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ABSTRACT

Several genes are associated with an increased susceptibility to respiratory diseases,

including asthma, which may be exacerbated by ambient air pollution. These genes

include the Gluthathione-S-Transferase family (GSTMl and GSTPl) and the NAD(P)H

quinone oxidoreductase (NQO 1). This, the first genetic epidemiological study conducted

in Sub-Saharan Africa had 2 main objectives: I) to evaluate whether the above genotypes

confer susceptibility to asthma and related phenotypes; and 2) to investigate if

polymorphisms in these genes known to modulate the response to or protect from

epithelial oxidative damage modify pulmonary response to ambient air pollutants.

A total of 369 schoolchildren from seven primary schools in a heavily industrialized

region of south Durban and a demographically similar area in north Durban, Kwa-Zulu

Natal, South Africa during the period May 2004- October 2005, participated in the study.

DNA was extracted from whole blood using the GENTRA Puregene kit. Genotyping for

the GSTMl (null vs present genotype) was done using multiplex PCR while the GSTPl

(I1e105Val; AA-+AG/GG) and the NQOl (ProISer; CC -+CTITT) genotypes were

determined using real time PCR and Taqman probes (Applied Biosystems). Persistent

asthma and asthma of "any severity" was determined by questionnaires based on the ATS

and BRMC questionnaires. Positive atopy was determined by at least one positive skin

test reaction to the seven allergens tested. Other health assessments included spirometry,

methacholine challenge testing and four cycles of three-week serial peak flow

measurements. Acute respiratory measures included within day variability in FEV l and

XXVIII



PF and the lowest valid values on a given day. S02. N02, NO and PM 10 were measured

over a year using ultraviolet fluorescence, gas-phase chemiluminescence and gravimetric

methods respectively. STATA (version 9, College Station, TX, USA) was used for data

analysis. Multiple logistic models and Pearson's chi-squared tests were used to evaluate

the association between asthma, BHR, atopy and genotype. Covariate-adjusted

generalised estimating equations (GEE) with lags of 1-5 days were used to evaluate

genotype effect modification of exposure-response.

The GSTM 1 gene deletion (GSTM 1null) was detected in 28.9% of the study population

while the distribution of GSTP1 AG/GG and the NQ01 CT/IT polymorphisms were

64.9% and 36.0% respectively. Multiple regression with the adjustment for relevant

covariates indicated that individuals carrying one or more copies of the GSTP I minor

allele had a statistically significant risk for persistent asthma. GSTM 1 and NQO 1

genotypes showed no significant association with any of the respiratory outcomes tested.

However, we found a protective effect for those individuals carrying the GSTM 1null

genotype and at least one Ser allele (NQOI CTflf) for persistent asthma and marked

BHR (OR = 0.7, Cl: 0.3-1.5 and OR= 0.3, Cl: 0.0-1.9 respectively). This protective effect

is consistent with the role of NQ01 in metabolic activation. Children from the south

schools had almost twice the risk of persistent asthma (OR=2.0, Cl: 1.2-3.2, p<.005) and

3 times the risk of BHR (OR=3.5, Cl: 1.4-8.4, p<.005) than those from the schools in the

north. Based on symptoms, 20.4% of children from the random sample had persistent

asthma and 10.3% had marked BHR (PC20~ 2 mg/ml).

XXIX



The GEE model results were consistent with modification of air pollutant-pulmonary

function relationships by oxidative stress associated genotypes. Statistically significant

gene*environment interactions with N02, NO, and PM 10 using FEV1 and PEF outcomes

in the expected direction were more frequent for GSTPl AA and NQOl CC genotypes

(interaction p-values <0.05). There were very few gene*environment interactions for

S02 and any of the 3 SNPs tested. The most striking finding in our study was that

pollutant exposure, especially oxides of nitrogen and PM 10, even at levels below the

recommended limits of South African guidelines, is associated with poorer lung function

and that this association is significantly modified by an individual's genotype,

particularly the GSTMlnull, GSTPIAA and NQOICC genotypes. Children with the

GSTMlnull GSTPIAG/GG, GSTPIAG/GG NQOI CC and GSTMlpos NQOICC gene­

gene combinations showed a significant interaction with N02, NO, and PM 10 with

decrement in lung function measures.

The increased risk to air pollution conferred by the GSTPI and GSTMl genotypes may

have clinical and public health importance because this variant is common in most

populations. The findings suggest that the risk of developing respiratory symptoms is

increased when genetic susceptibility is included with environmental exposures. Our

models suggest significant gene*environment interactions i.e the response to the level of

air pollutants, as indicated by variability in pulmonary function measures, is modified by

genotype. The heightened allergic airway response may be a consequence of a decreased

capacity to mount an effective cytoprotective response to oxidative stress. Studying genes

may inform us about the biology of asthma which may lead to new therapies or
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CHAPTER 1:

INTRODUCTION

The South Durban Industrial Basin (SDIB) is situated on the east coast of South Africa

and has one of the highest concentrations of industrial activity in Africa containing

among others, 2 large petroleum refineries, a paper mill, an international airport, a large

chemical tank farm and a landfill site. Discriminatory land use planning during the

Apartheid era had placed a large residential community very close to industry and

community in this region had previously requested an independent investigation into the

air quality and health status in the SDIB.

In response to this outcry and the economic growth potential of this area, the National

Government initiated the Multi-Point Plan in 2000 which proposed to evaluate and

monitor pollution levels in the SDIB and to determine the extent to which pollutants

adversely impacted on the health of the resident community. As part of the Multi-point

Plan, the South Durban Health Study (SDHS), conducted by the Center for Occupational

and Environmental Health (University of Kwa-Zulu Natal) and the Department of

Environmental Health Sciences (University of Michigan), consisted of a health risk

assessment and an epidemiological study. The current study adds the genetic component

to the SDHS to: I) evaluate whether certain genotypes confer susceptibility to asthma and

related phenotypes; and 2) if these genotypes modify respiratory response to certain

environmental pollutants.



In a pilot study among students and teachers at the Settlers' Primary School in the SDIB,

Robins et al., (2002) reported unusually high prevalence rates for asthma, with 53.5% of

any type of symptoms based asthma to 16.8% of moderate/severe persistent asthma

among children. In addition, approximately 20% of the study sample had marked airway

hyper-responsiveness as diagnosed by methacholine challenge testing, this prevalence

being higher than that of any other reported in literature. In addition, they found

statistically significant associations between prior day and prior 48 hour PM 1o, S02, and

N02 levels and this gave impetus to the SDHS which used a cohort of children from 7

primary schools in south and north Durban (areas which were demographically similar,

but with assumed lower levels of ambient pollution in north Durban compared to south

Durban).

Asthma, which is a substantial public health burden, is the most common chronic disease

during childhood in modern society (Kabesch, 2006). Increases in asthma incidence and

morbidity may be attributed to genetic predisposition, exposure to allergens and air

pollution, socioeconomic effects, psychosocial stress, culture, and access to and quality

of medical care (Miller, 1999). There is increasing evidence that the effects of air

pollution vary among individuals because of the variation in their genetic susceptibility.

Experimental studies in mice indicate that pulmonary responses to specific pollutants,

including ozone and particles, are under genetic control (Kleeberger, 2003). There are

two major reasons to investigate genetic susceptibility to air pollution effects in humans.

The first is that the effects of air pollution on respiratory outcomes are modest in the

general population because the population includes individuals relatively resistant to air
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pollution. Thus, the ability to detect subtle effects of air pollution may depend on the

ability to identify susceptible subpopulations. Second, susceptible groups might

experience health effects at levels below current exposure standards. An essential

question is: are environmental influences associated with asthma more likely to affect

people with certain genetic profiles? It is therefore necessary to simultaneously study

genetic variants in association with asthma related phenotypes and environmental

exposures.

In the context of candidate genes for asthma, inflammation the airways is associated with

oxidative stress and the formation of reactive oxygen species (ROS). Although host

antioxidant defenses should detoxify ROS, individuals differ in their ability to deal with

an oxidant burden, and such differences are in part genetically determined. Inability to

detoxify ROS should perpetuate the inflammatory process, activate bronchoconstrictor

mechanisms and precipitate asthma symptoms (Fryer et al., 2000) and oxidant stress is

recognized as a mechanism that underlies the toxic effects of most air pollutants (Kelly,

2003). Cells in the lung are protected against oxidative stress by an extensive range of

intracellular defenses, especially members of the Glutathione-S-Transferase enzymes

(GSTMI and GSTPI) and NAD(P)H quinone oxidoreductase 1.

This study focused on these above genes because they have common functional

polymorphic variants and they have been implicated in oxidative defense pathways

(Gilliland et al., 2002b). These variant alleles result in either total absence or a

substantial change in enzyme activity. Given the overall widespread prevalence of the
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polymorphisms under study in the general population, there are a substantial number of

people who constitute a genetically susceptible population.

Research focused on gene-environment interactions hold great promise in preventing and

managing asthma. However there are few studies that examine the relationship between

genetic risk factors and environmental exposures in the exacerbation of asthma. Most of

these studies were conducted mainly in the Northern hemisphere with Caucasian,

Hispanic and Asian populations. In order to compare asthma prevalence with

environmental exposures, other authors have used mortality data, admission records,

absenteeism and activity limitation with cross sectional designs. The advantage of this

study is the use of a longitudinal cohort design with repeated measures of lung function

(FEV} and PF) as markers of respiratory health and simultaneous detailed air pollutant

monitoring as close to the experimental sites as possible. Other asthma related

phenotypes investigated included BHR and atopy (defined as skin test responsiveness to

common allergens). This study had several important advantages. First, the study

population of children exposed to ambient pollutants was confined to defined areas, each

area with its own monitoring site, allowing a more precise estimation of exposure.

Second, the pollutants were analyzed in a systematic manner over the duration of the

study, which allowed the correlation between increases in exposure and decrements in

lung function measures. Thirdly, the sample deliberately selected persistent asthmatics,

which provided additional power to identify specific impacts on susceptible groups. Our

investigations with the genetic component was dual pronged: we hypothesised that

individual response to oxidative stress as determined by polymorphisms in GSTs and
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NQOI are associated with asthma, BHR and atopy; we further hypothesised that these

polymorphic genotypes may modify pulmonary response to environmental pollutants.
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CHAPTER 2:

LITERATURE REVIEW

2.1 The South Durban Industrial Basin

The South Durban Industrial Basin (SDIB) is located on the east coast of South Africa.

This shallow basin, an approximately 4 x 24 km coastal strip, sits in a flat alluvial

corridor defined to the north east by the inland Berea Ridge and Southern Freeway, to the

south west by the Bluff Ridge, and to the south east by the Indian Ocean. Land use in the

SDIB is primarily residential and industrial and this area is recognized as one of the most

highly industrialized and most heavily polluted areas in Southern Africa (Nriagu et al.,

1999; Matooane and Diab, 2002).

The Basin has one of the highest concentrations of industrial activity in Africa,

containing, for example, two large petroleum refineries, a paper mill, an international

airport, a large chemical tank farm, landfill sites, incinerators, processing and

manufacturing industries, major trucking, harbor and rail facilities, and other industry

(Fig 2.1). The two major petroleum refineries, Engen and Sapref, are within the

community, together with a pulp and paper manufacturer, Mondi. Up until 2000, each of

these refineries has emitted, on average, in the range of 35 000 to 40 000 kg of S02 per

day (Ecoserv, 1998). Residential and recreational areas are intermingled with industry,

with approximately 200,000 people living in 25 designated "suburbs", most of which

remain racially segregated. The mixed residentiallindustrial community is a result of

discriminatory land use planning during the Apartheid era. The peculiarities of
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geography and land development strategies for the Durban South region have been

documented in numerous reports (Matooane, 2002), strongly implying a lack of

appropriate town planning on the part of the local government.

Figure 2.1: Engen Refinery (middle) with community residences of Wentworth (back) and Merebank
(front)

Historically, the SOlE is at particularly high risk for exposure to significant levels of

ambient air pollution because of its specific topography. Owing to a combination of its

geographical relationship to the refineries, land contours, prevailing meteorological

conditions, the use of a relatively short emissions stacks at these facilities (50 - 100

meters), the lack of or relative ineffectiveness of emission control devices on refinery

stacks, the many sources of so-called fugitive air emissions at refineries, emissions from

industrial and passenger vehicles, as well as the proximity of other industries and the
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Durban airport, the community IS believed to be at risk for intermittent substantial

exposure to ambient air pollutants.

Despite reports of elevated pollution, there have been few scientifically generated data to

suggest adverse health outcomes. In a pilot study conducted among students and teachers

at the Settlers' Primary School in the SDIB region, Robins et al. (2002) reported

unusually high prevalence rates for asthma, with ranges of any type of symptoms based

asthma from 53.5% to moderate/severe persistent asthma of 16.8% at a school located

between two major oil refineries (Engen and Sapref). In addition, approximately 20% of

the study sample had marked airway hyperresponsiveness as diagnosed by methacholine

challenge testing, a prevalence higher than any other population based reports in

scientific literature. This study found statistically significant associations between prior

day and prior 48 hour PM 10, S02, and N02 exposures (continuously measured at the

school) and increased respiratory, including diminished pulmonary function measures

(measured by digital recording peak flow meters) among students with persistent asthma.

These effects were observed during a time period when all ambient pollutant measures

were well within national and international standards. Based on these results, the South

Durban Health Study (SDHS) was funded by the Ethekwini Muncipality (Durban Metro).

This cohort study investigated the acute effects of air pollution and other environmental

exposures among children in South Durban and a less exposed comparison area in North

Durban with the same socioeconomic profile.
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The key pollutants that were monitored in the SDIB are S02, NOx , PM JO and to a limited

extent, CO. Lead, 0 3 and volatile organic compounds (VOCs) are not monitored

intensively. Most of the monitoring in SDIB was previously done by private consultants

contracted to the Durban Metro for management of the Durban Metro Air Quality and

Emission Survey, which has been responsible for the Durban South Sulphur Dioxide

Monitoring System. An industry-funded South Durban Sulphur Dioxide Management

Systems Committee (SDSDMSC) had been continuously monitoring S02, at the Settlers'

Primary School in Merebank since June 2000.

Table 2.1: Emissions from point and mobile sources in the South Durban Industrial Basin (Adapted
from Ecoserv, 1998).

SOURCE S02 NO. PM CO

Oil refineries 27412 (66.1)* 2863 (15.1) 609 (11.9) 12474 (I 1.4)

Other point sources 11977 (28.9) 2580 (13.6) 2 123 (41.3) 6408 (5.9)

Vehicles 1224 (3.0) II 524 (60.8) 2296 (44.7) 89718 (82.3)

Other line sources 856 (2.1) I 975 (10.4) 108 (2.1) 358 (0.4)

Total 41469 (100) 18942 (100) 5136 (100) 108989 (100)

*Tonnes per annum (% of total emiSSion

Continuous monitoring of oxides of nitrogen, carbon monoxide, total reduced suIfates,

and PM IO at the school commenced in late October 2000. Available data on sulfur

dioxide indicated that average and/or maximum exposures at the Settlers School have

frequently exceeded World Health organization (WHO), the South African Department

of Environmental Affairs (DEAT), and SDSDMSC guidelines. Table 2.1 shows key
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pollutants and the primary sources of emission. Point sources account for approximately

94% of the S02 emission but only 29% of NOx emission.

According to this data source, emission sources for PM are almost equally split between

point (53%) and mobile (45%). Although a steady decline has been observed for annual

S02 levels since 1989, some monitoring stations have exceeded the WHO guidelines

since about 1995. It is important to note that WHO threshold values are based on

exposure to single pollutants. Also, l-hr and 24-hr exceedances of the OEAT standards

occur relatively frequently, e.g., 176 I-hr exceedance episodes in 1999 and 17 24-hr

exceedances between 1997 - 1999 (Matooane, 2002). In reality, especially in the SOIB,

exposure to many pollutants occurs simultaneously. Combinations of pollutants may

possibly have greater effects on airway function than exposure to a single pollutant and

may also enhance the patient's reactivity to other stimuli. This synergistic effect has been

observed in relation to the acidic gases (S02, N02 and ozone) and particulate matter

(Barnes, 2000).

2.2 Asthma and related phenotypes

Asthma is defined as a chronic inflammatory disorder of the aIrways with the

inflammation leading, in susceptible individuals to episodes of wheezing and other

respiratory symptoms that are associated with reversible airflow limitation as well as

bronchial hyperresponsiveness to a variety of stimuli I. These symptoms are usually

associated with widespread but variable airflow limitation and are at least partly
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reversible either spontaneously or with treatment (Nadel and Busse, 1998; American

Thoracic Society, 2000).

Phenotypes associated with asthma include bronchial hyperresponsiveness (BHR), total

IgE (immunoglobulin E), specific IgE directed against different allergens and skin test

reactivity against common allergens. Other phenotypes include allergic rhinitis and atopic

dermatitis. BHR, defined as an abnormal increase in airflow limitation following a

relevant stimulus to the airways, is a major pathophysiological phenomenon of bronchial

asthml. The EAACI (European Academy of Allergy and Clinical Immunology) position

paper defines atopy as a "personal or familial tendency to produce IgE antibodies in

response to low doses of allergens, usually proteins, and to develop typical symptoms

such as asthma, rhinoconjunctivitis, or eczema/dermatitis". Several studies have shown a

strong association between BHR, atopy and asthma (Sears et al., 1991; Pearce et aI.,

2000) but it is clear that that not all people with atopy have BHR and also not all people

with BHR have asthma. This may indicate that subjects with BHR may have an asthma

predisposing gene, yet need a trigger to develop full-blown asthma. Atopy alone is not

sufficient to cause asthma, but individuals who are atopic are more likely to have

increased airway responsiveness (Fryer et al., 2000) and any assessment of asthma must

consider the possible interaction of these two conditions in the expression of the asthma

phenotype.

Asthma is a substantial public health burden, particularly for children, both in the number

of people affected by the disease, and the related morbidity and cost. Globally as many
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300 million people of all ages and ethnic groups suffer from asthma and the disease

burden on governments, health care systems, families and patients is increasing

worldwide3
. This burden is both directly attributed to the disease (medical costs) as well

as indirect costs to the family and community.

2.2.1 Asthma Prevalence

Asthma is the most common chronic disease during childhood in modern societies.

Prevalence rates differ between countries but on average, 10-20% of children in Western

Europe and the US are affected (Kabesch, 2006). The International Study of Asthma and

Allergies in Childhood (lSAAC) and the European Community Respiratory Health

Survey (ECRHS) provided, for the first time, a picture of global patterns of asthma

prevalence in childhood and adult life respectively (ECRHS, 1997; ISAAC, 1998). Both

studies show a particularly high prevalence of reported asthma symptoms in English­

speaking countries i.e. the UK, New Zealand, Australia, the USA and Canada. In the

ISAAC, the rest of the world outside the Americas and Western Europe generally showed

relatively low asthma prevalence, particularly in developing countries like China and

Taiwan. South Africa was recorded as the 15th highest prevalence out of a total of 57

countries (Fig 2.2). The ISAAC study has shown a marked variation in asthma

prevalence rates among countries which may be attributed to disparities in hygiene, diet,

cigarette smoking, traffic pollution, antenatal exposures and physical activity.
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The NHANES III project using a US adult population of 18 393, recorded a prevalence of

current asthma of 4.5% and a prevalence of wheezing of 16.4% (Arif et al., 2003). In the

US, asthma prevalence, hospitalization and mortality are higher for Black American

compared to Caucasians. In Michigan, a cross-sectional study of childhood asthma in an

integrated middle class population revealed that the lifetime prevalence of asthma was

twice as high for Black American compared with Caucasian children, suggesting that

factors such as racial discrimination, differential access to medical care and housing and

biological factors are responsible for this disparity (Nelson et al., 1997). Varied

prevalences have been found in urban and rural areas, e.g. in Zimbabwe, exercise­

induced asthma was associated with urban residence and high living standards (Kaley et

al., 1991). In addition, asthma prevalence was shown to be higher in West Germany as

compared to East Germany which alludes to asthma being a disease of the Western

lifestyle (Van Mutius et al., 1994).

This disparity in prevalence in rural and urban areas may be explained by the hygiene

hypothesis. The hygiene hypothesis postulates that hay fever and wheeze are diseases of

more affluent urban areas compared to rural farming areas because of the differences in

exposure to various allergens in early childhood (Strachan, 2000). Rural children may be

exposed to a greater extent that allows for the accumulation of protective immunity. The

hypotheses suggests that small families, earlier birth order, less exposure to respiratory

infection and reduced exposure to endotoxins, parasites and animal sources of allergens

in early childhood as a potential explanation for the increase in asthma prevalence in

more westernized urban communities compared to rural communities.
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Studies of asthma in SA are scarce with studies conducted in the Transkei, Cape Town,

Gauteng, North West province and Durban (Erlich, 2002). In a cross sectional study done

in the south central Durban area, approximately 10% of the 367 children and 12% of the

693 adults reported doctor diagnosed asthma (Nriagu et aI., 1999). In a Sowetan

population of black children, Nagel (1993), in a study investigating the prevalence of

childhood asthma in white primary school children in Cape Town, concluded that 52

(4.4%) of the I 174 children studied had asthma and noted that this prevalence was

higher than 3.1 % reported in a previous study on African children in Gugulethu. In 1995,

Erlich and coworkers evaluated self reported asthma among a population of I 955 6-10

year old children in Cape Town. These authors reported a relatively high prevalence of

wheeze in the past 12 months of 26.8% (as reported by parents) and 10.8% reported an

asthma diagnosis. In a later study in Cape Town among young adolescents (13-14 years

old), 16% reported wheeze in the previous 12 months and 13.3% reported diagnosis of

asthma (Poyser et al., 2002). As compared to these findings the Settlers school study

conducted in the South Durban area found 39.1 % of reported wheezing in the last 12

months and 13.3% ever having been diagnosed with asthma (Robins et aI., 2002).

14



UK •Ne-......., Zealand • .. ... •
Australia • ....
Irelan<l • • • •
Australi<l •
Canada • •
Peru •
Costa Rica •
Brazil •• • • •
USA • • •
Paraguay •
Uruguay •
Pananl<l •
Kuwait •
South Africa •
Malla •
Finland • •• •
Lebanon •
Kenya • •
Germany ..
FIance • -• •
Japan •
Thailand ••
Swc<lcn • •
Hong Kong •
Philippines •
Belgium •
Austria •
Iran • •
Argentina • •
Estonia • •
NIgeria •
Spain •• .. ••
Chile • ..
Singapore •
Mataysia -•• •
POr1ugal .. ...
Uzbekislan • •
Oman •
Italy • ...... •
Pakistan •
Larvia -Poland ...
Algana •
South Koroa ..
Morocco •• •
Mexico •
Ethiopia • •
India • .. • • • • •
Taiwan •
Russia •China ....
Greece •
Georgia •
Romania •
Albania •
Indonesia •

0 5 10 15 20 25 30 35

Prevalence of Symptoms (%)

Figure 2.2: Prevalence of asthma symptoms (percentage) from a questionnaire In the ISAAC database
(Gold and Wright, 2(05)
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2.2.2 Risk factors

Increases in asthma prevalence may be attributed to differences in exposure levels to

aeroallergens such as house dust mite, smoking behavior, dietary sodium intake,

occupation, indoor and outdoor pollution. Indoor air pollutants include biologics (mold,

dust mite, cockroach and rodent infestations), dampness and environmental tobacco

smoke (ETS) (Strachan, 2000; Arruda et al., 2005). Other factors include psychosocial

stress, culture, and access to and quality of medical care (Miller, 1999). Numerous

studies have reported an association between environmental tobacco smoke (ETS)

exposure and respiratory diseases. Maternal smoking during pregnancy and early

childhood is associated with impaired lung growth and diminished lung function, and in

asthmatic children, parental smoking increases symptoms and the frequency of asthma

attacks (Kabesch, 2006). Other factors implicated in the development of allergy include

lower socioeconomic group, sex (during childhood and adolescence, boys are nearly

twice as likely as girls to develop asthma), birth order, maternal phenotype and low birth

weight (Borish, 1999). One should therefore consider individual and synergistic effects

of the above risk factors with regard to asthma.

Aligne et al. (2000) argue that urban residence, rather than race, increases the risk of

asthma. These authors suggest that asthma is not a racially linked genetic disease. Indeed,

indigenous populations living in Africa have very low asthma prevalence, and asthma

that does occur is associated with home environmental factors related to urbanization.

This view is considered in this study, we have a multiracial population with common
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exposure to risk factors, manifestation of respiratory illness should be a result of

exposure, rather than race. If asthma is related to some aspect of outdoor pollution and if

everyone in a given population is exposed to the same combination of pollutants, then

exacerbation of asthma is wholly dependent on individual susceptibility. Comparisons of

African populations show that asthma prevalence is not similar among different groups

further fortifying the argument that asthma appears to be more related to environment and

lifestyle than race (Aligne et aI., 2000). However, genetic predisposition to these

outcomes, which has been shown to be variable among different race groups, may be the

determining factor in susceptibility. The widely accepted paradigm is that environmental

factors are important to the development of asthma, but one must be genetically

predisposed to respond to environmental triggers such as viruses, the presence and

concentration of different allergens, secondary cigarette smoke or environmental

pollutants (Los et aI., 1999).

2.3 Air pollutant exposure and respiratory outcomes

Over the past two decades, an increasing number of epidemiological studies have linked

urban air pollution to increased morbidity and mortality (Samet and White, 2004). A

considerable body of literature has focus sed on the impacts of ambient pollution on

respiratory health, examining a variety of specific outcomes, various pollutants and

different population subgroups. Outcomes studied have included acute exacerbation of

lung disease associated with exposure to pollutants and the development of chronic lung

disease. Studies have considered effects of airway impairment in both healthy and
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allergic persons (Peden, 2003; Bernstein et aI., 2004). Air pollution has been associated

with many signs of asthma exacerbation, e.g. pulmonary function decrements, increased

BHR, increased medication use, visits to the emergency departments and hospital

admissions (D' Amato et aI., 2005).

Despite improvements in air quality in many developed countries, scientific evidence

shows that adverse health effects are still associated with current levels of criteria

pollutants. This may indicate that current standards are not set low enough to protect us

from environmental onslaughts. Alternatively, the presence of non-criteria pollutants at

elevated levels in ambient air, locally increased levels of air pollution that are not

captured by central monitors, or some combination of these may affect health

(Gauderman, 2006).

Outdoor air pollution is a major concern in developing countries. The WHO found that

the air quality in large cities in many developing countries is remarkably poor and these

people are exposed to ambient concentrations of air pollutants well above the WHO

guidelines for air quality (Shannon et aI., 2004). Socioeconomic factors such as

substandard housing with poor indoor air quality, working in jobs with occupational

respiratory risks and limited access to care and medication may enhance susceptibility to

pollution. Additionally, genetic and biological risk factors also contribute to

susceptibility. Therefore, some groups may be at increased risk of experiencing adverse

effects from a given level of ambient air pollution because their baseline risk level may

be elevated by other factors (American Thoracic Society, 2000). These groups include
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children, the elderly, and those with cardiopulmonary disease (Pediatrics Policy

Statement, 2004). Children have increased risk from air pollutants compared with adults

because of higher minute ventilation and higher levels of physical activity, especially

outdoors.

Asthma has a genetic component that likely works by modifying response to

environmental exposures (Gilmour et aI., 2006). Disease-susceptibility models postulate

that specific genotypes might result in a phenotype only in the presence of a particular

exposure or that a specific genotype might result in different phenotypes, depending on

environmental exposures (Ober et aI., 2005). Although ambient air pollution is

considered to be a risk factor for childhood asthma, only some of the children who reside

in areas with high pollution have asthma. The gene-environment interaction between

childhood asthma and outdoor air pollution has not been extensively investigated.

The association between air pollution and asthma is inconsistent across different studies

(Lagoria et aI., 2006). For example, in the last severe smog to affect Europe in 1985,

there was a stark contrast between the increased rates of mortality from hospital

admissions for stroke, cardiovascular disease, and chronic obstructive lung disease and

lack of any effect on asthma in the affected areas. Such studies may be insensitive to

some changes since they rely on routinely collected information and not on direct

observation of symptoms and lung function. The comprehensive Pollution Effects on

Asthmatic Children in Europe (PEACE) study did not show any consistent relation

between these two variables across 14 centers in Europe (Roemer et al., 1998). These
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authors conducted daily PF measurements and took symptom diaries for 2 months during

which pollutants were monitored continuously. They did not find any effects of PM IO,

S02, N02 or black smoke on PF or respiratory symptoms with 2 010 asthmatic children.

This may indicate that the response to pollutants is modified by other factors (Burney,

1999).

Epidemiological studies in a number of industrialized countries throughout the world

have reported significant association of acute and chronic lung health effects in the

general population with elevated levels of sulphur oxides and carbonaceous particles. PM

has been associated repeatedly with asthma aggravation and respiratory symptoms in a

variety of settings, including increased symptoms and medication use in asthmatic

children (Delfino et al., 1998) and increased cough, phlegm and sore throat (Vedal et al.,

1998). Romieu et al., (1996) found that an increase of 20uglm3 PM IO was associated with

an 8% increase in lower respiratory symptoms in children in Mexico city. Studies have

found an association between gaseous pollutants, such as S02 and N02 and symptoms in

children with asthma, including increased risks of developing upper respiratory

symptoms in winter months (Von Mutius et al., 1994), associations between both PEF

and symptoms in asthmatic children and 502 concentrations (Peters et al., 1999) and

associations between reduced annual growth in FEV I in children and exposure to PM and

N02 (Gauderman et al., 2004).

In addition to decrements in lung function, these exposures may also increase the risk of

respiratory illness (chronic cough, bronchitis, pneumonia) in children and other sensitive
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subpopulations (Ohtsuka et al., 2000). Apart from respiratory effects, other important

outcomes considered are cardiac diseases, male and female reproductive outcomes,

cancers and some haematological disorders. Interestingly, while the epidemiology of the

health effects of combustion pollutants is clarified, the physiological and/or toxicological

mechanisms of the effects have not yet been clearly elucidated (Li et ai, 1996; Kelly et

al., 1999). The variety of outdoor pollutants and their ability to work synergistically,

especially in mixtures of varying composition, confound the identification of one specific

mechanism of air pollution toxicity (Ohtsuka et al., 2000).

Studies have shown that both particulate and gaseous pollutants can act both on the upper

and lower airways to initiate and exacerbate cellular inflammation. Increased neutrophil,

B cell and alveolar macrophage recruitment is seen in bronchoalveolar lavage fluid of

both healthy and asthmatic people exposed to diesel exhaust particles (Gilliland et al.,

2004). Similar increases in inflammatory cells are found in bronchoalveolar lavage fluid

after exposure to 0 3, S02 or N02 which altered lung function and increased airway

responsiveness (Saxon and Diaz-Sanchez, 2005). One theory suggests that pollutants

such as 0 3 and PM can cause pulmonary inflammation directly and might deplete

intracellular glutathione, leading to accumulation of oxidized glutathione (Li et al.,

2003). Respiratory effects in children from exposure to gaseous air pollutants (03, N02,

acids) and particulates (PMIO and PM2.5) result from chronically increased oxidative

stress, alterations in immune regulation, and repeated pathologic inflammatory responses

that overcome lung defenses to disrupt the normal regulatory repair processes (Kelly,

2003). In this theoretical framework, the effects of 0 3, N02, PM IO and PM2.5 are
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mediated by complex interactive processes of oxidative, radical and enzymatic attack on

the respiratory extracellular lining fluid, epithelial cells and macrophages. These

processes are coupled to a persistent inflammatory response that produces tissue damage,

decreased ventilatory capacity, increased airway reactivity, decreased macrophage

clearance and altered immune functions (Gilliland et al., 1999). Therefore genetic studies

on the effect of pollutants in asthma have focused on genes that are involved in the

inflammation process or antioxidant protection e.g GSTs and NQO 1 (Peden, 2005). The

variant alleles of these genes result in total absence or a substantial change in enzyme

activity, which compromises their biological reaction to environmental pollutants.

Furthermore these variants are implicated in allergic diseases and might explain variation

in responses to pollutants. This oxidative stress mechanism will be discussed in detail in

section 2.6 of this review.

The key exposures that have been considered in the literature are ozone (03), sulphur

dioxide (S02), particulate matter (PMIO), nitrogen dioxide (N02), carbon monoxide (CO)

and lead (Pb) These are the six "criteria air pollutants" regulated by the Clean Air Act of

the USA (Ohtsuka et ai, 2000). Ozone has been implicated in many field studies where

decreasing lung function and adverse respiratory effects have been demonstrated in

relation to increasing 0 3 levels (Romieu et aI., 2002; Kelly, 2003; Shannon et al., 2004)

In the current study, we have exposure data for oxides of nitrogen (NO and N02), PM10

and S02, therefore only these pollutants are discussed in detail.

22



2.3.1 Particulate matter (PM10)

PM, a major component of air pollution, is a mixture of different solid and liquid

particles among which are dust, pollen grains and mould spores. Several studies have

observed an association between high atmospheric levels of particulate air pollution and

enhanced mortality from respiratory and cardiovascular diseases, exacerbation of allergic

asthma, chronic bronchitis, respiratory tract infection, cardiovascular diseases and

hospital admissions (Pope et al., 1995; Salvi et al., 1999; Peters et al., 2004). The WHO

estimates that inhalation of PM is responsible for 500 000 excess deaths each year

worldwide (United Nations Environment Programme and WHO report, 1994). Seaton et

al., (1995) hypothesised that fine PM penetrates deep into the airways and is able to

induce alveolar inflammation, which is responsible for variations in blood coagubility

and release of mediators favouring acute episodes of respiratory and cardiovascular

diseases. Ambient particles contain a large number of soluble metals including transition

metals that are capable of redox cycling and thus free radical generation. The idea has

therefore developed that oxidative stress underlies much of the toxicity of ambient

particles. Exposure of phagocytic cells to ambient particles collected from different

urban settings causes oxidative stress which correlates with the iron content of the

particles (Kelly, 2003).

Epidemiological studies have consistently reported association between particles less

than 10!-!m (PM 1o) and increasing morbidity and mortality. PM 10, typically as low as
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30~g/m3 can produce these health effects (Kelly, 2003). Other studies have estimated that

for every 1O~g/m3 increase in PM JO, there is an increase in the daily mortality rate

between 0.5 and 1.6%. Effects were seen even in cities with mean annual PM JO

concentrations between 25 and 35 ~g/m3 (Shannon et aI., 2004). In a study of 1759

ten-year old children from 12 Southern California cities, Gauderman et al. (2004) found

that N02, acid vapor, PM2.5 and elemental carbon exposure were all significantly

associated with decreased lung function. These recent studies suggest that the current

USA standards for PM JO should be lowered to protect public health.

PM JO has also been associated with episodes of increased asthma exacerbation. Studies

performed in the Utah valley examined the occurrence of respiratory disease symptoms

during the year that a steel mill was closed due to a strike and compared it to the years

before and after the strike. Respiratory morbidities and the level of particulates were both

markedly decreased during the strike year, suggesting disease exacerbation by ambient

air particulates (Pope, 1989).

2.3.2 Oxides of Nitrogen

N02 is a gaseous pollutant produced by high temperature combustion. Like ozone, it

reacts with substrates present in the lung lining fluid compartment, and is therefore

unlikely to react directly with the pulmonary epithelium. Instead it is the oxidized species

arising from a reaction between N02 and the lung lining fluid compartment that is

responsible for initiating the signaling cascade which brings inflammatory cells into the
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lung (Kelly, 2003). The malO outdoor sources of N02 include diesel and gasoline

powered engines and power plants. Emissions of nitrogen oxides have increased in the

past 20 years because of an increase in vehicular emissions. These emissions contribute

to ground level ozone (smog) and other environmental problems such as acid rain

(Shannon et al., 2004).

N02 has been implicated as a risk factor in exacerbating asthma in several studies. The

risk of asthma symptoms in Los Angeles was associated with a 1.4 ppb per 8 h N02, and

the risk of physician diagnosed asthma in the Netherlands was associated with traffic

related air pollution measured as N02 concentration (Lee et al., 2004). In 2002, van

Strein et al. used a cohort of infants (with one older sibling with asthma and thus a

suggested genetic predisposition) and one time N02 measurements to show that infants

exposed to more than 17.4 ppb N02 had significantly increased risk for respiratory

disease compared with those experiencing low level (5.1 ppb) N02 exposure. This

finding was consistent with a report by McConnell et al., (2006) which showed that

outdoor N02 is associated with bronchitis symptoms in Southern California. In South

Durban, a summary of the NOx emission accounted for approximately 60% of all NOx

emissions (CSIR, 2002).

2.3.3 Sulphur dioxide (S02)

Sulphur dioxide is released into the atmosphere primarily as a result of industrial

combustion of high sulphur containing coal and oil. S02 is a respiratory irritant that is
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absorbed mostly in the upper airways but increasing ventilation results in deposition in

deeper parts of the lung (Koren, 1995). Moreover, S02 exposure enhances responses to

other environmental agents that exacerbate bronchospasm (D' Amato et aI., 2005).

Exposure to S02 is marked by increased incidence and prevalence of respiratory

symptoms, increased hospital visits for respiratory illnesses and impaired lung function

(CSIR, 2002). Asthmatics, especially when exercising, may be 10 times more sensitive

than non-asthmatics (Carlisle and Sharp, 2001). From a study of S02 pollution and

asthma exacerbations in the SDIB, it was concluded that sensitive individuals, such as

asthmatics, react adversely to higher exposure levels (Matooane and Diab, 2002).

Epidemiological data on whether ambient air pollution contributes to the incidence of

asthma are from five studies - three in children and two in adults (Gilmour et al., 2006).

These authors cited the following studies as evidence to corroborate this link:

• The PIAMA study (Prevention and Incidence of Asthma and Mite Allergy) with a

cohort of more than 4000 Dutch children, found that traffic related air pollution i.e

N02 and PM2.S. were significantly associated with parental reports of wheeze, doctor­

diagnosed asthma, ENT infections and serious colds and flu (relative risk RR, 1.1­

1.2) (Brauer et al., 2002).

• An international collaborative study involving the Netherlands, Germany and Sweden

and 1,756 infants found association (ORs of 1.3- 1.4) between dry cough at night in

the first year of life and three pollutants, N02, PM2.5 and soot (Gehring et al., 2002).

No association was found with wheezing, respiratory infections or bronchitis.
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• The CHS (Children's Health Study) among 12 Californian communities with >6000

children and exposure data for 0 3, PM and N02 showed that children who

participated in sports activities had an increased risk of asthma when exposed to peak

ozone levels (RR= 1.8; 95% Cl, 1.2-2.8) (McConnell et al., 2002).

• The ASHMOG (Seventh-day Aventists in California) cohort study examined aIr

pollution exposure in nonsmoking adults and reported a relative risk of incident

asthma in relation to PM 10 of 1.30 (95% Cl, 0.97-1.73) for I 000 hr/year exposure to

concentrations of PM 10 that exceeded 100llrnlm3 (Abbey et al., 1995).

• A study on 0 3 that included 115 incident cases of asthma reported an increased risk in

men for a 27 ppb (interquartile range) increase in ozone (RR=2.1; Cl, 1.0-4.2), but no

association in women (McDonnell et aI., 1999).

The above studies support a modest increase in risk for air pollution in relation to

phenotypes relevant to asthma. Numerous large scale initiatives such as the National

Children's Study will more clearly delineate the relationship between environmental

exposures and development of diseases such as asthma (Gilmour et al., 2006).

2.3.4 Regulatory control

Protecting populations from the harmful effects of exposure of air pollutants will require

effective control measures. Industry (e.g., coal burning, power plants, refineries, and

chemical plants) and motor vehicles are major sources of criteria pollutants (Shannon et

al., 2004). Sustained air quality improvement depends on a regional commitment and
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complementary national policies. In the US, the Clean Air Act of 1970 mandated the

EPA to establish the National Ambient Air Quality Standards (Table 2.2). The American

Academy of Paediatrics released a policy statement in 2004 that recommends that

standards for PM, 0 3 and N02 be revised in light of recent studies that suggest that

children are not adequately protected by current US EPA regulations (Trasande et aI.,

2005).

South African legislation on air pollution has only recently been revised. The previous

Atmospheric Pollution Prevention Act 45 of 1965 had several weaknesses; there was no

emphasis on smoke control regulations in residential areas, dust control was not

adequately documented, VOCs and fugitive emissions were not controlled and there were

no set air quality standards. However the new bill implemented in 2004 aims to address

pollution minimization through cleaner production as a sustainable means by which air

quality can be improved. It advocates that ambient air quality standards define public air

that is not harmful to health and well being while also facilitating and enhancing

sustainable development. Air quality management has largely decentralized to the

provincial level where local governments are responsible for setting their own guidelines

especially with regard to priority areas.4 Table 2.2 provides a comparison of international

air quality guidelines with South African guidelines for common pollutants. South Africa

has no promulgated ambient air quality standards but the new guidelines are more or less

comparable with US EPA standards. However, the recommended WHO guidelines are

far lower than both SA and EPA guidelines for S02 and N02.
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Table 2.2: National and International Air Quality Standards and Guidelines (CSIR, 2002), SA Guidelines
and EPA standards 4 .5

Pollutant (units) 1 hour average 24 hour average Annual average
Standard/Guidelines

• SA 300 100 30
S02 (ppb) • USEPA - 140 30

• WHO - 48 19

• SA 200 100 50
N02 (ppb) • US EPA 128 - 53

• WHO 106 - 21

• SA 600 300 150
NO (ppb) • USEPA - -

• WHO - -
• SA - 180 60

PM10 (ug/m3) • USEPA - 150 50

• WHO - - 50

2.4 Asthma genetics

Because the human population is biologically diverse and genetically heterogeneous, it is

not surprising that differences in susceptibility to disease among individuals with or

without exposure to environmental agents exist. The etiologies of many childhood

diseases are due to a combination of factors, including genetic susceptibility and

environmental exposures during vulnerable periods of development. Genes regulate

cellular growth and development, DNA replication and repair, the metabolism and

excretion of endogenous and exogenous (Suk and Collman, 1998). The Human Genome

and Environmental Genome projects have generated a long list of genes and their

variants. This has helped to identify genes that are implicated in disease pathways. Such

genes influence or control cell differentiation, apoptosis, cell kinetics or DNA repair
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(Bennett and Waters, 2000). Genetic studies of asthma have focused primarily on genetic

alterations associated with BHR and inflammation.

Genetic polymorphisms are defined as variations in DNA that are observed in I % or

more of the population. Genetic polymorphisms may alter the protein structure and

function through a single nucleotide base substitution in a gene's coding region, and may

decrease or increase gene expression either by affecting mRNA stability when occurring

in a gene 3' untranslated region or by altering transcription factor binding when occurring

in the 5' promoter region. Alternatively a polymorphism may have no discernable effect

on the protein product and may lie within DNA regions that are not involved in gene

transcription or translation. Polymorphisms that exist in these regions as variations in

repeat sequences throughout the genome have served as the basis for genetic linkage

studies (Iannuzzi et aL., 2002). The study of genetic polymorphisms promises to help

define pathophysiologic mechanisms, to identify individual risk for disease and to

suggest novel targets for drug treatment. To identify susceptibility loci, association

studies involve typing a genetic polymorphism in unrelated affected and in a group of

healthy, matched controls. A given polymorphism is associated with the disease if that

allele occurs at a significantly higher frequency among cases compared with controls

(lannuzzi et al., 2002).

A recent review of the literature identified more than 100 reports of genetic variants

associated with asthma and asthma-related traits. No more than 8-10 such genes have

been replicated in three or more studies, and none of these genes have been consistently

associated with same asthma phenotype in studies to date (Yeatts et al., 2006). A major
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problem in genetic studies of asthma has been the uncertainty of the phenotype.

However, measurable outcomes like BHR can be used objectively. In addition, studies

suggest that multiple genes are involved in asthma and the frequencies of these genes

may vary in different populations. Progress in elucidating genetic links in the

pathogenesis and development of asthma has been impeded by two aspects: genetic

variants currently linked to asthma cause relatively small changes in function and it has

been difficult to isolate one or two major genes that play a predominant role in asthma. In

the face of these challenges, asthma genetic studies have used two major methods: I)

mapping techniques that pinpoint gene loci associated with various mechanisms of

asthma, and 2) physiological studies associating genes and polymorphisms that may

affect certain aspects of the disease process (Ober and Moffatt, 2000; IIIig et aL., 2002).

Studies of family aggregation, twins, and linkage analysis provided early proof that

genetics plays an important role in the development of asthma. (Cookson et al., 1989;

Meyers et aI., 1994; Sandford et aI., 1996). Substantial evidence exists for linking several

chromosomal regions with the development of asthma, including regions Sq, 6p, 11q,

12q, )3q, 14q and 16p (Daniels et aI., )996; Bleecker et al., 1997). Chromosomes Sq and

11 q exhibit the most consistent association with BHR and atopy. Candidate genes on

these chromosomes include the ~2 adrenoreceptor and interleukin-4 cytokine cluster, the

high affinity IgE receptor and Clara cell secretory protein genes (Tamer et aI., 2004). A

few examples will be discussed below.

One of the earliest studies showing linkage to atopy which has been consistently

replicated by other groups has been Cooksons' findings with the FeER IB gene which
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encodes the Bchain of the high-affinity receptor for IgE (Cookson et al., 1989). Linkage

at this locus has been reported for many of the phenotypes associated with asthma,

including BRR, total and specific IgE and atopic dermatitis (Barnes et al., 2000). A

coding polymorphism in Fc£RIP, an adenine to guanine substitution changes amino acid

residue 237 from glutamic acid to glycine (E237G) in the cytoplasmic tail of the protein.

E237G is predicted to introduce a hydrophobicity change within the C-terminus of

Fc£RIP, this may affect intracellular signaling capacity of Fc£RIp. This variant has been

identified in diverse populations and is easily assayed (Moffat and Cookson, 1997).

E237G was detected in 53 subjects (5.3%) in an Australian population of 1004

individuals. E237G positive subjects had elevated skin test responses to grass (p<.005)

and bronchial reactivity to methacholine (p<.005). The relative risk of individuals with

the E237G having asthma compared with subjects without the variant was 2.3 (p<.005)

(Rill and Cookson, 1996).

In an Australian family based population of 547 subjects (including cases, siblings and

family relatives), the Fc£RIP gene was found to be highly polymorphic, linkage was

found to specific IgE responses to common allergens (Palmer et aI., 1998). A French­

Canadian case-control study of asthma and E237G was also described. There were 100

cases (total IgE > 250 fAg/I plus 3 or more positive skin prick tests to allergens) and 100

controls (nonatopic), the prevalence of the E237G polymorphism was 10% (p< 0.14)

among the cases and 1.5% (p=0.01) among the controls. The E237 polymorphism in the

Fc£RIP gene was typed in a South African population of 48 black cases, 44 black

controls, 41 white cases and 41 white controls. There was a difference in the frequency

of E237G between black asthmatics (20%) and white asthmatics (12%) and between
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black controls (20%) and white controls (5%)(p<.005). All cases were recruited from an

asthmatic clinic and all individuals participating in the study were 6-45 yrs old (Green et

al., 1998).

Chromosome 5q is a region with extensive evidence for linkage and association and

candidate genes located in this region have been assessed for linkage to asthma. These

are interIeukins IL3, IL4, IL5, IL9 and IL13, granulocyte-macrophage colony stimulating

factor (GM-CSF), B2 adrenergic receptor and CDI4. Approximately 60% of studies with

chromosome 5q showed association with asthma and related phenotypes (IlIig and Wjst,

2002). In a Dutch family based population of 184, the IL13 polymorphism was

significantly more prevalent in cases than in controls (24% vs 14%, p<.005) (Howard et

al., 2001). In a Californian study on the TNF gene, 236 adult asthma cases from an

outpatient clinic and 275 controls were recruited. Cases were more likely than controls to

carry one or two copies of the TNFa-308* allelle; 30% of the cases vs 22% of controls

had one or more copies of TNFa-308* (p=0.03) (Witte et 01., 2002). A case-control

study on the association of asthma with the ~-adrenergic receptor gene polymorphism

and smoking was conducted among 125 asthmatic cases and 136 controls. Smokers with

the polymorphism had a significantly increased risk of asthma (OR=7.81,). This

association showed a clear dose response relationship with the number of cigarettes

smoked, therefore a gene-environment association with smoking and asthma was

established (Wang et al., 200 I).
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IL-4 contributes to the elevated blood level of IgE that is characteristic of asthma and

allergy. A polymorphism (IL-4 C-590T) has been identified in a region of the gene that

binds transcription factors and influences gene expression (Sandford and Pare, 2000).

The IL4 gene is one of the strongest candidate genes for causing atopy, since IL4 is the

most important cytokine in the control of IgE production. Location of the mutation in the

promoter of this gene is in agreement with an upregulation of IgE responses (LeSouef,

1997). In a study of 157 subjects with fatal or near fatal asthma and 90 subjects with

moderate asthma, the IL-4 589T allele was found to be increased in subjects with fatal or

near fatal asthma (OR 1.8, p=0.02). A group of 143 non-asthmatic controls were used in

this study (Sandford et al., 2000). Among 1120 German schoolchildren, polymorphisms

in the IL4 gene were associated with both the development of asthma and the regulation

of serum IgE (Kabesch et al., 2004).

Asthma has a strong environmental component and different populations experience

different exposures, therefore gene environment interactions have to be considered when

determining the genotype/phenotype correlations (Wiesch and Meyers, 2000). This will

be discussed in detail in the following section.

2.5 The gene-environment interaction in asthma and allergy

A better understanding of genetic influences on environmental response could lead to

more accurate estimates of disease risks and provide a basis for disease prevention and

early intervention programs directed at populations at risk, including children (Castro-
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Giner et ai., 2006). In efforts to understand the relationship between exposure and

adverse health effects, scientists are working to develop biomarkers, which are key

molecular or cellular markers that link a specific environmental exposure to a health

outcome. The challenge is to use biomarkers to establish associations between exposure

and human disease in epidemiological studies and then to use the knowledge to design

and conduct appropriate preventative interventions in high risk populations (Suk et al.,

2003; Scirica et al., 2007).

Gene by environment interactions are often interpreted as an action-reaction mechanism

where genes define the potential and limitations of the human body to react to

environmental conditions. For e.g, the genetically determined amount and availability of

an enzyme may limit the potential of the human organism to metabolize certain foods and

amino acids. Thus, the reaction of the organism is determined by its genetic

predisposition that is only visible when a certain environment (amino acid) is present. In

complex diseases such as asthma, gene by environment interactions are less clear.

Multiple genetic and environmental effects overlap and these effects mayor may not be

independent from each other. Gene by gene interactions will occur in regulatory

pathways influencing the disease not by means of single gene interactions but in the

context of a biological system (Kabesch, 2006, London, 2007). It is likely that a number

of alterations in different genes contribute to the genetic predisposition of an individual to

develop atopic diseases and asthma (Peden, 2005).
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Figure 2.3: Gene environment interactions in the development of asthma (Chipps, 2004)

Figure 2.4 shows a common model of susceptibility to asthma and atopy, which

implicates many genes and environmental factors but implies that the effects of genes and

environmental factors individually contribute to risk. However it is likely that the

interaction at a physiological level is more complex, with genes interacting both with

other genes and with environmental risk factors to confer susceptibility (Ober, 2005).

Several models of gene-environment interactions have been suggested:

1. Both the susceptible genotype and the environmental exposure are

necessary to produce the disease phenotype.

2. Environmental exposure causes increased risk of disease in everyone but a

much greater risk in individuals with the susceptible genotype
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3. The environmental exposure will only increase the risk of disease in

people with the susceptible genotype.

4. Both the environment and the genotype produce excess risk

5. When there is a protecti ve effect of the genotype, depending on the

presence or absence of the exposure, the last 2 models are possible

(Wiesch and Meyers, 2000).
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Figure 2.4: Common model of the genetics of complex diseases. Several related and quantitative
phenotypes result from the effects of many loci and many environmental factors (Ober,
2005).

2.6 The oxidative stress mechanism

Most genetic studies of asthma have focussed on genes on chromosome llq and 5q and

their association with the key asthma related phenotypes of BHR and atopy. Oxidative

stress and the generation of ROS is a critical component of the airway inflammation

characteristic of asthma (Fryer et ai, 2000; Postma et al., 2000). Oxidant stress has
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emerged as a mechanism that underlies the toxic effects of most forms of air pollution,

including particulate matter. Even though the lung is well equipped to deal with

oxidative stress, ambient particles are carried deep into the respiratory tree where they

invade and overcome the lungs antioxidant defenses (Kelly and Sandstrom, 2004).

Inflammatory cells recruited to the asthmatic airways have an exceptional capability for

producing reactive oxygen species (ROS). Activated eosinophils, neutrophils, monocytes

and macrophages can generate superoxide (02-) via the membrane associated

nicotinamide adenine dinucleotide phosphate (NADPH)-dependent complex.

Subsequently, dismutation of O2- forms hydrogen peroxide (H20 2). Both O2- and H20 2

are critical for the formation of potent cytotoxic radicals in biological systems through

their interaction with other molecules. In addition to recruited inflammatory cells, the

constitutive airway cells such as epithelial cells are also potential sources of ROS.

Cells recovered from bronchoalveolar lavage (BAL) fluid and blood of asthmatic subjects

have been shown to generate greater amounts of ROS at baseline and after stimulation ex

vivo than in normal subjects, a feature which is correlated with disease severity. This

suggests that the biochemical milieu in asthma contains factors which prime oxidative

pathways in vivo (Dworski, 2000). Although host antioxidant defenses should detoxify

ROS, individuals differ in their ability to deal with an oxidant burden, and such

differences are in part genetically determined. Inability to detoxify ROS should

perpetuate the inflammatory process, activate bronchoconstrictor mechanisms and

precipitate asthma symptoms (Fryer et al., 2000). BHR is also modulated by ROS levels,

possibly through the ability to regulate eicosanoid production via stimulation of
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arachidonic acid release (Weiss, 1996). It is hypothesized that excess oxidative stress

provides a mechanistic framework that unifies inter-relationships between childhood lung

function growth, asthma and respiratory infections, environmental exposures such as air

pollution and tobacco smoke, and factors such as diet and genetics. Excess oxidative

stress is the proximal event leading to inflammation, cell death, and subsequent airway

remodeling among individuals with inadequate defenses (Sorensen et al., 2003).

Ozone, PM lO and N02 have been shown to induce acute inflammatory responses in the

airway. Each of these pollutants either acts as an oxidant or induces oxidant responses in

the host. Airway or plasma antioxidant status has been associated with protection from

the effect of pollutant exposure (Kelly, 2003). Genetic studies to date have focussed on

genes thought to play a role in the inflammation or antioxidant protection. The enzymes

detoxify metabolites of oxidative stress in two successive phases. Phase I is represented

by the cytochrome 450 enzymes, which mediate oxidative metabolism, and by

microsomal epoxide hydrolase and other enzymes involved in the detoxification pathway.

Phase I chemical reactions may convert harmless compounds into more toxic or

carcinogenic metabolites, which reqmre immediate processmg in phase II of the

detoxification pathway. Phase II enzymes convert toxic metabolites into polar, water­

soluble, nontoxic derivatives which can then be excreted from the body (Ivashenko et al.,

2002).

Gluthathione-S-Transferases (GSTs) are phase II xenobiotic detoxifying enzymes that are

implicated in oxidative defenses. These enzymes function as peroxidases to detoxify
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products of oxidative attack and may be determinants of respiratory health (Sorenson et

al., 2003). It has been hypothesised that individual ability to detoxify ROS and their

products, determined by polymorphisms in genes like GST contributes to the

development of BHR and asthma (Hayes and Strange, 1995). GSTs may influence the

synthesis of eicosanoids (mediators in the asthma response) via modulation of ROS levels

(Fryer et al., 2000). GST enzymes use a wide variety of products of oxidative stress as

substrates and thereby have an important role in preventing the build-up of reactive

oxygen specIes. If antioxidant defenses are inadequate, substantial oxidative stress can

occur that may interfere with normal lung growth and may contribute to increased

incidence, prevalence, and severity of respiratory diseases such as COPD, asthma, and

viral infections (Gilliland et aI., 2002a). As of 2001, very few studies were done on

GSTP1 and GSTM1 in populations of African ancestry (mainly African-American).

Indeed only 7 and 1 study was done with GSTM1 and GSTP1 respectively, while 61 and

14 studies were done on Caucasians and Asians (Garte et al., 2001). This reflects a need

for such studies on the African continent. NQO 1 has also been implicated in the response

to oxidative stress (Bergamaschi et aI., 2001). The three genes chosen for this study

(GSTM1, GSTP1 and NQ01) will be discussed in the following section.

2.7 Gene polymorphisms involved in response to oxidative stress responses

2.7.1 Gluthathione-S-Transferase genes (GSTM1 and GSTP1)

GSTM1 and GSTP1 are important enzymes in the lung that function as antioxidants in

xenobiotic, peroxide and hyperperoxides metabolism pathways to reduce oxidative stress
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(Zhong et al., 1991; Gilliland et al., 2002b). Several common variants of GSTs are well

characterized. The GSTM I gene is located on chromosome 1p 13.3. Depending on ethnic

grouping, 20-50% of individuals have the entire gene deleted which is known as the

GSTM 1null genotype (Zhong et al., 1991; Siedegard et al., 1988). People with this

genotype have no protein expression and a decreased antioxidant capability. The

frequency of GSTM 1null genotypes is higher in Caucasians than in Asians and Africans

(Bailey et al., 1998; Roth et al., 2004) and varies from 40-60%.

GSTPl is strongly expressed in the respiratory epithelium and is the dominant GST in the

lung, where it is thought to detoxify lipid and DNA oxidation products. Thus,

polymorphism in GSTPl may influence the development and/or severity of respiratory

related phenotypes (Hemmingsen et al., 200 I). GSTPl is located at 11 q 13.3 and has a

common single nucleotide polymorphism at codon (A105G) that results in an amino acid

change in the protein from isoleucine (AA) to valine (GG). The allelic frequency of this

variant among different populations may vary between 30-35%. GSTPl (GG) variant has

a lower enzyme activity due to the amino acid conversion which affects the hydrophobic

binding for electrophilic substrates (Ishii et al., 1999). Children with this genotype may

be less able to defend their airways from the adverse effects of excess oxidative stress

associated with asthma, they may have a lower attained lung function at maturity and be

more susceptible to a spectrum of adverse respiratory outcomes associated with chronic

excess oxidative stress (Gilliland et al., 2002b).
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Although numerous reports on GST genes have been published, more data is needed from

Asian and African populations since these have been relatively underrepresented in gene-

environment research. Table 2.3 represents the largest and most recent estimate of these

frequencies in healthy populations. Although the effects of GSTMlnull and GSTPI GG

are modest in magnitude for individuals, this genetic variation may have public health

importance, especially for children with asthma. Evaluating the impact of air pollution at

the population level rather than at the individual level of relative risks shows that a small

change in the population mean of a quantitative measure, such as lung function, can have

considerable impact on the number of subjects with the relevant adverse condition

(Kunzli et al., 2000). Children with these genotypes, especially those with asthma, may

have lower attained lung function at maturity and be more susceptible to a spectrum of

adverse respiratory outcomes associated with chronic excess stress (Gilliland et al.,

2002b).

Table 2.3: Studies conducted on metabolic gene polymorphisms by race group (Garte et aI., 2001)

Gene Ethnicity No of studies No of subjects Variant
homozygous
allele frequency

GSTMl Caucasian 50 10514 0.5 (0.4-0.6)
Asian II 1511 0.5 (0.4-0.5)
African 7 479 0.3 (0.2-0.4)

GSTPl Caucasian 13 2282 0.4
Asian 1 243
African I 82

There is geographic and ethnic variation in genotype frequencies for GSTMlnull and

GSTPIAG/GG. Higher frequencies have been found in Caucasians and Asians while

lower frequencies have been found in Black Americans. A meta-analysis revealed that
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people from Great Britian had the highest frequency of GSTM 1null compared to all other

Caucasian populations (Garte et al., 2001). There has been only one study conducted in

SA among Africans where the frequency of the GSTMl null frequency was low (20%),

which is in agreement with the range of between 16% and 36% that has been reported for

other African populations (Adams et aI., 2003). This, however, is in contrast to the high

frequency GSTMl null of between 40 and 60% reported for Caucasians and Chinese

(Chen et aI., 1996). With Indians living in India, Buch et al., (2002) found a prevalence

of the null polymorphism to be 49%.

The GSTPl Vall05 variant has been associated with low substrate affinity and thus

reduced enzyme activity. The allelic frequency of the GSTPl AG/GG variant was

significantly higher for a SA Xhosa population (79%) than that reported for other African

ethnic groups i.e. 23% in Tanzanians, 23% in Vendas and 42% in Zimbabweans). This

wide range may be attributed to small sample sizes (all 4 studies had sample sizes less

than 102 participants). This high GSTPl AG/GG frequency was similar to that observed

for African Americans, but low compared to Asians (Adams et aI., 2003).

GSTMl and GSTPl genotypes were associated with statistically significant deficits in

annual lung function growth in a cohort of 3 135 children (Gilliland et aI., 2002a). The

GSTM null allele was associated with an annual deficit in FVC growth (-0.21 %, 95% Cl,

-0.50, -0.40) and 0.27% (95% Cl, -0.05, -0.04) annual deficit in FEV 1 growth, which

translates to lower attained lung volume and air flow. People with the GSTPI GG

genotype had a 0.35% (95% CI,-0.62, -0.07) deficit per year in FVC growth and a 0.34%
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(95% Cl, -0.68, p<.005) reduction in growth for FEY I (Gilliland et al., 2002a). It has

been reported that children with GSTM Inull genotype exposed to tobacco smoke in utero

have an increased prevalence to early onset asthma and a range of other respiratory

conditions and that the GSTPI genotype influences the risk or severity of respiratory

infection in school-aged children. Fryer et al. (2000) reported that the frequency of the

GSTPI GG was significantly lower in asthmatic than in control subjects. Indeed the

presence of this genotype conferred a sixfold lower risk of asthma than GSTPlAA.

Parallel effects of the GSTMI null and GSTPIAA genotypes were seen with histamine

release enhanced by diesel exhaust particles. People carrying these genotypes showed

higher histamine concentrations after diesel exhaust plus allergen challenge. It has been

suggested that GSTs affect synthesis of eicosanoids such as leucotrienes that modulate

allergic responses. These authors suggest that GSTs play a part in controlling the

response to diesel exhaust particles by detoxifying reactive oxygen species derived from

diesel exhaust. These results have obvious clinical and public health relevance especially

for sensitized individuals living in urban environments (Gilliland et aI., 2004).

2.7.2 Nicotinamide adenine dinucleotide quinone oxidoreductase (NQOl)

NQOl is an important phase II enzyme which catalyses the detoxification of reactive

quinines that can produce ROS through redox cycling. This enzyme is therefore an

important part of oxidative defenses (Sorenson et aI., 2003). A point mutation in codon

187, causing a proline to serine change in amino acid (CC to IT) results in complete loss
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of enzyme activity in homozygous subjects, whereas those with 2 wild type alleles (CC)

have normal activity (Traver et al., 1992). The frequency of the NQO I TT genotype

varies across ethnic groups from 2% in Caucasians, 2% in African Americans, 4% in

Mexican Hispanics to 5% in Chinese populations (Ross et al., 2000). This gene has not

been as extensively studied as the GST enzymes and frequency of the NQOl TT allele in

a South African population has not been determined.

NQOl catalyzes the two-electron reduction of quinones to hydroquinones, thus bypassing

the potentially toxic semiquinone radical intermediate. NQOl is thought to play a

detoxifying role limiting redox cycling of labile semiquinone radicals both to quinines

and hydroquinone, thus reducing the production of the superoxide anion, hydrogen

peroxide, and ultimately of the hydroxyl radical (OH). NQOl generated hydroquinones

are targets of 0 3 which oxidizes them to semiquinones and gives rise to the hydroxyl

radical. In GSTMl positive subjects, such an increased production of hydroquinones can

be neutralized by GSH conjugation. People carrying the NQO wt genotype, but lacking

the GSTMl are less able to conjugate hydroquinones, a condition that could favor their

responsiveness to 0 3. Bergamaschi and colleagues (2001) reported that airway

inflammation was increased only among individuals with a combination of NQOl

Pro/Pro and the GSTM null genotypes. Similarly, in a highly exposed Mexico City

population, David et al. (2003) found that children carrying one or two copies of the

NQOl Pro allele who were GSTMl null were at decreased risk of asthma. These findings

suggest a protective effect for the NQOl Ser allele in GSTMlnull subjects. This may be

explained by the alternate mechanism by which NQOI works. In addition to its
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detoxifying role, NQOI can also catalyze the bioactivation of some quinones to more

reactive hydroquinones that, in turn, auto-oxidize to produce ROS or undergo

rearrangement to generate alkylating species (Bergamaschi et aI., 2001)..

Because the homozygous NQOI TT is essentially a null phenotype, it provides a

convenient molecular tool with which to assess the potential chemoprotective role of

NQOI in vivo. Previous work on the null polymorphism in NQOI has almost exclusively

been examined from the perspective of the susceptibility to cancer. The NQO 1 TT allele

has been associated with an increased risk of urothelial tumors, acute myeloid leukemia,

cutaneous basal cell carcinomas and paediatric leukemias and it was also found that it is a

significant risk factor for benzene induced hematoxicity in exposed workers. This

polymorphism may also be important for chemotherapy using antitumor quinines.

Mitomycin C is currently the only quinone used extensively in chemotherapeutic

regimens. NQO 1 is one of the reductases that are involved in the bioactivation of

mitomycin C and it has been found that the effectiveness of mitomycin therapy in

individuals carrying the NQOI polymorphism is diminished (Traver et al., 1992; Ross et

al., 2000).

2.8 Genetic epidemiological studies

A number of reports on GSTMI and GSTPI have shown a relationship with asthma or a

related phenotype. Table 2.4 provides a snapshot of selected studies that have been

conducted in recent years. As with the candidate gene studies, these results were often

46



contradictory, especially with respect to GSTPI and its variants. Most studies with the

GSTMI gene have reached similar conclusions.

In a case-control study conducted by Tamer and coworkers (2004), it was found that

asthma patients had a higher prevalence of the GSTMI null genotype (63.4%) than the

control group (40.8%) OR=2.3. (Cl 1.3,4.2). Additionally, the GSTPI GG genotype and

the combined GSTM InulllGSTPI GG genotype were more common in the asthma group

than the control group. A case-control study conducted in Russia among 109 asthma

patients and 90 controls showed that people with the GSTMlnull genotype were found to

be at approximately 3.5 fold higher risk of developing asthma (lvashenko et aI., 2000).

Similarly, Gilliland and coauthors who investigated 1183 grade 4 schoolchildren in

California, USA, using incident respiratory illnesses as determined by monitoring school

absences as an outcome, found that children with the GSTMl null genotype had slightly

higher rates of respiratory illnesses than those with the GSTM I genotype (RR= 1.1, Cl:

0.9, 1.3). In this study, homozygous GSTPl GG was found to be protective against acute

respiratory illnesses and was associated with a lower risk compared to the AA genotype

(RR=0.71 (Cl 0.54, 0.93)(Gilliland et aI., 2002b). Further, these authors demonstrated a

modest but significant association between decreased lung function (FEV,) and the

GSTMI null and GSTPl GG variants. Children with these genotypes, especially those

with asthma may have lower attained lung function at maturity and be more susceptible

to a wide spectrum of adverse respiratory effects associated with chronic oxidative stress

(Gilliland et aI., 2002a).
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Contrary to the above reports, Carroll et al. (2005) found that GSTM Inull and GSTPl GG

genotypes were associated with increases in FEV I and FVC, however these authors had a

comparatively lower sample size of 222 children compared to the study by Gilliland et

al., (2002b). Lee et al., (2005) found that homozygous GSTPl AA was significantly

associated with physician diagnosed asthma (OR =2.0, Cl 1.1, 3.6, p=0.02) among 236

Taiwanese schoolchildren. The risk with GSTMl null genotype was positive (OR= 1.3,

Cl 0.8, 2.3), but failed to reach statistical significance. Although a protective role for

GSTP1GG genotype in the development of asthma has been demonstrated in two

independent studies (Fryer et al., 2000; Anynacioglu et al., 2003), others have failed to

replicate this polymorphism (Brasch-Anderson et al., 2004) or even found opposite

effects of the polymorphism (Tamer et al., 2004).

The use of antioxidants has been proposed as a way to boost the capability of individuals

to address the effects of oxidative stress. Romieu and coworkers (2005) found that

asthmatic children with the GSTMl null genotype were more susceptible to the impact of

ozone exposure to small airways function. They found that supplementation with the

antioxidants Vitamins C and E above the minimum daily requirement may compensate

for this genetic susceptibility. The beneficial effect was seen primarily in the GSTMl null

individuals between the placebo and supplement groups, than in the GSTMl positive

children. Among GSTM 1 null children with moderate and severe asthma, the effect of

supplementation was enhanced. This is an important finding and relates directly to

changing dietary intake to improve resistance to disease, especially in people who have a

diminished capacity to deal with an oxidative burden due to the mutations they carry.
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Very few studies have been done with these above genes in the context of gene­

environment interactions. Gilliland et al., (2004) used a human inhalation challenge

model and found that people with both the GSTMI null and the GSTPI AA genotypes

had significantly higher allergic responses to diesel exhaust particles than those with

other combination of genotypes. Lee et al. (2004) examined the relationship between the

GSTPI polymorphism, outdoor air pollution (designated high and moderate areas) and

childhood asthma using 61 asthmatic schoolchildren and 95 controls in Taiwan. There

was a significant interaction between the GSTPI AA genotype and risk of asthma in high

pollution districts. In the low pollution district, the frequency of GSTPIAA was not

related to increased risk of childhood asthma (OR=1.4, 95% Cl: 0.3,6.3). The odds ratio

for risk of asthma in the moderate pollution district for the GSTPIAG/GG genotype was

1.5 (95% Cl: 0.4,5.9) and in the high air pollution district, 3.8 (95%CI: 1.0,17.1).

Table 2.4 includes a brief summary of selected reports that have been published on the

GSTMI, GSTPI and NQOI genes. Note that these studies often used varied study

designs, definition of phenotype and sample sizes. Since gene frequencies are different

among various racial groups, this may account for the different associations between

gene polymorphisms and asthma in the different studies. Additionally, each locus may be

in linkage disequilibrium with an unknown causal gene(s), which is a fundamental

limitation of the candidate gene approach (Gilliland et al., 2002a).
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In essence, GSTMI, GSTPI and NQOI genes may contribute to the variation in lung

functions growth and are implicated in the pathobiology of respiratory diseases based on

their roles in perpetuating oxidative stress. This genetic variation may have public health

importance especially for children with asthma. Since these variants are common in the

general population, the number of sensitised individuals living in urban populations may

be significant. Certainly, these are not the only genes involved in protection against

oxidative stress, nor are they unique in their action, but they provide a good model to

investigate the gene-environment interaction with complex diseases such as asthma. It is

worth the effort to either challenge or corroborate the association of these genes to

respiratory disease in different populations. Since genetic studies are usually costly and

ethically challenging to conduct, a future meta analysis of this and other studies may

provide conclusive evidence of the roles of these genes and their variants in respiratory

linked disease.
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2.9 Public health impacts of gene-exposure-disease investigations

Public health has evolved on the premise that genes could not be modified, effectively

disqualifying them as targets for intervention. However, for complex diseases, genetic

information may be used either pre-symptomatically or after disease onset, for targeted

interventions including diet, medication, and lifestyle modifications. Genetic information

may motivate people to improve their health behaviour, or at the other extreme, it may

lead to a fatalistic view of genetic risk with people shunning preventative behaviours or

treatments. Genetically susceptible population subgroups may be identified, marginalized

or discriminated against in various ways- the creation of a genetic underclass. Family

relationships, insurance (life, travel, and health), employment, finance, adoption,

migration, forensic, and legal settings are all examples of where genetic discrimination

may occur. Multi-disciplinary education programs for health professionals are needed on

the scientific, ethical, legal, and social issues related to public health genetics, as are

programs on bioinformatics and statistical genetics, cultural anthropology and health

behavior. Debates about the future of epidemiology and public health often depict high

risk and population approaches to prevention as controversial (Halliday et aI., 2004).

Genetics has been heralded by some as a revolution, but it is more likely an evolution, a

progression whereby advances in genetics are integrated into medicine and public health,

in a considered and gradual way, accompanied by the necessary social and ethical debate.

The convergence of public health and genetics holds the possibility of improved

understanding of the etiology, prevention and management of complex diseases such as

asthma. The evolution of public health genetics has already begun as shown by the
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plethora of peer reviewed papers from both the public health and genetics communities,

as well as many public consultation documents. The literature consists not only of the

basic research, but many authors are grappling with issues ranging from the

methodological to the health applications of genetic research.

Research focused on gene-environment interactions hold great promise in treating and

managing asthma. However there are few studies that examine the relationship between

genetic risk factors and environmental exposures in the exacerbation of asthma. Most of

these studies were conducted mainly in the Northern hemisphere with Caucasian,

Hispanic and Asian populations. The South Durban Health Study (SDHS) was designed

in response to the Multipoint Plan which was proposed at governmental level to

understand the state of pollution in the South Durban Area, to develop a system to

monitor fluctuations in pollution levels and to determine to extent to which pollution

adversely impact on the health of the community (Naidoo et al., 2006). This longitudinal

study, the first on the African continent, involved repeated measures of pollutant

exposures, across different seasons, among a cohort of schoolchildren. In order to

measure the health effects of exposure, daily lung function measures, FEV] and PF were

taken daily for a period of 3 weeks in each of 4 intensive phases. This study had several

important advantages. First, the study population of children exposed to ambient

pollutants was confined to defined areas, each area with its own monitoring sites allowing

a more precise estimation of exposure. Second, the pollutants were analyzed in a

systematic manner over the duration of the study, which allowed the correlation between

increases in exposure and decrements in lung function measures. Thirdly, the sample
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deliberately selected persistent asthmatics, which provided additional power to identify

specific impacts on susceptible groups.

In this study the frequency of polymorphic variants of GSTMI, GSTPI and NQOI in a

multiracial South African population was determined and these variants were evaluated

as susceptibility markers for asthma and related phenotypes such as BHR and atopy.

Further, a potential gene-environment interaction with specific pollutants was assessed.

We investigated whether polymorphisms of enzymes known to modulate or protect from

epithelial oxidative damage e.g. GSTs and NQOI account for the variation in response to

environmental exposures. We focused on GSTMI and GSTPl genotypes since these

genes are expressed in the lung, are involved in antioxidant defense pathways and have

common functional variant alleles. Changes in FEV I and PF in response to pollutants

such as S02, NO, N02 and PM IO was assessed. We hypothesized that children with

polymorphic genotypes might have greater susceptibility to reductions in FEV I and PEF

associated with air pollution exposure.
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2.10 Aims of study

i) To assess the frequency of gene variants involved in the oxidative stress response,

i.e. GSTMI (present vs null genotype), GSTPI (I1eI05Val; AA-AG/GG) and the

NQO I (Pro/Ser; CC -CT/TT) among a cohort of schoolchildren from south Durban

(highly industrialised) and north Durban (no industry).

ii) To evaluate the association of GSTM I (present vs null genotype), GSTP1

(I1eI05Val; AA-AG/GG) and the NQOI (PraiSer; CC -CT/TT) genotypes and

respiratory outcomes such as two grades of asthma, doctor diagnosed asthma, BHR

and atopy among these children.

iii) To investigate fluctuations in intraday variability and nadir FEV1 and PF in relation

to daily averages in ambient air pollutants (S02, N02, NO, and PMJO) using genotype

as an effect modifier among the entire cohort of schoolchildren.

iv) Aims (i), (ii) and (iii) will be investigated with 12 possible genotype combinations of

the three genes under study.
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CHAPTER 3:

METHODOLOGY

3.1 Overview of methodology

This study investigated three genetic polymorphisms which are known to contribute to

differing susceptibilities to respiratory outcomes when exposed to varying environmental

conditions. The project adds a genetic epidemiology component to the SDHS study

which was carried out between May 2004 and February 2005. The SDHS study

characterized the health status of a representative sample of children and adults from

communities in South Durban, with comparison communities in North Durban. The

prevalence of various respiratory outcomes was established using validated methodology

among children in seven schools from both study regions. Acute respiratory outcomes

was correlated with daily changes in levels of air pollution. Detailed monitoring of PM,

NOx, S02, temperature & relative humidity and various other pollutants was carried out

near the schools (Appendix 3.1 and 3.2).

The SDHS determined responses to FEV], FVC, and PEF in relation to daily fluctuations

in S02, N02, and PM 10. We investigated genetic modifiers to environmental exposures by

evaluating oxidative stress genes i.e GSTM I, GSTPl and NQO 1. For each of these

polymorphisms, we examined whether the relationship between the pollutants and

respiratory outcomes (BHR, atopy, persistent asthma and all asthma) differ by genotype.
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3.2 Selection of Communities/Sampling strategy

In order to properly characterise both exposure and health outcomes, a broad

geographical coverage of the Durban South basin was necessary. The following

residential areas were selected In the Durban South: (a) Merebank, (b)

Wentworth/Austerville; (c) Bluff and (d) Lamontville. Comparison communities in the

northern residential areas of the Metropolitan boundaries selected were: (a) Newlands

East; (b) Newlands West and (c) KwaMashu. The latter communities were selected

because of: their proximity to each other; having a similar socio-economic profile as

communities in the Durban South and having relatively little industrial exposure.

3.3 School Selection

To ensure that the study sample was representative of the immediate geographic location

of the monitoring station, only schools at which the bussing in of students from

surrounding communities was minimal « 15%) were selected. Meteorological factors and

location of nearby industries were also considered in school selection. None of the

schools were selected on the basis of information about the health status of the students at

the school, anecdotal or otherwise. Each school in the selected communities was visited

by the research team to assess school location, geography and potential sources of

exposure. Among those schools meeting the specified criteria, one school was chosen at

60



random in each of the seven participating communities. Schools included Nizam Road,

Assagai, Dirkie Uys and Ethuthukweni in the South of Durban and Ngazana, Ferndale

and Briardale in the north of Durban.

3.4 Ethical Considerations

3.4.1 Ethics Approval

This research project was approved by the Ethics Committee of the University of

KwaZulu-Natal (Ref H099/04).

3.4.2 Individual informed consent

Individual informed consent was necessary for all participants. In the case of children,

this was obtained from their parent or guardian (Appendix 3.5). The children themselves

were given an informed assent form (Appendix 3.6). In this instance each participant was

given a comprehensive explanation in the language of their choice (Appendix 3.7). The

content of these forms included the aims of the research, the purpose of the interview, the

tests that would be conducted on them, use of their data and the confidentiality of all

results. It was emphasised that participation was voluntary and withdrawal at any time

was permitted without penalty. No financial incentives were provided for participation in

the study.

3.4.3 Participants' confidentiality
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All information obtained during the study from interviews and genetic assessments were

treated in a strictly confidential manner and were only accessible to the research team.

These results would be released to any clinician/guardian/agency if this was desired by

the individual participant.

3.4.4 Reporting and publication of results and reports

In the publication of research results and reports, all data will be treated as grouped, thus

no individual will be identified from such documentation. As per the required guidelines

of the University of KwaZulu-Natal, the final content of the articles submitted to peer

review scientific journals will be the responsibility of the researchers

3.5 Student Recruitment

At each of the seven schools the following sampling strategy was adopted: (I) two 4th

grade classes were randomly prioritized as classroom I and classroom 2; (2) all students

in these classrooms were asked to complete a screening questionnaire, which included

questions related to diagnosed asthma, frequency of symptoms and details of household

adult membership; (3) the prevalence of known or probable persistent asthma among the

two selected classrooms was reviewed on the basis of the screening questionnaires

(Annexures 3.3 and 3.4); (4) it was intended that all the students in these two selected

classrooms form the study sample provided that there were at least 20 cases of persistent

asthma in the two combined classrooms, but because these numbers were not achieved in
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the selected classrooms, (5) students from grades 3-6 (if available) in the school

completed the screening questionnaire. The numbers of students that formed the study

sample consisted of a total of 317 children from the "randomly selected classrooms"

(referred to as "Type A classrooms" in this thesis). A total of 52 children with persistent

asthma (based on a screening questionnaire) were "selected or invited" participants and

will be referred to the "Type B classrooms" in this thesis.

The choice of these grades (3 to 6) was driven by the following considerations: the

expectation that the learners in grades lower than 3 would have difficulties completing

the research instruments and correctly performing respiratory testing and the likelihood

that the overall prevalence of asthma would be likely be greater among younger children.

The dual pronged study design (a randomly selected group of students and a group

selected on the basis of known health outcomes) was intended to ensure the inclusion of

an adequate number of students with known or probable persistent asthma. This was

done to provide the statistical power to address whether such students are at particularly

increased risk for any measurable adverse health effects of exposure to ambient air

pollution. The students in the pre-selected classrooms represented a random, population

based sample which permitted description of community based prevalence of disease

outcomes among children. For the genetic study, the sample group comprised 369

students, of whom 317 made up the population based random sample and 52 formed the

non-randomly selected persistent asthmatics. This sample group was a subset of the total

SDHS group which had 423 children enrolled in the study, 342 from the random sample

(Type A classrooms) and 81 selected persistent asthmatics (Type B classrooms). The
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loss in sample size in the genetic study was attributed to parents' refusal to grant ethical

consent for genetic testing. This loss in sample size was mainly among the white

population, which accounts for the very low numbers of whites in our total sample.

The conduct of the various health assessments (questionnaires, spirometry, methacholine

challenge testing and serial peak flow recording) on the study sample of the SDHS is

detailed in appendix 3.1

3.6 Collection of blood samples

In order to reduce the degree of contamination during the blood sampling, the skin was

carefully scrubbed with soap and water, followed by an alcohol swab. The cleaned

surface was rinsed with distilled water and dried with metal-free tissue paper (Kleenex)

before puncture. Immediately after the cleaning, a puncture was made using a Minilancet.

About 2.5 ml of blood was collected in a lead-free plastic vacuutainer containing EDTA

powder (Ram Scientific Inc., North Carolina). The vacuutainers were capped and stored

for analysis in temperature controlled storage boxes. The extractions were conducted by

trained phlebotomist.

3.7 DNA Extraction

Blood samples were stored at 4°C until they were ready to be processed. Genomic DNA

was extracted using a PUREGENE DNA isolation kit (cat #D5000; GENTRA,
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Minneapolis, MN). DNA was quantified usmg the Nanodrop ND 1000

Spectrophotometer. DNA samples were aliquoted and stored at -70°C. Working stocks

were kept at 4°C at a concentration of 100 nght!. All genotyping assays were conducted

by a researcher who was blind to child ID and status.

3.8 GSTMl Polymorphism

The presence or absence of the GSTMl gene was determined by using a differential PCR

method (Bell et al., 1993). DNA (lOO ng) was added to a PCR mix containing 30pmol

of each GSTMl primer (G5-5' GAA CTC CCT GAA AAG CTA AAG C; G6-5'GTT

GGG CTC AAA TAT ACG GTG G, Roche Diagnostics), 10 pmol of ~-globin gene

primers (PC04-5' CAA crr CAT CCA CGT TCA CC and GH20-5' GAA GAG CCA

AGG ACA GGT AC, Roche Diagnostics), 200!lmol deoxynucleoside triphosphates, 1 U

Taq polymerase (Roche Diagnostics), 1 X (NH4)2S04 PCR buffer [16,6 mM (NH4)2S04,

50 mM ~-mercaptoethanol, 6,8 !lM Tris (pH 8.8), 80!lglml BSA, 1,6 mM MgChl and 3,3

mM MgCh in a final volume of 30!l1.

The reaction mixture was placed in a GeneAmp® PCR system 9700 thermal cycler for 3

minutes at 94°C, and then subjected to 24 cycles of 94°C for 10 seconds, 57°C for 20

seconds, and 72°C for 45 seconds. Final elongation step at 72°C for 5 minutes was

included. PCR products from coamplification were resolved on 4% ethidium bromide

stained agarose gel (Whitehead Scientific, Pty, Ltd). The ~-globin gene, which was used
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as a positive control produced a band at 268 bp and the GSTMl positive genotype was

identified by a band at 215 bp. The absence of this 215 bp band confirmed the GSTM

null genotype.

3.9 GSTP1 and NQ01 polymorphisms

The GSTPl and NQO 1 genotypes were determined by TaqMan assays (Applied

Biosystems, Foster City, CA). The NQOIPI87S (rsI800566) was done using Assay-by­

Design (Taqman® SNP Genotyping Assays) assay mix, whereas GSTPl (rs 947894) was

done using Assay-on-Demand (Taqman® SNP Genotyping Assays) assay mix. All PCR

amplifications were performed using the 5' -nuclease assay on Gene-Amp PCR Systems

9700 (Applied Biosystems).

3.9.1 GSTP1

Context Sequence (ChrllqI2, IIS4191-DIIS4162)

CGTGGAGGACCTCCGCTGCAAATAC[G/AjTCTCCCTCATCTACACCAACTATGT

NCBI SNP Reference: rs947894; SNP Type: INTRON

Reporter 1: Dye: VIC; Quencher: NFQ

Reporter 2: Dye: FAM; Quencher: NFQ
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3.9.2 NQOl

NQOIPI87S-CTF: Forward Primer Seq : TGCATTTCTGTGGCTTCCAAGT

NQOIPI87S-CTR: Reverse Primer Seq: TGGAGTGTGCCCAATGCTATATG

NCBI SNP Reference: rs 1800566

Reporter J : NQOIPI87S-CTV2; Dye: VIC; Quencher: NFQ;

Sequence: TCAGTTGAGGTTCTAAG

Reporter 2: NQOIPI87S-CTM2; Dye: FAM; Quencher: NFQ;

Sequence: TCAGTTGAGATTCTAAG

Design Strand: Reverse

DNA was spun down and air dried for 20 min. The PCR master mix was made up as

below and 5ul was added to the air dried DNA in each well. Essential1y, lOng genomic

DNA was amplified in a 5ul reaction containing 900 nmol/L each primer, 200 nmollL

each probe, and Taqman Universal PCR Master Mix (ABI).

GSTPI PCR reaction preparation

Genomic DNA (dried in plate)

2X Universal PCR master mix (ABI 4304437)

20X Assay mix (probe/primer mix)

dH20

Total

NQO I PCR reaction preparation
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10 ng

2.5 111

0.25 111

2.25 111.
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Genomic DNA

2X Universal PCR master mix (ABI 4304437)

40X Assay mix (probe/primer mix)

dH20

Total

10 ng

2.5 !AI

0.125 !AI

2.375 !AI

5 !AI

Plates were covered with an optical film (ABI) and then spun down in an Eppendorf

centrifuge 5810 R. The reaction mixture was incubated at 50°C for 2 mins for optimal

AmpErase UNG activity to prevent any carryover contamination, followed by AmpliTaq

Gold enzyme activation at 95°C for 10 min. This was followed by 40 amplification cycles

consisting of denaturation at 95°C for 15 secs followed by annealing and primer

extension at 60°C for 1 min. The fluorescence of PCR products were detected by the ABI

Prism 7900HT sequence detection system and was analyzed by SDS software (Applied

Biosystems). Allelic discrimination plots were used to determine major and minor bands.

The notation used was homozygous = major (Ill), homozygous= minor (212) and

heterozygote = (112). Initially control plates were looked at to distinguish the major and

minor alleles. The barcodes for NQOl and GSTP 1 polymorphisms were run, detectors

VIC (red, Ill) and FAM (blue, 212). The quencher was non fluorescent.

In addition to the 369 DNA samples, the 384 well plate included genotype controls

(known genotypes) and NTC wells (no template controls). Controls were run first.

Sixteen quality control samples were used per 384-well plate along with 24 samples of

known genotype. An additional 6 blind replicate samples were included in the analyses.
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All the data submitted for analyses had to pass quality controls, with 100% matching for

quality control samples and blind replicates and at least 95% plate efficiency.

3.10 Environmental Air Quality Monitoring

In the SDHS detailed outdoor environmental monitoring was done on site at the schools

and at other relevant areas for comparison. Continuous monitoring over the study time

period was done for PM IO, NOx, S02 (results of which are used in this study) and various

other pollutants (Appendix 3.2 for detailed methodology used in SDHS for the air quality

monitoring).

3.11 Genotype Models

GSTMl was dichotomized into the null genotype and the present genotype, whereas the

GSTPl and NQOl polymorphisms were categorised into two groups, based on the

absence or presence of the polymorphic allele (wild type homozygous versus the

combined heterozygous plus the variant homozygous genotype). The dominant model

(where the polymorphic allele included both the heterozygote and homozygote

genotypes) was used because of the expected increased statistical power. Gene-gene

interactions between the three genotypes were also evaluated as outlined in Table 3.1.
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3.12 Data Analysis Strategies

After completion of the data collection, data entry and data verification phases,

descriptive analyses were conducted. Frequency distributions of categorical variables and

means, standard deviation and ranges of continuous variables were calculated.

Continuous variables included age, weight, height and levels of environmental pollutants.

Categorical variables included genotype, age, race, sex, region (north/south Durban),

disease outcomes (asthma, BHR and atopy).

Table 3.1 : Single gene (List I )and gene-gene (List 2) interaction models

List 1 : List 2

GSTMl a) GSTMl with NQOl

Positive* GSTMI pos NQ01 CC*

Null GTSMlpos NQ01 CT+TT
GSTMI null NQOICC
GSTMI null NQOI CT+TT

GSTPl AlalVal b) GSTMl with GSTPl
Dominant model AA* GSTMI pos GSTPI AA*

AG+GG GSTMI pos GSTPI AG +GG
GSTMI null GSTPI AA
GTSMI null GSTPI AG + GG

NQOl Pro/Ser c) GSTPl with NQOl
Dominant model CC* GSTPI AA NQ01 CC*

CT+TT GSTPI AA NQOI CT+TT
GSTPI AG+ GG NQ01 CC
GSTPI AG + GG NQOI CT+TT

*represents the reference genotype

After completion of the data collection, data entry and data verification phases,

descriptive analyses were conducted. Frequency distributions of categorical variables and

means, standard deviation and ranges of continuous variables were calculated.

Continuous variables included age, weight, height and levels of environmental pollutants.
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Categorical variables included genotype, age, race, sex, region (north/south Durban) and

disease outcomes (asthma, BHR and atopy).

A systematic approach to sampling of the study population was undertaken to ensure that

(l) a population based sample (n=317) was randomly selected to ensure some

generalisability of results, referred to as Type A classrooms and (2) that children with

preexisting asthma are present in sufficient numbers to allow for efficient analysis (Type

B classrooms); n = 52. The entire sample (both types A and B; n=369) was used for

demographic data and in the GEE regression models to evaluate the gene*pollutant

effect. Inclusion of both types (random and selectively sampled children) was intended to

ensure an adequate number of students with known or probable persistent asthma in order

to provide adequate statistical power to address the association between health effect and

exposure to environmental pollutants, while adjusting for the various covariates,

including the polymorphisms. The type A or population based sample was used in all the

gene frequency analysis, bivariate analysis, and multiple regression models to determine

associations between genotype and respiratory linked outcomes.

These analyses were also conducted for the exposed (south Durban) and comparison

(north Durban) communities separately, using Pearson's chi-squared test to determine

any statistically significant differences between the groups. Genotype was investigated as

a predictor of outcome/response and as a modifier of the main effects of environmental

variables such as environmental tobacco smoke (ETS) and air pollution. Logistic models

were developed for binary outcome variables and adjusted for relevant covariates. Effect
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modifications were examined by including interaction terms in the models. Odds ratios

were calculated for binary outcome variables. Confidence intervals of 95% were

calculated and p values < 0.05 were considered statistically significant.

All data was initially captured USIng Microsoft Excel Software, with double entry,

examination of data ranges for implausible values, logic checks for ensuring answer

validity and consistency and automated skip patterns incorporated. All analyses were

done using STATA (version 9, College Station, TX, USA).

Outcome variables:

1. Bronchial hyperresponsiveness (BHR)

2. Asthma ( all asthma and persistent asthma)

3. Atopic status (skin test allergic status)

4. Pulmonary function measures (including nadir and intraday variability of peak

expiratory flow (PF) and forced expiratory volume in one second (FEV1)

Nadir FEV lIPEF was the daily lowest valid value (i.e the minimum best of all the

lung function values taken for a particular day).

Intraday or "within-day" variability for FEVI (or PEF in the same manner) was

IOO( rmximunbest FEYl- rrinimnnbest FEYI)

defi ned by llIlXirrum best FEYl

where the "best FEV1" is the highest valid value for the specific time of day

(08hOO, 09h45, and 11 h30, 13h20) i.e. a single summary lung function

measurement per child, per day.
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Exposure/Independent Variables:

1. Genotype (specifically polymorphic variants of GSTMI, GSTPI and NQ01),

(coded as shown in table 3.1).

2. Environmental pollution exposure i.e S02, NO, N02, and PM 10. were

examined in relation to changes in pulmonary function. There were treated as

continuous variables.

Covariates:

The following covariates were considered for potential confounding and/or effect

modification:

• Race/Ethnicity (categorical)

• Age (continuous)

• Sex

• Exposure to environmental tobacco smoke

• Region (North or South Schools)

In the analyses, respiratory outcomes were considered as the dependent variable and

genotype as independent. Models were fitted to estimate odds ratios of binary respiratory

outcomes associated with each genotype using the dominant genetic model for the variant

allele where the heterozygote and the homozygote variants are combined in the analysis.

Odds ratio (OR) and 95% confidence intervals (Cl) were calculated. P-values less than

0.05 were considered significant. We conducted additional analyses examining the

interaction between genes on the risk of respiratory linked outcomes.
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We then ran multiple logistic regression adjusting for potential covariates. We decided a

priori to include age, sex and race in our final models and tested a range of other

covariates including region (north or south schools) and caregiver smoking. The effect of

each covariate on the genotype-outcome relationship was tested using nested models and

the likelihood ratio test. We did not find any interaction between genotype and race,

although this may be attributed to low power. Age, sex, race and region were included as

covariates in the final models.

Data Analysis Strategies for Specific Aim 1:

To evaluate the relationship between bronchial hyperresponsiveness (BUR), atopy

and genotype.

Bronchial Hyperresponsiveness

BHR was defined as follows:

1 = Marked BHR: dose <= 4 and 20% or more drop on FEV1 (compared to maximum

(saline) or 20% increase on bronchodilator (compared to baseline)

2= Probable BHR : 4< dose <= 8 and 20% or more drop on FEY) (compared to

maximum (saline)) or 20% increase on bronchodilator (compared to baseline)

3 = Borderline/ Possible BHR : 8 < dose <= 16 and 20% or more drop on FEY I

(compared to maximum saline) or 20% increase on bronchodilator (compared to

baseline)

4 = Normal Airway reactivity: dose> 16 and drop less than 20% with any other dose.
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Categories 1, 2 and 3 were collapsed to define the variable "positive evidence of airway

hyperreactivity" while category 4 defined "normal airway reactivity"

Atopy

Atopy was defined as having a positive reaction to the skin prick test greater than that of

the response to the histamine for any of the following allergens: house dust mite, cat, dog

cockroach, cladosporium, grass and mold. A greater than 3mm difference in mean

diameter between allergen and control wheal was considered positive. Atopy was

considered as a dichotomous variable i.e. atopic or non-atopic.

Environmental Tobacco Smoke

The Caregiver Questionnaire (Appendix 3.4) was used to assess whether the child was

exposed to environmental tobacco smoke. The child was considered to have significant

exposure to tobacco smoke if G413 >0 or G414 was answered "YES".

G413. How many people who live in [child's]
home smoke? people

0] None
G414. Do you smoke cigarettes, even 0] Yes

occasionally?
O 2 No

Data Analysis Strategies for Specific Aim 2:

To investigate the effect of genotype in relation to the prevalence of asthma of any

severity and persistent asthma
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Asthma Severity

In this study, asthma severity was categorized in two ways: probable (or known) asthma

of any severity (designated "Any Asthma"); and probable (or known) persistent asthma,

including mild and moderate to severe persistent asthma (designated "Persistent

Asthma"). These categories were determined by the responses from the screening

questionnaire (which was completed by either the caregiver or head of household)

modelled on the ATS and BRMC questionnaires.

Any Asthma

A child was considered to have probable (or known) asthma (of any severity) if any of

the following were true:

(a) Three or more of the six non-exercise related symptoms (i.e., questions S22, S23,

S24, S25, S28 and S29) were reported (at any frequency or level greater than

"never").

822. In the past 12 months, how often has your 0 1 every day

child had a cough that won't go away? 02 more than 2 times per week
0 3 more than I time per month
0 4 3 to 12 times in the whole year
0 5 I or 2 times in the whole ye~r

06 never
823. In the past 12 months, how often has your 0 1 more than I time per month
child had wheezing (a whistling sound from the O2 3 to 12 times in the whole year
chest) with a cold? 0 3 1 or 2 times in the whole year

0 4 never
824. In the past 12 months, how often has your 0 1 every day
child had wheezing (a whistling sound from the O2 more than 2 times per week
chest) without a cold? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never
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825. In the past 12 months, how often has your 0] every day
child had an attack of wheezing that made it 02 more than 2 times per week
hard to breathe or catch his or her breath? ['3 more than 1 time per month

[4 3 to 12 times in the whole year
[J s 1 or 2 times in the whole year
:::16 never

828. In the past 12 months, how often has your 0 1 every day
child complained that his or her chest felt tight O2 more than 2 times per week
or heavy? 03 more than 1 time per month

0 4 3 to 12 times in the whole year
05 1 or 2 times in the whole year
06 never

S29. In the past 12 months, how often has your 0] most nights
child's sleep been disturbed due to wheezing, 02 more than I time per week
coughing, chest tightness or shortness of D3 more than 2 times per month
breath? D4 more than 1 time per month

05 3 to 12 times in the whole year
06 1 or 2 times in the whole year
07 never

Either exercise symptoms (i.e., S26 and S27) was reported with frequency of three times

or more in the past year i.e. S26 (1, 2, 3, or 4); S27 (1, 2, 3, or 4)

S26. In the past 12 months, how often has your 0] every day
child wheezed while exercising, running or O2 more than 2 times per week
playing? 0 3 more than 1 time per month

04 3 to 12 times in the whole year
05 1 or 2 times in the whole year
06 never

S27. In the past 12 months, how often has your 0] every day
child coughed while exercising, running or O2 more than 2 times per week
playing? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
05 1 or 2 times in the whole year
0 6 never

(b) There is a diagnosis of asthma (i.e., "asthma" (S30 (1)), "reactive airway disease"

(S30 (3)), and/or "asthmatic bronchitis"(S30(5)) were checked on question S30) with
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any symptoms (questions S22 through S29) or doctor-prescribed medication (i.e.,

"yes" on question S31) in the past year.

830. Has a doctor or nurse EVER said that your iJ 1 Asthma
child had: (check ALL that apply) O2 Bronchitis or Bronchiolitis

D3 Reactive Airway Disease (RAD)
D4 Pneumonia
0 5 Asthmatic Bronchitis

831. In the past 12 months has your child Cl Yes
taken any medications, nebulisers, or inhalers D2 No
(pumps) prescribed by a doctor for any of the
conditions listed above?

Persistent Asthma

A child was considered to have probable (or known) mild persistent asthma if, firstly,

the child meets the diagnostic criteria for asthma above, and secondly, any of the

following are true:

a) any daytime symptom ( i.e., questions S22 through S28) is reported as being present

"every day"

822. In the past 12 months, how often has your DJ every day

child had a cough that won't go away?
O2 more than 2 times per week
03 more than 1 time per month
0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole ye'\r
0 6 never

823. In the past 12 months, how often has your 0 1 more than 1 time per month
child had wheezing (a whistling sound from the O2 3 to 12 times in the whole year
chest) with a cold? 0 3 I or 2 times in the whole year

0 4 never
824. In the past 12 months, how often has your 0 1 every day
child had wheezing (a whistling sound from the 02 more than 2 times per week
chest) without a cold? 03 more than 1 time per month
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iJ 4 3 to 12 times in the whole year
0:; 1 or 2 times in the whole year
0 6 never

825. In the past 12 months, how often has your 0 1 every day
child had an attack of wheezing that made it 02 more than 2 times per week
hard to breathe or catch his or her breath? L3 more than 1 time per month

" 3 to 12 times in the whole yearU4

~:; 1 or 2 times in the whole year
06 never

826. In the past 12 months, how often has your 0) every day
child wheezed while exercising, running or O2 more than 2 times per week
playing? L3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never

827. In the past 12 months, how often has your 0 1 every day
child coughed while exercising, running or 02 more than 2 times per week
playing? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
06 never

528. In the past 12 months, how often has your 0 1 every day
child complained that his or her chest felt tight O2 more than 2 times per week
or heavy? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never

b) sleep disturbance (question S29) is reported "more than one time per week" or

"most nights" i.e 1 or 2

829. In the past 12 months, how often has your
child's sleep been disturbed due to wheezing,
coughing, chest tightness or shortness of
breath?
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c) Daily use of doctor-prescribed medicine (i.e., "yes" on question S32) with any

daytime symptom reported as being present "more than two times per week" i.e.

option 2 for Questions S22-S28 above.

S32. Does your child take any of these doctor­
prescribed medications every day, even when
he/she is not having trouble breathing?

Cl I Yes
CJ2 No
08 Does not apply

d) one or more daytime symptoms are reported as being present "more than 2 times per

week" i.e. option 2 for Questions S22-S28 above.

e) Sleep disturbance reported is reported "more than 2 times per month" i.e option 2

on S29.

f) Daily use of doctor-prescribed medicine (i.e., "yes" on question S32).

Data Analysis Strategies for Specific Aim 3:

To investigate fluctuations in FEV1 and PEF in relation to daily averages in ambient

air pollutants (S02, N02, NO, and PM10) using genotype as effect modifiers

The longitudinal design of this study allowed the investigation of how daily and bihourly

fluctuations in outdoor contaminant levels affect fluctuations in symptoms and

pulmonary function measures. Linear regression models were fitted using generalized

estimating equations (GEEs) to accommodate correlation structure arising from repeated

measurements on the same individual. Our intensive phase constituted a total of 60 days

of lung measurements. On each day, 4 lung tests were done on each student at different
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times of the morning and the most valid blows were used to calculate the PFT values

used as depicted below. In total, 240 measurements were performed on each child during

the 2004-2005 study period. GEE models were introduced by Liang and Zeger in 1986 as

an estimation technique that may be applied in any generalized linear model setting and

allows robustness against heteroskedasticity and correlation of the error distribution. An

exchangeable correlation working structure was used.

Well-standardized and validated prediction equations for pulmonary function or several

of the racial/ethnic groupings of children present in the study are not available. For this

reason, an assessment of pulmonary function measures as percents of predicted was not

attempted. An FEY] result obtained from the Airwatch was only considered valid if the

result was between 30-120% of each child's personal best as defined by that child's

highest recorded FEY 1 during baseline spirometry, methacholine challenge testing and

(when indicated) post-bronchodilator spirometry. From these data, the best valid blow

was selected from each of the four sessions to represent the child's pulmonary function at

that point in time. Additionally only blows that were recorded by the Airwatch device as

"error-free" were included in the analysis. Additional measures of lung function taken

from the Airwatch included within-day variability of FEY] and PF and the daily lowest

valid value ("minimum best" or "nadir") for FEY] and PP. Within-day variability for

FEY 1 is defined as:

(
maximum best FEY I - minimum best FEY I )

100 ---------­
maximum best FEY I

where the "best FEY1" is the highest valid value for the specific time of day (08hOO,

09h45, and 11 h30, 13h20) i.e. a single summary lung function measurement per child, per
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day. Within-day variability for PF is defined analogously to within-day variability for

FEY 1. Increased intraday variability and lower nadir values are markers of worsening of

asthma.

Covariates used in the GEE models included race, school, caregiver smoking, asthma

severity and interactions between asthma severity and exposure. Effect modification was

examined by including genotype (List I and 2) as an interaction term in the models.

Possible lag effects (days) were modeled to account for possible prior exposure effects.

For the GEE regression models, the percent change in within day variability in FEY 1 and

PF, and in nadir FEY 1 and PF, are for an interquartile increase in a particular pollutant.

Scaling the percents in this manner makes them directly relevant to the exposures

experienced by the study participants and makes the percents for different pollutants

directly comparable to each other (Naidoo et al., 2006).
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CHAPTER 4:

RESULTS

Demographic and genotypic characterization

We genotyped a cohort of South African children for polymorphic variants of GSTM1,

GSTPl and NQOl. Demographic, phenotypic and genotypic characteristics of study

subjects are summarized in Table 4.1. Of the 423 children recruited for the SDHS study,

only 369 children provided informed consent to participate in the genetics study. Most of

the White parents were unwilling to give consent for the genetics aspect of the study, we

therefore had a relatively small White population of 20 children. Coloureds are

indigenous to South Africa and have a mixed ancestry. The average age was 10.1 yrs and

both males and females were well represented with the females outnumbering the males

(42.6% and 57.4% respectively). Education levels among the caregivers was high with

42.8% having matriculated from high school, however there was a significant disparity

with income. Approximately 20% of all caregivers earned R 10 000 or less per annum,

while 48% earned between R 10 000-R75 000 per annum which indicates a relatively

. .
poor SOCIOeconomIc group.

Seven primary schools were sampled, 4 in South Durban (Assegai, Dirkie Uys, Nizam

and Enthukweni) and 3 in North Durban (Briardale, Ferndale and Ngazana) as

comparison sites. The northern communities were selected because of their proximity to
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Table 4.1 : Demographic and phenotypic and genotypic characteristics of study population (n=~69)

Categories South Durban North Durban
N-185 (% ) N-184 (% )

Age, yr 10.5 (1.1) 10.4 (0.7)

Sex
Male 81(43.8) 76 (41.3)
Female 104 (56.2) 108 (58.7)

Race

African 82 (45.0) 97 (53.6)

Indian 48 (26.4) 45 (24.9)

Coloured 32(17.6) 39 (21.6)

White 20 (11.0)

Participation from schools 185(50.1) 184 (49.9)

Caregiver Education (N=292, %)
Standard 9 or less 58 (31.4) 55(29.9)

High School Matriculant 51 (27.6) 74 (40.2)

Some tertiary education 28 (15.1) 26 (14.1)

Annual Household Income (N=I78. %)
RIO 000 or less 17 (9.2) 20 (10.9)

RIO 000-R75 000 33 (17.9) 52 (28.3)

R 75000 or more 26 (14.1) 30(16.3)

Caregiver smokes N= 93 39 (50.6) 54 (50.0)

Exposure to environmental tobacco smoke2 N= 194 82 (44.3) 112 (60.9)

Genotype
GSTMl3

GSTM positive 138 (74.6) 124 (67.4)

GSTM null 47(25.4) 60 (32.6)

GSTPI 4

Unrestricted: Ile-Ile (AA) 65 (38.2) 56 (32.0)

Ile-Val (AG) 78 (45.9) 80(45.7)

Val-Val (GG) 27( 15.9) 39 (22.3)

Dominant: lIe-Val (AG)+Val-Val (GG) 105 (61.8) 119(68.0)

NQOIs
Unrestricted: Pro (CC) 116(67.4) 106 (60.6)

ProlSer (CT) 44 (25.6) 66(37.7)

Ser (TT) 12 (7.0) 3 (1.7)

Dominant ProlSer (CT)/Ser (IT) 56 (32.6) 69(39.4)

1. Mean and SO at study entry
2: Exposure to at least one smoker in household
3. GSTM I (positive or null genotype),
4. GSTPI: A allele codes for isoleucine, G allele codes for valine.
AA is the major allele while AG and GG represent polymorphic alleles.
5. NQOl: C allele codes for Proline, T allele codes for serine.
CC is the major allele, while CT and CC are polymorphic alleles
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M 1 2

268 bp
215 bp

~-globin

GSTMl

Figure 4.1:
i,{..

peR products from co-amplification of GSTM 1 (215 bp) with
~-globin (268 bp) as the positive control.
Lane M = molecular weight marker VIII (Roche Diagnostics)
Lane 1 =GSTMI positive genotype (+/+),215 bp.
Lane 2 =GSTM null genotype (0/0)

each other, similar socioeconomic profiles as communities In the Durban South, and

distance from major industry with anticipated low exposure to industrial emissions.

Multiplex PCR allowed us to distinguish between GSTMlnull (0/0) from +/+ and +/0

subjects. However, it did not allow us to distinguish between heterozygotes (+/0) and

homozygotes (+/+) genotypes (Figure 4.1). The GSTPI and NQOI genotypes were

determined by real time PCR using TaqMan assays (Applied Biosystems, Foster City,

CA). Allelic discrimination plots (Figure 4.2) were used to determine major and minor

alleles. The notation used was homozygous = major allele (I /l), homozygous= minor

allele (2/2) and heterozygote = (1/2). For GSTPI and NQOI, we were unable to assign a

genotype to about 6% of DNA samples. Since these samples were different for each gene,

poor DNA quality could not be a reason for nonamplification.
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Alletic Discriminallion Plot
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Figure 4.2: Allelic discrimination plot, GSTPI .• I= Allele X=homozygote GSTPGG (2/2 l,
.2 =ROlh =hCtCrtllH'otl>'\(; (112), .3= Allele Y: homozygole AA( III l.• NTC= non
template control, X=Undetermined

A relatively low genotypic frequency of the GSTM I null genotype was found (29%) in

this South African sample, while a comparatively higher frequency of the polymorphic

GSTPIAG/GG (65%) and NQOICCICT genotypes (36%) were found in this population.

The wild type homozygotes GSTPI AA and NQOI CC were present at about 35% and

64% while the GSTPI GG (valine) and NQOI TT (serine) frequencies were 19.1% and

4.3% respectively. Frequencies for each gene achieved Hardy-Weinberg equilibrium. The
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frequency was 0.29 for GSTMl null, the minor Val allele and the mInor Ser allele

frequencies were 0.42 and 0.24 respectively. In order to evaluate the frequencies and

effects of gene-gene combinations on respiratory outcomes, we stratified our population

into 12 possible gene-gene permutations and genotypic frequencies are shown in Table

4.2.

The Type A classrooms represents a random population based sample. In the Type A

classrooms, polymorphic genotypes were present at the following frequencies: GSTMl

null (30%), GSTPl AG/GG (65%) and NQOl CTITT (36%). The numbers for the White

population was very low (n=20) so frequencies should be interpreted judiciously (Table

4.3). A varied distribution of the GSTPl AG/GG genotype was evident among different

race groups with the African and Coloured populations having the highest frequencies

(78.6% and 69.0% respectively). The GSTMl null frequency varied among race groups

with the lowest frequency (21 %) recorded for the African population.

As expected, there were no significant differences in genotype frequencies by sex.

However, there were significant differences among race groups. Africans had a lower

odds of the GSTMlnull genotype, but had a greater chance of carrying the polymorphic

GSTPl AG/GG genotype (OR=2.02, Cl 1.00-4.07). Indians showed a greater odds of

carrying the NQ01CT/TT genotype (OR=3.19, Cl 0.12-0.52) and a lower odds of

carrying the GSTP1AG/GG genotype (OR=0.25, Cl 0.12-0.52) (Table 4.3, Table 4.4).
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Table 4.2: Genotypic frequency of wild type and polymorphic allcles in Type A classrooms

Genotype Type A"
classroom
n (%)

GSTMl
GSTM positive 221 (69.7)
GSTM null 96 (30.4)

GSTPl
Unrestricted: Ile-Ile (AA) 105 (35.6)

Ile-Val (AG) 137 (46.3)
Val-Val (GG) 54 (18.2)

Dominant: Ile-Val (AG)+Val-Val (GG) 191 (64.5)

NQOl
Unrestricted: Pro (CC) 191 (64.3)

PraiSer (CT) 93 (31.3)
Ser (TT) 13 (4.2)

Dominant PraiSer (CT)/Ser (TT) 106 (35.7)

GSTMl with NQOll
GSTMl pos NQ01 CC 143 (48.2)
GSTMlpos NQ01 CT+TT 66 (22.2)
GSTMl null NQ01 CC 48 (16.2)
GSTMl null NQOl CT+TT 40(13.5)

GSTMl with GSTP12

GSTMl pos GSTPl AA 72 (24.3)
GSTMl pos GSTPl AG+GG 134 (45.3)
GSTMl null GSTPI AA 33 (11.2)
GSTMI null GSTPI AG+GG 57 (19.3)

GSTPl with NQ013
GSTPl AA NQ01 CC 53 (18.8)
GSTPl AA NQOl CT+TT 43 (15.3)
GSTPI AG+ GG NQ01 CC 126 (44.7)
GSTPl AG + GG NQ01 CT+TT 60 (21.3)

I. NQOI CC = Pro, NQOI CT+TT = Pro/Ser + Ser/Ser, 22 undeterlTI1ned samples
2. GSTPI AA= Ile/lle, GSTPI AG + GG = IleNal + VallVal, 24 undetermined samples
3. 22 undetermined samples
4.. Type A = population based random sample
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Table 4.3: Genotype distribution stratified by race and sex (Type A)

GENOTYPE RACE(%) SEX (%)
(n=317) African Indian Coloured White Male Female

(n=148)% (n=82)% (n=67)% (n=20)% (n=131)% (n=186)%
GSTM1 Present 115(77.7) 51 (62.2) 43(64.2) 12(60.0) 82(62.6) 139(74.7)

Null 33(22.3) 31(37.8) 24(35.8) 8(40.0) 49(37.4) 47(25.3)

GSTP1 AA 29(21.2) 49(62.8) 20(31.2) 7(41.2) 47(38.8) 58(33.1 )
AG 73(53.3) 24(30.8) 30(46.9) 10(58.8) 44(36.7) 49(27.7)
GG 35(25.6) 5(6.4) 14(21.9) 0(0.0) 7(5.8) 6(3.4)

AG/GG 108(78.8) 29(37.2) 44(68.8) 10(58.8) 74(61.2) 117(66.9)
NQ01 CC 104(73.8) 30(40.0) 43(68.3) 14(77.8) 69(57.5) 122(68.9)

CT 33(23.4) 36(48.0) 20(31.8) 4(22.2) 53(43.8) 84(48.0)
TT 4(2.8) 9(12.0) 0(0.0) 0(0.0) 21(17.4) 33(19.9)

CT/TT 37(26.2) 45(60.0) 20(31.8) 4(22.2) 51(42.5) 55(31.1 )

4.2 Prevalence of asthma and related phenotypes

We were unable to obtain a full dataset because some subjects were unwilling to

undertake a methacholine challenge test or did not wish to donate a blood sample. Loss of

information occurred in a random manner, and was not concentrated in any of the

subgroups. Of the 369 students, 98 (26.6%) did not submit to a methacholine challenge

test. When we evaluated if these children differed by health status, the students with

missing methacholine challenge data had the following health status: 66 (71.7%) had

"any asthma", 18 (26.9%) had doctor diagnosed asthma, 40 (43.5%) had persistent

asthma and 30 (38%) were atopic compared with children who took the methacholine

test: 116(47.5%) had "any asthma", 28 (12.6%) had doctor diagnosed asthma, 64 (26.2%)

had persistent asthma and 105 (43.4%) were atopic. Therefore subjects with preexisting

respiratory symptoms may have been concerned about the implications of the

methacholine challenge test and declined to participate. This loss of information may
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have introduced bias into our statistical models for BHR, however this is most likely to

be in the direction of the null.

Table 4.4: Effect of stratification of race on genotype and respiratory outcome

African Indian White
OR Cl OR Cl OR Cl

Genotype
GSTMI null 0.51 0.27-0.98* 1.07 0.54-2.11 1.31 0.46-3.68
GSTPI AG/GG 2.02 1.00-4.07* 0.25 0.12-0.52* 0.63 0.21-1.92
NQOI eT/TT 0.79 0.41-1.54 3.19 1.57-6.48* 0.65 0.18-2.26

Respiratory outcome
Any asthma 0.70 0.33-1.44 0.73 0.33-1.59 1.89 0.58-6.16
Persistent asthma 0.64 0.25-1.61 0.32 0.10-1.03 0.52 0.10-1.03
BHR 0.47 0.20-1.12 0.51 0.20-1.27 0.47 0.10-2.08
Atopy 1.14 0.51-2.53 3.31 1.41-7.82** 12.20 2.26-65.73**

*p-value < 0.05
**p-value <.005
Models adjusted for age and sex and region

There was a relatively large prevalence of "any asthma" which was based on a number of

different symptoms such as cough, wheeze etc. This broad definition may account for the

high prevalence of "asthma of any severity" among the population based sample (46.1 %),

with 20.4% reporting moderate to severe persistent asthma. However, doctor diagnosed

asthma was comparatively low at 10.9%. Marked airway reactivity (PC20:S 2 mg/ml) was

found in 10.3% of children from Type A classrooms, with an additional 7.0% of children

with probable BHR and 10.7% with possible BHR (Table 4.4). Atopy, defined as at least

1 positive skin test to seven different allergens (house dust mite, cockroach, cat, dog,

mould mix, Cladosporium, grass mix) was present in 40.4% of the children (Figure 4.3).
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Figure 4.3

Table 4.5

50 , 46.1

45 , 40.4
40 :-tf. 35-8 30

i 25 20.4
~ 20

toGl 15 10.9 10.3...
c.

10 0.__05
0 - T--·

PA AA DA BHR Atopy

Respiratory outcome

Prevalence of asthma and related phenotypes from Type A Classrooms. PA= persistent
asthma (n=58), AA= any asthma (n= 131), DA = doctor diagnosed asthma (n=27),
marked BHR (n=28) and Atopy (n= I09).

Prevalence of Bronchial Hyperresponsiveness (BHR) among children from the Type A
classroom.

LevelofBHR n (%)
Marked (PCzo :s 2 mg/ml) 28(10.3)
Probable (2< PCzo :s 8 mg/ml) 19(7.0)
Possible (8< PCzo:S 16 mg/ml) 29 (10.7)
No evidence of airway reactivity (PC zo > 16 mg/mJ) 195 (72.0)
PC20 = dose of methacholIne caUSIng a 20% fall In baseline FEV,

In summary, among the population based random sample, prevalence of "any asthma"

and persistent asthma, determined by symptoms, was high, with one-fifth reporting

persistent asthma and slightly less than half the population reporting asthma of any

severity. One tenth of our population reported doctor diagnosed asthma and displayed

marked BHR from methacholine challenge tests. When respiratory outcome was

stratified by race, only Indians and Whites showed a greater propensity to being atopic

than Africans and Coloureds (Table 4.4 and Table 4.8). Although statistically significant,
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the wide confidence interval for whites should be considered judiciously since our sample

had a very low number of white students.

60

50
~
-; 40
(,)
c
~ 30
III

~ 20...
c.

10

o

E!l North

o South

tv1arked
BHR

Asthma Persistent dd Asthma Atopy
asthma

Respiratory outcome

Asthma: "Any Asthma, dd asthma: doctor diagnosed asthma

Figure 4.4 Prevalence of respiratory outcomes (based on Type A classrooms) stratified by region
(South Durban vs North Durban).

The prevalence of asthma of any grade and persistent asthma were both approximately

5% higher in the south while doctor diagnosed asthma was almost identical in both areas.

The differences in respiratory health between north and south schools were highlighted

by tests of airway responsiveness: a greater number of students in the south schools had

marked BHR (13.3%) compared to those from the northern schools (3.8%). When we

collapsed the categories of probable, possible and marked BHR as positive evidence of

airway reactivity, we found 30.9% of children in the south presented with any evidence

of airway reactivity compared to 20.6% of children in the north in the type A classrooms.

More students from the south were atopic (43.8% vs 37.9%) (Figure 4.4)
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4.3 Bivariate analysis of genotype and respiratory outcome

In this section we used the Pearsons chi squared test to evaluate whether a particular

respiratory outcome was dependent on genotype. Table 4.6 shows GST and NQOI

frequencies in relation to persistent asthma (which included all persistent asthmatics from

both the Type A and Type B classrooms), any asthma, doctor diagnosed asthma, atopy

and BHR. Within the sample, 74.2% of all children with 'any asthma' have the GSTM I

pos while 27.5% of them have the null genotype. 26.9% of persistent asthmatics to have a

GSTMl deficiency. The frequency of GSTPl AG/GG was significantly higher in

subjects with persistent asthma (p= 0.03), and it was approximately 3 times higher than

the AA genotype for children presenting with persistent asthma. No significant

associations were identified for NQOI and any of the respiratory outcomes. Using the

unrestricted model in Table 4.7, in which the GSTPIGG homozygote was considered

independent of the GSTPI AG heterozygote, we found a significant association between

persistent asthma (p<.005) and GSTPI, as well as between atopy and NQO 1 (p = 0.05)
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Table 4.8 depicts the frequency distribution of genotype versus respiratory outcome

which is stratified by both race and region (North and South). It was not feasible to

perform any statistical comparisons since the number of subjects was radically decreased

in each 2 x 2 table. Although population stratification is an important issue in genetic

epidemiology, our low numbers preclude the option of stratifying by race in the

subsequent logistic analysis. Table 4.9 shows the distribution of combination gene-gene

frequencies according to different respiratory outcomes. Generally, the genotype

combinations considered "at risk", i.e. GSTM 1 null + NQOl CTfIT; GSTM Inull GSTPl

AG/GG; and GSTPI AG/ GG + NQOl CTITT were more frequent among the children

presenting with any asthma and atopy.

Table 4.9: Frequencies of GSTM I, GSTP 1 and NQO 1 gene-gene combinations among participants
presenting with respiratory linked outcomes

GENOTYPE ANY PERSISTENT DOCTOR BHR ATOPY
INTERACTION ASTHMA ASTHMA DIAGNOSED

ASTHMA

GSTMI pos NQOI CC 81 (46.8) 49 (50.0) 19(43.2) 16 (57.1) 53 (40.2)
GSTMlpos NQOI CT+TT 47 (27.2) 22 (22.5) 12 (27.3) 6(21.4) 38 (28.8)
GSTMI null NQOICC 25 (14.5) 18(18.4) 8 (18.2) 5(17.9) 26(19.7)
GSTMl null NQOl CT+TI 20 (11.5) 9 (9.2) 5(11.4) 1 (3.6) 15(11.4)

GSTMl pos GSTPI AA 40 (23.7) 15 (15.2) 13 (31.0) 8 (30.8) 29(22.8)
GSTMl pos GSTPI AG+GG 84 (49.7) 54 (55.7) 16 (38.1) 12(46.2) 56 (44.1)
GSTMl null GSTPI AA 18 (10.7) 11 (11.3) 5 (11.9) 2(7.7) 19(15.0)
GSTMI null GSTPI AG+GG 27 (16.0) 17 (17.5) 8 (19.1) 4(15.4) 23 (18.1)

GSTPI AA NQOICC 32(19.6) 16 (17.4) IQ (23.8) 8 (30.8) 23 (18.6)
GSTPI AA NQOI CT+TI 23 (14.1) 8 (8.7) 8(19.1) 2 (7.7) 22 (17.8)
GSTPI AG+ GG NQOI CC 66 (40.5) 46 (50.0) 16 (38.1) I I (42.3) 51 (41.1)
GSTPI AG + GG NQOI CT+TI 42 (25.8) 22 (23.9) 8(19.1) 5 (19.2) 28 (22.6)
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4.4. Multiple logistic regression models

The random based population sample (Type A) was included in the regression models to

examine predictors for adverse health outcomes. Associations of genetic variables with

respiratory outcomes of interest (atopy, airway hyperresponsiveness and asthma) were

examined using multivariate logistic regression models. Stepwise regression showed that

race and region (north and south Durban) were significant covariates in the logistic

models, and based on literature, it was decided a priori to include other covariates such

as age and sex. Tests for genotype*race interactions yielded no significant results.

Multiple logistic models using each of respiratory outcomes as the dependent variable

and region (north or south schools) as the independent variable showed that children in

the south schools were more likely to present with marked BHR than those in the north

(adj OR= 3.5, Cl: 1.4-8.4, p= p<.005) (not shown in tables). They also had a 2-fold

greater risk of having persistent asthma (adj OR=2.0; Cl: 1.2-3.2; p<.005) compared to

children in the north.

Subjects with the GSTPl AG/GG genotype were significantly associated with persistent

asthma (unadj OR=1.7; Cl: 1.0-2.9; p=O.03), however after adjustment for age, sex, race

and region, this association was not significant (OR= 1.6, Cl: 0.9-2.9 (Table 4.10).

Individuals with both GSTMlpos and the GSTPl AG/GG genotypes were more likely to

have persistent asthma (adj OR=2.4, Cl 1.2-4.9, p=O.Ol). Additionally, GSTPl GG was

significantly associated with persistent asthma (adj OR = 2.7; CI=I.3-5.8, p<.005).

Neither the GSTMl nor the NQOl genotypes were significant predictors of persistent
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asthma. Neither ETS nor caregiver smoking modified the respiratory effects of genotype

(results not shown). With respect to atopy and BHR, no significant associations were

detected with any of the three genotypes examined.

Most of the 12 genotype combinations showed decreased risk for outcomes such as any

asthma, doctor diagnosed asthma, marked BHR and atopy, which may be attributed to a

competitive effect of one genotype on the other. When these logistic models were

stratified by north and south regions, generally, the odds ratios decreased slightly while

confidence intervals increased, which may be attributed to the decreased sample size in

each strata.
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4.5. Regression Models of ambient exposure and lung function measures using

generalised estimating equations

The gene-environment-interaction was assessed by including a product term (genotype X

pollutant) in the linear regression models. These models assessed the relationship

between SOz, NO, NOz and PMIQ exposure and changes in lung function tests (FEV 1 and

PF) using GSTM1, GSTPl and NQOl genotypes as effect modifiers (Tables 4.12 to

4.29). In these models, the estimate is the expected change in lung function associated

with an increase in one interquartile range in ambient pollutant. There were a few

significant gene*environment interactions with GSTPI and NQOl variants and selected

pollutants (Pint < 0.05).

The SDHS produced substantial repeated measures of PFTs on each child i.e each child

provided 4 PFTs during a single school day, this was done every day for three

consecutive weeks, once every season. Simultaneously, daily and hourly measurements

of the criteria pollutants mentioned above were collected continuously for the duration of

the study. The latter data was made available for the purposes of this study. The estimates

for FEV I and PF variability increased with increasing pollutant exposure in GSTMl null

children (Table 4.12). This was evident for NO and NOz at lag 5, while increased

estimates for GSTM 1null subjects were observed at all lags 1-5 for intraday variability in

PP. The corresponding pollutant effect in GSTM 1 positive children was lower than the

GSTM 1null estimate and not statistically significant. There was a single statistically

significant effect for SOz, while both FEV 1 and PF variability increased for PMIQ

exposure at all lags (Table 4.13). No significant interactions were observed between



variants of GSTM 1 and exposure to any of the pollutants tested using the four lung

function tests.

Evaluation of the gene-environment interaction with the GSTPl genotype revealed that

the pollutant slope for children with the GSTPl AA genotype was often higher (i.e FEY 1

and PF variability increased with increased NO and N02 pollutant levels) than the slope

for the polymorphic GSTPl AGIGG genotype. Among the children with the GSTPIAA

genotype, statistically significant effect modification was observed for NO and N02 at

lags 4 and 5 (p<0.05) (Table 4.16). There was no effect modification with GSTP 1 and

S02 or PMlO except for lag 4 where FEY l variability among GSTPIAA subjects exposed

to S02 was greater than GSTPl AGIGG children (p<.005) (Table 4.17). There was no

significant effect modification with either NO or N02 and the GSTPl genotype (Table

4.18) using nadir FEY I and PF as lung function outcomes. However, an increase in S02

exposure produced significant interactions with GSTPl AA (Pint < 0.05) using nadir PF as

an outcome at lags 4, 5 and the 5 day average. (Table 4.19). An increase in the estimate

or slope of the GSTPl AGIGG genotype showed an improved nadir lung function

measure with increased S02 and PM lO exposure. GSTPIAGIGG was therefore protective

compared to the GSTPl AA genotype.

There was significant effect modification with NQ01, N02 and NO for intraday

variability in FEY I and PF across lags 1-5 including the 5 day average (Table 4.20). The

estimates imply that FEY l and PF variability increases with increased exposure to NO

and N02 in subjects with the NQOICC wildtype. These effects were significant (p<0.05)
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while the pollutant*NQOl CT/TT interaction effect was not. We found a significant

gene*environment interaction for NQO I and exposure to NO and N02, both at lag 2

using the two lung function outcomes, intraday variability in PF and nadir PF as outcome

measures. With increased exposure to PM lO children with the NQO 1CC genotype had

significant effect modification with intraday variability in PF (Table 4.21). There were

significant gene*environment interactions for NQOl CC and increased exposure to

PM 10 at lags 1,3,4 and the 5 day average with intraday PP. Similarly decrements in nadir

PF values among children with the NQOl CC genotype were statistically significant for

NO and N02(Table 4.22) Conversely Table 4.23 showed a slight increase in the estimate

for NQOl CC but these effects, even though significant, were very small compared to the

NQOl CTITT genotype.

After examInIng the maIn effects of each SNP, our goal was to examine potential

interactions between these SNPs. We also assessed the association of the four pollutants

(NO, N02, S02 and PM lO) and combined genotypes as effect modifiers with intraday

variability in FEV 1 and PF (Tables 24-29). The 5 day averages for pollutant exposure

were used for the GEE models. There was little significant modification of the effect on

intraday variability by any of the 12 genotype combinations tested with pollutant

exposure. Only 3 of the 12 gene-gene combinations showed a trend. Children with the

GSTMlnull GSTPIAG/GG genotype combination showed increased variability in PF for

NO and N02, and for nadir FEV] for PM lO . Those children who had the GSTPIAG/GG,

NQOICC and GSTMlpos NQOICC genotype combinations showed a significant effect

modification of lung function measures with increased exposure to NO, N02and PM10.
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Table 4.12 Gene -environment interactions with the GSTMI genotype. Percent change! in intraday
variahilitl of FEV 1 and peak flow (PF) associated with ambient levels' of N02, and NO
from single pollutant linear regression models using generalized estimating equations
(GEE).

Lung Genotype Lags N02 NO
Function EST P-Val Cl EST P-Val Cl
Outcome
Intraday GSTMI positive Lag I 0.39 0.06 -0.05,0.78 0.84 <.005 0.42,1.25
FEV\ GSTMl null 0.35 0.24' -0.24,0.94 0.52 0.09 -0.09,1.14

0.91 4 -0.74,0.66 0.41 -1.04,0.42
GSTMI positive Lag 2 0.27 0.15 -0.11. 0.66 0.28 0.21 -0.16,0.73
GSTMI null 0.24 0.39 -0.31,0.79 0.00 0.99 -0.68,0.68

0.91 -0.71,0.62 0.49 -1.10,0.52
GSTMI positive Lag 3 0.13 0.48 -0.22,0.47 0.41 0.05 -0.07,0.82
GSTMI null 0.18 0.45 -0.29,0.67 0.04 0.40 -0.54,0.63

0.84 -0.53,0.66 0.32 -1.08,0.35
GSTMI positive Lag4 0.33 0.07 -0.03,0.68 0.14 0.69 -0.56,0.84
GSTMI null 0.43 0.08 -0.06,0.92 0.44 0.13 -0.12. 1.00

0.73 -0.50,0.72 0.69 -0.56,0.85
GSTMI positive Lag 5 0.34 0.08 -0.04,0.72 0.68 <.005 0.25,1.10
GSTMI null 0.68 0.02 0.12,1.24 0.79 0.02 0.15,1.44

0.32 -0.33,1.01 0.76 -0.65,0.88
GSTMI positive 5 days 0.31 0.12 -0.09,0.71 0.55 0.02 0.09,1.01
GSTMI null average 0.36 0.21 -0.21,0.92 0.41 0.20 -0.22, 1.05

0.89 -0.64,0.73 0.72 -0.92,0.64
Intraday PF GSTMl positive Lag I 0.33 0.09 -0.05,0.71 0.71 <.005 0.30,1.11

GSTMI null 0.69 0.02 0.11,1.27 0.72 0.02 0.13,1.31
0.33 -0.34,1.02 0.97 -0.69,0.72

GSTMI positive Lag 2 0.19 0.31 -0.18,0.57 0.25 0.27 -0.19,0.71
GSTMl null 0.83 <.005 0.28,1.37 0.99 <.005 0.26,1.73

0.06 -0.01,1.29 0.09 -0.12,1.59
GSTMl positive Lag 3 0.17 0.31 -0.16,0.51 0.27 0.18 -0.13,0.67
GSTMI null 0.69 <.005 0.22,1.18 0.77 0.02 0.13,1.41

0.07 -0.05,1.10 0.19 -0.25,1.24
GSTMI positive Lag4 0.41 0.03 0.05,0.77 0.29 0.20 -0.15,0.72
GSTMI null 0.72 <.005 0.20,1.23 0.73 0.02 0.11,1.35

0.33 -0.32,0.93 0.24 -0.30,1.19
GSTMl positive Lag 5 0.43 0.04 0.03,0.82 0.53 0.02 0.07,0.97
GSTMl null 0.76 <.005 0.19,1.33 0.85 0.01 0.17,0.53

0.34 -0.34,1.02 0.42 -0.47,1.12
GSTMl positive 5 days 0.33 0.10 -0.06,0.72 0.53 0.02 0.08,0.98
GSTMI null average 0.80 <.005 0.24,1.37 0.95 <.005 0.28, 1.62 --

0.16 -0.06,0.72 0.30 -0.37,1.21

, the percent change value shown is for an increase of one interquartile range in each respective pollutant: NO,: 8.19 ppb and NO: 29.7
ppb.
2intraday variability for FEY, is defined as: lOO (maximum best FEY,-minimum best FEY,)/maximum best FEY1: where the "best
FEY," is the highest valid, error-free value for the specific time of day (08hOO, 09h45, Ilh30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY,.
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
4Interaction p-value (gene-pollutant interaction)
jp-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.13 Gene-environment interactions with the GSTMI genotype. Percent change! in intraday
variabilit/ of FEY! and peak flow (PF) associated with ambient levels' of S02 and PM III

from single pollutant linear regression models using generalized estimating equations
(GEE)

Lung Genotype Lags S02 PM10

Function EST P-Val Cl EST P-Val Cl
Outcome
Intraday GSTM I positive Lag I 0.38 0.05 0.00,0.76 -0.Q7 0.65 -0.40,0.23
FEY! GSTMI null 0.32 0.285 -0.26,0.89 -0.16 0.54 -0.77,0.41

0.854 -0.72,0.59 0.75 -0.78,0.56
GSTMI positive Lag 2 -0.11 0.56 -0.48,0.26 -0.00 0.94 -0.2,0.27
GSTMI null -0.15 0.58 -0.67,0.38 0.12 0.63 -0.37,0.62

0.90 -0.66,0.59 0.65 -0.43,0.70
GSTMI positive Lag 3 -0.05 0.76 -0.40,0.29 -0.04 0.80 -0.32,0.25
GSTMI null -0.34 -0.19 -0.86,0.17 0.15 0.57 -0.35,0.65

0.34 -0.88,0.31 0.53 -0.39,0.76
GSTMI positive Lag4 -0.11 0.54 -0.46,0.24 0.04 0.78 -0.27,0.36
GSTMI null 0.18 0.41 -0.25,0.62 0.32 0.26 -0.24,0.87

0.28 -0.24,0.83 0.40 -0.36,0.91
GSTMI positive Lag5 0.11 0.49 -0.21,0.43 0.23 0.48 -0.41,0.87
GSTMI null 0.56 0.04 0.02,1.11 0.32 0.25 -0.23,0.87

0.14 -0.21,0.43 0.49 -0.41,0.87
GSTMI positive 5 days 0.02 0.96 -0.74,0.78 0.02 0.89 -0.29,0.34
GSTMI null average 0.15 0.77 -0.82, 1.12 0.13 0.66 -0.44,0.70

0.82 -0.97,1.22 0.75 -0.54,0.75
Intraday PF GSTMI positive Lag I 0.19 0.22 -0.12,0.52 0.00 0.95 -0.29,0.31

GSTMI null 0.59 0.09 -0.09, 1.28 0.38 0.25 -0.26,1.03
0.28 -0.33,1.12 0.31 -0.34,1.08

GSTMI positive Lag 2 -0.17 0.34 -0.51-0.17 0.09 0.48 -0.18,0.38
GSTMI null 0.18 0.55 -0.41-0.77 0.67 0.02 0.11,1.23

0.29 -0.29,0.99 0.07 -0.05,1.19
GSTMI positive Lag 3 -0.16 0.35 -0.51-0.18 0.11 0.44 -0.16,0.39
GSTMI null 0.08 0.80 -0.57-0.74 0.59 0.02 0.06,1.12

0.49 -0.45,0.95 0.12 -0.12,1.07
GSTMI positive Lag4 0.16 0.39 -0.21-0.01 0.25 0.13 -0.07,0.56
GSTMI null 0.29 0.34 -0.29-0.87 0.74 0.01 0.15,1.33

0.71 -0.53,0.77 0.15 -0.17,1.16
GSTM I positive Lag5 0.08 0.63 -0.24-0.40 0.25 0.13 -0.07,0.58
GSTMI null 0.21 0.42 -0.31-0.73 0.62 0.04 0.04,1.20

0.66 -0.45,0.72 0.28 -0.30,1.04
GSTMI positive 5 days 0.02 0.96 -0.69-0.73 0.15 0.31 -0.15,0.46
GSTMI null average 0.81 0.20 -0.43-2.03 0.64 0.04 0.03,1.25

0.23 -0.48,2.05 0.17 -0.20, 1.16
the percent change value shown IS for an Increase of one Interquarule range In each respectIve pollutant. PM IO . 29.4 ug m and SO,.

9.8 ppb.
2 intraday variability for FEY, is defined as : 100 (maximum best FEY,·minimum best FEY,)/maximum best FEY I: where the "best
FEY," is the highest valid, error·free value for the specific time of day (08hOO, 09h45, II h30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY, .
.1 pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
41nteraction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.14 Gene-environment interactions with the GSTM I genotype. Percent change I in nadir:'
FEY I and PF associated with ambient levels' of NO:" and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype Lags N02 NO
Function EST P-Val Cl EST P-Val Cl
Outcome
Nadir GSTM I positive Lag I 0.00 0.92 0.09,0.11 -0.00 0.72 -0.02,0.01
FEY! GSTMI null 0.01 0.22' -0.01,0.03 0.00 0.55 -0.01,0.03

0.424 -0.01,0.04 0.49 -0.02,0.03
GSTMI positive Lag 2 0.00 0.78 -0.01,0.02 0.00 0.76 -0.01,0.02
GSTMI null 0.01 0.21 -0.01,0.03 0.01 0.24 -0.00,0.03

0.43 -0.01,0.03 0.43 -0.02,004
GSTM I positive Lag 3 0.00 0.48 -0.01,0.02 0.00 0.68 -0.01,0.02
GSTMI null 0.01 0.11 -0.00,0.03 0.02 0.07 -0.00,0,03

0.68 -0.02,0.03 0.24 -0.01,0.04
GSTM I positive Lag4 0.00 0.45 -0.01; 0.02 0.00 0.55 -0.01,0.02
GSTMI null 0.01 0.24 -0.01,0.03 0.01 0.23 -0.01,0.03

0.64 -0.02,0.03 0.54 -0.02,0.03
GSTMI positive Lag 5 0.00 0.66 -0.01,0.01 0.00 0.75 -0.01 ;0.01
GSTMI null 0.00 0.38 -0.01,0.27 0.01 0.32 -0.01,0.03

0.66 -0.02,0.03 0.52 -0.02,0.03
GSTM 1 positive 5 days 0.00 0.43 -0.01,0.02 0.00 0.70 -0.01 ;0.02
GSTMI null average 0.01 0.15 -0.00,0.03 0.01 0.21 -0.00;0.03

0.52 -0.02,0.03 0.44 -0.02,0.04
Nadir GSTM I positive Lag I -1.75 0.12 -3.95,0.46 -1.73 0.11 -3.87,0.42
PF GSTMI null -1.96 0.27 -5.46,1.54 -2.81 0.13 -6.47,0.86

0.92 -4.35,3.92 0.62 -5.32,3.16
GSTMI positive Lag 2 -1.46 0.17 -3.56,0.64 -2.59 0.02 -4.75, -0.43
GSTMI null -1.82 0.28 -5.08,1.45 -2.46 0.18 -6.09, 1.17

0.86 -4.23,3.53 0.95 -4.09,4.35
GSTMI positive Lag 3 -1.46 0.17 -3.56,0.63 -1.93 0.06 -3.94,0.08
GSTMI null -1.54 0.31 -4.56,1.48 -2.05 0.26 -5.62, 1.52

0.78 -4.02.3.04 0.96 -4.21,3.97
GSTMI positive Lag4 -0.84 0.41 -2.86, 1.17 -0.97 0.38 -3.13,1.19
GSTMI null -1.28 0.42 -4.39,1.83 -1.04 0.58 -4.71,2.64

0.82 -4.15,3.27 0.98 -4.32,4.19
GSTMI positive Lag 5 -1.20 0.25 -3.25,0.86 -0.78 0.48 -2.96, 1.40
GSTMI null -2.20 0.22 -5.68, 1.28 -0.99 0.66 -5.36,3.38

0.63 -5.04,3.03 0.93 -5.08,4.67
GSTMI positive 5 days -1.43 0.22 -3.71,0.86 -1.97 0.12 -4.44,0.49
GSTMI null average -1.86 0.31 -5.46, 1.74 -2.43 0.26 -6.65, 1.79

0.84 -4.69,3.83 0.86 -5.33,4.42

\ the percent change value shown is for an increase of one interquartile range in each respective pollutant: NO,: 8.19 ppb and NO: 29.7
ppb.
2 Nadir FEY] is defined as the minimum of the (up to 4) best FEYls on a given day, Nadir PF is defined analogously
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'Interaction p-value (gene-pollutant interaction)
;p-value for the change in estimate
An increase in the estimate for intraday FEY\ and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.15 Gene-environment interactions with the GSTMI genotype. Percent change l in nadir2

FEY] and PF associated with ambient levels' of S02, and PM lII from single pollutant
linear regression models using generalized estimating equations (GEE).

Lung Genotype Lags S02 PM10

Function EST P-Yal Cl EST P-Val Cl
Outcome
Nadir GSTMI positive Lag I 0.00 0.74 -0.07,0.11 0.01 0.03 0.00,0.02
FEY] GSTMI null 0.00 0.645 -0.02,0.00 0.02 0.03 0.00,0.03

0.704 -0.02,0.01 0.62 -0.02,0.03
GSTMI positive Lag 2 0.00 0.19 -0.00,0.01 0.01 0.01 0.00,0.02
GSTMI null 0.00 0.19 -0.00,0.02 0.02 0.01 0.00,0.03

0.82 -0.02,0.02 0.69 -0.01.0.02
GSTM I positive Lag 3 0.01 0.04 0.00,0.02 0.01 0.02 0.00,0.02
GSTMI null 0.01 0.03 0.00,0.03 0.02 0.02 0.00,0.03

0.53 -0.01,0.02 0.68 -0.02,0.02
GSTM I positive Lag4 0.01 0.06 -0.00,0.02 0.01 0.07 0.00,0.02
GSTMI null 0.00 0.42 -0.00,0.02 0.01 0.06 0.00,0.03

0.50 -0.02,0.01 0.70 -0.02,0.02
GSTMI positive Lag 5 0.00 0.67 -0.00,0.01 0.01 0.20 0.00,0.02
GSTMI null 0.00 0.42 -0.02,0.00 0.01 0.07 0.00,0.03

0.38 -0.02,0.01 0.55 -0.01,0.03
GSTMI positive 5 days 0.01 0.17 -0.00,0.04 0.01 0.05 0.00,0.03
GSTMI null average 0.01 0.36 -0.01,0.04 0.02 0.03 0.00,0.03

0.86 -0.05,0.04 0.61 -0.02,0.03
Nadir GSTMI positive Lag I -0.52 0.54 -2.18,1.14 -0.08 0.93 -1.86,1.70
PF GSTMI null -1.25 0.58 -5.66,3.16 -0.18 0.91 -3.29,2.93

0.76 -5.42,3.97 0.96 -3.68,3.48
GSTMI positive Lag 2 0.58 0.51 -1.15,2.30 -0.23 0.77 -1.80,1.33
GSTMI null 0.86 0.66 -3.01,4.74 -0.09 0.95 -2.80,2.62

0.89 -3.93,4.51 0.93 -2.98,3.27
GSTMI positive Lag 3 0.91 0.26 -0.67,2.49 -0.26 0.76 -1.95, 1.43
GSTMl null 1.46 0.53 -3.06,5.98 -0.19 0.89 -2.99,2.61

0.82 -4.21,5.32 0.97 -3.19,3.34
GSTMl positive Lag4 0.41 0.67 -1.46,2.27 -0.28 0.76 -2.07,1.51
GSTMI null 0.79 0.73 -3.63,5.20 -0.79 0.60 -3.76,2.18

0.88 -4.38,5.14 0.77 -3.98,2.96
GSTMI positive Lag 5 -0.33 0.67 -1.85,1.20 -0.95 0.29 -2.70,0.80
GSTMI null -0.07 0.97 -3.61,3.48 -1.62 0.26 -4.44, 1.20

0.89 -3.58,4.10 0.69 -3.99,2.64
GSTMI positive 5 days 0.74 0.71 -3.19,4.67 -0.61 0.53 -2.51,1.29
GSTMI null average 0.95 0.87 -10.36,12.3 -0.69 0.68 -3.93.2.55

0.97 -11.65,12.1 0.97 -3.83,3.67

'the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM,,,: 29.4 ug m" and SO,:
9.8 ppb.
'Nadir FEY I is defined as the minimum of the (up to 4) best FEYls on a given day. Nadir PF is defined analogously
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.

167



Table 4.16 Gene-environment interactions with the GSTPI genotype. Percent change I in intraday
variabilitl of FEY 1 and peak flow (PF) associated with ambient levels' ofN02, and NO
from single pollutant linear regression models using generalized estimating equations
(GEE)

Lung Genotype Lags N02 NO
Function EST P-Val Cl EST P-Val Cl
Outcome
lntraday GSTPIAA Lag I 0.67 0.01" 0.14,1.20 0.94 <.005 0.41,1.47
FEY I GSTPI AG/GG 0.26 0.265 -0.19,0.71 0.62 0.01 0.15,1.09

0.254 -1.11,0.28 0.37 -1.03.0.38
GSTPIAA Lag 2 0.36 0.19 -0.18,0.91 0.22 0.69 -0.42.0.85
GSTPI AG/GG 0.27 0.21 -0.16,0.69 0.11 0.50 -0.42,0.64

0.78 -0.78,0.59 0.80 -0.93,0.79
GSTPIAA Lag 3 0.29 0.23 -0.19,0.76 0.45 0.10 -0.08,0.99
GSTPI AG/GG 0.11 0.58 -0.27,0.49 0.28 0.25 -0.19,0.76

0.56 -0.79,0.43 0.64 0.89,0.54
GSTPIAA Lag4 0.48 0.05 0.00,0.97 0.67 0.02 0.10,1.25
GSTPI AG/GG 0.34 0.09 -0.05,0.72 0.21 0.38 -0.25,0.67

0.64 -0.77,0.48 0.22 -1.20,0.27
GSTPIAA Lag 5 0.54 0.03 0.05,1.02 0.72 0.01 0.14,1.30
GSTPI AG/GG 0.46 0.04 0.03,0.88 0.76 <.005 0.27,1.24

0.80 -0.73,0.56 0.93 -0.71,0.78
GSTPIAA 5 days 0.51 0.06 -0.03, 1.05 0.75 0.01 0.19,1.30
GSTPI AG/GG average 0.27 0.24 -0.18,0.71 0.38 0.16 -0.15,0.92

0.49 -0.94,0.45 0.35 -1.13,0.40
Intraday PF GSTPIAA Lag I 0.37 0.15 -0.13,0.86 0.47 0.10 -0.08,1.02

GSTPI AG/GG 0.32 0.16 -0.13,0.76 0.71 <.005 0.25,1.17
0.88 -0.71,0.61 0.50 -0.47,0.95

GSTPIAA Lag 2 0.25 0.32 -0.24,0.74 0.21 0.52 -0.42,0.83
GSTPl AG/GG 0.39 0.08 -0.04,0.83 0.42 0.13 -0.12,0.97

0.67 -0.51,0.79 0.60 -0.61,1.04
GSTPIAA Lag 3 0.45 0.05 0.00,0.89 0.37 0.17 -0.16,0.91
GSTPl AG/GG 0.20 0.30 -0.18,0.58 0.35 0.14 -0.11,0.82

0.41 -0.82,0.34 0.96 -0.72,0.69
GSTPIAA Lag4 0.65 0.01 0.13,1.16 0.70 0.02 0.12,1.28
GSTPI AG/GG 0.35 0.09 -0.06,0.76 0.17 0.51 -0.33,0.67

0.37 -0.94,0.35 0.17 -1.29,0.22
GSTPIAA Lag 5 0.51 0.05 -0.01,1.02 0.69 0.03 0.06,1.32
GSTPl AG/GG 0.44 0.06 -0.01,0.88 0.44 0.09 -0.07,0.94

0.84 -0.74,0.60 0.53 -1.04,0.54
GSTPIAA 5 days 0.49 0.06 -0.02, 1.00 0.57 0.06 -0.02, 1.16
GSTPI AG/GG average 0.37 0.11 -0.09,0.82 0.54 0.05 0.01,1.07

0.72 -0.79,0.55 0.93 -0.81,0.74
the percent change value shown IS for an Increase of one Interquartlle range In each respectIve pollutant. N02. 8.19 ppb and NO. 29.7

ppb.
2 intraday variability for FEY\ is defined as : 100 (maximum best FEY"minimum best FEY\)/maximum best FEY I: where the "best
FEY," is the highest valid. error-free value for the specific time of day (08hOO, 09h45, Ilh30. l3h20).
Intraday variability for PF is defined analogously to within-day variability for FEY\.
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity. interactions between asthma severity and exposure.
interaction between gene and pollutants
·Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY! and PF and a decrease in the estimate for nadir FEY! and PF would indicate a negative
impact or decline on lung function.
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Table 4.17 Gene-environment interactions with the GSTPI genotype. Percent change] in intraday
variabilit/ of FEY 1 and peak flow (PF) associated with ambient levels.1 of SO} and PM\II
from single pollutant linear regression models using generalized estimating equations
(GEE)

Lung Genotype Lags S02 PM 10

Function EST P-Val Cl EST P-Val Cl
Outcome
Intraday GSTPIAA Lag 1 0.20 0.44 -0.31,0.72 0.08 0.77 -0.45,0.62
FEY I GSTPI AG/GG 0.51 0.025 0.09,0.92 -0.09 0.65 -0.47,0.29

0.364 -0.34,0.94 0.61 -0.82,0.48
GSTPIAA Lag 2 -0.23 0.31 -0.67,0.22 0.27 0.23 -0.17.0.70
GSTPI AG/GG 0.04 0.87 -0.41, 0.48 -0.03 0.85 -0.37,0.30

0.40 -0.35,0.88 0.28 -085,0.24
GSTPIAA Lag 3 -0.18 0.35 -0.55,0.20 0.19 0.41 -0.26,0.64
GSTPI AG/GG -0.05 0.83 -0.50,0.40 0.01 0.97 -0.33,0.35

0.66 -0.44,0.69 0.53 -0.74,0.38
GSTPIAA Lag4 0.10 0.64 -0.31,0.50 0.39 0.10 -0.07,0.85
GSTPl AG/GG 0.02 0.94 -0.38,0.41 0.10 0.61 -0.29,0.49

0.77 -0.62,0.46 0.35 -0.89,0.31
GSTPIAA Lag 5 0.18 0.39 -0.22,0.57 0.26 0.27 -0.21,0.73
GSTPI AG/GG 0.34 0.11 -0.08,0.75 0.25 0.22 -0.15,0.65

0.57 -0.39,0.72 0.96 -0.63,0.60
GSTPIAA 5 days -0.06 0.90 -0.90,0.79 0.28 0.26 -0.20,0.75
GSTPI AG/GG average 0.34 0.44 -0.52, 1.21 0.02 0.92 -0.37,0.40

0.47 -0.70,1.50 0.41 -0.87,1.35
Intraday PF GSTPIAA Lag I 0.29 0.16 -0.12,0.70 0.12 0.61 -0.36,0.60

GSTPl AG/GG 0.28 0.21 -0.15,0.71 0.06 0.77 -0.34,0.45
0.96 -0.57,0.54 0.84 -0.68,0.55

GSTPIAA Lag 2 -0.08 0.68 -0.46,0.30 0.40 0.07 -0.03,0.82
GSTPI AG/GG -0.08 0.71 -0.54,0.37 0.09 0.61 -0.26,0.44

0.99 -0.55,0.55 0.27 -0.85,0.24
GSTPIAA Lag 3 -0.24 0.29 -0.67,0.20 0.27 0.24 -0.18,0.73
GSTPI AG/GG -0.08 0.74 -0.53,0.38 0.17 0.32 -0.17,0.52

0.60 -0.43,0.74 0.73 -0.67,0.47
GSTPIAA Lag4 0.50 0.00 0.16,0.85 0.36 0.13 -0.11,0.83
GSTPI AG/GG -0.03 0.91 -0.51,0.45 0.35 0.09 -0.05,0.74

0.06 -1.08,0.02 0.96 -0.62,0.59
GSTPIAA Lag 5 0.18 0.33 -0.18,0.54 0.32 0.17 -0.13,0.78
GSTPI AG/GG 0.05 0.81 -0.35,0.45 0.31 0.14 -0.10,0.72

0.63 -0.64,0.39 0.97 -0.64,0.59
GSTPIAA 5 days 0.31 0.39 -0.39, 1.00 0.22 0.34 -0.24,0.68
GSTPI AG/GG average 0.04 0.93 -0.90,0.98 0.23 0.24 -0.16,0.62

0.60 -1.26,0.73 0.97 -0.58,0.60

'the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM](]: 29.4 ug m" and SO,:
9.8 ppb.
'intraday variability for FEY, is defined as: 100 (maximum best FEY,-minimum best FEYiJ/maximum best FEY I: where the "best
FEY," is the highest valid, error-free value for the specific time of day (08hOO, 09h45, Ilh30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY,.
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school. caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
4Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.18 Gene-environment interactions with the GSTPI genotype. Percent change! in nadir"
FEV! and PF associated with ambient levels' of NO", and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype Lags N02 NO
Function EST P-Val Cl EST P-Val Cl
Outcome
Nadir FEVI GSTPIAA Lag I -0.01 0.42 -0.03,0.01 -0.01 0.14 -0.03,0.00

GSTPI AG/GG 0.01 0.275 -0.01,0.03 0.00 0.53 -0.01,0.02
0.194 -0.01,0.04 0.12 -0.01,0.04

GSTPIAA Lag 2 0.00 0.78 -0.02,0.02 -0.01 0.35 -0.03,0.01
GSTPI AG/GG 0.01 0.16 0.00,0.03 0.01 0.14 0.00.0.03

0.27 -0.01 ,0.04 0.10 -0.00,0.05
GSTPIAA Lag 3 0.00 0.94 -0.02,0.02 -0.01 0.55 -0.02,0.01
GSTPI AG/GG 0.01 0.06 0.00,0.03 0.01 0.09 0.00,0.03

0.21 -0.01,0.04 0.12 -0.00,0.04
GSTPIAA Lag4 -0.01 0.56 -0.02,0.01 -0.01 0.39 -0.03,0.01
GSTPI AG/GG 0.01 0.11 0.00,0.03 0.01 0.11 0.00,0.03

0.14 -0.01,0.04 0.09 -0.00,0.04
GSTPIAA Lag 5 -0.01 0.55 -0.02,0.01 -0.01 0.49 -0.03,0.01
GSTPI AG/GG 0.01 0.28 -0.01,0.02 0.01 0.24 -0.01,0.03

0.25 -0.01,0.04 0.20 -0.01,0.04
GSTPIAA 5 days 0.00 0.68 -0.03,0.02 -0.01 0.35 -0.03,0.01
GSTPI AG/GG average 0.01 0.12 0.00,0.03 0.01 0.14 0.00,0.03

0.20 -0.01,0.04 0.09 -0.00,0.05
Nadir PF GSTPIAA Lag I -2.78 0.12 -6.30,0.74 -3.08 0.09 -6.63,0.47

GSTPI AG/GG -0.93 0.46 -3.38,1.51 -1.20 0.33 -3.58,1.19
0.40 -2.44,6.13 0.39 -2.39,6.16

GSTPIAA Lag 2 -2.51 0.13 -5.73,0.70 -3.08 0.07 -6.36,0.19
GSTPI AG/GG -0.63 0.60 -3.01, 1.74 -1.36 0.29 -3.90, 1.17

0.36 -2.12,5.88 0.42 -2.42,5.86
GSTPIAA Lag 3 -2.58 0.08 -5.48, 0.32 -2.84 0.08 -6.02,0.35
GSTPI AG/GG -0.16 0.88 -2.24, 1.92 -0.74 0.55 -3.15,1.67

0.18 -1.15,5.99 0.30 -1.89,6.09
GSTPIAA Lag4 -2.45 0.12 -5.52,0.62 -2.94 0.08 -6.26,0.38
GSTPI AG/GG 0.00 1.00 -2.26,2.25 0.42 0.74 -2.10,2.94

0.21 -1.36,6.25 0.11 -0.80,7.52
GSTPIAA Lag 5 -3.04 0.08 -6.41,0.33 -3.42 0.08 -7.28,0.43
GSTPI AG/GG -0.42 0.72 -2.69, 1.85 0.97 0.46 -1.58,3.51

0.21 -1.44,6.68 0.06 -0.22,9.01
GSTPIAA 5 days -2.79 0.13 -6.38,0.80 -3.31 0.09 -7.12,0.50
GSTPI AG/GG average -0.54 0.68 -3.11,2.03 -0.80 0.59 -3.70,2.09

0.32 -2.16,6.66 0.31 -2.28,7.29
the percent change value shown IS for an 10crease of one 10terquartJle range 10 each respectIve pollutant. NO,. 8.19 ppb and NO. 29.7

ppb.
2 Nadir FEY I is defined as the minimum of the (up to 4) best FEYls on a given day, Nadir PF is defined analogously
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY I and PF and a decrease in the estimate for nadir FEY I and PF would indicate a negative
impact or decline on lung function.
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Table 4.19 Gene-environment interactions with the GSTPI genotype. Percent change' in nadir"
FEY I and PF associated with ambient levels' of SO", and PM II1 from single pollutant
linear regression models using generalized estimating equations (GEE).

Lung Genotype Lags S02 PM w
Function EST P-Val Cl EST P-Val Cl
Outcome
Nadir FEY I GSTPIAA Lag I -0.01 0.18 -0.02,0.00 0.01 0.42 -0.01,0.03

GSTPI AG/GG 0.00 0.655 -0.01 ,0.01 0.02 0.01 0.00,0.03
0.204 -0.01,0.03 0.47 -0.02,0.03

GSTPIAA Lag 2 0.00 0.70 -0.02,0.01 0.01 0.41 -0.01,0.03
GSTPI AG/GG 0.01 0.03 0.00,0.03 0.02 0.01 0.01,0.03

0.08 -0.00,0.03 0.37 -0.01,0.03
GSTPlAA Lag 3 0.00 0.49 -0.01,0.02 0.01 0.53 -0.01,0.02
GSTPI AG/GG 0.02 0.01 0.00,0.03 0.02 0.01 0.00,0.03

0.10 -0.01,0.03 0.43 -0.01,0.03
GSTPIAA Lag4 0.00 0.73 -0.02,0.01 0.00 0.87 -0.02,0.02
GSTPI AG/GG 0.01 0.02 0.00,0.03 0.02 0.02 0.00,0.03

0.06 -0.00,0.04 0.25 -0.01,0.04
GSTPIAA Lag5 -0.01 0.19 -0.02,0.00 0.00 0.80 -0.02,0.02
GSTPI AG/GG 0.00 0.47 -0.01,0.01 0.01 0.08 0.00,0.02

0.15 -0.01,0.03 0.43 -0.01,0.03
GSTPIAA 5 days -0.01 0.63 -0.04,0.02 0.01 0.56 -0.02,0.03
GSTPI AG/GG average 0.03 0.06 0.00,0.06 0.02 0.02 0.00,0.03

0.11 -0.01,0.04 0.46 -0.02,0.04
Nadir PF GSTPIAA Lag I -2.39 0.04 -4.71,0.07 -1.36 0.36 -4.26, 1.53

GSTPI AG/GG 0.52 0.67 -1.85,2.89 0.88 0.41 -1.22,2.97
0.08 -0.39,6.21 0.22 -1.33,5.81

GSTPIAA Lag2 -0.70 0.55 -3.02, 1.61 -1.23 0.35 -3.80, 1.33
GSTPI AG/GG 1.98 0.10 -0.38,4.33 0.89 0.34 -0.94,2.73

0.11 -0.60,5.96 0.19 -1.02,5.28
GSTPIAA Lag 3 -0.43 0.69 -2.57, 1.71 -1.56 0.30 -4.49, 1.36
GSTPI AG/GG 2.67 0.04 0.12,5.23 0.66 0.50 -1.26,2.58

0.07 -0.20,6.42 0.21 -1.27,5.72
GSTPIAA Lag4 -2.35 0.06 -4.80,0.09 -1.90 0.21 -4.88, 1.08
GSTPI AG/GG 2.83 0.04 0.20,5.45 0.53 0.61 -1.49,2.54

0.00 1.62,8.74 0.19 -1.17,6.02
GSTPIAA Lag 5 -1.92 0.03 -3.70, -0.14 -2.26 0.11 -5.07,0.54
GSTPI AG/GG 1.20 0.30 -1.07,3.48 -0.15 0.88 -2.15, 1.85

0.03 0.26,5.99 0.23 -1.33,5.55
GSTPIAA 5 days -4.18 0.13 -9.64, 1.28 -1.51 0.36 -4.76, 1.74
GSTPI AG/GG average 4.82 0.11 -1.08,10.72 0.25 0.82 -1.94, 2.45

0.03 1.08,16.93 0.38 -2.16,5.68

I the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM H': 29.4 ug m" and SO,:
9.8 ppb.
'Nadir FEY] is defined as the minimum of the (up to 4) best FEYls on a given day, Nadir PF is defined analogously
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
41nteraction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.20 Gene-environment interactions with the NQOI genotype. Percent change! in intraday
variability" of FEV I and peak flow (PF) associated with ambient levels' of N02, and NO
from single pollutam linear regression models using generalized estimating equations
(GEE).

Lung Genotype Lags NOz NO
Function EST P-Val Cl EST P-Val Cl
Outcome
Intraday NQOl CC Lag I 0.45 0.05 0.00,0.91 0.90 <.005 0.43,1.37
FEY I NQOICTrrT 0.40 0.145 -0.13,0.92 0.67 0.02 0.13,1.21

0.884 0.74,0.64 0.54 -0.94,0.49
NQOICC Lag 2 0.37 0.09 -0.06,0.80 0.38 0.14 -0.12.0.87
NQOICTrrT 0.17 0.50 -0.33,0.68 -0.04 0.89 -0.70,0.61

0.55 -0.86,0.46 0.31 -1.24,0.39
NQOICC Lag 3 0.22 0.25 -0.16,0.60 0.36 0.11 -0.08,0.81
NQOI CTrrT 0.09 0.73 -0.39,0.56 0.17 0.57 -0.42,0.77

0.66 -0.74,0.47 0.61 -0.93,0.55
NQOICC Lag4 0.48 0.02 0.09,0.87 0.45 0.05 0.00,0.90
NQOICTrrT 0.32 0.18 -0.15,0.79 0.23 0.46 -0.37,0.84

0.61 -0.77,0.45 0.57 -0.97,0.53
NQOICC Lag 5 0.60 0.01 0.16,1.03 0.81 <.005 0.34,1.27
NQOI CTrrr 0.39 0.12 -0.10,0.87 0.80 0.01 0.20,1.41

0.53 -0.86,0.44 0.99 -0.76,0.76
NQOICC 5 days 0.42 0.07 -0.03,0.87 0.64 0.01 0.13,1.14
NQOI CTrrT average 0.29 0.28 -0.24,0.81 0.40 0.21 -0.23, 1.03

0.71 -0.82,0.55 0.57 -1.03,0.57
Intraday PF NQOICC Lag I 0.66 <.005 0.23,1.08 0.97 0.01 0.54,1.41

NQOICTrrT 0.08 0.75 -0.43,0.59 0.36 0.21 -0.19,0.91
0.09 -1.23,0.09 0.08 -1.31,0.08

NQOICC Lag 2 0.67 <.005 0.26,1.08 0.82 <.005 0.33,1.31
NQOI CTrrr -0.05 0.83 -0.55,0.44 -0.03 0.92 -0.70,0.63

0.03 -1.36,-0.08 0.04 -1.68,-0.04
NQOICC Lag 3 0.49 0.01 0.12,0.85 0.51 0.02 0.08,0.93
NQOl CTrrT 0.09 0.70 -0.37,0.55 0.18 0.54 -0.39,0.75

0.18 -0.98,0.18 0.36 -1.03,0.38
NQOICC Lag4 0.69 <.005 0.30,1.08 0.57 0.02 0.10,1.04
NQOl CTrrr 0.27 0.29 -0.24,0.79 0.20 0.53 -0.41,0.80

0.20 -1.05,0.22 0.34 -1.13,0.39
NQOICC Lag 5 0.78 <.005 0.34,1.22 0.86 <.005 0.37,1.35
NQOI CTrrT 0.21 0.42 -0.30,0.73 0.30 0.35 -0.33,0.93

0.10 -1.24,0.11 0.16 -1.35,0.22
NQOICC 5 days 0.71 <.005 0.28,1.14 0.89 <.005 0.41,1.38
NQOICTrrT average 0.14 0.61 -0.38,0.66 0.29 0.36 -0.34,0.92

0.09 -1.24,0.09 0.13 -1.38,0.18

I the percent change value shown is for an increase of one interquartile range in each respective pollutant: NO,: 8.19 ppb and NO: 29.7
ppb.
'intraday variability for FEY) is defined as: 100 (maximum best FEY)-minimum best FEY))/maximum best FEY I: where the "best
FEY)" is the highest valid, error-free value for the specific time of day (08hOO, 09h45, II h30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY).
'pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY) and PF and a decrease in the estimate for nadir FEY) and PF would indicate a negative
impact or decline on lung function.
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Table 4.21 Gene-environment interactions with the NQO I genotype. Percent change l in intraday
variabilit/ of FEY 1 and peak flow (PF) associated with ambient levels' of S02 and PM 11I

from single pollutant linear regression models using generalized estimating equations
(GEE)

Lung Genotype Lags S02 PM 10

Function EST P-Val Cl EST P-Val Cl
Outcome
Intraday NQOICC Lag I 0.33 0.10' -0.06,0.71 -0.07 0.71 -0.45,0.30
FEY I NQOICTITT 0.44 0.14' -0.15,1.03 -0.11 0.68 -0.61,0.39

0.754 -0.57.0.79 0.91 -0.66.0.59
NQOICC Lag 2 -0.17 0.35 -0.54,0.19 0.05 0.75 -0.28,0.39
NQOICTITT 0.06 0.84 -0.56,0.68 0.01 0.95 -0.40.0.43

0.51 -0.47,0.94 0.88 -0.57,0.49
NQOICC Lag 3 -0.21 0.28 -0.58,0.17 0.10 0.57 -0.24,0.43
NQOICTITT -0.04 0.89 -0.57,0.50 -0.08 0.73 -0.50,0.35

0.60 -0.46,0.80 0.53 -0.71,0.37
NQOICC Lag4 0.04 0.83 -0.31,0.39 0.17 0.35 -0.19,0.54
NQOICTITT -0.18 0.50 -0.69,0.34 0.11 0.65 -0.35,0.56

0.48 -0.81,0.38 0.82 -0.65,0.52
NQOICC Lag 5 0.22 0.20 -0.12,0.57 0.18 0.36 -0.20,0.57
NQOICTITT 0.28 0.30 -0.25,0.80 0.16 0.53 -0.33,0.64

0.86 -0.56,0.67 0.94 -0.64,0.59
NQOICC 5 days -0.04 0.92 -0.79,0.71 0.12 0.54 -0.25,0.48
NQOICTITT average 0.28 0.65 -0.90, 1.45 0.01 0.96 -0.47,0.50

0.63 -0.95,1.58 0.74 -0.70,0.50
Intraday PF NQOICC Lag I 0.38 0.76 0.01,0.73 0.37 0.04 0.01,0.73

NQOICTITT 0.22 0.38 -0.27,0.72 -0.30 0.22 -0.78,0.17
0.61 -0.75,0.44 0.03 -1.27,-0.08

NQOICC Lag 2 0.03 0.88 -0.35,0.41 0.43 0.01 0.10,0.76
NQOICTITT -0.18 0.50 -0.69,0.34 -0.05 0.80 -0.47,0.37

0.50 -0.81,0.39 0.07 -1.02,0.04
NQOICC Lag 3 -0.07 0.72 -0.47,0.32 0.48 <.005 0.16,0.81
NQOl CTITT -0.23 0.39 -0.76,0.30 -0.16 0.44 -0.56,0.24

0.61 -0.78,0.46 0.01 -1.16,-0.13

NQOl CC Lag4 0.45 0.03 0.03,0.86 0.62 <.005 0.26,0.98
NQOICTITT -0.19 0.43 -0.67,0.28 0.01 0.97 -0.47,0.48

0.04 -1.23,-0.04 0.04 -1.20,-0.02
NQOICC Lag 5 0.25 0.16 -0.10,0.61 0.53 0.01 0.15,0.92
NQOI CTITT -0.16 0.50 -0.64,0.31 0.05 0.83 -0.41,0.51

0.15 -0.99,0.16 0.11 -1.08,0.11
NQOICC 5 days 0.44 0.27 -0.34, 1.23 0.56 <.005 0.21,0.92
NQOICTITT average -0.11 0.83 -1.12,0.90 -0.16 0.50 -0.62,0.30

0.34 -1.67,0.57 0.01 -1.30,-0.15

I the percent change value shown is for an increase of one inlerquartile range in each respective pollutant: PM\lI: 29.4 ug m') and 502 :

9.8 ppb
2 intraday variability for FEY I is defined as : lOO (maximum best FEY,-minimum best FEY,)/maximum best FEY I: where the "best
FEY," is the highest valid, error-free value for the specific time of day (08hOO, 09h45, Ilh30. 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY, .
.1 pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
41nteraction p-value (gene-pollutant interaction)
"p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.22 Gene-environment interactions with the NQO I genotype. Percent change] in nadir"
FEY] and PF associated with ambient levels' of NO", and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

the percent change value shown IS for an mcrease of one mterquarule range In each respective pollutant. NO,. 8.19 ppb and NO.•9.7
ppb.
2 Nadir FEV] is defined as the minimum of the (up to 4) best FEVls on a given day, Nadir PF is defined analogously
J pollution levels used in regression models combine measured and imputed values
Covariates in each model: race. school, caregiver smokes, asthma severity, interaction between gene and pollutants
41nteraction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEV I and PF and a decrease in the estimate for nadir FEV J and PF would indicate a negative
impact or decline on lung function.

Lung Genotype Lags NOz NO
Function EST P-Val Cl EST P-Val Cl
Outcome
Nadir FEYI NQOICC Lag I 0.00 0.93 -0.02,0.02 -0.01 0.49 -0.02,0.01

NQOICTffT 0.01 0.29) -0.01,0.03 0.01 0.46 -0.01,0.03
0.454 -0.02,0.04 0.31 -0.01,0.04

NQOICC Lag 2 0.01 0.48 -0.01,0.02 0.00 0.68 -0.01,0.02
NQOI CT/TT 0.01 0.16 -0.01,0.03 0.01 0.36 -0.01,0.03

0.52 -0.02,0.03 0.63 -0.02.0.03
NQOICC Lag 3 0.01 0.30 -0.01,0.02 0.01 0.43 -0.01,0.02
NQOICTffT 0.01 0.13 0.00,0.03 0.01 0.25 -0.01,0.03

0.60 -0.02,0.03 0.67 -0.02,0.03
NQOICC Lag4 0.00 0.53 -0.01,0.02 0.00 0.60 -0.01,0.02
NQOICTffT 0.01 0.22 -0.01,0.03 0.01 0.25 -0.01,0.03

0.59 -0.02,0.03 0.56 -0.02,0.03
NQOICC Lag 5 0.00 0.97 -0.01,0.02 0.00 0.82 -0.01,0.02
NQOICTffT 0.01 0.24 -0.01,0.03 0.01 0.41 -0.01,0.03

0.38 -0.01,0.03 0.62 -0.02,0.03
NQOICC 5 days 0.01 0.51 -0.01,0.02 0.00 0.72 -0.01,0.02
NQOICTffT average 0.01 0.18 -0.01,0.03 0.01 0.27 -0.01,0.03

0.54 -0.02,0.03 0.52 -0.02,0.03

NadirPF NQOICC Lag I -3.72 0.01 -6.31, -1.14 -4.04 <.005 -6.50, -1.58
NQOICTffT 0.68 0.63 -2.10,3.46 0.65 0.67 -2.32,3.62

0.02 0.61,8.20 0.02 0.84,8.55
NQOICC Lag2 -3.28 0.01 -5.68, -0.87 -4.18 <.005 -6.65, -1.71
NQOICTffT 0.99 0.48 -1.74,3.72 0.10 0.95 -2.91,3.10

0.02 0.63,7.90 0.03 0.39,8.16
NQOICC Lag 3 -2.43 0.03 -4.59, -0.28 -2.91 0.02 -5.31, -0.51
NQOICTffT 0.56 0.65 -1.86,2.99 -0.33 0.82 -3.12,2.47

0.70 -0.24,6.24 0.17 -1.10,6.27
NQOICC Lag4 -2.33 0.05 -4.63, -0.04 -2.19 0.08 -4.66,0.27
NQOI CTffT 0.93 0.50 -1.79,3.64 0.69 0.67 -2.46,3.85

0.07 -0.29,6.81 0.16 -1.11,6.89
NQOICC Lag 5 -3.15 0.01 -5.61, -0.69 -2.49 0.07 -5.18,0.19
NQOICTffT 0.84 0.54 -1.87,3.55 1.64 0.32 -1.61,4.90

0.03 0.33,7.64 0.05 -0.07,8.35
NQOICC 5 days -3.31 0.02 -5.99, -0.63 -3.87 0.01 -6.75, -0.99
NQOICTffT average 0.86 0.56 -2.05,3.77 0.52 0.76 -2.89,3.94

0.04 0.23,8.12 0.05 -0.06,8.85
.?
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Table 4.23 Gene-environment interactions with the NQOI genotype. Percent change I in nadir2 FEY!
and PF associated with ambient levels' of 502, and PM11I from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype Lags S02 PM 10

Function EST P-Val Cl EST P-Val Cl
Outcome
Nadir FEY I NQOICC Lag I 0.00 0.42' -0.01,0.02 0.02 0.03 0.00,0.03

NQOICTffT 0.00 0.725 -0.02,0.01 0.01 0.06 0.00,0.03
0.434 -0.03,0.01 0.95 -0.02,0.02

NQOICC Lag 2 0.01 0.03 0.00,0.02 0.02 0.01 0.00,0.03
NQOICTffT 0.01 0.41 -0.01,0.02 0.01 0.06 0.00,0.03

0.53 -0.03,0.01 0.77 -0.02,0.02
NQOICC Lag 3 0.02 0.01 0.00,0.03 0.02 0.03 0.00,0.03
NQOICTffT 0.01 0.12 0.00,0.03 0.01 0.06 0.00,0.03

0.60 -0.02,0.01 0.93 -0.02,0.02
NQOICC Lag4 0.01 0.09 0.00,0.02 0.01 0.06 0.00,0.03
NQOI CTffT 0.01 0.10 0.00,0.03 0.01 0.13 0.00,0.03

0.87 -0.02,0.02 0.91 -0.02,0.02
NQOICC Lag 5 0.00 0.79 -0.01,0.01 0.01 0.13 0.00,0.02
NQOICTffT 0.00 0.97 -0.01,0.01 0.01 0.26 -0.01,0.02

0.90 -0.02,0.02 0.92 -0.02,0.02
NQOICC 5 days 0.03 0.06 0.00,0.06 0.02 0.04 0.00,0.03
NQOICTffT average 0.02 0.39 -0.02,0.05 0.01 0.10 0.00,0.03

0.59 -0.06,0.03 0.94 -0.02,0.02
NadirPF NQOICC Lag I -4.29 0.47 -15.87,7.30 -1.05 0.31 -3.09,0.99

NQOI CTffT 0.38 0.82 -2.93,3.69 1.56 0.23 -0.97,4.10
0.46 -2.35,5.16 0.11 -0.63,5.87

NQOICC Lag2 0.21 0.82 -1.56, 1.98 -0.80 0.38 -2.58,0.97
NQOICTffT 2.03 0.24 -1.38, 5.43 0.85 0.45 -1.38,3.09

0.35 -2.00,5.63 0.26 -1.19,4.51
NQOICC Lag 3 0.73 0.44 -1.14,2.60 -1.13 0.26 -3.10,0.83
NQOICTffT 1.99 0.26 -1.46, 5.44 1.16 0.30 -1.03, 3.35

0.53 -2.63,5.15 0.13 -0.65,5.23
NQOICC Lag4 -0.05 0.96 -1.98, 1.88 -1.26 0.24 -3.35,0.82
NQOICTffT 1.77 0.37 -2.08,5.61 0.95 0.43 -1.40,3.30

0.40 -2.45,6.08 0.17 -0.93,5.23
NQOICC Lag 5 -0.90 0.24 -2.42,0.61 -1.90 0.07 -3.96,0.17
NQOI CTffT 0.51 0.75 -2.66,3.68 0.20 0.86 -2.01,2.40

0.43 -2.07,4.90 0.17 0.92,5.11
NQOICC 5 days -0.22 0.92 -4.66,4.21 -1.68 0.13 -3.87,0.50
NQOI CTrrr average 3.72 0.39 -4.66, 12.09 1.03 0.44 -1.57,3.64

0.41 -5.40,13.27 0.12 0.68,6.12

'the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM,,,: 29.4 ug m" and S02:
9.8 ppb.
2Nadir FEY] is defined as the minimum of the (up to 4) best FEY Is on a given day, Nadir PF is defined analogously
, pollution levels used in regression models combine measured and imputed values
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure.
interaction between gene and pollutants
'Interaction p-value (gene-pollutant interaction)
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY I and PF would indicate a negative
impact or decline on lung function.
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Table 4.24 Gene-environment interactions with the GSTMI and GSTPI genotype combination.
Percent change I in intraday variabi lity" of FEY J and peak flow (PF) and nadir' FEY 1 and
PF associated with ambient levels4 of N02, and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype N02 NO
Function Combination EST P- Cl EST P-Val Cl
Outcome Vals

Intraday GSTM Inull 0.60 0.20 -0.31, 1.51 0.72 0.13 -0.20, 1.65
FEY I GSTPIAA

GSTMlnull 0.28 0.48 -0.50, 1.06 0.25 0.60 -0.68, 1.17
GSTPI AGIGG
GSTMlpos 0.46 0.18 -0.22, 1.13 0.76 0.04 0.05,1.46
GSTPI AA
GSTMI pos 0.26 0.34 -0.27,0.79 0.44 0.17 -0.19, 1.08
GSTPIAGIGG

Intraday GSTMlnull 0.43 0.21 -0.25, 1.11 0.36 0.43 -0.53, 1.25
PF GSTPIAA

GSTMlnull 0.94 0.03 0.08,1.79 1.16 0.02 0.19,2.14
GSTPI AGIGG
GSTMlpos 0.52 0.15 -0.18, 1.22 0.69 0.08 -0.08, 1.45
GSTPI AA
GSTMI pos 0.11 0.69 -0.42,0.63 0.26 0.40 -0.35,0.88
GSTPIAGIGG

Nadir GSTMlnull -0.01 0.36 -0.04,0.02 -0.02 0.25 -0.05,0.01
FEYl GSTPIAA

GSTMlnull 0.02 0.06 0.00,0.05 0.03 0.07 0.00,0.06
GSTPI AGIGG
GSTMlpos 0.00 0.92 -0.03,0.03 -0.01 0.70 -0.03,0.02
GSTPI AA
GSTMI pos 0.01 0.44 -0.01,0.03 0.01 0.49 -0.01,0.03
GSTPIAGIGG

NadirPF GSTMlnull -3.31 0.35 -10.19,3.56 -3.68 0.35 -I 1.44, 4.09
GSTPIAA
GSTMlnull -1.50 0.50 -5.84,2.84 -1.91 0.48 -7.18,3.37
GSTPI AGIGG
GSTMlpos -2.48 0.23 -6.48, 1.53 -3.10 0.14 -7.17,0.97
GSTPI AA
GSTMI pos -0.11 0.95 -3.27,3.06 -0.32 0.86 -3.77,3.13
GSTPIAGIGG

'the percent change value shown is for an increase of one interquartile range in each respective pollutant: NO,: 8.19 ppb and NO: 29.7
ppb.
2 intraday variability for FEV, is defined as : 100 (maximum best FEV,-minimum best FEV,)/maximum best FEV1; where the "best
FEV," is the highest valid, error-free value for the specific time of day (08hOO, 09h45, Ilh30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEV,.
'Nadir FEVl is defined as the minimum of the (up to 4) best FEV 1s on a given day, Nadir PF is defined analogously
4 pollution levels used in regression models are the 5-day average
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
jp-value for the change in estimate
An increase in the estimate for intraday FEV, and PF and a decrease in the estimate for nadir FEV, and PF would indicate a negative
impact or decline on lung function.

176



Table 4.25 Gene-environment interactions with the GSTM I and GSTPI genotype combination.
Percent change! in intraday variabilitl of FEY 1 and peak flow (PF) and nadir' FEY I and
PF associated with ambient levels4 of SOl, and PM 10 from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype 502 PMIO

Function Combination EST P- Cl EST P-Val Cl
Outcome Vals

Intraday GSTMlnull -0.68 0.39 -2.20,0.85 0.66 0.16 -0.26, 1.57
FEY I GSTPIAA

GSTMlnull 0.46 0.47 -0.78, 1.71 0.07 0.86 -0.72,0.86
GSTPI AG/GG
GSTMlpos 0.13 0.80 -0.84, 1.10 0.14 0.63 -0.41,0.69
GSTPI AA
GSTMI pos 0.28 0.60 -0.75, 1.31 -0.01 0.98 -0.44,0.43
GSTPIAG/GG

lntraday GSTMlnull -0.04 0.96 -1.66, 1.57 0.41 0.35 -0.46, 1.28
PF GSTPIAA

GSTMlnull 1.06 0.22 -0.63,2.74 0.76 0.09 -0.12,1.64
GSTPI AG/GG
GSTMlpos 0.41 0.27 -0.32, 1.15 0.16 0.56 -0.37,0.69
GSTPl AA
GSTMI pas -0.37 0.48 -1.40, 0.66 0.02 0.92 -0.39, 0.43
GSTPIAG/GG

Nadir GSTMlnull -0.02 0.57 -0.07,0.04 -0.01 0.66 -0.04,0.02
FEY I GSTPIAA

GSTMlnull 0.03 0.17 -0.01,0.07 0.02 0.04 0.00,0.04
GSTPI AG/GG
GSTMlpos -0.01 0.75 -0.04,0.03 0.01 0.41 -0.02,0.04
GSTPI AA
GSTMI pos 0.03 0.14 -0.0 I, 0.07, 0.01 0.12 0.00,0.03
GSTPIAG/GG

NadirPF GSTMlnull -8.27 0.28 -23.30, 6.76 -2.45 0.43 -8.50,3.61
GSTPIAA
GSTMlnull 5.63 0.46 -9.14,20.40 -0.38 0.86 -4.73,3.96
GSTPI AG/GG
GSTMlpos -3.15 0.26 -8.69,2.38 -1.16 0.56 -5.00,2.68
GSTPI AA
GSTMI pos 4.51 0.12 -1.16,10.18 0.50 0.70 -2.03,3.04
GSTPIAG/GG

] the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM II1 : 29.4 ug m'" and SO,:
9.8 ppb.
2 intraday variability for FEV] is defined as : 100 (maximum best FEV]-minimum best FEV])/maximum best FEV1: where the "best
FEV]" is the highest valid, error-free value for the specific time of day (08hOO, 09h45, Ilh30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEV].
'Nadir FEY I is defined as the minimum of the (up to 4) best FEV Is on a given day, Nadir PF is defined analogously
4 pollution levels used in regression models are the 5-day average
Covariates in each model: race, school. caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
jp-value for the change in estimate
An increase in the estimate for intraday FEY] and PF and a decrease in the estimate for nadir FEY] and PF would indicate a negative
impact or decline on lung function.
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Table 4.26 Gene-environment interactions with the GSTM J and NQO I genotype combination.
Percent change l in intraday variabilitl of FEY I and peak flow (PF) and nadir' FEY j and
PF associated with ambient levels4 of N02• and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype N02 NO
Function Combination EST P-VaI' Cl EST P-Val Cl
Outcome
Intraday GSTMlnull 0.35 0.34 -0.37, 1.07 0045 0.26 -0.33, 1.22
FEY I NQOICC

GSTMlnull 0.58 0.25 -0041, 1.57 0.50 0041 -0.69, J .70
NQOICCfTT
GSTMI pos 0045 0.11 -0.10,1.01 0.72 0.03 0.09,1.35
NQOICC
GSTMlpos 0.13 0.67 -0047,0.74 0.35 0.35 -0.38, 1.08
NQOICTfTT

Intraday GSTMlnull 0.90 0.03 0.09,1.71 0.95 0.04 0.02,1.87
PF NQOICC

GSTMlnull 0.54 0.20 -0.29, 1.36 0.71 0.17 -0.29, 1.71
NQOICCfTT
GSTMI pos 0.64 0.01 0.13,1.14 0.87 <.005 0.31,1.44
NQOICC
GSTMlpos -0.07 0.83 -0.73,0.59 0.08 0.84 -0.70,0.86
NQOICTfTT

Nadir GSTMlnull 0.02 0.22 -0.01,0.04 0.01 0.30 -0.01,0.04
FEY I NQOICC

GSTMlnull 0.00 0.82 -0.Q3, 0.Q3 0.00 0.85 -0.03,0.04
NQOICCfTT
GSTMl pos 0.00 0.90 -0.02,0.02 0.00 0.89 -0.02,0.02
NQOICC
GSTMlpos 0.02 0.15 -0.01,0.05 0.02 0.24 -0.01,0.05
NQOICTfTT

NadirPF GSTMlnull -1.31 0.63 -6.57,3.95 -1.21 0.68 -7.00,4.59
NQOICC
GSTMlnull -2.94 0.28 -8.22,2.34 -4.21 0.21 -10.79,2.37
NQOICCfTT
GSTMI pos -4.14 0.01 -7.20, -1.07 -4.97 <.005 -8.23, -1.71
NQOICC
GSTMlpos 2.85 0.10 -0.54,6.24 2.88 0.14 -0.96,6.72
NQOICTfTT

, the percent change value shown is for an increase of one interquartile range in each respective pollutant: NO,: 8.19 ppb and NO: 29.7
ppb.
'intraday variability for FEV, is defined as: lOO (maximum best FEV,-minimum best FEV,)/maximum best FEV]; where the "best
FEV ," is the highest valid. error-free value for the specific time of day (08hOO, 09h45, 11 h30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEV,.
'Nadir FEV I is defined as the minimum of the (up to 4) best FEV] s on a given day, Nadir PF is defined analogously
4 pollution levels used in regression models are the 5-day average.
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'p-value for the change in estimate
An increase in the estimate for inrraday FEV, and PF and a decrease in the estimate for nadir FEV, and PF would indicate a negative
impact or decline on lung function.
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Table 4.27 Gene-environment interactions with the GSTMI and NQOI genotype combination.
Percent change! in intraday variabilit/ of FEY, and peak flow (PF) and nadir' FEY, and
PF associated with ambient Ievels4 of S02, and PM]() from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype S02 PM 10

Function Combination EST P- Cl EST P-Val Cl
Outcome Vals

Intraday GSTMlnull 0.55 0.32 -0.53, 1.64 0.23 0.51 -0.46,0.93
FEY I NQOICC

GSTMlnull -0.24 0.77 -1.82, 1.34, 0.08 0.89 -1.00,1.15
NQOICCfIT
GSTMI pos -0.19 0.66 -1.05, 0.66 0.08 0.72 -0.35,0.51
NQOICC
GSTMlpos 0.49 0.51 -0.97, 1.95 -0.02 0.95 -0.53,0.50
NQOI CTfIT

Intraday GSTMlnull 0.58 0.41 -0.81, 1.98 0.87 0.04 0.05,1.70
PF NQOICC

GSTM 1null 0.83 0.42 -1.20,2.87 0.16 0.74 -0.80,1.12
NQOICCITT
GSTMI pos 0.41 0.36 -0.46,1.29 0.46 0.02 0.08,0.84
NQOl CC
GSTMlpos -0.54 0.31 -1.57,0.50 -0.29 0.26 -0.80,0.22
NQOICTITT

Nadir GSTMlnull 0.01 0.56 -0.03,0.06 0.02 0.09 0.00,0.04
FEY I NQOICC

GSTMlnull 0.01 0.59 -0.03,0.06 0.01 0.42 -0.02,0.04
NQOICCITT
GSTMI pos 0.03 0.07 0.00,0.07 0.01 0.13 0.00,0.03
NQOICC
GSTMlpos 0.02 0.48 -0.03,0.06 0.02 0.15 -0.01,0.04
NQOICTITT

Nadir PF GSTMlnull -2.34 0.65 -12.33,7.65 -0.40 0.84 -4.28, 3.48
NQOl CC
GSTMlnull 5.98 0.57 -14.73,26.69 -1.08 0.73 -7.30,5.14
NQOICCITT
GSTMI pos 0.37 0.88 -4.45,5.19 -2.13 0.11 -4.74,0.48
NQOICC
GSTMlpos 2.74 0.48 -4.80, 10.27 1.90 0.16 -0.76,4.56
NQOI CTITT

'the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM",: 29.4 ug m" and SO,:
9.8 ppb.
2 intraday variability for FEY, is defined as : 100 (maximum best FEY,-minimum best FEY1)/maximum best FEY I: where the "best
FEY," is the highest valid, error-free value for the specific time of day (08hOO, 09h4S, llh30, 13h20).
lntraday variability for PF is defined analogously to within-day variability for FEY,.
'Nadir FEY I is defined as the minimum of the (up to 4) best FEY Is on a given day, Nadir PF is defined analogously
4 pollution levels used in regression models are the S-day average.
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure,
interaction between gene and pollutants
'p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.28 Gene-environment interactions with the GSTPI and NQOI genotype combination.
Percent change' in intraday variabilit/ of FEY J and peak flow (PF) and nadir' FEY, and
PF associated with ambient levels4 of N02, and NO from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype NOz NO
Function Combination EST P- Cl EST P-Val Cl
Outcome Val5

Intraday GSTPI AA 0.20 0.64 -0.63, 1.Q3 0.53 0.21 -0.29, 1.34
FEY I NQOICC

GSTPIAA 1.10 0.01 0.32, 1.89 1.30 <.005 0.47,2.13
NQOICTITT
GSTPIAG/GG 0.47 0.11 -0.10,1.04 0.65 0.05 0.00,1.31
NQOICC
GSTPIAG/GG 0.00 1.00 -0.72,0.72 -0.06 0.90 -0.99,0.87
NQOICTITT

Intraday GSTPI AA 0.43 0.29 -0.36,1.22 0.51 0.25 -0.35, 1.37
PF NQOICC

GSTPIAA 0.60 0.09 -0.10, 1.31 0.70 0.10 -0.14, 1.54
NQOICTITT
GSTPIAG/GG 0.67 0.02 0.11,1.22 0.85 0.01 0.21,1.48
NQOICC
GSTPIAG/GG -0.08 0.85 -0.85,0.70 0.04 0.94 -0.91,0.98
NQOI CTfIT

Nadir GSTPI AA 0.01 0.63 -0.03,0.04 0.00 0.87 -0.03,0.03
FEY 1 NQOICC

GSTPIAA -0.01 0.30 -0.04,0.01 -0.02 0.14 -0.05,0.01
NQOICTITT
GSTPIAG/GG 0.00 0.66 -0.02, 0.03 0.00 0.72 -0.02,0.Q3
NQOICC
GSTPIAG/GG 0.03 0.07 0.00,0.06 0.03 0.06 0.00,0.06
NQOICTITT

NadirPF GSTPI AA -3.95 0.24 -10.47,2.57 -3.91 0.25 -10.51, 2.69
NQOICC
GSTPlAA -0.75 0.68 -4.34,2.85 -1.65 0.39 -5.44,2.14
NQOICTfIT
GSTPIAG/GG -2.47 0.13 -5.62,0.69 -2.89 0.10 -6.30,0.51
NQOICC
GSTPIAG/GG 2.26 0.32 -2.22,6.74 2.57 0.35 -2.79,7.93
NQOICTITT

the percent change value shown IS for an Increase of one Interquartlle range In each respective pollutant. N02. 8.19 ppb and NO. 29.7
ppb.
2 intraday variability for FEY, is defined as: lOO (maximum best FEY"minimum best FEY,)/maximum best FEY I : where the "besl
FEY I" is the highest valid, error-free value for the specific time of day (08hOO, 09h45, 11 h30, 13h20).
Intraday variability for PF is defined analogously to within-day variability for FEY,.
'Nadir FEY I is defined as the minimum of the (up to 4) best FEY Is on a gi ven day, Nadir PF is defined analogously
4 pollution levels used in regression models are the 5-day average
Covariates in each model: race, school, caregiver smokes, asthma severity, interactions between asthma severity and exposure
interaction between gene and pollutants
"p-value for the change in estimate
An increase in the estimate for intraday FEY, and PF and a decrease in the estimate for nadir FEY, and PF would indicate a negative
impact or decline on lung function.
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Table 4.29 Gene-environment interactions with the GSTPI and NQOI genotype combination.
Percent change l in intraday variability" of FEY I and peak flow (PF) and nadir1 FEY! and
PF associated with ambient levels4 of S02, and PM IIJ from single pollutant linear
regression models using generalized estimating equations (GEE).

Lung Genotype S02 PM III

Function Combination EST P-Val~ Cl EST P-Val Cl
Outcome
Intraday GSTPI AA 0.03 0.92 -0.46,0.51 0.02 0.23 -0.01,0.05
FEY I NQOICC

GSTPIAA 0.54 0.18 -0.25, 1.32 -0.01 0.50 -0.04,0.02
NQOI CT/TT
GSTPIAG/GG 0.42 0.10 -0.08,0.92 0.01 0.15 0.00,0.03
NQOICC
GSTPIAG/GG 0.21 0.57 -0.52,0.94 0.02 0.08 0.00,0.05
NQOICTITT

Intraday GSTPI AA 0.37 0.41 -0.50, 1.24 0.23 0.50 -0.43, 0.89
PF NQOICC

GSTPIAA 0.31 0.55 -0.70, 1.31 0.24 0.47 -0.41,0.89
NQOICTITT
GSTPIAG/GG 0.27 0.64 -0.87, 1.40 0.53 0.03 0.06,1.00
NQOICC
GSTPIAG/GG -0.19 0.80 -1.62, 1.24 -0.23 0.50 -0.91,0.44
NQOICTITT

Nadir GSTPI AA 0.01 0.71 -0.04,0.05 0.02 0.23 -0.01,0.05
FEY I NQOICC

GSTPIAA -0.03 0.26 -0.07,0.02 -0.01 0.50 -0.04,0.02
NQOI CT/TT
GSTPIAG/GG 0.03 0.11 -0.01,0.07 0.01 0.15 0.00,0.03
NQOICC
GSTPIAG/GG 0.03 0.18 -0.02,0.08 0.02 0.08 0.00,0.05
NQOI CTITT

NadirPF GSTPI AA -3.15 0.43 -10.98, 4.68 -1.83 0.50 -7.16,3.50
NQOICC
GSTPIAA -2.91 0.34 -8.92,3.11 -0.41 0.80 -3.65,2.83
NQOICTITT
GSTPIAG/GG 2.10 0.45 -3.29,7.49 -0.89 0.51 -3.54, 1.76
NQOICC
GSTPIAG/GG 8.22 0.19 -4.01,20.46 1.94 0.34 -2.04,5.91
NQOI CTITT

, the percent change value shown is for an increase of one interquartile range in each respective pollutant: PM ,": 29.4 ug m" and SO,:
9.8 ppb.
2 intraday variability for FEV, is defined as: lOO (maximum best FEV,-minimum best FEV,)/maximum best FEV!; where the "best
FEV," is the highest valid, error-free value for the specific time of day (08hOO, 09h45, 11 h30, 13h20),
]ntraday variability for PF is defined analogously to within-day variability for FEV"
'Nadir FEV] is defined as the minimum of the (up to 4) best FEV Is on a given day, Nadir PF is defined analogously
4 pollution levels used in regression models are the 5-day average.
Covariates in each model: race, school, caregiver smokes. asthma severity, interactions between asthma severity and exposure.
interaction between gene and pollutants
jp-value for the change in estimate
An increase in the estimate for intraday FEV, and PF and a decrease in the estimate for nadir FEV, and PF would indicale a negative
impact or decline on lung function.
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In order to highlight general trends in the change of estimates from lag 1 to lag 5 after

exposure to pollutants, graphs for each genotype were compared (16 graphs per genotype

and 48 graphs in total). Due to the large number of Jag-trend graphs, a representative

selection of graphs (Figure 4.5 to 4.20) were chosen for each of the pollutants in order to

show patterns of change in estimate versus lagged exposures. Adverse lung function was

indicated by the higher estimates for intraday variability in FEV I and PF and by lower

estimates for nadir FEV I and PF. WhiJe there was generally a Jack of consistency

between outcome and exposure among these trend graphs, there is an indication that the

adverse outcome is somewhat worse on lag 1, followed by an improvement, then

subsequent deterioration. Exposure to N02 showed a decrease in effect at lag 3 and a

considerable increased adverse effect at lags 4 and 5. Change in estimate trends across

the 5 lags were less consistent with NO exposure for the 3 genotypes tested. The general

trend in estimate change from one lag to another for PMIO exposure was significantly

different from the three gaseous pollutants. There was a lower adverse effect at lag 1 with

a trend of increasing adverse effect from lags 2-5.
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Figure 4.5:Trend in percent change (estimate) in
intraday variability in PF for an increase in
one interquartile range of N02 (8.19 ppb)
across lags 1-5 using GSTM I as an effect
modifier.

Figure 4.6: Trend in percent change (estimate) in
Intraday variability of FEV 1 for an increase in
one interquartile range of N02 (8.19 ppb)
across lags 1-5 using GSTP I as an effect
modifier.
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Figure 4.8: Trend in percent change (estimate) in
intraday FEV I for an increase in one
interquartile range of N02 (8.19 pb)
across lags 1-5 using NQO I as an effect
modifier
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Fig 4.14: Trend in percent change (estimate) in
Intraday variability in FEVI for an increase in
one interquartile range of S02 (9.8 ppb) across
lags 1-5 using GSTP I as an effect modifier.
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Figure 4.18: Trend in percent change (estimate) in
Intraday FEV I for an increase in one
interquartile range of PM 10 (29.4 ug/m"

ppb) across lags 1-5 using GSTP as an
effect modifier.
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Figure 4.20: Trend in percent change (estimate) in
Intraday PF for an increase in one
interquartile range of PM10 (29.4 ug/m"
ppb) across lags 1-5 using NQO I as an
effect modifier.
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CHAPTERS:

DISCUSSION

Asthma is a complex disease associated with many genes and susceptibility may involve

multiple genes, gene-gene and gene-environment interactions. In this sample of South

African schoolchildren we investigated three genes with functional polymorphisms

(GSTM1, GSTPl and NQO 1) associated with oxidative stress and found that increased

risk to certain respiratory outcomes, especially persistent asthma, may be in part

determined by genetic polymorphisms and to some extent, gene-ambient pollution

interaction. The most striking finding in our study was that pollutant exposure, especially

oxides of nitrogen and PM 10, even at levels below the recommended limits of South

African guidelines, is associated with poorer lung function and that this association is

significantly modified by an individual's genotype, particularly the GSTMl null,

GSTP1AA and NQ01CC genotypes. Significant gene*pollutant or gene*environment

interactions (Pint<O.05) were observed for the GSTPl and NQOl variants S02 with nadir

PF; and NO, N02 and PM IO with both intraday variability in PF and nadir PF

respectively. Furthermore, polymorphisms associated with oxidative stress, GSTPl

AG/GG and GSTPl GG variants, influence health outcomes among those with persistent

asthma, irrespective of pollution. Interestingly, our findings suggested that the GSTMl

and NQOl polymorphisms both individually and in combination were not associated

with the development of asthma and related phenotypes when air pollution exposure was

ignored.
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We chose a particular set of genes for the purposes of this study, recognising the

limitations of this narrow choice. This choice was based on the study of the literature, and

driven by sample size and resource constraints. The literature identified more than 100

reports of genetic variants associated with asthma and related phenotypes. No more than

8-10 such genes have been replicated in three or more studies, and none of these genes

have been consistently associated with same asthma phenotype in studies to date (Yeatts

et al., 2006). Polymorphisms of each gene may impart only a small relative risk of

disease and we can speculate that several polymorphic variants coexist to manifest in the

disease phenotype. Our strategy has been to select genes that have been well documented

in literature for having a role in cellular protection against oxidative stress and where

there are common highly functional polymorphisms. In this respect GSTs and NQOl are

critical in the protection of cells from toxic products of ROS mediated reactions (Spiteri

et al., 2000).

Because the frequency of homozygosity at the GSTPl GG and the NQOl TT loci in our

multiethnic population was low, we used the dominant gene model with the heterozygote

and homozygote genotypes combined. According to the literature on metabolic gene

frequencies in control populations, a GSTMl null frequency of 40-60% is common in

both Caucasians and Asians, while a lower frequency is usually found in the African

populations (16-36%) (Garte et al., 2001; Adams et al., 2003). Our results with GSTMl

confer with other African populations in that a relatively low genotypic frequency of the

null genotype was found (29%) (Table 4.2). This was similar to the 24% GSTMlnull

genotype found in Zimbabweans and 23% and 21 % GSTMl null found in South African
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Vendas and Xhosas respectively (Adams et aI., 2003). Fewer studies have been done

with GSTPl. One study found a 75.6% frequency of GSTPIAA and 24.4% GSTPI

AG/GG in a Asian population (Lee et aI., 2005), while the frequency of this variant in a

South African Xhosa population was 22% for GSTPlAA and 78 % of GSTPI AG/GG

(Adams et al., 2003). In our study, the GSTPI AG/GG (65%) and GSTPIAA (35%)

frequencies were similar to the Adams et al study. Other studies have shown that the

frequency of the NQO 1 TT homozygous genotype varies across ethnic groups, 4% in

Caucasians, 5% in African Americans and 22% in Asians (Ross et aI., 2000). In this

study, we found the frequency of the NQOI TT polymorphism was 4.3% and the

combined heterozygote and homozygote (NQOICC+CT) was 36%.

The African and Coloured populations had the lowest GSTM Inull frequencies (20.6%

and 33.3% respectively) which are much lower than that of other populations reported in

literature (Garte et al., 200 I) (Table 4.3). Similarly, Africans and Coloureds also had the

highest GSTPIAG/GG frequencies (78.5 and 69.0%) compared to Indians and

Caucasians. Similar frequencies in African and Coloured populations may be due to their

closely linked ancestries. More Indians had the NQOI CT/TT genotype (56.3%).

However, whether these frequencies are reflective of the general population is debatable;

our relatively small sample size has limited statistical power.

Multivariate regression showed that children with the GSTP IGG genotype were at

increased odds of presenting with persistent asthma (OR= 2.8, Cl: 1.2-5.9, p<.005)

(Table 4.9). GSTP 1 is expected to be the major enzyme to be involved in detoxification
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of xenobiotics in the lung (Cheng et al., 2004) and this increased risk may be attributed to

the possibility that children with the GSTPI GG genotype may be less able to defend their

airways from the adverse effects of excess oxidative stress associated with asthma and

may therefore be more susceptible.

Results from other studies of associations between asthma and GST polymorphisms often

contradict each other. However these studies include different populations and varied

study designs, which may account for these differences. Studies in a large cohort study in

Southern California demonstrated a modest but significant association between decreased

lung function (FEVd and the GSTM Inull and GSTPI GG variants (Gilliland et al.,

2002a). These authors suggested that children with these genotypes, especially those with

asthma, may have lower attained lung function at maturity and be more susceptible to

adverse respiratory outcomes associated with oxidative stress. Tamer et al., (2004)

reported a higher prevalence of the GSTMI null genotype (63.4%) in asthma patients

than the control group (40.8%) OR=2.3 (Cl 1.3,4.2). In addition, they found that GSTPI

GG genotype had a 3.5 fold higher risk of atopic asthma and the combined GSTMI null

and GSTPIGG genotypes were also more frequent among asthma patients (22.8%) than

in the control group (7.8%).

Conversely, Fryer et al., (2000) found that GSTPl GG was considerably lower in

asthmatics than in the control population with a 6-fold lower risk of asthma than GSTPl

AA. In their study, GSTPI GG correlated with a decreasing severity of airway

obstruction/BHR and 10 times lower risk of atopy defined by skin test positivity. These
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authors reported no association with GSTM I and BHR. This finding was corroborated in

other studies. Gilliland et al., (2002b) documented school absences in relation to

respiratory illnesses and found that GSTPl GG was both protective against acute

respiratory illnesses and was associated with a lower risk compared to the GSTP1AA

genotype. The GSTMI null genotype was associated with a slightly higher rate of

respiratory illness than those with the GSTMl pos genotype. Similarly, Lee et al (2005)

found that homozygous GSTPl AA was significantly associated with physician

diagnosed asthma (adj OR =1.9). Since gene frequencies are different among various

racial groups, this may account for the different associations between gene

polymorphisms and asthma in the different studies. Additionally, each locus may be in

linkage disequilibrium with an unknown causal gene(s), which is a fundamental

limitation of the candidate gene approach. Different patterns of linkage disequilibrium

could explain ethnic differences (Gilliland et al., 2002a).

We considered the effects of pair-wise interactions between genes on each outcome

parameter (Table 4.9 and 4.10). Evaluating the effect of 2 genotypes in combination may

not necessarily translate to a simple additive effect, in fact some authors have suggested

that the effects of the two genes may be competitive, thus decreasing the expected joint

effect of the combination genotype (Lee et al., 2005). Since most of the joint effects were

reduced (most of the odds ratios for the combination genotypes in our population were to

some extent protective, although not statistically significant), there may be competitive

effects from the two genotypes studied. Subjects with the GSTMl positive and the

GSTPl AG/GG genotype combination showed a significant association to persistent
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asthma (OR=2.4, Cl: 1.2, 4.9, P = 0.01). Similarly, in the GEE models this gene-gene

combination showed significant effect modification with NO, N02 and PM IO in terms of

decreased lung function.

The first report of NQO I genotype in relation to asthma risk was published by David and

coworkers in 2003, so research on NQOI and asthma is relatively new. Although no

significant associations were found in our study with the NQOI genotype and any of the

respiratory linked symptoms, we were interested in the interaction between GSTMI null

and NQOI CC genotypes. Bergamaschi and colleagues (2001) reported that subjects with

the combined NQO I CC and GSTM I null genotypes are more susceptible to adverse

effects of ambient ozone. Their work and that of David et al. (2003) showed decreased

susceptibility to ozone among subjects carrying at least one Ser allele (NQOl CT or

NQO I TT) and who are GSTM Inull. Similarly in our population, we found a protective

effect for those carrying the GSTMI null and at least one Serine allele (NQOl CT/TT) for

persistent asthma and marked BHR (OR=0.7, Cl: 0.3-1.5 and OR=0.3, Cl: 0.0-1.9

respectively). This protective effect in children with the variant NQOl Ser allele, which

is expected to have reduced activity, is consistent with the role of NQOI in metabolic

activation. Although often detoxifying, the wild type NQOl CC can catalyze the

reduction of some quinones to hydroquinones, which are more reactive and autooxidise

to generate ROS (Bergamaschi et aI, 200 I).

The lead finding in our study was that the pollution-outcome relationship is modified by

genotype. Asthma prevalence is likely a consequence of environmental factors increasing
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the risk in genetically susceptible individuals. This view implies that a particular

genotype will only manifest in phenotype, depending on environmental exposure, so it is

important to study the gene-environment interaction in order to understand etiology of

asthma.

Our GEE models provide evidence that participants experienced adverse effects on

pulmonary function related to prior exposure to NO, N02, S02 and PM IO . These

pollutants are related to oxidative stress and its associated role in respiratory illnesses.

NO, N02 and S02 may produce free oxidative radicals while the mechanism for PM IO is

that certain metal components in the particles may contribute to damage to the respiratory

system via the generation of free radicals (Seaton et al., 1995, Hong et al., 2007). Genes

involved in antioxidant and detoxifying reactions such as the GSTs and NQO genes are

thus important in the response to oxidative stress.

Our null hypothesis was that the change in lung function measure when exposed to a unit

increase in pollutant does not differ between wild type and polymorphic genotypes (i.e.

the interaction between genotype and pollutant is zero). Children with the GSTM Inull,

GSTPIAA and the wild type NQOICC genotypes showed adverse effects on lung

function which were generally statistically significant for N02 and NO and to a lesser

extent PMI0 There were very few significant gene-environment interactions with S02

and the 3 SNPs tested (Tables 4.11-4.22). Statistically significant lagged decrements in

pulmonary function were more frequent among the children with the genetic

polymorphisms GSTMlnull and GSTPIAA perhaps as a consequence of their decreased
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capacity to mount an effective cytoprotective response to pollutants. Direct support for

this idea comes from human nasal provocation studies examining variation in responses

to diesel exhaust particles (DEPs) (Gilliland et al., 2004) where individuals with the

genotypes GSTM Inull and GSTP IAA showed enhanced susceptibility to DEPs.

Researchers estimate that 15-20% of the population has both genetic variations so this

represents a large group of people that are potentially susceptible to the adverse effects of

air pollution. Additional proof of involvement of these genes comes from a randomized

trial of children who live in high ozone areas in Mexico. The beneficial effect of

antioxidant supplementation was seen primarily in the GSTM Inull individuals and more

pronounced among GSTMlnull children with moderate to severe asthma (4.4%, p=0.04).

Supplementation with antioxidant vitamins C and E above the daily minimum

requirement might compensate for this genetic susceptibility (Romieu et al., 2005).

Children with the NQO ICC wild type genotype also showed adverse lung function

outcomes when exposed to NO, NOz and PM IO• Significant gene*environment effects

with NOz, NO and PM lO were observed for this genotype. Most of the literature on

NQOl to date focuses on its role as a detoxifying and antioxidant enzyme (Ross et al.,

2000). However, some of the hydroquinones produced by NQOI reduction are less stable

and prone to auto-oxidation with resulting ROS production (Zheng et al., 2007). Given

the epidemiologic data linking wild type NQO I CC genotype with asthma and pulmonary

susceptibility to ozone (Bergamaschi et al., 200 I, David et al., 2003), it is speculated in

this study that NQOI may be activated in response to air pollutants leading to airway

obstruction and decreased pulmonary function.
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General trends in the change of estimates from lag I to lag 5 after exposure to pollutants

were compared for each genotype. Adverse lung function was indicated by the higher

estimates for intraday variability in FEV I and PF and by lower estimates for nadir FEV J

and PP. While there was generally a lack of consistency between outcome and exposure

among these trend graphs, there is an indication that the adverse outcome is somewhat

worse on lag I, followed by an improvement in lag 2 and 3 then subsequent deterioration

at lags 4 and 5. The general trend in estimate change from one lag to another for PM lO

exposure was significantly different from the three gaseous pollutants. There was a lower

adverse effect at lag 1 with a trend of increasing adverse effect from lags 2-5.

We also evaluated different gene-gene combinations as effect modifiers of pulmonary

response using the interquartile ranges for a 5 day average pollutant exposure (Table

4.23-28). Although power in the statistical models may have been reduced by stratifying

by 12 different genotype combinations, 3 of these genotype combinations;

GSTMlnullGSTPIAGIGG, GSTPIAGIGG NQOICC and GSTMlpos NQOICC

consistently showed a significant interaction with NO, N02 and PM lO with decrements in

lung function measures. Our findings with the GSTM InullGSTPI AGIGG genotype is

corroborated by Romieu et al., (2006) who found that Mexican children with both the

GSTMl null and the GSTPl GG genotypes showed increased breathing difficulty in

association with increase in ozone exposure.
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These findings in single pollutant regression models suggest that the response to the level

of air pollutants, as indicated by variability in pulmonary function measures, is modified

by genotype and therefore demonstrates a gene-environment interaction. We studied the

effects of 4 pollutants independently and accept that there are limitations to this approach

since we did not account for the fact that air pollution is a complex mixture of pollutants

which may interact and modify respective effects on lung function. There have been few

studies to date that have considered the gene-environment effect in relation to asthma and

associated phenotypes. Lee et al. (2004) examined the relationship between the GSTPI

polymorphism, outdoor air pollution (designated high and moderate areas) and childhood

asthma using 61 asthmatic schoolchildren and 95 controls in Taiwan. Similar to our

study, they found that GSTP IAA conferred an increased risk of asthma in the moderate

air pollution district (OR=1.5, 95% Cl 0.7-3.1) and high pollution district (OR=2.9, Cl

1.4-6.0). Research conducted by David et al., (2003) suggested that the NQO IIT allele

conferred a protective effect to risk of asthma among GSTM1-null children subjected to

increased ozone exposure. In a Mexico City population of 159 asthmatics, Romieu et al.

(2006) found that increases in breathing difficulty were associated with 0 3 exposure in

children with the GSTMlnull (8%) per 20 ppb increase in daily Ih maximum daily

average and GSTPI GG (14%) which is contrary to our findings with GSTP1.

This study involved a large number of analyses. Three genes with six variants (also

combined into twelve different gene-gene combinations) were evaluated with four

markers of ambient air quality, six time lags of exposure and two functional outcomes,

adjusted by six covariates, with attempts at determining associations among these. This

resulted in several complex models, with a lack of consistency among the associations.
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MUltiple comparIsons will always be an issue in any study that involves multiple

outcomes. There is much controversy about correcting for multiple comparisons. It is

argued that multiple comparisons can increase the overall error in significance testing.

Errors in inference, including confidence intervals that fail to include their corresponding

population parameters, or hypothesis tests that incorrectly reject the null hypothesis, are

more likely. The type 1 error (a), under the hypothesis of no association between two

factors, indicates the probability of the observed association from the data at hand being

attributable to chance. The likelihood of false positives due to random error is thus

increased with multiple comparisons (Savitz and Olshan, 1995; Schulz and Grimes,

2005).

While there are a variety of statistical methods available to adjust for multiple

comparisons (e.g. Bonferroni adjustments), these are in general quite conservative.

Bonferroni's correction for multiple comparison works reasonably well for moderately

correlated variables. The conservatism of Bonferroni increases when the correlation

between endpoints increases as in this study, where all four outcomes are different ways

of measuring pulmonary function. In reality, multiple endpoints are not usually equi­

correlated and normally distributed, even more, for discrete outcomes (such as

symptoms) (Pocock et aI., 1987). In epidemiological terms, invoking the concept of

"multiple comparisons" does not provide an explanation of why a particular association

was or was not found; analyzing other aspects of the data does not influence the data

bearing on the hypothesis of interest. In fact, epidemiologists have expressed little

enthusiasm for formal correction methods since they diminish statistical power (Savitz
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and Olshan, 1995). However, in this study, it is prudent that we consider certain point

estimates with caution, given that we did not correct for multiple comparisons, but rather

look at patterns of significance in our data. We have attempted to address this multiple

comparisons issue by disaggregating the data (Figure 4.5-4.20), and found little

consistency between genotypes, pollutants, lag exposures and lung function outcomes.

A major impetus for this study was to determine whether the risk for adverse respiratory

health outcomes is greater in south Durban compared to similar communities in the north

of Durban. Both are well established communities with minimal migration (Naidoo et

aI., 2006), the children that were sampled were very likely to have lived in these areas all

their lives, so although there is no historical ambient pollution data available for North

Durban, we can assume that the children in north Durban have had a lower lifetime

exposure to pollutants than the children in south Durban. Students in the south schools

are at almost twice the risk for persistent asthma (OR= 1.9; Cl: 1.2-3.2; p<.005) and 3

times the risk of BHR (OR=3.5, Cl: 1.4-8.4, p<.005) than those in the north. The

prevalence of doctor diagnosed asthma was identical in both regions (11 %) which is in

the similar range of findings of other studies conducted in South Africa (Erlich et aI.,

1995; Nriagu et al. 1999).

The prevalence of reported symptom based asthma of any severity was very high in both

areas (43.7% in the north and 48.8% in the south schools). In this study, a broad

definition of "asthma of any severity" included the following: moderate to severe, mild

persistent and mild intermittent asthma and included questions on cough, shortness of

breath, chest tightness, wheeze and other symptoms. This may account for the high
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prevalence of asthma of any severity in both regions. This prevalence of 48.8% of any

asthma in the south correlates with the results from the Settlers school study conducted in

south Durban in 2001 which found a 52% prevalence of asthma of any severity among

learners, higher than any other South African report of asthma prevalence (Robins et al.,

2002). An earlier study by Nriagu and coworkers found a 37% self reported wheeze in

south central Durban (1999). These rates are higher than that reported in other parts of

South Africa and worldwide. Poyser and others found a 10% wheeze and a 12% severe

asthma among children in Cape Town (Poser et al., 2002), while the ISAAC study found

that the prevalence of asthma among 13-14 year olds was 17% in North America, 13% in

Western Europe, 10% in Africa and 15% in Cape Town (South Africa) (lSAAC, 1998).

Based on symptoms, 20.4% of children from the Type A classrooms had some grade of

persistent asthma, compared to the methacholine challenge testing, which indicated that

10.3% had marked BHR (PC20 :s 2 mg/ml) (Table 4.4). The differences in respiratory

health between north and south schools were highlighted by tests of airway

responsiveness: a greater number of students in the south schools had marked BHR

(13.3%) compared to those from the northern schools (3.8%). When we included

probable, possible and marked BHR, classified according to ATS guidelines, in a

category of positive evidence of airway hyperreactivity, we found a prevalence of 28%

positive evidence of airway hyperreactivity with 30.9% of children in the south

presenting with any evidence of airway reactivity compared to 20.6% of children in the

north. As an objective marker of airway disease, the overall rate of any grade of BHR is

considerably higher than that reported in other populations, e.g. 12.5% reported in
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African Americans and 14% BHR found among 10 year old children in the UK (Joseph

et al., 2002; Kurukulaaratchy et al., 2002). We found a high prevalence of atopy of

40.4% in the type A classrooms with 38% atopic in the north and 43.8% in the south.

This correlates with the high prevalence of any grade of asthma found in these areas.

Only 185 people provided information for caregiver smoking, therefore 50% of the data

for this variable was missing. Similarly for the ETS variable, 21 % was missing, and 48%

of those with missing ETS information had persistent asthma. Parents may have

deliberately withheld smoking information, since they did not want to be held

accountable for exacerbating their child's asthma. Had the missing data been available,

we would have been able to test for an interaction between smoking and genotype

There have been many studies documenting the effect of various air pollutants on

respiratory symptoms independent of genetic risk, including S02, particulates and oxides

of nitrogen (Schwartz et al., 1993; Delfino et ai, 1998; ISAAC, 1998; Roemer, 1998;

Vedal et al., 1998, Brauer et al., 2002; McConnell et ai, 2002). Generally, the findings in

most of these studies provide adequate support for the air pollutant-health outcome

associations seen in our study. This was most pronounced for the oxides of nitrogen, and

to a lesser extent for PM 10 and S02. The lack of a consistent finding with particulates and

S02, the most important points of departure in comparison with previous studies, is

explained in part to our poor exposure datasets for these pollutants - only the first

intensive phase S02 data was used in the analysis - and also because of the extremely

low (almost undetectable levels) of S02 seen in the northern areas.
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Various hypotheses can be Proposed to explain our gene-environment-health outcome
I

,

findings. In the detoxificatiop pathway, both Phase I and Phase 11 enzymes work in
,

tandem to metabolize and excrete toxic substances. It is possible that those with defective
,

GST and NQO I enzymes ~ cannot effectively detoxify and excrete intermediate

metabolites produced in the ~hase I detoxification step. These metabolites may provoke
,
I

oxidative stress thus exacer9ating respiratory symptoms. Therefore, individuals with

lowered antioxidant capacity ~re at an increased risk for asthma. Oxidants in ambient air
,

pollution produce oxidative stress in respiratory epithelial cells and individuals carrying

specific genotypes may be petter equipped to defend against the adverse affects of

excessive oxidative stress.

When a pollutant first enters ithe lung, the first interface it encounters is the lung lining

fluid. Antioxidant enzymes present in the lung lining fluid protect the lung against
I
I

oxidative challenge arising frbm the air pollutants. It is the oxidized species arising from
I

I

a reaction between the pollut~nt and the lung lining fluid compartment that is responsible

for initiating the signaling c~scade which brings the inflammatory cells into the lung
,

(Kelly et al., 2003). High ~oncentrations of oxidants and pro-oxidants contained in
,,,

ambient air pollution such ~s PM, NO, NOz and SOz promote oxidative stress and
,
I

respiratory inflammatory re~ponses (Kunzli and Tager, 2005). Spiteri et al. (2000)

propose that apart from th~ detoxification of ROS, GSTPl may also influence the

synthesis of eicosanoids whi;ch are crucial mediators in the atopic asthmatic response.

The conflicting GSTP result in the logistic models with respiratory symptoms compared
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i
to the GEE models may be related to the smaller sample size used in the logistic models

(n =369) compared to the repe~ted measures used in the GEE analysis.

Our study provided some not~ble findings, however, there were several limitations to our
,

study, not least of which was ~he restriction on the number of genes that we were able to
,

study. Twelve separate genot~pe combinations were analyzed. Although GSTM I, GSTPl
I
I

and NQOl are situated on ~ifferent chromosomes and linkage disequilibrium is not

likely, these genes could be: in linkage disequilibrium with other genes on the same

chromosomes. Secondly, when conducting analysis of genotype combinations, the
I,
,

number of subjects in each trouping dropped drastically because of our small sample
I
!

size, which may have introdpced bias. Thirdly, our sample consisted of different race
,

groups and effects of popplation stratification are always of concern in genetic
,

epidemiology studies. This sttJdy did not have sufficient power to stratify by race group.
i

The original sample was chqsen for the South Durban Health Study which required a

representative sample of the study area.

There are a limited numberi of studies that have investigated the gene-environment-

disease triad and to our kno~ledge; this is the first to do so in the context of asthma in

sub-Saharan Africa. The clearest examples of genetic interactions for inhaled pollutants

exist for endotoxin, environmental tobacco smoke and ozone (London, 2007) but only a,

few studies have investigated NO, N02, S02 and PM IO in this context. Although this
I
I
!

study was modest in sampl~ size, repeated measurements of pulmonary function and

daily and hourly pollutant m~asurements increased the power to detect interactions with
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these genotypes. Effect modiffication of lung function reponse to pollutants was evident

for children with the GSTMH1UIl, GSTPIAA and the NQOlCC genotypes. Our results

suggest that these genes ar~ strong determinants of lung function decline in this
,

population of South African ~choolchildren. The suggested mechanism is that children
,

with compromised oxidative \iefense ability are at increased risk of adverse pulmonary

outcomes. This study supports the importance of further investigations on these and other

genotypic variants involved; in oxidative stress responses and respiratory linked

phenotypes in larger cohorts. ,
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CHAPTER 6:

CONCLUSIONS AND FUTURE DIRECTIONS

Our study provides additional support for the findings in numerous studies that genetic

polymorphisms modify the risk for asthma and other respiratory outcomes in the presence

of ambient pollution. Our cross sectional analysis has indicated that GSTPl AG/GG and

GSTPl GG variants, which are involved in an individual's capacity to address oxidative

stress, may influence the ri~k of persistent asthma. Additionally, GSTPl is strongly

expressed in the respiratory epithelium and the dominant GST in the lung could account

for why our data indicated that a variation in GSTPl function had larger effects on

asthma than the other two genes tested. However, genetic polymorphisms of the GSTMl

and NQOl genes both individually and in combination were not associated with the

development of asthma and related phenotypes in our multiple logistic regression models.

The increased risk conferred by the GSTPl genotype may have clinical and public health

importance since the variant is common in many populations and acute respiratory

illnesses are frequent causes of morbidity.

It is likely that the risk of developing asthma is greatest when both genetic and

environmental risk factors at:e present simultaneously. GSTMl showed no association

with any asthma related phenotype in our bivariate testing and logistic regression, but

when air pollution was fadtored into the GEE models, GSTMl was significantly

associated with decrements in lung function. It is possible that GSTM 1 is associated with
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acute changes in respiratory:health given an adverse environmental exposure, but the

,
genotype does not influence toe prevalence of asthma.

We have also demonstrated that pollutant exposure, especially with NO and N02, even at

levels below the recommended South African guidelines, is associated with poorer lung

function and that this association is significantly modified by an individual's genotype.

Children with the GSTMlnu)l, GSTP1AA and NQOICC genotypes appear to be more

susceptible to developing adverse respiratory symptoms related to air pollutant exposure

especially to NO and N02. Since these genes are found in high frequencies in the general

population, this has important implications for public health. This suggests a significant

gene-environment interaction between the GSTM I, GSTPI and NQO I genotypes and air

pollution.

In our study, it was distlirbing to note that relatively modest increases in the

concentrations of ambient pollutants affect respiratory health. In light of the substantial

and consistent associations between ambient concentrations of the 4 pollutants assessed

and adverse effects on lung function among children who are genetically predisposed,

strategies for reducing ambient environmental pollution should be urgently considered.

Current standards and guidel~nes should be reviewed. By presenting the distribution of

risks across populations risk assessment can be far more effective in shaping public

policy that is both preventati~e and fair. However, there is controversy around the ethical,

economic, and legal ramificatJons of the use of genetic information.
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The data on genetic susceptibility do not support a policy of large-scale individual

screening, because there are t60 many polymorphisms involved that contribute to asthma

risk and the costs would b~ prohibitive. Although genetic testing is not feasible or

desirable, disease prediction might become feasible in the future. Although predictive

testing for single gene disofders (e.g. cancers) is useful, predicted health gains for

multifactorial diseases such as asthma are greater from those strategies directed at the

whole population rather than: targeted at a high risk group. Also, resource allocation to

support genomics technologies is a problem in developing countries, where funding to

treat disease epidemics such as HIV and TB is more important than allocating money to

research in genetics. Therefore the gap is growing between those countries that can use

this technology and those that cannot.

Public health associated benefits linked to genetic epidemiological information include

tailored treatment regimens, prevention and management of disease. Genetic information

may be used pre-symptomati~ally for targeted interventions including diet, medication or

lifestyle modifications. Incre(j.sed risk may advocate certain behavioral changes, but this

,
is not always a successful s~rategy. Educating and advising smokers to quit smoking

because it is known that sm9king is a significant risk factor for lung diseases has not

really provided the impetus tq quit.

The increasing prevalence of asthma and other related respiratory diseases is an important

public health concern. Studies such as ours, although preliminary, that evaluate the

functional significance of particular polymorphisms according to whether their molecular
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actions are influenced by e,nvironmental exposures, are important. With increasing

industrialization, one can re~son that genetically vulnerable high risk populations are

being increasingly exposed 'to environmental influences that have altered in recent

decades. In the near future, an understanding of the biology of candidate genes and gene­

environment interaction may lead to development of more effective strategies to prevent

or treat complex respiratory diseases.
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APPENDIX 3.1

SDHS methodology for the collection of epidemiological data including lung
function measures, symptoms and allergy status

3.1.1 Collection of symptom logs and bihourly lung function data

A central aspect of the health data collection was bihourly symptom logs and the
measures of lung function collected five days per week over three week period in each of
four seasons. This was the data used to determine whether there was an association
between daily fluctuations in ambient air pollution levels and fluctuations in health status.

3.1.2 Bihourly measures of pulmonary function during the schoolday

The AirWatch® (iMetrikus, Carlsbad, California, USA) brand airway monitor was used
to monitor fluctuations in peak expiratory flow (PEF) and forced expiratory volume at
one second (FEV1) of each participant. This portable, hand-held device has a number of
distinct advantages over methods used previously to obtain repeated measures of a forced
expiratory manoeuvre in field studies. First, unlike the case with traditional peak flow
meters, the FEV I is also obtainable. FEV I has inherently greater reproducibility than
PEF and is a more clinically relevant measure (Thiadens et al., 1999). Second, results of
up to 500 expiratory manoeuvres was digitally stored in each Air Watch. A unique
patient identifier and the time and date of each expiratory manoeuvre was manually
downloaded into a data base. Each participant received hislher own peak flow device,
which were kept at the school, and was clearly labeled with the participant's full name to
avoid inadvertent exchange of devices.

The quality of such peak flow and FEV 1 measures collected in the field tend to be quite
variable, but is responsive to focused training of participants in good technique with
frequent reinforcement. An intensive training session was conducted at the school with
the participants in the proper performance of peak flow maneuvers. As part of this
training each participant was individually coached and observed by field supervisors to
ensure his or her ability to perform valid and reproducible expiratory maneuvers. In
addition, during the actual intensive phases of data collection when participants used the
peak flow meters, supervisors observed expiratory maneuvers to ensure proper technique.
Participants were retrained at the beginning of each of the four-week intensive data
collection periods.

On each of the five schooldays during the week, participants were be asked to perform a
session of three consecutive maneuvers everyone and a half to two hours (four times per
5.5 hour schoolday: approximately 08hOO, 09h45, 11 h30 and 13h20), and immediately
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prior to completion of the bihourly logs described above. The highest PEF and highest
FEY] from each session, even if from different maneuvers, was used in data analyses. All
schools were studied simultaneously.

3.1.3 Collection of baseline pulmonary data :Baseline spirometric assessments and

methacholine challenge tests

Baseline spirometric assessments and methacholine challenge tests was conducted on all
schoolchildren participating in the three-week intensive data collection sessions. All
American Thoracic Society (ATS) guidelines for conducting spirometry were followed
(ATS, 1995). Spirometers were calibrated at least twice a day with a three-liter syringe.
Technologists who had undergone training in standard technique conducted spirometry,
which was performed in a sitting position without nose clips. The lung function indices of
primary interest included forced vital capacity (FVC) and forced expiratory volume in
one second (FEY I). Special instructions were given to participants to ensure that tested
individuals did not take any anti-asthmatic inhalers (12 hours before) or oral asthma
medications (48 hours before) prior to the test. Participants with an obstructive pattern at
baseline (FEY l/FVC < 0.75) were administered an inhaled bronchodilator and had testing
repeated. Those without a baseline obstructive pattern underwent methacholine or
histamine nonspecific challenge testing according to an abbreviated protocol used in
epidemiological surveys (Yan et aI., 1983). Special precautionary measures included
having readily available oxygen and B2-adrenergic agents for nebulization. Additionally,
emergency medical personnel were either physically on site or within quick access at all
times during nonspecific challenge testing. All students were assessed during school
hours (Naidoo et al., 2006)

3.1.4 Collection of questionnaire data

Carefully selected interviewers drawn from the commUnItIes or from students at the
involved universities and Technikons were trained and supervised to conduct baseline
interviews with participants and their caregivers. Training included techniques and
practice in conducting interviews in a consistent and neutral fashion. Components of this
questionnaire included demographic information; assessment of presence and severity of
respiratory and other relevant symptoms using standardized validated questions from
sources such as the British Medical Research Council and American Thoracic Society;
validated questions to specifically address the presence and severity of asthma among
participants including information concerning wheezing, coughing, chest tightness,
shortness of breath, activity limitations, and medication use; health services utilization;
quality of life measures; perinatal history; place of birth and residential history; potential
confounding factors such as exercise, viral respiratory infections, exposure to cigarette
smoke, pre-existing medical conditions. (Annexure I: Child screening questionnaire). All
questionnaires were available in English, isiZulu and Afrikaans, and was conducted in the
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language of choice of the interviewee by an interviewer fluent in that language. Child
participants were interviewed at school and their caregivers at the homes of the
participants.

3.1.5 Assessment of allergic status

All pupils who participated in the three-week intensive data collection study were
requested to participate in skin prick testing. Antigens tested included mixed cockroach,
mixed dust mite, mould mix (Aspergillus, Cladosporium and Penicillium), cat, dog,
mouse, rat, ragweed, mixed grasses, plus histamine as a positive control and saline as a
negative control. These tests were conducted at school on a different day than the
methacholine challenge testing. Participants were informed to stop any antihistamines
and any other reactive medication (H2 antagonists, tricyclic antidepressants,
corticosteroids etc) at least 24 - 72 hours pre-test. The test was applied to the volar
surface of the forearm, and read approximately 15 - 20 minutes later. The wheal and
erythema were read and measured according to a standardised method, and an outline of
the wheal and erythema was recorded on see through tape for a permanent record. A
greater than 2 mm difference in mean diameter between allergen and control wheal was
considered as positive. Emergency health personnel were on site to clear each participant
receiving skin testing and were equipped with proper medications and resuscitation
equipment in the unlikely event that any individual had a severe reaction to a skin test.
Collection of this data allowed for the assessment of whether skin test positivity is
associated with genotype.
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APPENDIX 3.2

ENVIRONMENTAL MONITORING OF AMBIENT POLLUTANTS

Conventional Pollutants

3.2.Nitrogen Dioxide (N02)

Monitoring. This pollutant was sampled continuously at 8 monitoring sites that can be
grouped into 3 categories:

• Lower DSIB with 3 monitoring sites (Southern Works, Jacobs, Wentworth) that
capture industrial sources.

• Central DSffi/traffic sites with 4 monitoring sites (Warwick, City Hall, King
Edward, Ganges) that reflect primarily vehicular sources.

• Northern area with 1 monitoring (Ferndale) which is some distance from major
roads and industry.

Monitoring of N02 (and NO) used conventional continuous gas-phase
chemiluminescence's detection (Monitor Europe, model ML 9841 B, set to operate in a 0
to 1000 ppb range). These monitors are designated under US EPA regulations as an
equivalent method.

Data processing/quality/status. At each site, data were collected as 5-min averages,
which were processed to 1 hr averages if at least half of the data for that hour were
available. The l-hr averages were processed to 24 hr averages, from noon to noon, if at
least half of the hourly data in the period were available. Data capture rates were good,
e.g., for the period 2.1.04 through 1.10.05, the overall capture rate for valid 24-hour
observations was 83.4% (range from 76% at King Edward to 94% at Ganges). The
distribution plots do not show strikingly high statistical outliers, though a number of
higher observations are seen at Ferndale, City Hall, Warwick, King Edward, etc.

Spatial variation. Concentrations across the 8 monitoring sites show that the lowest
levels are in the north (11 ppb), highest concentrations in the center city and industrial
areas (19 - 24 ppb), and somewhat lower levels at Southern Works and Wentworth in the
south (12 - 14 ppb). As expected, concentrations were generally highest at traffic­
impacted sites (City Hall, Warwick, and King Edward) and some of the industrial sites
(especially Jacobs).

Temporal variation. At all sites, concentrations show very strong seasonality with the
highest levels in the winter period (March - August, roughly 20-25 ppb), and the lowest
levels in summer (October - February, 16-17 ppb).
Across much of the region, daily levels were moderately to highly correlated, e.g.,
correlation coefficients range from 0.51 to 0.84 among the lower basin monitors.
Concentrations at the northern site are lower and have only low-to-moderate correlations
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with the other sites (0.13 to 0.53). Some of the highest concentrations at all sites (except
the northern site) were seen on July 21-23, 2004, a period that bears more investigation.
Autocorrelation was high, about 0.7 for 1 day lags. All sites show small day-of-week
effects, with levels about 10% lower on the weekends. Distributions at each site show
several (1 to 6) 24-hour observations that might be considered "modest" statistical
outliers. Traffic impacted sites (City Hall, Ganges, Warwick) had more statistical
outliers.

Exposure estimates. This pollutant was not monitored at the school sites. To reflect a
mixture of industrial and vehicular sources and derive population-oriented exposure
estimates, several options were considered for the southern Durban area:

a) Averaging concentrations at the central and lower basin sites (7 monitoring
locations).

b) Using the more representative lower basin sites (Wentworth, Jacobs, Southern
Works and Ganges), excluding downtown and highly traffic impacted sites
(Warwick, City Hall, King Edward). Although Ganges was originally considered
to be traffic-impacted site, traffic influence was gauged to be only moderate and
thus was included in the southern average.

Given the similar levels, high correlation, and the advantage of additional observations
that can increase the representativeness of the data, we opted to use option b. This is
supported by trends that show that the industrial sites appear to be occasionally
influenced by local sources. Averaging across the 5 monitoring sites will diminish such
effects.
For the northern Durban area, the northern site (Ferndale) was used to estimate
exposures.

3.2.2 Nitrogen Oxide (NO)

Monitoring. This pollutant was sampled continuously at 8 monitoring sites as described
for N02. (The same equipment is used to monitor NO and N02.) Many of the same
results and conclusions apply for these closely related pollutants. This section discusses
only significant differences.

Data processing/quality/status. At each site, data were collected as 5 min averages,
which were processed to 1 hr averages if at least half of the data for that hour were
available. The 1 hr averages were processed to 24 hr averages, from noon to noon, if at
least half of the hourly data in the period were available. Data capture rates were good.
For the period 2.1.04 through 1.1005, the overall capture rate for valid 24-hour
observations was 83.4% (range from 76% at King Edward to 94% at Ganges).

Spatial variation. Based on averages, concentrations at Ganges and Warwick, the most
traffic-impacted sites, were considerably higher than levels elsewhere, while levels at
Wentworth and Southern Works, away from traffic but near industrial sources, were by
far the lowest. High peak concentrations (> 200 ppb, 24-hr average maximum) were
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occasionally observed at City Hall and King Edward, in addition to Warwick and Ganges
(where levels reached or exceed 300 ppb).
Larger spatial differences were seen for NO compared to N02, reflecting the influences
of local sources and the short lifetime of NO. As seen for N02, Levels at the northern
site (Ferndale) were considerably lower than levels measured at most of the southern
sites.

Temporal variation. At all sites, concentrations show very strong seasonality with the
highest levels in winter (March - August, but peaking in July at up to 140 ppb), and
lowest levels in summer (October - February, generally below 20 ppb). Given that NO
(and N02) emissions are likely relatively uniform over the year, this variation is likely to
result from the poorer dispersion conditions occurring the winter (as seen for other
pollutants), and from the shorter lifetime of NO in the summer (due to faster reaction
including scavenging by 0).
Across the region, levels were highly correlated at the 24-hr level, e.g., correlation
coefficients ranged from 0.5 to 0.9 among the 8 monitoring sites. Unlike N02, NO
concentrations at the northern site remained highly correlated with NO levels at the other
sites, though concentrations were lower. As for N02, some of the highest concentrations
at all sites (except the northern site) were seen on July 21 - 23, 2004.
Autocorrelation was moderate, about 0.5 for 1 day lags. All sites showed moderately
strong day-of-week effects, and concentrations fell by -30% on the weekends, except at
Ferndale where changes were smaller. Distributions at each site show a few 24-hour
values that might be considered "modest" statistical outliers; however, the data generally
performed consistently. Overall, NO patterns are consistent with vehicular and industrial
eITIlSSlOn sources.

Exposure estimates. This pollutant was not monitored at the school sites. The same
options as discussed for N02 are appropriate. In this case, however, distance to major
roads will likely be even more important.

3.2.3 Sulfur Dioxide (S02)

Monitoring. S02 was monitored continuously at 16 monitoring sites by ultraviolet
fluorescence spectrometry using US EPA reference methods. Monitors were located at 7
schools:

1. Assegai Primary School initially used an API 100A but this was swapped out to
an ML 2015 in May 2004 due to problems;

2. Dirkie Uys had a API 100A which failed and was replaced with a Dasibi 4108 in
January 2005 (also problematic);

3. Nizam Primary School used an API 100A, which was replaced in January 2005
with a similar instrument (taken from Lamontville).

4. Lamontville (Entuthukweni) School used an API 100A, which failed, was
repaired, and then moved to Nizam.

5. Briardale used a TECO 43A instrument.
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6. Ferndale used a Monitor Labs ML 9850B instrument (serial no. MI873-M702)

7. Ngazana Primary School used a Monitor Labs ML 9850B instrument.

In addition, eThekwini Municipality monitored S02 at 9 stations in 2004, with the
Settlers' monitor doubling as an H2S analyzer (providing measurements every 10 min as
compared to every 5 min at the other sites). Due to the need for H2S data to resolve
complaints in Merebank, the City Hall S02 analyser was moved to Southern Works in
July 2004 to measure H2S (eThekwini, 2004). Of the Municipality's 9 S02 analysers, 8
were relatively new (2003, Monitor Lab 9850B); the 9th instrument was from the Settlers
School caravan (API 11 OA).

Data processing/quality/status. At each site (except one as noted above), data were
collected as 5 min averages, which were processed to 1 hr averages if at least half of the
data for that hour were available. The 1 hr averages were processed to 24 hr averages,
from noon to noon, if at least half of the hourly data in the period were available.
Several of the monitors at the school sites experienced drift problems, probably a result
of inadequate temperature control in the instrument or in the enclosure. Drift resulted in
slowly varying negative or positive biases that was easily detected. This bias was
corrected on a monitor-specific basis by subtracting the long term baseline, computed as
a running average (typically considering a 400 h window) of low (1 st) percentile hourly
concentrations in a time window typically 68 hours before and 4 hours after the current
value. Minima were allowed to vary only slowly « 5 ppb) otherwise a new window was
utilised. This approach is reasonable since background S02 values at all sites approached
zero almost every day due to strong variation in source emissions and meteorology, and
since background levels were negligible. Statistical and visual checks ensured that this
approach yielded reasonable and robust values. Some small « -1 ppb) negative values
remain after this correction, a normal result for this measurement, even at monitors that
do not experience excessive drift.
Overall, 6 324 valid 24-hr observations were collected across the 16 monitors for the
period 1.1.04 through 6.10.05. The data capture rates varied across the monitoring sites.
Due to equipment moves and instrument failures, S02 records are incomplete for certain
periods at certain sites. For example, as few as 97 days of data were available for
Lamontville, and 129 days at Briardale.

Spatial variation. Average concentrations across the 16 sites varied widely. S02
monitoring results are grouped into three categories:

• Low concentrations (1-3 ppb) at Briardale, Ferndale, Ngazana

• Medium concentrations (6-10 ppb) at Dirkie Uys, Nizam, Lamontville, City Hall,
Grosvenor, and Prospecton

• High concentrations (12-20 ppb) at Assegai, Warwick, Jacobs, Settlers, Ganges,
and Southern Works.

Southern Works had by far the highest concentrations, averaging 20 ppb with 24-hr peaks
reaching 127 ppb, which shows the influence of nearby S02 sources (e.g., Mondi, Sapref
and Engen). Overall, the spatial distribution reflects the distribution of industry in the
South Basin.
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Temporal variation. At all sites except Southern Works, concentrations show moderately
strong seasonality with the highest levels in winter (March - August, but peaking in
June/July) and the lowest levels in summer (December to February). Levels within an
area showed low to moderate correlation. The highest intersite correlation was observed
at the northern school sites (correlation coefficients of 0.5 - 0.7). In the Southern Basin,
correlation coefficients were lower (typically 0.2 to 0.5). Correlations between Southern
Works and the other monitoring sites were smaller (-0.1 to 0.5). Correlations were also
low for the Settlers School and Prospecton sites with other sites.

Autocorrelation was low to moderate, ranging from 0.2 to 0.7. Day-of-week effects
varied by site. Jacobs, Ganges and Southern Works showed the greatest variation, with
weekend levels decreasing by 20 to 50% from weekday levels. However, weekend S02
concentrations increased by 25 to 35% at Dirkie Uys and Briardale. Insufficient data
were available at Lamontville to quantify day-of-week patterns.
Time-of-day patterns often help to confirm the influence of local sources. Mornings have
the highest concentrations at Dirkie Uys, Nizam, Wentworth, and Settlers.

• Afternoons have the highest concentrations at Assegai, Lamontville, Briardale,
Ferndale, and Ngazana.

In part, this reflects the influence of the sea/shore breeze, e.g., the monitoring sites closest
to the coast tend to be flushed with cleaner air in the afternoon, lowering concentrations.
However, actual patterns are complex, and likely depend on season, the direction of local
sources, the rotation of the wind field, and dispersion characteristics.
The distributions show that apparent statistical outliers occur at most of the monitoring
sites, with the exception of Prospecton, which is some distance from large S02 sources.

Exposure estimates. While S02 was monitored at all schools, this pollutant shows
considerable spatial variation. Moreover, large amounts of data were missing at several
sites. We believe that the best approach to reflect spatial and temporal variation is to
utilise school-based monitoring, after imputing missing data using S02 concentrations
(and other variables) collected across the entire network. With respect to averaging time,
we considered using exposure measures based on hourly peaks and possibly I5-min
averages, however, this was not done for several reasons: (1) Symptom data was not
always collected at the same time; (2) some of the symptom data represented the
previous 24-hr period; (3) our previous experience indicated I-hr and 24-hr data are
highly correlated; (4) typically 24-hr data provide more reliable results in the health
models; and (5) imputing very short-term data was both difficult and unreliable..

3.2.4 Particulate Matter under 10 pm Diameter (PMJO)

Monitoring. PMIQ was monitored using several types of monitoring systems.
• Five TEOM (tapered element oscillating microbalance, Rupprecht & Patashnick,

l400a) samplers, a US EPA-approved method, were used by the eThekwini
Municipality at five stations (Warwick, Ferndale, City Hall, King Edward and
Ganges). TEOMs provide continuous measurements.
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samplers were tested simultaneously at this site. The Partisol 2025 sampler was used as a
reference sampler and was operated continuously throughout this period. Concentrations
obtained by the reference sample (average = 37.4 ± 11.6 Ilg m-3

) closely matched
simultaneous 24-hr PM lO TEaM measurements obtained at three nearby sites operated by
eThekwini Municipality (City Hall, King Edward, Ganges; average = 37.0 ± 11.5 Ilg m­
3). This suggests that the results of the reference monitor were accurate, assuming that
PM lO gradients are small (as shown below) and that losses of volatile and semi-volatile
PM components on the heated TEaM are small relative to gravimetric measurements.
Previous studies have indicated that TEOM losses are generally below 10% for PM25,
and a considerably lower loses are expected for PMlO.

The collocation comparisons included 19 days in which 126 PM I 0 measurements were
obtained (average of 10.5 measurements per sampler, 18 - 38 measurements per sampler
type). Concentrations during this period spanned a large range (19 to 102 Ilg m-3 based
on the reference sampler), thus providing an excellent test. Study results indicated that
97% of the samples fell within 20% of the reference sampler. (One sampler type, a
Topaz, failed to operate properly and is excluded from this analysis.) Some small biases
were identified by sampler type, as indicated by the regression results below:

C(PartisoI2000) = 1.01 C (PartisoI2005) R2 = 0.91 n =
18

C(DHA 80 HiVol) =0.919 C(PartisoI2005)
0.84 n =32

C(FG 95 MedVol) =0.921 C(Partisol 2005) + INTERCEPT
0.89 n =38
Mean and absolute mean biases were 0.6 and 6 Ilg m-3

, respectively. Overall, the
agreement, high correlation, and small biases, indicate that PMlO measurements obtained
by the five types of samplers (Partisol 2000, Partisol 2005, DHA Hivol, FG MedVol,
TEOM) were comparable.

Collocation study 2. A second "collocation" study was obtained by maintaining a TEOM
monitor at Ferndale throughout the study, in addition to the filter-based method (low
volume Thermo sampler) also used at the same site. Both TEOM and filter-based PM lO
measurements were available for 129 days. Several statistical outliers, e.g., much higher
PM lO concentrations obtained from the filter-based measurement, were noted on several
days (e.g., 26.9.04 and 9.7.05). Comparing all available PM lO data (including these
outliers), the correlation coefficient was 0.71, 84% of observations were within a factor
of 2, the mean bias was 9 Ilg/m3

, and the relative bias was 11 % (the filter-based method
yielded higher concentrations). Overall, this performance does not match the
performance obtained in the first collocation study. The poorer performance may have
resulted from many possible reasons: (I) This distant site (Ferndale) involved the most
sample transport which may have resulted in particle loss, and thus may represent a
worst-case situation, though it is recognised that all of the school-based sites involved
sample transport. (2) Losses of volatile and semi-volatile components from the TEOM
measurements might cause differences from the gravimetric measurements, as mentioned
above. Differences might be larger at this site since ambient temperatures are slightly
cooler at the higher elevation of Ferndale (thus increasing the temperature difference
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between the TEOM and ambient air). Still, this seems unlikely to cause large differences.
(3) The presence of strong localised sources that produce a range of particle sizes that are
sampled differentially by the TEOM and the Thermo Low Volume samplers, a result of
different sampling efficiencies or "cut-points." However, mean concentrations did not
vary much between the TEOM and gravimetric measurements, suggesting this was not a
major factor. (4) Experimental error, including sampler, operator and laboratory errors.
We cannot definitively identify the error source, and all of these (and perhaps other)
errors might be responsible. As discussed in the next section, we identified 5 outliers at
this site, the removal of which improve results significantly, e.g., the correlation between
TEOM and filter-based measurements at Ferndale increased to 0.79 (from 0.70).

Data processing/quality/status. Data capture rates varied across the monitoring sites and
by monitoring type. The TEOMs had capture rates exceeding 80%. Filter-based samples
at the schools were collected daily during intensives, and less frequently, on an every 6th

day schedule. The number of 24-hr filter samples at the sites ranged from 131 at
Briardale to 168 at Nizam. The filter-based methods did not achieve the precisions of the
TEOM measurements, a result of many factors, e.g., sampler errors, particle/fibre
shedding during filter handling and transport, and errors in pre- and post-exposure
weighing (that in turn are partly attributable to fluctuations in the weighing room
temperature and humidity). Because the TEOM monitoring was continuous and filter­
based methods focused on the intensive periods, these monitoring types are analysed
separately. TEOM measurements are not adjusted for possible losses of volatile and
semi-volatile compounds. We also noted that while the TEOM PM IO levels were
correlated across the region (though at times certain areas were elevated due to local
influences as discussed below), a small number of the filter-based PMIO measurements
were low, particularly at Ferndale where a few observations fell below the collocated
TEOM PMIO measurements. The reasons for such discrepancies are unknown (these
samples passed the normal QA checks) as discussed above. To identify such low values,
we identified the 2nd lowest daily TEOM PM 10 measurement in the network as a
background concentration, which was decreased by 25% to account for possible
experimental errors. Then, filter-based TEOM measurements falling below this value
were considered to be erroneous and thus deleted. Over 21 months of daily data, this
procedure removed only 16 observations (2 to 5 observations at each site). We also
considered high-end outliers by visually examining the trend plots using both TEOM and
filter data, and looked for filter-based measurements that were a factor of 2 or more
above TEOM measurements. Five such observations were located, from 133 to 267 Ilg
m-3

. These outliers quite clearly were erroneous and their removal greatly enhanced the
performance of the imputation procedures, which provides additional support for the
validity of this procedure.

Spatial variation. Based on averages, TEOM-based PMIO concentrations were nearly
identical, 38 - 39 Ilm m-3

, at four sites, and slightly elevated, 46 Ilg m-3
, at Ganges.

Concentrations at other percentiles were also closely matched. For the filter-based
measurements, average concentrations at the 7 school sites were in the same range, 41 ­
58 Ilg m-3

. Thus, only modest spatial differences are observed for average PMIO
concentrations. Maximum 24-hr average concentrations approached or exceeded 150 Ilg
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m-3 at most sites. The highest concentrations were observed at Assegai (south) and
Ngazana (north), two widely separated monitors. Assegai may be affected by a
combination of industrial, vehicular and open burning emissions; Ngazana may be largely
affected by open burning emissions.

Temporal variation. All sites showed very strong seasonality with the highest levels in
winter (March - August), typically peaking in July (when 24-hr concentrations exceeded
ISO Ilg m-3 at II sites), and the lowest levels in summer (December - April).
The five TEOM-based measurements tracked extremely closely (r > 0.92). This also
applied to the TEOM PMIO concentrations at the northern site (Ferndale) when compared
to levels at the four DSIB TEaM monitors, though Ferndale concentrations were slightly
lower. The TEOM measurements were moderately to highly correlated with the filter­
based measurements, with correlation coefficients from 0.53 to 0.82. Thus, PM lO levels
were moderately-ta-highly correlated across all sites.
PMIQ levels showed moderate to high autocorrelation, about 0.6 to 0.9 for I day lags. No
day-of-week effects were indicated. As mentioned, distributions most sites include
several 24-hour values that might be considered modest statistical outliers.

Exposure estimates. This pollutant shows significant temporal variation, but relatively
little spatial variation. There are several approaches:

a) Filter-based measurements are available at the 7 schools and could be used.

b) A Durban-wide PMIQ measurement based on TEaMs could be derived, e.g., as a
5-site average.

c) A DSIB-wide average based on TEaMS could be derived, e.g., as a 4-site
average, and the TEOM measurements at Ferndale would be used for the three
northern schools.

d) Combined approach, e.g., using filter based measurements at the 7 school sites but
imputed and bounded using TEOM data.

The TEOM-based approaches would provide similar results, given the high correlation,
but would offer the advantage that TEaMs provide more reliable and continuous
coverage. On the other hand, the filter-based methods may reflect local spatial gradients
at the schools. Also, the filter-based methods collected samples from noon-to-noon. The
TEOM data are hourly, and thus can be manipulated to obtain 24-hr average values for
various start/stop times. We selected approach d, which relied upon school-based filter­
measurements with imputation and validation checks that used, among other, information
provided by the TEOM measurements.

Results for Air Pollutant Monitoring

Compliance with guidelines and standards
Below are the monitoring results and exposure assessment approach for pollutants
monitored in this study. The WHO guidelines are used with several "lower" target levels.
Analysis included measurements collected at permanent sites in the eThekwini
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monitoring network and monitoring conducted in the SDHS conducted in schools and
elsewhere.

• Average S02 values in 2005 achieved the limit value of 19 ppb at all sites. The
Southern Works site was the network's hotspot with a value of 22 ppb in 2004
and 16 ppb in 2005. The same site exceeded the daily limit value (48 ppb) 34
times in 2004 and 1 times in 2005, and the 10 min value (191 ppb) 796 times in
2004 and 240 times n 2005. The 2005 reductions are attributed to the installations
of S02 scrubbers at Mondi in May 2005. There were additional exceedances of
the 10-min and 24-hr limit values at Settlers, Ganges (not in 2005), Grosvenor,
Wentworth and Jacobs, but not at outlying sites (Prospection and Ferndale). In
the school based monitoring, no sites exceeded the annual limit value, and two
exceedances of the 24 hr limit value were noted at Assegai and Lamontville, I
each).

• Average PM10 concentrations at at Ganges (46 and 43 uglm3 in 2004 and 2005,
respectively) exceeded the annual limit (40 ug/m3) in 2005. The annual PM10
target value (30uglm3) was exceeded at all 5 PM10 monitoring sites. The 24-hr
limit values (75 ug/m3) was exceeded 18-36 times at each of the five sites
monitoring PM 10. The number of exceedances of the 24-hr PM 10 target value
(50ug/m3) was not specified, however it was calculated that all sites had multiple
exceedances ranging from 34 (King Edward) to 64 (Ganges) times for about 570
study days at each site. In the school based monitoring, all 7 sites also exceeded
the annual limit value, and all sites also exceeded the 24-hr limit multiple times,
from 2 (Nizam) to 36 (Assegai) times over the studt period (based on 130 daily
samples at each site).

• Average N02 at Warwick and Ganges (21 ppb) exceeded or attained the annual
limit value (21 ppb) in 2005. The l-hr limit (106 ppb) was exceeded from 0-5
times at the 8 sites measuring this pollutant in 2005, down from 0-9 times per site
in 2004.
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APPENDIX 3.3

Child Screening Questionnaire

South/North Durban Health Study

SI. Date:__/__/__

Day Month

Year

S2. Study Identification No.

Screening Questionnaire

Screening Questionnaire about

___________________f full name ofchild must be

printed here by study staffor teacher before the questionnaire is brought homeI

(This questionnaire is available in isiZulu. Please request this version if this is your
preference)

This questionnaire should be completed by the person who most often takes care of the
child.

Please put a tick 0 in the correct box for each question.

BACKGROUND INFORMATION
83. Child's full name [should be filled in before
child brings this home]

First

Middle
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Surname

S4. Child's current grade in school --

SS. Child's date of birth
-_/__/_-

day month year
S6. Is the child: 0 1 Male

O2 Female
S7. Usual language spoken at home: o I English

O2 Zulu
0 3 Xhosa
0 9 Other
(Specify: )

S8. Your name:

First
Middle

Surname
S9. Your telephone numbers: home:

work:

cell:

or

o I I do not have a telephone

We may need to contact you again to obtain additional information. Please give me the
name, address and telephone number of two relatives or friends who would know where
you could be reached in case we have difficulty in contacting you.

S10. Name of first contact person:

S11. Telephone number of first contact person:

S12. Address of first contact person:

House No.
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Suburb/Township

Postal Code

813. Relationship of contact person to you: _

814. Name of second contact person:

815. Telephone number of second contact person:

816. Address of second contact person:

House No.

8uburbffownship

Road/Street

Postal Code

817. Relationship of contact person to you: _

818. What is the complete address of the
household where the child sleeps most often?

House No.

Road/Street

-
Suburbffownship

Postal Code

819. How does the child usually get to school? 0 1 walks
02 driven in a private vehicle
03 driven in a taxi
0 4 takes a bus
09 Other (Specify: )

820. Are you the main person who takes care of 0 1 Yes O2 No
this child?
821. How are you related to this child? D) Mother

O2 Father
0 3 Grandmother
0 4 Grandfather
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I

05 Aunt
0 6 Uncle
P9 Other (specify:--------------------

A. CHILD'S SYMPTOMS INFORMATION

822. In the past 12 months, how often has your 0 1 every day

child had a cough that won't go away?
O2 more than 2 times per week
0 3 more than I time per month
0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole ye(:\r
0 6 never

823. In the past 12 months, how often has your D) more than 1 time per month
child had wheezing (a whistling sound from the O2 3 to 12 times in the whole year
chest) with a cold? 0, I or 2 times in the whole year-'

0 4 never
824. In the past 12 months, how often has your 0 1 every day
child had wheezing (a whistling sound from the O2 more than 2 times per week
chest) without a cold? 03 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never

825. In the past 12 months, how often has your 0 1 every day
child had an attack of wheezing that made it O2 more than 2 times per week
hard to breathe or catch his or her breath? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never

826. In the past 12 months, how often has your 0 1 every day
child wheezed while exercising, running or 02 more than 2 times per week
playing? 03 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 I or 2 times in the whole year
06 never

827. In the past 12 months, how often has your 0 1 every day
child coughed while exercising, running or O2 more than 2 times per week
playing? 0 3 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never

828. In the past 12 months, how often has your 0 1 every day
child complained that his or her chest felt tight O2 more than 2 times per week
or heavy? 03 more than 1 time per month

0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 never
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829. In the past 12 months, how often has your 0] most nights
child's sleep been disturbed due to wheezing, O2 more than 1 time per week
coughing, chest tightness or shortness of L-.;3 more than 2 times per month
breath? 0 4 more than 1 time per month

05 3 to 12 times in the whole year
06 1 or 2 times in the whole year
Ch never

830. Has a doctor or nurse EVER said that your 0, Asthma
child had: (check ALL that apply) O2 Bronchitis or Bronchiolitis

L!3 Reactive Airway Disease (RAD)
0 4 Pneumonia
0 5 Asthmatic Bronchitis

831. In the past 12 months has your child 0, Yes
taken any medications, nebulisers, or inhalers 02 No
(pumps) prescribed by a doctor for any of the
conditions listed above?
832. Does your child take any of these doctor- 0, Yes
prescribed medications every day, even when 02 No
he/she is not having trouble breathing? 08 Does not apply
833. In the past 12 months how many times DJ otimes
has your child had to make an unplanned visit O2 1 time
to a doctor's office for breathing problems? 0 3 2 times

0 4 3 or 4 times
0 5 5 or 6 times
06 7 times or more

834. In the past 12 months how many times 0 1 otimes
has your child been to the emergency room 02 I time
(but not stayed overnight in the hospital) for 03 2 times
breathing problems? 0 4 3 or 4 times

0 5 5 or 6 times
06 7 times or more

835. In the past 12 months how many times 0, otimes
has your child had to stay in the hospital for 02 1 time
one night or more because of breathing n 2 timesU3
problems? 0 4 3 or 4 times

0 5 5 or 6 times
06 7 times or more
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B. MEMBERS OF YOUR HOUSEHOLD
S36. How many people live in your household? (write in number)
(Include the child, yourself, and all other adults
and children whether related to you or not)
S37. Write in the name of the person who you Head of Household
consider to be the head of the household -- this
will usually be the person who owns or rents this
home first name middle name surname

O~D 1 I am the Head of Household

S38. Does this person (or you, if you are the head 0 1 Yes
of the household) have a husband or wife who 02 No
also lives in this household?
S39. If "yes", write in the name of this person Husband or Wife of Head of Household

first name middle name surname

O~[JI I am the husband or wife of the
Head of Household

S40. Write in the name of the person who most Person who most often takes care of the child
often takes care of the child.

first name middle name surname

O~Dl I am the person who most often
takes care of the child
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S47. Do you have any comments about the project or the questionnaire?

THANK YOU FOR COMPLETING THIS QUESTIONNAIRE

Please have your child return it by _ _ to his or her teacher.



APPENDIX 3.4

Child caregiver baseline survey

SouthlNorth Durban Health Study

G I. Date:__I__I__ G2. Study Identification No.

Day Month

Year

Child Caregiver Baseline Survey

Cover Sheet
G3. Name of respondent:

First

Middle

Surname
G4. Relationship to Head of Household:
GS. Phone numbers: home:

work:

cell:

G6. Name of child participating in the study:

First

Middle

Surname
G7.Child's birth date:

I I
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uay Montn year

G8. Child's sex: 0 1 Male O 2 Female
G9. Child's school:
GIO. What is the complete address of this

household?
House No.

Road/Street

City

Postal Code
Gll. Interviewer's Name:
G12.Interview time started: Time: am/pm
G13. [INTERVIEWER: Enter gender of 0 1 Male O 2 Female
respondent]
G14. Who is the person most responsible for

care of [child] or most familiar with any
health problems (s)he has?

[If answer is not "me" then assess informally
whether the person knows enough to
complete the questionnaire.]

G15. How are you related to [child]? 0\ Mother
O 2 Father
0 3 Grandmother
0 4 Grandfather
Os Aunt
0 6 Uncle
0 7 Other (SPECIFY: )

[INTRODUCTION: INTERVIEWER READS TO RESPONDENT]

The purpose of this questionnaire is to collect information about your child's health

status.

Your answers will help us figure out how to assist you and your child in protecting your

child's health. If there is a question you do not want to answer, please let me know and

we can skip it. All of your responses are confidential and will not shown to anyone

outside the study team without your written consent.
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A. BIRTH HISTORY

G16. In what country was [CHILD] born?
country name

G17. What is the highest grade or year of regular Grade
school has [CHILD] completed?

G18. How old was the biological mother of
[CHILD] when [CHILD] was born? years

age

G19. Did [CHILD]'s biological mother smoke at 0 1 Yes
anytime while she was pregnant with O2 No
[CHILD]? 0 8 Don't know

G20. At any time during the pregnancy did 0 1 Yes
[CHILD]'s biological mother quit or O2 No
refrain from smoking for the rest of the 0 8 Don't know
pregnancy?

G21. Did [CHILD] receive any newborn care in 0 1 Yes [if yes: How many days:
an intensive care unit, premature nursery or days]
any other type of special care facility?

02 No
G22. How much did [CHILD] weigh at birth? grams

number

0 8 Don't know
G23. Did [CHILD] weigh more than 2.5 kg oI more than 2.5 kg

or less? O2 2.5 kg or less
0 8 Don't know

G24. Did [CHILD] weigh more than 4.0 kg 0 1 more than 4.0 kg
or less? O2 4.0 kg or less

08 don't know

B. DIET

G25. How often does [CHILD] eat breakfast: Dj everyday
everyday, on some days, rarely, never, or O2 some days

on 0 3 rarely
weekends only? 0 4 never

05 weekends only
G26. During the past 12 months, has [CHILD] 0 1 Yes

changed eating habits to try to lose weight? O2 No
G27. During the past 12 months, has [CHILD] 0 1 Yes

changed what you eat for any medical O2 No
reason or health condition?

G28. What was the medical reason or health 0 1 High Blood Pressure/Hypertension
condition that caused [CHILD] to change O2 High Blood Cholesterol
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what he/she eats? 0 3 Allergy
[Mark all that apply - USE HAND CARD 0 4 Diabetes
CCG-I] Os Formula-related reason

0 6 Due to infections
0 7 Gastro-intestinal Problems
0 8 Overweight/Obesity
0 9 NutritionlAnemia
0 10 Other, specify:

G29. Do you consider [CHILD] to be oI overweight
overweight, underweight, or about the right O2 underweight
weight? 0 3 about the right weight

C. HEALTH SERVICES AND HEALTH IMPAIRMENT

G30. Would you say that [CHILD] s health in O( excellent
general is excellent, very good, good, fair, C2 very good
or poor? 03 good

0 4 fair
Os poor

G31. Is there a particular clinic, health center, 0) Yes
doctor's office, or other place that you O2 No
usually go to if [CHILD] is sick, or needs
advice about health or for routine care?

G32. Is there one particular doctor or health 0 1 Yes
professional that [CHILD] usually sees? 02 No

G33. About how long has it been since you or 0 1 less than 1 year
anyone last saw or talked to a medical 02 more than I year, but less than 2 years
doctor or other health professional about 03 more than 2 years, but less than 5 years
[CHILD]? Include doctors seen while a 0 4 5 years or more
patient in a hospital. Os never

08 don't know
G34. Since [CHILD] was born, how many Do none

different times has [CHILD] stayed in the times
hospital overnight or longer? Do not number

include the hospitalization when [child]
was born.

G35. Is [CHILD] able to take part at all in any of 01 Yes
the usual kinds of activities done by most 02 No
children of his/her age?

G36. Is [CHILD] limited in the kind or amount D) Yes
of activities can do because of an 02 No
impairment or health problem?

G37. Does any impairment or health problem 0 1 Yes
now keep [CHILD] from attending school? 02 No

G38. Does [CHILD] need to attend a special D) Yes
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school or special classes because of any O2 No
impairment or health problem?

G39. How long ago was the impairment or health

}problem first noticed? [I months
-
-"2 years

number

Os don't know
G40. Did a doctor ever say that [CHILD] had 0 1 Yes

rheumatic fever/rheumatic heart disease? O2 No [GO TO G44]
If yes:

G41. How old was [CHILD] when he/she

}first had this illness? J 1 months
O2 years

number

G42. Does [CHILD] still have this illness? 0 1 Yes
O2 No
Os Don't know

G43. Has [CHILD] ever been treated by a 0 1 Yes
Doctor for this illness? O2 No

Os Don't know
G44. Did a doctor ever say that [CHILD] had 0 1 Yes

epilepsy/fit/convulsion? O2 No [GO TO G48]
If yes:

G4S. How old was [CHILD] when he/she

}first had this illness? 0 1 months
O2 years

number

G46. Does [CHILD] still have this illness? 0 1 Yes
O2 No
Os Don't know

G47. Has [CHILD] ever been treated by a 0 1 Yes
Doctor for this illness? 02 No

Os Don't know
G48. Did a doctor ever say that [CHILD] had 0 1 Yes

Cerebral palsy? O2 No [GO TO GS2]
If yes:

G49. How old was [CHILD] when he/she

}first had this illness? 0 1 months
C2 years

number

GSO. Does [CHILD] still have this illness? 0 1 Yes
O2 No
Os Don't know
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GSl. Has [CHILD] ever been treated by a rJ J Yes
Doctor for this illness? [12 No

0 8 Don't know
GS2. Did a doctor ever say that [CHILD] had ~J Yes

mental retardation? 02 No [GO TO GS6]
If yes:

GS3. How old was [CHILD] when he/she

}first had this illness? DI months
O2 years

number

GS4. Does [CHILD] still have this illness? 0] Yes
Ch No
08 don't know

GSS. Has [CHILD] ever been treated by a 0 1 Yes
Doctor for this illness? 02 No

08 don't know
GS6. Did a doctor ever say that [CHILD] had 0 1 Yes

muscle weakness or paralysis of the arms? O2 No [GO TO G60]
If yes:

GS7. How old was [CHILD] when he/she

}first had this illness? 0] months
O2 years

number

GS8. Does [CHILD] still have this illness? 01 Yes
02 No
08 don't know

GS9. Has [CHILD] ever been treated by a 0] Yes
Doctor for this illness? [12 No

08 don't know
G60. Did a doctor ever say that [CHILD] had 0] Yes

muscle weakness or paralysis of the legs? 02 No [GO TO G64]
If yes:

G61. How old was [CHILD] when he/she

}first had this illness? 0 1 months
O2 years

number

G62. Does [CHILD] still have this illness? D) Yes
O2 No
0 8 don't know

G63. Has [CHILD] ever been treated by a 0] Yes
Doctor for this illness? 02 No

08 don't know
G64. Did a doctor ever say that [CHILD] had 0] Yes
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asthma? O2 No [GO TO G68]
If yes:

G65. How old was [CHILD] when he/she }0 1 months
first had this illness? ~2 years

number

G66. Does [CHILD] still have this illness? 0 1 Yes
O2 No
08 don't know

G67. Has [CHILD] ever been treated by a Cl Yes
Doctor for this illness? O2 No

08 don't know
G68. Did a doctor ever say that [CHILD] had 0 1 Yes

chronic bronchitis? O2 No [GO TO G72]
If yes:

G69. How old was [CHILD] when he/she

}first had this illness? 0] months

" yearsL.i2
number

G70. Does [CHILD] still have this illness? 0] Yes
02 No
08 don't know

G71. Has [CHILD] ever been treated by a 0 1 Yes
doctor for this illness? O2 No

08 don't know
G72. Did a doctor ever say that [CHILD] had 0] Yes

hay fever? O2 No [GO TO G76]
If yes:

G73. How old was [CHILD] when he/she

}first had this illness? 0 1 months
02 years

number

G74. Does [CHILD] still have this illness? 0] Yes
O2 No
0 8 don't know

G75. Has [CHILD] ever been treated by a 0] Yes
doctor for this illness? O2 No

0 8 don't know
G76. Did a doctor ever say that [CHILD] had 0 1 Yes

hypertension or high blood pressure? 02 No [GO TO G80]
If yes:

G77. How old was [CHILD] when he/she
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first had this illness? ;-: months---Jj

O2 years
number

G78. Does [CHILD] still have this illness? Uj Yes
C2 No
08 don't know

G79. Has [CHILD] ever been treated by a
doctor for this illness? 0] Yes

02 No
0 8 don't know

G80. Did a doctor ever say that [CHILD] had 0 1 Yes
high blood cholesterol? 02 No [GO TO G84]

If yes:
G81. How old was [CHILD] when he/she

}first had this illness? D) months
C2 years

number

G82. Does [CHILD] still have this illness? 0] Yes
02 No
0 8 don't know

G83. Has [CHILD] ever been treated by a 0 1 Yes
doctor for this illness? 02 No

08 don't know
G84. Has [CHILD] ever seen a psychiatrist, 0 1 Yes

psychologist, or psychoanalyst about any O2 No
emotional, mental, or behavioral problems?

G8S. During the past 12 months, has [CHILD] 01 Yes
taken any prescribed medicines or drugs to 02 No
help control activity or behavior?

G86. During the past 12 months, how often did 01 never
[CHILD] complain of headaches? Would 02 rarely
you say never, rarely, sometimes, 03 sometimes
frequently, or always? 04 frequently

Os always
G87. During the past 12 months, how often did 0] never

[CHILD] complain of stomach aches? O2 rarely
Would you say never, rarely, sometimes, 03 sometimes
frequently, or always? [Do not 04 frequently
include menstrual cramps] Os always

G88. Does [CHILD] have any speech defect, D) Yes
such as stuttering, stammering, or lisping? 02 No
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G89. Has [CHILD] ever had anemia, sometimes :]1 Yes
called "tired blood" or "low blood?" O2 No

0 8 don't know
G90. Now I will ask about some immunizations l1 Vaccination record available

that may have received. It may be easier to [12 Vaccination record NOT available
recall this information if you have a record
of [CHILD]'s shots. Do you have a
vaccinationrecord for [CHILD] that I can
see?

G91. Has [CHILD] ever received a DPT or 0 1 Yes
tetanus shot? A DPT shot is to prevent 02 No [GO TO G93]
diphtheria, tetanus, and pertussis or 08 don't know [GO TO G93]
whooping cough.

[Verify with vaccination record if available]

251



G92. How long ago was [CHILD] 's last DPT or

}~:tetanus shot? months
years

numher

G93. During the past 12 months, how many Do None
times

did [CHILD] have an accident, injury or times
poisoning, excluding lead poisoning, that number

required medical attention? 0 8 don't know

D. RESPIRATORY CONDITIONS AND ALLERGY
Coueh

G94. Does [CHILD] usually cough on most 01 Yes
days for 3 consecutive months or more 02 No
during the year?

G95. Does [CHILD] usually cough first thing DJ Yes
in the morning in the winter? 02 No

if no to the above, SKIP to PHLEGM:
G96. Does [CHILD] usually cough at all 0 1 Yes

during the rest of the day? 02 No
Ienore an occasional coueh
G97. For how many years has [CHILD] had

this cough? Number years

Phleem
Count phlegm on first going outdoors.
Exclude phlegm from the nose. Count
swallowed phleem.
G98. Does [CHILD] usually bring up any DJ Yes

phlegm/sputum/mucus from your chest 02 No
first thing in the morning in the winter?

G99. Does [CHILD] usually bring up any 01 Yes
phlegm/sputum/mucus from his/her chest O2 No
during the day in the winter?

if no to above, SKIP to EPISODES OF
COUGH and PHLEGM
GIOO. Does [CHILD] bring up phlegm like DJ Yes

this on most days for as much as three 02 No
months each year?

GIOl. Does [CHILD] usually bring up phlegm 0, Yes
at all on getting up or first thing in the 02 No
morning?
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Gl02. For how many years has [CHILD] had years
trouble with phlegm?

Gl03. Has [CHILD] ever coughed up blood? 0] Yes
D2 No

Gl04. Was this in the past year; D1 Yes
D2 No

Episodes Of Cough And Phlegm
GlOS. Has [CHILD] had periods or episodes D) Yes
of r~2 No

(increased) cough and phelgm lasting for
3 weeks or more each year;

Breathlessness
Gl06. Is [CHILD] troubled by shortness of D1 Yes

breath when hurrying on level ground? 02 No
Gl07. Does [CHILD] get short of breath 0 1 Yes

walking with other children of hislher D2 No
own age on level ground?

G108. Does [CHILD] have to stop for breath DI Yes
when walking at his/her own pace on D2 No
level ground?

Gl09. Is [CHILD] too breathless to leave the 0] Yes
house or breathless on dressing or D2 No
undressing?

Wheezing
G110. Does [CHILD] chest ever sound wheezy DJ Yes

or whistling? D2 No [GO TO G12S]
[If no, GO to WEATHER] if yes to above, is
it:

G11l. When [CHILD] has a cold? D] Yes
D2 No

G112. Occasionally apart from colds? D] Yes
D2 No

Gl13. Most days or nights? D] Yes
D2 No

G114. For how many years has this been years
Present?

G11S. How many episodes of wheezing or number
Whistling has [CHILD] had in the
past 12 Months?

G116. How many times in the past 12 number
Months was [CHILD] hospitalised
overnightfor these episodes of

253



wheezing or whistling?
G117. Can you estimate the total cost of all R ,--

these hospitalizations for the past
year? 08 Don't know

[HELP RESPONDENT FIGURE OUT BY
SUMMING ACROSS COST OF EACH
HOSPITALIZATION]

G118. How many times in the past 12
Months has [CHILD] gone to a number
doctor's Surgery or hospital
emergency room for one of these
episodes of wheezing or whistling?

G119. Can you estimate the total cost of all R ,--
these visits for the past year?

[HELP RESPONDENT FIGURE OUT BY 08 Don't know
SUMMING ACROSS COST OF EACH
HOSPITALIZATION]

G120. Has [CHILD] ever had an 0 1 Yes
ATTACK of wheezing that has made 02 No
him/her feel short of breath?

if yes to above
G121. How old was [CHILD] when Age in years

he/she had your first such attack?
G122. Has [CHILD] had 2 or more such 01 Yes

Episodes? 02 No
G123. Has [CHILD] ever required medicine D) Yes

or treatment for the(se) attack(s)? 02 No
G124. Is/Was [CHILD]'s breathing D) Yes

Absolutely normal between attacks? 02 No

Weather
G125. Does the weather affect [CHILD]'s D) Yes

chest? 02 No
Only record "YES" if adverse weather
definitely and regularly causes chest
symptoms if yes to above
G126. Does the weather make [CHILD] short DJ Yes

of breath? 02 No
G127. What kind of weather?

Other Symptoms And Aller~ies

During the past 12 months, has [CHILD] had
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any episodes of:
G128. Stuffy, itchy, running nose? [;] Yes

[1 2 No
G129. Watery, itchy eyes? 0] Yes

02 No

G130. During the past 12 months, how many 0] none
episodes of stuffy, itchy, running nose or 02 constantly/continuously
watery, itchy eyes has [CHILD] had? episodes

Are ANY of the above symptoms (wheezing,
whistling, runny nose, watery eyes etc), brought
on by:

G131. Exercise or cold air? D) Yes
O2 No

255



G132. Animals? 0 1 Yes
O2 No

G133. Housedust? [I Yes
02 No

G134. pollen? J) Yes
O2 No

G13S. Wool clothing D) Yes
=2 No

G136. Cigarette smoke 0 1 Yes
02 No

G137. Soaps, sprays or detergents ~ YesL)

02 No
G138. Colds or 'flu DJ Yes

02 No
G139. Air pollution 0 1 Yes

02 No
G140. Strong odours/smells 0 1 Yes

02 No
G141. Other things D) Yes

O2 No
09 please specify

G142. During which months of the year does o I ALL months
pollen make [CHILD)'s symptoms J F M A M J
worse? J A S 0 N D

[circle months that apply]

ALLERGY

G143. Within an hour after eating something, 0 1 Yes
02 No

has [CHILD] ever had a severe reaction, such

as itching all over, trouble breathing,

flushing, or swelling of the hands and

feet?

G144. Within an hour after receiving allergy 0 1 Yes
02 No

shots or allergy tests, has [CHILD] ever had a 0 3 Never had allergy shots or tests
0 8 Don't know

severe reaction, such as itching all over, trouble
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breathing, flushing, or swelling of the hands

and feet?

G145. Has [CHILD] ever given up or had to 0, Yes
avoid a pet because of allergies? 02 No

EAR INFECTION
G146. Did [CHILD] ever have an ear infection Cl Yes

or an earache? 02 No
08 don't know

G147. How many times has [CHILD] had an ear iJo never
infection or an earache? 0, once

02 twice
03 3 - 5 times
~4 6 or more times
08 don't know

G148. How old was [CHILD] when had the first 0 1 less than I year old q _months
ear infection or earache? age

02 1 year old or older q __ years
age

G149. Was [CHILD] ever treated by a doctor for 0, Yes
ear infection(s) or earache(s)? 02 No

08 don't know
GlS0. Has [CHILD] ever had trouble hearing DJ Yes

with one or both ears? Do not include any 02 No
problems which lasted just a short period 08 don't know
of time such as during a cold.

GISt. Does [CHILD] still have trouble hearing 01 Yes
with one or both ears? 02 No

08 don't know
GlS2. Does [CHILD] use a hearing aid? 0, Yes

02 No
0 8 don't know

GlS3. How long ago did [CHILD] last have 0 1 never
hearing tested? 02 6 months or less

0 3 more than 6 months, but less than 12 months
04 more than 12 months, less than 2 years
05 more than 2 years, less than 5 years
06 more than 5 years
08 don't know
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SCHOOL ATTENDANCE

G154. During the past 12 months, about how 00 none
many whole days was [CHILD] absent days
from school because of illness, playing number

truant, or for other reasons? 08 don't know
G155. Has [CHILD] ever skipped any grades for ;] 1 Yes

any reason? 02 No
G156. Has [CHILD] repeated any grades for any 0 1 Yes

reason? r::J2 No
G157. What grade did [CHILD] repeat? 1 2 345 678
Why did [CHILD] repeat the grade(s)? oI Academic failure
[USE HAND CARD CCG·2] Ch Immature/acted too young

03 Frequently absent
0 4 Moved into a more difficult school
re Language problem~5

06 Learninglbehavior problem
0 7 Hearing/vision problem
[] 8 Health problem
0 9 Relocation problem
0 10 Language problem
011 Other, specify:

G158. Has [CHILD] ever been suspended, 0 1 Yes
excluded or expelled from school? 02 No

G159. How many times has [CHILD] been times
suspended, excluded or expelled from number

school?
G160. On the average during the school year, 0 1 none

how many hours per week does [CHILD] 02 5 or fewer hours
work in a paid or unpaid job? 0 3 6-9 hours

04 10-14 hours
05 15-19 hours
06 20-24 hours
07 25 or more hours

ASTHMA SEVERITY

G161. Has a doctor or nurse ever told you that 0 1 Yes [GO TO G162]
[child] has asthma? O 2 No [READ PASSAGE BELOW]

0 8 Don't know [READ PASSAGE BELOW]
If NO or DON'T KNOW say: From now on, when I say asthma, I will be talking about breathing
problems such as episodes of wheezing, coughing, tightness of the chest, heaviness in the chest or
shortness of breath that [child] may sometimes experiences. I understand that [he or she] mayor
may not be having any problems like this. Okay? [GO TO G164]

258



G162. How old was [child] when a doctor or
nurse told you that he/she had asthma?

G163. Does [CHILD] still have this
illness?

G164. In the past 12 months, how often has your
Child had a cough that won't go away?
Would you say ...

[USE HAND CARD CCG-3]

G165. In the past 12 months, how often has your
child had wheezing (a whistling sound
from the chest) with a cold?

[USE HAND CARD CCG-3]

G166. In the past 12 months, how often has your
child had wheezing (a whistling sound
from the chest) without a cold?

[USE HAND CARD CCG-3]

G167. In the past 12 months, how often has your
child had an attack of wheezing that made it
hard for him or her to breathe or catch his or her
breath?

[USE HAND CARD CCG-3]

G168. In the past 12 months, how often has your
child wheezed with exercise or running or
playing hard?

[USE HAND CARD CCG-3]

G169. In the past 12 months, how often has your
child coughed with exercise or running or
playing hard?

[USE HAND CARD CCG-3]

G170. In the past 12 months, how often has your
child complained that his or her chest felt
tight or heavy?

[USE HAND CARD CCG-3]
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years old
[j J Yes
O2 No
08 don't know
DJ Every day
O 2 More than 2 times per week
0 3 More than I time per month
0 4 3 to 12 times in the whole year
Os 1 or 2 times in the whole year
0 6 Never
0 1 Every day
O 2 More than 2 times per week
0 3 More than I time per month
0 4 3 to 12 times in whole year
Os I or 2 times in the whole year
0 6 Never
0 1 Every day
O 2 More than 2 times per week
0 3 More than 1 time per month
0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year
0 6 Never
0, Every day
O 2 More than 2 times per week
0 3 More than 1 time per month
0 4 3 to 12 times in the whole year
0 5 I or 2 times in the whole year
0 6 Never
DJ Every day
O 2 More than 2 times per week
0 3 More than 1 time per month
0 4 3 t012 times in the whole year
0 5 I or 2 times in the whole year
0 6 Never
0 1 Every day
O 2 More than 2 times per week
0 3 More than I time per month
0 4 3 to 12 times in the whole year
0 5 I or 2 times in the whole year
0 6 Never
DJ Every day
O 2 More than 2 times per week
0 3 More than I time per month
0 4 3 to 12 times in the whole year
0 5 1 or 2 times in the whole year



0 6 Never
G171. In the past 12 months, how often has your o I Most nights

child's sleep been disturbed due to O 2 More than 2 times per week
wheezing, coughing, chest tightness or 0 3 More than I time per month
shortness of breath? 0 4 3 to 12 times in the whole year

Os I or 2 times in the whole year
0 6 Never

G172. Are there any particular seasons or 0 1 YES [GO TO G173]
months when [child's] symptoms are O 2 NO [GO TO G174]
worse?

G173. During which season (or o I Spring (September, October, November)
months) does [child] have the O 2 Summer (December, January, February)
most breathing problems? 0 3 Autumn (March, April, May)

[CHECK ALL THAT APPLY] 0 4 Winter (June, July, August)
Os Never has breathing problems

G174. I am going to read a list of things that 0 1 Being active (running, playing, swimming,
might bring on wheezing, tightness in the or exercising)
chest, cough, or shortness of breath in O 2 Sprays or strong smells (such as colognes,
some children. I would like to know perfumes, or cleaning supplies)
whether each of these things brings on 0 3 Colds or flu
these symptoms for [child]. 0 4 Cold air

[CHECK ALL THE RESPONSES THAT R. Os Change in weather
MENTIONS, REMEMBER TO REPEAT 0 6 Laughing or crying hard
QUESTION FROM TIME TO TIME] 0 7 Dust
[USE HAND CARD CCG-4] 0 8 Pets

0 9 Truck or car exhaust
0 10 Hot summer days
011 Pollen, trees, fresh cut grass
0 12 Mold and mildew
0 13 Smoke
0 14 Cockroaches
OIS Certain foods
0 16 Nothing causes breathing problems
0 99 Other (SPECIFY: )

Has a doctor ever told you that [child] has....
[READ ALL CHOICES]

G175. Allergies 0 1Yes

02 No

G176. Eczema 0 1 Yes

02 No

G177. Reactive airway disease Dj Yes

02 No

G178. Asthmatic bronchitis 0 1Yes

02 No
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G179. Any other lung/breathing condition

B. HEALTH SERVICES UTILIZATION

D1Yes (SPECIFy: __
D 2 No

G180. Not including the emergency room, does D) Yes What is Doctor or Clinic's name
[child] have a regular family doctor or
health care provider that you usually go O2 No [GO TO GI82 ]
to for his/her health care?
G18t. When is the last time you visited

this doctor or clinic? month/year
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G273. Are there other medications that a fJ j Yes
doctor or clinic has prescribed for O2 No
asthma, wheezing, tightness in the chest,
shortness of breath, or cough, that you
have not bought because of the cost?

G274. If yes, do you have the prescription still a.
[copy name and dose from prescription]. b.

c.
d.
e.

G275. If you don't have the prescription, do a.
you remember the name of the b.
medication(s)? c.

d.
e.

G276. How much would a one-month supply
[of each medication] cost? a. R ,--

b. R ,--
c. R ,--
d. R ,--
e. R ,--
08 don't know

OTHER MEDICINAL USAGE
The following questions concern [CHILD]'s use of medicines, other than those for
asthma which we just covered, and certain products the past month.

G277. Has [CHILD] taken or used any D) Yes
medicines for which a doctor's or 02 No
dentist's prescription is needed, in the
past month? This includes any products
which cannot be obtained without a
doctor's or dentist's prescription.

IF ANY YES: May I see the containers for all
of the prescription medicines [CHILD] took in
the past month? [Proceed to table on next
page]
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VITAMIN USAGE

G326. Has [CHILD] taken or used any 0 1 Yes
vitamins in the past month? Please

~

NoL._ 2

include those that are prescribed by a
doctor or dentist and those that are not
prescribed.

IF ANY YES: May I see the containers for all
of the vitamins [CHILD] took in the past
month? [Proceed to table on next page]

VITAMIN I VITAMIN 2
Enter the complete name of the G327. G333.
vitamin from the label or probe
respondent NAME NAME

Check Item G328. G334.
n container seen 0] container seenL]

O2 container not seen, O2 container not seen,
information furnished by information furnished by
respondent respondent

0 3 product name not on Ch product name not on
container container

[Enter manufacturer's or G329. G335.
distributor's name and address
(city and province)] NAME NAME

CITY CITY

PROVINCE PROVINCE

How often did [CHILD] take G330. G336.
[product] in the past month?

",m"', of "m'} 0] day
"mb,,,f,;m,}

0, day
O2 week O2 week
0 3 month 0 3 month
099 other 099 other

specify: specify:
08 don't know 08 don't know
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How much [product] did [CHILD] G331. ..., G337. ...,
take each time she/he took it o Icapsules/tablets iJ Jcapsules/tablets

=2 teaspoons O2 teaspoons
0 3 tablespoons C3 tablespoons
0 4 ounces 0 4 ounces

number > U5 drops number > 0 5 drops
06 packets/packs [6 packets/packs
07 ml Chml
[19 other 09 other
specify: specify:

08 variable amounts 08 variable amounts
J88 don't know 088 don't know

For how long has [child] been taking G332. ........, G338. .....,
this type of product oI less than o I less than

one month one month
02 months 02 months

number of times 03 years number of times 03 years

--".f
09 other 09 other

specl y: specify:
U8 don't know 08 don't know

VITAMIN 3 VITAMIN 4
Enter the complete name of the G339. G345.
vitamin from the label or probe
respondent NAME NAME

Check Item G340. G346.
uJ container seen DJ container seen
O2 container not seen, 02 container not seen,

information furnished by information furnished by
respondent respondent

03 product name not on 0 3 product name not on
container container

[Enter manufacturer's or G341. G347.
distributor's name and address
(city and province)] NAME NAME

CITY CITY

PROVINCE PROVINCE
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How often did [CHILD] take G342. G348.
[product] in the past month?

"om"" of 'rm'}
::J 1 day "mbcr of ,rm~} lJ 1 day
O2 week [J2 week
1J 3 month =3 month
0 99 other 0 99 other

specify: specify:
08 don't know 08 don't know

How much [product] did [CHILD] G343. " G349. "
take each time shelhe took it [: \capsules/tablets 0\ capsules/tablets

02 teaspoons O2 teaspoons
03 tablespoons 03 tablespoons
2 4 ounces 04 ounces

number > 0 5 drops number > Us drops
06 packets/packs 0 6 packets/packs
0 7 ml o7ml
09 other U9 other

.J specify: .J specify:

08 variable amounts 08 variable amounts
088 don't know D88 don't know

For how long has [child] been taking G344. G350.
this type of product -.., o I less than -.., 0) less than

one month one month
~ O2 months

~
O2 months

number of times 0 3 years number of times
03 years

0 9 other 0 9 other
sp ify: s~cify:

08 don't know 08 don't know
VITAMIN 5 VITAMIN 6

Enter the complete name of the G351. G357.
vitamin from the label or probe
respondent NAME NAME

Check Item G352. G358.
0\ container seen D) container seen
D2 container not seen, D2 container not seen,

information furnished by information furnished by
respondent respondent

D3 product name not on D3 product name not on
container container

[Enter manufacturer's or G353. G359.
distributor's name and address
(city and province)] NAME NAME

CITY CITY

PROVINCE PROVINCE
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How often did [CHILD]
[product] in the past month?

take
Cl day
O2 week
0 3 month
r::::9 other

specify: _
[1s don't know

0 1 day
[12 week
0 3 month
09 other

specify: _
Cg don't know

o]capsules/tablets
O2 teaspoons
0 3 tablespoons
0 4 ounces

> Os drops
0 6 packets/packs
07 ml
0 9 other
specify:

number

G361.
~ I capsules/tablets
02 teaspoons
03 tablespoons

_;--_ > =4 ounces
number 05 drops

0 6 packets/packs
C7 ml
09 other
specify:

How much [product] did [CHILD] G355.
take each time she/he took it

Cs variable amounts
Os don't know

Os variable amounts
Osdon't know

For how long has [child] been taking G356.
this type of product ....., [l J less than

one month
O2 months

number of times >- 03 years

09 other
speelfy: _

Os don't know

G362. .....,
DJ less than

one month
>- 02 months

number of times 0 3 years
09 other

../ Ofspecl y: _
08 don't know
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D. CAREGIVER'S QUALITY OF LIFE
Now, I am going to ask you some similar questions about how your child's asthma has
affected you and also some questions about your health.

G363. In the past 3 months, how often did you 0, most nights
wake up or lose sleep because of O2 more than 2 times per week
[child's] asthma? would you say you 0 3 more than 2 times per month
woke up or lost sleep...... 0 4 I or 2 times per month

0 5 no nights
G364. Is there a particular season or month 0, YES

when you wake up or lose sleep most O 2 NO [SKIP TO G366]
because of [child's] asthma?

G365. During what season or month do you 0, Spring (September, October, November)
wake up or lose sleep most because of O 2 Summer (December, January, February)
[child's] asthma? [CHECK ONE] 0 3 Autumn (March, April, May)

0 4 Winter (June, July, August)
G366. During the last [ USE ANSWER 0, Most nights

FROM G365], how often did you wake O 2 More than 2 times per week
up or lose sleep because of [child's] 0 3 More than 2 times per month
asthma? 0 4 I or 2 times per month

0 5 No nights
G367. In the past 3 months, how often did you 0 1 Most days/evenings

have to change your daytime or evening O 2 More than 2 ti mes per week
plans because of [child's] asthma? 0 3 More than 2 times per month
Would you say it was ..... 0 4 I or 2 times per month

0 5 No days/evenings
G368. Is there a particular season or month 0 1 YES

when you have to change your daytime O 2 NO [SKIP TO G371]
or evening plans most because of
[child's] asthma?

G369. During what season or month do you 0, Spring (September, October, November)
have to change your daytime or evening O 2 Summer (December, January, February)
plans most because of [child's] asthma? 0 3 Autumn (March, April, May)

[CHECK ONE] 0 4 Winter (June, July, August)
G370. During the last [USE ANSWER 0 1 Most days/evenings
FROM O 2 More than 2 ti mes per week

G369], how many days or nights per 0 3 More than 2 times per month
week do you have to change your 0 4 I or 2 times per month
daytime or evening plans because of 05 No days/evenings
[child's] asthma? Would you say
it was ...
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E. HOUSEHOLD ENVIRONMENTAL CHECKLIST

G371. Do you rent or own your home or 0 1 rent
neither? O2 own [skip to G373]

0 3 neither [skip G373]
G372. In general, how easy or difficult would 0, Very easy

you say that it is to get your landlord to O2 Somewhat easy
make repairs when they are needed? 0 3 Neither easy or difficult
Would you say ... [READ CHOICES] 0 4 Somewhat difficult

Os Very difficult
At any time during the year is there standing
water or puddles located in... [READ EACH
CHOICE]

G373. [Child's] sleeping room? 0, Yes O 2 No
G374. The sitting room? 0, Yes02 No

0 3 No sitting room
G375. The kitchen? 0 1 Yes02 No
G376. Another place I did not specify? 0, Yes (specify ) O2 No

In the past year have you had any other
problem with water damage or leaking water in
your home, such as from a leaking roof or
leaky plumbing

G377. [Child's] sleeping room? 0, Yes O 2 No
G378. The sitting room? 0, Yes02 No 0 3 No sitting room
G379. The kitchen? 0 1 Yes02 No
G380. Another place I did not specify? 0 1 Yes (specify ) O2 No

G381. How many pets of each type come Dog?
inside the home? Cat?

Other pets (SPECIFY:
)

0 1 No pets in the house [GO TO G384]
[IF ANY CATS OR DOGS OR OTHER PETS

WITH FUR ARE PRESENT, ASK 0382.

AND C383.]

G382. Do any of these pets spend any Dj Yes
time in child's bedroom? O2 No

0 8 Don't Know
G383. Are the pets put out of the house Dj Yes

at night? O 2 No
0 3 Sometimes
0 8 Don't Know

G384. Are there cockroaches in your Dj Yes
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Home? O 2 No
0 8 Don't know

G38S. Have you had any problems with 0 1 Yes
cockroaches in your home during O 2 No
the past year? 0 8 Don't know

G386. Have you or someone else (your 0) Yes
landlord, another family member, a O 2 No [GO TO G389]
professional) treated your home for 0 8 Don't know [GO TO G389]
cockroaches in the past year?

G387. When was the last time it was 0, Within last month
treated? O 2 I to 3 months ago

0 3 3 to 6 months ago
0 4 6 to 12 months ago
Os More than 12 months ago
0 8 Don't know

G388. What was used to treat your home 0] Dry powder
for roaches? O 2 Spraying

0 3 Gel
[READ EACH CHOICE AND CHECK 0 4 Roach bait trap (SPECIFY:
ALL THAT APPLY] )

0 5 Boric acid
0 6 Other (SPECIFY:

)
0 8 Don't know

G389. Have you had any problems with mice 0] Yes
or O 2 No

rats in your home during the past year? 0 8 Don't know
G390. Have you or someone else (your 0] Yes

landlord, another family member, a O 2 No [GO TO G393]
professional) treated your home for 0 8 Don't know [GO TO G393]
rats or mice in the past year?

G391. When was the last time? 0, Within last month
O 2 Between 2 and 6 months ago
0 3 Between 6 and 12 months ago
0 4 More than 12 months ago
0 8 Don't know

G392. How is your home treated for rats 0] Spring traps
or mice? O 2 Glue traps

[READ EACH CHOICE AND CHECK 0 3 Poison
ALL THAT APPLY] 0 4 Other (SPECIFY: )

0 8 Don't know
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F. BEHAVIOR CHANGE TO REDUCE ENVIRONMENTAL HAZARDS

The purpose of these questions is to look at the environment in your home and how it
relates to your child's asthma as well as the health of other household members.

G393. Is there anyone whose paying job is 0 1 Yes
working around chemicals (such as O 2 No
pesticides, paints) or dust living in the 0 8 Don't know
home?

G394. If yes, do they usually wear their work 0 1 Yes
clothes home? O 2 No

0 8 Don't know
G395. Is there anyone whose informal job 0 1 Yes

(includes working with chemicals) is in O 2 No
or 0 8 Don't know

near the home?
G396. During the last 2 weeks, how many times DJ None

was the room in which [child] sleeps O 2 1
dusted? 0 3 2

0 4 3
0 5 4 or more
0 8 Don't know

G397. What do you use when you dust? DJ Dry cloth
O 2 Damp cloth
0 9 Other (SPECIFY: )

G398. During the last 2 weeks, how many 0 1 None
times were other rooms in the house O 2 1
dusted? 0 3 2

0 4 3
0 5 4 or more
0 8 Don't know

G399. How often do you change the [child's] 0 1 once a week or more
Bedding? O 2 more than every two weeks

[DO NOT READ RESPONSE 0 3 more that once a month
CATEGORIES TO RESPONDENT; 0 4 once a month or less
CHOOSE CATEGORY WHICH FITS 0 9 Other (SPECIFY:
RESPONSE] )

0 8 Don't know
G400. When the child's bedding are machine 0 1 Hot

washed, what temperature is usually used O 2 Warm
for the wash cycle? 0 3 Cold

[WE ARE INTERESTED IN THE WASH 0 4 Not applicable [DO NOT READ]
CYCLE ONLY. THIS IS THE FIRST Os Don't know
CYCLE OF THE WASHING MACHINE.
EXAMPLE: SOMEONE USES THE
WARM-COLD SETTING, YOU WOULD
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RECORD WARM.]
G401. When the child's bedding is hand DJ Hot
washed, what temperature is usually used for the O2 Warm
wash? 0 3 Cold

0 4 Not applicable [DO NOT READ]
0 8 Don't know

G402. Do you or any member of your family 0 1 Yes (SPECIFY: )
add anything to the wash to help get rid of O 2 No
dust mites? 0 8 Don't know
[PROMPT: "Such as eucalyptus oil."]
G403. How often does the cover on your child's o 1 Once a week or more often

bed get washed (i.e. O 2 More than once a month
bedspreads/comforters)? 0 3 More often that every 3 months (4 times a

[RECORD THE CATEGORY CLOSEST TO year)
THE RESPONSE. IF RESPONDENT 0 4 More often that every six months (2 times
UNSURE, READ RESPONSES] a year)

0 5 Less often than every six months
0 8 Don't know

G404. Does [child] have stuffed animals in his 0 1 Yes
or her bedroom? O 2 No [GO TO G407]

0 8 Don't know
G40S. Do [child's] stuffed animals get 0 1 Yes
washed? O 2 No [GO TO G407]

0 8 Don't know or not applicable [GO TO
G407]

G406. How many times per year do [child's] o I Once a week
stuffed animals get washed? O 2 Once a month
[DO NOT READ RESPONSE O2 Every three months (4 times a year)
CATEGORIES TO RESPONDENT; 0 3 Every six months (2 times a year)
CHOOSE CATEGORY WHICH FITS 0 4 Less than once a year
RESPONSE] 0 5 Once a year

0 9 Other (SPECIFY:
)

0 8 Don't know
Have you done any of the following things
around the house because of [child's] asthma?
G407. Removed visible mold growth? DJ Yes

O 2 No
G408. Removed pets from the home? D) Yes

O2 No
0 3 Never had pets

G409. Changed cigarette-smoking rules in the DJ Yes, no one allowed to smoke
home? O2 Yes, reduced amount of smoking

0 3 Yes, limited smoking to one room.
D4 No
0 5 Never any smokers
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G410. Attempted to control or eliminate 0 1 Yes
cockroaches? 02 No

0 3 Never a problem
G411. Attempted to control or eliminate D) Yes

mice or rats? O2 No
0 3 Never a problem

G412. Did you do any other things around (SPECIFY: )
the house because of [child's]
asthma?

Now I'm going to ask you a few questions about
smoking. These questions concern smoking of
cigarettes.
G413. How many people who live in [child's]

home smoke? people
[INCLUDE RESPONDENT IF SMOKER.] 0 1 None [GO TO G418]
G414. Do you smoke cigarettes, even D) Yes

occasionally? O2 No [GO TO G418]

G415. About how many cigarettes a day do you cigarettes
now smoke?

G416. How often do you go outside the home to 0 1 Always
smoke? O2 Sometimes

0 3 Rarely
0 4 Never
0 8 Don't know

G417. Does [child] smoke cigarettes? 0] Yes
O2 No
0 8 Don't know

G418. Do any frequent visitors smoke? 0 1 Yes
O2 No
0 8 Don't know

G419. Many people have difficulties keeping 0, Yes
their children away from cigarette smoke.

O2 No
Do you have problems keeping [child]
away from people who are smoking?

G420. How frequently is your child around 0, Daily
people who are smoking? Would you O2 Several times a week
say.... [READ CHOICES] 0 3 Several times a month

0 4 Never
0 8 Don't know
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Thank you for your time for these questions.

We may need to contact you again to obtain additional information. Please give me the
name, address and telephone number of two relatives or friends who would know where
you could be reached in case we have difficulty in contacting you.

Name of first contact person:

Telephone number of first contact person:

Address of first contact person:

House No.

Suburbrrownship

Road/Street

Postal Code

Relationship of contact person to you: _

Name of second contact person:

Telephone number of second contact person:

Address of second contact person:

House No.

Suburbrrownship

Road/Street

Postal Code

Relationship of contact person to you: _

THANK YOU FOR COMPLETING THIS QUESTIONNAIRE!

END: Thank you for helping us!

Interview completed at: Time: __:__ am / pm
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APPENDIX 3.5

Parent Informed Consent

Informed Consent Form for participant's parent / legal guardian

Please note: this form is to be read, or read to, and signed by the child's parent or
legal guardian and an adult witness

Your consent is required so that your child
_____________________ can participate in a

NAME SURNAME
study of the health effects of air pollution at the School.

FIRST

If you have any queries after reading this consent form, kindly call Ms. Poovie Reddy @

2042082 (b/h).

The study is being conducted in conjunction with the Nelson R. Mandela Medical
School. The purpose of the study is to find out whether health problems (like asthma,
bronchitis, reactive airway disease, pneumonia and asthmatic bronchitis) experienced by
learners at the school, are caused by air pollution. This study will determine whether
certain genes are involved in your child's response to air pollution. The study has the
support of the school staff, community groups in South Durban and the City Health
Department.

If you agree to participate, your child will be required to give a sample of blood which
will be taken by trained medical personnel.

Risks:
~ There are no risks from taking the samples of blood, but should any medical

emergency arise, there will be trained medical personnel on site to render
assistance.

Confidentiality:
The results and information that we collect from you and your child is completely
confulential. Other than the study personnel, this information will never be seen by
anyone without your written consent. The results of the overall study will be made
available to the school and the community and will be presented so as to protect the
identity of individual participants.

Costs to you resulting from participation in the study:
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The study is offered at no cost to you. If a problem is discovered and you wish to consult
a doctor, we will recommend a doctor. However, the study cannot pay for these
additional medical visits or treatments.

Voluntary nature of participation:
You and your child are free to decline to participate or to withdraw from the study at any
time without suffering any penalty or disadvantage.

Consent:
I understand the meaning of the information given above.

I hereby consent to having my child

FIRST NAME
participate in the study.

Documentation of consent:

SURNAME

The child's parent or legal guardian and an adult witness should sign and date both copies
of this document. You or your child should return ONE copy to your child's teacher at
his/her School by _

It will be given to the research staff and kept with the records of the study. The
other copy is for you to keep.

Printed name of child's parent I legal guardian

Printed name of witness

Date: _
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APPENDIX 3.6

Child Informed Assent

IMPORTANT:

1) If you do not understand any words, please ask for an explanation before giving assent.

INFORMED ASSENT FORM

Title of research project:
Epidemiologial and genetic risk factors associated with asthma among children in the
South Durban Region, KwaZulu Natal.

Please circle the appropriate answer:

I. Have you understood the subject information sheet? YESINO
2. Did you discuss the study with anyone? YESINO
3. Who did you discuss it with? _
4. Do you have any questions about the study or about your role in the study?

YES/NO
5. Are you worried about any part of this study? YESINO
6. Have you received enough information about this study? YESINO
7. Do you understand how you will be involved in this study? YESINO
8. Do you understand that you are free to withdraw from this study:

(a) at any time and;
(b) without having reason to withdraw YES/NO

9. Do you agree to voluntarily take part in this study? YESINO

If you have answered NO to any of the above questions, please obtain the necessary information
BEFORE signing.

I, hereby give assent for the proposed procedures to

SUBJECT'S NAME
be performed on me as part of the above mentioned project.

(PRINTED NAME OF WITNESS)
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APPENDIX 3.7

Information Sheet

IMPORTANT

I) If you do not understand any words, please ask for an explanation before giving assent.

SUBJECT INFORMATION SHEET

Title of research project:
Epidemiological and genetic risk factors associated with asthma among children in South
Durban Region, KwaZulu Natal.

I am requesting your permission to participate in a study of the health effects of air
pollution in the eThekwini Municipality. I would like to describe to you the purpose of
the study, what you would be asked to do if you agree to participate, and what the risks
and benefits of participating in the study are. If you have any questions or if something I
say is not clear to you, please stop me and let know right away.

The study has the support of the local industry, community groups concerned about these
sorts of health problems, and the City Health Department. We are studying this
community because of its location near sources of air pollutants such as oil refineries and
because of health concerns expressed by teachers and students at the school and by the
larger community. The purpose of the study is to figure out whether any health problems
are being caused by air pollution in the community, and, if so, to make recommendations
to improve the situation.

If you agree to participate, you and your parent will be interviewed, you will be asked to
complete baseline breathing tests, and, each day for a period of two or three weeks, fill
out a daily log about activities and any breathing problems, and blow into a handheld
device several times a day to further test your breathing, and also have a blood test
conducted.

Baseline breathing tests. You will be asked to blow several times into a machine which
measures how well your lungs are working. You will be asked to repeat the breathing
test after you first breathe in a small amount of a chemical subsistence (either
methacholine or histamine). This test helps up find out if you may have a breathing
problem like asthma. You may be asked to breathe in this substance and then blow into
the machine a few times.

Blood Tests. Trained technicians will take samples of blood from you. These tests will
determine if you have genes that put you at greater risk of getting respiratory problems.
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Only specified tests will be conducted on this blood sample, and the remainder will be
destroyed immediately after. You WILL NOT BE INJECTED WITH ANY
SUBSTANCE/MEDICAnON.

Risks. There are no risks from the interview, keeping the daily logs, blowing into the
handheld device, or the baseline simple breathing test. The breathing test using the
chemical substance can cause chest tightness, hoarse voice or a sore throat for a short
time in some people. This can be treated immediately with a different medication, which
you breathe in. You will only be given the chemical substance if the simple breathing
test is normal. This greatly reduces the chance of having a serious problem.

Expected benefits to you and others. Your parents will be given a written copy of all
your child's test results along with an explanation of what they mean. What we learn
from this study may help to protect people in South Africa and other parts of the world
from problems caused by air pollution.

Confidentiality. The interview, diary, and breathing test information we collect about
you is completely confidential and will never be seen by anyone other than the personnel
conducting the study without your without your written consent. The results of the
overall study, which will be made available to the local government and the community,
will be presented so as to protect the identity of individual participants.

Voluntary nature of participation. You are free to refuse to participate or to withdraw
from the study at anyone time without suffering any penalty or disadvantage.

Contact person. You may contact MS POOVIE REDDY (telephone no.: 2042082) or
DR RAJEN NAIDOO (telephone no.: 2604385) for answers to further questions about
the research.
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