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Abstract

Enhanced and novel frequentist and Bayesian approaches to estimating disease measures

such as HIV prevalence utilizing the recent advances in statistical computing software

are explored and applied making use of population-based complex survey data. In

particular design-consistent estimates and logistic regression models for HIV prevalence

are respectively computed and �tted using each of the approaches.

Practical survey data are rarely obtained using simple random sampling schemes,

instead complex sampling designs, that are designed to re�ect complex underlying popu-

lation structures, are employed. These designs usually involve strati�cation, multistage

sampling and unequal selection probability of sampling units giving rise to data that

are hierarchical (multilevel), clustered, and hence correlated. This is particularly true

for large-scale population-based surveys. Consequently this often gives rise to units

that are correlated within clusters as well as multiple sources of variability rendering

standard statistical methods based on the assumption of independence of units inap-

propriate. Survey logistic regression models built from a generalized linear modelling

framework were used to explain the variation in HIV prevalence accounting for the non-

independence of the units. In addition, a hierarchical logistic regression model built

from a generalized linear mixed modelling framework was used to capture the vari-

ability and correlation of the units within clusters and further determine how di�erent

layers interact and impact on a response variable. In particular, the logistic regression

models for HIV prevalence on demographic, behavioural and socio-economic variables

were developed from a frequentist and a Bayesian perspective.

Statistical methods that incorporate prior known information about unknown pa-

rameters are vital in most scienti�c and biological research especially in studies where

replicative experimental investigations are not possible. The Bayesian statistical paradigm

o�ers a framework upon which a prior distribution of a parameter can be combined with

the likelihood of the observed data to obtain a posterior distribution for explaining the
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stochastic variation in a response variable. Computer-intensive simulation-based algo-

rithms such as the Markov chain Monte Carlo (MCMC) methods were used to draw

samples from the posterior distribution for inference purposes. A Bayesian logistic re-

gression model for HIV prevalence on demographic and socio-economic variables was

�tted from a generalized linear modelling framework using the MCMC algorithms.

Furthermore, practical complex survey data are often characterized by missing ob-

servations due to non-response, a phenomenon that is true to the data used for the

current research. Often, the analyses of such data take a complete case approach,

that is taking a list-wise deletion of all cases with missing observations, assuming that

missing values are missing completely at random (MCAR). In the current research, we

systematically simulate or generate multiple values for the missing observations under

a multiple imputation method accounting for the structure of the data. A rectangular

complete data set is produced and the variability or uncertainty induced by the very

process of imputing the values for the missing observations is accounted for.

The study utilizes complex (multi-layered and clustered data with missing values)

survey data obtained from the 2010-11 Zimbabwe Demographic and Health Surveys

(2010-11ZDHS). The results show that HIV prevalence varies considerably across sub-

groups of the population. All the analyses are done using R statistical software pack-

ages.
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Chapter 1

Introduction

The focus of this study is on sound methods for estimating disease prevalence as a

measure of disease burden. In particular we consider the estimation and modelling of

HIV prevalence in Zimbabwe using novel frequentist and Bayesian methods.

1.1 Background

Zimbabwe ranks among the countries that have been worst a�ected by the HIV and

AIDS epidemic in sub-Saharan Africa. Although studies, see for example Humphrey

et al. (2010) have shown that HIV prevalence has been falling since the late 90s, a recent

estimate from the National HIV estimates of 2010, of approximately 15% among the

country's sexually active population (15 years and above) is still considered to be too

high. The factors that have contributed to the observed decline in HIV prevalence since

the late 90s include robust prevention programs, signi�cant behaviour change that has

reduced new infections and the successful implementation of the Prevention of Mother

to Child Transmission (PMTCT) program, see for example Humphrey et al. (2010),

Gonese et al. (2010) and Gregson et al. (2006). Recent studies have also revealed that

the relatively high literacy level among the country's population has allowed rapid and

e�ective dissemination of information on HIV and AIDS awareness and appropriate

1



preventive measures. These have in turn resulted in increased and consistent use of

condoms, reduction in casual sex, reduction in extramarital partners and in commercial

sex.

According to the United States' Center for Disease Control (CDC), HIV prevalence

is de�ned as the percentage of the population of people with HIV infection who are alive

at a given point in time regardless of whether they have or they have not progressed to

AIDS. The center also de�nes the HIV prevalence rate as the number of people living

with the infection at a given time per a hundred thousand population. Although it is

argued that prevalence does not indicate how long a person has had the virus, it can be

used to estimate the probability that a person selected at random from a population

has the virus. In the studies of HIV/AIDS, a good understanding of HIV prevalence is

essential for monitoring the epidemic and for assessing and evaluating the e�ectiveness

of prevention programs. In addition, HIV prevalence is used as a measure of disease

burden and for monitoring global mortality, see Mathers & Loncar (2006).

HIV prevalence has had a fairly signi�cant amount of attention in previous studies

in understanding the HIV epidemic. In a Zimbabwean context, Mahomva et al. (2006)

studied HIV prevalence among pregnant women attending Antenatal Clinic in Zim-

babwe and reported that the HIV prevalence rate declined substantially from 32.1%

in 2000 to 23.9% in 2004. The 2009 National Survey of HIV and Syphilis Prevalence

Among Women Attending Antenatal Clinic reported a decline in HIV prevalence from

25.7% in 2002 to 16.1% in 2009. At a regional level, Freeman & Glynn (2004) re-

searched on how other sexually transmitted infections a�ect HIV concordance and/or

discordance in married couples in four African countries. Other notable studies of HIV

at the sub-Saharan African context include for instance Hallett et al. (2006), Szwar-

cwald et al. (2008), Ramjee & Eleanor (2002), Bwayo et al. (1991) and Welz et al.

(2007). Susser et al. (1993) studied HIV prevalence in Psychiatric Patients in a New

York City Men's shelter and reported on the importance of identifying and responding
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to the spread of the epidemic in this population.

Estimation of HIV prevalence has been based mainly on data obtained from studying

a speci�c subset of the population. Speci�cally the estimates have been derived mainly

from sentinel surveillance systems that monitored HIV rates among pregnant women

and high-risk populations such as drug users, truck drivers, men who have sex with

other men and commercial sex workers. Mahomva et al. (2006), Hallett et al. (2006) and

Szwarcwald et al. (2008) estimated HIV prevalence using data obtained from surveys of

pregnant women attending antenatal clinics. Scott & Holmberg (1996) used data from

injection drug users and men who have sex with other men, Ramjee & Eleanor (2002)

used data obtained from a survey of truck drivers visiting sex workers in KwaZulu-

Natal, Bwayo et al. (1991) also used data on knowledge and attitudes pertaining to

sexually transmitted diseases which cause body wasting and death in Mombasa. Lyerla

et al. (2006) provided estimates of HIV prevalence by studying populations which are

most exposed to HIV in countries with low and concentrated epidemics, Welz et al.

(2007) estimated HIV prevalence through a population based longitudinal study in

rural KwaZulu-Natal and Fabiani et al. (2003) obtained HIV prevalence estimates by

combining sero-survey data and hospital discharge records. Buseh et al. (2002) studied

the in�uence of knowledge of and perceived seriousness of HIV/AIDS, and cultural and

gender norms on the spread of the virus in Swaziland using focus groups. These studies

were mainly based on data obtained from a subset of the population making inference

about the entire population less accurate.

As at July 2011, Zimbabwe's population was estimated at 12 084 304 with approx-

imately 41.9% being below the age of 15 years, 54.3% being in the age group 15 - 64

years and only 3.8% were 65 years and above. The urban dwellers constitute about

38% of the population. Approximately 98% of the population are people of an African

origin (of whom 82% are Shona, 14% are Ndebele and 2% are other minority groups),

1% are of Asian and mixed origins and whites of European origin constitute less than
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1%. The Zimbabwean population is relatively well educated with a literacy rate (those

15 years and above who can read and write English) of 90%.

Zimbabwe has a wealth of literature on HIV/AIDS surveillance based on a host

of a variety of data sources ranging from Antenatal Clinic (ANC) surveys ran since

1990, behavioural data that are available from the 2001/2002 Young Adult Survey

(YAS), the 2001 and 2003 Population Services International (PSI) Youth Survey, the

Zimbabwe Demographic Health Surveys (1988, 1994, 1999 and 2005/6 with the latest

one being 2010-2011), the World Health Organization (WHO) and the UNAIDS.

Zimbabwe's HIV epidemic, similar to other sub-Saharan African countries, is mainly

driven by heterosexual transmission. This has mainly been linked to networks of mul-

tiple sexual relations, including concurrent relations in which the virus is passed on

rapidly. Studies have shown that sexual relations outside marriage have been on the rise

for most men in urban areas of Zimbabwe, Gregson et al. (2002). The socio-economic

and socio-political situations in the country brought about by the recent hyper in�a-

tionary environment have also exacerbated the spread of the virus through forced family

separation, commercial sexual exploitation and tra�cking of women. High unemploy-

ment rates have witnessed an increase in the number of commercial sex workers in

recent years, a pervasive problem that is argued to originate from poverty, Mbirimten-

gerenji (2007). It is argued that poverty has been a key driver of the spread of HIV

in many sub-Saharan African countries. In particular, it (poverty) has been linked to

deprivation, constrained choices, unful�lled capacity and interrelated features of well-

being that impact upon the standard of living and the quality of life, thereby forcing

people to indulge in risky behaviours such as commercial sex to bring basic survival

resources Mbirimtengerenji (2007). Despite aggressive awareness programs, studies still

show that commercial sex has contributed signi�cantly to new cases and the spread of

the virus, see Makondo & Makondo (2014).

Studies have also established that a leading cause of HIV infections in new-born
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babies is the MTCT, Mahomva et al. (2006), Coutsoudis et al. (1999), Wiegert et al.

(2014) and Bertozzi et al. (2006). The 2001 National HIV Sentinel Surveillance Sur-

vey estimated an antenatal nationwide HIV sero-prevalence of 29.5% acquire HIV from

their mothers annually in Zimbabwe (Perez et al. (2004)). Maheswaran & Bland (2009)

reported that MTCT before, during and after delivery may result in the acquisition of

HIV for 30-35% of infants of HIV-infected mothers. During breastfeeding, HIV trans-

mission is likely associated with an elevated viral load in the breast milk, see Bertozzi

et al. (2006) and Humphrey et al. (2010). Most HIV interventions target transmissions

outside long-term partnerships, however studies point to rapid transmission of the virus

in married couples, see for instance Freeman & Glynn (2004) and Mastro & de Vin-

cenzi (2006). In Freeman & Glynn (2004), the study established that most cohabiting

couples share related HIV strains and that transmission probability is enhanced by lack

of such factors as male circumcision, lack of condom use, vaginal intercourse during

menstruation and presence of other sexually transmitted infections.

The current study aims to develop techniques that can be used to provide national

HIV prevalence estimates and estimates in subgroups (categorized geographically, socio-

economically and demographically). Essentially the techniques account for the hierar-

chical data structure inherent in populations, for the complex sampling design and for

the variability due to missing data. The proceeding sections of the current chapter

outlines the fundamental statistical methods relevant for analyzing survey data and

speci�c objectives of the study.

1.2 Sampling under complex surveys

Sampling is a statistical technique that involves random selection of a subset of a pop-

ulation to be used in analysis as a representative of the population. To ensure random-

ness in the selection, researchers usually employ the concepts of probability resulting
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in probability samples or random samples. According to Chambers & Skinner (2003),

Heeringa et al. (2010) and Lee & Forthofer (2006), selection of samples in practical

surveys rarely involve simple random sampling (SRS), instead complex sampling pro-

cedures that include strati�cation and multistage selection of elements with stochastic

assumptions involved in the formulation of the sampling schemes are usually utilized.

The use of complex sampling schemes is aimed at improving the representativeness of

the sample and capture the prominent features of the underlying population, see for ex-

ample Heeringa et al. (2010), Fuller (1975), Chambers & Skinner (2003) and Lehtonen

& Pahkinen (2004), to optimize the variance or cost ratio of the �nal design or to meet

precision targets for subgroups of the target population. Some populations under study

may re�ect complex underlying structures with observations from di�erent individuals

dependent on each other and observations within clusters being correlated. In addi-

tion, the sampling designs are characterized by unequal selection probabilities of units,

double sampling, and multiple frames, and estimation features such as imputations, ad-

justments and compensation for non-response and under-coverage. Survey data arising

from complex sampling schemes or re�ecting associated underlying complex population

structures are referred to as complex survey data.

Although not primarily concerned with the scienti�c, medical or socio-economic

interpretation of the facts, (despite being required to supply material adequate for such

interpretation), sample surveys are concerned with the accurate ascertainment of the

individual facts and observations from elements recorded and also with their compilation

and summarization. The presence of covariates or auxiliary variables also has a bearing

in the way the survey data are analyzed. It is common to meet with survey data which

are disproportionate to the target population and this often necessitates some form of

weighting to be employed. In this regard sampling weights are often used to re�ect

the unequal sample inclusion probabilities and compensate for di�erential non-response

and frame under-coverage as explained by Pfe�ermann (1996).
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It is argued that the purpose of sampling theory is to make sampling more e�-

cient. According to Cochran (1977), Hansen et al. (1953), Kish (1965) and Kish &

Frankel (1974) sampling theory attempts to develop methods of sample selection and

of estimation that provide, at the lowest possible cost, estimates that are `precise'.

Conventional analysis of survey data often ignore the complex sampling schemes

with the assumption that all sample observations were independently selected with

equal probabilities. However as by Lumley (2010), Skinner et al. (1989), Heeringa et al.

(2010) and Lee & Forthofer (2006) the assumption rarely holds in practice, often leading

to unbiased estimates and inaccurate conclusions.

In a typical complex sampling design, clustering, de�ned as the natural grouping of

population elements that are relatively homogeneous, is mainly signi�cant for reducing

survey costs or for simplifying the logistics of the actual survey data collection, Lehtonen

& Pahkinen (2004) and Heeringa et al. (2010). However it is worth noting that sampling

schemes that incorporate clustering often result in standard errors, for survey estimates,

that are generally greater than those from an SRS of equal size. Furthermore, special

approaches to variance estimation are required whenever clustering is involved as sample

units from the same cluster generally tend to be correlated see Binder (1983), Rust

(1985) and Rust & Rao (1996). A common statistical measure of the homogeneity of

observations within sample clusters is the intra-class correlation (ICC) denoted ρ, see

Kish (1965), Heeringa et al. (2010) and Lehtonen & Pahkinen (2004).

The contribution of strati�cation, de�ned as the division of population elements

into mutually exclusive and exhaustive non-overlapping subgroups, in a complex design

is towards improving on statistical e�ciency in estimation and inference. Strati�cation

often gives smaller standard errors for sample estimates relative to SRS. Speci�cally as

noted by Heeringa et al. (2010), since strati�ed sampling selects independent random

samples from each of the h = 1, ..., H strata of relative size Wh = Nh/N, any variance

attributed to di�erences among strata is eliminated from the sampling variance of the
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estimate. Thus the ideal for any strati�cation designed to increase sample precision

is to form strata that are as �homogeneous within� as possible and as �heterogeneous

between� as possible Heeringa et al. (2010).

In complex surveys that involve both strati�cation and clustering, the e�ect of the

design falls between the high value for the clustered only design and the low value

for the scenario where only strati�cation e�ects are considered. Thus complex surveys

result in what is termed a �tug of war� between the variance in�ation due to clustering

and variance reduction due to strati�cation.

1.2.1 Sampling weights

Complex sampling schemes that involve varying sample inclusion probabilities for in-

dividual observations often employ sampling weights to �map� the sample back to an

unbiased representation of the target population. Complex survey data are usually

characterized by disproportionate representation of the observations in the population

brought about to re�ect the prominent underlying population structure in the sample.

As a result sampling weights are essential in survey data analysis for adjusting for the

di�erential representation of sample observations. Thus essentially the key purpose of

sampling weights is to make the distribution of the variables in the sample data ap-

proximate the distribution of the variables in the target population, see for example

Pfe�ermann (1993), Heeringa et al. (2010) and Winship & Radbill (1994).

Formally, let πi, for i = 1, ..., N denote the probability that unit i in the population

is included in the sample, the sampling weight for any sampling design is de�ned as the

reciprocal of πi given by

wi = 1
πi

In particular, for unit-speci�c weights in survey data analysis, weights re�ect the

number of population elements that is represented by the respective sample observation.
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Following Lee & Forthofer (2006), two types of sampling weights are often encoun-

tered in practical complex surveys. These are the expansion weight, that is the recip-

rocal of the selection probability, and the relative weight, that is obtained by scaling

down the expansion weight to re�ect the sample size. The theory behind these two

types of sample weights is quite varied in relation to di�erent sampling designs, see

for example Pfe�ermann (1996), Pfe�ermann (1993), Winship & Radbill (1994) and

Lepkowski et al. (2006).

Ignoring sampling weights in the analysis of complex survey data often leads to

biased estimates and model mis-speci�cation (Pfe�ermann (1993), Pfe�ermann (1996),

Lee & Forthofer (2006) and Rust (1985)). In addition, it underestimates the variance

thereby resulting in incorrect standard errors of estimates and Type I errors, Winship

& Radbill (1994).

1.2.2 The design e�ect (de�)

Most practical sampling designs, for instance those used in national demographic and

health surveys, are rarely SRS; rather they involve strati�cation, clustering and dispro-

portionate sampling of population elements. The design e�ect for a particular complex

sampling design as de�ned by Gabler et al. (2006), Heeringa et al. (2010) and Kish

(1965) is the net e�ect of of the combined in�uences of strati�cation, clustering and

weighting relative to a SRS design. Often, the design e�ect is expressed as a ratio of the

standard error (or variance) of an estimate obtained using a complex scheme compared

to one obtained using a SRS scheme. For instance, for a population quantity θ, say,

estimated by θ̂ obtained from a particular design, relative to the SRS of equal size, the

net e�ect of a complex design on the standard error of θ̂ is given by

D2
(
θ̂
)

=

[
SE
(
θ̂
)
complex

]2
[
SE
(
θ̂
)
srs

]2 =
Var

(
θ̂
)
complex

Var
(
θ̂
)
srs
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where

D2
(
θ̂
)

= the design e�ect for θ̂;

SE
(
θ̂
)
complex

= the complex sample design standard error of θ̂;

SE
(
θ̂
)
srs

= the simple random sample standard error of θ̂;

Var
(
θ̂
)
complex

= the complex sample design variance of θ̂;

Var
(
θ̂
)
srs

= the simple random sample variance of θ̂.

The design e�ects are used mainly in computing con�dence intervals, desired sample

sizes and test statistics that incorporate the estimates of standard errors corrected for

the complex sample design, Heeringa et al. (2010). Furthermore, the design e�ect

is used to measure the relative loss (or gain) in precision achieved by using a given

complex sampling design compared to an SRS, see Wolter (1985) and Heeringa et al.

(2010). Analytic statistics such as the Rao-Scott Pearson χ2 and the likelihood ratio

χ2 tests, as described by Rao & Scott (1981), Holt et al. (1980) and Bedrick (1983)

also rely on the design e�ect to re�ect the e�ect of the complex sampling design. The

current research utilizes the design e�ect in all instances where the above-mentioned

statistics and/or tests are computed.

1.2.3 Variance estimation under complex sampling

A basic requirement when analyzing complex survey data and a good survey practice

is that a measure of precision be provided for each estimate derived from the survey

data, see Binder (1983) and Wolter (1985). It is important to note that the variance of

an estimate is usually unknown, thus it (the variance) is also estimated from the survey

data. Hence the estimated variance is a function of both the form of the parameter

estimate and the nature of the sampling design, see Berger & Skinner (2004), Rust

(1985), Rust & Rao (1996), Lee & Forthofer (2006) and Wolter (1985). Parameter

estimates obtained from complex survey data are often nonlinear and complex, and

their complexity is induced by the sampling design used to obtain the survey data, Rust
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& Rao (1996), Heeringa et al. (2010) and Wolter (1985). There are several methods for

estimating the variance and selecting the most appropriate is often based on accuracy

of the variance estimator, time constraints, cost, simplicity and other administrative

considerations.

Often with descriptive analysis of survey data, variance estimates are used for con-

structing con�dence intervals for the population parameters, thus a second criterion

that considers the best con�dence interval is normally employed. Some analyses of

survey data may specify particular statistical methods for the data analyses, by which

preference is given to the variance estimator that has the best statistical properties for

the proposed analysis. Availability of software packages that are capable of comput-

ing the appropriate variance estimates is also of importance. In practical surveys that

are multipurpose, such as national household surveys, there may be many variables and

statistics of interest each requiring an estimate of its own respective variance. Therefore

it may be necessary to use one, or at least a few variance estimating methods where a

compromise must be made to arrive at a variance estimator that might not be optimal

for any single statistic, but, as Wolter (1985) suggests, one that involves a tolerable loss

of accuracy for all, or at least the most important statistic. Common approaches to

variance estimation for sample estimates obtained from complex survey data are based

on the Taylor series linearization and the re-sampling procedures such as the Jackknife

repeated replication (JRR) and the Balanced repeated replication (BRR) methods, see

Wolter (1985).

1.3 Approaches to statistical analysis of survey data

The current study considers two approaches to analyzing survey data; the frequentist (or

the classical) and the Bayesian. The frequentist approach, based on the fundamental

ideas envisaged by Neyman (1934), is further subdivided into design-based and the
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model-based. The di�erence between the design-based and the model-based approaches

lie in the sources of randomness that is responsible for giving the stochastic structure

in the data as explained by Gregoire (1998) and Sarndal et al. (1978). The Bayesian

paradigm has its basis in incorporating prior information about the model parameters in

the analysis using the Bayes theorem relying on the subjective de�nition of probability.

1.3.1 Design-based approach

The design-based approach, as given by Chambers & Skinner (2003) and Heeringa et al.

(2010), that was formalized by Neyman (1934), is a statistical framework in which the

only source of random variation is that induced by the sampling mechanism, that is, the

complex sampling design. Sarndal et al. (1978) described the source of randomness in

design-based approach as the probability ascribed by the sampling design to the various

subsets of the �nite population. Under a design-based approach, the population whose

data values are unknown but are regarded as �xed is speci�ed and the observed sample is

random due to the random selection, Lumley (2004). Hence stochasticity is introduced

at the sampling stage.

Statistical inference under the design-based approaches rely on the sampling dis-

tribution of repeated samples generated by the sampling design. The analysis of the

data incorporates the design features as well as the sample weights that are designed

to re�ect the design features, unequal probabilities of selection, non-response and post-

strati�cation, (Shao & Chen (1998), Lehtonen & Pahkinen (2004) and Lee & Forthofer

(2006)). Statistical inference is often then based on the normal approximation justi�ed

by large-sample arguments. Under complex sampling, classical statistical methods that

assume independence of units become inappropriate, necessitating methods of analysis

that take account of the sampling scheme as explained in Rao & Scott (1981), Rao &

Thomas (2003), Lohr (2010) and Lee & Forthofer (2006).
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1.3.2 Model-based and model assisted approaches

The model-based approach makes use of a probability distribution for the random

variables of interest as described by Chambers & Skinner (2003) and Heeringa et al.

(2010). Under this approach, the only source of variation is that induced by the model

that is presumed to have generated the population values. Inference under the model-

based approach considers the values of the population as a realized outcome of a random

variable obtained from a super-population model, Sarndal et al. (1992) and Gregoire

(1998). The sample is held �xed, even if it is generated by a probability sampling design.

This approach ignores the probability distribution induced by the sampling mechanism.

Thus the model generating the values is taken to be a mathematical abstraction used to

describe reality, Brus & de Gruijter (1997). Tests of hypotheses and interval estimation

are carried out via the maximum likelihood. Consequently the probability distribution

of all possible realizations of the outcome is the basic tool for inference.

Unlike under the design-based approach where models are used to describe the

population characteristics, under the model-based approach, models are used to describe

the data generating process. Discussions around the fundamental di�erences between

the design-based and the model-based approaches are well documented, see for example

Sarndal et al. (1978), Hansen et al. (1983), Smith (1976) and Gregoire (1998).

In an analytic approach, there are many models that are used to analyze complex

survey data. These include general regression models and generalized linear models

(GLM) which are suitable for both normal and non-normal as well as counts data. For

a binary response in particular, logistic regression models are often utilized, see Agresti

(2007), Hosmer & Lemeshow (2000), Chambers & Skinner (2003) and Heeringa et al.

(2010). On the other hand, the analysis may need to take account of di�erent sources of

variability often encountered in multi-layered clustered data. Models that are designed,

often using a GLM framework, for this are generally called hierarchical or multilevel

models as described by Goldstein (1991), Goldstein (2011), Goldstein & McDonald
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(1988) and Snijders & Bosker (1999). Various extensions of GLMs are available that

include random e�ects, giving rise to generalized linear mixed e�ects models (GLMM)

as explained by McCulloch & Searle (2001).

However frequentist modelling approaches have a potential limitation in that the

uncertainty in predicting parameters is not re�ected in prediction inferences. In addi-

tion, evaluating high-dimensional numerical integrals that are commonly encountered

under the frequentist approach is often not possible. Bayes models that propagate

uncertainty about parameters are preferable especially in small samples.

1.3.3 Bayesian approach

Most practical scienti�c investigations, such as laboratory tests, are carried out as con-

trolled learning process whereby various aspects of a research problem are iteratively

illuminated as the study progresses. The process may involve tentative conjecture

suggesting an experiment with appropriate analysis of the data leading to a modi�ed

conjecture which in turn leads to a new experiment, and so on. Quick and unambigu-

ous convergence of the process is indicative of an e�cient investigation. A Bayesian

approach allows combining prior knowledge (that come as the conjecture or prior be-

lief about model parameters) with the likelihood of the observed data in a scienti�c

investigation to obtain a posterior distribution.

We consider a Bayesian approach to �nite population inference as described by Lit-

tle (2003), where the population values are assigned a prior distribution and then the

posterior distribution is computed using the Bayes' theorem. Good practical illustra-

tions where a Bayesian approach is used are given by Sedransk (2008). Application of

the Bayesian analysis is often encountered in studies involving small area estimation,

see for example Rao (2003) and Jiang & Lahiri (2006). Vail et al. (2001) applied the

Bayesian paradigm approach in randomized clinical trials setting.

Unlike the frequentist approach, in Bayesian statistical inference, the uncertainty
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about the true value of the unknown parameter is re�ected by specifying a probability

(the prior) distribution for the parameter. Of importance to note is that, under the

Bayesian approach the observed data are regarded as �xed and the parameters are

assumed random. The overarching theory underlying the formulation of the Bayesian

analysis and inference has received considerable attention, see for example Press (1989),

Bolstad (2007), Bernardo & Smith (1994), Dempster (1968) and Rai�a & Schlaifer

(1961).

Key to proper formulation of a Bayesian analysis is the ability to quantify prior

knowledge (or ignorance) in a statistical speci�cation. Gelman et al. (2008) gave a

detailed discussion on the formulation of prior distributions under Bayesian regression

models. The underlying fundamental reasoning behind specifying prior distributions

stems from the view that science generally comes about by learning and incorporating

�ndings and information from previous research to inform the current studies. Often,

use is made of non-informative priors in many practical applications in which the ob-

served data are allowed to dominate the analysis and �speak for themselves�, see for

example Box & Tiao (1973) and Sweeting (1981). Bedrick (1983) outlined formulation

of informative prior distributions for GLMs through the use of conditional means priors.

There has been a renaissance in the development and application of Bayesian sta-

tistical methods, owing mostly to developments of powerful statistical software tools

that render the speci�cation and estimation of complex models feasible from a Bayesian

perspective. In many practical applications, especially where high-dimensional param-

eters are involved, iterative simulation values are drawn from the posterior distribution

and then inferences are based on these draws. Notable examples include Doucet et al.

(2000), Gamerman (1997) and Lesa�re & Lawson (2012). In many practical research

studies involving surveys, non-informative priors that re�ect absence of strong prior in-

formation are often preferred. Consequently, the Bayesian approach often yields similar

estimates and estimates of precision to the frequentist approach however the con�dence
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intervals have a di�erent meaning.

1.4 Missing data in surveys

Most practical surveys are characterized by non-response resulting in missing data, for

instance the national Demographic and Health Surveys. There are a variety of reasons

why data are missing in survey research, see for example Baraldi & Enders (2010),

Little & Rubin (1987a) and Schafer & Olsen (1998). Missing data in surveys may

be due to what is termed unit non-response. This occurs when no survey data are

collected for an individual selected for the sample. In addition, missing data may be a

result of refusal to participate in a survey or non-contact or language barrier. Missing

data may also occur when a sampled individual participates in the survey but fails

to provide acceptable responses to one or more of the survey items. Ignoring missing

data in statistical analyses results in biased estimates and incorrect statistical inference.

Missing data are argued to be ubiquitous and pervasive in scienti�c and social research

see Schafer (1997), Schafer & Olsen (1998), Schafer (1999), Rubin (1976) and Rubin

(1987). A substantial e�ort has been directed towards �nding methods of handling

missing in surveys, for instance Pigott (2001), Schafer & Olsen (1998), Schafer (1999),

Kalton & Brick (1996), Baraldi & Enders (2010) and Rubin (1987). Available methods

range from ad hoc and traditional deletion and single imputation methods (such as

mean and regression imputations) to more advanced and �state of the art� methods

such as the likelihood and the multiple imputation (MI). Most of the advances in these

methods have been enhanced by the advent of fast, powerful and sophisticated statistical

packages.

In the analysis of data with missing observations, Rubin (1976) and his colleagues

Little & Rubin (1987b) classi�ed missing data according to what they termed �missing

data mechanisms�. The classi�cation is based on the relationship between the mea-
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sured variables and the probability of missing data. Data are classi�ed as missing

completely at random (MCAR), missing at random (MAR) and missing not at random

(MNAR). Data are MCAR if the probability of missing data on a given variable is

unrelated to other measured variables and to the values of the variable itself. That

is, missingness is completely unsystematic and the observed data can be regarded as

a random sub-sample of the hypothetically complete data, Baraldi & Enders (2010).

Under the MAR mechanism, missingness is related to other measured variables of the

incomplete variable. On the other hand missing data that are systematically related

to the hypothetical values that are missing are classi�ed under the MNAR mechanism.

Appropriate methods for handling missing data are often related to the respective miss-

ing data mechanism. Detailed discussion of the missing data and methods for handling

missing data are presented in Chapter 4.

1.5 Statistical computing

All the analyses for the current research were done using packages available in R version

3.1.3, by R Team (2013). In particular, the package survey by Lumley (2010) was

used to compute the design-consistent crude estimates and the survey logistic regression

models for HIV prevalence. The package allows speci�cation of the survey design, the

sampling weights and the appropriate variance estimation method. In addition the

package supports the design-induced distortion of the asymptotic distribution of the

Pearson and the likelihood ratio statistic that comes with the Rao-Scott test by Rao

& Scott (1981). The Hosmer-Lemeshow test by Hosmer & Lemeshow (1980) that

accounts for survey design and for the model goodness of �t for the logistic regression

model was performed using the package ResourceSelection by Lele et al. (2015).

The automated model building procedures for the survey logistic regression were done

using the packages glmulti by Calcagno & de Mazancourt (2010) and stepPlr by

17



Park & Hastie (2010). The packages generate all possible models under constraints set

by the analyst with speci�ed response and explanatory variables and �nding the best

model according to some criteria such as the Akaike information criterion (AIC) and

the Bayesian information criterion (BIC). Multiple imputations were done using the

package mi by Gelman et al. (2015). The package uses chained equations approach

to imputation and allows speci�cation of conditional distribution of each variable with

missing values conditioned on other variables in the data in a Bayesian framework. The

procedure is an iterative algorithm that sequentially iterates through the variables to

impute the missing values using the speci�ed models. The analysis model, obtained

by pooling estimates from the m `complete' data sets, was computed using the survey

package.

The hierarchical logistic regression models were computed using the package lme4

by Bates et al. (2014). The package is designed to build models in a GLMM framework

in which �xed and random e�ects can be speci�ed explicitly. The Bayesian logistic

regression was computed using the package arm by Gelman et al. (2010). Simula-

tion draws from the posterior distributions were carried out using the MCMCpack

by Martin et al. (2013). Assessment of the convergence of the Markov chain Monte

Carlo (MCMC) was done via checking the convergence diagnostics using the package

mcmcplots by Curtis et al. (2015). The generalized additive models (GAMs) were

computed using the mgcv package by Wood (2006). Essentially the package uses a

local scoring algorithm to iteratively �t the models in GAM framework via the back-

�tting procedure. The speci�c functions that were used in the various approaches were

given in the respective chapters.

1.6 Objectives of the study

The objectives of the research are to:
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• develop an insight into the dynamics of HIV infection and prevalence in di�erent

categories of the population of Zimbabwe;

• utilize the theory of the analysis of survey data to estimate HIV prevalence at

both the national and subgroup level of the population of Zimbabwe;

• identify risk factors associated with the HIV prevalence in the respective sub-

groups;

• explain the variation in HIV (using a modelling approach) using demographic

and socio-economic factors of the population both at the individual and house-

hold level taking the clustering and hierarchical structure of the data via both a

frequentist and a Bayesian approach;

• account for missing data often encountered in practical survey data due to non-

response using sound techniques that account for the uncertainty due to the miss-

ing data themselves, the method of handling the missing data as well as the

structure of the underlying population.

1.7 Signi�cance of the study

Statistical methods have been widely used to assess the trends, patterns and the dy-

namics of HIV/AIDS epidemic. The focus of these methods range, depending on the

objectives embedded in the research, from estimating prevalence, understanding the

pathogenesis of HIV infection, assessing the potency of antiviral therapies, evaluation

of treatment e�cacy of viral dynamic models and assessing disease burden. Statistical

models that estimate the magnitude and trajectory of the HIV/AIDS epidemic have

also been constructed. These models have been used as tools to extract and convey as

much information as possible from available data and provide accurate representation

of both the knowledge (understanding origin and progression) and uncertainty about
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the epidemic. The success of the statistical methods rely on the quality of the data

available. In addition, the quality and reliability of the estimates calculated from the

available data depend on the validity of the statistical analysis performed. Sampling

and survey techniques have been used as bases for accurate data collection and provide

su�cient theory behind consistent analysis of phenomena such as HIV epidemic. A

key responsibility of the discipline of statistics is to provide science with theory and

methods for objective evaluation of data-based evidence and measuring the strength of

that evidence, Royall (2003).

It is under this background that a study such as the current one is used to inform

researchers and policy makers regarding understanding, the progression of HIV, as-

sess the intervention programs and develop epidemiological projections. In particular,

a good understanding of prevalence of HIV can allow proper implementation of pre-

vention and intervention programs such as implementation of antiretroviral treatment.

It is argued that a good understanding of HIV infection and prevalence is critical, not

only to develop appropriate surveillance system instruments, but also to understand the

epidemic and implement appropriate intervention programmes, Bertozzi et al. (2006).

Intervention programs can be designed to target the mode of transmission. The use of

population-based survey data also allows researchers to focus attention to subgroups

or domains within the population that are most at risk or exposed to HIV as con-

centrated epidemics. In addition, population-based estimates can also be combined

with ANC estimates (as proxies) to give more accurate estimates of HIV prevalence.

Cross-sectional studies of HIV prevalence (such as the current one) can complement

mathematical models that track transmission dynamics in generating HIV prevalence

projections. Studies have shown that in one way or the other every individual living

in this day is either infected or a�ected by the HIV/AIDS pandemic. Thus a good

understanding of HIV/AIDS can enhance provision of support structure for both the

infected and the a�ected. To achieve the above desired objectives, novel methods of
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estimating, enhancing and explaining variation in HIV prevalence are explored.

Most survey data, see for example Brick & Kalton (1996), Pigott (2001) and Raghu-

nathan (2010) are characterized by missing data, especially in research involving HIV

which is still regarded a sensitive issue in most of sub-Saharan African countries. Re-

spondents are not at liberty to disclose their HIV status nor to consent for a test

especially if they suspect or they know that they are positive. Hence the use of proper

techniques of handling missing data that are supported by sound statistical theory can

enhance accurate estimation of HIV prevalence.

1.8 Thesis layout

The thesis is organized into chapters in which each chapter is stand-alone motivated by

the respective methods or approaches to estimating HIV. In particular, each approach

attempts to explore and capture ways in which the variation in HIV prevalence can be

explained, taking the design features, nesting or clustering data structures and non-

response into account. Chapter 2 gives a detailed explanation of the data; the source,

the variables and the sampling design. In addition, some basic exploratory analyses

to explore elementary relationships between the variables are presented. Chapter 3

presents the details of how a design-consistent survey logistic regression model was

computed to explain variation of HIV prevalence from a GLM perspective. In addition,

design-consistent estimates of HIV prevalence are given at the national and domain

(subgroup) level. Practical surveys are often characterized by non-response that results

in missing data. Chapter 4 outlines the details of the nature of missing data in surveys

and presents a multiple imputation technique used to `�ll in' missing data and at the

same time account for the variability induced by the missing data themselves, the

imputation process as well as the underlying structure of the population. Discussion

of results obtained from a complete case analysis and a multiple imputations-based
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analysis is presented.

Chapter 5 focuses on multilevel or hierarchical models built from a GLMM per-

spective. The multiple sources of variability resulting from the multi-layering of the

data, and the clustering nature of the data brought about by the prominent features of

the underlying population are captured. In addition, measures of within and between-

grouping variability are provided. Chapter 6. provides details of a logistic regression

model for HIV prevalence �tted from a Bayesian analysis framework. A posterior dis-

tribution as an empirical distribution is computed, and for inference purposes sampling

from the posterior is done using the MCMC technique. Convergence diagnostics for

the MCMCs were presented in the form of plots and summary statistics. A Bayesian

hierarchical logistic regression model for estimating HIV prevalence using the GLMM

framework is given in Chapter 7. A general additive model for HIV is provided us-

ing semi-parametric splines approach in Chapter 8. General concluding remarks and

direction for further research are given in Chapter 9. In addition, the strengths and

potential limitations of the study are also given in Chapter 9.
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Chapter 2

Exploratory data analysis

2.1 Introduction

Most studies involving estimation of HIV prevalence have been based mainly on data

obtained from studying a speci�c subset of the population. Speci�cally the estimates

have been derived mainly from sentinel surveillance systems that monitor HIV rates

(often) among pregnant women attending ANCs and high-risk populations such as drug

users, truck drivers, men who have sex with other men and commercial sex workers.

We present the data used for the analysis for the current research. In particular, the

variables and their respective signi�cance to HIV research are explicitly detailed.

2.2 The data

The data used for the study were obtained from the 2010-11 Zimbabwe Demographic

and Health Surveys (2010-11ZDHS). The 2010-11ZDHS is one of a series of interview-

based household surveys undertaken by the Zimbabwe National Statistics Agency (ZIM-

STAT) under the auspices of the Zimbabwe National Household Survey Capability Pro-

gramme (ZNHSCP) and the worldwide DHS programme, see Mutasa (2012). Similar

surveys were also carried out previously in the years 1988, 1994, 1999, and in 2005-06.
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Unlike the previous surveys, the 2010-11ZDHS includes a section on HIV/AIDS. In ad-

dition, the interviews (for the 2010-11ZDHS) were carried out using electronic personal

digital assistants (PDAs) rather than the paper questionnaires for recording the re-

sponses used in previous surveys. The PDA data collection system that was developed

by the DHS project is equipped with blue-tooth technology to enable remote electronic

transfer of �les. The DHSs in general are country-level population-based household

surveys. The data obtained from these surveys are mainly aimed at providing cur-

rent information for monitoring and impact evaluation of key indicators pertaining to

population (socio-economic and demographic), health and nutrition.

Speci�cally, for the 2010-11ZDHS females aged 15 to 49 and males aged 15 to 54

were eligible for interview and collection of blood samples or specimens, using dried

blood spot (DBS), for laboratory testing (which includes HIV testing). The collection

of data for the 2010-11ZDHS's main interview section was done with the use of three

questionnaires; the household, the women's and the men's questionnaires. The ques-

tionnaires were adopted from the DHS project and were aimed at re�ecting country-

speci�c population and health issues. The household questionnaire provides general

household information and was also used to identify household members who were eli-

gible for interview and for collection of blood samples. The women's questionnaire was

used to collect information pertaining to women (fertility, marriage and family plan-

ning) whereas the men's questionnaire was designed to collect information regarding

the men.

For HIV testing, �ve blood samples were collected on a special �lter paper card

using capillary blood from a �nger prick. An �anonymized� antibody testing process was

conducted at the National Microbiology Reference Laboratory (NMRL) in Harare. Bar

coded labels were used to identify the DBS samples to ensure the anonymity and these

were used to track the outcome of the testing procedure and the results. Laboratory

testing of the blood specimens followed a standard laboratory algorithm designed to
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maximize the sensitivity and speci�city of the test results. In particular, the algorithm

uses two di�erent HIV antibody enzyme-linked immunosorbent assays (ELISAs) that

are based on antigens. Discordant samples that were positive in the �rst test were

retested using both ELISAs and discordant samples from the second round of testing

were regarded as �indeterminate�. The �indeterminate� were then subjected to a western

blot con�rmatory test, in which the results are considered �nal. Written consent was

sought from the respondents before the collection of the blood samples, and for the 15−

17 year old (still minors) respondents further consent was also sought from their parents

or responsible adult. Furthermore, consent was sought to store blood samples for future

research. All participants were given information brochures pertaining to HIV/AIDS

and giving details regarding the nearest facility providing voluntary counseling and

testing (VCT). All HIV testing procedures were reviewed and approved by the ethical

review boards of ORC Macro, a US-based company that provides technical assistance

to DHS worldwide, the Centers for Disease Control (CDC) and the Medical Research

Council of Zimbabwe (MRCZ).

For the current research the response variable is HIV status, which is a binary vari-

able since an individual can either be HIV positive or negative. The socio-economic,

demographic and behavioural factors (that were used as the predictors) were selected

as those factors thought to in�uence HIV infection as informed by the proximate de-

terminants conceptual framework by Boerma et al. (2003). The 2010 -11ZDHS sample

was designed to yield a representative sample for the country as a whole, for urban and

rural areas and for each of the ten provinces (Manicaland, Mashonaland East, Mashona-

land West, Mashonaland Central, Midlands, Harare, Masvingo, Matabeleland South,

Matabeleland North and Bulawayo). The same data are used in subsequent chapters

and to avoid repetition of the data description reference is made of the current section

whenever the data are described.
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2.3 The 2010-11ZDHS data

Under the 2010-11ZDHS, a strati�ed two-stage cluster sampling design was used to col-

lect the data using the 2002 population census �gures as the sampling frame. Individuals

were clustered within households which in turn were clustered within enumeration areas

(EAs) and the country's ten administrative provinces were regarded as the strata. For

strati�cation, provinces were split into rural or urban and used as stratifying variables,

whereas for the multistage clustering, the primary sampling units (PSUs) were the EAS

and the secondary sampling units (SSUs) were the households. The sampling design

has 18 strata, 406 PSUs (169 in urban and 237 in rural ares) and SSUs of unequal

size and of di�erent number per PSU . The PSUs per stratum and SSUs within each

PSU were selected using simple random sampling. All individuals aged 15 − 49 for

females and 15− 54 for males who were permanent residents of the selected households

or who stayed in the household the night before the survey were eligible for interview

and voluntary HIV testing.

The overall average household size was 4.1 people. Urban households were slightly

smaller averaging 3.8 people as compared to 4.3 people in the rural areas. The sample

consists of 17 434 respondents of whom 9 591 are female and 7 843 are males. The

response rates were 93% and 86% for females and males respectively.

2.4 The key variables

The 2010-11 ZDHS sample was selected with the use of unequal probability sampling

in order to ensure an adequate number of respondents that can allow for analysis in

key domains of the population. We present the responses to the measured variables

together with their respective frequency and percentage of missing data. Table 2.1

gives the crude HIV test results for the 17 434 individuals that make up the sample.

12 274 (70.40%) of the respondents tested negative, 2 388 (13.70%) of the respondents
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tested positive and 2 772 (15.90%) had missing values for at least one of the measured

variables. The current study focuses on the investigating the e�ects of demographic,

socio-economic and behavioural factors on HIV. We explore each of the factors that

are thought to be related to HIV. The information obtained is useful for understanding

how these factors determine attitudes towards general health services and behaviours

that may in�uence HIV infection.

Table 2.1: Crude summary of the HIV test results for the respondents

Test result Number Percentage (%)
Positive 2 388 13.70
Negative 12 274 70.40
Missing 2 772 15.90

Majority of the Zimbabwean population stay in the rural areas hence 11 144 (63.92%)

of the respondents were drawn from the rural areas whereas 6 290 (36.08%) were drawn

from the urban areas. The level of education attained by the respondents is shown in

Table 2.2. Education level attained is regarded as an important characteristic of the

respondents as it is associated with many factors that have a signi�cant impact on health

seeking behaviour and use of HIV preventive services. There were 597 non-respondents

for this variable representing approximately 3.42% of the sampled individuals.

Table 2.2: Distribution of the respondents by education level

Level Number Percentage (%)
No education 329 1.89
Primary 4 634 26.58
Secondary 10 972 62.93
Higher 902 5.17
Missing 597 3.42

The results in the table show that the majority (approximately 94.96%) of the

respondents have received some form of formal education. The population of Zimbabwe

is characterized by a considerably high literacy level1 as evidenced by the data in Table

1Literacy was measured in terms of ability to read and write. Non-literate: those who cannot read
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2.3.

Table 2.3: Summary of the literacy levels of the respondents

Attribute Number Percentage (%)
Literate 15 977 91.64
Partially literate 1 263 7.24
Non literate 22 0.13
Missing 172 1.00

Table 2.4 gives the number of respondents in each of the �ve-year age groups. The

results in the table indicate that the proportion of respondents in each age group de-

creases with increasing age. Approximately 22.38% of the respondents were in the

15 − 19 years age group and approximately 18.71% were from the 20 − 24 years age

group. Relatively smaller proportions of respondents were drawn from the older age

groups in order to mirror the age structure of the Zimbabwean population (a broad base

and a narrow top similar to most developing countries). Non-respondents constituted

approximately 1.06% of the sampled individuals with regards to the age variable.

Table 2.4: Summary of the �ve year age groups for the respondents

Age group Number Percentages (%)
15 - 19 3 901 22.38
20 - 24 3 262 18.71
25 - 29 2 988 17.14
30 - 34 2 351 13.49
35 - 39 1 919 11.01
40 - 44 1 366 7.84
45 - 49 1 061 6.09
50 - 54 401 2.30
Missing 185 1.06

Table 2.5 gives the results of the marital statuses of the respondents. The data show

that just over half (53.62%) of the respondents were married and those in categories

single/never married, divorced and widowed constituted 32.77%, 5.49% and 3.75% of the

nor write; Partially: those that can read or write part of a sentence; Literate: those that can read or
write full sentence
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respondents. Those with missing data constituted approximately 4.37%. The marital

status of an individual is signi�cant in HIV research as it re�ects the level of how sexually

active the individual is. This is particularly an important factor as sexual contact is

argued to be the key driver of HIV infection especially in sub-Saharan Africa.

Table 2.5: Summary of the marital status for the respondents

Marital Status Number Percentage (%)
Single 5 713 32.77
Married 9 348 53.62
Divorced 957 5.49
Widowed 654 3.75
Missing 762 4.37

The data show that a large proportion of the population has access to information

through reading magazines, listening to the radio and watching television as shown

in Table 2.6. The respondents' access to information measured in terms of how often

one reads magazines, listen to the radio or watch television (TV) was linked to access

to HIV prevention and education material. Of those sampled, approximately 21.51%,

38.3% and 37.22% read a magazine, listen to the radio and watch TV respectively, at

least once a week. The percentages for those who read magazines, listen to the radio or

watch TV less than once a week are respectively 27.88%, 23.4 and 18.26%. Those who

do not have access to information are 27.49% for reading magazine, 29.93% for radio

listening and 36.35% for TV watching. The percentages of missing values are 23.12%

for magazine reading, 8.37% for listening to the radio and 8.17% for watching TV. Low

levels of access to information could mainly be because the majority (63.92%) of the

population reside in the rural areas.

Table 2.6: Summary of access to information for the respondents

Attribute Reading magazine (%) Listening to radio (%) Watching TV (%)
≥ 1 a week 3 750 (21.51) 6 677 (38.30) 6 489 (37.22)
< 1 a week 4 861 (27.88) 4 080 (23.40) 3 183 (18.26)
Not at all 4 793 (27.49) 5 218 (29.93) 6 337 (36.35)
Missing 4 030 (23.12) 1 459 (8.37) 1 425 (8.17)
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Literacy level (as shown in Table 2.3) and access to information combined were used

to ascertain the level of access to mass media health messages. Approximately 45.52%

of the respondents were employed whereas approximately 53.22% were unemployed with

about 1.26% of the respondents having missing values as shown in Table 2.7.

Table 2.7: Summary of the employment status of the respondents

Employed Number Percentage (%)
No 9 279 53.22
Yes 7 936 45.52
Missing 219 1.26

Research has established that socio-economic status of a population is associated

with its health status, Mbirimtengerenji (2007), Rutstein & Kiersten (2004) and Meer

et al. (2003). For the 2010-11 ZDHS, the wealth index2 was used as a measure of

the socio-economic status of the population at household level expressed in the �ve

quintiles shown in Table 2.8. Information on household assets was used to create an

index regarding household wealth. Speci�cally the assets used include ownership of

consumer goods such as television and vehicles as well as dwelling characteristics such

as source of drinking water and sanitation facilities. It is also evident from the data in

the table that the respondents are fairly evenly distributed across the categories of the

wealth index as shown in Table 2.8.

Table 2.8: Summary of the wealth indices of the respondents

Level Number Percentage (%)
Poorest 3 062 17.56
Poorer 2 936 16.84
Middle 3 016 17.30
Richer 3 735 21.42
Richest 3 949 22.65
Missing 737 4.23

2Wealth Index is a composite measure of the household's cumulative living standard based on
a household's ownership of selected assets such as televisions, vehicles as well as water access and
sanitation facilities. It is generated using the principal component analysis and places households into
�ve wealth quintiles
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The percentages range from 16.84% for the poorer to 22.65% for the richest, and

approximately 4.23% had missing values. In the DHS, the wealth index is a composite

measure of a household's cumulative living standard generated using principal compo-

nent analysis as described by Rutstein & Kiersten (2004). The wealth index is used to

identify problems associated with access to health care services, and health inequalities

and increased risk of infection with HIV, as described in Feinstein (1993).

2.5 Basic relationships between the explanatory vari-

ables

The basic relationships between the selected risk factors that are regarded as the ex-

planatory variables are considered. In particular, cross tabulations for the complete

cases of the variables by gender are presented in Table 2.9. For both males and females

the proportions of respondents in each age group declines with increasing age. Over half

of the respondents are married for both males (51.28%) and females (61.01%). A con-

siderably greater proportion of males (43.78%) are single as compared to their female

(24.6%) counterparts whereas a greater proportion of females (6.6%) are widowed than

males (1.14%). There is a higher unemployment rate among the female respondents

(64.97%) than among the male respondents (41.02%). A slightly lower proportion of

females (65.79%) reside in urban areas as compared to males (70.63%). There are no

marked di�erences in literacy and education levels between the females and the males.
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Table 2.9: Cross tabulation of gender by age group

Age group
Female Male

Number Percentage (%) Number Percentage (%)
Age group
15-19 1 739 21.29 1 556 24.61
20-24 1 617 19.79 1 132 17.91
25-29 1 535 18.79 987 15.61
30-34 1 139 13.94 822 13.00
35-39 918 11.24 683 10.80
40-44 657 8.04 481 7.61
45-49 564 6.90 328 5.19
50-54 - - 333 5.27
Marital status
Single 2 009 24.60 2 768 43.78
Married 4 984 61.01 3 242 51.28
Divorced 637 7.80 240 3.80
Widowed 539 6.60 72 1.14
Employment status
Unemployed 5 307 64.97 2 593 41.02
Employed 2 862 35.03 3 729 58.98
Place of residence
Rural 5 374 65.79 4 465 70.63
Urban 2 795 44.21 1 857 29.37
Literacy Level
Non literate 537 6.57 322 5.09
Partially 574 7.03 529 8.37
Literate 7 058 86.40 5 471 86.54
Education Level
No education 192 2.35 79 1.25
Primary 2 434 29.80 1 681 26.59
Secondary 5 214 63.83 4 177 66.07
Tertiary 329 4.03 385 6.09

Table 2.10 displays a marital status by age group contingency table. It is evident

that the 15 − 19 years age group who are single/never married constitute almost 20%

of the respondents whereas a substantial proportion of the married and the divorced

respondents are in the middle age groups, that is 20 − 39. Generally the widowed are

from the older age groups, 40− 50.
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Table 2.10: Contingency table for marital status by age group

Marital status
Single Married Divorced Widowed

Age group Number % Number % Number % Number %
15-19 2 857 19.72 390 2.69 47 0.32 1 0.01
20-24 1 242 8.57 1 320 9.12 169 1.17 18 0.12
25-29 434 2.99 1 843 12.72 212 1.46 33 0.23
30-34 127 0.80 1 551 10.70 186 1.28 97 0.67
35-39 52 0.36 1 312 9.05 116 0.80 121 0.84
40-44 41 0.28 860 5.93 82 0.57 155 1.07
45-49 17 0.12 655 4.52 50 0.35 170 1.17
50-54 7 0.05 295 2.04 15 0.10 16 0.11
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Chapter 3

Estimating HIV prevalence in

Zimbabwe using population-based

survey data

Abstract

Estimates of HIV prevalence computed using data obtained from sampling a subgroup

of the national population may lack the representativeness of all the relevant domains of

the population. These estimates are often computed on the assumption that HIV preva-

lence is uniform across all domains. Use of appropriate statistical methods together

with population based survey data can enhance better estimation of national and sub-

group level HIV prevalence and can provide improved explanations of the variation in

HIV prevalence across the di�erent domains. In the current study we computed design-

consistent estimates of HIV prevalence, and their respective 95% con�dence intervals at

both the national and subgroup levels. In addition, we provided a multivariable survey

logistic regression (which takes account of the complex sampling design) model from a

generalized linear modelling perspective for explaining the variation in HIV prevalence
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using demographic, socio-economic, socio-cultural and behavioural factors. Essentially,

this study borrows from the proximate determinants conceptual framework which pro-

vides guiding principles upon which socio-economic and socio-cultural variables a�ect

HIV prevalence through biological behavioural factors. We utilize the 2010-11 Zim-

babwe Demographic and Health Survey (2010-11 ZDHS) data (which are population

based) to estimate HIV prevalence in di�erent categories of the population and for con-

structing the logistic regression model. It was established that HIV prevalence varies

greatly with age, gender, marital status, place of residence, literacy level, belief on

whether condom use can reduce the risk of contracting HIV and level of recent sexual

activity whereas there was no marked variation in HIV prevalence with social status

(measured using a wealth index), method of contraceptive and an individuals level of

education.

3.1 Introduction

Zimbabwe ranks among the countries that have been worst a�ected by the HIV and

AIDS epidemic in sub-Saharan Africa. Although studies have shown that HIV preva-

lence has been falling since the late 90s, an estimate from the National HIV estimates of

2010, of approximately 15% among the country's sexually active population (15 years

and above) is still considered to be too high. The factors that have contributed to

the observed decline in HIV prevalence since the late 90s include robust prevention

programs, signi�cant behaviour change that has reduced new infections and the suc-

cessful implementation of the Prevention of Mother-to-Child Transmission (PMTCT)

program. Recent studies have also revealed that the relatively high literacy level among

the country's population has allowed rapid and e�ective dissemination of information on

HIV and AIDS awareness and appropriate preventive measures, Gregson et al. (2006)

and Hallett et al. (2006). These have in turn resulted in increased and consistent use
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of condoms, reduction in casual sex, reduction in extramarital relationships and in

commercial sex activities.

Zimbabwe has a wealth of literature on HIV/AIDS surveillance based on a variety

of data sources. These range from Antenatal Clinic (ANC) surveys ran since 1990,

Behavioural data obtained from the 2001/2002 Young Adult Survey (YAS), the 2001

and 2003 Population Services International (PSI) Youth Surveys, the Zimbabwe De-

mographic Health Surveys (1988, 1994, 1999 and 2005/6 with the latest one being

2010-2011), the World Health Organization (WHO) and the UNAIDS. Zimbabwe's

HIV epidemic, just like in other sub-Saharan African countries, is mainly driven by

heterosexual transmission, Champredon et al. (2013). This has mainly been linked to

networks of multiple sexual relations, including concurrent relations in which the virus

is passed on rapidly. The socio-economic and socio-political situations in the country

have also exacerbated the spread of the virus. Despite aggressive awareness programs,

studies have shown that increased commercial sex activities resulting from high unem-

ployment rates have contributed signi�cantly to new cases and the spread of the virus.

Studies have also established that a leading cause of HIV infections in new-born babies

is the MTCT, Wiegert et al. (2014). The 2001 National HIV Sentinel Surveillance Sur-

vey estimated an antenatal nationwide HIV sore-prevalence of 29.5% acquire HIV from

their mothers annually in Zimbabwe, Perez et al. (2004). Maheswaran & Bland (2009)

reported that MTCT before, during and after delivery may result in the acquisition of

HIV for 30− 35% of infants of HIV-infected mothers.

Statistical methods have been widely used to assess the trends, patterns and the

dynamics of HIV/AIDS epidemic. The focus of these methods range, depending on the

objectives embedded in the research, from estimating prevalence, understanding the

pathogenesis of HIV infection, assessing the potency of antiviral therapies and evalua-

tion of treatment e�cacy of viral dynamic models, Anderson et al. (1999). Statistical

models that estimate the magnitude and trajectory of the HIV/AIDS epidemic have
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also been constructed. These models have been used as tools to extract and convey as

much information as possible from available data and provide accurate representation

of both the knowledge (understanding origin and progression) and uncertainty about

the epidemic. The success of the statistical methods rely on the quality of the data

available. Furthermore, the quality and reliability of the estimates calculated from the

available data depends on the validity of the statistical analysis performed. Sampling

and survey (including complex surveys) techniques have been used as bases for accurate

data collection and provide su�cient theory behind consistent analysis of phenomena

such as HIV epidemic. A key role of the discipline of statistics is to provide science with

theory and methods for objective evaluation of data-based evidence and measuring the

strength of that evidence, Royall (2003).

Previous studies involving national HIV prevalence estimation have mainly been

based on data obtained from subgroups of the population. For instance, data obtained

from pregnant women attending ANCs, from blood donors, from truck drivers, from

commercial sex workers and from drug users, see Gregson et al. (2006), Anderson et al.

(1999) and Ramjee & Eleanor (2002). The representativeness of these data to the target

population has been argued to be inadequate, see Pettifor et al. (2005). The current

study investigates how and describes the way in which HIV prevalence varies with

demographic and socio-economic risk factors using population-based DHS data. We

consider the extent to which the association between HIV status is a�ected by a person's

age, gender and marital status, education, place of residence, wealth status, religion and

behaviour towards HIV. In an attempt to enhance the quality of the estimates the study

exploits the strength of statistical methods to provide estimates of HIV prevalence

at the national and domain (subgroup) levels using nationally representative sample

survey data. In addition, from a statistical modelling approach, a multivariable survey

logistic regression model was computed. Essentially, the survey logistic regression is an

extension of the ordinary logistic regression by accounting for the complex sampling
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design.

3.2 Methods

3.2.1 The data

In addition to the data description given in section 2.2, for administration purposes,

Zimbabwe is divided into ten provinces. During the 2002 population census (which was

used as the sampling frame in the 2010-11 ZDHS) each province was subdivided into

districts and each district is made up of wards and the wards consist of a number of

enumeration areas (EAs). For the current research the response variable is HIV status,

a binary variable indicating whether a respondent is HIV positive or negative. The

study investigates the relationship between HIV and socio-economic, socio-cultural, de-

mographic and behavioural factors (risk factors)of the population using a multivariable

survey logistic regression model. In determining the risk factors, the study borrows

from the proximate-determinants conceptual framework as explained in Boerma et al.

(2003). Essentially, the underlying socio-economic, socio-cultural and environmental

determinants operate through the proximate-determinants in order to a�ect an out-

come such as HIV status. These factors include age, gender, marital status, education

level, literacy level, economic status (wealth index), religion, province, method of con-

traceptive used, belief whether condom use works to reduce risk of HIV and recent

sexual activities (measured in how sexually active a respondent has been in the previ-

ous four weeks) and place of residence (whether rural or urban). The sample consists of

17 434 respondents, 14 491 with non-missing values and an additional 2 943 with missing

values for at least one measured variable. The current chapter assumes a complete case

analysis where a list-wise deletion of cases with missing values is taken as explained

in Little & Rubin (1987a). However the assumption of missing values being missing

completely at random (MCAR) may be too restrictive. Future analyses may therefore
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need methods that correct for the impact of the missing values and this is considered

in Chapter 4 and Chapter 5.

3.2.2 Statistical computing

All the analyses were done using survey package by Lumley (2010) in R Team (2013).

In particular, all the design features such as strati�cation, clustering and weighting were

accounted for explicitly using the svydesign function. The function svyglm was used

to describe the model by specifying the predictors and their functional form together

with the link function. For automated model selection and multi-model inference, we

utilized the glmulti package by Calcagno & de Mazancourt (2010), and stepPlr pack-

age by Park & Hastie (2010) respectively. The packages function by considering all

possible explanatory variables and build unique models for the main e�ects and (op-

tionally) the pairwise interactions. A stepwise, forward selection backward elimination

procedure was used to select best predictor variables. This was done by utilizing the

fundamental statistical modelling framework explained in Subsection 3.2.3 below. The

model goodness of �t was done using ResourceSelection package by Lele et al. (2015).

The function hoslem.test was used to perform the Hosmer-Lemeshaw (H-L) test for

goodness of �t as explained by Hosmer & Lemeshow (2000).

3.2.3 Statistical methods

Novel design-consistent national and domain-level estimates of HIV prevalence and their

respective measures of variability were computed using sound statistical techniques for

analyzing complex survey data. In particular, point estimates in the form of propor-

tions, their standard errors and 100 (1− α) % con�dence intervals were computed. The

Taylor series linearization variance estimation method as explained by Wolter (1985),

that takes the design features into account was used.

For illustration of the underlying theory, we considered a complex sampling design
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in which we have a �nite population that can be broken into k = 1, ..., K strata, j =

1, ...,Mk primary sampling units (PSUs) in each stratum and i = 1, ..., Nkj elements in

the (k, j)th PSU. Suppose that the observed data consist of nkj elements from mk PSU

of stratum k, hence the total number of observations is n =
∑K

k=1

∑mk
j=1 nkj. Suppose

also that ykji is a binary indicator for an attribute, for example 1 = HIV positive and 0 =

HIV negative and let M̂ =
∑K

k=1

∑mk
j=1

∑nkj
i=1wkjiykji and N̂ =

∑K
k=1

∑mk
j=1

∑nkj
i=1wkji,

where wkji are the design-consistent weights. Here M̂ is the design-consistent estimator

of the total of all elements with the attributes of interest and N̂ is the estimate of the

population size. A design ratio mean estimator of the population proportion p, denoted

p̂, of all the elements with the attribute of interest is given by

p̂ =

K∑
k=1

mk∑
j=1

nkj∑
i=1

wkjiykji

K∑
k=1

mk∑
j=1

nkj∑
i=1

wkji

=
M̂

N̂
. (3.1)

The variance of the estimate is obtained by applying the Taylor series linearization

as discussed by Wolter (1985) and Woodru� (1971) to the ratio estimator given in

Equation 3.1 as

var (p̂) =
var
(
M̂
)

+ p̂2var
(
N̂
)
− 2× p̂× cov

(
M̂, N̂

)
N̂2

, (3.2)

and the standard error is given by se (p̂) =
√
var (p̂). Thus a 100 (1− α) % con�-

dence interval for p is given by

CI (p̂) = p̂± t1−α/2,dfse (p̂) . (3.3)

where α is the level of signi�cance and t is the critical value of the Student's − t

distribution. For the domain level, the estimator of the population proportion is given
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as

p̂k =

mk∑
j=1

nkj∑
i=1

wjiyji

mk∑
j=1

nkj∑
i=1

wji

. (3.4)

The standard error and the 100 (1− α) % con�dence interval for the estimate given in

Equation 3.4 are obtained in the same way as given in Equations 3.2 and 3.3.

The analysis of categorical variables (common with survey data), that is, the test

for goodness of �t and of independence or of association, under complex design requires

correction of the Pearson χ2 test because the Pearson χ2 test was developed under

the assumption of multinomial or product-multinomial sampling. The modi�cation

needed involves adjusting the Pearson χ2 statistic by a weighted sum of the cell and

marginal design e�ects (deff), see for example Rao & Scott (1981), Holt et al. (1980) and

Bedrick (1983). In particular, Holt et al. (1980) and Rao & Scott (1981) demonstrated,

using simulations that the X2 statistics for testing a null hypothesis of independence in

contingency tables with complex survey data are asymptotically distributed as weighted

sums of independent χ2
1 variables.

Following Holt et al. (1980), for a test of goodness of �t, suppose the �nite population

can be split into k categories with population proportions p1, ..., pk such that
k∑
j=1

pj = 1.

If we de�ne p = (p1, ..., pk−1)
′
, then the null hypothesis to be tested is

H0 : p=p0 = (p1, ..., pk−1)
′
.

The observed data produce unbiased estimates p̂1, ..., p̂k of the population proportions,

thus, under a true H0, the ordinary χ
2 statistic is given as

X
2

= n
k∑
j=1

(p̂j − p0j)2

p0j
.

If P0 = diag (p0) − p0p
′
0 denotes the covariance matrix of p̂ under simple random
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sampling and assuming H0 true, then an alternative form of X
2
is given by

X
2

= n (p̂−p0)
′
P−10 (p̂−p0) .

However, under a complex sampling design, such as the one used to obtain the data

for the current research, that typically involves strati�cation and multistage sampling,

the independence of observations assumption becomes inappropriate. Therefore, it is

assumed that
√
n (p̂−p)

L−→ N (0, V) , (3.5)

where V is some positive-de�nite covariance matrix as n → ∞, and L−→ denotes con-

vergence to a multivariate normal distribution. Under the assumption in 3.5,

X
2 ∼

k−1∑
i=1

diZ
2
i ,

where Z1, ..., Zk−1 are asymptotically independent standard normal random variables

and d1, ..., dk−1 are the eigenvalues of D = P−10 V. Thus by Holt et al. (1980), the asymp-

totic distribution of X
2
is a linear combination of χ2

1 random variables and is exactly

χ2
k−1 under a multinomial case when all the d′is are equal to one.

For test for independence in contingency tables with complex survey data, suppose

that the �nite population can be cross-tabulated into r rows and c columns and let

p = (p11, ..., prc)
′
denotes a vector of cell probabilities where

r∑
i=1

c∑
j=1

pij = 1. Suppose also

that p̂ = (p̂11, ..., p̂rc) and that

√
n (p̂−p)

L−→ N (0, V) .

If we de�ne the vectors of the marginal probabilities as pr =
(
p1+, ..., p(r−1)+

)′
, where

pi+ =
c∑
j=1

pij and pc =
(
p+1, ..., p+(c−1)

)′
, where p+j =

r∑
i=1

pij, then the null hypothesis
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of independence of rows and columns is given by

H0 : pij = pi+p+j (i = 1, ..., r; j = 1, ..., c) .

According to Holt et al. (1980), the typical tests considered are of the form

hij (p̂) = p̂ij − p̂i+p̂+j (i = 1, ..., r − 1; j = 1, ..., c− 1) ,

Suppose that h (p) =
(
h11 (p) , ..., h(r−1)(c−1) (p)

)′
and letH (p) denotes the (r − 1) (c− 1)

matrix of partial derivatives H (p) = ∂h (p)/∂p, then under assumption 3.5

√
n (h (p̂)− (p−p0))

L−→ (0, HVH) .

Under a complex sampling scheme the asymptotic chi-squared statistic is given by

X
2

I =

(r−1)(c−1)∑
i=1

δiZ
2
i ,

where the Z ′is are the asymptotically independent standard normal random variables

under H0 and δ
′
is are the eigenvalues of

DI =
(
HP0H

′
)−1 (

HVH
′
)
.

A measure of the relative precision lost or gained by the use of speci�c complex

design to an SRS is provided by the design e�ect denoted deff. The deffs are used

mainly in computing con�dence intervals, desired sample sizes and test statistics that

incorporate the estimates of standard errors corrected for the complex sampling design,

Heeringa et al. (2010). As mentioned in Chapter 1 above, analytic statistics such as

the Rao-Scott Pearson χ2 and the likelihood ratio χ2 also rely on the design e�ect

to re�ect the e�ect of the complex sampling design compared to the SRS, see Rao &
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Scott (1981) and Holt et al. (1980). A deff value greater than 1 indicates a gain in

precision whereas a value less than 1 is indicative of loss in precision. Strati�cation

tends to increase precision and clustering tends to decrease it, hence the overall deff

depends on whether more precision is lost by clustering than gained by strati�cation,

Lohr (2010), Bedrick (1983), Rao & Scott (1981) and Heeringa et al. (2010).

A survey logistic regression model for explaining the variation in HIV accounting

for the underlying population structure, via a complex sampling design, from a GLM

perspective was computed. A logistic regression model di�ers from an ordinary logistic

regression in that it (the survey logistic) takes account of the complex sampling design.

Essentially GLMs, as �rst introduced by Nelder & Wedderburn (1972) and further

modi�ed by McCullagh & Nelder (1989), are a �exible and uni�ed class of models that

are applicable to diverse types of response variables found in both normal and non-

normal data including binary data. We discuss brie�y the underlying theory behind

logistic regression modelling from a GLM perspective.

As given in McCullagh & Nelder (1989) and Dobson & Barnett (2008), a GLM

consists of three components; the random component, the systematic component and

the link function. Essentially, the random component is the response variable and its

probability distribution, that has to be a member of the exponential family of distribu-

tions. The systematic component represents the predictors whereas the link function

links the random and the systematic components. In particular, a distribution for a

response y belongs to the exponential family if

fY (y; θ, φ) = exp

{
yθ − b (θ)

a (φ)
− c (y, φ)

}

where θ is called the natural parameter, φ is called the dispersion parameter and a (.) ,

b (.) and c (.) are known functions.

Speci�cally, let y, a vector of observations on the response variable having n ele-

ments, be a realization of a random vector variable Y whose elements are independent
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and normally distributed with means µ. Under the general linear modelling framework,

y = Xβ+e (3.6)

where:

X is an n× p design matrix;

β is a p× 1 vector of parameters to be estimated from the data and;

the e′is are iid random variables with ei ∼ N (0, σ2) for i = 1, ..., n.

The systematic part of the model gives a speci�cation for the vector µ in terms of

a set of unknown parameters given in matrix notation as

E(Y) =µ = XTβ. (3.7)

Under a generalized linear modelling approach the normality assumption is relaxed

in order to include all models, such the binomial, Poisson and Gamma that belong to

the exponential family. Instead of modelling µ = E(Y ) directly as in Equation 3.7,

some function g(µ) is modelled as

g(µ) = η = XTβ. (3.8)

The function g(.) is called the link function, and this can be any monotonic di�er-

entiable function as described in Dobson & Barnett (2008) and McCullagh & Nelder

(1989). The maximum likelihood estimates of the parameters β in the linear predictor

η are obtained using the iterative least squares method utilizing numerical procedures

such as the Newton-Raphson and the Fisher's scoring method. The maximum like-

lihood estimator, β̂, of the parameter vector β is asymptotically multivariate normal

with mean β and covariance matrix I−1β , that is, β̂ ∼ N
(
β, I−1β

)
, where Iβ is the Fisher

information matrix, see McCullagh & Nelder (1989).

The logistic regression is used when the response variable follows a binomial distri-
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bution. Let Yi be a binary response variable assuming values 0 and 1 satisfying the

binomial conditions, that is Yi ∼ Bin (ni , πi) , such that, (for instance)

yi =


1 if subject has attribute of interest, e.g the ithindividual is HIV positive

0 if subject has no attribute of interest, e.g the ithindividual is HIV negative

It can be shown that the binomial distribution belongs to the exponential family

of distributions, see McCullagh & Nelder (1989). Suppose that the probabilities πi

are dependent on a vector of observed covariates xi that are related to Yi and can

provide additional information for predicting Yi. From a modelling point of view, the

fundamental theory behind logistic regression seeks to construct a formal model thought

to describe the variation in the probabilities πi as a linear function of the covariates.

That is

π(xi) = g−1 (η) = g−1
(
x

′

iβ
)
, (3.9)

However, there are potential problems with modelling probabilities using Equation

3.9, see Hosmer & Lemeshow (2000) and McCullagh & Nelder (1989): (a) linear models

are unbounded and the right-hand side of Equation 3.9 can take the probabilities outside

the unit interval; (b) in many practical applications, diminishing returns are observed,

that is, changing πi by the same amount requires a bigger change in xi when πi is already

large (or small) than when πi is close to 1/2 and linear models cannot accommodate

that and (c) the assumptions of mean zero and constant variance of the errors that

are made under linear models of the form of Equation 3.9 are not appropriate when

the response variable is binary. As a remedy, a logit transformation can be performed.
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Then the logistic regression can be expressed in terms of π (xi) as

logit(π(xi)) = log

(
π(xi)

1− π(xi)

)
= x

′

iβ = β0 + β1x1 + · · ·+ βpxp. (3.10)

The logit is nonlinear in π(xi) but presumed to be linear in the parameters, which

may be continuous and may range from −∞ to +∞, thus removing the �oor limits,

Hosmer & Lemeshow (2000). A logistic regression model is a GLM in that, the random

component Yi has a binomial distribution, having predictors xi and a logit link.

Equivalently, Equation 3.10 can be expressed as the odds of a positive response as

π(xi)

1− π(xi)
= exp{x′

iβ},

or as the probability of a positive response as

π(xi) = g−1 (g (π(xi))) =
exp{x′

iβ}
1 + exp{x′

iβ}
. (3.11)

Under a complex sampling design however, a pseudo-maximum likelihood method

for parameter estimation that take the structure of the underlying population, via the

complex sampling design, into account is used. For a binary response variable satisfying

the binomial conditions, the pseudo-maximum likelihood, as described by Breslow &

Holubkov (1997), is given by

K∏
k=1

mk∏
j=1

nki∏
i=1

π (xkji)
wkjiykji [1− π (xkji)]

wkji(1−ykji) .

Then the approximate log-likelihood function is given by

K∑
k=1

mk∑
j=1

nkj∑
i=1

[wkji × ykji]× ln [π (xkji)] + [wkji × (1− ykji)]× ln [1− π (xkji)] .

Wald tests were employed to test the null hypothesis that a single coe�cient is

equal to zero, that is H0 : βj = 0 and con�dence intervals are further used to provide
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information on the potential magnitude and uncertainty associated with the estimated

e�ects of individual predictor variables, Heeringa et al. (2010). For interval estimation,

estimated design-based con�dence intervals for the logistic parameter can be given as

CI1−α (βj) = β̂j ± tdf,1−α/2.se
(
β̂j

)
(3.12)

Alternatively, the signi�cance of predictors can be carried out directly for the β̂′js

on the log-odds scale. That is, in a logistic regression model with a single predictor, x1,

an estimate of the odds ratio (OR) corresponding to a unit increase in the value of x1

can be obtained by `exponentiating' the estimated logistic regression coe�cient giving

ψ̂ = exp
(
β̂1

)
. In a multivariable logistic regression model, ψ̂j|β̂k 6=j = exp

(
β̂j

)
. This

is an adjusted OR representing the multiplicative impact of a one-unit increase in the

predictor variable xj on the odds of the outcome variable being equal to one, controlling

for the e�ects of the other variables. Con�dence intervals can also be obtained for the

adjusted ORs as

CI (ψj) = exp
(
β̂j ± tdf,1−α/2.se

(
β̂j

))
Goodness of �t test were performed based on the Hosmer-Lemeshow (H-L) test

proposed by Hosmer & Lemeshow (2000). Under the H-L test suppose that J = n,

where n corresponds to the n values of the estimated probabilities arranged in ascending

order, the H-L test is based on grouping the units into k = 1, ..., 10 deciles called `deciles

of risk' using the estimated probabilities πk. A H-L statistic is then given as

Ĉ =

g∑
k=1

(ok − nkπk)2

n′kπk (1− πk)
, (3.13)

where n′k is the total number of units in the k
th group, ck is the number of covariate

patterns in the kth decile and ok =
∑ck

j=1 yj is the number of responses among the ck

covariate pattern and
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πk =

ck∑
j=1

mjπj
n′k

is the average estimated probability. With the use of simulations, Hosmer & Lemeshow

(1980) demonstrated that Ĉ is well approximately χ2
(g−2). For goodness-of-�t under com-

plex sampling, the data are divided into weighted deciles of risk which have a weighted

one-tenth of the n observations in the data-set in each group. That is n1 observations

with the smallest predicted probabilities are in the �rst group where n1 is chosen so that∑n1

i=1w1i/
∑n

i=1wi ' 0.1; n2 observations with the next smallest predicted probabilities

are in the second group where n2 is chosen so that
∑n2

i=1w2i/
∑n

i=1wi = 0.1; until the

tenth group is formed with n10 observations with the largest probabilities where n10 is

chosen so that
∑n10

i=1w10i/
∑n

i=1wi = 0.1. The wki is the sample weight for the ith ob-

servation in the kth (weighted) decile of risk. For the kth decile, the weighted number

of observations is ok =
∑nk

i=1wkiyki and the weighted number of expected outcomes is

ek =
∑nk

i=1wkiπ̂ki. The H-L test tests H0 : logistic regression model is adequate for the

data versus H1 : the logistic regression model is not adequate. A Wald test statistic

for complex samples is based on Ĉd = (o− e)′S−1d (o− e) where o is the vector of

weighted number of outcomes, e is the vector of the weighted expected outcomes and

Sd is a design consistent estimator for the covariance matrix of o − e. The Wald test

rejects the �t of the model when Ĉd > χ2
g−2.

3.3 Results

This section presents the design-consistent descriptive estimates of HIV prevalence and

their respective 95% con�dence intervals at both national and domain levels. In addi-

tion, for analytic purposes a multivariable survey logistic regression model for HIV on

the demographic, socio-economic, socio-cultural and behavioural factors was computed.

Parameter estimates were expressed on the odds ratio (OR) scale in order to facilitate
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interpretation of the logistic regression model. In particular, both the adjusted (for

the e�ects of the other covariates in the model) and crude ORs are displayed together

with their respective 95% con�dence intervals. It is worthy pointing out that the crude

descriptive estimates presented here di�er slightly from those reported in the 2010-11

ZDHS report due to a number of factors. These factors may include the way in which

the complex sampling design features are accounted for, the method used to handle

missing data and the statistical software used.

3.3.1 Descriptive analysis

The estimated overall design-consistent HIV prevalence in the entire population was

found to be p̂ = 15.7%, 95% CI = 14.7 − 16.0%. The prevalence estimate is close

to the p̂ = 15.2, 95% CI = 14.3 − 16.1% reported in the 2010-11 ZDHS report.

The 95% CIs for the two estimates overlap showing that the di�erence is not sta-

tistically signi�cant. HIV prevalence is known to vary considerably across popula-

tion subgroups, hence in order to enhance the estimation and bring out the vari-

ation, we computed domain level estimates of HIV prevalence. The domains con-

sidered were based on the risk factors, as informed by the proximate determinant

conceptual framework as explained in Boerma et al. (2003), such as gender, mari-

tal status and age that form the natural subgroups of the population. The crude

design-consistent estimates for the di�erent prominent subgroups of the population

are given in Table 3.1. Speci�cally, for gender the results show that the females

have a higher HIV prevalence rate (p̂ = 17.7%, 95% CI = 16.6− 18.7%) than the males

(p̂ = 12.8%, 95% CI = 11.8− 13.7%) .
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Table 3.1: Crude design-based subgroup estimates of HIV prevalence along with their
respective (crude) ORs and 95% con�dence intervals

Risk Factor Level n % Est3 (%) 95% CI OR 95% CI
Gender: Female 8 169 56.4 17.7 (16.6 , 18.7) Ref

Male 6 322 43.6 12.8 (11.8 , 13.7) 0.690 (0.624 , 0.763)
Marital
status:

Single 4 777 33.0 5.6 (5.2 , 6.6) Ref
Married 8226 56.8 16.7 (15.8 , 17.7) 3.224 (2.796 , 3.718)
Divorced 877 6.1 28.8 (25.8 , 32.3) 6.511 (5.320 , 7.967)
Widowed 611 4.2 54.4 (51.3 , 60.0) 19.940 (16.038 , 24.791)

Age group: 15− 19 3 295 22.7 4.0 (3.2 , 4.7) Ref
20− 24 2 749 19.0 7.9 (6.8 , 8.9) 2.109 (1.664 , 2.673)
25− 29 2 522 17.4 15.8 (14.2 , 17.3) 4.360 (3.495 , 5.439)
30− 34 1 961 13.5 23.2 (21.3 , 25.2) 7.159 (5.756 , 8.902)
35− 39 1 601 11.0 26.9 (24.5 , 29.2) 8.556 (6.848 , 10.690)
40− 44 1 138 7.9 25.5 (22.8 , 28.3) 7.865 (6.210 , 9.959)
45− 49 892 6.2 25.8 (22.7 , 28.8) 8.427 (6.579 , 10.793)
50− 54 333 2.3 18.7 (14.3 , 23.1) 5.572 (3.919 , 7.921)

Place of
residence:

Rural 9 839 67.9 14.7 (13.9 , 15.4) Ref
Urban 4 652 32.1 16.8 (15.7 , 18.0) 1.184 (1.069 , 1.312)

Employment
status:

Unemployed 7 900 54.5 13.5 (12.8 , 14.3) Ref
Employed 6 591 45.5 17.3 (16.3 , 18.3) 1.350 (1.225 , 1.487)

Literacy1 Non-literate 859 5.9 13.9 (11.5 , 16.2) Ref
Partially 1 103 7.6 19.8 (17.2 , 22.3) 1.489 (1.153 , 1.924)
Literate 12 529 86.5 15.1 (14.4 , 15.7) 1.083 (0.884 , 1.326)

W/index2 Poorest 2 811 19.4 15.8 (14.3 , 17.2) Ref
Poorer 2 652 18.3 14.6 (13.2 , 16.1) 0.930 (0.795 , 1.086)
Middle 2 742 18.9 16.3 (14.9 , 17.9) 1.075 (0.922 , 1.254)
Richer 3 134 21.6 16.0 (14.6 , 17.4) 1.055 (0.911 , 1.223)
Richest 3 152 21.8 13.9 (12.6 , 15.2) 0.859 (0.738 , 1.001)

Education
level

No education 271 1.9 17.0 (12.3 , 21.7) Ref
Primary 4 115 28.4 17.9 (16.4 , 19.0) 1.053 (0.745 , 1.488)
Secondary 9 391 64.8 15.4 (14.6 , 16.3) 0.891 (0.634 , 1.252)
Higher 714 4.9 12.6 (9.9 , 15.3) 0.707 (0.468 , 1.069)

Contraceptive No method 8 076 56.1 14.4 (13.6 , 15.3) Ref
Traditional 107 0.7 21.0 (11.9 , 30.0) 1.571 (0.909 , 2.714)
Modern 6 308 43.2 16.7 (16.6 , 18.7) 1.269 (1.146 , 1.406)

Religion Apostolic 4 732 32.7 15.7 (14.4 , 16.9) Ref
Muslim 70 0.5 24.4 (14.5 , 34.4) 1.748 (0.997 , 3.046)
None 2 035 14.0 17.2 (15.4 , 19.1) 1.158 (0.993 , 1.351)
Other Christians 7 333 50.6 15.6 (14.7 , 16.5) 1.005 (0.900 , 1.121)
Traditional 321 2.2 16.6 (12.3 , 20.9) 1.073 (0.781 , 1.476)

Believe
condom
works

Yes 12 190 84.1 16.8 (16.8 , 17.6) Ref
No 1 877 13.0 12.3 (10.7 , 13.9) 0.696 (0.597 , 0.813)
Don't know 424 2.9 8.2 3.5 , 11.3 0.442 (0.294 , 0.666)

Recent sex
activities

Never had sex 2 872 19.8 4.3 (3.5 , 5.1) Ref
Not currently active 3 680 25.4 22.2 (20.7 , 23.7) 6.397 (5.211 , 7.851)
Postpartum 519 3.6 19.1 (15.5 , 22.7) 5.268 (3.901 , 7.112)
Currently active 7 420 51.2 17.0 (16.0 , 18.0) 4.584 (3.753 , 5.598)

1Literacy was measured in terms of ability to read and write. Non-literate: those who cannot read nor write; Partially:
those who can read or write part of a sentence; Literate: those who can read or write full sentence
2 W/index is a composite measure of the household's cumulative living standard based on a household's ownership of
selected assets such as televisions, vehicles as well as water access and sanitation facilities. It is generated using the
principal component analysis and places households into �ve wealth quintiles
3 Est is the HIV prevalence as a percentage
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In order to complement the descriptive statistics in Table 3.1, the HIV prevalence

for the di�erent domains in selected factors were presented graphically. Figures 3.1,

3.2 and 3.3 show the variation of HIV prevalence across di�erent categories of mar-

ital status, �ve-year age-groups and across the administrative provinces of the coun-

try respectively. The results show that there are substantial di�erences in the HIV

prevalence rates between the singles/never married, the married, the divorced and the

widowed. The highest HIV prevalence (by marital status) was among the widowed,

(p̂ = 54.4%, 95% CI = 51.3− 60.0%) and the lowest was among the single/never mar-

ried individuals (p̂ = 5.6%, 95% CI = 5.2− 6.6%) . The results also show that, for �ve-

year age-group variable the highest prevalence is among the 35 − 39 years age-group

(p̂ = 26.9%, 95% CI = 24.5− 29.2%) and the lowest prevalence is among the 15 − 19

years age-group (p̂ = 4.0%, 95% CI = 3.2− 4.7%) .

Other notable variations can be observed for the place of residence variable where

HIV prevalence is signi�cantly higher among the urban dwellers (p̂ = 16.8%, 95% CI =

15.7−18.0%) than among the rural residents (p̂ = 14.7%, 95% CI = 13.9− 15.4%) . Re-

garding the recent sexual activity variable, those that never had sex have a signi�cantly

lower HIV prevalence (p̂ = 4.3%, 95% CI = 3.5− 5.1%) than the other categories, and

those that were not sexually active in the previous month have the highest prevalence

(p̂ = 22.2%, 95% CI = 20.7− 23.7%) .
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Figure 3.1: HIV prevalence across the di�erent categories of marital status
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Figure 3.2: HIV prevalence across the di�erent categories of �ve-year age-groups
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Figure 3.3: HIV prevalence in the di�erent administrative provinces of the country

For the variation across provinces as shown in Figure 3.3, Matabeleland South
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province has the highest (p̂ = 21.1%, 95% CI = 19.5− 24.0%) whereas Mashonaland

Central province has the lowest (p̂ = 13.8%, 95% CI = 12.5− 15.8%) . Matabeleland

North province (p̂ = 18.5%, 95% CI = 14.8 − 22.2%) and Bulawayo (p̂ = 18.8%,

95% CI = 15.9 − 21.8%) also have relatively higher HIV prevalence than the rest of

the provinces whose HIV prevalence range between p̂ = 13.6% to p̂ = 15.6%. Table

3.1 also displays crude (unadjusted) ORs for each risk factor to quantify the odds of

HIV for each category relative to their respective reference levels. For instance, for

the factor gender, relative to the females, the results show that the males have higher

odds of HIV (OR = 0.69, 95% CI = 0.624− 0.763) . For the marital status factor, with

reference to those who are single/never married, the results show that the odds of HIV

are higher (OR = 3.224, 95% CI = 2.796− 3.718) for the married individuals, over six

times higher for the divorced individuals (OR = 6.511, 95% CI = 3.495− 5.439) and

almost twenty times higher (OR = 19.94, 95% CI = 16.038 − 24.791) for widowed

individuals. All the other odds ratios in Table 3.1 can be interpreted in a similar way.

3.3.2 Logistic regression analysis

This section presents details of how the logistic regression analysis was used to con-

struct a model for HIV prevalence. For the preliminaries we considered the relationship

between HIV prevalence and age as a continuous variable. Figure 3.4 gives a plot of

the average HIV prevalence for a given age against the respective age. It is evident,

from the plot that there is generally a positive linear relationship with some curvature

among the old respondents.
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Figure 3.4: The average HIV prevalence per a given age versus age

Bivariate design-based tests for association between each of the categorical predictor

variables and the response variable were also performed. In particular the Rao-Scott

test by Rao & Scott (1981) that takes account of the design-induced distortion of the

asymptotic distribution of the Pearson χ2 test as explained in Subsection 3.2.3 above

and the likelihood ratio statistics was used. Table 3.2 displays the test results. The

results indicate that the factors religion and wealth index are not signi�cantly associated

with HIV whereas the rest of the factors are signi�cantly associated based on the p-

values. The non-signi�cant variables were not dropped completely for the computations

of the multivariable survey logistic regression model, however even after being included

they were found to also contribute insigni�cantly in explaining the variation in HIV.
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Table 3.2: Rao-Scott (F − based) test statistics and p-values, for association of indi-
vidual predictor variables and HIV status

Variables Levels n % HIV pos. F value p-value
Gender Female 8 169 56.4 1 521 82.92 < 0.001

Male 6 322 43.6 867
Marital status Single 4 777 33.0 308 326.17 < 0.001

Married 8 226 56.8 1 465
Divorced 877 6.1 277
Widowed 611 4.2 338

Age Group 15− 19 3 295 22.7 140 109.06 < 0.001
20− 24 2 749 19.0 252
25− 29 2 522 17.4 443
30− 34 1 961 13.5 490
35− 39 1 601 11.0 444
40− 44 1 138 7.9 310
45− 49 892 6.2 244
50− 54 333 2.3 65

Employment Yes 6 591 45.5 1 216 30.27 < 0.001
No 7 900 54.5 1 172

Place of Residence Rural 9 839 67.9 1 551 5.29 0.0220
Urban 4 652 32.1 837

Education No Education 271 1.9 48 5.80 0.001
Primary 4 115 28.4 774
Secondary 9 391 64.8 1 475
Higher 714 4.9 91

Wealth Index Poorest 2 811 19.4 483 1.41 0.230
Poorer 2 652 18.3 430
Middle 2 742 18.9 475
Richer 3 134 21.6 549
Richest 3 152 21.8 451

Literacy Non-literate 859 5.9 133 7.29 0.0008
Partially 1 103 7.6 229
Literate 12 529 86.5 2 026

Religion Apostolic 4 732 32.7 754 1.955 0.099
Muslim 70 0.5 20
Non 2 035 14.0 356
Other Christians 7 333 50.6 1 197
Traditional 321 2.2 61

Contraceptive Non 8 076 56.1 1 246 10.818 < 0.001
Traditional 107 0.7 19
Modern 6 308 43.2 1 155

Believe condom works Yes 12 190 84.1 2 146 17.551 < 0.001
No 1 877 13.0 228
Don't know 424 2.9 37

Recent Sex Activities Never had sex 2 872 19.8 128 121.445 < 0.001
Not active last month 3 680 25.4 846
Postpartum 519 3.6 106
Currently active 7 420 51.2 1 329
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It was established that HIV prevalence varies considerably with gender (that is,

a gender e�ect) for each age group as displayed in Figure 3.5. The plot shows that

although HIV prevalence generally increases with age for both males and females, it

rises faster in females than in males among the lower age groups, however the prevalence

becomes higher among males than among females from the 40− 44 year age group and

older. This implies that the risk of HIV varies by gender across di�erent age groups

necessitating the inclusion of a gender by age group interaction e�ect.
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Figure 3.5: HIV prevalence estimates and their respective 95% con�dence intervals by
age group for males and females separately

From a logistic regression modelling perspective, the results show that HIV preva-

lence is dependent (conditionally) on gender, age, marital status, literacy level, place of

residence, recent sexual activities, one's opinion on whether condom use helps reduce

risk of contracting HIV and a gender by age interaction e�ect (estimates of the model
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not shown here). The H-L goodness of �t statistic Ĉ = 15.157 on g − 2 = 8 d.f giving

a p-value of 0.141 showing no evidence of lack of �t.

In order to facilitate the interpretation of the results of the computed model, we

expressed the parameter estimates as adjusted (to control for the e�ect of other factors

in the model) ORs and assess the e�ects of confounding. It is important to note that

in the presence of confounding among the variables, the adjusted ORs take precedence.

We presented the unadjusted ORs for the factors included in the �nal model. The

results are displayed in Table 3.3. For the interpretation of the ORs we assume the

reference cell method as explained by Breslow & Holubkov (1997), Rao & Scott (1981)

and Agresti (2007).
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Table 3.3: Estimated adjusted ORs and crude ORs together with their respective 95%
con�dence intervals for the parameter estimates for the logistic regression model

Parameter Adjusted
OR

95% CI Crude OR 95% CI

Intercept 0.024 (0.016 , 0.036)
Gender

Male 0.992 (0.665 , 1.503) 0.696 (0.624 , 0.763)
Age Group

20− 24 1.944 (1.386 , 2.726) 2.109 (1.664 , 2.673)
25− 29 3.454 (2.487 , 4.797) 4.360 (3.495 , 5.439)
30− 34 5.211 (3.739 , 7.262) 7.159 (5.756 , 8.902)
35− 39 5.098 (3.626 , 7.166) 8.556 (6.848 , 10.690)
40− 44 3.041 (2.082 , 4.440) 7.865 (6.210 , 9.959)
45− 49 2.914 (1.939 , 4.379) 8.427 (6.579 , 10.793)
50− 54 3.349 (2.050 , 5.470) 5.572 (3.919 , 7.921)

Marital Status
Married 0.922 (0.727 , 1.169) 3.224 (2.796 , 3.718)
Divorced 1.801 (1.374 , 2.359) 6.511 (5.320 , 7.967)
Widowed 4.484 (3.315 , 6.067) 19.940 (16.038 , 24.791)

Literacy
Partially 1.536 (1.145 , 2.061) 1.489 (1.153 , 1.924)
Literate 1.240 (0.982 , 1.567) 1.083 (0.884 , 1.326)

Place of Residence
Urban 1.225 (1.087 , 1.381) 1.184 (1.069 , 1.312)

Recent Sex activities
Not active last month 2.112 (1.651 , 2.701) 6.397 (5.211 , 7.851)
Postpartum 1.707 (1.200 , 2.428) 5.268 (3.901 , 7.112)
Currently active 1.826 (1.405 , 2.373) 4.584 (3.753 , 5.598)

Believe condom works
No 0.881 (0.747 , 1.038) 0.696 (0.597 , 0.813)
Don't know 0.506 (0.350 , 0.732) 0.442 (0.294 , 0.666)

Age group*Gender
20− 24 : Male 0.462 (0.263 , 0.797)
25− 29 : Male 0.484 (0.295 , 0.792)
30− 34 : Male 0.550 (0.339 , 0.894)
35− 39 : Male 0.919 (0.565 , 1.496)
40− 44 : Male 1.726 (1.019 , 2.922)
45− 49 : Male 2.289 (1.305 , 4.015)

The results in Table 3.3 show that the odds of HIV are almost equal (OR = 0.992,
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95% CI = 0.665 − 1.503) for males and females, holding the e�ects of the other vari-

ables in the model constant. With reference to the 15 − 19 year old respondents,

the results show that the odds of HIV increase with age, peaking among the 30 − 34

year old respondents (OR = 5.211, 95% CI = 3.739 − 7.262) before falling among the

`older' respondents, controlling for the other variables in the model. Relative to the sin-

gle/never married, the results show that the odds of HIV are slightly lower (OR = 0.922,

95% CI = 0.727 − 1.169) for the married individuals, almost twice (OR = 1.801,

95% CI = 1.374 − 2.359) for the divorced and over four times (OR = 4.484, 95%

CI = 3.315− 6.067) for the widowed controlling for the e�ect of the other variables in

the model.

With reference to the non-literate, the odds for HIV for the partially literate are

approximately one and a half (OR = 1.536, 95% CI = 1.145−2.061) higher and slightly

higher for the literate (OR = 1.240, 95% CI = 0.982− 1.567) controlling for the e�ect

of the other variables in the model. In relation to those respondents who have never

had sex, those who were not sexually active (for reasons other than postpartum) in the

previous four weeks have odds over twice higher (OR = 2.112, 95% CI = 1.651−2.701),

whereas those who were not sexually active (for postpartum reasons) in the previous

four weeks have higher odds of HIV (OR = 1.707, 95% CI = 1.200 − 2.428) and

those who were currently sexually active have odds of HIV almost twice higher (OR =

1.826,95% CI = 1.405− 2.373). Regarding individuals' opinion on whether condom use

reduces the risk of contracting HIV, the odds of being HIV are less (OR = 0.575, 95%

CI = 0.386− 0.855) among those who say they do not know and the odds are slightly

higher (OR = 1.136, 95% CI = 0.964− 1.338) among those who say no than those who

answered yes, holding other variables in the model constant.

The �ve-year age-group by gender interaction (e�ect modi�cation) shows the addi-

tional e�ect of age on HIV prevalence for males in relation to females. The results show

that among the lower age-groups (20 − 24, 25 − 29 and 30 − 34) age has a increasing
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e�ect on the odds of HIV for females as compared to the males whereas among the older

age-groups, age has an increasing e�ect on the odds of HIV for males as compared to

the females. This implies that it is more likely for a young female person to be HIV

positive as compared to a young male person.

3.4 Discussion

There are a variety of possible reasons for the observed variations in HIV prevalence

across various categories of the risk factors of the respondents. These are mainly driven

by biological, socio-economic and socio-cultural factors. It is important to note that

sexual contact remains the key driver of HIV transmission among the sexually active

population in sub-Saharan Africa. In particular the higher risk of HIV among the

females as compared to the males could be explained by a number of factors that

make females more vulnerable. These include di�erent rates of sexual interaction and

relationships between males and females brought about by socio-cultural practices such

as polygamy that give rise to di�ering susceptible rates to HIV. In addition, socio-

economic issues such as economic dependence of women on men, that is still highly

prevalent in most sub-Saharan African countries, leaves women with limited negotiating

power with regards to sexual matters putting them at more risk. It is worthy noting

that during penile-vaginal intercourse, a woman's body is more susceptible to HIV

infection than a man's. There is increased surface area of the body parts of a woman

where HIV transmission can occur than on a man.

The relatively low prevalence among the single/never married individuals possibly

points to the fact that HIV transmission is mainly driven by sexual contact, and as such

most of those who are single/never married are most likely not yet sexually active. On

the other hand the relatively high prevalence among the widowed may be a indication

that the partner lost died due to AIDS-related causes. Similar to the variation across
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marital status classes, the relatively low prevalence among the 15 − 19 is perhaps due

to the fact that these are mainly young, possibly of school going age and relatively less

sexually active. On the contrary the middle ages, 25−40 year old are often characterized

by high sexual activities hence a possible explanation for the relatively high prevalence.

The observed urban-rural variation can be attributed to the fact that majority

of urban residents are middle aged and are synonymous with relatively high sexual

activities. In addition, commercial sex activities are also prominent in urban areas

than in rural areas, argued as one of the key contributors of new HIV infections. The

lack of sexual activity reported among those with high prevalence is possibly linked to

their HIV status. Studies have shown that although reaction to the discovery of one's

seropositivity vary, there is a general decline in sexual activity. The signi�cantly high

HIV prevalence in Matabeleland South province is possibly due to the border towns

in the province, such as Beitbridge and Plumtree that are synonymous with increased

commercial sex activities.

The additional e�ect of age on the gender e�ect on HIV prevalence that sees the

young females being at higher risk of HIV than their young male counterparts agrees

well with a general belief that young females engage in sexual activities with older

males. From an epidemiological perspective, the variable gender is considered an e�ect

modi�er on age as a risk factor in explaining the variation in HIV. There is generally a

similar trend in the variation in HIV prevalence across di�erent categories of the risk

factors between the adjusted and the unadjusted odds ratios except in the magnitude

of the risk across the categories.

3.5 Potential strengths and limitations of study

The approach of the current chapter draws its main strength from the appropriate appli-

cation of sound statistical methods coupled with the utilization of advanced statistical
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computing software in estimating HIV prevalence. However, a potential drawback of

the current study comes from the use of secondary data which often leaves the data

analyst with limited control over the data collection process although this is not to

downplay DHS data that are carefully collected by a team of highly trained statisti-

cians with excellent expertise in survey methodology. Furthermore, the complete case

analysis approach that we made regarding missing data often results in loss of statisti-

cal information especially if the distribution of observed data is di�erent from that of

the missing data. Thus the current chapter can be regarded as a base up on which fu-

ture research involving properly handling missing data on estimation of HIV prevalence

using population-based data can be built. This is the main idea of Chapter 4.

3.6 Conclusion

Estimating national HIV prevalence using data obtained from sampling a subgroup

of the entire population is argued to have shortcomings in that the estimates might

be biased especially if the subgroup is not representative of the target population. In

addition the estimation does not display the variation across di�erent domains of the

population. This study has utilized population-based survey data supported by the

use of sound statistical methodology for analyzing complex survey data to enhance

better estimation of both national and domain level HIV prevalence. Furthermore,

explaining variation in HIV using risk factors was aided by the use of population-

based survey data that allow linking HIV status to demographic, socio-economic, socio-

cultural and behavioural factors, and as well making use of the proximate determinants

conceptual framework. The current chapter provided crude design-based estimates of

HIV prevalence, at the national level as well as domain estimates based on the prominent

risk factors in the population. From a modelling stand-point, a survey logistic regression

model was �tted to provide a way of explaining the variation in HIV prevalence using
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socio-economic, socio-cultural, behavioural and demographic variables.

The results from the study showed that HIV prevalence is dependent on one's

age, gender, marital status, literacy level, level of recent sexual activities, belief about

whether condom use reduces risk of HIV and place of residence. The results also showed

that one's religion, education level and wealth status do not play a signi�cant role in

determining one's HIV status. It is further revealed that HIV prevalence is higher

among females than in males (both crude and adjusted). Generally HIV prevalence

increases with age. This shows that, for randomly selected `older' person, the prob-

ability of obtaining an HIV positive individual is higher than for a `younger' person.

The results also showed that, as compared to the single or never married people, the

married, divorced and widowed are more likely to be HIV positive. People in the urban

areas have higher HIV prevalence as compared to their rural counterparts. This study

found that there is an age by gender interaction e�ect on HIV prevalence, namely that

the HIV prevalence increases with age at a faster rate in males than in females.
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Chapter 4

Multiple imputation for non-response

when estimating HIV prevalence using

population-based survey data

Abstract

Missing data are a common feature in many areas of research especially those involving

survey data in biological, health and social sciences research. Most of the analyses of the

survey data are done taking a complete-case approach, that is taking a list-wise deletion

of all cases with missing values assuming that missing values are missing completely

at random (MCAR). Methods that are based on substituting the missing values with

single values such as the last value carried forward, the mean and regression predictions

(single imputations) are also used. However these methods often result in potential

bias in estimates, in loss of statistical information and of distributional relationships

between variables. In addition, the strong MCAR assumption is not always tenable in

most practical instances.

Since missing data are a major problem in HIV research, the current research seeks
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to enhance HIV prevalence estimation via the implementation of the multiple impu-

tation procedure, as a method of handling missing data. This is particularly possible

since the multiple imputation method is designed to draw multiple values for the miss-

ing observations from plausible predictive distributions for them and correctly account

for the uncertainty brought about by the very process of imputing the missing data

themselves. The proper handling of missing data is important especially in HIV re-

search in sub-Saharan Africa where accurate collection of (complete) data is still a

challenge. Speci�cally, national and subgroup estimates of HIV prevalence in Zim-

babwe were computed using several imputed data sets for missing data in the 2010-11

Zimbabwe Demographic and Health Surveys (2010-11 ZDHS) data. A survey logistic

regression model for HIV prevalence on demographic and socio-economic variables was

used as the substantive analysis model. The results for both the complete-case analysis

and the multiple imputation analysis are presented and discussed.

Across di�erent subgroups of the population, the crude estimates of HIV prevalence

are generally di�erent but their variations are consistent between the two approaches

(complete-case analysis and multiple imputation analysis). The respective estimates of

the standard errors, and hence the lengths of the con�dence intervals, vary considerably

between the two approaches (multiple imputation and complete case). Similarly, the

logistic regression adjusted odds ratios also exhibit great variations between the two

approaches. The model based con�dence intervals for the adjusted odds ratios are

predominantly wider under the multiple imputation which is indicative of the inclusion

of a combined measure of the within and between imputation variability.

The use of multiple imputations allows the uncertainty brought about by the impu-

tation process to be measured. This consequently yields more reliable estimates of the

parameters of interest and reduce the chances of declaring signi�cant e�ects unneces-

sarily (type I error). In addition, the utilization of the powerful and �exible statistical

computing packages in R enhances the computations.
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4.1 Introduction

Most practical survey data, especially those obtained for scienti�c and social investi-

gations, are often characterized by missing data as a result of non-response, see for

example Brick & Kalton (1996), Raghunathan (2010), Raghunathan (2004) and Pigott

(2001). In particular non-response is regarded as a pervasive and persistent problem

in most social research studies. In practice, see for example Wang et al. (1992), Little

(1988) and Kalton & Kasprzyk (1986) analyses of incomplete data, especially in lon-

gitudinal studies, often take a complete-case analysis approach despite the fact that

current statistical software resources have capabilities to mitigate the problems. That

is, a list-wise deletion approach in which cases with missing values are omitted from the

analysis is often adopted. This is mainly based on the assumption that missing data are

missing completely at random (MCAR) as described by Rubin (1987). However this

assumption is generally di�cult to justify in practice neither it is easily tenable. Fur-

thermore, ad hoc methods that substitute the missing values with single values such as

the last value carried forward, the mean and regression predictions (single imputation)

are also often used. However these methods also have considerable drawbacks especially

if the percentage of missing data is high, as explained by Rubin (1987) and Sterne et al.

(2009). Biased results can be obtained if the complete data are not representative of

the entire sample (MCAR assumption is violated) and possibly the target population,

and also relationships among variables are lost. In addition, single imputation may

yield unduly small standard errors since the uncertainty about the imputed values is

not accounted for Sterne et al. (2009).

There are several reasons why data are missing in surveys, see for example Rubin

(1987), Sterne et al. (2009), Little & Rubin (1987a), Kalton & Brick (1996) and Baraldi

& Enders (2010). Essentially, missing data may be a result of an element in the target

population not being included on the survey's sampling frame, resulting in what is called

non-coverage. These elements have zero probability of being selected into the sample.
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If a sampled element does not participate in the survey, this results in total/unit non-

response. Total non-response may occur because of a participant's refusal to take part

in the survey or due to language barrier or non-availability on the day of interview.

The success of data collection in surveys, particularly in household surveys relies on

the availability of participants on the day of interview. However participants are often

unavailable giving rise to non-response and consequently missing data. Furthermore,

a responding sampled element can fail to provide acceptable responses to one or more

of the survey items resulting in what is called item non-response. The reasons for

item non-response range from a respondent refusing to answer a question because it

is too sensitive or does not know the answer or gives an answer that is inconsistent

with answers to other questions Rubin (1987), Lohr (2010) and Schafer (1997). A non-

response that falls between unit and item non-response is called partial non-response.

Partial non-response occurs when a substantial number of item non-response occurs.

This can occur, for instance, when a respondent cuts o� the phone call in the middle of

an interview or when a respondent in a multi-phase survey provides data for some but

not all phases of data collection Rubin (1987), Kalton & Brick (1996) and Lohr (2010).

Missing data are classi�ed according to the relationship between measured variables

and the probability of missing data in what Rubin (1987), Little & Rubin (1987a)

and Baraldi & Enders (2010) referred to as �missing data mechanisms�. The missing

data mechanism de�nes the distribution of missing data given the underlying data.

The missing data can fall into one of three missing data mechanisms namely missing

completely at random (MCAR), missing at random (MAR) and missing not at random

(MNAR).

Various methods have been developed in an attempt to compensate for non-response

in survey data. The form of compensation depends on the source of the missing data. As

described by Rubin (1987), Kalton & Brick (1996) and Little & Rubin (1987a) deletion,

weighting adjustments and imputation methods are the most common ways used for
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handling and/or compensating for non-response. In particular, compensation for total

non-response and non-coverage is made by weighting adjustments. The respondents

are assigned greater weight in the analysis so as to account for the shortfall resulting

from the non-respondents. In the case of non-coverage, since the sample provides no

information about the missing elements, weighting adjustments are based on external

data sources. For the case of item non-response, compensation is done via imputation,

see Rubin (1987). Imputation (which is the subject of the current chapter) involves

systematically �lling the missing value with new assigned values. Partial non-response

can be compensated by both weighting adjustments and imputation.

Most statistical methods for data analysis assume a rectangular matrix with rows

representing units and the columns representing variables measured (completely) for

each unit. However this is often not the case in most practical scienti�c and social

research including HIV studies due to missing data.

Originally suggested by Rubin (1987), multiple imputation is a Monte Carlo (or

simulated based) technique that replaces each missing value with two or more plausi-

ble values. Essentially each missing value is imputed m (≥ 2) di�erent times using the

same imputation method creating m data sets with no missing values. Each completed

data set is analyzed using standard complete-data procedures as if the imputed data

were real data obtained from the non-respondents. The results are later combined to

produce estimates and con�dence intervals that incorporate missing-data uncertainty.

The estimates obtained are called multiple imputation estimates, Rubin (1987), Schafer

(1997), Heeringa et al. (2010), Schafer & Olsen (1998) and Schafer (1999). The observed

values are used to provide indirect evidence about the likely values of the unobserved

ones averaging over the distribution of the missing data given the observed data Sterne

et al. (2009). Thus for this reason multiple imputation falls under the MAR missing-

ness mechanism as opposed to the MCAR. Key to this lies in correctly specifying the

imputation model. In addition, the multiple imputation procedure is a computational
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intensive analytic approach that accounts for the variability due to the missing values.

A Bayesian inference paradigm is utilized in the simulative multiple imputation

procedure. Independent drawing of the parameters and the missing values from a

posterior predictive distribution are carried out in a Bayesian framework, Rubin (1987)

and Spratt et al. (2010). The multiple imputation procedure is carried out in three

steps: 1) imputing data under an appropriate model to obtainm `complete' data sets; 2)

analyze each data set separately to obtained desired parameter estimates and standard

errors; and 3) combining the results of the analyses from the m data sets by �nding

the mean of the m parameter estimates and a variance estimate that accounts for both

the within-imputation and across-imputation variability using formulae given by Rubin

(1987).

Since multiple imputation relies on a Bayesian paradigm, a prior distribution for the

parameters is required. We used a non-informative prior distribution which is a default

prior in most software packages. that correspond to a state of prior ignorance about

model parameters, Lesa�re & Lawson (2012) and Press (1989). To simulate the draws

from the posterior distribution for the missing values given the observed data, MCMC

procedures were used as explained in Rubin (1987), Lesa�re & Lawson (2012) and Press

(1989). The application of the multiple imputation comes with potential problems that

are worthy noting as pointed out by Sterne et al. (2009). These include, challenges

pertaining to ways for handling non-normally distributed variables, plausibility of the

MAR assumption and how to handle data that are MNAR. For the current research,

these are adequately accounted for in the statistical package mi, as explained in Section

4.2.5 below, that we used for the multiple imputation computations. The approach in

this current chapter followed the guidelines outlined in strengthening the reporting of

observational studies in epidemiology (STROBE) as outlined in von Elm et al. (2007).

The MNAR approaches which rely on sensitivity analysis are not the focus of the current

application.
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The chapter is organized in the following format. Section 4.2 gives an overview

of the data used for analysis, the underlying concepts of the multiple imputation pro-

cedure, a brief description of the missing data and the statistical computing package

used for the analysis. Section 4.3 presents the results of the analyses in the form of

descriptive and logistic regression analyses from both a complete case analysis and a

multiple imputation analysis. Section 4.4 gives a detailed discussion of the �ndings.

The potential strengths and limitations of the approach taken in this current chapter

are presented in Section 4.5 and Section 4.6 gives the concluding remarks.

4.2 Methods

4.2.1 Types of missingness

Missing data are classi�ed according to the relationship between measured variables

and the probability of missing data in what Rubin (1987), Little & Rubin (1987a) and

Little & Rubin (1987b) termed �missing data mechanisms�. Missing data can fall into

one of three missing data mechanisms namely missing completely at random (MCAR),

missing at random (MAR) and not missing at random (MNAR).

In order to illustrate the three missing data mechanisms, following Rubin (1987),

suppose that Y = {Yobs,Ymis}, where Yobs are the observed values and Ymis are the

unobserved values and let M be a missing data indicator matrix of the same dimension

as Y where the value in row i and column j is equal to 1 if the value in Y is missing

and 0 if the value is observed. Data are MCAR if P (M|Y) = P (M) for all Y, that is,

the fact that the data are missing is not dependent on any values or potential values for

any of the variables. That is the probability that a respondent does not report an item

value for instance is completely independent of the true underlying values of all the

observed and unobserved variables, Heeringa et al. (2010). Missingness is completely

unsystematic and the observed data can be regarded as a random sub-sample of the
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hypothetically complete data. Thus inference can be carried out with the observed data

since they are representative of the complete sample as well as the target population.

Missing data are MAR if missingness is related to other measured or observed vari-

ables in the analysis, but not to the underlying values of the incomplete variable, that is

the hypothetical values that would have resulted had the data been complete, Baraldi

& Enders (2010). Thus MAR implies that P (M|Y) = P (M|Yobs) for all Y. The re-

sponse mechanism responsible for MCAR and MAR is termed ignorable, Rubin (1987)

and Pigott (2001).

Missing data are MNAR if they are neither MCAR nor MAR, that is if the missing

data are not at least MAR. Speci�cally, missing data are MNAR if missingness depends

on both the observed and unobserved values of Y, that is P (M|Y) = P (M|Yobs,Ymis) .

The MNAR mechanism is also called non-ignorable missing data mechanism.

4.2.2 Multiple imputations

Multiple imputation was originally proposed by Rubin (1987), and is a Monte Carlo (or

simulated based) technique that is used to `�ll in' each missing value with two or more

plausible values. Essentially each missing value is imputedm (≥ 2) di�erent times using

the same imputation method creating a vector of m `complete' data sets, that is with

no missing values. Each of the data set is then analyzed using standard complete-data

procedures as if the imputed data were real data obtained from the non-respondents.

The results are later combined or pooled to produce estimates and con�dence intervals

that incorporate missing-data uncertainty. The overarching idea is to use the observed

values to provide indirect evidence about the likely values of the unobserved ones.

There are several advantages of the multiple imputation procedure, see for example

Rubin (1987), Schafer & Olsen (1998) and Schafer (1999). Key among them being that

inferences obtained from MI are generally valid because they account for the uncertainty

due to missing data, Schafer (1997). In particular, the multiple imputation procedure is

73



carried out in a repeated random draws fashion under a model for non-response. Thus

(valid) inference that re�ect the additional variability due to missing values under that

model are obtained by combining complete-data inferences. Hence key to this lies in

correctly specifying the imputation model.

There are assumptions, similar to any statistical method, on which the multiple

imputation procedure is based. These assumptions pertain to (a) the data model (b) the

prior distribution of parameters and (c) the mechanism of the non-response. Common

probability models for the data (both observed and missing) range from multivariate

normal, log-linear and general location models depending on software packages applied,

see Schafer (1997). Since multiple imputation relies on a Bayesian paradigm, a prior

distribution for the parameters is required. By default, most software packages utilize

the non-informative prior distribution that correspond to a state of prior ignorance

about model parameters, Schafer (1997). The Bayesian approach employs the Markov

chain Monte Carlo (MCMC) procedure to simulate draws from the posterior distribution

of the missing data given the observed data, see Rubin (1987) and Schafer (1999). The

multiple imputation procedure assumes that missing data are MAR.

Formally, for the pooling of the estimates from the m multiply data sets and

following Rubin (1987), we let θ be the population quantity to be estimated, θ̂ =

θ̂ (Yobs,Ymis) denote the statistic that would be used to estimate θ if complete data

were available and U = U (Yobs,Ymis) be its variance. In the presence of Ymis,

suppose that we have m ≥ 2 independent imputations, Y
(1)
mis, ...,Y

(m)
mis, the imputed

data estimates θ̂(l) = θ̂
(
Yobs,Ymis

(l)
)
along with their estimated variances U (l) =

U
(
Yobs,Ymis

(l)
)
, l = 1, ...,m were calculated. The overall estimate of θ was then

given by the average

θ =
1

m

m∑
l=1

θ̂(l). (4.1)

The standard error of θ was obtained from the estimated total variance given by
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T =
(
1 +m−1

)
B + U, (4.2)

where B is the between-imputation variance given by

B =

m∑
l=1

(
θ̂(l) − θ

)2
m− 1

and U is the within-imputation variance given by

m∑
l=1

U (l)

m
.

Tests and con�dence intervals were based on a Student's t− approximation

(
θ − θ

)
√
T
∼ tv

with degrees of freedom

v = (m− 1)

[
1 +

U

(1 +m−1)B

]2
The validity of the multiple imputation methods, to give reasonable predictions of

the missing data, is dependent on how well the m imputations were generated. Rubin

(1987) suggested that the imputations be generated following a Bayesian approach.

That is, specify a parametric model for the complete data, apply a prior distribution

to the unknown model parameters and simulate m independent draws from the condi-

tional distribution of Ymis given Yobs by the Bayes' theorem. Con�dence intervals for

descriptive population parameters are constructed from the multiple estimates, their

standard errors and critical value from the Student's t− distribution as

CI (θ) = θ ± tṽmi,1−α/2 × SE
(
θ
)
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Here the degrees of ṽmi are given by

ṽmi =

(
1

vmi
+

1

v̂obs

)−1

where

vmi =the large sample MI degrees of freedom;

v̂obs =
(
vcom+1
vcom+3

)
× vcom × (1− γ̂mi) = the degrees of freedom for the complete data;

vcom = the degrees of freedom for the complete case analysis;

γ̂mi = the estimated fraction of missing information as de�ned by Rubin (1987).

4.2.3 The analysis model

For the analysis model for the complete case and the m multiple imputation data sets,

we considered a multivariable survey logistic regression model from a generalized linear

modeling (GLM), by McCullagh & Nelder (1989) framework. Speci�cally, suppose

that Yi is a binary response variable satisfying the binomial conditions, that is Yi ∼

Bin (ni, πi) and we let xi be a vector of predictor variables related to Yi and can

provide additional information for predicting Yi. From a GLM perspective, the logistic

regression analysis seeks to come up with a model that explains the variation in the

probabilities πi, using the set of predictors in the form

π (xi) = g−1 (x′iβ) (4.3)

where β is a set of parameters to be estimated from the data. Thus by a logit trans-

formation

log (π (xi)) = log

(
π (xi)

1− π (xi)

)
= x′iβ (4.4)
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Alternatively, Equation 4.4, which is a GLM with a logit link, can be expressed as odds

of a positive response as

π (xi)

1− π (xi)
= exp {x′iβ}

or as the probability of a positive response as

π (xi) =
exp {x′iβ}

1 + exp {x′iβ}

Under a complex sampling design, the parameters are estimated via a pseudo-likelihood

estimation method. Design-based Wald test statistics are used to test the null hypoth-

esis that βj = 0 and design-based con�dence intervals are provided in the form

CI1−α (βj) = β̂j ± tdf,1−α/2.se
(
β̂j

)

Alternatively, the individual predictors can be presented directly on the log-odds

scale as ψ̂ = exp
(
β̂1

)
. In a multivariable logistic regression model adjusted odds ratios

of the form ψ̂j|β̂k 6=j = exp
(
β̂j

)
can be given and their respective con�dence intervals

are given as

CI (ψj) = exp
(
β̂j ± tdf,1−α/2.se

(
β̂j

))

4.2.4 The data

With reference to the data description given in section 2.2, the sample consists of

17 434 respondents, 14 491 with non-missing values and an additional 2 943 with missing

values in at least one of the measured variables. Table 4.1 gives the variables and their

respective percentages of missing values.
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Table 4.1: Variables and percentages of missing data

Variable % Missing Values
HIV Status 15.90
Gender 0.00
Employment Status 1.26
Marital Status 4.37
Contraception 6.21
Wealth Index 4.23
Literacy Level 1.00
Religion 4.08
Educational Level 3.42
Place of Residence 0.99
Province 0.00
Age Group 1.06
Age 1.06

In the ZDHS data, missing data was mainly due to partial or incomplete reporting of

information and inconsistent responses to di�erent questions in the survey, see Mutasa

(2012). All variables with missing values, as displayed in Table 4.1, were subjected

to imputation taking their form (as explained in section 4.2.5 below) into account.

The rural areas provided higher coverage of (83%) than urban areas (63%). Females

had higher coverage (80%) than their male counterparts (69%) whereas coverage rates

varied among provinces from a low of 51% in Bulawayo to 83% in Mashonaland Central.

There was no marked coverage variations with regards to variables such as age, literacy

levels and wealth status.

4.2.5 Statistical computations

We used the multiple imputation technique described in Section 4.2.2 above to obtain

`complete' data for for each of the variables and account for the variability about the

missing data. We used the package mi in R by Gelman et al. (2015) and Su et al.

(2011). The package uses a chained equation approach to the imputation, see van

Buuren & Groothuis-Oudshoorn (2011). The approach allows speci�cation of the con-
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ditional distribution of each variable with missing values conditioned on other variables

in the data, and the imputation algorithm sequentially iterates through the variables to

impute the missing values using the speci�ed models. This is the so called the fully con-

ditional modelling approach van Buuren & Groothuis-Oudshoorn (2011). Depending

on the variable type with missing values, Su et al. (2011) gave examples of conditional

distributions. The multiple imputation procedure was performed using Markov chain

Monte Carlo (MCMC) methods making use of an iterative data augmentation tech-

nique as explained by Schafer & Olsen (1998). In particular, as described by Su et al.

(2011), the basic setup of the multiple imputation procedure inmi involves three steps;

setup, imputation and analysis. The setup step involves a graphical display of missing

data patterns, identifying structural problems in the data and pre-processing as well as

specifying conditional models.

In the imputation step, the iterative imputation process was carried out based on

the conditional models. The mi package handles `special' types of variables with miss-

ing values as given by Su et al. (2011). With reference to the variables in Table 4.1

above which were used in the imputation model, the package can handle binary vari-

ables such as HIV status, place of residence, employment status; ordered categorical

variables such as wealth index, literacy level, education level and age group; unordered

categorical such as marital status, contraception and religion; and positive continuous

such as age. In addition to the main e�ects we also considered potential interactions

that are clinically reasonable and assessed their statistical signi�cance as presented in

Hosmer & Lemeshow (2000). Hence we established that there exists an age group by

gender interaction e�ect and it was included in the conditional models. The mi package

chooses the conditional models automatically according to the variable types identi�ed.

In particular, as given in Su et al. (2011) for binary, continuous and ordered categori-

cal, mi �ts the Bayesian versions of the GLMs (bayesglm). These models are slightly

di�erent from the classical GLMs in that they add a Student − t distribution on the
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regression coe�cients. In the current study we used the default Cauchy distribution

as recommended by Gelman et al. (2008) as given in Su et al. (2011). Case sampling

weights that account for the clustered sample design were included in the conditional

models as predictors. Five complete data sets, as suggested in Schafer (1999) were ob-

tained and analyzed separately using design consistent survey logistic regression models

as the analysis models with details as given in Section 4.2.3 utilizing the package survey

by Lumley (2010) in R. In addition, the survey package allows appropriate parame-

ter estimates and their variance estimates, that account for the complex design, to be

computed. We combined or pooled the results together using the formulae provided by

Rubin (1987) as explained in Section 4.2.3 above.

4.3 Results

4.3.1 Prevalence estimation results

In this section we present crude design-consistent estimates for HIV prevalence obtained

from both a complete case analysis and from the multiple imputed data sets. In the

complete case analysis we considered a list-wise deletion of cases with missing values.

In the multiple imputation case, the analyses are aimed at accounting for the variability

brought about by both the complex sampling design and the imputation process. In

particular, the variance estimates were computed in a way that allows re�ecting the

variability introduced by the imputation process and the variability required to account

for the complex sampling design. Five imputed data sets were obtained.

Both approaches gave an overall HIV prevalence of approximately 15.7%. However

the complete case analysis gave a standard error of the estimate of HIV prevalence

of 0.32% as compared to 0.39% for the imputed case. The larger standard error for

the multiple imputation approach correctly incorporate both the between and within

imputation variances.
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Results of the crude sub-group estimates of HIV prevalence are given in Table 4.2.

The results displayed in the table show that the estimates obtained from both the

complete case and the imputation are not overall identical. This is because of the

additional 2 943 cases that the multiple imputations have allowed to enter the analysis.

However the di�erences are not signi�cant as their respective 95% con�dence intervals

overlap.
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Table 4.2: Crude subgroup estimates and their standard errors of HIV prevalence for
(a) complete case analysis and (b) multiple imputation.

(a) Complete case analysis (b) Multiple imputation
Variable Estimate S. E. 95% CI Estimate S. E. 95% CI
Overall 0.154 0.003 (0.147 , 0.160) 0.157 0.004 (0.150 , 0.164)
Gender

Male 0.128 0.005 (0.119 , 0.137) 0.131 0.004 (0.123 , 0.139)
Female 0.177 0.005 (0.166 , 0.185) 0.178 0.005 (0.169 , 0.188)

Age Group
15− 19 0.040 0.004 (0.032 , 0.047) 0.041 0.003 (0.035 , 0.048)
20− 24 0.079 0.005 (0.068 , 0.089) 0.085 0.005 (0.076 , 0.095)
25− 29 0.158 0.008 (0.142 , 0.173) 0.160 0.007 (0.146 , 0.174)
30− 34 0.232 0.010 (0.213 , 0.252) 0233 0.010 (0.214 , 0.252)
35− 39 0.269 0.012 (0.245 , 0.292) 0.272 0.013 (0.251 , 0.294)
40− 44 0.255 0.014 (0.228 , 0.283) 0.249 0.013 (0.227 , 0.272)
45− 49 0.258 0.015 (0.227 , 0.288) 0.265 0.015 (0.236 , 0.294)
50− 54 0.187 0.022 (0.143 , 0.231) 0.191 0.020 (0.154 , 0.229)

Marital Status
Single 0.056 0.003 (0.049 , 0.063) 0.083 0.003 (0.076 , 0.091)
Married 0.167 0.004 (0.159 , 0.177) 0.169 0.004 (0.159 , 0.179)
Divorced 0.288 0.016 (0.256 , 0.319) 0.276 0.012 (0.259 , 0.323)
Widowed 0.544 0.022 (0.500 , 0.587) 0.551 0.020 (0.510 , 0.587)

Wealth Index
Poorest 0.151 0.007 (0.143 , 0.172) 0.159 0.006 (0.142 , 0.176)
Poorer 0.158 0.007 (0.132 , 0.161) 0.148 0.005 (0.134 , 0.162)
Middle 0.146 0.008 (0.149 , 0.179) 0.138 0.007 (0.150 , 0.187)
Richer 0.163 0.007 (0.146 , 0.174) 0.170 0.006 (0.155 , 0.184)
Richest 0.142 0.007 (0.126 , 0.152) 0.142 0.007 (0.129 , 0.154)

Literacy
Non-lit. 0.139 0.012 (0.115 , 0.162) 0.149 0.016 (0.122 , 0.176)
Partially 0.198 0.014 (0.172 , 0.223) 0.194 0.012 (0.171 , 0.217)
Literate 0.151 0.003 (0.144 , 0.157) 0.155 0.004 (0.147 , 0.162)

Employment
No 0.135 0.004 (0.128 , 0.143) 0.139 0.004 (0.130 , 0.147)
Yes 0.173 0.005 (0.163 , 0.183) 0.177 0.005 (0.166 , 0.187)

Place of Res
Rural 0.147 0.004 (0.139 , 0.154) 0.148 0.004 (0.138 , 0.157)
Urban 0.168 0.006 (0.157 , 0.180) 0.172 0.005 (0.160 , 0.184)

We further present the design-consistent sub-group estimates of HIV prevalence ob-

tained from the complete case analysis and the multiple imputation analysis graphically.

Figure 4.1 gives the results for HIV prevalence estimates along with their respective 95%
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con�dence intervals by marital status of the respondents for the two analyses (complete

case and multiple imputation). The results in the graph show that the estimates are

signi�cantly di�erent among the single respondents as the con�dence bands do not

overlap, whereas the rest are not signi�cantly di�erent. Figure 4.2 gives a plot of the

estimates of HIV prevalence by �ve-year age-groups from both the complete case analy-

sis and the multiple imputation analysis. The results show that there are no signi�cant

di�erences in the location of HIV prevalence and width of the 95% con�dence intervals

across the age groups for the two analyses. Figure 4.3 presents the estimates of HIV

prevalence across the country's administrative provinces together with their respective

95% con�dence intervals for both analyses. Also all the estimates are not di�erent

as the con�dence intervals overlap. Notable di�erences in the width of the con�dence

intervals can be seen for Bulawayo, Harare, Masvingo, Mashonaland East and Mata-

beleland North provinces. In particular the con�dence intervals for multiple imputation

analysis are narrower for Bulawayo, Harare, Mashonaland Central and Masvingo than

for complete case analysis.
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Figure 4.1: Estimates of HIV prevalence by marital status obtained using complete case
analysis and multiple imputations
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analysis and multiple imputations
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4.3.2 Logistic regression results

We also present the results of a logistic regression model with estimates and their stan-

dard errors pooled from the �ve imputed data sets as well as results from the complete

case analysis. Speci�cally, multivariable survey logistic regression models for explain-

ing the variation in HIV prevalence as a function of demographic and socio-economic

variables were �tted. Table 4.3 gives the parameter estimates for the survey logistic

regression models obtained from both approaches. The results show considerable varia-

tions in the parameter estimates between the two approaches. In particular, the married

level of the marital status, the 45− 49 :M level of the age group by gender interaction

e�ect and the widow:M level of the marital status by gender interaction terms ceased

to be statistically non-signi�cant under the complete case analysis to being statistically
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signi�cant under multiple imputation. Also the divorced level of the marital status and

the literate level of the literacy variable ceased to be signi�cant under the complete case

analysis to be non-signi�cant under the multiple imputation. Larger standard errors

under the multiple imputation analysis are due to the fact that they represent both

between and within imputation variability.

Table 4.3: Parameter estimates and standard errors of logistic regression models under
(a) complete case analysis and (b) multiple imputation analysis

(a) Complete case analysis (b) Multiple imputation
Coe�cient Estimate S. E. p-value Estimate S. E. p-value
Intercept -3.450 0.166 < 0.001 −3.251 0.203 < 0.001
Age Group

20− 24 0.947 0.166 < 0.001 1.050 0.145 < 0.001
25− 29 1.636 0.168 < 0.001 1.792 0.153 < 0.001
30− 34 2.013 0.172 < 0.001 2.192 0.155 < 0.001
35− 39 1.988 0.178 < 0.001 2.199 0.165 < 0.001
40− 44 1.533 0.194 < 0.001 1.743 0.185 < 0.001
45− 49 1.309 0.200 < 0.001 1.631 0.188 < 0.001
50− 54 1.147 0.265 < 0.001 1.850 0.174 0.041

Gender
Male -0.150 0.194 0.439 −0.248 0.190 0.181

Marital Status
Married -0.046 0.124 0.708 −0.339 0.097 < 0.001
Divorced 0.676 0.147 < 0.001 0.238 0.181 0.168
Widowed 1.656 0.161 < 0.001 1.306 0.130 < 0.001

Literacy
Partially 0.511 0.142 < 0.001 0.405 0.162 0.008
Literate 0.244 0.115 0.034 0.171 0.141 0.203

Place of Residence
Urban 0.222 0.058 < 0.001 0.201 0.062 0.001

Age Group*Gender
20− 24 : Male -1.033 0.275 < 0.001 −0.730 0.250 0.003
25− 29 : Male -0.919 0.273 0.001 −0.759 0.233 0.001
30− 34 : Male -0.870 0.288 0.003 −0.683 0.273 0.010
35− 39 : Male -0.415 0.295 0.160 −0.276 0.244 0.250
40− 44 : Male 0.138 0.310 0.657 0.188 0.284 0.491
45− 49 : Male 0.539 0.320 0.092 0.502 0.250 0.045

Marital status*Gender
Married:M 0.525 0.203 0.010 0.444 0.186 0.003
Divorced:M 0.676 0.263 0.010 0.846 0.290 0.002
Widowed:M 0.654 0.360 0.069 0.638 0.279 0.033
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Table 4.4 presents odds ratios for the estimates of the logistic regression model given

in Table 4.3 above. Similar to the results in Table 4.3 above, it is also evident that

the odds ratios for the complete case analysis and those obtained from the multiple

imputation analyst are not identical but are consistent with regards to the signi�cance

of the parameters. As expected the results show a similar trend for the ORs of the

parameter estimates, with the levels of the variables that ceased to be non-signi�cant

under complete case analysis to being signi�cant under the multiple imputation analysis

and those that ceased to be signi�cant under complete case analysis to non-signi�cant

under the multiple imputation analysis as with the parameter estimates themselves.
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Table 4.4: ORs for the estimates of the survey logistic regression models under (a)
complete case analysis and (b) multiple imputation analysis and their respective 95%
con�dence intervals

Parameter
(a) Complete case analysis (b) Multiple imputation
OR 95% CI OR 95% CI

Intercept 0.032 (0.023 , 0.044) 0.038 (0.026 , 0.058)
Gender

Male 0.860 (0.588 , 1.259) 0.781 (0.538 , 1.133)
Age Group

20− 24 2.577 (1.860 , 3.571) 2.880 (2.166 , 3.830)
25− 29 5.137 (3.697 , 7.139) 6.001 (4.443 , 8.107)
30− 34 7.486 (5.339 , 10.497) 8.953 (6.607 , 12.133)
35− 39 7.298 (5.153 , 10.336) 9.018 (6.526 , 12.461)
40− 44 4.633 (3.160 , 6.792) 5.717 (3.980 , 8.212)
45− 49 3.703 (2.502 , 5.481) 5.109 (3.536 , 7.382)
50− 54 3.150 (1.875 , 5.292) 6.361 (4.523 , 8.946)

Marital Status
Married 0.955 (0.749 , 1.216) 0.713 (0.590 , 0.861)
Divorced 1.965 (1.474 , 2.621) 1.269 (0.891 , 1.808)
Widowed 5.236 (3.821 , 7.175) 3.692 (2.862 , 4.763)

Literacy
Partially 1.666 (1.261 , 2.201) 1.500 (1.091 , 2.062)
Literate 1.276 (1.019 , 1.597) 1.187 (0.900 , 1.566)

Place of Residence
1.249 (1.114 , 1.399) 1.223 (1.083 , 1.381)

Age Group*Gender
20− 24:Male 0.356 (0.208 , 0.610) 0.482 (0.295 , 0.786)
25− 29:Male 0.399 (0.234 , 0.681) 0.468 (0.297 , 0.740)
30− 34:Male 0.419 (0.238 , 0.737) 0.505 (0.296 , 0.862)
35− 39:Male 0.661 (0.371 , 1.177) 0.759 (0.470 , 1.226)
40− 44:Male 1.148 (0.625 , 2.109) 1.207 (0.692 , 2.104)
45− 49:Male 1.714 (0.915 , 3.210) 1.652 (1.013 , 2.694)

Marital status*Gender
Married:M 1.691 (1.137 , 2.516) 1.560 (1.083 , 2.245)
Divorced:M 1.965 (1.174 , 3.291) 2.330 (1.319 , 4.116)
Widowed:M 1.923 (0.951 , 3.891) 1.593 (1.095 , 3.272)

4.4 Discussion

The results for the two approaches presented in Tables 4.2 through to 4.4 are not identi-

cal although they are generally consistent pertaining to the statistical interpretation of
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the estimates. In particular, the crude estimates of HIV prevalence presented in Table

4.2 show no statistical signi�cant di�erences between the two approaches. This is partic-

ularly so because the respective 95% con�dence intervals for the estimates overlap. The

results consistently show that the odds of HIV are lower among males (p̂ = 12.8%, 95%

CI = 11.8−13.7% for the complete case analysis and p̂ = 13.1%, 95% CI = 12.3−13.9%

for the multiple imputation) than among females (p̂ = 17.7%, 95% CI = 16.6− 18.7%

for the complete case analysis and p̂ = 17.8%, 95% CI = 16.9− 18.8%). The di�erences

are possibly due to the disparities in susceptibility to HIV between females and males

especially in light of HIV infection through unprotected heterosexual intercourse. It has

been reported that the risk of transmitting HIV from men to women is much higher

than from women to men because women are exposed to considerable amounts of sem-

inal �uids during vaginal sexual intercourse see Myer et al. (2003) and Coombs et al.

(2003). Both approaches show a general increase in HIV prevalence with age peaking at

the same age group 35−39. HIV prevalence is lowest among the single or never married

for both approaches although the di�erence in the prevalence between the two is sta-

tistically signi�cant as the 95% con�dence intervals do not overlap. In particular, the

prevalence is signi�cantly lower (p̂ = 5.6%, 95% CI = 4.9 − 6.3%) under the complete

case analysis than under the multiple imputation (p̂ = 8.3%, 95% CI = 7.6 − 9.1%).

The widowed have the highest HIV prevalence for both approaches and there is no

statistical signi�cant di�erence in the prevalence between the two approaches as the

95% con�dence intervals overlap. The interpretation of the results is the same for the

other risk factors indicated in Table 4.2.

With reference to Table 4.4 both approaches show that the odds of HIV are less

among the males (OR = 0.924, 95% CI = 0.631 − 1.354 under the complete case

analysis and OR = 0.812, 95% CI = 0.516 − 1.175 under the multiple imputation)

compared to the females controlling for the other covariates in the model. However

both approaches show that the di�erence in the odds of HIV among males and females
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are not signi�cantly di�erent, i.e .H0 : odds HIV(males) = odds HIV(females). In other

words H0 : OR = 1. The results show that the odds of HIV increase with age for both

approaches, however the multiple imputation results show higher odds of HIV at every

age group. Relative to the single/never married, the married have slightly higher odds

of HIV (OR = 1.182, 95% CI = 0.973−1.437) under the complete case analysis, whereas

the married have slightly lower odds of HIV (OR = 0.842, 95% CI = 0.726−0.976) under

the multiple imputation controlling for the other covariates in the model. The divorced

have odds of HIV over twice higher (OR = 2.575, 95% CI = 1.990 − 3.230) under the

complete case, whereas they have odds of HIV less than twice higher (OR = 1.658,

95% CI = 1.238 − 2.220) relative to the single/never married controlling for the other

covariates in the model. The interpretations are the same for literacy levels and the

place of residence.

The married level of marital status variable ceased to be non-signi�cant under com-

plete case analysis to being signi�cant under multiple imputation whereas the literate

level of the literacy variable ceased to be signi�cant under the complete case analysis

to being non signi�cant under the multiple imputation analysis. The age by gender

interaction e�ect shows that the risk of HIV is signi�cantly higher, as evidenced by

95% con�dence intervals that are not overlapping, in females than in males among the

young age groups. However the risk is higher among males in age group 40 − 44 year

olds and signi�cantly higher among the 45 − 59 year olds in males than in females.

These �ndings agree with a general perception in most sub-Saharan African countries

that younger women engage in sexual activities with older men, a key driver of HIV

infection in sub-Saharan Africa.
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4.5 Potential strength and limitations of the study

The research draws its strength from the use of the multiple imputation technique to

impute missing data in HIV research utilizing the powerful and advanced computational

tools that are now available in statistical software such as R. Also noting that missing

data are inevitable, pervasive and have severe consequences if not properly handled,

use of sound statistical methods and computing resources to estimate disease measures

of interest and appropriate measures of variability (that account for both the sam-

pling mechanism and the imputation process) can enhance the validity of the statistical

interpretations and inferences.

However a potential drawback of the current research comes from the use of sec-

ondary data which often leaves the data analyst with limited control over the data

collection process. In addition, and particularly for the current research, a major draw-

back of using secondary is the limited knowledge about the reasons for the missing

values. However this is not to downplay the importance of DHSs which are carefully

designed, by a team of highly trained statisticians with excellent expertise in survey

methodology, to collect population level information which is very important for pub-

lic health policies. The package mi, although very powerful and �exible comes with

its own limitations that it cannot allow users to alter the prior distributions for the

conditional imputation models used under the Bayesian paradigm. Therefore further

methodological and software developments research is necessary in order to make the

approach even more �exible. Further work on the problem as a future extension is

possible with inclusion of methods that allow for MNAR assumption by means of a

sensitivity analysis.
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4.6 Conclusion

Analysis of survey data that are characterized by missing data often take a complete

case analysis approach where cases with missing values are excluded in the analysis.

This often introduces bias in the estimates because of potential loss of information that

occurs with the deletion of the cases with missing values. Alternatively, ad hoc ap-

proaches based on substituting the missing values with plausible ones such as the last

value carried forward, the mean and the regression predictions (single imputations) can

be used. However, these approaches may result in potential loss of the distributional

relationships among variables and it is not possible to provide measures of uncertainty

introduced by the imputation process. Hence we utilized the multiple imputation pro-

cedure to `�ll in' missing values in estimating HIV prevalence in Zimbabwe using the

2010-11 DHS data while at the same time accounting for the uncertainty about the

missing data themselves. Crude design-consistent national and subgroup estimates of

HIV prevalence were estimated under both the complete case analysis and the multiple

imputation analysis. Survey logistic regression models were also �tted and the results

showed considerable variation in the estimates obtained under the two approaches. The

results of both the crude estimates and the survey logistic regression model show sub-

stantial di�erences in the estimates and the widths of the con�dence intervals between

the two approaches.
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Chapter 5

Hierarchical logistic regression for

estimating risk of HIV using

population-based survey data

Abstract

Most practical complex survey data exhibit some multilevel or hierarchical structural

form brought about by the prominent features of the sampling design and the un-

derlying target population. These data are often obtained using strati�ed multistage

clustered sampling designs and exhibit a `clustered' or `nested' structure that usually

induce intra-class correlations of units within clusters. Appropriate statistical inference

and correct conclusions based on such data require methods of analysis that take ac-

count of the hierarchical nature of the data. A hierarchical logistic regression model for

HIV as a function of demographic, socio-economic and behavioural variables is built

from a generalized linear modelling framework. The hierarchical models are capable of

capturing the multiple sources of variability brought about by the layered structure of

the data and determine how di�erent layers interact and impact a response variable.
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The research used data from the 2010-11 Zimbabwe Demographic and Health Surveys

(2010-11ZDHS). The data are clustered (by household and enumeration area) and ex-

hibit marked multi-layering, clustering and are characterized by missing observations.

The results obtained from a rectangular data set with imputed values are presented to-

gether with those from a complete-case approach. The multiple imputation procedure

accounted for the structure of the data by incorporating the sampling design features

in the conditional models. It was established that there is a considerable household

to household and cluster to cluster (enumeration area) heterogeneity of HIV preva-

lence. Notable di�erences in estimates of HIV prevalence were also observed between

the multiple imputations and the complete-case approaches.

5.1 Introduction

Most practical complex survey data, especially those obtained for scienti�c and so-

cial investigations, often exhibit some multilevel structural form brought about by the

prominent features of the underlying target population, see Khan & Shaw (2011). The

data are usually obtained by strati�ed multistage clustered sampling designs that in-

volve application of unequal selection probabilities to the sampling units. These designs

often result in data that show a multilevel or hierarchical and nested or clustered struc-

ture and are often dependent. The clustered or nested nature of the data induces

intra-class correlations among units in the same cluster rendering standard single level

statistical methods, that are based on the assumption of independence inappropriate.

The multi-layering also results in data with multiple sources of variation. Thus appro-

priate methods that account for the intra-class correlations are required. We compute

hierarchical logistic regression models built from a GLMM framework to simultaneously

capture the multiple sources of variability embedded in the multi-layered and clustered

data structure. In addition, hierarchical modelling allows assessment of both between
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group and within group variability.

A typical hierarchical data structure with three levels is given in Figure 5.1. The

units at level one are nested within level two units which are in turn nested within

level three units. Units in the same cluster tend to be more homogeneous than from

di�erent clusters resulting in cluster induced correlations (intra-class correlation). In

addition, the presence of clusters at di�erent levels of the hierarchy also introduces

multiple sources of variability. Hence statistical methods for analyzing such clustered

and hierarchical data need to take account of the di�erent sources of variability.

1 2 n1 1 2 1 2 n3 1 2 n4

1 2 1 2 3

1

n2 1 2 n5Level 1

Level 2

Level 3

... ... ... ... ...

Figure 5.1: Three level hierarchical data structure

Practical instances where hierarchical data are encountered include where students

are nested within classes that are nested within schools; individuals can be nested

within households that are nested within districts; and patients can be nested within

wards, that are nested within hospitals. It is argued that occurrence of data hierarchies

in practical instances is neither accidental nor ignorable, Goldstein (2011). Ignoring

hierarchical groupings, even though some hierarchies are random, risks overlooking the

importance of the group e�ects.

We develop a hierarchical model for explaining the variation in HIV prevalence,

while accounting for the individual level, household level and cluster (enumeration

area) variability, in Zimbabwe using data obtained from the 2010-11 Demographic and

Health Surveys (2010-11ZDHS). Epidemiological studies have shown that the spread,
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and hence the prevalence of HIV has a `nesting' or `clustering' nature. The authors in

Ugen et al. (1992) used an example on vertical transmission of HIV, which is essentially

MTCT of HIV, in an attempt to bring out the clustering nature of HIV prevalence.

Since HIV is spread through among other means, sexual contact, if say a husband

contracts the virus, and if no intervention is put in place, automatically the wife is

infected too giving data that are correlated. The spread of HIV in a community can be

facilitated by social contacts and mixing patterns such as commercial sex activities as

well as drug/needle sharing networks, Mossong et al. (2008). Social sexual mixing at the

community level such as in mining communities, at growth point, along national roads

and in border towns enhances `hot spots' for cases of HIV resulting in clustered e�ect of

HIV, Tanser et al. (2009). This produces patterns of HIV prevalence that are clustered

and correlated at di�erent levels giving rise to multilevel or hierarchical data structure,

with individuals nested within families and families nested within communities.

Socio-economic di�erential factors linked to HIV also enhance a hierarchical data

structure. HIV is argued to be embedded in social and economic inequality as pointed

out by Perry (1998), in that HIV a�ects those of lower socio-economic status at a

disproportionately high rate as compared to those of higher socio-economic status. In

Adler (2006) it is pointed out that a lack of socio-economic resources is linked to the

practice of riskier health behaviours such as early initiation of sexual activity and less

frequent use of condoms. In general, health disparities imply di�erential disease severity.

Hence the existence of a link between socio-economic status and HIV that results in

a `clustered' e�ect of HIV prevalence. Thus poorer communities tend to have higher

rates of HIV prevalence than richer well to do communities. HIV/AIDS is also argued

to be intertwined in a cause and e�ect fashion. According to Kedir (2001), HIV/AIDS

is a disease of poverty in that poverty pushes men into single-sex migration, women

into prostitution and children into under-nutrition.

Research has indicated stark geographical variation in HIV prevalence. The spatial
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variation highlights a localized clustering in HIV transmission within micro-epidemics

of varying scales and intensity. For example Tanser et al. (2009) and Cuadros et al.

(2013) identi�ed spatial clusters with high and low numbers of HIV in sub-Saharan

African countries and measure the strength of clustering using a Kulldor� spatial scan

statistic analysis under randomness.

Multilevel or hierarchical or random coe�cient models are models that are designed

to take account of and allow investigations of di�erent sources of variation within and

between clusters or within nested settings, and correctly estimate standard errors lead-

ing to more accurate inferential decisions, Khan & Shaw (2011). Furthermore, as given

by Steenbergen & Jones (2002), hierarchical modelling provides a framework for build-

ing of models that capture the layered structure of multilevel data, and determine how

di�erent layers interact and impact a response variable of interest. In instances where

discrete and/or non-normally distributed response variables are encountered, hierarchi-

cal generalized linear models, that make use of a linking function to linear predictor

covariates are often used, Goldstein (2011) and Degenholtz & Bhatnagar (2009).

The hierarchical modelling approach encompasses random slopes models that allow

the e�ect of a variable measured at a lower level to vary across di�erent higher level

units. They also include �xed e�ects models with dummy variables included for each

higher level unit to capture any possible systematic variation. The hierarchical models

also accommodate and allow modelling of di�erences in how predictors in a regression

model in�uence an outcome of interest across clusters. In addition, hierarchical models

provide a convenient framework for the systematic analysis of how covariates and how

the interactions among these covariates measured at di�erent levels a�ect the outcome

variable, Guo & Zhao (2000). Estimation of variances and covariances of random e�ects

at various levels, which are embedded well in multilevel models, enable decomposition

of the total variance in the outcome variable into portions associated with each level.

This in-turn allows measures of the strength of within cluster and between cluster
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correlations to be computed.

Missing data that are brought about by non-response are a common occurrence in

most practical survey data. There are various reasons why data are missing, see for

example Rubin (1987) and Schafer (1997). Proper handling of missing data is key to

valid statistical inference and conclusions that are based on applied data analysis. Most

analyses of data that have missing observations take a complete-case analysis approach

that involve a list-wise deletion of all cases with missing values on the assumption

that missing values are missing completely at random (MCAR) as described by Rubin

(1987). However these methods have potential drawbacks especially if the MCAR

assumption does not hold. Hence we impose the multiple imputation as a method of

handling missing data on the modelling approach by systematically substituting each

of the missing value with m ≥ 2 plausible values drawn from distribution of such values

using a Bayesian paradigm. The strength of the multiple imputation procedure is in its

ability to account for variability introduced by the very process of selecting the values

for the missing data point.

The chapter is organized in the following format. Section 5.2 gives the underlying

concepts of hierarchical models, generalized linear mixed e�ects models and the mul-

tiple imputations. In addition a description of the data and the statistical computing

resources used are also given in this section. Section 5.3 presents the results and a

detailed discussion of the �ndings. Then Section 5.4 gives the concluding remarks.

5.2 Methods

5.2.1 Hierarchical modelling

We consider a data set with three levels: cluster, household and respondent levels.

This implies that the measurements on the response variable can be expressed as Ykji,

indexed as the ith respondent in the jth household within the kth cluster. Following
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the underlying concepts of multilevel modelling given by Goldstein (1986), a full three

level hierarchical or multilevel model can then be expressed in a generalized linear

modelling (GLM) framework as

g [E (Ykji)] = α∗kji + β∗kj + γ∗k. (5.1)

where g (.) is an appropriate link function, α∗kji, β
∗
kj and γ

∗
k are the generic or implicit

respondent, household and cluster level terms respectively. We consider the hierarchical

GLMs (HGLMs), as de�ned by Lee & Nelder (1996), for the response conditional on

the random e�ects at each level of the hierarchy. Under the general hierarchical linear

modelling approach, a linear model is set up at each level of the hierarchy relating

the terms in Equation 5.1 to functions of the predictor variables. In particular, at the

cluster level, we have

γ∗k = γ0 + γ1w1,k + ...+ γqwq,k + vk =

q∑
l=0

γlwl,k + vk, (5.2)

where vk is a random variable with E (vk) = 0, var (vk) = σ2
v , and γl is the cluster level

coe�cient for the lth predictor variable wl,k for cluster k. At the household level we

have

β∗kj = β0 + β1,kz1,kj + ...+ βp,kzp,kj + ukj =

p∑
l=0

βl,kzl,kj + ukj, (5.3)

where ukj is a random variable with E (ukj) = 0, var (ukj) = σ2
u, and βl,k is the household

level coe�cient for the lth explanatory variable zl,kj for the household kj. Then at the

individual level, we have

α∗kji = α0 + α1,kjx1,kji + ...+ αr,kjxr,kji + ekji =
r∑
l=0

αl,kjxl,kji + ekji, (5.4)

where ekji is a random variable with E (ekji) = 0, var (ekji) = σ2 and αl,kj is the

respondent or individual level coe�cient of the lth predictor variable xl,kji for the
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respondent kji. Alternatively, Equation 5.1 can be expressed in a more compact form

by combining Equations 5.2, 5.3 and 5.4 to give

Ykji = α0 + γ0 + β0 +
r∑
l=0

αl,kjxl,kji +

p∑
l=0

βl,kzl,kj +

q∑
l=0

γlwl,k + (vk + ukj + ekji) . (5.5)

Each of the equations at each level of the hierarchy (Equations 5.2 to 5.4) is a mixed

e�ects model hence Equation 5.5 is also a mixed e�ects model. In particular Equation

5.5 is the explicit hierarchical model with terms explicitly stated. If we assume that all

the covariances in Equation 5.5 are zeros, then

var (Ykji) = σ2
v + σ2

u + σ2

implying that the overall variance of the response can be partitioned into components

for the cluster, household and the respondent. Furthermore, it can be shown, see

Goldstein (1986), that

cov (Ykji, Ykji′) = σ2
v + σ2

u, (i 6= i′)

because both respondent i and i′ share the same household and cluster. Note that

cov (Ykji, Ykj′i′) = σ2
v . Thus the household level intra-class correlation coe�cient (ICC),

as described by Goldstein (2011) is given by

ρkj =
σ2
v + σ2

u

σ2
v + σ2

u + σ2

and the cluster level ICC is given by

ρk =
σ2
v

σ2
v + σ2

u + σ2
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The ICC provides a measure of the variability ascribed to a particular level of the

hierarchy. A non-zero ICC implies that the observations that share a given hierarchy

are not independent. In particular, the ICC is the correlation between two randomly

selected units in one randomly selected group or is the fraction of the total variability

that is due to group level, Snijders & Bosker (1999), Goldstein & McDonald (1988),

Goldstein (1986), Goldstein (2011) and Guo & Zhao (2000). A special function of

the ICC under multilevel modelling is for justifying considering an hierarchical model

instead of an ordinary linear or logistic regression model.

5.2.1.1 Hierarchical modelling for a binomial response variable

For a binary response variable, Ykji that takes on values 0 or 1, the general modelling

approach involves explaining the variation in πkji, the probability of a positive response,

P (Ykji = 1) , using the explanatory variables. The natural choice of a model for such

a binary response variable is a logistic regression model. That is, by a logit transfor-

mation, as given by Goldstein (2011), McCullagh & Nelder (1989) and Wong & Mason

(1985) a basic logistic regression model expresses the logit as a linear function of the

predictors as

logit(πkji) = log

(
πkji

1− πkji

)
= α∗kji + β∗kj + γ∗k (5.6)

Thus the success probabilities can then be expressed as

πkji =
exp

{
α∗kji + β∗kj + γ∗k

}
1 + exp

{
α∗kji + β∗kj + γ∗k

} (5.7)

This formulation demonstrates the connection between hierarchical and logistic regres-

sion modelling and that will be the basis on which to enhance building of a hierarchical

logistic regression model.
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5.2.1.2 Generalized linear mixed e�ects model

The current research considers a multilevel logistic regression modelling formulated from

a generalized linear mixed modelling (GLMM) framework. Essentially, GLMMs extend

generalized linear models (GLMs) by the inclusion of random e�ects in the predictor

and more importantly with the speci�c assumption that the random e�ects come from a

Gaussian distribution. From a GLM perspective, following McCulloch & Searle (2001),

Breslow & Clayton (1993) and Doran et al. (2007), we consider a statistical model in

which the linear predictor for the response given as, ηi = xiβ where xi is the ith row of

the n× p model matrix X, is related to the expected value of the response, µi, through

a link function, g. That is

ηi = g (µi) = xiβ i = 1, ..., n (5.8)

and

µi = g−1 (xiβ) i = 1, ..., n (5.9)

Under a GLMM, the n-dimensional vector of linear predictors, η, incorporates both

�xed and random e�ects β and b respectively to give

η = g (µ) = Xβ +Zb (5.10)

where Z is an n×q model matrix of covariates associated with the random e�ects. Each

component of the random e�ects vector b is associated with a level of a grouping or

clustering factor. The distribution of the random e�ects is modelled as a multivariate

normal distribution with mean 0 and q × q variance-covariance matrix Σ, that is

b ∼ N (0,Σ (θ))
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The parameter estimates β̂ and θ̂ are those that maximize the marginal likelihood of

the parameters β and θ given the observed data. This likelihood is equivalent to the

marginal density of y given β and θ given by

f (y|β,θ) =

ˆ
b

p (y|β, b) f (b|Σ (θ)) db (5.11)

where p (y|β, b) is the probability density function of y, given β and b, and f (b|Σ) is

the probability density of b. For parameter estimation for the �xed e�ects, the likelihood

is given by

L =

ˆ
f (y|b) f (b) db (5.12)

where the integration is over the q-dimensional distribution of b. The log-likelihood for

the �xed e�ects is given by

l = log

ˆ
f (y|b) f (b) db. (5.13)

It can be shown, see McCulloch & Searle (2001) that the derivative of the log-likelihood

with respect to the �xed e�ects is given by

∂l

∂β
=

ˆ
∂logf (y|b)

∂β
f (b|y) db (5.14)

Using the notation for an exponential family of distributions given by McCullagh &

Nelder (1989), Equation 5.14 can be written as

∂l

∂β
= X′E [W∗|y]−X ′E [W∗µ|y] (5.15)

where W ∗ =
{[
a (φ) v (µ) g (µ)−1

]}
. Here a (.) is a known function of a dispersion

parameter φ, v (µ) is the variance function and g (µ) is a known link function. Hence
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the likelihood equation for β is given by

X′E [W∗|y] = X′E [W∗µ|y] (5.16)

Solving 5.16 involves iterative algorithms such as the expectation-maximization and the

Laplace's approximation, see McCulloch & Searle (2001).

The parameters for the random e�ects, θ, are derived from f (b) as

∂l

∂θ
=

ˆ
∂logf (b)

∂θ
f (b|y) db (5.17)

Further simpli�cation require the form of the distribution of the random e�ects.

A drawback for the likelihood estimation method is that a closed form solution

is not available, say when p (y|β, b) Equation 5.11 is binomial. Therefore a Laplace's

approximation is used to evaluate high-dimensional integrals in the likelihood, see Doran

et al. (2007). Essentially the Laplace's approximation is based on a second-order Taylor

series expansion as given by McCulloch & Searle (2001). The basic idea is that, given

values of β and θ, the conditional modes of the random e�ects are determined by

the penalized iteratively re-weighted least squares algorithm. Under this algorithm, the

contribution of the parameters, β, is incorporated as an o�set,Xβ, and the contribution

of the variance component θ is incorporated as a penalty term in the weighted least

squares �t.

An alternative to the Laplace's approximation is the expectation-maximization

(EM) algorithm, which is an iterative method for �nding maximum likelihood esti-

mates when there are missing or unobserved data. The algorithm works by declaring b

to be missing data so that the `complete data' are M′ = (y′, b′) . Then the EM proceeds

by forming the log-likelihood of the complete data, calculating its expectation with re-

spect to the conditional distribution of b given y and maximizing with respect to the

parameters of interest. Since the algorithm is iterative, it is also called the Monte Carlo
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expectation-maximization (MCEM).

Under the GLMM, test of hypotheses is based on the usual large-sample arguments.

The likelihood ratio test for nested models is based on comparing −2logΛ to the chi-

square distribution and Akaike information criterion (AIC), with a goal of selecting the

most parsimonious model. Testing the signi�cance of individual parameters is based on

Wald test utilizing sample normality of the estimators, McCulloch & Searle (2001).

5.2.2 Handling missing data via multiple imputation

5.2.2.1 Types of missingness

Missing data are classi�ed according to the relationship between measured variables

and the probability of missing data in what Rubin (1987) and Little & Rubin (1987a)

termed �missing data mechanisms�. Missing data can fall into one of three missing

data mechanisms namely missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR).

Suppose Y = {Yobs,Ymis}, where Yobs are the observed values and Ymis are the

unobserved values and let M be a missing data indicator matrix of the same dimension

as Y where the value in row i and column j is equal to 1 if the value in Y is missing

and 0 if the value is observed. Data are MCAR if P (M|Y) = P (M) for all Y, that is,

the fact that the data are missing is not dependent on any observed values or potential

unobserved values for any of the variables in Y. This means that the probability that

a respondent does not report an item value is completely independent of the true

underlying values of all the observed and unobserved variables, Heeringa et al. (2010).

Missingness is completely unsystematic and the observed data can be regarded as a

random sub-sample of the hypothetically complete data. Thus inference can be carried

out with the observed data since they are representative of the complete sample as well

as the target population.

Missing data are MAR if missingness is related to other measured or observed vari-
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ables in the analysis, but not to the underlying values of the incomplete variable, that is

the hypothetical values that would have resulted had the data been complete, Baraldi

& Enders (2010). Thus MAR implies that P (M|Y) = P (M|Yobs) for all Y. The re-

sponse mechanism responsible for MCAR and MAR is termed ignorable, Rubin (1987)

and Pigott (2001).

Missing data are MNAR if they are neither MCAR nor MAR, that is if the missing

data are not at least MAR. Missing data are MNAR if missingness depends on both

the observed and unobserved values of Y, that is P (M|Y) = P (M|Yobs,Ymis) . The

MNAR mechanism is also called a non-ignorable missing data mechanism.

5.2.2.2 The multiple imputation procedure

Multiple imputation was originally proposed by Rubin (1987), and is a Monte Carlo

(or simulated based) technique formulated to replace each missing value with two or

more plausible values. Essentially each missing value is imputed m (≥ 2) di�erent times

using the same imputation method creatingm complete data sets free of missing values.

Each completed data set is analyzed using standard complete-data procedures as if the

imputed data were observed data obtained from the non-respondents. The overarching

idea is to use the observed values to provide indirect evidence about the likely values

of the unobserved ones. Thus MI is based on the MAR ignorable assumption.

Essentially, the multiple imputation procedure is carried out in three steps: 1)

imputing data under an appropriate model to obtain m `�lled in' data sets; 2) analyze

each data set separately to obtain desired parameter estimates and standard errors. The

estimates obtained are called multiply-imputed estimates, Rubin (1987), Pigott (2001)

and Schafer & Olsen (1998). 3) combining the results of the analyses from the m data

sets by �nding the mean of the m parameter estimates and a variance estimate that

accounts for the within-imputation and across-imputation variability using formulae

given by Rubin (1987). At the pooling stage, the m analyses are combined to produce
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uni�ed estimates and con�dence intervals that incorporate missing-data uncertainty.

There are several advantages of MI methods, see Rubin (1987), Schafer & Olsen

(1998) and Schafer (1999). Key among them being that inferences obtained from MI

are generally valid because they allow accounting for the uncertainty due to missing

data, Schafer (1997). In particular, the MI procedure is carried out in a repeated

random draws fashion under a model for the non-response. Thus (valid) inference that

re�ect the additional variability due to missing values under that model are obtained

by combining complete-data inferences. Key to this lies in correctly specifying the

imputation model.

Formally, following Rubin (1987), let θ be a population quantity to be estimated,

θ̂ = θ̂ (Yobs,Ymis) denote the statistic that would be used to estimate θ if complete

data were available and U = U (Yobs,Ymis) be its variance. In the presence of Ymis,

suppose that we havem ≥ 2 independent imputations, Y
(1)
mis, ...,Y

(m)
mis, one can calculate

the imputed data estimates θ̂(l) = θ̂
(
Yobs,Ymis

(l)
)
along with their estimated variances

U (l) = U
(
Yobs,Ymis

(l)
)
, l = 1, ...,m. The overall estimate of θ is given by the average

θ =
1

m

m∑
l=1

θ̂(l). (5.18)

The standard error of θ is obtained from the estimated total variance given by

T =
(
1 +m−1

)
B + U, (5.19)

where B is the between-imputation variance given by

B =

m∑
l=1

(
θ̂(l) − θ

)2
m− 1

and U is the within-imputation variance given by
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U =

m∑
l=1

U (l)

m
.

Tests and con�dence intervals are based on a Student's t− approximation

(
θ − θ

)
√
T
∼ tv

with degrees of freedom

v = (m− 1)

[
1 +

U

(1 +m−1)B

]2
The validity of the MI, to give reasonable predictions of the missing data, is depen-

dent on how well the m imputations were generated. Rubin (1987) suggested that the

imputations be generated following a Bayesian approach. That is, specify a parametric

model for the complete data, apply a prior distribution to the unknown model pa-

rameters and simulate m independent draws from the conditional distribution of Ymis

given Yobs. The current research regards the hierarchical logistic regression model as

the substantive analysis model.

5.2.3 The Data

Further to the data description given in section 2.2 the full sample consists of 17 434

respondents, 14 491 with non-missing values and 2 943 with missing values for at least

one measured variable. Table 5.1 gives the multilevel structure of the data for the cases

with non-missing observations and Table 5.2 gives the variables and their respective

percentages of missing values. The data depict an hierarchical structure in that indi-

viduals are nested within households and households are nested within EAs (clusters).

For the current research, the response variable is HIV status, a binary variable tak-

ing on either positive or negative. The explanatory (covariates) variables at individual
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level (level 1) are gender, age, education level, literacy level, employment status, place

of residence and marital status. At the household level (level 2) the explanatory vari-

ables considered are wealth index and religion. The explanatory variables considered

are those factors that are known to explain the variation in an individual's HIV status

as informed by the proximate-determinants conceptional framework as explained by

Boerma et al. (2003).

Table 5.1: Hierarchical structure of the 2010-11 ZDHS data

Provinces Level 3 Level 2 Level 1

Strata EAs (PSUs) HHs (SSUs) Individuals

Bulawayo 43 558 942

Harare 56 956 1801

Manicaland 46 915 1650

Mash Central 34 782 1550

2010-11
ZDHS
Data

Mash East 38 834 1457

Mash West 40 832 1630

Masvingo 38 775 1249

Mat North 36 699 1207

Mat South 35 764 1326

Midlands 40 829 1679

Total18 Units 406 7944 14491
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Table 5.2: Percentages of missing data per variable
Variable % Missing Values
HIV Status 15.90
Gender 0.00
Employment Status 1.26
Marital Status 4.37
Contraception 6.21
Wealth Index 4.23
Literacy Level 1.00
Religion 4.08
Educational Level 3.42
Place of Residence 0.99
Province 0.00
Age Group 1.06
Age 1.06

5.2.4 Statistical Software

We construct three level hierarchical logistic regression models using the lme4 package

by Bates et al. (2014) in R. In particular we utilized the function glmer to compute

a hierarchical logistic regression model, from a GLMM perspective, for HIV on the

demographic and socio-economic variables. The function allows speci�cation of the

link function such as the logit. Forward selection backward elimination model building

strategy was employed to select predictor variables. Testing for the signi�cant di�er-

ence in nested models was done via assessing the di�erence in the likelihoods (using

the deviances) with the G2 test based on comparing −2logΛ to the chi-square distribu-

tion. The package accommodates multiple nested levels of variability by incorporating

random e�ects at each level of the hierarchy.

In addition, we used the package mi in R by Gelman et al. (2015) to carry out

the multiple imputation procedures. The package uses a chained equation approach to

execute the imputations, see van Buuren & Groothuis-Oudshoorn (2011), using Markov

chain Monte Carlo (MCMC) with application of an iterative data augmentation tech-

nique as explained by Schafer & Olsen (1998). The approach allows speci�cation of
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the conditional distribution of each variable with missing values conditioned on other

variables in the data, and the imputation algorithm sequentially iterates through the

variables to impute the missing values using the speci�ed models. This is the so called

fully conditional speci�cation (FCS) modelling approach van Buuren & Groothuis-

Oudshoorn (2011). Depending on the variable type with missing values, Su et al.

(2011) gave examples of conditional distributions. For instance with variables that are

continuous, binary and counts a Bayesian version of the GLMs with a student-t prior

distribution are �tted. For the current research the prior distribution we used focuses

on the Cauchy distribution with center 0, degree of freedom 1 and scale 2.5.

In particular, as described by Su et al. (2011), the basic structure of the multiple

imputation procedure inmi package involves three steps after setup. These are the im-

putation, analysis and combining or pooling steps. The setup step involves a graphical

display of missing data patterns, identifying structural problems in the data and pre-

processing as well as specifying conditional models. In the imputation step, the iterative

imputation process is carried out based on the conditional models. After obtaining the

m complete data sets from the imputation step each of them is analyzed using the anal-

ysis model (the hierarchical logistic regression model in the current chapter) to answer

the scienti�c question of interest. Finally, the m analyses are pooled together using the

formulas provided by Rubin (1987) in the combining step to yield estimates appropri-

ate for desired inference and measures of within and between imputation variability is

provided.

5.3 Results and discussion

Separate hierarchical logistic regression models were �tted using both a complete case

analysis and a multiple imputation analysis. The �xed e�ects considered are the in-

dividual level demographic and socio-economic variables presented in Table 5.2 above.
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Since our response variable, HIV status is binary, a generalized linear mixed model with

a binomial logit link was used. Household and cluster level random e�ect terms were

included to account for variability at these higher levels of the hierarchy. The `best'

model obtained using the forward selection backward elimination method constructed

for the complete case analysis is given. For this current chapter, under the multiple

imputation analysis �ve data sets were imputed using the mi package in R. Table 5.3

gives the parameter estimates, standard errors and the p-values for the generalized

linear mixed e�ects models obtained using each of the two approaches.
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Table 5.3: Parameter estimates, standard errors and p-values for the generalized linear
mixed models under (a) multiple imputation analysis (b) complete case analysis

(a) Multiple imputation analysis (b) Complete case analysis
Estimate S.E. p-value Estimate S. E. p-value

Fixed E�ects
Intercept -3.556 0.178 <0.001 -4.119 0.247 <0.001
Gender

Male -0.288 0.220 0.162 -0.348 0.194 0.073
Age group

20− 24 1.070 0.155 <0.001 0.747 0.170 <0.001
25− 29 1.899 0.159 <0.001 1.543 0.179 <0.001
30− 34 2.365 0.175 <0.001 2.090 0.193 <0.001
35− 39 2.348 0.182 <0.001 1.878 0.195 <0.001
40− 44 1.826 0.183 <0.001 1.479 0.213 <0.001
45− 49 1.692 0.190 <0.001 1.204 0.222 <0.001
50− 54 1.118 0.197 0.043 1.260 0.303 <0.001

Marital Status
Married -0.325 0.129 0.004 0.051 0.143 0.721
Divorced 0.434 0.316 0.149 1.076 0.187 <0.001
Widowed 1.708 0.184 <0.001 2.633 0.254 <0.001

Place of Residence
Urban 0.190 0.084 0.012 0.203 0.084 0.015

Age*Gender
20− 24:Male -0.740 0.255 0.003 -0.765 0.285 0.007
25− 29:Male -0.687 0.262 0.008 -0.810 0.297 0.006
30− 34:Male -0.666 0.327 0.024 -0.830 0.315 0.008
35− 39:Male -0.221 0.283 0.414 -0.055 0.324 0.864
40− 44:Male 0.487 0.329 0.112 0.682 0.344 0.048
45− 49:Male 0.637 0.291 0.026 0.924 0.366 0.012

Age*Mar. Sta.
Married:Male 0.420 0.186 0.016 0.538 0.231 0.020
Divorced:Male 0.751 0.377 0.045 0.646 0.325 0.047
Widowed:Male 0.526 0.371 0.169 0.800 0.487 0.100

Random E�ects
Residual 0.461 0.281 0.875 0.247
Household 1.375 1.086 3.805 1.174
Cluster 0.206 0.329 0.034 0.351

The results, displayed in Table 5.3, show that the estimates obtained from the two

approaches are not necessarily identical but are in most of the cases consistent. Notable

di�erences are observed in the marital status variable where the married level e�ect is
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signi�cant under multiple imputation but non-signi�cant under complete case analysis,

the divorced level e�ect is non-signi�cant under the multiple imputation but signi�cant

under the complete case analysis. The 40− 44 : Male level e�ect of the age by gender

interaction e�ect is non-signi�cant under the multiple imputation but signi�cant under

the complete case analysis.

Noting that the model presented in Table 5.3 is for a binomial response with a logit

link, the coe�cients generate log-odds for a positive response. Hence interpretation of

the coe�cients take account that slopes or di�erences in factor levels are with respect

to the logit or log-odds function, that is, the marginal log-odds. To facilitate the

interpretation of the coe�cients, we present the odds ratios of a positive response, that

is of being HIV positive, in relation to the reference level for each coe�cient. The

results are displayed in Table 5.4.
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Table 5.4: Odds ratios and their corresponding 95% con�dence intervals for the best
models under multiple imputations and complete case analysis

(a) Multiple Imputation (b) Complete Case analysis
Parameter OR 95% CI OR 95% CI
Intercept 0.029 (0.020 , 0.040) 0.016 (0.010 , 0.026)
Gender

Male 0.750 (0.487 , 1.155) 0.706 (0.483 , 1.033)
Age group

20− 24 2.917 (2.154 , 3.950) 2.111 (1.513 , 2.945)
25− 29 6.682 (4.898 , 9.118) 4.679 (3.294 , 6.645)
30− 34 10.649 (7.559 , 15.002) 8.085 (5.538 , 11.802)
35− 39 10.461 (7.322 , 14.948) 6.540 (4.463 , 9.585)
40− 44 6.209 (4.338 , 8.888) 4.389 (2.891 , 6.662)
45− 49 5.429 (3.740 , 7.881) 3.333 (2.157 , 5.151)
50− 54 3.060 (2.078 , 4.502) 3.525 (1.947 , 6.385)

Marital Status
Married 0.723 (0.562 , 0.930) 1.052 (0.792 , 1.398)
Divorced 1.543 (0.830 , 2.869) 2.933 (2.033 , 4.231)
Widowed 5.520 (3.850 , 7.913) 13.915 (8.458 , 22.893)

Place of Res.
Urban 1.209 (1.026 , 1.425) 1.225 (1.039 , 1.444)

Age*Gender
20− 24:Male 0.477 (0.289 , 0.786) 0.465 (0.266 , 0.814)
25− 29:Male 0.503 (0.301 , 0.840) 0.445 (0.249 , 0.796)
30− 34:Male 0.514 (0.271 , 0.974) 0.436 (0.235 , 0.808)
35− 39:Male 0.801 (0.460 , 1.396) 0.946 (0.502 , 1.786)
40− 44:Male 1.627 (0.854 , 3.100) 1.978 (1.008 , 3.882)
45− 49:Male 1.891 (1.069 , 3.346) 2.519 (1.230 , 5.162)

Age*Mar. Sta.
Married:Male 1.522 (1.057 , 2.191) 1.713 (1.089 , 2.693)
Divorced:Male 2.120 (1.012 , 4.437) 1.908 (1.009 , 3.607)
Widowed:Male 1.692 (0.818 , 3.501) 2.226 (0.857 , 5.781)

The results show that males have lower odds of HIV than females, for instance for

the multiple imputation (OR = 0.750, 95% CI =0.487−1.155) and for the complete case

analysis, (OR = 0.706, 95% CI = 0.483− 1.033). However, the di�erence in the odds of

HIV between males and females is not statistically signi�cant as the con�dence intervals

contain a 1. Relative to the 15−19 age group, the odds of HIV increase with age, peaking

at the 30 − 34 for both approaches; OR = 10.649, 95% CI = 7.559 − 15.002, for the
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multiple imputation and OR = 8.085, 95% CI = 5.538 − 11.802 for the complete case

analysis. Under the multiple imputation, with reference to the single/never married the

odds of HIV are lower among the married (OR = 0.723, 95% CI = 0.562− 0.930), and

is higher among the divorced (OR = 1.543, 95% CI = 0.830− 2.869) and the widowed

(OR = 5.520, 95% CI = 3.850−7.913). However the odds of HIV for the married (OR =

1.052, 95% CI = 0.792−1.398), the divorced (OR = 2.933, 95% CI = 2.033−4.231) and

the widowed (OR = 13.915, 95% CI = 8.458− 22.893) are higher than the single/never

married under the complete case analysis. The interpretation is similar for the place of

residence variables. The age group by gender interaction indicates the additional e�ect

of gender on age group in in�uencing the odds of HIV for a given level relative to the

15 − 19 year old females. In particular for the multiple imputation case, the odds of

HIV are lower for the 20 − 24 year old males (OR = 0.477, 95% CI = 0.289 − 0.786),

for the 25 − 29 year old males, (OR = 0.503, 95% CI = 0.301 − 0.840) and for the

30 − 34 year old males (OR = 0.514, 95% CI = 0.271 − 0.974) relative to the 15 − 19

year old females. However the odds of HIV are higher for the 40 − 44 year old males

(OR = 1.627, 95% CI = 0.854−3.100) and for the 45−49 year old males (OR = 1.891,

95% CI = 1.069 − 3.346) as compared to the 15 − 19 year old females. Overall for

the gender by age group interaction, there is an increasing e�ect of gender on age

group on the odds of HIV among the young females as compared to the young males

whereas there is an increasing e�ect of gender on age group on the chances of being

HIV positive among the older males as compared to older females. Essentially, this

implies that young females are at a higher risk of being HIV positive than young males

whereas older males are at a relatively higher risk of being HIV positive compared

to older females. This is in agreement with a general belief in the most sub-Saharan

African countries that young females engage in sexual relationships with older men.

There is a slight increasing e�ect of gender on marital status on the odds of HIV,

for instance under the multiple imputation case for the married (OR = 1.522, 95%
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CI = 1.057 − 2.191), divorced (OR = 2.120, 95% CI = 1.012 − 4.437) and widowed

(OR = 1.692, 95% CI = 0.818− 3.501) as compared to the single females. The results

for the complete case analysis can be interpreted in a similar way.

For the random e�ects, the results give the household level and the cluster level

variabilities. In particular the household to household variability accounts for greater

variation in HIV as compared to cluster level for both approaches. This is indicated by

larger values for the variance components for the household level, (σ2
u = 1.375), than for

the cluster level (σ2
v = 0.206) displayed in Table 5.3 above. The corresponding estimated

intra-household correlation coe�cient is (1.375+0.206)/(1.375+0.206+0.461) = 0.774

whereas the intra-cluster correlation coe�cient is 0.206/(1.375+0.206+0.461) = 0.101.

This implies that the outcomes or responses within a household are more strongly

correlated than those from two di�erent households. This in a way makes sense since in

Africa HIV transmission tends to be (spatially) homogeneous. Thus if one of the couple

member living together is infected there is a high probability that the other member

is also infected. Both the intra-household and intra-cluster correlation coe�cients are

nonzero which justi�es the use of the multilevel approach to the analysis.

5.4 Conclusion

The analysis of survey data that depict a hierarchical structure need to account for

the variability induced by the multi-layering and the clustering of the data that results

from the prominent features of the underlying population. We computed hierarchical

or multilevel logistic regression models for HIV on demographic and socio-economic

variables using a complete case analysis and multiple imputation analysis. The multi-

level modelling approach provides a framework for accounting for the di�erent sources

of variability in the response that are nested within the di�erent layers of the hierar-

chy. It was established that HIV prevalence depends on an individual's age, gender,
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marital status, place of residence and age-gender and gender-marital status interaction

e�ects. The results also showed a substantial household-to-household variability and a

relatively small variability in HIV prevalence hence a high intra-household correlation

coe�cient.
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Chapter 6

A Bayesian logistic regression for

estimating risk of HIV using

population-based survey data

Abstract

Statistical models that incorporate prior known information about the unknown model

parameters are vital in scienti�c and health research especially in studies where replica-

tive experimental investigations are not possible. The Bayesian statistical paradigm is

designed to allow for combining prior knowledge about model parameters with the ap-

propriate likelihood of the observed data to obtain a posterior distribution. Under the

Bayesian framework, likelihood based methods are often used for parameter estimation

whilst statistical inference is carried out based on the posterior distribution. Computer-

intensive simulation-based algorithms such as the Markov chain Monte Carlo (MCMC)

methods are then used to draw samples from the posterior distribution to be used for

the statistical inference purposes. Diagnostics in the form of trace plots and Geweke

plots together with the Hiedelberger test for stationarity are used to assess convergence,
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which is a necessary requirement of the Markov chains.

There has been a host of prior knowledge about HIV/AIDS that can be combined

with the likelihood of the observed data to enhance explaining the variation of HIV

prevalence. Use of population-based survey data also facilitates linking of HIV to de-

mographic, socio-economic and behavioural factors of the respondents. A Bayesian

logistic regression model is �tted from a generalized linear modelling (GLM) perspec-

tive for HIV on demographic and socio-economic factors using the 2010-11 Zimbabwe

Demographic and Health Surveys (2010-11 ZDHS) data. A non-informative t-family

Cauchy prior distribution was utilized for the unknown model parameters. It was estab-

lished that HIV prevalence is dependent on one's gender, age, marital status, place of

residence, literacy level and the age by gender and gender by marital status interaction

e�ects.

6.1 Introduction

Statistical models that incorporate prior known information about the unknown param-

eters are vital in scienti�c and health research. Incorporation of such prior knowledge

into a statistical analysis of HIV has the potential to enhance the quality of the sta-

tistical results. The Bayesian approach to statistical analysis allows the incorporation

of prior knowledge about the parameters often expressed as distributions. Speci�cally

the Bayesian framework works by combining prior information about unknown model

parameters with the appropriate likelihood of the observed data to give a posterior

distribution.

The fundamental ideas as described in Bolstad (2007), Press (1989), Rai�a &

Schlaifer (1961), Bernardo & Smith (1994), Lesa�re & Lawson (2012) and Gill (2009)

that form the basis of the Bayesian analysis framework are:

• The unknown model parameters are considered to be random variables and hence
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are speci�ed by prior distributions.

• Probability statements are interpreted as measures of `degree of belief'.

• The Bayes' theorem, that underlies the Bayesian analysis, is used to revise the

beliefs about the parameters in light of the observed data to obtain the poste-

rior distribution. The posterior distribution gives the relative weights to each

parameter value after analyzing the sample data.

The relationship between the prior distribution, the observed data and the posterior dis-

tribution is expressed as posterior = prior× likelihood, see Gill (2009), Bolstad (2007)

and Press (1989). The Bayesian approach has a number of attractive features particu-

larly as compared to the frequentist for statistical analysis. These features include the

that the approach allows a consistent way to modify one's belief about the parameters

given the data that actually occurred, implying that inference is based on actual data

not on all possible data sets that might have occurred (as in the frequentist approach)

as presented by Rao (2011), Rai�a & Schlaifer (1961) and Bolstad (2007). Allowing the

parameter to be a random variable enables one to make probability statements about it

(the parameter) a posteriori to observing the data. However, many practical analyses

utilize both approaches in a complementary way in which design-based inferences can be

derived from the Bayesian perspective, using frequentist models with non-informative

(as de�ned below) prior distributions.

The debates and disagreements around the merits and/or the demerits of the fre-

quentist and the Bayesian approach to statistical analysis emanate mainly from the

di�ering fundamental interpretations of probability. As described in Bolstad (2007),

frequentists de�ne probability as long-run tendencies of events that eventually converge

on some true population proportion whereas Bayesians interpret probability as �degree

of belief�. The Bayesian philosophy implies that prior distributions are descriptions of

relative likelihoods of events based on past experience, personal intuition or expert opin-
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ion, and posterior distributions are those prior distributions updated by conditioning

on new observed data.

Central to the Bayesian paradigm is the choice of priors (see for example Press

(1989) and Lesa�re & Lawson (2012)) with an option of choosing between conjugate,

informative and non-informative. However the subjectivity surrounding the choice of a

model and the prior, and the problems stemming from model mis-speci�cation provide a

basis for most of the critics for Bayes methods, Rai�a & Schlaifer (1961) and de Finetti

(1937).

The current chapter focuses on a logistic regression model for HIV �tted from a

GLM perspective utilizing the Bayesian statistical analysis framework. Essentially we

constructed the model with the assumption that the parameters are random variables

that have to be assigned a probability distribution, that is, the prior distribution and

obtain the likelihood of the observed data. The approach enables utilization of the

knowledge about HIV obtained from past studies as prior information together with

the likelihood of the observed data.

It is argued that the Bayesian analysis paradigm works well over a frequentist ap-

proach in biological, health and social science research, see for example Bolstad (2007)

and Press (1989). This is mainly due to the availability of immense prior data infor-

mation on most of the phenomena in these �elds. For instance, information such as

susceptibility variations to HIV among males and females, between urban and rural res-

idents, between the literate and the non-literate and across di�erent marital statuses.

Furthermore, most phenomena do not allow the replicative experimental nature of the

randomization process responsible for the stochastic data generating mechanism, which

is the cornerstone of the frequentist approach.

The chapter is organized as follows. Section 6.2 presents the fundamental theory

underlying the Bayesian statistical analysis framework in general and the Bayesian

logistic regression in particular. Descriptions of the data and statistical computing
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resources used are also given in this section. Section 6.3 gives the results and discussion

of the results. Concluding remarks are given in Section 6.4.

6.2 Methods

6.2.1 An overview of the Bayesian methods

We present a brief outline of the fundamental principles underpinning the Bayesian sta-

tistical analysis. Suppose that we have an observable random vector y with probability

mass (or density for continuous) function f (y|θ) , where θ denotes an unobservable

parameter. The Bayes' theorem as given by Press (1989), asserts that the probability

function of θ, for a given value of y is expressed as

p (θ|y) =



f(y|θ)g(θ)∑
θ f(y|θ)g(θ)

for a discrete parameter

f(y|θ)g(θ)´
f(y|θ)g(θ)dθ for a continuous parameter

(6.1)

Here p (θ|y) is called the posterior probability function of θ given the observed data,

and g (θ) is the prior probability function of θ. Since the denominators of Equation 6.1

depends only on the y′s, we can write

p (θ|y) ∝ p (y|θ) g (θ)

where ∝ denotes proportionality and p (y|θ) denotes the likelihood function.

6.2.1.1 The prior distributions

Incorporating prior information in Bayesian analysis is argued to make the approach

more attractive to most empirical research, Press (1989) and Lesa�re & Lawson (2012).

The three main classes of priors are the conjugate, the informative and the non-
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informative. Priors are often expressed probabilistically or using a distribution by

which their parameters are called hyper-parameters.

A prior distribution and a posterior distribution (as given in Sub-subsection 6.2.1.3

below) are said to be conjugate distributions if they both come from the same family of

distributions, Rai�a & Schlaifer (1961), Lindley (1965) and Bernardo & Smith (1994).

For instance most known distributions belong to the exponential family of distributions,

see McCullagh & Nelder (1989), Dobson & Barnett (2008) and Lesa�re & Lawson

(2012), and have priors that come from the same family.

An informative prior is one that summarizes the evidence about the parameters

concerned from various sources and usually has a signi�cant impact on the results. It

provides speci�c and de�nite information about a parameter. This usually comes in the

form of historical data mainly from past studies and priors based on expert knowledge

see Lesa�re & Lawson (2012), Spiegelhalter et al. (2003), Kass & Wesserman (1996) and

Vail et al. (2001). On the other hand, a non-informative prior, also referred to as non-

subjective, objective or reference prior, as de�ned by Box & Tiao (1973) and Bernardo

& Smith (1994) is one that provides little information relative to the experiment or

gives minimal e�ect relative to the data. A non-informative prior is often regarded as

formal representation of ignorance. Non-informative priors that are not a distribution

or that have an in�nite area under the curve are called improper priors, Lesa�re &

Lawson (2012), Press (1989) and Bernardo & Smith (1994).

6.2.1.2 The likelihood

The concept of the likelihood, as �rst introduced by Fisher (1922), expresses the plausi-

bility of the observed data given as a function of the parameters of a stochastic model.

Essentially, the likelihood contains information provided by the observed sample.

Suppose that y, (y1, ..., yn) denotes the observed data and θ denotes an unobservable

parameter, the likelihood function, denoted by p (y|θ) is given by
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p (y|θ) =
n∏
i=1

p (yi|θ)

The likelihood function can be viewed as representing the plausibility of θ in light

of the data and the value of θ that maximizes p (y|θ) is called the maximum likelihood

estimate (MLE). The observed data y a�ect the posterior distribution through p (y|θ) .

Of importance to note is that Bayesian inferences are based on the probabilities as-

signed due to the observed data, not due to other imaginary data (as in the frequentist

approach) that might have been observed. It is argued that adherence to the likelihood

principle implies that inferences are conditional on observed data since the likelihood

function is parameterized by the data.

6.2.1.3 The posterior distributions

Under the Bayesian approach, the posterior distribution contains all the information

of interest, as it combines the prior information and the likelihood of the data. The

posterior distribution is usually presented as (a) summary measures for location and

variability; (b) interval estimators for the parameters of interest, and (c) the posterior

predictive distribution (PPD) used to predict future observations.

The three most commonly used measures of location are the posterior mode, the

posterior mean and the posterior median. The posterior mode is de�ned by θ̂M =

arg maxθp (θ|y) , and gives the value of θ for which p (θ|y) is maximal. The pos-

terior mean is de�ned by θ =
´
θp (θ|y) dθ, which minimizes the squared loss, that

is
´ (

θ − θ̂
)2
p (θ|y) dθ. The posterior median is the solution to the equation 0.5 =

´
θM
p (θ|y) dθ. A measure of variability which determines the shape of the distribution

is the posterior variance, σ2 (together with the posterior standard deviation σ) de�ned

as σ2 =
´ (

θ − θ
)2
p (θ|y) . A range of plausible parameter values of θ, termed the cred-

ibility interval, with probability 1− α can be obtained from the posterior distribution.

Formally, an interval [a, b] is a 100(1− α)% credibility interval for θ if
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P (a ≤ θ ≤ b|y) = 1− α.

A PPD is the distribution of unobserved observations conditional on the observed

data. Suppose p (y|θ) be the distribution of y and assume an i.i.d. sample y ≡

{y1, ..., yn} is available and suppose we wish to predict future observations ỹ or sets

of observations ỹ, that is, we wish to obtain the distribution of ỹ that belongs to the

same population as the observed sample. Then the distribution of ỹ is the PPD and is

given by

p (ỹ|y) =

ˆ
p (ỹ|θ) p (θ|y) dθ.

Lesa�re & Lawson (2012) gave examples of posterior distributions and PPD under such

distributions as binomial for binary data and Poisson for count data.

6.2.1.4 Determining the posterior distribution

Under the Bayesian analysis, proper determination of the posterior distribution is key

for valid statistical inference. The two most popular techniques available are the nu-

merical integration and sampling from the posterior distribution.

There are several techniques available for approximating integrals numerically. In

the Bayesian framework, as described by Bauwens et al. (2000), the aim is to obtain

posterior densities that can be summarized by posterior expectations, variances and

graphs of marginals. Essentially, the idea is to evaluate integrals that correspond to

moments of the posterior density. Suppose g (θ) is a function of θ having the density

p (θ|y) , interest is in computing

E [g (θ)] =

ˆ
g (θ) p (θ|y) dθ. (6.2)

In most practical complex problems the integral in Equation 6.2 has no known
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analytical solution and it is not analytically tractable, hence the use of numerical inte-

gration giving an approximation of the integral. Suppose that we can write Equation

6.2 as the integral of h (θ) = g (θ) p (θ|y) , numerical integration rules approximate the

integral of h by a weighted average of values of h given by

ˆ
h (θ) dθ ≈

n∑
j=1

wjh (θj) j = 1, ..., n, (6.3)

where wj are positive weights summing to 1. Taking cognisance of the fact that an

integral is a measure of area, the fundamental idea behind Equation 6.3 is to split the

integration space into small parts in order to evaluate the area of each part as wjh (θj)

and to sum the areas of the small parts. Di�erent methods of numerical integration

are determined by the rules used to choose the points to split the area and the weights.

Common rules fall into two main categories; deterministic and stochastic (Monte Carlo

methods). Under deterministic rules, points are chosen systematically in order to cover

the whole space with a grid, whereas under the stochastic, points are chosen randomly,

according to some probability distribution.

Under the stochastic rules, the points are chosen in areas where the integrand varies

the most, in most cases resulting in fewer points than the deterministic rules. The

Monte Carlo methods are simulation-based and use random numbers generated from

some probability distribution, to generate samples from the posterior see for example

Robert & Casella (1999). Examples of the Monte Carlo methods are the Gibbs sampling

and Metropolis-Hastings sampling which are based on simulating dependent samples of

a Markov chain type resulting in what is called Markov chain Monte Carlo (MCMC)

sampling. MCMCs are algorithm-based and do not use integration.

The Gibbs sampling, as �rst introduced by Geman & Geman (1984), is a randomized

algorithm for obtaining a sequence of observations which are approximated from a

speci�ed probability distribution, Robert & Casella (1999), Hastings (1970) and Dey

et al. (2000). It generates a Markov chain of samples, with neighbouring samples being
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correlated. To illustrate the Gibbs sampling procedure, suppose that we are interested

in sampling from the posterior p (θ|y) , where θ is a vector of two parameters, θ1 and

θ2. The sampling procedure is initiated by a starting value for the parameters, say

θ(0), for θ
(0)
1 and θ

(0)
2 and then explore the posterior distribution by generating θk1 and

θk2 , where k = 1, 2, ... in a sequential order. Basically, given θk1 and θk2 at iteration k,

the (k + 1) th value for each of the parameters is generated according to the following

iterative scheme:

• Draw θ
(k+1)
1 from p

(
θ1|θk2 ,y

)
;

• Draw θ
(k+1)
2 from p

(
θ2|θ(k+1)

1 ,y
)
.

Then the Gibbs sampler produces a sequence of values θk =
(
θk1 , θ

k
2

)T
, k = 1, 2, ...

which are dependent and create a chain. Summary measures such as the mode or the

mean from the chain estimate the true posterior measures.

The Metropolis-Hastings algorithm, as �rst introduced by Metropolis et al. (1953)

and further extended by Hastings (1970) is an MCMC procedure, that, unlike the Gibbs

sampler, does not require the full conditionals. For the Metropolis-Hastings algorithm,

suppose that a Markov chain is at θk at the kth iteration when exploring the posterior

distribution p (θ|y) , and denote the next position in the chain by θ̃. The algorithm

uses an acceptance rejection criterion to make iterations. A new position is accepted if

it is in an area of higher posterior mass see Lesa�re & Lawson (2012), otherwise it is

accepted with a certain probability. A proposal density evaluated for θ̃ at iteration k is

denoted as q
(
θ̃|θk

)
. If θ̃ is accepted, that is if θk+1 = θ̃, then a next move to θ̃ is made,

however if θ̃ is rejected the process stays at θk. The probability of accepting a proposed

value depends on the posterior distribution. When the candidate position lies in an

area where the posterior distribution has a higher value, that is p
(
θ̃|y
)
/p
(
θk|y

)
> 1,

then the move will always be made, whereas when the candidate position lies in as area

where the posterior distribution has a lower value, that is p
(
θ̃|y
)
/p
(
θk|y

)
< 1, then
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the move will be made with probability r = p
(
θ̃|y
)
/p
(
θk|y

)
. The process continues

until convergence.

6.2.1.5 Convergence diagnostics for a Markov chain

Use of Markov chain techniques are based on the property that the generated chain

ultimately provides a sample from the posterior distribution and that the summary

measures computed consistently estimate the corresponding true posterior summary

measures, Robert & Casella (1999) and Lesa�re & Lawson (2012). The ideal is for the

chain to converge to a stationary distribution, that is the target posterior distribution.

Convergence techniques in an MCMC algorithm are aimed at checking how close the

process is to the true posterior distribution.

The convergence in an MCMC algorithm is an asymptotic property which implies

that the distribution of θk, that is pk (θ) converges to the target distribution p (θ|y) as

k → ∞, where k are the number of iterations, see Lesa�re & Lawson (2012), Brooks

(1998) and Brooks & Roberts (1998). Evaluating convergence of a chain involves as-

sessing convergence of the marginal posterior distributions by checking how well the

chain is mixing, or moving around the parameter space.

Several tests, both graphical and statistical that can be used to check convergence

are available via convergence diagnostics. Basically the diagnostics are used to check

for stationarity of the chain and verify the accuracy of the posterior summary measures.

Various convergence diagnostics are available and for the current research, we utilize the

trace plots, the Geweke plots and the Heidelberger-Welch test as described by Lesa�re

& Lawson (2012), Brooks & Roberts (1998) and Brooks (1998).

The trace plots are plots of iteration number against the value of the draw of the

parameter at each iteration. Trace plots are produced for each parameter separately

and the evaluations are done univariately. A chain that is stationary forms the informal

�thick pen� as explained by Gelfand et al. (1990). A trace plot that depicts dependence
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of the chain on its initial state by revealing an upward or downward trend is indicative

of gross deviations from stationarity.

The Geweke diagnostic suggested by Geweke (1992), is based on comparing the

means of an early and a late part of the chain using a signi�cant test. Suppose that

there are n values θk assumed to be i.i.d. and that they are split into two parts: the

early part (A) with nA elements and the late part (B) with nB elements with posterior

means θA and θB respectively. The means can be compared using a Z − test based on

Z =
θA − θB√

s2A/nA + s2B/nB
, (6.4)

where s2A and s2B are the classical estimates of the respective variances. However,

elements of a Markov chain are dependent, thus another estimator of variances is needed.

A spectral density concept based on a time series approach is utilized. To ensure that

θA and θB are independent Geweke (1992) suggested taking for A the initial 10% of the

iterations, nA = n/10, and for B the last 50%, nB = n/2 to create a distance between

the two parts. Then, if the ratios nA/n and nB/n are �xed, with (nA + nB) /n < 1,

then it is known that, Lesa�re & Lawson (2012) and Brooks & Roberts (1998),

Z =
θA − θB√

s2A/nA + s2B/nB

d−→ N (0, 1) as n→∞ (6.5)

The result is used to test the null hypothesis of equal location. The null hypothesis

is rejected if |Z| is large, indicating that the chain has not converged by iteration k.

The Heidelberger-Welch (HW) diagnostic proposed by Heidelberger &Welch (1983),

is an automated test for checking the stationarity of the chain and further evaluate

whether the length of the chain is su�cient to ensure desired accuracy for the posterior

means of the parameters. The test is based on the Cramer-von Mises test statistic to

decide to either accept or reject the null hypothesis that the chain is from a stationary

distribution. The test consists of two steps: checking stationarity and determining
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accuracy.

Under the �rst step, based on say N, iterations, a test statistic is calculated and

the null hypothesis of stationarity is either rejected or accepted. If rejected, the �rst

10% of the chain is discarded and another test statistic is calculated on the remaining

90%. This process continues until the null hypothesis is accepted or if 50% of the chain

is discarded at which stage the chain fails the test and needs to be run longer. For

the second step, the part of the chain not discarded is considered and half-width of

the (1− α) % credible interval around the mean calculated. A threshold value ε, say,

is determined and if the ratio of the half-width and the mean is lower than ε, then the

chain passes the test, otherwise it must be run longer.

6.2.2 Bayesian logistic regression

We consider a Bayesian logistic regression modelling from a generalized linear modelling

(GLM) framework as described by Dey et al. (2000). In general, a GLM approach as

�rst introduced by Nelder & Wedderburn (1972) and modi�ed by McCullagh & Nelder

(1989) provides a �exible and uni�ed approach to analyzing both normal and non-

normal data. Initially, application of the GLM often take a classical approach, however

the availability of complex and high speed software routines have witnessed a rapid

growth in Bayesian analyses carried out through GLMs. The fundamental idea of a

GLM is based on the assumption that the underlying distribution of responses belong

to the exponential family of distributions, and a link function transformation of its

expectation is modelled as a linear function of observed covariates. Furthermore, it is

assumed that the variance of the response is a speci�ed function of its mean. Formally,

let y = y1, ...yn denotes a vector of observed data for a random variable, X denotes a

design matrix of covariates (x1, ..., xn), under the classical notation a distribution that
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belongs to the exponential family of distribution can be expressed in the form

f (y; θ, φ) = exp

[
yθ − b (θ)

a (φ)
+ c (y;φ)

]
, (6.6)

where a (.) , b (.) and c (.) are known functions and θ and φ are a speci�c set of

unknown parameters. In most practical applications, a (φ) = φ/w, where w is a prior

weight. The classical estimation procedure is the maximum likelihood. With reference

to Equation 6.6, the log-likelihood function is given by

l = l (θ, φ; y) = logf (y; θ, φ) . (6.7)

Under a GLM approach, the mean µ is related to the covariates via a monotone di�er-

entiable (link) function g (µ) given by

g (µ) = η =

p∑
j=1

xjβj = XTβ,

where β is a vector of parameters. The maximum likelihood estimates are obtained as

iterative solutions of the log-likelihood equations

∂l

∂βj
= 0.

see McCullagh & Nelder (1989), Dobson & Barnett (2008) and McCulloch & Searle

(2001).

For the logistic regression, let Y be a binary response variable taking on values

[0,1], and let X1, ..., Xp be a set of explanatory variables. Suppose that π (xi) =

P (Y = 1|X = xi) denotes the conditional probability that Y = 1 given the explanatory

variables for subject i.

Then the logistic regression is given as a probability of success as
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π (xi) = g−1
(
x

′

iβ
)

=
exp{x′

iβ}
1 + exp{x′

iβ}
.

The likelihood contribution from the ith subject is

Li =

(
exp{x′

iβ}
1 + exp{x′

iβ}

)yi (
1− exp{x′

iβ}
1 + exp{x′

iβ}

)(1−yi)

.

Under the ordinary logistic regression, subjects are independent hence the likelihood

function over all say, n subjects is given by

L =
n∏
i=1

[(
exp{x′

iβ}
1 + exp{x′

iβ}

)yi (
1− exp{x′

iβ}
1 + exp{x′

iβ}

)(1−yi)
]
. (6.8)

Under a Bayesian framework, the prior distributions are the respective distributions

of the set of parameters β0, β1, ..., βp. Options for priors depend on available information.

The most common priors are of the form

βj ∼ N
(
µj, σ

2
j

)
, σ2

j ∼ inv− χ2
(
vj, s

2
j

)
, (6.9)

where µj is often taken to be zero and σ is usually chosen to be large enough in

order for the prior to be non-informative, v and s denote degrees of freedom and scale

for the t− distribution respectively.

The posterior distribution is obtained by combining the full likelihood function

(Equation 6.8) and the prior (Equation 6.9) to obtain
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posterior =
n∏
i=1

[(
exp{x′

iβ}
1 + exp{x′

iβ}

)yi (
1− exp{x′

iβ}
1 + exp{x′

iβ}

)(1−yi)
]

×
n∏
j=0

1√
2πσj

exp

{
−1

2

(
βj − µj
σj

)2
}
.

The posterior distribution above does not have a closed form expression, that is it

is not analytically tractable, thus the sampling algorithm explained in Section 6.2.1.4

above, are utilized.

6.2.3 Statistical computing

All the analyses for this chapter were done in R packages, Team (2013). In particular,

the package arm (applied regression and multilevel modelling) by Gelman et al. (2010)

was used to compute the Bayesian logistic regression via the function bayesglm. The

function allows speci�cation of independent prior distributions for the parameter in the t

family of distributions. Speci�cally, we considered the non-informative Student-t family

of prior distributions described by Gelman et al. (2008), that focuses on the Cauchy

with center 0, degrees of freedom v and scale s. The scale, s is chosen to provide minimal

prior information in order to constrain the coe�cients to lie within a seasonable range.

Furthermore, the choice of the prior was informed by the need to accommodate what

Gelman et al. (2008) termed a longer-tailed version of the distribution by assuming one-

half additional success and one-half additional failure in a logistic regression. The prior

distribution is incorporated in the estimation by altering the weighted least squares via

augmenting the approximate likelihood with the prior distribution.

For statistical inference, the empirical distribution of the simulate values was ob-

tained based on iterative draws from the posterior distribution using the package

MCMCpack by Martin et al. (2013). Summary measures (the mean and median)

were computed from the MCMC simulates and were used for the inference. Assessing
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convergence was done using package mcmcplots in R by Curtis et al. (2015). In par-

ticular, trace plots and Geweke plots were constructed for the parameters and selected

ones are displayed. Furthermore, a Heidelberger-Welch test was also performed in the

MCMCpack package.

6.3 Results and discussion

For the current research, we considered 14 491 respondents who had complete informa-

tion regarding the relevant variables discarding all the units with missing values. Here

missing data were assumed missing completely at random (MCAR) and the observed

complete cases were regarded as a random sample of the full sample and possibly the

target population, Pigott (2001) and Rubin (1976). The HIV test results indicated that

12 103 (83.52%) were HIV negative and 2 388 (16.48%) were HIV positive. Basic plots,

univariate summary statistics and design-consistent tests for association (results not

shown here) were used to explore relationships between the response and the predictor

variables and also to select signi�cant predictor variables. The signi�cant predictor

variables were age, gender, marital status, literacy level and place of residence. The lit-

eracy level was measured in terms of one's ability to read and write as: the non-literate

were classi�ed as those who cannot read nor write; the partially literate were those who

could read or write part of a sentence; and the literate were those who could read and

write a full sentence. We also included interaction terms for age and gender and age

and marital status. In the interpretation of the results, for the categorical variables, we

adopted the reference cell approach.

Table 6.1 gives parameter estimates, standard errors, p-value for the estimates for

the posterior distribution. Independent t-distributions with conditional means that

corresponds to the parameter estimates obtained from an ordinary logistic regression

model and scales 10 for intercept and 2.5 for the other coe�cients were used.
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Table 6.1: Parameter estimates, standard errors and p-values for the posterior distri-
bution for the observed data using a non-informative prior distribution

Parameter Estimate S. E. p-value
Intercept -3.257 0.153 < 0.001
Gender

Male -0.247 0.174 0.156
Age group

20− 24 0.938 0.144 < 0.001
25− 29 1.596 0.145 < 0.001
30− 34 1.951 0.149 < 0.001
35− 39 1.922 0.153 < 0.001
40− 44 1.456 0.166 < 0.001
45− 49 1.328 0.174 < 0.001
50− 54 0.640 0.772 0.718

Marital status
Married -0.060 0.108 0.574
Divorced 0.726 0.132 < 0.001
Widowed 1.594 0.142 < 0.001

Place of residence
Urban 0.189 0.052 < 0.001

Literacy
Partially 0.450 0.128 < 0.001
Literate 0.177 0.105 0.094

Gender*Age group
20− 24 : Male -0.776 0.240 0.001
25− 29 : Male -0.674 0.241 0.005
30− 34 : Male -0.631 0.251 0.012
35− 39 : Male -0.246 0.256 0.337
40− 44 : Male 0.487 0.268 0.069
45− 49 : Male 0.678 0.282 0.016

Gender*Marital status
Married : Male 0.419 0.179 0.019
Divorced : Male 0.555 0.232 0.017
Widowed : Male 0.637 0.319 0.046

Convergence diagnostic tests as explained in section 6.2.1.5 above to assess the

convergence of the Markov chain before obtaining the descriptive summary statistics for

the parameters. The posterior distribution was obtained after two thousand iterations

performed gradually and assessing convergence at every stage. Figure 6.1 gives the

trace plots for a few of the parameters of the posterior distribution obtained by the
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MCMC algorithm as explained in section 6.2.1.5 above. All the trace plots do not

display any signi�cant upward or downward trend along the iterations and the density

plots also show almost symmetrical distributions. In particular the trace plots exhibit

the so called �thick pen� as described by Gelfand et al. (1990). This is indicative of

insigni�cant deviations from stationarity and the MCMC algorithm can be considered

to have converged.
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Figure 6.1: Trace plots and density plots for the �rst six coe�cients from the posterior
distribution

Figure 6.2 gives the Geweke plots for selected parameters. As a rule of thumb, a

signi�cant proportion of Z-scores outside the two-standard deviation bands is indicative

of a chain that has not converged by iteration k. The results in Figure 6.2 show that all
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the Z-scores fall within the two-standard deviation bands for the parameters gender,

and age groups 20 − 14, 25 − 29 and 30 − 34 whereas there is a negligible proportion

for the Z-scores under the intercept and age group 35− 39 that are outside the bands.

This is a strong indication of a chain that has converged by iteration 2000.
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Figure 6.2: Geweke plots for the �rst six coe�cients from the posterior distribution

We also considered the Heidelberger-Welch diagnostic test. The results of a test

with ε = 0.1 show that most of the parameters have passed the stationarity test except

for male, age group 50 − 54, the married level for marital status, the literate level for

literacy and the gender by age group interaction terms 35− 39 :M and 40− 44 :M. All

the parameters passed the half-width test indicating that the chain was run su�ciently
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long. Table 6.2 gives the summary measures, in the form of means, standard deviations

and the 95% credibility intervals from the empirical distribution. These are used to

perform statistical inference about the individual parameters.

Table 6.2: Summary measures (mean, median, standard deviation and credibility in-
tervals) for the coe�cients obtained from the posterior distribution

Parameter Mean Median St. Dev. 95% Credibility interval
Intercept -3.261 -3.259 0.149 (−3.509 , −2.932)
Gender

Male -0.243 -0.252 0.173 (−0.593 , 0.063)
Age group

20− 24 0.938 0.921 0.145 (0.621 , 1.242)
25− 29 1.627 1.619 0.141 (1.344 , 1.898)
30− 34 1.973 1.974 0.152 (1.683 , 2.242)
35− 39 1.940 1.925 0.161 (1.645 , 2.255)
40− 44 1.460 1.459 0.159 (1.177 , 1.768)
45− 49 1.352 1.353 0.164 (1.061 , 1.659)
50− 54 0.972 0.885 0.933 (−3.009 , 4.346)

Marital status
Married -0.078 -0.073 0.108 (−0.329 , 0.146)
Divorced 0.725 0.723 0.136 (0.476 , 1.014)
Widowed 1.585 1.602 0.163 (1.281 , 1.864)

Place of residence
Urban 0.183 0.180 0.053 (0.093 , 0.288)

Literacy
Partially 0.440 0.444 0.128 (0.219 , 0.673)
Literate 0.174 0.175 0.109 (−0.030 , 0.364)

Gender*Age group
20− 24 : Male 0.773 -0.745 0.226 (−1.163 , −0.393)
25− 29 : Male -0.714 -0.700 0.252 (−1.162 , −0.354)
30− 34 : Male -0.642 -0.616 0.288 (−1.285 , −0.107)
35− 39 : Male -0.251 -0.252 0.288 (−0.777 , 0.265)
40− 44 : Male 0.493 0.515 0.292 (−0.051 , 1.004)
45− 49 : Male 0.670 0.692 0.306 (0.083 , 1.202)

Gender*Marital status
Married : Male 0.435 0.410 0.189 (0.097 , 0.784)
Divorced : Male 0.536 0.539 0.237 (0.121 , 0.975)
Widowed : Male 0.653 0.613 0.350 (−0.148 , 1.250)

The results in Table 6.1 show that HIV status is dependent on one's age, gender,

marital status, literacy level and place of residence (rural or urban). The interaction

140



terms for age and gender, and age and marital status were also included in the model

as they were found to be signi�cant. In the Bayesian paradigm, the interpretation

of the credibility interval is that, there is a 95% probability that the true parameter

(for respective interval) is included in the given interval. For instance, for the the co-

variate gender, there is a 95% probability that the true parameter falls in the interval

(−0.243 , 0.063). It is important to know that the covariate gender was included, al-

though it is non-signi�cant, because its interaction with age and with marital status

are signi�cant. We computed the odds ratios for the means that are presented in Table

6.2 in order to facilitate the interpretation of the model parameters. The results are

displayed in Table 6.3.
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Table 6.3: Odds ratios and credibility intervals for parameter estimates obtained from
simulating from the posterior distribution

Parameter OR 95% Credibility intervals
Intercept 0.039 (0.029 , 0.052)
Gender

Male 0.781 (0.557 , 1.096)
Age group

20− 24 2.555 (1.923 , 3.395)
25− 29 4.933 (3.742 , 6.504)
30− 34 7.036 (5.223 , 9.477)
35− 39 6.835 (4.985 , 9.370)
40− 44 4.289 (3.140 , 5.857)
45− 49 3.773 (2.736 , 5.204)
50− 54 1.896 (0.305 , 11.807)

Marital status
Married 0.942 (0.762 , 1.164)
Divorced 2.067 (1.583 , 2.698)
Widowed 4.923 (3.577 , 6.777)

Place of residence
Urban 1.208 (1.089 , 1.340)

Literacy
Partially 1.568 (1.220 , 2.016)
Literate 1.194 (0.964 , 1.478)

Gender*Age group
20− 24 : Male 0.460 (0.296 , 0.717)
25− 29 : Male 0.510 (0.311 , 0.835)
30− 34 : Male 0.532 (0.303 , 0.935)
35− 39 : Male 0.782 (0.445 , 1.375)
40− 44 : Male 1.627 (0.918 , 2.884)
45− 49 : Male 1.970 (1.081 , 3.589)

Gender*Marital status
Married : Male 1.520 (1.050 , 2.202)
Divorced : Male 1.742 (1.095 , 2.772)
Widowed : Male 1.891 (0.952 , 3.755)

The results show that the males have slightly lower odds of HIV (OR = 0.781, 95%

CI = 0.557 − 1.096) than the females. The di�erence in the odds of HIV between the

males and the females is not statistically signi�cant as the con�dence interval includes a

1. There are several possible explanations for the observed di�erences in the risk of and

susceptibility to HIV between males and females. Studies have revealed that biologically
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females are more likely to become infected with HIV through unprotected heterosexual

intercourse than males. In addition women, especially in many sub-Saharan African

countries, are less likely to be able to negotiate condom use and are more likely to be

subjected to non-consensual sex. The risk of transmitting HIV from men to women

is much higher than from women to men because women are exposed to considerable

amounts of seminal �uid during vaginal sexual intercourse. Low economic status tend

to force females into transactional sex increasing their risk of HIV.

There is a general increase in the odds of HIV with age peaking at the age group

30 − 34 (OR = 7.036, 95% CI = 5.223 − 9.477), and gradually falls thereafter. This

implies that those who are in the 30− 34 years age group have over seven times higher

odds of HIV as compared to the 15 − 19 year age group. The higher odds of HIV

associated with those in the age groups 25− 45 is possibly due to the increased sexual

activities that characterize individuals of these ages. The odds of HIV vary considerably

across di�erent categories of marital status. Speci�cally, the married have slightly

lower odds of HIV (OR = 0.942, 95% CI = 0.762 − 1.164), the divorced have over

twice odds of HIV (OR = 2.067, 95% CI = 1.583 − 2.698) and the widowed have

almost eight times higher odds of HIV (OR = 7.923, 95% CI = 3.577 − 6.777) as

compared to the single/never married. The urban residents have slightly higher odds

of HIV (OR = 1.208, 95% CI = 1.089− 1.340) as compared to their rural counterparts.

This disproportionate odds of HIV is possibly because the urban residents are mainly

middle aged and well of, often associated with high rates of risky sexual behaviours.

It is argued that in sub-Saharan African urban places, the wealthier individuals tend

to attract multiple and concurrent sexual partners. Urban areas are also synonymous

with increased commercial sex activities which is argued to be responsible for the rapid

spread of HIV. In addition, urban residents are predominantly male, in some instances

whose wives stay in the rural areas. This has been argued to facilitate extramarital

sexual relationships.
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The gender by age group interaction gives the additional e�ect of gender on age

group on the odds of HIV. The results show that the younger age groups show lower

odds of being HIV positive among the males as compared to females whereas the older

age groups show higher odds of being HIV positive as compared to females. This agrees

well the general belief regarding the disparities in the odds of HIV among males and

females of di�erent age groups. It is believed that younger females engage in sexual

relationships older males. The gender by marital status interaction shows the additional

e�ect of gender on marital status in determining the odds of HIV. In particular, it is

more likely for a married male individual (OR = 1.52, 95% CI = 1.050 − 2.202), for a

divorced male person (OR = 1.742, 95% CI = 1.095− 2.772) and for the widowed male

individual (OR = 1.891, 95% CI = 0.952 − 3.755) to be HIV positive as compared to

single/never married females.

6.4 Conclusion

We computed a Bayesian logistic regression model from a GLM perspective for HIV

on demographic and socio-economic variables. Non-informative prior probability dis-

tributions for the demographic and socio-economic variables were used in the building

of the model. We conclude that HIV is related to an individual's gender, age, marital

status, place of residence, literacy level and age by gender and gender by marital status

e�ect. Females have slightly higher odds of being HIV positive than males whereas

urban dwellers are at more risk of HIV than their rural counterparts. As compared

to the single/never married, the married individuals are less likely to be HIV positive

whereas the divorced and the widowed have a higher likelihood of being HIV positive.

There is a gender by age interaction e�ect that is signi�cant in the logistic regression

model for predicting the probability of being HIV positive.
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Chapter 7

Bayesian hierarchical logistic

regression for estimating risk of HIV

using population-based survey data

This chapter combines the fundamental concepts of hierarchical models presented in

Chapter 5 and those of Bayesian analysis given in Chapter 6 to develop a logistic

regression model for HIV. Essentially the Bayesian approach is imposed on the GLMM

in order to incorporate prior information in the modelling process. In addition the

numerical integration explained in Chapter 6 is also utilized to mitigate the evaluation

of the high-dimensional integrals common in the estimation of the GLMM via maximum

likelihood.

Abstract

Most practical complex survey data exhibit some multilevel or hierarchical structural

form brought about by the prominent features of the sampling design and the un-

derlying target population. These data are often obtained using strati�ed multistage

clustered sampling designs which give rise to a `clustered' or `nested' data with a multi-
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layered structure that usually induce intra-class correlations of units within clusters.

Appropriate statistical inference and conclusions based on such data require methods

of analysis that take account of these features of the data. We utilized the general-

ized linear mixed modeling framework to obtain a hierarchical logistic regression model

for HIV as a function of demographic and socio-economic variables. The hierarchical

models are capable of capturing the layered structure of the data and determine how

di�erent layers interact and impact a response variable. A standard technique for �t-

ting the models involves maximum likelihood computations based on the assumption of

normality of the parameter estimates. However, in practical instances, the underlying

process is often not Gaussian, especially when the data are sparse. In addition, gen-

eralizing models to non-Gaussian data is practically di�cult since integrating over the

random e�ects is intractable. This necessitates the use of external information about

model parameters for example using a Bayesian statistical analysis paradigm.

We impose a Bayesian approach to the computation of the hierarchical logistic

model. In particular, we utilize the strength of the Bayesian framework for evaluating

the intractable high-dimensional integrals encountered in most likelihood based statis-

tical analysis. Thus we combine the fundamental concepts of the Bayesian analysis

and hierarchical modelling to explain the variation in HIV using demographic, socio-

economic and behavoiural variables.

The research used the 2010-11 Zimbabwe Demographic and Health Surveys (2010-

11ZDHS) data. The results show that HIV prevalence is dependent on one's gender,

age, marital status, literacy level, sex of head of the household, wealth index, place of

residence and interaction e�ects of gender by age and gender by marital status. Fur-

thermore, the results show a substantial cluster to cluster and household to household

variability.
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7.1 Introduction

Most complex survey data encountered in practice, especially those in scienti�c and so-

cial investigations, often depict some structural form brought about by the prominent

features of the underlying target population. The complex sampling design, that usu-

ally involves strati�cation, multistage clustering and application of unequal selection

probabilities to the sampling units, gives rise to data that show a multilevel or hierar-

chical and nested or clustered. The clustering induces intra-class correlations among

units sharing the same cluster. This renders standard statistical methods, that are

reliant on the assumption of independence, inappropriate. The multilevel structure of

the data gives rise to multiple sources of variation representing randomness introduced

at di�erent levels of the data structure.

Research has indicated stark geographical variation in HIV prevalence. The spatial

variation highlights a localized clustering in HIV transmission within micro-epidemics

of varying scales and intensity. For example Tanser et al. (2009) and Cuadros et al.

(2013) identi�ed spatial clusters with high and low numbers of HIV in sub-Saharan

African countries and measure the strength of clustering using a Kulldor� spatial scan

statistics analysis under randomness. For instance if one partner in a sexual relation-

ship is infected with HIV and if no intervention is done, the chances are high that the

HIV free partner will also be infected. MTCT of HIV before and after birth results in

what is termed vertical transmission of HIV results in clustered HIV patterns, Cout-

soudis et al. (1999), Bobat et al. (1997) and Dunn et al. (1992). Social sexual mixing

at the community level such as in mining communities, at growth point, along national

roads and in border towns enhances `hot spots' for cases of HIV resulting in clustered

e�ect of HIV, Tanser et al. (2009). Therefore survey data for phenomena such HIV

exhibit considerable individual to individual , household to household and community

to community heterogeneity. An e�ective analysis approach of the variation in a re-

sponse variable depicting such multi-layering and clustering should re�ect these multiple
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sources of variabilities. In addition, these spatial variations and multi-layering poses

questions about the drivers of such heterogeneities. Key drivers responsible for these

heterogeneities in prevalence are mainly socio-economic, demographic and behavioural

factors. The spatial structure of HIV prevalence can have a considerable impact on the

dynamics of the epidemic, its progression, persistence and the nature and success of the

interventions.

The basic statistical approach for explaining a process with multiple sources of vari-

ation is via hierarchical models built around mixed e�ects models. The mixed e�ects

models include both �xed and random e�ects, McCulloch & Searle (2001). For a uni�ed

version that accounts for both normal and non-normal data generalized linear mixed

models (GLMM), an extension of the generalized linear models (GLM) as �rst intro-

duced by Nelder & Wedderburn (1972) and further expanded by McCullagh & Nelder

(1989) is often utilized. Use of hierarchical models allows di�erent levels of variation

to be characterized by ascribing causes (of the variability) via the use of covariates. A

standard technique for �tting the models involves maximum likelihood computations

based on the assumption of normality of the parameter estimates. However, in practical

instances, the underlying process is often not Gaussian, especially when the data are

sparse. In addition, generalizing models to non-Gaussian data is practically di�cult

since integrating over the random e�ects is intractable, Had�eld (2010). In such cases,

external information about model parameters is required to inform the observed data.

The Bayesian approach to statistical analysis can o�er an appropriate framework to

incorporate such external information. The use of techniques such as the Markov chain

Monte Carlo (MCMC) methods, see Breslow & Clayton (1993), via marginalizing the

random e�ects is commonly adopted.

The Bayesian paradigm is an approach to statistical analysis based on the Bayes rule

in which model parameters are regarded as random variables in the sense that knowledge

of them is incomplete, Johnson (2010). Prior beliefs about the model parameters,
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represented by a probability distribution, describe the degree of uncertainty with which

these parameters are known. The beliefs about the parameters are then combined,

using the Bayes rule, with the likelihood of the data leading to a posterior distribution,

see Press (1989), Rai�a & Schlaifer (1961), Johnson (2010) and Lesa�re & Lawson

(2012). A Bayesian version of the hierarchical model, as �rst introduced by Lindley &

Smith (1972) can be computed by providing prior distribution for both the �xed and

the random e�ects and combining them with the likelihood of the data.

Application of Bayesian hierarchical logistic regression has received considerable

attention in a variety of �elds. For instance Rouder & Lu (2005) used Bayesian hier-

archical models to explain variation in signal detection in the presence of participant

and item variability. Gopal et al. (2012) employed a Bayesian approach to explain

the dependencies in parent-child relationships in a hierarchical structured setting under

hierarchical classi�cation problem.

7.2 Methods

7.2.1 Hierarchical Bayesian modelling

We consider a GLMM given as in Chapter 5 as

η = g (µ) = Xβ +Zb (7.1)

formulated in the Bayesian framework, where the prior distributions for β and b

are required. Under the Bayesian standpoint, as given by Clayton (1996), there is no

need to partition the vector of explanatory variables as (X,Z) with a corresponding

partition of the parameter vector as �xed and random e�ects (β, b) as all the parameters

are regarded as random variables. Thus Equation 7.1 can simply be expressed as

η = Xβ. (7.2)
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The di�erence between the �xed and random e�ects comes in the speci�cation of

the prior distributions of β which is usually assumed to be multivariate normal with

variance-covariance matrix Λ, a precision matrix, as explained in Bernardo & Smith

(2000). In particular, for the �xed e�ects, the elements of this matrix are known con-

stants expressing subjective prior knowledge whereas for the random e�ects they depend

on unknown hyper-parameters denoted by θ which are estimated from the data. Hence

only a hyper-prior distribution for θ is required to complete the Bayesian formulation.

For simpli�cation, Clayton (1996) suggested adopting improper uniform priors for �xed

e�ects resulting in a partitioning of the prior precision matrix of the form

Λ =

 0 0

0 Λ1 (θ)

 (7.3)

A gamma hyper-prior distribution for θ with a scale parameter α and a shape parameter

of v was used. A combination of the Gibbs sampling algorithm by Geman & Geman

(1984) and the Metropolis-Hastings algorithm by Metropolis et al. (1953) and Hastings

(1970) was used to sample the hyper-parameters from their full conditional. Breslow

& Clayton (1993) discussed a wide variety of application of these iterative methods to

GLMM.

To compare the models having di�erent sets of parameters for a given set of priors,

similar to the use of the Akaike information criterion (AIC) for nested models under

GLM, we used a generalized measure of the AIC known as the deviance information

criterion (DIC). The deviance information criterion is calculated from the deviance (D)

which is expressed as

D = −2log (P (y|Ω)) (7.4)

where Ω is some parameter set of the model. Under the MCMC algorithm, the deviance

is calculated at each iteration, and hence a mean deviance D can be calculated over all
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iterations. As explained by Had�eld (2010), the deviance is calculated at each mean

estimate of the parameters
(
D
(
Ω
))

and hence the deviance information criterion is

given by

DIC = 2D −D
(
Ω
)

(7.5)

7.2.2 Statistical computing

We used the package MCMCglmm by Had�eld (2014) in R to compute the posterior

distribution of the parameters using an MCMC algorithm. The algorithm is iterative

and is based on the proposal, at each step, of a new value for a given parameter as a

function of the other parameters in the model. In MCMCglmm package, the prior

argument takes a list of the three elements specifying the priors for �xed e�ects, the

random e�ects as well as the residuals. For the �xed e�ects, a multivariate normal

prior distribution was speci�ed with mean vector µ and a covariance matrix V. For the

prior distribution of the random e�ects, we used an non-informative inverse-gamma (a

special case of the inverse Wishart distribution) parameterized by v and V as suggested

by Had�eld (2010).

In particular we used the function MCMCglmm in the MCMCglmm package

to determine the marginal posterior distribution by drawing random samples from the

joint distribution of the prior and the likelihood of the data. To enhance movement of

the chain through the parameter space the package uses a combination of the Gibbs

sampling and the Metropolis-Hastings updates, see Had�eld (2010). We calculated the

deviance information criterion using the probability of the data given the parameters

(β, b) .
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7.3 Results and discussion

Table 7.1 presents the estimates of the parameters for the marginal posterior distribu-

tion obtained by random draws of samples from the joint distribution together with the

95% credibility intervals and the the p-values for each parameter estimate. The results

were obtained from running 25 000 iterations with a burn-in phase of 1 000 and a thin-

ning interval of 100. The deviance information criterion for the model was 11 249.64.

Table 7.2 gives the variance components for the random e�ects for cluster, household

and the residuals.
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Table 7.1: The marginal posterior distribution for the �xed e�ects
Coe�cient Posterior Mean 95% Cred. Int. p-value
Intercept -3.587 (−3.887 , −3.301) < 0.001
Gender

Male -0.221 (−0.559 , 0.056) 0.164
Age group

20− 24 1.021 (0.719 , 1.349) < 0.001
25− 29 1.686 (1.389 , 2.041) < 0.001
30− 34 2.058 (1.760 , 2.398) < 0.001
35− 39 2.024 (1.706 , 2.383) < 0.001
40− 44 1.566 (1.218 , 1.920) < 0.001
45− 49 1.421 (1.026 , 1.795) < 0.001
50− 54 1.469 (0.991 , 1.935) < 0.001

Marital status
Married -0.022 (−0.267 , 0.240) 0.826
Divorced 0.723 (0.450 , 1.024) < 0.001
Widowed 1.659 (1.346 , 1.956) < 0.001

Literacy level
Partially 0.441 (0.193 , 0.658) < 0.001
Literate 0.267 (0.0922 , 0.470) 0.009

Place of residence
Urban 0.520 (0.321 , 0.725) < 0.001

Sex of household
Female 0.159 (0.051 , 0.265) 0.013

Wealth index
Poorer -0.013 (−0.170 , 0.140) 0.868
Middle -0.001 (−0.153 , 0.192) 0.937
Richer -0.241 (−0.439 , −0.025) 0.027
Richest -0.576 (−0.803 , −0.335) < 0.001

Gender*Age group
M:20− 24 -0.742 (−1.194 , −0.307) < 0.001
M:25− 29 -0.659 (−1.130 , −0.178) 0.003
M:30− 34 -0.625 (−1.168 , −0.135) 0.007
M:35− 39 -0.210 (−0.730 , 0.294) 0.470
M:40− 44 0.555 (−0.020 , 1.159) 0.060
M:45− 49 0.730 (0.144 , 1.232) 0.008

Gender*Marital status
M:Married 0.413 (0.066 , 0.825) 0.043
M:Divorced 0.515 (0.017 , 1.007) 0.049
M:Widowed 0.788 (0.044 , 1.461) 0.034
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Table 7.2: Variance components for the random e�ects
Coe�cient Posterior Mean 95% Credibility Interval
Cluster 0.233 (0.168, 0.311)
Household 0.009 (0.002, 0.020)
Residual 0.204 (0.090, 0.329)

The results displayed in Table 7.1 show that HIV prevalence is dependent on one's

age, marital status, literacy level, place of residence, sex of head of household, socio-

economic status (measured by wealth index) and age by gender and gender by marital

status interaction e�ects. It is evident that males have lower odds of HIV (OR = 0.802,

95% CI = 0.572−1.058e than the females. This is mainly due to biological factors that

make females to be more at risk to HIV than males especially during vaginal sexual

intercourse. In addition, there are traditional and social norms such as polygamy that

make females more vulnerable to HIV than males. The results also show that HIV

prevalence increase with age peaking at the 30 − 34 year age group. Relative to the

15−19 year old individuals, the 20−24 year olds have more than two times higher odds

of HIV, OR = 2.776, 95% CI = 2.502− 3.854, whereas the 30− 34 (with highest odds)

have over seven times higher odds of HIV, (OR = 7.830, 95% CI = 5.812− 11.001).

The results further show that the odds of HIV are slightly lower (OR = 0.978,

95% CI = 0.766− 1.271), for married, more than twice higher, (OR = 2.061, 95% CI =

1.568−2.784), for the divorced and more than �ve times higher, OR = 5.254, 95% CI =

3.842− 7.071, for the widowed as compared to the single/never married. The lower of

HIV among the married is possibly because the married are often in more stable sexual

relationships as compared to the single/never married who are more likely to be involved

in multiple sexual partnerships. The divorced are possibly more likely to be involved

in multiple-sexual partners whereas the widowed might have lost their partners due

to AIDS related illnesses hence the relatively higher risk of HIV than the single/never

married. The same interpretation can be applied to the literacy level, place of residence,

sex of head of household and wealth index. The gender by age group interaction shows
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the additional e�ect of gender on the odds of HIV with age. The results show that the

odds of HIV increase faster among males than females with age. This is possibly due to

what is generally believed that females have sexual debut at a younger age than males.

In addition, it is also believed that young females often engage in sexual relationships

with older males. The gender by marital status interaction gives the additional gender

e�ect on the risk of HIV by marital status. It is evident that the risk of HIV varies

greatly between males and females across di�erent categories of marital status. In par-

ticular, the odds are generally higher in males than in females in the category married,

divorced and widowed with corresponding OR = 1.511, 1.674 and 2.199 respectively.

The results displayed in Table 7.2 show that there is a substantially high cluster

to cluster variability, σ2

cluster = 0.233, 95% CI = 0.168 − 0.311, and individual to

individual variability, σ2

residual = 0.204, 95% CI = 0.090 − 0.329 in the risk of HIV

whereas there is low household to household, σ2

household = 0.009, 95% CI = 0.002 −

0.020. This in turn gives a high intra-cluster correlation, ICC = 0.522 which is indicative

of strong correlation among individuals within the same cluster whereas there is low

intra-household correlation, ICC = 0.020 showing relatively weak correlation among

individuals from the same household.

7.4 Conclusions

The analysis of data that exhibit multi-layered structure requires methods that are

capable of accounting for the underlying processes that are responsible for the observed

data structure. The hierarchical models are suitable for explaining sources of variability

in a response variable across di�erent levels in multi-layered and clustered data. We

adopted a Bayesian approach to computing a hierarchical logistic regression model from

a GLMM perspective to explain the variation in HIV prevalence. Under the Bayesian

paradigm, maximum likelihood estimation methods of parameter estimation are not
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tractable, hence we used iterative methods based on MCMC simulations. Posterior

summary measures in the form means and credibility intervals were computed from

drawing random samples from the posterior distribution. The prior distributions for

the �xed e�ects were assumed to be multivariate normal parameterized with mean µ and

variance-covariance matrix V, whereas prior distributions for the random e�ects were

assumed to be non-informative inverse-gamma. It was established that HIV prevalence

is dependent on one's gender, age, marital status, literacy level, sex of head of the

household, wealth index, place of residence and interaction e�ects of gender by age

and gender by marital status. Furthermore, the results show a substantially spatial

heterogeneity in HIV prevalence as evidenced by high cluster to cluster and household

to household variability. Combining hierarchical modelling and Bayesian methodology

enhanced the identi�cation of risk factors for HIV as well as the estimation of prevalence.
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Chapter 8

A predictive model for HIV using a

semi-parametric spline approach

Abstract

The generalized additive models (GAMs), extensions of the generalized linear models

(GLMs), enable exploring the non-linear dependence of a response variable on predic-

tor(s) variable(s) in a non-parametric or a semi-parametric way. GAMs are often used

when there is no a priori reason for determining a particular response function in a

regression setting and allow the data to �speak for themselves�. This is achieved via the

use of smoothing functions.

A semi-parametric logistic GAM for HIV on demographic, socio-economic and be-

havioural variables using population-based 2010-11 Zimbabwe Demographic and Health

Surveys (2010-11ZDHS) data is �tted. The dependence of HIV on the non-parametric

smooth function of the variable age, as a continuous covariate, and parametrically on

the other demographic and socio-economic factors was investigated. The results were

compared with the results of an equivalent ordinary logistic GLM from a likelihood

perspective.
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8.1 Introduction

The knowledge and accurate accounting of the nature of the relationship or dependence

between a response variable and covariates is essential in a modelling approach to

statistical analysis of data. Methods that are �exible in exploring the dependence

of the response to covariates by allowing the observed data to in�uence (in a non-

parametric fashion without imposing rigid assumptions about the form) the nature of

the relationships are useful especially in many biological, health and social research.

The formulation of the generalized linear models (GLMs) that were �rst introduced

by Nelder & Wedderburn (1972) and expanded by McCullagh & Nelder (1989) assumes

that the dependence of the response to the covariates is linear, however in practice

this is not always the case. Instead nonlinear relationships exist. For instance the

relationship between HIV prevalence and age as indicated in Figure 8.1. It is clear that,

HIV prevalence depends non-linearly on age and any modelling approach that does not

account for the non-linear nature of the relationship becomes potentially inadequate.

We consider the generalized additive models (GAMs) by Hastie & Tibshirani (1986)

and Hastie & Tibshirani (1990) as extensions of GLMs in which the linear predictor

involves a sum of smooth function of the covariates. Essentially, a GAM is a non-

parametric or semi-parametric regression technique not restricted to linear relationships

and are �exible with regards to the statistical distribution of the data, Swartman et al.

(1995). The models provide a �exible speci�cation of the dependence of a response

on the covariates by expressing the model in terms of smooth functions rather than

giving detailed parametric relationships, Wood (2006). The fundamental idea behind

the smoothing function, as given by Hastie & Tibshirani (1990) is to �let the data show

us the appropriate functional form� instead of imposing rigid parametric assumption

regarding the dependence. The beauty of the GAM approach is that, it can help prevent

model mis-speci�cation and that they enhance revealing of information about the exact

relationship between the predictors and the response variable that are not possible with
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standard modelling techniques. In addition, because of their non-parametric or semi-

parametric nature, GAMs are usually less restrictive and are more robust against model

assumption violations.
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Figure 8.1: Plot showing the relationship between HIV prevalence and age

GAMs have been widely applied (non- or semi-parametrically) in many �elds of

research where a non-linear relationship between the response and the covairates is evi-

dent. For instance Shiboski (1998) used GAMs to explain the variations in breastfeeding

practices in developing countries and epidemiological studies of HIV transmission using

current status data from a semi-parametric perspective. More recently, Shen (2011)

applied GAMs (and their generalized additive mixed models (GAMM) extensions) in

a non-parametric and semi-parametric regression way to model the complex non-linear

relationships between medication adherence (to antiretroviral therapy (ART)), viral

load change over time and other factors such as medication regimen type and medi-

cation naive versus experienced at enrollment. In biological studies, GAMs have been

applied to explore relationship between environmental factors and the spatial distri-
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bution of �sh, see for example Murase et al. (2009) and Swartman et al. (1995) and

in the dependence of the spatial distribution of plant species on climatic variables, see

for example Yee & Mitchell (1991). Hastie & Tibshirani (1987) discussed a variety

of applications of the GAMs in an analysis of covariance and a logistic regression for-

mulation. The current chapter develops a model from a GAM framework to explain

the variation in HIV on demographic and socio-economic factors of respondents using

population-based survey data. In particular, the 2010-11 Zimbabwe demographic and

health surveys (2010-11ZDHS) data were used for the analysis. Section 8.2 gives the

theory of the GAMs and detailed descriptions of the statistical computing resources

and the data used. The results of the analysis and the discussion of the results are

presented in Section 8.3. Section 8.4 presents the concluding remarks.

8.2 Methods

8.2.1 Generalized additive models

Noting the non-linear nature of the relationship between HIV and age, we �tted a GAM

following Hastie & Tibshirani (1986) and Hastie & Tibshirani (1990) for modelling the

dependence of a response variable Y (for example for the current study HIV prevalence)

on covariates Xi, for i = 1, ..., p (the demographic, socio-economic and behavioral fac-

tors) in a non-parametric way. In particular, a GAM is an extension of the GLMs that

were �rst discovered by Nelder & Wedderburn (1972) and later expanded by McCul-

lagh & Nelder (1989). Under the GAM, the linear predictor depends linearly on some

unknown smooth functions of the predictor variables. The non-parametric form of the

dependence makes the model more �exible and more robust.

Under the GLM framework, following McCullagh & Nelder (1989) the response Y
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is assumed to have exponential density given by

f (y, θ, φ) = exp

{
yθ − b (θ)

a (φ)
+ c (y, φ)

}
, (8.1)

where θ is called the natural parameter, φ is called the dispersion parameter and a (.) ,

b (.) and c (.) are known functions. It is assumed that the E (Y ) = µ is related to Xi via

a link function g (µ) = η where η = α +
∑

j Xjβj, whereas µ is related to the natural

parameter by µ = b′ (θ) . Here η is called the linear predictor. The di�erence between a

GLM and a GAM comes about in that, under the GAM the mean µ = E (Y ) is linked

to the predictors via

g (µ) = α +

p∑
j=1

fj (Xj) , (8.2)

where fj (Xj) are smooth functions of the covariates to be estimated from the data.

The linear predictor in Equation 8.2 can also be expressed as a mixture of smoothed

functions and linear functions of other predictors.

For the estimation of the smooth functions, fj (.)′ s we employed the forward stepwise

local scoring algorithm utilizing the scatter-plot smoothers as a generalizations of the

Newton Raphson and the Fisher scoring procedure used to compute the least squares

and the maximum likelihood estimates under the GLM approach, Hastie & Tibshirani

(1986). Alternatively, the smooth functions can be estimated via the local likelihood

procedure that assumes that, locally fj (.) is linear and �ts a line in the neighbourhood

around each X value. Use of regression splines is commonly used for these two (the

forward stepwise local scoring algorithm and the local likelihood procedure), see for

example Wood (2006). The degree of smoothness in the functions can be determined

and a �wiggliness� penalty is added to the �tting process to account of the respective

level of smoothness. This results in penalized versions of the least squares or maximum

likelihood or iterative reweighted least squares (IRLS) methods.

Suppose X = (X1, ..., Xp) denotes the p-dimensional vector of covariates for a
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response Y, the general model speci�es E (Y |X) = µ and g (µ) = η (X) where η is a

function of the p variables, as by Hastie & Tibshirani (1986), we assumed that

Y = η (X) + ε, (8.3)

where η (X) = E (Y |X) , Var (Y |X) = σ2 and the errors are independent of X. The

estimation of η (X) under the local scoring is done via the least squares criterion

E (Y − η (X))2 with the use of scatter-plot smoothers. However, as described by Hastie

& Tibshirani (1986) in higher dimensions, near neighbours cease to be local and the

scatter-plot smoothing becomes inadequate, which turns out to be enough motivation

for the use of additive models. Thus we consider an additive regression model given by

E (Y |X) = α +

p∑
j=1

fj (Xj) ,

where E [fj (Xj)] = 0 for ∀ j. Under the local scoring algorithm, following Hastie &

Tibshirani (1986) suppose that

Y = α +

p∑
j=1

fj (Xj) + ε, (8.4)

is correct, and we assume that α, f1 (.) , ..., fp (.) are known. If the partial residuals, Rj

can be de�ned as

Rj = Y − α−
∑
k 6=j

fj (Xk) , (8.5)

then E (Rj|Xj) = fj (Xj) thus minimizing E

(
Y − α−

p∑
k=1

fk (Xk)

)2

. However, fk (.)′ s

are unknown but they provide a way for estimating f̂j (.) given estimates of
{
f̂i (.) , i 6= j

}
.

This leads to an iterative procedure known as back-�tting algorithm proposed by Fried-

man & Stuetle (1981). Convergence of the iteration is con�rmed if the residual sum of
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squares (RSS) does not change, where

RSS = E

(
Y − α−

p∑
j=1

fmj (Xj)

)2

.

Here fmj (.) denotes the estimates of fj (.) at the mth iteration.

Assessment of model �t is likelihood-based or deviance-based hence �tted models

are directly comparable with GLMs using likelihood techniques such as the AIC or the

classical tests based on model deviance such as the χ2 or F tests.

8.2.2 Logistic generalized additive regression

Under the GLM, the logistic regression that relates the mean of a binary response

π (xi) = P (Y = 1) is given as

logit (π (xi)) = log

(
π (xi)

1− π (xi)

)
= x′iβ (8.6)

We computed an additive logistic regression model in which the linear term in

Equation 8.6 is replaced by its additive equivalence of the functional form given by

logit (π (xi)) = log

(
π (xi)

1− π (xi)

)
= α +

p∑
j=1

fjXj (8.7)

where the f ′js are smooth functions and E [fi (xi)] = 0 as explained in Subsection 8.2.1

above. The logistic regression model represented in Equation 8.7 is additive on the logit

scale but not on the probability scale.

Estimation of the smooth functions follows the theory given in Subsection 8.2.1

above. In a semi-parametric logistic additive model, the parametric terms can be esti-

mated using the ordinary GLM methods such as the iterative re-weighted least squares

(IRLS) and maximum likelihood due to Nelder & Wedderburn (1972).
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8.2.3 Statistical computing

The computations of the model were done using mgcv package by Wood (2006) in R.

The package uses a local scoring algorithm as explained in Section 8.2, to iteratively �t

weighted additive models through the back-�tting procedure. Handling the smoothness

section in the package is based on a Bayesian smoothing model, which enables simu-

lations from the posterior distribution of the model coe�cients and provide credible

intervals. The gam function in the mgcv package allows inclusion of both smooth

functions, s (.) with options for controlling the smoothness, and other covariates as

parametric linear. Each predictor in the model is considered individually then split

into sections delimited by `knots' and then �t polynomial functions to each section sep-

arately. All functions are based on the theory of GAM by Hastie & Tibshirani (1986)

and Hastie & Tibshirani (1990). The glm functions is used to compute an ordinary

GLM. Both the glm and the gam functions enable �tting the models allowing for

speci�cation of the link that is dependent on the error structure.

8.2.4 The data

This section is considered together with the general data description given in section

2.2. For administration purposes, Zimbabwe is divided into ten provinces. During the

2002 population census (which was used as the sampling frame in the 2010-11 ZDHS)

each province was subdivided into districts and each district is made up of wards and

the wards consist of a number of Enumeration Areas (EAs). For the current research

the response variable is HIV status, a binary variable indicating whether a respondent

is HIV positive or negative. The study investigates the relationship between HIV and

socio-economic and demographic factors of the population using a logistic GAM. The

socio-economic and the demographic variables (that were used as the predictors) are

selected as those factors thought to in�uence HIV infection as informed by the proximate

determinants conceptual framework as described by Boerma et al. (2003). These factors
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include age, gender, marital status, education level, economic status (household wealth),

religion, province and place of residence (whether rural or urban). Because of the

non-linear dependence of HIV on age, a non-parametric smooth function of age and

parametric e�ects of the other factors were included. The sample consists of 17 434

respondents, 14 491 with non-missing value and an additional 2 943 with missing values.

The current chapter assumed a complete case analysis.

8.3 Results and discussion

We computed a logistic GAM using the gam and the glm functions in mgcv package

and utilizing the theory presented in Section 8.2 above. In particular we constructed a

logistic GAM with a non-parametric smooth function of age and parametric e�ects of

the other predictors. For comparison purposes, results of an ordinary logistic GLM were

presented alongside the logistic GAM results. Table 8.1 displays the results (parameter

estimates, standard errors and p-values) for the best GAM based on the AIC and the

percentage of deviance explained, whereas Table 8.2 displays the parameter estimates,

standard errors and p-values for the GLM.

165



Table 8.1: Results of a generalized additive model (GAM) with (a) the parametric
terms and (b) a smooth term of age

(a) Parametric coe�cients
Coe�cients Estimate S. E. p-value
Intercept -2.081 0.134 < 0.001
Gender

Male -0.655 0.121 < 0.001
Marital status:

Married -0.100 0.104 0.340
Divorced 0.688 0.130 < 0.001
Widowed 1.366 0.136 < 0.001

Place of residence
Urban 0.177 0.052 0.001

Literacy
Partially 0.479 0.128 < 0.001
Literate 0.224 0.105 0.034

Gender*Marital status
Male : Married 0.566 0.136 < 0.001
Male : Divorced 0.597 0.205 0.004
Male : Widowed 1.132 0.291 < 0.001

(b) Approximate signi�cance of smooth terms
Parameter estimated df χ2 − value p-value
s (age) 3.675 233.7 < 0.001
AIC = 11527.73 Deviance explained=11.03% Residual deviance = 11498
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Table 8.2: Parameter estimates, standard errors and p-values for an ordinary logistic
GLM

Coe�cients Estimate S. E. p-value
Intercept -3.507 0.148 < 0.001
Age 0.036 0.003 < 0.001
Gender

Male -0.559 0.119 < 0.001
Marital status:

Married 0.462 0.095 < 0.001
Divorced 1.245 0.122 < 0.001
Widowed 1.910 0.131 < 0.001

Place of residence
Urban 0.209 0.051 < 0.001

Literacy
Partially 0.489 0.128 < 0.001
Literate 0.308 0.105 0.003

Gender*Marital status
Male : Married 0.460 0.134 0.001
Male : Divorced 0.536 0.203 0.008
Male : Widowed 0.850 0.289 0.003

AIC = 11740 Deviance explained=9.67% Residual deviance=11716

Comparisons of the GAM and the GLM are based on the likelihood techniques.

Table 8.3 gives the AICs for the two models. Although the GAM is more parameterized

and faces a sti�er penalty due to more degrees of freedom, its AIC is substantially lower.

This is indicative of a better �t for the GAM than the GLM.

Table 8.3: Analysis of the AICs for the GAM and the GLM

Model d.f AIC
GLM 12.000 11739.650
GAM 14.675 11527.730

Table 8.4 gives the χ2−test based analysis of the deviances for the GAM and GLM

models. The GAM also shows superiority as its residual deviance is signi�cantly lower

than the GLM (with p-value < 0.001). In addition, the results also show that the GAM

explains more percentage of deviance, 11.03%, than the GLM, 9.67%. These results are

consistent with results from other studies in the region, see for example Mara et al.
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(2015), Liang & Weiss (2007) and Ngesa et al. (2014).

Table 8.4: Analysis of the deviances for the GAM and the GLM

Model Res. d.f. Res. Dev. d.f. Deviance p-value
GLM 14479 11716
GAM 14476 11498 2.675 217.27 < 0.001

We further explored the results of the GAM. The parametric estimates (Table 8.1)

are presented with tests of signi�cance against a null of zero. The approximate signif-

icant results for the smooth function term is a test of whether the smoothed function

signi�cantly reduces model deviance. The results indicate that the smooth function of

age does indeed reduce the model deviance (p-value < 0.001). The plots of the smooth

function for age together with the e�ect of each level of the other factors (gender, mari-

tal status, place of residence and literacy) and their respective 95% con�dence intervals

are displayed in Figure 8.2. The �rst levels for each factor have an e�ect of zero because

they are the reference levels.
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Figure 8.2: Plot of the �nal logistic GAM, a semi-parametric model of HIV with a
smooth function, f̂ (age) , of age together with the factors of gender, marital status,
place of residence and literacy levels and their respective 95% con�dence intervals.

Interpretation of the parametric estimates is facilitated by expressing the estimates
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on an odds ratios (OR) scale. The results, as adjusted ORs, are presented in Table 8.5.

The interpretation of the ORs assumes a reference level approach. Thus the OR for

gender indicates the likelihood of a male individual being HIV positive as compared to

a female individual controlling for the e�ect of the other factors in the model. Thus

the odds of HIV are lower (OR = 0.519, 95% CI = 0.410 − 0.658), for a male person

as compared to a female person controlling for the e�ects of the other factors. For the

marital status factor, with reference to the single/never married, the odds of HIV are

slightly lower (OR = 0.905, 95% CI = 0.738− 1.109), for a married individual, almost

twice higher, (OR = 1.99, 95% CI = 1.542− 2.567), for a divorced person and close to

four times higher, (OR = 3.92, 95% CI = 3.002 − 5.117), for a widowed person, after

adjusting for the e�ects of the other factors. The urban residents have lower odds of

HIV, (OR = 1.194, 95% CI = 1.078−1.322), than their rural counterparts. The gender

by marital status interaction e�ects show the additional gender e�ect on marital status.

Thus, with reference to single/never married females, the married and divorced males

have odds of HIV almost twice (OR = 1.761, 95% CI = 1.349−2.299, and OR = 1.817,

95% CI = 1.216 − 2.715, respectively) and over three times higher (OR = 3.102, 95%

CI = 1.754− 5.487.
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Table 8.5: Odds ratios and their corresponding 95% con�dence intervals for the para-
metric e�ects

Coe�cients Odds ratios 95% Con�dence intervals
Intercept 0.125 (0.096, 0.162)
Gender

Male 0.519 (0.410, 0.658)
Marital status:

Married 0.905 (0.738, 1.109)
Divorced 1.990 (1.542, 2.567)
Widowed 3.920 (3.002, 5.117)

Place of residence
Urban 1.194 (1.078, 1.322)

Literacy
Partially 1.614 (1.256, 2.075)
Literate 1.251 (1.018, 1.537)

Gender*Marital status
Male : Married 1.761 (1.349, 2.299)
Male : Divorced 1.817 (1.216, 2.715)
Male : Widowed 3.102 (1.754, 5.487)

8.4 Conclusion

The assumption of linear dependence of a response variable to covariates that is often

made under GLMs does not always hold in many practical investigations. There are

a variety of functional forms of the relationship that exist between a response and

the covariate(s). Thus approaches that are �exible to explore non-parametric smooth

functions of the relationships are often applied. We considered a GAM to explore the

dependence of HIV on demographic and socio-economic factors. In particular, a semi-

parametric logistic GAM with a non-parametric smooth function for age and parametric

e�ects for gender, marital status, place of residence and literacy was computed. For

comparative purposes, an equivalent GLM that assumed parametric e�ects of all the

covariates was also constructed. Based on likelihood measures (AIC and deviances) the

results show that the GAM is superior to the GLM in terms explaining the variation

of HIV using the demographic and socio-economic variables.
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Chapter 9

Conclusions and future research

9.1 Introduction

This chapter presents a summary of all the conclusions from all the preceding chapters.

Furthermore, potential strengths and shortcomings of the study and directions for future

research are also given.

9.2 Summary of conclusions

The study focused on estimating HIV prevalence using population-based survey data.

Methods of analyzing survey data that take account of the complex sampling schemes

commonly encountered in practice were explored and applied. Models built both from a

frequentist and a Bayesian perspective were computed. In particular, di�erent forms of

logistic regression models that account for the complex survey design, the hierarchical

and clustering nature of the data, the prior beliefs about model parameters and the

non-linear (in a non- and semi-parametric) relationship of the response and the covari-

ates were �tted to explain the variation in HIV on demographic, socio-economic and

behavioural factors. In addition, design-consistent national and domain level (crude

and adjusted) estimates of HIV prevalence were computed. The domains (which can be
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regarded as risk factors) considered were based on administrative provinces, gender, age,

marital status, place of residence, literacy levels and wealth index. Additional complex-

ities brought about by missing data due to non-response, which are not only pervasive

but also inevitable in survey research were also considered. A plausible method for

handling missing data via multiple imputations accounting for the structure of the

underlying population was considered.

The multiple sources of variability in a response that results from the hierarchical

and multilevel structure of most practical survey data that is brought about by the

prominent features of the target population were accounted for in the modelling pro-

cess. In addition, the dependencies of units that are induced by the complex sampling

designs, that involve strati�cation and multi-stage clustering that render most classi-

cal statistical methods based on the assumption of independence inappropriate, were

also considered. The data structures and the dependencies among units that share the

same cluster were correctly accounted for by the use of hierarchical models built from

a GLMM framework.

The data used for the analyses were obtained from the 2010-11 Zimbabwe Demo-

graphic and Health Surveys (2010-11ZDHS). As with most practical survey data, the

2010-11ZDHS data were characterized by missing data, and hence the study explored

the available methods of handling missing data in surveys. In particular, a procedure

based on multiple imputation of the missing observations, and simultaneously account

for the variability due to the missing values was used to `�ll in' the missing data. For

comparative purposes, results from a complete case analysis (based on a list-wise dele-

tion of cases with missing values) and the multiple imputations were presented for the

three modelling approaches.

The overall design-consistent estimate for HIV prevalence for the entire population

was found to be 15.35% with a 95% con�dence interval of (14.72% , 15.97%) . For more

detailed analysis of the prevalence of HIV across di�erent subgroups of the popula-
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tion, domain level estimates were also computed and presented in Chapter 3 from the

complete case analysis, and in Chapter 4 from the multiple imputations. The study

established that HIV prevalence varies greatly within the respective domains.

The results show that HIV prevalence is dependent on one's gender, age, marital

status, place of residence and the gender by age and gender by marital status interaction

e�ects. Under the hierarchical modelling approach in Chapter 5, the results show

signi�cant household to household and cluster to cluster (enumeration area) variabilities

e�ects on the HIV. Chapter 6 brings in the Bayesian paradigm that utilises the prior

probability distributions of variables. The non-linear relationship between HIV and age

was captured in a semi-parametric fashion via the use of GAMs.

9.3 Strengths and limitations of the study and future

research

9.3.1 Strengths

The study draws its main strength from the appropriate application of sound statistical

methods coupled with the utilization of advanced statistical and computational tools

that are available in statistical software packages such as R in estimating HIV preva-

lence. The multiple imputation technique has, not only the strength to `�ll in' missing

observations (common in HIV research), but also to account for the uncertainty due to

the imputation process itself. In addition, noting that missing data are inevitable (espe-

cially in survey data), pervasive and have severe consequences if not properly handled,

use of sound statistical methods and computing resources to estimate disease measures

of interest and appropriate measures of variability (that account for both the sampling

mechanism and the imputation process) can enhance the validity of the statistical in-

terpretations and inferences. This study has demonstrated that statistical methods for
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handling missing data have the potential to enhance estimation of HIV and avoid loss

of statistical information that come with, for example, deleting cases with missing val-

ues. The use of DHS data also brings in an additional advantage in that the data are

collected by highly trained statisticians with excellent expertise in survey methodology.

Furthermore, incorporation of prior knowledge about the parameters, the cornerstone

of Bayesian statistical analysis, in the modelling process gives the study an edge in that

it allows �ndings obtained in previous studies to be used in order to improve the results.

The use of GAMs also provides �exibility and robustness in the modelling process by

allowing the data to determine the form of the relationship that exist between variables

without imposing rigid assumption on the relationships.

9.3.2 Limitations

Potential drawbacks of the current research come from the use of secondary data which

often leaves the data analyst with limited control over the data collection process. In

addition, and particularly for the current research, a major drawback of using secondary

is the limited knowledge about the reasons for the missing value. However this is not

to downplay the importance of DHSs which are carefully designed, by a team of highly

trained statisticians with excellent expertise in survey methodology, to collect popula-

tion level information which is very important for public health policies. Some of the

R packages such as mi, although very powerful and �exible comes with their own lim-

itations that they cannot allow users to alter the prior distributions for the conditional

imputation models used under the Bayesian paradigm. Therefore further methodolog-

ical and software developments research is necessary in order to make the approach

even more �exible. Further work on the problem as a future extension is possible with

inclusion of methods that allow for MNAR assumption by means of sensitivity analysis.

In in addition, the cross-sectional nature of the study, that does not allow the time

dependence of HIV prevalence does not allow analysis of the results over time. It would
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be interesting to compare results from di�erent surveys once HIV data become available

in future population-based surveys. The study also does not allow multiple or repeated

measurements on respondents that would aid in tracking a participant's status in follow-

up visits and response to intervention over time as in a longitudinal analysis see for

example Diggle et al. (2002). Although the study allows one to provide for the likelihood

of a randomly selected individual being infected with HIV, it does not enable one to

determine how long someone has been infected. In addition, incorporation of spatial

components can allow identi�cation of HIV hot spots in the population adding more

relevance to the study especially as a tool for devising targeted intervention programs.

9.3.3 Direction for future research

As directions for future research, incorporating, time dependency and longitudinal com-

ponents can enhance analysis of HIV over time. With the use of geographic information

systems (GIS), spatial analysis can allow capturing of the spatial autocorrelations and

distributional (in place) issues regarding HIV prevalence, utilizing methods as given by

Moore & Carpenter (1999). The authors reviewed spatial analytic methods commonly

used in biological and health research, such techniques as disease mapping, cluster-

ing techniques and di�usion studies. Complementing the cross-sectional approach with

the longitudinal methods and spatial analysis has potential to enhance a good under-

standing of HIV prevalence. In addition, the multiple imputation technique can be

strengthened and also incorporate sensitivity analysis.
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Appendix A

R code for Chapter 3

This is an R code that we used to specify the complex sampling design, to compute the

design-consistent crude national and sub-group level estimates of the HIV prevalence.

Also included is the code for estimating the survey logistic regression model as well as

for performing the goodness of �t test.

>library(survey)

>survey.design<-svydesign(id=~identi�er,strata=~province,fpc=~newfpc,

weights=~rhivweight,data=phddata,nest=TRUE,variance="HT",pps=FALSE)

>hiv.overall<-svymean(~hivresult,survey.design,de�=TRUE)

>con�nt(hiv.overall)

>bygender<-svyby(~hivresult,~gender,survey.design,svymean)

>con�nt(bygender)

>bygagegroup<-svyby(~hivresult,~agegroup,survey.design,svymean)

>con�nt(byagegroup)

>bymaritalstatus<-svyby(~hivresult,~maritalstatus,survey.design,svymean)

>con�nt(bymaritalstatus)

>byliteracy<-svyby(~hivresult,~literacy,survey.design,svymean)

>con�nt(byliteracy)
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>byplaceofresidence<-svyby(~hivresult,~placeofresidence,

survey.design,svymean)

>con�nt(byplaceofresidence)

>bywealthindex<-svyby(~hivresult,~wealthindex,survey.design,svymean)

>con�nt(bywealthindex)

>byemployment<-svyby(~hivresult,~employment,survey.design,svymean)

>con�nt(byemployment)

>byeducation<-svyby(~hivresult,~education,survey.design,svymean)

>con�nt(byeducation)

>byreligion<-svyby(~hivresult,~religion,survey.design,svymean)

>con�nt(byreligion)

>svychisq(~hivresult+gender,design=survey.design,statistic="F")

>svychisq(~hivresult+agegroup,design=survey.design,statistic="F")

>svychisq(~hivresult+maritalstatus,design=survey.design,statistic="F")

>svychisq(~hivresult+literacy,design=survey.design,statistic="F")

>svychisq(~hivresult+placeofresidence,design=survey.design,statistic="F")

>svychisq(~hivresult+religion,design=survey.design,statistic="F")

>svychisq(~hivresult+education,design=survey.design,statistic="F")

>svychisq(~hivresult+wealthindex,design=survey.design,statistic="F")

>svy.model<-svyglm(hivresult~factor(agegroup)+factor(gender)+

factor(maritalstatuscode)+factor(literacycode)+factor(placeofresidence)+

factor(agegroup):factor(gender)+factor(gender):factor(maritalstatus),

family=quasibinomial,design=survey.design)

>hoslem<-hoslem.test(svy.model$model$hivresult,�tted(svy.model),g=10)
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Appendix B

R code for Chapter 4

We present the R code that we used to carry out the multiple imputation procedure.

Speci�cally the fucntions that were used for the set up and for obtaining the multiple

data sets.

>library(mi)

>info<-mi.info(phddata.missing)

>new.data<-mi.preprocess(phddata.missing)

>imp<-mi(new.data,n.imp=5,n.iter=30,R.hat=1.1,max.minutes=30,

rand.imp.method="bootstap",run.past.convergence=FALSE,

seed=NA,check.coef.convergence=FALSE,

add.noise=noise.control(post.run.iter=10))
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Appendix C

R code for Chapter 5

We present the R code that was used to compute the hierarchical models as generalized

linear mixed e�ects models.

>library(lme4)

>hierarchical.model<-glmer(hivresult~1+factor(gender)+factor(agegroup)+

factor(maritalstatuscode)+factor(placeofresidence)+

factor(gender)*factor(agegroup)+factor(gender)*factor(maritalstatuscode)+

(1|codedhh)+(1|cluster),data=clean,family=binomial)

>summary(hierarchical.model)
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Appendix D

R code for Chapter 6

Presented here is the R code used to compute the Bayesian logistic regression model.

Included is the code for the MCMC used to make the iterative draws from the posterior

distribution.

>.library(arm)

>library(MCMCpack)

>bayesglm.model3.b<-bayesglm(hivresult~factor(gender)+factor(agegroup)+

factor(maritalstatuscode)+factor(placeofresidence)+factor(literacycode)+

factor(gender)*factor(agegroup)+factor(gender)*factor(maritalstatuscode),

family=binomial(link="logit"),

prior.mean=c(-.22859,0.9663,1.6257,1.98141,1.95297,1.48609,

1.35851,1.27691,

-0.07197,0.71503,1.5824,0.18828,0.45203,0.1782,-0.80913,

-0.70844,-0.66751,-0.28284,0.45272,0.64413,0,0.43532,

0.57216,0.65905),n.iter=50000,data=clean)

>posterior.intercept<-simulates[,1]

>mcmc.intercept<-mcmc(posterior.intercept)

>geweke.intercept<-geweke.plot(mcmc.intercept,
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frac1=0.1,frac2=0.5,nbins=50,pvalue=0.05,auto.layout=TRUE,main="")

>posterior.gender<-simulates[,2]

>mcmc.gender<-mcmc(posterior.gender)

>geweke.gender<-geweke.plot(mcmc.gender,frac1=0.1,

frac2=0.5,nbins=50,pvalue=0.05,auto.layout=TRUE,main="")
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Appendix E

R code for Chapter 7

>bayes.gllm<-(MCMCglmm(hivresut~factor(gender)+factor(agegroup)+

factor(literacy)+factor(maritalstatus)+factor(placeofresidence)+facto(sexofhead)+

factor(wealthindex)+factor(gender):factor(agegroup)+

factor(gender):factor(maritalstatus),

random=~houhold+cluster,data=clean,

verbose=FALSE,prior=prior,nitt=10000,

burnin=100,thin=10,family=�categorical�)

>prior = list(R = list(V = 2, nu = 0.004), G = list(G1 = list(V = 2, nu = 0.004),

G2 = list(V = 2, nu = 0.004)))

>plot(bayes.glmm25)
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Appendix F

R code for Chapter 8

We present the R code for computing the generalized additive model in Chapter 7.

>library(gam)

>gam.model3<-gam(hivresult~s(age,bs="cr")+factor(gender)+

factor(maritalstatuscode)+factor(placeofresidence)+

factor(literacycode)+factor(gender):factor(maritalstatuscode),

family=binomial,data=clean)
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