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Abstract 

In this thesis we analyse particular differential equations that arise in physical sit­

uations. This is achieved with the aid of the computer software package called 

Mathematica. We first describe the basic features of Mathematica highlighting its 

capabilities in performing calculations in mathematics. Then we consider a first or­

der Newtonian equation representing the trajectory of a particle around a spherical 

object. Mathematica is used to solve the Newtonian equation both analytically and 

numerically. Graphical plots of the trajectories of the planetary bodies Mercury, 

Earth and Jupiter are presented. We attempt a similar analysis for the correspond­

ing relativistic equation governing the orbits of gravitational objects. Only numerical 

results are possible in this case. We also perform a perturbative analysis of the rela­

tivistic equation and determine the amount of perihelion shift. The second equation 

considered is the Emden-Fowler equation of order two which arises in many physical 

problems, including certain inhomogeneous cosmological applications. The analyti­

cal features of this equation are investigated using Mathematica and the Lie analy­

sis of differential equations. Different cases of the related autonomous form of the 

Emden-Fowler equation are investigated and graphically represented. Thereafter , we 

generate a number of profiles of the energy density and the pressure for a particular 

solution which demonstrates that a numerical approach for studying inhomogeneity, 

in cosmological models in general relativity, is feasible . 
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Chapter 1 

Introd uction 

A large proportion of physical, chemical and industrial processes are governed by 

differential equations. If these equations accurately represent natural phenomena, 

they are invariably highly nonlinear and hence become difficult to solve using con­

ventional analytic techniques. In order to accurately represent these solutions we 

need to utilise numerical methods to augment existing conventional methods. Due 

to time constraints, we look for quick yet accurate solutions. Fortunately, with tech­

nology advancing at such a rapid rate, we have electronic devices to help us achieve 

this task. With the introduction of the computer many tasks that were manually 

performed are now being carried out faster and more accurately. The great speed of 

computers these days coupled with the development of advanced software packages 

allows one to perform basic word processing, advanced computer animation or even 

solve complicated equations from mathematics. Nowadays it has become popular to 

use mathematical packages in performing complex calculations since answers can be 

obtained within seconds. One such program that helps in this regard is the software 

package called Mathematica. The following quote by Blachman (1992) summarises 

the thrust of this program: 

"As computer power and memory have increased, so have the capacity of 

software developers to write programs to assist people with time 
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consuming tasks. Mathematica is such a program. It works problems that 

are impractical to do by hand, freeing your time for your own work. 

Mathematica is a useful tool for those who do quantitative analysis, 

symbolic calculations and manipulations, as well as for those who want 

to visualize functions or data. With it you can calculate, model, 

prototype , and analyze results 11 • 

Mathematica is an interpreted language. In other words, it reads an expreSSIOn, 

evaluates the result and then displays the output. Being interactive makes it eas­

ier to use than programming languages, such as Pascal, C or Fortran. However, 

Mathematica is also flexible in that it is programmable. Any function that is not 

predefined may be programmed by the user. Mathematica offers many primitives 

and constructs found in programming languages such as Pascal, C, etc. In addition 

to procedural programming, Mathematica supports rule based programming. This 

software package works on many different operating systems and can be installed on 

a personal computer or a network. 

In chapter 2 of this thesis, we present a basic review of the software package Math­

ematica focusing on its structure and capabilities. In §2.1 we provide a brief back­

ground on Steven Wolfram who was instrumental in the creation of this software 

package. In §2.2 we provide a broad outline emphasising the requirements of this 

program for various platforms together with the underlying components that form 

the driving force of this software package. The graphical user interface is explored 

in §2.3 with some of the computational features explained in §2.4. Thereafter the 

resources are highlighted in §2.5 and in §2.6 we point out the need for additional 

packages. A detailed description of Mathematica is given in §2.7 and we highlight 

some of those functions which are used often in practical calculations in the form of 

an interactive tour. Commands that are frequently used in this thesis are discussed 

in §2.8. 

In chapter 3, we make use of the commands that were discussed in Chapter 2 to 

analytically solve the Newtonian equation governing the orbits of planetary bodies. 
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This solution is utilised to plot the planetary orbits of Mercury, Earth and Jupiter 

using the PolarPlot command in §3.2. The Newtonian equation is then adapted to 

the corresponding relativistic equation in §3.3. Again we attempt to obtain analytical 

solutions and graphs for the planetary orbits of Mercury, Earth and Jupiter. In §3.4 

numerical solutions are found which are compared with the analytical results. A 

perturbative analysis is performed on the relativistic equation and the amount of 

perihelion shift is obtained in §3.5. 

In chapter 4 of this thesis, we analyse the second order Emden-Fowler equation 

which arises in certain cosmological applications. In §4.2 analytic features of this 

equation are reviewed using the Lie analysis of differential equations. The solution 

of the Emden-Fowler equation is reduced to a simpler second order autonomous 

equation. The integrability of this reduced equation is comprehensively investigated 

by considering plots of all the sub cases that arise. In §4.3 we generate plots of the 

energy density and pressure for a range of values corresponding to particular radii 

and time values for different cases that arise in our treatment. 

In Chapter 5, we briefly summarise the results of this thesis. 
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Chapter 2 

Mathematica 

2.1 The Developer 

Mathematica is a computer algebra system for mathematical problems. It is currently 

used by thousands of researchers, engineers and analysts, as well as students from 

high school to graduate school. Mathematica was released on June 23, 1988 by 

Steven Wolfram. Copyright of this product is the property of Wolfram Research Inc. 

which is a privately held company based in Champaign, Illinois. Wolfram initially 

developed software for scientific computing in the late 1970s with development of 

Mathematica starting only in 1986. The developer, a well known scientist in the 

academic community, achieved the status of full Professor in the fields of physics, 

mathematics and computer science at the University of Illinois. He has received wide 

acclaim for his research contributions in cellular automata and complexity. 

Whilst the original concept and the kernel were created by Steven Wolfram, there is a 

host of other individuals who were responsible for the development of the Mathemat­

ica software package. For example, the front end concept was created by Theodore 

W. Gray. For more information with regard to the design and development of the 

program, the reader is referred to the About Mathematica .. . option which can be 
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found on the Help menu of the program and the comprehensive Mathematica manual 

(Wolfram 1991). 

2.2 Overview of Mathematica 

Mathematica first became popular in the fields of physical sciences, engineering and 

mathematics. Now it is also used in financial analysis, medical research, computer 

science and education (Crandall 1991). Whilst Mathematica is predominantly used 

for mathematics, a small percentage of users utilise it for creating graphics, prototyp­

ing computer systems and generating interactive documents. Mathematica belongs 

to a suite of symbolic manipulation packages which include Maple, Mathcad and 

Matlab. However, Mathematica has become the most commonly used software be­

cause of its many attractive features. The environment caters for numerical, symbolic 

and graphical exploration allowing arithmetic and algebraic calculations. 

The software is available on one CD and the full installation takes up just over 150 

megabytes of hard disk space. Of the 150 megabytes, 100 megabytes are optional and 

includes the online version of the Mathematica book, the standard add-on packages 

and the MathLink developer's kit. Mathematica can work on a 80386 processor or 

later. It requires a minimum of 16 megabytes of RAM, although 24 megabytes is 

recommended for operation in Microsoft Windows 95/98 (32 megabytes for Windows 

NT) . 

Wolfram Inc. has a sophisticated password protection system. It works on the follow­

ing principle: every computer has a unique MathID number, which is automatically 

generated during the installation process. This MathID number together with the li­

cence number must then be e-mailed to Wolfram Inc., and a corresponding password 

is returned to the user in order to complete the installation process. The response 

time to obtain a password is reported to be approximately 48 hours; however our in­

teractions have generated a much faster response. Alternatively, the MathID number 
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can be entered on the web and the password generated immediately. 

The program is available for most popular operating systems including Sun, Apple 

Macintosh, Windows 95/98 and Windows NT 4.0 or later. It can work on a stan­

dalone machine or a network. The front end, which provides the user interface, is 

a separate software component from the kernel which does the computations. As a 

result, the two components may be installed on different computers across a network. 

There have been many different versions of Mathematica dating back to DOS (Disk 

Operating System). Now a completely graphical user interface is available which is 

more user friendly and much easier to use. The latest version released is Mathemat­

ica version 4.1 (December 2000). However, in this thesis comments will be made 

concerning the features of Mathematica version 4.0. 

Mathematica is divided into two parts: the kernel and the front end. The kernel is the 

computational engine that calculates and computes the results. The front end, also 

known as the notebook interface, is the graphical user interface to the Mathematica 

kernel and is separate from the kernel. The notebook handles formatting of text 

and sends a calculation to the kernel only when instructed. This is achieved when 

the user enters the keystrokes <shift> + <enter> . The kernel is where the actual 

computations take place. It may run on the same machine as the front end, or on a 

different machine. This is possible because Mathematica has its own communications 

standard called MathLink. MathLink also allows Mathematica to interface with 

other external programs, however, this standard is not foolproof. 

This software package contains many built-in functions. These functions are based 

on a number of algorithms from computer science and mathematics. Although Math­

ematica contains hundreds of functions, the developers realised that they could not 

anticipate the needs of all users. Therefore, it supports its own high level program­

ming language to produce user defined algorithms. Mathematica allows users to 

carry out projects that would be extremely laborious in traditional programming 

environments by integrating the built-in functions with the programming language. 
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The application program of this software package is developed from a combination 

of the Mathematica language itself and the programming language C. 

Once in Mathematica, help can be obtained on built-in functions, add-ons, getting 

started/demos and other information. Help can also be obtained in the form of a 

master index. Furthermore the Mathematica book is contained on-line for explana­

tions, detailed examples and syntax on built-in functions. 

In order to continue working on a previously saved notebook, it must be retrieved 

and evaluated (i.e. each line of the input processed by the kernel) in order to use 

the previous variables or values in the new Mathematica session. At the end of any 

Mathematica session, the notebook can be saved for future use and the program may 

be terminated using the Exit option on the File menu. 

2.3 User Interface 

When Mathematica starts up, it usually presents a blank notebook that consists of 

a sequence of input and output cells that are produced in pairs. (In what follows 

we maintain the input in the Mathematica format while the output is typeset to 

make the results easily read.) A cell is where a Mathematica command is entered 

or where output is received from the program. Within a particular cell, we can 

use the standard positioning and editing capabilities of the graphical user interface. 

Each time a calculation is sent to the kernel for processing, Mathematica assigns a 

number n in sequence for each input and output. For example, the first input in a 

Mathematica session is labelled In [1] : = and the corresponding output is labelled 

Out [1] =. Note that the In en] : = and Out en] = only appear after the <shift> + 

<enter> combination has been pressed. 

Mathematica has standard editing features to prepare input which may cover several 

lines. The program will automatically continue reading successive lines until it has 

received a complete expression. Thus, if the user types an opening parenthesis on 

7 



one line, Mathematica will continue reading successive lines of input until it finds 

the corresponding closing parenthesis. 

The basic program file, or the notebook, is in ASCII text. This allows us to copy 

and paste into other applications such as Microsoft Word. Furthermore, notebooks 

containing text and graphics can be sent via electronic mail without corruption. 

Mathematica contains palettes which are like an extension of the keyboard. There are 

many different palettes that have buttons that can be selected to produce the syntax 

of built-in functions and special symbols. One such palette allows for the use of Greek 

letters. Input can also be captured using special keys on the keyboard. Pressing one 

of these keys does not lead to an ordinary character being entered, but instead causes 

some action to occur or some structure to be created. For example, typing the text 

\ [Alpha] produces the Greek letter CY. Alternatively, the keystrokes Ese a Ese 

also produces an cy and the keystrokes Ese ! = Ese produces the -=I- symbol. Both 

input and output can produce Greek letters and other special symbols. 

The first calculation that is processed in Mathematica takes a long time to be eval­

uated even though it may be a simple calculation. This occurs because the software 

loads into memory in two stages. When the Mathematica icon is clicked, the user 

interface portion of the program is loaded. The kernel is only loaded once <shift> 

+ <enter> is pressed to process the first calculation. However, one can set up the 

program to load the kernel as soon as the package is initialised. 

2.4 Computational Features 

There are three classes of Mathematica's computations: numerical, symbolic and 

graphical. Once Mathematica is loaded, it can be used to perform simple arithmetic 

like a calculator. However, Mathematica can evaluate expressions with a much higher 

degree of precision than traditional calculators. It also has the capability of perform­

ing operations on functions, manipulating algebraic formulas and evaluating expres-
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sions in calculus. Both two and three dimensional graphs can also be produced. We 

discuss some of the features below. 

Numerical computation: 

Mathematica can perform all the functions such as addition, multiplication, trigono­

metric functions etc. which one would find on a standard scientific calculator. These 

calculations can be performed to any desired number of decimal places. It also has a 

much larger library of built-in functions available which may be used in the numerical 

evaluation of definite integrals. NDSol ve is a numerical function that is frequently 

used in this thesis. 

Symbolic computation: 

Mathematica has a rich set of symbolic manipulation routines. Most of the arithmetic 

operators and standard mathematical functions can work with symbolic expressions 

as well as with numeric expressions. These symbolic routines include algebraic ma­

nipulation and simplification, factorisation and expansion, as well as differentiation 

and integration. In this thesis DSol ve is a symbolic function that is frequently used. 

Graphics: 

The graphical capabilities of Mathematica is one of the qualities that have con­

tributed greatly to its success. It is very easy to create two-dimensional, three­

dimensional, contour and density plots and draw arbitrary figures and objects. There 

are also powerful features to control the appearance of the graphical results. Some 

high-level routines that are available for generating graphical representations are 

Plot, ListPlot and PolarPlot. These routines are frequently used in this thesis. 

Furthermore, Mathematica provides a useful routine to view many graphs on one 

set of axis via the Show command enabling an easy comparison of results. Another 

interesting graphical feature of this software is animation. For more information on 

graphics the reader is referred to Gaylord and Wellin (1995), Gray and Glynn (1991) 

and Smith and Blachman (1995). 
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Mathematica also allows graphics to be exported to other software packages. This 

is achieved using the Display command which allows for the export of graphics in a 

specified format. The syntax is 

Display [path, graphics, "format-type"] 

where path is the location where the graphic is to be stored, graphics refers to 

the object we wish to export and format-type is the format of the output that is 

required. The two formats that were considered for the exporting of graphs in this 

thesis were of type bitmap and metafile. Below is a graph using both the formats 

for the expression 
1 

3 x 106 + sin (1 - .1:) 

over the range (-1[, 1[). The bitmap format produces 

) ,,10-

t xl0-

1,,10-

_ ,,10- _t ",10- -1,,10-

_1 .. 10' 

_~ .. 10' 

and the metafile format results in 

3><10"7 

1 Xl If? 

, 

- >10'-"'0~ 1>10' 2>10' '>10 

- 1 xl 0 7 i 

-'" 6' I 
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Comparing the graphs above we find that the metafile format produces a smoother 

curve than the bitmap format. Furthermore, the axis labelling of the indices for the 

bitmap format is not clear and as the result all graphs in subsequent sections were 

exported using the metafile format. 

Programming: 

Mathematica contains all the necessary features such as variables, loops and con­

ditional branches enabling it to be used as a high level programming language. It 

also includes a range of programming paradigms such as procedural, list-based, func­

tional, rule-based, string-based and object-oriented programming. 

Typesetting: 

Mathematica is not only a mathematics package, it also has all the features of a text 

editor combined with calculations. It can be used to create professional documents 

as well as interactive presentations. 

Help: 

Typing ?command at the Mathematica prompt will display help on the topic command. 

Typing ??command will display a more explicit explanation of command. For example 

?Sol ve at the prompt will display 

Solve [eqns, vars] attempts to solve an equation or set of equations 

for the variables vars. Solve [eqns, vars, elims] attempts to solve 

the equations for vars, eliminating the variables elims. 

and ??Sol ve will display 

Solve [eqns, vars] attempts to solve an equation or set of equations 

for the variables vars. Solve [eqns, vars, elims] attempts to solve the 

equations for vars, eliminating the variables elims. 
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Attributes[Solve] = {Protected} 

Options[SolveJ = {InverseFunctions -> Automatic, MakeRules -> False, 

Method -> 3, Mode -> Generic, Sort -> True , VerifySolutions -> 

Automatic, WorkingPrecision -> oo} 

Furthermore using the command ?L* displays information on all Mathematica ob­

jects with names beginning with L. When there is more than one object, Mathematica 

will only list the object names. Another way to obtain information on Mathematica 

functions is by using the Options command. Options [objectJ returns a list of the 

available options associated with the object. 

Complete selections: 

The notebook interface provides a feature to reduce the amount of typing involved 

in entering Mathematica input. This is called the Complete Selection command. 

If part of a name typed is known to Mathematica, then using the key strokes 

<Ctrl> + <k> will either complete the name if it is unique or provide a menu of 

possible completions. 

Errors: 

Mathematica usually goes about its work silently, giving output only when it is 

finished performing the calculations requested. The input entered must follow a 

definite syntax. For example, input like 4 + / 5 does not follow the syntax and 

cannot be processed by Mathematica. In this instance Mathematica will reject the 

input. Typically, the computer will bleep and display the error message 

Syntax: :sntxf: "4 +" cannot be followed by "/5". 

Similarly, processing the command Sqrt [4, 5J will display 

Sqrt: :argx: Sqrt called with 2 arguments; 1 argument is expected. 
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Interrupt evaluation: 

It is possible to stop Mathematica in the middle of a calculation if it is taking too 

long to produce a result, using the Interrupt Evaluation. .. option which can 

be found on the Kernel menu of the program. Alternatively, the following shortcut 

keystroke can be used to achieve the same result <Alt> + <, > 

Bracket matching: 

Mathematica has a colour based assistant which ensures that left and right brackets 

are correctly matched. This feature is especially useful in complicated expressions 

and commands. For example, by typing Plot [(x-2) ~2, {x, 0, 1}], each left bracket 

is echoed to the screen in mauve, until it turns to black when the matching right 

bracket is typed. It is therefore easy to identify brackets that are not matched. 

However, the assistant does not prevent attempting something mathematically ac­

ceptable, but syntactically incorrect. For example, sin (x) will be accepted as valid 

in spite of the correct syntax being Sin [x] . 

Lists: 

Mathematica frequently makes use of Lists. A list is a collection of objects separated 

by commas and enclosed in braces. In performing calculations, it is often convenient 

to collect together several objects, and treat them as a single entity. Arithmetic can 

then be performed on the whole list at once, or by assigning the whole list to be the 

value of a variable. To gain a better understanding of lists the reader is referred to 

Abel and Braselton (1994). 

Using previous results: 

Very frequently we need to use the results that were obtained from the previous 

calculation. Mathematica allows us to use the result obtained from the previous 

output using the % symbol, which stands for the last result. For example 
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In[1J:= 1S-4 + 1S0 

Out [1J = 50775 

In[2J := % * 2 

Out [2J = 101550 

Using %% refers to the next-to-last result. Similarly, the statement 

In[3J := %1 + %2 

Out [3J = 152325 

will add the output generated in the lines 1 and 2. 

Replacement rule: 

When Mathematica simplifies an expression such as x + x into 2x , it is treating 

the variable x in a purely symbolic manner. In such cases, x is a symbol which 

can stand for any expression. However , there are some instances when we need to 

replace a symbol like x with a definite value which may be a number or another 

expression. The two symbols that are used to perform this task is /. which is the 

replacement operator and -> which is the assignment operator. For example consider 

the expression 1 + 2x. In Mathematica this would be 

In[4J:= 1 + 2x 

Out[4J= 1 + 2x 

Now to replace the symbol x in the previous expression with the value 3, we perform 

In[S]:= % / . x -> 3 

Out [SJ = 7 

14 



2.5 Mathematica Resources 

Apart from the online help, there are many other sources that provide supplemen­

tary material on Mathematica. These are in the form of books, application pack­

ages and the world wide web. Wolfram Inc. provides a well established web site 

(www.wolfram.com) where one can obtain information on their products, services, 

solutions, resource library, news, on-line store, the company and other relevant infor­

mation. Any errors that are found within the application program can be e-mailed 

to the technical support services of Wolfram Inc. One can expect a twenty four hour 

response time. 

Included on their web site is a MathSource hyperlink which is a vast electronic 

library of Mathematica materials including Mathematica programs, documents and 

examples. This facility allows the user to either browse the archive or search by 

author, title, keyword or item number. All items are in the public domain. 

A Mathematica Service subscription grants one access to technical support services 

and discounts on various Mathematica products and services. Furthermore, there 

are over 200 books and journals in 14 languages that cover topics from the basics to 

specific mathematical applications in engineering, physics, education and more. 

2.6 Add-on Packages 

In order to perform most calculations in Mathematica the standard built-in functions 

are sufficient . However, there are more specialised functions that are not built-in. 

These functions are contained in Mathematica packages, which are files written in 

the Mathematica language and contain a collection of algorithms. 

There are many different types of packages that contain a large number of additional 

commands that are shipped with each version of Mathematica. New and updated 

packages can be obtained from MathSource and user groups via the world wide web, 
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whilst experienced users can program their own packages. In order to view more 

information on Mathematica packages, the reader is referred to Maeder (1990) and 

Wolfram Research (1993). 

In order to load a package, the name as well as the path must be specified using the 

following syntax 

< <directory'packagenarne, 

where directory is the location of the package and packagenarne refers to its name. 

For example 

In[lJ:= «DiscreteMath'CombinatorialFunctions' 

reads in the package that contains various combinatorial functions. One of the func­

tions within the DiscreteMath package is called Subfactorial and can be used in 

the following way after loading the package 

In[2J:= Subfactorial[10J 

Out [2J = 1334961 

2.7 A Tour of Mathematica 

Before we commence our tour of Mathematica, we comment on its use of brackets. 

Each kind of bracketing has a very different meaning. For example 

() 

f[x] 
{a, b, c} 

v[[i]] 

parentheses for grouping of terms 

square brackets delimit the arguments of functions 

curly braces for lists 

double brackets for indexing of lists 

This is important in clarifying the syntax of what follows. 

Mathematica can be used as a simple calculator 

16 



In[1J := 2+3 

Out [1J = 5 

Unlike a calculator, Mathematica can produce results to a high degree of precision 

In [2J : = 3 -100 

Out [2J= 515377520732011331036461129765621272702107522001 

Mathematica returns approximate numerical results just as a simple calculator would 

by making use of the I IN operator, 

In[3J:= 3-100 IIN 

Out [3J = 5.15378 x 1047 

We can find solutions to a polynomial by using the Solve command 

In[4J:= Solve[x-3 - 3 x-2 - 17 x + 51 == 0, xJ 

Out [4J = x ---> 3, .r ---> -yf[7, x ---> yf[7 

Products and positive integer powers can also be expanded using Expand 

In[5J:= Expand[(1+x)-2J 

Out [5J = 1 + 2x + x 2 

A variation of Expand is PowerExpand which evaluates all powers of products and 

powers unevaluated by Expand 

In[6J:= Expand [Sqrt [(x y)-2JJ 

Out [6J = yfX2iji 

Without more knowledge of x and y, Mathematica cannot proceed any further. 

However , using 

In[7J:= PowerExpand[Sqrt[(x y)-2JJ 

Out [7] = .ry 
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produces an output one frequently requires. One must exercise extreme caution in 

the use of this command as j(1- .r)2 and j(x - 1)2 will always give different results. 

Simplifying polynomials can be performed using the Simplify command 

In[8J := Simplify[x-2 + 2x + lJ 

Out [8J = (1 + X)2 

Simplify is designed to attempt various standard algebraic transformations on the 

given expression. However, it can take more sophisticated transformations to make 

progress in finding the simplest form of an expression. FullSimplify tries a much 

wider range of transformations, involving not only algebraic functions, but many 

other kinds offunctions as well. For fairly small expressions, FullSimplify will often 

succeed in making some remarkable simplifications. However, for larger expressions 

it often becomes unmanageably slow. Consider 

In[9J:= Simplify[Sqrt[22619537 + 15994428 Sqrt[2JJ (1 - sin[xJ-2)J 

Out [9J = j22619537 + 15994428V2 cos2 (x) 

The Simplify command is not able to reduce this expression to its simplest form. 

However, using the FullSimplify command 

In[10J:= FullSimplify[Sqrt[22619537 + 15994428 Sqrt[2JJ (1 - sin[xJ-2)J 

In[10J := (3363 + 2378V2) cos2 (x) 

produces a more concise result. 

Mathematica can perform symbolic integration and differentiation 

In[llJ:= Integrate[x sin[xJ-2, xJ 

Out [llJ = x 2 
_ cos(2x) _ x sin(2x) 

4 8 4 

In [12J : = D [%, xJ 

Out [12J = E _ x cos(2x) 
2 2 
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Note that the result in Out [12] is not in its simplest form. Mat hematica does not 

automatically simplify an algebraic expression like t his. The Simplify command is 

required thereafter 

In[13] := Simplify[%] 

Out [13] = x sin2 (x) 

To perform long calculations, it is often convenient to specify names to intermediate 

results, as is done in standard mathematics or other computer languages 

In[14] := x=5 

Out [14] = 5 

In [15] : = x~2 

Out [15] = 25 

The contents of a variable can be freed by using the Clear command 

In[16] := Clear[x] 

In order to store numbers in a list we use 

In[17]:= mylist = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 

Out[17]= {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 

The above list contains ten objects. To access the fift h element of the list , we use 

double square brackets to enclose the index 

In[18]:= mylist[[5]] 

Out [18] = 50 

Arithmetic can be performed on the entire list in the following way 

In[19] := mylist + 1 

Out[19]= {11 ,21, 31,41,51,61,71,81,91,101} 
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Mathematica has a built-in function called Table that can be used to generate lists 

In[20]:= Table[n!, {n,1,S}] 

Out [20]= {1,2,6,24,120,720,5040,40320} 

The above statement creates a list containing the factorial of the numbers within the 

range one to eight. Note that the second parameter of Table is itself a list. It is a 

special kind of list called an iterator. 

A matrix can be generated using the command 

In[21]:= twod = {{a, b}, {c, d}} 

Out[21]= {{a,b} ,{c,d}} 

Note that a matrix (and hence an array) is a nested list. In order to obtain the first 

row we use 

In[22]:= twod[[1]] 

Out [22] = {a, b} 

Now, to obtain the second element in the first row we type 

In[23] := twod[[1,2]] 

Out [23] = b 

A command related to lists is the Flatten command. This command flattens out a 

list thereby deleting the inner braces. 

In [24] := Flatten[%21] 

Out [24] = {a, b, c, d} 

Complex numbers can also be used by including the symbol I, which represents .J=I 

In[25]:= Sqrt[-4] 

Out[25]= 21 
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It is easy to represent graphs. The function sin( eX) is illustrated via the command 

In[26]:= Plot [sin [Exp [x]] , {x, 0, Pi}] 

1 

0.51 

0.5 

-0 . 5 

-1 

out[26]= -Graphics-

Another type of graph that can be used to represent a list of numbers is ListPlot. 

It takes a list of y values or a pair of (x, y) values to produce a graph. This is 

particularly useful in the graphical representation of numerical results. Consider the 

sequence of numbers generated using the Table command 

In[27]:= Table[i-3, {i, 10}] 

Out [27]= {1,8,27,64, 125,216,343,512,729, 1000} 

The previous set of values can be graphically represented using the command 

In[28]:= ListPlot[%] 

1000t 

800 

600 

400 

200 

4 10 

out[28]= -Graphics-
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These points can be joined using the PlotJoined->True option in ListPlot. 

Three dimensional graphs can also be obtained. For example plotting a three dimen­

sional graph for the function sin( x + sin(y)) is obtained via 

In[29]:= Plot3D[sin[x + sin[y]], {x, -2, 2}, {y, -2, 2}] 

; - 2 

Out[29]= -SurfaceGraphics-

Mathematica literally has thousands more commands to perform various calculations. 

This tutorial simply provides a little insight on the capabilities of Mathematica. For 

an introduction, the reader is referred to Blachman (1992), Gray (1994), Gray and 

Glynn (1992) and Wagon (1991) . 

2.8 Commands Frequently Used in this Thesis 

DSolve: 

This is a symbolic function that is used to solve differential equations and contains 

variable parameters. The syntax is 

DSolve[eqn, y, x] solves a differential equation for the function y, 

with independent variable x. 

DSolve[{eqn1, eqn2, ... }, {y1, y2, ... }, x] solves a list of 
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differential equations . 

DSolve[eqn, y, {xl, x2, ... }] solves a partial differential equation. 

An example using DSolve 

In[l] := DSolve[y' [x] ==ay [x] ,y[x] ,x] 

Out [1] = y(x) -> eaxCl 

where Cl is a constant of integration. Note that the solution that is returned from 

DSolve is given as a rule i.e. Mathematica makes use of the symbol ->. 

NDSolve: 

We can find numerical solutions to differential equations using the function NDSolve. 

This function can handle both single differential equations and systems of differential 

equations. When using NDSol ve , initial conditions must be specified. These initial 

conditions must be sufficient to determine the solution. The results of NDSolve are 

given in terms of interpolating functions. 

The syntax is 

NDSolve[eqns, y, {x, xmin, xmax}] finds a numerical solution to the 

ordinary differential equations eqns for the function $y$ with the 

independent variable $x$ in the range xmin to xmax . 

The initial conditions are included in eqns. 

NDSolve[eqns, y, {x, xmin, xmax} , {t, tmin, tmax}] finds a numerical 

solution to the partial differential equations eqns. 

NDSolve[eqns, {yl, y2, ... }, {x, xmin, xmax}] finds numerical solutions 

for the functions yi. 

There are a number of parameters that are associated with NDSolve. These are listed 

below 
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Option Default value 

AccuracyGoal Automatic 

Compiled True 

Explanation 

digits of absolute accuracy 

sought 

whether to compile the orig­

inal equations 

InterpolationPrecision Automatic the precision of the interpo­

lation data returned 

MaxSteps 

MaxStepSize 

PrecisionGoal 

StartingStepSize 

WorkingPrecision 

Automatic maXImum number of steps 

to take 

Inf ini ty maximum size of each step 

Automatic digits of precision sought 

Automatic initial step size used 

$Machine Precision the number of digits used in 

internal computations 

NOSol ve follows the general procedure of reducing the step size until it tracks solu­

tions accurately. There is a problem when the true solution has a singularity. In this 

case NOSol ve may continue reducing the step size indefinitely. To avoid this problem 

the default setting for MaxSteps is 1000 for ordinary differential equations and 200 for 

partial differential equations. NOSolve stops when either the AccuracyGoal or the 

PrecisionGoal specified is met. The default setting of Automatic for AccuracyGoal 

and PrecisionGoal yields goals equal to the setting for WorkingPrecision minus 

ten digits. AccuracyGoal effectively specifies the absolute error allowed in solutions, 

while PrecisionGoal specifies the relative error. If solutions must be followed ac­

curately when their values are close to zero, AccuracyGoal should be set larger, 

or to infinity. The setting for InterpolationPrecision specifies the number of 

digits of precision to use inside the InterpolatingFunction object generated by 

NDSolve. The default setting of Automatic for InterpolationPrecision uses the 

current setting for WorkingPrecision. When NDSol ve evaluates a particular set 

of differential equations, it always tries to choose a step size appropriate for those 

equations. In some cases, the very first step size that NDSol ve takes may be too 
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large and it may miss an important feature in the solution. To avoid this problem, 

the StartingStepSize option can be set explicitly to specify the size to choose for 

the first step. 

Mathematica represents numerical approximations to functions as Interpolating­

Function objects. The InterpolatingFunction stores a table of values for Y(Xi). It 

then interpolates this table to find an approximation of y(x) at the particular value 

of x. Suppose that we wish to approximate the solution to the system 

, 
x 

y' 

2 - y - x 

2x -y 

(2 .1) 

(2.2) 

subject to the conditions x(O) y(O) - 1 and 0 < t < 10. The Mathematica 

command is 

sol = NDSolve[{x' [t] == -y[t] - x[t]-2, y' [t] == 2 x[t] - y[t] , 

x[O] == y[O] == H, {x[t] , y[t]}, {t, 0, 10}] 

which returns the following solutions that are stored in the variable sol 

x(t) InterpolatingFunction(O, 10) 

y(t) InterpolatingFunction(O, 10) 

Plot: 

(2.3) 

(2.4) 

Many graphical representations are illustrated in this thesis . The commands that are 

frequently used are Plot and PolarPlot. A graph can be obtained for (2.4) using 

the command 

Plot[Evaluate[y[t] /. sol], {t, 0, 10}] 
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where sol represents the solution in (2.4). This command produces the following 

graph in Mathematica 

- 0 . 2 ~ 
6 1 0 

- 0 . sf 

The syntax for Plot is 

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of x 

from xmin to xmax. Plot[{f1, f2, ... }, {x, xmin, xmax}] plots several 

functions fi. 

PolarPlot: 

This command is used when plotting the radius as a function of the angle. It is not 

a built-in function and is contained in a package called Graphics. It is loaded using 

t he command 

«Graphics (Graphics ( 

The syntax for PolarPlot is 

PolarPlot[r,{t,min,tmax}] generates a polar plot of the radius r as a 

function of the angle t. 

An example using PolarPlot 

In[2]:= «Graphics (Graphics ( 
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In[3]:= PolarPlot[4 cos[t] - 2, {t, 0 , 2 Pi}] 

4 

- 3 

Out[3]= -Graphics-

RKSolve : 

The RKSolve funct ion is an implementation of t he Runge-Kutt a method for finding 

numerical solut ions t o ordinary differential equations. T his function was used to 

verify all the results obtained in Chapter 3 and some of the results in Chapter 4 via 

NDSolve. This function is not a built-in function and is contained in the package 

RungeKutte . m. The syntax for RKSol ve is as follows 

RKSolve[{e1,e2, . . }, {y1 , y2, .. }, {a1,a2, . . }, {t1, dt}] numerically 

integrates the ei as functions of the yi with initial values ai. The 

integration proceeds in steps of dt from 0 to t1. RKSolve[{e1,e2, . . }, 

{y1,y2, . . }, {a1,a2, . . }, {t, to, t1, dt}] integrates a time-dependent 

system from to to t1 . 

The algorit hmic code for the RKSol ve routine is list ed below 

BeginPackage[I1ProgramminglnMathematica'RungeKutta'l1] 

RKSolve: :usage = 

I1RKSolve[{e1,e2, .. }, {y1,y2, . . }, {a1,a2, .. }, {t1, dt}] 
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numerically integrates the ei as functions of the yi with initial values ai . 

The integration proceeds in steps of dt from 0 to t1. 

RKSolve[{e1,e2, . . }, {y1,y2, .. }, {a1,a2, . . }, {t, to, t1, dt}J integrates 

a time-dependent system from to to t1 . " 

Begin[1I 'Private' IIJ 

RKStep[f_ , y_ , yO_ , dt_J : = 

Module[{ k1 , k2, k3 , k4 } , 

k1 dt N[ f /. Thread[y -> yOJ J; 

k2 = dt N[ f /. Thread[y -> yO + k1/2J 

k3 = dt N[ f / . Thread[y -> yO + k2/2J 

k4 = dt N[ f /. Thread[y -> yO + k3J J; 

yO + (k1 + 2 k2 + 2 k3 + k4)/6 

J 

J; 

J; 

RKSolve[f_List , y_List, yO_List, {t1_, dt_}] := 

NestList[ RKStep[f, y, #, N[dt]]&, N[yO], Round[N[t1/dt]] ] /; 

Length[f] == Length[y] -- Length[yOJ 

RKSolve[f_List, y_List, yO_List , {t_ , to_, t1_, dt_}] 

Module [{res}, 

res = RKSolve[ Append[f, 1], Append[y, t], Append [yO, to], {t1 - to, dt} ]; 

Drop[#, -1]& /@ res 

] /; Length[f] == Length[y] -- Length[yO] 

End[J 

Protect[ RKSolve J 

EndPackage [] 

An example using RKSol ve is given below: 

Consider the following equat ion 

y" = 0 
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with initial conditions y'(O) = 1 and y(O) = O. We make the following substitution 

thereby making 

Substituting (2.7) into (2.5) we have 

I v = y 

I " V = Y 

v' = 0 

We first load the package in order to use the RKSol ve command 

In[4] := « RungeKutta.rn 

(2 .6) 

(2.7) 

(2.8) 

Using the syntax already given for RKSolve, the Mathematica command for (2.5) 

with the given initial conditions, translates to 

In[5]:= RKSolve[{v, O}, {y, v}, {o, n, {x, ° , 10, nJ 

Out [5]= {{o. , 1.} , {1. , i.}, {2. , 1. }, {3. , 1. }, {4 . , i.}, {5. , i.}, 

{6. , 1.} , {7. , 1.} , {8. , i.} , {9. , i.} , {iO. , i.}} 

Plotting the above data directly results in a graph in phase space. However, we 

are interested in the behaviour of y as a function of x. As a result we proceed by 

flattening out the nested lists above with the following command 

In[6]:= Flatten[%] 

Out [6J = {o., 1., 1., 1., 2., 1., 3., 1., 4., 1., 5., 1., 6., 1., 7., 

1.,8.,1.,9.,1.,10., i.} 

A table of values is then generated in order to obtain a graphical representation via 

the command 

In[7J:= Table[{i, %[[2i + l]J}, {i, 0, 10}] 

Out[7]= {{o, O.}, {1, 1.}, {2, 2.}, {3, 3.}, {4, 4.}, {5, 5.}, {6, 6.}, 

{7, 7.}, {8, 8.}, {9, 9.}, {10, 10 . }} 
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where the 2i + 1 term is necessary to pick out only the y(x) results. This is then 

illustrated using the command 

In[8]:= ListPlot[%, PlotJoined->True] 

10 

4 

2 

2 8 10 

Out[8]= -Graphics-

This algorithm insists on a starting point of zero. For general analyses this would 

be quite restrictive. However , as our independent variables are time and radius, we 

will only be concerned with positive values. 

Having introduced the package and explained the commands used to obtain the 

results in this thesis, we are now in a position to present those results. In doing so, 

we emphasise the power and shortcomings of this software package. 

30 



Chapter 3 

Orbit Equations 

3.1 Introduction 

There are different applications that arise in many practical situations involving dif­

ferential equations. In this chapter we investigate the utility and scope of Mathemat­

ica in solving and illustrating the solution of a special class of differential equations 

using the functions: DSolve, NDSolve and PolarPlot. The syntax and use of these 

functions has already been discussed in Chapter 2 (§2.8 in particular). Greater details 

are provided in the Mathematica book (Wolfram 1996). To obtain more information 

on solving differential equations using Mathematica the reader is referred to Abel 

and Braselton (1997), Ganzha and Vorozhtsov (1996), Kythe et al (1997) and Shaw 

and Tigg (1994). The special class of differential equations that we investigate arise 

in Newtonian theory and in general relativity. These differential equations describe 

orbits of planets around the sun. Our objective is to solve these orbit equations 

analytically and thereafter to graphically represent the solutions for the planetary 

bodies Mercury, Earth and Jupiter. We attempt to plot the relevant orbits in both 

the Newtonian and relativistic cases and then perform a numerical approximation to 

find the solutions. Finally, we undertake a perturbative analysis of the equations. 
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3.2 Newtonian Equation 

Consider a particle moving in the equatorial plane in the gravitational field of a 

spherical object of mass M situated at the origin. In this section we assume that 

N ewtonian equations are applicable and neglect relativistic effects. Then the con­

servation of angular momentum and conservation of energy generate the equation 

2GM 
(y')2 + y2 = E + ~y (3.1) 

where y = 1/r, E is the energy of the orbit , h is the angular momentum per unit 

mass, G is the universal gravitational constant and the prime denotes differentiation 

with respect to x - the angular displacement. The angular momentum is represented 

by 

. 2 21l' 2 
h=xR =-R 

T 
(3.2) 

where R is the semi major axis length and T is the period. The energy E is given 

by 

(3.3) 

where e is the eccentricity of the orbit. In the above we have used the notation and 

conventions of Foster and Nightingale (1998). 

Equation (3.1) is highly nonlinear; however we are in a position to solve it with the 

help of Mathematica. We first attempt to solve equation (3.1) analytically. The 

DSol ve command is used and the syntax is 

DSolve[y' [x]-2 + y[x]-2 == a + b y[x], y[x], x] 

where we have set 

a E (3.4) 
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b 
2GM 

h2 

Mathematica returns the following solutions 

(3.5) 

(3.6) 

(3.7) 

where Cl represents a constant of integration. It is important to observe that the two 

solutions (3.6) and (3.7) arise from the first order equation which is of degree two. 

In spite of the nonlinearity of equation (3.1), Mathematica is still able to provide 

closed form solutions. We now try to simplify equations (3.6) and (3.7) using the 

PowerExpand and Simplify commands in Mathematica. Equations (3.6) and (3.7) 

are then reduced to 

() 
b - vi 4 a + b2 sin (x - Cl) 

y X -, - 2 

y(x) = b + vl4a + b2 sin(x - Cl) 
2 

(3.8) 

(3.9) 

This example illustrates the utility and power of Mathematica; the complicated 

expressions (3.6) and (3.7) have been reduced to the considerably simpler expressions 

(3.8) and (3.9). 

We observe that differentiating (3.1) yields 

" GM 
y +y= h? (3.10) 

which is now a linear equation in contrast to the nonlinear equation (3.1). Using the 

command 
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DSolve[y" [x] + y[x] == (G M) / h-2 , y[x], x] 

we obtain the general solution 

GM . 
y(x) = -2 + Cl COS(X) - C2 sm(x) 

h 
(3.11) 

In order to obtain physically meaningful results, we have to solve (3.10) subject to 

the initial conditions 

y' (O) - 1 

y'(O? - by(O) - a - 0 

where we have to solve the final expression above to obtain y(O) . Unfortunately 

we cannot proceed with the equation and initial conditions in this form due to the 

presence of relatively large numbers. As the result we rescale y as follows: Let 

_ 1 Re 
y = -= = - = ReY 

r r 

where Re is the radius of the earth. Now (3.10) becomes 

and the initial conditions are 

ylt + y = bRe 
2 

y' (0) 0 

y'(0)2 - bReY(O) - oR; - 0 

(3.12) 

(3.13) 

where we have to solve the final expression above to obtain y(O). We will always 

choose the lower value of y(O) to conform with our choice of the origin. We solve the 

above equation using the command 

DSolve[{yb" [x] + yb[x] == (G m re)/h2, yb[O] == 1/2(b re -

Sqrt[4a + b-2] re), yb' [0] == O}, yb[x] , xJ 

34 



where yb will always represent y, h2 is the angular momentum h2
, ID denotes the 

mass of the sun M and re refers to the radius of the earth Re. The solution obtained 

IS 

(3 .14) 

We now analyse the motions of specific planetary bodies. In particular, we consider 

the values for the planets Mercury, Earth and Jupiter. In order to obtain specific 

plots for these planets the following table of values were utilised 

e T(years) R(au) 

Mercury 0.206 0.2402 0.387 

Earth 0.0167 1 1 

Jupiter 0.0489 11.865 5.202 

TABLE 3.1: Physical parameters for some planetary bodies 

where 1au = 1.4953 x lO11m, 1year = 365.2564 x 86400s (Moulton 1970). Using the 

above values, we have 

y(x) = 2.58903 - 0.533336cos(x) (3.15) 

for Mercury, 

y(x) = 1.00655 - 0.0168094cos(x) (3.16) 

for Earth, and 

y(x) = 0.193503 - 0.00946228cos(x) (3.17) 

for Jupiter. 

To obtain a more meaningful, visual interpretation of the motions of these planetary 

bodies, we generate graphical representations of (3.15), (3.16) and (3.17). Recall 
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that the variables y and x in (3.1) relate to the radius and angular displacement 

respectively, for planetary bodies. As a result, we utilise PolarPlot to obtain an 

accurate reflection of the motion of these objects. In the case of Mercury we use the 

command 

PolarPlot[l/yb[x] , {x, -5Pi, 5Pi}] 

which produces the output 

o .J.--- ____ 

o . 

~----.-.---.-----~-+ 
- 0 . 2 o . 2 o . 4 

- 0 . 

-0 .jd--~ 

In a similar manner the following graph was obtained for the planet Earth 

o . 

- 0 . 5 o . 5 

- 0 . 
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and the graph for Jupiter is given by 

- 4 - 2 

- 2 

- 4 

In order to compare the three graphs we need to plot them on the same system of 

axes via the Show command. The following representation is generated 

- 2 

- 2 

- 4 

where the graphs from inner to outer represent Mercury, Earth and Jupiter respec­

tively. From the above illustration it would appear that the planetary orbits are 

circular, however, this is not the case because the eccentricity e for the planets con­

sidered (see Table 3.1) is not zero which is required for a circle. 
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3.3 Relativistic Equation 

We once again consider a particle moving in the equatorial plane under the grav­

itational attraction of a spherical object of mass M as in §3.2. However, in this 

case we incorporate relativistic effects. The Einstein field equations, which relate the 

matter content to the spacetime curvature in a nonlinear manner, then hold. For 

detailed treatments of general relativity, the Einstein field equations and background 

differential geometry, the reader is referred to the classical treatments of de Felice 

and Clark (1990), Hawking and Ellis (1973), Misner et al (1973) and Schutz (1985), 

amongst others. 

The relativistic orbit equation corresponding to (3 .1 ) is given by 

( 
')2 2 _ E 2G M 2G M 3 

. Y + Y - + h2 Y + c2 y (3.18) 

where c refers to the speed of light. Equation (3.18) is more complex than equation 

(3.1) which was considered in the previous section. The difficulty in solving (3.18) is 

related to the addition of the relativistic term 

2GM 3 
--y 

c2 (3.19) 

which is highly nonlinear. The solution of (3.18) cannot be expressed solely in 

terms of elementary functions; elliptic integrals are necessary in general (Foster and 

Nightingale 1998). For experimental results justifying the inclusion of the relativis­

tic term (3.19) the reader should consult Dicke and Goldstein (1967), Duncombe 

(1956), Nordtvedt and Will (1972), Shapiro (1972) and Shapiro et al (1973). These 

treatments provide detailed arguments of the physical importance of the relativistic 

equation (3 .18) for planetary orbits. 

Differentiating (3.18) we obtain 

11 _ GM 3GM 2 
Y + Y - -h2 + -2-Y , c (3.20) 
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We apply the transformation (3.12) to equation (3 .20) to produce 

_/I _ bRe 3GM_2 
Y + y = 2 + c2Re Y (3 .21) 

Attempting to solve (3.21) using the DSolve command proves to be too complicated 

for Mathematica. The following error message is obtained 

Solve: :dinv: The expression EllipticF[ArcSin[ «l»J « 1» J 
«1» ' « 1» 

involves unknowns in more than one argument, so inverse functions cannot 

be used. 

This is not surprising as no solution in terms of elementary functions exist . 

3.4 Numerical Approach 

In this section we will attempt to solve our equation numerically using NDSol ve and 

compare our results with the previous section. We start with (3.13) because of its 

simplicity and the presence of an analytic solution for verification of the numerical 

results. The appropriate Mathematica command to solve (3.13) numerically is 

NDSolve[{yb" [xJ + yb[xJ == Cb re)/2, yb' [OJ == 0, yb[OJ == 2.05569}, 

yb[xJ, {x, -5 Pi, 5 Pi}J 

where we have used the values of b corresponding to Mercury and re refers to the 

radius of the earth. This produced the following solution 

y(x) = InterpolatingFunction( -15.708,15.708) 

In a similar way solutions can be obtained for Earth and Jupiter. Plotting all the 

solutions on the same system of axis produces the following output 
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4 

- 4 - 2 4 

- 2 

- 4 

These results are consistent with the analytical approach. 

We now attempt to solve (3.21) numerically. The command used in Mathematica 

for t he planet Mercury is 

NDSolve[{yb" [x] + yb[x] -- ((G m re)/h-2) + (3 G m /(c-2 re)) yb[x]-2, 

yb' [0] == 0 , yb[O] == 2.05569} , yb[x] , {x, -1000, 1000}] 

to produce the following solution 

y(x) = InterpolatingFunction( -182.377,182.377) (3.22) 

Graphically representing the above solution produces the following output 

o I 
-t--------"-~J .~ .-___________. 

- 0 . 2 I 0 2 

I 

" ~ 
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Similarly, Earth has the graph 

and Jupiter 

In order to compare all graphs on the same system of axis we have 
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We observe from the above graphs a distinct thickening in the plotting of the orbit. 

To determine the behaviour of the graph we now investigate the orbit of Mercury by 

looking at a small portion of the graph. The intervals chosen for each graph were 

[-0.01,0.01]' [-0.01 +47r, 0.01+47r], [-0.01+87r,0.01+87r] and [-0.01+127r,0.01+ 

127r] to produce the following 

To determine the behaviour of the graph on the opposite end of the axis, we use the 

following intervals: [-0.01,0.01]' [-0.01 + 37r, 0.01 + 37r], [-0.01 + 77r, 0.01 + 77r] and 

[-0.01 + 117r, 0.01 + 117r] to obtain 

/ 

/' 

/// 

// 

/ / 

/ / 

0.00 

0 . 00 

0.320258 

It is evident that whilst the graphs for the relativistic case appears to be a solid 

line, the thickening is due to a precession of the planetary orbits. The small values 

obtained on the x axis above explain why the phenomenon was not noticed on the 

previous plots. 
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3.5 Perturbative Approach 

We have observed that DSo1 ve could not handle the relativistic equation. We have 

obtained some results using NDSo1 ve but wish to verify them using an alternative 

technique. The relativistic equation has the form 

GM 3GM 2 
yl/ + y = -h2 + --2 - y 

, C 
(3.23) 

We will use a perturbative approach in this section and will represent the complete 

Mathematica session displaying both the input and the output statements. Again due 

to the presence of relatively large numbers we rescale (3.23) using the transformation 

given in (3.12) to produce 

_1/ - GMRe 3GM -2 
Y +y= h2 +~R y 

, C e 
(3.24) 

We start the Mathematica session with (3.24) as follows 

In[l]:= eq = yb"[x] + yb[x] - (G M re/h-2) - (3 G M/(c-2 re» yb[x]-2 

Out [1] = - G~re + yb[x] - 3G~~~[xj2 + ybl/[x] 

where eq is set to zero and yb refers to y in (3.24). Defining 

A 
GM 

h2 

3GMA 
E -

c2 -

requires the following Mathematica statements 

In[2]:= eq = eq I. (G M/h-2) -> A 

Out[2]= -Are+yb[x]- 3G~~~[xJ2 +ybl/[x] 

3G2M2 

c2h2 

In[3]:= eq = eq I. (-3 G M)/c-2 -> -ep lA 

Out [3] = -Are + yb[x] - e~~:F + ybl/[x] 

(3.25) 

(3.26) 

where ep refers to E. Having made the substitutions above, (3.24) now becomes 
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-" + - = AR + _E _ _ 2 
Y Y e ARe Y (3.27) 

We note that E is a small dimensionless quantity. We assume a solution of the form 

In Mathematica this solution is written as 

In [4] := yb[x] = yO[x] + ep w[x] + O[ep-2] 

Out [4] = (epw[x] + yO[x]) + O[ep2]1 

(3.28) 

where yO represents Yo in (3 .28). We now substitute (3.28) into (3.27) in the follow-

mgway 

In[5]:= eq = eq / . yb" [x] -> D [yb [x] , {x, 2}] 

Out [5] = ((-Are + epw[x] + yO[x] - ep(epw~~~YO[x])2 + epw"[x] + yO"[xl) + o [ep2j1 ) + 
o [ep2j1 

The coefficients of E from the above output are obtained using the command 

In[6]:= CoefficientList[eq, ep] 

Out [6] = {-Are + yO[x] + yO"[x], w[x] - Y~:l2 + w"[x], - 2W[~~eO[xJ , _1:~2} 

We obtain the zeroth order terms in E as follows 

In [7] : = %6 [ [1] ] 

Out [7] = -Are + yO[:r;] + yO"[.T] 

The equation for the zeroth order terms in E translate to 

y~ + Yo = ARe 

We note that (3.29) is equivalent to (3.10) with solution 

Yo(x ) = ARe + Cl cos(x ) - C2 sin(x) 

We rewrite this solution as 

yo(x) = ARe + Bcos(x ) 
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where we have reoriented the axis to make C2 zero and B refers to the constant Cl' 

We now obtain the first order term in E using the command 

In [8J : = %6 [ [2J J 

Out [8J = w[x] - Y~;r + wl/[x] 

The equation for the first order terms in E is given as 

- 2 

Wl/+W=~ 
ARe 

We now replace Vo in (3.32) with (3.31) and expand the expression as follows 

In[9] := -%[[2]] I. yO[x] -> (A re) + B Cos[x] II Expand 

A BC [] B2Cos[xj2 Out [9] = re + 2 os x + Are 

(3.32) 

Rewriting and expanding the above expression in terms of cos(2x) requires the fol­

lowing substitution 

In[10]:= % I. Cos[xJ-2 -> (1/2 + 1/2 Cos [2x]) II Expand 

Out [10J = 2~;e + Are + 2BCos[x] + B2;~:!2xJ 

Equation (3.32) now becomes 

1/ B2 A [] B 2 cos [2x] 
W + W = -- + re + 2Bcos x + ----,--""'" 

2Are 2Are 

Since (3.33) is a linear equation in wl/ we can write 

where Wa) Wb and Wc are solutions of the equations 

1/ 
B2 

wa +wa 2Are + Are 
1/ 2Bcos[x] Wb +Wb -

1/ B2 cos [2x] 
Wc +wc 

2Are 

(3.33) 

(3 .34) 

(3.35) 

(3.36) 

(3.37) 

and we used the principle of superposition of solutions of linear equations. The 
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inhomogeneous solutions to the system are now calculated. We solve and simplify 

(3.35) in Mathematica as follows 

In[11J:= Simplify[DSolve[w" [xJ + w[xJ == %[[1JJ + %[[2JJ, w[xJ, xJJ 

Out [11J = {{ w[x] - 2~;e + Are + C[2]Cos[x] - C[l] Sin [xl} } 

We are only interested in the inhomogeneous solutions and therefore set e [1J and 

e [2J to zero in the solutions W a , Wb and WC' The solution for Wa is calculated in 

Mathematica as follows 

In[12J:= wa = (First[w[xJ /. waJ) /. {e[1J -> 0, e[2J -> o} 

Out [12J = 2~;e + Are 

From the above output we now have 

Equation (3.36) is solved in a similar way using the commands 

In[13J:= Simplify[DSolve[w" [xJ + w[xJ == %10[[3JJ, w[xJ, xJJ 

Out [13J = {{ w[x] - (B + C[2])Cos[.1:] + (Bx - C[l])Sin[x]}} 

In[14J:= wb = (First[w[xJ /. wbJ) /. {e[1J -> 0, e[2J -> -B} 

Out [14J = BxSin[x] 

which is given by 

Wb = Bx sin(x) 

Finally solving (3 .37) we have 

In[15J:= Simplify[DSolve[w" [xJ + w[xJ == %10[[4JJ, w[xJ, xJJ 

Out [15J = {{ w[x] - C[2]Cos[x] - B2f;:~2X) - C[l]Sin[x]} } 

In[16J:= wc = (First[w[xJ /. wcJ) /. {e[1J -> 0, e[2J -> O} 

Out [16J = _ B
2
Cos [2x) 
6Are 
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to obtain the solution 
B2 cos(2x) 

Wc = - 6ARe 

To obtain and simplify w in Mathematica we perform the following 

In[17] := w = Simplify[wa + wb + wc] 

Out [17] = 3B2 +6A2 re2 -B2 Cos[2x]+6ABrexSin[x] 
6Are 

Our final solution for w now becomes 

3B2 + 6A2R; - B 2cos(2x) + 6ABRexsin(x) 
w = 6ARe 

(3.40) 

(3.41) 

Assigning values to the constants for the planet Mercury requires the following state-

ments 

In[18]:= B = 0 . 533336 

Out [18] = 0.533336 

In[19]:= R = 0.387*1 . 4953*10~11 

Out[19]= 5.78681 x 1010 

In[20]:= re = 1 * 1.4953*10~11 

Out [20] = 1.4953 x 1011 

In[21]:= T = 0.2402*365.2564*86400 

Out [21] = 7.58027 x 106 

In[22]:= G = 6 . 67*10~-11 

Out [22] = 6.67 x 10-11 

In[23] := M = 2*10~30 

Out[23]= 2000000000000000000000000000000 

In [24] := h = ((2*Pi) I T) * R~2 

Out [24] = 2.77571 X 1015 
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In[25J := A = CG M) / h-2 

Out [25J = 1.73144 X 10-11 

From (3.28) we replace Yo with (3.31) using the command 

In[26J:= yb = CA re) + B Cos[xJ + Cep w) 

Out [26J = 2.58903 + 0.533336Cos[x] + 0.0643743ep( 41.0717 - 0.284447Cos[2x] 

+8.28492xSin[x]) 

We now set E = 0.02 and simplify the above expression in the following manner 

In[27J:= yb = Simplify[yb /. ep -> 0 .02] 

Out [27J = 2.64191 + 0.533336Cos[x] - 0.000366222Cos[2x] + 0.0106667xSin[x] 

Thus we now have 

y = 2.64191 + 0.533336 cos(x) - 0.000366222 cos(2x) + 0.0106667x sin(x) (3.42) 

We plot the graph of l/y over the range [-7l',7l'] to obtain a graphical representation 

using the commands 

In[28]:= « Graphics 'Graphics , 

In[29]:= PolarPlot[1/yb, {x, -Pi, Pi}, AspectRatio -> 1] 

o . 

o . t 

--t---'-. o~. 4 ~ ~ .. . ~~o . ~2 --l-

· 0 f 

. 0 . 

Out[29]= -Graphics-

Furthermore, plotting the graph of 1/ f) over the range [-57l', 57l'] 
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In[30J:= PolarPlot[1/yb, {x, -5Pi, 5Pi}, AspectRatio -> 1J 

Out[30J= -Graphics-

Using the perturbative approach we notice the distinct precession if E = 0.02 in the 

graph over the range [-51f, 51f]. We were not able to notice this effect in the previous 

section for the same range. This is unsurprisingly as E « 1 once the physical values 

of the various constants are taken into account. 

The perihelion of a planet occurs when r is a minimum (y is a maximum). If we 

write (3.42) as 

y(X) = A + B cos(x - EX) + O(E) 

We see that y in (3.42) is a maximum when 

x(l - E) = 21fn 

or approximately 

X = 21fn(1 + E) 

Therefore successive perihelia will occur at intervals of 

~x = 21f(1 + E) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

instead of 21f as in periodic motion. Thus the perihelion shift per revolution is given 
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by 

(3.47) 

In the case of Mercury, (3.47) gives a total shift of 4.83752 x 10- 7 and a shift of 

1.8807 x 10-7 for Earth whilst Jupiter has a shift of 3.61555 x 10-8 . 
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Chapter 4 

Emden-Fowler Equation 

4.1 Introduction 

There are many special techniques and approaches that can be used to solve differ­

ential equations. One such procedure is to utilise the symmetries associated with the 

equation that is being considered. This procedure was studied and perfected by Lie 

(1891) and is based on the invariance of a differential equation under a point transfor­

mation. Many differential equations that arise in fields such as classical mechanics , 

hydrodynamics and relativity can be investigated using this powerful technique of 

solving differential equations. In particular, the Emden-Fowler equation is of funda­

mental importance when analysing the gravitational behaviour in many spherically 

symmetric cosmological models in general relativity. In this chapter we analyse this 

second order equation which arises in certain inhomogeneous cosmological applica­

tions. The Emden-Fowler equation is first written in autonomous form using the Lie 

analysis. We consider different cases of this autonomous equation and plot graphs 

for each case using Mathematica. For a particular model chosen we generate profiles 

of the pressure gradient and density; graphical representations of the density and the 

pressure are produced. This demonstrates that a numerical analysis of the behaviour 

of the pressure and density is possible and complements previous analytical studies. 
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4.2 Lie Analysis 

Spherically symmetric gravitational fields are important in cosmology and these fields 

have been studied by Stephani (1968), Sussman (1987, 1988a, 1988b, 1989a, 1989b) , 

Szafron (1977) and Szekeres (1966), amongst others. We investigate the field equa­

tions of a symmetric shear-free fluid that arise in inhomogeneous cosmological mod­

els. For this situation we can introduce a co moving and isotropic coordinate system 

Xi = (t, r, (), q;) such that the metric can be written as 

( 4.1) 

where the functions 1/( t, r) and A( t, r) represent the gravitational potentials. The 

gravitational potentials are restricted by the Einstein field equations. For the metric 

(4.1), the Einstein field equations reduce to 

(4.2) 

-F(r) ( 4.3) 

where f(t) and F(r) are arbitrary functions of integration. The energy density I)' 

and pressure p then assume the forms 

( 4.4) 

( 4.5) 

To find an exact solution of the field equations (4.2) and (4.3) the functions f(t) and 

F(r) need to be specified and equation (4.3) has to solved for A. The quantity 1/ is 

given by (4.2). Thereafter the dynamical quantities p, and p can be computed from 

(4.4) and (4.5). Thus the equation (4.3) is the master equation: a solution of this 

equation generates a solution to the system (4.2)-(4.5). The transformation 
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x (4.6) 

L(t,x) (4.7) 

F(x) (4.8) 

reduces equation (4.3) to 

( 4.9) 

which is the fundamental equation governing the behaviour of the model. This 

equation is known as the Emden-Fowler equation of index two. This equation has 

been studied extensively by researchers in cosmology. Recent investigations include 

the treatments of Hallburd (1999), Herlt (1996), Maharaj et al (1996), Srivastava 

(1987, 1992) and Stephani and Wolf (1996). 

Now we consider a widely applied technique to reduce equation (4.9) to a first order 

differential equation. A systematic method to determine whether a second order 

differential equation can be solved by quadratures is that of Lie. For more information 

on the Lie analysis of differential equations and applications to mathematical physics 

the reader is referred to Bluman and Kumei (1989), Govender (1997), Leach (1981), 

Mahomed and Leach (1990, 1991), Moodley (1998). On performing the Lie analysis 

we find that (4.9) is invariant under the action of symmetry 

[) [) 
G = A(x)~ + [B(x)L + C(x)] ~ 

uX uL 
(4.10) 

provided that 

F(x) (4.11) 

A xxx (4.12) 
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B(x) (Ax - a)/2 (4.13) 

C(x) (4.14) 

where a, M , Co and Cl are constants. 

A solution of equation (4.12) gives F(x) by equation (4.11). Then equation (4.9) 

can be reduced to a first order differential equation. Note that the existence of the 

symmetry (4.10) permits this reduction to first order. If two symmetries are known, 

the second order equation (4.9) may be reduced to quadratures. The Lie analysis 

was first used by Kustaanheimo and Qvist (1948) in this context for the analysis of 

expanding inhomogeneous models; they considered the case a = 0 and C = O. The 

case that we are interested in corresponds to a =I 0 and C = O. This appears to give 

a generalisation of Kustaanheimo and Qvist since equations (4.11) and (4.12) imply 

We now let 

A = o,x2 + bx + c 

F M A -5/2 exp (J 2: dx ) 

Y LA-
1

/
2 

exp (J 2~ d.'E) 

x = j'dX 
. A 

Then equation (4.9) can be written in the autonomous form 

Y" I ( a
2 

1 2) 2 - aY + 4 + o,c - 4b Y + MY = 0 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 

(4.19) 

where Y is a function of X. In equation (4.19), we set M = 1 and Ll represents 

b2 - 4o,c giving 
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" I ( a
2 

1 A) 2 0 Y -aY + 4-4 u y+y = ( 4.20) 

Maharaj et al (1996) have shown that (4.20) can be reduced to quadratures for special 

values of a and~. They also commented on the general integrability of this equation 

for other values of a and~. Given the importance of a and ~ in the behaviour of the 

solution of (4.20), we consider numerical solutions to (4.20) for all possible classes of 

values of a and ~. As a consequence, the following cases are considered 

a=O and ~=O 

a=O and ~ > 0 

a=O and ~ <0 

a>O and ~=O 

a> O(a <> 5~) and ~ > 0 

a> O and ~ < 0 

a=5v"K and ~ > 0 

a = -5v"K and ~ > 0 

a<O and ~=O 

a < O(a <> -5v"K) and ~ > 0 

a<O and ~ <0 

For each of the above cases, Mathematica was used to numerically solve the respective 

equation using the NDSol ve function. Thereafter, to interpret the results obtained, 

a graphical representation is illustrated using the Plot function. All the solutions 

obtained via the NDSol ve function were verified using the RKSol ve function which 

was discussed in Chapter 2. 

4.2.1 et = 0 and ~ = 0 

Under these conditions equation (4.20) reduces to 
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y" + y2 = 0 (4.21) 

where a = 1, b = 2 and c = 1, thereby making .6. = O. The Mathematica command 

NDSolve[{y" [x] + y[x]~2 == 0, y' [0] == 0, y[O] == 1}, y[x] , {x, -10, 10}] 

yields 

Y(X) = InterpolatingFunction( -3.21017, 6.42038) ( 4.22) 

as the solution. The graphical representation of this solution is given by 

2 4 

-6 00 

- 800 

- 1 00 of 

- 12001 

Note that the initial conditions Y'(O) = 0 and Y(O) 1 will be used for all the 

succeeding cases. 

4.2.2 a = 0 and ~ > 0 

Using the above conditions equation (4.20) takes the form 

17 
Y" - -Y + y2 = 0 

4 (4.23) 

where a = 1, b = 3 and c = 1, hence making .6. = 5. The numerical solution returned 

by Mathematica is 

Y(X) = InterpolatingFunction( -2.28918, 6.72194) ( 4.24) 
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We also consider the case when a = 2, b = 5 and c = 1 making .6. = 17 and the case 

a = 5, b = 10 and c = 3 making .6. = 40 to determine the behaviour of the solution 

for other positive values of .6.. All three results are graphically represented below. 

4.2.3 a = 0 and ~ < 0 

Equation (4.20) now becomes 

- 20 of 
2 4 

-40 Of 

- 600 

- 800 

- 1 000 

- 12 00 

3 y" + - y + y2 = 0 
4 

6 

where a = 1, b = 1 and c = 1, thereby making .6. = - 3. The solution is 

Y(X) = InterpolatingFunction( -3.75471, 6.33594) 

If a = 2, b = 2 and c = 1, then .6. = -4. Illustrating the two graphs produce 

- 2 
- 200 

- 400 

-600 

-800 

-1000 

- 1200 

-1 4 00 
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Furthermore, using the values Q, = 3, b = 2 and c = 2, makes ~ = -20. This 

produces the graph 

Interestingly, this oscillation is observed for ~ :::; -6. 

4.2.4 a > 0 and ~ = 0 

For this case equation (4.20) takes the form 

y" - Y' - ~ y + y2 = 0 
4 

(4.27) 

where et = 1, Q, = 1, b = 2 and c = 1, thereby making ~ = O. The solution returned 

is 

Y(X) = InterpolatingFunction( -5.16155,4.12919) (4.28) 

To determine the behaviour of the solution for other positive values of et we consider 

the case when et = 5 and et = 15. All three results are graphically represented below. 
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I 

The dotted line represents the case when 0: = 1 and the thick line is given by 0: = 5. 

4.2.5 a > 0 (a <> 5VK) and ~ > 0 

Using the above conditions equation (4.20) takes the form 

Y" - Y' - Y + y2 = 0 ( 4.29) 

where 0: = 1, a = 1, b = 3 and c = 1, making ~ = 5. The solution becomes 

Y(X) = InterpolatingFunction( -3.70133,4.10063) ( 4.30) 

If we consider the case 0: = 10, a = 3, b = 7 and c = 4 then ~ = 1, and the case 

0: = 30, a = 7, b = 10 and c = 3 then ~ = 16. This produces the graph 

- 2 't 
-1000 

-2000

1 
- 30001 

-4000 

-5000 
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The dotted line represents the case when a = 1 and the thick line is given by a = 10. 

4.2.6 a > 0 and ~ < 0 

Equation (4.20) becomes 

Y" - 2Y' + ~ Y + y2 = 0 
4 

(4.31 ) 

where a = 2, a = 1, b = 1 and c = 1, hence making .6. = -3. This produces the 

solution 

Y(X) = InterpolatingFunction( -10,3.1692) ( 4.32) 

We also consider the case when a = 10, a = 6, b = 3 and c = 4 making .6. = -87 

and the case a = 20, a = 9, b = 10 and c = 11 making .6. = -296. 

The graphs are illustrated below. 

-1 

I 
2 

-
200 t 

i 
- 400 t 

I 

i 
- 600 t 

I 
- 800 1 

4.2.7 a = 5VK and ~ > 0 

Under these conditions equation (4.20) reduces to 

Y" - 5Y' + 6Y + y2 = 0 ( 4.33) 
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where a = 3, b = 5 and c = 2, making .6. = 1. This yields the solution 

Y(X) = InterpolatingFunction( -10,2.00423) ( 4.34) 

We also consider the case when a = 1, b = 3 and c = 1 hence making .6. = 5 and the 

case a = 7, b = 10 and c = 3 making .6. = 16. A graphical illustration is given below 

to determine the behaviour of the above cases. 

- 2 -1 1 2 

-1000 

-2000 

-3000 

-4000 

-5000 

- 6000 

4.2.8 a = -5VK and ~ > 0 

Under these conditions equation (4.20) becomes 

Y" + 5V5Y' + 30Y + y2 = 0 (4.35) 

where a = 1, b = 3 and c = 1, thereby making .6. = 5. This produces the solution 

Y(X) = InterpolatingFunction( -0.939805,10) ( 4.36) 

We also consider the case when a = 2, b = 5 and c = 1 making .6. = 17 and the 

case a = 7, b = 15 and c = 4 making .6. = 113. To determine the behaviour of the 

solution for the above cases we present a graphical representation below. 
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4.2.9 a < 0 and ~ = 0 

For this case (4.20) takes the form 

1 
Y" + Y' + - Y + y2 = 0 

4 

where 0: = -1, a = 1, b = 2 and c = 1. This yields the solution 

Y(X) = InterpolatingFunction( -2.48181,10) 

(4.37) 

(4.38) 

We also consider the case when 0: = -10, a = 2, b = 4 and c = 2 and the case 

0: = -20, a = 2, b = 4 and c = 2. The graphical representation is depicted below. 

- 2 5 -2 -1.5 
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4.2.10 a < 0 (a <> -5v'K) and ~ > 0 

For this case (4.20) takes the form 

Y" + Y' - Y + y2 = 0 (4.39) 

where ex = -1 , a = 1, b = 3 and c = 1, thereby making b. = 5. The solution becomes 

Y(X) = InterpolatingFunction( -2.2698,10) (4.40) 

To determine the behaviour of the solution for other negative values of ex we consider 

the case when ex = -10, a = 3, b = 5 and c = 2 making b. = 1 and ex = -20, a = 7, 

b = 10 and c = 3 making b. = 16. All three graphs are graphically represented 

below. 
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4.2.11 a < 0 and ~ < 0 

Under these conditions equation (4.20) becomes 

7 
Y" + 2Y' + - Y + y2 = 0 

4 

2 

( 4.41) 

where ex = -2, a = 1, b = 1 and c = 1, thereby making b. = -3. The solution is 
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Y(X) = InterpolatingFunction( -2.16977, 10) ( 4.42) 

For the case a = -10, a = 6, b = 3 and c = 4, thereby making .6. = -87, and the 

case a = -20, a = 9, b = 10 and c = 11 thereby making .6. = -296. A graphical 

representation of the three graphs is 

- 0.5 

-2000 

- 4000 

- 6000 

- 8000 

- 1000 

- 1200 

4.2.12 Discussion 

It is evident from the above numerical results that the behaviour of solutions of 

equation (4.20) falls into three distinct classes: a = 0, a < 0 and a > O. In fact 

one can argue that the latter two are also related. The importance of a in (4.20) is 

then clear. As the coefficient of Y' (X) it plays a pivotal role in the behaviour of the 

solution of (4.20). It is interesting to note that the special cases a = ±5..;K, .6. > 0 

do not stand out in any way in spite of the analytical results presented in Maharaj 

et al (1996). What does stand out is the dramatic change in behaviour for .6. ~ -6 

in §4.2.3. A dynamical systems analysis of this case bears further investigation; 

we intend to pursue this research in future work. Analyses utilising the dynamical 

system approach in cosmology are generating useful results as shown in the works of 

Billyard et al (1999a, 1999b, 2000). Also, see the comprehensive review of Wainright 

and Ellis (1997). 

In the preceding sections, we were only interested in the behaviour of (4.20). How-
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ever, Y(X) has no obvious physical meaning. The physical variables are A, v and r. 

As a result, we reverse the transformations (4.6)-(4.8) in the case of a = 0, .6. = ° 
to gain some feel for the behaviour of the metric functions A and v. 

From (4.7) we have 

A = -log[L] 

If a = 0, then (4.17) becomes 

Solving for L in (4.44) produces 

1 

L=YA"2 

Now, using (4.45) in (4.43), A takes the form 

and solving (4.18) for x returns 

1 
A = - log[YA"2 ] 

-I-X 
x=-X-

Using (4.47) and (4.15), we find that A simplifies to 

From (4.46) we have 

The solution for Y is given via 

1 
A=-­X2 

A = -log [~] 

( 4.43) 

( 4.44) 

( 4.45) 

( 4.46) 

(4.4 7) 

( 4.48) 

( 4.49) 

NDSolve[y" [x] + y[x]-2 == 0, y' [0]==1, y[O]==O}, y[x], {x, -10, 10}] 
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Equation (4.49) now takes the form 

>. ~ - log [ ~ InterpolatingFunction( -3.21017,6.42038) 1 (4.50) 

where the range for X is (-3.21017,6.42038). Finally we illustrate a graph for .x via 

the Plot command 

Plot [lambda ,{ex, -3.210170579073206, 6.420384693295558}] 

where lambda = .x and ex = X to produce the graph 

: r L I 
1 

- 3 - 2 -1 1 2 3 

- 1 

-2 

- 3 

Note that the range of X is calculated via (4.47) and noting that x = r2 where r is 

the radius. We now plot the graph for X over the range (-1,0) 

-1 -0 . 8 - 0.6 -0 - 0.2 

- 0 . 01 

- 0 . 0 2 

-0.03 

-0 . 04 

-0.05 

Due to the numerical solution of (4.20), the results only hold for a static spacetime. 
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This means that eV in (4.2) must be zero. This makes the above results unphysical. 

However, they were presented purely for illustrative purposes only. 

4.3 A Particular Example 

The behaviour of the energy density j), and the pressure p in inhomogeneous spher­

ically symmetric models is not well understood as pointed out by Krasinski (1997). 

This is related to the complex nature of the gravitational potentials which makes 

an analytical treatment difficult. Even in simple cases studied by Bonnor (1956) 

little progress was possible. We pursue the study of the profiles of 11 and p using 

a numerical approach in this section in contrast to the conventional analytic treat­

ment. This approach proves to generate useful results. In the previous section we 

obtained a form for F in (4.11), and thereafter solved for L using the Lie analysis 

of differential equations. However, the process was rather convoluted. A number of 

transformations were made which obscured the physical significance of the solutions 

obtained. Here, we show that (4.9) can be directly solved for a particular F. 

Following Srivastava (1987) we chose 

F(x) = (x + 1)-5 (4.51) 

Then (4.9) has solution 

L = 6(1 + x)3 
((1 + x)c(t) - 1)2 (4.52) 

where c(t) is an arbitrary function of integration. 

We can now evaluate the expressions for the energy density j), and the pressure p 

as given in equations (4.4) and (4.5) respectively. Both the energy density and the 

pressure are dependant on A. From equation (4.7) we find that 

A = -log[L] ( 4.53) 
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Taking (4.6) and (4.52) into account we have 

(4.54) 

We can now evaluate the energy density, p., in equation (4.4) (where f = 1) using 

the A obtained in equation (4.54). Mathematica then simplifies (4.4) to 

p. 

2 2 5 )5 2)6 [ 6(1 + r2)3 ] 
+ e r(l + r ) c(t - 48(1 + r log (-1 + (1 + r2)c(t))2 

[ 
6(1+r2)3 ]))) 

x log (-1 + (1 + r2)c(t))2 
(4.55) 

In a similar manner the expression for the pressure in (4.5) is then obtained as 

2 144(1 + r2)4( -2 + r2 + (1 + r2)c(t)) 
p = -3e - (-1 + (1 + r2 )c(t))5 (4.56) 

Thus far the energy density p, and the pressure p were obtained in general with c(t) 

being an arbitrary function of integration. However, to obtain meaningful density 

and pressure profiles we must fix c(t). The different cases considered are 

c(t) t 

c(t) t2 

c(t) exp t 

c(t) sin(t) 
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4.3.1 c(t) = t 

We are interested in the profiles at specified radii and particular times. For this 

particular case, at r = 1, (4.55) becomes 

3 (768(9 - 2t) + e2
( -1 + 2t)5 + 3072( -1 + 2t) log [~]) 

(-1 + 2t)5 

The graphical representation of 1-" is given by 

1 x 1 0' 0 

The pressure p at r = 1 in (4.56) is 

p -

0.2 O . 0 . 6 0 . 8 1 

3(768 + e2 (1 - 2t)4) 
(1 -- 2t)4 

The graph for this expression takes the form 

0.2 0 . 4 0.6 0.8 1 

-2 x 1 O· 

-4 x 1 O· 

- 6 x IO' 

-8 x 1 D· 
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( 4.58) 



Note the presence of singularities in both graphs at t = ~. 

We now consider another expression for the energy density p., this time at a radius 

r = 10. Equation (4.55) becomes 

f1 - 3 (5(e2( -1 + 101t)5 - 4994899248( -1197 + 20099t)) + 25476483614424 

[ 
6181806 1) x (-1 + 10lt) log (1 _ 101t)2 -;- (5( -1 + lOlt)5) 

which is illustrated as 

1.5><10' "r 
I 

1 x 1 0' "I 
5x10' ' 

0 . 001 0.0 8 0.015 0.022 

- 5 x lo' ' 

Equation (4.56) (with r = 10) is reduced to 

p 
3(e2( -1 + 10lt)5 + 4994899248(98 + lOlt)) 

(-1 -I- lOlt)5 

and the corresponding graph is 
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( 4.60) 



0.001 0.0 0.015 0.022 

_4x10'7 

In these graphs singularities arise at t = 1+~02. 

We now present profiles at specific times while varying the radii. The first case 

considered is t = 1. Equation (4.55) reduces to 

I [
6(1 + r2)3]) . 11 

X og 4 -;- r 
r 

(4.61) 

with graphical representation 

5 . x 1 0- 6 o. 0 0 0 0 1 1 o. 0 0 0 0 1 9 

- 4 x 1 06 

-6x106 

- ax106 

Equation (4.56) takes the form 
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p 
3 (e2r lO + 48(1 + r2)4( -1 + 2r2)) 

r IG 
( 4.62) 

for t = 1 which is illustrat ed as 

2 Xl 0
4 

21 

+I~~--------~----
0.000 1 0.001 0.002 

As is clear from (4.55) and (4.56), the graphs have singularities at r = O. 

In the case of t = 10, equation (4.55) for the energy density becomes 

(4.63) 

with representation 

5 7 
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Equation (4.56) becomes 

p 
3( e2(9 + 10r2)5 + 48(1 + r2)4(8 + llr2)) 

(9 + 10r2)5 

when t = 10. The corresponding graph is 

-22 . 183 ( 
- 22.183 

-22.183 

~;;;;; 15 10 

-22.184 

15 20 25 30 

At t = 10, we have moved away from the singularities experienced before. 

(4.64) 

It is clear from the above eight graphs that both the energy density jl, and pressure 

p are singular at some t and at some r. In an attempt to verify whether these 

singularities can be avoided for other functions c(t), we plot similar graphs of jl, and 

p in the next section. 

4.3.2 c(t)=t2 

We now consider the case c( t) = t2
. Taking r = 1 the energy density J1 is illustrated 

below. 
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1.SXl0'1 L_ 
1 x 1 0' 

5 x 1 0' i 

- j ..... _ ..... -..... _--_ ..... _--.,-+ .. 

-SXl0
8 ! 

- l X I0'1 
-1.SXl0'1 

0.2 0.4 O. 1 0.8 

and the pressure p is graphically represented as 

- 2 x 1 08 0.2 0.4 0.6 0.8 1 

-4 x 1 08 

-6 x 1 08 

- 8 x 1 08 

-lXI0' 

-1.2xI0' 

-1.4XIO' 

If r = 10, then the graph for the energy density is given by 

i 
6Xl0'7 

2xl0'7 

0.1 0.2 0.3 0.4 0 . 5 
- 2Xl0'7 
_ 4xl017 
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with pressure being 

1 x 1 0161 11 

"'c'l 0 . ',)1- (7-0--.-1-5-----0-.-2-5---

-5X101~1 
- lX101 .1 I 

Fixing the time for the energy density at t = 1 we have 

with the pressure being 

_5X1021 

-lX1if 2 ! 

-1 . 5x 1 if 2[ 
_ 2 X 1022 

- 2.5X1if 2f 

- 3X1if 2f 

-3. 5x1if 21 

-22.167 

- 22.167 

-22.167 

-22.167 

- 22.167 

0.05 

10 

o . 15 0.25 

20 30 40 50 

75 



At time t = 10 the energy density is 

22 .2 

22. 

22 . 1 

22.1 

22 .1 

22.1 

and the pressure is illustrated as 

- 22.167 

- 22.167 

-22.167 

-2 2.167 

-22 . 167 

4.3.3 c(t) = exp t 

10 20 30 40 50 

10 20 30 40 50 

The next case that we evaluate is c( t) = exp t. For this situation the graphical 

representation for r = 1 and r = 10 (dotted line) for the energy density is 

200 

150 

100 

so 

10 
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The pressure is given by 

-30 

-40 

-50 

- 60 

- 70 

-80 

4 5 

Similarly the energy density for t = 1 is represented as 

2500 

2000 

1500 

1000 

500 

2 4 6 10 

and the pressure is 

- 26 

-26. 

- 27. 

-28. 

5 10 
- 29. 

15 20 
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We now consider the energy density at t = 10 

22.167 

22.167 

22.167 

and the graph for the pressure is 

-10 

0.2 0 . 4 0 . 6 0 . 8 

-20~ ____________________ __ 

-30 

4.3.4 c(t) = sin t 

Finally we have the case c(t) = sin(t). The energy density for radius r = 1 is 

I 

4X101O! 
2x1cf' 

- 2X1cf'l 

0.2 0.4 0.6 0.8 
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with the pressure being 

-2 x 10' 
0.2 0.4 0.6 O.B 1 

-4 x 1 09 

- 6x109 

-Bx1o' 

-lx10' 

-1.2x10' 

We now consider the energy density for the case r = 10 and obtain 

The pressure is given by 

6 x 1 0' 8 

2 xl 0' 8 

i 
-2x10'8! 

-4X10'8 ! 

4 x 10' 6 

2x10'6 

-2x10'6 

-4X10'6! 

o 010.020 . 030 . 04 0.05 

o 10.02 0.03 0.04 0.05 
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We now view the energy density at t = 1 

8 x 1 0' 1 

6 xl 01 1 

4 x 1 01 1 

2xl01 1 

_ 2 X I01 1 l 
- 4X10" f 

0.2 O . 

and the illustration for the pressure is 

; 

i 
5 x 1 07 i , 

i 

_5X1
07

-n: 

- lX10' ! 

I 

At t = 10 the energy density becomes 

8 x 10' 

6 x 1 d' 

2 x 1 0' 

10 

.5 

20 

80 

o . 6 0 . 8 1 

1 1 . 5 2 

30 40 50 



wi th pressure 

l20 ~ 
100 

la 20 30 40 50 60 

It is evident from the graphs for the energy density and pressure that the various 

choices for c(t) yield singularities in most of the plots. As a result, our solutions can 

only be used to describe cosmological situations for restricted regions of spacetime; 

the astrophysical applications are quite limited. However, the function c(t) is arbi­

trary. It would be of considerable interest to obtain an appropriate form of c(t) that 

leads to nonsingular results. This work is ongoing. 
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Chapter 5 

Conclusion 

The research conducted in this thesis investigated the depth, scope and power of 

Mathematica in solving differential equations that arise in physical situations. In 

most cases graphical representations were presented to visually interpret the be­

haviour of the solutions. With the aid of this software package, we analysed and 

investigated equations governing planetary orbits which arose in Newtonian theory 

and relativistic theory. Analytic solutions were first obtained and a numerical ap­

proach was used to verify the numerical algorithms within Mathematica. A pertur­

bative approach was then used to solve the relativistic equation and hence confirm 

the numerical results. As a second application we considered a nonlinear Emden­

Fowler equation which governs the behaviour of inhomogeneous gravitational fields. 

A detailed analysis of the related autonomous equation, arising in the Lie analysis, 

was performed. Thereafter a number of plots describing the profiles of the energy 

density and the pressure were generated. We now highlight the main points and 

conclusions arrived at in this thesis. 

The principle tool used in this entire thesis to analyse and investigate particular 

differential equations was the software package called Mathematica. It is obvious that 

a program of this nature helps in performing calculations quickly and accurately, in 

most cases. With the use of this technology, time may be freed to analyse the solution 
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rather than on solving the problem. However, this program does have some flaws 

that were discovered during the course of this thesis with some of the algorithms. 

In particular, the ND801ve algorithms were reported to have failed to achieve desired 

results. In the case of the first order Newtonian and relativistic equations in Chap­

ter 3, nonsensical results (not reported here) were obtained. Once we considered 

the linear second order versions of the equation we experienced no problems at all. 

Despite these shortcomings we have found Mathematica to be extremely useful and 

contains features far outweighing the shortcomings. However, mathematics is based 

on accuracy and the user is cautioned to verify results. 

Having explained the capabilities of Mathematica we then used it to investigate 

the differential equations for planetary orbits. In particular we analysed the orbits 

of Mercury, Earth and Jupiter. The analytic algorithms in the function D801 ve 

provided simple solutions for a complex equation in Newtonian theory; however, it 

could not provide any meaningful results for the relativistic equation. The ND801 ve 

command was used to obtain numerical solutions which were then compared to the 

analytical results. The numerical results were consistent with the analytical solutions. 

In plotting the graph of the relativistic equation, we saw a distinct thickening of the 

orbits for the planets Mercury, Earth and Jupiter. On closer analysis we discovered 

a distinct precession of the orbits. A perturbative approach was also used to analyse 

the relativistic equation for the planet Mercury which verified the numerical results. 

Using this technique we noticed a distinct precession in the graph over the range 

[-57f, 57fJ. We were not able to notice this effect using the numerical approach for 

the same range. The numerical amount of perihelion shift was also obtained for the 

planets Mercury, Earth and Jupiter. 

Mathematica was again used to investigate the nonlinear Emden-Fowler equation of 

order two. Having performed the Lie analysis we obtained a simple second order 

autonomous equation and found that the behaviour of the solutions fell into three 

distinct classes 0: = 0, 0: < 0 and 0: > O. One can argue that the cases 0: < 0 and 

0: > 0 are related. We also found that the special case 0: = ±JK for ~ > 0 does 
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not stand out in any way in spite of the analytical results presented by Maharaj et 

al (1996). What was evident was the dramatic change in behaviour for b. ::; -6 for 

the case a = 0 and b. < O. Thereafter we generated plots of the energy density and 

pressure for a range of values corresponding to radii and time values for different 

cases that arose . This is a preliminary treatment and simple forms were chosen that 

may not correspond to realistic situations. However these treatments demonstrate 

that it is possible to investigate these nonlinear gravitational fields, in principle, 

even though the original equation is nonlinear. It is the nonlinearity that prevented 

comprehensive analyses in the past. Only special cases were considered in previous 

investigations. Our treatment demonstrates that a comprehensive analysis is possible 

for realistic matter distributions. 
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