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1. 

I. INTRODUCTION 

Marine angiosperms, qommonly known as seagrasses, have a world-wide 

distribution and are adapted to life in sea water. They are the only group 

of vascular plants which have successfully invaded the sea from the land. 

Seagrasses possess structures typical of vascular flowering plants viz.: 

rhizomes, leaves, flowers, seeds and a vascular system. They have a 

preference for shallow coastal waters and estuaries. 

According to Den Hartog (1970) there are 12 genera and 49 known species of 

seagrasses. Seven of the genera have a preference for tropical waters 

while the remaining five are confined mainly to temperate waters. Although 

seagrasses are not true grasses, they are all monocotyledons and are placed 

in the single order Helobiae. They are classified into two families, 

Hydrochari taceae and Potamogetonaceae (Refer to Table 1). 

Table 1. Classification of sea grasses (Den Hartog, 1970). 

Family Subfamily No. of Genera 

Potamogeton ace ae Zosteroideae 1. Zoster a 
2. Phy 'l 'lospad ix 
3. Heterozostero a 

Posidonioideae 1. Posidonia 

Cymodoceoideae 1. Ha'lodu'le 
2. Cymodoooa 
3. Syringodium 
4. Tha'lassodendron 
5. AmphiboUs 

Hydrochari taceae Vallisnerioideae 1. Enha'lus 

Thalassioideae 1. Tha'lassia 

Halophi loide ae 1. H a'lophi 'la 

Sect. Halophila 
Sect. Microhalophila 
Sect. Spinulosae 
Sect. Americanae 
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Arber (1920) and Den dartog (1970) stressed four requirements that are 

essential for seagrasses to exist in a marine environment: 

i) the ability to tolerate a saline medium; 

ii) the ability to grow while fully submerged; 

iii) the production of a strong anchoring system to withstand 

wave action and tidal currents; and 

iv) the capacity for hydrophilous pollination. 

These major criteria which are essential for the colonization of a marine 

habitat, are satisfied by all twelve known genera of seagrasses. 

According to Den Hartog (1970) the genus Ha~ophi~a~ of the subfamily, 

Halophiloideae, comprises nine herbaceous species. H. ova~is is classified 

under the section H a~ophila. 

Ha~ophi~a ova~is is distributed along the east coast of Africa, extending 

from the Red Sea as far south as Madagascar and temperate South Africa. In 

Asia and Australia these plants are common virtually everywhere along their 

coasts. H. ovdis has also been re corded in Japan, Tasmania and in the 

islands of Hawaii, Samoa and Tonga. 

The habitat of H. ova~is ranges from mid-tidal level to a depth of about 

10 - 12m. These plants tolerate a range of substrata such as coarse coral 

rubble to soft sands. The plants thrive in tropical and warm temperate 

waters. 

H. ova~is is well suited for life on unstable substrata since rooting is 

facilitated by rhizomatous fragments and the plants can tolerate being 

covered by silt. 

Plants of H. ova~is form dense stands in sheltered habitats and in so doing 
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retain accumulated sediments thus causing the sea bottom to rise (Den Hartog, 

1970) . 

According to Den Hartog (1970), H. ovdlis is somewhat euryhaline and 

penetrates into estuaries and sea-inlets where, often, the ,vater salinity is 

o 
much lower. H. ovalis is able to tolerate low water salinities (10 /00) as 

is the case in the Swan River near Perth in Western Australia (Den Hartog, 

1970). H. ovalis has been reported to tolerate hyperhaline conditions on 

the island of Oahu in Hawaii (D01:y & Stone, 1966). 

The importance of seagrasses as primary producers has often been overlooked 

because of their submerged habit. Seagrass productivity has been estimated 

2 
at about 300 - 600 g dry wt/m /year ( which is even higher than the average 

world productivity of maize and rice (Thayer, VJolfe & Williams, 1975). 

Although one would associate the high productivity of seagrasseswith a 

mul titude of grazers, there are only a few organisms which actually consume 

them. The leaves of certain seagrasses contain tannins which make them 

unpalatable to many herbivores (Feeny & Bostock, 1968). Seagrasses contribute 

to the food web primarily through detrital food chains (Fenchel, 1977). 

This conclusion was based on direct observations on herbivore feeding 

behaviour, analysis of gut content and faeces of grazers and by the use of 

labelled plant material. The vertebrates unlike the invertebrates are the 

chief grazers of seagrasses due to the fact that marine invertebrates lack 

enzymes necessary to break down high molecular carbohydrates (Kristensen, 

1972). Seagrass beds serve as a significant food source for several groups 

of animals, herbivorous birds, adult green turtles, some amphipods, isopods 

and sea urchins. 

In many estuarine and sheltered coastal localities the leaves and stems of 



4. 

seagrasses provide one of the few stable substrates available for the 

attachment of epiphytic microalgae, invertebrates and microscopic organisms. 

Seagrass epiphytes serve a multitude of functions: they contribute to the 

productivity of the system (Jones, 1968) i serve as a nutrient reservoir for 

seagrasses between growing seasons (Harlin, 1975) i supply food for grazers 

(Zimmerman, Gibson & Harrington, 1979) i and provide a habitat for small 

animals. 

According to Kikuchi and PerE~s (1977) seagrass beds may function in a number 

of different ways as a structural habitat or shelter: 

i) seagrass beds provide a range of substrate types for 

epiphytic algae and other associated organisms. The 

dense vegetation of the seagrass beds reduces water flow, 

thus offering protection; 

ii) the photosynthetic activity of the seagrass beds brings 

about profound changes in °
2

, CO
2 

and pH values in the 

surrounding water; and 

iii) the leaf canopy formed by the seagrasses offers protection 

fromexcessi veillumination. In intertidal situations the 

leaf canopy protects other organisms from desiccation and 

extremes in salinity and temperature. 

The above-mentioned factors together with the availability of foOd are 

believed to be responsible for the importance of seagrass beds as spawning 

areas or nursery grounds for a variety of fish and shrimp. 

Research on seagrasses to date has covered aspects of their taxonomy, 

ecology, morphology, physiology, general anatomy and ultrastructure. 
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The distribution, general morphology, ecology and taxonomy of seagrasses 

have been described i nter aZ.ia by Ostenfeld (1915, 1918), Miki (1932, 1933, 

1934), Phillips (1960), Den Hartog (1970) and Kirkman (1985). 

Some physiological aspects of seagrasses were reported by Bender (1971), 

McRoy et al (1972), Kirkman et d (1979), Benedict et al(1980), Iizumi 

et al (1982) and Wahbeh and Mahasneh (1985). 

Several workers have studied the general anatomy of marine angiosperms and 

these include Balfour (1878), Cunning ton (1912), Cohen (1938), Tomlinson 

(1969, 1972, 1982) and v-lahbeh (1985). 

Most of the ultrastructural research on seagrasses has been conducted on 

the leaf blade epidermal cells. The fine structure of leaf blade epidermal 

cells has been investigated in Thalassia testudinwn (Jagels, 1973; 

Benedict & Scott, 1976), Cymodocea spp. (Doohan and Newcomb, 1976), 

Zostera capensis (Barnabas et al~ 1977, 1982), Posw.onia spp. (Kuo, 1978; 

Cambridge and Kuo, 1982 ; Colombo and Cinelli, 1983), Thala3sodendron 

ciUatwn (Barnabas, 1982) and Halodule uninervis (Barnabas & Kasavan, 

1983b) . 

These studies have shown that leaf blade epidermal cells of seagrasses 

possess specialized features, many of which appear to be related to the 

submarine existence of these plants. Although some aspects of the fine 

structure of leaf blade epidermal cells of H. ovalis were reported (Birch, 

1974; Barnabas and Naidoo, 1979), these studies were not comprehensive. 

For example, it was shown that mature leaf blade epidermal cells possessed 

transfer cell features (Gunning & Pate, 1969). However, it was not known 

at which stage in cell development structures typical of transfer cells 

arose. Such information would give clues about the functional significance 

of these structures in the epidermal cells. In view of the paucity of 

information concerning cytological features of this unusual epidermis in 
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the leaves of H. ovaLis~ it was felt that a more detailed investigation was 

necessary. Thus, the present study was initiated. 

Leaf blade epidermal cells were examined closely from the point of view of 

not only their general structure but also developmental changes of the cells 

and their histochemistry. In addition, the fine structure of axillary scales 

(squamulae intravaginales) associated with the bases of leaves were also 

investigated. In the layout of this dissertation the first section deals 

with observations and discussion of the gross morphology, anatomy and 

histochemistry of the leaves. In the remaining sections, ultrastructural 

changes occurring during the development of leaf blade epidermal cells, the 

ultrastructural morphology of unusual cell wall structures called annuli, 

and the fine structure of the squamulae intravaginales, are presented and 

discussed. 
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11. MATERIALS AND METHODS 

1. Collection and Culture of Plants 

Plants of H. ovaZis were collected from near the mouth of the Nahoon 

river in East London. The salinity of the water was 3S
o 

/00 at the time 

of colle ction . Rhizome segments showing vigorous growth were removed, 

together with substrate, and transported in plastic containers to the 

laboratory. 

The rhizome segments were cultured in aquaria at a salinity of 35
0
/00 

under glasshouse conditions. The aquarium water was circulated 

and filtered continuously by power filter pumps. Under these conditions, 

plants grew well. 

2. Sampling 

Vegetative buds and leaves of various ages (some of which were dissected 

from the buds) were sampled from vigorously growing plants. This type 

of selection ensured that epidermal cells of different ages were studied. 

In addition, examination of portions of leaf blades close to and away 

,from the basal meristem yielded material containing cells in different 

stages of development. Petioles of mature leaves were also sampled. 

3. Preparation for Transmission Electron Microscopy 

Leaf material was trimmed and diced in O,OSM sodium cacodylate buffer 

(pH 7,2) in a petri dish. The material was then fixed under vacuum in 

cold 6% glutaraldehyde buffered with O,OSM sodium cacodylate for 6 hours, 
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washed seve ral time s in the cacody late buffer, post-fixed in 2 % osmium 

tetroxide made up in the same buffe r and s tored overnight in the 

. 0 refn.gerator at 4 C. The samples were washed twice in cacodylate buffer, 

dehydrated through a graded series of ethy l alcohol and embedded in 

Spurr's (1969) low viscosity resin. 

Resin blocks containing leaf material were mounted on stubs. Block 

faces were trimmed with glass knives. Ultrathin sections were cut with 

glass or diamond knives, mounted on uncoated 200 mesh copper grids and 

stained with 2% aqueous uranyl acetate followed by lead ci trate 

(Reynold's, .1963). '!he sections were examined and photographed with a 

Philips 301 electron microscope. 

4 .' Preparation for Scanning Electron Microscopy 

Vegetative buds and leaves of different ages were fixed in 6% 

glutaraldehyde buffered with 0,05M sodium cacodylate and prepared as 

for TEM studies up to the 100% ethanol dehydration stage. The material 

was then critical point dried, fixed to stubs with double-sided 

adhesive tape and coated with gold for observation. The leaves and buds 

were examined and photographed with aPhilips SEM 500. 

5. Preparation for Light Microscopy 

For light microscope studies, sections of leaf material embedded in 

either resin or wax were used. 
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a. Spurr-(1969) Embedded Material 

Material that was embedded in Spurr's resin for TEM studies (as 

described earlier) was sectioned (0,5 ).lm thick) and stained wi th 

Azur 11 and Methylene Blue (Richardson, Jarett & Finke, 1960). 

b. Glycol Methacrylate-Embedded Material 

Leaf material was fixed in 6% glutaraldehyde, dehy9.rated in a graded 

ethanol series and embedded in LKB historesin. Sections ranging 

from 0,5 ~ 4).lm in thickness were stained with Toluidine Blue in 

benzoate buffer at pH 4,4 (Feder & O'Brien, 1968) or used unstained 

for histochemical tests. 

c. Wax-Embedded Material 

Leaves and vegetative buds were fixed in FAA, dehydrated in a 

tertiary butyl alcohol series and embedded in paraffin wax. Sections 

ranging from 8 - 10 ).lm in thickness were mounted onto glass slides, 

dewaxed, rehydrated and used for histochemical tests. 

d. Histochemistry 

The following histochemical tests were applied to sections of 

leaves and buds to determine the chemical nature of cell walls and 

other cellular components. 
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Chemical Distinguished Histochemical Test Reference 

Cellulose IKI - H
2
so

4 
Jensen (1962 ) 

Cutin Sudan III& IV O'Brien & McCully 
(1981) 

Total carbohydrates Periodic-Acid- Jensen (1962) 
Schiff's reagent 

Lignin Phloroglucinol Jensen (1962) 
, ~ .. ' . 

Mucilage Alcian Blue and Parker & 
Alcian Yellow Diboll (1966) 

Pectin Ruthenium Red Jensen (1962) 

Appropriate controls were used for each of the above histochemical 

tests. 

In addition fresh leaf material was immersed in 0,01N silver 

nitrate (Birch, 1974) for the detection of chlorides. 
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Ill. MORPHOLOGY, ANATOMY AND HISTOCHEMISTRY 

Results 

The external morphology of H. ovalis is shown in Figure 1. Plants of 

H. ovalis consist of smooth, procumbent, monopodially branched rhizomes 

which are fixed to the substrate by long, slender roots borne in the region 

of the nodes. Usually one root is present below each erect shoot. The 

roots are unbranched and covered with root hairs. The erect shoot is short 

and consists of a pair of foliage leaves borne on each node. The foliage 

leaves have long, slender petioles and thin oblong-elliptic to ovate blades 

with rounded apices. Leaves vary in length from 5 - 8 cm. The margins are 

entire. Each leaf has 12 - 22 pairs of cross veins which are often branched 

(Fig. 2). The midrib is connected to the intramarginal veins at the leaf 

apex. .The slender petioles which support the foliage leaves are about 30 -

50 mm long. The scale leaves are sessile, transparent, suborbicular, about 

3 - 8 mm long by 4 mm broad, and are borne in pairs along the rhizome at the 

bases of the petioles. 

A basal meristem is found at the junction of the leaf blade and petiole 

(Fig. 2, arrow). Cells of the basal meristem have dense protoplasts (Fig. 13). 

The meristem gives rise to a major portion of the leaf blade, the cells 

maturing in a basipetal direction, with the oldest cells occurring at the leaf 

tip region (Fig. 11, LT arrow) and the youngest cells close to the meristem 

(Fig. 11). 

Vascular supply to the petiole consists of an axial fibro-vascular bundle 

derived from the axial bundle of the rhizome and two lateral bundles derived 

from the peripheral bundles of the rhizome (Fig. 9). In the region of the 

leaf the axial bundle is continued as the main-vein. 

The lateral bundles form the intramarginal veins which run parallel with the 
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leaf margin to the apex where they uni tewi th the midrib. The outer 

epidermal cell walls of the petiole are thicker than the radial walls 

(Fig. 10). 

The general anatomy of mature leaves is illustrated in Figures 3 - S. A 

transverse section of a mature leaf indicates that three major tiss'.:e: types 

(epidermal, mesophyll and vascular) make up the leaf blade. The ma:":-. -vein is 

surrounded by an indistinct bundle sheath and is separated from the e:pidermis 

(upper and lower) bymesophyll cells. Mesophyll tissue is develope-:' only in 

the midrib region and around the intramarginal veins. Large air la':-"':"'"1ae 

are present in the mesophyll on either side of the main-vein. The l.=..::mae are 

delimi ted by mesophyll cells. The lacunae of the blades are contin '':':us with 

those of the petioles, rhizomes and roots (Roberts, McComb & Kuo, 1-;'~4). The 

lamina is made up of two rows of epidermal cells which are at times ~~ter

rupted by lateral veins. Epidermal ce l ls at the edge of the lamina :-.3.ve 

thicker walls than the cells of the lamina region (Fig. 5). 

Epidermis 

A uniseriate epidermis covers the leaf surface. Both upper and lm',E = 

epidermi have similar structural features . Stomata are absent. T~:3.tment 

of the cells with Sudan III and IV revealed the presence of a very '::.in 

cuticle (Fig. 15, arrows). In cross-sectional view the cells are mc:e or less 

cuboidal whereas in longitudinal section they are longer than broad 

(Fig. 8). Epidermal cells are smaller than adjacent mesophyll cells 

(Fig. 3). Mature epidermal cells are highly vacuolate with a thin ; ,.=..rietal 

layer of cytoplasm. Most of the organelles are restricted to the p~=ipheral 

cytoplasm (Fig. 7). Epidermal cells have an abundance of chloropl~-::.sand 

relatively thick outer walls (Fig. 7, arrow). Treatment of the cel~ with 
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IKI-H SO revealed the cellulos ic nature of the walls. The cell walls 
2 4 

stained purplish-blue (Fig. 16, arrows). In addition, a positive reaction 

of the walls with Ruthenium Red showed th.at the walls were rich in pectins 

(Fig. 17/ arrows). Treatment of sections with Alcian dyes (Alcian Blue and 

Alcian Yellow) showed that epidermal cell walls were composed of both 

sulphated and acid non-sulphated polysaccharides, since they stained green 

(Fig. IB/arrows). Cell walls showed a negative reaction when treated with 

PhlorOglucinol indicating that lignin was not present. The celll walls were 

PAS positive (Fig. 19). 

Mesophyll 

Mesophyll tissue is developed only in the midrib region (Fig. 3) and around 

the intramarginal veins (Fig. 5) as mentioned earlier. In transverse 

section the cells are spherical whereas in longitudinal section (Fig. B) they 

are somewhat elongated. The cells are large, highly vacuolate with the 

organelles restricted to the thin parietal cytoplasm (Fig. 7). Air-spaces 

are evident between the mesophyll cells (Fig. 7). Unlike the epidermis, 

mesophyll cells contain many starch grains (Fig. 16). 

Longitudinal veins 

The longitudinal veins are conspicuous and include a median vein and two 

intramarginal veins (Figs. 4, 5). As mentioned earlier the three veins 

unite at the apical region of the leaf. Xylem occurs in the adaxial position 

and phloem is abaxial (Fig. 6). An ill-defined bundle sheath encloses the 

vascular tissues (Fig. 6). The xylem consists of a narrow lacuna surrounded 

by a row of inflated parenchyma cells (Fig. 6 ,arrow) . Phloem consists of sieve 

tubes, companion cells and parenchyma (Fig. 6). The arrangement of the 
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14. 

vascular tissues in the intramarginal vein (Fig. 5) is similar to that 

described for the main-vein. 

Discussion 

Like other seagrasses, H. ovaZis possesses branched rhizomes located near 

the surface of the substrate. The creeping rhizomes bear roots and leaves 

at each node. However, unlike other seagrasses, the leaves of H. ovaZis 

possess long, slender petioles which support the thin ovate blades. In this 

respect H. ovaZis does not resemble seagrasses and monocotyledonous plants 

in general. 

As seen in other seagrasses epidermal cells of H. ovaZis possess more 

chloroplasts than any other tissues of the leaves and appear therefore to be 

the main photosynthetic tissue. A thick outer epidermal cell wall as seen 

in H. ovaZis has also been reported in leaves of Zostera cepensis (Barnabas 

et aZ~ 1977), ThaZassodendron ciZiatum (Barnabas, 1982) and ThaZassia 

testudinum (Jagels, 1973). These thickened walls together with the pro

nounced thickening of epidermal cell walls along the leaf margin (Fig. 5) 

probably provide the leaves with mechanical support since lignified tissue 

is absent. Like other seagrasses such as Zostera capensis (Barnabas, 1979, 

unpublished), Posidonia CI1A.str aZis (Kuo, 1978) and Posidonia oce mica 

(Colombo et aZ~ 1983) epidermal cell walls are pecto-cellulosic in nature. 

Additional support of the leaf blades is offered by the petiole since 

epidermal cells of the petiole have greatly thickened outer walls. It is 

interesting to note that structural features of petiole epidermal cells 

resemble those of leaf sheath epidermal cells of Zostera cepensis (Barnabas I 

1979, unpublished). 
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15. 

lbe presence of large air-lacunae in the mesophyll tissue is a characteristic 

feature of the leaves of H. ovalis. These lacunae are continuous with the 

lacunae of the petioles, rhizomes and roots (Roberts, McComb & Kuo, 1984). 

Although continuous within the organs these lacunae were shown to be inter

rupted between organs by diaphragms one cell in thickness (Fig. 14). The 

diaphragms are perforated by interstitial pores which are believed to provide 

air continuity within the lacunar system. The presence of a well-developed 

extensive lacunar system in H. ovaZis is probably an adaptive feature to 

colonize and survive in anoxic sediments. 

The organization of the vascular tissues in H.ovaZis closely resembles that 

of other seagrasses (Tomlinson, 1972; Barnabas et aZ~ 1977, 1983a) , in 

that xylem is reduced and phloem is well-developed. The poor development of 

xylem in seagrasses is a characteristic which is associated with submerged 

aquatics (Arber, 1920; Sculthorpe, 1967). Since all the organs of 

submerged aquatics are in contact with water, xylem is regarded as non

essential, hence its poor development. The indistinct bundle sheath around 

the phloem as seen in H. ovalis has also been reported in other seagrasses 

(Doohan & Newcomb, 1976; Benedict & Scott, 1976; Barnabas, 1979, unpublished). 

Like most seagrasses, a well-aefined basal meristem is present in 

H. ovaZis at the junction of the leaf blade and petiole. According to 

Tomlinson (1980) seagrass leaves develop by means of basal meristems. 

On the basis of the findings in the present study H. ovaZis resembles other 

seagrasses both morphologically and anatomically. 
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IV. ULTRASTRUCTURE OF THE EPIDERMIS 

1. ASPECTS OF DEVELOPMENT OF EPIDEPl'll\L CELLS 

RESULTS 

Leaves of different ages were sampled so that cells in various stages 

of development, ranging from very young to mature cells were studied. 

Changes in plastid and mitochondrial structure, cell wall morphology 

(including initiation and subsequent development of wall ingrowths) , 

and to a certain extent increase in the degree of vacuolation, were used 

as developmental indices to separate cells into different categories. 

Eight:. such categories were distinguished. 

Category A 

Category A cells represent the youngest epidermal cells studied. These 

cells are characterised by large nuclei, numerous ribosomes, proplastids, 

young mitochondria, dictyosomes and profiles of endoplasmic reticulum 

(ER). The most outstanding feature is the density of the cytoplasm in 

all the cells (Figs. 21-25) mostly due to the presence of 

ribosomes found singly or in clusters. Ribosomes remain abundant in the 

cells of categories B-H. Many long and short profiles 

of ER occur around the nucleus (Fig. 23) and close to the cell walls 

(Figs. 24,25). The ER in Figure 25 is studded with ribosomes. 

Few dictyosomes occur close to the radial cell wall (Figs. 24, 26). The 

maturing face of the dictyosome is associated with several vesicles 

(Fig. 26, arrow). The proximity of the dictyosomes and ER to the cell 

walls has been observed in categories ErH. 
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Young mitochondria, circular in thin section, with relatively few 

cristae, are well distributed in the perinuclear cytoplasm (Fig. 23). The 

immature mitochondria display electron transparent areas in the stroma 

(Figs. 23,24,25). 

Proplastids with no differentiation of the internal lamellae are 

observed in Figures 23 and 25. These structures are mainly elongate to 

spherical in shape. Plastoglobuli are evident in the stroma of the 

proplastids which appears more electron dense than the surrounding 

cytoplasm and other organelles (Fig. 25). 

Nuclei are large, smoothly circular in outline and occupy most of the 

space in the cells (Fig. 22). The nucleolus is condensed and highly 

electron dense (Fig. 22). Areas within the nucleolus are electron 

transparent (Fig. 22) probably suggestive of nucleolar vacuoles. 

The heterochromatin within the nucleoplasm appears to be very diffuse 

(Figs. 22, 23). The morphology of the nucleus in the other categories 

is similar to that of Category A cells. 

The plasmalemma is regular in outline and appears closely 

appressed to the cell walls (Fig. 22). Occasionally there is slight 

withdrawal of the plasmalemma from the cell wall thus creating an 

extracytoplasmic space occupied by few paramural bodies (Figs. 24, 27). 

The outer tangential cell wall is thicker than the walls in contact with 

adjacent epidermal cells (Fig. 22). The thickness of the outer tangential 

wall is more pronounced in the outer wedge-shaped regions between 

adjacent epidermal cells (Fig. 21, small arrows). The cuticle is observed 

to have a wavy appearance (Fig. 23) and is sudanophilic (Fig. 15). 
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Plasmodesmata are common along the walls between adjacent epidermal cells 

and between epidermal and mesophyll cells (Figs .22, 24). 

Microtubules are evident immediately adjacent to the plasmalemma 

along the outer tangential cell wall (Fig. 27 arrows). Few small vacuoles 

occur in the marginal epidermal cells (Fig. 21). They tend to increase 

in number and coalesce in epidermal cells away from the marginal area. 

Material of a fine fibrillar nature forms part of the contents of the 

vacuoles (Fig. 25). 
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Category B 

The cells of Category B show signs of further differentiation compared to 

category A cel ls in that there is a greater degree of vacuolation and a change 

in proplastid number and morphology. 

The density of the protoplasts is similar to the cells of Category A 

and remains unchanged in the other categories . Numerous polysomes are 

discernible in Figure 33. Profiles of Rough Endoplasm:i".c Reticulum (RER) 

are abundant in the vicinity of the cell walls (Figs. 33, 34). 

The dictyosome population remains similar to the cells of the pre vious 

category (Figs. 33, 34). 

Immature mitochondria, assuming circular, ovoid or elongate shapes are 

fairly abundant in the cytoplasm (Fig. 32). More development of 

cristae is seen in the mitochondria of the cells of this category 

(Fig. 32) than those of the previous category • 

There is an increase in the proplastid population as compared to ~he 

cells of Category A. These structures assume various shapes and are 

electron dense (Figs. 30, 31). No development of internal lamel ~ ae is 

evident in the stroma of the proplastids (Figs. 28, 30). Some 0= these 

organelles possess prolamellar bodies (Gunning and Jagoe, 1967), ~ =ig. 28). 

Plastoglobuli and electron transparent areas termed nucleoid reg~ons 

(Ris and Plaut, 1962) occur in the proplastid stroma (Fig. 28) • 

An interesting nucleolus is seen in Figure 28. A conspicuous ele:;tron\ 

transparent area, suggestive of a nucleolar vacuole occurs withir. the 

nucleolus. 
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20. 

The plasmalemma closely follows the contours of the cell wall (Fig. 28). 

In some cells the membrane withdraws slightly from the wall (Figs. 29, 

34) thereby forming the extracytoplasmic space occupied by paramural 

bodies. The cell walls show an increase in thickness at this stage of 

their development (Figs. 33, 34). The uneven wavy appearance of the 

cuticle persists (Fig. 34). 

Plasmodesmatal connections between adjacent epidermal cells are 

numerous (Figs. 28, 33). 

Cortical microtUbules are present immediately inside the plasmalenuna 

(Fig. 35). 

A few lipid bodies are evident in the cytoplasm (Figs. 28, 30, 32). 

High vacuolar activity is observed in the cells of this category. 

Coalescence of vacuoles, to form larger structures is evident in 

Figure 29 (arrow head). The nature of the vacuolar contents is variable 

and includes material of a fine fibrillar nature (Figs. 28, 32, arrows) 

vesicles (Fig. 33, arrow head) and portions of cytoplasmic matrix 

(Fig. 29, arrow). The presence of larger vacuoles indicates that the 

cells of this category are more advanced in development than Category 

A cells. 



2 1. 

Category C 

Important changes regarding proplastid and mi tochondrial morphology, 

cell wall thickness, distribution of ER and dictyosomes are noticeable 

in the cells of this category . 

Profiles of RER (Fig . 40) are aligned close to and almost parallel to the 

outer tangential and radial cell walls. 

Dictyosomes and their associated vesicles are evenly distributed in the 

cytoplasm and are active in the vicinity of the outer tangential and 

partly along the radial cell walls (Figs. 41, 42, 44). 

The cytoplasm is well populated with young developing mitochondria that 

are predominantly circular in thin section and appear to be larger than 

thoseencounterd in the cells of .the previous categories (Fig. 41). 

Cristae are relatively few and large electron transparent areas are 

seen in the mitochondrial stroma (Figs. 41, 45, thick arrows). 

Microtubules are present adj acent to the plasmalemma in the region of 

the outer tangential wall (Fig. 47, arrow). 

The plasmalemma is irregular. The extracytoplasmic space formed by the 

withdrawal of the membrane from the wall contains paramural bodies and 

other membranous structures (Fig. 37). Sometimes extracytoplasmic 

pockets lined by the plasmalemma and containing numerous spherical 

paramural bodies are observed in the vicinity of the outer tangential 

wall (Fig. 39) and the radial wall (Fig. 41). These bodies appear to 

arise from projections emanating from the plasmalemma (Fig. 41, small 

arrow) . 
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22 . 

The cell walls continue to increase in thickness, this feature being 

most prominent in the outer tangential wa:lls (Figs. 37, 45). The 

irregular outline of the cuticle is again evident (Fig. 37). The 

cuticle in Figure 38 is not closely appressed to the cell wall. 

Plasmodesmatal connections are evident between adj acent epidermal 

cells (Fig. 36). 

Nucleolar vacuole occurs in the nucleolus of the cell seen in Figure 40. 

Vacuolar activity remains high. The vacuole in Figure 43 (small arrows) 

is actively ingesting cytoplasmic matrix since the inclusions within 

bear resemblance to the matrix of the cytoplasm. 

Plastids are elongate - ovoid structures. They display a definite double 

membrane (Fig. 45, arrow head) and a few primary thylakoids which emanate 

from the prolamellar body (Fig. 45, arrow). PlastoglobuH are prominent 

in the plastid stroma which is electron dense (Figs. 45, 46). More 

development of the internal plastid membranes is encountered in the cells 

of this category (Fig. 46, arrows). 



23 . 

Category D 

A dramatic change is observe d in plas tid number and structure. The most 

striking feature in the cells of this category is the morphology of the 

plastids which bear resemblance to young chloroplasts (Figs. 52, 53). 

The cytoplasm of these cells is well populated with young chloroplasts. 

They have a tendency to occur in groups in different regions of the cells 

(Figs. 48, 50). The double nature of the chloroplast envelope is 

visible in Figure 53 (arrow). The young chloroplasts possess prominent 

membrane-organizing centres termed prolamellar bodies which are positioned 

at the poles or the centre of the chloroplast (Fig. 53). The prolamellar 

bodies display a typical crystal-lattice structure (Fig. 53). The 

young chloroplasts in Figures 52 and 53 display large prolamellar bodies 

from which emanate the primary thylakoids. The thylakoid lamellae run 

parallel to the long axis of the young chloroplast (Fig. 53, arrow head) . 

Plastoglobuli occur in the prolamellar bodies as well as the stroma of 

young chloroplasts (Figs. 51, 53). Nucleoid areas (electron transparent 

regions) are another feature in the stroma of young chloroplasts (Fig. 53). 

Mitochondria are large, spherical with little development of cristae 

(Fig. 51). They maintain a peripheral distribution in the cytoplasm 

(Fig. 51). Large nucleoid areas are evident in the mitochondrial 

stroma (Fig. 51). They have a tendency to occur in clusters (Fig. 51). 

Occasionally twin nucleoli are observed in the nucleus (Fig. 54). 

Dictyosomes (Fig. 56) and RER (Fig. 55) maintain a peripheral 

distribution. 

The outer cell wall has thickened considerably (Figs. 50, 56). 
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24. 

Striations in the outer cell wall are evident in this stage of 

development of the epidermal cells (Fig. 50). 

Few plasmodesmatal connections between adjacent epidermal cells are 

noticed in the radial cell walls (Fig. 55). 

Cortical microtubules are seen inside the plasmalemma at the corner 

of the outer tangential wall (Fig. 57, arrow). 

Vacuoles have coalesced to form large structures (Fig. 49). Within some 

of the large vacuoles there is some cytoplasmic material (Fig. 50, 

arrow) and electron dense inclusions (Fig. 49, arrow) suggestive of 

lysosomal activities. 



25. 

Category E 

A striking feature of this category is the highly vacuolate cells. 

In addition, wall ingrowths are initiated at the junction of the outer 

tangential and radial cell walls. 

Long and short profiles of RER occur singly and maintain a peripheral 

distribution close to the cell wall (Figs. 59, 64). The ER is observed 

to be studded with ribosomes (Fig. 63). 

Many dictyosomes and associated vesicles are located close to the outer 

tangential and radial walls (Figs. 59, 60, 64, 65) and in the vicinity 

of the developing wall ingrowths (Fig. 59). The contents of some of 

the vesicles resemble those of the inner region of the outer cell wall 

(Fig. 59, arrows) suggesting that these vesicles could be contributing 

material to the wall. 

The peripheral cytoplasm is well populated with mitochondria which are 

closely aligned along the radial and outer tangential walls (Figs. 61, 

66). Further development of the cristae is noticed in these organelles 

(Fig. 64). 

Microbodies are occasionally present (Fig. 61). Lipid bodies are 

present in the cells of this category (Fig. 69). 

Cortical microtubules occur immediately inside the plasmalemma partly 

along the outer tangential and radial cell walls (Figs. 59,60,63). 

The chloroplasts are large, ovoid-elliptic structures dominating the 

peripheral cytoplasm (Fig. 58). The double nature of the chloroplast 



PL
A

TE
 

11
 

F
ig

s.
 

5
8

 
-

6
3

. 
T

ra
n

sv
e
rs

e
 

se
c
ti

o
n

s 
o

f 
c
a
te

g
o

ry
 E

 
c
e
ll

s
. 

F
ig

. 
5

8
. 

F
ig

. 
5

9
. 

F
ig

. 
6

0
. 

F
ig

. 
6

1
. 

F
ig

. 
6

2
. 

F
ig

. 
6

3
 • 

C
e
ll

 
ty

p
ic

a
l 

o
f 

c
a
te

g
o

ry
 

sh
o

w
in

g
 
la

rg
e
 

v
a
c
u

o
le

, 
in

it
ia

ti
o

n
 

7 

o
f 

w
a
ll

 i
n

g
ro

w
th

s 
a
t 

ju
n

c
ti

o
n

 
o

f 
o

u
te

r 
ta

n
g

e
n

ti
a
l 

ar
id

 
ra

d
ia

l 

c
e
ll

 w
a
ll

s 
(a

rr
o

w
s)

 
an

d
 

so
m

e 
y

o
u

n
g

 c
h

lo
ro

p
la

st
s.

 

In
te

n
se

 
d

ic
ty

o
so

m
e 

a
c
ti

v
it

y
 
c
lo

se
 

to
 d

e
v

e
lo

p
in

g
 w

a
ll

 i
n

g
ro

w
th

s,
 

c
o

n
te

n
ts

 o
f 

so
m

e 
v

e
si

c
le

s 
re

se
m

b
le

 
th

o
se

 
o

f 
in

n
e
r 

re
g

io
n

 
o

f 

o
u

te
r 

c
e
ll

 w
a
ll

 
(a

rr
o

w
s)

, 
m

ic
ro

tu
b

u
le

 
a
d

ja
c
e
n

t 
to

 p
la

sm
al

em
m

a 

an
d

 ~
t
r
i
a
t
i
o
n
~
 
e
v

id
e
n

t 
in

 w
a
ll

. 
C

lo
se

 
a
ss

o
c
ia

ti
o

n
 
e
x

is
ts

 b
et

w
ee

n
 

H
E

R
, 

d
ic

ty
o

so
m

es
 

an
d

 m
it

o
c
h

o
n

d
ri

a
 i

n
 
v

ic
in

it
y

 o
f 

d
e
v

e
lo

p
in

g
 

w
a
ll

 
in
gr
ow
th
~·

. 

D
e
ta

il
s 

o
f 
c
y
t
~
p
l
a
s
m
 

al
o

n
g

 p
a
rt

 o
f 

o
u

te
r 

ta
n

g
e
n

ti
a
l 

w
a
ll

 

sh
o

w
in

g
 w

it
h

d
ra

w
a
l 

o
f 

p
la

sm
al

em
m

a 
fr

o
m

 w
a
ll

, 
in

te
n

se
 

d
ic

ty
o

so
m

e 
an

d
 

R
E

R
 
a
c
ti

v
it

y
 

c
lo

se
 
to

 w
a
ll

, 
c
o
r
t
~
c
a
l
 

m
ic

ro
tu

b
u

le
s 

a
d

j a
c
e
n

t 
to

 p
la

sm
al

em
m

a,
 

n
u

c
le

u
s 

d
is

p
la

c
e
d

 
to

 

p
e
ri

p
h

e
ra

l 
c
y

to
p

la
sm

. 

D
e
ta

il
s 

o
f 

cy
to

p
la

sm
 a

lo
n

g
 
ra

d
ia

l 
w

a
ll

 
sh

o
w

in
g

 m
it

o
c
h

o
n

d
ri

a
, 

d
ic

ty
o

so
m

e,
 

m
ic

ro
b

o
d

y
, 

y
o

u
n

g
 
c
h

lo
ro

p
la

st
s,

 
p

la
sm

o
d

es
m

at
al

 

c
o

n
n

e
c
ti

o
n

s 
an

d
 
to

n
o

p
la

st
 o

f 
v

a
c
u

o
le

. 

D
is

co
n

ti
n

u
o

u
s 

p
la

sm
o

d
es

m
at

al
 

c
o

n
n

e
c
ti

o
n

s 
a
lo

n
g

 
ra

d
ia

l 
c
e
ll

 

w
a
ll

, 
m

it
o

c
h

o
n

d
ri

a
 a

n
d

 
c
h

lo
ro

p
la

st
s 

c
lo

se
 
to

 w
a
ll

. 

M
ic

ro
tu

b
u

le
s 

a
d

ja
c
e
n

t 
to

 p
la

sm
al

em
m

a,
 

in
te

n
se

 
a
c
ti

v
it

y
 o

f 

d
ic

ty
o

so
m

e 
an

d
 
a
ss

o
c
ia

te
d

 v
e
si

c
le

s 
an

d
 

R
E

R
 
c
lo

se
 
to

 w
a
ll

. 

B
ar

s 
re

p
re

se
n

t:
 

3 
~
m
 

(F
ig

. 
58

) 

0
,5

 
~
m
 

(F
ig

. 
5

9
) 

0
,2

5
 
~
m
 

(F
ig

. 
60

) 

1 
~
m
 

(F
ig

s.
 

6
1

, 
6

2
,6

3
) 



26. 

envelope is evident in Figure 64 (arrow). Several nucleoid areas and 

plastoglobuli are prominent within the granular stroma of the chloroplasts 

(Figs. 66, 67). A peripheral reticulum system is present inside the 

chloroplast envelope (Fig. 64). Chloroplasts of this category are young 

since the granal s 'tacks connected by intergranal thylakoids are not high. 

The plasmalemma is irregular in outline and tends to pull away from the 

cell wall (Figs. 60, 64). With progressive development of the cells 

the extracytoplasmic space becomes more pronounced (Fig. 64). 

Occasionally paramural bodies are evident in the extracytoplasmic space 

(Fig. 65). Plasmalemma invaginations precede wall ingrowth formation. 

Wall ingrowths in the form of irregular projections are initiated at 

the junction of the outer tangential and radial cell walls (Figs.59,arrow heads 

58, 68, 69, arrows) and develop centripetally along the inner tangential 

wall (Fig. 58). Developing ingrowths are unbranched and appear as 

small finger-like projections emanating from the innermost region of the 

cell wall (Figs. 59, arrow heads; 68, arrow; 69, arrow). ER, dictyosomes, 

mitochondria and microtubules oCCur in close proximity to the forming 

ingrowths (Fig. 59). Developing wall ingrowths conform to the shape of 

the invaginated plasmalemma (Figs. 59 ,arrow heads; 68}arrow). 

The outer tangential wall continues to increase in thickness with 

progressive growth of the epidermal cells (Figs. 59, 66). The outer 

region of the outer cell wall appears more electron dense than the 

inner region (Figs. 59, 66). Furthermore, the striated nature of the 

outer cell wall is apparent in Figure 59. 

Some plasmodesmata occur along certain regions of the radial cell wall 

(Figs. 61, 62, 67). Some penetrate the radial wall fully (Fig. 61) 
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27. 

whereas others are discontinuous (Figs. 62, 97) . 

Microbodies are occasionally present (Figs. 61, 65). A few lipid bodies 

occur in the cytoplasm (Fig. 69). 

As mentioned earlier, the cells are highly vacuolate. The vacuole 

occupies most of the space in the cytoplasm,displacing all other organelles 

to the cell periphery (Fig. 58). The tonoplast of the vacuole is seen 

in Figure 61. Vesicles (arrow head) and material of a fine fibrillar 

nature (curved arrow) form part of the contents of the vacuole (Fig. 58). 



28. 

Category F 

The cells of this category display further development of wall ingrowths, 

chloroplasts, mitochondria and an increase in the thickness of the cell 

walls (Fig. 70). 

As seen in cells of the previous category ER and dictyosomes occur in 

close proximity to developing wall ingrowths (Figs. 72, 74). Like the 

ER and dictyosomes mitochondria with well developed cristae also occur 

close to the developing wall ingrowths (Figs. 72, 74, 75). 

There is an increase in the number and size of thechloroplasts (Figs. 70, 

72). These organelles display a pronounced ovoid~lliptic shape and 

dominate the area of the peripheral cytoplasm especially in the region 

of the outer tangential wall and partly along the radial cell wall 

(Fig. 70). The internal membrane system is well organized. There is 

greater stacking of the granal thylakoid membranes (Fig. 72). The 

internal membranes run parallel to the long axis of the chloroplast 

(Fig. 72). Plastoglobuli and nucleoid areas are evident in the granular 

stroma of the chloroplasts (Fig. 72). 

The plasmalemma is irregular and follows the outline of the developing 

wall ingrowths (Figs. 70, 72, 74). As mentioned previously, plasmalemma 

invaginations precede wall ingrowth formation (Fig. 76, curved arrow~. 

Often paramural bodies (arrow) and membranous structures (arrow head) occur 

wi thin the extracytoplasinic space (Fig. 72). Paramural bodies probably con

tribute to wall ingrowth formation (Fig. 76,arrow head). Further development 

of wall ingrowths is noticed in the cells of this category. Wall 

ingrowths in the form of small conical projections develop mainly along 

the inside of the outer tangential cell wall and partly along the radial 
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29 . 

cell wall (Figs. 70, 73, 74). ER, dictyosomes and mitochondria continue 

to occur in close proximity to the developing wall ingrowths (Figs. 72, 

74) . 

The outer cell wall is wider in comparison to the radial and inner 

tahgential cell walls (Fig. 70). Wall ingrowths appear to arise .from 

an inner narrow electron dense layer (Fig. 72, curved arrow). An 

extremely wide outer tangential cell wall is observed in Figure 71. This 

is probably an oblique section through the transverse wall. The 

striated nature of the outer cell wall is apparent in Figure 71. 

Fewer plasmodesmatal connections between adjacent epidermal cells have 

been noticed with progressive growth of the ce lls (Fig. 70). Discontinuous 

plasmodesmatal connections between adjacent epidermal cells are observed 

in Figure 75. 

Microbodies are sparse (Fig . 75). 

Some microtubules are present just inside the plasmalemma, close to the 

corner of the outer tangential wall (Fig. 76, arrows). 



30. 

Category G 

Category G cells can be considered as being nearly mature owing to 

changes in wall ingrowth structure, cell wall thickness, chloroplast 

morphology, an increase in number of mitochondria and lipid bodies. 

The dictyosomes continue to be active producing numerous vesicles in the 

vicinity of the wall ingrowths (Figs. 84, 86). The apparent fusing of 

a dictyosome vesicle with the plasmalemma is occasionally observed 

(Fig. 84, arrow). The contents of some dictyosome vesicles appear to 

resemble wall ingrowth material (Fig. 86, arrow), thus indicating that 

the vesicles could be contributing wall material to the ingrowths. 

Numerous mitochondria with well developed cristae appear to be closely 

juxtaposed to the wall ingrowths (Figs. 83, 85, 86). Mitochondrial 

shape varies from circular to elongate (Figs. 83) in thin section. In 

these nearly mature epidermal cells a close relationship exists between 

the ER, mitochondria, dictyosomes and wall ingrowths (Fig. 85). 

The chloroplasts are not fully mature, they display well organized 

membrane systems which run parallel to the long axis of the organelles 

(Figs. 80, 82, 84). Granal stacks are not very high. Vesicles of the 

peripheral reticulum system are evident immediately inside the 

chloroplast envelope (Fig. 82). Plastoglobuli and nucleoid areas are 

observed in the granular stroma of the chloroplasts (Figs. 80, 82). 

Interesting spherical to elongate membranous structures (paramural 

bodies) are visible in the extracytoplasmic space of Figures 85 and 89. 

The outer tangential wall shows a pronounced increase in thickness 

(Fig. 83). The outer region of the wall (Fig. 83) appears to be more 
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31. 

electron dense than the inner region. The innermost layer of the 

electron transparent region stains intensely (Fig. 83, arrow). However, 

not all cell walls display this feature. 

'iJith progressive maturation of the cells the wall ingrowths have a 

tendency to become more specialized in their morphology. The finger-like 

wall ingrowths of these cells have increased in length (Fig. 79) and 

some appear to be branched (Fig. 83, arrow head). An interesting feature 

observed in some of the cells is the presence of multivesicular 

structures (Figs. 79, 80). These structures embody numerous vesicles 

which appear to contribute wall material to the ingrowths. Also, vesicles 

of apparently ER origin seem to contribute to the growth of the developing 

ingrowths (Fig. 78). A close association exists between the RER and the 

wall ingrowth (Fig. 88). 

Nuclei are no longer as massive as they used to be in the young 

epidermal cells. They are displaced to the cell periphery and assume 

various lobed shapes (Fig. 83). The nuclear invaginations commonly 

house mitochondria (Fig. 83). Large nuclear pores are evident in the 

nucleus of Figure 86. 

The contents of the vacuole vary from electron dense droplets (Fig. 83, 

curved arrow) to a fine fibrillar material (Fig. 77, arrow) and 

membranous vesicles (Fig. 82). 

Large lipid bodies are apparent in the cells of this category (Figs. 81, 

83) being closely associated with mitochondria and chloroplasts. 

Microbodies are present (Figs. 87, 88, 89). Some of the microbodies 

appear to be dividing (Figs. 87, 88). Microtubules occur inside the 

plasmalemma close to the wall ingrowths (Fig. 87, arrows). 



32. 

Category H 

The cells of this category represent mature epidermal cells and are 

characterized by the presence of complex wall ingrowths, highly stacked 

chloroplast grana and thick cell walls. 

In mature cells the presence of ER and dictyosomes is not so obvious. 

The mitochondria tend to be closely associated with wall ingrowths 

(Figs. 95, 105). The cristae are we 11 developed and electron dense 

granules are visible within the mitochondrial stroma (Fig. 95, arrow). 

An intersting feature is the close association of the mitochondria and 

the lipid bodies (Figs .95, 97). 

Wall ingrowths in the cells of this category appear to be more complex 

in structure than those of the previous category (Figs. 91, 92). Often 

the ingrowths are highly branched (Figs. 92, 93). Adjacent formerly 

slender curved ingrowths merge to form complex structures inbetween 

which cytoplasmic material is present (Figs. 92, 105, arrows). The 

presence of cross-sectional profiles of wall ingrowths isolated in the 

cytoplasm attests to the branching of the ingrowths (Fig. 93, arrow) 

Occasionallyparamural bodies are associated with the wall ingrowths in 

the extracytoplasmic space (Fig. 98). 

During maturation of the epidermal cells, the outer tangential wall 

achieves maximum thickness (Fig. 98). The radial and inner cell walls 

are not as thick as the outer tangential wall (Fig. 91). A high 

magnification view of the outer tangential wall is seen in Figure 103. 

The cell wall appears to consist of a cuticular layer on the outside 

followed by a narrow intensely staining layer (arrow) immediately inside 
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33 . 

the cuticle. This is followed b y a non-striated region and a wide 

striated region. An inner,narrow, darkly staining border occurs 

immediately inside the striated layer (arrow head). Wall ingrowths 

arise from this intensely staining layer (Figs. 93, 98, 103). 

The chloroplasts are lens-shaped with well defined internal membrane 

systems (Figs. 91, 99). The granal stacks are higher than those 

encountered in the chloroplasts o.~ the previous category (Figs. 99, 100). 

Plastoglobuli and few nucleoid regions are observed in the granular 

stroma of the chloroplasts (Fig. 100). 

In some instances, deep channels penetrate into the nucleoplasm of the 

nucleus (Fig. 94). These channels are lined with the nuclear envelope 

and contain cytoplasmic components such as mitochondria. 

Although microbodies (Fig. 95) occur in these cells, microtubules are 

less obvious (Fig. 102). Remnants of plasmodesmata are evident in 

Figure 104. An interesting feature seen in Figures 91 and 96 is the 

presence of an unusual structure within the intercellular air-space. 

Part of a membrane system (arrow), sOme vesicles (arrow head) and 

ribosomes of the organism is evident (Fig. 96) .. 

Epiphytes (probably algae) are common on the surface of mature leaves 

(Figs. 101, 104, 106). The leaves are used as substrate for attachment 

of epiphytes. 



34. 

2. ANNULI IN OUTER EPIDERM~L CELL WALL 

Leaf epidermal cells possess an unusual structure in their outer cell 

walls which Birch (1974) called an annulus. The distribution and 

structure of the annuli in young and mature leaves were investigated. 

RESULTS 

Annuli are ring-like structures present in the mid-region of the 

outer cell walls. A typical annulus consists of a rim (Fig.lll, arrow) 

which encloses a large central unthickened area (Fig. 111, arrowhead). 

This central unthickened area is generally raised (Fig. 111) but might 

also be depressed (Fig. 108, curved arrow). Scanning electron micro

graphs show that annuli occur in epidermal cells on both surfaces of 

young and mature leaf blades. 

a. Young leaves 

Annuli of epidermal cells over the main vein, intramarginal vein 

(arrow) and other regions of the blade are seen in figure 107. 

The shape of the annuli varies in different parts of young leaf 

blades. For example, annuli tend to be oval in cells over the 

main vein (Fig. 108, arrowhead) while they are circular elsewhere 

(Fig. 109, arrows). The cuticular layer around the annuli, often 

has an uneven togography (Figs. 109, 111, curved arrows). In 

transverse sections of epidermal cells, depressions in the wall 

(Fig. 112, arrows)probably mark the position of the annulus rim. 

However annuli are absent from epidermal cells of the petiole 

(Fig. 11 7) • 
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b . Mature leaves 

Annuli in walls of epidermal cells of mature leaves tend to be 

more oval in shape (Figs. 113, 114, arrows). Rim structure is 

generally more complex in mature leaves (Figs. 115, 116, arrows). 

The annulus in figure 116 is made up of multiple rims. In 

transverse section depressions in the outer wall of epidermal 

cells (Fig. 118, arrows) mark the positions of the multiple rims. 

Complex annuli are seen in figure 114. Scme of the annuli of 

mature leaves appear to be raised · (Fig. 113, curved arrow) whereas 

others appear to be sunk into the cell wall (Fig. 116). 

The annuli of both young and mature leaves show a positive 

reaction when fresh leaves are treated with silver nitrate. The 

central regions of the annuli react strongly with silver nitrate 

and stain intensely (Figs. 119, 120, arrows). Other portions of 

the epidermal cells show no reaction with silver nitrate. 
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DISCUSSION 

This investigation of the structure and histochemistry of leaf blade 

epidermal cells of H. ovaZ'is has yielded interesting information about the 

cytology and probable functions of these cells. One of the most striking 

changes observed during the study of epidermal cell development was the 

transformation of these cells into cells with transfer cell characteristics. 

Transfer cells (Gunning & Pate, 1969) are cells which possess ingrowths of 

wall material. These wall ingrowths are a specialized type of secondary wall 

and are deposited on the inner face of the primary wall. The plasmalemma 

always conforms to the outline of the wall ingrowths and follows their 

contours no matter how irregular and labyrinthine they are. Mitochondria 

usually occur in close association with the ensheathing plasmalemma of the 

ingrowths. According to Gunning and Pate (1969) and Gunning (1977) transfer 

cells are probably involved in absorptive or secretory activities. They 

are known to occur in a vast array of tissues, some of which include minor 

veins of leaves, reproductive tissues, nectaries, salt glands and root 

systems (Gunning, 1977). 

Epidermal cells with transfer cell characteristics have been reported in the 

leaves of other seagrasses such as ThaZ()J3s'ia hempr''ich'i'i ~ Cymodocea serruZ ata~ 

Cymodocearotundata (Doohan & Newcomb, 1976), Zostera capens'is (Barnabas et 

aZ~ 1977), Amph'iboUs an.tat't'ica~Amph'iboUs gr'iff'ith'i'i (Ducker et aZ~ 1977), 

ThaZasscdendron ciZ'iatum (Barnabas, 1982) and HaZoduZe un'inerv'is (Barnabas & 

Kasavan, 1983b). The only seagrass species found so far to possess leaf blade 

epidermal cells without transfer cell characteristics are Pos'idon'ia austraZ'is 

(Kuo, 1978) and Pos'idon'ia s'inuosa (Cambridge and Kuo, 1982). 
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In fresh water aquatics , epidermal cells with t r ans fer cell feature s have 

bee n found in submerged l e aves of RanuneuZus fZuitans and Hydr i Ua vertieiU ata 

(Gunning & Pate, 1969) and in EZcx1 ea s p .(SHte, 1963). 

1. Development of Wan Ingrowths and Cytoplasmic Changes Accompanying 

Ingrowth Formation 

Wall ingrowths start forming in cells when chloroplasts possess a 

relatively well- developed membrane system in their stroma (category E 

cells) . 

Prior to wall ingrowth formation, some cytoplasmic changes occur in 

regions where ingrowths start forming. These cytoplasmic changes 

include: 

i) the withdrawal of the plasmalemma from the cell wall, 

thereby creating an extracytoplasmi cspace i 

ii) the association of microtubules wi th the withdrawing 

plasmalemmai 

iii) the presence of paratnural bodies (Marchant & Robards, 1968) 

in the extracy toI?lasmic space and 

iv) the appearance of many dictyosomes and ER profiles close to 

the sites of wall ingrowth formation. 

Wall ingrowths start forming at the junction of the radial and outer 

tangential walls and continue development in a centripetal direction 

along the outer tangential wall. Throughout wall ingrowth development, 

dictyosomes with associated vesicles, profiles of ER, paramural bodies 

andmicrotubules usually occur at the sites of ingrowth formation. 
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A brief account of cytoplasmic components apparently involved in wall 

ingrowth formation follows: 

a. Dictyosomes 

The role of dictyosomes and dictyosome-derived vesicles in cell wall 

formation has been well documented inter aLia by Morre, Mollenhauer 

and Bracker (1971). It is known that wall matrix and, in some plants, 

cellulose microfibrils are generated within dictyosome cisternae or 

vesicles and delivered to growing regions of cell walls (Engels & 

Kreger, 1974; Gunning & Steer, 1975). 

The occurrence of dictyosomes close to sites of forming ingrowths 

and the observation of vesicles (apparently of dictyosome origin) 

appressed to the plasmalemma, in the present study, suggest that 

this organelle probably plays a role in wall ingrowth synthesis. 

Intense dictyosome acti vi ty near developing wall projections, has 

also been reported in cells of other plants (Gunning & Pate, 1969; 

Peterson & Yeung, 1975; Schnepf & Pross, 1976; Briarty, 1978; 

Yeung & Clutter, 1978; Fineran, 1980). In leaf blade epidermal 

cells of other seagrasses such as Cymodocea serrulata and ThalCl3sia 

herrrpri chi i (Doohan & Newcomb, 1976) and Zos ter a . capensis (Barnabas 

et al~ 1977, 1982) high c;1ictyosome activity associated with wall 

ingrowth formation was noticed. 

b. Endoplasmic Reticulum 

The role of ER in the synthesis or transport of cell wall material 

(polysaccharides) is not yet understood, Bowles & Northcote (1972, 

1974) have proposed a direct role for the ER in hemicellulose 
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biosynt he sis . ~le stafer a n d Brown (19 76) nave implicated the ER in 

the synthe s i s and secretion of secondary wall materials. However, 

Ray et a~ (1969, 19 76) did not find any evidence fora direct role 

of tne ER in hemicellulose synthesis. 

The occurrence of ER in regions where wall ingrowths form and the 

close association of ER wi th forming ingrowths in the present study 

suggest that the ER might be involved in the synthesis of wall 

material in epidermal cells of H. ovaZis. 

In developing wall ingrowths of transfer cells in the leaves of 

Lincwia (Cresti, Ciarilpolini & Kapil, 1983), the suspensor of 

Phaseo~us coccineuB (Yeung & Clutter, 1978) and in leaf blade 

epidermal cells of Zoster a ccpensis (Barnabas et al~ 1977, 1982) a 

similar relationship between ER and developing wall ingrowths has 

been reported. 

c. Plasmalemma 

There is evidence which suggests that cellulose biosynthesis and 

microfibril asse!llbly occur at the cell surface, probably in 

association with multi-enzyme complexes on the plasma membrane 

(Willison & Brown, 1978; Mueller et al ~ 1976). According to 

Gunning and Steer (1975) the cellulose synthesizing systems probably 

originate in the Golgi apparatus and are transported to the 

plasmalemma by the golgi vesicles. 

In addition to the probable role of the plasmalemma in the synthesis 

of wall materials, the plasmalemma in the present study appeared to 

have an influence on the morphology of the wall ingrowths. Often 

plasmalemma invaginations preceded wall ingrowth formation and 

developing wall ingrowths closely resembled the shape of the 
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invaginated plasmalemma. 

A similar phenomenon was reported in developing wall ingrowths of 

leaf blade epidermal cells of Zo ster a capensis (Barnabas et d " 

1982). According to Gunning and Steer (1975) the morphology of the 

plasmalemma predicts the morphology of the wall. 

d. Microtubules 

Prior to and during wall ingrowth formation microtubules were often 

observed adjacent to the plasmalemma. This feature has also been 

reported in developing wall ingrowths in leaf blade epidermal cells 

of Zostera capensis (Barnabas et aZ" 1982). Functions attributed 

to the microtubules in this situation include the possible for::lation 

of extracytoplasmic spaces prior to wall ingrowth development 

(Schnepf, 1974) and the formation of wall ingrowths in the tra;-,sfer 

cells of some plants (Tu & Hiruki, 1971; Jones & Northcote, 197 2). 

Microtubules have been implicated in lifting off the plasmale~a 

in the sieve cells of the needle trace of Pinus rcdiata .. (Sing:: I 

1984) during growth of the cell wall. Microtubules were also 

evident alongside the plasmalemma during differentiation of the ·,.,ralls 

of the pedestal cell of Utricularia monanthos (Fineran, 1980) 

prior to ingrowth formation. 

It is probable, in the present study, that microtubules functic~ in 

lifting off .the plasmalemma from the cell wall thereby creating 

extractyoplasmic spaces prior to wall ingrowth formation. 

e. Paramural Bodies . 

Paramural bodies (Marchant & Robards, 1968) are a common feature in the 
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extracytoplas mic spaces of young epidermal cells of H. ovalis whose 

outer tangential walls are undergoing changes in thickness prior to 

wall ingrowth formation. These bodies probably contribute material 

to the differentiating cell walls as suggested by Chafe (1974). 

The close association of paramural bodies and other membranous 

structures with developing vvall ingrowths in the present study 

suggests that they also contribute material to the forming ingrowt~s. 

Occasionally conspicuous multi vesicular structures containing nume~=us 

paramural bodies were observed in close association with developinq 

wall ingrowths. According to Jones and Northcote (1972) paramural 

bodies are a form of increased plasmalemma essential for the synthesis 

of wall materials for ingrowth formation. 

Paramural bodies have also been implicated in wall ingrowth format~=n 

in Zostera capens~s (Barnabas et al~ 1982) and in transfer cells 0= 
other plants (Tu & Hiruki, 1971; Jones & Northcote, 1972; Peters==-. & 

Yeung,1975; Newcomb & Peterson, 1979). 

2. Mitochondria 

Mitochondria, although not actively involved in formation and subseque~~ 

development of wall ingrowths, play an important role with regard to t:= 

function of the wall-membrane apparatus (see later). Mitochondria 

showing little development of cristae are fairly well distributed in t:= 

cytoplasm of young epidermal cells of H. ovalis. With progressive 

growth of the epidermal cells and formation of wall ingrowths, the 

mitochondrial population increases and becomes peripherally distribute .:: 

in the cytoplasm. In mature epidermal cells with well formed ingrowths , 

mitochondria with well-defined cristae lie closely juxtaposed to the 
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ingrowths. 

Studies concerning the development of the suspensor of PhaBeolus 

ooccineus (Yeung & Clutter, 1978) indicated a concomitant increase in 

mitochondrial numbers with the formation of wall ingrowths. According 

to these workers the close association of the mitochondria and wall 

ingrowths implies that energy is necessary for the transport of solutes 

across the plasmalemma. Mitochondria are prominen.t after wall ingrowth 

formation in the pedestal cells of the external glands of Utriaular>ia 

monanthos (Fineran, 1980). Mi tochondrial- wall ingrowth associations have 

also been noted in the A-type transfer cells of the minor veins of 

Linar>ia (Cresti, Ciampolini & Kapil, 1983), in transfer cells of the 

digestive glands of PinguiauZa (Heslop-Harrison & Heslop-Harrison, 1981) 

and in leaf epidermal transfer cells of Zostel'a capensis (Barnabas et aZ~ 

1977, 1982). 

3. Chloroplasts 

In the mature leaf epidermal cells of H. ovalis, chloroplasts, like 

mitochondria, remain the dominantorganelles in the cytoplasm when wall 

ingrowths form. As seen in the study of the development of the epidermal 

cells, chloroplasts are derived from proplastidswhich are characteristic 

of young cells. Various stages in the transformation of proplastids 

into chloroplasts were observed and these transformations resembled 

those of terrestrial plants (Thomson & Whatley, 1980). The development 

of the chloroplasts in H. ovalis occurs via the following stages, 

proplastid young chloroplast mature chloroplast. Proplastids 

containing prolamellar bodies are characteristic of etioplasts (Rascio 

et aZ 1984) and are common in very young leaves totally enclosed in the 
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vege tative b uds of H. ovalis . 

Prolamellar bodies were also noticed in de veloping chloroplasts of leaf 

blade epidermal cells of Cymodocea rotundata ~ Cymodocea serrulata and 

ThalOBsia hempr i chii (Doohan & Newcomb, 1976), Zoster a capens1.- s 

(Barnabas et al~ 1977) and Posidonia oceani ca (Colombo et al~ 1983). 

Fine structure of mature chloroplasts of H. ovalis closely resembles 

those of other seagrasses studied. 

The poorly developed peripheral reticu l um system seen in H. ovali s is 

similar to that of other seagrasses studied (Barnabas, 1982, 1983b; 

Doohan & Newcomb, 1976). A peripheral reticulum system is associated 

with C
4 

plants, particularly grasses (Rivera & Arnott, 1982) and has been 

implicated with high photosynthetic activity. 

Regions of low electron density, Le., nucleoid areas (Ris & Plaut, 1962) , 

were observed in most stages of chloroplast development, represent the 

genetic s ystem of the chloroplasts. 

4. Probable Functions . of the Wall-Membrane · Apparatus 

The cytoplasmic specializations of transfer cells whi ch include wall 

ingrowths, ens heathing plasmalemma and associated mitochondria, have been 

referred to as the wall-membrane apparatus by Gunning and Pate (1969). 

As mentioned previously, transfer cells are thought to have absorptive 

and/or secretory func·tions. They are believed to be involved in the 

short distance transport of solutes with minimal movement of water (Pate & 

Gunning, 1972). Wall ingrowth formation seems to coincide with intensive 

solute transport, but as compared with the development of the cell as a 

whole, the ingrowths develop fairly late. Gunning and .Pate (1969) 

reported that the secretory cells of the e xtra-floral nectaries of 
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Vi ciafaba L. do not form ingrowths until sugar secretion starts. In 

addition, the epithelial cells of the septal nectaries of Gasteria 

Al-oe also develop wall ingrowths before the secretion phase (Schnepf & 

Pross, 1976). 

In leaf blade epidermal cells of H. ov al-is wall ingrowth formation occurs 

late in the development of the epidermal cells, probably just before 

the onset of intensive sblute transport. Initiation of ingrowths appears 

to be correlated with chloroplast development. Wall protuberances start 

forming when the chloroplasts possess well-developed membrane systems 

in their stroma. Presumably at this stage of chloroplast development 

photosynthate becomes available for export and this acts as a stimulus 

for the formation of ingrowths. 

The enlarged plasmalemma would expedite the transfer of photosynthate 

from the epidermis {the main photosynthetic tissue) to the interior 

tissues of the leaf. Apoplastic movement of photosynthate probably 

occurs since discontinuous plasmodesmata interconnect mature epidermal 

and mesophyll cells. Luttge (1971) suggested that the enlarged 

plasmalemma of transfer cells could provide more space for diffusion 

or could accommodate more membrane-bound carrier systems. It is 

interesting to note that leaf blade epidermal cells of the two species 

of Posidonia~ viz. P. austral-is (Kuo, 1978) and Posidonia sinuosa 

(Cambridge & Kuo, 1982), which do not possess transfer cell features, 

have numerous plasmodesmata which interconnect epidermal and mesophyll 

cells. In these seagrasses therefore, an enlarged plasmalemma for the 

transfer of photosynthate might not be necessary 

without invaginations. 

hence a plasmalemma 
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5. Absorption and Se c r e tion 

Physiological studie s have shown that seagrass leaves are capable of 

32 . 
absorptive and/or secretory activities. For example, P has been 

shown to be absorbed as well as excreted by the leaves of Zostera 

mari na (McRoy& Barsdate, 1970; McRoy et aZ, 1972 ) and PhyZZospaiix 

(Harlin, 1973). In addition carbon and phosphorus have been shown to be 

taken up by roots of Zostera m~ina and subsequently transferred through 

the plants to epiphytes on the seagrass leaves (Penhale & Thayer, 1980). 

Although physiological studies have not been carried out, it is possible 

that transfer cell features in leaf blade epidermal cells of H. ovaUs 

enhance absorptive and/or secretory processes of the leaves. · 

6. Osmoregulation 

Salt glands which are exposed to the atmQsphere are considered to be 

desalination devices that apparently maintain the salt balance in the 

leaves by secreting excess salts (Esau, 1977). '!he secretory cells of 

most salt glands develop wall ingrowths characteristic of transfer cells 

('!homson e t aZ, 1969; Levering & Thomson, 1971). Many halophytes of 

salt marshes and mangrove swamps possess specialized structures (salt 

glands) in their leaves for salt excretion. These include the salt marsh 

monocot, Spartina foUosa (Levering & Thompson, 1971), the halophyte, 

Tamarix aphyUa ('!homson et ciZ, 1969) and the mangrove Avicennia marina 

Shimony et aZ, 1973). 

Although marine angiosperms are constantly bathed in a salt solution, 

the leaves of the species that have been investigated so far at the 

ultrastructural level, do not appear to have structures as specialized 
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as salt glands for salt secretion. 

On the basis of an ultrastructural ·comparison with the salt gland cells 

of the salt marsh monocot, Spat'tina:> Jagels (1973) postulated that the 

leaf epidermal cells of the marine angiosperm, ThaL assia testudinum:> 

function as salt secreting cells. He suggested that salt may be either 

secreted actively across the plasmalemma of the epidermal cells or 

excluded at the membrane boundary. His hypothesis is supported by 

findings of the internal salt content of seagrass tissues. Beer et aL 

(1980) investigated the internal distribution of ions in various leaf 

tissues of HaLo:1uLe uninervis and HaZophiLa stipuLacea. They found that 

+ -the epidermal concentrations of Na . and Cl were low compared with 

+ 
ambient and tissue concentrations, indicating selective exclusion of Na 

and Cl from the epidermis. 

The leaf blade epidermal cells of H. ovaLis are probably also capable 

of osmoregulation, with the plasmalemma possibly playing a role in salt 

regulation in a manner similar to that proposed for ThaLassia. The fact 

that wall ingrowths are absent from young leaf blade cells suggests that 

osmoregulation can be accomplished without the developmerit of transfer 

wall configurations and the cytoplasmic specializations that accompany 

them. It is probable that exclusion of salt at the plasmalemma boundary 

is the main mechanism operative in osmoregulation. 

The presence of plasmodesmatal connections · between mesophyll and adjacent 

young epidermal cells and their absence in mature cells of H. ovaLis 

indicate a shift from symplasticto apoplastic transport. According to 

Jagels (1983) the loss of plasmodesmata in mature epidermal cells 

directly precedes the development of the osmoregulatory system. The 

loss of plasmodesmatal connections probably prevents the symplastic back 
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flow of salts as is the case in Thalassia testudinwn (Jagels, 1973) and 

Zostera ccpens'l-s (Barnabas et al~ 1977). 

7. Vacuoles 

In contrast to young epidermal cells, the vacuole was a prominent feature 

of mature epidermal cells of H. o7JaUs sincei t occupied most of the 

cytoplasmic area. Vacuolar contents included material of a fine fibrillar 

nature, portions of cytoplasmic matrix, myelin-like structures and 

vesicles. The presence of these structures within the vacuoles is 

suggestive of autophagic activity (Esau,1975). Evidence for the 

lysosomal function of the vacuole has been provided by many workers 

(Fineran, 1970 i Matile, 1978). 

Highly vacuolate cells, as seen in the present study, are not encountered 

in the leaf blade epidermal cells of other seagrasses. It is possible 

that the large vacuoles in H. o7JaZis probably play a role in maintaining 

the turgidity of the leaves since the leaves lack mechanical supporting 

tissue. 

8. Nucleus 

In general/changes in nuclear size, structure and position observed 

during development of leaf blade epidermal cells of H. o7JaZis resemble 

similar changes reported in cells of other plants. Nucleoli number varied 

from one to two per cell and occasionally nucleolar vacuoles were 

prominent. 

An interesting feature of some nuclei (observed both in epidermal cells 
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as we 11 as in cells of the leaf associated glands) was the presence of 

long channels which penetrated deep into the nucleoplasm. These 

invaginations were often associated with mitochondria. Nuclear 

invaginations have also been reported in reproductive plant tissues 

(Sheffield et aZ" 1979) and similar invaginations, commonly housing 

mitochondria, were observed in the sieve cells of the needle trace in 

Pinusraliata (Singh, 1984). According to Singh (1984) mitochondria are 

thought to provide energy for the formation of the nuclear invaginations. 

These are believed to increase the surface area of the nucleus presumably 

leading to an increase in activities associated with the nucleus. 

9. Lipid Bodies 

In the present study lipid bodies were common in nearly mature epidermal 

cells with developing wa~l ingrowths. In most cases the lipid bodies were 

closely associated with mitochondria and chloroplasts. Lipid bodies have 

also been reported in leaf blade epidermal cells of other seagrasses such 

as Zostera capensis (Jagels, 1983). According to Cecich (1979) lipid 

bodies serve as energy reserves and their close association with other 

membranous structures suggests that these bodies are a source of membrane 

lipid. Studies in jack pine apices indicated that lipid bodies may 

contain phospholipid precursors for membrane synthesis (Cecich, 1979). 

10. Cell Wall 

As reported in other seagrasses, leaf blade epidermal cells are covered 

by a thin cuticle. The cuticle of H. ovaZis does not appear to be 
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perforated as in Zostera mCl'f'ina (Gessner, 1968, 1971), Posidonia 

austr dis (Kuo, 1978) and ThaZaBsodendron citiatum (Barnabas, 1982). 

The cuticle probably serves a protective function, possibly protecting 

the leaf blades against damage from abrasive sand particles and epiphytes 

associated with leaves. 

As seen in mature epidermal cells the outer tangential cell wall has an 

interesting structure. The narrow darkly staining layer bordering the 

extracytoplasmic space, as seen in the present study, is a common feature 

of the walls of ThaZOBsodendron citiotum (Barnabas, 1982), HaZo:1uZe 

uninervis (Barnabas & Kasavan, 1983b) ,ThaZOBsia testudinum (Jagels, 

1973) and Zostera ccpensis (Barnabas et aZ~ 1977). In H. ovaZis and 

Zostera capensis (Barnabas et aZ~ 1977) wall ingrowths have been reported 

to arise from this layer. This intensely-staining layer forms a continuous 

band and is probably a form of secondary wall deposited on the inner face 

of an ordinary wall. Wall ingrowths are regarded as a specialized form 

of secondary wall (Pate & Gunning, 1972) and their continuity with the 

intensely staining border supports the conclusion for the secondary nature 

of this layer. 

In most marine angiosperms, the inner half of the outer tangential wall 

has a characteristic striated or lamellated appearance. According to 

Birch (1974) the striated nature of the epidermal cell walls of 

H. ovaZis and a Cymodoce a sp. resemble the collenchymatous cell walls in 

land plants. 

The outer region of the cell wall is comprised of a narrow intensely 

staining layer inside the cuticle and a non-s triated layer (Fig. 103). 

A similar narrow intensely-staining layer in the outer epidermal cell 
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walls of Zos tera capensis (Barnabas et al~ 1977) was found to be 

composed of pectins. Histochemical observations in H. ovalis indicated 

that the walls are rich in pectins (Fig. 17). Investigations by Maeda 

et al (1966) on cell wall constituents, especially pectic substances 

in the leaves of Zoster a marina revealed that the methoxyl conter:t of 

the pectic substance was very low compared to that of terrestrial plants 

and that an ester-like sulphate was also present. Because of tr~s unusual 

chemical composition,these investigators suggested that the pectic 

substance might be concerned with ionic absorption.. The cell wa:ls of 

H. ovalis could therefore play an important role in ionic absor~tion. 
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11. Annu li in ou ter ep idermal ce 11 wa 11 

Solereder(1913) was the first to notice and comment on the unusual 

surface structural features in leaves of H. ovaZis, He described them 

as "weak places" of the epidermal ceJ,.ls. Subsequently Birch (1974) 

described briefly the structure of the annuli. The present investigation 

has provided more information about the distribution and structure of the 

annuli. 

Annuli are known to occur in leaf blade epidermal cells of other species 

of HaZophi la but. are not present in the leaves of other seagrasses such 

Cymodocea, EnhaZus, Ha ZoduZe, Syringodium, ThaZassi a and Zostera (Birch, 

1974). To date annuli have not been found in epidermal cells of other 

seagrasses. 

Franke (1969) and Yamada et al (1966) have suggested that annuli may represent 

ves tiges of stomata since functional stomata are not needed in marine 

angiosperms. However, this s eems to be unlikely owing to the regularity 

of their occurrence in almost all the epidermal cells. Another explanation 

of Franke (1969) is that the annuli could represent vestigial scars of 

tr i chomes such as those found in Ha Zophi la deci piens on the leaf scales and 

spathe. This is also unlikely since the leaves of H. ovaUs are ,glabrous. 

The exact function of the annuli is not known. On the basis of the 

reaction with silver nitrate , it would appear that the annuli represent 

sites of chloride accumulation. A similar conclusion was also reached by 

Birch (1974). Further evidence that the annuli could represent sites of 

solute accumulation or secretion is the fact that the annuli occur in close 

proximity to the well-developed wall membrane apparatus in the outer wall 

of leaf blade epidermal cells. As mentioned earlier this region probably 

represents a site of intense solute fluxes. 
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Further evidence for a physiological role of the annuli is seen in the 

comparison of the annuli with the hydropoten of aquatics. Hydropoten are 

localized regions of irregular flat cells on the undersurface of floating 

leaves or on submerged leaves in the Alismataceae, Apogetonaceae, 

Hydrocharitaceae and Potamogetonaceae but are absent in seagrasses (Mayr, 

1915). Functions ascribed to these structures are: 

a. they are regions of localized salt uptake or sites of ion exchange 

which may involve active transport; 

b. they are regions which probably facilitate either water loss or 

water uptake. 

The annuli and hydropoten although variable in structure probably function 

as regions of localized salt uptake. 

It is probable that the annuli play a role in maintaining the salt' 

balance in the leaves by preventing the entry of excess salt into the 

epidermal symplasts. The presence of annuli in leaf blade epidermal cells 

of species of HaZophiZa represents an unusual structural feature in the 

leaves of seagrasses. 



53. 

12. Intercellular Structure 

':lhe unusual struc·ture seen in an intercellular air-space of a mature 

leaf of h . ovalis is probably an alga orientated in the direction of 

the longitudinal axis of the leaf. Membranes with parallel arrange

ment, soneribosomes and snall vesicles are visible in this 

apoplastic structure. ' The membrane system which resembles thylakoid 

membranes of an algal chloroplast is not enclosed by a double membrane 

envelope. This suggests that the intercellular structure may be a 

prokaryote, possibly a blue-green alga. The presence of the organism 

in the air-space is not of common occurrence and has only been 

observed once in the present study. 

A number of workers (Hilson & Mahl berg, 1980; Dell et aZ~ 1982) have 

reported the presence of intercellular structures in plants. There 

are reports of fungi and bacteria in air-spaces of certain aquatic 

plants (Kohlmeyer & Kohlmeyer, 1979, Kuo et aZ~ 1981). However, 

very little information is available on the occurrence of inter

cellular structures in marine angiosperms. 

Kuo (1984) reported the presence of fungal hyphae in the leaf 

apoplast of the subtidalform of the seagrass Zos tera rrrueZ-Z-eri . 

. He suggested that the apoplastic fungus and seagrass derive mutual 

benefit from each other. The fungus obtains nourishment for 

development via apoplastic solute transport and oxygen from the air 

lacuna system. The extensive network of hyphae of the apoplastic 

fungus is thought to enhance solute transport between the leaf 

epidermal cells and sieve tubes, the epidermal cells being the main 

si tes of photosynthesis. .The intercellular structure in the air-
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space s ystem of the l e af o f H. ovalis apparently does not form 

an extens ive network as the fungus in Zos t era muel leri. 

Although the intercellular structure in H. ovalis apparently does 

not form an extensive network as the fungus in Zos tera muelleri, 

its presence might confer the same mutual relationship as suggested 

byKuo (1984). 
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v. ULTHASTHUCTUPEOF THE SQU':;MULAE INTRAVAGINALES 

Introduction 

Irmisch (1858) first reported the presence of axillary scales, termed 

I squarnulae intravaginales I, which are characteristic of many families of 

aquatic monocotyledons belonging to the order Helobiae. The squamulae occur 

in the axils of foliage and scale leaves (including prophylls and cotyledons) 

" . " 

and may also be associated with bracts. They are seldomly associated with 

the floral parts of the plant. 

In the vegetative buds of H. ov dis the squamulae develop early and are 

commonly found associated with very young leaves. However, in E~odea the 

squamulae appear late during bud development and according to Dale (1957) 

the delay in their appearance may be due to the unusual shape of the shoot 

apex. 

Studies concerning the frequency and distribution of the squamulae in the 

Eelobiae include those by iJilder (1975), Gibson (1905) and Arber (1923, 

1925) . The fine structure of the squamulae in E~odea ccnalensis and 

Potanogeton perfoliatus was described by Rougier (1965). Other aspects 

of study of the squamulae are those by Dale (1957) ,Wilder (1974) and 

Ancibor (1979). 

The present ultrastructural study of the squamulae of H. ova~is was 

initiated because no information is available on the fine structure of 

squamulae in marine angiosperms. In addition, the proximity of the squamulae 

to the foliage leaves in vegetative buds, facilitated the investigation of 

their ultrastructural morphology and probable functions. 
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Results 

In the present investigation only squamulae associated with young developing 

leaves in the vegetative buds were examined, because the squamulae in the 

axils of older leaves fall off as the leaf matures. Figures 122 and 123 

(arrows) show the position and size of the squamulae relative to developing 

young leaves in partially dissected vegetative buds. The squamulae of 

H. ovaZis are sessile or subsessile membranous structures situated at the base 

on either side of each leaf. These membranous scales , arise from the axis 

in pairs on either side of each pair of leaves. The scales are ovoid

elliptical in shape" approximately 0 ,5 mm long, 0,2 nun wide and are 

comprised of two layers of cells orientated in the direction of the leaf 

axis (Fig. 121). They are non-vasculated. Squamulae cells are similar in 

shape and composition. In cross-sectional view the cells are cuboidal in 

shape (Fig. 121) whereas in longitudinal section they are longer than 

broad (Fig. 125) . 

Fine structure of the squamulae cells revealed interesting features 

characteristic of glandular or secretory tissues. The most striking feature 

of the cells is their organelle-rich cytoplasm and pronounced accumulation 

of material (probably mucilage- see later) between the plasmalemma and cell 

walls (Fig. 124). The density of the cytoplasm is due to the presence of 

numerous ribosomes (Fig. 126, small arrow) and organelles (Fig. 125, arrow). 

Many ,dictyosomes, mitochondria, RER cisternae and some plastids are observed 

in the cytoplasm (Fig. 124). The dictyosomes and RER cisternae appear to 

be the most active and abundant structures in the cytoplasm (Fig. 124). 

TI,enucleus, although fairly large, does not dominate the area of the 

cytoplasm (Fig. 124). Areas of heterochromatic material are evident in the 

nucleoplasm (Figs. 124, 125). Many mitochondria, varying in cross-sectional 
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profile from circular to oval (Fi gs . 124, 133) occur in the cytoplasm . 

Plastids are not numerous, the s hapes vary from round to elongate depending 

on the plane of section (Fig. 133). These plastidsare more electron dense 

than the surrounding cytoplasm (Fig. 133). Little development of the internal 

lamellar s ystem is seen in the p lastids of Figures 132, 133 (arrows). 

Plastoglobuli are a commonreature of the plastid stroma (Figs. 132, 133). 

Dictyosomes are numerous and have a tendency to occur close to those parts 

of the cells where extruded material has accumulated between the plasmalemma 

and cell walls (Fig. 124). Each dictyosome is highly stacked with an 

average of 12-14 cisternae per stack (Fig. 126). There is distinct 

polarisation of their structure comprising a forming face (arrow) and a 

maturing face (arrow head) as seen in Figure 126. Tne maturing face has a 

curved appearance (Fig. 126, arrow head) and bears a number of cisternae 

of varying sizes. The large production of vesicles at the dilated edges of 

the cisternae is indicative of a high degree of activity of the dictyosomes 

(Figs. 124, 126). 

Another conspicuous structural component of the squamulae cells is the well

developed endoplasmic reticulum especially of the rough type (Figs. 124, 126). 

Rough Endoplasmic Reticulum is abundant in squamulae cells. Often ER 

cisternae appear swollen (Figs. 129, 131, 132). 

By a cbncentrical arrangement of numerous RER cisternae, the RER frequently 

forms myeline-like structures (Fig. 133). This concentric arrangement of 

the RER cisternae also occurs around the nucleus (Figs. 124, 130). Deep 

invaginations of the nucleus are lined with RER cisternae (Fig. 130). Short 

cisternae of RER appear to connect concentric ER around the nucleus with RER 

located along the periphery of the cell (Fig. 124, arrow). A close 

association exists between the dictyosomes and ER, the two most active 
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components of the squamulae cells (Figs. 126, 132). 

Often vesicles, probably of ER or dictyosome origin occur within the 

extruded material between the cell wall and plasmalermna (Figs. 127, 128). 

Lipid bodies are sparse in squamulae cells (Fig. 131). 

As mentioned earlier, a characteristic feature of squamulae cells is the 

accumulation of material within the prominent extracytoplasmicspaces 

between the cell walls andplasmalermnwespecially at the corners of the 

cells. Transverse sections of vegetative buds treated with Alcian Blue and 

Alcian Yellow showed that this accumulated material within the cells (e.g. 

Figs. 124, 125; 135, 136, arrows) and around the squamulae (Figs. 129 I 

arrow heads; 135, 136, arrow heads) was positive to Alcian Yellow. This 

suggests that the material is carbohydrate-like in nature and is probably 

mucilage. Since Alcian Yellow is specific for acid non-sulphated poly

saccharides it is possible that the mucilage is composed mainly of acid 

non-sulphated polysaccharides. The homogeneity of the mucilaginous substance 

is more or less consistent in the squamulae cells. 

The outer cell wall of squamulae cells is thicker than radial and inner 

tangential cell walls (Figs. 124, 129). Plasmodesmatal connections between 

adjacent squamulae cells are visible in the radial cell walls only (Figs. 124, 

126). With further development of the cells, parts of the radial cell walls 

begin to disintegrate (Fig. 129, arrow). The plasmalermna does not follow 

the outline of the cell walls (Fig. 124). 
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Discussion 

This study has shown that the cells of the squamulae intravaginales have 

structural features similar to those of secretory cells. The presence of 

extruded material probably mucilage, within the extracytoplasmic spaces 

especially at the cell corners as well as around the squamulae, is 

indicative of the secretory function of these cells. 

A striking feature of the squamulae cells is the large population of 

dictyoSOines and profiles of RER in the cytoplasm. The highly-stacked 

dictyosomes together wi ththe many dictyosome-deri ved vesicles suggests a 

high level of activity. The occurrence of dictyosomes especially in the 

peripheral regions of the cells suggests that they may play a role in 

secretion. Dictyosomes have been implicated in mucilage secretion in many 

plants (Mollenhauer & Morre 1966, Fahn 1979, Fineran & lee 1974). 

A close association exists between the dictyosomes and ER in squamulae cells. 

'TIle presence of ER cisternae close to the forming face of some 'dictyosomes 

indicates a membrane flow from the ER to dictyosome (Fig. 126, arrow). This 

step in the endomembrane system (Morre et aL~ 1971) is well documented in 

animals and lower plants and has only recently been reported to occur in 

higher plants (Robinson & Hammerl, 1980). ER and dictyosome relationships 

in this study appear to be in line with the endomembrane concept. It is 

possible that the extensive profiles of ER in squamulae cells also play a 

role in secretion. Involvement of ER in polysaccharide production has been 

suggested for some secretory structures (Werker & Kislev, 1978). 

Although histochemical tests for the presence of proteins in the extruded 

mucilage from the cells were not carried out it is possible that RER 

elements are associated with the bulk production of protein, an of ten-



6 0 . 

reported component of mucilage. The relationship betwe.en RER and bulk protein 

production in secretory cells has been reported by Gunning and Steer, 1975; 

Werker and Vaughan,1976. The occurrence of numerous ribosomes in the 

cytoplasm also indicates enhanced protein synthesis in these cells. 

Concentric rings of ER, as seen in the present study, has also been 

recognised in young club-shaped trichomes of potato (Lyshede, 1980) and in 

apical meristematic cells of dormant potato tuber buds (Marinos, 1967; 

Shih & Rapport, 1971; Lyshede, 1980). According to Lyshede (1980), 

concentric rings of ER are probably temporary structures since they 

disappear or are transformed into normal ER during maturation of the cells. 

The deep nuclear invaginations observed sometimes in cells of the squamulae 

have also been encountered in secretory cells , associated with latex ducts 

in MarrmiUat'iaguerreronsis" a member of the Cactaceae. (Wittler & Mauseth, 

1984). These inYagitlations are believed to increase the surface area of 

the nucleus, presumably leading to an increase in activities associated with 

the nucleus. 

Mitochondria are well distributed in the cytoplasm of the squamulae cells. 

According to Liittge (1971) high mitochondrial numbers appear to be a 

characteristic feature of secretory cells. Involvement of mitochondria has 

been suggested for the production of slime drops in root hairs of Sorghum 

(Werker and Kislev, 1978). Mitochondria probably play a role in the 

metabolism of secretory products. 

As seen in the present study, the plasmalemma becomes detached from the cell 

walls, especially at the corners thus giving rise to extracytoplasmic 

spaces in which mucilage accumulates. Such spaces, filled with secretory 
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products between the cell wall and plasmalenuna, are conunon in secretory 

cells (Fahn, 1979). 

Dissolution of the radial walls of · the squamulae cells of H. ovaZis parallels 

the accumulation of secreted mucilage in the extracytoplasmic spaces. 

Similar observations have been reported in Hibiscus during pedicel abscission 

(Gilliland et ai, 1970) and in the · extrafloral nectariesof PZumeria rubra 

(Mohan & Inamdar, 1986). Mucilage accumulation between the cell wall and 

protoplast also occurs in mucilage cells of Opuntia ficus-indica (Trachtenberg 

& Fahn, 1981), in the glands of MirrruZus tiZingii (Schnepf, 1976) and in the 

extrafloral nectaries of PZumeria rubra (Mohan and Inamdar, 1986). 

According to Morre et aZ (1967) this feature occurs in cells with reduced 

turgor. Progressive growth of the squamulae cells of H. ovdis is coupled 

with increasing mucilage production. Eventually the whole protoplast 

degenerates thus providing space for the copious mucilaginous secretion. 

The results of this ultrastructural study as well as histochemi"cal tests, 

strongly support the conclusion that the squamulae intravaginales of 

H. ovaZis serve as secretory organs. Histochemical tests have shown that 

mucilage is probably the principal secretory product. The function of 

mucilaginous secretions in aquatics is not clear. It has been postulated 

that the secretion inhibits the growth of micro-organisms favoured by the 

wet conditions (Schilling, 1894). It is probable that. the mucilage in the 

squamulae of H. ovdis act as a dete.rrent against invasion by micro

organisms. The squamulae may also act as close packing organs which fill 

the . spaces between developing leaves (Tomlinson, 1982). 
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VI. CONCLUSION 

This investigation has shown that H. ovaZis possesses structural features 

that are in general, similar to those of other marine angiosperms. The 

most striking morphological differences between H. ovaUs and other 

seagrass genera are: i. the petiolate leaves; and ii. the ovate to 

elliptical-shaped leaf blades (unlike the grass-like leaves typical of 

the other seagrasses) • 

Like other seagrasses and submerged fresh water aquatics in general, 

leaves have a simple anatomy. The xylem is greatly reduced ,phloem is 

well-,-developed and a well-developed air-space system is present. The 

epidermis appears to be the main photosynthetic tissue since epidermal 

cells possess more chloroplasts than any other tissue of the leaf. 

Young epidermal cells have an organelle-rich cytoplasm with many plasmodesmata 

interconnecting adjacent epidermal and mesophyll cells. As the cells 

mature they acquire characteristics of transfer cells. Wall ingrowths 

form in cells when chloroplasts have well-developed membrane systems in 

their stroma. The plasmalemma follows the contours of the ingrowths and 

this leads to an increase in its surface area Since plasmodesmatal 

connections become discontinuous as epidermal cells mature, the enlarged 

plasmalemma probably facilitates the transfer of photosynthates from 

the epidermal cells to the interior tissues of the leaf. 

As structures such as salt glands do not exist in the leaves, osmoregulation 

seems to be accomplished by the plasmalemma of the epidermal cells. 

The enlarged plasmalemma in mature cells probably leads to an increase 

in the osmoregulatory capacity of the cells. An enlarged plasmalemma 
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might also enhance absorptive and/or secretory activities between the 

epidermal cells and surrounding sea water. 

Unlike other seagrasses, unusual ring-like structures called annuli 

occur in the outer wall of leaf blade epidermal cells. On the basis 

of their histochemistry, it would appear that the annuli represent sites 

of chloride localization. The annuli are probably the equivalent of salt 

glands of.· terrestrial halophytes. 

Although the leaves of H. ovalis lack lignified strengthening tissues, 

support of the leaf blades appears to be accomplished by the thickened 

outer wall of the epidermal cells. In addition, the greatl.y thickened 

outer wall. cf epidermal cells of the petiole probably offers further 

support to the leaf blades. 

studies of the squamulae intravaginales showed that their cells. have 

features in common with secretory cel.l.s. Material extruded from the 

cells accumul.ates within large extracytoplasmic spaces at the cell 

corners, as well as outside the cells. On the basis of histochemical 

tests the extruded material appears to be mucilage. 

This investigation of the structure of leaf blade epidermal cells and 

squamulae intravaginales of the marine angiosperm, H. ovalis has 

contributed to our understanding of structural features in this unusual 

group of vascular plants which have successfully invaded the sea from 

the land. 
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SUMMARY 

The structure and histochemistry of leaf blade epidermal cells and 

leaf-associated axillary scales (squamulae intravaginales) of the 

marine angiosperm, H. ovalis, were investigated by light,scanning and 

electron microscopy. The epidermis appears to be the main photosynthetic 

tissue because the cells possess more chloroplasts than any other tissue 

of the leaf. Mature epidermal cells possess transfer cell features since 

wall ingrowths and an invaginated plasmalemma with closely-associated 

mitochondria are present. Developmental studies have shown that wall 

ingrowths form in cells when chloroplasts have well-developed membrane 

systems in their stroma . 

. Since structures such as salt glands do not exist in the leaves, 

osmoregulation seems to be accomplished by the plasmalemma of the 

epidermal cells. The enlarged plasmi3.1emma probably also results in an 

increase in the osmoregulatory capacity of the cells. Unusual ring-like 

structures (called annuli) in the outer wall of leaf blade epidermal 

cells may also have a role in salt regulation. On the basis of their 

histochemistry, the annuli appear to represent sites of chloride 

localization. 

Squamulaeintravaginales, which are closely associated with the bases of 

young leaves, are non-vasculated scale-like structures only two cells in 

thickness. The cytology of their cells suggests that they have features 

in common with secretory cells. Material extruded from the cells 

accumulates within large extracytoplasmic spaces at the cell corners as 

well as outside the cells. On the basis of histochemical tests, the extruded 

material appears to be mucilage. 
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This investigation of the structure of leaf blade epidermal cells and 

squamulae intravaginales of the marine angiosperm H. ovalis/ has 

contributed to our understanding of structural features in this 

unusual group of vascular plants which have successfully invaded the 

sea from the land. 
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