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ABSTRACT 

Insect pollinator species are highly valued for their contribution towards cross-pollination in 

many vegetable crops for food and seed production. Honeybees (Apis mellifera) are a 

significant main pollinator not only in entomophilous crop, but for many other plants in their 

natural habitats. Moreover, attempts to increase seed production through the introduction of 

an alternative pollinator species (such as Calliphorides flies) throughout the world have 

encouraged growers and breeders to think more precisely about the management of these 

pollinators for the future. However, several constraints, including climate, have resulted in low 

success of pollinators, thereby failing to meet pollination demand for hybrid carrot seed 

production, both nationally and internationally. The goal of this study was to identify alternative 

non-bee insect species that can be used as agents of pollination in commercial hybrid carrot 

seed production. The research experiment was conducted in Matjiesrivier farm (33o23'31.86" 

S and 22o05'14.91" E) that is situated under the Oudtshoorn district municipality, which is a 

Cango valley of Western Cape Province. Carrot parents were three cytoplasmic male sterile 

(CMS) lines, which were pollinated by two pollen donor-male inbred lines. Two insect species, 

honeybees (Apis mellifera) and Calliphorid flies (Chrysomya chloropyga), were used as 

agents of pollination. The experiment was arranged in a 2x2x3 factorial with two replications. 

The weight of umbels, seed weight and germination percentage data were collected to achieve 

research study objectives. Statistical analysis for all data was done using SAS (SAS Institute 

Inc, 2018) and R (R Core Team, 2019) statistical computation software. The data were 

subjected to analysis of variance (ANOVA) for individual umbel level (order) harvests. The 

TUKEY post hoc test was done at a 5% level of probability to compare the treatments.  From 

the results, flies were comparably effective as honeybees during pollination, while analysis of 

variance for quantitative traits (germination percentage, seed weight, and umbels weight) was 

highly significant implying that the traits differed among the advanced lines and the 

deployment of the two species during pollination. The trait variability was influenced by the 

umbel stages of different CMS lines and their interaction with pollinator by male fertile and 
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male sterile lines. This information will be useful in a breeding program that focuses on hybrid 

seed production in carrots and a combination of the two insect pollinators’ deployments to 

improve cross breeding for future management would be essential. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Carrot (Daucus carota L.) is the most popular seed-propagated vegetable crop species in the 

world, with numerous uses. The edible storage roots are usually orange, white or red, or white 

blend in colour with a crisp texture when fresh (Department of Agriculture Forestry and Fisheries, 

2018). These roots are rich in vitamin C, B1 and B2 and are particularly rich in carotene, the pro-

vitamin A (Stolarczyk and Janick, 2018),  Besides being one of the most economically important 

crops in the vegetable seed production business, carrot can be processed either alone or with 

other vegetables, for example, in the production of carrot juice, carrot cake, and in fodder 

production (Department of Agriculture Forestry and Fisheries, 2010), among other uses.   

According to Muneer et al. (2019), carrot flowers are protandrous, hence they require cross-

pollination and that is why insects are the main pollinating agents of carrot. Whereas pollination 

is the most critical aspect of vegetable seed production, it is often the most poorly understood and 

least optimized process. Bees are still the most effective and efficient pollinators, even though 

sometimes they are compromised due to unfavourable weather conditions. However, there is an 

increasing concern of honeybees decline, thus impacting food crops, due to their role as 

pollinators in different crops such as carrots. It is, therefore, essential to identify alternative non-

bee insect pollinators that can be efficiently utilized and managed as crucial resources in carrot 

seed production (Cunningham et al. 2002; Klein et al. 2007; Winfree, 2008; Aizen et al. 2009; 

Gallai et al. 2009). 

Consequently, understanding other pollinator insects that can influence pollination is essential to 

enhance growth in the agricultural sector (Ahmad et al. 2002). For example, an association 

between Calliphorid flies (Calliphoridae) and carrot flowers has been established, resulting in 

Perez-Banon et al. (2007) suggesting their possible utilization to supplement pollination in carrots. 
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However, these flies have been implicated in the pollination of wild-growing carrots. Nevertheless, 

even in experiments with other crops such as onions (Allium cepa L.) in cage enclosures, the 

species have been shown to be effective pollinators (Clement et al., 2007). Thus, there is a need 

for researchers to observe and compare the effectiveness of bees versus flies as pollination 

agents in carrots.  There are instances when the conditions are not favourable for the bees to be 

effective pollinators; in such scenarios, effective alternative insect pollinator species would be 

required. Thus, understanding the behaviour and effectiveness of Calliphorid flies and bees and 

their interaction with carrot varietal strains in seed production is crucial. 

1.2 Problem statement 

Due to the absence or insufficient knowledge of potential non-bee insect species pollinators, 

hybrid seed production in carrots relies mostly on managed honeybees to successfully provide 

good pollination service. However, problems begin when bees cannot feed and sometimes they 

are constrained by weather conditions simply because they cannot adapt, survive or do well under 

certain conditions, thus resulting in decreased effectiveness as pollination agents.  Weather 

conditions occurring in the Matjiesrivier area, Western Cape, South Africa have been observed to 

constrain bee pollinations during carrot hybrid seed production. In some instances, other than in 

the open field, bees are not active in the net-house or cages and tend to sit at the net corners or 

edges due to confusion/disorientation at specific periods under these conditions. In addition, the 

effectiveness of crop pollination depends on the biological timing of both the crop and its 

pollinators.  

1.3 Motivation of the study 

Results from this study will provide seed industries and farmers/growers with broad understanding 

and information about the importance of visitation by pollinators in carrots seed production. 
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Identification of non-bee insect pollinator species for hybrid carrot seed production can have a 

huge impact on food security and diversity, human nutrition, and carrot market prices, which all 

rely strongly on pollinators. Therefore, ensuring reliable pollination may be one of the best ways 

of improving the economical production of many crops including carrot. The knowledge about how 

insect pollinators interact with certain carrot varieties can help growers in optimization of seed 

production. Securing effective pollinators could increase pollination effectiveness, and 

consequently the yield and quality of the produce could also be increased. 

1.4 Research objectives 

1.4.1. Research goal 

The study aimed to identify alternative non-bee insect species that can be used as agents of 

pollination in commercial hybrid carrot seed production. 

1.4.2. Hypotheses 

- Calliphorid flies are comparably effective as honeybees in pollination in carrot seed 

production. 

- There are significant differences between female and male inbred lines for seed 

production and quality traits in carrots. 

- Insect pollinators have significant interaction effects with parental inbred lines in carrot 

hybrid seed production and seed quality. 

1.4.3. Specific objectives 

- To compare the effectiveness of pollinator species (bees and Calliphorid flies) deployed 

on carrot inbred line parents during the pollination period in hybrid seed production. 

- To determine if there are any differences between female and male inbred lines for seed 

production and quality traits. 
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- To determine if there are significant insect pollinator species by inbred line parent 

interaction effects on seed production and quality traits.  

 

1.5. Dissertation outline 

This dissertation consists of six logically linked chapters and follows the traditional dissertation 

format. The referencing system used in the chapters of this dissertation is based on the Crop 

Science journal. This is an example of the recommended formats by the University of KwaZulu-

Natal. The structure of the dissertation is given below. 

Chapter 1: Introduction 

This chapter presents a brief background to the study undertaken, outlining the problem to be 

addressed by the study, the objectives to be met and the hypothesis behind each objective. 

Through this chapter, the gaps in research on the topic at hand are identified. 

Chapter 2: Literature review 

This chapter reviews several topics including the origin, spread, centre of diversity, taxonomy and 

domestication and genetics of the crop and general implications. Furthermore, it addresses the 

implication of pollinators and pollinations, carrots flower biology, controlled pollination and roles 

of insects (Bees and alternative insect pollination). A need for male sterility and carrots seed 

production constraints is also discussed and the effect of climate and weather on pollination and 

pollinators. Finally, it highlights the effect of supplementary pollination on carrot seed production 

and quality, and the important traits and traits association in seed production. 

Chapter 3: Materials and Methods 

This chapter outlines the different materials that were employed to meet the set objectives in 

chapter one as well as the methods used in the analysis of the collected data. 
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Chapter 4: Results 

Results of the field trials and their analysis are outlined in this chapter. 

Chapter 5: Discussion of results 

A critical discussion and interpretation of the results obtained from the study has been conducted 

with reference to comparative studies. 

Chapter 6: Conclusion and recommendation 

This chapter relates the findings of the study to the objectives set in chapter one as well as making 

some recommendation for future breeding programmes. 
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CHAPTER: 2 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, several topics are covered that relate to the objectives of the study. The chapter 

covers the origin, spread, centre of diversity and taxonomy. Furthermore, domestication of the 

crop and general implications of pollinators and pollination are discussed. Carrots flower biology, 

controlled pollination, and roles of insects (Bees and alternative insect pollination) are given. The 

need for male sterility and carrots seed production constraints, with climate and weather effect on 

pollination and pollinators are also discussed. Finally, the effect of supplementary pollination on 

carrot seed production, seed quality, and important traits and traits association in seed production 

are highlighted. 

2.2 Origin, spread, centre of diversity and taxonomy 

Carrot (Daucus carota subsp. Sativus) is a biennial plant belonging to the Apiaceae/Umbelliferae 

family (Muneer et al. 2019). It is the domesticated form of the wild carrot, Daucus carota, native 

to Europe and Southwestern Asia (Meyer et al. 2012). According to Stolarczyk and Janick (2018), 

carrot was originally wild in different parts of Europe and Asia, but was domesticated first in 

Afghanistan, which is now recognized as the primary centre of diversity. It then spread over to 

other regions and countries such Mediterranean, Asian and Turkey being recognized as 

secondary centre of diversity. The greatest development and improvement of the original wild 

carrot that had thin, long roots took place in France (Department of Agriculture Forestry and 

Fisheries, n.d., accessed on 20 January 2021). Carrot has been an important vegetable crop in 

South Africa since the early settlement at the Cape. It is currently grown all over South Africa, 
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particularly near urban areas including in Stellenbosch, Johannesburg, Greytown and Pretoria 

(Department of Agriculture Forestry and Fisheries, 2018).  

2.3  Domestication and genetics of the crop 

Selection criteria or process of domestication of carrots often has directed more attention to 

quality traits such as colour, shape, flavour, and physiological traits that contribute to uniformity 

(Doebley et al. 2006). Cultivated carrot are mainly classified into the anthocyanin or eastern-type 

carrot (e.g., yellow or purple) or western-type carrot (yellow, orange, or red) and the carotene 

based on the pigmentation in the roots. Analysis of the genetic structure of wild and cultivated 

crops in combination with archaeological and historical evidence, has provided insight into the 

geographic and temporal details of domestication to reveal, where, and how many times a crop 

was domesticated (Meyer et al. 2012). 

2.4  General implication of pollinators during pollination 

Poor pollination is a problem for the carrot hybrid seed growers worldwide. Over time, the crop 

may experience fluctuations in pollinator visitation since the carrot flowering duration in a single 

crop is long, approximately six weeks (Erickson et al. 1979). However, numerous factors influence 

pollinators’ effectiveness and efficiency, depending on geographic location and the environment. 

Although bees are the common pollinator insects, researchers in some countries have proved 

that calliphorid flies could do effective pollination without bees in cages. Thus, in this study, 

pollination using the calliphorid flies will be examined for their potential in hybrid carrot seed 

production for future management. Most vegetable crop species require insect pollination, 

depending on whether the formation of the propagation organ and or harvestable product relies 

on successful cross-pollination.  
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According to Vicens and Bosch (2000), weather conditions impact insect pollinator flower 

visitation. For instance, bee species (including Apis mellifera) are restricted by cloudy, humid, 

windy, and cold weather (Kevan and Baker, 1983). In comparison, some other potential pollinator 

species, including Diptera, have excellent tolerance towards these weather conditions (Vicens 

and Bosch, 2000). The problem and issues that have arisen with pollination have pushed research 

toward identifying active, effective, and efficient pollinators on crops. Particularly noteworthy are 

the periods when it is critical to obtain successful pollination during less favourable conditions. 

However, information on pollinator species’ effectiveness and abundance during critical periods 

is limited (Howlett et al. 2009). A wide range of insect species may act as significant pollinators 

of open-pollinated carrot seed crops (Gaffney et al. 2011). However, the effectiveness of the 

species for controlled pollinations needs to be well ascertained. As supported by literature, the 

reliability of honeybees as pollinators of hybrid carrot seed crops in the future can be problematic 

(Howlett, 2012).  

2.5 Carrot flower biology 

Carrot is a biennial cool season plant which belongs to the family Apiaceae (Umbelliferae) of the 

order Apiales (Alessandro and Galmarini, 2007; Muneer et al. 2019).  Carrot flower consists of a 

primary umbel, which is essential for seed production, and secondary and tertiary umbels, of 

individual florets. The flower is the most critical biological structure for ensuring angiosperm 

reproduction. The flowering of the crops often provides an essential resource for many pollinators. 

Hence, the flowers entice pollinators by variation in morphology, colour, and scent. When visiting 

the flower, pollinators provide pollination service by delivering of pollen at an appropriate time and 

place for ovule fertilization in every entomophilous crop species worldwide (Klein et al. 2007). Still, 

the short duration of floral availability, low diversity of floral and nesting resources, pesticide 

application compromises their capacity to support diverse and abundant pollinator communities 

(Pott et al. 2010; Williams et al. 2010).  
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According to Brittain et al. (2013), due to complementary resource use arising from variation in 

morphology, pollinator species may visit different parts within a flower, inflorescence, or other 

flowers within the same plant (high versus low flower), thus increasing pollination. Although carrot 

nectar is not abundant, it is exposed to the petals and readily accessible to all insects. The florets 

are tiny and quickly worked by minute insects (Bohart and Nye, 1968) except those with long, 

slender tongues. Successful hybrid seed production is the results of perfect synchronization of 

stigma receptivity and male parent pollen viability(Vishal et al. 2018). Furthermore, the quantity 

of pollen deposited on the stigma can be manipulated by adjusting females' cross-ratio to male 

flowers (Vishal et al. 2018). 

2.6 Controlled pollination and roles of insects 

2.6.1. Bees 

The manageable bees are well known as effective pollinators of economic importance. However, 

hybrid carrot crops are known mostly to require supplementary cross-pollination, which is 

accomplished through pollinators such as bees (pollinators of hybrid). The reliability of managed 

bees for hybrid carrot crop pollination seems to become less because of increased variability 

between lines (Rodet et al. 1960). This variability (male and female inbred lines) in managed bee-

mediated pollination has led to the idea or perception to focus on alternative pollinators such as 

Calliphorid flies for future purposes (Howlett et al. 2015). 

2.6.2. Alternative insect pollinators 

Non-bee pollinators include flies, beetles, butterflies, and others, even though some are not good 

or suitable for use in seed production. Alternative pollinators provide potential insurance against 

bee population decline and a valuable service (Brittain et al. 2013). Research studies indicate that 

non-bee insects are equally if not more important for seed production of some crops (Larson et 

al. 2001). They can provide pollination service at different times of the day especially when 
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weather conditions are not favourable and bees cannot forage (Rader et al. 2013). Besides, non-

bee insects may be efficient in transferring pollen for some crops under certain conditions 

(Howlett, 2012) and carry pollen further distance than some bees (Rader et al., 2011). 

According to Hawthorn et al. (1960), insects such as Calliphorides flies are among the 

unmanaged pollinators visiting the carrot flower. The strong association between these flies and 

the carrot suggests high potential for them to be utilized (Howlett, 2012). These flies have been 

confirmed to successfully pollinate wild-growing carrot within an isolated area/cages used in the 

absence of bees (Perez-Banonet et al. 2007). If successfully developed as managed pollinators, 

their potential to replace bees for crops suitable to their pollination might provide supplementary 

crop pollination alongside bees (Howlet, 2012). Due to their difference in foraging a combination 

of both pollinators could improve the rate of crop pollination, especially in areas in which climate 

is challenging to predict. 

2.7 Need for male sterility in carrot seed production 

Cytoplasmic male sterility has enabled commercial production of hybrid seed for many crops to 

be possible and more cost-effective. Cytoplasmic male sterile (CMS) lines Should have a stable 

sterility with the absence of pollen, provide good flowering and contribute to hybrid vigour (Xuli et 

al. 2017; Shu et al. 2016). Plants with the CMS trait have been used for many years as female 

parents in F1 hybrid breeding, including carrots (Nothnagel at al. 2000), the absence of pollen 

production prevents self-pollination . There are two different types of male sterility in carrots; one 

is where anthers are transformed into petals (petaloid sterility), which is maternally inherited and 

often used by breeders and the other one is called the brown-anther sterility (Barbara et al. 2010).  

According to Bach et al. (2002), the cytoplasmic male sterility of petaloid type is more stable than 

the brown-anther type. Meaning the mitochondrial dysfunction of the flower male organs can be 
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either kept or suppressed by specific nuclear gene functions, leading in the latter case, to restored 

male fertility (Linke et al. 2003).  

Therefore, CMS plants are significant in seed production, and have been extensively used by 

plant breeders to achieve cross pollination in the development of hybrid cultivars of multiple crops 

(Saxena and Hingane, 2015).  The male sterile line is phenotypically and genotypically different 

from male fertile plants that are used in hybrid production. However, successful production of 

seed requires pollinators to transfer pollen from fertile to sterile plants (Howlett, 2012). Frequent 

movement should be ideal for pollinators between the inbred lines (Male fertile and sterile) to 

maximize seed set in carrot hybrid crop and the pollen flow for seed yield. Therefore, CMS lines 

in cross-pollination are the seed parents, and they are interspaced with beds of a fertile male line 

with the ratio of 2:1 or 3:1 depending on the variety. It is important to consider the distance 

between the inbred lines as this might have an effect on the pollination. 

2.8 Carrots seed production constraints 

For several reasons scientist have looked at alternative pollinators to improve the hybrid carrot 

seed production. This includes observations made in after several research studies that noticed 

a decline in bees' activities in either open field or net cages. It is thus difficult or not safe to assume 

that bees will provide all future pollination needs (Mader et al. 2010).  An important reason behind 

the observed decline is thought to be the loss of habitat that supports host plants (Scheper et al. 

2014) and nesting plants since different pollinators respond differently to disturbances (Cariveau 

et al. 2013; Rader et al. 2014). It is essential to have a correct transplanting date for both male 

and female inbred lines to have a good synchrony during flowering stage in order for pollinators 

to forage successfully for cross-pollination.  

The isolation distance from natural area affects the optimal foraging and in turn affects the mean 

levels of pollinator’s richness, visitation rate, and ultimately pollination of the crop flowers 
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(Cresswell et al. 2000). Temperature is one of the most important factors because it influences 

insect behaviour and affects pollinators' foraging patterns (Abrol, 2006).  For example, bees such 

as honeybees are sensitive to temperature below 12.8oC, rain and winds stronger than 32-40 kph, 

and will not forage (Eric et al. 2010). Furthermore, due to the expected climate change , the 

elevated temperature may negatively impact some pollinator species, thus affecting pollinator 

foraging in the future (Gaffney et al. 2018). Therefore, maximizing pollinator species that are 

efficient in all vegetable crops, especially when the period of extreme weather overlaps with the 

pollination window, is essential (Gaffney et al. 2018). 

2.9 Climate and weather effect on pollination and pollinators 

Responses of the plant to climate change (global warming) and other environmental factors that 

impact or alter flowering, nectar, and pollen production, could modify floral resource availability, 

distribution, and visitation quality (Rathee and Dalal, 2017). Thus, climate change is one of the 

essential drivers affecting pollinators and plant-pollinator interaction (Bartomeus et al. 2013; 

Thomson, 2016).  Furthermore, increasing temperature, drought, and more frequent extreme 

events all suggest a significant impact on pollinator species distribution (Kerr et al. 2015). The 

different pollinator species respond to different environmental conditions depending on the type 

of insects a farmer/grower uses for pollination. Although honeybees (Apis mellifera) are 

considered the most important pollinator for many crops, bumblebees have been found to be 

more effective than the honeybees under certain climatic conditions such as early spring, where 

they can work long hours, carry more pollen, and are more active (Stubbs and Drummond, 2001).  

According to Shrestha et al. (2018), climate and weather can enhance or disrupt biological 

systems, but little is known about how organism plasticity may facilitate adaptation to localized 

climate variation. Gradual changes to these weather patterns and climate have been predicted to 

increase following factors such as summer drought and floods, and all this could affect pollinators 
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(for example, loss of synchronicity with their forage plants) and flowering time during pollination. 

The effects of elevated temperature on the number of flowers is ambiguous, with both increase 

and decrease in the number of flowers in different species (Scaven and Rafferty, 2013) having 

been noted. These changes in flowering phenology and potential changes in climate conditions 

may hold important implication for plants traits, including leaf emergence, flowering time, and 

germination (Hegland et al. 2009). 

2.10 Effect of supplementary pollination on carrot seed production and quality 

Limited information is available about insect pollination's possible effects on seed quality 

parameters that affect the market value (Bommarco et al. 2012). According to Garibaldi et al. 

(2013), the increase in wild insect visitation is higher, significant, and twice as much as 

honeybees’ visitation in 41 crop systems worldwide. However, several studies have showed that 

supplementary pollinators are practical and efficient enough to increase seed quantity and quality 

with their greater visitation to vegetable crops. Thus, their foraging activity and seed set are far 

greater than in the managed pollinators such as honeybees (Howlett, 2012). Furthermore, it was 

observed that, with these supplementary pollinators, the quantity and quality of seed production 

was more than that obtained with manged pollinators under constrained climatic conditions 

(Vicens and Bosch, 2000; Kevan and Baker, 1983). Therefore, for successful pollinations in 

future, these supplementary pollinators should be considered. Their potential as a supplement 

highlights the possibilities and development of strategies to improve the seed quality in hybrid 

carrot pollination (Gaffney et al. 2011). 

2.11 Important traits and traits association in carrot seed production 

Most of the inbred lines in carrot seed production rely on biotic pollination for a successful cross-

pollination to produce a hybrid (Ahmad et al. 2002). Carrot germplasm consist of several inbred 
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lines (male fertile and male sterile plants), which are phenotypically and genotypically different.  

Genetically, the male sterility of carrots demonstrated a nuclear-cytoplasmic interaction for both 

cytoplasmic male sterility types (Petaloid and brown-anther). Female inbred lines (petaloid) have 

dominant alleles of each of the three duplicate nuclear genes necessary to maintain sterility for 

both cytoplasm, and dominant alleles at one or more epistatic loci that could restore fertility (Bach 

et al. 2002). Genetic and molecular mechanisms of restoration vary among the different 

cytoplasmic male sterility systems (Linke et al. 2003).  

Phenotypically plants with good traits are essential in seed production and are needed for 

successful pollination, such as good seed set, high yield in male sterile plants, and abundant 

pollen production in male fertile plants with quality foraging. However, plants that lack intense 

attractiveness may cause the pollinators to neglect the crop (Scheper et al. 2014). In addition, 

inbred lines that have traits which enable them to withstand adverse environmental conditions are 

important because they will be able to support plant reproductivity - flowering time and plant 

interaction with pollinators - duration of pollination period (Mader et al. 2010). Therefore, selection 

of crops must always consider the morphological, adaptation, and reproductive traits as they 

impact seed production. 
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Summary 

From this literature review it can be acknowledged that it is imperative to consider future 

management of supplementary pollinators for good successful cross-pollination. As a result of 

several constraints, in future it will be difficult or challenging to rely on the manageable honeybees’ 

pollinators.  There is evidence that alternative pollinators are comparably effective and efficient 

as honeybees for pollination. However, more analysis and detail in terms of research focusing on 

climate, habitat, crop traits, and environmental factors that contribute to pollination failure by other 

pollinators is needed. The review also noted that the Calliphorides flies are far greater than the 

bees in terms of visitation for foraging, seed set, and quality. The review showed that the flies 

were more effective in transferring pollen, travelled longer distances than bees, and were better 

adapted under unfavourable conditions that affected bee activity. Therefore, it is vital to consider 

the alternative pollinators for future use by farmers and seed industries to maximize pollinations 

in seed production. Considering the combination of the two pollinators (bees and flies) could result 

in better pollination success, particularly for carrot hybrid seed production, thus justifying the focus 

of this study.   
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CHAPTER 3 

MATERIALS AND METHODS 
 

3.1 Study site description 

The study was conducted at Nefdt Farm in Matjiesrivier (33o23'31.86" S and 22o05'14.91" E) with 

an altitude of about 749 meters above sea level as shown in Figure 1. The farm is situated under 

the Oudtshoorn district municipality, in the Cango valley of Western Cape Province, South Africa. 

The summers are hot, the winters are cold, and it is dry and mostly clear year-round.  The mean 

annual rainfall the area receives is about 170 mm, which occurs throughout the year with the 

lowest rain (10 mm) in January and the highest (22 mm) in March. On average, the warmest 

month is January and the coldest month is July, and the average annual temperatures are 

minimum (10.0°) and maximum (25.0°), respectively. 

 

Figure 1:  Image of the experimental research area. Picture taken by Google Earth on 28 August 
2019. 
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3.2 Preparation of plots 

The land was ploughed using a tractor-drawn plough. After that, the field was disced twice to 

break up the clods and provide good soil tilth. Weeding was done through application of the 

herbicide - Lanigan® SC (Active ingredient: linuron (urea) 500g/l) at 37.5 ml per 16 L of 

knapsack to control broad leaves weed species, and additionally with the assistance of hoes 

and spades to clean in between the rows. Drip irrigation was installed (at a spacing of 30 cm 

between and within the dripper lines) before transplanting to water the soil to field capacity. The 

planting material (carrot roots) was collected from a different location seedbed through root 

selection and transported to the study site area for transplanting. Tape measure, T-markers, 

hoes, rakes, ropes were used during planting time to open the rows and close them well for 

good roots stand. 

3.3 Plant materials, experimental design, and layout 

The experiment was a randomized complete block design in a 2x2x3 factorial arrangement with 

two replications. The three factors and their levels were: three cytoplasmic male sterile (CMS) 

carrot lines (SVC 211, SVC 212, SVC 213) which were essentially females;  two pollen donors 

(two male inbred lines – SVC 111, SVC 131) and two insect pollinator species viz: honeybees 

(Apis mellifera) and Calliphorid flies (Chrysomya choropyga) used to transfer pollen from pollen 

donors for pollinating the CMS lines. Four net cages, two for pollinating with bees and the other 

two for pollinating with flies (Figure 2), were constructed at bolting stage for pollinator isolation 

and control to attain the study's objectives. Inside each cage, one of the male inbred lines was 

grown in two 9 m rows; in the same cage the three CMS lines were grown in 2.5 m rows replicated 

twice, bordering the male rows as shown in Figure 2. A distance of 0.4 m separated the female 

inbred lines. Thus, the three CMS lines were found in all the four cages and were pollinated by 
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either SVC111 or SVC131 in separate cages, with bees or flies (in separate cages) as agents of 

pollination. 

 

Figure 2: Experimental layout. M1 = SVC 111, M2 = SVC 131, A = SVC 211, B = SVC 212, C = 
213 

3.4 Caging of plots and deployment of insect pollinators 

Four cages (Figure 3) were constructed immediately when the plant materials (male and female 

inbred lines) started to bolt. The net material used to construct the cages was a Skadunet® white 

20% P/M knittex, and steel poles supported the net. Beehives were collected from the beekeeper 

and placed in net cages during pollination, and this was done two days after pupa flies had been 

placed in the other cages, so that the deployment activity of both pollinators would begin  on the 

same date. Bees (Apis mellifera) deployment actual dates for both cage 1 (male SVC 111) and 

cage 4 (male – SVC 131) were different due to the male inbred lines blooming phase not being 

on the same date. The flies (Chrosomya chloropyga) were collected from flies' breeder and given 

as pupa to be placed in cages (2 & 3). Similarly, as for the bee cages, the fly cages (cage 2 - male 

SVC 131 and cage 3 - male SVC 111) had different deployment dates of flies. Their deployment 

was every two weeks from the initial date of deployment (cage 3 - (13 November 2019 until 25 

December 2020 and cage 2 - 19 November 2019 until 27 December 2020) to increase the number 

F M M F

Cages Inside each the cage

Cage1 - Bees

Cage 2 - fliesCage 4 - Bees

Cage 3 - Flies

M1

M2M2

M1

A

B

C
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of visitations per umbel e.g., 4 – 7 flies per umbels (e.g., as shown in Figure 5). For the bees, 

deployment was only one beehive in a cage from the initial date (cage 1 - 13 November 2019 until 

25 December 2020 and cage 4 - 19 November 2019 until 27 December 2020). The experimental 

cages are shown in Figure 3. Figure 6 (A) shows 100% blooming of the male inbred line (SVC111) 

– on the right in cage 3 of flies’ deployment and similarly Figure 6 (B) indicates second male 

inbred line (SVC131) – on the right 100% blooming in cage 4 for bees’ deployment. 

 

Figure 3: Experimental cages used to ensure isolation and control of pollinators 
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Figure 4. Weather conditions during the period of insect pollinator species deployment. 
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The graphs in Figure 4 show the prevailing weather conditions (temperature and relative humidity) 

under which deployment of pollinators was done during pollination. The two time slots were 

recorded in the morning and afternoon to identify high/low peak of weather condition from 15 

November 2019 to 5 January 2020.  

3.5 Data collection 

The following parameters were recorded to achieve research study objectives: bolt start date, 

number of days to 50% flowering, date of 50% blooming, seed set rate, seed yield potential, the 

weight of umbels, seed weight, germination %, plant vigour, temperature, and relative humidity. 

The measurements were done as indicated below: 

i). Bolt start date 

The bolting date was recorded when 50% of the plants in a plot had bolted to determine which 

inbred-line, male or female was quicker in the production of a flowering stem. 

ii). Number of days to 50% flowering  

Recorded as the number of days when 50% of the plants in a plot have flowered and it helps in 

determining whether the variety flowers early or late. 

iii)  Date to 50% blooming  

Recorded as the date when 50% of the plants in a plot have fully bloomed and is essential to 

know the right or accurate stage of introducing the pollinators.  

iv). Weight of umbels 

Obtained by weighing the different orders of umbels (1st, 2nd, and 3rd) per inbred line in grams 

per plot. 
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v). Seed weight 

Obtained by weighing the seed harvested from different umbel orders per inbred line in grams per 

plot. 

vi) Germination test  

The results for germination test was conducted at the lab. The standardized germination methods 

as prescribed by ISTA (International Seed Testing Association) were used. Each species is tested 

using specific germination substrates, temperatures (20oC – 30oC) and evaluation is done on 

specific counting days (first count at seven days and final count on fourteen days). Each test is 

done on 4 x 100 seeds. The 4 replicates of 400 seeds are tested and evaluated individually. After 

testing each of the 4 replicates results are added for normal, abnormal, and dead seeds. A 

tolerance table is subsequently used to make sure that the 4 replicates do not differ significantly 

as per the average results. If the results are within tolerance of each other the test results are 

accepted. 

vii). Temperature and relative humidity 

Data loggers were used to measure temperature and relative humidity (%) of the area 
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A  

 

B  

 

Figure 5: Insect pollinators deployed during pollination: A. -Bees (Apis mellifera) and B. Flies 
(Chrosomya chloropyga) 
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A  

 

B  

 

Figure 6: A view of the male inbred lines used at 100% blooming A. – Early blooming male 
inbred line (SVC111) – on the right; B -– Late blooming male inbred line (SVC131) – on the right 
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3.6 Data analysis 

Analysis of all quantitative data was done using SAS (SAS Institute Inc, 2018) and R (R Core 

Team, 2019) statistical computation software. The data generated from the experimental research 

was subjected to analysis of variance (ANOVA) for individual umbel level (order) harvests, 

following the general linear model (GLM) presented in Equation 1 and Table 1. Analysis of 

variance was also performed using combined data from all umbel orders with ‘umbel order’ 

included as an additional factor in the ANOVA model. If significant differences were detected by 

ANOVA, a TUKEY post hoc test was done at 5% level of probability. The bar graphs with error 

bars were used for graphical representation of differences among main treatment effects and their 

interactions. 


ijkllijkjkikijkjiijklY +++++++++= )()()()(  Equation 1 

 

Where, i = 2; j = 3; k = 2; l = 2 

Y ijkl
= response in the lth replicate due to ith pollinator and jth female inbred line and kth male 

inbred line 

 = general effect 

 i
= effect due to pollinator 


j
= effect due to female inbred line 


k
= effect due to male inbred line 

)(
ij

= interaction effect of the ith pollinator and jth female inbred line 
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)(
ik

= interaction effect of the ith pollinator and kth male inbred line 

)(
jk

= interaction effect of jth female inbred line and kth male inbred line 

)(
ijk

= interaction effect of ith pollinator jth female inbred line and kth male inbred line  

 l
= effect due to lth replication 

 ijkl
= random error 

Table 1: Skeleton analysis of variance (ANOVA) table for seed production and quality traits. 

Source of variation Degrees of Freedom 

Replication r – 1 = 1 

Treatment  pmf – 1 = 11 

Pollinator p – 1 = 1 

Male  m – 1 = 1 

Female f – 1 = 2 

Pollinator x Male (p – 1)(m – 1) = 1 

Pollinator x Female (p – 1)(f – 1) = 2 

Male x Female (m – 1)(f – 1) = 2 

Pollinator x Male x Female (p – 1)(m – 1)(f – 1) = 2 

Error (r – 1)(pmf – 1) = 11 

Total rpmf – 1 = 23 
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CHAPTER 4 

RESULTS 

This study was carried out to understand the main and interaction effects of insect pollinators, 

female carrot inbred lines and male carrot inbred lines in seed production. Observations were 

made for weight of umbels, seed weight and germination %, and this was done separately on 

primary, secondary, and tertiary umbel harvests from the female inbred lines. It is important to 

note that the male inbred lines only acted as pollen donors and the insect pollinators were the 

agents of pollination. Analysis of variance and means for main and interaction effects are 

reported. 

4.1 Analysis of variance 

Primary umbels 

The primary order umbel harvests showed significant treatment effects for all the recorded 

variables (Figure 2).  The pollinator effect was not significant for all the variables, and female 

effect was significant for all variables, whereas the male effect was significant for all variables 

except weight of umbels. The pollinator x female effect was significant for all variables except 

germination %, whilst the pollinator x male effect was significant only for germination %. 

Interaction effect of females x males was significant for all variables. The interaction effect of 

pollinator x female x male was highly significant for weight of umbels and seed weight but not 

significant for germination %.  

 

  



28 
 

Table 2: Analysis of variance for seed production and seed quality parameters in the Primary 
Umbels 

Source of variation 
Degrees of 

freedom 

Weight of 

Umbels (g plot-1) 

Seed 

weight (g plot-1) 
Germination (%) 

Replication 1 12.04 126.04 10.67 

Treatment 11 552.56*** 2207.13*** 285.55*** 

Pollinator 1 2.04 77.04 6.00 

Female 2 637.88*** 1563.54*** 65.38* 

Male 1 7.04 13490.04*** 2281.50*** 

Pollinator*Female 2 1682.79*** 1523.29*** 11.38 

Pollinator*Male 1 51.04 145.04 368.17*** 

Female*Male 2 301.29*** 1383.79*** 146.38*** 

Pollinator*Female*Male 2 387.04*** 812.54*** 19.54 

Error 11 20.77 35.86 9.67 

*** = significant at P<0.001, ** = significant at P<0.01 and * = significant at P<0.05 

Secondary umbels 

In this category of umbels, treatment effect was highly significant for all variables (Table 3). The 

pollinator and male effect were significant only for germination %, whereas the female effect was 

significant for all variables. A similar trend as for the primary umbels was observed wherein the 

pollinator x female effect was significant for all variables except germination % whilst the pollinator 

x male effect was significant only for germination %. the interaction effect of females and males, 

and the three-factor interaction of pollinators, females and males were significant for all recorded 

variables. 
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Table 3: Analysis of variance for seed production and seed quality parameters in the Secondary 
Umbels 

Source of variation 
Degrees of 

freedom 

Weight of 

Umbels (g plot-1) 

Seed 

weight (g plot-1) 
Germination (%) 

Replication 1 7385.04 2109.38 1.50 

Treatment 11 26031.77*** 14656.83*** 309.26*** 

Pollinator 1 3151.04 1305.38 112.67** 

Female 2 90890.67*** 30179.63*** 96.29** 

Male 1 8932.04 6305.04 2053.50*** 

Pollinator*Female 2 16342.17* 26190.38*** 26.54 

Pollinator*Male 1 1820.04 1365.04 450.67*** 

Female*Male 2 13645.17* 5729.54* 219.13*** 

Pollinator*Female*Male 2 15345.17* 14025.29*** 50.54* 

Error 11 2912.68 837.73 8.41 

*** = significant at P<0.001, ** = significant at P<0.01 and * = significant at P<0.05 

Tertiary umbels 

As regards to this category of umbels, the treatment effect was significant only for weight of 

umbels (Table 4). The pollinator effect was not significant for all variables. The female effect was 

significant only for weight of umbels whereas the male effect was significant for all variables 

recorded. The interaction effect of females and males was significant for weight of umbels and 

germination % but not significant for seed weight. All other interaction effects were not significant 

for all the variables. 
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Table 4:  Analysis of variance for seed production and seed quality parameters in the Tertiary 
Umbels 

Source of variation 
Degrees of 

freedom 

Weight of 

Umbels (g plot-1) 

Seed 

weight (g plot-1) 
Germination (%) 

Replication 1 165.38 590.04 54.00 

Treatment 11 18909.01** 2798.28 55.71 

Pollinator 1 1488.38 3337.04 32.67 

Female 2 32291.38** 1453.88 35.29 

Male 1 84372.04*** 16380.38** 253.50** 

Pollinator*Female 2 23.63 289.54 23.04 

Pollinator*Male 1 35.04 392.04 2.67 

Female*Male 2 28682.79** 3552.88 101.63* 

Pollinator*Female*Male 2 54.04 39.54 2.04 

Error 11 2855.74 1031.50 21.91 

*** = significant at P<0.001, ** = significant at P<0.01 and * = significant at P<0.05 

 

Across umbel orders 

Overall analysis of variance across umbel orders (Table 5) revealed highly significant effect of 

umbel order, treatment, umbel order x treatment, and the male parent, for all recorded variables. 

The pollinator, umbel order x pollinator, pollinator x female, umbel order x pollinator x male, and 

umbel order x female x male effects were not significant for all variables. The umbel order x male, 

pollinator x male, and female x male interaction effects were significant only for germination %. 

On the other hand, the umbel order x pollinator x male, and umbel order x pollinator x female x 

male interaction effects were significant only for seed weight. 
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4.1.1 Analysis of variance across umbel orders 

Table 5: Analysis of variance for weight of umbels, seed weight and germination percentage 
across umbel orders. 

*** = significant at P<0.001, ** = significant at P<0.01 and * = significant at P<0.05, 

 

Source of variation Degrees 

of 

freedom 

Weight of 

Umbels (g  

plot-1) 

Seed 

weight (g plot-

1) 

Germination 

(%) 

Umbel order 2 508210.89*** 154422.06*** 1061.17*** 

Rep * Umbel order 3 2520.82 941.82 22.06 

Treatment 11 18609.26*** 6543.50*** 537.15*** 

Pollinator 1 120.13 308.33 2.00 

Female 2 48460.93*** 6496.68 187.79*** 

Male 1 48724.01*** 34892.01*** 3960.50*** 

Pollinator * Female 2 3063.29 5618.44 3.04 

Pollinator * Male 1 572.35 1577.33 589.39*** 

Female * Male 2 21903.01 2124.60 440.38*** 

Pollinator * Female * Male 2 4215.43 3360.68 47.18 

Umbel order * Treatment 22 13442.04*** 6559.37*** 56.68*** 

Umbel order * Pollinator 2 2260.67 2205.56 74.67 

Umbel order * Female 4 37679.49*** 13350.18*** 4.58 

Umbel order * Male 2 22293.56 641.72 314.00*** 

Umbel order * Pollinator * Female 4 7492.65 11192.39*** 28.96 

Umbel order * Pollinator * Male 2 666.89 162.39 116.06 

Umbel order * Female * Male 4 10363.12 4270.81 13.38 

Umbel order * Pollinator * Female * Male 4 5785.41 5758.34*** 12.47 

Error 33 1929.73 635.03 13.33 
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4.2  Means of the main and interaction effects 

4.2.1 Main effects 

Considering each umbel order, the mean values for the levels of pollinator were statistically not 

different for all the variables, for all umbel orders except for germination % (Table 6). The flies 

recorded higher germination rate (72.58%) than the bees (68.25%) when the secondary umbel 

seed was tested. Male inbred line SVC111 recorded higher mean values than the other male 

(SVC131) for all variables except weight of primary umbels of which there was no statistical 

difference. The mean values for the females were significantly different for all the variables except 

seed weight and germination rate of the tertiary umbels. 

Means for levels of umbel order were significant for all variables (Table 6). Secondary umbels 

registered highest mean value for weight of umbels and seed weight. Primary umbels had highest 

germination rate though not significantly different from secondary umbels. There was no 

difference in mean values of all the variables for the pollinators across all levels of umbel order. 

Male inbred line SVC111 performed better than the other male (SVC131) for all variables across 

all levels of umbel order. Means for the levels of female inbred lines were different, over all levels 

of umbel orders. Regarding weight of umbels, female SVC212 recorded the highest mean value 

though it was not statistically different from female SVC213, and this trend was repeated for seed 

weight. Female lines SVC211 and SVC213 were not different in respect of germination rate which 

was lower than that of female SVC212. 
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Table 6: Main effect of levels of pollinator and parental inbred lines on seed production and seed quality assessed from each umbel 
order. 

Means followed by the same letter(s) for each factor and variable, are not significantly different; different letter(s) indicate significant 

differences

Factor 

Primary umbels Secondary umbels Tertiary umbels 

Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

                      

Pollinators 
Bees 133.83a 148.50a 73.00a 387.33a 259.25a 68.25b 169.50a 126.17a 61.25a 

Flies 134.42a 144.92a 72.00a 410.25a 274.00a  72.58a 153.75a 102.58a 58.92a 

                      

Male inbred 
lines 

SVC 111 133.58a 170.42a 82.25a 418.08a  282.83a 79.67a 220.92a 140.50a 63.33a 

SVC131 134.67a 123.00b 62.75b 379.50a 250.42b 61.17b 102.33b 88.25b 56.83b 

                      

Female 
inbred lines 

SVC 211 144.25a 162.75a 70.38b 278.13b 198.25b 67.25b  121.50b 110.00a 58.25a 

SVC 212 130.75b 137.13b 75.75a 438.13a 284.50a 74.13a 234.88a 129.50a 62.38a 

SVC 213 127.38b 140.25b 71.38b 480.13a 317.13a 69.83b 128.50b 103.63a 59.625a 
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Considering the main effect of levels umbel order, male inbred lines, and female inbred lines the 

mean values were statistically different for all the quantitative traits (weight of umbels, seed weight 

and germination percentage) (Table 7). There was no significant difference in mean values of 

pollinators across all levels of traits. Male inbred line SVC111 recorded higher mean values in 

germination percentage 75.08% than the other male SVC131 by 60.25% which there was 

significant difference statistical. The mean values for the females were significantly different for 

all the variables except weight of umbels (SVC 212 = 267.92 g and SVC 213 = 245.33 g) and 

seed weight (SVC 212 = 183.71 g and SVC 213 = 187.00 g). 

Table 7: Main effect of levels of pollinator, parental inbred lines and umbel order on seed 
production and seed quality. 

Means followed by the same letter(s) for each factor and variable, are not significantly different; 

different letter(s) indicate significant differences. 

Factor Weight of 

Umbels (g  plot-1) 

Seed 

weight (g  
plot-1) Germination (%) 

     

Umbels order 

Primary 134.13b 
146.71b 72.50a 

Secondary 398.79a 266.63a 70.42a 

Tertiary 161.63b 114.38c 60.08b 

      

Pollinators 
Bees 230.22a 177.97a 67.50a 

Flies 232.81a 173.83a 67.83a 

      

Male inbred 
lines 

SVC 111 257.53a 197.92a 75.08a 

SVC131 205.50b 153.89b 60.25b 

      

Female 
inbred lines 

SVC 211 181.29b 157.00b 65.29b 

SVC 212 267.92a 183.71a 70.75a 

SVC 213 245.33a 187.00a 66.96b 
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4.2.2 Treatment and interaction effects 

Table 8 shows that treatment means were different for all the recorded variables in the three 

umbel categories except for seed weight and germination rate of the tertiary umbel harvests. 

For the primary umbel category, with respect to weight of umbels, Treatment 2 (Bees x SVC111 

X SVC212) recorded lowest mean of 103.5 g and Treatment 7 (Flies x SVC111 x SVC211) 

recorded the highest mean of 153.0 g, and the same treatments had minimum (137.5 g) and 

maximum (206.0 g) seed weight, respectively. However, Treatment 1 (Bees x SVC111 x SVC211) 

was not statistically different from Treatment 7 in respect of seed weight. The highest germination 

rate (89.5%) was observed on Treatment 8 (Flies x SVC111 x SVC212) and the lowest (53.0%) 

on Treatment 10 (Flies x SVC131 x SVC211).  

In the secondary umbel category, the highest values for weight of umbels and seed weight were 

595 g and 430 g respectively, both for Treatment 2 (Bees x SVC111 x SVC212), and the lowest 

values were 205 g and 177 g, respectively, both for Treatment 1 (Bees x SVC111 x SVC211). 

Mean seed weight for Treatment 9 (Flies x SVC111 x SVC213) which was 426 g was not 

significantly different from that for Treatment 2. The highest germination rate (92%) was observed 

on Treatment 8 (Flies x SVC111 x SVC212) and the lowest (50%) was observed on Treatment 

10 (Flies x SVC131 x SVC211). 

As regards the tertiary umbel treatment means, there was no significant difference for seed weight 

and germination %. However, Treatment 2 (Bees x SVC111 x SVC212) recorded the highest 

value (375 g) for weight of umbels and Treatment 10 (Flies x SVC131 x SVC211) recorded the 

lowest value (79.5 g). 

Factor interaction effects that were detected as significant by analysis of variance are graphically 

represented (Figures 7 to 10).  
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Table 8: Means for recorded variables of different treatments for the first, second and third umbel harvests 

 

Means followed by the same letter(s) in a column are not significantly different; different letter(s) indicate significant differences. 

Treatment Primary umbels Secondary umbels Tertiary umbels 

 Factor combinations Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

Weight of 

Umbels (g  
plot-1) 

Seed 

weight (g  
plot-1) 

Germination 
(%) 

1 Bees x SVC111 x SVC211 148.5ab 197.0a 83.5abc 205d 177c 80bcd 160abc 173a 65a 

2 Bees x SVC111 x SVC212 103.5d 137.5c 78.0abc 595a 430a 70cde 375a 182a 68a 

3 Bees x SVC111 x SVC213 143.5ab 189.5ab 75.0cbd 446abc 242cb 69.5ed 155cb 114a 59.5a 

4 Bees x SVC131 x SVC211 134.0cb 121.0c 58.5ef 300cd 209c 54fg 95c 84a 52a 

5 Bees x SVC131 x SVC212 131.5cb 120.0c 72.0cd 359.5bcd 236cb 70.5cde 113.5c 97a 63a 

6 Bees x SVC131 x SVC213 142.0ab 126.0c 71.0cde 418.5abcd 261cb 65.5ef 118.5c 107a 60a 

7 Flies x SVC111 x SVC211 153.0a 206.0a 86.5ab 305cd 197.5c 85ab 151.5cb 127a 65a 

8 Flies x SVC111 x SVC212 148.5ab 165.5b 89.5a 400abcd 224cb 92a 350ab 150a 63.5a 

9 Flies x SVC111 x SVC213 104.5d 127.0c 81.0abc 557.5ab 426.5a 81.5abc 134c 97a 59a 

10 Flies x SVC131 x SVC211 141.5ab 127.0c 53.0f 302.5cd 209.5c 50g 79.5c 56a 51a 

11 Flies x SVC131 x SVC212 139.5ab 125.5c 63.5defde 398abcd 247.5cb 64ef 101c 89a 55a 

12 Flies x SVC131 x SVC213 119.5dc 118.5c 58.5ef 498.5abc 339ab 63ef 106.5c 96.5a 60a 
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Across all umbel harvests, Treatment 2 (Bees x SVC111 x SVC212) recorded the highest weight 

of umbels and seed weight (Table 9). whereas the lowest values for the same variables were 

recorded for Treatment 1 (Bees x SVC111 x SVC211) Treatment 10 (Flies x SVC131 x SVC211), 

respectively. Treatment 8 (Flies x SVC111 x SVC212) was the best in respect of germination %, 

and Treatment 10 was the worst-performer for the same. 

Table 9: Means for recorded variables of different treatments across all umbel order harvests 

 

Means followed by the same letter(s) in a column are not significantly different; different letter(s) 

indicate significant differences. 

 

 

 

 
Treatment 

 
Factor combinations 

Weight of 

Umbels (g plot-1) 

Seed 

weight (g plot-1) 
Germination (%) 

1 Bees x SVC111 x SVC211 171.2d 182.3bc 76.2ab 

2 Bees x SVC111 x SVC212 357.8a 249.8a 72.0bcd 

3 Bees x SVC111 x SVC213 248.2bcd 181.8bcd 68.0cde 

4 Bees x SVC131 x SVC211 176.3cd 138.0cd 54.8gh 

5 Bees x SVC131 x SVC212 201.5cd 151.2cd 68.5cd 

6 Bees x SVC131 x SVC213 226.3bcd 164.7cd 65.5def 

7 Flies x SVC111 x SVC211 203.2cd 176.8bcd 78.8ab 

8 Flies x SVC111 x SVC212 299.5ab 179.8bcd 81.7a 

9 Flies x SVC111 x SVC213 265.3bc 216.8ab 73.8bc 

10 Flies x SVC131 x SVC211 174.5d 130.8d 51.3h 

11 Flies x SVC131 x SVC212 212.8bcd 154.0cd 60.8efg 

12 Flies x SVC131 x SVC213 241.5bcd 184.7bc 60.5fg 
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Figure 7: Significant factor interaction effects on seed weight in grams per plot (A to C) and 
germination percentage (D to E) of primary umbel harvests.   

 

There was significant female inbred line by pollinator interaction effect on seed weight of 

primary umbel harvests (Figure 7.A). The seed weight from SVC211 x Flies was the highest; 

this was followed by SVC213 x Bees. Combinations SCV212 x Bees and SCV213 x Flies 

recorded relatively low seed weights.  

The female x male interaction effect was significant for seed weight of the primary order umbel 

harvests (Figure 7.B). Combination SVC211 x SVC111 recorded the highest seed weight, 

followed by SVC213 x SVC111 and SVC212 x SVC111, in that order. It is also evident that 

Male SVC111 was superior to SVC131.  
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The three-factor interaction effect of pollinator x female x male was significant for seed weight 

of the primary umbel harvest (Figure 7.C). Highest amount of seed by weight was harvested 

from female SVC211 x SVC111 cross that was pollinated by flies, followed by the same 

combination of female and male pollinated by bees. However, these combinations were not 

significantly different from SVC211 x SVC111 pollinated by bees.   

There was a significant interaction effect of males and pollinators for germination % of primary 

umbel harvests, as shown in Figure 7.D. The effect of SVC111 x Flies recorded the highest 

germination rate and it differed significantly from the next best combination (SVC111 x Bees). 

The lowest germination % was realised for SVC131 in combination Flies, followed by SVC131 

in combination with Bees.  

The female x male interaction effect was significant for germination % of primary umbel 

harvests (Figure 7.E). Higher germination rates were observed when the pollen source was 

SVC111 than when it was SVC131. The female by male combination SVC211 x SVC111 

recorded the highest germination % followed by SVC212 x SVC111; and SVC211 x SVC131 

recorded the lowest germination %. 
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Figure 8: Significant factor interaction effects on seed weight in grams per plot (A to C) and 
germination percentage (D to F) of the secondary umbel harvests. 

 

Interaction of female parents by pollinators was significant for seed weight (Figure 8.A). 

Female SVC213 x Flies recorded the highest seed weight followed by SVC212 x Bees. the 

combination SVC211 x Bees recorded the lowest seed weight. 

The female x male interaction effect on seed weight is illustrated in Figure 8.B. Female 

SVC213 by male SVC111 gave the highest seed quantity but was not statistically different 
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from female SVC212 by male SVC111. Lowest seed quantity was recorded for female 

SVC211 x male SVC111.  

A higher order interaction effect, that is, pollinator x female x male, is illustrated for seed weight 

of secondary umbel harvests (Figure 8.C). Bees x SVC212 x SVC111, and Flies x SVC213 x 

SVC111 were not significantly different, and they recorded highest seed weight. The minimum 

seed weight was recorded on Bees x SVC211 x SVC111 followed by Flies x SVC211 x 

SVC111. 

Pollinator x male parent graphs for germination % of secondary umbel harvests shows that 

Flies x SVC111 was the most desirable combination. Next best was Bees x SVC111, and the 

least desirable combination was Flies x SVC131.  

Female by male interaction effect was significant for germination % of the secondary umbel 

harvests. Combination SVC211 x SVC111 had highest germination % followed by SVC212 x 

SVC111, and SVC213 x SVC111, in that order. The lowest germination rate was recorded on 

the SVC211 x SVC131 combination.  

Three factor interaction effect on germination % of secondary umbel harvests is represented 

in Figure 8.F. Top three combinations were: Flies x SVC212 x SVC111 which recorded the 

highest value, followed by Flies x SVC211 x SVC111, and then Flies x SVC213 x SVC111. 

The lowest germination rate was recorded for Flies x SVC211 x SVC131. 
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Figure 9: Significant factor interaction effects on weight of umbels of primary umbel harvests 
(A to C) and secondary umbel harvests (D to E) in grams per plot.  

  

Figure 9 clearly shows the significant factor interaction effects on weight of umbels of the 

primary and secondary umbel order harvests. In the primary umbel order category, female x 

pollinator (Figure 9.A), female x male (Figure 9.B), and female x male x pollinator (Figure 9.C) 

were significant. In Figure 9A, SVC211 x Flies, SVC212 x Flies, SVC213 x Bees, and SVC211 

x Bees recorded high umbel weights not significant from each other. The combinations 

SVC212 x Bees and SVC213 x Flies recorded relatively low umbel weights.  
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In Figure 9B, there are slight differences between the combinations of females and males. 

However, SVC211 x SVC111 recorded the highest umbel weight.  

There were slight mean differences in weight of primary order umbels when three factor 

combinations were compared (Figure 9C). However, combinations SVC213 x SVC111 x Flies, 

and SVC212 x SVC111 x Bees, had relatively low umbel weights. 

The female x male interaction effect on weight of secondary umbels presented in Figure 9D 

shows that SVC213 x Flies was the best combination followed by SVC212 x Bees. The least 

desirable combinations in this umbel category were SVC211 x Bees and SVC211 x Flies.  

In Figure 9E, females SVC212 and SVC213 in combination with male SVC111 recorded 

highest weight of umbels, followed by SVC213 x SVC131. The female SVC211, pollinated by 

either male, gave relatively low umbel weights. 

In Figure 9F, the best combination for weight of umbels was SVC212 x SVC111 x Bees, 

followed by SVC213 x SVC111 x Flies. The lowest umbel weight was recorded for SVC211 x 

SVC111 x Bees.  

 



  
 

44 
 
 

 

Figure 10: Significant two factor interaction effects on germination percentage (A to C), 
weight of umbels in grams per plot (D), and seed weight in grams per plot (E) across all 
umbel order harvests. 

 

Significant interaction effects across all umbel order harvests are presented in Figures 10. 

Figure 10 shows significant two factor interaction effects on weight of umbels, seed weight 

and germination %. 

Figure 10A shows male x pollinator effect of germination %. The highest germination rate was 

observed on combination SVC111 x Flies, followed by SVC111 x Bees. The combinations 

involving male SVC131 had relatively lower germination %. 

Female x male interaction effect on germination % is illustrated in Figure 10B. Highest 

germination % was recorded by SVC211 x SVC111 and SVC212 x SVC111, followed by 
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SVC213 x SVC111. Combinations involving male SVC131 exhibited relatively lower 

germination %. 

The performance of males regarding germination % in each umbel order is shown in Figure 

10C. Male SVC111 was superior to SVC131 in all umbel orders. Highest percentage value of 

germination was recorded for SVC111 in the primary umbel category, followed by the same 

male in the secondary umbel category, and then again, the same male in the tertiary umbel 

category. Germination % decreased when advancing from primary umbel order to secondary 

umbel order, and from the secondary order to the tertiary umbel category.  

Another significant two factor interaction effect was that of the female parent and the umbel 

order. This showed the performance of each female in each umbel order for weight of umbels 

and seed weight, and in this regard, almost the same trend was observed for the two variables. 

Highest weight of umbels value was observed on SVC213 in the secondary umbel category, 

followed by SVC212 and SVC211 in the same umbel category. The same ranking of top three 

observations was exhibited for seed weight. 
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Figure 11: Significant three factor interaction effects on seed weight in grams per plot across 
all umbel order harvests. 

Figure 11 presents significant high order (three factor) interaction effects on seed weight. The 

seed weight of harvests from SVC212 pollinated by Flies in the primary umbel category was 

higher than when the same female was pollinated by Bees. The reverse was true for 

secondary umbel harvests where SVC212 pollinated by Flies recorded lower seed weight than 

when pollinated by Bees. The combination Flies x SVC213 had lower seed weight than Bees 

x SVC213 in the primary umbel category whereas in the secondary umbel category it was the 

Flies x SVC213 which performed better than Bees x SVC213. 
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Figure 12: Significant four factor interaction effects on seed weight in grams per plot across 
all umbel order harvests. 

 

In Figure 12, some combinations of female and male performed differently when different 

pollinators were used, and in the different umbel categories. For example, Flies x SVC213 x 

SVC111 recorded lower seed weight than the Bees x SVC213 x SVC111 in the primary umbel 

category; however, the reverse was true in the secondary umbel category. Another example 

is the Flies x SVC212 x SVC111 which performed better than Bees x SVC212 x SVC111 in 

respect of seed weight in the primary order harvests while the reverse was true in the 

secondary umbel harvests.
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CHAPTER 5 

DISCUSSION 

The study has shown there is variability among the carrot inbred lines in respect to weight of 

umbels, seed weight, and germination percentage. Observed that the effect of the deployment 

of pollinator species (Apis mellifera and Chrysomya choropyga) among the carrot inbred lines 

for each different female inbred line was significantly high in the first umbels than the second 

and third umbels. The results suggest that trait qualities of hybrid carrot inbred lines were 

being influenced by the two male fertile donors (SVC 111 and SVC 131). The overall traits 

(weight of umbel, seed weight, and germination percentage) were highly significant for all 

interaction and main effects.  

The data indicated that the honeybees were not significantly different from the fly pollinators 

in all the quantitative traits (weight of umbels, seed weight and germination percentage) and 

in all different stages of umbel flowering. The weight of umbels showed the impact of 

morphologically different inbred lines, with the weight ranging between 500 g and 210 g across 

all female lines in all cages. The influence arising from the variation in morphology was 

reported by other researchers (Brittain et al., 2013). Hence, a significant difference (p≤0.001) 

was observed for seed weight among the female inbred lines in all replications and cages.  

The results are also in agreement with the work by Howlett (2012) who indicated that flies 

could be utilized and were successful known contributors to pollination. Relatively high seed 

weight was observed from the first umbel (125 g) for the flies and female (SVC 211), and 

interaction of Flies x SVC 211 x SVC 111 was 210 g.  The seed germination percentage for 

the first umbel was not significantly different from the second umbels but significantly higher 

than that of third umbels, ranging between 85.5% and 52%. The seed germination percentage 

of the flies’ treatment was very high by 78%, indicating that non-bee insects can contribute to 
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good quality carrot seed as reported by Larson et al (2001). Similar results were reported by 

Brittain et al. (2013) who reported that flies complement bees as pollinators. 

There were clear differences in pollinator visitations between both inbred lines and umbel 

stages. Traditionally, honeybees are the dominant pollinators of carrots and their performance 

is essential as reported by Vicens and Bosch (2000). The study has shown the important role 

of flies in flowers visitations throughout the day to the extent that they appeared dominant over 

the honeybees (Rader et al. 2013). For instance, in the early morning more than four flies 

could be observed active in each umbel. In addition, there were significant differences 

between the pollinator visitations on the male and female lines under the different cages. The 

preference for foraging could also be seen in the differences observed for seed weight and 

seed germination in the different umbels for CMS lines, where these were low in the third 

umbels. However, this could indicate that crop fluctuation of flowering affects the deployment 

of pollinators (Erickson et al. 1979).  

There was no significant difference among manageable honeybees’ in their contribution in all 

phases of umbels flowering, even though their activity is still in question. This outcome 

reinforces the importance of having alternative pollinators (such as flies) to assist in successful 

pollinations, whilst the future management of honeybees is being reimagined.  This finding 

agrees with Howlett et al. (2015) who explained that the importance of alternatives insect (flies) 

visitation may help in the understanding of their significant influence in improving successful 

pollinations. The traits’ quality mean amongst all the umbels (1st, 2nd, 3rd) showed significant 

differences for all interactions, except for seed set and seed yield where the pollinators were 

not comparably enough to observe differences.  

The interaction effect was also significantly different for seed weight and germination 

percentage but was not high in the third umbels, resulting in no significant difference (Table 

8). The treatment factor combination with significant interaction indicates the extent of the 

visitation to different parts within a flower, inflorescence, or other flowers within the same plant 
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(high versus low flower) as a result of pollinator deployment. Therefore, these flowers entice 

pollinators by variation in morphology, colour, and scent.  The study results suggest that inbred 

lines and the trait's quality should be considered when deploying the sterile male lines' 

pollinators and variability. 

Weather conditions influence insect pollinator flower visitations as has been confirmed by 

many researchers (Vicens and Bosch, 2000; Kevan and Baker, 1983; Abrol, 2006; Eric et al. 

2010), and temperature and humidity are some of the major factors that affect insect pollinator 

behavior and foraging patterns. However, though temperature and humidity data were 

recorded in this study, no data were collected to study the foraging behavior of the insect 

pollinators at varying temperature and humidity levels. Future researchers to study the 

effectiveness of different pollinators should gather enough data so that the species can be 

compared at varying levels of weather factors especially temperature and humidity. This is 

quite important especially with the expected climate changes; elevated temperatures, for 

example, may negatively impact some pollinator species, thus affecting pollinator foraging and 

pollination effectiveness in the future (Gaffney et al. 2018). Figure 4 shows that when 

temperatures are low, the relative humidity percentage is high and vice versa. The study 

temperature data showed that morning temperatures were low, and afternoon were high, 

especially for November month. For example, on 18 November 2019, temperature was 15oC 

and relative humidity (RH) was 68.5% in the morning and afternoon it was 28oC, with RH of 

36%. Consequently, pollinators' activity took place earlier, and there was a significant 

interaction of the pollinators with the female and male inbred lines. Therefore, as indicated in 

Figure 5, flies had the advantage of frequent and more visitation over bees during their 

foraging. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

In summary, the results of this study have shown that flies were the primary pollinators in the 

secondary umbels while honeybees were more common during the entire pollination period. 

The activity of the two pollinators varied by traits (weight of umbels, seed weight and 

germination percentage) and umbels order (1st, 2nd, 3rd), indicating that their effectiveness is 

comparable, and they could thus be deployed together. The results also indicated where both 

pollinators foraged more and visited the most during the pollination period.  The deployment 

of pollinators was predominant in the male fertile inbred line (SVC 111) over the male fertile 

(SVC 131) with high significant difference in all the umbels order and the traits.  In addition, 

differences were observed between the pollinators in how the pollen was collected from the 

male inbred lines, with extremely low preference of the SVC 131 line.  However, further 

investigations of pollen quality are needed to check the impact on fertilizing the ovary of the 

male sterile line during cross pollination. 

There were highly significant differences between the female inbred lines (cytoplasmic male 

sterile), whereby female lines SVC 212 and SVC 213 showed better and higher significant 

performance than male sterile line SVC 211. Whereas, the germination percentage of SVC 

211 and SVC 213 showed no significant difference, the two lines were significantly different 

from the female inbred line SVC 212. The overall results indicated no significant difference in 

the three factor interaction effects for all the traits except for seed weight, which was highly 

significant. While, the significant difference in the four factor interaction effects that include 

pollinators, parental inbred lines and umbel orders implies that bees and flies can be deployed 

together during pollination to accomplish a good seed set and quality. 

Based on the overall results, it is important to select lines (both male sterile and male fertile) 

with favourable traits as poor traits might result in inadequate pollination. Managed honeybees 

are important pollinators throughout the world, but their foraging behaviour is influenced by 
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environmental factors. The results have shown that flies can be comparable to bees for 

effective pollination .  

The findings will benefit the commercial hybrid carrot production and provide significant 

opportunities for plant breeders, seed industry, and growers to improve pollinations in seed 

production, increase awareness of factors that influence the breeding lines, seed yield and 

qualities. The challenge of Calliphorides flies is still great to maintain a competitive advantage 

over the manageable pollinators (Apis mellifera), as their potential management option is still 

not clearly understood. However, from this study, simultaneous deployment of the two-

pollinator species should be possible and is therefore recommended to accomplish successful 

pollination.  

 

6.2 Summary of research finding 

a).  Assessment of different male sterility inbred line using two pollinator species deployment. 

❖ The ANOVA showed no significant difference between the deployment of pollinator 

species for all the quantitative traits of the female inbred lines (cytoplasmic male sterile). 

❖ The foraging activity and visitation in all female inbred lines showed that Calliphorides flies 

performed much better compared to honeybees through primary, secondary, and tertiary 

flowering stage of umbels. 

❖ The Primary umbels of the main effect showed that SVC 211 was significantly different in 

weight of umbels and seed weight compared to SVC 212 and SVC 213. However, there 

were no significant differences between the pollinators. This means that their foraging 

activity was high, and their visitation was both good for pollination. However, as influenced 

by morphological traits in the female inbred lines, slight differences were observed in the 

number of visitations. 
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❖   Significant four factor interaction effects that includes pollinators, parental inbred lines 

and umbel orders implied that bees and flies can be deployed together during pollination 

to accomplish a good seed set and quality. 

6.3 General implication and the way forward 

➢ The significant three and four factor interaction showed significant difference in pollinators. 

The performance results indicate that high variation exist trough male fertile flower so 

selection should be made for good deployment and stability through pollination service. 
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