment Clone Age at Tree Measured Measured

Type Sampling Spacing SI MAl

E.
1 7.25 3.0 x 3.0 21.29 43.37

urophylla

2 GU-1 7.25 3.0 x 3.0 22.41 47.62

3 GU-2 6.92 3.0 x 2.7 25.90 68.27

4 GC-1 7.42 2.7 x 2.4 23.81 48.50

E.
5 7.25 2.7 x 2.7 24.13 56.29

urophylla

6 GU-1 8.33 3.0 x 2.0 23.07 49.62

7 GU-1 6.33 2.7 x 2.2 22.89 49.11

8 GU-3 6.33 2.7 x 2.2 23.80 47.80

9 GC-2 8.08 3.0 x 2.0 21.96 43.99

10 GU-4 8.00 3.0 x 2.0 17.61 25.86

11 GT 8.75 3.0 x 2.5 27.34 53.00

12 E. gra 8.00 2.7 x 2.4 18.05 21.45

APPENDIX 5

Typical NIRS spectra scan for a Eucalyptus clone
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Typical second derivative NIRS spectrum

APPENDIX 6

Site index calculation from stand enumeration data

Compartment Plot radius Base Age Mean Top Mean thick Measured

(m) (yrs) Height (m) DBH(cm) SI

1 15.000 5.000 25.475 24.289 21.291

2 15.000 5.000 26.815 26.816 22.412

3 15.000 5.000 30.325 27.144 25.901

4 15.000 5.000 28.785 21.448 23.808

5 15.000 5.000 28.871 23.095 24.130

6 15.000 5.000 29.412 25.971 23.068

7 15.000 5.000 25.721 21.505 22.893

8 15.000 5.000 26.740 21.565 23.800

9 15.000 5.000 27.617 20.777 21.962

10 15.000 5.000 22.038 18.700 17.608

11 15.000 5.000 35.635 23.929 27.335

12 15.000 5.000 22.595 20.915 18.053

APPENDIX 7

Scene ID

Ground site ID

Acquisition time

Acquisition date

: E011670802004216110PZ

:SGS

: 2004216.07:34:54

: 24 August 2004
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Instrument

Processing level

Number of spectral bands

Scene dimensions

Vertical pixel resolution

Horizontal pixel resolution

Data format

Projection

Horizontal datum

Resampling method

Image orientation

Scene centre coordinates

: Hyperion

: Hyperion Level 1R

: 242

: 42 x 7.5 km

: 30m

: 30m

: Hierarchical Data Format

:UTMS

: WGS84

: CC (cubic convolution)

: Map (north up)

: (-28.53, 32.14)

Table showing the Hyperion sensor pointing angles for different latitudes

West Path Sensor East Path Sensor
Overhead Path

Latitude pointed East pointed West

(degrees)
(degrees)

(degrees)

80N 0.716 to 2.145 :!: 0.716 -0.716 to- 2.145

60N 3.369 to 10.016 :!:3.369 -3.369 to -10.016

45N 4.856 to 14.297 :!:4.856 -4.856 to -14.297

30N 5.975 to 19.338 :!:5.975 -5.975 to -19.338

15N 6.672 to 19.338 :!:6.672 -6.672 to -19.338

0 6.909 to 19.976 :!:6.909 -6.909 to -19.976

15S 6.672 to 19.338 :!:6.672 -6.672 to -19.338

30S 5.975 to 19.338 :!:5.975 -5.975 to -19.338

45S 4.856 to 14.297 :!:4.856 -4.856 to -14.297

60S 3.369 to 10.016 :!:3.369 -3.369 to -10.016

80S 0.716 to 2.145 :!:0.716 -0.716 to -2.145
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APPENDIX 8
Bands suitable for calculating different vegetation indices using Hyperion data according to
Gong et ai, 2003

INDEX BAND CENTRE BANDWIDTH

SR 825 140

1038 230

1250 180

1648 290

NDVI 4 bands similar to SR's Similar to SR's

PVI 814 140
1050 100

1250 190

2100
10

SAVI 4 bands similar to NDVl's or SR's ,imilar to NDVl's or SR's

NU 821 157
1200 578

1250 191

1640 300

RDVI 810 170
1054 10
1255 161

1669 10
2093 10

MSR 4 bands similar to NDVI's or SR's imilar to NDVl's or SR's
WDVI 1639 10

2113 10
2285 30

MNLI 4 bands similar to NDVl's or SR's ,imilar to NDVl's or SR's
~DVI * SR 4 bands similar to NDVl's or SR's ;imilar to NDVl's or SR's
SAVI * SR 1-4 bands similar to SAVI's or SR's ,imilar to SAVl's or SR's

2083 30
2153 10

TSAVI 832 120
1038 150

1240 170

1660 260

2108
20
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APPENDIX 9

Table showing the description of different vegetation indices and their equations according to Gong et

al,2003

Index Formula Description

SR AN1R The Simple Ratio index is related to changes in

-- amount of green biomass, pigment content and

AR leaf water stress

NDVI (AN1R - AR) The Normalized Difference Vegetation Index is

related to changes in amount of green biomass,
(AN1R + AR) pigment content and leaf water stress

SAVI (AN1R - AR) (1 + L) In the Soil Adjusted Vegetation index, the L
ranges from 1 (for very high vegetation cover)

(AN1R + AR+ L) to 1 (for very low vegetation cover). This index

L= Correction Factor minimizes soil brightness induced variations.

NU (A2N1R - AR) The Non-Linear Vegetation Index considers the

relationship between many Vis and surface
(A2N1R + AR) biophysical that are often non-linear.

RDVI (AN1R - AR) Renormalized Vegetation Index also tends to

linearize non-linear relationships between Vis
(AN1R + AR)1I2

and biophysical parameters

MSR (AN1R I AR- 1) Modified Simple Ratio was formulated as an

upgrade of the RDVI
(AN1R I AR)1/2 + 1 See RDVI

MNU (A2N1R - AR)(1 + L) Modified Non-Linear Vegetation Index is an

improved NU while it considers the merits of
(A2N1R + AR+ L) the SAVI

L= Correction Factor

NDVI*SR (A2N1R - AR) This index was developed by Gong et al. (2003)

to combine the merits of the NDVI with that of
(AN1R + A2R) the SR

SAVI*SR (A2N1R - AR) This index was developed by Gong et al. (2003)

to combine the merits of the SAVII with that of
(AN1R + AR+ L) AR SR

L= Correction Factor
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