
i 
 

 

Hyperglycaemic-Induced Regulation of SIRT3 and Downstream Antioxidant Profile 

 

SHIVONA GOUNDEN 

B.Sc., B.Med.Sc. (Hons), M.Med.Sci. 

 

Submitted in partial fulfilment of the requirements for the degree of Doctor of 
Philosophy in the Discipline of Medical Biochemistry, Faculty of Health Sciences 

University of KwaZulu-Natal 

 

2015 

 

 

 

 

 

 

 

 



ii 
 

DECLARATION 

 

This study represents the original work by the author and has not been submitted in any form to 

another University.  The use of work by others has been duly acknowledged in the text. 

The research described in this study was carried out in the Discipline of Medical Biochemistry, 

Faculty of Health Sciences, University of KwaZulu-Natal, under the supervision of Prof. A.A. 

Chuturgoon and Dr. D. Moodley.  

 

 

 

 

 

 

 

 

 

          

 

 

 

 

    

          S.Gounden 

 

 

Sahil Tulsi


Sahil Tulsi


￼



iii 
 

ACKNOWLDEGEMENTS 

I would like to express sincere gratitude and deepest appreciation to Prof. A. A. Chuturgoon for his 

guidance, invaluable criticism and encouragement throughout the study. 

I am sincerely grateful to Dr. D. Moodley for his guidance, mentorship and support during this 

research endeavour. 

I want to thank the National Research Foundation and UKZN (CHS Strategic funds) for funding this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

LIST OF PUBLICATIONS  

Publications: 

(1) Increased SIRT3 Expression and Antioxidant Defence under Hyperglycemic Conditions in HepG2 

Cells  

Gounden, S, Phulukdaree, A, Moodley, D, Chuturgoon, A.A. 2015. Vol.13, pg 255-263, Metabolic 

Syndrome and Related Disorders. 

 

(2) Submitted to Human and Experimental Toxicology (2015): 

Article title: Metformin Increases SIRT3 and Antioxidant Expression in Hyperglycaemic Conditions 

in HepG2 Cells 

Manuscript ID:  HET-15-0599 

Authors:      Gounden, S, Chuturgoon, A.A. 

  

(3) Submitted to Metabolic Syndrome and Related Disorders (2015): 

Article title: Curcumin Up-regulates Antioxidant Defence, Lon Protease and Heat Shock Protein 70 

under Hyperglycaemic Conditions in Human Hepatoma Cells  

Manuscript ID:  MET-2015-0149 

Authors:      Gounden, S, Chuturgoon, A.A. 

 

(4) Submitted to Cell Stress and Chaperones (2015) 

Article title: Cell Survival Genes Counterbalance Apoptotic Stress under Hyperglycaemic      

Conditions in HepG2 Cells  

Manuscript ID:   #CSAC-D-15-00203 

Authors:      Gounden, S, Chuturgoon, A.A. 

  

 



v 
 

LIST OF PRESENTATIONS 

Presentations: 

(1) Sirtuin 3 Initiates the Cell-Survival Adaptive Response under Hyperglycaemic Conditions in 

Human Hepatoma Cells  

Gounden, S, Phulukdaree, A, Moodley, D, Chuturgoon, A.A. Discipline of Medical Biochemistry, 

University of KwaZulu-Natal, Durban, South Africa and Department of Microbiology and 

Immunobiology, Harvard Medical School, Boston College of Health Science Research Symposium 

2014, UKZN. [Oral presentation-1st place at School of Laboratory Medicine and Medical Science 

Symposium]; [Oral presentation- The South African Society for Biochemistry and Molecular Biology 

(SASBMB) Congress]  

 

(2) Increased Expression of SIRT3, Antioxidant and Stress Response under Hyperglycaemic 

Conditions in Human Hepatoma Cells  

Gounden, S, Phulukdaree, A, Moodley, D, Chuturgoon, A.A. Discipline of Medical Biochemistry, 

University of KwaZulu-Natal, Durban, South Africa and Department of Microbiology and 

Immunobiology, Harvard Medical School, Boston College of Health Science Research Symposium 

2013, UKZN. [Poster presentation- awarded a national conference]  

 

(3) The effect of chronic glucose stimulation on HepG2 cell apoptosis- A preliminary study.  

Gounden,S, Phulukdaree,A, Moodley, D, Chuturgoon, A.A. College of Health Science Research 

Symposium 2011, UKZN. [Poster presentation] 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

Declaration          ii 

Acknowledgements         iii 

List of Publications         iv  

List of Presentations         v 

List of Figures and Tables        x 

List of Abbreviations         xviii 

Abstract          xxii 

Introduction          1 

Chapter: 

1. Literature review       

1.1      Global prevalence of diabetes 5 

 1.1.1    Pathophysiology 6 

 1.1.2    Type 1 diabetes mellitus (DMI) 6 

 1.1.3    Type 2 diabetes mellitus (DMII) 6 

 1.14    Diabetic complications 

 

6 

1.2      Oxidative stress and DMII 

 

6 

1.3      Mitochondrial ROS production 8 

 1.3.1    Mitochondria under hyperglycaemic conditions 9 

 1.3.2    Mitochondrial dysfunction 

 

9 

1.4      Oxidative stress and mitochondrial DNA damage 9 

 1.4.1    Repair Mechanisms: OGG1 

 

10 

1.5      Caspases 11 

 1.5.1    Intrinsic pathway 11 

 1.5.2    Extrinsic pathway 

 

12 



vii 
 

1.6      Lon protease 

 

12 

1.7      Heat shock proteins 13 

 1.7.1    Heat shock protein 70 (Hsp70) 14 

 1.7.2    Heat shock protein 27 (Hsp27) 

 

14 

1.8      Antioxidant defence in mitochondria 15 

 1.8.1    Manganese superoxide dismuatse (SOD2) 15 

 1.8.2    Glutathione 15 

 1.8.3    Glutathione peroxidase 1 

 

16 

1.9      Improving mitochondrial function and DMII 16 

 1.9.1    Mammalian sirtuins 16 

 1.9.2    Classification of sirtuins 

 

16 

1.10      Mitochondrial sirtuins 17 

 1.10.1    SIRT3 activity and localisation 18 

 1.10.2    SIRT3 and ETC 19 

 1.10.3    SIRT3 in mitochondrial oxidative stress 19 

       1.10.3.1    SIRT3 and AO defence 19 

 1.10.4    SIRT3 and transcription factors 21 

       1.10.4.1    PGC-1α 21 

       1.10.4.2    NF-κB 

 

22 

 1.10.5    SIRT3 and genomic integrity 23 

   

1.11      Metformin in DMII 23 

 1.11.1    Site of action 23 

 1.11.2    Mechanism of action 24 

 1.11.3    Metformin and ROS  25 

 1.11.4    Metformin and SIRT3 26 

   

1.12      Curcumin in DMII 26 

 1.12.1    Structure 26 

 1.12.2    Mechanism of action 27 

 1.12.3    Mitochondrial dysfunction and curcumin 28 



viii 
 

 1.12.4    Curcumin and diabetes 28 

1.13      References    30 

 

2. Increased SIRT3 Expression and Antioxidant Defence under Hyperglycaemic Conditions in 
HepG2 Cells          42 

2.1 Abstract 43 

2.2 Introduction 44 

2.3 Materials and methods 46 

2.4 Results 49 

2.5 Discussion 60 

2.6 Conclusion 63 

2.7 Acknowledgements 63 

2.8 References 64 

2.9 Supplementary data 67 

 

3. Metformin Increases SIRT3 and Antioxidant Expression in Hyperglycaemic Conditions in 
HepG2 Cells          70 

3.1 Abstract 71 

3.2 Introduction 72 

3.3 Materials and methods 74 

3.4 Results 77 

3.5 Discussion 86 

3.6 Conclusion 88 

3.7 Acknowledgements 89 

3.8 References 89 

 

 

 

 



ix 
 

4. Curcumin Treatment Up-regulates Antioxidant Defence, Lon Protease and Heat Shock 
Protein 70 under Hyperglycaemic Conditions in Human Hepatoma Cells   93 

4.1 Abstract 94 

4.2 Introduction 95 

4.3 Materials and methods 97 

4.4 Results 100 

4.5 Discussion 111 

4.6 Conclusion 114 

4.7 Acknowledgements 114 

4.8 References 115 

 

5. Cell Survival Genes Counterbalance Apoptotic Stress under Hyperglycaemic Conditions in 
HepG2 Cells          120 

5.1 Abstract 121 

5.2 Introduction 122 

5.3 Materials and methods 124 

5.4 Results 127 

5.5 Discussion 132 

5.6 Conclusion 135 

5.7 Acknowledgements 135 

5.8 References 136 

 

6. Discussion and Conclusion        139 

       6.1 References         142 

   Appendix          143 

 



x 
 

LIST OF FIGURES  

Chapter 1 Legend Page 

Figure 1.1 Global prevalence of diabetes mellitus.......................................... 5 

Figure 1.2 Mechanism of hyperglycaemic-induced damage........................... 7 

Figure 1.3 Diagram of oxidative phosphorylation........................................... 8 

Figure 1.4 Structure of 7, 8-dihydro-8-oxoguanine...................... 10 

Figure 1.5 Diagram of OGG1 (8-oxoguanine DNA glycosylase)................... 11 

Figure 1.6 Extrinsic and intrinsic pathways of apoptosis................................ 12 

Figure 1.7 Heat shock response....................................................................... 14 

Figure 1.8 Mitochondrial ROS generation and AO defence system............... 15 

Figure 1.9 Mechanism of protein deacetylation by sirtuins............................ 16 

Figure 1.10 Schematic overview of molecular targets of SIRT3 and its role 

in mitochondrial metabolism..................................... 

17 

Figure 1.11 Mechanism of SIRT3 activation in mitochondria.......................... 18 

Figure 1.12 SIRT3 promotes antioxidant defence............................................. 20 

Figure 1.13 Positive feedback cycle between SIRT3 and PGC-1α................... 21 

Figure 1.14 Lon is regulated by SIRT3 deacetylation....................................... 23 

Figure 1.15  Metformin targets the mitochondrial respiratory chain complex I 24 

Figure 1.16 Proposed mechanism of action of metformin AMP deaminase 

inhibition..................................................................................... 

25 

Figure 1.17 Functional groups of curcumin..................................................... 27 

Figure 1.18 The bi-functional AO properties of curcumin................................ 28 



xi 
 

Chapter 2   

Figure 2.1 The effect of hyperglycaemia on cell viability.  (A) HepG2 cells 

(normal and NAM-treated) and (B) HEK 293 cells (normal and 

NAM-treated) were subjected to a colorimetric assay that 

measured cell viability. Values are expressed as mean ± SEM. 

*p<0.05 vs. Control. 

50 

Figure 2.2 The effect of hyperglycaemia on SIRT3 expression in normal 

and NAM-treated HepG2 cells.  (A) SIRT3 protein expression 

was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of SIRT3 band intensity 

normalised to β-actin.  (B) Gene expression for SIRT3 was 

assessed.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates.  

Data expressed as mean SEM.  *p<0.05 vs. Control.  

52 

Figure 2.3 The effect of hyperglycaemia on SIRT3 expression in normal 

and NAM-treated HEK 293.  (A) SIRT3 protein expression was 

determined by western blot.  A representative immunoblot is 

shown, along with summarised data of SIRT3 band intensity 

normalised to β-actin.  (B) Gene expression for SIRT3 was 

assessed.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates.  

Data expressed as mean SEM.  *p<0.05 vs. Control.  

53 

Figure 2.4 The effect of hyperglycaemia on p-CREB expression in normal 

and NAM-treated HepG2 cells.  (A) p-CREB protein expression 

was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of p-CREB band intensity 

normalised to β-actin.  Data expressed as mean SEM.  (B) Gene 

expression for CREB was assessed.  Values are expressed as 

fold changes relative to the control. Each bar represents the 

mean ± SEM of 3 replicates. *p<0.05 vs. Control.   

55 

Figure 2.5 The effect of hyperglycaemia on PGC-1α expression in normal 

and NAM-treated HepG2 cells.  (A) PGC-1α protein expression 

was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of PGC-1α band intensity 

57 



xii 
 

normalised to β-actin.  Data expressed as mean SEM.  (B) Gene 

expression for PGC-1α was assessed.  Values are expressed as 

fold changes relative to the control. Each bar represents the 

mean ± SEM of 3 replicates. *p<0.05 vs. Control. 

Figure 2.6 The effect of hyperglycaemia on antioxidant mRNA expression 

in normal and NAM-treated HepG2 cells.  Gene expressions for 

(A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were assessed 

with quantitative PCR using specific primers.  Values are 

expressed as fold changes relative to the control. Each bar 

represents the mean ± SEM of 3 replicates. *p<0.05 vs. Control. 

59 

Supplementary 

Figure s2.7 

The effect of hyperglycaemia on p-CREB expression in normal 

and NAM-treated HEK 293 cells.  (A) p-CREB protein 

expression was determined by western blot.  A representative 

immunoblot is shown, along with summarised data of p-CREB 

band intensity normalised to β-actin.  Data expressed as 

mean SEM.  (B) Gene expression for CREB was assessed.  

Values are expressed as fold changes relative to the control. 

Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

Control. 

67 

Supplementary 

Figure s2.8 

The effect of hyperglycaemia on PGC-1α expression in normal 

and NAM-treated HEK 293 cells.  (a) PGC-1α protein 

expression was determined by western blot.  A representative 

immunoblot is shown, along with summarised data of PGC-1α 

band intensity normalised to β-actin.  Data expressed as 

mean SEM.  (b) Gene expression for PGC-1α was assessed.  

Values are expressed as fold changes relative to the control. 

Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

Control. 

68 

Supplementary 

Figure s2.9 

The effect of hyperglycaemia on antioxidant mRNA expression 

in normal and NAM-treated HEK 293 cells.  Gene expressions 

for (A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were 

assessed with quantitative PCR using specific primers.  Values 

are expressed as fold changes relative to the control. Each bar 

represents the mean ± SEM of 3 replicates. *p<0.05 vs. Control. 

69 



xiii 
 

Chapter 3   

Figure 3.1 The effect of hyperglycaemia on cell viability in HepG2 cells 

(untreated, metformin-treated and NAM-treated). Values are 

expressed as mean ± SEM. *p<0.05 vs. untreated control, 

#p<0.05 vs. metformin -treated control, ¶ p<0.05 vs. metformin -

treated 10mM glucose, ¥ p<0.05 vs. metformin -treated 30mM 

glucose. 

77 

Figure 3.2 The effect of hyperglycaemia on SIRT3 expression in untreated, 

metformin -treated and NAM-treated HepG2 cells.  (A) SIRT3 

protein expression was determined by western blot.  A 

representative immunoblot is shown, along with summarised 

data of SIRT3 band intensity normalised to β-actin.  (B) Gene 

expression for SIRT3 was assessed.  Values are expressed as 

fold changes relative to the control. Each bar represents the 

mean ± SEM of 3 replicates.  Data expressed as mean SEM.  

*p<0.05 vs. untreated control, #p<0.05 vs. metformin-treated 

control, ¶ p<0.05 vs. metformin -treated 10mM glucose, ¥ 

p<0.05 vs. metformin -treated 30mM glucose. 

79 

Figure 3.3 The effect of hyperglycaemia on p-CREB expression in 

untreated, metformin -treated and NAM-treated HepG2 cells.  

(A) p-CREB protein expression was determined by western blot.  

A representative immunoblot is shown, along with summarised 

data of p-CREB band intensity normalised to β-actin.  Data 

expressed as mean SEM.  (B) Gene expression for CREB was 

assessed.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates. 

*p<0.05 vs. untreated control, #p<0.05 vs. metformin -treated 

control, ¶ p<0.05 vs. metformin -treated 10mM glucose, ¥ 

p<0.05 vs. metformin -treated 30mM glucose. 

81 

Figure 3.4 The effect of hyperglycaemia on PGC-1α expression in 

untreated, metformin -treated and NAM-treated HepG2 cells.  

Gene expression for PGC-1α was assessed.  Values are 

expressed as fold changes relative to the control. Each bar 

represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

82 



xiv 
 

untreated control, #p<0.05 vs. metformin -treated control, ¶ 

p<0.05 vs. metformin -treated 10mM glucose, ¥ p<0.05 vs. 

metformin -treated 30mM glucose. 

Figure 3.5 The effect of hyperglycaemia on antioxidant mRNA expression 

in untreated, metformin -treated and NAM-treated HepG2 cells.  

Gene expressions for (A) GPx1, (B) SOD2, (C) UCP2 and (D) 

OGG1 were assessed with quantitative PCR using specific 

primers.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates. 

*p<0.05 vs. untreated control, #p<0.05 vs. metformin -treated 

control, ¶ p<0.05 vs. metformin -treated 10mM glucose, ¥ 

p<0.05 vs. metformin -treated 30mM glucose. 

85 

Chapter 4   

Figure 4.1 The effect of curcumin on cell viability was determined in 

HepG2 cells (untreated and curcumin-treated). Values are 

expressed as mean ± SEM. *p<0.05 vs. untreated control.  

102 

Figure 4.2 The effect of curcumin on SIRT3 expression in untreated and 

curcumin-treated HepG2 cells.  (A) SIRT3 protein expression 

was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of SIRT3 band intensity 

normalised to β-actin.  (B) Gene expression for SIRT3 was 

assessed.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates.  

Data expressed as mean SEM.  *p<0.05 vs. untreated control, 

#p<0.05 vs. curcumin-treated control. 

103 

Figure 4.3 The effect of curcumin on CREB expression in untreated and 

curcumin-treated HepG2 cells.  (a) Gene expression for CREB 

was assessed.  Values are expressed as fold changes relative to 

the control. Each bar represents the mean ± SEM of 3 replicates. 

*p<0.05 vs. untreated control, #p<0.05 vs. curcumin-treated 

control.  

104 



xv 
 

Figure 4.4 The effect of curcumin on PGC-1α expression in untreated and 

curcumin-treated HepG2 cells.  Gene expression for PGC-1α 

was assessed.  Values are expressed as fold changes relative to 

the control. Each bar represents the mean ± SEM of 3 replicates. 

*p<0.05 vs. untreated control, #p<0.05 vs. curcumin-treated 

control. 

105 

Figure 4.5 The effect of curcumin on antioxidant mRNA expression in 

untreated and curcumin-treated HepG2 cells.  Gene expressions 

for (A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were 

assessed with quantitative PCR using specific primers.  Values 

are expressed as fold changes relative to the control. Each bar 

represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

untreated control, #p<0.05 vs. curcumin-treated control. 

106 

Figure 4.6 The effect of curcumin on NF-κB expression in untreated and 

curcumin-treated HepG2 cells.  NF-κB protein expression was 

determined by western blot.  A representative immunoblot is 

shown, along with summarised data of NF-κB band intensity 

normalised to β-actin.  Each bar represents the mean ± SEM of 3 

replicates.  Data expressed as mean SEM.  *p<0.05 vs. 

untreated control, #p<0.05 vs. curcumin-treated control.  

108 

Figure 4.7 The effect of curcumin on Lon protease expression in untreated 

and curcumin-treated HepG2 cells.  Lon protein expression was 

determined by western blot.  A representative immunoblot is 

shown, along with summarised data of Lon band intensity 

normalised to β-actin.  Each bar represents the mean ± SEM of 3 

replicates.  Data expressed as mean SEM.  *p<0.05 vs. 

untreated control, #p<0.05 vs. curcumin-treated control.  

109 

Figure 4.8 The effect of curcumin on Hsp70 expression in untreated and 

curcumin-treated HepG2 cells.  Hsp70 protein expression was 

determined by western blot.  A representative immunoblot is 

shown, along with summarised data of Hsp70 band intensity 

normalised to β-actin.  Each bar represents the mean ± SEM of 3 

replicates.  Data expressed as mean SEM.  *p<0.05 vs. 

untreated control, #p<0.05 vs. curcumin-treated control.  

110 



xvi 
 

Chapter 5   

Figure 5.1 The effect of hyperglycaemia on cell viability was determined in 

HepG2 cells. Values are expressed as mean ± SEM. *p<0.05 vs. 

control 

127 

Figure 5.2 The effect of hyperglycaemia on (a) caspase-8 activity, (b) 

caspase-9 activity, (c) caspase 3/7 activity and (d) percentage of 

apoptotic in HepG2 cells.  Each bar represents the mean ± SEM 

of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. 

control 

128 

Figure 5.3 The effect of hyperglycaemia on Hsp27 protein expression in 

HepG2 cells.  Hsp27 protein expression was determined by 

western blot.  A representative immunoblot is shown, along with 

summarised data of Hsp27 band intensity normalised to β-actin.  

Each bar represents the mean ± SEM of 3 replicates.  Data 

expressed as mean SEM.  *p<0.05 vs. control 

129 

Figure 5.4 The effect of hyperglycaemia on mRNA expressions of (a) p300 

and (b) CBP in HepG2 cells. Values are expressed as fold 

changes relative to the control. Each bar represents the mean ± 

SEM of 3 replicates. *p<0.05 vs. control 

130 

Figure 5.5 The effect of hyperglycaemia on antioxidant profile in HepG2 

cells.  (a) Protein expression for Nrf2 was determined using 

western blot.  A representative immunoblot is shown, along with 

summarised data of Nrf2 band intensity normalised to β-actin.  

Gene expressions for (b) SOD2 and (c) GPx1 were assessed 

with quantitative PCR using specific primers.  Values are 

expressed as fold changes relative to the control. (d) 

Concentrations of GSH were determined luminometrically.  

Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

control 

131 

 

 

 



xvii 
 

LIST OF TABLES 

Chapter 2 Legend Page 
Table 2.1 Primer sequences and optimised annealing 

temperature 

47 

Chapter 3   

Table 3.1 Primer sequences and optimised annealing 

temperature 

75 

Chapter 4   
Table 4.1 Primer sequences and optimised annealing 

temperature 

98 

Table 4.2 Cell viability, protein and gene expression in 

HepG2 cells following 10μM curcumin treatment in 

the hyperglycaemic groups.  * p<0.05 vs. untreated 

control, #p<0.05 vs. curcumin-treated control. 

100 

Chapter 5   
Table 5.1 Primer sequences and optimised annealing 

temperature 

 

125 

 

 

 

 

 

 

 

 

 

 



xviii 
 

LIST OF ABBREVIATIONS 

μM   Micromolar 

mM   Millimolar 

MTT   Methyl thiazol tetrazolium 

ºC   Degrees Celsius 

µL   Microlitre 

nm   Nanometer 

•OH   Hydroxyl radical 

8-oxoG   7, 8-dihydro-8- oxoguanine 

AGE   Advanced glycation end product 

AMP   Adenosine monophosphate 

AMPK   Adenosine monophosphate-activated protein kinase 

AO   Antioxidant 

APAF-1  Apoptotic protease activating factor 1 

ATP   Adenosine triphosphate 

BCA   Bicinchoninic acid 

BER   Base excision repair 

CASPASES  Cysteine-aspartic proteases or cysteine-dependent aspartate-directed  

   proteases 

cDNA   Complementary DNA  

CI   Confidence Interval 

COX2   Cyclooxygenase 

CREB   cAMP response element-binding protein 

Ct   Cycle threshold 

https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdenosine_monophosphate&ei=1t9RVdv8FOnX7QbJmYHQDg&usg=AFQjCNHt5GlJwnzy6KrCtWbbBZGt8tww9g&sig2=iNdrT8L8h9hLdBdSJvHw0Q&bvm=bv.92885102,d.ZGU
http://en.wikipedia.org/wiki/Cyclooxygenase


xix 
 

DAG   Diacylglycerol 

DMI   Type 1 diabetes mellitus 

DMII   Type 2 diabetes mellitus 

ERR-α   Estrogen-related receptor-alpha 

ETC   Electron transport chain 

FADH2  Flavin adenine dinucleotide 

FOXO   Forkhead box O 

GLUT2  Glucose transporter 2 

GPx1   Glutathione peroxidase 1 

GR   Glutathione reductase 

GSH   Reduced glutathione 

GSSG   Glutathione disulfide 

H2O2   Hydrogen peroxide 

HEK 293  Human embryonic kidney 293 cells 

HEPG2  Human hepatocellular carcinoma cell line 

HO-1   Heme oxygenase 1  

hr   Hour 

HRP   Horseradish peroxidase 

HSE   Heat shock element 

HSF   Heat shock factors 

HSP   Heat shock protein 

HSP27   Heat shock protein 27 

HSP70   Heat shock protein 70 

HSR   Heat shock response 



xx 
 

IDF   International Diabetes Federation 

IDH2   Isocitrate dehydrogenase 2 

KD   Knockdown 

LON   Lon protease 

mg   Milligram 

min   Minutes 

ml   Millilitre 

MnSOD/SOD2  Manganese superoxide dismutase 

MPP   Mitochondrial processing peptidase 

mRNA   Messenger RNA 

mtDNA  Mitochondrial DNA 

MTS   Mitochondrial targeting sequence 

NADH   Nicotinamide adenine dinucleotide 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NAM   Nicotinamide 

NF-ĸB   Nuclear factor kappa B 

NO•   Nitric oxide 

NRF2   Nuclear factor erythroid 2 [NF-E2]-related factor 2 

O2●   Superoxide radical 

OCT1   Organic cation transporter 1 

OGG1   8-Oxoguanine glycosylase 

ONOO   Peroxynitrite radical 

OS   Oxidative stress 

OXPHOS  Oxidative phosphorylation 



xxi 
 

PGC-1α  Peroxisome proliferator-activated receptor gamma co-activator 1 alpha 

PKC   Protein kinase C 

qPCR   Quantitative polymerase chain reaction 

RBD   Relative band density 

RLU   Relative light units 

ROS   Reactive oxygen species 

s   Second 

SDS-PAGE  SDS-polyacrylamide gel electrophoresis 

SIRT   Sirtuin 

TCA   Tricarboxylic acid cycle 

TNFα   Tumor necrosis factor alpha 

 

 

 

 

 

 

 

 

 

 

 

 



xxii 
 

ABSTRACT 

Hyperglycaemia increases reactive oxygen species (ROS) production and mitochondrial dysfunction 

which are involved in metabolic disorders. Sirtuin 3 (SIRT3) is a primary mitochondrial deacetylase 

that regulates mitochondrial function and antioxidant (AO) defence. 

We investigated the role of SIRT3 in AO defence under hyperglycaemic conditions in HepG2 cells in 

the presence and absence of metformin and curcumin.  We also examined cell protective mechanisms 

that counterbalance apoptotic stress under these oxidative conditions.   

HepG2 cells were cultured with 5mM (control), 19.9mM mannitol (OC), 10mM glucose, 30mM 

glucose (hyperglycaemic), 10mM nicotinamide (NAM) at 24hr and 72hr time points in the absence or 

presence of curcumin (5μM and 10μM) or metformin (3mM).     

Increased expressions of SIRT3, peroxisome proliferator-activated receptor gamma co-activator 1 

alpha (PGC-1α), mitochondrial AO enzymes glutathione peroxidase 1 (GPx1), superoxide dismutase 

2 (SOD2), uncoupling protein 2 (UCP2) and mtDNA repair enzyme 7, 8-dihydro-8-oxoguanine 

(OGG1) were observed under hyperglycaemic conditions.  The same trend was observed for all 

parameters following metformin and curcumin treatment.  In addition, curcumin also increased 

expressions of nuclear factor-kappa B (NF-κB), lon protease (Lon) and heat shock protein 70 

(Hsp70).  These were optimally expressed in the 10μM curcumin-treated groups.  We also showed 

that under hyperglycaemic conditions, apoptosis was initiated but may not have been fully executed 

due to the induction of stress proteins (heat shock protein 27, nuclear factor erythroid-derived 2-like 

2) and AO defence that counterbalance apoptotic stress.   

The results suggest that SIRT3 modulates AO defence and confers resistance to oxidative stress (OS)-

induced damage under hyperglycaemic conditions in HepG2 cells.  Our data also suggests that 

metformin and curcumin may work synergistically with SIRT3, or through SIRT3-mediated 

mechanisms, to improve AO defence.  Our model shows that hyperglycaemia may induce apoptosis; 

however, apoptotic stress may be counterbalanced by cell survival mechanisms that include stress 

response proteins and the downstream activation of AO defence.   

Mitochondria are susceptible to OS, which is involved in metabolic disorders. SIRT3 may, therefore, 

be therapeutically targeted as a potential cyto-protective factor.  Modulation of SIRT3 function, by 

chemical or natural therapeutics, may also improve disease outcomes.  



1 
 

INTRODUCTION 

Type 2 diabetes mellitus (DMII) is a global health issue characterised by hyperglycaemia and insulin 

resistance.  It is associated with an increased risk of multiple micro- and macro-vascular complications. 

DMII has reached epidemic proportions and is predicted to increase by 55% by 2035 (1).  Three-and-a-

half million South Africans (about 6% of the population) suffer from DMII (1). 

Evidence has shown that increased production of reactive oxygen species (ROS) may play a role in the 

progression of DMII and associated complications (2-4).   

Excessive ROS, due to diminished antioxidant (AO) defence, can damage critical macromolecules (5, 6).  

The electron transport chain (ETC) is the primary site for ROS generation.  The energy from the ETC 

shuttles protons across the membranes and this creates a proton gradient that drives ATP synthesis (7).  

Unpaired electrons leak from the respiratory complexes and interact with molecular oxygen producing 

superoxide anions (8). 

Under hyperglycaemic conditions, the tricarboxylic acid (TCA) cycle produces more electron transfer 

donors which enter the ETC (9).  This causes partial inhibition of the ETC at complex III, increasing the 

levels of superoxide radicals (9).   

Mitochondrial DNA (mtDNA) is vulnerable to oxidative damage as it is (a) closely located to the ETC, 

(b) lacks protective histones and (c) has limited DNA repair systems (10).  Mitochondrial DNA damage 

compromises mitochondrial function and AO activity (11) which has been observed in metabolic 

disorders (12).   The increased production of superoxide radicals further compromise the ETC resulting in 

persistent mtDNA damage and genomic instability (9).    

Mitochondrial dysfunction and oxidative stress (OS), induced by hyperglycaemia, are key factors that 

contribute to the progression of DMII and associated complications (13).     

In order to improve DMII, mitochondrial function needs to be maintained and OS must be reduced.  

Sirtuins (SIRTs), a group of class III NAD+-dependent histone deacetylases, contribute to the network of 

stress response proteins.  Studies have shown that SIRTs play an essential role in mitochondrial 

protection against OS (14-16).  Sirtuins are involved in various biological functions such as DNA repair 

(17), apoptosis (18) and regulation of metabolic enzymes (19).  

SIRT3 is located in mitochondria and regulates enzymes involved in the TCA cycle, fatty acid 

metabolism and glycogen metabolism (20).   
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SIRT3 regulates cell defence and survival under oxidative conditions (14, 15); it decreases mitochondrial 

ROS production and protects against mtDNA damage (16, 21).   

SIRT3 over-expression in murine adipocyte cell lines (22) and mice cardiomyocytes (15) resulted in 

reduced levels of ROS.  Similar results were observed in human oral keratinocytes (HOK) where SIRT3 

transcript and protein levels were increased following OS induction (23).  These findings are consistent 

with similar studies in primary neurons (24) and adipocytes of mice (22) as well as HEK 293 cells (14). 

SIRT3 reduces ROS levels by modulating AO enzymes (manganese superoxide dismutase (SOD2) and 

isocitrate dehydrogenase 2 (IDH2)), thereby protecting against oxidative damage.    

The SOD2 lysine residues are deacetylated by SIRT3 which increases SOD2 activity and reduces ROS 

levels (14).  SIRT3 and SOD2 levels were down-regulated following severe OS in human mesenchymal 

stromal/stem cells (hMSCs) whilst over-expression of SIRT3 improved hMSCs resistance under oxidative 

conditions (25). SIRT3 also plays a role in modulating SOD2 activity in skeletal muscle of obese 

pregnant women with gestational diabetes mellitus (26).  

SIRT3 was also found to activate IDH2 in mice and HEK 293 cells (27-30).  It has been stated that SIRT3 

is dependent on IDH2 to protect cells from OS (30). IDH2 is the enzyme involved in the conversion of 

isocitrate to α-ketoglutarate in mitochondria, generating NADPH from NADP+. NADPH is required for 

the regeneration of reduced glutathione (GSH); therefore, increased IDH2 activity enhances GSH AO 

defence.   

SIRT3 slowed the progression of age related hearing loss (AHL) by promoting the GSH-mediated 

mitochondrial AO defence in mice (31).  SIRT3 also reduced oxidative DNA damage by enhancing GSH 

AO defence system in mice (28).   

SIRT3 can also regulate AO defence indirectly through the transcriptional co-activator peroxisome 

proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), which interacts with transcription 

factors involved in AO defence (32). SIRT3, which is a target gene of PGC-1α, also mediates the role of 

PGC-1α in the AO defence system (33). 

In addition to AO defence, SIRT3 is involved in improving genomic stability.  Cheng et al. (2013) 

showed, in human glioblastoma cell lines (LN229), that SIRT3 deacetylates and stabilizes the 8-

oxoguanine DNA glycosylase (OGG1) protein, thereby maintaining its ability to repair mtDNA (16). 

SIRT3 may therefore be seen as a pro-survival factor that plays an essential role in improving metabolic 

disorders by suppressing OS.  This, however, has not been fully investigated in the human system.   
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Metformin inhibits mitochondrial ROS production by blocking the reverse electron flow through complex 

I of the ETC (34).   

In vitro data showed that metformin could also induce AO enzymes, such as SOD2, thereby suppressing 

OS and improving DMII outcomes (35, 36). Metformin was also shown to significantly decrease serum 

levels of 7, 8-dihydro-8- oxoguanine (8-oxoG); a marker of oxidative damage in women with polycystic 

ovary syndrome (37).  

Metformin may regulate both mitochondrial function and AO activity through SIRT3-mediated 

mechanisms; however, the molecular mechanisms underlying this process are unclear.   

Natural compounds, such as curcumin, have become promising agents to reduce the risk of DMII. 

Curcumin is a bi-functional AO as it scavenges ROS species and indirectly up-regulates cyto-protective 

and AO enzymes (38, 39).   

Curcumin administration has been shown to prevent DMII complications (40), prevent the decrease in the 

AO capacity and prevent an increase in oxidative damage in the retina of diabetic rats (41).  Treatment 

with curcumin reduced renal dysfunction and OS in diabetic animals (42). It also improved hepatic and 

renal function markers in DMII rats (43). 

The mechanisms by which curcumin inhibits OS are still being investigated.   It is unknown whether the 

AO effect of curcumin is due to its chelating property or through regulation of SIRT3. 

Hyperglycaemia-induced mitochondrial dysfunction causes apoptosis.  Under oxidative conditions, 

mitochondria become permeabilised and release cytochrome c, which together with caspase-9 and 

apoptotic protease activating factor 1 (Apaf-1), form a complex known as the apoptosome which recruits 

and activates pro-caspase 9 (44).  Apoptosis has been observed in the pancreatic beta cells of diabetic 

patients (45). Hyperglycaemia was shown to be the direct cause of apoptosis in diabetic myocardium and 

cultured cardiac myoblast cells (46).   

Although it has been established that hyperglycaemia causes cell death, there is still a network of cell 

protective mechanisms, induced in response to OS, which may counteract apoptosis and ensure cell 

survival.  These mechanisms have yet to be elucidated in HepG2 cells. 
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Rationale: 

SIRT3 plays a key role in OS-associated disorders as it modulates AO defence and improves 

mitochondrial function and genome integrity.   

SIRT3 has been investigated in several metabolic disorders in vivo and in vitro.  However, with regard to 

hyperglycaemic-induced OS, limited studies have interrogated the role of SIRT3 and stress response in 

the human liver, the primary organ involved in glucose homeostasis.    

Given that mitochondria are vulnerable to OS, SIRT3 may be therapeutically targeted as a potential cyto-

protective factor to improve mitochondrial function and disease outcomes.  It is also important to 

determine whether modulation of SIRT3, by chemical or natural therapeutics, may improve OS-

associated disorders.   

Hypothesis: 

H1: Hyperglycaemic stimulation increases SIRT3 expression and stress response under hyperglycaemic 

conditions in the human hepatoma cell line.  
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CHAPTER 1 –LITERATURE REVIEW 

1.1 Global prevalence of diabetes  

There are 387 million people that have diabetes aged between 40 and 59 years.  The International 

Diabetes Federation (IDF) predicts the number of people with diabetes to increase to 592 million in less 

than 25 years (1) (Fig 1.1).   

 

Figure 1.1:  Global prevalence of diabetes mellitus (1) 

 

Type 2 diabetes mellitus (DMII) has reached epidemic proportions and is predicted to increase by 55% by 

2035 (1).  Interestingly, 80% of people with diabetes live in low- and middle-income countries where 

economic development shifts lifestyle resulting in high rates of obesity and diabetes (1).   

Three-and-a-half million South Africans (about 6% of the population) suffer from DMII (1).  Five million 

South Africans have pre-diabetes which is a condition where insulin resistance causes blood glucose 

levels to be higher than normal, but not high enough to be DMII (1).  The highest prevalence of diabetes 

http://www.idf.org/
http://www.idf.org/
http://www.health24.com/medical/Condition_centres/777-792-808-1658,16926.asp
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is among the Indian population in South Africa (11-13%) as this group has a strong genetic predisposition 

for diabetes. This is followed by 8-10% in the coloured community, 5-8% among blacks and 4% among 

whites (1). 

1.1.1 Pathophysiology 

Diabetes is a metabolic disorder characterised by hyperglycaemia and insulin resistance or insulin 

deficiency (due to pancreatic beta cell dysfunction) (1).  This prevents glucose from entering cells and 

being converted to energy for proper functioning of tissues (1).  This results in increased levels of 

glucose circulating in the blood (hyperglycaemia) damaging tissues over time leading to 

complications such as heart disease, kidney failure, and other micro-vasculature complications (1).   

1.1.2 Type 1 diabetes mellitus (DMI) 

 
Type 1 diabetes mellitus (also known as insulin-dependent diabetes) is characterized by insulin 

deficiency due to autoimmune pancreatic beta cell destruction (1).  

People living with DMI can lead healthy lives through daily insulin administration, a healthy diet and 

regular physical exercise.  The incidence of DMI increases each year and this may be due to early 

events in the womb, diet early in life or viral infections (1). 

 

1.1.3 Type 2 diabetes mellitus (DMII) 

 
Type 2 diabetes mellitus is the most prevalent form of diabetes.  Obesity, poor diet, sedentarinism, 

familial incidence and ethnicity are risk factors for DMII (1). DMII is characterized by insulin 

resistance and increased production of glucose by the liver (1).  

 

1.1.4 Diabetic complications 

 
Type 2 diabetes mellitus associated complications include micro-vascular complications (retinopathy, 

nephropathy and neuropathy) and macro-vascular damage (cardiovascular, peripheral vascular and 

cerebro-vascular disease) (1).   

 

1.2 Oxidative stress and DMII 
 

Increased reactive oxygen species (ROS) generation plays a role in the progression of DMII and 

associated complications (2-4).   

ROS are highly reactive species that are produced from oxygen metabolism. These include superoxide 

radical (O2●), the hydroxyl radical (•OH), hydrogen peroxide (H2O2), as well as nitric oxide (NO•).   

http://www.health24.com/medical/Condition_centres/777-792-808-1658,17773.asp
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Basal levels of ROS are required for signalling, cellular differentiation, apoptosis and defence 

mechanisms.  Excessive ROS levels, due to diminished antioxidant (AO) defence, can react with 

macromolecules and cause DNA damage (5, 6).  Oxidative stress (OS) occurs when ROS exceeds the AO 

capacity.   

 

Hyperglycaemia activates several biochemical pathways that increase ROS production which may be the 

link between DMII and associated complications (13).   

 

Three key metabolic pathways contribute to hyperglycaemic-induced cell damage (13) (Fig 1.2): 

 

(1) Increased polyol pathway flux; (2) activation of protein kinase C (PKC) and (3) increased advanced 

glycation end product (AGE) formation. 

 

Figure 1.2: Mechanism of hyperglycaemic-induced damage (9) 
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When intracellular glucose increases, it is converted to sorbitol by aldolase reductase resulting in a 

decrease in NADPH and glutathione, which make cells vulnerable to OS.  Sorbitol is converted to 

fructose by sorbitol dehydrogenase and increases the ratio of NADH/ NAD+ (2). This results in de novo 

synthesis of diacylglycerol (DAG) which activates protein kinase C (PKC).  Protein kinase C results in 

the production of proteins involved in DMII complications (2). Hyperglycaemia-induced ROS also 

increases methylglyoxal levels which form AGEs (2).  

 

1.3 Mitochondrial ROS production 
 

Mitochondrial dysfunction is a key factor in metabolic disorders such as DMII.  Mitochondria generate 

ATP by oxidative phosphorylation (OXPHOS) (Fig 1.3) and produce electron transfer donors (NADH 

and FADH2) through the TCA cycle.  

 

 
Figure 1.3: Diagram of oxidative phosphorylation (thebiochemsynapse.wordpress.com) 
 
Oxidative phosphorylation begins with entry of electrons into the electron transport chain (ETC) which is 

made up of 5 multi-subunit components (I-V) (47) (Fig 1.3).  These complexes are embedded in the inner 

mitochondrial membrane and transport electrons from NADH and FADH2 (47).  NADH donates electrons 

to complex I (NADH dehydrogenase) which transfers electrons to ubiquinone (47).   FADH2 donates 

electrons to complex II (succinate dehydrogenase) which also transfers the electrons to ubiquinone (47). 

Reduced ubiquinone transfers electrons to complex III (ubiquinol:cytochrome c oxidoreductase).  While 

this occurs, a proton gradient is generated in the inter-membrane space that drives ATP synthesis by 

https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB0&url=https%3A%2F%2Fthebiochemsynapse.wordpress.com%2F&ei=XdfkVMLCHcL8UKa_gPAP&bvm=bv.85970519,d.d24&psig=AFQjCNG-uOMUgH-_OAhHucZYbHSN4NVVMw&ust=1424369687089659
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complex V (47).  Molecular oxygen (O2), which is a terminal electron acceptor, is reduced at complex IV 

to produce water (H2O) (47). 

 

Unpaired electrons leak from the complexes and interact with molecular oxygen producing superoxide 

anions which mainly occurs at complex I (NADH-dehydrogenase) and at complex III (cytochrome c 

reductase) (8). 

 
1.3.1 Mitochondria under hyperglycaemic conditions 

 
Under hyperglycaemic conditions, the TCA cycle generates more electron transfer donors which enter the 

ETC.    

The proton gradient causes partial inhibition at complex III resulting exacerbated production of 

superoxide radicals (9).  Excessive ROS generated from mitochondria damage macromolecules (proteins, 

DNA and unsaturated lipids in membrane components) and causes mitochondrial dysfunction.   

 

Hyperglycaemia-induced mitochondrial dysfunction and OS are factors that contribute to the progression 

of DMII and associated complications (13).     

 
1.3.2 Mitochondrial dysfunction 

 
Mitochondrial DNA (mtDNA) is vulnerable to oxidative damage as it is (a) closely located to the ETC, 

(b) lacks protective histones and (c) has limited DNA repair systems (10).  Mitochondrial DNA damage 

compromises mitochondrial transcription, OXPHOS protein synthesis and AO activity (11) which has 

been observed in metabolic disorders (12).   The increased production of superoxide radicals further 

compromise the ETC components resulting in persistent mtDNA damage and genomic instability (8).    

 
1.4 Oxidative stress and mitochondrial DNA damage  
 
Oxidative stress can induce DNA base damage such as 7, 8-dihydro-8-oxoguanine (8-oxoG) (48).  

Following OS, a hydroxyl group is added to the 8th position of guanine resulting in the formation of 8-

oxoG, one of the major forms of ROS-induced lesions (48) (Fig 1.4). 
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Figure 1.4: Structure of 7, 8-dihydro-8- oxoguanine (49) 
 

The formation of 8-oxoG increases the frequency of spontaneous G.C- -T.A transversion mutations due to 

lack of base pairing specificity (50).  

 

Mutations in mtDNA are involved in mitochondrial diseases and are associated with cancer (51) and 

aging (52).  These mtDNA mutations result in mitochondrial dysfunction characterised by abnormal 

expression of mtDNA encoded proteins, impaired OXPHOS and TCA cycle (53).  

 

8-oxoG is seen as a biomarker of oxidative DNA damage in DMII. Elevated concentrations of 8-oxoG 

were found in urine and in leukocyte DNA (54).  These were associated with diabetic nephropathy and 

retinopathy (54). 

 
1.4.1 Repair Mechanisms: OGG1 

 
The base excision repair (BER) pathway repairs oxidized bases in mtDNA and preserves genomic 

stability, which is required for long-term cell survival (55).   

The BER pathway recognises and removes 8-oxoG, which is base-paired with cytosine, by DNA 

glycosylase OGG1 (55) (Fig 1.5).    
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 Figure 1.5: Diagram of OGG1 (8-oxoguanine DNA glycosylase) (56) 
 

Mitochondria are the primary sites of OGG1 DNA repair activity (57).  In OGG1-deficient mice, genes 

involved in the TCA cycle were significantly reduced.  Deficiency of OGG1 was also correlated with 

increased susceptibility to obesity and the metabolic syndrome (58).   

 

Studies have demonstrated that over-expression of mitochondria-targeted OGG1 prevented mtDNA 

damage and intrinsic apoptosis in vascular endothelial cells and asbestos-exposed cells (59, 60).   

OGG1 over-expression resulted in mtDNA repair and reduced ROS production following palmitate- 

induced mitochondrial dysfunction in primary cultures of skeletal muscle (61).   

Hyperlgycaemic-induced mitochondrial dysfunction is known to cause apoptosis which results in the 

progression of DMII and associated complications.  

1.5 Caspases 

 

Caspases (cysteine-aspartic proteases) are a family of cysteine proteases that cleave target proteins at sites 

next to aspartic acid residues (44).   

Caspases are classified as initiators (caspase-8 or caspase-9) or executioners (caspase 3/7).  They are 

produced as inactive pro-caspases and require cleavage to be activated.   The initiator caspases are 

activated first in the death pathway and, thereafter, they activate the executioner caspases (44).    

 
1.5.1 Intrinsic pathway 

 
The intrinsic pathway is activated in response to mitochondrial damage (44).  Upon OS, mitochondria 

become permeabilised and release cytochrome c.  Cytochrome c, together with caspase-9 and the 

apoptotic protease activating factor 1 (Apaf-1), form the apoptosome which recruits and activates pro-

caspase 9.  Caspase-9 cleaves and activates executioner caspases (caspase-3 and caspase-7) (44) (Fig. 

1.6). 
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1.5.2. Extrinsic pathway  
 
This pathway is initiated by ligands binding to death receptors that are located at the cell surface (44).  

This leads to caspase-8 activation, which, thereafter, cleaves and activates executioner caspases (caspase-

3 and caspase-7) (Fig. 1.6). 

 

 
Figure 1.6: Extrinsic and intrinsic pathways of apoptosis (62) 
 
Hyperglycaemia-induced ROS may trigger the apoptotic process (63).  Apoptosis has been observed in 

multiple organs, in vivo and in vitro, as a result of DMII (64, 65).  Increased apoptosis was observed in 

the pancreatic beta cells of diabetic patients (45). 

 

Apoptosis occurred in diabetic myocardium and this was a direct result of high glucose levels.  

Mitochondrial cytochrome c release and increased caspase-3 activation were associated with 

hyperglycaemia-induced myocardial apoptosis (46).   

 

1.6 Lon protease 
 
Oxidative damage can create carbonyl groups and cross-links which may impair enzymes and structural 

proteins and cause cellular toxicity if not removed.  Protein misfolding and aggregation are associated 

with diseases and aging (66, 67).  
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Lon is an ATP-dependent protease located in the mitochondrial matrix (68).  Lon may be regulated by 

transcription factors associated with mitochondrial biogenesis and OS (69).  Binding sites have been 

identified on the LON gene, PRSS15, for transcription factors such as nuclear factor erythroid 2 [NF-E2]-

related factor 2 (Nrf2) and nuclear factor-kappa B (NF-ĸB) (69). 

 

Under oxidative conditions, Lon is transcribed in the nucleus and translated as a precursor polypeptide 

that carries an amino-terminal mitochondrial targeting sequence (MTS) (70).  This allows the Lon 

precursor to translocate across the mitochondrial membranes and into the matrix.  In the matrix, MTS is 

cleaved off resulting in a processed protein (70).  Lon degrades oxidized and damaged proteins, assists in 

the assembly and folding of mitochondrial proteins and is involved in mtDNA maintenance and 

replication (70).  

 

In rhabdomyosarcoma cells, exposure to heat shock, serum starvation and OS resulted in increased Lon 

protein levels (71). Induction of Lon prevented the accumulation of carbonylated proteins resulting in 

improved cell survival and mitochondrial function (71).  Silencing of Lon led to increased levels of 

carbonylated proteins, mitochondrial dysfunction and decreased cell survival (71). 

 

In cultured human cells, Lon knockdown resulted in impaired mitochondrial function, damaged 

mitochondrial morphology, apoptosis and necrosis (72). 

 

The activity of the Lon protease was shown to be lower in the streptozotocin (STZ) animals.  STZ is an 

antibiotic that can cause pancreatic β-cell destruction and is used to experimentally induce DMI (73).  

Muscle from diabetic rats showed reduced mitochondrial protein quality and increased levels of modified 

proteins which led to mitochondrial dysfunction (73). 

 

Lon is an important regulator of mitochondrial function as it responds to changes in the mitochondrial 

environment. 

 
1.7 Heat shock proteins 
 

Heat shock proteins (Hsps) are a highly conserved family of stress response proteins (74).  Their 

expression is increased under OS through the heat shock response (HSR) (74) (Fig. 1.7).  Heat shock 

proteins can function as molecular chaperones as they are involved in protein folding and prevent protein 

aggregation (74).   

 

The inducible Hsp component is regulated by heat shock factors (HSFs), where heat shock factor-1 (HSF-

1) is the major regulator (75). Under normal conditions, HSF-1 is inhibited and inactive as it is associated 
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with Hsps. Following OS, the Hsps dissociate from HSF-1 and bind to misfolded proteins. The HSF-1 

monomers form active trimers, allowing for DNA binding. The trimers undergo stress-induced serine 

phosphorylation and translocate to the nucleus. In the nucleus, HSF-1 binds to the heat shock element 

(HSE), which results in heat shock responsive gene transcription (75) (Fig. 1.7).  

 

 
Figure 1.7: Heat shock response (Author’s own work) 
 
1.7.1 Heat shock protein 70 (Hsp70) 

 
Heat shock protein 70 is the most closely linked to cyto-protection in mammalian cells (74). They form 

part of the cell protective network, together with Lon, to recognise and remove damaged proteins (76).   

In addition, Hsp70 expression improves AO defence and inhibits stress-induced apoptosis (77).  Hsp70 

induction assists in the recovery from diseases such as inflammatory diseases; diabetes and 

neurodegenerative damage (78-80).   

 

Both Hsp70 and Lon are involved in protein quality control that maintains mitochondrial integrity (76).    

 
1.7.2 Heat shock protein 27 (Hsp27) 

 
During OS, Hsp27 increases the levels of intracellular glutathione as it can maintain glutathione in its 

reduced form under oxidative conditions (81). 

Hsp27 also interacts with cytochrome c and prevents the correct formation of the apoptosome complex 
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and activation of caspase-3 (82).   

1.8 Antioxidant defence in mitochondria  
 
Increased production of ROS plays a role in mitochondrial dysfunction by compromising the ETC and 

causing persistent damage to mtDNA.   Reducing ROS by increasing AO defence is an effective method 

to improve mitochondrial-associated metabolic disorders.      

 

 
Figure 1.8: Mitochondrial ROS generation and AO defence system (83) 
 
1.8.1 Manganese superoxide dismutase (SOD2) 

 

Manganese superoxide dismutase is located in the mitochondrial matrix and converts O2・to hydrogen 

peroxide (H2O2) (83) (Fig. 1.8). There are three major families of superoxide dismutase: Cu/Zn (which 

binds both copper and zinc) found in cytoplasm and nucleus, Fe and Mn types (which bind iron or 

manganese) found in mitochondria, and the Ni type, which binds nickel. 

 
1.8.2 Glutathione  
 

Glutathione is also located in the mitochondrial matrix and cytoplasm. It scavenges free radicals and is a 

co-substrate for glutathione peroxidase (GPx) activity. Glutathione exists in two forms – reduced 

glutathione (GSH) and oxidized glutathione disulfide (GSSG) (83).  

 

GSH reduces H2O2 to H2O and thereafter is oxidized to GSSG by glutathione peroxidase 1 (GPx1). GSSG 

is converted to GSH by the glutathione reductase (GR) enzyme. NADPH protects cells against ROS by 
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providing electrons to GSSG in order to regenerate GSH (83) (Fig. 1.8). 

 

Patients with DMII were found to have decreased GSH synthesis; however, following GSH 

supplementation, GSH synthesis was restored and hyperglycaemic-induced OS was reduced (84). 

 
1.8.3 Glutathione peroxidase 1 

 
Glutathione peroxidase 1 (GPx1) is found in the cytoplasm, mitochondria and nucleus.  It metabolises 

H2O2 to H2O by using GSH as a hydrogen donor (83).   

 

1.9 Improving mitochondrial function and DMII 
 
To improve DMII, mitochondrial function and mitochondrial genome integrity need to be maintained and 

OS must be reduced.   

Sirtuins (SIRTs) are part of the network of cellular stress response proteins that improve these factors.  

Studies revealed that SIRTs have an essential role in mitochondrial protection against OS (14-16).   

 

1.9.1 Mammalian sirtuins 

 
Sirtuins or Silent information regulator proteins (Sir) are NAD+-dependent class III histone/protein 

deacetylases that remove acetyl groups from the ε-amino group of lysine residues (85).   The acetyl group 

is transferred from the target protein to the ADP-ribose component of NAD+  resulting in the formation of 

O-acetyl-ADP-ribose, nicotinamide (NAM) and the deacetylated protein (85) (Fig. 1.9).   

Sirtuins are involved in (86), DNA repair (17), apoptosis (18) and the control of metabolic enzymes (19).  

 

 

 
Figure 1.9: Mechanism of protein deacetylation by sirtuins (lin.chem.cornell.edu) 
 
1.9.2 Classification of sirtuins 

 
Seven SIRTs found in mammalian cells have different cellular locations and functions (87).  They share a 

conserved catalytic core domain and have variable amino- and carboxyl- terminal extensions that 

http://lin.chem.cornell.edu/research/
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contribute to their differential cellular locations (87).   

 

SIRT1 is located in the nucleus and regulates transcription factors such as p53 and NF-kB.  SIRT2 is 

located in the microtubules and deacetylates α-tubulin.  SIRT 6 regulates telomeric chromatin and SIRT7 

is localised in the nucleoli.  SIRT3, 4 and 5 are localised in the mitochondria, although SIRT3 can also be 

found in the nucleus (87).    

 
1.10 Mitochondrial sirtuins  

 

Amongst the mitochondrial SIRTs, SIRT3 is the main deacetylase.  In SIRT3 knockout mice, high levels 

of mitochondrial protein acetylation were observed suggesting that SIRT3 is the primary mitochondrial 

deacetylase (88).     

 

Lysine acetylation is involved in mitochondrial function and metabolism; this shows that SIRT3 plays a 

key role in modulating these pathways (89).  SIRT3 has been shown to bind, deacetylate and activate 

metabolic and respiratory enzymes involved in mitochondrial processes (20) (Fig 1.10).  

 

 

 
Figure 1.10: Schematic overview of molecular targets of SIRT3 and its role in mitochondrial 
metabolism (90). 
 
 
 



18 
 

1.10.1 SIRT3 activity and localisation 

 
SIRT3 is nuclear-encoded and synthesised on ribosomes as larger precursors.  It contains a pre-sequence 

called the MTS at the N-terminus which allows it to translocate into mitochondria (91).   

 

Under OS conditions, full length (FL) SIRT3 is transcribed and transported into mitochondria where the 

MTS is cleaved off by a matrix-located metalloproteinase, called mitochondrial processing peptidase 

(MPP), resulting in activated SIRT3 (92) (Fig 1.11).   

 

Over-expressed SIRT3 is localised in mitochondria and smaller fractions are localised to the nucleus, but 

both exhibit deacetylase activity (92). Full-length SIRT3 accumulates in the nucleus and deacetylates 

histones (88).   

 

In mitochondria SIRT3 regulates energy metabolism and is highly expressed in metabolically active 

tissues such as the liver, muscle, kidney, heart, and brain. 

 

 

 
Figure 1.11: Mechanism of SIRT3 activation in mitochondria (Author’s own work) 
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1.10.2 SIRT3 and ETC 

 
Decreased SIRT3 leads to 74% and 60% reduction in complex III and IV activities respectively, 

suggesting that SIRT3 is necessary for efficiency of the ETC (93).  In SIRT3 knockout mice, reduced 

global ATP was observed (93). Taken together, SIRT3 plays a role in regulating the ETC as well as ROS 

generation.   

 

1.10.3 SIRT3 in mitochondrial oxidative stress 

 
SIRT3 regulates cell defence and survival in response to stress (14, 15).  It decreases mitochondrial ROS 

production and protects against mtDNA damage (16, 21).   

 

Altered mitochondrial function and increased levels of OS are a result of decreased SIRT3 expression in 

SIRT3 knockdown (KD) mouse myoblast (C2C12) cells (94).  SIRT3 KD in human luteinized granulosa 

cells also showed elevated ROS generation (95).   

 

SIRT3 over-expression in murine adipocyte cell lines (22) and mouse cardiomyocytes (15) resulted in 

reduced levels of ROS.  Similar results were observed in human oral keratinocytes (HOK) (23) where 

SIRT3 transcript and protein levels were increased following OS. A study by Shulyakova et al. (2014)  

showed significantly decreased levels of ROS following SIRT3 over-expression in PC12 and HEK 293 

cells (96).  These findings are consistent with the studies in primary neurons (24), adipocytes of mice (22) 

and HEK 293 cells (14). 

 

These studies suggest that SIRT3 acts as a cyto-protective factor by suppressing OS.   

 

1.10.3.1. SIRT3 and AO defence 

 
SIRT3 reduces ROS levels by modulating AO enzymes (SOD2 and IDH2), thereby protecting against 

oxidative damage (Fig 1.12).      

 

The SOD2 lysine residues are deacetylated by SIRT3, which increases SOD2 activity and reduces ROS 

levels (14).  It is considered the first line of defence against OS.  SIRT3 deficiency in mouse embryonic 

fibroblasts and liver tissue resulted in reduced SOD2 activity and increased ROS production (27).     

 

SIRT3 and SOD2 levels were down-regulated following severe OS in human mesenchymal stromal/stem 

cells (hMSCs) whilst over-expression of SIRT3 improved hMSCs resistance to OS (25). SIRT3 regulates 

SOD2 activity in skeletal muscle of obese pregnant women with gestational diabetes mellitus (26).  
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In SIRT3-deficient cardiomyocytes, elevated ROS levels were observed following stress-induced cardiac 

hypertrophy (15).  However, in cardiomyocytes over-expressing SIRT3, SOD2 and catalase levels were 

up-regulated (15). Furthermore, HEK 293 cells over-expressing SIRT3 displayed elevated GSH levels, 

which protected cells from H2O2-induced insult (28).  

 

 
Figure 1.12: SIRT3 promotes antioxidant defence (83) 
 

SIRT3 was also found to deacetylate IDH2, resulting in increased activity of IDH2 in both mice and HEK 

293 cells (27-30).  It has been stated that SIRT3 is dependent on IDH2 to protect cells from OS (30).  

 

IDH2 is the enzyme required for the conversion of isocitrate to α-ketoglutarate in mitochondria, 

generating NADPH from NADP+. NADPH is required for the regeneration of GSH; therefore, increased 

IDH2 activity enhances the activity of GSH in AO defence (83).   

 

Han and Someya (2013) showed that SIRT3 slowed the progression of age related hearing loss (AHL) by 

promoting the GSH AO defence in mice (31).  An earlier study showed that SIRT3 reduced oxidative 

DNA damage by enhancing GSH AO defence in mice as well (28).  They also found that over-expressing 

SIRT3 and/or IDH2 increases NADPH levels and protects cells from OS-induced cell death (28).    

SIRT3-depleted HepG2 cells showed impaired ETC functioning and reduced mitochondrial membrane 

potential (97).  Increasing SIRT3 levels ameliorated these effects. 

 

A synergistic relationship has been established between mitochondrial SIRT3 and AO defence to improve 

mitochondrial function and cell survival in response to stress (94).   
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1.10.4 SIRT3 and transcription factors 

 
1.10.4.1 PGC-1α 

 
Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) is a transcriptional co-

activator that is activated under oxidative conditions and interacts with transcription factors that are 

involved in mitochondrial biogenesis and AO defence (32).  

 

cAMP response element-binding protein (CREB) is a nuclear transcription factor that is involved in 

mitochondrial biogenesis as it controls the expression of PGC-1α (98).  Phosphorylation of CREB at 

serine-133 is essential for its activation.   

 

In primary endothelial cells, PGC-1α expression resulted in up-regulated mitochondrial numbers, 

mitochondrial activity and AO enzymes (99). It has been shown that PGC-1α is specific to the 

mitochondria (99) and that it regulates Sirt3 gene expression (33).   

 

A sequence in the Sirt3 promoter is recognized by the orphan nuclear receptor, estrogen-related receptor-

alpha (ERRα).  PGC-1α mediates the binding of ERRα to the Sirt3 promoter which promotes Sirt3 gene 

transcription (33).  SIRT3, which is as a target gene of PGC-1α, also mediates the effects of PGC-1α on 

AO defence (33) (Fig 1.13).   

 

 
 

Figure 1.13: Positive feedback cycle between SIRT3 and PGC-1α (33) 
 

 

 



22 
 

The positive feedback cycle that exists between SIRT3 and PGC-1α further reduces ROS levels and 

increases AO defence under oxidative conditions.  A study using HEK 293 and HepG2 cells showed that 

SIRT3 expression is required to induce AO enzymes by PGC-1α (33).  The expressions of SOD2 and 

GPx1 were reduced in SIRT3 KD cell lines, resulting in decreased ROS protection by PGC-1α (33). 

 

In pre-diabetic rats, the levels of PGC-1α, SIRT3 and AO capacity were decreased whilst lipid 

peroxidation was increased (100). Pre-diabetes repressed the PGC-1α/ SIRT3 axis, reduced respiratory 

capacity and increased OS, thereby compromising mitochondrial function (100). 

 

1.10.4.2 Nuclear factor-kappa B  
Nuclear factor-kappa B is a transcription factor that regulates immune response and inflammation.   

The NF- κB family consists of five proteins: p105 (p50 when processed), p100 (p52 when processed), and 

the Rel subfamily consisting of RelA (p65), RelB, and c-Rel (101). These proteins form homo- or 

heterodimers that have distinct functions (101). Only p65, c-Rel, and RelB possess C-terminal 

transactivation domains that confer the ability to initiate transcription (101). 

 

NF- κB is located in the cytoplasm as an inactive NF-κB/IκB complex.  IκB kinases phosphorylate IκBs 

and target them to ubiquitination and proteasomal degradation.   This enables NF- κB to translocate to the 

nucleus and transcribe genes responsible for inflammation and survival (102, 103). 

Activation of NF- κB occurs in response to bacterial products, viral infection, OS and therapeutics. 

NF- κB mediates destruction and protection signals; however, the main role of NF- κB is considered to be 

protective (104). 

 

Oxidative stress induced by reperfusion insult in cultured neurons was associated with NF- κB inducing a 

protection signal rather than death signals (105).  Other studies have also shown that activation of NF- κB 

led to neuro-protection, whereas inhibition led to apoptosis (106, 107).    

 

It was also found, in an embryonal rat heart-derived cell line, that NF- κB is a target of SIRT3 (108). 

Activation of NF- κB by SIRT3 increased the expression of the downstream genes of NF- κB (SOD2, 

Bcl-2 and Bax) making cells resistant to OS (108). This demonstrated that SIRT3 protected 

cardiomyocytes from OS-induced apoptosis by activating the NF- κB pathway.   
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1.10.5 SIRT3 and genomic integrity  

 
SIRT3 deficiency may also result in genomic instability. Cheng et al. (2013) demonstrated in human 

glioblastoma cell lines (LN229) the ability of SIRT3 to deacetylate OGG1 (16).  Loss of SIRT3 resulted 

in increased OGG1 acetylation, degradation and loss of OGG1 activity. SIRT3 stabilized the OGG1 

protein and sustained its capacity to repair mtDNA (16).   

 

Interestingly, it has also been shown that SIRT3 deacetylates and activates Lon in mitochondria (109) 

(Fig. 1.14).  Lon not only degrades oxidized and damaged proteins, but also participates in mtDNA 

maintenance and replication.  

 

 
Figure 1.14:  Lon is regulated by SIRT3 deacetylation (109) 
 
 
1.11 Metformin and DMII 
 
Metformin (1, 1-dimethylbiguanide) is a biguanide class drug used for the treatment of DMII. It lowers 

blood glucose concentrations in DMII without causing hypoglycaemia.   

 
1.11.1 Site of action 

 
The liver is an important target organ in DMII as it is exposed to high concentrations of metformin 

through the portal circulation following oral ingestion.  The hepatocytes express high levels of organic 

cation transporter 1 (OCT1), which facilitates uptake of metformin (110).  Once inside the cytosol, 

mitochondria are the primary target of metformin (34).   

 
 



24 
 

1.11.2 Mechanism of action 

 
Metformin lowers blood glucose levels by reducing gluconeogenesis in the liver, which is an ATP-

dependent process (111).  Therefore, metformin elicits its activity by decreasing ATP synthesis in the 

ETC.   

 

The proposed mechanism for metformin action is the inhibition of mitochondrial respiration at complex I 

of the ETC (112).  This, however, does not affect any other steps of OXPHOS (112) (Fig 1.15).  

 

This inhibition results in decreased NADH oxidation, decreased proton gradient, reduced ATP synthesis 

and, as a result, elevated concentrations of ADP (112).  This elevates the concentration of AMP which 

activates adenosine monophosphate-activated protein kinase (AMPK), an enzyme involved in glucose 

uptake.  A new mechanism has been observed where AMP deaminase may be inhibited by metformin 

(113) (Fig 1.16).    

 

.   

Figure 1.15: Metformin targets the mitochondrial respiratory chain complex I (112) 
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Figure 1.16: Proposed mechanism of action of metformin AMP deaminase inhibition (113) 
 
 
1.11.3 Metformin and ROS  
 
Metformin inhibits mitochondrial ROS production by blocking the reverse electron flow through complex 

I of the ETC (34). 

The regulatory role of metformin was investigated in inflammatory and AO pathways in global cerebral 

ischemia (114).  It was found that pre-treatment with metformin inhibited inflammatory factors (TNFα, 

NF- κB and COX2) and increased the Nrf2 AO pathway (114). Metformin also modulated GSH activity 

(114).  In vitro data have shown that metformin could induce AO enzymes, such as SOD2, and suppress 

OS (35).  

Metformin was also shown to significantly decrease serum levels of 8-oxoG, a marker of oxidative stress 

in DNA, in women with polycystic ovary syndrome (37).  

 

Chronic metformin treatment resulted in healthier mice with longer lifespan; therefore the length of 

exposure to metformin may improve health and lifespan in humans (115).  Metformin reduced OS by 

increasing AO enzyme activity (36). These findings also show that the dosage of metformin should be 

higher in order to observe additional beneficial results (36). 

 

To date, the exact molecular mechanisms of metformin action are still poorly understood especially 

regarding modulation of AO defence.   
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1.11.4 Metformin and SIRT3 

 
SIRT3 regulates mitochondrial metabolism and it may also be involved in the pharmacological effects 

of metformin.  The molecular mechanisms underlying this process are unclear.   

 

A study has shown that over-expression of SIRT3 in HepG2 cells reduced the inhibition of ATP synthesis 

by metformin (116). A separate study evaluated the effects of SIRT3 on OS in skeletal muscle and they 

found that metformin increased the expression of SIRT3 and SOD2 (117).  Knockdown 

of SIRT3 significantly reversed the metformin-induced increase in SOD2 (117).  

 

These studies suggest that metformin could induce AO defence through SIRT3 up-regulation.   

Metformin, however, may also down-regulate SIRT3 to inhibit complex I of the ETC as part of its 

mechanism.  Therefore, SIRT3 may be differentially regulated by metformin.   

 

1.12 Curcumin in DMII 
 
Natural compounds, such as curcumin, have become promising agents to reduce the risk of OS-induced 

diseases.  

Turmeric rhizome includes three analogue components: curcumin, demethoxy curcumin and bis 

demethoxy curcumin which collectively are called curcuminoids.  Of the three curcuminoids, curcumin is 

the most abundant and diffuses freely into cells (118). 

 

Curcumin is an important therapeutic agent in traditional medicine and possesses multiple biological 

properties including AO (119), antibacterial (120) and anti-inflammatory (121). Furthermore, curcumin is 

a therapeutic against neurodegenerative (122), cardiovascular (123), hepatic (124), and renal diseases 

(125).   

 
1.12.1 Structure 

 
Curcumin is a β-diketone molecule (1, 7-bis (4-hydroxy-3-methoxyphenol)-1, 6- heptadiene-3, 5-dione) 

that contains two ferulic acid residues linked by a methylene bridge and has two hydrophobic phenyl 

regions (126) (Fig. 1.17). 
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Figure 1.17: Functional groups of curcumin (126). 
 
1.12.2 Mechanism of action 

 
Curcumin is a bi-functional AO as it scavenges ROS and RNS species and also indirectly up-regulates 

cyto-protective and AO gene transcription (126) (Fig 1.18). 

 

(a) ROS scavenger:  

 
Curcumin is an effective AO that scavenges O2 •, •OH, H2O2 and (NO•) (38).  

The scavenging activity of curcumin is associated with (a) the β-diketone group, (b) carbon–carbon 

double bonds, (c) phenyl rings and (d) keto and enol form in aqueous solutions. 

 
(b) Indirect AO properties of curcumin: 

 

Curcumin induces the expression of cyto-protective proteins such as SOD, GPx1, heme oxygenase-1 

(HO-1), glutathione-S-transferase (GST) and g-glutamylcysteine ligase (gGCL), which is involved in 

biosynthesis of GSH (39).  The transcription factor Nrf2 is the major regulator of these AO enzymes (39) 

(Fig 1.18). 

 

Curcumin reduced arsenic-induced hepatic injuries and OS in experimental mice through the Nrf2 

pathway (127).  Curcumin also protected human neuroblastoma cells against acrolein toxicity (128). 
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Figure 1.18: The bi-functional AO properties of curcumin (126) 
 
1.12.3 Mitochondrial dysfunction and curcumin 

 
Curcumin pre-treatment prevented OS and mitochondrial dysfunction in potassium dichromate- induced 

nephrotoxicity by inducing Nrf2 (129).  Curcumin increased aconitase activity, a TCA cycle enzyme that 

functions as a marker of stress in mitochondria (126).  

 

Oxidative phosphorylation in rat heart-mitochondria was also increased following treatment with 

curcumin (123, 130).  Curcumin increases the expression of genes involved in mitochondrial biogenesis, 

such as PGC-1α, nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (Tfam) 

(131).   

 
1.12.4 Curcumin and diabetes 
 

Curcumin improves metabolic disorders and glycaemic control in DMII mouse models (132). 

Curcumin decreases blood glucose levels and increases plasma insulin levels in STZ-induced diabetic rats 

by suppressing OS (133, 134). 
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In mouse embryos, curcumin reduced hyperglycaemic-induced neural tube defects by suppressing OS and 

caspase activation (135).  Curcumin administration in pancreatic tissue of STZ rats reduced blood glucose 

levels and reduced OS markers by increasing Nrf2 and HO-1 as well as glucose transporter 2 (GLUT 2) 

(136).   

 

Curcumin administration has also been shown to prevent the AGE-induced complications of DMII (40), 

prevent the decrease in the AO capacity and prevent an increase in 8-oxoG in the retina of diabetic rats 

(41). 

 

Treatment with curcumin for two weeks reduced renal dysfunction and OS in diabetic animals (42). It 

was also found to improve hepatic function markers and protein levels in experimental DMII rats (43).   

In cultured monocytes exposed to high levels of glucose, curcumin supplementation decreased 

proinflammatory cytokines and glycosylated haemoglobin (137). 

 

The mechanisms by which curcumin inhibits OS have yet to be fully investigated.  Understanding the 

molecular mechanisms could lead to the development of natural therapeutics in OS-associated diseases. 

 

Aims: 
(i) To determine SIRT3 and downstream antioxidant expression under hyperglycaemic conditions. 

 

(ii) To determine the effect of metformin treatment on SIRT3 and antioxidant expression under 

hyperglycaemic conditions.  

 

(iii) To determine the effect of curcumin treatment on SIRT3 expression, antioxidant defence, lon 

protease and heat shock protein 70 under hyperglycaemic conditions.  

 

(iv) To determine the effect of cell survival genes on apoptotic stress under hyperglycaemic 

conditions.   
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2.1 Abstract 
 
Background: Hyperglycaemia exacerbates the production of mitochondrial reactive oxygen species 

and this contributes to a variety of pathological conditions (1).  SIRT3 has been shown to play a role 

in decreasing oxidative stress, and improving disease outcomes, by regulating antioxidant defence (2).  

Our understanding of molecular events during oxidative stress under chronic hyperglycaemia in the 

liver is limited. We postulated that SIRT3 may play a role in antioxidant defence under 

hyperglycaemic conditions in HepG2 cells. 

 

Methods: Cell viability was determined in HepG2 and HEK 293 cells cultured in the presence of 

5mM glucose (control), 19.9mM mannitol (OC), 10mM glucose, 30mM glucose (hyperglycaemic) 

and NAM (10mM) at 24hr and 72hr time points.  SIRT3, PGC-1α, p-CREB protein expressions were 

measured by western blot.  Mitochondrial antioxidant enzymes GPx1, SOD2, UCP2 and mtDNA 

repair enzyme OGG1 were evaluated by qPCR.  

 

Results: Increased cell viability and protein expressions of SIRT3, p-CREB and PGC-1α were 

observed under hyperglycaemic conditions at 24hr.  These were further elevated at the 72hr time 

point.  We also observed higher fold changes of SIRT3, GPx1, SOD2, UCP2 and OGG1 in the treated 

groups.  Treatment with NAM decreased protein and gene expressions of SIRT3, p-CREB, PGC-1α, 

GPx1, SOD2, UCP2 and OGG1 at both time points in the hyperglycaemic groups.   

 

Conclusions: Our data may allude to the relationship that has been established between SIRT3 and 

PGC-1α with regard to increased antioxidant defence during oxidative stress.  This suggests that 

SIRT3 may play a role in increasing antioxidant defence and conferring resistance to oxidative stress-

induced damage under hyperglycaemic conditions in the human hepatoma cell line.      

 
 
 
 
 
 
 
 
 
 
 
 



44 
 

2.2 Introduction 
 
Reactive oxygen species (ROS) are a natural by-product of cellular respiration.  An imbalance 

between production of ROS and the cell’s ability to detoxify ROS disturbs the cellular reducing 

environment resulting in oxidative stress (OS).  This can lead to accumulated damage of various 

components of the cell including DNA, proteins and lipids resulting in pathological conditions such as 

cancer, diabetes and cardiac disease.   

 

Mitochondria are the primary source of ROS which are generated through the electron transport chain 

(ETC), during oxidative phosphorylation (OXPHOS).  The low levels of ROS generated from the 

ETC are necessary for signalling pathways.  However, under hyperglycaemic conditions more 

electron transfer donors are generated from the tricarboxylic acid (TCA) cycle resulting in a flux of 

electrons entering the ETC.  This causes partial inhibition of the ETC at complex III leading to 

accumulation of electrons, resulting in increased production of superoxide radicals (1).   

 

Mitochondrial DNA (mtDNA) is prone to oxidative damage as it is (a) closely located to the ETC, (b) 

lacks protective histones and (c) has limited DNA repair systems (3).  Mitochondrial DNA damage 

compromises mitochondrial transcription, OXPHOS protein synthesis and antioxidant (AO) activity 

(4) resulting in a highly oxidative environment which has been observed in metabolic disorders and 

disease conditions (5).  This may be improved by reducing OS.        

 

Cells have developed a complex network of cellular stress response mechanisms viz. sirtuins (SIRTs).  

Sirtuins are a highly conserved family of NAD+-dependent histone deacetylases localised throughout 

the cell. They target a variety of substrates to co-ordinate cellular metabolism, genomic integrity and 

stress resistance (6).    

 

Sirtuin 3 (SIRT3) functions as a primary mitochondrial stress-responsive protein deacetylase.  SIRT3 

deacetylates several metabolic and respiratory enzymes that regulate mitochondrial processes such as 

the TCA cycle and OXPHOS (7).  It can also reduce ROS levels by directly modulating key AO 

enzymes, such as superoxide dismutase 2 (SOD2), thereby acting as a shield against oxidative damage 

(2).   

 

SIRT3 also regulates AO defence through peroxisome proliferator-activated receptor gamma co-

activator 1 alpha (PGC-1α), a transcriptional co-activator that regulates respiration, mitochondrial 

biogenesis, antioxidant activation (glutathione peroxidase 1 (GPx1) and SOD2) and ROS attenuating 

genes such as uncoupling protein 2 (UCP2).   
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Oxidative stress increases the expression of PGC-1α which induces SIRT3 expression through 

activation of estrogen-related receptor alpha (ERR-α).  In turn, SIRT3 stimulates PGC-1α expression 

through phosphorylated c-AMP response element binding protein (p-CREB) thereby forming a 

positive feedback cycle and increasing AO defence (8).   Although no direct regulation of PGC-1α by 

SIRT3 has been reported, a study showed that SIRT3 expression is required for the induction of AO 

enzymes by PGC-1α (9).     

 

Studies have shown the ability of SIRT3 to protect cells against oxidative damage in different cell 

lines.  SIRT3 has been shown to play an essential role in mediating cell survival in cardiac myocytes 

(10).  Kong et al. (2010) showed that over-expression of SIRT3 in mouse muscle cells decreased ROS 

levels, whereas knockdown of SIRT3 increased basal ROS levels (9).  Over-expression of SIRT3 also 

reduced oxidative damage and increased glutathione AO defence in mice (11).   

 

Oxidative stress can induce many types of DNA base damage including 7, 8-dihydro-8-oxoguanine 

(8-oxoG) (12).  This results in a lack of base pairing specificity and an increase in the frequency of 

spontaneous G.C- -T.A transversion mutations.  Mutations in mtDNA are an underlying factor in 

many mitochondrial diseases. 

 

The mammalian DNA glycosylase, OGG1, recognizes and removes 8-oxoG that is base-paired with 

cytosine.  Mitochondria have been shown to be the primary site of OGG1 DNA repair activity (13).  

Several groups have demonstrated that over-expression of mitochondria-targeted OGG1 prevents 

mtDNA damage (14, 15).  Interestingly, it has been shown that SIRT3 directly deacetylates and 

activates OGG1 enabling DNA repair and genomic stability (16) under oxidative conditions.   

  

Oxidative stress is the leading cause of various pathological conditions; however, our understanding 

of molecular events during OS under long term hyperglycaemia in the liver is limited.  This is 

important as the liver is the primary organ involved in glucose homeostasis.  This is the first study to 

our knowledge that investigated the role of SIRT3 in stress response under long term hyperglycaemic 

conditions in a human hepatoma cell line.   

 

 
 
 
 
 
 
 



46 
 

2.3 Materials and Methods 
 
Cell Culture and Treatments 
 
HepG2 cells were cultured to confluency in 25cm3 flasks (5% CO2, 37°C) in complete culture media 

(CCM, Eagles minimum essential medium, supplemented with 10% foetal calf serum, 1% L-

Glutamine and 1% penstrepfungizone).  We also used the human embryonic kidney (HEK 293) cell 

line as a positive control.  HEK 293 cells were cultured to confluency in 25cm3 flasks (5% CO2, 37°C) 

in complete culture media (Dulbecco’s Modified Eagle’s medium, supplemented with 10% foetal calf 

serum, 1% L-Glutamine and 1% penstrepfungizone).   

 

The HepG2 and HEK 293 cells (2.5 x 10 4 cells/ well) were cultured in the presence of control 

(5.5mM glucose), osmotic control (OC) (19.9mM mannitol) and hyperglycaemic (10mM glucose 

(intermediate dose) , 30mM (hyperglycaemic dose) glucose) conditions for 24hr and 72hr in 30mm3 

cell culture plates.   Cells were treated with the SIRT3 inhibitor nicotinamide (NAM) at a 

concentration of 10mM.   

 

Cell Viability Assay  
 
Following treatment, the cells (3 replicates) were incubated with methyl thiazol tetrazolium (MTT) 

salt solution (5mg/mL in 0.1M phosphate buffered saline (PBS)) and CCM (4h, 37ºC).  Following 

incubation, the supernatants were aspirated and dimethyl sulphoxide was added (100 µL/well) and 

incubated at 37ºC for a further 1h.  Optical density of the formazan product was measured by a 

microplate reader (Bio-tek μQuant) at 570 nm with a reference wavelength of 690nm. 

 

Quantitative Polymerase Chain Reaction (q-PCR) 
 
Total RNA was extracted from cultured cells using the Triazol reagent (Ambion).  cDNA was 

synthesised by reverse transcription using the iScript cDNA Synthesis Kit (Bio-Rad).  

Quantitative PCR was performed on the CFX96 Real-Time System (Bio-Rad) by using iQ SYBR 

Green supermix (BioRad) with primer sequences as listed in Table 2.1. The PCR was initiated with 

the following thermocycler profile: an initial denaturation for 8min at 95°C followed by 39 cycles of 

95°C denaturation for 15s, annealing for 1min and extension of 72°C for 30s.  A final extension at 

60°C was performed for 31s.  Each measurement was done in triplicate and normalized against 18S 

rRNA Ct values.  The qPCR data is represented as a relative fold change, calculated using the method 

described by Livak and Schmittgen (17). 

 



47 
 

 
Table 2.1: Primer sequences and optimised annealing temperature 

 

Western blot analysis  
 

Sample proteins were isolated using a CytobusterTM (Novagen) supplemented with protease and 

phosphatase inhibitors (Roche).  Proteins were quantified using the bicinchoninic acid (BCA) assay 

(Sigma) and standardised to 1mg/ml.  Protein extracts were prepared in Laemlii buffer (dH2O, 0.5M 

Tris-Cl (pH 6.8), glycerol, 10% SDS, β-mercaptoethanol, 1% bromophenol blue) and separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% resolving gel) and electrotransferred to 

nitrocellulose membrane.  Membranes were blocked with 5% BSA in Tris-Buffered Saline and Tween 

20 (TTBS) [137mM NaCl, 2.7mM KCl, 24mM Tris, 0.5% Tween 20].  Membranes were probed 

using the following antibodies in 5% bovine serum albumin (BSA in TTBS): rabbit anti- SIRT3 

(Abcam, ab86671, 1:1000); goat anti-PGC-1α (Abcam, ab72230, 1:1000) and goat anti phospho-

CREB (Cell Signalling Technology, cat. No 9191, 1:1000).  All membranes were incubated in 

primary antibodies overnight at 4°C.  A horseradish peroxidase (HRP)-conjugated goat polyclonal 

antibody specific for β-actin was used for the loading control and the normalisation process (1:5000 in 

5% BSA in TTBS).  Membranes were developed using LumiGlo® Chemiluminescent Substrate 

System (KPL) and images were captured on the Alliance 2.7 documentation system (UViTech).   The 

density of the bands was quantified using UViBand Advanced Image Analysis Software (UViTech). 

The experiment was performed in triplicate and repeated thrice.  Results are presented as relative band 

intensity and normalised against β-actin. 

Gene Sense (5’-3’) Antisense (5’-3’) Annealing 

temp (°C) 

18S 

rRNA 

ACACGGACAGGATTGACAGA CAAATCGCTCCACCAACTAA 58°C 

SIRT3 GCATTCCAGACTTCAGATCGC GTGGCAGAGGCAAAGGTTCC 50°C 

CREB GATGGACAGCAGATCTTAGTGCC TGCTGTGCAAATCTGGTATGTT 65°C 

PGC-1α CCAAACCAACAACTTTATCTCTTCC CACACTTAAGGTGCGTTCAATAGTC 65°C 

GPx1 GACTACACCCAGATGAACGAGC CCCACCAGGAACTTCTCAAAG 60°C 

SOD2 GAGATGTTACAGCCCAGATAGC AATCCCCAGCAGTGGAATAAGG 58°C 

UCP2 GACCTATGACCTCATCAAG ATAGGTGACGAACATCACCACG 50°C 

OGG1 GCATCGTACTCTAGCCTCCAC AGGACTTTGCTCCCTCCAC 60°C 
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Statistical analysis 
 
Each experiment was performed in triplicate and repeated thrice.  Results are expressed as mean ± 

standard error of the mean (SEM).  Statistical analysis was performed using one way ANOVA 

followed by Bonferroni test for multiple group comparison.  Differences with p<0.05 were considered 

statistically significant.  
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2.4 Results 
 
Mitochondrial output increases under hyperglycaemic conditions  
 

In order to determine the effect of hyperglycaemia on mitochondrial output, cell viability was 

measured in both HepG2 and HEK 293 cells.   

 

In the HepG2 cells, cell viability was significantly higher in the hyperglycaemic treatments at both 

24hr (p=0.0140, 95% CI: control 0.1898- 0.8632 O.D; 10mM 0.6564- 0.8596 O.D, p=0.0119, 95% 

CI: control 0.1898- 0.8632 O.D; 30mM 0.6793- 0.8762 O.D Fig 2.1A) and 72hr time points compared 

to their respective controls (p=0.0036, 95% CI: control 0.1898- 0.8632 O.D; 10mM 0.3869-1.067 

O.D, p=0.0106, 95% CI: control 0.1898- 0.8632 O.D; 30mM 0.6420- 0.9850 O.D Fig 2.1A).     

 

In the HEK 293 cells, the hyperglycaemic treatments were relatively higher at both 24hr and 72hr 

time points than their respective controls; however these did not reach statistical significance (Fig 
2.1B).  NAM-treated cells resulted in decreased cell viability in the hyperglycaemic treatments in both 

the HepG2 and HEK 293 cells at both time points (Fig 2.1A and Fig 2.1B).   
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Figure 2.1: The effect of hyperglycaemia on cell viability.  (A) HepG2 cells (normal and NAM-

treated) and (B) HEK 293 cells (normal and NAM-treated) were subjected to a colorimetric assay that 

measured cell viability. Values are expressed as mean ± SEM. *p<0.05 vs. Control. 
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Increased SIRT3 expression under hyperglycaemic conditions 
 
To determine whether hyperglycaemic conditions had an effect on SIRT3 expression, western blot 

and qPCR were used to measure protein and gene expression of SIRT3, respectively.   

 

In HepG2 cells, higher SIRT3 protein expression was observed in the hyperglycaemic treatments 

relative to the control at the 24hr time point; however these were not statistically significant Fig 2.2A.   

 

At the 72hr time point, higher protein expression was seen in both hyperglycaemic treatments relative 

to the control with 30mM reaching statistical significance (p= 0.0007; 95% CI: control 0.7559- 3.290 

RBD; 30mM  4.732- 7.197 RBD Fig 2.2A). Quantitative PCR data also showed higher levels of 

SIRT3 in the 24hr and 72hr 10mM (p=0.0002) and 30mM (p=0.0030) groups relative to the control 

(5.3-fold and 6.4-fold respectively) Fig 2.2B.  

 

In the HEK 293 cells, higher SIRT3 protein expression was seen in the hyperglycaemic groups at both 

24hr (p=0.0003; 95% CI: control 0.3952-1.263 RBD; 30mM 1.899- 2.425 Fig 2.3A) and 72hr time 

points (p=0.0098; 95% CI: control 0.7908- 1.369 RBD; 10mM 1.218- 3.921; p=0.0194; 95% CI: 

control 0.7908- 1.369 RBD; 30mM 0.8772- 4.578 Fig 2.3A).  SIRT3 transcript fold changes were also 

higher in the 72hr 10mM (p=0.0002) and 30mM (p<0.0001) groups relative to the control (5.1-fold 

and 9.1-fold respectively) Fig 2.3B.   

 

NAM-treated cells resulted in lower SIRT3 protein expression in the 10mM and 30mM groups at 24hr 

and 72hr time points in both HepG2 and HEK 293 cells Fig 2.2A and Fig 2.3A.   Quantitative PCR 

also showed decreased gene expression in the hyperglycaemic groups over 24hr and 72hr in both cell 

lines Fig 2.2B and Fig 2.3B.    
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Figure 2.2: The effect of hyperglycaemia on SIRT3 expression in normal and NAM-treated HepG2 

cells.  (A) SIRT3 protein expression was determined by western blot.  A representative immunoblot is 

shown, along with summarised data of SIRT3 band intensity normalised to β-actin.  (B) Gene 

expression for SIRT3 was assessed.  Values are expressed as fold changes relative to the control. Each 

bar represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. Control.  
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Figure 2.3: The effect of hyperglycaemia on SIRT3 expression in normal and NAM-treated HEK 

293.  (A) SIRT3 protein expression was determined by western blot.  A representative immunoblot is 

shown, along with summarised data of SIRT3 band intensity normalised to β-actin.  (B) Gene 

expression for SIRT3 was assessed.  Values are expressed as fold changes relative to the control. Each 

bar represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. Control.   
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p-CREB expression increases under hyperglycaemic conditions 
 
To investigate the effect of hyperglycaemia in HepG2 cells on p-CREB expression, western blot was 

used to determine protein expression and mRNA expression was determined by qPCR. 

 

The hyperglycaemic treatments induced significantly higher levels of p-CREB protein expression at 

both 24hr and 72hr time points compared to the controls (24hr: p<0.0001; 95% CI: control 0.8551 - 

0.9128 RBD; 30mM 0.9128 1.207 RBD; 72hr p= 0.0195; 95% CI: control 0.4997 - 0.7535 RBD; 

10mM 0.8187 - 1.388 RBD; p= 0.0002; 95% CI: control 0.4997 - 0.7535 RBD; 30mM 1.823 - 2.526 

RBD respectively, Fig 2.4A).    

 

Quantitative PCR data showed increased CREB mRNA expression in the 24hr and 72hr 10mM (1.2-

fold and 1.5-fold respectively) and 30mM groups (5-fold; p<0.0001 and 8.4-fold; p<0.0001 

respectively) compared to the respective controls Fig 2.4B.   

Following NAM treatment over 24hr and 72hr, both CREB protein and mRNA expressions 

significantly decreased in the hyperglycaemic groups (p<0.0001) Fig 2.4A and Fig 2.4B.    
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Figure 2.4: The effect of hyperglycaemia on p-CREB expression in normal and NAM-treated HepG2 

cells.  (A) p-CREB protein expression was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of p-CREB band intensity normalised to β-actin.  Data 

expressed as mean SEM.  (B) Gene expression for CREB was assessed.  Values are expressed as 

fold changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

Control.   
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PGC-1α expression increases under hyperglycaemic conditions 
To investigate the effect of hyperglycaemia in HepG2 cells on PGC-1α expression, western blot and 

qPCR were used to determine protein and gene expression respectively.   

 

Higher levels of PGC-1α protein expression were observed at both 24hr and 72hr time points 

compared to the respective controls (72hr p= 0.0035; 95% CI: control 1.503 - 3.405 RBD; 10mM 

3.501 - 5.255 RBD; p=0.0012; 95% CI: control 1.503 - 3.405 RBD; 30mM 2.915- 8.027 RBD 

respectively, Fig 2.5A).   

PGC-1α mRNA levels were also significantly higher in the hyperglycaemic treatments at the 24hr and 

72hr time points compared to the control (p<0.0001) Fig 2.5B.  However, both protein and gene 

expressions were significantly decreased in the hyperglycaemic groups following NAM treatment 

(p<0.0001) Fig 2.5A and Fig 2.5B.   
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Figure 2.5: The effect of hyperglycaemia on PGC-1α expression in normal and NAM-treated HepG2 

cells.  (A) PGC-1α protein expression was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of PGC-1α band intensity normalised to β-actin.  Data 

expressed as mean SEM.  (B) Gene expression for PGC-1α was assessed.  Values are expressed as 

fold changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

Control. 
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Antioxidant defence increases under hyperglycaemic conditions   
 

In order to investigate the effect of hyperglycaemia on antioxidant activity in HepG2 cells, gene 

expressions for GPx1, SOD2 and UCP2 were determined by qPCR.   

 

Increased expressions of GPx1, SOD2 and UCP2 were observed in both hyperglycaemic treatments at 

the 24hr and 72 time point.   

 

GPx1 was significantly higher in the 30mM treatment at 72hr (3.4-fold; p<0.0001); NAM treatment 

reduced gene expression in the hyperglycaemic treatments over both time points Fig 2.6A.  At 72hr, 

gene expression was significantly decreased in the 10mM and 30mM groups (p=0.0011 and p=0.0070 

respectively) Fig 2.6A.   

 

Hyperglycaemia induced significantly higher SOD2 expression over 24hr and 72hr time points 

(p<0.0001).  At 72hr, SOD2 gene expression in both 10mM and 30mM treatments was 5.6-fold and 

6.4-fold higher relative to the control, respectively Fig 2.6B.  NAM treatment was found to reduce 

gene expression in both hyperglycaemic groups.  SOD2 expression was 3.3-fold lower in the 30mM 

treatment at both time points relative to the control Fig 2.6B.  

 

Significantly higher UCP2 expressions were observed in both hyperglycaemic groups over 24hr and 

72hr (p<0.0001) Fig 2.6C.  Gene expressions in the hyperglycaemic groups at both time points were 

significantly reduced following NAM treatment (p<0.0001) Fig 2.6C.   
 

As a marker of mtDNA repair following oxidative damage, OGGI expression was determined in both 

hyperglycaemic treatments by qPCR.   Significantly higher gene expressions were observed in the 

hyperglycaemic groups at 24hr and 72hr time points relative to the respective controls (p<0.0001) Fig 
2.6D; however following NAM treatment, OGGI expressions were significantly reduced in the 30mM 

groups of both time points (<0.0001) Fig 2.6D.   
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Figure 2.6: The effect of hyperglycaemia on antioxidant mRNA expression in normal and NAM-

treated HepG2 cells.  Gene expressions for (A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were 

assessed with quantitative PCR using specific primers.  Values are expressed as fold changes relative 

to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. Control. 
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2.5 Discussion 
 

Oxidative stress is the leading cause of various pathological conditions. However, our understanding 

of the mechanisms that allow cells to protect themselves during OS under hyperglycaemic conditions 

in the liver is limited.  This is important as the liver is the primary organ involved in glucose 

homeostasis.  The liver plays a unique role in controlling carbohydrate metabolism by maintaining 

glucose concentrations in the normal range over long or short periods of time. Increases in glucose 

concentrations are regulated by suppression of gluconeogenic pathways, hepatic glucose uptake and 

an increase in glycogen storage and glucose metabolism.   

 

To compare the effect of hyperglycaemia on SIRT3 expression and downstream AO defence in 

HepG2 cells, a non-carcinoma HEK 293 cell line was used. We found that the response under 

oxidative conditions, with regard to SIRT3 and downstream AO defence, were similar between both 

cell lines (see Supplementary Data).    

 

Mitochondria are the primary sources of ROS as superoxide radicals are a natural by-product of the 

ETC.  ROS that are physiologically produced in the mitochondria participate in critical signalling 

pathways. Exposure to excess ROS, which may arise as a consequence of an imbalance between 

production and detoxification pathways, leads to accumulated oxidative damage of critical 

macromolecules, such as DNA, RNA, proteins and lipid.  This may play a role in physiological and 

pathophysiological conditions such as diabetes.   

 

Type 2 diabetes mellitus is characterised by hyperglycaemia, OS and insulin resistance (IR) which is 

caused by abnormalities within the insulin signalling pathway.  There is a strong correlation between 

IR and OS (induced by hyperglycaemia).  Studies have shown that treatment of insulin-responsive cell 

lines with H2O2 caused a significant decrease in insulin sensitivity (18-20).  This may be due to 

activation of mitogen-activated protein kinases (MAPKs), such as c-jun N terminal kinase (JNK), 

which in turn cause inhibition of insulin signalling.  Oxidative stress could also lead to IR by 

promoting the expression of several pro-inflammatory cytokines which causes phosphorylation of 

insulin receptor substrate 1 (IRS-1) at inhibitory sites and promotes a significant decline in insulin 

sensitivity (21).  Insulin resistance was prevented by administration of AO compounds.   

 

Cells sustained under hyperglycaemic conditions have more electron donors produced by the TCA 

cycle and results in a large flux of substrates entering the ETC, leading to electron leakage and 

increased production of superoxide radicals (1).   
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mtDNA is susceptible to ROS-induced damage due to its close proximity to the ETC, its lack of 

protective histones and limited DNA repair activity (3).  Studies have shown that exacerbated ROS 

production alters OXPHOS resulting in decreased mitochondrial function, decreased capacity of cells 

to maintain ATP levels (22) and a marked reduction in AO activity (23). These factors need to be 

improved in order to ameliorate disease conditions. 

 

We observed increased cell viability under hyperglycaemic stimulation, which represents an oxidative 

environment.  This observation was interpreted as a marker of increased mitochondrial output.  This is 

interesting as studies have shown decreased cell viability under oxidative conditions; this is improved 

by activation of the endogenous AO system (24, 25).  Inhibition of SIRT3 resulted in decreased cell 

viability under hyperglycaemic conditions which suggests, in our model, that SIRT3 is integral to 

mitochondrial function.   

 

Cells have developed a network of regulated stress-response mechanisms.  Genes encoding 

components involved in managing OS play a key role in this network.  Sirtuins could be considered 

among those genes as they are sensors of redox state.   

 

SIRT3 resides primarily in the mitochondria and has been shown to bind and deacetylate several 

metabolic and respiratory enzymes that regulate important mitochondrial functions.   

 

Many studies have shown that SIRT3 regulates cell defence and survival in response to stress, such as 

high glucose (16, 26-28).  Our study showed increased expressions of SIRT3 in the hyperglycaemic 

group.  Interestingly, the levels of expression were much higher under longer hyperglycaemic 

stimulation.   

 

SIRT3 expression is required for the induction of AO genes by PGC-1α (9).  PGC-1α is a 

transcriptional co-activator that is activated in response to OS and plays an important role in 

regulating mitochondrial function and AO defence enzymes such as SOD2 (detoxifies superoxide 

radicals that are formed as a by-product of OXPHOS), GPx1 (enzyme that detoxifies H2O2 to H2O) 

and UCP2, a proton carrier in the inner mitochondrial membrane that attenuates ROS-mediated 

damage (1, 29, 30). Suppression of PGC-1α expression in endothelial cells resulted in a strong 

reduction in the levels of the mitochondrial detoxification proteins (31).   

 

In an oxidative environment, PGC-1α induces SIRT3 expression through activation of ERR- α and in 

turn, SIRT3 stimulates PGC-1α expression through p-CREB thereby forming a positive feedback 

cycle and increasing AO defence (32, 33).   
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We observed increased protein and gene expressions of PGC-1α, p-CREB and mitochondrial AO 

enzymes SOD2, GPx1, and UCP2 under hyperglycaemic conditions.   Further elevations in 

expressions were observed under longer hyperglycaemic stimulation.  Interestingly, chemical 

inhibition of SIRT3 resulted in the reduction of protein and gene expressions of PGC-1α, p-CREB and 

mitochondrial AO enzymes under hyperglycaemic conditions.  This may suggest that SIRT3 is a 

central component that modulates AO response under oxidative conditions. 

 

In addition to regulating AO defence by PGC-1α, SIRT3 also regulates detoxification of ROS through 

deacetylation and activation of SOD2 (2, 11).  Over-expression of SIRT3 was shown to reduce ROS 

in an adipocyte cell line while increased ROS production was observed in SIRT3 deficient mice (28, 

34).  

 

Oxidative stress induces DNA base damage such as 8-oxoG which results in an increase in the 

frequency of spontaneous G.C- -T.A transversion mutations (12).  Mutations in mtDNA are an 

underlying factor in many mitochondrial diseases as it results in abnormal expression of mtDNA 

encoded proteins and defective OXPHOS.  OGG1 recognizes and removes 8-oxoG that is base-paired 

with cytosine.  SIRT3 directly deacetylates and activates OGG1 enabling DNA repair and genomic 

stability under oxidative conditions (16).    

 

As a marker of mtDNA repair under oxidative conditions, we have shown increased OGG1 

expression under hyperglycaemic conditions with levels being much higher under longer 

hyperglycaemic stimulation.  Inhibition of SIRT3, however, resulted in a decrease in OGG1 

expression in the hyperglycaemic groups.   This may illustrate the role of SIRT3 in genomic stability 

under oxidative conditions.   

 

Our data has shown increased expressions of SIRT3, PGC-1α, mitochondrial AO and repair enzymes 

under hyperglycaemic conditions.  We found a further increase in these expressions under longer 

hyperglycaemic stimulation, which represents oxidative conditions. Interestingly, we also found 

reduced protein and gene expressions following SIRT3 inhibition.  This suggests that SIRT3 is a 

central component in modulating AO defence and conferring resistance to OS-induced damage under 

hyperglycaemic conditions in the human hepatoma cell line. 

 

Resveratrol (a known SIRT3 activator) was found to attenuate oxidative injury in endothelial cells 

mediated through activation of SIRT3 signalling pathways (35).  SIRT3 was also shown to protect 

against acute kidney injury by reducing OS and mitochondrial damage (36).  Viniferin is a natural 

product that decreased ROS levels and prevented loss of mitochondrial membrane potential in cells 

expressing Huntingtin protein.  SIRT3 was shown to mediate the neuro-protection of viniferin (37).  
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Therefore, regulating SIRT3 activity through chemical or natural therapeutics may be beneficial in 

improving several mitochondrial-associated diseases.   

 

This study could be improved by using primary hepatocytes or an in vivo hyperglycaemic mouse 

model to establish a holistic response.  Longer hyperglycaemic stimulations and SIRT knockout 

models may provide greater insight to SIRT3 modulation of AO defence under chronic OS.    

 

Future work may include interrogating SIRT3 in more defined pathways that are altered in metabolic 

disorders, such as mitochondrial biogenesis or DNA repair.  We may also look at chemical and 

natural therapeutics and their effects on SIRT3 expression and activity under oxidative conditions.   

 
2.6 Conclusion 
 

Oxidative stress-induced damage has been implicated in several metabolic disorders and diseases and 

SIRT3 may play a role in reducing OS by regulating AO defence and repair.  Therefore, SIRT3 may 

be used as a therapeutic target to treat diseases associated with OS.   
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SUPPLEMENTARY DATA 
 

 
Figure s2.7: The effect of hyperglycaemia on p-CREB expression in normal and NAM-treated HEK 

293 cells.  (A) p-CREB protein expression was determined by western blot.  A representative 

immunoblot is shown, along with summarised data of p-CREB band intensity normalised to β-actin.  

Data expressed as mean SEM.  (B) Gene expression for CREB was assessed.  Values are expressed 

as fold changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 

vs. Control.   



68 
 

 
Figure s2.8: The effect of hyperglycaemia on PGC-1α expression in normal and NAM-treated HEK 

293 cells.  (a) PGC-1α protein expression was determined by western blot.  A representative 

immunoblot is shown, along with summarised data of PGC-1α band intensity normalised to β-actin.  

Data expressed as mean SEM.  (b) Gene expression for PGC-1α was assessed.  Values are expressed 

as fold changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 

vs. Control. 
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Figure s2.9: The effect of hyperglycaemia on antioxidant mRNA expression in normal and NAM-

treated HEK 293 cells.  Gene expressions for (A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were 

assessed with quantitative PCR using specific primers.  Values are expressed as fold changes relative 

to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. Control. 
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3.1 Abstract 
 
Background: Oxidative stress is involved in metabolic disorders.  SIRT3 decreases oxidative stress 

by regulating antioxidant (AO) defence.  Metformin is an anti-diabetic agent that possesses AO 

properties;.  We postulated that metformin may increase AO defence under hyperglycaemic 

conditions in HepG2 cells through SIRT3-mediated mechanisms.   

 
Methods: Cell viability was determined in HepG2 cells cultured in the presence of 5.5 mM glucose 

(control), 19.9mM mannitol (OC), 10mM glucose, 30mM glucose, NAM (10mM) and metformin 

(3mM) over 24hr.  SIRT3 and p-CREB protein expressions were measured by western blot.  Gene 

expressions of SIRT3, CREB, GPx1, SOD2, UCP2 and OGG1 were evaluated by qPCR.  

 
Results: Increased cell viability and protein expressions of SIRT3 and p-CREB were observed in the 

metformin-treated groups.  These were further elevated in hyperglycaemic groups treated with 

metformin.  We also observed higher fold changes of SIRT3, CREB, PGC-1α, GPx1, SOD2, UCP2 

and OGG1 in the hyperglycaemic groups treated with metformin.  Treatment with NAM resulted in 

decreased protein expressions of SIRT3 and p-CREB and decreased gene expressions of SIRT3, 

CREB, PGC-1α, GPx1, SOD2, UCP2 and OGG1.   

 
Conclusions: Metformin increases SIRT3 and AO expression.  Our data suggests that metformin may 

work synergistically with SIRT3 to increase AO defence. 
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3.2 Introduction 

 

Type 2 diabetes (DMII) is characterized by insulin resistance, hyperglycaemia and oxidative stress 

(OS).  Oxidative stress is a result of increased production/ decreased scavenging of reactive oxygen 

species (ROS) which plays a key role in DMII and associated complications (1-4).  

 

ROS generation occurs primarily through the electron transport chain (ETC).  Basal ROS levels are 

required for signalling, however, under hyperglycaemic conditions more electron transfer donors are 

generated from the tricarboxylic acid (TCA) cycle resulting in large amounts of reducing equivalents 

entering the ETC (5).  This causes partial inhibition of the ETC at complex III and increased 

production of superoxide radicals (5).   

 

Mitochondrial DNA (mtDNA) is vulnerable to oxidative damage as it is (a) closely located to the 

ETC, (b) lacks protective histones and (c) has limited DNA repair systems (6).  Mitochondrial DNA 

damage compromises oxidative phosphorylation (OXPHOS) and antioxidant (AO) activity (7) which 

have been observed in metabolic disorders (8).  These need to be improved in order to ameliorate 

metabolic disorders.        

 

Metformin (1, 1-dimethylbiguanide) is an anti-hyperglycaemic agent used for the treatment of DMII.  

The proposed mechanism for metformin action is inhibition of complex I of the ETC (9).  This would 

decrease ATP production, elevate the concentration of ADP and, in turn, increase the concentration of 

AMP (9). This results in active AMP-activated protein kinase (AMPK), which increases glucose 

uptake in peripheral tissues (9).   

 

Metformin also inhibits mitochondrial ROS production by blocking the reverse electron flow through 

complex I of the ETC (10).  Metformin modulated the intracellular production of ROS in bovine 

aortic endothelial cells (BAECs) stimulated with high concentrations of glucose (11).  

 

In vitro data have shown that metformin could induce AO enzymes, such as superoxide dismutase 2 

(SOD2) and glutathione (GSH) (12-14).  Metformin was also shown to significantly decrease serum 

levels of 7, 8-dihydro-8-oxoguanine (8-oxoG), a marker of OS in DNA, in women with polycystic 

ovary syndrome (15).  

 

These studies allude to the AO properties of metformin; however the AO effects of metformin have 

not been well characterised.   

 

SIRT3 is as a primary mitochondrial stress-responsive protein deacetylase that regulates 
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mitochondrial function and AO defence (16).  It reduces ROS levels by regulating AO enzymes, such 

as SOD2, and therefore protects against oxidative damage (17).   

 

SIRT3 modulates AO defence through peroxisome proliferator-activated receptor gamma co-activator 

1 alpha (PGC-1α), a transcriptional co-activator that regulates respiration, mitochondrial biogenesis 

and AO defence (glutathione peroxidase 1 (GPx1) and SOD2).     

 

Mutations in mtDNA are involved in many mitochondrial diseases.  SIRT3 activates the mammalian 

DNA glycosylase OGG1 enabling DNA repair and genomic stability under oxidative conditions (18).    

A recent study has shown that SIRT3 may be involved in the AO effects of metformin (19); however, 

this has yet to be fully interrogated. 

 

Molecular events that occur during OS under hyperglycaemic conditions in the liver are limited.  The 

liver is the primary organ involved in glucose homeostasis and is also one of the major sites targeted 

during metformin therapy in DMII. This is the first study to investigate the effect of metformin on 

SIRT3 expression and downstream AO defence under normo- and hyperglycaemic conditions in the 

human hepatoma cell line.   
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3.3 Materials and Methods 
 
Cell Culture and Treatments 
 

HepG2 cells were cultured to confluency in 25cm3 flasks (5% CO2, 37°C) in complete culture media 

(CCM, Eagles minimum essential medium, supplemented with 10% foetal calf serum, 1% L-

Glutamine and 1% penstrepfungizone).  The cells (2.5 x 10 4 cells/ well) were cultured in the presence 

of the hyperglycaemic control (5.5mM glucose), osmotic control (OC) (19.9mM mannitol) and 

hyperglycaemic (10mM, 30mM glucose) conditions in the absence (untreated/ normal) or presence of 

3mM metformin (MET) for 24hr in 30mm3 cell culture plates.  Cells were treated with the SIRT3 

inhibitor nicotinamide (NAM) at a concentration of 10mM.   

 
Cell Viability Assay  
 

Following treatment, the cells (3 replicates) were incubated with methyl thiazol tetrazolium (MTT) 

salt solution (5mg/mL in 0.1M phosphate buffered saline (PBS)) and CCM (4h, 37ºC).  Following 

incubation, the supernatants were aspirated and dimethyl sulphoxide was added (100 µL/well) and 

incubated at 37ºC for a further 1h.  Optical density of the formazan product was measured by a 

microplate reader (Bio-tek μQuant) at 570 nm with a reference wavelength of 690nm. 

 
Quantitative Polymerase Chain Reaction (q-PCR) 
 

Total RNA was extracted from cultured cells using the Triazol reagent (Ambion).  cDNA was 

synthesised by reverse transcription using the iScript cDNA Synthesis Kit (Bio-Rad).  

Quantitative PCR was performed on the CFX96 Real-Time System (Bio-Rad) by using iQ SYBR 

Green supermix (BioRad) with primer sequences as listed in Table 3.1. The PCR was initiated with 

the following thermocycler profile: an initial denaturation for 8min at 95°C followed by 39 cycles of 

95°C denaturation for 15s, annealing for 1min and extension of 72°C for 30s.  A final extension at 

60°C was performed for 31s.  Each measurement was done in triplicate and normalized against 18S 

rRNA Ct values.  The qPCR data is represented as a relative fold change, calculated using the method 

described by Livak and Schmittgen (20.) 
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Table 3.1: Primer sequences and optimised annealing temperature 

 

Western blot analysis  
 

Sample proteins were isolated using a CytobusterTM (Novagen) supplemented with protease and 

phosphatase inhibitors (Roche).  Proteins were quantified using the bicinchoninic acid (BCA) assay 

(Sigma) and standardised to 1mg/ml.  Protein extracts were prepared in Laemlii buffer (dH2O, 0.5M 

Tris-Cl (pH 6.8), glycerol, 10% SDS, β-mercaptoethanol, 1% bromophenol blue) and separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% resolving gel) and electrotransferred to 

nitrocellulose membrane.  Membranes were blocked with 5% BSA in Tris-Buffered Saline and Tween 

20 (TTBS) [137mM NaCl, 2.7mM KCl, 24mM Tris, 0.5% Tween 20].  Membranes were probed 

using the following antibodies in 5% bovine serum albumin (BSA in TTBS): rabbit anti- SIRT3 

(Abcam, ab86671, 1:1000) and goat anti phospho-CREB (Cell Signalling Technology, cat. No 9191, 

1:1000).  All membranes were incubated in primary antibodies overnight at 4°C.  A horseradish 

peroxidase (HRP)-conjugated goat polyclonal antibody specific for β-actin was used for the loading 

control and the normalisation process (1:5000 in 5% BSA in TTBS).  Membranes were developed 

using LumiGlo® Chemiluminescent Substrate System (KPL) and images were captured on the 

Alliance 2.7 documentation system (UViTech).   The density of the bands was quantified using 

UViBand Advanced Image Analysis Software (UViTech). The experiment was performed in triplicate 

and repeated thrice.  Results are presented as relative band intensity and normalised against β-actin. 

 
 
 

Gene Sense (5’-3’) Antisense (5’-3’) Annealing 

temp (°C) 

18S 

rRNA 

ACACGGACAGGATTGACAGA CAAATCGCTCCACCAACTAA 58°C 

SIRT3 GCATTCCAGACTTCAGATCGC GTGGCAGAGGCAAAGGTTCC 50°C 

CREB GATGGACAGCAGATCTTAGTGCC TGCTGTGCAAATCTGGTATGTT 65°C 

PGC-1α CCAAACCAACAACTTTATCTCTTCC CACACTTAAGGTGCGTTCAATAGTC 65°C 

GPx1 GACTACACCCAGATGAACGAGC CCCACCAGGAACTTCTCAAAG 60°C 

SOD2 GAGATGTTACAGCCCAGATAGC AATCCCCAGCAGTGGAATAAGG 58°C 

UCP2 GACCTATGACCTCATCAAG ATAGGTGACGAACATCACCACG 50°C 

OGG1 GCATCGTACTCTAGCCTCCAC AGGACTTTGCTCCCTCCAC 60°C 
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Statistical analysis 
 

Each experiment was performed in triplicate and repeated thrice.  Results are expressed as mean ± 

standard error of the mean (SEM).  Statistical analysis was performed using one way ANOVA 

followed by Bonferroni test for multiple group comparison.  Differences with p<0.05 were considered 

statistically significant.  
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3.4 Results 
 
Metformin treatment increases mitochondrial output under normo- and hyperglycaemic 
conditions 
 

In order to determine the effect of hyperglycaemia and metformin treatment on mitochondrial output, 

cell viability was measured in HepG2 cells.  Compared to the untreated control, cell viability was 

significantly higher in the metformin-treated control (p= 0.0057, 95% CI: control 0.4417 - 0.5937; 

control+ metformin 0.7297 - 0.9923 Fig 3.1). 

 

Both hyperglycaemic groups treated with metformin also showed significantly higher cell viability 

compared to the untreated control (p= 0.0002, 95% CI: control 0.4417 - 0.5937; 10mM glucose+ 

metformin 0.9650 - 1.068; p= 0.0017, 95% CI: control 0.4417 - 0.5937; 30mM glucose+ metformin 

0.7603- 0.9037 Fig 3.1) however, only the 10mM glucose+ metformin group was significantly higher 

than the treated control (p= 0.0220).    

 

NAM treatment resulted in a significant decrease in cell viability in the metformin-treated 

hyperglycaemic groups (10mM+ metformin: p<0.0001 and 30mM+ metformin: p= 0.0010 (Fig 3.1)).   

 
  
 
 
 
 
 
 
 

 
 
 
 
Figure 3.1: The effect of hyperglycaemia on cell viability in HepG2 cells (untreated, metformin-

treated and NAM-treated). Values are expressed as mean ± SEM. *p<0.05 vs. untreated control, 

#p<0.05 vs. metformin -treated control, ¶ p<0.05 vs. metformin -treated 10mM glucose, ¥ p<0.05 vs. 

metformin -treated 30mM glucose. 
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Metformin treatment increases SIRT3 expression under normo- and hyperglycaemic conditions 
 

To determine whether hyperglycaemia and metformin had an effect on SIRT3 expression, western 

blot and qPCR were used to measure protein and gene expression respectively.   

 

Significantly higher SIRT3 protein expression was observed in the metformin-treated control 

compared to the untreated control (p= 0.0402; 95% CI: control 0.1317- 4.364 RBD; control+ 

metformin 4.683- 6.399 RBD Fig 3.2A).   

 

Higher SIRT3 protein expression was also observed in the hyperglycaemic groups treated with 

metformin relative to the untreated control (p= 0.0356; 95% CI: control 0.1317- 4.364 RBD; 10mM 

glucose + metformin 5.595- 16.41 RBD; p= 0.0194; 95% CI: control 0.1317- 4.364 RBD; 30mM 

glucose + metformin 6.649- 12.65 RBD Fig 3.2A).  

 

A similar pattern was observed in the metformin-treated hyperglycaemic groups relative to the treated 

control (p= 0.0357; 95% CI: control+ metformin 4.683- 6.399 RBD; 10mM glucose + metformin 

5.595- 16.41 RBD; p= 0.0173; 95% CI: control+ metformin 4.683- 6.399 RBD; 30mM glucose + 

metformin 6.649- 12.65 RBD Fig 3.2A).  

 

Upon comparison to the untreated control, qPCR data also showed higher transcript levels of SIRT3 in 

the treated control (p= 0.0312; 1.7-fold) and treated hyperglycaemic groups (10mM+ metformin: p= 

0.0038; 2.5-fold and 30mM+ metformin: p=0.0015; 2.4-fold) Fig 3.2B.  Both treated hyperglycaemic 

groups showed significantly higher SIRT3 expression compared to the treated control (10mM 

glucose+ metformin: p=0.0026; 30mM glucose+ metformin: p= 0.0264).   

 

In the NAM groups, significantly lower SIRT3 protein expression was observed in the 10mM + 

metformin and 30mM glucose + metformin groups (p=0.0145 and p= 0.0051 respectively Fig 3.2A).   

Quantitative PCR also showed a significant decrease in gene expression in both treated 

hyperglycaemic groups (10mM glucose+ metformin: p=0.0008; 30mM glucose+ metformin: p= 

0.0007 Fig 3.2B).    
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Figure 3.2: The effect of hyperglycaemia on SIRT3 expression in untreated, metformin -treated and 

NAM-treated HepG2 cells.  (A) SIRT3 protein expression was determined by western blot.  A 

representative immunoblot is shown, along with summarised data of SIRT3 band intensity normalised 

to β-actin.  (B) Gene expression for SIRT3 was assessed.  Values are expressed as fold changes 

relative to the control. Each bar represents the mean ± SEM of 3 replicates.  Data expressed as 

mean SEM.  *p<0.05 vs. untreated control, #p<0.05 vs. metformin-treated control, ¶ p<0.05 vs. 

metformin -treated 10mM glucose, ¥ p<0.05 vs. metformin -treated 30mM glucose. 
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Metformin treatment increases p-CREB expression under normo- and hyperglycaemic 
conditions 
 

To investigate the effect of hyperglycaemia and metformin on p-CREB expression, western blot and 

qPCR were used to determine protein and mRNA expression respectively. 

 

Compared to the untreated control, significantly higher p-CREB protein expression was observed in 

the metformin -treated control (p= 0.0002; 95% CI: control 0.8551 - 0.9128 RBD; control + 

metformin 6.936 - 7.754 RBD Fig 3.3A). 

 

The hyperglycaemic groups treated with metformin also showed significantly higher p-CREB protein 

expression relative to the untreated control (p= 0.0255; 95% CI: control 0.8551 - 0.9128 RBD; 10mM 

glucose + metformin 2.359 - 9.098 RBD; p= 0.0458; 95% CI: control 0.8551 - 0.9128 RBD; 30mM 

glucose + metformin 1.135 - 10.32 RBD Fig 3.3A) but were lower when compared to the metformin-

treated control.  
 

NAM significantly decreased p-CREB protein expression in both treated hyperglycaemic groups 

(10mM glucose + metformin p= 0.0226 and 30mM glucose + metformin p= 0.0385 respectively Fig 
3.3A).   

 

Quantitative PCR data showed a significant 2.4-fold increase in CREB mRNA expression in the 

metformin -treated control compared to the untreated control (p= 0.0005) Fig 3.3B.  Both metformin-

treated hyperglycaemic groups also showed higher CREB levels compared to the untreated control 

(10mM glucose + metformin p= 0.0012 and 30mM glucose + metformin p= 0.0035 respectively).   

 

Following NAM treatment, CREB mRNA expressions were significantly decreased in the 

hyperglycaemic groups treated with metformin (10mM glucose + metformin p= 0.0003 and 30mM 

glucose + metformin p= 0.0052) Fig 3.3B.   
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Figure 3.3: The effect of hyperglycaemia on p-CREB expression in untreated, metformin -treated and 

NAM-treated HepG2 cells.  (A) p-CREB protein expression was determined by western blot.  A 

representative immunoblot is shown, along with summarised data of p-CREB band intensity 

normalised to β-actin.  Data expressed as mean SEM.  (B) Gene expression for CREB was assessed.  

Values are expressed as fold changes relative to the control. Each bar represents the mean ± SEM of 3 

replicates. *p<0.05 vs. untreated control, #p<0.05 vs. metformin -treated control, ¶ p<0.05 vs. 

metformin -treated 10mM glucose, ¥ p<0.05 vs. metformin -treated 30mM glucose. 
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PGC-1α expression increases under normo and hyperglycaemic conditions following metformin 

treatment 
 

To investigate the effect of hyperglycaemia and metformin on PGC-1α mRNA levels, qPCR was used 

to determine gene expression.   

 

Higher PGC-1α levels were observed in the metformin-treated control relative to the untreated control 

but this did not reach statistical significance.  The hyperglycaemic groups treated with metformin also 

showed higher PGC-1α  levels when compared to the untreated control (10mM glucose + metformin 

p= 0.0161; 4.5-fold and 30mM glucose + metformin p= 0.0439; 1.9-fold Fig 3.4), however only the 

10mM glucose + metformin group showed higher levels relative to the treated control (p= 0.0343; 

2.1-fold).   

 

PGC-1α gene expressions were significantly decreased in hyperglycaemic groups treated with 

metformin following NAM treatment (10mM glucose + metformin p= 0.0025 and 30mM glucose + 

metformin p= 0.0263 respectively Fig 3.4).   

 

 
Figure 3.4: The effect of hyperglycaemia on PGC-1α expression in untreated, metformin -treated and 

NAM-treated HepG2 cells.  Gene expression for PGC-1α was assessed.  Values are expressed as fold 

changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

untreated control, #p<0.05 vs. metformin -treated control, ¶ p<0.05 vs. metformin -treated 10mM 

glucose, ¥ p<0.05 vs. metformin -treated 30mM glucose. 
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Antioxidant defence increases under normo- and hyperglycaemic conditions following 
metformin treatment 
 

In order to investigate the effect of hyperglycaemia and metformin on antioxidant activity in HepG2 

cells, gene expressions for GPx1, SOD2 and UCP2 were determined by qPCR.   

 

Increased expressions of GPx1, SOD2 and UCP2 were observed in hyperglycaemic groups treated 

with metformin relative to the untreated and metformin-treated controls.   

 

Transcript levels of GPx1 was significantly higher in the metformin-treated control compared to the 

untreated control (p= 0.0002; 2-fold).  The hyperglycaemic groups treated with metformin also 

showed significantly higher levels of GPx1 relative to the untreated control (10mM glucose + 

metformin p= 0.0053; 4.4-fold and 30mM glucose + metformin p= 0.0069; 1.9-fold respectively).  

The 10mM glucose+ metformin group showed higher levels when compared to the treated control (p= 

0.0096; 4.3-fold).   

 

NAM treatment significantly reduced gene expression in both hyperglycaemic groups treated with 

metformin (10mM glucose + metformin p= 0.0043 and 30mM glucose + metformin p= 0.0039 Fig 
3.5A).   
 

The treated control showed a 1.2-fold increase in SOD2 transcript levels relative to the untreated 

control but no statistical difference was reached. The hyperglycaemic groups treated with metformin, 

however, were significantly higher than both the untreated control (10mM glucose + metformin p= 

0.0456; 2.8-fold and 30mM glucose + metformin p= 0.0107; 4.3-fold Fig 3.5B) and the metformin-

treated control (10mM glucose + metformin p= 0.0468 and 30mM glucose + metformin p= 0.0170 

Fig 3.5B).   

 

SOD2 expression was significantly decreased following NAM treatment in both treated 

hyperglycaemic groups (10mM glucose + metformin p= 0.0352 and 30mM glucose + metformin p= 

0.0105 Fig 3.5B).   

 

The UCP2 expression in the untreated control was significantly higher than the metformin-treated 

control (p= 0.0062) however, the metformin-treated hyperglycaemic groups showed significantly 

higher transcript levels relative to both the untreated control (10mM glucose + metformin p= 0.0050; 

3.2-fold and 30mM glucose + metformin p= 0.0318; 1.5-fold Fig 3.5C) and the metformin -treated 

control (10mM glucose + metformin p= 0.0015; 9-fold and 30mM glucose + metformin p= 0.0029; 4-

fold Fig 3.5C).  



84 
 

Gene expressions in the metformin-treated hyperglycaemic groups were significantly reduced 

following NAM treatment (10mM glucose + metformin p= 0.0079 and 30mM glucose + metformin 

p= 0.0220).   
 

As a marker of mtDNA repair following oxidative damage, OGGI expression was determined by 

qPCR.    

 

Significantly higher OGGI expressions were observed in the metformin-treated control and 

metformin-treated hyperglycaemic groups relative to the untreated control (control+ metformin p= 

0.0007; 3.1-fold, 10mM glucose + metformin p= 0.0046; 4.1-fold and 30mM glucose + metformin p= 

0.0020; 1.5-fold respectively Fig 3.5D).  The treated hyperglycaemic groups showed significantly 

higher mRNA levels than the treated control (10mM glucose + metformin p= 0.0101; 2-fold and 

30mM glucose + metformin p= 0.0136; 1.3-fold respectively Fig 3.5D) but were also significantly 

decreased following NAM treatment (10mM glucose + metformin p= 0.0019 and 30mM glucose + 

metformin p= 0.0092 respectively).   
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Figure 3.5: The effect of hyperglycaemia on antioxidant mRNA expression in untreated, metformin -

treated and NAM-treated HepG2 cells.  Gene expressions for (A) GPx1, (B) SOD2, (C) UCP2 and 

(D) OGG1 were assessed with quantitative PCR using specific primers.  Values are expressed as fold 

changes relative to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. 

untreated control, #p<0.05 vs. metformin -treated control, ¶ p<0.05 vs. metformin -treated 10mM 

glucose, ¥ p<0.05 vs. metformin -treated 30mM glucose. 
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3.5 Discussion 
 

Type 2 diabetes (DMII) is characterised by hyperglycaemia and OS, which is a result of increased 

production/ decreased scavenging of ROS (1-4).  The mechanisms that protect cells against OS under 

hyperglycaemic conditions in the liver are limited.  This is important as the liver is the primary organ 

involved in glucose homeostasis.   

 

The ETC in mitochondria is the primary source of ROS generation.  Exposure to excess ROS, leads to 

oxidative damage of macromolecules which play a role in metabolic disorders such as DMII.  Under 

hyperglycaemic conditions, more electron transfer donors are produced by the tricarboxylic acid 

(TCA) cycle and enter the ETC, leading to electron leakage and increased production of superoxide 

radicals.(5)   

 

Mitochondrial DNA is vulnerable to ROS-induced damage as it is located closely to the ETC (6).  

Excessive ROS production alters OXPHOS resulting in decreased mitochondrial function, decreased 

ATP levels (21) and reduced AO activity.(22) These factors need to be improved in order to 

ameliorate DMII. 

 

Metformin is an oral anti-diabetic agent that is used for DMII treatment. It inhibits mitochondrial 

ROS production by blocking the reverse electron flow through complex I of the ETC (10).   A study 

showed that metformin treatment restored the AO status, enzymatic activity and inflammatory 

parameters that were altered in DMII (23).  To study the effect of metformin in HepG2 cell culture, 

we chose 3mM which is more related to the range of intrahepatic metformin concentrations than those 

observed in plasma.  The liver receives the majority of its blood through the portal vein, which may 

contain concentrations of metformin substantially higher than those present in the general circulation.  

In vitro studies have used metformin concentrations between 2mM and 10mM.   

 
SIRT3 is part of a network of regulated stress-response mechanisms.  It is located in mitochondria and 

deacetylates enzymes that regulate mitochondrial function.  Studies have shown that SIRT3 regulates 

cell defence and survival in response to stress (18, 24-26).   

 

We had previously observed increased expressions of SIRT3 and AO defence under long and short 

term hyperglycaemic stimulation.  Further, we had established that SIRT3 is the central component 

that modulates AO defence and confers resistance to OS-induced damage under hyperglycaemic 

conditions in the HepG2 cell line (27). 

 

Since SIRT3 has been shown to directly regulate mitochondrial function and enhance AO defence, 
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metformin could regulate AO activity through SIRT3 mechanisms. 

 

 

We observed increased cell viability following metformin treatment under normo- and 

hyperglycaemic conditions.  This observation was interpreted as a marker of increased mitochondrial 

output.   This is interesting as metformin has been shown to directly inhibit complex I (NADH 

dehydrogenase).  This inhibition of complex 1, however, does not affect any other steps of OXPHOS 

(9).  Inhibition of complex1 is also mild (about 10%) and studies have favoured AMP deaminase 

inhibition as an alternative mechanism of metformin action (28, 29).    

 

Inhibition of SIRT3 by NAM resulted in decreased cell viability in the metformin-treated groups 

which suggests, in our model, that SIRT3 may be integral in improving mitochondrial output 

following metformin treatment.   

 

We showed increased SIRT3 expression in the metformin-treated groups.  Interestingly, the levels of 

expression were much higher in the metformin-treated hyperglycaemic groups.   

 

SIRT3 induces AO defence through PGC-1α (30).  PGC-1α is a transcriptional co-activator that is 

activated under oxidative conditions and regulates mitochondrial function and AO defence such as 

SOD2 (detoxifies superoxide radicals that are formed as a by-product of OXPHOS), GPx1 (enzyme 

that detoxifies H2O2 to H2O) and UCP2, a proton carrier in the inner mitochondrial membrane that 

attenuates ROS-mediated damage (5, 31, 32).  

 

Following OS, PGC-1α induces SIRT3 expression through activation of estrogen-related receptor 

alpha (ERR- α) and in turn, SIRT3 stimulates PGC-1α expression through p-CREB thereby forming a 

positive feedback cycle and increasing AO defence (33, 34).   

 

We observed increased protein and gene expressions of PGC-1α, p-CREB and mitochondrial AO 

enzymes SOD2, GPx1, and UCP2 following metformin treatment.  Higher expressions were observed 

in the metformin-treated hyperglycaemic groups.  Interestingly, inhibition of SIRT3 resulted in 

reduced protein and gene expressions of PGC-1α, p-CREB and mitochondrial AO enzymes in the 

metformin-treated groups.  This suggests that SIRT3 may be involved in modulating AO response 

under oxidative conditions following metformin treatment.   

 

A study showed that metformin reduced hepatic expression of SIRT3 in order to regulate energy 

metabolism (35).  A more recent study, however, evaluated the effects of SIRT3 on the regulation of 

OS in skeletal muscle in vitro (19).  They found that metformin increased the expression of SIRT3 
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and SOD2. Knockdown of SIRT3 significantly reversed the metformin-induced increase in SOD2. 

SIRT3 may, therefore, be differentially regulated by metformin. 

 

Oxidative stress induces DNA base damage such as 8-oxoG which  results in increased frequency of 

spontaneous G.C- -T.A transversion mutations leading to mitochondrial diseases (36).  The DNA 

glycosylase OGG1 removes 8-oxoG that is base-paired with cytosine.  SIRT3 has been shown to 

activate OGG1 thereby maintaining genomic stability under oxidative conditions (18).    

 

As a marker of mtDNA repair under oxidative conditions, we have shown increased OGG1 

expression following metformin treatment with levels being much higher in the metformin-treated 

hyperglycaemic groups.  Inhibition of SIRT3, however, resulted in a decrease in OGG1 expression in 

the metformin-treated hyperglycaemic groups.   This suggests that SIRT3 may be involved in 

genomic stability under oxidative conditions following metformin treatment.  Metformin has been 

shown to significantly decrease serum levels of 8-oxoG in women with polycystic ovary syndrome 

(15).   

 

Our data has shown increased expressions of SIRT3, PGC-1α, mitochondrial AO and repair enzymes 

in metformin-treated groups.  We found a further increase in these expressions in the metformin-

treated hyperglycaemic groups, where hyperglycaemia represents oxidative conditions. Interestingly, 

we also found reduced protein and gene expressions following SIRT3 inhibition in the metformin-

treated groups.   

 

This suggests that metformin may work synergistically with SIRT3, or through SIRT3-mediated 

mechanisms, to increase AO defence.   

 

This study could be improved by using primary hepatocytes or an in vivo hyperglycaemic mouse 

model to establish a holistic response.  Longer hyperglycaemic stimulations may provide greater 

insight to SIRT3/metformin modulation of AO defence under oxidative conditions.  A range of 

metformin concentrations over a longer time period may also provide an optimal response in an in 

vivo model.  

 

Future work may include combination treatments with metformin and polyphenols known to up-

regulate SIRT3, such as resveratrol.  We could also interrogate the role of metformin in genomic 

stability (DNA methylation and regulation of histone deacetylases) under oxidative conditions.   
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3.6 Conclusion 
 

Oxidative stress-induced damage has been implicated in several metabolic disorders and diseases.  

Metformin increases AO defence under oxidative conditions and this may be through SIRT3-

mediated mechanisms.  
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4.1 Abstract 
 
Objective: Reactive oxygen species, produced by mitochondria, are involved in metabolic disorders.  

Sirtuin 3 (SIRT3) decreases oxidative stress by regulating mitochondrial antioxidant (AO) defence.  

Curcumin is a polyphenol known for its protective functions; however the mechanisms underlying its 

effects on ROS- associated diseases have yet to be fully elucidated. We postulated that curcumin 

increases AO defence, repair and protein quality control under hyperglycaemic conditions in HepG2 

cells through SIRT3-mediated mechanisms. 

 
Methods: Cell viability (MTT assay) was determined in HepG2 cells cultured with 5mM glucose 

(control), 19.9mM mannitol (OC), vehicle control (0.1% DMSO), 10mM glucose and 30mM glucose 

in the absence or presence of curcumin (5μM and 10μM) for 24hr.  SIRT3, nuclear factor-kappa B 

(NF-κB), heat shock protein 70 (Hsp70) and Lon protein expressions were determined using western 

blot analysis.  The gene expression of SIRT3, peroxisome proliferator-activated receptor gamma co-

activator 1 alpha (PGC-1α), cAMP response element-binding protein (CREB), mitochondrial 

antioxidant enzymes glutathione peroxidase 1 (GPx1), superoxide dismutase 2 (SOD2), uncoupling 

protein 2 (UCP2) and mtDNA repair enzyme OGG1 were measured by qPCR.  

 
Results: Significantly higher cell viability and SIRT3 protein expression were observed in the 

curcumin-treated groups.  Transcript levels of SIRT3, PGC-1α, CREB, GPx1, SOD2, UCP2 and 

OGG1 were also significantly increased in the curcumin-treated hyperglycaemic groups relative to the 

untreated control.  Protein expressions of NF-κB, Lon and Hsp70 were significantly elevated in the 10 

μM curcumin-treated hyperglycaemic groups.   

 
Conclusions: Since curcumin and SIRT3 both improve mitochondrial function and AO defence, 

SIRT3 may be involved in the protective effects of curcumin 

 
 
 
 
 
 
 
 
 
 
 



95 
 

4.2 Introduction 

 

Type 2 diabetes mellitus (DMII) and associated complications are linked to oxidative stress (OS) and 

mitochondrial dysfunction.  Oxidative stress impairs mitochondrial function leading to reduced 

cellular energetic efficiency and apoptosis.  

 

Mitochondrial proteins are vulnerable to oxidative damage as they are closely situated to the electron 

transport chain (ETC).  Oxidative damage can form adducts of proteins with carbohydrates and lipids 

and may create carbonyl groups and intra-molecular cross-links.  These may impair or inactivate 

enzymes and structural proteins which, if not removed, can aggregate and cause significant cellular 

toxicity.  Protein misfolding and aggregation are associated with diseases (1, 2). 

 

Research has placed more focus on evaluating dietary antioxidant (AO) supplementation that may 

improve DMII conditions.  For example, purified anthocyanin supplementation was shown to reduce 

OS and attenuate insulin resistance and DMII in animal models (3).     

 

Curcumin is a phytochemical compound extracted from the rhizome of Curcuma longa and has been 

shown to possess multiple biological properties including AO (4), antibacterial (5) and anti-

inflammatory properties (6).  It is a bi-functional AO that (a) reacts directly with ROS and (b) 

indirectly induces up-regulation of cyto-protective and AO proteins through nuclear translocation of 

nuclear factor erythroid 2-related factor (Nrf2) (7).   

 

Mitochondria are targeted for protection by curcumin under oxidative conditions (8).  Curcumin 

treatment prevented OS and mitochondrial dysfunction in potassium dichromate- induced 

nephrotoxicity (9).  It also decreased malondialehyde and protein carbonyl levels and prevented the 

decrease in the activity of hepatic AO enzymes viz. superoxide dismutase 2 (SOD2) and glutathione 

peroxidase 1 (GPx1)(10).   

 

Curcumin preserves mitochondrial parameters such as mitochondrial membrane potential, activity of 

complexes I–IV of the ETC, and ATP production following toxicity (8).  It also indirectly increases 

the expression of mitochondrial biogenesis genes and attenuates OS by Nrf2.  

 

Sirtuin 3 (SIRT3) is a mitochondrial stress-responsive protein deacetylase.  It regulates mitochondrial 

processes such as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) (11).  

It reduces ROS levels by modulating AO enzymes, such as SOD2, thereby protecting against 

oxidative damage (12).   
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SIRT3 also regulates AO enzymes through transcriptional co-activator peroxisome proliferator-

activated receptor gamma co-activator 1 alpha (PGC-1α).  SIRT3 activates the mammalian DNA 

glycosylase OGG1 enabling mtDNA repair and genomic stability under oxidative conditions (13).    

 

The transcription factor nuclear factor-kappa B (NF-κB) is also deacetylated and activated by SIRT3.  

Activation of NF- κB increases the expression of SOD2 thus making cells resistant to OS-mediated 

cell damage (14).   

 

SIRT3 deacetylates and activates Lon, a major mitochondrial protease, which degrades oxidized and 

damaged proteins and is involved in mtDNA maintenance and replication (15).  Heat shock protein 70 

(Hsp70) forms part of this protein quality control network as it has the ability to prevent protein 

aggregation and other protein modifications (16).     

 

Since curcumin and SIRT3 both improve mitochondrial function and AO defence, SIRT3 may be 

involved in the protective effects of curcumin, although this has yet to be fully elucidated.  

 

Molecular events that occur under hyperglycaemic conditions in the liver are not fully known.  This is 

important to interrogate as the liver is the primary organ involved in glucose homeostasis. This is the 

first study to investigate the effect of curcumin on SIRT3 expression, downstream AO defence and 

protein quality control under hyperglycaemic conditions in a human hepatoma cell line (HepG2).   
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4.3 Materials and Methods  

 
Cell Culture and Treatments 
 

HepG2 cells were cultured to confluency in 25cm3 flasks (5% CO2, 37°C) in complete culture media 

(CCM, Eagles minimum essential medium, supplemented with 10% foetal calf serum, 1% L-

Glutamine and 1% penstrepfungizone).   

 

The HepG2 cells (2.5 x 10 4 cells/ well) were cultured in the presence of control (5.5mM glucose), 

osmotic control (19.9mM mannitol), vehicle control (0.1% DMSO) and hyperglycaemic (10mM 

(intermediate), 30mM glucose) conditions in the absence or presence of curcumin (5 μM and 10 μM) 

for 24hr in 30mm3 cell culture plates.  

 
Cell Viability Assay  
 

Following treatment, 3 replicates were incubated with methyl thiazol tetrazolium (MTT) salt solution 

(5mg/mL in 0.1M phosphate buffered saline (PBS)) and complete culture media (4h, 37ºC).  

Following incubation, the supernatants were aspirated and dimethyl sulphoxide was added (100 

µL/well) and incubated at 37ºC for a further 1h.  Optical density of the formazan product was 

measured by a microplate reader (Bio-tek μQuant) at 570 nm with a reference wavelength of 690nm. 

 
Quantitative Polymerase Chain Reaction (q-PCR) 
 

Total RNA was extracted from cultured cells using the Triazol reagent (Ambion).  cDNA was 

synthesised by reverse transcription using the iScript cDNA Synthesis Kit (Bio-Rad).  

 

Quantitative PCR was performed on the CFX96 Real-Time System (Bio-Rad) by using iQ SYBR 

Green supermix (BioRad) with primer sequences as listed in Table 4.1. The PCR was initiated with 

the following thermocycler profile: an initial denaturation for 8min at 95°C followed by 39 cycles of 

95°C denaturation for 15s, annealing for 1min and extension of 72°C for 30s.  A final extension at 

60°C was performed for 31s.  Each measurement was done in triplicate and normalized against 18S 

rRNA Ct values.  The qPCR data is represented as a relative fold change, calculated using the method 

described by Livak and Schmittgen.(17) 
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Table 4.1: Primer sequences and optimised annealing temperature 

 

Western blot analysis  
 

Sample proteins were isolated using a CytobusterTM (Novagen) supplemented with protease and 

phosphatase inhibitors (Roche).  Proteins were quantified using the bicinchoninic acid (BCA) assay 

(Sigma) and standardised to 1mg/ml.  Protein extracts were prepared in Laemlii buffer (dH2O, 0.5M 

Tris-Cl (pH 6.8), glycerol, 10% SDS, β-mercaptoethanol, 1% bromophenol blue) and separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% resolving gel) and electrotransferred to 

nitrocellulose membrane.  Membranes were blocked with 5% BSA in Tris-Buffered Saline and Tween 

20 (TTBS) [137mM NaCl, 2.7mM KCl, 24mM Tris, 0.5% Tween 20].  Membranes were probed 

using the following antibodies in 5% bovine serum albumin (BSA in TTBS): rabbit anti- SIRT3 

(Abcam, ab86671, 1:1000), rabbit anti-LONP1 (Sigma- HPA002192, 1:1000), rabbit anti-NF-kB p65 

(CST- #3033, 1:1000) and mouse anti-HSP70 (CST- #4872, 1:1000).  All membranes were incubated 

in primary antibodies overnight at 4°C.  A horseradish peroxidase (HRP)-conjugated goat polyclonal 

antibody specific for β-actin was used for the loading control and the normalisation process (1:5000 in 

5% BSA in TTBS).  Membranes were developed using LumiGlo® Chemiluminescent Substrate 

System (KPL) and images were captured on the Alliance 2.7 documentation system (UViTech).   The 

density of the bands was quantified using UViBand Advanced Image Analysis Software (UViTech). 

The experiment was performed in triplicate and repeated thrice.  Results are presented as relative band 

intensity (RBD) and normalised against β-actin. 

 
 

Gene Sense (5’-3’) Antisense (5’-3’) Annealing 
temp (°C) 

18S 

rRNA 

ACACGGACAGGATTGACAGA CAAATCGCTCCACCAACTAA 58°C 

SIRT3 GCATTCCAGACTTCAGATCGC GTGGCAGAGGCAAAGGTTCC 50°C 

CREB GATGGACAGCAGATCTTAGTGCC TGCTGTGCAAATCTGGTATGTT 65°C 

PGC-1α CCAAACCAACAACTTTATCTCTTCC CACACTTAAGGTGCGTTCAATAGTC 65°C 

GPx1 GACTACACCCAGATGAACGAGC CCCACCAGGAACTTCTCAAAG 60°C 

SOD2 GAGATGTTACAGCCCAGATAGC AATCCCCAGCAGTGGAATAAGG 58°C 

UCP2 GACCTATGACCTCATCAAG ATAGGTGACGAACATCACCACG 50°C 

OGG1 GCATCGTACTCTAGCCTCCAC AGGACTTTGCTCCCTCCAC 60°C 
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Statistical analysis 
 

Each experiment was performed in triplicate and repeated thrice.  Results are expressed as mean ± 

standard error of the mean (SEM).  Statistical analysis was performed using one way ANOVA 

followed by Bonferroni test for multiple group comparison.  Differences with p<0.05 were considered 

statistically significant.  
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4.4 Results 
 
Curcumin treatment increases mitochondrial output under normo- and hyperglycaemic 
conditions  
 

In order to determine the effect of curcumin on mitochondrial output, cell viability was measured in 

HepG2 cells.   

 

Significantly higher cell viability was observed in the 10μM curcumin-treated hyperglycaemic groups 

relative to the untreated control (10mM: 0.7703±0.0095 O.D, p-value=0.0107 and 30mM 0.7207± 

0.0006 O.D, p-value=0.0069. Table 4.2, Fig. 4.1A).   

 
Table 4.2: Cell viability, protein and gene expression results in HepG2 cells following 10μM 

curcumin treatment in the hyperglycaemic groups.  * p<0.05 vs. untreated control, #p<0.05 vs. 

curcumin-treated control,  N.S (not significant) 

 
Average ± SEM * p-value # p-value 

 Untreated 

control 

Treated 

control 

10mM  + 

10μM 

curcumin       

30mM + 

10μM 

curcumin 

10mM + 

10μM 

curcumin           

30mM + 

10μM 

curcumin 

10mM + 

10μM 

curcumin     

30mM + 

10μM 

curcumin 

Cell 
Viability                
(O.D) 

0.5177 

±0.01767 

0.8223 

±0.01198 

0.7703 

±0.0095 

0.7207± 

0.0006 

0.0107 0.0069 

 

0.0989  

N.S 

0.0125 

SIRT3 
Protein               

(RBD) 

2.581 

±0.1805 

4.555 

±0.3311 

6.771 

±0.5016 

5.991 

±0.4698 

0.0218 0.0293 0.0125 0.0229 

NF-κB 

Protein              
(RBD) 

0.7184 

±0.06260 

1.565 

±0.1158 

2.002 

±0.1556 

1.700 

±0.0698 

0.0052 0.0002 0.0468 0.2509 

LonP 

Protein    
(RBD) 

2.124 

±0.08364 

5.051 

±0.1750 

7.462 

±0.2422 

6.231 

±0.09705 

0.0021 P<0.0001 0.0199 0.0053 

Hsp70 
Protein              
(RBD) 

1.521 

±0.3309 

2.098 

±0.3841 

2.987 

±0.2805 

3.589 

±0.6159 

0.0581 N.S 0.0220 0.1156 

N.S 

0.0233 

SIRT3 
mRNA        

(Fold 
Change) 

1.000 

±0.0000 

2.339 

±0.4480 

3.174 

±0.2435 

0.7374 

±0.0686 

0.0123 0.0621 N.S 0.0551 

N.S 

0.0519 

N.S 
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CREB 

mRNA         
(Fold 
Change) 

1.000 

±0.0000 

4.772 

±0.5102 

5.890 

±0.4388 

3.920 

±0.2053 

0.0080 0.0049 0.3345 

N.S 

0.1963 N.S 

PGC-1α 

mRNA      

(Fold 
Change) 

1.000 

±0.0000 

4.200 

±0.2999 

5.114 

±0.3553 

1.953 

±0.3994 

0.0074 0.1396 N.S 0.0077 0.0056 

GPx1 

mRNA          
(Fold 

Change) 

1.000 

±0.0000 

4.472 

±0.08289 

3.120 

±0.2114 

3.204 

±0.1073 

0.0098 0.0024 0.0441 0.0162 

SOD2 
mRNA         

(Fold 
Change) 

1.000 

±0.0000 

4.580 

±0.2072 

6.114 

±0.2227 

10.04 

±0.0827 

0.0019 P<0.0001 0.0008 0.0026 

UCP2 
mRNA         
(Fold 

Change) 

1.000 

±0.0000 

3.904 

±0.4294 

8.141 

±0.6427 

3.174 

±0.1787 

0.0080 0.0067 0.0033 0.3466 

N.S 

OGG1 

mRNA       
(Fold 
Change) 

1.000 

±0.0000 

6.130 

±0.4487 

1.115 

±0.1722 

11.02 

±0.4409 

0.5721 N.S 0.0019 0.0031 0.0001 
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Figure 4.1: The effect of curcumin on cell viability was determined in HepG2 cells (untreated and 

curcumin-treated). Values are expressed as mean ± SEM. *p<0.05 vs. untreated control, #p<0.05 vs. 

curcumin-treated control. 

 

Curcumin increases SIRT3 expression under normo- and hyperglycaemic conditions 
 

To determine whether 10μM curcumin treatment had an effect on SIRT3 expression, western blot and 

qPCR were used to measure protein expression and mRNA levels of SIRT3 respectively in HepG2 

cells.   

 

In the curcumin treated hyperglycaemic groups, significantly higher SIRT3 protein expression was 

observed (10mM: 6.771±0.5016 RBD, p= 0.0218; 30mM: 5.991±0.4698 RBD, p= 0.0293, Table 4.2, 
Fig. 4.2A) as well as increased SIRT3 levels (10mM: 3.1-fold, p= 0.0123, Table 4.2, Fig. 4.2B) 

relative to the untreated control. The treated hyperglycaemic groups also showed statistically higher 

SIRT3 protein expression when compared to the treated control (10mM: p=0.0125; 30mM: p=0.0229, 

Table 4.2, Fig. 4.2A).    
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Figure 4.2: The effect of curcumin on SIRT3 expression in untreated and curcumin-treated HepG2 

cells.  (A) SIRT3 protein expression was determined by western blot.  A representative immunoblot is 

shown, along with summarised data of SIRT3 band intensity normalised to β-actin.  (B) Gene 

expression for SIRT3 was assessed.  Values are expressed as fold changes relative to the control. Each 

bar represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. 

untreated control, #p<0.05 vs. curcumin-treated control.  
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Curcumin increases CREB expression under normo- and hyperglycaemic conditions 
 

To investigate the effect of hyperglycaemia and 10μM curcumin treatment on CREB expression, 

qPCR was used to measure transcript levels of CREB in HepG2 cells.   

 

Significantly higher CREB levels were observed in the curcumin treated hyperglycaemic groups, 

relative to the untreated control (10mM: 5.9-fold, p= 0.0080; 30mM: 3.9-fold, p= 0.0049 Table 4.2, 

Fig. 4.3A).  The intermediate hyperglycaemic group showed relatively higher CREB expression when 

compared to the treated control but this did not reach statistical significance.   

 

 \  
Figure 4.3: The effect of curcumin on CREB expression in untreated and curcumin-treated HepG2 

cells.  (a) Gene expression for CREB was assessed.  Values are expressed as fold changes relative to 

the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. untreated control.   

 
Curcumin increases PGC-1α expression under normo- and hyperglycaemic conditions 

 

The effect of 10μM curcumin treatment on PGC-1α gene expression was investigated in HepG2 cells 

using qPCR.   

 

Higher PGC-1α levels were observed in both curcumin treated hyperglycaemic groups relative to the 

untreated control with only the intermediate hyperglycaemic group reaching statistical significance 

(5.1-fold, p= 0.0074 Table 4.2, Fig. 4.4A).  When compared to the treated control, the intermediate 

hyperglycaemic group also showed significantly higher PGC-1α expression (1.2-fold, p=0.0077 

Table 4.2, Fig. 4.4A). 
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Figure 4.4: The effect of curcumin on PGC-1α expression in untreated and curcumin-treated HepG2 

cells.  Gene expression for PGC-1α was assessed.  Values are expressed as fold changes relative to the 

control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. untreated control. 

 
Curcumin increases antioxidant defence under normo- and hyperglycaemic conditions  
 

In order to determine the effect of 10μM curcumin treatment on antioxidant activity in HepG2 cells, 

gene expressions for GPx1, SOD2 and UCP2 were determined by qPCR.   

 

Increased expressions of GPx1, SOD2 and UCP2 were observed in the curcumin treated 

hyperglycaemic groups. 

 

GPx1 levels were higher in the treated hyperglycaemic groups relative to the untreated control 

(10mM: 3.1-fold, p=0.0098; 30mM: 3.2-fold, p=0.0024 Table 4.2, Fig. 4.5A).  A similar pattern was 

observed with SOD2 and UCP2 mRNA expression.   

 

SOD2 levels were significantly higher in the treated hyperglycaemic groups relative to both the 

untreated and treated controls (Untreated 10mM: 6.1-fold, p=0.0019; 30mM: 10-fold, p<0.0001; 

Treated 10mM: 1.4-fold, p=0.0008; 30mM: 2.2-fold, p=0.0026 respectively Table 4.2, Fig. 4.5B).   

There was also a significant 8.1-fold and 2-fold increase in UCP2 mRNA levels in the intermediate 

group relative to the untreated and treated controls respectively (p=0.0080 and p=0.0033 respectively 

Table 4.2, Fig. 4.5C).   
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As a marker of mtDNA repair following oxidative damage, OGGI expression was determined.  

 

Higher OGGI levels were observed in both treated hyperglycaemic groups when compared to the 

untreated control, however, only the curcumin-treated 30mM glucose group was statistically different 

(11-fold, p=0.0019 Table 4.2, Fig. 4.5D). The OGGI level in this group was also significantly higher 

than the treated control (p=0.0001, 1.8-fold).    
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Figure 4.5: The effect of curcumin on antioxidant mRNA expression in untreated and curcumin-

treated HepG2 cells.  Gene expressions for (A) GPx1, (B) SOD2, (C) UCP2 and (D) OGG1 were 

assessed with quantitative PCR using specific primers.  Values are expressed as fold changes relative 

to the control. Each bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. untreated control, 

#p<0.05 vs. curcumin-treated control. 

 
 
 
 
 



108 
 

Curcumin increases NF- κB expression under normo- and hyperglycaemic conditions 
 

We investigated the effect of 10μM curcumin on NF-ĸB protein expression in HepG2 cells by western 

blot.  

 

The NF-ĸB protein expressions in both treated hyperglycaemic groups were significantly increased 

relative to the untreated control (10mM: 2-fold, p=0.0052; 30mM: 1.7-fold, p=0.0002,) and treated 

control (10mM: 1.3-fold, p=0.0468; 30mM: 1.1-fold, p=0.2509) Table 4.2, Fig. 4.6A).  

 

 
 

Figure 4.6: The effect of curcumin on NF- κB expression in untreated and curcumin-treated HepG2 

cells.  NF- κB protein expression was determined by western blot.  A representative immunoblot is 

shown, along with summarised data of NF- κB band intensity normalised to β-actin.  Each bar 

represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. untreated 

control, #p<0.05 vs. curcumin-treated control.  
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Curcumin increases Lon protease and Hsp70 expression under normo- and hyperglycaemic 
conditions 
 

In order to determine the effect of 10μM curcumin on protein quality control, both Lon and Hsp70 

protein expressions were measured.   

 

Lon protein expression in the treated hyperglycaemic groups was relatively higher than the untreated 

control (10mM: 7.5-fold, p=0.0021; 30mM: 6.2-fold, p<0.0001) and treated control (10mM: 1.5-fold, 

p=0.0199; 30mM: 1.24-fold, p=0.0053 Table 4.2, Fig. 4.7A).  These differences were statistically 

significant 

 

The treated hyperglycaemic groups also showed higher protein expression of Hsp70 relative to the 

untreated and treated controls; but only the curcumin-treated 30mM glucose group reached 

significance in both untreated and treated controls (p=0.0220 and p=0.0233 respectively Table 4.2, 

Fig. 4.8A).   

 

 
 

Figure 4.7: The effect of curcumin on Lon protease expression in untreated and curcumin-treated 

HepG2 cells.  Lon protein expression was determined by western blot.  A representative immunoblot 

is shown, along with summarised data of Lon band intensity normalised to β-actin.  Each bar 

represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. untreated 

control, #p<0.05 vs. curcumin-treated control.  



110 
 

 
 

Figure 4.8: The effect of curcumin on Hsp70 expression in untreated and curcumin-treated HepG2 

cells.  Hsp70 protein expression was determined by western blot.  A representative immunoblot is 

shown, along with summarised data of Hsp70 band intensity normalised to β-actin.  Each bar 

represents the mean ± SEM of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. untreated 

control, #p<0.05 vs. curcumin-treated control.  
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4.5 Discussion 
 

Mitochondria are the primary source of ROS as superoxide radicals are formed from the ETC.  Basal 

levels of ROS are involved in signalling, whereas excessive ROS leads to oxidative damage of 

macromolecules, which play a role in metabolic disorders such as DMII.   

 

Mitochondrial DNA is vulnerable to ROS-induced damage as it is located closely to the ETC, lacks 

protective histones and has limited DNA repair activity (18).  Excessive ROS impairs OXPHOS 

leading to decreased mitochondrial function, decreased ATP levels (19) and a marked reduction in 

AO activity (20).  These factors need to be improved in order to ameliorate disease conditions.   

Oxidative stress may be reduced through the use of exogenous compounds with AO properties that 

may prevent mitochondrial dysfunction.   

 

Curcumin is a phytochemical compound extracted from the rhizome of Curcuma longa.  It is a bi-

functional AO as it reacts directly with ROS and RNS and also indirectly induces up-regulation of 

cyto-protective and AO proteins such as SOD2, GPx1 and GSH (7).  The presence of phenolic and β-

diketone functional groups in the structure of curcumin allows it to scavenge superoxide anions, 

hydrogen peroxide, hydroxyl radicals and nitric oxide (7, 21, 22).   

 

It has been shown that curcumin also induces endogenous AO defence by modulating Nrf2 (23).  

Curcumin modifies the inhibitor of Nrf2, allowing for the translocation of Nrf2 to the nucleus where it 

binds to the antioxidant response element in DNA to initiate transcription of AO genes.  It has been 

shown that curcumin significantly ameliorates experimental diabetes and restores pancreatic AO 

defence (24).  

 

Mitochondria are targets for protection by curcumin under oxidative conditions (8).  In a kidney 

model, curcumin maintained mitochondrial function by reducing ROS production and lipid 

peroxidation (10).  Curcumin also increased mitochondrial biogenesis in obese mice with liver 

steatosis (25) and reduced oxidative-induced mitochondrial damage in mice neuronal cells (26).   

Curcumin has been shown to increase the levels of SIRT3, which is part of an intrinsic network of 

stress-response mechanisms and regulates mitochondrial function (27).   

 

We previously showed increased expressions of SIRT3 and AO defence enzymes under long and 

short term hyperglycaemic stimulation.  We established that SIRT3 may be the central component that 

modulates AO defence and confers resistance to OS-induced damage under hyperglycaemic 

conditions in the HepG2 and HEK 293 cell lines (28). 
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Since both curcumin and SIRT3 target mitochondrial function, we postulated that SIRT3 may have an 

effect on the protective effects of curcumin under short term hyperglycaemic stimulation in HepG2 

cells.   

 

As a marker of increased mitochondrial output we investigated cell viability, following curcumin 

treatment, using the MTT assay which measures the reduction of the tetrazolium salt by succinate 

dehydrogenase.  Succinate dehydrogenase is bound to the inner mitochondrial membrane and is 

involved in the TCA cycle and the ETC.  The tetrazolium salt enters mitochondria and is reduced to 

an insoluble formazan product which is then solubilised by an organic solvent and measured 

spectrophotometrically.  Reduction of the tetrazolium salt only occurs in metabolically active cells 

and the level of activity is a measure of cell viability and mitochondrial function.  We observed 

increased cell viability in all curcumin-treated groups with higher levels seen in the curcumin-treated 

hyperglycaemic groups.  This suggests that curcumin may maintain mitochondrial function under 

oxidative conditions.   

 

SIRT3 induces AO genes by PGC-1α, a transcriptional co-activator that is activated in response to OS 

(29).  It regulates mitochondrial function and AO defence enzymes such as SOD2 (detoxifies 

superoxide radicals that are formed as a by-product of OXPHOS), GPx1 (enzyme that detoxifies H2O2 

to H2O) and UCP2, a proton carrier in the inner mitochondrial membrane that attenuates ROS-

mediated damage (30-32).  

 

In an oxidative environment, PGC-1α induces SIRT3 expression through activation of estrogen 

related receptor alpha (ERR- α) and in turn, SIRT3 stimulates PGC-1α expression via phosphorylated 

cAMP response element-binding protein (p-CREB), thereby forming a positive feedback cycle and 

increasing AO defence (33, 34).   

 

In this study, increased expressions of SIRT3, CREB, PGC-1α and AO enzymes were observed in the 

curcumin-treated hyperglycaemic groups following 5μM and 10μM curcumin administration.  

Although the expression levels were differentially regulated by both concentrations of curcumin under 

hyperglycaemic conditions, the more pronounced effect was observed in the 10μM curcumin group.   

 

Oxidative stress induces DNA base damage such as 7,8-dihydro-8-oxoguanine (8-oxoG) (35) 

increasing  the frequency of spontaneous G.C- -T.A transversion mutations which are involved in 

mitochondrial diseases (36).  The DNA glycosylase, OGG1, recognizes and removes 8-oxoG that is 

base-paired with cytosine (37).  SIRT3 directly deacetylates and activates OGG1 enabling DNA 

repair and genomic stability under oxidative conditions (13).      
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As a marker of mtDNA repair under oxidative conditions, we have shown increased OGG1 

expression following curcumin treatment in the hyperglycaemic groups with levels peaking in the 

10μM curcumin group.  

 

Interestingly, we found a distinct increase in NF- κB expression in the 10µM curcumin-treated 

hyperglycaemic groups.  Studies have shown that curcumin inhibits NF- κB activity as it is a key 

transcription factor involved in the inflammatory response (38, 39).  Curcumin, however, has also 

been shown to induce ROS generation in various cell lines (40, 41) and this may modulate the NF- κB 

response.  

 

The main role of NF- κB is considered to be protective and is involved in cell protective pathways 

that suppress OS (42).  A study showed that OS induced by reperfusion insult, in cultured neurons, 

was associated with NF- κB inducing a protective signal rather than death signals(43).  Other studies 

have also shown that activation of NF- κB led to neuro-protection, whereas NF- κB inhibition led to 

apoptosis (44, 45).   It has also been shown that NF- κB is deacetylated and activated by SIRT3.  

Activation of NF- κB by SIRT3 increased the expression of SOD2 thus making cells resistant to OS-

mediated cell damage (14).  The target genes of NF- κB may, therefore, vary depending on the 

cellular context. 

 

Oxidative damage can create carbonyl groups and intra-molecular cross-links.  These may impair 

enzymes and structural proteins which, if not removed, can aggregate and cause significant cellular 

toxicity.  Mitochondrial proteins are vulnerable to oxidative damage.   

 

Lon is the major mitochondrial protease that may be regulated by NF- κB and SIRT3 (46, 47).  Lon 

degrades oxidized and damaged proteins and assists in the assembly and folding of mitochondrial 

proteins (48). A study observed that Lon increased protection against accumulated carbonylated 

proteins and increased cell viability during OS (49).   

 

In this study, we found increased expressions of NF- κB and Lon in the 10µM curcumin-treated 

hyperglycaemic groups, similar to SIRT3 expression, which may suggest regulation of Lon by NF- 

κB and SIRT3.  No differences were observed in the groups treated with 5μM curcumin when 

compared to the untreated group.   

 

We also observed increased Hsp70 expression in the 10µM curcumin-treated hyperglycaemic groups. 

Hsp70 is closely linked to cyto-protection has the ability to prevent protein aggregation and protein 

modifications. It may also prevent oxidative injury by improving AO defence (50).  Hsp70 has been 

shown to be part of the protein quality control and cell protective network with Lon in the removal of 
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damaged proteins (16). 

 

Following curcumin administration, our study showed increased expressions of SIRT3, AO defence, 

the repair enzyme and protein quality control under hyperglycaemic conditions, which represent an 

oxidative environment.  These were optimally expressed in the 10μM curcumin-treated 

hyperglycaemic groups.  Further, the 10mM glucose treatment yielded higher SIRT3 and AO 

expressions than the 30mM glucose treatment following 10μM curcumin administration.  These 

results suggest that selective concentrations of curcumin may improve the AO response and cell 

survival under intermediate hyperglycaemic conditions.   

 

Since SIRT3 has already been shown to increase AO defence and cell survival, the protective effects 

of curcumin may occur through SIRT3-mediated mechanisms.   

 

This study may be improved by using a diabetic in vivo model which may help us establish a more 

holistic response.  A wider range of curcumin concentrations over a chronic time period may also help 

us better elucidate the effect of curcumin in a diabetic model.  Inhibition of SIRT3 is required in order 

to determine the exact role SIRT3 in the protective effects of curcumin. 

 

Future studies include interrogating a more defined cell survival pathway following curcumin 

administration.  Investigating the effect of curcumin on the epigenome may enable us to determine 

differential gene regulation during pre-diabetes and DMII.  It may also be useful to investigate the 

effect of chemical therapeutics co-administered with curcumin in a diabetic model.   

 
4. 6 Conclusion 
 

Mitochondrial dysfunction and OS play a key role in the pathogenesis of several metabolic disorders.   

Curcumin targets mitochondria and AO defence and, therefore, may improve disease conditions by 

conferring resistance to OS-induced damage through SIRT3 mediated mechanisms. 
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5.1 Abstract 
 
Objective: Hyperglycaemia increases mitochondrial production of oxidants which contributes to a 

variety of diseases.  Hyperglycaemia has been shown to induce cell death; however, the cell protective 

mechanisms that may counterbalance apoptotic stress have yet to be fully elucidated. 

 
Methods: Cell viability was determined in HepG2 cells cultured with 5mM glucose (control), 

19.9mM mannitol (OC) and 30mM glucose for 24hr.  Caspase activity (3/7, 8 and 9) was measured 

whilst early stage apoptosis was determined by the Annexin V assay.  Protein expressions for heat 

shock protein 27 (Hsp27) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) were determined 

using western blot analysis.  Gene expressions for superoxide dismutase 2 (SOD2), glutathione 

peroxidase 1 (GPx1), p300 and CREB binding protein (CBP) were evaluated by qPCR.  Reduced 

glutathione (GSH) concentrations were measured luminometrically.  

 
Results: Increased cell viability was observed in the hyperglycaemic group.  Hyperglycaemia induced 

significantly higher caspase-8 and caspase-9 activity; however caspase-3/7 activity was 35-fold lower 

than caspase-9.  The Annexin V assay also showed significantly lower percentage of apoptotic cells in 

this group. The protein expressions for Hsp27 and Nrf2 were both significantly elevated in the 

hyperglycaemic group whilst significantly higher transcript levels were observed for p300, CBP, 

SOD2 and GPx1.  The concentrations of reduced GSH were significantly increased in the 

hyperglycaemic group.   

 
Conclusions: Although hyperglycaemia induces apoptosis, the apoptotic stress may be 

counterbalanced by cell survival mechanisms regulated by stress response proteins and downstream 

activation of AO defence.   
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5.2 Introduction  

 

Hyperglycaemia activates several biochemical pathways that contribute to production of reactive 

oxygen species (ROS) which may be the causal link between type 2 diabetes mellitus (DMII) and 

associated complications (1).   

 

Oxidative stress (OS) occurs when ROS exceeds the antioxidant (AO) capacity.  Oxidative stress 

affects mitochondrial function resulting in reduced cellular energetic efficiency and apoptosis.  This 

may play a role in metabolic disorders such as DMII.  

 

Mitochondrial proteins are at risk of oxidative damage as they are situated near the electron transport 

chain (ETC).   

 

Hyperglycaemia-induced mitochondrial dysfunction has been shown to induce apoptosis.  Following 

OS, mitochondria become permeabilised and release cytochrome c which, together with pro-caspase-9 

and the apoptotic protease activating factor 1 (Apaf-1), form a complex known as the apoptosome, 

which recruits and activates  pro-caspase 9 (2).  Cytochrome c activates caspase-3, which is required 

to execute apoptosis (3).  Caspase-8, which initiates extrinsic apoptosis, also plays a role in the 

intrinsic (mitochondrial) pathway.  These all form part of apoptotic stress.  

 

Hyperglycaemic-induced cell death has been observed in multiple organs (4, 5).  Apoptosis was 

observed in the pancreatic beta cells of diabetic patients (6). Hyperglycaemia was shown to be the 

direct cause of apoptosis in diabetic myocardium and cultured cardiac myoblast cells (7).  

Hyperglycaemia was also shown to induce cell death in neurons by activating caspase-3 (8).   

 

Although it has been established that the hyperglycaemia may lead to cell death, there is still a 

network of cell protective mechanisms that may counteract apoptosis and ensure cell survival.   

 

Heat shock proteins (Hsps) are a highly conserved family of stress response proteins and their 

expressions are increased in response to OS.  Heat shock proteins can function as molecular 

chaperones and protect against apoptosis.  During OS, heat shock protein 27 (Hsp27) increases the 

levels of intracellular glutathione as it holds glutathione in its reduced form under oxidative 

conditions (9).  Heat shock protein 27 also interacts with cytochrome c thus preventing the formation 

of the apoptosome and activation of caspase-9 (10).   
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The p300 and CREB binding proteins (CBP) are transcriptional co-activators that also have histone 

acetyltransferase (HAT) activity which results in relaxed chromatin that is associated with increased 

gene transcription.  

 

In response to OS, transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is acetylated 

by p300 and CBP.  This enables Nrf2 to translocate to the nucleus and bind to the antioxidant 

response element which results in the transcription of AO genes such as superoxide dismutase 2 

(SOD2), glutathione peroxidase 1(GPx1) and reduced glutathione (GSH) (11).  It has been shown that 

high glucose levels activate p300 and CBP (12).    Over-expression of Nrf2 has been shown to prevent 

the onset of DMII and reduces OS (13).   

 

Hyperglycaemia has been shown to cause cell death, however the cell protective mechanisms that 

counteract this have yet to be fully elucidated in HepG2 cells.   

 

Molecular events that occur during hyperglycaemia in the liver, the primary organ involved in glucose 

regulation, have yet to be fully interrogated.  This study investigates the effect of short term 

hyperglycaemic stimulation on downstream cell protective mechanisms in HepG2 cells.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



124 
 

5.3 Materials and Methods  

 
Cell Culture and Treatments 
 

HepG2 cells were cultured to confluency in 25cm3 flasks (5% CO2, 37°C) in complete culture media 

(CCM, Eagles minimum essential medium, supplemented with 10% foetal calf serum, 1% L-

Glutamine and 1% penstrepfungizone).   

 

The HepG2 cells (2.5 x 10 4 cells/ well) were cultured in the presence of the hyperglycaemic control 

(5.5mM glucose), osmotic control (OC) (19.9mM mannitol), and 30mM glucose conditions for 24hr 

in 30mm3 cell culture plates.    

 
Cell Viability Assay  
 

Following treatment, 3 replicates were incubated with methyl thiazol tetrazolium (MTT) salt solution 

(5mg/mL in 0.1M phosphate buffered saline (PBS)) and complete culture media (4h, 37ºC).  

Following incubation, the supernatants were aspirated and dimethyl sulphoxide was added (100 

µL/well) and incubated at 37ºC for a further 1h.  Optical density of the formazan product was 

measured by a microplate reader (Bio-tek μQuant) at 570 nm with a reference wavelength of 690nm. 

 
Caspase-3/7, 8, 9 Assessments 
 

Caspase-3/-7, -8 and -9 activities were detected with Caspase-Glo® assays (Promega, Madison, 

USA). As per manufacturer’s protocol, Caspase-Glo®-3/-7, -8 and -9 reagents were reconstituted and 

added to wells (in six replicates) of an opaque 96-well microtitre plate (40 μl of reagent per 100 μl of 

10,000 cells/well). Samples were mixed and incubated in the dark (30 min, RT). The luminescent 

signal was measured on a Modulus™ microplate luminometer (Turner Biosystems, Sunnyvale, USA). 

Caspase-3/-7, -8 and -9 activities were expressed as relative light units (RLU). 

 
Annexin-V-Fluos assay 
 

The annexin-V-Fluos assay (Roche) was used to determine phosphatidylserine (PS) translocation. To 

each flow cytometry tube, 100 μl of staining buffer, 100 μl of annexin-V-Fluos labeling solution 

(annexin-V: propidium iodide (PI): staining buffer (1:1:50 vol/vol/vol)) and 100 μl of cell suspension 

was added, and incubated in the dark (15 min, RT). Samples were analyzed on a FACS Calibur (BD 

Biosciences) flow cytometer. Data were analyzed using CellQuest PRO v4.02 software (BD 

Biosciences). Cells were gated to exclude cellular debris using FlowJo v7.1 software (Tree Star, Inc). 
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Approximately 50,000 events were analyzed for apoptotic (annexin-V + ve, PI -ve), necrotic (annexin-

V + ve, PI + ve) and live cells (annexin-V -ve, PI -ve). The results were expressed as percentage of the 

total events. 

 
Quantitative Polymerase Chain Reaction (q-PCR) 
 

Total RNA was extracted from cultured cells using the Triazol reagent (Ambion).  cDNA was 

synthesised by reverse transcription using the iScript cDNA Synthesis Kit (Bio-Rad).  

Quantitative PCR was performed on the CFX96 Real-Time System (Bio-Rad) by using iQ SYBR 

Green supermix (BioRad) with primer sequences listed in Table 5.1. The PCR was initiated with the 

following thermocycler profile: an initial denaturation for 8min at 95°C followed by 39 cycles of 

95°C denaturation for 15s, annealing for 1min and extension of 72°C for 30s.  A final extension at 

60°C was performed for 31s.  Each measurement was done in triplicate and normalized against 18S 

rRNA Ct values.  The qPCR data is represented as a relative fold change, calculated using the method 

described by Livak and Schmittgen (14). 

 
Table 5.1 Primer sequences and optimised annealing temperature 

 
Western blot analysis  
 

Sample proteins were isolated using a CytobusterTM (Novagen) supplemented with protease and 

phosphatase inhibitors (Roche).  Proteins were quantified using the bicinchoninic acid (BCA) assay 

(Sigma) and standardised to 1mg/ml.  Protein extracts were prepared in Laemlii buffer (dH2O, 0.5M 

Tris-Cl (pH 6.8), glycerol, 10% SDS, β-mercaptoethanol, 1% bromophenol blue) and separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) (7.5% resolving gel) and electrotransferred to 

nitrocellulose membrane.  Membranes were blocked with 5% BSA in Tris-Buffered Saline and Tween 

Gene Sense (5’-3’) Antisense (5’-3’) Annealin
g temp 
(°C) 

18S 

rRNA 

ACACGGACAGGATTGACAGA CAAATCGCTCCACCAACTAA 58°C 

GPx1 GACTACACCCAGATGAACGAGC CCCACCAGGAACTTCTCAAAG 60°C 

SOD2 GAGATGTTACAGCCCAGATAGC AATCCCCAGCAGTGGAATAAGG 58°C 

p300 GCTTTGTCTACACCTGCAA TGCTGGTTGTTGCTCTCATC3 50°C 

CBP CACCAGCAGATGAGGACTCT TACACCGGTGCTAGGAGGAG 50°C 
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20 (TTBS) [137mM NaCl, 2.7mM KCl, 24mM Tris, 0.5% Tween 20].  Membranes were probed 

using the following antibodies in 5% bovine serum albumin (BSA in TTBS): rabbit anti- Nrf 2 

(Abcam, ab31163, 1:750) and mouse anti-Hsp27 (Santa Cruz, sc-51956, 1:1000).  All membranes 

were incubated in primary antibodies overnight at 4°C.  A horseradish peroxidase (HRP)-conjugated 

goat polyclonal antibody specific for β-actin was used for the loading control and the normalisation 

process (1:5000 in 5% BSA in TTBS).  Membranes were developed using LumiGlo® 

Chemiluminescent Substrate System (KPL) and images were captured on the Alliance 2.7 

documentation system (UViTech).   The density of the bands was quantified using UViBand 

Advanced Image Analysis Software (UViTech). The experiment was performed in triplicate and 

repeated thrice.  Results are presented as relative band intensity (RBD) and normalised against β-

actin. 

 
Glutathione Assay 
 

Intracellular concentrations of GSH were measured using the GSH-GloTM Glutathione Assay 

(Promega, Madison, USA). Briefly, cultured cells were transferred to an opaque microtitre plate (50 

μL of 1x10 4cells/well, 3 replicates). GSH standards (0 μM – 50 μM) were prepared from a 5 mM 

stock solution diluted in deionised water. The 2X GSH-GloTM Reagent was prepared according to the 

manufacturer’s instructions, added to the experimental wells (50 μL/well), and incubated at room 

temperature (RT), 30min. Reconstituted Luciferin Detection Reagent (50 μL) was added to each well 

and incubated at RT for 15 minutes. The luminescence was measured on a ModulusTM microplate 

luminometer (Turner Biosystems, Sunnyvale, USA). A standard curve was derived using the GSH 

standards (0 μM – 5 μM) and the GSH concentration in each treatment was extrapolated from the 

equation. 

 
Statistical analysis 
 

Each experiment was performed in triplicate and repeated thrice.  Results are expressed as mean ± 

standard error of the mean (SEM).  Statistical analysis was performed using one way ANOVA 

followed by Bonferroni test for multiple group comparison.  Differences with p<0.05 were considered 

statistically significant.  
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5.4 Results 
 
Mitochondrial output increases under hyperglycaemic conditions  
 

In order to determine the effect of hyperglycaemia on mitochondrial output, cell viability was 

measured in HepG2 cells.   

 

Significantly higher cell viability was observed in the hyperglycaemic groups relative to the control 

(p=0.0382, control: 0.7297±0.0614 O.D and 30mM: 1.056±0.0061 O.D, Fig. 5.1). 

 

 
Fig. 5.1 The effect of hyperglycaemia on cell viability was determined in HepG2 cells. Values are 

expressed as mean ± SEM. *p<0.05 vs. control 

 
Apoptotic markers under hyperglycaemic conditions 
 

In order to investigate the effect of hyperglycaemia on the apoptotic cascade, caspase-8, caspase-9 

and caspase 3/7 activities were measured.   

 

Significantly higher caspase-8 and caspase-9 activities were observed in the hyperglycaemic group 

relative to the control (caspase-8: p= 0.0019, control: 3500000± 213800 RLU and 30mM: 5754000± 

271800 RLU Fig. 5.2a; caspase-9: p= 0.0010, control: 7342000 ± 191700 RLU and 30mM: 9137000 

± 231700 RLU Fig 5.2b).  Caspase-9 activity was 1.6-fold higher than caspase-8 following 

hyperglycaemic treatment.  

 

Although significantly higher caspase-3/7 activity was observed in the hyperglycaemic group relative 
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to the control (p= 0.0030, control: 165800 ± 10510 RLU and 30mM: 257100 ± 10090 RLU Fig. 5.2c), 

the activity levels were 35-fold lower than caspase-9 activity.    
 

The Annexin V assay was used to measure early-stage apoptosis in HepG2 cells.  Interestingly, 

significantly lower percentage of apoptotic cells were observed in the hyperglycaemic group relative 

to the control (p= 0.0006, control: 9.543% and 30mM: 5.153% Fig. 5.2d).   

 

 

 
Fig. 5.2 The effect of hyperglycaemia on (a) caspase-8 activity, (b) caspase-9 activity, (c) caspase 3/7 

activity and (d) percentage of apoptotic in HepG2 cells.  Each bar represents the mean ± SEM of 3 

replicates.  Data expressed as mean SEM.  *p<0.05 vs. control  
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Increased Hsp27 expression following hyperglycaemic treatment 
 

Hsp27 protein expression was measured by western blot analysis.  The hyperglycaemic treatment 

yielded significantly higher protein expression upon comparison to the control (p=0.0153, control: 

0.3067±0.0039 RBD and 30mM: 0.3487±0.0092 RBD Fig. 5.3) 
 

 
 

Fig. 5.3 The effect of hyperglycaemia on Hsp27 protein expression in HepG2 cells.  (a) Hsp27 protein 

expression was determined by western blot.  A representative immunoblot is shown, along with 

summarised data of Hsp27 band intensity normalised to β-actin.  Each bar represents the mean ± SEM 

of 3 replicates.  Data expressed as mean SEM.  *p<0.05 vs. control  

 
 
Increased expression of histone acetyltransferases p300 and CBP under hyperglycaemic 
conditions 
 

In order to determine the effect of hyperglycaemia on histone acetyltransferase expression, gene 

expressions for p300 and CBP were determined by qPCR. 

 

The expressions of both p300 and CBP were higher in the hyperglycaemic group relative to the 

control but these did not reach statistical significance, Fig. 5.4a and Fig. 5.4b respectively. 
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Fig. 5.4 The effect of hyperglycaemia on mRNA expressions of (a) p300 and (b) CBP in HepG2 cells. 

Values are expressed as fold changes relative to the control. Each bar represents the mean ± SEM of 3 

replicates. *p<0.05 vs. control 

 

Increased antioxidant expression under hyperglycaemic conditions 
 

In order to determine the effect of hyperglycaemic treatment on the antioxidant profile, Nrf2 protein 

expression was measured by western blot; transcript levels of SOD2 and GPx1were determined by 

qPCR and reduced GSH was measured luminometrically.   

 

Slightly higher Nrf2 protein expression was observed in the hyperglycaemic group compared to the 

control; however, this was not statistically significant, Fig. 5.5a. The gene expressions for SOD2 and 

GPx1 were 2-fold (p<0.0001, Fig. 5.5b) and 1.5-fold (p= 0.0091, Fig. 5.5c) higher than the control 

respectively.  The concentration of reduced GSH was also found to be significantly higher following 

hyperglycaemic treatment when compared to the control (p= 0.0019, control: 9.173± 0.2088μM and 

30mM: 11.04± 0.1582μM, Fig. 5.5d).   
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Fig. 5.5 The effect of hyperglycaemia on antioxidant profile in HepG2 cells.  (a) Protein expression 

for Nrf2 was determined using western blot.  A representative immunoblot is shown, along with 

summarised data of Nrf2 band intensity normalised to β-actin.  Gene expressions for (b) SOD2 and 

(c) GPx1 were assessed with quantitative PCR using specific primers.  Values are expressed as fold 

changes relative to the control. (d) Concentrations of GSH were determined luminometrically.  Each 

bar represents the mean ± SEM of 3 replicates. *p<0.05 vs. control 

 
 
 
 
 
 
 
 
 
 
 



132 
 

5.5 Discussion 

 

Evidence has shown that elevated ROS is involved in the progression of DMII (15-17).  

Hyperglycaemia activates several biochemical pathways that have been suggested to contribute to the 

formation of ROS and may be the causal link between DMII and associated complications.   

 

Hyperglycaemia increases the production of reducing equivalents from the tricarboxylic acid (TCA) 

cycle. These enter the ETC resulting in electron leakage and increased production of superoxide 

radicals (18).   Excessive ROS damages macromolecules and this may lead to metabolic disorders 

such as DMII.   

 

Mitochondrial DNA (mtDNA) is vulnerable to oxidative damage as it is situated closely to the ETC; 

does not have protective histones and has limited DNA repair activity (19).  Excessive ROS 

production compromises oxidative phosphorylation (OXPHOS) leading to mitochondrial dysfunction, 

decreased capacity of cells to maintain ATP levels (20), reduced AO activity(21) and increased 

apoptosis (7). These factors need to be improved and maintained in order to ameliorate disease 

conditions.   

 

Hyperglycaemia-induced mitochondrial dysfunction has been shown to cause apoptosis.  Caspases are 

a family of cysteine proteases that cleave target proteins at sites next to aspartic acid residues.  They 

are known as initiators (caspase-8 and caspase-9) or executioners (caspase-3/7).    

 

Following OS, mitochondria release cytochrome c which, together with caspase-9 and Apaf-1, form a 

complex known as the apoptosome which recruit and activate caspase-9 (2).  Cytochrome c activates 

caspase-3 which is required to execute apoptosis (3).  Caspase-8, which initiates extrinsic apoptosis, 

also plays a role in the intrinsic (mitochondrial) pathway though Bid.  These all form part of apoptotic 

stress.  

 

Hyperglycaemia has been shown to be a direct cause of apoptosis in diabetic myocardium and 

cultured cardiac myoblast cells (7).   

 

In this study we investigated the effect of short term hyperglycaemic stimulation on mitochondrial 

output in HepG2 cells.  This was done by the MTT assay which measures the reduction of the 

tetrazolium salt by succinate dehydrogenase.  Succinate dehydrogenase is bound to the inner 

mitochondrial membrane and is involved in the TCA cycle and the ETC.  The tetrazolium salt enters 

mitochondria and is reduced to an insoluble formazan product which is then solubilised by dimethyl 

sulphoxide and measured spectrophotometrically.  Tetrazolium salt is reduced in cells that are 
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metabolically active and the level of activity is a measure of cell viability and mitochondrial function.   

 

We observed increased cell viability and increased ATP levels (22) in the hyperglycaemic group 

which may suggest that mitochondrial function is maintained under oxidative conditions.   

A previous study, however, had shown decreased cell viability, increased caspase-3 activity and 

increased apoptosis following 72hr hyperglycaemic stimulation (23).   

 

Interestingly, we showed increased caspase-8 and caspase-9 activity, with caspase-9 activity being 

higher in the hyperglycaemic group.  This may suggest that following hyperglycaemic stimulation, the 

intrinsic (mitochondrial) apoptotic cascade is the main pathway activated.  However, caspase-3/7 

activity was 35-fold lower than caspase-9.  This could mean that although apoptosis is initiated, it 

may not be fully executed.    

 

We found a lower percentage of apoptotic cells in the hyperglycaemic group using the annexin assay 

which tests the quantity of cells undergoing apoptosis and is used as an early marker of apoptosis.   

The decreased number of apoptotic cells that we had observed in the hyperglycaemic group may be 

explained by the decreased caspase-3/7 activity.   

 

Another reason for the decreased number of apoptotic cells could be due to the asymmetry of the 

plasma membrane.  Phosphatidylserine (PS) is located on the inner portion of the plasma membrane 

(24).  When apoptosis is initiated, PS is translocated to the extracellular membrane and can therefore 

be detected by Annexin V in a calcium-dependent manner (24). 

 

Apoptosis requires a loss of plasma membrane asymmetry through a process called scrambling by 

enzymes called scramblases (25).  A study showed that once apoptosis is initiated, caspase-3/7 

cleaves and activates a scramblase called Xk-Related Protein 8 (Xkr8).  This would lead to loss of 

asymmetry of the lipid bilayer and externalisation of PS enabling annexin to detect apoptotic cells 

(26).   

 

The decreased caspase-3/7 activity that we observed may have resulted in reduced cleavage and 

activation of Xkr8, reduced externalisation of PS and, consequently, reduced annexin binding.   

 

There are also several cell survival mechanisms that may account for the reduced caspase-3/7 activity 

and reduced apoptosis. 

Heat shock proteins are a conserved family of stress response proteins which are highly expressed in 

response to OS.  Heat shock proteins can function as molecular chaperones and protect against 

apoptosis. 
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Individual heat shock proteins can interact with the apoptotic pathway on different levels. HSPA1 

(Hsp70) attenuates the intrinsic pathway by inhibiting BAX activation, reducing cytochrome c release 

and preventing the activation of caspase-3. HSPB5 negatively regulates apoptosis by preventing 

activation of caspase-3 whilst HSP90 can bind to Apaf-1 thereby preventing apoptosome formation. 

During OS, Hsp27 increases the levels of intracellular glutathione, which detoxifies hydrogen 

peroxide (H2O2) to water (H2O). This is due to the ability of Hsp27 to hold glutathione in its reduced 

form under oxidative conditions (9).  It also interacts with cytochrome c and prevents the correct 

formation of the apoptosome complex and subsequent activation of caspase-3/7 (10).  Our study 

showed higher Hsp27 protein expression in the hyperglycaemic groups and this may account for the 

reduced caspase-3/7 activity and increased AO defence under hyperglycaemic conditions.   

 

The p300 and CBP proteins are transcriptional co-activators that also have HAT activity which 

transfers an acetyl group to the ε-amino group of a lysine residue.  This would result in a relaxed 

chromatin state leading to increased gene transcription.   

 

In response to OS, transcription factor Nrf2 is acetylated by p300 and CBP.  This enables Nrf2 to bind 

to the antioxidant response element which results in the transcription of AO genes such as SOD2 

(detoxifies superoxide radicals), GPx1 (detoxifies H2O2 to H2O) and GSH (11).  We observed 

increased expressions of p300, CBP, Nrf2, SOD2, GPx1 and increased GSH concentrations in the 

hyperglycaemic groups.   

 

We had previously established that histone deacetylase, SIRT3, may be the central component that 

modulates AO defence,  mtDNA repair  and confers resistance to OS-induced damage under 

hyperglycaemic conditions in the HepG2 cells (22). 

 

Taken together, this may suggest that in response to OS, the cell mounts a strong AO defence and 

induces the synthesis of key stress proteins ensuring temporary cellular survival.   

 

Our study showed that under hyperglycaemic conditions, the apoptotic cascade may have been 

initiated through the intrinsic pathway.  The activity of caspase-3/7 and the percentage of apoptotic 

cells were considerably lower suggesting that apoptosis was not fully executed.  This may have been 

due to the induction of Hsp27 and AO defence which counter both ROS and apoptosis.  In the 

hyperglycaemic model we show that although apoptosis may be induced as a result of oxidative 

damage, cell survival mechanisms counterbalance apoptotic stress.      

 

Although previous studies have shown high apoptosis under hyperglycaemic conditions, we could not 

confirm these findings in our model.  Our data is consistent with a study that showed no loss of 
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neurons in 12-month streptozotocin-induced diabetes (STZ-D) rats (27) and a study that observed no 

induction of apoptosis-related genes in acutely STZ-D rats (28).  A previous study observed apoptotic 

stress in dorsal root ganglion cells but showed that apoptotic stress was counterbalanced by survival 

elements in sub-acute type 1 diabetic BB/ Wor rats (29).   

This study may be improved by using a diabetic in vivo model which may help us establish a more 

holistic response.  A wider range of glucose concentrations over a chronic time period may also help 

us better elucidate the effect of hyperglycaemia in a diabetic model.   

 

Future studies include interrogating a more defined cell survival pathway following hyperglycaemic 

administration.  Investigating the effect of hyperglycaemia on the epigenome may enable us to 

determine differential gene regulation during pre-diabetes and DMII.   

 
5.6 Conclusion 
 

Although hyperglycaemia may induce apoptosis, as a result of oxidative damage, the apoptotic stress 

may be counterbalanced by cell survival mechanisms regulated by stress response proteins (Hsp27, 

Nrf2 and SIRT3) and downstream AO defence.   
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CHAPTER 6- DISCUSSION AND CONCLUSION 
 

Hyperglycaemia increases mitochondrial ROS production which contributes to a variety of 

pathological conditions (1).  Exposure to excess ROS results in oxidative damage of macromolecules 

and this leads to metabolic disorders such as DMII.  In order to improve disease conditions, 

mitochondrial function and AO defence need to be maintained.   

 

The networks of cell protective mechanisms that exist under these oxidative conditions have yet to be 

fully elucidated. 

 

SIRT3 is a mitochondrial deacetylase that forms part of the cell protective network in response to OS.  

It deacetylates and activates enzymes that regulate mitochondrial function.  SIRT3 regulates cell 

defence and survival in response to stress (2-5). 

 

We showed increased protein expressions of SIRT3, PGC-1α and p-CREB as well as increased gene 

expressions of SIRT3, CREB, PGC-1α, GPx1, SOD2, UCP2 and OGG1 under hyperglycaemic 

conditions.  Further increases in these expressions were observed under longer hyperglycaemic 

stimulation.  Our data suggests that SIRT3 is a central component in modulating AO defence and 

conferring resistance to OS-induced damage under hyperglycaemic conditions in HepG2 cells.   

 

Following treatment with the diabetic drug, metformin, we found increased protein expressions of 

SIRT3 and p-CREB as well as increased gene expressions of SIRT3, CREB, PGC-1α, GPx1, SOD2, 

UCP2 and OGG1 under hyperglycaemic conditions.  We postulated that metformin may work 

synergistically with SIRT3, or through SIRT3-mediated mechanisms, to improve AO defence.   

 

We also treated HepG2 cells with curcumin, which has bi-functional AO properties and is known to 

improve mitochondrial function. Following curcumin administration, the data showed increased 

SIRT3, NF-κB, Lon and Hsp70 protein expressions as well as increased transcript levels of SIRT3, 

PGC-1α, CREB, GPx1, SOD2, UCP2 and OGG1 under hyperglycaemic conditions.  These genes 

were optimally expressed following 10μM curcumin treatment in the hyperglycaemic groups.  

Further, the 10mM glucose treatment yielded higher expressions of SIRT3 and stress response 

proteins than the 30mM glucose treatment following 10μM curcumin administration.   

 

Since SIRT3 was shown to increase AO defence and cell survival, the protective effects of curcumin 

may occur through SIRT3-mediated mechanisms.  
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Hyperglycaemia is known to induce apoptosis.  In our study, although hyperglycaemia induced 

significantly higher caspase-8 and caspase-9 activity, significantly lower caspase-3/7 activity was 

observed when compared to caspase-9.  The percentage of apoptotic cells in this group was also 

significantly lower. 

 

This suggests that the intrinsic apoptotic pathway was initiated but apoptosis was not fully executed 

due to the low activity of caspase 3/7.  Another reason may be the induction of key stress proteins 

such as Hsp27 and AO defence that counterbalance apoptotic execution.  Heat shock protein 27 

functions as an AO by increasing levels of intracellular glutathione. This is due to the ability of Hsp27 

to hold glutathione in its reduced form under oxidative conditions. Heat shock protein 27 also 

interacts with cytochrome c, preventing the formation of the apoptosome complex and 

activation of caspase-3.   

 

Mitochondrial dysfunction and diminished AO defence are some of the key features in DMII and 

other metabolic disorders.  SIRT3 regulates several stress proteins and AO enzymes and, therefore, 

plays a central role in the network that ensures temporary cell survival under oxidative conditions.   

 
Clinical Implications: 
 

Following metformin and curcumin administration under hyperglycaemic conditions, AO defence was 

improved and this was possibly mediated through SIRT3.   

 

Resveratrol (a known SIRT3 activator)  decreased oxidative injury in endothelial cells and this was 

mediated by SIRT3 (6).  SIRT3 also protected against acute kidney injury by reducing OS and 

mitochondrial damage (7).  Viniferin is a natural product that decreased ROS levels and prevented 

loss of mitochondrial membrane potential in cells expressing Huntingtin protein.  SIRT3 was shown 

to mediate the neuro-protection of viniferin (8).   

 

SIRT3 function may, therefore, be modulated by chemical or natural compounds and can be 

therapeutically targeted as a potential cyto-protective factor to improve OS-associated disorders.   
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Future work: 
We have used the HepG2 cell line as an in vitro model to represent human hepatocytes in cell culture.  

This cell line can maintain its function and structure and exhibits most genotypic features of normal 

hepatocytes.   

 

This study could be improved by using primary hepatocytes or an in vivo hyperglycaemic mouse 

model in order to establish a holistic response. 

 

A larger range of glucose and insulin concentrations over chronic time periods can be used as this is 

an accurate representation of DMII.  This may provide greater insight to SIRT3 modulation of AO 

defence under chronic OS.   

 

It is also useful to interrogate SIRT3 in more defined pathways that are altered in metabolic disorders, 

such as mitochondrial biogenesis or mitochondrial DNA repair.  These pathways are necessary for 

optimum mitochondrial function and cellular energetic efficiency.  

 

It will be interesting to investigate the role of SIRT3 on the epigenome (DNA methylation and 

regulation of histone deacetylases) to determine differential gene regulation during pre-diabetes and 

DMII.  This would give us better insight on tailor-made therapeutic interventions, based on patient 

genome, to enable optimum patient response to therapies. 
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APPENDIX A: ATP and MTT assays measured in HepG2 cells over 24, 48 and 72 hours 

 

 
 
We investigated hyperglycaemia over 24, 48 and 72 hours and found that the ATP and MTT results 

were inconsistent in the 48hr time period.  We worked with 24hr hyperglycaemic stimulation as an 

acute hyperglycaemic model.  Longer hyperglycaemic stimulations are preferably carried out at 72 

hours or longer.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* 

* 
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APPENDIX B: Markers of mitochondrial function over 24 and 72 hours 
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Table 1: Fold changes for mitochondrial genes 

Gene Fold change  
(control vs. 30mM) 

p-value  
(control vs. 30mM) 

 24hr 72hr 24hr 72hr 

NRF1 1.35  1.85 0.0011 0.0160 

TFAM 1.61  1.31 0.0079 0.1141 

TFB1M 1.22 1.38 0.0234 0.4028 

TFB2M 1.20 2.14 0.2360 0.0629 

 

In order to investigate mitochondrial function under hyperglycaemic conditions, we determined gene 

expressions for nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), 

mitochondrial transcription factor B1 (TFB1M) and mitochondrial transcription factor B2 (TFB2M) 

over 24 and 72 hours.   

 

NRF1 regulates nuclear-encoded mitochondrial proteins and controls the expression of ETC 

complexes as well as TFAM, which is involved in mitochondrial biogenesis.   

 

The core machinery of mitochondrial gene expression are TFAM, RNA polymerase gamma, TFB1M 

and TFB2M.  Both TFB1M and TFB2M are required to initiate biogenesis as both have recognition 

sites for NRF1.   

 

Although NRF1 and TFAM were lower in the 24 hour treatment under hyperglycaemic conditions 

(1.35-fold and 1.61-fold respectively), all other genes were elevated at 24 and 72 hours in the 30mM 

group suggesting that mitochondrial function is maintained under hyperglycaemic conditions.  
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APPENDIX C: Marker of nuclear DNA damage 

 

 
 
Nuclear DNA damage is detected by the comet assay. (Singh NP, McCoy MT, Tice RR, Schneider 

EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp 

Cell Res 1988, 1751:184–191).  Damaged DNA migrates out the cell toward the anode and this is 

observed as a comet tail.   

 

Longer tail lengths were seen in the hyperglycaemic group when compared to the control (70.10μm 

vs. 106.5μm respectively, p=0.0002) suggesting increased single strand breaks.  This, however, may 

also denote DNA unwinding.  
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APPENDIX D: DNA methylation under hyperglycaemic conditions  

 

 
 

 
 

 

 

 

 

 

* 

* 

* 
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DNA methylation is a major regulator of transcriptional activity.  Methylation changes the 

interactions between proteins and DNA by collaborating with proteins that modify nucleosomes.    

 

This alters chromatin conformation leading to decreased transcription.  DNA methyltransferases 

(DNMTs) transfer a methyl group from the methyl donor, S-adenosyl-L-methionine, to the 5-position 

of cytosine residues in DNA.   

 

Higher DNMT1, 3A and 3B protein expressions were observed in the hyperglycaemic groups relative 

to the control (DNMT 3A: p=0.0190 and DNMT 3B: p=0.0004). Transcript levels of DNMT 3A and 

DNMT 3B expressions were also higher in the hyperglycaemic groups when compared to the control 

(1.08-fold and 1.06-fold respectively).   

 

The elevated DNMTs in the hyperglycaemic group could result in transcriptional repression of genes 

involved in pathways that elevate cell death and oxidative stress. 
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APPENDIX E:  SIRT3 and antioxidant defence under hyperglycaemic conditions following  

  25μM curcumin administration 
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Table 2: Cell viability, protein and gene expression in HepG2 cells following 25μM curcumin 

 treatment in the hyperglycaemic groups.  * p<0.05 vs. untreated control 

 p-value 

 10mM 30mM 

MTT 0.0035 0.0089 

SIRT3 Protein 0.3063 0.2886 

SIRT 3 mRNA 0.0400 0.0118 

CREB mRNA 0.0093 0.0047 

PGC-1α mRNA 0.0033 0.0134 

GPx1 0.0046 0.0039 

SOD2 0.0248 0.0206 

UCP2 0.0147 0.0183 

OGG1 0.0074 0.0011 
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Following curcumin treatment, the hyperglycaemic groups showed relatively higher cell viability, 

increased protein expression of SIRT3 and increased transcript levels of SIRT3, CREB, PGC-1α, 

GPx1, SOD2, UCP2 and OGG1 when compared to the untreated and treated control.   

 

These results were not included in the curcumin chapter due to more significant results yielded from 

the 5μM and 10μM curcumin concentrations.    
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APPENDIX F:   The effect of metformin on SIRT3 expression and antioxidant defence in  

  HEK 293 cells 
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Table 2: Cell viability and gene expression in HEK 293 cells following 3mM metformin treatment in 

 the hyperglycaemic groups.  * p<0.05 vs. untreated control 

 p-value 

 10mM 30mM 

MTT 0.0079 0.0050 

SIRT 3 mRNA 0.1835 0.0808 

CREB mRNA 0.1991 0.2948 

PGC-1α mRNA 0.2591 0.3882 

GPx1 0.0011 0.0197 

SOD2 0.0396 0.0363 

UCP2 0.0669 0.0607 

OGG1 0.0112 0.0226 

 

To compare the effect of hyperglycaemia on SIRT3 expression and downstream AO defence in 

HepG2 cells, a non-carcinoma HEK 293 cell line was used.   

 

Following metformin administration, higher cell viability and increased transcript levels of SIRT3, 

CREB, PGC-1α, GPx1, SOD2, UCP2 and OGG1 were observed in the hyperglycaemic group treated 

with metformin relative to the untreated control.   

 

The response under oxidative conditions, with regard to SIRT3 and downstream AO defence, were 

similar between both cell lines.  

 

 

 

 
 
 

 

 

 
 

 

 

 

 

 




