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ABSTRACT 

The process of welding steel structures inadvertently causes residual stress as a result of thermal 

cycles that the material is subjected to. These welding-induced residual stresses have been shown 

to be responsible for a number of catastrophic failures in critical infrastructure installations such 

as pressure vessels, ship’s hulls, steel roof structures, and others. The present study examines the 

relationship between welding input parameters and the resultant residual stress, fatigue 

properties, weld bead geometry and mechanical properties of welded carbon steel pressure 

vessels. The study focuses on circumferential nozzle-to-shell welds, which have not been studied 

to this extent until now. 

A hybrid methodology including experimentation, numerical analysis, and mathematical 

modelling is employed to map out the relationship between welding input parameters and the 

output weld characteristics in order to further optimise the input parameters to produce an optimal 

welded joint whose stress and fatigue characteristics enhance service life of the welded structure. 

The results of a series of experiments performed show that the mechanical properties such as 

hardness are significantly affected by the welding process parameters and thereby affect the 

service life of a welded pressure vessel. The weld geometry is also affected by the input 

parameters of the welding process such that bead width and bead depth will vary depending on 

the parametric combination of input variables. The fatigue properties of a welded pressure vessel 

structure are affected by the residual stress conditions of the structure. The fractional factorial 

design technique shows that the welding current (I) and voltage (V) are statistically significant 

controlling parameters in the welding process. 

The results of the neutron diffraction (ND) tests reveal that there is a high concentration of 

residual stresses close to the weld centre-line. These stresses subside with increasing distance 

from the centre-line. The resultant hoop residual stress distribution shows that the hoop stresses 

are highly tensile close to the weld centre-line, decrease in magnitude as the distance from the 

weld centre-line increases, then decrease back to zero before changing direction to compressive 

further away from the weld centre-line. The hoop stress distribution profile on the flange side is 

similar to that of the pipe side around the circumferential weld, and the residual stress peak values 

are equal to or higher than the yield strength of the filler material. The weld specimens failed at 

the weld toe where the hoop stress was generally highly tensile in most of the welded specimens. 

The multiobjective genetic algorithm is successfully used to produce a set of optimal solutions 

that are in agreement with values obtained during experiments. The 3D finite element model 

produced using MSC Marc software is generally comparable to physical experimentation. The 
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results obtained in the present study are in agreement with similar studies reported in the 

literature. 
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INTRODUCTION 

 

 

1.1 Background  

Within certain industries and industrial operations, pressure vessels are a critical component of 

the plant equipment and operations. The fact that the vessel operates under pressure and may 

carry toxic, dangerous or hazardous contents means that great care is needed to ensure the safety 

of people who operate the equipment, and the environment within which it operates. Therefore, 

diligence must be applied when designing, fabricating or repairing pressure vessels. Any 

deviation from the specified principles and guidelines may lead to catastrophic consequences. 

Pressure vessels may be fixed through permanent attachment to infrastructure, or they might be 

mobile and transportable from one site to another. Figure 1.1 illustrates typical layouts for a 

pressure vessel. As illustrated in the figure, cylindrical pressure vessels typically consist of the 

following main parts: 

 The shell comprises the largest portion; it is made of steel plate that has been subjected 
to forming processes (using heat and cold) and welding processes. 

 The spherical dome (head) is placed at one end of the vessel and is joined to the shell by 
welding. It is built through metal pressing, spinning and roller-forming processes. 

 Nozzles are pipe attachments used to fill or evacuate fluid into or from the vessel 
respectively. They can also be used for the mounting of instrumental equipment. 

 Man-holes are inlets that are large enough to accommodate a person. They provide access 
into the pressure vessels, mainly for inspection purposes. 

 Compensation plates are normally welded onto the shell in the circumferential direction 
to provide further stiffness, to compensate for strength lost due to nozzles and man-holes. 

Commonly used pressure vessels in industry include boilers, reactors, condensers, columns, heat 

exchangers, pressurised tanks, drums, towers and air coolers. Typical shapes for these items are 

the sphere, cone and cylinder (Nabhani et al., 2012). 
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Figure 1-1: Typical pressure vessel layout 
Source: Nabhani et al. (2012) 
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1.2 Nozzle-shell welded joints 

In most industrial applications, pressure vessels require in-built nozzles for operational purposes. 

Nozzles or openings in pressure vessels are necessary for safe and optimal functionality but they 

result in structural vulnerability or even weakness of the pressure vessel. The nozzles range from 

small inert gas purge nozzles (e.g. for reactors) to large man-hole covered access nozzles (e.g. for 

large pressurised tanks).  

Nozzles are usually attached onto pressure vessel shells using welding as a joining process. This 

renders such nozzle–shell joints vulnerable to failure, due to notch-related increases to local 

stress, welding-induced residual stress and other imperfections associated with welded joints. The 

reason is that nozzles are “discontinuities” which attract local intensification of stresses, thereby 

increasing the peak stress in the welded structure and reducing its fatigue strength (among other 

things). Furthermore, welded joints of pressure vessels are usually exposed to multi-axial loads 

and hence stresses. Multi-axiality may be further exacerbated by exposure to corrosive mediums 

and high temperatures, which some pressure vessels are likely to experience in certain industries 

(e.g. petroleum and chemical industries). 

To ensure the integrity of welded pressure vessel structures, the design process for the nozzle–

shell weld joint is comprehensively specified in most international design codes. This includes 

the code of the American Society for Mechanical Engineers, Boiler and Pressure Vessel Code 

(ASME BPVC), Section VIII, Divisions 1&2, 2007/2010. Welding joint types that are widely 

used in nozzle–shell applications include the following (Al-Mukhtar, 2010): 

 Single fillet T-joint with partial penetration 

 Angle joint with full penetration 

 Cruciform joint with V-butt weld and partial penetration 

 Cruciform joint with K-butt weld and partial penetration 

 T-joint with fillet welds 

1.3 The rate of failure in pressure vessels 

According to Nabhani et al. (2012), stress-induced operating factors and stress-related defects 

account for approximately 24.4% of recurring catastrophic pressure vessel failures in process 

industries. Such factors and defects include fatigue, creep, stress corrosion cracking and 

embrittlement. Statistics from the US-based National Board of Boiler and Pressure Vessel 

Inspectors show that between 1992 and 2001, as many as 23 338 failure incidents in pressure 

vessels were reported in the US. The main causes of failure included stress, faulty design, 
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improper installation, fatigue, creep, corrosion and welding problems (Nabhani et al., 2012). 

Examples of major pressure vessel failures that have been reported over the years are shown in 

Table 1.1. 

Table 1-1: Examples of pressure vessel failures  
Vessel Description Year Place Extent of Damage 

22 680-kg pressure vessel (PV) in 
chemical plant exploded 

2004 Houston, Texas, US Damaged the church and 
nearby vehicles 

20 petrol tanks, each carrying 3 
million gallons, exploded in 
Buncefield Depot 

2005 UK 43 people injured. 2 000 
people evacuated from 
nearby neighbourhood 

Heat exchanger exploded in a 
resin production facility 

2008 Houston, Texas Killed veteran plant 
supervisor 

Storage tank exploded into 
flames in an oil refinery 

2010 New Mexico, US Two people died; two 
more were critically 
injured 

90-m3 PV exploded into flames at 
a petroleum refinery 

1984 Chicago, US 17 people killed and 
extensive property 
damage 

Source: Ramesh et al., 2015 

It can be argued that the biggest danger concerning pressure vessels is the potential serious 

injuries or loss of lives that could occur if the vessel fails. This concern is especially relevant to 

vessels that contain hazardous or harmful media at elevated temperatures. 

1.4 The arc welding process 

The American Welding Society (AWS) defines welding as a  

localised coalescence of materials or non-metals produced by either heating of the 

materials to a suitable temperature with or without the application of pressure, or by 

application of pressure alone, with or without the use of filler metal.  

(cited in Anca et al., 2010).  

The term arc welding refers to a sizeable group of welding processes that join metals through 

using an electric arc. Such welding processes include gas metal arc (GMAW), flux cored arc 

(FCAW), submerged arc (SAW), gas tungsten arc (GTAW) and shielded metal arc (SMAW). 

The joining process is achieved through maintaining the heat from the arc between the tip of the 

electrode and the work-piece. The heat ensures that the metals are melted and joined together 

through the use of a filler metal.  

This study is focused on the SAW process, which is illustrated in Figure 1.2. The SAW process 

generates an arc between the weld-piece and the continuously fed electrode that precipitates into 

the cavity filled with ionised gases and vapours (Kou, 2003). The important feature of the SAW 
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process is that the arc is submerged and hence is invisible to the operator. The flux is supplied 

through the hopper (Figure 1.2 a) that travels with the torch. The molten slag and the granular 

flux protect the metal from the surroundings, hence there is no need for the shielding gas (Figure 

1.2 b). For arc currents below 900 A, the direct-current (DC) electrode positive is normally used. 

Alternating current (AC) is used for settings above 900 A. The main advantages of the SAW 

process are that it has a slag-action that produces cleaner welds than other processes, and its high 

deposition rate makes it suitable for welding thick materials. However, the fact that its heat input 

is relatively high can result in poor quality welds (Kou, 2003). 

 
Figure 1-2: The submerged arc welding process: (a) overall process; (b) welding area enlarged 

Source: Kou (2003) 

1.5 Welding-induced residual stress 

Residual stress can be defined as “those stresses that exist within a body in the absence of external 

loading or thermal gradients” (www.residualstress.org). According to Sterjovski (2003), residual 

stresses are the stresses that remain in a structure after the removal of any externally induced 
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loading. There are several reasons why residual stresses develop in metal structures; these include 

manufacturing processes such as rolling, forging, milling, casting and welding. 

 

Residual stresses may be beneficial or harmful to the structure, depending on their direction and 

magnitude. Compressive residual stresses have been shown to have favourable effects in that they 

increase fatigue strength through retarding fatigue cracks, among other things. For this reason, 

compressive stresses may be deliberately introduced after the manufacturing process through 

techniques such as shot-peening and autofrettaging (Siddique, 2005). The tensile residual 

stresses, by contrast, have the opposite effect on a welded structure and are therefore not required. 

They reduce the fatigue strength of the welded structure through accelerating the fatigue cracks 

(Siddique, 2005). 

 

In arc welding, the parent and filler metals are melted and joined together through the formation 

of the weld liquid pool. In steels, depending on the material properties, the surface temperature 

of the piece varies from 1700 K (1430 C) to 2500 K (2230 C) (Anca et al., 2010). In the weld 

liquid pool, convective effects occur that improve the transportation of heat; once the heat source 

is removed the metal solidifies. Such post-melting solidification causes the weld fusion zone to 

contract and “pull” the surrounding parent metal towards it. The parent material naturally resists 

the pulling, thereby causing the welded structure to be subjected to post-cooling internal stresses 

(Anca et al., 2010). Such welding-induced residual stresses (WRS) remain internally trapped 

within the metal until some form of stress-relieving activity is performed thereon. The process of 

stress development during welding is shown in Figure 1.3. As the weld pool moves in the y 

direction, the cooling process causes contraction, which “stretches” the weld. The weld is 

therefore under tensile stress in the longitudinal direction (i.e. parallel to the weld line). Further 

from the weld, the longitudinal stress changes to compression to maintain the equilibrium. 

Transversal stress (i.e. perpendicular to the weld line) is highly tensile in the weld centreline, and 

decreases to zero as the distance from the weld centreline increases. Thereafter it changes 

direction to compression at the weld edges (Scharenberg, 2008). 
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Figure 1-3: Stress distribution in a single-pass weld 

Source: Scharenberg (2008) 

Studies have shown that welding-induced residual stress has a significant effect on fatigue crack 

initiation and the early stages of crack propagation. The effect of residual stresses is two-fold: 

firstly, they distort the welded structure; secondly, they may cause premature fatigue-related 

failure even under relatively low external cyclic loads (Al-Mukhtar, 2010). 

1.6 Objectives of the thesis 

This study aims to fulfil the following objectives: 

a. Experimental characterisation of temperature distributions for the welding cycle during 

the SAW process of a multipass nozzle–shell joint of a welded pressure vessel structure. 

 

b. Experimental evaluation of welding-induced residual stresses in a multipass nozzle–shell 

weld joint. 

 
c. Experimental assessment of fatigue life of multipass nozzle–shell weld joints in a 

pressure vessel structure. 

 
d. Numerical analysis of thermal residual stresses, considering metallurgical transformation 

effects. 
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e. Optimisation of SAW process parameters to determine an optimal parametric 

combination that will produce weld joints with optimal properties. 

1.7 Scope of the thesis 

The study focuses on the single-sided full-penetration pipe-to-plate multipass weld, indicative of 

the nozzle–shell joint in welded pressure vessel structures. The chosen material was pressure 

vessel steel plate ASTM A516 and high-strength seamless carbon steel pipe (nozzle) ASTM A106 

Grade B, joined together by the semi-automatic SAW process.  

The experimental work comprised the following aspects: i) manufacturing of welding specimens, 

ii) the characterisation of welding cycles using infrared thermography, iii) measuring the welding-

induced residual stresses using the neutron diffraction method, vi) conducting metallurgical 

analysis of welded specimens, and v) determining the fatigue lives of welded specimens.  

The numerical analysis model was generated using MSC MARC finite element code, and a 3D 

elastic-plastic model was developed to simulate the SAW process. Optimisation of welding 

parameters using the evolutionary algorithm was conducted using data collected from all the 

welded specimens. 

1.8 Structure of the thesis 

This thesis consists of eight chapters, which are constructed as follows: 

a. Chapter 1 gives the introduction of the subject of interest, and the overview of the thesis 

report. 

 

b. Chapter 2 describes the “state of the art” according to relevant literature. The work 

performed in each of the focus areas is comprehensively discussed, and a summary of 

lessons and gaps identified in literature is provided. 

 

c. Chapter 3 details the motivation for the study. The chapter focuses on how this thesis 

adds to the body of knowledge in the field of study, and how the study builds on the work 

of other researchers (discussed in Chapter 2). Methods, approaches and techniques 

chosen for the present study are briefly mentioned in this chapter, and the research 

questions are articulated. 

 
d. Chapter 4 outlines the following procedures: preparing welding specimens; measuring 

temperature histories using infrared thermography; measuring welding-induced residual 
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stress using neutron diffraction; and measuring the fatigue lives of welded specimens, 

using a servo-hydraulic machine. 

 
e. Chapter 5 presents the 3D numerical model generated using the finite element code and 

the validation thereof using experiments. 

 
f. Chapter 6 describes the process of parametric optimisation, including the design of 

experiments (DoE) approach, and the evolutionary strategy used to generate optimal 

welding parameters. 

 
g. Chapter 7 presents the results of the work discussed in Chapters 4, 5 and 6. These results 

are then discussed in the context of the study objectives and research questions. 

 
h. Chapter 8 is the final chapter and it comprises the conclusions derived from the extensive 

discussion in the preceding chapters. Recommendations for practical implementation of 

the research findings, and for future research, are provided. 

 

Several appendices appear at the end of this thesis. They provide detailed information on specific 

portions of work performed for this research. 
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STATE OF THE ART 

 

 

2.1 Introduction 

The purpose of this chapter is, first, to briefly introduce each of the sub-topics of interest to this 

study, and secondly to present a review of literature on each sub-topic. The sub-topics are linked 

to the main subject of interest through applicable methodologies, techniques or strategies, each 

of which addresses an aspect of the main topic of interest. Collectively such sub-topics provide a 

holistic perspective of the “state of the art” regarding the subject of this study.  

 

This chapter is divided into three parts. Section 2.2. evaluates the experimental methods applied 

in addressing the relevant sub-topics under the subject of this thesis. Section 2.3 provides insight 

into numerical analysis that can be applied to such work, through reviewing relevant studies 

within the field. Section 2.4 examines recent research in the design of experiment strategies and 

optimisation techniques applicable to this study. The chapter concludes with a summary of 

lessons drawn from the review.  

2.2 Experimental methods 

2.2.1 Pressure vessel design codes 

The design, manufacture, repair and inspection of pressure vessels are controlled through a set of 

codified guidelines or standards, called “design codes”. The purpose of a design code is to ensure 

that minimum standards regarding the safety and integrity of the design are complied with, when 

working on pressure vessels and ancillary equipment. Few design codes are internationally 

recognised and most of them originate from the western world. Some widely used design codes 

for pressure vessel design include the following: 

a. British Standard PD 5500 

b. European Standard for Water Tube Boilers, EN 12952-3 

c. European Standard for Unfired Pressure Vessels, EN 13345 

d. ASME BPVC, Section VIII, Div.2 2007/2010  
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Tjelta (2012) compared two common pressure vessel design codes, namely American Standard 

ASME VIII Division 2 and European standard EN 13445. That study used a combination of 

experimental and numerical analysis. Recent versions of design codes recognise the use of finite 

element analysis (FEA) as a design tool for pressure vessel structures – for example, the design 

by analysis approach given in EN 13445, and ASME VIII elastic-plastic analysis. Design codes, 

like any other set of technical standards, continue to evolve as new techniques emerge and design 

principles are refined.  

The present study focuses on nozzle-shell joints, which can be sources of fatigue-related failure 

in pressure vessels. The various pressure vessel codes specify the type of geometry that must be 

applied in a nozzle-shell joint. The geometry chosen in the present study is in line with ASME 

VIII code described above. 

2.2.2 Application of infrared thermography in arc welding 

Infrared (IR) thermography is becoming more popular in arc welding applications. This 

measurement method continuously records welding temperatures in the weld pool and the 

surrounding surface, without any physical interference in the actual welding process. That is, IR 

thermography is a non-contact process, which renders it preferable to the use of point sensors 

such as thermocouples (Usamentiaga et al., 2014). IR thermography produces continuous 

temperature distribution profiles for the weld area of interest through recordings from a thermal 

camera. Application of IR thermography in metal welding includes real-time monitoring of the 

weld pool, weld defect identification, weld geometry determination, auto-correction of welding 

parameters (when used with soft computing), and many more (Venkatraman et al., 2006).  

IR thermography is also used for on-line monitoring and control of welding parameters in 

automation processes that use intelligent methodologies. Online defect identification saves on 

costs related to post-weld defect identification, which inevitably leads to rejection or rework. The 

basis for using thermal sensors to identify defects or monitor weld geometry is that the surface 

temperature distribution during welding should ideally show a regular and repeatable pattern. 

Any deviation can be identified through perturbations or variations in temperature profiles 

(Vasudevan et al., 2011). 

Wikle et al. (2001) developed a rugged, low-cost point-infrared sensor that is used to monitor and 

control the welding process. Heat transfer analysis is performed to study the effects of the plate 

surface temperatures on the weld geometry – a process that occurs during welding. The results 

are correlated with actual measurements from the IR sensor, which monitors changes in the plate 

surface temperature during the welding process. The weld bead penetration depth is measured 
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and compared with the predictions of the heat transfer analysis. IR thermography is used to 

monitor and control weld geometry during the tungsten inert gas (TIG) welding process for 

stainless steel 316LN plates (Menaka et al., 2005). The produced thermal images are analysed to 

determine the temperature distribution patterns that give effect to particular weld geometries and 

which indicate the nature of weld defects in the weld pool. The developed technique can be used 

as a basis for adaptive or intelligent weld methodology. 

Venkatraman et al. (2006) highlighted the application of thermal imaging sensors in detecting 

defects such as lack of penetration, and estimation of depth of penetration, during TIG welding. 

Results show that IR imaging techniques can adequately detect a lack of penetration and the depth 

of penetration online. Thermal imaging and visual band cameras are the main vision sensors used 

during online monitoring. A system based on the application of one thermal vision camera and 

two charge-coupled device cameras for assessing a welding process and welded joints was 

presented by Bzymek et al. (2008). Machin et al. (2008) proposed a method for calibrating, 

tracing and accrediting thermal imagers through the implementation of best international 

measurement practices. Vasudevan et al. (2011) used thermography to determine weld bead 

geometry and weld defects in real-time during the gas tungsten arc welding (GTAW) process for 

stainless steel. The weld bead geometry results, obtained using line-scan analysis of the IR 

thermal profiles, were strongly correlated with the values obtained through experimentation, with 

a correlation coefficient of 0.8. The defects identified through thermal images were verified using 

X-ray radiography. 

In their study on identifying weld defects of the TIG welding process through thermal imaging, 

Sreedhar et al. (2012) showed that weld defects identified through thermography were similar to 

those discovered through the X-ray method. One of the main challenges in that study was the task 

of tracking the correct thermal history of the weld region, because the IR camera targeted a 

moving region of interest. To mitigate the effect of this limitation, the area of interest can be 

increased to include more than just the weld pool. IR thermography is used to perform seam 

tracking, penetration control, bead width control, and cooling rate control in order to ensure 

acceptable weld quality (Chokkalingham et al., 2012).  

Bai et al. (2013) introduced a new approach to calibrating welding parameters in the weld-based 

additive manufacturing process, using IR imaging and inverse analysis. In-depth analysis of 

thermal images vis-à-vis the simulation results produces comparable parameters, such as mean 

layer temperature and cooling rate, which are used in cost functions. Bai et al. concluded that 

temperature measurements using IR imaging were far better than those from thermocouples, for 

weld-based additive manufacturing applications. 
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IR thermography has been used experimentally to validate the FEA model for a submerged arc 

welding (SAW) joint on a steel plate (Negi and Chattopadhyaya, 2013). The authors observed 

that the insulating granular flux present in the SAW process renders thermal imaging difficult. 

Some researchers have suggested the use of flux removal methods, such as vacuuming 

immediately behind the weld-pool. To address the flux insulation problem, Negi and 

Chattopadhyaya (2013) manufactured a special U-shaped piece to keep the flux away from the 

region of interest, so that temperature measurements – which were performed away from the 

fusion zone – could be taken efficiently. The temperature values predicted using numerical 

methods were found to be in reasonable agreement with the experimental results.  

IR thermography was used to validate the numerical model in Sloma et al. (2014). A thermal 

camera was used to determine temperature distribution through recording the temperature at 

various points of a surface. The images from numerical analysis were compared with those 

produced through thermal imaging, and they appeared highly similar.  

Chen and Gao (2014) applied an IR imaging technique to a high-power fibre laser welding 

process for stainless steel 304L, to monitor the weld pool width and automatically control the 

welding process. Comparison of the predicted and measured values showed good correlation, 

with a maximum error of 0.0994. A proposed remote welding process, based on a methodology 

that combines image processing with soft computing to estimate bead geometry, was presented 

by Chandrasekhar et al. (2015). The real-time bead geometry monitoring allows for online 

parametric adjustments during the TIG welding process for stainless steel. 

2.2.3 Residual stress measurement by neutron diffraction 

Welding-induced residual (WRS) stress is multi-axial in nature with its main components being 

hoop, axial and radial. Chapter 4 below discusses the components of WRS in detail. Several 

residual stress measurement techniques have been developed and have been used successfully in 

recent decades. With regard to their application for welding-induced residual stress, such 

techniques fall into three main categories: non-destructive, semi-destructive and destructive 

(Rossini et al., 2012). Non-destructive techniques usually rely on measurement of a parameter 

related to the stress, and subsequent calculation of the stress using standard formulae. Examples 

of non-destructive techniques are X-ray diffraction and ultrasonic methods. The semi-destructive 

and destructive techniques usually involve the complete (destructive) or partial (semi-destructive) 

removal of material portions from the piece under investigation. The stress relieved by removing 

such material is then used to infer the original stress condition of the specimen (Rossini et al., 

2012). Examples of semi-destructive and destructive techniques are deep-hole drilling (DHD) 

and the contour method, respectively.   
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The method discussed in this study, namely neutron diffraction (ND), falls in the non-destructive 

category. The ND method is based on the Bragg principle, which states as follows: 

The scattering of the incident radiation with wavelength, λ, from a crystalline lattice 

with lattice distance, d, in the direction of the vector, Q, can only produce a 

diffraction peak in the direction, θ, in cases where the Bragg equation is fulfilled. 

(Ohms et al., 2009)  

In Bragg’s law, the neutron wavelength and the angular diffraction peak position are used to 

determine the average inter-planar lattice spacing of a defined volume of a specimen. The result 

enables the strain to be calculated, provided the reference stress-free lattice spacing is also known 

(Pratihar et al., 2006). Hooke’s law can then be applied to calculate the stresses from the 

determined strain values.  

The Bragg principle is represented in Figure 2.1, and the Bragg equation is written as follows: 

𝑛𝜆 = 2𝑑𝑆𝑖𝑛𝜃         (2.1) 

Strain ε can then be determined by measuring the scattering angle of a material under stress θ, 

and the scattering angle of the same material in a stress-free state θ0. The following equation is 

then applied: 

𝜀 =
௦௜௡ఏబ

௦௜௡ఏ
− 1         (2.2) 

 
Figure 2-1: Schematic of the Bragg principle 

Source: Ohms et al., 2009 
 

Other stress measurement methods, such as hole-drilling and X-ray diffraction, are limited to 

measuring near-surface stresses only. By contrast, the penetrative capabilities of the ND 

technique make it possible to measure through-thickness residual stresses in metals. Neutrons can 

penetrate up to 50 mm of wall thickness in steels (Pratihar et al., 2006). The ND method is also 
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usually preferred for its high spatial resolution, its flexibility regarding sample geometry, its non-

destructive nature, and its tri-axial through-thickness measurement capability. Thermal neutrons 

have high penetrability characteristics, and hence can be used to measure stress distribution 

through-thickness in steel materials such as plates and pipes (Ohms et al., 2009). The challenge 

with ND is that it is only available in specialised atomic research facilities. 

A European-wide study on the behaviour of residual stresses in a stainless-steel repair weld, 

known as the NeT TG1 study, was one of the biggest stress measurement and modelling studies 

to date. NeT GT1 was the first phase of various studies conducted by different task groups in 

various EU countries, with the intention of establishing standards for residual stress measurement 

and modelling. This first phase considered the bead-on-plate weld analysis of a single bead 

produced using the TIG welding process. The ND results showed that residual stresses are highly 

tensile at the weld centre line (WCL), and they decrease in magnitude as the distance from the 

WCL increases (Smith et al., 2014). The NeT round robin programme adopted the approach of 

using various stress measurements techniques, including hole-drilling, X-ray diffraction, the 

contour method and the ND technique. Results obtained by Wohlfahrt (2007) and Wohlfahrt and 

Dilger (2008) showed that longitudinal tensile stress maxima lay in the vicinity of the WCL. The 

balancing compressive stresses were visible several millimetres away from the WCL. Residual 

stresses above 300 MPa, which is higher than material yield strength, were observed. The ND 

technique showed its distinct capabilities for measuring through-thickness stresses to a depth of 

15 mm (Wohlfahrt et al., 2012). 

Paradowska et al. (2006) applied the ND method to measure welding-induced residual stresses 

(WRS) in a multi-pass weld. The authors emphasised the changes in residual stress distribution 

as a result of depositing additional passes. The study showed that adding a layer of weld pass 

reduced the peak stresses in the passes below the added layer, especially in the weld toe area. 

This finding means that a multi-pass weld of certain geometrical dimensions will have lower 

residual stresses than a single-pass weld of the same dimensions.  

Sumin et al. (2010) considered the residual stress distribution in the WWER-1000 reactor vessel, 

which has a stainless-steel facing in the internal surface. The researchers investigated whether the 

tangential stress on the facing was compressive or tensile. Results from the ND technique showed 

that the tangential stresses inside the reactor wall were compressive and hence favoured resistance 

to stress-corrosion cracking. Woo et al. (2015) examined through-thickness stress distribution in 

an 80-mm thick steel plate, using a combination of ND techniques and contour methods. Hoop 

stresses were found to be as high as 660 MPa (representing 116% of yield strength) in the WCL. 

The authors commented that low-carbon steel welds have been shown to exhibit such high 
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residual stresses due to the strain-hardening effect caused by multi-pass welds and the multi-axial 

nature of welding-induced residual stress. 

Yuen et al. (2008) studied the fatigue behaviour of welded stiffened 350WT steel plates with 

centre cracks. The ND technique was used to characterise residual stress fields near the crack 

tips. The calculated stress intensity factors (SIFs) were then used to estimate fatigue growth rates. 

Longitudinal stresses were found to be compressive near the notch tip, and tensile near the 

stiffener. Pierret et al. (2012) applied the ND technique together with neutron tomography to 

measure residual stresses in a turbine blade. Neutron tomography assists in optimally positioning 

the diffraction volume inside the turbine blade’s internal hollow structure.  

Neeraj et al. (2011) measured residual stresses on girth welds of thick-walled pipes using the ND 

technique. Through-thickness residual stress measurements showed that hoop stresses were high 

(>400 MPa) and tensile close to the outside diameter, and mildly tensile (<200 MPa) close to the 

inner diameter. The researchers examined two weld metals, namely carbon steel and IN625 

dissimilar material. Tensile hoop stresses in the carbon steel weld were as high as 600 MPa, which 

was 20% higher than yield strength. For both metals, the magnitude of the axial stress was about 

half that of the hoop stress. In both weld specimens the stresses were asymmetrical about the 

WCL. Multi-pass bead-on-groove welds were performed on a stainless steel (SUS304) plate using 

A316L filler material from the TIG welding process. Stress measurements from samples that 

were annealed at 650 C before welding were compared with samples that had been welded 

without pre-heating. The results showed that pre-heating reduced the residual stress magnitude. 

The study also showed that residual stress varied proportionally with welding current; this finding 

was congruent with the known proportional relationship between heat input and residual stress 

(Muslih et al., 2008). 

Suzuki et al. (2011) investigated residual stress distribution in spot-welded sheet metal using the 

ND technique. The authors demonstrated that tensile stresses were the dominant stress component 

around the region in which fatigue fracture occurred. Olson et al. (2015) compared the residual 

stress maps yielded by various measurement techniques – namely slitting, DHD and ND – for 

large cylindrical nozzles on pressurised water reactors. First the contour method was used to 

measure hoop stress and then the axial stress was measured in thin slices, which were removed 

adjacent to contour planes using ND, DHD and slitting. The resultant axial stress profiles showed 

tensile stress fields close to the inside diameter, and compressive stresses close to the outside 

diameter. The results from ND and slitting were generally similar, whereas the DHD results 

differed.  
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Haigh et al. (2013) applied the ND technique to measure residual stress of the girth weld in a 

pipe-to-pipe joint. Two types of stainless-steel weld specimens were measured, one with filler 

material deposited up to half the pipe wall thickness and the other with a full wall thickness 

deposit. The objective was to evaluate the change in residual stress profiles as the weld was filled. 

Through-thickness ND results were compared with near-surface measurements obtained by X-

ray diffraction. The residual stress at the weld toe was found to be tensile in the half-filled weld, 

and compressive in the fully filled weld. The stress profiles produced by X-ray and ND had 

similar shapes. 

Serasli et al. (2016) compared four residual stress measurement techniques, namely standard 

DHD, incremental DHD (iDHD), the contour method and ND. The experimental setup included 

several T-plate samples of low carbon steel S355 with multi-pass manual metal arc weld joints. 

The results from the DHD, iDHD and ND methods were consistent and in line with similar results 

in literature and assessment procedures for BS7910 standard. The contour method results, 

however, showed discrepancies associated with intrinsic technical challenges in the technique. 

The authors identified such challenges and suggested corrective measures.  

In their investigative work, Skouras et al. (2013) determined residual stress distributions of a 

thick-walled welded pipe using DHD and ND methods. All three sections of the weld-piece, 

namely parent metal, weld metal and heat-affected zone (HAZ) were measured. The residual 

stress measurement results provided by the two techniques were generally consistent with similar 

studies. To evaluate whether post-weld rolling might significantly reduce welding residual stress, 

Coules et al. (2013) used ND to investigate the state of residual stress in two bead-on-plate welds, 

one with post-weld rolling and one without. The ND method was found to adequately represent 

the stress fields in both cases. Pratt et al. (2008) similarly applied ND to measure residual stress 

in stainless steel plates welded through a laser-engineered net shaping (LENS) process. 

Longitudinal stress was the component that had the highest magnitude in triaxial residual stress, 

and displayed the same direction as the laser beam. 

2.2.4 Residual stress and fatigue strength of welded structures 

Failure in mechanical structures is caused by a complex interaction of load, material, time, 

manufacturing process, geometry and environment. Environment in this context includes 

temperature, corrosion and fluids within which the mechanical structure operates. Loads may be 

variable, monotonic, uniaxial, steady or multi-axial. Furthermore, loading can occur for a very 

short time (e.g. firing a gun) or for a sustained period (e.g. on a busy railway line) (Khurshid, 

2017). Ductile failure and fatigue failure make up the top 13 identified common failure modes in 
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metals. Fatigue is responsible for between 50% and 90% of all mechanical failures (Khurshid, 

2017).  

The word “fatigue” is based on the concept that the material becomes tired and fails at a stress 

level below the nominal strength of the material. Fatigue cracking is one of the primary damage 

mechanisms of structural components, and it results from cyclic stresses that are below the 

ultimate stress – or even yield strength – of the material (Al-Mukthar, 2010). The fatigue life of 

a structural component indicates how many load cycles are required to initiate and propagate a 

fatigue crack to a critical size. There are three stages of fatigue life, namely crack initiation, crack 

growth and rapid fracture. Once a crack has propagated far enough, the fracture toughness is 

exceeded and the remaining cross-section of the material experiences rapid fracture, that is, the 

third stage of fatigue failure (Schijve, 2009). 

2.2.4.1 Fatigue categorisation 

Fatigue properties of components can be categorised according to whether or not the component 

has a pre-existing crack. Most welded components are considered to have pre-existing cracks 

because of the imperfect joining process. Fatigue failure can be divided into two groups: high 

cycle fatigue (HCF) and low cycle fatigue (LCF). The HCF group refers to fatigue failure that 

occurs at low stress amplitudes and high frequencies, where the number of cycles before failure 

generally exceeds 106. By contrast, LCF failure occurs at high stress amplitude and low 

frequencies, in under 104 cycles (Zabeen, 2012). An example of HCF is an aircraft engine, which 

incurs vibrational stresses from the rotary motion of engine components. An example of LCF is 

a bridge structure used for vehicle or human traffic crossings. Figure 2.2 illustrates the 

classification in detail. 

Research has shown that most fatigue-related failures in nuclear power plants occur in welded 

joints under high and low cycle fatigue loading conditions. Lu (2002) studied many such fatigue 

failures which occurred in the 1990s, and discovered that they took place within the first 10 years 

of service life. This was much earlier than the expected 40 years for a nuclear plant lifespan. 
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Figure 2-2: Categories of metal fatigue 

2.2.4.2 Fatigue assessment techniques 

The fatigue strength assessment procedures that are widely used to estimate fatigue properties 
of welded structures include the following steps (Khurshid, 2017): 

a. Identification of critical locations (i.e. vulnerable spots) regarding potential failure. 

b. Determining stresses in critical locations using methods for nominal stress, structural 
hotspot stress, effective notch stress or linear elastic failure mechanics.  

c. Estimation of fatigue life using S-N curves (described in the point below). 

Fatigue assessment is based on the following two main relationship curves (Fricke, 2012): 

a. S-N curves, describing the relationship between fatigue life in cycles (N) and applied 
stress parameter (S). Examples of stress parameters include nominal stress, maximum 
stress, or stress amplitude. 

b. Crack growth curve, developed using crack propagation laws (e.g. Paris law) based on 
fracture mechanics, and assuming an initial crack length. 

FATIGUE 

Fatigue of uncracked components 

 No cracks pre-exist 
 Initiation-controlled fracture dominates the 

fatigue life of the component 
 Examples include components like ball 

races, gear teeth and shafts 

Fatigue of cracked components 

 Cracks pre-exist in the material 
 Propagation-controlled fracture dominates 

the fatigue life of the component 
 Examples include large structures 

produced by welding 

High cycle fatigue 

 Peak stress of cyclic load < yield 
strength 

 Life before fracture ≥ 104 cycles 
 Examples are all rotating or vibrating 

components like wheels, axles, shafts 

Low cycle fatigue 

 Peak stress of cyclic load > yield strength 
 Life before fracture ≤ 104 cycles 
 Examples include air-frame and turbine 

components. 



20 | P a g e  
 

2.2.4.3 S-N curve approach 

S-N curves are generated for specific weld joint geometries based on experimental data and are 

usually included in design codes (Al-Mukhtar, 2010). The stress component used in plotting the 

S-N curve for a welded structural component can be determined using a number of 

methodologies, depending on the applicable loading, geometry of the structural component, and 

other factors. The following are the main methods used to determine the stress component in 

welded structures. They differ mainly in the stress parameter used in the assessment (Fricke, 

2010). 

a. Nominal stress method includes calculation of nominal stress (i.e. stress due to applied 

load) and uses S-N curves to estimate the fatigue life. This method is only applicable to 

simple configurations; it does not yield optimal results for complex structures and/or 

loading scenarios. 

 

b. The structural hotspot method was primarily developed for the offshore industry. It 

considers the stress-raising effects due to joint member design, but excludes stress 

concentration due to weld geometry. The determined hotspot stress is a function of weld 

toe frontline stresses, and its location is influenced by the type of loading and material 

thickness. The method is only suited for weld toe failures, not root failures. Radaj et al. 

(2009) observed that structural stress designates the basic stress in a structure in areas of 

geometrical inhomogeneity that are hotspots for crack initiation; however, the method 

ignores the notch effect. 

 

c. Effective notch stress (ENS) involves the stress-raising effects of the weld geometry. 

Based on Neuber’s notch plasticity theory, the ENS method accounts for weld toe and 

weld root failures. Neuber’s equation is used to calculate the fictitious radius that is used 

to determine effective notch stress. 

 

Once the stress component has been determined using the above methods, fatigue life can be 

calculated using the von Mises or principal stress hypotheses, depending on the type of loading 

and the extent of multiaxiality. Radaj et al. (2009) argued that the benefit of using the local 

concept for fatigue assessment is that the fatigue process has a local character and cannot be 

adequately described by global (nominal) stresses alone. 

In a fatigue test, a specified mean load – which may be zero – and an alternating load are applied 

to the test specimen and the number of cycles required to cause failure is recorded. Loads can be 

applied axially (perpendicular), torsionally or in flexure. Data recorded from the fatigue test are 
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plotted as an S-N diagram, representing the number of cycles (N) until failure against the 

amplitude of cyclical stress developed (S). The S term can refer to stress amplitude, maximum 

stress or minimum stress (Chaudhari & Belkar, 2014) 

The S-N or stress life approach is based on fatigue test data, and offers the advantage of a simple 

yet effective method for fatigue assessment. The method’s simplicity derives from the fact that it 

is based on a single parameter called the stress range, ΔK. The S-N curve represents ΔK versus 

the cycles to failure, N. The curve represents components’ resistance to fatigue. S-N curves are 

usually specific to component geometry and loading conditions, and hence they lack generality. 

The S-N method is not without drawbacks; one of its disadvantages is that it assumes elastic strain 

behaviour and ignores true stress-strain behaviour (Ngiam, 2007). This challenge can be 

substantial, since crack initiation is usually caused by plastic deformation. 

2.2.4.4 Fracture mechanics approach  

The fracture mechanics approach is generally used in applications where there is an existing 

crack, and the method is based on crack growth data. In fracture mechanics, the crack initiation 

phase is assumed to be negligible and the determined fatigue life is based on the SIF, which 

accounts for crack size, weld joint geometries and stresses at the tip of the crack. The American 

Society of Testing and Materials Standard (ASTM) E647 is an international standard used to 

evaluate fatigue properties of a notched specimen with a fatigue pre-crack under cyclic loading. 

Crack size is measured as a function of elapsed fatigue cycles, and resultant data are subjected to 

numerical analysis to determine the crack growth rate (da/dN) as a function of the stress range 

(ΔK). The calculation is shown as da/dN(ΔK), which characterises the material’s resistance to 

stable crack extension under cyclic load. The da/dN versus ΔK relationship is independent on 

planar geometry, which effectively means that cracks of different magnitudes that are subjected 

to the same nominal ΔK will advance by equal increments of crack extension per cycle (ASTM 

E647, 2015). 

The fracture mechanics approach is anchored in the modelling of crack behaviour in cracked 

structures. The method examines design stress, flaw size and material property of fracture 

toughness as variables in assessing the structural integrity of cracked components. The utility of 

the fracture mechanics approach lies in understanding the safety thresholds of cracked structures 

in operation, such that incidents related to production disruption, injuries to humans, and damage 

to property and plant equipment can be averted. The nature of analysis therefore allows the 

determination of residual fatigue strength of the structure as a function of crack size, crack growth 

rate and critical crack size tolerance (Ngiam, 2007). 
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Fracture mechanics concepts are grouped into two categories: stress intensity concepts and crack 

propagation concepts. The notch stress intensity factor (N-SIF) approach uses the notch SIF at 

the weld toe with zero radius, and crack-tip SIF for the weld root. In the crack propagation 

approach, the Paris law is used to determine the fatigue life of a propagating crack. Linear elastic 

fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM) are two main methods 

in the crack propagation approach. LEFM is often used to estimate the fatigue life of a weld joint 

where a linear relationship exists between fracture toughness of the material and applied stress. 

By contrast, EPFM is used if the relationship is non-linear. The non-fused part of the root is 

considered to be the initial crack, whereas initial crack depth has to be assumed at the weld toe 

(Fricke, 2012). The SIF concepts can also be assigned to ENS concepts (Radaj et al., 2009). 

The fatigue crack growth (FCG) behaviour can be divided into three main regions, as described 

below (Caine & Frain, 2016). The three regions are illustrated in Figure 2.3 through the FCG 

curve. 

a. Region I: The growth rate in this region is very slow and is not measurable. Threshold 

SIF range (ΔKth) is found within this region, and this is the SIF range below which fatigue 

life is infinite or where crack growth rate (da/dN) is 10-10 m/cycle. 

b. Region II: In this region, the curve of FCG rate versus SIF range (da/dN vs. ΔK) is almost 

linear, and is defined by the Paris equation. Note that C and m are constants of the Paris 

equation, as shown in Figure 2.3. 

c. Region III: Rapid unstable crack growth, which leads to fracture, occurs in this region. 
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Figure 2-3: Characteristic curve for fatigue crack growth 

Source: Cain and Frain, 2016 

FCG is difficult to predict in welded structures, which are subjected to multi-axial loads. One of 

the main reasons for such difficulty is the statistical variations related to the weld parameters. 

Parameters such as toe radius and weld bead geometry tend to vary from joint to joint, even if the 

welding conditions for different joints are deemed identical (Lazzarin et al., 2004). For this 

reason, the approaches used in the evaluation of fatigue strength for welded joints tend to pick 

and choose parameters considered to be key for fatigue behaviour within the context of a chosen 

approach (Lazzarin et al., 2004). Studies have shown that in welded structures, most of the fatigue 

life is consumed during the crack nucleation stage and subsequent V-notch singularity-controlled 

growth. Furthermore, in welded joints subject to multi-axial loading, it is not nominal or hotspot 

stresses that cause the damage but local stresses at the notch of the weld – that is, the root or the 

toe (Nazzarin et al., 2004). In a fillet weld, fatigue crack usually begins at the weld toe and 

propagates either into the weld metal or the parent metal, depending on the type of loading. Such 

cracks are likely to originate from the HAZ or fusion zone of the weld (Al-Mukhtar, 2010). Using 

high-strength materials can achieve the generic objective of attaining higher stresses using 

reduced parent material dimensions, but this would not change the fatigue strength. Fatigue 

strength does not depend on parent metal strength but rather on the geometry of the weld joint 

(Al-Mukhtar, 2010). The notch SIF approach implies that “the fatigue strength assessment of 

welded joints failing at the weld root or weld toe is essentially a notch effect problem” 

(Meneghetti, 2013). The weld geometry, including weld root and weld toe, is discussed in detail 

in Chapter 4 below. 

Weld root cracks are considered more dangerous than weld toe cracks, because the former are 

difficult to detect before it is too late. Weld root cracks originate from the root and usually 
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propagate through the weld throat into the surface. Only after such propagation do they become 

visible. Furthermore, stress-relieving processes such as post-weld heat treatment1 are more 

effective at the weld toe region than at the weld root (Fricke, 2012). Weld roots of fillet and butt 

welds have been shown to be under compressive residual stresses of magnitudes approaching the 

material yield strength, for multi-pass welds of mild steel. The residual stress distribution at the 

weld toe of the multi-pass weld depends on the number of passes, weld penetration and inter-pass 

time (Fricke, 2012).  

Khurshid and Muntaz (2011) compared various standards for joint design in a welded high-

strength telescopic beam of a heavy-weight lifting spreader. They also evaluated the effect of 

weld defects, such as lack of penetration, on fatigue strength of the joint. A combination of 3D 

numerical analysis and the analytical effective notch stress method (ENS) was used to evaluate 

the fatigue life of the weld joints. The ENS method is recommended for plate thicknesses above 

5 mm, and a fatigue life value (characteristic fatigue strength) of 225 MPa is recommended for 

steel in fatigue calculations. The notch can be keyhole-shaped or U-shaped, depending on how 

the weld is prepared. The effect of the shape on the value of the stress has been shown to be 

negligible. The authors concluded that the ultimate strength of the weld increases with penetration 

(Khurshid & Mumtaz, 2011). 

Khurshid et al. (2017) investigated tube-to-plate welded joints in terms of fatigue resistance to 

multi-axial stress state and weld root failure analysis. The researchers used local stress evaluation 

methods. The stress concentration factor due to pure torsion load was Ktt = 2.31, and the fictitious 

notch radius was 1 mm. Only stress concentration factors at weld roots were considered. All 

cracks initiated at the weld root and hence weld start/stop had no influence. Two modes of failure 

were observed; in the first mode the crack propagated through the leg size, then through the throat 

of the weld. The second mode saw the crack propagate through the weld throat.  

Meneghetti (2012) applied FEA to determine the fatigue strength of welded lap joints and cover 

plate joints. The peak stress method was used for assessment of Mode I and Mode II loading of 

weld toe and weld root geometries. The peak stress method is a simplified numerical method to 

estimate the notch SIF parameters. The notches at weld root and weld toe are referred to as V-

notches, with angles of 0˚ and 135˚ respectively. Pre-cracked joints (e.g. root gap) are regarded 

                                                           
1 Sterjovski et al. (2004), in an analysis of cross-weld properties of quenched and tempered steels, define post-weld 
heat treatment as “a stress-relieving process whereby residual stresses are reduced by heating between 540 and 
590 oC for a set time depending upon plate thickness.” 
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as Mode II stress problems. Load-carrying cruciform fillet joints are considered to be Mode I 

(Meneghetti, 2012)2. 

Meneghetti (2013) provided a simplified method to measure Mode III stresses at the weld toe, by 

correlating the FEA technique with the notch SIF values. Tube-to-flange fillet welded joints 

subjected to torsional loading were evaluated using LEFM. Similarly, Lu (2002) examined the 

extent of the influence of WRS on the fatigue life of welded components. Low-cycle fatigue tests 

in a cantilever setup were conducted. Fatigue cracks occurred at the weld toe in all the 

experiments, and ratcheting strain was highest at the weld toe. The fatigue life of materials is 

therefore reduced in the presence of ratcheting3 (Lu, 2002). 

2.2.4.5 Factors affecting fatigue strength 

Fatigue properties of welded components are affected by several factors, including material 

thickness, environmental effects, discontinuities and residual stress (Ngiam, 2007).  

Material thickness: The thickness of a component has been shown to affect the stress gradient to 

which the component is exposed. This is because a specific fatigue crack (of a given size) will be 

subjected to a higher stress level across a larger region in a specimen having greater thickness 

than one with less thickness (Ngiam, 2007). Hence, the effect of the dimensions of a component 

must be considered when the fatigue behaviour of two or more structures is compared. After 

comprehensive review of relevant studies, Ngiam (2007) concluded that fatigue performance of 

welded joints is influenced by member thickness, such that it decreases with increasing thickness 

for a given nominal stress range.  

Environmental effects: Welded pressure vessel structures that operate in industries such as 

nuclear, offshore, petrochemical, power generation and process engineering can be exposed to 

environments that are structurally harsh. The environment may be detrimental to the integrity of 

the structure. Environmental factors such as corrosive media and high temperatures can adversely 

affect the fatigue life of a welded structure. Oxygen, sulphur and temperature are some of the 

environmental media that influence fatigue-related failure. These environments have been shown 

to result in a reduction of fatigue life of 30% to 50% in carbon steels, compared with air 

environments (Lu, 2002). 

                                                           
2 There are three basic mode of fractures called Mode I, II, and III. They are fracture by pulling, pushing, and tearing 
respectively (Fricke, 2012). 
3 Ratcheting occurs when both axial and hoop strains increase gradually with cycles, and it is caused by the 
presence of mean stress in the stress cycles. 
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Discontinuities: In a case where continuity of structure cannot be satisfied by membrane forces 

alone, a discontinuity is said to exist. Discontinuities are potential nests of localised stress 

concentration. The three main categories of discontinuities in welded pressure vessel structures 

are as follows (Chaudhari and Belkar, 2014): 

a. Geometric discontinuities, which comprise abrupt changes in the curvature radius, 

connections (e.g. nozzles) and material thickness. 

b. Load discontinuity, which refers to an abrupt change in load type or intensity. 

c. Material discontinuity, which constitutes an abrupt change in the mechanical properties 

of a material. 

d. Metallurgical discontinuities, which involve a change in microstructure from the PM to 

HAZ to the fusion zone. 

The stress magnification at the discontinuity is called the stress concentration. The factor by 

which it is magnified, relative to the nominal stress, is referred to as the stress concentration factor 

(SCF) or SIF. The calculation can be represented as follows: 

SIF x nominal stress = max stress = hotspot stress  

In welded structures, the weld notches at the toe and root, which are often characterised by 

imperfections due to the sub-optimal joining process, are locations of high stress concentration 

that can act as crack initiators. The question of whether the weld toe or root crack type would 

dominate the fatigue criterion of the welded structure is a function of several variables. These 

include the ratio of throat-to-plate thickness, type of loading, weld geometry and residual stress 

(Fricke, 2012).  

Nozzle–shell joints: Pressure vessels are generally exposed to fatigue loading resulting from 

pressure fluctuations, mechanical loading or thermal loads (Pasha et al., 2008). Furthermore, in 

pressure vessel structures, circular holes made in the shell for the purpose of plugging nozzles 

increase the maximum stress experienced by the vessel. This is a result of stress concentration 

and high magnitude of localised stresses around such a geometrical discontinuity (Paraschiva et 

al., 2016). The sudden change in geometry and direction at the nozzle–shell joint of the pressure 

vessel causes high stress concentrations, thereby increasing the chance of failure during 

operations. A study of the effect of nozzle openings on stress concentrations showed that the two 

variables were proportionally related. Vessels with larger nozzles experience higher maximum 

stresses than vessels with smaller nozzles. Stress concentration also increases with an increase in 

the nozzle angle (Paraschiva et al., 2016). 
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Lewinski (2016) considered the effect of the configuration and geometry of the manhole to the 

stress state of the pressure vessel. As manhole thickness increases, the stress decreases, up to a 

certain level of thickness – in that study, 25.8 mm. Thereafter, the stress starts to increase with 

increasing thickness. Where the shape of the manhole is elliptical, the equivalent stresses are 

larger than those for a manhole having consistent radius.  

Pasha et al. (2008) evaluated the fatigue life of an operational pressure vessel using a combination 

of numerical modelling and experiments. Reasonable agreement was noted between the 

numerical and experimental results. The pressure vessel tested by Pasha et al. (2008) was 

designed for a fatigue life of 4500 cycles; the fatigue life analysed through numerical modelling 

was 5234 cycles, and the actual fatigue life was 5051 cycles. Furthermore, the stresses on the 

pressure vessel shell, flat head and nozzle as analysed by the numerical methods were acceptably 

close to the experimental results. The numerical results showed that the nozzle’s inner corner was 

the weakest spot for fatigue. The actual fatigue failure during experiments occurred at the same 

nozzle corner (Pasha et al., 2008).  

Peng (2011) applied a combination of experimental and finite element methods to determine 

methods for controlling welding distortion in nozzle-shell weld joints of stainless steel pressure 

vessels. Two welding processes of GTAW and SMAW were selected for the study given their 

popularity in stainless steel pressure vessel welding applications. The results showed that GTAW 

showed higher levels of distortion than SMAW. The alternating (i.e. welding internal diameter 

and external diameter in an alternating fashion) welding sequence was found to generate the least 

welding distortion. Petrovic et al (2011) proposed a procedure to determine the stress state of the 

pressure vessel shell that is provoked by a torque loading at the free end of the nozzle. The 

developed method showed that maximum stresses appear on the envelope near the nozzle. 

Baloc et al. (2015) examined the influence of two nozzles welded onto the shell, regarding the 

stress profile of the pressure vessel. The authors combined experimental and numerical methods. 

The comparison of experimental and simulation results showed a difference of up to 17.4%, 

which is considered acceptable. Xuedong et al. (2002) studied shaped compact specimens 

simulating high-strain characteristics of pressure vessel nozzles to understand their fracture 

fatigue behaviour. The effect of welding-induced residual stress and performance deterioration 

of the material adjacent to the weld joint rendered the area of the nozzle susceptible to fracture 

and fatigue damage in the pressure vessel (Xuedong et al., 2002). 

Residual stress in welded structures occurs because of heterogeneous plastic deformations, 

thermal contractions and phase transformation. The contribution of residual stress in fatigue 

failure properties of the component occurs through the so-called mean stress effect. Mean stress 
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results in material experiencing repeated excursions into the plastic range, even for small loading 

amplitudes. Residual stress in welded joints acts as mean stress, and facilitates the stress-

controlled repeated excursions into the plastic range; in turn, this process causes degradation and 

failure resulting from accumulated deformation or ratcheting (Lu, 2002). The material behaves 

in a linear elastic manner for low-amplitude fatigue cycles in the absence of mean stress.  

Al-Mukthar (2010) considered the effect of residual stress on crack propagation in welded 

components. The author observed that fatigue cracks can develop and propagate around the weld 

joint of a structure during service life, even if the dynamic stresses are well below the yield limit. 

2.2.4.6 The Effect of WRS 

It has already been stated that residual stress can have a substantial influence on the fatigue 

strength of welded joints. The influence can either be favourable (compressive residual stress) or 

detrimental (tensile residual stress), depending on the magnitude and direction of the stress 

component. A further complication regarding residual stress comes from the fact that many 

factors influence residual stress – from welding sequence to weld geometry; from material 

thickness to welding parameters; from filler material type to post-weld heat treatment, and many 

more. Hence a combination of residual stress and applied stresses in a specific loading condition 

have a good chance of differing from the combination stress of the next loading condition. The 

generalisation of results from laboratory-based fatigue-life experiments has little meaning in real-

life applications. The interactions among different applied stresses and different residual stress 

distributions are likely to result in different strain responses and fatigue lives, compared with 

those from laboratory-based experiments (Lu, 2002). 

According to the ASTM E647, the impact of residual stress on FCG behaviour includes the 

following points: 

a. It changes the crack-tip maximum and minimum stress intensities. 

b. It may cause irregular crack growth during fatigue pre-cracking. 

c. It may cause dramatic relaxation in crack closing forces. 

Two approaches are widely used to account for residual stresses when predicting their influence 

on the FCG rate. These are superposition and effective SIF (ΔKeff). Superpositioning involves 

adding the residual stress range to the applied stress range (ΔKres + ΔKapp = ΔKtot). In the effective 
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SIF approach, the SIF range at which the crack occurs (ΔKeff) is calculated from Kapp, Kmax and 

K4
op (Liljedahl et al., 2007). 

According to ASTM E647, residual stress and/or crack closure may significantly affect FCG rate 

data, particularly at low SIFs and low stress ratios. However, such variables are not incorporated 

into the computation of ΔK. Residual stresses are thought to undergo a relaxation process under 

thermal or mechanical loading, due to cyclic plastic strain. Given the favourable effect of 

compressive residual stresses on fatigue properties, their relaxation through cyclic loading should 

be avoided (Ngiam, 2007). Lu (2002) argued that although certain design codes (e.g. ASME) 

allow the influence of residual stress in low-cycle fatigue range to be ignored – because it would 

likely relax to zero only after a few cycles, experimental analysis showed that this assumption 

did not hold for all low-cycle fatigue cases. 

Rading (1993) observed that most of the fatigue cracks that developed in structural steel used in 

the fabrication of buses in Kenya originated from the HAZ region of the weld joints. Rading used  

a combination of experiments (i.e. ASTM E647 fatigue tests) and analytical methods (i.e. fracture 

mechanics) to evaluate the impact of welding on FCG behaviour of low-carbon structural steel. 

The study established that the FCG rate in the weld metal, HAZ and parent metal differed 

depending on which stage (I, II, or II) the FCG occurred on – that is, the beginning, mid-range or 

threshold. Where the residual stresses had been released almost completely, the FCG rate (da/dN) 

was essentially the same throughout the parent metal and weld metal (Rading, 1993). The grain 

size of the microstructure affected the FCG rate. Given that the three main regions of the weld 

(i.e. weld metal, HAZ and parent metal) had different-sized grain microstructures, it was expected 

that the FCG rate would differ in each region accordingly (Rading, 1993). Rading’s study showed 

that the FCG rate was faster in the HAZ region than in the parent metal region. The HAZ grain 

size is finer than that of the parent metal, and hence the parent metal microstructure displays 

relatively high resistance to FCG. 

Lu (2002) examined the extent of the influence of WRS on the fatigue life of welded components. 

Tensile residual stresses that were greater than the yield stress were observed close to the weld 

toe area. Fatigue crack was first noticed after 800 cycles of a 5000-lb load, and through-thickness 

crack growth was realised at 980 cycles in a stainless-steel 304 material. The results showed that 

the dominant components of residual stress in a circumferential weld are hoop and axial stresses. 

The socket welds were shown to have shorter fatigue life than butt welds (680 vs 980 cycles). 

The four-pass weld bead was shown to have shorter fatigue life than the three-pass weld bead. Lu 

                                                           
4 SIF at crack tip opening.  
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(2002) concluded that residual stress at the weld toe acts as mean stress, causes ratcheting and 

reduces fatigue life. 

Pasta and Reynolds (2007) applied the adjusted compliance ratio (ACR) method together with 

the online crack-compliance technique to determine the influence of WRS on FCG behaviour 

during fatigue testing of the titanium alloy structure. The ACR method allows crack closure 

effects due to WRS to be separated from effects due to other factors in the FCG data. FCG was 

measured using online crack compliance, and the influence of WRS on FCG behaviour was 

measured using the ACR method. This method uses residual stress SIF; and a constant stress-

range test was performed in a servo-hydraulic machine. The results showed that longitudinal 

residual stress was highly tensile in the weld fusion zone, then it reduced in magnitude as the 

distance from the WCL increased, and eventually changed direction to becoming compressive. 

Similarly, the FCG rate was higher in the weld fusion zone (tensile WRS) and lower outside the 

weld border line or weld toe (compressive WRS). 

Rosenfeld and Kiefner (2006) investigated residual stress fields around the weld toe and weld 

root for multi-pass pipe-to-plate circumferential weld joints, their influence on fatigue resistance, 

and the effect of weld penetration. Two types of joints were examined, namely U-groove 3-pass 

and fillet 2-pass weld joints. The measured residual stress fields were further used in a fatigue 

life assessment for welded structures. The authors noted that previous studies showed that the 

weld root of the pipe-to-plate circumferential weld is under compressive stress, whereas the weld 

toe is under tensile stress. The fatigue life of the fusion zone is enhanced as a result of the presence 

of compressive stresses at the root. The authors concluded that the resistance to fatigue crack 

initiation is generally proportional to the ultimate strength properties of the material (Rosenfeld 

& Kiefner, 2006). 

Liljedahl et al. (2007) studied the residual stress re-distribution resulting from FCG in aluminium 

alloy 2024-T3 specimens. Three ΔK values were tested. For the medium-tension specimen, M(T), 

the FCG rate was significantly higher in the weld metal than the parent metal for ΔK = 6 and 

ΔK = 11. The gap between the two metals closed at ΔK = 15. For the compact tension specimen, 

CT, crack arrest at all three SIF ranges (ΔK) occurred at the weld metal. The micro-hardness 

profile suggested significant change in the microstructures of the weld metal, HAZ and parent 

metal. The residual stress fields were found to redistribute during FCG, and such distribution 

differed between M(T) and CT specimens. Results from the experiments were compared with 

results predicted using empirical methods; the CT results showed good agreement (Liljedahl et 

al., 2007).  
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Ngiam (2007) presented the results of analytical and experimental work to investigate the 

favourable and the detrimental effects of surface residual stress on FCG in structural components. 

Ngiam applied LEFM to assess the fatigue life in offshore structures, considering fillet and butt 

welds. The author concluded that incorporating residual stress fields into the processes to 

determine the fatigue properties of welded structures can significantly alter the FCG data. 

Garcia et al. (2016) developed the FCG model using the LEFM and EPFM approaches to predict 

FCG behaviour in residual stress fields of aluminium sections. A combination of experiments and 

numerical modelling was used to evaluate crack propagation in residual stress fields of aluminium 

specimens. The fatigue tests were performed on a single-edge notched tension specimen using a 

servo-hydraulic machine. Four-point bending tests were performed on these specimens to 

introduce residual stress fields onto the material, and strain gauges were used for strain 

measurement. Strong correlation was noted between the residual stress results obtained through 

experiments and those obtained through finite element modelling. The EPFM method was found 

to have better accuracy than LEFM in matching the WRS field results from experiments. It was 

also established that compressive WRS fields have a deceleration effect on the FCG rate.  

Bozic (2016) investigated the influence of residual stress on FCG behaviour in welded stiffened 

panel structures. The researcher determined Mode I total SIF (ΔKtot) based on the superposition 

rule of LEFM. To account for residual stress, the nominal stress ratio R was replaced by the 

effective SIF ratio Reff during empirical analysis. Residual stresses were found to be tensile along 

welded stiffeners and compressive between stiffeners. 

Given that residual stress can be either beneficial or detrimental to fatigue properties of a welded 

structure, it is important to monitor the process of residual stress relaxation, especially in 

situations where benefits are derived from its presence. The two main forms of residual stress 

relaxation are mechanical relaxation and thermal relaxation. Mechanical relaxation depends on 

factors such as magnitude and gradient of initial residual stress and the extent of cold working. 

Thermal relaxation is also influenced by the degree of cold working (Zabeen, 2012). Zabeen 

(2012) evaluated the stability of intentionally-induced compressive residual stresses on the 

surface of aircraft engine components under cyclic loading. The residual stress fields associated 

with mechanically-induced surface residual stress are likely to redistribute and relax as the fatigue 

crack propagates through the material. Relaxing surface-based compressive residual stresses 

would accelerate FCG rate. The author concluded that laser peening introduced compressive 

residual stress of up to 0.6 times the yield stress of the material in the longitudinal direction of 

the aerofoil specimen (Zabeen, 2012). 
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2.3 Numerical methods 

2.3.1 Numerical analysis approaches 

Since the early 1970s, several studies have been performed on welding process simulations, 

ranging from heat-source modelling to material micro-structure investigations and related 

aspects. One of the initial works on the finite element method application to stress/strain analysis 

produced a finite element (FE) algorithmic procedure to numerically generate residual stress 

through a moving heat source, simulating the welding process. This work was performed by 

Rybicki et al. (1977). The authors employed a hybrid analysis that combined experimental and 

computational methods, whereby simple FE techniques were used to incorporate the measured 

(through ultrasonic shear waves) residual stress during crack analysis. The study identified the 

significance of the residual stress distribution ahead and behind the advancing crack tip in relation 

to plastic zone size within the area.  

Other early work on heat source modelling included models on multiple-point heat sources, by 

Rybicki et al. (1978). Ueda and Yamakawa (1971) and Hibbitt and Marcal (1973) also performed 

early simulation studies of welding processes, using the finite element method. Friedman (1978), 

Rybicki et al. (1978) and Andersson (1978) presented further works on simulation methodology 

using the sequentially coupled analysis technique. 

Subsequent to the early research described above, many studies on the welding process used the 

finite element method, and a corresponding number of experiments were conducted to validate 

the results from modelling techniques. Welding-induced residual stress (WRS) has received 

growing attention from welding researchers in the last few decades. Dong et al. (2005) observed 

that the driving force behind such interest is that effective assessment of structural integrity in 

welded structures, especially defective ones, requires good understanding of residual stress 

behaviour within a material. Furthermore, the need to better understand and characterise residual 

stresses associated with pressure vessel repairs has become more evident. Weld repairs have 

become a structural integrity concern for ageing pressure vessel and piping components (Dong et 

al., 2005).  

In their study on developing a residual stress prediction model for multi-pass butt-welded 2.25 Cr-

1Mo steel pipes, Deng and Mukarawa (2008) proposed a thermal-metallurgical-mechanical 

computational procedure based on an ABAQUS code. The authors established that on the inside 

surface of the pipe, tensile residual stresses are produced near the weld fusion zone and the HAZ. 

Compressive residual stresses are generated away from the fusion zone and HAZ. The outside 
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surface shows the opposite pattern, with compressive stresses generated at the fusion zone and 

relatively large tensile stresses produced away from the fusion zone.  

2.3.2 Definitions used in numerical analysis  

In the context of this thesis and in the literature review to follow, the terms used are defined as 

follows (Lingren, 2006): 

 

a. A model refers to a finite element model that is used to present certain aspects of the 
behaviour of the system. 
 

b. Simulation refers to an imitation of the internal process, rather than just the outcome, 
of the system under investigation. 
 

c. Validation is the process in which the accuracy of a model is evaluated by comparing 
its results with observed experimental results. 
 

d. Calibration is the determination of parameters to create a match with certain 
predetermined measurements. 
 

e. Verification is the process of ensuring that the model is correct with reference to the 
conceptual model. 
 

f. The conceptual model comprises the governing mathematical equations chosen to 
define the various aspects and parameters of the FE input file. 
 

g. Qualification is the process of ensuring the integrity of the conceptual model with 
reference to reality. 

 

The above are but some of the terms used in finite element analysis; a more comprehensive list 

of terms can be found in Goldak and Akhlaghi (2005). The discussion below considers applicable 

studies in the analysis of residual stress in typical thermo-mechanical problem applications.  

2.3.3 The thermo-mechanical problem 

Smith and Smith (2009b) investigated cyclic thermo-mechanical (combination of thermal and 

structural) loading history in stainless-steel type 316L bead-on-plate specimens using 3D finite 

element modelling and experiments. The experiments included welding several single-pass bead-

on-plate specimens whose residual stress profile resembled that of a repair weld. It was 

established that high tensile transversal stresses were prevalent beneath the weld bead, with the 

highest residual stress at the stop-end. Tensile longitudinal stresses were also predicted beneath 

the weld bead, with balancing compressive stresses beyond the weld stop-end. In the plate depth 
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direction, beneath the melted zone, the parent material experienced biaxial stresses. A tension-

compression-tension transversal stress cycle occurred as well as the compression-tension 

longitudinal stress cycle, with yield taking place only in the longitudinal cycle. Plastic flow 

occurred both during heating in the compression direction and during cooling in the tensile 

direction. In the weld metal, stresses depended on the material’s yield strength and plastic strain. 

Isotropic hardening models tended to produce higher longitudinal stresses (above 400 MPa), 

whereas kinematic hardening models showed relatively lower longitudinal stresses (200 MPa – 

300 MPa). This finding can be attributed to the Bauschinger effect5. Transversal stresses were 

generally not sensitive to material properties, whereas longitudinal stresses were. Plastic strain 

seemed to be informed by the assumed “annealing temperature” and the chosen heat source 

model. The 2D “block-dumped” heat source approach6 resulted in higher plastic strain than the 

3D moving heat source model. The best results, compared with measurements, were obtained 

when applying the non-linear kinematic hardening model with plastic strain set to zero at 850 0C. 

Using isotropic hardening models resulted in overly conservative predictions of stress in the 

parent material, especially longitudinal stresses. The effect of material “annealing” during 

modelling7 was to increase predicted stresses when using non-linear kinematic hardening, and to 

decrease them when using isotropic hardening. 

Smith and Smith (2009a) compared experimental and numerical studies of bead-on-plate analyses 

that were performed to investigate residual stress fields of the stainless-steel 316L plate. The 

authors stated that the far-field mid-length thermo-couples were best suited for calibrating the 

transient heat source model. Start and stop conditions are normally difficult to model due to 

complex multidimensional transient arc commencement and decaying processes. The 

uncertainties in the heat input and arc behaviour, which are present at the stop and start ends of 

the bead, can adversely influence thermo-couple readings at these locations. The authors argued 

that a dedicated heat source modelling tool provides more accurate heat input estimation than ad 

hoc heat source models, body/surface flux distributions or fixed weld temperatures. They 

identified three advantages of using dedicated heat source modelling tools: i) they apply a 

Gaussian ellipsoidal moving heat source; ii) they reduce uncertainty in heat source modelling; 

and iii) they apply fusion boundary as a fitted output in the analysis, not as input. Smith and Smith 

                                                           
5 The characteristic of materials whereby yield strength is increased by plastic deformation in the direction of 
plastic flow and concurrently decreased in the opposite direction. This phenomenon is usually associated with 
conditions in metals where yield strength decreases as a result of changes in the direction of strain. 
6 A simultaneous bead deposition technique is the process whereby the FE model considers the weld metal to be 
deposited all at once, for the purposes of thermal analysis. This is also known as “block dumping”. 
7 ABAQUS has an annealing functionality. The “annealing temperature” is set, above which equivalent plastic strain 
is zero. Plastic history of prior passes is “annealed” by the successive passes. Accumulated plastic strain is discarded 
if annealing temperature is reached but is retained if annealing temperature is not attained. 
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(2009a) concluded that heat-source steady-state calibration should occur close to the bead’s mid-

length.  

To evaluate formation of WRS on a three-pass bead-in-slot weld joint of austenitic stainless steel, 

Muransky et al. (2012) developed an uncoupled 3D thermal-mechanical model on ABAQUS 

code. A dedicated heat source modelling tool was utilised to model the ellipsoidal Gaussian 

volumetric heat source. The Lemaitre-Chaboche mixed isotropic-kinematic hardening was 

adopted for mechanical analysis. The simulation process was split into consecutive, uncoupled 

thermal and mechanical analyses. Firstly, thermal analysis was performed; then the resultant 

temperature field data were fed into the mechanical analysis through the “predefined field” 

interface in ABAQUS. Muransky et al. observed that transversal stress was compressive at the 

ends of the weld bead and became tensile towards the middle of the bead. Transversal stress 

peaked at the weld–parent-metal interface. In the fusion zone (weld metal), temperature rose 

above 1500 ˚C during heating, bringing the temperature-dependent yield strength close to zero. 

As the molten weld metal cooled, the bead contracted into tension. Tensile stresses were therefore 

prevalent in the weld bead. The parent metal just below the weld metal was exposed to 

temperatures around 1300 ˚C during heating. This material was first subjected to compression, 

and then the direction of the load changed as the material cooled down. During the second pass 

the material behaved the same as in pass-1. The metal just beneath the weld metal in pass-2 (i.e. 

pass 1 weld metal) behaved the same as the parent metal just below the weld pool in pass 1. In a 

multi-pass weld, each successive pass generated sufficient plastic flow to neutralise the stress 

field developed from the preceding pass. Most of that stress would have developed through the 

compression that arose during heating. Hence, the final residual stress distribution was mostly 

influenced by the last pass (Muransky et al., 2012).  

Heinze et al. (2012) calculated the WRS in a six-pass bead-on-groove GMAW weld of structural 

steel. A thermo-mechanical numerical model was developed from the SYSWELD(R) code. The 

problem was sequentially-coupled, and the thermal model was developed using temperature-

dependent, homogenous and isotropic material properties. Results of the thermal analysis were 

then used as input into the mechanical problem. Both 2D and 3D models were developed, and 

sufficient agreement was evident between the 2D and 3D models. Longitudinal and transversal 

residual stresses were measured. Longitudinal stresses were generally tensile in nature in both the 

fusion zone and HAZ regions, with maximum stress values found in the plate centre at mid-plate 

thickness. The WRS was affected by preheat and inter-pass temperatures. The inter-pass 

temperature exerted more influence than preheat temperature; a change of 100 C upwards 

decreased the residual stress by between 60 MPa and 70 MPa (Henze et al., 2012). 
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Chand et al. (2013) presented a 2D FEM solution for prediction of the GMAW process using a 

multi-pass weld of thick SS400 steel plate. The “element birth and death” technique was applied 

in ANSYS software to simulate multiple weld beads. The numerical model was validated using 

experiments and the results showed that residual stress was significantly affected by the heat input 

of the welding process. Culha (2014) derived a numerical solution for predicting the design 

parameters, such as temperature-stress distribution, for the submerged arc welding process of the 

AH 36 T-beam profile. The developed 2D FE model was used to investigate the WRS and strain 

distributions around weld and HAZ using a coupled temperature-displacement transient 

modelling approach. Simulation results revealed the existence of residual stresses in excess of 

material yield strength in the welding zone. The magnitude of the stresses decreased as the 

distance away from the welding zone increased.  

Islam et al. (2014) attempted to optimally reduce welding-induced distortions using finite element 

analysis alongside a genetic algorithm procedure. The numerical model was a classical coupled 

thermo-mechanical model with elastic-plastic behavioural assumptions. Experiments were used 

to validate the 3D finite element model of a 70 mm long longitudinal lap joint weld in a 3.2 mm 

thick steel plate. The developed tool is recommended for early-stage design investigations such 

as parametric study or sensitivity analysis in industrial applications. 

Nezamdost et al. (2016) attempted to understand and improve computer modelling of the 

submerged arc welding process in an API X65 steel pipe application. The welding thermal cycle 

and the residual stress distributions were modelled using 2D axi-symmetric and 3D finite element 

models. The results from the numerical models and bead-on-plate welding experiments were 

compared and found to be in good agreement. Rusu et al. (2013) presented 3D finite element 

models for the analysis of heat transfer induced by a double SAW process, using two or three 

wires in longitudinal welds of natural gas pipelines. Gaussian’s moving double ellipsoidal heat 

source distribution was used for the formulation of heat source models, and temperature-

dependent properties were incorporated into the prediction models. Thermal history plots 

revealed maximum temperatures as high as 1990 0C, which was consistent with similar studies. 

Lorza et al. (2017) applied isotropic hardening and non-linear kinematic hardening rules to 

reproduce cyclic plasticity behaviour of material welded using the GMAW process. The 

developed numerical model was used to predict welding-induced residual stress in a single V-

groove butt joint of low carbon steel. Experimental results obtained by the hole-drilling method 

were found to be in reasonable agreement with the FE model predictions. The ANL (2016) 

performed a detailed study on the thermal-mechanical stress behaviour of a reactor pressure 

vessel and its nozzle under typical reactor heat-up, cool-down and load-following modes. In 

general, for elastic-plastic analysis, a commercial FEA code such as MARC requires elastic 
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modulus (E), Poisson’s ratio, yield stress and kinematic hardening properties as input (ANL, 

2016). 

2.3.4 Effect of phase transformation on WRS 

Yaghi and Becker (2004) explained that local material dilatations introduce strains during the 

decomposition of austenite when the weld cools down. Such dilatations are assumed to be 

proportional to the fractional quantities of the transformed material phases, which in turn are 

iteratively determined for each time-step in the thermal analysis. Leggatt (2008) observed that 

phase change is yet another material property factor that affects residual stresses. In particular, 

the temperatures at which the phase transformation commences and terminates are sensitive to 

the cooling rate. Where the cooling rate is fast (e.g. HAZ), phase transformation occurs at 

relatively low temperatures. 

Deng and Murakawa (2008) studied incorporated solid-phase transformation effects in 2.25Cr-

1Mo steel pipes. They established that the weldment and HAZ consisted mainly of the 

bainite/martensite mixture, with the fractional portion of bainite being higher. Their simulation 

results demonstrated that to obtain precise prediction results, phase-dependent material properties 

such as yield strength were needed. Deng (2009) observed that previous experimental studies 

showed that measured stresses in the fusion zone and HAZ are lower than those in the base metal 

adjacent to the HAZ. This is because of the volumetric change of the material due to martensitic 

transformation at a relatively low temperature. The author concluded that martensitic 

transformation has a significant influence on the welding residual stress for mid-carbon content 

steels. Previous studies showed that when analyzing welding-induced residual stresses on high-

strength carbon steels, solid-state phase transformation should be taken into account in the 

welding simulation because it induces important physical and mechanical effects, such as 

volumetric changes, in the material (Lee & Chang, 2009). 

Figure 2.4 illustrates the phase transformation behaviour of steel during the welding cycle. The 

A1 temperature represents the temperature at which austenitic transformation begins during 

heating. When steel is heated above A1, its structure starts to transform from a body-centred cubic 

(ferritic) structure to face-centred cubic (austenitic) structure (Deng & Murakawa, 2006). At 

temperature A3, the pearlite-ferrite phase has completely changed to austenite. During rapid 

cooling, a portion of austenite converts to martensite. In Figure 2.4, the volume change due to 

this martensitic transformation occurs between the start temperature (Ms) and completion 

temperature (Mf). The rest of the austenite converts to other phases such as bainite or pearlite, 

depending on the cooling rate. The quantity of martensite formed depends on the temperature 

reached during cooling (Lee & Chang, 2009). 
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Figure 2-4: Volume Change due to Phase Transformation 

Source: Lee and Chang (2009) 

Pilipenko (2001) observed that microstructural transformation at low temperatures (i.e. 

martensitic) in the fusion zone and the HAZ can change the residual stress distribution 

significantly. By contrast, transformations achieved at high temperatures (i.e. austenitic) might 

have no significant effect on residual stress distribution. Lee and Chang (2009) determined the 

residual stresses in a multi-pass butt-welded high-strength steel plate through employing a 

sequentially-coupled 3D thermo-metallo-mechanical FE analysis. The developed FE model 

incorporated volumetric change and variation in yield stress of the base metal and weld metal due 

to martensitic and austenitic transformations. The authors established that volumetric increase 

during the austenitic-martensitic transformation (i.e. during cooling) had an effect of reducing 

longitudinal tensile residual stresses in the weld region and the HAZ.  

Deng and Murakawa (2006) analysed thermal effects, phase transformation effects and 

mechanical effects in multi-pass butt-welded steel pipes. Using a thermal elastic-plastic finite 

element model, they concluded that the volumetric change that resulted from martensitic 

transformation had a significant influence on welding residual stress. The effect leads to a change 

in both the magnitude and the direction of residual stress in the weldment. They further stated 

that the yield strength change induced by solid-state phase transformation also influenced the 

resultant welding-induced residual stress. 
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2.4 Optimisation techniques 

2.4.1 Design of experiment and statistical methods 

Design of experiments (DoE) is a powerful strategy used to address problems associated with 

quality in various manufacturing industry sectors. This approach is cost-effective as it allows for 

a minimum number of experiments to be conducted to obtain sufficient data to model the 

behaviour of critical parameters. DoE is an effective process for maximising analytical output 

while minimising resource input, because it can impose multiple changes on several parameters 

simultaneously, rather than the one-change-at-a-time approach (Dhas & Dhas, 2012). This ability 

makes the DoE a resourceful technique for obtaining information from experiments. The 

alternative method, namely implementing one change at a time, carries the inherent risk of 

missing out on multi-factor interactions (MFIs) while concentrating on single-factor effects 

(SFEs).  

The principle of operation of the DoE approach is that the experimental plan directs the 

experimenter as to where each test parameter must be set for each run of the test. The analysis is 

based on identifying the resultant differences in the response variable, for each variation of input 

parameters. The identified variations are then attributed to either the SFEs or MFIs. The main 

DoE techniques used in the welding process application include fractional factorial design, full 

factorial design, central composite design (CCD) and the Taguchi method. Both Taguchi and 

CCD are derivatives of the factorial design technique. The origins of experimental design can be 

traced back to the 1920s, when an English statistician named Sir Ronald A. Fischer developed a 

factorial design and a technique for analysing the experimental data statistically. The method was 

called analysis of variance (ANOVA). Fischer studied the improvement of agricultural crop 

yields (Kondapalli et al., 2015). 

Gupta and Parmar (1989) successfully applied the fractional factorial technique to determine the 

interactive behaviour of welding input parameters in a SAW process. Murugan and Parmar (1994) 

also used the fractional factorial technique to predict weld bead geometry of an MIG stainless-

steel-to-structural-steel weld. Balasubramanian and Guha (1998) provided a mathematical model 

to predict the fatigue life of FCAW-welded cruciform joints that contained lack-of-penetration 

imperfections. A two-level, four-factor (24 = 16) full factorial design of experiments was used. 

Analysis of variance (ANOVA) was used to determine the significance of parameters and model 

terms. The developed model predicted the fatigue life of cruciform joints at the 95% significance 

level.  
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Ni et al. (2011) considered the optimisation of laser welding process parameters for the titanium 

neuro-stimulator shell using Taguchi L18 orthogonal array (OA) design. The input parameters of 

the Nd:YAG pulse laser welding process included pulse shape, laser power, weld speed, 

defocusing amount and shielding gas. The response variable comprised the bead depth-to-width 

ratio. The results showed that the average response value was affected by laser power, welding 

speed and defocusing amount, whereas the S/N ratio was affected by laser power and weld speed. 

Optimised values were verified using experiments and good agreement was found between the 

two.  

Datta and Mahapatra (2010b) suggested an application of principal component analysis (PCA) 

together with the Taguchi technique, to address the issue of correlation among response variables 

during parametric optimisation of a straight turning process for mild steel machined products. 

PCA converts correlated responses into non-correlated principal components or quality indices. 

The technique applies utility theory to convert multiple responses to a single equivalent objective 

function, that is, overall utility degree. The process input variables for the turning process include 

spindle speed, feed and depth of cut. The output parameter of surface roughness was chosen. The 

study successfully determined the optimal parametric combination that can be used for 

continuous quality improvement in machining of mild steel products.  

Khan et al. (2011) attempted to optimise weld control parameters that explain weld geometry and 

weld strength, using statistical and experimental methods. The input parameters of laser power 

(LP), welding speed (S) and fibre diameter (FD) were chosen. Full factorial design was used to 

relate the input parameters to the response variables of weld zone width, penetration depth, 

resistance length and weld shearing force, through developed mathematical models. An F-test 

was used to determine the terms and significance of the regression model. Step-wise regression 

eliminated insignificant model terms automatically, and ANOVA tables summarised the analysis 

of variance and provided the significant model terms. It was established that welding input 

parameters (LP, S and FD) varied linearly with fusion zone width. Penetration depth was affected 

by LP, S, FD and two-factor interactions or 2FIs of LP*S and S*FD. Significant model terms for 

weld resistance length were LP, S, FD and 2FIs of LP*S, S*FD and LP*FD. For weld shearing 

force, the significant model terms included LP, S, FD and 2FIs of LP*S and S*FD. Laser power 

and welding speed exerted significant effects on weld bead geometry and bead shearing force. 

Fibre diameter alone had little effect on weld bead geometry and shearing force, but its effect 

became more significant combined with other parameters (i.e. 2FI level).  

Yang et al. (2012) applied the Taguchi method to measure and optimise laser welding process 

parameters with filler metal. The process parameters included laser power, welding speed and 

wire-feed rate, and the response variables were bead width and fusion area. Welding speed was 
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the most influential factor for the response of bead geometry, followed by wire-feed rate. Speed 

varied inversely with bead width and bead height. The wire-feed rate varied proportionally with 

bead geometry parameters.  

Ilo et al. (2012) evaluated the impact of plasma transferred arc welding (PTAW) process 

parameters on quality characteristics of hard-facing parameters in hard-particle metal matrix 

composite (MMC) applications. Parameters that influence MMC microstructure formation during 

PTAW process included welding current, welding speed and oscillating speed. A two-level L8 

Taguchi OA design was used to implement the experiments. Accordingly, eight experimental 

runs were conducted, allowing for experimental error at 1 degree of freedom. Micro-hardness 

measurements were conducted on unetched specimens. Multiple quality characteristics were 

optimised using grey relational Taguchi analysis.  

Sapakal and Telsang (2012) considered the optimisation of MIG process parameters of welding 

current, voltage, and welding speed using the Taguchi method. The effect of input parameters on 

weld penetration was investigated using L9 orthogonal array at three levels. ANOVA revealed 

that voltage had a significant effect on weld penetration, whereas current and speed had negligible 

effects.  

The Taguchi method was also applied by Juang and Tarng (2002) in a modified form, to 

determine the parametric combination of the TIG process that would result in optimal weld bead 

geometry for stainless steel plate. An L16 orthogonal array was applied to investigate the effect of 

process parameters of arc gap, flow rate, current and welding speed to weld bead geometry. 

ANOVA showed that all chosen input parameters significantly affected the response variables of 

bead geometry. The optimal parameters were successfully calculated using the suggested Taguchi 

technique. Balasubramanian and Guha (2004) examined the fatigue life of load-carrying 

cruciform joints in pressure vessels. They used the DoE technique to develop mathematical 

models to predict the fatigue life of SMAW and FCAW cruciform joints. The factorial 

experimentation technique of DoE was effective at predicting multi-factor effects on fatigue life. 

Yousefieh et al. (2011) investigated the influence of pulsed current gas tungsten arc welding 

(PCGTAW) process parameters on the corrosion and metallurgical properties of super duplex 

stainless steel (SDSS), using the Taguchi L9 OA design. PCGTAW is a variation of the GTAW 

process that involves alternating between high-level and low-level arc currents at a selected 

frequency. Four process parameters were identified: pulse current, background current, pulse 

frequency and % duration. Parameter levels were set at three (i.e. 43 design). Experiments were 

conducted using a 500 mm diameter, 5 mm thick SDSS pipe. Pulse current and background 

current were significant control factors, whereas % duration and pulse frequency were 



42 | P a g e  
 

insignificant. The predicted and observed response parameter values for optimal control factors 

were in reasonable agreement. 

Friction stir welding (FSW) process parameters and their effect on tensile strength of welded 

joints were investigated by Lakshminarayanan and Balasubramanian (2008). The analysed input 

parameters included rotational speed, traverse speed and axial force. The experiments were 

designed using the Taguchi L9 OA with three levels (i.e. 33). The ranges of parameters were 

determined through pilot experiments. Experiments were conducted on 300 mm x 150 mm x 

6 mm rolled RDE-40 aluminium alloy plates using square butt joint configuration. The S/N ratio 

analysis was performed using statistical software and ANOVA was used to test the parametric 

significance. All parameters were found to significantly affect tensile strength in the FSW joints.  

Song et al. (2005) studied the effects of main welding parameters in a 3D welding process8 on 

the bead geometry and mechanical properties of mild steel. The chosen input parameters included 

voltage, wire-feed rate, gap between welding gun and weld-piece, and shielding gas composition 

(i.e. ratio of argon/CO2). The response variables were bead width and weld spatter. A three-level 

L9 Taguchi OA matrix was developed. ANOVA revealed that voltage, wire-feed rate and welding 

gap were significant determinants of weld spatter, whereas shielding gas had negligible effects. 

Similarly, voltage and wire-feed rate affected the bead width, but welding gap and shielding gas 

did not. 

Gunuraj and Murugan (1999) presented a study on the effects of heat input on the HAZ area 

generation of SAW-welded carbon steel bead-on-plate and bead-on-joint pipe specimens. The 

identified welding process parameters included voltage, welding speed, wire-feed rate and 

nozzle-to-plate distance. The working range of parameters was determined through experimental 

trial runs, by varying one parameter at a time while inspecting the bead integrity. A CCD was 

chosen to develop the matrix with 24 (=16) factorial design, 7 centre points and 8 star points. 

Multiple regression analysis was used to develop model terms for the polynomial function, and 

ANOVA was applied to evaluate the model’s significance. Both SFEs and MFIs were included 

in the objective function. The predicted values and experimental results were in good agreement. 

The MFI of wire-feed rate and speed showed that heat input was lowest when wire-feed rate was 

at a minimum and speed at a maximum level. The HAZ area was at its lowest when the wire-feed 

rate was minimal and nozzle-to-plate distance was at its highest. 

Yang (2008) studied the impact of SAW parameters on the quality and strength of the weld in 

high-strength low-alloy (HSLA) steels, using DoE and statistical methods. The author selected a 

                                                           
8 A hybrid freeform fabrication process that uses GMAW as an additive technique and conventional milling as a 
subtractive technique. 
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parametric combination that produced optimal results in the SAW process. The results showed 

that reinforcement, penetration depth and HAZ size of both SA516 and A709 steels varied 

proportionally with the welding current. Welding current was found to have little effect on weld 

bead width. Travel speed co-varied inversely with both reinforcement and bead width. This 

finding occurred because travel speed is inversely proportional to heat input, which varies directly 

with reinforcement. The undercut increased with increasing travel speed and decreased with 

increasing heat input. Lack-of-penetration defects were caused by low heat input, and lack of 

penetration increases with increasing travel speeds and decreases with increasing current.  

Shen et al. (2012) investigated the effect of SAW-process heat input on the weld bead geometry 

for the ASTM A709 grade 50 steel weldment. Experimental measurements and empirical 

calculations were used to determine the effect of heat input on weld geometry. The results showed 

that bead width (BW), bead penetration (BP), bead reinforcement (BR) and HAZ size all 

increased with increasing heat input. The width-to-depth (WB/BP) ratio and percentage dilution 

remained roughly the same as heat input increased. Electrode melting efficiency increased with 

increasing heat input, whereas parent-metal melting efficiency did not change with increasing 

heat input.  

Sensitivity analysis of SAW process parameters was performed by Karaoglu and Secgin (2008). 

The authors related the welding parameters of arc current, voltage and welding speed to the 

response variables of bead height and penetration, using empirical models developed from 

multiple regression analysis. The main utility of sensitivity analysis is that it informs the analyst 

of the process parameters that must be adjusted to enhance performance. Experiments were 

designed using the 33 = 27 factorial design, and bead-on-plate welds were conducted on mild steel 

plate having the dimensions 180 mm x 80 mm x 10 mm using 3.2 mm filler material. Bead width 

was found to be sensitive to arc current, voltage and welding speed. Bead width was also more 

sensitive to parameter variation than bead height and penetration. Bead height was shown to be 

sensitive to all three parameters. Increasing the voltage and speed resulted in a decrease in bead 

height. Arc current strongly influenced penetration, whereas variations in voltage and speed had 

negligible effects on penetration.  

A quantitative investigation of the effects of the two-wire tandem submerged arc welding (T-

SAW) process parameters on weld bead quality and mechanical properties was conducted by 

Kiran et al. (2012). The authors performed an experimental study using the CCD technique to 

investigate the following welding parameters: leading arc current, trailing arc positive and 

negative current pulses, welding speed and trailing arc negative current duration. The experiments 

included bead-on-groove single-pass welds on 12 mm thick HSLA steel plates. The trailing wire 

current significantly affected the weld bead geometry. Increasing the trailing wire current 
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increased the weld bead dimensions and degenerated the mechanical properties. Higher welding 

speeds reduced the bead geometrical dimensions and improved the mechanical properties.  

Tarng et al. (2002) employed the Taguchi method together with the grey relational analysis to 

evaluate multiple parametric effects on multiple performance responses in the hard-facing process 

applied using SAW. Hard-facing is a process whereby an alloy is homogeneously deposited onto 

a surface of a soft material using the welding process, in order to increase the hardness and wear 

resistance of the latter, while concurrently maintaining the ductile properties of the material 

(Buchely et al, 2005). The welding input parameters in Tarng et al (2002) were identified as arc 

current (C), arc voltage (V), welding speed (S), electrode stick-out (E) and pre-heat temperature 

(T). The output variables were taken as dilution (%), deposition rate (kg/s), and hardness 

(Rockwell C). Arc current, welding speed and electrode stick-out had significant effects on the 

response variables, with electrode stick-out being the most influential parameter.  

Ghosh et al. (2011) analysed SAW parameters (i.e. arc current, wire-feed rate, stick-out and travel 

speed) using the Taguchi L16 OA design. Experiments were performed on two plates, each 

measuring 400 mm x 75 mm x 6 mm, to study the parametric effect on the response variable of 

bead geometry. No significant interaction was observed among input parameters for bead 

geometry. S/N ratio analysis provided the optimal parametric combination corresponding to the 

highest S/N value.  

Datta et al. (2009) solved a multiple response optimisation problem in the SAW process using 

the grey-based Taguchi technique together with the PCA method. The input parameters included 

voltage, wire-feed rate, traverse speed and electrode stick-out. The responses (which were 

assumed to be correlated) comprised penetration depth, reinforcement (bead height), bead width 

and dilution. The orthogonal array of L25 experimental design was implemented through bead-

on-plate welds using an automated SAW process on a mild steel plate of 10 mm thickness. 

Optimal results comprised low voltage, low feed rate, high speed and high stick-out. The grey-

based Taguchi (i.e. grey relational analysis) is a useful method for solving multi-objective 

optimisation problems without compromising the correlation amongst responses (Datta et al., 

2009). 

Purohit and Digamber (2012) investigated the influence of voltage, wire-feed rate, traverse speed 

and nozzle-to-plate distance of the SAW process on the response variable of weld bead geometry 

using the Taguchi method. The ANOVA findings showed that traverse speed and wire-feed rate 

were the only significant model terms. Saluja and Moeed (2012) utilised the fractional factorial 

design method to investigate the cause-and-effect relationships between, on the one hand, SAW 

input parameters of welding current, voltage, travel speed and electrode stick-out and, on the 
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other hand, the responses of bead width and bead height. Welding current and voltage 

significantly affected the bead width. Current, voltage and speed all influenced the bead height, 

whereas electrode stick-out had no significant influence on bead geometry.  

Kumanan et al. (2007) applied the Taguchi technique in their investigation of SAW parametric 

effects on weld geometry and hardness. The parameters considered in the study included welding 

current, voltage, travel speed and electrode stick-out, and the response variables were bead width, 

reinforcement, penetration and hardness. The ANOVA results showed that welding current 

affected hardness; current and voltage significantly affected bead width and reinforcement; 

current and speed influenced penetration; and stick-out had no significant influence on any 

parameters.  

Reddy (2013) employed an L8 orthogonal array design matrix to study the relationships between 

the SAW input parameters of current, voltage, speed and stick-out, and the responses of bead 

width, reinforcement, penetration and hardness. The data sets obtained from the OA were used to 

train an artificial neural network (ANN) model to predict optimal SAW input parameters that 

would yield the desired response variables. Reddy concluded through sensitivity analysis that 

bead width is affected by current; reinforcement and hardness are sensitive to electrode stick-out; 

and penetration reacts to changes in welding speed. 

2.4.2 Global search and optimisation techniques 

Search and optimisation methods can be divided into two main categories according to their 

application. The first category is deterministic, which refers to the optimisation of problems that 

have the same outcome for the same input conditions (i.e. no randomness). The second category 

is stochastic methods, which relates to indeterminate problems – with the problem evolving in 

several possible ways. Deterministic methods are unsuited for solving NP-complete problems9 

because they are limited by the requirement for domain knowledge (heuristics) to guide the search 

within large search spaces.  

                                                           
9 According to Erickson (2009), a P-decision problem means there is a known polynomial-time algorithm to obtain 
the answer. An NP-problem means there is a known polynomial-time algorithm for non-deterministic machine (i.e. 
unlimited parallelism) to obtain the answer. NP-complete means one can i) prove that the problem is NP, ii) show 
it is polynomial-time reducible (i.e. transforming a solution for Q into a solution for P in polynomial time) to a 
problem already known to be NP-complete (i.e. reducible to Boolean satisfiability). A problem is NP-hard “if and 
only if” it is at least as hard as an NP-complete problem.  
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2.4.3 The nature of the problem 

The welding process parameter optimisation problem (WPPOP) is a multiple-input, multiple-

output, and multiple-constraint problem, which employs parametric interaction. The problem is 

at least NP-complete. Like most problems related to engineering systems, this is a complex multi-

objective problem that seeks to satisfy several objectives which are usually in conflict. Coello 

Coello et al. (2007, p. 5) defined the multi-objective optimisation problem (MOP) as  

 

a problem of finding a vector of decision variables which satisfies constraints and 

optimises a vector function whose elements represent the objective functions. These 

functions form a mathematical description of performance criteria which are usually 

in conflict with each other. Hence, the term “optimise” means finding a solution 

which would give the values of all the objective functions acceptable to the decision 

maker.  

 

These problems therefore require the best possible trade-offs, such that the best possible solution 

provides the best possible collective outcome for the objectives. Such an outcome is normally 

presented as a set of compromise solutions, called the pareto optimal set (POS). The elements of 

the POS are used to generate objective function values, known as the pareto front (PF) (Coello 

Coello, 2009). In mathematical terms, MOP is given by the following equation: 

 

MOP = f1(x), f2(x),...,fk(x)       (2.3) 

where k is the number of objective functions making up the MOP. 

 

MOPs are therefore problems whose goal is to optimise k objective functions simultaneously. 

This may involve minimisation of all k functions, maximisation of all k functions, or a 

combination of the two for k functions (Coello Coello et al., 2007). The key criterion in the above 

definition is that “all elements” of the vector function must be simultaneously optimised to 

achieve equally acceptable values of all objective functions. Objective functions may be 

commensurable (i.e. measured in the same units) or non-commensurable (i.e. measured in 

different units). These objective functions are almost always in conflict; that is, improving one 

function tends to degrade the other. 

 

In a minimisation MOP having K objectives (e.g. K = {minimise bead width, minimise residual 

stress, minimise hardness}), a given decision variable vector x has n dimensions. That is, x = {x1, 

x2,...,xn} in the solution space X. The task is to find a vector x* that minimises K objective 
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functions; that is, z(x*) = {z1(x*), z2(x*),...,zk(x*)}. The relevant restricting constraints are applied 

to the solution space. This produces a set of non-dominated solutions, the POS. Each solution in 

the POS satisfies the objective (K) at an acceptable level without being dominated by any other 

solution. If all objectives relate to minimisation, as in the above example, a feasible solution x is 

said to dominate another feasible solution y, if and only if zi(x) ≤ zi(y) for i = 1,...k, and zj(x) < 

zj(y) for at least one objective function j. 

 

Moradpour et al (2015) solves an MOP for the SAW process using an approach comprising fuzzy 

logic and evolutionary algorithm. The welding process parameters of welding current, voltage 

and speed were successfully optimised to achieve the desired values of convexity. 

2.4.4 Non-conventional optimisation methods 

As mentioned above, the WPPOP is at least NP-complete. Therefore, the relationship between 

input welding parameters and output responses is complex and non-linear, and hence is difficult 

to determine using conventional mathematical models. Conventional optimisation techniques – 

such as geometric programming, multiple integer programming, dynamic programming and 

branch and bound techniques – all have difficulty solving problems of complexity such as that 

which occurs in welding process problems. This is mainly because the search space is too wide 

and these methods are inclined to converge towards local optimal solutions, which is unsuitable 

for these types of problems. The suitable techniques to solve such a problem therefore fall within 

the stochastic category. Commonly used stochastic optimisation techniques include simulated 

annealing (SA), tabu search, ant colony optimisation (ACO), particle swarm optimisation (PSO), 

and artificial immune system (AIS) (Coello Coello et al. 2007). Optimisation techniques can also 

be combined to maximise their respective strengths and improve the combined algorithmic 

efficiency. As is evident, most of these optimisation techniques are named after groups of 

biological species. This is because the concept the methods apply when converging to a solution 

can be related to the natural behaviour of a species. 

2.4.5 Evolutionary algorithms 

Evolutionary algorithms (EAs) are generally considered to be meta-heuristic problem solvers. 

That is, they are high-level general strategies which guide other heuristics (lower-level search 

procedures) to find feasible solutions from a complex search landscape (Coello Coello et al., 

2007). EAs operate according to Darwin’s evolutionary theory of survival of the fittest. 

Evolutionary operators (i.e. mutation, recombination/crossover, and selection) operate on a given 

set of individuals, termed the population, in an attempt to generate solutions in an ascending scale 
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of fitness. Parents are recombined to form children, who in turn create the next generation – which 

is selected based on fitness levels. Figure 2.5 illustrates the basic components of EAs.  

Fitter individuals are selected from the population to become members of the next generation. 

The selection operator assigns higher probability of contributing one or more children in the next 

generation to strings of higher fitness. Common selection techniques include roulette-wheel, 

tournament and ranking. Other selection techniques are the (µ+) and (µ,), where µ is the 

number of parent solutions and  is the number of children. The former selects the best individuals 

from both parent and children subsets, whereas the latter selects only from the child population. 

 
Figure 2-5: The Basics of the Evolutionary Algorithm 

Source: Coello Coello et al., 2007 

EAs are effective for solving complex search, classification and optimisation problems. Two 

main characteristics of EAs make them suitable for solving MOPs, namely i) the ability to assign 

a rank to each solution based on its Pareto dominance (i.e. Pareto ranking), and ii) the mechanism 

to maintain population diversity (i.e. density estimator). The suitability of EAs for solving MOPs 

is also evidenced by their ability to simultaneously consider a set of possible solutions (i.e. 

population), thereby achieving a goal of finding several members of the POS in a single run of 

the algorithm. This characteristic makes EAs far superior to the conventional mathematical 

programming techniques, which must perform a series of separate runs to achieve similar results. 
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In addition, EAs are less prone to be affected by the shape or continuity of the Pareto front; that 

is, they can handle concave or discontinuous Pareto fronts. By contrast, conventional methods do 

not easily accommodate these two issues (Coello Coello et al., 2007). EAs that are used to solve 

MOPs are called multi-objective optimisation evolutionary algorithms (MOEAs). 

Fonseca and Fleming (1993) suggested that a multi-objective evolutionary optimisation process 

could be generalised through considering it as a structured interaction between the decision maker 

(DM) or artificial selector and an EA. In this interactive process, the DM assigns certain utility 

to the current set of candidate solutions, and the EA produces a new set of solutions by applying 

the same utility. This conceptualisation is illustrated in Figure 2.6. 

 

 
Figure 2-6: The DM/EA Interactive Relationship 

Source: Franseca and Fleming (1993) 

Coello Coello et al. (2007) mention four generic goals of the MOEA, namely i) preserving non-

dominated points; ii) progressing towards points on the true pareto front or PFtrue; iii) maintaining 

population diversity; and iv) providing the DM with limited number of known pareto front or 

PFknown points to choose from. 

Performance attributes of real-life engineering problems usually exhibit non-commensurable and 

often competing objectives. The choice of a suitable compromise solution depends not only on 

determining the non-dominated vector solutions, but also through the subjective preferences of 

the decision maker (DM). The MOP can generally be classified into four main categories, 

depending on when the DM articulates its preference on the various objectives – that is, never, 

before, during or after (Andersson, n.d.).   
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a. Never – when the DM does not state a preference, the min-max formulation is developed, 

and the output comprises only one solution and not a set; the solution is accepted as the 

final optimal one. 

 

b. Priori – when the DM aggregates various objectives into one according to a formula 

which represents its preference. This could be achieved through the weighted-sum 

approach, non-linear weighting, fuzzy logic, utility theory, acceptability functions, goal 

programming or lexicographic. Priori techniques involve determining the level of relative 

priority for each objective before the search, for example through aggregate weighting. 

One of the biggest criticisms of the priori technique is that its arbitrary limitation of 

search space, through the ranking or weighting of objectives, might not lead to Ptrue. 

 
c. Progressive methods avail the DM preferences at the same time that the algorithm 

searches through the solution space, hence they are referred to as the interactive method. 

The principle is that “more interaction means better results”. In this approach, the DM’s 

preferences are incorporated during the search. The main challenge with the progressive 

technique is that when nothing much is known about the problem, the DM’s process of 

defining preferences may be difficult and inefficient. The quality of a solution in this case 

depends on how well the DM can articulate its preferences and on the DM’s subjective 

choices.  

 
d. Posteriori techniques allow first for determining the POS of solutions and then 

presenting them to the DM. The posteriori approach therefore involves a situation in 

which the decision-making process occurs after the optimisation process. 

 

Fitness allocation involves the assignment of importance level to the candidate solution based on 

certain criteria. Examples of fitness assignment approaches are listed below. 

a. Weighted-sum approach. This entails assigning weights to each normalised vector 

objective function and converting the MOP to a single-objective problem with an 

aggregated scalar objective function. The approach is called priori since DM articulates 

its preferences before optimisation. There is only one resultant optimal solution in this 

case. An automation of the weighted-sum approach was provided by Hajela and Lin 

(1992), with the authors proposing a weight-based genetic algorithm for multi-objective 

optimisation (WBGA-MO). The algorithm allocates a different weight vector wi for each 

solution xi in the population during the calculation of an aggregated solution. Because wi 

is embedded on the xi chromosome, multiple solutions can be simultaneously worked out 

in one run. In this approach, weight vectors can also promote diversity of the population. 
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The advantage of the weighted-sum approach is its simplicity and computational 

efficiency. The disadvantage is that it has difficulty finding solutions that are uniformly 

distributed over a non-convex trade-off surface. 

b. Altering objective functions. A single-objective approach may be implemented in a 

similar way to the vector-evaluated genetic algorithm (VEGA), which entails breaking 

the main population into sub-populations. In this case, the model repeatedly establishes 

an objective function randomly during the selection process. This approach is simple and 

computationally efficient. However, the shortcoming of objective switching is that the 

population tends to converge to suboptimal solutions. 

c. Pareto ranking. Pareto ranking is based on the principle of assigning equal probability 

of reproduction to all non-dominated individuals in a population. The technique assigns 

a rank to each set of non-dominated candidate solutions. Fitness assignment is then 

implemented in accordance with allocated individual ranks. Pareto ranking was 

introduced by Goldberg (1989). Dominance-based ranking is a method of allocating a 

rank to the individual based on its level of dominance within a population. Relaxed 

dominance entails the recognition of an “inferior” solution (i.e. dominated) in a particular 

objective space, with the intention of compensating for such recognition by improving 

other objectives. 

2.4.6 Popular MOEAs 

The origins of the concept of MOP and the solving thereof using MOEAs can be traced back to 

Rosenberg’s PhD research in the 1960s (Rosenberg, 1967). However, since Rosenberg’s GA 

contained only a single property – and not multiple properties as suggested – at the 

implementation level, it was only when Schaffer (Schaffer, 1985) introduced his VEGA that the 

actual implementation of MOEAs was realised. Since then, interest in applying MOEAs to solve 

MOPs has flourished. This growing interest has led to the discovery and development of new 

MOEAs. Below is a brief introduction to some MOEAs that are currently widely used. 

a. Vector-evaluated genetic algorithm (VEGA) 

VEGA uses sub-populations that separately optimise each objective. This method does not 

directly incorporate the Pareto optimum. It has no intrinsic capability to maintain diversity, and 

it does not necessarily produce non-dominated vectors (Coello Coello et al. 2007). 

b. Multi-objective genetic algorithm (MOGA) 
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MOGA was proposed by Fonseca and Fleming (1993). Individuals are ranked in line with their 

dominance within the population. Fitness assignment is executed according to the following 

steps: 

 Population is first sorted according to rank. 

 Goldberg’s fitness assignment method, which interpolates individuals from the best 

to the worst according to some function, is used. 

 Individual fitness values are then averaged according to rank categories to ensure a 

constant sampling rate. 

Comparative studies in the 1990s showed that MOGA outperformed most MOEAs in terms of 

efficiency and effectiveness (Coello Coello, 2009). The difference between traditional GAs and 

GAs for MOP applications is that the latter utilise special fitness functions and techniques to 

promote population diversity. MOGA uses Pareto-based ranking and niching techniques 

collectively to encourage a diversified search towards the Pareto optimum. Niche formation is 

used to prevent premature convergence. 

c. Niched pareto genetic algorithm (NPGA) 

NPGA uses a technique of tournament selection, whereby two randomly chosen individuals are 

compared to a subset from the population. The individual found to be non-dominated when 

pitched against a sub-set of the population wins the tournament. Where a tie occurs between the 

two (i.e. both non-dominated or both dominated), the tournament result is decided by fitness 

sharing (Coello Coello, 2009). Whereas the NPGA version initially did not use Pareto ranking, 

the later version, NPGA 2, uses both Pareto ranking and continuously updated fitness sharing.  

d. Strength pareto evolutionary algorithm (SPEA) 

SPEA uses an external archive containing non-dominated solutions that were previously 

determined (Coello Coello, 2009). Diversity is maintained using a clustering technique called the 

“average linkage method.” SPEA2 incorporates a fine-grained fitness assignment strategy, 

nearest neighbour density estimation technique, and an enhanced archive truncation method. 

e. Non-dominated sorting genetic algorithm (NSGA) 

NSGA is based on Goldberg’s proposed multi-layer classification of individuals. Population is 

first ranked on the basis of dominance such that all non-dominated individuals are classified in 

one category. Then the classified category is put aside and another layer of non-dominated 

individuals is classified the same way to form a second category. Once all the individuals have 
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been classified, fitness sharing is used to ensure diversity. NGSA II employs elitism and a 

crowded comparison operator to maintain diversity (Coello Coello, 2009). 

f. Other MOEAs 

Other MOEAs include the Pareto archived evolution strategy (PAES), Pareto envelope-based 

selection algorithm (PESA), multi-objective messy genetic algorithm (MOMGA – II), and micro 

genetic algorithm or µGA (applied in populations of less than five individuals) (Coello Coello et 

al. 2007). It should be noted that non-Pareto MOEAs have become less prevalent over  the years 

as Pareto-based techniques take preference. 

2.4.7 Solving MOPs 

MOPs are solved using global search strategies, or a combination of global and local search 

strategies. These problems can be solved in two ways. The first is by aggregating several objective 

functions into one compromise function, and then solving the problem using an appropriate 

algorithmic procedure. Alternatively, MOPs can be solved using Pareto-based methods, where 

multiple objectives are simultaneously optimised to find a set of non-dominated solutions.   

Aggregating functions. In aggregating function applications, objective vector functions are 

normally scalarised to suit the EA’s fitness information requirements. Several arithmetical 

combinational methods can be used to aggregate various objectives into a single scalar function. 

Examples are the weighted-sum approach, goal attainment technique, desirability functions, 

multiple attribute utility analysis (MAUA), and constraint-penalty functions. All these 

approaches yield one optimal solution that represents a compromised optimal level of combined 

objectives. The challenge with this method is that its effectiveness depends on the shape or 

continuity of the Pareto front. For instance, the methods do not work if the Pareto front is concave. 

Furthermore, weight allocation can be challenging even for an experienced researcher. Weights 

characterise the DM’s preferences, and small perturbations in scaling of objectives can yield 

disproportionately large deviations in the solutions. 

Adeyeye and Oyawale (2010) discussed several aggregating techniques used to solve the multi-

objective welding flux design (WFD) problem. WFD is a process that purports to provide flux 

parameters that ensure optimal weld properties, minimal environmental pollution and optimal 

welding costs during the welding process. The WFD problem therefore seeks to provide flux 

ingredients that yield the best compromise among certain variables. Experiments were prepared 

using DoE techniques, and objective functions were developed by regression analysis. The 

researchers examined several multi-objective decision-making techniques, including weighted-

sum scalarisation (WSS), goal programming (GP) and compromise programming (CP). Goal 
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programming works on a conceptualisation of the fact that in an MOP with conflicting objectives, 

it is impossible to achieve all the optimisation goals; some goal values would deviate from the 

ideal state. These deviations are therefore unfavourable and should be avoided or minimised. The 

deviations are assigned weights according to their relative importance, and their overall sum is 

minimised (non-preemptive). Alternatively, priorities could be allocated in a hierarchical format 

to response variables, and then the aggregated function is sequentially (or lexicographically) 

solved according to primary and secondary priority levels (pre-emptive). Compromise 

programming works on the principle of identifying the ideal optimal point where all objectives 

would reach their optimum simultaneously. The best compromise solution is then the one with 

shortest distance to the ideal point. Adeyeye and Oyawale (2010) concluded that the various 

techniques were suitable for their respective applications. 

The desirability function (DF) approach allocates a value between 0 and 1 to indicate the 

acceptability of property levels of a variable (i.e. priori). The most popular DF method currently 

used in engineering MOPs was developed by Derringer and Suich (1980). DF formulas for larger-

the-better, smaller-the-better and nominal-the-best are formulated to solve maximising, 

minimising and target value-based objective functions respectively. The composite desirability 

function is determined by taking the weighted geometric mean of all the individual DFs for each 

objective. The composite DF is then solved by finding property levels that maximise overall 

desirability. The paper by He et al. (2012) provided a robust desirability function for multi-

objective optimisation. The developed method was tested using a known example, and the outputs 

were compared with those of previous studies. The authors combined the GA with the pattern 

search procedure in a pipeline fashion. 

The artificial neural network (ANN) technique involves the modelling approach based on the 

artificial intelligence concept, which is used to determine input/output relationships through 

learning mechanisms. Juang et al. (1998) applied the ANN approach to study the relationship 

between TIG welding input parameters and output responses while welding aluminium plate, 

through comparing back-propagation and counter-propagation networks. Counter-propagation 

displayed better learning ability, whereas back-propagation showed better generalisation ability. 

A back-propagation model was proposed by Chan et al. (1999) to predict the bead-on-plate 

GMAW weld geometry of low-alloy steel. The model was successfully applied to define a new 

weld bead parameter l22.5 (i.e. length from origin to periphery at 22.5o from work-piece surface).  

Olabi et al. (2006) combined the ANN and Taguchi methods to optimise CO2 laser welding 

parameters. Input parameters considered included laser power (LP), welding speed (S) and focal 

position (F). Response variables included penetration-to-FZ (fusion-zone) width ratio (P/WFZ) 

and penetration-to-HAZ width ratio (P/WHAZ). Ranges of welding parameters were chosen 
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through experimentation while regulating weld quality. The L9 Taguchi orthogonal array was 

used together with triple-hidden-layered ANN with 21 neurones per hidden layer. Good 

agreement was noted between the Taguchi results and the ANN results.  

The controlled random search (CRS) algorithm is a global optimisation procedure that is similar 

to GA. The CRS algorithm uses the stochastic transition rule rather than the deterministic 

transition rule, as is the case with conventional algorithmic procedures. Kim et al. (2005) 

described the application of the CRS procedure to optimise welding parameters that affect bead 

geometry during the GTAW process, namely wire feed rate, welding voltage and welding speed. 

A minimisation objective function was formulated with front bead-height, back bead-width, and 

penetration as output variables. The authors concluded that welding conditions that produce 

desired outputs can be determined through systematic experiments for systems that are difficult 

to model with the CRS method, such as the welding process. 

The response surface method (RSM) is a method wherein the experimenter attempts to 

approximate the defining function of the relationship between input parameters and output 

characteristics, using an empirical model called the response surface model. The RSM system 

function (f) is effectively a polynomial function that approximates the relationship between 

natural variable and output response variables, in the following form: 

𝑦 = 𝑓(𝑥ଵ, 𝑥ଶ, … 𝑥௡)        (2.4) 

where f is a polynomial function developed through linear regression techniques. 

The RSM technique comprises four main steps, namely: i) conducting screening experiments; ii) 

attaining the near-optimal condition by moving the region of interest closer to optimum point; iii) 

development of the model within the region of interest around the optimum point; and iv) 

determining optimal settings for the process parameters, according to the orientation of objective 

function (Kim et al., 2005). The RSM was applied by Murugan and Parmar (1997) to study the 

direct and interactive effects of the SAW parameters on stainless-steel cladding geometry.  

Gunuraj and Murugan (1999) considered the effect of SAW heat input on the size of HAZ in two 

weld joint types (i.e. bead-on-plate and bead-on-joint), and reported that the area of HAZ was 

larger for bead-on-plate than for bead-on-joint for the same heat input. The mathematical models 

used in that study were generated using the RSM technique. Gunuraj and Murugan (2002) further 

conducted a study to predict HAZ characteristics of SAW-welded pipes. Their successful 

application of the RSM model showed that heat input enhanced the HAZ characteristics, whereas 

welding speed had an adverse effect thereon.  
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Using the RSM technique, Benyounis et al. (2004) investigated the effect of SAW input 

parameters – namely travel speed, arc voltage and welding current – on the impact strength at 

two testing temperatures (50 0C and 27 0C). The authors observed that welding current exerted 

the most significant effect, followed by travel speed. The arc voltage lacked any significant effect 

on the behaviour of impact strength under the conditions of the investigation. The optimal 

welding input parameters were successfully worked out using the RSM model. Murugan and 

Gunuraj (2005) investigated the relationship between GMAW input parameters (inter-pass time, 

number of passes and wire feed rate) and angular distortion. They developed an RSM model to 

quantify the direct and interactive effects of the identified process parameters. Angular distortion 

was significantly affected by the number of passes. Furthermore, all identified parameters 

negatively affected the angular distortion. 

Benyounis et al. (2005), in their study on AISI 304 stainless steel, demonstrated through the RSM 

model that the residual stress on CO2 laser butt welds was mainly affected by travel speed and 

laser power. Benyounis et al. utilised the RSM to determine the effect of laser welding parameters 

on weld geometry and heat input. The welding input parameters considered were laser power 

(LP), welding speed (S) and focal position (F). Step-wise regression, which automatically 

eliminates insignificant model terms, was used to fit polynomial equations to the experimental 

data. The heat input model showed that the most significant parameters were LP, S, 2FI of LP*S, 

and second-order effect of welding speed (S2). The researchers concluded that the size of HAZ 

was mainly influenced by S and focal position.  

Sudakaran et al. (2010) developed a mathematical model based on RSM to predict angular 

distortion. The coefficients of the polynomial function were calculated through regression 

analysis. Conformity tests were experimentally performed to validate the model. The authors 

successfully applied an RSM second-order quadratic model to predict angular distortion in 

GTAW of 202 stainless steel plates. The CCD method together with RSM was used successfully 

to determine direct and interactive effects of different combinations of process parameters within 

a specific range of the investigation. Welding current was found to have a strong effect on angular 

distortion. Welding speed varied inversely with angular distortion. 

The genetic algorithm (GA) modus operandi is that of sweeping the region of interest, and then 

selecting the near-optimal process settings. GA is a search and optimisation technique based on 

the principles of genetic evolution and natural selection. GA operates on a principle of searching 

for an optimal solution from a population of many individuals, utilising a predetermined objective 

function. The objective function determines the fitness of each candidate as a solution. Figure 2.7 

explains the basic make-up of the GA. 
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 A solution vector x  X is an individual or chromosome 
 Discrete units that make up the chromosome are called genes 
 Each gene controls one or more features of the chromosome 
 Because each chromosome corresponds to a solution within the solution space, there 

should be a mapping mechanism between the two, called encoding 
 The GA therefore operates on an encoding of the problem and not on the problem itself 
 Collection of chromosomes is called a population 
 The population is normally initialised randomly 
 Converging means that the solution space is dominated by one solution or one set of 

solutions 
 Crossover is the most important GA operator. It comprises the exchange of genetic 

information between two chromosomes 
 Mutation, which is normally applied at gene level, is the random variation of 

characteristics of the chromosomes 
 Mutation rate is the probability of changing gene properties, and is usually very small; 

it is a function of chromosome length 
 Mutation reinforces genetic diversity back into the population, thereby reducing 

chances of premature convergence (local optimum) 
 Selection is the process of identifying individuals that are fit to mate and transfer their 

genes to the next generation 

Figure 2-7: GA Basic Terminology 
Source: Konak, et al. (2006) 

To study the effect of TIG welding parameters on the weld strength of brass weld joints, Canyurt 

(2005) developed a procedure called the GA welding strength estimation model (GAWSEM), 

which searches and selects the best set of models by minimising error. The author concluded that 

root gap in brass welding reduces the weld strength. Increasing the torch angle from 60o to 90o 

doubles the weld joint strength. The GAWSEM results were found to be comparable with the 

experimental data.  

Patnaik et al. (2007) optimised process parameters for the SAW hard-facing process using the 

GA method. The authors identified the main process parameters as arc current, arc voltage, 

welding speed, electrode stick-out, and pre-heat temperature. The most important performance 

outputs were identified as deposition rate (kg/hr), dilution (%) and hardness. The relationship of 

welding parameter  performance output  welding quality was established, and it underpinned 

the analysis. The Taguchi method was used as the experimental design, and regression analysis 

was performed to determine the significance of the effect for each parameter, and then multi-

parameters, on all the performance outputs. The multiple objective GA procedure was then used 

to solve the optimisation problem. The author concluded that GA was adequately effective for an 

optimum search of SAW process parameters to maximise the deposition rate, minimise the 
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dilution and maximise surface hardness by solving a multi-objective, multi-variate and non-linear 

optimisation problem. 

Correia et al. (2003a) determined near-optimal input welding parameters of the GMAW process 

using GAs. A GA objective function was designed to minimise the economic aspects (i.e. 

redeposition efficiency) and the weld bead geometry (i.e. penetration, width and reinforcement). 

Input variables were welding voltage, wire feed rate and welding speed. The authors concluded 

that GA can be an effective tool in experimental welding optimisation. The optimisation by GA 

technique requires a good setting of its own parameters, such as population size and number of 

generations.  

Sudakaran et al. (2010) optimised GTAW process parameters in stainless steel 202 plates to 

minimise angular distortion. The input parameters were identified as welding gun angle, welding 

speed, plate length, welding current and gas flow rate. The working ranges of parameters were 

identified through a range of trial runs conducted while monitoring the integrity of the weld in 

terms of porosity, undercut, cracks and so on. The design matrix chosen for the experiments was 

a five-level, five-factor central composite design (CCD) with 32 experimental runs, which 

allowed the estimation of linear, quadratic and two-way interactive effects of the process 

parameters. The study established that bead width and HAZ size decreased with increasing 

welding speed (i.e. decreasing heat input). Angular distortion also decreased with increasing 

welding speed. The GA-optimised process parameters successfully reduced angular distortion to 

a minimal value. 

Dey et al. (2008) considered the bead geometry optimisation problem. The authors determined 

the optimal bead geometry of a single-pass weld of stainless steel plate produced through electron 

beam welding. They reasoned that the weld bead geometry affects the residual stress, distortions, 

and mechanical properties of the welded structure. The authors developed a constrained 

optimisation problem through combining RSM and GA methods to minimise weldment area and 

maximise weld penetration. To obtain data for regression analysis, several bead-on-plate 

experimental runs were performed according to the central composite design method. A 

significance test was performed to determine the magnitude of effect that each parameter exerted 

on output responses. The developed GA attained the near-optimal global solution. 

Sudhakaran et al. (2011) evaluated the effect of the GTAW input parameters of welding current, 

welding speed, shielding gas flow rate, and welding gun angle on bead geometry. Output 

parameters included depth of penetration, bead width and depth-to-width ratio. Experiments 

designed around CCD were used to develop mathematical models, and GA was used to optimise 

the process parameters. It was established that the increase in welding current caused a 

corresponding increase in weld penetration and bead width. This was because an increase in 
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current caused an increase in heat input, which in turn increased the molten volume of metal, 

thereby increasing penetration and width. Depth-to-width ratio also increased with increasing 

current. Increasing the welding current caused a decrease in HAZ size. Higher levels of shielding 

gas flow rate resulted in marginal decrease of penetration and significant decrease in bead width. 

Lower gun angles produced decreased penetration, whereas higher angles increased the bid width 

and decreased the depth-to-width ratio. A specific interaction was required between two or more 

parameters to affect responses. In other words, two-factor interactions (2FIs) influenced the 

responses more strongly than did SFEs. 

Costa and Oliveira (n.d.) presented a new approach to solve MOPs using evolutionary strategies 

(ESs). These strategies are search procedures that are based on natural selection processes like 

GAs. However, they work directly with decision variables, unlike the coded variables of GA; and 

they are deterministic in nature, unlike the stochastic nature of GAs. ESs are normally used to 

solve single-objective problems, but Costa and Oliveira modified them to suit an MOP 

application. The modified ES was referred to as a multi-objective elitist evolution strategy 

(MEES). The elitist scheme is based on the secondary population, which is independent of the 

main population. The MEES was tested in several MOPs together with other multi-objective 

evolutionary techniques. 

Hybrid Strategies. Global optimisation algorithms naturally must balance two competing 

objectives, namely exploiting the best solution found so far, while also exploring the search space 

for further potential solutions. Successful optimisation algorithms must manage this 

exploitation/exploration task well. Employing a local search strategy in combination with a global 

search algorithm can improve the exploitation capabilities of the optimisation procedure without 

degrading the exploration abilities. One of the main challenges of GA is that although it can 

quickly locate the global optimum region, it might be slow to converge to the exact optimal 

solution within such a region (Coello Coello et al. 2007). Hybridisation of GAs with local search 

strategies is one way of solving this problem. The resultant hybrid GA can reduce premature 

convergence by maintaining the diversity while increasing the convergence speed. Hybridisation 

is based on a realisation that the two search methods can be complementary if combined. The 

intention is to capture the best of both schemes. Local search methods are considered to be 

learning processes in that they use the knowledge of the local environment to increase the 

individual solution’s chances to transmit its traits to the next generation within the GA process. 

This is similar to the natural evolution process, in which learning increases the individual’s 

chances of survival. GA local search hybrids use the GA’s global search capability to explore a 

space with the intention of isolating the region of interest, after which the local search algorithm 

rapidly focuses on the optimal solution. 
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El-Mihoub et al. (2006) discussed various ways of combining the GA search framework with a 

different search method. In a GA application, search techniques may be incorporated into the GA 

framework to enhance the search capability, improve the solution quality, improve the efficiency 

(i.e. convergence speed, and/or population size), and to ensure that feasible solutions are 

generated. A different technique can be used in place of one of the GA operators to enhance 

performance (e.g. substituting crossover operator with a guided local search criterion). Figure 2.8 

illustrates how hybridisation methods can be implemented, and for which targeted outputs.  

 
Figure 2-8: Implementation of Hybridisation Methods 

Correia et al. (2003b) compared the RSM and GA techniques for determining optimal GMAW 

process parameters – that is, voltage, wire feed rate and welding speed. The specified output 

responses were deposition efficiency, penetration, bead width and reinforcement. The authors 

established that all experiments performed by RSM and GA yielded good-quality welds in terms 

of bead defects, including melt-through, porosity and cracks. They further observed that the 

challenge with RSM is it can provide good results only for regular experimental regions that have 

no irregular points. Moreover, although GA and RSM both show good optimisation results, the 

advantage of GA over RSM is the latter does not need to generate models. 

Dutta and Prathar (2007) determined the relationship between TIG input parameters and the weld 

bead geometric variables, and calculated the optimal values for these parameters and variables. 

The cause/effect relationship premise was presumed to be welding-input-conditions  

geometric-parameters  bead-mechanical-properties. Input parameters included welding speed, 
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wire feed rate, cleaning percentage, gap and welding current. The output geometric parameters 

comprised front height, front width, back height and back width. A full factorial design of 

experiments was used, in which two levels of five variables produced 25 = 32 combinations. Data 

used in the analysis were obtained from literature. Three modelling approaches were used, namely 

conventional regression analysis (RA), back-propagation neural network (BPNN) and genetic 

neural system (GA-NN). Both BPNN and GA-NN performed better than RA, and GA-NN 

performed better than BPNN. BPNN used the steepest descent algorithm, which tends quickly to 

converge to a local minimum, whereas GA uses exhaustive search capabilities that yield an 

optimal global solution. 

In a study that evaluated welding-induced residual stress for pipe weld joints in dissimilar metals 

for nuclear power plant (NPP) applications, Lim et al. (2010) analysed the impact of uncertainty 

in a residual stress prediction model. The researchers utilised data-based models formulated 

through support vector regression (SVR), fuzzy neural network (FNN) and a combination of the 

two artificial intelligence methods. They applied statistical and analytical uncertainty analysis to 

work out the 95% significance prediction interval. Models predicted the welding-induced residual 

stress within RMS error levels of 7% for FNN, 4% for SVR and 4% for combined models. A 

confidence level of 95% was obtained through statistical and analytical-uncertainty analyses. The 

combined SVR/FNN model showed the best performance.  

In their study on optimisation of bead geometry parameters in a mild steel SAW weld joint, Datta 

and Mahapatra (2010) integrated an RSM-based desirability function with a PSO algorithm for 

multi-response optimisation. The input parameters were welding voltage, wire feed rate, travel 

speed and electrode stick-out. The method of least squares was used to estimate the regression 

coefficients. Full factorial DoE was used on a three-level, four-variable combination (i.e. 34 = 81). 

Parametric interactive effects were assumed to be negligible. Three output responses were 

chosen, namely bead width, reinforcement and depth. Significance tests were performed using 

ANOVA. The developed models were successfully used for SAW parametric optimisation. 

Nagesh and Datta (2010) studied the effects of welding parameters on bead geometry. The 

parameters included welding speed (S), wire speed (WS), cleaning percentage (CP), welding 

current (C) and arc gap (G) for the TIG welding process. The authors used published conventional 

data based on a two-level, five-factor fractional factorial DoE matrix (i.e. 2n-1, n = number of 

variables) to develop regression equations to estimate the bead geometry parameters. The 

response variables were front height (FH), front width (FW), back height (BH) and back width 

(BW). Linear regression equations were developed considering main-factor effects and two-

factor interaction effects (2FI) for bead geometry parameters. Back-propagation neural networks 

were postulated using experimental data to train the ANN model. The ANN model was used to 



62 | P a g e  
 

predict weld geometry parameters from a given set of TIG welding conditions. The GA objective 

function was defined from regression models and the mathematical equation was developed from 

experimental data. 

Rao and Pawar (2010) discussed the application of optimisation algorithms in a manufacturing 

process, namely milling. Like most manufacturing processes, the quality of milled products is a 

function of parameter selection. Proper optimisation of process parameters reduces machining 

costs, increases productivity and improves product quality. A recent evolutionary optimisation 

technique is the artificial bee colony (ABC). The ABC algorithmic procedure, together with PSO 

and SA, were used to consider the minimisation of total production time as the objective function. 

Controlling parameters included feed per tooth, cutting speed and depth cut. ABC is a 

metaheuristic algorithm that imitates the intelligent behaviour of honeybee swarms. The concept 

behind the ABC algorithm is the “hunting bee” (known as a forager) finding and exploiting the 

food source. Foragers then share crucial information among themselves, related to the location 

and quality of the food source. Rao and Pawar found that ABC and PSO algorithms required 

fewer iterations before converging to optimal solutions, whereas the SA procedure required 

relatively more iterations to converge. The quality of solutions from the ABC and PSO procedures 

was better than that of SA.  

Dhas and Kumanan (2011) determined the optimal weld bead width of a mild steel SAW weld, 

using Taguchi design methods together with GA and PSO metaheuristics. The independent 

variables of welding current (C), arc voltage (V), welding speed (S) and electrode stick-out were 

used to describe the response variable of weld bead width. Experiments were designed using a 

Taguchi L8 orthogonal array layout. Statistical analysis of the experimental data was performed 

through multiple regression. The GA was developed using the regression equations as an 

objective function to minimise the weld bead width. Comparison of the computed and 

experimental results showed a good correlation between the two sets, demonstrating the 

effectiveness of GA.  

Sathiya et al. (2012) studied predictions of the depth of penetration (DP), bead width (BW) and 

tensile strength (TS) of a laser welding process using a combination of ANN and GA techniques. 

The input parameters, and their significance in influencing output responses, were determined 

using the full factorial DoE. The relationship between input and output parameters was modelled 

using the back-propagation ANN technique. Back-propagation neural network is a “feed-forward, 

multi-layered network with a number of hidden layers, trained with a gradient descent technique” 

(Sathiya et al., 2012). The developed objective function models were then optimised through a 

GA. Good agreement was noted between the computed and experimental results for output 

responses, hence confirming the suitability of the developed models for welding application. Kim 
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et al. (2002) used a combination of GA and RSM techniques to determine optimal welding 

parameters for the GMAW process on mild steel plate. When comparing the same two 

optimisation methods, Correia et al. (2005) established that they were both effective optimisation 

tools for the GMAW process. 

2.5 Concluding remarks 

The above review provided a comprehensive evaluation of research performed to date within the 

field of interest. The following conclusions are drawn from the literature review: 

a. The advantages of IR thermography in providing continuous temperature measurements 

and monitoring over a large area of interest was noted from the literature review. The 

suitability of the methodology and its maturity in arc welding applications was discussed. 

The identified challenges in applying IR thermography to monitor the SAW process are 

not insurmountable and should be overcome as more research is done in this area. 

 

b. Neutron diffraction has been widely used in residual stress measurement experiments. 

The technique’s through-thickness measurement capabilities and its non-destructive 

nature makes it attractive for stress measurement applications in which many 

measurement points are considered in a short time. The accuracy levels of ND add to its 

attractiveness. The technique is however still not widely accessible to many researchers 

given its high cost and its confinement to specialised atomic research laboratory facilities. 

 
c. Fatigue strength assessment in welded structures is a complex phenomenon. In no small 

part this is because of factors such as multi-axiality of loading, uniqueness of weld 

geometry, different material thicknesses and residual stress distribution. In such welded 

components, various experimental studies have shown that local stresses are more 

influential on fatigue properties than global stresses. The interaction between applied 

stresses and residual stresses results in unique combination stresses, which makes 

inferences and generalisation from fatigue test results a challenging task. The inclusion 

of WRS fields into the fatigue properties assessment process in welded structures 

therefore significantly alters FCG data.  

 
d. Finite element modelling is a useful tool to evaluate behavioural characteristics of the arc 

welding process. Increases in computational power and the refinement of commercially 

available FEA codes have made it possible to perform simulation modelling of complex 

systems and processes in the comfort of a computer laboratory – or even the researcher’s 

office. These features save on costs and resources associated with physical experiments. 
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e. The DoE approach has been shown to be a useful and effective strategy to optimise the 

welding process parameters, through stretching the scope of conducted experiments and 

thereby maximising the analytical output of limited input resources. The ability of EAs 

to solve MOPs by producing a set of non-dominated solutions within the global solution 

space makes EAs attractive for complex problems, such as the welding parameter 

optimisation problem.  

 
However, it is clear from the presented review that most of the welding experimental studies 

performed on steel materials have examined bead-on-plate and bead-on-groove longitudinal weld 

joints. Few studies have examined full penetration circumferential welds, whether pipe-pipe or 

pipe-plate joints. Furthermore, while the mentioned strategies and techniques have been used 

widely in addressing one or more welding process challenges, to the author’s knowledge no 

compressive study has been conducted to date that has utilised all the methodologies together, to 

address challenges associated with nozzle-shell weld joints in pressure vessel structures. The 

present study is expected to fill this gap. The next chapter explains in detail how the research was 

conducted.  
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RESEARCH FRAMEWORK AND 

QUESTIONS 

 

 

3.1 Introduction 

The first chapter of the thesis introduced the broad field of interest and the specific subject of this 

study. Context was provided regarding the research problem. The second chapter provided a 

comprehensive review of the literature on research performed to date within the field of interest. 

The second chapter also presented a discussion of various applicable methods, techniques and 

strategies, and how they have been applied in addressing similar research problems within the 

field of interest. That discussion gave insight into, firstly, the substance of work that has already 

been done in the field and, secondly, the nature and extent of the research gaps that need to be 

addressed. The current chapter builds on that foundation to discuss the utility of the present study 

in addressing the identified gaps in literature. The motivation for the study is discussed below, 

including the creation of linkages between the present work and the research gaps identified in 

section 2.5 above. 

3.2 Motivation for the study 

3.2.1 Weld joint type and geometry 

The literature review demonstrated that there are countless studies in arc welding based on bead-

on-plate, bead-on-joint or bead-on-groove weld configurations. This is mainly because welding 

experiments involving this type of configuration are relatively easy to conduct, and therefore 

become attractive to researchers who face funding and time constraints. However, in real-life 

applications, weld joint configurations are usually more complicated than the bead-on-plate 

scenario. This study considers the pipe-to-plate joint configuration, which is a typical 

configuration for the nozzle-shell joint of large pressure vessels.  

This type of joint is relatively difficult to prepare and can pose challenges when post-weld 

experiments (e.g. residual stress measurements) are conducted on welded specimens. If 

comprehensively and correctly performed, however, studies involving this joint type can add 
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value to the research body of knowledge. A second aspect of importance about the pipe-to-plate 

joint is that it is a circumferential weld between two pieces having different material properties 

and geometries. The pipe and plate are usually made of different materials. This diversity can be 

contrasted with the homogeneous material usually used in the bead-on-plate joint. A third point 

to note is that the pipe-to-plate joint that was analysed in this study was a multi-pass weld bead 

conducted under natural cooling conditions. The residual stress fields and fatigue properties of 

such a weld joint present a scenario that has not been researched widely to date. 

3.2.2 Experimental procedures 

The arc welding process used in this study was submerged arc welding (SAW), and the 

temperature monitoring was performed using IR thermography. The challenges associated with 

continuous non-contact temperature measurement in a multi-pass SAW process were discussed 

in Chapter 2 and are applicable to this study. The present work therefore provides an opportunity 

to address such challenges during experimentation. The advantages of IR thermography as a 

continuous measurement technique, and those of neutron diffraction in performing through-

thickness residual stress measurements, were discussed in Chapter 2. This study employed the 

two techniques together during experimentation in pursuit of optimal results. Conducting neutron 

diffraction in a geometry like the one investigated in this study poses a challenge, which is partly 

why it has not been widely researched. In this study, ND measurements were obtained at several 

points and from various positions of the specimen, for all the specimens under investigation. 

3.3 Research Questions 

This study aims to answer the following questions: 

a. What does the residual stress distribution look like in a multi-pass full-penetration 

weld of a nozzle onto a pressure vessel?  

The magnitude and direction of the residual stresses at various positions of the weld-piece were 

determined and plotted against the proximity to the weld zone. This step enabled the researcher 

to determine the distribution of the WRS field along various positions within the weld specimen.  

b. What types of distortions or deformations arise from the welding of nozzles onto 

cylindrical pressure vessels?  

The magnitude and characterisation of welding-induced distortions, and their influence on the 

life expectancy of the welded pressure vessel structure, were examined using numerical methods.  
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c. What are the main factors affecting welding-induced residual stresses in pressure 

vessel nozzle welding? How can these be optimised to mitigate their impact?  

The study investigated which factors contributed substantially to the formation and behaviour of 

welding-induced residual stresses and distortions. After principal factors were identified, an 

optimisation process of each was performed to establish the optimal parametric composition of 

the welding process that will produce optimal nozzle–shell welded joints. 

d. What type of changes in mechanical properties of the weld region, HAZ and the 

parent metal does the SAW process induce? How can these properties be optimised 

to develop a welded structure with optimal fatigue performance? 

The mechanical properties (hardness and ultimate strength) of the welded specimens for all key 

weld regions were worked out through experimental methods. This step calculated the change in 

mechanical properties introduced by the welding process, and the effect thereof. Analysis of the 

mentioned properties for each weld specimen allowed a mapping of the relationship between 

mechanical properties and the parametric combination of the SAW process. 

e. How is the weld bead geometry affected by the input welding parameters? Which 

parametric combination produces the optimal weld bead geometry for the specific 

case under investigation? 

 

Analysis of weld bead geometry was performed for each weld specimen. The correlation between 

bead geometry and welding parameters was done using statistical methods. Relationships 

between welding parameters and resultant bead geometries were mapped and optimised through 

mathematical programming. 

f. How does the distribution of WRS fields in the case under investigation affect the 

fatigue properties of the welded specimens? 

 

The distribution of WRS fields and the fatigue strength of each welded specimen were determined 

through experimentation. The relationship between WRS distribution and FAT was mapped using 

the results from the experiments, to derive plausible deductions and conclusions about the 

research questions. 
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3.4 Methodology 

3.4.1 Applicable analytical methods 

Numerical analyses have proven useful in saving costs and time associated with “trial and error” 

experimentation over the years. This study employs the 3D elastic-plastic thermo-mechanical FE 

model with phase transformation effects to analyse the transient heat transfer process of SAW. 

The significant role played by volumetric expansion in influencing the WRS fields through phase 

transformation during the arc welding thermal cycle was discussed in Chapter 2. This study 

incorporates phase transformation effects during modelling of a multi-pass circumferential weld 

bead, which is expected to improve the agreement between experimental and numerical results 

of WRS distribution in the welded structure. DoE strategies are helpful in situations where a 

limited number of experiments can be conducted, mainly due to cost and time constraints, such 

as in this study. Multi-objective evolutionary algorithms (such as the one used in this study) are 

capable of solving multiple objective problems by simultaneously providing a set of non-

dominated feasible solutions in a single run of an algorithm. The literature review showed that 

most studies in the field have applied aggregating methods in parametric optimisation of the arc 

welding process. The challenge of that approach, however, is it leads to only one “optimal” 

solution. The solution is based on pre-determined prioritisation of the effects of individual 

variables on the ultimate outcome. A solution obtained in this way cannot be optimal for all 

conditions of affected variables.  

This study combines DoE strategies with a multi-objective optimisation algorithm to produce a 

set of solutions that hold true for all conditions of affected variables. The generated solutions are 

derived through the analysis of data from a limited number of experiments. This approach, as 

well as the results obtained through this study, are expected to add value to the relevant body of 

knowledge.  

3.4.2 Relationships of interest to the study 

It is clear from the review in the preceding chapter that several studies have successfully defined 

the cause-and-effect relationship between WRS and fatigue strength of a welded structure. 

However, WRS itself is influenced by several factors. Anca et al. (2010) observed that several 

factors influence the magnitude of the residual stresses and their distributions; these factors 

include the type of welding, number of passes, material properties and degree of constraint or 

restraint. Leggatt (2008) stated that residual stress is affected by many factors, including the 

geometry of the parts to be joined; the use of fabrication aids such as tasks, cleats and jigs; the 

pass sequence for multi-pass welds and the welding sequence for structures with more than one 
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weld. Furthermore, material properties – such as the coefficient of thermal expansion, yield 

strength, and metallurgical phase change – may also influence residual stresses.  

This study takes the approach that the first step towards improving the fatigue properties of a 

welded structure in relation to WRS is to understand the welding factors that influence the 

generation of WRS. Secondly, such factors must be improved or optimised, thereby ensuring 

improved or optimal WRS conditions within the welded structure. The mean stress effect from 

the WRS fields will then be reduced, resulting in favourable fatigue properties of the welded 

structure. Figure 3.1 illustrates the cause-and-effect relationships that underpin the reasoning in 

this approach. 

 
Figure 3-1: The Cause-and-Effect Relationship Between WRS and FAT 

3.4.3 Hybrid model used in this study 

A hybrid methodology that includes computational methods, empirical calculations, non-linear 

mathematical modelling and experimental measurements is used in this study. The 

methodological approach, and the discussion thereof in this chapter, can be divided into three 

parts. These parts are shown in Figure 3.2, which illustrates the framework, and are summarised 

below. 

Part 1: Materials and experiments 

i. The specification for all materials used in the study is discussed first. The 

preparation of the specimens and the welding conditions and procedures are also 

presented in this section.  

Welding-Induced Residual Stress 

Welding 
restraint

Welding 
parameter

s 

Welding 
sequence PWHT 

Weld-
piece 

geometry 

Pre-heat Interpass 
temperature 

Mechanical 
properties 

Fatigue 
Properties 



70 | P a g e  
 

ii. The procedures followed in conducting the experiments, including temperature 

measurements, WRS measurements, fatigue analysis, microstructure analysis 

and hardness testing, are presented in this section. 

iii. Experimental validation of the numerical model is explained and discussed. 

 

Part 2: Numerical analysis 

iv. A finite element analysis (FEA) model is developed using the MSC software 

code.  

v. A non-linear transient thermo-mechanical analysis, incorporating metallurgical 

effects, is performed in 3D formulation to establish residual stress and distortion 

distributions for various parametric compositions. 

vi. Model is validated against the experiments performed in Part 1. 

 

Part 3: Optimisation of parameters 

vii. A multi-objective genetic algorithmic (MOGA) procedure is developed to solve 

the optimisation problem. The equations obtained from regression analysis are 

used as a multi-objective function for the MOGA. 

viii. An optimal set of output responses and the required input characteristics are 

produced. 

 

 
Figure 3-2: Research Methodology 
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3.5 Concluding remarks 

The discussion in this section demonstrates the link between the research objectives of this study 

and the research gaps identified in the literature review. It is clear that the research content and 

the approach of this study can contribute to the body of knowledge within the research field of 

interest. The weld joint configuration, material types, and the collective techniques used in the 

analyses jointly present a unique research focus that has not featured in past studies. This study 

develops processes and procedures to control for the factors in the cause-and-effect relationship 

illustrated in Figure 3.1. By demonstrating the effectiveness of this model through applied 

examples, the study proves its utility. 
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MATERIALS AND EXPERIMENTAL 

PROCEDURES 

 

 

4.1 Introduction 

As mentioned in Chapter 3, the methodology adopted in this study involved a hybrid of 

experimental procedures, numerical analysis and optimisation methods. This chapter discusses 

the materials and experimental procedures that were used to generate data to develop and validate 

the numerical and mathematical models. The experimental work included the research that was 

performed at laboratories and testing facilities in various locations. The experiments were 

conducted according to the guidelines outlined in the respective protocols (Appendices A and B). 

4.2 Weld specimen preparation 

The weld specimen was prepared as shown in Figure 4.1. A steel pipe of 80-mm bore (i.e. 3″) 

was welded onto a 10-mm thick steel plate by a full penetration multi-pass weld joint. The plate 

represented the cylindrical part of the pressure vessel shell and the pipe represented the nozzle. 

The material for the steel plate was high-strength carbon steel, used in pressure vessel 

applications, with a specification of ASTM 516 Gr. 70. The pipe material specification was 

ASTM A106 Gr B, seamless schedule 40. The low-hydrogen electrode EM12K was used as the 

filler metal throughout the experiments. The welding conditions are shown in Table 4.1. 

Figure 4.1 shows the process of preparing welding specimens.  

Table 4-1: Welding Conditions 
Welding Conditions 

Room temperature: 29oC 
No preheat 
Cooling at room temperature 
Welding procedure: Semi-automatic SAW @ 85% efficiency 
High strength pressure vessel plate 178 x 178 x 10 mm 
80-mm (3″) seamless carbon steel pipe bevelled @ 45o  
Root gap of 2 mm 
OK Autrod 12.22 (EM12K) low hydrogen electrode, 2.5 mm 
OK Flux 10.72 
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Figure 4-1: Weld Specimen Preparation 
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The joint geometry was that of a pipe-to-plate configuration with a single-bevel T-joint. The 

chosen geometry was in line with the ASME PVDC 2010 (discussed in Chapter 2, section 2.2.1). 

The welding was performed using the SAW semi-automatic machine. A three-pass weld was 

achieved using the ESAB welder and the turn-table assembly. Temperatures were recorded using 

an IR thermal imaging device. There was no pre-heating of the weld specimen prior to welding 

and there was no post-heat treatment after welding. The welded samples were cooled at room 

temperature after welding. 

The chemical composition of the parent metals of both the plate and the pipe is shown in Table 

4.2. The filler material’s chemical composition is also illustrated. 

Table 4-2: Material Chemical Composition 

 C Si Mn P S Ni Cr Mo Cu V Nb Ti Al 

Plate 
Min/Max 

0.197 0.307 1.03 0.011 0.0001 0.017 0.137 - 0.151 0.0012 -  0.027 

0.201 0.327 1.04 0.013 0.002 0.021 0.15 0.001 0.184 0.0014 0.001  0.037 

Pipe 
Min/Max 

0.198 0.24 0.79 0.009 0.004 0.05 0.09 0.011 0.08 0.001    

0.30 0.26 1.06 0.035 0.035 0.40 0.40 0.15 0.40 0.08 0.01 - 0.041 

Filler 
Metal 

- - - - - - - - - - - - - 

0.10 0.45 1.3 0.018 0.018 - 0.06 0.03 0.25 0.02 - - - 

 

The mechanical properties of the applicable materials are summarised in Table 4.3. It can be seen 

from the table that the strength of the filler material properties was equal to or better than that of 

the parent material. The parent material is supplied in a normalised state with pearlite/ferrite 

microstructure. The chosen materials are generally used in industry for pressure vessel 

applications. 

Table 4-3: Mechanical Properties of the Materials 

 UTS (MPa) YS (MPa) %EL Poisson 
ratio 

Young 
modulus 

(GPa) 

Plate 535 344 19 0.3 210 

Pipe 510 260 31 0.3 210 

Filler 
Metal 

520 420 27 0.3 210 

 

4.3 Welding experiment setup 

The experimental setup that generated the joint configuration discussed in section 4.2 above 

consisted of the ESAB SAW machine and the short-wave infrared (SWIR) camera, as shown in 

Figure 4.2. The SAW machine has two major components, the wire feeder and the turntable. 
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The turntable is a requirement for conducting circumferential welds, in which the turntable 

speed and the welding speed are synchronised. The consumable welding electrode was fed into 

the weld-pool through the wire feeder during the welding process. The wire feed rate (FR) was 

controlled by the ESAB controller, as shown in Figure 4.2 to Figure 4.4. 

 

Figure 4-2: SAW Machine and SWIR Camera Layout 

The controller used was commissioned with the SAW machine and operated in one of two modes; 

the user can either select a constant amperage (CA) mode or a constant wire (CW) feed rate mode. 

In CA mode, the operator selects the required current and the FR is automatically chosen by the 

controller, such that the operator has no direct control over the latter. In CW mode, a similar setup 

occurs but the operator selects the FR, and the current is automatically set by the controller. Figure 

4.3 illustrates the setup for experiments as prepared in the mechanical workshop. Figure 4.4 

shows a magnification of the turntable in Figure 4.3, indicating the location of the torch and flux 

delivery pipe relative to the weld specimen. 
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Figure 4-3: SAW Machine Setup in the Workshop 
 

 

Figure 4-4: The Turntable with Weld Specimen 

The SAW parameters chosen for the present study have been shown to demonstrate consistent 

and significant effects on the weld geometry, heat affected zone (HAZ) size, mechanical 

properties and residual stress, as discussed in the literature review. Chosen parameters included 

welding current (I), arc voltage (V), travel speed (S) and wire-feed rate (FR). Each parameter had 

an upper (+) and lower (-) limit, selected according to safe operational ranges (Table 4.4). The 

range of values was selected using guidelines from the SAW machine operator’s manual and 

practical welding experience. The DoE strategy adopted is the fractional factorial design 

When choosing the operational range for SAW parameters, care should be taken to include only 

parametric combinations that will not result in burn-through or lack of penetration. Table 4.4 

shows the parametric settings used in each experimental iteration. Each specimen was welded 

using the same settings for all the three weld passes. All measurements were obtained only at the 

end of the third pass. The sample numbers were not always sequential because some samples 

were spoiled during the experiments and were discarded. For this reason, the unique sample 

numbers do not necessarily coincide with the experiment numbers.   
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Table 4-4: Welding Parameters for Each Specimen 

Experiment # Unique Sample # I (Amp) V (Volts S (mm/s) FR (mm/s) Mode 

1 4 380 (+) 30 (+) 10 (+) 18.3 (+) CA 

2 6 380 (+) 25 (-) 8 (-) 18.3 (+) CA 

3 7 360 (-) 25 (-) 8 (-) 18.3 (+) CA 

4 8 360 (-) 25 (-) 10 (+) 18.3 (+) CA 

5 9 380 (+) 25 (-) 10 (+) 18.3 (+) CA 

6 12 360 (-) 30 (+) 8 (-) 16.7 (-) CW 

7 13 360 (-) 30 (+) 8 (-) 18.3 (+) CW 

8 15 360 (-) 25 (-) 8 (-) 18.3 (+) CW 

9 16 360 (-) 25 (-) 8 (-) 16.7 (-) CW 

4.4 Temperature measurements 

The experimental design was focused on capturing the temperature history and distribution across 

the overall structure of the weld sample. The advantage of the IR thermal imaging process over 

pointed sensor-based methods such as thermo-couples is that the former can record the entire area 

of interest at a single instance, given its broad coverage. This effectively means that data are 

recorded for a very large number of points of interest. During data analysis, such data can be 

retrieved from the image file for each point chosen. By contrast, pointed sensors record the data 

for only one point at a time, and data analysis is limited to such points. 

As already discussed, the granular flux in SAW can present a challenge during IR thermography 

temperature measurements, given its tendency to insulate the surface. In this study, the metal inert 

gas (MIG) welding process was used, with the same heat input and welding parameters for the 

reference test specimen. This allowed the researcher to establish the temperature of the weld pool 

without the effect of insulation. It should be noted, however, that if the measurements are 

removed from the weld-pool and are obtained from an area with no granular flux insulation, this 

step is unnecessary. The latter approach was adopted for the purposes of validating the numerical 

model, as discussed in Chapter 5. 

Temperature measurements were obtained using the Flir ultra-high resolution thermal camera 

(FLIR X6550SC) with a frame rate of 125 Hz (at 640 x 512 IR resolution pixels) and +/-1˚C 

accuracy. During measurement, the Flir short wave infrared (FSIR) radiometer was placed at a 

focus range of 3 m, as shown in Figure 4.2. Power to the FSIR was supplied by the standard 

220 V 50 Hz single-phase municipal supply, and the FSIR was connected to the controller – a 

personal computer (PC) – using the original equipment manufacturer (OEM) supplied camera 

link cable. The FSIR was left for 5 min to acclimatise to ambient conditions before operation.  
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The Flir ResearchIR version 3.3 software was accessed on the controller, and the configuration 

setup which matched the temperature of the scene was selected. This included the sensitivity 

parameters (i.e. integration time and the neutral density filter). Before measurement began, a non-

uniformity correction was performed to compensate for the variations in camera operating 

conditions and to improve the image quality. Measurements were then obtained rapidly within a 

closed environment to minimize the effect of path radiance and atmospheric effects, which were 

considered to be negligible. In addition, the SAW welding process was insulated by a layer of 

granular fusible flux to protect it from atmospheric attenuation. 

Table 4-5: Location of Temperature Recording Points 

Temperature Location 

P1 0 deg.  on pipe side 

P2 60 deg.  on pipe side 

P3 180 deg.  on plate side 

P4 240 deg.  on plate side 

 

Table 4.5 shows the locations of the respective recording points for the temperatures of interest 

on the sample. The data were later used to plot the temperature profiles for the welded samples. 

The recording points shown in Table 4.5 are illustrated graphically in Figure 4.5. The points P1 

and P2 were measured from the inside of the pipe (weld root), whereas P3 and P4 were measured 

from the outside at weld-toe of the plate side. 

 
Figure 4-5: Temperature Measurement Points 

4.5 Residual stress measurements 

The residual stress measurements were obtained using the neutron diffraction (ND) technique, 

which is a non-destructive measurement approach. Whereas other stress measurement methods – 

such as hole-drilling and X-ray diffraction – are limited to measuring near-surface stresses only, 
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the penetrative capabilities of the ND technique make it possible to measure through-thickness 

residual stresses in metals. Neutrons can penetrate up to 50 mm of wall thickness in steels (Yuen 

et al., 2008). The ND method is usually preferred because of its high spatial resolution, its 

flexibility regarding sample geometry, its non-destructive nature and its tri-axial through-

thickness measurement ability. Thermal neutrons have high penetrability characteristics and can 

be used to measure stress distribution in the through-thickness of steel materials, such as plates 

and pipes.  

The ND technique requires a stress-free reference point to be determined before readings are 

obtained from the component under stress. A section was therefore cut out of each weld specimen 

using a waterjet cutter, as shown in Figure 4.6. The cut-out piece was then used as “stress-free” 

reference point, as the residual stress was released during the cutting-out process. The point on 

the inside of the weld specimen, indicated as the “heel” of the cut-out reference piece, was 

designated as point (0,0,0) in terms of (x,y,z,) coordinates. The spacing between measurement 

points was chosen as 3 mm. The flange was measured from 1.6 mm to 43.6 mm (15 points), and 

the pipe was measured from 10.6 mm to 73.6 mm (22 points). At each measurement point, strain 

was measured in three orthogonal directions:  hoop or εh (y-axis), axial or εa (z-axis) and radial 

or εr (x-axis). To do so, the weld-piece was mounted in three orientations.  

The flange line of measurement is shown in yellow in Figure 4.6, whereas the pipe-side 

measurements are shown as a green line. For the purposes of measurement, the weld centreline 

(WCL) was considered to be in the proximity of the coordinates (6,0,11). The measurement time 

varied due to path length changes, with the aim of providing strain errors of not more than 50 µε. 

 

 

 

 

 

 

 
 
 

Figure 4-6: Stress Measurement Points 
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The materials probe for internal strain investigations (MPISI) was set up using a 2 mm radial 

collimator on the detector side, and the primary slit was adjusted to have a 2 mm x 2 mm window. 

A nominal gauge volume of 8 mm3 was therefore defined. It was decided not to use neutron entry 

curves to determine the surface position of the material but rather to use only pre-calibrated 

theodolites aligned at the instrument’s centre of rotation, due to the roughness of the welds, 

distorted flanges and the large gauge volume. Positioning using the theodolites can be assumed 

accurate to within 0.1 mm, which is less than the 10% margin normally applied for the setup 

accuracy. The measurement positions were chosen as far away as possible from the reference cut-

out and start/stop position of the weld. To reduce sample setup complexity, the measurement 

positions were chosen to be tangential to a flat edge of the flange. To ensure that the gauge volume 

was always fully submerged in the sample material, the centre of the gauge volume was always 

at least 1.6 mm away from the sample surface. All measurements were taken along the mid 

thicknesses of the sections. The three components of stress were measured, namely hoop, axial 

and radial. The mounting setup for each measurement is shown in Figure 4.7. 

 
Figure 4-7: Welding Specimen Mounting for 3D Stress Measurements 
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4.6 Bead geometry measurements 

Bead geometry is a response variable that has been monitored in many studies discussed in the 

literature. It is selected because the dimensions of the weld give an indication of the quality of 

the weld and hence its mechanical properties. The dimensions measured for the weld bead include 

bead width (BW), bead height (BH), bead penetration (BP) and width of the HAZ. Bead geometry 

was measured using stereo-microscopy to enlarge the weld bead, and the mapping of the 

dimensions was performed using appropriate software, as shown in Figure 4.8. 

 
Figure 4-8: Sample Stereo Macrograph 

All the measurements were done at the CSIR facility in Pretoria, South Africa. The instrument 

used comprised the scanning electron microscope (SEM) (Joel, Inc). The model was JSM 

6010LA/Plus with a pulse processor and Optiflex accessories. The installation setup was shown 

in Figure 4.9. 
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Figure 4-9: SEM Instrumentation Setup 

4.7 Microstructural analysis and hardness testing 

The microstructural characterisation of the parent material (as-received), the weld metal and the 

HAZ are performed using the instrumentation mentioned in section 4.6 above. Received samples 

were subjected to grinding using an 80grit sand paper to remove the dirt and rust. The test 

specimen were etched in 2% Nital to reveal the size of the heat affected zone before sectioning 

the L-shaped test specimen to fit into the mounting machine. The sample was then hot mounted 

into a conductive resin, and subjected to further grinding, polishing and etching in 2% Nital for 

5 seconds as specified in Appendix C. 

Hardness tests were done to evaluate the mechanical properties of each test specimen. The 

Zwick/Roell micro Vickers indenter was used to measure hardness of parent metal, weld metal 

and HAZ. Five indents were made is each area and the average hardness is presented in chapter 

seven below. A load of 100gf was applied for 15 seconds in each indent. The indentations and 

measurements were automated and measured diagonally through the specimens. The 

instrumentation used to measure hardness is shown in Figure 4.9. The subsequent YS and UTS 

were calculated using mathematical models derived by Pavlina and van Tyne (2008) shown as 

Equations 4.1 and 4.2. These equations are easily applicable to hardness values obtained from a 

wide range of steels and do not require prior knowledge of the strain hardening coefficient or the 

Meyers index (Pavlina and van Tyne, 2008). 

𝑌𝑆 =  −90.7 + 2.876𝐻𝑣       (4.1) 
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𝑇𝑆 =  −99.8 + 3.73𝐻𝑣          (4.2) 

 
Figure 4-10: The Zwick/Roell Vickers Indenter 

4.8 Fatigue testing procedures 

Fatigue testing involves determining the fatigue life of welded specimens, expressed in the form 

of cycles to failure under fixed load conditions. The scope of fatigue analysis in this section 

included the following: 

a. A post-test weld analysis of the cracks, to determine the fracture mode and crack 

initiation site for each specimen. 

b. Identifying the distinctive characteristics of the surface appearance of a fatigue fracture 

in each specimen. 

c. Identifying the different stages of fracture in each specimen. 

d. Defining the mode of fracture for tested specimens. 

4.8.1 Preparation and mounting of test specimen 

The fatigue test specimen was prepared as shown in Figure 4.1. The specimen was then mounted 

onto the fatigue testing machine using a specially designed jig made of 30-mm thick steel plate 

(Figure 4.11). Twelve holes (M10) were drilled in each of the four flange corners of the specimen 

to hold the specimen onto the jig. The load-spreader plate was attached between the clamping 

bolts and the specimen flange, as shown in Figure 4.11. A load-spreader plate prevented the 

stresses induced on the test specimen flange from propagating to the bolt holes. Additional gussets 
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were welded onto the jig to provide adequate stiffness during the fatigue tests. It should be noted 

that the dimensions of the specimen in Figure 4.11 are the same as those in Figure 4.1 above. 

 
Figure 4-11: Mounting of the Fatigue Test Specimen 

4.8.2 Applied bending load 

The specimens were subjected to a cantilever load applied at the tip of the pipe section of the 

specimen. The theoretical maximum load that the specimen could withstand was first calculated 

using the following procedure. A dummy static load of 100 kN was applied to the portion of the 

sample’s circumferential area, and was used to calculate the allowable stress that the pipe material 

could withstand (Figure 4.12). The MTU fatigue-testing machine used in this test had a maximum 

loading capacity of 1000 kN. The load ratio of 0.1 was applied at constant amplitude for all tests. 
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Figure 4-12: Schematic Representation of Applied Load 

The stress in the 𝑥 direction due the applied vertical load was calculated using Equation 4.3: 

𝜎୶ =
ெ௬

ூ
         (4.3) 

The second moment of area was calculated from the following equation: 

𝐼 =
గ(஽రିௗర)

଺ସ
         (4.4) 

 

The cross-sectional area of the shaft was calculated from the following equation: 

𝐴 =
గ(஽మିௗమ)

ସ
         (4.5) 

where 𝐷 = 89 mm, 𝑑 = 77 mm, 𝑦 = 38.5 mm, 𝐹= 100 kN, 𝑙 = 80 mm and 𝑀 = 8 kN.m. Calculating 
the axial stress using Equation 4.3 resulted in 𝜎୶ = 162 𝑀𝑃𝑎. 

The yield strength of the filler material at the weld was 420 MPa. The factor of safety at the 

welded area for an applied vertical tensile and compressive static load of 100 kN was calculated 

as follows: 
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σ୭ =  Xୗ × 𝜎୶         (4.6)  

Xୗ =  
ସଶ଴

ଵ଺ଶ
= 2.6  

The ultimate strength of the filler material at the weld is 520 MPa. The factor of safety at the 

welded area for an applied vertical tensile and compressive static load of 100 kN was calculated 

as follows: 

Xୗ =  
ହଶ଴

ଵ଺ଶ
= 3.2  

Thus, the weld specimen was expected to fail in bending at an applied static load calculated as 

follows: 

Fୗ =  100 × 2.6 = 260 kN  

The solid steel shaft was inserted into the pipe of the weld specimen, at the loading area, to prevent 

possible local deformation in the clamping contact area. The configuration is shown in 

Figure 4.13. 

 
Figure 4-13: Fatigue Test Setup at Loads above 100 kN 

4.8.3 Fatigue test equipment setup 

Testing equipment included the MTS high-force servo-hydraulic testing machine, Vernier 

callipers for measurements and the wrench for tightening bolts. In fatigue testing, a specified 

mean load (which may be zero) and an alternating load are applied to the test specimen, and the 

number of cycles required until failure occurs is recorded. Table 4.6 shows the fatigue loading of 

the specimens. Load was applied axially by the servo-hydraulic machine (Figure 4.14). 
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Table 4-6: Fatigue Loading of Specimens 

Unique Sample # 2x Specimen 1x Specimen 

4 0.8 x max load 0.6 x max load 

6 0.8 x max load 0.6 x max load 

7 0.8 x max load 0.6 x max load 

8 0.8 x max load 0.6 x max load 

9 0.8 x max load 0.6 x max load 

 

Three test specimens were prepared per parametric combination for the CA welding machine 

setup. Two specimens of each sample were tested under 80% maximum load (calculated in 

Section 4.7.2) and one specimen for each sample was tested under 60% maximum load.  

The integrity of the weld bead was tested using non-destructive testing methods. Non-destructive 

testing was also used to determine crack development during fatigue testing. Two parameters 

were monitored during the test, namely load and displacement. The load parameter was kept 

constant and the displacement of the pipe was used as the failure criterion. 

 
Figure 4-14: Servo-Hydraulic Machine Setup 
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4.9 Concluding remarks 

The discussion above provided details of the experimental work performed in this study. The 

experiments entailed the fabrication of welding specimens in a mechanical workshop, followed 

by various analyses on each specimen to determine its geometry, mechanical properties, residual 

stress and fatigue life. The SAW process was used to manufacture the welding specimen and 

temperatures were recorded throughout the welding cycle, using thermal imaging. The ND 

technique was used to measure through-thickness residual stresses in the specimens. 

Microstructure characterisation and weld bead measurements were also performed through 

electron backscatter diffraction (ESBD) in SEM. Vickers hardness was measured through an 

automated indentation process, and fatigue tests were performed on a servo-hydraulic machine. 

The procedures followed in each experimental test are explained in detail in Appendices A to D. 

The results of the experimental tests are presented in Chapter 7.  
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NUMERICAL ANALYSIS 

5.1 Introduction 

Finite element analysis (FEA) is a numerical modelling scheme for simulation of engineering 

structures, to virtually study the expected behaviour of the structures under specific conditions. 

The significance of this method is its ability to isolate essential parameters of the complex 

welding process and procedure, to study the effects of specific parameters on the formation of 

welding-induced stress and deformation. Although experimental methods are used to calibrate 

the simulation procedures, the latter have the advantage of being suitable for systematic 

investigations of parameters that might not be accommodated by experimental studies alone 

(Feng, 2005). 

Kisioglu (2005) observed that many researchers have developed analytical and experimental 

methods to predict the effect of weld joints on structural behaviour. However, advances in 

computer-aided modelling, such as the finite element model (FEM), have even further aided the 

analysis of structural behaviour in welded components. The complexity of the welding simulation 

problem can be appreciated through considering that the enormous temperature differential in the 

arc area creates a non-uniform distribution of heat in the work-piece. The increasing temperature 

causes the following: 

 a decrease in yield strength 
 an increase of the coefficient of thermal expansion 

 a decrease in thermal conductivity 

 an increase in specific heat.  

Furthermore, welding causes changes in the physical and metallurgical structures in the weld 

(Feng, 2005). The process of determining the welding stresses and distortions through FEA 

simulation is therefore an inherently difficult problem to solve.  

The 3D numerical modelling is accepted as an effective method for solving complex welding 

problems accurately; it is regarded as more accurate than 2D modelling. Taylor et al. (2002) 

stipulated two alternative ways in which the welding process can be numerically simulated, 

namely the thermo-fluid approach and the thermo-mechanical approach (explained further in 5.2 

below). In the thermo-fluid approach, the complex fluid and thermo-dynamics close to the weld 

pool are modelled by observing the weld pool and the HAZ. The physical characteristics of the 

molten weld pool and the HAZ are represented through the conservation of mass, momentum and 
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heat equations, together with the surface tension and latent heat boundary conditions. 

Alternatively, the thermo-mechanical behaviour of the weld structure can be modelled, with a 

focus on the heat source. Various heat source models can be used in the simulation of welding. 

Their accuracy depends on the empirical and theoretical parameters that describe the weld pool 

shape and size (Yaghi & Becker, 2004). A thermo-mechanical modelling approach incorporating 

a 3D model is adopted in this study. 

5.2 Thermal, mechanical and metallurgical interaction  

To understand the thermodynamic and physical interactions that occur during welding of steels, 

one must understand the individual aspects involved in this non-linear relationship.  Figure 5.1 

represents the schematic features of this phenomenon. During welding, the non-uniform 

temperature distribution experienced by the material causes thermal stress (1), and the induced 

phase transformation (2) affects the structural distribution in the solid–liquid transition or 

martensitic / pearlitic transformations in the solid phase. This process results in transformation 

stress (3), and interrupts the strain field in the body.  

In Figure 5.1, arrows in the opposite direction indicate the following interaction. Existing stress 

in material performs work, some of which is converted to heat (4), thereby affecting the 

temperature distribution. The stress-strain aspect has the effect of accelerating phase 

transformation (5). In addition, latent heat is released due to phase transformation (6), which 

affects the temperature distribution (Feng, 2005). 
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Figure 5-1: Thermo-metallo-mechanical Interaction During Welding 

Source: Feng (2005) 

In this study, a non-linear time-dependent thermal elastic-plastic analysis of a moving heat source 

was performed, to predict the thermal and mechanical behaviour of the weldment and HAZ. The 

solution of the non-linear transient problem was divided into two parts. Firstly, a thermal analysis 

(incorporating phase transformation effects) was performed to predict the temperature history of 

the model. Secondly, the predicted temperature fields were applied as input for the subsequent 

mechanical analysis. 

5.3 The Finite Element Model 

A 3D model was created in MSC Marc to perform a coupled thermal-mechanical analysis. The 

computational model, shown Figure 5.2, consisted of 28 121 eight-noded hexagonal (hex) 

elements, with an average mesh resolution of approximately 2 mm. The mesh was relatively more 

refined in the area of the weld, as shown in the figure. This is based on a concept of dynamic 

meshing as applied in similar studies by Nezamdost et al. (2016) and Akhlaghi (2014). The 

properties of the mesh are summarised in Table 5.1. 

Temperature Stress-strain 

Metallic Structure 

Thermal 
Analysis 

Structural 
Analysis 

Metallurgical 
Analysis 

 

  

(6) Latent heat (5) Stress-induced 
transformation 

(2) Temperature-
dependent 

microstructure 

(3) Transformation 
stress 

(1) Thermal Stress 

(4) Mechanically-generated heat 
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Figure 5-2: The 3D FE Model 

 

Table 5-1: The Mesh Properties 

Contact body No. of elements Element type 
Element size (ranging from 

smallest to largest dimension) 

Pipe 12960 Hex-8 2 mm 

Weld deposit 4536 Hex-8 0.875 mm – 1.2 mm 

Plate 10625 Hex-8 2 mm – 5 mm 

 

The plate, weld deposit and pipe were modelled as three separate bodies, with contact specified 

between the bodies on the relevant surfaces to prevent penetration. The coupled thermal-

mechanical analysis was non-linear due to the non-linearity of the material model (ie. elastic-

plastic material). Beyond a certain point, known as yielding, the constitutive relation between 

stress and strain is non-linear. The governing equation of the thermal analysis was conservation 

of energy, which is used to solve for energy. The governing equations of the structural analysis 

were the equilibrium equations, constitutive relations and compatibility equations, to solve for 

the displacement, strain and stress fields. MSC Marc uses a staggered solution procedure in the 

coupled analysis; the heat transfer analysis is first performed, then the stress analysis. Theory and 

additional background information on the solver are provided by MSC Marc (2013). 

The following modelling assumptions were adopted for the thermal-mechanical model: 
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a. The pipe, plate and weld material have the same material properties and have been 

modelled as an elastic-plastic isotropic material with temperature-dependent properties. 

Plasticity is governed by the Von Mises yielding function, associated flow rule and linear 

isotropic work-hardening (MSC Marc, 2013). 

b. Viscous material behaviour at high temperatures is neglected. 

c. Initial stresses and strains are ignored. 

d. Initial temperatures are taken as 29 C. 

e. Natural heat loss is due to convection and radiation only. Conduction heat loss (i.e. to the 

turn table) is negligible. Heat loss coefficients remain constant. 

f. The welding efficiency was 85%.10  

g. The pipe geometry is simplified (the root gap between the pipe and the plate and the 

chamfer on the pipe, illustrated in Figure 4.1, can be neglected). 

h. The weld bead geometry is simplified. 

i. The heat source model is simplified, as proposed by Goldak et al. (1984). 

j. The effect of annealing is not considered. 

5.4 Thermal analysis 

Temperature exerts a significant influence on the microstructure, stress, strain and ultimately 

formation of distortions and other weld defects during the arc welding process. Hence it is 

essential to accurately compute the transient temperature fields. This section discusses heat source 

modelling, boundary conditions and metallurgical effects. 

5.4.1 Heat source model 

The temperature field arising from the moving heat source introduces phase transformations, 

thermal strains, thermal stress, distortion and residual stress. To achieve an accurate predictive 

model for the welding process, careful attention must be paid to modelling the transient 

temperature field. The physics of the weld heat source is highly complex; in the past four decades, 

models have been developed to simplify the physics to a level that can be implemented using 

available model tools. Goldak and Akhlaghi (2005) classified the evolution of welding heat 

source models into generations, spanning first to fifth generations. Each subsequent generation is 

generally an improvement on the preceding generation, with the fifth generation being the latest 

“state of the art” in heat source modelling. The double ellipsoid heat source configuration used 

                                                           
10 The recommended SAW arc efficiency is 85% according to Kou (2003). 
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in the present study is the most popular heat source model for arc welding process modelling 

(Feng, 2005). 

Consider a fixed Cartesian plane of (x, y, z) coordinates. A heat source located at z = 0 and at 

time t = 0 moves with a constant velocity v along the z-axis. Figure 5.3 graphically illustrates the 

moving heat source model as suggested by Goldak et al. (1984). The model follows a Gaussian 

distribution and has good features of density and power distribution control in the FZ and HAZ. 

Goldak’s moving heat source model revealed that the temperature gradient in front of the heat 

source was lower than expected, while the trailing edge’s gradient was steeper than the 

experimental values (Karunakaran & Subramanian, 2001). Hence, two ellipsoidal sources were 

combined to give the total heat flux, shown in Figure 5.3.  

 
Figure 5-3: Goldak’s Moving Heat Sources 

Source: Goldak et al. (1984) 

The corresponding heat input components for the front and rear sections are estimated through 
the following equations (Goldak et al., 1984): 

𝑞௥ =
଺ඥଷொ௙ೝ

గඥ௔ೝ௕௖
exp (−3 ቀ

௫మ

௔ೝ
మ +

௬మ

௕మ +
௭మ

௖మቁ)       (5.1) 

𝑞௙ =
଺ඥଷொ௙೑

గඥ௔೑௕௖
exp (−3 ൬

௫మ

௔೑
మ +

௬మ

௕మ +
௭మ

௖మ൰)       (5.2) 

where: 

ff and fr are the front and rear fractions of the heat flux, and af , ar , b and c are semi-characteristic 

arc dimensions in the x, z and y directions, respectively (as shown in Figure 5.3). 

The z-coordinate is related to the moving coordinate as follows (Goldak et al., 1984): 

𝑧 = 𝑣(𝜏 − 𝑡)          (5.3) 

where 𝑣 is the welding speed, and 𝜏 is the lag factor that defines the position of the heat source 

at time t = 0; 
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𝑓௥ =  
2𝑎௥

𝑎௥ +  𝑎௙
 ;  𝑓௙ =  

2𝑎௙

𝑎௥ + 𝑎௙
 ;  𝑓௥ +  𝑓௙ = 2 

𝑄 = 𝜂𝐸𝐼          (5.4) 

Where Q = total heat input,  𝜂 = arc efficiency, E = welding voltage and I = welding current. The 
parameters of the heat source model used in this study are shown in Table 5.2: 

Table 5-2: Parameters of the Goldak Heat Source Model11 

Goldak Parameter Mm 

B 5 

C 3 

af 5 

ar 12 

ff 0.6 

fr 1.4 

 

The heat input was specified as a volumetric heat flux, which is a built-in MSC Marc welding 

function. The volumetric heat flux was simulated as a moving double ellipsoid heat source, as 

initially proposed by Goldak. The heat input was user-defined by specifying the welding 

parameters, such as power and efficiency, size of the heat source, the weld path, speed of the weld 

and the additional material elements. The weld parameters for each sample test case were 

described in Chapter 4. The additional material deposited per pass was defined according to 

Figure 5.4. Each weld deposit had approximately the same volume, and the size of the weld was 

measured from the weld cross-section. The “element death and birth” technique was used to 

model the filler material. In this technique, the weld elements are dynamically generated by the 

heat source when the arc reaches their position. The thermal properties are fully activated 

(restored to normal values) upon physical creation, and the mechanical properties are fully 

activated in the next increment. The weld path was defined as a curve, 3 mm radially away from 

the pipe and 3 mm above the plate, as shown in Figure 5.4. 

                                                           
11 Values were obtained from Anca et al. (2011), and adjusted by thickness ratio between the material used in this 
study and that of Anca et al. 
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Figure 5-4: Filler Material Element Activation Technique 

5.4.2 Boundary conditions 

A convection and radiation heat loss boundary condition was applied to all the exposed surfaces 

of the sample, including the elements of the weld as soon as they were deposited. The heat loss 

boundary condition is shown in Figure 5.5. The heat transfer coefficient was stated as 15 W/m2K, 

with an ambient temperature of 29°C and emissivity of 0.625 (Feng, 2005). The heat transfer 

coefficients for convection and radiation were used to calculate the heat flux losses on the surfaces 

of the weld-piece using the following equations (Feng, 2005): 

𝑞௖ = ℎ(𝑇 − 𝑇଴)          (5.5) 

𝑞௥ = 𝜖𝜎(𝑇ସ − 𝑇଴
ସ)         (5.6) 

where T0 is the ambient temperature; T is the surface temperature of the weld pool; 𝜖 is the 

emissivity; 𝜎 is the Stefan-Boltzmann constant and h is the convection coefficient. Losses are not 

applied to the weld metal surface just under the arc while the welding heat source is applied. 

Complete insulation is assumed in this case. 

Pass 2 weld elements Pass 3 weld elements 

Weld path 

Complete multi-pass weld (indicated in cyan) Pass 1 weld elements 
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Figure 5-5: Heat Loss Boundary Condition 

5.4.3 Metallurgical effects 

Lindgren (2006) observed that three generic options exist for dealing with the microstructural 

changes in numerical analysis. They are as follows: 

a. Ignore microstructure changes: This approach has been used for non-ferrous metals 

such as copper, aluminium and titanium, and in non-ferritic steels such as austenitic 

stainless steel. Some studies have adopted this approach for ferritic steels in which 

carbon levels are very low.  

 

b. Account for microstructure changes in a simplified manner: This approach usually 

considers metallurgical effects only as far as they affect thermal dilatation and yield 

limit. Some researchers use the peak temperature and cooling rate from 800 C to 

500°C (Δt8/5) as variables to determine the phases of the material during the cooling 

cycle of the welding process. Understanding which phases are present in the 

microstructure allows for the choice of appropriate material properties to use during 

the cooling cycle. 

 

c. Thermo-mechanical-metallurgical (TMM) model: This approach requires a model 

for the microstructure evolution, and another model to combine the material 

properties of various microstructure phases. Apart from the temperature-dependent 

material properties, other properties that can be considered in the TMM approach 

include phase-related volumetric changes, transformation plasticity and annealing. 

Volume changes are usually considered for the solid-state phase changes. Annealing 

reduces the hardening effect due to the change in dislocation structure resulting from 

phase change. When a phase with higher yield stress is formed during phase 
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transformation, the weaker phase experiences macroscopic effects of plastic 

yielding; this is known as transformation plasticity. It would typically occur when 

austenite decomposes to bainite and martensite. 

Under the third option, a method that is widely used to account for solid state transformation 

during welding is to use isothermal temperature-time-transformation (TTT) or continuous-

cooling-transformation (CCT) curves, to determine the evolution of transformation during the 

thermal cycle. CCT diagrams are used to predict the transformation that occurs during cooling in 

a thermal cycle, whereas TTT curves help to determine the rate of transformation at a constant 

temperature. A typical CCT diagram for low-alloy carbon steel is shown in Figure 5.6. Austenite 

forms during heating, once the temperature increases above A1 (shown in red in the figure), and 

it decomposes during cooling when the temperature falls below A3. Similarly, depending on the 

cooling rate (Δt8/5), ferrite, pearlite, bainite or martensite will form. Martensite forms at very rapid 

cooling rates. In Figure 5.6, the martensite start temperature is shown in yellow and the finishing 

temperature (Mf) in green. 
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Figure 5-6: CCT Diagram for Low Carbon Low Alloy Steel 

Source: Ford and Scott (2008) 

The approach in this study is similar to the method used by Deng (2009). As discussed above, in 

the present case, the probability of martensite forming during the decomposition of austenite 

under conditions of rapid cooling was high. Martensitic transformation introduces volumetric 

dilation that increases residual stress in the welded structure. In this study, the effects of the solid-

state transformation of martensite to the welding-induced residual stress by incorporating the 

appropriate parameters into the thermal model was considered. 

Deng (2009) approached the solid-state transformation modelling problem in the following 

manner. Deng first calculated the volume fraction of martensite formed during the cooling cycle; 

then he considered the volumetric change due to phase transformation through modifying the 

thermal expansion coefficient over the martensitic transformation temperature range. Deng’s 

model considers two properties to be temperature-dependent, namely thermal conductivity and 

specific heat. The temperatures at which austenitic transformation begins during heating (A1) and 
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the temperature at which austenitic transformation is completed (A3) have been shown to depend 

on the amount of alloying elements. They can be estimated using the following equations (Deng, 

2009): 

𝐴ଵ = 723 − 10.7𝑀𝑛 − 16.9𝑁𝑖 + 29𝑆𝑖 + 16.9𝐶𝑟 + 290𝐴𝑠 + 6.4𝑊   (5.7) 

𝐴ଷ = 912 − 203√𝐶 − 30𝑀𝑛 − 15.2𝑁𝑖 + 44.7𝑆𝑖 − 11𝐶𝑟 + 104𝑉 + 31.5𝑀𝑜 − 20𝐶𝑢 + 700𝑃 +

400𝐴𝑙 +  120𝐴𝑠 + 13.1𝑊 + 400𝑇𝑖      (5.8) 

The martensite “start” temperature is determined using Equation 5.9 (Ford & Scott, 2008). The 

martensite “finish” temperature is given by Equation 5.10 (Piekarska et al., 2015). The 

relationship between Ms and Mf is described through Equation 5.11 (Back, 2017): 

𝑀௦ = 539 − 423𝐶 − 30.4𝑀𝑛 − 12.1𝐶𝑟 − 17.7𝑁𝑖 − 7.5𝑀𝑜    (5.9) 

𝑀௙ = 381.76 − 252.44𝐶 − 111.124𝑀𝑛 + 54.538𝑆௜ + 114.17𝐶𝑟 − 23.779𝑁𝑖 − 57.381𝑀𝑜 +

215.7𝑉 + 945.4𝑁௕ + 1821.7𝑇௜ − 1746.5𝐵      (5.10) 

𝑘 =
ଶ୪୬ (ଵ଴)

(ெೞିெ೑)
         (5.11) 

where k is the coefficient that describes martensitic development as a function of temperature. 

The value of k for steels as reported by Deng (2009) was 0.011. However, in this study, a value 

of 0.027 was calculated from Equation 5.11, which was comparable with the 0.025 obtained by 

Back (2017). 

Solving equations 5.9 and 5.10 (using the chemical composition provided in table 4.2) yields the 

following temperature values: 

A1 = 723.5°C 

A3 = 822°C 

Ms = 420.2°C  

Mf = 251.1°C  

5.4.4 Material data 

In generating the temperature-dependent properties, the following logic was observed: 

a. The steel at room temperature is made of a ferrite/pearlite composition. 
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b. Everything above austenite decomposition temperature (A1) was considered 100% 

austenite phase, hence only austenite properties were used. 

 
c. During cooling, everything between austenite decomposition temperature (A1) and Ms 

was considered austenite. 

 

d. The martensitic transformation range (Ms to Mf) involves the incremental transformation 

of austenite to martensite. This transformation was incorporated by calculating the 

fraction of martensite transformed at temperature T (where Ms > T > Mf) and using the 

properties of martensite for that fraction. The total value of the affected properties within 

the A → M transformation range therefore includes the fractional allocations of 

martensite (VM) and austenite (VA). Even distribution of martensite was assumed. 

 
e. The affected properties that were used in the fractional apportionment were Young’s 

modulus, specific heat, thermal expansion coefficient and thermal conductivity. 

The temperature-dependent properties of low-alloy carbon steel are shown in Table 5.3.12 For the 

purposes of this study, properties for parent metal and filler metal are considered the same. The 

properties used between 20°C and 700°C are those of ferrite/pearlite mixture, and the properties 

used above 700°C are those of the austenite phase. 

Table 5-3: Temperature-Dependent Material Properties  

Temperature 
(˚C )  

Thermal 
Conductivity 
(J/s.m. ˚C ) 

Specific 
Heat 

(J/kg.˚C ) 

Poisson 
Ratio  

Young 
Modulus 

(MPa) 

Yield 
Stress 
(MPa) 

Thermal 
Expansion 
Coefficient 

(10-6/˚C) 

20 37.7 470 0.3 210 320 15 

100 39 490 0.3 204 300 15 

200 40.5 525 0.3 200 275 15 

250 40 545 0.3 195 262 15 

300 39.5 565 0.3 190 250 15 

350 38.2 590 0.3 185 241 15 

400 37.7 615 0.3 180 230 15 

450 36.5 648 0.3 170 216 15 

500 35.3 680 0.3 159 202 15 

600 33 770 0.3 135 170 15 

650 31.8 815 0.3 92 138 15 

700 30.2 850 0.3 80 100 23.5 

750 29.3 595 0.3 66 80 23.5 

800 27.1 600 0.3 50 60 23.5 

                                                           
12 The properties were reported by Coret et al. (2002). The material used in that study was similar low-alloy carbon 
steel with comparable CE. 
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Temperature 
(˚C )  

Thermal 
Conductivity 
(J/s.m. ˚C ) 

Specific 
Heat 

(J/kg.˚C ) 

Poisson 
Ratio  

Young 
Modulus 

(MPa) 

Yield 
Stress 
(MPa) 

Thermal 
Expansion 
Coefficient 

(10-6/˚C) 

900 25.3 620 0.3 32 30 23.5 

1000 26.9 630 0.3 30 20 23.5 

1200 28.1 650 0.3 27 2 23.5 

 

The following equation was used to calculate temperature-dependent Young’s modulus E (Coret 

et al., 2002): 

𝐸 (𝑇) = 2.10𝑥10ହ − 190𝑇 + 1.19𝑇ଶ − 2.82𝑥10ିଷ𝑇ଷ + 1.66𝑥10ି଺𝑇ସ  (5.12) 

where T is measured in ˚C and E is in MPa. 

Lingamanaik and Chen (2011) established that the thermal conductivities of austenite and 

martensite can be determined using the equations below: 

𝜆 (𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒) = 0.016 + 1.3𝑥10ିହ 𝑥 𝑇     (5.12) 

𝜆 (𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒) = 0.025 + 3𝑥10ି଺ 𝑥 𝑇     (5.13) 

Similarly, the values of specific heat for austenite and martensite are given by the equations 

below: 

𝐶𝜌 (𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒) = 370 + 0.298 𝑥 𝑇      (5.14) 

𝐶𝜌 (𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒) = 450 + 0.387 𝑥 𝑇      (5.15) 

The volume fraction of martensite was calculated using the Koistinen-Marburger (K-M) model 

discussed by Back (2017). Equation 5.16 was then used to calculate the fractional volume of 

martensite at temperature T. The fractional volume of austenite at the beginning of martensite 

transformation is considered to be 0.99.  

𝑉ெ = 𝑉஺(1 − exp[−𝑘(𝑀௦ − 𝑇)];  Ms > T     (5.16) 

where VM  = volume fraction of martensite, VA = austenite fraction at the beginning of the A  M 

transformation, T = current temperature at the chosen point, and Ms = martensitic transformation 

start temperature. 

Equations 5.12 to 5.15 were applied to calculate values that were used to populate Table 5.4, 

which included proportioned values of temperature-dependent properties, according to the 

calculated phase fractional volume. 
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Table 5-4: Proportioned Temperature-dependent Properties 

Temperature (˚C) 
Thermal 

conductivity 
(W/mK) 

Specific heat 
(J/kgK) 

Expansion 
coefficient 

(1/˚C) 

Young's 
modulus 

(GPa) 

Yield stress 
(MPa) 

20 25.1 457.7 1.50 x 10-5 210 281 

100 25.3 488.7 1.50 x 10-5 200 275 

200 25.6 527.4 1.50 x 10-5 199.7 268 

250 25.62 544.7 1.52 x 10-5 199.3 262 

300 25.61 560.87 1.54 x 10-5 197.4 250 

350 25.17 567.8 1.64 x 10-5 193.3 240 

400 23.3 537.3 2.00 x 10-5 186.4 230 

450 36.5 635 1.50 x 10-5 176.6 215 

500 35.3 680 1.50 x 10-5 163.8 200 

600 33 770 1.50 x 10-5 130.4 170 

650 31.8 815 1.50 x 10-5 111 140 

700 30.2 850 1.50 x 10-5 91.4 100 

750 25.8 593.5 2.35 x 10-5 72.4 70 

800 26.4 608.4 2.35 x 10-5 55.7 60 

900 27.7 638 2.35 x 10-5 23.5 30 

1000 29 668 2.35 x 10-5 23.5 20 

1200 31.6 727.6 2.35 x 10-5 23.5 2 

1600 63.2 727.6 2.35 x 10-5 23.5 2 

 

Fluid flow: Commercial FEM codes, such as MSC MARC and ANSYS, are unable to incorporate 

the effect of fluid flow into the thermal model of the welding process. As a result, maximum 

temperatures in the weld pool can be as high as 3000 C, which is not congruent with experimental 

evidence. Because the heat input reduction that is supposed to occur as a result of fluid flow does 

not in fact occur, all heat finds its way to the weld pool and increases the theoretical temperatures 

above the empirically observed limits. Studies show that the maximum recorded weld pool 

temperature for low-alloy carbon steels is approximately 1800 C (Deng, 2009). To address this 

shortcoming, Deng suggested that the value of thermal conductivity should be doubled for 

temperatures above the melting point. Therefore, in the present study the value of thermal 

conductivity above the solidus temperature (ST) was doubled. The ST and liquidus (LT) 

temperatures are given by equations 5.17 and 5.18 (Akhlaghi, 2014): 

𝑇ௌ = 1535 − 200𝐶 − 12.3𝑆௜ − 6.8𝑀௡ − 124.5𝑃 − 189.3𝑆 − 4.3𝑁௜ − 1.4𝐶௥ − 4.1𝐴𝑙 (5.17) 

𝑇௅ = 1537 − 88𝐶 − 8𝑆௜ − 5𝑀௡ − 30𝑃 − 25𝑆 − 4𝑁௜ − 1.5𝐶௥ − 5𝐶௨ − 2𝑀௢ − 2𝑉 − 18𝑇𝑖 

          (5.18) 

The resultant values of TS and TL, after inserting the chemical composition values given in 

Chapter 4, were 1481°C and 1510°C respectively. The thermal conductivity values above 1500 C 
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were therefore doubled, in line with Deng’s recommendations. Solid-liquid transformation was 

accounted for by specifying a latent heat of fusion of 270 kJ/kg with a solidus temperature of 

1481 C and liquidus temperature of 1510°C. 

5.5 Mechanical analysis 

Temperature histories from thermal analyses were used as inputs for the mechanical problem. 

The filler metal passes were tied to adjacent passes and the parent metal through contact surfaces. 

Thermo-mechanical analysis can be performed through one of the three constitutive models, 

namely elasto-plastic, elasto-viscoplastic and unified plasticity. Rate-independent elasto-plastic 

models are the most frequently used for simulating thermal processes that involve high heating 

or cooling rates (Simsir & Gur, 2008). Therefore, during mechanical analysis, either the common 

rate-independent plasticity model – based on von Mises yield criterion – could be used, or the 

rate-dependent plasticity model could be used. In this study, the accumulated rate-dependent 

plasticity was neglected given the high temperature gradients experienced by the material during 

a relatively short thermal cycle. The pressure loading was omitted and only the thermal loading 

from the temperature histories was used. The thermo-elastic-plastic constitutive model was 

developed to describe the deformation behaviour. 

The following principles were adopted when generating the constitutive models (Goldak & 

Akhlaghi, 2005): 

a. The load in the weldment arises as the result of thermal strains; if there are no constraints, 

this is the only source of loading. 

b. The mechanical properties are both temperature-dependent and history-dependent. 

History dependency includes both microstructure and plasticity. 

c. A localised heat source results in a localised load. 

d. Resultant thermal stresses are high enough to cause plastic deformation. 

e. Phase transformation affects the resultant stresses, either by increasing them or by 

partially releasing them. 

Given the above principles, the total stress experienced by the material is an algebraic sum of 

elastic, plastic, thermal and phase transformation strains. Applying the effective stress function 

discussed by Goldak and Akhlaghi (2005), the stress-strain constitutive equations can be written 

as follows: 

𝑇 =
ா

ଵାఔ
(𝑒 − 𝜀௣ − 𝜀௖ − 𝜀்௥௣)       (5.19) 



105 | P a g e  
 

𝜎௠ =
ா

ଵିଶజ
(𝜀௠ − 𝜀௧௛ − 𝜀்௥௩)       (5.20) 

where: 

T =  deviatronic stress tensor (σ – σm) 

e = deviatronic strain tensor (ε – εm) 

εp = plastic strain tensor 

εc = creep strain tensor 

εTrp = transformation plastic strain tensor 

σm = strain tensor 

εm = strain tensor 

εth = thermal strain tensor 

εTrv = strain due to volumetric change during phase transformation 

E = Young’s modulus  

υ = Poisson’s ratio 

The displacement boundary condition is governed by the manner in which the specimen is 

clamped according to the experimental setup. It is assumed that light clamping of a sample does 

not significantly affect the residual stress. The model was fixed in all translational degrees of 

freedom at the edges of all four corners of the plate, and at the top surface of the pipe, as shown 

in Figure 5.7. The fixed boundary condition was applied far from the area of interest so as not to 

affect the results in the area of interest. 

 
Figure 5-7: Fixed Displacement Boundary Condition 
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5.6 Concluding remarks 

The 3D FEM was successfully developed to simulate the SAW process. The thermal-mechanical 

model was sequentially coupled, starting with the thermal modelling process before progressing 

to mechanical analysis. The temperature history of the welding cycle was used as loading in the 

subsequent mechanical model for stress analysis. The model includes metallurgical effects caused 

by solid-phase transformation during the cooling cycle of the welding process. The results of 

numerical analysis are presented and discussed in detail in Chapter 7.  
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PARAMETRIC OPTIMISATION OF THE 

SAW PROCESS 

6.1 Introduction 

During the SAW process, the direct involvement of the human operator is limited. That is, he or 

she does not have sight of the weld pool, which is submerged, and he or she cannot interact 

directly with the welding process. As the SAW process ascends the automation curve, therefore, 

the fine-tuning of welding parameters becomes more important than operator skill. The process 

through which welding process parameters are fine-tuned to produce desired optimal output 

characteristics is called parametric optimisation. To effectively perform a parametric 

optimisation exercise, four main steps must be followed: design of experiments (DoE), process 

characterisation, optimisation and verification (Anawa, 2008). 

The DoE step includes the planning and execution of experiments. Firstly, the required resources 

must be identified (e.g. equipment, appropriate facility, welding procedure, consumables, 

auxiliary equipment, human resources and funding). Secondly, the scoping of envisaged 

activities, experimental objectives and expected outputs must be clearly articulated and 

documented. All the above must be contained in the experimental execution plan that will direct 

the experiment. The third step is to choose the appropriate experimental design methods – that is, 

either fractional factorial, full factorial, CCD or Taguchi designs. The experiments are then 

performed according to the developed design matrix and the experimental execution plan. The 

responses per experimental run are then measured and the results recorded. An input/response 

matrix, containing input parameters at various levels and the corresponding response values, is 

developed for further analysis. 

Process characterisation is the process whereby the developed model is reduced to focus only on 

significantly influential factors. Statistical analysis is applied to determine the relationship 

between input parameters and response variables, and to test the significance of model terms and 

reduce the model to include only the critical parameters. Optimisation of variables that were 

identified and quantified should then occur, to determine the optimal values of explanatory 

variables that will produce the best quality of desired results. This step is achieved by solving the 

minimisation, maximisation or target-value-centric function of the objective function through 

appropriate optimisation methods. The final step includes verifying the predicted results using 

physical experiments and/or simulation. This includes performing experiments using the optimal 



108 | P a g e  
 

input parameters (determined in the third stage discussed above) and comparing the responses 

with the predicted values. In this study, these steps were followed and the fractional factorial 

method was used as the experimental design; the multiple objective genetic algorithm (MOGA) 

was used for optimisation.  

In this chapter, the identification of influential welding parameters and the responses required for 

the SAW process (see Chapters 2 and 3) is discussed. The chapter presents several topics, namely 

the analysis of the nature of relationships between input parameters and responses, the relevance 

of explanatory variables to responses, and singular and interactive parametric effects. 

6.2 Fractional factorial design 

Fractional factorial design is used in situations where it is impractical or too costly to perform 

full factorial research (i.e. full population of experiments). The idea of the fractional factorial 

design is to run only a subset of experiments but still to obtain representative results. There are k 

number of factors and L number of levels in a factorial design matrix (i.e. Lk-1 designation). The 

results obtained and conclusions drawn from a reduced experimental study are valid for the whole 

experimental region covered by the control factors.  

Model significance is tested using ANOVA. In the ANOVA table, F-values compare the model 

variance (i.e. term mean square) with residual (error) variance (i.e. residual mean square). Values 

close to unity indicate that a parameter has an insignificant effect on the response. Probability 

values lower than 0.05 signify that the model is adequate within the selected confidence interval. 

Precision adequacy, which is a ratio of the range of predicted values at points of the design to the 

average predicted error, indicates the model’s ability to discriminate. A precision adequacy value 

of 4 or higher indicates adequate discrimination. The elimination of insignificant model terms is 

called model reduction and is achieved through regression analysis. The achievement of the 

highest possible performance (which is the desired outcome of the objective function) occurs 

when the optimum design factors have been determined. Objective function may minimise, 

maximise or target the assigned nominal value. The steps involved in the DoE method used in 

this study are shown in Figure 6.1. 
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Figure 6-1: The DoE Process 

6.2.1 SAW process parameters 

The main parameters of the SAW process include welding current, arc voltage, travel speed, 

electrode stick-out, wire-feed rate, type of flux, depth of flux and polarity. It is clear from the 

summary of previous studies on parametric optimisation (Chapter 2) that four SAW parameters 

have consistentl displayed significant effects on the outputs – the outputs being weld geometry, 

 Identify desired quality characteristics 
 Select process parameters and responses 

Step 1: Identification of Influential Conditions 

 Narrow parameters down to critical ones 
 Define operational range and factor levels 
 Determine parameter degrees of freedom  

Step 2: Selection of Critical Parameters 

 Select appropriate DoE matrix 
 Assign parameters to matrix 

Step 3: Developing DoE Matrix 

 Perform experiments according matrix parameters 
 Record results 

Step 4: Conducting Experiments 

 Analyse model significance through ANOVA 
 Eliminate insignificant model terms 
 Present objective functions 

Step 5: Analysis of Results 
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HAZ size, mechanical properties and residual stress. These four variables are welding current (I), 

arc voltage (V), travel speed (S) and wire-feed rate (FR). These parameters are therefore 

considered in this study.  

An additional parameter was used in the experiments for this research, namely welding mode. 

The welding mode of the SAW machine used can be set either to CA (constant amperage) or to 

CW (constant wire). Each of the four parameters, but not welding mode, has upper (+) and lower 

(-) limits that were chosen according to safe operational ranges. The output variables included 

bead width (BW), bead height (BH), bead penetration (BP), HAZ size (HAZ), hardness (VHN) 

and residual stress (RS). Figure 6.2 illustrates the bead geometry of the envisaged multi-pass full 

penetration weld. 

 
Figure 6-2: Weld Bead Geometry 

Table 6.1 shows the two levels of parameters applied in the welding experiments. The range of 

values was chosen according to guidelines from the SAW machine operating manual and the 

researcher’s experience from similar studies. When choosing the operational range for SAW 

parameters, care should be taken to include only parametric combinations that will not result in 

burn-through (i.e. too much heat) or lack of penetration (i.e. too little heat). 
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Table 6-1: Welding Parameters 

Parameter Units Lower L (-) Upper L (+) 

Current (I) Amps 360 380 

Voltage (V) Volts 25 30 

Speed (S) mm/s 8 10 

Wire-feed Rate (FR) mm/s 16.7 18.3 

 

The response variables were chosen according to their effect on the resultant residual stress fields, 

and hence fatigue life, of a welded pressure vessel structure. The integrity of weld bead geometry 

indicates the quality of the weld, and it influences weld strength and life expectancy of the 

structure. The residual stress affects the fatigue life of a welded structure either by assisting crack 

initiation and growth (tensile) or by retarding crack growth and increasing the toughness 

(compressive). Hardness influences hydrogen-induced cracking, which shortens the fatigue life 

of the welded structure. The DoE matrix chosen in this study had five factors, four of which had 

two levels, namely an L5-1 design.  

Table 6.2 shows the resultant matrix with five columns and two levels. Experiments were 

conducted in a random order to lessen noise sources. Response variables were captured for each 

specimen after the third pass. (The procedure for conducting the experiments was discussed in 

Chapter 4.) 

Table 6-2: DoE Matrix for this study 

S.No. Input Parameters 

I V S FR Mode  

1 + + + + CA  

2 + - - + CA  

3 - - - + CA  

4 - - + + CA  

5 + - + + CA  

6 - + - - CW  

7 - + - + CW  

8 - - - + CW  

9 - - - - CW  

 

6.2.2 Conducting the experiments 

Experiments were conducted according to the DoE matrix in Table 6.2. Nine experimental 

iterations, comprising three runs each, were performed using the mechanised SAW machine with 
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settings as shown in Table 6.1. The experimental responses were determined as described in 

Chapter 4, and the experimental results were recorded according to the matrix discussed in 

Chapter 7. The objective of this study was to minimise RS, BW, BH, VHN and HAZ, and to 

maximise BP. As mentioned earlier, the specimen numbers do not necessarily follow a sequence 

because some of them were spoiled during the experiment [e.g. through burn-through or lack of 

penetration (LOP)] and were not used further. 

6.2.3 Statistical analysis and optimisation 

ANOVA was used to analyse the statistical differences between the mathematical means of 

multiple samples, through subdividing the total sum of squares (R2). ANOVA calculates the level 

of significance associated with the effect of a specific process parameter on the response 

variables. It is also used to test the adequacy of a developed model. The mathematical model was 

designed through DesignExpert® Ver.10 program, using data from experiments. The software 

automatically assigns letters to the columns containing factor effects (i.e. factor-effect columns 

are labelled A, B, C, D and E). To understand which letter was assigned to which factor effect, 

the following notational replacements were made:  

I  A, V  B, S  C, FR  D, MODE  E, 

The objective function that represents each of the response variables can be expressed according 

to the following general function: 

𝑦 = 𝑓(𝐼, 𝑉, 𝑆, 𝐹𝑅)         (6.1) 

Multiple regression analysis (MRA) was performed to determine the coefficients of each 

parameter. MRA is a statistical multivariate data analysis tool that maps relationships between 

input process parameters and responses. The resultant polynomial equation for each response 

variable becomes: 

𝑓(𝑥) = 𝛽଴ + 𝛽ଵ𝐼 + 𝛽ଶ𝑉 + 𝛽ଷ𝑆 + 𝛽ସ𝐹𝑅       (6.2) 

where f(x) is the response variable, β is the coefficient and β0 is the model constant. 

In DesignExpert, the factor “MODE” was entered as a categorical rather than a numeric value. 

This meant that coded factors of MODE could have coefficients, but the actual factors could not. 

Each objective function therefore ended with two equations, one in each mode. The equation in 

terms of coded factors can be used to make predictions about the response for given levels of 

each factor. By default, the higher level of each factor was coded as +1, whereas the lower level 
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factors were coded as -1. The coded equation is useful for identifying the relative impact of the 

factors by comparing the factor coefficients. 

It was mentioned earlier that an effective strategy for solving a multi-objective problem is through 

a multi-objective genetic algorithm (MOGA). Like most engineering problems, the welding 

process parametric optimisation problem (WPPOP) is a complex problem with multiple 

objectives that are usually in conflict. The MOGA used to solve the WPPOP in this study 

followed the generalisation outlined in Figure 2.7 in Chapter 2. The algorithm followed a Pareto 

strategy, in which all objectives were assigned the same level of priority (Fonceca, 1995). The 

optimisation was performed using the “multi-objective optimisation” toolbox in MATLAB® 

software. The 14 objective functions, which were aligned to the response variables, were all 

loaded and optimised at the same time to determine the Pareto set of non-dominated solutions. 

6.3 Concluding remarks 

This chapter discussed the methodological approach to experiments, using an appropriate 

fractional factorial design. An L9 matrix was generated and experiments were performed on a 

randomised basis, while the response variables were recorded for each parametric setting. 

ANOVA was applied to determine the model’s adequacy and MRA was used to produce objective 

functions of all the response variables. The MOGA was used to solve the multi-objective problem 

and to generate a Pareto set of optimal solutions.  
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RESULTS AND DISCUSSION 

In the preceding chapters, a presentation of methods and techniques, as well the details of 

conducted experiments, were given. The results for the said experimental and analytical work are 

tabled and discussed in this chapter. The results obtained using various analytical and 

experimental methods are compared to each other and related to similar research work within the 

confines of the scope and objectives of this thesis. The sections covered in this chapter include 

results from temperature measurements, residual stress measurements, bead geometry 

measurements, microstructure analysis, hardness testing, fatigue testing, numerical analysis and 

parametric optimisation. 

7.1 Experimental Temperature Histories 

The temperature versus time relationship was monitored during the welding experiments, and the 

results presented in this section focus on these two parameters. The expected time to complete a 

half perimeter revolution from P1 to P3 (as illustrated in Figure 4.5)  is 45 π/S seconds as shown 

in Equation 7.1, using the measured welding specimen diameter of 90mm. The time for Specimen 

4 to do a half revolution from P1 to P3 is shown in Equation 7.1, where ‘S’ is the speed indicated 

in Table 4.4 above. 

Weld piece diameter d = 90 mm        

t = dπ/2.S = 45π/S seconds       (7.1) 

The measuring error is approximated by comparing the calculated time using Equation 7.1 with 

the time measured from the IR thermal camera. Equation 7.2 is then used to calculate the error, 

and the results are tabulated in Table 7.1. Note that inter-pass temperature refers to the time 

between weld passes. The IR camera records continuously and hence inter-pass time between 

first and second passes can be determined by obtaining the difference between the time at which 

the first weld pass ends and the time at which the second weld pass begins. 

error = (Expected – Measured)/Expected     (7.2) 

It is observed from Table 7.1 that the measuring error is relatively large in the beginning of the 

measurements as the thermal footprint of the specimen is much lower in the beginning of the 

welding process. The result of the low initial thermal footprint is that the marker cannot be viewed 

clearly at the beginning of the welding cycle. As the weld specimen temperature increases, the 
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error decreases thereby increasing the accuracy of agreement between the calculated and the 

measured temperature values. The IR camera was calibrated to measure temperature from 200°C 

up to 1700°C and all values below 200°C are therefore reflected as zero. 

Table 7-1: Temperature History for Sample 4 at P1 and P3 

State Time(s) P1 ◦C P3 ◦C Error 

1 19.030 422.9 251.9 N/A 

2 35.030 381.8 470.3 0.132 

3 47.470 413.7 551.9 0.12 

4 63.310 437.7 285.8 0.12 

5 78.150 219.8 320.6 0.05 

6 91.150 277.6 0 0.08 

7 106.23 0 209.5 0.07 

8 119.59 316 0 0.05 

9 133.31 472 613.5 0.03 

10 147.83 525.9 659 0.03 

11 159.47 556 439.4 0.18 

12 176.23 381.7 450.8 0.19 

13 191.07 400 337.9 0.05 

14 204.31 318 355.7 0.06 

15 219.16 323.4 291.1 0.05 

16 232.7 273 302.5 0.04 

17 247.54 293.7 253.4 0.05 

18 260.82 280.7 557.3 0.06 

19 275.1 551.9 530.3 0.01 

20 289.18 520 474.8 0.004 

 

Figures 7.1 to 7.4 show experimental results for measuring temperatures for a three-pass weld 

performed in Sample 4. As mentioned above, when starting, the welding process (Figure 7.1), 

marker is not clearly visible and the marker position can be approximated by adding theoretical 

45 π/S seconds from the previously known marker time. Further to the times recorded by the IR 

camera and those calculated using Equation 7.1, the stop watch was also used to manually record 

times from the beginning of each weld pass until the end. 
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Figure 7-1: Sample 4 Frame at Weld Start 

The frames from the IR camera clearly show the temperature recording points on the weld 

specimen, namely Sp1 (P1) and Sp2 (P3). The temperatures can be read directly from the frames 

on the top left corner. Figure 7.1 shows the time immediately after the start of the welding process 

for the first pass. The specimen is still cold and hence the relatively small thermal footprint. 

Progress in the welding process can be seen in Figure 7.2, which shows the temperatures for states 

1 and 2 in Table 7.1. State 1 represents approximately half of the first revolution of the first weld 

pass, whereas state 2 represents the end of the full revolution for the first weld pass. The 

incremental growth of the thermal footprint from Figure 7.2(a) to Figure 7.2(b) is clearly visible 

in the presented frames. 

Figure 7-2: IR Camera Frames at 19.03 seconds – State 1 (a) and 35.03 seconds – State 2 (b)  

Since the experiment comprises a three-pass weld, two inter-pass temperatures are measured on 

two states. The first inter-pass time occurs from state 3 to state 8. In other words, the temperature 

in state 8 is the last recorded temperature before commencement of the second pass. Figure 7.3 

a b 
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illustrates the temperature footprint of states 9 and 10. The improvement in the overall visibility 

of the thermal image is indicative of the increased overall temperature of the specimen during the 

execution of the second weld pass. 

Figure 7-3: IR Camera Frames at 133.31 seconds – State 9 (a) and 147.83 seconds – State 10 (b) 

The third and final weld pass is represented in the frame in Figure 7.4. The thermal image 

presented in this figure is the most clear of all the images, and the accuracy is the highest given 

the low error against the temperature values of states 19 and 20 in Table 7.1. The marker is clearly 

visible in Figure 7.4, and a circle is drawn around it to indicate its location. The reference marker 

is used to locate the specimen as it rotates relative to the position of Sp1 and Sp2. 

 
Figure 7-4: IR Camera Frames at 133.31 seconds – State 19 (a) and 147.83 seconds – State 20 (b) 

Note that only six states from Table 7.1 were chosen to demonstrate the illustration of the frames, 

and hence not all frames were presented in this write-up. The chosen states in Table 7.1 have been 

highlighted for ease of reference. Table 7.2 presents results for P2 and P4 of specimen 4. The 

temperature recorded over time is similar to that shown in Table 7.1. 

 

 

a b 

a b 
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Table 7-2: Temperature History of Sample 4 at P2 and P4 

State Time(s) P2 ◦C P4 ◦C Error 

1 19.030 321.3 0 N/A 

2 35.030 365.4 281.4 0.132 

3 47.470 0 419.9 0.12 

4 63.310 199.4 193.5 0.12 

5 78.150 0 257.9 0.05 

6 91.150 0 0 0.08 

7 106.23 0 0 0.07 

8 119.59 334.8 0 0.05 

9 133.31 428.3 101.3 0.03 

10 147.83 372.9 464.6 0.03 

11 159.47 309 580.9 0.18 

12 176.23 337.5 341.3 0.19 

13 191.07 266.3 294.8 0.05 

14 204.31 302 383 0.06 

15 219.16 237.8 323 0.05 

16 232.7 251.9 243.5 0.04 

17 247.54 245.3 242.3 0.05 

18 260.82 330.6 188.4 0.06 

19 275.1 395.4 423.3 0.01 

20 289.18 350.6 560.9 0.004 

 

Figure 7.5 shows the temperature history plots of P1 and P3 in Sample 4. The values used in 

generating the Temperature vs. Time graphs were taken from Table 7.1. A close look at P1 graph 

shows that at 19 seconds (which is approximately half a revolution), the temperature is already 

above 400°C, which is evidence of the fact that the welding torch has already passed through the 

measuring point. This is in line with the IR image frames presented in Figure 7.2.  
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Figure 7-5: Sample 4 Temperature History at P1 and P3 

Point A represents the completion of the first weld pass, i.e. one revolution. Point B represents 

the commencement of the second weld pass. The segment AB therefore is the inter-pass time 

between the two passes. Given that there is no welding during the inter-pass time, it is expected 

that the weld would cool slowly under room temperature to lower temperatures. The profile of 

Figure 7.5 however shows that the temperature at P1 increases slightly before falling every time. 

This can be accredited to the error between the calculated value (i.e. when the marker is not 

clearly visible), and the measured value (which is recorded by the camera). As explained above, 

the camera is calibrated between 200°C and 1700°C, and hence values outside this range are not 

detectable. The segment BC represents the duration for the second weld pass. It can be seen that 

higher peak temperatures are achieved during the second pass, and this is due to the temperature 

differences at inter-pass temperature (i.e. when the second pass begins) compared to room 

temperature (i.e. when the first pass begins). Similarly, the slope of the BC segment is less than 

that of the AB segment, signifying the lower cooling rate due to smaller temperature gradients of 

the latter.  

The general profile of the graphs in Figure 7.5 is indicative of the temperature distribution in a 

welding process observed in similar studies (Zondi, 2014). It can be seen that the peak 

temperatures recorded in the P3 curve are higher than those observed in the P1 curve. This could 

be due to the positioning of the respective measurement points. P3 is located at the weld-toe on 

the plate side, while P1 is located at the root at point (0,0). The thermal footprints produced by 

the thermal camera images (Figures 7.1 to 7.4) show that the overall temperature of the specimen 

increases as more weld passes are added. This is because the accumulated heat input increases 

with the increase in weld passes. It can also be observed that the peak temperatures are relatively 
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low as a result of flux insulation of the weld pool. This is an important point to note when 

validating the numerical model. It was mentioned in Chapter 4 above that MIG process was used 

for the test run. The highest temperature recorded for P1 during the MIG process was 12800C. 

7.2 Thermal Analysis Results 

The numerical model was validated using temperature measurements obtained as illustrated in 

Figure 7.6. The region of interest is a 5 x 5 pixel grid. The measurement region is located on the 

outside of the pipe, 6 mm above the weld and 180˚ from the arc. The average temperature of the 

region is plotted. The standard deviation was also monitored and was observed to be relatively 

insignificant. Seven samples were analysed in the numerical model, namely 4, 6, 7, 8, 9, 15 and 

16. 

 
Figure 7-6: Temperature Measurement Location for Numerical Model Validation 

The location identified in Figure 7.6 was carefully chosen to be away from weld start/stop 

interruptions, and also outside the flux protection pool so that the temperature readings obtained 

experimentally would be as comparable with the numerical model as possible. Figure 7.7 presents 

the temperature history plot of a fixed region on the pipe for a chosen number of samples, namely 

4, 6, 7 and 9. Temperatures are taken from the SWIR Camera system in the location presented in 

Figure 7.6 for each specimen. Note that only four samples were chosen in order to illustrate the 

procedure followed in the model validation, but the rest of the samples have similar temperature 

history curves. 
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Figure 7-7: Temperature History Plots (Samples 4, 6, 7 & 9) 

The profiles of the plots presented in Figure 7.7 are similar to that of the curves presented in 

Figure 7.5, even though the measuring points are different. Figures 7.8 to 7.14 show the 

comparison between the measured temperatures and those from the numerical model. 

 
Figure 7-8: Simulation vs. Experimental Temperature History Plots (Sample 4) 
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Figure 7-9: Simulation vs. Experimental Temperature History Plots (Sample 6) 
 

 
Figure 7-10: Simulation vs. Experimental Temperature History Plots (Sample 7) 
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Figure 7-11: Simulation vs. Experimental Temperature History Plots (Sample 8) 
 

 
Figure 7-12: Simulation vs. Experimental Temperature History Plots (Sample 9) 

 

 

Figure 7-13: Simulation vs. Experimental Temperature History Plots (Sample 15) 
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Figure 7-14: Simulation vs. Experimental Temperature History Plots (Sample 16) 

The welding process is not perfectly smooth; therefore, the temperature measurements also do 

not produce a smooth curve, as shown in Figure 7.7. Chipping of the welding slag during the 

experiment also caused sharp peaks in the temperature readings (evident in Figure 7.7). The 

comparison of simulation and experimental resultant temperature histories is shown in Figures 

7.8 to 7.14. The simulation results produce a smoother curve than the IR thermal camera; 

however, the profile of the two curves is comparatively similar. The correlation between the two 

sets of results is therefore considered to be fair. The trends and the rate of cooling (gradient of 

the slope) correspond. The minor differences in the results can be accredited to the following 

reasons: 

a. The simulated welding process is an idealised process, and external, uncontrollable 

factors are not taken into account. This refers to reflections from surrounding surfaces, 

the presence of other heat sources, oversaturation of the detector, uncertainties in the 

measurements and errors in camera calibration. 

b. Other differences between reality and the simulated environment, such as the actual 

welding efficiency, convection heat loss coefficient, ambient temperature and the exact 

volume of the weld. 

c. Errors/limitations in the detector. 

d. Temperature-dependent material properties used were taken from literature. 
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7.3 Residual Stress Measurement Results 

The stress results for each sample are given in Figure 7.15. The stress distribution illustration 

shows that in all the specimens the hoop stress is highly tensile close to the weld centre-line 

(WCL) and decreases as the distance from the WCL increases. The flange-side values show that 

hoop stress becomes compressive at 15 mm – 20 mm. The change in direction of hoop stress 

takes place at a distance of 25 mm – 30 mm on the pipe side. Axial and radial stresses are much 

lower (i.e. less than half of hoop) than hoop stresses in both flange and pipe sides. The dotted 

lines show the approximate position of the WCL. The weld toe is located at approximately twice 

the distance from point (0,0,0) to WCL. 
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Figure 7-15: Stress Profiles for Weld Specimens 

The three components of stress (i.e. hoop, axial and radial) that were measured in each welded 

sample are listed in Table 7.3. The stress values given were recorded at the point closest to the 

weld centreline (i.e. 6 mm away from point 0,0,0 on the flange side, and 13.6 mm away from 

point 0,0,0 on the pipe side, as indicated in Figure 4.5 above). It can be observed from the table 

that hoop stress is the highest of all the three dimensions of stress. The highest observed hoop 

stress on the flange side is 425 MPa in Sample 9, whereas the lowest hoop stress is observed in 

Sample 8 at 292 MPa. On the pipe side the highest hoop stress is 558 MPa in Sample 15, and the 

lowest is 295 MPa in Sample 7. The yield stress of the filler metal is approximately 440 MPa; the 

recorded tensile hoop stresses are therefore very close to or above the yield strength. 
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Table 7-3: Residual Stress Results at WCL 

Sample I 
(Amp) 

V 
(Volts 

S 
(mm/s) 

FR 
(mm/s) 

Mode Flange (MPa) Pipe (MPa) 

      Hoop Axial Radial Hoop Axial Radial 

4 380 30 10 18.3 CA 371 -11 37 431 106 61 

6 380 25 8 18.3 CA 402 52 78 423 85 58 

7 360 25 8 18.3 CA 359 12 36 295 -74 -16 

8 360 25 10 18.3 CA 292 64 82 357 150 1 

9 380 25 10 18.3 CA 425 66 130 507 132 69 

12 360 30 8 16.7 CW 407 51 80 409 41 53 

13 360 30 8 18.3 CW 375 49 42 381 -11 -26 

15 360 25 8 18.3 CW 355 27 65 558 203 148 

16 360 25 8 16.7 CW 412 70 117 507 76 41 

 

Hoop stress is also the most dangerous as it is in tensile form and it contributes to stress-induced 

cracking and hence reduction of fatigue life of the welded structure. Hemmesi et al. (2014) 

showed that the behaviour of residual stresses that are exposed to multiaxial loading is completely 

different from those exposed to uniaxial loading. Farajian et al. (2014) also noted that residual 

stresses are multiaxial in nature. Hence, the superpositioning of WRS and load stress in one 

direction is inadequate to properly account for stresses experienced by the welded structure under 

fatigue loading. The authors showed that in circumferential welds, the principal residual stresses 

in the WCL and weld toe are parallel and normal to the weld bead, respectively. It is for these 

reasons that in the present study the effect of each of the three components of stress is not 

considered to be linear. The study by Lu (2002) also showed that the dominant components of 

residual stress in a circumferential weld are hoop and axial stresses. It was therefore decided to 

rank the two components of residual stress as follows: 

 Radial component has a factor of 1.0 

 Axial component has a factor of 1.1 

 Hoop component has a factor of 1.25 

Table 7.3 was then updated with the ranking shown above, and the resultant stresses are shown 

in Table 7.4. 
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Table 7-4: Ranked Residual Stress Results at WCL 

Sample Mode Flange (MPa) Pipe (MPa) 

  Hoop Axial Radial Net 
WRS 

Hoop Axial Radial Net 
WRS 

4 CA 464 -12 37 489 539 117 61 717 

6 CA 502 57 78 637 529 94 58 681 

7 CA 449 13 36 498 368 -81 -16 271 

8 CA 365 70 82 517 446 165 1 612 

9 CA 531 73 130 734 634 145 69 848 

12 CW 509 56 80 645 511 45 53 609 

13 CW 469 54 42 565 476 -12 -26 438 

15 CW 444 30 65 539 698 223 148 1069 

16 CW 515 77 117 709 634 84 41 759 

 

The lowest net stresses are highlighted in Table 7.4. Samples 4, 7 and 8 (in that order) have the 

lowest net stresses from the plate side. Samples 7, 12 and 13 have the lowest net stresses from 

the pipe side. 
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Figure 7-16: Flange Side Residual Stress Distribution for Samples 4, 7 and 8 
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Figure 7-17: Pipe Side Residual Stress Distribution for Samples 4, 7 and 8 
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The stress distribution of the “lowest three” specimens is shown in Figure 7.16 and Figure 7.17. 

The stress profiles for hoop stress in both the flange and pipe sides are very similar for all three 

specimens. Axial stresses for the flange side show very different readings closer to the weld 

region, and they seem to become more steady as the distance away from WCL increases. Axial 

and radial stresses for Sample 4 are highly compressive on the pipe side at distance of about 

20 mm from the starting point. This distance coincides with the location of the weld toe region. 

A number of studies discussed in this thesis, as shown in Chapter 2, involved fatigue failures that 

originated from the weld toe, wherein the weld toe experienced tensile mean stresses as a result 

of WRS (Rading, 1993; Lu, 2002; Rosenfeld & Kiefner, 2006). However, some researchers have 

shown that weld toes of circumferential welds can be under compressive stress (Pasta & Reynolds 

2007). Although the multiaxiality of residual stress is such that one component of stress doesn’t 

unilaterally determine the position of the maximum principal stress in a welded structure, such 

significant compressive stresses as observed in this case would make it unlikely for failure to 

occur at the weld toe. Apart from Sample 4 early readings, the rest of the samples seem to have 

similar distributions of radial residual stresses across the measured distance.  

Table 7-5: Parametric Combination for Samples 4, 7, 8, 12 and 13 

Sample I 
(Amp) 

V 
(Volts 

S 
(mm/s) 

FR 
(mm/s) 

Mode Heat Input 
(kJ/mm) 

4 380 30 10 18.3 CA 969 

7 360 25 8 18.3 CA 956 

8 360 25 10 18.3 CA 765 

12 360 30 8 16.7 CW 1148 

13 360 30 8 18.3 CW 1148 

 

The identified samples are chosen as the best using the applied criteria of lowest net WRS; 

however, it may still happen that fatigue properties of the said samples are not necessary in 

agreement with this finding given other factors that influence the latter. Furthermore, since the 

parametric combination of the identified three samples is known, this could still be used further 

to identify welding parameters that produce the most optimal welds in terms of WRS distribution. 

Table 7.4 presents the welding combination for the three “best performing” samples in terms of 

residual stress distribution from the flange (or plate) side, and the three from the pipe side. It can 

be seen that the three best samples on the flange side all have the same wire feed rate (FR) of 18.3 

mm/s, and they all have the same mode setting of constant amperage (CA). Sample 7 appears 

both on the flange and pipe sides. The rest of the samples from the pipe side have the same mode 

setting of constant wire (CW) and have the same power input. The settings of current, voltage 

and speed is also the same on the pipe side samples. This effectively means that both mode 
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settings can produce optimal parametric combinations depending upon which residual stress 

distribution is used as criteria between the flange side and the pipe side. The choice of residual 

stress distribution will be influenced by the point and direction of loading of the welded structure. 

For example, a case where the cantilever load is applied at the tip of the free side of the pipe, with 

the flange fixed, would require the flange side stresses to be considered since the forces will be 

acting in that direction. 

The parametric combination of the five samples that are highlighted in Table 7.4 is given in Table 

7.5 together with the heat input of each iteration. The heat input of Sample 4 and Sample 7 are 

very similar in magnitude. Both these samples were generated using the CA mode setting of the 

welding machine. The heat input of Sample 12 and Sample 13 are exactly the same in magnitude, 

even though the wire feed rate of the two is different. The two samples were generated using a 

CW mode setting of the welding machine. It should be noted that the heat input of the two CA 

mode samples differ significantly from that of the two CW mode settings. It is clear, therefore, 

that if the four samples with different heat inputs can all have favourable residual stress properties 

compared to the rest of the samples, then the mode setting clearly plays a role in determining the 

resultant conditions of the residual stress fields in the welds. 

7.4 Mechanical Analysis Results 

Typical stress results are given in Figure 7.18 and Figure 7.19. The final deformation of the 

sample is shown in Figure 7.20 (deformation is exaggerated by a factor of 5). The measurements 

are taken after 4 hours of simulation time, at which point the sample has cooled to 29°C. High 

stresses can be seen in the weld area and the heat affected zone as would be expected. It can also 

be observed from the figures that stresses are higher in the areas where the weld specimen was 

constrained during welding, as shown in Figure 5.7 above. Such high stresses at the points of 

constraints are however far from the area of interest and hence can be ignored for the purposes of 

analysing results. The stress magnitude reflecting on the von Mises mapping can be read from 

the left of the schematic and these are discussed further below. The presented stress results are 

linked to the temperature histories presented in section 7.2 
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Figure 7-18: Equivalent stress results 

Figure 7-19: Equivalent stress results (section view) 

Closer examination of Figure 7.20 shows that the regions of significant distortion are in the 

middle of the plate. This is due to buckling of the section of the plate that was not fixed as shown 

in Figure 5.7 above. The maximum observed distortion of approximately 0.22 mm (i.e. 1.12/5) is 

considered reasonable in a plate of 10 mm thickness after a three-pass weld bead. The results 

shown in the stress contours are in line with results observed from similar studies discussed in 

section 2.2 above. 
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Figure 7-20: Final deformation 

7.5 Comparison of experimental and simulation results 

Figure 7.21 shows the comparison between the physical weld obtained through experimentation 

and the simulated version. It can be seen through the shape of the multi-pass weld bead that the 

penetration between the two compares well. 

  
Figure 7-21: Weld Penetration for Sample 4 

The simulated results are compared to the experimental results in Figure 7.22 to Figure 2.29. 
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Figure 7-22: Comparison between the mechanical experimental and simulation results (Sample 4; flange) 

 
Figure 7-23: Comparison between the mechanical experimental and simulation results (Sample 6; flange) 

 

 
Figure 7-24: Comparison between the mechanical experimental and simulation results (Sample 8; pipe) 
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Figure 7-25: Comparison between the mechanical experimental and simulation results (Sample 8; flange) 

 
Figure 7-26: Comparison between the mechanical experimental and simulation results (Sample 7; flange) 

 
Figure 7-27: Comparison between the structural experimental and simulation results (Sample 9; flange) 
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Figure 7-28: Comparison between the structural experimental and simulation results (Sample 15; flange) 

 
Figure 7-29: Comparison between the structural experimental and simulation results (Sample 16; flange) 
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c. Welding defects from the physical welding process that have not been accounted for in 

the simulation. 

d. Annealing has not been included in the model. 

e. It is likely that the position of the simulation’s stress measurement points differ slightly 

from the actual measuring points. The geometry of the welded specimen makes it difficult 

to ascertain the exact point of measurement consistently in all cases.  

f. Uncertainties/errors in the neutron diffraction stress measurements, the measurement 

process is not perfect. 

7.6 Bead Geometry Results 

Bead geometry was measured as stipulated in Figure 4.5 above. The results are tabulated in Table 

7.6. 

Table 7-6: Bead Geometry Results 

Bead Geometry 

 BW (mm) BP (mm) BH (mm) HAZ Plate (mm) HAZ Pipe (mm) 

Sample 4 12.89 8.96 1.39 1.28 4.43 

Sample 6 12.4 8.3 1.7 1.6 3.3 

Sample 7 12.7 9.9 1.8 0.9 3.8 

Sample 8 12.3 8.61 1.2 1.4 3.3 

Sample 9 13.3 8.6 2.1 0.9 3.8 

Sample 12 10.8 7.4 0.7 2.1 5.8 

Sample 13 9.8 6.3 0.8 1.3 6.2 

Sample 15 9.8 6.6 1.0 1.4 2.8 

Sample 16 9.4 6.6 1.1 2.8 1.7 

 

It must be noted that all measurements were done only after the third pass, such that the 

dimensions given in Table 7.6 are those of a multi-pass weld. The objective as discussed in 

Chapter 6 was to minimise all response variables except for BP, which should be maximized. If 

one applies the bead geometry as criterion to determine which samples have the best dimensions 

according to the optimization objectives, the results shown in Table 7.7 are obtained. It can be 

seen that Samples 7 and 16 are at the top, followed by Samples 12, 13, and 15. Sample 4 is in 

third place. Four samples that were found to be the best according to the residual stress criteria 

also appear is the list of Table 7.7, namely Samples 4, 7, 12 and 13. This is indicative of the 

consistency in the experimental results. 
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Table 7-7: Ranking of Samples Using Bead Geometry as Criterion 

# BW BP BH HAZ PT HAZ PP 

1 16 7 12 7, 9 16 

2 13, 15 4 13 4 15 

3 12 8 15 13 6, 8 

 

7.7 Microstructural Analysis 

The parent material of the pipe is the same for all samples, so is the one for the plate, since all 

specimens were cut from the same material. Waterjet cutting was used to section the pipe into 

100 mm lengths and the plate into 178 x 178 mm squares. Figure 7.30(a) is a low magnification 

image of the test specimen, to indicate the position of the unaffected plate material. Figure 7.30(b) 

and (c) are micrographs, revealing a typical pearlite and ferrite grain structure typical in steels 

with a grain size average of ±0.11 µm. An indication of the chemical composition was obtained 

through Energy-Dispersive Spectroscopy (EDS) analysis from SEM. Although the carbon 

content is included and measured, it is well understood that carbon cannot be accurately 

quantified using this method. All the macrographs and micrographs shown below were taken 

using Sample 4, 6, 7 and 8 for illustration purposes. Appendix E gives the macrographs for each 

sample for reference purposes.  
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Figure 7-30: (a) A macrograph of the overall test specimen showing the position of the unaffected plate material. 
(b) A micrograph obtained at a magnification of 500x of the as-received plate material. (c) A micrograph obtained 
at 3000x magnification to show the lamellae cementite (Fe3C) grains within the pearlite grains 
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Figure 7.31 shows the microstructure of the plate parent material. The PM is composed of the 

ferrite-pearlite structure which is common in steels. The average grain size of the plate PM is 

±0.14 µm. The average grain size is obtained by using the line intercept method on scaled images. 

 
Figure 7-31: Plate PM Micrograph (All Samples) 
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Figure 7.32 shows: (a) Macrograph of the coarse grain region within the HAZ of the pipe side in 

Sample 6, obtained at a magnification of 500x. (b) High resolution micrograph of the HAZ of the 

pipe side in Sample 6 at a magnification of 2000x. (c) Chemical analysis obtained through EDS. 

The grains in this region are relatively large. 

 
Figure 7-32: Sample 6 Coarse Grain Region within the HAZ Micrograph 
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Figure 7.33 shows a micrograph of the fine grain region within HAZ of the pipe side where the 

Fe3C lamellae structures have dissolved into smaller spheroids. This microstructure is composed 

of a mixture of ferrite grains, martensite, and retained pearlite grains. 

 
Figure 7-33: Sample 6 Fine Grained Region within the HAZ Micrograph 
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Figure 7.34 is a micrograph of the sub-critical region within the HAZ of the plate metal. In this 

micrograph pearlite and ferrite grains are observed. The pearlite grains have formed smaller 

colonies and the ferrite grains appear to have enlarged as a result of parent metal grain merging 

with HAZ grains to form new grains. 

 
Figure 7-34: Sample 7 Sub-Critical Region within the HAZ 

Figure 7.35 is a micrograph of the primary weld. The microstructure observed in this figure 

appears to be a tempered martensite microstructure. It can be seen that the WM shows a 

micrograph with a featherlike structure. The featherlike or branch like structure occurs as a result 

of the formation of dendrites, which occur when molten metal is cooled rapidly. The weld is 

composed of pro-eutectoid ferrite with the Widmaenstaetten morphology often seen as a result of 

rapid phase transformation that occurs due to rapid cooling. 
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Figure 7-35: Sample 6 WM Micrograph 

  

Pro-eutectoid microstructure 
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Figure 7.36 shows a micrograph of the plate as-received. A micrograph with a typical grain 

structure of carbon steel is observed, with pearlite and ferrite grains and an average grain size of 

0.14 µm. 

 
Figure 7-36: Micrograph of the parent material of the plate (All Samples) 
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Figure 7.37 shows the coarse-grained region of the plate material, where the large grains have 

formed sub-grain pearlite lathes within the initial grain structure. 

 
Figure 7-37: Micrograph of the coarse-grained region next to the weld bead (Sample 7) 
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Figure 7.38 and Figure 7.39 show micrographs of the region within the HAZ that comprises both 

the coarse grains and smaller pearlite grains. The average grain size was calculated to be 

±0.37 µm. Smaller grains and the lamellar structure has begun to form spheroids as a result of the 

heat input from welding. 

 
Figure 7-38: The coarse grain region on the plate side (Sample 7) 
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Figure 7-39: Fine grained region with the HAZ of the plate (Sample 7) 

A summary of the microstructure of all specimens is given in Table 7.8. It is clear from the table 

that the HAZ area has significant portions of martensitic phase, which contributes to residual 

stress magnification as a result of phase-related volumetric changes. The weld metal is mainly 

made of proeutectoid ferrite. The formation of both phases is influenced by the cooling rate during 

the weld thermal cycle. The cooling rate therefore affects phase transformation, which in turn can 

have an effect on the formation of welding-induced residual stresses. 

Table 7-8: Summary of Specimen Microstructures  

Sample PTHAZ WM PPHAZ 

4 Tempered martensite Proeutectoid ferrite Tempered martensite 

6 Tempered martensite Featherlike dendrites martensite 

7 Lamellar pearlite Proeutectoid ferrite Pearlite-ferrite 

8 Lamellar pearlite Proeutectoid ferrite Ferrite-martensite 

9 Lamellar pearlite Proeutectoid ferrite Ferrite-pearlite 

12 Tempered martensite Proeutectoid ferrite Ferrite, pearlite, bainite, 
martensite 

13 Tempered martensite Proeutectoid ferrite Ferrite, pearlite, martensite 

15 Tempered martensite Proeutectoid ferrite Ferrite, martensite 

16 Tempered martensite Proeutectoid ferrite Ferrite, martensite, pearlite 
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7.8 Hardness Results 

7.8.1 Hardness Experimental Results 

Hardness measurements were performed as explained in Chapter 4. The obtained hardness results 

are tabulated in Table 7.9. 

Table 7-9: Hardness Results for All Specimens (Load of 100gf) 

Sample  Pipe PM Pipe HAZ  Weld Metal  Plate HAZ  Plate PM 

4 VHN 185.4± 5.4 193.6 ± 4.6 211.8 ± 7.4 216.6 ± 8.8 180.4 ± 6.2 

Accuracy  3.0 2.5 3.7 5.6 4.4 

Equivalent 
UTS(MPa) 

591.7 622.3 690.2 708.1 573.1 

6 VHN 191.8 ± 4.4 198 ± 8.1 210.2 ± 18.9 234.8 ± 9.6 187 ± 25.1 

Accuracy 2.6 4.5 10.4 4.8 19.6 

Equivalent 
UTS(MPa) 615.6 638.7 684.2 776.0 597.7 

7 VHN 171.4 ± 2.8 186.8 ± 1.6 213.8 ± 9.3 208.6 ± 10.7 178.8 ±11.9 

Accuracy 1.9 0.8 5.6 5.6 11.2 

Equivalent 
UTS(MPa) 539.5 596.9 697.7 678.3 567.1 

8 VHN 180.2 ± 6.7 185.8 ± 10.6 209 ±23.4 226.3 ± 3.9 169 ±9.0 

Accuracy 3.8 12.7 13 5.1 3.2 

Equivalent 
UTS(MPa) 572.3 593.2 679.8 744.1 530.6 

9 VHN 205.4 ± 26.3 183.6 ± 3.3 201.8± 17.3 202.8 ±8.7 166.2±7.4 

Accuracy 14.4 3.8 12.4 3.7 7.4 

Equivalent 
UTS(MPa) 666.3 585.0 652.9 656.5 520.1 

12 VHN 176.6 ± 7.7 207.2 ± 12.1 247.8 ± 16.8 275.8 ± 7.0 178.8 ± 6.2 

Accuracy 4.8 6.1 7.5 3 3.4 

Equivalent 
UTS(MPa) 559 673.1 824.5 928.9 567.1 

13 VHN 169.4 ±10.2 200.4 ±10.8 243.6± 19.8 233.6 ± 16.9 172.4± 5.3 

Accuracy 5.5 9.9 13 8.3 3.4 

Equivalent 
UTS(MPa) 532.0 647.7 808.8 543.3 542 

15 VHN 180.6 ± 8.2 214 ± 8.9 225 ± 17.0 280 ± 28.1 168.8 ±10.0 

Accuracy 4.8 4.2 12.1 13.2 8 

Equivalent 
UTS(MPa) 573.8 698.4 739.5 944.6 529.8 

16 VHN 174.8±4.4 186.9± 8.1 210.4± 18.9 219.8 ± 9.6 184.3± 25.1 

Accuracy 2.6 4.5 10.4 4.8 19.6 

Equivalent 
UTS(MPa) 552.0 597.2 684.9 719.9 587.7 
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It can be observed from Table 7.9 that the parent metal has the lowest hardness on both plate side 

and pipe side compared to the HAZ and the weld metal. For all but two specimens, hardness 

increases in the manner of PPHAZWMPTHAZ (PPHAZ = pipe side HAZ, PTHAZ = plate 

side HAZ), wherein the plate-side HAZ is the highest. The highest observed value of hardness is 

280, which is PTHAZ of Sample 15. The lowest hardness value observed (excluding PM) is 183.6 

in the plate side HAZ of Sample 9. Given that the objective is to minimise hardness, the top three 

samples in terms of results tabulated in Table 7.9 are 9, 8 and 7, in that order. The said samples 

are highlighted in Table 7.9. It should be noted that “accuracy” values are calculated as half the 

difference between upper and lower hardness value in each case 

7.8.2 Maximum Hardness Calculations 

Cold cracking or hydrogen-induced-cracking [HIC] is one of the most significant factors that 

reduces life expectancy of a welded structure. The main factors that contribute to HIC include 

microstructure of high hardness, hydrogen content and tensile restraint stresses. The maximum 

HAZ hardness (often limited to 350 HV for HSLA steels) is generally regarded as an approximate 

index for susceptibility to cold cracking (Bang et al., 2002). 

Kasuya et al. (1995) suggested a formula to work out maximum hardness as follows: 

𝐻𝑉 =
ுಾା ுಳ

ଶ
− (𝐻ெ −  𝐻஻).

ୟ୰ୡ୲ୟ୬ (௑)

ଶ.ଶ
       (7.3) 

Where; 

𝐻ெ is the hardness value where martensite volume fraction reaches 100% in CG HAZ 

𝐻஻ is the hardness value where martensite volume fraction becomes almost zero percent in CG 
HAZ. 

𝑋 is defined by: 𝑋 =  
ସ.୪୭୥ (

ഓ

ഓಾ
)

୪୭୥ (
ഓಳ
ഓಾ

)
− 2       (7.4) 

Where; 

𝜏 is the cooling time between 800oC and 500oC [t8/5] 

𝜏ெ is the cooling time corresponding to 𝐻ெ 

𝜏஻ is the cooling time corresponding to 𝐻஻ 

The four constants [𝐻ெ, 𝜏ெ, 𝐻஻ and 𝜏஻] depend on the chemical composition of steel [i.e. weight 

- %] and are defined as follows: 

𝐻ெ = 884𝐶(1 − 0.3𝐶ଶ) + 297        (7.5) 
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𝜏ெ = exp (10.6𝐶𝐸1 − 4.8)        (7.6) 

𝐶𝐸1 = 𝐶௣ +
ௌ೔

ଶସ
+

ெ೙

଺
+

஼ೠ

ଵ଺
+

ே೔

ଵଶ
+

஼ೝ(ଵି଴.ଵ଺.ඥ஼ೝ)

଼
+

ெ೚

ସ
+ ∆𝐻    (7.7) 

𝐶௣ = 𝐶 for 𝐶 ≤ 0.3 and ஼
଺

+ 0.25 for 𝐶 > 0.3  

∆𝐻 = 0 for 𝐵 ≤ 1𝑝𝑝𝑚; 0.03𝑓ே for 𝐵 = 2𝑝𝑝𝑚; 0.06𝑓ே for 𝐵 = 3𝑝𝑝𝑚; 0.09𝑓ே for 𝐵 ≥ 4; where 
‘B’ is the boron content for S < 0.016 wt.% 

𝑓ே =
(଴.଴ଶିே)

଴.଴ଶ
          (7.8) 

𝐻஻ = 145 + 130tanh (2.65𝐶𝐸2 − 0.69)      (7.9) 

𝐶𝐸2 = 𝐶 +
ௌ೔

ଶସ
+

ெ೙

ହ
+

஼ೠ

ଵ଴
+

ே೔

ଵ଼
+

஼ೝ

ହ
+

ெ೚

ଶ.ହ
+

௏

ହ
+

ே್

ଷ
     (7.10) 

𝜏஻ = exp (6.2𝐶𝐸3 + 0.74)        (7.11) 

𝐶𝐸3 = 𝐶௣ +
ெ೙

ଷ.଺
+

஼ೠ

ଶ଴
+

ே೔

ଽ
+

஼ೝ

ହ
+

ெ೚

ସ
       (7.12) 

The above equations are used to calculate maximum HAZ hardness from the chemical 

composition, and calculate cooling time from the thermal analysis. Cold cracking is determined 

through comparing the calculated maximum HAZ hardness with limiting hardness of 350 HV. 

The geometry of FZ and HAZ is predicted from the peak temperature distribution. Average peak 

temperatures of 1316oC and 954oC represent CG HAZ and FG HAZ respectively (Bang et al., 

2002). 

The chemical composition of filler metal, plate material and pipe material as given in Chapter 4 

was used to calculate the maximum hardness of the FZ, the HAZ on the plate side and the HAZ 

on the pipe side respectively. Energy input per unit length was calculated using equation 5.1 to 

5.4 in Chapter 5. The same was then used to calculate the cooling rate t8-5. Appendix F provides 

a graph from where the value of the cooling rate can be read using the heat input value. The 

average heat input value for the experiments conducted in this study is 0.7 MJ/m, which results 

to t8-5 of 3.2 seconds. The Boron content is assumed to be 2, thereby giving a value of ΔH of 0.03. 

The resultant maximum hardness values are given in Table 7.10 for all targeted parts of the weld-

piece. 

Table 7-10: Calculated Hardness Values 

Hardness Fusion Zone Pipe-side HAZ Plate-side HAZ 

HM 376 472 472 

HB 195 211 192 

HVmax 209 243 213 
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As can be seen from Table 7.10, all maximum hardness values are well below the 350 limit, 

which means that the structure is less susceptible to HIC. 

7.9 Fatigue Test Results 

The fatigue tests were conducted on several specimens prepared according to the CA mode 

settings of the parametric combination discussed in Chapter 4. This is to say that all specimen 

were prepared according to welding parameters used for Samples 4, 6, 7, 8 and 9. Two tests were 

conducted for each sample under same load conditions and the algebraic average of cycles to 

failure was taken as indication of fatigue life of the sample. 

7.9.1 Static and Fatigue Trial Tests 

Static tests were first conducted to establish the maximum load on a trial test specimen as 

indicated in Chapter 4. The first test was conducted at a crosshead speed of 2 mm/min. The 

maximum load measured was 260 kN. The specimen did not fracture and the pipe was deformed. 

The load displacement graph was analysed and the yield strength determined as 140 kN. Figure 

7.40 shows the position of the yield point on the Load-Displacement curve. 

 
Figure 7-40: Trial Fatigue Test to Determine Yield Point 

Figure 7.41 shows images of the static test specimen. (a) As can be observed, there was 

deformation or buckling of the pipe. This problem was resolved by manufacturing a steel plug to 
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insert at the tip of the pipe for support; this was used in all the tests. (b) This is the side view of 

the statically loaded specimen. (c) The top view of the static test specimen where the buckling of 

the plate is observed. 

 

 

 
Figure 7-41: The Static Test Specimen after the Test 

Following the static tests, fatigue tests were conducted on two trial specimens applying a 

maximum load of 90% of yield strength, i.e. 126 kN. The first trial specimen based on Sample 4 

characteristics failed at approximately 73,494.7 cycles as shown in Figure 7.42. 

 
Figure 7-42: Number of cycles vs. Fatigue load for 1st Trial Specimen (4A) at 126 kN 
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Figure 7.43 (a) shows the front of the specimen loaded at 126 kN, at a frequency of 5 Hz. 

(b) shows the damage observed on the specimen on face where the compressive load was applied 

directly. Two primary cracks are observed. The first crack is an open crack and can be clearly 

noticed in the weld. This crack propagates along the length of the third weld pass, through the 

first weld pass and into the parent material. The second crack can be seen originating from the 

third weld pass, through the heat affected zone of the pipe as shown in Figures 7.43 (c) and (d). 

It is not easy to identify the origin of the crack in this case. 

 
Figure 7-43: Failed Specimen of 1st Trial Test at 126 kN 

The second trial test (Sample 4C) was tested under a maximum load of 112 kN, i.e. 80% of the 

yield load, at a frequency of 8 Hz. The displacement failure criteria was reduced from 5 mm to 2 

mm displacement of the actuator. The graph shown in Figure 7.44 illustrates a plot of the test data 

as received from the laboratory report. The vertical axis is a record of the displacement measured 

by the machine actuator, the horizontal axis represents the number of cycles to failure. At the 

specified load the specimen started to fail at approximately 140 000 cycles. The data set shown 

in Figure 7.43 however is representative of the 2 mm failure criterion; and hence a new test had 

to be redone at 5 mm criterion after this trial test. 
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Figure 7-44: Displacement vs. Number of Cycles for 2nd Trial Test at 112kN 

Figure 7.45 (a) shows the front of Sample 4C. (b) shows a featherline crack that originates from 

the weld toe on the flange side and propagates into the weld metal. 

 

 
Figure 7-45: (a) Sample 4C front face. (b) top view of damage observed on the welded specimen 

7.9.2 Specimen Fatigue Tests  

On completion of the trial tests it became clear that the load 112 kN, at frequency of 8 Hz and 5 

mm failure criterion was ideal for the envisaged fatigue tests. The first specimen to be tested 

under these conditions was Sample 4D. At this load 116,000 cycles were recorded before failure 

at the displacement limit of 5 mm. Figure 7.46 shows a plot of the test data as received from the 

laboratory report. The vertical axis is a record of the displacement measured by the machine 

actuator, the vertical axis represents the number of cycles recorded to failure. It can be observed 

that at displacement of approximately 2 mm the slope of the graph changes, which means that 

there was yielding experienced by the specimen. However, the test carried on until the set 

displacement limit of 5 mm was reached. 
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Figure 7-46: Displacement vs Cycles to failure for Sample 4C 

Sample 4E was tested at a load of 112 kN at a frequency of 8 Hz and a displacement limit of 5 

mm. At this load 164,400 cycles were recorded before failure. Figure 7.47 shows a plot of the 

test data as received from the laboratory report.  

 
Figure 7-47: Displacement vs Cycles to Failure for Sample 4E 

Sample 6C was tested at a load of 112 kN, at a frequency of 8 Hz and a displacement limit of 5 

mm. At this load 86,500 cycles were recorded before failure. Figure 7.48 shows a plot of the test 

data as received from the laboratory report. 

 
Figure 7-48: Displacement vs Cycles to Failure for Sample 6C 
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Figure 7.49 (a) shows the front face of Sample 6C. (b) shows a top view of the crack through the 

weld and the plate. (c) shows the propagation of the crack from the weld through the thickness of 

the plate. It can be seen that the weld failed at the weld toe on the plate side. 

 

Figure 7-49: The Damaged Specimen of Sample 6C 

Sample 7A was tested at a load of 112 kN, at a frequency of 8 Hz and a displacement limit of 5 

mm. At this load 104,600 cycles were recorded before failure. Figure 7.50 shows a plot of the 

test data as received from the laboratory report. 

 
Figure 7-50: Displacement vs Cycles to Failure for Sample 7A 

Figure 7.51 shows the front view of Sample 7A. (b) Shows the crack through the weld metal and 

the plate. (c) shows the back view of the crack, that has penetrated through the weld and the plate. 

The weld failed at the weld toe region 
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Figure 7-51: The Damaged specimen of Sample 7A 

Sample 8C was tested at a load of 112 kN at a frequency of 8 Hz and a displacement limit of 5 

mm. At this load 70,545 cycles were recorded before failure. Figure 7.52 shows a plot of the test 

data as received from the laboratory report. 

 
Figure 7-52: Displacement vs Cycles to Failure for Sample 8C 

Sample 9C was tested at a load of 112 kN at a frequency of 8 Hz and a displacement limit of 5 

mm. At this load 77,200 cycles were recorded before failure. Figure 7.53 shows a plot of the test 

data as received from the laboratory report 
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Figure 7-53: Displacement vs Cycles to Failure for Sample 9C 

Table 7.11 gives a summary of all the test results for each specimen. Two specimens were tested 

for each sample, and then an average of the two tests was taken. It is clear that Sample 4 has the 

highest number of cycles, followed by Sample 7, and then Sample 6. 

Table 7-11: Summary of Number of Cycles to Failure for Each Specimen 

Sample no  Number of cycles  Average 
cycles  

  1st Specimen 2nd Specimen   

4 116,000  164,400 140,200 

6 86,500 86,300 86,400 

7 104,600 164,600 134,600 

8 75,400 70,545 72,972.5 

9 76,900 77,200 77,050 

 

Figure 7.54 illustrates the relationship between the net residual stresses that were tabulated in 

Table 7.4 and the cycles to failure for each sample. It should be noted that fatigue tests were 

performed on five specimens that were generated using the constant amperage mode of the 

welding machine. The CW mode was therefore not considered for the fatigue tests. It is clear 

from figure 7.54 that Sample 4, which has the highest number of cycles, also has the lowest 

residual stress. Sample 6 has a larger amount of residual stress compared to Sample 4, and also a 

corresponding lower number of cycles. Sample 7 has the second highest number of cycles and 

also second lowest residual stress. Sample 9 has the highest residual stress the second lowest 

number of cycles. Sample 8 is an outlier in the data set. It has lowest stress levels and lower 

number of cycles. This could be caused by the fact that the specimen’s actual stress condition 

was different from the predicted one. Four out of five specimens however behaved as expected 

during the fatigue tests. This proves therefore that residual stresses affect fatigue life of the welded 

pressure vessel. The tensile hoop stresses in the circumferential nozzle-shell joint shorten fatigue 

life of the welded structure. 
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Figure 7-54: Cycles to Failure vs Net Residual Stress 

7.10 Parametric Optimisation Results 

Table 7.12 is the input/output parameter matrix for all input parameters and response variables 

studied in the present research. There are five input parameters and ten response variables. The 

table was populated using the results from experiments conducted as explained in Chapter 4. 

Table 7-12: Input/Output Parameter Matrix   

Exp. 
No. 

Input Parameters Response Variables 

I V S FR MODE BW BH BP PPHAZ PTHAZ VHN 
(PPHAZ) 

VHN 
(WM) 

VHN 
(PTHAZ) 

PTRS 

4 380 30 10 18.3 CA 12.89 1.39 8.96 4.43 1.28 193.6 211.8 216.6 371 

6 380 25 8 18.3 CA 12.44 1.7 8.3 3.27 1.59 198 210.2 234.8 402 

7 360 25 8 18.3 CA 12.7 1.8 9.94 3.76 0.97 186.8 213.8 208.6 359 

8 360 25 10 18.3 CA 12.32 1.19 8.61 3.28 1.35 185.8 209 226.3 292 

9 380 25 10 18.3 CA 13.29 2.1 8.61 3.76 0.97 183.6 201.8 202.8 425 

12 360 30 8 16.7 CW 10.76 0.7 7.37 5.84 2.13 207.2 247.8 275.8 407 

13 360 30 8 18.3 CW 9.81 0.82 6.29 6.15 1.31 200.4 243.6 172.4 375 

15 360 25 8 18.3 CW 9.79 1.05 6.61 2.77 1.36 214 225 280 355 

16 360 25 8 16.7 CW 9.41 1.05 6.61 1.67 2.83 186.86 210.39 219.75 412 

 

The response variables recorded above are the following: 

BW = Bead width in mm 

BH = Bead height in mm 

BP = Bead penetration in mm 

PTHAZ = HAZ with on plate side in mm 

PPHAZ = HAZ width on pipe side in mm 
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VHN (PTHAZ) = Vickers hardness on HAZ of plate side in HV 

VHN (WM) = weld metal hardness in HV 

VHN (PPHAZ) = Vickers hardness on HAZ of pipe side in HV 

7.10.1 Statistical Analysis Results 

The data in Table 7.12 is used to develop mathematical models using regression analysis. Table 

7.13 presents the ANOVA table for BW. This ANOVA table is presented for purposes of 

explaining the statistical analysis, and the rest of the ANOVA tables are given in Appendix F. 

Table 7-13: ANOVA For Bead Width (BW) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 17.78693 5 3.557386 10.25902 0.041927 significant Std. 
Dev 0.588861 

A-I 0.050205 1 0.050205 0.144783 0.728915 
 

Mean 11.49 

B-V 0.254294 1 0.254294 0.733349 0.454753 
 

C.V. % 5.124984 

C-S 0.009645 1 0.009645 0.027814 0.878155 
 

PRESS 8.665858 

D-FR 0.081225 1 0.081225 0.234242 0.661528 
 

R-Sqd 0.944746 

E-MODE 5.553693 1 5.553693 16.0161 0.027972 
 

Adj. R-
Sqd 0.852657 

Residual 1.04027 3 0.346757 
   

Pred. 
R-Sqd 0.539716 

Cor Total 18.8272 8 
    

Adeq. 
Precsn 7.433119 

 

The Model F-value of 10.26 implies the model is significant. There is only a 4.19% chance that 

an F-value this large could occur due to noise. In this case factor ‘E’ is significant. Note that the 

factors on the first column of Table 7.13 are linked back to Table 7.12. The difference between 

‘Adjusted R-Squared’ and ‘Predicted R-Squared’ values is not too big, but could have been 

closer. "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. 

The ratio of 7.433 indicates an adequate signal. This model can be used to navigate the design 

space. 

Sum of squares due to error (SSE) is also referred to as summed square of residuals and it 

measures the total deviation of the response values from the fit. A good result is a value closer to 

zero. R-Squared is a ratio of the regression sum of squares to the total sum of squares. A good 

result is A value closer to one. Adjusted R-Squared is the R-Square value adjusted based on 

residual degrees of freedom. A value closer to unity indicates good result. 
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The Model for BH has a F-value of 3.38, which implies the model is not significant relative to 

the noise. There is a 17.23 % chance that an F-value this large could occur due to noise. In this 

case there are no significant model terms. The “Adeq Precision” ratio of 5.064 is greater than 4 

and indicates an adequate signal. The model can be used to navigate the design space. The BP 

model is also insignificant. Only factor ‘E’ is significant. The model has adequate signal though. 

PPHAZ model is also not significant; with an adequacy ratio of only 3.9, this model does not 

have an adequate signal to be used to navigate the design space. The PTHAZ model is not 

significant and none of the model terms are significant. The model is however adequate to be 

used for navigating design space. The VHN (PPHAZ) model is insignificant and inadequate, 

whereas the VHN (WM) is insignificant and adequate, and the VHN (PTHAZ) is not significant 

and not adequate. The residual stress model is not significant on the plate side (PTRS), but the 

model is adequate. The PPRS model is adequate and significant. 

Table 7-14: Summary of Significant Model Terms 

Response 
Model  & p-value 

Active Effect      & p-
value 

Adequacy 

BW 0.0419 E (p = 0.0280) Adequate 

BH 0.1723  Adequate 

BP 0.0773 E (p = 0.0210) Adequate 

PPHAZ 0.2648 B (p = 0.0481) Inadequate 

PTHAZ 0.1694 D (p = 0.0557) Adequate 

VHN(PPHAZ) 0.5353  Inadequate 

VHN(WM) 0.1058 B (p = 0.0541) Adequate 

VHN(PTHAZ) 0.9717  Inadequate 

PTRS 0.2647 A (p = 0.0672) Adequate 

PPRS 0.0479 

A (p = 0.0175)  
Adequate B (p = 0.0236) 

C (p = 0.0745) 

E (p = 0.0092) 

 

Table 7.14 gives a summary of significant model terms, and those with p-values closest to 0.05. 

Out of ten response models, two have significant model p-values, four have significant active 

effects, and seven are adequate. The most active factors seem to be ‘MODE’ and ‘Voltage’, given 

their frequency of appearance in Table 7.14. 
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Figure 7-55: Normal Plot of Residuals for BW 

The BW normality plot shown in Figure 7.55 shows that the residuals are relatively normal. The 

‘externally studentised residuals’ show that there are no significant outliers. Only the two 

significant models’ plots were considered here. 
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Figure 7-56: One Factor Plots for Active Effects 

Figure 7.56 shows the one factor correlation curves for the active effects of the significant models. 

The proportional relationship between PPHAZ and voltage is clear; and since voltage directly 

affects heat input, it can be deduced that PPHAZ is directly affected by heat input. Bead width is 

affected by the categorical factor “MODE”. The residual stress on the pipe side varies 

proportionally with current and inversely with voltage. 

The following equations are presented for optimisation: 

The following objective equations were developed: 

𝐵𝑊(𝐶𝐴) = 9.491 + 0.0107𝐼 + 0.805𝑉 + 0.0468𝑆 − 0.178𝐹𝑅    (7.13) 

𝐵𝑊(𝐶𝑊) = 6.627 + 0.0107𝐼 + 0.805𝑉 + 0.0468𝑆 − 0.178𝐹𝑅   (7.14) 

𝐵𝐻(𝐶𝐴) = −3.569 + 0.0187𝐼 − 0.0702𝑉 − 0.0677𝑆 + 0.0375𝐹𝑅   (7.15) 

𝐵𝐻(𝐶𝑊) = −4.021 + 0.0187𝐼 − 0.0702𝑉 − 0.0677𝑆 + 0.0375𝐹𝑅   (7.16) 

𝐵𝑃(𝐶𝐴) = 28.215 − 0.0361𝐼 + 0.0833𝑉 − 0.206𝑆 − 0.3375𝐹𝑅   (7.17) 
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𝐵𝑃(𝐶𝑊) = 24.976 − 0.0361𝐼 + 0.0833𝑉 − 0.206𝑆 − 0.3375𝐹𝑅   (7.18) 

𝑃𝑇𝐻𝐴𝑍(𝐶𝐴) = 11.94 + 0.00996𝐼 − 0.0434𝑉 − 0.0205𝑆 − 0.7156𝐹𝑅   (7.19) 

𝑃𝑇𝐻𝐴𝑍(𝐶𝑊) = 12.20 + 0.00996𝐼 − 0.0434𝑉 − 0.0205𝑆 − 0.7156𝐹𝑅   (7.20) 

𝑉𝐻𝑁(𝑊𝑀)𝐶𝐴 = 250.4 − 0.44𝐼 + 4.23𝑉 − 5.02𝑆 + 3.253𝐹𝑅    (7.21) 

𝑉𝐻𝑁(𝑊𝑀)𝐶𝑊 = 257.8 − 0.44𝐼 + 4.23𝑉 − 5.02𝑆 + 3.253𝐹𝑅    (7.22) 

𝑃𝑇𝑅𝑆(𝐶𝐴) = −457.58 + 4.05𝐼 − 1.34𝑉 − 14.55𝑆 − 27.8𝐹𝑅    (7.23) 

𝑃𝑇𝑅𝑆(𝐶𝑊) = −429.28 + 4.05𝐼 − 1.34𝑉 − 14.55𝑆 − 27.8𝐹𝑅    (7.24) 

𝑃𝑃𝑅𝑆(𝐶𝐴) = −2344.4 + 7.56𝐼 − 22.63𝑉 + 42.59𝑆 + 7.19𝐹𝑅    (7.25) 

𝑃𝑃𝑅𝑆(𝐶𝑊) = −2101.78 + 7.56𝐼 − 22.63𝑉 + 42.59𝑆 + 7.19𝐹𝑅   (7.26) 

7.10.2 Multi-Objective Optimisation Results 

Simultaneous optimisation of all the objective functions produced a set of 43 non-dominated 

solutions ranked at unity in Figure 7.57. The other five solutions ranked second on the histogram 

are dominated, and hence do not form part of the Pareto front. MATLAB plots two functions at 

a time within the Pareto front. Some of the Pareto curves are shown in Figure 7.58. 

 
Figure 7-57: The Rank Histogram for Optimal Solutions 
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Figure 7-58: Pareto Front for a) BH vs. BW, b) PPHAZ vs. BP, c) VHN PPHAZ vs PTHAZ  

Observing the curves in Figure 7.58 and Figure 7.59, one can see that members of the Pareto set 

lie within the Pareto front curve and that there are no significant outliers. This demonstrates that 

the Pareto set comprises non-dominated solutions whose optimality has been verified by the 

multiobjective optimisation algorithm.  

b) PPHAZ vs. BP 

c) VHN (PPHAZ) vs. PTHAZ 

a) BH vs. BW 
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Figure 7-59: Pareto Front for VHN (PTHAZ) vs. VHN (WM) 

As mentioned above, the Pareto front is a curve of non-dominated solutions. The MOGA searches 

the solution space and brings forth a set of optimal solutions. Optimization Settings for CA with 

a combination of Multi Objective Equations VHN(PTHAZ), VHN(WM), VHN(PPHAZ), PTRS 

and PPRS are presented in Table 7.15. Note that the full set of optimal solutions is given in 

Appendix H below; the list of 10 solutions given in Table 7.15 is in no particular order since all 

the solutions are equally optimal. The sample of solutions presented in Table 7.15 are all from 

the CA mode setting, whereas the full pareto set have both CW and CA solutions.  
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Table 7-15: Members of the Pareto Set 

Solutions Current (I) Voltage (V) Speed (S) Feed Rate (FR) 

1 362.9764 29.7644 8.3396 16.7304 

2 363.1314 29.9996 8.8308 18.2983 

3 362.7722 25.0994 8.2192 18.2292 

4 362.9360 29.9881 8.2209 18.2987 

5 364.7993 28.8771 8.4667 16.7333 

6 365.6500 27.5152 8.8202 18.2931 

7 374.1201 25.0571 9.7722 18.0495 

8 377.9203 25.0333 9.7808 16.8932 

9 379.1523 25.0527 9.8088 18.2519 

10 379.1073 25.0628 8.4838 18.2810 

 

A closer look at some parametric combinations given in Table 7.15 reveals that some samples 

that have presented better results in the analysis above have similar parametric combinations. 

These include Samples 6, 7 and 9 who’s welding parametric combination matches closely those 

that are highlighted in Table 7.15. The optimal solutions therefore presented by the parametric 

optimisation process of the MOGA is in agreement with those that were obtained through 

experiments. 

7.11 Concluding Remarks 

The results for temperature recording, residual stress measurements, bead geometry 

measurements, microstructure measurements, hardness tests and fatigue tests have been tabled. 

Furthermore, numerical analysis results as well as parametric optimisation have been presented 

in this chapter. The thermal imaging technique successfully provides continuous temperature 

measurement that is able to characterise the thermal cycle of the arc welding process. Neutron 

diffraction provides through-thickness stress measurements that are in line with similar studies in 

the literature. Tension hoop stresses are shown to be equal or greater than the material yield 

strength. The magnitude of stresses can be correlated to the parametric combination used to 

fabricate each specimen. Bead geometry measurement results are used to determine the 

parametric combination that produced the most optimal bead geometric parameters. The 

microstructure of the HAZ is shown to be martensitic, where the weld metal is mainly composed 

of proeutectoid ferrite. Hardness values of the PTHAZ are shown to be the highest; however both 

measured and calculated VH values are smaller than the cut-off point of 350 for hydrogen-

induced cracking. 

Further analysis of the results from experiments reveals that there is a cause and effect 

relationship between welding induced residual stress and fatigue properties of the welded 
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structure. Tensile hoop stress has an adverse effect on fatigue life of the welded structure. 

Consistency between results from the residual stress measurements, bead geometry 

measurements and fatigue tests in terms of samples that perform comparatively better than others 

have been demonstrated in the above analysis. The results from the numerical model have been 

shown to be in reasonable agreement with experimental results. Optimisation using MOGA 

produced results that are in line with experiments and simulations. 
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CONCLUSIONS AND 

RECOMMENDATIONS 

 

The subject of the present study is the fatigue behaviour of the nozzle-shell joint of carbon steel 

pressure vessel under welding induced residual stress resulting from parametric combination of 

the SAW process. The importance of this kind of study was discussed in Chapter 3 in detail; and 

subsequent chapters sought to demonstrate such importance. The study successfully employs the 

hybrid methodology comprising experimental work, numerical methods and mathematical 

programming to determine the effect of residual stress on fatigue life of welded structures with 

specific emphasis on the welding parameters that are responsible for generation of the residual 

stress fields in the multi-pass circumferential nozzle-shell weld joint. This final chapter sums up 

how the objectives of the study have been fulfilled through answering the research questions. The 

chapter also addresses the contribution of the present study to the body of knowledge of the 

research field of interest, including the contribution of published research work. Furthermore, the 

chapter recommends further work in the field of interest in order to enhance the body of 

knowledge. 

8.1 Factors that Affect WRS 

The literature review presented in Chapter 2 discussed various factors that affect welding-induced 

residual stress conditions of the nozzle-shell joint that is fabricated using the SAW process. The 

lessons learned from reviewing the current state of the art within the field of interest can be 

represented through a proposed classification framework illustrated in Figure 8.1. The diagram 

describes sequential components of three interacting processes, namely: welding process flow, 

welding influential factors and mitigation techniques. The welding process commences when 

welding preparatory work occurs, and terminates when welding is finished and the completed 

weld-piece is presented. The influential factors corresponding to each step of the welding process 

are enlisted below the respective process steps. The one-directional arrow between the two blocks 

indicates that each process step affects factors directly below it. In a similar manner, mitigation 

techniques below each process step will affect the influential factors directly above them. The 

‘outcomes’ column at the end demonstrates that the condition of the weld-piece is a function of 

the completed welding process and the quality and integrity of the weld. In the case of the present 

study, quality is measured by the favourable magnitude and distribution of residual stresses, while 

integrity is evaluated through the favourable weld fatigue properties. The utility of the proposed 
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framework is that, given a particular stage in the welding process, one would know which 

influential factors are applicable, and which corresponding mitigation techniques to use. The 

proposed classification framework can therefore be used to determine applicable influential 

factors and corresponding mitigation techniques for WRS throughout the SAW welding process.   

 

NB: MSR = Mechanical stress relief; PWHT = post weld heat treatment; TBW = temper bead welding 

Figure 8-1: Proposed Classification Framework 

8.2 Temperature Characterisation Through IR Imaging 

Thermal imagery characteristics of the SAW process, including temperature histories, inter-pass 

time, and cooling period have been clearly demonstrated in the present study. The readings taken 

at specific fixed locations within the rotating weld specimens and plotted accordingly, are easily 

verified against the thermal images produced by the camera. Thermal imaging provides 

continuous measurement of temperatures, thereby allowing Temperature-Time graphs to be 

plotted incorporating the cooling periods during welding cycles. This allows for better 

understanding of thermal behaviour of the weld pool during welding cycles. Furthermore, 

continuous temperature measurements, as well as the ability of the IR Imaging technique to 

measure a wider area of interest, also provide more accurate means to calibrate simulation models 

using recorded experimental temperatures. This becomes quite useful in a process like SAW, 

where the weld pool is insulated by the flux and hence direct temperature measurements are 

difficult. Any point in the weld specimen can be identified and used to calibrate the model as long 

as the temperature of the same point is used in both the physical weld specimen and the numerical 

model. The correlation between recorded temperatures and the FEA model bears evidence to the 

reliability of thermal imaging as a temperature recording technique. The study has successfully 

shown that thermal imaging is a reliable technique to characterise temperature distribution during 
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arc welding thermal cycles. The temperature history curves presented are consistent with similar 

studies in literature. 

8.3 Distribution of WRS Fields 

The stress distribution of nozzle-shell welded joints for pressure vessel applications was studied. 

A number of experiments were conducted under various welding parametric combinations, 

thereby producing specimens with different characteristics. ND stress measurements showed that 

the hoop stresses are highly tensile and their magnitude is close to or more than that of the yield 

strength of the filler material in the WCL. The magnitude of stresses decreases as the distance 

away from WCL increases; and eventually they change direction to compressive. The highest 

observed hoop stress in the experiments was 558 MPa on the pipe side of Sample 15, which is 

higher than the yield strength of the filler metal. The axial and radial stresses are much smaller 

compared to hoop stresses. Considering the net effect of the various components the triaxial 

stresses indicate that the samples with the lowest net WRS are 4, 7 and 8 (in that order) based on 

the stress distribution found at the plate side of the weld specimens. It is interesting to note that 

all the said specimens were generated using the CA mode of parametric settings of the welding 

machine. Axial and radial stresses of Sample 4 are highly compressive closer to the weld toe of 

the plate side, which is what brings the net value of the total triaxial stress of the sample down. 

The direction of loading is an important aspect to consider when one evaluates the probable effect 

of residual stress fields on service life of the welded structure. Some of the mentioned samples 

also showed favourable results when their weld geometry was used as a criterion to evaluate their 

weld quality. The measured stresses are also successfully used to calibrate finite element models 

for further analysis of thermo-mechanical behaviour in the selected types of weld joints. Neutron 

diffraction is an effective method to measure through-thickness residual stress, which other 

methods such as hole-drilling are unable to do. 

8.4 Numerical Analysis 

In the present study, a non-linear time-dependant thermal elastic-plastic analysis of a moving heat 

source was performed to predict the thermal and mechanical behaviour of the weldment and HAZ. 

The solution of non-linear transient problem is divided into two parts. Firstly, a thermal analysis 

(incorporating phase transformation effects) was performed to predict the temperature history of 

the model. Secondly, the predicted temperature fields were applied as input for the subsequent 

mechanical analysis. The generated 3D model generated using MSC Marc software adopted a 

Gaussian double ellipsoid heat source to model thermal strains arising from the weld thermal 

cycle. The presented temperature history plots for different samples were compared with results 
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from experiment and showed good agreement. The minor differences between simulation and 

experimental results were considered fair for the subject under investigation. 

The mechanical analysis produced residual stress distribution curves whose profile is comparable 

with that of experimental results. The pronounced differences in some areas between simulation 

and experimental results could be accredited to pertinent differences in the characteristics of an 

idealised simulation environment and the realistic experimentation process. The highest 

magnitude of distortion is visible around the centre of the plate where the constraint is decreased, 

given the manner in which the specimen was mounted on the turntable. The value of 0.22 mm is 

considered fair given the size and the material of the weld specimen. The developed numerical 

model adequately represents the welding process for the conditions under investigation in the 

present study, and can be used to study the various process parameters of the process. 

8.5 Microstructural Characteristics  

A number of studies have shown that phase transformation (especial at rapid cooling rates) results 

in volumetric changes that affect the generation and magnitude of residual stresses in welded 

structures. The present study provides an extensive analysis of the microstructure for the PTHAZ, 

WM, PPHAZ and PM regions of each weld specimen. It is shown that the HAZ regions have 

generally martensitic microstructures whereas the weld regions’ microstructure mainly comprise 

proeutectoid ferrite. This situation is expected since the HAZ regions are subjected to higher 

cooling rates than the weld metal given the former’s proximity to cooler parent metal. This 

finding augments the modelling decision of including the metallurgical effects into the FEA 

model. Phase transformation is therefore an important factor whose effect on residual stress 

generation should be considered under conditions such as the ones applicable in the present study. 

8.6 Weld Properties 

Hardness is an important characteristic that influences the welded structure’s susceptibility to 

hydrogen-induced cracking (HIC). The present study performed various hardness tests on a 

number of samples and presented the results for further analysis. The results show that for most 

specimens PTHAZ has the highest hardness values, followed by WM and then PPHAZ. The 

results of hardness are in line with the microstructure analysis which showed that the HAZ region 

contains martensite, which is harder than other phases contained in the weld. The highest 

observed hardness value is 280 VH, and the maximum calculated hardness value is 243 VH. Both 

values are significantly lower than the cut-off HIC value of 350 HV. Samples 9, 8 and 7 are 

shown to have the lowest hardness values in the HAZ and WM regions. This supports the analysis 

done using weld bead geometry and residual stress fields. Weld properties are shown to be good 
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indicators of weld bead quality, and hence these results can be used to assess the welding 

parameters that will produce beads with favourable weld properties. 

8.7 Fatigue Properties 

Fatigue tests were performed on each of the five samples produced using the CA mode settings. 

Two specimens were tested for each sample, and then an average of the two tests was taken. It is 

shown through the tabulated results that Sample 4 has the highest number of cycles to failure and 

also the lowest residual stress. Sample 6 has a larger amount of residual stress compared to 

Sample 4, and also a corresponding lower number of cycles. Sample 7 has the second highest 

number of cycles and also second lowest residual stress. Sample 9 has the highest residual stress 

the second lowest number of cycles. This proves therefore that residual stresses affect fatigue life 

of a welded pressure vessel. The tensile hoop stresses in the circumferential nozzle-shell joint 

shorten fatigue life of the welded structure. Understanding the generation, profile and magnitude 

of residual stress fields during the SAW process is therefore the first step towards enhancement 

of fatigue life of welded joints. The second step is to understand how to contain, reduce or 

mitigate the effect of WRS in order to enhance fatigue life; this includes choosing an optimal 

parametric combination that will ensure minimal tensile residual stresses in the weld. These 

results are in line with numerous examples in the literature discussed above, which asserts that 

welding induced residual stress creates mean stress effects that affect fatigue properties of welded 

structures. 

8.8 Optimal Parameters 

The optimisation of input welding parameters is performed using a combination of DoE 

techniques and evolutionary algorithms. Statistical analysis reveals the significance of various 

response models, and regression is used to generate objective functions for adequate response 

variables. The objective functions for all but PPHAZ, VHN (PPHAZ) and VHN (PTHAZ) are 

successfully generated. The one-factor plots reveal that the welding mode is the most significant 

factor that affects the response variables. Residual stress (PPRS), bead width (BW), and bead 

penetration (BP) are all affected by the welding ‘MODE’. The multiobjective genetic algorithm 

is used to simultaneously optimise the objective functions in order to determine the Pareto front. 

The Pareto set has a number of members that are all optimal solutions. Comparison between the 

members of the Pareto set and the parametric combinations of the DoE matrix reveals that some 

of the best weld beads were produced using welding parameters aligned to the Pareto optimal 

solutions. The produced objective functions as well as the optimal parametric combinations can 

therefore be used in similar welding applications to produced welds of acceptable weld bead 

geometry, good weld properties and low residual stresses. 
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8.9 Response to the Research Questions 

The above conclusions provide a summary of the responses to the research questions that are 

presented in Chapter 3 above. The research questions relate to the residual stress fields 

distribution, the welding distortions, the factors that influence WRS, weld mechanical properties, 

weld bead geometry and fatigue properties. The above discussion has successfully addressed all 

the said research questions. 

8.10 Recommendations for Future Work 

The present study has successfully addressed some of the important questions within the subject 

of the relationship between SAW parameters, welding-induced residual stress, and fatigue 

properties of nozzle-shell weld joints in pressure vessels. It is therefore recommended that the 

information tabled in the present study be used in industrial applications in order to improve 

fatigue performance of nozzle-shell joints in pressure vessels. It is recommended that the 

provided information is included into the standard operating procedures for pressure vessel 

fabrication, repairs and preventive maintenance. It is also recommended that the techniques 

discussed in this study are employed to predict the fatigue life of the pressure vessel structures 

under specific operating conditions. 

Some of the challenges experienced during experimentation included the proper calibration of 

the thermal camera within the required temperature thresholds, the positioning of the camera vis-

a-vis the rotating weld-piece for optimal temperature recordings, and the insulating effect of the 

flux in SAW in the process. It is recommended that future studies look into improving such 

aspects. 

The FEA code used in this study is MSC Marc software. MSC Marc is generic simulation code 

that does not have some of the advanced welding simulation capabilities found in other codes 

such as ABAQUS and ANSYS. User subroutines for the input heat flux model and the phase 

transformation model would improve the accuracy of the entire simulation model. However, such 

capabilities do not exist in MSC Marc. It is recommended that future studies consider this 

limitation and rectify it accordingly. 

Further to the above, it is recommended that future studies are conducted within the following 

subjects of interest in order to enhance the work done in this study: 

a. The link between welding residual stress and fatigue life and the link between residual 

stress and welding parameters have been shown in the above work. It would be useful if 

the link between fatigue life of a welded structure and each of the welding input 
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parameters could also be mapped out through further studies. This would ensure that 

researchers and practitioners are able to predict the outcome of the fatigue properties 

based on the level of variance of specific welding parameters. 

b. The above study did not look at the effect of internal pressure. In real life pressure vessels 

operate under positive or negative pressures and hence considering the impact of such 

pressure on the stress state of the welded structure could provide further knowledge that 

can be used for pressure vessel welding applications. This study could be done for several 

pressure ranges that are usually found in industrial applications. 

c. Pressure vessel design codes provide guidelines on how residual stresses should be 

incorporated when predicting fatigue lives of pressure vessels. It would be useful to 

conduct a study that compares what the codes provide and what experiments and analysis 

reveal in the field. This would show whether the provisions of the codes are still relevant 

or not. 

8.11 Contribution of Published Work 

Five academic articles were generated as a result of work done in this thesis. Below is a brief 

overview of the subject matter of each academic publication as well as their contribution to the 

research body of knowledge. 

PAPER 1 

Title: Factors That Affect Welding-Induced Residual Stress and Distortions in Pressure Vessel 

Steels and Their Mitigation Techniques: A Review 

This paper comprises a review of current literature with regards to the factors that have an impact 

on the generation of residual stress, and how such impact can be mitigated. The objective of this 

review is to organise such literature according to the specific areas of analysis in order to enhance 

access thereto and elucidate relevance thereof for purposes of reference work and further studies. 

The paper specifies three categories of influential factors, namely, pre-welding conditions, in-

process parameters and post-welding conditions. It is shown that pre-welding conditions, such as 

the choice of welding process, must in line with the nature of materials to be welded, operational 

application of the structure, and trade-offs between service life and production costs. Heat input 

(which is the function of arc voltage, welding current and travel speed) is the most influential 

machine-related in-process parameter in residual stress generation during welding. It is also 

observed that when applying mitigating factors, care should be taken not to exacerbate the 

residual stress situation through sub-optimal parametric set-up. 
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The contribution of this paper to the body of knowledge is twofold. Firstly, it provides a reference 

guide for applicable literature, which provides researchers with a repository of references. 

Secondly it provides a classification framework, which is a valuable tool in assisting researchers 

to easily match the category of influential factors to applicable mitigation techniques. This 

classification framework had not been done before. 

PAPER 2 

Title: Characterisation of Submerged Arc Welding Using Infrared Imaging Technique 

In this paper, IR thermography is used to record the temperature distribution during a submerged 

arc welding (SAW) process experiment; and to validate the numerical model developed to 

simulate the said SAW process of a multi-pass circumferential weld on pressure vessel steel. The 

Flir Short Wave Infrared Radiometer (FSIR) is used during SAW experiments using a welding 

unit from ESAB. The weld pool and the surrounding area are continuously monitored and their 

temperature recorded through the use of a thermal camera. The recorded temperatures are plotted 

against time on Temperature-Time curves to reveal the temperature profiles of each welding 

cycle. Comparison of the resultant temperature profiles with those of the numerical model show 

good agreement. It is therefore concluded that temperature measurement through thermal imaging 

is a suitable method to characterise the temperature distribution of the SAW multi-pass 

circumferential weld as well as to effectively validate the numerical model developed to simulate 

the said welding process. 

The contribution of this paper is that it provides an alternative temperature measurement method, 

which is IR thermal imaging. Although this method had been used before to measure temperature 

during welding, to the author’s knowledge it had not been used for the kind of joint and welding 

process discussed in the paper. The validation of the simulation model using experiments adds 

value to the study performed in this paper. 

PAPER 3 

Title: Characterization of Welding-Induced Residual Stress Using Neutron Diffraction 

Technique 

The present paper applies the Neutron Diffraction technique to formulate the stress field 

distribution of a nozzle-to-shell weld joint of a pressure vessel. A number of experiments are 

conducted using the Submerged Arc Welding (SAW) process at various parametric combinations 

to develop a number of specimens with different stress profiles. It is shown that the hoop stresses 

close to the weld centre line (WCL) are highly tensile and have values close to the yield strength 
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of the material. The ideal parametric combination is also determined based on the results with 

lowest stresses. The results obtained in this study are congruent with the results of similar studies 

in literature. 

The contribution of the paper to the body of knowledge is in the application of ND technique to 

measure the nozzle-shell full penetration multipass weld bead. This type of joint is difficult to 

measure using the ND technique given its awkward geometry. The application of experimental 

results to obtain optimal welding parameters is also a novelty of the present paper. The obtained 

results can be used in similar applications in the future, or as the basis for additional work. 

PAPER 4 

Title: A 3D Submerged Arc Welding Numerical Model to Estimate Welding-Induced Residual 

Stress in a Nozzle-Shell Circumferential Weld Joint of High Strength Carbon Steel 

The present paper proposes a 3D finite element sequentially-coupled thermo-mechanical model 

for prediction of residual stress in a nozzle-to-shell multi-pass weld bead. The developed model 

is successfully validated using experimental work. IR imaging is used for temperature 

characterisation and Neutron Diffraction is used for residual stress measurement. The comparison 

between measured and predicted values show reasonably good agreement, thereby proving the 

numerical model to be suitable for predicting residual stress under the stated conditions. The 

magnitude of the hoop residual stress reaches values that are equal to or larger than the yield 

strength of the material. This is in line with similar studies reported in the literature. The 

magnitude of hoop stress reaches its peak closer to the weld centre-line (WCL) and decreases as 

the distance from the WCL increases. 

The contribution of the paper is to provide an FE model for the specific conditions that were 

studied in this particular case. Although numerical modelling is used extensively in welding 

applications, most weld joints in the literature are either bead-on-plate or bead-on-joint; the 

nozzle-shell joint has not been studied much in the past. The work presented in this paper can 

therefore be used as a basis for further research. 
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PAPER 5 

Title: The Effect of Welding-Induced Residual Stress on Fatigue Strength of Nozzle-Shell Weld 

Joint of High Strength Carbon Steel 

This paper considers the effect that welding induced residual stress has on fatigue properties of a 

multipass nozzle-shell weld. A number of welding specimens are prepared using the submerged 

arc welding process. Neutron diffraction is used to measure the multiaxial residual stress field of 

each specimen, and stress distribution curves are formulated using the results. The specimens are 

then subjected to fatigue testing using a servo-hydraulic fatigue testing machine. The cycles to 

failure are plotted against applied load for each specimen. All specimens failed at the weld toe, 

where stresses were found to be highly tensile. Specimens with higher tensile residual stresses 

failed at fewer cycles compared to those with lower stresses. The study demonstrates that tensile 

residual stress detrimentally affects fatigue life of a welded structure. 

The contribution of the paper is in the linking of residual stress and fatigue life in a cause-and-

effect relationship. While some engineering standards have suggested empirical formulae to 

incorporate the effect of residual stress on fatigue life, there are still few published studies 

experiments performed to generate empirical evidence of the cause-and-effect relationship 

between the two parameters. 

8.12 Originality of the Present Work 

The work presented and discussed in this thesis is the author’s original work. The experiments 

performed in various laboratories over a number of years have resulted in the data collected, 

analysed and presented herein. No component of this work has been used for other purposes other 

than towards the completion of this thesis report. No part of this work was taken from any existing 

source other than those that have been duly referenced herein. 
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APPENDICES 

APPENDIX A: Protocol for Weld Specimen Preparation and Temperature 
Recordings  

 

 

Protocol for Weld Specimen Preparation and Temperature 
Recordings  

 

1. Introduction 

This is a test procedure for preparation of weld specimens for a research welding experiment that 

includes temperature recordings using infrared imaging. The experiments are for research work 

commissioned for purposes of post-grad engineering studies at the University of KZN. The 

intention is to weld up a number of specimens of the as prescribed below and prepare them for 

further testing. 

2. Purpose 

The aim of this protocol is to provide a detailed guideline for the preparation of weld specimens 

and recording of temperatures in the investigation of submerged arc welding process. 

3. Weld-piece Preparation 

The weld-piece is prepared as given in figure 1. A steel pipe of 80mm bore (i.e. 3 inches) is 

welded onto a 10mm steel plate through a full penetration multi-pass weld joint. The plate 

represents the cylindrical shell part of the pressure vessel shell, and the pipe is a nozzle, such that 

the welded specimen is a nozzle-shell weld joint.  
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Figure 1: Weld-Piece Preparation 

Table 1 gives the welding conditions that exist during the preparation of the weld-piece 

specimens. 

Table 1: Welding Conditions 

Welding Conditions 

Room temperature: (to be recorded) 

No preheat 

Cooling at room temperature 

Welding procedure: Semi-automatic SAW @ 85% efficiency 

High strength pressure vessel plate 178 x 178 x 10mm 

80mm (3 inch) seamless carbon steel pipe bevelled @ 45o  

Root gap of 2mm 

OK Autrod 12.22 (EM12K) low hydrogen electrode – 2.5mm 

OK Flux 10.72 

 

3.1.  Welding Procedure 

The high strength carbon steel pipe is welded onto the pressure vessel plate of similar strength 

using low hydrogen high strength EM12K electrodes. Materials ASTM A106 and ASTM A516, 

for the pipe and plate respectively, are chosen for practical purposes since these materials are 

typically used for pressurised system application. A hole of the same size as the internal diameter 
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of the pipe is drilled through the plate in order to position the pipe in the same way that the nozzle 

would be positioned on the pressure vessel. The root gap of 2mm is attained through mounting 

the pipe on the plate by inserting a 2mm steel rod in between the pipe and the plate, and placing 

four equi-spaced tag welds around the weld groove. A three pass full penetration weld is then 

performed using the SAW process. Assume a welding efficiency of 85% in order for heat input 

to be in line with the finite element model. 

3.2.  SAW Process Parameters 

The SAW parameters of interest in this study are welding current (I), arc voltage (V), travel speed 

(S) and wire-feed rate (FR). The applicable welding parameters are given in table 2, and the 

welding machine should be adjusted accordingly. 

Table 2: Welding Parameters 

Parameter Units Lower L (-) Upper L (+) 

Current (I) Amps 360 380 

Voltage (V) Volts 25 30 

Speed (S) mm/s 8 10 

Wire-feed Rate (FR) mm/s 16.7 18.3 

 

Table 2 shows the two levels of parameters applied in the welding experiments. The range of 

values is chosen using guidelines from SAW machine operator’s manual and experience from 

similar studies. When choosing the operational range for SAW parameters, care should be taken 

to only include parametric combinations that will not result in burn-through (i.e. too much heat) 

or lack of penetration (i.e. too little heat). The orthogonal array chosen in this study is L9 with 

eight degrees of freedom. The input parameters include the four welding parameters mentioned 

above and the machine setting of either Constant Current (CA) or Constant Wire (CW). The 

resultant matrix is shown in table 3.  
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Table 3: Orthogonal Array Matrix (L9) 

Exp.No. Input Parameters 

I V S FR Mode 

1 + + + + CA 

2 + - - + CA 

3 - - - + CA 

4 - - + + CA 

5 + - + + CA 

6 - + - - CW 

7 - + - + CW 

8 - - - + CW 

9 - - - - CW 

 

3.3.  Specimen Material  

The target materiel for steel plate is that of high-strength carbon steel used in pressure vessel 

applications, with specification of ASTM 516 Gr. 70. The pipe material specification is ASTM 

A106 Gr B, seamless schedule 40. Only the cylindrical part of the pressure vessel is considered 

in this study, the hemispherical end is not considered.  

3.4. Welding Machine Set-up 

The experimental setup shall consist of the Esab SAW machine and the Short Wave Infrared 

(SWIR) camera as shown in Figure 2. The SAW machine has two major components, viz. the 

wire feeder and the turn table. The turn-table is set up to perform circumferential weld. The linear 

speed of the machine should first be aligned with rotational speed of the turntable through a 

calibration process described in the manual of the machine. The wire feeder is used to supply the 

welding electrode or wire to the weld piece during welding process. The wire feed rate (FR) is 

controlled by the Esab controller as can be seen in Figure 2. 

The controller of the Esab machine operates in one of two modes; the user can either select a 

constant current (amperage) mode (CA) or a constant wire feed rate mode (CW). In constant 

current mode, the current is set on the controller and the FR automatically sets itself during 

welding. In constant wire feed rate mode, the FR is set on the controller and the current settings 

are automatically set by the machine during welding. The turn table speed is set using an analogue 

dial from one to nine on the turn table controller as calibrated against the linear speed. 
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Figure 2: SAW Machine and SWIR Camera Set-up 

 

During measurement, the FSIR radiometer is placed at a focus range of 3m as shown in 

Figure 2. Power to the FSIR is supplied via the standard 220V, 50Hz, single phase municipal 

supply and the FSIR is connected to the controller (PC) using the original equipment 

manufacturer (OEM) supplied camera link cable. The FSIR is left for 5 minutes to 

acclimatise to ambient temperature before operation. The Flir RnD version 3.3 software is 

accessed on the controller and the configuration setup which matches the temperature of the 

scene is selected. This includes the sensitivity parameters i.e. integration time and the neutral 

density filter. The radiometer lens is adjusted to focus on the scene. Before measurement 

could begin, a non-uniformity correction is performed to compensate for the variations in camera 

operating conditions and to improve image quality. Note all this information is available in the 

FSIR manual 

4. Temperature Measurements 

Temperatures are continuously recorded using the thermal camera from four measurement 

locations (i.e. P1, P2, P3 and P4). Figure 3 shows the location of measurement points. P1 and P2 

are located on the inner edge of the pipe at coordinate (0,0,0). P3 and P4 are located at (6,0,0), in 

terms of (x, y, z). 
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Figure 3: Temperature Measurement Points 

The exact location of the measurement points around the circumferential weld is given in table 4. 

The recorded temperatures should be plotted against time in order to obtain the temperature 

distributions. 

Table 4: Location of Temperature of Interest 

Temperature Location 
P1 0 deg.  on pipe side 
P2 60 deg.  on pipe side 
P3 180 deg.  on plate side 
P4 240 deg.  on plate side 

 

5. Conclusion  

The procedure given above is meant to guide the process of experimental set-up, preparation and 

execution. It is submitted that the protocol is not exhaustive of all details of the required scope; it 

is not meant to be. It is merely a guide that purports to show direction towards what should 

happen.  

  



202 | P a g e  
 

APPENDIX B: Protocol for Stress Measurements 
 
 

Protocol for Stress Measurements 

 

1. Introduction 

This is a procedure for residual stress measurements on the welded specimens using neutron 

diffraction. The weld specimens were prepared using the submerged arc welding and consist of a 

three-pass full penetration weld bead. Through-thickness residual stress measurements are to be 

taken at specified points for each weld specimen. 

 

2. Residual Stress Measurements 

The residual stresses in each weld sample will be analysed using the neutron diffraction (ND) 

method. The ND technique requires that a stress-free reference point be determined prior to taking 

readings from the component under stress. A section is therefore cut out of each weld-piece using 

a waterjet cutter as shown in figure 1. The point on the inside of the weld-piece, which is indicated 

as the ‘heel’ of the cut-out reference piece, is designated as point (0,0,0) in terms of (x,y,z,) 

coordinates. The spacing between measurement points is chosen as 3 mm. The flange is measured 

from 1.6 mm to 43.6 mm (15 points) and the pipe was measured from 10.6 mm to 73.6 mm (22 

points). At each measurement point, strain must be measured in three orthogonal directions, i.e. 

hoop, or εh (y-axis), axial or εa (z-axis) and radial or εr (x-axis). This is achieved by mounting the 

weld-piece in three different orientations. The flange line of measurement is illustrated using the 

yellow colour in figure 1, whereas the pipe-side measurements are indicated through a green line. 

For the purposes of measurement, the weld centreline (WCL) is considered to be in the proximity 

of the coordinates (6,0,11). Measurement time is varied due to path length changes with the aim 

of providing strain errors of not more than 50µε. 
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Figure 1: Stress Measurement Points 

 

The Materials Probe for Internal Strain Investigations (MPISI) to be set up using a 2 mm radial 

collimator on the detector side and the primary slit adjusted to have a 2 mm x 2 mm window. A 

nominal gauge volume of 8 mm3 is therefore defined. Pre-calibrated theodolites to be used and 

aligned at the instrument centre of rotation. Positioning using the theodolites can be assumed to 

be accurate within 0.1 mm which is less than the 10% margin normally applied for the setup 

accuracy. The measurement positions are chosen to be as far away from the reference cut-out and 

start/stop position of the weld as possible, preferably 180 degrees from weld start/stop position. 

To reduce sample setup complexity, the measurement positions are chosen to be tangential to a 

flat edge of the flange. In order to ensure that the gauge volume is always fully submerged in the 

sample material, the centre of the gauge volume was always at least 1.6 mm away from the sample 

surface. All measurements are taken along the mid thicknesses of the sections. The three 

components of stress are measured, namely hoop, axial and radial. The mounting setup for each 

measurement is shown in Figure 2. 
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Figure 2: Welding Specimen Mounting for 3D Stress Measurements 

 

3. Conclusion 

The recorded residual stress data should be used to generate stress field distribution plots that will 

be used for further analysis. The stress test report should note and record any information that is 

considered relevant to give context when interpreting the stress results. 
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APPENDIX C: Protocol for Microstructural Analysis and Hardness Testing 
 
 

Protocol for Microstructural Analysis and Hardness Testing 

 

1. Introduction 

This is a procedure for bead geometry measurements, microstructural analysis and Vickers 

Hardness testing. A smaller specimen should be cut out of each of the main samples such that it 

includes parent metal (of both plate and pipe), weld metal and HAZ (of both plate and pipe). This 

specimen can be used for all the tests mentioned below. 

2. Microstructural Analysis and Weld Bead Measurements 

In order to avoid undesired heat effects, samples have to be cut by using abrasive water-jet cutting 

process. Samples must also be cut well away from start/end and tack weld locations. For fusion 

zone and HAZ macrograph measurement, the following steps must take place: 

a. Sample preparation by water-jet cutting 

b. The sample must be mounted on cast 

c. Sequential grinding by using silicone carbine abrasive paper with varying grit sizes [300, 

500, 800, 1000] 

d. Diamond paste polishing with particle sizes of 9 µm, 6 µm, 3 µm, and 1 µm. 

e. Etching the sample with 2% nital solution or equivalent for 30 seconds and rinse 

f. Study the sample to reveal HAZ and FZ dimensions 

Bead geometry should be measured for every three-pass weld of each specimen. All bead 

dimensions are to be recorded in a spreadsheet or table and be submitted for further analysis. The 

dimensions to be measured for the weld bead include bead width (BW), bead height (BH), bead 

penetration (BP) and width of the Heat Affected Zone (HAZ width). Figure 1 shows the exact 

location of each dimension in the weld specimen. Bead geometry is measured using stereo 

microscopy to enlarge the weld bead, and the mapping out of the dimensions is performed using 

appropriate software embedded in the microscope. All dimensions should only be recorded after 

the third weld pass. 
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Figure 1: Weld Bead Geometry 

 

The microstructural characterisation of the parent material (as-received), the weld metal and the 

HAZ are performed using the instrumentation scan electron microscopy. Received samples are 

subjected to grinding as detailed above. The test specimens are etched in 2% Nital to reveal the 

size of the heat affected zone before sectioning the L-shaped test specimen to fit into the mounting 

machine. The sample is then hot mounted into a conductive resin, and subjected to further 

grinding, polishing and etching in 2% Nital for 5 seconds. After polishing the sample is then 

placed under the microscope and analysed accordingly. Results are recorded using the appropriate 

embedded software. 

3. Hardness Testing 

Mechanical properties of the weld specimen are tested through the Rockwell B hardness test. 

Hardness is known as a measure of the material’s resistance to plastic deformation. The Electronic 

Rockwell Hardness Tester is used for hardness measurement. The specimen is prepared such that 

the surface is smooth, and a number of points are marked in a straight line spanning through the 

weld metal, HAZ and parent metal from both the plate and the pipe sides. The results are recorded 

as given in table 1. The ultimate tensile strength values, that are equivalent to the determined 

hardness, are determined using appropriate formulae and also included in the table. 
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Table 1: Measured Hardness Values 

Specimen Plate Plate HAZ Weld metal Pipe HAZ Pipe 

 HRB HV HRB HV HRB HV HRB HV HRB HV 

Specimen 

1 

          

          

          

Specimen 

2 

          

          

          

Average           

UTS MPa           
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APPENDIX D: Protocol for Fatigue Analysis 

 
 

Protocol for Fatigue Analysis 

 

1. Introduction 

Fatigue testing involves the determination of fatigue life of welded specimens expressed in the 

form of cycles to failure under fixed load conditions. The scope of fatigue analysis under this 

section includes the following: 

a. A post-test weld analysis of the cracks to determine the fracture mode and crack initiation 

site for each specimen. 

b. Identifying the distinctive characteristics of the surface appearance of a fatigue fracture 

in each specimen. 

c. Identifying the different stages of fracture in each specimen. 

d. Defining the mode of fracture for tested specimens. 

 

2. Preparation and Mounting of Test Specimen 

The fatigue test specimen is prepared as shown in Appendix A. The specimen is then mounted 

onto the fatigue testing machine using a specially designed jig made of 30mm thick steel plate as 

shown in Figure 1. Three holes (M10) are drilled in each of the four flange corners of the 

specimen in order to hold the specimen down onto the jig. The load spreader plate is attached 

between the clamping bolts and the specimen flange as shown in Figure 1. The reason for the 

load spreader plate is to prevent the stresses induced on the test specimen flange from propagating 

to the bolt holes. Additional gussets are welded onto the jig to provide adequate stiffness during 

the fatigue tests. 
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Figure 1: Mounting of the Fatigue Test Specimen 

 

3. The Applied Bending Load 

The specimens are subjected to the cantilever load applied at the tip of the pipe section of the 

specimen. Firstly, the theoretical maximum load that the specimen could withstand is calculated 

using the following procedure: 

A theoretical static load of 100 kN is applied onto the portion of sample’s circumferential area 

and used to calculate the allowable stress that the pipe material could withstand as shown on the 

schematic diagram in Figure 2. The MTS fatigue testing machine used in this particular test has 

a maximum loading capacity of 1000 kN. 
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Figure 2: Schematic Representation of Applied Load 

 

The stress in the 𝑥 direction due the applied vertical load is calculated using the equation 1: 

𝜎୶ =
ெ௬

ூ
         (1) 

The second moment of area is calculated from the following equation: 

𝐼 =
గ(஽రିௗర)

଺ସ
         (2) 

The cross sectional area of the shaft is calculated from the following equation: 

𝐴 =
గ(஽మିௗమ)

ସ
         (3) 

Where 𝐷 = 89 mm; 𝑑 = 77 mm; 𝑦 = 38.5 mm; 𝐹= 100 kN; 𝑙 = 80 mm; 𝑀 = 8 kN.m;  

Calculating the axial stress using equation 1 results in 𝜎୶ = 162𝑀𝑃𝑎 
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The yield strength of the filler material at the weld is 420 MPa. The factor of safety at the welded 

area for an applied vertical tensile and compressive static load of 100 kN is calculated as follows: 

σ୭ =  Xୗ × 𝜎୶         (4)  

Xୗ =  
ସଶ଴

ଵ଺ଶ
= 2.6  

The ultimate strength of the filler material at the weld is 520 MPa. The factor of safety at the 

welded area for an applied vertical tensile and compressive static load of 100 kN is calculated as 

follows: 

Xୗ =  
ହଶ଴

ଵ଺ଶ
= 3.2  

Thus, the weld specimen is expected to fail in bending at an applied static load of: 

Fୗ =  100 × 2.6 = 260 kN  

 

Figure 3: Fatigue Test Setup at Loads Above 100kN 

 

The solid steel shaft is inserted into the pipe of the weld specimen, at the loading area, to prevent 

possible local deformations on the clamping contact area as shown in Figure 3. A point load of 

260 kN is applied to the specimen, and a curve of Load vs. Displacement is generated in order to 

identify the yield point before failure. One the yielding load is identified, then a load of 80% of 

the yield strength is then applied in a few trial tests at a frequency of 8Hz using different 

displacement limits to see how the specimens perform. 
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4. Fatigue Test Equipment Setup 

Testing equipment includes the MTS High-force servo-hydraulic testing machine, Vernier 

callipers for measurements and the wrench for tightening the bolts. In fatigue testing a specified 

mean load (which may be zero) and an alternating load are applied to the test specimen and the 

number of cycles required to failure is recorded. Load was applied axially by the servo hydraulic 

machine.  

Table 1: Fatigue Loading of Specimens 

Unique Sample # 2x Specimens 
4 0.8 x Max Load 
6 0.8 x Max Load 
7 0.8 x Max Load 
8 0.8 x Max Load 
9 0.8 x Max Load 

 

Two test specimens are prepared per parametric combination for the CA welding machine setup. 

The two specimens of each sample are tested under 80% maximum load as calculated above; and 

cycles to failure as well as the displacement of the specimen is monitored throughout each test. 

The integrity of the weld bead is tested using non-destructive testing (NDT) methods. NDT is 

also used to determine crack development during fatigue testing. The load parameter is kept 

constant and the displacement of the pipe is used as the failure criterion. The displacement of 

5mm is used as a failure criterion for each specimen. In other words, once the actuator has been 

displaced for 5mm the specimen is considered to have experienced adequate crack growth to 

regard it as having failed.     
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APPENDIX E: Cooling Time vs. Arc Energy 

 

 Cooling Time vs. Arc Energy for Air and Water-Cooled SMAW 
Welds for ASTM A517 grade 70 Steel 

Source: Johnson (1997) 
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APPENDIX F: Bead Geometry Measurements 
 

BEAD GEOMETRY MEASUREMENTS 

Sample 2  

The mounted sample was then analysed using a stereo microscope to get the overall size 

of the weld  

 

Figure: Image of Sample 2 at a magnification of 0.8x 

  



215 | P a g e  
 

Sample 3  

A macrograph of Sample 3 shows the bead geometry of the welded sample 3. The bead 

geometry of specimen was measured using a scaled image and Image J software. 

 

Figure 7 Image of the Bead geometry of Sample 3 at a magnification 0.8x 

Sample 4  

 

Figure 15: Image of bead geometry of sample 4  
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Sample 6 

 

Figure 15: Image of the Bead geometry of Sample 3 at a magnification 0.8x 

Sample 7 

 

Figure 19. Micrograph obtained using a stereo microscope obtained at a magnification 

of 0.8x 
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Sample 8 

.  

Figure 23. Micrograph obtained using a stereo microscope obtained at a magnification 

of 0.8x 

 

 

Sample 9 

 

Figure 27. Micrograph obtained using a stereo microscope obtained at a magnification 

of 0.8x 
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Sample 10 

.  

Figure31. Micrograph obtained using a stereo microscope obtained at a magnification 

of 0.8x 

Sample 12 

 

Figure 35. Micrograph obtained using a stereo microscope obtained at a magnification 

of 0.8x 
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Sample 13 

  

 

 

 

 

 

 

 

Figure 39:a stereo micrograph of the overall weld and the bead geometry  

 

Sample 15  

 

Figure 43: A stereo micrograph of the overall weld and the bead geometry at a 

magnification of 0.8x 
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Sample 16  

 

Figure 47: A stereo micrograph of the overall weld and the bead geometry at a 

magnification of 0.8x 
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APPENDIX G: Anova Tables 
 

 

ANOVA TABLES 

 

ANOVA For Bead Width (BW) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 17.78693 5 3.557386 10.25902 0.041927 significant Std. Dev 0.588861 
A-I 0.050205 1 0.050205 0.144783 0.728915 

 
Mean 11.49 

B-V 0.254294 1 0.254294 0.733349 0.454753 
 

C.V. % 5.124984 
C-S 0.009645 1 0.009645 0.027814 0.878155 

 
PRESS 8.665858 

D-FR 0.081225 1 0.081225 0.234242 0.661528 
 

R-Sqd 0.944746 
E-MODE 5.553693 1 5.553693 16.0161 0.027972 

 
Adj. R-Sqd 0.852657 

Residual 1.04027 3 0.346757 
   

Pred. R-
Sqd 0.539716 

Cor Total 18.8272 8 
    

Adeq. 
Precsn 7.433119 

 

 

ANOVA For Bead Height (BH) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
1.515662 5 0.303132 3.38283 0.172349 

not 
significant 

Std. Dev 
0.299348 

A-I 0.154313 1 0.154313 1.722066 0.280801  
Mean 1.311111 

B-V 0.193501 1 0.193501 2.159394 0.238037  
C.V. % 22.83161 

C-S 0.020183 1 0.020183 0.225231 0.66749  
PRESS 2.79199 

D-FR 0.0036 1 0.0036 0.040174 0.853958  
R-Sqd 0.849353 

E-MODE 0.138465 1 0.138465 1.545212 0.302142  
Adj. R-Sqd 0.598276 

Residual 
0.268827 3 0.089609    

Pred. R-
Sqd -0.56459 

Cor Total 
1.784489 8     

Adeq. 
Precsn 5.06401 
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ANOVA For Bead Penetration (BP) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
11.58012 5 2.316024 6.493304 0.077266 

not 
significant 

Std. Dev 
0.597226 

A-I 0.573124 1 0.573124 1.606834 0.294386  
Mean 7.922222 

B-V 0.272421 1 0.272421 0.763771 0.446475  
C.V. % 7.538616 

C-S 0.186554 1 0.186554 0.52303 0.521839  
PRESS 11.96735 

D-FR 0.2916 1 0.2916 0.817542 0.432549  
R-Sqd 0.915413 

E-MODE 7.102081 1 7.102081 19.9117 0.020959  
Adj. R-Sqd 0.774435 

Residual 
1.070036 3 0.356679    

Pred. R-
Sqd 0.053976 

Cor Total 
12.65016 8     

Adeq. 
Precsn 6.642478 

 

ANOVA For Plate-side HAZ (PTHAZ) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
12.80324 5 2.560647 2.278932 0.264769 

not 
significant 

Std. Dev 
1.060008 

A-I 0.303713 1 0.303713 0.270299 0.639058  
Mean 3.881111 

B-V 11.74683 1 11.74683 10.45447 0.048094  
C.V. % 27.31198 

C-S 0.292263 1 0.292263 0.260109 0.645198  
PRESS 23.93894 

D-FR 0.497025 1 0.497025 0.442344 0.553555  
R-Sqd 0.791589 

E-MODE 0.317418 1 0.317418 0.282497 0.631908  
Adj. R-Sqd 0.444238 

Residual 
3.370852 3 1.123617    

Pred. R-
Sqd -0.48008 

Cor Total 
16.17409 8     

Adeq. 
Precsn 3.973563 

 

ANOVA For Pipe-side HAZ (PPHAZ) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
2.428521 5 0.485704 3.433072 0.169449 

not 
significant 

Std. Dev 
0.376136 

A-I 0.043601 1 0.043601 0.308181 0.617507  
Mean 1.532222 

B-V 0.073873 1 0.073873 0.522152 0.522162  
C.V. % 24.54837 

C-S 0.001841 1 0.001841 0.013012 0.916388  
PRESS 3.757495 

D-FR 1.311025 1 1.311025 9.266633 0.055686  
R-Sqd 0.85123 

E-MODE 0.046806 1 0.046806 0.330835 0.605473  
Adj. R-Sqd 0.60328 

Residual 
0.424434 3 0.141478    

Pred. R-
Sqd -0.31705 

Cor Total 
2.852956 8     

Adeq. 
Precsn 4.775404 
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ANOVA For Plate-side HAZ Hardness (VHN PTHAZ) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
561.1002 5 112.22 0.999635 0.535277 

not 
significant 

Std. Dev 
10.59533 

A-I 28.57021 1 28.57021 0.254498 0.648647  
Mean 195.14 

B-V 32.71475 1 32.71475 0.291417 0.62681  
C.V. % 5.429604 

C-S 55.50781 1 55.50781 0.494453 0.532605  
PRESS 2963.761 

D-FR 103.4289 1 103.4289 0.921325 0.407937  
R-Sqd 0.624914 

E-MODE 153.6676 1 153.6676 1.368842 0.326503  
Adj. R-Sqd -0.00023 

Residual 
336.783 3 112.261    

Pred. R-
Sqd -2.30083 

Cor Total 
897.8832 8     

Adeq. 
Precsn 3.090166 

 

ANOVA For Weld Metal Hardness (VHN WM) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
1874.6 5 374.92 5.07432 0.105847 

not 
significant 

Std. Dev 
8.595683 

A-I 85.90713 1 85.90713 1.162702 0.359881  
Mean 219.2656 

B-V 701.6367 1 701.6367 9.496237 0.054068  
C.V. % 3.920216 

C-S 110.8215 1 110.8215 1.499904 0.308081  
PRESS 1889.379 

D-FR 27.09203 1 27.09203 0.366674 0.587563  
R-Sqd 0.89426 

E-MODE 36.23288 1 36.23288 0.490391 0.534176  
Adj. R-Sqd 0.718028 

Residual 
221.6573 3 73.88577    

Pred. R-
Sqd 0.098689 

Cor Total 
2096.257 8     

Adeq. 
Precsn 6.742491 

 

ANOVA For Pipe-side HAZ Hardness (VHN PPHAZ) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
1733.021 5 346.6042 0.137162 0.971678 

not 
significant 

Std. Dev 
50.26894 

A-I 43.4702 1 43.4702 0.017203 0.903951  
Mean 226.3389 

B-V 397.3864 1 397.3864 0.157258 0.718218  
C.V. % 22.20959 

C-S 5.390205 1 5.390205 0.002133 0.966065  
PRESS 65087.12 

D-FR 465.4806 1 465.4806 0.184205 0.69674  
R-Sqd 0.186068 

E-MODE 164.616 1 164.616 0.065144 0.815041  
Adj. R-Sqd -1.17049 

Residual 
7580.898 3 2526.966    

Pred. R-
Sqd -5.98816 

Cor Total 
9313.919 8     

Adeq. 
Precsn 1.193801 

 

 



224 | P a g e  
 

ANOVA For Plate-side Residual Stress (PTRS) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 
10389.88 5 2077.976 2.279865 0.264659 

not 
significant 

Std. Dev 
30.19018 

A-I 7200.909 1 7200.909 7.900524 0.067249  
Mean 377.5556 

B-V 70.15909 1 70.15909 0.076976 0.799459  
C.V. % 7.996222 

C-S 930.9091 1 930.9091 1.021353 0.386634  
PRESS 24401.16 

D-FR 1980.25 1 1980.25 2.172644 0.236921  
R-Sqd 0.791657 

E-MODE 541.9668 1 541.9668 0.594622 0.496804  
Adj. R-Sqd 0.444418 

Residual 
2734.341 3 911.447    

Pred. R-
Sqd -0.85925 

Cor Total 
13124.22 8     

Adeq. 
Precsn 4.462442 

 

ANOVA For Pipe-side Residual Stress (PPRS) 

Source Sum of 
Squares 

DoF Mean 
Square 

F-Value p-value 
Prob > F 

Remarks   

Model 51373.94 5 10274.79 9.302341 0.047909 significant Std. Dev 33.23459 
A-I 25141.54 1 25141.54 22.76204 0.017495  

Mean 429.7778 
B-V 20114.03 1 20114.03 18.21036 0.023614  

C.V. % 7.73297 
C-S 7981.536 1 7981.536 7.226132 0.074531  

PRESS 29229.93 
D-FR 132.25 1 132.25 0.119733 0.752169  

R-Sqd 0.939408 
E-MODE 39859.56 1 39859.56 36.08709 0.009241  

Adj. R-Sqd 0.838422 
Residual 

3313.614 3 1104.538    
Pred. R-
Sqd 0.46551 

Cor Total 
54687.56 8     

Adeq. 
Precsn 8.942355 
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APPENDIX H: Pareto Optimal Set 
 

 

PARETO OPTIMAL SET 

 

Optimization Settings for CA with combination of Multi Objective Equations BW, BH, BP, 
PTHAZ and PPHAZ 

 

The settings are in the following order I(Amps), V(Volts), S(mm/s) and FR(mm/s) 

 361.4735   25.0004    8.0040   18.2946 

  377.2664   29.9673    9.9888   16.7529 

  361.8191   29.9869    8.0617   18.2980 

  379.8291   25.0781    8.1206   18.1953 

  360.6255   29.9986    9.8966   16.7516 

  378.2137   25.0762    9.9660   16.7078 

  378.7066   25.0771    8.4523   18.0045 

  379.3570   25.0175    9.9810   18.2900 

  378.2137   25.0762    9.9660   16.7078 

  369.9529   25.5221    8.6398   18.2726 

  361.2804   29.9826    9.1355   16.8823 

  376.1446   27.8768    9.8706   17.9500 

  360.7878   29.1275    8.7109   16.7846 

  368.4015   26.8535    9.9290   18.0238 

  361.2325   29.1064    8.4735   18.2647 

  362.3814   26.0426    9.7152   18.2805 

  378.7011   25.4507    9.8446   16.7100 

  374.3785   29.9847    9.9729   16.7525 

  361.0944   29.9328    9.9884   18.2999 
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  360.6255   29.9986    9.8966   16.8766 

 

Optimization Settings for CW with combination of Multi Objective Equations BW, BH, BP, 
PTHAZ and PPHAZ 

 

The settings are in the following order I(Amps), V(Volts), S(mm/s) and FR(mm/s) 

  377.3188   25.1371    9.2808   16.7156 

  377.5324   25.1115    9.9968   16.7087 

  360.4651   29.9870    9.7726   18.2820 

  360.1216   29.3639    9.8994   18.2731 

  368.5625   25.0922    9.9915   16.7177 

  360.3681   29.9490    8.0379   18.2892 

  360.3134   29.9842    8.2098   17.0626 

  378.5741   25.1812    9.9973   17.8701 

  362.9675   25.8217    8.4040   16.8547 

  366.1595   29.9733    8.1718   18.0369 

  372.6023   25.4133    9.6333   17.9072 

  360.2109   29.8925    8.6725   18.2770 

  363.6004   29.9264    9.3745   17.5821 

  363.1565   25.8316    9.4344   18.0208 

  370.7539   28.8981    9.4438   18.1513 

  360.8681   29.9490    8.0379   18.2892 

  360.6181   29.9490    8.5379   18.2892 

  362.4840   29.9867    9.9442   18.2829 
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Optimization Settings for CA with combination of Multi Objective Equations VHN(PTHAZ), 
VHN(WM), VHN(PPHAZ), PTRS and PPRS 

 

The settings are in the following order I(Amps), V(Volts), S(mm/s) and FR(mm/s) 

  362.9764   29.7644    8.3396   16.7304 

  363.1314   29.9996    8.8308   18.2983 

  362.7722   25.0994    8.2192   18.2292 

  362.9360   29.9881    8.2209   18.2987 

  364.7993   28.8771    8.4667   16.7333 

  365.6500   27.5152    8.8202   18.2931 

  374.1210   25.0571    9.7722   18.0495 

  377.9203   25.0333    9.7808   16.8932 

  379.1523   25.0527    9.8088   18.2519 

  367.3939   26.4335    8.8208   17.7096 

  363.0623   29.9987    9.6786   16.8526 

  379.1073   25.0628    8.4838   18.2810 

  369.5476   25.0580    9.0927   18.2403 

  363.1611   25.8826    8.4274   16.9934 

  371.5626   29.8680    9.6586   16.7230 

  373.8232   27.0183    8.4694   17.9095 

  376.9506   25.0368    9.6872   17.0493 

  367.1698   27.7540    9.0964   17.3690 

  363.2077   28.8975    8.7139   18.2176 

  370.1373   28.8540    8.8939   17.5275 

  363.0773   29.0017    8.2921   18.2300 

  377.1927   25.4850    8.7615   18.2723 

  370.2249   25.8494    8.8466   17.3368 

  369.9622   29.9636    8.6977   18.1499 
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  375.4018   25.1306    9.3637   16.9128 

 

Optimization Settings for CW with combination of Multi Objective Equations VHN(PTHAZ), 
VHN(WM), VHN(PPHAZ), PTRS and PPRS 

 

The settings are in the following order I(Amps), V(Volts), S(mm/s) and FR(mm/s) 

 360.0173   29.9868    9.9547   18.2987 

  378.4695   25.1175    9.9917   16.7441 

  360.1174   29.9926    8.1559   16.7040 

  377.5512   26.6916    9.0386   17.0898 

  363.3897   25.0312    9.9370   16.7050 

  379.3680   25.1331    9.9917   18.2754 

  370.9343   26.4684    9.7217   16.9207 

  373.0903   25.5628    8.7403   16.9931 

  369.0966   29.1968    9.2984   16.8410 

  376.3169   25.5214    9.6008   18.1057 

  360.1030   29.9921    8.0018   18.2788 

  363.8591   27.0263    9.6894   16.7220 

  363.2636   26.8283    9.1702   17.8931 

  360.2909   29.8977    8.1804   17.3563 

  360.5933   29.5041    8.6331   18.1324 

  378.4160   25.1594    9.7831   16.7433 

  378.0328   25.7888    9.8332   16.9803 

  365.1754   29.0837    9.6083   17.9871 

  378.6268   25.1177    9.9917   17.7230 

  363.6126   27.9062    9.1215   16.9088 

  360.1019   29.9892    8.4630   18.2714 

  374.7043   27.0756    9.4391   17.5410 


