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Abstract

In this study, the steady flow of a second grade magnetohydrodynamic fluid in a porous

channel is investigated. We further investigate the hydromagnetic flow of a second grade

fluid over a stretching sheet. The partial differential equations that describe the flows are

solved numerically using the bivariate spectral quasilinearization method. The method is

extended to a system of non-similar partial differential equations that model the steady

two dimensional flow of Falkner-Skan flow of an incompressible second grade nanofluid.

The work is also concerned with heat and the mass transfer from the electrically conduct-

ing second grade magnetohydrodynamic fluid over a stretching sheet. The sensitivity of

the flow characteristics with respect to the second grade fluid parameter, magnetic field

parameter, thermal radiation parameter, and the chemical reaction parameter are inves-

tigated. The accuracy of the numerical method is determined using the residual error

analysis.
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Chapter 1

Introduction

Newtonian and non-Newtonian fluids have been studied extensively, although there are

research gaps that still need to be investigated. The fluid types differ in that Newtonian

fluids have a constant viscosity for a given set of conditions while non-Newtonian fluids

may have a viscosity that depends on the applied external force. In their behaviour and

nature, Newtonian fluids are described by simpler mathematical equations as compared to

non-Newtonian fluids. Examples of Newtonian fluids include, but are not limited to, liquids

and gases such as water, organic solvents and air. Fluids such as brine, polymer solutions,

certain oils and greases, and many emulsions are classified as non-Newtonian fluids [1].

Non-Newtonian fluids give a nonlinear relationship between stress and the rate of strain

at any point in the flow. Due to the different physical structures found in non-Newtonian

fluids, a single constitutive model can not present all the prominent characteristics of

such fluids. In general, each non-Newtonian fluid has its own mathematical constitutive

equation. Viscoelastic fluids are an important class of non-Newtonian fluids, in which

viscosity may depend upon deformation rate and elastic behaviour. The most commonly

used and simplest subclass of viscoelastic fluids is referred to as second grade fluids. The

viscoelasticity leads to an increase in the order of differential equation(s) characterizing

the flow. Second grade fluid problems are challenging to solve because the nonlinearity

occurs not only in the inertia part of the equations but also the viscous terms. For this rea-

son, inverse methods have been used in the study of non-Newtonian second grade fluids [2].
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In the next sections, Newtonian and non-Newtonian models are discussed in detail. These

sections focus on the description of the two broad categories of fluids, coupled with a

review of the work that has been done on the flow and applications of these fluid types.

We further discuss first, second and third grade fluids outlining their differences and the

equations that differentiate the three models. This is followed by Falkner-Skan fluid flow,

heat and mass transfer, stretching flow in non-Newtonian fluids, methods for solution of

fluid flow equations, residual error and convergence, and finally the motivation for this

research and the research objectives.

1.1 Newtonian fluids and non-Newtonian fluids

A Newtonian fluid is a power law fluid with a behaviour index n = 1, where the shear

stress, τ is directly proportional to the rate of strain, that is,

τ = µ
∂u

∂y
,

where µ is the fluid viscosity, u is the fluid velocity and y is the distance in the normal

direction. For a contant temperature, these fluids have a constant viscosity, regardless of

the shear stress applied. Common examples of Newtonian fluids include water, organic

solvents, glycerine, air, honey, and other gases [3]. For Newtonian fluids, figure 1.1 shows

an increase in stress with increasing shear rates, where the slope is the viscosity of the fluid.
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Figure 1.1: Behaviour of Newtonian, shear thinning and shear thickening fluids as a func-
tion of shear rate [4].

Sakiadis [5, 6] was the first to study a two dimensional, axisymmetric boundary layer flow

over a stretched surface moving with constant velocity. Both exact and approximate solu-

tions were presented for laminar flow with the latter obtained using the integral method.

Crane [7] was among the first researchers to consider a steady boundary layer flow of a

viscous incompressible fluid over a linearly stretching plate and gave a similarity solution

in closed form. Rajagopal et al. [8] studied the flow of an incompressible second grade

fluid past a stretching sheet. For varying elastic parameter values, it was found that the

boundary layer thickness increases with the increase in the elastic parameter. For indus-

trial applications, this showed the presence of normal stress inside the boundary layer.

Chakrabart and Gupta [9] studied the magnetohydrodynamics flow of a Newtonian fluid

initially at rest over a stretching sheet. Wu [10] carried out a comprehensive theoretical

study of the flow behaviour of both single and multiple phase non-Newtonian fluids in

porous media. A Buckley-Leverett type analytical solution for one-dimensional, immisci-

ble non-Newtonian fluids in porous media was obtained. Moreover, an integral method

was used to solve the equations of the transient flow of Bingham fluids in porous media.

Simpson and Janna [11] studied power law fluids (pseudoplastic and dilatant), and Bing-

ham fluids, and compared their solutions to those of Newtonian fluids for laminar flow in

a circular duct. The velocity profiles for Newtonian and non-Newtonian fluid flow in a

circular duct were described and sketched. Chamkha et al. [12] investigated the effects
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of a chemical reaction on unsteady free convective heat and mass transfer on a stretching

surface in a porous medium. The equations were solved numerically using a fourth or-

der Runge-Kutta scheme with the shooting method. A parametric study illustrating the

effects of various parameters on the flow and heat and mass transfer characteristics was

performed. It was found that the skin friction coefficient increased as a result of increasing

the unsteadiness parameter, suction/injection parameter, Prandtl number, Schmidt num-

ber, or the chemical reaction parameter. The Nusselt number was also predicted to increase

due to increases in the Prandtl number, suction/injection parameter, or the unsteadiness

parameter, and to decrease as either the chemical reaction parameter or the Schmidt num-

ber increased. The results obtained show that the flow field is influenced appreciably by

the presence of the unsteadiness parameter, chemical reaction parameter, permeability

parameter, and suction/injection parameter. Bhattacharyya et al. [13] used Lie’s scaling

group of transformations to study the flow of a Newtonian fluid over a stretching sheet

with a chemically reactive species and first-order reaction. The reduced self-similar or-

dinary differential equations were solved by means of the finite difference method and

Thomas algorithm. For the velocity field the exact solution was obtained while, for the

concentration distribution, a numerical solution was found. However, the results showed

that the concentration boundary layer thickness decreases with an increase in the Schmidt

number as well as the reaction-rate parameter. Gireesha et al. [14] analyzed the influ-

ence of magnetohydrodynamic effects on melting in boundary layer stagnation-point flow

of an electrically conducting nanofluid along a stretching surface. The nonlinear partial

differential equations were transformed into ordinary differential equations using suitable

similarity transformations. Using the Runge–Kutta–Fehlberg method, the transformed

equations were solved numerically. The effect of flow parameters on different flow fields

was determined and discussed in detail. For some limiting cases, the numerical results were

found to be in good agreement with previously published results. It was also found that

the induced magnetic field and temperature distributions increased with the strengthening

of the hydromagnetic field. Mabood et al. [15] obtained an approximate solution for the

MHD boundary layer flow of a viscous incompressible fluid over an exponentially stretching

sheet. Through suitable similarity transformations, the flow equations were transformed

into a system of nonlinear ordinary differential equations. The homotopy analysis method
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(HAM) was used to solve the equations that describe the effects of radiation inside the

hydrodynamic boundary layer. For some special cases, a comparison of the results with

those previously published showed excellent agreement. Recently, Capobianchi et al. [16]

investigated numerically, the thermocapillary motion of a Newtonian deformable droplet

surrounded by a viscoelastic immiscible liquid for a wide range of conditions. The clas-

sical Oldroyd-B model was used for relatively small values of the thermal Deborah number.

Fluids in which the shear stress is not proportional to the shear strain at a given tempera-

ture and pressure are non-Newtonian. These are placed into three broad groups based on

the behaviour of shear with stress. There are time-dependent fluids where the shear rate is

a function of both the magnitude and the duration for the stress. Time-independent fluids

are those for which the rate of shear is dependant merely upon the instantaneous shear

stress at that point. Viscoelastic fluids show partial elastic recovery upon the removal of

the deforming shear stress. Fluids that show both elastic and viscous properties are called

elastic solids. In reality, most fluids are non-Newtonian, with viscosity being dependent

on the shear rate, and so the fluids may be either shear thinning or thickening.As shown

in Figure 1.1, a fluid is shear thinning if the viscosity decreases as the shear rate increases.

Shear thinning fluids are also known as pseudo-plastics and include common fluids such as

tomato ketchup, paints, and blood. In the case of shear thickening fluids, the viscosity of

the fluid increases as the shear rate increases and include, for example, cornstarch [17–19].

1.2 First and second grade fluids

First grade fluids are considered to be Newtonian fluids. The viscosity of a first grade fluid

is constant and does not change with time. The constitutive equation (1.1) is considered

as an exact model for the classical Navier-Stokes theory. For a first grade fluid it is of the

form,
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T = −pI + µA1, (1.1)

where T is a Cauchy stress tensor, p denotes the pressure, I is the identity tensor, µ is the

coefficient of viscosity and A1 is a Rivlin-Ericksen tensor.

Non-Newtonian fluids may also be called differential type fluids. An important subclass of

these differential type of fluids is second grade fluids. Second grade fluids are the simplest

subclass because exact solutions can be found for their constitutive equations. Examples

of second grade fluids include blood, butter, starch suspension, coconut oil, shampoo, and

paints. The viscoelasticity of second grade fluids leads to an increase in the order of differ-

ential equation(s) characterizing the flow [20]. Although, it is well established that second

grade fluids do not show the shear thinning and shear thickening behavior. The general

equation of the flow is, nevertheless, highly nonlinear in comparison to the equation for

Newtonian fluids. The first model for a second grade fluids was proposed by Rivlin and

Erickson [21] in the form

T = −pI + µA1 + α1A2 + α2A1
2, (1.2)

where T, p, I and µ are as defined earlier, α1 and α2 denote the elasticity and cross-

viscosity, while A1 and A2 are Rivlin-Ericksen tensors defined by

A1 = L + LT,

A2 =
d

dt
A1 + A1L + LTA1. (1.3)

Here L is the velocity gradient, d/dt denotes the material derivative and the superscript

T indicates the transpose operation. In recent years, researchers have studied the flow

and heat transfer characteristics of viscoelastic fluids. The idea of MHD channel flows
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has generated great interest due to their applicability in cooling systems, MHD genera-

tors, pumps, and flow meters. Mohyuddin and Ashraf [22] obtained the exact solutions

of nonlinear equations describing the flow for a second grade fluid in a porous medium.

It was indicated that the velocity, stream function, and pressure are strongly dependant

upon the second grade fluid parameter. It was also shown that an increase in the second

grade parameter leads to a decrease in the velocity. Hayat et al. [23] found the analytic

solutions for a second grade fluid using the homotopy analysis method. Parida et al. [24]

studied the effect of a magnetic field on an electrically conducting second grade fluid in a

channel. Numerical solutions were obtained using the Runge-Kutta fourth order method

together with a shooting technique. Using the homotopy analysis method to obtain an-

alytical solutions, Nadeem et al. [25] studied the boundary layer flow and heat transfer

in a second grade fluid flow through a horizontal cylinder, wherein they analyzed the

influence of various parameters on velocity. Akbar et al. [26] presented a study of the

theoretical properties of a second grade fluid flow in a porous medium. Shah et al. [27]

studied the effects of the Grashof and Prandtl numbers on MHD second grade fluid flow

over a stretching sheet. The system of two dimensional partial differential equations was

transformed into a system of ordinary differential equations, which was then solved using

the homotopy analysis method. The effects of non-dimensional parameters such as the

unsteadiness parameter, film thickness, Hartmann number, surface skin friction coefficient,

Prandtl number, thermocapillary number, heat flux, and free surface temperature were

discussed and sketched. Fetecau et al. [28] provided some exact solutions for the laminar

flow of a second grade fluid due to a sphere with oscillatory shear stresses. Using finite

Henkel transformations the non-trivial shear stresses corresponding to the meridional flow

component of the velocity were determined. An investigation by ur Rahman et al. [29]

into the flow and heat transfer from a modified second grade nanofluid over a nonlinearly

stretching sheet assumed passive control of nanoparticles at the boundary. The shooting

method along with the Runge-Kutta Fehlberg scheme was used to solve the boundary

value problem. The study showed that increasing the Brownian motion parameter leads

to a decay in the nanoparticle concentration profiles, while increasing the thermophoresis

parameter leads to an increase in the concentration of nanoparticles.
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The magnetohydrodynamic flow of differential type fluids has also been studied over the

years. Different experimental, mathematical and numerical methods have been used to

simplify and find the solutions for the boundary layer flow equations. Das et al. [30] stud-

ied the impact of thermal radiation in the MHD boundary layer flow of a second grade

fluid past a stretching sheet with convective heat flux. The Nachtsheim-Swigert iteration

technique together with a Runge-Kutta sixth-order integration scheme was used to solve

the equations. The results were presented through graphs and tables showing the effect

of the thermal radiation parameter on the fluid velocity, temperature, and concentration.

Recently, Aman et al. [31] considered the unsteady heat and mass transfer in a second

grade fluid flow over a flat plate with wall suction and injection. Their model assumed

mixed convection, convective boundary conditions, and an oscillating wall. Approximate

solutions of the model equations were obtained using Laplace transforms. The results

were validated by comparison with the Stehfest algorithm. Recently, Prasad and Reddy

[32] considered Hall effects on the hydromagnetic convective flow of an electrically con-

ducting second grade fluid in a rotating porous channel using the Brinkman model. The

exact solutions were found using the Laplace transform technique. They determined the

steady-state velocity and temperature distributions, the shear stresses, and the Nusselt

number.

1.3 Third grade fluids

It has been suggested that second grade fluids do not show the shear thinning and shear

thickening behaviour. However, the model for third grade fluids is capable of describing

such behavior. The equation of motion for a third grade fluid is, however, more complicated

than the corresponding equation for second grade fluids [33]. The Cauchy stress tensor T

for a third grade fluid is given as

T = −pI + µA1 + α1A2 + α2A1
2 + β1A3 + β2(A1A2 + A2A1) + β3(trA1

2)A1, (1.4)
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where αi, βj for i = 1,2 and j = 1,2,3 are the material parameters of a third grade fluid

and Ai for i = 1,2,3 are the first three Rivlin-Ericksen tensors defined by

A1 = (∇V) + (∇V)T, (1.5)

An+1 =
dAn

dt
+ An(∇V) + (∇V)TAn n = 1,2, (1.6)

where ∇ is the gradient operator and the other terms are as previously defined. Using the

thermodynamic compatibility conditions when the fluid is locally at rest, the Clausius-

Duhem inequality holds and the assumption that the Helmholtz free energy is a minimum

at equilibrium provides the following restrictions [34]:

µ ≥ 0, α1 ≥ 0, β1 = β2 = 0, −
√

24µβ3 ≤ α1 + α2 ≥
√

24µβ3. (1.7)

Thus, model (1.4) reduces to

T = µA1 + α1A2 + α2A1
2 + β3(trA1

2)A1. (1.8)

A large body of literature exists on the boundary layer flow and heat transfer in viscous

second grade fluids. The third grade fluid model represents an attempt to provide a com-

prehensive description of the properties of viscoelastic fluids. Erdoğan [35] considered the

flow of a third order fluid in the vicinity of a plane wall, suddenly set in motion. The ve-

locity field was described by a fourth order nonlinear partial differential equation. The so-

lution of the differential equation showed that for a short time, the fluid is non-Newtonian.

However, for a long time, the fluid behaves like a Newtonian flow. Hayat et al. [36] studied

the flow of a third grade fluid occupying the space above a wall. The Lie group method

was used to reduce the third order partial differential equation to a second order ordinary

differential equation. The perturbation method was then used to solve the reduced equa-
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tion. Hayat and Kara [37] obtained the analytic solution for the time-dependent flow of an

incompressible third grade fluid under the influence of a magnetic field of variable strength.

The fluid was confined to an annular region between two coaxial cylinders, with the fluid

motion being induced by the rotation of the inner cylinder with arbitrary velocity. Group

theoretic methods were employed to analyze the nonlinear equations and a solution for the

velocity field was obtained analytically. Hayat et al. [38] considered the steady third grade

fluid in a porous half-space. The constitutive relationship for the modified Darcy law in a

third grade fluid was proposed and the equations solved analytically using the homotopy

analysis method. The significant impact of the non-Newtonian parameters on the velocity

profiles was analyzed. Hayat et al. [39] investigated the heat transfer effects on the flow

of a third grade fluid. Series solutions for the velocity and temperature were constructed.

The nonlinear equations were solved using the homotopy analysis method. The influence

of different parameters on the temperature profiles was discussed. The solution demon-

strated the dependency of the flow behaviour on the viscoelastic parameters. Keimanesh

et al. [40] studied a third grade non-Newtonian fluid flow between two parallel plates using

the multistep differential transform technique as the method of solution. The multistep

differential transform method (MDTM) was applied directly without requiring lineariza-

tion, discretization, or perturbation. The performance of the MDTM was compared with

the fourth order Runge–Kutta and other analytical methods such as the the homotopy

perturbation method (HPM), homotopy analysis method (HAM), and differential trans-

form method (DTM). The DTM was found to be a reliable method for solving certain

nonlinear problems but it diverged for some highly nonlinear equations. Zaman et al. [41]

analyzed Stokes’s first problem for an MHD third grade fluid in a non-porous half-space

with Hall currents. The nonlinear partial differential equations describing the problem

were converted to a system of nonlinear ordinary differential equations using similarity

transformations. The homotopy analysis method was used to find an analytical solution.

The effects of dimensionless parameters on the velocity were shown as well as the effects

of the fluid and physical parameters on the local skin friction coefficient. Recently, Zeb

et al. [42] studied the flow of a third grade fluid in a helical screw rheometer, (HSR) with

the effects of curvature neglected. The problem was described by second order nonlinear

coupled differential equations, which were reduced to a single differential equation by us-
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ing transformations. The Adomian decomposition method was used to obtain analytical

expressions for the flow profiles and the volume flow rate.

Another flow of particular interest in this study is Falkner-Skan fluid flow. Many re-

searchers have contributed to the literature on Falkner-Skan flows, both with and without

an applied magnetic field. Falkner-Skan fluid flow has extensive applications within the

field of aerodynamics and hydrodynamics. In this dissertation, we consider the Falkner-

Skan boundary layer flow of a second grade nanofluid.

1.4 Falkner-Skan fluid flow

The study of the fluid flow moving towards a wedge is an important and essential aspect

of fluid dynamics and heat rate transfer. The Falkner-Skan equation describes the class

of the so-called similar laminar flows in the boundary layer on a permeable wall, and at

varying main-stream velocity [43]. The nonlinear third order ordinary differential is given

in the form

f ′′′ + ff ′′ + β
(
1− (f ′)2

)
= 0, (1.9)

subject to the boundary conditions,

f(0) = γ, f ′(0) = 0, f ′(∞) = 1, (1.10)

where f is a stream function, η is a dimensionless distance from the wall and β measures the

pressure gradient in the stream direction, f ′ is the velocity component in the η-direction

and f ′′ is the shear stress at the boundary wall. The parameter γ in the boundary condi-

tion is a measure of the mass flow rate through the boundary wall in either direction.
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This equation was first derived by Falkner and Skan [44] and may be used to study convec-

tive heat transfer. Riley and Weidman [45] found similarity solutions for pressure gradient

driven flow over a stretching boundary. Guedda and Hammouch [46] considered the lami-

nar two dimensional steady incompressible, boundary layer flow past a stretching surface.

Firstly, a family of velocity distributions outside the boundary layer with similarity so-

lutions was determined. Then new exact solutions, called Pseudo-similarity, where the

external velocity varies inversely-linear with the distance along the surface were exam-

ined. The properties of the solutions depended on the suction parameter. Furthermore,

using the fourth order Runge-Kutta scheme together with the shooting method, numerical

solutions were obtained. Ishak et al. [47] studied the problem of steady two dimensional

laminar fluid flow past a moving wedge with suction or injection. The partial differen-

tial equations were transformed into the Falkner-Skan ordinary differential equation by

means of suitable similarity variables. The implicit finite difference scheme known as the

Keller-box method was used to solve the transformed equations. Numerical results for

the velocity profiles and the skin friction coefficient were determined for several values of

such parameters as the Falkner-Skan power law parameter. The numerical results showed

reverse flow, as had also been found earlier by Riley and Weidman [45]. Seddeek et al.

[48] studied the steady MHD Falkner-Skan flow and heat transfer over a wedge with vari-

able viscosity, and thermal conductivity. Using a scaling group of transformations, the

equations were transformed into ordinary differential equations and solved numerically

using the Keller-box method. Numerical results for the local skin friction coefficient and

the local Nusselt number, as well as the velocity and the temperature profiles, were pre-

sented for different physical parameters. Khan [49] studied the Falkner-Skan boundary

layer flow of an incompressible viscous fluid and developed an iterative scheme to provide

estimates for the exact solution of the problem. Based on the estimates, the generalized

approximation method (GAM) was applied to obtain the approximate solution of the

problem. The numerical simulation showed that only a few iterations generated by the

GAM could lead to the exact solution. Martin and Boyd [50] obtained the Falkner–Skan

solution for laminar boundary layer flow over a wedge with a slip boundary condition.

A marching scheme was used to solve the boundary layer equations in the rarefied flow

regime. Duque-Daza et al. [51] presented a computational study of the solution of the
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Falkner-Skan equation using high order compact finite difference schemes. The accuracy of

this technique was established by comparison of the data generated for accelerating, con-

stant and decelerating flows with published data. An excellent agreement was observed.

Hendi and Hussain [52] considered Falkner-Skan flow over a porous surface. Stream func-

tion formulation and suitable transformations reduced the problem to ordinary differential

equations. The homotopy analysis method was used to solve the transformed equations.

Keshtkar [53] analyzed the effect of variable viscosity and heat generation on classical

Falkner–Skan flow. The velocity and temperature distribution were obtained for a wide

range of Prandtl numbers. Marinca et al. [54] proposed an optimal homotopy approach to

obtain approximate analytical solutions for the nonlinear Falkner-Skan differential equa-

tion. The effect of parameter β, a measure of the pressure gradient, was examined. Raju

and Sandeep [55] studied thermophoresis and Brownian motion effects on magnetohydro-

dynamic radiative Casson fluid flow for a wedge. The transformed nonlinear differential

equations were solved numerically using the Runge-Kutta and Newton methods. The re-

sults showed that the thermal, solute and momentum boundary layers are not uniform

at different wedge positions. It was also observed that the heat and mass transfer rates

are high when the wedge is moving forward. Madaki et al.[56] proposed a new analytical

technique to obtain a solution to the Falkner–Skan equation, whereby a revised optimal

homotopy asymptotic method (OHAM) was used to find an explicit analytical solution

for two dimensional laminar, incompressible viscous fluid flow for Falkner–Skan wedge

flow. The study showed the OHAM to be an effective analytical technique in comparison

with other numerical and analytical methods, such as the fourth order Runge–Kutta, and

HPM-Padé schemes. Bougoffa and Alqahtani [57] proposed a transformation variable that

reduces the Falkner-Skan equation into an equivalent boundary value problem in a finite

domain. They considered three special cases: Heimenz flow, Homann flow, and the Blasius

problem. Analytic solutions were obtained by a direct method for large values of β.
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1.5 Heat and Mass Transfer

Heat transfer is the exchange of thermal energy between physical systems at different

temperatures. The rate of heat transfer is dependent on the temperatures of the systems

and the properties of the intervening medium through which the thermal energy is being

transferred. Heat is normally transferred from an object at a higher temperature to one

at a lower temperature. There are three fundamental ways the heat can be transferred.

These are firstly, conduction whereby heat is transferred between objects through direct

contact. For example, the heat generated inside an enclosure is transferred to the outer

surface using conduction. The second method is convection, which occurs when heat is

transferred through a medium such as a fluid. As the fluid moves, the convective heat

transfer increases. Lastly, radiation energy is transferred through the air as electromag-

netic radiation. This method of heat transfer does not rely upon any contact between the

heat source and the heated object [58, 59].

Mass transfer describes the net movement of a solute from one location to another. In

other words, mass transfer is the transport of a substance in the liquid or gaseous phase.

Mass transfer occurs in many processes, such as absorption, evaporation, adsorption, dry-

ing, precipitation, membrane filtration, and distillation. In many technical applications,

heat transfer processes occur simultaneously with mass transfer processes [60, 61]. De-

pending on the context, an optical thickness maybe a measure for the absorption or for

the effective optical path length of the sample. Optical thickness is applied to an entire

path through a medium.

In this study, we study heat and mass transfer due to the motion of second grade flu-

ids, in a porous medium and along a stretching sheet. In the next section, we give a brief

literature review of non-Newtonian fluid flows along a stretching sheet.
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1.6 Stretching flow in non-Newtonian fluids

The viscous flow and heat transfer in the boundary layer region due to a stretching sheet

has wide theoretical and technical applications in manufacturing and industries, such as

the extraction of polymer sheets, wire drawing, glass fibre production, and the cooling and

drying of paper and textiles. Banks [62] found similarity solutions of the boundary layer

equations for a stretching wall. His solutions did not find dual solutions for impermeable

stretched surfaces. Banks and Zaturska [63] found eigen solutions for a one-parameter

family of boundary layer solutions corresponding to a stretching wall. The eigen solu-

tion was found to represent a disturbance that decays in an appropriate region of the

flow field. Pontrelli [64] solved the full set of partial differential equations by a colloca-

tion method using B-splines. Rao [65] extended the study by specifying the range of the

non-Newtonian parameter for which the solution of the problem is unique. The positive

non-Newtonian parameter gives a unique solution to the problem. Liao [66] used the

homotopy analysis method to solve the equations for the magnetohydrodynamic viscous

flows in non-Newtonian fluids. For the second and third order power-law power-law fluids,

explicit analytic solutions were expressed by recursive formulae of constant coefficients. In

particular, a simple analytic formula for the dimensionless velocity gradient at the wall was

found. Liao [67] solved the boundary layer flow over a stretched impermeable wall using

the homotopy analysis method. Two branches of solutions were found. It was noted that

the difference in skin friction in the two branches is small, even when the corresponding

profiles of velocity were distinct.

Miklavčič and Wang [68] investigated the viscous fluid flow induced by its flowing over a

shrinking sheet. For the shrinking sheet, the fluid behaviour was found to differ from that

in the case of stretching. Fang [69] extended the shrinking sheet problem by assuming

a power law velocity. The effect of the power index on the wall drag was investigated.

Unique solution behaviours were found for a shrinking sheet and compared to those for a

stretching sheet. Cortell [70] examined steady laminar boundary layer flow in terms of heat

transfer for an electrically conducting second grade fluid, subject to suction and a trans-

verse uniform magnetic field past a semi-infinite stretching sheet. The resulting partial
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differential equations were converted into ordinary differential equations using a suitable

similarity transformation. The effects of viscous dissipation and work due in deformation

were considered in the energy equation. Abel and Mahesha [71] investigated the mag-

netohydrodynamic boundary layer flow behaviour and heat transfer in viscoelastic flows

over a stretching sheet with radiation. The boundary layer partial differential equations

were converted into a set of nonlinear ordinary differential equations by applying similarity

transformations. Nadeem et al. [72] derived the analytic solutions of a boundary layer

flows bounded by a shrinking sheet. Sajid and Hayat [73] considered the MHD viscous flow

problem for a shrinking sheet. Exact series solution of two dimensional and axisymmetric

shrinking was obtained using the homotopy analysis method. Fang et al. [74] solved the

equations for a viscous flow over a shrinking sheet subject to a second order slip velocity

flow model. A closed-form solution was derived. The effects of the two slip parameters

and the mass suction parameter on the velocity distribution were presented. The veloc-

ity and the surface shear stress on a shrinking sheet are strongly influenced by the mass

transfer and the slip flow parameters. Akyildiz et al. [75] considered a class of nonlinear

third order differential equations arising in a fluid flow over a nonlinearly stretching sheet.

Numerical solutions were obtained and presented through graphs, and the influence of

the physical parameter on the flow characteristics discussed. Similarity solutions for the

nano-boundary layer flows with a Navier boundary condition were presented by van Gorder

et al. [76]. The nonlinear ordinary differential equations were solved analytically using

the homotopy analysis method. Ahmad and Asghar [77] investigated the boundary layer

flow of a second grade fluid over a permeable stretching surface with arbitrary velocity

and appropriate wall transpiration. The fluid was electrically conducting and subjected

to a constant applied magnetic field. The exact solutions were derived and presented.

Bhattacharyya and Vajravelu [78] presented an analysis of stagnation-point flow and heat

transfer over an exponentially shrinking sheet. The similarity equations were obtained

and solved numerically using a shooting method. The study revealed that the range of

velocity ratio parameter is larger than in the linear sheet shrinking case. Zheng et al. [79]

presented a study of the boundary layer flow and heat transfer of a micropolar fluid over

a nonlinearly stretching/shrinking sheet. The flow was generated due to the power law

surface velocity and temperature distributions. Dual solutions were obtained using the
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homotopy analysis method. For the shrinking case, the influence of physical parameters

on the two branches was determined. For the stretching case, the influence on the temper-

ature distribution was comparatively more complicated. Patil [80] performed a numerical

study for the problem of steady mixed convection flow from a vertical stretching sheet in

a parallel free stream with variable wall temperature and concentration. An implicit finite

difference scheme in combination with the quasilinearization technique was used to obtain

non-similar solutions of the boundary layer equations. The effect of parameters on the

velocity and temperature profiles was presented. Misra et al. [81] considered an unsteady

boundary layer flow of a viscous incompressible fluid over a stretching plate. The heat

flow problem was solved for two different cases; namely the prescribed stretching surface

temperature (PST) and prescribed stretching surface heat flux (PHF) flow. Mahanta [82]

investigated the flow and heat transfer in two dimensional electrically conducting second

grade fluids over a stretching surface subjected to a uniform magnetic field. The non-

linear boundary layer equations were solved numerically using the Runge-Kutta shooting

method. Numerical solutions were presented for the fluid flow and heat transfer charac-

teristics for different values of fluid and physical parameters.

Until relatively recently, it had been emphasized by many authors that a solution for

a shrinking sheet is only possible for permeable sheets and that no solution exists for

impermeable sheets. However, in 2013, Asghar et al. [83] presented an exact analytical

solution for the boundary layer flow of a viscous fluid over an impermeable sheet of vari-

able thickness. The skin friction coefficient was found to differ from that of a permeable

sheet. Also, the solution was unique, in contrast to the dual solution for a flat shrinking

sheet. Khan and Shahzad [84] analyzed the development of the steady boundary layer flow

over a nonlinearly stretching sheet in a Sisko fluid. The equations were solved analytically

using the homotopy analysis method. Chaudhary and Kumar [85] studied the stagnation

point flow of a two dimensional electrically conducting fluid past a shrinking sheet with

slip boundaries and a magnetic field. The similarity equations were derived and then

solved numerically using the shooting method. Munir et al. [86] investigated heat transfer

in the steady axisymmetric flow of a second grade fluid over a radially stretching porous

sheet. The transformed ordinary differential equations were solved analytically using the
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homotopy analysis method and numerically using both the shooting and adaptive Runge

Kutta methods. The reliability of numerical solutions was verified using the analytical

results. Khan and Rahman [87] analyzed the two dimensional boundary layer flow and

heat transfer in a modified second grade fluid over a nonlinearly stretching sheet at con-

stant surface temperature. The equations were solved numerically using the fourth and

fifth order Runge-Kutta-Fehlberg method. It was found that the power law index reduces

both the momentum and thermal boundary layer thicknesses.

Recently, Bakar et al. [88] made a numerical study of the steady boundary layer flow

over a stretching/shrinking cylinder with suction effect. The partial differential equations

were solved numerically using a bvp4c code in Matlab software. The numerical results

so obtained confirmed that for a certain range of values for the stretching/shrinking and

suction parameters, there exist two solution branches for different values of the curvature

parameter. Stability analysis showed that the first solution is linearly stable, while the sec-

ond solution is linearly unstable. Kumar et al. [89] studied the effect of Brownian motion

and thermophoresis on MHD Carreau and Casson fluid flows towards a stretching surface

with a magnetic field effect. Numerical results showed that the thermal and concentration

transport in a Casson fluid is comparatively higher than in the case of a Carreau fluid. It

was also noticed that the Carreau fluid is highly affected by a Lorentz force , unlike the

case of the Casson fluid.

1.7 Solution of fluid flow equations

In this section, we discuss the numerical and analytic methods that have been used to solve

nonlinear partial differential equations, more especially the second grade fluid equations.

For the different methods, we discuss their properties, strengths, and weaknesses, and

consider some suggestions offered to overcome the disadvantages.
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1.7.1 The homotopy analysis method

The homotopy analysis method developed by Liao [90] is a powerful mathematical tool

for solving nonlinear problems. The HAM provides a useful analytic tool for investigating

problems in science, finance, and engineering that are highly nonlinear and have multiple

solutions and singularity. Unlike other analytic techniques, the HAM provides a convenient

way of guaranteeing that the solution series converges, so that it will be valid for highly

nonlinear problems. It also provides great freedom in choosing the base functions for the

solution. In the literature, the following advantages of the homotopy analysis method have

been cited: using the method does not depend on the existence of small or large physical

parameters, it guarantees convergence, and, as stated already, it offers flexibility in the

choice of base functions and initial guess to the solution [91]. Turkyilmazoglu [92] used

the homotopy analysis method to obtain convergent series solutions of strongly nonlinear

problems. Lu and Liu [93] used the method to solve the variable coefficient KdV-Burgers

equation. They used the generalized elliptic method and Fourier’s transform method to

obtain approximate solutions of double periodic form. The results indicated that the

homotopy analysis method is efficient for nonlinear models with dissipative terms and

variable coefficients. Akram and Sadaf [94] also applied the homotopy analysis method

to solve a ninth order boundary value problem. Their numerical results showed the ho-

motopy analysis method to give a good approximation for the exact solutions. Various

improvements to this method have been proposed in the past two decades.

1.7.2 Finite difference methods

The finite difference method (FDM) is a method for finding approximate solutions for

differential equations. It has been used to solve a wide range of problems, including linear

and nonlinear, time-independent and dependent problems. This method can be applied

to problems with different boundary shapes, different kinds of boundary conditions, and

a region containing several different materials [95]. When using the FDM, the idea is to

replace the derivatives of an unknown function by difference equations. The stability of

the scheme depends on the physical problem modelled. Finite differences are particularly
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suitable for regular grids, where boundary conditions are easier to implement than over

irregular grids [96]. An approach corresponding to a particular mathematical model may

result in either explicit and implicit finite difference schemes. The explicit finite difference

schemes use a forward difference in time and a central difference in space. For this method,

one needs to know the values at the current time interval to determine the values at the

next time interval. The implicit schemes solves an equation using both the current state

of the system and a later one. It is dependent on the solution of a large number of linear

algebraic equations. Using this method may often be tedious and intensive as it requires

solving a large system of equations. Nevertheless, implicit finite difference schemes have

the advantage of often being unconditionally stable [97].

In many nonlinear problems, the standard difference schemes exhibit numerical insta-

bility and give spurious solutions. The standard numerical integrators are referred to as

the explicit forward Euler and the Runge–Kutta family of finite difference methods [98].

In general, standard difference schemes preserve the properties of the differential equations

only if the discretization parameter h is sufficiently small. To find approximations for the

solutions, equations are often linearized and the nonlinear terms discarded. Therefore,

application to models over large time intervals using small-time steps requires very large

computational effort, so these discrete models are inefficient. Furthermore, for some prob-

lems, standard difference schemes cannot preserve the properties of the problem for any

step size. To overcome the phenomenon of numerical instabilities, Mickens introduced

the concept of non-standard finite difference (NSDF) schemes [99]. The NSDF schemes

are constructed following a set of five basic rules. The NSDF schemes preserve the main

properties of the differential equation, such as positivity, monotonicity, periodicity, sta-

bility and some other invariants including energy and geometrical shapes. However, the

approach also has some weaknesses and limitations; for example, it is applicable only when

all the equilibrium points are hyperbolic.

Common examples of finite difference schemes include the Keller-box method, which was
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developed by Cebeci and Bradshaw [100]. It is the most popular numerical method used

to solve unsteady boundary layer flow problems. It is one of the important techniques for

solving the parabolic flow equation, especially the boundary layer equations. The disad-

vantage of the method is that the computational effort per time step is expensive [101].

1.7.3 Runge-Kutta-Fehlberg method

The Runge–Kutta method is an effective and widely used method for solving initial value

problems. Since the instability that may arise in the Runge–Kutta methods can usually

be reduced by minimuzing the step size reduction, the method has partial instability. To

avoid repeated reduction of the value of h-size and rerunning the method, an estimate of

the value of h-size that would provide stability for the fourth order Runge–Kutta methods

can usually be determined [102]. Runge–Kutta methods are classified as being second

order, third order, fourth and fifth order, or the Runge–Kutta–Fehlberg method. The

Runge–Kutta–Fehlberg method is the most commonly used method for solving second

grade fluid problems. The Runge–Kutta–Fehlberg method guarantees accuracy in the

solution of an initial value problem (IVP) by solving the problem twice using step sizes h

and h/2 and comparing answers at the mesh points corresponding to the larger step size

[103].

1.7.4 Spectral methods

Spectral methods were developed by Orszag starting in 1969 for finite and unbounded

problems [104–106]. Spectral methods can achieve high accuracy with comparatively few

grid points, because they use all available function values to construct the required ap-

proximations. They are thus called global methods. These methods become less accurate

for problems with complex geometries and discontinuous coefficients. Furthrmore, they

can provide higher accuracy, at the expense of domain flexibility. The most commonly

used basis functions are the Legendre, Lagrange, Laguerre, and Chebyshev polynomials

[107].
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Spectral methods are accurate, easy to implement and are computationally efficient. Par-

tial differential equations have been solved using spectral collocation in space and fi-

nite differences in time. In recent years methods that involve quasilinearization together

with spectral methods have become common. These include the spectral quasilineariza-

tion method (SQLM), spectral relaxation method (SRM) and spectral local linearization

method (SLLM) [108–110]. Applying the spectral method in space improves the accuracy,

convergence and computational time of the finite differences methods. Motsa et al. [110]

used relaxation and quasilinearization schemes to solve unsteady boundary layer prob-

lems. The SRM and SQLM are Chebyshev pseudospectral based methods that have been

successfully used to solve nonlinear boundary layer flow problems described by systems

of ordinary differential equations. These methods were extended, to systems of nonlinear

partial diferential equations (PDEs) describing unsteady boundary layer flows. Numerous

studies were conducted to determine the accuracy of the methods and compare theIR com-

putational performance against the popular Keller-box finite difference scheme. Although

these spectral methods in space improved the accuracy, convergence and computational

time of the finite differences methods, these aspects were, nevertheless, still compromised.

Accordingly, to overcome these disadvantages, Motsa et al. [111] introduced a new bivari-

ate spectral quasilinearization method (BSQLM) that uses Chebyshev spectral collocation,

bivariate Lagrange interpolation polynomials together with quasilinearization techniques.

The nonlinear evolution equations are first linearized using the quasilinearisation method.

The discretization is done independently in space and time variables of the linearized dif-

ferential equation.

The bivariate method is suitable for, among other applications, solving equations aris-

ing in fluid mechanics. In order to develop the iteration scheme for a third order coupled

system of three nonlinear partial differential equations, we write the equations as

Ωk[F, T,H] = 0, k = 1, 2, 3, (1.11)

where Ω1,Ω2,Ω3 are nonlinear operators and F, T,H are defined as
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F =

{
f,
∂f

∂η
,
∂2f

∂η2
,
∂3f

∂η3
,
∂2f

∂ξ∂η

}
, T =

{
θ,
∂θ

∂η
,
∂2θ

∂η2
,
∂2θ

∂ξ∂η
,
∂θ

∂ξ

}
,

H =

{
φ,
∂φ

∂η
,
∂2φ

∂η2
,
∂2φ

∂ξ∂η
,
∂φ

∂ξ

}
, (1.12)

where f is the stream function, θ is a temperature, and φ is the solute concentration.

The quasilinearization method uses the Taylor series expansion of Ωk about some previous

approximation of the solution denoted by Fr, Tr, Hr. The assumption is that the difference

between current and previous solutions is small. Thus, applying quasilinearization to (1.11)

gives

Ωk[F, T,H] ≈ Ωk[Fr, Tr, Hr] + (F − Fr, T − Tr, H −Hr).5 Ωk[Fr, Tr, Hr],

where ∇ is a vector of partial derivatives defined as

∇ = {∇f ,∇θ,∇φ},

and,

∇f =

{
∂

∂f
,
∂

∂f ′
,
∂

∂f ′′
,
∂

∂f ′′
,
∂

∂f ′′′
,
∂

∂f ′ξ
,

}
, ∇θ =

{
∂

∂θ
,
∂

∂θ′
,
∂

∂θ′′
, ,

∂

∂θξ
,

}
,

∇φ =

{
∂

∂φ
,
∂

∂φ′
,
∂

∂φ′′
, ,

∂

∂φξ
,

}
. (1.13)

The prime in (1.13) denotes partial derivatives with respect to η. The solution procedure

assumes that the solution for f(ξ, η), θ(ξ, η) and φ(ξ, η) can be approximated using a

bivariate Lagrange interpolation polynomial of the form
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f(ξ, η) =
Nx∑
i=0

Nt∑
j=0

f(τi, ζj)Li(τ)Lj(ζ),

θ(ξ, η) =
Nx∑
i=0

Nt∑
j=0

θ(τi, ζj)Li(τ)Lj(ζ), (1.14)

φ(ξ, η) =
Nx∑
i=0

Nt∑
j=0

φ(τi, ζj)Li(τ)Lj(ζ),

where Nx and Nt are the number of grid points in the x and t directions respectively, Li

and Lj are the standard Lagrange cardinal functions and τ and ζ are in [−1, 1]. Moreover,

a linear transformation is used to map η and ξ to τ and ζ. Approximate equations (1.14)

interpolate f(x, t), θ(x, t) and φ(x, t) at selected collocation points in both the x and t

directions defined by

τi = cos

(
πi

Nx

)
, ζj = cos

(
π

Nt

)
, i = 0, 1, 2...Nx, j = 0, 1, 2...Nt. (1.15)

Collocating at the Gauss-Lobatto points ensures that there is a simple conversion of the

continuous derivatives, in both space and time, to discrete derivatives at the grid points.

The derivatives are approximated at the collocation points using the Chebyshev differen-

tiation matrix with

∂G

∂η
=

Nη∑
p=0

DipG(τp, ζj) = DG(τi, ζj);
∂G

∂ξ
=

Nξ∑
k=0

djkG(τi, ζk) =

Nξ∑
k=0

djkG(τi, ζk),

(1.16)

where D and d are the scaled differentiation matrices. Higher-order derivatives with

respect to η are defined as

24



G(o)(η, ξ) = D(o)G(τi, ζj), i = 0, 1, 2...Nη, j = 0, 1, 2...Nξ. (1.17)

Using the matrix-vector differentiation matrices gives

Ai1,1Fi − ζi(1− ζi)
Nη∑
j=0

dijDFj + Ai1,2Ti + Ai1,3Hi = R1,i, (1.18)

Ai2,1Fi + Ai2,2Ti − ζi(1− ζi)
Nη∑
j=0

dijDTj + Ai2,3Hi = R2,i, (1.19)

Ai3,1Fi + Ai3,2Ti + Ai3,3Hi − ζi(1− ζi)
Nη∑
j=0

dijDHj = R3,i. (1.20)

In the above equations, O is an (Nx + 1) × (Nx + 1) matrix of zeros and the coefficients

ar,i, br,i, cr,i are obtained from evaluating ar,i(η, ξ), br,i(η, ξ) and cr,i(η, ξ) at the collocation

points for r = 1, 2, . . .. The accuracy of the BSQLM improves with an increase in the

number of collocation points Nx [112].

1.8 Residual error and convergence

Error norms and residual errors are used to test the convergence and accuracy of the

numerical solutions obtained. The error norm is the difference between successive approx-

imations, while the residual error defines the extent to which the solutions are approxi-

mated. The residual errors of the solutions f(η, ξ), θ(η, ξ), φ(η, ξ) for each ξ are defined

approximately as

Res(s) = ||Ωk[Fr+1,j, Tr+1,j, Hr+1,j]||∞ j = 0, 1, 2, ...Nξ, (1.21)

where s = [f, θ, φ]. The error norms are defined as
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Es = ||Sr+1,j − Sr, j|| j = 0, 1, 2, ...Nξ. (1.22)

1.9 Motivation and objectives

The aim of this study is to develop and solve numerically a mathematical model for

magnetohydrodynamic (MHD) two dimensional boundary layer flow of a second grade

nanofluid in a porous medium. We solve the equations for a second grade fluid flow

along a wedge, and for flow past a semi-infinite stretching sheet with a convective surface.

The model equations are nondimensionalized and solved numerically using the bivariate

spectral-quasilinearization method. We determine the effect of the second grade param-

eter, magnetic parameter, thermal radiation parameter, porous parameter and chemical

reaction parameter on the flow characteristics and behaviour. The residual errors are cal-

culated to determine the accuracy of the method.

In Chapter 2, the MHD flow of a second grade fluid in a porous channel is investigated.

The bivariate spectral quasilinearization method for nonlinear evolution equations is used

to obtain the numerical solutions. The effect of fluid parameters on the fluid velocity is

analyzed. The accuracy and convergence of the method is tested through residual error

analysis.

In Chapter 3, the bivariate spectral quasilinearization method is applied to a system

of two partial differential equations. The objective is to study the flow of an electrically

conducting incompressible second grade fluid past a flat sheet. The BSQLM is used to

obtain the temperature and temperature profiles. The behaviour of fluid properties with

different physical parameters is discussed. Finally, the residual error analysis is used to

determine the convergence and the accuracy of the method.

In Chapter 4, the bivariate spectral quasilinearization method is applied to a system
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of transformed partial differential equations describing a second grade nanofluid flow over

a wedge in a porous medium with the presence of porosity and inertia coefficient. The

velocity and the temperature profiles are determined for several values of parameters such

as melting, wedge angle, heat generation, and absorption parameters. The convergence

of the method is analyzed using residual error analysis. Moreover, the current results are

compared with solutions published in the literature to show the accuracy of the method.

In Chapter 5, we study the effect of a chemical reaction and viscous dissipation on MHD

second grade fluid flow past a convectively heated stretching sheet. The partial differ-

ential equations are non-dimensionalized using a suitable similarity transformation. The

BSQLM is then used to solve the problem numerically. The numerical results are discussed

using graphs and tables. The impact of the magnetic field and thermal radiation on heat

and mass transfer is analyzed. The results are compared with previous solutions from the

literature to gain a sense of the accuracy of the method.

In Chapter 6, we conclude the dissertation by summarizing the findings.
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Chapter 2

MHD flow of a second grade fluid in

a porous medium

In this chapter, the problem of an incompressible MHD flow of a second grade fluid in a

porous channel is investigated using the bivariate spectral quasilinearization method. The

equations that model the boundary layer flow are nonlinear partial differential equations

in space and time. The effect of the dimensionless parameters on the fluid velocity is

considered. We start by formulating the model equations.

Consider an incompressible second grade fluid in a porous channel of width H, as shown

in Figure 2.1. The lower and upper walls of the channel are at y = −H/2 and y = H/2,

respectively. We select the x-axis and y-axis to be, respectively, parallel and perpendicular

to the channel walls. A constant magnetic field B0 is applied perpendicular to the channel

walls, the induced magnetic field, and the electric field are assumed to be negligible. It is

further assumed that the pressure gradient is zero and the flow is symmetric about both

axes.

28



Figure 2.1: The problem set up and orientation of the coordinate system

The conservation equations that describe the MHD boundary layer flow are [70]

u
∂u

∂x
+ v

∂u

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρ

[
∂u

∂x

∂2u

∂y2
+ u

∂3u

∂x∂y2
+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
− σB2

0

ρ
u. (2.2)

The boundary conditions,

∂u

∂y
= v = 0 at y = 0,

u = 0, v =
V

2
at y =

H

2
. (2.3)

Here ρ is the density, ν the kinematic viscosity, σ the electrical conductivity and α1 the

material parameter of the second grade fluid, u and v the velocity components in the

x− and y−directions. The fluid injection or extraction takes place through the porous

walls with velocity V/2. Note that V > 0 corresponds to the suction case and V < 0 for

injection. Applying the following transformations [80].
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u = U0x
mf ′(ξ, η), v = −1

2
(νU0)x

m−1
2 {(m+ 1)f + (1−m)(ξ

∂f

∂ξ
− ηf ′),

T − T∞ = (Tw − T∞)θ(ξ, η), ξ =

(
ν

U0

) 1
2

x
1−m

2 , η =

(
U0

ν

) 1
2

x
m−1

2 y,

to equations (2.1) - (2.2) , we find that equation (2.1) is identically satisfied, and equation

(2.2) reduces to

U2
0x

2m−1
{

1−m
2

ξf ′
∂f ′

∂ξ
+mf ′2 − m+ 1

2
ff ′′ − 1−m

2
ξf ′′

∂f

∂ξ

}
= U2

0x
2m−1f ′′′

+
U3
0x

3m−2

ρν

{
1−m

2
ξ

(
f ′′′

∂f ′

∂ξ
+ f iv

∂f

∂ξ

)
+ (3m− 1)f ′f ′′′ +

1−m
2

ξf ′
∂f ′′′

∂ξ

+
m+ 1

2
f ′f iv +

3m− 1

2
f ′′2
}
− σB2

0U0x
m

ρ
f ′ (2.4)

and then equation (2.4) take the following form,

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 −Ha2f ′ + λ

[
(3m− 1)f ′f ′′′ − m+ 1

2
ff iv − 3m− 1

2
f ′′2

+
m− 1

2
ξ

(
f iv

∂f

∂ξ
− f ′′′∂f

′

∂ξ
+ f ′′

∂f ′′

∂ξ
− f ′∂f

′′′

∂ξ

)]
− m− 1

2
ξ

(
f ′′
∂f

∂ξ
− f ′∂f

′

∂ξ

)
= 0. (2.5)

The boundary conditions (2.3) then become

f = 0, f ′′ = 0 at η = 0,

f =
1

2
, f ′ = 0 at η =

1

2
, (2.6)

where, λ = α1U0/ρν and Ha = σB2
0/ρU0.
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We apply the spectral quasilinearization method by assuming that the difference between

two successive iterations ||fr+1 − fr||, and all associated derivatives, are small. Applying

the quasilinearization method to equation (2.5) gives

a0rf
iv
r+1 + a1rf

′′′
r+1 + a2rf

′′
r+1 + a3rf

′
r+1 + a4rfr + α0r

∂fr
∂ξ

+ α1r
∂f ′r
∂ξ

+ α2r
∂f ′′r
∂ξ

+ α3r
∂f ′′′r
∂ξ

= 0, (2.7)

and the boundary conditions (2.6) become

fr+1 = 0, f ′′r+1 = 0 at η = 0,

fr+1 = 1
2
, f ′r+1 = 0 at η = 1

2
. (2.8)

Applying spectral collocation to (2.7), these equations can be simplified further by intro-

ducing coefficients as follows,

[a0rD
iv + a1rD

3 + a2rD
2 + a3rD + a4r]fr+1 + 2

Nξ∑
j=0

[α0rD
3 + α1rD

2 + α2rD

+ α3rI]fr+1 = Rf,r, (2.9)

where the variable coefficients are given by

a0r = λ

(
m− 1

2
ξ
∂fr
∂ξ
− m+ 1

2
fr

)
,

a1r = 1 + λ

(
(3m− 1)f ′r −

m− 1

2
ξ
∂f ′r
∂ξ

)
,
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a2r =
m+ 1

2
fr − λ(3m− 1)f ′′r +

m− 1

2
ξ

(
λ
∂f ′′r
∂ξ
− ∂fr

∂ξ

)
,

a3r = −2mf ′r −Ha2 + λ(3m− 1)f ′′′r +
m− 1

2
ξ

(
∂f ′r
∂ξ
− λ∂f

′′′
r

∂ξ

)
,

a4r =
m+ 1

2
(f ′′r − λf ivr ),

α0r = −λm− 1

2
ξf ′r,

α1r = λ
m− 1

2
ξf ′′r

α2r =
m− 1

2
ξ(f ′r − λf ′′′r ),

α3r =
m− 1

2
ξ(λf ivr − f ′′r ).

In matrix form, the above equation can be written as

Afr+1 = Rf,r, (2.10)

where the system of linear equations (2.10) is expressed as follows,



1 0 0 ... 0

D D D ... D

...
...

...
...

...
...

...
...

D2 D2 D2 ... D2

0 0 0 . . . 1





...

fr+1

...

...

fr+1

...



=



1
2

0

...

...

0

1



.

The system can be solved after implementing boundary conditions, for the unknown vec-
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tors Fr+1 at each iteration.

2.1 Results and Discussion

The aim of this section is to analyze the effect of the second grade, magnetic field param-

eters and Reynolds number on the fluid velocity and the transverse velocity in the suction

case. We present the results obtained by the bivariate spectral quasilinearization method.

We compare the results of the spectral quasilinearization method with those obtained by

using the homotopy analysis method [23]. The results are shown in Figures 2.2 - 2.4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

 =  0.1

 = 0.15

 = 0.25

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 =  0.1

 = 0.15

 = 0.25

X: 0.3457
Y: 1.083

(b)

Figure 2.2: The variation of (a) normal velocity, f and (b) streamwise fluid velocity, f ′

profiles for different values of second grade fluid parameter, when m=1 and Ha = -0.2.

Figure 2.2 shows the effect of the second grade fluid parameter, λ, on the normal velocity,

f , and streamwise fluid velocity f ′. Figure 2.2(a) shows that the normal velocity increases

with increasing values of the second grade fluid parameter. Figure 2.2 (b) indicates that

there is an initial increase in velocity profiles f ′ but it then decreases after η = 0.33.

This increment in the velocity field at the beginning of the flow can be explained by the

increased second grade fluid parameter causing a decrease in the viscosity of the fluid,
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which, in turn, is responsible for the increase of velocity field in the boundary layer flow

region.
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Figure 2.3: The variation of (a) normal velocity, f and (b) streamwise fluid velocity, f ′

profiles for different values of magnetic field parameter, when m=1 and λ = 0.2.

Figure 2.3 (a) shows that the normal velocity decreases with reducing values of the mag-

netic field parameter. However, Figure 2.3 (b) shows that the streamwise fluid velocity

first decreases when the magnetic field reduces and then increases after η = 0.25. Physi-

cally, this is explained by an increased magnetic field causing the Lorentz force to increase.

So with more resistance to the motion of fluid, thus the streamwise velocity of the fluid

is reduced. For these profiles, the streamwise fluid velocity begins by decreasing at the

channel wall but then rises as the distance from the channel increases and eventually it

approaches the bulk velocity of the streams.

Table 2.1 shows the convergence iterations of the bivariate spectral quasilinearization

method for the shear stresses in the radial direction at different values a second grade and

magnetic field parameters. Increasing the parameter values of both the second grade fluid

and the magnetic field results in increased values of the skin friction coefficient. From the

results, it can be seen that as the values of both the second grade and the magnetic field
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parameters increase the BSQLM required 3 and fewer iterations to converge.

Table 2.1: The BSQLM convergence iterations for values of the skin friction coefficient,
-f ′′(0) at the different values of second grade fluid and magnetic fluid parameters

No. of iterations λ -f ′′(0) No. of iterations Ha -f ′′(0)

3 0.1 1.039243 3 -0.4 .085966

2 0.15 1.066280 2 -0.6 1.081103

2 0.25 1.104910 2 -0.8 1.074311

2.2 Residual Error Analysis

In this section, we discuss the convergence and accuracy of the bivariate spectral quasi-

linearization method. Suppose that fr+1 is the approximation of the differential nonlinear

equation

H
(
f(η, ξ), f ′(η, ξ), f ′′(η, ξ), ..., f (n)(η, ξ)

)
= 0,

at iteration level r + 1 the residual error is defined as

Rr(η, ξ) = H

(
f(η, ξ)r+1, f

′(η, ξ)r+1, f
′′(η, ξ)r+1, ..., f

(n)(η, ξ)r+1

)
.

An iteration scheme is consistent if the residual error approaches zero as the number of

iterations becomes large. The order of iteration scheme is then determined by the order

of the truncation error, which is written as

O

([
∆f(η, ξ)r

]m
0

][
∆f ′(η, ξ)r

]m
1

][
∆f ′′(η, ξ)r

]m
2

]
...
[
∆f (n)(η, ξ)r

]m
n

])
.

The accuracy and the convergence rate of the method is determined using residual error

analysis. The convergence of the BSQLM is determined for different values of the second

grade and magnetic field parameters. Figure 2.4 shows that the BSQLM converges after

2 iterations with changes in the second grade parameter.
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Figure 2.4: The residual error results for different values of a second grade fluid parameter.

Figures 2.5 (a) and (b) show the influence of the number of iterations on the error norm,

Ef , for different values of the second grade and magnetic field parameters. From the

results, it is seen that the error norm reduces with increase of both the parameter values.

The bivariate spectral quasilinearization method converges with error norm of 10−9. It

also gives parabolic graphs, which indicate the convergence rate of the BSQLM is second

order. Based on the results obtained, the BSQLM is found to be a good method for solving

the second grade fluid equations.
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Figure 2.5: The error norm results against the number of iterations for different values of
(a) second grade fluid and (b) magnetic fluid parameters.

2.3 Summary

In this chapter, the magnetohydrodynamic flow of a second grade fluid in a porous medium

was analyzed. The non-dimensionalized equations were solved using the bivariate spec-

tral quasilinearization method. The results were presented through graphs to illustrate

the effect of the second grade parameter and the magnetic field parameter on the fluid

properties. It was found that the streamwise fluid velocity increases with large values

of the second grade fluid parameter at the beginning of the flow which then decreases

after a certain time. The opposite behaviour is observed for the magnetic field parameter.

The normal velocity showed to increase with the second grade fluid parameter whereas,

decreases with values of the magnetic field parameter. The accuracy and convergence of

this method were determined using residual error analysis. The results show that BSQLM

is an appropriate method for solving the second grade fluid third order partial differential

equations.
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Chapter 3

Hydromagnetic flow of a second

grade fluid over a stretching sheet

In the previous chapter, the focus was on the fluid velocity. Residual error analysis was

used to test the convergence and accuracy of the BSQLM. This chapter deals with the

flow of an electrically conducting second grade fluid over a stretching sheet. We explore

the effects of thermal fluid properties. This increases the complexity of the model which

might have an impact on the accuracy of the method. An increase in temperature on the

surface has an effect on the stretching of the surface, which ultimately has an effect on

the fluid flow rate. Numerical solutions for the velocity and temperature equations are

then obtained using the bivariate spectral quasilinearization method. The behaviour of the

fluid properties with different physical and fluid flow parameters is discussed. The residual

error analysis will be used to determine the convergence and accuracy of the method.

To set up the problem, we consider the flow of an electrically conducting incompress-

ible second grade fluid past a flat sheet. As shown in Figure 3.1, we take the x-axis to be

along the surface, with the y-axis being normal to it. Two equal and opposite forces are

applied along the x-axis so that the surface is stretched, while keeping the origin fixed. A

uniform magnetic field B0 is imposed along the y-axis. We define u and v to be the fluid

tangential velocity and normal velocity, respectively.
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Figure 3.1: The problem set up and orientation of the coordinate system [9]

The steady two dimensional boundary layer equations for this fluid are [70, 113, 114],

u
∂u

∂x
+ v

∂u

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρ

[
∂u

∂x

∂2u

∂y2
+ u

∂3u

∂x∂y2
+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
− σB2

0

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= k

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

+ α1
∂u

∂y

[
∂

∂y

(
u
∂u

∂x
+ v

∂u

∂y

)]
. (3.3)

The corresponding boundary conditions for the velocity and temperature fields are,

u = cx, v = −v0, T = Tw, at y = 0,

u→ 0, ∂u
∂y
→ 0, T → T∞, as y →∞, (3.4)

where ν is the kinematic viscosity, ρ is the density, α1 the material parameter of second

grade fluid, σ the electrical conductivity, k the fluid thermal conductivity, Cp is the specific
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heat capacity, c is the stretching rate, Tw is the uniform temperature in the wall and T∞

is the ambient temperature. Applying the transformations,

u = U0x
mf ′(ξ, η), v = −1

2
(νU0)x

m−1
2 {(m+ 1)f + (1−m)(ξ

∂f

∂ξ
− ηf ′),

T − T∞ = (Tw − T∞)θ(ξ, η), ξ =

(
ν

U0

) 1
2

x
1−m

2 , η =

(
U0

ν

) 1
2

x
m−1

2 y,

to equations (3.1) - (3.3), equations (3.2) and (3.3) reduce to

U2
0x

2m−1
{

1−m
2

ξf ′
∂f ′

∂ξ
+mf ′2 − m+ 1

2
ff ′′ − 1−m

2
ξf ′′

∂f

∂ξ

}
= U2

0x
2m−1f ′′′

+
U3
0x

3m−2

ρν

{
1−m

2
ξ

(
f ′′′

∂f ′

∂ξ
+ f iv

∂f

∂ξ

)
+ (3m− 1)f ′f ′′′ +

1−m
2

ξf ′
∂f ′′′

∂ξ

+
m+ 1

2
f ′f iv +

3m− 1

2
f ′′2
}
− σB2

0U0x
m

ρ
f ′ (3.5)

U0x
m−1(Tw − T∞)

{
1−m

2
ξ
∂θ

∂ξ
− 1 +m

2
fθ′ − 1−m

2
ξ
∂f

∂ξ
=

k

νρcp
θ′′ +

µU3
0x

3m−1

νρcp
f ′′2

− 16T 3
∞σ
∗

3k∗
U0x

m−1

ν
θ′′ +

σB2
0U

2
0x

2m

ρcp
f ′2 +

α1U
4m−2
0

ρνcp

{
3m− 1

2
f ′f ′′2 − m+ 1

2
ff ′′f ′′′

+
1−m

2
ξ

(
f ′f ′′

∂f ′′

∂ξ
− f ′′f ′′′∂f

∂ξ

)}
(3.6)

which then become equation (3.7) and (3.8) below,

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 −Ha2f ′ + λ

[
(3m− 1)f ′f ′′′ − m+ 1

2
ff iv − 3m− 1

2
f ′′2

+
m− 1

2
ξ

(
f iv

∂f

∂ξ
− f ′′′∂f

′

∂ξ
+ f ′′

∂f ′′

∂ξ
− f ′∂f

′′′

∂ξ

)]
− m− 1

2
ξ

(
f ′′
∂f

∂ξ
− f ′∂f

′

∂ξ

)
= 0, (3.7)
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1

Pr
θ′′ +

m+ 1

2
fθ′ + Ec

[
f ′′2 + λf ′′

(
3m− 1

2
f ′f ′′ − m+ 1

2
ff ′′′ +

m− 1

2
ξ

(
f ′′′

∂f

∂ξ

− f ′∂f
′′

∂ξ

))]
− m− 1

2
ξ

(
θ′
∂f

∂ξ
− f ′∂θ

∂ξ

)
= 0. (3.8)

The boundary conditions (3.4) become

f ′ = 1, f = R, θ = 1, at η = 0,

f ′ → 0, f ′′ → 0, θ → 0, at η →∞, (3.9)

such that

λ =
α1U0x

m−1

ρν
, Ha =

σB2
0

ρU0xm−1
, Ec =

U2
0x

2m

cp(Tw − T∞)
, P r =

νρCp
k

, R =
−2v0

(m+ 1)x
m−1

2

.

We apply the spectral quasilinearization method, while assuming that the difference ||fr+1− fr||,

and derivatives, are all small. It is convenient to transform the physical domain [a, b]×[c, d]

to the computational domain [−1, 1] × [−1, 1] using the linear transformations x(ξ) =

(a+ b)/2 + ((b− a)/2)ξ and y(η) = (a+ b)/2 + ((b− a)/2)η. Applying the quasilineariza-

tion method to equations (3.7) and (3.8) gives

p0rf
iv
r+1 + p1rf

′′′
r+1 + p2rf

′′
r+1 + p3rf

′
r+1 + p4rfr+1 + ι0r

∂fr
∂ξ

+ ι1r
∂f ′r
∂ξ

+ ι2r
∂f ′′r
∂ξ

+ ι3r
∂f ′′′r
∂ξ

= 0, (3.10)

q0rθ
′′
r+1 + q1rθ

′
r+1 + q2rθr+1 + q3rf

′′′
r+1 + q4rf

′′
r+1 + q5rf

′
r+1 + q6rfr+1 + χ0r

∂θr+1

∂ξ

+ χ1r

∂f ′′r+1

∂ξ
+ χ2r

∂fr+1

∂ξ
= 0, (3.11)

and the boundary conditions (3.9) become
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f ′r+1 = 1, fr+1 = R, θr+1 = 1 at η = 0,

f ′r+1 → 0, f ′′r+1 → 0, θr+1 → 0 at η →∞, (3.12)

where the variable coefficients are given by

p0r = λ

(
m− 1

2
ξ
∂fr
∂ξ
− m+ 1

2
fr

)
,

p1r = 1 + λ

(
(3m− 1)f ′r −

m− 1

2
ξ
∂f ′r
∂ξ

)
,

p2r =
m+ 1

2
fr + λ

(
(3m− 1)f ′′ +

m− 1

2
ξ
∂f ′′r
∂ξ

)
− m− 1

2
ξ
∂fr
∂ξ

,

p3r = −2mf ′r −Ha2 + λ

(
(3m− 1)f ′′′r −

m− 1

2
ξ
∂f ′′′r
∂ξ

)
− m− 1

2
ξ
∂f ′r
∂ξ

,

p4r =
m+ 1

2
(f ′′r − λf ivr ),

p4r =
m+ 1

2
(f ′′r − λf ivr ),

ι0r = −m− 1

2
ξf ′r,

ι1r = −m− 1

2
ξf ′′r ,

ι2r =
m− 1

2
ξ(f ′r − λf ′′′r ),

ι3r =
m− 1

2
ξ(λf ivr − f ′′r ),

q0r = (1/Pr),

q1r = −m− 1

2
ξ
∂fr
∂ξ

+
m+ 1

2
fr,

q2r = 0,

q3r = Ecλ

(
m− 1

2
ξf ′′r

∂fr
∂ξ
− m+ 1

2
frf

′′
r

)
,
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q4r = 2Ecf ′′ + Ecλ

[
(3m− 1)f ′rf

′′
r −

m+ 1

2
f ′rf

′′′
r +

m− 1

2
ξ

(
f ′′′r

∂fr
∂ξ
− f ′r

∂f ′′r
∂ξ

)]
,

q5r = Ec

(
2Ha2f ′rf

′′ + λ
3m− 1

2
f ′′2r

)
+
m− 1

2
ξ

(
∂θr
∂ξ
− Ecλ∂f

′′
r

∂ξ

)
,

q6r =
m+ 1

2
(θr − Ecλf ′′r f ′′′r )

χ0r =
m− 1

2
ξf ′r,

χ1r = −Ecλm− 1

2
ξf ′rf

′′
r ,

χ2r =
m− 1

2
ξ(Ecλf ′′r f

′′′
r − θ′r).

A Lagrange polynomial is used to interpolate the functions f(η, ξ) and θ(η, ξ) at selected

collocation points to obtain the approximate solutions for equation (3.10) and (3.11).

Applying spectral collocation of Chebyshev differentiation to these equations gives

[
p0rD

iv + p1rD
3 + p2rD

2 + p3rD + p4r + 2

Nξ∑
j=0

dij[ι0rD
3 + ι1rD

2 + ι2rD
1

+ ι3rI
]]
fr+1 = Rf,r, (3.13)[

q3rD
3 + q4rD

2 + q5rD + q6rI + 2

Nξ∑
j=0

dij[χ1rD
2 + χ2rI]

]
fr+1 +

[
q0rD

2 + q1rD + q2rI

+ 2

Nξ∑
j=0

dij[χ0rI]

]
θr+1 = Rθ,r. (3.14)

Equations (3.13) and (3.14) can be expressed in matrix–vector form as
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 Π0,0
11 Π0,0

12

Π0,0
21 Π0,0

22


 Π0,1

11 Π0,1
12

Π0,1
21 Π0,1

22

 · · ·
· · ·

 Π
0,Nξ
11 Π

0,Nξ
12

Π
0,Nξ
21 Π

0,Nξ
22


 Π1,0

11 Π1,0
12

Π1,0
12 Π1,0

22


 Π1,1

11 Π1,1
12

Π1,1
21 Π1,1

22

 · · ·
· · ·

 Π
1,Nξ
11 Π

1,Nξ
12

Π
1,Nξ
21 Π

1,Nξ
22



...

...

...

...

. . . . . .

. . . . . .

...

...

 Π
Nξ,0
11 Π

Nξ,0
12

Π
Nξ,0
21 Π

Nξ,0
22


 Π

Nξ,1
11 Π

Nξ,1
12

Π
Nξ,1
21 Π

Nξ,1
22

 · · ·
· · ·

 Π
Nξ,Nξ
11 Π

Nξ,Nξ
12

Π
Nξ,Nξ
21 Π

Nξ,Nξ
22







fr+1,0

θr+1,0


fr+1,1

θr+1,1



...

...

fr+1,Nξ

θr+1,Nξ





=



Rf,r,0

Rθ,r,0


Rf,r,1

Rθ,r,1



...

...

Rf,r,Nξ

Rθ,r,Nξ





, (3.15)

where

Πi,i
11 = p0rD

iv + p1rD
3 + p2rD

2 + p3rD + p4r + 2dii[ι0rD
3 + ι1rD

2 + ι2rD
1], (3.16.0)

Πi,j
11 = 2dij[ι0rD

3 + ι1rD
2 + ι2rD

1], (3.16.1)

Πi,i
12 = O = zero matrix of size (Nη + 1)× (Nη + 1), (3.16.2)

Πi,j
12 = O = zero matrix of size (Nη + 1)× (Nη + 1), (3.16.3)

Πi,i
21 = q3rD

3 + q4rD
2 + q5rD + q6rI + 2dii[χ1rD

2 + χ2rI], (3.16.4)

Πi,j
21 = 2dij[χ1rD

2 + χ2rI], (3.16.5)

Πi,i
22 = q0rD

2 + q1rD + q2rI + 2diiχ0rI, (3.16.6)

Πi,j
22 = 2dijχ0rI. (3.16.7)

After imposing boundary and initial conditions, the system of linear equations is solved

by finding the inverse of the coefficient matrix to obtain the solutions fr+1 and θr+1 at

each ξ–level.
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3.1 Results and Discussion

In Figures 3.2 we have plotted the velocity and temperature distributions for several values

of the suction parameter, R. It is observed that, for a fixed value of the magnetic field

parameter, the velocity is enhanced by larger values of the suction parameter while the

temperature decreases for corresponding changes. In physical terms, the case of higher

suction parameter values means that the fluid is closer to the surface at the ambient

conditions and the thermal boundary layer thickness reduces.
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Figure 3.2: The variation of (a) the fluid velocity and (b) temperature profiles for different
values of the suction parameter, R.

The opposite behaviour is shown in Figure 3.3, an increase in the magnetic field parameter

means the fluid velocity decreases while the temperature increases. This can be explained

as the increase of the magnetic field parameter resulting in an increase of the Lorentz

force, which inhibits the flow.

It is seen from Table 3.1 that for a given position the skin friction coefficient, decreases

as the suction parameter and second grade parameter increase. The dimensionless heat

transfer coefficient increases with an increase in suction parameter and second grade pa-

rameter. This means the fluid resistance caused by the shear stresses decreases and the
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Figure 3.3: The variation of (a) the fluid velocity and (b) temperature profiles for different
values of the magnetic field parameter.

Table 3.1: The effect of suction and second grade parameters.

R -f ′′(0) -θ′(0) λ -f ′′(0) -θ′(0)

0 1.58111857 0.96293281 0 1.99999859 1.27771290

0.1 1.54668368 1.18583274 1 1.00019123 1.36560387

0.5 1.44946584 2.14640740 1.5 0.89506838 1.37894944

0.9 1.38705344 3.18170263 2 0.78233101 1.38775637

heat transfer rate between the fluid flow and the surface increases.

In Figure 3.4 it is shown that the velocity profile increases with an increase in the second

grade parameter. Conversely, the temperature at a given point decreases with an increase

in a second grade parameter. This means physically that an increase of the second grade

fluid parameter reduces the fluid reaction and the viscous terms resisting the fluid motion,

hence significantly decreasing the fluid temperature.
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Figure 3.4: The variation of (a) the fluid velocity and (b) temperature profiles for different
values of the second grade fluid parameter.

An increase in Prandtl number has no effect on the velocity profiles in the boundary

layer, as shown in Figure 3.5 (a). Figure 3.5 (b), however, indicates that the temperature

decreases as the Prandtl number, Pr increases. This increase leads to a decrease in the

thermal boundary layer thickness when the fluid flow rates are high. Table 3.2 shows that

the skin friction increases with the increase in the magnetic field parameter, whereas the

Prandtl number has no effect in the skin friction coefficient. The rate of heat transfer

increases with the increase of both the magnetic field parameter and Prandtl number.

Table 3.2: The effect of the magnetic field parameter and Prandtl number on the skin
friction coefficient and heat rate transfer.

Ha -f ′′(0) -θ′(0) Pr -f ′′(0) -θ′(0)

0 0.92382122 4.29318093 0.3 0.79806748 1.59929669

1 1.00080510 4.16007151 1 - 3.60374539

4 1.58477374 2.85766968 1 - 5.09337498

6 1.98399720 1.67201038 1.5 - 7.56757619
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Figure 3.5: The variation of (a) the fluid velocity and (b) temperature profiles for different
values of the Prandtl number.

3.2 Residual error analysis

Residual error analysis is used to show the convergence and accuracy of the method. The

residual error norms obtained using the BSQLM are shown in Figure 3.6 (a) and (b). The

most accurate results were found for suction parameter values. It is observed that the

solutions require only a 3 and 4 iterations to converge. For this parameter, the residual

error norm decreases with the increase in the number of iterations, giving the maximum

values of 10−10 and 10−13, respectively, for the velocity and temperature distributions.

This means that the approximate solutions obtained using the BSQLM method become

more accurate as the number iterations increase.
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Figure 3.6: The residual error results for different values of suction parameter.

In Figure 3.7 the error norm reduces with the number of iterations. From the graphs,

it is observed that the BSQLM converges with a maximum error of the order 10−10 for

the velocity profiles and 10−11 for the temperature profiles. It is also noted that BSQLM

gives a parabolic shape for the graphs, which indicates that the method is of second order.

Accordingly, as can be seen, the iteration scheme takes only 4 or 5 iterations to converge

fully. Beyond this number of iterations, the error norm does not improve with an increase

in the number of iterations. This indicates that the BSQLM is a convergent method, and

so that is appropriate for solving nonlinear partial differential equations.
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Figure 3.7: Shows the error norm results against iteration for BSQLM with different values
of suction parameter.

3.3 Summary

In this chapter, the flow of an electrically conducting incompressible second grade fluid past

a stretching surface was analyzed. The non-dimensionalized partial differential equations

were solved using the bivariate spectral quasilinearization method. The effects of changing

the flow parameters on the fluid properties were investigated. Results show that the fluid

flow reduces with the increase in the magnetic field parameter. Increasing the values of

the Prandtl number shows no effect on the fluid velocity while reduces the temperature.

Among other results, we showed that the shear stress decreases with an increase in the

suction and the second grade fluid parameters, whereas the heat transfer rate increases.

The accuracy and the convergence rate of the method of solution were determined using

residual error analysis. This proves the BSQLM to be an appropriate method for solving

nonlinear partial differential equations.
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Chapter 4

Second grade nanofluid flow in a

porous medium

We now extend the work of Chapter 3 by introducing new terms in the velocity equation,

which denote the presence of porosity and inertia in the fluid flow. Porosity describes

the presence of pores in the conducting material. The presence of pores makes it possible

for some of the fluid to flow out. On the other hand, the inertia coefficient is the fluid’s

tendency to maintain its state of rest or of motion. These parameters are fused into the

model to reflect reality better. In this chapter, we study second grade nanofluid flow

over a porous wedge. The partial differential equations are solved using the bivariate

spectral quasilinearization method. The velocity and temperature profiles are determined

for several values of parameters such as the wedge angle, heat generation, and absorption

parameters. The convergence of the method is analyzed. As before we first set up the

problem, as illustrated in Figure 4.1.
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Figure 4.1: The problem set up and orientation of the coordinate system [115]

Consider the steady two dimensional incompressible second grade nanofluid flow induced

by a stretching wedge moving with the velocity uw(x) = bxn. The free stream velocity

is Ue(x) = axn, where a, b and n are positive constants with 0 ≤ n ≤ 1, and T∞ is the

ambient temperature. The particle volume fraction flux at the wall is assumed to be zero.

A uniform magnetic field of strength B0 is applied perpendicular to the flow. The electric

and induced magnetic fields are neglected. With the stated assumptions, the boundary

layer equations describing the flow can be expressed as follows:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρ

[
∂u

∂x

∂2u

∂y2
+ u

∂3u

∂x∂y2
−m∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
+ Ue

dU

dx

− σB0
2

ρ
sin2 ψ (u− Ue)−

ν

k∗
u− Fu2, (4.1)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
− ∂qr
∂y

+ µ

(
∂u

∂y

)2

+
Q0

ρcp
(T − T∞)

+ α1
∂u

∂y

[
∂

∂y

(
u
∂u

∂x
+ v

∂u

∂y

)]
. (4.2)
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The corresponding boundary conditions are

u = uw(x) = bxm, T = Tw, at y = 0,

u→ Ue(x) = axm, T → T∞, as y →∞, (4.3)

and

k

(
∂T

∂y

)
y=0

= ρ[λ+ (Tw − T0)]v(x, 0), (4.4)

where u and v represent the velocity along x− and y− directions, ν the kinematic viscosity,

α1 the second grade fluid parameter, ρ the fluid density, σ the electrical conductivity, T

the temperature Cp the specific heat capacity of the nanoparticles in the fluid and Q0 the

dimensional heat generation/absorption coefficient. The boundary condition (4.4) shows

that the heat conducted to the surface is equal to the melting heat plus heat required

to raise the solid temperature up to T0, the melting temperature. Using a similarity

transformation,

u = U0x
mf ′(ξ, η), v = −1

2
(νU0)

1
2x

m−1
2 {(m+ 1)f + (1−m)(ξ

∂f

∂ξ
− ηf ′),

T − T∞ = (Tw − T∞)θ(ξ, η), ξ =

(
ν

U0

) 1
2

x
1−m

2 , η =

(
U0

ν

) 1
2

x
m−1

2 y.

,

equations (4.1) and (4.2) become
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U2
0x

2m−1
{

1−m
2

ξf ′
∂f ′

∂ξ
+mf ′2 − m+ 1

2
ff ′′ − 1−m

2
ξf ′′

∂f

∂ξ

}
= U2

0x
2m−1f ′′′

+
α1U

3
0x

3m−2

ρν

{
1−m

2
ξ

(
f ′′′

∂f ′

∂ξ
+ f ′′

∂f ′′

∂ξ
+ f iv

∂f

∂ξ

)
+ (3m− 1)f ′f ′′′ +

3m− 1

2
f ′′2

+ (m− 1)ηf ′′f ′′′ − m+ 1

2
ff iv

}
− σB2

0

ρU0xm−1
sin2 ψ(f ′ − 1)− νU0x

m

k
f ′

− FU2
0x

2mf ′2 (4.5)

ρCp

{
1−m

2
ξ
∂θ

∂ξ
− 1−m

2
ξ
∂f

∂ξ
θ′ − m+ 1

2
fθ′
}

=
k

ν
θ′′ +

4σ∗

3kν
4T 3
∞θ
′′ +

µU0x
2m

ν(Tw − T∞)
f ′′2

+
α1U

3
0x

3m−1

ν(Tw − T∞)

{
3m− 1

2
f ′f ′′2 − m+ 1

2
ff ′′f ′′′ +

1−m
2

ξ

(
f ′f ′′

∂f ′′

∂ξ
− f ′′f ′′′∂f

∂ξ

)}
+Q(Tw − T∞)θ (4.6)

which then reduces to equation (4.7) and (4.8) as shown below,

f ′′′ +
m+ 1

2
ff ′′ −m(1− f ′2)−Ha2 sin2 ψ(f ′ − 1)− k1f ′ − F ∗f ′2 + λ

[
(3m− 1)f ′f ′′′+

3m− 1

2
f ′′2 + (m− 1)ηf ′′f ′′′ − m+ 1

2
ff iv +

1−m
2

ξ

(
f ′′′

∂f ′

∂ξ
+ f ′′

∂f ′′

∂ξ
− f iv ∂f

∂ξ

)]
− 1−m

2
ξ

(
f ′′
∂f

∂ξ
− f ′∂f

′

∂ξ

)
= 0, (4.7)

(1 +Rd)θ′′ + γ1θ −
1−m

2
ξ

(
f ′
∂θ

∂ξ
− ∂f

∂ξ
θ′
)

+ Ecλf ′′
[

3m− 1

2
f ′f ′′ − m+ 1

2
ff ′′′

+
m− 1

2
ξ

(
f ′′′

∂f

∂ξ
− f ′∂f

′′

∂ξ

)]
− m− 1

2
ξ

(
θ′
∂f

∂ξ
− f ′∂θ

∂ξ

)
= 0. (4.8)

The boundary conditions (4.3) and (4.4) then turn into

f ′ = A, Prf(η) +Mθ′(η) = 0, θ = 1, at η = 0,

f ′ = 1, θ = 0, as η →∞, (4.9)
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where,

λ =
α1U0x

m−1

ρν
, Ha =

σB2
0

ρU0xm−1
, k1 =

ν

U2
0kx

m−1 , F ∗ = Fx, Rd =
16σ∗T 3

∞
3kk∗

,

γ1 =
Q

u0xm−1
, Ec =

U2
0x

2m

cp(Tw − T∞)
, P r =

νρCp
k

, M =
Cp(Tw − T∞)

λ+ Cs(Tw − T0)
A =

b

U0

.

Applying the spectral quasilinearization method to the above models implies the assump-

tion that the difference ||fr+1− fr||, and all its derivatives, are small. The quasilinearized

scheme corresponding to (4.7) and (4.8) becomes

b0rf
iv
r+1 + b1rf

′′′
r+1 + b2rf

′′
r+1 + b3rf

′
r+1 + b4rfr+1 + γ0r

∂fr
∂ξ

+ γ1r
∂f ′r
∂ξ

+ γ2r
∂f ′′r
∂ξ

+ γ3r
∂f ′′′r
∂ξ

= 0, (4.10)

c0rθ
′′
r+1 + c1rθ

′
r+1 + c2rθr+1 + c3rf

′′′
r+1 + c4rf

′′
r+1 + c5rf

′
r+1 + c6rfr+1 + σ0r

∂θr+1

∂ξ

+ σ1r
∂f ′′r+1

∂ξ
+ σ2r

∂fr+1

∂ξ
= 0, (4.11)

and the boundary conditions (4.9) become

f ′r+1 = A, Prf(η)r+1 +Mθ′(η)r+1 = 1, θr+1 = 0 at η = 0,

f ′r+1 = 1, θr+1 = 0 at η →∞, (4.12)
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where the variable coefficients are given by

b0r = −λ
(
m+ 1

2
fr +

1−m
2

ξ
∂fr
∂ξ

)
,

b1r = 1 + λ

(
(3m− 1)f ′r + (m− 1)ηf ′′ +

1−m
2

ξ
∂f ′r
∂ξ

)
,

b2r =
m+ 1

2
fr + λ

(
(3m− 1)f ′′ + (m− 1)ηf ′′′ +

1−m
2

ξ
∂f ′′r
∂ξ

)
− 1−m

2
ξ
∂fr
∂ξ

,

b3r = −2mf ′r −Ha2sin2ψ − k1 − 2F ∗f ′r + λ(3m− 1)f ′′′r +
1−m

2
ξ
∂f ′r
∂ξ

,

b4r =
m+ 1

2
(f ′′r − λf ivr ),

γ0r = λ
1−m

2
ξf ′′r ,

γ1r =
1−m

2
ξ(λf ′′′r + f ′r),

γ2r = −1−m
2

ξ(λf ivr + f ′′r ),

c0r = 1 +Rd,

c1r =
1−m

2
ξ
∂fr
∂ξ
− m− 1

2
ξ
∂fr
∂ξ

,

c3r = Ecλ

(
−m+ 1

2
frf

′′
r +

m− 1

2
ξf ′′r

∂fr
∂ξ

)
,

c4r = Ecλ

[
(3m− 1)f ′rf

′′
r −

m+ 1

2
frf

′′′
r +

m− 1

2
ξ

(
f ′′′

∂fr
∂ξ
− f ′∂f

′′
r

∂ξ

)]
,

c5r = (m− 1)ξ
∂θr
∂ξ

+ Ecλ

(
3m− 1

2
ξf ′′2r −

m− 1

2
ξf ′′r

∂f ′′r
∂ξ

)
, c2r = γ1,

c6r = −Ecλm+ 1

2
f ′′r f

′′′
r ,

σ0r = (m− 1)ξf ′r,

σ1r = −Ecλm− 1

2
ξf ′rf

′′
r ,

σ2r = −(m− 1)ξθ′ + Ecλ
m− 1

2
ξf ′′r f

′′′
r .

Applying spectral collocation of Chebyshev differentiation to (4.10) and (4.11), the equa-
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tions can be simplified further by introducing coefficients as,

[b0rD
iv + b1rD

3 + b2rD
2 + b3rD + b4r + 2

Nξ∑
j=0

dij
[
γ0rD

2 + γ1rD

+ γ2rI
]
fr+1 = Rf,r, (4.13)

[
c3rD

3 + c4rD
2 + c5rD + c6rI + 2

Nξ∑
j=0

dij[σ1rD
2 + σ2rI]

]
fr+1 +

[
c0rD

2 + c1rD

+ c2r + 2

Nξ∑
j=0

dij[σ0rI]

]
θr+1 = Rθ,r. (4.14)

Equations (4.13) and (4.14) can be expressed in their matrix–vector form as



 Π0,0
11 Π0,0

12

Π0,0
21 Π0,0

22


 Π0,1

11 Π0,1
12

Π0,1
21 Π0,1

22

 · · ·
· · ·

 Π
0,Nξ
11 Π

0,Nξ
12

Π
0,Nξ
21 Π

0,Nξ
22


 Π1,0

11 Π1,0
12

Π1,0
12 Π1,0

22


 Π1,1

11 Π1,1
12

Π1,1
21 Π1,1

22

 · · ·
· · ·

 Π
1,Nξ
11 Π

1,Nξ
12

Π
1,Nξ
21 Π

1,Nξ
22



...

...

...

...

. . . . . .

. . . . . .

...

...

 Π
Nξ,0
11 Π

Nξ,0
12

Π
Nξ,0
21 Π

Nξ,0
22


 Π

Nξ,1
11 Π

Nξ,1
12

Π
Nξ,1
21 Π

Nξ,1
22

 · · ·
· · ·

 Π
Nξ,Nξ
11 Π

Nξ,Nξ
12

Π
Nξ,Nξ
21 Π

Nξ,Nξ
22







fr+1,0

θr+1,0


fr+1,1

θr+1,1



...

...

fr+1,Nξ

θr+1,Nξ





=



Rf,r,0

Rθ,r,0


Rf,r,1

Rθ,r,1



...

...

Rf,r,Nξ

Rθ,r,Nξ





, (4.15)
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where

Πi,i
11 = b0rD

iv + b1rD
3 + b2rD

2 + b3rD + b4r + 2dii[γ0rD
2 + γ1rD + γ2rI] (4.16.0)

Πi,j
11 = 2dij[γ0rD

2 + γ1rD + γ2rI] (4.16.1)

Πi,i
12 = O = zero matrix of size (Nη + 1)× (Nη + 1) (4.16.2)

Πi,j
12 = O = zero matrix of size (Nη + 1)× (Nη + 1) (4.16.3)

Πi,i
21 = c3rD

3 + c4rD
2 + c5rD + c6rI + 2dii[σ1rD

2 + σ2rI] (4.16.4)

Πi,j
21 = 2dij[σ1rD

2 + σ2rI] (4.16.5)

Πi,i
22 = c0rD

2 + c1rD + c2r + 2dii[σ0rI] (4.16.6)

Πi,j
22 = 2dij[σ0rI] (4.16.7)

After implementing the boundary conditions, Equation (4.15) can be solved for the un-

known vectors fr+1 and θr+1 at each ξ–level.

4.1 Results and Discussion

The present study uses the bivariate spectral quasilinearization method to generate a se-

ries of numerical results for the velocity and temperature. To validate the numerical code,

the results have been calculated for m = λ = Ha = ψ = 0 and different values of η. From

Table 4.1, where the results are compared with those of Hayat et al. [116], Kuo [117] and

White [118], it is noted that there is good agreement.
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Table 4.1: A comparison of f(η) and f ′(η) with the numerical solutions by Hayat et al.
[116], Kuo [117] and White [118] when m = λ = Ha = ψ = 0.

f(η) f ′(η)

η Current Hayat [116] Kuo [117] White [118] Current Hayat [116] Kuo [117] White [118]

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.002346 0.002346 0.002348 0.00235 0.046960 0.046956 0.046959 0.04696

0.3 0.021128 0.021127 0.021128 0.02113 0.140809 0.140807 0.140806 0.14081

0.5 0.058644 0.058641 0.058643 0.05864 0.234226 0.234227 0.234228 0.23423

0.7 0.114748 0.114749 0.114745 0.114747 0.326532 0.326534 0.326532 0.32653

0.9 0.189112 0.189113 0.189115 0.18911 0.416716 0.416716 0.416718 0.41672

1.1 0.281208 0.281205 0.281208 0.28121 0.503538 0.503536 0.50353 0.50354

1.3 0.390213 0.390213 0.390211 0.39021 0.585589 0.585587 0.585589 0.58559

1.5 0.515033 0.515032 0.515031 0.51503 0.661474 0.661472 0.661474 0.66147

2.2 1.054946 1.054943 1.054947 1.05495 0.863300 0.863302 0.863304 0.86330

3.0 1.795570 1.795565 1.795568 1.79557 0.969054 0.969053 0.969055 0.96905
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Figure 4.2: The variation of (a) velocity, and (b) temperature, profiles for different values
of magnetic field parameter.

Figure 4.2 shows the impact of the magnetic field parameter on the velocity and the

temperature profiles. The applied magnetic field increases the fluid velocity profile while

reducing the temperature profiles. This means that the force which tends to oppose the
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fluid flow reduces and increases the acceleration of the fluid flow. Hence, the rate of the

fluid flow increases with the magnetic field parameter. The lower temperature suggests

that the Lorentz force generates an electrically conducting fluid, reduces the thickness of

the thermal boundary layer.

Table 4.2 shows the effect of the magnetic field parameter on the skin friction and heat

transfer coefficient. It is observed that both skin friction and heat transfer increase with

an increase in the magnetic field parameter. It is also observed that increasing the porous

parameter will decrease the skin friction coefficient, which increasing the Nusselt number.

Table 4.2: The effect of porous parameter and magnetic field parameter.

k1 -f ′′(0) -θ′(0) Ha -f ′′(0) -θ′(0)

0.1 0.87123619 -0.05752645 0.2 0.79967347 0.12808539

0.41 0.86260513 -0.05751121 0.5 0.86291685 0.12819060

0.22 0.84595361 -0.05748386 0.6 0.89506838 0.12824843

0.34 0.82243508 -0.05744984 0.7 0.93228920 0.12831906

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

k
1
 =  0.1

k
1
 = 0.14

k
1
 = 0.22

k
1
 = 0.34

(a)

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

k
1
 =  0.1

k
1
 = 0.14

k
1
 = 0.22

k
1
 = 0.34

4.41 4.42 4.43 4.44

11.9

11.95

12

(b)

Figure 4.3: The variation of (a) velocity and (b) temperature, profiles for different values
of the porous parameter.
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The effect of a porous parameter, k1, is shown in Figure 4.3. It is interesting to note

that, with increasing the value of the porous parameter, both velocity and temperature

profiles decrease in the boundary layer. This indicates that the porosity reduces the fluid

velocity and the rate of heat transfer. As was observed in Table 4.2, increasing the porous

parameter leads to a decrease in the skin friction coefficient whereas the reduced Nusselt

number increases. This physically means that the resistance force exerted by the surface

on the fluid flow reduces as the porous parameter increases.
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Figure 4.4: The variation of (a) velocity, f ′(ξ, η) and (b) temperature, θ(ξ, η) profiles for
different values of heat generation/absorption parameter.

Figure 4.4 shows the effect of heat generation and the absorption parameter, γ1, on the

velocity and temperature profiles of the fluid. It is observed that temperature distribution

increases with increase in the heat generation parameter while it decreases with increasing

values of the heat absorption parameter. This is because the generation process produces

more heat, which results in temperature rising. Figure 4.4 (a) demonstrates that increas-

ing the heat generation and absorption parameter has no appreciable effect on the velocity

profiles in the boundary layer. It is noted from Table 4.3 that with increasing heat gener-

ation and absorption parameter, the Nusselt number reduces, whereas this increase makes

no difference to the values of the skin friction.
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Table 4.3: The effect of wedge angle parameter, ψ and heat generation/absorption param-
eter, γ1.

ψ -f ′′(0) -θ′(0) γ1 -f ′′(0) -θ′(0)

0 0.83186973 -0.05768363 0.1 0.81653340 0.12870255

0.52 0.86145430 -0.05762752 0.15 0.81653340 0.05772039

0.79 0.89174909 -0.05756742 0.2 0.81653340 -0.02254204

1.57 0.94846158 -0.05744767 0.7 0.81653340 -0.11478144
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Figure 4.5: The variation of(a) velocity, f ′(ξ, η) and (b) temperature, θ(ξ, η) profile for
different values of wedge angle parameter.

Figure 4.5 shows the effect of the wedge angle parameter, ψ, on the velocity and tempera-

ture profiles in the second grade fluid. Figure 4.5 (a) shows that the fluid velocity increases

with the wedge angle. Physically the wedge angle is related to the pressure gradient. The

momentum boundary layer thickness increases with the wedge angle. Figure 4.5 (b) shows

the effect of the inclination angle on the thermal boundary layer. It is observed that the

fluid temperature decreases with an increasing wedge angle. The maximum temperature

in the fluid occurs for the flow over a flat plate where ψ = 0. Table 4.3 also shows that an

increase in the wedge angle parameter leads to an increase in the skin friction coefficient.

Thus, the fluid heat transfer diminishes with increased wedge angle.
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Figure 4.6: The variation of (a) velocity, f ′(ξ, η) and (b) temperature, θ(ξ, η) profiles for
different values of melting parameter.

Figure 4.6 shows the variations of the melting parameter, M , on the fluid velocity and

temperature profile. It is noted that both the velocity and temperature profiles decrease

for the large values of the melting parameter. This means that heat transfer due to melting

reduces the flow. Furthermore, increasing the melting parameter leads to increases in both

momentum and thermal boundary layers.
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Figure 4.7: The variation of (a) velocity, and (b) temperature profiles for different values
of second grade fluid parameter.

Figure 4.7 shows the effect of the second grade fluid parameter on the velocity and tem-

perature profiles. It is observed that, with increases in the second grade parameter, the

velocity profiles decrease, whereas the temperature profiles increase. This shows that the

fluid flow is slow for high value of the second grade parameter. This is because the fluid

exerts a resistance force on the wedge and there is a transfer of heat between the fluid and

the plate. This is not surprising since the fluid is considered moving in a static plate.

4.2 Residual Error Analysis

Residual error analysis is used to show the convergence and accuracy of the solution

method. The residual error norm for f(ξ, η) and θ(ξ, η) obtained using BSQLM are shown

in Figures 4.8 and 4.9, respectively. It is observed from Figure 4.8 that the BSQLM takes

only 3 iterations to converge with an increase in the porous parameter. The residual

error norm decreases with the number of iterations. This means that the approximate

solutions obtained using the BSQLM method become more accurate as the iterative process

continues. Moreover, the residual error norm decreases until convergence is achieved.
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Figure 4.8: The residual error results for different values of the porous parameter.
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Figure 4.9: The error norm results against the number of iterations for different values of
porous parameter.

In Figure 4.9 the influence of iterations on the convergence error norm Ef and Eθ of the

bivariate spectral quasilinearization method is depicted. It is noted that the bivariate

spectral quasilinearization method converges with 4 or 5 iterations at a maximum error
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norm of 10−13 for the velocity profiles and and 10−14 for the temperature profiles. This

indicates that BSQLM is an accurate method, and is appropriate for solving nonlinear

partial differential equations. It is also noted that BSQLM gives parabolic graphs for the

error norms, which indicate that the rate of convergence is second order. The iteration

scheme requires 4 or 5 iterations to converge fully.

4.3 Summary

The characteristics of melting heat transfer in second grade nanofluid flowing over a porous

wedge were analyzed. When results were compared to the findings in the literature they

were found to be in good agreement. The results were presented through graphs and

tables to illustrate the relationships between the fluid properties and the flow parameters.

The findings in this chapter may be summarized as follows. Fluid flow is enhanced by

increasing magnetic field and wedge parameters. The increase in the inclination angle

leads to an increase in the fluid velocity and reduction in the temperature. Both the fluid

velocity and temperature decrease with increasing porosity and melting parameters. The

shear stress and heat transfer rate both increase by increasing an inclination angle for

the wedge.The residual error analysis shows that the bivariate spectral quasilinearization

method is an accurate method for solving the model equations for Falkner-Skan fluid flow.
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Chapter 5

Second grade magnetohydrodynamic

fluid flow over a convectively heated

stretching sheet

In Chapter 4, we considered momentum and heat transport in a second grade fluid. In this

chapter, we further increase the complexity of the boundary layer problem by including a

solute transport equation. We model the fluid as flowing through a porous region, where

it is impacted by a chemical reaction and viscous dissipation on a convectively heated

stretching sheet. The BSQLM is used to numerically solve the flow equations. The nu-

merical results of flow characteristics are discussed through graphs and tables. The impact

of the magnetic field and thermal radiation on heat and mass transfer is analyzed. The

convergence and accuracy of the method is determined using residual error analysis.

We study the steady two dimensional boundary layer flow of an incompressible and elec-

trically conducting second grade fluid over a stretching sheet. A schematic representation

of the physical model and coordinates system are shown in Figure 5.1.
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Figure 5.1: The problem set up and orientation of the coordinate system [30]

The x-axis is parallel to the sheet in the vertically upward direction and the y-axis is

normal to it. The flow is along the x-axis, that is in the plane y=0, and the flow is

restricted to y>0. There is viscous dissipation and joule heating. Since the fluid is second

grade, the energy is stored in the fluid through frictional heating due to viscous dissipation

and elastic deformation. There is thermal radiation in the flow. A uniform transverse

magnetic field of strength B0 is applied parallel to the y-axis. The induced magnetic field,

magnetic Reynolds number and Hall effect are negligible. The flow is generated, due to

the stretching of the sheet caused by simultaneous action of two equal and opposite forces

along the x-axis. The sheet is stretched with the velocity uw = ax where a is a constant.

Under these conditions, the boundary layer equations describing continuity, momentum,

energy, and concentration are
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u
∂u

∂x
+ v

∂u

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
α1

ρ

[
∂

∂x

(
u
∂2u

∂y2

)
− ∂u

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3

]
− σB2

0

ρ
u− ν

k∗
u− Fu2

+ gβT (T − T∞) + gβ∗(C − C∞), (5.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂2y2
+

µ

ρCp

(
∂u

∂y

)2

− ∂qr
∂y

+ α1
∂u

∂y

[
∂

∂y

(
u)
∂u

∂x
+ v

∂u

∂y

)]
+ σB2

0u
2, (5.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− kr(C − C∞). (5.4)

The corresponding boundary conditions for the present model are

u = uw, v = v0, T = Tw, C = Cw at y = 0,

u→ 0,
∂u

∂x
→ 0, T → T∞, C → C∞ as y →∞. (5.5)

In terms of radiant heat transfer, the fluid here is considered to be optically thick (see

Section 1.5 ). Accordingly, the diffusion approximation model that is used for radiative

transfer includes an approximate form of the radiative heat flux gradient, qr, in the y-

direction, which is called the Rosseland or diffusion approximation. It has the following

form:

qr = −4σ∗
3k∗

∂2T 4

∂y
. (5.6)

Assuming that the differences in temperature within the flow are such that T 4 can be

expressed as a linear combination of the temperature, expanding T 4 in a Taylor series

about T∞ and neglecting higher order terms, we get
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T 4 = 4T 4
∞T − 3T 4

∞. (5.7)

Thus we have,

∂qr
∂y

= −16T 3
∞σ
∗

3k∗
∂2T

∂y2
. (5.8)

Here u and v are the velocity components in the x and y directions, respectively, g is the ac-

celeration due to gravity, βT is the coefficient of thermal expansion, β∗ is the concentration

expansion coefficient, T is the fluid temperature, T∞ is the ambient temperature, C is the

solute concentration, C∞ is ambient concentration, σ∗ is the Stefan-Boltzman constant, k

is the thermal conductivity of the fluid, cp is the specific heat at constant pressure, qr is

the radiation heat flux, Dm is the molecular diffusivity, v0 is the suction/injection velocity,

Tm is the mean fluid temperature and Cw is the concentration at the wall, kr is the rate

of chemical reaction, where kr > 0 represents a destructive reaction, kr < 0 represents

a generative reaction and kr = 0 indicates no reaction. The similarity transformations

below are introduced:

u = U0x
mf ′(ξ, η), v = −1

2
(νU0)

1
2x

m−1
2 {(m+ 1)f + (1−m)(ξ

∂f

∂ξ
− ηf ′),

T − T∞ = (Tw − T∞)θ(ξ, η), ξ =

(
ν

U0

) 1
2

x
1−m

2 , η =

(
U0

ν

) 1
2

x
m−1

2 y.

Equation (5.1) is automatically satisfied. Then, the model equations (5.2) - (5.4) reduce

to the non-dimensionalized form shown below:
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U2
0x

2m−1
{

1−m
2

ξf ′
∂f ′

∂ξ
+mf ′2 − m+ 1

2
ff ′′ − 1−m

2
ξf ′′

∂f

∂ξ

}
= U2

0x
2m−1f ′′′

+
α1U

3
0x

3m−2

ρν

{
1−m

2
ξ

(
f ′′′

∂f ′

∂ξ
+ f iv

∂f

∂ξ

)
+ (3m− 1)f ′f ′′′ +

1−m
2

ξf ′
∂f ′′′

∂ξ

+
m+ 1

2
f ′f iv +

3m− 1

2
f ′′2
}
− νU0x

m

k
f ′ − FU2

0x
2mf ′2 − σB2

0U0x
m

ρ
f ′ (5.9)

ρCpU0x
m−1(Tw − T∞)

{
1−m

2
ξf ′

∂θ

∂ξ
− m+ 1

2
− 1−m

2
ξ
∂f

∂ξ
θ′
}

=
kr
ν

(Tw − T∞)U0x
m−1θ′′

+
4σ∗

3k1

4T 3
∞U0

ν
xm−1(Tw − T∞)θ′′ +

µ

ν
U3
0x

3m−1f ′′2 +
α1U

4
0

ν
x4m−2

{
3m− 1

2
f ′f ′′2 − m+ 1

2
ff ′′f ′′′

+
1−m

2
ξ

(
f ′f ′′

∂f ′′

∂ξ
− f ′′f ′′′∂f

∂ξ

)}
+Q(Tw − T∞)θ (5.10)

U0x
m−1(Cw − C∞)

{
ξf ′

∂φ

∂ξ
− ξ ∂f

∂ξ
− m+ 1

2
fφ′
}

=
DB

ν
U0x

m−1(Cw − C∞)φ′′

+
DT

T∞ν

(Tw − T∞)

(Cw − C∞)
(5.11)

and then the above equation (5.9 - 5.11) reduces to

f ′′′ +
m+ 1

2
ff ′′ −mf ′2 −Ha2f ′ − k1f ′ − F ∗f ′2 +Grtθ +Grcφ+ λ

[
(3m− 1)f ′f ′′′−

m+ 1

2
ff iv − 3m− 1

2
f ′′2 +

m− 1

2
ξ

(
f iv

∂f

∂ξ
− f ′′′∂f

′

∂ξ
+ f ′′

∂f ′′

∂ξ
− f ′∂f

′′′

∂ξ

)]
−

m− 1

2
ξ

(
f ′′
∂f

∂ξ
− f ′∂f

′

∂ξ

)
= 0, (5.12)

(1 +Rd)θ
′′ + Pr

(
m+ 1

2

)
fθ′ + PrEc

[
f ′′2 +Ha2f ′2 + λf ′′

(
3m− 1

2
f ′f ′′ − m+ 1

2
ff ′′′

+
m− 1

2
ξ

(
f ′′′

∂f

∂ξ
− f ′∂f

′′

∂ξ

))]
− Prm− 1

2
ξ

(
θ′
∂f

∂ξ
− f ′∂θ

∂ξ

)
= 0, (5.13)
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1

Sc
φ′′ +

m+ 1

2
fφ′ −Krφ+ Srθ′′ +

1−m
2

ξ

(
∂f

∂ξ
φ′ − f ′∂φ

∂ξ

)
= 0. (5.14)

The boundary conditions (5.5) then turns into

f = 0, f ′ = 1, θ = 1, φ = 1 at η = 0,

f ′ → 1, f ′′ → 0, θ → 0, φ→ 0 as η →∞, (5.15)

such that

Ha2 =
σB2

0

ρU0xm−1 , λ = α1U0xm−1

ρν
, Ec =

U2
0x

2m

Cp(T−w−T∞)
, k1 = ν

kU0xm−1 , F∗ = Fx,

Grt = gβt(Tw−T∞)

U2
0x

2m−1 , Grc = gβc(Cw−C∞)

U2
0x

2m−1 , Rd = 16T 3
∞σ∗

3kk∗ , P r = νρCp
k
, Sc = ν

DB
,

Sr = DT (Tw−T∞
νT∞(Cw−C∞ , Kr = kr

U0xm−1 .

In the quasilinearization method the subscripts r and r+1 denote the previous and current

iterations, respectively. Accordingly, the previous solutions are denoted by fr, θr and φr,

while those for the current iteration level are denoted by fr+1, θr+1 and φr+1. We make

the assumption that the difference between the current and previous solutions is small.

The spectral quasilinearization scheme corresponding to the equations (5.12 - (5.14) gives

d0rf
iv
r+1 + d1rf

′′′
r+1 + d2rf

′′
r+1 + d3rf

′
r+1 + d4rfr+1 + d5rθr+1 + d6rφr+1 + β0r

∂f ′′′r+1

∂ξ
+ β1r

∂f ′′r+1

∂ξ

+ β2r
∂f ′r+1

∂ξ
+ β3r

∂f

∂ξ
= Rf,r, (5.16)

g0rθ
′′
r+1 + g1rθ

′
r+1 + g2rθr+1 + g3rf

′′′
r+1 + g4rf

′′
r+1 + g5rf

′
r+1 + g6rfr+1 + ε0r

∂θr+1

∂ξ
+ ε1r

∂f ′′r+1

∂ξ

+ ε2r
∂fr+1

∂ξ
= Rθ,r, (5.17)

h0rφ
′′
r+1 + h1rφ

′
r+1 + h2rφr+1 + h3rθ

′′
r+1 + h4rf

′
r+1 + h5rfr+1 + κ0r

∂φr+1

∂ξ

+ κ1r
∂fr+1

∂ξ
= Rθ,r, (5.18)
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where,

d0r = λ

(
m− 1

2
ξ
∂fr
∂ξ
− m+ 1

2
fr

)
,

d1r = 1 + λ

(
(3m− 1)f ′r −

m− 1

2
ξ
∂f ′r
∂ξ

)
,

d2r =
m+ 1

2
fr − λ(3m− 1)f ′′ +

m− 1

2
ξ

(
λ
∂f ′′r
∂ξ
− ∂fr

∂ξ

)
,

d3r = −2mf ′r −Ha2 − k1 − 2F ∗fr′ + λ(3m− 1)f ′′′r +
m− 1

2
ξ

(
∂f ′r
∂ξ
− λ∂f

′′′
r

∂ξ

)
,

d4r =
m+ 1

2
(f ′′r − λf ivr ),

d5r = Grt,

d6r = Grc,

β0r = −λm− 1

2
ξf ′r,

β1r = λ
m− 1

2
ξf ′′r ,

β2r =
m− 1

2
ξ(f ′r − λf ′′′r ),

β3r =
m− 1

2
ξ(λf ivr − f ′′r ),

g0r = 1 +Rd,

g1r = −Prm− 1

2
ξ
∂fr
∂ξ

+ Pr

(
m+ 1

2
fr

)
,

g2r = 0,

g3r = PrEcλ

(
m− 1

2
ξf ′′r

∂fr
∂ξ
− m+ 1

2
frf

′′
r

)
,

g4r = 2PrEcf ′′ + PrEcλ

[
(3m− 1)f ′rf

′′
r −

m+ 1

2
f ′rf

′′′
r +

m− 1

2
ξ

(
f ′′′r

∂fr
∂ξ
− f ′r

∂f ′′r
∂ξ

]
,

g5r = PrEc

(
2Ha2f ′rf

′′ + λ
3m− 1

2
f ′′2r

)
+
m− 1

2
ξ

(
∂Prθr
∂ξ

− PrEcλ∂f
′′
r

∂ξ

)
,
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g6r = Pr
m+ 1

2
(θr − Ecλf ′′r f ′′′r ),

ε0r = Pr
m− 1

2
ξf ′r,

ε1r = −PrEcλm− 1

2
ξf ′rf

′′
r ,

ε2r =
m− 1

2
ξ(PrEcλf ′′r f

′′′
r − Prθ′r),

h0r =
1

Sc
,

h1r =
m+ 1

2
fr +

1−m
2

ξ
∂fr
∂ξ

,

h2r = −Kr,

h3r = Sr,

h4r = −1−m
2

ξ
∂φr
∂ξ

,

h5r =
m+ 1

2
φ′r,

κ0r = −1−m
2

ξf ′r,

κ1r =
1−m

2
ξφ′.

Applying spectral collocation of Chebyshev differentiation into equations (5.16) - (5.18),

we get

[
d0rD

iv + d1rD
3 + d2rD

2 + d3rD + d4rI + 2

Nξ∑
j=0

dij[β0rD
3 + β1rD

2 + β2rD
1 + β3rI

]]
fr+1

+ [d5r]θr+1 + [d6r]φr+1 = Rf,r, (5.19)[
g0rD

2 + g1rD + g2rI + 2

Nξ∑
j=0

dij[ε0rI]

]
θr+1 +

[
g4rD

2 + g5rD
1 + g6rI + 2

Nξ∑
j=0

dij[ε1rD
2

+ ε2rI
]]
fr+1 = Rθ,r, (5.20)
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[
h0rD

3 + h1rD + h2rI + 2

Nξ∑
j=0

dij[κ0rI]

]
φr+1 + [h3rD

2]θr+1 +

[
h4rD1 + h5rI

+ 2

Nξ∑
j=0

dij[κ1rI]

]
fr+1 = Rφ,r. (5.21)

We are required to solve the following system linear Equations (5.19) to (5.21), given by




Π0,0

11 Π0,0
12 Π0,0

13

Π0,0
21 Π0,0

22 Π0,0
23

Π0,0
31 Π0,0

32 Π0,0
33




Π0,1

11 Π0,1
12 Π0,1

13

Π0,1
21 Π0,1

22 Π0,1
23

Π0,1
31 Π0,1

32 Π0,1
33



· · ·

· · ·


Π

0,Nξ
11 Π

0,Nξ
12 Π

0,Nξ
13

Π
0,Nξ
21 Π

0,Nξ
22 Π

0,Nξ
23

Π
0,Nξ
31 Π

0,Nξ
32 Π

0,Nξ
33




Π1,0

11 Π1,0
12 Π1,0

13

Π1,0
12 Π1,0

22 Π1,0
23

Π1,0
31 Π1,0

32 Π1,0
33




Π1,1

11 Π1,1
12 Π1,1

13

Π1,1
21 Π1,1

22 Π1,1
23

Π1,1
31 Π1,1

32 Π1,1
33



· · ·

· · ·


Π

1,Nξ
11 Π

1,Nξ
12 Π

1,Nξ
13

Π
1,Nξ
21 Π

1,Nξ
22 Π

1,Nξ
23

Π
1,Nξ
31 Π

1,Nξ
32 Π

1,Nξ
33



...

...

...

...

. . . . . .

. . . . . .

...

...


Π
Nξ,0
11 Π

Nξ,0
12 Π

Nξ,0
13

Π
Nξ,0
21 Π

Nξ,0
22 Π

Nξ,0
23

Π
Nξ,0
31 Π

Nξ,0
32 Π

Nξ,0
33




Π
Nξ,1
11 Π

Nξ,1
12 Π

Nξ,1
13

Π
Nξ,1
21 Π

Nξ,1
22 Π

Nξ,1
23

Π
Nξ,1
31 Π

Nξ,1
32 Π

Nξ,1
33



· · ·

· · ·


Π
Nξ,Nξ
11 Π

Nξ,Nξ
12 Π

Nξ,Nξ
13

Π
Nξ,Nξ
21 Π

Nξ,Nξ
22 Π

Nξ,Nξ
23

Π
Nξ,Nξ
31 Π

Nξ,Nξ
32 Π

Nξ,Nξ
33








fr+1,0

θr+1,0

φr+1,0



fr+1,1

θr+1,1

φr+1,1



...

...


fr+1,Nξ

θr+1,Nξ

φr+1,Nξ





=




Rf,r,0

Rθ,r,0

Rφ,r,0



Rf,r,1

Rθ,r,1

Rφ,r,1



...

...


Rf,r,Nξ

Rθ,r,Nξ

Rφ,r,Nξ





,

(5.22)
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where

Πi,i
11 = d0rD

iv + d1rD
3 + d2rD

2 + d3rD + d4rI + 2dii[β0rD
3 + β1rD

2 + β2rD
1 + β3rI]

(5.23.0)

Πi,j
11 = 2dij[β0rD

3 + β1rD
2 + β2rD

1 + β3rI] (5.23.1)

Πi,i
12 = d5rI (5.23.2)

Πi,j
12 = O = zero matrix of size (Nη + 1)× (Nη + 1) (5.23.3)

Πi,i
13 = d6r (5.23.4)

Πi,j
13 = O = zero matrix of size (Nη + 1)× (Nη + 1) (5.23.5)

Πi,i
21 = g4rD

2 + g5rD
1 + g6rI + 2dii[ε1rD

2 + ε2rI] (5.23.6)

Πi,j
21 = 2dij[ε1rD

2 + ε2rI] (5.23.7)

Πi,i
22 = g0rD

2 + g1rD + g2rI + 2dii[ε0rI] (5.23.8)

Πi,j
22 = 2dijε0rI (5.23.9)

Πi,i
23 = O = zero matrix of size (Nη + 1)× (Nη + 1) (5.23.10)

Πi,j
23 = O = zero matrix of size (Nη + 1)× (Nη + 1) (5.23.11)

Πi,i
31 = h4rD1 + h5rI + 2dii[κ1rI] (5.23.12)

Πi,j
31 = 2dij[κ1rI] (5.23.13)

Πi,i
32 = h3rD

2 (5.23.14)

Πi,j
32 = O = zero matrix of size (Nη + 1)× (Nη + 1) (5.23.15)

Πi,i
33 = h0rD

3 + h1rD + h2rI + 2dii[κ0r]I (5.23.16)

Πi,j
33 = 2dij[κ0r]I. (5.23.17)

After the implementing boundary conditions, the solutions for the above equations can be

obtained for unknown vectors fr+1, θr+1 and φr+1 at each ξ–level.
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5.1 Numerical results and discussion

Numerical results are obtained using the bivariate spectral quasilinearization method to

gain insight into the effects of the parameters describing the flow characteristics of a sec-

ond grade fluid over a convectively heated stretching sheet. The numerical results are

illustrated graphically in Figures 5.2 to 5.5 and given in Tables 5.1 to 5.4. There are

many parameters in the mathematical model. We considered the effects of radiation, the

second grade parameter, and the Soret number. In the simulation the default values of the

other parameters are, unless otherwise specified, λ = 0.02, m = 1, k1 = 0.1, F ∗ = 0.21,

Grt = 0.02, Grc = 0.05, Rd = 0.21, Ha = 0.05, Pr = 0.075 Ec = 0.03, Sc = 0.01,

Sr = 0.02, Kr = 0.3 unless otherwise specified.

Figure 5.2 shows the variation of the fluid velocity, temperature and concentration distri-

bution across the boundary layer for various values of the second grade fluid parameter.

It is seen from Figure 5.2. (a) that the velocity of the fluid across the boundary layer in-

creases with increasing values of the second grade parameter. The velocity also decreases

asymptotically to zero at the edge of the hydrodynamic boundary layer. From Figures 5.2

(b) and (c), it is observed that the temperature and concentration profiles decrease with

an increase in the second grade parameter. Hence the thickness of the thermal boundary

layer reduces.
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Figure 5.2: The variation of (a) the fluid velocity, (b) temperature, and (c) concentration
profiles for different values of the second grade fluid parameter.

Figure 5.3 shows the effect of the porous medium parameter on the fluid velocity, temper-

ature and concentration profiles. The effect of the porous medium parameter is to increase

the resistance to the fluid motion. This causes the fluid velocity to reduce, as in Figure

5.3. (a). From Figure 5.3 (b) and (c), it is observed that increasing the porous medium

parameter leads to an increase in temperature and concentration profiles of the fluid in
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the boundary layer. This indicates that due to an increase in the thermal and solutal

boundary thickness, the rate of heat and mass transfer also increases.
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Figure 5.3: The variation of (a) the fluid velocity, (b) temperature, and (c) concentration
profiles for different values of the porous parameter.

79



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kr =   0

Kr = 0.5

Kr =   1

Kr = 1.5

0.6 0.61 0.62 0.63
0.475

0.48

0.485

0.49

0.495

0.5

(a)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kr =   0

Kr = 0.5

Kr =   1

Kr = 1.5

2.8 2.85 2.9
0.62

0.625

0.63

(b)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kr =   0

Kr = 0.5

Kr =   1

Kr = 1.5

(c)

Figure 5.4: The variation of (a) the fluid velocity, (b) temperature, and (c) concentration
profiles for different values of the chemical reaction parameter.

Figure 5.4 displays the behaviour of the fluid velocity, temperature, and concentration

distribution for various values of the modified chemical reaction parameter, Kr. Figures

5.4 (a) and (c) show that an increase in the modified chemical reaction parameter leads

to an increase of the fluid velocity and concentration in the boundary region, while from

Figure 5.4 (b) it is observed that the temperature distribution increases uniformly with
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increasing modified chemical reactions.

Kr -f ′′(0) -θ′(0) -φ′(0)

0 2.66722324 0.17529406 0.10620809

0.5 2.67068378 0.17505819 0.12220341

1 2.67388378 0.19351450 0.13724764

1.5 2.67685367 0.17464091 0.15145713

2 2.67961920 0.17445544 0.16492910

Table 5.1: The effect of chemical reaction parameter on the skin friction coefficient, Nusselt
number, and Sherwood number.

The influence of the chemical reaction parameter on the skin friction coefficient, the Nus-

selt number, and the Sherwood number are shown in Table 5.1. It is observed from this

table that the skin friction coefficient and the Sherwood number increase with the chemi-

cal reaction parameter. The Nusselt number decreases as the chemical reaction parameter

increases. It is interesting to note that for both 0 < Kr < 1 and Kr > 1, similar results

were obtained.

Figure 5.5 represents the velocity, the temperature, and the concentration profiles for

various values of the magnetic field parameter. From Figure 5.5 (a), it is observed that

the velocity of the fluid flow decreases with the magnetic field parameter. This is due

to the transverse magnetic field that opposes the transport phenomenon since the pres-

ence of a magnetic field produces a drag-like force, called the Lorentz force, which acts

in the opposite direction to the fluid motion. The increase in the magnetic field param-

eter increases the fluid temperature and concentration. This means that the momentum

boundary layer thickness decreases while the reverse trend is observed for thermal and

concentration boundary layer thickness. The increase of the solutal concentration in the

boundary layer is due to an increase in the solutal boundary layer thickness.
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Figure 5.5: The variation of (a) the fluid velocity, (b) temperature, and (c) concentration
profiles for different values of the magnetic field parameter.
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Ha -f ′′(0) -θ′(0) -φ′(0)

2 5.20507486 0.15328656 0.11376221

5 10.96414856 0.13719372 0.11267517

10 20.64273204 0.12129146 0.11221609

15 30.00798591 0.10743574 0.11205294

Table 5.2: Shows the effect of magnetic field parameter.

In Table 5.2, it is shown that the skin friction coefficient increase with the magnetic field

parameter. Physically, a positive value for the skin friction implies that the fluid exerts a

drag force on the sheet and a negative value implies the opposite meaning. The rate of

a mass transfer decreases with the increase of the magnetic field parameter, whereas the

heat transfer rate is not affected by this variation.

Rd -f ′′(0) -θ′(0) -φ′(0)

0 2.67039799 0.15509296 0.11593358

0.2 2.66937520 0.17418849 0.11592695

0.4 2.66863869 0.19351450 0.11592221

0.8 2.66765113 0.23258055 0.11591589

Table 5.3: The effect of the the thermal radiation parameter.

It is clear from Table 5.3 that the magnitude of the skin friction coefficient decreases

with an increase in the thermal radiation parameter. Increasing the thermal radiation

parameter results in rising of the heat rate transfer of the fluid. However, there is no sig-

nificant difference in the values of the mass rate transfer with increasing thermal radiation

parameter.

-θ′(0)

Sr Present results Das [119] Olajuwon[120]

0.2 1.59872 1.58882 1.59570

0.5 1.170501 1.72067 1.17050

0.7 0.373686 0.37381 0.37350

2.0 2.675600 2.59830 2.67560

Table 5.4: The comparison of -θ′(0) for various values of the soret number, Sr.
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The accuracy of our numerical solutions can be verified by comparison with those of

Olajuwon[120] and Das [119], as presented for particular cases in Table 5.4. To check the

validity of the numerical code, the values of the Nusselt number have been calculated for

Ec = Kr = 0 and different values of Soret number. The comparison shows an excellent

agreement among the results. Thus the use of the present BSQLM numerical technique is

justified.

5.2 Residual error analysis

Residual error analysis is considered here to verify the convergence and accuracy of the

method. The residual error is calculated by obtaining an approximate solution and insert-

ing it back into the original system of equations. To determine the level of accuracy of the

BSQLM approximate solution at a particular time level, in order to compare it with the

exact solution, we use the maximum error or infinity error norm which is defined as

EN = Maxi{|u(yi, t)− u∗(yi, t)|}, 0 ≤ i ≤ N, (5.24)

where u∗(yi, t) is the approximate solution and u(yi, t) is the exact solution at the time

level, t, as reported by Motsa et al. [111]. The convergence of the method will be elu-

cidated if the infinity error norms approach zero with increasing the collocation point.

Increasing in collocation points leads to a decrease in the error norms.

Figure 5.6 displays the residual error norms of the solutions for the system of equations

(5.12 - 5.14) obtained using the BSQLM. It is observed from the graphs that as the number

of iterations increases, the norm of the residual error decreases. The maximum conver-

gence of the error norm for this method is given by the porous parameter. The BSQLM

converges at the smaller residual error norm of 10−11 for velocity and temperature dis-

tributions, and 10−13 for concentration profiles after 3 and 4 iterations, respectivly. This

means that the approximate solutions obtained using the BSQLM method gets more ac-

curate as the iterative process continues. The residual error norm decreases to a point

where convergence is achieved and that convergence point shows the level of accuracy of
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the method. It is also observed that the BSQLM takes 4 or 5 iterations to converge as the

values of the varying parameters increases.
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Figure 5.6: The residual error results for different values of porous parameter.

Figure 5.7 shows clearly the influence of increasing iterations on the convergence error

norm of the bivariate spectral quasilinearization method. It is noted that with increasing

parameter values the method converges after few iterations. The maximum convergence
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error norm of this method is given by the porous parameter. However, the BSQLM

converges at the error norm of 10−9 for velocity, 10−11 for the temperature, and 10−12 for

concentration distributions after 4 iterations. Furthermore, the BSQLM gives parabolic

graphs for error norms, which indicates that the residual error norm for SQLM is of the

second order. The results from Figure 5.7 shows that the BSQLM is an accurate solution

method for solving these nonlinear second grade problems.
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Figure 5.7: The error norm error results against the number of iterations for different
values of porous parameter.

86



5.3 Summary

The work in this chapter investigated the second grade magnetohydrodynamic fluid flow

over a convectively heated stretching sheet. The partial differential equations that describe

the flow were solved numerically using the bivariate spectral quasilinearization method.

The influence of different parameters on the fluid properties was analyzed. Results show

that the fluid velocity in the boundary layer region increases with an increase in values

of the second grade fluid parameter and decreases with increasing values of the porous

parameter, chemical reaction parameter and the magnetic field parameter. The temper-

ature profiles decrease with the second grade fluid parameter while that are enhanced by

an increase in the porous parameter, chemical reaction parameter and the magnetic field

parameter. Moreover, the fluid concentration increases with an increase in the porous,

and magnetic field parameters, but, decreases under the influence of the second grade

parameter and the chemical reaction parameter. Consequently, the rate of heat transfer

rises with large values of the thermal radiation parameter but the effect is reversed for

the skin friction. The residual error analysis shows BSQLM to be an accurate method for

solving the nonlinear boundary layer second grade fluid problem.
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Chapter 6

Conclusion

In this study, the bivariate spectral quasilinearization method (BSQLM) was used to obtain

the numerical solutions of partial differential equations describing different second grade

fluid flows. For each of these, a suitable transformation was used to non-dimensionalize

the system of equations. The results obtained were presented through graphs and tables

to illustrate the dependence of the parameters. The impact of parameters characterizing

the flow was then analyzed. The residual error analysis was also used to determine the

convergence and accuracy of the method.

In Chapter 2, the problem of an incompressible MHD flow of a second grade fluid in

a porous channel was investigated using the method to obtain the numerical solutions.

The results showed that BSQLM is an appropriate method for solving the second grade

fluid third order partial differential equations.

In Chapter 3, the same method was then applied to a system of nonlinear partial dif-

ferential equations. The objective was to solve a system of non-similar boundary layer

equations that model an electrically conducting incompressible second grade fluid moving

past a stretching surface. The effect of the second grade fluid parameter and magnetic

field on the velocity and temperature profiles was investigated. An increase in the second

grade fluid parameter resulted in an increase in the fluid velocity and a decreases in the

temperature profiles, whereas increasing the magnetic field parameter showed the opposite
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effect. Among other results, we showed that the shear stress decreases with an increase

in the suction parameter and the second grade fluid parameter, whereas the heat transfer

rate increases for these changes. The convergence of the method was determined by the

residual error analysis. It was found that the bivariate spectral quasilinearization method

is convergent, and so it is an appropriate method for solving nonlinear partial differential

equations.

In Chapter 4, the characteristics of melting heat transfer in second grade nanofluid flow-

ing over a porous wedge were analyzed. The bivariate spectral quasilinearization method

was used to solve the non-dimensionalized systems of equations. The present results were

found to be in good agreement with those in the literature. When investigating the effects

of the parameters on the flow characteristics, we found that fluid flow was enhanced by

increasing the magnetic field and wedge parameters. The increase of inclination angle

increased the fluid velocity and decreased the temperature. Second grade parameters had

an opposite effect in the velocity and temperature profiles. The residual error analysis

showed that the bivariate spectral quasilinearization method is an appropriate method for

solving the second grade nanofluid flow.

In Chapter 5, the effect of a chemical reaction and viscous dissipation on MHD second

grade fluid flow past a convectively heated stretching sheet was studied, with the same

quasilinearization method being used to numerically solve the system of equations. The

impact of the magnetic field and thermal radiation on heat and mass transfer were also

analyzed and indicated that heat transfer increases with the thermal radiation whereas,

the mass transfer decreases. The magnetic field parameter resulted in both heat and mass

transfer to decrease. To check the validity of the numerical code, the values of the heat

rate transfer were calculated for different values of the Soret number, and comparison

among the results showed excellent agreement. As before, the convergence and accuracy

of the method were determined using the residual error analysis. It was found that the

bivariate spectral quasilinearization method is convergent and accurate method for solving

nonlinear second grade problem.
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Overall, it was observed that the bivariate spectral quasilinearization method is a very

efficient and accurate method to obtain approximate solutions for a variety of nonlinear

second grade fluid problems, ranging from ODEs to PDEs. Further research may indicate

whether the behaviour of this method remains the same under other conditions; for in-

stance considering second grade fluid past a moving wedge or finding numerical solutions

for second grade fluid flow in cylindrical polar coordinates.
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