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ABSTRACT 

The demand for electric power increases rapidly with the growth in human population whereas 

expansion of existing power transmission infrastructure is restrained by difficulties in obtaining rights 

of way, resource scarcity and environmental policies inter alia. This has called for better utilization of 

existing transmission facilities which, for many years has been achieved through series compensation 

of transmission lines using conventional series capacitor banks. However, during major system 

disturbances, these conventional series capacitors weaken the damping of torsional oscillations in the 

neighboring turbine-generator shafts, which may lead to the failure and damage of the shafts 

concerned; a phenomenon known as subsynchronous resonance (SSR).  

Alternative means of series compensation using high-speed semiconductor switches has been realized 

following introduction of Flexible AC Transmission Systems (FACTS) in power systems. This 

research work focuses on damping of SSR using damping controls around the second-generation 

series device of the FACTS family namely the static synchronous series compensator (SSSC). The 

SSSC is designed to inject voltage in series with the transmission line and in quadrature with line 

current to emulate capacitive reactance in series with the transmission line. In this research work, a 

model of the SSSC is developed in Power System Computer Aided Design (PSCAD) and the IEEE 

First Benchmark Model (FBM) is used for SSR analysis. Initially, the resonant characteristics of the 

SSSC compensated transmission line is studied to determine whether this device has a potential to 

excite SSR on its own. The results confirm earlier work by other researchers using a detailed model of 

the SSSC, showing that introduction of a SSSC can indeed excite SSR, although not to the same 

extent as conventional series capacitors.  

The research work then considers the addition of supplementary damping controllers to the SSSC to 

add positive damping to subsynchronous oscillations caused by the SSSC itself as well as by a 

combination of conventional series capacitors and a SSSC in the IEEE FBM. Finally, the research 

work considers a more complex transmission system with an additional transmission line that 

incorporates conventional series capacitors. Time-domain simulation results and Fast Fourier 

Transform analyses show that a damping controller around the SSSC can be used to mitigate SSR 

either due to the SSSC itself, or due to conventional series capacitors in the same line as the SSSC or 

due to conventional series capacitors in an adjacent line of an interconnected transmission network.  
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  CHAPTER ONE 

INTRODUCTION 
 

1.1. General  

With the human population estimated to rise to 11.2 billion by the year 2100 [1], rapid increase in 

electric power demand will continue to prevail for domestic, industrial and transportation purposes to 

sustain and improve the human lives. Projections on the global electricity consumption indicate an 

astounding 75% increase from 15 000 TWh in the year 2000 to 27 000 TWh in 2020, corresponding 

to the population increase from 6.1 billion to 7.5 billion [2]. On the other hand, more environmentally 

friendly and sustainable energy sources such as solar and wind farms are being integrated into existing 

electric grids, raising a need for bulk transmission of electric power over long distances from 

generating units to load centers. However, construction of new generation plants and installation of 

new transmission lines to meet these demands are hindered by high costs, difficulties in obtaining 

rights of way and severe environmental restrictions [3] among other factors.  

More efficient ways of transmitting power are explored while efforts are being made to enhance the 

power transfer capability of existing transmission lines. Wireless power transmission is an alternative 

way of power transmission without the use of transmission lines. However, industrial utilization of 

this concept has not been fully realized [4] owing to the technical challenges that remain unsolved, 

particularly in high power, long-range applications, although there are promising technologies 

implemented in power lasers, microwave and vacuum transmission [5]. In light of the above 

challenges, transmission planners are left with no option but to better utilize existing transmission 

facilities by increasing their loadability, i.e. enabling them to be operated closer to their stability 

margins without compromising the security of the power system. 

 

1.2. Series Compensation of Transmission Lines 

Conventional series capacitor banks have been widely used as an economic way of improving the 

power transfer capability of transmission lines. These capacitors cancel portion of the transmission 

line‟s inductive reactance, reduce the transmission losses, increase the load sharing among parallel 

lines and improve the transient as well as the steady state stability of the power system [6]. The 

concept of series capacitor compensation is explained in details using a single line diagram of a power 

system in figure 1.1. The power P, transmitted over an uncompensated transmission line is given by 

equation 1.1, where Vs and Vr are the sending end and receiving end voltages respectively, XL is the 

inductive reactance of the line and δs and δr are the phase angles of the sending end and receiving end 

voltages respectively. For a transmission line compensated with series capacitor of capacitive 

reactance XC, the power transferred over the line is given by equation 1.2.  
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(a) without series compensation    (b) with series compensation 

Figure 1.1:  Single machine infinite bus system with and without series capacitive compensation 
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In principle, series capacitor compensated transmission line appears electrically shorter than an 

uncompensated transmission line of the same length and parameters [7]. Comparison of equations 1.1 

and 1.2 shows that the maximum power that can be transmitted is higher for series compensated 

transmission lines than for uncompensated lines.   

Although Charles Concordia warned about possible detrimental interactions between series capacitors 

and multi-mass turbine-generators back in 1937 [8-9], it was only in 1970, and again in 1971 that the 

actual turbine-generator shaft failures due to these interactions were experienced at the Mohave power 

station in Nevada, USA. This interaction, now known as subsynchronous resonance (SSR), has since 

attracted the attention of many researchers worldwide.  

 

1.3. Background to SSR Phenomenon in Series Compensated Networks 

Majority of the generated electricity comes from large turbine-generators with long rotors typically 

consisting of several rotating sections [8]. Due to these long multi-inertia shaft structures, these 

turbine-generators are normally characterized by several torsional vibration-modes, the number of 

which depends on the sections on the turbine-generator shaft. The mechanical damping of the 

torsional vibrations in the turbine-generator shaft is small and it is positive due to friction and 

windage losses as well as the flow of steam or gas around the rotor. When such a turbine-generator is 

radially connected to a series capacitor compensated line as in figure 1.2, the resonant frequency of 

the electrical network, fer is given by equation 1.3. 
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Figure 1.2:  Multi-inertia turbine generator connected to series compensated transmission line 

Ltot

C
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X

X
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Where: 

 f0 = synchronous frequency of the power system 

XC = capacitive compensating reactance 

XLtot = total inductive reactance of the electrical system (i.e.    
              ) 

Xt = leakage reactance of the step-up transformer 

XL = inductive reactance of the transmission line 

X 
”

ad = sub-transient reactance of the generator 

When a disturbance occurs in such a system, oscillations in generator rotor at subsynchronous 

frequencies fn induce armature voltages with frequencies (f0 ± fn) [10]. These voltages set up currents 

in the armature which in turn develop electromagnetic torque at the same frequency fn. The damping 

of the torsional oscillations in the turbine-generator shaft is weakened if the resonant frequency of the 

system‟s electrical network fer is close to the subsynchronous frequency (f0 - fn). When currents at 

frequencies included in these oscillations enter the machine windings, the machine and the electric 

network should ideally combine to damp out these oscillations. If not, these oscillations may grow in 

amplitudes (unstable) or may be stable but poorly damped (sustained). Occurrence of these 

subsynchronous oscillations, which are typically in the range of 10 - 50 Hz [11] on the generator shaft 

increases stress and fatigue, developing cracks which will lead to shaft failure due to damage. 

The IEEE Subsynchronous resonance task force [12] defines SSR as follows:  
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„SSR is an electric power condition where energy is exchanged between the electric network 

and mechanical system of the turbine-generator shaft at one or more of the natural 

frequencies of the combined system below the synchronous frequency of the power system.‟ 

1.3.1. Forms of SSR 

The SSR phenomenon typically manifests itself in three different forms namely; induction generator 

effect (IGE), torsional interaction (TI) and transient torque or torque amplification (TA). 

1.3.1.1. Induction Generator Effect 

This form of SSR results from self-excitation of the generator and involves the electrical 

system only. IGE occurs if an electrical resonance exists at a subsynchronous frequency and a 

negative resistance (due to negative slip) from the rotor side exceeds the positive resistance in 

the lines [13]. Turbine-generators near heavily series compensated networks are more likely 

to experience this form of SSR. 

1.3.1.2. Torsional Interaction 

Torsional interaction SSR involves the electrical system as well as the mechanical system of 

the shaft. Large subsynchronous currents which produce oscillatory torque result if the 

frequency of the subsynchronous component of armature voltage mentioned above, (f0 - fn), is 

close to the electrical resonant frequency, fer. SSR due to torsional interaction occurs if the 

phase of the produced torque is such that it enhances the excited torsional oscillations. TI is 

reported to be more significant and is believed to be responsible for the catastrophic shaft 

failures at the Mohave power station [14]. 

1.3.1.3. Transient Torque or Torque Amplification  

Disturbances in a system with capacitor compensated transmission line(s) give rise to 

transient rotor electromagnetic torques at the frequencies (f0 ± fer). Post-disturbance shaft 

torques of large amplitudes result if the subsynchronous component of the transient torque 

(f0 - fer) gets close to one of the natural torsional frequencies of the mechanical system. SSR 

due to TA involves both the electrical and mechanical systems but is initiated by severe 

disturbances such as faults.  

1.3.2. SSR Analytical Tools 

Different techniques have been proposed to assess the potential risk of SSR in power systems and the 

famous ones include; eigenvalue analysis, frequency scanning as well as non-linear electromagnetic 

transient analysis.  

1.3.2.1. Eigenvalue Analysis 

With this method, all components of the power system are modelled mathematically with 

non-linear equations which are later linearized about an operating point of interest. The 
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eigenvalues of the linearized matrix representing the whole system are obtained and used to 

determine the stability of the system. The method is normally computationally intensive.  

1.3.2.2. Frequency Scanning 

Frequency scanning technique determines the network impedance as seen from behind the 

stator winding of the generator under study as a function of frequency. This method provides 

preliminary analysis of SSR problem and only indicates the risk of SSR [15], therefore needs 

to be verified by means of time domain simulations 

1.3.2.3. Non-linear Electromagnetic Transient Analysis 

Also known as time domain simulations, this method of SSR analysis utilizes the non-linear 

differential equations to represent various components of the power system which are solved 

by iterative step-by-step numerical integration [3] using a simulation program. This method is 

accurate and saves time in investigations. 

In this dissertation, the SSR analysis will focus on frequency scanning as the study system has been 

modelled on PSCAD which uses continuous-time models. 

 

1.4. Flexible AC Transmission Systems (FACTS) 

With more advances in high power semiconductor devices, the state-of-the-art voltage source 

converter-based FACTS controllers were developed [15]. FACTS controllers are capable of rapidly 

controlling the power flow in transmission lines and to safely allow the power system to be operated 

closer to its stability limits. This is achieved through simultaneous or selective control of the 

parameters affecting the power flow in a transmission line (i.e. bus voltages, impedance and phase 

angle). Depending on their connection to the power system, FACTS controllers can be categorized 

into series controllers, shunt controllers, series-shunt controllers or series-series controllers. Shunt 

FACTS controllers regulate the bus voltages to control the reactive power while series FACTS 

controllers control the line reactance to modify the power flow in the line. Series-shunt FACTS 

controllers can be designed to control both the bus voltages and phase angles or all of the factors 

affecting the power flow in the line. 

According to IEEE [11], the term FACTS refers to: 

“A power electronic based system and other static equipment that provide control of one or 

more ac transmission system parameters to enhance controllability and increase power 

transfer capability.” 

Application of FACTS in power systems has enabled not only the fast and flexible control of power 

flow in transmission lines, but also mitigation of SSR caused by series capacitors. Examples of the 
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FACTS controllers include the Static Compensator (STATCOM), Thyristor Controlled Series 

Capacitor (TCSC), SSSC and Unified Power Flow Controller (UPFC). 

  

1.5. Research Objectives and Related Key Questions 

FACTS controllers involve the incorporation of power-electronic controlled devices into AC power 

transmission systems in order to safely extend the power-transfer capability of these systems closer to 

their stability limits. The key question has been whether it is possible to utilize the FACTS devices 

already installed for other purposes to mitigate the SSR problem in a power system.  Previous 

research has shown that one member of the family of FACTS series compensators which is the Static 

Synchronous Series Compensator (SSSC), can effectively damp torsional oscillations caused by the 

SSSC itself or due to the presence of conventional series capacitors in the transmission line [9, 17-19]. 

However, the research work in [9, 17-19] has considered a single transmission line in the power 

system. In a practical transmission system, however, it is likely to be the case that an additional 

transmission line that incorporates a conventional series capacitor might be present in the system. 

The aim of this research study is to investigate whether supplementary controls can be added to the 

SSSC to damp torsional oscillations caused by a conventional series capacitor in an adjacent line of 

the transmission system. Different critical operating points of the transmission system will be 

considered to investigate whether the supplementary controls are effective for a range of values of 

series compensation. 

 

1.6. Thesis Organisation 

The work in this thesis comprises of six chapters. Chapter One introduces the concept of series 

compensation of transmission lines and subsynchronous resonance. The first chapter also discusses 

the root cause of subsynchronous resonance in the turbine-generators that are radially connected to 

series compensated transmission lines as well as the various forms SSR and the analytical tools used 

to assess the potential risk of SSR in the power system. Chapter Two presents the reported incidents 

of SSR and reviews the work in the literature regarding the SSR remedial measures undertaken by 

utilities or proposed including the use of FACTS controllers. In Chapter Three, mathematical 

modelling of the power system under study is presented and the ability of the SSSC scheme used in 

the thesis to provide the required amount of series compensation. Susceptibility of the SSSC‟s internal 

controls to the sources of disturbance in the transmission system is also evaluated in Chapter Three.  

Chapter Four investigates the effects of the SSSC‟s internal controls on the dynamics of the 

transmission line and establishes the SSR characteristics of the SSSC in the IEEE first benchmark 

model. The design of the supplementary damping controller around the SSSC is presented in Chapter 

Five and to damp SSR in the IEEE FBM with single transmission line and in the modified IEEE FBM 
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with parallel transmission lines. The conclusions from the research work findings and suggestions for 

future work are in Chapter Six. 

 

1.7. Research Publication 

Some of the findings of this dissertation have been presented at an international conference [85] and 

will appear in an international journal [90]. 
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CHAPTER TWO 

REVIEW ON SUBSYNCHRONOUS RESONANCE AND ITS COUNTERMEASURES 

 

2.1. Introduction 

The previous chapter has considered series capacitor compensation of transmission lines and its 

benefits in power transmission. The challenges and hazards associated with this technique are also 

discussed, in particular with regard to subsynchronous resonance, which presents a major threat to the 

nearby turbine-generator units. Chapter One has also highlighted on how FACTS devices can 

alleviate transmission bottlenecks and safely allow optimum utilization of transmission facilities. 

This chapter reviews the work available in the literature regarding SSR, its causes and some practical 

cases where it occurred or it was detected. Finally, the chapter reviews the protective and mitigating 

measures against SSR that are available in the literature, including the use of different FACTS 

devices. 

 

2.2. Causes of Subsynchronous Oscillations 

There are a few power system configurations that are susceptible to subsynchronous oscillations. 

Those include radial connection of turbine-generators with series capacitor compensated transmission 

lines, adverse control interactions with the FACTS devices, wind turbine-generators (especially the 

doubly-fed induction generator type) [20-22] or HVDC systems [23-25], speed governors or 

generator-exciter controls.  

If these oscillations are not sufficiently damped, they result in the flow of subsynchronous currents in 

the stator windings of the generator. Thus, damping or weakening of SSR oscillations requires 

elimination or suppression of these currents.  

 

2.3. Reported Cases of SSR occurrence or detection 

The first two reported incidents of shaft failure due to subsynchronous resonance were from the 

Mohave Power plant, one in 1970 and the other in 1971. It was only after the latter case that the cause 

of the failure was identified as SSR, where an electrical resonance at 30.5 Hz excited a mechanical 

resonance at 30.1 Hz. 

Also, in 1977 the field tests performed in [26] detected adverse subsynchronous control interactions 

between a ±250 kV, 500 MW HVDC link and a 438 MW turbine-generator in the Square Butte power 

station, USA. However, no shaft failure occurred in this particular case due to proactive testing 
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measures and subsequent modification of the HVDC link controls to suppress the torsional 

interactions. 

Another subsynchronous control interaction was reported in South-East of Texas at the Electric 

Reliability Council of Texas (ERCOT) power system, in 2009. In this particular event, a doubly fed 

asynchronous wind turbine-generator was radially connected to the 50% series compensated 345 kV 

line following loss of another line due to a fault. The control system of the wind turbine presented into 

the grid a negative resistance under subsynchronous conditions [21] resulting in subsynchronous 

oscillations damaging the wind generators and series capacitors.  

 

2.4. SSR Protection and Mitigation 

One way of avoiding SSR is to choose the values of series capacitors such that fer is not anywhere 

near f0 – fn [27]. However, this method does not allow full utilization of transmission lines. In 

addition, it does not guarantee stability, especially during loss of some lines due to faults as this may 

shift the electric resonant point. Different methods are proposed in the literature for protection and 

mitigation of SSR in series compensated networks. While most protective schemes have been 

successfully implemented in practice, they only protect the equipment and do not damp or mitigate 

the subsynchronous oscillations. One protective technique is installation of passive SSR filters, either 

at the generator or at the series capacitor banks to block flow of currents at subsynchronous 

frequencies. Redundant torsional relays can also be used to monitor torsional oscillations in the 

generator shaft and send a trip output to either bypass the series capacitor, trip a line or trip the 

affected generator if the shaft fatigue equals a specified value [8].  

On the other hand, SSR mitigation techniques can restore the system stability while allowing the 

equipment (i.e. generators and transmission lines) to continue operating. The work of this thesis is 

based on the mitigative remedial approach that aims at damping out SSR and minimizing the loss of 

generation or transmission lines due to SSR. The ability of the FACTS controllers to provide fast and 

flexible control of power flow has been utilized by many researchers to add positive damping to 

subsynchronous oscillations in power systems. This can be achieved by modifying the control systems 

of the FACTS devices already installed in the power system for other purposes.  

 

2.5. Use of FACTS Controllers to damp SSR 

The use of various FACTS controllers in SSR mitigation is reviewed below. 

2.5.1. Damping SSR using a Static Compensator (STATCOM) 

A STATCOM is a shunt FACTS device which regulates voltage through injection or absorption of 

reactive power from the power system. The work in [28] presents an auxiliary subsynchronous 



10 

 

damping controller to damp SSR through modulation of the reactive current reference to the 

STATCOM. Damping of SSR using the subsynchronous current injector (SSCI) is presented in [29], 

where subsynchronous component of line current is filtered and injected into the system by the 

STATCOM. This technique reportedly prevents the flow of subsynchronous current in the generator 

and increases damping of the critical torsional frequencies of the system. Further studies regarding the 

use of STATCOM controller to damp SSR can be found in [30-41]. 

2.5.2. Damping SSR using Thyristor Controlled Series Capacitor (TCSC) 

A TCSC can rapidly control power flow over a transmission line by modifying the line reactance. 

This device consists of a series capacitor shunted by a Thyristor-controlled reactor and is classified as 

a series FACTS device. The work in [42] employs the closed loop current control of the TCSC to 

damp SSR due to torsional interaction and induction generator effect in a wind farm connected to a 

series compensated network. A subsynchronous damping controller (SSDC) is designed for the TCSC 

in [43] to damp SSR in the presence of fixed series capacitors. In [44], a phase imbalance scheme is 

implemented to damp SSR using a TCSC damping controller. The authors in the latter study use a 

combination of a single phase TCSC and fixed capacitor in one phase of the transmission while the 

other two phases are compensated with fixed capacitors only. At subsynchronous frequencies, the 

damping controller modulates the TCSC reactance and creates the phase imbalance in a manner that 

increases the damping of SSR. The use of a fuzzy logic damping controller for a TCSC to damp SSR 

in a power system consisting of a wind and steam turbine generators was studied in [45]. The authors 

in [46] present an SSDC for TCSC, which, upon detecting the subsynchronous current in the system, 

injects a subsynchronous current that is out of phase with the original subsynchronous current so that 

both currents cancel out. Damping of SSR in series compensated networks through suitable control of 

a TCSC is also considered in [47-49]. 

2.5.3. Damping SSR using a VSC-based HVDC link 

HVDC transmission systems have been used for bulk transmission of electric power over long 

distances or in cases where AC transmission is not feasible. In recent years, HVDC systems are 

gaining more interest from transmission utilities and are finding increased application in conjunction 

with AC lines. Fast controllability of the VSC-HVDC link allows rapid modulation or control of dc 

power [50], a feature that can be used for damping power system oscillations. Addition of 

supplementary damping controls around the HVDC link to damp SSR has been investigated in [51-

53]. The work in [54] has considered damping of SSR using a subsynchronous current injector around 

a VSC-HVDC link that originates from the same substation with a series compensated AC 

transmission line. The authors extract subsynchronous components of line current and inject them into 

the system using an HVDC link to suppress the subsynchronous currents flowing through the 

generator. 
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2.5.4. Damping SSR using DFIG-based wind generator 

The desire to decarbonize the energy systems in recent years has led to proliferation of wind farms 

worldwide. One popular type of a wind generator is a Doubly-Fed Induction Generator (DFIG) 

system that incorporates power electronic converters. The impact of wind farms on SSR has been of 

great interest to various researchers recently as well as SSR mitigation using various FACTS devices. 

However, damping of SSR using wind turbine converters has rarely been investigated [55]. The 

authors in [55-57] have utilized the controllability of the converters in a DFIG-based wind turbine and 

introduced the supplementary damping control loop for SSR mitigation. The work in [58] focuses on 

two control techniques namely Fuzzy logic and Particle Swarm Optimization for a DFIG-based 

damping controller design to mitigate SSR.  

2.5.5. Damping SSR using the Static Synchronous Series Compensator (SSSC) 

The SSSC controls power flow though modulation of the transmission line‟s reactance and is 

classified under series FACTS controllers. Damping of SSR can be achieved by either equipping the 

SSSC with an external damping controller [8, 59-63], by using a highly frequency selective Kalman 

Filter or current suppressor [64-65], or through suitable control of the SSSC‟s internal controls [66-

70]. Application of a phase imbalance scheme to damp SSR with a SSSC is investigated in [71-73]. It 

is reported that the phase imbalance scheme weakens the coupling between mechanical and electrical 

sides of the turbine-generator, suppresses the energy exchange between the two sides [71] and as a 

result enhances damping of torsional oscillations. 

2.5.6. Damping SSR using Unified Power Flow Controller (UPFC) 

The UPFC employs both series and shunt converters and is therefore categorized under series-shunt 

FACTS controllers. This device is reportedly the most versatile FACTS controller developed so far 

[74] since it incorporates all capabilities of series compensation, namely voltage regulation and phase 

shifting. The work of [75-77] presents a subsynchronous damping controller around the UPFC to 

damp SSR. 

Majority of the aforementioned studies employ either the IEEE first benchmark model or the IEEE 

second benchmark model to evaluate the effectiveness of the SSR damping scheme in each case. 

Nonetheless, the authors only considered a case where the FACTS devices and conventional series 

capacitor banks are installed in the same transmission line. This research work now considers a more 

complex SSR prone power system configuration, with an SSSC and a conventional series capacitor in 

one transmission line and an additional conventional series capacitor in an adjacent transmission line 

in parallel. The ability of a SSSC-based supplementary damping controller to damp SSR in a more 

complex transmission system with multiple sources of SSR is investigated in this thesis. 
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2.6. Conclusion 

This chapter has given an overview regarding subsynchronous oscillations in power systems and 

established the root cause of SSR, which is the flow of subsynchronous currents in the stator windings 

of the generator. Mitigation of SSR through rapid control of power flow in transmission lines using 

various power electronic controlled FACTS devices has also been highlighted. The following chapter 

presents the mathematical modelling of the IEEE first benchmark model with a single transmission 

line. 
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CHAPTER THREE 

MATHEMATICAL MODELLING OF THE STUDY SYSTEM WITH A SINGLE 

TRANSMISSION LINE  
 

 3.1. Introduction 

In order for the utility operator to gain a clearer perception regarding the vulnerability of a power 

system to adverse interactions due to SSR, studies need to be undertaken as part of the planning 

process. In addition, these studies should be done using the benchmark study systems that are 

specifically developed for analyzing SSR [17] such as the IEEE first benchmark model (FBM) or the 

IEEE second benchmark model (SBM) for SSR analysis [11]. This chapter presents the detailed 

mathematical modelling of the study system used to analyze SSR in the initial scenario with a single 

transmission line, i.e. the IEEE FBM. 

 

3.2. The Study System Description  

The power system used for SSR analysis is the IEEE FBM adopted from [12]. As was mentioned 

earlier, initial studies in this thesis focus on the power system with a single transmission line as shown 

in figure 3.1. The system consists of the single 26 kV, 892.4 MVA turbine-generator that feeds an 

infinite bus through a 500 kV series compensated transmission line. Coupling between the electrical 

system and the mechanical system occurs in the turbine-generator. The mechanical system consists of 

the generator rotor (G) and its rotating exciter (Ex), the low-pressure turbine sections (LPA and LPB), 

an intermediate pressure turbine section (IP) and the high pressure turbine section (HP). 

 

Figure 3.1:  The IEEE FBM SMIB showing the multi-inertia turbine generator connected to series 

compensated transmission line 
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3.3. Modelling of the Study System 

Detailed mathematical modelling of the study system forms an integral part of any SSR analytical 

study. The set of non-linear differential equations is derived through modelling of individual 

components of the study system. The final differential equations for the combined system 

(IEEE FBM) are then obtained using the knowledge of mutual interaction among individual models. 

3.3.1. The Synchronous Machine Electrical Model 

The synchronous machine modelling is based on the direct-quadrature (d-q) axis theory [78]. The 

electrical damping of the machine is represented by one equivalent damper circuit on the d-axis and 

two equivalent damper circuits on the q-axis, the convention that is used in [2, 79-80]. 

The stator voltage equations are as follows, where t is expressed in seconds, w is expressed in rad/s 

(w0 = 376.9912 rad/s) and other quantities in per unit [80]: 
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The rotor voltage equations are as follows: 
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The stator flux linkage equations are as follows: 
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The rotor flux linkage equations are as follows: 
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The equation for the electromagnetic torque in the air-gap is as follows: 

  dqqde iiT          (3.5) 

Under transient conditions, the overall differential equations describing the performance of the 

synchronous generator are given by: 
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and the superscript 
T
 denotes the transpose of the matrix while the superscript 

-1
 denotes the inverse of 

the matrix. 

After linearization and rearrangement, equation 3.6 becomes: 
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3.3.2. The Series Capacitor Compensated Transmission Line Model 

The simple radial transmission system of the IEEE FBM in figure 3.1 can be represented by the AC 

equivalent RLC circuit as shown in figure 3.2 [80]. The total inductive reactance in the network is 

expressed as XL while the total resistance is expressed as RL. 

 

Figure 3.2:  AC equivalent circuit of the transmission system of the IEEE FBM in figure 3.1[80] 

The equation for the voltage across the resistance is given by: 
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Across the inductance, the voltage is given by: 
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Across the series capacitor, the voltage is given by: 
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The final series capacitor compensated transmission line equations then become: 
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After linearization, equation 3.11 then becomes: 
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3.3.3. Modelling the Mechanical System of the Turbine-Generator Shaft  

Figure 3.3 shows the two masses representing the generator rotor (G) and the low-pressure turbine 

section B (LPB) connected by an elastic shaft of stiffness coefficient KBG. The dynamic model of the 

shaft system is then developed as follows, based on the approach in [80]. Considering the generator 

rotor for example: 
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Figure 3.3:  The generator rotor (G) connected to the low pressure turbine section B (LPB) 

Thus, the differential equations for the generator become:  
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Likewise, for the exciter and other sections of the turbine 
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where TA is the torque produced in the LPA section of the turbine in per unit as given in Appendix A. 

The linearized equations of this mechanical system give the state equation of the form: 
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Further details on combining the linearized equations for individual components to generate an overall 

small signal model of the SMIB power system of the IEEE FBM are given in [80]. 

3.3.4. Preliminary Eigenvalue Analysis for the IEEE FBM with Fixed Capacitors 

By varying the compensating reactance from 0.002 pu to 0.5 pu in the IEEE FBM, the values of 

compensating reactance that result in the worst torsional interaction due to SSR are shown in 

figure 3.4 [80].  

δ δ 
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Figure 3.4:  Real components of the eigenvalues of the state matrix as the compensating                                  

reactance is varied from 0.002 pu to 0.5 pu in the IEEE FBM [80] 

The worst torsional interaction with Mode 4 of the turbine-generator shaft occurs around 

XC = 0.184 pu, while those of Mode 3 and Mode 2 occur at around XC = 0.286 pu and XC = 0.382 pu 

respectively. Lastly, the worst ever torsional interaction that can be experienced in this study system is 

that of Mode 1 which occurs around XC = 0.48 pu. Conversely, Mode 5 is observed to be stable 

throughout the range of XC considered. 

 

3.4. The Static Synchronous Series Compensator Modelling 

This section presents modelling and design of the SSSC for PSCAD simulation. The SSSC scheme 

adopted in this thesis was proposed in [81], and has been used by other researchers for power flow 

control studies [82-83]. Introduction of the external damping controller around the SSSC based on this 

scheme was done in [84] for damping the low frequency inter-area oscillations in the power system. 

However, in practice, the power system oscillations are not limited to low frequency; torsional 

oscillations may also be present which may be spanning the entire subsynchronous frequency range. 

The SSSC consists of a sinusoidal pulse width modulation (SPWM) voltage source inverter (VSI) 

using power IGBTs with the switching frequency of 1260 Hz (i.e. 21×f0).  

3.4.1. Voltage Source Inverter (VSI) 

This is the critical component of the SSSC, which generates AC voltage from the fixed dc source by 

controlling the turn ON and turn OFF of the IGBTs. The frequency and magnitude of the AC voltage 
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can be controlled as required.  Figure 3.5 shows the three phase VSI with parallel diodes that allow 

the flow of current when the corresponding IGBTs are in OFF state. 

 

Figure 3.5:  The three-phase Voltage Source Inverter using power IGBT switches 

The SPWM technique generates the firing pulses for the IGBTs by comparing the modulating 

sinusoidal signal Sm with the triangular wave SC. If Sm is greater than SC, the upper switch is turned 

ON, else it is turned OFF. The phase angle of the output AC voltage is the same as that of the 

modulating signal Sm. The amplitude of the AC voltage from the inverter depends on the value of the 

dc voltage Vdc and the amplitude modulation index ma with the latter being the ratio of the amplitude 

of the modulating signal to that of the triangular wave as given in equation 3.19. The fundamental 

components of the phase voltage and the line-to-line voltage are the obtained from equations 3.20 and 

3.21 respectively.  

C
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m             (3.19) 
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mV            (3.20) 
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2

dc
aab

V
mV            (3.21) 

The lower IGBT switch in each phase conducts complimentary to the upper IGBT switch in the same 

phase. Figure 3.6 shows the generation of firing pulses using an example of phase A with the 

modulation index of 0.8. The magnitude of the triangular wave SC is arbitrarily chosen as 1.41, which 

is the square root of two. 
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Figure 3.6:  The firing pulses for the IGBTs generated from SPWM 

The SSSC controls the magnitude of the injected voltage through modulation of the amplitude 

modulation index using the internal controls as discussed in the next subsection. 

3.4.2. SSSC Internal Controls 

For all the studies performed in this thesis, the reactance controlled type of SSSC is considered for 

capacitive mode of operation. The internal controls of the SSSC are shown in figure 3.7. These ensure 

that the SSSC injects, in series with the transmission line, a controllable voltage emulating a voltage 

drop across a capacitor. This is achieved by ensuring that the injected voltage (VSSSC) lags the line 

current by 90°. The DC link voltage is maintained at the predetermined value Vdc0 by ensuring that no 

active power is exchanged between the SSSC and the line, except a small amount that is rectified to 

charge the capacitor and to compensate for the inverter losses.  

The magnitude of the voltage injected by the SSSC is determined by the variable modulating signal Sm 

calculated using equation 3.22. 

convdc

ssscpk

dc

ssscpkm
KV

XI
V

XIS
122

            (3.22) 

where: Ipk or |I| = peak value of line current 

 Kconv = gain of the inverter 
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Figure 3.7:  Internal controls of the Static Synchronous Series Compensator 

The phase angle φv of the injected voltage is obtained from the two-loop angle calculator as shown in 

figure 3.7. The power to angle gain block ensures that the signal ɛϴ, driving the inner loop controller 

always equals the actual angular error between Vdc
 and the reference voltage Vdc

*
 (or Vref) irrespective 

of the transmission line operating conditions as given in equation 3.23. 
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The angle error ɛϴ is then taken through the PI controller to get the angle ϴ, whose dynamics are 

defined by equation 3.24. 
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Finally, the angle ϴ, is added to the transmission voltage angle obtained using the phase locked loop 

(PLL), to get the required angle, φv. Further details regarding the internal controls of the SSSC are 

available in [81]. Figure 3.8 shows the single line diagram of the single machine infinite bus power 

system incorporating the SSSC connected to the transmission line adopted from the IEEE FBM. The 

DC source on the VSI is replaced by the storage device, which is the dc capacitor.  

Table 3.1 gives the parameters and gains of the SSSC on a 892.4 MW, 500 kV, 60 Hz base, per unit 

calculations shown in Appendix B. The transmission line parameters are the same as those in the 

IEEE FBM are re given in table 3.2. The step-up transformer has its star winding leading the delta 

winding by 30°. 
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Figure 3.8:  The single machine infinite bus power system incorporating the VSI-based SSSC 

Table 3.1: Parameters of the SSSC 

Parameter Value in Per Unit 

 

Actual Value 

Vdc0 0.22494 70 kV 

Vdc* or Vref 0.1 Vdc0 7 kV 

w0 1.0 376.9911 rad/s 

Cdc 0.12208 375 µF 

Kvp 10.159 9711.91 

Kai 3.9*w0 1470.27 

Hp 0.3 0.3 

 

Table 3.2: Parameters of the IEEE FBM Transmission line  

Parameter Value in Per Unit Actual Value 

XL 0.50 162.9733 Ω 

RL 0.02 6.0832 Ω 
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3.4.3. Performance and validation of the SSSC Model 

This subsection determines whether the SSSC can provide the required amount of series 

compensation in the 500 kV transmission network of figure 3.8, at the rated system frequency 

(i.e. 60 Hz). The susceptibility of the SSSC to the system disturbances is also evaluated. It should be 

noted that for the purpose of the investigations in this subsection, the SSSC is connected to the 

transmission network of figure 3.8 with the generator replaced by the three-phase AC voltage source 

of the same amplitude (i.e. 26 kV) while the infinite bus voltage is kept at 500 kV and the 

transmission angle is delta (δ).  

Figure 3.9 shows the system response with the transmission angle delta (δ) set to 15.1° and 

compensating reactance at 81.40 Ω (i.e. 0.25 pu). To confirm that the SSSC is indeed capable of 

providing the required amount of series compensation, the power transferred over the line Ptr and the 

RMS value of line current Irms in the SSSC compensated line (figure 3.9 (a)) are compared with those 

in a capacitor compensated line (figure 10 (b)). The results show that at steady state, the SSSC is 

capable of injecting the voltage that emulates the required capacitive reactance in series with the line.  

 

Figure 3.9:  Response of the SMIB power system, (a) compensated by the SSSC (b) compensated by 

conventional series capacitors  
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Rapid controllability of the commanded compensating reactance Xsssc provided by the SSSC is 

demonstrated in figure 3.10. At t = 0.5 s, Xsssc is increased from 16.12 Ω to 32.56 Ω and then 

increased to 65.12 Ω at t = 0.65 s. Xsssc is further increased to 97.68 Ω at t = 0.8 s, decreased to 

48.84 Ω at t = 0.95 s and finally decreased back to 16.28 Ω at t = 1.1 s, while δ is kept at 15.1° and 

Vref at 7 kV. The results show that increasing Xsssc increases the injected voltage and the line current as 

well as the power transferred over the line as expected. This is because a larger portion of the line‟s 

inductive reactance gets cancelled, hence increasing the power transfer capability of the line. 

Conversely, reduction of the compensating reactance provided by the SSSC results in reduction of the 

power transferred over the line. The angle ϴiv by which the line current leads the commanded value of 

the phase voltage VinjA* to be injected by the SSSC into the line is maintained at 90° by as seen in 

figure 3.10 (e).  

 

Figure 3.10:  Simulated SSSC and system response to rapid change in the commanded SSSC 

compensating reactance XSSSC 

Figure 3.11 shows the response of the SSSC when the transmission angle delta (δ) is increased from 

15.1° to 27.1° at t = 0.5 s and then reduced back to 15.1° at t = 0.7 s, with the compensating reactance 
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Xsssc kept at 65.12 Ω (i.e. ) and Vref at 7 kV. The line current phasor Ia is scaled by a factor of three so 

that it can be compared with the commanded voltage phasor VinjA* to be injected by the SSSC. The 

SSSC is able maintain the DC link voltage at 70 kV and the injected voltage in lagging quadrature 

(i.e. lagging by 90°) with line current and as shown by figures 3.11 (d) and 3.11 (f) respectively. 

Furthermore, as the transmission angle delta (δ) is increased, the injected voltage, line current and the 

power dispatch (Ptr) over the line increase as shown in figures 3.11 (b) and 3.11 (g), which is in 

agreement with equation 1.1 (for δ below 90°).  

 

Figure 3.11:  Simulated response of the SSSC and the transmission system when the transmission 

angle is increased   from 15.1° to 27.1° and then decreased back to 15.1°.  

Finally, the performance of the SSSC is evaluated when there is a step change in the DC link 

reference voltage Vref.  Figure 12 shows the response of the SSSC and the system when Vref is 

increased from 7 kV to 7.5 kV at t = 0.5 s, and then decreased back to 7 kV at t = 0.7 s, while XSSSC is 

kept at 81.40 Ω and δ at 15.1°.  The results in figure 3.12 show that the SSSC is capable of 

withstanding the disturbances on the DC side of its inverter. The commanded value of the voltage to 
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be injected VinjA* and the power dispatched Ptr are maintained, showing that the inverter is able to 

maintain the required amount of series compensation of the transmission line.  

 

Figure 3.12:  Simulated system and SSSC response when Vref is increased from 7 kV to 7.5 kV and 

then decreased back to 7 kV 

The performance of the SSSC developed in this section is presented in figures 3.10 – 3.12 are in 

agreement with those obtained earlier by others [79, 81, 84]. Hence, the results validate the model of 

the SSSC that has been developed in PSCAD for this thesis. 

 

3.5. Conclusion 

This chapter has presented mathematical modelling of the system under study, namely the IEEE first 

benchmark model for SSR analysis. Preliminary eigenvalue analysis in [80] has been used to predict 

the values of capacitive reactance expected to result in the worst torsional interaction with the turbine-

generator shaft modes. This analysis technique is, however, computationally intensive [3], neglects 

non-linearity of the power system components such as power electronic switches if any are present. 

Therefore, in subsequent chapters, frequency scanning and non-linear time domain simulations will be 
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used to analyze SSR. Performance of the SSSC prototype has been evaluated in the presence of 

disturbances in the system. The results show that the SSSC has a well damped dynamic response and 

its dynamics are not susceptible to disturbances in the system. The effects that the SSSC internal 

controls have on the transmission network are investigated in the next chapter. 
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CHAPTER FOUR 

RESONANT CHARACTERISTICS OF THE SERIES COMPENSATED 

TRANSMISSION NETWORK 
 

4.1.  Introduction 

In the previous chapter, a detailed mathematical modelling of the study system was presented. This 

chapter aims at studying the resonant characteristics of the series compensated network to assess the 

potential risk of SSR. Initially, the harmonic impedance solution (HIS) is used to determine the 

resonant frequency of the series capacitor compensated network using linear circuit theory analysis. 

The frequency-response test (FRT) methodology proposed by other researchers in [18,87] for network 

impedance scanning is presented and validated against theoretical calculations for a series capacitor 

compensated network of the IEEE first benchmark model. Lastly, the FRT methodology is used to 

investigate whether the SSSC has a potential to excite SSR in the power system, and to investigate the 

impact of dual compensation on SSR characteristics of the transmission network. 

In order to get a better understanding of the SSR characteristics of the SSSC, the resonant 

characteristics of the SSSC compensated transmission line are compared with those of the capacitor 

compensated line that are known to cause SSR problem in the power system [18,85,87]. 

4.2.  Harmonic Impedance Scanning 

Harmonic impedance scanning is a technique used to determine the net impedance of the transmission 

network (seen from behind the equivalent impedance of the generator under study) as a function of 

frequency. This method can be used to approximate the frequency of electrical resonance in a series 

compensated network. If the dip occurs in the magnitude of the system impedance, then there is a 

likelihood of subsynchronous interactions between such a transmission network and the mechanical 

systems of the nearby turbine-generator shafts. 

4.2.1. Harmonic Impedance Solution (HIS) 

This is a feature (component) available in PSCAD that allows impedance scanning of electrical 

systems [85]. This component generates the system impedance matrix in phase domain and then 

collapses it into an equivalent matrix as seen from the point of interface. For transmission line or 

cable models, this component uses the RLC data directly. However, for accurate representation of 

unbalanced transmission lines or Y-∆ transformers, the equations are solved in phase domain without 

using sequence networks. The process is repeated for each frequency in the range specified by the 

user in the parameter inputs to generate the impedance response in frequency domain. Figure 4.1 

shows the use of the harmonic impedance solution to scan the impedance of the capacitor 

compensated IEEE FBM network, with the synchronous generator replaced by the three-phase AC 

voltage source of the same amplitude behind the generator‟s sub-transient reactance. The impedance 
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of this source is kept high during simulation to ensure that the impedance scanned corresponds to the 

transmission network impedance only. 

 

Figure 4.1:  Diagram showing the interface to harmonic impedance solution to scan the network 

impedance 

The output from the harmonic impedance solution is in a form of a text file consisting of frequency, 

magnitudes and phase angles of the sequence impedances. The data can be analysed in any external 

graphical analysis program, such as Excel, or MATLAB. The latter is used for the studies in this 

thesis. The assumptions made in the harmonic impedance solution calculations include the following: 

(a) Transformer saturation and arresters are assumed to be in their unsaturated region. 

(b) All power electronic devices are assumed to be in their OFF state. 

Figure 4.2 shows harmonic impedance of the series capacitor compensated IEEE FBM with 

XC = 0.3707 pu. The electrical resonant frequency, fer at this degree of series compensation is 39.9 Hz. 

This will develop and an air gap electromagnetic torque at a complimentary (slip) frequency 

(i.e. f0 - fer) of 20.1 Hz, which is close to Mode 2 (at 20.21 Hz) of the shaft system. Thus, there is a risk 

of SSR due to torsional interaction through destabilization of this particular mode of oscillation.  

 

Figure 4.2:  Network impedance of the capacitor compensated IEEE FBM with XC = 0.3707 pu 
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Figure 4.3 (a) shows how the resonant frequency in the electrical network varies with the compensating 

capacitive reactance XC in the IEEE FBM as predicted using the harmonic impedance solution. On the 

other hand, figure 4.3 (b) shows variation of the complimentary frequency (f0 - fer) of the air gap torque 

with capacitive compensating reactance. Figure 4.3 (b) also indicates the values of XC at which the slip 

frequency of the electromagnetic torque coincides with the natural resonances of the IEEE FBM shaft 

system, which are expected to result in the worst torsional SSR interaction. Worst destabilization of 

Mode 1 is expected to be at XC = 0.455 pu, Mode 2 at XC = 0.367 pu, Mode 3 at XC = 0.275 pu, Mode 

4 at XC = 178 pu and Mode 5 at XC = 0.0365 pu. These results agree closely with the predictions 

presented in Chapter Three using eigenvalue analysis in [80]. 

 

Figure 4.3: Variation of electrical resonant frequency with compensating capacitive reactance 

obtained for the series capacitor compensated IEEE FBM 

This method is efficient since the magnitude and the phase of network impedance for the entire 

frequency range of interest can be obtained within a single simulation run, for a given operating point. 

However, due to assumption (b) above, this method cannot determine the effective impedance of the 

power electronic based devices such as FACTS controllers or even wind turbine-generators. Thus, it is 

not suitable for resonance studies in a transmission line incorporating the SSSC, hence why the use of 

the frequency-response test methodology is proposed.  

4.2.2. Frequency-Response Test (FRT) methodology 

As mentioned in the previous subsection, the major drawback of the harmonic impedance solution 

technique is its inability to determine the effective impedance of power electronic devices. So to 

determine the SSR characteristics of the SSSC, the frequency-response test methodology proposed 

in [87] is used and its equivalent circuit is shown in figure 4.4. Here the network impedance is 

monitored in the presence of subsynchronous currents that are deliberately injected into the system. 

The net impedance of the SSSC compensated transmission network of the IEEE FBM is determined 

as follows: 
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Figure. 4.4: Diagram of the simulated frequency-response test (FRT) equivalent circuit 

(a) As with the harmonic impedance solution, the synchronous generator is replaced by the three-

phase AC voltage source. The transmission network is fed with the normal transmission line 

voltage at its sending and receiving ends, which are separated by some transmission angle δ. 

A small subsynchronous voltage VSS (10% of the sending-end voltage amplitude) is inserted 

in each phase at the sending end, as in figure 4.4. The frequency of the subsynchronous 

voltage is set to a value lower than the power system frequency. 

(b) Steady-state response of the transmission line voltages and currents to this combination of 

subsynchronous and synchronous forcing voltages is obtained. 

(c) The Fast Fourier Transform (FFT) analysis is carried out on time domain results to extract the 

magnitude and phase relationship between the voltage and current phasors so as to obtain the 

net impedance of the line at the given frequency. 

(d) The frequency domain characteristics of the line are obtained by repeating the above steps (a) 

to (c) for a frequency range of interest. 

 

4.2.2.1. Validation of the Frequency-Response Test Methodology 

Before applying this technique to obtain resonant characteristics of the IEEE FBM transmission 

network in the presence of the SSSC, it is worth validating it to have confidence in it. This is achieved 

by comparing the results obtained using this method with the theoretical results from harmonic 

impedance solution for the series capacitor compensated IEEE FBM (i.e. replacing the SSSC in figure 

4.4 with series capacitor banks).  

Figure 4.5 shows comparison of the FRT and HIS techniques, showing harmonic impedance of the 

series capacitor compensated IEEE FBM for the values of XC perceived to excite the torsional modes 

of the turbine-generator shaft from figure 4.3. The frequency-response test results are in agreement 

with the theoretical results. Furthermore, the network impedance exhibits a resonant minimum and 

becomes purely resistive at some subsynchronous frequency (i.e. less than f0), and this is the root 

cause of SSR. 



37 

 

 

Figure 4.5: Validation of the frequency-response test (FRT) methodology through                                                

comparison with the results from harmonic impedance solution (HIS) 

The network impedance changes from capacitive to inductive as the frequency is increased from 1 Hz 

to 60 Hz in each case, and the resonant frequency is the same as that obtained from equation 1.3 in 

Chapter One. Lastly, for all values of XC considered, the minimum impedance is 0.01416 Ω, which is 

the line resistance seen from the armature of the generator. 

 

4.3. Resonant Characteristics of the IEEE FBM incorporating the SSSC  

This section investigates the resonant characteristics of the IEEE FBM transmission network in the 

presence of the SSSC. The objective here is to determine whether the SSSC has the potential to excite 

SSR on its own in the power system. The frequency-response test methodology is used to 

approximate the frequency of electrical resonance, fer.  

4.3.1. IEEE FBM Compensated with the SSSC only 

Figure 4.6 shows the network impedance (magnitude on the left and the corresponding phase angle on 

the right) as a function of frequency, considering different values of compensating reactance, XSSSC. 

From figure 4.6, two major similarities are noted from the SSSC compensated network and the one 

compensated by series capacitors. In both cases, the magnitude of the system impedance exhibits a 

resonant minimum at subsynchronous frequency and the resonant frequency increases with the degree 
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of series compensation. However, the magnitude of the network impedance at resonant frequency is 

larger with the SSSC compensation than with series capacitor compensation. 

 

Figure 4.6:  Harmonic impedance of the SSSC compensated IEEE FBM 

The work of [85] has shown that the SSSC injects not only capacitive reactance but also some 

resistance at subsynchronous frequencies, and this reportedly adds positive damping to the 

subsynchronous oscillations.  

Figure 4.7 shows variation of the resonant frequency with compensating reactance (XSSSC) in the SSSC 

compensated IEEE FBM. The values of XSSSC at which the slip frequency of the air gap torque 

matches the shaft resonances are also indicated. Comparison of figure 4.7 and figure 4.3 shows that 

the resonant frequency with the SSSC compensation is lower than that with series capacitors for a 

given degree of series compensation. As a result, the worst-case interactions with the shaft resonances 

each occurs at higher degree of compensation with the SSSC than with series capacitor banks. 
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Figure 4.7: Variation of electrical resonant frequency with compensating capacitive reactance for the 

SSSC compensated IEEE FBM 

The following subsection extends the frequency response test technique to the IEEE FBM with dual 

(hybrid) compensation, where series compensation is provided by the SSSC in conjunction with series 

capacitor banks. 

4.3.2. IEEE FBM with Dual Compensation (SSSC and series capacitor banks) 

Various studies in the literature have indicated that the cost of installing a SSSC is high due to the 

injection transformers [8, 17]. The study in [8] has shown that by using dual compensation (SSSC and 

series capacitors), the benefits of the SSSC can be realized at a lower cost. In this subsection, three 

case studies with dual compensation of the IEEE FBM are considered as given in Table 4.1.  

In all cases studies, the total compensating reactance, Xcomp is 0.3707 pu. For Case 1a, the SSSC 

accounts for 20 % (XSSSC = 0.07414 pu) of total series compensating reactance while the other 80 % is 

provided by series capacitors (XC = 0.29656 pu). For Case 1b, the SSSC provides 40 % 

(XSSSC = 0.14828 pu) while series capacitors provide 60 % (XC = 0.22242 pu) of the total series 

compensating reactance. Lastly, for Case 1c, 60% of total series compensating reactance is provided 

by the SSSC (XSSSC = 0.22242pu) while the series capacitors account for 40% (XC = 0.14828 pu) of 

total compensating reactance. 

The harmonic impedance of the IEEE FBM with dual compensation is shown in figure 4.8 for the 

case studies 1a – 1c. The results show that as the ratio of XSSSC to XC is increased, the electrical 

resonant frequency of the transmission network decreases and the resonant impedance of the network 
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increases, thus better damping of SSR can be expected. For all the three cases considered, the net 

system impedance at rated system frequency (i.e. 60 Hz) is the same which implies that the total 

reactance provided by the SSSC and series capacitor banks is the same in all cases as expected. This 

confirms the SSSC‟s ability to provide the required amount of series compensation. 

Table 4.1: Summary of the case studies for dual compensation 

 

 

 

Figure 4.8: Resonant characteristics of the dually compensated IEEE first benchmark model 

The resonant frequency in Case 1a is 38.29 Hz resulting in the complimentary frequency of 21.71 Hz 

for the air gap torque, which is close to Mode 2 of the turbine-generator shaft in the IEEE FBM. 

Likewise, for Case 1b and Case 1c, the resonant frequencies are 36.29 Hz and 34.15 Hz respectively, 

giving the complimentary frequencies of 23.71 Hz and 25.85 Hz. The latter is close to Mode 3 of the 

turbine-generator shaft, thus SSR due to destabilization of Mode 3 can be expected for Case 1c. 

 

Case Study XSSSC 

(pu) 
XC 

(pu) 

     
     

 

 

Total XComp  

(pu) 

Case 1a 0.07414 0.29656 0.20 0.3707 

Case 1b 0.14828 0.22242 0.40 0.3707 

Case 1c 0.22242 0.14828 0.60 0.3707 
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4.4.  Conclusion  

This chapter has presented the resonant characteristics of the series compensated transmission 

network of the IEEE FBM. SSR characteristics of the SSSC have been investigated using the 

harmonic impedance scanning technique. The results show that the SSSC can excite SSR on its own 

in the power system, since it provides capacitive reactance not only at the rated system frequency, but 

also at subsynchronous frequencies. This can cause an electrical resonance at subsynchronous 

frequencies, which may lead to SSR in the same manner that conventional series capacitors do. The 

impedance of the transmission network with dual compensation also exhibits a resonant minimum 

indicating the potential risk of SSR interaction with the nearby turbine-generator shafts. Therefore, 

prior to installing the SSSC in the power system, its SSR characteristics should be known as well the 

resonances of the nearby turbine-generator shafts.  

Although resonant studies can predict the possibility of SSR interactions by approximating the 

frequency of electrical resonance, they do not demonstrate the severity of SSR instability. In the next 

chapter, the non-linear time domain simulations are presented to analyse SSR. The design of the 

supplementary subsynchronous damping controller for the SSSC to mitigate SSR is also presented. 
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CHAPTER FIVE 

DAMPING CONTROLLER DESIGN AND ITS PERFORMANCE IN THE IEEE 

FIRST BENCHMARK MODEL  

 

 

5.1. Introduction 

The effects of the SSSC‟s internal controls on the dynamics of the transmission line have been 

investigated in the previous Chapter using the IEEE FBM transmission network. SSR characteristics 

of the SSSC were established in frequency domain using the harmonic impedance scanning technique. 

Comparison of the resonant characteristics of the SSSC compensated transmission line with those of a 

series capacitor compensated line has shown that the SSSC in not inherently immune to SSR, 

although it can provide some additional damping to the torsional oscillations in the system. 

This chapter now presents a detailed design of the supplementary damping controller for the SSSC to 

damp SSR in cases where the damping provided by the SSSC is not adequate for small signal stability 

of the power system. The time domain transient simulations are presented to analyze the post-transient 

response of the power system and to assess the effectiveness of the damping controller in mitigating 

SSR in the IEEE FBM. In all graphical representations of the system response in time domain, LPA to 

LPB torque will be used to denote the torque in the section of the shaft connecting the low pressure 

turbine section A and the low pressure turbine section B. Similarly, generator to exciter torque will be 

used to denote the torque in the generator-exciter shaft. 

 

5.2. Modulating Line Reactance to Damp Post-Transient Oscillations 

The idea of damping SSR through modulation of the transmission line reactance originates from the 

quite primitive practice of switching the fixed series capacitor in or out of the line using circuit 

breakers [89]. The typical approach used was the „bang-bang‟ control since the line reactance was 

varied in steps based on the algorithm below: 

 
0Re

0

0

0





wwifXmove

wwifXInsert

C

C

           (5.1) 

 The main drawback of the bang-bang control approach has been that of the controller chatter 

whereby small deviations in the generator speed near steady state would result in an undesired 

operation of the controller. The SSSC and other series FACTS devices, on the other hand, provide 

controllable series compensation, a feature that may enable implementation of the above idea or the 

modification thereof in a continuously controllable fashion.   



43 

 

5.2.1. Input Signals for a SSSC-based SSR Damping Controller 

Selection of the appropriate input signal(s) to the SSR damping controller is a fundamental aspect of 

the robust controller design.  The chosen signal should contain the oscillation modes of interest (i.e. 

modes that may require damping) and be able to provide the required controllability at all times. In 

practice, the control signal may be synthesized from the local measurements on the transmission line 

(e.g. line power flow, node voltages) or from the remote signals in the generating environment (e.g. 

generator speed deviation). Although local signals may be readily available and at low cost, they may 

not contain all the desired oscillation modes and therefore may compromise the controller 

performance. Speed deviation of the generator contains all the critical oscillation modes of the 

turbine-generator shaft system and it has been a logical candidate for the controller input signal in 

most studies [17,63,89]. Although this is remote signal, advancements in fiber optics communication 

and global positioning system (GPS) made it possible to measure and send the signal to the control 

location, even in real time [89]. This thesis utilizes the generator speed deviation as the damping 

controller input signal as shown in figure 5.1.  

 

Figure 5.1: Equivalent circuit of the IEEE FBM compensated by the SSSC that is equipped with the 

supplementary damping controller   

5.2.2. Structure and Design of the Supplementary Damping Controller  

The power system response following a disturbance largely depends on the electrical torque in 

addition to other factors. The change in the synchronous machine electrical torque subsequent to a 
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system perturbation can be resolved into synchronizing and damping torque components denoted by 

Ts∆δ and TD∆w respectively, as given by equation 5.2.  

wTTT Dse               (5.2) 

where: Ts = synchronizing torque coefficient 

TD = damping torque coefficient 

Synchronizing torque is the component in phase with the rotor angle deviation while the damping 

torque is the component in phase with the rotor speed deviation. In order to damp the torsional 

oscillations in the system, the external controller should be able to improve the damping torque 

component by ensuring that ∆Te is almost in phase with rotor speed deviation, ∆w. 

If the generator rotor speed deviation ∆w oscillates at some subsynchronous frequency due to 

torsional motion, the damping controller should modify the compensating reactance of the SSSC to 

produce a component of ∆Te that is in phase with the original subsynchronous oscillation in rotor 

speed, ∆w. The lead-lag structure is chosen to provide the phase compensation as it offers ease of 

online tuning and is therefore preferred by most power system utilities [89]. 

5.2.2.1. Single-mode Damping Controller 

For a single-mode damping controller, the SSSC-based SSR damping controller is of the structure 

shown in figure 5.2 [89]. 

 

Figure 5.2: The structure of the single-mode SSR damping controller for the SSSC [89] 

 

The first component in figure 5.2 is the signal washout, which acts as a high pass filter to ensure that 

only oscillatory components of ∆w are allowed to pass unchanged. The value of this filter‟s time 

constant, TW, is non-critical and can be between 1 s and 20 s [79,89]. In this thesis, the value of 10 s is 

used. The lead-lag compensator block compensates for the phase lag measured between the oscillation 

in generator speed and air gap torque. The value of series compensating reactance required from the 

SSSC at steady state is XSSSCO. The controller output ΔXSSSC is a modulated reactance, which is added 

to the steady state reactance XSSSCO to give the commanded reactance, XSSSC, which the SSSC should 
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provide, to modulate the generator electromagnetic torque and damp out subsynchronous oscillations.  

Kssr is the gain of the controller.  

Now, after the damping controller input signal and the structure have been chosen, the next step is to 

establish the approach for determining the phase angle between ∆w and ∆Te to be compensated for by 

the damping controller as well as the controller gain Kssr. The following steps explicate the procedure 

for obtaining the phase lag between ∆Te and ∆w at a frequency of interest. 

(a) A sinusoidal test signal of a small amplitude and a frequency of interest (frequency of the 

torsional mode to be damped) is injected into the ∆Xsssc input of figure 5.1 (without damping 

controller block). 

(b) The steady state phase angle between the resulting torque oscillations ∆Te and the controller 

input ∆Xsssc is measured using Fast Fourier Transform.  

The inertia constant of the generator in the IEEE FBM is set to a very large value during the 

measurements above. This artificial decoupling technique prevents the steady state oscillations in ∆Te 

to influence the rotor speed or rotor angle [17]. 

 

The suitable compensator (lead or lag) is then designed, from which the values of the time constants 

T1 - T4 are obtained, to counteract this phase difference. If ∆Te leads ∆Xsssc, a lag compensator is 

required and if ∆Te  lags ∆Xsssc, then a lead compensator is required. 

The controller in figure 5.2 with the parameters obtained above is then connected in the external loop 

of figure 5.1 (damping controller block). The range of values for Kssr are considered and the one that 

gives satisfactory damping of the torsional mode of interest without destabilizing other critical modes 

is chosen. 

5.2.2.2. Multi-modal Damping Controller 

In cases where the subsynchronous oscillations arising in the power system are multi-modal in nature, 

a single-mode damping controller may not be adequate to damp all critical mode oscillations. The 

work of [17, 18] has shown that in such a case, the damping controller should be designed to provide 

damping of multiple torsional modes. Specifically, in [17], the design of a multi-mode damping 

controller is based on the dominant modes in the generator speed deviation. The approach in this 

thesis is similar to that in [18], which is based on all torsional modes, excluding Mode 5, which was 

found to be stable for all operating points considered as would be illustrated in time domain results.  

The structure of the multi-modal damping controller, obtained by cascading individual mode 

controllers, is shown in figure 5.3, adopted from [19]. In addition to the lead compensators and gain 

blocks in each of the controller branches, there are bandpass filters to extract components of speed 

deviation at each of the critical torsional frequencies to be damped. The design of the phase 
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compensators for the multi-modal damping controller is done for each mode in turn, in a similar 

manner to that in the single-mode controller. 

 

 
Figure 5.3: The structure of the multi-mode SSR damping controller for the SSSC [19] 

Individual controller gains are determined as follows, using an example of Kssr1 for Mode 1: 

(a) All other gains are set to zero (making their respective single-mode controllers 

ineffective). 

(b) A range of values of Kssr1 is considered, and a value resulting in a satisfactory damping of 

Mode 1 without destabilizing other modes was determined (based on time domain 

simulations and Fast Fourier Transform analyses). 

The other controller gains, Kssr2 – Kssr4 are also determined in a similar manner, in turn. 

 

5.3. SSR analysis in the IEEE FBM with a Single Transmission Line 

This subsection investigates subsynchronous resonance in a single transmission line network of the 

IEEE FBM. Initially, the time domain simulations are presented to compare the performance of the 

SSSC with that of the conventional series capacitors. The single-mode damping controller is then 

designed to damp torsional oscillations caused by the SSSC alone. Lastly, the performance of the 

multimodal SSR damping controller is evaluated in the dually compensated IEEE FBM, using the 

three cases considered in the previous chapter. 

5.3.1. Series Capacitors vs SSSC without Damping Controller 

Figure 5.4 shows the system response to a three-phase to ground fault applied at 1.5 s and lasting for 

4.5 cycles (0.075 s) for the IEEE FBM compensated with series capacitors (XC = 0.3707 pu). The 

results show that following this disturbance, violent oscillations of growing amplitudes occur in the 

turbine-generator rotor and large twisting torques are observed in individual shafts of the rotor system. 

Within 4.5 seconds after the fault occurrence, amplitudes of the twisting torque in the shaft connecting 
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the Low Pressure turbine sections A and B exceed 10 pu while those of the generator to exciter shaft 

torque reach 10 pu. Deviations in the rotor speed exceed 20 rad/s and the Fast Fourier analysis in 

figure 5.5 shows that these are composed of Mode 1 (15.71 Hz) and Mode 2 (20.21 Hz), with Mode 2 

being dominant. This finding is in agreement with that established in Chapter Four (subsection 4.2.1), 

which indicates that at this particular degree of compensation, the complimentary frequency of the 

air gap torque is 20.1 Hz which is very close to torsional Mode 2 of the turbine-generator shaft. 

 

Figure 5.4: The system response for the series capacitor compensated IEEE FBM, XC = 0.3707 pu 

 

Figure 5.5: FFT analysis of rotor speed deviation for the series capacitor compensated IEEE FBM, 

XC = 0.3707 pu 
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In figure 5.6, the speed deviation and twisting torques in various shafts sections of the turbine-

generator rotor are shown when compensation is provided by the SSSC (XSSSC = 0.3707 pu), instead of 

a conventional series capacitor (XC = 0.3707 pu). Comparison of figure 5.6 with figure 5.4 shows that 

the torsional oscillations with the SSSC compensation do not grow as rapidly as they do with 

conventional capacitors, indicating the capability of the SSSC to add some positive damping at 

subsynchronous frequencies. However, the SSSC still excites SSR as established in the previous 

Chapter. FFT analysis of the rotor speed deviation in figure 5.7 shows that SSR in this case is caused 

by destabilization of Mode 1 and Mode 4, with Mode 4 being the dominant mode of oscillation. Thus, 

damping of SSR for this particular case requires adequate damping of Mode 4. 

 

Figure 5.6: The system response for the SSSC compensated IEEE FBM without damping 

controller, XSSSC = 0.3707 pu 
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  Figure 5.7: FFT analysis of rotor speed deviation for the SSSC compensated IEEE FBM, 

XSSSC = 0.3707 pu 

 

5.3.2. Damping Controller for a SSSC compensated IEEE FBM  

After observing that Mode 4 (at 32.285 Hz) is dominant for the SSSC compensated IEEE FBM when 

XSSSC = 0.3707 pu, the single mode damping controller is designed using the approach in subsection 

5.2.2. For sufficient damping of this torsional mode, the controller output ΔXSSSC should modulate the 

change in electrical torque ΔTe such that it is almost in phase with the oscillations in the rotor speed 

Δw around 32.285 Hz (i.e. 202.947 rad/s). The steps taken are summarized as follows: 

(a) A small sinusoidal test modulation signal at a frequency of 32.285 Hz was applied at 

input ΔXSSSC (see figure 5.1) to the SSSC after the system entered steady state. 

(b) This caused oscillations in generator electromagnetic torque from which ΔTe was 

measured. 

(c) It was found that ΔTe lags ΔXSSSC by 41.474˚ at 32.285 Hz, requiring the lead compensator 

that provides φmax = 41.474˚ at wn = 202.947 rad/s. 

From the lead compensator point of view, this angle can be compensated using a single lead 

compensator of the form
sT
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Now, from equation 5.4,  
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The system response with Mode 4 damping controller is shown in figure 5.9, with two different 

values of the controller gain, Kssr = 2 and Kssr = 5. 

 

Figure 5.8: The system response for the SSSC compensated IEEE FBM with Mode 4 damping 

controller, Kssr4 = 5, XSSSC = 0.3707 pu 

The results of figure 5.8 show that the designed Mode 4 damping controller is able to damp the 

torsional oscillations and stabilize the system. As the value of the damping controller gain is increased 

from Kssr = 2 to Kssr = 5, the torsional modes become more stable and the damping rate of SSR 

oscillations increases. However, further increase in Kssr worsens the destabilization of other modes, so 

the optimum value of Kssr = 5 is chosen in this case. From figure 5.8 (e), it is apparent that even with 

this higher value of the controller gain (Kssr = 5), the damping of the oscillations in the shaft 
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connecting the generator and the exciter is slow, and the FFT analysis (not shown here) show that 

these are Mode 2 frequency oscillations. The following subsection investigates SSR in a dually 

compensated IEEE FBM. 

5.3.3. Analyzing SSR in a Dually Compensated IEEE FBM 

As was mentioned in the previous Chapter, dual compensation using the SSSC in conjunction with 

fixed series capacitors may assist electric power transmission utilities to utilize the controllability of 

the SSSC at a lower cost. In this subsection, SSR characteristics are studied for the three case studies 

established Chapter Four (Case 1a – Case 1c in Table 4.1). Here the torsional oscillations turn out to 

be multimodal in nature since both the SSSC and conventional series capacitors contribute towards 

SSR, hence the multimodal damping controller is used.  

5.3.3.1. Case Study 1a 

Figure 5.9 shows the response of the IEEE FBM power system for Case 1a (i.e. XSSSC/XComp = 0.20) 

without and with a SSSC-based multimodal SSR damping controller, whose parameters are given in 

Table 5.1.  

Table 5.1: Multimodal Damping Controller Parameters for Case 1a 

Mode Lead/Lag compensator Gain 
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Figure 5.9: The system response for the dually compensated IEEE FBM for Case 1a 

(XSSSC = 0.07414 pu, XC = 0.29656 pu) without and with multimodal damping controller 

The results of figure 5.9 thus show that the damping controller is capable of damping the torsional 

oscillations and stabilize the power system though modulation of the SSSC reactance around the 

steady state value of 0.07414 as shown in figure 5.10. 

 

Figure 5.10: The reactance provided by the SSSC for Case 1a with damping controller 

The Fast Fourier Transform analysis of the rotor speed deviation and the twisting torques in different 

sections of the turbine-generator shaft are shown in figure 5.11. As seen in figure 5.11 (i), the rotor 

speed deviation is dominated by Mode 1 (i.e. 15.71 Hz) oscillations, Mode 3 and Mode 4 oscillations 

are critically stable while there is a slight growth in Mode 2 oscillations. The twisting torque in the 

shaft connecting the low pressure turbine sections A and B (figure 5.11 (iv)) shows dominance of 
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Mode 1 while Mode 2 (at 20.21 Hz) is dominant in the generator to exciter shaft torque (see figure 

5.11(v)).  

5.2.1.1. Case Study 1b 

In this case study, the ratio of XSSSC/XComp is increased to 0.40 as shown in table 4.1. The system 

response in time domain is presented in figure 5.12 without and with the multimodal damping 

controller and the SSSC reactance with damping controller is shown in figure 5.13. The controller 

parameters used here are given in Table 5.2. The results thus show that the multimodal damping 

controller is able to damp SSR and bring the system back to its stable operation. Modal analysis of the 

signals in figure 5.12 is given in figure 5.14.  

Table 5.2: Multimodal Damping Controller Parameters for Case 1b 

Mode Lead/Lag compensator Gain 
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54 

 

Figure 5.11: FFT analyses for the dually compensated IEEE FBM of Case 1a (XSSSC = 0.07414 pu, 

XC = 0.29656 pu); (a) without damping controller, (b) with damping controller 
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Figure 5.12: The system response for the dually compensated IEEE FBM of Case 1b 

(XSSSC = 0.14828 pu, XC = 0.22242 pu) without and with multimodal damping controller 

Comparing figures 5.11 and 5.14, it is observed that as the ratio XSSSC/XComp is increased from 0.20 to 

0.40, there is a reduction of Mode 1 and Mode 2 components while there is a slight increase in Mode 

3 and Mode 4 components in the rotor speed deviation and LPA to LPB shaft torque. For the 

generator to exciter torque, Mode 2 component is reduced by half while Mode 1 component remains 

unchanged. 

 

 

Figure 5.13: The reactance provided by the SSSC for Case 1b with damping controller 
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Figure 5.14: FFT analyses for the dually compensated IEEE FBM of Case 1b; (a) without damping 

controller, (b) with damping controller 

5.2.1.2. Case Study 1c 

The last case study in the IEEE FBM with a single transmission line considers the ratio 

XSSSC/XComp = 0.60, while the total compensation is still kept at 0.3707 pu. The system response for 

this case study (i.e. Case 1c) is shown in figure 5.15 without and with a damping controller whose 

parameters are given in Table 5.3. Figures 5.16 and 5.17 show the reactance provided by the SSSC 

(with damping controller) and FFT analysis of the system variables respectively.  
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Table 5.3: Multimodal Damping Controller Parameters for Case 1c 

Mode Lead/Lag compensator Gain 

1 
s

s

013129.01

0078263.01



  1.6 
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Figure 5.15: The system response for the dually compensated IEEE FBM of Case 1c 

(XSSSC = 0.22242 pu, XC = 0.14828 pu) without and with multimodal damping controller 
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Figure 5.16: The reactance provided by the SSSC for Case 1c with damping controller 

 

 

Figure 5.17: FFT analyses for the dually compensated IEEE FBM of Case 1c; (a) without damping 

controller, (b) with damping controller 

It is observed in figures 5.17 (a) and 5.14 (a) that increasing the ratio XSSSC/XComp from 0.40 to 0.60 

increases the damping of Mode 1 and Mode 2 components in the generator rotor speed deviation 
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although this comes at the cost of weakening the damping of Mode 3 and Mode 4 components. The 

same observation is made in the LPA to LPB torque as well as in the generator to exciter torque. 

The results for Case 1a – Case 1c show that as the ratio of XSSSC to XComp is increased, the torsional 

interaction with the lower frequency modes (i.e. Mode 1 and 2) is reduced while that with the higher 

frequency modes (i.e. Mode 3 and 4) in increased. These findings are in agreement with those in 

Chapter Four, which indicated an increase in the complimentary frequency (f0 - fer) of the air gap 

torque from 21.71 Hz to 25.85 Hz as the ratio XSSSC/XComp is increased from 0.20 to 0.60.  

In practice, in real world transmission system, due to the relatively high cost of FACTS devices, most 

transmission lines would still employ conventional series capacitors with only a few lines likely to 

include a FACTS series compensator such as the SSSC. Hence in the next section, the concept of the 

damping controller around the SSSC to damp SSR is extended to the modified IEEE FBM with two 

parallel transmission lines originating from the same substation.  

 

5.3. Modified IEEE FBM with a two parallel Transmission Lines  

The study system used in this section is the modified IEEE FBM, whose parameters are the same as 

those in the original IEEE FBM except that in this case, the transmission network consists of two 

parallel transmission lines. This modification is done to allow incorporation of the SSSC in one line 

and conventional series capacitors in the other (adjacent) transmission line as shown in figure 5.18. 

For all case studies in this section, the post-disturbance response of the power system is monitored 

following a three phase to ground fault. 

 

Figure 5.18: The modified IEEE FBM with two parallel transmission lines 

Initially, the time domain simulations and FFT analyses are used to study SSR when one of the two 

transmission lines is compensated while the other line is left uncompensated as in Cases 2a and 2b in 
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Table 5.4. The possibility of using the supplementary damping controller around the SSSC to mitigate 

SSR in the presence of series capacitor in an adjacent transmission line is also explored in Cases 

2c-2f.  

Table 5.4: Summary of the case studies for modified IEEE FBM 

Case Study Compensation Details 

 

Transmission Line 1 Transmission Line 2 

Case 2a Uncompensated XC2 = 0.70 pu 

Case 2b XSSSC = 0.70 pu Uncompensated 

Case 2c XSSSC = 0.70 pu XC2 = 0.70 pu 

Case 2d XSSSC = 0.35 pu XC2 = 0.70 pu 

Case 2e XSSSC = 0.35 pu XC2 = 0.55 pu 

Case 2f XSSSC = 0.35 pu, 

XC1 = 0.35 pu 

XC2 = 0.70 pu 

 

5.3.1. One Line Compensated and the other Line left Uncompensated 

Figure 5.19 shows the power system response of the Modified IEEE FBM system for Case 2a where 

Line 2 is compensated by conventional capacitors (XC2 = 0.70 pu) while Line 1 is not compensated 

following a three-phase to ground fault. At this particular value of compensation, rapidly growing 

oscillations are observable in the rotor speed deviation as well as in various sections of the turbine-

generator shaft. These oscillations are mainly due to destabilization of torsional Mode 1 as shown by 

the FFT analysis in figure 5.19 (b). The amplitudes of oscillations in rotor speed deviation reach about 

200 rad/s within 4.5 s post a fault. Thus if no mitigating measures are taken the detrimental shaft 

damage due to SSR. Supersynchronous frequency (i.e. above system frequency) components are 

observed in the machine current including Mode 5 components which is also present in the 

electromagnetic torque.  

For comparison, Case 2b considers compensation by the SSSC in Line 1 (XSSSC = 0.70 pu) while 

Line 2 is left uncompensated and the power system response is shown in figure 5.20, following the 

three phase to ground fault. Even with the SSSC compensation, SSR still occurs although not to the 

same extent as with series capacitors compensation as seen from the amplitudes of rotor speed 

deviation and the stress in the various shaft sections. 

In practical transmission system, it is more likely to be the case that higher loading may be required 

for both lines such that both may have to be compensated. The next subsection considers a case where 
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both transmission lines are compensated and evaluates the ability of the damping controller in 

damping torsional oscillations due to SSR in each case. 

5.2.1. Both Lines Compensated: SSSC in Line 1 and Series Capacitors in Line 2 

Figure 5.21 shows the system response for Case 2c with both Line 1 and Line 2 compensated by 

0.70 pu with the SSSC in Line 1 (i.e. XSSSC = 0.7 pu) and fixed capacitors in Line 2 (i.e. XC2 = 0.7 pu) 

following a three-phase to ground fault. FFT analysis of the rotor speed deviation for three time 

intervals for this case study are shown in figure 5.22 without and with the multimodal damping 

controller whose parameters are given in Table 5.5.  

 

Figure 5.19: System response in the presence of series capacitors in Line 2 (XC2 = 0.7 pu) and Line 1 

left uncompensated; (a) time domain simulations, (b) FFT analyses  
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Figure 5.20: System response in the presence of the SSSC in Line 1 (XSSSC = 0.70 pu) and Line 

2 left uncompensated; (a) time domain simulations, (b) FFT analyses  

 

Table 5.5: Multimodal Damping Controller Parameters for Case 2c 

Mode Lead/Lag compensator Gain 

1 
s

s

016986.01

0060496.01



  4 

2 
s

s

010988.01

0056440.01



  30 

3 
s

s

0052935.01

0072248.01



  1.5 

4 
s

s

s

s

0039572.01

0061355.01

0017934.01

013538.01








  0.7 
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Figure 5.21: Time domain simulations showing system response in the presence of the SSSC in Line 1 

(XSSSC = 0.70 pu) and capacitors in Line 2 (XC2 = 0.70 pu)  

The results in figures 5.21 and 5.22 show instability of Mode 1, Mode 3 and Mode 4 with Mode 1 and 

Mode 4 being dominant. However, the results also demonstrate that with the activation of the 

damping controller, the torsional oscillations are positively damped and the system is able to return 

back to its stable operation.  

 

Figure 5.22: FFT analyses of the rotor speed deviation with SSSC in Line 1 (XSSSC = 0.70 pu) and 

capacitors in Line 2 (XC2 = 0.70 pu); (a) without damping controller, (b) with damping controller  
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From the practical point of view, providing compensating reactance of 0.70 pu from the SSSC will 

require higher rating for the device and will be a costlier option. Case 2d then considers a scenario 

where Line 1 is compensated by 0.35 pu provided by the SSSC while the series capacitor in Line 2 

provides 0.70 pu. The post-fault system response with this configuration are given in figures 5.23 and 

5.24 in the form of time domain simulations and FFT analysis respectively, without and with a 

damping controller whose parameters are provided in Table 5.6. 

 

Table 5.6: Multimodal Damping Controller Parameters for Case 2d 

Mode Lead/Lag compensator Gain 

1 
s

s

030049.01

0034196.01





 
13 

2 
s

s

012095.01

0051276.01





 
25 

3 
s

s

0857.01

00448.01





 
5 

4 
s

s

060665.01

0040022.01





 
5 

 

At this operating point, rapidly growing oscillations in the rotor speed deviation are observed 

following a three-phase to ground fault as well as in the LPA to LPB and generator to exciter shaft 

torques. These torsional oscillations are comprised mainly of Mode 1 component as seen in figure 

5.24. Comparison of the results from figures 5.19 and 5.23 shows that even without the action of the 

damping controller, presence of the SSSC in Line 1 does add some positive damping to the torsional 

oscillations due to the conventional series capacitor in Line 2, although the damping is not adequate to 

restore the power system stability. Upon activation of the damping controller, the oscillations are 

damped out and the system is stabilized. 

With XSSSC kept at 0.35 pu, the capacitive reactance in Line 2 is reduced to 0.55 pu as given by Case 

2e in Table 5.4 and the results for this operating condition are shown in figure 5.25 following a three-

phase to ground fault. Here, poorly damped torsional oscillations are observed in the rotor speed 

deviation and shaft torques. These oscillations do not show rapidly growing amplitudes but they are 

sustained. Continuous occurrence of these oscillations in the turbine-generator shaft may develop 

some cracks, which will result in the shaft failure due to fatigue; therefore, they need to be damped. 
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Figure 5.23: Time domain simulations showing system response in the presence of the SSSC in Line 1 

(XSSSC = 0.35 pu) and capacitors in Line 2 (XC2 = 0.70 pu)  

 

Figure 5.24: FFT analyses of the rotor speed deviation with SSSC in Line 1 (XSSSC = 0.35 pu) and 

capacitors in Line 2 (XC2 = 0.70 pu); (a) without damping controller, (b) with damping controller  

Figures 5.25 and 5.26 show that the multimodal-damping controller of parameters in Table 5.7 is able 

to damp out these oscillations and stabilize the power system. 
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Table 5.7: Multimodal Damping Controller Parameters for Case 2e 

Mode Lead/Lag compensator Gain 

1 
s

s

014885.01

006903.01



  40 

2 





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



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
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
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019012.01

003262.01  45 

3 
s

s

004206.01

009118.01



  5 

4 
s

s

0060219.01

004032.01



  5 

 

 

Figure 5.25: Time domain simulations showing system response in the presence of the SSSC in Line 1 

(XSSSC = 0.35 pu) and capacitors in Line 2 (XC2 = 0.55 pu)  
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Figure 5.26: FFT analyses of the rotor speed deviation with SSSC in Line 1 (XSSSC = 0.35 pu) and 

capacitors in Line 2 (XC2 = 0.55 pu); (a) without damping controller, (b) with damping controller  

The last case study in Table 5.4 (i.e. Case 2f) considers a scenario where transmission Line 2 is 

compensated by series capacitor while Line 1 is dually compensated. In this case, the capacitive 

reactance in Line 2 is kept at 0.70 pu and Line 1 is dually compensated (XSSSC = 0.35 pu, XC1 = 

0.35 pu). This case is much similar to Case 2c since in both cases, the total compensating reactance in 

each transmission line is 0.70 pu. The power system response and the FFT analysis of the rotor speed 

deviation for Case 2f are shown in figures 5.27 and 5.28 respectively following a three-phase to 

ground fault. Figure 5.28 shows that following the disturbance, subsynchronous oscillations in the 

generator rotor speed deviation is dominated by Mode 1 and Mode 3 for Case 2f. On the other hand, 

for Case 2c, the oscillations in the generator rotor speed deviation are dominated by Mode 1 and 

Mode 4. Activation of the damping controller with the parameters given in Table 5.8 successfully 

damps out the unstable torsional modes and brings the power system back to its stable operation. 

Table 5.8: Multimodal Damping Controller Parameters for Case 2f 

Mode Lead/Lag compensator Gain 
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












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
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
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0119.01  2 
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Figure 5.27: Time domain simulations showing system response with hybrid compensation in Line 1 

(XSSSC = 0.35 pu, XC1 = 0.35 pu) and capacitors in Line 2 (XC2 = 0.70 pu)  

 

Figure 5.28: FFT analyses of the rotor speed deviation with hybrid compensation in Line 1 

(XSSSC = 0.35 pu, XC = 0.35 pu) and capacitors in Line 2 (XC = 0.70 pu); (a) without damping 

controller, (b) with damping controller  
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5.3. Conclusion 

This chapter has presented the background to the damping of torsional oscillations through 

modulation of the transmission line reactance. The chapter has outlined the detailed steps required to 

deduce the phase difference between the oscillations in the generator rotor and the resulting 

electromagnetic torque in the air gap of the synchronous generator using time domain simulations in 

PSCAD. This technique was then used to design the SSSC-based SSR damping controller to mitigate 

SSR either due to the SSSC itself or due to the SSSC and the conventional series capacitors in the 

IEEE first benchmark model for SSR analysis. The results show that the damping controller with 

properly chosen parameters can successfully mitigate SSR. However, it is worth noting that the 

resonant frequency of the network changes from one combination of the SSSC and series capacitors to 

another even if the total amount of series compensation is maintained. This, as a result, requires that 

the controller parameters be modified to yield the best performance in each case. The idea was then 

extended to the modified IEEE first benchmark model with two parallel transmission lines with the 

presence of series capacitors in an adjacent transmission line. The results have shown that for 

different operating points of series compensation provided by the SSSC in Line 1, and together with 

additional conventional series capacitor in both Line 1 and 2, the supplementary controller around the 

SSSC is still capable of adding positive damping to the torsional oscillations caused by the multiple 

sources of SSR in both transmission lines 1 and 2 as shown by the Case Study 2f. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

 

In recent years, strengthening of transmission networks becomes imperative in order to improve their 

efficiency and relief transmission bottlenecks to meet the ever-growing electric power demands. This, 

as a result, reduces the reliance of these networks on existing generating units and minimizes the need 

to construct the new ones. The electric power industry is also seeing an increased penetration of 

renewable energy sources including hydro, wind, and solar, due to the global coercion on power 

plants to reduce their carbon footprint and the fear of depleting the non-renewable natural resources. 

Thus, in addition to efficient and reliable operation, future electric grids should be in a position to 

accommodate these variable energy sources along with the stability challenges that they bring. The 

conventional technology that has been used to increase the power transfer capability of transmission 

lines is that of fixed series capacitor banks operated by electromechanical switches. However, these 

switches cannot react quickly to counteract power system transients. Furthermore, series capacitors 

can cause electrical resonance in the transmission line resulting in violent torsional oscillations (due to 

SSR) and subsequent shaft failure in the nearby turbine-generators. SSR protection technologies 

provide necessary safety to the turbine-generators against shaft failure through tripping of the affected 

equipment (i.e. generators) or SSR escalating devices (i.e. conventional series capacitors), without 

damping the unstable torsional oscillations. Under severe conditions, the loss of power supply ensues 

with these techniques, which negatively affects the reliability of the supply.  

The SSSC, which is a member of the power electronic based FACTS devices, can improve the 

capacity of the transmission line by providing controllable series compensation. In addition, this 

device can add positive damping to the torsional oscillations when installed in one of the transmission 

lines in an interconnected power system. However, the SSSC also has the potential to excite SSR on 

its own in the power system. In addition, the damping provided by the SSSC may not always be 

adequate to offset the negative damping in the system, and in such cases, supplementary damping 

controls may be added to mitigate SSR by modulating the line reactance to ensure continuous supply 

of electric power to the consumers. The damping controller design requires that the power system 

operating conditions be known together with the torsional modes of the nearby turbine-generator 

shafts. 

Although the price tag associated with the SSSC is reportedly high due to the injection transformers, 

exhaustive work is being done by other researchers to achieve a transformerless version of the device. 

This initiative, together with the use of dual compensation, present an opportunity of utilizing the 

SSSC at a much lower cost in future. 
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6.1. Summary of the Results 

The findings of the research work undertaken in this thesis are summarized as follows: 

 In Chapter Three, we presented the mathematical modelling of the IEEE first benchmark 

model developed by other researchers in [80] to show the values of conventional capacitor 

compensation expected to cause the worst SSR instability in the power system. The model of 

the reactance-controlled type SSSC which is used for studies in this thesis is also presented in 

terms of its internal controls when operating in capacitive mode.  Validation of the SSSC 

model was done in subsection 3.4.3 by showing that it satisfies the following; (i) it can 

provide the required amount of series compensation, (ii) it is able to maintain the required 

voltage at the DC side of the inverter, (iii) it has well damped dynamic response and (iv) its 

dynamics are not susceptible to the disturbances in the transmission system, which makes it 

robust. 

 In Chapter Four, we studied the resonant characteristics of the SSSC compensated IEEE first 

benchmark model, utilizing the frequency response test (FRT) methodology which was 

validated against the harmonic impedance theoretical solution (HIS). From these resonant 

characteristics, we established that the SSSC can actually cause electrical resonance in the 

transmission line and thus it has a potential to cause SSR by exciting the torsional modes of 

the turbine-generator shaft system. However, it was observed that excitation of each torsional 

mode is expected to occur at higher degrees of compensation with the SSSC in comparison 

with conventional series capacitor compensation. For a case of dual compensation in 

subsection 4.3.2, the resonant impedance was seen to increase as the ratio XSSSC/XComp was 

increased from 0.20 to 0.60. This in turn improves the damping torque component of the 

generator speed deviation, providing better damping of SSR. However, this comes with a 

higher price tag, presenting a trade-off between cost and performance which the transmission 

planner should be aware of. The results in subsection 4.3.2 also confirm the ability of the 

SSSC model to provide the required amount of series compensation at system frequency (i.e. 

60 Hz). 

 In Chapter Five, the design of the SSSC-based supplementary damping controller was 

presented. The criteria for choosing the controller structure and the its input signal was also 

discussed. Initially, in section 5.3, the original IEEE first benchmark model for SSR analysis 

is used. The results in this section have shown that a single mode damping controller can 

effectively damp SSR if there is only one source of SSR in the system (e.g. SSSC alone). This 

is because the torsional oscillations following a fault tend to have only one dominant mode. 

However, when the transmission line is dually compensated (i.e. with SSSC and conventional 

series capacitors), the post-fault torsional oscillations are multimodal in nature. Damping of 

SSR in such cases is achieved by using a multimodal damping controller as presented in Case 
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Studies 1a, 1b and 1c. It has also been discovered that an increase in the ratio XSSSC/XComp 

improves damping of lower frequency modes (i.e. Mode 1 and Mode 2) at a cost of Mode 3 

and Mode 4. This finding agrees with that in Chapter Four which shows a decrease in fer 

(hence an increase in f0 - fer) as XSSSC/XComp is increased. 

The use of a SSSC-based damping controller is then extended to a parallel transmission line 

network in section 5.4. Here a modified IEEE first benchmark model with two transmission 

lines originating from the same substation is used to study SSR. The results in this section 

have shown that the presence of the SSSC alone in Line 1 can add some positive damping to 

the post-fault torsional oscillations due to conventional series capacitor in Line 2 (comparison 

of Case 2a with Cases 2c and 2d). However, this damping is not sufficient to restore the 

system stable operation hence a need for supplementary damping controller. It has been 

shown in Cases 2c, 2d and 2e that a damping controller can mitigate SSR due to the SSSC in 

one line and that due to conventional series capacitor in an adjacent transmission line. The 

results have also been demonstrated that a properly designed damping controller can mitigate 

SSR even in a case where Line 1 is dually compensated using an SSSC and a conventional 

series capacitor while Line 2 is compensated by a conventional series capacitor. 

 

6.2. Suggestions for Possible Future Work 

For future work considerations, the following aspects relating to the work covered in this thesis can be 

explored: 

 In Chapter Five, we developed both the single mode and multi-modal supplementary 

damping controllers to damp torsional oscillations in the power system. The parameters of 

supplementary damping controller required for optimum performance were obtained through 

online tuning. These parameters were found to be dependent on the operating point of the 

power system namely the degree and type of compensation. Extension of this aspect of the 

work can be done by developing an intelligent self-tuning controller.  

 Deducing from the current trends in electric power transmission, future grids will be made of 

heavily loaded and meshed transmission networks, most probably consisting of 

interconnected HVDC links and series compensated AC lines. Future studies may investigate 

SSR in such a scenario and determine whether the supplementary damping controls around 

the SSSC can damp torsional oscillations that may arise in the presence of an HVDC link in 

adjacent transmission line. 
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APPENDIX A - IEEE FIRST BENCHMARK MODEL 

A1. Per-Unit Base 

Table A1: Base Parameters  

Parameter Grid side 

(HV) 

Generator side 

(LV) 

Base power (3 phase) 892.4 MVA 892.4 MVA 

Base voltage (phase-neutral) 311.192 kV 15.01 kV 

Base impedance 325.55 Ω 0.7575 Ω 

Base current 955.8 A 19.82 kA 

 

A2. System Parameters 

The IEEE FBM was originally created by the IEEE Subsynchronous Resonance Working Group [12] 

in 1977 and the parameters used were adopted from the Navajo Project in USA, based on 892.4 MVA 

generators and 500 kV transmission line with system frequency of 60 Hz. The synchronous generator 

is modelled by two damper windings in the q-axis and one damper winding in the d-axis. 

Table A2: Synchronous generator parameters in pu (base 892.4 MVA) 

Parameter Value 

(pu) 

Parameter 

 

Value 

(pu) 

Xd 1.79 Xmq 1.58 

Xq 1.71 X”q 0.2 

Ra 0.0 Xp 0.13 

X‟d 0.169 τ‟d0 4.3 s 

X‟q 0.228 τ‟q0 0.85 s 

X”d 0.135 τ”d0 0.032 s 

Xmd 1.66 τ”q0 0.050 s 

 

Table A3: Single line transmission network parameters in pu (base 892.4 MVA) 

Parameter Positive sequence 

(pu) 

Zero sequence 

(pu) 

RL 0.02 0.50 

XL 0.50 1.56 

Xsys 0.06 0.06 
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Table A4: Rotor Circuit parameters in pu (base 892.4 MVA) 

Parameter D-axis 

 (pu) 

Q-axis 

(pu) 

w0Rf  0.53 5.3 

xf 0.062 0.326 

w0Rk 1.54 3.1 

xk 0.0055 0.095 

Xa 1.66 1.58 

xL 0.13 0.13 

 

Table A5: Shaft Inertias and spring constants in pu on the Generator base (892.4 MVA) 

Inertia Inertia 

constant 

H (s) 

Shaft 

section 

 

Spring constant 

K  

(pu Torque/rad) 

Torque 

Fraction 

HP turbine 0.092897   aH = 0.30 

  HP-IP 7277  

IP turbine 0.155589   aI = 0.26 

  IP-LPA 13168  

LPA turbine 0.858670   aA = 0.22 

  LPA-LPB 19618  

LPB turbine 0.884215   aB = 0.22 

  LPB-G 26713  

Generator 0.868495   - 

  G-Ex 1064  

Exciter 0.0342165   - 

 

The torque developed in various sections of the turbine are as follows: 

m

H

HH P
w

w
aT 0  ;   m

I

II P
w

w
aT 0  ;   m

B

BB P
w

w
aT 0  ;   m

A

AA P
w

w
aT 0  ;  

HH www  0 ;   II www  0  ;   BB www  0  ;   AA www  0  
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Table A6: Step-up transformer parameters in pu (base 892.4 MVA) 

Parameter Value 

Rated Power  892.4 MVA 

Nominal Frequency 60 Hz 

Rated Voltage (LV)L-L 26 kV 

Rated Voltage (HV)L-L 539 kV 

Vector Group and Phase Shift YNd1 

Positive Sequence Impedance 0.14 pu 

Zero Sequence Impedance 0.14 pu 
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A3. Original IEEE FBM with a Single Transmission Line 

 

Figure A1: The IEEE first benchmark model in PSCAD 
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A4. SSR Characteristics of the Series Capacitors in the IEEE FBM 

Harmonic Impedance Solution 

 

Figure A2: Scanning the network impedance of the capacitor compensated IEEE FBM using 

Harmonic Impedance Solution in PSCAD 



78 

 

Frequency Response Test Methodology 

 

Figure A3: Frequency Response test methodology simulation in PSCAD 
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APPENDIX B - THE SSSC MODEL AND DAMPING CONTROLLER  

B1. Parameters of the SSSC 

The SSSC parameters are calculated using the grid side per unit base values in Appendix A. 

Base

vpK Base Current = 955.8 A 

Base

aiK 1 

Table B1: Parameters of the SSSC 

Parameter Value in Per Unit 

 

Actual Value  

Vdc0 0.22494 70 kV 

Vdc* or Vref 0.1 Vdc0 7 kV 

w0 1.0 376.9911 rad/s 

Cdc 0.12208 375 µF 

Kvp 10.159 9711.91 

Kai 3.9*w0 1470.27 

Hp 0.3 0.3 
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B2. The SSSC Compensated IEEE FBM 

 

Figure B1: The IEEE first benchmark model in PSCAD 
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Internal Controls of the Static Synchronous Series Compensator 
 

 

Figure B2: Internal Controls of the Static Synchronous Series Compensator 
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B3. Testing Performance of the SSSC 

To evaluate whether the SSSC can provide the required compensating reactance, the following system 

model was used: 

 

Figure B3: The Single Machine Infinite bus system used to simulate the performance of the SSSC 
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B4. SSR Characteristics of the SSSC in the IEEE FBM 

 

Figure B4: The Frequency Response Test for the SSSC compensated network 
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B5. Supplementary SSR Damping Controller 

For the SSSC compensated IEEE FBM in Chapter 5 (subsection 5.3.2), the phase lag between ∆Te and 

the modulating signal ∆XSSSC was found to be 41.474°. The required lead compensator to provide this 

angle (at 32.285 Hz) was obtained to be as follows:  

s

s
sM

002221.01

010932.01
)(4




        (A1) 

Bode diagram of this lead compensator is given in figure B5. 

 

Figure B5: The lead compensator used for Mode 4 damping controller 

 

B6. Modified IEEE FBM with Parallel Transmission Lines 

 

Table B2: Double line transmission network parameters in pu (base 892.4 MVA) 

Parameter Positive sequence 

(pu) 

RL 0.04 

XL 1.00 
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Figure B6: The modified IEEE FBM with multimodal damping controller in PSCAD 
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